


                         
 
 
 

 
Wiley Encyclopedia of Computer 

Science and Engineering 
 
 

 
 
 
 
 
 
 

 
 
FullTitle of Book:  Wiley Encyclopedia Of Computer Science And Engineering 
Editor(s):  Wah 
Publisher: Wiley-interscience
YearPublished:  Nov., 2008 
ISBN-10: 0471383937  
ISBN-13: 978-0471383932  
Size& Format:  2362 pages 



• Applications  
• Computer Vision  
• Computing Milieux  
• Data  
• Foundation and Theory  
• Hardware and Architecture  
• Image Processing and Visualization  
• Intelligent Systems  
• IS  
• Parallel and Distributed Systems  
• Software 



A

ASYNCHRONOUS TRANSFER MODE
NETWORKS

Asynchronous transfer mode, or ATM, is a network transfer
technique capable of supporting a wide variety of multi-
media applications with diverse service and performance
requirements. It supports traffic bandwidths ranging from
a few kilobits per second (e.g., a text terminal) to several
hundred megabits per second (e.g., high-definition video)
and traffic types ranging from continuous, fixed-rate traffic
(e.g., traditional telephony and file transfer) to highly
bursty traffic (e.g., interactive data and video). Because
of its support for such a wide range of traffic, ATM was
designated by the telecommunication standardization sec-
tor of the International Telecommunications Union (ITU-T,
formerly CCITT) as the multiplexing and switching tech-
nique for Broadband, or high-speed, ISDN (B-ISDN) (1).

ATM is a form of packet-switching technology. That is,
ATM networks transmit their information in small, fixed-
length packets called cells, each of which contains 48 octets
(or bytes) of data and 5 octets of header information. The
small, fixed cell size was chosen to facilitate the rapid
processing of packets in hardware and to minimize the
amount of time required to fill a single packet. This is
particularly important for real-time applications such as
voice and video that require short packetization delays.

ATM is also connection-oriented. In other words, a
virtual circuit must be established before a call can take
place, where a call is defined as the transfer of information
between two or more endpoints. The establishment of a
virtual circuit entails the initiation of a signaling process,
during which a route is selected according to the call’s
quality of service requirements, connection identifiers at
each switch on the route are established, and network
resources such as bandwidth and buffer space may be
reserved for the connection.

Another important characteristic of ATM is that its
network functions are typically implemented in hardware.
With the introduction of high-speed fiber optic transmis-
sion lines, the communication bottleneck has shifted from
the communication links to the processing at switching
nodes and at terminal equipment. Hardware implementa-
tion is necessary to overcome this bottleneck because it
minimizes the cell-processing overhead, thereby allowing
the network to match link rates on the order of gigabits per
second.

Finally, as its name indicates, ATM is asynchronous.
Time is slotted into cell-sized intervals, and slots are
assigned to calls in an asynchronous, demand-based man-
ner. Because slots are allocated to calls on demand, ATM
can easily accommodate traffic whose bit rate fluctuates
over time. Moreover, in ATM, no bandwidth is consumed
unless information is actually transmitted. ATM also gains
bandwidth efficiency by being able to multiplex bursty
traffic sources statistically. Because bursty traffic does
not require continuous allocation of the bandwidth at its

peak rate, statistical multiplexing allows a large number of
bursty sources to share the network’s bandwidth.

Since its birth in the mid-1980s, ATM has been fortified
by a number of robust standards and realized by a signifi-
cant number of network equipment manufacturers. Inter-
national standards-making bodies such as the ITU and
independent consortia like the ATM Forum have developed
a significant body of standards and implementation agree-
ments for ATM (1,4). As networks and network services
continue to evolve toward greater speeds and diversities,
ATM will undoubtedly continue to proliferate.

ATM STANDARDS

The telecommunication standardization sector of the ITU,
the international standards agency commissioned by the
United Nations for the global standardization of telecom-
munications, has developed a number of standards for ATM
networks. Other standards bodies and consortia (e.g., the
ATM Forum, ANSI) have also contributed to the develop-
ment of ATM standards. This section presents an overview
of the standards, with particular emphasis on the protocol
reference model used by ATM (2).

Protocol Reference Model

The B-ISDN protocol reference model, defined in ITU-T
recommendation I.321, is shown in Fig. 1(1). The purpose of
the protocol reference model is to clarify the functions that
ATM networks perform by grouping them into a set of
interrelated, function-specific layers and planes. The refer-
ence model consists of a user plane, a control plane, and a
management plane. Within the user and control planes is a
hierarchical set of layers. The user plane defines a set of
functions for the transfer of user information between
communication endpoints; the control plane defines control
functions such as call establishment, call maintenance, and
call release; and the management plane defines the opera-
tions necessary to control information flow between planes
and layers and to maintain accurate and fault-tolerant
network operation.

Within the user and control planes, there are three
layers: the physical layer, the ATM layer, and the ATM
adaptation layer (AAL). Figure 2 summarizes the functions
of each layer (1). The physical layer performs primarily bit-
level functions, the ATM layer is primarily responsible for
the switching of ATM cells, and the ATM adaptation layer is
responsible for the conversion of higher-layer protocol
frames into ATM cells. The functions that the physical,
ATM, and adaptation layers perform are described in more
detail next.

Physical Layer

The physical layer is divided into two sublayers: the phy-
sical medium sublayer and the transmission convergence
sublayer (1).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Physical Medium Sublayer. The physical medium (PM)
sublayer performs medium-dependent functions. For
example, it provides bit transmission capabilities including
bit alignment, line coding and electrical/optical conversion.
The PM sublayer is also responsible for bit timing (i.e., the
insertion and extraction of bit timing information). The PM
sublayer currently supports two types of interface: optical
and electrical.

Transmission Convergence Sublayer. Above the physical
medium sublayer is the transmission convergence (TC)
sublayer, which is primarily responsible for the framing
of data transported over the physical medium. The ITU-T
recommendation specifies two options for TC sublayer
transmission frame structure: cell-based and synchronous
digital hierarchy (SDH). In the cell-based case, cells are
transported continuously without any regular frame struc-
ture. Under SDH, cells are carried in a special frame
structure based on the North American SONET (synchro-
nous optical network) protocol (3). Regardless of which
transmission frame structure is used, the TC sublayer is
responsible for the following four functions: cell rate decou-
pling, header error control, cell delineation, and transmis-
sion frame adaptation. Cell rate decoupling is the insertion
of idle cells at the sending side to adapt the ATM cell
stream’s rate to the rate of the transmission path. Header

error control is the insertion of an 8-bit CRC in the ATM cell
header to protect the contents of the ATM cell header. Cell
delineation is the detection of cell boundaries. Transmis-
sion frame adaptation is the encapsulation of departing
cells into an appropriate framing structure (either cell-
based or SDH-based).

ATM Layer

The ATM layer lies atop the physical layer and specifies the
functions required for the switching and flow control of
ATM cells (1).

There are two interfaces in an ATM network: the user-
network interface (UNI) between the ATM endpoint and
the ATM switch, and the network-network interface (NNI)
between two ATM switches. Although a 48-octet cell pay-
load is used at both interfaces, the 5-octet cell header differs
slightly at these interfaces. Figure 3 shows the cell header
structures used at the UNI and NNI (1). At the UNI, the
header contains a 4-bit generic flow control (GFC) field, a
24-bit label field containing virtual path identifier (VPI)
and virtual channel identifier (VCI) subfields (8 bits for the
VPI and 16 bits for the VCI), a 2-bit payload type (PT) field, a
1-bit cell loss priority (CLP) field, and an 8-bit header error
check (HEC) field. The cell header for an NNI cell is
identical to that for the UNI cell, except that it lacks the
GFC field; these four bits are used for an additional 4 VPI
bits in the NNI cell header.

The VCI and VPI fields are identifier values for virtual
channel (VC) and virtual path (VP), respectively. A virtual
channel connects two ATM communication endpoints. A
virtual path connects two ATM devices, which can be
switches or endpoints, and several virtual channels may
be multiplexed onto the same virtual path. The 2-bit PT
field identifies whether the cell payload contains data or
control information. The CLP bit is used by the user for
explicit indication of cell loss priority. If the value of the
CLP is 1, then the cell is subject to discarding in case of
congestion. The HEC field is an 8-bit CRC that protects the
contents of the cell header. The GFC field, which appears
only at the UNI, is used to assist the customer premises
network in controlling the traffic flow. At the time of writ-
ing, the exact procedures for use of this field have not been
agreed upon.

Figure 1. Protocol reference model for ATM.

Figure 2. Functions of each layer in the protocol reference model.

2 ASYNCHRONOUS TRANSFER MODE NETWORKS



ATM Layer Functions

The primary function of the ATM layer is VPI/VCI transla-
tion. As ATM cells arrive at ATM switches, the VPI and VCI
values contained in their headers are examined by the
switch to determine which outport port should be used to
forward the cell. In the process, the switch translates the
cell’s original VPI and VCI values into new outgoing VPI
and VCI values, which are used in turn by the next ATM
switch to send the cell toward its intended destination. The
table used to perform this translation is initialized during
the establishment of the call.

An ATM switch may either be a VP switch, in which case
it translates only the VPI values contained in cell headers,
or it may be a VP/VC switch, in which case it translates the
incoming VPI/VCI value into an outgoing VPI/VCI pair.
Because VPI and VCI values do not represent a unique end-
to-end virtual connection, they can be reused at different
switches through the network. This is important because
the VPI and VCI fields are limited in length and would be
quickly exhausted if they were used simply as destination
addresses.

The ATM layer supports two types of virtual connec-
tions: switched virtual connections (SVC) and permanent,
or semipermanent, virtual connections (PVC). Switched
virtual connections are established and torn down dyna-
mically by an ATM signaling procedure. That is, they exist
only for the duration of a single call. Permanent virtual
connections, on the other hand, are established by network
administrators and continue to exist as long as the admin-
istrator leaves them up, even if they are not used to trans-
mit data.

Other important functions of the ATM layer include cell
multiplexing and demultiplexing, cell header creation and
extraction, and generic flow control. Cell multiplexing is
the merging of cells from several calls onto a single trans-
mission path, cell header creation is the attachment of a 5-
octet cell header to each 48-octet block of user payload, and
generic flow control is used at the UNI to prevent short-
term overload conditions from occurring within the net-
work.

ATM Layer Service Categories

The ATM Forum and ITU-T have defined several distinct
service categories at the ATM layer (1,4). The categories
defined by the ATM Forum include constant bit rate (CBR),
real-time variable bit rate (VBR-rt), non-real-time variable
bit rate (VBR-nrt), available bit rate (ABR), and unspecified

bit rate (UBR). ITU-T defines four service categories,
namely, deterministic bit rate (DBR), statistical bit rate
(SBR), available bit rate (ABR), and ATM block transfer
(ABT). The first of the three ITU-T service categories
correspond roughly to the ATM Forum’s CBR, VBR, and
ABR classifications, respectively. The fourth service cate-
gory, ABT, is solely defined by ITU-T and is intended for
bursty data applications. The UBR category defined by the
ATM Forum is for calls that request no quality of service
guarantees at all. Figure 4 lists the ATM service categories,
their quality of service (QoS) parameters, and the traffic
descriptors required by the service category during call
establishment (1,4).

The constant bit rate (or deterministic bit rate) service
category provides a very strict QoS guarantee. It is targeted
at real-time applications, such as voice and raw video,
which mandate severe restrictions on delay, delay variance
(jitter), and cell loss rate. The only traffic descriptors
required by the CBR service are the peak cell rate and
the cell delay variation tolerance. A fixed amount of band-
width, determined primarily by the call’s peak cell rate, is
reserved for each CBR connection.

The real-time variable bit rate (or statistical bit rate)
service category is intended for real-time bursty applica-
tions (e.g., compressed video), which also require strict QoS
guarantees. The primary difference between CBR and
VBR-rt is in the traffic descriptors they use. The VBR-rt
service requires the specification of the sustained (or aver-
age) cell rate and burst tolerance (i.e., burst length) in
addition to the peak cell rate and the cell delay variation

Figure 3. ATM cell header structure.

Figure 4. ATM layer service categories.

ASYNCHRONOUS TRANSFER MODE NETWORKS 3



tolerance. The ATM Forum also defines a VBR-nrt service
category, in which cell delay variance is not guaranteed.

The available bit rate service category is defined to
exploit the network’s unused bandwidth. It is intended
for non-real-time data applications in which the source is
amenable to enforced adjustment of its transmission rate. A
minimum cell rate is reserved for the ABR connection and
therefore guaranteed by the network. When the network
has unused bandwidth, ABR sources are allowed to
increase their cell rates up to an allowed cell rate (ACR),
a value that is periodically updated by the ABR flow control
mechanism (to be described in the section entitled ‘‘ATM
Traffic Control’’). The value of ACR always falls between
the minimum and the peak cell rate for the connection and
is determined by the network.

The ATM Forum defines another service category for
non-real-time applications called the unspecified bit rate
(UBR) service category. The UBR service is entirely best
effort; the call is provided with no QoS guarantees. The
ITU-T also defines an additional service category for non-
real-time data applications. The ATM block transfer ser-
vice category is intended for the transmission of short
bursts, or blocks, of data. Before transmitting a block,
the source requests a reservation of bandwidth from the
network. If the ABT service is being used with the immedi-
ate transmission option (ABT/IT), the block of data is sent
at the same time as the reservation request. If bandwidth is
not available for transporting the block, then it is simply
discarded, and the source must retransmit it. In the ABT
service with delayed transmission (ABT/DT), the source
waits for a confirmation from the network that enough
bandwidth is available before transmitting the block of
data. In both cases, the network temporarily reserves
bandwidth according to the peak cell rate for each block.
Immediately after transporting the block, the network
releases the reserved bandwidth.

ATM Adaptation Layer

The ATM adaptation layer, which resides atop the ATM
layer, is responsible for mapping the requirements of
higher layer protocols onto the ATM network (1). It oper-
ates in ATM devices at the edge of the ATM network and is
totally absent in ATM switches. The adaptation layer is
divided into two sublayers: the convergence sublayer (CS),
which performs error detection and handling, timing, and
clock recovery; and the segmentation and reassembly
(SAR) sublayer, which performs segmentation of conver-
gence sublayer protocol data units (PDUs) into ATM cell-
sized SAR sublayer service data units (SDUs) and vice
versa.

In order to support different service requirements, the
ITU-T has proposed four AAL-specific service classes.
Figure 5 depicts the four service classes defined in recom-
mendation I.362 (1). Note that even though these AAL
service classes are similar in many ways to the ATM layer
service categories defined in the previous section, they are
not the same; each exists at a different layer of the protocol
reference model, and each requires a different set of func-
tions.

AAL service class A corresponds to constant bit rate
services with a timing relation required between source
and destination. The connection mode is connection-
oriented. The CBR audio and video belong to this class.
Class B corresponds to variable bit rate (VBR) services.
This class also requires timing between source and desti-
nation, and its mode is connection-oriented. The VBR audio
and video are examples of class B services. Class C also
corresponds to VBR connection-oriented services, but the
timing between source and destination needs not be
related. Class C includes connection-oriented data transfer
such as X.25, signaling, and future high-speed data ser-
vices. Class D corresponds to connectionless services. Con-
nectionless data services such as those supported by LANs
and MANs are examples of class D services.

Four AAL types (Types 1, 2, 3/4, and 5), each with a
unique SAR sublayer and CS sublayer, are defined to
support the four service classes. AAL Type 1 supports
constant bit rate services (class A), and AAL Type 2 sup-
ports variable bit rate services with a timing relation
between source and destination (class B). AAL Type 3/4
was originally specified as two different AAL types (Type 3
and Type 4), but because of their inherent similarities, they
were eventually merged to support both class C and class D
services. AAL Type 5 also supports class C and class D
services.

AAL Type 5. Currently, the most widely used adaptation
layer is AAL Type 5. AAL Type 5 supports connection-
oriented and connectionless services in which there is no
timing relation between source and destination (classes C
and D). Its functionality was intentionally made simple in
order to support high-speed data transfer. AAL Type 5
assumes that the layers above the ATM adaptation layer
can perform error recovery, retransmission, and sequence
numbering when required, and thus, it does not provide
these functions. Therefore, only nonassured operation is
provided; lost or corrupted AAL Type 5 packets will not be
corrected by retransmission.

Figure 6 depicts the SAR-SDU format for AAL Type 5
(5,6). The SAR sublayer of AAL Type 5 performs segmenta-
tion of a CS-PDU into a size suitable for the SAR-SDU
payload. Unlike other AAL types, Type 5 devotes the entire
48-octet payload of the ATM cell to the SAR-SDU; there is
no overhead. An AAL specific flag (end-of-frame) in the

Figure 5. Service classification for AAL.

Figure 6. SAR-SDU format for AAL Type 5.

4 ASYNCHRONOUS TRANSFER MODE NETWORKS



ATM PT field of the cell header is set when the last cell of a
CS-PDU is sent. The reassembly of CS-PDU frames at the
destination is controlled by using this flag.

Figure 7 depicts the CS-PDU format for AAL Type 5
(5,6). It contains the user data payload, along with any
necessary padding bits (PAD) and a CS-PDU trailer, which
are added by the CS sublayer when it receives the user
information from the higher layer. The CS-PDU is padded
using 0 to 47 bytes of PAD field to make the length of the CS-
PDU an integral multiple of 48 bytes (the size of the SAR-
SDU payload). At the receiving end, a reassembled PDU is
passed to the CS sublayer from the SAR sublayer, and CRC
values are then calculated and compared. If there is no
error, the PAD field is removed by using the value of length
field (LF) in the CS-PDU trailer, and user data is passed to
the higher layer. If an error is detected, the erroneous
information is either delivered to the user or discarded
according to the user’s choice. The use of the CF field is
for further study.

AAL Type 1. AAL Type 1 supports constant bit rate
services with a fixed timing relation between source and
destination users (class A). At the SAR sublayer, it defines a
48-octet service data unit (SDU), which contains 47 octets of
user payload, 4 bits for a sequence number, and a 4-bit CRC
value to detect errors in the sequence number field. AAL
Type 1 performs the following services at the CS sublayer:
forward error correction to ensure high quality of audio and
video applications, clock recovery by monitoring the buffer
filling, explicit time indication by inserting a time stamp in
the CS-PDU, and handling of lost and misinserted cells that
are recognized by the SAR. At the time of writing, the CS-
PDU format has not been decided.

AAL Type 2. AAL Type 2 supports variable bit rate
services with a timing relation between source and desti-
nation (class B). AAL Type 2 is nearly identical to AAL Type
1, except that it transfers service data units at a variable bit
rate, not at a constant bit rate. Furthermore, AAL Type 2
accepts variable length CS-PDUs, and thus, there may
exist some SAR-SDUs that are not completely filled with
user data. The CS sublayer for AAL Type 2 performs the
following functions: forward error correction for audio and
video services, clock recovery by inserting a time stamp in

the CS-PDU, and handling of lost and misinserted cells. At
the time of writing, both the SAR-SDU and CS-PDU for-
mats for AAL Type 2 are still under discussion.

AAL Type 3/4. AAL Type 3/4 mainly supports services
that require no timing relation between the source and
destination (classes C and D). At the SAR sublayer, it
defines a 48-octet service data unit, with 44 octets of
user payload; a 2-bit payload type field to indicate whether
the SDU is at the beginning, middle, or end of a CS-PDU; a
4-bit cell sequence number; a 10-bit multiplexing identifier
that allows several CS-PDUs to be multiplexed over a single
VC; a 6-bit cell payload length indicator; and a 10-bit CRC
code that covers the payload. The CS-PDU format allows for
up to 65535 octets of user payload and contains a header
and trailer to delineate the PDU.

The functions that AAL Type 3/4 performs include seg-
mentation and reassembly of variable-length user data and
error handling. It supports message mode (for framed data
transfer) as well as streaming mode (for streamed data
transfer). Because Type 3/4 is mainly intended for data
services, it provides a retransmission mechanism if neces-
sary.

ATM Signaling

ATM follows the principle of out-of-band signaling that was
established for N-ISDN. In other words, signaling and data
channels are separate. The main purposes of signaling are
(1) to establish, maintain, and release ATM virtual con-
nections and (2) to negotiate (or renegotiate) the traffic
parameters of new (or existing) connections (7). The ATM
signaling standards support the creation of point-to-point
as well as multicast connections. Typically, certain VCI and
VPI values are reserved by ATM networks for signaling
messages. If additional signaling VCs are required, they
may be established through the process of metasignaling.

ATM TRAFFIC CONTROL

The control of ATM traffic is complicated as a result of
ATM’s high-link speed and small cell size, the diverse
service requirements of ATM applications, and the diverse
characteristics of ATM traffic. Furthermore, the configura-
tion and size of the ATM environment, either local or wide
area, has a significant impact on the choice of traffic control
mechanisms.

The factor that most complicates traffic control in ATM
is its high-link speed. Typical ATM link speeds are 155.52
Mbit/s and 622.08 Mbit/s. At these high-link speeds, 53-
byte ATM cells must be switched at rates greater than one
cell per 2.726 ms or 0.682 ms, respectively. It is apparent
that the cell processing required by traffic control must
perform at speeds comparable to these cell-switching rates.
Thus, traffic control should be simple and efficient, without
excessive software processing.

Such high speeds render many traditional traffic control
mechanisms inadequate for use in ATM because of their
reactive nature. Traditional reactive traffic control
mechanisms attempt to control network congestion by
responding to it after it occurs and usually involves sending

Figure 7. CS-PDU format, segmentation and reassembly of AAL
Type 5.

ASYNCHRONOUS TRANSFER MODE NETWORKS 5



feedback to the source in the form of a choke packet.
However, a large bandwidth-delay product (i.e., the
amount of traffic that can be sent in a single propagation
delay time) renders many reactive control schemes ineffec-
tive in high-speed networks. When a node receives feed-
back, it may have already transmitted a large amount of
data. Consider a cross-continental 622 Mbit/s connection
with a propagation delay of 20 ms (propagation-bandwidth
product of 12.4 Mbit). If a node at one end of the connection
experiences congestion and attempts to throttle the source
at the other end by sending it a feedback packet, the source
will already have transmitted over 12 Mb of information
before feedback arrives. This example illustrates the inef-
fectiveness of traditional reactive traffic control mechan-
isms in high-speed networks and argues for novel
mechanisms that take into account high propagation-band-
width products.

Not only is traffic control complicated by high speeds,
but it also is made more difficult by the diverse QoS require-
ments of ATM applications. For example, many applica-
tions have strict delay requirements and must be delivered
within a specified amount of time. Other applications have
strict loss requirements and must be delivered reliably
without an inordinate amount of loss. Traffic controls
must address the diverse requirements of such applica-
tions.

Another factor complicating traffic control in ATM net-
works is the diversity of ATM traffic characteristics. In
ATM networks, continuous bit rate traffic is accompanied
by bursty traffic. Bursty traffic generates cells at a peak
rate for a very short period of time and then immediately
becomes less active, generating fewer cells. To improve the
efficiency of ATM network utilization, bursty calls should
be allocated an amount of bandwidth that is less than their
peak rate. This allows the network to multiplex more calls
by taking advantage of the small probability that a large
number of bursty calls will be simultaneously active. This
type of multiplexing is referred to as statistical multiplex-
ing. The problem then becomes one of determining how best
to multiplex bursty calls statistically such that the number
of cells dropped as a result of excessive burstiness is
balanced with the number of bursty traffic streams allowed.
Addressing the unique demands of bursty traffic is an
important function of ATM traffic control.

For these reasons, many traffic control mechanisms
developed for existing networks may not be applicable to
ATM networks, and therefore novel forms of traffic control
are required (8,9). One such class of novel mechanisms that
work well in high-speed networks falls under the heading of
preventive control mechanisms. Preventive control
attempts to manage congestion by preventing it before it
occurs. Preventive traffic control is targeted primarily at
real-time traffic. Another class of traffic control mechan-
isms has been targeted toward non-real-time data traffic
and relies on novel reactive feedback mechanisms.

Preventive Traffic Control

Preventive control for ATM has two major components: call
admission control and usage parameter control (8). Admis-
sion control determines whether to accept or reject a new

call at the time of call set-up. This decision is based on the
traffic characteristics of the new call and the current net-
work load. Usage parameter control enforces the traffic
parameters of the call after it has been accepted into the
network. This enforcement is necessary to ensure that the
call’s actual traffic flow conforms with that reported during
call admission.

Before describing call admission and usage parameter
control in more detail, it is important to first discuss the
nature of multimedia traffic. Most ATM traffic belongs to
one of two general classes of traffic: continuous traffic and
bursty traffic. Sources of continuous traffic (e.g., constant
bit rate video, voice without silence detection) are easily
handled because their resource utilization is predictable
and they can be deterministically multiplexed. However,
bursty traffic (e.g., voice with silence detection, variable bit
rate video) is characterized by its unpredictability, and this
kind of traffic complicates preventive traffic control.

Burstiness is a parameter describing how densely or
sparsely cell arrivals occur. There are a number of ways to
express traffic burstiness, the most typical of which are the
ratio of peak bit rate to average bit rate and the average
burst length. Several other measures of burstiness have
also been proposed (8). It is well known that burstiness
plays a critical role in determining network performance,
and thus, it is critical for traffic control mechanisms to
reduce the negative impact of bursty traffic.

Call Admission Control. Call admission control is the
process by which the network decides whether to accept
or reject a new call. When a new call requests access to the
network, it provides a set of traffic descriptors (e.g., peak
rate, average rate, average burst length) and a set of quality
of service requirements (e.g., acceptable cell loss rate,
acceptable cell delay variance, acceptable delay). The net-
work then determines, through signaling, if it has enough
resources (e.g., bandwidth, buffer space) to support the new
call’s requirements. If it does, the call is immediately
accepted and allowed to transmit data into the network.
Otherwise it is rejected. Call admission control prevents
network congestion by limiting the number of active con-
nections in the network to a level where the network
resources are adequate to maintain quality of service guar-
antees.

One of the most common ways for an ATM network to
make a call admission decision is to use the call’s traffic
descriptors and quality of service requirements to predict
the ‘‘equivalent bandwidth’’ required by the call. The
equivalent bandwidth determines how many resources
need to be reserved by the network to support the new
call at its requested quality of service. For continuous,
constant bit rate calls, determining the equivalent band-
width is simple. It is merely equal to the peak bit rate of the
call. For bursty connections, however, the process of deter-
mining the equivalent bandwidth should take into account
such factors as a call’s burstiness ratio (the ratio of peak bit
rate to average bit rate), burst length, and burst interarri-
val time. The equivalent bandwidth for bursty connections
must be chosen carefully to ameliorate congestion and cell
loss while maximizing the number of connections that can
be statistically multiplexed.

6 ASYNCHRONOUS TRANSFER MODE NETWORKS



Usage Parameter Control. Call admission control is
responsible for admitting or rejecting new calls. However,
call admission by itself is ineffective if the call does not
transmit data according to the traffic parameters it pro-
vided. Users may intentionally or accidentally exceed the
traffic parameters declared during call admission, thereby
overloading the network. In order to prevent the network
users from violating their traffic contracts and causing the
network to enter a congested state, each call’s traffic flow is
monitored and, if necessary, restricted. This is the purpose
of usage parameter control. (Usage parameter control is
also commonly referred to as policing, bandwidth enforce-
ment, or flow enforcement.)

To monitor a call’s traffic efficiently, the usage para-
meter control function must be located as close as possible
to the actual source of the traffic. An ideal usage parameter
control mechanism should have the ability to detect para-
meter-violating cells, appear transparent to connections
respecting their admission parameters, and rapidly
respond to parameter violations. It should also be simple,
fast, and cost effective to implement in hardware. To meet
these requirements, several mechanisms have been pro-
posed and implemented (8).

The leaky bucket mechanism (originally proposed in
Ref. 10) is a typical usage parameter control mechanism
used for ATM networks. It can simultaneously enforce the
average bandwidth and the burst factor of a traffic source.
One possible implementation of the leaky bucket mechan-
ism is to control the traffic flow by means of tokens. A
conceptual model for the leaky bucket mechanism is
illustrated in Fig. 5.

In Fig. 8, an arriving cell first enters a queue. If the
queue is full, cells are simply discarded. To enter the net-
work, a cell must first obtain a token from the token pool; if
there is no token, a cell must wait in the queue until a new
token is generated. Tokens are generated at a fixed rate
corresponding to the average bit rate declared during call
admission. If the number of tokens in the token pool exceeds
some predefined threshold value, token generation stops.
This threshold value corresponds to the burstiness of the
transmission declared at call admission time; for larger
threshold values, a greater degree of burstiness is allowed.
This method enforces the average input rate while allowing
for a certain degree of burstiness.

One disadvantage of the leaky bucket mechanism is that
the bandwidth enforcement introduced by the token pool is
in effect even when the network load is light and there is no
need for enforcement. Another disadvantage of the leaky
bucket mechanism is that it may mistake nonviolating cells

for violating cells. When traffic is bursty, a large number of
cells may be generated in a short period of time, while
conforming to the traffic parameters claimed at the time of
call admission. In such situations, none of these cells should
be considered violating cells. Yet in actual practice, leaky
bucket may erroneously identify such cells as violations of
admission parameters. A virtual leaky bucket mechanism
(also referred to as a marking method) alleviates these
disadvantages (11). In this mechanism, violating cells,
rather than being discarded or buffered, are permitted to
enter the network at a lower priority (CLP ¼ 1). These
violating cells are discarded only when they arrive at a
congested node. If there are no congested nodes along the
routes to their destinations, the violating cells are trans-
mitted without being discarded. The virtual leaky bucket
mechanism can easily be implemented using the leaky
bucket method described earlier. When the queue length
exceeds a threshold, cells are marked as ‘‘droppable’’
instead of being discarded. The virtual leaky bucket method
not only allows the user to take advantage of a light network
load but also allows a larger margin of error in determining
the token pool parameters.

Reactive Traffic Control

Preventive control is appropriate for most types of ATM
traffic. However, there are cases where reactive control is
beneficial. For instance, reactive control is useful for service
classes like ABR, which allow sources to use bandwidth not
being used by calls in other service classes. Such a service
would be impossible with preventive control because the
amount of unused bandwidth in the network changes
dynamically, and the sources can only be made aware of
the amount through reactive feedback.

There are two major classes of reactive traffic control
mechanisms: rate-based and credit-based (12,13). Most
rate-based traffic control mechanisms establish a closed
feedback loop in which the source periodically transmits
special control cells, called resource management cells, to
the destination (or destinations). The destination closes the
feedback loop by returning the resource management cells
to the source. As the feedback cells traverse the network,
the intermediate switches examine their current conges-
tion state and mark the feedback cells accordingly. When
the source receives a returning feedback cell, it adjusts its
rate, either by decreasing it in the case of network conges-
tion or increasing it in the case of network underuse. An
example of a rate-based ABR algorithm is the Enhanced
Proportional Rate Control Algorithm (EPRCA), which was
proposed, developed, and tested through the course of ATM
Forum activities (12).

Credit-based mechanisms use link-by-link traffic con-
trol to eliminate loss and optimize use. Intermediate
switches exchange resource management cells that contain
‘‘credits,’’ which reflect the amount of buffer space available
at the next downstream switch. A source cannot transmit a
new data cell unless it has received at least one credit from
its downstream neighbor. An example of a credit-based
mechanism is the Quantum Flow Control (QFC) algorithm,
developed by a consortium of reseachers and ATM equip-
ment manufacturers (13).

Figure 8. Leaky bucket mechanism.

ASYNCHRONOUS TRANSFER MODE NETWORKS 7



HARDWARE SWITCH ARCHITECTURES FOR ATM
NETWORKS

In ATM networks, information is segmented into fixed-
length cells, and cells are asynchronously transmitted
through the network. To match the transmission speed
of the network links and to minimize the protocol proces-
sing overhead, ATM performs the switching of cells in
hardware-switching fabrics, unlike traditional packet
switching networks, where switching is largely performed
in software.

A large number of designs has been proposed and imple-
mented for ATM switches (14). Although many differences
exist, ATM switch architectures can be broadly classified
into two categories: asynchronous time division (ATD) and
space-division architectures.

Asynchronous Time Division Switches

The ATD, or single path, architectures provide a single,
multiplexed path through the ATM switch for all cells.
Typically a bus or ring is used. Figure 9 shows the basic
structure of the ATM switch proposed in (15). In Fig. 6, four
input ports are connected to four output ports by a time-
division multiplexing (TDM) bus. Each input port is allo-
cated a fixed time slot on the TDM bus, and the bus is
designated to operate at a speed equal to the sum of the
incoming bit rates at all input ports. The TDM slot sizes are
fixed and equal in length to the time it takes to transmit one
ATM cell. Thus, during one TDM cycle, the four input ports
can transfer four ATM cells to four output ports.

In ATD switches, the maximum throughput is deter-
mined by a single, multiplexed path. Switches with N input
ports and N output ports must run at a rate N times faster
than the transmission links. Therefore, the total through-
put of ATD ATM switches is bounded by the current cap-
abilities of device logic technology. Commercial examples of
ATD switches are the Fore Systems ASX switch and Digi-
tal’s VNswitch.

Space-Division Switches

To eliminate the single-path limitation and increase total
throughput, space-division ATM switches implement mul-
tiple paths through switching fabrics. Most space-division
switches are based on multistage interconnection net-
works, where small switching elements (usually 2 � 2
cross-point switches) are organized into stages and provide
multiple paths through a switching fabric. Rather than
being multiplexed onto a single path, ATM cells are space-

switched through the fabric. Three typical types of space-
division switches are described next.

Banyan Switches. Banyan switches are examples of
space-division switches. An N � N Banyan switch is con-
structed by arranging a number of binary switching ele-
ments into several stages (log2N stages). Figure 10 depicts
an 8� 8 self-routing Banyan switch (14). The switch fabric
is composed of twelve 2 � 2 switching elements assembled
into three stages. From any of the eight input ports, it is
possible to reach all the eight output ports. One desirable
characteristic of the Banyan switch is that it is self-routing.
Because each cross-point switch has only two output lines,
only one bit is required to specify the correct output path.
Very simply, if the desired output addresses of a ATM cell is
stored in the cell header in binary code, routing decisions
for the cell can be made at each cross-point switch by
examining the appropriate bit of the destination address.

Although the Banyan switch is simple and possesses
attractive features such as modularity, which makes it
suitable for VLSI implementation, it also has some disad-
vantages. One of its disadvantages is that it is internally
blocking. In other words, cells destined for different output
ports may contend for a common link within the switch.
This results in blocking all cells that wish to use that link,
except for one. Hence, the Banyan switch is referred to as a
blocking switch. In Fig. 10, three cells are shown arriving
on input ports 1, 3, and 4 with destination port addresses of
0, 1, and 5, respectively. The cell destined for output port 0
and the cell destined for output port 1 end up contending for
the link between the second and third stages. As a result,
only one of them (the cell from input port 1 in this example)
actually reaches its destination (output port 0), while the
other is blocked.

Batcher–Banyan Switches. Another example of space-
division switches is the Batcher–Banyan switch (14).
(See Fig. 11.) It consists of two multistage interconnection
networks: a Banyan self-routing network and a Batcher
sorting network. In the Batcher–Banyan switch, the incom-
ing cells first enter the sorting network, which takes the
cells and sorts them into ascending order according to their
output addresses. Cells then enter the Banyan network,
which routes the cells to their correct output ports.Figure 9. A 4 � 4 asynchronous time division switch.

Figure 10. A 8 � 8 Banyan switch with binary switching ele-
ments.

8 ASYNCHRONOUS TRANSFER MODE NETWORKS



As shown earlier, the Banyan switch is internally block-
ing. However, the Banyan switch possesses an interesting
feature. Namely, internal blocking can be avoided if the
cells arriving at the Banyan switch’s input ports are sorted
in ascending order by their destination addresses. The
Batcher–Banyan switch takes advantage of this fact and
uses the Batcher soring network to sort the cells, thereby
making the Batcher–Banyan switch internally nonblock-
ing. The Starlite switch, designed by Bellcore, is based on
the Batcher–Banyan architecture (16).

Crossbar Switches. The crossbar switch interconnects N
inputs and N outputs into a fully meshed topology; that is,
there are N2 cross points within the switch (14). (See
Fig. 12.) Because it is always possible to establish a con-
nection between any arbitrary input and output pair, inter-
nal blocking is impossible in a crossbar switch.

The architecture of the crossbar switch has some advan-
tages. First, it uses a simple two-state cross-point switch
(open and connected state), which is easy to implement.
Second, the modularity of the switch design allows simple
expansion. One can build a larger switch by simply adding
more cross-point switches. Lastly, compared to Banyan-
based switches, the crossbar switch design results in low
transfer latency, because it has the smallest number of
connecting points between input and output ports. One
disadvantage to this design, however, is the fact that it
uses the maximum number of cross points (cross-point
switches) needed to implement an N � N switch.

The knockout switch by AT&T Bell Labs is a nonblock-
ing switch based on the crossbar design (17,18). It has N
inputs and N outputs and consists of a crossbar-based
switch with a bus interface module at each output (Fig. 12).

Nonblocking Buffered Switches

Although some switches such as Batcher–Banyan and
crossbar switches are internally nonblocking, two or

more cells may still contend for the same output port in a
nonblocking switch, resulting in the dropping of all but one
cell. In order to prevent such loss, the buffering of cells by
the switch is necessary. Figure 13 illustrates that buffers
may be placed (1) in the inputs to the switch, (2) in the
outputs to the switch, or (3) within the switching fabric
itself, as a shared buffer (14). Some switches put buffers in
both the input and output ports of a switch.

The first approach to eliminating output contention is to
place buffers in the output ports of the switch (14). In the
worst case, cells arriving simultaneously at all input ports
can be destined for a single output port. To ensure that no
cells are lost in this case, the cell transfer must be per-
formed at N times the speed of the input links, and the
switch must be able to write N cells into the output buffer
during one cell transmission time. Examples of output
buffered switches include the knockout switch by AT&T
Bell Labs, the Siemens & Newbridge MainStreetXpress
switches, the ATML’s VIRATA switch, and Bay Networks’
Lattis switch.

The second approach to buffering in ATM switches is to
place the buffers in the input ports of the switch (14). Each
input has a dedicated buffer, and cells that would otherwise
be blocked at the output ports of the switch are stored in
input buffers. Commercial examples of switches with input
buffers as well as output buffers are IBM’s 8285 Nways
switches, and Cisco’s Lightstream 2020 switches.

A third approach is to use a shared buffer within the
switch fabric. In a shared buffer switch, there is no buffer at
the input or output ports (14). Arriving cells are immedi-
ately injected into the switch. When output contention
happens, the winning cell goes through the switch, while
the losing cells are stored for later transmission in a shared
buffer common to all of the input ports. Cells just arriving at
the switch join buffered cells in competition for available
outputs. Because more cells are available to select from, it is
possible that fewer output ports will be idle when using the
shared buffer scheme. Thus, the shared buffer switch can
achieve high throughput. However, one drawback is that
cells may be delivered out of sequence because cells that
arrived more recently may win over buffered cells during
contention (19). Another drawback is the increase in the
number of input and output ports internal to the switch.
The Starlite switch with trap by Bellcore is an example of
the shared buffer switch architecture (16). Other examples
of shared buffer switches include Cisco’s Lightstream 1010
switches, IBM’s Prizma switches, Hitachi’s 5001 switches,
and Lucent’s ATM cell switches.

CONTINUING RESEARCH IN ATM NETWORKS

ATM is continuously evolving, and its attractive ability to
support broadband integrated services with strict quality of
service guarantees has motivated the integration of ATM
and existing widely deployed networks. Recent additions to
ATM research and technology include, but are not limited
to, seamless integration with existing LANs [e.g., LAN
emulation (20)], efficient support for traditional Internet
IP networking [e.g., IP over ATM (21), IP switching (22)],
and further development of flow and congestion control

Figure 11. Batcher–Banyan switch.

Figure 12. A knockout (crossbar) switch.

ASYNCHRONOUS TRANSFER MODE NETWORKS 9



algorithms to support existing data services [e.g., ABR flow
control (12)]. Research on topics related to ATM networks is
currently proceeding and will undoubtedly continue to
proceed as the technology matures.

BIBLIOGRAPHY

1. CCITT Recommendation I-Series. Geneva: International Tele-
phone and Telegraph Consultative Committee.

2. J. B. Kim, T. Suda and M. Yoshimura, International standar-
dization of B-ISDN, Comput. Networks ISDN Syst., 27: 1994.

3. CCITT Recommendation G-Series. Geneva: International Tel-
ephone and Telegraph Consultative Committee.

4. ATM Forum Technical Specifications [Online]. Available www:
www.atmforum.com

5. Report of ANSI T1S1.5/91-292, Simple and Efficient Adapta-
tion Layer (SEAL), August 1991.

6. Report of ANSI T1S1.5/91-449, AAL5—A New High Speed
Data Transfer, November 1991.

7. CCITT Recommendation Q-Series. Geneva: International Tel-
ephone and Telegraph Consultative Committee.

8. J. Bae and T. Suda, Survey of traffic control schemes and
protocols in ATM networks, Proc. IEEE, 79: 1991.

9. B. J. Vickers et al., Congestion control and resource manage-
ment in diverse ATM environments, IECEJ J., J76-B-I (11):
1993.

10. J. S. Turner, New directions in communications (or which way
to the information age?), IEEE Commun. Mag., 25 (10): 1986.

11. G. Gallassi, G. Rigolio, and L. Fratta, ATM: Bandwidth
assignment and bandwidth enforcement policies. Proc.
GLOBECOM’89.

12. ATM Forum, ATM Forum Traffic management specification
version 4.0, af-tm-0056.000, April 1996, Mountain View, CA:
ATM Forum.

13. Quantum Flow Control version 2.0, Flow Control Consortium,
FCC-SPEC-95-1, [Online], July 1995. http://www.qfc.org

14. Y. Oie et al., Survey of switching techniques in high-speed
networks and their performance, Int. J. Satellite Commun., 9:
285–303, 1991.

15. M. De Prycker and M. De Somer, Performance of a service
independent switching network with distributed control, IEEE
J. Select. Areas Commun., 5: 1293–1301, 1987.

16. A. Huang and S. Knauer, Starlite: A wideband digital switch.
Proc. IEEE GLOBECOM’84, 1984.

17. K. Y. Eng, A photonic knockout switch for high-speed packet
networks, IEEE J. Select. Areas Commun., 6: 1107–1116, 1988.

18. Y. S. Yeh, M. G. Hluchyj, and A. S. Acampora, The knockout
switch: A simple, modular architecture for high-performance
packet switching, IEEE J. Select. Areas Commun., 5: 1274–
1283, 1987.

19. J. Y. Hui and E. Arthurs, A broadband packet switch for
integrated transport, IEEE J. Select. Areas Commun., 5:
1264–1273, 1987.

20. ATM Forum, LAN emulation over ATM version 1.0. AF-LANE-
0021, 1995, Mountain View, CA: ATM Forum.

21. IETF, IP over ATM: A framework document, RFC-1932, 1996.

22. Ipsilon Corporation, IP switching: The intelligence of
routing, The Performance of Switching [Online]. Available
www.ipsiolon.com

TATSUYA SUDA

University of California, Irvine
Irvine, California

Figure 13. Nonblocking buffered
switches.

10 ASYNCHRONOUS TRANSFER MODE NETWORKS



A

AIRCRAFT COMPUTERS

AIRCRAFT ANALOG COMPUTERS

Early aircraft computers were used to take continuous
streams of inputs to provide flight assistance. Examples
of aircraft analog inputs are fuel gauge readings, throttle
settings, and altitude indicators. Landau (1) defines an
analog computer as a computer for processing data repre-
sented by a continuous physical variable, such as electric
current. Analog computers monitor these inputs and imple-
ment a predetermined service when some set of inputs calls
for a flight control adjustment. For example, when fuel
levels are below a certain point, the analog computer would
read a low fuel level in the aircraft’s main fuel tanks and
would initiate the pumping of fuel from reserve tanks or the
balancing of fuel between wing fuel tanks. Some of the first
applications of analog computers to aircraft applications
were for automatic pilot applications, where these analog
machines took flight control inputs to hold altitude and
course. The analog computers use operational amplifiers to
build the functionality of summers, adders, subtracters,
and integrators on the electric signals.

Aircraft Digital Computers

As the technologies used to build digital computers evolved,
digital computers became smaller, lighter, and less power-
hungry, and produced less heat. This improvement made
them increasingly acceptable for aircraft applications.
Digital computers are synonymous with stored-program
computers. A stored-program computer has the flexibility
of being able to accomplish multiple different tasks simply
by changing the stored program. Analog computers are
hard-wired to perform one and only one function. Analog
computers’ data, as defined earlier, are continuous physical
variables. Analog computers may be able to recognize and
process numerous physical variables, but each variable has
its unique characteristics that must be handled during
processing by the analog computer. The range of output
values for the analog computer is bounded as a given
voltage range; if they exceed this range, they saturate.
Digital computers are not constrained by physical vari-
ables. All the inputs and outputs of the digital computer
are in a digital representation. The processing logic and
algorithms performed by the computer work in a single
representation of the cumulative data. It is not uncommon
to see aircraft applications that have analog-to-digital
and digital-to-analog signal converters. This method is
more efficient than having the conversions done within
the computers. Analog signals to the digital computer
are converted to digital format, where they are quickly
processed digitally and returned to the analog device
through a digital-to-analog converter as an analog output
for that device to act upon. These digital computers are

smaller, more powerful, and easier to integrate into multi-
ple areas of aircraft applications.

Landau (1) defines a digital computer as a computer for
processing data represented by discrete, localized physical
signals, such as the presence or absence of an electric
current. These signals are represented as a series of bits
with word lengths of 16, 32, and 64 bits. See micro-
computers for further discussion.

Wakerly (2) shows number systems and codes used to
process binary digits in digital computers. Some impor-
tant number systems used in digital computers are binary,
octal, and hexadecimal numbers. He also shows conver-
sion between these and base-10 numbers, as well as simple
mathematical operations such as addition, subtraction,
division, and multiplication. The American Standard Code
for Information Interchange (ASCII) of the American
National Standard Institute (ANSI) is also presented,
which is Standard No. X3.4-1968 for numerals, symbols,
characters, and control codes used in automatic data
processing machines, including computers. Figure 1 shows
a typical aircraft central computer.

Microcomputers

The improvements in size, speed, and cost through compu-
ter technologies continually implement new computer con-
sumer products. Many of these products were unavailable
to the average consumer until recently. These same break-
throughs provide enormous functional improvements in
aircraft computing. Landau (1) defines microcomputers
as very small, relatively inexpensive computers whose
central processing unit (CPU) is a microprocessor. A
microprocessor (also called MPU or central processing
unit) communicates with other devices in the system
through wires (or fiber optics) called lines. Each device
has a unique address, represented in binary format, which
the MPU recognizes. The number of lines is also the
address size in bits. Early MPU machines had 8-bit
addresses. Machines of 1970 to 1980 typically had 16-bit
addresses; modern MPU machines have 256 bits.

Common terminology for an MPU is random access
memory (RAM), read only memory (ROM), input-output,
clock, and interrupts. RAM is volatile storage. It holds both
data and instructions for the MPU. ROM may hold both
instructions and data. The key point of ROM is that it is
nonvolatile. Typically, in an MPU, there is no operational
difference between RAM and ROM other than its volatility.
Input-output is how data are transferred to and from the
microcomputer. Output may be from the MPU, ROM, or
RAM. Input may be from the MPU or the RAM. The clock of
an MPU synchronizes the execution of the MPU instruc-
tions. Interrupts are inputs to the MPU that cause it to
(temporarily) suspend one activity in order to perform a
more important activity.

An important family of MPUs that greatly improved the
performance of aircraft computers is the Motorola M6800
family of microcomputers. This family offered a series of

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



improvements in memory size, clock speeds, functionality,
and overall computer performance.

Personal Computers

Landau (1) defines personal computers as electronic
machines that can be owned and operated by individuals
for home and business applications such as word proces-
sing, games, finance, and electronic communications.
Hamacher et al. (3) explain that rapidly advancing very
large-scale integrated circuit (VLSI) technology has
resulted in dramatic reductions in the cost of computer
hardware. The greatest impact has been in the area of small
computing machines, where it has led to an expanding
market for personal computers.

The idea of a personally owned computer is fairly new.
The computational power available in handheld toys today
was only available through large, costly computers in
the late 1950s and early 1960s. Vendors such as Atari,
Commodore, and Compaq made simple computer games
household items. Performance improvements in memory,
throughput, and processing power by companies such as
IBM, Intel, and Apple made facilities such as spreadsheets
for home budgets, automated tax programs, word proces-
sing, and three-dimensional virtual games common house-
hold items. The introduction of Microsoft’s Disk Operating
System (DOS) and Windows has also added to the accep-
tance of the personal computers through access to software
applications. Improvements in computer technology offer
continual improvements, often multiple times a year. The
durability and portability of these computers is beginning
to allow them to replace specialized aircraft computers
that had strict weight, size, power, and functionality
requirements.

AVIONICS

In the early years of aircraft flight, technological innovation
was directed at improving flight performance through
rapid design improvements in aircraft propulsion and
airframes. Secondary development energies went to areas
such as navigation, communication, munitions delivery,
and target detection. The secondary functionality of
aircraft evolved into the field of avionics. Avionics now
provides greater overall performance and accounts for a
greater share of aircraft lifecycle costs than either propul-
sion or airframe components.

Landau (1) defines avionics [avi(ation)þ (electr)onics] as
the branch of electronics dealing with the development and
use of electronic equipment in aviation and astronautics.
The field of avionics has evolved rapidly as electronics has
improved all aspects of aircraft flight. New advances in
these disciplines require avionics to control flight stability,
which was traditionally the pilot’s role.

Aircraft Antennas

An important aspect of avionics is receiving and transmit-
ting electromagnetic signals. Antennas are devices for
transmitting and receiving radio-frequency (RF) energy
from other aircraft, space applications, or ground applica-
tions. Perry and Geppert (4) illustrate the aircraft electro-
magnetic spectrum, influenced by the placement and usage
of numerous antennas on a commercial aircraft. Golden (5)
illustrates simple antenna characteristics of dipole, horn,
cavity-backed spiral, parabola, parabolic cylinder, and
Cassegrain antennas.

Radiation pattern characteristics include elevation and
azimuth. The typical antenna specifications are polariza-
tion, beam width, gain, bandwidth, and frequency limit.

Computers are becoming increasingly important for the
new generation of antennas, which include phased-array
antennas and smart-skin antennas. For phased-array
antennas, computers are needed to configure the array
elements to provide direction and range requirements
between the radar pulses. Smart-skin antennas comprise
the entire aircraft’s exterior fuselage surface and wings.
Computers are used to configure the portion of the aircraft
surface needed for some sensor function. The computer also
handles sensor function prioritization and deinterleaving
of conflicting transmissions.

Aircraft Sensors

Sensors, the eyes and ears of an aircraft, are electronic
devices for measuring external and internal environmental
conditions. Sensors on aircraft include devices for sending
and receiving RF energy. These types of sensors include
radar, radio, and warning receivers. Another group of
sensors are the infrared (IR) sensors, which include lasers
and heat-sensitive sensors. Sensors are also used to mea-
sure direct analog inputs; altimeters and airspeed indica-
tors are examples. Many of the sensors used on aircraft
have their own built-in computers for serving their own
functional requirements such as data preprocessing, filter-
ing, and analysis. Sensors can also be part of a computer

Figure 1. Typical aircraft central computer.

2 AIRCRAFT COMPUTERS



interface suite that provides key aircraft computers with
the direct environmental inputs they need to function.

Aircraft Radar

Radar (radio detection and ranging) is a sensor that trans-
mits RF energy to detect air and ground objects and deter-
mines parameters such as the range, velocity, and direction
of these objects. The aircraft radar serves as its primary
sensor. Several services are provided by modern aircraft
radar, including tracking, mapping, scanning, and identi-
fication. Golden (5) states that radar is tasked either to
detect the presence of a target or to determine its location.
Depending on the function emphasized, a radar system
might be classified as a search or tracking radar.

Stimson (6) describes the decibel (named after Alexander
Graham Bell) as one of the most widely used terms in the
design and description of radar systems. The decibel (dB) is a
logarithmic unit originally devised to express power ratios,
but also used to express a variety of other ratios. The power
ratio indBisexpressedas 10 log10 P2/P1,whereP2 andP1 are
the power levels being compared. Expressed in terms of
voltage, the gain is (V2/V1)2 dB provided the input voltage
V1 and output voltage V2 are across equal resistances.

Stimson (6) also explains the concept of the pulse repeti-
tion frequency (PRF), which is the rate at which a radar
system’s pulses are transmitted: the number of pulses per
second. The interpulse period T of a radar is given by
T ¼ 1=PRF. For a PRF of 100 Hz, the interpulse period
would be 0.01 s.

The Doppler Effect, as described by Stimson (6), is a shift
in the frequency of a radiated wave, reflected or received by
an object in motion. By sensing Doppler frequencies, radar
not only can measure range rates, but can also separate
target echoes from clutter, or can produce high-resolution
ground maps. Computers are required by an aircraft
radar to make numerous and timely calculations with
the received radar data, and to configure the radar to
meet the aircrew’s needs.

Aircraft Data Fusion

Data fusion is a method for integrating data from multiple
sources in order to give a comprehensive solution to a
problem (multiple inputs, single output). For aircraft com-
puters, data fusion specifically deals with integrating data
from multiple sensors such as radar and infrared sensors.
For example, in ground mapping, radar gives good surface
parameters, whereas the infrared sensor provides the
height and size of items in the surface area being investi-
gated. The aircraft computer takes the best inputs from
each sensor, provides a common reference frame to inte-
grate these inputs, and returns a more comprehensive
solution than either single sensor could have given.

Data fusion is becoming increasingly important as air-
crafts’ evolving functionality depends on off-board data
(information) sources. New information such as weather,
flight path re-routing, potential threats, target assignment,
and enroute fuel availability are communicated to the air-
craft from its command and control environment. The air-
craft computer can now expand its own solution with these
off-board sources.

Aircraft Navigation

Navigation is the science of determining present location,
desired location, obstacles between these locations, and
best courses to take to reach these locations. An interesting
pioneer of aircraft navigation was James Harold Doolittle
(1886–1993). Best known for his aircraft-carrier-based
bomber raid on Tokyo in World War II, General Doolittle
received his Master’s and Doctor of Science degrees in
aeronautics from Massachusetts Institute of Technology,
where he developed instrumental blind flying in 1929.
He made navigation history by taking off, flying a set
course, and landing without seeing the ground. For a
modern aircraft, with continuous changes in altitude, air-
speed, and course, navigation is a challenge. Aircraft com-
puters help meet this challenge by processing the multiple
inputs and suggesting aircrew actions to maintain course,
avoid collision and weather, conserve fuel, and suggest
alternative flight solutions.

An important development in aircraft navigation is the
Kalman filter. Welch and Bishop (7) state that in 1960, R.E.
Kalman published his famous paper describing a recursive
solution to the discrete-data linear filtering problem. Since
that time, due in large part to advances in digital comput-
ing, the Kalman filter has been the subject of extensive
research and application, particularly in the area of auton-
omous or assisted navigation. The Kalman filter is a set of
mathematical equations that provides an efficient compu-
tational (recursive) implementation of the least-squares
method. The filter is very powerful in several aspects: It
supports estimation of past, present, and even future
states, and it can do so even when the precise nature of
the modeled system is unknown.

The global positioning system (GPS) is a satellite refer-
ence system that uses multiple satellite inputs to determine
location. Many modern systems, including aircraft, are
equipped with GPS receivers, which allow the system
access to the network of GPS satellites and the GPS ser-
vices. Depending on the quality and privileges of the GPS
receiver, the system can have an instantaneous input of its
current location, course, and speed within centimeters of
accuracy. GPS receivers, another type of aircraft computer,
can also be programmed to inform aircrews of services
related to their flight plan.

Before the GPS receiver, the inertial navigation systems
(INS) were the primary navigation system on aircraft. Fink
and Christiansen (8) describe inertial navigation as the
most widely used ‘‘self-contained’’ technology. In the case of
an aircraft, the INS is contained within the aircraft, and is
not dependent on outside inputs. Accelerometers con-
stantly sense the vehicle’s movements and convert them,
by double integration, into distance traveled. To reduce
errors caused by vehicle attitude, the accelerometers are
mounted on a gyroscopically controlled stable platform.

Aircraft Communications

Communication technologies on aircraft are predominately
radio communication. This technology allows aircrews to
communicate with ground controllers and other aircraft.
Aircraft computers help establish, secure, and amplify
these important communication channels.

AIRCRAFT COMPUTERS 3



These communication technologies are becoming
increasingly important as aircraft become interoperable.
As the dependency of aircraft on interoperability increases,
the requirements to provide better, more reliable, secure
point-to-point aircraft communication also increases. The
aircraft computer plays a significant role in meeting this
challenge by formatting and regulating this increased flow
of information.

Aircraft Displays

Displays are visual monitors in aircraft that present
desired data to aircrews and passengers. Adam and Gibson
(9) illustrate F-15E displays used in the Gulf War. These
illustrations show heads-up displays (HUDs), vertical
situation displays, radar warning receivers, and low-
altitude navigation and targeting system (Lantirn) displays
typical of modern fighter aircraft. Sweet (10) illustrates the
displays of a Boeing 777, showing the digital bus interface to
the flight-deck panels and an optical-fiber data distribution
interface that meets industry standards.

Aircraft Instrumentation

Instrumentation of an aircraft means installing data col-
lection and analysis equipment to collect information about
the aircraft’s performance. Instrumentation equipment
includes various recorders for collecting real-time flight
parameters such as position and airspeed. Instruments
also capture flight control inputs, environmental para-
meters, and any anomalies encountered in flight test or
in routine flight. One method of overcoming this limitation
is to link flight instruments to ground recording systems,
which are not limited in their data recording capacities. A
key issue here is the bandwidth between the aircraft being
tested and its ground (recording) station. This bandwidth is
limited and places important limitations on what can be
recorded. This type of data link is also limited to the range of
the link, limiting the aircraft’s range and altitude during
this type of flight test. Aircraft computers are used both in
processing the data as they are being collected on the aircraft
and in analyzing the data after they have been collected.

Aircraft Embedded Information Systems

Embedded information system is the latest terminology for
an embedded computer system. The software of the
embedded computer system is now referred to as embedded
information. The purpose of the aircraft embedded infor-
mation system is to process flight inputs (such as sensor and
flight control) into usable flight information for further
flight system or aircrew use. The embedded information
system is a good example of the merging of two camps of
computer science applications. The first, and larger, camp
is the management of information systems (MIS). The MIS
dealt primarily with large volumes of information, with
primary applications in business and banking. The timing
requirements of processing these large information records
are measured in minutes or hours. The second camp is the
real-time embedded computer camp, which was concerned
with processing a much smaller set of data, but in a very
timely fashion. The real-time camp’s timing requirement is

in microseconds. These camps are now merging, because
their requirements are converging. MIS increasingly needs
real-time performance, while real-time systems are required
to handle increased data processing workloads. The
embedded information system addresses both needs.

Aircraft and the Year 2000

The year 2000 (Y2K) was a major concern for the aircraft
computer industry. Many of the embedded computers on
aircraft and aircraft support functions were vulnerable to
Y2K faults because of their age. The basic problem with
those computers was that a year was represented by its low-
order two digits. Instead of the year having four digits,
these computers saved processing power by using the last
two digits of the calendar year. For example, 1999 is repre-
sented as 99, which is not a problem until you reach the year
2000, represented as 00. Even with this representation,
problems are limited to those algorithms sensitive to calen-
dar dates. An obvious problem is when an algorithm divides
by the calendar date, which is division by 0. Division by 0 is
an illegal computer operation, causing problems such as
infinite loops, execution termination, and system failure.
The most commonly mentioned issue is the subtraction of
dates todetermine time durations and to compare dates. The
problem is not that the computer programs fail in a very
obvious way (e.g., divide-by-zero check) but rather that the
program computes an incorrect result without any warning
or indication of error. Lefkon and Payne (11) discuss Y2K
and how to make embedded computers Y2K-compliant.

Aircraft Application Program Interfaces

An application programming interface (API) is conven-
tionally defined as an interface used by one program to
make use of the services of another program. The human
interface to a system is usually referred to as the user
interface, or, less commonly, the human–computer inter-
face. Application programs are software written to solve
specific problems. For example, the embedded computer
software that paints the artificial horizon on a heads-up
display is an application program. A switch that turns the
artificial horizon on or off is an API. Gal-Oz and Isaacs (12)
discuss APIs and how to relieve bottlenecks of software
debugging.

Aircraft Control

Landau (1) defines a control as an instrument or apparatus
used to regulate a mechanism or a device used to adjust or
control a system. There are two concepts with control. One
is the act of control. The other is the type of device used to
enact control. An example of an act of control is when a pilot
initiates changes to throttle and stick settings to alter flight
path. The devices of control, in this case, are the throttle
and stick.

Control can be active or passive. Active control is force-
sensitive. Passive control is displacement-sensitive.

Mechanical control is the use of mechanical devices,
such as levers or cams, to regulate a system. The earliest
form of mechanical flight control was wires or cables, used
to activate ailerons and stabilizers through pilot stick and

4 AIRCRAFT COMPUTERS



foot pedal movements. Today, hydraulic control, the use of
fluids for activation, is typical. Aircraft control surfaces are
connected to stick and foot pedals through hydraulic lines.
Pistons in the control surfaces are pushed or pulled by
associated similar pistons in the stick or foot pedal. The
control surfaces move accordingly.

Electronic control is the use of electronic devices, such as
motors or relays, to regulate a system. A motor is turned on
by a switch, and it quickly changes control surfaces by
pulling or pushing a lever on the surface. Automatic control
is a system-initiated control, which is a system-initiated
response to a known set of environmental conditions. Auto-
matic control was used for early versions of automatic pilot
systems, which tied flight control feedback systems to
altitude and direction indicators. The pilot sets his desired
course and altitude, which is maintained through the flight
control’s automatic feedback system.

To understand the need for computers in these control
techniques, it is important to note the progression of the
complexity of the techniques. The earliest techniques con-
nected the pilot directly to his control surfaces. As the
aircraft functionality increased, the pilot’s workload also
increased, requiring his (or his aircrew’s) being free to
perform other duties. Additionally, flight characteristics
became more complex, requiring more frequent and instan-
taneous control adjustments. The use of computers helped
offset and balance the increased workload in aircraft. The
application of computers to flight control provides a means
for processing and responding to multiple complex flight
control requirements.

Aircraft Computer Hardware

For aircraft computers, hardware includes the processors,
buses, and peripheral devices inputting to and outputting
from the computers. Landau (1) defines hardware as appa-
ratus used for controlling a spacecraft; the mechanical,
magnetic, and electronic design, structure, and devices of
a computer; and the electronic or mechanical equipment
that uses cassettes, disks, and so on. The computers used
on an aircraft are called processors. The processor takes
inputs from peripheral devices and provides specific com-
putational services for the aircraft.

There are many types and functions of processors on an
aircraft. The most obvious processor is the central compu-
ter, also called the mission computer. The central computer
provides direct control and display to the aircrew. The
federated architecture (discussed in more detail later) is
based on the central computer directing the scheduling and
tasking of all the aircraft subsystems. Other noteworthy
computers are the data processing and signal processing
computers of the radar subsystem and the computer of the
inertial navigation system. Processors are in almost every
component of the aircraft. Through the use of an embedded
processor, isolated components can perform independent
functions as well as self-diagnostics.

Distributed processors offer improved aircraft perfor-
mance and, in some cases, redundant processing capability.
Parallel processors are two or more processors configured
to increase processing power by sharing tasks. The
workload of the shared processing activity is distributed

among the pooled processors to decrease the time it takes to
form solutions. Usually, one of the processors acts as the
lead processor, or master, while the other processor(s) act
as slave(s). The master processor schedules the tasking and
integrates the final results, which is particularly useful on
aircraft in that processors are distributed throughout the
aircraft. Some of these computers can be configured to be
parallel processors, offering improved performance and
redundancy. Aircraft system redundancy is important
because it allows distributed parallel processors to be
reconfigured when there is a system failure. Reconfigur-
able computers are processors that can be reprogrammed
to perform different functions and activities. Before com-
puters, it was very difficult to modify systems to adapt to
their changing requirements. A reconfigurable computer
can be dynamically reprogrammed to handle a critical
situation, and then it can be returned to its original
configuration.

Aircraft Buses

Buses are links between computers (processors), sensors,
and related subsystems for transferring data inputs and
outputs. Fink and Christiansen (8) describe two primary
buses as data buses and address buses. To complete the
function of an MPU, a microprocessor must access memory
and peripheral devices, which is accomplished by placing
data on a bus, either an address bus or a data bus, depend-
ing on the function of the operation. The standard 16-bit
microprocessor requires a 16-line parallel bus for each
function. An alternative is to multiplex the address or
data bus to reduce the number of pin connections. Common
buses in aircraft are the Military Standard 1553 Bus (Mil-
Std-1553) and the General-Purpose Interface Bus (GPIB),
which is the IEEE Standard 488 Bus.

Aircraft Software

Landau (1) defines software as the programs, routines, and
so on for a computer. The advent of software has provided
great flexibility and adaptability to almost every aspect of
life, which is especially true in all areas of aerospace
sciences, where flight control, flight safety, in-flight enter-
tainment, navigation, and communications are continu-
ously being improved by software upgrades.

Operation Flight Programs. An operational flight pro-
gram (OFP) is the software of an aircraft embedded com-
puter system. An OFP is associated with an aircraft’s
primary flight processors, including the central computer,
vertical and multiple display processors, data processors,
signal processors, and warning receivers. Many OFPs in
use today require dedicated software integrated support
environments to upgrade and maintain them as the mission
requirements of their parent aircraft are modified. The
software integrated support environment [also called avio-
nics integrated support environment (AISE), centralized
software support activity (CSSA), and software integration
laboratory (SIL)] not only allows an OFP to be updated and
maintained, but also provides capabilities to perform unit

AIRCRAFT COMPUTERS 5



testing, subsystem testing, and some of the integrated
system testing.

Assembly Language. Assembly language is a machine
(processor) language that represents inputs and outputs
as digital data and that enables the machine to perform
operations with those data. For a good understanding of the
Motorola 6800 Assembler Language, refer to Bishop (13).
According to Seidman and Flores (14), the lowest-level
(closest to machine) language available to most computers
is assembly language. When one writes a program in
assembly code, alphanumeric characters are used instead
of binary code. A special program called an assembler
(provided with the machine) is designed to take the assem-
bly statements and convert them to machine code. Assem-
bly language is unique among programming languages in
its one-to-one correspondence between the machine code
statements produced by the assembler and the original
assembly statements. In general, each line of assembly
code assembles into one machine statement.

Higher-Order Languages. Higher-order languages (HOLs)
are computer languages that facilitate human language
structures to perform machine-level functions. Seidman
and Flores (14) discuss the level of discourse of a pro-
gramming language as its distance from the underlying
properties of the machine on which it is implemented. A
low-level language is close to the machine, and hence
provides access to its facilities almost directly; a high-level
language is far from the machine, and hence insulated
from the machine’s peculiarities. A language may provide
both high-level and low-level constructs. Weakly typed
languages are usually high-level, but often provide some
way of calling low-level subroutines. Strongly typed lan-
guages are always high-level, and they provide means for
defining entities that more closely match the real-world
objects being modeled. Fortran is a low-level language that
can be made to function as a high-level language by use of
subroutines designed for the application. APL, Sobol, and
SETL (a set-theoretic language) are high-level languages
with fundamental data types that pervade their language.
Pascal, Cobol, C, and PL/I are all relatively low-level lan-
guages, in which the correspondence between a program
and the computations it causes to be executed is fairly
obvious. Ada is an interesting example of a language
with both low-level properties and high-level properties.
Ada provides quite explicit mechanisms for specifying
the layout of data structures in storage, for accessing
particular machine locations, and even for communicating
with machine interrupt routines, thus facilitating low-level
requirements. Ada’s strong typing qualities, however, also
qualify it as a high-level language.

High-level languages have far more expressive power
than low-level languages, and the modes of expression
are well integrated into the language. One can write quite
short programs that accomplish very complex operations.
Gonzalez (15) developed an Ada Programmer’s Handbook
that presents the terminology of the HOL Ada and exam-
ples of its use. He also highlights some of the common
programmer errors and examples of those errors. Sodhi
(16) discusses the advantages of using Ada. Important

discussions of software lifecycle engineering and main-
tenance are presented, and the concept of configuration
management is presented.

The package concept is one of the most important devel-
opments to be found in modern programming languages,
such as Ada, Modula-2, Turbo Pascal, Cþþ, and Eiffel. The
designers of the different languages have not agreed on what
terms to use for this concept: Package, module, unit, and
class are commonly used. It is generally agreed, however,
that the package (as in Ada) is the essential programming
tool to be used for going beyond the programming of very
simple class exercises to what is generally called software
engineering or building production systems. Packages and
package-like mechanisms are important tools used in soft-
ware engineering to produce production systems. Feldman
(17) illustrates the use of Ada packages to solve problems.

Databases. Database are essential adjuncts to computer
programming. Databases allow aircraft computer appli-
cations the ability to carry pertinent information (such
as flight plans or navigation waypoints) into their missions,
rather than generating them enroute. Databases also allow
the aircrew to collect performance information about the
aircraft’s various subsystems, providing a capability to
adjust the aircraft in flight and avoid system failures.

Elmasri and Navathe (18) define a database as a collec-
tion of related data. Data are described as known facts that
can be recorded and have implicit meaning. A simple
example consists of the names, telephone numbers, and
addresses of an indexed address book. A database manage-
ment system (DBMS) is a collection of programs that enable
users to create and maintain a database. The DBMS is
hence a general-purpose software system that facilitates
the processes of defining, constructing, and manipulating
databases for various applications.

Verification and Validation. A significant portion of the
aircraft computer’s lifecycle cost is system and software
testing, performed in various combinations of unit-level,
subsystem-level, integrated-system-level, developmental,
and operational testing. These types of tests occur fre-
quently throughout the life of an aircraft system because
there are frequent upgrades and modifications to the air-
craft and its various subsystems. It is possible to isolate
acceptance testing to particular subsystems when minor
changes are made, but this is the exception. Usually, any
change made to a subsystem affects other multiple parts of
the system. As aircraft become increasingly dependent on
computers (which add complexity by the nature of their
interdependences), and as their subsystems become
increasingly integrated, the impact of change also
increases drastically. Cook (19) shows that a promising
technology to help understand the impact of aircraft com-
puter change is the Advanced Avionics Verification and
Validation (AAV&V) program developed by the Air Force
Research Laboratory.

Sommerville (20) develops the concepts of program ver-
ification and validation. Verification involves checking
that the program conforms to its specification. Validation
involves checking that the program as implemented meets
the expectations of the user.

6 AIRCRAFT COMPUTERS



Figure 2 shows an aircraft avionics support bench,
which includes real components from the aircraft such as
the FCC line replaceable unit (LRU) sitting on top of the
pictured equipment. Additional equipment includes the
buses, cooling, and power connection interfaces, along
with monitoring and displays. On these types of benches,
it is common to emulate system and subsystem responses
with testing computers such as the single-board computers
illustrated.

Figure 3 shows another verification and validation asset
called the workstation-based support environment. This
environment allows an integrated view of the aircraft’s
performance by providing simulations of the aircraft’s
controls and displays on computer workstations. The
simulation is interfaced with stick and throttle controls,
vertical situation displays, and touch-screen avionics
switch panels.

Object-Oriented Technology. Object-oriented (OO) tech-
nology is one of the most popular computer topics of the
1990s. OO languages such as Cþþ and Ada 95 offer tre-

mendous opportunities to capture complex representations
of data and then save these representations in reusable
objects. Instead of using several variables and interactions
to describe some item or event, this same item or event is
described as an object. The object contains its variables,
control-flow representations, and data-flow representa-
tions. The object is a separable program unit, which can
be reused, reengineered, and archived as a program unit.
The power of this type of programming is that when large
libraries of OO programming units are created, they can be
called on to greatly reduce the workload of computer soft-
ware programming. Gabel (21) says that OO technology lets
an object (a software entity consisting of the data for an
action and the associated action) be reused in different
parts of the application, much as an engineered hardware
product can use a standard type of resistor or micropro-
cessor. Elmasri and Navathe (18) describe an OO database
as an approach with the flexibility to handle complex
requirements without being limited by the data types and
query languages available in traditional database systems.

Open System Architecture. Open system architecture is
a design methodology that keeps options for updating sys-
tems open by providing liberal interfacing standards.
Ralston and Reilly (22) state that open architectures per-
tain primarily to personal computers. An open architecture
is one that allows the installation of additional logic
cards in the computer chassis beyond those used with
the most primitive configuration of the system. The cards
are inserted into slots in the computer’s motherboard—the
main logic board that holds its CPU and memory chips. A
computer vendor that adopts such a design knows that,
because the characteristics of the motherboard will be
public knowledge, other vendors that wish to do so can
design and market customized logic cards. Open system
architectures are increasingly important in modern air-
craft applications because of the constant need to upgrade
these systems and use the latest technical innovations. It is
extremely difficult to predict interconnection and growth
requirements for next-generation aircraft, which is exactly
what an open architecture attempts to avoid the need for.

Client-Server Systems. A client-server system is one in
which one computer provides services to another computer
on a network. Ralston and Reilly (22) describe the file-
server approach as an example of client-server interaction.
Clients executing on the local machine forward all file
requests (e.g., open, close, read, write, and seek) to the
remote file server. The server accepts a client’s requests,
performs its associated operation, and returns a response to
the client. Indeed, if the client software is structured
transparently, the client need not even be aware that files
being accessed physically reside on machines located else-
where on the network. Client-server systems are being
applied on modern aircraft, where highly distributed
resources and their aircrew and passenger services are
networked to application computers.

Subsystems. The major subsystems of an aircraft are its
airframe, power plant, avionics, landing gear, and controls.
Landau (1) defines a subsystem as any system that is part of

Figure 2. An aircraft avionics support bench.

Figure 3. A workstation-based aircraft avionics support envi-
ronment.

AIRCRAFT COMPUTERS 7



a larger system. Many of the subsystems on an aircraft have
one or more processors associated with them. It is a complex
task to isolate and test the assorted subsystems.

Another layer of testing below subsystem testing is unit
testing. A unit of a subsystem performs a function for it. For
example, in the radar subsystem, the units include its
signal processor and its data processor. In order to test a
system adequately, each of its lowest-level items (units)
must be tested. As the units affect and depend on each
other, another layer of testing addresses that layer of
dependences. In the same fashion, subsystem testing is
performed and integrated with associated subsystems. It is
important to test not only at the unit and the subsystem
level, but at the system and operational level. The system
level is where the subsystems are brought together to offer
the system functionality. System integration is the process
of connecting subsystem components into greater levels of
system functionality until the complete system is realized.
The operational level of testing is where the subsystem is
exercised in its actual use.

Line Replaceable Units. LRUs are subsystems or subsys-
tem components that are self-contained in durable boxes
containing interface connections for data, control, and
power. Many LRUs also contain built-in test (BIT) capabil-
ities that notify air and maintenance crews when a failure
occurs. A powerful feature of LRUs is that functionality can
be compartmentalized. When a failure is detected, the LRU
can easily be pulled and replaced, restoring the aircraft to
service within moments of detection.

Graceful Degradation. All systems must have plans to
address partial or catastrophic failure. System failure in
flight controls is often catastrophic, whereas system failure
in avionics can be recovered from. For this reason, most
flight-critical systems have built-in redundant capabilities
(sometimes multiple layers of redundancy), which are auto-
matically activated when the main system or subsystem
fails. Degraded system behavior occurs when the main
system fails and backup systems are activated. The critical
nature of system failure requires immediate activation of
backup systems and recognition by all related subsystems
of the new state of operation. Graceful degradation is the
capability of aircraft computers to continue operating after
incurring system failure. Graceful degradation is less than
optimal performance, and may activate several layers of
decreasing performance before the system fails. The value of
graceful degradation is that the aircrew has time to respond
to the system failure before a catastrophic failure occurs.

AEROSPACE

Computer technologies have helped provide a continuum of
improvements in aircraft performance that has allowed the
airspace where aircraft operate to increase in range and
altitude. Landau (1) defines aerospace as the Earth’s atmo-
sphere and the space outside it, considered as one contin-
uous field. Because of its rapidly increasing domain of air
and space travel, the U. S. Air Force is beginning to refer to
itself as the U. S. Aerospace Force. Modern air-space vehi-

cles are becoming increasingly dependent on information
gleaned from ground stations, satellites, other air-space
vehicles, and onboard sensors to perform their mission.
These vehicles use signals across the electromagnetic spec-
trum. Antennas can be found in multiple locations on
wings, the fuselage, tails, and draglines. If antennas are
located too close together, their signals can interfere with
each other, called crossed frequency transmission. This
interference reduces the efficiency of each affected
antenna. Placement of multiple antennas requires mini-
mizing the effects of crossed frequency transmissions.
Techniques for minimization include antenna placement,
filtering, and timing, which presents another challenge for
aircraft computers to sort and process these multiple sig-
nals. Perry and Geppert (4) show how the aircraft electro-
magnetic spectrum is becoming busy, and thus, dangerous
for aerospace communications.

Legacy Systems

Legacy systems are fielded aircraft, or aircraft that are in
active use. Probably the only nonlegacy aircraft are experi-
mental or prototype versions. Legacy aircraft are often
associated with aging issues, more commonly known as
parts obsolescence. A growing problem in these systems is
the obsolescence of entire components, including the many
computers used on them. Aircraft, like many other systems,
are designed with expected lifetimes of 10 to 15 years.
Because of the high replacement costs, lifetimes are often
doubled and tripled by rebuilding and updating the air-
craft. To reduce costs, as many of the original aircraft
components as possible are kept. Problems develop when
these components are no longer produced or stockpiled.
Sometimes, subsystems and their interfaces have to be
completely redesigned and produced at great cost in order
to keep an aircraft in service. System architectures and
standard interfaces are constantly being modified to
address these issues. Aircraft evolve during their lifetimes
to a more open architecture. This open architecture, in
turn, allows the aircraft components to be more easily
replaced, thus making further evolution less expensive.

Unmanned Air Vehicles

Unmanned air vehicles (UAVs) are aircraft that are flown
without aircrews. Their use is becoming increasingly pop-
ular for military applications. Many of the new capabilities
of UAVs come from the improved computers. These com-
puters allow the vehicles to have increased levels of auton-
omy and to perform missions that once required piloted
aircraft. Some of these missions include reconnaissance
and surveillance. These same types of missions are finding
increasing commercial importance. UAVs offer tremen-
dous advantages in lifecycle cost reductions because of
their small size, ease of operation, and ability to be
adapted to missions.

MAN–MACHINE SYSTEMS

An aircraft is an example of a man–machine system. Other
examples are automobiles and boats. These machines

8 AIRCRAFT COMPUTERS



have the common attribute of being driven by a human.
Landau (1) defines man–machine systems as sets of manu-
ally performed and machine-performed functions, oper-
ated in conjunction to perform an operation. The aircraft
computer is constantly changing the role of the human in
the aircraft machine. The earliest aircraft required the
constant attention of the pilot. Improved flight control
devices allowed the pilot freedom for leisure or for other
tasks. Modern aircraft computers have continued the
trend of making the aircraft more the machine and less
the man system.

Human Factors of Aircraft Computers

Human factors is the science of optimal conditions for
human comfort and health in the human environment.
The human factors of aircraft computers include the posi-
tioning of the controls and displays associated with the
aircrew’s workloads. They also provide monitoring and
adjustment of the aircraft human environment, including
temperature, oxygen level, and cabin pressure.

Man–Machine Interface

The man–machine interface is the place where man’s inter-
actions with the aircraft coordinate with the machine
functionality of the aircraft. An example of a man–machine
interface is the API, which is where a person provides
inputs to and receives outputs from computers. These types
of interfaces include keyboards (with standard ASCII char-
acter representation), mouse pads, dials, switches, and
many varieties of monitors. A significant interface in air-
craft comprises their associated controls and displays,
which provide access to the flight controls, the sensor suite,
the environmental conditions, and the aircraft diagnostics
through the aircraft’s central computer. Control sticks,
buttons, switches, and displays are designed based on
human standards and requirements such as seat height,
lighting, accessibility, and ease of use.

Voice-Activated Systems. Voice-activated systems are
interfaces to aircraft controls that recognize and respond
to aircrew’s verbal instructions. A voice-activated input
provides multiple input possibilities beyond the limited
capabilities of hands and feet. Voice-activated systems
have specified sets of word commands and are trained to
recognize a specific operator’s voice.

Aircraft Computer Visual Verification

Visual verification is the process of physically verifying
(through sight) the correct aircraft response to environ-
mental stimuli. This visual verification is often a testing
requirement. It is usually done through the acceptance test
procedure (ATP) and visual inspections of displays through
a checklist of system and subsystem inputs. Until recently,
visual verification has been a requirement for pilots, who
have desired the capability to see every possibility that
their aircraft might encounter. This requirement is becom-
ing increasingly difficult to implement because of the grow-
ing complexity and workload of the aircraft’s computers
and their associated controls and displays. In the late 1980s

to early 1990s, it required about 2 weeks to visually verify
the suite of an advanced fighter system’s avionics. This
verification can no longer be accomplished at all with
current verification and validation techniques. Several
months would be required to achieve some level of confi-
dence that today’s modern fighters are flight-safe.

Air Traffic Control

Air traffic control is the profession of monitoring and
controlling aircraft traffic through an interconnected
ground-based communication and radar system. Perry
(23) describes the present capabilities and problems in
air traffic control. He also discusses the future require-
ments for this very necessary public service. Air traffic
controllers view sophisticated displays, which track multi-
ple aircraft variables such as position, altitude, velocity,
and heading. Air traffic control computers review these
variables and give the controllers continuous knowledge of
the status of each aircraft. These computers continuously
update and display the aircraft in the ground-based radar
range. When potential emergency situations, such as
collision, develop, the computer highlights the involved
aircraft on the displays, with plenty of lead time for the
controller to correct each aircraft’s position.

AIRCRAFT CONTROL AND COMPUTERS

D’ Azzo and Houpis (24) give a good explanation of the
complexity of what is needed for an aircraft control sys-
tem. The feedback control system used to keep an airplane
on a predetermined course or heading is necessary for
the navigation of commercial airliners. Despite poor
weather conditions and lack of visibility, the airplane
must maintain a specified heading and altitude in order
to reach its destination safely. In addition, in spite of rough
air, the trip must be made as smooth and comfortable as
possible for the passengers and crew. The problem is
considerably complicated by the fact that the airplane
has six degrees of freedom, which makes control more
difficult than control of a ship, whose motion is limited
to the surface of the water.

A flight controller is used to control aircraft motion. Two
typical signals to the system are the correct flight path,
which is set by the pilot, and the level position of the
airplane. The ultimately controlled variable is the actual
course and position of the airplane. The output of the
control system, the controlled variable, is the aircraft
heading.

In conventional aircraft, three primary control surfaces
are used to control the physical three-dimensional atti-
tude of the airplane: the elevators, the rudder, and the
ailerons. A directional gyroscope (gyro) is used as the
error-measuring device. Two gyros must be used to pro-
vide control of both heading and attitude of the airplane.
The error that appears in the gyro as an angular displace-
ment between the rotor and case is translated into a
voltage by various methods, including the use of transdu-
cers such as potentiometers, synchros, transformers, or
microsyns. Selection of the method used depends on the

AIRCRAFT COMPUTERS 9



preference of the gyro manufacturer and the sensitivity
required. Additional stabilization for the aircraft can be
provided in the control system by rate feedback. In other
words, in addition to the primary feedback, which is the
position of the airplane, another signal proportional to the
angular rate of rotation of the airplane around the vertical
axis is fed back in order to achieve a stable response. A rate
gyro is used to supply this signal. This additional stabili-
zation may be absolutely necessary for some of the newer
high-speed aircraft.

In reading through this example, it should be obvious
that as the complexity of the control feedback system of the
aircraft increases, a need for computer processing to eval-
uate the feedback and to adjust or recommend flight control
adjustments exists. Additional feedback may come from
global positioning, from ground-based navigation systems
through radio inputs, and from other aircraft. The compu-
ter is able to integrate these inputs into the onboard flight
control inputs and provide improved recommendations for
stable flight.

REAL-TIME SYSTEMS

The computers on aircraft are required to perform
their functions within short times. Flight control systems
must make fine adjustments quickly in order to main-
tain stable flight. Sensor suites must detect and analyze
potential threats before it is too late. Cabin pressure and
oxygen must be regulated as altitude changes. All these
activities, plus many others on aircraft, must happen in
real time.

Nielsen (25) defines a real-time system as a controlled
(by software or firmware) system that performs all of
its process functions within specified time constraints. A
real-time system usually includes a set of independent
hardware devices that operate at widely differing speeds.
These devices must be controlled so that the system as a
whole is not dependent on the speed of the slowest device.
Hatley and Pirbhai (26) describe timing as one of the most
critical aspects of modern real-time systems. Often, the
system’s response must occur within milliseconds of a given
input event, and every second it must respond to many such
events in many different ways.

Flight-Critical Systems

Flight-critical systems are those activities of an aircraft
that must be completed without error in order to maintain
life and flight. The aircraft flight controls, engines, landing
gear, and cabin environment are examples of flight-critical
systems. Failures in any of these systems can have cata-
strophic results. Flight-critical systems are held to tight
levels of performance expectations, and often have redun-
dant backups in case of failure.

Federated Systems

Federated systems are loosely coupled distributed systems
frequently used in aircraft system architectures to tie
multiple processors in multiple subsystems together. The

loose coupling allows the multiple subsystems to operate
somewhat autonomously, but have the advantage of the
shared resources of the other subsystems. A typical aircraft
federated system might include its central computer, its
INS, its radar system, and its air-vehicle management
system. The INS provides the radar with the aircraft’s
present position, which is reported to the pilot through
displays put forth by the central computer. The pilot
adjusts his course through the air-vehicle management
system, which is updated by the INS, and the cycle is
repeated. These subsystems perform their individual func-
tionality while providing services to each other.

Cyclic Executive

A cyclic executive on an aircraft computer provides a
means to schedule and prioritize all the functions of the
computer. The executive routine assigns the functions and
operations to be performed by the computer. These assign-
ments are given a specific amount of clock time to be
performed. If the assignment does not complete its task
in its allocated time, it is held in a wait state until its next
clock period. From the beginning of the clock period to its
end is one clock cycle. High-priority functions are assigned
faster clock cycles, whereas low-priority functions are
assigned slower cycles. For example, the high-priority
executive function might be assigned a speed of 100 cycles
per second, whereas some lower-priority function might
have 5 cycles per second to complete its tasks. Sometimes,
the latter might take several clock cycles to perform a task.
An additional feature of cyclic executives is that they are
equipped with interrupts, which allow higher-priority
systems to break into the executive assignments for
system-level assigned tasking.

There are several types of scheduling methodologies
that provide performance improvements in cyclic exe-
cutives. One of the more prominent is rate monotonic
analysis (RMA), which determines the time requirement
for each function and the spare time slots, and then makes
time assignments.

THE NETWORK-CENTRIC AIRCRAFT

In the age of the World Wide Web (www), it is hard to
imagine the concept of platform-centric systems, such as
many of the aircraft that are in service today. These air-
craft were built with the requirement to be self-sufficient,
safe, and survivable. Dependency on off-board inputs was
minimized as advanced avionics technologies allowed air-
craft to assess and respond to their environment flight
dynamics independently. These aircraft have been con-
ceived, created, and maintained right up to this new
information age. It takes significant effort to open the
architectures of these aircraft, in order for their existing
capabilities to be enhanced by outside information. For-
tunately, the adaptability and flexibility of aircraft com-
puters makes this process possible for many of these
aircraft.

The modern aircraft (conceived, created, and main-
tained since the mid-1990s) is a network-centric aircraft.
These aircraft take full advantage of the platform-centric

10 AIRCRAFT COMPUTERS



systems with independent suites of avionics and aircraft
computers. However, they have the additional ability to
adapt to their environmental flight dynamics, which is
possible because these systems have access to the most
recent information about their environment. They can
interactively communicate with other aircraft entering
and leaving their environment, as well as take advantage
of the information services available in that environment.
The aircraft computers work very much the same as in the
platform-centric aircraft, but with improved and broader
information than was available before (27,28).

The network-centric aircraft can take full advantage of
route changes caused by heavy air traffic, threats, or
weather. It can send its systems self-diagnostics ahead to
maintenance crews, who can have parts and resources
available reducing the service re-cycling time of the air-
craft. It can inform passengers and crew about their indi-
vidual travel plans and the options available to them as
they arrive at their destinations. It can help air traffic
controllers and flight planners manage the dynamic work-
load of the many aircraft in service.

BIBLIOGRAPHY

1. S. Landou, Webster Illustrated Contemporary Dictionary,
Encyclopedic Edition. Chicago: J. G. Ferguson, 1992.

2. J. F. Wakerly, Digital Design Principles and Practices. Engle-
wood Cliffs, NJ: Prentice-Hall, 1985, pp. 1–48, 53–138.

3. V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer
Organization, 2nd ed. New York: McGraw-Hill, 1984.

4. T. Perry and L. Geppert, Do portable electronics endanger
flight, IEEE Spectrum, 33(9): 26–33, 1996.

5. A. Golden, Radar Electronic Warfare. Washington: AIAA Edu-
cation Series, 1987.

6. G. W. Stimson, Introduction to Airborne Radar. El Segundo,
CA: Hughes Aircraft, 1983, pp. 107, 151–231.

7. G. Welch and G. Bishop, An introduction to the Kalman filter,
Department of Computer Science, University of North Caro-
lina at Chapel Hill, Chapel Hill, NC, http://www.cs.unc.edu/
~welch/media/pdf/kalman.pdf, 1997.

8. D. Fink and D. Christiansen, Electronics Engineers’ Handbook,
3rd ed., New York: McGraw-Hill, 1989.

9. J. Adam and T. Gibson, Warfare in the information age, IEEE
Spectrum, 28(9): 26–42, 1991.

10. W. Sweet, The glass cockpit, IEEE Spectrum, 32(9): 30–38,
1995.

11. D. Lefkon and B. Payne, Making embedded systems year 2000
compliant, IEEE Spectrum, 35(6): 74–79, 1998.

12. S. Gal-Oz and M. Isaacs, Automate the bottleneck in embedded
system design, IEEE Spectrum, 35(8): 62–67, 1998.

13. R. Bishop, Basic Microprocessors and the 6800. Hasbrouck
Heights, NJ: Hayden, 1979.

14. A. Seidman and I. Flores, The Handbook of Computers and
Computing. New York: Van Norstrand Reinhold, 1984, pp.
327–502.

15. D. W. Gonzalez, Ada Programmer’s Handbook. Redwood City,
CA: Benjamin/Cummings, 1991.

16. J. Sodhi, Managing Ada Projects. Blue Ridge Summit, PA: TAB
Books, 1990.

17. M. B. Feldman and E. B. Koffman, Ada Problem Solving and
Program Design. Reading, MA: Addison-Wesley, 1992.

18. R. Elmasri and S. B. Navathe, Fundamentals of Database
Design, 2nd ed. Redwood City, CA: Benjamin/Cummings, 1994.

19. R. Cook, The advanced avionics verification and validation II
final report, Air Force Research Laboratory Technical Report
ASC-99-2078, Wright-Patterson AFB.

20. I. Sommerville, Software Engineering, 3rd ed. Reading, MA:
Addison-Wesley, 1989.

21. D. Gabel, Software engineering, IEEE Spectrum, 31(1): 38–41,
1994.

22. A. Ralston and E. Reilly, Encyclopedia of Computer Science.
New York: Van Nostrand Reinhold, 1993.

23. T. Perry, In search of the future of air traffic control, IEEE
Spectrum, 34(8): 18–35, 1997.

24. J. J. D’ Azzo and C. H. Houpis, Linear Control System Analysis
and Design, 2nd ed. New York: McGraw-Hill, 1981, pp. 143–
146.

25. K. Nielsen, Ada in Distributed Real-Time Systems. New York:
Intertext, 1990.

26. D. J. Hatley and I. A. Pirbhai, Strategies for Real-Time System
Specification. New York: Dorset House, 1988.

27. D. S. Alberts, J. J. Garstka, and F. P. Stein, Network Centric
Warfare. Washington D.C.: CCRP Publication Series, 2000.

28. D. S. Alberts and R. E. Hayes, Power to the Edge. Washington
D.C.: CCRP Publication Series, 2003.

FURTHER READING

G. Buttazo, Hard Real-Time Computing Systems. Norwell, MA:
Kluwer, 1997.

R. Comerford, PCs and workstations, IEEE Spectrum, 30(1): 26–
29, 1993.

D. Dooling, Aerospace and military, IEEE Spectrum, 35(1): 90–94,
1998.

J. Juliussen and D. Dooling, Small computers, aerospace & mili-
tary, IEEE Spectrum, 32(1): 44–47, 76–79, 1995.

K. Kavi, Real-Time Systems, Abstractions, Languages, and Design
Methodologies. Los Alamitos, CA: IEEE Computer Society Press,
1992.

P. Laplante, Real-Time Systems Design and Analysis, an Engineer’s
Handbook. Piscataway, NJ: IEEE Press, 1997.

M. S. Roden, Analog and Digital Communication Systems, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1985.

H. Taub, Digital Circuits and Microprocessors. New York:
McGraw-Hill, 1982.

C. Weitzman, Distributed Micro/Minicomputer. Englewood Cliffs,
NJ: Prentice-Hall, 1980.

CHARLES P. SATTERTHWAITE

United States Air Force
Wright-Patterson AFB, Ohio.

AIRCRAFT COMPUTERS 11



C

COMPUTERIZED DICTIONARIES:
INTEGRATING PORTABLE DEVICES,
TRANSLATION SOFTWARE, AND WEB
DICTIONARIES TO MAXIMIZE LEARNING

BACKGROUND STUDIES ON BILINGUAL
AND ELECTRONIC DICTIONARIES

Many articles comparing various types of dictionaries
may be found in the first fully annotated bibliographic
review of studies in this broad field of lexicography
(the making of dictionaries, whether print or electronic),
entitled Pedagogical Lexicography Today by Dolezal and
McCreary (1), under either the learner dictionary category
or under traditional dictionaries designed for native read-
ers. Articles on learner dictionaries are grouped by their
central focus, namely by whether they are mainly dealing
with bilingual (giving first language or L1 translations),
bilingualized (including both L1 and L2 information), or
only monolingual (providing only English-to-English or
other L2 to/from L2 definitions) explanations of target
language (TL) vocabulary. Laufer and Kimmel (2) des-
cribed patterns of use, comparing a particular dictionary’s
degree of accessibility versus difficulty for learners, finding
that ‘‘Each learner was classified by his favorite look-up
pattern. . .on the basis of these, we argue that the bilin-
gualised dictionary is very effective as it is compatible with
all types of individual preferences.’’ (p. 361) (for more
information on computerized dictionary writing systems,
see http://nlp.fi.muni.cz/dws06/).

Lexical computing is a field of most concern to language
teachers, computational linguists, and lexicographers
involved in making dictionary writing systems (DWS),
software for writing and producing a dictionary. It might
include an editor, a database, a web interface, and various
management tools (for allocating work, etc.), operating
with a dictionary grammar, which specifies the internal
structure of the dictionary. Robert Lew (3), whose disserta-
tion provides a massive database for further research in
this field, considered the receptive use of bilingual, mono-
lingual, and semi-bilingual dictionaries by Polish learners
of English, asking the most basic question for language
teachers and dictionary designers (lexicographers) to
consider, namely the question of which dictionary is best
for whom? Other studies have compared the use of
various types of glosses, such as ‘‘(paper, electronic textual,
electronic pictorial, electronic, and video) on reading com-
prehension, translation, the number of words looked up,
time-on-task and satisfaction of dictionary users. Others
investigated incidental vocabulary learning via computer
glosses, as reported by Laufer and Levitzky-Aviad (4).
Loucky (5–8) compared Japanese college students’
accessing speeds for portable devices with using software
or mobile phone dictionaries.

Akbulut (9–11) compared the supposed advantage that
adding various types of multimedia glossing might bring
to language learners. Two crucial findings are well
summarized in Chun (12): ‘‘. . .previous studies have found
that L2 vocabulary is remembered better when learners
look up picture or video glosses in addition to translations of
unfamiliar words, but that when given the choice, learners
tend to prefer and use the simple translation of words. . . In
summary, research during the last ten years (1995–2005)
has found that bilingual dictionaries and multimedia
glosses have a more direct impact on vocabulary acquisition
than on overall reading comprehension. . . .’’ (pp. 78–81).

A history of lexicography and dictionary development in
Japan may be found in Nakao’s (13)The State of Bilingual
Lexicography in Japan: Learners’ English-Japanese/
Japanese-English Dictionaries. Other researchers who
have examined the individual preferences, needs, and
skills of dictionary users (both monolingual and bilingual)
include Baxter (14), Tomaszczyk (15), Hartmann (16),
Piotrowski (17), Atkins and Knowles (18), and Nuccorini
(19). Hulstijn and Atkins (20) suggested that use of electro-
nic dictionaries be studied more systematically. Laufer and
Hill (21) examined how users’ CALL dictionary look-up
behaviors affected their retention. Those who design dic-
tionaries for language learners, whether traditional text or
electronic types of dictionaries, can gain much insight from
more individualized, long-term studies done in countries
where they have a consumer base.

Tomaszczyk (15), who first questioned foreign language
learners regarding their preferences and dictionary usage,
stated that the vast majority of his close to 450 Polish
respondents ‘‘would like their dictionaries to give much
more extensive treatment to every type of information. . .
would like to have an omnibus dictionary which would
cover everything anyone has ever thought of including in
dictionaries and encyclopedias’’ (p. 115). Today, Internet
search engines seem to do just that, but are often far too
broad, especially for limited English proficiency (LEPs)
learners to use efficiently. One solution to this problem is
to use the writer’s Virtual Language Learning Encyclope-
dia site at www.CALL4ALL.us. Providing instant links to
most web dictionaries found on its Dictionaries (D) page
<at http://www.call4all.us///home/_all.php?fi=d>, this site
enables anyone to find vocabulary information for 500
language pairs systematically, by giving simultaneous
instant free access to over 2500 online dictionaries. More-
over, this online multilingual dictionary portal now inte-
grates the many functions of Wordchamp.com’s versatile
Webreader on each of its pages, thereby providing auto-
matic glossing from English into over 100 languages for
any website, including 40 online newspapers in 10 major
languages.

Paper Versus Electronic Dictionaries

Electronic dictionaries are undoubtedly greatly gaining in
popularity, so much so that they will soon dominate the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



dictionary scene (22–26). Lew (3) noted these recent trends
stating:

It has been claimed that with the move from paper to online
dictionaries, restrictions of space would disappear. That, how-
ever, is a simplification at best. While storage space may indeed
become irrelevant, there are still severe restrictions as to how
much information can be displayed at a time. In fact, even the
best currently availabledisplay devices are still easily beaten by
the old-fashioned printed paper in terms of visual resolution. So
space-saving issues will still be with for at least as long as the
visual modality is primarily used for information transfer from
dictionary to user. . .on-screen presentation of entries has much
to offer. . .to the researcher by way of convenience, including a
potential to log responses automatically, thus obviating the
need for the laborious paperwork and keyboarding at the
data entry stage, as well as allowing ‘‘unobtrusive observation’’.
(p. 157)

The equivalence of on-screen and paper formats should
not be taken for granted, as Laufer (27) found significant
and substantial differences in word recall scores between
marginal paper glosses and on-screen pop-up window
glosses.

DOING LEXICOGRAPHY IN AN ELECTRONIC AGE

Tono (28) predicted the advantages of online media using
machine translation, saying ‘‘Electronic dictionaries have
great potential for adjusting the user interface to users’
skill level[s] so that learners with different needs and skills
can access information in. . . different way[s].’’ (p. 216)

First of all, one must note that electronic dictionaries
have developed based on a healthy integration of develop-
ments in computerized corpus linguistics and modern
technology, used to enhance learning in many fields,
particularly computer-assisted language learning
(or CALL) or computer-mediated communications
(CMC).

Laufer and Kimmel (2) provide a clear summary of this
field, noting that

If the consumer is to benefit from the lexicographer’s product,
the dictionary should be both useful and usable. We suggest a
definition of dictionary usefulness as the extent to which a
dictionary is helpful in providing the necessary information
to its user. Dictionary usability, on the other hand, can be
defined as the willingness on the part of the consumer to use
the dictionary in question and his/her satisfaction from it.
Studies of dictionary use by L2 learners . . . reveal that dic-
tionary usefulness and dictionary usability do not necessarily
go hand in hand. (pp. 361–362)

Laufer and Levitzky-Aviad’s (4) study recommends
working toward designing a bilingualized electronic dic-
tionary (BED) more clear and useful for second language
production. Whereas conventional bilingual L1-L2 diction-
aries list translation options for L1 words without explain-
ing differences between them or giving much information
about how to use various functions, Laufer and Levitzky-
Aviad (4) examined the usefulness of an electronic Hebrew-
English-English (L1-L2-L2) minidictionary designed for

production. Their results demonstrated the superiority of
fully bilingualized L1-L2-L2 dictionaries and some unique
advantages of the electronic format. Their literature review
provides a good overview of this field:

Surveys of dictionary use indicate that the majority of foreign
language learners prefer bilingual L2-L1 dictionaries and use
them mainly to find the meaning of unknown foreign (L2) words
(Atkins 1985; Piotrowsky 1989). However, if learners writing in
L2 need an L2 word designating a familiar L1 concept, they do
not readily turn to an L1-L2 dictionary for help. The reason for
this may lie in a serious limitation of most L1-L2 bilingual
dictionaries. They rarely differentiate between the possible L2
translations of the L1 word, nor do they provide information
regarding the use of each translation option. . . An electronic
dictionary can fulfill the above requirements since it can com-
bine the features of an L2-L1bilingual dictionary, an L1-L2
bilingual dictionary and an L2 monolingual dictionary. The
advent of electronic dictionaries has already inspired research
into their use and their usefulness as on-line helping tools and
as contributors to incidental vocabulary learning. The built in
log files can keep track of words looked up, type of dictionary
information selected (definition, translation, example, etc.), the
number of times each word was looked up, and the time spent on
task completion. (pp. 1–2)

Although most electronic dictionaries do auto-
archiving of any new words by means of their history
search function, most online dictionaries do not have
a means of tracking student use, except for programs
like Wordchamp.com or Rikai.com, which give students a
way to archive words they have double-clicked. These
words may later be seen, printed, and reviewed. In
fact, Wordchamp.com, by far the most sophisticated online
electronic dictionary and vocabulary development pro-
gram, allows users to make online flashcards with sentence
examples and links to online texts where target words are
found in context. It can also automatically generate about
10 types of online vocabulary quizzes and provides a free
course management system (CMS) for monitoring stu-
dents’ work online. Wordchamp’s Webreader provides the
most versatile online glossing engine known, already for
over 100 languages, with more being added regularly.

Teachers need to show learners how to best inte-
grate the use of such portable and online dictionaries to
make them maximally effective for their language develop-
ment, in both receptive and productive aspects. Chun (12)
noted that learners who could read online text with ‘‘access
to both internally (instructor-created) glossed words as well
as externally glossed words. . . recalled a significantly
greater number of important ideas than when they read
an online text and had access only to an external (portable
electronic) dictionary’’ (p. 75).

Loucky (29) also examined how to best maximize L2
vocabulary development by using a depth of lexical proces-
sing (DLP) scale and vocabulary learning strategies (VLSs)
taxonomy together with online CALL resources and sys-
tematic instruction in the use of such strategies. It used
40 of the 58 VLSs identified in Schmitt’s earlier taxonomy.
An electronic dictionary use survey (see Appendix) was
designed to solicit information about how students used
various computerized functions of electronic or online

2 COMPUTERIZED DICTIONARIES



dictionaries at each major phase of lexical processing to
help learners maximize processing in the following eight
stages of vocabulary learning: (1) assessing degree of word
knowledge, (2) accessing new word meanings, (3) archiving
new information for study, (4) analyzing word parts and
origins, (5) anchoring new words in short-term memory,
(6) associating words in related groups for long-term reten-
tion, (7) activating words through productive written or
oral use, and (8) reviewing/recycling and then retesting
them. Portable devices or online programs that could moni-
tor and guide learners in using these essential strategies
should be further developed.

In Loucky’s (7) findings, despite being one grade level
higher in their proficiency, English majors were out-
performed on all types of electronic dictionaries by Com-
puter majors. The author concluded that familiarity with
computerized equipment or computer literacy must have
accounted for this, and therefore should be carefully con-
sidered when developing or using electronic dictionary
programs of any sort for language or content learning.
His study compared vocabulary learning rates of Japanese
college freshmen and functions of 25 kinds of electronic
dictionaries, charting advantages, disadvantages, and
comments about the use of each (for details, see Loucky
(7) Table 1 and Appendix 3; Loucky (8) Tables 1 and 2.
For a comparative chart of six most popular EDs for
English<->Japanese use, see www.wordtankcentral.com/
compare.html).

Generally speaking, language learners prefer access to
both first and second language information, and beginning
to intermediate level learners are in need of both kinds of
data, making monolingual dictionaries alone insufficient
for their needs. As Laufer and Hadar (30) and others have
shown the benefits of learners using fully bilingualized
dictionaries, the important research question is to try to
determine which kinds of electronic portable, software, or
online dictionaries offer the best support for their needs.
Grace (31) found that sentence-level translations should be
included in dictionaries, as learners having these showed
better short- and long-term retention of correct word mean-
ings. This finding suggests a close relationship exists
between processing new terms more deeply, verifying their
meanings, and retaining them.

Loucky (32) has researched many electronic dictionaries
and software programs, and more recently organized links
to over 2500 web dictionaries, which are now all accessible
from the site http://www.call4all.us///home/_all.php?fi=d.
His aim was to find which kind of EDs could offer the most
language learning benefits, considering such educational
factors as: (1) better learning rates, (2) faster speed of
access, (3) greater help in pronunciation and increased
comprehensibility, (4) providing learner satisfaction with
ease of use, or user-friendliness, and (5) complete enough
meanings to be adequate for understanding various read-
ing contexts.

As expected, among learners of a common major, more
proficient students from four levels tested tended to use
EDs of all types more often and at faster rates than less
language-proficient students did. In brief, the author’s
studies and observations and those of others he has cited
[e.g., Lew (3)] have repeatedly shown the clear benefits of

using EDs for more rapid accessing of new target vocabu-
lary. They also point out the need for further study of
archiving, and other lexical processing steps to investigate
the combined effect of how much computers can enhance
overall lexical and language development when used more
intelligently and systematically at each crucial stage of first
or second language learning. Regular use of portable or
online electronic dictionaries in a systematic way that uses
these most essential phases of vocabulary acquisition cer-
tainly does seem to help stimulate vocabulary learning and
retention, when combined with proper activation and recy-
cling habits that maximize interactive use of the target
language. A systematic taxonomy of vocabulary learning
strategies (VLSs) incorporating a 10-phase set of specific
recyclable strategies is given by Loucky (7,29) to help
advance research and better maximize foreign language
vocabulary development (available at http://www.call4all.
us///home/_all.php?fi=../misc/forms).

A summary of Laufer and Levitzky-Aviad’s (4) findings
is useful for designers, sellers, and users of electronic
dictionaries to keep in mind, as their study showed that:
‘‘the best dictionaries for L2 written production were the
L1-L2-L2 dictionaries. . . Even though the scores received
with the paper version of the L1-L2-L2 dictionary were just
as good, the electronic dictionary was viewed more favor-
ably than the paper alternative by more learners. Hence, in
terms of usefulness together with user preference, the
electronic version fared best’’ (p. 5). Such results should
motivate CALL engineers and lexicographers to produce
fully bilingualized electronic dictionaries (as well as print
versions), specifically designed not merely to access recep-
tive information to understand word meanings better, but
also for L2 production, to practically enable students to
actively use new terms appropriately as quickly as possible.

SURVEYING USE OF ELECTRONIC DICTIONARIES

To more thoroughly analyze and compare the types of
dictionaries being used by Japanese college students in
three college engineering classes, two kinds of surveys
were designed by Loucky (29). The first was a general
survey about purchase, use, and preferences regarding
electronic dictionaries. The second survey (shown in the
Appendix) asked questions about how various computer-
ized functions were used at each major phase of lexical
processing. The aim was to help learners maximize these
eight essential phases of vocabulary learning: (1) assessing
degree of word knowledge; (2) accessing new word mean-
ings; (3) archiving new information for study; (4) analyzing
word parts and origins; (5) anchoring new words in
short-term memory; (6) associating words in related groups
for long-term retention; (7) activating words through pro-
ductive written or oral use; and (8) reviewing/recycling and
re-testing them. After re-evaluating how well new words
are learned by post-tests, any words not fully understood
should be remet through planned re-encounters, retellings,
and activities that encourage learners to repeat the voca-
bulary learning cycle again so that relearning and reacti-
vation can take place.

COMPUTERIZED DICTIONARIES 3



Table 1. Comparative Chart of Some Translation Software*

Al Misbar Translation 1 Language Pair

http://www.almisbar.com/salam_trans.html
� Paid Subscription

� English <-> Arabic

Amikai 13 Language Pairs

http://www.amikai.com/products/enterprise/
(under Translation Demo)
� Free demo version (up to 100 characters)
� Full version can be customized with dictionaries.

Babel Fish 18 Language Pairs

http://babelfish.altavista.com/
� Can translate a web page or up to 150 words of text.

Ectaco LingvoBit 1 Language Pair

http://www.poltran.com/ � English <-> Polish

Kielikone WebTranSmart 1 Language Pair

https://websmart.kielikone.fi/eng/kirjaudu.asp
� Registration Required
� Per-word fee must be paid in advance for translations.

� English <-> Finnish

ParsTranslator 1 Language Pair

http://www.parstranslator.com/ � English <-> Farsi

PROMT-Online 7 Language Pairs

http://translation2.paralink.com/

Reverso 5 Language Pairs

http://www.reverso.net/text_translation.asp
� Can translate text or web pages.
� Special characters can be inserted onscreen.

SDL Enterprise Translation Server 5 Language Pairs
http://www.sdl.com/enterprise-translation-server
� Free demonstration (up to 200 words)
� Can translate text or web pages.
� Used by FreeTranslation.com

SYSTRANBox 16 Language Pairs

http://www.systranbox.com/
� Can translate a web page or up to 150 words of text.
� Used by AOL, Lycos, Terra, Google, Voila, Wanadoo, Free.fr, and others.
� Check results with a human translator.

SYSTRANet 18 Language Pairs
http://www.systranet.com/systran/net
� More tools than SYSTRANsoft
� More language pairs
� Quality varies by language pair and subject matter. Check results

with a human translator.
� Must sign up for a password, but delivery of password is in seconds.

4 COMPUTERIZED DICTIONARIES



The first survey described Japanese college students’
preferences and reasons for purchasing EDs. The second
showed self-reported use of PEDS and how their respective
functions were seen to aid in different phases of L2 voca-
bulary learning. Students compared their use to that of
print dictionaries. A majority of East Asian students sur-
veyed expressed a preference for using mobile or online
dictionaries rather than carry bulkier book dictionaries,
although a few English students carry both. These ED
preferences and patterns of use need more investigation,
but probably hold true wherever the level of economic
development is sufficient to support their purchase, as
well as the use and availability of Internet access to online
dictionary and Webreader glossing functions.

Kobayashi (33) compared the use of pocket electronic
versus printed dictionaries to examine the effects of their
use on LPSs used. The three major strategies she distin-
guished were consulting, inferring versus ignoring new
terms. She found that ‘‘Pocket electronic dictionaries
(PEDs) are rapidly becoming popular among L2 learners.
Although many L2 learners depend on dictionaries, the
prevalent view among L2 researchers and educators is that
learners should use dictionaries sparsely. They encourage
students to use another lexical processing strategy (LPS),
contextual guessing, for better vocabulary learning and
reading comprehension. [But] are dictionaries indeed so
harmful?’’ (p. 2).

As some educators and researchers have been con-
cerned about the pedagogical value of EDs because of their
perceived limitations, such as insufficient information
provided, the possibility of discouraging contextual gues-
sing, and a supposed negative impact on word retention
(34-38), these educators’ and researchers’ concerns require
more investigation. So far, however, language learners’
preference for them, and EDs’ rapidly improving functions
appear to be scuttling most of these previous claims.
Although native readers have far larger working vocabul-
aries to guess from context, most second language readers
prefer and benefit greatly from having both monolingual
and bilingual/mother tongue glosses available to them.
Kobayashi (39) found that

1. More than two-thirds of the students owned a PED, and
most of those who owned a PED exclusively used it regard-
less of purposes.

2. The PEDs owned by most students cost $100–$400, were
of high quality, and did not have the disadvantages
identified in other studies, such as brief definitions, the
absence of examples, and inaccurate information.

3. Most students were satisfied with their PEDs, especially
with their portability, and ease to look up a word, and ease
to change from one dictionary to another.

4. The perceived disadvantages included the relative una-
vailability (or inaccessibility) of detailed usage informa-
tion, examples, and grammatical information.

5. PEDs enabled students to use different types of diction-
aries in different places.

6. Although both PED users and PD users depended on
dictionaries, PED users used dictionaries more often.
This was especially the case with smaller vocabulary
size students.

7. PD users and PED users did not significantly differ
in terms of their LPS use, except for the sheer frequency
of dictionary consultation.

8. There was a possibility that PED users consulted diction-
aries at the expense of contextual guessing.

9. Although students depended on dictionaries, whether
PEDs or PDs, they also used guessing strategies fre-
quently. They often used a dictionary to confirm guessed
meaning. This was particularly the case with successful
students.

10. Larger and smaller vocabulary size students differed in
their use of LPSs such as basic dictionary use, extended
dictionary use for meaning, extended dictionary use for
usage, extended dictionary use for grammatical informa-
tion, lookup strategies, note-taking strategies, guessing
strategies using immediate context, guessing strategies
using wider context, combined use of LPSs, and selective
use of LPSs.

11. Higher and lower reading ability students differed in their
use of LPSs such as basic dictionary use, extended dic-
tionary use for meaning, extended dictionaryuse for usage,
extended dictionary use for grammatical information,
lookup strategies, self-initiation, note-taking strategies,

SYSTRANSoft 15 Language Pairs

http://www.systransoft.com/
� Can translate a web page, a file (TXT, RTF, or HTML) or up to 150 words of text.
� Quality varies by language pair and subject matter. Check results with a human

translator.

Tarjim (Registration Required) 1 Language Pair

http://tarjim.ajeeb.com/ � English > Arabic

Wordchamp.com Over 100 Language Pairs
http://wordchamp.com
� Free to all.

Instant Glossing; Auto-Archiving; Online
Flashcard and Test Creation; Files can be
shared internationally between distance
learners, as well as internally within intact
classes, using its currently free Course
Management System (CMS).

*Free unless stated otherwise. Summarized from site by author.

COMPUTERIZED DICTIONARIES 5



guessing strategies using immediate context, guessing
strategies using wider context, and selective use of LPSs
(p.2).

SURVEYING AND MONITORING USE OF VOCABULARY
LEARNING STRATEGIES

Vocabulary researchers such as Schmitt (40), Kudo (41),
Orita (42), and Loucky (29) have examined more than
50 other effective vocabulary learning strategies, coming
up with some useful taxonomies that makers of dic-
tionaries should be aware of and seek to maximize in their
design of electronic features and functions in particular.
Language learners do appear to benefit greatly from spe-
cific strategy training in this essential area of language
development (43).

Loucky (29) has presented useful surveys of CBDs or
EDs presented in CALICO Journal. He also included many
recommendations for how to properly integrate computer-
ized lexicons, both portable and online, into CALL as
effectively and enjoyably as possible. He explained a useful
taxonomy of VLS for all designers and users of computer-
ized dictionaries to help students maximize their learning
of target language vocabulary. CALL Journal in December,
2005, highlighted the www.CALL4All.us website, showing
how learners and teachers may use its extensive encyclo-
pedia of preorganized online dictionaries and language
learning links to produce more effective and enjoyable
reading and vocabulary learning lessons. These tools
include the use of online glossing engines and reading
labs, word-surfing games, vocabulary profilers most useful
for text analysis and simplification, readability analyzers,
and so on.

State-of-the-Art Technical Features

Probably the company offering the largest variety of func-
tions and types of computerized dictionaries for the most
languages is Ectaco, whose U.K. site enables one to search
for both type of software/platform and particular language
pair combination sought. It can be accessed at http://
www.ectaco.co.uk/how-find/. Their programs for handheld,
portable devices may be found at http://www.ectaco.co.uk/
Software-for-Pocket-PC/.

Electronic Dictionaries

Electronic dictionary and electronic translator handhelds
are modern, lightweight, and fashionable gadgets with a
great variety of features. An electronic translator or dic-
tionary is becoming a definite must-have in many areas of
business. More expensive devices are based on advanced
speech recognition and text-to-speech technologies.
Advanced models may include these useful functions:
1) a business organizer, 2) bidirectional, 3) voice recognition
or synthesis, 4) extensive vocabularies (up to 1,000,000
words), 5) grammar references, and 6) phrase banks con-
taining colloquial expressions and common phrases, irre-
gular verbs, and more. Ectaco offers more than 70 titles for
over 20 languages at: http://www.ectaco.co.uk/Electronic-
Dictionaries/.

Translation Software

For example, Ectaco has devices featuring a wide range of
software products, over 220 titles, translation tools, and
learning aids for over 35 languages designed for all standard
computer platforms, such as Windows, Pocket PC, and Palm
OS. Many devices have tools for various language goals (e.g.,
text translators, accent removers, bidirectional talking dic-
tionaries, localization tools, and languageoffice tools),which
include speaking and nonspeaking EOs, voice and travel
language translators, handheld PDAs, and software bun-
dles for Pocket PCs, Windows, Palm OS, and Cell phones.

Although some online dictionaries charge fees, a major-
ity are now available for free use. Most of these are now
organized at the author’s www.CALL4ALL.us site, under
Dictionaries Galore! http://www.call4all.us///home/_all.
php?fi=d. Many examples of excellent translation software
programs and portable, software, and online dictionaries
can be seen and even ordered from these sites directly, or
from those shown in Table 1.

1. http://www.ectaco.co.uk/how-find/ (Ectaco).

2. http://www.call4all.us///prod/_order.php?pp=2 (For
language learning software, http://www. call4all.
us///home/_all. php?fi=d links to most web diction-
aries).

3. http://www.wor.com/shopping/ (World of Reading
Language Learning Software).

4. http://speedanki.com/ (Speedanki.com offers Kanji
Level Tests and flash cards to help one learn and
review for national Japanese Proficiency Tests).

5. http://quinlanfaris.com/?cat=3 (Compares technical
functions and differences between Seiko and Canon
Wordtanks and the Seiko SR-E9000 PEDs).

6. http://flrc.mitre.org/Tools/reports/products_list.pl?
LID=199# (Translation software and professional
tools used for customized and specialized dictionary
creations. Completeness of report is dependent on
the completeness of the data entries and is expected
to improve rapidly over time. Information is pro-
vided by each developer or vendor).

7. http://flrc.mitre.org/Tools/internetMT.pl * (These
translation programs are intended for giving a
general gist of meaning, not as a substitute for
human translation. However, this site is the best
quick view of machine translation options online,
covering 13 online translation engines).

Computerized Dictionaries and Translation Software
Programs Available

The most detailed and extensive table of translation soft-
ware and computerized dictionary products may be found
at the Foreign Language Resource Center’s http://flrc.
mitre.org/Tools/reports/products_list.pl?LID=202. Informa-
tion provided by each developer or vendor at that site
includes company, product names and version, and des-
criptions of languages and functions included. As about 75
companies are listed, only the list of companies providing
these kinds of products will be listed here to make online

6 COMPUTERIZED DICTIONARIES



searches possible. Computerized translation software
companies include the following: ABLE Innovations, Alis
Technologies; Acapela Group; Agfa Monotype Corporation;
Al-Buraq; Arabeyes; Arabic OCR; arabsun.de; ARA-
BVISTA; AramediA; Arava Institute for Environmental
Studies; ATA Software Technology Limited; Alchemy Soft-
ware Development; Abbyy Software House; Applications
Technology; Ascender Corporation; Atril UK, Ltd.; Atten-
sity Corporation; Basic Language Systems Corporation;
Basis Technology; CACI, Inc.; Ciyasoft Corporation;
CIMOS; Automatic Vocalization for Arabic; Automatic-
Topic–Detection/ Abstract of Document; Compure, Compu-
ter & Language Technology; Ectaco; Galtech Soft, Ltd.;
GlobalSight Corporation; International Systems Consul-
tancy; IBM; Ice-LC Software; Idiom Technologies, Inc.;
Jubilant Technologies, Inc.; Language Analysis Systems;
Language Engineering Company; Language Weaver, Inc.,
LLC; Lingua; Linguist’s Software; Lockheed-Martin;
Marine Acoustics, Inc.–VoxTec; Paragon Software GmbH
piXlogic; Postchi.com; Melingo, Ltd.; MetaTexis Software
and Services; Microsoft Corporation; MultiCorpora R&D,
Inc.; Nattiq Technologies; Nisus Software; NovoDynamics.-
com (Detects new application programming interface, API);
Paragon Software; Sakhr Software Company; SDL Inter-
national; SIL International Publishing Services; Smart
Link Corporation; Tavultesoft Pty, Ltd.; Telelingua;
THUNDERSTONE SOFTWARE; TM SYSTEMS; TRA-
DOS Corporation; Transclick, Inc.; Translation Experts;
translation.net; United Nations Educational, Scientific and
Cultural Organization (UNESCO); United Nations; Uni-
versity of California, Davis; University of Maryland; U.S.
Army Intel Center; Verity; WORDFAST; World Health
Organization; WorldLanguage Resources; and Xerox–The
Document Company.

Among the various types of advanced applications
provided by innumerable types of software from these
companies are multilingual translation; dictionaries; lan-
guage learning applications and toolkits; speech recogni-
tion; information retrieval; multilingual word processing,
spelling, and grammar; optical character recognition with
easy insertion into Windows word processing; and web
development and browsing.

Discussion and Pedagogical Implications

Common findings can now be summarized about elec-
tronic lexicons from a broad reading of research in the field
by Kobayashi (33), Laufer and Hill (44), and Hill and Laufer
(45), combined with the author’s findings as follows:

1. PEDs facilitate L2 learning rather than hindering
it. Regardless of whether they are using electronic
or print dictionaries, successful students use effec-
tive lexical processing strategies. Moreover, PEDs
facilitate dictionary use. Therefore, the use of PEDs
should not be discouraged.

2. Rather than discouraging the use of PEDs, teachers
could advise students to use a PED and a PD for
different purposes.

3. Dictionary use and contextual guessing are not
mutually exclusive. Successful learners use both

dictionaries and contextual guessing more often
than less successful learners. Dictionary use should
not be frowned on for the reason that it hinders
contextual guessing.

4. Many LPSs involving dictionary use and guessing
are helpful for both vocabulary learning and read-
ing. These strategies should be taught to students.

a. Teachers should give students instruction in how
to use a dictionary effectively, particularly how to
look for a variety of information and what diction-
aries are available.

b. Guessing is also important for vocabulary learning
and reading. Teachers should give students
instruction in how to guess at word meaning using
wider and immediate contexts.

c. The ability to use a dictionary selectively is also
important. Teachers should instruct students when
to use a dictionary and when to turn to other LPSs.

5. Some strategies are more important for vocabulary
learning than reading comprehension, and some
strategies are more important for reading com-
prehension than for vocabulary learning. These
strategies should be taught considering the desired
skills and purposes of a reader or language learner
(29,33).

6. Successful language learners tend to use a much
wider variety of effective lexical and text processing
strategies than do less proficient, unsuccessful lear-
ners, regardless of whether they use electronic or
print dictionaries.

7. Teachers often observe that the more frequently
EDs are used in a consistent manner with regular
archiving and activation of new word information,
and the more systematically new vocabulary is used
and reviewed, that retention results are better.

Quality and amount of review techniques or media
functions used by a learner largely determine both their
degree of retention and speed and percentage of retrieval of
new target terms and language forms. Reaction and retrie-
val times can be improved by giving more recent and
frequent encounters with target terms, helping to reactivate
them by building further memory traces. Along with recy-
cling and review techniques to improve recognition and
prediction skills, reassessing of learning must be done
regularly with frequent individual feedback to maximize
motivation and acquisition. CALL should capitalize on
these language learning insights to design maximally effi-
cient vocabulary learning programs for use both online and
with portable devices.

When constructing or using online vocabulary learn-
ing programs, these same crucial vocabulary learning
steps and strategies need to be encouraged by specific
questions in text and functions used by the programs. There
should also be a tracking or feedback mechanism to help
teachers monitor learning, and to guide and prompt lear-
ners not to forget to do any of these essential phases of
lexical processing.

COMPUTERIZED DICTIONARIES 7



GENERAL TRENDS AND FUTURE FRUITFUL
RESEARCH AREAS

Major benefits of using portable devices include their mobi-
lity and instant archiving or storage in history memos for
future useful quick review. Web dictionaries like those
organized at the author’s site, however, provide much
more potential, as one can copy and paste between any of
over 2000 online lexicons organized there for over 500
language pairs. www.CALL4ALL.us provides a ‘‘Virtual
Rosetta Stone,’’ not only of the full range of monolingual
and multilingual web dictionaries, but also a vast language
education links library for studying most of these lan-
guages as well.

Another main advantage of modern translation technol-
ogy is that it is much more efficient. One saves a lot of time,
as there is no more turning of book pages and searching for
words endlessly. Words you are looking for are at your
fingertips, just one click away. Each online dictionary has
400,000 entries, for example, in the case of Ectaco pro-
grams, and far more are freely available from web diction-
aries organized at www.CALL4ALL.us’s dictionaries page
at http://www.call4all.us///home/_all.php?fi=d. Recommen-
dations for integrating the use of web dictionaries with
language learning programs online are given in Loucky
(32). The 10 types of sites are organized to help teachers and
students more efficiently combine the benefits of electronic
and online dictionaries with CALL websites to produce
more effective and enjoyable content and language learning
lessons.

The general trends over the past 10 years have been for
PEDs to become more prevalent because of their speedy
access to language meanings, grammar data, collocations/
corpus examples, compact size, improved features, and
convenience of use as well as economical pricing. Some
feature as many as 32 lexicons or more, pronunciation
support, Internet connectivity, review games, automatic
history of searches for review, and so on. Translation soft-
ware and CD-ROM dictionaries, being more expensive and
limited to the location of one’s PC, have not become as
popular. Web and phone dictionaries appear to be the ‘‘tool
of choice’’ of most students, as these functions are often
provided at their schools or included in their cell phone
services at little or no extra charge. Assistive reading pens
made by Quickionary also offer promise to those who can
afford them. They also seem to enhance learners’ interest
and motivation levels, and thus help to contribute to higher
levels of vocabulary retention, although how to best do
so online is a major question in need of further study.
Some of the most promising online glossing programs being
tested now can be recommended for further research in this
area: 1) Wordchamp.com, 2) Rikai.com, 3) Wordsurfing.-
com, and 4) Babelfish.com.

CONCLUSIONS AND RECOMMENDATIONS

To conclude, CALL and website e-learning developers need
to remember that teachers need to be able to scale their
language and vocabulary learning activities from those
that require simpler and easier processing for lower level

students, to activities that require deeper and more com-
plex lexical processing for more advanced language lear-
ners using various kinds of EDs, both online and offline,
whether stationary or mobile. It is also important for
teachers to give more clear guidance about particular kinds
of EDs, especially including good online programs for
learning, to help maximize the use of their functions for
education. We can only help maximize each program’s
effectiveness if students learn how to use their various
functions as efficiently as possible to help them at each
stage of processing new words outlined above. Further
helpful guidelines and goals to examine when seeking to
integrate new insights and innovations from CALL into the
field of foreign language reading and vocabulary develop-
ment are given by Sokmen (46). In her words, among the
many areas in need of further systematic research in this
field, ‘‘we need to take advantage of the possibilities inher-
ent in computer-assisted learning, especially hypertext
linking, and create software which is based on sound prin-
ciples of vocabulary acquisition theory . . . programs which
specialize on a useful corpus. . . provide. . .[for] expanded
rehearsal, and engage the learner on deeper levels and in a
variety of ways as they practice vocabulary. There is also
the fairly unchartered world of the Internet as a source for
meaningful activities for the classroom and for the inde-
pendent learner’’ (p. 257).

In this way, using proven portable devices, multimedia
translation software, and well-designed, interactive web-
sites as much as possible, language learning can be made
much more interesting and effective as these CALL
resources are all used as tools for developing more balanced
communication skills, which emphasize blending active
production and interactive, content-based learning with
authentic tasks and materials made much more accessible,
comprehensible, and memorable with the help of modern
technology. All in all, we can be quite optimistic about the
future of EDs, as de Schryver (25) is. Listing 118 ‘‘lexico-
graphers’ dreams’’ in summarized tables, he masterfully
‘‘incorporates almost every speculation ever made about
electronic dictionaries (EDs)’’ (p. 61) in Roby’s terms (47).

Roby (47) further notes that not only technical hard-
ware, but also human ‘‘fleshware’’ is the most crucial ele-
ment when designing EDs, otherwise users may drown in
a sea of data. One cannot drink efficiently from a fire hose.
As he states, ‘‘Sophisticated software and huge hardware
cannot guarantee the quality of an electronic dictionary. . .
Good online dictionaries will be equipped with ‘spigots’
that allow users to draw manageable amounts of
information. . . Information must be internalized for it to
be considered knowledge.’’ In the vast reaches of virtual
e-learning cyberspace, one does indeed require a common
gold standard compass, or better yet, a virtual Rosetta
Stone for language learning, such as those helpful sites
provided here.

As second language learners venture into ‘‘terra incog-
nita’’ they do need clear maps and strategies to improve
their navigation on various WebQuests for knowledge.
Roby (47, p. 63) correctly asserts that ‘‘Dictionaries can
be guides because they ‘potentially intersect with every text
of the language: in a sense all texts lead to the dictionary’
(quoting Nathan). . . Learners can make forays into cyber-

8 COMPUTERIZED DICTIONARIES



space with an electronic dictionary as a navigational [tool].
And in a real sense, one can expect to see portable, wireless
dictionaries that will both allow physical mobility and
afford Internet access.’’ (In fact, most mobile phones and
WiFi laptops already do).

Tailoring computerized dictionaries to effectively sup-
port learners’ needs will require specific attention to their
types, functions, and uses to best guide learners and tea-
chers to most effective integration of these portable and
online tools into language and science education. Research
is showing us that all future EDs would do well to include
preorganized categories of terms, searchable by topic and
semantic field. Five examples of these already found online
include: 1) UCREL’s Semantic Analysis System located at
http://www.comp.lancs.ac.uk/ucrel/usas/ with 21 major
A–Z discourse fields; 2) Variation in English Words and
Phrases (VIEW) at http://view.byu.edu/; 3) this writer’s
bilingualized Semantic Field Keyword Approach covering
about 2000 intermediate to advanced terms in nine aca-
demic disciplines found at: http://www.call4all.us///misc/
sfka.php; 4) ThinkMap’s Visual Thesaurus at http://
www.visualthesaurus.com/index.jsp?vt ; and 5) Wordnet
found at http://wordnet.princeton.edu/. This writer’s
www.CALL4ALL.us site helps to integrate essential, com-
mon core vocabulary in many of these academic disciplines
with most web dictionaries for 500 major world language
pairs. For an overview, see its site map at ( http://www.
call4all.us///home/_all.php?fi=0) or see Loucky (32,48,49).

In the final analysis, probably what learners are guided
to do with new terms will prove to be a more important
learning factor than multimedia glossing and text concor-
dancer options alone can provide. New technologies do
indeed offer more powerful resources than ever before for
independent or classroom study of languages. Word learn-
ing options will probably be best maximized when comput-
ing power is used to enhance learners’ access to various
types of EDs of high quality simultaneously in all fields,
while likewise providing them with the means to auto-
archive and organize new target vocabulary as they are
shown how to actively use these new terms productively as
soon as possible.

APPENDIX

Survey of Computerized Bilingual Dictionaries (27)

Name your Book Dictionary or Electronic/Compu-
terized Bilingual Dictionary:
Model #: Cost:

NAME:

Accessing & Archiving
Time: ____________minutes
(for 15 Laufer & Hadar
terms)

ID/YEAR: Reading Level:

a. Grade:

b. Headwords:

c. %VLS Used:

d. DLP Level:

e. AVQ/IP:

1. Assessing Vocabulary Size:
Check your manual to see how many words it has for
a. English:
b. Japanese—(or other L1):
c. Kanji Study—
d. How many words do you think you know in English?

2. Accessing—Frequency of Use—How many times
do you use it each day?
a. For English to Japanese what % of the time?
b. For Japanese to English, what % of the time?
c. To check unknown Kanji, what % of the time?

3. Archiving—How do you record new words found?
a. In my textbook in the margins
b. On paper or in a Vocabulary Notebook
c. I don’t record new words
d. My CBD can record and save new words I’ve looked

up. If so, tell how:
e. Can it do Automatic Recording and Review (of last 1–

20 words) (called a History Search)
f. Can you save and store new words manually?
g. Can you Save and Print Text Files or Notes on new

words?

4. Analyzing Special Functions or Features—Does
your CBD have any Special Functions or Features which
help you to break up new words into parts to better
understand their grammar, origins or meaning?
If so, please try to explain how to use them and tell how

often you do so. (Use Manual)
Does it give special information about word parts, gram-

mar, or the origin of words?
Does it give any common phrases? _____Yes ______No

____Not Sure
Does it give any sentence examples? ____Yes ____No

____Not Sure

5. Anchoring New Words in Memory—Does your Elec-
tronic Dictionary have any special Visual Images or
Auditory Sounds or other special functions to help illus-
trate new word meanings, forms or use to help you better
remember them? ___Yes _____No
If so, tell what these special functions are and try to

explain how they work to help you fix new words in
your memory.

6. Associating Functions—Does your Electronic
Dictionary help you to organize your vocabulary
learning in any way?
For example, can you put words into Study Groups?
Do you organize your vocabulary learning or notebook

in any special order or way to help you remember
new words? Do you group any words together to
better remember or learn them? If so, please tell
how you do so.

COMPUTERIZED DICTIONARIES 9



If your computerized dictionary, translation website,
or software helps you to do this in any way, please tell
how:

7. Activating Functions—Does your Electronic Dic-
tionary give you any ways to USE new words right
away? ____Yes ____No If so, how?
Can you think of some ways ON YOUR OWN that you

could USE new words you have looked up more
actively or creatively? If so, tell how:

8. Review: Do you review any new words after find-
ing their meanings?
____No ____Sometimes ____Yes, usually If so, tell how

does your Electronic Dictionary help you to review or
retest new words? Does your ED/CBD have any
Vocabulary Practice Games that you can use for
review and practice? If so describe. If it had, what
level would you start to study at?

Does your CBD have any Special Functions or Features
which help you study new words, such as challenge
games, memos, word search history, and so on to help
you learn, analyze, review or remember new words?

____Yes _____No _____Not Sure If so, please explain
how to use them:

FURTHER READING

G. Cumming S. Cropp, and R. Sussex, On-line lexical resources
for language learners: assessment of some approaches to word
formation, System, 22 (3): 369–377, 1994.

J. H. Hulstijn When do foreign-language readers look up the
meaning of unfamiliar words? The influence of task and learner
variables, Modern Lang. J. 77 (2): 139–147, 1993.

BIBLIOGRAPHY

1. F. T. Dolezal and D. R. McCreary, Pedagogical Lexicography
Today: A Critical Bibliography on Learners’ Dictionaries with
Special Emphasis on Language Learners and Dictionary
Users. Lexicographica, Series Maior 96. Tubingen: Max
Niemeyer Verlag, 1999.

2. B. Laufer and M. Kimmel, Bilingualized dictionaries: how
learners really use them, System, 25: 361–362, 1997.

3. R. Lew, Which dictionary for whom? Receptive use of bilingual,
monolingual and semi-bilingual dictionaries by Polish lear-
ners of English. Poznan: Motivex, 2004.

4. B. Laufer and T. Levitzky-Aviad, Towards a bilingualized
dictionary for second language production. AsiaLEX, Singa-
pore, 2005, pp. 1–6.

5. J. P. Loucky, Assessing the potential of computerized bilingual
dictionaries for enhancing English vocabulary learning, in
P. N. D. Lewis, (ed.), The Changing Face of CALL: A Japanese
Perspective,Lisse: Swets & Zeitlinger, 2002, pp. 123–137.

6. J. P. Loucky, Comparing translation software and OCR read-
ing pens. In M. Swanson, D. McMurray, and K. Lane (eds.),
Pan-Asian Conference 3 at 27thInternational Conference of
JALT, National Conference Proceedings CD, Kitakyushu,
Japan, 2002, pp. 745–755.

7. J. P. Loucky, Improving access to target vocabulary using
computerized bilingual dictionaries, ReCALL, 14 (2): 293–
312, 2003.

8. J. P. Loucky, Using computerized bilingual dictionaries to help
maximize English vocabulary learning at Japanese colleges,
CALICO J.21, (1): 105–129, 2003.

9. Y. Akbulut, Exploration of the effects of multimedia annota-
tions on L2 incidental vocabulary learning and reading com-
prehension of freshman ELT students. Paper presented at
EuroCALL, Vienna, Austria, 2004.

10. Y. Akbulut, Factors affecting reading comprehension in a
hypermedia environment. Paper presented at EuroCALL,
Vienna, Austria, 2004.

11. Y. Akbulut, Foreign language reading through hypermedia:
predictors of vocabulary learning and reading comprehen-
sion, 6th International Educational Technology Conference,
Famagusta, Northern Cyprus, April 19–21, 2006, pp. 43–50.

12. D. Chun, CALL technologies for L2 reading, in L. Ducate and
N. Arnold (eds.), Calling on CALL: From Theory and Research
to New Directions in Foreign Language Teaching, CALICO
Monograph Series, Volume 5, 2006 pp. 69–98.

13. K. Nakao, The state of bilingual lexicography in Japan:
learners’ English-Japanese/Japanese-English dictionaries,
In. J. Linguist., 11 (1): pp. 35–50, 1998.

14. J. Baxter, The dictionary and vocabulary behaviour: a single
word or a handful?, TESOL Quarterly, 14: 325–336, 1980.

15. J. Tomaszczyk, On bilingual dictionaries: the case for bilingual
dictionaries for foreign language learners, in R. R. K.
Hartmann (ed.), Lexicography: Principles and Practice, New
York: Academic Press, 1983, pp. 41–51.

16. R. R. K. Hartmann, What we (don’t) know about the English
language learner as a dictionary user: a critical select biblio-
graphy, in M. L. Tickoo (ed.), Learners Dictionaries: State of the
Art, (Anthology Series 23). Singapore: SEAMO Regional Lan-
guage Centre, 1989, pp. 213–221.

17. T. Piotrowski, Monolingual and bilingual dictionaries: funda-
mental differences, in M. L. Tickoo (ed.), Learners‘ Diction-
aries: State of the Art, Singapore: SEAMO Regional Language
Centre, 1989, pp. 72–83.

18. B. T. S. Atkins, and F. E. Knowles, Interim report on the
Euralex/AILA research project into dictionary use, in T. Magay
and J. Zigány, (eds.), Budalex ‘88 proceedings: Papers from the
Euralex Third International Congress, Budapest: Akadémiai
Kiado, 1990, pp. 381–392.

19. S. Nuccorini, Monitoring dictionary use, in H. Tommola,
K. Varantola, T. Salmi-Tolonen, and J. Schopp (eds.), Euralex
‘92 Proceedings I-II (Part I), Studia Translatologica, Series A,
2, 89–102, 1992, Tampere, Finland: University of Tampere.

20. J. H. Hulstijn and B. T. S. Atkins, Empirical research on
dictionary use in foreign-language learning: survey and dis-
cussion, in B. T. S. Atkins, (ed.), Using dictionaries. Studies
of Dictionary Use by Language Learners and Translators,
(Lexicographica Series Maior 88.) Tübingen: Niemeyer,
1998, pp.7–19.

21. B. Laufer and M. Hill, What lexical information do L2
learners select in a CALL dictionary and how does it affect
retention?, Language Learn. Technol., 3, (2): 58–76, 2002.
Available: http://llt.msu.edu/.

22. S. Koren, Quality versus convenience: comparison of modern
dictionaries from the researcher’s, teacher’s and learner’s
points of view, TESL Electron. J., 2 (3): 1–16, 1997.

10 COMPUTERIZED DICTIONARIES



23. W. J. Meijs, Morphology and word-formation in a machine-
readable dictionary: problems and possibilities, Folia
Linguistica, 24 (1–2): 45–71, 1990.

24. H. Nesi, Electronic dictionaries in second language vocabulary
comprehension and acquisition: the state of the art, in U. Heid,
S. Event, E. Lehmann, and C. Rohrer (eds.), Proceedings of the
Ninth EURALEX International Congress, EURALEX 2000,
Stuttgart, Germany, Stuttgart: Institut for Maschinelle
Sprachverarbeitung, Universität Stuttgart, 2000, pp. 839–841.

25. G-M. de Schryver, Lexicographers’ dreams in the electronic-
dictionary age, Int. J. Lexicography, 16 (2): 143–199, 2003.

26. P. Sharpe, Electronic dictionaries with particular reference
to the design of an electronic bilingual dictionary for English-
speaking learners of Japanese, Int. J. Lexicography, 8 (1):
39–54, 1995.

27. B. Laufer, Electronic dictionaries and incidental vocabulary
acquisition: does technology make a difference?, in Proceedings
of the Ninth EURALEX International Congress, EURALEX
2000, Stuttgart, Germany,U. Heid, S. Evert, E. Lehmann, and
C. Rohrer (eds.), Stuttgart: Institut fur Maschinelle Sprach-
verarbeitung, Universität Stuttgart, 2000, pp. 849–853.

28. Y. Tono, On the effects of different types of electronic dic-
tionary interfaces on L2 learners’ reference behaviour in
productive/receptive tasks, in U. Heid, S. Evert, E. Lehmann,
and C. Rohrer (eds.), EURALEX 2000 Proceedings, Stuttgart,
Germany, 2000, pp. 855–861.

29. J. P. Loucky, Maximizing vocabulary development by sys-
tematically using a depth of lexical processing taxonomy,
CALL resources, and effective strategies, CALICO J., 23,
(2): 363–399, 2006.

30. B. Laufer and L. Hadar, Assessing the effectiveness of mono-
lingual, bilingual, and ‘‘bilingualized’’ dictionaries in the com-
prehension and production of new words, Modern Lang. J., 81:
189–196, 1997.

31. C. A. Grace, Retention of word meaning inferred from context
and sentence level translations: implications for the design of
beginning level CALL software, Modern Lang. J., 82 (4): 533–
544, 1998.

32. J. P. Loucky, Combining the benefits of electronic and online
dictionaries with CALL Web sites to produce effective and
enjoyable vocabulary and language learning lessons, Comp.
Assisted Lang. Learning, 18, (5): pp. 389–416, 2005.

33. C. Kobayashi, Pocket electronic versus printed dictionaries:
the effects of their use on lexical processing strategies, On
JALT 2004: Language Learning for Life Conference CD, K.
Bradford-Watts, C. Ikeuchi, and M. Swanson (eds.). JALT 2004
Conference Proceedings.Tokyo: JALT, 2005, pp. 395–415.

34. A. Taylor and A. Chan, Pocket electronic dictionaries and
their use, in W. Martin et al. (eds.), Euralex 1994 Proceedings
Amsterdam: Vrije Universiteit, 1994, pp. 598–605.

35. G. M. Tang, Pocket electronic dictionaries for second language
learning: help or hindrance?, TESL Canada J.,15: 39–57, 1997.

36. H. Nesi, A user’s guide to electronic dictionaries for language
learners, Int. J. Lexicography, 12 (1): 55–66, 1999.

37. H. Nesi and G. Leech, Moving towards perfection: the lear-
ners’ (electronic) dictionary of the future, in H. Thomas and
P. Kerstin (eds.), The Perfect Learners’ Dictionary?, Tübingen:
Max Niemeyer Verlag, 1999, pp. 295–306.

38. T. Koyama and O. Takeuchi, Comparing electronic and
printed dictionaries: how the difference affected EFL learn-
ing, JACET Bull., 38: 33–46, 2004.

39. C. Kobayashi, Examining the effects of using pocket electronic
versus printed dictionaries on lexical processing strategies.
Handout at JALT National Convention, Nara, 2004.

40. N. Schmitt, Vocabulary: Description, Acquisition and
Pedagogy, Cambridge:Cambridge University Press, 1997,
pp. 200–203.

41. Y. Kudo, L2 vocabulary learning strategies. Available: http://
www.nrc.hawaii.edu/networks/NW14/NW14.pd.

42. M. Orita, Vocabulary learning strategies of Japanese EFL
learners: their actual use and perception of usefulness, in
M. L. Kyuoki (ed.), JACET Annual Review of English Learning
and Teaching, 8: 27–41, 2003, Miyazaki, Japan: Miyazaki
University.

43. I. Kojic-Sabo and P. Lightbown, Student approaches to voca-
bulary learning and their relationship to success, Modern
Lang. J., 83 (2): 176–192, 1999.

44. B. Laufer and M. Hill, What lexical information do L2
learners select in a call dictionary and how does it affect
word retention?, Lang. Learn. Technol., 3 (2): 58–76, 2000.

45. M. Hill and B. Laufer, Type of task, time-on-task and electronic
dictionaries in incidental vocabulary acquisition, Int. Rev.
Applied Linguist., 41 (2): 87–106, 2003.

46. A. Sokmen, Current trends in teaching second language
vocabulary, in N. Schmitt and M. McCarthy (eds.), Vocabulary:
Description, Acquisition and Pedagogy, Cambridge:
Cambridge University Press, 1997, pp. 237–257.

47. W. B. Roby, The internet, autonomy, and lexicography: a
convergence?, Melanges CRAPEL, No. 28. Centre de Recherche
et d’Applications Pédagogiques En Langues, Publications
Scientifiques, 2006.

48. J. P. Loucky, Harvesting CALL websites for enjoyable and
effective language learning, in The Proceedings of JALT
CALL2005,Glocalization:Bringing people together, Ritsumeikan
University, BKC Campus, Shiga, Japan, June 3–5, 2005,
pp. 18–22.

49. J. P. Loucky, Developing integrated online English courses
for enjoyable reading and effective vocabulary learning, in The
Proceedings of JALT CALL 2005, Glocalization: Bringing Peo-
ple Together, Ritsumeikan University, BKC Campus, Shiga,
Japan, June 3–5, 2005, pp. 165–169.

JOHN PAUL LOUCKY

Seinan JoGakun University
Fukuokaken, Japan

COMPUTERIZED DICTIONARIES 11



12 COMPUTERIZED DICTIONARIES



E

ELECTRONIC WARFARE

INTRODUCTION

Over the last century, there has been a burgeoning use of
the electromagnetic (EM) spectrum for military purposes,
including those related to communications, navigation, and
targeting.

This dependence is embedded in many modern warfare
doctrines and technologies, such as:

� Revolution in military affairs;

� Network-centric warfare;

� Information warfare;

� Rapid decisive operations;

� Intelligence, surveillance, target acquisition, and
reconnaissance;

� Precision guided weapons.

Given the importance of the EM environment to military
operations, there is obvious reason for safeguarding its use
by friendly forces, denying its use by enemy forces, and
defeating enemy efforts to achieve the same objectives.
Electronic warfare (EW) encompasses the broad and some-
what ill-defined mix of military tactics, techniques, proce-
dures, technology, and organizational structures that
address these concerns (1, 2). It is also related to some
civilian technologies and applications, which include spec-
trum monitoring and radio astronomy.

Historical experience has repeatedly demonstrated the
importance of EW as highlighted by an extensive body of
declassified information that pertains to operations by both
sides in World War II (WW2)(3–5), and by more recent
accounts concerning the Korean, Vietnam, Six-Day and
Yom Kippur Wars, and the campaigns in the Falklands,
Lebanon, Kosovo, Chechnya, and Iraq (6–11).

EW continues to be widely recognized as a powerful force
multiplier, and the development and application of EW
concepts and technologies consequently remains a high
priority (12,13). For the greatest effect, its use is regulated
by planning structures that tailor it to situational require-
ments and procedures intended to deny the enemy as much
knowledge as possible relating to its specific capabilities
and deployment structures. For this reason, many aspects
of EW are highly classified.

Formally, the roles of EW are subdivided into:

1. Electronic support (ES) - taking advantage of signals
emitted by an opponent’s systems;

2. Electronic attack (EA) - degrading the ability of an
opponent to use his systems;

3. Electronic protection (EP) - safeguarding the effective
operation of friendly force electronic systems against
enemy EA and ES activities.

The following article presents a breakdown of EW in this
order, with attention given to both technical system con-
cepts and relevant operational doctrine.

ELECTRONIC SUPPORT

ES, which is also known as electronic support measures,
concerns the sensing of communication, radar, and other
electromagnetic signals of potential interest. ES sensors
perform the following technical functions:

1. Signal detection - determining the presence of a
signal;

2. Signal classification - associating the signal with a
type of modulation or function;

3. Signal parameter and feature extraction - measuring
various signal parameters; such as carrier frequency,
power, transmission start and end times, and band-
width;

4. Emitter identification - determining the type of sys-
tem that the signal is associated with;

5. Signal intercept - recovering the message content
from communication signals;

6. EW analysis - inferring the organization and struc-
ture of enemy networks, dispositions of forces and
operational intent from communications traffic pat-
terns and message content;

7. Geo-location - determining the positions of signal
emitters.

Several points concerning ES deserve emphasis. First,
its passive nature has the great advantage that valuable
intelligence can be produced without an adversary being
aware. Second, the mere suspicion of its use can cause an
adversary to restrict its use of communication systems and
active sensors, which thereby reduces their operational
value. Finally, radar ES systems often can detect a radar
transmitter at ranges considerably in excess of the useful
range of the radar (14).

The organization and processing of information pro-
vided by ES sensors is a complex problem. Much value of
ES sensor outputs can be lost if information does not reach
the appropriate commanders and other potential users in a
timely way. Complicating factors include the volume of
information, the difficulty of interpreting it, and the need
to protect sensitive information concerning ES capabilities.
The last point is a very real concern. During WW2, the
decryption of German communication signals coded with
the Enigma cipher provided immensely valuable intelli-
gence to the British. Accordingly, every effort was made to
avoid arousing suspicions that the Enigma cipher was
anything other than unbreakable. For example, reconnais-
sance aircraft would be dispatched to ‘‘find’’ an important
convoy whose orders had in fact been revealed by the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



decryption of Enigma messages, which thereby gave the
impression that the attack that followed was the direct
result of routine aerial reconnaissance (5).

The diversity of the roles performed by ES systems has
resulted in a significant degree of specialization in the design
of the systems themselves and their organization and control.

Tactical ES

Tactical ES is the deployment of an ES capability in direct
support of field operations. It typically resides within some
form of dedicated EW unit that may be either part of the
maneuver force’s echelon or assigned to support it under an
operational (OPCON) or tactical (TACON) command and
control relationship. Examples of tactical ES are found in
land, air, and sea operational environments, where objec-
tives include:

1. The intercept, direction finding, and analysis of bat-
tlefield communications signals by ground-based
assets to determine the composition and geographical
distribution of enemy forces and the immediate inten-
tions of its elements, from fighter to commander.
When ES is performed by an EW unit native to the
maneuver force, ‘‘intentions and warnings’’ tip-offs
are reported directly to field unit commanders and
their staff. The unit may also acquire and disseminate
intelligence for consumption strictly within Signals
Intelligence (SIGINT) channels (see below) and gen-
erate technical information for internal process
refinement;

2. The detection and direction finding of battlefield
surveillance radars by ground-based radar ES;

3. The detection and analysis by a radar warning recei-
ver (RWR) of radar signals associated with enemy
target acquisition, tracking, and fire control systems,
to provide aircraft pilots with situational awareness
and warnings of threats. This information is essential
for the timely initiation of suitable countermeasures,
which may include a combination of EA and evasive
maneuvers;

4. A general surveillance capability by a warship’s radar
ES systems to track military, merchant, or clandes-
tine ships and fishing vessels using the signals
received from their navigation radars. These systems
also support self-protection functions against radars
associated with threat weapon systems. On larger
platforms, there are usually more provisions for ana-
lyzing ES information, fusing it with other intelli-
gence, and distributing it to other platforms,
channels and organizations (including SIGINT).

The capability to geo-locate transmitters associated
with communication, navigation, and radar systems is
particularly important; even approximate indications of
the direction of an enemy position or platform provided
by direction finding (DF) are valuable from a situational-
awareness perspective. Estimates of the positions of
individual emitters can be determined by obtaining lines-
of-bearing from spatially separated sites and solving for the
positions where they intersect. Geo-location is particularly

important for communication signals when the message
content cannot be extracted because of encryption or other
techniques. Appendix 1 provides an overview of various DF
techniques that can be used for the geo-location of signal
sources by ES systems.

An additional EW analysis (EWA) capability is often
associated with units that deploy ES assets. EWA is a
military intelligence function that specializes in drawing
operational inferences from EW data. Its main purpose is to
determine the enemy’s ‘‘electronic order of battle,’’ which is
a comprehensive representation of its electronics systems,
including their identification, geographical disposition,
and where possible the association of this equipment
with specific units within a command-control structure.
An EWA cell may also be responsible for maintaining
communication target lists and selecting information for
dissemination to Intelligence organizations.

Tactical communications ES isa particularly challenging
problem in urban environments. Multipath propagation
effects can be expected to degrade the accuracy of radio-
frequency direction-finding systems. Furthermore, opposi-
tion forces can be expected to make use of the civilian
communications infrastructure, which results in a require-
ment to sift rapidly through a large amount of communica-
tions traffic to find the signals of interest.

Signals Intelligence

SIGINT is the strategic application of ES performed under
the control of national intelligence organizations, such as the
National Security Agency in the U.S., and the Government
Communication Headquarters in the U.K. The term relates
variously to the type of information produced, the systems
used toproduce it, and to the community that controls the ES
systems and the analysis and distribution of their products.
SIGINT ‘‘products’’ are disseminated via highly classified
channels and, except in exceptional circumstances, are
released only for use in the wider national or Military
Intelligence communities after being ‘‘sanitized’’ of any dis-
tinguishing elements that could reveal the source. On the
battlefield, there may be some overlap between SIGINT and
tactical ES activities and platforms, with EW units some-
times tasked to serve both functions simultaneously.

SIGINT comprises communications intelligence
(COMINT) and electronic intelligence (ELINT). COMINT
is concerned with the message content of communication
signals, information about communication traffic patterns,
and the locations of the associated transmitters, with a
strong emphasis on determining higher-level or ‘‘strategic’’
command and control structures. ELINT is the collection of
technical or ‘‘parametric’’ information about the radar and
other noncommunications equipment (15).

ELINT has several important uses. First, theoretical
analysis of the signal parameters allows inferences to be
drawn about the functions, capabilities, and limitations of
the systems associated with the signals, and hence,
more broadly, about enemy early warning or targeting
capabilities. Second, ELINT data are used to construct
emitter libraries or databases that are fundamental to
EA and EP operations. For each known type of radar,
information is collected on the signal parameters for the

2 ELECTRONIC WARFARE



various operating modes, the estimated radar perfor-
mance, its intended function(s), and the platforms the
radar is known to be installed on. An ES system on a
ship or tactical aircraft correlates the parameters of
observed signals with the database entries to identify
the radar systems that transmitted them, and, if an
observed signal is associated with a threat, it provides
the information needed to select and execute the most
appropriate countermeasures.

SIGINT operations often involve the use of specialized
equipment deployed on either dedicated or multiuse plat-
forms, which include satellites, ships, and aircraft.
During the Cold War, suitable types of aircraft were
extensively modified to perform SIGINT. By operating
at altitudes of 10 km or higher, useful ranges could be
extended to hundreds of km for the intercept of micro-
wave radar signals. Consequently, intelligence could be
acquired from aircraft flying at the periphery of the Soviet
defense perimeter. For a period, specialized high-altitude
aircraft could even conduct operations over Soviet terri-
tory by flying above the effective ceiling of interceptor
aircraft and ground based antiaircraft weapons. After
improved Soviet antiaircraft defenses made overflights
impractical, the West hurriedly deployed satellite-based
systems (16).

In recent years, much interest has been aroused by the
idea of integrating ES information derived at different
levels (tactical, operational, and strategic) by EW and
SIGINT units with similar objectives, but possibly differ-
ent reporting mechanisms. For instance, modern strate-
gies for Netcentric Warfare involve the accumulation of
various kinds of data and intelligence at a central point
where it can be fused to produce more complete assess-
ments. However, many practical challenges exist in recon-
ciling technical possibilities with doctrine. Complicating
factors and risks involved with centralized analysis
schemes include:

1. The quantity of data generated by advanced ES sys-
tems may tax the analysis systems that must sort
through it;

2. Delays in the reporting chain, where key information
may take longer to reach its ultimate destination
after passing through a central accumulation point;

3. The expense and complexity of deploying communi-
cation systems with adequate bandwidth;

4. Standardization issues for technical interfaces, and
the complexity of both designing and maintaining
interfaces for systems that were originally designed
for different purposes and may be based on widely
differing technologies;

5. Complications that affect the handling and distribu-
tion of information resulting from classification
issues and, in the case of multinational environ-
ments, the willingness of individual nations to
declare and release their information to others;

6. The risks of commanders relying too heavily on the
formation of a ‘‘complete intelligence picture’’ in lieu
of trusting their judgment and intuition, which can
lead to decision paralysis.

ES System Technologies and Implementation

ES systems are typically comprised of antenna, receiver,
and processing sub-systems. Early ES systems were often
improvisations based on civilian equipment. For example,
receivers developed for radio amateurs had relatively good
sensitivity and frequency coverage and were widely used by
the Allies during WW2. The National HRO, which had
excellent frequency resolution, was used to intercept com-
munication signals in the medium and high frequency
bands. The Hallicrafters S-27, which provided contiguous
coverage in the lower portion of the very high frequency
(VHF) band, was widely used to receive signals associated
with German VHF radar, air-to-air communication, and
bombing navigation systems. These receivers, although
useful, had significant limitations. Their frequency cover-
age was limited, and their effectiveness was heavily depen-
dent on the training and skill of the operators.

The continued evolution of the technologies used by
communication and radar systems has contributed to the
development of specialized ES receivers. A fundamental
issue concerns the differences in the waveforms used by
communication and radar signals.

Most communication systems transmit a continuous or
near-continuous narrow bandwidth signal during the
transmission of a message. A primary goal is to make
efficient use of bandwidth to transmit information, which
thereby allows the available radio frequency bands to be
divided between many users. Communication signals have
continued to evolve:

1. The bandwidth and channel spacing associated with
conventional narrowband signals has decreased
because of developments in more efficient modulation
formats and accurate frequency references and
synthesizers;

2. Digital modulation techniques are being increasingly
used to transmit information in the form of binary
data;

3. Time division multiplexing access techniques are
being used by some systems, such as those based
on the GSM cell phone standard, to provide a way
of time sharing bandwidth between multiple users;

4. Classes of spread-spectrum techniques are being used
in some military and civilian communication systems.
Frequency hopping (FH) systems superpose periodic
changesonthecenter frequencyofatransmittedsignal
following a predetermined sequence. These changes
typically occur at rates that are tens or hundreds of
times per second. The portion of a transmission that
corresponds to a dwell at a single frequency is often
referred to as a hop. To minimize interference between
FH communication systems, careful coordination
is needed in the assignment of hop frequencies and/
or the codes that define the hop sequences. Direct
sequence spread spectrum (DSSS) uses a different
approach. In the basic form, a pseudo-random number
(PRN) sequence is used by the transmitter to spread
the narrowband information content over a much
larger bandwidth. The receiver uses the same PRN
sequence to recover the information. Multiple systems

ELECTRONIC WARFARE 3



can share the same bandwidth without seriously
interfering with each other if they are assigned differ-
ent PRN sequences. Code division multiple access
(CDMA) cell phone systems are a major application
of DSSS techniques. Because the detection of spread-
spectrum signals often requires special techniques
(17), these signals are sometimes referred to as low
probability of intercept signals.

5. Mobile communication systems and networks have
proliferated and are widely used. These systems are
based on the idea of dividing a geographical area into
cells. Each cell has a base station that performs the
functions of relaying messages between the short-
range handset radios within the cell and a commu-
nication network interface to other carriers, such as
the public telephone system network. Cellular tele-
phone systems usually operate in the ultra high
frequency band.

The classic pulsed-radar concept, however, involves the
transmission of short duration pulses with relatively large
time intervals between successive pulses. This method
sidesteps the difficult problem of detecting the relatively
weak signals reflected from the target during the simulta-
neous transmission of a high power signal. Requirements
for range resolution often dictate the use of pulse widths on
the order of a microsecond or less, which thereby results in
relatively large bandwidths on the order of MHz. The
waveforms used by advanced radars have increased in
sophistication:

1. Coherent radars transmit signals whose waveforms
are precisely defined;

2. Frequency or phase modulation may be used to
increase range resolution;

3. The time intervals between successive pulses (pulse
repetition interval) may be varied in a periodic or
random sequence (pulse repetition interval stagger);

4. Multifunction radars select between different wave-
formsdepending onthe functionality that is required1;

Application requirements for high angular resolution
and compact antenna dimensions have motivated the
extensive use of frequencies above 8 GHz.

The differences between radar and communication sig-
nals have motivated the development of specialized ES
equipment:

1. Communication ES receivers feature extended fre-
quency coverage to reduce the need to use different
receivers, selective filters for separating signals that
are closely spaced in frequency, comprehensive cap-
abilities for demodulating the signal message con-
tent, and provisions for the measurement of signal
parameters;

2. Radar ES receivers emphasize microwave frequency
coverage and are optimized for the reception of pulse
signals;

3. Specialized radar ES receivers have been developed
for strategic and tactical applications. For example,
electronic intelligence receivers are designed for
the precision measurement of signal parameters,
whereas radar warning receivers are designed to
provide warnings of threat signals, be simple to use,
and satisfy size and cost constraints;

4. Multichannel receivers have been developed to pro-
cess multiple signals from antenna arrays with the
accurate phase and amplitude matching needed for
applications such as direction finding.

General trends in all systems include the use of precision
frequency references and synthesizers to permit accurate
and repeatable tuning, progressive reductions in size,
and the use of form factors that permit the convenient
installation of multiple receivers in standardized rack con-
figurations.

Communication ES Signal Processing. The classic com-
munication ES receiver implementation is basically a
high-quality manually controlled superheterodyne recei-
ver. Signal search was performed by the operator manu-
ally tuning the receiver through the frequency range
known to be used by the adversary’s radios and listening
to the outputs of the available demodulator(s) for signals
of interest. When such a signal was found, the operator
would listen to the demodulated signal and record the
observations. If available, a DF system would be tuned to
the frequency and measurements obtained for the signal
angle of arrival. This process required the attention of a
skilled operator and had the additional weakness that
short duration transmissions on new frequencies could be
missed, particularly if the frequency ranges to be covered
could not be divided up among multiple systems and
operators. Another weakness concerned the size, weight,
and power consumption of the equipment.

Modern purpose-designed communication EW receivers
provide significant enhancements:

1. Computer controlled operation via standard digital
interfaces;

2. Accurate high-speed tuning and reduced phase noise
that results from the use of high-quality crystal
oscillators as frequency references and sophisticated
frequency synthesis techniques;

3. Provisions for phase coherent operation of multiple
receivers to allow commonality of hardware between
systems used for signal search and DF;

4. Built-in-test functionality;

5. Reduced size, weight, and power consumption.

Digital signal processing techniques are being adopted
for advanced ES systems. Digital filter bank concepts based
on the Fast Fourier Transform algorithm allow a single
wideband receiver to process and detect the individual

1For example, the optimal waveforms for discriminating between a
moving target on the ground and the surrounding terrain would be
unsuitable for providing extreme range resolution.

4 ELECTRONIC WARFARE



signals present within a large instantaneous bandwidth.
Also, if the system dwells on a fixed center frequency,
digital downconverters can be used to extract the narrow-
band signals within the receiver bandwidth and software
demodulators used to recover the message content from
each signal.

Advanced wideband communication ES sensors based
on digital filter bank techniques have some very desirable
advantages:

1. A large frequency range can be scanned quickly; the
tuning frequency step size can be orders of magnitude
larger than the required frequency resolution. This
method substantially reduces or eliminates the like-
lihood that a short duration transmission will be
missed and can provide some capability for detecting
at least some hops transmitted by a frequency hop-
ping radio;

2. The use of Constant False Alarm Rate techniques
allows the system detection processing parameters to
be adjusted automatically to achieve the best possible
sensitivity without incurring erroneous signal detec-
tions at a rate that exceeds a set value, even if the
environmental noise is frequency dependent and time
variant (18);

3. Algorithms can be implemented to determine the type
of modulation used by a signal and the modulation
parameters;

4. Raw signal data can be acquired and stored for off-line
analysis;

5. Demodulators implemented in software can accom-
modate a wide range of modulation types;

6. DF functionality can be integrated into the system to
provide a measurement of the angle of arrival for each
signal that is detected;

7. Reports of signal detections and the measured signal
parameters can be automatically stored in a database
and transferred to EW analysis and intelligence sys-
tems for subsequent processing;

8. Remote controlled or autonomous operation of ES
systems is feasible.

However, wideband signal processing techniques also
incur disadvantages. Early implementations tended to be
expensive and have significant performance limitations. A
major problem concerns dynamic range, which is a mea-
sure of the ability of a system to process strong and weak
signals simultaneously. This issue is of considerable
importance for wideband communications ES systems
because weak signals of interest and strong signals will
often coexist in the same frequency range. The dynamic
range of a practical system is dependent on the noise and
spurious signals, which are generated in the system
by various mechanisms. One of the most important
of these mechanisms is third order intermodulation
distortion. This occurs when two or more signals present
within the system bandwidth interact because of nonli-
nearities in the system signal processing. The spurious
signals that result remain within the system bandwidth

and, depending on the size of the input signals and
the nature of the system nonlinearities, can be large
enough to be detected and interpreted as actual signals
in subsequent processing. To avoid this undesirable
result, the detection processing must be adjusted to reduce
the effective system sensitivity. Thus, the presence of
strong input signals tends to degrade the ability of the
system to detect and process weak signals usefully. The
problem is aggravated as the system bandwidth is
increased because the number of strong signals within
the system bandwidth can also be expected to increase.
Fortunately, progressive advances in radio frequency
components, analog-to-digital converters, and digital
processor hardware have substantially resolved these
issues, particularly when careful system design choices
and tradeoffs are made. Nevertheless, a well-designed
narrowband receiver may still offer advantages with
respect to usable sensitivity and selectivity in a dense
signal environment that includes strong signals.

In addition to its message content, a communication
signal contains information that can be used to classify
the type of signal, and, with some limitations, to identify
individual emitters.

The measurement of the modulation type and para-
meters is an important topic for communications ES
systems. Conventional communication systems use modu-
lation techniques to embed information on a sinusoidal
carrier signal. The choice of modulation type and imple-
mentation parameters is dependent on application require-
ments and various factors, such as the need for
interoperability with other radio systems as well as techno-
logy and cost constraints. Advances in communication the-
ory coupled with the availability of low-cost digital signal
processing hardware have motivated the use of sophisti-
cated digital modulation techniques to provide favorable
trade-offs between bandwidth efficiency, sensitivity to pro-
pagationeffects, and hardware implementation costs. At the
same time, simple, classic modulation techniques, such as
analog frequency modulation, remain in widespread use, in
part to maintain interoperability with older systems.

Knowledge of the modulation type and parameters asso-
ciated with a signal is of considerable practical value.
Requirements for interoperability have led to the standar-
dization of the modulation types used by military radios.
For example, the tactical VHF radios used in ground opera-
tions typically support analog FM and digital FSK modula-
tions in accordance with standards such as MIL-STD-188-
242. If a signal has a modulation type and parameters
associated with a communication system known to be
used by an adversary, then it can be flagged as a potential
signal of interest and prioritized to receive attention. Also,
because emitters that are communicating with each other
will generally use the same modulation type, this knowl-
edge can be used to support or reject hypotheses that
concern the membership of a given emitter in a network.
Finally, knowledge of the modulation type and parameters
facilitates the selection of an appropriate demodulation
technique to recover the message content.

Because of the diversity of modulation standards and the
effects of multipath propagation and nonideal radio system
implementations, the modulation recognition problem is

ELECTRONIC WARFARE 5



nontrivial. Algorithms for modulation recognition have
been described in various papers, of which Refs. 19–22
are representative examples.

A related idea is based on the observation that the signal
waveforms generated by practical radio transmitters will
differ in subtle ways depending on implementation details
and component tolerances, and that these differences can
be sufficient to distinguish between transmitters that are
very similar or even nominally identical. Various techni-
ques have also been proposed to extract and measure
appropriately selected features from a signal and use sta-
tistical tests to determine whether the feature measure-
ments match those of previously observed signals (23, 24).

Radar ES Signal Processing. Various analog and digital
approaches have been used in radar ES receivers to detect
signals and measure their parameters. Descriptions and
performance analyses of the more common ones have been
published 25–27. The radar ES receivers used for current
radar ES systems deployed for the self-protection of plat-
forms such as aircraft and surface ships generate pulse
descriptor words (PDWs) for each radar pulse that is
received. Each PDW consists of digital data that represents
the principal signal parameters, typically frequency,
power, time of arrival, pulse duration, and if available,
angle of arrival and modulation type (phase or frequency).
Early implementations made extensive use of analog tech-
niques to generate PDWs, but more recent implementa-
tions are making increasingly extensive use of digital
techniques.

Pulse train deinterleaving is required because the
pulses that are received from the various radars in the
signal environment will be interleaved in time (i.e., in a
sequence of received radar pulses there is no certainty that
for a given pulse in the sequence, the previous or next
pulses in the sequence will be from the same radar). Dein-
terleaving is typically performed in a two-stage process.
First, clustering is performed as pulses are received to form
clusters or groups of pulses having similar characteristics.
A subset of the signal parameters contained in the PDWs,
typically frequency, angle of arrival, and pulse duration,
are used in this stage. The second stage involves analyzing
the time relationships [Pulse Repetition Interval (PRI)
deinterleaving] between the pulses collected in each cluster
to identify patterns that are consistent with the hypothesis
that they were transmitted by a single radar. In addition to
the radar PRI behavior, the radar scan pattern can be
inferred by examining the time history of the measured
power of received pulses in a deinterleaved pulse train. For
example, a radar that is performing a circular scan will
illuminate the platform carrying the ES system with its
main beam response at uniform intervals in time.

Emitter identification involves comparing the various
parameters that have been measured for each of the
resultant deinterleaved pulse trains with those in an EW
library and identifying the best match.

In practice, many potential difficulties may occur. The
PDWs generated by the receiver will contain errors that
result from various sources. At least some clusters formed
in the first stage will have broad ranges. For example, a
large frequency range may be needed to accommodate a

frequency agile radar. Consequently, some clusters may
overlap. Accurate PRI deinterleaving can be very difficult
to perform with limited signal data sets; many modern
radars have complex PRI staggers (i.e., the time intervals
between successive pulses transmitted by a radar vary
randomly or follow patterns that repeat only over a long
period). Deinterleaving errors can result in the pulse train
transmitted by such a radar being fragmented into two or
more partial pulse trains. Finally, EW databases can have
errors, be incomplete, or as a result of ambiguities, may be
unable to provide a unique identification.

More sophisticated approaches are being investigated
for the extraction of features that can be used to provide
additional information for the classification and identifica-
tion of radar signals. For radars that use frequency or phase
modulation to improve range resolution, knowledge of the
type of modulation waveform and its parameters is useful
for classification purposes. Also, the waveforms trans-
mitted by radar systems often have distinctive features,
which are sometimes referred to as unintentional modula-
tion on pulse (UMOP). Various techniques have been pro-
posed for the extraction and processing of waveform
features for signal identification.

ELECTRONIC ATTACK

EA, which is also known as Electronic Countermeasures,
involves actions intended to degrade the ability of an
adversary to make use of the electromagnetic spectrum.
It may be active or passive in nature.

EA Against Communication Signals

EA against communication signals can be carried out as
deception operations or jamming.

Deception operations involve the transmission of sig-
nals to mislead the enemy intentionally. For example,
after a ground formation has been redeployed for opera-
tions elsewhere, simulated radio traffic may be main-
tained to give the impression that the formation is still
in its original location. Another technique involves the
transmission of messages that contain misleading infor-
mation in the expectation that the message content will be
recovered and used by the adversary. Deception opera-
tions must be carefully designed and organized to be
convincing; the information provided should be consistent
with other information that the intended recipient
believes to be true. Large-scale deception operations
that involve carefully coordinated activities can influence
an adversary’s strategic planning with decisive effect.
Several accounts of highly successful Allied deception
operations in WW2 have been published (5, 28).

Jamming is intended to prevent an adversary from
reliably receiving his communication signals by the trans-
mission of signals that interfere with their reception. In the
simplest form, a jammer consists of an antenna, power
amplifier, and signal generator programmed to produce a
signal with an appropriately chosen waveform. It is also
possible to use a conventional transmitter or radio as an
improvised jammer. Jamming systems are often deployed
with an adjunct ES capability to ascertain the frequencies

6 ELECTRONIC WARFARE



of signals worth jamming and to assess the effects of the
jamming operation.

To be effective, jamming requires that the ratio of jam-
mer and communication signal powers (J/S ratio) at the
victim radio receiver be sufficient to degrade communica-
tion activity adequately. High-power transmitters may be
used in combination with directional antennas and the
judicious positioning of the jammer near the area where
jamming coverage is desired.

Several distinct types of communication jamming tech-
niques are as follows:

Narrowband Jamming. Individual communication sig-
nals can be attacked by transmitting an appropriately
designed narrowband-jamming signal on the frequency
used by the target signal. To determine whether the target
signal is still being transmitted, the jamming may be
periodically stopped and an ES capability used to check
for the presence of the signal. This method of attack has
several advantages. First, the jamming range is maximized
because the full jamming power is focused on a single
signal. Second, the likelihood of interference with own
side communication is minimized because only a small
part of the radio spectrum is affected. If the jamming signal
can be switched rapidly between frequencies, then a single
transmitter may be able to jam two or more narrowband
signals on a time shared basis.

A follower jammer is a special case of narrowband
jammer used to jam a FH signal. The practical implemen-
tation of the concept is challenging; each hop transmission
must be detected, its frequency measured by the ES
functionality integrated with the jammer and, before
more than a fraction of the hop is transmitted, the jamming
transmitter must be tuned to the hop frequency (29). One
difficulty is that the jammer must discriminate reliably
between the hops from the target transmitter and any
other frequency hopping communication systems that
may be operating in the environment. A more fundamental
issue concerns the propagation delays associated
with, first, the path from the transmitter to the jammer,
and, second, the path from the jammer to the victim
receiver. If the end result is that the overall delay,
including the jammer response time, approaches the hop
duration, then the effectiveness of the jamming will be
degraded.2

Barrage Jamming. A wideband jamming signal is used to
degrade communication activities over a relatively wide
range of frequencies. A high-power jammer may be needed
to provide a useful range. A partial-band jammer is a
variation on the barrage jammer concept. The aim is to
jam a bandwidth that is sufficiently large enough to include
a sufficient proportion of the hops transmitted by a FH
radio to make it unusable. The idea is that, by not attempt-
ing to jam the full bandwidth used by the frequency hopping
radio, the jammer power within the hop bandwidth can be

kept higher and can provide an increase in the effective
range of the jammer.

Many issues must be considered with respect to com-
munication jamming:

1. Jamming often interferes with own side communica-
tion;

2. The value of information that is obtained by ES may
be considered to be of greater military value than the
effect of disrupting communication;

3. An adversary can infer the presence of enemy forces
with EW capabilities from the observation of jam-
ming signals and, if given time, may find ways of
countering its effects.

Consequently, aside from some specialized applications,
the decision to carry out communication jamming is usually
made at a relatively high level and is closely coordinated
with operational plans.

The deployment of communications jammers on aircraft
provides several advantages. The jammer is mobile and can
be positioned quickly to affect the desired area while mini-
mizing the effect on friendly forces. Also, the required
transmitter power can be reduced because, for a given
range, the propagation losses are normally much lower
than they would be for the signals from a ground based
jammer. Recently, serious interest has been expressed in
the idea of using low-power communications jammers on
small unmanned air vehicles (UAVs) to provide localized
jamming coverage in the direct support of small-unit opera-
tions (30).

EA Against Radar Signals

EA against radar signals is often concerned with degrading
the performance of surveillance, target acquisition, and
target tracking radars to protect platforms such as aircraft
and surface ships. The value of these platforms and the
potential effectiveness of radar-guided weapons has led to
much emphasis being placed on EA.

Active EA techniques are used to create false targets or
otherwise degrade the operation of the victim radar:

1. A noise jammer transmits wideband noise in the
frequency ranges used by radar systems of potential
concern, which makes it difficult for the radar to
detect the target and get a range measurement;

2. A range gate pull-off jammer attempts to create a
false target that seems to move away from the jammer
platform. The jammer first creates a false target at
the jammer platform by transmitting a pulse timed to
coincide with the arrival of each pulse transmitted by
the victim radar. The timing of successive pulses is
gradually shifted so that the jammer pulses received
by the victim radar correspond to a target that is
moving away from the jammer platform. The digital
radio frequency memory (DRFM) improves the
technique by storing and transmitting a replica of
the radar-pulse waveform. This method makes it
more difficult for the radar to discriminate against
the jammer signal.

2This problem can be avoided if the hop frequency sequence can be
predicted using observations of the hop frequencies and a priori
knowledge of the algorithm used to generate the hop sequence.

ELECTRONIC WARFARE 7



Several practical problems are noted in the deployment
of jammers. The operation of jammers used for the self-
protection of platforms, such as aircraft, is usually
restricted to the jamming of threat signals as required.
This method minimizes several risks, which include the
possibility of interference with other systems on the plat-
form, and that the presence of the platform can be inferred
by the detection and direction finding of signals trans-
mitted by the jammer. In this situation, an integrated
ES capability for performing the detection, characteriza-
tion, and assessment of threat signals is required to provide
information needed for the control of the jammer. One way
of sidestepping this issue is to deploy jammers on specia-
lized platforms, and if possible to perform the jamming
outside the defended air space. Other solutions include the
towing of jammers behind the platform to be protected, or
deploying jammers on UAVs.

Passive EA techniques attempt to degrade the effec-
tiveness of enemy radars without transmitting signals. A
widely used idea is to create false targets by dropping chaff
(typically metal coated plastic strips) from aircraft to
confuse tracking radars associated with antiaircraft
defense systems. Chaff can also be dispersed via rockets
or shells fired from platforms such as ships as a counter-
measure to radar-guided missiles. Another approach is to
tow decoys behind an aircraft or ship. The use of passive
EA to confuse the guidance systems of antiaircraft or
antiship missiles is often combined with maneuvers
designed to position the platform to minimize the like-
lihood that the missile-guidance system will reacquire its
target or that the missile will fortuitously pass near its
target. Another form of passive EA concerns the use of
stealth techniques to reduce the reflected energy returned
to a radar transmitter by a platform (i.e., reduce the
apparent radar cross section of the platform). The effec-
tiveness of this technique is increased if combined with
active EA from other platforms.

Other forms of EA are also important. Radar systems
can be destroyed by missiles designed to home in on the
signals transmitted by the radar. Conventional military
operations against deployed systems identified by EW sen-
sors or other intelligence are also possible. Recently, the
concept of using directed energy or electromagnetic pulse
(EMP) to damage or disrupt the operation of electronic
equipment has received attention.

ELECTRONIC PROTECTION

Electronic protection, also known as electronic-counter-
counter measures, concerns techniques and technologies
intended to preserve the ability of defense electronic sys-
tems to operate in hostile electromagnetic environments.

Active EP includes measures taken to enhance the
ability of defense electronic equipment to operate without
hindrance by enemy EW.

Protection against intercept and jamming of communi-
cation signals can be provided in various ways:

1. Equipment can be designed to operate over wide
frequency ranges, which offers improved opportu-

nities for a system to switch to quieter frequencies
if interference or jamming is encountered;

2. Directional antennas can be employed to make the
interception of a signal difficult for a receiver outside
the main beam response of the transmitting antenna.
Jamming resistance can be achieved if the direction
that the jamming signal is coming from corres-
ponds to a null in the receiving antenna directional
response.

3. Careful choices of sites may be able to take advantage
of terrain masking of areas potentially usable by
jammers or ES systems;

4. Power management allows the transmitter power to
be set at the minimum level required for reliable
communication. Low-power operation is desirable
for short-range communication because the range
at which the signal can be detected and intercepted
is reduced. High power levels can be used to provide
reliable operation over longer ranges and/or to over-
come jamming;

5. Low probability of intercept techniques can be used to
render DF and intercept difficult. FH techniques are
widely used by modern tactical radios;

6. Redundancy can be achieved by design and/or tac-
tical procedures to limit the damage caused by the
effects of enemy EA; for example, different types of
communication systems can be networked and man-
aged to ensure that the disruption of one system does
not prevent the communication of important infor-
mation.

Similar techniques are applicable to radar systems with
several differences:

1. A radar system may be able to search over a
restricted range of angles and still perform its mis-
sion requirements. An ES system outside the search
area will not be illuminated by the mainbeam of the
radar antenna and may have difficulty detecting the
signals;

2. Radar antennas are generally designed to be highly
directive to provide angle resolution. However,
antenna designs that also achieve low sidelobe levels
are desirable for several reasons. First, sensitive ES
systems can usefully detect pulses that correspond to
the antenna sidelobes if these are sufficiently large.
Second, some jamming techniques make use of
signals that are received through sidelobes in the
radar antenna response and therefore confuse the
radar into showing a target at an angle offset from
the jammer;

3. Frequency agility involves changing the transmitter
frequency pulse to pulse or between groups of pulses.
It has some similarities to the use of FH by commu-
nication systems, although the primary ideas are to
complicate the task of an ES system in interpreting
whether the received pulses are from one or more
radars, and to reduce the effectiveness of single fre-
quency jammers.

8 ELECTRONIC WARFARE



4. LPI radars tend to use continuous wave signals with
frequency or phase modulation to provide the desired
range resolution. Technical considerations generally
restrict the average transmitter power with the result
that they are most suited to applications in which long
range is not required. Against these signals, conven-
tional radar ES systems are usually limited to very
short detection ranges because of the low transmitter
power and the effect of receiver optimizations for the
processing of short duration pulse signals.3

Passive EP generally places considerable emphasis on
training and operational procedures. Some of the most
spectacular EW successes, such as the decryption of mes-
sages ciphered by the German Enigma machine in WW2,
resulted, at least in part, from the failure of radio operators
to follow correct procedures. The security of communication
systems can be compromised in many possible ways. Exam-
ples include the transmission of unimportant or unneces-
sarily long messages; the repeated transmission of the
same message with and without encryption; the failure
to use code words and available EP capabilities, such as
power management, FH, and encryption; and the failure to
safeguard encryption equipment and keys. The likelihood
of such lapses can be reduced substantially by the institu-
tion of suitable procedures followed by training under
realistic conditions.

Emission Security policy includes defining procedures
and techniques for minimizing the possibility of sensitive
information being obtained from the intercept of RF signals
that are generated unintentionally in the operation of
computer or other electronic systems.

In field or operational environments, tactical EP strat-
egy is set by Emission Control (EMCON) orders, which
define specific rules for the management of electromagnetic
emissions (12) during a military operation. These rules
attempt to strike a balance between various requirements:

1. Maintaining command and control capabilities;

2. Limiting mutual interference between friendly sys-
tems;

3. Limiting the useful information that enemy ES can
provide;

4. The execution of deception operations.

EMCON rules include the following:

1. Restrictions on transmit power times and use of radio
black-out policy;

2. Guidelines, such as frequency allocations and
approved system configurations;

3. Restrictions on the type of information that can be
transmitted (and thus denied to the enemy);

ADDITIONAL TOPICS

EW and Navigation Systems

Before WW2, specialized direction-finding systems were
developed for navigation purposes. From measurements of
the angles to radio stations or beacons at known locations,
position estimates could be computed. Although there were
limitations on the achievable accuracy, this capability was
extremely important, particularly at night and in bad
weather. During WW2, more sophisticated systems were
developed and deployed. Examples include Knickebein,
X-Gerat, Y-Gerat, Decca Navigator, GEE, G-H, and Oboe.

Various efforts were made to jam the signals associated
with these systems, particularly those used for bombing
navigation.4 Luftwaffe attempts to use the Knickebein, X-
Great, and Y-Gerat navigation systems to guide bombers to
targets in the U.K. were successfully countered by jam-
ming, although a series of damaging raids was conducted
using the X-Gerat system before effective jamming techni-
ques were devised (5). German attempts to jam allied
systems, such as GEE and Oboe, were generally less suc-
cessful.

For example, by the time successful jamming was
initiated against Oboe signals at 200 MHz, the Mark III
version had moved to 3 GHz. At this frequency, the tech-
nical capabilities of the Germans were inadequate for the
implementation of effective countermeasures.

In addition, both sides made efforts to interfere with
enemy radio beacons, sometimes with the result that air-
craft got lost or were even captured after landing in
unfriendly territory.

After WW2, various navigation systems were developed
and deployed. More recently, the global positioning system
(GPS) has become very important, particularly in Western
countries, because of the availability of worldwide coverage
and the high accuracy that can be achieved. This avail-
ability has led to the widespread use of GPS for guiding
precision weapons and defining target locations. The mili-
tary importance of GPS has motivated the development and
marketing of GPS jammers. At the same time, recognition
of the potential impact of GPS jamming has resulted in
serious efforts to develop and implement anti-jam features
in military GPSs (31).

EW and IFF Systems

Identification friend foe (IFF) systems are used to provide a
means of quickly and positively identifying friendly air-
craft. When an unknown aircraft is observed, the IFF
system transmits a specially coded signal and looks for
the transmission of an appropriate signal in response
from the IFF system in the unknown aircraft.

After early IFF systems were deployed in British bom-
bers during WW2, the Germans discovered that the bom-
bers could be tracked by transmitting signals to trigger
their IFF systems and observing the IFF signals trans-3An interesting idea is to use commercial FM radio stations as a

transmitter in a bistatic radar system. The receivers are located
some distance from the transmitter, and the signal processing is
designed to measure the relative time shifts between the signal
that propagates directly from the transmitter to the receiver and
the signal that arrives via a reflection from the target.

4Investigations in the UK revealed that bombing attacks carried
out at night were often ineffective without the use of electronic
navigation aides (5).

ELECTRONIC WARFARE 9



mitted in response. Significant losses of aircraft resulted
until it was realized that the IFF signals were being
exploited, and the systems were removed from the aircraft
(5). Since then, significant efforts have been made to reduce
the vulnerability of modern IFF systems to EW.

Countermeasures Against IR Sensors

Passive infrared (IR) sensors have important military
applications (32). Antiaircraft missiles using IR guidance
systems have proven to be very effective in the absence of
effective countermeasures, particularly for low-altitude air
defense. Other important applications include ground-to-
air and air-to-ground target acquisition, fire control, and
night vision. In ground combat, the use of IR sensor tech-
nology has greatly increased the effectiveness of operations
at night and under conditions of bad weather and haze. The
usefulness of IR sensors has been enhanced progressively
by technical advances in IR detectors and the processing of
their outputs. IR sensors have been evolved to operate in
both the long-wave infrared and mid-wave infrared bands.
These dualband sensors can provide robust performance
over a wide range of environmental conditions.

The importance of IR sensors has motivated the expen-
diture of considerable effort on the development of technol-
ogy and techniques designed to reduce the effectiveness of
IR sensors and their associated weapon systems. This work
is very comprehensive and includes modeling and experi-
mental measurements of the IR radiation emitted by plat-
forms, such as ships and aircraft, and the behavior of threat
IR sensors.

Flares have been widely used as decoys to distract the IR
sensor-based missile guidance systems for the protection of
aircraft. The use of flares is often combined with evasive
action to ensure that the missile-guidance system con-
tinues to track the flare and that the missile’s path toward
the flare does not take it near the aircraft. Infrared counter
measure (IRCM) systems generate an IR signature whose
power is modulated in a way that is intended to confuse the
tracking system associated with typical IR sensor-based
guidance systems. Directional infrared counter measures
systems extend the IRCM concept by directing the modu-
lated IR energy toward the threat sensor. Another idea is to
use a laser to blind the IR sensor.

IR deception techniques for aircraft have achieved sig-
nificant successes against more basic IR sensors. However,
the development of increasingly sophisticated IR sensors
has necessitated continued work on the development of IR
countermeasures.

Improvised IR deception measures have been used with
some success to simulate ground targets.

The reduction of IR signatures associated with platforms,
such as surface ships and aircraft, can significantly improve
their survivability. Various measures have been used:

� Cooling visible exhaust duct metal surfaces with air or
water;

� Shrouding visible exhaust duct metal surfaces;

� Cooling engine exhaust plumes by mixing them with
cool ambient air;

� Cooling exposed surfaces heated by the sun with
water;

� Coating exposed surfaces with low-emittance materi-
als;

� Covering ground-based assets with IR camouflage
netting.

FUTURE TRENDS IN EW TECHNOLOGY

The evolution of EW technology and concepts is driven by
various factors,which includechangingoperational require-
mentsandtechnologyadvances.Futuresystemswillprovide
significant capability enhancements and other benefits:

1. The development and widespread deployment of cap-
able cell phone networks and their adoption for mili-
tary purposes means that ES, even at the tactical
level, cannot be limited to explicitly military commu-
nication systems;

2. Requirements to shorten development cycles and
reduce cost will favor increasing use of commercial-
off-the-shelf technology and open standards. The
implementation of digital signal processing algo-
rithms in software running on general purpose pro-
cessors and hardware based on field-programmable
gate array technology provides a combination of
flexibility and performance;

3. Specialized systems will tend to be replaced by
multifunction systems. The concept of integrating
ES and EA functionality with communication and
radar systems will receive increasing attention
(33);

4. Networking of EW assets and technical advances will
tend to blur the distinction between tactical and
strategic EW;

5. Simulators and other aids are being developed to
provide realistic scenarios for EW training without
requiring large-scale exercises and/or expensive
equipment;

6. Models and simulations will be increasingly used to
assess EW effectiveness with the aim of determining
appropriate system design trade-offs and contribut-
ing to the development of EW doctrine;

7. Automated ES and EA systems will be added to the
sensors carried by UAVs and platforms such as recon-
naissance vehicles;

8. Smart antennas will improve the robustness of com-
munication systems in a jamming environment;

9. The future development of aircraft and naval plat-
forms will place increasing emphasis on signature
management;

10. Decoys will be increasingly used for platform pro-
tection.

In practice, the application of technical advances will be
moderated by various practical issues: There are always
competing priorities for personnel and funding. Sophisticated

10 ELECTRONIC WARFARE



EW systems are often very expensive to develop and deploy
and can be quickly rendered obsolescent by technology
advances and changing application requirements. The devel-
opment of sophisticated defense electronics systems presents
formidable challenges. Many systems fall far short of initial
expectations for various reasons, which range from faulty
technology or trade-off analyses, the failure of anticipated
technical advances to materialize, and changing application
requirements.Theproblems involvedwiththe introductionof
advanced technology systems into service are considerable:

� Integration into platforms;

� Integration with other systems;

� Provisions made for maintenance;

� Development of suitable doctrine;

� Provisions for interoperability with allied forces;

� Training of users.

It is very easy to underestimate some of these issues.
An otherwise capable system may be completely un-
suitable for service use if the user interface is poorly
thought out. A system may work well in the hands of
skilled engineers who have an intimate understanding of
its operation, but, in an operational environment, it may
be virtually unusable by service personnel, even if they
have substantial training and experience. Another com-
mon problem is that communications capacity required
for the networking of battlefield sensors may not be
available, or, if provided by communication satellites,
may be prohibitively expensive.

APPENDIX 1 - GEO-LOCATION OF SIGNAL SOURCES FOR
COMMUNICATIONS AND RADAR ES

GENERAL CONCEPTS

Several fundamental properties of electromagnetic waves
can be used for the geo-location of signal sources:

� the signal propagates at a constant known velocity;

� the phase surfaces are perpendicular to the direction
of propagation;

� the electric and magnetic field vectors are perpendi-
cular to the direction of propagation.

In free space, the signal seems to spread out radially from
a source and arrive at a receiver via a line-of-sight path.
Various techniques have been developed to exploit these
properties to obtain lines of position for the transmitters
associated with radio, radar, and navigation systems. Using
measurements from a sufficient number of sites, the locus of
positions for an emitter can be uniquely solved. In practice,
the problem can often be usefully simplified by the assump-
tion that the source and sensor sites are located on a plane. If
errors can be neglected, then the resulting lines of position
(LOPs) pass through the position of the signal source, which
thereby results in an unambiguous position estimate. The
process of solving the location of a signal source from the
LOPs is known as triangulation. In practice, various error

sources will affect the estimated LOPs and, with multiple
lines of position, the intersections of the LOPs will occur at
multiple points or, in some cases, will fail to occur. Many
sources of error are present in practice:

1. Environmental noise and interfering signals;

2. Thermal noise and spurious signals generated within
the sensor;

3. Mutual coupling between the pairs of elements in an
antenna array;

4. Gain and phase mismatches in cables and receivers
used in systems that use multiple receivers to mea-
sure gain or phase differences;

5. Uncertainties in the positions of the sensors;

6. Propagation effects;

7. Geometric factors caused by the relative location of
the emitter and sensors.

In a ground-based environment, propagation effects are
very important. The received signal will usually arrive at
the sensor via multiple paths (multipath propagation)
caused by reflections from terrain features and man-
made structures. Many of these error mechanisms will
result in systematic bias errors that cannot be removed
by averaging. However, various possibilities exist for mini-
mizing the effects of error sources:

1. Careful positioning of sensor sites to minimize terrain
masking of areas of interest and local reflections, and
provide favorable source-sensor geometries;

2. Theelevationof thesensorantennaonasuitablemast;

3. Increasing the number of sensors.

The statistical behavior of errors that develop in
estimating the position of a source, and their sensitivity
to measurement errors, has been analyzed extensively
for various geo-location techniques (34–36). Algorithms
for making the best use of available information from
sensor arrays have been developed (37,38).

DIRECTION-FINDING TECHNIQUES

Direction finding (DF) is based on the idea of directly
measuring the direction that the signal wave front is
propagating. Extensive research has been applied to the
development of DF techniques. Moreover, many design
variables and implementation technologies are possible.
Consequently, the design of practical DF systems reflects
the trade-offs that are relevant to the specific application
requirements. The most common ideas (37, 39, 40) are sum-
marized in the following sections.

DF TECHNIQUES BASED ON AMPLITUDE
MEASUREMENTS

The most basic form of DF is to perform an angular search
using a directional antenna whose directional character-
istics are known and find the angle at which the received

ELECTRONIC WARFARE 11



power is either a maximum or a minimum. The choice
depends on whether a well-defined maxima or null in the
directional response exists. The antenna can be continu-
ously rotated and a suitable electro-mechanical system
used to display the angle that corresponds to the minimum
(or maximum) received signal power. One limitation of this
scheme concerns the difficulty of measuring the DF of a
signal that is present for a short duration. Nevertheless,
some DF systems for radar ES are based on the use of a
rotating parabolic reflector antenna. The relative simpli-
city, coupled with the capability against weak signals
provided by the high antenna gain, partly compensates
for the other limitations.

Amplitude comparison DF is a more sophisticated idea.
The desired angular coverage is divided into sectors, and
each sector is associated with a directional antenna having a
beam width comparable with the angular width of the sector
and a receiver that is designed to measure the amplitude of
an observed signal. The angle of arrival is determined in two
stages.First, the pair of receivers associated with the largest
signal power measurements is found. A coarse estimate of
the angle of arrival is defined as the mid-angle between the
angles that each of the antennas is pointed. Second, the
angle of arrival estimate is refined by computing the ratio of
the amplitudes, and using a look-up table, or a calculation
based on a model of the directional gain of the antennas, to
produce a fine-angle estimate. A trade-off occurs between
the number of antennas and the achievable accuracy. This
technique is often used in radar ES systems; it is relatively
straightforward to implement, and, for microwave frequen-
cies, the antennas are relatively compact. RWRs used in
fighter aircraft often use four antennas to provide 3608
angular coverage, whereas ES systems for naval craft often
use six or eight antennas.

Many communications ES systems use amplitude-
comparison DF techniques based on the Adcock pair
antenna. This technique is based on the idea of taking
the vector difference of the output signals from two closely
spaced vertical monopole or dipole antenna elements. The
result is a figure-8 gain pattern with the null occurring for
signals that propagate across the baseline of the antenna
elements. The separation of the antenna elements involves
a compromise depending on the frequency range to be
covered. Too close a spacing reduces the sensitivity whereas
too large a spacing results in a distorted gain pattern. The
Watson-Watt DF system, in its simplest form, consists of
two Adcock pairs oriented at right angles. The angle of
arrival of a received signal can be directly determined from
the ratios of the signal powers measured from the two
Adcock antenna pairs. With some additional processing,
an unambiguous DF measurement can be obtained. At the
cost of increased size and complexity, improved perfor-
mance and frequency coverage can be obtained by using
four Adcock pairs.

Interferometric DF Systems

The basic interferometric DF system consists of a pair of
monopole or dipole antenna elements that are separated by
less than half a signal wavelength and the means for mea-
suring the phase difference between their output signals.

Using the measured signal frequency, the known signal
propagation velocity, and the antenna separation, the signal
angle of arrival with respect to the antenna baseline can be
computed. The angle of arrival measured for this arrange-
ment is ambiguous; the signal can arrive from either side of
the baseline. This limitation can be resolved by adding one
or more antenna elements to form a two-dimensional array
for each pair of antenna elements, an angle of arrival
estimate relative to the baseline of the antenna pair is
obtained. By solving for the result that is most consistent
with these measurements, an unambiguous estimate for the
angle of arrival is obtained. One implementation uses an
array of 5 antennas positioned in a regular pentagon to form
10 antenna pairs, five of which correspond to the faces of the
pentagon and the other five to the diagonals (41).

The interferometric DF technique is expensive in hard-
ware. Each antenna in the array requires a dedicated
channel from a multichannel receiver that has accurate
phase-matching between the channels. Digital signal pro-
cessing techniques facilitate the implementation of such
systems, one point being that phase-matching errors can
be corrected by measuring them with a suitable calibra-
tion signal, storing their values in a table, and using the
stored calibration data to correct subsequent measure-
ments. The correlative DF techniques used by some sys-
tems are another development of this concept. Well-
designed interferometric DF systems have a relatively
good reputation for accuracy, particularly when a large
antenna array is used.

Single-Channel DF Systems

To minimize size, cost, weight, and power consumption,
several DF system implementations have been developed
that require only a single-channel receiver. The pseudo-
doppler DF technique is distinguished by the use of a
circular array of uniformly spaced antennas with a com-
mutator switch that sequentially connects one antenna in
the the array at a time to the receiver. The effect is analo-
gous to moving a single antenna element on a circular track
and contributes a sinusoidal phase modulation to the
received signal. An estimate of the angle of arrival is
obtained by measuring the relative phase shift of this
modulation component. The Watson-Watt technique has
also been applied successfully to single-channel DF sys-
tems.

Single-channel DF techniques are widely used for low-
cost portable systems. However, a relatively long observa-
tion time is needed compared with the conventional Wat-
son-Watt and interferometric techniques.

Other DF Techniques

Other DF techniques are possible and have some advan-
tages. Circular antenna arrays using the Butler matrix
network can provide unambiguous DF with a receiver
having as few as two channels. A theoretical comparison
of their performance with other techniques is given in Ref.
42. Super-resolution techniques, such as the multiple-sig-
nal classification (MUSIC) algorithm (43), have the ability
to resolve multiple signal sources in angle, even when their

12 ELECTRONIC WARFARE



signals overlap in frequency. However, the large antenna
arrays and the cost of the associated receiver and proces-
sing hardware are difficult to justify for most applications.

Attempts have been made to use power measurements to
provide an indication of range. This method presents some
difficulties. The actual power radiated by a transmitter is
dependent on various factors that include the antenna
configuration, height, and the selected transmitter output
power (if this functionality is available). Furthermore, in a
ground environment, propagation losses depend on the
nature of the terrain. The usefulness of power measure-
ments increases if measurements are available from multi-
ple sites.

TIME DIFFERENCE OF ARRIVAL AND FREQUENCY
DIFFERENCE OF ARRIVAL GEO-LOCATION TECHNIQUES

The basic concept of geo-location using time difference of
arrival (TDOA) measurements can be illustrated by con-
sidering a pair of spatially separated receivers and a signal
source at an unknown location. Given the assumptions of
line of sight propagation paths and fixed-signal propaga-
tion velocity, the signals observed at the receivers arrive
with delays proportional to the distances from the signal
source to the receivers. The difference in delays corre-
sponds to the TDOA.

Given a TDOA measurement and knowledge of the
signal-propagation velocity and the receiver locations,
the locus of possible transmitter positions can be solved.
If the problem is simplified to two dimensions by assum-
ing the signal source and receivers lie on a plane, then
the resulting line of position is a hyperbola. Given three
or more receivers, the hyperbolic lines of position
obtained for the different pairs of receivers will intersect
at the signal source location if sources of error can be
neglected.

Two basic approaches are used for measuring TDOAs.
The first is applicable if a time domain feature of the signal
waveform can be easily identified. For example, the time of
arrival (TOA) of a pulse modulated signal can be measured
by performing amplitude demodulation to obtain the pulse
waveform and measuring the absolute time that corre-
sponds to a suitable reference point on the leading edge
of the pulse waveform, such as the point where the pulse
reaches a fixed fraction of the peak power level. The TDOA
can then be obtained by taking the difference between the
corresponding TOAs observed at two locations. The second
requires that the signals from the receiver sites be relayed
to a single site where the relative time differences are
measured using signal processing techniques, such as
cross-correlation.

TDOA based geo-location techniques involve several
complications. The requirement for the accurate measure-
ment of very small relative time delays necessitates care-
fully designed and engineered systems. If the signals
received at the separate sites must be relayed to a common
site for processing, then the requirements for suitable data
links may involve issues of cost and practicality. Never-
theless, TDOA geo-location techniques have some attrac-
tive advantages:

� specialized receiving antennas are not required;

� the orientation of the receiving antenna is not critical;

� several methods can be used to confirm that a signal
received at different sites is from the same transmit-
ter;

� the accuracy is relatively unaffected by multipath
propagation that occurs in the immediate vicinity of
the receiver sites.

The differential frequency shifts that result from rela-
tive motions of the transmitters and receivers complicates
the signal processing needed for TDOA estimation. With
suitable processing, these frequency differences can be
estimated and used to define lines or surfaces on which
the signal source lies. FDOA based techniques are primar-
ily applicable to airborne or satellite platforms and can be
combined with geo-location based techniques based on
TDOA measurements.

MINIMIZATION OF ERROR SOURCES

The performance of practical geo-location systems can be
improved in several ways.

DF Techniques

The performance of DF systems can vary widely, depending
on the implementation and choice of deployment sites:

1. System design choices and trade-offs need to be con-
sidered carefully. Antenna arrays with large base-
lines tend to have performance advantages, but they
are generally undesirable for tactical applications.
Conversely, attempts to cover a large frequency range
with a single antenna array involve significant cha-
llenges;

2. Gain and phase mismatches contributed by the
receiver hardware and the cables between the
antenna and receiver can be corrected by measuring
the errors and subtracting them from future mea-
surements. The errors can be measured by using a
suitable signal source and radio frequency switch to
apply a calibration signal at the point where the
cables connect to the antenna. Measurements
obtained at suitably chosen test frequencies can
be used to construct a calibration table containing
the amplitude and phase-correction factors required
at each of the test frequencies;

3. Systematic errors contributed by the antenna can be
corrected using a calibration table to provide correc-
tion values to be subtracted from the measurements.
A one-dimensional calibration table can be con-
structed by carrying out controlled tests using signals
transmitted from a fixed angle at frequencies spaced
through the frequency range covered by the system
and measuring the discrepancy between the actual
and observed angles. Because the errors generally
must be angle dependent, the use of a two-dimen-
sional calibration table is desirable. This table can be
constructed by the repeating the procedure for angles

ELECTRONIC WARFARE 13



distributed around the full 3608 interval. Interpola-
tion can be used to generate calibration values for
intermediate frequencies and angles.

4. The choice of sites for the deployment of DF systems is
critical. Ideally, the site should be free of features
that contribute to multipath propagation, and line-of-
sight propagation should be possible over the area of
interest. In these respects, the elevation of the
antenna is an important factor. Another considera-
tion is that the sites should be selected to provide
favorable sensor-target geometries for geo-location
via triangulation.

5. Geo-location performance improves as the number
of sites from which DF information is available
increases.

TDOA and FDOA Techniques

The performance of TDOA and FDOA geo-location systems
is sensitive to system-implementation choices, the nature
of the signals of interest, and various aspects of the system
deployment:

1. If the system operation is dependent on the relaying
of signals received at the sensor sites to a common site
for processing, the system must be able to perform
this function without significantly degrading the
quality of the signals.

2. Provisions must be made to account for the delays
contributed by the relaying of the signals observed at
the sensor sites to a common site; these delays must
be removed or accounted for.

3. The performance of TDOA estimation processing
depends on the signal-to-noise ratio and the presence
of suitable information contained in the signal mod-
ulation. Narrowband signals may require higher sig-
nal-to-noise ratios and/or longer observation times to
achieve the desired accuracy;

4. Frequency shifts that result from relative motions of
the receivers and transmitter affect TDOA measure-
ment processing. If, for scenarios of interest, they are
sufficiently important, then provisions must be made
in the TDOA estimation processing to remove them. If
FDOA information is used for geo-location, then the
most favorable results will be obtained when the
sensors move rapidly, because this action increases
the relative frequency shifts, and a given error in
frequency measurement becomes less significant.
Also, uncertainties contributed by the movement of
the signal source are reduced.

BIBLIOGRAPHY

1. D. C. Schleher, Electronic Warfare in the Information Age,
Norwood, MA: Artech House, 1999.

2. R. Poisel, Introduction to Communications Electronic Warfare
Systems, Norwood, MA: Artech House, 2002.

3. A. Price, Instruments of Darkness: The History of Electronic
Warfare, Encore Editions, 1978.

4. A. Price, The History of US Electronic Warfare, Volume 1, The
Years of Innovation–Beginnings to 1946, Norwood, MA: Artech
House, 1984.

5. R. V. Jones, Most Secret War, London, UK: Hamish Hamilton,
1978.

6. M. Arcangelis, Electronic Warfare: From the Battle of Tsush-
ima to the Falklands and Lebanon Conflicts, Dorset, United
Kingdom: Blandford Press, 1985.

7. A. Price, The History of US Electronic Warfare, Volume II, The
Renaissance Years, 1946 to 1964, Norwood, MA: Artech House,
1989.

8. A. Price, The History of US Electronic Warfare, Volume III,
Rolling Thunder Through Allied Force, 1964 to 2000, Norwood,
MA: Artech House, 2000.

9. P. Mihelich, Jamming systems play secret role in iraq, Avail-
able: http://www.cnn.com/2007/TECH/08/13/cied.jamming.-
tech/index.html.

10. R. J. Hanyok, Spartans in Darkness: American SIGINT and
the Indochina War, 1945–1975, Vol. 7, Center for Cryptologic
History, National Security Agency, 2002.

11. D. Eshel, EW in the Yom Kippur War, J. Electronic Defense,
30(10): 2007.

12. Joint Publication 3-13.1, Electronic Warfare, January 25, 2007,
Available: http://www.fas.org/irp/doddir/dod/jp3-13-1.pdf.

13. M. Streetly (ed.), Janes Radar and Electronic Warfare Systems
2005-2006, Surrey, UK: Jane’s Information Group, 2005.

14. P. W. East, ESM Range Advantage, IEE Proc., 144(4): 1985.

15. R. G. Wiley, ELINT: The Interception and Analysis of Radar
Signals, Norwood, MA: Artech House, 2006.

16. R. A. McDonald and S. K. Moreno, Raising the periscope . . .

grab and poppy: america’s early ELINT satellites, Center for
the Study of National Reconnaissance, National Reconnais-
sance Office, Chantilly, VA, September 2005.

17. P. Hill, E. Adams, and V. Comley, Techniques for detecting and
characterizing covert communications signals, Proc. European
Conference on Security and Detection, April 1997.

18. R. Inkol, S. Wang, and S. Rajan, FFT filter bank-based CFAR
detection schemes, Proc. of Midwest Symposium on Circuits
and Systems, August 5–8, 2007.

19. Y. T. Chan and L. G. Gadbois, Identification of the modulation
type of a signal, Signal Processing, 16(2): 1989.

20. K. Nandi and E. E. Azzouz, Algorithms for automatic modula-
tion recognition of communication signals, IEEE Trans. Com-
mun., 40(4): 1998.

21. D. Boudreau, C. Dubuc, F. Patenaude, M. Dufour, J. Lodge, and
R. Inkol, A fast automatic modulation recognition algorithm
and its implementation in a spectrum monitoring application,
Proc. of MILCOM 2000, 2000.

22. O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, Survey of
automatic modulation classification techniques: classical
approaches and new trends, IET Communications, 1(2): 2007.

23. K. I. Talbot, P. R. Duley, and M. H. Hyatt, Specific emitter
identification and verification, Northrop Grumman Technol.
Rev. J., 2003.

24. O. H. Tekbas, N. Serinken, and O. Ureten, An experimental
performance evaluation of a novel transmitter identification
system under varying environmental conditions, Can. J. Elect.
Comput. Eng., 29(3): 2004.

25. J. B. Tsui, Microwave Receivers with Electronic Warfare Appli-
cations, New York: Wiley, 2005.

26. P. W. East, Microwave intercept receiver sensitivity estimation,
IEE Proc., Radar, Sonar Navigation, 132(4): 1997.

14 ELECTRONIC WARFARE



27. D. E. Maurer, R. Chamlou, and K. O. Genovese, Signal proces-
sing algorithms for electronic combat receiver applications,
John Hopkins APL Tech. Dig., 18(1): 1997.

28. A. C. Brown, Bodyguard of Lies, New York: Harper and Row,
1975.

29. K. Burda, The performance of the follower jammer with a
wideband-scanning receiver, J. Elect. Eng., 55(1-2): 2004.

30. G. Goodman, New challenges for ground EW –democratized
jamming, J. Electronic Defense, 30(10): 2007.

31. S. Rounds, Jamming protection of GPS receivers, GPS World,
2004.

32. R. D. Hudson, The military applications of remote sensing by
infrared, IEEE Proc., 63(1): 1975.

33. G. C. Tavik et al, The advanced multifunction RF concept,
IEEE Trans. Microwave Theory Tech., 53(3): 2005.

34. R. G. Stansfield, Statistical theory of DF fixing, J. IEE, 1947.

35. P. C. Chestnut, Emitter location accuracy using TDOA and
differential Doppler, IEEE Trans. Aerosp. Electron. Syst., 1982.

36. D. J. Torrieri, Statistical theory of passive location systems,
IEEE Trans. Aerosp. Electron. Syst., 20 1984.

37. R. Poisel, Electronic Warfare Target Location Methods, Nor-
wood, MA: Artech House, 2005.

38. D. Elsaesser, The discrete probability density method for tar-
get geolocation, Proc. Canadian Conference on Electrical and
Computer Engineering, May 2006.

39. S. E. Lipsky, Microwave Passive Direction Finding, Raleigh,
NC: SciTech Publishing, 2003.

40. S. Chandran (editor), Advances in Direction-of-Arrival Estima-
tion, Norwood, MA: Artech House, 2006.

41. N. King, I. Pawson, M. Baker, R. Shaddock, and E. Stansfield,
Direction Finding, U.S. Patent 4,639,733, January 27, 1987.

42. W. Read, An Evaluation of the Watson-Watt and Butler Matrix
Approaches for Direction Finding, DREO Technical Report
1999-092, September 1999.

43. R. O. Schmidt, Multiple emitter location and signal parameter
estimation, IEEE Trans. Antennas Propag., AP-34, 1986.

ROBERT INKOL

Defence R & D Canada
Ottawa, Ontario, Canada

ELECTRONIC WARFARE 15



E

ENVIRONMENTAL SCIENCE COMPUTING

ENVIRONMENT AND SOCIETY

The environmental problems are becoming more and more
important for the modern society, and their importance
will certainly be increased in the near future. High pollu-
tion levels (high concentrations and/or high depositions of
certain harmful chemical species) may cause damage to
plants, animals, and humans. Moreover, some ecosystems
can also be damaged (or even destroyed) when the pollution
levels become very high. This explains why the pollution
levels must be studied carefully in the efforts

� to predict the appearance of high pollution levels,
which may cause different damages in our environ-
ment and/or

� to decide what must be done to keep the harmful
concentrations and/or depositions under prescribed
acceptable limits.

The control of the pollution levels in highly developed and
densely populated regions in the world is an important task
that has to be handled systematically. This statement is true
for many regions in Europe and North America but also
other parts of the world are under economic development
currently and urgent solutions of certain environmental
problems either are already necessary or will soon become
necessary. The importance of this task has been increasing
steadily in the beginning of the new millennium. The need to
develop reliable and easily applicable control strategies for
keeping harmful pollution levels under prescribed limits
will become even more important in the next decades.

Climate changes are causing another challenging pro-
blem for the modern society. The quick changes have many
different consequences. The impact of the climatic changes
on the pollution levels is one of the consequences, and this
consequence must be investigated carefully by studying the
relationship between climatic changes and high pollution
levels. It should also be mentioned here that there is a feed-
back:Thepollutionlevelsinfluencetheclimaticchanges.It is
necessary to couple environmental models with climatic
models to study fully the interrelations between climatic
changes and pollution levels. This task is very challenging.

Mathematical models are powerful tools when the trends
in the development of the pollution levels and the measures
which the society must take to ensure a sustainable devel-
opment are studied. These models are often very complex
and lead to huge computational tasks. Some tasks cannot be
treated even if powerful modern computers are used.

IMPORTANT TASKS TREATED BY THE ENVIRONMENTAL
MODELS

Advanced mathematical models for studying environmen-
tal phenomena can be used successfully to design control

strategies for keeping the pollution under critical levels
under the assumption that these models produce reliable
results. The application of comprehensive environmental
models in sensitivity tests is important in the efforts

� to understand better the physical and chemical pro-
cesses involved in the environmental phenomena or to
treat efficiently the tasks proposed by policy makers
and

� to ensure that the control strategies for keeping the
pollution under the prescribed acceptable limits are
reliable.

Sensitivity tests can be applied to resolve these two
tasks. It is important to study the sensitivity of concentra-
tions and deposition of harmful pollutants caused by var-
iations of:

� anthropogenic emissions,

� biogenic emissions,

� meteorological conditions,

� velocity rates of chemical reactions,

� boundary conditions,

� initial conditions, and

� numerical algorithms.

This list is certainly not complete and can be continued.
It is even more important to emphasize the fact that this list
tells us that the task of performing complete sensitivity
analysis by applying large-scale environmental models is
extremely large and very difficult. Finally, many terms, in
which the parameters from the above list are involved, are
nonlinear. The nonlinearity causes great difficulties, which
can be resolved only by conducting many experiments with
different scenarios and studying carefully the results to
find typical trends and relationships.

The difficulties are increased because there are inter-
connections of the effects because of variation of different
parameters. For example, the variation of both the anthro-
pogenic emissions and the biogenic emissions may lead to
some effects, which are not observed when only the anthro-
pogenic emissions or only the biogenic emissions are varied.
The effects caused by simultaneous variations of several
key parameters can only be studied by increasing the
number of scenarios used in the experiments. Thus, the
tasks become larger and more difficult.

The necessity of validating the results is an additional
source for difficulties. The problem of designing a comple-
tely reliable routine for validating the results of the sensi-
tivity tests is still open. Two approaches can be used (and, in
fact, are commonly used) in the attempts to validate the
results from sensitivity analysis tests:

� comparisons with measurements and

� comparisons with results obtained by other models.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



The objections, which can be raised against the com-
plete reliability of the comparisons with measurements
for the validation of the model results, are many and
serious. The most important objection is the well-known
fact that two different quantities are compared when such
a procedure is used. The measurement is a quantity,
either concentration or deposition, which is obtained at
a given geographical point (the location of the measure-
ment station). The corresponding quantity, which is the
quantity calculated by the model, is a representative mean
value averaged in some surrounding (determined by the
spatial discretization chosen) of the point in which the
measurement station is located. This fact implies that
even if both the measurement and the corresponding
calculated result are exact (which will never happen in
practice), they will in general be different. Another impli-
cation, which is even more important from a practical
point of view, is the following: We should expect to improve
the possibility (the potential possibility, at least) of getting
better validation results by using comparisons with mea-
surements when we increase the spatial resolution of the
model, but the computational tasks become larger and
much more difficult when the spatial resolution is increased.
It may become necessary to replace some physical and
chemical mechanisms used in the model with coarse resolu-
tion with more accurate mechanisms when the resolution is
refined. Finally, the need for accurate input data for large-
scale models defined on refined grids also causes great
difficulties.

The objections, which can be made in the case where the
results obtained by two or more models are compared, are
also both many and serious. It is extremely difficult to deter-
mineinareliablemannertheprecisereasonfordifferencesof
results produced by different models. The answer of the
following question is interesting when a long sequence of
sensitivity tests is run: What is the relationship between the
parameter that is varied and the studied quantity (the con-
centrationorthedepositionofacertainharmfulpollutant)?If
two models are run with the same sequence of sensitivity
tests and if the relationship between the parameter that is
varied and the model results is different for the two models,
then the difference may, partially or totally, be caused by
several reasons.The differencesmay, forexample,becaused
(or, at least, be influenced to some degree) by the use of
different projections and/or resolutions in the different
models, by the application of different sets of input data,
by the fact that the numerical methods used are different, by
the fact that the chemical schemes are not the same, and so
on. It is not clear how these unwanted reasons for differ-
ences of the results from two or more models can be elimi-
nated to study only the relationship between the parameter
we are varying and the studied quantity.

It should be emphasized here that the objections against
the two commonly used procedures for validating results
from sensitivity tests indicate that it is necessary to be
cautious. It should also be emphasized, however, that it is
absolutely necessary to do such comparisons. Many sound
conclusions can be drawn after such comparisons, but
one should not fully rely on the results of the comparisons.
One should continue the search for better and more reliable
validation tests.

MATHEMATICAL DESCTIPTION OF ENVIRONMENTAL
MODELS

The environmental models are normally described by sys-
tems of partial differential equations (PDEs). The number
of equations is equal to the number of chemical species
studied by the modes and the unknown functions are con-
centrations of these species. Five basic stages are described
in the development of a large environmental model:

� one has to select the physical and chemical processes
that are to be taken into account during the develop-
ment of the model,

� the selected processes must be described mathemati-
cally,

� the resulting system of PDEs must be treated by
numerical methods,

� the reliability of the obtained results must be evalu-
ated and

� conclusions should be drawn.

It is important to take into account all relevant physical
and chemical processes during the development of the
models. If more physical and chemical processes are
included in the model, then one should expect that more
accurate and more reliable results can be calculated. How-
ever, two difficulties are related to the attempt to include as
many as possible physical and chemical processes in the
model:

� The complexity of the model is increased when more
processes are included in it. The treatment of the model
on the available computers might become very diffi-
cult, and even impossible, when too many processes
are taken into account.

� Some physical and chemical processes are still not well
understood, which means that such processes must
either be neglected or some simplified mechanisms,
based on uncertain assumptions and/or on experimen-
tal data, must be developed.

It is necessary to find a reasonable compromise related to
the number of processes that are to be taken into account
when a large environmental model is developed. This rea-
soning explains also why it is necessary to validate the
model results.

The selected physical and chemical processes have to be
described by mathematical terms. Some more- or less-
standard rules exist that can be used for the mathematical
description of different processes. Several examples, which
are related to air pollution modes, are listed below:

� The transport caused by the wind (called advection) is
described by using terms that contain first-order spa-
tial derivatives of the unknown functions (the concen-
trations of the studied pollutants) multiplied by the
wind velocities.

� The diffusion of the concentrations is expressed by
second-order spatial derivatives multiplied by the
diffusivity coefficients.

2 ENVIRONMENTAL SCIENCE COMPUTING



� The chemical reactions are represented by nonlinear
mathematical terms.

� The change of the concentrations in time is given by
first-order derivatives of the concentrations of the
pollutants with respect to time.

It should be stressed here that the above rules are applic-
able not only to air pollution models but also to many other
environmental models.

When all selected physical and chemical processes are
expressed by some mathematical terms, then these terms
have to be combined in a system of PDEs. For example,
when long-range transport air pollution is studied, the
system of PDEs, which represents the mathematical
model, can be written as follows (it should be mentioned
that similar systems are used in other environmental
models):

@ci

@t
¼ �u

@ci

@x
�v

@ci

@y
horizontal advection

� @

@x

�
Kx

@ci

@x

�
þ @

@y

�
Ky

@ci

@y

�
horizontal diffusion

þQiðt; x; y; z; c1; c2; . . . ; cqÞ chemical reactions

þEiðt; x; y; zÞ emissions

þðk1i þ k2iÞci dry and wet deposition

�w
@ci

@z
þ @

@z

�
Kz
@ci

@z

�
vertical exchange

i ¼ 1; 2; . . . ; q q� number of chemical

species ð1Þ
where

� ci ¼ ciðt; x; y; zÞ is the concentration of the chemical
species i at point ðx; y; zÞ of the space domain and at
time t of the time interval,

� u ¼ uðt; x; y; zÞ, v ¼ vðt; x; y; zÞ and w ¼ wðt; x; y; zÞ are
wind velocities along the Ox, Oy and Oz directions
respectively at point ðx; y; zÞ and time t,

� Kx ¼ Kxðt; x; y; zÞ, Ky ¼ Kyðt; x; y; zÞ and Kz ¼ Kzðt; x;
y; zÞ are diffusivity coefficients at point ðx; y; zÞ and
time t (it is often assumed that Kx and Ky are non-
negative constants, whereas the calculation of Kz is
normally rather complicated),

� k1i ¼ k1iðt; x; y; zÞ and k2i ¼ k2iðt; x; y; zÞ are deposition
coefficients (dry and wet deposition, respectively) of
chemical species i at point ðx; y; zÞ and time t of the time
interval (for some species these coefficients are non-
negative constants; the wet deposition coefficients k2i

are equal to zero when it is not raining).

Normally, it is not possible to solve exactly the systems of
PDEs by which the large environmental models are
described mathematically. Therefore, the continuous sys-
tems of the type in Equation (1) are to be discretized. Assume
that the space domain, on which Equation (1) is defined, is a
parallelepiped (this isas a rule the casewhenenvironmental
models are to be handled) and that x2 ½a1; b1�, y2 ½a2; b2�,
z2 ½a3; b3� and t2 ½a; b�. Consider the grid-points

ðtn; x j; yk; zmÞ where x j ¼ a1 þ jDx, j ¼ 0; 1; 2; . . . ;Nx, yk ¼
a2 þ kDy, k ¼ 0; 1; 2; . . . ;Ny, zm ¼ a3þ mDz, m ¼ 0; 1; 2; . . . ;
Nz and tn ¼ a3 þ nDt, n ¼ 0; 1; 2; . . . ;Nt. Assume also that
the initial values ciða; x; y; zÞ are given. Then, the task of
finding the exact solution of the unknown functions ci at all
points ðt; x; y; zÞ of the domain (infinite number of points) is
reducedto the task offindingapproximationsof the values of
the functions ci at the points ðtn; x j; yk; zmÞ; the number of
these points can be very large (up to many millions), but it is
finite. The original task is relaxed in two ways. First, the
number of points at which the problem is treated is reduced
to the number of grid-points, and then it is required to find
approximate solutions instead of the exact solution.

In the example given above, equidistant grids are intro-
duced (i.e., Dx, Dy, Dz, and Dt are constants). Nonequidi-
stant grids can also be used. The vertical grids are normally
not equidistant.

It is assumed here that Cartesian coordinates have been
chosen. Other coordinates, for example, spherical coordi-
nates, can also be used.

The above two remarks illustrate the fact that
the discretization can be performed in different ways.
The important thing is that the main idea remains the
same: One considers approximate values of the unknown
functions at a finite number of grid-points, which are
defined by the discretization chosen, instead of the exact
solution of Equation (1) on the whole continuous space
domain.

Numerical methods must be used to find approximate
values of the solution at the grid-points. It is also appro-
priate to split the model, the system of PDEs of the type in
Equation (1), into several submodels (subsystems), which
are in some sense simpler. Another advantage when some
splitting procedure is applied is that the different subsys-
tems have different properties, and one can try to select the
best numerical method for each subsystem.

It is clear that if some splitting procedure and appro-
priate numerical methods are already chosen, then any
continuous system of the type in Equation (1), which repre-
sents an environmental model, is replaced by several dis-
crete submodels that have to be treated on the available
computers.

As mentioned above, the model described by Equation (1)
is an air pollution model. However, it must be emphasized,
once again, that many environmental models are also
described by systems of partial differential equations and,
thus, can be treated similarly.

NEED FOR EFFICIENT ORGANIZATION
OF THE COMPUTATIONAL PROCESS

The discretization of the system of PDEs by which the
environmental models are described mathematically leads
to huge computational tasks. The following example illus-
trates clearly the size of these tasks. Assume that

� Nx ¼ Ny ¼ 480 (when a 4800 km� 4800 km-domain
covering Europe is considered, then this choice of
the discretization parameters leads to 10 km� 10 km-
horizontal cells),

ENVIRONMENTAL SCIENCE COMPUTING 3



� Nz ¼ 10 (i.e., 10 layers in the vertical direction are
introduced) and

� Ns ¼ q ¼ 56 (the chemical scheme contains 56 species).

Then, the number of equations that are to be handled
at each time-step is ðNx þ 1ÞðNy þ 1ÞðNz þ 1ÞNs ¼
142; 518; 376. A run over a time-period of one year with
a time stepsize Dt ¼ 2:5 seconds will result in Nt ¼
213; 120 time-steps. When studies related to climatic
changes are to be carried out, it is necessary to run the
models over a time period of many years. When the sensi-
tivity of the model to the variation of some parameters is
studied, many scenarios (up to several hundreds) are to be
run. This short analysis demonstrates the fact that the
computational tasks that occurs when environmental
studies are to be carried out by using large-scale models
are enormous. Therefore, it is necessary:

� to select fast but sufficiently accurate numerical meth-
ods and/or splitting procedures,

� to exploit efficiently the cash memories of the available
computer,

� to parallelize the code

in the efforts to make a large environmental model tract-
able on the available computers. It should be mentioned
that it may be impossible to handle some very large envir-
onmental models on the computers currently available
even when the above three conditions are satisfied.

SOME APPLICATIONS

Results from two important applications,

(1) the impact of biogenic emissions on pollution levels
and

(2) the influence of the climatic changes on pollution
levels in Europe,

will be given to illustrate the usefulness of models when
some environmental phenomena are studied.

Bad Days

High ozone concentrations can cause damage to human
health. Therefore, critical levels for ozone have been estab-
lished in the European Union (EU) as well as in other parts
of the world. Some of these critical levels are legislated in
the EU Ozone Directive. Assume that cmax is the maximum
of the 8-hour averages of the ozone concentrations in a
given day at site A. If the condition cmax > 60 ppb is satisfied,
then the day under consideration is declared as a ‘‘bad day’’
for site A. ‘‘Bad days’’ have damaging effects on some groups
of human beings (for example people who suffer from
asthmatic diseases). Therefore, the number of such days
should be reduced as much as possible. Two aims are stated
in the Ozone Directive issued by the EU Parliament in
year 2002:

� Target aim. The number of ‘‘bad days’’ in the
European Union should not exceed 25 days after
year 2010.

� Long-term aim. No ‘‘bad day’’ should occur in the
European Union (the year after which the long-term
aim has to be satisfied is not specified in the EU Ozone
Directive).

Biogenic Emissions and ‘‘Bad Days’’

The distribution of the ‘‘bad days’’ in different parts of
Europe is shown in the two upper plots of Fig. 1: (a) in
left-hand-side plot for year 1989 and (b) in the right-hand-
side plot for year 2003. The numbers of the ‘‘bad days’’ in
Europe is in general reduced considerably in the period from
1989 to 2003. The significant reduction of the human-made
(anthropogenic) emissions in Europe is the reason for these
reductions. The reductions of the human-made (anthropo-
genic) emissions in Europe are shown in Fig. 2. The reduc-
tion of the emissions of nitrogen oxides (NOx emissions) and
volatile organic compounds (VOC emissions) is most impor-
tant for the changes of the numbers of ‘‘bad days.’’

The results presented in the two upper plots are
obtained by using ‘‘normal biogenic emissions.’’ Increased
biogenic emissions (‘‘high biogenic emissions’’) were also
used. The changes of the ‘‘bad days’’ when high biogenic
emissions are used instead of the normal biogenic emissions
are shown on the two lower plots in Fig. 1 (for year 1989 in
the left-hand-side plot, and for year 2003 in the right-hand-
side plot). A great difference can be observed: The largest
increases of the ‘‘bad days’’ in year 1989 are in Eastern and
South-Eastern Europe, whereas the largest increases in
year 2003 occur in Germany and some surrounding coun-
tries. It is not very clear what the reason for the different
behavior is. Some possible explanations are given below.

Consider the NOx and VOC emissions, which contribute
to the formation and destruction of ozone (and, thus, these
emissions play an important role when the numbers of ‘‘bad
days’’ are to be studied). Consider also the two major
countries, Germany and Ukraine, where the differences
are largest. Comparing the changes of the emissions for
years 1989 and 2003, it is observed (Table 1) that whereas
the reductions of the VOC emissions are nearly the same
(60.3% for Germany and 53.4% for Ukraine), the reduction
of the NOx emissions of nitrogen oxides in Germany (46.3%)
is nearly four times larger than the corresponding reduc-
tion in Ukraine (12.1%). This disparity might be one reason
for the different patterns in the lower plots of Fig. 1.

Some combinations of NOx and VOC emissions imply
dominance of the formation of ozone, whereas other com-
binations increase the destruction rate. Assume that the
biogenic emissions are kept fixed (the normal biogenic
emissions). The results indicate that the combinations of
these two types of emissions in Eastern Europe increase the
formation rate of ozone (in the transition from year 1989 to
year 2003), whereas the opposite situation is observed in
Central Europe. This result could also be observed by
comparing the upper two plots in Fig. 1: The numbers of
‘‘bad days’’ in the region around Moscow is increased in
2003 despite the fact that the both the NOx and VOC

4 ENVIRONMENTAL SCIENCE COMPUTING



Figure 1. High versus normal biogenic emissions.

ENVIRONMENTAL SCIENCE COMPUTING 5



emissions were decreased (the biogenic emissions in the
upper two plots are the same).

Other reasons can explain the different patterns in the
two lower plots of Fig. 1. For example, the meteorological
conditions may also play some role. More scenarios are
needed to find the right answer of the question about the
differences of the numbers of ‘‘bad days’’ in different parts
of Europe. However, it is important to emphasize that the
biogenic emissions:

� play an important role when the numbers of ‘‘bad days’’
are studied,

� must be studied more carefully (some scientists claim
that these are underestimated). and

� requires much more scenarios, which have to be run
over long time periods (many years). These scenerios
are needed in the efforts to answer the questions that
originated during the experiments.

The last requirement leads to huge computational tasks
and great storage requirements.

Climatic Changes and ‘‘Bad Days’’

Many programs are designed to predict the future state of
the world’s climate and to explore the effects of such
changes on a variety of policy sectors (e.g., food, water,
energy, socioeconomic development, and regional security).
The major efforts in this direction are coordinated by the

Intergovernmental Panel on Climate Change (IPCC).
Environmental degradation is also of concern in future
climate scenarios, and much effort has been dedicated to
understand changing pressures on an already stressed
system. Here, the attention will be focused on pollution
in the future climate. Within many regions on planet Earth,
air pollution policy has been regionalized to achieve two
major aims: (1) to control and reduce transboundary pollu-
tion and (2) to meet policy objectives to limit air pollution
impacts on human health and sensitive ecosystems. The
effort to achieve these two aims has been a daunting task.
Within Europe, the Convention on Long Range Transport
of Air Pollution has been dedicated to establishing a legal
framework for reducing air pollution and assuring the
safety of humans and ecosystems within prescribed limits.
Limit values for a variety of pollutants have also been
established, as mentioned above, in the EU. However, in
reaching compliance to the air quality directives, very few
studies have considered the possibility that climate change
may induce an additional controlling factor. Therefore, it is
desirable to answer the question:

� Will climate change add to the rate of reaching com-
pliance to air quality policy objectives, or will it make
the process of reaching compliance more difficult?

This question can be considered in two aspects: quali-
tative and quantitative. If only a qualitative answer is
needed, then the task becomes easy. The answer is obviously
yes, because both the chemical reactions and the biogenic
emissions depend on the temperature. Thus, the warming
effect will certainly have some impact on the pollution
levels. The second aspect is much more interesting, because
it is important to produce some quantitative evaluation of
the impact of the climate changes on the pollution levels.
The predictions about the increase of the annual tempera-
tures in Europe according to the IPCC SRES A2 Scenario as
well as several other conclusions, which are related to the
climatic changes in Europe and are discussed in the reports
prepared by the scientists from IPCC, can be used to pre-
pare three climatic scenarios related to pollution studies.
These scenarios can also be used to obtain quantitative
evaluation of the impact of future climatic changes on
certain pollution levels.

Climate Scenario 1

The predicted, by the IPCC SRES A2 Scenario, annual
changes of the temperature were used to produce this
climatic scenario. Resulting from this scenario changes of
the temperature in Europe are shown in Fig. 3. Consider
any cell of the grid used to create the plot shown in Fig. 3

Figure 2. Reductions of the European human-made emissions in
the period 1989–2004.

Table 1. Changes of Anthropogenic Emissions Participating in the Formation and Destruction of Ozone in Germany and
Ukraine

Emissions of nitrogen oxides Emissions of volatile organic compounds

Country 1989 2003 Reduction 1989 2003 Reduction
Germany 2989 1605 46.3% 3202 1272 60.3%
Ukraine 1065 936 12.1% 1512 704 53.4%

6 ENVIRONMENTAL SCIENCE COMPUTING



and assume that this cell is located in a region where the
increase of the temperature is in the interval [a,b].
The temperature at the chosen cell at hour n (where n is
in the interval from 1989 to 2004) is increased by an amount
aþ cðnÞ, where c(n) is randomly generated in the interval
½0; b� a�. The mathematical expectation can increase the
annual mean of the temperature at any cell of the space
domain, where it is predicted that the increase of the
temperature is in the interval [a,b], ðb� aÞ=2. Only tem-
peratures are varied in this scenario and the mean value of
the annual change of the temperature at a given point will
tend to be ðb� aÞ=2 for each year of the chosen interval
(from 1989 to 2004).

Climate Scenario 2

The extreme meteorological events will become even stron-
ger in the future climate. It is also expected that: (1) higher
maximum temperatures and more hot days will be observed
in the land areas; (2) higher minimum temperatures, fewer
cold days, and fewer frost days will be observed in nearly all
land areas; and (3) the diurnal temperature range will be
reduced over land areas. The temperatures during the
night were increased with a factor larger than the factor
by which the daytime temperatures were increased. In this
way, the second and the third requirements are satisfied.
The first requirement is satisfied as follows. During the
summer periods, the daytime temperatures are increased
by a larger amount in hot days. All these changes are
observed only over land. Furthermore, the temperatures
were varied in such a way that their annual means
remained the same, at all cells, as those in the first climatic

scenario. The cloud covers over land during the summer
periods were also reduced.

Climate Scenario 3

It is also expected that there will be (1) more intense
precipitation events and (2) increased summer drying
and associated risk of drought. The precipitation events
during winter were increased both over land and over
water. The precipitation events in the continental parts
of Europe were reduced during summer. Similar changes in
the humidity data were made. The cloud covers during
winter had increased, whereas the same cloud covers as
in the second climatic scenario were applied during sum-
mer. As in the previous two climatic scenarios, the math-
ematical expectation of the annual means of the
temperatures is the same as the predictions made in the
IPCC SRES A2 Scenario.

Computational Difficulties. The computational require-
ments are enormous when the influence of the climatic
changes on pollution levels is studied. The difficulties
develop because:

� the models are to be run over a long time period (the
time period was 16 years in the particular study dis-
cussed here, but it is perhaps more appropriate to use a
longer period, say, 25 or even 50 years),

� many scenarios are to be used (14 scenarios were
actually used, but again more scenarios will give better
information about the studied phenomena),

� it is highly desirable to use fine resolution (the domain
under consideration, containing the whole of Europe
and its surroundings, was discretized by using a 480�
480� 10 grid).

The task of running 14 scenarios over a time period of 16
years on a fine grid (480� 480� 10 cells) is extremely time
consuming. The storage requirements are also enormous.
Therefore, the task of running so many scenarios over a
long time period could be solved successfully only if several
requirements are simultaneously satisfied: (1) fast but also
sufficiently accurate numerical methods are to
be implemented in the model, (2) the cache memories of
the available computers have to be used efficiently, (3)
codes that can be run in parallel have to be developed
and used, and (4) reliable and robust splitting procedures
have to be implemented. It must be emphasized that it is
impossible to handle the 14 scenarios over a time period of
16 years on the available supercomputers if the subtasks
(1)–(4) are not solved efficiently. Even when it was done, it
took more than 2 years to compute data from all 2688 runs
(14 scenarios � 16 years � 12 months) carried out in this
particular study. This fact illustrates the great computa-
tional difficulties that are related to the investigation of
impact of climatic changes on pollution levels.

Model Results

Some results related to the numbers of ‘‘bad days’’ are given
in Fig. 4. Several conclusions can be drawn by investigating

Figure 3. FuturechangesofthetemperaturesinEuropeaccording
to the IPCC SRES A2 Scenario.

ENVIRONMENTAL SCIENCE COMPUTING 7



the results in Fig. 4 and comparing some of them with
results from Fig. 1:

� Comparing the results shown in the upper plots of
Fig. 4 (obtained by using Scenario Climate 3) with
the corresponding plots in Fig. 1 (obtained with the
Basic Scenario), it is observed that some regions where
the limit of 25 ‘‘bad days’’ is exceeded when the Basic
Scenario is used are enlarged when Scenario Climate 3
is applied.

� The previous conclusion was qualitative. Quantitative
results can be obtained by taking the ratios of the

results obtained by Climatic Scenario 3 and the Basic
Scenario (multiplied by 100 in order to get the changes
in percent). Results are shown in the lower plots of
Fig. 4. It is observed that the climatic changes can
cause significant increases of the ‘‘bad days’’ (in some
areas of Europe by more than 30%). Therefore, the
climatic changes must be taken into account in inves-
tigations carried out to define some measures that are
to be taken to keep the pollution levels under pre-
scribed acceptable levels.

� Many questions still must be answered. For example,
it is not clear (as in the case where the relationship

Figure 4. Distributions of the ‘‘bad days’’ in different parts of Europe when Climate Scenario 3 is used (the two upper plots) and changes of
the numbers of bad days (in percent) when Scenario Climate 3 is applied instead of the Basic Scenario (the lower two plots). Plots obtained by
using meteorological data for 1989 are given on the left-hand side, whereas plots for 2003 are on the right-hand-side.

8 ENVIRONMENTAL SCIENCE COMPUTING



between biogenic emissions and ‘‘bad days’’ was stu-
died) why the biggest changes in year 1989 are mainly
in Eastern Europe, whereas the changes are big also in
Central and Western Europe in year 2003. Some rea-
sons, similar to those given when the results in Fig. 1,
can also be given here. However, it is more important to
emphasize that it is necessary to carry out much more
experiments with (1) more scenarios, (2) finer discre-
tizations, (3) better input data, and (4) careful and
detailed examination of the meteorological conditions
in the studied period.

Much more results and conclusions, including results
related to the first two climatic scenarios, are given at:
http://www2.dmu.dk/atmosphericenvironment/Climate-
%20and%20Pollution.

COMBINING THE ENVIRONMENTAL MODELS WITH
OTHER LARGE-SCALE MODELS

The environmental phenomena are closely related to other
phenomena. Therefore, the environmental models have to
be considered together with other models. Several exam-
ples are given below to illustrate this statement.

Relationship Between Climatic Changes and Pollution Levels

Some results related to the impact of the climate changes on
the ‘‘bad days’’ have been presented in one of the previous
sections. It must also be mentioned here that the climate
changes have significant influence also on other quantities
related to damaging pollutants. Therefore, the climate
changes must be considered as an important factor when
decisions about measures, which will lead to reductions of
harmful pollution levels, are to be taken. Furthermore, the
increased pollution levels will cause some feedback effects
on the climate. This finding implies that it is desirable to
combine high-resolution climatic models with environmen-
tal models to study in detail the interrelations between
these two processes.

Preparation of Pollution Forecasts on Different Scales

This task involves running several weakly connected large-
scale models in order to handle a set of complex problems:

� weather forecasts on different regional scales (starting
with results obtained on a global scale),

� weather forecasts on an urban scale (perhaps in par-
allel for several urban areas),

� pollution forecasts on different regional scales,

� pollution forecasts on an urban scale (perhaps in par-
allel for several urban areas),

� treatment of the output results in order to prepare
them for the people who will use them (data mining
algorithms and high-speed visualization tools must be
applied at this stage),

� sending the relevant data to appropriate media (tele-
vision stations, radio stations, Internet sites, GMSs,
etc.).

It is clear that computer grids will be very powerful tools
in the solution of the very challenging task related to the
possibility to treat efficiently the set of problems described
above. Currently, such sets of problems are solved only by
imposing many simplifying (and very often not physical)
assumptions. At the same time, it is also clear that a lot of
difficulties must be overcome in the efforts to run such
complex tasks efficiently on a computer grid. The greatest
difficulties are the tasks of

� achieving reliable and robust transition from one scale
to another,

� communicating relevant data from one part of the
computational grid to another, and

� preparing the final results, which should be easily
understandable by the recipients.

Coupling of Environmental Models with Economical Models

If some critical pollution levels are exceeded, then some
measures are to be taken in an attempt to avoid damaging
effects. The measures are normally related to some reduc-
tions of the human-made (anthropogenic) emissions. The
emission reductions can be performed either directly
(by using new technologies, filters, etc.) or indirectly (by
introducing higher ‘‘green’’ taxes). It is clear, however, that
the reductions of the emissions will as a rule cause econom-
ical problems; in the worst case, economical crises may be
caused by putting too-heavy requirements on emission
reductions. Therefore, it is necessary to combine the
need to keep the pollution under the critical levels with
the need to preserve the rates of the economical develop-
ment of the region under consideration. It is worthwhile to
combine the environmental models with economical models
in the effort to achieve both lower pollution levels and
sustainable development of the economy. The aim should
be to optimize the process by finding out

� where to reduce the emissions and

� by how much to reduce them (the emissions should be
reduced as much as needed, but no more than what is
absolutely necessary)

to keep the balance between safe environment and sustain-
able development. The proper treatment of the task of
searching an optimal solution with a combination of
large-scale environmental and advanced economical mod-
els is both very time consuming, and the storage require-
ments are extremely high. The efficient solution of this task
is a very challenging problem.

Formation and Transportation of Aerosol Particles

Aerosol particles are dangerous for health, modifying
radiative fluxes, modifying cloud formation, and changing
the chemical composition. Therefore, they have been recog-
nized for their potentially negative impact on human
health and ecosystems. This finding implied regulatory
legislation regarding emissions and concentration levels
of particulate matter all over the world. It was also

ENVIRONMENTAL SCIENCE COMPUTING 9



acknowledged that particles play an important role in the
global climate by their influence on earth’s radiative
balance.

The goal of aerosol modeling is to establish a detailed
description of the aerosol particle concentrations, their
composition, and size distribution. This model requires
advanced modeling techniques and innovation as well as
reliable validation data of particle characteristics.

Aerosol models may provide a predictive capability for
future projections of the outcome of policy strategies on
emissions. Consequently, aerosol models are needed that
properly describe the cycle of formation, dispersion, and
removal of particles. Such validated models can be used as
cost-effective tools for reliable studies of the current status
and predictions for various environmental and health
impacts in the future.

Some extra mathematical terms, which described the
transport and the transportation of aerosol particles, have
to be added to the model described by Equation (1) when it
has to be used in aerosol studies. Moreover, it is necessary
to add some equations in Equation (1).

Studying Persistent Organic Pollutants

The persistent organic pollutants (POPs) are chemical
compounds with different origins but common character-
istics, such as semi-volatility, hydro-phobicity, bioaccumu-
lation, toxicity, potential for long-range transport, and a
tendency to accumulate in cold regions (‘‘cold condensa-
tion’’). POPs may have adverse health effects on humans
and wildlife as well as harmful effects on the immune and
reproductive systems. Several POPs currently are either
banned or regulated through international treaties, but
they are still found in the Arctic environment. Models
similar to the model described by Equation (1) can be
used to study POPs. The treatment of such models leads
to huge computational tasks because (1) the spatial
domains are normally very large (hemi-spherical models
and, even better, global models are to be used) and (2) fine
resolution of the systems of PDEs is highly desirable.

Implementation of Variational Data Assimilation
in Environmental Models

Many uncertainties are related to large environmental
models. The lack of reliable knowledge for some underlying
physical and chemical processes is introducing great uncer-
tainties, but also other reasons are for uncertainties sug-
gested such as, inaccurate input data. Observations can be
used to reduce the influence of the uncertainties. The
variational data assimilation approach is becoming more
and more popular. This approach could be viewed as an
attempt to adjust globally the results obtained by a given
model to a set of available observations. This approach has
the theoretical advantage of providing consistency between
the dynamics of the model and the final results of the
assimilation. Variational data-assimilation procedures
are based on the minimization of certain functional.
Assume that (1) an improved initial concentration
field must be found (it is important when pollution
forecasts are to be computed) and (2) observations are

available at time-points t p, where p2f0; 1; 2; . . . ; Pg. These
observations can be taken into account in an attempt to
improve the results obtained by a given model. This effect
can be achieved by minimizing the value of the following
functional:

Jfc0g ¼
1

2

XP

p¼0

hWðtpÞðcp � cobs
p Þ; cp � cobs

p i ð2Þ

where Jfc0g depends on the initial value c0 of the vector of
the concentrations, WðtpÞ is a matrix containing some
weights and h,i is an inner product in an appropriately
defined Hilbert space (the usual vector space is normally
used, i.e., c2Rq where q is the number of chemical species).
The functional Jfc0g depends on both the weights and the
differences between calculated by the model concentrations
c p and observations cobs

p at the time levels f0; 1; . . . ;Pg at
which observations are available.

Data assimilation can be used not only to improve the
initial values (as in the above example) but also in many
other tasks (improving the emissions, boundary conditions,
the calculated concentrations, etc.). The variational data-
assimilation technique should not be considered as a uni-
versal tool that can be used in all situations. No measure-
ments are available when different scenarios are used to
study the response of the model to the variation of different
parameters (emissions, meteorological conditions, climatic
changes, etc). We have to rely only on the model in such
studies. Therefore, it is absolutely necessary to use data-
assimilation techniques not only to improve the model
results but also to improve some physical and chemical
mechanisms implemented in the model. The hope is that
the improved model will provide more reliable results in
situations where no measurements are available.

Using Ensembles

Ensembles (based on using results from several different
models or results from the same model run by using dif-
ferent parameters, say, different initial values) can be
applied in an attempt to improve the reliability of the
model. The results are normally averaged. One should
expect that the averaged results are better in some sense.
This conclusion is based on an assumption (very often not
explicitly stated) that no bias is observed in the errors of the
results. If, for example, all the models participating in the
ensemble procedure strongly overestimate the concentra-
tions of some chemical species, then the results of the
ensemble will not be much better because they will also
overestimate the species under consideration. Similar con-
clusions can also be drawn in the case where one model is
run with many values of a selected parameter (in this case
the set of the values should be carefully chosen). Another
problem may develop if one model produces very different
results (say, 100 times higher than the other models). In
such a case, the ‘‘bad’’ model will spoil the results of the
ensemble (it should be eliminated, before the preparation of
the ensemble). These examples are provided to show that
one must be careful: It is necessary (1) to analyze somehow
the properties of the models participating in the ensemble

10 ENVIRONMENTAL SCIENCE COMPUTING



procedure or (2) to select a good set of values of the para-
meter which is varied.

The application of ensembles (for different purposes)
requires increased computer power. Indeed, the perfor-
mance of 50–100 runs and preparing an ensemble on the
basis of all these runs is a challenging task even for the
best high-performance computers currently available.
However, the results obtained by using ensembles nor-
mally are more reliable than the results obtained in a
single run.

READING LIST

Computational and Numerical Background
of Environmental Models

V. Alexandrov, W. Owczarz, P. G. Thomsen and Z. Zlatev, Parallel
runs of large air pollution models on a grid of SUN computers,
Mathemat. Comput. Simulat., 65: 557–577, 2004.

Z. Zlatev, Computer Treatment of Large Air Pollution Models,
Dordrecht, The Netherlands: 1995.

Z. Zlatev and I. Dimov, Computational and Numerical Challenges
in Environmental Modelling, Amsterdam, The Netherlands:
Elsevier, 2006.

Model Development, Validation, Policy Making

G. R. Carmichael, A. Sandu, F. A. Potra, V. Damian, and M.
Damian, The current state and the future directions in air
quality modeling. Syst. Anal. Modell. Simula., 25: 75–105, 1996.

C. Cuvelier, P. Thunis, R. Vautard, M. Amann, B. Bessagnet, M.
Bedogni, R. Berkowicz, J. Brandt, F. Brocheton, P. Builtjes, A.
Coppalle, B. Denby, G. Douros, A. Graf, O. Hellmuth, C. Honoré,
A. Hodzic, J. Jonson, A. Kerschbaumer, F. de Leeuw,E. Minguzzi,
N. Moussiopoulos, C. Pertot, G. Pirovano, L. Rouil, M. Schaap, F.
Sauter, R. Stern, L. Tarrason, E. Vignati, M. Volta, L. White, P.
Wind, and A. Zuber, CityDelta: A model intercomparison study to
explore the impact of emission reductions in European cities in
2010, Atmospher. Environ., 41: 189–207, 2007.

A. Ebel, Chemical transfer and transport modelling. In: P. Borrell
and P. M. Borrell (eds.), Transport and Chemical Transforma-
tion of Pollutants in the Troposphere, Berlin: Springer, 2000,
pp. 85–128.

EMEP Home Page. Available: www.emep.int/emep_
description.html.

EURAD - Project Homepage at University of Cologne. Available:
www.eurad.uni-koeln.de/index_e.html.

IIASA Home Page. International Institute for Applied Systems
Analysis, Laxenburg, Austria. Available: www.educations2u.-
biz/l12428/IIASA%20Home%20Page.

US Environmental Protection Agency. Available: www.epa.gov/.

Influence of the Biogenic Emission on the Pollution
Levels

C. Anastasi, L. Hopkinson, and V. J. Simpson, Natural hydrocar-
bon emissions in the United Kingdom, Atmospher. Environ.,
25A: 1403–1408, 1991.

V. S. Bouchet, R. Laprise, E. Torlaschi, and J. C. McConnel,
Studying ozone climatology with a regional climate model 1.
Model description and evaluation, J. Geophys. Res., 104: 30351–
30371, 1999.

V. S. Bouchet, R. Laprise, E. Torlaschi, and J. C. McConnel,
Studying ozone climatology with a regional climate model 2.
Climatology, J. Geophys. Res., 104: 30373–30385, 1999.

G. Geernaert and Z. Zlatev, Studying the influence of the biogenic
emissions on the AOT40 levels in Europe, Internat. J. Environ.
Pollut., 23 (1–2): 29–41, 2004.

D. Simpson, A. Guenther, C. N. Hewitt, and R. Steinbrecher,
Biogenic emissions in Europe: I. Estimates and uncertainties,
J. Geophys. Res., 100: 22875–22890, 1995.

Pollution and Climate Changes

IPCC – Intergovernmental Panel on Climate Change. Available:
www.ipcc.ch/.

P. Csomos, R. Cuciureanu, G. Dimitriu, I. Dimov, A. Doroshenko,
I. Farago, K. Georgiev, Á. Havasi, R. Horvath, S. Margenov,
L. Moseholm, Tz. Ostromsky, V. Prusov, D. Syrakov, and Z.
Zlatev, Impact of Climate Changes on Pollution Levels in Europe.
2006. Available:http://www2.dmu.dk/atmosphericenvironment/
Climate%20and%20Pollution,
http://www.cs.elte.hu/~faragois/NATO.pdf,
http://www.umfiasi.ro/NATO.pdf,
http://www.personal.rdg.ac.uk/~sis04itd/MyPapers/climatic_
scenarios_NATO.pdf,
http://www.softasap.net/ips/climatic_scenarios_NATO.pdf,
http://www.meteo.bg/bulair/NATO.pdf.

Pollution Forecasts

Air Quality Forecasts for Europe. Available: www.netherlands.-
globalbioweather.com/pollution.html.

AIRTEXT: Air Pollution Forecasts & Alerts. Available: www.air-
text.info/howitworks.html.

EURAD Air Quality Forecast for the Northern Hemisphere,
Europe, Germany and Sub-Regions. Available: www.eurad.
univ-koeln.de.

PREV’/AIR Air Quality Forecast over the Globe, Europe and
France. Available: http://prevair.ineris.fr/en/introduction.php.

Thor–AnIntegratedAir PollutionForecast System.Available:http://
www2.dmu.dk/1_viden/2_Miljoe-tilstand/3_luft/4_sprednings-
modeller/5_Thor/default_en.asp.

UK National Air Quality Archive. Available: www.airquality.
co.uk/archive/uk_forecasting/apfuk_home.php.

Environment and Economy

IIASA, International Institute for Applied Systems Analysis,
Laxenburg, Austria, Atmospheric Pollution and Economic
Development. Available: www.iiasa.ac.at/~rains.

Z. Zlatev, I. Dimov, Tz. Ostromsky, G. Geernaert, I. Tzvetanov, and
A.Bastrup-Birk, Calculating losses of crops inDenmarkcaused by
high ozone levels, Environment. Model. Assessm., 6: 35–55, 2001.

Persistent Organic Compounds in the Environment

R. E. Alcock, A. J. Sweetman, C.-Y. Juan, and K. C. Jones, A generic
model of human lifetime exposure to persistent organic contami-
nants: development and application to PCB-101, Environment.
Pollut., 110: 253–265, 2000.

E. Brorström-Lundén, Atmospheric transport and deposition of
persistent organic compounds to the sea surface, J. Sea Res., 35:
81–90, 1996.

K. M. Hansen, J. H. Christensen, J. Brandt, L. M. Frohn, and
C. Geels, Modelling atmospheric transport of a-hexachlorocy-
clohecane in the Northern Hemisphere with a 3-D dynamical

ENVIRONMENTAL SCIENCE COMPUTING 11



model: DEHM-POP, Atmospher. Chem. Phys., 4: 1125–1137,
2004.

K. M. Hansen, J. H. Christensen, J. Brandt, L. M. Frohn, C. Geels,
C. A. Skjøth, and Y.-F. Li, Modeling short-term variability of
a-hexachorocyclohexane in Northern Hemispherical air, J.
Geopys. Res., 113: D02310, doi 10.1029/2007JD008492, 2008.

J. A. Van Jaarsveld, W. A. J. van Pul, and F. A. A. M. de Leeuw,
Modelling transport and deposition of persistent organic pollu-
tants in the European region, Atmospher. Environ., 31: 1011–
1024, 1997.

Formation and Transport of Aerosols

I. Ackermann, H. Hass, M. Memmesheimer, A. Ebel, F. S.
Binkowski, and U. Shankar, Modal aerosol dynamics model
for Europe: development and first applications, Atmospher.
Environ. 32: 2981–2999, 1998.

F. Binkowski and U. Shankar, The regional particulate model 1:
Model description and preliminary results, J. Geophys. Res.,
100: 26191–26209, 1995.

B. Schell, I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel,
Modeling the formation of secondary organic aerosol within a
comprehensive air quality model system, J. Geophys. Res., 106:
28275–28294, 2001.

Data Assimilation

D. N. Daescu and I. M. Navon, An analysis of a hybrid optimization
method for variational data assimilation, Internat. J. Computat.
Fluid Dynam., 17: 299–306, 2003.

H. Elbern and H. Schmidt, A four-dimensional variational chem-
istry data assimilation scheme for Eulerian chemistry transport
modelling, J. Geophys. Res., 104: 18583–18598, 1999.

A. Sandu, D. N. Daescu, and G. R. Carmichael, Direct and adjoint
sensitivity analysis of chemical kinetic systems with KKP: I.

Theory and software tools, Atmospher. Environ., 37: 5083–
5096, 2003.

Using Ensembles in Environmental Modeling

A. Becker, G. Wotawa, L.-E. DeGeer, P. Seibert, R. R. Draxler,
C. Sloan, R. D’Amours, M. Hort, H. Glaab, Ph. Heinrich, Y.
Grillon, V. Shershakov, K. Katayama, Y. Zhang, P. Stewart,
M. Hirtl, M. Jean, and P. Chen, Global backtracking of anthro-
pogenic radionuclides by means of a receptor oriented ensemble
dispersion modelling system in support of Nuclear-Test-Ban
Treaty verification, Atmospher. Environ., 41: 4520–4534, 2007.

L. Delle Monache and R. B. Stull, An ensemble air-quality forecast
over western Europe during an ozone episode, Atmospher.
Environ., 37: 3469–3474, 2003.

A. Riccio, G. Giunta, and S. Galmarini, Seeking the rational basis
of the mefian model: the optimal combination of multi-model
ensemble results, Atmospher. Chem. Phys. Discussi., 7: 5701–
5737, 2007.

Legislation Measures in Europe

European Parliament, Directive 2002/3/EC of the European Par-
liament and the Council of 12 February 2002 relating to ozone in
ambient air. Official J. European Commun., L67: 14–30, 2002.

UNECE. Protocol to the 1979 Convention on long-range air pollu-
tion to abate acidification, eutrophication and ground level
ozone. EB.AIR/1999/1, Gothenburg, Sweden, 1999.

ZAHARI ZLATEV

National Environmental
Research Institute

Aarhus University
Roskilde, Denmark

12 ENVIRONMENTAL SCIENCE COMPUTING



E

EXPERT DECISION SYSTEM FOR ROBOT
SELECTION

INTRODUCTION

Over the past two decades, an upward trend has been
observed in the use of industrial robots because of quality,
productivity, flexibility, health, and safety reasons. Robots
can help manufacturers in virtually every industry to stay
globally competitive. Robots can be programmed to keep a
constant speed and a predetermined quality when perform-
ing a task repetitively. Robots can manage to work under
conditions hazardous to human health, such as excessive
heat or noise, heavy load, and toxic gases. Therefore, manu-
facturers prefer to use robots in many industrial applica-
tions in which repetitive, difficult, or hazardous tasks need
to be performed, such as spot welding, arc welding, machine
loading,diecasting, forging,plasticmolding, spraypainting,
materials handling, assembly, and inspection. However, a
wide selection of robot alternatives and the large number of
performance attributes result in a major problem for poten-
tial robot users when deciding which robot to purchase.

In the absence of a robust decision aid, the robot selec-
tion decisions can be based on the recommendations of robot
vendors, the recommendations of an expert hired for per-
forming the evaluation task, or the user’s own experience.
The recommendations of robot vendors may be biased
because they have an inherent interest in selling their
product. Basing robot selection decisions on expert advice
may be highly costly because experts usually charge con-
siderable amounts for their valuations. Relying on personal
experience generally results in selecting a robot with which
the user is most familiar, ignoring other crucial factors.

A robot that has the capability of affording heavy load at
high speed, as well as good repeatability and accuracy, will
contribute positively to the productivity and flexibility of
the manufacturing process, which are of high importance
when competitive market forces require the introduction of
new products into the market. When product design
changes need to be made repeatedly, owning a high per-
forming robot will avoid replacement or modification. Many
studies reported in the literature address the development
of a robust decision tool that enables the potential robot
user to select a high-performing robot.

Although it is usually assumed that the specified per-
formance parameters are mutually independent, in general
performance parameters provided by robot vendors are not
achievable simultaneously. For instance, Offodile and
Ugwu (1) reported that for a Unimation PUMA 560 robot
manufacturer-specified repeatability deteriorated as the
speed increased beyond 50% of the status speed and the
weight increased beyond 0.91 kg. Furthermore, it is very
difficult to determine the functional relationship between
these parameters; thus, making this assumption intro-
duces a risk of selecting a robot that might fail to provide
the required performance.

In this article, integration of an expert system and a
decision-support system is proposed to enhance the quality
and efficiency of the robot selection process. Rather than
seeking the advice of an expert or group of experts, the user
may consult an expert system to determine the key perfor-
mance attributes and a short list of acceptable robot alter-
natives. Expert systems are used to perform a wide variety of
complicated tasks that can only be performed by highly
trained human experts. Although the problem domain for
robot selection may be considered as narrow, which fits the
expert system structure, it is also complex and requires a
multicriteria decisionmaking (MCDM)procedure. An expert
system needs to access the database of a decision-making
system to gather factual knowledge. Furthermore, the judg-
mental data obtained from experts can be incorporated into
a decision-making system through an expert system.

A MCDM methodology is required in the expert decision
system framework because the expert system provides a
subset of robot alternatives based on the technical aspects,
and an appropriate MCDM technique evaluates the short
list of alternatives and determines the robot that best fits
the user requirements.

The proposed decision-support system that employs
quality function deployment and fuzzy linear regression
integrates user demands with key specifications of robots.
The developed decision-making approach has advantages
compared with the techniques previously proposed for
robot selection. Statistical methods, such as ordinary least
squares, are based on determining a meaningful statistical
relationship between performance parameters, which is
difficult to achieve in practice and the problem aggravates
for a small number of candidate robots. Multiattribute
decision-making techniques such as multiattribute utility
theory (MAUT), analytic hierarchy process (AHP), techni-
que for order preference by similarity to ideal solution
(TOPSIS), assume that preferential independence of the
performance parameters hold. However, that is a very
critical assumption that usually fails to hold in real-world
applications. Although fuzzy multiattribute decision-
making techniques enable qualitative attributes to be
taken into account in an effective manner, they suffer
from the same shortcoming as the other multiattribute
decision-making techniques. Data envelopment analysis
(DEA) does not require the preferential independence
assumption of performance parameters. However, DEA
assumes that every characteristic defined as output is
related to every input. Profiling may be considered as an
alternative to tackle that problem, but gathering the effi-
ciency scores into a single efficiency score may also be
problematic (2).

INDUSTRIAL ROBOTS

The Robot Institute of America has given the definition of a
robot as a reprogrammable, multifunctional manipulator

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



designed to move material, parts, tools, or specialized
devices through variable programmed motions for the per-
formance of a variety of tasks (3).

Before going any further, main parameters used for
robot classification are briefly introduced, and major ben-
efits of robot installations are addressed. Reprogrammabil-
ity has made industrial robots a key component of flexible
automation. The robot’s motion is controlled by a program
that can be modified to change the motion of the robot arm
significantly. The programmability provides the versatility
of a robot.

The basic geometric configurations of the robots are
usually classified as Cartesian, cylindrical, spherical, and
jointed arm. A robot that conforms to a Cartesian geometry
can move its gripper to any position within the cube or
rectangle work envelope. A robot with a cylindrical geome-
try can move its gripper within a volume described by a
cylinder. The spherical (polar) arm geometry positions the
robot through two rotations and one linear actuation.
Jointed arm, which are sometimes referred to as articu-
lated robots, have an irregular work envelope. As more
flexible and specialized coordinate systems are demanded
through time, other robot coordinate systems such as selec-
tive compliance assembly robot arm (SCARA), which is
particularly used in electronic circuit board assembly appli-
cations, have emerged.

Each joint on a robot introduces a degree of freedom. In
general, a robot with 6 degrees of freedom is required for
positioning the tool to a point in space with any orientation.
Although a robot with the highest degrees of freedom can
produce the most complex movement, one shall consider
other factors such as range and quality of motion corre-
sponding to a given degree of freedom.

The work envelope is a boundary for the region in which
the robot operates determined by the extreme positions of
the robot axes. The size of the work envelope defines the
limits of reach; thus, it is a key characteristic that needs to
be considered in robot selection. Although the reach for a
Cartesian configuration is a rectangular-type space, the
reach for a cylindrical configuration is a hollow cylindrical
space, and the reach for a spherical configuration is a hollow
spherical space, respectively; the reach for a jointed arm
configuration does not have a specific shape.

The basic types of power sources (drives) for robots can be
named as hydraulic, pneumatic, and electric. The main
advantage of hydraulic actuators is that they can afford
large load capacity, but they also have many drawbacks,
such as possibility of leaks that may be hazardous in certain
applications and a high noise level. An important applica-
tion of hydraulic robots is in spray painting. The pneumatic
power source is relatively inexpensive; it enables short
cycle times, and leaks do not contaminate the work area,
but it has limited positioning capability. Pneumatic robots
are frequently used in pick-and-place operations and
machine loading. Electric power results in uncontaminated
work space, low noise level, and better positioning accuracy
and repeatability; however, along with limited load capa-
city compared with the hydraulic power. Nowadays, the
electric drive is the most popular type for general purpose
industrial robots.

The path control is a means for describing the method
that the robot controller employs to guide the tooling
through the many points in the desired arm trajectory.
The types of path control can be named as point-to-point,
controlled path, and continuous path.

Loadcapacity (payload), which denotes the weight-lifting
capacity of a robot, is a key parameter that requires careful
analysis. In general, the weights that the robots can hold
vary with respect to speed. Furthermore, the shape, surface
conditions, and positioning of the object held are also
important in terms of load capacity. The user of the robot
should pay attention to the conditions under which the load
capacity is determined by the manufacturer.

Repeatability and accuracy are the most easily confused
attributes. Repeatability is a measure of the ability of the
robot to return to the same position and orientation over
and over again, whereas accuracy is a measure of closeness
between the robot end-effector and the target point, and it is
defined as the distance between the target point and the
center of all points to which the robot goes on repeated
trials. It is easier to correct poor accuracy than repeatabil-
ity, and thus, repeatability is generally assumed to be a
more critical attribute. Repeatability is a vital feature in
justification and use of robots because although the accu-
racy of human workers may be higher, they tend to operate
with less repeatability.

Even though robots have numerous advantages com-
pared with humans in the workplace, one shall not consider
a robot as a replacement for a worker in performing all
manufacturing tasks. For instance, humans are superior to
robots for manufacturing tasks that require intelligence
and judgment capabilities. The robots are definitely more
efficient, and in certain cases essential, for performing
repetitive and highly fatiguing tasks, or for performing
applications in environments that are hazardous or dan-
gerous for a human worker to operate. It is also worth
noting that a robot can operate three shifts per day for seven
days a week with regular maintenance, whereas this sche-
dule would have been impossible for a human worker.

Not only are robots efficient, and in certain cases essen-
tial, replacements for humans for performing fatiguing,
hazardous, or dangerous tasks, but also they are important
for preserving jobs for other workers by increasing produc-
tivity.

The major benefits of industrial robots can be named as

� Increased product and market flexibility,

� Increased productivity,

� Improved product quality,

� Shorter cycle times,

� Lower operating costs,

� Higher precision,

� Reduced floor space,

� Elimination of health and safety hazards.

Within the past two decades, the number of robot
installations have increased with emphasis on the inte-
gration of robots into computer-integrated manufacturing
systems.

2 EXPERT DECISION SYSTEM FOR ROBOT SELECTION



JUSTIFICATION OF ADVANCED MANUFACTURING
SYSTEMS

According to Meredith and Suresh (4), investment justifi-
cation methods for advanced manufacturing technologies
are classified into economic analysis techniques, analytical
methods, and strategic approaches. These methods deviate
from each other mainly because of the treatment of non-
monetary factors. Economic justification methods for man-
ufacturing investments have been discussed thoroughly in
the past couple of decades. Economic analysis methods are
the basic discounted cash flow (DCF) techniques, such as
present worth, annual worth, internal rate of return, and so
on, and other techniques such as payback period and return
on investment. It is well known by practitioners who follow
the fundamental principles of engineering economy that
accounting methods, which ignore time value of money,
would produce inaccurate or at best approximate results.

The conventional DCF methods do not seem to be suitable
on their own for the evaluation of an advanced manufactur-
ing technology (AMT) investment because of the nonmo-
netary impacts posed by the system. Sullivan (5) points out
the inadequacy of traditional financial justification mea-
sures of project worth such as return on investment, pay-
back, and net present worth in considering the strategic
merits of advanced manufacturing technologies. The
results of the surveys conducted by Lefley and Sarkis (6)
for appraisal of AMT investments in the United Kingdom
and United States indicate the support for the difficulty in
assessing AMT investments because of their nonquantifi-
able benefits. Because of this difficulty, over 80 % of the
respondents in the United States and United Kingdom
point out that not all potential benefits of AMT investments
are considered in the financial justification process.
Improvements in product quality, reliability, productivity,
precision, cycle times, and competitiveness as a result of the
versatility and flexibility of the system, are the focal points
in the justification stage of an AMT investment. Productiv-
ity, quality, flexibility, and other intangibles should be
examined in terms of potential returns through enhance-
ment of long-term business competitiveness as well as in
terms of a comprehensive evaluation of internal costs.

When flexibility, risk, and nonmonetary benefits are
expected, and in particular if the probability distributions
can be estimated subjectively, analytical procedures may
be used. Strategic justification methods are qualitative in
nature, and they are concerned with issues such as tech-
nical importance, business objectives, and competitive
advantage (4). When strategic approaches are employed,
the justification is made by considering long-term intangi-
ble benefits. Hence, using these techniques with economic
or analytical methods would be more appropriate. Figure 1,
which is an updated version of the classification provided in
Karsak and Tolga (7), resumes the justification methods for
advanced manufacturing technologies. Axiomatic design
approach (8,9), digraph and matrix methods (10), and QFD
and fuzzy regression (2) can be listed as the major updates
to the classification given in Ref. 7.

Over the past several decades, manufacturing firms
have assigned an increasing importance to robot selection
because improper selection of robots can adversely affect

their productivity and product quality along with profit-
ability. The increased use of robots and the complexity of
the robot evaluation and selection problem have motivated
the researchers to develop models and methodologies for
making sound decisions.

Mathematical programming, statistical procedures, and
fuzzy set theoretic methods, as well as multiattribute and
multiobjective decision-making methods can be listed
among analytical methods used for robot selection. More
recently, axiomatic design approach, digraph and matrix
methods, and quality function deployment (QFD) and fuzzy
regression have also been proposed as alternative decision
aids. Many classifications for models developed for robot
selection are available in the literature. For instance,
Khouja and Offodile (11) classified models for robot selec-
tion as multicriteria decision-making models, perfor-
mance-optimization models, computer-assisted models,
statistical models, and other approaches. Here, we briefly
review expert system applications and the use of multi-
criteria decision making (MCDM) techniques, which pos-
sess the potential for considering the multiple and
conflicting criteria inherent in the robot selection problem.

Relatively few studies exist regarding the use of expert
systems in robot selection. Fisher and Maimon (12) devel-
oped a two-phase model for robot selection. In phase 1, an
expert system is used to obtain a list of tasks’ requirements.
The expert system determines a set of robotics technologies
and engineering specifications that meet the requirements.
In phase 2, a list of candidate robots is chosen and ranked.
Boubekri et al. (13) developed a computer-aided system for
robot selection, which includes an expert system that con-
siders the functional and organizational parameters spe-
cified by the user, an economic feasibility analysis module
based on payback period, and a module that provides the
user with a detailed description of each robot in the knowl-
edge base. Agrawal et al. (14) employed an expert system to
determine the set of important attributes for the particular
application and narrow down the robot alternatives, and
then used a multiattribute decision-making approach
named TOPSIS, which is based on the ideal solution con-
cept, for ranking the shortlist of robot alternatives.

Several articles have focused on the use of MCDM tech-
niques for justification of industrial robots. Imany and
Schlesinger (15) compared linear goal programming and
ordinary least-squares methods via a robot selection pro-
blem in which robots are evaluated based on cost and
technical performance measures, which include load capa-
city, velocity, and repeatability. Liang and Wang (16) pre-
sented a robot selection procedure using the concepts of
fuzzy set theory. Although providing a multicriteria tool
that can incorporate subjective criteria, their approach
suffers from the implicit assumption of mutual indepen-
dence of technical performance parameters. Khouja (17)
used DEA and MAUT in a two-phase procedure for robot
selection. Baker andTalluri (18) addressedsome limitations
of the simple radial efficiency scores used for ranking
industrial robot alternatives in Khouja’s study and pro-
posed a more robust evaluation procedure based on cross-
efficiency analysis, which is an extension used for improving
the discriminating power of DEA. Goh (19) presented an
AHP model for a group of decision makers that considered

EXPERT DECISION SYSTEM FOR ROBOT SELECTION 3



both subjective and objective factors for robot selection.
Karsak (20) developed a two-phase decision framework
that employs DEA in the initial phase to determine the
technically efficient robot alternatives and a fuzzy robot
selection algorithm in the second phase to rank the techni-
cally efficient robots. Parkan and Wu (21) studied the robot
selection problem using operational competitiveness rating,
TOPSIS, and utility function model, and proposed to rank
the robot alternatives based on the averages of the rankings
obtained by these three decision aids. Braglia and Petroni
(22) proposed the use of DEA with restricted multiplier
weights for identifying the optimal robot by considering
cost as the single input and engineering attributes as the
outputs, and they addressed the advantages and drawbacks
of using weight-restriction constraints compared with those
of cross-efficiency analysis. Talluri and Yoon (23) proposed a
cone-ratio DEA approach for robot selection, which made
use of weight-restriction constraints to incorporate a priori
information on the priorities of factors. More recently, a
practical common weight MCDM methodology with an
improved discriminating power has been developed for
robot selection (24). The merits of the approach proposed
in the paper compared with DEA-based models can be
summarized as its ability to evaluate all robot alternatives
bycommonweights forperformanceattributes thatovercome
the unrealistic weighting scheme common to DEA resulting
from the fact that each decision-making unit (DMU) selects
its own factor weights to lie on the efficient frontier, and to
further rank DEA-efficient DMUs with a notable saving in
computations compared with cross-efficiency analysis.

EXPERT SYSTEM

An expert system is a computer information system devel-
oped to act like a human expert in a specific area of knowl-
edge. It is an interactive computer-based decision tool that
uses both facts and heuristics to solve difficult decision

problems based on an expert’s knowledge. Because the
knowledge of an expert tends to be domain-specific rather
than general, expert systems that represent this knowledge
usually reflect the specialized nature of such expertise.
Expert systems provide the means for overcoming the
shortcomings of conventional human decision-making pro-
cesses and conventional software through integrating
human expertise and power of computers.

Although a generally accepted view on traditional com-
puter program is summarized as

Traditional computer program ¼ Data þ Algorithm,

the expert system can be described as

Expert system ¼ Knowledge base þ Inference engine

An expert system consists typically of the following
major components:

� Knowledge base comprises specific knowledge about
the problem domain under consideration. It differs
from a database because much knowledge in the
knowledge base is represented implicitly. The knowl-
edge is most commonly represented in terms of pro-
duction rules. A production rule has the following
structure:

IF conditions
THEN conclusions

� Knowledge-acquisition interface helps experts to
express knowledge in a form that can be incorporated
in a knowledge base.Determination of the problem do-
main and its characteristics, identifying the concepts
that are used to describe the objectsandtheir interrela-
tionships; acquiring the knowledge; and representing
it through suitable representation technique, such as
production rules, implementation, and validation, can

DISADVANTAGES ADVANTAGES TECHNIQUES  
ECONOMIC − Payback method 

− Return on investment
− Discounted cash flow 

techniques (NPV, IRR) 

− Ease in data collection 
− Intuitive appeal

− Do not take into account 
strategic and noneconomic 
benefits

− Consider a single objective 
of cash flows, and ignore 
other benefits such as quality 
and flexibility

STRATEGIC − Technical importance
− Business objectives
− Competitive advantage
− Research and development

− Require less technical 
data

− Use the general 
objectives of the firm

− Necessity to use these 
techniques with economic or 
analytic ones because they 
consider only long-term 
intangible benefits

ANALYTIC − Scoring models (AHP, etc.) 
− Multi-attribute utility theory 
− Mathematical programming 

Integer programming
Goal programming
DEA   

− Axiomatic design approach 
− Digraph and matrix methods 
−

−
−
−

Stochastic methods 
− QFD and fuzzy regression 
− Expert systems 
− Fuzzy set theory 

− Uncertainty of the future 
and the multiobjectivity 
can be incorporated

− Subjective criteria  can 
be introduced in the 
modeling phase

− Require more data
− Usually more complex than 

the economic analysis

Figure 1. Classification of justification methods for advanced manufacturing technologies (7).

4 EXPERT DECISION SYSTEM FOR ROBOT SELECTION



be listed as the stages of the knowledge acquisition
process.

� Inference engine employs general rules of inference to
arrive at logical conclusions according to the knowl-
edge base of the expert system. Two main inference
approaches are used by an inference engine to exploit
the knowledge base: forward chaining (data driven)
and backward chaining (goal-driven reasoning). For-
ward chaining begins with data input by the user and
scans the rules to find those whose antecedent condi-
tions are fulfilled by the data. It then fires those rules
and deduces their consequences. The consequences are
added to the knowledge base, and the rules are revis-
ited to observe which new rules may now be fired. This
process is repeated until all rules which may be fired
have been fired (25). As opposed to forward chaining
that is data driven, backward chaining is goal driven
because the inference process is guided by the final
goal or objective that should be reached rather than by
the available information. The process identifies rules
that have the goal as a consequence.

� User interface is responsible for the form of commu-
nicating with the user. User interface attempts to
equip the user with most capabilities of interacting
with a human expert. The user interface presents the
conclusions and explains the reasoning for justifica-
tion purposes. Most of them may provide sensitivity
analysis and what-if analysis tools to observe the
changes that would have occurred if the variables
had taken different values.

Figure 2 illustrates the structure of an expert system
and the interrelationship between its components. Parti-
cularly for the cases in which substantial information and
data processing and analysis are required, expert systems
derive conclusions at a much faster rate compared with
human experts. Furthermore,expertsystemsareapttodeal
with incomplete and uncertain information. However, the

knowledge acquired in the expert system depends on the
expert,and thus,the conclusions obtainedare pronetochange
with knowledge elicited from a different human expert.

MULTICRITERIA DECISION MAKING APPROACH

MCDM addresses the problem of making decisions in the
presence of multiple, usually conflicting criteria. MCDM
includes two main fields, namely multiattribute decision
making (MADM) and multi-objective decision making
(MODM). While MADM refers to making preference deci-
sions over a finite number of alternatives, considering
multiple and possibly conflicting attributes, MODM aims
to design the best alternative given a set of multiple and
conflicting objectives. MCDM techniques are applied when
a selection/design problem with multiple and usually con-
flicting attributes/objectives with incommensurable units
is encountered. Conflict among attributes/objectives
increases in the sense that a favorable value in one may
have to be obtained with a poor value in the other. Incom-
mensurable units refer to each criterion that has different
units of measurement rendering a direct comparison
between different criteria impossible. The basic differences
in MADM and MODM problems are provided in Table 1.

Because the decision problem addressed here considers
selection among a finite number of alternatives, in the
presence of multiple and conflicting attributes with each
attribute having different units of measurement, a MADM
approach would be required.

In this section, a decision-making approach that inte-
grates quality function deployment and fuzzy linear regres-
sion is presented to address the robot selection problem.
The delineated procedure is based on the methodology
developed by Karsak (2). QFD is a customer-oriented
design tool that aims to meet customer requirements in a
better way and enhance organizational capabilities while
maximizing company goals. A key objective of QFD is to
determine directly from the customer what they would

Figure 2. Structure of an expert system.

EXPERT DECISION SYSTEM FOR ROBOT SELECTION 5



expect from a specific product or service. QFD aims at
delivering value by focusing on prioritized customer
requirements, translating these into engineering charac-
teristics (design requirements), and then communicating
them throughout the organization in a way to assure that
details can be quantified and controlled.

Relationships between customer requirements and
engineering characteristics and among the engineering
characteristics are defined by answering a specific question
that corresponds to each cell in a matrix named the house of
quality (HOQ). Hauser and Clausing (26) defined the HOQ
as a kind of conceptual map that provides the means for
interfunctional planning and communications.

Fuzzy linear regression was first introduced by Tanaka
et al. (27). As opposed to statistical regression that is based
on probability theory, fuzzy regression is founded on pos-
sibility theory and fuzzy set theory. In fuzzy regression,
regression residuals that denote the deviations between
observed values and estimated values are assumed to be
caused by imprecise and vague nature of the system. Fuzzy
regression has been reported as a more effective tool than
statistical regression when the data set is insufficient to
support statistical regression, human judgments are
involved, and the degree of system fuzziness is high (27).

Fuzzy linear regression is selected as a decision tool for
parameter estimation of functional relationships because of
its aptness to deal with human expert knowledge, which is
an important source in robot selection. First, the ratings for
factors such as product quality, manufacturing flexibility,
and vendor support that are listed among customer
requirements are generally represented by expert judg-
ment. Moreover, the fuzziness inherent in the relationships
between customer requirements and robot characteristics,
and the dependencies among robot’s technical character-
istics (i.e., the relationships between performance para-
meters, such as repeatability, velocity, and load capacity,
which are difficult, if possible, to determine precisely) can
be expressed effectively using expert judgment.

Over the past decade, some research has been performed
on quantifying the planning issues in HOQ, mainly focus-
ing on the interpretation of imprecise design information
related to customer requirements and relationships
between customer requirements and engineering charac-
teristics. Many authors have used fuzzy set theory to con-
sider the imprecision and vagueness in determining the
importance of customer requirements and addressing the
relationships between customer requirements and engi-
neering characteristics (28, 29). Few researchers have
addressed the development of procedures for setting target

levels for engineering characteristics using fuzzy regres-
sion and fuzzy optimization (30, 31). Chan and Wu (32)
presented a comprehensive review of QFD including quan-
titative methods applicable to it.

Similar to the process of setting target levels for engi-
neering characteristics in QFD (30, 31), the target values
for the robot characteristics can be determined by solving
the following formulation:

max zð y1; y2; . . . ; ymÞ ð1Þ

subject to

yi ¼ fiðx1; x2; . . . ; xnÞ; i ¼ 1; 2; . . . ;m
x j ¼ g jðx1; x2; . . . ; x j�1; x jþ1; . . . ; xnÞ; j ¼ 1; 2; . . . ;n

where yi denotes the customer perception of the degree of
satisfaction of the ith customer requirement (i¼1, 2, . . ., m),
xj is the normalized target value of the jth robot character-
istic ( j ¼ 1, 2, . . ., n), fi represents the functional relation-
ship between the ith customer requirement and the robot
characteristics, and gj denotes the functional relationship
between the jth robot characteristic and other robot char-
acteristics. The objective function of Equation (1) can be
expressed as

zð y1; y2; . . . ; ymÞ ¼
Xm
i¼1

wið yi � ymin
i Þ=ð ymax

i � ymin
i Þ ð2Þ

where wi is the relative importance weight of the ith
customer requirement and is defined such that 0<wi � 1
and

Pm
i¼1wi ¼ 1, and ymin

i and ymax
i denote the minimum

and the maximum possible values, respectively, for the ith
customer requirement. Because ð yi � ymin

i Þ=ð ymax
i � ymin

i Þ
2 ½0; 1�; zð y1; y2; . . . ; ymÞ also takes values between 0 and 1,
where 0 and 1 being the worst and the best values, respec-
tively. Thus, Formulation (1) can be represented as

max zð y1; y2; . . . ; ymÞ ¼
Xm
i¼1

wið yi � ymin
i Þ=ð ymax

i � ymin
i Þ ð3Þ

subject to

yi ¼ fiðx1; x2; . . . ; xnÞ; i ¼ 1; 2; . . . ;m
x j ¼ g jðx1; x2; . . . ; x j�1; x jþ1; . . . ; xnÞ; j ¼ 1; 2; . . . ;n

ymin
i � yi � ymax

i ; i ¼ 1; 2; . . . ;m

Table 1. Comparison of MADM and MODM Approaches

MADM MODM

Criteria defined by Attributes Objectives
Objectives Implicit Explicit
Attributes Explicit Implicit
Constraints Implicit Explicit
Number of alternatives Finite (small) Infinite (large)
Interaction with decision-maker Limited Significant
Utilization Selection/evaluation Design/search

6 EXPERT DECISION SYSTEM FOR ROBOT SELECTION



The information provided in the HOQ can be used to
estimate the parameters of the functional relationships fi
and gj. Because the relationships between customer
requirements and robot characteristics and the interac-
tions among robot characteristics are vague and generally
difficult to define precisely, fuzzy regression seems to be a
sound alternative approach for serving this purpose.

A fuzzy linear regression model is defined as follows (27):

~y ¼ ~A0 þ ~A1x1 þ ~A2x2 þ � � � þ ~Anxn ð4Þ

where ~y is the fuzzy output, x j are the real-valued inde-
pendent variables, and ~Aj are the fuzzy parameters
expressed as symmetrical triangular fuzzy numbers with
centers a j and spreads cj, respectively, which have the
membership function given as follows:

m ~Aj
ða jÞ ¼

1�
ja j � a jj

c j
; a j � c j � a j � a j þ c j

0; otherwise

8<
:

Thus, the fuzzy linear regression model can be rewritten as

~y ¼ ða0; c0Þ þ ða1; c1Þx1 þ ða2; c2Þx2 þ � � � þ ðan; cnÞxn ð5Þ

Fuzzy linear regression determines the fuzzy parameters
~A j such that the estimated output has the minimum total
spread while satisfying a target degree of belief H, where
0 � H< 1. The H value, which is selected by the decision
maker, is referred to as the measure of goodness of fit of the
estimated fuzzy linear regression model to the data set. To
determine the fuzzy parameters ~A j the linear program-
ming model given below is solved (33):

min Z ¼
Xn

j¼0

c j

Xs

k¼1

jx jkj
 !

ð6Þ

subject to

Xn

j¼0

a jx jk þ ð1�HÞ
Xn

j¼0

c jjx jkj

0
@

1
A� yk; k ¼ 1; 2; . . . ; s

Xn

j¼0

a jx jk � ð1�HÞ
Xn

j¼0

c jjx jkj

0
@

1
A � yk; k ¼ 1; 2; . . . ; s

x0k ¼ 1; k ¼ 1; 2; . . . ; s

c j� 0 ; j ¼ 0; 1; . . . ;n

where xjk is the value of the jth independent variable for the
kth observation (here, the normalized value of the jth robot
characteristic for the kth robot alternative), and yk is the
value of the dependent variable for the kth observation
(here, the customer perception of the degree of satisfaction

of the customer requirement for the kth robot alternative).
The aim of Formulation (6) is to determine ~A j in a way to
minimize the total fuzziness under the condition that each
observation yk has at least H degree of belonging to its fuzzy
estimate [i.e., m~yk

ðykÞ�H for k ¼ 1, 2, . . ., s]. Here, both xjk

and yk are crisp numbers for all j and k, and thus the
resulting formulation is a conventional linear program.
When no fuzziness is considered in the system parameters,
only the center value estimates obtained from Formulation
(6) are used in Formulation (3), whereas the spreads are
ignored (30). Applications of fuzzy linear regression to
QFD have been reported in the literature (30, 31).

INTEGRATED KNOWLEDGE-BASED DECISION
FRAMEWORK FOR ROBOT SELECTION

Because of the wide selection of robot attributes and can-
didate robots, expert decision methods are a viable
approach for robot selection. After gathering information
about the robot application, an expert system is used to
provide a list of pertinent attributes and their acceptable
values. Based on the analysis of the entire production cell,
some robot selection attributes may be ignored whereas
others may be considered as critical. Through the integra-
tion of an expert system with the database of available
robots, a shortlist of robots meeting the minimum accep-
table values is determined. The selection of the most sui-
table robot cannot be accomplished through an inference
procedure based on symbolic reasoning. Thus, an appro-
priate analytical decision making tool needs to be employed
to determine the best robot, which results in moving from
the expert system part to the decision model base. The basic
structure of an integrated knowledge-based decision sys-
tem is depicted in Fig. 3.

Figure 3. Structure of an integrated knowledge-based decision
system.

EXPERT DECISION SYSTEM FOR ROBOT SELECTION 7



The procedure is initiated by seeking information from
the user about the application for which the robot is
required. Potential applications are listed as spot welding,
arc welding, machine loading, die casting, forging, plastic
molding, spray painting, materials handling, assembly,
and inspection. The list may be extended to cover more
applications.

When the user identifies the type of application, the
expert system is used to determine the set of key attributes
for the particular application with their threshold values.
Benefiting from the literature on robot selection (11–17)
and the expert interviews, the robot parameters taken into
consideration can be listed as

� Configuration

� Degrees of freedom

� Vertical reach

� Horizontal reach

� Power source (drive)

� Weight

� Control type

� Accuracy

� Repeatability

� Load capacity

� Velocity

� Programming method

� Programming language

� Memory size

The list of robot attributes given above is not meant to be
comprehensive, and it can be easily expanded. Attributes
with discrete states are assigned code numbers where each
code number denotes the state of the attribute. For exam-
ple, code numbers from 1 to 7 are used to represent degrees
of freedom, where code numbers 1 to 6 denote the respective
degrees of freedom, whereas code number 7 corresponds to
degrees of freedom greater than or equal to 7. On the other
hand, for attributes with values grouped as ranges, code
numbers are assigned corresponding to the range in which
the value of the respective attribute lies. For example, an
attribute whose values are grouped as ranges is given in
Table 2.

For the cases where the user does not specify a code
number, the user is reminded by a prompt that an attribute
value is not entered. If the user does not possess adequate
information regarding the attribute value, then a default
value is assigned by the expert system. An example for the
list of robot parameters for the robot selection problem is
depicted in Fig. 4.

For illustrative purposes, spray painting is considered
as the application type. Spray painting, like many other
robot applications, presents safety and health hazards
while requiring precision. In general, hydraulic or pneu-
matic robots are employed for spray painting. Spray paint-
ing necessitates the use of continuous path control since the
cavities of the painted piece-part must be reached by the
robot. The expert system is employed to obtain a list of robot
alternatives that meet the minimum performance require-
ments. If none of the robots satisfies the specified require-
ments, then the user is asked to revise the parameter
values. Although the basic structure remains the same
for all types of applications, the order of questions may
vary for the considered application as key parameters for
robot selection may differ according to the application type.
A set of sample rules called for the spray painting applica-
tion can be given as follows:

{Rule p}
IF application is spray painting
AND environment is unclean
THEN drive is hydraulic

{Rule q}
IF application is spray painting

Table 2. Coding of the Parameter Repeatability

Repeatability (mm) Code Significance

Repeatability � 0.025 1 Very good
0.025 < Repeatability � 0.050 2 Good-to-very good
0.050 < Repeatability � 0.100 3 Good
0.100 < Repeatability � 0.200 4 Average-to-good
0.200 < Repeatability � 0.300 5 Average
0.300 < Repeatability � 0.500 6 Poor-to-average
0.500 < Repeatability � 0.750 7 Poor
0.750 < Repeatability � 1.000 8 Very poor-to-poor
Repeatability > 1.000 9 Very poor

Figure 4. Example of parameters listing for the robot selection problem.

8 EXPERT DECISION SYSTEM FOR ROBOT SELECTION



AND drive is hydraulic
THEN min number of degrees of freedom is 5

{Rule r}
IF degrees of freedom is 5
OR degrees of freedom is 6
OR degrees of freedom is � 7
AND load capacity is average
AND repeatability is poor-to-average
AND velocity is average
THEN we have ROBOTS1

{Rule s}
IF we have ROBOTS1
AND configuration is jointed arm
AND control type is continuous path
AND programming is manual dry-run mode
THEN robot set is determined
AND display ROBOTS1A

The decision problem aims to determine the best robot
alternative from the short-list of candidates determined
using the expert system module by taking into considera-
tion customer requirements (hereafter named as user
requirements) and robot characteristics, the relationships
between user requirements and robot characteristics, and
the interactions between robot characteristics. The algo-
rithm developed to rank the robot alternatives is summar-
ized in Table 3.

Major user requirements for an industrial robot can be
denoted as improved product quality, reduced cycle time,
improved manufacturing flexibility, easier and standar-
dized programming, improved precision, improved relia-
bility and stability, improved potential to interface with
existing equipment, reduced costs, and vendor support.

The prototype HOQ given in Fig. 5 illustrates the user
requirements and robot characteristics, and the related
data for the short list of robot alternatives. The relationship
matrix in the HOQ is used to represent the relationships
between the manufacturing firm’s demands regarding
product quality, manufacturing flexibility, vendor support,

and so on, and robot characteristics such as repeatability,
velocity, load capacity, and so on. The roof matrix in the
HOQ is employed to denote the inner dependence among
the robot characteristics. Below the relationship matrix,
objective measures (i.e., data related to the abovemen-
tioned robot characteristics for each of the short-listed
robot alternatives) are indicated. The rightmost part of
the HOQ, which captures the user’s perspective, presents
the data that results from the competitive analysis of the
robot alternatives with respect to user requirements. In
accordance with customer requirement ratings in earlier
studies, performance with respect to user requirements
other than ‘‘cost’’ has been scaled from 1 to 5, where 1
and 5 represent the worst and the best, respectively.

To avoid problems regarding scale differences, data
concerning robot characteristics are normalized using a
linear normalization procedure. It is obvious that the nor-
malized data lie in the [0,1] interval, and the robot char-
acteristic is more favorable as the normalized data
approaches 1. To preserve conformity with other user
requirements data that are denoted using a [1, 5] scale,
cost data related to robot alternatives are normalized in a
way to obtain a value of 5 for the lowest cost robot and a
value of 1 for the robot with the highest cost.

The importance weights of the user requirements are
determined using the AHP, which has been previously
employed for prioritizing customer requirements within
QFD framework (2). AHP is a multicriteria decision-
making technique that is based on ratio scales and pairwise
comparisons. In AHP, the relative importance values are
determined using pairwise comparisons with a scale of 1 to
9, where a score of 1 indicates equal importance between
the two elements, and 9 represents the extreme importance
of one element compared to the other one. The values in
between signify varying degrees of importance between
these two extremes. Obviously, the weights for the user
requirements may vary with respect to the application type
of industrial robots.

Then, fuzzy linear regression is employed to estimate
the parameters of the functional relationships between
user requirements and robot characteristics, and among

Table 3. Stepwise Representation of the Algorithm Employed in the Decision Model Base to Rank the Short List of Robot
Alternatives

Step 1. Obtain the key robot attributes and their threshold values, and the shortlist of acceptable robot alternatives from the
expert system module.

Step 2. Identify the user requirements and other robot characteristics.
Step 3. Obtain the pertinent robot attributes and other related robot characteristics data for the short list of robot alternatives.
Step 4. Normalize the data concerning robot characteristics using a linear normalization procedure to avoid problems regarding

scale differences.
Step 5. Determine the relative importance weights of user requirements for the related application type employing the analytic

hierarchy process.
Step 6. Determine the preference ratings of robot alternatives with respect to user requirements.
Step 7. Identify the relationships between user requirements and robot characteristics, and among the robot characteristics.
Step 8. Estimate the parameters of the functional relationships between user requirements and robot characteristics, and of the

functional relationships among robot characteristics.
Step 9. Formulate the linear programming model to determine the target values of robot characteristics using the information

obtained in previous steps.
Step 10. Calculate the deviation of each robot alternative from the target robot possessing the optimal robot characteristic values

computed in Step 9 using a distance metric based on the p-order relative lower partial moment.
Step 11. Rank the robot alternatives according to the sum of deviations from the target robot characteristic values. Select the

robot alternative that is closest to the target robot.

EXPERT DECISION SYSTEM FOR ROBOT SELECTION 9



robot characteristics themselves. As in several previous
works on fuzzy regression, the H value can be set to 0.5
for the base case. When the data set is sufficiently large H
could be set to 0, whereas a higher H value is suggested as
the size of the data set becomes smaller (33).

Using the normalized data for the robot selection pro-
blem, parameter estimations are obtained by fuzzy linear
regression. Because no fuzziness is considered in the sys-
tem parameters, only the center value estimates obtained
from fuzzy regression are employed in formulation (3) to
determine the target values for robot characteristics,
whereas the spread values are disregarded (31). To deter-
mine the ranking order of robot alternatives, the following
distance metric is used:

d p
k ¼

X
j

ðmaxð0; ðx�j � x jkÞÞÞp
2
4

3
5

1=p

; k ¼ 1; 2; . . . ; s ð7Þ

where x�j is the normalized target value of the jth robot
characteristic obtained by solving formulation (3), xjk is the
normalized value of the jth robot characteristic for the kth
robot alternative, and d p

k is the distance metric for the kth
robot alternative that is based on the p-order relative lower
partial moment. The robot alternative with the minimum
value of the distance metric is determined as the best robot
(min

k
d p

k ). Here, use of conventional distance metrics such as
the city block distance or the Euclidean distance, which
punish the desirable higher than optimal robot character-
istics values of the robot alternatives as hard as the lower
than optimal ones, would have been inappropriate.

CONCLUSION

An expert system can represent the logic of a human
expert who possesses knowledge and experience in a
specialized domain. An integrated use of MADM tech-
niques and an expert system is deemed appropriate
because the expert system framework typically results
in multiple candidates, which needs to be evaluated by
an appropriate decision making technique. The proposed
integrated framework enables the use of structured
decision modeling and techniques suitable for the complex
nature of the robot selection problem by means of the
decision support module.

The proposed decision framework possesses many
advantages compared with the robot selection approaches
developed in earlier studies. The primary advantage of
expert decision models is to incorporate expert knowledge
into a difficult problem. Second, by adopting the QFD
principles, the decision-making system allows both user
requirements that are generally qualitative and robot
characteristics to be considered in the robot selection
process. Third, using QFD enables incorporating not
only the relationships between user requirements and
robot characteristics but also the relationships between
robot characteristics disregarding the unrealistic prefer-
ential independence assumption frequently encountered in
earlier robot selection studies using multiattribute decision
making techniques. Furthermore, the parameter estima-
tion of the abovementioned functional relationships is
performed using fuzzy regression, which is suitable for
considering high system fuzziness.

R
ep

ea
ta

bi
lit

y 
(m

m
)

V
el

oc
it

y 
(m

/s
)

L
oa

d 
ca

pa
ci

ty
 (

kg
)

.

.

. W
ar

ra
nt

y 
pe

ri
od

  (
ye

ar
s)

x1 x2 x3 ... xn

514...32

512...24

512...32

700005200070000...6000052000

... ... ... ... ... ...

514...33

3...151.500.500

3...251.200.400

4...201.000.350

... ...... ... ...

... m
ax

R
ob

ot
s

m
in

R
ob

ot
2

Im
po

rt
an

ce
 t

o 
cu

st
om

er

R
ob

ot
1

Improved product quality (y1)

Reduced cycle time (y2)

Manufacturing flexibility (y3)

Robot cost [in US dollars] (y4)

Vendor support (ym)

Robot1

Robot2

...

Robots

.

.

.

Robot 
Characteristics

User 
Requirements

Figure 5. House of quality for the robot selection problem.

10 EXPERT DECISION SYSTEM FOR ROBOT SELECTION



Although the expert decision model is apt to take into
account many robot attributes, one shall note that consid-
ering a wide selection of robot attributes results in several
rules in the expert system that may prove to be devastating
in application. Moreover, the expert system needs to be
updated on a regular basis because of the technological
changes. It is also worth noting that the expert system
delineated in this manuscript illustrates the guidelines
of constructing such a system for robot selection, and it by
no means intends to serve as a thorough real-world
application.

BIBLIOGRAPHY

1. O. F. Offodile and K. Ugwu, Evaluating the effect of speed and
payload on robot repeatability, Robot. Comput.-Integrat. Man-
ufact., 8: 27–33, 1991.

2. E. E. Karsak, Robot selection using an integrated approach
based on quality function deployment and fuzzy regression,
Internat. J. Product. Res., 46: 723–738, 2008.

3. W. R. Tanner, Industrial Robots, Vols. 1 and 2. Dearborn, MT:
Society of Manufacturing Engineers, 1979.

4. J. R. Meredith and N. C. Suresh, Justification techniques for
advanced manufacturing technologies, Internat. J. Product.
Res., 24: 1043–1057, 1986.

5. W. G. Sullivan, Models IEs can use to include strategic, non-
monetary factors in automation decisions, Indust. Engin.,
42: 42–50, 1986.

6. F. Lefley and J. Sarkis, Short-termism and the appraisal of
AMT capital projects in the US and UK, Internat. J. Product.
Res., 35: 341–368, 1997.

7. E. E. Karsak and E. Tolga, Fuzzy multi-criteria decision-mak-
ing procedure for evaluating advanced manufacturing system
investments, Internat. J. Product. Econ., 69: 49–64, 2001.

8. O. Kulak and C. Kahraman, Multi-attribute comparison
of advanced manufacturing systems using fuzzy vs. crisp
axiomatic design approach, Internat. J. Product. Econ., 95:
415–424, 2005.

9. O. Kulak, A decision support system for fuzzy multi-attribute
selection of material handling equipments, Exp. Sys. Applicat.,
29: 310–319, 2005.

10. R. V. Rao, A decision-making framework model for evaluating
flexible manufacturing systems using digraph and matrix
methods, Internat. J. Adv. Manufact. Technol., 30: 1101–
1110, 2006.

11. M. Khouja and O. F. Offodile, The industrial robots selection
problem: literature review and directions for future research,
IIE Trans., 26: 50–61, 1994.

12. E. L. Fisher and O. Z. Maimon, Specification and selection of
robots, in A. Kusiak (ed.), Artificial Intelligence Implications
for CIM. Bedford, UK: IFS Publications, 1988.

13. N. Boubekri, M. Sahoui, and C. Lakrib, Development of an
expert system for industrial robot selection, Comput. Indust.
Engineer., 20: 119–127, 1991.

14. V. P. Agrawal, V. Kohli, and S. Gupta, Computer aided robot
selection: the ‘multiple attribute decision making’ approach,
Internat. J. Product. Res., 29: 1629–1644, 1991.

15. M. M. Imany and R. J. Schlesinger, Decision models for robot
selection: A comparison of ordinary least squares and linear
goal programming methods, Decision Sci., 20: 40–53, 1989.

16. G. S. Liang and M. J. J. Wang, A fuzzy multi-criteria decision-
making approach for robot selection, Robot. and Comput.
Integrat. Manufact., 10: 267–274, 1993.

17. M. Khouja, The use of data envelopment analysis for technol-
ogy selection, Comput. Indust. Engineer., 28: 123–132, 1995.

18. R. C. Baker and S. Talluri, A closer look at the use of data
envelopment analysis for technology selection, Comput.
Indust. Engineer., 32: 101–108, 1997.

19. C. H. Goh, Analytic hierarchy process for robot selection,
J. Manufactur. Sys., 16: 381–386, 1997.

20. E. E. Karsak, A two-phase robot selection procedure, Product.
Plan. Control, 9: 675–684, 1998.

21. C. Parkan and M. L. Wu, Decision-making and performance
measurement models with applications to robot selection,
Comput. Indust. Engineer., 36: 503–523, 1999.

22. M. Braglia and A. Petroni, Evaluating and selecting invest-
ments in industrial robots, Internat. J. Product. Res., 37:
4157–4178, 1999.

23. S. Talluri and K. P. Yoon, A cone-ratio DEA approach for AMT
justification, Internat. J. Product. Econ., 66: 119–129, 2000.

24. E. E. Karsak and S. S. Ahiska, Practical common weight multi-
criteria decision making approach with an improved discrimi-
nating power for technology selection, Internat. J. Product.
Res., 43: 1537–1554, 2005.

25. R. E. Benfer, E. E. Brent, and L. Furbee, Expert Systems (Sage
University Paper Series on Quantitative Applications in the
Social Sciences, 07–077), Newbury Park, CA: Sage, 1991.

26. J. R. Hauser and D. Clausing, The house of quality, Harvard
Bus. Rev., 66: 63–73, 1988.

27. H. Tanaka, S. Uejima, and K. Asai, Linear regression analysis
with fuzzy model, IEEE Trans. Sys., Man, Cybernet., 12:
903–907, 1982.

28. L. K. Chan, H. P. Kao, A. Ng, and M. L. Wu, Rating the
importance of customer needs in quality function deployment
by fuzzy and entropy methods, Internat. J. Product. Res., 37:
2499–2518, 1999.

29. E. E. Karsak, Fuzzy multiple objective programming frame-
work to prioritize design requirements in quality function
deployment, Comput. Indust. Engineer., 47: 149–163, 2004.

30. K. J. Kim, H. Moskowitz, A. Dhingra, and G. Evans, Fuzzy
multicriteria models for quality function deployment, Euro. J.
Operat. Res., 121: 504–518, 2000.

31. Y. Chen, J. Tang, R. Y. K. Fung, and Z. Ren, Fuzzy regression-
based mathematical programming model for quality function
deployment, Internat. J. Product. Res., 42: 1009–1027, 2004.

32. L. K. Chan and M. L. Wu, Quality function deployment: a
literature review, Euro. J. Operat. Res., 143: 463–497, 2002.

33. H. Tanaka and J. Watada, Possibilistic linear systems and
their application to the linear regression model, Fuzzy Sets
Syst., 27: 275–289, 1988.

FURTHER READING

C. R. Asfahl, Robots and Manufacturing Automation, New York:
John Wiley & Sons, 1992.

S. Y. Nof, Handbook of Industrial Robotics, New York: John Wiley
& Sons, 1999.

E. ERTUGRUL KARSAK

Galatasaray University
Ortakoy, Istanbul, Turkey

EXPERT DECISION SYSTEM FOR ROBOT SELECTION 11



G

GEOGRAPHIC INFORMATION SYSTEMS

A geographic information system (GIS) is a set of computer-
based tools to collect, store, retrieve, manipulate, visualize,
and analyze geo-spatial information (information identi-
fied by its location on the surface of reference, for example,
the Earth). Some definitions of GIS include institutions,
people, and data, besides the computer-based tools. These
definitions refer more to a total GIS implementation than to
the technology. Examples of GIS definitions can be found in
Maguire (1), Chrisman (2), Foote and Lynch (3) among
others. Our definition is discussed next.

Computer-based tools are hardware (equipment) and
software (computer programs). Geo-spatial information
describes facts about the Earth’s features, for example,
the location and characteristics of rivers, lakes, buildings,
and roads. Collection of geo-spatial information refers to
the process of gathering, in computer-compatible form,
facts about features of interest. Facts usually collected
are the location of features given by sets of coordinate
values (such as latitude, longitude, and sometimes eleva-
tion), and attributes such as feature type (e.g., highway),
name (e.g., Interstate 71), and unique characteristics (e.g.,
the northbound lane is closed). Storing of geo-spatial infor-
mation is the process of electronically saving the collected
information in permanent computer memory (such as a
computer hard disk). Information is saved in structured
computer files. These files are sequences of only two char-
acters (0 and 1) called bits, organized into bytes (8 bits) and
words (16–64 bits). These bits represent information stored
in the binary system. Retrieving geo-spatial information is
the process of accessing the computer-compatible files,
extracting sets of bits, and translating them into informa-
tion we can understand (for example, information given in
our national language). Manipulation of geo-spatial data is
the process of modifying, copying, or removing selected sets
of information bits or complete files from computer perma-
nent memory. Visualization of geo-spatial information is
the process of generating and displaying a graphic repre-
sentation of the information, complemented with text and
sometimes with audio. Analysis of geo-spatial information
is the process of studying, computing facts from the geo-
spatial information, forecasting, and asking questions (and
obtaining answers from the GIS) about features and their
relationships. For example, what is the shortest route from
my house to my place of work?

HARDWARE AND ITS USE

Computer hardware changes at a very fast pace most all the
time. Better and better computers are available every year.
This evolution impacts GIS and makes this description
difficult in terms of covering what is the ‘‘state-of-art’’ in
hardware. A good introduction to GIS hardware is given by
UNESCO (4). Our goal here is to overview the major hard-
ware components of GIS without trying to discuss any one

in detail. The main component is the computer (or compu-
ters) on which the GIS run. Currently, GIS systems run on
desktop computers mainframes (used as a stand-alone or as
part of a network), and servers connected to the Internet. In
general, GIS operations require handling large amounts of
information (50 megabytes or larger file sizes are not
uncommon), and in many cases, GIS queries and graphic
displays must be generated very quickly. Therefore, impor-
tant characteristics of computers used for GIS are proces-
sing speed, quantity of random access memory (RAM), size
of permanent storage devices, resolution of display devices,
and speed of communication protocols.

Several peripheral hardware components may be part of
the system: printers, plotters, scanners, digitizing tables,
and other data collection devices. Printers and plotters are
used to generate text reports and graphics (including
maps). High-speed printers with graphics and color cap-
abilities are commonplace today. The number and sophis-
tication of the printers in a GIS organization depend on the
amount of text reports and small size (typically 8.5’’ by 11’’)
maps and graphics to be generated. Plotters allow the
generation of oversized graphics. The most common gra-
phic products of a GIS system are maps. As defined by
Thompson (5), ‘‘Maps are graphic representations of the
physical features (natural, artificial, or both) of a part or the
whole of the Earth’s surface. This representation is made by
means of signs and symbols or photographic imagery, at an
established scale, on a specified projection, and with the
means of orientation indicated.’’ As this definition indi-
cates, there are two different types of maps: (1) line
maps, composed of lines, the type of map we are most
familiar with, in paper form, for example a road map;
and (2) image maps, which are similar to a photograph.
A complete discussion of maps is given by Robinson et al.
(6). Plotters able to plot only line maps usually are less
sophisticated (and less expensive) than those able to plot
high-quality line and image maps. Plotting size and resolu-
tion are other important characteristics of plotters. With
some plotters, it is possible to plot maps with a size larger
than 1 m. Higher plotting resolution allows plotting a
greater amount of details. Plotting resolution is very impor-
tant for images. Usually, the larger the map size needed,
and the higher the plotting resolution, the more expensive
the plotter.

Scanners are devices that sense and decompose a hard-
copy image or scene into equal-sized units called pixels and
store each pixel in computer-compatible form with corre-
sponding attributes (usually a color value per pixel). The
most common use of scanning technology is in fax
machines. They take a hardcopy document, sense the docu-
ment, and generate a set of electric pulses. Sometimes, the
fax machine stores the pulses to be transferred later; other
times they are transferred right away. In the case of
scanners used in GIS, these pulses are stored as bits in a
computer file. The image generated is called a raster image.
A raster image is composed of pixels. Generally, pixels are

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



square units. Pixel size (the scanner resolution) ranges
from a few micrometers (for example, 5 microns) to hun-
dreds of microns (for example, 100 microns). The smaller
the pixel size, the better the quality of the scanned images,
but the larger the size of the computer file, the higher the
scanner cost. Scanners are used in GIS to convert hardcopy
documents to computer-compatible form, especially paper
maps. Wempen (7) gives a complete discussion of scanning
technology.

Some GISs cannot use raster images to answer geo-
spatial questions (queries). Those GISs that can are usually
limited in the types of queries they can perform (they can
perform queries about individual locations but not geo-
graphic features). The reason of this limitation is the
lack of explicit information in raster images. Only the
location of each pixel in a grid array and a value per pixel
(such as color) are the explicit information of raster images.
Explicit information is the information that can be
expressed without vagueness, implication, or ambiguity,
leaving no quetion as to meaning or intent. Computer
programs can recognize explicit information. Raster
images mainly carry tacit information. Tacit information
is information that is difficult to express, often personal or
context-speciific, hard to communicate, and even harder to
represent in a formal way. In general, computer programs
cannot recognize tacit information. Most queries need
information in vector form (that carries a lot more explicit
information). Vector information represents individual
geo-spatial features (or parts of features) and is an ordered
list of vertex coordinates and alphanumeric and graphic
attributes. Vector information is used for representation
and analysis in most GIS. Figure 1 shows the differences
between raster and vector.

Digitizing tables are devices that collect vector informa-
tion from hardcopy documents (especially maps), and they
consist of a flat surface on which documents can be
attached, and a cursor or puck with several buttons,
used to locate and input coordinate values (and sometimes
attributes) into the computer. Attributes are commonly
input via keyboard. The result of digitizing is a computer
file with a list of coordinate values and attributes per
feature. This method of digitizing is called ‘‘heads-down
digitizing.’’ Digitizing tables were the most common tools
for digitizing maps, but their use has decreased in the last
decade.

Currently, there is a different technique to generate
vector information. This method uses a raster image as a
backdrop on the computer terminal. These images are the
result of scanning paper maps or derive from digital photos.
Usually, the image are geo-referenced (transformed into a
coordinate system related in some way to the Earth). The
raster images are displayed on the computer screen, and
the operator uses the computer mouse to collect the vertices
of a geo-spatial feature and to attach attributes (the key-
board or audio may be also used). As in the previous case,
the output is a computer file with a list of coordinate values
and attributes for each feature. This method is called
‘‘heads-up digitizing.’’ A more in-depth discussion on geo-
spatial data acquisition in vector or raster format is given
by GEOWEB (8).

SOFTWARE AND ITS USE

Software, as defined by the AGI dictionary (9), is the
collection of computer programs, procedures, and rules
for the execution of specific tasks on a computer system.
A computer program is a logical set of instructions that tells
a computer to perform a sequence of tasks. GIS software
provides the functions to collect, store, retrieve, manipu-
late, query and analyze, and visualize geo-spatial informa-
tion. An important component of software today is a
graphical user interface (GUI). A GUI is set of graphic tools
(icons, buttons, and dialog boxes) that can be used to
communicate with a computer program to input, store,
retrieve, manipulate, visualize, and analyze information
and generate different types of output. Pointing with a
device such as a mouse to select a particular software
application operates most GUI graphic tools. Voice can
also be used in a GUI to communicate with a computer
program. Figure 2 shows a GUI.

GIS software can be divided into five major components
(besides the GUI): input, manipulation, database manage-
ment system, query and analysis, and visualization. Input
software allows the import of geo-spatial information (loca-
tion and attributes) into the appropriate computer-compa-
tible format. Three different issues need to be considered:
how to transform (convert) analog (paper-based) informa-
tion into digital form, how to accept digital information
collected by different devices, and how to store information
in the appropriate format. Scanning, as well as heads-down
and heads-up digitizing software with different levels of

00000000000
01100000100
01100000010
00110000001
00011000000
00001100000
00001100000
00001100000
00001110000
00000111000
00000011000
00000000000

Area covered Feature

X1, Y1

X2, Y2

X3, Y3

X4, Y4

X5, Y5

X′1, Y ′1
X′2, Y ′2

1

Infinite number
of dimensionless

arealess geometric
points

2

3

4

5

2′

1′

Data stored

(c)(b)(a)

(c)(b)(a)

Area covered Feature

Raster

Vector

Data stored

Finite number
of fixed area

and dimension
pixels

Figure 1. The different structures of raster and vector informa-
tion, feature representation, and data storage.

2 GEOGRAPHIC INFORMATION SYSTEMS



automation, transforms paper-based information (espe-
cially graphic) into computer-compatible form. Text infor-
mation (attributes) can be imported by a combination of
scanning and character recognition software, or can be
imported manually using keyboards or voice recognition
software. In general, each commercial GIS software pack-
age has a proprietary format used to store locations and
attributes. Only information in that particular format can
be used in that particular GIS. When information is con-
verted from paper into digital form using the tools from that
GIS, the result is in the appropriate format. When informa-
tion is collected using other devices, then a file format
translation needs to be made. Translators are computer
programs that take information stored in a given format
and generate a new file (with the same or similar informa-
tion) in a different format. In some cases, translation
results in information loss.

Manipulation software allows changing the geo-spatial
information by adding, removing, modifying, or duplicating
pieces or complete sets of information. Many tools in manip-
ulation software are similar to those in word processors, for
example, create, open, and save a file; cut, copy, paste; and
undo graphic and attribute information. Many other
manipulation tools allow drafting operations of the infor-
mation, such as drawing parallel lines, square, rectangles,
circles, and ellipses; moving graphic elements; and chan-
ging colors, line widths, and line styles. Other tools allow
the logical connection of different geo-spatial features. For
example, geo-spatial features that are physically different
and unconnected can be grouped as part of the same layer,
level, or overlay (usually, these words have the same mean-
ing), by which they are considered part of a common theme
(for example, all rivers in a GIS can be considered part of the

same layer: hydrography). Then, one can manipulate all
features in this layer by a single command. For example,
one could change the color of all rivers of the hydrography
layer from light to dark blue by a single command.

Database management system (DBMS) is a collection of
software for organizing information in a database. This
software performs three fundamental operations: storage,
manipulation, and retrieval of information from the data-
base. A database is a collection of information organized
according to a conceptual structure describing the charac-
teristic of the information and the relationship among their
corresponding entities (9). In a database, usually at least
two computer files or tables and a set of known relation-
ships, which allows efficient access to specific entities, exist.
Entities in this concept are geo-spatial objects (such as a
road, house, and tree). Multipurpose DBMS are classified
into four categories: inverted list, hierarchical, network,
and relational. Healy (10) indicates that there are two
common approaches to DBMS for GIS: the hybrid and
the integrated. The hybrid approach is a combination of
a commercial DBMS (usually relational) and direct access
operating system files. Positional information (coordinate
values) is stored in direct access files and attributes in the
commercial DBMS. This approach increases access speed to
positional information and takes advantage of DBMS func-
tions, minimizing development costs. Guptill (11) indicates
that, in the integrated approach, the standard query
language (SQL) used to ask questions about the database
is replaced by an expanded SQL with spatial operators able
to handle points, lines, polygons, and even more complex
structures and graphic queries. This expanded SQL sits on
top of the relational database, which simplifies geo-spatial
information queries.

Query and analysis software provides new explicit infor-
mation about the geo-spatial environment. The distinction
between query and analysis is somewhat unclear. Maguire
and Dangermond (12) indicate that the difference is a
matter of emphasis: ‘‘Query functions are concerned with
inventory questions such as ‘Where is. . .?’ Analysis func-
tions deal with questions such as ‘What if. . .?’.’’ In general,
query and analysis use the location of geo-spatial features,
distances, directions, and attributes to generate results.
Two characteristic operations of query and analysis are
buffering and overlay. Buffering is the operation that finds
and highlights an area of user-defined dimension (a buffer)
around a geo-spatial feature (or a portion of a geo-spatial
feature) and retrieves information inside the buffer or
generates a new feature. Overlay is the operation that
compares layers. Layers are compared two at a time by
location or attributes. Query and analysis use mathema-
tical or logical models to accomplish their objectives. Dif-
ferent GISs may use different mathematical or logical
models and, therefore, the results of querying or analyzing
the same geo-spatial data in two different GISs may be
different.

Mathematical or logical models are of two kinds: (1)
Embedded models and (2) external models. Embedded
models are the kind of models that are used by any GIS
user to perform query and analysis; they are an integral
part of a GIS. For example, the models used to perform
buffering and overlay are embedded models. Embedded

Food ready

Food & drink served

Drinks served

Order taken

Empty table

Shortest route to
and from table 18

1

Empty Reset
Order
taken

Drinks
served

Food
ready

Shortest
route

Food &
drinks
served

2

14

21 20 19

16 17
Bar18

12 11 10

3 4

9 8 7

65

InOut Kitchen

15

Figure 2. GUI for a GIS in a restaurant setting and the graphic
answers to questions about table occupancy, service, and shortest
route to Table 18.

GEOGRAPHIC INFORMATION SYSTEMS 3



models in many commercial systems are similar to black
boxes: You input the data and you obtain results but, in
general, you do not know how these results are generated.
External models are mathematical or logical models pro-
vided by the user. In some quarters, the use of external
models is known as GIS modeling.

There is not a clear distinction between the discipline of
scientific modeling and GIS modeling. We would hypothe-
size that there are two instants of modeling in GIS: (1) when
the input of scientific modeling is the outcome of GIS, and
GIS is the only way to produce such outcome, and the
scientific model can be programmed or interfaced with
GIS; (2) When the input of scientific modeling can be
collected or generated by means different than GIS, but
GIS may be the simple way or the most cost-efficient way to
provide the input data or the software implementation of
the scientific model. In our opinion, only the first instant
should be called GIS modeling. Todorov and Jeffress (13),
White et al. (14), and Lauver et al. (15) present examples of
GIS modeling. Wilson (16) presents an example of scientific
modeling using GIS.

Query and analysis are the capabilities that differenti-
ate GIS from other geographic data applications such as
computer-aided mapping, computer-aided drafting (CAD),
photogrammetry, and mobile mapping.

Visualization in this context refers to the software for
visual representation of geo-spatial data and related facts,
facilitating the understanding of geo-spatial phenomena,
their analysis, and inter-relations. The term visualization
in GIS encompasses a larger meaning. As defined by But-
tenfield and Mackaness (17), ‘‘visualization is the process of
representing information synoptically for the purpose of
recognizing, communicating, and interpreting pattern and
structure. Its domain encompasses the computational, cog-
nitive, and mechanical aspects of generating, organizing,
manipulating, and comprehending such representation.
Representation may be rendered symbolically, graphically,
or iconically and is most often differentiated from other
forms of expression (textual, verbal, or formulaic) by virtue
of its synoptic format and with qualities traditionally
described by the term ‘Gestalt,’ ’’ and it is the confluence
of computation, cognition, and graphic design.

Traditional visualization in mapping and GIS is accom-
plished through maps, diagrams, and perspective views. A
large amount of information is abstracted into graphic
symbols. These symbols are endowed with visual variables
(size, value, pattern, color, orientation, and shape) that
emphasize differences and similarities among those facts
represented. The joint representation of the facts shows
explicit and tacit information. Explicit information can be
accessed by other means such as tables and text. Tacit

Figure 3.

4 GEOGRAPHIC INFORMATION SYSTEMS



information requires, in some cases, performing operations
with explicit information, such as computing the distance
between two points on a road. In other cases, by looking at
the graphic representation, we can access tacit informa-
tion. For example, we can find an unexpected relationship
between the relief and erosion that is not obvious from the
explicit information. This example represents the power of
visualization!

The most noticeable improvement in GIS recently is in
visualization. Multimedia visualization that combines ras-
ter, vector, audio, panoramic views, digital video, and so on
is gaining acceptance in the GIS community. Experimental
systems with these capabilities are being demonstrated in
university research centers and by some commercial ven-
dors. Multimedia visualization systems offer the possibility
of overcoming many of the problems of traditional visuali-
zations. These systems allows dynamic, multisource, multi-
sense, multiquality, representations of the environment
instead of static, single-source, single-sense, single-quality
representations. Figure 3 shows a prototype system devel-
oped by the Center for Mapping of The Ohio State Uni-
versity.

USING GIS

GIS is widely used. Users include national, state, and local
agencies; private business (from delivery companies to
restaurants, from engineering to law firms); educational
institutions (from universities to school districts, from
administrators to researchers); and private citizens. As
indicated earlier, the full use of GIS requires software
(that can be acquired from a commercial vendor), hardware
(which allows running the GIS software), and data (with
the information of interest). Partial use of GIS is possible
today with access to the Internet. As indicated by Worboys
(18), ‘‘data are only useful when they are part of a structure
of interrelationships that form the context of the data. Such
a context is provided by the data model.’’ Depending on the
problem of interest, the data model maybe simple or com-
plex. In a restaurant, information about seating arrange-
ment, seating time, drinks, and food are well defined and
easily expressed by a simple data model. Fundamentally,
you have information for each table about its location, the
number of people it seats, and the status of the table (empty
or occupied). Once a table is occupied, additional informa-
tion is recorded: How many people occupy the table? At
what time was the table occupied? What drinks were
ordered? What food was ordered?. What is the status of
the order (drinks are being served, food is being prepared,
etc.) Questions are easily answered from the above infor-
mation with a simple data a model (see Fig. 2) such as
follows: What table is empty? How many people can be
seated at a table? What table seats seven people? Has the
food ordered by table 11 been served? How long before table
11 is free again? Of course, a more sophisticated data model
will be required if more complex questions are asked of the
system. For example, What is the most efficient route to
reach a table based on the current table occupancy? If
alcoholic drinks are ordered at a table, how much longer
will it be occupied than if nonalcoholic drinks are ordered?

How long will it be before food is served to table 11 if the
same dish has been ordered nine times in the last few
minutes?

Many problems require a complex data model. A non-
exhaustive list of GIS applications that require complex
models is presented next. This list gives an overview of
many fields and applications of GIS:

Siting of a store: Find, based on demographics, the best
location in a region for a new store. Retailers collect
ZIP codes information, the corresponding sale
amount, and the store location for each transaction.
This information can be used in a GIS to show the
volume of sales coming from each ZIP code region.
Using additional information for each ZIP code
region, such as income, lifestyle retailers can deter-
mine how far a customer is willing to drive to go to a
store. This information can be used to determine the
best site for a new store.

Network analysis: Find, for a given school, the shortest
bus routes to pick up students. School districts use
the postal addresses of students, school locations, and
student distribution to plan cost-efficient school bus
routes. Some of the products of network analysis for
school routing are find students homes, bus stops, and
schools on maps; assigns students to closest stop;
assign stops to a run and runs to a route; identify
district boundaries, walk-zones, and hazardous
streets; and generate stop times and driver directions
for runs.

Utility services: Applications for utility services
include service interruption management, emer-
gency response, distribution, network operation,
planning, research, sales, engineering, and construc-
tion. An electric company, for example, provides ser-
vices to residential, commercial, government,
nonprofit, and others clients. These services are loca-
tion-based and require a fast response to irregular
situations such as an outage. Outage are responded to
by priority. Generally, an outage in a hospital
requires a faster response than to a residence. Using
GIS, this response is efficient and timely.

Land information system: Generate, using land par-
cels as the basic unit, an inventory of the natural
resources of a region and the property-tax revenue.
The geo-spatial description of each parcel, their attri-
butes such as owner, area, number of rooms, value,
use, and so on, together with the basic geographic
features of the region, such as roads, rivers, streams,
and lakes; vegetation; political boundaries; and so on,
allows the study and analysis of the region.

Automated car navigation: Having a dataset with
enough route information such as the geo-spatial
description of roads, their speed limit, number of
lanes, traffic direction, status of roads, construction
projects,and so on, it is possible to use GIS for real-
time car navigation. Questions such as: the recom-
mended speeds, the path to be followed, street classi-
fication, and route restrictions to go from location A to
location B can be answered during navigation.

GEOGRAPHIC INFORMATION SYSTEMS 5



Tourist information system: Integrating geo-spatial
information describing roads and landmarks such
as restaurants, hotels, motel gasoline stations, and
so on, allows travelers to answer questions such as
follows: What is the difference in driving time to go
from location A to location B following the scenic
route instead of the business route? Where, along
the scenic route, are the major places of interest
located? How far is the next four-star hotel? How
far am I from the next gasoline station? Some systems
allow to reserve a hotel room, rent a car, buy tickets to
a concert or a movie, and so on, from the route.

Political campaigns: How to maximize funds and to
reach the larger sympathetic audience is basic in a
political campaign. Based on population information,
political trends, cost, and social-economic level, it is
possible, for example, to set the most time-efficient
schedule to visit the largest possible number of cities
where undecided voters could make the difference
during the last week of a political campaign.

Marketing branch location analysis: Find, based on
population density and consumer preferences, the
location and major services to be offered by a new
bank branch.

Terrain analysis: Find the most promising site in a
region for oil exploration, based on topographic, geo-
logical, seismic, and geo-morphological information.

Driving directions: Find how to go from Point A to
Point B based on the postal addresses, which is one
of the most popular applications of GIS, and one that
only requires access to the Internet. Most computer
users are familiar with this application. You type the
postal address of your departure place and the postal
address of your destination. A computer program will
generate a set of directions to travel. These instruc-
tions will be given by naming the major streets and
highways you will drive, indicating how to connect
from one to the next, and the distance to be traveled in
each segment, and time of traveling (based on the
legal speed limit). The program will provide you with
written instructions or a map displaying the route to
be traveled.

QUALITY AND ITS IMPACT IN GIS

The unique advantage of GIS is the capability to analyze
and answer geo-spatial questions. If no geo-spatial data is
available for a region, of course, it is not possible to use GIS.
On the other hand, the validity of the analysis and quality of
the answers in GIS are closely related to the quality of the
geo-spatial data used and the quality of the embedded
models and the external models. If poor quality or incom-
plete data were used, the query and analysis would provide
poor or incomplete results. The same will happen if the
quality of the models was poor. Therefore, it is fundamental
to know the quality of the information in a GIS and the
quality of the models. Generally, the quality of the
embedded models in commercial GIS is unknown. In

many cases, a GIS user has no way to know how good
the embedded models of the system are, which is proble-
matic in GIS because perfect geo-spatial data used with
poor-quality embedded models generates poor results and
the user may not be aware of that.

From the viewpoint of data, quality is defined by the U.S.
National Committee Digital Cartographic Data Standard
(NCDCDS)(19) as ‘‘fitness for use.’’ This definition states
that quality is a relative term: Data may be fit to use in a
particular application but unfit for another. Therefore, we
need to have a very good understanding of the scope of our
application to judge the quality of the data to be used. The
same committee identifies, in the Spatial Data Transfer
Standard (SDTS), five quality components in the context of
GIS: lineage, positional accuracy, attribute accuracy, logi-
cal consistency, and completeness.

SDTS is the U.S. Federal Information Processing Stan-
dard–173 and states ‘‘lineage is information about the
sources and processing history of the data.’’ Positional
accuracy is ‘‘the correctness of the spatial (geographic)
location of features.’’ Attribute accuracy is ‘‘the correctness
of semantic (nonpositional) information ascribed to spatial
(geographic) features.’’ Logical consistency is ‘‘the validity
of relationships (especially topological ones) encoded in the
data,’’ and completeness is ‘‘the mapping and selection
rules and exhaustiveness of feature representation in the
data.’’ The International Cartographic Association (ICA)
has added two more quality components: semantic accu-
racy and temporal information. As indicated by Guptill and
Morrison (20), ‘‘semantic accuracy describes the number of
features, relationships, or attributes that have been cor-
rectly encoded in accordance with a set of feature repre-
sentation rules.’’ Guptill and Morrison (20) also indicate
‘‘temporal information describes the date of observation,
type of update (creation, modification, deletion,
unchanged), and validity periods for spatial (geographic)
data records.’’ Most of our understanding about the quality
of geo-spatial information is limited to positional accuracy,
specifically point positional accuracy. Schmidley (21) has
conducted research in line positional accuracy. Research in
attribute accuracy has been done mostly in the remote
sensing area, and some in GIS (see Chapter 4 of Ref. 20).
Very little research has been done in the other quality
components (see Ref. 20).

To make the problem worse, because of limited digital
vector geo-spatial coverage worldwide, GIS users combine,
many times, different sets of geo-spatial information, each
set of a different quality level. Most GIS commercial pro-
ducts have no tools to judge the quality of the data used;
therefore, it is up to the GIS user to judge and keep track of
information quality.

Another limitation of GIS technology today is the fact
that GIS systems, including analysis and query tools, are
sold as ‘‘black boxes.’’ The user provides the geo-spatial
data, and the GIS system provides results. In many cases,
the methods, algorithms, and implementation techniques
are considered proprietary and there is no way for the user
to judge their quality. More and more users are starting to
recognize the importance of quality GIS data. As result,
many experts are conducting research into the different
aspects of GIS quality.

6 GEOGRAPHIC INFORMATION SYSTEMS



Quality of external models usually can be evaluated.
Generally, the user knows in detail the external model to be
used and can derive means to evaluate its quality. Models
can be evaluated by comparing their results with data of
higher quality. For example, a rain prediction model can be
evaluated by comparing the predicted rain with the actual
rain. If this comparison is done enough times, it is possible
to have a good estimator of the quality of the model.

THE FUTURE OF GIS

GIS is in its formative years. All types of users have
accepted the technology, and it is a worldwide multibil-
lion-dollar industry. This acceptance has created a great
demand in digital geo-spatial information and improved
technology to be satisfied in the near future. High-resolu-
tion (1 meter or less) commercial satellites and multisensor
platforms (for example, global position system technology,
inertial navigation systems, high-resolution digital images,
laser scanners, multispectral, hyperspectral, etc.) generat-
ing high-resolution images, positions, attitude, and so on
mobile mapping technology generating high-resolution
images and geo-spatial positions and attitude; efficient
analog-to-digital data conversion systems; and so forth
are some of the promising approaches to the generation
of geo-spatial data.

At the same time, the use of the Internet is creating new
opportunities and new demands in GIS. Opportunities
generated by the Internet include allowing access to a
very large number of datasets all over the world and World
Wide Web mapping. World Wide Web mapping is based on
the easy-to-use browser-based format that is both simple
and cost-effective to implement, which allows the common
individual to use the Web to access maps and GIS-based
data. Sophisticated GIS applications become usable by
everyone over the Internet.

New demands in GIS generated by the Internet include
better and faster analysis and query tools as well as better
visualization systems; better tools to access and merge
remote data without creating new datasets are needed;
an integrated format for raster, vector, video, panoramic
views, audio, spectral, multispectral data, and so on is
fundamental, which will allow integration of multimedia
data into a single format and will simplify the storage and
manipulation of geo-spatial data. The Open GIS Consor-
tium will help in satisfying some of the above demands. The
Open GIS Consortium is an international industry consor-
tium founded in 1994 by several GIS organizations. The
purpose was to address the issue of incompatibility stan-
dards in GIS technology. Today, more than 220 companies,
government agencies, and universities participate in a
consensus process to develop publicly available specifica-
tions for interfaces and protocols that enable interoperable
geo-processing services, data, and applications.

The vision of the Open GIS Consortium is a ‘‘world in
which everyone benefits from geographic information and
services made available across any network, application, or
platform,’’ and its mission ‘‘is to deliver spatial interface
specifications that are openly available for global use’’ (22).
The Open GIS Consortium envisions the integration of GIS

data and technology into mainstream computing and the
widespread use of standards-compliant GIS software
throughout the information infrastructure. Current speci-
fications from the Open GIS Consortium include (1) Refer-
ence Model; (2) Abstract Specification; (3) Implementation
Specifications; (4) Recommendation Papers; (5) Discussion
Papers; and (6) Conformant Products. The Open GIS Con-
sortium is currently working on eight interoperability
initiatives (22), and their effort will continue for several
years to come.

GIS capabilities will improve, which is reflected in the
large amount of ongoing research, published results, and
products and services. This work includes visualization,
user interfaces, spatial relation languages, spatial analysis
methods, geo-spatial data quality, three-dimensional and
spatio-temporal information systems, open GIS software
design and access, and more. A search in the Internet of the
topic ‘‘visualization research’’ produced than 300,000 hits.
Noticeable among them are entries from AT&T Informa-
tion Visualization Research Group (23) and the Stanford
Computer Graphics Laboratory of Stanford University
(24). In the field of ‘‘user interfaces,’’ a search in the Internet
found less than 200 hits. However, there are many profes-
sional associations such as the User Interface Engineering,
which in 2003 had its eighth Conference. In the case of
‘‘Spatial Relation Languages, we received than 20,000 hits
in our Internet search. Many interesting topics, such as
visual languages for static and dynamic cases; Spatial
Query Languages; Spatial reasoning; and so on are found
under this topic. In the area of ‘‘Spatial Analysis Methods,’’
we found more than 230,000 hits. Spatial analysis has been
around for a long time, but GIS makes its use easy. Spatial
data mining is a new topic in spatial analysis and generates
a lot of interest among researchers. Data mining is dis-
covering knowledge from large databases. As indicated by
Ramirez (25), ‘‘simply put, data mining is basically a mod-
eling activity. You need to describe the data, build a pre-
dictive model describing a situation you want to investigate
based on patterns determined from known results, and
verify the model. Once these things are done, the model
is used to test the data to see what portions of the data
satisfy the model. If you find that the model is satisfied, you
have discovered something new about your data that is of
value to you.’’ We found more than 46,000 hits searching
specifically for ‘‘Spatial Data Mining’’ on the Internet. This
topic is of great interest that would provide a major payoff to
the user of geo-spatial data. Searching for the topic ‘‘Geo-
Spatial Data Quality,’’ we found more than 2500 hits on the
Internet. Many of these hits are related to metadata, but
efforts in other aspects of data quality and visualization of
geo-spatial quality were also found. The search of ‘‘Three-
Dimensional and Spatio-Temporal Information Systems’’
on the Internet was conducted in two steps. We searched for
‘‘Three-Dimensional Information Systems’’ and received
than 290,000 hits. We found a large variety of subjects
such as machine vision, three-dimensional databases, and
three-dimensional display systems that are more or less
related to GIS. We also searched for ‘‘Spatio-Temporal
Information Systems’’ and received than 16,000 hits. It is
obvious that the subject of three-dimensional information
systems is more advanced than spatio-temporal systems,

GEOGRAPHIC INFORMATION SYSTEMS 7



but there is ongoing research in both subjects. Finally, in
the topic of ‘‘Open GIS Software Design and Access,’’ we
discussed earlier the work of the Open GIS Consortium that
is the best link to this topic. These research and develop-
ment efforts will result in better, reliable, faster, and more
powerful GIS.

Several peripheral hardware components may be part of
the system: printers, plotters, scanners, digitizing tables,
and other data collection devices. Printers and plotters are
used to generate text reports and graphics (including
maps). High-speed printers with graphics and color cap-
abilities are commonplace today. The number and sophis-
tication of the printers in a GIS organization depend on the
amount of text reports to be generated. Plotters allow the
generation of oversized graphics. The most common gra-
phic products of a GIS system are maps. As defined by
Thompson (1), ‘‘Maps are graphic representations of the
physical features (natural, artificial, or both) of a part or the
whole of the earth’s surface. This representation is made by
means of signs and symbols or photographic imagery, at an
established scale, on a specified projection, and with the
means of orientation indicated.’’ As this definition indi-
cates, there are two different types of maps: (1) line
maps, composed of lines, the type of map we are most
familiar with, usually in paper form, for example a road
map; and (2) image maps, which are similar to a photo-
graph. Plotters able to plot only line maps are usually less
sophisticated (and less expensive) than those able to plot
high-quality line and image maps. Plotting size and resolu-
tion are other important characteristics of plotters. With
some plotters it is possible to plot maps with a size larger
than one meter. Higher plotting resolution allows plotting a
greater amount of details. Plotting resolution is very impor-
tant for images. Usually, the larger the map size needed,
and the higher the plotting resolution, the more expensive
the plotter.

Scanners are devices that sense and decompose a hard-
copy image or scene into equal-sized units called pixels and
store each pixel in computer-compatible form with corre-
sponding attributes (usually a color value per pixel). The
most common use of scanning technology is in fax
machines. They take a hardcopy document, sense the docu-
ment, and generate a set of electric pulses. Sometimes, the
fax machine stores the pulses to be transferred later; other
times they are transferred right away. In the case of
scanners used in GIS, these pulses are stored as bits in a
computer file. The image generated is called a raster image.
A raster image is composed of pixels. Generally, pixels are
square units. Pixel size (the scanner resolution) ranges
from a few micrometers (for example, five) to hundreds of
micrometers (for example, 100 micrometers). The smaller
the pixel size the better the quality of the scanned images,
but the larger the size of the computer file and higher the
scanner cost. Scanners are used in GIS to convert hardcopy
documents to computer-compatible form, especially paper
maps.

Some GIS cannot use raster images to answer geo-
graphic questions (queries). Those GIS that can are usually

limited in the types of queries they can perform (they can
perform queries about individual locations but not geo-
graphic features). Most queries need information in vector
form. Vector information represents individual geographic
features (or parts of features) and is an ordered list of vertex
coordinates. Figure 1 shows the differences between raster
and vector. Digitizing tables are devices that collect vector
information from hard-copy documents (especially maps).
They consist of a flat surface on which documents can be
attached and a cursor or puck with several buttons, used to
locate and input coordinate values (and sometimes attri-
butes) into the computer. The result of digitizing is a
computer file with a list of coordinate values and attributes
per feature. This method of digitizing is called ‘‘heads-down
digitizing.’’

Currently, there is a different technique to generate
vector information. This method uses a raster image as a
backdrop on the computer terminal. Usually, the image has
been geo-referenced (transformed into a coordinate system
related in some way to the earth). The operator uses the
computer mouse to collect the vertices of a geographic
feature and to attach attributes. As in the previous case,
the output is a computer file with a list of coordinate values
and attributes for each feature. This method is called
‘‘heads-up digitizing.’’

SOFTWARE AND ITS USE

Software, as defined by the AGI dictionary (2), is the
collection of computer programs, procedures, and rules
for the execution of specific tasks on a computer system.
A computer program is a logical set of instructions, which
tells a computer to perform a sequence of tasks. GIS soft-
ware provides the functions to collect, store, retrieve,
manipulate, query and analyze, and display geographic
information. An important component of software today
is a graphical user interface (GUI). A GUI is set of graphic
tools (icons, buttons, and dialogue boxes) that can be used to
communicate with a computer program to input, store,
retrieve, manipulate, display, and analyze information
and generate different types of output. Pointing with a
device such as a mouse to select a particular software
application operates most GUI graphic tools. Figure 2
shows a GUI.

GIS software can be divided into five major components
(besides the GUI): input, manipulation, database manage-
ment system, query and analysis, and visualization. Input
software allows the import of geographic information (loca-
tion and attributes) into the appropriate computer-compa-
tible format. Two different issues need to be considered:
how to transform (convert) analog (paper-based) informa-
tion into digital form, and how to store information in the
appropriate format. Scanning, and heads-down and heads-
up digitizing software with different levels of automation,
transforms paper-based information (especially graphic)
into computer-compatible form. Text information (attri-
butes) can be imported by a combination of scanning and
character recognition software, and/ or by manual input

8 GEOGRAPHIC INFORMATION SYSTEMS



using a keyboard and/or voice recognition software. In
general, each commercial GIS software package has a
proprietary format, used to store locations and attributes.
Only information in that particular format can be used in
that particular GIS. When information is converted from
paper into digital form using the tools from that GIS, the
result is in the appropriate format. When information is
collected using other alternatives, then a file format trans-
lation needs to be made. Translators are computer pro-
grams that take information stored in a given format and
generate a new file (with the same information) in a dif-
ferent format. In some cases, translation results in infor-
mation loss.

Manipulation software allows changing the geographic
information by adding, removing, modifying, or duplicating
pieces or complete sets of information. Many tools in manip-
ulation software are similar to those in word-processors:
create, open, and save a file; cut, copy, paste, undo graphic
and attribute information. Many other manipulation tools
allow drafting operations of the information, such as: draw
a parallel line, square, rectangle, circle, and ellipse; move a
graphic element, change color, line width, line style. Other
tools allow the logical connection of different geographic
features. For example, geographic features that are phy-
sically different and unconnected, can be grouped as part of
the same layer, level, or overlay (usually, these words have
the same meaning). By doing this, they are considered part
of a common theme (for example, all rivers in a GIS can be
considered part of the same layer: hydrography). Then, one
can manipulate all features in this layer by a single com-
mand. For example, one could change the color of all rivers
of the hydrography layer from light to dark blue by a single
command.

Database management system (DBMS) is a collection of
software for organizing information in a database. This
software performs three fundamental operations: storage,
manipulation, and retrieval of information from the data-
base. A database is a collection of information organized
according to a conceptual structure describing the charac-
teristic of the information and the relationship among their
corresponding entities (2). Usually, in a database there are
at least two computer files or tables and a set of known
relationships, which allows efficient access to specific enti-
ties. Entities in this concept are geographic objects (such as
a road, house, and tree). Multipurpose DBMS are classified
into four categories: inverted list, hierarchical, network,
and relational. Healy (3) indicates that for GIS, there are
two common approaches to DBMS: the hybrid and the
integrated. The hybrid approach is a combination of a
commercial DBMS (usually, relational) and direct access
operating system files. Positional information (coordinate
values) is stored in direct access files and attributes, in the
commercial DBMS. This approach increases access speed to
positional information and takes advantage of DBMS func-
tions, minimizing development costs. Guptill (4) indicates
that in the integrated approach the Standard Query Lan-
guage (SQL) used to ask questions about the database is

BIBLIOGRAPHY

1. D. J. Maguire, The history of GIS, in D. J. Maguire, M. F.
Goodchild, and D. W. Rhind (eds.), Geographical Information
Systems, Harlow, U.K.: Logman Scientific Group, l991.

2. Chrisman A Revised Information of Geographic Information
Systems. University of Washington, 1998. Available: http://
faculty.washington.edu/chrisman/G460/NewDef.html.

3. K. E. Foote and M. Lynch. Geographic Information Systems as
an Integrating Technology: Context, Concepts, and Defini-
tions, University of Texas, 1997. Available: http://www.color-
ado.edu/geography/gcraft/notes/intro/intro.html.

4. UNESCO. UNESCO Hardware Requirement, 1999. Available:
http://gea.zyne.fer.hr/module_a/module_a6.html.

5. M. M. Thompson, Maps for America, 2nd ed. Reston, Virginia:
U.S. Geological Suervey, 1981. p. 253.

6. A. H. Robinson, J. L. Morrison,P. C. Muehrcke, A. J. Kimerling,
and S. C. Guptill, Elements of Cartography 6th ed. New York,
Wiley, 1995.

7. F. Wempen. Unlock the secrets of scanner technology, 2002.
Available: http://www.techrepublic.com/article_guest.jhtml?-
id¼r00320020311fair01.htm&fromtm¼e015.

8. GEOWEB Spatial Data Acquisition – Specific Theory. Depart-
ment of Geomatics, The University of Melbourne, 2000. Avail-
able: http://www.sli.unimelb.edu.au/gisweb/SDEModule/
SDETheory.doc.

9. Association for Geographic Information AGI GIS Dictionary
2nd ed., 1993. Available: http://www.geo.ed.ac.uk/agidexe/
term/638.

10. R. G. Healey, Database management systems, in D. J. Maguire,
M. F. Goddchild, and D. W. Rhind (eds.), Geographical Infor-
mation Systems, Harlow, U.K.: Logman Scientific Group, l991.

11. S. C. Guptill, Desirable characteristics of a spatial database
management system, Proceedings of AUTOCARTO 8, ASPRS,
falls Church, Virginia1987.

12. D. J. Maguire and J. Dangermond, The functionality of GIS, D.
J. Maguire, M. F. Goodchild, and D. W. Rhind (eds.), Geogra-
phical Information Systems, Harlow U.K.: Logman Scientific
Group, l991.

13. N. Todorov and G. Jeffress GIS Modeling of Nursing Workforce
and Health-Risk Profiles, Available: http://www.spatial.mai-
ne.edu/ucgis/testproc/todorov.

14. W. S. White, P. J. Mizgalewich, D. R. Maidment, and M. K.
Ridd, GIS Modeling and Visualization of the Water Balance
During the 1993 Midwest Floods, Proceedings AWRA Sympo-
sium on GIS and Water Resources, Ft. Lauderdale, Florida,
1996.

15. C. L. Lauver, W. H. Busby, and J. L. Whistler, Testing a GIS
model of habitat suitable for a decling grassland bird, Envir-
onment. Manage., 30(1): 88–97, 2002.

16. J. P. Wilson, GIS-based Land Surface/Subsurface Modeling:
New Potential for New Models? Proceedings of the Third
International Conference/Workshop on Integrating GIS and
Environmental Modeling, Santa Fe, New Mexico, 1996.

17. B. P. Buttenfield and W. A. Mackaness, Visualization, in D. J.
Maguire, M. F. Goodchild, and D. W. Rhind (ed), Geographical
Information Systems, Harlow, U.K.: Logman Scientific Group,
l991.

18. M. F. Worboys, GIS: A Computing Perspective, London: Taylor
& Francis, 1995, p. 2.

GEOGRAPHIC INFORMATION SYSTEMS 9



19. Digital Cartographic Data Standard Task Force, The proposed
standard for digital cartographic data, The American Carto-
grapher15: 9–140, 1988.

20. S. C. Guptill and J. L. Morrison, Elements of Spatial Data
Quality, Kidlington, U.K.: Elsevier Science, 1995.

21. R. W. Schmidley, Framework for the Control of Quality in
Automated Mapping, Unpublished dissertation, The Ohio
State University, Columbus, Ohio, 1996.

22. OGC. Open GIS Consortium (2003, June 28)). Open GIS
Consortium, Inc., Available: http://www.opengis.org/.

23. AT&T. AT&T AT&T Information Visualization Research
Group, 2003. Available: http://www.research,att.com/areas/
visualization/projects_software/index.html, [2003. June 29].

24. Stanford University. Stanford University Stanford Computer
Graphics Laboratory, 2003. Available: http://www.graphics.-
stanford.edu/.

25. J. R. Ramirez, A user-friendly data mining system, Proceedings
20th International Cartographic Conference, Beijing, China,
2001, pp 1613–1622.

J. RAUL RAMIREZ

The Ohio State University
Columbus, Ohio

10 GEOGRAPHIC INFORMATION SYSTEMS



H

HOME AUTOMATION

HOME AUTOMATION

It needs to be noted that home automation systems are
intended for homes, so they do not usually address the
issues of working environment, multiparty cooperation,
ergonomics, and floor planning that are usually the
problems addressed in the intelligent building design
literature.

Home developers and builders are offering community
linkage and links with schools in their new construction
projects. Thus, the physical community is connected to the
virtual community. The creation of community centers (let
them be physical or virtual) is the end result of such efforts.

Home automation systems in various forms have
appeared in the market for many years. Thus, we have
seen many intelligent security systems, energy manage-
ment units, lighting controllers, entertainment systems,
and so on. Interfacing of these products has been limited,
however, and has been usually rather costly, especially in
the U.S. market. Some products have received a wide
market acceptance and have become de facto standards
in a limited home automation market.

Home automation products can, in general, be categor-
ized as follows:

� Interactive smart products

� Intelligent subsystems

� Central automation systems

Most of us have extensively used interactive smart
systems—that is, devices that previously required manual
control but now have a wide set of programmable features.
The cases of programmable video cassette recorders
(VCRs), automated door openers, and automated sprinkler
systems fall into this category. Intelligent subsystems con-
sist of two or more interactive smart systems that are able
to exchange information to accomplish more sophisticated
tasks. The interaction between a TV and a programmable
VCR falls into this category, as well as an interface of a
telephone answering machine with the lighting or the
security system. The ultimate and most comprehensive
home automation system would be one that integrates a
number of smart systems or intelligent subsystems into a
system that can be thoroughly and seamlessly controlled by
the home owner. Such a system would provide a compre-
hensive system of home information, telecommunication,
entertainment, and control.

Several advantages are realized through the use of such
an integrated system. A smart microwave can have its
cooking schedule controlled through a central database
that stores all the home inhabitants’ schedules and habits.
A VCR can record only the satellite or cable TV programs
that the users like or allow to be viewed and then selectively
broadcast them to the TV sets in the house. An integrated

security system can be linked with video cameras, the VCR,
the telephone network, and the local police station. A smoke
detector can be linked to the heating, ventilating, and air
conditioning system, and to lighting controls so that, in case
a fire breaks out, smoke can be cleared and hallways can
be appropriately illuminated to help people move out of
the house.

Having such a system with so many differing applica-
tions brings forth a wealth of problems in terms of the
required integration. High-definition video requires sev-
eral megahertz of bandwidth, whereas a room thermostat
requires a minimum bandwidth occasionally. High-fidelity
audio or video traffic requires very strict limits on delays,
whereas a washing machine control signal does not have
these requirements.

From Home Automation to Intelligent Buildings

Advances in hardware and software technology have
affected not only the home automation market but the
market of intelligent buildings as well. Intelligent build-
ings is a term used to describe buildings that are not
passive toward their occupants and the activities that
take place in them but can program their own systems
and manage the consumption of energy and materials. In
an intelligent building, sensors receive information on the
status of the building and, through the communication
system of the building, transfer it to a central controller
where, after the necessary comparisons and processing,
actions are taken. An intelligent building consists of the
peripheral units, the units that monitor the proper func-
tioning of the equipment and regulate it if needed, and the
field elements—that is, the sensors, indicators, and acti-
vators present in the building.

APPLICATIONS

Several applications have been envisioned by designers of
home automation systems and standards organizations.
The following categories of applications have been
presented in the literature:

� Control of homes’ heating, lighting, windows, doors,
screens, and major appliances via a TV or TV-like
screen.

� Remote control of the house environment via a touch-
tone key telephone.

� Detectors to identify rooms that have been empty for
more than a specified period of time and possibly
transfer this information to the security system or
regulate the heating of the room.

� Help for the elderly and disabled.

In the initial phases of research and development
efforts, the following applications were identified:

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



� Load management;

� Domestic appliance system;

� Environment control;

� Lighting control;

� Security;

� Safety;

� Access control;

� Voice communication;

� Data communication (including telecontrol); and

� Entertainment.

Several other applications that can make use of the
communications that exist outside the home include:

� Home banking;

� Information services;

� Working from home;

� Health monitoring (health check, health security);

� Telecontrol (appliances security heating, video record-
ing); and

� Telemetering (gas, electricity, water).

Looking at the previously presented classifications of
applications, one sees that there is a big difficulty in finding
and imposing the most appropriate classification and iden-
tifying non-overlapping definitions, and then identifying
functional links between different applications. Entertain-
ment applications usually receive the most attention in
standardization activities and market products because
a large market already exists that has been accustomed
to integration and common formats. Thus, the integration
of audio devices such as DAT players, record players,
cassette players, CD/DVD players, radio tuners, micro-
phones, headphones, and remote controls has seen a very
large market. The same concepts apply to video equipment;
that is, the integration of TV display screens, VCRs, TV
tuners, video cameras, video disk players, DVD players,
video printers, and satellite dish platforms through a
common interface has received considerable attention.

Security applications are the most advanced appli-
cations at homes today in terms of providing an integration
of controller sensors, actuators, video camera, camera plat-
form, microphones, door phone, push buttons/key access,
and timers.

A considerable number of electric utilities have been
involved with using advanced techniques of home automa-
tion for load management.

PRODUCTS AND STANDARDS

As in many other industries, home automation products
were first introduced before a complete set of standards
was specified. So in tracing the market and product dev-
elopment, we see a large number of products that do not
follow any standard specifications but are absolutely
proprietary.

Lonworks

For designers who will be involved in home automation
designs, companies like Texas Instruments, Motorola, and
Toshiba have been very active in developing the tools and
components that will make this process easier.

Home automation systems have borrowed extensively
from the developments in the networking community. The
idea of using a local area network (LAN) to control and
connect devices was implemented in Echelon’s Lonworks.
Lonworks is based on a distributed control LAN using its
local operating network (LON). Communications media,
network communication protocols, and application soft-
ware are integrated. The LAN implements a predictive
p-persistent CSMA protocol and can handle rates up to
1.25 Mbps. In the physical layer, transceivers for a variety
of media are offered. The Neuron C application language,
an extension of ANSI C, adds several features that allow
efficient input/output (I/O) operations and efficient
network management.

International efforts have been under way to develop
standards covering the communication between home
automation system modules. Most of these efforts use a
LAN environment and follow standard layered approaches,
such as the ones advocated by OSI.

CEBus

In the United States, the Electronic Industry Association
(EIA) recognized the need to develop standards covering all
aspects of home automation systems communication. A
committee was organized in 1983 to carry out the task.
In 1988, a home automation system communication stan-
dard known as CEBus (consumer electronic bus) was made
available by the EIA committee for comments. It was
upgraded and re-released in December 1989 after under-
going several changes. A final document became available
in 1992 (1). The CEBus document covers the electrical and
procedural characteristics of systems modules communica-
tion. The CEBus powerline technology was one of the first
attempts to transport messages between household
devices, using the 110–I20VAC electrical wiring in U.S.
households. More than 400 companies have occasionally
attended the CEBus committee meetings, providing a com-
prehensive standard, intended for the consumer electronics
industry. The main objectives of CEBus have been:

� Low-cost implementation;

� Home automation for retrofit into existing cabling
networks;

� To define minimum subsets per appliance intelligence
and functional requirements;

� Distributed communication and control strategy;

� Basic plug-and-play functionality allowing devices to
be added or removed from the network without inter-
rupting the communication of other subsystems; and

� To accommodate a variety of physical media.

However, CEBus faced only the home automation area
and never offered truly multimedia capabilities. In late

2 HOME AUTOMATION



1995, CEBus became part of an umbrella standard known
as Home Plug and Play (HPnP).

Home Plug and Play

Additions to the application layer of the original CEBus
standards have been made in order to create the HPnP
specification, transforming standalone products into inter-
active network products. This specification is expected to
make systems easier to install and combine in a reliable in-
home network. Among the objectives to be covered by HPnP
standards is transport protocol independence, so more than
one networking protocol can be used in the same home.

HPnP has three object types: status, listener, and
request objects, which adapt the system in which the status
information is given to the other systems. By the use of
these objects, products from different producers can be used
without detailed knowledge of their inner workings.

An important feature of HPnP is that it enables con-
sumers to install more complex systems incrementally
without complicating their use or requiring burdensome
upgrades.

X.10

Like CEBus, the X.10 specification defines a communica-
tion ‘‘language’’ that allows compatible home appliances to
talk to each other based on assigned addresses. X.10 is a
broadcasting protocol. When an X.10 transmitter sends a
message, any X.10 receiver plugged into the household
power line tree receives and processes the signal, and
responds only if the message carries its address. X.10
enables up to 256 devices to be uniquely addressed, while
more than one device can be addressed simultaneously if
they are assigned the same address.

HBS

The Japanese home bus system (HBS) has been developed
as the national standard in Japan for home automation
after several years of research and trials. HBS uses a
frequency-division-multiplexing system using coaxial
cable. Three bands are used for transmission of control
signals: baseband, for high-speed data terminals; sub-
band; and, for transmission of visual information, the
FM-TV band. Recent efforts have concentrated on the
expansion of the traditional idea of a home automation
system into one that incorporates multimedia capabilities
by using standard telecommunication services, such as
ISDN BRI, and controls that provide low noise and low
distortion.

EHS

The European home systems (EHS) specification has been
developed under European Commission funding under the
ESPRIT program. Its aim was to interconnect electrical and
electronic appliances into the home in an open way so that
different manufacturers can offer compatible products. An
EHS product consists of three parts: a modem chip, a
microcontroller, and a power supply. The main power
cabling is used to carry the command and control signals
at a speed of 2.4 kbps. Digital information is carried by a

high-frequency signal superimposed on the voltage of the
main. Sensitivity to electrical noise remains a problem,
and filters are necessary to eliminate unwanted interfer-
ence. Other media used include coaxial cable (to carry
frequency-multiplexed TV/digital audio signals and con-
trol packets, 9.6 kbps), two twisted pair cables (telephone
and general purpose, 9.6 kbps and 64 kbps), radio, and
infrared (1 kbps).

EIBA Technologies

The European Installation Bus Association (EIBA) has
assumed the role of the integrator in the European mar-
ket. The EIB system for home and building automation is
another topology-free, decentralized system with distrib-
uted intelligence, based on a CSMA/CA protocol for serial
communication. Currently, various EIBA bus access units
for twisted pair are commercially available. The bus access
unit includes a transceiver; it locally implements the
operating system and caters for user RAM and EEPROM
space.

EIBA’s objectives include the development of a unified
concept for electrical fitting and home and building man-
agement. EIBA is a multivendor body that aims to establish
a standard for building system technology on the European
market. It makes the EIB system know-how available to
members and licensees, provides members and licensees
with support and documentation, establishes standards
among its members, and specifies appropriate criteria for
quality and compatibility, with the help of external test
institutes. It also maintains the position of the EIB Tool
Environment (ETE) as an unrivaled platform for open
software tool development, at the heart of which is the
EIB Tool Software (ETS), offering a common tool for the
configuration of EIB installations.

EIB components, actuators, and monitoring and control
devices communicate via a standardized data path or bus,
along which all devices communicate. Little wiring is
required, which in turn results in lower fire risk and mini-
mized installation effort. Home automation systems pro-
vided by Siemens (see www.siemens.de) follow the EIBA
standards and have several desirable features. Siemens’
Home Electronic System (HES) provides:

� Security due to the continuous control of active pro-
cesses around the house at the homeowner’s fingertips;

� Economy in the use of utilities such as water, electri-
city, and heating energy;

� Convenience through simplifying operation and redu-
cing the burden of routine tasks; and

� Communication by integrating the household manage-
ment system into external communications facilities.

IEEE 1394

In order to combine entertainment, communication, and
computing electronics in consumer multimedia, digital
interfaces have been created. Such is the case of IEEE
1394, which was conceived by Apple Computer as a desktop
LAN, and then was standardized by the IEEE 1394 working
group.

HOME AUTOMATION 3



IEEE 1394 can be described as a low-cost digital inter-
face with the following characteristics:

� High speed. It is able to achieve 100 Mbit/s, 200 Mbit/s,
and 400 Mbit/s; extensions are being developed to
advance speeds to 1.6 Mbit/s and 3.2 Mbit/s and
beyond.

� Isochronous support. Bandwidth for time-sensitive
applications is guaranteed by a deterministic band-
width allocation for applications such as real-time
video feeds, which otherwise could be disrupted by
heavy bus traffic.

� Flexible topology. There is no central bus supervision;
therefore, it is possible to daisy-chain devices.

� Hot-plug capability. There is no need for the user to
configure node IDs or unique termination schemes
when new nodes are added; this action is done dyna-
mically by the bus itself.

� Cable power. Peripherals of low cost can be powered
directly from the IEEE 1394 cable.

� Open standard. The IEEE is a worldwide standards
organization.

� Consolidation of ports of PCs. SCSI, audio, serial, and
parallel ports are included.

� There is no need to convert digital data into analog
data, and loss of data integrity can be tolerated.

� There are no licensing problems.

� A peer-to-peer interface can be provided.

The EIA has selected IEEE 1394 as a point-to-point
interface for digital TV and a multipoint interface for
entertainment systems; the European Digital Video Broad-
casters (DVB) have selected it as their digital television
interface. These organizations proposed IEEE 1394 to the
Video Experts Standards Association (VESA) as the home
network media of choice. VESA adopted IEEE 1394 as the
backbone for its home network standard.

PLC

At the end of 1999, the Consumer Electronics Association
(CEA) formed the Data Networking Subcommittee R7.3,
and began work on a High-speed PowerLine Carrier (PLC)
standard. PLC technology aims to deliver burst data rates
up to 20 Mbps over powerline cables. However, like CEBus
and X10, PLC shares the same power network with motors,
switch-mode power supplies, fluorescent ballasts, and
other impairments, which generate substantial impulse
and wideband noise. To face this difficult environment,
different technologies take widely differing approaches
depending on the applications they are pursuing. Technol-
ogies and algorithms including orthogonal frequency-
division multiplexing (OFDM), rapid adaptive equalization,
wideband signaling, Forward Error Correction (FEC),
segmentation and reassembly (SAR), and a token-passing
MAC layer are employed over the powerline physical layer
technologies in order to enhance transmission robustness,
increase the required bandwidth, guarantee the quality,

and provide both asynchronous and isochronous transmis-
sion.

HomePlug

The HomePlug Powerline Alliance is a rather newly
founded nonprofit industry association established to pro-
vide a forum for the creation of an open specification for
home powcrlinc networking products and services. The
HomePlug mission is to promote rapid availability, adop-
tion, and implementation of cost-effective, interoperable,
and specifications-based home power networks and pro-
ducts enabling the connected home. Moreover, HomePlug
aims to build a worldwide standard, pursuing frequency
division for coexistence with access technologies in North
America, Europe, and Asia. For medium access control,
Homeplug 1.0 extends the algorithm used in IEEE 802.11
to avoid collisions between frames that have been trans-
mitted by stations (2).

HomePNA

HomePNA is defined by the Home Phoneline Networking
Association in order to promote and standardize technolo-
gies for home phone line networking and to ensure compat-
ibility between home-networking products.

HomePNA takes advantage of existing home phone
wiring and enables an immediate market for products
with ‘‘Networking Inside.’’ Based on IEEE 802.3 framing
and Ethernet CSMA/CD media access control (MAC),
HomePNA v 1.0 is able to provide 1 Mbps mainly for control
and home automation applications, whereas HomePNA
v2.0 (3), standardized in 2001, provides up to 14 Mbps.
Future versions promise bandwidths up to 100 Mbp/s.

COMMUNICATIONS AND CONTROL MEDIA

Several media, individually or in combination, can be used
in a home automation system. Power line carrier, twisted
pair, coaxial cable, infrared, radio communications, Digital
Subscriber Loop (DSL) technologies, cable modems, and
fiber optics have been proposed and investigated. Each
medium has a certain number of advantages and disad-
vantages. In this section, we will present some of the most
profound features of the media.

The power line carrier (PLC) or mains has been proposed
in several applications. It is the natural medium of choice in
load management applications. No special cables need to be
installed because the power line is the bus itself. From one
side, the power line medium already has a large number of
appliances connected to it, but on the other side it is not a
very friendly medium for transmission of communication
signals because there is a fluctuation of the power line
impedance and a high noise level on the line. There is
also interference with communication caused by other
houses. Spread spectrum or ASK techniques have been
proposed for efficient modulation of the signal in PLC.

Recent advances in twisted pair (TP) transmissions,
especially in telecommunications and computer network-
ing applications, make it very attractive for applications
that use standard computer interfaces. TP can be the

4 HOME AUTOMATION



generic system for the home system datagram services; if
new communication technologies reach the home, TP can
be used for high-bandwidth applications as well. TP can be
easily assembled and installed, and connectors can be
easily attached to it.

Coaxial cables have not been extensively—except for the
Japanese market—used in home automation systems.
Their high bandwidth and the experience technical people
have amassed through the cable systems make them a very
attractive medium. Retrofitting them in existing houses is
one of their major disadvantages.

Infrared (IR)—that is, electromagnetic radiation with
frequencies between 1010 and 1024 Hz—has been used
extensively in remote control applications. Its use in
home automation systems will require line-of-sight—that
is, detectors in every single room so that there is a full
coverage.

Radio waves—that is, electromagnetic signals whose
frequency covers the range of 3 kHz to 300 MHz—do not
need direct vision between the transmitter and the recei-
ver, but there is a need for a license and problems with
interference. Radio-frequency technology is being used for
real-time data management in LANs in order to give free
access to the host system from multiple mobile data input
devices. Wireless home networking technology will
operate in the large-bandwidth radio-frequency ranges
and will use proprietary compression techniques. In the
future, consumers might receive e-mail messages
wirelessly from a compliant handheld device or view
enhanced Web content on their connected television
sets. The use of a radio frequency of 2.4 GHz will cut
down on noise within the home and provide some
security.

Home networking opens up new opportunities for cost-
effective phones that include Internet capabilities. By shar-
ing resources, manufacturers should be able to reduce the
cost of an Internet phone by using the processor and modem
of a connected PC. Currently, a number of major manu-
facturers are developing their own wireless home network-
ing products. Two major industry groups, the Home
Phoneline Networking Alliance (HPNA) and the HomeRF,
are attempting to develop standards for two different
technology sets.

The HomeRF Working Group (HRFWG) was formed to
provide the foundation for a broad range of interoperable
consumer devices by establishing an open industry speci-
fication for wireless digital communication between PCs
and consumer electronic devices anywhere in and around
the home. HRFWG, which includes the leading companies
from the PC, consumer electronics, peripherals, commu-
nications, software, and semiconductor industries, has
developed a specification for wireless communications in
the home called the Shared Wireless Access Protocol
(SWAP).

The specification developed by the HRFWG operates in
the 2.4-GHz band and uses relaxed IEEE 802.11 wireless
LAN and digital European cordless telephone (DECT)
protocols. It also describes wireless transmission devices
and protocols for interconnecting computers, peripherals,
and electronic appliances in a home environment. Some

examples of what users will be able to do with products that
adhere to the SWAP specification include:

� Set up a wireless home network to share voice and data
among peripherals, PCs, and new devices such as
portable, remote display pads.

� Review incoming voice, fax, and e-mail messages from
a small cordless telephone handset.

� Intelligently forward incoming telephone calls to
multiple cordless handsets, fax machines, and voice
mailboxes.

� Access the Internet from anywhere in and around the
home from portable display devices.

� Activate other home electronic systems by simply
speaking a command into a cordless handset.

� Share an ISP connection between PCs and other new
devices.

� Share files, modems, and printers in multi-PC homes.

� Accommodate multiplayer games or toys based on PC
or Internet resources.

Bluetooth

The Bluetooth program, backed by Ericsson, IBM, Intel,
Nokia, and Toshiba, is already demonstrating prototype
devices that use a two-chip baseband and RF module and
hit data rates of 730 kbit/s at 2.4 GHz. Bluetooth uses a
proprietary MAC that diverges from the IEEE 802.11
standard. Bluetooth has already managed to serve as a
universal low-cost, user-friendly air interface that will
replace the plethora of proprietary interconnect cables
between a variety of personal devices and peripherals.
Bluetooth is a short-range (10 cm to 10 m) frequency-
hopping wireless system. There are efforts to extend the
range of Bluetooth with higher-power devices.

Bluetooth supports both point-to-point and point-to-
multipoint connections. Currently, up to 7 slave devices
can communicate with a master radio in one device. It also
provides for several piconets to be linked together in an ad
hoc networking mode, which allows for extremely flexible
configurations such as might be required for meetings and
conferences.

The Bluetooth protocol stack architecture is a layered
stack that supports physical separation between the Link
Manager and the higher layers at the Host Interface, which
is common in most Bluetooth implementations.

Bluetooth is ideal for both mobile office workers and
small office/home office (SOHO) environment as a flexible
cable replacement that covers the last meters. For example,
once a voice over internet protocol (VoIP) call is established,
a Bluetooth earphone may automatically switch between
cellular and fixed telephone networks, when one enters his
home or office. Of course, the low-bandwidth capability
permits only limited and dedicated usage and inhibits
Bluetooth from in-house multimedia networking.

IEEE 802.11

IEEE 802.11 is the most mature wireless protocol for
wireless LAN communications, deployed for years in

HOME AUTOMATION 5



corporate, enterprise, private, and public environments
(e.g., hot-spot areas). The IEEE 802.11 standards support
several wireless LAN technologies in the unlicensed bands
of 2.4 and 5 GHz, and share use of direct-sequence spread
spectrum (DSSS) and frequency hopping spread spectrum
(FHSS) physical layer RF technologies.

Initially, the IEEE 802.11 standard provided up to
2 Mbps at the 2.4-GHz band, without any inherent quality
of service (QoS). The wide acceptance, however, initiated
new versions and enhancements of the specification. The
first and most important is the IEEE 802.11b specification,
which achieves data rates of 5.5 and 11 Mbps. Recently, the
IEEE 802.1lg task group has formed a draft standard that
achieves data rates higher than 22 Mbps. In the 5-GHz
band, the IEEE 802.1la technology supports data rates up
to 54 Mbps using OFDM schemes. OFDM is very efficient in
time-varying environments, where the transmitted radio
signals are reflected from many points, leading to different
propagation times before they eventually reach the recei-
ver. Other 802.11 task groups targeting specific areas of
the protocol are 802.11d, 802.11e, 802.11f, and 802.11h.

HIPERLAN/2

HIPERLAN/2 is a broadband wireless LAN technology that
operates at rates as high as 54 Mbps in the 5-GHz frequency
band. HIPERLAN/2 is a European proposition supported
by the European Telecommunications Standards Institute
(ETSI) and developed by the Broadband Radio Access Net-
works (BRAN) team. HIPERLAN/2 is designed in a flexible
way so as to be able to connect with 3G mobile networks, IP
networks, and ATM networks. It can be also used as a
private wireless LAN network. A basic characteristic of this
protocol is its ability to support multimedia traffic i.e., data,
voice, and video providing quality of service. The physical
layer uses OFDM, a technique that is efficient in the
transmission of analog signals in a noisy environment.
The MAC protocol uses a dynamic TDMA/TDD scheme
with centralized control.

Universal Serial Bus (USB)

As most PCs today have at least 2 USB ports, accessible
from outside the case, connecting new USB devices is a very
simple Plug-n-Play process. Moreover, USB is able to cover
limited power requirements of the devices, in many cases
eliminating the need for additional power cables. USB 1.1
provides both asynchronous data transfer and isochronous
streaming channels for audio/video streams, voice tele-
phony, and multimedia applications, and bandwidth up
to 12 Mbps adequate even for compressed video distribu-
tion. USB v2.0 transfers rates up to 460–480 Mbps, about
40 times faster than vl.l, covering more demanding con-
sumer electronic devices such as digital cameras and DVD
drives. USB may not dominate in the Consumer Electronics
Networks in the short term, but it will certainly be among
the major players.

Universal Plug-and-Play (UPnP)

UPnP aims to extend the simplicity and auto-configuration
features from device PnP to the entire network, enabling

the discovery and control of networked devices and ser-
vices. UPnP in supported and promoted by the UPnP
forum. UPnP is led by Microsoft, while some of the major
UPnP forum members are HP, Honeywell, Intel, Mitsu-
bishi, and Philips. The scope of UPnP is large enough to
encompass many existing, as well as new and exciting,
consumer electronics networking and automation scenar-
ios including home automation/security, printing and ima-
ging, audio/video entertainment, kitchen appliances, and
automobile networks.

In order to ensure interoperability between vendor
implementations and gain maximum acceptance in the
existing networked environment, UPnP leverages many
existing, mature, standard protocols used on the Internet
and on LANs like IP, HTTP, and XML.

UPnP enables a device to dynamically join a network,
obtain an IP address, convey its capabilities, and be
informed about the presence and capabilities of other
devices. Devices can automatically communicate with
each other directly without any additional configuration.
UPnP can be used over most physical media including
Radio Frequency (RF, wireless), phone line, power line,
IrDA, Ethernet, and IEEE 1394. In other words, any med-
ium that can be used to network devices together can enable
UPnP. Moreover, other technologies (e.g., HAVi, CeBus,
orXlO) could be accessed via a UPnP bridge or proxy,
providing for complete coverage.

UPnP vendors, UPnP Forum Working Committees, and
the UPnP Device Architecture layers define the highest-
layer protocols used to implement UPnP. Based on the
device architecture specification, the working committees
define information global to specific device types such as
VCRs, HVAC systems, dishwashers, and other appliances.
UPnP device vendors define the data specific to their
devices such as the model name, URL, and so on.

DSL and Cable Modems

Digital subscriber line (DSL) is a modem technology
that increases the digital speed of ordinary telephone lines
by a substantial factor over common V.34 (33,600 bps)
modems. DSL modems may provide symmetrical or asym-
metrical operation. Asymmetrical operation provides
faster downstream speeds and is suited for Internet usage
and video on demand, where the heaviest transmission
requirement is from the provider to the customer.

DSL has taken over the home network market. Chip sets
will combine home networking with V.90 and ADSL modem
connectivity into one system that uses existing in-home
telephone wiring to connect multiple PCs and peripherals
at a speed higher than 1 Mbps.

A cable modem is another option that should be con-
sidered in home network installations. Cable modem ser-
vice is more widely available and significantly less
expensive than DSL in some countries. Cable modems
allow much faster Internet access than dial-up connec-
tions. As coaxial cable provides much greater bandwidth
than telephone lines, a cable modem allows downstream
data transfer speeds up to 3 Mbps. This high speed,
combined with the fact that millions of homes are already
wired for cable TV, has made the cable modem one of the

6 HOME AUTOMATION



top broadband contenders. The advent of cable modems
also promises many new digital services to the home,
including video on demand, Internet telephony and video-
conferencing, and interactive shopping and games.

At first glance, xDSL (i.e., DSL in one of the available
varieties) appears to be the frontrunner in the race between
cable modems and DSL. After all, it can use the phone wire
that is already in place in almost every home and business.
Cable modems require a television cable system,which is
also in many homes and businesses but does not have
nearly the same penetration as basic telephone service.
One important advantage that cable modem providers do
have is a captive audience. All cable modem subscribers go
through the same machine room in their local area to get
Internet access.

In contrast to cable modem service, xDSL’s flexibility
and multi vendor support is making it look like a better
choice for IT departments that want to hook up telecom-
muters and home offices, as well as for extranet applica-
tions. Any ISP will be able to resell xDSL connections, and
those connections are open to some competition because of
the Telecommunications Act of 1996. The competitive
multi-vendor environment has led to a brisk commodity
market for xDSL equipment and has made it a particularly
attractive and low-cost pipe. Although new services are
sure to be spawned by all that bandwidth, xDSL providers
are able to depend on the guaranteed captive audience of
their cable modem counterparts.

Fiber Optics

Fiber optics at home have also been evaluated in the
literature. The well-known advantages of fiber, such as
increased bandwidth, immunity to electromagnetic noise,
security from wiretaps, and ease of installation, compete
with its disadvantages, such as higher cost, difficulty in
splicing, and requirement of an alternate power supply. A
standard for a fiber optic CEBus (FOBus) has been
developed.

One of the major drives behind the use of fiber optics is
the ability to carry multimedia traffic in an efficient way.
As telecommunication companies are planning to bring
fiber to the home, a fiber optic network in the house will
make the Internet working with places outside the house
cost effective and convenient. Connection with multimedia
libraries or with other places offering multimedia services
will be easily accomplished to the benefits of the house
occupants, especially students of any age who will be able to
access, and possibly download and manage, these vast pools
of information.

Several minimum requirements of a FOBus are set
forth. In terms of service, the FOBus should provide the
following services:

� Voice, audio, interactive, bulk data, facsimile, and
video;

� One-way, two-way, and broadcast connectivity;

� Transport of continuous and bursty traffic;

� Interfaces to external networks and consumer
products; and

� Multiple data channels and a single, digital control
channel.

The network should meet the following physical require-
ments:

� Low installation costs and ease of installation;

� High reliability;

� Easy attachment of new devices;

� No interruption of service while a new node is being
connected; and

� Access to the network via taps in each room.

The FOBus standard should also have a layered archi-
tecture in which layers above the physical layer are iden-
tical to the corresponding CEBus layers in other media.

Some of the applications of a fiber optic network in the
home that will drive the design of the fiber optic home
network are: the connection to emerging all-fiber networks,
which will provide high-quality, high-bandwidth audio/
visual/data services for entertainment and information;
fiber network connection to all-fiber telephone networks
to allow extended telephone services such as ISDN, video-
telephone, and telecommuting; transport of high-quality
audio/video between high-bandwidth consumer devices
such as TVs and VCRs; and transport of control and data
signals for a high degree of home automation and
integration.

SECURITY

Security (the need to prevent unauthorized nodes from
reading or writing information) is an issue of concern for
every networking product. Many manufacturers have
decided to create a security context on their products and
have the key information on them, which means that one
object of one context sends a message to another context
object, and thus both have to be built by the same company
so that the security encoding algorithm can be exchanged
between them.

Security in the home automation systems literature is
seen as follows:

� Security in terms of physical access control and alarm
systems.

� Security in terms of the well being of house inhabitants
through systems that monitor health status and
prevent health problems.

� Security of the building itself in terms of a safe con-
struction and the subsequent monitoring of this status.

� Security in terms of confidentiality of the information
exchanged.

The latter is being achieved by the use of various security
techniques in use, including message authentication algo-
rithms, which are of two main types. Two-way authentica-
tion algorithms require the nodes involved in the checking
to know the encoding algorithm, and each node must have
an authentication key in order to accept the command

HOME AUTOMATION 7



issued. A one-way authentication algorithm verifies only
the transmitter and the information that goes on the
APDTU (packet in the application layer); it requires only
one authentication key, but the encoding algorithm must be
known by the nodes. Both types of algorithm require a
random number that is encoded with the authentication
keys.

Encryption is also used in order to obtain greater secur-
ity in the message and in the data sent on the APDU. The
algorithm or technique used has to be known by the receiver
and transmitter. Encryption is implemented with the help
of the authentication algorithm ID in the second byte.

FUTURE DIRECTION

Home automation systems have been presented as a pro-
mising technology for bringing the computer and commu-
nications revolution that has swept the office and industrial
environments in the last decade to the home environment.
However, we have not seen an use of home automation
systems and an increase in the market share as predicted
from market analysts. This lack of acceptance can be
attributed to marketing problems, costs of installation
and retrofitting, slow growth of new housing, and a lack
of standards that synchronize with the developments in the
other technological areas.

The wide availability of powerful computers at homes
and the availability of high-speed telecommunications lines
(in the form of cable TV, satellite channels, and, in the near
future, fiber) make a redirection of the home automation
industry necessary. More emphasis should be on applica-
tions that require access to external sources of informa-
tion—such as video-on-demand and the Internet—or on
access from outside the home to home services—such as the
load management application discussed above from utili-
ties or individuals and remote surveillance.

User-friendly customer interfaces combined with rea-
sonable pricing will certainly move the industry ahead. The
availability of the Internet and the World Wide Web should
be exploited in different ways. First, the interfaces and the
click-and-drag operations could be adopted and then the
high use of bandwidth could be accomplished. The above
considerations should be viewed in light of cost and retro-
fitting issues in existing dwellings and the availability of
appliances that are compatible with standards and that can
be purchased from multiple vendors.

Wireless technologies seem to dominate the future of
home automation systems. With regard to the future of
fiber optics at home, several observations can be made.
External or non premises service providing networks, and
second-generation television, receivers such as high-defi-
nition television (HDTV) are two main areas in which
developing technologies will impact the design of the
FOBus. One external network that the FOBus will have
to accommodate is the public telephone network. The cur-
rent public switched network uses copper wire in its local
loop to provide service to a neighborhood; but in the future,
the use of fiber in the loop (FITL) will be gradually phased
in. Neighborhood curbside boxes will be replaced with
optical network units (ONUs) that will provide plain old

telephone service (POTS) as well as extended network
services. Initially, the service to the home will be provided
on copper medium, but it will eventually be replaced with
fiber as well. The FITL system will support broadband
communications, especially interactive applications.

Another external network that will impact the FOBus
design is the cable television network, which is also gra-
dually being replaced by fiber. The FOBus specification will
have to accommodate the high-bandwidth services deliv-
ered by the cable network (generally in the form of broad-
cast channels); it may also have to support interactive
services that are envisioned for the future.

The other developing technology that will impact the
design of the fiber optic CEBus is the emerging advanced
television (ATV) standard, which will most likely include
HDTV. In the United States, the EIA is examining digital
standards for HDTV transmission. Most require band-
width of 20 Mbps, which the proponents of the standards
claim can be transmitted on a standard 6-MHz channel
using modulation techniques such as quadrature ampli-
tude multiplexing. In addition, the ATV receiver will likely
have separate input ports for RF, baseband digital, and
baseband analog signals. The choice of which of these ports
to use for the CEBus/ATV interface has not been made. Each
has its own advantages. Using the RF port would allow a
very simple design for the in-home fiber distribution net-
work, and the interface would only have to perform optical-
to-electrical conversion.The digital port would remove band-
width constrictions from the broadcast signal and also allow
for interactive programming and access to programming
from various sources. The ATV could become the service
access point for all audio/visual services in the home.

An important issue in home automation is the integra-
tion of Internet technologies in the house. Several compa-
nies have proposed technologies to embed network
connectivity. The idea is to provide more control and mon-
itoring capability by the use of a Web browser as a user
interface. In this new technology, Java and http (standard
Internet technologies) are accessed through a gateway that
manages the communication between the Web browser and
the device.

Among the advantages of this new technology are the
following:

� Manufacturers can provide their products with strong
networking capabilities, and increase the power of the
Internet and the available intranets.

� The use of a graphical user interface (GUI) allows a
simple display of the status, presence, and absence of
devices from the network.

� Java, Visual Basic, and Active X development envir-
onments reduce the development time of device net-
working projects.

� Interface development is easy.

� Batch processes to gather data are easy and fast.

Standard technologies to network devices via the
Internet provide for the development of internetworking
solutions without the added time and costs of building

8 HOME AUTOMATION



proprietary connections and interfaces for electronic
devices.

Manufacturers of home automation systems must
take into account several factors. The users are the first
to be considered. Their physiological and psychological
capabilities as well as their socioeconomic characteris-
tics must be considered before a new technology is
adopted.

Another issue is the added value provided by such
systems in terms of the reduction of repetitive tasks and
the skills and knowledge required to operate them. Health
and safety considerations must be taken into account. Also,
one needs to examine the current status of technologies and
the dynamics of these technologies in order to offer a
successful product in the market and, mainly, in order to
create a new healthy market sector.

The suggested technologies should be able to enhance
the life in a household but certainly not dominate it. The
systems should be reliable and controllable but also adap-
tive to specific user needs and habits. They should also be
able to adapt to changing habits.

BIBLIOGRAPHY

1. Draft CEBUS FO network requirements document, Washington
DC: EIA, May 15, 1992.

2. HomePlug 1.0 Specification, HomePlug Alliance, June 2001.

3. Interface Specification for HomePNA 2.0: 10M8 technology,
December 1999.

FURTHER READING

The EIA/CEG Home Automation Standard, Electronics Industries
Association, Wahsington, DC, Dec. 1989.

C. Douligeris, C. Khawand, and J. Khawand, Network layer
design issues in a home automation system; Int. J. Commun.
Sys., 9: 105–113, 1996.

C. Douligeris, Intelligent home systems, IEEE Commun. Mag.
(Special Issue on Intelligent Buildings: From Materials to Multi-
media), 31(10): 52–61, 1993.

M. Friedewald, O. Da Costa, Y. Punie, P. Alahuhta, and S.
Heinonen, Perspectives of ambient intelligence in the home envir-
onment, Telematics and Informatics. New York: Elsevier, 2005.

C. Khawand, C. Douligeris, and J. Khawand, Common application
language and its integration into a home automation system, IEEE
Trans. Consum. Electron., 37(2): pp. 157–163, 1991.

J. Khawand, C. Douligeris, and C. Khawand, A physical layer
implementation for a twisted pair home automation system;
IEEE Trans. Consum. Electron., 38(3): 530–536, 1992.

B. Rose, Home networks: A standards perspective, IEEE Commun.
Mag., 78–85, 2001.

N. Srikanthan, F. Tan, and A. Karande, Bluetooth based home
automation system, Microprocessors Microsyst., 26: 281–289,
2002.

N. C. Stolzoff, E. Shih, and A. Venkatesh, The home of the future:
An ethnographic study of new information technologies in the
home, Project Noah, University of California at Irvine.

T. Tamura, T. Togawa, M. Ogawa, and M. Yuda, Fully automated
health monitoring system in the home, Med. Eng. Phys., 20:
573–579, 1998.

J. Tidd, Development of novel products through intraorganiza-
tional and interorganizational networks: The case of home auto-
mation, J. Product Innovation Manag., 12: 307–322, 1995.

T. B. Zahariadis, Home Networking: Technologies and Standards.
Norwood, MA: Artech House, 2003.

T. Zahariadis, K. Pramataris, and N. Zervos, A comparison of
competing broadband in-home technologies, IEE Electron. Commun.
Eng. J. (ECEJ), 14 (4): 133–142, 2002.

CHRISTOS DOULIGERIS

University of Piraeus
Piraeus, Greece

HOME AUTOMATION 9



10 HOME AUTOMATION



H

HOME COMPUTING SERVICES

INTRODUCTION

Relevance of the Topic

The 1990s and the current decade have experienced tre-
mendous growth in computers and telecommunications,
and, for the first time, developments in technologies in
the home followed in close proximity to their correlates
in the corporate world. Notably, the diffusion of the Inter-
net into the private sector has proceeded at enormous
pace. Not only has the number of households with Internet
access skyrocketed, but also access speed, number of users
within the household, types of uses, and mobility of access
have expanded.

In some cases, corporate use of technologies followed
private home use (e.g., for Instant Messenger and other
chat applications). Popular private applications such as
music and video downloads initially required access to large
corporate or academic networks because of capacity needs.
Such applications encouraged the increasing diffusion of
broadband into private homes.

Home and business technologies are increasingly inter-
twined because of the increasingly rapid pace of innovation.
Also, home information technology (IT) may experience
growth during times of economic slowdown because of price
decline or network effects (DVD; Internet in the early
1990s; wireless today).

Although convergence is a predominant trend, a market
for private IT applications separate from the corporate
market is evolving as well. Price decline and miniaturiza-
tion encourage the perspective of ubiquitous computing
and of a networked society.

Definitions

A range of concepts have evolved that permit the con-
ceptual separation of business/public computing services
from those related to the home or private use. One defini-
tion points to all the infrastructures and applications the
private user can take advantage of for private uses. This
definition encompasses most applications discussed in
this article, notably entertainment, information, commu-
nication, and shopping. Some other applications cross over
into the public or business realm, in particular telework
and distance learning. Although this article focuses on
services in the home, more recently miniaturization and
mobile technologies have blurred the line between home
and other locations. Mobile phones, personal digital assis-
tants (PDAs), personal entertainment technologies all are
designed to extend applications that are conveniently avail-
able in the home to any location the user chooses.

Home computing trends revolve around various house-
hold functionalities, notably entertainment, information,
purchasing, education, work, and health. During an age of
networks, these applications are often no longer merely

household related, but they require integration of home and
business technologies. A key trend observed during the
past decade has been the convergence of technologies, of
content, and of applications.

Structure of this Article

Although understanding the technological advances in
this area is important, much of the technology is derived
from corporate computing applications and adopted for
home use. Thus, this article will focus on content and usage
of home computing more so than on technical details.

This article explores key issues pertaining to home
computing products and services. In particular, it will
discuss convergence of technology and other current tech-
nological trends related to end-user devices and network-
ing. Selected services for the home will be addressed in light
of technological changes.

As the technology becomes more available and common,
concepts such as ‘‘computerized homes,’’ ‘‘Home-IT,’’ ‘‘infor-
mation society,’’ or ‘‘networked society’’ are increasingly
defined by the services with which they are associated.

The article concludes with future Home-IT trends.

DRIVERS OF TECHNOLOGY ADOPTION
IN THE PRIVATE HOME

Convergence

Convergence of technologies has a critical impact on home
computing as well as information and entertainment.
Although analog technologies generally coincided with a
limited one-on-one relationship of applications and appli-
ances, digital technologies have made it possible to per-
form multiple functions with the same piece of equipment,
which has lead to an increasing overlap between the
telecommunications, television, and consumer electronics
industries. For the user, it means that the same appliance
can be used for work-at-home, chat, children’s entertain-
ment, and online shopping or banking. Apart from techno-
logical innovation and cooperation among industry sectors,
adoption of interactive media consumption patterns by
the users is the third dimension of convergence. There is
a continuing debate as to how rapidly convergence will be
embraced by consumers. Although it has been technically
feasible for some time, convergence is seen as limited
because of demographics, lifestyle preferences, and other
factors (1). For instance, the convergence of television (TV)
and computers on the user side has not advanced as rapidly
as expected, even though streaming video of television
programming is available on the Internet, cable systems
offer ‘‘Digital Cable,’’ and cell phones have cameras that
permit instant e-mailing of pictures. Most Americans still
watch television one program at a time, even though many
rely increasingly on the Internet for news, weather, stock
market, and other information.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



However, at least on the supply side, convergence is
gradually advancing. Responding to digital satellite
competition, cable companies have enhanced the existing
fiber/coax physical plant of their systems with digital set-
top boxes and digital distribution technology. These
upgrades permit greater channel capacity, as well as inter-
active features. On-screen program guides, several dozen
pay-pv-view (PPV) channels as well as multiplexed
premium cable channels and digital music channels are
common. Digital picture, flat-screen technology, surround
sound, and high-definition television (HDTV) encourage
the trend toward home theaters. In a typical digital cable
offering interactivity is limited to two levels of information,
which can be retrieved while watching a program or
perusing the on-screen program guide; PPV ordering, as
well as selection, programming, and recording of future
programs through the on-screen guide are also inter-
active features. The systems are designed to allow for
future expansion, especially online ordering of services
as well as other purchases. Some systems offer Video on
Demand (VoD), in which users can order movies and other
videos from a large selection in a real-time setting. The
more common ‘‘in-demand’’ offerings simulate a near-VoD
experience, in which the most popular movies are available
at half-hour starting times.

Several providers experiment with interactive applica-
tions that give the viewer options beyond simply choosing a
program, including game show participation, choice of
camera angles at sports games, access to background infor-
mation for products advertised in commercials, and choice
of plot lines and endings in movies. Other interactive uses of
TV are calling up additional information on news and
sports or TV/PC multitasking. Increasingly, TV and radio
are supplemented by websites for information retrieval as
well as audience feedback and service applications (such as
buying tickets or merchandise).

In the consumer electronics sector, convergence is cur-
rently taking place both from computer companies and
from home entertainment companies. Microsoft has devel-
oped a media player that allows integration of video, audio,
photos, and even TV content, and Intel is making a sig-
nificant investment in companies creating digital consumer
products (2). On the other hand, Sharp is planning to debut
liquid crystal display (LCD) TVs with PC card slots that
enable the addition of ‘‘digital-video recording functions or
a wireless connection to a home computer network’’ (3).

User Interface: TV, PC, Phone

Much discussion of Home-IT focuses on the Internet. Inno-
vations associated with traditional media also offer con-
siderable potential, in part because all electronic media
are evolving rapidly, converging with other media, and
becoming increasingly interactive. These hybrid media
often reach the majority of the population (in some coun-
tries, a vast majority) that lacks regular, adequate Internet
access (4, 5). Also, in spite of improvements in ‘‘user friend-
liness,’’ many users see the PC as work-related, difficult to
use (requires typing), and prone to breakdowns and
viruses. PCs also tend to be outdated within a few years.

By contrast, TV sets last for decades, they are easy to use,
not prone to viruses, and are less expensive.

Worldwide, TV consumption is still the prevalent leisure
activity, mainly because of its universal, low-cost accessi-
bility and its ability to afford hours of entertainment and
information with minimal effort. Although usage patterns
are changing rapidly, for some time consumers may con-
tinue to choose TV for news and entertainment and PC for
other sources of information and electronic commerce.
Also, there seems to be a demographic pattern in that
young viewers increasingly stray away from conventional
TV news either to Internet news or entertainment/news
programs (e.g., Comedy Central). Although it is a digital
technology, the tremendously rapid adoption of the DVD
player is largely a replacement for VHS home video with
higher video quality.

Although the expectation was that video delivery would
increasingly involve home computing devices, such as com-
bination PC-TV or Web-TV and digital recording technol-
ogy such as TiVo (5), most households invest in big-screen
televisions and surround sound. TiVo was also adopted
more slowly than expected.

A third popular user interface is the telephone. As a
result of their rapid replacement cycle compared with
regular-line phones, cellular phones in particular tend to
be equipped with the latest technological gadgets. As prime
value is placed on instant ‘‘24/7’’ communication, mobile
technology epitomizes trends in personal technology. As a
result of simple use, ubiquity, and compatibility with
existing technology (i.e., the existing telephone network),
adoption and upgrading of mobile phones are rapid.
Besides regular voice use, text messaging has gained
popularity among younger users, especially in Europe
and Japan. Currently, web access is available via narrow-
band channels. However, the next generation of mobile
broadband is currently being deployed. In concert with
smartphones and wireless PDAs, broadband mobile net-
works (e.g., those based on the UMTS (Universal Mobile
Telecommunications System) standard) provide multi-
media services such as videophone or content streaming.
The first rollout in Asia started in 2003. Pricing and com-
pelling services are again key to success.

Interactive Entertainment

Content is the key to adoption of advanced interactive
services. As a result of the high visibility of movies, the
great public interest in this type of content, and their easy
availability, Movies-on-Demand was the offering of choice
for early interactive trials. Meanwhile, cable systems and
satellite providers offer near PPV with 50–100 channels
offering current movies as well as specialized (e.g., ‘‘adult’’)
programming and sports or music events.

Music, sports, and special interest programming also
have received their share of attention by the programmers
of interactive cable systems. Interactive game channels are
added to some systems. In-home gambling has strong
economic appeal; regulatory barriers prevail, however.
Anecdotal evidence suggests that participants in interac-
tive trials enjoyed watching regular TV programs they

2 HOME COMPUTING SERVICES



missed during the week, newscasts tailored to individual
preferences (6), as well as erotica.

Several television providers have experimented with
interactive applications that give the viewer options
beyond simply choosing a program, including participation
in game shows such as Wheel of Fortune and Jeopardy,
‘‘pick-the-play’’ games for Monday Night Football, ordering
pizza using Web-TV during a Star Trek marathon, access to
background information for products advertised in com-
mercials, and choice of plot lines and endings in movies.

Compared with the massive number of traditional
movies available, interactive movies are few and far
between. They are difficult to produce and require consid-
erable technology. Even most sites for Internet video pro-
vide mainly repackaged conventional programming.
Audience demand for interactivity is not yet understood.
Many children and teens feel comfortable with it because of
exposure to video and computer games; in fact, a consider-
able number of toys now include interactive components
and interface with the world wide web (WWW) (7). Most
likely the push for greater interactivity will come from
advertising, which already relies on cross-promotion
between different media including TV and Internet. As
the marketing increasingly focuses on individualization,
the ability to provide targeted advertising even within the
same program is likely to have great appeal to advertisers.
Also, because commercial avoidance is increasingly com-
mon, the push for product placement within programs may
also lead to increasingly individualized product inserts.

Broadcast television stations are expanding their
channel offerings as a result of conversion to HDTV and
the resulting availability of greater channel capacity.
However, the expectation is that they will, at least initially,
offer greater selection and targeting rather than actual
interactivity.

The Digital Home

The ultimate interactive experience may involve a home
that is equipped with technology that can respond to the
residents’ needs. Smart house technology typically is devel-
oped for high-end or special needs homes, and these tech-
nologies filter down into existing and mid-level homes.
Some smart-house solutions for the elderly use the TV
set as an interface for appliance control and surveillance.
A key feature of future smart-house technology is the
ability of various appliances to ‘‘talk to the Internet and
to each other’’ (8), which allows a maximum of control by the
user, as well as coordination of technologies. In the long
run, shifting control onto the Web could generate consider-
able cost savings by reducing the complexity of the technol-
ogy within each device.

Especially home networking technologies such as the
European EIBus or the US-led CEBus enable the inter-
connection of different household devices such as heating,
shades, or lighting. In addition, wireless local area net-
works (LANs) are gaining ground in the private sphere,
connecting IT devices. Eventually, audio/video, PC, and
other household networks will converge (9,10) .

Although many such technologies are available, they
have not been adopted on a broad scale. However, one

might expect that demographic trends will drive such
adoption: Aging baby boomers have an increased need
for home-based conveniences and efficiencies; young
home buyers have grown up with network technologies
and may expect a high level of technology in their
future homes. Also, elderly family members need in-
creased attention, which may be facilitated via available
technologies.

However, services to be delivered to the home not only
require in-home technologies. Service providers such as
banks or media firms need to prepare back-end infra-
structures such as fault-tolerant servers, load-balancing
access pipes, and real-time databases with information
on availability or price quotes. Those out-of-home infra-
structures are connected to the home via networks such as
cable, telephone, powerline, or wireless connections.

SERVICES FOR THE HOME

Media attention has been focused on innovative infra-
structures for the residential area such as wireless LAN
in the home or broadband connections to the Internet.

However, the private household, even more than a
corporate user, is interested in the application side (i.e.,
an easy-to-use, reasonably-priced, and fun service provi-
sion). Many applications exist in reality, yet they provide a
quite unstructured picture.

Kolbe (11) proposed a classification scheme for ana-
lyzing and describing the respective classes of home appli-
cations in existence. According to Brenner and Kolbe (12),
there are eight main services for the private household
that can be supported by IT (see Fig. 1):

The basic services ‘‘information’’ and ‘‘communication’’
take mutual advantage of each other: There is no com-
munication possible without at least basic information
provided on one end, sometimes referred to as message
or content. In turn, information needs to be conveyed in
order to provide any benefit. For example, any news story
posted by an Internet portal is meant as ‘‘communicating

Core services:  

Information  •  

Communication  •  

Home services:  

Health  •  

Home services  •  

Travel  •  

Transactions  •  

Entertainment • 

Education • 

Figure 1. IT-influenced services for of the private household.

HOME COMPUTING SERVICES 3



information’’ to the (anonymous or personalized) users of
that portal.

They are referred to as core services whereas the other
ones are looked on as primary home services because they
are based on information and communication features.
Nevertheless, ‘‘communication’’ and ‘‘information’’ are
described separately as some services exclusively provide
bilateral or multilateral information (e.g., electronic books,
news) or communication (e.g., e-mail, short message service
(SMS)) benefits. Market revenues are most substantial
in those basic areas.

Miles (13) and others (10) after him observed that more
and more aspects of private life are affected by home
services. We can differentiate three forms of usage accord-
ing to the degree of networking. Prior to widespread
networking, stand-alone applications such as an electronic
encyclopedia or a game on a PC were common. The next step
is locally interconnected applications within the confines of
the private home such as entertainment networks for
home cinema applications or controlling the heating via
TV or PC. The third form is the out-of-the-home connected
applications such as applications using the Internet for
e-mail or shopping as well as remote monitoring services.
All services can be structured a long these three areas.

In practice, these types of services are used in conjunc-
tion with each other, for example, during activities on
the Internet the household seeks weather information
(information and travel) for air travel via a portal or a price
comparison for airfares (travel), then executes the
purchase (transactions) using a travel portal and then
pays online using a credit card (transactions), and finally
gets an e-mail or mobile message confirmation of this
order (communication). Another example is the ‘Info- or
Edutainment’ area that unites information, entertain-
ment, and education aspects (e.g., in interactive multime-
dia encyclopedias or electronic learning toys for children).

Work, transaction, and private aspects of life are con-
verging as are technologies and applications. In some
instances, private and business usage is almost indistin-
guishable (e.g., the use of an Internet portal or some smart
phone features). Therefore, some of the services described
below may also provide business value as selective busi-
ness applications benefit the private user, especially in a
home office environment.

Core Services

Information. Information is offered by all services in
which the dissemination of information to the private
household is central. Information provides the basis for
more complex service types to be discussed later.

The following residential applications fall into this
category:

� News portals providing up-to-date coverage such as
news or weather information. Together with search
capabilities, they provide access to the vast resources
of the Internet to the private user. Interactive TV and
multimedia broadband networks are prerequisites for
customized individual news services that compile one’s
own newspaper on personal preferences and interests

like sports or stock exchange news as examined by
MIT’s Media Lab.

� Electronic books and newspapers such as the electro-
nic version of the New York, Times, which is available
online for a fraction of the newsstand price. Electronic
books with portable e-book players are one of the most
notable examples for pure information. Encyclopedias,
magazines, dictionaries, or special topics are available
on different formats for proprietary players. Hyperlink
functionality, connectivity to video printers, and find-
and-select algorithms are advantages that traditional
books do not share.

� Push services of events and product news: Mobile
marketing is gaining ground fast. The latest research
in Finland shows that 23% of all mobile-phone-using
Finns (80% of all Finns) have received SMS push
marketing (14).

� Information kiosks, which provide basic information
for travelers or shoppers.

Communication. Communication enables the private
household to establish bilateral or multilateral contact
with the immediate or extended environment. This core
service provides information as the basis for a variety of
further services. However, communication as a basic need
of users is evident in the residential home. Traditional
media like telephone and fax have been complemented
by innovative media such as e-mail or mobile communica-
tions, both text and voice.

SMS has achieved near 80% usage rates in some
European countries, and SMS advertising has exploded.
Mobile text messages generate a substantial part of telecom
operators’ revenue. In Europe, SMS revenues were at 12
billion Euros for 2002 (15).

Mobile phone users in the United Kingdom sent over one
billion text messages during April 2002. The Mobile Data
Association predicts that the total number of text messages
for 2002 will reach 16 billion by the end of the year (16).

Home Services

Health. Health refers to all applications concerned with
making provision for, maintaining, and monitoring the
health of a person or social group.

Related services in the area are:

� Telemedicine with patient monitoring (surveillance
of vital signs outside the hospital setting) and mon-
itoring of dosage (including real-time adjustment
based on the patient’s response). Wireless sensors
can be attached to the body and send signals to
measurement equipment. They are popular in
countries with widely dispersed populations (e.g.,
Norway) and increasingly developing countries.

� Electronic fitness devices that support training and
wellness of the private user.

� Health-related websites.

Health applications for today’s household are very
limited in its range. In some countries, smart cards carry

4 HOME COMPUTING SERVICES



patients’ data for billing and insurance companies or
health consultancy software for private diagnosis and
information about certain diseases. In the future, expert
systems will enable medical advice from each home without
leaving the private bed.

Home Services. Home services consist of systems that
support home security, safety, meal preparation, heating,
cooling, lighting, and laundry.

Currently, home services comprise only special devices
such as those in a networked kitchen. Future scenarios
project comprehensive home automation with intercon-
nected kitchen appliances, audio and video electronics,
and other systems like heating or laundry. Some proto-
types by the German company Miele (called Miele @ home)
showed early in the development of ‘‘smart homes’’ that
the TV can control the washing machine. The intercon-
nection to out-of-home cable TV or telephone networks
leads to the remote control services (e.g., security). Much
media attention was received by the Internet refrigerator
by NCR, which orders needed groceries without human
interaction.

Key areas comprise:

� Central control of heating or air conditioning from
home computer or TV.

� Lighting, shutters, and temperature control.

� Remote monitoring of home devices for security, laun-
dry, refrigeration, or cooking.

Intelligent clothing and wearable computing are seen as
emerging areas.

Travel. Travel includes all applications that support the
selection, preparation, and undertaking of journeys. Travel
applications make the central booking information systems
for hotel or flight reservation accessible to the residential
user. Individual preferences provide a search pattern for
finding the places of interest. Future visions includes inter-
active, multimedia booking from the TV chair via broad-
band network with instant acknowledgements.

Main focus areas are:

� Travel planning on the Internet ranges from planning
the entire trip via travel portals Travelocity or Expedia
to selected information on public transportation or
plane departures. These travel data can also be pushed
to mobile devices or delivered according to the geo-
graphic position of the user.

� Automotive services. Increasingly, the car becomes
an entertainment and information center with com-
plete audio and video system. In addition, global
positioning functionality helps planning and under-
taking trips.

� Ticketless travel, such as e-ticket of airlines and
ticketless boarding with contactless smart cards.

Transactions. Transactions combine all the administra-
tive services and transactions, such as shopping and bank-
ing, of the private household.

The main applications of administration, e-banking,
and e-shopping are applications serving ‘‘traditional’’
functions (17). Those services help the home to fulfill
necessary administrative obligations with more efficiency
and ease.

Using the PC and Internet connection, the private user
can perform his bank business or order certain merchan-
dise. Today’s services (e.g., management of payments) will
extend to a broader range (e.g., complete investment and
mortgage affairs).

Of particular importance are the following transaction-
oriented services:

� Electronic execution of administrative activities such
as monitoring the household’s budget with spread-
sheets or planning software such as Quicken.

� Using personal information management (PIM) soft-
ware such as scheduling, personal address book, or
task lists, often provided in combination with PDAs
or smart phone software.

� Deployment of productivity tools such as word proces-
sing, presentations, or spreadsheets for private letters,
invitations, or planning purposes.

� Electronic banking and investing is the main service
in this category. Although the focus is still on well-
structured transactions such as payments (e.g., elec-
tronic bill presentment and payment (EBPP)), more
complex tasks such as investment advice and research
is delivered to private banking clients.

In Switzerland, more than 50% of all private bank-
ing clients use the Internet for banking. Overall, 13%
of all brokerage transactions and 26% of all payments
are done via e-banking. Financial information is also
accessed by the households. The big Swiss bank, UBS,
lists prices of more than 370,000 stocks. Alerts can be
sent to a mobile device. Some banks offer mobile bank-
ing services that resemble the features of the Internet
offering.

� Shopping on the Internet has become an important
service. Although purchases focus on standardized
products, everything from furniture to groceries is
available. The percentage of online purchases relative
to total shopping revenue remains at moderate levels
but is gradually increasing. The 2003 Christmas
season experienced a strong increase in Internet
sales: 18 billion (out of 217.4 billion total sales), up
from 13.8 billion in the last quarter of 2002. More
importantly, many retailers have offered a seamless
shopping experience of catalogs, Internet, and stores
(18). Especially auctions like eBay have received
much attention from the private user: Amazon.com,
a Fortune 500 company based in Seattle, opened its
virtual doors on the World Wide Web in July 1995.
Amazon.com and other sellers list millions of unique
new and used items in categories such as apparel and
accessories, sporting goods, electronics, computers,
kitchenware and housewares, books, music, DVDs,
videos, cameras and photo items, toys, baby items
and baby registry, software, computer and video
games, cell phones and service, tools and hardware,

HOME COMPUTING SERVICES 5



travel services, magazine subscriptions, and outdoor
living items.

Entertainment. Entertainment includes those applica-
tions that can be used for leisure activities or for the
purpose of entertaining household members.

Particular areas of entertainment services are:

� Home cinema with digital surround audio and home
media server that connect flat plasma or LCD-TVs,
audio systems, and multimedia PC environments with
the Internet. In 2003, U.S. DVD sales surpassed video-
tape figures for the first time.

� On-demand digital TV with hundreds of channels of
audio and video content.

Type of  
service 

Status quo  Service area  
2004 

Scenario 2010  Scenario 2007  

C ORE  
SERVICES 

Information  Electronic 
books, news  
portals 

Fully electronic  
newspaper 
based on  
personalized 
profile 

Electronic 
newspaper on e- 
paper 

Communication    Home-fax and  
mobile digital  
telephone 

E-mail from 
every mobile  
device 

Worldwide 
multimedia video  
communications 

H OME  
SERVICES 

Health Consultancy 
software 

Interactive,  
remote health  
services  

Medicinal 
diagnostics at  
home by expert  
systems  

Home services    Only special  
interconnected 
household 
technologies, no  
standards, 
remote 
monitoring 

Increased home  
automation via  
standard 
interfaces, 
entertainment 
and home  
services  
converge 

All household  
equipment 
networked to in-  
and out-of-home  
devices, the  
“wired” home  

Travel    Travel portals,  
complete  
journey booking  
from home,  
GPS services  

Intelligent 
guiding services  
for cars,  
location-based 
services,  
Internet access  
in cars  

Automatic driving  
services, fully  
telematic  
information for  
the car  

Transactions    Home shopping 
over the Internet 

Integration of  
‘clicks and  
bricks’ 

Multimedia 
home shopping 
also for complex  
products 

Virtual electronic  
shopping mall  

Home-banking 
for selected  
transactions 

Home-banking 
for all activities  

Multimedia 
banking, 
cybercash  

Entertainment    One way pay- 
TV, interactivity  
via telephone  
lines 

Pay-per-view,  
limited number  
of services  

Fully 
communicative  
TV (personal  
influence on  
action) and  
Video-on- 
demand 

Education    Computer 
Based Training  
software or  
Internet 
offerings 

Distant 
multimedia 
learning at  
home, public  
electronic 
libraries 

Individual virtual  
teachers using  
artificial  
intelligence and  
virtual reality  
simulations 

Figure 2. The evolution of home computing services.

6 HOME COMPUTING SERVICES



� Games and gambling both via the Internet and mobile
networks and in electronic stand-alone devices such as
game boys and gambling machines.

� Digital toys such as Sony’s smart dog or Lego’s
Mindstorms programmable brick sets developed in
collaboration with MIT’s MediaLab. Here, a close rela-
tionship to the learning component is evident.

� Using multimedia devices such as digital video cam-
eras or digital photography in combination with home
PCs and video authoring software for creating multi-
media shows at home.

� Free and premium Internet radio with endless options
of genres and downloadable music on portable devices
such as MP3 players or smartphones.

� Adult content.

Education. Education refers to all applications that
train and educate members of the household in special
skills or knowledge. In an increasingly dynamic private
environment, this function will gain in importance.

Distance Learning (DL) is frequently a self-selected
activity for students with work and family commitments.
Effects of social isolation should thus be limited. For
instance, DL can facilitate daycare arrangements. In
some circumstances, exclusion from the social network of
the face-to-face classroom can be one of the drawbacks
of DL (21). The private household uses this type of
‘‘education’’ for the training of special skills it is inter-
ested in using off-line computer-based training (CBT) soft-
ware on CD-ROM or DVD to improve, for example, on a
foreign language for the next holiday abroad or naval rules
in order to pass the sailing exam. In addition, electronic
accessible libraries and content on the Internet open the
field for self-education processes to the private area. The
usage artificial intelligence will substitute human teachers
as far as possible and make them more efficient for special
tasks. Virtual reality will help by visualization and demon-
stration of complex issues. Increasingly, colleges and uni-
versities offer DL classes based on strong demand from
traditional and nontraditional students. Besides the added
flexibility and benefit for students who are reluctant to
speak up in class, DL benefits those students living far from
the place of instruction. Dholakia et al. (22) found
that DL has the potential to reduce or modify student
commutes.

OUTLOOK

Figure 2 summarizesthehomeservicesandshowssomeofthe
expected developments for the next several years. It sum-
marizes three possible scenarios (status quo 2004, scenario
2007, and scenario 2010) based on the assessment of past,
current, and future trends, and developments of services.

BIBLIOGRAPHY

1. H. Stipp, Should TV marry PC? American Demographics,
July 1998, pp. 16–21.

2. Computer companies muscle into field of consumer electronics
Providence Sunday Journal, January 11, 2004, 15.

3. Consumer electronics show is packed with Jetson-style
gadgets Providence Journal, January 10, 2004, B1,8.

4. F. Cairncross, The Death of Distance, Boston, MA: Harvard
Business School Press, 1997.

5. E. Schonfeld, Don’t just sit there, do something. E-company,
2000, pp. 155–164.

6. Time Warner is pulling the plug on a visionary foray into
Interactive TV, Providence Journal, May 11, 1997, A17.

7. N. Lockwood Tooher, The next big thing: Interactivity, Provi-
dence Journal, February 14, 2000, A1, 7.

8. S. Levy, The new digital galaxy, Newsweek, May 31, 1999,57–63.

9. B. Lee, Personal Technology, in Red Herring, 119, 56–57, 2002.

10. A. Higgins, Jetsons, Here we come!, in Machine Design, 75 (7):
52–53, 2003.

11. L. Kolbe, Informationstechnik für den privaten Haushalt
(Information Technology for the Private Household), Heidel-
berg: Physica, 1997.

12. W. Brenner and L. Kolbe, Information processing in the
private household, in Telemat. Informat.12 (2): 97–110, 1995.

13. I. Miles, Home Informatics, Information Technology and the
Transformation of Everyday Life, London, 1988.

14. A. T. Kearney, Cambridge business school mobile commerce
study 2002. Available: http://www.atkearney.com/main.
taf?p=1,5,1,106. Jan. 10. 2004.

15. Economist 2001: Looking for the pot of gold, in Economist,
Special supplement: The Internet, untethered, October 13,
2001, 11–14.

16. O. Jüptner, Over five billion text messages sent in UK. Avail-
able: http://www.e-gateway.net/infoarea/news/news.cfm?nid=
2415. January 9, 2003.

17. Jupiter Communications Company, Consumer Information
Appliance, 5 (2): 2–23, 1994.

18. P. Grimaldi, Net Retailers have season of success. Providence
Journal, December 27, 2003, B1, 2.

19. J. Lee, An end-user perspective on file-sharing systems, in
Communications of the ACM, 46 (2): 49–53, 2003.

20. Mundorf, Distance learning and mobility, in IFMO, Institut für
Mobilitätsforschung Auswirkungen der virtuellen Mobilität
(Effects of virtual mobility), 2004, pp. 257–272.

21. N. Dholakia, N. Mundorf, R. R. Dholakia, and J. J. Xiao,
Interactions of transportation and telecommunications
behaviors, University of Rhode Island Transportation Center
Research Report 536111.

FURTHER READING

N. Mundorf and P. Zoche, Nutzer, private Haushalte und Infor-
mationstechnik, in P. Zoche (ed.), Herausforderungen für die
Informationstechnik, Heidelberg 1994, pp. 61–69.

A. Reinhardt, Building the data highway, in Byte International
Edition, March 1994, pp. 46–74.

F. Van Rijn and R. Williams, Concerning home telematics, Proc.
IFIP TC 9, 1988.

NORBERT MUNDORF

University of Rhode Island
Kingston, Rhode Island

LUTZ KOLBE

HOME COMPUTING SERVICES 7



R

REMOTE SENSING INFORMATION
PROCESSING

INTRODUCTION

With the rapid advance of sensors for remote sensing,
including radar, microwave, multispectral, hyperspectral,
infrared sensors, and so on the amount of data available
has increased dramatically from which detailed or specific
information must be extracted. Information processing,
which makes extensive use of powerful computers and
techniques in computer science and engineering, has played
a key role in remote sensing. In this article, we will review
some major topics on information processing, including
image processing and segmentation, pattern recognition
and neural networks, data and information fusion,
knowledge-based system, image mining, image compres-
sion, and so on. References (1–5) provide some useful refer-
ences on information processing in remote sensing.

In remote sensing, the large amount of data makes it
necessary to perform some type of transforms that pre-
serve the essential information while considerably redu-
cing the amount of data. In fact, most remote sensing image
data are redundant, correlated, and noisy. Transform
methods can help in three ways: by effective data repre-
sentation, effective feature extraction, and effective image
compression. Component analysis is key to transform
methods. Both principal component analysis and inde-
pendent component analysis will be examined for remote
sensing.

IMAGE PROCESSING AND IMAGE SEGMENTATION

The motivation to enhance the noisy images sent back
from satellites in the early 1960s has had significant
impact on subsequent progress in digital image proces-
sing. For example, digital filtering such as Wiener filter-
ing allows us to restore the original image from its noisy
versions. Some new image processing, such as wavelet
transforms and morphological methods, have been useful
in remote sensing images. One important activity in
remote sensing is the speckle reduction of SAR (synthetic
aperture radar) images. Speckles appearing in SAR
images is caused by the coherent interference of waves
reflected from many elementary scatters. The statistics
of SAR speckle has been well studied (6). Over a 100
articles have been published on techniques to remove
the speckles. One of the most well-known techniques
is the Lee’s filter, which makes use of the local statistics
(7). More recent studies of the subject are reported in
Refs. 8 and 9.

Image restoration in remote sensing is required to
remove the effects of atmospheric and other interference,
as well as the noises presented by the sensors. A good

example is the restoration of images from the Hubble Space
Telescope.

Image segmentation attempts to define the regions
and boundaries of the regions. Techniques are developed
that preserve the edges and smooth out the individual
regions. Image segmentation may involve pixel-by-pixel
classification, which often requires using pixels of known
classification for training. Segmentation may also involve
region growing, which is essentially unsupervised. A good
example is to extract precisely the lake region of Lake
Mulargias on the island of Sardinia in Italy (10). The
original image is shown in Fig. 1a. The segmentation result
is shown in Fig.1b, for which the exact size of the lake can
be determined. For land-based remote sensing images,
pixel-by-pixel classification allows us to determine pre-
cisely the area covered by each crop and to assess the
changes from one month to the next during the growing
season. Similarly, flood damage can be determined from
the satellite images. These examples are among the many
applications of image segmentation.

PATTERN RECOGNITION AND NEURAL NETWORKS

A major topic in pattern recognition is feature extraction.
An excellent discussion of feature extraction and selection
problem in remote sensing with multispectral and hyper-
spectral images is given by Landgrebe (5). In remote
sensing, features are usually taken from the measure-
ments of spectral bands, which this means 6 to 8 features
in multispectral data, but a feature vector dimension of
several hundred in hyperspectral image data. With a lim-
ited number of training samples, increasing the feature
dimension in hyperspectral images may actually degrade
the classification performance, which is referred to as the
Hughes phenomenon. Reference (5) presents procedures to
reduce such phenomena. Neural networks have found
many uses in remote sensing, especially with pattern clas-
sification. The back-propagation trained network, the
radial basis function network, and the support vector
machine are the three best-performing neural networks
for classification. A good discussion on statistical and
neural network methods in remote sensing classification
is contained in Ref. 11 as well as many other articles that
appear in Refs. 3, 4, and 12. A major advantage of neural
networks is that learning is from the training data only,
and no assumption of the data model such as probability
density is required. Also, it has been found that combin-
ing two neural network classifiers such as combining
SOM, the self-organizing map, with a radial basis function
network can achieve better classification than either one
used alone (13).

One problem that is fairly unique and significant to
remote sensing image recognition is the use of contextual
information in pattern recognition. In remote sensing

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



image data, there is a large amount of contextual infor-
mation that must be used to improve the classification.
The usual procedure for contextual pattern recognition is
to work with image models that exploit the contextual
dependence. Markov random field models are the most
popular, and with only a slightly increased amount of
computation, classification performance can be improved
with the use of such models (2,4,12).

Another pattern recognition topic is the change detec-
tion. The chapters by Serpico and Bruzzone (14) and Moser
et al.(15) are recommended reading.

DATA FUSION AND KNOWLEDGE-BASED SYSTEMS

In remote sensing, there are often data from several sensors
or sources. There is no optimum or well-accepted approach
to the problem. Approaches can range from more theoretic,
like consensus theory (16), to fuzzy logic, neural networks,
multistrategy learning to fairly ad hoc techniques in some
knowledge-based system to combine or merge information
from different sources. In some cases, fusion at decision
level can be more effective than fusion at data or feature
level, but the other way can be true in other cases. Readers
are referred to chapters by Solaiman (17), Benediktsson
and Kanellopoulos (18), and Binaghi et al. (19) for detailed
discussion.

IMAGE MINING, IMAGE COMPRESSION,
AND WAVELET ANALYSIS

To extract certain desired information from a large remote
sensing image database, we have the problem of data
mining. For remote sensing images, Aksoy et al. (20) des-
cribe a probabilistic visual grammar to automatically
analyze complex query scenarios using spatial relation-
ships of regions, and to use it for content-based image
retrieval and classification. Their hierarchical scene mod-
eling bridges the gap between feature extraction and

semantic interpretation. For image compression of hyper-
spectral images, Qian et al. (21) provide a survey of major
approaches including vector quantization, discrete cosine
transform and wavelet transform, and so on. A more com-
prehensive survey of remote sensing image compression is
provided by Aiazzi et al.(22). Besides its important cap-
ability in image compression, wavelet transform has a
major application in de-noising SAR images (23). The
wavelet analysis of SAR images can also be used for
near-real-time ‘‘quick look’’ screening of satellite data,
data reduction, and edge linking (24).

COMPONENT ANALYSIS

Transform methods are often employed in remote sens-
ing. A key to the transform methods is the component
analysis, which, in general, is the subspace analysis. In
remote sensing, component analysis includes the principal
component analysis (PCA), curvilinear component analysis
(CCA), and independent component analysis (ICA). The
three component analysis methods are different concep-
tually. PCA is to look for the principal components accord-
ing to the second-order statistics. CCA performs nonlinear
feature space transformation while trying to preserve as
much as possible the original data information in the
lower-dimensional space see Ref. 25. ICA looks for
independent components from the original data assumed
to be linearly mixed from several independent sources.
Nonlinear PCA that makes use of the higher-order statis-
tical information (26) can provide an improvement over the
linear PCA that employs only the second-order covariance
information.

ICA is a useful extension of the traditional PCA.
Whereas PCA attempts to decorrelate the components in
a vector, ICA methods are to make the components as
independent as possible. There are currently many
approaches available for ICA (27). ICA applications in
remote sensing study have become a new topic in recent

Figure 1. Original image of Lake
Mulargias region in Italy (A) and
the result of region growing to
extract the lake area (B).

2 REMOTE SENSING INFORMATION PROCESSING



years. S. Chiang et al. employed ICA in AVIRIS (airborne
visible infrared imaging spectrometer) data analysis (28).
T. Tu used a noise-adjusted version of fast independent
component analysis (NAFICA) for unsupervised signature
extraction and separation in hyperspectral images (29).
With remote sensing in mind, we developed a new (ICA)
method that makes use of the higher-order statistics The
work is quite different from that of Cardoso (30). We name it
the joint cumulant ICA (JC-ICA) algorithm (31,32). It can
be implemented efficiently by a neural network. Experi-
mental evidence (31) shows that, for the SAR image pixel
classification, a small subset of ICA features perform a few
percentage points better than the use of original data or
PCA as features. The significant component images
obtained by ICA have less speckle noise and are more
informative. Furthermore, for hyperspectral images, ICA
can be useful for selecting or reconfiguring spectral bands
so that the desired objects in the images may be enhanced
(32). Figures. 2 and 3 show, respectively, an original
AVIRIS image and the enhanced image using the JC-
ICA approach. The latter has more desired details.

CONCLUSION

In this article, an overview is presented of a number of
topics and issues on information processing for remote
sensing. One common theme is the effective use of comput-
ing power to extract the desired information from the large
amount of data. The progress in computer science and
engineering certainly presents many new and improved
procedures for information processing in remote sensing.

BIBLIOGRAPHY

1. J. A. Richard and X. Jin, Remote sensing digital image analy-
sis, 3rd ed., New York: Springer, 1991.

2. R. A. Schowengerdt, Remote sensing: Models and methods for
image processing, New York: Academic Press, 1977.

3. C. H. Chen (ed.), Information processing for remote sensing,
Singapore: World Scientific Publishing, 1999.

4. C. H. Chen (ed.), Frontiers of remote sensing information
processing, Singapore, World Scientific Publishing, 2003.

5. D. Landgrebe, Signal theory methods in multispectral remote
sensing, New York: Wiley, 2003.

6. J. S. Lee, et al., Speckle filtering of synthetic aperture radar
images: a review, Remote Sens. Rev., 8: 313–340, 1994.

7. J. S. Lee, Digital image enhancement and noise filtering by use
of local statistics, IEEE Trans. Pattern Anal. Machine Intell.,
2(2): 165–168, 1980.

8. J. S. Lee, Speckle suppression and analysis for synthetic
aperture radar images, Op. Eng.,25(5): 636–643, 1996.

9. J. S. Lee and M. Grunes, Polarimetric SAR speckle filtering and
terrain classification-an overview, in C. H. Chen (ed.), Infor-
mation processing for remote sensing, Singapore: World Scien-
tific Publishing, 1999.

10. P. Ho and C. H. Chen, On the ARMA model based region
growing method for extracting lake region in a remote sensing
image, SPIE Proc., Sept. 2003.

11. J. A. Benediktsson, On statistical and neural network pattern
recognition methods for remote sensing applications, in C. H.
Chen et al. (eds.), Handbook of Pattern Recognition and
Compter Vision, 2nd ed., (ed.) Singapore: World Scientific
Publishing, 1999.

12. E. Binaghi, P. Brivio, and S. B. Serpico, (eds.), Geospatial
Pattern Recognition, Research Signpost, 2002.

Figure 3. Enhanced image using JC-ICA.

Figure 2. An AVIRIS image of Moffett field.

REMOTE SENSING INFORMATION PROCESSING 3



13. C. H. Chen and B. Sherestha, Classification of multi-source
remote sensing images using self-organizing feature map and
radial basis function networks, Proc. of IGARSS 2000.

14. S. B. Serpico and L. Bruzzone, Change detection, in C. H. Chen
(ed.), Information processing for remote sensing, Singapore:
World Scientific Publishing, 1999.

15. G. Moser, F. Melgani and S. B. Serpico, Advances in unsuper-
vised change detection, Chapter 18 in C. H. Chen (ed.),
Frontiers of remote sensing information processing, Singapore:
World Scientific Publishing, 2003.

16. J. A. Benediktsson and P. H. Swain, Consensus theoretic
classification methods, IEEE Trans. Syst. Man Cybernet.,
22(4): 688–704, 1992.

17. B. Solaiman, Information fusion for multispectral image
classificatin post processing, in C. H. Chen (ed.), Information
processing for remote sensing, Singapore: World Scientific
Publishing, 1999.

18. J. A. Benediktsson and I. Kanellopoulos, Information extrac-
tion based on multisensor data fusion and neural networks, in
C. H. Chen (ed.), Information processing for remote sensing,
Singapore: World Scientific Publishing, 1999.

19. E. Binaghi, et al., Approximate reasoning and multistrategy
learning for multisource remote sensing daa interpretation, in
C. H. Chen (ed.), Information processing for remote sensing,
Singapore: World Scientific Publishing, 1999.

20. S. Aksoy, et al., Scene modeling and image mining with a visual
grammar, Chapter 3 in C. H. Chen (ed.), Frontiers of remote
sensing information processing, Singapore, World Scientific
Publishing, 2003.

21. S. Qian and A. B. Hollinger, Lossy data compression of
3-dimensional hyperspectral imagery, in C. H. Chen (ed.),
Information processing for remote sensing, Singapore: World
Scientific Publishing, 1999.

22. B. Aiazzi, et al., Near-lossless compression of remote-sensing
data, Chapter 23 in C. H. Chen (ed.), Frontiers of remote
sensing information processing, Singapore, World Scientific
Publishing, 2003.

23. H. Xie, et al., Wavelet-based SAR speckle filters, Chapter 8 in
C. H. Chen (ed.), Frontiers of remote sensing information
processing, Singapore, World Scientific Publishing, 2003.

24. A. Liu, et al., Wavelet analysis of satellite images in ocean
applications, Chapter 7 in C. H. Chen (ed.), Frontiers of remote
sensing information processing, Singapore, World Scientific
Publishing, 2003.

25. M. Lennon, G. Mercier, and M. C. Mouchot, Curvilinear com-
ponent analysis for nonlinear dimensionality reduction of
hyperspectral images, SPIE Remote Sensing Symposium Con-
ference 4541, Image and Signal Processing for Remote Sensing
VII, Toulouse, France, 2001.

26. E. Oja, The nonlinear PCA learning rule in independent com-
ponent analysis, Neurocomputing, 17(1): 1997.

27. A. Hyvarinen, J. Karhunen, and E. Oja, Independent Compo-
nent Analysis, New York: Wiley, 2001.

28. S. Chiang, et al., Unsupervised hyperspectral image analysis
using independent component analysis, Proc. of IGARSS 2000,
Hawaii, 2000.

29. T. Tu, Unsupervised signature extraction and separation in
hyperspectral images: A noise-adjusted fast independent com-
ponent analysis approach, Opt. Eng., 39: 2000.

30. J. Cardoso, High-order contrasts for independent component
analysis, Neural Comput., 11: 157–192, 1999.

31. X. Zhang and C. H. Chen, A new independent component
analysis (ICA) method and its application to remote sensing
images, J. VLSI Signal Proc., 37 (2/3): 2004.

32. X. Zhang and C. H. Chen, On a new independent component
analysis (ICA) method using higher order statistics with
application to remote sensing image, Opt. Eng., July 2002.

C. H. CHEN

University of Massachusetts,
Dartmouth

North Dartmouth, Massachusetts

4 REMOTE SENSING INFORMATION PROCESSING



R

ROBOT KINEMATICS

INTRODUCTION

Robot kinematics is the study of the motion (kinematics) of
robots. In a kinematic analysis the position, the velocity
and acceleration of all links are calculated with respect to a
fixed reference coordinate system without regard to the
forces or moments that cause the motion. The relationship
between motion and the associated forces and torques is
studied in robot dynamics. Robot kinematics mainly
includes two components: forward kinematics and inverse
kinematics.

Forward kinematics is also known as direct kine-
matics. Forward kinematics is the static geometrical
problem of computing the position and orientation of
the end-effector of the manipulator. Specifically, given
a set of joint motion, the forward kinematics problem is to
compute the position and orientation of the tool frame
relative to the base frame.

In inverse kinematics, given the position and orientation
of the end-effector of the manipulator, all possible sets of
joint motion are calculated that could be used to attain this
given position and orientation. This issue is a fundamental
problem in the practical use of manipulators.

From the viewpoint of robot mechanism, robots can be
divided into two types, which are called serial robots and
pareller robots. Serial robots are the most widely used
robots in the industry. They can be observed throughout
the manufacturing industry, as well as in automotive,
aerospace, and commercial use. Serial robots can be man-
ufactured for multiple operations that range from material
processing operations to assembly operations. Serial
manipulators are modeled and designed as anthropo-
morphic mechanical arms. Depending on the application,
it can be outfitted with revolute and prismatic joints. This
type of robot has what is called an open kinematic, chain
which can be classified as either Articulated or Cartesian
robots.

The parallel manipulators have some significant advan-
tages over the conventional serial manipulators, such as
more rigidity, accuracy, and high-force/torque capacity.
They also have simpler inverse kinematics, which is an
advantage in real-time control. They have been used in
situations in which the demand on workspace and maneu-
verability is low but the dynamic loading is severe, and
high-speed and precision motions are of primary concern.
Recently, parallel manipulators have been developed for
applications in aircraft simulators (1), telescopes (2), posi-
tioning trackers (3), micro-motion devices (4), and machine
tools (5–8). However, because the theories and technologies
for parallel manipulators are premature, most parallel
manipulators that exist today are high-cost machines
that provide less accuracy than conventional machines.
Therefore, additional exploration is required to make par-
allel manipulators more attractive to the industry (9).

In this article, the basic mathematical concepts, includ-
ing translational coordinate transformation, rotational
coordinate transformation, and homogeneous transfor-
mation, are introduced in the section entitled Mathema-
tical Fundamentals. The section on solving kinematics
equation presents kinematics equation of robot manipu-
lator focusing on the solution of the posture of joints
and manipulator. The case study examines the kine-
matics analysis of a 3DOF parallel manipulator used for
machining application. The last section concludes the
article.

MATHEMATICAL FUNDAMENTALS

To explain the relationship between parts, tools, and manip-
ulators, some concepts as position vector, plane, and coor-
dinate frame should be used (10).

Presentation of Posture

The motion of robots can be described by its position and
orientation, which is called its posture. Once the reference
coordinate system has been built, any point in space can be
expressed by one (3� 1) vector. To an orthogonal coordinate
system fOa � xayazag, any point p in the space can be
written as follows:

ap ¼
px

py

pz

2
4

3
5 ð1Þ

where px, py, pz denote the components of the vector p
along the coordinate axis xa, ya, za, respectively. Here, p is
called a position vector, which is shown in Fig. 1.

To research the motion and operation of robots, the
expression of position and the orientation are needed. To
prescribe the orientation of point b, one must assume an
orthogonal coordinate system fOb � xbybzbg is attached to
the point. Here, xb; yb; zb denote the unit vectors of the
coordinate axes. With respect to the reference coordinate
system fOa � xayazag, the orientation of point b is expressed
as follows:

a
bR ¼ ½ axb

ayb
azb � ¼

r11 r12 r13

r21 r22 r23

r31 r32 r33

2
4

3
5 ð2Þ

where a
bR is called the rotation matrix. a

bR has nine elements
in total, but only three of them are independent. The follow-
ing constraint conditions should be satisfied by the nine
elements:

axb �
axb ¼

ayb �
ayb ¼

azb �
azb ¼ 1 ð3Þ

axb �
ayb ¼

ayb �
azb ¼

azb �
axb ¼ 0 ð4Þ

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.
Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



It can be concluded it the rotation matrix a
bR is orthogonal,

and the following condition should be satisfied:

a
bR�1 ¼ a

bRT; jabRj ¼ 1 ð5Þ

The rotation matrix with respect to the rotation trans-
formation by an angle � about the axis x; y; z, respectively
can be calculated as follows:

Rðx; �Þ ¼
1 0 0
0 c� �s�
0 s� c�

2
4

3
5 ð6Þ

Rð y; �Þ ¼
c� 0 s�
0 1 0
�s� 0 c�

2
4

3
5 ð7Þ

Rðz; �Þ ¼
c� �s� 0
s� c� 0
0 0 1

2
4

3
5 ð8Þ

where s� ¼ sin � and c� ¼ cos �.

Coordinate Transformation

The description of any point p in space is different in
different coordinate frames. To illustrate the relationship
of the transformation from one coordinate frame to another,
the mathematic expression will be used.

Translational Coordinate Transformation. Suppose that
coordinate frames {B} and {A} have the same orientation.
But the original points of the two coordinate frames do not
overlap. The position vector apo

b
is used to describe the

position related to frame {A}. apo
b

is called the translational
vector of frame {B} with respect to frame {A}. If the position
of point p in the coordinate frame {B} is written as b p, then
the position vector of p with respect to frame {A} can be
written as follows:

ap ¼ bp þ apo
b

ð9Þ

It is called the equation of coordinate translation, which is
shown in Fig. 2.

Rotational Coordinate Transformation. Suppose that
coordinate frames {B} and {A} have the same original
points, but their orientation is different. Using the rotation
matrix a

bR to describe the orientation of frame {B} with
respect to frame {A}, the transformation of point p in frame
{A} and {B} can be deduced as:

ap ¼ a
bR � bp ð10Þ

where ap denotes the position the p with the reference
coordinate system {A}, and bp denotes the position the p
with the reference coordinate system {B}. It is called the
equation of coordinate rotation, which is shown in Fig. 3.

The following equations can be deduced:

b
aR ¼ a

bR�1 ¼ a
bRT ð11Þ

Composite Transformation. For the common condition,
neither the original points of frame {A} and {B} overlap,
nor do they have the same orientation. Use the position
vector apo

b
to describe the original point of frame {B} with

respect to frame {A}. Use the rotation matrix a
bR to describe

the orientation of frame {B} respect to frame {A}. To any
point in the space, the following transformation can be
found:

ap ¼ a
bR � bp þ apo

b
ð12Þ

Homogeneous Coordinate Transformation

If the coordinates of any point in an orthogonal coordinate
system are given, then the coordinates of this point in

yao

p

a
p

x

z

Figure 1. Presentation of position.

ao

a p

ao

p

b p

ax

ay

az
bz

by

bx

{ }A

{ }B

Figure 2. Translational transformation.

p

ax

ay

az
bz

by

bx

{A}{B}

o

Figure 3. Rotational transformation.

2 ROBOT KINEMATICS



another orthogonal coordinate system can be calculated by
homogeneous coordinate transformation.

Homogeneous Transformation. The transformation for-
mula in Equation (12) is unhomogeneous to point bp, but it
can be expressed by the following equivalent homogeneous
transformation:

ap
1

� �
¼

a
bR apob

01�3 1

�
¼

bp
1

� ��
ð13Þ

where the vector ð4� 1Þ denotes the coordinates in three-
dimensional space. It still can be noted as ap or bp. The
above equation can be written as the form of matrix:

ap ¼ a
bT � bp ð14Þ

where the vector ð4� 1Þ of ap and bp is called a homoge-
neous coordinate. Here:

a
bT ¼

a
bR apob

01�3 1

��
ð15Þ

In fact, the transformation formula in Equation (13) is equi-
valent with Equation (12). The formula in Equation (13) can
be written as follows:

ap ¼ a
bR � bp þ apo

b
; 1 ¼ 1 ð16Þ

Are position vectors ap and bp the 3� 1 orthogonal coordi-
nate or the 4� 1 homogeneous coordinate? It should be
decided according to the context.

Translational Homogeneous Coordinate Transformation.
Suppose that the vector aiþ b jþ ck describes one point in
space, where i; j; k is the unit vector of the axes x; y; z;
respectively. This point can be expressed by translational
homogeneous transformation:

Transða; b; cÞ ¼

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

2
664

3
775 ð17Þ

where Trans denotes translational transformation.

Rotational Homogeneous Coordinate Transformation.
Rotation about the x-axis, y-axis, and z-axis with u, the
following equations can be obtained:

Rotðx; �Þ ¼

1 0 0 0
0 c� �s� 0
0 s� c� 0
0 0 0 1

2
664

3
775 ð18Þ

Rotðy; �Þ ¼

c� 0 s� 0
0 1 0 0
�s� 0 c� 0

0 0 0 1

2
664

3
775 ð19Þ

Rotðz; �Þ ¼

c� �s� 0 0
s� c� 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ð20Þ

where Rot denotes rotational transformation.

Transformation of Object

The approach used to describe the posture of any point in
the space can be used to describe the position and oriention
in space. For example, the following Fig. 4(a) can be
expressed by the six points attached to the reference
frame.

If, at first, this object rotates 90 degrees is about the
y-axis of the reference frame, then it translates 4 unit
lengths. This transformation can be described as follows:

T ¼ Transð4; 0; 0ÞRotðy; 90ÞRotðz; 90Þ ¼

0 0 1 4
1 0 0 0
0 1 0 0
0 0 0 1

2
664

3
775

The above matrix shows the operations of rotation and
translation about the primary reference frame. The six

z

x
(a) (b)

o

o y

z

y

y'

z'
x'

x

(-1,0,2,1)

(-1,0,0,1)

(-1,4,0,1)

(1,4,0,1)(1,0,0,1)

(1,0,2,1)

Figure 4. Transformation of wedge-shaped object.

ROBOT KINEMATICS 3



points of the wedge-shaped object can be transformed as:

0 0 1 4
1 0 0 0
0 1 0 0
0 0 0 1

2
664

3
775

1 �1 �1 1 1 �1
0 0 0 0 4 4
0 0 2 2 0 0
1 1 1 1 1 1

2
664

3
775

¼

4 4 6 6 4 4
1 �1 �1 1 1 �1
0 0 0 0 4 4
1 1 1 1 1 1

2
664

3
775

Figure 4(b) shows the result of transformation.

General Rotation Transformation

In the above sections, the rotational transformation
matrix with respect to rotation about x-axis, y-axis, and
z-axis have been analyzed. Next, the focus is on the rota-
tion matrix in the common situation: rotation about any
vector (axis) with �.

The Formula of General Rotation Transformation. Assume
that f is the unit vector of the z-axis in coordinate frame {C},
namely:

C ¼

nx ox ax 0
ny oy ay 0
nz oz az 0
0 0 0 1

2
664

3
775 ð21Þ

f ¼ axiþ ay jþ azk ð22Þ

Therefore, rotation about vector f is equivalent to rotation
about z-axis in coordinate frame {C}, thus one obtains the
following:

Rotð f ; �Þ ¼ Rotðc; �Þ ð23Þ

If the coordinate frame {T} is known with respect to refer-
ence coordinate frame, then another coordinate frame {S}
can be calculated with respect to frame {C}, because:

T ¼ CS ð24Þ

Where, S expresses the relative position of T with respect
to C. Then:

S ¼ C�1T ð25Þ

The rotation of T about f is equivalent to the rotation of S
about z-axis of frame {C}:

Rotð f ; �ÞT ¼ CRotðz; �ÞS ð26Þ

Rotð f ; �ÞT ¼ CRotðz; �ÞC�1T ð27Þ

Then the following equation can be derived:

Rotð f ; �Þ ¼ CRotðz; �ÞC�1 ð28Þ

As f is the z-axis of frame {C}, it can be found that
Rotðz; �ÞC�1 is just the function of f, because:

Note that z ¼ a, vers� ¼ 1� c�, f ¼ z. Equation (29) can be
simplified as follows:

C Rotðz; �ÞC�1

¼

nx ox ax 0
ny oy ay 0
nz oz az 0
0 0 0 1

2
664

3
775

c� �s� 0 0
s� c� 0 0
0 0 1 0
0 0 0 1

2
664

3
775

nx ny nz 0
ox oy oz 0
ax ay az 0
0 0 0 1

2
664

3
775

¼

nx ox ax 0
ny oy ay 0
nz oz az 0
0 0 0 1

2
664

3
775

nxc�� oxc� nyc�� ays� nzc�� ozs� 0
nxs�þ oxc� nys�þ ayc� nzs�þ ozc� 0

ax ay az 0
0 0 0 1

2
664

3
775

¼

nxnxc�� nxoxs�þ nxoxs�þ oxoxc�þ axax

nynxc�� nyoxs�þ nxoys�þ oyoxc�þ ayax

nznxc�� nzoxs�þ nxozs�þ ozoxc�þ azax

0

nxnyc�� nxoys�þ nyoxs�þ oyoxc�þ axay

nynyc�� nyoys�þ nyoys�þ oyoyc�þ ayay

nznyc�� nzoys�þ nyozs�þ oyozc�þ azay

0

nxnzc�� nxozs�� nzoxs�þ ozoxc�þ axaz

nynzc�� nyozs�þ nzoys�þ ozoyc�þ ayaz

nznzc�� nzozs�þ nzozs�þ ozozc�þ azaz

0

0
0
0
1

2
664

3
775

ð29Þ

Rotð f ; �Þ ¼

fx fxvers�þ c� fy fxvers�� fzs� fz fxvers�þ fys� 0
fx fyvers�þ fzs� fy fyvers�þ c� fz fyvers�� fxs� 0
fx fzvers�þ fzs� fy fzvers�þ fxs� fz fzvers�þ c� 0

0 0 0 1

2
664

3
775 ð30Þ

4 ROBOT KINEMATICS



Each basic rotation transformation can be derived from
the general rotation transformation, that is, if fx ¼ 1;
fy ¼ 0 and fz ¼ 0, then Rotð f ; �Þ ¼ Rotðx; �Þ. Equation (30)
yields the following:

Rotðx; �Þ ¼

1 0 0 0
0 c� �s� 0
0 s� c� 0
0 0 0 1

2
664

3
775 ð31Þ

which is identical with Equation (18)

The Equivalent Rotation Axis and Rotation Angle. Given
any rotation transformationm, the equivalent rotation axis
with the angle of � can be calculated. Assume that the
rotation transformationm matrix is as follows:

R ¼

nx ox ax 0
ny oy ay 0
nz oz az 0
0 0 0 1

2
664

3
775 ð32Þ

If R ¼ Rotð f ; �Þ, then

By addition of the diagonal entry in two sides of the above
equation, it is derived that:

nx þ oy þ az ¼ ð f 2
x þ f 2

y þ f 2
z Þvers�þ 3c� ¼ 1þ 2c� ð34Þ

c� ¼ 1

2
ðnx þ oy þ az � 1Þ ð35Þ

By subtraction of the undiagonal entry, it yields the
following:

oz � ay ¼ 2 fxs�
ax � nz ¼ 2 fys�
ny � ox ¼ 2 fzs�

ð36Þ

The sum of the squares of the above equation is as follows:

ðoz � ayÞ2 þ ðax � nzÞ2 þ ðny � oxÞ2 ¼ 4s2� ð37Þ

s� ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoz � ayÞ2 þ ðax � nzÞ2 þ ðny � oxÞ2

q
ð38Þ

Define that the rotation mentioned before is the forward
rotation with respect to vector f, and 0 � � � 180�. In this

case, the sign of Equation (38) is positive. Then, the rotation
angle � will be uniquely confirmed, as follows:

tan � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoz � ayÞ2 þ ðax � nzÞ2 þ ðny � oxÞ2

q
nx þ oy þ az � 1

ð39Þ

Each component of vector f can be calculated by Equation
(36):

fx ¼ ðoz � ayÞ=2s�
fy ¼ ðax � nzÞ=2s�
fz ¼ ðny � oxÞ=2s�

ð40Þ

SOLVING KINEMATICS EQUATION OF ROBOT
MANIPULATOR

To operate and control a robot, we must have knowledge of
both its spatial arrangement and a means of reference to the
environment. Kinematics is the analytical study of the
geometry of motion of a robot arm with respect to a fixed
reference coordinate system without regard to the forces or

moments that cause the motion. The issue of solving a
kinematics equation of a robot manipulator focuses on the
solution about the posture of joints and manipulators (10).

Posture Description of Motion

Description of Euler Angle. The Euler angle I, shown as
Fig. 5, first defines a rotation of angle f around the z-axis,

nx ox ax 0
ny oy ay 0
nz oz az 0
0 0 0 1

2
664

3
775 ¼

fx fxvers�þ c� fy fxvers�� fzs� fz fxvers�þ fys� 0
fx fyvers�þ fzs� fy fyvers�þ c� fz fyvers�� fxs� 0
fx fzvers�þ fzs� fy fzvers�þ fxs� fz fzvers�þ c� 0

0 0 0 1

2
664

3
775 ð33Þ

x

y

u' = u"

v'

φ

θ

v"

w'=z

v'"

ϕ

u'"

w'"= w"

Figure 5. Euler angle I.

ROBOT KINEMATICS 5



then a rotation of angle � around the new x-axis, then a
rotation of angle c around the new z-axis.

Rzf ¼
cf �sf 0
sf cf 0

0 0 1

0
@

1
A;

Ru0� ¼
1 0 0
0 c� �s�
0 s� c�

0
@

1
A;

Rw0 0w ¼
cw �sw 0
sw cw 0

0 0 1

0
@

1
A ð41Þ

The resultant Eulerian rotation matrix generates the fol-
lowing:

The Euler angle II, which is shown as Fig. 6, first defines
a rotation of angle f around the z-axis, then a rotation of
angle u around the new y-axis, then a rotation of angle c
around the new z-axis.

Notetheopposite(clockwise)senseofthethirdrotation,f.
The matrix with Euler angle II generates the following:

�sf sw

þcf cw c�

cf sw

þsf cw c�

�cw s�

�sf cw

�sf cw c�

cf cw

�sf cw c�

sw s�

cf s�

sw s�

c�

0
BBBBBB@

1
CCCCCCA

ð43Þ

Description of Roll Pitch Yaw. Another common group of
rotations is yaw, pitch, and roll, which are shown in Fig. 7. A

rotation ofc about the x-axis ðRx;cÞ is called yaw. A rotation
of u about the y-axis ðRy;�Þ is called pitch. A rotation of f
about the z-axis ðRz;fÞ is called roll.

RPYðf; �;cÞ

¼

cf�sf 0 0

sf cf 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775

c� 0 s� 0

0 1 0 0

�s� 0 c� 0

0 0 0 1

2
6664

3
7775

1 0 0 0

0 cc �sc 0

0 sc cc 0

0 0 0 1

2
6664

3
7775

¼

cfc� cfs�sc� sfcc cfs�ccþ sfsc 0

sfc� sfs�scþ cfcc sfs�cc� cfsc 0

�sf c�sc c�cc 0

0 0 0 1

2
6664

3
7775

ð44Þ

Link and Joint Parameters

The Denavit-Hartenberg representation is adopted to
describe the motion parameters of link and joint. The
following steps are used to confirm the parameters of
link and joint:

� Number the joints from 1 to n starting with the base
and ending with the end-effector.

� Establish the base coordinate system. Establish a
right-handed orthonormal coordinate system
ðX0;Y0;Z0Þ at the supporting base with the Z0 axis
lying along the axis of motion of joint 1.

� Establish joint axis. Align the Zi with the axis of motion
(rotary or sliding) of joint iþ 1.

� Establish the origin of the ith coordinate system. Locate
the origin of the ith coordinate at the intersection of

x

y

u '

v '=v"

φ

θ

w'=z 

u"

v"'ϕ

u"'

w"'= w"

Figure 6. Euler angle II.

R ¼ R2fRu0�Rw00w

cf cw

�sf sw c�

sf cw

þcf sw c�

sw s�

�cf sw

�sf cw c�

�sf sw

þcf cw c�

cw s�

sw s�

�cf s�

c�

0
BBBBB@

1
CCCCCA

ð42Þ

Figure 7. Rotation of raw, pitch and roll.

6 ROBOT KINEMATICS



the Zi and Zi�1 or at the intersection of common normal
between the Zi and Zi�1 axes and the Zi axis.

� Establish the Xi axis. Establish Xi ¼ �ðZi�1 � ZiÞ=
kZi�1 � Zik or along the common normal between
the Zi�1 and Zi axes when they are parallel.

� Establish the Yi axis. Assign Yi ¼ þðZi � XiÞ=kZi � Xik
to complete the right-handed coordinate system.

� Find the link and joint parameters.

Jacobian of Robot Manipulator

Different Motion of Robot. To describe the micromotion
of a robot, differential coefficient is used for coordinate
transformation. Given the coordinate frame {T},

T þ dT ¼ Transðdx;dy;dzÞRotð f ;d�ÞT ð45Þ

where Transðdx;dy;dzÞ denotes the differential translation
of dx;dy;dz, and Rotð f ;d�Þ denotes the differential rotation
about the vector f. Then dT can be calculated as follows:

dT ¼ ½Transðdx;dy;dzÞRotð f ;d�Þ � I�T ð46Þ

The homogeneous transformation that expresses differ-
ential translation is

Transðdx; dy; dzÞ ¼

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

2
664

3
775 ð47Þ

For the formula of general rotation transformation

Because lim�!0Sin�¼d�; lim�!0 cos�¼ 1; lim�!0 vers�¼ 0;
the differential rotational homogeneous transformation
can be expressed as follows:

Rotð f ;d�Þ¼

1 � fzd� fyd� 0
fzd� 1 � fxd� 0
� fzd� fxd� 1 0

0 0 0 1

2
664

3
775 ð49Þ

Because D ¼ Transðdx;dy;dzÞRotð f ;d�Þ, it yields the follo-
wing:

The differential rotation d�about vector f is equivalent to
the differential rotation with respect to the x-axis, y-axis
and z-axis, namely dx; dy, and dz, respectively. Then
fxd� ¼ dx; fyd� ¼ dy; fzd� ¼ dz. Displace the above results
into Equation (50), which yields the following:

D ¼

0 �dz dy dx
dz 0 �dx dy
�dy dx 0 dz

0 0 0 0

2
664

3
775 ð51Þ

If d ¼ dxiþ dy jþ dzk; d ¼ dxiþ dy jþ dzk, then the differ-
ential motion vector of rigid body or coordinate frame can be
expressed as follows:

D ¼ ½dx dy dz dx dy dz �T ¼ d
d

� �
ð52Þ

Jacobian Matrix of Robot. The linear transformation
between the motion speed of the manipulator and each
joint can be defined as the Jacobian matrix of the robot. This
Jacobian matrix indicates the drive ratio of motion velocity
from the space of joints to the space of end-effector. Assume
that the motion equation of the manipulator

x ¼ xðqÞ ð53Þ

represents the displacement relationship between the
space of the operation (end-effector) and the space of the
joints. Differentiating Equation (53) with respect to time
yields the following:

x
: ¼ JðqÞq: ð54Þ

where x
:

is the generalized velocity of end-effector in oper-
ating space. q

:
is the joint velocity. JðqÞ is 6�n partial

derivative matrix, which is called the Jacobian Matrix.
The component in line i and column j is as follows:

Ji jðqÞ ¼
@xiðqÞ
@q j

; i ¼ 1; 2; � � � ; 6; j ¼ 1; 2; � � � ;n ð55Þ

From Equation (55), it can be known that the Jacobian
Matrix JðqÞ is the linear transformation from the velocity
of joint space and the velocity of operating space.

Rotð f ; �Þ ¼

fx fxvers�þ c� fy fxvers�� fzs� fz fxvers�þ fys� 0
fx fyvers�þ fzs� fy fyvers�þ c� fz fyvers�� fxs� 0
fx fzvers�þ fzs� fy fzvers�þ fxs� fz fzvers�þ c� 0
0 0 0 1

2
664

3
775 ð48Þ

D ¼

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

2
664

3
775

1 � fzd� fyd� 0
fzd� 1 � fxd� 0

� fyd� fxd� 1 0
0 0 0 1

2
664

3
775�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ¼

0 � fzd� fyd� dx
fzd� 0 � fxd� dy

� fyd� fxd� 0 dz
0 0 0 0

2
664

3
775 ð50Þ

ROBOT KINEMATICS 7



The generalized velocity x
:
of a rigid board or a coordinate

frame is a six-dimensional column vector composed of
linear velocity v and angular velocity w.

x
: ¼ v

w

� �
¼ lim

Dt!0

1

Dt

d
d

� �
ð56Þ

Equation (56) yields:

D ¼ d
d

� �
¼ lim

Dt!0
x
:
Dt ð57Þ

Displace Equation (54) into the above equation, and the
following is obtained:

D ¼ lim
Dt!0

JðqÞq:Dt ð58Þ

D ¼ JðqÞdq ð59Þ

For a robot with n joints, its Jacobian matrix is a 6� n
matrix, in which the first three lines denote the transfer-
ring rate of end-effector’s linear velocity, and the last three
lines denote the transferring rate of end-effector’s angular
effector velocity. The Jacobian matrix can be expressed as
follows:

v
w

� �
¼ Jl1 Jl2 � � � Jln

Ja1 Ja2 � � � Jan

� � q
:
1

q
:
2

..

.

q
:
n

2
6664

3
7775 ð60Þ

The linear velocity and angular velocity of end-effector can
be expressed as the linear function of each joint velocity q

_

v ¼ Jl1q
:
1 þ Jl2q

:
2 þ � � � þ Jlnq

:
n

w ¼ Ja1q
:
1 þ Ja2q

:
2 þ � � � þ Janq

:
n

�
ð61Þ

where Jli and Jai means the linear velocity and angular
velocity of end-effector that results in joint i.

CASE STUDY: KINEMATIC ANALYSIS OF A PARALLEL
MANIPULATOR

This example studies the kinematics analysis of a 3DOF
parallel manipulator used for a machining application. The
new design of this manipulator aims to achieve higher
stiffness and to implement pure 3DOF motions (i.e., all
side-effect motions can be eliminated). The manipulator
consists of three identical legs with active ball screw actua-
tors, and a passive leg is installed between the base and the
moving platform. Each actuated leg is connected with the
moving platform by a spherical joint, and the passive link is
fixed on the ground and connected to the moving platform
by a universal joint. Thus, the side-effect motions can be
eliminated by the u-joint.

Description of the 3DOF Parallel Manipulator

Different from most existing 3DOF parallel manipulators,
this design has a hybrid and uncoupled motion. The objec-
tive of the new design is to improve the system stiffness as
well as to eliminate the coupled motions at the reference
point to simplify the kinematic model and the control.

In Fig. 8, the novelty of the manipulator is as follows: (1)
the universal joint of the passive link is located on the
moving platform rather than on the base platform; thus, the
motion along x and y translations and z rotation is elimi-
nated; and (2) the reference point on the moving platform
has a hybrid and uncoupled motion with x and y rotations
and z translation.

The proposed manipulator has three platforms: base
platform B1B2B3, middle platform M1M2M3, and moving
platform E1E2E3. The base platform is fixed on the ground.
The middle platform is used to support the guideway BiMi

of actuated links DiEi. The moving platform is used to
mount a machine tool. The passive link is installed between
the middle platform and the moving platform. Actuated
link DiEi is connected to the moving platform by a spherical
joint at Ei and to a slider connected to the active ball screw
by a universal joint at Di. The passive link is fixed on the

Figure 8. The CAD and Schematic model of 3DOF parallel manipulator.

8 ROBOT KINEMATICS



middle platform at one end, and it is connected to the end-
effector platform by a universal joint at the other end.

The following parameters are required for its descrip-
tion:

� the angle aiði ¼ 1; 2; 3Þ between ObBi and xb

� the angle biði ¼ 1; 2; 3Þ between OeEi and xe

� the size of the base platform lb,

� the size of the end-effector platform le,

� the direction of a guideway g,

� the length of an active link li, and

� the offset of the spherical joints on the platform z0.

Inverse Kinematics

To describe the structure of the tripod system, two coordi-
nate systems fOe � xeyezeg and fOb � xbybzbg are estab-
lished, which are attached to the end-effector and base
platforms, respectively. The following physical parameters
are identified:

i) the angle ai between ObBi and xb,

ii) the angle bi between OeEi and xe,

iii) the dimension of the base platform lb,

iv) the dimension of the end-effector platform le,

v) the direction of a guild bar g, and

vi) the length of a support bar li.

For the original Oe of the end-effector, its translational
motions along xe and ye, and rotational motion along ze, are
eliminated because of the usage of the passive leg, that is,

xe ¼ ye ¼ 0
z� ¼ 0

�
ð62Þ

Therefore, the motions of Oe can be denoted by ð�x; �y; z�Þ,
where ux and uy are the rotational motions along xe and ye,
and ze is the translational motion along ze. The posture of
the end-effector with respect to the coordinate system
fOb � xbybzbg can be represented as follows:

Tb
e ¼

Re Pe

0 1

� �
¼

c�y 0 s�y 0

s�xs�y c�x �s�xc�y 0

�c�xs�y s�x c�xc�y ze

0 0 0 1

2
6664

3
7775 ð63Þ

where

c, s denote the cosine and sine functions, respectively.
Tb

e is the posture of the end-effector with respect to the
coordinate system fOb�xbybzbg.

Re is the 3� 3 orientation matrix of the end-effector.
Pe is the location of Oe.

Inverse kinematics are used to find the joint motions
when the posture of the end-effector Tb

e is known. The
joint motions are denoted by ui, and the posture of the

end-effector Tb
e is totally determined by the motions of

Oeð�x; �y; z�Þ. To solve the inverse kinematic problem, one
can simply apply the condition that the length of a support
bar is constant.
The location of the connection between the end-effector
platform and an active link is

pb
ei
¼ Repe

ei
þ pb

e

¼
lecbic�y þ z0s�y

lecbis�xs�y þ lesbic�x � z0s�xc�y

�lecbic�xs�y þ lesbis�x þ ze þ z0c�xc�y

2
64

3
75 ð64Þ

where

pb
ei
¼

xb
ei

yb
ei

zb
ei

2
664

3
775 and pe

ei
¼

lecbi

lesbi

z0

2
64

3
75

z0 is the offset of the spherical joint with respect to Oe.
The derivative of Equation (64) with the time yields

dxb
ei

dyb
ei

dzb
ei

2
664

3
775 ¼ Ji½ �3�3

d�x

d�y

dze

2
64

3
75 ð65Þ

where

Ji¼
0 �lecbis�yþz0c�y 0

ðlecbis�y�z0c�yÞc�x� lesbis�x ðlecbic�yþz0s�yÞs�x 0

ðlecbis�y�z0c�yÞs�xþ lesbic�x �ðlecbic�yþz0s�yÞc�x 1

2
64

3
75

Because the active links have a fixed length, one has

jObEi � ObBi � BiDij ¼ jDiEij ði ¼ 1; 2; 3Þ ð66Þ

Equation (66) yields

k2
i1 þ k2

i2 þ k2
i3 ¼ l2i ð67Þ

where

ki1 ¼ xb
ei
� ðlb � uicgÞcai

ki2 ¼ yb
ei
� ðlb � uicgÞsai

ki3 ¼ zb
ei
� uisg

Assuming only torsion is in the linear actuator of each
active link, the derivation of Equation (67) with respect to
the time is then

dui ¼ � ki1

ki4
� ki2

ki4
� ki3

ki4

� �
�

dxb
ei

dyb
ei

dzb
ei

2
6664

3
7775 ði ¼ 1; 2; 3Þ ð68Þ

ROBOT KINEMATICS 9



where

ki4 ¼ ki1cgcai þ ki2cgsai � ki3sg

Substituting Equation (65) into Equation (68), one has

du1

du2

du3

2
64

3
75 ¼ ðJtÞ3�3

d�x

d�y

dze

2
64

3
75 ¼

ðJt;1Þ1�3

ðJt;2Þ1�3

ðJt;3Þ1�3

2
64

3
75

d�x

d�y

dze

2
64

3
75 ð69Þ

where

Jt;i ¼ � ki1

ki4
� ki2

ki4
� ki3

ki4

� �
� Ji

The active link is a two-force component; therefore, only
axial deformation occurs. Differentiating Equation (67)
with respect to time yields the following:

dli ¼
ki1

li

ki2

li

ki3

li

� �
�

dxb
ei

dyb
ei

dzb
ei

2
664

3
775ði ¼ 1; 2; 3Þ ð70Þ

Substituting Equation (65) into (70)

r
: ¼ Jt ð71Þ

where vectors r
:

and t are the joint velocity and the twist of
the platform defined as follows:

r
: ¼ ½ dl1 dl2 dl3 �T

t ¼ ½vT p
: T �T ¼ ½ d�x d�y dze �

that is,

dl1

dl2

dl3

2
64

3
75 ¼ ðJaÞ3�3

d�x

d�y

dze

2
64

3
75 ¼

ðJa;1Þ1�3

ðJa;2Þ1�3

ðJa;3Þ1�3

2
64

3
75

d�x

d�y

dze

2
64

3
75

where

Ja;i ¼
ki1

li

ki2

li

ki3

li

� �
� Ji

Direct Kinematics

The direct kinematics is to solve the posture of the end-
effector Tb

e when the joint motion ui (i¼ 1, 2, 3) is known.
The solution of a direct kinematic problem can also be
derived from Equation (65). At this moment, the motions
of the end-effector ð�x; �y; z�Þ are unknown, and the joint
motion ui (i¼ 1, 2, 3) is given. To solve direct kinematic

problem, ze and �y could be represented by �x, therefore,
Equation (65) can be rewritten as

z2
e þ ðAis�y þ BiÞze þ ðCic�y þDis�y þ EiÞ ¼ 0

ði ¼ 1; 2; 3Þ

�
ð72Þ

where the coefficients Ai	Ei are the functions of ux, they
are

Ai ¼ �2lecbic�x

Bi ¼ 2ðlesbis�x � uisgÞ
Ci ¼ �2ðlb � uicgÞlecaicbi

Di ¼ 2lecbiðuisgc�x � ðlb � uicgÞsais�xÞ
Ei ¼ l2e þ l2b þ u2

i � l2i � 2ðlesbiðuisgs�x

þðlb � uicgÞsaic�xÞ þ lbuicgÞ

From Equation (67), one has

c�y ¼ �
Fz2

e þGze þH

Kze þ L
ð73Þ

s�y ¼ �
Ize þ J

Kze þ L
ð74Þ

where the coefficients F–L are the functions of ux, and
expressed by

F ¼ B12A13 � B13A12

G ¼ E12A13 þ B12D13 � E13A12 � B13D12

H ¼ E12D13 � E13D12

I ¼ C12B13 � C13B12

J ¼ C12E13 � C13E12

K ¼ C12A13 � C13A12

L ¼ C12D13 � C13D12

and

Ai j ¼ Ai � A j;Bi j ¼ Bi � Bj;Ci j ¼ Ci � C j

Di j ¼ Di �Dj;Ei j ¼ Ei � E j

Because c2�y þ s2�y ¼ 1, substituting Equation (68) and
(69) into this expression generates

M4z4
e þM3z3

e þM2z2
e þM1ze þM0 ¼ 0 ð75Þ

where

M4 ¼ F2

M3 ¼ 2FG

M2 ¼ G2 þ I2 þ K2 þ 2FH

M1 ¼ z2
e þ 2ðGH þ IJ þ KLÞ

M0 ¼ H2 þ J2 þ L2

10 ROBOT KINEMATICS



One can observe that Equation (67) includes three inde-
pendent equations, and two independent equations have
been derived [Equations (68) and (69)]. Another equation
can be derived by substituting Equations (68) and (69) into
any one of the equations in Equation (67), for example, the
equation when i¼ 1. Thus one obtains

N3z3
e þN2z2

e þN1ze þN0 ¼ 0 ð76Þ

where

N3 ¼ K

N2 ¼ B1K þ L� A1I � C1F

N1 ¼ E1K þ B1L� A1J �D1I � C1G

N0 ¼ E1L�D1J � C1H

If the direct kinematic problem is solvable for the given
design, then Equations (70) and (71) should possess a
common solution of ze. Based on Bezout’s method, the
following condition should be satisfied:

M4 M3 M2 M1 M0 0 0

0 M4 M3 M2 M1 M0 0

0 0 M4 M3 M2 M1 M0

N3 N2 N1 N0 0 0 0

0 N3 N2 N1 N0 0 0

0 0 N3 N2 N1 N0 0

0 0 0 N3 N2 N1 N0

������������������

������������������

¼ 0 ð77Þ

Equation (72) becomes an equation about ux when the joint
motion ui is given. Equation (72) is converted using the
standard transformation formulas

c�x ¼ ð1� t2Þ=ð1þ t2Þ; s�x ¼ 2t=ð1þ t2Þ; ðt ¼ tanð�x=2ÞÞ

It is a polynomial equation with the order of 40.
After ux is obtained from Equation (72), ze and uy can be

calculated sequentially from Equations (70) and (71), and
Equations (68) and (69).

Velocity Analysis

Suppose that the velocities of the end-effector are ð�
:

x; �
:

y; z
:
eÞ.

Differentiating Equation (66) with respect to time, one has
the velocity of an active joint as

u
:
i ¼ �

k
:

bui þ k
:

c

2ui þ kb
� zdi

ð78Þ

where
u
:
i is the velocity of joint i, and

zdi
¼ ðcgcai; cgsai; sgÞT

k
:

b ¼ 2ðcgðx: bei
cai þ y

: b
ei

saiÞ � z
:b
ei

sgÞ
k
:

c ¼ 2ðxb
ei

x
: b
ei
þ yb

ei
y
: b
ei
þ zb

ei
z
: b
ei
Þ � 2lbðx

: b
ei

cai þ y
: b
ei

saiÞ

ðx: eo
; y
:
eo
; z
:
eo
ÞT ¼ ð0x; 0y; z

:
eÞT þve � ðRe � rT

eiÞ

ve ¼ ð�
:

x; �
:

y; 0ÞT

rei ¼ ðxb
ei
; yb

ei
; zb

ei
Þ

To determine the kinematic behavior of the rigid body of a
support bar, its angular velocity should be known, which
can be determined from

vei
¼ vdi

þ vdiei
� rdiei

ð79Þ

Therefore

vdiei
¼

rdiei
� ðvei

� vdi
Þ

l2i
ð80Þ

where
vdiei

is the angular velocity of support bar i, and

vei
¼ ðx: bei

; y
: b
ei
; z
: b
ei
ÞT

vdi
¼ u

:
i

rdiei
¼ ðxb

ei
� ðlb � uicgÞcai; y

b
ei
� ðlb � uicgÞsa; zb

ei
� uisgÞT

Acceleration Analysis

Assume the accelerations of the end-effector are ð�
::

x; �
::

y; z
::

eÞ.
Differentiating Equation (73) with respect to time, one has
the acceleration of an active joint as follows:

u
::

i ¼ �
2u
: 2
i þ 2k

:

bu
:
i þ k

::

bui þ k
::

c

2ui þ kb
zdi

ð81Þ

where u
::

i is the acceleration of joint i, and

k
::

b ¼ 2ðcgðx::bei
cai þ y

::b
ei

saiÞ � z
::b

ei
sgÞ

k
::

c ¼ 2ðxb
ei

x
::b

ei
þ yb

ei
y
::b

ei
þ zb

ei
z
::b

ei
þ ðx: bei

Þ2 þ ðy: bei
Þ2 þ ðz: bei

Þ2Þ

�2lbðx
::b

ei
cai þ y

::b
ei

saiÞ

ðẍeo ; ÿeo
; z̈eoÞ

T ¼ ð0; 0; z̈eÞT þ ð�¨ x; �
¨
y; 0ÞT � ðRereiÞ þ ve

� ðve � ðRereiÞÞ

Similar to Equation (73), to obtain the angular acceleration
of a support bar, the following relationship can be applied:

aei
¼ adi

þ vdiei
� ðvdiei

� rdiei
Þ þ ediei

� rdiei
ð82Þ

ROBOT KINEMATICS 11



Therefore,

ediei
¼ rdiei

� ðaei � adi
� vdiei

� ðvdiei
� rdiei

ÞÞ=l2i ð83Þ

where

ediei
is the angular acceleration of support bar i,

vdiei is calculated from Equation (75)

adi
¼ u

::
izd

CONCLUSIONS

In this article, the kinematics of robot manipulators is
introduced, which includes the conceptions of reference
coordinate frame, translational transformation, rotational
transformation, and homogeneous transformation as well
as the preliminary knowledges in robot kinematics, such
as Euler angle, Denavit-Hartenberg representation and
Jacobian matrix of robot. An example is given. Both direct
and inverse kinematics are conducted.

BIBLIOGRAPHY

1. D. Steward, A platform with six degrees of freedom, Proc. Instn.
Mech. Engrs., 180(5): 371–386, 1965.

2. J. A. Carretero, R. P. Podhorodeski, M. N. Nahon, and C. M.
Gosselin, Kinematic analysis and optimization of a new three
degree-of-freedom spatial parallel manipulator, ASME J.
Mechanical Design, 122: 17–24, 2000.

3. G. R. Dunlop and T. P. Jones, Position analysis of a two DOF
parallel mechanism – Canterbury tracker, Mech. Mach.
Theory, 34: 599–614, 1999.

4. K.-M. Lee and S. Arjunan, A three-degrees-of-freedom micro-
motion in-parallel actuated manipulator, IEEE Trans. Robot.
Automat., 7(5): 634–641, 1991.

5. D. Fedewa, M. G. Mehrabi, S. Kota, N. Orlandea, and V.
Gopalakrishran, Parallel structures and their applications in
reconfigurable machining systems, Proc. of the 2000 Parallel
Kinemati Machines-International Conference, Ann-Arbor, MI,
2000, pp. 87–97.

6. C. C. Nguyen, Z.-L. Zhou, and M. Bryfogis, A Robotically
assisted munition loading system, J. Robotic Sys., 12(12):
871–881, 1995.

7. J. A. Soons, On the geometric and thermal errors of a Hexapod
machine tools, In: C. R. Molinari-Tosatti and K. S. Smith, (eds.),
Parallel Kinematic Machines: Theoretical Aspects and Indus-
trial Requirements, Advanced Manufacturing Series, London:
Springer-Verlag, 1999, pp. 151–170.

8. K. H. Wurst, LINAPOD-Machine tools as parallel link systems
based on a modular design, In: C. R. Molinari-Tosatti and
K. S. Smith, (eds.), Parallel Kinematic Machines: Theoretical
Aspects and Industrial Requirements, Advanced Manufac-
turing Series, London: Springer-Verlag, 1999, pp. 377–394.

9. Y. Koren, Will industry adopt PKMs? Manufact. Engineer.,
1999, pp. 240.

10. Z. X. Cai, Robotics, Beijing: Press of Tsinghua University,
2000.

DAN ZHANG

ZHUMING BI

University of Ontario Institute
of Technology

Oshawa, Ontario, Canada

ZHEN GAO

University of Science and
Technology of China

Hefei, China

12 ROBOT KINEMATICS



R

ROBOT MOTION PLANNING

INTRODUCTION

The aim in robot motion planning is to be able to specify a
task in a high-level, expressive language and have the
robot(s) automatically convert the specification into a set
of low-level primitives, such as feedback controllers and
communication protocols, to accomplish the task (1,2). The
robots can vary from manipulator arms used in manufac-
turing or surgery, to autonomous vehicles used in search
and rescue or in planetary exploration, and to smart wheel-
chairs for disabled people. They are subject to mechanical
constraints (e.g., a car-like robot cannot move sideways and
an airplane cannot stop in place) and have limited compu-
tation, sensing, and communication capabilities. The envir-
onments can be cluttered with possibly moving and shape-
changing obstacles and can contain dynamic (moving,
appearing, or disappearing) targets. The challenge in
this area is the development of a computationally efficient
framework accommodating both the robot constraints and
the complexity of the environment, while allowing for a
large spectrum of task specifications.

A robot combines moving mechanical pieces such as
wheels, gears, and breaks with digital devices such as
processors and sensing and communication devices, in
continuous interaction with a possibly changing environ-
ment. Therefore, motion planning is a highly interdisci-
plinary area, combining tools from computer science,
mechanics, control theory, and differential geometry.
Given the variety of applications, many motion planning
approaches have been developed over the years. Depending
on the task they address, motion planning problems can
roughly be divided into four main groups: navigation, cover-
age, mapping, and localization(3).

In navigation, the problem is to find a collision-free
motion between two configurations of the robot. Coverage
is the problem of moving a robot sensor or end effector in
such as way that it reaches all points in a target space (e.g.,
painting a surface). Mapping involves exploring an envir-
onment with the goal of producing a representation that
can be used, for example, in navigation and coverage.
Finally, in localization, the problem is to use a map and
sensor data to determine the configuration (state) of the
robot. Localization and mapping are sometimes performed
simultaneously, such as in simultaneous localization and
mapping (SLAM)(4).

Motion planners also differ depending on the robot
model they consider. For example, it is much easier to
plan the motion of a robot that is free to move instanta-
neously in all directions of its configuration space (omni-
directional robot), rather than generating motion for a car-
like or an airplane-like vehicle that cannot move sideways
(i.e., nonholonomic robot; see Ref. 5 for a collection of motion
planning approaches for such robots). Motion planning can
be performed for kinematic robot models, which capture

only the configuration and velocity of the robot, or for
dynamic robot models, which capture forces and accelera-
tions.

Motion planning approaches can also be classified
depending on the properties of the underlying algorithms.
A motion plan is optimal if the produced motion minimizes
energy consumption, execution time, trajectory length, and
so on. Computational complexity is also a determining
factor. For example, in most cases, it is desired that the
amount of necessary memory and running time scale poly-
nomially with the size of the input of the planner, which can
be the number of obstacles, the number of degrees of free-
dom of the robot, and so on. Finally, a planner is complete if
it always finds a path if one exists. Others are resolution
complete, if a solution is found whenever one exists at a
given discretization resolution, or probabilistic complete, if
the probability of finding a solution during an iterative
discretization process converges to 1 when the solution
exists.

WORKSPACE AND CONFIGURATION SPACE

Given a robotic system, a configuration is a complete
description that determines the position of every point
of the system uniquely. Its configuration space, called for
simplicity C-space, is the set of all possible configurations
of the system. The number of degrees of freedom of a
robotic system is the dimension of its minimal configura-
tion space or, in other words, the minimum number of
parameters needed to describe the system completely. The
space in which the robotic system does work is called the
workspace, which can be seen as the Euclidean space R2 or
R3, depending on whether the motion is in plane or space.
Most often, however, the workspace is defined more pre-
cisely as the subset of R2 or R3 that can be reached by a
point of interest on the robot, such as the end effector of a
manipulator arm.

Consider, for example, a two-joint planar robot arm,
where a point on the first link is pinned to the ground,
and the base of the second link is pinned to the end of the
first, such that the only possible motion of the second link is
a rotation about the (revolute) joint [Fig. 1(a)]. If we denote
by u1 and u2 the angles formed by the two links with the
horizontal, then (u1, u2) can be seen as coordinates of the
configuration space, which is S1 � S1 ¼ T2, where S1 and T2

denote the unit circle and the torus, respectively [Fig. 1(c)].
The workspace of this robot, however, is an annulus, with
the outer radius determined by the sum of the lengths of the
two links, and the inner radius is given by the difference
between their lengths [Fig. 1(b)].

The configuration space of a planar square robot (or any
other rigid body) that can only translate without rotation
(see Fig. 2) is R2. For a planar robot that can only rotate
about a fixed point, the configuration space is SO (2), called
the Special Orthogonal group in the plane, which is

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



isomorphic to S1. The configuration space of a robot allowed
to translate and rotate in the plane is SE(2), called
the Special Euclidean group in the plane, and defined
as SEð2Þ ¼ R2 � SOð2Þ. In space, a rotating and transla-
ting robot modeled as a rigid body evolves in
SEð3Þ ¼ R3 � SOð3Þ, where SO(3) is the group of rotations
in space (3).

If obstacles are present in the workspace, it is useful to
define explicitly the set of robot configurations for which
collisions occur. For each obstacle in the workspace, the
configuration space obstacle is defined as the set of all
configurations at which the robot intersects the obstacle
in the workspace. The free configuration space, also called
free C-space, is the set of configurations at which the robot
does not intersect any obstacle. Figure 2(b) shows the free
C-space for the square robot moving in the environment
shown in Fig. 2(a), if only translational motion is allowed
(no rotation). The reader is referred to Ref. 3, p. 509 for an
example of the free C-space construction for a polytopal
robot translating and rotating in a polytopal environment
with polytopal obstacles. In this setup, a navigation pro-
blem, as defined above, translates to finding a continuous
curve between the initial and the final configuration in the
free C-space.

RIGID BODY MOTION INTERPOLATION

A navigation problem for a robot, represented simply as a
rigid body moving in space or plane with no obstacles, is also
called rigid body motion interpolation. In the configuration
space of the robot, which is SE(3) or SE(2) as defined above,
this problem translates to generating a (possibly smooth)
curve interpolating between two points. The problem of

Figure 1. A two-link manipulator (a), its workspace (b), and its
configuration space (c).

-5 0 5 10

0

2

-2

4

6

8

10

12

x1

x 2

O1

O2

O3

O4

O5

x0
xf

R

R ε

-5 0 5 10

-2

0

2

4

6

8

10

12

x1

x 2

-4 -2 0 2 4 6 8

-2

0

2

4

6

8

10

x1

x 2

)c()b()a(

-4 -2 0 2 4 6 8

-2

0

2

4

6

8

10

x1

x 2

-5 0 5 10

-2

0

2

4

6

8

10

12

x1

x 2

-5 0 5 10

-2

0

2

4

6

8

10

12

x1

x 2

)f()e()d(

Figure 2. Cell decomposition and simultaneous planning and control for a square robot translating
(no rotation) in a 2-D rectangular environment with polyhedral obstacles. The observable is the
centroid of the robot: (a) initial (left) and final (right) positions of the robot. (b) The free C-space is
obtained by enlarging the obstacles, shrinking the environment boundaries, and reducing the robot to
its observable point. (c) Rectangular (quadtree) partition of the free C-space and the quotient graph of
the partition. (d) Optimal path from initial to final node (rectangle) in the quotient graph; ^ and �
denote the initial and final position of the robot observable, respectively. (e) Vector field assignment
(used in simultaneous planning and control) and the resulting trajectory of the observable. (f) Robot
motion in the initial environment.

2 ROBOT MOTION PLANNING



finding a smooth interpolating curve is well understood in
Euclidean spaces (e.g., a line segment is a smooth inter-
polating curve between two points), but it is not easy to
generalize such techniques to curved spaces, such as SE(3)
and SE(2). Most work in this area proposes to generalize the
notion of interpolation from the Euclidean space to a curved
space. For example, in Ref. 6, Bezier curves are used for
interpolating rotations based on a spherical analog of the
well-known de Casteljau algorithm. Other examples
include spatial rational B-splines and Hermite interpola-
tion (see Ref. 7 for an overview).

The above methods find immediate applications in
computer graphics (e.g., generate a ‘‘natural’’ motion for
an object thrown from one place to another). However, to
generate a robot motion plan, two more issues have to be
taken into consideration: optimality of the trajectory and
invariance with respect to the choice of a world frame. The
optimality requirement is particularly relevant in applica-
tions such as deep space formations. For example, to
achieve interferometry, a group of satellites is required
to maintain a rigid body formation. A reconfiguration
demands a fuel-optimal trajectory to preserve mission
life and is constrained by the limited thrust available.

Coordinate-free approaches leading to trajectories that
are invariant to reference frames exist for the generation of
shortest paths and minimum acceleration trajectories on
SO(3) (the set of all rotations in R3) and SE(3) (the set of all
poses in R3) (see Ref. 8 for an overview) (see Fig. 3 for
examples). However, analytical solutions are available only
in the simplest cases, and the procedure for solving optimal
motions, in general, is computationally intensive. A relaxa-
tion based on the generation of optimal curves in an embed-
ding Euclidean space and subsequent projection, which
leads to suboptimal solutions, is proposed in Ref. 7.

POTENTIAL-BASED PLANNERS

Potential-based motion planners are based on the idea that
a robot configuration can be driven to a desired value in the
same way in which a particle moves in a force field. More
precisely, a potential f is a differentiable, real-valued
function defined on the configuration space. Its gradient

rf is a vector that points in the direction of maximum
(local) increase of f. This gradient can be used to define a
vector field, (i.e., an assignment of a vector to each point
of the configuration space). Guiding a robot through an
environment with obstacles toward a goal can, therefore, be
achieved by constructing a potential function in the con-
figuration space, with a minimum value at the goal and
high values at the obstacles, and by setting the velocity
of the robot configuration equal to the negative of the
gradient of the potential. Such an approach can be used
directly to accommodate kinematic robot models. However,
this approach can be extended for dynamic models, by
designing control laws guaranteeing the convergence of
the velocities to a desired vector field (9).

The robot motion terminates at a point of zero velocity or,
equivalently, at a point where the gradient of the potential
function vanishes, which is a critical point for the potential
function. This point can be, in general, a minimum, a
maximum, or a saddle point, and it can be degenerate or
nondegenerate (isolated), depending on the Hessian matrix
of the potential function. Explicitly, a critical point is
degenerate if and only if the Hessian i.e., the matrix of
second derivatives; see Ref. 3 is singular at that point. A
positive-definite Hessian indicates a local minimum, a
negative-definite Hessian indicates a local maximum,
and a Hessian of indefinite sign indicates a saddle point.
The goal in potential-based motion planning is to have the
robot stop at the minimum corresponding to the goal.
Although the robot can, in theory, stop at a local maximum
or at a saddle point, this is impractical, because such points
are unstable, and the probability that this happens is
basically zero. Other possible local minima, on the other
hand, are attractive, and the robot can get ‘‘caught’’ into
such undesirable points in its way to the goal. Most of the
existing potential-based planners, where the potential
function is constructed through the superposition of attrac-
tive (to the goal) functions and repulsive (from the obsta-
cles) functions, suffer from this problem.

To address the local minima problem, two types of
approaches have been developed (see Ref. 3 for a detailed
overview). In the first approach, the potential field is aug-
mented with a search-based planner. For example, the
randomizedpathplanner (RPP)(3)usesavarietyofpotential

−2 −2

−2

0 2 4 6 8 10 12 −5

−5

0
5

10
15

−5

0

5

10

15

20

y
x

z

0 2 4 6 8 10
0

2
4

6
8

10
120

5

10

15

y

x

z

(b)(a)

Figure 3. A geodesic (minimum length, or energy) curve for a cuboid and a minimum acceleration
curve for a cube.

ROBOT MOTION PLANNING 3



functions, and when stuck at a local minimum, it performs a
random walk, with the goal of escaping the local minimum.
In the second approach, a special type of potential function,
called a navigation function, is constructed. Although guar-
anteed to have exactly one minimum, a navigation function
can only be applied to a limited class of configuration spaces,
which are diffeomorphic to sphere spaces.

ROADMAPS

If several navigation tasks are expected to occur in an
environment, then building a map of the environment
and then performing navigation using the map can prove
tobe moreefficient than performing navigation from scratch
every time such a request occurs. The most used of such
maps are topological, or graph-like, structures, where nodes
correspond to ‘‘interesting features’’ and the edges show
adjacency between nodes. For example, the nodes can be
points of interest for a specific task such as targets or
intersections, whereas the edges can label actions required
from the robot to move from a location to another.

Roadmaps (3) are topological maps embedded in the free
space. In other words, in a roadmap, the nodes correspond
to physical locations in the environment, and the edges
correspond to paths between different locations. A roadmap
is, therefore, both a graph and a collection of one-dimen-
sional manifolds (curves). Robots use roadmaps in the
same way drivers use the interstates. Instead of planning
a trip from point A to point B on small streets, a driver
would plan her trip from A to a close interstate, then on
the interstate for as long as possible, and then from the
interstate to the destination B. Similarly, if a roadmap is
available, a robot planner would find a collision-free path to
the roadmap, then travel on the roadmap until close to the
destination, and then find another collision-free path from
the exit point on the roadmap to the destination. Most
motion occurs on the roadmap, which is low dimensional,
as opposed to the motion to and from the roadmap, which
occurs in a possibly high-dimensional configuration space.

Several types of roadmaps have been developed over the
years, which include visibility maps, deformation retracts,
and silhouettes. In visibility maps, which work for poly-
gonal environments with polygonal obstacles, the nodes are
the vertices of the polygons, and an edge between two nodes
means that a line of sight exists between the nodes. Defor-
mation retracts capture the ‘‘essential’’ topology of an
environment, and they include generalized Voronoi dia-
grams(3). Finally, silhouette methods are based on
repeated projection of the robot-free configuration space
onto lower dimensional spaces until a one dimensional
representation is reached.

SAMPLING-BASED ALGORITHMS

The construction of roadmaps, as presented above, is based
on an explicit representation of the free C-space. As a result,
as the dimension of the configuration space increases (e.g.,
a manipulator arm with several joints and a gripper with
fingers can have tens of degrees of freedom), motion plan-
ners based on roadmaps become computationally infeasi-

ble. In such cases, sampling-based approaches are more
appropriate. In short, a sampling-based planner generates
samples (i.e., collision-free configurations of the robot) and
then interpolating paths for the samples. The latter process
is also often achieved through sampling but at a finer rate.

The most representative sampling-based algorithm is
the Probabilistic Road Map Planner (PRM) (3). The main
idea behind PRM is that it is easy (and cheap) to check for
collisions with obstacles. In other words, it is easy to
see whether a sample is in the free C-space. PRM uses
coarse sampling to obtain the nodes of the roadmap and
fine sampling to construct its edges. Once the roadmap is
constructed, it is used in exactly the same way as the
‘‘classic’’ roadmap presented in the previous section. The
existing PRMs differ by the way samples and interpolating
paths are generated. The basic PRM uses uniform distribu-
tion for node sampling. Other, more sophisticated, PRMs
usesampling schemes such as importance sampling in areas
that are difficult to explore and deterministic sampling such
as sampling on grids and quasirandom sampling.

As PRM is a roadmap planner, it is optimized for several
queries. For single queries, other sampling-based algo-
rithms are effective, such as the rapidly exploring random
tree planner (RRT)(3). A combination of multiple-query and
single-query methods, such as the sampling-based roadmap
of trees (SRT)(3), tries to find a compromise between using a
roadmap versus a large sampling tree in very difficult
planning problems. Other developments in this area led
to sampling-based planners that take into account kine-
matic and dynamic constraints, stability requirements,
energy constraints, visibility constraints, and contact con-
straints.Sampling-based algorithms opened a new direction
in robot motion planning, by making it possible to approach
very high-dimensional robotic systems.

CELL DECOMPOSITIONS

Cell decompositions are among the most used techniques
for robot motion planning. To illustrate the main ideas, we
assume for simplicity that the motion task is a navigation
task. The computation behind most of the existing
approaches consists of three main steps(3). In the first
step, the free configuration space is partitioned, and the
quotient graph of the partition is constructed [see Fig. 2(c)].
In this graph, a node labels a free cell, and an edge between
two nodes shows an adjacency relation between the corre-
sponding cells. In the second step, the cells corresponding to
the initial and the final configurations are determined, and
a path is determined between the corresponding nodes in
the quotient graph [see Fig. 2(d)]. This path can be optimal
with respect to some cost, which in the simplest cases
penalizes the distance traveled by the robot. Alternatively,
the cost can prevent from generating paths ‘‘too close’’ to the
obstacles. Finally, in the third step, a desired robot trajec-
tory is constructed inside the configuration-space tube
determined by the path in the quotient graph, and a tra-
jectory-following controller is synthesized for the robot.

The several cell-decomposition methods can be classified
according to the underlying partition scheme. The most
popular cell decompositions are trapezoidal decomposi-

4 ROBOT MOTION PLANNING



tions, triangulations, and rectangular grids. For example,
Fig. 2(c) shows a rectangular partition, whereas Fig. 4(a)
shows a triangulation of a polygonal environment cluttered
with polygonal obstacles. Note that although efficient
algorithms exist for planar trapezoidal partitions and
triangulations, these procedures become cumbersome in
higher dimensional spaces. Rectangular partitions,
although not particularly efficient in plane, have the
advantage of working in higher dimensions, especially
when a 2n-trees (i.e., quad-trees in plane and oct-trees in
space) are used during the partition process.

The three-step, top-down process presented above has
two main disadvantages. First, because no robot control
and/or actuation constraints are taken into account dur-
ing the decomposition, it is possible that the reference
trajectory generated in the last step cannot be followed by
the robot. To deal with this issue, in recent years,
researchers proposed approaches for the so-called simul-
taneous planning and control. In these studies, the envir-
onment partitioning is performed at the same time with
the assignment of robot-compatible controllers for each
region. For example, polygonal partitions of planar envir-
onments followed by assignment of vector fields obtained
as solutions of Laplaces equation in each of the regions
were considered in Ref. 10. Triangular partitions and
rectangular partitions can be also accompanied by the
assignment of vector fields with arbitrary polyhedral
bounds, if the robot dynamics are restricted to affine
and multi-affine (see, for example, Ref. 11). In Figs. 2(e)
and 4(b), we show how vector fields are assigned in each
rectangle and triangle from a path in the quotient graph.
In this setup, the ‘‘execution’’ of a ‘‘discrete’’ path is pro-
vably correct (i.e., regardless of the actual position of the
robot inside each region), therefore avoiding the trajectory
generation and following process.

Trapezoidal, triangular, and rectangular decomposi-
tions, as presented above, are mostly used for navigation
tasks, and they are not appropriate for coverage(3). Indeed,
even if coverage of cells can be efficiently achieved through
coverage algorithms on graphs, covering the space inside
each cell might be difficult because of the size and shape of

the resulting cells. If coverage is the task at hand, then
Boustrophedon decompositions and Morse Cell decomposi-
tions are more appropriate(3). Roughly put, Boustrophedon
decompositions start from a trapezoidal decomposition and
reorganize cells such that shorter and more efficient paths
can cover the same area. Morse decompositions are based
on the same idea, but they allow us to achieve coverage in
non polygonal environments. Finally, for a special class of
motion planning problems, called pursuit/evasion pro-
blems (games), a visibility-based cell decomposition is
more appropriate. Roughly, moving from one cell to an
adjacent one in this decomposition corresponds to a change
in visibility (i.e., target or obstacles appear or disappear).

SYMBOLIC APPROACHES TO MOTION PLANNING AND
CONTROL

The current approaches to robot motion planning and con-
trol presented above have two main limitations. First, the
specification language is not rich enough for a large spec-
trum or robotic applications. For example, a navigation
task is always formulated as ‘‘go from A to B and avoid
obstacles.’’ Nevertheless, the accomplishment of a mission
might require the attainment of either A or B, convergence
to a region (‘‘reach A eventually and stay there for all future
times’’), visiting targets sequentially (‘‘reach A, and then B,
and then C’’), surveillance (‘‘reach A and then B infinitely
often’’), and so on. Second, as mentioned, some of the
approaches above, such as cell decomposition, do not expli-
citly take into account the control, sensing, and commu-
nication constraints of the robot.

Symbolic approaches to robot motion planning and con-
trol have been developed recently to address these limita-
tions. They draw on well-established concepts in related
areas, such as behavior-based robotics and hybrid control
systems. As the specification language is enriched and
real-world robot control, sensing, and communication con-
straints are taken into account, concepts and tools from the
theory of computation such as automata and languages
develop naturally, hence the name ‘‘symbolic’’ (see Ref. 12

0 5 10 15 20

2

4

6

8

10

12

14

16

18

12
3

4
5

6

7

8

9
10

11

12

13

14
15

16
17

18 19

20

21

22

23 24
25

26

27

28
29 30

3132

33

34

35 36
37
38

39

40

41
42

4344

45
46 47

48

∆1

∆9

)b()a(

Figure 4. (a) A triangulation of the free space in a polygonal environment and the corresponding
quotient graph. (b) A sequence of triangles (such as resulting from a path on the quotient graph of a
triangulation) is executed by constructing affine vector fields in each triangle.

ROBOT MOTION PLANNING 5



for a more detailed overview of these methods and the main
challenges in the area).

To introduce the main ideas, note that the typical cell-
decomposition approach to the navigation problem is a
hierarchical, three-level process. At the first (top-most)
level, the specification ‘‘go from A to B and avoid obstacles’’
is given, the obstacle-free configuration space of the robot is
partitioned into cells, and the quotient graph is constructed
(see Figs. 2(c) and 4(a) for examples). As any path connect-
ing the cell containing A to the cell containing B in this
graph satisfies the specification (i.e., it avoids obstacles),
this is called the specification level. In the second step, a
path on this graph is chosen, which can be seen as a
‘‘discrete’’ execution of the robot, hence, the name execution
level for this step. Finally, in the third step, called the
implementation level, a reference trajectory traversing
the sequence of cells given by the path is generated, and
robot controllers are constructed so that the reference
trajectory is followed.

Symbolic approaches to motion planning fit into the
three-level hierarchy described above, and they can be
divided into two main groups: top-down approaches and
bottom-up approaches. In top-down approaches (also
referred to as middle-out approaches(13)), the focus is on
the expressivity of the specification language, and the hope
is that, while going down the three-level hierarchy pre-
sented above, implementations are possible for real-world
robots. In bottom-up approaches, the starting point is a
careful analysis of the control and sensing communication
of the robot, possible executions are generated at the execu-
tion level, and the hope is that the set of such robot-
compatible executions give rise to an expressive specifica-
tion language. However, a significant gap exists between
these two approaches. Bridging in this gap is one of the
main challenges in the area(12).

Top-Down Symbolic Approaches

It was recently suggested that, to define a rich specification
language for robot motion, inspiration can be taken from
temporal logics, which are commonly used for specifying
and verifying the correctness of digital circuits and com-
puter programs. Roughly, any rich, human-like, temporal,
and logic statement about the reachability of regions of
interest by the robot (including the ones given as examples
above) translate naturally to a formula in such a logic.
Consider, for example, that a robot moves in an environ-
ment with three obstacles o1, o2, and o3 and three targets
r1, r2, and r3 that need to be surveyed (visited infinitely
many times). In other words, the task can be formulated as
‘‘Always avoid obstacles o1, o2, o3 and visit regions r1, r2, r3,
in this order, infinitely often.’’ This specification immedi-
ately translates to the following formula of linear temporal
logic (LTL) over the set of symbols o1, o2, o3, r1, r2, r3:
GðFðr1 ^Fðr2 ^Fr3ÞÞ ^ : ðo1 _ o2 _ o3ÞÞ;where:and^ stand
for Boolean negation and disjunction and G and F are
temporal operators that mean ‘‘always’’ and ‘‘eventually,’’
respectively.

The semantics of LTL formulas are given over labeled
transition graphs (also called Kripke structures or transi-
tion systems). Such a transition system can be obtained

from the dual graph of the partition induced by the regions
of interest, if the nodes are labeled according to their being
part of obstacles or of targets, and if the edges are viewed as
transitions that a robot can take. To compute a transition
between two nodes (or a self-transition), one could proceed
by checking for the existence of robot feedback controllers
taking the robot from one region to another in finite time (or
keeping the robot inside the region forever), regardless of
the initial position of the robot. If this is achieved, then a
certain type of equivalence relation exists between the
initial control system describing the motion of the robot
in the environment and the finite transition system, called
bisimulation, which guarantees that the two systems
satisfy the same LTL formula. Therefore, provided that
the two types of controllers can be constructed, the motion
planning problem is reduced to a classic model checking
procedure, for which exist several off-the-shelf tools devel-
oped by the formal verification community(14).

Currently, two classes of systems are available for which
such quotients can be efficiently constructed: affine sys-
tems with polyhedral partitions, and multi-affine systems
(i.e., polynomial systems where the maximum power at
which a variable can occur is one) with rectangular parti-
tions. Although these two classes of systems seem restric-
tive for robot dynamics, it is important to note that
multi-affine dynamics capture vector cross products, and
they can therefore accommodate dynamics of aircraft with
gas-jet actuators and underwater vehicles. In addition,
differential- drive and car-like vehicles can be easily accom-
modated by solving an additional input–output feedback
linearization. Fully automatic computational frameworks
for control of affine and multi-affine dynamics from rich
specifications given as arbitrary LTL formulas over linear
and rectangular predicates were developed in Ref. 15 and
16. A related approach was used in Ref. 17 to control a
nonholonomic robot model. In Ref. 18, it is shown that a
significant decrease in computation can be achieved if the
specifications are restricted to a fragment of LTL.

Bottom-Up Symbolic Approaches

The top-down symbolic approaches presented above use
environment discretization to capture the complexity of the
environment. While allowing for a rich specification lan-
guage over the partition regions, they are (in current form)
restricted to static, a priori known environments and sim-
ple robot dynamics, such as fully actuated or affine
dynamics with polyhedral speed constraints. As suggested,
robots with more complex dynamics such as helicopter-like
vehicles might not be able to implement executions strings
over partition regions. In this situation, the discretization
may be more appropriate at the level of controllers rather
than environments. The argument behind such a control-
driven discretization is that the global control task can be
broken down into more easily defined behavioral building
blocks, each defined with respect to a particular subtask,
sensing modality, or operating point. Strings over such
behaviors make up words in so-called motion description
languages (MDLs)(19). An example of such a string is
ðki1

; ji1
Þ; . . . ; ðkiq

; jiq
Þ, where ki j

: Rþ � X!U are feedback
control laws and ji j

: Rþ � X!f0; 1gare temporal or envir-

6 ROBOT MOTION PLANNING



onmentally driven interrupt conditions, j ¼ 1; . . . ; q. The
robot ‘‘parses’’ such words as x_ ¼ f ðx; ki1

ðt; xÞÞ until
ji1
ðt; xÞ ¼ 1, at which point the timer t is reset to 0, and x_ ¼

f ðx; ki2
ðt; xÞÞ until ji2

ðt; xÞ ¼ 1, and so on.
An attractive alternative to MDL is to use motion pri-

mitives. The idea is that, instead of using controllers chosen
from a collection of controls, one could think of simplifying a
robot control problem by piecing together, in an appropriate
way, a set of elementary trajectories chosen from a small
‘‘library’’—that are themselves guaranteed to satisfy the
constraints. Such feasible trajectories that can be combined
sequentially to produce more complicated trajectories are
called ‘‘motion primitives’’(20). The compatibility rules
between such primitives can be, as above, modeled as
finite-state machines, called Maneuver Automata. Motion
primitives can be generated in several ways, for example,
by recording the actions of a human pilot; if an accurate
model of the robot’ s dynamics is available, model-based
approaches are also possible (e.g., to design optimal
maneuvers).

Although the symbolic approaches to motion planning
described in this section have been applied successfully to
challenging problems in autonomous mobile robotics,
including acrobatic aircraft, and off-road races, several
challenges still need to be addressed. For example, the
problem of choosing the control modes (quanta) or motion
primitives for achieving a given task is not at all obvious.
One way of addressing it is by letting the control mode
selection be driven by experimental data. For instance, one
can envision a scenario in which a human operator is
controlling a mobile platform and then, through an analysis
of the input–output sample paths, construct motion
description languages that reproduce the human-driven
robot behavior.

BIBLIOGRAPHY

1. J. C. Latombe, Robot Motion Planning, Boston, MA: Kluger
Academic Publishers., 1991.

2. S. M. LaValle, Planning Algorithms, Cambridge, UK:
Cambridge University Press, 2006.

3. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion:
Theory, Algorithms, and Implementations, Boston, MA: MIT
Press, 2005.

4. S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics.
Cambridge, MA: The MIT Press, 2005.

5. Z. Li and J. F. Canny, (eds.), Nonholonomic Motion Planning,
Norwell, MA: Kluwer Academic Publishers, 1992.

6. K. Shoemake, Animating rotation with quaternion curves,
ACM Siggraph, 19 (3): 245–254, 1985.

7. C. Belta, Geometric methods for multi-robot motion planning
and control, PhD thesis, Philadelphia, PA, University of Penn-
sylvania, 2003.

8. M. Z̆efran, V. Kumar, and C. Croke, On the generation of
smooth three-dimensional rigid body motions, IEEE Trans.
Robotics Auto., 14 (4): 579–589, 1995.

9. E. Rimon and D. E. Koditschek, Exact robot navigation using
artificial potential functions, IEEE Trans. Robotics Auto., 8 (5):
501–518.

10. D. C. Conner, A. A. Rizzi, and H. Choset, Composition of local
potential functions for global robot control and navigation,
Proc. of the IEEE/RSJ Intl. Conference on Intelligent Robots
and Systems, Las Vegas, Nevada, 2003.

11. C. Belta, V. Isler, and G. J. Pappas, Discrete abstractions for
robot planning and control in polygonal environments, IEEE
Trans. Robotics, 21 (5): 864–874, 2005.

12. C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G.
J. Pappas, Symbolic planning and control of robot motion,
IEEE Robotics Auto. Mag., 14 (1): 61–71, 2007.

13. M. S. Branicky, T. A. Johansen, I. Petersen, and E. Frazzoli,
On-line techniques for behavioral programming, Proc. of the
IEEE Conference on Decision and Control, Sydney, Australia,
2000.

14. E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA: The MIT Press, 2000.

15. L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen,
Reachability and control synthesis for piecewise-affine hybrid
systems on simplices, IEEE Trans. Aut. Control, 51: 938–948,
2006.

16. M. Kloetzer and C. Belta, A fully automated framework for
control of linear systems from temporal logic specifications,
IEEE Trans. Auto. Cont., 53 (1): 287–297, 2008.

17. D. C. Conner, H. Kress-Gazit, H. Choset, A. A. Rizzi, and G. J.
Pappas, Valet parking without a valet, Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems,
San Diego, CA, 2007.

18. G. Fainekos, S. Loizou, and G. J. Pappas, Translating temporal
logic to controller specifications, Proc. 45th IEEE Conference on
Decision and Control, San Diego, CA, 2006.

19. M. Egerstedt and R. W. Brockett, Feedback can reduce the
specification complexity of motor programs, IEEE Trans. Auto.
Cont., 48 (2): 213–223, 2003.

20. E. Frazzoli, M. A. Dahleh, and E. Feron, Maneuver-based
motion planning for nonlinear systems with symmetries,
IEEE Trans. Robotics, 21 (6): 1077–1091, 2005.

CALIN BELTA

Boston University
Brookline, Massachusetts

ROBOT MOTION PLANNING 7



T

TRANSACTION PROCESSING

A business transaction is an interaction in the real world,
usually between an enterprise and a person, in which
something, such as money, products, or information, is
exchanged (1). It is often called a computer-based transac-
tion, or simply a transaction, when some or the whole of the
work is done by computers. Similar to the traditional
computer programs, a transaction program includes func-
tions of input and output and routines for performing
requested work. A transaction can be issued interactively
by users through a Structured Query Language (SQL) or
some sort of forms. A transaction can also be embedded in
the application program written in a high-level language
such as C, Pascal, or COBOL.

A transaction processing (TP) system is a computer
system that processes the transaction programs. A collec-
tion of such transaction programs designed to perform the
functions necessary to automate given business activities is
often called an application program (application software).
Figure 1 shows a transaction processing system. The trans-
action programs are submitted to clients, and the requests
will be scheduled by the transaction processing monitor and
then processed by the servers. A TP monitor is a piece of
software that connects multiple clients to multiple servers
to access multiple data resources (databases) in TP sys-
tems. One objective of the TP monitor is to optimize the use
of system and network resources when clients and servers
execute on different processors.

TP is closely associated with database systems. In fact,
most earlier TP systems, such as banking and airlines
reservation systems, are database systems, in which
data resources are organized into databases and TP is
supported by database management systems (DBMSs).
In traditional database systems, transactions are usually
simple and independent, and they are characterized as
short duration in that they will be finished within minutes
(probably seconds). Traditional transaction systems have
some limitations for many advanced applications such as
cooperative work, in which transactions need to cooperate
with each other. For example, in cooperative environments,
several designers might work on the same project. Each
designer starts up a cooperative transaction. Those coop-
erative transactions jointly form a transaction group. Coop-
erative transactions in the same transaction group may
read or update each other’s uncommitted (unfinished) data.
Therefore, cooperative transactions may be interdepen-
dent. Currently, some research work on advanced TP
has been conducted in several related areas such as com-
puter-supported cooperative work (CSCW) and groupware,
workflow, and advanced transaction models (2–6). In this
article, we will first discuss traditional transaction concepts
and then examine some advanced transaction models.

Because of recent developments in laptop or notebook
computers and low-cost wireless digital communication,
mobile computing began to emerge in many applications.

As wireless computing leads to situations where machines
and data no longer have fixed locations in the network,
distributed transactions will be difficult to coordinate, and
data consistency will be difficult to maintain. In this article,
we will also briefly discuss the problems and possible solu-
tions in mobile transaction processing.

This paper is organized as follows. First, we will intro-
duce traditional database TP, including concurrency con-
trol and recovery in centralized database TP. The next
section covers the topics on distributed TP. Then, we dis-
cuss advanced TP and define an advanced transaction
model and a correctness criterion. Mobile TP is also pre-
sented. Finally, future research directions are included.

DATABASE TRANSACTION PROCESSING

As database systems are the earlier form of TP systems, we
will start with database TP.

Databases Transactions

A database system refers to a database and the access
facilities (DBMS) to the database. One important job of
DBMSs is to control and coordinate the execution of con-
current database transactions.

A database is a collection of related data items that
satisfy a set of integrity constraints. The database should
reflect the relevant state as a snapshot of the part of the real
world it models. It is natural to assume that the states of the
database are constrained to represent the legal (permissi-
ble) states of the world. The set of intintegrity constraints
such as functional dependencies, referential integrity,
inclusion, exclusion constraints, and some other user-
defined constraints are identified in the process of informa-
tion analysis of the application domain. These constraints
represent real-world conditions or restrictions (7). For
example, functional dependencies specify some constraints
between two sets of attributes in a relation schema,
whereas referential integrity constraints specify con-
straints between two sets of attributes from different rela-
tions. For detailed definitions and discussions on various
constraints, we refer readers to Refs. 7 and 8. Here, we
illustrate only a few constraints with a simple example.

Suppose that a relational database schema has the
following two table structures for Employee and Depart-
ment with attributes like Name and SSN:

Employee (Name, SSN, Bdate, Address, Dnumber)

Department (Dname, Dnumber, Dlocation).

Name ¼ employee name

SSN ¼ social security number

Bdate ¼ birth date

Address ¼ living address

Dnumber ¼ department number

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Dname ¼ department name

Dlocation ¼ department location

Each employee has a unique social security number (SSN)
that can be used to identify the employee. For each SSN
value in the Employee table, there will be only one asso-
ciated value for Bdate, Address, and Dnumber in the table,
respectively. In this case, there are functional dependen-
cies from SSN to Bdate, Address, Dnumber. If any Dnum-
ber value in the Employee relation has the same Dnumber
value in the Department relation, there will be a referential
integrity constraint from Employee’s Dnumber to Depart-
ment’s Dnumber.

A database is said to be ‘‘consistent’’ if it satisfies a set of
integrity constraints. It is assumed that the initial state of
the database is consistent. As an empty database always
satisfies all constraints, often it is assumed that the initial
state is an empty database. It is obvious that a database
system is not responsible for possible discrepancies
between a state of the real world and the corresponding
state of the database if the existing constraints were inade-
quately identified in the process of information analysis.
The values of data items can be queried or modified by a set
of application programs or transactions. As the states of the
database corresponding to the states of the real world are
consistent, a transaction can be regarded as a transforma-
tion of a database from one consistent state to another
consistent state. Users’ access to a database is facilitated
by the software system called a DBMS, which provides
services for maintaining consistency, integrity, and secur-
ity of the database. Figure 2 illustrates a simplified data-
base system. The transaction scheduler provides functions
for transaction concurrency control, and the recovery man-
ager is for transaction recovery in the presence of failures,
which will be discussed in the next section.

The fundamental purpose of the DBMS is to carry out
queries and transactions. A query is an expression, in a
suitable language, that determines a portion of the data
contained in the database (9). A query is considered as

a read-only transaction. The goal of query processing is
extracting information from a large amount of data to assist
a decision-making process. A transaction is a piece of
programming that manipulates the database by a sequence
of read and write operations.

read(X) or R(X), which transfers the data item X from the
database to a local buffer of the transaction

write(X) or W(X), which transfers the data item X from
the local buffer of the transaction back to the data-
base

In addition to read and write operations, a transaction
starts with a start (or begin) operation and ends with a
commit operation when the transaction succeeds or an
abort when the transaction fails to finish. The following
example shows a transaction transferring funds between
two bank accounts (start and end operations are omitted).

Figure 1. TP monitor between cli-
ents Data resources and data
resources.

M
on

ito
r

T

T

T

T

Transactions Clients Servers Data resources

…… …

Transaction manager

Transaction scheduler
recovery manager

Database

DBMS

TransactionsT1 T2 Tn-1 Tn…

…

Figure 2. Database system and DBMS.

2 TRANSACTION PROCESSING



Example 1. Bank transfer transaction.

readðXÞ
X!X þ 100
writeðXÞ
readðYÞ
Y!Y � 100
writeðYÞ

Here, X and Y stand for the balances of savings and
credit accounts of a customer, respectively. This transac-
tion transfers some money ($100) from the savings account
to the credit account. It is an atomic unit of database work.
That is, all these operations must be treated as a single unit.

Many database systems support multiple user accesses
or transactions to the database. When multiple transac-
tions execute concurrently, their operations are inter-
leaved. Operations from one transaction may be executed
between operations of other transactions. This interleaving
may cause inconsistencies in a database, even though the
individual transactions satisfy the specified integrity con-
straints. One such example is the lost update phenomenon.

Example 2. For the lost update phenomenon, assume
that two transactions, crediting and debiting the same
bank account, are executed at the same time without any
control. The data item being modified is the account bal-
ance. The transactions read the balance, calculate a new
balance based on the relevant customer operation, and
write the new balance to the file. If the execution of the
two transactions interleaves in the following pattern (sup-
posing the initial balance of the account is $1500), the
customer will suffer a loss:

Debit Transaction Credit Transaction

read balance ($1500) read balance ($1500)
withdraw ($1000) deposit ($500)
balance :¼ $1500 � $1000 balance :¼ $1500 þ $500
Write balance ($500) Write balance ($2000)

The final account balance is $500 instead of $1000.
Obviously, these two transactions have produced an incon-
sistent state of the database because they were allowed to
operate on the same data item and neither of them was
completed before another. In other words, neither of these
transactions was treated as an atomic unit in the execution.
Traditionally, transactions are expected to satisfy the fol-
lowing four conditions, known as ACID properties (9–11):

� Atomicity is also referred to as the all-or-nothing prop-
erty. It requires that either all or none of the transac-
tion’s operations are performed. Atomicity requires
that if a transaction fails to commit, its partial results
cannot remain in the database.

� Consistency requires a transaction to be correct. In
other words, if a transaction is executed alone, it takes
the database from one consistent state to another.
When all the members of a set of transactions are

executed concurrently, the DBMS must ensure the
consistency of the database.

� Isolation is the property that an incomplete transac-
tion cannot reveal its results to other transactions
before its commitment, which is the requirement for
avoiding the problem of cascading abort (i.e., the
necessity to abort all the transactions that have
observed the partial results of a transaction that
was later aborted).

� Durability means that once a transaction has been
committed, all the changes made by this transaction
must not be lost even in the presence of system failures.

The ACID properties are also defined in RM-ODP
(Reference Model of Open Distributed Processing) (12).
ODP is a standardization in a joint effort of the Interna-
tional Standardization Organization (ISO) and Interna-
tional Telecommunication Union (ITU), which describes
systems that support heterogeneous distributed processing
both within and between organizations through the use of a
common interaction model.

Consistency and isolation properties are taken care of by
the concurrency control mechanisms, whereas the main-
tenance of atomicity and durability are covered by the
recovery services provided in transaction management.
Therefore, concurrency control and recovery are the most
important tasks for transaction management in a database
system.

Concurrency Control and Serializability

The ACID properties can be trivially achieved by the
sequential execution of transactions, which, however, is
not a practical solution because it severely damages system
performance. Usually, a database system is operating in
a multiprogramming, multiuser environment, and the
transactions are expected to be executed in the database
system concurrently. In this section, the concepts of
transaction concurrency control, the schedule of transac-
tions, and the correctness criterion used in concurrency
control are discussed.

A database system must monitor and control the con-
current executions of transactions so that overall correct-
ness and database consistency are maintained. One of the
primary tasks of the DBMS is to allow several users to
interact with the database simultaneously, giving users the
illusion that the database is exclusively for their own use
(13). This feat is accomplished through a concurrency con-
trol mechanism.

Without a concurrency control mechanism, numerous
problems can occur: the lost update (illustrated earlier in an
example), the temporary update (or the uncommitted
dependency), and the incorrect summary problems
(7,14). The unwanted results may vary from annoying to
disastrous in the critical applications. Example 3 shows a
problem of temporary updates where a transaction TB

updates a data item f1 but fails before completion. The
value of f1 updated by TB has been read by another transac-
tion TA.

TRANSACTION PROCESSING 3



Example 3. Consider an airline reservation database
system for customers booking flights. Suppose that a trans-
action A attempts to book a ticket on flight F1 and on flight
F2 and that a transaction B attempts to cancel a booking on
flight f1 and to book a ticket on flight F3.

Let f1, f2, and f3 be the variables for the seat numbers
that have been booked on flights F1, F2, and F3, respec-
tively. Assume that transaction B has been aborted for
some reason so that the scenario of execution is as follows:

Transaction A Transaction B

R[f1] R[f1]
f1 ¼ f1 þ 1 f1 ¼ f1 � 1
W[f1] W[f1]
R[f2] R[f3]
f2 ¼ f2 þ 1 f3 ¼ f3 þ 1
W[f2] W[f3]
Commit transaction A Abort transaction B

It is obvious that both transactions are individually
correct if they are executed in a serial order (i.e., one
commits before another). However, the interleaving of
the two transactions shown here causes a serious problem
in that the seat on fight F1 canceled by transaction B may be
the last seat available and transaction A books it before
transaction B aborts, which results in one seat being booked
by two clients.

Therefore, a database system must control the interac-
tion among the concurrent transactions to ensure the over-
all consistency of the database. The execution sequence of
operations from a set of transactions is called a sche-
dule(15,16). A schedule indicates the interleaved order in
which the operations of transactions were executed. If the
operations of transactions are not interleaved (i.e., the
executions of transactions are ordered one after another)
in a schedule, the schedule is said to be serial. As we
mentioned earlier, the serial execution of a set of correct
transactions preserves the consistency of the database. As
serial execution does not support concurrency, the equiva-
lent schedule has been developed and applied for compar-
isons of a schedule with a serial schedule, such as view
equivalence and conflict equivalence of schedules. In gen-
eral, two schedules are equivalent if they have the same set
of operations producing the same effects in the database
(15).

Definition 1. Two schedules S1, S2 are view equivalent if

1. for any transaction Ti, the data items read by Ti in
both schedules are the same; and

2. for each data item x, the latest value of x is written by
the same transaction in both schedules S1 and S2.

Condition 1 ensures that each transaction reads the
same values in both schedules, and

Condition 2 ensures that both schedules result in the
same final systems.

In conflict equivalence, only the order of conflict opera-
tions needs to be checked. If the conflict operations follow

the same order in two different schedules, the two sche-
dules are conflict equivalent.

Definition 2. Two operations are in conflict if

1. they come from different transactions and

2. they both operate on the same data item and at least
one of them is a write operation.

Definition 3. Two schedules S1 and S2 are conflict
equivalent if for any pair of transactions Ti and Tj in
both schedules and any two conflicting operations
Oi p 2Ti and Ojq 2Tj, when the execution order Oip pre-
cedes Ojq in one schedule, say S1, the same execution order
must exist in the other schedule, S2.

Definition 4. A schedule is conflict serializable if it
is conflict equivalent to a serial schedule. A schedule
is view serializable if it is view equivalent to a serial
schedule.

A conflict serializable schedule is also view serializable
but not vice versa because definition of view serializability
accepts a schedule that may not necessarily be conflict
serializable. There is no efficient mechanism to test sche-
dules for view serializability. It was proven that checking
for view serializability is an NP-complete problem (17). In
practice, the conflict serializability is easier to implement in
the database systems because the serialization order of a
set of transactions can be determined by their conflicting
operations in a serializable schedule.

The conflict serializability can be verified through a
conflict graph. The conflict graph among transactions is
constructed as follows: For each transaction Ti, there is a
node in the graph (we also name the node Ti). For any pair of
conflicting operations (oi, oj), where oi from Ti and oj from Tj,
respectively, and oi comes before oj, add an arc from Ti to Tj

in the conflict graph.
Examples 4 and 5 present schedules and their conflict

graphs.

Example 4. A nonserializable schedule is shown here. Its
conflict graph is shown in Fig. 3.

T1 T3

T2

Figure 3. Conflict graph 1 (with a cycle).

4 TRANSACTION PROCESSING



Schedule T1 T2 T3

read(A) read(A)
read(B) read(B)
A Aþ 1 A Aþ 1
read(C) read(C)
B Bþ 2 B Bþ 2
write(B) write(B)
C C � 3 C C � 3
write(C) write(C)
write(A) write(A)
read(B) read(B)
read(A) read(A)
A A� 4 A A� 4
read(C) read(C)
write(A) write(A)
C C� 5 C C� 5
write(C) write(C)
B 6 � B B 6 � B
write(B) write(B)

Example 5. A serializable schedule is shown here. Its
conflict graph is shown in Fig. 4.

Schedule T1 T2 T3

read(A) read(A)
A Aþ 1 A Aþ 1
read(C) read(C)
write(A write(A)
C C� 5 C C� 5
read(B) read(B)
write(C) write(C)
read(A) read(A)
read(C) read(C)
B Bþ 2 B Bþ 2
write(B) write(B)
C 3 � C C 3 � C
read(B) read(B)
write(C) write(C)
A A� 4 A A� 4
write(A) write(A)
B 6 � B B 6 � B
write(B) write(B)

The following theorem shows how to check the serial-
izability of a schedule.

Theorem 1. A schedule is conflict serializable if and only
if its conflict graph is acyclic (15).

Intuitively, if a conflict graph is acyclic, the transactions
of the corresponding schedule can be topologically sorted
such that conflict operations are consistent with this order,
and therefore equivalent to a serial execution in this order.
A cyclic graph implies that no such order exists. The
schedule in Example 4 is not serializable because there
is cycle in the conflict graph; however, the schedule in
Example 5 is serializable. The serialization order of a set
of transactions can be determined by their conflicting
operations in a serializable schedule.

In order to produce conflict serializable schedules, many
concurrency control algorithms have been developed such
as two-phase locking, timestamp ordering, and optimistic
concurrency control.

The Common Concurrency Control Approaches

Maintaining consistent states in a database requires such
techniques as semantic integrity control, transaction con-
currency control, and recovery. Semantic integrity control
ensures database consistency by rejecting update programs
that violate the integrity constraints of the database, which
is done by specifying the constraints during the database
design. Then the DBMS checks the consistency during
transaction executions. Transaction concurrency control
monitors the concurrent executions of programs so that
the interleaved changes to data items still preserve the
database consistency. Recovery of a database system
ensures that the system can cope with various failures in
the system and recover the database to a consistent state.

A number of concurrency control algorithms have been
proposed for the DBMSs. The most fundamental algo-
rithms are two-phase locking (18,19), timestamp ordering
(20,21), optimistic concurrency control (22), and serializa-
tion graph testing (23,24).

Two-phase locking (2PL) is one of the most popular
concurrency control algorithms based on the locking tech-
nique. The main idea of locking is that each data item must
be locked before a transaction accesses it (i.e., if conflicting
operations exist, only one of them can access the data at a
time, and the other must wait until the previous operation
has been completed and the lock has been released). A
transaction may involve accesses to many data items.
The rule of 2PL states that all locks of the data items
needed by a transaction should be acquired before a lock
is released. In other words, a transaction should not release
a lock until it is certain that it will not request any more
locks. Thus, each transaction has two phases: an expanding
phase during which new locks on data items can be acquired
but none can be released and a shrinking phase in which the
transaction releases locks and no new locks are required.

The 2PL algorithm is a very secure way to ensure that
the order of any two transactions is compatible with the
order of their conflicting operations. More precisely, if
oi p 2Ti precedes o jq 2Tj in the schedule and oip is in conflict
with ojq, then all other conflicting operations of Ti, Tj must
have the same order of precedence. The 2PL algorithms
guarantee the conflict serializability of a schedule for con-
current transactions. However, 2PL algorithms may lead to
deadlocks when a set of transactions wait for each other in a
circular way. For example, two transactions T1 and T2 both

T1 T3

T2

Figure 4. Conflict graph 2 (without cycle).

TRANSACTION PROCESSING 5



write data items a and b. T1 holds a lock on a and waits for a
lock on b, whereas T2 holds a lock on b and waits for a lock on
a. In this case, T1 and T2 will be waiting for each other, and a
deadlock occurs. When a deadlock occurs, some transac-
tions need to be aborted to break the cycle.

Timestamp ordering (TO) is used to manage the order of
the transactions by assigning timestamps to both transac-
tions and data items. Each transaction in the system is
associated with a unique timestamp, assigned at the start
of the transaction, which is used to determine the order of
conflicting operations between transactions. Each data
item is associated with a read timestamp, which is the
timestamp of the latest transaction that has read it, and
a write timestamp, which is the timestamp of the latest
transaction that has updated it. Conflicting operations
must be executed in accordance with their corresponding
transaction timestamps. A transaction will be aborted
when it tries to read or write on a data item whose time-
stamp is greater than that of the transaction. The serial-
izable order of transactions is the order of their timestamps.

Both 2PL and TO concurrency control algorithms are
considered pessimistic approaches. The algorithms check
every operation to determine whether the data item is
available according to the locking or timestamp, even
though the probability of conflicts between transactions
is very small. This check represents significant overhead
during transaction execution, with the effect of slowing
down the TP.

Optimistic concurrency control (OCC) (22) is another
approach in which no check is done while the transaction
is executing. It has better performance if it is used in the
environment where conflicts between transactions are
rare. During transaction execution, each transaction exe-
cutes three phases in its life time. The following three
phases are used in the OCC protocol:

1. Read Phase. The values of the data items are read and
stored in the local variables of the transaction. All
modifications on the database are performed on tem-
porary local storage without updating the actual
database.

2. Validation Phase. According to the mutually exclu-
sivity rules, a validation test is performed to deter-
mine whether the updates can be copied to the actual
database.

3. Write Phase. If the transaction succeeds in the vali-
dation phase, the actual updates are performed to the
database; otherwise, the transaction is aborted.

Optimistic approaches are generally used in conjunction
with timestamps. A timestamp is assigned to a transaction
at the end of its read phase or before the validation phase.
The serialization order of transactions is then validated
using the timestamps.

In a serialization graph-based concurrency control pro-
tocol, an online serialization graph (conflict graph) is expli-
citly maintained. The serialization graph testing (SGT)
scheduler maintains a serialization graph for the history
that represents the execution it controls. When a SGT
scheduler receives an operation oi of transaction Ti from

the transaction manager, it first adds a node for Ti in the
serialization graph (SG). The scheduler then checks
whether there exists a previously scheduled operation ok

of transaction Tk conflicting with oi. If there is one, an arc
from Tk to Ti is added to the SG. The operations of transac-
tion Ti can be executed as long as the graph is acyclic.
Otherwise, the transaction, which causes a cycle in the
graph, is aborted. As the acyclic serialization graph guar-
antees the serializability of the execution, the SGT sche-
duler produces the correct schedules for the concurrent
transactions. However, it is not necessarily recoverable
and is much less cascadeless or strict (14) as defined later.

A schedule S is said to be recoverable if, for every
transaction Ti that reads data items written by another
transaction Tj in S, Ti can be committed only after Tj is
committed. That is, a recoverable schedule avoids the
situation where a committed transaction reads the data
items from an aborted transaction. A recoverable schedule
may still cause cascading aborts because it allows the
transactions to read from uncommitted transactions. For
example, a transaction T2 reads a data item x after x is
updated by a transaction T1, which is still active in an
execution. If T1 is aborted during the processing, T2 must be
aborted. Cascading aborts are undesirable.

To avoid cascading abortion in a schedule S, every
transaction should read only those values written by com-
mitted transactions. Thus, a cascadeless schedule is also a
recoverable schedule.

As a cascadeless schedule allows a transaction to write
data from an uncommitted transaction, an undesirable
situation may occur (14). For instance, consider the sce-
nario of an execution

WT1
½x; 2�WT2

½x; 4�:AbortðT1ÞAbortðT2Þ

where two transactions T1 and T2 write the same data item
x, with values 2 and 4, respectively, and both are aborted
later. The value of the data item x is called a before image if
it will be replaced by a new value. The before image is saved
in the log. In this case, the before image of data item x for
transaction T2 is 2 written by an aborted transaction T1.

The term strict schedule was introduced in Ref. 14 to
describe a very important property from a practical view-
point. A schedule of transactions is called strict if the
transactions read or write data items only from committed
transactions. Strict schedules avoid cascading aborts and
are recoverable. They are conservative and offer less con-
currency.

The concurrency control algorithms presented above,
such as 2PL, TO, and SGT, do not necessarily produce strict
schedules by themselves.

If a strict schedule using 2PL algorithm is required, the
locks being held by any transaction can be released only
after the transaction is committed.

A TO approach with a strict schedule will not allow a
transaction T to access the data items that have been
updated by a previous uncommitted transaction even if
transaction T holds a greater timestamp.

SGT can produce a strict schedule in such a way that
each transaction cannot be committed until it is a source

6 TRANSACTION PROCESSING



node of the serialization testing graph. That is, a transac-
tion T could not be involved in a cycle of the serializable
testing graph if previous transactions that T reads or writes
from have all been committed.

Recoverability of Transactions

In addition to concurrency control, another important goal
of transaction management is to provide a reliable and
consistent database in the presence of various failures.
Failures may corrupt the consistency of the database
because the execution of some transactions may be only
partially completed in the database. In general, database
systems are not failure-free systems. A number of factors
cause failures in a database system (9) such as:

1. Transaction Abortions. The situation can be caused
by the transaction itself, which is caused by some
unsatisfactory conditions. Transaction abortion can
also be forced by the system. These kinds of failure do
not damage the information stored in memory, which
is still available for recovery.

2. System Crashes. The typical examples of this type of
failure are system crashes or power failures. These
failures interrupt the execution of transactions, and
the content of main memory is lost. In this case, the
only available accessible information is from a stable
storage, usually a disk.

3. Media Failures. Failures of the secondary storage
devices that store the database are typical of media
failure. As the content of stable storages has been lost,
the system cannot be recovered by the system soft-
ware only. The common technique to prevent such
unrecoverable failures is to replicate the information
on several disks.

The first two types of failures are considered in the recovery
of transactions. Transactions represent the basic units of
recovery in a database system. If the automicity and dur-
ability of the execution of each transaction have been
guaranteed in the presence of failures, the database is
considered to be consistent.

Typically, the piece of software responsible for recovery
of transactions is called the recovery manager (RM). It is
required to ensure that whenever a failure occurs, the
database is brought back to the consistent state it was in
before the failure occurred. In other words, the RM should
guarantee that updates of the database by the committed
transactions are permanent, in contrast to any partial
effects of uncompleted transactions that should be aborted.

The basic technique for implementing transactions in
the presence of failures is based on the use of logs. A log is a
file that records all operations on the database carried out
by all transactions. It is supposed that a log is accessible
after the failures occur. The log is stored in stable storage,
which is the most resilient storage medium available in the
system. Stable storage is also called secondary storage.
Typically, it is implemented by means of duplexed magnetic
tapes or disks that store duplicate copies of the data. The
replicated stable storage is always kept mutually consis-
tent with the primary copy of the disk or tape. The database

is stored permanently on stable storage. The updates on a
database by a transaction are not directly written into the
database immediately. The operations of the transactions
are implemented in the database buffer located in main
memory (also referred to as volatile storage). It is only when
the contents of the database buffer have been flushed to
stable storage that any update operation can be regarded as
durable.

It is essential that the log record all the updates on the
database that have been carried out by the transactions in
the system before the contents of the database buffer have
been written to database, which is the rule of write-ahead
log.

A log contains the information for each transaction as
follows:

� transaction identifier;

� list of update operations performed by the transaction
(for each update operation, both the old value and the
new value of the data items are recorded); and

� status of the transaction: tentative, committed, or
aborted.

The log file records the required information for undoing or
redoing the transaction if a failure occurs. As the updates
were written to the log before flushing the database buffer
to the database, the RM can surely preserve the consistency
of the database. If a failure occurs before the commit point of
a transaction is reached, the RM will abort the transaction
by undoing the effect of any partial results that have been
flushed into the database. On the other hand, if a transac-
tion has been committed but the results have not been
written into the database at the time of failure, the RM
would have to redo the transaction, using the information
from the log, in order to ensure transaction durability.

DISTRIBUTED TRANSACTION PROCESSING

In many applications, both data and operations are often
distributed. A database is considered distributed if a set of
data that belongs logically to the same system is physically
spread over different sites interconnected by a computer
network. A site is a host computer and the network is a
computer-to-computer connection via the communication
system. Although the software components that are typi-
cally necessary for building a DBMS are also the principal
components for a distributed DBMS (DDBMS), some addi-
tional capacities must be provided for a distributed data-
base, such as the mechanisms of distributed concurrency
control and recovery.

One of the major differences between a centralized and a
distributed database system lies in the TP. In a distributed
database system, a transaction might involve data residing
on multiple sites (called a global transaction). A global
transaction is executed on more than one site. It consists
of a set of subtransactions, each subtransaction involving
data residing on one site. As in centralized databases,
global transactions are required to preserve the ACID
properties. These properties must be maintained individu-
ally on each site and also globally. That is, the concurrent

TRANSACTION PROCESSING 7



global transactions must be serializable and recoverable in
the distributed database system. Consequently, each sub-
transaction of a global transaction must be either per-
formed in its entirety or not performed at all.

Serializability in a Distributed Database

Global transactions perform operations at several sites in a
distributed database system (DDBS). It is well understood
that the maintenance of the consistency of each single
database does not guarantee the consistency of the entire
distributed database. It follows, for example, from the fact
that serializability of executions of the subtransactions on
each single site is only a necessary (but not sufficient)
condition for the serializability of the global transactions.
In order to ensure the serializability of distributed transac-
tions, a condition stronger than the serializability of single
schedule for individual sites is required.

In the case of distributed databases, it is relatively easy
to formulate a general requirement for correctness of global
transactions. The behavior of a DDBS is the same as a
centralized system but with distributed resources. The
execution of the distributed transactions is correct if their
schedule is serializable in the whole system. The equivalent
conditions are:

� Each local schedule is serializable, and

� The subtransactions of a global transaction must have
a compatible serializable order at all participating
sites.

The last condition means that, for any two global transac-
tions Gi and Gj, their subtransactions must be scheduled in
the same order at all the sites on which these subtransac-
tions have conflicting operations. Precisely, if Gik and Gjk

belongs to Gi and Gj, respectively, and the local serializable
order is Gik precedes Gjk at site k, then all the subtransac-
tions of Gi must precede the subtransactions of Gj at all sites
where they are in conflict.

Various concurrency control algorithms such as 2PL and
TO have been extended to DDBS. As the transaction man-
agement in a DDBS is implemented by a number of iden-
tical local transaction managers, the local transaction
managers cooperate with each other for the synchroniza-
tion of global transactions. If the timestamp ordering tech-
nique is used, a global timestamp is assigned to each
subtransaction, and the order of timestamps is used as
the serialization order of global transactions. If a two-phase
locking algorithm is used in the DDBS, the locks of a global
transaction cannot be released at all local sites until all
the required locks are granted. In distributed systems, the
data item might be replicated. The updates to replicas must
be atomic (i.e., the replicas must be consistent at different
sites). The following rules may be used for locking with n
replicas:

1. Writers need to lock all n replicas; readers need to lock
one replica.

2. Writers need to lock all m replicas (m > n/2); readers
need to lock n � m þ 1 replicas.

3. All updates are directed first to a primary copy replica
(one copy has been selected as the primary copy for
updates first and then the updates will be propagated
to other copies).

Any one of these rules will guarantee consistency among
the duplicates.

Atomicity of Distributed Transactions

In a centralized system, transactions can either be pro-
cessed successfully or aborted with no effects left on the
database in the case of failures. In a distributed system,
however, additional types of failure may happen.

For example, network failures or communication fail-
ures may cause network partition, and the messages sent
from one site may not reach the destination site. If there is a
partial execution of a global transaction at a partitioned site
in a network, it would not be easy to implement the atom-
icity of a distributed transaction. To achieve an atomic
commitment of a global transaction, it must be ensured
that all its subtransactions at different sites are capable
and available to commit. Thus, an agreement protocol has
to be used among the distributed sites. The most popular
atomic commitment protocol is the two-phase commitment
(2PC) protocol.

In the basic 2PC, there is a coordinator at the originating
site of a global transaction. The participating sites that
execute the subtransactions must commit or abort the
transaction unanimously. The coordinator is responsible
for making the final decision to terminate each subtrans-
action. The first phase of 2PC is to request from all
participants the information on the execution state of sub-
transactions. The participants report to the coordinator,
which collects the answers and makes the decision. In the
second phase, that decision is sent to all participants. In
detail, the 2PC protocol proceeds as follows for a global
transaction Ti(9):

Two-Phase Commit Protocol Phase 1: Obtaining a
Decision.

1. Coordinator asks all participants to prepare to com-
mit transaction Ti:

a. Add [prepare Ti] record to the log.

b. Send [prepare Ti] message to each participant.

2. When a participant receives [prepare Ti] message, it
determines if it can commit the transaction:

a. If Ti has failed locally, respond with [abort Ti].

b. If Ti can be committed, send [ready Ti] message to
the coordinator.

3. Coordinator collects responses:

a. All respond ‘‘ready’’; decision is commit.

b. At least one response is ‘‘abort’’; decision is abort.

c. At least one fails to respond within time-out period,
decision is abort.

8 TRANSACTION PROCESSING



Phase 2: Recording the Decision in the Database1.

1. Coordinator adds a decision record ([abort Ti] or
[commit Ti]) in its log.

2. Coordinator sends a message to each participant
informing it of the decision (commit or abort).

3. Participant takes appropriate action locally and
replies ‘‘done’’ to the coordinator.

The first phase is that the coordinator initiates the protocol
by sending a ‘‘prepare-to-commit’’ request to all participat-
ing sites. The ‘‘prepare’’ state is recorded in the log, and the
coordinator is waiting for the answers. A participant will
reply with a ‘‘ready-to-commit’’ message and record the
‘‘ready’’ state at the local site if it has finished the operations
of the subtransaction successfully. Otherwise, an ‘‘abort’’
message will be sent to the coordinator, and the subtran-
saction will be rolled back accordingly.

The second phase is that the coordinator decides
whether to commit or abort the transaction based on the
answers from the participants. If all sites answered ‘‘ready-
to-commit,’’ then the global transaction is to be committed.
The final ‘‘decision-to-commit’’ is issued to all participants.
If any site replies with an ‘‘abort’’ message to the coordi-
nator, the global transaction must be aborted at all the
sites. The final ‘‘decision-to-abort’’ is sent to all the parti-
cipants who voted the ‘‘ready’’ message. The global transac-
tion information can be removed from the log when the
coordinator has received the ‘‘completed’’ message from all
the participants.

The basic idea of 2PC is to make an agreement among all
the participants with respect to committing or aborting all
the subtransactions. The atomic property of global transac-
tion is then preserved in a distributed environment.

The 2PC is subject to the blocking problem in the pre-
sence of site or communication failures. For example, sup-
pose that a failure occurs after a site has reported ‘‘ready-to-
commit’’ for a transaction, and a global commitment mes-
sage has not yet reached this site. This site would not be
able to decide whether the transaction should be committed
or aborted after the site is recovered from the failure. A
three-phase commitment (3PC) protocol (14) has been
introduced to avoid the blocking problem. But 3PC is
expensive in both time and communication cost.

Transaction Processing in Heterogeneous Systems

Traditional DDBS are often homogeneous because local
database systems are the same, using the same data mod-
els, the same languages, and the same transaction manage-
ments. However, in the real world, data are often
partitioned across multiple database systems, file systems,
and applications, all of which may run on different
machines. Users may run transactions to access several
of these systems as single global transactions. A special
case of such systems are multidatabase systems or feder-
ated database systems.

As the 2PC protocol is essential to support the atomicity
of global transactions and, at the same time, the local
systems may not provide such support, layers of software
are needed to coordinate and the execution of global trans-

actions (25) for transactional properties of concurrency and
recovery. A TP monitor is a piece of software that connects
multiple clients to multiple servers to access multiple
databases/data resources as shown in Fig. 1. Further dis-
cussions on TP monitors can be found in Ref. 1.

ADVANCED TRANSACTION PROCESSING

In traditional database applications such as banking and
airline reservation systems, transactions are short and
noncooperative and usually can be finished in minutes.
The serializability is a well-accepted correctness criterion
for these applications. TP in advanced applications such as
cooperative work will have different requirements, need
different correctness criteria, and require different systems
supports to coordinate the work of multiple designers/users
and to maintain the consistency. Transactions are often
called advanced transactions if they need nonserializable
correctness criteria. Many advanced transaction models
have been discussed in the literature 2–5. In this section,
we will briefly examine some advanced transaction models
and then present a general advanced transaction model
and its correctness criterion.

Advanced Transaction Model

In addition to advanced transactions, we can also see other
similar terms such as nontraditional transactions, long
transactions, cooperative transactions, and interactive
transactions. We will briefly list some work on advanced
TP or cooperative TP in advanced database transaction
models (2,3), groupware (4,26,27), and workflow systems
(5,28).

Advanced Database Transaction Models (3).

1. Saga (29). A transaction in Saga is a long-lived trans-
action that consists of a set of relatively independent
steps or subtransactions, T1, T2 ,. . ., Tn. Associated
with each subtransaction Ti is a compensating trans-
action Ci, which will undo the effect of Ti. Saga is
based on the compensation concept. Saga relaxes the
property of isolation by allowing a Saga transaction to
reveal its partial results to other transactions before
it completes. As a Saga transaction can interleave its
subtransactions with subtransactions of other sagas
in any order, consistency or serializability is compro-
mised. Saga preserves atomicity and durability of
traditional transaction by using forward and back-
ward recoveries.

2. Cooperative Transaction Hierarchy (30). This model
supports cooperative applications like computer-
aided design (CAD). It structures a cooperative appli-
cation as a rooted tree called a cooperative transac-
tion hierarchy. The external nodes represent the
transactions associated with the individual
designers. An internal node is called a transaction
group. The term cooperative transaction refers to
transactions with the same parent in the transaction
tree. Cooperative transactions need not to be serial-

TRANSACTION PROCESSING 9



izable. Isolation is not required. Users will define
correctness by a set of finite automata to specify
the interaction rules between cooperative transac-
tions.

3. Cooperative SEE Transactions (31). This model sup-
ports cooperative work in software engineering envir-
onments (SEEs). It uses nested active transactions
with user-defined correctness. ACID properties are
not supported.

4. DOM Transaction Model for distributed object man-
agement (32). This model uses open and closed nested
transactions and compensating transactions to undo
the committed transactions. It also use contingency
transactions to continue the required work. It does
not support ACID properties.

5. Others (3). Open nested transactions, ConTract, Flex,
S, and multilevel transactions models use compen-
sating transactions and contingency transactions.
The ACID properties are compromised. The polytran-
saction model uses user-defined correctness. Tool Kit
also uses user-defined correctness and contingency
transactions to achieve the consistency.

Groupware (2,26,33). Most groupware systems synchro-
nize cooperative access to shared data in a more or less
ad hoc manner. Groupware systems involve multiple con-
current users or several team members at work on the same
task. The members, or users, are often in different locations
(cities or even countries). Each team member starts up a
cooperative transaction, each cooperative transaction
should be able to see the intermediate result of other
cooperative transactions, and these cooperative transac-
tions jointly form a cooperative transaction group. When
they read or update the uncommitted data from other
cooperative transactions, nonserializable synchronization
and concurrency mechanisms are required to maintain
consistency. A cooperative editing system is an example.

Workflow Applications (5). Workflow is used to ana-
lyze and control complicated business processes. A large
application often consists of a collection of tasks. Each
task can be viewed as a cooperative transaction processed
by one user or designer, and these tasks are partially
ordered by control and data flow dependencies. The work-
flow supports the task coordination specified in advance
through the control flow. Serializability is not preserved
either.

These applications have some common properties:
(1) users are often distributed; (2) they conduct some
cooperative work in an interactive fashion; and (3) this
interactive cooperative work may take a long time. These
applications have the following special consistency
requirements:

1. A transaction may read intermediate results pro-
duced by other transactions.

2. The consistency between individual and group needs
to be maintained.

Based on this summary, we give the following definition.

Definition 5. An advanced transaction (cooperative
transaction group) is defined as a set (group) of cooperative
transactions T1, T2, . . ., Tn, with the following properties:

1. Each cooperative transaction is a sequence (or partial
order) of read(x) and write(y) operations.

2. For the same data item, there might be more than one
read(x), written as read1(x), read2(x), . . ., in a coop-
erative transaction, and each read(x) will get a dif-
ferent value depending on the time and interaction
with other transactions.

3. Similarly, for each y, there might be more than one
write(y), written as write1(y),,write2(Y), . . ., each of
which will produce an individual version of data
item y.

The first part shows that an advanced transaction is a
cooperative transaction group. If the size of the group is
one, it will become a single transaction. The property 1 is
the same as that in traditional transactions. The second
and third properties indicate some cooperative features.
The first read(x) may read other transaction’s committed or
uncommitted data depending on the concurrency control
employed. After the first read operation on x, the data item
might be updated by another transaction or another coop-
erative transaction; then it can read the new value in the
next read(x). Similarly, after the first write operation on x,
because of the cooperative feature, a transaction may read
some new data from other transactions and then issue
another write(x) to incorporate it to the current processing.
The later write(x) can undo the previous write or do a
further update to show the new semantics.

To further justify the second and third properties of the
definition, we discuss their compatibilities with interactive
and noninteractive transactions in advanced transaction
applications.

Interactive Transactions. A cooperative transaction can
be formed with great flexibility because a user can dyna-
mically issue an operation depending on the most current
information. If a data item has been updated recently after
the first read, the cooperative transaction may wish to read
the data again because of the cooperative feature. In order
to incorporate the recent changes in to its own transaction,
it can perform additional operations or compensate for the
previous operations, which is also the flexibility of inter-
active work.

Noninteractive Transactions. In some database transac-
tion models, the transactions are not as interactive as those
online transactions from groupwares and transaction
workflow applications (3). To maintain system consistency
and meet the application requirements, all of them use
compensating transactions, contingency transactions, or
triggers, where a compensating transaction is a transaction
undoing the effect of a previous transaction; a contingency
transaction is a transaction to continue or extend a previous
transaction; and the trigger is a mechanism to invoke

10 TRANSACTION PROCESSING



another transaction (if the trigger condition is true) to
restore the consistency. A compensating transaction, a
contingency transaction, or a trigger can be viewed as an
extension of a transaction that violates the consistency
requirements during the execution, and the extended
part will have the read and write operations on some
data items in common. They are another type of interaction.
These interactions need to be programmed in advance;
therefore, they are not as flexible as interactive transac-
tions. But the interactive features are still required even for
these noninteractive database transaction applications.

Similar to distributed database transactions, the
advanced transaction definition could be extended to a
distributed advanced transaction as follows:

Definition 6. A distributed advanced transaction (dis-
tributed cooperative transaction group) is defined as a set
(group) of cooperative transactions T1, T2,. . ., Tn, with the
following properties:

1. Each transaction Ti consists of a set of subtransac-
tions T j

i at site j, j2 ½1 � �m�, m is the number of sites in
a distributed system. Some T j

i might be empty if Ti

has no subtransaction at site j.

2. Each subtransaction is a sequence (or partial order) of
read(x) and write(y) operations.

3. For the same data item x, there might be more than
one read(x), denoted as read1(x), read2(x),. . ., in a
cooperative transaction, each read(x) will get a dif-
ferent value depending on the time and interaction
with other transactions.

4. Similarly, for each y, there might be more than
one write(y), denoted as write1(y), write2(y),. . .,
each of which will produce an individual version of
data item y.

Just as the serializability theory plays an important role in
the traditional transaction model in developing concur-
rency control and recovery algorithms, a general correct-
ness theory for advanced transactions is also required to
guide transaction management for advanced applications.
In the next subsection, we will present such a correctness
criterion.

f-Conflict Serializability

As in the traditional transactions, we can assume that, for
write operations on x, there must be a read operation before
the first write in a cooperative transaction. It is natural to
read the data first before the update [i.e., one’s update may
depend on the read value or one may use a read operation to
copy the data into the local memory, then update the data
and write it back (when the transaction commits)].

In advanced transaction applications, cooperative trans-
actions could read and write a data item more than once,
which is different from traditional transactions. The reason
for reading a data item more than once is to know the recent
result and therefore make the current transaction more
accurate, which, however, will violate the serializability,
because a cooperative transaction may read a data item

before another transaction starts and also read the data
updated by the same transaction. If so, the schedule
between these two transactions will not be serializable.
However, from the semantic point of view, the most impor-
tant read or write on the same data item will be the last read
or write. If we give high priority to the last read or write
conflicts in developing the correctness criteria, we could
have an f-conflict (final conflict) graph, based on which
we will present an f-conflict serializability theorem as a
general correctness criterion for advanced TP.

Definition 7. The f-conflict graph among transactions is
constructed as follows. For each transaction Ti, there is a
node in the graph (we also name the node Ti). For any pair of
final conflicting operations (Oi, Oj), where Oi from Ti and Oj

from Tj, respectively, and Oi comes earlier than Oj, add an
arc from Ti to Tj in the conflict graph.

Definition 8. A schedule is f-conflict serializable if and
only if its f-conflict graph is acyclic. The f-conflict serial-
ization order of a set of transactions can be determined by
their f-conflicting operations in an f-conflict serializable
schedule. From the definitions, we can see the relationship
between conflict serializability and f-conflict serializability.

Theorem 2. If a schedule is conflict serializable, it is also
f-conflict serializable; the reverse is not true.

The conflict serializability is a special case of f-conflict
serializability in traditional TP.

Definition 9. A schedule of distributed advanced trans-
actions is f-conflict serializable if and only if

1. the schedule of subtransactions at each site is f-con-
flict serializable, and

2. the f-conflict serialization order at all sites are the
same.

Advanced transactions or cooperative transactions may
have different application-dependent requirements and
require different system supports to coordinate the work
of multiple users and to maintain the consistency. As a
result, different synchronization, coordination, and control
mechanisms within a cooperative transaction group are
developed. The f-conflict serializability in conjunction with
application-dependent semantics could be used for design-
ing and testing advanced TP approaches. The application-
dependent requirements can be reflected in the detailed
transaction structures. For example, when there are sev-
eral write operations on the same x, the later write might be
to undo and then redo the operation (or perform a different
operation). The undo operations might be reversing opera-
tions or compensating operations, and the redo operations
could be contingency operations or new operations that may
need to keep the intention (user intention) of the original
write (6,27) or to incorporate the new semantics.

In a recent work, we have verified a cooperative editing
system, REDUCE, according to this theory, and have
shown that the schedules from this system is f-conflict
serializable (34).

TRANSACTION PROCESSING 11



Advanced transactions are very long when compared
with traditional transactions. The arbitrary abortion of
such long transactions is not appropriate because aborting
long transactions means increasing the processing cost and
response time. In an environment with short (traditional)
transactions and long/cooperative transactions, long/coop-
erative transactions should not be aborted because of con-
flict operations with short transactions. On the other hand,
because the quick response is often required or preferred for
short transactions, long transactions should not block the
short transactions.

Based on the f-conflict serializability, a timestamp
ordering concurrency control algorithm (35) is developed
to support both traditional short transactions and long
cooperative transactions. With this new timestamp order-
ing method, short transactions can be processed in the
traditional way, as if there are no cooperative transactions.
Therefore, they will not be blocked by long transactions; a
cooperative transaction will not be aborted when there is a
conflict with short transactions, rather, it will incorporate
the recent updates into its own processing. The serializ-
abilities, among short transactions, and between a coop-
erative transaction (group) and other short transactions,
are all preserved.

Mobile Transaction Processing

In both centralized and DDBS, data and machines have
fixed locations. As a result of recent advances in the devel-
opment of portable computing devices and wireless com-
munication networks, mobile computing began to emerge
in many database applications. The mobile computing
environment consists of mobile computers, known as
mobile hosts, and a wired network of computers, some of
which are mobile support stations through which mobile
hosts can communicate with the wired network. Each
mobile support station manages those mobile hosts within

its cell, the geographical area it covers. Figure 5 shows both
a wired and wireless connected networking environment.

Mobile computing systems can be viewed as an exten-
sion of distributed systems (36). However, to support TP in
the mobile computing environment, physical limitations
imposed by the nature of the networking environment have
to be taken into consideration (37,38).

� Communication between mobile hosts and mobile sup-
port stations is asymmetric. Bandwidth in the
upstream direction from mobile hosts to mobile sup-
port stations is low, resulting in excessive latency.

� Portable computing devices have a limited battery life,
processing capability, and storage capacity.

� Most mobile hosts do not stay continuously connected,
for a number of reasons, including reducing connection
charges and saving power. Mobile hosts can also move
between cells, disconnecting one cell to connect to
another.

In such an environment, the characteristics of mobile
transactions can differ in a number of ways from transac-
tions in distributed systems (39,40).

� When a mobile host moves to a new cell during the
execution of a transaction, it might need to continue its
execution in another cell. Therefore, a mobile transac-
tion might have to split its computation in that some
parts of the computation are executed on the mobile
host and others on different fixed hosts.

� A mobile transaction tends to be long-lived because of
the high latency of wireless communication and long
disconnection time.

� A mobile transaction tends to be prone to failure.

Figure 5. Wired and wireless
net-working environment.

Station

Support station

Station

Mobile host

Mobile station

Station
Network

Support 
station

Support 
station

Cell

Cell

12 TRANSACTION PROCESSING



� A mobile transaction may be running in a distributed
and heterogeneous system.

Traditional TP protocols may not address these distinctive
characteristics of mobile computing systems and mobile
transactions. To support TP in a mobile computing envir-
onment efficiently and effectively, a number of desirable
features should be supported.

� Operations on shared data must ensure correctness of
transactions executed on both mobile hosts and fixed
hosts.

� Transaction aborts and blocking should be minimized
to save resources and to increase concurrency. Early
detection of data conflicts leading to transaction
restarts is required.

� Communication between mobile hosts and support
stations should be minimized and adaptable to the
network connectivity.

� Autonomy for mobile transactions to be processed
locally during disconnection should be supported.

A traditional distributed transaction consists of a set of
subtransactions that are executed concurrently at multiple
sites and there is one coordinator to coordinate the execu-
tion and commitment of these subtransactions. A mobile
transaction is another kind of distributed transaction. The
entire transaction can be submitted in a single request from
the mobile host, or the operations of a transaction are
submitted in multiple requests, possibly to different sup-
port stations in different cells. The former method involves
a single coordinator for all the operations of the transaction,
whereas the latter may involve multiple coordinators. For
example, after submitting some operations (and getting
partial results back), the mobile host might need to submit
the remaining operations to another cell because it has
moved to a new cell. The execution of the mobile transaction
is not fully coordinated by a single coordinator because, to a
certain extent, it depends on the movement of the mobile
computer. The kangaroo transaction model (41) uses a split
operation to create a new subtransaction when the mobile
computer hops from one cell to another. A subtransaction is
a global or a local transaction that can be committed
independently and the failure of one may result in the
entire kangaroo transaction being undone. To manage
the execution of a kangaroo transaction, a data structure
is maintained between the mobile support stations
involved.

In typical multidatabase systems where users may
simultaneously access heterogeneous data from different
local databases, a global locking table can be maintained for
correct execution of concurrent global and local transac-
tions. In the mobile environment, intensive communication
of locking information between the local sites and the global
transaction manager is impractical because of the physical
limitations of the networking environment. A hierarchical
concurrency control algorithm using global locking table
with semantic information contained within the hierarchy
can be used to dynamically adjust the amount of commu-
nication required to detect and resolve data conflicts (42).

To reduce the impact on local transactions due to the
processing of the long-lived global transactions submitted
by mobile users, the Pre-Serialization technique allows
global transactions to establish their serialization order
before completing execution (43). In this way, subtransac-
tions of a global transaction can be committed indepen-
dently at local sites and resources may be released in a
timely manner.

Guaranteeing the consistency of data processed by
mobile hosts is harder because mobile hosts are often dis-
connected from the rest of the network while still in
operation. For instance, if a data item cached in a mobile
computer is updated by another computer while the
mobile computer is disconnected, the cached data will
become inconsistent or out of date. If a conventional lock-
based approach is adopted in the mobile computing envir-
onment to maintain data consistency, the system could
suffer from significant performance degradation as the
data items held by a long-lived mobile transaction could
not be released until the transaction commits. To improve
data availability, a transaction can pre-commit at the
mobile host (44) so that the future value of a data object
can be made visible to other transactions before the delayed
final commit of the transaction at the mobile support sta-
tion, which reduces the blocking of other transactions to
increase concurrency and costly transaction aborts can
also be avoided as a pre-committed transaction is guaran-
teed to commit.

During disconnection, mobile host users may issue
query or update transactions on the data that reside locally.
Data are often replicated or cached at mobile hosts for
reasons of performance and availability. To support TP
in a networking environment with intermittent links,
weak transactions(45) let users access local data in mobile
computing applications where bounded inconsistency is
acceptable. In a weak transaction, weak read operations
read local, potentially inconsistent copies and weak write
operations perform tentative updates. Data reconciliation
can be activated when the mobile computer is reconnected
to the wired network.

In mobile computing systems, the number of mobile
hosts is far greater than the number of support stations,
and support stations have a relatively abundant down-
stream bandwidth. The pull-based architecture in tradi-
tional distributed systems, where data items are delivered
from servers to clients on a demand basis, is no longer a
good match in mobile computing systems. In contrast,
push-based data delivery fits well the inherent communi-
cation asymmetry to exploit the abundant downstream
bandwidth in mobile computing systems. In the push-based
architecture called Broadcast Disks(46), data items are
continuously and repetitively broadcast to mobile hosts
without any specific request, and the mobile hosts listen
to the broadcast channel and retrieve data of their interest.
Data dissemination can be found in many applications,
including stock trading and electronic auctions. In these
applications, data updates must be disseminated promptly
and consistently to a large community of mobile users.

In the broadcast environment, data items may be
updated by transactions executed at the server while
they are being broadcast. To ensure the consistency of

TRANSACTION PROCESSING 13



mobile transactions, the broadcast channel can be used to
transmit concurrency control-related information to the
mobile hosts to perform all or part of the transaction
validation function (47–49). In this way, data conflicts
can be detected earlier at the mobile hosts to avoid any
computing and communication resources being wasted, as
well as helping to improve the performance of mobile
transactions. In addition, transaction restarts are more
costly in the mobile environment. Excessive transaction
aborts because of ineffectiveness of the concurrency control
mechanisms or unnecessary restrictive correctness criteria
should be avoided (50).

To increase the concurrency of mobile transactions,
multiple versions of data items can be broadcast (51). A
mobile read-only transaction can choose to read the data
versions, if they exist, that correspond to a single database
state. With multiversioning, mobile transactions can
resume execution after temporary disconnection, as long
as the required versions are still on the broadcast. To
provide better currency, additional information in the
form of an invalidation report consisting of a list of data
items that have been updated can periodically be broadcast
to the mobile hosts.

Mobile transactions also introduce some other new pro-
blems, such as awareness of location. In wired DDBSs,
location transparency is an important feature. However,
mobile applications may be location-dependent, for
instance, the current position of a mobile host may be
accessed by a mobile transaction. Moreover, failures occur
more often in mobile computing because of the frequent
switching on and off of mobile computers and the frequent
handoff when mobile computers move across the boundary
of cells. Another new challenge in the mobile computing
environment is failure handling and recovery.

FUTURE RESEARCH DIRECTIONS

The future work on TP will continue in the direction on new
transaction models. Although the advanced transaction
model and f-conflict serializability provide a guideline for
advanced application, many particular applications still
need user-defined correctness and often employ the seman-
tic information for semantic serializability and semantic
atomicity.

In advanced database applications such as CAD and
cooperative work, the transactions are often cooperative or
interactive or online analysis processing. We need to design
mechanisms for advanced models to support partial
rollbacks, reread, and rewrite operations to reflect the
cooperative features.

As database systems are being deployed in more and
more complex applications, the traditional data model (e.g.,
the relational model) has been found to be inadequate and
has been extended (or replaced) by object-oriented data
models. Related to this extension is another research direc-
tion: TP in object-oriented databases, including semantic-
based concurrency control and recovery in object-oriented
databases. Ref. 52 presents a brief introduction and some
future research topics on this area as well as a comprehen-
sive list of references on advanced TP.

ACKNOWLEDGMENT

We thank Anne Fuller for her comments and review on an
earlier version of this article.

BIBLIOGRAPHY

1. P. A. Bernstein and E. Newcomer, Principles of Transaction
Processing, San Mateo, CA: Morgan Kaufmann, 1997.

2. K. Abrer et al., Transaction models supporting cooperative
work-TransCoop experiences, in Y. Kambayashi and K. Yokota
(eds.), Cooperative Databases and Applications, Singapore:
World Scientific, 1997, pp. 347–356.

3. A. K. Elmagarmid, Database Transaction Models for Advanced
Applications, San Mateo, CA: Morgan Kaufmann, 1992.

4. C. A. Ellis and S. J. Gibbs, Concurrency control in groupware
systems, Proc. ACM SIGMOD, 1989, pp. 399–407.

5. M. Rusinkiewicz and A. Sheth, Specification and execution of
transactional workflows, in W. Kim (ed.), Modern Database
Systems, Reading, MA: Addison-Wesley, 1994, pp. 592–620.

6. C. Sun et al., A generic operation transformation scheme for
consistency maintenance in real-time cooperative editing sys-
tems, Proc. ACM Group97, Phoenix, AZ, 1997, pp. 425–434.

7. R. Elmasri and S. B. Navathe, Fundamentals of Database
Systems, Menlo Park, CA: Benjamin/Cummins, 1989.

8. A. Silberschatz , H. Korth, and S. Sudarshan, Database Sys-
tems Concepts, New York: McGraw-Hill, 1991.

9. S. Ceri and G. Pelagate, Distributed Databases: Principles and
Systems, New York: McGraw-Hill, 1984.

10. T. Haerder and A. Reuter, Principles of transaction-oriented
database recovery, ACM Comput. Surv., 15 (4): 287–317, 1983.

11. J. N. Gray, The transactions concept: Virtues and limitations,
Proc. 7th Int. Conf. Very Large Data Base, 1981, pp. 144–154.

12. ISO/IEC DIS 10746-2, Basic reference model of open distrib-
uted Processing - Part 2: descriptive model [Online]. Available:
http://www.dstc.edu.au/AU/ODP/standards.html.

13. D. Agrawal and A. El. Abbadi, Transaction management in
database systems, Database Trans. Models Adv. Appl., 1–32,
1992.

14. C. J. Date, An Introduction to Database System, Vol. 2, Read-
ing, MA: Addison-Wesley, 1982.

15. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems, Reading, MA:
Addison-Wesley, 1987.

16. H. Korth, A. Silberschatz, Database Systems Concepts, 2nd ed.
New York: McGraw-Hill, 1991.

17. C. Papadimitriou, The Theory of Database Concurrency
Control, Rockville MD: Computer Science Press, 1986.

18. K. P. Eswaran et al., The notions of consistency and predicate
locks in a database system, Commun. ACM, 19 (11): 624–633,
1976.

19. J. N. Gray, Notes on database operating systems, Lect. Notes
Comput. Sci., 6: 393–481, 1978.

20. P. A. Bernstein and N. Goodman, Timestamp based algorithms
for concurrency control in distributed database systems, Proc.
6th Int. Conf. VLDB, 285–300, 1980.

21. L. Lamport, Time, clocks and the ordering of events in a
distributed system, Commun. ACM, 21 (7): 558–565, 1978.

22. H. T. Kung and J. T. Robinson, On optimistic methods for
concurrency control, Proc. Conf. VLDB, 1979.

14 TRANSACTION PROCESSING



23. D. Z. Badal, Correctness of concurrency control and implica-
tions in distributed databases, COMPSAC Conf., 1979, pp.
588–593.

24. M. A. Casanova, Concurrency control problem of database
systems, Lect. Notes Comput. Sci., 116: 1981.

25. A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems
Concepts, 3rd ed., New York: McGraw-Hill, 1991.

26. S. Greenberg and D. Marwood, Real time groupware as a
distributed system: Concurrency control and its effect on the
interface, Proc. ACM Conf. CSCW’94, 1994, pp. 207–217.

27. C. Sun et al., Achieving convergency, causality-preservation
and intention preservation in real-time cooperative editing
systems, ACM Trans. Comput.-Hum. Interact., 5 (1): 1–42,
1998.

28. D. Jean, A. Cichock, and M. Rusinkiewicz, A database
environment for workflow specification and execution, in
Y. Kambayashi and K. Yokota (eds.), Cooperative Databases
and Applications, Singapore: World Scientific, 1997, pp. 402–
411.

29. H. Garcia-Molina and K. Salem, Sagas, Proc. ACM SIGMOD
Conf. Manage. Data, 1987, pp. 249–259.

30. M. Nodine and S. Zdonik, Cooperative transaction hierarchies:
A transaction model to support design applications, in A. K.
Elmagarmid (ed.), Database Transaction Models for Advanced
Applications, San Mateo, CA: Morgan Kaufmann, 1992,
pp. 53–86.

31. G. Heiler et al., A flexible framework for transaction manage-
ment in engineering environments, in A. Elmagarmid (ed.),
Transaction Models for Advanced Applications, San Mateo,
CA: Morgan Kaufmann, 1992, pp. 87–112.

32. A. Buchmann, M. T. Ozsu, and M. Hornick, A transaction
model for active distributed object systems, in A. Elmagarmid
(ed.), Transaction Models for Advanced Applications, San
Mateo, CA: Morgan Kaufmann, 1992, pp. 123–158.

33. C. A. Ellis, S. J. Gibbs, and G. L. Rein, Groupware: Some issues
and experiences, Commun. ACM, 34 (1): 39–58, 1991.

34. Y. Zhang et al., A novel timestamp ordering approach for
co-existing traditional and cooperation transaction processing,
to appear inInt. J. Intell. and Cooperative Inf. Syst., an earlier
version in Proc. 3rd IFCIS Conf. Cooperative Information
Systems, New York, 1998.

35. Y. Zhang, Y. Kambayashi, X. Jia, Y. Yang, and C. Sun, On
interactions between coexisting traditional and cooperative
transactions, Int. J. Coop. Inform. Syst., 8 (2,3): 87–109, 1999.

36. M. H. Dunham and A. Helal, Mobile computing and databases:
Anything new?SIGMOD Rec., 24 (4): 5–9, 1995.

37. E. Pitoura and G. Samaras, Data Management for Mobile
Computing, Dordrecht, the Netherlands: Kluwer Academic
Publishers, 1998.

38. D. Barbara, Mobile computing and databases – a survey, IEEE
Trans. Knowledge Data Eng., 11 (1): 108–117, 1999.

39. A. K. Elmagarmid, J. Jing, and T. Furukawa, Wireless client/
server computing for personal information services and appli-
cations, SIGMOD Rec., 24 (4): 16–21, 1995.

40. S. Madria et al., Data and transaction management in a mobile
environment, in S. Upadhyaya, A. Chaudhury, K. Kwiat, and
M. Weiser (eds.), Mobile Computing Implementing Pervasive
Information and Communications Technologies, Dordrecht,
the Netherlands Kluwer Academic Publishers, 2002, pp.
167–190.

41. M. H. Dunham, A. Hedal, and S. Balakrishnan, A mobile
transaction model that captures both the data and movement
behavior, Mobile Networks Applicat., 2: 149–162, 1997.

42. J. B. Lim and A. R. Hurson, Transaction processing in mobile,
heterogeneous database systems, IEEE Trans. Knowledge
Data Eng., 14 (6): 1330–1346, 2002.

43. R. A. Dirckze and L. Gruenwald, A pre-serialization transac-
tion management technique for mobile multidatabases, Mobile
Networks Applicat., 5: 311–321, 2000.

44. S. Madria and B. Bhargava, A transaction model to improve
data availability in mobile computing, Distributed Parallel
Databases, 10: 127–160, 2001.

45. E. Pitoura and B. Bhargava, Data consistency in intermittently
connected distributed systems, IEEE Trans. Knowledge Data
Eng., 11 (6): 896–915, 1999.

46. S. Acharya et al., Broadcast disks: Data management for
aymmetric communication environments, ACM SIGMOD
Record, Proc. 1995 ACM SIGMOD Int. Conf. Management of
Data, 24 (2): 199–210, 1995.

47. D. Barbara, Certification reports: Supporting transactions in
wireless systems, Proc. 17th Int. Conf. Distributed Computing
Systems, 1997, pp. 466–473.

48. E. Pitoura and P. K. Chrysanthis, Scalable processing of read-
only transactions in broadcast push, Proc. 19th IEEE Int. Conf.
Distributed Computing Systems, 1999, pp. 432–439.

49. V. C. S. Lee et al., On transaction processing with partial
validation and timestamp ordering in mobile broadcast envi-
ronments, IEEE Trans. Comput., 51 (10): 1196–1211, 2002.

50. J. Shanmugasundaram et al., Efficient concurrency control for
broadcast environments, ACM SIGMOD Record, Proc. 1999
ACM SIGMOD Int. Conf. Management of Data, 28 (2): 85–96,
1999.

51. E. Pitoura and P. K. Chrysanthis, Multiversion data broadcast,
IEEE Trans. Compu., 51 (10): 1196–1211, 2002.

52. K. Ramamritham and P. K. Chrysanthis, Advances in
Concurrency Control and Transaction Processing, Los Alami-
tos, CA: IEEE Computer Society Press, 1997.

FURTHER READING

R. Alonso, H. Garcia-Molina, and K. Salem, Concurrency control
and recovery for global procedures in federated database systems,
Q. Bull. Comput. Soc. IEEE Tech. Comm. Database Eng., 10 (3):
5–11, 1987.

P. A. Bernstein and N. Goodman, Concurrency control in distrib-
uted database systems, Comput. Surv., 13 (2): 188–221, 1981.

J. Cao, Transaction management in multidatabase systems. Ph.D.
thesis, Department of Mathematics and Computing, University of
Southern Queensland, Australia, 1997.

U. Dayal, M. Hsu, and R. Latin, A transactional model for long
running activities, Proc. 17th Conf. Very Large Databases, 1991,
pp. 113–122.

C. A. Ellis, S. J. Gibbs, and G. L. Rein, Design and use of a group
editor, in G. Cockton (ed.), Enginering for Human Computer
Interaction, Amsterdam: North-Holland, 1990, pp. 13–25.

J. N. Gray, Transaction Processing: Implementation Techniques,
San Mateo, CA: Morgan Kaufmann, 1994, pp. 207–217.

TRANSACTION PROCESSING 15



G. Kaiser and C. Pu, Dynamic restructuring of transactions, in A.
Elmagarmid (ed.), Transaction Models for Advanced Applications,
San Mateo, CA: Morgan Kaufmann, 1992.

M. T. Özsu and P. Valduriez, Principles of Distributed Database
Systems. Englewood Cliffs, NJ: Prentice-Hall, 1991.

Y. Kambayashi and K. Yokota (eds.), Cooperative Databases and
Applications, Singapore: World Scientific, 1997.

C. Mohan et al., ARIES: A transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead
logging, ACM Trans. Database Syst., 17 (1): 94–162, 1992.

C. Pu, G. Kaiser, and N. Huchinson, Split transactions for open-
ended activities, Proc. 14th Conf. Very Large Databases, Los
Angeles, CA, 1988, pp. 26–37.

T. Rodden, A survey of CSCW systems, Interact. Comput. Interdisc.
J. Hum.-Compu. Interac., 3 (3): 319–353, 1991.

Y. Zhang and Y. Yang, On operation synchronization in cooperative
editing environments, in IFIP Transactions A-54 on Business
Process Re-engineering, 1994, pp. 635–644.

Y. ZHANG

Victoria University
Melbourne, Australia

X. JIA

V. C. S. LEE

City University of Hong Kong
Hong Kong

16 TRANSACTION PROCESSING



A

ACTIVE CONTOURS: SNAKES

The shape of a real-world object can be represented by its
outline in the image plane. In computer vision, the outline
of the object is referred to as the object contour. A funda-
mental approach to finding automatically the object con-
tour is the ‘‘snakes framework,’’ which was introduced by
the seminal work of Kass et al. in 1987 (1). For the last two
decades, snakes have been used successfully in the context
of facial animation, visual speech analysis, traffic mon-
itoring, surveillance, medical imaging (tracking and seg-
mentation of organs), and blue screening in Hollywood
movies.

A snake is an elastic model of a continuous and flexible
curve that is fitted on the boundary between the object and
the rest of the image by analyzing the visual image content.
The process of fitting iteratively an initial snake to the
object, such that the snake encloses the object tightly, is
called ‘‘snake evolution.’’ During its evolution, the snake
imposes continuity and smoothness constraints on the
evolved contour, which relax the requirement of a noise-
free image. In addition to the continuity and smoothness
constraints, snake have the capability to be attracted to
certain shape configurations known a priori. The evolution
of a snake from one configuration to another in consecutive
frames of a video clip attributes a dynamic behavior to
the contour and provides object-tracking capabilities.
The snake performing object tracking is considered a
dynamic contour moving from frame to frame.

THE SNAKE FORMULATION

The snake is composed of a set of control points marked in
the spatial image coordinates (x,y). The control points
initially can reside inside or outside the object region.
From its initial configuration, the snake evolves by chan-
ging the positions of the control points while minimizing
an associated cost (energy) function evaluated on the
contour:

Esnake ¼
Z 1

0
ðaEimage þ bEinternal þ gEexternalÞds ð1Þ

Where E denotes energy, s denotes the contour arc-length
and a, b, and g are the control parameters (1). The final
position of the control points provides the final configura-
tion of the snake which is obtained by the equilibrium of all
three terms, Eimage, Einternal, and Eexternal, in the snake
energy [Equation (1)] (2). In particular, the image energy
term, Eimage, attracts the snake to a desired configuration
by evaluating the visual features in the image. During its
evolution, the internal energy term, Einternal, imposes a
regularity constraint to enforce the contour continuity
and smoothness. The last term in the energy function,

Eexternal, accounts for the user-defined constraints. Tra-
ditionally, researchers define Eexternal in terms of a known
set of shapes the object can have.

VISUAL CUES

The snake’s attraction to distinctive local features on the
object boundary signifies the role of feature extraction in the
snake framework. Traditionally, feature extraction is
achieved byconvolvingan imagewith a mask. In its simplest
form, the convolution mask H can be considered a small
image, usually an n � n matrix, and the convolution opera-
tion � between the image I and the mask H is performed by

Iðx; yÞ �H ¼
Xn

i¼1

Xn

j¼1

Iðxþ i=2; yþ j=2ÞHði; jÞ ð2Þ

The convolution of the image with a filter generates a
feature image in which the boundaries are expected to be
highlighted while the other regions are suppressed. For
instance, convolving an image shown in Fig. 1(c) using
the vertical and horizontal edge filters shown in Fig. 1(a)
and Fig. 1(b) produces the edge responses shown in Fig. 1(d)
and Fig. 1(e). The gradient magnitude feature computed
from these edge responses emphasizes the object boundary
to which the snake will be attracted.

The convolution operation is a local operation, which
does not guarantee the generation of expressive features.
This operation can be exemplified as shown in Fig. 2(a)
where the background clutter and the object texture gen-
erate ambiguous edges, causing the snake to get attracted
to the wrong configurations. A solution to this problem is to
use global features computed in the regions defined by the
inside and the outside of the object contour (4). The simi-
larity between the colors observed inside and outside
the object is a common measure used by researchers (see
Fig. 2(b) for the definition of the snake inside and outside).
This similarity measure can be computed by means of the
distance between the probability distribution functions
(pdf) associated with the inside and outside regions. Based
on this distance, the snake evolves by moving the control
points inward or outward.

CURVE SMOOTHNESS

In the case when the object is not distinctive from its
background or when the image contains noise, the snake
may not converge to a final configuration, which represents
the object shape. To overcome this problem, it is necessary
to stabilize the contour evolution to keep the shape of the
snake intact and to not resonate from one configuration to
another. Stabilization of the contour is achieved by the
internal energy term, Einternal, given in Equation (1).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



This term includes a weighted combination of a membrane
function and a thin plate function shown in Fig. 3:

Einternal ¼ w1 GðsÞ @GðsÞ
@s

����
����
2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
membrane

þw2 GðsÞ @
2GðsÞ
@s2

����
����
2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
thin plate

ð3Þ

where G(s) denotes the curve and w1 and w2 are the weights.
Practically, when w1 � w2, the curve is allowed to kink,

whereas w1�w2 forces the curve to bend slowly. A common
practice is to use different weights for each control point, so
that both w1 and w2 become functions of s. This approach
allows parts of the snake to have corners and allows the
others parts to be smooth.

SNAKE EVOLUTION

The motion of each control point, which is governed by
Equation (1), evolves the underlying curve to new a con-

Figure 1. The convolution mask to detect (a) the
vertical edges and (b) the horizontal edges, (c) An
input image. Resulting (d) vertical edges after con-
volving (a) with (c), and (e) horizontal edges after
convolving (b) with (c). (f) The gradient magnitude
image generated using (d) and (e) for highlighting the
boundary of the object.

Figure 2. (a) The edges obtained by applying the Canny edge
detector (3) with different thresholds. Note the ambiguity of the
features that will guide the snake evolution. (b) The inside and
outside regions defined by the snake.

Figure 3. (a) The membrane function and (b) the
thin plate function, which are a regularization filter
of order 1 and 2, respectively.

(b)(a)

Figure 4. The evolution of an initial
snake using the gradient magnitude
image shown in Fig. 1(f) as its feature.

2 ACTIVE CONTOURS: SNAKES



figuration. This process is shown in Fig. 4. Computing the
motion of a control point si requires the evaluation of the
first- and the second- order curve derivatives in a neighbor-
hood G(si). An intuitive approach to evaluate the curve
derivatives is to use the finite difference approximation:

@GðsiÞ
@s

¼ GðsiÞ � Gðsi�1Þ
d

ð4Þ

@2GðsiÞ
@s2

¼ Gðsiþ1Þ � 2GðsiÞ þ Gðsi�1Þ
d2

ð5Þ

The finite difference approximation, however, is not applic-
able in regions where two control points overlap, resulting
in zero Euclidean distance between the neighboring control
points: d ¼ 0. Hence, a special handling of the displace-
ment between the control points is required, so they do not
overlap during their motion. Another approach to compute
the derivatives is to fit a set of polynomial functions to
neighboring control points and to compute the derivatives
from these continuous functions. In the snake literature,
the parametric spline curve is the most common polynomial
approximation to define the contour from a set of control
points. As shown in Fig. 5, the spline curve provides natu-
rally a smooth and continuous approximation of the object
contour. This property waives the requirement to include
regularization terms in the energy function. Hence, the
complexity of the snake energy formulation is simplified.

The complexity of the snake formulation can also be
reduced by using a greedy algorithm (4,5). The greedy
algorithms move the control points on an individual basis
by finding a set of local solutions to the regular snake
energy Equation (1). computing locally the energy at
each control point requires analytical equations to evaluate
the snake regularity and curvature (5). An alternative
greedy formulation is to move each control point individu-
ally based on similarity in appearance between local
regions defined inside and outside of the curve (4). Practi-
cally, if the appearance of the outside is similar to that of the
inside, the control point is moved inside; if not, it is moved
outside. In either approach, the assumption is that each
local solution around a control point is correct and contri-
butes to the global solution defined by the object boundary.

DISCUSSION

The snakes framework has been very useful to overcome
the limitations of the segmentation and tracking methods
for cases when the features generated from the image are
not distinctive. In addition, its parametric form results in a

compact curve representation that provides a simple tech-
nique to compute geometric features of the curve, such as
the curvature, and the moments of the object region, such as
the object area.

The algorithms developed for the snake framework per-
form near real time when the initial snake is placed close to
the objects of interest. Their performance, however,
degrades in the presence of background clutter. To over-
come this limitation, researchers have proposed various
shape models to be included in the external energy term.

One of the main concerns about the snakes is the amount
of control points chosen initially to represent the object
shape. Selection of a few control points may not define the
object, whereas selecting too many control points may not
converge to a solution. For instance, if the object circum-
ference is 50 pixels and the snake is initialized with 100
control points, snake iterations will enter a resonant state
caused by the regularity constraint, which prevents the
control points from overlapping. A heuristic solution to this
problem would be to add or remove control points when
such cases are observed during the snake evolution.

Images composed of multiple objects require initializa-
tion of several independent snakes surrounding each
object. Multiple snakes are required because both the finite
difference approximation and the splines prevents the
snake from changing its topology by splitting of one curve
into two or merging of two curves into one. For topology
changing curves, we refer the reader to the article on the
‘‘Level Set Methods.’’

BIBLIOGRAPHY

1. M. Kass, A. Witkin, and D. Terzopoulos, Snakes: active contour
models, Internation. Conf. of Comp. Vision, London, UK,
pp.259–268, 1987.

2. A. Blake and M. Isard, Active Contours: The Application of
Techniques from Graphics, Vision, Control Theory and Statis-
tics to Visual Tracking of Shapes in Motion., New York:
Springer, 2000.

3. J. Canny, A computational approach to edge detection, Putt.
that. Machine Intell., 8 (6): 679–698, 1986.

4. R. Ronfard, Region based strategies for active contour models,
Iternat. J. Comp. Vision, 13 (2): 229–251, 1994.

5. D. Williams and M. Shah, A fast algorithm for active contours
and curvature estimation, Comp. Vision Graphics Imag. Pro-
cess, 55 (1): 14–26, 1992.

ALPER YILMAZ

The Ohio State University
Columbus, Ohio

Figure 5. Spline function estimated from four control points. The
gray lines denote the control polygons connecting the control
points.

ACTIVE CONTOURS: SNAKES 3



C

COLOR: COLOR MODELS

INTRODUCTION

With the widespread use of color-imaging and display
systems, the ability to describe and specify color has become
increasingly important. These models are used primarily to
understand or characterize the behavior of color stimuli or
abstract signals that are representative of color. In general,
color models may be divided into four families as follows:

� Physics-based models,

� Models based on human perception,

� Models used for imaging devices, and

� Hybrid models that are used in imaging devices but are
loosely based on human perception.

PHYSICS-BASED MODELS

Sources of light have a spectral power distribution that may
be represented by i(l), where l denotes wavelength (with
units of say, nanometers). Light interacts with an inhomo-
geneous surface of an object (see Fig. 1) and undergoes two
distinct processes, which are described by the dichromatic
reflection model (1). The first process occurs at the interface
between the medium in which the incident light is traveling
and the surface of the object, which causes some reflection
and refraction. The refracted light passes through the
interface and interacts with the particles in the medium.
It is then scattered repeatedly and absorbed selectively by
the pigments or colorants in the medium and is in part
transmitted through the transparent surface with its
spectral composition altered by the colorants. This model
pertains to dielectrics, not metals. The dichromatic reflec-
tion model states that each of the two components—the first
denoted the ‘‘interface’’ reflection and the second denoted
the ‘‘body’’ reflection—may be factored into the product of
the spectral composition (c), depending on wavelength only
and a geometric factor (m) that depends on the angular
arrangement of the illumination and viewing geometry.
This model may be represented as

irðl; uÞ ¼ iinterfaceðl; uÞ þ ibodyðl; uÞ ð1Þ

¼ minterfaceðuÞcinterfaceðlÞ þmbodyðuÞcbodyðlÞ ð2Þ

The wavelength-related terms depend in turn on both the
spectral composition of the illuminant and on the object.
This color formation model is used in machine vision-
related works and has found wide acceptance.

In a somewhat simplified framework in which viewing
geometry is not of much concern—especially when the sur-
face is Lambertian (reflects light equally in all directions,
independent of viewing angle)—the viewing geometry is

constant. This model may then be restated as: The light
that reaches a surface gets spectrally selectively absorbed/
transmitted/reflected by the surface depending on the color-
ants that are in the body. Theenergy exiting the surfacemay
now be represented by

irðlÞ ¼ iðlÞrðlÞ ð3Þ

Here, r(l) denotes the spectral reflectance function of the
surface (note that the interface and the body are treated as
one). This simplistic model discounts viewing geometry,
that is, the relative position of the source of light and its
direction, the surface orientation, and also the position of
the observer relative to each of these.

MODELS BASED ON HUMAN PERCEPTION

A copublished article titled ‘‘Color Perception’’ gives a brief
description of the mechanisms of color perception. In that
article, we introduced the following equation regarding
formation of color stimuli in the retina-based cone func-
tions, which is represented as functions of wavelength by
l(l), m(l), and s(l): These symbols give the spectral sensi-
tivities of the three different cones in the human retina,
denoting long, medium, and short human cone sensors (i.e.,
roughly red, green, and blue). In the presence of a light
source (illuminant) represented by i(l), the reflectance
function of a surface (described by r(l) in [0..1]) is modified
in a wavelength-selective fashion to create a stimulus ir(l)
to the eye given by Equation (3). Let us denote the cone
functions as a vector given by

lmsðlÞ ¼ ½lðlÞ;mðlÞ; sðlÞ� ð4Þ

The signals measured in the cones of the eye are then a
three-vector c ¼ ½cl; cm; cs�, given by:

c ¼
Z l¼830 nm

l¼380 nm

lmsðlÞirðlÞdl ð5Þ

In the case of emissive sources of light, i(l) in Equation 3 is
replaced by the spectral content of the light itself. In the
case of transmission through translucent materials, r(l) is
replaced by the transmission function with respect to
wavelength. These equations are founded on Grassmann’s
laws (2), which state that a color (C) that is matched with a
weighted combination of three independent primaries (R,
G, B) will maintain the laws of linearity. In other words,
consider two colors C1 and C2, each created with two
different weightings of the primaries, given by

C1 ¼ a1R þ a2Gþ a3B
C2 ¼ b1R þ b2Gþ b3B

ð6Þ

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.
Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



A combination of these two stimuli will result in a color
given by

C1þ C2 ¼ ða1 þ b1ÞR þ ða2 þ b2ÞGþ ða3 þ b3ÞB ð7Þ

Hence, with knowledge of the trichromacies of the three
primaries at every wavelength, the net result of a linear
combination of these primaries as they vary in their spec-
tral content is given by Equation 2. (In computer computa-
tions as opposed to nature, integrals are actually replaced
by summations based on samplings of continuous func-
tions.) Of course, knowledge of the weights is needed and
in the case of Equation 2, the various weights are given by
the cone functions.

The ability to measure directly the cone functions of an
observer is only a recent development. However, research-
ers had inferred the cone functions based on what are
known as color matching functions and the International
Commission on Illumination [Commission International de
L’Eclairage, (CIE)] had standardized them long before the
cone functions could be measured directly. The color-
matching functions are determined by a process that
involves an observer viewing a bipartite field, one half of
which uses a reference color and another uses a color made
by adjusting the strengths of three independent sources of

illumination until a perfect match is made (illustrated in
Reference3).Thismodelsuggeststhatit ispossibletoplotthe
individual weights of the three primaries on a wavelength
scale, which in turn gives us the weight our visual system
applies toa givensetof spectral stimuli tomatcha particular
color. These weights, the color-matching functions, were
determined by two independent researchers (John Guild
and William D. Wright) in the 1920s. In a document pub-
lishedin1931,theCIEcombinedtheseresultstopublishaset
of RGB color-matching functions with RGB primaries
standardized to those at 700 nm, 546.1 nm and 435.8 nm,
respectively (4). These are shown in Fig. 2. These color-
matching functions have negative excursions because
some colors reside outside the triangle formed by these three
primaries,andanegativeexcursionintheprimaries’weights
is the only way to represent a color outside a triangle. To
address this, the CIE also published a set of color-matching-
functionswithnon-negativevalues,whichareknownasxðlÞ,
yðlÞ, and zðlÞ (note that these are now imaginary, nonphy-
sical primaries). In addition to being non-negative, the new-
color matching functions (see Fig. 3) were created such that
yðlÞ matched the photopic luminance response that was
standardized by the CIE earlier, in 1924 (5). These color-
matching functions are to be used in the same manner as the
cone primaries and the RGB primaries. The equations for

Figure 1. Dichromatic reflection model. Colorant

Incident 
Light

Surface reflection

Interface

Surface

Interface
reflection

400 450 500 550 600 650 700 750 800

0

0.5

1

1.5

2

2.5

3

Wavelength(nm)

T
ris

tim
ul

us
 V

al
ue

r(λ)
g(λ)
b(λ)

Figure 2. RGB color matching functions.

400 450 500 550 600 650 700 750 800

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Wavelength(nm)

T
ris

tim
ul

us
 V

al
ue

x(λ)
y(λ)
z(λ)

Figure 3. XYZ color matching functions with Judd-Vos modifica-
tions.

2 COLOR: COLOR MODELS



computing these special ‘‘tristimulus’’ values, in XYZ color
space, are analogous to Equation 5 but with respect to the
standardized color-matching functions as follows:

X ¼ k

Z
l

xðlÞirðlÞdl

Y ¼ k

Z
l

yðlÞirðlÞdl

Z ¼ k

Z
l

zðlÞirðlÞdl

ð8Þ

In Equation 8, k denotes a normalization factor that is set to
683 lumens/Watt in the case of absolute colorimetry and to
100/

R
l yðlÞiðlÞdl for relative colorimetry. In the case of

relative colorimetry, this means a value of Y ¼ 100 denotes
the brightest color—the illuminant that reflects off a
perfect-reflecting diffuser.

The first published set of color-matching functions by
the CIE were originally empirically determined for a 28
field—the bipartite field used for matching subtended a 28
angle on the observers’ retina. After the 1931 publication,
W. S. Stiles and J. M. Burch conducted experiments (6) to
measure color-matching functions for larger fields of view.
This research was combined with the findings of Sper-
anskaya (7) into the publication of a 108 observer in 1964
(8). The differences between these two standard observers
is significant enough to warrant a clear specification of
which observer color-matching functions are used in
experimental work. More specifically, the 108 observer
has noticeable shifts of the color-matching functions in
the blue direction because the subtense of the stimulus
encompasses a larger portion of the retina and hence,
more S cones as well as increased macular pigment
absorption.

In the CIE colorimetric system, an XYZ tristimulus
value uniquely specifies a color. However, a convenient
two-dimensional representation of the tristimulus values
led to the projection of the tristimulus values by normal-
izing by the sum of the three values. These ‘‘chromaticity’’
values are given by

x ¼ X

X þ Y þ Z

y ¼ Y

X þ Y þ Z

ð9Þ

A third chromaticity value z can be analogously defined, but
it is not independent because z ¼ 1� x� y. Specifying a
color by its (x, y) chromaticity coordinates and its luminance
Y also uniquely specifies a color, and it is often used to
describe a color because the tristimulus values are straight-
forward to obtain from the (x, y, Y) values. The biggest
advantage of the (x, y) chromaticity coordinates is that
they specify a magnitude-independent hue and purity of a
color. A chromaticity diagram (see Fig. 4) is typically used to
specify a color using its chromaticity coordinates. Unique
specification, however, requires the luminance to be speci-
fied as well. Figure 4 also shows the locus of illuminants
standardized as daylight illuminants (per the CIE stan-
dard), specifically denoting the location D55 (standard

mid-morning daylight), D65 (standard noon daylight),
and also for reference, the location of illuminant A (tungsten
lamps) and the equi-energy point, E ðx ¼ y ¼ 0:33Þ. Here,
D65 stands for a standard daylight with a ‘‘correlated color
temperature’’ of T ¼ 6500 K, as the closest point on the
locus of all Plankian lights, which are specified analytically
as a function of T. In Fig. 4, the horseshoe-shaped locus
denotes the locus of monochromatic stimuli visible to the
standard 28 observer (the gamut of visible colors). Shorter
wavelength stimuli (starting at 380 nm, which elicit a
relatively strong blue response) reside in the lower left of
this horseshoe shape, whereas the longer wavelengths (end-
ing at 830 nm, which elicit a relatively strong red response)
reside on the lower right, with the top of the horseshoe curve
around 520 nm (eliciting a strong green response). The line
that connects the blue and red corners is referred to as the
line of purples. Colors on this line, although on the border of
the gamut, have no counterpart in monochromatic light.
The (x,y) chromaticity diagram is perceptually nonuniform:
Unit vectors in the chromaticity space do not correspond to a
unit change in perception even if the luminance is kept
constant. In an attempt to improve the uniformity of the
chromaticity diagram, in 1976 the CIE published a Uniform
Chromaticity Scale (UCS) diagram that scaled and normal-
ized the XYZ tristimulus values (9). This chromaticity dia-
gram is denoted by u0, v0 axes that are related to the XYZ
tristimulus values by the following equations:

u0 ¼ 4X

X þ 15Y þ 3Z

v0 ¼ 9Y

X þ 15Y þ 3Z

ð10Þ

Figure 5 shows the UCS along with the standard illuminant
locations and the D-illuminant locus. As in Fig. 4, in this
diagram, the horseshoe-shaped locus represents the gamut
of visible colors.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8

x

y A

D55
D65

E

Figure 4. CIE xy chromaticity diagram that shows illuminants
D55, D65, A, and E (‘þ’, equi-energy illuminant).

COLOR: COLOR MODELS 3



The CIEXYZ color space, albeit powerful, does not repre-
sent colors in a perceptually uniform fashion; although the
Y axis maps luminance, the X, Z axes have no perceptual
correlates. To address these concerns and in turn enable a
mechanism to incorporate the nonlinearity of the human
visual system and furthermore provide a means of obtain-
ing measures of differences between colors, in 1976 the
CIE proposed the CIELAB and CIELUV color spaces, for
subtractive and additive systems, respectively.

Lightness-Chroma-Hue Color Spaces

The CIEXYZ color space does not have perceptual corre-
lates that would make it useful for common use. In an
attempt to add perceptual behavior to color spaces, based
on earlier works of many researchers, the CIE proposed a
lightness scale along with two chromatic scales. In the
CIELAB color space, the axes are denoted by L* (Lightness),
a*(redness-greenness) and b*(yellowness-blueness). For a
stimulus given by a tristimulus value of X, Y, and Z, the
CIELAB coordinates are given by:

L� ¼ 116 f ðY=YnÞ � 16

a� ¼ 500½ f ðX=XnÞ � f ðY=YnÞ�
b� ¼ 200½ f ðY=YnÞ � f ðZ=ZnÞ�

where

f ðtÞ ¼ t1=3; for t > 0:008856
7:787tþ 16=116 otherwise

�
ð11Þ

In the above equations, the subscript n denotes the tristi-
mulus values that correspond to the reference white—note
that therefore the CIELAB color space is a relative color
space. Given the CIELAB coordinates in a three–dimen-
sional space, correlates of chroma and hue may be derived

as follows:

C�ab ¼ ða
�2 þ b�2Þ1=2 ð12Þ

h�ab ¼ tan�1ðb�=a�Þ ð13Þ

Under highly controlled viewing conditions, a CIELAB DE
difference of 1 correlates with a single just noticeable
difference in color. It is to be noted that the CIELAB
color-difference measure was designed for color differences
between uniform color patches in isolation. It has however
been used for image differences measures as well. In com-
plex imagery, difference up to 3 is not significant (10).

In a similar construct, the CIE also recommended a
CIELUV color space based on the uniform chromaticity
scale (UCS), which uses subtractive shift from the reference
white instead of the normalization based on division that is
used in the CIELAB space. The equations to transform a
tristimulus value from u0; v0 coordinates to CIELUV are
given by:

L� ¼ 116 f ðY=YnÞ � 16

u� ¼ 13 L�ðu0 � v0uÞ

v� ¼ 13 L�ðv0 � v0nÞ;

where

f ðtÞ ¼ t1=3; for t > 0:008856
7:787tþ 16=116 otherwise

�
ð14Þ

The u0; v0 coordinates for a tristimulus value are computed
using Equation 10. As in the CIELAB definitions, the sub-
script n denotes the u0; v0 coordinates of the reference white
being used. For example, for viewing a computer screen, the
XYZ for standard light D65 is used; for viewing hardcopy,
D55 or D50 is used. The implications of the u* and v* axes
are similar to those in CIELAB, which approximate red-
ness-greenness and yellowness-blueness directions.

Based on these correlates, the CIE recommends that
color-difference measures in the two uniform-perception
spaces CIELAB and CIELUV be given by the Euclidean
difference between the coordinates of two color samples as
follows:

DE�ab ¼ ðDL�Þ2 þ ðDa�Þ2 þ ðDb�Þ2
h i1=2

DE�uv ¼ ðDL�Þ2 þ ðDu�Þ2 þ ðDv�Þ2
h i1=2

ð15Þ

where the differences are given between the corresponding
color coordinates in the CIELAB and CIELUV spaces
between the standard and the test samples. Many improve-
ments to this basic color-difference measure have been
proposed and adopted over the years, which involve scaling
the lightness, chroma, and hue differences appropriately
based on the application and the dataset of samples to which
the color difference measure has been adapted or improved
(11). Typically, color-difference thresholds are dependent on
the application, and thresholds for perceptibility judgments

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

u'

v'

A

D55
D65 E

Figure 5. CIE UCS u0v0 chromaticity diagram showing illumi-
nants D55, D65, A, and E (equi-energy illuminant).

4 COLOR: COLOR MODELS



are significantly lower than thresholds for acceptability
judgments. Many other color-difference measures have
been proposed, and more recently, the CIE DE2000 has
been adopted as a measure of color difference, again for
uniform color patches under highly controlled viewing con-
ditions and is slowly gaining acceptance (11,12).

In the case of both these uniform color spaces, note that

� The color space is only a rough approximation of a
color-appearance space [predictors of correlates to
brightness and colorfulness attributes are better mod-
eled with color appearance models specifically
designed for this purpose (13)].

� The chroma axes do not correspond to the location of
unique hues. This subject is entirely different subject
and is explored by Kuehni in Reference 14.

� The color differences are not to be used for samples
across different viewing conditions—reference view-
ing conditions need to be used.

� The lightness scale closely matches the Munsell Value
scale, and the two chromatic axes are used for describ-
ing redness-greenness and yellowness-blueness per-
ception. These color axes are clearly modeled after the
human vision opponent color theory.

� These color spaces were designed for threshold color
differences and their application to supra-threshold
(larger than about 5 units of DE) color differences is to
be handled with care (15).

These color spaces provide a powerful tool to model and
quantify color stimuli and are used in color-difference
modeling for color patches. They have more recently
been used to describe color appearances (see Reference
13). Models for describing colors based on lightness,
chroma, and hue are powerful in their abilities to enable
communication of color stimuli as well.

MODELS USED IN IMAGING DEVICES

In linear-additive combinations of colors, a unit input of a
color corresponds to a globally constant unit of the output
signal, whereas in nonlinear combinations, a transfer func-
tion would determine the input–output relationship. This
nonlinearity is often used in quantized systems with lim-
ited available bits and in signal compression systems to
take advantage of the available output signal bit-depth by
stretching small input codes over a larger range of output
codes and compressing the larger input codes into a smaller
output dynamic range. This model is referred to as gamma
encoding. From an encoding perspective, in its simplest
form the input–output relationship is typically given by a
gain-offset-gamma model, which is given by the following:

y ¼ round ð2N � 1Þðaxþ bÞg
h i

ð16Þ

where a denotes a scalar gain, N denotes the number of bits
in a system, b is a scalar offset, g denotes a power law with
values larger than 1 (typically around 2.2), and x and y
denote the normalized input and the output signals, respec-

tively (16). In encodingsystems, the threechannels typically
have the same parameters. Display systems based on cath-
ode ray tubes (CRTs) have an inherent response that follows
the inverse relationship—large steps in input signal at the
low end of the input signal cause a small change in output,
whereas at the upper end of the signal range, small steps
caused large output changes. It so happens that gamma
encoding (using a power-law of g on the linear luminance
input) the input prior to transmitting the data to a CRT
display causes the display luminance to follow similar steps
that result ina net unity transfer function.Thismodel isalso
a useful meansofencoding data tomaximizebit-depthusage
while reducing visibly apparent contouring on the output
data and display (3,17). In the case of a quantized color
space, for reasons ofperceptualuniformity, it ispreferable to
establish a nonlinear relationship between color values and
intensity or luminance.

RGB Color Model

The specification of a color in the RGB color space implies a
linear (after gamma is removed) or nonlinear (gamma
applied) combination of the red, green, and blue primaries
in varying strengths. In RGB color spaces, the manner in
which colors are reproduced varies from device to device.
For example, a color specified as an RGB triplet is more
than likely going to look different from one display device to
another when the exact same RGB triplet is provided as
input because of differences in the ‘‘color’’ of the primaries
and gamma curves. This finding makes the RGB space a
device-dependent color space. Specifying colors in device-
dependent color spaces, although not preferred from a
color-reproduction perspective, is often resorted to because
of its ease in comprehension.

An RGB color model can represent any color within an
RGB color cube, as shown in Fig. 6. This color model is most

Figure 6. RGB color cube commonly used in display applications.

COLOR: COLOR MODELS 5



commonly used in display applications in which data is
additive in nature. For example, a full-strength yellow color
is specified by (1.0, 1.0, 0.0), denoting the use of the red and
green primaries at full strength and the blue primary
completely turned off. In an 8-bit system, this will corre-
spond to a code value of (255,255,0). A three-primary dis-
play with three independent color primaries (typically
denoted by their CIE x,y chromaticity values along with
that of white) is specified by

�
xR xG xB xW

yR yG yB yW

�
ð17Þ

From this primary set and the CIEXYZ tristimulus value of
white computed as [xW/yW, 1, (1�xW�yW)/yW], a 3 � 3 sys-
tem matrix A given by

A ¼
XR XG XB

YR YG YB

ZR ZG ZB

2
64

3
75 ð18Þ

is computed. Using the XYZ tristimulus of white (with
c ¼ [1.0,1.0,1.0]), A is computed using the following arith-
metic:

xR xG xB

yR yG yB

zR zG zB

2
64

3
75

kR 0 0

0 kG 0

0 0 kB

2
64

3
75

1:0

1:0

1:0

2
64

3
75 ¼

XW

YW

ZW

2
64

3
75 ð19Þ

A is now given by

A ¼
xR xG xB

yR yG yB

zR zG zB

2
4

3
5 kR 0 0

0 kG 0
0 0 kB

2
4

3
5 ð20Þ

Accordingly, the CIE tristimulus t ¼ [X, Y, Z] that is gen-
erated from an RGB triple c ¼ [R, G, B] is given by

t ¼ Act ð21Þ

Consider for example, two displays (with the same
input–output transfer functions, same absolute white lumi-
nance levels) with the following primary and white chro-
maticities:

0:6400 0:3000 0:1500 0:3127

0:3300 0:6000 0:0600 0:3290

" #
ð22Þ

and,

0:6400 0:2100 0:1500 0:3127
0:3300 0:7100 0:0600 0:3290

� �
ð23Þ

The system defined by Equation 22 has a system matrix
given by

A1 ¼
0:4124 0:3576 0:1805
0:2126 0:7152 0:0722
0:0193 0:1192 0:9505

2
4

3
5 ð24Þ

and that defined by Equation 23 has a system matrix given
by

A2 ¼
0:5767 0:1856 0:1882
0:2973 0:6274 0:0753
0:0270 0:0707 0:9913

2
4

3
5 ð25Þ

A yellow color code (1,1,0) in each case will correspond to
a CIEXYZ of [0.7700,0.9278,0.1385] and [0.7622,0.9247,
0.0977], corresponding to a yellow CIE x, y coordinate of
(0.4193,0.5053) and (0.4271,0.5181), respectively. The
exact same representation of yellow results in different
colors on screen—a consequence of using a device-depen-
dent representation. Consequently, even though different
display systems using an RGB color space define a cube in a
Euclidean signal color space, their individual rendered
color gamuts may very likely be significantly different.
For a more rigorous comparison, the perceptual correlates
(CIELAB, CIELUV or some such representation) of the
colors need to also be considered.

The color-mixing matrix for additive colors mixing is
shown in Table 1, which states for example that a cyan color
would be created using maximum intensity of green and
blue primaries and none of the red primary.

CMY/CMYK Color Model

Printers, on the other hand, create colors using inks that
are deposited on paper, in which case the manner in which
they create color is called subtractive color mixing. The inks
selectively absorb wavelengths of incident light and reflect
the remainder. As a beam of light passes through an
absorbing medium, the amount of light absorbed is propor-
tional to the intensity of the incident light times the coeffi-
cient of absorption (at a given wavelength). This model is
often referred to as Beer–Lambert–Bouguer law and is
given by the following:

AðlÞ ¼ log10eðlÞcðlÞlðlÞ ð26Þ

Table 1. Color Mixing Matrix for Additive Primaries

Color Displayed

Primary Used Red Green Blue Cyan Yellow Magenta White Black

Red 1 0 0 0 1 1 1 0
Green 0 1 0 1 1 0 1 0
Blue 0 0 1 1 0 1 1 0

6 COLOR: COLOR MODELS



where e(l) is denotes absorptivity, c(l) denotes the concen-
tration, and l(l) denotes the path length for the beam of
light. Stated differently, the higher the concentration or
thickness or absorptivity of a certain absorptive material,
the higher is absorption—the intensity of reflected or trans-
mitted beam of light will be reduced (18). The simplest
model for printer inks is called the block-dye model. In such
a setup, different thicknesses of the three primary inks may
be deposited on top of each other to result in a final color to
the observer. The colorant amounts required to print a
stimulus designated by RGB emissions is given by Y ¼
1�X, where Y 2fC;M;Yg and X 2fR;G;Bg all normalized
to unity. Real primary inks however do not correspond to
these ideal functions, and hence, more sophisticated models
need to include not just the spectral absorptions/reflec-
tances of the inks, but the density (or area) of the inks
and the characteristics of the media (paper) involved. The
Kubelka-Munk equations describe the absorption and scat-
tering of light as it passes through layers of ink and the
substrate (e.g., paper). Various extensions are used in
practice that account for the shortcomings of the basic
Kubelka-Munk analysis, which consider issues such as
nonlinearities in ink deposition, interactions between
inks, and so on (18,19). In subtractive color mixing, the
primaries are typically cyan (C), yellow (Y), and magenta
(M). The color-mixing matrix for subtractive color mixing is
shown in Table 2.

Often, the amount of ink to be used is defined in terms of
its optical density D which is given by:

D ¼ �log10R ð27Þ

where R denotes a weighted measure of the reflectance of
the ink being used. Printers commonly use halftone pat-
terns (spatial patterns that are approximations of contin-
uous tones of a certain color) to create shades between full-

on and full-off. Consider the sample example of a black and
white picture printed on the front page of a newspaper: This
image may appear to be be a continuous-tone (smooth
shades) grayscale picture, but a closer analysis reveals
that the printer is simply a black-and-white printer with
different-sized dots representing different gray shades as
shown in Fig. 7. Various models are used to describe the
area of a certain ink needed to create a mid-tone color (19).
Digital printing uses patterns of binary dots to substitute
for varying sized dots. The printing industry has long used
dot-area models that describe the relationship between the
area A of an ink on a medium to its reflectance function R.
The simplest form is the Murray-Davies equation given by
the following:

A ¼ Rw � R

Rw � Rs
ð28Þ

where Rw denotes the reflectance of the medium
(unprinted), Rs denotes the reflectance of the solid ink,
and R denotes the desired reflectance for which the dot-
area is to be calculated. Equation 28 may also be written in
terms of density using Equation 27. More complex models
such as the Yule–Nielsen model, the Clapper–Yule model,
the Neugebauer model, and its various extensions are used
to better assess the amounts of the three inks (C,M,Y)
needed and for the tonal response of the desired and actual
ink-area, which may differ because of the characteristics of
the medium being used (for example, absorption of liquid
inks by paper) (20). Much like RGB color systems, in which
the reference white made a difference in the appearance of a
certain color, depending on the kind of paper and inks used
for printing, the rendered color can be significantly differ-
ent from one printer to another.

Most printers use a ‘‘K’’ channel, which denotes black
ink, primarily because a black generated by mixing cyan,
yellow, and magenta is not black enough in appearance.

Table 2. Color-mixing Matrix for Subtractive Primaries

Color Displayed

Primary Used Red Green Blue Cyan Yellow Magenta White Black

Cyan 0 1 1 1 0 0 0 1
Yellow 1 1 0 0 1 0 0 1
Magenta 1 0 1 0 0 1 0 1

Figure 7. A continuous-tone representation of
50% gray and a halftone representation of the
same code.

COLOR: COLOR MODELS 7



Additionally, to complicate matters, to print black, a prin-
ter would need to lay cyan, magenta, and yellow inks on top
of each other, which makes ink drying a cause for concern
and limits of ink absorption by the substrate (e.g., paper).
Additionally, using one unit of black ink instead of one unit
each of cyan, yellow and magenta inks can lead to signifi-
cant cost savings.

HSL/HSV Color Model

To make the representation of colors intuitive, colors may
be ordered along three independent dimensions that cor-
respond to the perceptual correlates of lightness, hue, and
chroma. In device-dependent color spaces, many variants
of these perceptual correlates are commonly used: HSV is
by far the most common. H stands for the perceptual
correlate of hue; S stands for the saturation of a color,
defined by the chroma of a color divided by its luminance
(the more desaturated the color the closer it is to gray); and
V stands for value (a perceptual correlate of lightness).
This color model is commonly used in image-processing
and editing software. However, the HSV color model has
two visualization representations, one of which is a cylin-
der with black at the bottom and pure full-intensity colors
on the top, and the other is representation by a cone, with
black at the apex and white on the base. The equations
used to convert RGB data into the HSV color space are
given by the following:

V ¼ max ð29Þ

S ¼ 0 if V ¼ 0
ðV �minÞ=V if V > 0

�
ð30Þ

H¼

0 if S ¼ 0
60ðG� BÞ=ðmax�minÞ if ðmax ¼ R and G�BÞ
60ðG� BÞ=ðmax�minÞ þ 360 if ðmax ¼ R and G<BÞ
60ðB� RÞ=ðmax�minÞ þ 120 if max ¼ G
60ðR�GÞ=ðmax�minÞ þ 120 if max ¼ B

8>>>><
>>>>:

ð31Þ

where max and min denote the maximum and minimum of
the (R,G,B) triplet. These representations are shown in
Fig. 8 on the left. From the figure, it is apparent that
saturation is not dependent on the intensity of the signal.
It is, however, often useful in image-processing applica-

tions to have an indicator of saturation given by a function
of the intensity of the signal, which results in a conical-
shaped HSV color space (Fig. 8). When the conical repre-
sentation is preferred, S is given by (max—min)/(2N�1)
where 2N�1 denotes the largest possible value for R, G, or
B. Other variants of the HSV color space also exist and are
used as an intuitive link to RGB color spaces (HSB, or HLS
denoting various correlates of hue, saturation, and bright-
ness/lightness).

HYBRID MODELS

Color models that are designed for imaging devices and
communication needs are typically formulated such that
colors are encoded/transmitted in the color space of a
reference device. Colors spaces that fit such a description
include the sRGB color space, the YCC, YUV, YIQ color
transmission spaces, the SWOP CMYK color space, Adobe
RGB (Adobe Systems, Inc., San Jose, CA), and ProPhoto
RGB (Kodak, Rochester, NY), to list a few.

A popular mechanism to standardize colors across elec-
tronic devices, such as printers, monitors and the Internet,
is the use of the sRGB color space. Originally, this was
proposed by Hewlett-Packard and Microsoft and later stan-
dardized by the International Electrotechnical Commis-
sion under IEC 61966-2-1 (21). The sRGB standard has
two primary parts, the viewing conditions and the neces-
sary colorimetric definitions and transformations. The
sRGB reference viewing environment corresponds to con-
ditions typical of monitor display viewing conditions and
thus may not be as well suited for print material, because of
the various proprietary gamut-mapping algorithms in most
printers that take advantage of each printer’s color gamut.
The colorimetric definitions provide the transforms neces-
sary to convert between the sRGB color space and the
CIEXYZ tristimulus color space as defined for a standard
two-degree observer. More specifically, the standard is
written for a standard reference monitor that has Rec.
709 primaries and a D65 white point. An overview of the
technical advantages and challenges of the sRGB color
space may be found in references 22 and 23. As was men-
tioned earlier, color spaces for video directly make use of
the gamma-corrected signals, denoted as R0, G0, B0, from
camcorders, without any attempt to correlate to the linear
signals used in color science, such as those in Equation 5.
For still imaging as well as video, this problem can be

Figure 8. The HSV color model represented as a
cylinder and a cone.

8 COLOR: COLOR MODELS



mitigated by the use of the transform built in to the sRGB
standard, which includes a function for transforming from
nonlinear signals I0 to linear ones. On a scale of 0.0 to 1.0,
for each of I ¼ R;G;B, we apply a function

I ¼ I0=12:92; if I0< 0:04045;

ððI0 þ 0:055Þ=1:055Þ2:4 otherwise

�
ð32Þ

In the video industry, a common mode of communication
is the YCbCr color space (YPbPr in the analog domain) that
converts RGB signal information into an opponent luma-
chroma color space. A nonlinear transfer function is applied
to linear-light R, G, B values and a weighted sum of the
resulting R0,G0,B0 values is used in the Y, Cb, and Cr
signals. In the television space, these signals have dynamic
ranges (on an 8-bit scale) of 16–235 for the luma signal and
16–240 in the Cb and Cr signals. This range is to allow for
signal noise and potential signal processing noise, giving
some head room and foot room. The weights are different
depending on the color space that the data is being created
for. For example, encoding R

0
;G

0
;B

0
signals with a 16–235

dynamic range into a color space defined by the NTSC
primaries (often referred to as ITU-R BT.601), is given
by the following:

Y
Cb
Cr

2
4

3
5¼ 0:299 0:587 0:114

�0:169 �0:331 0:500
0:500�0:419�0:081

2
4

3
5 R0

G0

B0

2
4

3
5þ 0

128
128

2
4

3
5 ð33Þ

whereas when using HDTV (referred to as ITU-R BT.709)
primaries, is given by the following:

Y
Cb
Cr

2
4

3
5¼

0:213 0:715 0:072
�0:117 �0:394 0:511

0:511�0:464�0:047

2
4

3
5 R0

G0

B0

2
4

3
5þ

0
128
128

2
4

3
5 ð34Þ

Keith Jack’s book (24) is a useful reference for more details
on the values of these coefficients for computer-systems
that have R0, G0, B0 data in the range of 0–255 and for details
and considerations on color conversion issues. The Y chan-
nel typically contains most information in the image, as
defined by spatial frequencies, and is hence sampled at
much higher rates than the chroma signals. This informa-
tion greatly helps in the ability of the transmission system
to compress luma and chroma data with low overheads
when compared with luma-only systems. To aid compres-
sion formats, color images in the JPEG and JPEG2000 file
formats also convert the R0, G0, B0 information into the
YCbCr color space prior to compression.

In the printing industry, a commonly specified color
space is the SWOP (Specifications for Web Offset Publica-
tions) CMYK color space. The SWOP CMYK (25) is a proof-
ing specification that has a well-established relationship
between the CMYK input to a standard printer and its
CIELAB values (an approximation of the perceptual coor-
dinates of a color) and for a standardized dataset. Specify-
ing images in the SWOP CMYK color space allows the
printing house and the content creator to preview images
on a common baseline prior to printing. Most image-editing

software available nowadays allows the user to preview
images in the SWOP CMYK color space.

Depending on the application, color models have their
individual uses. Device-independent color models like the
CIEXYZ, CIELAB, CIELUV, and their other derivatives
are used most often to communicate color either between
devices or between different color processing teams
across the world. The International Color Consortium
(ICC) has been extremely successful in standardizing
device-independent color spaces between displays, prin-
ters, and capture devices (26,27). The color profiles that
are stored and communicated in ICC profiles use an
intermediate profile connection space (PCS) like CIEXYZ
or CIELAB. ICC profiles also store color transformation
profiles to and from different color devices (say, from an
input device such as a scanner to CIEXYZ, and from
CIEXYZ to an output device such as a printer). For
example, an sRGB ICC profile incorporates the color
space transform from sRGB to the PCS, and a SWOP
CMYK ICC profile would incorporate the color space
transform from the PCS to the CMYK output color space
for a printer. Furthermore, depending on the rendering
intent (how the colors need to be represented on the
output device), different transformations may be speci-
fied in the ICC profile.

CONCLUSIONS

Typically, devices that use additive color mixing are those
used for display and use red, green, and blue primaries,
although recently multiprimary displays (more than three)
are also becoming available (28,29). The multiprimary dis-
plays allow for an improved color rendition with regard to
natural colors. Recently, multiprimary acquisition systems
(as opposed to three-primary acquisition systems) are gain-
ing importance for archiving applications (30,31). The
Digital Cinema Initiative (DCI), which standardizes the
various aspects of digital cinema, has specified the data
format for communication of digital film content to be in the
CIEXYZ format, making the transmission of the informa-
tion completely device independent (32). As far as subtrac-
tive color mixing devices are concerned, printers with more
than three or even four inks have been available for some
time now. It is fairly common for printer manufacturers to
use six or seven inks—two types of cyans, magentas, and
yellows, and of course a black ink. The two types of color
inks allow for an increased range of ink densities to be
deposited on the print media. Spectrally accurate printing
is a field that is receiving attention as well and is a field of
rapid advancements (30). Models of color are also becoming
increasingly complex, which accounts for viewing condi-
tions and the appearance of colors in spatial contexts of
complex images as opposed to the relatively simplified
constructs used in this article. All these examples are
indicators that the study of color models is still a very active
field.

The interested reader is referred to more detailed dis-
cussions of this subject such as the comprehensive books by
Hunt (17), Berns (16), Kuehni (33), Fairchild (13), Sharma
(31), and Green and MacDonald (19).

COLOR: COLOR MODELS 9



BIBLIOGRAPHY

1. G. Healey, S. Shafer, and L. Wolff, eds., Physics-Based Vision:
Principles and Practice, vol 2. Boston, MA: Jones Bartlett
Publishers Inc., 1992.

2. G. Wyszecki and W. S. Stiles, Color Science: Concepts and
Methods, Quantitative Data and Formulae, 2nd ed. New
York: Wiley Interscience, 2000.

3. Z.-N. Li and M. Drew, Fundamentals of Multimedia. Engle-
wood Cliffs, NJ: Prentice Hall, 2004.

4. Commission Internationale de l’Eclairage, Proceedings Inter-
national Congress on Illumination. Cambridge, UK: Cambridge
University Press, 1931.

5. Commission Internationale de l’Eclairage, The Basis of Phy-
sical Photometry, CIE Proceedings 1924. Cambridge, UK:
Cambridge University Press, 1926.

6. W. S. Stiles and J. M. Burch, NPL colour-matching investiga-
tion: Final report (1958). Optica Acta, 6: 1–26, 1959.

7. N. I. Speranskaya, Determination of spectrum color co-ordi-
nates for twenty-seven normal observers, Optics Spectrosc., 7:
424–428, 1959.

8. Commission Internationale de l’Eclairage, CIE Proceedings
(1964) Vienna Session, Committee Report E-1.4.1.Paris,
France: Bureau Central de la CIE, 1964.

9. Commission Internationale de l’Eclairage, CIE Publication
15.2, Colorimetry. Vienna, Austria: Central Bureau CIE, 1986.

10. M. Stokes, M. Fairchild, and R. Berns, Precision requirements
for digital color reproduction. ACM Trans. Graph., 11 (4):
406–422, 1992.

11. Commission Internationale de l’Eclairage, Colorimetry, 3rd
Edition, Publication CIE 15:2004. Vienna, Austria: Bureau
CIE, 2004.

12. R. G. Kuehni, CIEDE2000, milestone or a final answer? Color
Res. Applicat., 27 (2): 126–127, 2002.

13. M. D. Fairchild, Color Appearance Models. 2nd ed.New York:
John Wiley and Sons, 2005.

14. R. G. Kuehni, Variability in unique hue selection: a surprising
phenomenon. Color Res. Applicat., 29 (2): 158–162, 2004.

15. R. G. Kuehni, Color: An Introduction to Practice and Princi-
ples, 2nd ed. New York: Wiley Interscience, 2004.

16. R. Berns, Billmeyer and Saltzman’s Principles of Color Tech-
nology, 3rd ed. New York: Wiley Interscience, 2000.

17. R. W. G. Hunt, The Reproduction of Color, 6th ed. New York:
Wiley, 2004.

18. R. McDonald, Colour Physics for Industry, 2nd ed. Bradford,
UK: Society of Dyers and Colourists, 1997.

19. P. Green and L. MacDonald, ed., Colour Engineering: Achiev-
ing Device Independent Colour. New York: John Wiley & Sons,
2002.

20. P. Emmel and R. Hersch, A unified model for color prediction of
halftoned prints, J. Imag. Sci. Technol., 44: 351–359, 2000.

21. International Electrotechnical Commission, IEC 61966-2-1:
Multimedia Systems and Equipment - Colour Measurement
and Management - Part 2-1: Colour Management -Default RGB
Colour Space - sRGB. Geneva, Switzerland: IEC, 1999.

22. M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, A
standard default color space for the Internet: sRGB. Available:
http://www.color.org/sRGB.html, 1996.

23. Microsoft Corporation. Colorspace interchange using srgb.
Available: http://www.microsoft.com/whdc/device/display/
color/sRGB.mspx, 2001.

24. K. Jack, Video Demystified - A Handbook for the Digital
Engineer, 3rd ed. Eagle Rock, VA: LLH Technology Publish-
ing 2001.

25. CGATS TR 001, Graphic Technology - Color Characterization
Data for Type 1 Printing.Washington, DC: American National
Standards Institute, 1995.

26. International Organization for Standardization, ISO 15076-1,
Image technology colour management - Architecture, Profile
Format and Data Structure - Part 1: Based on ICC 1:2004-10.
2005.

27. International Color Consortium: Available: http://www.
color.org.

28. D.-W. Kang, Y.-H. Cho, Y.-T. Kim, W.-H. Choe, and Y.-H. Ha,
Multiprimary decomposition method based on a three-dimen-
sional look-up table in linearized Lab space for reproduction of
smooth tonal change, J. Imag. Sci. Technol., 50 (4): 357–367,
2006.

29. M. Brill and J. Larimer, Avoiding on-screen metamerism in N-
primary displays, J. Soc. Informat. Disp., 13: 509–516, 2005.

30. Art Spectral Imaging: Available: http://www.art-si.org/.

31. CIE Division 8: Image Technology: Multispectral Imaging.
Available: http://www.colour.org/tc8-07/.

32. DCI System Requirements and Specifications for Digital
Cinema v 1.1. Available: http://www.dcimovies.com/. Holly-
wood, CA: Digital Cinema Initiatives, LLC.

33. R. G. Kuehni, Color Space and Its Divisions: Color Order from
Antiquity to the Present. New York: Wiley-Interscience, 2003.

34. G. Sharma, ed., Digital Color Imaging Handbook. Boca Raton,
FL: CRC Press, 2003.

RAJEEV RAMANATH

Texas Instruments Incorporated
Plano, Texas

MARK S. DREW

Simon Fraser University
Vancouver, Vancouver, BC
Canada

10 COLOR: COLOR MODELS



C

COLOR PERCEPTION

INTRODUCTION

Color as a human experience is an outcome of three con-
tributors: light, the human eye, and the neural pathways of
the human brain. Factors such as the medium through
which the light is traveling, the composition of the light
itself, and anomalies in the human eye/brain systems are
important contributors. The human visual system, which
includes the optical neural pathways and the brain,
responds to an extremely limited part of the electromag-
netic (EM) spectrum, approximately 380 nm to 830 nm but
concentrated almost entirely on 400 nm to 700 nm. We are
blind, basically, to the rest of the EM spectrum, in terms of
vision. For normal observers, this wavelength range
roughly corresponds to colors ranging from blue to red
(as shown in Fig. 1). The red end of the spectrum is
associated with long wavelengths (toward 700 nm) and
the blue end with short wavelengths (400 nm).

COLOR VISION

The structure in the eye that enables color vision is the
retina, which contains the necessary color sensors. Light
passes through the cornea, lens, and iris; the functionality
of these is roughly comparable with the similar parts of
most common cameras. The pupillary opening functions in
a fashion similar to the aperture in a camera and results in
the formation of an upside-down image of the outside world
on the back face of the eye, the retina—a dense collection of
photoreceptors. Normal human color vision is enabled by
four different photoreceptors in the retina. They are called
the rods and the L, M, and S cones (for long, medium, and
short wavelength sensitive); each has a different spectral
sensitivity within the range of approximately 400 nm to
700 nm (1). Figure 2 shows the (normalized) spectral sen-
sitivities of the cones. Note that color as we know it is
specifically a human experience and that a different species
of animals respond differently to spectral stimuli. In other
words, a bee would see the same spectral stimulus drama-
tically differently than a human would. In fact, bees are
known to have their spectral sensitivities shifted toward
the lower wavelengths, which gives them the ability to ‘‘see’’
ultraviolet light. The following salient points must be con-
sidered for a holistic understanding of human color percep-
tion:

1. The rods are activated for vision at low luminance
levels (about 0.1 lux) at significantly lower spatial
resolution than the cones. This kind of vision is called
scotopic vision. The corresponding spectral sensitiv-
ity function is shown in Fig. 3. At these luminances,
normal humans do not have any perception of color.
This lack is demonstrated easily by trying to look at a
colored painting at low luminance levels. Moreover,

at these luminance levels, our visual acuity is extre-
mely poor. This specific property of the visual system
is a function of the low spatial density of the rod
photoreceptors in the foveal region of the retina.

2. The cones are activated only at significantly higher
luminance levels (about 10 lux and higher), at which
time, the rods are considered to be bleached. This type
of vision is referred to as photopic vision. The corre-
sponding sensitivity function that corresponds to
luminance sensitivities is shown in Fig. 3. The green
curve is called the luminous efficiency curve. In this
article we will consider photopic vision only. Inter-
estingly, the retinal density of the three types of cones
is not uniform across the retina; the S cones are more
numerous than the L or M cones. The human retina
has an L, M, S cone proportion as high as 40:20:1,
respectively, although some estimates (2,3) put them
at 12:6:1. This proportion is used accordingly in com-
bining the cone responses to create the luminous
efficiency curve. However, the impact of these propor-
tions to visual experiences is not considered a sig-
nificant factor and is under investigation (4). What is
referred to as mesopic vision occurs at mid-luminance
levels, when the rods and cones are active simulta-
neously.

3. The pupillary opening, along with independently
scalable gains on the three cone output, permits
operation over a wide range of illuminant variations,
both in relative spectral content and in magnitude.

4. Color stimuli are different from color experiences. For
the purposes of computational color science, the dif-
ferences between color measurements and color
experiences sometimes may not be considered, but
often the spatial and temporal relations among sti-
muli need to be taken into account.

L, M, and S cone functions may be represented as a
function of wavelength as l(l), m(l), and s(l). In the pre-
sence of a light source (illuminant), represented by i(l), the
reflectance function of an arbitrary surface [described by
r(l)] is modified in a wavelength-selective fashion to create
a stimulus ir(l) to the eye given by

irðlÞ ¼ iðlÞrðlÞ ð1Þ

Let us denote the cone functions as a vector given by

lmsðlÞ ¼ ½lðlÞ;mðlÞ; sðlÞ� ð2Þ

We denote the signals measured in the cones of the eye by
c ¼ [cl, cm, cs], given by

c ¼
Z l ¼ 830 nm

l ¼ 380 nm

lmsðlÞirðlÞdl ð3Þ

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



On an aside, although it is shown here that a color stimulus
is formed by the process of reflection of the spectral energy
i(l) of an illuminant off a surface r(l), it is only one man-
ifestation of the cause of a color stimulus. The source for all
colors at an elemental level may be grouped into 15 basic
causes in five groups: (1) vibrations, rotations, and excita-
tions, as in flames, neon lights, and so on; (2) ligand-field
effects in transition metal compounds like turquoise,
including impurities, as in rubies or emeralds; (3) molecu-
lar orbitals of organic compounds like chlorophyll and

charge-transfer compounds like sapphire; (4) energy-bands
in brass, gold, diamonds, and so on; and (5) geometric and
physical optical effects like interference, diffraction, scat-
tering, refraction, and so forth. The Nassau book on this
topic is a thorough reference (5). In the case of emissive
sources of stimuli (e.g. traffic lights, or television sets),
Equation (3) is rewritten as

c ¼
Z l¼830 nm

l¼380 nm

lmsðlÞeðlÞdl ð4Þ

where e(l) denotes the spectral stimulus that excites the
cones.

A glance at the L, M, and S cone functions in Fig. 2
clearly highlights that the three measurements c, resulting
from stimulating these cones, is not going to reside in an
orthogonal three-dimensional color space—there will be
correlation among L, M, and S. As a result of psychophy-
sical testing, it is understood that human color vision
operates on the basis of opponent color theory, which
was first proposed by Ewald Hering in the latter half of
the nineteenth century (2,6,7). Hering used a simple experi-
ment to provide the primary proof of opponent color pro-
cesses in the human visual system. An older hypothesis
about the human visual system (works of Hermann von
Helmholtz and James Maxwell in the mid-nineteenth cen-
tury) suggested that the human visual system perceives
colors in three independent dimensions (each correspond-
ing to the three known color-sensitive pigments in the eye,
roughly approximated by red, green, and blue axes).
Although conceptually correct, this hypothesis could not
explain some of the effects (unique hues and afterimages)
that Hering observed. In a series of published works, Her-
ing suggested that the visual system does not see colors as a
combination of red and green (a reddish-green color). In
fact, a combination of a red stimulus with a green stimulus
produces no hue sensation at all. He suggested also that the

Ultraviolet

Visible

Infrared

Radar

Radio/TV

30m

300um

0.3um

0.3A

3cm

3um

30um

300A

30A

3A

0.3cm

30cm

3m

Wavelength
(nm)

Frequency
(MHz)

107

1012

1015

1019

700nm

400nm

Figure 1. Electromagnetic spectrum, showing the limited range
of human vision and color perception.

400 450 500 550 600 650 700 750 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength(nm)

R
el

at
iv

e 
S

en
si

tiv
ity

L
M
S

Figure 2. Cone sensitivity functions of normal human observers.

400 450 500 550 600 650 700 750 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength(nm)

R
el

at
iv

e 
S

en
si

tiv
ity

Scotopic Vision
Photopic Vision

Figure 3. Sensitivity functions for photopic and scotopic vision in
normal human observers.

2 COLOR PERCEPTION



human visual system has two different chromatic dimen-
sions (one corresponding to an orthogonal orientation of a
red–green axis and another with a yellow–blue axis), not
three. These concepts have been validated by many
researchers in the decades since and form the framework
of modern color theories. Similarly, staring at the bright set
of headlights of an approaching car leaves a black or dark
image after the car passes by, which illustrates that
humans also see colors along a luminance dimension
(absence or presence of white.) This finding has formed
the backbone of modern color theory. Opponent color theory
suggests that at least at the first stage, human color vision
is based on simple linear operations on the signals mea-
sured by the L, M, and S cones. In other words, from the L,
M, and S cone stimulations c, three resulting signals are
computed that perform the task of reducing the interde-
pendence between the measurements, somewhat orthogo-
nalizing the space and hence reducing the amount of
information transmitted through the neural system from
the eye to the brain (see Fig. 4). This functionality is enabled
by the extensive neural system in the retina of the eye. The
opponent colors result in opponent cone functions (plotted
in Fig. 5), which clearly suggests a fundamental conclusion
of modern human color perception research: The three
independent axes are luminance, redness–greenness,
and yellowness–blueness (8). In other words, we have three
sets of opposing color perception: black and white, red and
green, and yellow and blue. In the figure, the red–green
process appears as it does because colors on the ends of the
spectrum appear similar (deep red is similar to purple)—
the hue wraps around and often is portrayed in a circle.

Not surprisingly, much of the field of color science has
been involved in trying to determine relationships between
stimuli entering the eye and overall color experiences. This
determination requires the ability to isolate color stimuli
not just from their spatial relationships but also from the
temporal relationships involved. Additionally, it requires a
clear understanding of perceptual color appearance phe-
nomena. As data have become available via a variety of
experiments, the linear relationships between cone signals
and color specifications has needed to be revised into a
complex set of nonlinear relationships. Note that most color
appearance phenomena have been developed for simplistic

viewing fields, whereas all of our color experiences are
based on complex images that involve complex illumination
settings. It is instructive, nonetheless, to visit some com-
mon local color appearance descriptors that do not take into
account spatial relationships such as the surroundings
around a viewed scene. The terminology used below is
used commonly in the color appearance work published
by the Commission Internationale del’ Eclairage in its
standard documents (e.g. See Ref. 9) and in some popular
textbooks on this subject (2,10). Groups involved in color
ordering work and computational color technology, how-
ever, may define these terms differently based on their
specific needs.

Hue

Hue is defined as the property of a color that describes it as a
red, green, yellow, or blue or a combination of these unique
hues. By definition, grays are not associated with any hue.
A hue scale is defined typically as an angle. Figure 6 has
magenta/violet hues at one end and reds at the other.

Brightness

The property of a color that makes it appear to emit more or
less light.

Lightness

The property of a color that describes its brightness relative
to that of the brightest white object in the visual field. A
typical lightness scale is shown in Fig. 7.

L M S

Achromatic Red-Green Yellow-Blue

Figure 4. Weighted linear combinations of the L, M, S cone
stimulations result in opponent color functions and an achromatic
signal.

400 450 500 550 600 650 700 750 800

−2

0

2

4

6

8

10

x 10
−3

Wavelength(nm)

N
or

m
al

iz
ed

 S
en

si
tiv

ity

Luminance

Red−Green

Yellow−Blue

Figure 5. Normalized functions showing resultant red–green
and yellow–blue sensitivities, along with the luminance channel.

Figure 6. A typical hue scale.

COLOR PERCEPTION 3



Colorfulness

The property of a color that makes it appear more or less
chromatic.

Chroma

The property of a color that describes its colorfulness
relative to the brightness of the brightest white object in
the visual field. In general, the relationship that exists
between brightness and lightness is comparable with the
relationship between colorfulness and chroma. Figure 8
shows a chroma scale for a hue of red and yellow. Note that
in this example the chroma of yellows extends much farther
than that of reds, as yellows appear much brighter than
reds in nature and in most display systems.

Saturation

The property of a color that describes its colorfulness in
proportion to its brightness. A typical saturation scale
(shown here for a red and yellow hue) is displayed in
Fig. 9. Note that by definition, saturation is normalized
and hence unlike chroma; the same scale exists for both
reds and yellows (and for other hues as well).

To aid in understanding these properties, Fig. 10 shows
the locus of lines with constant hue, saturation, lightness,
and chroma if we fix the brightness of white. By definition,
saturation and hue are independent of the lightness of
white.

Related and Unrelated Colors

In its simplest form, a color can be assumed to be indepen-
dent of everything else in the viewing field. Consider, for
illustrative purposes, a small patch of a color displayed in a
dark room on a monitor with black background. This color is

observed devoid of any relationships. This setup is typically
the only one where colors are unrelated and are associated
with attributes like brightness, hue, and saturation.
Related colors, on the other hand, are observed in relation-
ship with their surrounding and nearby colors. A simple
example involves creating an image with a patch of brown
color on a background with increasing white brightness,
from black to white. The brown color is observed as a bright
yellow color when on a black background but as a muddy
brown on the brightest white background, which illustrates
its relationship to the background (for neutral background
colors). In practice, related colors are of great importance
and are associated with perceptual attributes such as hue,
lightness, and chroma, which are attributes that require
relationships with the brightness of white. To specify a
color completely, we need to define its brightness, lightness,
colorfulness, chroma, and hue.

Metamerism

According to Equation (3) , if we can control the stimulus
that enters the eye for a given color, then to match two
colors we merely need to match their resulting stimulus
measurements c. In other words, two different spectra can
be made to appear the same. Such stimuli are called meta-
mers. If c1 ¼ c2, then

Z l ¼ 830 nm

l ¼ 380 nm

lmsðlÞir1
ðlÞdl ¼

Z l ¼ 830 nm

l ¼ 380 nm

lmsðlÞir2
ðlÞdl

ð5Þ

Different manifestations of the above equality carry differ-
ent names: ‘‘observer’’, ‘‘illuminant’’, and ‘‘object’’ metamer-
ism, depending on whether equal stimuli c result from
changing the sensor functions lms(l), the light i(l), or
the surface r(l). So, two completely different spectral sti-
muli can be made to generate the same cone stimuli for the
same observer—a property that color engineers in fields
ranging from textiles to televisions have considered a bles-
sing for decades, because changes of pigments, dyes, phos-

Figure 7. A typical lightness scale, with black at one end and the
brightest possible white at the other.

Figure 8. A typical chroma scale for red and yellow, starting with
zero chroma on left and moving to maximum chroma on the right.

Figure 9. A typical saturation scale for red, starting with zero
saturation on the left and moving to a saturation of 1 for pure color
on the right.

Luminance

constant hueconstant chroma

red-green

yellow-blue

constant saturation

constant lightness

Figure 10. Loci of constant hue, saturation, lightness, and
chroma shown in a perceptual color space.

4 COLOR PERCEPTION



phors, and color filters can achieve a consistent perception
of colors across various media. Equal colors are called
metameric. Consider, for example, two color samples
that have reflectance functions r1(l) and r2(l), as in
Fig. 11. When plotted on a wavelength scale, it may appear
that these two reflectance functions must result in com-
pletely different perceptions to the observer. However, if we
were to apply the same illuminant and observer sensitivity
functions to these otherwise different colors, they result in
identical colors being perceived by the eye. These two colors
(reflectance functions) hence are called metamers, and this
is an example of object metamerism.

On a similar note, consider two patches of color with
reflectance functions r3(l) and r4(l) being viewed under
identical illumination conditions by two different observers
(observers whose cone functions are not the same), as
shown in Fig. 12. One observer would view these patches
as being the same (they are metameric), whereas the other
would view this exact same pair as distinctly different—
resulting in observer metamerism. This kind of metamer-
ism is relatively common, because most, if not all, concepts
related to color are built around a ‘‘standard’’ or ‘‘average’’
observer, whereas in fact significant variation exists
between observers. The final type of metamerism, illumi-
nant metamerism, consists of metameric colors that arise
from the same observer and reflectance but different lights.

Adaptation

Arguably, the most remarkable capability of the human
visual system is its ability to adapt to changes in the
illuminant. This ability may be classified broadly as light-
ness and chromatic adaptation. The resulting effect is that
despite changes in the spectral content of the light or its
absolute power, the visual system maintains quite constant
overall perception. However, certain limitations apply to
these abilities; these changes are limited mainly to changes
in natural illuminants and objects. This occurnance is to be

expected given the types of illuminants with which humans
have been most familiar.

This ability is explained best by means of an example. As
one walks out of a relatively dark movie theater to bright
afternoon sunlight, it takes only a few seconds for the visual
system to adapt to as much as two orders of magnitude
change in the intensity of the illuminant, without change in
visual experience. Here, the cones are the dominant photo-
receptors, and the rods have become bleached (unable to
replenish their photopigments). This type of adaptation is
referred to as luminance or light adaptation. Similarly,
entering a dimly lit movie theater from the bright sunny
outdoors again requires time to adapt to the dark conditions,
after which our visual system has adapted well to the
surroundings. This, however, takes slightly longer than
in the former situation because now the rods need to become
active, requiring them tounbleach, which isa comparatively
longer process. This kind of adaptation is called dark adap-
tation. The ability to dark and light adapt gives us the ability
to have reasonable visual capability in varying illuminant
conditions while takingmaximal advantage of the otherwise
limited dynamic range of the photoreceptors themselves.

A second, and perhaps the most fascinating, mode of
adaptation is called chromatic adaptation. This term refers
to the ability of the visual system to maintain color percep-
tion under small, but significant, changes in the spectral
content of the illuminant. A newspaper seems to maintain
its mostly white background independent of whether we
look at it outdoors under an overcast sky, indoors under a
fluorescent lamp, or under an incandescent lamp. Consider
looking at a bowl of fruit that contains a red apple, a yellow
banana, and other fruit under an incandescent illuminant.
The apple will appear red and the banana yellow. Changing
the illuminant to a typical fluorescent lamp, which greatly
alters the spectral content of the light, does not appear to
change the color of the apple or the banana, after a few
seconds of adaptation. The human visual system maintains
its perception; our visual system has adapted chromati-

400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength(nm)

R
el

at
iv

e 
E

ne
rg

y

r
1
(λ)

r
2
(λ)

i(λ)

Figure 11. Metameric reflectances r1(l) and r2(l). Although their
reflectance functions differ, under the illuminant i(l), their stimu-
lation of the cones is identical and color perceived is the same.

400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Wavelength(nm)

R
el

at
iv

e 
S

en
si

tiv
ity

L
0

M
0

S
0

L
1

M
1

S
1

Figure 12. Different observer cone functions showing observer
variances.

COLOR PERCEPTION 5



cally. Interestingly, our ability to adapt to changes in
spectral content of the illuminant are limited mostly to
changes in natural illuminants such as sunlight.

Color Constancy

The phenomenon of objects maintaining their appearance
under varying illuminants is referred to as color constancy.
For example, the appearance of a dress that looks red in the
store might look nothing like a red under street lighting
(e.g., sodium-vapor lamps); the visual system cannot adapt
as well to a sodium-vapor lamp as it can to a fluorescent or
incandescent lamp; thus it inconsistently renders the
perception of this dress fabric color. This subject is inter-
esting given the formation model described in Equation (3).
The information the eye receives from the object changes
with the illuminant athough, given the premise of color
constancy, the net result of the visual system needs to stay
the same. This occurrence is known however, to be untrue
for humans as we take informational cues from the color of
the illuminant and perform some form of chromatic adap-
tation (11). The study of color constancy provides us with
clues that describe how the human visual system operates
and is used often by computational color technologists in
maintaining numerical color constancy.

Color inconstancy is a battle that textile and paint
manufacturers, camera and display manufacturers, and
printer manufacturers regularly have to fight because sig-
nificant changes may take place between illuminants in
retail stores and in the home or between hardcopy and on-
screen imaging. In each case, the color data reside in a
different color space with its own color appearance models.
Moreover, illuminants are difficult to control because we
typically have mixed illuminants (not just one specific type)
in whatever surrounding we are in.

After Images

When stimulated for an extended period of time by a strong
stimulus, the human visual system adapts, and when the
source of this stimulus is removed, a negative after image
appears for a short period of time, most commonly attrib-
uted to sensor fatigue. Many forms of after images have
been shown to be valid. The most commonly known type of
after images is the one formed via color responses, known as
chromatic after images. For example, if individuals fix their
gaze on a picture of a brightly colored set of squares for some
time and then a plain white stimulus is presented quickly to
the eye, the individuals experience a negative image of
corresponding opponent colors. Other forms of after images
and visual stimulus adaptation that may be of interest
to the reader have been demonstrated by Fairchild and
Johnson (12).

SIMPLE COLOR APPEARANCE PHENOMENA

Specifying a color merely by its physical attributes has its
advantages but has drawbacks, too, when describing the
appearance of colors, especially in somewhat complex
scenes. We illustrate these difficulties via some examples.

Simultaneous Lightness and Color Contrast

Consider an achromatic color placed in a relatively simple
scene as shown in the upper half of Fig. 13. Both central
squares seem to have the same luminance. However, if we
reduce the luminance of the background in one half and
increase it in the other while keeping the same central
achromatic patches as shown in the lower half of the figure,
one patch appears brighter than the other although in fact
they have exactly the same luminance. This occurrence
may be attributed to the presence of reinforcing and inhi-
biting ON–OFF receptive fields that work locally to enhance
differences. A similar phenomenon occurs when we change
the color of the background. The achromatic patches would
seem to have the opponent color of the background and no
longer retain their achromatic nature. In Fig. 14, all four
inner squares are the same achromatic color. However,
each square contrasts with its surrounding, resulting in
the appearance of opponent colors. Note that the upper left
square has a greenish tint, the upper right a bluish tint, the

Figure 13. A simple example that demonstrates simultaneous
lightness contrast. Notice that the same gray patches as in the
upper half of the image seem to have different brightnesses when
the background luminance is changed.

Figure 14. A simple example that demonstrates simultaneous
color contrast. Notice that the same gray patches as in the upper
half of the image seem to have different hues when the background
luminance is changed.

6 COLOR PERCEPTION



bottom left a yellowish tint, and the bottom right a reddish
tint.

Lightness and Chromatic Crispening

The difference between two colors that are only slightly
different is heightened if the color of the background that
surrounds them is such that its color lies between those of
the two patches. Figure 15 illustrates this phenomenon for
lightness. Note that the difference between the two patches
is hardly noticeable when the background is white or black,
but when the luminance of the background is in between
the colors of the patches, the difference is accentuated
greatly.

Only a few color appearance phenomena have been
addressed in this article. We have looked at some phenom-

ena that are easy to observe and do not need in-depth study.
Color appearance phenomena are the primary drivers of
image quality assessments in the imaging industry. The
interested reader is referred to books on this topic included
in the Bibliography.

ORDER IN COLOR PERCEPTION

From the preceding sections on the various color appear-
ance terms, one may gather that many potential candidates
exist for ordering color perceptions. One means is based
on the somewhat-orthogonal dimensions of redness–
greenness, yellowness–blueness, and luminance. These
axes may be placed along Euclidean axes, as shown in
Fig. 16. Color spaces with such an ordering of axes form
the basis of all computational color science.

Another method for ordering color perceptions could
be based on hue, chroma, and lightness, which again
could be placed along the Euclidean axes as in Fig. 17.
It turns out that the two orderings are related to each
other: The hue–chroma–lightness plot is simply another
representation of the opponent-color plot. Such a rela-
tionship was found also by extensive studies on color
orderings performed by Munsell in the early 1900s. In
his publications, Munsell proposed a color ordering in
which the spacing between each color and its neighbor
would be perceived as equal. This resulted in a color space
referred to as the Munsell color solid, which to date is the
most organized, successful, and widely used color order
system. Munsell proposed a notation for colors that spe-
cifies their exact location in the color solid. A vertical
value (V) scale in ten steps denotes the luminance axis.
Two color samples along the achromatic axis (denoted by
the letter N for neutrals) are ordered such that they are
spaced uniformly in terms of our perception; for example,
a sample with a value of 4 would correspond to one that is
half as bright as one with a value of 8. Munsell defined
basic hues (H) of red (R), yellow (Y), green (G), blue (B),
and purple (P) and combinations (RP for red-purples and
so on) that traverse the circumference of a circle, as
shown in Fig. 18. A circle of constant radius defines

Figure 15. An example that demonstrates lightness crispening.
Notice that the difference between the gray patches in the white
and black backgrounds is hardly noticeable, but when the lightness
of the background is in between that of the two patches the
appearance of the difference is accentuated.

Figure 16. A plot of lightness, redness–greenness, and yellowness–blueness ordered along Euclidean axes.

COLOR PERCEPTION 7



the locus of colors with the same chroma (C) or deviations
from the achromatic axis.

Increasing radii denote higher chroma colors on an open-
ended scale. In this fashion, a color is denoted by H V/C
(Hue Value/Chroma). For example, 5GY6/10 denotes a hue
of 5GY (a green–yellow midway between a green and a
yellow) at value 6 and chroma 10. Most modern computa-
tional color models and color spaces are based on the
fundamentals of the Munsell color order system.

The NCS color order system is another ordering scheme,
much more recent and gaining acceptance (13). The NCS
color ordering system is based on the work of the Hering
opponent color spaces. The perceptual axes used in the
NCS are blackness–whiteness, redness–greenness, and
yellowness–blueness; these colors are perceived as being
‘‘pure’’ (see Fig. 19). The whiteness–blackness describes the
z-dimension, whereas the elementary colors (red, green–
yellow, and blue) are arranged such that they divide the x–y
plane into four quadrants. Between two unique hues, the
space is divided into 100 steps. A color is identified by its
blackness (s), its chromaticness (c), and its hue. For exam-
ple, a color notated by 3050-Y70R denotes a color with a
blackness value of 30 (on a scale of 0 to 100), a chromatic-
ness of 50 (an open-ended scale), and a hue described as a

yellow with 70% red in its mixture. A good reference that
details the history and science of color order systems was
published recently by Kuehni (14).

CONCLUSIONS

The multitide of effects and phenomena that need to be
explored in color vision and perception is profound. One

Figure 17. A plot of lightness, chroma, and hue ordered along the Euclidean axes.

G

R

RY

Y

B

BP
PB

YR

YG
GY

GB

BG

P

PR

RP

N

Value

Chroma

Figure 18. A plot of a constant value plane (left) that shows the various hue divisions of a constant chroma circle in the Munsell notation,
alongside a constant hue plane (right).

S

W

R
B

G
Y

Figure 19. A schematic plot of the NCS color space.

8 COLOR PERCEPTION



would imagine that color science, a field with such everyday
impact and so interwoven with spoken and written
languages, would be understood thoroughly by now and
formalized. But the mechanisms of vision and the
human brain are so involved that researchers only have
begun unraveling the complexities involved. Starting from
the works of ancient artisans and scientists and passing
through the seminal works of Sir Issac Newton in the mid-
1600s to the works of the most recent researchers in this
field, our knowledge of the complexities of color has
increased greatly, but much remains to be understood.

BIBLIOGRAPHY

1. G. Wyszecki and W. S. Stiles, Color Science: Concepts and
Methods, Quantitative Data and Formulae, 2nd ed. New
York: Wiley-lnterscience, 2000.

2. M. D. Fairchild, Color Appearance Models, 2nd ed. New York:
John Wiley & Sons, 2005.

3. A. Roorda and D. Williams, The arrangement of the three
cone classes in the living human eye, Nature, 397: 520–522,
1999.

4. D. Brainard, A. Roorda, Y. Yamauchi, J. Calderone, A. Metha,
M. Neitz, J. Neitz, D. Williams, and G. Jacobs, Consequences of
the relative numbers of 1 and m cones, J. Optical Society of
America A, 17: 607–614, 2000.

5. K. Nassau, The Physics and Chemistry of Color: The Fifteen
Causes of Color. New York: John Wiley & Sons, 1983.

6. R. G. Kuehni, Color: An Introduction to Practice and Princi-
ples, 2nd ed. New York: Wiley-Interscience, 2004.

7. R. S. Berns, Billmeyer and Saltzman’ s Principles of Color
Technology, 3rd ed. New York: John Wiley & Sons, 2000.

8. P. K. Kaiser and R. Boynton, Human Color Vision, 2nd ed.
Optical Society of America, 1996.

9. Commission Internationale de l’ Eclairage, A Color Appearance
Model for Colour Management Systems: CIECAM02. CIE Pub.
159, 2004.

10. R. Hunt, The Reproduction of Colour, 6th ed. New York: John
Wiley & Sons, 2004.

11. D. Jameson and L. Hurvich, Essay concerning color constancy,
Ann. Rev. Psychol., 40: 1–22, 1989.

12. M. Fairchild and G. Johnson, On the salience of novel stimuli:
Adaptation and image noise, IS&T 13th Color Imaging Con-
ference, 2005, pp. 333–338.

13. A. Hård and L. Sivik, NCS-natural color system: A Swedish
standard for color notation, Color Res. Applicat., 6(3): 129–138,
1981.

14. R. G. Kuehni, Color Space and Its Divisions: Color Order from
Antiquity to the Present. New York: Wiley-Interscience, 2003.

RAJEEV RAMANATH

Texas Instruments Incorporated
Plano, Texas

MARK S. DREW

Simon Fraser University
Vancouver, British Columbia,

Canada

COLOR PERCEPTION 9



C

CONTOUR TRACKING

Object tracking is a fundamental area of research that finds
application in a wide range of problem domains including
object recognition, surveillance, and medical imaging. The
main goal of tracking an object is to generate a trajectory
from a sequence of video frames. In its simplest form, an
object trajectory is constituted from the spatial positions of
the object centroid and resides in a three-dimensional space
defined by the image and time coordinates. In the case when
the changes in the object size and orientation are tracked
also, such as by a bounding box around the object, the
dimensionality of the trajectory is increased by two and
includes the scale and orientation, in addition to time and
image dimensions.

A trajectory in a higher dimensional space provides a
more descriptive representation of the object and its
motion. Depending on the application domain, an increase
in the trajectory dimensionality may be desirable. For
instance, in the context of motion-based object recognition,
a trajectory that encodes the changes in the object shape
over a time period increases the recognition accuracy. The
additional information encoded in the trajectory also
provides a means to identify the actions performed by
the objects, such as sign language recognition, where the
shape of the hands and their interactions define the sign
language vocabulary.

The most informative trajectory is the one that encodes
the deformation in the object shape. This task requires
tracking the area occupied by the object from one video
frame to the next. A common approach in this regard is to
track the contour of an object, which is known also as the
contour evolution. The contour evolution process is
achieved by minimizing a cost function that is constituted
of competing forces trying to contract or expand the curve.
The equilibrium of the forces in the cost function concludes
the evolution process. These forces include regularization
terms, image-based terms, and other terms that attract the
contour to a desired configuration. The latter of these terms
traditionally encodes a priori shape configurations that
may be provided ahead of time.

REPRESENTING THE OBJECT AND ITS CONTOUR

The object contour is a directional curve placed on the
boundary of the object silhouette [see Fig. 1(c) and (d)] .
The contours are used either in a contour-based represen-
tation or in a boundary condition in a region-based repre-
sentation. The region-based representation uses the
distance transform, Poisson equation, of the medial axis.
The distance transform assigns each silhouette pixel with
its shortest distance from the object contour (1). In a similar
vein, the Poisson equation assigns the mean of the
distances computed by random walks reaching the object
contour (2). The medial axis generates skeletal curve seg-

ments that lie on the locus of circles that are tangent to the
object contour at two or more points [see in Fig. 1(c)]. Use of
the contour as a boundary condition requires explicit detec-
tion of the object and prohibits defining a cost function that
evolves an initial contour to its final configuration. Hence,
in the remainder of the text, we will discuss the contour-
based representation and related contour evolution
techniques.

A contour can be represented explicitly or implicitly.
Explicit representations define the underlying curve
para-metrically and perform tracking by changing the
parameters that, in turn, evolve the contour. Parametric
representations require analytical expressions that provide
a means to compute the geometric features used during the
contour evolution. The most common parametric represen-
tation in the context of contour tracking uses a set of control
points positioned on the object boundary. The use of differ-
ent control points for different objects generates a unique
coordinate system for each object, which is referred to as the
Lagrangian coordinates [see Fig. 1(e)]. In the Lagrangian
coordinates, the relations between the control points play an
important role for computing the geometric properties of the
underlying curve. These relations can be realized by either
the finite difference approximation or the finite element
analysis. The finite difference approximation treats each
control point individually and assumes that they are con-
nected by lines. On the contrary, the finite element analysis
defines the relations by a linear combination of a set of
functions referred to as the splines. The splines generate
continuous curves that have parametric forms. Their para-
metric nature permits the computation of the geometric
curve features analytically. The contour tracking in these
representations is achieved by moving the control points
from one place to another. For more information, we refer
the reader to the article on ‘‘Snakes: Active Contours.’’

Contrary to the explicit representation, the implicit
contour representations for different objects lie in the
same Cartesian coordinates, namely the Eulerian coordi-
nates (grid). The contour in the Eulerian coordinates is
defined based on the values for the grid positions. For
instance, one common approach used in fluid dynamics
research, which investigates the motion of a fluid in an
environment, is to use volumetric representation. In volu-
metric representation, each grid is considered a unit
volume that is filled with water, such that inside the
contour (or surface in higher dimensions) the unit volumes
are filled, whereas for outside they are empty. In the field of
computer vision, the most common implicit representation
is the level-set method. In the level-set method, the grid
positions are assigned a signed Euclidean distance from the
closest contour point. This method is similar to the distance
transformation discussed for representing regions, with
the difference of including a sign. The sign is used to label
inside and outside the contour, such that grid positions
inside the closed contour are positive, whereas the outside
grid positions are negative. The signed distances uniquely

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



locate the contour, such that it resides on the zero-crossings
in the grid. The zero-crossings are referred to as the zero
level-set. The evolution of the contour is governed by chan-
ging the grid values based on the speed computed at each
grid position. For more information, we refer the reader to
the article on the ‘‘Level-Set Methods.’’

THE STATE SPACE MODELS FOR CONTOUR TRACKING

The state space models define the object contour by a set of
states, Xt : t ¼ 1; 2 . . .. Tracking then is achieved by updat-
ing the contour state in every frame:

Xt ¼ f tðXt�1Þ þWt ð1Þ

where Wt is the white noise. This update eventually max-
imizes the posterior probability of the contour. The poster-
ior probability depends on the prior contour state and the
current likelihood, which is defined in terms of the image
measurements Zt. A common measurement used for con-
tour tracking is the distance of the contour from the edges in
the image.

The state space models-based contour tracking involve
two major steps. The first step predicts the current location
of the contour, such as the new position of each control
point, and the second step corrects the estimated state,
according to the image observations. The state prediction
and correction is performed by using various statistical
tools. Among others, the Kalman filtering and the particle
filtering are the most common statistical tools. Computa-
tionally, the Kalman filter is more attractive because only
one instance of the object state is required to perform
prediction and correction. However, the Kalman filter
assumes that the object state is distributed by a Gaussian,
which may result in a poor estimation of the state variables
that are not Gaussian distributed. The particle filtering
overcomes this limitation by representing the distribution
of the object state by a set of samples, referred to as the
particles (3). Each particle has an associated weight that
defines the importance of that particle. Keeping a set of
samples for representing the current state requires main-
taining and updating all the instances during the correction
step, which is a computationally complex task.

Tracking the object contour using the state space
methods involves careful selection of the state variables
that represent the object shape and motion. For this pur-
pose, Terzopoulos and Szeliski (4) use a spring model to

govern the contour motion. In this model, the state variables
include the stiffness of the spring placed at each control
point. Once the object state is estimated,a correction ismade
by evaluating the gradient magnitude from the image. Isard
and Blake (5) model the shape and rigid motion by using two
state variables that correspond to the spline parameters and
the affine motion. The image measurements used to correct
the estimated state include the edges in the image observed
in the normal direction to the contour [see Fig. 2(a)]. This
approach has been extended recently to include nonrigid
contour deformations that are computed after the rigid
object state is recovered (6).

DIRECT MINIMIZATION OF THE COST FUNCTION

The methods falling under this category iteratively evolve
the contour by minimizing an associated cost function. The
cost function is constituted of the optical flow field or the
appearance observed inside and outside the object and is
minimized by a greedy algorithm or a gradient descent
method.

The contour tracking based on the optical flow field
exploits the constancy of the brightness of a pixel in time:

Itþ1ðx; yÞ � Itðx� u; y� vÞ ¼ 0 ð2Þ

where I is the imaging function, t denotes the frame num-
ber, and (u,v) is the optical flow vector. The optical flow
during the contour evolution can be computed by searching
for similar color in a neighborhood of each pixel (7). Once
the flow vectors for all the object pixels are computed, the
cost of moving the contour can be evaluated by accumulat-
ing the brightness similarities using Equation (2). Tracking

Figure 1. Possible representations for the object shape given in (a):(b) object silhouette, (c) skeleton and (d) its contour. Representing the
contour by using (e) a set of control points in the Lagrangian coordinates and (f) level-sets in the Eulerian coordinates.

Figure 2. Edge observations along the contour normals.
(Reprinted with permission from the IEEE.)

2 CONTOUR TRACKING



results of this approach are shown in Fig. 3(a). An alter-
native approach to computing the optical flow is to adopt a
morphing equation that morphs the intensities in the pre-
vious frame to the intensities in the current frame (8). The
intensity morphing equation, however, needs to be coupled
with a contour tracking function, such that the intensities
are morphed for the contour pixels in the previous and the
current frame. The speed of the contour is computed accord-
ing to the difference between the intensities of the
corresponding pixels. For instance, if the difference is
high, then the contour moves with the maximum speed
in its normal direction and while the morphing function is
evaluated by considering the new position of the contour.
The tracking results using this approach are shown in
Fig. 3(b). The cost function based on the optical flow also
can be written in terms of the common motion constraint
(10). The common motion constraint assumes that the
motion inside the contour is homogenous, such that the
contour is evolved to a new position if the difference
between neighboring motion vectors is high.

In contrast to the cost functions using brightness
constancy, the statistics computed inside and outside the
object contour impose a less strict constraint. An important
requirement of statistics-based methods is the initialization
of the contour in the first frame to generate the appearance
statistics. Region statistics can be computed by piecewise
stationary color models generated from the subregions
around each control point (11). This model can be extended
to include the texture statistics generated from a band
around the contour (9). Using a band around the contour
combines image gradient-based and region statistics-based
contour tracking methods into a single framework, such
that when the width of the band is set to one, the cost
function is evaluated by image gradients. The contour
tracking results using region statistics is shown in Fig. 3(c).

THE SHAPE PRIORS

Including a shape model in the contour cost function
improves the estimated object shape. A common approach
to generate a shape model of a moving object is to estimate
the shape distribution associated with the contour defor-
mations from a set of contours extracted online or off line.
The shape distribution can be in the form of a Gaussian
distribution, a set of eigenvectors, or a kernel density
estimate. The cost function associated with these distribu-
tions contains contour probabilities conditioned on the
estimated shape distribution.

For the explicit contour representations, the shape
model is generated using the spatial-position statistics of
the control points. A simple shape prior in this context is to
use a Gaussian distribution (10):

pðxiÞ ¼
1

s
ffiffiffiffiffiffi
2p
p expð�

ðxi � mxi
Þ2

2s2
xi

�
ðyi � myi

Þ2

2s2
yi

Þ ð3Þ

where m denotes the mean, s denotes the standard devia-
tion, and xi ¼ ðxi; yiÞ is the position of the ith control point.
Before modeling, this approach requires registration of the
contours to eliminate the translational effects. Registration
can be performed by mean normalization of all the contours.

An alternative shape model can be computed by apply-
ing the principal component analysis (PCA) to the vectors of
the control points. The PCA generates a new coordinate
system that emphasizes the differences between the con-
tours, such that selecting a subset of principal components
(eigenvectors with the highest eigenvalues) models the
underlying contour distribution. Given an input contour,
the distance is computed by first reconstructing the input
using a linear combination of the selected principal com-
ponents and then evaluating the Euclidean distance

Figure 3. Tracking results of the methods proposed in (a) Ref. 7, (b) Ref. 8, and (c) Ref. 9. (Reprinted with permission from the IEEE.)

CONTOUR TRACKING 3



between the input vector and the reconstructed contour.
The weights in the linear combination are computed by
projecting the input contour to the principal components.

The shape priors generated for implicit contour
representations do not model explicitly the contour shape.
This property provides the flexibility to model the objects
with two or more split regions. Considering the level-set
representation, which defines the contour by zero crossings
on the level-set grid, a shape model can be generated by
modeling distance values ineach gridpositionbya Gaussian
distribution (9). This modeling two level-set functions for
each set of contours, as shown in Fig. 4(a–g), that correspond
to the mean and the standard deviation of the distances from
the object boundary.

DISCUSSION

Compared with tracking the centroid, a bounding box, or a
bounding ellipse, contour tracking provides more detailed
object shape and motion that is required in certain applica-
tion domains. For instance, the contour trackers commonly
are used in medical imaging, where a more detailed ana-
lysis of the motion of an organ, such as the heart, is
required. This property, however, comes at the expense
of computational cost, which is evident from the iterative
updates performed on all the grid positions or the control
points, depending on the contour representation chosen. In
cases when the domain of tracking does not tolerate high
computational costs, such as real-time surveillance, the
contour trackers may be less attractive. This statement,
however, will change in coming years, considering the
ongoing research on developing evolution strategies that
will have real-time performance (12).

The design of a contour tracker requires the selection of a
contour representation. Depending on the application
domain, both the implicit and explicit representations
have advantages and disadvantages. For instance,
although the implicit representations, such as the level-
set method, inherently can handle breaking and merging of
the contours, the explicit representations require including
complex mechanisms to handle topology changes. In addi-
tion, the implicit representations naturally extend tracking
two-dimensional contours to three or more-dimensional

surfaces. The implicit representation, however, requires
re-initialization of the grid at each iteration, which makes it
a computationally demanding procedure compared with an
explicit representation.

The choice of the cost function is another important step
in the design of a contour tracker and is independent of the
contour representation. The cost functions traditionally
include terms related to the contour smoothness, image
observations, and additional constraints. Among these
three terms, recent research concentrates on developing
cost functions that effectively use the image observations
while adding additional constraints such as shape priors.
Especially, the research on the use of innovative constraints
to guide the evolution of the contour is not concluded. One
such constraint is the use of shape priors, which becomes
eminent in the case of an occlusion during which parts of the
tracked object are not observed. Improved tracking during
an occlusion is shown in Fig. 4(h) where using the shape
priors successfully resolves the occlusion.

As with other object tracking approaches, in a contour
tracking framework, the start or end of an object trajectory
plays a critical role in its application to real-world
problems. The starting of a contour trajectory requires
segmentation of the object when it first is observed. The
segmentation can be performed by using a contour segmen-
tation framework, as discussed in the chapter on ‘‘Level-Set
Methods’’, or by using the background subtraction method,
which labels the pixels as foreground or background
depending on their similarity to learned background
models. Most segmentation approaches, however, do not
guarantee an accurate object shape and, hence, may result
in poor tracking performance.

BIBLIOGRAPHY

1. A. Rosenfeld and J. Pfaltz, Distance functions in digital pic-
tures, in Pattern Recognition, vol. l. 1968, pp. 33–61.

2. L. Gorelick, M. Galun, W. Sharon, R. Basri, and A. Brandt,
Shape representation and classification using the poisson
equation, IEEE Conf. an Computer Vision and Pattern Recog-
nition, 2004.

3. H. Tanizaki, Non-gaussian state-space modeling of nonsta-
tionary time series, J. American Statistical Association, 82:
1032–1063, 1987.

Figure 4. (a–e) A sequence of level-sets generated from walking action. (f) Mean level-set and (g) standard deviation level-set. (h) Tracking
results for occluded person using the shape model given in (f) and (g). (Reprinted with permissions from the IEEE.)

4 CONTOUR TRACKING



4. D. Terzopoulos and R. Szeliski, Tracking with kalman snakes,
in A. Blake and A. Yuille (eds.) Active Vision. MIT Press, 1992.

5. M. Isard and A. Blake, Condensation—conditional density
propagation for visual tracking, Int. Jrn. on Computer Vision,
29(1): 5–28, 1998.

6. J. Shao, F. Porikli, and R. Chellappa, A particle filter based
non-rigid contour tracking algorithm with regulation, Int.
Conf. on Image Processing, 2006, pp. 34–41.

7. A. Mansouri, Region tracking via level set pdes without motion
computation, IEEE Trans. on Pattern Analysis and Machine
Intelligence, 24(7): pp. 947–961, 2002.

8. M. Bertalmio, G. Sapiro, and G. Randall, Morphing active
contours, IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 22(7): pp. 733–737, 2000.

9. A. Yilmaz, X. Li, and M. Shah, Contour based object tracking
withocclusionhandling invideo acquiredusingmobile cameras,

IEEE Trans. on Pattern Analysis and Machine Intelligence,
26(11): pp. 1531–1536, 2004.

10. D. Cremers and C. Schnorr, Statistical shape knowledge in
variational motion segmentation, Elsevier Jrn. on Image and
Vision Computing, 21: pp. 77–86, 2003.

11. R. Ronfard, Region based strategies for active contour models.
Int. Jrn. on Computer Vision, 13(2): pp. 229–251, 1994.

12. Y. Shi and W. Karl, Real-time tracking using level sets, IEEE
Conf. on Computer Vision and Pattern Recognition, 2005, pp.
34–41.

ALPER YILMAZ

The Ohio State University
Columbus, Ohio

CONTOUR TRACKING 5



E

EDGE DETECTION IN GRAYSCALE, COLOR,
AND RANGE IMAGES

INTRODUCTION

In digital images, edge is one of the most essential and
primitive features for human and machine perception; it
provides an indication of the physical extent of objects in
an image. Edges are defined as significant local changes
(or discontinuities) in brightness or color in an image.
Edges often occur at the boundaries between two differ-
ent regions. Edge detection plays an important role in
compute vision and image processing. It is used widely as
a fundamental preprocessing step for many computer
vision applications, including robotic vision, remote sen-
sing, fingerprint analysis, industrial inspection, motion
detection, and image compression (1,2). The success of
high-level computer vision processes heavily relies on the
good output from the low-level processes such as edge
detection. Because edge images are binary, edge pixels
are marked with value equal to ‘‘1,’’ whereas others are
‘‘0’’; edge detection sometimes is viewed as an informa-
tion reduction process that provides boundary informa-
tion of regions by filtering out unnecessary information
for the next steps of processes in a computer vision
system (3).

Many edge detection algorithms have been proposed in
the last 50 years. This article presents the important edge
detection techniques for grayscale, color, and range images.

EDGE AND EDGE TYPES

Several definitions of edge exist in computer vision lit-
erature. The simplest definition is that an edge is a sharp
discontinuity in a gray-level image (4). Rosenfeld and
Kak (5) defined an edge as an abrupt change in gray level
or in texture where one region ends and another begins.
An edge point is a pixel in an image where significant
local intensity change takes place. An edge fragment is an
edge point and its orientation. An edge detector is an
algorithm that produces a set of edges from an image. The
term ‘‘edge’’ is used for either edge points or edge frag-
ments (6–8).

Edge types can be classified as step edge, line edge, ramp
edge, and roof edge (7 –9 ). Step edge is an ideal type that
occurs when image intensity changes significantly from one
value on one side to a different value on the other. Line
edges occur at the places where the image intensity changes
abruptly to a different value, stays at that value for the next
small number of pixels, and then returns to the original
value. However, in real-world images, step edge and line
edge are rare because of various lighting conditions and
noise introduced by image-sensing devices. The step edges
often become ramp edges, and the line edges become the
roof edges in the real-world image (7,8). Figure 1(a)–(d)

show one-dimensional profiles of step, line, ramp, and roof
edge, respectively.

EDGE DETECTION METHODS IN GRAY-LEVEL IMAGES

Because edges are, based on the definition, image pixels
that have abrupt changes (or discontinuities) in image
intensity, the derivatives of the image intensity function
(10) can be used to measure these abrupt changes. As shown
in Fig. 2(a) and (b), the first derivative of the image inten-
sity function has a local peak near the edge points. There-
fore, edges can detect by thresholding the first derivative
values of an image function or by the zero-crossings in the
second derivative of the image intensity as shown in
Fig. 2(c).

Edge detection schemes based on the derivatives of
the image intensity function are very popular, and they
can be categorized into two groups: gradient-based and
zero-crossing-based (or called Laplacian) methods. The
gradient-based methods find the edges by searching for
the maxima (maximum or minimum) in the first
derivatives of the image function. The zero-crossing
(Laplacian) methods detect the edges by searching for
the zero crossings in the second derivatives of the image
function.

Gradient-Based Edge Detection

An edge is associated with a local peak in the first deriva-
tive. One way to detect edges in an image is to compute the
gradient of local intensity at each point in the image. For an
image, f(x, y) with x and y, the row and the column coordi-
nates, respectively, its two-dimensional gradient is defined
as a vector with two elements:

G ¼ Gx

Gy

� �
¼

@f ðx; yÞ
@x

@f ðx; yÞ
@y

2
664

3
775

¼ ½ f ðxþ dx; yÞ � f ðx; yÞ�=dx
½ f ðx; yþ dyÞ � f ðx; yÞ�=dy

� �
ð1Þ

where Gx and Gy measure the change of pixel values in the
x- and y-directions, respectively. For digital images, dx
and dy can be considered in terms of number of pixels
between two points, and the derivatives are approxi-
mated by differences between neighboring pixels. Two
simple approximation schemes of the gradient for
dx ¼ dy ¼ 1 are

Gx� f ðxþ 1; yÞ � f ðx; yÞ ; Gy� f ðx; yþ 1Þ � f ðx; yÞ
Gx� f ðxþ 1; yÞ� f ðx�1; yÞ; Gy� f ðx; yþ1Þ � f ðx; y� 1Þ

ð2Þ

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



These derivative approximation schemes are called the
first difference and the central difference, respectively.
The convolution masks for the first difference and the
central difference can be represented as follows, respec-
tively (11):

Gx ¼
�1 0

1 0

� �
; Gy ¼

��1 1

0 0

�
;

Gx ¼
0 �1 0

0 0 0

0 1 0

2
64

3
75; Gy ¼

0 0 0

�1 0 1

0 0 0

2
64

3
75

The first difference masks cause the edge location bias
because the zero crossings of its vertical and horizontal
masks lie at different positions. On the other hand, the
central difference masks avoid this position mismatch
problem because of the common center of horizontal
and vertical masks (11). Many edge detectors have
been designed using convolution masks using 3 � 3
mask sizes or even larger.

Two important quantities of the gradient are the mag-
nitude and the direction of the gradient. The magnitude of
the gradient Gm is calculated by

Gm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þG2
y

q
ð3Þ

To avoid the square root computation, the gradient mag-
nitude is often approximated by

Gm� jGxj þ jGyj or ð4Þ

Gm�maxðjGxj; jGyjÞ ð5Þ

The direction of the gradient is given by

ug ¼
tan�1 Gy

Gx

� �
if Gx 6¼ 0

00 if Gx ¼ 0\Gy ¼ 0

900 if Gx ¼ 0\Gy 6¼ 0

8>><
>>:

ð6Þ

where the angle ug is measured with respect to the x-axis.
In general, a gradient-based edge detection procedure

consists of the following three steps:

1. Smoothing filtering: Smoothing is used as a prepro-
cessing step to reduce the noise or other fluctua-
tions in the image. Gaussian filtering (10–13) is a
well-known low-pass filter, and s parameter con-
trols the strength of the smoothing. However,
smoothing filtering can also blur sharp edges,
which may contain important features of objects
in the image.

2. Differentiation: Local gradient calculation is imple-
mented by convolving the image with two masks, Gx

and Gy, which are defined by a given edge detector.
Let us denote the convolution of a mask Mkxk and an

(a) step edge (b) line edge

(c) ramp edge (d) roof edge

Figure 1. One-dimensional profiles of four different edge types.

Figure 2. Edge detection by the deriva-
tive operators: (a) 1-D profile of a smoothed
step edge, (b) the first derivative of a step
edge, and (c) the second derivative of a step
edge.

150

100

50

0

50

0

–50

20

0

–20

–40

f"
(x

)
f'(

x)
f(

x)

Threshold

Threshold

Zero Crossing Zero Crossing

x0 x1

x2 x3

(a)

(b)

(c)

2 EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES



image fmxn as Nmxn. For every pixel (i, j) in the image f,
we calculate:

Nði; jÞ ¼M� f ði; jÞ

¼
Xk

2

k2¼�k
2

Xk
2

k1¼�k
2

M ðk1; k2Þ � f ðiþ k1; jþ k2 ð7Þ

for 1 � i � m; 1 � j � n

3. Detection: Detecting edge points based on the local
gradients. The most common approach is to apply a
threshold to image gradients. If the magnitude of the
gradient of an image pixel is above a threshold, the
pixel is marked as an edge. Some techniques such as
the hysteresis method by Canny (3) use multiple
thresholds to find edges. The thinning algorithm is
also applied to remove unnecessary edge points after
thresholding as necessary (14,15).

Roberts Cross Edge Detector. The Roberts cross edge
detector is the simplest edge detector. It rotated the first
difference masks by an angle of 458. Its mathematic expres-
sions are (10,12)

Gx ¼ f ðx; yþ 1Þ � f ðxþ 1; yÞ;
Gy ¼ f ðx; yÞ � f ðxþ 1; yþ 1Þ ð8Þ

Gx and Gy can be represented in the following convolution
masks:

Gx ¼
0 1
�1 0

� �
; Gy ¼

1 0
0 �1

� �

These two convolution masks respond maximally to edges
in diagonal directions (458) in the pixel grid. Each mask
is simply rotated 908 from the other. The magnitude of
the gradient is calculated by Equation (3). To avoid the
square root computation, the computationally simple form
of the Robert cross edge detector is the Robert’s absolute
value estimation of the gradient given by Equation (4).

The main advantage of using Roberts cross edge opera-
tor is its fast computational speed. With a 2 � 2 convolu-
tion mask, only four pixels are involved for the gradient
computation. But the Roberts cross edge operator has
several undesirable characteristics. Because it is based
on the first difference, its 2 � 2 diagonal masks lie off grid
and cause edge location bias. The other weak points
are that it is sensitive to noise and that its response to
the gradual( or blurry) edge is weak. Figure 3(b)–(g) show
the Roberts cross edge maps with various threshold
values. The experiment shows that the Roberts cross
edge detector is sensitive to the noise with low threshold
values. As the threshold value increases, noise pixels are
removed, but also real edge pixels with weak response are
removed (11).

Prewitt Edge Operator. The Prewitt edge operator uses
the central difference to approximate differentiation. Two
Prewitt convolution masks at x- and y-directions are shown
below:

Gx ¼
1

3

�1 0 1
�1 0 1
�1 0 1

2
4

3
5; Gy ¼

1

3

�1 �1 �1
0 0 0
1 1 1

2
4

3
5

Because it has the common center of Gx and Gy masks, the
Prewitt operator has less edge-location bias compared with
the first difference-based edge operators. It also accom-
plishes noise reduction in the orthogonal direction by
means of local averaging (11).

The local gradient at pixel (x, y) can be estimated by
convolving the image with two Prewitt convolution
masks, Gx and Gy, respectively. Mathematically we
have

Gx ¼ 1

3
ð½ f ðx� 1; yþ 1Þ þ f ðx; yþ 1Þ þ f ðxþ 1; yþ 1Þ��
½ f ðx� 1; y� 1Þ þ f ðx; y� 1Þ þ f ðxþ 1; y� 1Þ�Þ

Gy ¼ 1

3
ð½ f ðxþ 1; y� 1Þ þ f ðxþ 1; yÞ þ f ðxþ 1; yþ 1Þ��
½ f ðx� 1; y� 1Þ þ f ðx� 1; yÞ þ f ðx� 1; yþ 1Þ�Þ

ð9Þ

Figure 3. Roberts cross edge maps by
using various threshold values: as thresh-
old value increases, noise pixels are
removed, but also real edge pixels with
weak responses are removed.

EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES 3



The Prewitt operators can be extended to detect edges
tilting at 458 and 1358 by using the following two
masks.

�1 �1 0
�1 0 þ1

0 þ1 þ1

2
4

3
5;

0 þ1 þ1
�1 0 þ1
�1 �1 0

2
4

3
5

Figure 4(b) shows the vertical edge map generated by
the Prewitt Gx mask, and the horizontal edge map gener-
ated by the Prewitt Gy mask is shown in Fig. 4(c). Combin-
ing these two horizontal and vertical edge maps, the
complete edge map is generated as shown in Fig. 4(d).

Sobel Edge Detector. The Sobel gradient edge detector is
very similar to the Prewitt edge detector except it puts
emphasis on pixels close to the center of the masks. The
Sobel edge detector (10,12) is one of the most widely used
classic edge methods. Its x- and y-directional 3 � 3 con-
volution masks are as follows:

Gx ¼
1

4

�1 0 1
�2 0 2
�1 0 1

2
4

3
5; Gy ¼

1

4

�1 �2 �1
0 0 0
1 2 1

2
4

3
5

The local gradient at pixel (x,y) can be estimated by
convolving the image with two Sobel convolution masks,
Gx and Gy, respectively,

Gx ¼
1

4
ð½ f ðx� 1; yþ 1Þ þ 2�f ðx; yþ 1Þþ f ðxþ 1; yþ 1Þ��
½ f ðx� 1; y� 1Þþ 2� f ðx; y� 1Þ þ f ðxþ 1; y� 1Þ�Þ

Gy ¼
1

4
ð½ f ðxþ 1; y� 1Þþ2�f ðxþ 1; yÞ þ f ðxþ 1; yþ 1Þ��
½ f ðx� 1; y� 1Þþ 2� f ðx� 1; yÞ þ f ðx� 1; yþ 1Þ�Þ

ð10Þ

The Sobel operator puts more weights on the pixels near the
center pixelof theconvolutionmask. Both masks are applied
to every pixel in the image for the calculation of the gradient
at the x- and y-directions. The gradient magnitude is calcu-
lated by Equation (3). The Sobel edge detectors can be
extended to detect edges at 458 and 1358 by using the two
masks below:

�2 �1 0
�1 0 þ1

0 þ1 þ2

2
4

3
5;

0 þ1 þ2
�1 0 þ1
�2 �1 0

2
4

3
5

Figure5(j)–(l) show the edge detection results generated
by the Sobel edge detector with the threshold value, T ¼ 20.
Figure 5 also shows the performance analysis of each
gradient-based edge detector in the presence of noises.
To evaluate the noise sensitivity of each edge detector,
5% and 10% Gaussian noise are added into the original
image as shown in Fig. 5(b) and (c), respectively. For fair
comparisons, a fixed threshold value is used (T ¼ 20) for all
edge detectors. Figure 5(e) and (f) show that the Roberts
cross edge detector is sensitive to noises. On the other hand,
the Sobel and the Prewitt edge detectors are less sensitive
to noises. The Sobel operators provide both differencing and
smoothing effects at the same time. Because of these char-
acteristics, the Sobel operators are widely used for edge
extraction. The smoothing effect is achieved through the
involvement of 3 � 3 neighbors to make the operator less
sensitive to noises. The differencing effect is achieved
through the higher gradient magnitude by involving
more pixels in convolution in comparison with the Roberts
operator. The Prewitt operator is similar to the Sobel edge
detector. But the Prewitt operator’s response to the diag-
onal edge is weak compared with the response of the Sobel
edge operator. Prewitt edge operators generate slightly less
edge points than do Sobel edge operators.

Non-Maximum Suppression—a Postprocessing After Gra-
dient Operation. One difficulty in gradient edge detectors
(and also in many other edge detectors) is how to select
the best threshold (16) used to obtain the edge points. If
the threshold is too high, real edges in the image can be
missed. If the threshold is too low, nonedge points such as
noise are detected as edges. The selection of the threshold
critically affects the edge output of an edge operator.
Another problem related with the gradient edge detectors
is that edge outputs from the gradient-based method
appear to be several pixels wide rather than a single pixel
(see Figs. 3–5). This problem is because most edges in the
real-world images are not step edges and the grayscales
around the edges change gradually from low to high
intensity, or vice versa. So a thinning process such as
nonmaximum suppression (14,15,17–19) may be needed
after the edge detection.

The method of nonmaximum suppression is used to
remove weak edges by suppressing the pixels with non-
maximum magnitudes in each cross section of the edge
direction (15). Here, we introduce the algorithm proposed
by Rosenfeld and Thursten(14,15,17–19). Let u(i) denote
the edge direction at pixel i, and let Gm(i) denote the
gradient magnitude at i.

Figure 4. Prewitt edge maps: (a) original
image, (b) vertical edge map generated by
Gx, (c) horizontal edge map generated by
Gy, and (d) complete edge map, T ¼ 15.

4 EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES



Step 0: For every edge point, p(x,y), do the following
steps.

Step 1: Find two nearest neighboring pixels q1 and q2

that are perpendicular to the edge direction
associated with the edge pixel p.

Step 2: If (juðpÞ � uðq1Þj � a and juðpÞ � uðq2Þj � a),
then go to Step 3 else return to Step 0.

Step 3: If (GmðpÞ � Gmðq1Þ or GmðpÞ � Gmðq2Þ), then
suppress the edge at pixel p.

Figure 6(a) shows how to choose q1 and q2 when edge
direction at pixel p is vertical (top-to-down), which is shown
in an arrow. Four edge directions are often used in the
nonmaximum suppression method: 08, 458, 908, and 1358,
respectively, and all edge orientations are quantized to
these four directions. Figure 5(d) and (g) shows the results

after the nonmaximum suppression is applied to the edge
images in Fig. 5(c) and (f), respectively. Figure 5(d) gener-
ated 71.6% less edge pixels compared with the edge pixels in
Fig. 5(c). Figure 5(g) has 63.6% less edge pixels compared
with the edge pixels in Fig. 5(f). In our experiments, more
than 50% of the edge points that were generated by the
gradient-based edge operator are considered as nonlocal
maximal and suppressed.

Second-Derivative Operators

The gradient-based edge operators discussed above produce
a large response across an area where an edge presents. We
use an example to illustrate this problem. Figure 2(a) shows
a cross cut of the smooth step edge, and its first derivative (or
gradient) is shown in Fig. 2(b). After a threshold is applied to
the magnitude of the gradient and to all pixels above the

Figure 5. Performance evaluation in the presence of noises for gradient-based edge operators: (a) original image, (b) add 5% Gaussian noise,
(c) add 10% Gaussian noise, (d)–(f) Roberts edge maps, (g)–(i) Prewitt edge maps, and (j)–(l) Sobel edge maps. Used the same threshold
(T ¼ 20) for fair comparisons.

EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES 5



threshold, for example, the pixels in Fig. 2(b) between
x0 � x1 and x2 � x3 are considered as edge points. As a
result, too many edge points occur, which causes an edge
localization problem: Where is the true location of the edge?
Therefore, a good edge detector should not generate
multiple responses to a single edge. To solve this problem,
the second-derivative-based edge detectors have been
developed.

Laplacian Edge Detector. The Laplacian of a function
f(x, y) is given by Equation (11)

r2 f ðx; yÞ ¼ @
2 f ðx; yÞ
@x2

þ @
2 f ðx; yÞ
@y2

ð11Þ

Because the Laplacian edge detector defines an edge as the
zero crossing of the second derivative, a single response is
generated to a single edge location as observed in Fig. 2(c).
The discrete Laplacian convolution mask is constructed as
follows:

For a digital image, Gx is approximated by the difference

@ f ðx; yÞ
@x

¼ Gx� f ðxþ 1; yÞ � f ðx; yÞ; so

@2 f ðx; yÞ
@x2

¼ @

@x

@f ðx; yÞ
@x

� �
¼ @Gx

@x
� að f ðxþ 1; yÞ� f ðx; yÞÞ

@x

¼ af ðxþ 1; yÞ
@x

� @f ðx; yÞ
@x

¼ ½ f ðxþ 2; yÞ� f ðxþ1; yÞ��½ f ðxþ 1; yÞ� f ðx; yÞ�
¼ f ðxþ 2; yÞ � 2 f ðxþ 1; yÞ þ f ðx; yÞ

ð12Þ

This approximation is centered at the pixel (x þ 1, y). By
replacing x þ 1 with x, we have

@2 f ðx; yÞ
@x2

¼ f ðxþ 1; yÞ � 2 f ðx; yÞ þ f ðx� 1; yÞ ¼
1
�2

1

2
4

3
5

Similarly,

@2 f ðx; yÞ
@y2

¼ f ðx; yþ 1Þ � 2 f ðx; yÞ þ f ðx; y� 1Þ

¼ ½ 1 �2 1 � ð13Þ

By combining the x and y second partial derivatives, the
Laplacian convolution mask can be approximated as fol-
lows:

r2 f ðx; yÞ ¼
1
�2

1

2
4

3
5þ ½ 1 �2 1 � ¼

0 1 0
1�4 1
0 1 0

2
4

3
5

Other Laplacian convolution masks are constructed
similarly by using the different derivative estimation
and different mask size (11). Two other 3 � 3 Laplacian
masks are

1 1 1
1�8 1
1 1 1

2
4

3
5 or

�1 2 �1
2 �4 2
�1 2 1

2
4

3
5

Figure 6. Experiments with nonmaximum suppression: (a) an example of how to select q1, and q2 when edge direction is top-to-down, (b) and
(e) original input images, (c) and (f) Sobel edge maps (T ¼ 20) before nonmaximum suppression, and (d) and (g) edge maps after nonmaximum
suppression is applied to (c) and (f), respectively.

6 EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES



After the convolution of an image with a Laplacian mask,
edges are found at the places where convolved image values
change sign from positive to negative (or vice versa) passing
through zero. The Laplacian edge detector is omnidirec-
tional (isotropic), and it highlights edges in all directions.
Another property of the Laplacian edge detector is that it
generates closed curves of the edge contours. But the Lapla-
cian edge detector alone is seldom used in real-world com-
puter vision applications because it is too sensitive to image
noise. As shown in Fig. 7(c), the very small local peak in the
first derivative has its second derivative cross through zero.
The Laplacian edge detector may generate spurious edges
because of image noise. To avoid the effect of noise, a
Gaussian filtering is often applied to an image before the
Laplacian operation.

Marr Hildreth—Laplacian of Gaussian. Marr and Hil-
dreth (13) combined the Gaussian noise filter with the
Laplacian into one edge detector called the Laplacian of
Gaussian (LoG). They provided the following strong argu-
ment for the LoG:

1. Edge features in natural images can occur at various
scales and different sharpness. The LoG operator can
be applied to detecting multiscales of edges.

2. Some form of smoothing is essential for removing
noise in many real-world images. The LoG is based
on the filtering of the image with a Gaussian smooth-
ing filter. The Gaussian filtering reduces the noise
sensitivity problem when zero crossing is used for
edge detection.

3. A zero crossing in the LoG is isotropic and corre-
sponds to an extreme value in the first derivative.

Theoretically the convolution of the input image f(x,y)
with a two-dimensional (2-D) Gaussian filter G(x,y) can be
expressed as

Sðx; yÞ ¼ Gðx; yÞ � f ðx; yÞ; where Gðx; yÞ

¼ 1ffiffiffiffiffiffi
2p
p

s
e�
ðx2þy2Þ

s2 ð14Þ

Then, the Laplacian (the second derivative) of the con-
volved image S is obtained by

r2Sðx; yÞ ¼ r2½Gðx; yÞ � f ðx; yÞ�

¼ ½r2Gðx; yÞ� � f ðx; yÞ ð15Þ

The computation order of Laplacian and convolution
operations can be interchanged because these two opera-
tions are linear and shift invariant (11) as shown in Equa-
tion (15). Computing the Laplacian of the Gaussian filtered
imager2½Gðx; yÞ � f ðx; yÞ� yields the same result with con-
volving the image with the Laplacian of the Gaussian filter
(½r2Gðx; yÞ� � f ðx; yÞ). The Laplacian of the Gaussian filter
r2Gðx; yÞ is defined as follows:

LoGðx; yÞ ¼ r2Gðx; yÞ ¼ � 1
ps4 1� ðx

2 þ y2Þ
2s2

� �
e�

x2þy2

2s2 ð16Þ

where s is the standard deviation, which also determines
the spatial scale of the Gaussian. Figure 8(a) shows a one-
dimensional (1-D) LoG profile and (b) shows a 2-D LoG
profile. A 2-D LoG operation can be approximated by a
convolution kernel. The size of the kernel is determined by
the scale parameter s. A discrete kernel that approximates
the LoG with s ¼ 1.4 is shown in Fig. 9. In summary, edge
detection using the LoG consists of the following two steps:

1. Convolve the image with a 2-D LoG mask at a selected
scale s.

2. Consider as edges only those zero-crossing pixels
whose corresponding first derivatives are above a
threshold. To find a zero crossing, we need to check
four cases for the signs of the two opposing neighbor-
ing pixels: up/down, right/left, and the two diagonals.

Note that results of edge detection depend largely on
the s value of the LoG. The convolution mask is larger for
a larger s, which is suitable for detecting large-scale
edges. Figure 10 shows edge maps generated by the

Zero crossing

x0 x1 x2 x3 x4

150

100

50

0

30

20

10

0

–10

–20

40

20

0

20

40

f(
x)

f'(
x)

f"
(x

)

(a)

(b)

(c)

Figure 7. Illustration of spurious edges
generated by zero crossing: (a) 1-D profile
of a step edge with noise, (b) the first deri-
vative of a step edge, and (c) the second
derivative of a step edge. The zero crossing
of f(x) creates several spurious edges points
(x0, x1, x2, and x3).

EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES 7



LoG operator with various scales. Figure 10(b)–(e) show
the LoG edge maps with s ¼ 1.0, 1,5, 2.0, and 2.5, respec-
tively. In Fig. 10(f), two different scales s1 ¼ 0.7, s2 ¼ 2.3
are used, and the result is obtained by selecting the edge
points that occurred in both scales. Figure 10(g) and (h)
use the gradient magnitude threshold to reduce noise and
break contours.

In comparison with the edge images based on the
gradient methods in Figs. 3–5, the edge maps from the
LoG is thinner than the gradient-based edge detectors.
Because of the smoothing filtering in the LoG operator, its
edge images (Fig. 10) are robust to noise; however, sharp
corners are lost at the same time. Another interesting
feature of the LoG is that it generates the closed-edge
contours. However, spurious edge loops may appear in
outputs and edge locations may shift at large scales (8).
Both the LoG and the Laplacian edge detectors are iso-
tropic filters, and it is not possible to extract directly the
edge orientation information from these edge operators.
Postprocesses such as nonmaxima suppression and hys-
teresis thresholding are not applicable.

Advanced Edge Detection Method—Canny Edge Detection

The Canny edge detector (3,16,20) is one of the most widely
used edge detectors. In 1986, John Canny proposed the
following three design criteria for an edge detector:

1. Good localization: Edge location founded by the edge
operator should be as close to the actual location in
the image as possible.

2. Good detection with low error rate: An optimal edge
detector should respond only to true edges. In other
words, no spurious edges should be found, and true
edges should not be missed.

3. Single response to a single edge: The optimal edge
detector should not respond with multiple edge pixels
to the place where only a single edge exists.

Following these design criteria, Canny developed an
optimal edge detection algorithm based on a step edge
model with white Gaussian noise. The Canny edge detector
involves the first derivative of a Gaussian smoothing filter
with standard deviation s. The choice of s for the Gaussian
filter controls the filter width and the amount of smoothing
(11). Steps for the Canny edge detector are described as
follows:

1. Smoothing using Gaussian filtering: A 2-D Gaussian
filter G(x,y) by Equation (14) is applied to the image to
remove noise. The standard deviation s of this Gaus-
sian filter is a scale parameter in the edge detector.

2. Differentiation: Compute the gradient Gx in the
x-direction and Gy in the y-direction using any of
the gradient operators (Roberts, Sobel, Prewitt,
etc.). The magnitude Gm and direction ug of the gra-
dient can be calculated as

Gm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G 2

x þG 2
y

q
; ug ¼ tan�1 Gy

Gx

� �
ð16Þ

3. Nonmaximum suppression: Apply the nonmaximum
suppression operation (see the section on ‘‘Nonmax-
imum Suppression’’ for details) to remove spurious
edges.

4. Hysteresis process: The hysteresis step is the unique
feature of the Canny edge operator (20). The hyster-
esis process uses two thresholds, a low threshold tlow,
and a high threshold thigh. The high threshold is
usually two or three times larger than the low thresh-
old. If the magnitude of the edge value at the pixel p is
lower than t1ow, then the pixel p is marked immedi-
ately as a non-edge point. If the magnitude of the edge
value at pixel p is greater than thigh, then it is imme-
diately marked as an edge. Then any pixel that
is connected to the marked edge pixel p and its

Figure 8. (a) a 1-D LoG profile and (b)
a 2-D LoG profile.

–4 –2 2 4

–0.5

–1

–1.5

–2

x 10
–3

1

0

–1

–2

–3

–4
–4

–4

–2
–2

0 02
2

X
y

(a) (b)

0 1 1 2 2 2 1 1 0 

1 2 4 5 5 5 4 2 1 

1 4 5 3 0 3 5 4 1 

2 5 3 -12-24 -12 3 5 2 

2 5 0 -24-40 -24 0 5 2 

2 5 3 -12-24 -12 3 5 2 

1 4 5 3 0 3 5 4 1 

1 2 4 5 5 5 4 2 1 

0 1 1 2 2 2 1 1 0 

Figure 9. A discrete kernel that approximates the LoG with
s ¼ 1.4.

8 EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES



magnitude of the edge value is greater than a low
threshold tlow, it is also marked as an edge pixel. The
edge marking of the hysteresis process is implemen-
ted recursively. This hysteresis producer generates
the effects of reducing the broken edge contours and of
removing the noise in adaptive manner (11).

The performance of the Canny operator is determined
by three parameters: the standard deviation s of the
Gaussian filter and the two thresholds tlow and thigh,
which are used in the hysteresis process. The noise elim-
ination and localization error are related to the standard
deviation s of the Gaussian filter. If s is larger, the noise
elimination is increased but the localization error can also
be more serious. Figures 11 and 12 illustrate the results of
the Canny edge operator. Figure 11 demonstrate the
effect of various s values with the same upper and lower
threshold values. As the s value increases, noise pixels
are removed but the sharp corners are lost at the same

time. The effect of the hysteresis threshold is shown in
Fig. 12. Figure 12(a) and (c) are edge maps with the
hysteresis threshold. Edge maps with a hysteresis thresh-
old have less broken contours than edge maps with one
threshold: Compare Fig. 12(a) with Fig. 12(b). Table 1
summarized the computational cost of each edge opera-
tors used in gray images. It is noticed that the computa-
tional cost of the Canny operator is higher than those of
other operators, but the Canny operator generates the
more detailed edge map in comparison with the edge maps
generated by other edge operators.

EDGE DETECTION IN COLOR IMAGES

What is the Color Image?

An image pixel in the color image is represented by a vector
that is consisted of three components. Several different
ways exist to represent a color image, such as RGB, YIQ,

Figure 10. The LoG operator edge maps:
(b) s ¼ 1.0, (c) s ¼ 1.5, (d) s ¼ 2.0, (e)
s ¼ 2.5, (f) two scales used s1 ¼ 0.7 and
s2 ¼ 2.3, (g) s ¼ 2.0 and T ¼ 15, and (h)
s ¼ 2.0 and T ¼ 20.

Figure 11. The effect of the standard
deviation s of the Gaussian smoothing filter
in the Canny operator: (b) s ¼ 0.5, (c)
s ¼ 1.0, (d) s ¼ 1.5, (e) s ¼ 2.0, (f)
s ¼ 2.5, and (g) s ¼ 3.0, Thigh ¼ 100,
Tlow ¼ 40.

EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES 9



HIS, and CIE L�u�v�. The RGB, the YIQ, and the HSI are
the color models most often used for image processing (10).

The commonly known RGB color model consists of three
colors components: Red(R), Green (G) and Blue (B). The
RGB color model represents most closely to the physical
sensors for colored light in most color CCD sensors (21).
RGB is a commonly used color model for the digital pictures
acquired by digital cameras (22). The three components in
the RGB model are correlated highly, so if the light changes,
all three components are changed accordingly (23).

The YIQ color space is the standard for color television
broadcasts in North America. The YIQ color space is
obtained from the RGB color model by linear transforma-
tion as shown below (10):

Y
I
Q

2
4

3
5 ¼

0:299 0:587 0:114
0:596 �0:275 �0:321
0:212 �0:523 0:311

2
4

3
5 R

G
B

2
4

3
5 ð17Þ

In the YIQ color space, Y measures the luminance of the
color value and I and Q are two chromatic components called
in-phase and quadrature. The main advantage of YIQ color
model in image processing is that luminance (Y) and two
chromatic components (I and Q) are separated (10,24).

The HSI (hue, saturation, intensity), also known as
HSB (hue, saturation, brightness), and its generalized
form HSV (hue, saturation, value) models are also used
frequently in color image processing (24–26). The HSI
model corresponds more accurately to the human percep-
tion of color qualities. In the HSI model, hue, the dominant
color, is represented by an angle in a color circle where
primary colors are separated by 1208with Red at 08, Green
at 1208, and Blue at 2408. Saturation is the purity of the
color. The high saturated values are assigned for pure
spectral colors and the low values for the mixed shades.

The intensity is associated with the overall brightness of a
pixel (21).

Color Edge Detection versus Gray-Level Edge Detection

The use of color in edge detection implies that more infor-
mation for edges is available in the process, and the edge
detection results should be better than those of the gray-
level images. Novak and Shafer (27) found that 90% of edge
pixels are about the same in edge images obtained from
gray-level and from color images. But 10% of the edge pixels
left are as undetected when gray-level information is used
(28). It is because edge may not be detected in the intensity
component in low contrast images, but it can be detected in
the chromatic components. For some applications, these
undetected edges may contain crucial information for a
later processing step, such as edge-based image segmenta-
tion or matching (29). Figure 13 demonstrates the typical
example of the differences between color edge detectors and
gray-level edge detectors. The gray-level Sobel edge detec-
tor missed many (or all) real edge pixels because of the low
contrast in the intensity component as shown in Fig. 13(c)
and (d).

A color image is considered as a two-dimensional array
f(x,y) with three components for each pixel. One major
concern in color edge detection is the high computational
complexity, which has increased significantly in compar-
ison with the edge detection in gray value images (see
Table 2 for the computational cost comparison between
the color Sobel operator and the gray-level Sobel operator
with various size of images).

Definition of Edge in Color Images

The approaches for detecting edges in color images depend
on the definition of an edge. Several definitions have been

Table 1. Computational cost comparison

Image Size

Computational Time (Seconds) 680 by 510 1152 by 864 1760 by 1168

Robert 0.032 0.125 0.219
Prewitt 0.062 0.234 0.422
Sobel 0.047 0.187 0.343

Gray image Robert+NMS� 0.141 0.438 0.1
Edge operator Prewitt+NMS� 0.14 0.516 1.188

Sobel+NMS� 0.109 0.531 1.234
LOG 0.5 1.453 2.984
Canny 0.469 1.531 3.172

�NMS ¼ Nonmaximum suppression.

Figure 12. The effect of the hysteresis
threshold in the Canny operator: fixed
s ¼ 1.5 (a) thigh ¼ 100, tlow ¼ 20; (b)
thigh = tlow = 100; (c) thigh = 60, tlow = 20;
(d) thigh = 60, tlow = 60.

10 EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES



proposed, but the precise definition of color edge has not
been established for color images so far (30). G. S. Robinson
(24) defined a color edge as the place where a discontinuity
occurs in the image intensity. Under this definition, edge
detection would be performed in the intensity channel of a
color image in the HIS space. But this definition provides no
explanation of possible discontinuities in the hue or satura-
tion values. Another definition is that an edge in a color
image is where a discontinuity occurs in one color compo-
nent. This definition leads to various edge detection meth-
ods that perform edge detection in all three color
components and then fuses these edges to an output edge
image (30). One problem facing this type of edge detection
methods is that edges in each color component may contain
inaccurate localization. The third definition of color edges is
based on the calculation of gradients in all three color
components. This type of multidimensional gradient meth-
ods combines three gradients into one to detect edges. The
sum of the absolute values of the gradients is often used to
combine the gradients.

Until now, most color edge detection methods are based
on differential grayscale edge detection methods, such as
finding the maximum in the first derivative or zero crossing
in the second derivative of the image function. One diffi-
culty in extending these methods to the color image origi-
nates from the fact that the color image has vector values.
The monochromatic-based definition lacks the considera-
tion about the relationship among three color components.
After the gradient is calculated at each component, the
question of how to combine the individual results remains
open (31).

Because pixels in a color image are represented by a
vector-valued function, several researchers have proposed
vector-based edge detection methods (32–36). Cumani

(32,35) and Zenzo (36) defined edge points at the locations
of directional maxima of the contrast function. Cumani
suggested a method to calculate a local measure of direc-
tional contrast based on the gradients of the three color
components.

Color Edge Detection Methods

Monochromatic-Based Methods. The monochromatic-
based methods extend the edge detection methods devel-
oped for gray-level images to each color component. The
results from all color components are then combined to
generate the final edge output. The following introduces
commonly used methods.

Method 1: the Sobel operator and multidimensional
gradient method

(i) Apply the Sobel operator to each color component.

(ii) Calculate the mean of the gradient magnitude
values in the three color components.

(iii) Edge exists if the mean of the gradient magnitude
exceeds a given threshold (28,30).

Note the sum of the gradient magnitude in the three
color components can also be used instead of the mean in
Step ii).

Method 2: the Laplacian and fusion method

(i) Apply the Laplacian mask or the LoG mask to each
color component.

(ii) Edge exists at a pixel if it has a zero crossing in at
least one of the three color components (28,31).

Table 2. Computational cost comparison: the gray-level Sobel edge detector versus the color-Sobel edge detector

Image Size

Computational time (Seconds) 680 by 510 1152 by 864 1760 by 1168

Gray-level Sobel operator 0.047 0.187 0.343
Color Sobel operator 0.172 0.625 1.11

Figure 13. Color versus gray edge detec-
tors: (a) color image [used with permission
from John Owens at the University of
California, Davis], (b) edge map generated
by the color edge detector, and (c) and
(d) edge map generated by the gray-level
Sobel operator.

EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES 11



Experimental results with multidimensional Sobel
operator are shown in Fig. 14(b)–(c). The color Sobel opera-
tor generates the more detailed edge maps [Fig. 14(b) and
(c)] compared with the edge map generated by the gray-
level Sobel operator in Fig. 14(d). But the computational
cost of the color Sobel operator increases three times more
than the cost of the gray-level Sobel operator as shown in
Table 2.

Vector-Based Methods. Color Variants of the Canny
Edge Operator. Kanade (37) introduced an extension of
the Canny edge detector (3) for edge detection in color
images. Let a vector C(r(x,y),g(x,y),b(x,y)) represent a color
image in the RGB color space. The partial derivatives of the
color vector can be expressed by a Jacobian matrix J as
below:

J ¼ @C

@x
;
@C

@y

� �
¼

@r

@x

@r

@y
@g

@x

@g

@y
@b

@x

@b

@y

2
6666664

3
7777775
¼ ðGx;GyÞ ð18Þ

The direction u and the magnitude Gm of a color edge are
given by

tanð2uÞ ¼ 2 	Gx 	Gy

kGxk2 � kGyk2
ð19Þ

Gm¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kGxk2cos2ðuÞþ2	Gx 	Gy 	 sinðuÞ	 cosðuÞþkGyk2sin2ðuÞ

q
ð20Þ

where Gx, Gy are the partial derivatives of the three color
components and k 	 k is a mathematical norm. Several
variations exist based on different mathematical norms
such as the L1-norm (sum of the absolute value), L2-norm
(Euclidean distance), and L1-norm (maximum of the
absolute value). Kanade (37) summarizes detailed experi-
mental results obtained with various mathematical
norms. After the edge direction and magnitude of the
edge have been calculated for each pixel, the rest of the
steps are the same with the Canny operator for gray-level
images (see the section on the ‘‘advanced edge detection
method’’). Figure 15 shows edge maps generated by the
color Canny operator with various scales and threshold
values. The edge maps generated by the color Canny
operator have the more detailed edge images compared

with the edge map [Fig. 15(d)] generated by the gray- level
Canny operator.

Cumani Operator. Cumani (32,35) proposed a vector-
based color edge detection method that computes the
zero crossings in the second directional derivatives of a
color image. He defined a local measure of directional
contrast based on the gradients of the image components.
Then, edge points are detected by finding zero crossings of
the first derivative of the contrast function in the direction
of the maximal contrast.

Let a three-channel color image be represented by a two-
dimensional vector field as follows:

f ðx; yÞ ¼ ð f1ðx; yÞ; f2ðx; yÞ; f3ðx; yÞÞ

The squared local contrast S of f(x,y) at point P ¼ (x,y) in the
direction of the unit vector u

! ¼ ðu1;u2Þ is

SðP;uÞ ¼ utJu ¼ ðu1;u2Þ
E F
F G

� �
u1

u2

� �

¼ Eu2
1 þ 2Fu1u2 þGu2

2

where

J ¼ r f ðr f ÞT ¼ E F
F G

� �
; E ¼

X3

i¼1

@ fi
@x

� �2

;

F ¼
X3

i¼1

@ fi
@x

� �
@ fi
@y

� �
; and G ¼

X3

i¼1

@ fi
@y

� �2
ð21Þ

The maximal value l of S(P, u) is

l
 ¼ ðEþGÞz 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�GÞ2

4
þ F2

s
ð22Þ

This maximum l occurs when u
!

is the corresponding
eigenvector (35)

u
! ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ C

2

r
;

ffiffiffiffiffiffiffiffiffiffiffiffi
1� C

2

r !
; where C

¼ E�Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�GÞ2 þ ð2FÞ2

q ð23Þ

Edge points are defined at the locations where l has a local
maximum along the direction of the unit vector u

!
. So the

Figure 14. Experiments with the color
Sobel operator: (a) color input; (b) and (c)
color Sobel operator with T ¼ 15, and
T ¼ 20, respectively; and (d) gray Sobel
operator with T ¼ 20.

12 EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES



zero crossings of l in the direction of u
!

are candidates of
edges (33). To find the zero crossing of l, the directional
derivative is defined as

rlþ 	 uþ ¼ rSðP;uþÞ 	 uþ

¼ @E

@x
u3

1 þ
@E

@y
þ 2

@F

@x

� �
u2

1u2

þ 2
@F

@y
þ @G

@x

� �
u1u2

2 þ
@G

@y
u3

2 ð24Þ

where E, F, and G are defined in Equation (21). Finally,
edge points are determined by computing the zero crossing
ofrlþ 	 uþ and the sign ofrlþ 	 uþ along a curve tangent to
uþ at point P.

Cumani tested this edge detector with color images in
the RGB space with the assumption that the Euclidean
metric exists for the vector space (32). Figure 16(b), (c), and
(d) show the edge detection results generated by the
Cunami color edge operator at different scales. It seems
that the Cunami color edge operator generated the more
detailed edge images in comparison with the edge images
generated by the monochromatic-based methods.

EDGE DETECTION METHOD IN RANGE IMAGES

Range imagesare a special class of digital images. The range
images encode the distance information from the sensor to
the objects. Pixel values in the range images are related to
the positions of surface geometry directly. Therefore, range
images provide an explicit encoding of the local structure
and geometry of the objects in the scene. Edge detection
methods developed for intensity images mainly focused on
the detection of step edges. In the range imagers, it is
possible to detect correctly both the step edges and the
roof edges because of the available depth information.

Hoffman and Jain (38) described three edge types in
range images: step edges, roof edges, and smooth edges.
Step edges are those composed pixels in which the actual
depth values are significantly discontinuous as compared
with their neighboring pixels. Roof edges are where the
depth values are continuous, but the directions of the sur-
face normal change abruptly. Smooth edges are related
with discontinuities in the surface curvature. But smooth
edges relatively seldom occur in range images. Step edges
in range images can be detected with ordinary gradient
edge operators, but roof edges are difficult to be detected
(39). Thus, an edge detection method for a range image
must take into account these two types of edges such as
discontinuities in depth and discontinuities in the direction
of surface normal.

Edge Detection Using Orthogonal Polynomials

Besl and Jain (40,41) proposed a method that uses ortho-
gonal polynomials for estimating the derivatives in range
images. To estimate the derivatives, they used the locally fit
discrete orthogonal polynomials with an unweighted least-
squares technique. Usingsmooth second-order polynomials,
range images were approximated locally. This method pro-
vided the smoothing effect and computational efficiency by
obtaining the coefficient of the polynomials directly. But
unweighted least squares could cause errors in image dif-
ferentiation. To overcome this problem, a weighted least-
squares approach was proposed by Baccar and Colleagues
(42,43).

Extraction of Step Edges. The step edge detection method
proposed by Baccar and Colleagues (42) is based on the use
of locally fit discrete orthogonal polynomials with a
weighted least-squares technique. For the weighted
least-squares approximation W(x), a one-dimensional
Gaussian kernel of unit amplitude with zero mean and

Figure 15. Experiments with the color
Canny operator: color Canny edge maps
(a) s ¼ 0.8, thigh ¼ 50, tlow ¼ 10; (b)
s ¼ 0.8, thigh ¼ 100, tlow ¼ 10; (c) s ¼ 1.0,
thigh ¼ 100, tlow ¼ 10; and (d) the edge map
generated by the gray-level Canny operator
s ¼ 1.5, thigh ¼ 100, tlow ¼ 20.

Figure 16. Experiments with the Cumani
operator: (a) color input image and the
Cumani edge maps (b) s ¼ 1.0, (c)
s ¼ 1.2, and (d) s ¼ 1.5.

EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES 13



standard deviation s is used. The two-dimensional Gaus-
sian kernel at the center of the window can be represented

by the product of W(x) and W(y). Let WðxÞ ¼ e
�x2

2s2 . Then a one-
dimensional set of second-degree orthogonal polynomials
w0, w1, w2 is defined as

w0ðxÞ ¼ 1; w1ðxÞ ¼ x; w2ðxÞ ¼ x2 � A; where

A ¼
P

xWðxÞw1ðxÞw0ðxÞP
WðxÞw2

0ðxÞ
ð25Þ

A locally approximated range image r̂ðx; yÞ is calculated
with a second-degree Gaussian weighted orthogonal poly-
nomial as follows (42):

r̂ðx; yÞ ¼
X

iþ j�2

ai jwiðxÞw jðyÞ

¼ a00 þ a10w1ðxÞ þ a01w1ðyÞ þ a11w1ðxÞw1ðyÞ

þa20w2ðxÞ þ a02w2ðyÞ

¼ a00 þ a10xþ a01yþ a11xyþ a20ðx2 � a20Þ

þa02ðy2 � a02Þ

¼ a10xþ a01yþ a11xyþ a20x2 þ a02y2

þa00 � Aða02 þ a20Þ

ð26Þ

At a differentiable point of the surface, the quantity of the
surface normal is defined as

ai j ¼
1

@i@ j

X
x;y

rðx; yÞWðxÞWðyÞwiðxÞw jðyÞ; where

@i ¼
XM

x¼�M

WðxÞw2
i ðxÞ ð27Þ

The partial derivatives of the approximated range image
r̂ðx; yÞ are defined by the following equations:

r̂xðx; yÞ ¼ a10 þ a11yþ 2a20x;

r̂yðx; yÞ ¼ a01 þ a11xþ 2a 02 y ð28Þ

At the center of the discrete window for (x, y) ¼ (0, 0), the
partial derivatives are computed by

r̂xð0; 0Þ ¼ a10; r̂yð0; 0Þ ¼ a01 ð29Þ

The gradient magnitude at the center of this discrete

window is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

10 þ a2
01

q
. The step edge image, gstep(x,y), is

obtained directly from the coefficients of the polynomials.

Extraction of Roof Edges. The roof edges are defined as
the discontinuities in the orientation of the surface normal
of objects in a range image. The quantity that defines the

surface normal at a differentiable point of a surface is
defined in Equation (27). The approximation to the surface
normal, which is the angle between the two projections of
the normal vector n on the (x, z)- and (y, z)-planes, is
computed using

gðx; yÞ ¼ tan�1ðry=rxÞ; where

n ¼ ð�rx;�ry; 1ÞT=ð1þ r2
x þ r2

yÞ
1=2 ð30Þ

The partial derivatives rx and ry of the function r(x, y) are
calculated using the same Gaussian weighted least squares
in Equation (28). The quantity g(x, y) represents the surface
normal, and a 5 � 5 median filtering is applied to produce
the final surface normal image. The roof edge image
groof(x,y) is computed from the final surface image by using
the weighted Gaussian approach (42,43). The final edge
map is generated after implementing a fusion step that
combined step edge image gstep(x,y) and roof edge image
groof(x,y) and a subsequent morphological step (42).

Edge Detection via Normal Changes

Sze et al. (44) as well as Mallet and Zhong (45) presented
an edge detection method for range images based on
normal changes. They pointed out that depth changes of
a point in a range image with respect to its neighbors are
not sufficient to detect all existent edges and that normal
changes are much more significant than those of depth
changes. Therefore, the step and roof edges in range
images are identified by detecting significant normal
changes.

Let ~pðu; vÞ be a point on a differentiable surface S and
~pðu; vÞ ¼ ðu; v; f ðu; vÞÞ. If we denote ~pu and ~pv as the
partial derivatives of ~pðu; vÞ at u- and v-directions, respec-
tively; then the partial derivatives of ~pðu; vÞ are given as
follows (44):

~pu ¼ @~pðu; vÞ
@u

¼ ð1; 0; fuðu; vÞÞ

~pv ¼ @~pðu; vÞ
@v

¼ ð0; 1; fvðu; vÞÞ
ð31Þ

The normal of a tangent plane at ~pðu; vÞ is defined as

~Nðu; vÞ ¼
~pu � ~pv

k~pu � ~pvk
ð32Þ

If we replace Equation (32) with Equation (31), the value of
norm ~Nðu; vÞ can be rewritten as below:

N
!
ðu; vÞ ¼ � fuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
u þ f 2

v

p ;
� fvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
u þ f 2

v

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
u þ f 2

v

p
 !

¼ ðn1ðu; vÞ;n2ðu; vÞ;n3ðu; vÞÞ;

where fu ¼ @ f ðu; vÞ=@u and fv ¼ @ f ðu; vÞ=@v ð33Þ

Steps for edge detection in range images via normal
changes are summarized as follows (44):

1. Calculate the normal of every point in a range image:
the partial derivatives are essential to derive the nor-
mal value at each data point as shown in Equation (33).

14 EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES



However, the partial derivative shown in Equation (33)
cannot be computed directly because the range image
data points are discrete. To calculate the normal on a
set of discrete data points, the locally fit discrete ortho-
gonal polynomials, originally proposed by Besl and
Jain (40,41) and explained earlier, can be used. Other
exiting methods are the orthogonal wavelet-based
approach (46) and the nonorthogonal wavelet-based
approach (45).

2. Find the significant normal changes as edge point:
Using the dyadic wavelet transform proposed by
Mallat and Zhong (45), the significant normal
changes (or local extrema) are selected as edge points.
The dyadic wavelet transform of a f(x,y) at scale 2j

along the x- and y-directions can be expressed by

W1
2 j f ðx; yÞ ¼ f � ð1=22 jÞw1ðx=2 j; y=2 jÞ

W2
2 j f ðx; yÞ ¼ f � ð1=22 jÞw2ðx=2 j; y=2 jÞ

ð34Þ

where w1ðx; yÞ ¼ @uðx; yÞ=@x, w2ðx; yÞ ¼ @uðx; yÞ=@y, and
uðx; yÞ is a smoothing function that satisfies the following
conditions: Its integration over the full domain is equal
to 1 and converges to 0 at infinity. The dyadic wavelet
transformation of the vector of normal changes ~Nðu; vÞ
at scale 2j is given by

Wj
~Nðu; vÞ ¼ W1

2 j
~Nðu; vÞduþW2

2 j
~Nðu; vÞdv ð35Þ

where

Wi
2 j
~Nðu; vÞ ¼ ðWi

2 jn1ðu; vÞ;Wi
2 jn2ðu; vÞ;Wi

2 jn3ðu; vÞÞ,
i ¼ 1; 2.

Their associated weights can be the normal changes
(or gradient) of ~Nðu; vÞ along the du- and dv-directions.
Two important values for edge detection can be calcu-
lated as follows: The magnitude of the dyadic wavelet
transformation of W j

~Nðu; vÞ at scale 2j is computed as

M2 j N
!
ðu; vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kW1

2 j
~N! ðu; vÞk2 þ kW2

2 j N
!
ðu; vÞk2

r

ð36Þ

and the angle with respect to the du-direction is

A2 j N
!
ðu; vÞ ¼ argument kW1

2 j
~Nðu; vÞk þ ikW2

2 j N
!
ðu; vÞk

� �

ð37Þ

Everypoint intherangeimagewillbeassociatedwithtwo
important values: magnitude of normal changes with
respect to its certain neighbors and the direction tendency
of the point (44). Edge points can be detected by thresholding
the normal changes. Experimental results are provided for
synthetic and real 240 � 240 range images in Ref 44. Three
different methods such as quadratic surface fitting and
orthogonal and nonorthogonal wavelet-based approaches

are used to calculate the normal values for the comparison
purpose. After the normal values are decided, the dyadic
transforms proposed by Mallat and Zhong (45) are applied to
detect thenormal changesateverypoint inarange image. In
their experiments, the nonorthogonal wavelet-based
approach used to estimate the normal values generated
the best results in comparison with the other methods.

CONCLUSION

Edge detection has been studied extensively in the last 50
years, and many algorithms have been proposed. In this
article, we introduced the fundamental theories and the
popular technologies for edge detection in grayscale, color,
and range images. More recent edge detection work can be
found in Refs.16, 30, 47 and 48. We did not touch on the
topic of evaluating edge detectors. Interested readers can
find such research work in Refs. 49–53.

BIBLIOGRAPHY

1. Z. He and M. Y. Siyal, Edge detection with BP neural networks,
Signal Processing Proc. ICSP’98, 2: 382–384, 1988.

2. E. R. Davies, Circularity- a new principle underlying the design
of accurate edge orientation operators, Image and Vision com-
puting, 2(3): 134–142, 1984.

3. J. Canny, A computational approach to edge detection, IEEE
Trans. Pattern Anal. Machine Intell., 8(6): 679–698, 1986.

4. Z. Hussain, Digital Image Processing- Partial Application of
Parallel Processing Technique, Cluchester: Ellishorwood, 1991.

5. A. Rosenfeld and A. C. Kak, Digital Picture Processing, New
York: Academic Press, 1982.

6. R. M. Haralick and L. G. Shapiro, Computer and Robot Vision,
Reading, MA: Addison-Wesley Publishing Company, 1992.

7. R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision, New
York: McGraw-Hill, Inc., 1995.

8. Y. Lu and R. C. Jain, Behavior of edges in scale space, IEEE
Trans. on Pattern Anal. Machine Intell., 11(4): 337–356, 1989.

9. M. Shah, A. Sood, and R. Jain, Pulse and staircase edge models,
Computer Vis. Graphics Image Proc., 34: 321–343, 1986.

10. R. Gonzalez and R. Woods, Digital Image Processing, Reading,
MA: Addison Wesley, 1992.

11. P. Mlsna and J. Rodriguez, Gradient and Laplacian-Type Edge
Detection, Handbook of Image and Video Processing, New
York: Academic Press, 2000.

12. E. R. Davies, Machine Vision, New York: Academic Press, 1997.

13. D. Marr and E. C. Hildreth, Theory of edge detection, Proc. Roy.
Society, London, Series B, vol. 207(1167): 187–217, 1980.

14. L. Kitchen and A. Rosenfeld, Non-maximum suppression of
gradient magnitude makes them easier to threshold, Pattern
Recog. Lett., 1(2): 93–94, 1982.

15. K. Paler and J. Kitter, Grey level edge thinning: a new method,
Pattern Recog. Lett., 1(5): 409–416, 1983.

16. S. Wang, F. Ge, and T. Liu, Evaluation edge detection through
boundary detection, EURASIP J. Appl. Signal Process., 2006:
1–15, 2006.

17. T. Pavlidis, Algorithms for Graphics and Image Processing,
New York: Springer, 1982.

18. L. Kitchen and A. Rosenfeld, Non-maximum suppression of
gradient magnitude makes them easier to threshold, Pattern
Recogn. Lett., 1(2): 93–94, 1982.

EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES 15



19. J. Park, H. C. Chen, and S. T. Huang, A new gray-level edge
thinning method, Proc. of the ISCA 13th International Con-
ference: Computer Applications in Industry and Engineering,
2000, pp. 114–119.

20. J. R. Parker, Home page. University of Calgary. Available:
http://pages.cpsc.ucalgary.co/�parker/501/edgedetect.pdf.

21. S. Wesolkowski and E. Jernigan, Color edge detection in RGB
using jointly Euclidean distance and vector angle, Vision Inter-
face’99: Troi-Rivieres, Canada, 1999, pp. 9–16.

22. H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang, Color image
segmentation: advance and prospects, Pattern Recogn., 34:
2259–2281, 2001.

23. M. Pietikäinen, S. Nieminen, E. Marszalec, and T. Ojala,
Accurate color discrimination with classification based on fea-
ture distributions, Proc. 13th International Conference on Pat-
tern Recognition, Vienna, Austria, 3, 1996, pp. 833–838.

24. G. Robinson, Color edge detection, Optical Engineering, 16(5):
126–133, 1977.

25. T. Carron and P. Lambert, Color edge detector using jointly
hue, saturation and intensity, ICIP 94, Austin, Texas, 1994,
pp. 977–981.

26. P. Tsang and W. Tang, Edge detection on object color, IEEE
International Conference on Image Processing, C, 1996, pp.
1049–1052.

27. C. Novak and S. Shafer, Color edge detection, Proc. of DARPA
Image Understanding Workshop, vol. I, Los Angeles, CA, 1987,
pp. 35–37.

28. A. Koschan, A comparative study on color edge detection, Proc.
2nd Asian Conference on Computer Vision ACCV’95, vol III,
Singapore, 1995, pp. 574–578.

29. J. Fan, W. Aref, M. Hacid, and A. Elmagarmid, An improved
isotropic color edge detection technique, Pattern Recogn. Lett.,
22: 1419–1429, 2001.

30. A. Koshen and M. Abidi, Detection and classification of edges in
color images, IEEE Signal Proc. Mag., Jan: 64–73, 2005.

31. T. Huntsberger and, M. Descalzi, Color edge detection, Pattern
Recogn. Lett., 3: 205–209, 1985.

32. A. Cumani, Edge detection in multispectral images, CVGIP:
Grap. Models Image Proc., 53(I): 40–51, 1991.

33. L. Shafarenko, M. Petrou, and J. Kittler, Automatic watershed
segmentation of randomly textured color images, IEEE Trans.
Image Process., 6: 1530–1544, 1997.

34. Y. Yang, Color edge detection and segmentation using vector
analysis, Master’s Thesis, University of Toronto, Canada, 1995.

35. A. Cumani, Efficient contour extraction in color image, Proc. of
3rd Asian Conference on Computer Vision, vol. 1, 1998, pp.
582–589.

36. S. Zenzo, A note on the gradient of a multi-image, CVGIP, 33:
116–125, 1986.

37. T. Kanade, Image understanding research at CMU, Proc.
Image Understading Workshop, vol II, 1987, pp. 32–40.

38. R. Hoffman and A. Jain, Segmentation and classification of
range image, IEEE Trans. On PAMI 9-5, 1989, pp. 643–649.

39. N. Pal and S. Pal, A review on Image segmentation technique,
Pattern Recogn., 26(9): 1277–1294, 1993.

40. P. Besl and R. Jain, Invariant surface characteristics for 3D
object recognition in range images, Comp. Vision, Graphics
Image Image Process., 33: 33–80, 1984.

41. P. Besl and R. Jain, Segmentation through variable-order
surface fitting, IEEE Trans. Pattern Anal. Mach. Intell.,
10(3): 167–192, 1988.

42. M. Baccar, L. Gee, R. Gonzalez, and M. Abidi, Segmentation of
range images via data fusion and Morphological watersheds,
Pattern Recogn., 29(10): 1673–1687, 1996.

43. R. G. Gonzalez, M. Baccar, and M. A. Abidi, Segmentation of
range images via data fusion and morphlogical watersheds,
Proc. of the 8th Scandinavian Conf. on Image Analysis, vol. 1,
1993, pp. 21–39.

44. C. Sze, H. Liao, H. Hung, K. Fan, and J. Hsieh, Multiscale edge
detection on range images via normal changes, IEEE Trans.
Circuits Sys. II: Analog Digital Signal Process., vol. 45(8):
1087–1092, 1998.

45. S. Mallat and S. Zhong, Characterization of signal from multi-
scale edges, IEEE Trans. Pattern Anal. Machine Intell., 14(7):
710–732, 1992.

46. J. W. Hsieh, M. T. Ko, H. Y. Mark Liao, and K. C. Fan, A new
wavelet-based edge detector via constrained optimization,
Image Vision Comp., 15: 511–527, 1997.

47. R. Zhang, G. Zhao, and L. Su, A new edge detection method in
image processing, Proceedings of ISCIT 2005, 2005, pp.
430–433.

48. S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu, Statis-
tical edge detection: learning and evaluating edge cues, IEEE
Trans. Pattern Anal. Machine Intell., 25(1): 57–73, 2003.

49. M. C. Shin, D. B. Goldgof, K. W. Bowyer, and S. Nikiforou,
Comparison of edge detection algorithms using a structure
from motion task, IEEE Trans. on System, Man, and Cyberne.
–Part B: Cybernetics, 31(4): 589–601, 2001.

50. T. Peli and D. Malah, A study of edge detection algorithms,
Comput. Graph. Image Process., 20(1): 1–21, 1982.

51. P. Papachristou, M. Petrou, and J. Kittler, Edge postprocessing
using probabilistic relaxation, IEEE Trans. Syst., Man, Cybern.
B, 30: 383–402, 2000.

52. M. Basu, Gaussian based edge detection methods—a survey,
IEEE Trans. Syst., Man, Cybern.-part C: Appl. Rev., 32(3): 2002.

53. S. Wang, F. Ge, and T. Liu, Evaluating Edge Detection through
Boundary Detection, EURASIP J. Appl. Signal Proc., Vol.
2006, pp. 1–15.

JUNG ME PARK

YI LU MURPHEY

University of Michigan—Dearborn
Dearborn, Michigan

16 EDGE DETECTION IN GRAYSCALE, COLOR, AND RANGE IMAGES



F

FACE RECOGNITION TECHNIQUES

INTRODUCTION TO FACE RECOGNITION

Biometrics1 is becoming a buzzword due to increasing
demand for user-friendly systems that provide both secure
and efficient services. Currently, one needs to remember
numbers and/or carry IDs all the time, for example, a
badge for entering an office building, a password for
computer access, a password for ATM access, and a
photo-ID and an airline ticket for air travel. Although
very reliable methods of biometric personal identification
exist, e.g., fingerprint analysis and iris scans, these meth-
ods rely on the cooperation of the participants, whereas a
personal identification system based on analysis of frontal
or profile images of the face is often effective without the
participant’s cooperation or knowledge. It is due to this
important aspect, and the fact that humans carry out face
recognition routinely, that researchers started an inves-
tigation into the problem of machine perception of human
faces. In Fig. 1, we illustrate the face recognition task of
which the important first step of detecting facial regions
from a given image is shown in Fig. 2.

After 35 years of investigation by researchers from
various disciplines (e.g., engineering, neuroscience, and
psychology), face recognition has become one of the most
successful applications of image analysis and understand-
ing. One obvious application for face recognition technology
(FRT) is law-enforcement. For example, police can set up
cameras in public areas to identify suspects by matching
their imagaes against a watch-list facial database. Often,
low-quality video and small-size facial images pose signifi-
cant challenges for these applications. Other interesting
commercial applications include intelligent robots that can
recognize human subjects and digital cameras that offer
automatic focus/exposure based on face detection. Finally,
image searching techniques, including those based on
facial image analysis, have been the latest trend in the
booming Internet search industry. Such a wide range of
applications pose a wide range of technical challenges and
require an equally wide range of techniques from image
processing, analysis, and understanding.

The Problem of Face Recognition

Face perception is a routine task of human perception
system, although building a similar robust computer sys-
tem is still a challenging task. Human recognition pro-
cesses use a broad spectrum of stimuli, obtained from
many, if not all, of the senses (visual, auditory, olfactory,
tactile, etc.).

In many situations, contextual knowledge is also applied
(e.g., the context plays an important role in recognizing
faces in relation to where they are supposed to be located).
However, the human brain has its limitations in the total
number of persons that it can accurately ‘‘remember.’’ A key
advantage of a computer system is its capacity to handle
large numbers of facial images.

A general statement of the problem of the machine
recognition of faces can be formulated as follows: Given
still or video images of a scene, identify or verify one or more
persons in the scene using a stored database of faces.
Available collateral information, such as race, age, gender,
facial expression, or speech, may be used to narrow the
search (enhancing recognition). The solution to the problem
involves face detection (recognition/segmentation of face
regions from cluttered scenes), feature extraction from the
face regions (eyes, nose, mouth, etc.), recognition, or iden-
tification (Fig. 3).

Brief Development History

The earliest work on face recognition can be traced back at
least to the 1950s in psychology (4) and to the 1960s in the
engineering literature (5). Some of the earliest studies
include work on facial expression of emotions by Darwin
(6) [see also Ekman (7) and on facial profile-based bio-
metrics by Galton (8)]. But research on automatic machine
recognition of faces really started in the 1970s after the
seminal work of Kanade (9) and Kelly (10). Over the past 30
years, extensive research has been conducted by psycho-
physicists, neuroscientists, and engineers on various
aspects of face recognition by humans and machines.

Psychophysicists and neuroscientists have been con-
cerned with issues such as whether face perception is a
dedicated process [this issue is still being debated in the
psychology community(11,12)], and whether it is done
holistically or by local feature analysis. With the help of
powerful engineering tools such as functional MRI, new
theories continue to emerge (13). Many of the hypotheses
and theories put forward by researchers in these disciplines
have been based on rather small sets of images. Never-
theless, many of the findings have important consequences
for engineers who design algorithms and systems for the
machine recognition of human faces.

Until recently, most of the existing work formulates the
recognition problem as recognizing 3-D objects from 2-D
images. As a result, earlier approaches treated it as a 2-D
pattern recognition problem. During the early and middle
1970s, typical pattern classification techniques were used
that measured attributes of features (e.g., the distances
between important points) in faces or face profiles (5,9,10).
During the 1980s, work on face recognition remained lar-
gely dormant. Since the early 1990s, research interest in
FRT has grown significantly. One can attribute this growth
to several reasons: the increase in interest in commercial
opportunities, the availability of real-time hardware, and
the emergence of surveillance-related applications.

1Biometrics: the study of automated methods for uniquely recog-
nizing humans based on one or more intrinsic physical or behavior
traits.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Over the past 18 years, research has focused on how to
make face recognition systems fully automatic by tackling
problems such as localization of a face in a given image or a
video clip and by extracting features such as eyes, mouth,
and so on. Meanwhile, significant advances have been made
in the design of classifiers for successful face recognition.
Among appearance-based holistic approaches, eigenfaces
(14,15) and Fisherfaces (16–18) have proved to be effective
in experiments with large databases. Feature-based graph
matching approaches (19) have also been successful. Com-
pared with holistic approaches, feature-based methods are
less sensitive to variations in illumination and viewpoint
and to inaccuracy in face localization. However, the feature
extraction techniques needed for this type of approach are
still not sufficiently reliable or accurate (20).

During the past 8–15 years, much research has been
concentrated on video-based face recognition. The still
image problem has several inherent advantages and dis-
advantages. For applications such as airport surveil-
lance, the automatic location and segmentation of a
face could pose serious challenges to any segmentation
algorithm if only a static picture of a large, crowded area
is available. On the other hand, if a video sequence is
available, segmentation of a moving person can be accom-
plished more easily using motion as a cue. In addition, a
sequence of images might help to boost the recognition
performance if we can use all these images effectively.
But the small size and low image quality of faces captured

from video can increase significantly the difficulty in
recognition.

More recently, significant advances have been made on
3-D based face recognition. Although it is known that face
recognition using 3-D images has many advantages than
face recognition using a single or sequence of 2-D images, no
serious effort was made for 3-D face recognition until
recently. This delay was mainly caused by the feasibility,
complexity, and computational cost to acquire 3-D data in
real-time. Now, the availability of cheap, real-time 3-D sen-
sors (21) makes it much easier to apply 3-D face recognition.

Recognizing a 3-D object from its 2-D images poses many
challenges. The illumination and pose problems are two
prominent issues for appearance-based or image-based
approaches (22). Many approaches have been proposed to
handle these issues, and the key here is to model the 3-D
geometry and reflectance properties of a face. For example,
3-D textured models can be built from given 2-D images,
and the images can then be used to synthesize images under
various poses and illumination conditions for recognition
or animation. By restricting the image-based 3-D object
modeling to the domain of human faces, fairly good recon-
struction results can be obtained using the state-of-the-art
algorithms. Other potential applications in which modeling
is crucial includes computerized aging, where an appro-
priate model needs to be built first and then a set of model
parameters are used to create images that simulate the
aging process.

Figure 1. An illustration of the face recognition task (1): given an input facial image (left column: many variants of the facial image are
used to illustrate image appearance change due to natural variations in lighting and pose, and electronic modifications that simulate more
complex variations), matching it against a database of facial images (center column), and finally outputting the matched database image
and/or the ID of the input image (right column).

2 FACE RECOGNITION TECHNIQUES



Methods for Machine Recognition of Faces

As illustrated in Fig. 4, the problem of automatic face
recognition involves three key steps/subtasks:

1. Detection and coarse normalization of faces

2. Feature extraction and accurate normalization of
faces

3. Identification and/or verification

Sometimes, different subtasks are not totally separated.
For example, facial features (eyes, nose, mouth) are often
used for both face recognition and face detection. Face
detection and feature extraction can be achieved simulta-
neously as indicated in Fig. 4. Depending on the nature of
the application, e.g., the sizes of the training and testing
databases, clutter and variability of the background,
noise, occlusion, and speed requirements, some subtasks
can be very challenging. A fully automatic face recognition
system must perform all three subtasks, and research

on each subtask is critical. This is not only because the
techniques used for the individual subtasks need to
be improved, but also because they are critical in many
different applications (Fig. 3). For example, face detection
is needed to initialize face tracking, and extraction of
facial features is needed for recognizing human emotion,
which in turn is essential in human–computer inter-
action (HCI) systems. Without considering feature loca-
tions, face detection is declared as successful if the
presence and rough location of a face has been correctly
identified.

Face Detection and Feature Extraction

Segmentation/Detection. Up to the mid-1990s, most
work on segmentation was focused on single-face segmen-
tation from a simple or complex background. These
approaches included using a whole-face template, a
deformable feature-based template, skin color, and a
neural network.

Figure 2. Detection/Segmentation/Recognition of facial regions from an image (2).

FACE RECOGNITION TECHNIQUES 3



Significant advances have been made in recent years in
achieving automatic face detection under various condi-
tions. Compared with feature-based methods and tem-
plate-matching methods, appearance, or image-based
methods (2, 23) that train machine systems on large num-
bers of samples have achieved the best results (refer to Fig.
4). This may not be surprising since complicated face
objects are different from non-face objects, although they
are very similar to each other. Through extensive training,
computers can be good at detecting faces.

Feature Extraction. The importance of facial features for
face recognition cannot be overstated. Many face recogni-
tion systems need facial features in addition to the holistic
face, as suggested by studies in psychology. It is well known
that even holistic matching methods, e.g., eigenfaces (15)
and Fisherfaces (16), need accurate locations of key facial
features such as eyes, nose, and mouth to normalize the
detected face (24–26).

Three types of feature extraction methods can be dis-
tinguished:

1. Generic methods based on edges, lines, and curves

2. Feature-template-based methods that are used to
detect facial features such as eyes

3. Structural matching methods that take into consid-
eration geometrical constraints on the features

Early approaches focused on individual features; for
example, a template-based approach is described in
Ref. 27 to detect and recognize the human eye in a frontal
face. These methods have difficulty when the appearances
of the features change significantly, e.g., closed eyes, eyes
with glasses, or open mouth. To detect the features more
reliably, recent approaches use structural matching
methods, for example, the active shape model (ASM)
that represents any face shape (a set of landmark points)
via a mean face shape and principle components through
training (3).

Compared with earlier methods, these recent statistical
methods are much more robust in terms of handling varia-
tions in image intensity and in feature shape. The advan-
tages of using the so-called ‘‘analysis through synthesis’’

Figure 3. Configuration of a generic face recognition/processing system. We use a dotted line to indicate cases when both face detection
and feature extraction work together to achieve accurate face localization and reliable feature extraction [e.g. (3)].

Figure 4. Mutiresolution seach from a displaced position using a face model (30).

4 FACE RECOGNITION TECHNIQUES



approach come from the fact that the solution is constrained
by a flexible statistical model. To account for texture varia-
tion, the ASM model has been expanded to statistical
appearance models including a flexible appearance model
(28) and an active appearance model (AAM)(29). In Ref. 29,
the proposed AAM combined a model of shape variation
(i.e., ASM) with a model of the appearance variation of
shape-normalized (shape-free) textures. A training set of
400 images of faces, each labeled manually with 68 land-
mark points and approximately 10,000 intensity values
sampled from facial regions were used. To match a given
image with a model, an optimal vector of parameters (dis-
placement parameters between the face region and the
model, parameters for linear intensity adjustment, and
the appearance parameters) are searched by minimizing
the difference between the synthetic image and the given
image. After matching, a best-fitting model is constructed
that gives the locations of all the facial features so that the
original image can be reconstructed. Figure 4 illustrates the
optimization/search procedure to fit the model to the image.

Face Recognition

As suggested, three types of FRT systems have been inves-
tigated:recognition based on still images, recognition based
on a sequence of images, and, more recently, recognition
based on 3-D images. All types of FRT technologies have
their advantages and disadvantages. For example, video-
based face recognition can use temporal information to
enhance recognition performance. Meanwhile, the quality
of video is low and the face regions are small under typical
acquisition conditions (e.g., in surveillance applications).
Rather than presenting all three types of FRT systems, we
focus on still-image-based FRT systems that form the
foundations for machine recognition of faces. For details
on all three types of FRT systems, please refer to a recent
review article (the first chapter in Ref. 31).

Face recognition is such an interesting and challenging
problem that it has attracted researchers from different
fields: psychology, pattern recognition, neural networks,
computer vision, and computer graphics. Often, a single
system involves techniques motivated by different princi-
ples. To help readers that are new to this field, we present a
class of linear projection/subspace algorithms based on
image appearances. The implementation of these algo-
rithms is straightforward, yet they are very effective under
constrained situations. These algorithms helped to revive
the research activities in the 1990s with the introduction of
eigenfaces (14,15) and are still being researched actively for
continuous improvements.

Eigenface and the Projection-Based Appearance Meth-
ods. The first successful demonstration of the machine
recognition of faces was made by Turk and Pentland (15)

using eigenpictures (also known as eigenfaces) for face
detection and identification. Given the eigenfaces, every
face in the database is represented as a vector of weights
obtained by projecting the image into a subset of all eigen-
face components (i.e., a subspace) by a simple inner product
operation. When a new test image whose identification is
required is given, the new image is represented by its vector
of weights. The test image is identified by locating the
image in the database whose weights are the closest (in
Euclidean distance) to the weights of the test image. By
using the observation that the projection of a facial image
and a nonface image are different, a method to detect the
presence of a face in a given image is obtained. Turk and
Pentland illustrate their method using a large database of
2500 facial images of 16 subjects, digitized at all combina-
tions of three head orientations, three head sizes, and three
lighting conditions.

In a brief summary, eigenpictures/eigenfaces are effec-
tive low-dimensional representations of facial images
based on Karhunen–Loeve (KL) or principal component
analysis projection (PCA)(14). Mathematically speaking,
sample facial images (2-D matrix format) can be converted
into vector representations (1-D format). After collecting
enough sample vectors, one can perform statistical analysis
(i.e., PCA) to construct new orthogonal bases and then can
represent these samples in a coordinate system defined by
these new bases. More specifically, mean-subtracted sam-
ple vectors x can be expressed as a linear combination of the
orthogonal bases Fi (typically m<<n):

x ¼
Xn

i¼1

aiFi�
Xm
i¼1

aiFi (1)

via solving an eigenproblem

CF ¼ FL (2)

where C is the covariance matrix for input x and L is a
diagonal matrix consisting of eigenvalues li. The main
point of eigenfaces is that it is an efficient representation
of the original images (i.e., from n coefficients to m coeffi-
cient). Figure 5 shows a real facial image and several
reconstructed images based on several varying number
of leading principal components Fi that correspond to
the largest eigenvalues li. As can be seen from the plots,
300 leading principal components are sufficient to repre-
sent the original image of size 48 � 42 (¼2016).2

2Please note that the reconstructed images are obtained by con-
verting from 1-D vector format back to 2-D matrix format and
adding back the average/mean facial image.

Figure 5. Original image [size 48 � 42 (i.e., 2016)] and the reconstructed image using 300, 200, 100, 50, 20, and 10 leading components,
respectively (32).

FACE RECOGNITION TECHNIQUES 5



Another advantage of using such a compact representa-
tion is the reduced sensitivity to noise. Some of the noise
could be caused by small occlusions as long as the topologic
structure does not change. For example, good performance
against blurring, partial occlusion has been demonstrated
in many eigenpicture based systems and was also reported
in Ref. 18 (Fig. 6), which should not come as a surprise
because the images reconstructed using PCA are much
better than the original distorted images in terms of the
global appearance (Fig. 7).

In addition to eigenfaces, other linear projection algo-
rithms exist, including ICA (independent component ana-
lysis) and LDA/FLD (linear discriminant analysis/Fisher’s
linear discriminant analysis) to name a few. In all these

projection algorithms, classification is performed 1) first by
projecting the input x into a subspace via a projection/basis
matrix Proj (Proj is F for eigenfaces, W for Fisherfaces with
pure LDA projection, and WF for Fisherfaces with sequen-
tial PCA and LDA projections; these three bases are shown
for visual comparison in Fig. 8),

z ¼ Pro jx (3)

2) then by comparing the projection coefficient vector z of
the input with all the pre-stored projection vectors of
labeled classes to determine the input class label. The
vector comparison varies in different implementations and
can influence the system’s performance dramatically (33).

Figure 7. Reconstructed images using 300 PCA projection coefficients for electronically modified images (Fig. 7) (26).

Figure 8. Different projection bases constructed from a set of 444 individuals, where the set is augmented via adding noise and mirroring.
(Improved reconstruction for facial images outside the training set using an extended training set that adds mirror-imaged faces was
suggested in Ref. 14.).The first row shows the first five pure LDA basis images W, the second row shows the first five subspace LDA basis
images WF, the average face and first four eigenfaces F are shown on the third row (18).

Figure 6. Electronically modified images that have been identified correctly using eigenface representation (18).

6 FACE RECOGNITION TECHNIQUES



For example, PCA algorithms can use either the angle or
the Euclidean distance (weighted or unweighted) between
two projection vectors. For LDA algorithms, the distance
can be unweighted or weighted.

Face recognition systems using LDA/FLD (called Fish-
erfaces in Ref. 16) have also been very successful (16,17,34).
LDA training is carried out via scatter matrix analysis (35).
For an M-class problem, the within-class and between-class
scatter matrices Sw, Sb are computed as follows:

Sw ¼
XM
i¼1

PrðwiÞCi (4)

Sb ¼
XM
i¼1

PrðwiÞðmi �m0Þðmi �m0ÞT

where PrðviÞ is the prior class probability and usually is
replaced by 1=M in practice with the assumption of equal
priors. Here Sw is the within-class scatter matrix, showing
the average scatter Ci of the sample vectors x of different
classes vi around their respective means mi: Ci ¼ E½ðxðvÞ �
miÞ ðxðvÞ �miÞTjv ¼ vi�. Similarly, Sb is the between-class
scatter matrix, which represents the scatter of the condi-
tional mean vectors mi around the overall mean vector m0.
A commonly used measure to quantify the discriminatory
power is the ratio of the determinant of the between-class
scatter matrix of the projected samples to the determinant of
the within-class scatter matrix: J ðTÞ ¼ jTTSbTj=jTTSwTj.
The optimal projection matrix W that maximizes J ðTÞ
can be obtained by solving a generalized eigenvalue
problem:

SbW ¼ SwWLL (5)

There are several ways to solve the generalized eigen-
problem of Equation (5). One is to compute directly the
inverse of Sw and solve a nonsymmetric (in general) eigen-
problem for matrix S�1

w Sb. But this approach is unstable
numerically because it involves the direct inversion of a
potentially very large matrix that probably is close to being
singular. A stable method to solve this equation is to solve
the eigen-problem for Sw first (32,35), [i.e., to remove the
within-class variations (whitening)]. Because Sw is a real
symmetric matrix, orthonormal Ww and diagonal Lw exist
such that SwWw ¼WwLw. After whitening, the input x
becomes y:

y ¼ L�1=2
w WT

wx (6)

The between-class scatter matrix for the new variable y can
be constructed similar to Equation (5).

S
y
b ¼

XM
i¼1

PrðviÞðmy
i �m

y
0Þðm

y
i �m

y
0Þ

T (7)

Now the purpose of FLD/LDA is to maximize the class
separation of the now whitened samples y, which leads to

another eigenproblem: S
y
bWb ¼ WbLb. Finally, we apply the

change of variables to y:

z ¼WT
b y (8)

Combining Equations (6) and (8), we have the following
relationship: z ¼WT

b L�1=2
w WT

wx and W simply is

W ¼ WwL�1=2
w Wb (9)

To improve the performance of LDA-based systems, a reg-
ularized subspace LDA system that unifies PCA and LDA
was proposed in Refs. 26 and 32. Good generalization cap-
ability of this system was demonstrated by experiments on
new classes/individuals without retraining the PCA bases
F, and sometimes even the LDA bases W. Although the
reason for not retraining PCA is obvious, it is interesting to
test the adaptive capability of the system by fixing the LDA
bases when images from new classes are added.3 The fixed
PCA subspace of dimensionality 300 was trained from a
large number of samples. An augmented set of 4056 mostly
frontal-view images constructed from the original 1078
images of 444 individuals by adding noisy and mirrored
images was used in Ref. 32. At least one of the following
three characteristics separates this system from other LDA-
based systems (16,34)): (1) the unique selection of the uni-
versal face subspace dimension, (2) the use of a weighted
distance measure, and (3) a regularized procedure that
modifies the within-class scatter matrix Sw. The authors
selected the dimensionality of the universal face subspace
based on the characteristics of the eigenvectors (face-like or
not) instead of the eigenvalues (18), as is done commonly.
Later, it was concluded in Ref. 36 that the global face sub-
space dimensionality is on the order of 400 for large data-
bases of 5000 images. The modification of Sw into Sw þ dI
has two motivations (1): first, to resolve the issue of small
sample size (37) and second, to prevent the, significantly
discriminative information4 contained in the null space of
Sw(38) from being lost.

To handle the non-linearity caused by pose, illumina-
tion, and expression variations presented in facial images,
the above linear subspace methods have been extended to
kernel faces (39–41) and tensorfaces (42).

Categorization of Still-Image Based FRT. Many methods of
face recognition have been proposed during the past 30
years from researchers with different backgrounds.
Because of this fact, the literature on face recognition is
vast and diverse. To have a clear and high-level categoriza-
tion, we follow a guideline suggested by the psychological
study of how humans use holistic and local features. Spe-
cifically, we have the following categorization (see table 1
for more information):

3This makes sense because the final classification is carried out in
the projection space z by comparison with pre-stored projection
vectors with nearest-neighbor rule.
4The null space of Sw contains important discriminant information
because the ratio of the determinants of the scatter matrices would
be maximized in the null space.

FACE RECOGNITION TECHNIQUES 7



1. Holistic matching methods. These methods use
the whole face region as the raw input to a recognition
system. One of the widely used representations of the
face region is eigenpictures (14), which are based on
principal component analysis.

2. Feature-based (structural) matching methods.
Typically, in these methods, local features such as the
eyes, nose, and mouth are first extracted and their
locations and local statistics (geometric and/or
appearance) are fed into a structural classifier.

3. Hybrid methods. Just as the human perception
system uses both local features and the whole face
region to recognize a face, a machine recognition
system should use both. One can argue that these
methods could offer potentially the best of the two
types of methods

Within each of these categories, additional classification
is possible. Using subspace analysis, many face recognition
techniques have been developed: eigenfaces (15), which use
a nearest-neighbor classifier; feature-line-based methods,
which replace the point-to-point distance with the distance
between a point and the feature line linking two stored
sample points (46); Fisherfaces (16,18,34), which use Fish-
er’s Linear Discriminant Analysis (57); Bayesian methods,
which use a probabilistic distance metric (43); and SVM
methods, which use a support vector machine as the clas-
sifier (44). Using higher-order statistics, independent com-
ponent analysis is argued to have more representative
power than PCA, and, in theory, it can provide better
recognition performance than PCA (47). Being able to offer
potentially greater generalization through learning,
neural networks/learning methods have also been applied
to face recognition. One example is the probabilistic
decision-based neural network method (48) and the other
is the evolution pursuit method (45).

Most earlier methods belong to the category of struc-
tural matching methods, which use the width of the head,
the distances between the eyes and from the eyes to the
mouth, and so on (10), or the distances and angles between
eye corners, mouth extrema, nostrils, and chin top (9).
Recently, a mixture-distance-based approach using
manually extracted distances was reported (20). Without
finding the exact locations of facial features, hidden mar-
kov model based methods use strips of pixels that cover the
forehead, eye, nose, mouth, and chin (51,52). Reference 52
reported better performance than Ref. 51 by using the KL
projection coefficients instead of the strips of raw pixels.
One of the most successful systems in this category is the
graph matching system (19), which is based on the
Dynamic Link Architecture (58). Using an unsupervised
learning method based on a self-organizing map, a system
based on a convolutional neural network has been devel-
oped (53).

In the hybrid method category, we have the modular
eigenface method (54), a hybrid representation based on
PCA and local feature analysis (55), a flexible appearance
model-based method (28), and a recent development (56)
along this direction. In Ref. 54, the use of hybrid features by
combining eigenfaces and other eigenmodules is explored:
eigeneyes, eigenmouth, and eigennose. Although experi-

ments show only slight improvements over holistic eigen-
faces or eigenmodules based on structural matching, we
believe that these types of methods are important and
deserve further investigation. Perhaps many relevant pro-
blems need to be solved before fruitful results can be
expected (e.g., how to arbitrate optimally the use of holistic
and local features).

Many types of systems have been applied successfully to
the task of face recognition, but they all have some advan-
tages and disadvantages. Appropriate schemes should be
chosen based on the specific requirements of a given task.

COMMERCIAL APPLICATIONS AND ADVANCED
RESEARCH TOPICS

Face recognition is a fascinating research topic. On one
hand, many algorithms and systems have reached a certain
level of maturity after 35 years of research. On the other
hand, the success of these systems is limited by the condi-
tions imposed by many real applications. For example,
automatic focus/exposure based on face detection has
been built into digital cameras. However, recognition of
face images acquired in an outdoor environment with
changes in illumination and/or pose remains a largely
unsolved problem. In other words, current systems are still
far away from the capability of the human perception
system.

Commercial Applications of FRT

In recent years, we have seen significant advances in
automatic face detection under various conditions. Conse-
quently, many commercial applications have emerged. For
example, face detection has been employed for automatic
exposure/focus in digital cameras, such as Powershot
SD800 IS from Canon and FinePix F31fd from Fuji. These
smart cameras can zero in automatically on faces, and
photos will be properly exposed. In general, face detection
technology is integrated into the camera’s processor for
increased speed. For example, FinePix F31fd can identify
faces and can optimize image settings in as little as 0.05
seconds.

One interesting application of face detection technology
is the passive driver monitor system installed on 2008
Lexus LS 600hL. The system uses a camera on the steering
column to keep an eye on the driver. If he or she should be
looking away from the road ahead and the pre-collision
system detects something beyond the car (through stereo
vision and radar), the system will sound a buzzer, flash a
light, and even apply a sharp tap on the brakes.

Finally, the popular application of face detection tech-
nology is an image-based search of Internet or photo
albums. Many companies (Adobe, Google, Microsoft, and
many start-ups) have been working on various prototypes.
Often, the bottle-neck for such commercial applications is
the difficulty to recognize and to detected faces. Despite the
advances, today’s recognition systems have limitations.
Many factors exist that could defeat these systems: facial
expression, aging, glasses, and shaving.

Nevertheless, face detection/recognition has been criti-
cal for the success of intelligent robots that may provide

8 FACE RECOGNITION TECHNIQUES



important services in the future. Prototypes of intelligent
robots have been built, including Honda’s ASIMO and
Sony’s QRIO.

Advanced Research Topics

To build a machine perception system someday that is close
to or even better than the human perception system,
researchers need to look at both aspects of this challenging
problem: (1) the fundamental aspect of how human percep-
tion system works and (2) the systematic aspect of how to
improve system performance based on best theories and
technologies available. To illustrate the fascinating char-
acteristics of the human perception system and how it is
different from currently available machine perception sys-
tems, we plot the negative and upside-down photos of a
person in Fig. 9. It is well known that negative or upside-
down photos make human perception of faces more difficult
(59)). Also we know that no difference exists in terms of
information (bits used to encode images) between a digi-
tized normal photo and a digitized negative or upside-down
photo (except the sign and orientation information).

From the system perspective, many research challenges
remain. For example, recent system evaluations (60) sug-
gested at least two major challenges: the illumination
variation problem and the pose variation problem.
Although many existing systems build in some sort of
performance invariance by applying pre-processes, such
as histogram equalization or pose learning, significant
illumination or pose change can cause serious performance
degradation. In addition, face images could be partially

occluded, or the system needs to recognize a person from an
image in the database that was acquired some time ago. In
an extreme scenario, for example, the search for missing
children, the time interval could be up to 10 years. Such a
scenario poses a significant challenge to build a robust
system that can tolerate the variations in appearances
across many years.

Real problems exist when face images are acquired
under uncontrolled and uncooperative environments, for
example, in surveillance applications. Although illumina-
tion and pose variations are well-defined and well-
researched problems, other problems can be studied sys-
tematically, for example, through mathematical modeling.
Mathematical modeling allows us to describe physical
entities mathematically and hence to transfer the physical

Table 1. Categorization of Still-Image-Based Face Recognition Techniques

Approach Representative Work

Holistic methods

Principal Component Analysis
Eigenfaces Direct application of PCA (15)
Probabilistic Eigenfaces Two-class problem with prob. measure (43)
Fisherfaces/Subspace LDA FLD on eigenspace (16,18,34)
SVM Two-class problem based on SVM (44)
Evolution Pursuit Enhanced GA learning (45)
Feature Lines Point-to-line distance based (46)
ICA ICA-based feature analysis (47)
Other Representations
LDA/FLD FLD/LDA on raw image (17)
PDBNN Probabilistic decision-based NN (48)
Kernel faces Kernel methods (39–41)
Tensorfaces Multilinear analysis (42,49)

Feature-based methods

Pure geometry methods Earlier methods (9,10); recent methods (20,50)
Dynamic Link Architecture Graph matching methods (19)
Hidden Markov Model HMM methods (51,52)
Convolution Neural Network SOM learning based CNN methods (53)

Hybrid methods

Modular Eigenfaces Eigenfaces and eigenmodules (54)
Hybrid LFA Local feature method (55)
Shape-normalized Flexible appearance models (28)
Component-based Face region and components (56)

Figure 9. Typical limitation of human perception system with
negative and upside-down photos: which makes it difficult or takes
much longer for us to recognize people from the photos. Interest-
ingly, we can manage eventually to overcome this limitation when
recognizing famous people (President Bill Clinton in this case).

FACE RECOGNITION TECHNIQUES 9



phenomena into a series of numbers (31). The decomposi-
tion of a face image into a linear combination of eigenfaces is
a classic. example of mathematical modeling. In addition,
mathematical modeling can be applied to handle the issues
of occlusion, low resolution, and aging.

As an application of image analysis and understanding,
machine recognition of faces benefits tremendously from
advances in many relevant disciplines. To conclude our
article, we list these disciplines for further reading and
mention their direct impact on face recognition briefly

� Pattern recognition. The ultimate goal of face recog-
nition is recognition of personal ID based on facial
patterns, including 2-D images, 3-D structures, and
any pre-processed features that are finally fed into a
classifier.

� Image processing. Given a single or a sequence of
raw face images, it is important to normalize the image
size, enhance the image quality, and to localize local
features before recognition.

� Computer vision. The first step in face recognition
involves the detection of face regions based on appear-
ance, color, and motion. Computer vision techniques
also make it possible to build a 3-D face model from a
sequence of images by aligning them together. Finally,
3-D face modeling holds great promises for robust face
recognition.

� Computer graphics. Traditionally, computer gra-
phics are used to render human faces with increasingly
realistic appearances. Combined with computer
vision, it has been applied to build 3-D models from
images.

� Learning. Learning plays a significant role to build-
ing a mathematical model. For example, given a train-
ing set (or bootstrap set by many researchers) of 2-D or
3-D images, a generative model can be learned and
applied to other novel objects in the same class of face
images.

� Neuroscience and Psychology. Study of the amaz-
ing capability of human perception of faces can shed
some light on how to improve existing systems for
machine perception of faces.

BIBLIOGRAPHY

1. W. Zhao, Tutorial on face recognition, European Conference on
Computer Vision, 2004.

2. H. Rowley, S. Baluja, and T. Kanade, Neural network based
face detection, IEEE Trans. Patt. Anal. Mach. Intell., 20:
39–51, 1998.

3. T. Cootes, C. Taylor, D. Cooper, and J. Graham, Active shape
models–their training and application, Comp. Vis. Image
Understand., 61: 18–23, 1995.

4. I. Bruner and R. Tagiuri, The perception of people, In G.
Lindzey (ed.), Handbook of Social Psychology, Reading, MA:
Addision-Wesley, 1954.

5. M. Bledsoe, The model method in facial recognition, Technical
Report PRI 15, Palo Alto, CA: Panoramic Research Inc., 1964.

6. C. Darwin, The Expression of the Emotions in Man and
Animals, London: John Murray, 1872.

7. P. Ekman, (ed.), Charles Darwin’s THE EXPRESSION OF
THE EMOTIONS IN MAN AND ANIMALS, London and New
York: 1998.

8. F. Galton, Personal identification and description, Nature,
(June 21): 173–188, 1888.

9. T. Kanade, Computer Recognition of Human Faces, Basel,
Switzerland: Birkhauser, 1973.

10. M. Kelly. Visual identification of people by computer. Technical
Report AI 130, Stanford, CA, 1970.

11. I. Biederman and P. Kalocsai, Neural and psychophysical
analysis of object and face recognition. In H. Wechsler, P. J.
Phillips, V. Bruce, F. Soulie, and T. S. Huang (eds), Face
Recognition: From Theory to Applications, Berlin: springer-
Verlag, 1998, pp. 3–25.

12. I. Gauthier and N. Logothetis, Is face recognition so unique
after all? J. Cognit. Neuropsychol. 17: 125–142, 2000.

13. J. Haxby, M. I. Gobbini, M. Furey, A. Ishai, J. Schouten, and P.
Pietrini, Distributed and overlapping representations of faces
and objects in ventral temporal cortex, Science, 293: 425–430,
2001.

14. M. Kirby and L. Sirovich, Application of the karhunen-loeve
procedure for the characterization of human faces, IEEE
Trans. on Patt. Analy. Mach. Intell., 12: 103–108, 1990.

15. M. Turk and A. Pentland. Eigenfaces for recognition. J. Cog-
nitive Neurosc., 3: 72–86, 1991.

16. P.N. Belhumeur, J. Hespanha, and D. J. Kriegman, Eigenfaces
vs. fisherfaces: Recognition using class specific linear projec-
tion, IEEE: Trans. Pa. Anal. Mac. Intell., 19: 711–720, 1997.

17. K. Etemad and R. Chellap, Discriminant analysis for Recogni-
tion of human face images, J. Optical Soc. Amer., 14: 1724–
1733, 1997.

18. W. Zhao, R. Chellappa, and A. Krishnaswamy, Discriminant
analysis of principal components for face recognition, Proc. of
International Conference on Automatic Face and Gesture
Recognition, 1998 pp. 336–341.

19. L. Wiskott, J.-M. Fellous, and C. v. d. Malsburg, Face recogni-
tion by elastic bunch graph matching, IEEE Trans. Patt. Anal.
Mach. Intell., 19: 775–779, 1997.

20. I. Cox, J. Ghosn, and P. Yianilos, Feature-based face recogni-
tion using mixture-distance, Proc. of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 209–216, 1996.

21. International Workshop on Real Time 3D Sensor and Their
Use 2004.

22. W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, Face
recognition: A literature survey, ACM Comput. Surv.35:
399–458, 2003.

23. K. Sung and T. Poggio, Example-based learning for view-based
human face detection, IEEE Trans. Patt. Anal. Mach., 20: 39–
51, 1997.

24. A. Martinez, Recognizing imprecisely localized, partially
occluded and expression variant faces from a single sample
per class, Trans. on Patt. Anal. Mach. Intel., 24: 748–763, 2002.

25. M. H. Yang, D. Kriegman, and N. Ahuja, Detecting faces in
images: A survey, Trans. Patt. Anal. Mach. Intell., 24: 34–58,
2002.

26. W. Zhao, Robust Image Based 3D Face Recognition, PhD
thesis, College Park, MD: University of Maryland, 1999.

27. P. Hallinan, Recognizing human eyes, SPIE Proc. of Vol.
1570: Geometric Methods In Computer Vision, 1991. pp.
214–226,

10 FACE RECOGNITION TECHNIQUES



28. A. Lanitis, C. Taylor, and T. Cootes, Automatic face identifica-
tion system using flexible appearance models, Image Vision
Comput., 13: 393–401, 1995.

29. T. Cootes, G. Edwards, and C. Taylor, Active appearance mod-
els, IEEE Trans. Patt. Anal. Mach. Intell. 23: 681–685, 2001.

30. T. Cootes, K. Walker, and C. Taylor, View-based active appear-
ance models, Proc. of International Conference on Automatic
Face and Gesture Recognition, 2000.

31. W. Zhao and R. Chellappa, eds. Face Processing: Advanced
Modeling and Methods, Burlington, VT: Academic Press, 2006.

32. W. Zhao, R. Chellappa, and P. Phillips, Subspace linear dis-
criminant analysis for face recognition. Technical Report CAR-
TR 914, College Park, MD: University of Maryland, 1999.

33. H. Moon and P. Phillips, Computational and performance
aspects of pca-based face recognition algorithrms, Perception,
30: 301–321, 2001.

34. D. Swets and J. Weng, Using discriminant eigenfeatures for
image retrieval, IEEE Trans. Patt. Anal. Mach. Intell., 18:
831–836, 1996.

35. K. Fukunaga, Statistical Pattern Recognition, Academic Press,
New York: 1989.

36. P. Penev and L. Sirovich, The global dimensionality of face
space, Proc. of the 4th International Conference on Automatic
Face and Gesture Recognition, 2000, pp. 264.

37. Z. Hong and J. Yang, Optimal disciminant plane for a small
number of samples and design method of classifier on the plane,
Patt. Recog., 24: 317–324, 1991.

38. L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu, A new Ida-based face
recognition system which can solve the small sample size
problem, Patt. Recogn., 33: 1713–1726, 2000.

39. M.-H. Yang, Kernel eigenfaces vs. kernel fisherfaces: Face
recognition using kernel methods, Proc. of International Con-
ference on Automatic Face and Gesture Recognition, 2002 pp.
215–220.

40. B. Schlkopf, A. Smola, and K.-R. Muller, Nonlinear component
analysis as a kernel eigenvalue problem. Neural Computat.,
10: 1299–1319, 1998.

41. S. Mika, G. Rätsch, J. Weston, B. Schlkopf, and K.-R. Muller,
Fisher discriminant analysis with kernels, Proc. of Neural
Networks for Signal Processing IX 1999, pp. 41–48.

42. M. A. Vasilescu and D. Terzopoulos, Multilinear analysis of
image ensembles: Tensorfaces, Proc. of European Conference
on Computer Vision, 2002 pp. 447–460

43. B. Moghaddam and A. Pentland, Probabilistic visual learning
for object representation, IEEE Trans. Patt. Anal. Mach.
Intell.19: 696–710, 1997.

44. P. Phillips, Support vector machines applied to face recogni-
tion, Proc. of Neural Information Processing Systems, 1998, pp.
803–809.

45. C. Liu and H. Wechsler, Evolutionary pursuit and its applica-
tion to face recognition, IEEE Trans. Patt. Anal. Mach. Intell.
22: 570–582, 2000.

46. S. Z. Li and J. Lu, Face recognition using the nearest feature
line method, IEEE Trans. Neural Netw.10: 439–443, 1999.

47. M. Bartlett, H. Lades, and T. Sejnowski, Independent compo-
nent representation for face recognition, Proc. of SPIE Sym-
posium on Electronic Imaging: Science and Technology, pp.
528–537. 1998.,

48. S. Lin, S. Kung, and L. Lin, Face recognition/detection by
probabilistic decision-based neural network, IEEE Trans.
Neural Netw., 8: 114–132, 1997.

49. L. R. Tucker, Some mathetical notes on three-mode factor
analysis, Psychometrika, 31: 279–311, 1996.

50. B. Majunath, R. Chellappa, and C. v. d. Malsburg, A feature
based approach to face recognition, Proc. of IEEE Conference
on Computer Vision and Pattern Recognition, 1992, pp. 373–
378.

51. F. Samaria and S. Young, HMM based architecture for face
identification, Image and Vision Computing, 12: 537–583,
1994.

52. A. Nefian and M. Hayes III, Hidden markov models for face
recognition, Proc. of International Conference on Acoustics,
Speech, and Signal Proceeding, 1998, pp. 2721–2724.

53. S. Lawrence, C. Giles, A. Tsoi, and A. Back, Face recognition: A
convolutional neural-network approach, IEEE Trans. Neural
Netw., 8: 98–113, 1997.

54. A. Pentland, B. Moghaddam, and T. Straner, View-based and
modular eignespaces for face recognition, Proc. of IEEE Con-
ference on Computer Vision and Pattern Recognition, 1994,
pp. 84–91.

55. P. Penev and J. Atick, Local feature analysis: A general sta-
tistical theory for object representation, Network: Computat.
Neural Sys., 7: 477–500, 1996.

56. J. Huang, B. Heisele, and V. Blanz, Component-based face
recognition with 3d morphable models, Proc. of International
Conference on Audio- and Video-Based Person Authentication,
2003.

57. R. Fisher, The statistical utilization of multiple measureme-
ents, Annals Eugen., 8: 376–386, 1938.

58. M. Lades, J. Vorbruggen, J. Buhmann, J. Lange, C. V. Mals-
burg, R. Wurtz, and W. Konen, Distortion invariant object
recognition in the dynamic link architecture, IEEE Trans.
Comp., 42: 300–311, 1993.

59. R. Yin, Looking at upside-down faces, J. Experim. Psychol., 81:
141–151, 1969.

60. P. J. Phillips, H. Moon, S. Rizvi, and P. Rauss, The feret
evaluation methodology for face-recognition algoithms, IEEE
Trans. Patt. Analy. Mach. Intell., 22: 1090–1104, 2000.

WENYI ZHAO

Institutive Surgical, Inc.
Sunnyvale, California

FACE RECOGNITION TECHNIQUES 11



F

FINGERPRINT IDENTIFICATION

HISTORY OF FINGERPRINTS

Biometrics such as fingerprint, palm, face, gait, ear,
signature, and speech are used to ensure a high confi-
dence in the recognition of an individual for high-security
applications (1). Among these biometric traits, finger-
prints have been used for a long period of time because
of their distinctiveness and immutability. The study of
fingerprint characteristics can be traced back to about
4500 years, the era of the pyramid-building in Egypt.
However, the use of fingerprints for identification began
in the mid-1800s.

Sir William Herschel discovered that fingerprints
remain stable over time and distinct across individuals.
In 1877, he commenced placing the inked palm and thumb
impressions of some members of the local population on
contracts. These prints were used as a form of signature on
the documents. However, Herschel never claimed that he
had developed a method to identify criminals.

In the late 1800s, the most advanced findings in fin-
gerprint study was made by Dr. Henry Faulds. He found
that fingerprints will not change even with superficial
injury and that the latent prints left on objects can be
used to identify criminals. In 1892, Sir Francis Galton
published an accurate and in-depth study of fingerprint
science in a book called Finger Prints, in which he
described an attempt at a fingerprint classification system
to facilitate the handling of large collections of finger-
prints. Although the work of Galton proved to be sound
and became the foundation of modern fingerprint science,
his approach to classification was inadequate. Juan Vuce-
tich, an Argentinian police officer who corresponded with
Galton, devised his own fingerprint classification system,
which was put into practice in September 1891. In 1897,
Sir Edward Henry established the famous Henry Sys-
tem(2), which is a systematic and effective method of
classifying fingerprints. He published the book Classifica-
tion and Uses of Fingerprints in 1900. About 10 years
later, his classification system was being used widely by
police forces and prison authorities in the English-speak-
ing world.

Since the early 1960s, researchers have begun to develop
an automatic fingerprint identification system (AFIS) to
improve the efficiency of fingerprint recognition. Today,
almost all law enforcement agencies around the world use
an AFIS. And fingerprint science is a well-researched field
with research and development activities worldwide. Sev-
eral publicly available databases (3,4) exist for evaluating
the performance of various fingerprint recognition algo-
rithms. New high-resolution electronic sensors, which are
quite affordable (5,6), are available for use in portable
laptop computers, mobile phones, and personal digital
assistants (PDAs).

FINGERPRINT FEATURES

Fingerprints have two fundamentally important charac-
teristics: permanence and distinctiveness. It has been
found that fingerprints are formed in the fetal stage and
do not change naturally. Also, no two fingerprints ever are
found to be exactly the same. Because of these interesting
characteristics, fingerprints are used widely for human
recognition and identification.

Fingerprints are represented by features that are clas-
sified at three levels.

� Level 1 features describe the patterns of the finger-
prints, which include ridge flow, core and delta, and
pattern type. Ridge flow is the orientation image of the
fingerprint. This feature is commonly used for classi-
fication. Figure 1 shows an example of the original
image and the orientation image. Core and delta
are singular points that are defined as the points where
the orientation field of a fingerprint is discontinuous.
Core is the topmost point on the innermost recurving
ridge, and delta is the center of a triangular region
where flows from three different directions meet.
Figure 2 is an example of the core and delta in a
fingerprint. Fingerprints are generally classified into
five classes: right loop (R), left loop (L), whorl (W), arch
(A), and tented arch (T). Figure 3 shows examples of
the fingerprints from these five classes.

� Level 2 features are the points of the fingerprints.
They include minutiae, scar, crease, and dot (7). A
fingerprint consists of white and dark curves. The
white curves are called the valley and the dark curves
are called the ridge. Minutiae features are the ridge
characteristics that correspond to the crossings and
endings of ridges. They include endpoint, bifurcation,
forks, island, and enclosures. The endpoint and bifur-
cation are used commonly in fingerprint recognition.
Figure 4 is an example of the endpoint and bifurca-
tion. Scar is the crossing of two or more adjacent
ridges. Figure 5 (a) shows an example of a scar. A
crease appears as a white line in a fingerprint. It is a
linear depression (or grooves) in the skin. Figure 5 (b)
shows an example of a crease. A dot is an isolated
ridge unit with a pore on it. Figure 5 (c) shows an
example of a dot.

� Level 3 features (5) describe the fingerprint shape that
refers to pores and ridge contours. Pores are small
openings on ridges. We need a high resolution sensor
(�1000 pixels per inch (ppi)) to get this feature.
Figure 6 is an example of sweat pores. Ridge contours
are morphological features that include ridge width,
shape, path deviation, and so forth.

Fingerprint sensors, the very front end of the fin-
gerprint recognition systems, are used to capture the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



fingerprint images. The kinds of fingerprint sensors
are: optical sensors, semiconductor sensors, and ultra-
sound sensors. Among these sensors, optical sensors
are considered to be stable and reliable, semiconductor
sensors are considered to be low cost and portable, and
ultrasound sensors are considered to be accurate but
more expensive.

FINGERPRINT RECOGNITION

Depending on an application two kinds of fingerprint recog-
nition systems exist: verification systems and identification
systems (8). A verification system generally stores the

fingerprint images or feature sets of users in a database. At
a future time, it compares the fingerprint of a person with
her/his own fingerprint image or feature set to verify that
this person is, indeed, who she/he claims to be. This problem
is a one-to-one matching problem. The system can accept or
reject this person, according to the verification result. An
identification system is more complex where, for a query
fingerprint, the system searches the entire database to find
out if any fingerprint images or feature sets saved in the
database can match it. It conducts one-to-many matching
(8). Two kinds of identification systems exists: the closed-
set identification system and the open-set identification
system (9). The closed-set identification system is the iden-
tification system for which all potential users are enrolled
in the system. Usually, the closed-set identification is used
for research purposes. The open-set identification system is
the identification system for which some potential users are
not enrolled in the system. The open-set identification is
performed in real operational systems. The verification and
the closed-set identification are special cases of the open-set
identification.

Three kinds of approaches (see Fig. 7) exist to solve the
fingerprint identification problem (10): (1) Repeat the ver-
ification procedure for each fingerprint in the database and
select the best match; (2) use fingerprint classification
followed by verification; and (3) use fingerprint indexing
followed by verification (10,11). Fingerprint matching, clas-
sification, and indexing are three basic problems in finger-
print identification.

Fingerprint Matching

A fingerprint matching algorithm aligns the two given
fingerprints, finds the correspondences between them,

Figure 1. An example of the original image and the orientation image: (a) original image, (b) orientation image. The orientation is shown by
the arrows above the ridges.

Figure 2. Level 1 features: core and delta.

Figure 3. Examples of fingerprints for each class based on the Henry System: (a) right loop, (b) left loop, (c) whorl, (d) arch, and (e) tented.

2 FINGERPRINT IDENTIFICATION



and returns a measure of the degree of similarity. Usually,
the similarity score is used to represent the degree of
similarity between the two given fingerprints. Fingerprint
matching is a challenging problem because different
impressions of the same finger could be very different
because of distortion, displacement, rotation, noise, skin
condition, pressure, noise, and so forth (8). Furthermore
the impressions from different fingers could be quite simi-
lar. Figure 8 shows two impressions of one fingerprint from
the NIST-4 database (10). The fingerprint matching algo-
rithms can be classified into three different types: (1) the
correlation-based approach, (2) the minutiae-based
approach, and (3) the ridge feature-based approach.

1. Correlation-based matching: The correlation-based
approach uses the gray-level information of finger-
prints. For a template fingerprint (in the database)
and a query fingerprint, it computes the sum of the
squared differences in gray values of all the pixels to
evaluate the diversity of the template fingerprint and
the query fingerprint. To deal with the distortion
problem, it computes the correlation in local regions
instead of the global correlation on the entire image. In
Bazen et al. (12), the correlation-based evaluation is
used to find the distinctive regions of the template
fingerprint. These local regions fit very well at the
original locations and much worse at other locations.
During the matching, they compute the gray-level

distance between the distinctive regions of a template
and the corresponding areas in the query fingerprints.
Then, they sum up the squared gray-level difference
for each local region. The position of a region of the
template with the minimal distance is considered as
the corresponding region in the query fingerprint.

Compared with the other matching algorithms
described below, correlation-based matching appro-
aches use gray-level information of the fingerprint.
When the quality of the fingerprint image is not good,
especially when a large number of minutiae are miss-
ing, the correlation-based matching algorithm may be
considered. However, it is expensive computationally.

2. Minutiae-based matching: Minutiae-based matching
is the most commonly used method for fingerprint
recognition systems. In this approach, a fingerprint is
represented by a set of minutiae features. Thus, the
fingerprint recognition problem is reduced to a point-
matching problem. Therefore, any point matching
approach, such as the relaxation algorithms, can be
used to recognize the fingerprints (13,14).

� Feature extraction: The first step of the minutiae-
matching algorithm is the minutiae extraction. Figure 9
is the block diagram of the minutiae-based feature
extraction procedure, which is used widely in most
fingerprint recognition systems. As an example, Bhanu
and Tan present a learned template-based algorithm for
feature extraction (15). Templates are learned from
examples by optimizing a criterion function using the
Lagrange method. To detect the presence of minutiae in
fingerprints, templates for endpoints and bifurcations
are applied with appropriate orientation to the binary
fingerprints at selected potential minutiae locations.

Figure 5. Level 2 features: (a) scar, (b) crease, and (c) dot.

Figure 6. Example of sweat pores.

Figure 4. Minutiae: endpoint and bifurcation.

FINGERPRINT IDENTIFICATION 3



� Matching: Tan and Bhanu (13,14) present a fingerprint-
matching approach, based on genetic algorithms (GA).
This method can achieve a globally optimized solution
for the transformation between two sets of minutiae
extracted from two different fingerprints. In their
approach, the fitness function is based on the local
properties of triplets of minutiae, such as minimum
angle, maximum angle, triangle handedness, triangle
direction, maximum side, minutiae density, and ridge
counts. These features are described in the ‘‘Fingerprint
Indexing’’ section below.

Jiang and Yau (16) use both the local and global
structures of minutiae in their minutiae-matching
approach. The local structure of a minutia describes

the features independent of the rotation and transla-
tion in its l-nearest neighborhood. The global structure
is variant with the rotation and translation. Using the
local structure, the best matched minutiae pair is
found and used to align the template and query fin-
gerprint. Then, the elastic bounding box of the global
features is used for the fingerprint matching.

Kovacs-Vajna (17) used triangular matching to deal
with deformations of fingerprints. In this approach,
the minutiae regions of the template fingerprint are
moved around the query fingerprint to find the possible
correspondence. The triangular matching algorithm is
used to obtain the matching minutiae set. Then, the
dynamic time-warping algorithm is applied to validate
the final matching results.

3. Ridge feature-based matching: For a good quality
fingerprint with size 480 � 512 [500 pixels per inch
(ppi)], about 80 minutiae features could exist. Thus,
for the triangular minutiae matching, hundreds of
thousands of triangles could exist. So, the minutiae
matching approach needs high computational power.
However, when the image quality is not good, the
minutiae extraction would be difficult. Because fin-
gerprints consist of natural valley and ridges,
researchers have used them for fingerprint matching.
Maltoni et al. (8) present a filter-based algorithm for
fingerprint recognition. It is based on the grayscale
image. First, they determine a reference point with
the maximum curvature of the concave ridges and an
interest region in the fingerprint. After tessellating
the interest region around the reference point, they
use a bank of Gabor filters to capture both local and
global details in a fingerprint. Then, they compute the
average absolute deviation from the mean to define
the compact fixed-length FingerCode as the feature
vector. Finally, they match the fingerprint by com-
puting the Euclidean distance between the corre-
sponding FingerCode between the template and
query fingerprints.

With the improvement of the fingerprint sensor technol-
ogy, now it is possible toextract featuresat a high resolution.
In Jain et al. (5), authors use pores and ridge contours
combined with minutiae features to improve fingerprint
recognition performance. In their approach, they use Gabor
filter and wavelet transform to extract pores and ridge
contours. During the matching process, they extract orien-
tation field and minutiae features and establish alignment
between the template and query fingerprint. If the orienta-
tion fields match, then the system uses a minutiae-based

Verification one by one

Select the best match 

Results

Results 

Selected class

Classification  
(R, L, W, A, T) 

Verification within class

Top 
hypotheses

Indexing 

Results 

Verification 

(3) Indexing followed by verification(2) Classification followed by verification (1) Repeat verification

Figure 7. Block diagram of three kinds of approaches to solve the identification problem.

Figure 8. Two impressions of one fingerprint.

Fingerprint image 

Gray scale enhancement 

Binarization 

Thinning 

Minutiae detection 

Post processing 

Minutiae 

Figure 9. Block diagram for minutiae-based feature extraction.

4 FINGERPRINT IDENTIFICATION



matching algorithm to verify the query fingerprint or to
reject the queryfingerprint. If the number of the correspond-
ing minutiae between the template fingerprint and query
fingerprint is greater than a threshold, then these two
fingerprints match; if not, then the system extracts pores
and ridge contours and they use the Iterative Closest Point
(ICP) algorithm to match these features. This hierarchical
matching system requires1000 ppi resolution for the sensor.

FINGERPRINT CLASSIFICATION

Most fingerprint classification systems use the Henry sys-
tem for fingerprint classification, which has five classes as
shown in Fig. 3. The most widely-used approaches for
fingerprint classification are based on the number and
relations of the singular points, including the core and
the delta. Karu and Jain (24) present a classification
approach based on the structural information around the
singular points. Three steps are in this algorithm: (1)
Compute the ridge direction in a fingerprint image; (2)
find the singular points based on the changes in the direc-
tional angle around the curve; and (3) classify the finger-
prints according to the number and locations of the core and
delta. Other researchers use a similar method: first, find
the singular point; then use a classification algorithm to
find the difference in areas, which are around the singular
points for different classes. Several representations based
on principal component analysis (PCA) (3), a self-organiz-
ing map (18), and Gabor filters (8) are used. The problems
with these approaches are:

� It is not easy to detect singular points, and some
fingerprints do not have singular points.

� Uncertainty in the location of the singular points is
large, which has a great effect on the classification
performance because the features around the singular
points are used.

Cappelli et al. (19) present a structural analysis of the
orientation field of a fingerprint. In their approach, the

directional image is calculated and enhanced. A set of
dynamic masks is used in the segmentation step, and
each dynamic mask is adapted independently to best fit
the directional image according to a cost function. The
resulting cost constitutes a basis for the final classification
(3). Based on the orientation field, Cappelli et al. also
present a fingerprint classification system based on the
multispace KL transform (20). It uses a different number of
principal components for different classes. Jain and Minut
(31) propose a classification algorithm based on finding the
kernel that best fits the flow field of a given fingerprint. For
each class, a kernel is used to define the shape of the
fingerprint in that class. In these approaches, it is not
necessary to find the singular points.

Researchers also have tried different methods to combine
different classifiers to improve the classification perfor-
mance. Senior (21) combines the hidden Markov model
(HMM), decision trees, and PCASYS (3). Yao et al. (22)
present new fingerprint classification algorithms based on
two machine learning approaches: support vector machines
(SVMs) and recursive neural networks (RNNs). In their
approach, the fingerprints are represented by the relational
graphs. Then, RNNs are used to train these graphs and
extract distributed features for the fingerprints. SVMs inte-
grated with distributed features are used for classification.
To solve the ambiguity problem in fingerprint classification,
an error-correcting code scheme is combined with SVMs.

Tan et al. (23) present a fingerprint classification
approach based on genetic programming (GP) to learn
composite operators that help to find useful features. Dur-
ing the training, they use GP to generate composite opera-
tors. Then, the composite operators are used to generate the
feature vectors for fingerprint classification. A Bayesian
classifier is used for classification. Fitness values are com-
puted for the composite operators based on the classifica-
tion results. During the testing, the learned composite
operator is applied directly to generate feature vectors.
In their approach, they do not need to find the reference
points. Table 1 summarizes representative fingerprint clas-
sification approaches.

Table 1. Representative fingerprint classification approaches

Authors Approach

Candela et al. (3), 1995 Probabilistic neural network (PNN)
Karu and Jain (24), 1996 Rule-based classification
Halici and Ongun (18), 1996 Neural network based on self-organizing feature maps (SOM)
Cappelli et al. (19), 1997 Multispace principal component analysis
Qi et al. (25), 1998 Probabilistic neural network based on genetic algorithm (GA) and feedback mechanism
Jain et al. (8), 1999 K-nearest neighbor and neural network based on Gabor features (FingerCode)
Cappelli et al. (26), 1999 Classification based on partitioning of orientation image
Kamijo (27), 1999 A four-layered neural network integrated in a two-step learning method
Su et al. (28), 2000 Fractal analysis
Pattichis et al. (29), 2001 Probabilistic neural network and AM–FM representation for fingerprints
Bernard et al. (30), 2001 Kohonen topological map
Senior (21), 2001 Hidden Markov model and decision tree and PCASYS
Jain and Minut (31), 2002 Model-based method based on hierarchical kernel fitting
Mohamed and Nyongesa (32), 2002 Fuzzy neural network
Yao et al. (22), 2003 Support vector machine and recursive neural network based on FingerCode
Tan et al. (23), 2005 Genetic programming

FINGERPRINT IDENTIFICATION 5



FINGERPRINT INDEXING

The purpose of indexing algorithms is to generate, in an
efficient manner, a set of hypotheses that is a potential
match to a query fingerprint. Indexing techniques can be
considered as front-end processing, which then would be
followed by back-end verification processing in a complete
fingerprint recognition system.

A prominent approach for fingerprint indexing is by
Germain et al. (11). They use the triplets of minutiae in
their indexing procedure. The features they use are: the
length of each side, the ridge count between each pair of
vertices, and the angles that the ridges make with respect
to the x-axis of the reference frame. The number of corre-
sponding triangles is defined as the similarity score
between the query and the template fingerprints. In their
approach, a hash table is built where all possible triplets are
saved. For each triplet, a list of IDs, including the finger-
prints that have this triplet, is saved. During the identifica-
tion process, the triplets of the query fingerprint are
extracted and—by a hashing process described below—
the potential IDs of the query fingerprint are determined.

Because some features in Ref. (11) may not be reliable,
Bhanu and Tan (33) use a novel set of features of a triplet for
fingerprint indexing. These features are:

� Minimum angle amin and median angle amed. Assume
ai are three angles in a triplet, where i = 1, 2, 3. amin ¼
minfaig; amax ¼ maxfaig; amed ¼ 180�� amin � amax.

� Triangle handedness f. Let Zi ¼ xi þ jyi be the com-
plex number corresponding to the location ðxi; yiÞ of
point Pi, i = 1,2, 3. Define Z21 = Z2 � Z1, Z32 = Z3 � Z2,
and Z13 = Z1 � Z3. Let triangle handedness f ¼ sign
ðZ21 � Z32Þ, where sign is the signum function and� is
the cross product of two complex numbers. Points P1,
P2, and P3 are noncolinear points, so f = 1 or �1.

� Triangle direction h. Search the minutiae in the image
from top to bottom and left to right. If the minutiae is
the start point, then y ¼ 1; otherwise y ¼ 0. Let
h ¼ 4y1 þ 2y2 þ y3, where yi is the y value of point Pi,
i = 1,2,3, and 0 � h � 7.

� Maximum side l. Let l ¼ maxfLig, where L1 ¼
jZ21j;L2 ¼ jZ32j, and L3 ¼ jZ13j.

� Minutiae density x. In a local area (32 � 32 pixels)
centered at the minutiae Pi, if xi minutiae exists then
the minutiae density for Pi is xi. Minutiae density x is a
vector consisting of all xi.

� Ridge counts j. Let j1, j2, and j3 be the ridge counts of
sides P1P2, P2P3, and P3P1, respectively. Then, j is a
vector consisting of all ji.

During the offline hashing process, the above features
for each template fingerprint (33) are computed and a hash
table Hðamin;amed;f;h; l; x; jÞ is generated. During the
online hashing process, the same features are computed
for each query fingerprint and compared with the features
represented by H. If the difference in features is small
enough, then the query fingerprint is probably the same
as the ‘‘stored’’ fingerprints that have similar features.
Figure 10 is an example of two corresponding triangles
in a pair of fingerprints that are two impressions of
one fingerprint. In the first impression, three noncolinear
minutiae A, B, and C are picked randomly to form a
triangle DABC. The features in this triangle are famin ¼
30�;amed ¼ 65�;f ¼ 1;h ¼ 6; l ¼ jACj; x ¼ f0; 0; 0g;Dj ¼
f6; 5; 12gg. Similarly, three noncolinear minutiae a, b,
and c in the second impression form Dabc. Its features
are famin ¼ 31�;amed ¼ 63�;f ¼ 1;h ¼ 6; l ¼ jacj; x ¼
f0; 2; 0g; j ¼ f6; 5; 12gg. If the error between these two
triangles are within the error tolerance (34), then these
two triangles are considered the corresponding triangles.
The output of this process, carried out for all the triplets, is a
list of hypotheses, which is sorted in the descending order of
the number of potential corresponding triangles. Top T
hypotheses are the input to the verification process.

PERFORMANCE EVALUATION

Two classes in the fingerprint recognition systems exist:
match and nonmatch. Let s and n denote match and
non-match. Assume that x is the similarity score. Then,
f(x|s) is the probability density function given s is true, and
f(x|n) is the probability density function given n is true.
Figure 11 is an example of these two distributions. For a
criterion k, one can define

Figure 10. An example of two corresponding triangles in a pair of fingerprints.

6 FINGERPRINT IDENTIFICATION



� Hit: the probability that x is above k given s, where Hit
¼
R1

k f ðxjsÞdx

� False alarm: the probability that x is above k given n,
where FA ¼

R1
k f ðxjnÞdx

� False rejection: the probability that x is below k given s,
where FR ¼

R k
�1 f ðxjsÞdx

� Correct rejection: the probability that x is below k given
n, where CR ¼

R k
�1 f ðxjnÞdx

A receiver operating characteristic (ROC) curve is a
graphical plot whose x-axis is the false alarm (FA) rate
and y-axis is the hit (Hit) rate. A ROC curve is used to
evaluate the performance of a recognition system because it
represents the changes in FA rate and Hit rate with differ-
ent discrimination criteria (thresholds). A detection error
tradoff (DET) curve plots the FA rate and the false rejection
(FR) rate with the change of discrimination criteria. A
confidence interval is an interval within which the estima-
tion is likely to be determined. The ISO standard perfor-
mance testing report gives the detail of recommendations
and requirements for the performance evaluations (9).

Public fingerprint databases are used to evaluate the
performance of different fingerprint recognition algorithms
and fingerprint acquisition sensors. The National Institute
of Standards and Technology (NIST) provides several spe-
cial fingerprint databases with different acquisition meth-
ods and scenarios. Most images in these databases are
rolling fingerprints that are scanned from paper cards.
The NIST special database 24 is a digital video of live-
scan fingerprint data. The detail of the NIST special data-
bases can be found in Ref. (35). Since 2000, fingerprint
verification competition (FVC) has provided public data-
bases for a competition that is held every 2 years. For each
competition, four disjoint databases are created that are
collected with different sensors and technologies. The per-
formance of different recognition algorithms is addressed
in the reports of each competition (36–39). The fingerprint
vendor technology evaluation (FpVTE) 2003 is conducted by
NIST to evaluate the performance of the fingerprint recog-

nition systems. A total of 18 companies competed in the
FpVTE, and 34 systems from U.S government were exam-
ined. The performance of different recognition algorithms
is discussed in Ref. (40).

PERFORMANCE PREDICTION

Several research efforts exist for analyzing the perfor-
mance of fingerprint recognition. Galton (41) assumes
that 24 independent square regions could cover a finger-
print and that he could reconstruct correctly any of the
regions with a probability of 1/2 by looking at the surround-
ing ridges. Accordingly, the Galton formulation of the dis-
tinctiveness of a fingerprint is given by (1/16)� (1/256)� (1/
2)24, where 1/16 is the probability of the occurrence of a
fingerprint type and 1/256 is the probability of the occur-
rence of the correct number of ridges entering and exiting
each of the 24 regions. Pankanti et al. (8) present a finger-
print individuality model that is based on the analysis of
feature space and derive an expression to estimate the
probability of false match based on the minutiae between
two fingerprints. It measures the amount of information
needed to establish correspondence between two finger-
prints. Tan and Bhanu (42) present a two-point model
and a three-point model to estimate the error rate for the
minutiae-based fingerprint recognition. Their approach
not only measures the position and orientation of the
minutiae but also the relations between different minutiae
to find the probability of correspondence between finger-
prints. They allow the overlap of uncertainty area of any
two minutiae. Tabassi et al. (43) and Wein and Baveja (44)
use the fingerprint image quality to predict the perfor-
mance. They define the quality as an indication of the
degree of separation between the match score and non-
match score distributions. The farther these two distribu-
tions are from each other, the better the system performs.

Predicting large population recognition performance
based on a small template database is another important
topic for the fingerprint performance characterization.
Wang and Bhanu (45) present an integrated model that
considers data distortion to predict the fingerprint identi-
fication performance on large populations. Learning is
incorporated in the prediction process to find the optimal
small gallery size. The Chernoff and Chebychev inequal-
ities are used as a guide to obtain the small gallery size
given the margin of error and confidence interval. The
confidence interval can describe the uncertainty associated
with the estimation. This confidence interval gives an
interval within which the true algorithm performance for
a large population is expected to fall, along with the prob-
ability that it is expected to fall there.

FINGERPRINT SECURITY

Traditionally, cryptosystemsusesecretkeys toprotect infor-
mation. Assume that we have two agents, called Alice and
Bob. Alice wants to send a message to Bob over the public
channel. Eve, the third party, eavesdrops over the public
channel andtries tofigure out what AliceandBobare saying

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Similarity scores

P
ro

b
ab

ili
ty

f(x|n)

f(x|s)

k

CR

Hit

FA FR 

Figure 11. Densities of the match and nonmatch scores.

FINGERPRINT IDENTIFICATION 7



to each other. When Alice sends a message to Bob, she uses a
secret encryption algorithm to encrypt the message. After
Bob gets the encrypted message, he will use a secret decryp-
tion algorithm to decrypt the message. The secret keys are
usedintheencryptionanddecryptionprocesses.Becausethe
secret keys can be forgotten, lost, and broken, biometric
cryptosystems are possible for security.

Uludag et al. (46) propose a cryptographic construct that
combines the fuzzy vault with fingerprint minutiae data to
protect information. The procedure for constructing the
fuzzy vault is like what follows in the example of Alice
and Bob. Alice places a secret value k in a vault and locks it
using an unordered set A of the polynomial coefficients. She
selects a polynomial p of variable x to encode k. Then, she
computes the polynomial projections for the elements of A
and adds some randomly generated chaff points that do not
lie on p to arrive at the final point set R. Bob uses an
unordered set B of the polynomial coefficients to unlock
the vault only if B overlaps with A to a great extent. He tries
to learn k, that is to find p. By using error-correction coding,
he can reconstruct p. Uludag et al. (46) present a curve-
based transformed minutia representation in securing the
fuzzy fingerprint vault.

We know that the biometrics is permanently related
with a user. So if the biometrics is lost, then the bio-
metrics recognition system will be compromised forever.
Also, a user can be tracked by cross-matching with all the
potential uses of the fingerprint biometrics, such as
access to the house, bank account, vehicle, and laptop
computer. Ratha et al. (47) presents a solution to over-
come these problems in the fingerprint recognition sys-
tems. Instead of storing the original biometrics image,
authors apply a one-way transformation function to the
biometrics. Then, they store the transformed biometrics
and the transformation to preserve the privacy. If a
biometrics is lost, then it can be restored by applyings
a different transformation function. For different appli-
cations of the same biometrics, they use different trans-
formation functions to avoid a user being tracked by
performing a cross match.

Like other security systems, fingerprint sensors are
prone to spoofing by fake fingerprints molded with arti-
ficial materials. Parthasaradhi et al. (48) developed an
anti spoofing method that is based on the distinctive
moisture pattern of live fingers contacting fingerprint
sensors. This method uses the physiological process of
perspiration to determine the liveness of a fingerprint.
First, they extract the gray values along the ridges to form
a signal. This process maps a 2 fingerprint image into a
signal. Then, they calculate a set of features that are
represented by a set of dynamic measurements. Finally,
they use a neural network to perform classification
(live vs. not live).

CONCLUSIONS

Because of their characteristics, such as distinctiveness,
permanence, and collectability, fingerprints have been
used widely for recognition for more than 100 years.
Fingerprints have three levels of features: pattern, point,

and shape. With the improvement of the sensor resolu-
tion, more and better fingerprint features can be extracted
to improve the fingerprint recognition performance.
Three kinds of approaches exist to solve the fingerprint
identification problem: (1) Repeat the verification proce-
dure for each fingerprint in the database and select the
best match; (2) perform fingerprint classification followed
by verification; and (3) create fingerprint indexing, fol-
lowed by verification. Fingerprint verification is done by
matching a query fingerprint with a template. The feature
extraction, matching, classification, indexing and perfor-
mance prediction are the basic problems for fingerprint
recognition.

Fingerprint prediction, security, liveness detection, and
cancelable biometrics are the important current research
problems. The area of biometric cryptosystems, especially
the fingerprint cryptosystem, is an upcoming area of inter-
est because the traditional secret key can be forgotten, lost,
and broken.

BIBLIOGRAPHY

1. R. Wang and B. Bhanu, Predicting fingerprint biometric per-
formance from a small gallery, Pattern Recognition Letters, 28
(1): 40–48, 2007.

2. E. R. Henry, Classification and Uses of Fingerprints. George
Routledge and Sons, 1900.

3. G. T. Candela, P. J. Grother, C. I. Watson, R. A. Wilkinson, and
C. L. Wilson, PCASYS-A pattern-level classification automa-
tion system for fingerprints, NIST Technical Report. NISTIR
5467, 1995.

4. D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain,
FVC2000: fingerprint verification competition, IEEE Trans.
Pattern Analysis and Machine Intelligence, 24 (3): 402–412,
2002.

5. A. K. Jain, Y. Chen, and M. Demirkus, Pores and ridges: High
resolution fingerprint matching using level 3 features, IEEE
Trans. Pattern Analysis and Machine Intelligence, 29 (1):
15–27, 2007.

6. http://authentec.com.

7. Scientific Working Group on Friction Ridge Analysis,
Study and Technology (SWGFAST), Available: http://
fingerprint.nist.gov/standard/cdef f s/Docs/SWGFAST_
Memo.pdf.

8. D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition. New York: Springer, 2003.

9. ISO/IEC19795-1, Information Technology-Biometric Perfor-
mance Testing and Reporting-Part 1: Principles and Frame-
work. ISO/IEC JTC1/SC37 N908, 2006.

10. X. Tan and B. Bhanu, A robust two step approach for finger-
print identification, Pattern Recognition Letters, 24 (13): 2127–
2134, 2003.

11. R. S. Germain, A. Califano, and S. Colville, Fingerprint match-
ing using transformation parameter clustering, IEEE Compu-
tational Science and Engineering, 4 (4): 42–49, 1997.

12. A. M. Bazen, G. T. B. Verwaaijen, S. H. Gerez, L. P. J. Vee-
lenturf, and B. J. vander Zwaag, A correlation-based finger-
print verification system, Proc. IEEE Workshop on Circuits
Systems and Signal Processing, Utrecht, Holland, 2000,
pp. 205–213.

13. X. Tan and B. Bhanu, Fingerprint matching by genetic algo-
rithm, Pattern Recognition, 39 (3): 465–477, 2006.

8 FINGERPRINT IDENTIFICATION



14. B. Bhanu and X. Tan, Computational Algorithms for Finger-
print Recognition. Kluwer Academic Publishers, 2003.

15. B. Bhanu and X. Tan, Learned templates for feature extraction
in fingerprint images, Proc. IEEE Computer Society Conf. on
Computer Vision and Pattern Recognition, Hawaii, 2001, Vol 2,
pp. 591–596.

16. X. Jiang and W. Y. Yau, Fingerprint minutiae matching based
on the local and global structures, Proc. IEEE Int. Conf. Pattern
Recognition, Barcelona, Spain, 2000, pp. 1038–1041.

17. Z. M. Kovacs-Vajna, A fingerprint verification system based on
triangular matching and dynamic time warping, IEEE Trans.
Pattern Analysis and Machine Intelligence, 22 (11): 1266–1276,
2000.

18. U. Halici and G. Ongun, Fingerprint classification through
self-organizing feature maps modified to treat uncertainties,
Proc. IEEE, 84 (10): 1497–1512, 1996.

19. R. Cappelli, D. Maio, and D. Maltoni, Fingerprint classification
based on multi-space KL, Proc. Workshop Autom. Identific.
Adv. Tech., 1999, pp. 117–120.

20. N. K. Ratha and R. Bolle, Automatic Fingerprint Recognition
Systems. Springer, 2003.

21. A. Senior, A combination fingerprint classifier, IEEE Trans.
Pattern Analysis and Machine Intelligence, 23 (10): 1165–1174,
2001.

22. Y. Yao, G. L. Marcialis, M. Pontil, P. Frasconi, and F. Roli,
Combining flat and structured representations for finger-
print classification with recursive neural networks and sup-
port vector machines, Pattern Recognition, 36, (2): 397–406,
2003.

23. X. Tan, B. Bhanu, and Y. Lin, Fingerprint classification based
on learned features, IEEE Trans. on Systems, Man and Cyber-
netics, Part C, Special issue on Biometrics, 35, (3): 287–300,
2005.

24. K. Karu and A. K. Jain, Fingerprint classification, Pattern
Recognition, 29, (3): pp. 389–404, 1996.

25. Y. Qi, J. Tian and R. W. Dai, Fingerprint classification system
with feedback mechanism based on genetic algorithm, Proc.
Int. Conf. Pattern Recog., 1: 163–165, 1998.

26. R. Cappelli, A. Lumini, D. Maio, and D. Maltoni, Fingerprint
classification by directional image partitioning, IEEE Trans.
Pattern Analysis and Machine Intelligence, 21 (5): 402–421,
1999.

27. M. Kamijo, Classifying fingerprint images using neural net-
work: Deriving the classification state, Proc. Int. Conf. Neural
Network, 3: 1932–1937, 1993.

28. F. Su, J. A. Sun, and A. Cai, Fingerprint classification based on
fractal analysis, Proc. Int. Conf. Signal Process., 3: 1471–1474,
2000.

29. M. S. Pattichis, G. Panayi, A. C. Bovik, and S. P. Hsu, Finger-
print classification using an AM-FM model, IEEE Trans.
Image Process., 10 (6): 951–954, 2001.

30. S. Bernard, N. Boujemaa, D. Vitale, and C. Bricot, Fingerprint
classification using Kohonen topologic map, Proc. Int. Conf.
Image Process.,3: 230–233, 2001.

31. A. K. Jain and S. Minut, Hierarchical kernel fitting for finger-
print classification and alignment, Proc. IEEE Int. Conf. Pat-
tern Recognition, 2: 469–473, 2002.

32. S. M. Mohamed and H. O. Nyongesa, Automatic fingerprint
classification system using fuzzy neural techniques, Proc. Int.
Conf. Fuzzy Systems, 1: 358–362, 2002.

33. B. Bhanu and X. Tan, Fingerprint indexing based on novel
features of minutiae triplets, IEEE Trans. Pattern Analysis
and Machine Intelligence, 25, (5): 616–622, 2003.

34. X. Tan and B. Bhanu, Robust fingerprint identification, Proc.
IEEE Int. Conf. on Image Processing, New York, 2002, pp. 277–
280.

35. http://www.itl.nist.gov/iad/894.03/databases/defs/dba-
ses.html.

36. http://bias. csr. unibo. it/fvc2000/.

37. http://bias.csr.unibo.it/fvc2002/.

38. http://bias. csr. unibo. it/fvc2004/.

39. http://bias.csr.unibo.it/fvc2006/.

40. C. Wilson, R. A. Hicklin, M. Bone, H. Korves, P. Grother, B.
Ulery, R. Micheals, M. Zoepfl, S. Otto, and C. Watson, Finger-
print Vendor Technology Evaluation 2003: Summaryof Results
and Analysis Report, 2004.

41. F. Galton, Finger Prints. McMillan, 1892.

42. X. Tan and B. Bhanu, On the fundamental performance for
fingerprint matching, Proc. IEEE Computer Society Conf.
on Computer Vision and Pattern Recognition, Madison,
Wisconsin, 2003, pp. 18–20.

43. E. Tabassi, C. L. Wilson, and C. I. Watson, Fingerprint image
quality, National Institute of Standards and Technology Inter-
national Report 7151, 2004.

44. L. M. Wein and M. Baveja, Using fingerprint image quality to
improve the identification performance of the U.S. visitor and
immigrant status indicator technology program, The National
Academy of Sciences, 102 (21): 7772–7775, 2005.

45. R. Wang and B. Bhanu, Learning models for predicting recog-
nition performance, Proc. IEEE Int. Conf. on Computer Vision,
Beijing, China, 2005, pp. 1613–1618.

46. U. Uludag, S. Pankanti, and A. K. Jain, Fuzzy vault for
fingerprints, Proc. Audio- and Video-based Biometric Person
Authentication, Rye Brook, New York, 2005, pp. 310–319.

47. N. K. Ratha, S. Chikkerur, J. H. Connell, and R. M. Bolle,
Generating cancelable fingerprint templates, IEEE Trans.
Pattern Analysis and Machine Intelligence, 29 (4): 561–572,
2007.

48. S. T. V. Parthasaradhi, R. Derakhshani, L. A. Hornak, and
S. A. C. Schuckers, Time-series detection of perspiration as a
liveness test in fingerprint devices, IEEE Trans. on System,
Man, and Cybernetics-Part C: Applications and Reviews, 35
(3): 335–343, 2005.

RONG WANG

BIR BHANU

University of California
Riverside, California

FINGERPRINT IDENTIFICATION 9



G

GEOMETRIC CAMERA CALIBRATION

INTRODUCTION

Geometric camera calibration is the process of determining
geometric properties of a camera. Here, the camera is
considered as a ray-based sensing device, and the camera
geometry defines how the observed rays of light are mapped
onto the image. The purpose of calibration is to discover the
mapping between the rays and image points. Hence, a
calibrated camera can be used as a direction sensor for
which both the forward-projection and back-projection are
known, that is, one may compute the image point corre-
sponding to a given projection ray and vice versa.

The geometric calibration of a camera is usually per-
formed by imaging a calibration object whose geometric
properties are known. The calibration object often consists
of one to three planes that contain visible control points in
known positions. The calibration is achieved by fitting a
camera model to the observations, which are the measured
positions of the control points in the calibration images. The
camera model contains two kinds of parameters: The exter-
nal parameters relate the camera orientation and position
to the object coordinate frame, and the internal parameters
determine the projection from the camera coordinate frame
onto image coordinates. Typically, both the external and the
internal camera parameters are estimated in the calibration
process, which usually involves nonlinear optimization and
minimizes a suitable cost function over the camera para-
meters. The sum of squared distances between the mea-
sured and modeled control point projections is used
frequently as the cost function because it gives the max-
imum-likelihood parameter estimates assuming isotropic
and independent normally distributed measurement errors.

Calibration by nonlinear optimization requires a good
initial guess for the camera parameters. Hence, various
methods have been proposed for the direct estimation of the
parameters. Most methods deal with conventional perspec-
tive cameras, but recently effort has been made in devel-
oping models and calibration methods for more general
cameras. In fact, the choice of a suitable camera model is
an important issue in camera calibration. For example, the
pinhole camera model, which is based on the ideal perspec-
tive projection model and often used for conventional cam-
eras, is not a suitable model for omnidirectional cameras
that have a very large field of view. Hence, a recent trend
has occurred towards generic calibration techniques that
would allow the calibration of various types of cameras.

In this article, we will provide an overview into geo-
metric camera calibration and its current state. However,
because the literature for camera calibration is vast and
ever-evolving, it is not possible to cover all aspects in detail.
Nevertheless, we hope that this article serves as an intro-
duction to the literature in which more details can be found.
The article is structured as follows. First, in the Back-
ground section, we describe some historical background

for camera calibration. Thereafter, we review different
camera models with an emphasis on central cameras. After
describing camera models we discuss methods for camera
calibration. The focus is on our previous works (1, 2).
Finally, in the calibration examples section, we present
some calibration examples with real cameras.

BACKGROUND

Geometric camera calibration is a prerequisite for image-
based metric three-dimensional measurements, and it has
a long history in photogrammetry and computer vision.
One of the first references is by Conrady (3), who derived an
analytical expression for the geometric distortion in a
decentered lens system. Conrady’s model for decentering
distortion was used by Brown (4), who proposed a plumb
line method for calibrating radial and decentering distor-
tion. Later the approach used by Brown was commonly
adopted in photogrammetric camera calibration (5).

In photogrammetry, the emphasis has traditionally
been in the rigorous geometric modeling of the camera
and optics. On the other hand, in computer vision it is
considered important that the calibration procedure is
automatic and fast. For example, the well-known calibra-
tion method developed by Tsai (6) was designed to be an
automatic and efficient calibration technique for machine
vision metrology. This method uses a simpler camera model
than Brown (4) and avoids the full-scale nonlinear search
by using simplifying approximations. However, because of
the increased processing power of personal computers, the
nonlinear optimization is not as time-consuming now as it
was before. Hence, when the calibration accuracy is impor-
tant the camera parameters are usually refined by a full-
scale nonlinear optimization.

Besides increasing the theoretical understanding, the
advances in geometric computer vision have also affected
the practice of image-based 3-D reconstruction during the
last two decades (7,8). For example, although the traditional
photogrammetric approach assumes a precalibrated cam-
era, an alternative approach is to compute a projective
reconstruction with an uncalibrated perspective camera.
Theprojectivereconstructionisdefineduptoa3-Dprojective
transformation, and it can be upgraded to a metric
reconstruction by self-calibration (8). In self-calibration,
thecameraparametersaredeterminedwithoutacalibration
object; feature correspondences over multiple images are
used instead. However, the conventional calibration is typi-
cally more accurate and stable than self-calibration. In
fact, self-calibration methods are beyond the scope of this
article.

CAMERA MODELS

In this section, we describe several camera models that
have appeared in the literature. We concentrate on central

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



cameras, that is, cameras with a single effective view-
point. Single viewpoint means that all the rays of light
that arrive onto the image travel through a single point in
space.

Perspective Cameras

The pinhole camera model is the most common camera
model, and it is a fair approximation for most conventional
cameras that obey the perspective model. Typically these
conventional cameras have a small field of view, up to 608.
The pinhole camera model is widely used and simple;
essentially, it is just a perspective projection followed by
an affine transformation in the image plane (8).

The pinhole camera geometry is illustrated in Fig. 1. In a
pinhole camera, the projection rays meet at a single point
that is the camera center C and its distance from the image
plane is the focal length f. By similar triangles, it may be
seen in Fig. 1 that the point ðXc;Yc;ZcÞT in the camera
coordinate frame is projected to the point ð fXc=Zc; fYc=ZcÞT
in the image coordinate frame. In terms of homogeneous
coordinates, this perspective projection can be represented
by a 3 � 4 projection matrix,

x
y
1

0
@

1
A ’

f 0 0 0
0 f 0 0
0 0 1 0

2
4

3
5

Xc

Yc

Zc

1

0
BB@

1
CCA

where ’ denotes equality up to scale.
However, instead of the image coordinates ðx; yÞT, the

pixel coordinates ðu; vÞT are usually used, and they are

obtained by the affine transformation

u
v

� �
¼

mu �mucot�

0
mv

sin�

" #
x
y

� �
þ u0

v0

� �
ð1Þ

where ðu0; v0ÞT is the principal point, a is the angle
between u and v axis, and mu and mv give the number of
pixelsperunitdistanceinuandvdirections,respectively.The
angle a is

�

2
in the conventional case of orthogonal pixel

coordinate axes.
In practice, the 3-D point is expressed in some world

coordinate system that is different from the camera coor-
dinate system. The motion between these coordinate sys-
tems is given by a rotation R and translation t. Hence, in
homogeneous coordinates, the mapping of the 3-D point X
to its image m is given by

m ��
mu �mucot� u0

0
mv

sin�
v0

0 0 1

2
64

3
75

f 0 0 0
0 f 0 0
0 0 1 0

2
4

3
5 R t

0 1

� �
X

¼
mu f �mu f cot� u0

0
mv

sin�
v0

0 0 1

2
64

3
75 R t½ �X

¼
mu f mus f u0

0 mu� f v0

0 0 1

2
4

3
5 R t½ �X

!ð2Þ

where we have introduced the parameters � ¼ mv

musin� and

O

C

Yc

Xc

Zc

Z

Y

R,t

X

p

y
x

u
v

X

m

image plane

principal axisf

α

Figure 1. Pinhole camera model. Here, C is the camera center and the origin of the camera coordinate frame. The principal point p is the
origin of the normalized image coordinate system (x, y). The pixel image coordinate system is (u, v).

2 GEOMETRIC CAMERA CALIBRATION



s ¼ �cot� to simplify the notation. Because a change in the
focal length and a change in the pixel units are indistin-
guishable above, we may set mu ¼ 1 and write the projec-
tion equation in the form

m��K

�
R t

�
X ð3Þ

where the upper triangular matrix

K ¼
f s f u0

0 � f v0

0 0 1

2
4

3
5 ð4Þ

is the camera calibration matrix and contains the five
internal parameters of a pinhole camera.

It follows from Eq. (3) that a general pinhole camera may
be represented by a homogeneous 3� 4 matrix

P ¼ K

�
R t

�
ð5Þ

which is called the camera projection matrix. If the left
hand submatrix KR is nonsingular, as it is for perspective
cameras, the camera P is called a finite projective camera.

A camera represented by an arbitrary homogeneous
3� 4 matrix of rank 3 is called a general projective camera.
This class covers the affine cameras, which have a projec-
tion matrix whose last row is (0, 0, 0, 1) up to scale. A
common example of an affine camera is the orthographic
camera in which the scene points are orthogonally pro-
jected onto the image plane (8).

Lens Distortion. The pinhole camera is an idealized
mathematical model for real cameras that may often devi-
ate from the ideal perspective imaging model. Hence, the
basic pinhole model is often accompanied with lens distor-
tion models for more accurate calibration of real lens sys-
tems. The most important type of geometric distortion is the
radial distortion that causes an inward or outward displa-
cement of a given image point from its ideal location.
Decentering of lens elements causes additional distortion,
which also has tangential components.

A commonly used model for lens distortion accounts for
radial and decentering distortion (4, 5). According to this
model, the corrected image coordinates x0, y0 are obtained by

x0 ¼ xþ xð�1r2 þ �2r4 þ �3r6 þ � � �Þ
þð�1ðr2 þ 2x2Þ þ 2�2x yÞð1þ �3r2 þ � � �Þ

y0 ¼ yþ yð�1r2 þ �2r4 þ �3r6 þ � � �Þ
þð2�1x yþ �2ðr2 þ 2y2ÞÞð1þ �3r2 þ � � �Þ

ð6Þ

where x and y are the measured coordinates, and

x ¼ x� x p

y ¼ y� y p

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x pÞ2 þ ðy� y pÞ2

q

Here, the center of distortion ðx p; y pÞ is a free parameter
in addition to the radial distortion coefficients �i and decen-
tering distortion coefficients �i. In the traditional photo-
grammetric approach, the values for the distortion
parameters are computed by least-squares adjustment by
requiring that images of straight lines are straight after the
correction (4). However, the problem with this approach is
that not only the distortion coefficients but also the other
camera parameters are initially unknown. For example, the
formulation above requires that the scales in both coordi-
nate directions are equal, which is not the case with pixel
coordinates unless the pixels are square.

In Ref. 1, the distortion model of Eq. (6) was adapted and
combined with the pinhole model to make a complete and
accurate model for real cameras. This camera model has the
form

m ¼ PðXÞ ¼ PXþ CðPXÞ ð7Þ

where P denotes the non linear camera projection and P
is the camera projection matrix of a pinhole camera. The
nonlinear part C is the distortion model derived from Eq. (6).
In Ref. 1, two parameters were used for both the radial and
decentering distortion (i.e., the parameters �1; �2 and
�1; �2), and it was assumed that the center of distortion
coincides with the principal point of the pinhole camera.

Central Omnidirectional Cameras

Although the pinhole model accompanied with lens distor-
tion models is a fair approximation for most conventional
cameras, it is not a suitable model for omnidirectional
cameras whose field of view is over 180

�
. The reason is

that, when the angle between the incoming light ray and
the optical axis of the camera approaches 90

�
, the perspec-

tive projection maps the ray infinitely far in the image, and
it is not possible to remove this singularity with the dis-
tortion model described above. Hence, more flexible models
are needed, and below we discuss different models for
central omnidirectional cameras.

Catadioptric Cameras. In a catadioptric omnidirectional
camera, the wide field of view is achieved by placing a
mirror in front of the camera lens. In a central catadioptric
camera, the shape and configuration of the mirror are such
that the complete catadioptric system has a single effective
viewpoint. It has been shown that the mirror surfaces that
produce a single viewpoint are surfaces of revolution whose
two-dimensional profile is a conic section (9). Practically
useful mirror surfaces used in real central catadioptric
cameras are planar, hyperbolic, elliptical, and parabolic.
However, a planar mirror does not change the field of view
of the camera (9).

The central catadioptric configurations with hyper-
bolic, elliptical, and parabolic mirrors are illustrated in
Fig. 2. To satisfy the single viewpoint constraint, the
parabolic mirror is combined with an orthographic cam-
era, whereas the other mirrors are combined with a per-
spective camera. In each case, the effective viewpoint of
the catadioptric system is the focal point of the mirror
denoted by F in Fig. 2.

GEOMETRIC CAMERA CALIBRATION 3



Single-viewpoint catadioptric image formation is well
studied (9, 10), and it has been shown that a central
catadioptric projection, including the cases shown in
Fig. 2, is equivalent to a two-step mapping via the unit
sphere (10, 11). As described in Refs. 11 and 12, the
unifying model for central catadioptric cameras may be
represented by a composed function H�F so that

m ¼ ðH�FÞðFÞ ð8Þ

where F ¼ ð�;jÞT defines the direction of the incoming
light ray, which is mapped to the image point
m ¼ ðu; v; 1ÞT. Here F first projects the object point onto
a virtual image plane, and then the planar projective
transformation H maps the virtual image point to the
observed image point m. The two-step mapping F is illu-
strated in Fig. 3(a), in which the object point X is first
projected to q ¼ ðcosj sin �; sinj sin �; cos �Þ on the unit
sphere, whose center O is the effective viewpoint of the
camera. Thereafter, the point q is perspectively projected
to x from another point Q so that the line determined by O
and Q is perpendicular to the image plane. The distance
l ¼ jOQj is a parameter of the catadioptric camera.

Mathematically the function F has the form

x ¼ FðFÞ ¼ r �ð Þ cosj
sinj

� �
ð9Þ

where the function r is the radial projection that does not
depend onj because of radial symmetry. The precise form of
r as a function of � is determined by the parameter l, that is,

r ¼ ðlþ 1Þsin �

lþ cos �
ð10Þ

This follows from the fact that the corresponding sides of
similar triangles must have the same ratio, thus r

sin� ¼ lþ1
lþcos�,

as Fig. 3(a) illustrates.
In a central catadioptric system with a hyperbolic or

elliptical mirror, the camera axis does not have to be
aligned with the mirror symmetry axis. The camera can
be rotated with respect to the mirror as long as the camera
center is at the focal point of the mirror. Hence, in the
general case, the mappingH from the virtual image plane
to the real image plane is a planar projective transforma-
tion (12). However, often the axes of the camera and mirror
are close to collinear so that the mapping H can
be approximated with an affine transformation A (11).
That is,

m ¼ AðxÞ ¼ K
x
1

� �
ð11Þ

where the upper triangular matrix K is defined in Eq. (4)
and contains five parameters. (Here the affine transfor-
mationA has only five degrees of freedom because we may
always fix the camera coordinate frame so that the x-axis
is parallel to the u-axis.)

Fish-Eye Lenses. Fish-eye cameras achieve a large field of
view by using only lenses, whereas the catadioptric cam-
eras use both mirrors and lenses. Fish-eye lenses are
designed to cover the whole hemispherical field in front
of the camera, and the angle of view is very large, possibly
over 180

�
. Because it is impossible to project the hemisphe-

rical field of view on a finite image plane by a perspective
projection, the fish-eye lenses are designed to obey some
other projection model (13).

P

Z

p

F

F ′

hyperbolic
mirror

perspective
camera

P

Z

p

F

F ′

elliptical
mirror

perspective
camera

P

Z

p

F

parabolic 

mirror

orthographic
camera

Figure 2. Central catadioptric camera with a hyperbolic, elliptical and parabolic mirror. The Z-axis is the optical axis of the camera and the
axis of revolution for the mirror surface. The scene point P is imaged at p. In each case, the viewpoint of the catadioptric system is the focal
point of the mirror denoted by F. In the case of hyperbolic and elliptical mirrors, the effective pinhole of the perspective camera must be placed
at the other focal point, which is here denoted by F0.

4 GEOMETRIC CAMERA CALIBRATION



The perspective projection of a pinhole camera can be
represented by the formula

r ¼ tan � ði: perspective projectionÞ ð12Þ

where � is the angle between the principal axis and the
incoming ray, and r is the distance between the image point
and the principal point measured on a virtual image plane
that is placed at a unit distance from the pinhole. Fish-eye
lenses instead are usually designed to obey one of the
following projections:

r ¼ 2 tanð�=2Þ ðii: stereographic projectionÞ ð13Þ

r ¼ � ðiii: equidistance projectionÞ ð14Þ

r ¼ 2 sinð�=2Þ ðiv: equisolid angle projectionÞ ð15Þ

r ¼ sinð�Þ ðv: orthogonal projectionÞ ð16Þ

where the equidistance projection is perhaps the most
common model. The behavior of the different projection
models is illustrated in Fig. 3(b).

Although the central catadioptric cameras and fish-eye
cameras have a different physical construction, they are
not too different from the viewpoint of mathematical

modeling. In fact, the radial projection curves defined
by Eq. (10) are similar to those shown in Fig. 3(b). In
particular, when l ¼ 0 Eq. (10) defines the perspective
projection, l ¼ 1 gives the stereographic projection
(because tan �

2 ¼ sin�
1þcos�), and on the limit l! 1 we obtain

the orthogonal projection. Hence, the problem of modeling
radially symmetric central cameras is essentially reduced
to modeling radial projection functions such as those in
Fig. 3(b).

Generic Model for Central Cameras. Here we describe a
generic camera model, which was proposed in Ref. 2 and is
suitable for central omnidirectional cameras as well as for
conventional cameras. As discussed above, the radially
symmetric central cameras may be represented by Eq.
(10) where the function F is given by Eq. (9). The radial
projection function r inF is an essential part of the model. If
r is fixed to have the form of Eq. (12), then the model is
reduced to the pinhole model. However, modeling of omni-
directional cameras requires a more flexible model and here
we consider the model

r ¼ k1�þ k2�
3 þ k3�

5 þ k4�
7 þ k5�

9 þ � � � ð17Þ

which allows good approximation of all the projections in
Fig. 3(b). In Ref. 2 it was shown that the first five terms, up
to the ninth power of �, give enough degrees of freedom for
accurate approximation of different projection curves.
Hence, the generic camera model used here contains five
parameters in the radial projection function r.

θ
θ

θ

X

sin

cos

(a)

l

r

q

x

Z

X

Q

O

0 1 2
0

1

2

π θ

r

(i) (ii) (iii)

(iv)

(v)

(b)

Figure 3. (a) A generic model for a central catadioptric camera (11). The Z-axis is the optical axis, and the plane Z¼ 1 is the virtual image
plane. The object point X is first projected to q on the unit sphere, and thereafter q is perspectively projected to x from Q. (b) The projections of
Eqs. (12)–(16).

GEOMETRIC CAMERA CALIBRATION 5



However, real lenses may deviate from precise radial
symmetry and, therefore, the radially symmetric model
above was supplemented with an asymmetric part in
Ref. 2. Hence, instead of Eq. (10) the camera model pro-
posed in Ref. 2 has the form

m ¼ ðA�D�FÞ

� ðFÞ ð18Þ

whereD is the asymmetric distortion function so thatD�F
gives the distorted image point xd, which is then trans-
formed to pixel coordinates by the affine transformationA.
In detail,

xd ¼ ðD�FÞðFÞ

¼ rð�ÞurðjÞ þ�rð�;jÞurðjÞ þ�tð�;jÞujðjÞ ð19Þ

where urðjÞ and ujðjÞ are the unit vectors in the radial and
tangential directions and

�rð�;jÞ ¼ ðg1�þ g2�
3 þ g3�

5Þði1cosjþ i2sinjþ i3cos2j

þ i4sin 2jÞ ð20Þ

�tð�;jÞ ¼ ðh1�þ h2�
3 þ h3�

5Þðj1cosjþ j2sinjþ j3cos2j

þ j4sin 2jÞ ð21Þ

Here both the radial and tangential distortion terms con-
tain seven parameters.

The asymmetric part in Eq. (19) models the imperfec-
tions in the optical system in a somewhat similar manner as
the distortion model by Brown (4). However, instead of
rigorous modeling of optical distortions, here the aim is
to provide a flexible mathematical distortion model that
is just fitted to agree with the observations. This approach
is often practical because several possible sources of imper-
fections may exist in the optical system, and it is difficult to
model all of them in detail.

The camera model defined above is denoted by M24 in
the following because the number of parameters is 24: F
and A have both 5 parameters and D has 14 parameters.
However, often it is assumed that the pixel coordinate
system is orthogonal [i.e., s ¼ 0 in Eq. (4)], so that the
number of parameters in A is only four. This model is
denoted by M23. In addition, sometimes it may be useful
to leave out the asymmetric part to avoid overfitting. The
corresponding radially symmetric models are here denoted
byM9 andM6. The modelM6 contains only two terms in
Eq. (17) whereasM9 contains five.

Other Distortion Models. In addition to the camera mod-
els described in the previous sections, also several other
models have appeared in the literature. For example, the

so-called division model for radial distortion is defined by

r ¼ rd

1� cr2
d

ð22Þ

where rd is the measured distance between the image point
and the distortion center and r is the ideal undistorted
distance (14, 15). A positive value of the distortion coeffi-
cient c corresponds to the typical case of barrel distortion
(14). However, the division model is not suitable for cam-
eras whose field of view exceeds 1808. Hence, other models
must be used in this case and, for instance, the two-para-
metric projection model

r ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b�2

p
2b�

ð23Þ

has been used for fish-eye lenses (16). Furthermore, a
parameter-free method for determining the radial distor-
tion was proposed in Ref. 17.

Noncentral Cameras

Most real cameras are strictly speaking noncentral. For
example, in the case of parabolic mirror in Fig. 2, it is
difficult to align the mirror axis and the axis of the camera
precisely. Likewise, in the hyperbolic and elliptic config-
urations, the precise positioning of the optical center of
the perspective camera in the focal point of the mirror is
practically infeasible. In addition, if the shape of the
mirror is not a conic section or the real cameras are
not truly orthographic or perspective the configuration
is noncentral. However, in practice the camera is usually
negligibly small compared with the viewed region so that
it is effectively point-like. Hence, the central camera
models are widely used and tenable in most situations
so that also here, in this article, we concentrate on central
cameras.

Still, some works suggest the single viewpoint con-
straint is relaxed and a noncentral camera model is
used. For example, a completely generic camera calibra-
tion approach was discussed in Refs. 18 and 19, in which a
nonparametric camera model was used. In this model,
each pixel of the camera is associated with a ray in 3-D and
the task of calibration is to determine the coordinates of
these rays in some local coordinate system. In addition,
work has been published about designing mirrors for
noncentral catadioptric systems that are compliant with
predefined requirements (20).

Finally, as a generalization of central cameras, we would
like to mention the axial cameras in which all the projection
rays go through a single line in space (19). For example, a
catadioptric camera that consists of a mirror and a central
camera is an axial camera if the mirror is any surface of
revolution and the camera center lies on the mirror axis of
revolution. A central camera is a special case of an axial
camera. The equiangular (21, 22) and equiareal (23) cata-
dioptric cameras are other classes of axial cameras. In
equiareal cameras, the projection is area preserving,
whereas the equiangular mirrors are designed so that
the radial distance measured from the center of symmetry

6 GEOMETRIC CAMERA CALIBRATION



in the image is linearly proportional to the angle between
the incoming ray and the optical axis.

CALIBRATION METHODS

Camera calibration is the process of determining the para-
meters of the camera model. Here we consider conventional
calibration techniques that use images of a calibration
object that contains control points in known positions.
The choice of a suitable calibration algorithm depends on
the camera model, and below we describe methods for
calibrating both perspective and omnidirectional central
cameras.

Although the details of the calibration procedure may
differ depending on the camera, the final step of the pro-
cedure is usually the refinement of camera parameters by
nonlinear optimization regardless of the camera model.
The cost function normally used in the minimization is
the sum of squared distances between the measured and
modeled control point projections, that is

XN
j¼1

XN
i¼1

�i
jdðmi

j;
^m

i
jÞ

2 ð24Þ

where mi
j contains the measured image coordinates of the

control point i in the view j, the binary variable �i
j indicates

whether the control point i is observed in the view j and

m̂i
j ¼ P jðXiÞ ð25Þ

is the projection of the control point Xi in the view j. Here,
P j denotes the camera projection in the view j and it is
determined by the external and internal camera para-
meters. The justification for minimizing Eq. (24) is that
it gives the maximum likelihood solution for the camera
parameters when the image measurement errors obey a
zero-mean isotropic Gaussian distribution. However, the
successful minimization of Eq. (24) with standard local
optimization methods requires a good initial guess for
the parameters. Methods for computing such an initial
guess are discussed below.

Perspective Cameras

In the case of a perspective camera, the camera projectionP
is represented by a 3� 4 matrix P as described in the
section on perspective cameras. In general, the projection
matrix P can be determined from a single view of a non-
coplanar calibration object using the Direct Linear Trans-
form (DLT) method, which is described below. Then, given
P, the parameters K and R in Eq. (5) are obtained by
decomposing the left 3� 3 submatrix of P using the QR-
decomposition whereafter also t can be computed (8).

On the other hand, if the calibration object is planar and
the internal parameters in K are all unknown, several
views are needed. In this case, the constant camera cali-
bration matrix K can be determined first using the
approach described below in the section on planar calibra-
tion object. Thereafter, the view dependent parameters R j

and t j can be computed and used for initializing the non-
linear optimization. If the perspective camera model is
accompanied with a lens distortion model, then the distor-
tion parameters in Eq. (7) may be initialized by setting
them to zero (24).

Noncoplanar Calibration Object. Assuming that the
known space points Xi are projected at the image points
mi, the unknown projection matrix P can be estimated
using the DLT method (8, 25, 26). The projection equation
gives

mi��PXi ð26Þ

which can be written in the equivalent form

mi � PXi ¼ 0 ð27Þ

where the unknown scale in Eq. (26) is eliminated by the
cross product. The equations above are linear in the ele-
ments of P so they can be written in the form

Aiv ¼ 0 ð28Þ

where

v ¼ ðP11 P12 P13 P14 P21 P22 P23 P24 P31 P32 P33 P34ÞT ð29Þ

and

Ai ¼

0T �mi
3XiT

mi
2XiT

mi
3XiT

0T �mi
1XiT

�mi
2XiT

mi
1XiT

0T

2
6664

3
7775 ð30Þ

Thus, each point correspondence provides three equations,
but only two of them are linearly independent. Hence, given
M� 6 point correspondences, we get an overdetermined set
of equations Av ¼ 0, where the matrix A is obtained by
stacking the matrices Ai; i ¼ 1; � � �;M. In practice, because
of the measurement errors no exact solution to these equa-
tions exist, but the solution v that minimizes jjAvjj can be
computed using the singular value decomposition of A (8).
However, if the points Xi are coplanar, then ambiguous
solutions exist for v, and hence the DLT method is not
applicable in such case.

The DLT method for solving P is a linear method that
minimizes the algebraic error jjAv jj instead of the geo-
metric error in Eq. (24). This method implies that, in the
presence of noise, the estimation result depends on the
coordinate frames in which the points are expressed. In
practice, it has been observed that a good idea is to normal-
ize the coordinates in both mi and Xi so that they have zero
mean and unit variance. This kind of normalization may
significantly improve the estimation result in the presence
of noise (8).

Planar Calibration Object. In the case of a planar cali-
bration object, the camera calibration matrix K can be
solved by using several views. This approach was described
in Refs. 24 and 27, and it is briefly summarized in the
following.

GEOMETRIC CAMERA CALIBRATION 7



The mapping between a scene plane and its perspective
image is a planar homography. Because one may assume
that the calibration plane is the plane Z ¼ 0, the homo-
graphy is defined by

m��K

�
R t

� X
Y
0
1

0
BB@

1
CCA ¼ H

X
Y
1

0
@

1
A ð31Þ

where the 3� 3 homography matrix

H ¼ K½ r1 r2 t � ð32Þ

where the columns of the rotation matrix R are denoted by
ri. The outline of the calibration method is to first determine
the homographies for each view and then use Eq. (32) to
derive constraints for the determination of K. The con-
straints for K are described in more detail below. Methods
for determining a homography from point correspondences
are described, for example, in Ref. 8.

Denoting the columns of H by hi and using the fact that r1

and r2 are orthonormal one obtains from Eq. (32) that

h1T

K�TK�1h2 ¼ 0 ð33Þ

h1T

K�TK�1h1 ¼ h2T

K�TK�1h2 ð34Þ

Thus, each homography provides two constraints that may
be written as linear equations on the elements of the
homogeneous symmetric matrix v ¼ K�TK�1. Hence, the
system of equations, derived from Eqs. (33) and (34) above,
is of the form Av ¼ 0, where the vector of unknowns v ¼
ð!11; !12; !13; !22; !23; !33ÞT consists of the elements of v.
Matrix A has 2N rows, where N is the number of views.
Given three or more views, the solution vector v is the right
singular vector of A that corresponds to the smallest sin-
gular value. When v is solved (up to scale), one may
compute the upper triangular matrix K by Cholesky-fac-
torization. Thereafter, given H and K, the external camera
parameters can be retrieved from Eq. (32). Finally, the
obtained estimates should be refined by minimizing the
error of Eq. (24) in all views.

Omnidirectional Cameras

In this section, we describe a method that uses a planar
calibration pattern to calibrate the parameters of the cam-
era model introduced in the section entitled ‘‘Generic Model
for Central Cameras’’ (2). Planar calibration patterns are
very common because they are easy to create. In fact, often
also the noncoplanar calibration objects contain planar
patterns because they usually consist of two or three dif-
ferent planes.

The calibration procedure consists of four steps that are
described below. We assume that M control points are
observed in N views so that, for each view j, a rotation
matrix R j and a translation vector t j exist, which describe
the orientation and position of the camera with respect to

the calibration object. In addition, we assume that the
object coordinate frame is chosen so that the plane Z ¼ 0
contains the calibration pattern and the coordinates of the
control point i are denoted by Xi ¼ ðXi;Yi; 0ÞT. The corre-
sponding homogeneous coordinates in the calibration plane
are denoted by xi

p ¼ ðXi;Yi; 1ÞT and the observed image
coordinates in the view j are mi

j ¼ ðui
j; v

i
j; 1Þ

T.

Step 1: Initialization of internal parameters.
In the first three steps of the calibration procedure,
we use the camera modelM6, which contains only six
nonzero internal parameters [i.e., the parameters
ðk1; k2; f ; �;u0; v0Þ]. These parameters are initialized
using a priori knowledge about the camera. For exam-
ple, the principal point ðu0; v0Þ is usually located close
to the image center, g has a value close to 1, and f is the
focal length in pixels. The initial values for k1 and k2

can be obtained by fitting the model r ¼ k1�þ k2�
3 to

the desired projection curve in Fig. 3(b).

Step 2: Back-projection and computation of homo-
graphies.

Given the internal parameters, we may back-project
theobservedpointsmi

j onto the unit sphere centered at
the camera origin. For each mi

j the back-projection
gives the direction Fi

j ¼ ð�i
j;j

i
jÞ

T and the points on
the unit sphere are defined by qi

j ¼
ðsinji

j sin � j
i; cosji

j sin �i
j; cos �i

jÞ
T. Because the map-

ping between the points on the calibration plane and
on the unit sphere is a central projection, a planar
homography H j exists so that qi

j ’ H jx
i
p. For each view

j, the homography H j is estimated from the correspon-
dences ðqi

j; x
i
pÞ. In detail, the initial estimate for H j is

computed by the linear algorithm (8), and it is then
refined by minimizing

P
i sin2�i

j;, where�i
j is the angle

between the unit vectors qi
j and H jx

i
p=jjH jx

i
pjj.

Step 3: Initialization of external parameters.
The initial values for the external camera parameters
are extracted from the homographies H j. It holds that

qi
j��
�

R j t j

� Xi

Yi

0
1

0
BB@

1
CCA ¼ ½ r1

j r2
j t j �

Xi

Yi

1

0
@

1
A

which implies H j ’ ½r1
j r2

j t j�. Hence,

r1
j ¼ � jh

1
j ; r2

j ¼ � jh
2
j ; r3

j ¼ r1
j � r2

j ; t j ¼ � jh
3
j

where � j ¼ � jj h1
j jj�1. The sign of � j can be deter-

mined by requiring that the camera is always on the
front side of the calibration plane. However, the
obtained rotation matrices may not be orthogonal
because of estimation errors. Hence, the singular value
decomposition is used to compute the closest orthogo-
nal matrices in the sense of Frobenius norm, which are
then used for initializing each R j.

8 GEOMETRIC CAMERA CALIBRATION



Step 4: Minimization of projection error.
If a camera model with more than six parameters is
used, then the additional camera parameters are initi-
alized to zero at this stage. As we have the estimates
for the internal and external camera parameters, we
may compute the imaging function P j for each cam-
era, in which a control point is projected to
m̂ i

j ¼ P jðXiÞ. Finally, all the camera parameters are
refined by minimizing Eq. (24) using nonlinear opti-
mization, such as the Levenberg-Marquardt algo-
rithm.

Precise Calibration with Circular Control Points

To achieve an accurate calibration, we have used a cali-
bration plane with circular control points because the
centroids of the projected circles can be detected with a
sub-pixel level of accuracy (28). However, in this case the
problem is that the centroid of the projected circle is not
the image of the center of the original circle. Therefore,
because mi

j in Eq. (24) is the measured centroid, we should
not project the centers as points m̂ i

j because it may intro-
duce bias in the estimates. Of course, it is not an issue if the
control points are really pointlike, such as the corners of a
checkerboard pattern.

In the case of a perspective camera, the centroids of the
projected circles can be solved analytically given the
camera parameters and the circles on the calibration
plane (1). However, in the case of more generic camera
models, the projection is more complicated and the cen-
troids of the projected circles must be solved numerically
(2).

CALIBRATION EXAMPLES

In this section, we illustrate camera calibration with real
examples involving different kinds of cameras.

Conventional Cameras with Moderate Lens Distortion

The first calibrated camera was a Canon S1 IS digital
camera with a zoom lens whose focal length range is
5.8–58.0 mm, which corresponds to a range of 38–380
mm in the 35-mm film format. The calibration was per-
formed with the zoom fixed to 11.2 mm. Hence, the diagonal
field of view was about 308, which is a relatively narrow
angle. The other camera was a Sony DFW-X710 digital
video camera equipped with a Cosmicar H416 wide-angle
lens. The focal length of this wide-angle lens is 4.2 mm, and
it produces a diagonal field of view of about 808.

Both cameras were calibrated by using a planar cali-
bration pattern that contains white circles on black back-
ground. The pattern was displayed on a digital plasma
display (Samsung PPM50M6HS) whose size is 1204 �
724 mm2. A digital flat-screen display provides a reason-
ably planar object and because of its self-illuminating
property, it is easy to avoid specular reflections that
might otherwise hamper the accurate localization of
the control points. Some examples of the calibration

images are shown in Fig. 4. The image in Fig. 4(a) was
taken with the narrow-angle lens and the image in
Fig. 4(b) with the wide-angle lens. The resolution of the
images is 2048 � 1536 pixels and 1024 � 768 pixels,
respectively. The lens distortion is clearly visible in the
wide-angle image.

The number of calibration images was six for both
cameras, and each image contained 220 control points.
The images were chosen so that the whole image area was
covered by the control points. In addition to the set of
calibration images we took another set of images that
likewise contained six images in which the control points
were distributed onto the whole image area. These
images were used as a test set to validate the results
of calibration. In all cases, the control points were loca-
lized from the images by computing their grayscale cen-
troids (28).

The cameras were calibrated using four different cam-
era models. The first model, denoted byMp, was the skew-
zero pinhole model accompanied with four distortion para-
meters. This model was used in Ref. 1, and it is described in
the section on lens distortion. The other three models were
the modelsM6,M9, andM23 defined in the section entitled
‘‘Generic Model for Central Cameras.’’ All calibrations were
performed by minimizing the sum of squared projection
errors as described in the section on calibration methods.
The computations were carried out by using the publicly
available implementations of the calibration procedures
proposed in Refs. 1 and 2.1

The calibration results are shown in Table 1 in which the
first four rows give the figures for the narrow-angle and
wide-angle lenses introduced above. The first and third row
in Table 1 contain the RMS calibration errors, that is, the
root-mean-squared distances between the measured and
modeled control point projections in the calibration images.
The second and fourth row show the RMS projection errors
in the test images. In the test case, the values of the internal
camera parameters were those estimated from the calibra-
tion images, and only the external camera parameters were
optimized by minimizing the sum of the squared projection
errors.

The results illustrate that the most flexible modelM23

generally performs the best. However, the difference
between the models M6, M9, and M23 is not large for
the narrow-angle and wide-angle lens. The model Mp

performs well with the narrow-angle lens, but it seems
that the other models are better in modeling the severe
radial distortion of the wide-angle lens. The relatively low
values of the test set error indicate that the risk of over-
fitting is small. This risk could be decreased even more by
using more calibration images. The RMS error is
somewhat larger for the narrow-angle lens than for the
wide-angle lens, but it may be caused by the fact that
the image resolution is higher in the narrow-angle case.
Hence, the pixel units are not directly comparable for the
different cameras.

1http://www.ee.oulu.fi/mvg/page/downloads.

GEOMETRIC CAMERA CALIBRATION 9



Omnidirectional Cameras

We calibrated a fish-eye lens camera and two different
catadioptric cameras. The fish-eye lens that was used in
the experiments is the ORIFL190-3 lens manufactured by
Omnitech Robotics (Englewood, CA). This lens has a 1908
field of view, and it was attached to a PointGrey Dragonfly
(PointGrey, Vancouver, BC, Canada) color video camera,
which has a resolution of 1024� 768 pixels. The catadioptric
cameras were constructed by placing two different mirrors
in front of the Canon S1 IS camera (Canon, Tokyo, Japan),
which has a resolutionof2048�1536 pixels.The first mirror
was a hyperbolic mirror from Eizoh (Tokyo, Japan) and the
other mirror was an equiangular mirror from Kaidan
(Feasterville, PA). The field of view provided by the

hyperbolic mirror is such that when the mirror is placed
above the camera so that the optical axis is vertical, the
camera observes about 308 above and 508 below the horizon
(the region directly below the mirror is obscured by the
camera). The equiangular mirror by Kaidan provides a
slightly larger view of field because it observes about 508
above and below the horizon. In the azimuthal direction the
viewing angle is 3608 for both mirrors.

Because the field of view of all three omnidirectional
cameras exceeds a hemisphere, the calibration was not
performed with the model Mp, which is based on the
perspective projection model. Hence, we only report the
results obtained with the central camera modelsM6,M9,
andM23. The calibration experiments were conducted in a
similar way as for the conventional cameras above, and the
same calibration object was used. However, here the num-
ber of images was 12 both in the calibration set and the test
set. The number of images was increased to have a better
coverage for the wider field of view.

The results are illustrated in Table 1, where it can be
observed that the model M23 again shows best perfor-
mance. The radially symmetric modelM9 performs almost
equally well with the fish-eye camera and the equiangular
camera. However, for the hyperbolic camera, the additional
degrees of freedom inM23 clearly improve the calibration
accuracy. This improvement might be an indication that
the optical axis of the camera is not aligned precisely with
the mirror axis. Nevertheless, the asymmetric central
camera model M23 provides a good approximation for
this catadioptric camera. Likewise, here the central model

Table 1. The RMS projection errors in pixels

Mp M6 M9 M23

narrow-angle lens 0.293 0.339 0.325 0.280
test set error 0.249 0.309 0.259 0.236

wide-angle lens 0.908 0.078 0.077 0.067
test set error 0.823 0.089 0.088 0.088

fish-eye lens - 0.359 0.233 0.206
test set error - 0.437 0.168 0.187

hyperbolic mirror - 4.178 1.225 0.432
test set error - 3.708 1.094 0.392

equiangular mirror - 2.716 0.992 0.788
test set error - 3.129 1.065 0.984

(a) (b)

(c) (d)

Figure 4. Images of the calibration pattern taken with different types of cameras, a) narrow-angle lens, b) wide-angle lens, c) fish-eye lens,
d) hyperbolic mirror combined with a narrow-angle lens.

10 GEOMETRIC CAMERA CALIBRATION



seems to be tenable also for the equiangular catadioptric
camera, which is strictly speaking noncentral. Note that
the sensor resolution of the fish-eye camera was different
than that of the catadioptric cameras.

CONCLUSION

Geometric camera calibration is a prerequisite for image-
based, accurate 3-D measurements, and it is therefore a
fundamental task in computer vision and photogrammetry.
In this article, we presented a review of calibration tech-
niques and camera models that commonly occur in applica-
tions. We concentrated on the traditional calibration
approach in which the camera parameters are estimated
by using a calibration object whose geometry is known.
The emphasis was on central camera models, which are
the most common in applications and provide a reasonable
approximation for a wide range of cameras. The process of
camera calibration was additionally demonstrated with
practical examples in which several different kinds of
real cameras were calibrated.

Camera calibration is a wide-ranging topic and much
research exists that was not possible to be covered here.
For example, recently research efforts have focused toward
completely generic camera calibration techniques that could
be used for all kinds of cameras, including the noncentral
ones. In addition, camera self-calibration is an active
research area that was not discussed in the scope of this
article. However, camera calibration using a calibration
object and a parametric camera model, as discussed here,
is the most viable approach when a high level of accuracy is
required.

BIBLIOGRAPHY

1. J. Heikkilä, Geometric camera calibration using circular con-
trol points, IEEE Trans. Patt. Anal. Mach. Intell., 22(10):
1066–1077, 2000.

2. J. Kannala and S. S. Brandt, A generic camera model and
calibration method for conventional, wide-angle, and fish-eye
lenses, IEEE Trans. Patt. Anal. Mach. Intell., 28(8): 1335–
1340, 2006.

3. A. Conrady, Decentering lens systems, Monthly Notices Roy.
Astronom. Soc., 79: 384–390, 1919.

4. D. C. Brown, Close-range camera calibration, Photogramm.
Engineer., 37(8): 855–866, 1971.

5. C. C. Slama, ed., Manual of Photogrammetry, Am. Soc. Photo-
grammetry, 4th ed., Falls Church, VA, 1980.

6. R. Tsai, A versatile camera calibration technique for high-
accuracy 3D machine vision metrology using off-the-shelf TV
cameras and lenses, IEEE J. Robot. Automat., RA-3(4): 323–
344, 1987.

7. O. Faugeras and Q.-T. Luong, The Geometry of Multiple
Images, Cambridge, MA: The MIT Press, 2001.

8. R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, 2nd ed., Cambridge: Cambridge University
Press, 2003.

9. S. Baker and S. K. Nayar, A theory of single-viewpoint cata-
dioptric image formation, Internat. J. Comp. Vis., 35(2): 11–22,
1999.

10. C. Geyer and K. Daniilidis, Catadioptric projective geometry,
Internat. J. Comp. Vis., 45(3): 223–243, 2001.

11. X. Ying and Z. Hu, Catadioptric camera calibration using
geometric invariants, IEEE Trans. Patt. Ana. Mach. Intell.,
26(10): 1260–1271, 2004.

12. J. P. Barreto and H. Araujo, Geometric properties of central
catadioptric line images and their application in calibration,
IEEE Trans. Patt. Anal. Mach. Intell., 27(8): 1327–1333, 2005.

13. K. Miyamoto, Fish eye lens, J. Optical Soc. Am., 54(8): 1060–
1061, 1964.

14. C. Bräuer-Burchardt and K. Voss, A new algorithm to correct
fish-eye- and strong wide-angle-lens-distortion from single
images, Proc. International Conference on Image Processing,
2001.

15. A. Fitzgibbon, Simultaneous linear estimation of multiple view
geometry and lens distortion, Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2001.

16. B. Mičušı́k and T. Pajdla, Structure from motion with wide
circular field of view cameras, IEEE Trans. Patt. Anal. Mach.
Intell., 28(7): 1135–1149, 2006.

17. R. Hartley and S. B. Kang , Parameter-free radial distortion
correction with center of distortion estimation, IEEE Trans.
Patt. Anal. Mach. Intell. 1309–1321, 2008.

18. M. D. Grossberg and S. K. Nayar, A general imaging model and
a method for finding its parameters, Proc. International Con-
ference on Computer Vision, 2001, pp. 108–115.

19. S. Ramalingam, Generic Imaging Models: Calibration and 3D
Reconstruction Algorithms, Ph.D. dissertation. Institut
National Polytechnique de Grenoble, 2006.

20. R. Swaminathan , M. D. Grossberg , and S. K. Nayar , Design-
ing mirrors for catadioptric systems that minimize image
errors, Proc. Workshop on Omnidirectional Vision, 2004.

21. J. S. Chahl, and M. V. Srinivasan, Reflective surfaces for
panoramic imaging, Applied Optics, 36(31): 8275–8285, 1997.

22. M. Ollis, H. Herman, and S. Singh, Analysis and design of
panoramic stereo vision using equi-angular pixel cameras,
Pittsburgh, PA: Carnegie Mellon University, CMU-RI-TR-
99-04, 1999.

23. R. A. Hicks and R. K. Perline, Equi-areal catadioptric sensors,
Proc. Workshop on Omnidirectional Vision, 2002.

24. Z. Zhang, A flexible new technique for camera calibration,
IEEE Trans. Patt. Anal. Mach. Intell. 22(11): 1330–1334 2000.

25. Y. I. Abdel-Aziz and H. M. Karara , Direct linear transforma-
tion from comparator to object space coordinates in close-range
photogrammetry, Symposium on Close-Range Photogramme-
try, 1971.

26. I. Sutherland, Three-dimensional data input by tablet, Proc.
IEEE. 62: 453–461, 1974.

27. P. Sturm and S. Maybank, On plane based camera calibration:
A general algorithm, singularities, applications, Proc. IEEE
Conference on Computer Vision and Pattern Recognition, 1999,
pp. 432–437.

28. J. Heikkilä, and O. Silvén, Calibration procedure for short focal
length off-the-shelf CCD cameras, Proc. International Confer-
ence on Pattern Recognition, 1996, pp. 166–170.

JUHO KANNALA

JANNE HEIKKILÄ

SAMI S. BRANDT

University of Oulu
Oulu, Finland

GEOMETRIC CAMERA CALIBRATION 11



L

LEVEL SET METHODS

The shape of a real-world object can be represented by a
parametric or a nonparametric contour in the image plane.
The parametric contour representation is referred to as an
explicit representation and is defined in the Lagrangian
coordinate system. In this coordinate system, two different
objects have two different representations stemming from
the different sets of control points that define the object
contours. The control points constitute the finite elements,
which is a common formalism used to represent shapes in
the Lagrangian coordinates. In contrast to the parametric
Lagrangian representation, the nonparametric represen-
tation defines the object contour implicitly in the Eulerian
coordinates, which remains constant for two different
objects. The level set method is a nonparametric represen-
tation defined in the Eulerian coordinate system and is
used commonly in the computer vision community to repre-
sent the shape of an object in an image.

The level set method has been introduced in the field of
fluid dynamics by the seminal work of Osher and Sethian in
1988 (1). After its introduction, it has been applied success-
fully in the fields of fluid mechanics, computational physics,
computer graphics, and computer vision. In the level set
representation, the value of each grid point (pixel) is set
traditionally to the Euclidean distance between the grid
point and the contour. Hence, moving the contour from one
configuration to the other is achieved by changing
the distance values in the grid points. During its motion,
the contour can change implicitly its topology by splitting
into two disjoint contours or by merging from two contours
to one.

The implicit nature of the representation becomes essen-
tial to handle the topology changes for the case when an
initial configuration is required to solve a time-dependent
problem. Upon initialization, the level set converges to a
solution by re-evaluating the values at the grid points
iteratively. This iterative procedure is referred to as the
‘‘contour evolution.’’

CONTOUR EVOLUTION

Without loss of generality, I will discuss the level set
formalism in the two-dimensional image coordinates
(x, y), which can be extended to higher dimensions without
complicating the formulation. Let there be a closed contour
G defined in the image coordinates as shown in Fig. 1(a).
The contour can be visualized as the boundary of an object
in an image. To represent the evolution of the contour, the
level set formalism introduces two additional dimensions
that define the surface in z and the time t: [0,T):

z ¼ Fðx; y; tÞ

The surface dimension, z 2 R, encodes the signed Eucli-
dean distance from the contour. More specifically, the value
of z inside the closed contour has a negative sign, and
outside the contour has a positive sign [see Fig. 1(b)]. At
any given time instant t, the cross section of the surface at
z ¼ 0 corresponds to the contour, which is also referred to as
the zero-level set.

The time dimension t is introduced as an artificial
dimension to account for the iterative approach to finding
the steady state of an initial configuration. In computer
vision, the initial configuration of the level set surface
relates to an initial hypothesis of the object boundary,
which is evolved iteratively to the correct object boundary.
The iterations are governed by a velocity field, which
specifies how the contour moves in time. In general, the
velocity field is defined by the domain-related physics. For
instance, in fluid mechanics, the velocity of the contour is
defined by the physical characteristics of the fluid and the
environment in which it will dissolve; whereas in computer
vision, the velocity is defined by the appearance of the
objects in the image.

At each iteration, the equations that govern the contour
evolution are derived from the zero-level set at time
t: FðxðtÞ; tÞ ¼ 0, where x ¼ ðx; yÞ. Because the moving con-
tour is always at the zero level, the rate of contour motion in
time is given by:

@FðxðtÞ; tÞ
@t

¼ 0 ð1Þ

By applying the chain rule, Equation (1) becomes Ft þ DF

ðxðtÞ; tÞx0ðtÞ ¼ 0. In Fig. 2, a contouris present that evolves
using the curvature flow, which moves rapidly in the areas
where the curvature is high.

An important aspect of the level set method is its ability
to compute the geometric properties of the contour G from
the level set grid by implicit differentiation. For instance,
the contour normal is computed by ~n ¼ � DF

jDFj. Hence, divid-
ing both sides by jDFj and replacing xðtÞ~n by F results in the
well-known level set evolution equation:

Ft þ jDFjF ¼ 0 ð2Þ

which evolves the contour in the normal direction with
speed F. The sign of F defines whether the contour will
move inward or outward. Particularly, a negative F value
shrinks the contour and a positive F value expands the
contour. In computer vision, F is computed at each grid
point based on its appearance and the priors defined from
the inside and the outside of the contour. As Equation (2)
includes only first-order derivatives, it can be written as a
Hamilton–Jacobi equation Ft þHðfðxÞ;fðyÞÞ ¼ 0, where
HðfðxÞ;fðyÞÞ ¼ jDFjF. Based on this observation, the
numerical approximations of the implicit derivatives can
be computed by using the forward Euler time-discretization
(see Ref. 2 for more details).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



REINITIALIZATION OF THE LEVEL SET FUNCTION

To eliminate numeric instabilities during the contour eva-
luation, it is necessary to reinitialize the level set function
at each evolution iteration. This requirement, however, is a
major limitation of the level set framework when fast
convergence is required, such as in video-based surveil-
lance. An intuitive approach to reinitialize the level set grid
is to follow a two-step approach. The first step is to recover
the contour by detecting the zero crossings. The second step
is to regenerate the level set surface to preserve the geo-
metric properties of the new contour. In computer vision,
the second step is to apply the Euclidean distance trans-
form to find the distance of each grid point from the recov-
ered contour.

Application of the distance transform to update the level
set is a time-consuming operation, especially considering
that it needs to be done at every iteration. One way to reduce
the complexity of the level set update is to apply the ‘‘narrow
band’’ approach (3). The narrow band approach performs
reinitialization only in a neighborhood denned by a band.
This band also defines the limits in which the distance
transform is applied. The procedure involves recovering
the contour, positioning the band-limits from the extracted
contour, reinitializing the values residing in the band, and
updating the level set bounded by the band. The narrow
band approach still must recover the contour and reinitia-
lizate the level set function before a solution is reached;
hence, the error during the evolution may accumulate from
one iteration to the next.

An alternate approach to level set reinitialization is to
use an additional partial differential equation (PDE) eval-
uated on the level set function. In this approach, after the
PDE, which operates on the level set, moves the contour, a
second PDE re-evaluates the grid values while preserving
the zero crossings and geometric properties of the contour
(4). The level set reinitialization PDE is given by:

ft ¼ signðf0Þð1� jDfjÞ

where the sign function defines the update of all the levels
except for the zero-level. An example sign function is

signeðf0Þ ¼
f0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2
0 þ e2

q

FAST MARCHING LEVEL SET

Constraining the contour to to either shrink or to expand
eliminates the limitations posed by the level set reinitiali-
zation. In this case, the sign of F in Equation (2) is constant.
Practically, the constant sign guarantees a single visit to
each level set grid point. This property results in a very
useful formulation referred to as the ‘‘fast marching level
set.’’

Compared with the aforementioned approaches, the fast
marching method moves the contour one pixel at a time.
Hence the distance traveled by the contour becomes con-
stant, d ¼ 1. The traveled distance also is attributed to the
speed of the contour, F(x, y), as well as the time it takes to
travel it, T(x, y). Constrained by these observations, the

Figure 1. (a) The contour is denned in the spatial image
coordinates, (x,y). Each black dot represents a grid point on
the plane, (b) The level set function denning the contour given
in (a). The blue-colored grid points denote positive values, and
the red-colored grid points denote negative values. The dis-
tance of a grid point from the contour is expressed by the
variation in the color value from light to dark.

Figure 2. A contour moving with the
curvature flow in the level set frame-
work. Note the fast evolution in the
regions where the contour bends
more than the other regions.

2 LEVEL SET METHODS



level set becomes a stationary formulation given by
1 ¼ FjDTj, such that at time t the contour is denned by
fGjTðx; yÞ ¼ tg. Based on the stationary formation, the time
required to move the contour is computed by Tðx; yÞ ¼ 1

Fðx;yÞ.
Comparatively, the implementation of the fast matching

method is easier than its alternatives. Given an initial
contour, the pixels on the contour are labeled as active,
the pixels within the reach of the contour in the next
iteration are labeled as alive (pixels with distance of � 1),
and the pixels that the contour cannot reach are labeled as
faraway. The iterations start by computing the time
required T(x, y) to travel to each alive pixel. From among
alive pixels, the pixel with the lowest arrival time changes
its status to active (new contour position). This change
introduces new set of alive points. This process is iteratively
performed until F ¼ 0 for all live pixels. See Fig. 3 for a
visualization of this iterative process.

AN EXAMPLE: OBJECT SEGMENTATION

The level set method has become a very successful tool to
solve problems ranging from noise removal, image segmen-
tation, registration, object tracking, and stereo. A common
property in all these domains is to formulate the problem by
a partial differential equation that is solved using the level
set formalism.

In the context of level sets, the cost or gain function is
required to be in the form of a Hamilton–Jacobi equation,
ft þHðfx;fyÞ ¼ 0 that allows only the first-order differen-
tiation of (f). Hence, given a task, the first goal is to come up
with a cost function that can be converted to a Hamiltonian
Hðfx;fyÞ. Let us consider the object segmentation problem
as an example. In the following discussion, a region-based
object segmentation approach will be considered that is
formulated in terms of the appearance similarity inside and
outside of the contour (see Fig. 4). Practically, the appear-
ance of the object inside and outside the contour should be
different, hence, to minimize this similarity would result in
the segmentation of the object. Let us assume the contour is
initialized outside the object (inside initialization is also
possible), such that the appearance of the region outside the
contour serves as a prior. Using this prior, the likelihood of
object boundary can be denned in terms of the probability of
inside pixels given the outside prior: pðIðRinsideÞjRoutsideÞ.
Maximizing the gain function formulated using this like-
lihood measure segments the object as follows:

EðGÞ ¼ �
Z

x2Rinside

log pðIðxÞÞjRoutsideÞdx ð3Þ

Equation (3), however, is not in the form of a Hamiltonian.
Application of Green’s theorem converts this gain function

Figure 3. The fast marching level set iterations. The black nodes denote the active contour pixels, the red nodes denote the alive level set
grid points, the blue nodes are the nodes that are not considered during the iteration (faraway), and the white nodes denote already visited
nodes.

Figure 4. (a) The inside and outside regions denned by the object contour, (b) Some segmentation results, (c) The zero level set during the
segmentation iterations based on the appearance similarity between the inside and outside regions.

LEVEL SET METHODS 3



to a Hamiltonian and results in the level set propagation
speed given by Fðx; yÞ ¼ �log pðIðx; yÞjRoutsideÞ (see Ref. (5),
Chapter 5] for application of Green’s theorem). In Fig. 5,
several segmentation results are shown for different
domains.

DISCUSSION

Because of its robustness, its efficiency, and its applicability
to a wide range of problems, the level set method has become
very popular among many researchers in different fields.
The Hamilton–Jacobi formulation of the level set can be
extended easily to higher dimensions. It can model any
topology including sharp corners, and can handle the
changes to that topology during its evolution. The level
set method has overcomethe contour initialization problems
associated with the classic active contour approach to seg-
ment images, such that the initial contour can include part
of the object and part of the background simultaneously (see
Fig. 5 for possible contour initialization). These properties,
however, come at the price of requiring careful thinking to
formulate the problem to be solved using the level set
framework. Especially, converting a computer vision pro-
blem to a PDE may require considerable attention.

On the down side, because of the reinitialization of the
level set after each iteration, the level set method becomes a
computationally expensive minimization technique. The
narrow band approach is proposed to overcome this
limitation by bounding the region for reinitialization to a
band around the contour. Despite reduced complexity, the
narrow band method remains unsuitable for tasks that
require realtime processing, such as object tracking in a

surveillance scenario. The other possible solution to the
complexity problem is the fast marching approach, which
works in real time when implemented carefully. However,
the fast marching method evolves the contour only in one
direction. Hence, the initial position of the contour becomes
very important. For instance, the contour has to be either
outside or inside the object of interest, and the initializa-
tions that involve both inside and outside of the object may
not converge.

BIBLIOGRAPHY

1. S. Osher and J. Sethian, Fronts propagating with curvature
dependent speed: Algorithms based on hamilton-jacobi formu-
lation, Computat. Phys., 79: 12–49, 1988.

2. J. Sethian, Level Set methods: Evolving Interfaces in Geometry,
Fluid mechanics Computer Vision and Material Sciences,
Cambridge, UK: Cambridge University Press, 1996.

3. D. Chop, Computing minimal surfaces via level set curvature
flow, J. Computat. Phys., 106: 77–91, 1993.

4. I. Sussman, P. Smereka, and S. Osher, A level set approach for
computing solutions to incompressible two-phase flow, J. Com-
putat. Phys.,114: 146–159, 1994.

5. A. Yilmaz, Object Tracking and Activity Recognition in Video
Acquired Using Mobile Cameras. PhD Thesis, Orlando, FL:
University of Central Florida, 2004.

ALPER YILMAZ

The Ohio State University
Columbus, Ohio

Figure 5. Initialization of the
contour, (a) The contour is com-
pletely inside the object, (b) out-
side the object, (c) includes both
inside and outside regions of the
object.

4 LEVEL SET METHODS



M

MEDICAL IMAGE PROCESSING

INTRODUCTION

The discovery of x rays in 1895 by Professor Wilhelm
Conrad Röntgen led to a transformation of medicine and
science. In medicine, x rays provided a noninvasive way to
visualize the internal parts of the body. A beam of radiation
passing through the body is absorbed and scattered by
tissue and bone structures in the path of the beam to
varying extents depending on their composition and the
energy level of the beam. The resulting absorption and
scatter patterns are captured by a film that is exposed
during imaging to produce an image of the tissues and
bone structures. By using varying amounts of energy levels
of different sources of radiant energy, radiographic images
can be produced for different tissues, organs and bone
structures.

The simple planar x-ray imaging, the main radiologic
imaging method used for most of the last century, produced
high-quality analog two-dimensional (2-D) projected
images of three-dimensional (3-D) organs. Over the last
few decades, increasingly sophisticated methods of diag-
nosis have been made possible by using different types of
radiant energy, including X rays, gamma rays, radio waves,
and ultrasound waves. The introduction of the first x-ray
computed tomography (x-ray CT) scanner in the early
1970s totally changed the medical imaging landscape.
The CT scanner uses instrumentation and computer tech-
nology for image reconstruction to produce images of cross
sections of the human body. With the clinical experience
accumulated over the years and the establishment of its
usefulness, the CT scanner became very popular.

The exceptional multidimensional digital images of
internal anatomy produced by medical imaging technology
can be processed and manipulated using a computer to
visualize subtle or hidden features that are not easily
visible. Medical image analysis and processing algorithms
for enhancing the features of interest for easy analysis and
quantification are rapidly expanding the role of medical
imaging beyond noninvasive examination to a tool for aid-
ing surgical planning and intraoperative navigation.
Extracting information about the shape details of anato-
mical structures, for example, enables careful preoperative
planning of surgical procedures.

In medical image analysis, the goal is to accurately and
efficiently extract information from medical images to sup-
port a range of medical investigations and clinical activities
from diagnosis to surgery. The extraction of information
about anatomical structures from medical images is fairly
complex. This information has led to many algorithms that
have been specifically proposed for biomedical applications,
such as the quantification of tissue volumes (1), diagnosis
(2), localization of pathology (3), study of anatomical struc-
tures (4), treatment planning (5), partial volume correction

of functional imaging data (6), and computer-integrated
surgery (7,8).

Technological advances in medical imaging modalities
have provided doctors with significant capabilities for accu-
rate noninvasive examination. In modern medical imaging
systems, the ability to effectively process and analyze
medical images to accurately extract, quantify, and inter-
pret information to achieve an understanding of the inter-
nal structures being imaged is critical in order to support a
spectrum of medical activities from diagnosis, to radiother-
apy, to surgery. Advances in computer technology and
microelectronics have made available significant computa-
tional power in small desktop computers. This capability
has spurred the development of software-based biomedical
image analysis methods such as image enhancement and
restoration, segmentation of internal structures and fea-
tures of interest, image classification, and quantification.

In the next section, different medical imaging modalities
are discussed before the most common methods for medical
image processing and analysis are presented. An exhaus-
tive survey of such methods can be found in Refs. 9 and 10.

ACQUISITION OF MEDICAL IMAGES

A biomedical image analysis system comprises three major
elements: an image acquisition system, a computer for
processing the acquired information, and a display system
for visualizing the processed images. In medical image
acquisition, the primary objective is to capture and record
information about the physical and possibly functional
properties of organs or tissues by using either external
or internal energy sources or a combination of these energy
sources.

Conventional Radiography

In conventional radiography, a beam of x rays from an
external source passing through the body is differentially
absorbed and scattered by structures. The amount of
absorption depends on the composition of these structures
and on the energy of the x ray beam. Conventional imaging
methods, which are still the most commonly used diagnos-
tic imaging procedure, form a projection image on standard
radiographic film. With the advent of digital imaging tech-
nology, radiographs, which are x-ray projections, are
increasingly being viewed, stored, transported, and
manipulated digitally. Figure 1 shows a normal chest x-
ray image.

Computed Tomography

The realization that x-ray images taken at different angles
contain sufficient information for uniquely determining the
internal structures, led to the development of x-ray CT
scanners in the 1970s that essentially reconstruct accurate
cross-sectional images from x-ray radiographs. The

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



conventional x-ray CT consists of a rotating frame that has
an x-ray source at one end and an array of detectors that
accurately measure the total attenuation along the path of
the x ray at the other end. A fan beam of x rays is created as
the rotating frame spins the x-ray tube and detectors
around the patient. During the 3608 rotation, the detector
captures numerous snapshots of the attenuated x-ray beam
corresponding to a single slice of tissue whose thickness is
determined by the collimation of the x-ray beam. This
information is then processed by a computer to generate
a 2-D image of the slice. Multiple slices are obtained by
moving the patient in incremental steps. In the more recent
spiral CT (also known as the helical CT), projection acquisi-
tion is carried out in a spiral trajectory as the patient
continuously moves through the scanner. This process
results in faster scans and higher definition of internal
structures, which enables greater visualization of blood
vessels and internal tissues. CT images of a normal liver
and brain are shown in Fig. 2. In comparison with conven-
tional x-ray imaging, CT imaging is a major breakthrough.
It can image the structures with subtle differences in x-ray
absorption capacity even when almost obscured by a struc-
ture with a strong ability on x-radiation absorption. For
example, the CT can image the internal structures of the
brain, which is enclosed by the skull [as shown in Fig. 2(b)],
whereas the x ray fails to do so.

Magnetic Resonance Imaging

Medical imaging methods using magnetic resonance
include MRI, PET, and SPECT. MRI is based on the prin-
ciples of nuclear magnetic resonance (NMR), which is a
spectroscopic technique used to obtain microscopic chemi-
cal and physical information about molecules. An MRI can
produce high-quality multidimensional images of the
inside of the human body, as shown in Fig. 3, providing
both structural and physiologic information of internal

organs and tissues. Unlike the CT, which depicts the x-
ray opacity of the structure being imaged, MRIs depict the
density as well as biochemical properties based on physio-
logic function, including blood flow and oxygenation. A
major advantage of the MRI is the fast signal acquisition
with a very high spatial resolution.

Radiographic imaging modalities such as those based on
x rays provide anatomical information about the body but
not the functional or metabolic information about an organ
or tissue. In addition to anatomical information, MRI
methods are capable of providing some functional and
metabolic information. Nuclear medicine-based imaging
systems image the distribution of radioisotopes distributed
within specific organs of interest by injection or inhalation
of radio-pharmaceuticals that metabolize the tissue, which
makes them a source of radiation. The images acquired by
these systems provide a direct representation of the meta-
bolism or function of the tissue or organ being imaged as it
becomes a source of radiation that is used in the imaging

Figure 1. X-ray image of a chest.

Figure 2. CT images of normal liver and brain.

Figure 3. MRI of the brain.

2 MEDICAL IMAGE PROCESSING



process. SPECT and PET are nuclear medicine-based ima-
ging systems.

SPECT systems use gamma cameras to image photons
that are emitted during decay. Like the x-ray CT, many
SPECT systems rotate a gamma camera around the object
being imaged and process the acquired projections using a
tomographic reconstruction algorithm to yield a 3-D recon-
struction. SPECT systems do not provide good resolution
images of anatomical structures like CT or MR images, but
they show distribution of radioactivity in the tissue, which
represents a specific metabolism or blood flow as shown in
Fig. 4(a). PET systems, like SPECT, also produce images of
the body by detecting the emitted radiation, but the radio-
active substances used in PET scans are increasingly used
with CT or MRI scans so as to provide both anatomical and
metabolic information. Some slices of a PET brain image
are shown in Fig. 4(b).

Ultrasound Imaging

Ultrasound or acoustic imaging is an external source-based
imaging method. Ultrasound imaging produces images of
organs and tissues by using the absorption and reflection of

ultrasound waves traveling through the body (Fig. 5). It has
been successfully used for imaging of anatomical struc-
tures, blood flow measurements, and tissue characteriza-
tion. A major advantage of this method, which does not
involve electromagnetic radiation, is that it is almost non-
intrusive, and hence, the examined structures can be sub-
jected to uninterrupted and long-term observations while
the subject does not suffer any ill effects.

IMAGE ENHANCEMENT AND RESTORATION

In image enhancement, the purpose is to process an
acquired image to improve the contrast and visibility of
the features of interest. The contrast and visibility of
images actually depend on the imaging modality and on
the nature of the anatomical regions. Therefore, the type of
image enhancement to be applied has to be suitably chosen.
Image restoration also leads to image enhancement, and
generally, it involves mean-squared error operations and
other methods that are based on an understanding of the
type of degradation inherent in the image. However, pro-
cedures that reduce noise tend to reduce the details,
whereas those that enhance details also increase the noise.
Image enhancement methods can be broadly classified into
two categories: spatial-domain methods(11) and frequency-
domain methods(12).

Spatial-domain methods involve manipulation on a
pixel-to-pixel basis and include histogram-based methods,
spatial filtering, and so on. The histogram provides infor-
mation about the distribution of pixel intensities in an
image and is normally expressed as a 2-D graph that
provides information of the occurrence of specific gray-level
pixel values in the image. Histogram equalization is a
commonly used technique that involves ‘‘spreading out’’
or ‘‘stretching’’ the gray levels to ensure that the gray levels
are redistributed as evenly as possible (12,13). Minor var-
iations in structures or features are better visualized
within regions that originally looked uniform by this opera-
tion. Figure 6 shows the result of applying histogram
equalization to a CT image.

Figure 4. SPECT and PET
sequences of a normal brain.

Figure 5. Ultrasound image of a normal liver.

MEDICAL IMAGE PROCESSING 3



In some instances, however, global equalization across
all possible pixel values could result in loss of important
details and/or high-frequency information. For such situa-
tions, local histogram modifications, including localized or
regional histogram equalization, can be applied to obtain
good results (14). In spatial-domain methods, pixel values
in an image are replaced with some function of the pixel and
its neighbors. Image averaging is a form of spatial filtering
where each pixel value is replaced by the mean of its
neighboring pixels and the pixel itself. Edges in an image
can be enhanced easily by subtracting the pixel value with
the mean of its neighborhood. However, this approach
usually increases the noise in the image. Figure 7 shows
the results of applying local spatial-domain methods.

Frequency-domain methods are usually faster and sim-
pler to implement than spatial domain methods (12). The
processing is carried out in the Fourier domain for remov-
ing or reducing image noise, enhancing edge details, and
improving contrast. A low-pass filter can be used to sup-
press noise by removing high frequencies in the image,
whereas a high-pass filter can be used to enhance the high
frequencies resulting in an increase of detail and noise.
Different filters can be designed to selectively enhance or
suppress features or details of interest.

MEDICAL IMAGE SEGMENTATION

A fundamental operation in medical image analysis is the
segmentation of anatomical structures. It is not surprising
that segmentation of medical images has been an important
research topic for a long time. It essentially involves parti-
tioning an image into distinct regions by grouping together
neighboring pixels that are related. The extraction or seg-
mentation of structures from medical images and recon-
structing a compact geometric representation of these
structures is fairly complex because of the complexity
and variability of the anatomical shapes of interest. Inher-
ent shortcomings of the acquired medical images, such as
sampling artifacts, spatial aliasing, partial volume effects,
noise, and motion, may cause the boundaries of structures
to be not clearly distinct. Furthermore, each imaging mod-
ality with its own characteristics could produce images that
are quite different when imaging the same structures.
Thus, it is challenging to accurately extract the boundaries
of the same anatomical structures. Traditional image pro-
cessing methods are not easily applied for analyzing med-
ical images unless supplemented with considerable
amounts of expert intervention (15).

There has been a significant body of work on algorithms
for the segmentation of anatomical structures and other

Figure 6. CT images of the liver and the associated histo-
grams: (a) original image and (b) enhanced image.

Figure 7. Ultrasound images of
liver. (a) Original image. (b) The
result of image averaging where
the image becomes smoother. (c)
The image of edge enhancement
where the image becomes sharper
but with increased noise levels.

4 MEDICAL IMAGE PROCESSING



regions of interest that aims to assist and automate specific
radiologic tasks (16). They vary depending on the specific
application, imaging modality, and other factors. Cur-
rently, no segmentation method yields acceptable results
for different types of medical images. Although general
methods can be applied to a variety of data (10,15,17),
they are specific for particular applications and can often
achieve better performance by taking into account the
specific nature of the image modalities. In the following
subsections, the most commonly used segmentation meth-
ods are briefly introduced.

Thresholding

Thresholding is a very simple approach for segmentation
that attempts to partition images by grouping pixels that
have similar intensities or range of intensities into one class
and the remaining pixels into another class. It is often
effective for segmenting images with structures that
have contrasting intensities (18,19). A simple approach
for thresholding involves analyzing the histogram and
setting the threshold value to a point between two major
peaks in the distribution of the histogram. Although there
are automated methods for segmentation, thresholding is
usually performed interactively based on visual assess-
ment of the resulting segmentation (20). Figure 8 shows
the result of a thresholding operation on an MR image of
brain where only pixels within a certain range of intensities
are displayed.

The main limitations of thresholding are that only two
classes are generated, and that it typically does not take
into account the spatial characteristics of an image, which
causes it to be sensitive to noise and intensity inhomogene-
ities which tend to occur in many medical imaging mod-
alities. Nevertheless, thresholding is often used as an
initial step in a sequence of image-processing operations.

Region-Based Segmentation

Region growing algorithms (21) have proven to be an
effective approach for image segmentation. The basic
approach in these algorithms is to start from a seed point
or region that is considered to be inside the object to be

segmented. Neighboring pixels with similar properties are
evaluated to determine whether they should also be con-
sidered as being part of the object, and those pixels that
should be are added to the region. The process continues as
long as new pixels are added to the region. Region growing
algorithms differ in that they use different criteria to decide
whether a pixel should be included in the region, the
strategy used to select neighboring pixels to evaluate,
and the stopping criteria that stop the growing. Figure 9
illustrates several examples of region growing-based seg-
mentation. Like thresholding-based segmentation, region
growing is seldom used alone but usually as part of set of
image-processing operations, particularly for segmenting
small and simple structures such as tumors and lesions
(23,24). Disadvantages of region growing methods include
the need for manual intervention to specify the initial seed
point and its sensitivity to noise, which causes extracted
regions to have holes or to even become disconnected.

Region splitting and merging algorithms (25,26) evaluate
the homogeneity of a region based on different criteria such
as the mean, variance, and so on. If a region of interest is
found to be inhomogeneous according to some similarity
constraint, it is split into two or more regions. Since some
neighboring regions may have identical or similarproperties
after splitting, a merging operation is incorporated that
comparesneighboringregionsandmergesthemifnecessary.

Segmentation Through Clustering

Segmentation of images can be achieved through clustering
pixel data values or feature vectors whose elements consist
of the parameters to be segmented. Examples of multi-
dimensional feature vectors include the red, green, and
blue (RGB) components of each image pixel and different
attenuation values for the same pixel in dual-energy x-ray
images. Such datasets are very useful as each dimension of
data allows for different distinctions to be made about each
pixel in the image.

In clustering, the objective is to group similar feature
vectors that are close together in the feature space into a
single cluster, whereas others are placed in different clus-
ters. Clustering is thus a form of classification. Sonka and

Figure 8. Binary thresholding of MR image of the brain.

MEDICAL IMAGE PROCESSING 5



Fitzpatrick (27) provide a thorough review of classification
methods, many of which have been applied in object recog-
nition, registration, segmentation, and feature extraction.
Classification algorithms are usually categorized as unsu-
pervised and supervised. In supervised methods, sample
feature vectors exist for each class (i.e., a priori knowledge)
and the classifier merely decides on how to classify new data
based on these samples. In unsupervised methods, there is
no a priori knowledge and the algorithms, which are based
on clustering analysis, examine the data to determine
natural groupings or classes.

Unsupervised Clustering. Unlike supervised classifica-
tion, very few inputs are needed for unsupervised classifi-
cation as the data are clustered into groupings without any
user-defined training. In most approaches, an initial set of
grouping or classes is defined. However, the initial set could
be inaccurate and possibly split along two or more actual
classes. Thus, additional processing is required to correctly
label these classes.

The k-means clustering algorithm(28,29) partitions the
data into k clusters by optimizing an objective function of
feature vectors of clusters in terms of similarity and dis-
tance measures. The objective function used is usually the
sum of squared error based on the Euclidean distance
measure. In general, an initial set of k clusters at arbitrary
centroids is first created by the k-means algorithm. The
centroids are then modified using the objective function
resulting in new clusters. The k-means clustering algo-
rithms have been applied in medical imaging for segmenta-
tion/classification problems (30,31). However, their
performance is limited when compared with that achieved
using more advanced methods.

While the k-means clustering algorithm uses fixed
values that relate a data point to a cluster, the fuzzy k-
means clustering algorithm (32) (also known as the fuzzy c-
means) uses a membership value that can be updated based
on distribution of the data. Essentially, the fuzzy k-means
method enables any data sample to belong to any cluster
with different degrees of membership. Fuzzy partitioning is
carried out through an iterative optimization of the objec-
tive function, which is also a sum of squared error based on
the Euclidean distance measure factored by the degree of
membership with a cluster. Fuzzy k-means algorithms

have been applied successfully in medical image analysis
(33–36), most commonly for segmentation of MRI images of
the brain. Pham and Prince (33) were the first to use
adaptive fuzzy k-means in medical imaging. In Ref. 34,
Boudraa et al. segment multiple sclerosis lesions, whereas
the algorithm of Ahmed et al. (35) uses a modified objective
function of the standard fuzzy k-means algorithm to com-
pensate for inhomogeneities. Current fuzzy k-means meth-
ods use adaptive schemes that iteratively vary the number
of clusters as the data are processed.

Supervised Clustering. Supervised methods use sample
feature vectors (known as training data) whose classes are
known. New feature vectors are classified into one of the
known classes on the basis of how similar they are to the
known sample vectors. Supervised methods assume that
classes in multidimensional feature spaces can be described
by multivariate probability density functions. The prob-
ability or likelihood of a data point belonging to a class is
related to the distance from the class center in the feature
space. Bayesian classifiers adopt such probabilistic
approaches and have been applied to medical images
usually as part of more elaborate approaches (37,38).
The accuracy of such methods depends very much on hav-
ing good estimates for the mean (center) and covariance
matrix of each class, which in turn requires large training
datasets.

When the training data are limited, it would be better to
use minimum distance or nearest neighbor classifiers that
merely assign unknown data to the class of the sample
vector that is closest in the feature space, which is mea-
sured usually in terms of the Euclidean distance. In the k-
nearest neighbor method, the class of the unknown data is
the class of majority of the k-nearest neighbors of the
unknown data. Another similar approach is called the
Parzen windows classifier, which labels the class of the
unknown data as that of the class of the majority of samples
in a volume centered about the unknown data that have the
same class. The nearest neighbor and Parzen windows
methods may seem easier to implement because they do
not require a priori knowledge, but their performance is
strongly dependent on the number of data samples avail-
able. These supervised classification approaches have been
used in various medical imaging applications (39,40).

Figure 9. Segmentation results of region growing with various seed points obtained by using Insight Toolkit (22).

6 MEDICAL IMAGE PROCESSING



Model Fitting Approaches

Model fitting is a segmentation method where attempts are
made to fit simple geometric shapes to the locations of
extracted features in an image (41). The techniques and
models used are usually specific to the structures that need
to be segmented to ensure good results. Prior knowledge
about the anatomical structure to be segmented enables the
construction of shape models. In Ref. 42, active shape
models are constructed from a set of training images. These
models can be fitted to an image by adjusting some para-
meters and can also be supplemented with textural infor-
mation (43). Active shape models have been widely used for
medical image segmentation (44–46).

Deformable Models

Segmentation techniques that combine deformable models
with local edge extraction have achieved considerable suc-
cess in medical image segmentation (10,15). Deformable
models are capable of accommodating the often significant
variability of biological structures. Furthermore, different
regularizers can be easily incorporated into deformable
models to get better segmentation results for specific types
of images. In comparison with other segmentation meth-
ods, deformable models can be considered as ‘‘high-level
segmentation’’ methods (15).

Deformable models (15) are referred by different names
in the literature. In 2-D segmentation, deformable models
are usually referred to as snakes (47,48), active contours
(49,50), balloons (51), and deformable contours (52). They
are usually referred to as active surfaces (53) and deform-
able surfaces (54,55) in 3-D segmentation.

Deformable models were first introduced into computer
vision by Kass et al. (47) as ‘‘snakes’’ or active contours, and
they are now well known as parametric deformable models
because of their explicit representation as parameterized
contours in a Lagrangian framework. By designing a global
shape model, boundary gaps are easily bridged, and overall
consistency is more likely to be achieved. Parametric
deformable models are commonly used when some prior
information of the geometrical shape is available, which
can be encoded using, preferably, a small number of para-
meters. They have been used extensively, but their main
drawback is the inability to adapt to topology (15,48).
Geometric deformable models are represented implicitly
as a level set of higher dimensional, scalar-level set func-
tions, and they evolve in an Eulerian fashion (56,57). Geo-
metric deformable models were introduced more recently
by Caselles et al. (58) and by Malladi et al. (59). A major

advantage of these models over parametric deformable
models is topological flexibility because of their implicit
representation. During the past decade, tremendous effo-
rts have been made on various medical image segmentation
applications based on level set methods (60). Many new
algorithms have been reported to improve the precision and
robustness of level set methods. For example, Chan and
Vese (61) proposed an active contour model that can detect
objects whose boundaries are not necessarily defined by
gray-level gradients.

When applying for segmentation, an initialization of the
deformable model is needed. It can be manually selected or
generated by using other low-level methods such as thresh-
oldingorregiongrowing.Anenergy functional isdesigned so
that the model lies on the object boundary when it is mini-
mized. Yan and Kassim (62,63) proposed the capillary active
contour for magnetic resonance angiography (MRA) image
segmentation. Inspired by capillary action, a novel energy
functional is formulated, which is minimized when the
active contour snaps to the boundary of blood vessels. Figure
10 shows the segmentation results of MRA using a special
geometric deformable model, the capillary active contour.

MEDICAL IMAGE REGISTRATION

Multiple images of the same subject, acquired possibly
using different medical imaging modalities, contain useful
information usually of complementary nature. Proper inte-
gration of the data and tools for visualizing the combined
information offers potential benefits to physicians. For this
integration to be achieved, there is a need to spatially align
the separately acquired images, and this process is called
image registration. Registration involves determining a
transformation that can relate the position of features in
one image with the position of the corresponding features in
another image. To determine the transformation, which is
also known as spatial mapping, registration algorithms use
geometrical features such as points, lines, and surfaces that
correspond to the same physical entity visible in both
images. After accurate registration, different images will
have the same coordinate system so that each set of points
in one image will occupy the same volume as the corre-
sponding set of points in another image. In addition to
combining images of the same subject from different mod-
alities, the other applications of image registration include
aligning temporal image sequences to compensate for
motion of the subject between scans and image guidance
during medical procedures.

Figure 10. Different views of the
MRA segmentation results using
the capillary active contour.

MEDICAL IMAGE PROCESSING 7



The evaluation of the transformation parameters can be
computationally intensive but can be simplified by assum-
ing that the structures of interest do not deform or distort
between image acquisitions. However, many organs do
deform during image acquisition, for example, during the
cardiac and respiratory cycles. Many medical image regis-
tration algorithms calculate rigid body or affine transfor-
mations, and thus, their applicability is restricted to parts
of the body where deformation is small. As bones are rigid,
rigid body registration is widely used where the structures
of interest are either bone or are enclosed in bone. The
brain, which is enclosed by the skull, is reasonably non-
deformable, and several registration approaches have
been applied to the rigid body registration of brain images.
Figure 11 shows an example of rigid registration of brain
MR images. Image registration based on rigid body trans-
formations is widely used for aligning multiple 3-D tomo-
graphic images of the same subject acquired using different
modalities (intermodality registration) or using the same
modality (intramodality registration) (64–66).

The problem of aligning images of structures with
deformed shapes is an active area of research. Such deform-
able (nonaffine) registration algorithms usually involve the
use of an initial rigid body or affine transformation to
provide a starting estimate (65–68).

After registration, fusion is required for the integrated
display. Some fusion methods involve direct combination of
multiple registered images. One example is the superim-
position of PET data on MRI data to provide a single image
containing both structure and function (69). Another exam-
ple involves the use of MR and CT combined to delineate
tumor tissues (70).

Atlas-Based Approaches

In atlas-based registration and segmentation of medical
images, prior anatomical and/or functional knowledge is
exploited. The atlas is actually a reference image in which
objects of interest have been carefully segmented. In this
method (65,66,71), the objective is essentially to carry out a
nonrigid registration between the image of the patient and
the atlas. The first step, known as atlas warping, involves
finding a transformation that maps the atlas image to the

target image to be segmented. The warping usually consists
of a combination of linear and nonlinear transformations to
ensure good registration despite anatomical variability.
Even with nonlinear registration methods, accurate
atlas-based segmentation of complex structures is difficult
because of anatomical variability, but these approaches are
generally suited for segmentation of structures that are
stable in large numbers of people. Probabilistic atlases
72–75 help to overcome anatomical variability.

CONCLUDING REMARKS

Significant advances made in medical imaging modalities
have led to several new methodologies that provide signifi-
cant capabilities for noninvasive and accurate examination
of anatomical, physiological, metabolic, and functional
structures and features. three- and four dimensional med-
ical images contain a significant amount of information
about the structures being imaged. Sophisticated software-
based image processing and analysis methods enhance the
information acquired by medical imaging equipment to
improve the visibility of features of interest and thereby
enable visual examination, diagnosis, and analysis. There
are, however, several challenges in medical imaging ran-
ging from accurate analysis of cardiac motion and tumors to
nonaffine registration applications involving organs other
than the brain and so on (76,77). Also, new imaging mod-
alities, such as optical (78), microwave, and electrical
impedance (79) imaging methods hold the promise of break-
throughs when new associated algorithms for processing
and analyzing the resulting information acquired via these
modalities are available.

ACKNOWLEDGMENTS

The authors would like to thank the Department of Nuclear
Medicine at the Singapore General Hospital for providing
the PET image and Prof. S. C. Wang of the Department of
Diagnostic Imaging at the National University Hospital for
providing the images used in this chapter. The authors are
also grateful to Dr. P. K. Sadasivan for his valuable inputs.

Figure 11. (a) Result of direct overlapping of brain
MR images without registration. (b) Result of over-
lapping of images after rigid registration.

8 MEDICAL IMAGE PROCESSING



BIBLIOGRAPHY

1. S. M. Lawrie and S. S. Abukmeil, Brain abnormality in schizo-
phrenia: A systematic and quantitative review of volumetric
magnetic resonance imaging studies, Br. J. Psychiat., 172:
110–120, 1998.

2. P. Taylor, Computer aids for decision-making indiagnostic radi-
ology–aliteraturereview, Br. J. Radiol. 68 (813): 945–957, 1995.

3. A. P. Zijdenbos and B. M. Dawant, Brain segmentation and
white matter lesion detection in MR images, Crit. Rev. Biomed.
Engineer., 22 (6): 401–465, 1994.

4. A. Worth, N. Makris, V. Caviness, and D. Kennedy, Neuroa-
natomical segmentation in MRI: technological objectives,
Internat. J. Patt. Recog. Artificial Intell., 11: 1161–1187, 1997.

5. V. Khoo, D. P. Dearnaley, D. J. Finnigan, A. Padhani, S. F.
Tanner, and M. O. Leach, Magnetic resonance imaging (MRI):
Considerations and applications in radiotherapy treatment
planning, Radiother. Oncol., 42: 1–15, 1997.

6. H. Muller-Gartner, J. Links, J. Prince, R. Bryan,E. McVeigh, J.
P. Leal, C. Davatzikos, and J. Frost, Measurement of tracer
concentration in brain gray matter using positron emission
tomography: MRI-based correction for partial volume effects,
J. Cerebral Blood Flow Metabol., 12 (4): 571–583, 1992.

7. N. Ayache, P. Cinquin, I. Cohen, L. Cohen, F. Leitner, and O.
Monga, Segmentation of complex three-dimensional medical
objects: A challenge and a requirement for computer-assisted
surgery planning and performance, in R. Taylor, S. Lavallee, G.
Burdea, and R. Mosges, (eds), Computer-Integrated Surgery,
Cambridge MA: The MIT Press, 1996, pp. 59–74.

8. W. E. L. Grimson, G. J. Ettinger, T. Kapur, M. E. Leventon, W.
M. Wells, and R. Kikinis, Utilizing segmented MRI data in
image-guided surgery, Internat. J. Patt. Recog. Artificial
Intell., 11 (8): 1367–1397, 1997.

9. D. L. Pham, C. Xu, and J. L. Prince, Current methods in
medical image segmentation, Annu. Rev. Biomed. Eng., 2:
315–337, 2000.

10. J. S. Duncan and N. Ayache, Medical image analysis: Progress
over two decades and the challenges ahead, IEEE Trans.
Pattern Anal. and Machine Intell., 22 (1): 85–106, 2000.

11. P. Perona and J. Malik, Scale-space and edge detection using
anisotropic diffusion, IEEE Trans. Pattern Anal. and Machine
Intell., 12: 629–639, 1990.

12. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd
ed. Upper Saddle River: Prentice Hall, 2002.

13. T. Acharya and A. K. Ray, Image Processing: Principles and
Applications, New York: Wiley-Interscience, 2005.

14. K. Zuiderveld, Contrast limited adaptive histogram equaliza-
tion. P. Heckbert in (ed.), Graphic Gems IV, New York: Aca-
demic Press, 1994.

15. T. McInerney and D. Terzopoulos, Deformable models in med-
ical image analysis: A survey, Med. Image Anal., 1 (2): 91–108,
1996.

16. A. Dhawan, Medical Image Analysis. New York: Wiley, 2003.

17. J. Suri, K. Liu, S. Singh, S. Laxminarayana, and L. Reden,
Shape recovery algorithms using level sets in 2-D/3-D medical
imagery: A state-of-the-art review, IEEE Trans. Inform. Tech-
nol. Biomed., 6: 8–28, 2002.

18. P. Sahoo, S. Soltani, and A. Wong, A survey of thresholding
techniques, Comput. Vision. Graph. Image Process., 42 (2):
233–260, 1988.

19. M. Sezgin and B. Sankur, Survey over image thresholding
techniques and quantitative performance evaluation, J. Elec-
tron. Imaging, 13 (1): 146–168, 2004.

20. N. Otsu, A threshold selection method from gray level histo-
grams, IEEE Trans. Sys., Man Cybernet., 9: pp. 62–66, 1979.

21. R. Adams and L. Bischof, Seeded region growing, IEEE Trans.
Pattern Anal. Mach. Intell., 16 (6): 641–647, 1994.

22. L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK Software
Guide. Kitware Inc., 2003. Available: http://www.itk.org.

23. P. Gibbs, D. Buckley, S. Blackband, and A. Horsman, Tumour
volume determination from MR images by morphological seg-
mentation, Phys. Med. Biol., 41: 2437–2446, 1996.

24. S. Pohlman, K. Powell, N. Obuchowski, W. Chilcote, and S.
Broniatowski, Quantitative classification of breast tumors in
digitized mammograms, Med. Phys., 23: 1337–1345, 1996.

25. R. Ohlander, K. Price, and D. Reddy, Picture segmentation
using recursive region splitting method, Comput. Graph.
Image Proc., 8: 313–333, 1978.

26. S.-Y. Chen, W.-C. Lin, and C.-T. Chen, Split-and-merge image
segmentation based on localized feature analysis and statis-
tical tests, CVGIP: Graph. Models Image Process., 53 (5): 457–
475, 1991.

27. M. Sonka and J. M. Fitzpatrick, (eds.), Handbook of Medical
Imaging, vol. 2, ser. Medical Image Processing and Analysis.
Bellingham, WA: SPIE Press, 2000.

28. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data.
Upper Saddle River, NJ: Prentice-Hall, Inc., 1988.

29. S. Z. Selim and M. Ismail, K-means-type algorithms: A general-
ized convergence theorem and characterization of local optim-
ality, IEEE Trans. Pattern Anal. and Machine Intell., 6: 81–87,
1984.

30. M. Singh, P. Patel, D. Khosla, and T. Kim, Segmentation of
functional MRI by k-means clustering, IEEE Trans. Nucl. Sci.,
43: 2030–2036, 1996.

31. A. P. Dhawan and L. Arata, Knowledge-based 3-D analysis
from 2-D medical images, IEEE Eng. Med. Biol. Mag., 10:
30–37, 1991.

32. L. C. Bezdek, Pattern Recognition with Fuzzy Objective Func-
tion Algorithms. New York: Plenum Press, 1981.

33. D. L. Pham and J. L. Prince, Adaptive fuzzy segmentation of
magnetic resonance images, IEEE Trans. Med. Imag., 18:
193–199, 1999.

34. A. O. Boudraa, S. M. Dehak, Y. M. Zhu, C. Pachai, Y. G. Bao,
and J. Grimaud, Automated segmentation of multiple sclerosis
lesions in multispectral MR imaging using fuzzy clustering,
Comput. Biol. Med., 30: 23–40, 2000.

35. M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T.
Morianty, A modified fuzzy c-means algorithm for bias field
estimation and segmentation of MRI data, IEEE Trans. Med-
ical Imaging, 21: 193–199, 2002.

36. C. Zhu and T. Jiang, Multicontext fuzzy clustering for separa-
tion of brain tissues in magnetic resonance images, Neurom-
image, 18: 685–696, 2003.

37. P. Spyridonos, P. Ravazoula, D. Cavouras, K. Berberidis, and
G. Nikiforidis, Computer-based grading of haematoxylin-eosin
stained tissue sections of urinary bladder carcinomas, Med.
Inform. Internet Med., 26: 179–190, 2001.

38. F. Chabat, G.-Z. Yang, and D. M. Hansell, Obstructive lung
diseases: texture classification for differentiation at CT, Radi-
ology, 228: 871–877, 2003.

39. K. Jafari-Khouzani and H. Soltanian-Zadeh, Multiwavelet
grading of pathological images of prostate, IEEE Trans.
Biomed. Eng., 50: 697–704, 2003.

40. C. I. Christodoulou, C. S. Pattichis, M. Pantziaris, and A.
Nicolaides, Texture-based classification of atherosclerotic aro-
tid plaques, IEEE Trans. Med. Imag., 22: 902–912, 2003.

MEDICAL IMAGE PROCESSING 9



41. S. D. Pathak, P. D. Grimm, V. Chalana, and Y. Kim, Pubic arch
detection in transrectal ultrasound guided prostate cancer
therapy, IEEE Trans. Med. Imag., 17: 762–771, 1998.

42. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, Active
shape models – their training and application, Comput. Vision
Image Understand., 61 (1): 38–59, 1995.

43. T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, A
unified framework for atlas matching using active appearance
models, Proc. Int. Conf. on Image Processing in Medical Ima-
ging., 1999, pp. 322–333.

44. T. F. Cootes and C. J. Taylor, Statistical models of appearance
for medical image analysis and computer vision, SPIE Med.
Imag., San Diego, CA: 2001, 236–248.

45. J. Xie, Y. Jiang, and H. T. Tsui, Segmentation of kidney from
ultrasound images based on texture and shape priors, IEEE
Trans. Med. Imag., 24 (1): 45–57, 2005.

46. P. Yan and A. A. Kassim, Medical image segmentation using
minimal path deformable models with implicit shape priors,
IEEE Trans. Inform. Technol. Biomed., 10 (4): 677–684, 2006.

47. M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour
models, Int. J. Comp. Vision, 1 (4): 321–331, 1987.

48. C. Xu and J. L. Prince, Snakes, shapes, and gradient vector
flow, IEEE Trans. Image Process., 7: 359–369, 1998.

49. V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active con-
tours, Int. J. Comp. Vision, 22 (1): 61–79, 1997.

50. S. Kichenassamy, A. Kumar, P. J. Olver, A. Tannenbaum, and
A. J. Yezzi, Gradient flows and geometric active contour mod-
els, in IEEE Int. Conf. Computer Vision, Cambridge, MA: 1995,
pp. 810–815.

51. L. D. Cohen, On active contour models and balloons, CVGIP:
Image Understand., 53 (2): 211–218, 1991.

52. L. H. Staib and J. S. Duncan, Parametrically deformable con-
tour models, Proc. IEEE Conf. Computer Vision and Pattern
Recognition., San Diego, CA, 1989, pp. 98–103.

53. J. W. Snell, M. B. Merickel, J. M. Ortega, J. C. Goble, J. R.
Brookeman, and N. F. Kassell, Model-based boundary estima-
tion of complex objects using hierarchical active surface tem-
plates, Patt. Recog., 28 (10): 1599–1609, 1995.

54. I. Cohen, L. Cohen, and N. Ayache, Using deformable surfaces
to segment 3D images and infer differential structures, CVGIP:
Image Understand., 56 (2): 242–263, 1992.

55. L. H. Staib and J. S. Duncan, Model-based deformable surface
finding for medical images, IEEE Trans. Med. Imag., 15 (5):
720–731, 1996.

56. S. Osher and J. A. Sethian, Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi for-
mulations, J. Computational Physics, 79: 12–49, 1988.

57. J. A. Sethian, Level Set Methods and Fast Marching Methods,
2nd ed. New York: Cambridge University Press, 1999.

58. V. Caselles, F. Catte, T. Coll, and F. Dibos, A geometric model
for active contours, Numerische Mathematik, 66: 1–31, 1993.

59. R. Malladi, J. A. Sethian, and B. C. Vermuri, Shape modeling
with front propagation: A level set approach, IEEE Trans.
Pattern Anal. Mach. Intell., 17 (2): 158–174, 1995.

60. J. S. Suri, K. Liu, L. Reden, and S. Laxminarayan, A review on
MR vascular image processing: skeleton versus nonskeleton
approaches: part II, IEEE Trans. Inform. Technol. Biomed., 6
(4): 338–350, 2002.

61. T. F. Chan and L. A. Vese, Active contours without edges, IEEE
Trans. Image Proc., 10 (2): 266–277, 2001.

62. P. Yan and A. A. Kassim, MRA image segmentation with
capillary active contours, Proc. Medical Image Computing

and Computer-Assisted Intervention, Palm Springs, CA,
2005, pp. 51–58.

63. P. Yan and A. A. Kassim, MRA image segmentation with
capillary active contours, Med. Image Anal., 10 (3): 317–329,
2006.

64. L. G. Brown, A survey of image registration techniques, ACM
Comput. Surveys, 24 (4): 325–376, 1992.

65. J. B. Antoine Maintz and M. A. Viergever, A survey of medical
image registration, Med. Image Anal., 2 (1): 1–36, 1998.

66. D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes,
Medical image registration, Phys. Med. Biol., 46: 1–45, 2001.

67. W. M. Wells, W. E. L. Grimson, R. Kikinis, and F. A. Jolesz,
Adaptive segmentation of MRI data, IEEE Trans. Med. Imag.,
15 (4): 429–442, 1996.

68. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P.
Suetens, Multimodality image registration by maximization of
mutual information, IEEE Trans. Med. Imag., 16 (2): 187–198,
1997.

69. Y. Shimada, K. Uemura, B. A. Ardekani, T. Nagakota, K.
Ishiwata, H. Toyama, K. Ono, M. Senda, Application of PET-
MRI registration techniques to cat brain imaging, J. Neurosci.
Methods, 101: 1–7, 2000.

70. D. L. Hill, D. J. Hawkes, M. J. Gleason, T. C. Cox, A. J. Strang,
and W. L. Wong, Accurate frameless registration of MR and CT
images of the head: Applications in planning surgery and
radiation theraphy, Radiology, 191: 447–454, 1994.

71. B. Zitová and J. Flusser, Image registration methods: a survey,
Image Vis. Comput., 21: 977–1000, 2003.

72. M. R. Kaus, S. K. Warfield, A. Nabavi, P. M. Black, F. A. Jolesz,
and R. Kikinis, Automated segmentation of MR images of brain
tumors, Radiology, 218: 586–591, 2001.

73. [Online]. Available: http://www.loni.ucla.edu/ICBM/.

74. B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C.
Haselgrove, et al., Whole brain segmentation: Automated
labeling of neuroanatomical structures in the human brain,
Neuron, 33 (3): 341–355.

75. M. B. Cuadra, L. Cammoun, T. Butz, O. Cuisenaire, and J.-P.
Thiran, Validation of tissue modelization and classification
techniques in t1-weighted MR brain images. IEEE Trans.
Med. Imag., 24: 1548–1565, 2005.

76. K. Wong, H. Liu, A. J. Sinusas, and P. Shi, Multiframe nonrigid
motion analysis with anisotropic spatial constraints: Applica-
tions to cardiac image analysis, Internat. Conf. Image Proc., 1:
131–134, 2004.

77. A. Mohamed, D. Shen, and C. Davatzikos, Deformable regis-
tration of brain tumor images via a statistical model of tumor-
induced deformation, Proc. Medical Image Computing and
Computer-Assisted Intervention, 2, 263–270, 2005.

78. H. Jiang, Y. Xu, N. Iftimia, L. Baron, and J. Eggert, Three-
dimensional optical tomographic imaging of breast in a human
subject, IEEE Trans. Med. Imag., 20 (12): 1334–1340, 2001.

79. J. Jossinet, E. Marry, and A. Montalibet, Inverse impedance
tomography: Imaging tissue from inside, IEEE Trans. Med.
Imag., 21 (6): 560–565, 2002.

ASHRAF KASSIM

PINGKUN YAN

National University of Singapore
Singapore

10 MEDICAL IMAGE PROCESSING



R

RADIOMETRIC CAMERA CALIBRATION

Radiometric calibration is a method of capturing digital
images and processing the digital image data so that the
pixel values represent actual measurements of light. Even
without radiometric calibration, it is usually the case that a
higher-valued pixel in an image represents a greater light
intensity, but one cannot say how much light is represented
by each pixel value. If the purposes of digital images are
merely to be viewed or analyzed for their structural con-
tent, then radiometric calibration is not usually necessary.
However, when detailed information about brightness,
color, or shading is important, radiometric calibration
may be essential.

Radiometry is the measurement of electromagnetic
radiation, including light (1). Devices called radiometers
are designed specifically to measure radiation in units of
energy or power. Digital cameras contain many small light-
sensitive devices usually arranged in a rectangular grid.
Each of these light-sensitive devices may potentially be
used as a radiometer if the output (a pixel value) can be
interpreted as a light measurement in units of energy or
power. Radiometric camera calibration provides the link
between raw pixel values obtained by a camera and cali-
brated pixel values that measure light energy. Radiometric
camera calibration converts ordinary digital images into
radiometric images.

TYPES OF CALIBRATION

Two types of radiometric calibration exist, absolute and
relative (2). Absolute radiometric calibration means that
the image pixels are calibrated with reference to physical
units such as watts per steradian per square meter
(W.sr�1.m�2) or photon counts. For absolute calibration,
a known or measurable relationship exists between the
pixel values and the corresponding measurements
expressed in physical units. Relative radiometric calibra-
tion means that the image pixels are calibrated with
reference to each other—the ratio of two image pixels is
the same as the ratio of the corresponding physical mea-
surements of light. Relative radiometric calibration
implies that the image pixels have a fixed but unknown
multiplicative relationship to the corresponding measure-
ments expressed in physical units. A set of images has
shared relative radiometric calibration if the pixels in
different images are calibrated with reference to each
other. Relative radiometric calibration can be converted
to absolute radiometric calibration by including a target
with known radiance in an image, then considering the
relationship between the known radiance of the target and
the corresponding relative radiometric pixel values.

A related calibration is reflective calibration in
which image pixels are calibrated with reference to the
reflective properties of objects in the scene such as albedo
or color. Relative radiometric calibration can be con-

verted to reflective calibration by including a target
with known reflectance properties in an image, then
using the pixel values corresponding to the target to
calibrate the image.

Radiometric calibration has a wide range of applications
in science and technology. Astronomy uses radiometric
calibration to measure the brightness of stars, galaxies,
and other astronomical objects. Remote sensing (2) uses
radiometric imaging of the surface of the earth (such as
aerial and satellite imaging) to map surface features (e.g.,
identification of ground cover, forest, specific crops, etc.).
Remote sensing systems may use infrared and/or ultraviolet
imaging in addition to visible-light imaging. Machine vision
systems use radiometric imaging techniques to measure the
reflective and transmissive properties of materials when
illuminated with controlled light sources. Shape-from-shad-
ing and photometric stereo techniques estimate surface
orientation from relative radiometric calibrated images.
Image analysis techniques such as subpixel edge detection
benefit from relative radiometric calibration. Techniques
that combine multiple images, such as image stitching and
high dynamic range (HDR) imaging, also benefit from radio-
metric calibration of the component images, although these
particular applications do not strictly require radiometric
calibration as will be explained below.

METHODS

Methods for radiometric calibration typically involve up to
four steps. First, the camera response is corrected to be
linear. Second, the camera’s black response is subtracted.
Third, corrections are applied for spatial variations in the
effective aperture of the lens and the sensor sensitivity.
This correction yields a relative radiometric calibration. A
final step converts the relative calibration to absolute or
reflective calibration by applying an appropriate scaling
factor.

The first step is linear correction of the camera response
function (CRF). Linear correction is required because elec-
tronic and digital cameras typically respond nonlinearly to
light. A variety of techniques is available for estimating the
nonlinear response curve. The inverted response curve is
used to transform the pixel values, which yield linear
corrected images.

The second step corrects the camera’s black response—
the pixel value produced by the camera when no light
reaches the sensor. Once linear correction is applied, the
black response can be estimated from sample images.
Subtracting the black response yields an image in which
pixel values of zero represent absolute black.

The third step corrects spatial variations in the
camera’s response to light. The response of individual
sensor elements to light depends on their position in the
sensor array. Optical effects in the camera’s lens cause a
radial variation in the intensity of light reaching the sensor
elements—usually, elements further from the optical axis

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



receive less light. In addition, manufacturing tolerances
mean that individual sensor elements may have different
sensitivity to light. These effects can be corrected by apply-
ing an individual scaling factor to each pixel value, which
yields a relative radiometric image. A set of such images
will have shared relative radiometric calibration if the
camera’s exposure parameters and behavior are consistent
for all the images.

The final step of converting the relative radiometric
calibration to absolute or reflective calibration requires a
scaling factor. If the camera’s response is consistent (i.e.,
the same amount of light always produces the same pixel
value), then the necessary scaling factor can be obtained by
analyzing a sample image of a known radiometric standard
(for absolute radiometric calibration) or of a known reflec-
tance standard (for reflective calibration). However, if the
camera’s response changes from image to image (for exam-
ple, because of an automatic iris in the lens), then a refer-
ence target should be included in each image to allow
calibration between the images. For shared relative radio-
metric calibration of a set of images, an unknown constant
reference target is sufficient, but for absolute radiometric
calibration, a reference target with known radiance is
required.

If reflective calibration is required for measurement
of albedo or color, then a reference target with known
reflectance properties is used instead of a known radi-
ance target. The derived scaling factor automatically
adjusts for temporal variations in source-illumination
brightness.

The remainder of this article first considers the basis of
radiometric calibration—the additive property of light and
the formation of digital images. Techniques for radiometric
calibration are then explained, focusing on the four steps of
estimating the camera response function, measuring the
black response, correcting for vignetting and sensitivity,
and using calibration targets. Finally, applications of radio-
metric imaging are briefly discussed.

THE ADDITIVE PROPERTY OF LIGHT

Consider a scene illuminated by multiple light sources,
each of which can be turned on or off. Assume that the
light sources are independent so that the interaction of
light from the different sources does not produce interfer-
ence effects. Also assume that the scene disperses light by
reflection and transmission, but it does not exhibit fluor-
escence. Under these assumptions, light behaves addi-
tively; that is, the scene radiance that results from the
combined illumination of multiple light sources is the sum
of the radiances that result from the individual light
sources operating separately.

The additive property of light is useful for testing the
linearity of a camera and for estimating the CRF. It was
first used in 1893 by Elster and Giedel to demonstrate
that the photoelectric current produced by a photocell is
proportional to the irradiance (the quantity of light
falling on the photocell), and is still used for testing
and calibrating spectrophotometers (3,4) and photo-
meters (5).

HOW DIGITAL IMAGES ARE FORMED

Radiometric calibration techniques are based on math-
ematical models of digital image formation. Digital
image pixel values depend on the source illumination,
the reflection of light by the scene, and the conversion of
light to digital data by the camera. It is particularly
important to mathematically model the camera so that
image data can be related to the quantity of light arriv-
ing at the camera. However, it may also be necessary to
model some aspects of the interplay of light with objects
in the scene as part of the calibration process. Here, we
will briefly describe that process and then present math-
ematical models that are suitable for understanding
radiometric calibration techniques.

Images begin with light. One or more light sources
illuminate objects in a scene that the camera is viewing.
Reflection (both specular and diffuse), absorption, and
transmission of light by the objects direct a portion of the
light towards the camera. This light is measured with
radiometric imaging.

The camera lens focuses the light onto an array of
sensors. The lens usually includes an adjustable aperture
that restricts the light reaching the sensors to prevent too
much light falling on the sensors, because the sensors
have a limited range of response. The aperture may be
automatically adjusted under the control of a signal from
the camera (auto iris), or it may be manually adjustable
(manual iris).

The amount of light admitted by the lens depends on the
angle between the light ray and the optical axis of the lens.
As a result of optical geometry, less light is admitted for
light rays that are farther from the optical axis, which
modifies the effective aperture of the lens depending on
the direction of the arriving light ray.

When the light strikes the sensors, photons of light are
converted to electrical signals. In charge coupled device
(CCD) and complementary metal oxide semiconductor
(CMOS) sensors, photons dislodge individual electrons
that are collected in a charge well. The exposure time of
the sensors is controlled by the camera electronics. Before
exposure commences, the charge wells are drained to
remove all accumulated charge. During exposure, the
charge well collects electrons dislodged by photons. The
charge well also collects additional electrons dislodged by
thermal motion, which produces a dark current—a base
level of sensor response in the complete absence of light that
is dependent on the sensor temperature and the exposure
time. After the exposure time is complete, CCD arrays shift
the collected charges to storage locations, one for each pixel.
The charges are then read out by shifting them through the
CCD array from one storage location to another until they
reach an output amplifier. The amplifier produces an elec-
trical signal in proportion to the charge it is reading at each
point in time. Healey and Kondepudy present a more
detailed model of CCD cameras for radiometric calibration,
including consideration of noise characteristics (6). In con-
trast to CCD sensors, CMOS sensors amplify the collected
charge at each pixel individually.

In digital cameras, the amplifier’s signal is converted
internally to digital pixel values that are transmitted to a

2 RADIOMETRIC CAMERA CALIBRATION



computer for analysis. Some imaging systems use analog
cameras that produce a video signal that is then converted
to digital pixel values by a separate frame grabber card.
The use of analog cameras is becoming less common as the
availability, price, and quality of digital cameras has
improved.

MATHEMATICAL MODEL OF IMAGE FORMATION

Mathematically, we can model the process of digital image
formation for each individual pixel. First, we will model a
typical digital camera including the lens.

Digital Camera Model

Let p designate a pixel. Let Lp(l) denote the radiance of
light emanating toward the camera from the small portion
of the scene that is imaged by pixel p. Here, the radiance is
expressed as a function of wavelength l, which represents
the spectral characteristics (e.g., the color) of the light.
Mathematically, LpðlÞ ¼ dLp=dl where Lp is the radiance
as defined by the CIE (1).

Aperture. Let Ap denote the effective aperture for the
pixel p. The effective aperture Ap has a multiplicative
effect on the sensor response and is assumed to be wave-
length independent. It includes the lens aperture and
other effects such as vignetting and the cos4 effect. The
effective aperture Ap is typically different for different
pixel locations.

Sensor Sensitivity. Let Sp(l) denote the sensor sensitiv-
ity function of pixel p. Sp(l) is a function of the wave length
l of the incident light; for example, CCD sensors are
typically more sensitive to red light than to blue light.
Some cameras employ specific filters to modify the sensi-
tivity function; an infrared blocking filter may be used to
inhibit the response of a CCD sensor to infrared light. For
the purposes of our equations, Sp(l) includes the effects of
any such filters. The sensitivity function has a multipli-
cative effect on the light reaching the sensor for each
wavelength l. For a color or multispectral imaging sys-
tem, a separate sensitivity function Sbp(l) exists for each
spectral band b. Typically, we assume that SbpðlÞ ¼
sbpSbðlÞ for all pixels p; that is, the spectral sensitivity
curve is the same for all pixels for each spectral band b.
Here, Sb(l) is the spectral sensitivity curve for spectral
band b, and sbp is the absolute sensitivity of the individual
pixel p for spectral band b. Manufacturing tolerances can
mean that individual pixel sensors have different dimen-
sions and hence different sensitivity.

Exposure. Let t represent the exposure time. The expo-
sure time has a multiplicative effect on the signal produced
by light striking the sensor. The longer the exposure time,
the greater the signal until the sensor reaches its operating
limit and saturates.

Expressing the above concepts in mathematical nota-
tion, the following equation describes the sensor’s expo-
sure to light Xbp. Xbp is a linear equation of the scene

radiance Lp(l).

Xbp ¼ t Ap sbp

Z
SbðlÞLpðlÞ dl ð1Þ

Dark Current. In typical sensors, thermal motion dis-
lodges some electrons even without light striking the sen-
sor. These electrons are called dark current. Let Dbp denote
the dark current of pixel p for spectral band b. The sensor’s
output signal is the sum of the dark current and the
response to light striking the sensor. The dark current is
part of the black response of the camera.

Camera Response Function. Let fbp denote the CRF for
pixel p and spectral band b. The CRF represents the
nonlinearity of the camera. It combines the nonlinearity
of the output amplifier and any subsequent electrical
signal processing up to and including the conversion to
a digital pixel value. Note that the electrical processing
may also contribute to the black response of the camera;
for example, the black response may be adjusted by mod-
ifying the video offset parameter that is often provided in
video frame grabbers and digital cameras.

Camera Model. Let Vbp represent the digital value of
pixel p for spectral band b. Then the following equation
represents the formation of a multiband image as described
above.

Vbp¼ fbpðXbp þDbpÞ
¼ fbpðt Ap sbp

R
SbðlÞLpðlÞ dlþDbpÞ

ð2Þ

Ideally, we would like to estimate Lp(l) as a radiometric
image with full spectral data for each pixel, but it is not
possible with the limited spectral data from a camera.
Instead, we estimate Cbp ¼

R
SbðlÞLpðlÞ dl as a radio-

metric image for each spectral band b. If we know fbp, Ap,
sbp, t and Dbp, then we can determine Cbp directly from Vbp.
Under reasonable assumptions (such as monotonicity of
fbp), we obtain Cbp ¼ ð f�1

p ðVbpÞ �DpÞ=ðt Ap sbpÞ, where f�1
p

is the inverse CRF. Unfortunately, it is unlikely that we
have prior knowledge of all relevant parameters for a
particular camera, so some method is required to estimate
them. The estimation process produces radiometric cali-
bration data for the camera.

Scene Illumination and Reflectance Model

Radiometric calibration techniques typically involve esti-
mating fbp and some or all other parameters. The estima-
tion is based on images in which relevant parameters are
known or controlled. These images may require some con-
trol over the scene radiance Lp(l). Because it is difficult to
directly control the scene radiance, it is useful to model the
formation of the scene radiance Lp(l) in terms of the illu-
mination and reflection within the scene.

Let Eip(l) denote the radiance of light from a particular
light source i that falls on the small portion of the scene

RADIOMETRIC CAMERA CALIBRATION 3



imaged by pixel p. Let Rp(l) denote the reflectance function
of the small portion of the scene that is imaged by pixel p.
Rp(l) denotes the proportion of incident illumination of
wavelength l that is reflected toward the camera, assuming
no fluorescence.

Assuming that the conditions hold for the additive
property of light, we can express the scene radiance
in terms of the illumination and reflectance as
LpðlÞ ¼

P
i EipðlÞRpðlÞ. It follows that

Xbp ¼ t Ap sbp

X
i

Z
SbðlÞEipðlÞRpðlÞ dl

� �
ð3Þ

and thus

Vbp¼ fbp

�
tAp sbp

�X
i

Z
SbðlÞEipðlÞRpðlÞdl

�
þDbp

�
ð4Þ

Some techniques for radiometric camera calibration can be
understood primarily as methods for estimating fbp by
measuring or controlling some or all of the parameters
and functions Vbp, t, Ap, sbp, Sb, Eip, Rp and Dp. If all these
parameters are measured or controlled accurately in a
sufficiently large and diverse set of sample images, then
the camera response function fbp can be accurately deter-
mined, and the inverse of this function can then be used to
perform radiometric calibration. A later section considers
techniques for radiometric calibration, including specific
methods for estimating the CRF.

Modeling Effective Aperture

The lens aperture controls the light admitted by the lens.
The aperture is an iris that may be controlled manually or
automatically, depending on the lens design. Each aperture
step (f-stop) typically represents a factor of approximately
two in aperture area and hence a factor of two in light
admitted by the lens. Larger f-stop numbers represent
smaller aperture areas.

As a result of optical geometry, the amount of light
admitted by the lens varies depending on the angle between
the arriving light ray and the optical axis of the lens. This
variation is captured in the effective aperture, which varies
from one pixel to another. Two significant factors that affect
the effective aperture are vignetting and the cos4 effect. The
effective aperture is also affected by lens distortions such as
pin-cushion and barrel distortions that change the density
of the projected image.

Vignetting. Vignetting occurs for pixels that are far from
the center of the image. It occurs because the light admitted
to the lens does not fill the exit pupil of the lens—a portion of
the exit pupil is in shadow (Fig. 1), so the effective aperture
is reduced. Vignetting is most noticeable in the corners of an
image and is strongest when the aperture area is large (i.e.,
for small f-stops). Vignetting results from the combination
of lens design and use. A good lens design can reduce or
eliminate vignetting entirely provided that the lens is used
as intended. In particular, the sensor array physical dimen-
sions should not exceed the dimensions assumed in the lens

design. Asada et al. (8) mathematically model and correct
vignetting in zoom lenses.

Cos4 Effect

The cos4 effect applies to light arriving at the lens opening
from directions that are not parallel to the optical axis. For
most lenses, the effective illumination of the image sensor
falls off as the fourth power of the cosine of the angle
between the incident light ray and the optical axis (7).
The cos4 effect is unavoidable, but some lens designs modify
the cos4 effect through other factors (9). Graded neutral
density filters can be used to optically correct the cos4 effect.

The combination of vignetting, the cos4 effect and lens
distortion reduces the light that reaches an optical sensor
by a factor that depends primarily on the angle between the
incident light ray and the optical axis. For a fixed lens, the
angle can be computed from the position of the pixel relative
to the optical centre of the image. Note that the optical
center of an image may not be the center of the image
coordinates, because the sensor array may be off-center
relative to the optics.

TECHNIQUES FOR RADIOMETRIC CALIBRATION

The first step in radiometric calibration is to estimate the
CRF. The inverse of this function is used to correct the pixel
data to be linear. The second step is to subtract the black
response so that zero pixels represent absolute black. After
this, the effective aperture and sensitivity corrections are
applied, dividing each pixel by an individual scaling factor.
These steps yield a relative radiometric image. For absolute
radiometric calibration, a final step converts relative cali-
bration to absolute based on a standard radiance.

Modeling the Camera Response Function

Direct modeling of the CRF assumes that the physical
processes are sufficiently well understood, and a mathe-
matical model of fbp can be used. The simplest model is
linear—the response is assumed to be a linear function of
the incident light. For example, CCD sensors are known to
be linear over a reasonable operating range. If the camera

Shadowed portion 

of exit pupil 

(vignetting)

(a)

(b)

Figure 1. Vignetting in a lens. (a) Ray aligned with optical axis
has no vignetting. (b) Ray produces vignetting due to angle from
optical axis.

4 RADIOMETRIC CAMERA CALIBRATION



electronics are of sufficient quality, the sensor linearity
may be adequately maintained during the conversion to
digital pixels, which simplifies radiometric calibration. It is
recommended, however, to check the linearity of the cam-
era using one of the techniques described below.

Gamma Encoding. Many cameras deliberately introduce
nonlinearity into the video signal, which is called gamma
encoding. The original video signal V0 is transformed by a
power-law equation parameterized by gamma (g), which
yields a nonlinear video signal Ve.

Ve ¼ V
1=g

0 ð5Þ

When this video signal is displayed on a cathode ray tube
(CRT) monitor, the inverse gamma transformation is
applied so that the light output from the monitor is a linear
function of the light originally captured by the camera.
Gamma encoding compresses the dynamic range of bright
pixels relative to dark pixels in the transmitted video signal
Ve, which provides improved transmission of detail in dark
portions of the image. A gamma value of 2.2 is typical in
television (10); the reciprocal (0.45) is used for simple
gamma correction (11). Figure 2 shows ideal gamma
response curves with g ¼ 2.2 and g ¼ 1.4, with a linear
response curve for comparison.

Camera Response Function Models. Gamma encoding is
often implemented in electronics and may not exactly follow
the power-law curve. Errors in the model of the CRF limit
the accuracy of the radiometric calibration, so more sophis-
ticated functions are often used to model the CRF.

Grossberg andNayar (12) model the CRF as the weighted
sum of a set of basis functions. Principal components
analysis is used to derive the basis functions from a database
of 175 real-world response functions, including film brands,
digital and video cameras, and a small selection of gamma

curves. Three basis functions are sufficient to fit most CRFs
with a RMSE of 0.7%.

General-purpose modeling functions may also be used.
Klinker, et al. (10) model the CRF using cubic splines.
Hamey (13) uses a feed-forward artificial neural network.
Mitsunaga and Nayar (14) use a polynomial model. Robert-
son et al. (15) represent the CRF as a mapping from 256
discrete camera response values to corresponding linear
pixel values. They use Gauss-Seidel relaxation to solve this
highly parameterized model.

Estimating the CRF

The CRF may be estimated from image data captured with
the camera itself. To reduce the image data requirements,
we may assume that the CRF is the same for all pixels (i.e.,
fbp¼ fb). With this assumption, we estimate a single CRF for
each spectral (color) band of the camera, combining the data
from multiple pixel locations. The validity of this assump-
tion depends on the design and manufacture of the imaging
system. For example, if all the pixels of a CCD array are
read out by the same amplifier and analog-to-digital cir-
cuitry, we may reasonably assume that the CRF is the same
for all pixels, provided that no pixel-specific nonlinearity
exists in the camera design. Recent CCD cameras use two or
more amplifiers (taps) to read the pixels out of the CCD
array. The assumption of a common CRF may only be
applicable to the regions of the images that share a single
tap because manufacturing tolerances may produce differ-
ent nonlinearity for each tap. CMOS sensors individually
amplify each pixel, so manufacturing tolerances may pro-
duce different nonlinearity for each image pixel in CMOS
cameras.

Typically, the CRF is estimated independently for each
camera. Multiple cameras of the same make and model may
have different CRFs because of manufacturing tolerances.
Hamey (13) observed a difference of 1% between the CRFs
for two cameras of the same make and model.

Estimating Gamma. If a gamma model is assumed, but
the gamma parameter is unknown, then gamma may be
estimated from image data. Farid (16) estimates gamma to
an accuracy of 7.5% by analyzing the spatial frequency
effects of the non-linear transformation introduced by
gamma encoding. The nonlinear CRF introduces high
spatial-frequency harmonics into the image. Using bispec-
tral analysis, he recovers the gamma value that minimizes
these harmonics in the corrected image.

Shafique and Shah (17) estimate gamma to an accuracy
of 3% based on image invariants. In their technique, the
same scene is imaged with different illumination conditions
such as four separate light sources, one at a time. The
technique uses cross-ratios of exposure terms that involve
three color bands. These cross-ratios are invariant to chan-
ging illumination conditions under suitable models of scene
reflection. The technique requires at least three spectral
bands. Each spectral band may have a different gamma
parameter.

Exposure Time-Based Methods. Controlling the exposure
time t in Equation (2) gives direct control over the major

0

1

10

Relative sensor irradiance

C
am

er
a 

re
sp

o
n

se

Gamma 2.2

Gamma 1.4

Linear

Figure 2. Examples of gamma response curves.

RADIOMETRIC CAMERA CALIBRATION 5



part of the parameter of the function fbp. A set of images is
captured with different exposure times but with all other
parameters remaining constant. For each pixel, the differ-
ent images provide known relative exposures and corre-
sponding camera response values that can be used to
reconstruct the CRF.

Under the assumption of a shared CRF fb, naturally
occurring brightness variations in the scene increase the
available information. For example, suppose n images are
captured using exposure times t1 through tn. For each pixel
location, these images yield a vector of camera response
values (V1p, V2p, . . . Vnp ) corresponding to the exposures
(kpt1, kpt2, . . ., kptn) for some unknown constant kp that
depends upon the scene radiance, effective aperture and
other variables. The CRF is reconstructed by analyzing
these data vectors.

The simplest method of recovering the CRF from such
data is to collect many images with exposures densely
covering the entire range of camera response for a single
pixel. Plotting the pixel values against the corresponding
exposure times for a single pixel reveals the CRF. More
sophisticated analysis combines incomplete curves from
different pixels toderive an overall curve from fewer images.

Techniques based on exposure time are limited by the
accuracy of the camera’s exposure time control. In addition,
theoretical limitations exist. Grossberg and Nayar (18)
show that a self-similar ambiguity exists when only two
images are used or when the exposure ratios of multiple
images are similar, such as doubling the exposure of each
image compared with the previous image. The ambiguity
can be resolved by using at least three images with expo-
sure ratios a¼ t2/t1 and b¼ t3/t2 such that logab is irrational.
Alternatively, the ambiguity may be resolved by imposing
smoothness constraints on the CRF (15), or by assuming a
model with a limited number of parameters such as basis
functions (12) or a polynomial model (14). Radiometric
calibration based on known exposure times is included in
HALCON, a commercial machine vision library (19).

Chart-Based Methods. In this approach, the CRF is
estimated from images that contain calibration targets
with known reflective properties. For example, a Kodak
grayscale contains 21 reflectance targets with different
gray levels. In one method, each reflectance target is
imaged in turn at the same physical location under
time-constant illumination. In a slightly different
approach, the entire grayscale is imaged under uniform
illumination. Using either source of image data, the mean
pixel value of each target is calculated and related to the
known reflectance level of the corresponding target. The
CRF is estimated by interpolating the data points. The
accuracy of this technique is limited by the accuracy of the
reflectance data provided with the reflectance targets and
also by interpolation errors. When the entire gray scale is
imaged at once, the accuracy of the technique is limited
further by spatial variations in the effective aperture and
sensitivity.

Klinker et al. (10) use the GretagMacbeth Color Checker
(X-Rite Incorporated, Grand Rapids, MI) to estimate the
CRF by fitting cubic splines to the camera response data
from a single image. Grossberg and Nayar (12) also use the

GretagMacbeth Color Checker to estimate the CRF by
fitting a set of basis functions derived from a database of
known CRFs.

Additive Illumination. Using the additive property of
light, it is possible to solve for unknown illumination levels,
scene reflectance values, and camera response function
simultaneously. The techniques use multiple light sources.
Images are taken with each light source individually and
with combinations of the light sources. Because of the
additive property of light, the exposure of images with
multiple light sources is the sum of the exposures with
the individual light sources.

Manders et al. (20) use a static real-world scene with two
different illumination sources. Taking an image with each
source independently and a third image with both sources,
they use singular value decomposition (SVD) to solve for the
inverse CRF using the equation

f�1ðV1 pÞ þ f�1ðV2 pÞ ¼ f�1ðV3 pÞ: ð6Þ

Here, V1p and V2p represent corresponding pixels from the
images taken with individual light sources, whereas V3p is
the corresponding pixel with both light sources active. The
technique assumes no ambient illumination. The inverse
CRF is represented as a discrete function.

Hamey (13) uses four illumination sources and a collec-
tion of reflectance targets. Each reflectance target is imaged
under all combinations of the four lights being gated on and
off. The experiments are conducted in a dark room so that
the only ambient illumination is scatter from the lights. At
least 40 targets are used, which vary from black through
white, yielding 640 images. A neural network model is fitted
to estimate the CRF, the unknown illumination level of each
light, and the unknown relative reflectance value of each
target for each pixel location simultaneously.

The model simplifies Equation (4) above. Assuming that
the spectral distribution of all light sources is the same, let
Eip(l)¼ eip E(l) where eip is the relative brightness of lamp i
illuminating the region of the target imaged by pixel p, and
E(l) is the common spectral curve. Let T represent a
reflectance target, and let RpT(l) denote the reflectance
curve of target T. Let RbpT ¼ t Ap sbp

R
SbðlÞEðlÞRpTðlÞ dl,

which combines the spectral curves and the exposure para-
meters into a single relative reflectance value. Allowing the
CRF to be an arbitrary monotonic function gbp, subsume the
dark current Dbp into the CRF. With some manipulation,
we derive

Vbpð jÞ ¼ gbp

��X
T

PTð jÞRbpT

��X
i

ðLið jÞ eip

��
: ð7Þ

Here, j denotes an image, PT(j)¼ 1 when target T is present
in image j and Li(j)¼1 when lamp i is on in image j. Ambient
illumination is assumed to be constant and is represented
by i ¼ 0 with L0(j) ¼ 1 for all j.

Fitting the above model as a neural network, Hamey (13)
recovered CRFs with a root mean squared error (RMSE) of
0.15%, applying the results to the color inspection of baked
goods.

6 RADIOMETRIC CAMERA CALIBRATION



Figure 3 shows measured camera response functions for
a monochrome CCD camera and for one band of a color CCD
camera. The camera response functions are shown over the
range from absolute black to approximately 70% of the
camera response range (pixel value 183) to avoid sensor
saturation effects. For comparison, the figure includes a
linear response curve and a gamma response curve with g¼
1.4. The monochrome camera’s response curve was nomin-
ally a gamma curve, but it deviates significantly from the
ideal gamma response curve. The color camera was oper-
ated with gamma encoding disabled, but it deviates from
linear by up to 1.7%. In contrast, the monochrome camera
deviates from a linear response by up to 12%.

Figure 4 shows the linear correction function for the
monochrome camera. It is implemented as a lookup table

that converts camera pixel values to the corresponding
linear response values. Note that, for this camera, pixel
value 26 corresponds to absolute black.

Comparametric Analysis. The comparametric approach
involves solving equations of the form hð f ðX1ÞÞ ¼ f ðkX2Þ
where f is the unknown CRF, k is the unknown exposure
ratio between a pair of images, X1 and X2 are unknown
exposure levels for corresponding pixels in the pair of
images, and h is the comparametric function (also known
as a mapping function or registration function) that maps
pixel values in one image to the corresponding pixel values
in another image (i.e., h(V1)¼V2). Mann (21) shows that f is
related to h. For example, if f is gamma encoding, then h is a
straight line. Fitting h yields a corresponding solution for f,
but this solution is exponentially ambiguous (18), because it
yields an unknown gamma encoding unless the exposure
ratio is known. An unknown gamma encoding is not sui-
table for radiometric calibration but remains useful for
image stitching and HDR imaging applications as dis-
cussed below.

Measuring the Black Response

Radiometric calibration requires that the calibrated
response value is zero when the camera views absolute
black. However, a linear CRF may have a nonzero response
value for black. A relative radiometric calibration can be
achieved by measuring the black response and subtracting
it from the linear pixels. The following are some techniques
that may be used to measure the black response.

Lens Cap Technique. A simple technique for measuring
the camera’s black response is to cover the camera lens so
that no light is admitted and then capture a black image.
The black image is subtracted from other images to remove
the black response.

This technique is widely used but may yield incorrect
results depending on the camera and frame grabber. In
particular, if the frame grabber dynamically adjusts the
digitization range to the range of the video signal, then an
all-black image may yield different pixel values than an
equally dark object in an ordinary image. When using the
lens cap technique, the all-black image should be compared
with a black reference in a normal image to ensure that the
imaging system has not adjusted inappropriately to the all-
black image conditions.

Masked Pixels. Some machine vision cameras can mea-
sure the sensor dark current and automatically subtract it
from the image data. The design uses masked pixels (not
exposed to light) to measure the dark current.

Shadowed Black Reference. It is difficult to create a truly
black object. Black materials still reflect some light, typi-
cally 2% or more. To achieve blackness that is close to 0%
reflectance, the black material must be overshadowed to
protect it from all sources of illumination.

A simple technique previously used by the author
involves creating a black box (Fig. 5). The box is painted
matte black on the inside and has a small hole in one face.

0

0.7

0.70

Relative sensor irradiance

C
am

er
a 

re
sp

o
n

se
Mono

Gamma 1.4

Color

Linear

Figure 3. Examples of camera response functions for a mono-
chome CCD camera and a color CCD camera, with a gamma curve
and linear response for comparison.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

200150100500

Pixel value

L
in

ea
r 

va
lu

e

Mono

Figure 4. Linear correction function for a monochrome camera.

RADIOMETRIC CAMERA CALIBRATION 7



The camera views a portion of the far side of the box through
the hole. The depth of the box is such that lamp light that
passes through the hole does not directly illuminate the
area viewed by the camera. Lamp light entering the hole is
scattered inside the box and is absorbed by the black paint
so that very little of it ever reaches the camera. A large box
with a small hole produces a black reference region that is
very close to 0% reflectance.

Calibrated Reflectance Targets. Using two targets with
known reflectance values, the linear camera response can be
extrapolated to estimate the absolute black response. For
example, one may use targets with known reflectance values
of R1 ¼ 2% and R2 ¼ 99%. If the corresponding (average)
linear pixel values over the targets are T1 and T2, then the
estimated black response is T1�R1(T2�T1)/(R2�R1).

To eliminate effective aperture effects, the two reflec-
tance targets should be placed in the same position in
separate images (assuming constant illumination). If a sin-
gle image is used, then the targets should be placed in
comparable positions relative to the optical axis of the cam-
era and the illumination should be uniform for both targets.

It is also important to ensure that the illumination and
viewing conditions in which the calibrated target is used
are consistent with the original calibration method. The
reflectance of a surface depends on the angles of illumina-
tion and viewing, so if the original calibration used a
different configuration, then the calibration data may be
inaccurate for the particular application.

Measuring the Effective Aperture and Sensitivity

As discussed above, the effective aperture depends on
the radial position of the sensor element relative to the
optical axis. The effective aperture can be modeled as a
combination of vignetting (8) and the cos4 effect (7).
However, the model parameters depend on the lens
design, and it is difficult to ensure their accuracy. An
alternative approach is to measure the effective aperture
and sensitivity as a combined per-pixel response field.

For measurement, a flat radiance field is required. A flat
Lambertian surface under uniform illumination is suitable.
After linear correction and black response subtraction, an

image of the flat radiance field records the combined sensi-
tivity and effective aperture for each pixel. To avoid the
effects of small imperfections in the Lambertian surface,
the surface or the camera may be moved between taking
multiple images. Linear correct these images, subtract the
black response, and combine them on a per-pixel basis
using a robust technique such as a trimmed mean. The
result is a response field image that may be normalized to
have a maximum value of one. To calibrate subsequent data
images, first apply linear correction and subtract the dark
response, then divide corresponding pixels by the response
field. This process yields relative radiometric calibrated
images.

It may be difficult to obtain uniform illumination. If it is
not possible to obtain a large, truly flat radiance field, then a
small time-invariant flat radiance field can be used to
measure the response field of small areas of the sensor
array, one area at a time, by changing the camera view
angle between sets of images.

Absolute and Reflective Radiometric Calibration

The final step for absolute or reflective radiometric cali-
bration involves multiplying the relative radiometric
image by a scale factor. To obtain the scale factor, capture
and calibrate a reference image that contains an appro-
priate reference target. For absolute calibration, a radi-
ance standard is appropriate, such as a calibrated lamp or
the sun (22), whereas reflective calibration requires a
reflectance standard such as a calibrated target. The
required scale factor is the reciprocal of the average pixel
value that corresponds to the standard in the reference
image. The camera and lens settings must be the same for
all images, including the reference image.

APPLICATIONS OF RADIOMETRIC IMAGING

Object Shape Estimation

Shape from shading estimates the local surface orienta-
tion of Lambertian objects. For such surfaces, the reflected
light is proportional to the cosine of the angle between the
local surface normal and the incident light ray. Assuming
smoothness of the object surface, an under-constrained set
of equations can be solved to estimate the local surface
orientation over the object. Shape from shading requires
relative radiometric calibration to relate the reflected
light values to each other and to estimate the surface
orientation.

Photometric stereo is similar to shape from shading but
uses more than one image. Each image is taken with a
different light source, which provides multiple light mea-
surements at each point. With at least three light measure-
ments, the local surface orientation can be calculated
directly from the light measurements. Photometric stereo
also requires relative radiometric calibration.

Remote Sensing

Remote sensing uses multispectral data to measure proper-
ties of the earth’s surface such as identifying minerals,

Figure 5. Black box black reference.

8 RADIOMETRIC CAMERA CALIBRATION



crops, or other land use. Each material to be identified has a
characteristic spectral reflectance signature. To recognize
particular spectral signatures, the image data must be
radiometric. Both relative and absolute radiometric cali-
brations are used (2) with the ultimate goal of reflective
calibration. Slater et al. (22) discuss absolute calibration
using the sun as a reference light source.

Color Measurement

Color measurement uses reflected light to measure the
color of objects. Color may be expressed in RGB color space
or converted to another color space such as CIE L�a�b�. The
color space conversion assumes a linear (relative radio-
metric) RGB color measurement. The image is calibrated
to produce color measurements using color standards for
reflective calibration. Uneven illumination may also be
corrected (23).

Subpixel Edge Detection

Subpixel edge detection locates edges in images to a fraction
of a pixel position. The technique is based on the profile of
the pixel values across the edge. Because of lens limitations
and the dimensions of the sensor elements, pixel values
close to an edge are illuminated by light from both sides of
the edge. For a straight edge, the subpixel edge location is
the position where the pixel receives equal portions of light
from each side of the edge. If the camera response function
is linear, then the corresponding pixel value is halfway
between the pixel values that represent the regions on
either side of the edge. However, if the camera response
function is nonlinear, then the edge response curve is
distorted, and the subpixel edge location may be incorrect.
Relative radiometric calibration produces linear pixel
values, which are suitable for accurately estimating the
subpixel edge location.

Image Stitching and HDR Imaging

Image stitching (24) combines multiple overlapping
images of a scene to produce a single, large image. It
has applications that range from consumer digital photo-
graphy, in which panoramas are created by stitching
images together to scientific applications in space explora-
tion. Images to be stitched together must be transformed
to have the same exposure and CRF to eliminate bright-
ness steps at the stitch lines.

HDR imaging (14, 15, 21) combines multiple images of
the same scene to provide an increased dynamic range. For
example, one image may be taken with a short exposure
time to expose a sunlit scene of a hillside correctly while
underexposing the interior of a tunnel in the hillside. A
second image may be taken with a long exposure time to
expose the interior of the tunnel correctly while overexpos-
ing the brightly lit hillside. Combining the two images
would provide a HDR image that shows both the hillside
and the interior of the tunnel.

Radiometric calibration is sufficient but not required for
these applications. It is sufficient that all the images have

the same arbitrary monotonic relationship between
scene radiance and pixel values. In practice, images are
transformed to a common brightness scale that may
include an unknown gamma encoding. Comparametric
analysis may be used to derive the transformation from a
collection of spatially-registered images with different
unknown exposures. These images may be the source
images themselves (21, 25).

BIBLIOGRAPHY

1. International Commission on Illumination, International
Lighting Vocabulary, 3rd ed., CIE publication no. 17 (E-1-1),
Vienna, Austria: International Commission on Illumination
(CIE), 1970.

2. M. Dinguirard and P. N. Slater, Calibration of space-multi-
spectral imaging sensors: a review, Remote Sens. Environ., 68:
194–205, 1999.

3. K. D. Mielenz and K. L. Eckerle, Spectrophotometer linearity
testing using the double-aperture method, Appl. Opt., 11:
2294–2303, 1972.

4. J. F. Clare, Correction for nonlinearity in the measurement of
luminous flux and radiant power, Measur. Sci. Technol., 13:
N38–N41, 2002.

5. Y. Ohno, NIST Measurement Services: Photometric Calibra-
tions, Gaithersburg, MD: National Institute of Standards and
Technology, NIST Special Publication 250–37, 1997.

6. G. E. Healey and R. Kondepudy, Radiometric CCD camera
calibration and noise estimation, IEEE Trans. Patt. Anal.
Mach. Intell., 16: 267–276, 1994.

7. B. K. P. Horn, Robot Vision, Cambridge, MA: MIT Press, 1986.

8. N. Asada, A. Amano, and M. Baba, Photometric calibration of
zoom lens systems, Proc. 13th International Conference on
Pattern Recognition, vol. 1, 1996, pp. 186–190.

9. S. F. Ray, Applied Photographic Optics: Imaging Systems for
Photograph, Film and Video, London: Focal Press, 1988.

10. G. J. Klinker, S. A. Shafer and T. Kanade, The measurement of
highlights in color images, Internat. J. Comp. Vis., 2: 7–32,
1988.

11. Y. V. Haeghen, J. M. Naeyaert, I. Lemahieu and W. Philips,
An imaging system with calibrated color image acquisition for
use in dermatology, IEEE Trans. Med. Imag., 19: 722–730,
2000.

12. M. D. Grossberg and S. K. Nayar, Modeling the space of camera
response functions, IEEE Trans. Patt. Anal. Mach. Intelli., 26:
1272–1282, 2004.

13. L. G. C. Hamey, Simultaneous estimation of camera response
function, target reflectance and irradiance values, Proc. of
Digital Image Computing: Techniques and Applications,
2005, pp. 51–58,

14. T. Mitsunaga and S. K. Nayar, Radiometric self calibration,
IEEE Conf. Comp. Vis. Patt. Recog., vol. 7, 1999, pp. 374–380.

15. M. A. Robertson, S. Borman, and R. L. Stevenson, Dynamic
range improvement through multiple exposures, Internat.
Conf. Image Proc., vol. 3, 1999, pp. 159–163.

16. H. Farid, Blind inverse gamma correction, IEEE Trans. Image
Proc., 10: 1428–1433, 2001.

17. K. Shafique and M. Shah, Estimation of the radiometric
response functions of a color camera from differently illumi-
nated images, International Conference on Image Processing,
2004, pp. 2339–2342.

RADIOMETRIC CAMERA CALIBRATION 9



18. M. D. Grossberg and S. K. Nayar, Determining the camera
response from images: what is knowable? IEEE Trans. Pattern
Anal. Mach. Intell., 25: 1455–1467, 2003.

19. radiometric_self_calibration. (2007, October 22), MVTec HAL-
CON Documentation. Available: http://www.mvtec.com/down
load/documentation/reference-8.0/hdevelop/radiometric_self_
calibration.html.

20. C. Manders, C. Aimone, and S. Mann, Camera response func-
tion recovery from different illuminations of identical subject
matter, International Conference on Image Processing, vol. 5,
2004, pp. 2965–2968.

21. S. Mann, Comparametric equations with practical applications
in quantigraphic image processing, IEEE Trans. Image Proc.,
9: 1389–1406, 2000.

22. P. N. Slater, S. F. Biggar, J. M. Palmer, and K. J. Thome,
Unified approach to absolute radiometric calibration in the

solar-reflective range, Remote Sens. Environ., 77: 293–303,
2001.

23. Y.-C. Chang and J. F. Reid, RGB calibration for color image
analysis in machine vision, IEEE Trans. Image Proc., 5: 1414–
1422, 1996.

24. A. Litvinov and Y. Y. Schechner, Radiometric framework for
image mosaicking, J. Optical Soc. Am. A, 22: 839–848, 2005.

25. F. M. Candocia, Simultaneous homographic and compara-
metric alignment of multiple exposure-adjusted pictures of
the same scene, IEEE Trans. Image Proc., 12: 1485–1494, 2003.

LEONARD G.C.HAMEY

Macquarie University
Sydney, Australia

10 RADIOMETRIC CAMERA CALIBRATION



R

RAY TRACING ACCELERATION TECHNIQUES

INTRODUCTION

Today, ray-tracing techniques (RTT) are being used suc-
cessfully in many computer applications (1–4). The most
common applications are static and dynamic scene visua-
lizations, movies, commercials, and video games, wherein
near perfect realism can be achieved. Virtual reality is also
an important field for the application of RTT, not only
for recreational purposes, but also for scientific and
engineering research. Another field in which RTT play a
crucial role is in the study of acoustic and electromagnetic
wave propagation in complex scenarios (5). The deployment
of modern radio communication networks, particularly for
communication or surveillance wireless systems, requires
high-quality RTT that are well fitted to the particular needs
of this field.

The aforementioned RTT applications (including many
others that are not cited or that will be developed in the
future) have a common need for computational efficiency in
the vein of central processing unit time and memory usage.
Often, very complex scenarios are visualized or analyzed in
‘‘real time’’ for many observation points or illumination
sources.

This article is devoted to presenting a tutorial view of
modern RTT. Although all the aforementioned techniques
share the common need for computational efficiency, the
geometry and morphology of scenarios, the nature of the
lightsources, and the phenomenology of wave transmission
and scattering can differ drastically. Each application
requires a partially or completely specialized RTT.

In the next section, we consider the different kinds of
geometries, morphologies, and qualities of illumination
found in ray-tracing problems. Then, we introduce ray-
tracing mechanisms to elucidate the different tasks
involved in successfully applying RTT. The problems
and corresponding complexity of these tasks in typical
scenarios are covered in the section on problems and
complexity of RTT, wherein the two main subproblems
associated with RTT are discussed: flash-points search-
ing, that is, searching for reflection, diffraction, and trans-
mission points, and ray shooting query, which consists of
determining whether a given segment is cut by any entity
of the scene. The two main strategies for addressing the
first subproblem are discussed in the sections on RTT
strategies for the flash-point searching (FPS): the shoot-
ing and bouncing of rays and the solution of the inverse
problem. Several efficient techniques for solving a ray
shooting query are outlined in the section on Algorithms
to reduce the computationalcost.The section on the angu-
lar Z-Buffer algorithm introduces the angular zeta buffer
algorithm as a solution to the inverse problem strategy
and also as a tool for flash-point searching. Finally, the
last section compares the techniques presented in the
previous two sections.

RTT SCENARIOS. DESCRIPTION OF THE GEOMETRY

Thedatathatdescribeascenariocanbedefinedinarasterora
vector format (6). For the raster format, a scenario is divided
into cells (i.e., pixels). For the vector format, the scene is
defined by a set of geometrical entities (i.e., surfaces or
volumes). Scenarios will be defined using the vector format
for RTT applications. Several algorithms are available to
transform raster formatted scenes into vector scenes (7).

Flat-facet models define the geometry of many visuali-
zation applications. Flat-facet models are also employed in
many electromagnetic tools for analyzing radio propaga-
tion or for studying the scattering from complex structures.
This method can approximate an object’s curved surface
using interconnected sets of plane facets and straight
edges. This approach has been used ubiquitously because
of its simplicity. The high number of flat facets, which can
range from the thousands to the millions, required to
approximate a complex curved object can generate artificial
edges (edges between two approximating facets) that are
not present in the real curved object. Figure 1 depicts an
example of a DC 10 aircraft modeled by plane facets. A total
of 2317 facets are required to model the object accurately.

As a result of flat facet-induced error, some computer
graphics applications, especially in the automobile and
aerospace industries, and industries using computer-aided
design software, require the usage of curved surfaces,
which are often in the format of nonuniform rational
b-spline surfaces (NURBS) (7,8). Using NURBS as an
approximating surface set provides an accurate representa-
tionofarealobjectthatemployssignificantlylessinformation
(on the order of a thousand curved surfaces), and mitigates
the inherent problem of flat-facet approximation-induced
artificial edges. Figure 2 shows the same aircraft from Fig.
1,butitismodeledbyNURBSsurfaces.Only168surfacesare
necessary torepresent theobjectaccurately,andnoartificial
edges are generated. The primary disadvantage of the
NURBS representation is that the computational cost of
the ray-tracing is much greater than that of the flat facets
model (5,9,10). The details of this will be discussed later.

RAY-TRACING MECHANISMS

A ray-tracing mechanism is defined as a set of coupling rays
that link a source with an observation point (see Fig. 3). As
illustrated in Fig. 3, these rays can be a direct ray from the
source to the observation point, simple effect rays, double
effect rays, and higher-order effect rays. Simple effect ray-
tracing mechanisms are the reflected rays, the transmitted
rays, and the diffracted rays. Reflected rays are defined as
rays that leave a source, are reflected in a facet, and then
arrive at the observation point. Rays that link the source
and observation point by transmission through a facet are
transmitted rays. Rays that link the source and observation
point by scene edge diffraction are diffracted rays. Double
or higher-order effects are combinations of simple effects.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



For example, a third-order ray can be a reflected-trans-
mitted-reflected ray. The points involved in each ray are
known as flash points. Shadowing is another relevant RTT
mechanism; a ray is shadowed if any segments forming that
ray are occluded by any of the scene facets. When occlusion
occurs, the ray must then be discarded because it does not
contribute to the illumination of the observation point. If
the ray mechanism under analysis includes transmission,
then the transmission facet should not be considered in the
shadowing test, and the contribution of that ray should be
considered for the illumination of the observation point.

Among the aforementioned mechanisms, the most com-
mon are the shadowing and diffuse reflection of rays that
leave illuminating sources. The shadowing discard, as not
visible from an observation point, includes many facets of a
scene. The diffuse reflection permits a visualization of all
points on every surface visible from the observation point.
Transmission through surfaces (transparency), refractions
in volumes, double, triple, and higher-order reflections on
surfaces, may also be required for visualization. For RTT

electromagnetic applications, the number of reflections,
transmissions, and combinations of both is usually high,
which require a different treatment. Reflections are treated
as specular; however, if the surface is not smooth with
respect to the wavelength, part of the energy is reflected
in nonspecular directions. Models can be used to compute
the energy fraction reflected along the specular direction
for ray tracing, but energy reflected along nonspecular
directions is not used in RTT, which is a significant limita-
tion of this technique in electromagnetic applications.
Furthermore, these applications require an accurate eva-
luation of the path length for phase computation, because
illumination is achieved using coherent waves. Coherent
waves can interfere destructively depending on their rela-
tive phase, whereas incoherent waves interfere construc-
tively. Additionally, wedge-edge diffractions (11) play an
important role in these applications because of the broad
angular expansion of the waves after diffraction. This
phenomenon has been demonstrated to supply the illumi-
nation in many areas of a scene.

PROBLEMS AND COMPLEXITY OF RTT

The main problem inherent to RTT involves the fact that a
complex scene is composed of many flat and/or curved facets
illuminated by a source (see Fig. 4). We need to know all the
coupling ray mechanisms that link the source with the
observation point. These rays, as stated in the previous
section, can be the direct ray from the source to the obser-
vation point, simple effect rays, double effect rays, and
higher-order effect rays. Thus for a given problem, two
subproblems must be solved:

1. We must establish the set of all facets that are
involved in each ray mechanism (e.g., in a double
reflection this set is formed by two facets). Further-
more, some additional information of the intersection
point of the ray with its associated facets set must be
obtained (e.g., intersection point coordinates, radii of

Figure 1. Geometrical model of a DC10 plane using 2317 flat
facets.

Figure 2. Geometrical model of a DC10 plane using 168 NURBS
surfaces.

Figure 3. Example of ray-tracing mechanisms on an urban scene
given the position of the source and the observation point. Only
simple (direct, reflected, and diffracted rays) and double (double
reflected, reflected-diffracted, and diffracted-reflected rays) effects
are depicted in the figure for the sake of simplicity.

2 RAY TRACING ACCELERATION TECHNIQUES



curvature, and surface roughness at those points).
This part is known as flash-point searching (FPS) and
is accomplished by using the strategies described in
the next section.

2. We must conduct the shadowing analysis, as des-
cribed in the previous section, to determine whether
the rays contribute to the illumination of the obser-
vation point; if so, they must be discarded. To solve
this problem, we must apply intersection tests to
determine the facets that potentially can occlude a
ray. This problem is known as the ray-shooting
query (RSQ)

The RTT problem is usually solved for many observation
points and for many source positions. Therefore, the level of
complexity is very high.

In the vein of the first subproblem (the FPS), if we have a
scene with Nf facets and Ne edges (see Fig. 4) for a given
source and intersection point, then every facet can be
involved with a reflected or transmitted ray, and every
edge can be involved with diffracted rays. Therefore, they
all must be investigated to determine whether these effects
are present. The computational cost for reflection, transmis-
sion, anddiffraction isonthe orderof 2Nf + Ne. Once a simple
effect is produced, a double effect can appear with any
element in the scene except the one from which
the simple effect originally took place. The computational
cost to determine simple effects is on the order of
ð2N f þNeÞ � ð2N f þNe�1Þ. Following this thought process,
the computational cost to solve the subproblem for an
n-order effect is proportional to ð2N f þNeÞ � ð2N f þ
Ne�1Þ . . . : ð2N f þNe � rþ 1Þ, which can be greater than
the computational capacity of a powerful computer running
for several days (a typical value for Nf is 100,000, whereas 3
or 4 are common values for n in some electromagnetic
applications).

With respect to the RSQ, the number of intersection tests
that a naı̈ve algorithm (an algorithm that exhaustively
checks all facets) requires for determining whether a direct
or simple effect ray is occluded by any facet of the scene is of
the order of Nf. For a n-order effect ray, the number of
intersection tests may become as high as n � Nf. On the
other hand, the number of facet sets that can produce
an n-order effect is N f ðN � 1Þ: . . . ðN f þ 1� nÞ� ðN f Þn.
Considering the previous typical value for Nf, a naı̈ve
procedure that exhaustively checks all the potential facets
sets for a given ray will require unaffordable computer
resources.

Therefore, for both subproblems, efficient algorithms
should be used to reduce the computational cost of ray
tracing. The following sections provide a description of
the most efficient procedures developed therein.

RTT STRATEGIES FOR THE FPS

The complexity of the first subproblem can be reduced
drastically by using modern RTT algorithms. Two main
strategies are implemented in these algorithms:

(a) the shooting and bouncing of rays (SBR) strategy
(11,12)

(b) the solution of the inverse problem (SIP) strategy (13)

The SBR strategy is illustrated in Fig. 5. This technique
is based on shooting many rays in radial directions from
the source. The path followed by each individual ray is
obtained. This technique only considers the contribution
from the reflections in the specular direction. Therefore,
applying this technique, when a ray hits a surface, its path
is redirected following Snell’s law of reflection (14), and if
the surface is penetrable, the law for transmission. The ray
path is followed until it leaves the volume of the scene or
when it has suffered a predetermined number of reflections.
A ray is considered to contribute to the total illumination

Figure 4. Example of an urban scene defined by several thousand
facets. The fields radiated by a Base Station located at the top of a
high building requires the evaluation of tens of thousands of
observation points along the streets of the urban scene.

Figure 5. Example of SBR on a simple urban scene. Many rays
are launched from the position of the source (S), and only the rays
that pass close to the position of the observation point (O) are
considered to illuminate that point.

RAY TRACING ACCELERATION TECHNIQUES 3



strength at a given observation point when it passes near
that point (5,15). The contribution of the ray is added to the
total strength of the illumination at the observation point.
This contribution is computed by considering the distance
from the observation point to the ray and other ray para-
meters, such as the spread factor (which determines the
variation of the amplitude of the ray because of the ray
propagation and depends on the length of the ray path) and
the number and nature of the reflections that the ray has
suffered before approaching the observation point. This
procedure estimates (or extrapolates) the parameters of
the ray that has the same ray path history (e.g., reflected/
transmitted on the same surfaces) and impacts the obser-
vation point. The estimation of the ray parameter is usually
enough to obtain a good approximation of the contribution
intensity of the ray to the total illumination at the observa-
tion point when the illumination is composed of incoherent
waves. The SBR strategy works well for many applications
of visualization of scenes, wherein the ray effect order is not
greater than two or three (and often the simple reflection is
enough to describe the problem). Also, in these applica-
tions, the illumination is incoherent light, which simplifies
the evaluation of the ray contribution because no phase
computation of the field is needed. The phase evaluation
requires a very precise computation of the path length,
which is difficult to obtain using the SBR strategy. In any
case, the SBR needs to shoot an extremely dense beam of
rays from the source point covering the entire spatial angle
that illuminates the scene; typically more than 50,000 rays
are shot.

The philosophy of the SIP strategy is different. Instead
of shooting many rays from the source to find those that
reach the observation point, the SIP attempts to solve the
following inverse problems:

- Determine whether the direct ray connecting the
source and observation points is occluded.

- Find all facets of the scene where reflected (or trans-
mitted) rays can link the source and the observation
points. After identifying these surfaces, the ray paths
of the reflected (or transmitted) rays are obtained.

- Find all edges of the scene that can link the source and
the observation point by diffraction. Determine the
corresponding ray paths.

- Find all sets of facets that can join the source and the
observation points by a second or higher order cou-
pling mechanism and the corresponding ray paths.

The total strength of illumination is computed by adding
the contribution of all ray paths found that link the source
and the observation points. A rays path that connects the
source and the observation points through reflections (or
transmissions) can be computed in two different ways:
using the image method for the case of a flat facets (5) or
by minimizing the total length of the path (16) for curved
facets.

The image method is based on image theory, which states
that, given a source point and a flat facet, the reflected rays
in the facet can be considered as rays radiated by the image
source.The imagesource isa virtual sourcewhose location is

the specular image of the original source with respect to the
plane that contains the flat facet. Once obtained, and given
the observation point and image position, the position of the
reflection point for that observer can be obtained easily as
the intersection of the segment that links the image with the
observation point and the facet. These procedures can be
generalized to obtain multiple reflections, simply by obtain-
ing the nth-order image of the source, and from that, obtain-
ing the complete trajectory of the multiple-reflected ray.
Figure 6 illustrates this procedure.

If curved facets are used to model the scenario, then the
image method cannot be applied. The trajectory of the ray is
obtained using the generalized Fermat’s principle (14).
This principle states that the length of the ray path that
links two points is a minimum. A distance function can be
defined whose value is the length of the ray as a function of
the position of the points over the curved facet. The idea is to
find the point whose distance function is a minimum, which
determines this point as a reflection point. This procedure
has two disadvantages: First, the computational cost asso-
ciated to the minimization process is high, and second, the
possibility of local minima in the distance function can
provide an erroneous solution for the position of the reflec-
tion point. Therefore, this procedure should be implemen-
ted with these points in mind, because no alternative can be
used if curved facets are present in the scenario.

The SIP strategy is more complex and difficult to imple-
ment than the SBR because it solves inverse problems.
However, the SIP is superior to the SBR for problems that
require the illumination phase, diffractions, and high-order
coupling. These requirements occur in many applications of

S

O

R3

R2

R1

I3

I2

I1

z

xy

Figure 6. Example of the ray-tracing of a triple reflection using
image method.

Q1

4 RAY TRACING ACCELERATION TECHNIQUES



RTT for radio-wave propagation and other electromagnetic
analyses, wherein the illumination has a coherent nature
and therefore the phase plays a fundamental role. The SIP
strategy permits a precise computation of all ray para-
meters for rays that arrive at the observation point. The
application of the SBR strategy is easy but less accurate
than the SIP strategy.

ALGORITHMS TO REDUCE THE COMPUTATIONAL COST
ASSOCIATED TO THE RSQ

The computational costs of RSQ have directed research to
develop many powerful algorithms, some of which will be
summarized here. It is important to note that the aim of
these algorithms is to only reduce the cost associated to the
second sub-problem described in the section on the Pro-
blems and complexity of RTT. These algorithms only
address the shadowing problem (which appears in both
SBR and SIP) and their application is the same, indepen-
dent of the ray mechanism. The searching of the ray path
associated to these mechanisms is not improved by these
algorithmic techniques.

RSQ algorithms are usually applied in a preprocessing
phase and in an execution phase (4). In the preprocessing
phase, the input data structure that contains the informa-
tion of the entities (usually facets) that define the geometry
is reorganized. This reorganization groups close and/or
visible geometrical entities together in the data structure,
and/or relations of proximity or visibility are associated to
the appropriate entities.

The simplest RSQ algorithm encloses completely each
entity of the scene in a bounding box, preferably in a
parallelepiped of minimum volume, with sides perpendi-
cular to the Cartesian absolute system chosen to represent
the geometry (see Fig. 7). The bounding box RSQ is com-
patible with other RSQ algorithms. It is performed as
follows: Before checking the intersection of the ray with
the curved facet, by means of a rigorous checking proce-
dure, it is determined if a ray impacts the box. Obviously,
the ray cannot be occluded by the surface if the check is
negative. This surface is not considered in the shadowing
test, which avoids more time-consuming procedures for
checking the possible intersection of the ray with the facet.

Most RSQ algorithms are based on a volumetric spatial
partition (VSP) of the scene (17). After this division, the
scene is split into small subvolumes that contain groups of
scene entities, with some subvolumes potentially empty. To
determine whether a segment is occluded by one or more
scene entities, we only need to check the entities contained
in the subvolumes that the segment crosses. Figure 8 shows
an example of the division of a simple two-dimensional
(2-D) scene in voxels. An example of the ray tracing between
a source (S) and an observation point (O) is depicted in the
figure. It can be noted that only the entities contained in the
voxels that the ray crosses (facets 3, 4, 9, 10, 11) are involved
in the RSQ, which reduces the complexity of this task.

Many efficient RSQ algorithms are based on VSP. The
major difference between these algorithms is the strategy
used for space division, which can significantly impact final
algorithm efficiency. One of those algorithms is binary

space partitioning (BSP). BSP requires the space to be
divided into subvolumes in successive steps such that
each subvolume is split in two halves (binary partitioning).
The BSP has two versions. In the polygon-aligned version,
the space subdivision in two halves is made considering the
regions above and below each flat facet of the scene (17).
This version is not applicable when the scene has curved
surfaces. In the axis-aligned version, a division into two
halves of a subvolume is made by a plane perpendicular to

z

y
x

Figure 7. Example of the bounding box that encloses a curved
surface.

6

5 7

8

10

11
129

2 3

41
O

S

(3)

(2)

(1)

(1) (2) (3)y

x

Figure 8. Example of the application of the SVP for a simple 2-D
scene. The scene is divided in voxels.

RAY TRACING ACCELERATION TECHNIQUES 5



the Cartesian coordinate system that defines the scene (18).
Figure 9 shows the application of the axis-aligned version
of BSP to a simple 2-D scene, and Fig. 10 presents the
associated BSP tree. The subdivision in a level tree is
perpendicular to a coordinate axis; the axes alternate in
consecutive tree levels. Each node of the BSP tree corre-
sponds to a division of a subvolume. When a subvolume is
empty, it is not subdivided, and its tree node becomes a tree
leaf. This tree is very helpful in the RSQ because, to
determine the intersection of a ray segment with one of
the entities of the scene, only the entities that belong to the
low-level subvolumes of the BSP tree that the segment
crosses. For example, in Fig. 10, if a segment joins two
solid points in the subvolume of node DRDL when applying
the BSP, only the entities in the subvolume DRLD must be

checked, obviously reducing considerably the number of
intersection tests to be performed.

Today, one of the most efficient algorithms for solving
the RSQ is the kd-tree algorithm (19), which is similar to
the axis-aligned version of the BSP. The difference between
these algorithms is that, during the preprocessing phase of
the kd-tree, the subvolumes in each binary division do not
necessarily have the same size. The size of the subvolumes
is fitted to give the bigger size to the empty or less populated
subvolume.

Octree Space subdivision is another technique for sol-
ving the RSQ that is similar to the BSP, except that now
each subvolume is split into eight small subvolumes (called
octrees) by the three coordinate planes (20). Other variants
of the VSP are the division of the scene volume into a
uniform grid of equal-sized sub-volumes (21). Simulta-
neously, each subvolume can be split into a new grid of
uniform sub-volumes. This process can be repeated several
times to form hierarchical grids (22).

THE ANGULAR ZBUFFER ALGORITHM (AZB)

The AZB algorithm deserves special attention because it
possesses features markedly different compared with the
techniques presented in the previous section. The main
advantage of this algorithm is that, not only can it be used to
solve the RSQ problem (second subproblem of the RTT), but
also it is especially applicable to the SIP strategy to solve
the FPS (first subproblem) of the RTT. The AZB algorithm
is based on the light buffer technique (23) used in computer
graphic design for solving problems of hidden lines or
surfaces to determine which areas of a given environment
are visible from a point in space (the source).

The algorithm is based on the division of the space
observed from the source point or from the facets in sphe-
rical sectors. These spherical sectors are called anxels, and
they are defined by the spherical coordinates u and f with
respect to the coordinate system defined by the source or by
the facets (see Fig. 11) (17). The number of anxels depends
of the angular increments Du and Df) that define the size of
the anxel:

Nu ¼ 180=Du; Nf ¼ 360=Df

Nanxels ¼ Nu �Nf

The coordinates u and f define a plane called the AZB
plane that contains the objects located in each anxel, and it
identifies the directions where the object is located, taking
the source point or each facet as reference. The AZB plane of
a point (like the source) is easier to obtain than the AZB
plane of a facet.

The 2-D scene with planar facets depicted in Fig. 12
illustrates AZB of the source point. S marks the position of
the source. If the space is divided into eight angular regions,
each region will contain the facets given in Table 1 that
contain the information of the so-called AZB matrix asso-
ciatedwiththesourcepoint.Forexample, inanxel2(angular
margin from 08 to 458), there are only two facets. Then,
to determine whether a direct ray reaches an observation

Figure 9. Example of spatial partition of and scene using the BSP
axis-aligned technique. The scene has only two groups of entities,
which are indicated by the small straight lines in the top and in the
bottom of the scene rectangle.

S

D

DR

DRD

DRU

DLUR

ULD

ULUR
ULUL

ULU

UL

U

DRDR
DRDL

Figure 10. BSP tree for the case of Fig. 6.

6 RAY TRACING ACCELERATION TECHNIQUES



point placed in anxel 1, the RSQ must only be performed for
the two facets contained in that anxel, instead of for the 16
facets that appear in the scene. The facets that do not satisfy
the criterion of the back face culling (5) cannot hide a ray
traced from the source to a given observer, and they are not
stored in the AZB matrix. For this reason, facets 11 and 12
have not been considered in the table for anxel 1.

This ideacanbegeneralizedeasily toa three-dimensional
(3-D) case. If a model composed of planar facets is consi-
dered, the spherical coordinates of the facet vertices are
calculated, which define a window based on the minimum
and maximum u and f coordinates (umin, umax, fmin, fmax)
used to determine the anxel where the facet must be stored.
If the scene contains curved surfaces, then the computation
of this window becomes more complex. A good solution to

this problem consists of enclosing the surface within a
boundingbox.Oncethesurface isenclosed, theeightvertices
of the box can be considered for the creation of the AZB
matrix by considering the spherical coordinates of the
eight vertices as a whole, in a similar way to the vertices
of a facet for the case of planar surfaces (see Fig. 13). All
information that corresponds to the planar and the curved
surfaces is stored in the AZB matrix, which can be consi-
dered as a grid in the coordinates u and f, as depicted in
Fig. 14. Each vertex of an entity is placed in an element of
the grid, and the entity will be contained in the set of
elements of the grid defined by its vertices.

The application of the aforementioned algorithm is only
valid for the analysis of direct ray shadowing because the
source has been taken as a reference. Some modifications
must be performed to apply this algorithm to reflected and
diffracted rays. In reflection, the application of the algo-
rithm is very easy for the planar entities of the scenario, and
subsequently image method for reflection can be applied.
Therefore, an AZB matrix can be built for every image in a
given scenario. The only difference is that the space to be
divided in this case, is only the region where the reflected
ray can appear. The so-called reflection window defines this
region (see Fig. 15).

The definition of the reflection window is more compli-
cated for a curved surface. In this case, all possible direc-
tions of reflection have to be considered with respect to all
points on the surface. To avoid this, an AZB matrix is

Figure 11. Anxel definition as a function of the angular steps Du

and Df.

3
7

8

5 6

1
2
4

9

13
15
14

16

11

10 12

Anxel 2Anxel 3

Anxel 4

Anxel 5 Anxel 8

Anxel 7Anxel 6

Anxel 1

y

x

s

Figure 12. Example of 2-D scenario and additional division in
angular sectors.

Table 1. Facets Stored for Each Anxel of the
Example in Fig. 12

Anxel Facets

1 9, 10
2 10
3 1, 4, 6
4 6, 8
5
6
7 13
8 13, 14

Z

X

Y

Source
φ∆

θ∆ s

s

Figure 13. Angular margins of a surface considering the enclos-
ing box.

RAY TRACING ACCELERATION TECHNIQUES 7



created for each of the eight vertices that define the box that
encloses the surface. The angular margin for the total
reflection window is obtained as the union of the regions
defined by each of the vertices of the box (see Fig. 16). More
details about the complete procedure to create this window
can be found in Reference 24.

In the case of a diffracted ray, a diffraction window
must be created from the properties of this effect. When
a ray arrives at an edge, infinite rays are diffracted,
forming a cone whose vertex is the diffraction point, the
axis is the edge itself, and the angle is the same as that
formed between the edge and the incident ray. This cone
is called ‘‘Keller’s cone’’ (14). The region contained within
this cone defines the diffraction window. New angular
coordinates must be considered to limit this diffraction
window according to these properties. This coordinates
are a and b, defined in Fig. 17. Therefore, analogous to
the reflection case, there is a diffracted window for every
illuminated edge that corresponds to an AZB diffraction
matrix.

COMPARISON BETWEEN THE DIFFERENT ACCELERATION
RTT

In this section, a comparison between the features of dif-
ferent RTT is outlined. The idea is to help the reader select
the most suitable technique for their application. This
comparison is performed considering only the features
related to the RSQ, because only the AZB technique has
been presented to accelerate the FPS.

First of all, it can be stated that the BSP technique is
efficient for 2-D scenes and making the BSP tree is rela-
tively easy. Unfortunately, for 3-D scenarios, this task is
more complex because finding an optimum tree is difficult.
Often, these trees are long and with many broken facets,
and they are not useful for efficient analysis.

The VSP, when applied to large scenes, requires many
voxels to load a low amount of facets per voxel. Further-
more, when the source is far away from the observation
point, the number of voxels that cross the ray is high and,

y

x

180

0
0 360 φ

φ∆

∆θ

θ

Figure 14. Example of the storage of different surfaces in a grid
defined by the AZB matrix.

Reflection
Window

Surface

Image

Figure 15. Reflection window for a planar surface.

Figure 16. Generation of the total angular margin of a surface
from the angular margin of two points. The procedure can be
generalized to the eight vertices of the enclosing parallelepiped.

Face 1α

Face 2

Edge
Diffracted Ray

Source

β

y x
z

Figure 17. Coordinates a and b
_

that define the AZB window for
diffraction.

8 RAY TRACING ACCELERATION TECHNIQUES



therefore, the amount of facets that are considered in the
intersection test is enormous. Fortunately, VSP has the
advantage of a low memory requirement, since it only needs
a matrix that depends only on the scene. In contrast, the
AZB technique generates a matrix depending on the source
(antenna, image, edge, etc.). For higher-order effects, and
when the number of sources is large and the number of
observation points involved in the effect is low, it is not
efficient to create the AZB matrices. In these cases, the SVP
method can be combined with the AZB.

Finally, the AZB technique has the advantage, with
respect to the other methods, of only loading the facets
not shadowed by illumination or eclipse (those that satisfy
the back-face culling criterion as explained in the previous
section), because the space is divided taking the source as a
reference. This method allows a reduction in the number of
facets stored in each matrix.

CONCLUSIONS

A short summary of RTT has been presented. The complex-
ity of the ray tracing has been discussed in the context of its
varied applications to different kinds of scenarios. Because
of this complexity, efficient techniques are necessary for
implementing RTT, and most of this article has been dedi-
cated to describing the most commonly used among these
techniques. Finally, ray-tracing acceleration techniques
have been presented, with special attention dedicated to
AZB because of its features that permit the reduction of the
computational cost associated with the two subproblems
related to the RTT. Readers interested in additional inves-
tigation of this subject are encouraged to read the cited
works as well as References 25–27.

BIBLIOGRAPHY

1. A. S. Glassner (ed.), An Introduction to Ray Tracing, San
Diego, CA: Academic Press, 1989.

2. J.D.Foley,A.vanDam,S.K.Feiner,andJ.F.Hughes,Computer
Graphics. Principles and Practice, 2nd ed., New York: Addison-
Wesley, 1995.

3. A. Watt and M. Watt, Advanced Animation and Rendering
Techniques, Reading, MA: ACM-PRESS, Addison-Wesley,
1992.

4. V. Havran, Heuristic Ray Shooting Algorithms, Dissertation
Thesis, Prague, November 2000.

5. M. F. Catedra and J. P. Arriaga, Cell Planning for Wireless
Communications, Norwood, MA: Artech House, 1999.

6. D. J. Maguire, M. F. Goodchild, and D. W. Rhind, Geographical
Information Systems, Essex, UK: Longman Scientific &
Technical, 1991.

7. L. Piegl and W. Tiller, The NURBS Book, Monographs in Visual
Communication, 2nd ed., New York: Springer-Verlag, 1997.

8. C. de Boor, A Practical Guide to Splines, Berlin: Springer,
1978.

9. G. E. Farin, Curves and Surfaces for Computer Aided Geo-
metric Design, A Practical Guide, 2nd edtion, London: Aca-
demic Press Inc., 1990.

10. A. Efremov, V. Havran, and H. P. Seidel, Robust and numeri-
cally stable Bezier clipping method for ray tracing NURBS

surfaces, Proc. of the 21st Spring Conference on Computer
Graphics SCCG ’05, 2005, pp. 127–135.

11. S. W. Lee, H. Ling, and R. Chou, Ray-tube integration in
shooting and bouncing ray method, Microwave Opt. Technol.
Lett., 1 (8): 286–289, 1988.

12. S. Y. Seidel and T. S. Rappaport, Site-specific propagation
prediction for wireless in building personal communi-
cation system design. IEEE Trans. Vehicu. Technolo. 43 (4):
879–891, 1994.

13. J. W. McKown and R. L. Hamilton, Ray tracing as a design tool
for radio networks, IEEE Network Magazine, November 1991,
pp. 27–30.

14. C. A. Balanis, Advanced Engineering Electgromagnetics, New
York: John Wiley & Sons, 1989.

15. W. Honcharenko, H. L. Bertoni, J. L. Dailing, J. Quian, and H.
D. Yee, Mechanism governing UHF propagation on single
floors in modern office buildings, IEEE Trans. Vehic. Techno.
41 (4): 496–504, 1992.

16. I. González, C. Delgado, F. Saéz de Adana, O. Gutiérrez, and
M. F. Cátedra, A new 3D ray-tracing acceleration technique for
the analysis of propagation and radiation in complex environ-
ments, Applied Computat. Electromag. Soc. J., July 2007, pp.
201–206.

17. M. F. Cátedra, J. Pérez, F. Saez de Adana, and O. Gutiérrez,
Efficient ray-tracing techniques for three-dimensional ana-
lyses of propagation in mobile communications: application
to picocell and microcell scenarios, IEEE Ante. Propag. Mag.,
40 (2): 15–28, 1998.

18. M. Kaplan. Space-tracing: a constant time ray-tracer. Course
notes from tutorial State of the art in image synthesis,
SIGGRAPH 85, 1985, pp. 173–193.

19. J. D. MacDonald and K. S. Booth, Heuristics for ray tracing
using space subdivision, Vis. Comput., 6 (6): 153–65, 1990.

20. A. S. Glassner, Space subdivision for fast ray tracing, IEEE
Comp. Graph. Applicat., 4 (10): 15–22, 1984.

21. A. Fujimoto, C. G. Perrott, and K. Iwata, ARTS: accelerated
ray-tracing system, IEEE Comp. Graph. Applicat. 6 (4): 16–26,
1986.

22. K. S. Klimaszewski and T. W. Sederberg, Faster ray tracing
using adaptive grids, IEEE Comp. Graph. Applicat., 17 (1):
42–51, 1997.

23. E. A. Hines and D. P. Greenberg, The light buffer: a shadow-
testing accelerator, IEEE Comput. Graph. Applicat., 6 (9):
6–16, 1986.

24. I. González, C. Delgado, F. Saez de Adana, O. Gutiérrez, and
M. F. Cátedra. A New 3D Ray-Tracing Acceleration Technique
for the Analysis of Propagation and Radiation in Complex
Environments, Appl. Computat. Electromag. Soc. J., 22 (2):
201–206, 2007.

25. Available: http://objects.povworld.org/3dlinks.html.

26. Available: http://www.siggraph.org.

27. Available: http://www.vision-systems.com.

M. FELIPE CÁTEDRA

IVÁN GONZÁLEZ

FRANCISCO SAEZ DE ADANA

OSCAR GUTIÉRREZ

LORENA LOZANO

Universidad de Alcalá
Alcalá de Henares, Spain

RAY TRACING ACCELERATION TECHNIQUES 9



S

SCALE-SPACE

THE NEED FOR MULTI-SCALE REPRESENTATION
OF IMAGE DATA

An inherent property of real-world objects is that only they
exist as meaningful entities over certain ranges of scale. A
simple example is the concept of a branch of a tree, which
makes sense only at a scale from, say, a few centimeters to
at most a few meters; it is meaningless to discuss the tree
concept at the nanometer or kilometer level. At those
scales, it is more relevant to talk about the molecules
that form the leaves of the tree or the forest in which
the tree grows. When observing such real-world objects
with a camera or an eye, an addition scale problem exists
because of perspective effects. A nearby object will seem
larger in the image space than a distant object, although
the two objects may have the same size in the world. These
facts, that objects in the world appear in different ways
depending on the scale of observation and in addition may
undergo scale changes during an imaging process, have
important implications if one aims to describe them. It
shows that the notion of scale is fundamental to under-
stand both natural and artificial perception.

In computer vision and image analysis, the notion of
scale is essential to design methods for deriving informa-
tion from images and multidimensional signals. To
extract any information from image data, obviously
one must interact with the data in some way, using
some operator or measurement probe. The type of infor-
mation that can be obtained is largely determined by the
relationship between the size of the actual structures in
the data and the size (resolution) of the operators
(probes). Some very fundamental problems in computer
vision and image processing concern what operators to
use, where to apply them, and how large they should be. If
these problems are not addressed appropriately, then the
task of interpreting the operator response can be very
hard. Notably, the scale information required to view the
image data at an appropriate scale may in many cases be
a priori unknown.

The idea behind a scale-space representation of image
data is that in the absence of any prior information about
what scales are appropriate for a given visual task, the
only reasonable approach is to represent the data at multi-
ple scales. Taken to the limit, a scale-space representation
furthermore considers representations at all scales simul-
taneously. Thus, given any input image, this image is
embedded into a one-parameter family of derived signals,
in which fine-scale structures are progressively sup-
pressed. When constructing such a multiscale represen-
tation, a crucial requirement is that the coarse-scale
representations should constitute simplifications of cor-
responding structures at finer scales—they should not be
accidental phenomena created by the smoothing method
intended to suppress fine scale structures. This idea has

been formalized in a variety of ways by different authors,
and a noteworthy coincidence is that similar conclusions
can be obtained from several different starting points. A
fundamental result of scale-space theory is that if general
conditions are imposed on the types of computations that
are to be performed in the earliest stages of visual proces-
sing, then convolution by the Gaussian kernel and its
derivatives provide a canonical class of image operators
with unique properties. The requirements (scale-space
axioms; see below) that specify the uniqueness essentially
are linearity and spatial shift invariance, combined with
different ways of formalizing the notion that ‘‘new struc-
tures should not be created’’ in the transformation from
fine to coarse scales.

In summary, for any two-dimensional (2-D) signal
f : R2!R, its scale-space representation L : R2 � Rþ!R

is defined by (1–6)

Lðx; y; tÞ ¼
Z
ðx;hÞ 2R2

f ðx� x; y� hÞ gðx;h; tÞdxdh (1)

where g : R2 � Rþ!R denotes the Gaussian kernel

gðx; y; tÞ ¼ 1

2pt
e�ðx

2þy2Þ=2t (2)

and the variance t ¼ s2 of this kernel is referred to as the
scale parameter. Equivalently, the scale-space family can
be obtained as the solution of the (linear) diffusion
equation

@tL ¼
1

2
r2L (3)

with initial condition Lð�; �; tÞ ¼ f . Then, based on this
representation, scale-space derivatives at any scale t can
be computed either by differentiating the scale-space
directly or by convolving the original image with Gaussian
derivative kernels:

Lxaybð�; �; tÞ ¼ @xaybLð�; �; tÞ ¼ ð@xaybgð�; �; tÞÞ � f ð�; �Þ (4)

Because scale-space derivatives can also be computed by
convolving the original image with Gaussian derivative
operators gxaybð�; �; tÞ they are also referred to as Gaussian
derivatives. This way of defining derivatives in scale-space
makes the inherently ill-posed problem of computing
image derivatives well-posed, with a close connection to
generalized functions.

For simplicity, we shall here restrict ourselves to 2-D
images. With appropriate generalizations or restrictions,
however, most of these concepts apply in arbitrary dimen-
sions.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



FEATURE DETECTION AT A GIVEN SCALE IN SCALE-SPACE

The set of scale-space derivatives up to order N at a given
image point and a given scale is referred to as the N-jet
(7,8) and corresponds to a truncated Taylor expansion of a
locally smoothed image patch. Together, these derivatives
constitute a basic type of feature within the scale-space
framework and provide a compact characterization of the
local image structure around the image point at that scale.
For N ¼ 2, the 2-jet at a single scale contains the partial
derivatives

ðLx;Ly;Lxx;Lxy;LyyÞ (5)

and directional filters in any direction ðcos w; sin wÞ can be
obtained from

@wL ¼ cosw Lx þ sinw Ly and

@w wL ¼ cos2 wLxx þ 2 cos w sin w Lxy þ sin2w Lyy

(6)

From the five components in the 2-jet, four differential
invariants can be constructed, which are invariant to local
rotations: the gradient magnitude jrLj; the Laplacian
r2L, the determinant of the Hessian det HL, and the
rescaled level curve curvature k̃ðLÞ:

jrLj2 ¼ L2
x þ L2

yx

r2L� Lxx þ Lyyl

detHL ¼ LxxLyy � L2
xy

~kðLÞ ¼ L2
xLyy þ L2

yLxx � 2LxLyLxy

8>>>><
>>>>:

(7)

A theoretically well-founded approach to feature detec-
tion is to use rotationally variant descriptors such as the
N-jet, directional filter banks, or rotationally invariant
differential invariants as primitives for expressing visual
modules. For example, with v denoting the gradient direc-
tion ðLx;LyÞT a differential geometric formulation of edge
detection at a given scale can be expressed from the image
points for which the second-order directional derivative in
the gradient direction Lvv is zero and the third-order
directional derivative Lvvv is negative:

L
˜

vv ¼ L2
x Lxx þ 2 Lx Ly Lxy þ L2

y Lyy ¼ 0;

L
˜

vvv ¼ L3
x Lxxx þ 3 L2

x Ly Lxxy þ 3 Lx L2
y Lxyy þ L3

y Lyyy < 0

8<
:

(8)

A single-scale blob detector that responds to bright and
dark blobs can be expressed from the minima and the
maxima of the Laplacian responser2L. An affine covariant
blob detector that also responds to saddles can be expressed
from the maxima and the minima of the determinant of the
Hessian det HL. A straight forward and affine covariant
corner detector can be expressed from the maxima and
minima of the rescaled level curve curvature k̃ðLÞ. With
p denoting the main eigendirection of the Hessian matrix,
which is parallel to the vector

ðcos w; sin wÞe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Lxx � Lyyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLxx � LyyÞ2 þ 4L2
xy

q
vuut ;

0
B@

signðLxyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Lxx � Lyyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLxx � LyyÞ2 þ 4L2
xy

q
vuut

1
CA ð9Þ

Figure 1. (top left) A gray-level image of size 560�420 pixels, (top right)�(bottom right) Scale-space representations computed at scale
levels t ¼ 1, 8, and 64 (in pixel units).

2 SCALE-SPACE



a differential geometric ridge detectorat a fixed scale can be
expressed from the zero-crossings of the first derivative Lp

in this direction for which the second-order directional
derivative Lpp is negative and in addition jL ppj � jLqqj.
Similarly, valleys can be extracted from the zero-crossings
of Lq that satisfy Lqq� 0 and jLqqj � jL ppj.

FEATURE-CLASSIFICATION AND IMAGE MATCHING FROM
THE MULTISCALE N-IET

By combining N-jet representations at multiple scales,
usually with the scale levels distributed by ratios of two
when the scale parameter is measured in units of the
standard deviation s ¼

ffiffi
t
p

of the Gaussian, we obtain a
multiscale N-jet vector. This descriptor is useful for a vari-
ety of different tasks. For example, the task of texture
classification can be expressed as a classification and/or
clustering problem on the multi-scale N-jet over regions in
the image (9). Methods for stereo matching can be formu-
lated in terms of comparisons of local N-jets (10), either in
terms of explicit search or coarse-to-fine schemes based on
differential corrections within the support region of the
multi-scale N-jet. Moreover, straightforward (rotationally

dependent) methods for image-based object recognition can
expressed in terms of vectors or (global or regional) histo-
grams of multi-scale N-jets (11–14). Methods for rotation-
ally invariant image-based recognition can formulated in
terms of histograms of multiscale vectors of differential
invariants.

WINDOWED IMAGE DESCRIPTORS WITH TWO SCALE
PARAMETERS

The image descriptors considered so far are all dependent
on a single scale parameter t. For certain problems, it is
useful to introduce image descriptors that depend on two
scale parameters. One such descriptor is the second-
moment matrix (structure tensor) defined as

mðx; y; t; sÞ

¼
Z
ðx;hÞ 2R2

�
L2

xðx;h; tÞ Lxðx;h; tÞLyðx;h; tÞ
Lxðx;h; tÞLyðx;h; tÞ L2

yðx;h; tÞ

�

� gðx� x; y� h; sÞdxdh

(10)

where t is a local scale parameter that describes the scale of
differentiation, and s is an integration scale parameter that
describes the extent over which local statistics of deriva-
tives is accumulated. In principle, the formulation of this
descriptor implies a two-parameter variation. In many
practical applications, however, it is common practice to
couple the two scale parameters by a constant factor C such
that s ¼ Ct where C > 1.

One common application of this descriptor is for a multi-
scale version of the Harris corner detector(15), by detecting
positive spatial maxima of the entity

H ¼ detðmÞ � k trace2ðmÞ (11)

where k� 0:04 is a constant. Another common application
is for affine normalization/shape adaptation and will be
developed below. The eigenvalues l1;2 ¼ m11 þ m22�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm11 � m22Þ2 þ 4m2

12

q
and the orientation argðm11 �

Figure 3. Edge detection: (left) A gray-level image of size 180 � 180 pixels, (middle) The negative value of the gradient magnitude jrLj
computed at t ¼ 1. (right) Differential geometric edges at t ¼ 1 with a complementary low threshold

ffiffi
t
p
jrLj � 1 on the gradient magnitude.

Figure 2. The Gaussian kernel and its derivatives up to order two
in the 2-D case.

SCALE-SPACE 3



m22; 2m12Þ of m are also useful for texture segmentation and
for texture classification.

Other commonly used image descriptors that depend an
additional integration scale parameter include regional
histograms obtained using Gaussian window functions
as weights (16).

SCALE-SPACE REPRESENTATION OF COLOR IMAGES

The input images f considered so far have all been assumed
to be scalar gray-level images. For a vision system, however,
color images are often available, and the use of color cues can
increase the robustness and discriminatory power of image
operators. For the purpose of scale-space representation of
color images, an initial red green blue-yellow color opponent
transformation is often advantageous (17). Although the
combination of a scale-space representation of the RGB
channels independently does not necessarily constitute
the best way to define a color scale-space, by performing
the following pretransformation prior to scale-space
smoothing

I ¼ ðRþGþ BÞ=3
U ¼ R�G
V ¼ B� ðRþGÞ=2

8<
: (12)

Gaussian scale-space smoothing, Gaussian derivatives, and
differential invariants can then be defined from the IUV
color channels separately. The luminance channel I will
then reflect mainly, the interaction between reflectance,
illuminance direction, and intensity, whereas the chromatic
channels,Uand V, will largely makethe interactionbetween
illumination color and surface pigmentation more explicit.
This approach has been applied successfully to the tasks of
image feature detection and image-based recognition based
on the N-jet. For example, red-green and blue-yellow color
opponent receptive fields of center-surround type can be
obtained by applying the Laplacianr2L to the chromatic U
and V channels.

An alternative approach to handling colors in scale-
space is provided by the Gaussian color model, in which
the spectral energy distribution EðlÞ over all wave-
lengths l is approximated by the sum of a Gaussian
function and first- and second-order derivatives of
Gaussians (18). In this way a 3-D color space is obtained,
where the channels Ê; Ê l and Ê ll correspond to a sec-
ond-order Taylor expansion of a Gaussian-weighted
spectral energy distribution around a specific wave-
length l0 and smoothed to a fixed spectral scale tl0

. In
practice, this model can be implemented in different
ways. For example, with l0 ¼ 520 nm and tl0

¼ 55 nm,

Figure 4. Differential descriptors for blob detection/interest point detection: (left) A gray level image of size 210� 280 pixels, (middle) The
Laplacian r2L computed at t ¼ 16. (right) The determinant of the Hessian det HL computed at t ¼ 16.

Figure 5. Fixed scale valley detection: (left) A gray-level image of size 180� 180 pixels, (middle) The negative value of the valley strength
measure Lqq computed at t¼ 4. (right) Differential geometric valleys detected at t¼ 4 using a complementary low threshold on tjLqqj �1 and
then overlayed on a bright copy of the original gray-level image.

4 SCALE-SPACE



the Gaussian color model has been approximated by the
following color space transformation (19):

Ê

Êl

Êll

0
BB@

1
CCA ¼

�0:019 0:048 0:011

0:019 0 �0:016

0:047 �0:052 0

0
B@

1
CA

0:621 0:113 0:194

0:297 0:563 0:049

�0:009 0:027 1:105

0
B@

1
CA

R

G

B

0
B@

1
CA ð13Þ

using the CIE 1931 XYZ color basis as an intermediate
representation. In analogy with the IUV color space,
spatio-spectral Gaussian derivatives and differential
invariants can then be defined by applying Gaussian
smoothing and Gaussian derivatives to the channels in
this representation. This approach has been applied
for constructing approximations of color invariants
assuming specific models for illumination and/or sur-
face properties (20).

AFFINE SCALE-SPACE, AFFINE IMAGE DEFORMATIONS,
AND AFFINE COVARIANCE

The regular linear scale-space representation obtained by
smoothing with the rotationally symmetric Gaussian ker-
nel is closed under translations, rotations, and rescalings.
This property means that image transformations within
this group can be captured perfectly by regular scale-space
operators. To obtain a scale-space representation that is
closed under affine transformations, a natural generaliza-
tion is to consider an affine scale-space(3) obtained by the
convolution with Gaussian kernels with their shapes deter-
mined by positive definite covariance matrices S:

g x; Stð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det St

p e�xT
S
�1
t x=2 (14)

where x ¼ ðx; yÞT: This affine scale-space combined with
directional derivatives can serve as a model for oriented
elongated filter banks. Consider two input images f and f 0

that are related by an affine transformation x0 ¼ Ax such
that f 0ðAxÞ ¼ f ðxÞ. Then, the affine scale-space represen-
tations L and L0 of f and f 0 are related according to
L0ðx0; S

0Þ ¼ Lðx; SÞ where S
0 ¼ ASAT. A second-moment

matrix [Equation 10] defined from an affine scale-space
with covariance matrices St and Ss transforms according to

m0ðAx; ASt AT;ASs ATÞ ¼ A�Tmðx; St;SsÞA�1 (15)

If we can determine covariance matrices St and Ss such
that mðx; St;SsÞ ¼ c1S

�1
t ¼ c2S

�1
s for some constants c1

and c2, we obtain a fixed-point that is preserved under
affine transformations. This property has been used to
express affine invariant interest point operators, affine

invariant stereo matching, as well as affine invariant
texture segmentation and texture recognition methods.
(21–25). In practice, affine invariants at a given image
point can (up to an unknown scale factor and a free
rotation angle) be accomplished by shape adaptation,
that is by estimating the second-moment matrix m using
a rotationally symmetric scale-space and then iteratively
by choosing the covariance matrices

P
t and

P
s propor-

tional to m�1 until the fixed-point has been reached or
equivalently by warping the input image by linear trans-
formations proportional to A ¼ m1=2 until the second-
moment matrix is sufficiently close to a constant times
the unit matrix.

AUTOMATIC SCALE SELECTION AND SCALE INVARIANT
IMAGE DESCRIPTORS

Although the scale-space theory presented so far pro-
vides a well-founded framework for expressing visual
operations at multiple scales, it does not address the
problem of how to select locally appropriate scales for
additional analysis. Whereas the problem of finding ‘‘the
best scales’’ for handling a given data set may be regarded
as intractable unless more information is available, in
many situations a mechanism is required to generate
hypotheses about interesting scales for additional ana-
lysis. Specifically, because the size of and the distance to
objects may vary in real-life applications, a need exists to
define scale invariant image descriptors. A general meth-
odology (28) for generating hypotheses about interesting
scale levels is by studying the evolution properties over
scales of (possibly non-linear) combinations of g-normal-
ized derivatives defined by

@x ¼ tg=2@x and @h ¼ tg=2@y (16)

where g is a free parameter to be determined for the task
at hand. Specifically, scale levels can be selected from the
scales at which g-normalized derivative expressions
assume local extrema with respect to scale. A general
rationale for this statement is that under a scaling trans-
formation ðx0; y0Þ ¼ ðsx; syÞ for some scaling factor s with
f 0ðsx; syÞ ¼ f ðx; yÞ, if follows that for matching scale
levels t0 ¼ s2t the m:th order normalized derivatives at
corresponding scales t0 ¼ s2t in scale-space transform
according to

L0x0mðx
0; y0; t0Þ ¼ smðg�1ÞLxmðx; y; tÞ (17)

Hence, for any differential expression that can be
expressed as a homogeneous polynomial in terms of g-
normalized derivatives, it follows that local extrema over
scales will be preserved under scaling transformations. In
other words, if a g-normalized differential entity DnormL
assumes an extremum over scales at the point ðx0; y0; t0Þ
in scale-space, then under a rescaling transformation an
extremum in the transformed differential invariant is
assumed at ðsx0; sy0; s2t0Þ, in the scale-space L0 of the
transformed image. This general property means that if
we can find an expression based on g-normalized Gaussian

SCALE-SPACE 5



derivatives that assumes a local extremum over scales for
a suitable set of image structures, then we can define a
scale invariant feature detector and/or image descriptor
by computing it at the scale at which the local extremum
over scales is assumed.

The scale estimate t̂ obtained from the scale selection
step and can therefore be used for tuning or for guiding
other early visual processes to be truly scale invariant
(3,26) . With the incorporation of a mechanism for auto-
matic scale selection, scale-tuned visual modules in a
vision system can handle objects of different sizes as
well as objects with different distances to the camera in
the same manner. These requirements are essential for
any vision system intended to function robustly in a
complex dynamic world.

By studying the g-normalized derivative response to a
one-dimensional sine wave f ðxÞ ¼ sinðoxÞ, for which the
maximum over scales in the m:th order derivative is
assumed at scale

smax ¼
ffiffiffiffiffiffiffiffiffiffi
gml

2p

r

(measured in units of the standard deviation of the Gaus-
sian) proportional to the wavelength l ¼ 2p=o of the signal,
one can see that a qualitative similarity exists between this
construction and a peak in a local Fourier transform.
However, also two major difference exist: (1) no window
size is needed compute the Fourier transform and (2) this
approach applies also to nonlinear differential expressions.

Figure 6. Affine normalization by shape adaptation in affine scale-space: (left) A gray-level image with an oblique view of a book cover.
(middle) The result of effine normalization of a central image patch using iterative shape adaptation with affine transformations proportional
to A ¼ m1=2 (right) An example of computing differential geometric descriptors, here the Laplacian r2L at scale t ¼ 2, in the affinely
normalized frame.

Figure 7. Automatic scale selection from local extrema over scales of normalized derivatives: (top row) Subwindows showing different
details from Fig. 4 with image structures of different size, (bottom row) Scale-space signatures of the scale normalized determinant of the
Hessian det HnormL accumulated at the centre of each window. The essential property of the scale dependency of these scale normalized
differential entities is that the scale at which a local extremum over scales is assumed is proportional to the size of the corresponding image
structure in the image domain. The horizontal axis on these graphs represent effective scale, which corresponds roughly to the logarithm of
the scale parameter: t� log2t.

6 SCALE-SPACE



Specifically, if we choose g¼1, then under scaling trans-
formations the magnitudes of normalized scale-space
derivatives in Equation (17) are equal at corresponding
points in scale-space. For g 6¼ 1 they are related according to
a (known) power of the scaling factor (see also Ref. 27 for
earlier work on receptive field responses under similarity
transformations).

SCALE INVARIANT FEATURE DETECTORS WITH
INTERGRATED SCALE SELECTION MECHANISM

The most commonly used entity for automatic scale selec-
tion is the scale normalized Laplacian (3,26)

r2
norm L ¼ tðLxx þ LyyÞ (18)

with g ¼ 1. A general motivation for the usefulness of this
descriptor for general purpose scale selection can be
obtained from the fact that the scale-space representation
at any point can be decomposed into an integral of Lapla-
cian responses over scales:

Lðx; y; t0Þ ¼ �ðLðx; y; 1Þ � Lðx; y; t0ÞÞ

¼ �
Z 1

t¼t0

@tLðx; y; tÞdt

¼ � 1
2

R1
t¼t0
r2Lðx; y; tÞdt (19)

After a reparameterization of the scale parameter into
effective scale t ¼ log t, we obtain:

Lðx; y; t0Þ ¼ � 1
2

R1
t¼t0

tr2Lðx; y; tÞ dt
t

¼ �
R1

t¼t0
r2

normLðx; y; tÞdt (20)

By detecting the scale at which the normalized Laplacian
assumes its positive maximum or negative minimum over
scales, we determine the scale for which the image in a
scale-normalized bandpass sense contains the maximum
amount of information.

Another motivation for using the scale-normalized
Laplacian operator for early scale selection is that it serves
as an excellent blob detector. For any (possibly nonlinear) g-
normalized differential expression DnormL, let us first
define a scale-space maximum (minimum) as a point for
which the g-normalized differential expression assumes a
maximum (minimum) over both space and scale. Then, we
obtain a straightforward blob detector with automatic scale
selection that responds to dark and bright blobs, from the
scale-space maxima and the scale-space minima of r2

normL
Another blob detector with automatic scale selection that
also responds to saddles can be defined from the scale-space
maxima and minima of the scale-normalized determinant
of the Hessian (26):

detH normL ¼ t2ðLxxLyy � L2
xyÞ (21)

For both scale invariant blob detectors, the selected scale
reflects the size of the blob. For the purpose of scale
invariance, it is, however, not necessary to use the
same entity to determine spatial interest points as to
determine interesting scales for those points. An alter-
native approach to scale interest point detection is to use
the Harris operator in Equation (11) to determine spatial
interest points and the scale normalized Laplacian for
determining the scales at these points (23). Affine covar-
iant interest points can in turn be obtained by combining
any of these three interest point operators with subse-
quent affine shape adaptation following Equation (15)
combined with a determination of the remaining free
rotation angle using, for example, the orientation of the
image gradient.

The free parameter g in the g-normalized derivative
concept can be related to the dimensionality of the type of
image features to be detected or to a normalization of the
Gaussian derivative kernels to constant Lp�norm over
scales. For blob-like image descriptors, such as the inter-
est points described above, g ¼ 1 is a good choice and
corresponds to L1�normalization. For other types of
image structures, such as thin edges, elongated ridges,
or rounded corners, other values will be preferred. For
example, for the problem of edge detection, g ¼ 1/2 is a
useful choice to capture the width of diffuse edges,
whereas for the purpose of ridge detection, g ¼ 3/4 is
preferable for tuning the scale levels to the width of an
elongated ridge (28–30).

SCALE-SPACE AXIOMS

Besides its practical use for computer vision problems, the
scale-space representation satisfies several theoretic prop-
erties that define it as a unique form of multiscale image
representation: The linear scale-space representation is
obtained from linear and shift-invariant transformations.
Moreover, the Gaussian kernels are positive and satisfy the
semi-group property

gð�; �; t1Þ � gð�; �; t2Þ ¼ gð�; �; t1 þ t2Þ (22)

which implies that any coarse-scale representation can be
computed from any fine-scale representation using a simi-
lar transformation as in the transformation from the ori-
ginal image

Lð�; �; t2Þ ¼ gð�; t2 � t1Þ � Lð�; �; t1Þ (23)

In one dimension, Gaussian smoothing implies that new
local extrema or new zero-crossings cannot be created with
increasing scales (1,3). In 2-D and higher dimensions scale-
space representation obeys nonenhancement of local
extrema (causality), which implies that the value at a local
maximum is guaranteed not to increase while the vaiue at a
local minimum is guaranteed to not decrease (2,3,31). The
regular linear scale-space is closed under translations, rota-
tions and scaling transformations. In fact, it can be shown
that Gaussian smoothing arises uniquely for different

SCALE-SPACE 7



subsets of combinations of these special and highly useful
properties. For partial views of the history of scale-space
axiomatics,please refer toRefs. 31 and 32 and the references
therein.

Concerning the topic of automatic scale selection, it can
be shown that, the notion of g-normalized derivatives in
Equation (16) devlops necessity from the requirement that
local extrema over scales should be preserved under scaling
transformations (26).

RELATIONS TO BIOLOGIC, VISION

Interestingly, the results of this computationally motivated
analysis of early visual operations are in qualitative agree-
ment with current knowledge about biologic vision. Neu-
rophysiologic studies have shown that receptive field
profiles exists in the mammalian retina and the visual
cortex that can be well modeled by Gaussian derivative
operators (33,34).

Figure 8. Scale-invariant feature detection: (top) Original gray-level image, (bottom left) The 1000 strongest scale-space extrema of the
scale normalized Laplacianr2

norm. (bottom right) The 1000 strongest scale-space extrema of the scale normalized determinant of the Hessian
detHnormL. Each feature is displayed by a circle with its size proportional to the detection scale. In addition, the color of the circle indicates
the type of image feature: red for dark features, blue for bright features, and green for saddle-like features.

Figure 9. Affine covariant image features: (left) Original gray-level image. (right) The result of applying affine shape adaptation to the 500
strongest scale-space extrema of the scale normalized determinant of the Hessian detHnormL (resulting in 384 features for which the iterative
scheme converged). Each feature is displayed by an ellipse with its size proportional to the detection scale and the shape determined from a
linear transformation A determined from a second-moment matrix m. In addition, the color of the ellipse indicates the type of image feature:
red for dark features, blue for bright features, and green for saddle-like features.

8 SCALE-SPACE



SUMMARY AND OUTLOOK

Scale-space theory provides a well-founded framework for
modeling image structures at multiple scales, and the out-
put from the scale-space representation can be used as
input to a large variety of visual modules. Visual operations
such as feature detection, feature classification, stereo
matching, motion estimation, shape cues, and image-based
recognition can be expressed directly in terms of (possibly
nonlinear) combinations of Gaussian derivatives at multi-
ple scales. In this sense, scale-space representation can
serve as a basis for early vision.

The set of early uncommitted operations in a vision
system, which perform scale-space smoothing, compute
Gaussian derivatives at multiple scales, and combine these
into differential invariants or other types of general pur-
pose features to be used as input to later stage visual
processes, is often referred to as a visual front-end.

Pyramid representation is a predecessor to scale-space
representation, constructed by simultaneously smoothing
and subsampling a given signal (35,36) In this way, com-
putationally highly efficient algorithms can be obtained. A
problem with pyramid representations, how-ever, is that
it is algorithmically harder to relate structures at differ-
ent scales, due to the discrete nature of the scale levels. In
a scale-space representation, the existence of a continuous
scale parameter makes it conceptually much easier to
express this deep structure. For features defined as
zero-crossings of differential invariants, the implicit func-
tion theorem defines trajectories directly across scales,
and at those scales where bifurcations occur, the local
behavior can be modeled by singularity theory. Never-
theless, pyramids are frequently used to express compu-
tationally more efficient approximations to different
scale-space algorithms.

Extensions of linear scale-space theory concern the for-
mulation of nonlinear scale-space concepts more committed
to specific purposes (37,38). Strong relations exist between
scale-space theory and wavelets, although these two
notions of multiscale representations have been developed
from somewhat different premises.

BIBLIOGRAPHY

1. A. P. Witkin, Scale-space filtering, Proc. 8th Int. Joint Conf.
Art. Intell., 1983, pp. 1019–1022.

2. J. J. Koenderink, The structure of images, Biological Cyber-
netics 50: 363–370, 1984.

3. T. Lindeberg, Scale-Space Theory in Computer Vision, Dor-
drecht: Kluwer/Springer, 1994.

4. J. Sporring, M. Nielsen, L. Florack and P. Johansen, eds.
Gaussian Scale-Space Theory: Proc. PhD School on Scale-
Space Theory, Dordrecht: Kluwer/Springer, 1996.

5. L. M. J. Florack, Image Structure, Dorarecht: Kluwer/
Springer, 1997.

6. B. t. H. Romeny, Front-End Vision and Multi-Scale Image
Analysis, Dordrecht: Kluwer/Springer, 2003.

7. J. J. Koenderink, and A. J. van Doorn, Representation of local
geometry in the visual system, Biological Cybernetics 55: 367–
375, 1987.

8. J. J. Koenderink, and A. J. van Doorn, Generic neighborhood
operations, IEEE Trans. Pattern Anal. Machine Intell.
14(6): 597–605, 1992.

9. T. Leung, and J. Malik, Representing and recognizing the
visual appearance of materials using three-dimensional tex-
tons’, Int. J. of Computer Vision, 43(1): 29–44, 2001.

10. D. G. Jones, and J. Malik, A computational framework for
determining stereo correspondences from a set of linear spatial
filters, Proc. Eur. Conf. Comp. Vis., 1992, pp. 395–410.

11. C. Schmid, and R. Mohr, Local grayvalue invariants for image
retrieval, IEEE Trans. Pattern Anal. Machine Intell. 19(5):
530–535, 1997.

12. B. Schiele, and J. Crowley, Recognition without correspon-
dence using multidimensional receptive field histograms,
Int. J. of Computer Vision, 36(1): 31–50, 2000.

13. D. Lowe, Distinctive image features from scale-invariant
keypoints, Int. J. of Computer Vision, 60: (2), 91–110,
2004.

14. H. Bay, T. Tuytelaars, and Luc van Gool SURF: speeded up
robust features, Proc. European Conf. on Computer Vision,
Springer LNCS 3951, I: 404–417, 2006.

15. C. Harris, and M. Stevens, A combined corner and edge
detector, Proc. Alvey Workshop on Visual Motion, 1988, pp.
156–162.

16. J. J. Koenderink and A. J. van Doorn, The structure of locally
orderless images, Int. J. of Computer Vision, 31 (2): 159–168,
1999.

17. D. Hall, V. de Verdiere, and J. Crowley, Object recognition
using coloured receptive fields, Proc. European Conf. on Com-
puter Vision, Springer LNCS 1842, I: 164–177, 2000.

18. J. J. Koenderink, and A. Kappers, Colour space, unpublished
lecture notes, Utrecht University, The Netherlands.

19. J. M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders,
and A. Dev, Color and scale: The spatial structure of color
images. Proc. European Conf. on Computer Vision, Springer
LNCS 1842, I: 331–341, 2000.

20. J. M Geusebroek, R. van den Boomgaard, A. W. M. Smeulders,
and H. Geerts, Color invariance, IEEE Patt. Anal. Mach. Intell,
23: 12; 1338–1346, 2001.

21. T. Lindeberg, and J. Garding, Shape-adapted smoothing in
estimation of 3-D depth cues from affine distortions of local 2-
D structure, Image and Vision Computing 15: 415–434,
1997.

22. A. Baumberg, Reliable feature matching across widely sepa-
rated views Proc. Comp. Vision Patt. Recogn., I: 1774–1781,
2000.

23. K. Mikolaiczyk, and C. Schmid, Scale and affine invariant
interest point detectors’, Int.J. Comp. Vision, 60: 1,63–86, 2004.

24. F. Schaffahtzky, and A. Zisserman, Viewpoint invariant tex-
ture matching and wide baseline stereo, Proc. Int. Conf. Comp.
Vis., 2: 636–644, 2001.

25. S. Lazebnik, C. Schmid, and J. Ponce, Affine-invariant local
descriptors and neighbourhood statistics for texture recogni-
tion, Proc. Int. Conf. Comp. Vis., I: 649–655, 2003.

26. T. Lindeberg, Feature detection with automatic scale selection,
Int. J. of Computer Vision 30(2): 77–116, 1998.

27. D. J. Field, Relations between the statistics of natural images
and the response properties of cortical cells, J. Opt. Soc. Am.4:
2379–2394, 1987.

28. T. Lindeberg, Edge detection and ridge detection with auto-
matic scale selection, Int. J. of Computer Vision, 30 (2): 117–
154, 1998.

SCALE-SPACE 9



29. A. F. Frangi, W. J. Niessen, R. M. Hoogeveen, T. van Walsum,
M. A. Viergever, Model-based detection of tubular structures in
3D images, IEEE Trans. Med. Imaging, 18(10): 946–956, 2000.

30. K. Krissian, G. Malandain, N. Avache, R. Vaillant and Y.
Trousset, Model-based detection of tubular structures in 3D
images, Comput. Vis. Image Underst., 80(2): 130–171, 2000.

31. T. Lindeberg, On the axiomatic foundations of linear scale-
space: Combining semi-group structure with causailty vs. scale
invariance, In: J. Sporring et al. (eds.) Gaussian Scale-Space
Theory, pp. Kluwer/Springer, 1997, 75–98.

32. J. Weickert, Linear scale space has first been proposed in
Japan, J. Math. Imaging and Vision, 10(3): 237–252, 1999.

33. R. A. Young, The Gaussian derivative model for spatial vision,
Spatial Vision 2: 273–293, 1987.

34. G. C. DeAngelis, I. Ohzawa and R. D. Freeman, Receptive field
dynamics in the central visual pathways, Trends Neurosc. 18
(10): 451–457, 1995.

35. P. J. Burt, and E. H. Adelson, The Laplacian pyramid as a
compact image code, IEEE Trans. Comm. 9:4, 532–540,
1983.

36. J. Crowley, and A. C. Parker, A representation for shape based
on peaks and ridges in the difference of low-pass transform,
IEEE Trans. Pattern Anal. Machine Intell. 6(2): 156–170, 1984.

37. B. t. H. Romeny, ed. Geometry-Driven Diffusion in Computer
Vision, Dordrecht: Kluwer/Springer, 1997.

38. J. Weickert, Anisotropic Diffusion in Image Processing, Ger-
many: Teubner-Verlag, 1998.

TONY LINDEBERG

KTH (Royal Institute
of Technology)

Stockholm, Sweden

10 SCALE-SPACE



B

BEHAVIORAL SCIENCES AND COMPUTING

This article presents an overview of behavioral science
research on human–computer interactions. The use of
high-speed digital computers in homes, schools, and the
workplace has been the impetus for thousands of research
studies in the behavioral sciences since the 1950s. As
computers have become an increasingly important part
of daily life, more studies in the behavioral sciences have
been directed at human–computer use. Research continues
to proliferate, in part, because rapid technological advances
continue to lead to the development of new products and
applications from which emerge new forms of human–
computer interactions. Examples include engaging in
social interactions through electronic mail, chat, and dis-
cussion groups; using commercial websites for shopping
and banking; using Internet resources and multimedia
curriculum packages to learn in schools and at home; using
handheld computers for work and personal life; collaborat-
ing in computer-supported shared workspaces; tele-
commuting via the Internet; engaging in one–many or
many–many synchronous and asynchronous communica-
tions; and performing in ‘‘virtual’’ environments. Given the
sheer quantity of empirical investigations in behavioral
sciences computing research, the reader should appreciate
the highly selective nature of this article. Even the reading
list of current journals and books included at the end of
this article is highly selective.

We present behavioral science computing research
according to the following three categories: (1) antece-
dent-consequence effects, (2) model building, and (3) indi-
vidual-social perspectives. The first category, antecedent-
consequent effects, asks questions such as follows: How
does variability in human abilities, traits, and prior per-
formance affect computer use? How does use of computers
affect variability in human abilities, traits, and subsequent
performance? The second category, model building, con-
sists of research on the nature of human abilities and
performance using metaphors from computer science and
related fields. Here, the behavioral scientist is primarily
interested in understanding the nature of human beings
but uses computer metaphors as a basis for describing and
explaining human behavior. Model building can also start
with assumptions about the nature of human beings, for
example, limitations on human attention or types of moti-
vation that serve as the basis for the development of new
products and applications for human use. In this case, the
behavioral scientist is mainly interested in product devel-
opment but may investigate actual use. Such data may
serve to modify the original assumptions about human
performance, which in turn lead to refinements in the
product. The third category, individual-social perspective,
investigates the effects of increased access to and accep-
tance of computers in everyday life on human social rela-
tions. Questions addressed here are those such as follows:
Do computers serve to isolate or connect persons to one

another? What are the implications of lack of either access
or acceptance of computers in modern cultures? These
three categories of work in behavioral science computing
are not mutually exclusive as the boundaries between any
two of them are not fixed and firm.

ANTECEDENT-CONSEQUENCE RESEARCH

Personality

Research conducted since the 1970s has sought to
identify what type of person is likely to use computers
and related information technologies, succeed in learning
about these technologies and pursue careers that deal with
the development and testing of computer products. Most
recently a great deal of attention has been given to human
behavior on the Internet. Personality factors have been
shown to be relevant in defining Internet behavior. Studies
indicate that extroversion-introversion, shyness, anxiety,
and neuroticism are related to computer use. Extroverts
are outer directed, sociable, enjoy stimulation, and are
generally regarded to be ‘‘people oriented’’ in contrast to
introverts who are inner directed, reflective, quiet, and
socially reserved. The degree of extroversion-introversion
is related to many aspects of everyday life, including
vocational choice, performance in work groups, and inter-
personal functioning. Early studies suggested that heavy
computer users tended to be introverts, and programming
ability, in particular, was found to be associated with
introversion. Recent studies reveal less relationship
between introversion-extroversion and degree of computer
use or related factors such as computer anxiety, positive
attitudes toward computers, and programming aptitude or
achievement. However, the decision to pursue a career in
computer-related fields still shows some association with
introversion.

Neuroticism is a tendency to worry, to be anxious and
moody, and to evidence negative emotions and outlooks.
Studies of undergraduate students and of individuals using
computers in work settings have found that neuroticism is
associated with anxiety about computers and negative
attitudes toward computers. Neurotic individuals tend to
be low users of computers, with the exception of the Inter-
net, where there is a positive correlation between neuroti-
cism and some online behavior. Neurotic people are more
likely than others to engage in chat and discussion groups
and to seek addresses of other people online. It is possible
that this use of the Internet is mediated by loneliness, so
that as neurotic people alienate others through their nega-
tive behaviors, they begin to feel lonely and then seek
relationships online (1). Anxious people are less likely,
however, to use the Internet for information searches
and may find the many hyperlinks and obscure organiza-
tion disturbing. Shyness, a specific type of anxiety related
to social situations, makes it difficult for individuals to
interact with others and to create social ties. Shy people

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



are more likely to engage in social discourse online than
they are offline and can form online relationships more
easily. There is a danger that as they engage in social
discourse online, shy people may become even less likely
to interact with people offline. There has been some indica-
tion, however, that shy people who engage in online rela-
tionships may become less shy in their offline relationships
(2).

As people spend time on the Internet instead of in the
real world, behavioral scientists are concerned that they
will become more isolated and will lose crucial social sup-
port. Several studies support this view, finding that Inter-
net use is associated with reduced social networks,
loneliness, and difficulties in the family and at work.
Caplan and others suggest that these consequences may
result from existing psychosocial conditions such as depres-
sion, low self-efficacy, and negative self-appraisals, which
make some people susceptible to feelings of loneliness,
guilt, and other negative outcomes, so that significant
time spent online becomes problematic for them but not
for others (3). There is some evidence of positive effects of
Internet use: Involvement in chat sessions can decrease
loneliness and depression in individuals while increasing
their self-esteem, sense of belonging, and perceived avail-
ability of people whom they could confide in or could pro-
vide material aid (4). However, Caplan cautions that the
unnatural quality of online communication, with its
increased anonymity and poor social cues, makes it a
poor substitute for face-to-face relationships, and that
this new context for communication is one that behavioral
scientists are just beginning to understand.

As computer technologies become more integral to
many aspects of life, it is increasingly important to be
able to use them effectively. This is difficult for indi-
viduals who have anxiety about technology that makes
them excessively cautious near computers. Exposure to
computers and training in computer use can decrease
this anxiety, particularly if the training takes place in a
relaxed setting in small groups with a user-friendly inter-
face, provides both demonstrations and written instruc-
tions, and includes important learning strategies that help
to integrate new understanding with what is already
known (5). However, some individuals evidence such a
high degree of anxiety about computer use that they
have been termed ‘‘computerphobics.’’ Here the fear of
computers is intense and irrational, and exposure to com-
puters may cause distinct signs of agitation including
trembling, facial expressions of distress, and physical or
communicative withdrawal. In extreme cases, a general-
ized anxiety reaction to all forms of technology termed
‘‘technophobia’’ has been observed. Personality styles differ
when individuals with such phobias are compared with
those who are simply uncomfortable with computer use.
Individuals with great anxiety about computers have
personality characteristics of low problem-solving persis-
tence and unwillingness to seek help from others (6). The
training methods mentioned above are less likely to benefit
individuals who evidence severe computerphobia or very
high levels of neuroticism. Intensive intervention efforts
are probably necessary because the anxiety about compu-
ters is related to a personality pattern marked by anxiety

in general rather than an isolated fear of computers
exacerbated by lack of experience with technology.

Gender

Studies over many years have found that gender is an
important factor in human–computer interaction. Gender
differences occur in virtually every area of computing
including occupational tasks, games, online interaction,
and programming, with computer use and expertise gen-
erally higher in males than in females, although recent
studies indicate that the gender gap in use has closed and
in expertise is narrowing. This change is especially notice-
able in the schools and should become more apparent in
the workforce over time. In the case of the Internet, males
and females have a similar overall level of use, but they
differ in their patterns of use. Males are found to more
often engage in information gathering and entertainment
tasks, and women spend more time in communication
functions, seeking social interaction online (7). Females
use e-mail more than males and enjoy it more, and they
find the Internet more useful overall for social interaction.
These differences emerge early. Girls and boys conceptua-
lize computers differently, with boys more likely to view
computers as toys, meant for recreation and fun, and to be
interested in them as machines, whereas girls view com-
puters as tools to accomplish something they want to do,
especially in regard to social interaction (8). This may be
due, in part, to differences in gender role identity, an aspect
of personality that is related to, but not completely deter-
mined by, biological sex. Gender role identity is one’s sense
of self as masculine and/or feminine. Both men and women
have traits that are stereotypically viewed as masculine
(assertiveness, for example) and traits that are stereo-
typically viewed as feminine (nurturance, for example)
and often see themselves as possessing both masculine
and feminine traits. Computer use differs between people
with a high masculine gender role identity and those with
a high feminine gender role identity (9). Some narrowing
of the gender gap in computer use may be due to changing
views of gender roles.

Age

Mead et al. (10) reviewed several consequences of compu-
ter use for older adults, including increased social interac-
tion and mental stimulation, increased self-esteem, and
improvements in life satisfaction. They noted, however,
that older adults are less likely to use computers than
younger adults and are less likely to own computers;
have greater difficulty learning how to use technology;
and face particular challenges adapting to the computer-
based technologies they encounter in situations that at one
time involved personal interactions, such as automated
check-out lines and ATM machines. They also make more
mistakes and take more time to complete computer-based
tasks. In view of these factors, Mead et al. suggested
psychologists apply insights gained from studying the
effects of age on cognition toward the development of
appropriate training and computer interfaces for older
adults. Such interfaces could provide more clear indi-
cations to the user of previously followed hyperlinks, for

2 BEHAVIORAL SCIENCES AND COMPUTING



example, to compensate for failures in episodic memory,
and employ cursors with larger activation areas to com-
pensate for reduced motor control.

Aptitudes

Intelligence or aptitude factors are also predictors of com-
puter use. In fact, spatial ability, mathematical problem-
solving skills, and understanding of logic may be better
than personality factors as predictors. A study of learning
styles, visualization ability, and user preferences found
that high visualizers performed better than low visualizers
and thought computer systems were easier to use than did
low visualizers (11). High visualization ability is often
related to spatial and mathematical ability, which in
turn has been related to computer use, positive attitudes
about computers, and educational achievement in compu-
ter courses. Others have found that, like cognitive abilities,
the amount of prior experience using computers for activ-
ities such as game playing or writing is a better predictor of
attitudes about computers than personality characteris-
tics. This may be because people who have more positive
attitudes toward computers are therefore more likely to
use them. However, training studies with people who
have negative views of computers reveal that certain types
of exposure to computers improve attitudes and lead to
increased computer use. Several researchers have sug-
gested that attitudes may play an intermediary role in
computer use, facilitating experiences with computers,
which in turn enhance knowledge and skills and the
likelihood of increased use. Some have suggested that
attitudes are especially important in relation to user appli-
cations that require little or no special computing skills,
whereas cognitive abilities and practical skills may play a
more important role in determining computer activities
such as programming and design.

Attitudes

Attitudes about self-use of computers and attitudes about
the impact of computers on society have been investigated.
Research on attitudes about self-use and comfort level with
computers presumes that cognitive, affective, and beha-
vioral components of an attitude are each implicated in a
person’s reaction to computers. That is, the person may
believe that computers will hinder or enhance performance
on some task or job (a cognitive component), the person may
enjoy computer use or may experience anxiety (affective
components), and the individual may approach or avoid
computer experiences (behavioral component). In each
case, a person’s attitude about him- or herself in interaction
with computers is the focus of the analysis. Attitudes are an
important mediator between personality factors and cog-
nitive ability factors and actual computer use.

Individuals’ attitudes with respect to the impact of
computers on society vary. Some people believe that
computers are dehumanizing, reduce human–human
interaction, and pose a threat to society. Others view
computers as liberating and enhancing the development
of humans within society. These attitudes about computers
and society can influence the individual’s own behavior
with computers, but they also have potential influence

on individuals’ views of computer use by others and their
attitudes toward technological change in a range of
settings.

Numerous studies have shown that anxiety about
using computers is negatively related to amount of experi-
ence with computers and level of confidence in human–
computer interaction. As discussed, people who show
anxiety as a general personality trait evidence more
computer use anxiety. In addition, anxiety about mathe-
matics and a belief that computers have a negative influ-
ence on society are related to computer anxiety. Thus, both
types of attitudes—attitudes about one’s own computer
use and attitudes about the impact of computers on
society—contribute to computer anxieties (12).

With training, adult students’ attitudes about compu-
ters become more positive. That is, attitudes about one’s
own interaction with computers and attitudes about the
influence of computers on society at large generally become
more positive as a result of instruction through computer
courses in educational settings and of specific training in
a variety of work settings. Figure 1 presents a general
model of individual differences in computer use. The model
indicates that attitudes are affected by personality and
cognitive factors, and that they in turn can affect computer
use either directly or by influencing values and expecta-
tions. The model also indicates that computer use can
influence attitudes toward computers and personality fac-
tors such as loneliness.

Influence of Gender on Attitudes. Gender differences in
attitudes toward computer use, although becoming less
pronounced, appear relatively early, during the elementary
school years, and persist into adulthood. Male students
have more positive attitudes than female students, express
greater interest in computers and greater confidence in
their own abilities, and view computers as having greater
utility in society than females at nearly every age level. One
study revealed a moderate difference between males and
females in their personal anxiety about using computers,
with women displaying greater levels than men, and hold-
ing more negative views than men about the influence of
computers on society. The findings of this study suggest
that gender differences in computer-related behavior are
due in part to differences in anxiety. When anxiety about
computers was controlled, there were few differences
between males and female’s in computer behavior: It seems
that anxiety mediates some gender differences in compu-
ter-related behavior (13). Other studies confirm that gen-
der differences in computer behavior seem to be due to
attitudinal and experiential factors. Compared with men,
women report greater anxiety about computer use, lower
confidence about their ability to use the computer, and
lower levels of liking computer work. However, when inves-
tigators control the degree to which tasks are viewed as
masculine or feminine and/or control differences in prior
experiences with computers, gender differences in atti-
tudes are no longer significant (14).

Middle-school students differ by gender in their reac-
tions to multimedia learning interfaces and may have
different sources for intrinsic satisfaction when using com-
puters. Boys particularly enjoy control over computers and

BEHAVIORAL SCIENCES AND COMPUTING 3



look for navigational assistance within computer games,
whereas girls prefer calmer games that include writing and
ask for assistance rather than try to find navigational
controls (15). This indicates that gender differences in
attitudes about computers may be influenced in part
through experience with gender-preferred computer inter-
faces, and that attitudes of girls toward computer use
improve when gender-specific attention is paid to the
design of the interface and the type of tasks presented.
The differences by gender in patterns of Internet use by
adults support this conclusion. When individuals are free to
determine what type of tasks they do online, gender differ-
ences in overall use disappear, although males are more
likely to gather information and seek entertainment and
women are more likely to interact socially.

Other studies suggest that gender differences in atti-
tudes toward computers may vary with the nature of the
task. In one study, college students performed simple or
more complex computer tasks. Men and women did not
differ in attitudes following the simple tasks. However, the
men reported a greater sense of self-efficacy (such as feel-
ings of effective problem-solving and control) than the
women after completing the complex tasks (16). Such find-
ings suggest that, in addition to anxiety, a lack of confi-
dence affects women more than men in the area of computer
use. Training does not always reduce these differences:
Although people generally become less anxious about
computer use over the course of training, in some cases
women become more anxious (17). This increase in anxiety
may occur even though women report a concomitant
increase in a sense of enjoyment with computers as training
progressed. With training, both men and women have more
positive social attitudes toward computers and perceive
computers to be more like humans and less like machines.

To summarize the state of information on attitudes
about computer use thus far, results suggest that attitudes

about one’s own computer use are related to personal
anxiety about computer use as well as to math anxiety.
These relationships are more likely to occur in women than
in men. However, when women have more computer
experiences, the relationship between anxiety and compu-
ter use is diminished and the gender difference is often not
observed. Several attitudinal factors seem to be involved in
computer use, including math anxiety, feelings of self-
efficacy and confidence, personal enjoyment, and positive
views of the usefulness of computers for society.

Workplace

Computers are used in a variety of ways in organizations,
and computing attitudes and skills can affect both the daily
tasks that must be performed in a routine manner and the
ability of companies to remain efficient and competitive.
The degree of success of computer systems in the workplace
is often attributed to the attitudes of the employees who are
end users of Inter- and intranet-based applications for
communications and workflow, shared workspaces, finan-
cial applications, database management systems, data
analysis software, and applications for producing Web
resources and graphics. A study of factors influencing
attitudes about computing technologies and acceptance
of particular technologies showed that three factors were
most important in determining user acceptance behaviors:
perceived advantages to using the technology for improving
job performance, perceived ease of use, and degree of enjoy-
ment in using the technology. Anticipated organizational
support, including technical support as well as higher
management encouragement and resource allocation,
had a significant effect on perceived advantage toward
improving job performance, so is an additional factor in
determining whether users make use of particular systems
(18). The study also showed that the perceived potential for

Analytical 
Mathematical
Visual-Spatial

Cognitive Ability Factors:

Sociability
Neuroticism

Gender role identity
Psychosocial health

Personality Factors:

Self-efficacy
Affective reactions

Views of computers
and society

Attitudes:

Quantity and quality
Training and support

Problems and successes

Computer Use:

Advantages of use
Ease of use

Level of support
Anticipated enjoyment

and success

Expectations and
Perceptions:

Figure 1. General model of individual differences in computer use.

4 BEHAVIORAL SCIENCES AND COMPUTING



improving job performance was influenced by the extent to
which the system was observed as consistent with existing
needs, values, and past experiences of potential adopters.
Overall, however, this and other research shows that the
perception that systems will improve job performance is by
far the strongest predictor of anticipated use.

Research on the attitudes of employees toward com-
puters in the workplace reveals that, for the most part,
computers are observed as having a positive effect on jobs,
making jobs more interesting, and/or increasing employee
effectiveness. Employees who report negative attitudes cite
increased job complexity with the use of computers instead
of increased effectiveness. They also report negative atti-
tudes about the necessity for additional training and refer
to a reduction in their feelings of competence. These mixed
feelings may be related to their job satisfaction attitudes.
When confusion and frustration about computer systems
increase, job satisfaction decreases. The negative feelings
about their own ability to use computers effectively lead
employees to express greater dissatisfaction with the job as
a whole (19).

Work-related computer problems can increase stress.
Problems with computer systems (e.g., downtime, difficul-
ties with access, lack of familiarity with software, etc.) often
result in an increase of overall work time, a perception
of increased workload and pressure, and less feeling of
control over the job. In these situations, computers can
be viewed as a detrimental force in the workplace even
when users have a generally positive attitude toward
them. There is some indication that individuals differ in
their reactions to problems with computers, and that these
differences play a role in views of the utility of computers on
the job. Older staff who feel threatened by computers
tend to complain more about time pressures and health-
related issues related to computer use, whereas same-age
peers who view computers more neutrally or positively
report few problems (20).

Computer-supported collaborative work systems can
facilitate group projects by allowing people to work together
from different places and different times. Kunzer et al. (21)
discuss guidelines for their effective design and use. For a
system to be effective, it is important that its functions are
transparent so that it is highly usable, and that it provides
an information space structured for specific tasks for a
particular group. Web-based portals that include these
workspaces can greatly enhance collaborative activities.
However, systems that are not highly usable and do not
consider the unique requirements of the user are not well
accepted and therefore not used. For example, inadequate
consideration of user preferences regarding software appli-
cations can make it impossible for users to work with
familiar sets of tools. Users then are likely to find other
ways to collaborate either offline or in separate, more poorly
coordinated applications. Successful shared workspace
systems provide basic features such as a document compo-
nent that allows various file formats with revision control
and audit trails; calendars with search capabilities,
schedule-conflict notification, and priority settings;
threaded discussions with attachments, e-mail notifica-
tion, and specification of read rights; and contact, project,
and workflow management components. Finally, the most

usable shared workspaces can be customized to different
cooperation scenarios.

Differences in computer anxiety and negative attitudes
about the social impact of computers are more likely to
occur in some occupations than in others. Individuals in
professional and managerial positions generally evidence
more positive attitudes toward computers. Particular
aspects of some jobs may influence individuals’ attitudes
and account for some of these differences. Medcof (22) found
that the relative amounts of computing and noncomputing
tasks, the job characteristics (such as skill variety, level of
significance of assigned tasks, and autonomy), and the
cognitive demand (e.g., task complexity) of the computing
tasks interact with one another to influence attitudes
toward computer use. When job characteristics are low
and the computing components of the job also have low
cognitive demand on the user (as in the case of data entry in
a clerical job), attitudes toward computer use are negative,
and the job is viewed as increasingly negative as the
proportion of time spent on the low cognitive demand
task increases. If a larger proportion of the work time is
spent on a high cognitive demand task involving computer
use, attitudes toward computer use and toward the job
will be more positive.

Medcof’s findings suggest that under some conditions
job quality is reduced when computers are used to fulfill
assigned tasks, although such job degradation can be mini-
mized or avoided. Specifically, when jobs involve the use
of computers for tasks that have low levels of cognitive
challenge and require a narrow range of skills, little auto-
nomy, and little opportunity for interaction with others,
attitudes toward computer use, and toward the job, are
negative. But varying types of noncomputing tasks within
the job (increased autonomy or social interaction in non-
computing tasks, for example) reduces the negative impact;
inclusion of more challenging cognitive tasks as part of
the computing assignment of the job is especially effective
in reducing negative views of computer use. The attitudes
about computers in the workplace therefore depend on
the relative degree of computer use in the entire job, the
cognitive challenge involved in that use, and the type of
noncomputing activities.

Older workers tend to use computers in the workplace
less often than younger workers, and researchers have
found that attitudes may be implicated in this difference.
As older workers tend to have more negative attitudes
toward computers than younger workers or those with
less seniority, they use them less. Negative attitudes
toward computer use and computer anxiety are better
predictors of computer use than age alone (23).

MODEL BUILDING

Cognitive Processes

Modifications in theories of human behavior have been
both the cause and the effect of research in behavioral
science computing. A ‘‘cognitive’’ revolution in psychology
occurred during the 1950s and 1960s, in which the human
mind became the focus of study. A general approach called
information processing, inspired by computer science,

BEHAVIORAL SCIENCES AND COMPUTING 5



became dominant in the behavioral sciences during this
time period. Attempts to model the flow of information from
input-stimulation through output-behavior have included
considerations of human attention, perception, cognition,
memory, and, more recently, human emotional reactions
and motivation. This general approach has become a stan-
dard model that is still in wide use.

Cognitive science’s interest in computer technologies
stems also from the potential to implement models and
theories of human cognition as computer systems, such as
Newell and Simon’s General Problem Solver, Chomsky’s
transformational grammar, and Anderson’s Atomic Com-
ponents of Thought (ACT). ACT represents many compo-
nents and activities of human cognition, including
procedural knowledge, declarative knowledge, proposi-
tions, spreading activation, problem solving, and learning.
One benefit to implementing models of human thought on
computers is that the process of developing a computer
model constrains theorists to be precise about their the-
ories, making it easier to test and then refine them. As more
has been learned about the human brain’s ability to process
many inputs and operations simultaneously, cognitive
theorists have developed connectionist computer models
made up of large networks of interconnected computer
processors, each network comprising many interconnected
nodes. The overall arrangement of interconnected nodes
allows the system to organize concepts and relationships
among them, simulating the human mental structure of
knowledge in which single nodes may contain little mean-
ing but meaning emerges in the pattern of connections.
These and other implementations of psychological theories
show how the interactions between computer scientists and
behavioral scientists have informed understandings of
human cognition.

Other recent theoretical developments include a focus
on the social, contextual, and constructive aspects of
human cognition and behavior. From this perspective,
human cognition is viewed as socially situated, collabora-
tive, and jointly constructed. Although these developments
have coincided with shifts from stand-alone computers to
networks and Internet-based systems that feature shared
workspaces, it would be erroneous to attribute these
changes in theoretical models and explanation solely to
changes in available technology. Instead, many of today’s
behavioral scientists base their theories on approaches
developed by early twentieth-century scholars such as
Piaget and Vygotsky. Here the focus shifts from examining
individual cognitive processing to evaluating how people
work within a dynamic interplay of social factors, tech-
nological factors, and individual attitudes and experi-
ences to solve problems and learn (24). This perspective
encourages the development of systems that provide
mechanisms for people to scaffold other learners with sup-
ports that can be strengthened or faded based on the
learner’s understanding. The shift in views of human learn-
ing from knowledge transfer to knowledge co-construction
is evident in the evolution of products to support learning,
from early computer-assisted instruction (CAI) systems,
to intelligent tutoring systems (ITS), to learning from
hypertext, to computer-supported collaborative learning
(CSCL). An important principle in this evolution is that

individuals need the motivation and capacity to be more
actively in charge of their own learning.

Human Factors

Human factors is a branch of the behavioral sciences that
attempts to optimize human performance in the context of
a system that has been designed to achieve an objective or
purpose. A general model of human performance includes
the human, the activity being performed, and the context
(25). In the area of human–computer interactions, human
factors researchers investigate such matters as optimal
workstation design (e.g., to minimize soft tissue and joint
disorders); the perceptual and cognitive processes involved
in using software interfaces; computer access for persons
with disabilities such as visual impairments; and charac-
teristics of textual displays that influence reading com-
prehension. An important principle in human factors
research is that improvements to the system are limited
if considered apart from interaction with actual users. This
emphasis on contextual design is compatible with the
ethnographic movement in psychology that focuses on
very detailed observation of behavior in real situations
(24). A human-factors analysis of human learning from
hypermedia is presented next to illustrate this general
approach.

Hypermedia is a method of creating and accessing non-
linear text, images, video, and audio resources. Information
in hypermedia is organized as a network of electronic
documents, each a self-contained segment of text or other
interlinked media. Content is elaborated by providing
bridges to various source collections and libraries. Links
among resources can be based on a variety of relations,
such as background information, examples, graphical
representations, further explanations, and related topics.
Hypermedia is intended to allow users to actively explore
knowledge, selecting which portions of an electronic
knowledge base to examine. However, following links
through multiple resources can pose problems when users
become disoriented and anxious, not knowing where they
are and where they are going (26). Human factors research
has been applied to the hypermedia environments of digi-
tal libraries, where users search and examine large-scale
databases with hypermedia tools.

Rapp et al. (27) suggest that cognitive psychology’s
understanding of human cognition should be considered
during the design of digital libraries. Hypermedia struc-
tures can be fashioned with an awareness of processes and
limitations in human text comprehension, mental repre-
sentations, spatial cognition, learning, memory, and other
aspects of cognitive functioning. Digital libraries can in
turn provide real-world environments to test and evaluate
theories of human information processing. Understandings
of both hypermedia and cognition can be informed through
an iterative process of research and evaluation, where
hypotheses about cognitive processes are developed and
experiments within the hypermedia are conducted. Results
are then evaluated, prompting revisions to hypermedia
sources and interfaces, and generating implications for
cognitive theory. Questions that arise during the process
can be used to evaluate and improve the organization and

6 BEHAVIORAL SCIENCES AND COMPUTING



interfaces in digital library collections. For example, how
might the multiple sources of audio, video, and textual
information in digital libraries be organized to promote
more elaborated, integrated, and better encoded mental
representations? Can the goal-directed, active exploration
and search behaviors implicit in hypermedia generate
the multiple cues and conceptual links that cognitive
science has found best enhance memory formation and
later retrieval?

The Superbook hypertext project at Bellcore was an
early example of how the iterative process of human-factor
analysis and system revision prompted modifications in
original and subsequent designs before improvements over
traditional text presentations were observed. Dillon (28)
developed a framework of reader–document interaction
that hypertext designers used to ensure usability from
the learner’s perspective. The framework, intended to be
an approximate representation of cognition and behavior
central to reading and information processing, consists of
four interactive elements: (1) a task model that deals
with the user’s needs and uses for the material; (2) an
information model that provides a model of the information
space; (3) a set of manipulation skills and facilities that
support physical use of the materials; and (4) a processor
that represents the cognitive and perceptual processing
involved in reading words and sentences. This model pre-
dicts that the users’ acts of reading will vary with their
needs and knowledge of the structure of the environment
that contains textual information, in addition to their gen-
eral ability to ‘‘read’’ (i.e., acquire a representation that
approximates the author’s intention via perceptual and
cognitive processes). Research comparing learning from
hypertext versus traditional linear text has not yielded a
consistent pattern of results (29). User-oriented models
such as Dillon’s enable designers to increase the yield
from hypertext versus traditional text environments.

Virtual environments provide a rich setting for human–
computer interaction where input and output devices are
adapted to the human senses. Individuals using virtual
reality systems are immersed into a virtual world that
provides authentic visual, acoustic, and tactile informa-
tion. The systems employ interface devices such as data
gloves that track movement and recognize gestures, stereo-
scopic visualizers that render scenes for each eye in real
time, headphones that provide all characteristics of realis-
tic sound, and head and eye tracking technologies. Users
navigate the world by walking or even flying through it,
and they can change scale so they effectively shrink to look
at smaller structures in more detail. Krapichler et al. (30)
present a virtual medical imaging system that allows phy-
sicians to interactively inspect all relevant internal and
external areas of a structure such as a tumor from any
angle. In these and similar applications, care is taken to
ensure that both movement through the virtual environ-
ment and feedback from it are natural and intuitive.

The emerging field of affective computing applies
human factors research to the emotional interaction
between users and their computers. As people seek mean-
ing and patterns in their interactions, they have a tendency
to respond to computers as though they were people,
perceiving that that they have human attributes and

personalities, and experiencing appropriate emotions
when flattered or ignored. For example, when a computer’s
voice is gendered, people respond according to gender-
stereotypic roles, rating the female-voiced computer as
more knowledgeable about love and the male voice as
more knowledgeable about technical subjects, and con-
forming to the computer’s suggestions if they fall within
its gender-specific area of expertise (31). Picard and Klein
lead a team of behavioral scientists who explore this
willingness to ascribe personality to computers and to
interact emotionally with them. They devise systems
that can detect human emotions, better understand human
intentions, and respond to signs of frustration and other
negative emotions with expressions of comfort and support,
so that users are better able to meet their needs and achieve
their objectives (32). The development and implemen-
tation of products that make use of affective computing
systems provide behavioral theorists a rich area for ongoing
study.

INDIVIDUAL-SOCIAL PERSPECTIVE

In a previous section we presented an overview of research
on gender differences, attitudes toward the impact of com-
puters on society, and the use of computers in the work-
place. Each of these issues relates to the effects of
computers on human social relations. One prevalent
perception is that as people spend time on the Internet
instead of engaging with people face-to-face they will
become more isolated, lonely, and depressed, and that as
the kinds of social discourse available online to them may be
less meaningful and fulfilling, they could lose social sup-
port. As we discussed, increased Internet use may at times
be a result of loneliness, not a cause of it. The emerging
research about this concern is inconclusive, making this an
important area for further research. Kling (33) lists addi-
tional social controversies about the computerization of
society: class divisions in society; human safety and critical
computer systems; democratization; the structure of labor
markets; health; education; military security; computer
literacy; and privacy and encryption. These controversies
have yet to be resolved and are still being studied by
behavioral scientists.

Psychologists explore the influence of computers on
relationships among people, not only in terms of their
online behaviors and interactions, but also their per-
ceptions of themselves and one another. Power among
relationships is sometimes renegotiated because of dif-
fering attitudes and competencies with technology. One
researcher proposed that relatively lower computer
expertise among fathers in contrast to their sons, and a
sense of dependence on their sons for technical support,
can change the family dynamic and emasculate fathers,
reducing perceptions of their strength and of their own
sense of competence (34).

Computer-Mediated Communication

Much research on computer–human interactions is devel-
oped in the context of using computers to communicate
with other people. Computer-mediated communication

BEHAVIORAL SCIENCES AND COMPUTING 7



(CMC) is a broad term that covers forms of communication
including e-mail, listservs, discussion groups, chat,
instant messaging, and videoconferencing. In comparison
with face-to-face communication, CMC has fewer social
and nonverbal cues but allows people to communicate
easily from different places and different times. Compu-
ter-supported collaborative work systems we discussed in
regard to computers in the workplace are examples of
specialized CMC systems that facilitate collaborative
group work. They include many forms of communication,
allowing both synchronous and asynchronous interac-
tions among multiple participants. In the cases of chat,
instant messaging, and videoconferencing, people com-
municate at the same time but may be in different loca-
tions. E-mail, listservs, and discussion groups have the
added benefits and difficulties of asynchronous commu-
nication. The reduction in social and nonverbal cues in
these forms of communication can be problematic, as
people misinterpret messages that are not carefully con-
structed and may respond negatively. It has been found
that these problems diminish with experience. As users
adapt to the medium and create means of improving com-
munication, and become more adept using linguistic cues,
differences between CMC and face-to-face communica-
tion may be lessened. Social norms and conventions
within groups serve to reduce individual variability
across formats rendering CMC similar to face-to-face
communication, especially in established organizations.
For example, messages from superiors receive more
attention than messages from coworkers or from subordi-
nates.

Research on learning in the workplace and in educa-
tional institutions has examined CMC’s ability to support
the transfer of knowledge (an ‘‘instructional’’ perspective)
and the social, co-construction of knowledge (a ‘‘conver-
sational’’ perspective) (35). Grabe and Grabe (36) discuss
how CMC can change the role of the teacher, effectively
decentering interactions so that students feel freer to
communicate and to become more involved in their own
learning. CMC results in more diverse participation and a
greater number of interactions among students when
compared with traditional classroom discussion charac-
terized by longer periods of talking by the teacher and
shorter, less complex individual responses from students.
With CMC, instructors can focus on observing and facil-
itating student learning and can intervene to help with
scaffolding or direct instruction as needed. Structure
provided by the teacher during CMC learning is impor-
tant to help create a social presence and to encourage
participation. Grabe and Grabe suggest that teachers
assume responsibility for managing the discussion by
defining the overall purpose of the discussion, specifying
roles of participants, establishing expectations, and
responding to negative or passive behaviors. In a study
of interaction in an online graduate course, increased
structure led to more interaction and increased dialogue
(37).

Another potential area for discussion, computer-sup-
ported collaborative learning, is somewhat beyond the
scope of this article but is included in our reading list.

Access

Behavioral scientists are interested in what inequities exist
in access to technology, how the inequities developed, and
what can be done to reduce them. Until recently, the
number of computers in schools was significantly lower
for poorer communities. These data are changing, and
the differences are diminishing. However, socioeconomic
factors continue to be powerful predictors for whether
people have computers or Internet access in their homes.
The National Telecommunications and Information
Administration (NTIA) (38) reported that, although Inter-
net use is increasing dramatically for Americans of all
incomes, education levels, ages, and races, many inequities
remain. Individuals in high-income households are much
more likely to be computer and Internet users than those in
low-income households (over 80% for the highest income
households; 25% for the lowest income households). Age
and level of education are also powerful predictors: Com-
puter and Internet use is higher among those who are
younger and those who are more highly educated. In addi-
tion, people with mental or physical disabilities are less
likely than others to use computers or the Internet.

Many inequities in access to computers are declining.
According to the NTIA’s report, rates of use are rising much
more rapidly among poorer, less educated, and elderly
people, the very groups who have been most disadvantaged.
The report attributes this development to the lowering cost
of computer technology, and to the expanding use of the
Internet at schools, work, and libraries, which makes these
resources available to people who do not own computers.

Journals

Applied Ergonomics

Behavior and Information Technology

Behavior Research Methods, Instruments and Computers

Computers in Human Behavior

CyberPsychology and Behavior

Ergonomics Abstracts

Hypertext and Cognition

Interacting with Computers

International Journal of Human Computer Interaction

International Journal of Human Computer Studies

Journal of Educational Computing Research

Journal of Educational Multimedia and Hypermedia

Journal of Occupational and Organizational Psychology

Books

E. Barrett (ed.), Sociomedia, Multimedia, Hypermedia, and the
Social Construction of Knowledge. Cambridge, MA: The MIT Press,
1992.

C. Cook, Computers and the Collaborative Experience of Learning.
London: Routledge, 1994.

S. J. Derry, M. Siegel, J. Stampen, and the STEP Research Group,
The STEP system for collaborative case-based teacher education:
Design, evaluation and future directions, in Proceedings of Com-
puter Support for Collaborative Learning (CSCL) 2002. Mahwah,
NJ: Lawrence Erlbaum Associates, 2002, pp. 209–216.

8 BEHAVIORAL SCIENCES AND COMPUTING



D. H. Jonassen, K. Peck, and B. G. Wilson, Learning With Tech-
nology: A Constructivist Perspective. Columbus, OH: Merrill/Pre-
ntice-Hall, 1999.

D. H. Jonassen (ed.), Handbook of Research on Educational Com-
munications and Technology, 2nd ed. Mahwah, NJ: Lawrence
Erlbaum Associates, 2004.

T. Koschmann (ed.), CSCL: Theory and Practice of an Emerging
Paradigm. Mahwah, NJ: Lawrence Erlbaum Associates, 1996.

J. A. Oravec, Virtual Individual, Virtual Groups: Human Dimen-
sions of Groupware and Computer Networking. Melbourne, Aus-
tralia: Cambridge University Press, 1996.

D. Reinking, M. McKenna, L. Labbo and R. Kieffer (eds.),
Handbook of Literacy and Technology: Transformations in a
Post-typographic World. Mahwah, NJ: Lawrence Erlbaum Associ-
ates, 1998.

S. Vosniadou, E. D. Corte, R. Glaser and H. Mandl, International
Perspectives on the Design of Technology-Supported Learning
Environments. Mahwah, NJ: Lawrence Erlbaum Associates, 1996.

B. B. Wasson, S. Ludvigsen, and U. Hoppe (eds.), Designing for
Change in Networked Learning Environments: Proceedings of the
International Conference on Computer Support for Collaborative
Learning 2003. Boston, MA: Kluwer Academic, 2003.

BIBLIOGRAPHY

1. Y. Amichai-Hamburger and E. Ben-Artzi, Loneliness and
Internet use, Comput. Hum. Behav., 19(1): 71–80, 2000.

2. L. D. Roberts, L. M. Smith, and C. M. Polluck, ‘‘U r a lot bolder
on the net’’: Shyness and Internet use, in W. R. Crozier(ed.),
Shyness: Development, Consolidation and Change. New York:
Routledge Farmer: 121–138, 2000.

3. S. E. Caplan, Problematic Internet use and psychosocial well-
being: Development of a theory-based cognitive-behavioral
measurement instrument, Comput. Hum. Behav., 18(5):
553–575, 2002.

4. E. H. Shaw and L. M. Gant, Users divided? Exploring the
gender gap in Internet use, CyberPsychol. Behav., 5(6):
517–527, 2002.

5. B. Wilson, Redressing the anxiety imbalance: Computer-
phobia and educators, Behav. Inform. Technol., 18(6):
445–453, 1999.

6. M. Weil,L. D. Rosen, and S. E. Wugalter, The etiology of
computerphobia, Comput. Hum. Behav., 6(4): 361–379, 1990.

7. L.A. Jackson, K.S. Ervin, and P.D. Gardner, Gender and the
Internet: Women communicating and men searching, Sex
Roles, 44(5/6): 363–379, 2001.

8. L. M. Miller, H. Schweingruber, and C. L. Brandenberg, Middle
school students’ technology practices and preferences: Re-
examining gender differences, J. Educ. Multimedia Hyperme-
dia, 10(2): 125–140, 2001.

9. A. M. Colley, M. T. Gale, and T. A. Harris, Effects of gender
role identity and experience on computer attitude compo-
nents, J. Educ. Comput. Res., 10(2): 129–137, 1994.

10. S. E. Mead, P. Batsakes, A. D. Fisk, and A. Mykityshyn,
Application of cognitive theory to training and design solutions
for age-related computer use, Int. J. Behav. Develop.23(3):
553–573, 1999.

11. S. Davis and R. Bostrom, An experimental investigation of the
roles of the computer interface and individual characteristics
in the learning of computer systems, Int. J. Hum. Comput.
Interact., 4(2): 143–172, 1992.

12. F. Farina et al., Predictors of anxiety towards computers,
Comput. Hum. Behav., 7(4): 263–267, 1991.

13. B. E. Whitley, Gender differences in computer related atti-
tudes: It depends on what you ask, Comput. Hum. Behav.,
12(2): 275–289, 1996.

14. J. L. Dyck and J. A.-A. Smither, Age differences in computer
anxiety: The role of computer experience, gender and educa-
tion, J. Educ. Comput. Res., 10(3): 239–248, 1994.

15. D. Passig and H. Levin, Gender interest differences with
multimedia learning interfaces, Comput. Hum. Behav.,
15(2): 173–183, 1999.

16. T. Busch, Gender differences in self-efficacy and attitudes
toward computers, J. Educ. Comput. Res., 12(2): 147–158,
1995.

17. L. J. Nelson, G. M. Wiese, and J. Cooper, Getting started with
computers: Experience, anxiety and relational style, Comput.
Hum. Behav., 7(3): 185–202, 1991.

18. S. Al-Gahtani and M. King, Attitudes, satisfaction and
usage: Factors contributing to each in the acceptance of infor-
mation technology, Behav. Inform. Technol., 18(4): 277–297,
1999.

19. A. J. Murrell and J. Sprinkle, The impact of negative attitudes
towards computers on employee’s satisfaction and commit-
ment within a small company, Comput. Hum. Behav., 9(1):
57–63, 1993.

20. M. Staufer, Technological change and the older employee:
Implications for introduction and training, Behav. Inform.
Technol., 11(1): 46–52, 1992.

21. A. Kunzer , K. Rose, L. Schmidt, and H. Luczak, SWOF—An
open framework for shared workspaces to support different
cooperation tasks, Behav. Inform. Technol., 21(5): 351–358,
2002.

22. J. W. Medcof, The job characteristics of computing and non-
computing work activities, J. Occupat. Organizat. Psychol.,
69(2): 199–212, 1996.

23. J. C. Marquie et al., Age influence on attitudes of office workers
faced with new computerized technologies: A questionnaire
analysis, Appl. Ergon., 25(3): 130–142, 1994.

24. J. M. Carrol, Human-computer interaction: Psychology as a
science of design, Annu. Rev. Psychol., 48: 61–83, 1997.

25. R. W. Bailey, Human Performance Engineering: Designing
High Quality, Professional User Interfaces for Computer
Products, Applications, and Systems, 3rd ed. Upper Saddle
River, NJ: Prentice Hall, 1996.

26. P. A. Chalmers, The role of cognitive theory in human-compu-
ter interface, Comput. Hum. Behav., 19(5): 593–607, 2003.

27. D. N. Rapp, H. A. Taylor, and G. R. Crane, The impact of
digital libraries on cognitive processes: Psychological issues
of hypermedia, Comput. Hum. Behav., 19(5): 609–628,
2003.

28. A. Dillon, Myths, misconceptions, and an alternative perspec-
tive on information usage and the electronic medium, in J. F.
Rouetet al. (eds.), Hypertext and Cognition. Mahwah, NJ:
Lawrence Erlbaum Associates, 1996.

29. A. Dillon and R. Gabbard, Hypermedia as an educational
technology: A review of the quantitative research literature
on learner expectations, control and style, Rev. Educ. Res.,
68(3): 322–349, 1998.

30. C. Krapichler, M. Haubner, A. Losch, D. Schumann, M. See-
man, K. Englmeier, Physicians in virtual environments—
Multimodal human-computer interaction, Interact. Comput.,
11(4): 427–452, 1999.

BEHAVIORAL SCIENCES AND COMPUTING 9



31. E. Lee, Effects of ‘‘gender’’ of the computer on informational
social influence: The moderating role of the task type, Int. J.
Hum.-Comput. Studies, 58(4): 347–362, 2003.

32. R. W. Picard and J. Klein, Computers that recognise and
respond to user emotion: Theoretical and practical implica-
tions, Interact. Comput., 14(2): 141–169, 2002.

33. R. Kling, Social controversies about computerization, in
R. Ming (ed.), Computerization and Controversy, Value
Conflicts and Social Choices, 2nd ed. New York: Academic
Press, 1996.

34. R. Ribak, ‘Like immigrants’: Negotiating power in the face of
the home computer, New Media Soci., 3(2), 220–238, 2001.

35. A. J. Romiszowski and R. Mason, Computer-mediated commu-
nication, in D. H. Jonassen (ed.), Handbook of Research for
Educational Communications and Technology. New York:
Simon & Schuster Macmillan, 1996.

36. M. Grabe and C. Grabe, Integrating Technology for Meaningful
Learning. New York: Houghton Mifflin, 2004.

37. C. Vrasidas and M. S. McIsaac, Factors influencing interaction
in an online course, The Amer. J. Distance Educ., 13(3): 22–36,
1999.

38. National Telecommunications and Information Administra-
tion. (February 2002). A nation online: How Americans are
expanding their use of the Internet. [Online]. Available:
http://www.ntia.doc.gov/ntiahome/dn/index.html, Accessed
December 10, 2003.

FURTHER READING

Journal Articles

M. J. Alvarez-Torrez, P. Mishra, and Y. Zhao, Judging a book by
its cover! Cultural stereotyping of interactive media and its effect
on the recall of text information, J. Educ. Media Hypermedia,
10(2): 161–183, 2001.

Y. Amichai-Hamburger, Internet and Personality, Comput. Hum.
Behav., 18(1): 1–10, 2002.

B. Boneva, R. Kraut, and D. Frohlich, Using email for personal
relationships, Amer. Behav. Scientist, 45(3): 530–549, 2001.

J. M. Carrol, Human-computer interaction: Psychology as a science
of design, Annu. Rev. Psychol., 48: 61–83, 1997.

E. C. Boling, The Transformation of Instruction through Technol-
ogy: Promoting inclusive learning communities in teacher educa-
tion courses, Action Teacher Educ., 24(4), 2003.

R.A. Davis, A cognitive-behavioral model of pathological Internet
use, Comput. Hum. Behav., 17(2): 187–195, 2001.

C. E. Hmelo, A. Nagarajan, and R. S. Day, Effects of high and low
prior knowledge on construction of a joint problem space, J. Exper.
Educ., 69(1): 36–56, 2000.

R. Kraut, M. Patterson, and V. Ludmark, Internet paradox: A
social technology that reduces social involvement and psychologi-
cal well-being, Amer. Psychol., 53(9), 1017–1031, 1998.

K.Y.A. McKenna and J.A. Bargh, Plan 9 from cyberspace: The
implications of the Internet form personality and social psychology,
Personality Social Psychol. Rev., 4: 57–75, 2000.

A. G. Namlu, The effect of learning strategy on computer anxiety,
Comput. Hum. Behav., 19(5): 565–578, 2003.

L. Shashaani, Gender differences in computer experiences and
its influence on computer attitudes, J. Educ. Comput. Res., 11(4):
347–367, 1994.

J. F. Sigurdsson, Computer experience, attitudes towards compu-
ters and personality characteristics in psychology undergraduates,
Personality Individual Differences, 12(6): 617–624, 1991.

C. A. Steinkuehler, S. J. Derry, C. E. Hmelo-Silver, and M. Del-
Marcelle, Cracking the resource nut with distributed problem-
based learning in secondary teacher education, J. Distance
Educ., 23: 23–39, 2002.

STEVEN M. BARNHART

RICHARD DE LISI

Rutgers, The State University of
New Jersey

New Brunswick, New Jersey

10 BEHAVIORAL SCIENCES AND COMPUTING



B

BIOLOGY COMPUTING

INTRODUCTION

The modern era of molecular biology began with the dis-
covery of the double helical structure of DNA. Today,
sequencing nucleic acids, the determination of genetic
information at the most fundamental level, is a major
tool of biological research (1). This revolution in biology
has created a huge amount of data at great speed by directly
reading DNA sequences. The growth rate of data volume is
exponential. For instance, the volume of DNA and protein
sequence data is currently doubling every 22 months (2).
One important reason for this exceptional growth rate of
biological data is the medical use of such information in the
design of diagnostics and therapeutics (3,4). For example,
identification of genetic markers in DNA sequences would
provide important information regarding which portions of
the DNA are significant and would allow the researchers to
find many disease genes of interest (by recognizing them
from the pattern of inheritance). Naturally, the large
amount of available data poses a serious challenge in stor-
ing, retrieving, and analyzing biological information.

A rapidly developing area, computational biology, is
emerging to meet the rapidly increasing computational
need. It consists of many important areas such as informa-
tion storage, sequence analysis, evolutionary tree construc-
tion, protein structure prediction, and so on (3,4). It is
playing an important role in some biological research.
For example, sequence comparison is one of the most
important methodological issues and most active research
areas in current biological sequence analysis. Without the
help of computers, it is almost impossible to compare two or
more biological sequences (typically, at least a few hundred
characters long).

In this chapter, we survey recent results on evolutionary
tree construction and comparison, computing syntenic dis-
tances between multi-chromosome genomes, and multiple
sequence alignment problems.

Evolutionary trees model the evolutionary histories of
input data such as a set of species or molecular sequences.
Evolutionary trees are useful for a variety of reasons, for
example, in homology modeling of (DNA and protein)
sequences for diagnostic or therapeutic design, as an aid
for devising classifications of organisms, and in evaluating
alternative hypotheses of adaption and ancient geographi-
cal relationships (for example, see Refs. 5 and 6 for discus-
sions on the last two applications). Quite a few methods are
known to construct evolutionary trees from the large
volume of input data. We will discuss some of these methods
in this chapter. We will also discuss methods for comparing
and contrasting evolutionary trees constructed by various
methods to find their similarities or dissimilarities, which
is of vital importance in computational biology.

Syntenic distance is a measure of distance between
multi-chromosome genomes (where each chromosome is
viewed as a set of genes). Applications of computing dis-
tances between genomes can be traced back to the well-
known Human Genome Project, whose objective is to
decode this entire DNA sequence and to find the location
and ordering of genetic markers along the length of the
chromosome. These genetic markers can be used, for exam-
ple, to trace the inheritance of chromosomes in families and
thereby to find the location of disease genes. Genetic mar-
kers can be found by finding DNA polymorphisms (i.e.,
locations where two DNA sequences ‘‘spell’’ differently).
A key step in finding DNA polymorphisms is the calcu-
lation of the genetic distance, which is a measure of the
correlation (or similarity) between two genomes.

Multiple sequence alignment is an important tool for
sequence analysis. It can help extracting and finding bio-
logically important commonalities from a set of sequences.
Many versions have been proposed and a huge number of
papers have been written on effective and efficient methods
for constructing multiple sequence alignment. We will
discuss some of the important versions such as SP-align-
ment, star alignment, tree alignment, generalized tree
alignment, and fixed topology alignment with recombina-
tion. Recent results on those versions are given.

We assume that the reader has the basic knowledge of
algorithms and computational complexity (such as NP, P,
and MAX-SNP). Otherwise, please consult, for example,
Refs. 7–9.

The rest of this chapter is organized as follows. In the
next section, we discuss construction and comparison
methods for evolutionary trees. Then we discuss briefly
various distances for comparing sequences and explain in
details the syntenic distance measure. We then discuss
multiple sequence alignment problems. We conclude
with a few open problems.

CONSTRUCTION AND COMPARISON
OF EVOLUTIONARY TREES

The evolutionary history of organisms is often conveniently
represented as trees, called phylogenetic trees or simply
phylogenies. Such a tree has uniquely labeled leaves and
unlabeled interior nodes, can be unrooted or rooted if the
evolutionary origin is known, and usually has internal
nodes of degree 3. Figure 1 shows an example of a phylo-
geny. A phylogeny may also have weights on its edges,
where an edge weight (more popularly known as branch
length in genetics) could represent the evolutionary dis-
tance along the edge. Many phylogeny reconstruction
methods, including the distance and maximum likelihood
methods, actually produce weighted phylogenies. Figure 1
also shows a weighted phylogeny (the weights are for
illustrative purposes only).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Phylogenetic Construction Methods

Phylogenetic construction methods use the knowledge of
evolution of molecules to infer the evolutionary history of
the species. The knowledge of evolution is usually in the
form of two kinds of data commonly used in phylogeny
inference, namely, character matrices (where each position
(i, j) is base j in sequence i) and distance matrices (where
each position (i, j) contains the computed distance between
sequence i and sequence j). Three major types of phyloge-
netic construction methods are the parsimony and compat-
ibility method, the distance method, and the maximum-
likelihood method, Below, we discuss each of these methods
briefly. See the excellent survey in Refs. 10 and 11 for more
details.

Parsimony methods construct phylogenetic trees for the
given sequences such that, in some sense, the total number
of changes (i.e., base substitutions) or some weighted sum of
the changes is minimized. See Refs. 12–14 for some of the
papers in this direction.

Distance methods (15)–(17) try to fit a tree to a matrix of
pairwise distances between a set of n species. Entries in the
distance matrices are assumed to represent evolutionary
distance between species represented by the sequences in
the tree (i.e., the total number of mutations in both lineages
since divergence from the common ancestor). If no tree fits
the distance matrix perfectly, then a measure of the dis-
crepancy of the distances in the distance matrix and those
in the tree is taken, and the tree with the minimum dis-
crepancy is selected as the best tree. An example of the
measure of the discrepancy, which has been used in the
literature (15,16), is a weighted least-square measure, for
example, of the form

X
1�i; j�n

wi jðDi j � di jÞ2

where Dij are the given distances and dij are the distances
computed from the tree.

Maximum-likelihood methods (12,18,19) relies on the
statistical method of choosing a tree that maximizes
the likelihood (i.e., maximizes the probability) that the
observed data would have occurred. Although this method
is quite general and powerful, it is computationally inten-
sive because of the complexity of the likelihood function.

All the above methods have been investigated by simu-
lation and theoretical analysis. None of the methods work
well under all evolutionary conditions, but each works well
under particular situations. Hence, one must choose the
appropriate phylogeny construction method carefully for
the best results (6).

Comparing Evolutionary Trees

As discussed in the previous section, over the past few
decades, many approaches for reconstructing evolutionary
trees have been developed, including (not exhaustively) par-
simony, compatibility, distance, and maximum-likelihood
methods. As a result, in practice, they often lead to different
trees on the same set of species (20). It is thus of interest to
compare evolutionary trees produced by different methods,

or by the same method on different data. Several distance
models for evolutionary trees have been proposed in the
literature. Among them, the best known is perhaps the
nearest-neighbor interchange (nni) distance introduced
independently in Refs. 21 and 22. Other distances include
the subtree-transfer distance introduced in Refs. 23 and 24
and the the linear-cost subtree-transfer distance(25,26).
Below, we discuss very briefly a few of these distances.

Nearest-Neighbor Interchange Distance

An nni operation swaps two subtrees that are separated
by an internal edge (u, v), as shown in Fig. 2. The nni
operation is said to operate on this internal edge. The nni
distance, Dnni(T1, T2), between two trees T1 and T2 is
denned as the minimum number of nni operations required
to transform one tree into the other. Culik II and Wood (27)
[improved later by Tramp and Zhang (28)] proved that
nlognþOðnÞ nni moves are sufficient to transform a tree
of n leaves to any other tree with the same set of leaves.
Sleator et al. (29) proved an VðnlognÞ lower bound for most
pairs of trees. Although the distance has been studied
extensively in the literature (21,22,27–34), the computa-
tional complexity of computing it has puzzled the research
community for nearly 25 years until recently, when the
authors in Ref. 25 showed this problem to be NP-hard an
erroneous proof of the NP-hardness of the nni distance
between unlabeled trees was published in Ref. 34. As
computing the nni distance is shown to be NP-hard, the
next obvious question is: Can we get a good approximation
of the distance? The authors in Ref. 28 show that the nni
distance can be approximated in polynomial time within a
factor of lognþOð1Þ.

Subtree-transfer Distances

An nni operation can also be viewed as moving a subtree
past a neighboring internal node. A more general operation
is to transfer a subtree from one place to another arbitrary
place. Figure 3 shows such a subtree-transfer operation.
The subtree-transfer distance, Dst(T1, T2), between two
trees T1 and T2 is the minimum number of subtrees we
need to move to transform T1 into T2(23–26,35).

It is sometimes appropriate in practice to discriminate
among subtree-transfer operations as they occur with dif-
ferent frequencies. In this case, we can charge each subtree-
transfer operation a cost equal to the distance (the number
of nodes passed) that the subtree has moved in the current
tree. The linear-cost subtree-transfer distance, Dlcst(T1,
T2), between two trees T1 and T2 is then the minimum
total cost required to transform T1 into T2 by subtree-
transfer operations (25,26). Clearly, both subtree-transfer
and linear-cost subtree-transfer models can also be used as
alternative measures for comparing evolutionary trees
generated by different tree reconstruction methods. In
fact, on unweighted phylogenies, the linear-cost subtree-
transfer distance is identical to the nni distance (26).

The authors in Ref. (35) show that computing the
subtree-transfer distance between two evolutionary trees
is NP-hard and give an approximation algorithm for this
distance with performance ratio 3.

2 BIOLOGY COMPUTING



Rotation Distance

Rotation distance is a variant of the nni distance for rooted,
ordered trees. A rotation is an operation that changes one
rooted binary tree into another with the same size. Figure 4
shows the general rotation rule. An easy approximation
algorithm for computing distance with a performance ratio
of 2 is given in Ref. 36. However, it is not known if comput-
ing this distance is NP-hard or not.

Distances on Weighted Phylogenies

Comparison of weighted evolutionary trees has recently
been studied in Ref. 20. The distance measure adopted is
based on the difference in the partitions of the leaves
induced by the edges in both trees, and it has the drawback
of being somewhat insensitive to the tree topologies. Both
the linear-cost subtree-transfer and nni models can be
naturally extended to weighted trees. The extension for
nni is straightforward: An nni is simply charged a cost
equal to the weight of the edge it operates on. In the case of
linear-cost subtree-transfer, although the idea is immedi-
ate (i.e., a moving subtree should be charged for the
weighted distance it travels), the formal definition needs
some care and can be found in Ref. 26.

As computing the nni distance on unweighted phylo-
genies is NP-hard, it is obvious that computing this
distance is NP-hard for weighted phylogenies also. The
authors in Ref. 26 give an approximation algorithm for
the linear-cost subtree-transfer distance on weighted
phylogenies with performance ratio 2. In Ref. 25, the
authors give an approximation algorithm for the nni dis-
tance on weighted phylogenies with performance ratio of
O(log n). It is open whether the linear-cost subtree-transfer
problem is NP-hard for weighted phylogenies. However, it
has been shown that the problem is NP-hard for weighted
trees with non-uniquely labeled leaves (26).

COMPUTING DISTANCES BETWEEN GENOMES

The definition and study of appropriate measures of dis-
tance between pairs of species is of great importance in

Cat Dog

Seal

Whale

Goose

Ostrich

Reptilian Ancestor

Platypus

Horse

Cat Dog

Seal

Whale

Goose

Ostrich

Reptilian Ancestor

Platypus

Horse

0.8 1.1

2

1.1

0.3

2.2

0.5

0.3
5.5

1

32.2

3.3 0.7

1

Figure 1. Examples of unweighted and
weighted phylogenies.

DC

A CA

B

B

D B

B      C B      D

u

u u

v

v v

C

D

A

Figure 2. The two possible nni operations on an internal edge (u,
v): exchange B$C or B$D.

s5

s1 s2 s3 s4 s1 s2 s4

one subtree transfer

s3

s5

Figure 3. An example of a subtree-transfer operation on a tree.

A

A

rotation at u

rotation at v

B B

C

C

u

uv

v

Figure 4. Left and right rotation operations on a rooted binary
tree.

BIOLOGY COMPUTING 3



computational biology. Such measures of distance can be
used, for example, in phylogeny construction and in tax-
onomic analysis.

As more and more molecular data become available,
methods for denning distances between species have
focused on such data. One of the most popular distance
measures is the edit distance between homologous DNA or
amino acid sequences obtained from different species. Such
measures focus on point mutations and define the distance
between two sequences as the minimum number of these
moves required to transform one sequence into another. It
has been recognized that the edit-distance may underesti-
mate the distance between two sequences because of the
possibility that multiple point mutations occurring at the
same locus will be accounted for simply as one mutation.
The problem is that the probability of a point mutation is
not low enough to rule out this possibility.

Recently, there has been a spate of new definitions of
distance that try to treat rarer, macro-level mutations as
the basic moves. For example, if we know the order of genes
on a chromosome for two different species, we can define the
reversal distance between the two species to be the number
of reversals of portions of the chromosome to transform the
gene order in one species to the gene order in the other
species. The question of finding the reversal distance was
first explored in the computer science context by Kece-
cioglu and Sankoff and by Bafna and Pevzner, and there
has been significant progress made on this question by
Bafna, Hannenhalli, Kececioglu, Pevzner, Ravi, Sankoff,
and others (37–41). Other moves besides reversals have
been considered as well. Breaking off a portion of the
chromosome and inserting it elsewhere in the chromosome
is referred to as a transposition, and one can similarly
define the transposition distance (42). Similarly, allowing
two chromosomes (viewed as strings of genes) to exchange
suffixes (or sometimes a suffix with a prefix) is known as a
translocation, and this move can also be used to define an
appropriate measure of distance between two species for
which much of the genome has been mapped (43).

Ferretti et al. (44) proposed a distance measure that is at
an even higher level of abstraction. Here, even the order of
genes on a particular chromosome of a species is ignored or
presumed to be unknown. It is assumed that the genome of
a species is given as a collection of sets. Each set in the
collection corresponds to a set of genes that are on one
chromosome and different sets in the collection correspond
to different chromosomes (see Fig. 5). In this scenario, one
can define a move to be an exchange of genes between two
chromosomes, the fission of one chromosome into two, or
the fusion of two chromosomes into one (see Fig. 6). The
syntenic distance between two species has been defined by

Ferretti et al. (44) to be the number of such moves required
to transform the genome of one species to the genome of the
other.

Notice that any recombination of two chromosomes is
permissible in this model. By contrast, the set of legal
translocations (in the translocation distance model) is
severely limited by the order of genes on the chromosomes
being translocated. Furthermore, the transformation of the
first genome into the second genome does not have to
produce a specified order of genes in the second genome.
The underlying justification of this model is that the
exchange of genes between chromosomes is a much rarer
event than the movement of genes within a chromosome
and, hence, a distance function should measure the mini-
mum number of such exchanges needed.

In Ref. 45, the authors prove various results on the
syntenic distance. For example, they show that computing
the syntenic distance exactly is NP-hard, there is a simple
polynomial time approximation algorithm for the synteny
problem with performance ratio 2, and computing the
syntenic distance is fixed parameter tractable.

The median problem develops in connection with the
phylogenetic inference problem (44) and denned as follows:
Given three genomes G1, G2, and G3, we are required to
construct a genome G such that the median distance aG ¼P3

i¼1 DðG;GiÞ is minimized (where D is the syntenic dis-
tance). Without any additional constraints, this problem is
trivial, as we can take G to be empty (and then aG ¼ 0). In
the context of syntenic distance, any one of the following
three constraints seem relevant: (cl) G must contain all
genes present in all the three given genomes, (c2) G must
contain all genes present in at least two of the three given
genomes, and (c3) G must contain all genes present in at
least one of the three given genomes. Then, computing the
median genome is NP-hard with any one of the three
constraints (cl), (c2), or (c3). Moreover, one can approximate
the median problem in polynomial time [under any one of
the constraints (cl), (c2), or (c3)] with a constant perfor-
mance ratio. See Ref. 45 for details.

MULTIPLE SEQUENCE ALIGNMENT PROBLEMS

Multiple sequence alignment is the most critical cutting-
edge tool for sequence analysis. It can help extracting, find-
ing, and representing biologically important commonalities

2 8 1 3 7 5 4 6 9 10 11 12

gene chromosome

Figure 5. A genome with 12 genes and 3 chromosomes.

1 12 5 3

1 3 5 12 

1 9 2 5

1 9 2 5 

1 12 3 7 5 19 2 4

1 19 2 7 12 3 5 4

Fission
Breaks a chromosome

into two

Fusion
Joins two chromosomes

into one

Translocation
Transfers genes between

chromosomes

Figure 6. Different mutation operations.

4 BIOLOGY COMPUTING



from a set of sequences. These commonalities could repre-
sent some highly conserved subregions, common functions,
or common structures. Multiple sequence alignment is also
very useful in inferring the evolutionary history of a family
of sequences (46–49).

A multiple alignmentA of k� 2 sequences is obtained
as follows: Spaces are inserted into each sequence so that
the resulting sequences s0iði ¼ 1; 2; . . . kÞ have the same
length l, and the sequences are arranged in k rows of l
columns each.

The value of the multiple alignment A is denned as

Xl

i¼1

mðs01ðiÞ; s02ðiÞ; . . . s0kðiÞÞ

where s0lðiÞ denotes the ith letter in the resulting sequence
s0l, and mðs01ðiÞ; s02ðiÞ; . . . s0kðiÞÞ denotes the score of the ith
column. The multiple sequence alignment problem is to
construct a multiple alignment minimizing its value.

Many versions have been proposed based on different
objective functions. We will discuss some of the important
ones.

SP-Alignment and Steiner Consensus String

For SP-score (Sum-of-the-Pairs), the score of each column
is denned as:

mðs01ðiÞ; s02ðiÞ; . . . s0kðiÞÞ ¼
X

1� j< l�k

mðs0jðiÞ; s0lðiÞÞ

where mðs0jðiÞ; s0lðiÞÞ is the score of the two opposing letters
s0jðiÞ and s0lðiÞ. The SP-score is sensible and has previously
been studied extensively.

SP-alignment problem is to find an alignment with the
smallest SP-score. It is first studied in Ref. 50 and subse-
quently used in Refs. 51–54. SP-alignment problem can be
solved exactly by using dynamic programming. However, if
there are k sequences and the length of sequences is n, it
takes O(nk) time. Thus, it works for only small numbers of
sequences. Some techniques to reduce the time and space
have been developed in Refs. 51 and 55–57. With these
techniques, it is possible to optimally align up to six
sequences of 200 characters in practice.

In fact, SP-alignment problem is NP-hard (58). Thus, it
is impossible to have a polynomial time algorithm for this
problem. In the proof of NP-hardness, it is assumed that
some pairs of identical characters have a non-zero score. An
interesting open problem is if each pair of two identical
characters is scored 0.

The first approximation algorithm was given by Gusfield
(53). He introduced the center star algorithm. The center
star algorithm is very simple and efficient. It selects a
sequence (called center string) sc in the set of k given
sequences S such that

Pk
i¼1 distðsc; siÞ is minimized. It

then optimally aligns the sequences in S� fscg to sc and
gets k � 1 pairwise alignments. These k � 1 pairwise
alignments lead to a multiple alignment for the k sequences
in S. If the score scheme for pairs of characters satisfies the
triangle inequality, the cost of the multiple alignment

produced by the center star algorithm is at most twice
the optimum (47,53). Some improved results were reported
in Refs. 54 and 59.

Another score called consensus score is denned as fol-
lows:

mðs01ðiÞ; s02ðiÞ; . . . s0kðiÞÞ ¼ min
s2S

Xk

j¼1

mðs0jðiÞ; sÞ

where
P

is the set of characters that form the sequences.
Here, we reconstruct a character for each column and thus
obtain a string. This string is called a Steiner consensus
string and can be used as a representative for the set of
given sequences. The problem is called the Steiner consen-
sus string problem.

The Steiner consensus string problem was proved to be
NP-complete (60) and MAX SNP-hard (58). In the proof of
MAX SNP-hardness, it is assumed that there is a ‘‘wild
card,’’ and thus the triangle inequality does not hold.
Combining with the results in Ref. 61, it shows that there
is no polynomial time approximation scheme for this pro-
blem. Interestingly, the same center star algorithm also has
performance ratio 2 for this problem (47).

Diagonal Band Alignment. The restriction of aligning
sequences within a constant diagonal band is often used
in practical situations. Methods under this assumption
have been extensively studied too. Sankoff and Kruskal
discussed the problem under the rubric of ‘‘cutting corners’’
in Ref. 62. Alignment within a band is used in the final stage
of the well-known FASTA program for rapid searching of
protein and DNA sequence databases (63,64). Pearson
showed that alignment within a band gives very good
results for many protein superfamilies (65).

Other references on the subject can be found in Refs. 51
and 66–69. Spouge gives a survey on this topic in Ref. 70.

Let S ¼ fs1; s2; . . . ; skg be a set of k sequences, each of
length m (for simplicity), and M an alignment of the k
sequences. Let the length of the alignmentM be M.M is
called a c-diagonal alignment if for any p � m and
1< i< j< k, if the pth letter of si is in column q ofM and
the pth letter of sj is in column r ofM, then jq� rj � c. In
other words, the inserted spaces are ‘‘evenly’’ distributed
among all sequences and the ith position of a sequence is
about at most c positions away from the ith. position of any
other sequence.

In Ref. 71 Li, et al. presented polynomial time approx-
imation schemes of c-diagonal alignment for both SP-score
and consensus score.

Tree Alignment

Tree score: To define the score mðs01ðiÞ; s02ðiÞ; . . . s0kðiÞÞ of
the ith. column, an evolutionary (or phylogenetic) tree
T ¼ ðV ;EÞ with k leaves is assumed, each leaf j cor-
responding to a sequence Sj. (Here, V and E denote the
sets of nodes and edges in T, respectively.) Let kþ 1;K þ
2; . . . ; kþm be the internal nodes of T. For each inter-
nal node j, reconstruct a letter (possibly a space) s0jðiÞ
such that

P
ðp;qÞ 2E mðs0pðiÞ; s0qðiÞÞ is minimized. The score

BIOLOGY COMPUTING 5



mðs01ðiÞ; s02ðiÞ; . . . s0kðiÞÞ of the ith column is thus denned as

mðs01ðiÞ; s02ðiÞ; . . . s0kðiÞÞ ¼
X

ðp;qÞ 2E

m s0pðiÞ; s0qðiÞ
� �

This measure has been discussed in Refs. 14,48,51,59
and 72. Multiple sequence alignment with tree score is
often referred to as tree alignment in the literature.

Note that a tree alignment induces a set of reconstructed
sequences, each corresponding to an internal node. Thus, it
is convenient to reformulate a tree alignment as follows:
Given a set X of k sequences and an evolutionary tree T with
k leaves, where each leaf is associated with a given
sequence, reconstruct a sequence for each internal node
to minimize the cost of T. Here, the cost of T is the sum of the
edit distance of each pair of (given or reconstructed)
sequences associated with an edge. Observe that once a
sequence for each internal node has been reconstructed, a
multiple alignment can be obtained by optimally aligning
the pair of sequences associated with each edge of the tree.
Moreover, the tree score of this induced multiple alignment
equals the cost of T. In this sense, the two formulations of
tree alignment are equivalent.

Sankoff gave an exact algorithm for tree alignment that
runs in O(nk), where n is the length of the sequences and k is
the number of given sequences. Tree alignment was proved
to be NP-hard (58).

Therefore, it is unlikely to have a polynomial time algo-
rithm for tree alignment. Some heuristic algorithms have
also been considered in the past. Altschul and Lipman tried
to cut down the computation volume required by dynamic
programming (51). Sankoff, et al. gave an iterative
improvement method to speed up the computation
(48,72). Waterman and Perlwitz devised a heuristic method
when the sequences are related by a binary tree (73). Hein
proposed a heuristic method based on the concept of a
sequence graph (74,75). Ravi and Kececioglu designed an
approximation algorithm with performance ratio degþ1

deg�1
when the given tree is a regular deg-ary tree (i.e., each
internal node has exactly deg children) (76).

The first approximation algorithm with a guaranteed
performance ratio was devised by Wang, et al. (77). A ratio-
2 algorithm was given. The algorithm was then extended
to a polynomial time approximation scheme (PTAS) (i.e.,
the performance ratio could arbitrarily approach 1). The
PTAS requires computing exact solutions for depth-t sub-
trees. For a fixed t, the performance ratio was proved to
be 1þ 3

t, and the running time was proved to be Oððk=
degtÞdegt�1þ2Mð2; t� 1;nÞÞ, where deg is the degree of the
given tree, n is the length of the sequences, and Mðdeg; t�
1;nÞ is the time needed to optimally align a tree with
degt�1 þ 1 leaves, which is upper-bounded by Oðndegt�1þ1Þ.
Based on the analysis, to obtain a performance ratio less
than 2, exact solutions for depth-4 subtrees must be com-
puted, and thus optimally aligning nine sequences at a time
is required, which is impractical even for sequences of
length 100.

An improved version was given in Ref. 78. They proposed
a new PTAS for the case where the given tree is a regular
deg-ary tree. The algorithm is much faster than the one in

Ref. 77. The algorithm also must do local optimizations for
depth-t subtrees. For a fixed t, the performance ratio of the
new PTAS is 1þ 2

t � 2
t2t and the running time

is Oðminf2t; kgkdMðdeg; t� 1;nÞÞ, where d is the depth of
the tree. Presently, there are efficient programs (72) to do
local optimizations for three sequences (t ¼ 2). In fact, we
can expect to obtain optimal solutions for five sequences
(t ¼ 3) of length 200 in practice as there is such a program
(55,56) for SP-score and similar techniques can be used to
attack the tree alignment problem. Therefore, solutions
with costs at most 1.583 times the optimum can be obtained
in practice for strings of length 200.

For tree alignment, the given tree is typically a binary
tree. Recently, Wang et al. (79) designed a PTAS for binary
trees. The new approximation scheme adopts a more clever
partitioning strategy and has a better time efficiency for
the same performance ratio. For any fixed r, where r ¼
2t�1 þ 1� q and 0 � q � 2t�2 � 1, the new PTAS runs in
time O(kdnr) and achieves an approximation ratio of
1þ 2t�1

2t�2ðtþ1Þ�q
. Here, the parameter r represents the ‘‘size’’

of local optimization. In particular, when r ¼ 2t�1 þ 1, its
approximation ratio is simply 1þ 2

tþ1.

Generalized Tree Alignment

In practice, we often face a more difficult problem called
generalized tree alignment. Suppose we are given a set of
sequences. The problem is to construct an evolutionary
tree as well as a set of sequences (called reconstructed
sequences) such that each leaf of the evolutionary tree is
assigned a given sequence, each internal node of the tree
is assigned a reconstructed sequence, and the cost of the
tree is minimized over all possible evolutionary trees and
reconstructed sequences.

Intuitively, the problem is harder than tree alignment
because the tree is not given and we have to compute the
tree structure as well as the sequences assigned to internal
nodes. In fact, the problem was proved to be MAX SNP-hard
(58) and a simplified proof was given in Ref. 80. It implies
that it is impossible to have a PTAS for generalized tree
alignment unless P¼NP (61), which confirms the observa-
tion from an approximation point of view.

Generalized tree alignment problem is, in fact, the
Steiner tree problem in sequence spaces. One might use
the approximation algorithms with guaranteed perfor-
mance ratios (81) to graph Steiner trees, which, however,
may lead to a tree structure where a given sequence is an
internal node. Sometimes, it is unacceptable. Schwikowski
and Vingron give a method that combines clustering algo-
rithms and Hein’s sequence graph method (82). The pro-
duced solutions contain biologically reasonable trees and
keep the guaranteed performance ratio.

Fixed Topology History/Alignment with Recombination

Multigene families, viruses, and alleles from within popu-
lations experience recombinations (23,24,83,84). When
recombination happens, the ancestral material on the pre-
sent sequence s1 is located on two sequences s2 and s3. s2

and s3 can be cut at k locations (break points) into k þ 1
pieces, where s2 ¼ s2;1s2 . . . s2;lþ1 and s3 ¼ s3;1s3;2 . . . s3;lþ1.
s1 can be represented as s2̂;1 ¼ s3̂;2s2̂;3 . . . s2̂;is3;îþ1 . . ., where

6 BIOLOGY COMPUTING



subsequences s2̂;i and s3;îþ1 differ from the corresponding
s2;i and s3;iþ1 by insertion, deletion, and substitution of
letters. k, the number of times s1 switches between s2

and s3, is called the number of crossovers. The cost of the
recombination is

distðs1;1; s1̂;1Þ þ distðs2;2; s2̂;2Þ; . . . distðs1;i; s1̂;iÞ þ dist

�ðs2;iþ1; s2;îþ1
Þ þ � � � þ kx

where distðs2;iþ1; s2;îþ1
Þ is the edit distance between the two

sequences s2;iþ1 and s
2;îþ1

, k is the number of crossovers,
and x the crossover penalty. The recombination distance to
produce s1 from s2 and s3 is the cost of a recombination that
has the smallest cost among all possible recombinations.
We use r distðs1; s2; s3Þ to denote the recombination dis-
tance. For more details, see Refs. 83 and 85.

When recombination occurs, the given topology is no
longer a binary tree. Instead, some nodes, called recombi-
nation nodes, in the given topology may have two parents
(23,24). In a more general case, as described in Ref. 83, the
topology may have more than one root. The set of roots is
called a pro-toset. The edges incident to recombination
nodes are called recombination edges [see Fig. 7 (b)]. A
node/edge is normal if it is not a recombination node/edge.

The cost of a pair of recombination edges is the recom-
bination distance to produce the sequence on the recombi-
nation node from the two sequences on its parents. The cost
of other normal edges is the edit distance between two
sequences. A topology is fully labeled if every node in the
topology is labeled. For a fully labeled topology, the cost of
the topology is the total cost of edges in the topology. Each
node in the topology with degree greater than 1 is an
internal node. Each leaf/terminal (degree 1 node) in the
topology is labeled with a given sequence. The goal here is to
construct a sequence for each internal node such that the
cost of the topology is minimized. We call this problem fixed
topology history with recombination (FTHB).

Obviously, this problem is a generalization of tree align-
ment. The difference is that the given topology is no longer a
binary tree. Instead, there are some recombination nodes
that have two parents instead of one. Moreover, there may
be more than one root in the topology.

A different version called fixed topology alignment
with recombination (FTAR) is also dicsussed (86). From

an approximation point of view, FTHR and FTAR are much
harder than tree alignment. It is shown that FTHR and
FTAR cannot be approximated within any constant perfor-
mance ratio unless P ¼ NP (86).

A more restricted case, where each internal node has at
most one recombination child and there are at most six
parents of recombination nodes in any path from the root to
a leaf in the given topology, is also considered. It is shown
that the restricted version for both FTHR and FTAR is
MAX-SNP-hard. That is, there is no polynomial time
approximation scheme unless P ¼ NP (86).

The above hardness results are disappointing. However,
recombination occurs infrequently. So, it is interesting
to study some restricted cases. A merge node of recombi-
nation node v is the lowest common ancestor of v’s two
parents. The two different paths from a recombination
node to its merge node are called merge paths. We then
study the case, where

� (C1) each internal node has at most one recombination
child and

� (C2) any two merge paths for different recombination
nodes do not share any common node.

Using a method similar to the lifting method for tree
alignment, one can get a ratio-3 approximation algorithm
for both FTHR and HTAR when the given topology satisfies
(C1) and (C2). The ratio-3 algorithm can be extended to a
PTAS for FTAR with bounded number of crossovers (see
Ref. 86).

Remarks: Hein might be the first to study the method to
reconstruct the history of sequences subject to recombina-
tion (23,24). Hein observed that the evolution of a sequence
with k recombinations could be described by k recombina-
tion points and k þ 1 trees describing the evolution of the
k þ 1 intervals, where two neighboring trees were either
identical or differed by one subtree transfer operation (23–
26,35). A heuristic method was proposed to find the most
parsimonious history of the sequences in terms of mutation
and recombination operations.

Another strike was given by Kececioglu and Gusfield
(83). They introduced two new problems, recombination
distance and bottleneck recombination history. They tried
to include higher-order evolutionary events such as block
insertions and deletions (68) as well as tandem repeats
(87,88).

CONCLUSION

In this article, we have discussed some important topics in
the field of computational biology such as the phylogenetic
construction and comparison methods, syntenic distance
between genomes, and the multiple sequence alignment
problems. Given the vast majority of topics in computa-
tional biology, these discussed topics constitute only a part
of them. Some of the important topics that were not covered
in this articls are as follows:

� protein structure prediction,

� DNA physical mapping problems,

recombination

(a) (b)

crossover

Figure 7. (a) Recombination operation, (b) The topology. The
dark edges are recombination edges. The circled node is a recom-
bination node.

BIOLOGY COMPUTING 7



� metabolic modeling, and

� string/database search problems.

We hope that this survey article will inspire the readers
for further study and research of these and other related
topics.

Papers on compuational molecular biology have started
to appear in many different books, journals, and confer-
ences. Below, we list some sources that could serve as
excellent starting points for various problems that occur
in computational biology:

Books: See Refs. 49,53,62 and 89–92.

Journals: Computer Applications in the Biosciences
(recently renamed as Bioinformatics), Journal of
Computational Biology, Bulletin of Mathematical
Biology, Journal of Theoretical Biology, and so on.

Conferences: Annual Symposium on Combinatorial
Pattern Matching (CPM), Pacific Symposium on Bio-
computing (PSB), Annual International Conference
on Computational Molecular Biology (RECOMB),
Annual Conference on Intelligent Systems in Mole-
cular Biology (ISMB), and so on.

Web pages: http://www.cs.Washington.edu/
education/courses/590bi, http://www.cse.
ucsc.edu/research/compbio, http://www.
cs.jhu.edu/salzberg/cs439. html, and so on.

ACKNOWLEDGMENTS

We thank Prof. Tao Jiang for bringing the authors together.
We also thank Dr. Todd Wareham for carefully reading
the draft and giving valuable suggestions. Bhaskar
DasGupta’s work was partly supported by NSF grants
CCR-0296041, CCR-0206795, and CCR-0208749. Lusheng
Wang’s work was fully supported by the Research Grants
Council of the Hong Kong Special Administrative Region,
China (Project No. CityU 1070/02E).

BIBLIOGRAPHY

1. M. S. Waterman, Sequence alignments, in M. S. Waterman
(ed.), Mathematical Methods for DNA Sequences, Boca Raton,
FL: CRC Press, 1989, pp. 53–92.

2. W. Miller, S. Scbwartz, and R. C. Hardison, A point of contact
between computer science and molecular biology, IEEE Com-
putat. Sci. Eng., 69–78, 1994.

3. K. A. Frenkel, The human genome project and informatics,
Commun. ACM, 34, (11): 41–51, 1991.

4. E. S. Lander, R. Langridge, and D. M. Saccocio, Mapping and
interpreting biological information, Commun. ACM, 34, (11):
33–39, 1991.

5. V. A. Funk, and D. R. Brooks, Phylogenetic Systematics as the
Basis of Comparative Biology, Washington, DC: Smithsonian
Institution Press, 1990.

6. D. M. Hillis, B. K. Mable, and C. Moritz, Applications of
molecular systematics, in D. M. Hillis, C. Moritz, and B. K.

Mable (eds.), Molecular Systematics, (2nd ed.) Sunderland,
MA: Sinauer Associates, 1996, pp. 515–543.

7. M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NF’-completeness, New York: W. H.
Freeman, 1979.

8. D. Hochbaum, Approximation Algorithms for NP-hard Pro-
blems, Boston, MA: PWS Publishers, 1996.

9. C. H. Papadimitriou, Computational Complexity, Reading,
MA: Addison-Wesley, 1994.

10. J. Felsenstein, Phylogenies from molecular sequences: infer-
ences and reliability, Annu. Rev. Genet., 22: 521–565, 1988.

11. D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis,
Phylogenetic inference, in D. M. Hillis, C. Moritz, and B. K.
Mable (eds.), Molecular Systematics, (2nd ed.), Sunderland,
MA: Sinauer Associates, 1996, pp. 407–514.

12. A. W. F. Edwards and L. L. Cavalli-Sforza, The reconstruc-
tion of evolution, Ann. Hum. Genet, 27: 105, 1964, (also in
Heredity 18: 553, 1964).

13. W. M. Fitch, Toward denning the course of evolution: minimum
change for a specified tree topology, Syst Zool., 20: 406–416,
1971.

14. D. Sankoff, Minimal mutation trees of sequences, SIAM J.
Appl. Math., 28: 35–42, 1975.

15. L. L. Cavalli-Sforza and A. W. F. Edwards, Phylogenetic ana-
lysis: models and estimation procedures, Evolution, 32: 550–
570, 1967, (also published in Am. J. Hum. Genet., 19: 233–257,
1967.)

16. W. M. Fitch and E. Margoliash, Construction of phylogenetic
trees, Science, 155: 279–284, 1967.

17. N. Saitou and M. Nei, The neighbor-joining method: a new
method for reconstructing phylogenetic trees, Mol. Biol. Evol.,
4: 406–425, 1987.

18. D. Barry and J. A. Hartigan, Statistical analysis of hominoid
molecular evolution, Stat. Sci., 2: 191–210, 1987.

19. J. Felsenstein, Evolutionary trees for DNA sequences: a max-
imum likelihood approach, J. Mol. Evol., 17: 368–376, 1981.

20. M. Kuhner and J. Felsenstein, A simulation comparison of
phylogeny algorithms under equal and unequal evolutionary
rates. Mol. Biol. Evol. 11 (3): 459–468, 1994.

21. D. F. Robinson, Comparison of labeled trees with valency three,
J. Combinatorial Theory, Series B, 11: 105–119, 1971.

22. G. W. Moore, M. Goodman, and J. Barnabas, An iterative
approach from the standpoint of the additive hypothesis to
the dendrogram problem posed by molecular data sets, J.
Theoret. Biol., 38: 423–457, 1973.

23. J. Hein, Reconstructing evolution of sequences subject to
recombination using parsimony, Math. Biosci., 98: 185–200,
1990.

24. J. Hein, A heuristic method to reconstruct the history of
sequences subject to recombination, J. Mol. Evol., 36: 396–
405, 1993.

25. B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang, On
distances between phylogenetic trees, Proc. 8th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1997, pp. 427–436.

26. B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp, On the
linear-cost subtree-transfer distance, to appear in the special
issue in Algorithmica on computational biology, 1998.

27. K. Culik II and D. Wood, A note on some tree similarity
measures, Information Proc. Lett., 15: 39–42, 1982.

28. M. Li, J. Tromp, and L. X. Zhang, On the nearest neighbor
interchange distance between evolutionary trees, J. Theoret.
Biol., 182: 463–467, 1996.

8 BIOLOGY COMPUTING



29. D. Sleator, R. Tarjan, W. Thurston, Short encodings of evolving
structures, SIAM J. Discr. Math., 5: 428–450, 1992.

30. M. S. Waterman and T. F. Smith, On the similarity of dendro-
grams, J. Theoret. Biol., 73: 789–800, 1978.

31. W. H. E. Day, Properties of the nearest neighbor interchange
metric for trees of small size, J. Theoretical Biol., 101: 275–288,
1983.

32. J. P. Jarvis, J. K. Luedeman, and D. R. Shier, Counterexamples
in measuring the distance between binary trees, Math. Social
Sci., 4: 271–274, 1983.

33. J. P. Jarvis, J. K. Luedeman, and D. R. Shier, Comments on
computing the similarity of binary trees, J. Theoret. Biol., 100:
427–433, 1983.

34. M. Křivánek, Computing the nearest neighbor interchange
metric for unlabeled binary trees is NP-complete, J. Classifica-
tion, 3: 55–60, 1986.

35. J. Hein, T. Jiang, L. Wang, and K. Zhang, On the complexity of
comparing evolutionary trees, Discrete Appl. Math., 7: 153–
169, 1996.

36. D. Sleator, R. Tarjan, and W. Thurston, Rotation distance,
triangulations, and hyperbolic geometry, J. Amer. Math. Soc.,
1: 647–681, 1988.

37. V. Bafna and P. Pevzner, Genome rearrangements and sorting
by reversals, 34th IEEE Symp. on Foundations of Computer
Science, 1993, pp. 148–157.

38. V. Bafna, and P. Pevzner, Sorting by reversals: genome rear-
rangements in plant organelles and evolutionary history of X
chromosome, Mol. Biol. Evol, 12: 239–246, 1995.

39. S. Hannenhalli and P. Pevzner, Transforming Cabbage into
Turnip (polynomial algorithm for sorting signed permutations
by reversals), Proc. of 27th Ann. ACM Symp. on Theory of
Computing, 1995, pp. 178–189.

40. J. Kececioglu and D. Sankoff, Exact and approximation algo-
rithms for the inversion distance between two permutations,
Proc. of 4th Ann. Symp. on Combinatorial Pattern Matching,
Lecture Notes in Comp. Sci., 684: 87–105, 1993.

41. J. Kececioglu, and D. Sankoff, Efficient bounds for oriented
chromosome inversion distance, Proc. of 5th Ann. Symp. on
Combinatorial Pattern Matching, Lecture Notes in Comp. Sci.,
807: 307–325, 1994.

42. V. Bafna, and P. Pevzner, Sorting by transpositions, Proc. of
6th Ann. ACM-SIAM Symp. on Discrete Algorithms, 1995,
pp. 614–623.

43. J. Kececioglu and R. Ravi, Of mice and men: evolutionary
distances between genomes under translocation, Proc. of 6th
Ann. ACM-SIAM Symp. on Discrete Algorithms, 1995, pp. 604–
613.

44. V. Ferretti, J. H. Nadeau, and D. Sankoff, Original synteny, in
Proc. of 7th Ann. Symp. on Combinatorial Pattern Matching,
1996, pp. 159–167.

45. B. DasGupta, T. Jiang, S. Kannan, M. Li, and E. Sweedyk, On
the complexity and approximation of syntenic distance, 1st
Annual International Conference On Computational Molecu-
lar Biology, 1997, pp. 99–108 (journal version to appear in
Discrete and Applied Mathematics).

46. S. C. Chan, A. K. C. Wong, and D. K. T. Chiu, A survey of
multiple sequence comparison methods, Bull. Math. Biol., 54,
(4): 563–598, 1992.

47. D. Gusfield, Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology, Cambridge,
UK: Cambridge University Press, 1997.

48. D. Sankoff, and R. Cedergren, Simultaneous comparisons
of three or more sequences related by a tree, in D. Sankoff,

and J. Kruskal (eds.), Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison,
Reading, MA: Addison Wesley, 1983, pp. 253–264.

49. M. S. Waterman, Introduction to Computational Biology:
Maps, Sequences, and Genomes, London: Chapman and
Hall, 1995.

50. H. Carrillo and D. Lipman, The multiple sequence alignment
problem in biology, SIAM J. Appl. Math., 48: 1073–1082, 1988.

51. S. Altschul, and D. Lipman, Trees, stars, and multiple
sequence alignment, SIAM J. Applied Math., 49: 197–209,
1989.

52. D. Baconn, and W. Anderson, Multiple sequence alignment, J.
Molec. Biol., 191: 153–161, 1986.

53. D. Gusfield, Efficient methods for multiple sequence alignment
with guaranteed error bounds, Bull. Math. Biol., 55: 141–154,
1993.

54. P. Pevzner, Multiple alignment, communication cost, and
graph matching, SIAM J. Appl. Math., 56 (6): 1763–1779, 1992.

55. S. Gupta, J. Kececioglu, and A. Schaffer, Making the shortest-
paths approach to sum-of-pairs multiple sequence alignment
more space efficient in practice, Proc. 6th Symposium on
Combinatorial Pattern Matching, Springer LNCS937, 1995,
pp. 128–143.

56. J. Lipman, S. F. Altschul, and J. D. Kececioglu, A tool for
multiple sequence alignment, Proc. Nat. Acid Sci. U.S.A.,
86: 4412–4415, 1989.

57. G. D. Schuler, S. F. Altschul, and D. J. Lipman, A workbench
for multiple alignment construction and analysis, in Proteins:
Structure, function and Genetics, in press.

58. L. Wang and T. Jiang, On the complexity of multiple sequence
alignment, J. Computat. Biol., 1: 337–348, 1994.

59. V. Bafna, E. Lawer, and P. Pevzner, Approximate methods for
multiple sequence alignment, Proc. 5th Symp. on Combinator-
ial Pattern Matching. Springer LNCS 807, 1994, pp. 43–53.

60. E. Sweedyk, and T. Warnow, The tree alignment problem is
NP-complete, Manuscript.

61. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, On
the intractability of approximation problems, 33rd IEEE Sym-
posium on Foundations of Computer Science, 1992, pp. 14–23.

62. D. Sankoff and J. Kruskal (eds.). Time Warps, String Edits, and
Macro-Molecules: The Theory and Practice of Sequence Com-
parison, Reading, MA: Addison Wesley, 1983.

63. W. R. Pearson and D. Lipman, Improved tools for biological
sequence comparison, Proc. Natl. Acad. Sci. USA, 85: 2444–
2448, 1988.

64. W. R. Pearson, Rapid and sensitive comparison with FASTP
and FASTA, Methods Enzymol., 183: 63–98, 1990.

65. W. R. Pearson, Searching protein sequence libraries: compar-
ison of the sensitivity and selectivity of the Smith-Waterman
and FASTA algorithms, Genomics, 11: 635–650, 1991.

66. K. Chao, W. R. Pearson, and W. Miller, Aligning two sequences
within a specified diagonal band, CABIOS, 8: 481–487, 1992.

67. J. W. Fickett, Fast optimal alignment, Nucleic Acids Res., 12:
175–180, 1984.

68. Z. Galil and R. Ciancarlo, Speeding up dynamic programming
with applications to molecular biology, Theoret. Comp. Sci., 64:
107–118, 1989.

69. E. Ukkonen, Algorithms for approximate string matching,
Inform. Control, 64: 100–118, 1985.

70. J. L. Spouge, Fast optimal alignment, CABIOS, 7: 1–7, 1991.

BIOLOGY COMPUTING 9



71. M. Li, B. Ma, and L. Wang, Near optimal multiple alignment
within a band in polynomial time, 32th ACM Symp. on Theory
of Computing, 2000, pp. 425–434.

72. D. Sankoff, R. J. Cedergren, and G. Lapalme, Frequency of
insertion-deletion, transversion, and transition in the evolu-
tion of 5S ribosomal RNA, J. Mol. Evol., 7: 133–149, 1976.

73. M. S. Waterman and M. D. Perlwitz, Line geometries for
sequence comparisons, Bull. Math. Biol, 46: 567–577, 1984.

74. J. Hein, A tree reconstruction method that is economical in the
number of pairwise comparisons used, Mol. Biol. Evol., 6, (6):
669–684, 1989.

75. J. Hein, A new method that simultaneously aligns and recon-
structs ancestral sequences for any number of homologous
sequences, when the phylogeny is given, Mol. Biol. Evol., 6:
649–668, 1989.

76. R. Ravi and J. Kececioglu, Approximation algorithms for
multiple sequence alignment under a fixed evolutionary
tree, 5th Annual Symposium on Combinatorial Pattern Match-
ing, 1995, pp. 330–339.

77. L. Wang, T. Jiang, and E. L. Lawler, Approximation algorithms
for tree alignment with a given phylogeny, Algorithmica, 16:
302–315, 1996.

78. L. Wang and D. Gusfield, Improved approximation algorithms
for tree alignment, J. Algorithms, 25: 255–173, 1997.

79. L. Wang, T. Jiang, and D. Gusfield, A more efficient approx-
imation scheme for tree alignment, SIAM J. Comput., 30: 283–
299, 2000.

80. H. T. Wareham, A simplified proof of the NP-hardness and
MAX SNP-hardness of multiplel sequence tree alignment, J.
Computat. Biol., 2: 509–514, 1995.

81. A. Z. Zelikovsky, The 11/6 approximation algorithm for the
Steiner problem on networks, Algorithmica, 9: 463–470, 1993.

82. B. Schwikowski and M. Vingron, The deferred path heuristic
for the generalized tree alignment problem, 1st Annual Inter-
national Conference On Computational Molecular Biology,
1997, pp. 257–266.

83. J. Kececioglu and D. Gusfield, Reconstructing a history of
recombinations from a set of sequences, 5th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 471–480, 1994.

84. F. W. Stahl, Genetic Recombination, New York: Scientific
American, 1987, pp. 90–101.

85. J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A.
M. Weiner, Molecular Biology of the Gene, 4th ed.Menlo Park,
CA: Benjamin-Cummings, 1987.

86. B. Ma, L. Wang, and M. Li, Fixed topology alignment with
recombination, CPM98, to appear.

87. S. Kannan and E. W. Myers, An algorithm for locating non-
overlapping regions of maximum alignment score, 3rd
Annual Symposium on Combinatorial Pattern Matching,
1993, pp. 74–86.

88. G. M. Landau and J. P. Schmidt, An algorithm for approximate
tandem repeats, 3rd Annual Symposium on Combinatorial
Pattern Matching, 1993, pp. 120–133.

89. J. Collado-Vides, B. Magasanik, and T. F. Smith (eds.), Inte-
grative Approaches to Molecular Biology, Cambridge, MA: MIT
Press, 1996.

90. L. Hunter (ed.), Artificial Intelligence in Molecular Biology,
Cambridge, MA: MIT Press, 1993.

91. J. Meidanis and J. C. Setubal, Introduction to Computational
Molecular Biology, Boston, MA: PWS Publishing Company,
1997.

92. G. A. Stephens, String Searching Algorithms, Singapore:
World Scientific Publishers, 1994.

BHASKAR DASGUPTA

University of Illinois at Chicago
Chicago, Illinois

LUSHENG WANG

City University of Hong Kong
Kowloon, Hong Kong

10 BIOLOGY COMPUTING



C

COMPUTATIONAL INTELLIGENCE

INTRODUCTION

Several interpretations of the notion of computational
intelligence (CI) exist (1–9). Computationally intelligent
systems have been characterized by Bezdek (1,2) relative to
adaptivity, fault-tolerance, speed, and error rates. In its
original conception, many technologies were identified to
constitute the backbone of computational intelligence,
namely, neural networks (10,11), genetic algorithms
(10,11), fuzzy sets and fuzzy systems (10,11), evolutionary
programming (10,11), and artificial life (12). More recently,
rough set theory (13–33) has been considered in the context
of computationally intelligent systems (3, 6–11, 13–16, 29–
31, 34, 35) that naturally led to a generalization in the
context of granular computing (32). Overall, CI can be
regarded as a field of intelligent system design and analysis
that dwells on a well-defined and clearly manifested
synergy of genetic, granular, and neural computing. A
detailed introduction to the different facets of such a
synergy along with a discussion of various realizations of
such synergistic links between CI technologies is given in
Refs. 3, 4, 10, 11, 19, 36, and 37.

GENETIC ALGORITHMS

Genetic algorithms were proposed by Holland as a search
mechanism in artificially adaptive populations (38). A
genetic algorithm (GA) is a problem-solving method that
simulates Darwinian evolutionary processes and naturally
occurring genetic operations on chromosomes (39). In nat-
ure, a chromosome is a thread-like linear strand of DNA
and associated proteins in the nucleus of animal and plant
cells. A chromosome carries genes and serves as a vehicle in
transmitting hereditary information. A gene is a hereditary
unit that occupies a specific location on a chromosome and
that determines a particular trait in an organism. Genes
can undergo mutation (alteration or structural change). A
consequence of the mutation of genes is the creation of a
new trait in an organism. In genetic algorithms, the traits of
artificial life forms are stored in bit strings that mimic
chromosome strings found in nature. The traits of indivi-
duals in a population are represented by a set of evolving
chromosomes. A GA transforms a set of chromosomes to
obtain the next generation of an evolving population. Such
transformations are the result of applying operations, such
as reproduction based on survival of the fittest, and genetic
operations, such as sexual recombination (also called cross-
over) and mutation.

Each artificial chromosome has an associated fitness,
which is measured with a fitness function. The simplest
form of fitness function is known as raw fitness, which
is some form of performance score (e.g., number of pieces
of food found, amount of energy consumed, or number of
other life forms found). Each chromosome is assigned a

probability of reproduction that is proportional to its fit-
ness. In a Darwinian system, natural selection controls
evolution (10). Consider, for example, a collection of arti-
ficial life forms with behaviors resembling ants. Fitness will
be quantified relative to the total number of pieces of food
found and eaten (partially eaten food is counted). Repro-
duction consists in selecting the fittest individual x and the
weakest individual y in a population and replacing y with a
copy of x. After reproduction, a population will then have
two copies of the fittest individual. A crossover operation
consists in exchanging genetic coding (bit values of one or
more genes) in two different chromosomes. The steps in a
crossover operation are as follows: (1) Randomly select a
location (also called the interstitial location) between two
bits in a chromosome string to form two fragments, (2)
select two parents (chromosomes to be crossed), and (3)
interchange the chromosome fragments. Because of the
complexity of traits represented by a gene, substrings of
bits in a chromosome are used to represent a trait (41). The
evolution of a population resulting from the application of
genetic operations results in changing the fitness of indi-
vidual population members. A principal goal of GAs is to
derive a population with optimal fitness.

The pioneering works of Holland (38) and Fogel et al.
(42) gave birth to the new paradigm of population-driven
computing (evolutionary computation) resulting in struc-
tural and parametric optimization. Evolutionary program-
ming was introduced by Fogel in the 1960s (43). The
evolution of competing algorithms defines evolutionary
programming. Each algorithm operates on a sequence of
symbols to produce an output symbol that is likely to
maximize an algorithm’s performance relative to a well-
defined payoff function. Evolutionary programming is the
precursor of genetic programming (39). In genetic program-
ming, large populations of computer programs are bred
genetically. One may also refer to biologically inspired
optimization, such as particle swarm optimization (PSO),
ant colonies, and others.

FUZZY SETS AND SYSTEMS

Fuzzy systems (models) are immediate constructs that
result from a description of real-world systems (say, social,
economic, ecological, engineering, or biological) in terms of
information granules, fuzzy sets, and the relationships
between them (44). The concept of a fuzzy set introduced
by Zadeh in 1965 (45,46) becomes of paramount relevance
when formalizing a notion of partial membership of an
element. Fuzzy sets are distinguished from the fundamen-
tal notion of a set (also called a crisp set) by the fact that
their boundaries are formed by elements whose degree of
belonging is allowed to assume numeric values in the
interval [0, 1]. Let us recall that the characteristic function
for a set X returns a Boolean value {0, 1} indicating whether
an element x is in X or is excluded from it. A fuzzy set is
noncrisp inasmuch as the characteristic function for a fuzzy

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



set returns a value in [0, 1]. Let U, X, ~A, and x be a universe
of objects, subset of U, fuzzy set in U, and an individual
object x in X, respectively. For a set X, m ~A : X!½0; 1� is a
function that determines the degree of membership of an
object x in X. A fuzzy set ~A is then defined to be a set of
ordered pairs, where ~A ¼ fðx; m ~A ðxÞÞjx 2 Xg. The counter-
parts of intersection and union (crisp sets) are the t-norm
and s-norm operators in fuzzy set theory. For the intersec-
tion of fuzzy sets, the min operator was suggested by Zadeh
(29), and it belongs to a class of intersection operators (min,
product, and bold intersection) known as triangular or t-
norms. A t-norm is a mapping t : ½0; 1�2!½0; 1�. The s-norm
(t-conorm) is a mapping s : ½0; 1�2!½0; 1� (also a triangular
conorm) that is commonly used for the union of fuzzy sets.
The properties of triangular norms are presented in
Ref. 84.

Fuzzy sets exploit imprecision in conventional systems
in an attempt to make system complexity manageable. It
has been observed that fuzzy set theory offers a new model
of vagueness (13–16). Many examples of fuzzy systems are
given in Pedrycz (47) and in Kruse et al. (48)

NEURAL COMPUTING

Neural networks offer a powerful and distributed comput-
ing architecture equipped with significant learning abil-
ities (predominantly as far as parametric learning is
concerned). They help represent highly nonlinear and
multivariable relationships between system variables.
Starting from the pioneering research of McCulloch and
Pitts (49), Rosenblatt (50) as well as Minsky and Pappert
(51) neural networks have undergone a significant meta-
morphosis and have become an important reservoir of
various learning methods (52) as well as an extension of
conventional techniques in statistical pattern recognition
(53). Artificial neural networks (ANNs) were introduced to
model features of the human nervous system (49). An
artificial neural network is a collection of highly inter-
connected processing elements called neurons. In ANNs, a
neuron is a threshold device, which aggregates (‘‘sums’’)
its weighted inputs and applies an activation function to
each aggregation to produce a response. The summing
part of a neuron in an ANN is called an adaptive linear
combiner (ALC) in Refs. 54 and 55. For instance, a McCul-
loch–Pitts neuron ni is a binary threshold unit with an
ALC that computes a weighted sum net, where net ¼Pn

j¼0 wjx j� A weight wi associated with xi represents the
strength of connection of the input to a neuron. Input x0

represents a bias, which can be thought of as an input with
weight 1. The response of a neuron can be computed in
several ways. For example, the response of neuron ni can
be computed using sgn(net), where sgn(net)¼ 1 for net> 0,
sgn(net) ¼ 0 for net ¼ 0, and sgn(net) ¼ �1, if net < 0. A
neuron comes with adaptive capabilities that could be
exploited fully assuming that an effective procedure is
introduced to modify the strengths of connections so that a
correct response is obtained for a given input. A good
discussion of learning algorithms for various forms of
neural networks can be found in Freeman and Skapura
(56) and in Bishop (53). Various forms of neural networks

have been used successfully in system modeling, pattern
recognition, robotics, and process control applications
(10,11,35,57,58).

ROUGH SETS

Zdzislaw Pawlak (13–16,59,60) introduced rough sets
in 1981 (24,25). The rough set approach to approximation
and classification was then elaborated and refined in
Refs. 13–21, 24–31, 33, 61, and 62. Rough set theory offers
an approach to CI by drawing attention to the importance
of set approximation in knowledge discovery and informa-
tion granulation (32).

In particular, rough set methods provide a means of
approximating a set by other sets (17,18). For computa-
tional reasons, a syntactic representation of knowledge is
provided by rough sets in the form of data tables. In general,
an information system (IS) is represented by a pair (U, F),
where U is a nonempty set of objects and F is a nonempty,
countable set of probe functions that are a source of mea-
surements associated with object features (63). For exam-
ple, a feature of an image may be color with probe functions
that measure tristimulus values received from three pri-
mary color sensors, brightness (luminous flux), hue (domi-
nant wavelength in a mixture of light waves), and
saturation (amount of white light mixed with a hue).
Each f 2F maps an object to some value in a set Vf. In
effect, we have f : U!Vf for every f 2F.

The notions of equivalence and equivalence class are
fundamental in rough sets theory. A binary relation R�X �
X is an equivalence relation if it is reflexive, symmetric, and
transitive. A relation R is reflexive if every object x2X has
relation R to itself. That is, we can assert x R x. The sym-
metric property holds for relation R if xRy implies yRx for
everyx, y2X. Therelation R is transitive for everyx, y, z2X;
then xRy and yRz imply xRz. The equivalence class of an
object x2X consists of all objects y2X so that xRy. For each
set of functions B�F; an equivalence relation �B ¼
fðx; x0Þj 8a2B:aðxÞ ¼ aðx0Þg (indiscernibility relation)is
associat with it. If ðx; x0Þ 2 �B, we say that objects x and x’
are indiscernible from each other relative to attributes from
B. This concept is fundamental to rough sets. The notation
[x]B is a commonly used shorthand that denotes the equiva-
lence class defined by x relative to a feature set B. In effect,
½x�B ¼ fy2Ujx �B yg. Furthermore, Ul�B denotes the
partition of U defined by relation �B. Equivalence classes
½x�B represent B-granules of an elementary portion of knowl-
edge that we can perceive as relative to available data. Such
a view of knowledge has led to the study of concept approx-
imation (64)and patternextraction (65). ForX �U, the setX
can be approximated only from information contained in B
by constructing a B-lower approximation B� X ¼
[f½x�Bj½x�B 2Ul�B and ½x�B�Xg and a B-upper approxima-
tion B � X ¼ [f½x�Bj½x�B 2Ul�B and ½x�B \X 6¼?g, respec-
tively. In other words, a lower approximation B� X of a
set X is a collection of objects that can be classified with full
certainty as members of X using the knowledge represented
by B. By contrast, an upper approximation B � X of a set X is
a collection of objects representing both certain knowledge
(i.e., classes entirely contained in X) and possible uncertain

2 COMPUTATIONAL INTELLIGENCE



knowledge (i.e., possible classes partially contained in X). In
the case in which B � X is a proper subset of B� X, then the
objects in X cannot be classified with certainty and the set X
is rough. It has recently been observed by Pawlak (13–16)
that this is exactly the idea of vagueness proposed by Frege
(65). That is, the vagueness of an approximation of a set
stems from its borderline region.

The size of the difference between lower and upper
approximations of a set (i.e., boundary region) provides a
basis for the ‘‘roughness’’ of an approximation, which is
important because vagueness is allocated to some regions
of what is known as the universe of discourse (space)
rather than to the whole space as encountered in fuzzy
sets. The study of what it means to be a part of provides a
basis for what is known as mereology, which was intro-
duced by Lesniewski in 1927 (66). More recently, the
study of what it means to be a part of to a degree has
led to a calculus of granules (23, 67–70). In effect, gran-
ular computing allows us to quantify uncertainty and to
take advantage of uncertainty rather than to discard it
blindly.

Approximation spaces introduced by Pawlak (24)
which were elaborated by Refs. 17–19, 22, 23, 29, 30,
61, 62, 70, 71, and applied in Refs. 6–8, 35, 64, 72, and
73 serve as a formal counterpart of our perception ability
or observation (61,62), and they provide a framework for
perceptual reasoning at the level of classes (63). In its
simplest form, an approximation space is denoted by
ðU; F; �BÞ, where U is a nonempty set of objects (called
a universe of discourse), F is a set of functions represent-
ing object features, B�F; and �B is an equivalence
relation that defines a partition of U. Equivalence classes
belonging to a partition Ul�B are called elementary sets
(information granules). Given an approximation space
S ¼ ðU; F; �BÞ, a subset X of U is definable if it can be
represented as the union of some elementary sets. Not all
subsets of U are definable in space S(61,62). Given a
nondefinable subset X in U, our observation restricted
by �B causes X to be perceived relative to classes in the
partition Ul�B. An upper approximation B�X is the set of
all classes in Ul�B that have elements in common with X,
and the lower approximation B� X is the set of all classes
in Ul�B that are proper subsets of X.

Fuzzy set theory and rough set theory taken singly and
in combination pave the way for a variety of approximate
reasoning systems and applications representing a synergy
of technologies from computational intelligence. This
synergy can be found, for example, in recent work on the
relation among fuzzy sets and rough sets (13–16,35,37,
74,75), rough mereology (19,37,67–69), rough control
(76,77), fuzzy–rough–evolutionary control (36), machine
learning (18,57,72,78), fuzzy neurocomputing (3), rough
neurocomputing (35), data mining (6,7,13–16,31), diagnos-
tic systems (18,79), multiagent systems (8,9,80), real-time
decision making (34,81), robotics and unmanned vehicles
(57,82,83), intelligent systems (8,13,29,57), signal analysis
(84), perception and classification of perceptual objects (29,
30,61–63), software engineering (4,84–87), a dominance-
based rough set approach to multicriteria decision making
and data mining (31), VPRS (33), and shadowed sets (75).

BIBLIOGRAPHY

1. J. C. Bezdek, On the relationship between neural networks,
pattern recognition and intelligence, Int. J. Approx. Reasoning,
6: 85–107. 1992.

2. J. C. Bezdek, What is computational intelligence? in J. Zurada,
R. Marks, C. Robinson (eds.), Computational Intelligence:
Imitating Life, Piscataway, NJ: IEEE Press, 1994,
pp. 1–12.

3. W. Pedrycz, Computational Intelligence: An Introduction, Boca
Raton, FL: CRC Press, 1998.

4. W. Pedrycz, J. F. Peters (eds.), Computational intelligence in
software engineering, Advances in Fuzzy Systems—Applica-
tions and Theory, vol. 16. Singapore: World Scientific, 1998.

5. D. Poole, A. Mackworth, R. Goebel, Computational Intelli-
gence: A Logical Approach. Oxford: Oxford University Press,
1998.

6. N. Cercone, A. Skowron, N. Zhong (eds.), Rough sets, fuzzy sets,
data mining, and granular-soft computing special issue, Com-
put. Intelli.: An Internat. J., 17(3): 399–603, 2001.

7. A. Skowron, S. K. Pal (eds.), Rough sets, pattern recognition
and data mining special issue, Pattern Recog. Let., 24(6):
829–933, 2003.

8. A. Skowron, Toward intelligent systems: calculi of information
granules, in: T. Terano, T. Nishida, A. Namatane, S. Tsumoto,
Y. Ohsawa, T. Washio (eds.), New Frontiers in Artificial Intel-
ligence, Lecture Notes in Artificial Intelligence 2253. Berlin:
Springer-Verlag, 2001, pp. 28–39.

9. J. F. Peters, A. Skowron, J. Stepaniuk, S. Ramanna, Towards
an ontology of approximate reason, Fundamenta Informaticae,
51(1-2): 157–173, 2002.

10. IEEE World Congress on Computational Intelligence, Vancou-
ver B.C., Canada, 2006.

11. M. H. Hamaza, (ed.), Proceedings of the IASTED Int. Conf. on
Computational Intelligence. Calgary, AB, Canada, 2005.

12. R. Marks, Intelligence: computational versus artificial, IEEE
Trans. on Neural Networks, 4: 737–739, 1993.

13. Z. Pawlak and A. Skowron, Rudiments of rough sets, Informa-
tion Sciences, 177(1): 3–27, 2007.

14. J. F. Peters and A. Skowron, Zdzislaw Pawlak life and work
(1926–2006), Information Sciences, 177(1): 1–2, 2007.

15. Z. Pawlak and A. Skowron, Rough sets: Some extensions,
Information Sciences, 177(1): 28–40, 2007.

16. Z. Pawlak, and A. Skowron, Rough sets and Boolean reasoning,
Information Sciences, 177(1): 41–73, 2007.

17. Z. Pawlak, Rough sets, Int. J. of Informat. Comput. Sciences,
11(5): 341–356, 1982.

18. Z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning about
Data, Dordrecht: Kluwer Academic Publishers, 1991.

19. L. Polkowski, Rough sets, Mathematical Foundations.
Advances in Soft Computing, Heidelberg: Physica-Verlag, 2002.

20. Z. Pawlak, Some issues on rough sets, Transactions on Rough
Sets I, LNCS 3100, 2004, pp. 1–58.

21. Z. Pawlak, A treatise on rough sets, Transactions on Rough
Sets IV, LNCS 3700, 2005, pp. 1–17.

22. A. Skowron, and J. Stepaniuk, Generalized approximation
spaces, in: T. Y. Lin, A. M. Wildberger, (eds.), Soft Computing,
San Diego, CA: Simulation Councils, 1995, pp. 18–21.

23. A. Skowron, J. Stepaniuk, J. F. Peters and R. Swiniarski,
Calculi of approximation spaces, Fundamenta Informaticae,
72(1–3): 363–378, 2006.

COMPUTATIONAL INTELLIGENCE 3



24. Z. Pawlak, Classification of Objects by Means of Attributes.
Institute for Computer Science, Polish Academy of Sciences,
Report 429: 1981.

25. Z. Pawlak, Rough Sets. Institute for Computer Science, Polish
Academy of Sciences, Report 431: 1981.

26. Z. Pawlak, Rough classification, Int. J. of Man–Machine
Studies, 20(5): 127–134, 1984.

27. Z. Pawlak, Rough sets and intelligent data analysis, Informa-
tion Sciences: An Internat, J., 147(1–4): 1–12, 2002.

28. Z. Pawlak, Rough sets, decision algorithms and Bayes’ theorem,
European J. Operat. Res., 136: 181–189, 2002.

29. M. Kryszkiewicz, J. F. Peters, H. Rybinski and A. Skowron
(eds.), rough sets and intelligent systems paradigms, Lecture
Notes in Artificial Intelligence 4585 Berlin: Springer,
2007.

30. J. F. Peters and A. Skowron, Transactions on Rough Sets,
volumes I-VII, Berlin: Springer, 2004–2007. Avaiilable:
http://www.springer.com/west/home/computer/
lncs?SGWID=4–164–6–99627–0.

31. R. Slowinski, S. Greco and B. Matarazzo, Dominance-based
rough set approach to reasoning about ordinal data, in: M.
Kryszkiewicz, J. F. Peters, H. Rybinski and A. Skowron, eds.,
Rough Sets and Intelligent Systems Paradigms, Lecture Notes
in Artificial Intelligence, Berlin: Springer, 2007, pp. 5–11.

32. L. Zadeh, Granular computing and rough set theory, in: M.
Kryszkiewicz, J. F. Peters, H. Rybinski, and A. Skowron, (eds.),
Rough Sets and Intelligent Systems Paradigms, Lecture Notes
in Artificial Intelligence, Berlin: Springer, 2007, pp. 1–4.

33. W. Ziarko, Variable precision rough set model, J. Comp. Sys.
Sciences, 46(1): 39–59, 1993.

34. J. F. Peters, Time and clock information systems: concepts
and roughly fuzzy petri net models, in J. Kacprzyk (ed.),
Knowledge Discovery and Rough Sets. Berlin: Physica Ver-
lag, 1998.

35. S. K. Pal, L. Polkowski and A. Skowron (eds.), Rough-Neuro
Computing: Techniques for Computing with Words. Berlin:
Springer-Verlag, 2003.

36. T. Y. Lin, Fuzzy controllers: An integrated approach based on
fuzzy logic, rough sets, and evolutionary computing, in T. Y. Lin
and N. Cercone (eds.), Rough Sets and Data Mining: Analysis
for Imprecise Data. Norwell, MA: Kluwer Academic Publishers,
1997, pp. 109–122.

37. L. Polkowski, Rough mereology as a link between rough and
fuzzy set theories: a survey, Trans. Rough Sets II, LNCS 3135,
2004, pp. 253–277.

38. J. H. Holland, Adaptation in Natural and Artificial Systems,
Ann Arbor, MI: University of Michigan Press, 1975.

39. J. R. Koza, Genetic Programming: On the Progamming of
Computers by Means of Natural Selection. Cambridge, MA:
MIT Press, 1993.

40. C. Darwin, On the Origin of Species by Means of Natural
Selection, or the Preservation of Favoured Races in the Struggle
for Life. London: John Murray, 1959.

41. L. Chambers, Practical Handbook of Genetic Algorithms, vol. 1.
Boca Raton, FL: CRC Press, 1995.

42. L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence
through Simulated Evolution, Chichester: J. Wiley, 1966.

43. L. J. Fogel, On the organization of the intellect. Ph. D. Dis-
sentation, Los Angeles: University of California Los Angeles,
1964.

44. R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and
Control. New York, John Wiley & Sons, Inc., 1994.

45. L. A. Zadeh, Fuzzy sets, Information and Control, 8: 338–353,
1965.

46. L. A. Zadeh, Outline of a new approach to the analysis of
complex systems and decision processes, IEEE Trans. on Sys-
tems, Man, and Cybernetics, 2: 28–44, 1973.

47. W. Pedrycz, Fuzzy Control and Fuzzy Systems, New York: John
Wiley & Sons, Inc., 1993.

48. R. Kruse, J. Gebhardt and F. Klawonn, Foundations of Fuzzy
Systems. New Yark: John Wiley & Sons, Inc., 1994.

49. W. S. McCulloch and W. Pitts, A logical calculus of ideas
immanent in nervous activity, Bulletin of Mathemat. Biophy.,
5: 115–133, 1943.

50. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms, Washington, D.C: Spartan
Press, 1961.

51. M. Minsky and S. Pappert, Perceptrons: An Introduction to
Computational Geometry, Cambridge: MIT Press, 1969.

52. E. Fiesler and R. Beale (eds.), Handbook on Neural Computa-
tion. oxford: Institute of Physics Publishing and Oxford Uni-
versity Press, 1997.

53. C. M. Bishop, Neural Networks for Pattern Recognition.
Oxford: Oxford University Press, 1995.

54. B. Widrow and M. E. Hoff, Adaptive switching circuits, Proc.
IRE WESCON Convention Record, Part 4, 1960, pp. 96–104.

55. B. Widrow, Generalization and information storage in net-
works of adaline ’’neurons’’. in M. C. Yovits, G. T. Jacobi,
and G. D. Goldstein (eds.), Self-Organizing Systems. Washing-
ton, D.C.: Spartan, 1962.

56. J. A. Freeman and D. M. Skapura, Neural Networks: Algo-
rithms, Applications and Programming Techniques. Reading,
MA: Addison-Wesley, 1991.

57. D. Lockery, and J. F. Peters, Robotic target tracking with
approximation space-based feedback during reinforcement
learning, Springer best paper award, Proceedings of Eleventh
International Conference on Rough Sets, Fuzzy Sets, Data
Mining and Granular Computing (RSFDGrC 2007), Joint
Rough Set Symposium (JRS 2007), Lecture Notes in Artificial
Intelligence, vol. 4482, 2007, pp. 483–490.

58. J. F. Peters, L. Han, and S. Ramanna, Rough neural computing
in signal analysis, Computat. Intelli., 1(3): 493–513, 2001.

59. E. Orlowska, J. F. Peters, G. Rozenberg and A. Skowron, New
Frontiers in Scientific Discovery. Commemorating the Life and
Work of Zdzislaw Pawlak, Amsterdam: IOS Press, 2007.

60. J. F. Peters, and A. Skowron, Zdzislaw Pawlak: Life and Work.
1926–2006, Transactions on Rough Sets, V, LNCS 4100, Berlin:
Springer, 2006, pp. 1–24.

61. E. Orlowska, Semantics of Vague Concepts. Applications of
Rough Sets. Institute for Computer Science, Polish Academy of
Sciences, Report 469: 1981.

62. E. Orlowska, Semantics of vague concepts, in: G. Dorn, and P.
Weingartner, (eds.), Foundations of Logic and Linguistics,
Problems and Solutions, London: Plenum Press, 1985, pp.
465–482.

63. J. F. Peters, Classification of perceptual objects by means of
features, Internat. J. Informat. Technol. Intell. Comput., 2007.
in Press.

64. H. S. Bazan, Nguyen, A. Skowron, and M. Szczuka, A view on
rough set concept approximation, in: G. Wang, Q. Liu, Y. Y.
Yao, A. Skowron, Proceedings of the Ninth International Con-
ference on Rough Sets, Fuzzy Sets, Data Mining and Granular
Computing RSFDGrC’2003), Chongqing, China, 2003, pp.
181–188.

4 COMPUTATIONAL INTELLIGENCE



65. J. Bazan, H. S. Nguyen, J. F. Peters, A. Skowron and M.
Szczuka, Rough set approach to pattern extraction from clas-
sifiers, Proceedings of the Workshop on Rough Sets in Knowl-
edge Discovery and Soft Computing at ETAPS’2003, pp. 2–3.

66. S. Lesniewski, O podstawach matematyki (in Polish), Przeglad
Filozoficzny, 30: 164–206, 31: 261–291, 32: 60–101, 33: 142–
170, 1927.

67. L. Polkowski and A. Skowron, Implementing fuzzy contain-
ment via rough inclusions: Rough mereological approach to
distributed problem solving, Proc. Fifth IEEE Int. Conf. on
Fuzzy Systems, vol. 2, New Orleans, 1996, pp. 1147–1153.

68. L. Polkowski and A. Skowron, Rough mereology: A new para-
digm for approximate reasoning, Internat. J. Approx. Reason-
ing, 15(4): 333–365, 1996.

69. L. Polkowski and A. Skowron, Rough mereological calculi of
granules: A rough set approach to computation, Computat.
Intelli. An Internat. J., 17(3): 472–492, 2001.

70. A. Skowron, R. Swiniarski, and P. Synak, Approximation
spaces and information granulation, Trans. Rough Sets III,
LNCS 3400, 2005, pp. 175–189.

71. A. Skowron and J. Stepaniuk, Tolerance approximation spaces,
Fundamenta Informaticae, 27(2–3): 245–253. 1996.

72. J. F. Peters and C. Henry, Reinforcement learning with approx-
imation spaces. Fundamenta Informaticae, 71(2–3): 323–349,
2006.

73. J. F. Peters, Rough ethology: towards a biologically-inspired
study of collective behavior in intelligent systems with approx-
imation spaces, Transactions on Rough Sets III, LNCS 3400,
2005, pp. 153–174.

74. W. Pedrycz, Shadowed sets: Representing and processing fuzzy
sets, IEEE Trans. on Systems, Man, and Cybernetics, Part B:
Cybernetics, 28: 103–108, 1998.

75. W. Pedrycz, Granular computing with shadowed sets, in: D.
Slezak, G. Wang, M. Szczuka, I. Duntsch, and Y. Yao (eds.),
Rough Sets, Fuzzy Sets, Data Mining, and Granular Comput-
ing, LNAI 3641. Berlin: Springer, 2005, pp. 23–31.

76. T. Munakata and Z. Pawlak, Rough control: Application of
rough set theory to control, Proc. Fur. Congr. Fuzzy Intell.
Techool. EUFIT’96, 1996, pp. 209–218,

77. J. F. Peters, A. Skowron, Z. Suraj, An application of rough set
methods to automatic concurrent control design, Fundamenta
Informaticae, 43(1–4): 269–290, 2000.

78. J. Grzymala-Busse, S. Y. Sedelow, and W. A. Sedelow, Machine
learning & knowledge acquisition, rough sets, and the English
semantic code, in T. Y. Lin and N. Cercone (eds.), Rough Sets
and Data Mining: Analysis for Imprecise Data. Norwell, MA:
Kluwer Academic Publishers, 1997, pp. 91–108.

79. R. Hashemi, B. Pearce, R. Arani, W. Hinson, and M. Paule, A
fusion of rough sets, modified rough sets, and genetic algo-
rithms for hybrid diagnostic systems, in T. Y. Lin, N. Cercone
(eds.), Rough Sets and Data Mining: Analysis for Imprecise
Data. Norwell, MA: Kluwer Academic Publishers, 1997, pp.
149–176.

80. R. Ras, Resolving queries through cooperation in multi-agent
systems, in T. Y. Lin, N. Cercone (eds.), Rough Sets and Data
Mining: Analysis for Imprecise Data. Norwell, MA: Kluwer
Academic Publishers, 1997, pp. 239–258.

81. A. Skowron and Z. Suraj, A parallel algorithm for real-time
decision making: a rough set approach. J. Intelligent Systems,
7: 5–28, 1996.

82. M. S. Szczuka and N. H. Son, Analysis of image sequences for
unmanned aerial vehicles, in: M. Inuiguchi, S. Hirano, S.
Tsumoto (eds.), Rough Set Theory and Granular Computing.
Berlin: Springer-Verlag, 2003, pp. 291–300.

83. H. S. Son, A. Skowron, and M. Szczuka, Situation identification
by unmanned aerial vehicle, Proc. of CS&P 2000, Informatik
Berichte, Humboldt-Universitat zu Berlin, 2000, pp. 177–188.

84. J. F. Peters and S. Ramanna, Towards a software change
classification system: A rough set approach, Software Quality
J., 11(2): 87–120, 2003.

85. M. Reformat, W. Pedrycz, and N. J. Pizzi, Software quality
analysis with the use of computational intelligence, Informat.
Software Technol., 45: 405–417, 2003.

86. J. F. Peters and S. Ramanna, A rough sets approach to asses-
sing software quality: concepts and rough Petri net models, in:
S. K. Pal and A. Skowron, (eds.), Rough-Fuzzy Hybridization:
New Trends in Decision Making. Berlin: Springer-Verlag,
1999, pp. 349–380.

87. W. Pedrycz, L. Han, J. F. Peters, S. Ramanna and R. Zhai,
Calibration of software quality: fuzzy neural and rough neural
approaches. Neurocomputing, 36: 149–170, 2001.

FURTHER READING

G. Frege, Grundlagen der Arithmetik, 2, Verlag von Herman Pohle,
Jena, 1893.

W. Pedryz, Granular computing in knowledge intgration and
reuse, in: D. Zhang, T. M. Khoshgoftaar and M. -L. Shyu, (eds.),
IEEE Int. conf. on Information Reuse and Intergration. Las Vegas,
NV: 2005, pp.15–17.

W. Pedrycz and G. Succi, Genetic granular classifiers in modeling
software quality, J. Syste. Software, 76(3): 277–285, 2005.

W. Pedrycz and M. Reformat, Genetically optimized logic models,
Fuzzy Sets & Systems, 150(2): 351–371, 2005.

A. Skowron and J. F. Peters, Rough sets: trends and challenges, in
G. Wang, Q., Liu, Y. Yao, and A. Skowron, (eds.), Proceedings 9th
Int. Conf. on Rough Sets, Fuzzy Sets, Data Mining, and Granular
Computing (RSFDGrC2003), LNAI 2639, Berlin: Springer-Verlag,
2003, pp. 25–34.

J.F. Peters, Near sets: General theory about nearness of objects,
Appl. Math. Sci., 1(53): 2609–2629, 2007.

J.F. Peters, A. Skowron, and J. Stepanuik, Nearness of objects:
Extension of approximation space model, Fundamenta Informati-
cae, 79: 497–512, 2007.

JAMES F. PETERS

University of Manitoba
Winnipeg, Manitoba, Canada

WITOLD PEDRYCZ

University of Alberta
Edmonton, Alberta, Canada

COMPUTATIONAL INTELLIGENCE 5



C

COMPUTER ENGINEERING EDUCATION

Computer engineering education (CEE) is concerned with
preparing qualified computer engineers who can take the
lead and innovation in the rapid growth of technology and
computer engineering fields that dominate all aspects in
our life. The issues of computer engineering education rely
on a broad mathematical and scientific knowledge base.
Before discussing issues related to CEE, a short description
of computer engineering is helpful.

Developments in technologies such as telecommunica-
tions, remote sensing and detection, electronic components
and robotics, as well as computers have fundamentally
altered human life. The field of computer engineering is
at the epicenter of this development. Computer engineering
is the design, construction, implementation, and mainte-
nance of computers and computer-controlled equipment for
the benefit of humankind. A computer engineer encom-
passes a blend of both electrical engineering and computer
science. Computer engineers are involved in many aspects
of computing, from the design of individual microproces-
sors, personal computers, and supercomputers, to circuit
design. Those in computer engineering careers engage in
activities that advance technology and provide new con-
cepts. They then put those new concepts into physical form.

Usual tasks involving computer engineers include
writing software and firmware for embedded microcon-
trollers, designing Very Large-Scale Integration (VLSI)
chips, designing analog sensors, designing mixed signal
circuit boards, and designing operating systems. Com-
puter engineers are also suited for robotics research,
which relies heavily on using digital systems to control
and monitor electrical systems like motors, communica-
tions, and sensors. They also solve technical problems,
develop new products from initial idea conception through
completion, and install computer systems.

The computer engineering field provides an opportunity
to work in the continually changing information technology
sector. With the development of faster hardware compo-
nents, new communication systems and software, there is a
need for computer engineers. The computer engineer will
work as part of a team helping to solve technical problems
and pass that information on to software engineers who
would do the programming or network engineers who can
install and operate network and communication infrastruc-
ture.

All computer engineers may do any or all of the following
tasks (1):

� Analyze information to determine client needs

� Conduct training and presentations

� Collaborate with clients, project managers, and team
members to organize and plan projects

� Determine whether the project will meet the desired
budget

� Research, develop, integrate, and distribute security
tools and associated documentation

� Design systems

� Develop and direct testing procedures

� Provide technical support

� Coordinate installation of computer hardware or soft-
ware

� Document and evaluate project progress

� Manage assigned accounts

� Specify project requirements

� Provide analysis and recommendations for overall
system architecture

� Maintain equipment

To be able to achieve these tasks, computer engineers
rely on a broad mathematical and scientific knowledge
base, as well as on a modern (up-to-date) computer engi-
neering education.

In the sequel of this work, we first will briefly introduce
the history of computer engineering curriculum evolution.
Then we will explore the computer engineering field as an
academic discipline. A brief summary of the IEEE-CS/ACM
joint task force report on computer engineering curriculum
guidelines (CE2004) will be given. Next, we will discuss
modern computer engineering education practices. By
‘‘modern’’ we mean applying advanced technology in the
computer engineering learning process (such as multime-
dia, Web technologies, e-learning, simulations, etc.) to
produce teaching/learning materials that meet the compu-
ter engineering students’ learning preferences. Learning
technologies such as learning design and learning manage-
ment systems will then be discussed. Finally, a vision on the
future of computer engineering education will be intro-
duced followed by concluding remarks.

HISTORY AND EVOLUTION OF COMPUTER ENGINEERING
EDUCATION

In the 1940s and 1950s, several traditional subjects and
courses in engineering and science started to shift toward
the then new born computer engineering courses. In the
1970s, most colleges and universities worldwide began
offering majors in computer science and some in computer
engineering.

The Association for Computing Machinery (ACM) began
publishing curriculum recommendations for computer
science in 1968 (a preliminary version appeared in 1965)
and for information systems in 1972. In a parallel effort,
The Computer Society of the Institute for Electrical and
Electronic Engineers (IEEE-CS) began providing curricu-
lum recommendations in 1977. The IEEE Computer
Society published its first computer engineering curricu-
lum around 1983 (2). Prior to the 1990s, each society
produced its own curriculum recommendations. Over
time, the advantages of cooperative work among them

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



became obvious. Today, the societies cooperate in creating
curriculum standards and, in this way, unify the efforts and
send a single message to the computing and engineering
communities.

IEEE-CS and ACM joined forces in the late 1980s to
create a joint curriculum report for computing. Published in
1991 and known as Computing Curricula 1991, or CC’91, it
provided guidelines for curricula for four-year bachelor’s
degree programs in computer science. CC’91 defined com-
puter science in terms of 3 processes, 9 fundamental subject
areas, 12 recurring concepts, and a social and professional
context.

According to CC’91, the three processes of computer
science are defined as follows:

� Theory (mathematical roots)

� Abstraction (scientific roots)

� Design (engineering roots)

The curriculum also included nine fundamental subject
areas:

1. Algorithms and data structures

2. Architecture

3. Artificial intelligence and robotics

4. Database and information retrieval

5. Human–computer communication

6. Numerical and symbolic computations

7. Operating systems

8. Programming languages

9. Software methodology and engineering

The 12 recurring concepts are listed as follows:

1. Binding

2. Complexity of large problems

3. Conceptual and formal models

4. Consistency and completeness

5. Efficiency

6. Evolution

7. Levels of abstraction

8. Ordering in space

9. Ordering in time

10. Reuse

11. Security

12. Trade-offs and consequences

Throughout the 1990s, various efforts were made
to produce curricula guidelines for other programs in
computing education. By 1993, ACM had produced five

reports for two-year associate-degree programs, one report
each for computer science, computer engineering techno-
logy, information systems, computer support services, and
computing for other disciplines. By the end of the 1990s,
it was becoming clear that the field of computing had not
only grown rapidly but had also grown in many dimen-
sions. This rapid growth in computing results in a growing
number of kinds of computing degree programs. IEEE–CS
and ACM again joined forces in the late 1990s to produce
an up-to-date curriculum report to replace CC’91, and to
tackle the problem of the growing number of kinds of
computing degree programs. IEEE–CS and ACM created
a joint task force with the goal of producing Computing
Curricula 2001 (CC2001), a single report that would pro-
vide curriculum guidelines for degree programs for the
various computing disciplines. However, the members of
the task force soon recognized the new reality: Computing
had grown in so many dimensions that no single view of
the field seemed adequate. The days when the field of
computing consisted of only computer science, computer
engineering, and information systems were over, and the
richness and breadth provided by the various computing
disciplines called for a new way of defining what comput-
ing curricula should be. The work of this task force, known
as Computing Curricula 2001 (CC2001), was published in
December 2001. The CC2001 Report contains detailed
curricula guidelines for undergraduate degree programs
in computer science (3).

In response to the CC2001 model, work soon began on
other discipline-specific volumes:

� The information systems community published its up-
dated IS2002 report in 2002.

� The software engineering community published its
first report, SE2004, in 2004.

� The computer engineering community published its CE
2004 report in 2004.

� The information technology community published its
(draft) IT2005 report in 2005.

The post-1990s world presents meaningful choices:
Computer science, software engineering, and computer
engineering each include their own perspective on software
development. These three choices imply real differences:
For computer engineering, software attention is focused on
hardware devices; for software engineering, the emphasis
is on creating software that satisfies robust real-world
requirements; and for computer science, software is the
currency in which ideas are expressed and a wide range
of computing problems and applications are explored
(see Fig. 1) (3).

Figure 1. IEEE-CS/ACM joint task force classi-
fication for computing disciplines post-1990s (3).

2 COMPUTER ENGINEERING EDUCATION



COMPUTER ENGINEERING AS AN ACADEMIC DISCIPLINE
AND A BRIEF OVERVIEW OF THE IEEE–CS/ACM CE 2004
REPORT

Computer engineering as an academic field encompasses
the broad areas of computer science and electrical engineer-
ing.

According to the IEEE-CS/ACM joint task force classifi-
cation for computing related subjects, there are three areas:
hardware, software, and organizational needs. Hardware
includes electric engineering and computer engineering.
Software includes computer engineering, computer science,
and software engineering. Organizational needs include
information technology and information systems. According
to this classification, computer engineering comes in the
intersection between hardware and software areas. Figure 1
shows this classification.

Most universities offer computer engineering as either a
degree program of its own or as a subdiscipline of electrical
engineering. With the widespread use and integration of
computers into our everyday lives, it is hard to separate
what an electrical engineer needs to know and what a
computer engineer needs to know. Because of this, several
universities offer a dual degree in both electrical and
computer engineering.

The field of computer science and engineering has been
in a rapid growth phase for the last 50 years. This state of
rapid growth and change has placed challenges on univer-
sities and colleges to define and administrate modern aca-
demic programs to prepare students adequately to enter
this profession.

Due to increasing job requirements for engineers, who
can design and manage all forms of computer systems used
in industry, some tertiary institutions around the world
offer a bachelor’s degree generally called ‘‘computer engi-
neering.’’ Both computer engineering and electronic engi-
neering programs include analog and digital circuit design
in their curricula. As with most engineering disciplines,
having a sound knowledge of mathematics and sciences is
necessary for computer engineers.

A computer engineering program should contain suffi-
cient coursework at the introductory, intermediate, and
advanced levels based on a sound body of knowledge of
computer engineering. Programs should be augmented by a
judicious selection of elective courses that build on that
foundation. Breadth and depth in science and mathematics
are important to this discipline. The curriculum should also

emphasize professional practice, legal and ethical issues,
and the social context in which graduates implement engi-
neering designs. A sound graduation project is also neces-
sary. Problem-solving and critical thinking skills, oral and
written communication skills, teamwork, and a variety of
laboratory experiences are essential to the study of com-
puter engineering.

The joint IEEE-CS/ACM Curriculum Guidelines for
Undergraduate Degree Programs in Computer Engineering
CE’2004 defines the core knowledge areas (that is, the
topics the field should cover) of computer engineering as
follows (4, pp. 12):

� Algorithms

� Computer architecture and organization

� Computer systems engineering

� Circuits and signals

� Database systems

� Digital logic

� Digital signal processing

� Electronics

� Embedded systems

� Human–computer interaction

� Computer networks

� Operating systems

� Programming fundamentals

� Social and professional issues

� Software engineering

� VLSI design and fabrication

� Descrite structures

� Probability and statistics

The last two areas cover related mathematical topics.
The breadth of disciplines studied in computer engineering
is not limited to the above subjects but can include any
subject found in engineering. For example, the concepts of
automata theory, which can model several hardware and
software applications, are in the core of many computer
science and computer engineering curriculum.

In addition to the core knowledge areas, the CE’2004
report introduced a set of possible elective courses that
involves both hardware and software topics at an advanced
level. Table 1 shows some examples of the proposed elective
courses (4, pp. 35).

Table 1. Examples of Elective Courses

Fault-tolerant computer systems Performance evaluation Advanced computer architecture
Digital video processing System-level integration Audio signal processing
Parallel processing High-performance computer systems Mobile computer systems
Reconfigurable computing Hardware software codesign Multimedia signal processing
Intelligent systems Computer security Security in wireless systems
Safety critical systems Tool development Computer-based devices
Pervasive computing Multimedia systems and algorithms Novel computer architectures
Advanced graphical systems Genetic algorithms Distributed information systems
Computer-based medical systems Entertainment systems Virtual devices
Virtual environment Robotics Multivalued logic systems
Quantum computing DNA computing Nanocomputing

COMPUTER ENGINEERING EDUCATION 3



The CE’2004 report introduced a four-year model com-
puter engineering program. The model includes one year of
mathematics and science courses, one year of computer
engineering core courses, one-half year of computer engi-
neering electives, one-half year of additional engineering
studies, and one year of general studies. Figure 2 illustrates
this model program (4, pp. 19).

Program Evaluation and Accreditation

Professional evaluation and accreditation systems for engi-
neering programs are critical to ensure that graduates have
the proper preparation expected by society. Such accredi-
tation is done by widely accepted professional institutions
such as ABET in the United States, the British Computer
Society (BCS) in the United Kingdom, and the Japan
Accreditation Board for Engineering Education (JABEE)
in Japan. The first accredited computer engineering degree
program in the United States was established at Case
Western Reserve University in 1971; as of October 1,
2007, there were 196 ABET-accredited computer engineer-
ing programs in the United States.

The evaluation criteria for accreditation of engineering
programs could be summarized in the following general
points:

1. Learning and educational objectives: The program
must have a set of clear learning and educational
objectives that reflect that the students will gain
proper knowledge to have a positive impact on the
society both from scientific and ethical points of view.

2. Students evaluation: The program must have a mea-
sure for evaluating the students’ performances and
achievements against the learning and educational
objectives.

3. Curriculum requirements: The program must specify
minimum curriculum requirements. For example,
minimum hours for each core knowledge subject,
contact office hours, and number of credit units
required for graduation.

4. Educational environment: The program must ensure
a proper educational environment such as facilities
and equipments for labs and classes, and financial
resources for operation and maintenance of the equip-
ments, etc.

5. Learning and educational improvement: The pro-
gram must have a system for continuing improve-
ment in the learning process, such as student support
system, proper use of students’ feedback, and faculty
development system, and so on.

These are some of the general criteria for the accredita-
tion of engineering programs. More specific details vary
from country to country. Many countries have established
their own processes for evaluation and/or accreditation
through governmental or professional societies.

TECHNOLOGY APPLICATIONS IN COMPUTER
ENGINEERING EDUCATION

Applications of technology can provide course content
with multimedia systems, active learning opportunities,
and instructional technology to facilitate education in
the area of computer engineering to a broad range of
learners.

Multimedia in Computer Engineering Education

Multimedia is an exciting area that spans many disciplines
within computer engineering—it is a computer-based com-
munications system that integrates and delivers a complete
package of audio, video, animations, graphics, and text to
end users.

Throughout the 1980s and 1990s, the concept of multi-
media took on a new meaning, as the capabilities of satel-
lites, computers, audio, and video converged to create new
media with enormous potential. Combined with the
advances in hardware and software, these technologies
were able to provide an enhanced learning facility with
attention to the specific needs of individual users.

Besides being a powerful tool for making presentations,
multimedia offers unique advantages in the field of educa-
tion. For instance, text alone simply does not allow students
to get a feel of how operating systems work. In teaching
computer architecture, an instructor cannot make a simu-
lation of a processor in a classroom. Multimedia enables us
to provide a way by which learners can experience their
subject in a vicarious manner. The key to providing this
experience is having simultaneous graphics, video and
audio, and computer simulation rather than in a text
manner. The appeal of multimedia learning is best illu-
strated by the popularity of the video games currently
available in the market. These are multimedia programs
combining text, audio, video, and animated graphics in an
easy-to-use fashion (5).

The benefits of using multimedia in education in general
and in computer engineering in particular include, but are
not limited to:

� Allowing students to act as designers by using simula-
tion tools for analyzing the world.

Figure 2. Organization of a four-year computer engineering curriculum.

4 COMPUTER ENGINEERING EDUCATION



� Encouraging deep reflective thinking by using more
brain sensors.

� Creating personally meaningful learning opportu-
nities.

Multimedia use has become a common practice in many
computer engineering courses. For example, in Ref. 6, a
simulation of electrooptic and acoustooptic theory and
devices for computer engineering students was introduced.
In this multimedia simulation, graphical outputs, hyper-
texts, and animations are widely used. There are hundreds
of examples of using multimedia in computer enginee-
ring education. A few recent examples can be found in
Refs. 7–13.

Web-based Technology in Computer Engineering Education

The Internet is a powerful new means of communication. It
is global, it is fast, it is cheap, and it is growing rapidly. It
has transformed information at nearly real-time speed. The
World Wide Web is bringing rapid and radical change into
all aspects of our lives. For education, the Internet is
making it possible for more individuals than ever to access
knowledge and to learn in new and different ways. The
Internet enables bringing learning to students instead of
bringing students to learning. It is allowing for the creation
of learning communities that overcome the constraints of
time, distance, and boundaries.

Web-based education is currently a hot research and
development area. The benefits of Web-based education
are clear: Learners from all over the world can enroll in
learning activities, communicate with other students or tea-
chers, as well as discuss and control their learning progress.

The Internet has provided the option of pursuing courses
in computer engineering online as a part of the e-learning
systems. The Web was first used as a telecontrol medium in
1994. Since then it has been applied more and more in the
educational context.

The modern university needs to extend lifelong learning
opportunities to its students at anytime and at anyplace to
be successful in the global educational marketplace. Online
Web-based learning is made possible by advancements in
network infrastructure and the development of video/voice/
multimedia protocols for seamless transport of informa-
tion. However, the developer of a Web-based e-learning
system, in addition to considering knowledge-domain
requirements, must ensure good pedagogy and learning
practices given the technical constraints with regard to
bandwidth, quality of service, real-time interactions, multi-
ple users, and security (14). Despite these challenges, Web-
based education has been offered by universities in under-
graduate computer engineering courses since 1996, with
the number and sophistication of these efforts growing each
year (15).

Web-based education is just beginning, with something
of far greater promise emerging in the middle distance. For
example, Web-based intelligent tutoring systems will soon
be able to recognize a remote user’s affective state and
respond with an appropriate intervention. Web-based
grading systems are being developed by which students
can be automatically graded. All these environments seen

to supplement greatly the active learning classroom/
laboratory (16).

There are thousands of examples of using Web-based
technology in computer engineering education. Here we
refer to a few recent ones (11,12,17–19).

Active and Collaborative Learning in Computer Engineering
Education

Active and collaborative learning provides a powerful
mechanism to enhance depth of learning, increase material
retention, and get students involved with the material
instead of passively listening to a lecture. Active learning
is a learning with students involved in the learning process
as active partners: meaning they are ‘‘doing,’’ ‘‘observing,’’
and ‘‘communicating’’ instead of just ‘‘listening’’ as in the
traditional (lecture-driven) learning style.

In traditional lecture-driven education, material to be
learned is often transmitted to students by teachers. That
is, learning is passive. In active learning, students are
much more actively engaged in their own learning while
educators take a more guiding role. This approach is
thought to promote processing of skills/knowledge to a
much deeper level than passive learning (20).

Rossati (21) and Hamada (11) showed that engineering
students have strong active learning preferences. Such
results suggest that active teaching materials are recom-
mended for computer engineering students. In designing
learning tools, computer engineering educators need to
consider the active construction learning model (22,23),
which has several basic design principles, including the
following:

1. Teachers act as facilitators, not as knowledge trans-
mitters. This means knowledge must be actively
constructed by learners, not passively transmitted
by teachers.

2. To motivate learners and get them actively involved
in knowledge construction, learning activities should
focus around a set of motivating problems and exam-
ples that have applications in the real world.

3. Learning should take place in a collaborative envir-
onment.

4. Assessment procedures should be embedded in the
learning process and should consider learners’ indi-
vidual orientations.

As an example of recent application of active and colla-
borative teaching materials in computer engineering, we
refer to Hamada (11).

LEARNING THEORIES IN COMPUTER ENGINEERING
EDUCATION

Learning science research indicates that engineering stu-
dents tend to have active and sensing learning preferences,
and engineering-related educators are recognizing the
need for more active and collaborative learning pedagogy
(24). So far, several learning models have been develo-
ped (e.g., Refs. 25–28) for the realization of the learning

COMPUTER ENGINEERING EDUCATION 5



preferences of learners. Among these models, Felder-
Silverman (25) is simpler and easier to implement through
a Web-based quiz system, as in Felder-Soloman (29). The
model classifies engineering learners into four axes: active
versus reflective, sensing versus intuitive, visual versus
verbal, and sequential versus global. Active learners gain
information through a learning-by-doing style, whereas
reflective learners gain information by thinking about it.
Sensing learners tend to learn facts through their senses,
whereas intuitive learners prefer discovering possibilities
and relationships. Visual learners prefer images, dia-
grams, tables, movies, and demos, whereas verbal learners
prefer written and spoken words. Sequential learners gain
understanding from details and logical sequential steps,
whereas global learners tend to learn a whole concept in
large jumps.

In Rosati (21), a study of this model was carried out to
classify the learning style axes of engineering learners. The
study showed that engineering learners tend to have strong
active, sensing, visual, and sequential learning prefer-
ences. A similar result was obtained by Hamada (11) for
computer engineering learners.

Learning Design

The central ideas behind learning design represent new
possibilities for increasing the quality and variety of teach-
ing and learning within an (e)-learning context (30, 31):

� The first general idea behind learning design is that
people learn better when actively involved in doing
something (i.e., are engaged in a learning activity).

� The second idea is that learning activities may be
sequenced or otherwise structured carefully and delib-
erately in a learning workflow to promote more effec-
tive learning.

� The third idea is that it would be useful to be able to
record ‘‘learning designs’’ for sharing and reuse in the
future.

It is a recommended practice to follow the guidelines
of learning design, such as the IMS-LD learning design
specifications (31), when preparing teaching materials for
computer engineering courses. For a recent example of
using IMS-LD specifications in computer engineering, we
refer to Ref. 32.

Learning Management Systems

A learning management system (LMS) is a software appli-
cation or Web-based technology used to plan, implement,
and assess a specific learning process. Typically, a learning
management system provides an instructor with a way to
create and deliver content, monitor student participation,
and assess student performance. A learning management
system may also provide students with the ability to
use interactive features such as threaded discussions,
video conferencing, and discussion forums. The Advanced
Distance Learning group (33), sponsored by the United
States Department of Defense, has created a set of spe-
cifications called Shareable Content Object Reference

Model (SCORM) to encourage the standardization of learn-
ing management systems. Another well-known model of
learning management systems is the Modular Object
Oriented Dynamic Learning Environment (MOODLE)
(34). MOODLE supports a range of different resource types
that allow almost any kind of digital content into courses.
The resource may already exist in electronic form so it can
be linked to an uploaded file or external website, or simply
display the complete contents of a directory in the course
files and then users can pick the file themselves.

Several computer engineering courses are now inte-
grated with such learning management systems to get
benefits from its features in enhancing the learning pro-
cess. See, for example, Refs. 29 and 35.

A VISION FOR THE FUTURE

Technology is growing rapidly. The following three laws
are generally accepted as governing the spread of tech-
nology:

� Moore’s Law for computer performance. The comput-
ing power is growing rapidly. According to Moore’s law,
which is widely believed will remain valid until at least
2020, the processing power of a chip doubles every 18
months. Moore’s law suggests that performances are
expected to rise to 1015 instructions/second (i.e., 1
petaflops/second) by 2010 and 1016 instructions/second
by 2013.

� Gilder’s Law for communications systems. Networks
that operate at the rate of 100 GB/second exist (GB ¼
Giga Byte, 1 GB ¼ 1024 Megabyte). According to
Gilder’s law, the total bandwidth of communication
systems triples every 12 months. Thus, by 2013, the
capacity of communications systems will have moved to
about 100 TB/second (TB¼Tera Byte, 1 TB¼1024 GB).

� Metcalfe’s Law for value of a network. Robert Metcalfe,
originator of Ethernet and founder of 3COM, stated
that: ‘‘the value of a network is proportional to the
square of the number of nodes; so, as a network grows,
the value of being connected to it grows at a polynomial
rate, while the cost per user remains the same or even
reduces.’’

In addition to this rapid growth in technology, several
technical areas seem to be emerging and point to future
developments in computing and computer engineering in
particular. A few examples are as follows.

� Quantum computing: Quantum computing relies on
quantum physics by taking advantage of certain
quantum physics properties of atoms or nuclei that
allow them to work together as quantum bits, or
qubits, to be the computer’s processor and memory.
By interacting with each other while being isolated
from the external environment, qubits can perform
certain calculations exponentially faster than con-
ventional computers. Currently, quantum computers
and quantum information technology remain in the
pioneering stage.

6 COMPUTER ENGINEERING EDUCATION



� Nanotechnology: Nanotechnology is the engineering of
functional systems at the molecular scale. It refers
to the projected ability to construct items from the
bottom up to complete high-performance products.
This process needs development of new techniques
and tools.

� Semantic web: Associated with information is its
semantics or meaning. If computer systems can
address questions of semantics, the route becomes
open for systems to engage in interesting exchanges
and to carry out deduction. Currently, these develop-
ments are some way off.

� Ubiquitous computing: This is a paradigm shift where
technology becomes virtually invisible in our lives.
Instead of having a desktop or laptop machine, the
technology we use will be embedded in our environ-
ment.

These technology developments suggest a new focus and
possible new titles for new degrees in the future. There is no
doubt that the undergraduate curriculum and the quality of
its delivery are at the heart of shaping the professional life
of an engineer and the degree to which he or she will be
successful. The content must be relevant to the engineering
community, and the pedagogy must ensure that students
have a solid understanding of engineering principles and
the ability to think. Furthermore, the curriculum must
stimulate the motivation and development of both students
and faculty.

When transforming the traditional lecture-driven edu-
cational paradigm in computer engineering into a new
model that will promote learning activities that are inde-
pendent of time and place, it is necessary to consider the
infrastructure that allows such a model to function. The
future of interactive media in a new computer engineering
educational model is that of ubiquitous communication
tools. This may be enabled by new technologies such as
WebTVs, NetPCs, or others.

The potential for computer engineering students to
author, as part of a creative educational program that is
based onachievementof goalsand competencies rather than
on time served, will assist educators to shift from teacher to
facilitator and mentor. Interactive communication tools will
transform our capability to embrace an educational para-
digm that deals with computer engineering learning as a
vital, fulfilling, and continuing part of life at home and in the
workplace as well as within educational institutions.

Becauseof therapidpaceofchangeinthecomputingfield,
computer engineers must be life-long learners to maintain
their knowledge and skills within their chosen discipline.

CONCLUSION

At many universities, computer engineering emerged from
electrical engineering during the late 1970s and the 1980s,
but it was not until the 1990s that computer chips became
basic components of most kinds of electrical devices and
many kinds of mechanical devices. (For example, modern
automobiles contain numerous computers that perform
tasks that are transparent to the driver.) Computer

engineers design and program the chips that permit digital
control of many kinds of devices. The dramatic expansion in
the kinds of devices that rely on chip-based digital logic
helped computer engineering solidify its status as a strong
field, and during the 1990s, unprecedented numbers of
students applied to computer engineering programs. Com-
puter engineering is a difficult major but it is a major that is
in demand. Software engineering companies, telecommu-
nications firms, designers of digital hardware, health-care
industry, transportation, academics, financial institutions,
and service-oriented businesses, as well as many other
business enterprises, hire computer engineering majors
right out of college (36).

The rapid advances in technology and the increa-
sing demand for qualified computer engineers add new
challenges for computer engineering educators. These
challenges have caused the traditional lecture-driven class-
room to give way to a new and more active environment,
where students have access to a variety of multimedia
and interactive course materials. Such interactive course
materials have already been introduced for several top-
ics in computer engineering courses; see, for example,
Refs. 10, 13, 19, 37, and 38.

BIBLIOGRAPHY

1. Available: www.unix1.com/dir/maths_and_engineering/com-
puter/computerengineering_jobs.

2. Educational Activities Board, The 1983 model program in
computer science and engineering. Technical Report 932,
Computer Society of the IEEE, December 1983.

3. IEEE-CS, ACM, and AIS Joint Task Force, Computing
Curricula 2005: The Overview report, 2005.

4. IEEE Computer Society, ACM, Computer Engineering:
Curriculum Guidelines for Undergraduate Degree Programs
in Computer Engineering, 2004.

5. Available: www.cemca.org/EMHandbook/Section2.pdf.

6. P. Jimenez et. al., Tutorial and simulation electrooptic and
acoustooptic software as innovation methodology to improve
the quality of electronic and computer engineering formation,
IEEE Trans. Educ., 49(2): 302–308, 2006.

7. J. Boluda et. al., An active methodology for teaching electronic
systems design, IEEE Trans. Educ., 49(3): 355–359, 2006.

8. W. Chen and Yu C. Cheng, Teaching object-oriented program-
ming laboratory with computer game programming, IEEE
Trans. Educ., 50(3): 197–203, 2007.

9. J. Haffner et. al., Computer-assisted evaluation of under-
graduate courses in frequency-domain techniques for system
control, IEEE Trans. Educ., 49(2): 224–235, 2006.

10. M. Hamada, Visual tools and examples to support active
E-learning and motivation with performance evaluation,
Lecture Notes in Computer Science, Vol. 3942, pp. 147–155,
2006.

11. M. Hamada, An integrated virtual environment for active
e-learning in theory of computation, Lecture Notes in Computer
Science,Vol. 4469, pp. 422–432, 2007.

12. M. Hamada, Web-based tools for active learning in information
theory, SIGCSE Bull., 39(1): 60–64, 2007.

13. S. Li and R. Challoo, Restructuring an electric machinery
course with integrative approach and computer-assisted teach
methodology, IEEE Trans. Educ., 49(1): 16–28, 2006.

COMPUTER ENGINEERING EDUCATION 7



14. S. Sivakimar et. al., A Web-based remote interactive labora-
tory for internetworking education, IEEE Trans. Educ., 48(4):
586–598, 2005.

15. E. Lindsay and M. Good, Effects of laboratory access modes
upon learning outcomes, IEEE Trans. Educ., 48(4): 619–631,
2005.

16. R. Reilly, Web-based instruction: Doing things better and doing
better things, IEEE Trans. Educ., 48(4): 565–566, 2005.

17. M. Grigoriadou, E. Kanidis, and A. Gogoulou, A web-based
educational environment for teaching the computer cache
memory, IEEE Trans. Educ., 49(1): 147–156, 2006.

18. H. C. Lin, An Internet-based graphical programming tool for
teaching power system harmonic measurement, IEEE Trans.
Educ., 49(3): 404–414, 2006.

19. R. Nelson and A. Shariful Islam, MES—A Web-based design
tool for microwave engineering, IEEE Trans. Educ., 49(1): 67–
73, 2006.

20. Adult Learning. Available: http://www.nald.ca/adultlearning-
course/glossary.htm.

21. P. Rosati, The learning preferences of engineering students
from two perspectives, Proc. Frontiers in Education, Tempe,
AZ, 1998, pp. 29–32.

22. S. Hadjerrouit, Toward a constructivist approach to e-learning
in software engineering, Proc. E-Learn-World Conf. E-Learning
Corporate, Government, Healthcare, Higher Education, Pho-
enix, AZ, 2003, pp. 507–514.

23. G. Wilson (ed.), Constructivist Learning Environments:
Case Studies in Instructional Design. Englewood Cliffs, NJ:
Educational Technology, 1998.

24. Transforming undergraduate education in science, mathe-
matics, engineering, and technology, in National Research
Council (ed.), Committee on Undergraduate Science Education,
Center for Science, Mathematics, and Engineering Education.
Washington, DC: National Academy Press, 1999.

25. R. Felder and L. Silverman, Learning and teaching styles in
engineering education, Eng. Educ., 78(7): 674–681, 1988.

26. N. Herrmann, The Creative Brain. Lake Lure, NC: Brain
Books, 1990.

27. D. Kolb, Experiential Learning: Experience as the Source of
Learning and Development. Englewood Cliffs, NJ: Prentice-
Hall, 1984.

28. I. Myers, Gifts Differing. Palo Alto, CA: Consulting Psychol-
ogists Press, 1980.

29. B. Soloman and R. Felder, Index of Learning Style Ques-
tionnaire. Available: http://www.engr.ncsu.edu/learningstyle/
ilsweb.html.

30. S. Britain, A Review of Learning Design: Concepts, Specifica-
tions and Tools, A report for JISC E-learning Pedagogy Pro-
gramme, May 2004.

31. IMS-LD learning design specifications, Available: http://
www.imsglobal.org, 2007.

32. M. Hamada, An integrated virtual environment for active
and collaborative e-learning in theory of computation, Simul.
Gaming, to be published.

33. The Advanced Distance Learning group. Available: http://
www.adlnet.gov 2007.

34. Modular Object Oriented Dynamic Learning Environment
(MOODLE). Available: http://moodle.org, 2007.

35. D. D. Corso, E. Ovcin, and G. Morrone, A teacher friendly
environment to foster learner-centered customization in the
development of interactive educational packages, IEEE Trans.
Educ., 48(4): 574–579, 2005.

36. Available:www.princetonreview.com/college/research/majors/
majorBasics.asp?majorID¼70.

37. S. Hadjerrouit, Learner-centered Web-based instruction in
software engineering, IEEE Trans. Educ., 48(1): 99–104, 2005.

38. J. Masters and T. Madhyastha, Educational applets for active
learning in properties of electronic materials, IEEE Trans.
Educ., 48(1): 2005.

MOHAMED HAMADA

University of Aizu
Aizu-Wakamatsu, Japan

8 COMPUTER ENGINEERING EDUCATION



C

COMPUTER-SUPPORTED ASYNCHRONOUS
LEARNING: THE RELEVANCE OF
COMMUNICATION AND FACILITATION

INTRODUCTION

An increasing number of developments in the field of
electronic support for asynchronous learning can be
assigned to computer-supported collaborative learning
(CSCL) (1). During collaborative learning, participants
learn from each other by actively co-constructing knowl-
edge (2). This active co-construction of knowledge bases on
the theory of constructivism is described as the ‘‘motivat-
ing theory in CSCL literature’’ (3). The active involvement
is the most important advantage of collaborative learning
since participants get a deeper understanding of the
learning object.

Computer-supported collaborative learning, which is
often distributed locally and temporally, mainly focuses
on communication since direct experience of a situation
and learning by observation are mostly inapplicable. The
more communication occurs, the better the situation is
ranked by tutors, as well as by researchers (4). With
respect to learning it was found that the communication
has a crucial relevance for learning and the development
of thinking (5). Thus, the support of communication is
viewed as a precondition for computer-supported colla-
borative learning (6). These findings result in a high
relevance of an appropriate communication support in
CSCL systems.

This article deals on the one hand with the design of
communication support for asynchronous communication
and collaborative learning (see the next section). As an
underlying approach for the design of communication sup-
port in CSCL systems, a communication theory is pre-
sented. In a second step, the typical characteristics of
systems that follow the requirements based on this com-
munication theory are described. This view of the theory
gives the reader a chance to understand and rate the
support for asynchronous learning, and this view of the
characteristics of the system informs readers about actual
developments in this field.

If the construction of knowledge is a joint process of
several students, it is the main role of the teacher to support
and facilitate the communication processes for construct-
ing knowledge. Therefore, this article deals on the other
hand with the facilitation of asynchronous discussions in
CSCL processes. Based on related work, the main activities
of facilitation and computer support are presented. From
the presentation of communication and facilitation sup-
port, general guidelines for the design of communication
and facilitation support for asynchronous collaborative
learning are derived.

THE DESIGN OF ASYNCHRONOUS COMMUNICATION
SUPPORT

Context-Oriented Communication Theory

In computer science, models of communication are gener-
ally characterized by the sender–recipient model by
Shannon and Weaver (7). In this model, the transmission
of a sender’s message to a recipient by a channel is assumed,
where the message is encoded before and decoded after the
transmission. However, even if human communication acts
are transmitted by a CSCL system, they are more than only
the technical transport of a coded message from A to B and a
following decoding. Psychologically oriented research
shows that both communication partners have to contri-
bute if the mutual understanding and construction of ideas
is to succeed in dialogues (8). Communication is a process
that is influenced by several selections. A communicator
selects from the universe of his/her beliefs what he/she
wants to say, and the recipient selects, with respect to
his/her universe of beliefs, what he/she wants to under-
stand. In the course of social interaction, these selection
processes cannot be determined in advance but can only be
influenced by the communication.

Another basic characteristic of communication is the
relevance of context. Communication can only succeed, if
the communicator’s expressions are completed by the con-
text that can be perceived by the communicator and the
recipients (9). Context is understood as the physical and
social setting in which the communication takes place (10).
The context of the communicators is represented by what
they perceive during communication and by what they have
perceived before the moment of the communication act.
Since context can refer to the past, an expression of the
moment can become part of another expression’s context in
the future. The starting point or the boundaries of the
context of a communication act cannot be defined determi-
nistically. It belongs to the task of the communicators to
encircle the scope of context that can support their com-
munication.

By referring to the available context, two essential
advantages are achieved. On the one hand, the explicitness
of the conveyed content does not need to be maximal,
because only these pieces of information have to be given
that are required to complete the context in such a way that
the message can be reconstructed and understood by the
recipient. For example ‘‘Where is the car?’’ can be answered
with ‘‘behind the red house’’ if there is only one red house
that is part of the perceptible context. The communicator
has to anticipate the scope of context that is available for the
addressee. This anticipation can be supported by knowl-
edge about the communication partner. Eventually, the
need for explicit communication can be reduced (‘‘where
is the car?’’—‘‘same place as yesterday’’). On the other hand,

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



the available context assists in finding out whether the
communication partners understand each other. Depend-
ing on how a situation evolves, there are either indicators
for the success of a communication task or an identifiable
necessity to recheck the comprehension of the message or
simply to improve the communication (‘‘let’s get up imme-
diately’’ — ‘‘why are you not getting up right now’’ — don’t
you understand me?’’).

To emphasize the role of the context, this theory is called
context-oriented communication support (11). It can and
should be used for the design of CSCL systems, especially
its communication support.

Computer Support for Context-Oriented Communication

In CSCL systems, the provided material can and has to be
used to serve as context. For the design of CSCL systems, a
design rationale for computer-supported communication is
suggested that emphasizes the difference between commu-
nicative contributions and context as well as the tight
interweavement of both. Hmelo-Silver, for example, men-
tions this requirement with respect to computer-supported,
problem-based learning: ‘‘There needs to be a mechanism
for the facilitator and other students to negotiate and
discuss the contents of the whiteboards in an integrated
fashion’’ (12).

These requirements are fulfilled in systems that use
annotations for the support of communication. The annota-
tions (¼ communicative contributions) are related to learn-
ing material (¼ context). Discussions occur by annotating
annotations. The design of communicative contributions in
the form of annotations in CSCL systems is inspired by
systems for joint creating and editing of text like CoNote
(13), CaMILE (14) or WebAnn (15). All these systems focus
on functionalities enabling annotations but do not support
the linkage of fine-grained material (CoNote and CaMILE)
or material that is added by the learners (WebAnn). There-
fore, the material cannot be used flexibly as context. Two
CSCL systems that follow the context-oriented communica-
tion theory are anchored discussions (16) and KOLUMBUS
(17).

In the following discussion, the main concepts for the
support of context-oriented communication and facilitation
are explained by the example KOLUMBUS. KOLUMBUS1

is a Web-based CSCL system and should be viewed as one
example for the class of CSCL systems that support asyn-
chronous learning. The name is an acronym for a German
term that stands for ‘‘Collaborative Learning Environment
for Universities and Schools.’’ The concentration on only
one system in this article offers the possibility to show
interrelations between different functionalities and to
add experiences with the described functionalities.

The crucial feature of KOLUMBUS is to support the
segmentation of content into small units. This segmenta-
tion allow the learners a highly flexible intertwining of
content as context with communicative contributions in the
form of annotations. KOLUMBUS provides two different
views of content. In the tree view, each item is represented

as a node in a hierarchical tree-structure. To focus on
relevant content, parts of the tree or the whole tree can be
expanded or minimized. Furthermore, newly inserted
items are indicated as new. Although the structure of a
set of interrelated annotations represents a dialogue-
oriented discussion thread, the hierarchical structure of
the material depends of the logical relationships between
its content.

By contrast to the tree view, the article view shows
content in a visually more attractive and readable way.
Here, different types of presentations are combined to form
a single document. Within the paper view, KOLUMBUS
supports the perception of meaningful structures built up
on a didactical basis. The teacher is responsible for prepar-
ing material, arranging how the (initial) material is dis-
played in the paper view. Didactically prepared material of
the teacher can be used by the students as a starting point
for their own research. In the paper view, it is also possible
to expand or reduce the scope of displayed items and,
therefore, to achieve an adaptable extent of context as being
necessary to facilitate communicative understanding.
Figure 1 shows the menu that can be activated at every
single item. It allows users, for example, to add commu-
nicative contributions (in the form of annotations) or mate-
rial. All these functions of KOLUMBUS are available in
both types of representation (paper or tree view).

Both the tree view and the paper view can be used to work
with an individual’s own material as well as with that of
others. To differentiate between annotations and material,
the tree view uses different icons, whereas the paper view
employs different colors. In the paper view, the communi-
cative character of annotations is increased by prefixing the
annotation with the author’s name, which is similar to the
convention with newsgroups. After switching from tree to
paper view, annotations are hidden behind a nonintrusive
symbol to offer the chance to assimilate the material first.

An advantage of the concept of the fine-grained item-
structure is that communicative contributions can be
directly linked to that part of the content to which they
refer, and which therefore provides the relevant context.
From this point of view, it becomes obvious that the defini-
tion of context depends on the communication act itself.
Context is everything to which an annotation refers.

Figure 1 shows the paper view from a seminar in com-
puter science: a title and some sections of material and two
annotations (communicative contributions). Annotations
are signed with an ‘‘A’’ and the name of the author in front.
Because the communicative contributions are placed in the
direct context, the author does not need to include hints for
additional context. This leads to relatively short contribu-
tions and to the usage of direct references (in both annota-
tions in Fig. 1, the word ‘‘hier’’ (German for ‘‘here’’) is used to
reference the context).

Asynchronous learning by communication is supported
by the possibility of discussion threads that can be devel-
oped by annotating other participants’ annotations. These
threads can be handled in the same manner as, for example,
in newsgroups. Threads can occur in parallel; they can be
expanded or minimized (as all items in KOLUMBUS).
Figure 2 shows an example in the tree view. Items are
signed with the pencil and post-it icon. Since the tree view

1See http://www.imtm-iaw.rub.de/projekte/k2/index.html for
details and examples.

2 COMPUTER-SUPPORTED ASYNCHRONOUS LEARNING: THE RELEVANCE OF COMMUNICATION AND FACILITATION



should only give an overview, just the beginning of the
annotations (as well as text-based material) is presented in
one row. The whole content can be read in a tool tip that
appears with the mouse-over.

Experiences with KOLUMBUS (see Ref. 17 for details)
revealed on the one hand that the integration of commu-
nication and work on material is an appropriate concept to
support context-oriented communication and collaborative
learning. The studies support the requirements derived
from the context-oriented model of communication. Learn-
ing material serves as context and supports the communica-
tion. The tight integration of communicative contributions
in the form of annotations and segmented learning material
helps in general the communicator to select the appropriate
piecesofcontextinformationandtherecipienttounderstand
better the utterance of the communicator. However,
problems with the detection of new communicative contri-
butions occur when the content structure is growing very
fast — this lead to the necessity for concepts like the annota-
tion window. This problem is also related to the question of
an appropriate granularity. A fine granularity helps a
communicator to relate his expression exactly to the
context but results in a fast-growing content tree. A coarse
granularity, on the other hand, leads to a manageable
content structure but does not offer the possibility to
relate the annotation to exact context information. The
granularity of paragraphs seems to be appropriate for the
joint development of texts.

On the other hand, they emphasize improvements con-
cerning the handling of communicative contributions in the
form of annotations and their interweavement with mate-
rial as context. These improvements deal with the following
topics:

Differentiation between Organizational and Content-
Related Annotations. Two requested types of annotations
are available. A new annotation has the property ‘‘content-
related’’ by default, but it can be labeled as ‘‘organizational’’
by the author. The different labels correspond to different
colors in all views that help the reader to differentiate the
annotations at a first glance. These categories are context
information that helps the recipient to estimate the aim of
the communicative contribution.

The second round of studies revealed many incorrect
typed contributions with the default entry ‘‘content-related’’
although they include only organizational issues. This
finding shows that the participants often did not reflect
the type of their contributions and the recipients had the
major burden to reconstruct the real aim of the annota-
tion. The existence of a default entry is misleading because
the entry suggests information that is not given by the
communicator.

On the other hand, the recategorization showed that
both types are relevant for collaborative learning. This is
especially true in long period scenarios that do not include
weekly face-to-face meetings because all organizational

Figure 1. Communicative contributions in context.

Figure 2. Discussions by using annotations.

COMPUTER-SUPPORTED ASYNCHRONOUS LEARNING: THE RELEVANCE OF COMMUNICATION AND FACILITATION 3



issues are discussed with the help of the CSCL system, and
this requires organizational contributions. The studies
showed that in short period scenarios the organizational
effort is not that high, and in a setting with weekly face-to-
face meetings, a lot of organizational issues were discussed
in the meeting. To keep all these arguments in mind, the
usage of the two categories content-related and organiza-
tional without a default entry are proposed. Thus, a context
is not suggested that is not also given.

Usage of Keywords as Context Information. Keywords are
a summary of the communicative contribution. The com-
municator labels the contribution with words that are
important for him and that help the recipient to estimate
the content. A keyword for the annotation can be added
similarly to the subject field of an e-mail. This keyword
summarizes the annotation and helps the reader to recog-
nize the content of the annotation at a glance. The keyword
as well as the author and the date are prefixed to the
annotation itself.

The results of the studies revealed that keywords are
more often used when the previous annotation was written
a long time before. In timely nearby contributions, the
communicator seems to suppose that the recipient can
conclude the context in the form of the appropriate discus-
sion thread. We conclude that keywords are a helpful kind
of context information that has to be included in a CSCL
system—especially in long period asynchronous discus-
sions. A reply-entry (like in e-mail applications) could
support a communicator in automatic filling the keyword
when contributing to an already existing discussion thread.

Chronological View of Communicative Contributions. An-
other technical improvement contains an annotation win-
dow as an additional view (see Fig. 3). This window is
comparable to an e-mail inbox that gives an overview of
all annotations in the chosen content area. The entries in
the list are links that guide the user to the annotation’s
position in the integrated view. The list can be sorted
by different metadata (e.g., author, date, and subject)
and filtered (e.g., only content-related annotations). This

window helps to perceive the annotations in chronological
order and to be aware of new annotations.

Studies revealed that the usefulness of the annotation
window depends on the underlying learning scenario. In
scenarios with the joint creation of material by the group of
learners, the content structure is growing very fast and the
detection of new annotations ‘‘somewhere’’ in this structure
becomes difficult. For these scenarios, an annotation win-
dow comparable to an e-mail in- and outbox gives an over-
view of communicative contributions and serves as a
helpful awareness feature.

FACILITATING ASYNCHRONOUS DISCUSSIONS

Activities of a Facilitator

Most of the present literature on facilitation in computer-
supported settings addresses the practitioners in the field
(18–20). These publications deal with the tasks and respon-
sibilities of a facilitator in computer-supported situations
that are on the one hand similar to activities well known
from face-to-face situations (19). Generally speaking,
these tasks are the initiation of discussions, the guidance
of the discussion process (includes asking appropriate
questions to push students to think deeply on the learning
content), and the stimulation of summary generation by
the learners (12).

On the other hand, it is stated that it is necessary
to develop new strategies when facilitating computer-
supported communication processes (18). One of the lesser
known studies concerning these strategies was done by
Friedrich et al. (21). They compared two different methods
to initiate an asynchronous discussion. One method relied
on a neutral opening statement, whereas the other made use
of problem-centric, curiosity-arousing wording when initi-
ally characterizing the discussions’ objective. They con-
firmed the assumption that the latter type of discussion
initiation results in an increased number of contributions
from discussion participants. Furthermore it was found that
the fewer statements facilitators contribute to the discus-
sion, the greater the number of participant statements.

This background leads to the necessity for research on
two levels. (1) What are the main facilitation activities and
(2) how are they supporter with technical functionalities.
The following results from a study are presented that
address both levels. Details of the study can be found in
Ref. 22. In this study, a group of students had the task to
discuss and write their final project documentation. To gain
experience with the task of a facilitator, a professionally
trained facilitator planned interventions in cooperation
with the researcher. These interventions, resp. facilitation
strategies, vary in the degree of content-related responsi-
bility of the facilitator.

Open Questions without any Instructions. At the begin-
ning of the study, the facilitator asked open questions as it
is similarly the case with traditional facilitation in face-to-
face groups. This implies in particular that the students
had to decide by themselves which functionalities they used
and when they answered the question. It leads to low
participation. In the first group interview, the students

Figure 3. Annotation window as an overview of new contribu-
tions (names are hidden due to provacy reasons).

4 COMPUTER-SUPPORTED ASYNCHRONOUS LEARNING: THE RELEVANCE OF COMMUNICATION AND FACILITATION



were asked to explain their low participation, and they
reported their uncertainty about when and in which form
the answers were required. Furthermore, they described
obscurities concerning the (subjective) cognition of the
progress in a discussion thread, especially whether a dis-
cussion was finished. Following these answers, explicit
deadlines were demanded. Furthermore, it was unclear
for the students how the future development of a discussion
thread will look like, especially how and when it will come to
an end. With respect to this open-endedness, the students’
preference for explicit deadlines became apparent in their
answers.

Instruction, Deadline, and Finalizing Conclusion (One Step
More Responsibility for the Facilitator). In a second step, the
facilitator used more instructional contributions that
included deadlines. This strategy led to higher participa-
tion levels in the discussion. The analysis reveals for the
first time that students worked in a rhythm similar to that
given by the facilitator. On deadline days, more contribu-
tions were added.

As known from traditional facilitation methods, the
facilitator gave a summary after the deadline and asked
for additional comments. Reaction to this query was
reduced. In the following group, interview students com-
plained that with such questions the discussion was not
terminated. This is the first difference compared with face-
to-face settings, in which closing queries are a widely
accepted technique. Students believed that every discus-
sion participant in computer-supported asynchronous set-
tings has the opportunity to contribute because of the
longer period of time. Therefore, no additional comments
should be requested in the asynchronous settings compared
with the face-to-face situations.

Reviewing the content and results of the discussion, it
must be stated that the initial aim of generating a colla-
boratively developed table of contents accepted for the joint
documentation of group work by all group members was not
achieved in the computer-supported discussion. Students
reported different problems in the group interview. The
first issue was the starting point of students’ participation
in the discussion; the temptation to wait to see what others
were going to add was great. A second problem concerned
concurrency and easy negotiation of opinions, which proved
to be unmanageable in the system; a simple agreement like
head nodding in face-to-face situations seemed to be impos-
sible in the computer-supported asynchronous setting.

To conclude, it was clear that although participation was
high discussions were not terminated in the computer-
supported discussion. Students felt termination or finaliz-
ing should be done by the facilitator.

Conclusions with Decisions by the Facilitator (Full
Responsibility of the Facilitator). In a third step, the faci-
litator intervened more than during previous steps. She did
not only formulate more instructions that included dead-
lines but terminated discussions. If some topics did not
come to an end by the deadline, the facilitator decided to
stop and proposed a solution. This is a second aspect in
computer-supported asynchronous facilitation that differs

from that in a face-to-face situation where the facilitator is
mostly not responsible for the content of the discussion or of
the group result.

A high level of participation was recorded in this step;
once again the participation was highest on deadline days
and more detailed some minutes before the deadline.
Apparently, the students followed the rhythm set by the
facilitator. The discussion in this step led to the aim of
coordinating tasks for writing the group’s documentation.
In the group interview, the students confirmed that the
progress of the process was achieved by the facilitators’
intervention.

In the summarizing subsection of this chapter, these
findings regarding the activities of a facilitator are
related to the findings regarding the computer support
of a facilitator.

Computer Support of a Facilitator

With respect to the computer support for the tasks of a
facilitator, so far only a few approaches exist. Prominent
examples concerning asynchronous settings are the facil-
itation of online forums (23) or electronic mailing lists (24).
In these approaches, all communicative contributions are
sent to the facilitator, which filters them and distributes
them to others. For collaborative learning scenarios, these
approaches seem to be too restrictive to support an open
discussion of the learners because the facilitator is more
seen as an editor than as a guide; discussions where the
learners are the decision makers and lead their own dis-
cussion are repressed (25). Concerning the domain of asyn-
chronous learning only, requirements for the support of a
facilitator are published (12).

Figure 4 gives an overview of the proposed technical
functionalities for asynchronous facilitation support rea-
lized in KOLUMBUS 2 (22). In contrast to the above-
described approaches, the users can contribute unfiltered
to the different discussions. In the discussion threads,
moderator contributions are highlighted with bold
type, directing attention of the discussion’s participants to
the facilitator’s inputs. This bold type of the facilitator’s
statements does also visually structure the discussion and
reduce the necessity to reconstruct the course of a debate
when working asynchronously. By this structuring, the
initiation, resp. leading over to the next phase, as well as
the summarization are supported.

Students confirmed that emphasizing a facilitator’s
statements by using bold fonts proved to be helpful in
following the course of a discussion. Since the contributions
of a facilitator often brought up a new topic and thus
resulted in a new discussion thread, emphasizing them
pointed out the structure of an extensive discussion more
clearly. For instance, if two facilitator statements were
displayed one below the other, topics thus far not discussed
became rapidly apparent.

To promote contributions to an ongoing discussion, two
functionalities are offered. Emphasis can be placed on
single contributions to a discussion by using a highlight-
ing functionality. To label an element of a discussion
thread, the facilitator can choose from a variety of back-
ground colors. Marking contributions in this way can be

COMPUTER-SUPPORTED ASYNCHRONOUS LEARNING: THE RELEVANCE OF COMMUNICATION AND FACILITATION 5



used, for example, to group similar contributions or to
accentuate important arguments or to stress (intermedi-
ary) the results of a discussion. There is no predefined
meaning to the usage of different colors. It was intended
that a user group develops the corresponding conventions
without a predefined meaning. The discussion of the mean-
ing assigned to the applied colors fosters the development of
shared understanding of the applied functionalities.

Although it would have been useful to label similar or
agreeing proposals when students were collecting ideas on
outline and content of the documentation they had to
compose, in the case study, the facilitator did not apply
the highlighter functionality to draw attention to single
contributions. Investigating possible reasons for this beha-
vior, it turned out that she considered the design of the
highlighting mechanism as too coarse-grained as only the
entire contribution could be highlighted. In this context,
the facilitator referred to a technique known from the
facilitation of face-to-face meetings whereby crucial points
are committed in writing to cards that can be arranged on a
pin board. In these situations, one does not put down
complete statements but confines oneself to recording
only the most important keywords. According to this, call-
ing attention to a whole contribution in a discussion thread
by highlighting it proves to be an inappropriate means if
one only intends to underscore essential propositions. An
initial suggestion for improvement can be derived from
these findings. Instead of being restricted to the level of
items, subsequent versions of the highlighter mechanism
described here should be applicable in a more fine-grained
manner (i.e., facilitating the selection of single words) in
order to allow for a precise accentuation.

Furthermore, system-internal links can be estab-
lished if contributions that are semantically related to
each other have to be interconnected. Establishing a rela-
tion between elements in such a way is especially reason-
able if they deal with similar aspects of a topic but are
distributed over several discussion threads and not directly
connected to each other.

Since there was no situation where similar aspects of a
topic were addressed in various discussion threads, there
was no necessity to connect semantically related contribu-

tions using links between different discussion threads.
Thus, the corresponding functionality remained unused.
I assume that this is a consequence of the carefully planned
interventions of the facilitator. The discussion was well
guided—the participants added their contributions to the
appropriate contribution of the facilitator. Because these
well-prepared interventions from the facilitator cannot be
expected in every case, I still propose that system-internal
links may be a benefit when facilitating asynchronous
discussions of group of learners.

During the study, the facilitator made proposals for
additional functionalities aimed at improved support for
activities typical to the facilitation of both face-to-face and
computer-supported discussions. First, a facilitator should
be able to ‘‘assign questions and work orders individually’’
by means of a collaboratively shared task list. Supporting
the assignment and handling of tasks is closely related to
functionalities fostering the participant’s awareness of the
current state of the collaborative process in which they are
involved. Furthermore, the facilitator asked for a means to
support synchronous voting in order to speed up the process
by which participants reach a group decision. To achieve
results for asynchronous facilitation, synchronous commu-
nication was not offered. However, it confirms the need for
synchronous facilitation as described in the following sec-
tion as well as a fluent integration of both synchronous and
asynchronous modes (for integration, see Ref. 17).

GENERAL GUIDELINES

Based on these findings, the general design guidelines for
the technical support of communication as well as for the
activities of a facilitator and their support can be derived.

For the design of the support of communication in asyn-
chronous learning scenarios, be aware of the following
guidelines:

1. Support context-orientation by integrating of com-
munication as annotations into segmented learning
material as context. The granularity of paragraphs is
appropriate for the scenario of the joint development
of material.

Figure 4. The support of a facilitator.

6 COMPUTER-SUPPORTED ASYNCHRONOUS LEARNING: THE RELEVANCE OF COMMUNICATION AND FACILITATION



2. Support detailed information about the requested
context information like categories and keywords.
They are especially helpful in long-period settings
and overlapping discourses because these situations
request more explicit context information. Keep in
mind that users have to be aware that they partici-
pate in communication acts and explain the benefit of
using this context information.

3. Provide a special view that helps to overview the
course of annotations. This is especially useful in
scenarios of discourses that start with a divergent
phase where annotations are connected to different
items of material that are widely spread over the
content.

For the support of a facilitator in asynchronous learning
scenarios, a framework is derived that includes the activ-
ities of a facilitator of asynchronous learning scenarios and
their support. Figure 5 combines in the middle the tasks of
the facilitator that build the facilitation strategy (elements
with rounded corners) and functionalities of the technical
system (rectangles). When taking the role of the facilitator,
the participant should be aware of the activities. For the
design of technical systems that support asynchronous
learning, it is recommended to add tips for fulfilling activ-
ities, for example, as help/tool tip for facilitators.

In general facilitation in the framework is divided into
the activities of preparing, guiding, and summarizing that
is inspired by related work as well as by the findings of the
study. For asynchronous learning, a facilitator should pre-
pare the discussions by carefully planning her/his inter-
ventions. This reduced, for example, parallel discussions
with similar content that might result in misunderstand-
ings.

During the discussion, a facilitator initiates it. In the
asynchronous mode, a facilitator’s contributions, especially
starting a thesis, should contain instructions for the
expected reactions on the starting thesis and deadlines.

For ongoing discussions, the facilitator has the task
of stimulating the discussion. Here content should be

emphasized (e.g., marking words). It is often accompanied
by activities of building bridges and coordination acts. For
these activities, technical functionalities are recommended
based on the findings from the study. For the coordination,
organizational contributions should be offered, for building
bridges explicit connections by links.

At the end, discussions should be summarized in both
modes. To increase the perception of these summaries,
facilitators should ensure that participants be aware of
these summaries. From a technical point of view, summa-
ries should be placed in a prominent manner to emphasize
their relevance. For asynchronous settings, it is important
that the facilitator should include decisions made during
the discussion. If necessary the facilitator makes decisions
on his own—in contrast to face-to-face settings where the
facilitator is not responsible for the content of decisions.

BIBLIOGRAPHY

1. T. Koschmann (ed.) CSCL: Theory and Practice, Hillsdale, NJ:
Lawrence Erlbaum Associates, 1996.

2. G. Stahl, Contributions to a theoretical framework on CSCL,
Proc. of CSCL 2002. 2002, 62–71.

3. D. D. Suthers, Technology affordances for intersubjective
meaning making: A research agenda for CSCL, Int. J. Comput.
Support. Collab. Learning, 1 (3): 2006.

4. F. Henri, Distance learning and computer-mediated commu-
nication: Interactive, quasi-interactive or monologue, in: C.
O’Malley (ed.), Computer Supported Collaborative Learning,
Berlin, Springer, Germany, 146–161, 1995.

5. H.-C. Arnseth and S. Ludvigsen, Approaching institutional
contexts: systemic versus dialogic research in CSCL, Int. J.
Compu. Sup. Collab. Learning, 1, (2): 167–185, 2006.

6. R. D. Pea, Seeing what we build together: distributed multi-
media learning environments for transformative communica-
tions, in T. Koschmann (ed.), CSCL: Theory and Practice,
Hillsdale, NJ: Lawrence Erlbaum Associates, 1996.

7. C. E. Shannon and W. Weaver, The Mathematical Theory
of Communication, Urbana, IL: The University of Illinois,
1949.

communicator

facilitating the dialogue

preparing

coordinating

dialogue

organizational
contributions

building
bridges

highlighting of
facilitator’s
contributions

adding (own)
decisions

summarizing

explicit connections
between contributions
(e.g. links/references)

planing
interventions

role
reversal

role
reversal

recipientfacilitator

stimulating

marking (single)
words

guiding

initiating discussions by
formulating starting theses

adding instructions
and deadlines

Figure 5. The facilitation of asynchronous learning: activities and supporting functionalities.

COMPUTER-SUPPORTED ASYNCHRONOUS LEARNING: THE RELEVANCE OF COMMUNICATION AND FACILITATION 7



8. H. H. Clark and S. E. Brennan, Grounding in communication,
In: L. B. Resnick, J. M. Levine, and S. D. Teasley (eds.),
Perspectives on Socially Shared Cognition, Washington, DC:
American Psychological Association, 1991.

9. G. Ungeheuer, Vor-urteile über sprechen, mitteilen, verstehen,
In Kommunikationstheoretische Schriften 1, Ungeheuer (ed.),
Aachen, Germany, Rader, 1982.

10. O. Ducrot and T. Todorov, Encyclopedic Dictionary of the
Sciences of Language, Baltimore, MD: Johns Hopkins Univer-
sity Press, 1987.

11. Th. Herrmann and A. Kienle, Context-oriented communica-
tion and the design of computer supported discoursive learn-
ing, Int. J. Comput. Suppor. Collab. Learning, In-Press.

12. C. E. Hmelo-Silver, Collaborative ways of knowing: Issues in
facilitation, in: G. Stahl, (ed.), Computer Support for Colla-
borative Learning, Foundations for a CSCL community,
Mahwah, NJ: LEA, 2002.

13. J. Davis and D. Huttenlocher, Shared annotation for cooperative
learning, in: Proc. of CSCL 1995, pp. 84–88.

14. M. Guzdial and J. Turns, Effective discussion through a
computer-mediated anchored forum. J. Learning Sci., 9
(4): 437–470, 2000.

15. A. J. Bernheim Brush, D. Bargeron, J. Grudin, A. Borning, and
A. Gupta, Supporting interactions outside of class: Anchored
discussions vs. discussion boards. in G. Stahl (ed.), Computer
Support for Collaborative Learning, Foundations for a CSCL
Community. Mahwah, NJ: LEA, 2002.

16. J. van der Pol, W. Admiraal, and P. R. J. Simons, The affordance
of anchored discussion for the collaborative processing of aca-
demic texts, J. Comput. Support. Collab. Learning, 1 (3), 2006.

17. A. Kienle, Integration of knowledge management and colla-
borative learning by technical supported communication pro-
cesses, Educat. Info. Tech., 11 (2): 161–185, 2006.

18. G. Collison, B. Elbaum, S. Haavind, and R. Tinker, Facilitating
Online Learning. Effective Strategies for Moderators, Madi-
son, WI: Adwood Publishing, 2000.

19. G. Salmon, E-Moderating. The key to teaching and learning
online, London, UK: Kogan Page, 2000.

20. G. Salmon, E-tivities. The key to active online learning,
London, UK: Kogan Page, 2002.

21. H. F. Friedrich, F. W. Hesse, S. Ferber, and J. Heins, Partizipa-
tion im virtuellen Seminar in Abhängigkeit von der Modera-
tionsmethode – eine empirische Untersuchung, in: Die virtuelle
Konferenz: Neue Möglichkeiten für die politische Kommunika-
tion, C. Bremer and M. Fechter (eds.), (Essen, Germany:
Klartext), 1999.

22. A. Kienle and C. Ritterkamp, Facilitating asynchronous dis-
cussions in learning communities — The impact of moderation
strategies, Int. J. Behaviour Info. Tech., 26 (1): 73–80, 2007.

23. M. Hammond, Issues associated with participation in on line
forums– the caseof the communicative learner, Educat. Inform.
Tech., 4, 353–367, 1999.

24. Z. L. Berge and M. P. Collins, Perceptions of E-moderators
about their roles and functions in moderating electronic mail-
ing lists, Distance Ed. Int. J. 21, 81–100, 2000.

25. M. O. Thirunarayanan and A. Perez-Prado, Structured chat,
2007, Available: http://www.acm.org/ubiquity/views/m_thiru-
narayanan_2.html.

FURTHER READING

C. M. Hoadley and N. Enyeda, Between information and commu-
nication: Middle spaces in computer media for learning. Proc. of the
CSCL1999, pp. 242–251.

L. Kimball, Managing distance learning – new challenges for
faculty. In: R. Hazemi, S. Hailes, and S. Wilbur, (eds.), The Digital
University, London, UK: Springer, 1998.

T. Koschmann, Dewey’s contribution to a standard of problem-
based learning, in P. Dillenbourg, A. Eurelings, K. Hakkarainen,
(eds.), European Perspectives on Computer-Supported Collabora-
tive Learning, Maasticht, The Netherland McLuhan Institute,
2001.

G. Stahl, A model of collaborative knowledge-building, Proc. of the
International Conference on the Learning Science (ICLS), 2000.

ANDREA KIENLE

Fraunhofer IPSI
Darmstadt, Germany

8 COMPUTER-SUPPORTED ASYNCHRONOUS LEARNING: THE RELEVANCE OF COMMUNICATION AND FACILITATION



C

COMPUTING ACCREDITATION: EVOLUTION
AND TRENDS ASSOCIATED WITH U.S.
ACCREDITING AGENCIES

INTRODUCTION

Accreditation is the primary quality assurance mechanism
for institutions and programs of higher education, which
helps a program prove that it is of a quality acceptable to
constituents (1). Its original emergence in the United
States was to ensure that federal student loans were
awarded in support of quality programs. Since then, the
need for accreditation has strengthened considerably, as
the need for quality assurance continues to be in the fore-
front of educational concerns. For example, a recent report
from the Commission on Higher Education (2) identified
several problems with the education system in the United
States, a central one being the overall quality of higher
education.

The continuing interest in accreditation emerges of
three factors. First, recognition exists that the public is
not always in a position to judge quality, certainly not for
programs or institutions for higher education. Therefore, a
need exists for an independently issued stamp of approval
for programs and institutions of higher education.

Second, a lack of oversight exists in higher education.
Unlike the public school system, colleges and universities
have considerable freedom when it comes to curriculum
design, hiring practices, and student expectations (1). This
lack of oversight requires a different mechanism to ensure
quality, and higher education has opted to use accreditation
for this purpose. Finally, many organizations have recog-
nized the importance of continuous quality improvement,
and higher education is no exception. As explained in this
article, recent developments in accreditation reflect this
trend. The objective of accreditation is not only to ensure
that educational institutions strive for excellence but also
to make certain that the process for ensuring high quality is
apposite.

Two major types of accreditation are available in the
United States: (1) institutional accreditation (also called
regional accreditation in the United States) and (2) specia-
lized accreditation. Specialized accreditation includes both
program and school-specific accreditation, with the former
applied to a unique program and the latter applied to an
administrative unit within an institution. In the United
States, institutional accreditation is generally the respon-
sibility of a regional accreditation body such as the Southern
Association of Colleges and Schools (SACS) (www.sacs.org)
or the Middle States Commission on Higher Education
(www.msche.org).

This article concentrates on accreditation in the comput-
ing discipline, focusing on the primary accreditation bodies
accrediting U.S. programs, namely ABET, Inc. (www.abet.
org) and the Association to Advance Collegiate Schools of
Business (AACSB) (www.aacsb.edu). ABET, Inc. is the

primary body responsible for specialized program-level
accreditation in computing. AACSB, on the other hand,
provides specialized accreditation at the unit level and
accredits business schools only. The latter implies that
all the programs offered within the unit are accredited,
including any computing programs that it may offer.

Both accrediting bodies have concentrated primarily on
the accreditation of programs housed within U.S. institu-
tions. ABET has evaluated programs outside the United
States for ‘‘substantial equivalency,’’ which means the
program is comparable in educational outcomes with a
U.S.-accredited program. ‘‘Substantial equivalency’’ has
been phased out, and international accreditation pilot vis-
its are now being employed for visits within the United
States. In 2003, AACSB members approved the interna-
tional visits as relevant and applicable to all business
programs and have accredited several programs outside
of the United States.

The purpose of this article is to (1) review key concepts
associated with accreditation, (2) discuss the state of com-
puting accreditation by U.S. accrediting organizations and
how accreditation has evolved through recent years, (3)
describe the criteria for accreditation put forth by the
primary agencies that review computing programs, and
(4) review the typical process of accreditation. Although
many concepts are applicable to any accreditation process,
we refer to AACSB and ABET, Inc., which well are recog-
nized agencies that ensure quality in educational units that
include technology or specialized computing programs.
ABET’s Computer Accreditation Commission (CAC), as
the primary agency targeting computing programs, is
emphasized.

KEY CONCEPTS OF ACCREDITATION

For many years, accrediting organizations established
focused and specific guidelines to which a program had
to adhere to receive its stamp of approval. For instance, a
fixed number of credits, required in a specific area, had been
the norm, and any program that wished to be granted
accreditation had to offer the required number of credits
in relevant areas. Quality was measured through a check-
list of attributes that were expected to be met by the various
inputs into learning processes, such as curriculum, teach-
ing faculty, laboratory, and other facilities and resources.
The definition of quality, implicit in this approach to accred-
itation, was that of meeting specific standards, to be fol-
lowed by every institution.

Some proof exists that in computer science education,
this approach is successful. In a study of accredited and
nonaccredited programs, Rozanski (3) reports that
although similarities and differences exist between these
programs, accredited programs have more potential to
increase specific quality indicators.

In the past it was straightforward to determine whether
a program or institution met the accreditation criteria. A

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



major drawback of this approach was that it forced uni-
formity among institutions, preventing innovation and the
consideration of specialized needs of a program’s or school’s
constituencies. Other controversies centered on the
expense and time necessary to navigate successfully the
process. Smaller schools especially felt the guidelines
were targeted toward the larger institution (3).

Partly in response to concerns and to the danger of a lack
of innovation and, at least in the United States, partly
under pressure from the federal government, accreditation
agencies have moved to an outcomes-based approach, and
accreditation criteria now embody a definition of quality
more in line with that adopted by many quality improve-
ment approaches, namely ‘‘fitness for purpose’’ (4). The
basis for this approach is the premise that quality is
multifaceted.

From the overall mission of an institution, units or
programs are expected to establish long-term educational
objectives or goals, which describe achievements of gradu-
ates a few years after graduation, and to derive a set of
learning outcomes, which are statements defined as the
aforementioned skills, knowledge, and behaviors that stu-
dents are expected to acquire in their matriculation
through the program (5). Additionally, an institution or
program is expected to establish an assessment process to
determine how well its graduates are achieving its objec-
tives and outcomes and to establish a quality enhancement
program that uses the data collected through this assess-
ment process to improve the program. Assessment pro-
cesses foster program improvement by enabling visit
teams to make judgments about program effectiveness in
preparing graduates for entry into a field.

Some differences exist between the various accredita-
tion agencies concerning the range of decisions that they
can make. Clearly, each will have the option of whether to
accredit or not. However, different options are available
should it be determined that a program or institution does
not meet all criteria. For example, some accreditation
agencies may reduce the period for which the program or
institution is accredited. Alternatively, they may provision-
ally accredit but make a final decision contingent on an
interim report by the program or institution in which it
makes clear how it has addressed any weaknesses or con-
cerns identified during the team visit.

Programs continue to be reviewed cyclically. Again,
differences exist between the various agencies relative to
the maximum length for which a program or institution can
be accredited. The ABET CAC maximally accredits a pro-
gram for 6 years, whereas the AACSB has operated on a 5-
or 10-year cycle and is moving more toward the use of
maintenance reports.

Clearly, given the importance of the agency in the
accreditation process, the question develops concerning
the basis used to determine whether an organization can
become an accreditation agency. The answer differs from
country to country. In many countries, accreditation agen-
cies are governmental or quasi-governmental organiza-
tions established through an act or parliament. In the
United States, most accreditation agencies are essentially
private organizations. However, under the Higher Educa-
tion Act, the U.S. Secretary of Education is required to

recognize an accreditation agency before students enrolled
in programs or institutions accredited by it can receive
federal funding.

Also, several professional organizations recognize
accreditation agencies, chief among then are the Interna-
tional Network for Quality Assurance Agencies in Higher
Education (INQAAHE) and the Council of Higher Educa-
tion Accreditation (CHEA) in the United States.

ACCREDITATION AGENCIES RELEVANT TO COMPUTING

The AACSB

The AACSB International accredits both undergraduate
and graduate education for business and accounting.
Founded in 1916, the first standards were adopted in
1919 (6). The AACSB accredits computing programs, typi-
cally in Management Information Systems (MIS) or Infor-
mation Systems (IS), only as part of an evaluation of a
business program, and it does not review any one specific
program. By accrediting the unit that offers the various
business-related programs, it accredits indirectly any
specific program offered within the unit. The one exception
is accounting, which can receive a program-specific
evaluation.

Both undergraduate and graduate programs must be
evaluated in making an accreditation decision. The AACSB
puts forth standards for continuous quality improvement.
Important in the process is the publication of a mission
statement, academic and financial considerations, and stu-
dent support.

AACSB International members approved mission-
linked accreditation standards and the peer review process
in 1991, and in 2003, members approved a revised set of
worldwide standards. The application of the AACSB’s
accreditation standards is based on the stated mission of
each institution, and the standards thus provide enough
flexibility so that they can be applied to a wide variety of
business schools with different missions. This flexibility
offers the opportunity for many institutions that offer
online and other distance learning programs, as well as
the more conventional on-campus programs, to be accre-
dited.

ABET Inc.

In the early 1980s, computer science accreditation was
initiated by groups from the Association for Computing
Machinery, Inc. (ACM) and the Institute of Electrical and
Electronics Engineers, Inc. Computer Society (IEEE-CS).
Criteria for accreditation of computer science were estab-
lished, and visits started in 1984. The initial visits were
made by the Computer Science Accreditation Commission
(CSAC), which in 1985 established the Computer Science
Accreditation Board (CSAB) with the explicit purpose ‘‘to
advance the development and practices of computing dis-
ciplines in the public interest through the enhancement of
quality educational degree programs in computing’’ (http://
www.csab.org).

Eventually CSAC was incorporated into ABET with
CSAB remaining as the lead society within ABET for

2 COMPUTING ACCREDITATION: EVOLUTION AND TRENDS ASSOCIATED WITH U.S. ACCREDITING AGENCIES



accreditation of programs in computer science, information
systems, information technology, and software engineer-
ing. It should be noted that the ABET Engineering
Accreditation Commission (EAC) is responsible for soft-
ware engineering accreditation visits. In this capacity,
the CSAB is responsible for recommending changes to
the accreditation criteria and for the recruitment, selection,
and training of program evaluators (PEVs). All other
accreditation activities, which were conducted previously
by the CSAC, are now conducted by the ABET CAC.

The CSAB is governed by a Board of Directors whose
members are appointed by the member societies. The cur-
rent member societies of the CSAB, which include the ACM
and the IEEE-CS, as well as its newest member, the Asso-
ciation for Information Systems (AIS), are the three largest
technical, educational, and scientific societies in the com-
puter and computer-related fields.

Since the incorporation of the CSAC into the ABET,
computing programs have been accredited by the ABET
CAC. The first programs accredited by the ABET CAC were
in computer science (CS). In 2004, IS criteria were com-
pleted and partly funded by a National Science Foundation
grant. With the addition of IS criteria, the scope of comput-
ing program accreditation was enlarged. This addition has
been followed by the addition of information technology
(IT), with criteria currently being piloted.

The CAC recognized a need to address the growing
number of programs in emerging computing areas, which
has resulted in even more revision of accreditation criteria,
allowing such programs to apply for accreditation under
computing general criteria. Thus, these areas can benefit
from accreditation as well. We discuss these revisions in the
next section.

THE AACSB AND ABET CAC ACCREDITATION CRITERIA

The AACSB Criteria

Although the AACSB does not accredit IS programs by
themselves, the standards used support the concept of
continuous quality improvement and require the use of a
systematic process for curriculum management. Normally,
the curriculum management process will result in an
undergraduate degree program that includes learning
experiences in such general knowledge and skill areas as
follows (7):

� Communication abilities

� Ethical understanding and reasoning abilities

� Analytic skills

� Use of information technology

� Multicultural and diversity understanding

� Reflective thinking skills

Recent changes required of schools seeking accredita-
tion include (8):

� Assessment activities are focused toward degree pro-
grams rather than toward the majors within a degree
program (AACSB, 2006). In other words, recent

criteria focus on learning goals applied to each degree
rather than an separate majors.

� The requirements of direct measures measuring
knowledge or skills that students will expected to
attain by the time they graduate.

� The development of learning goals for the overall
degree program.

� Involvement of faculty members to a far greater extent
than under prior standards.

� The involvement of faculty to effect improvement.

The ABET Criteria

For several reasons, the ABET CAC revised significantly its
accreditation criteria, a copy of which is available for
inspection and comment from the ABET website (www.a-
bet.org). The ABET is currently piloting the proposed cri-
teria, which are expected to be officially in place for the
2008–2009 accreditation cycle.

Two significant revisions were made to the criteria.
First, following the lead of, in particular, the ABET’s Engi-
neering Accreditation Commission (EAC), the criteria have
been reorganized into a set of general criteria that apply to
all programs in computing, and program-specific criteria
for programs in CS, IS, and IT. For any program to be
accredited in one of these specific disciplines, it must meet
both the general and the associated program-specific
criteria. However, programs in emerging areas of
computing that are not strictly CS, IS or IT, such as
programs in computer game design, or telecommunica-
tions, will be accredited under the ABET CAC’s general
criteria. The revision thus broadened the range of
computing programs that can benefit from the ABET
CAC accreditation.

Second, although criteria have required programs to
establish program educational objectives and outcomes,
and to set up an assessment and quality improvement
process, it was not emphasized sufficiently. The revised
criteria place greater emphasis on the need to set up a
continuous improvement process.

The proposed CAC criteria for all computing programs
are divided into nine major categories (9):

1. Students

2. Objectives

3. Outcomes

4. Continuous improvement

5. Curriculum

6. Faculty

7. Facilities

8. Support

9. Program criteria

The criteria are outcomes based, and it is expected that
program outcomes are to be based on the needs of the
program’s constituencies. However, the criteria also will
specify a minimum set of skills and knowledge that stu-
dents must achieve by graduation. The general criteria

COMPUTING ACCREDITATION: EVOLUTION AND TRENDS ASSOCIATED WITH U.S. ACCREDITING AGENCIES 3



specify that students must be able to demonstrate mini-
mally the following (9):

(a) An ability to apply knowledge of computing and
mathematics appropriate to the discipline

(b) An ability to analyze a problem and to identify and
define the computing requirements appropriate to
its solution

(c) An ability to design, implement, and evaluate a
computer-based system, process, component, or
program to meet desired needs

(d) An ability to function effectively on teams to accom-
plish a common goal

(e) An understanding of professional, ethical, legal,
security, and social issues and responsibilities

(f) An ability to communicate effectively with a range of
audiences

(g) An ability to analyze the local and global impact of
computing on individuals, organizations, and
society

(h) Recognition of the need for, and an ability to engage
in, continuing professional development

(i) An ability to use current techniques, skills, and tools
necessary for computing practice

To this criteria, computer science adds the following:

(j) An ability to apply mathematical foundations, algo-
rithmic principles, and computer science theory in
the modeling and design of computer-based systems
in a way that demonstrates comprehension of the
tradeoffs involved in design choices

(k) An ability to apply design and development prin-
ciples in the construction of software systems of
varying complexity

Information systems adds:

(j) An understanding of processes that support the
delivery and management of information systems
within a specific application environment

Whereas information technology adds:

(j) An ability to use and apply current technical
concepts and practices in the core information tech-
nologies

(k) An ability to identify and analyze user needs and
take them into account in the selection, creation,
evaluation, and administration of computer-based
systems

(l) An ability to effectively integrate IT-based solutions
into the user environment

(m) An understanding of best practices and standards
and their application

(n) An ability to assist in the creation of an effective
project plan.

Similarities and Differences

Many similarities exist between accreditation criteria for-
mulated by the ABET CAC and the AACSB. Both organiza-
tions stress the need for explicit learning outcomes for
graduating students and for explicitly documented assess-
ment and quality improvement processes. Both organiza-
tions also recognize the need for graduates to be well
rounded with qualities beyond skills needed to understand
specialized areas. Both accrediting bodies, as do many
others, now require more than perceptions of constituents
to determine the level of program accomplishments. A need
for more direct assessment of knowledge and skills is
required.

It should also be noted that IS programs offered through
institutions accredited by the AACSB may also be accre-
dited by the ABET. Indeed, a handful of ABET-accredited
programs in IS are offered in AACSB-accredited business
schools. Programs that are accredited by both organiza-
tions offer constituencies the added benefit of knowing that
IS is offered within a high-quality business program and
that it has a quality technology component integrated into
the program.

Both agencies include in their accreditation criteria
similar sets of attributes that they expect graduating stu-
dents to achieve. For instance, the AACSB includes a
management of curricula criterion that requires an under-
graduate degree program to include learning experiences
in specific general knowledge and skill areas as depicted
above.

The difference in level of detail between the minimal
learning outcomes in the ABET CAC accreditation criteria
and those in the AACSB accreditation can be explained by
the fact that the ABET CAC criteria are more focused. Both
sets of evaluative rules promote continuous quality
improvement. Rather than being designed for a class of
programs, as the AACSB criteria are, the ABET CAC
criteria focus on a single type of program. They can, there-
fore, be more specific about the expectations of graduates,
especially in the technology area. Note, however, that both
the ABET CAC and the AASCB merely formulate a mini-
mal set of guidelines. Specific programs, whether they
apply for accreditation under the ABET CAC criteria or
under the AACSB criteria, are expected to formulate their
own sets of objectives and learning goals (AACSB termi-
nology) or outcomes (ABET terminology). Moreover, both
insist that the specific objectives adopted be based on the
needs of their specific constituencies rather than on the
whims of faculty or other involved parties.

Although the ABET CAC is more specific in the speci-
fication of minimal outcomes, the AACSB is generally more
specific when it comes to some other criteria. For example,
the ABET CAC provides relatively general requirements
for faculty. The faculty responsible for the program must
have the required skills to deliver the program and to
modify it, and some of them must also possess terminal
degrees. The AACSB, on the other hand, provides a set of
detailed guidelines that spell out the qualifications that
faculty must have and what percentage of courses within a
program must typically be covered by qualified faculty.
However, such differences should not detract from the

4 COMPUTING ACCREDITATION: EVOLUTION AND TRENDS ASSOCIATED WITH U.S. ACCREDITING AGENCIES



fact that in both cases, continuous quality improvement is
of central importance.

THE TYPICAL ACCREDITATION PROCESS

Program or Unit Being Accredited

The process of obtaining accreditation typically begins with
the institution or program completing a self-analysis to
determine whether the program meets the demands of
the accrediting agency. Gorgone et al. (10) recommend
that the accreditation process needs to begin at least a
year before the time of an anticipated visit. Given that
this step goes well, and the administration is supportive,
a Request for Evaluation (RFE) begins the formal process.
Figure 1 illustrates these and subsequent steps that include
the preparation of a self-study, collection of materials for a
review team, and the culminating accreditation visit. Most
accreditation agencies prefer a program or institution to
have completed its self-study before it applies for accredita-
tion (and pays its fees).

Once the request for accreditation has been received by
the accreditation agency, it appoints several program eva-
luators, typically in consultation with the program or insti-
tution seeking accreditation. Program evaluators are peers,
often drawnfrom academia butnot infrequentlydrawnfrom
industry. The accreditation agency also appoints a team
chair, again typically in consultation with the program or
institution.

The remainder of the process is driven by the self-study.
The visiting team will visit the program or institution. The
primary purpose of the site visit is to verify the accuracy of
the self-study and to make observations regarding issues
that are hard to gauge from a self-study, such as faculty and
staff morale and the students’ view of the institution or
program. The team writes a report of its findings, which is
submitted to the accreditation agency. Generally, the insti-
tution or program is allowed to make comments on early
drafts of the report, which may lead the visiting team to
revise its report. Eventually, the accreditation agency will
make its decision.

The Accrediting Agency

The accrediting agency has an enormous amount of
responsibility. Typically a professional staff supports the

accreditation process, and academic and industry volun-
teers in the areas being evaluated create the criteria.
Associated tasks are summarized as (1) the identification
of team chairs, (2) the selection and identification of insti-
tutions to visit, (3) the assignment and training of team
chairs and a review team, and (4) the preparation of sample
forms and reports (8).

CONCLUSION

Quality assurance in higher education has become an
important issue for many. This article describes the pri-
mary quality assurance mechanism for higher education,
namely accreditation. It has emphasized accreditation for
programs in computing.

Programs or institutions that have voluntarily assented
to the accreditation process and have achieved accredita-
tion meet the quality that reasonable external stakeholders
can expect them to have. Moreover, the emphasis on
outcome-based criteria and the concomitant requirements
that programs or institutions put in place for accreditation
provides constituents with the assurance of quality and
continuous quality improvement. Although we do dispute
the fact that accreditation is the only way to assure quality
in higher education, we do believe that accreditation is an
excellent method for doing so and that every program or
institution that has been accredited by a reputable accred-
itation agency is of high quality.

BIBLIOGRAPHY

1. D. K. Lidtke and G. J. Yaverbaum, Developing accreditation for
information system education, IT Pro, 5(1): 41–45, 2003.

2. U.S. Department of Education, [Online] A test of leadership:
charting the future of U.S. Higher Education. Washington, D.C.,
U. S.Department of Education,2006. Available: http://www.ed.-
gov/about/bdscomm/list/hiedfuture/reports/pre-pub-report.pdf.

3. E. P. Rozanski, Accreditation: does it enhance quality, ACM
SIGCSE Bulletin, Proceedings of the Twenty-fifth SIGCSE
Symposium on Computer Science Education, 26(1): 145–149,
1994.

4. D. Garvin, What does product quality really mean? Sloan
Management Review, 26(1): 25–43, 1984.

5. ABET, Inc., Accreditation policy and procedure manual, 2007.
Available: http://www.abet.org/forms.shtml.

Determine whether
program is

accreditable

Send materials
to review team

Prepare for visit

Visit
Team is assigned

by accrediting
agency

Make sure
administration is

on board

Apply for
accreditation

(REF)

Prepare self-
study

Receive report
from agency

Figure 1. The process of accreditation.

COMPUTING ACCREDITATION: EVOLUTION AND TRENDS ASSOCIATED WITH U.S. ACCREDITING AGENCIES 5



6. AACSB International. Accreditation standards, 2007. Avail-
able: http://www.aacsb.edu/accreditation/standards.asp.

7. AACSB International, Eligibility procedures and accreditation
standards for business accreditation, 2007. Available: http://
www.aacsb.edu/accreditation/process/documents/AACSB_
STANDARDS_Revised_Jan07.pdf.

8. C. Pringle, and M. Mitri, Assessment practices in AACSB
business schools, J. Educ. Business, 4(82), 202–212, 2007.

9. ABET, Inc. Criteria for accrediting programs, 2007. Available:
http://www.abet.org/forms.shtml#For_Computing_Programs_
Only.

10. J. Gorgone, D. Lidtke and D. Feinstein, Status of information
systems accreditation, ACM SIGCSE Bulletin, 33(1): 421–422,
2001.

FURTHER READING

D. Crouch and L. Schwartzman, Computer science accreditation,
the advantages of being different, ACM SIGCSE Bulletin, 35(1):
36–40, 2003.

J. Impagliazzo, J. Gorgone, Professional accreditation of informa-
tion systems programs, Communications of the AIS, 9: 2002.

J. Gorgone, D. Feinstein, and D. Lidtke, Accreditation criteria
format IS/IT programs, Informa. Syst., 1: 166–170, 2000.

L. G. Jones and A. L. Price, Changes in computer science accred-
itation, Communicat. ACM, 45: 99–103, 2002.

W. King, J. Gorgone, and J. Henderson, Study feasibility of accred-
itation of programs in computer information science/systems/tech-
nology. NSF Grant, 1999–2001.

D. K. Lidtke, K. Martin, L. Saperstein, and D. Bonnette, What’s
new with ABET/CSAB integration, Proceedings of the 31st
SIGCSE Technical Symposium on Computer Science Education,
ACM Press, 2001, p. 413.

K. You, Effective course-based learning outcome assessment for
ABET accreditation of computing programs, Consortium for Com-
puting Sciences in Colleges, South Central Conference, 2007.

GAYLE J. YAVERBAUM

Penn State Harrisburg
Harrisburg, Pennsylvania

HAN REICHGELT

Southern Polytechnic State
University

Marietta, Georgia

6 COMPUTING ACCREDITATION: EVOLUTION AND TRENDS ASSOCIATED WITH U.S. ACCREDITING AGENCIES



C

CYBERNETICS

The word cybernetics was coined by Norbert Wiener (1) and
denotes a subject area that he indicated by the subtitle of
his 1948 book: ‘‘control and communication in the animal
and the machine.’’ It is derived from the Greek word for
‘‘steersman,’’ and the word ‘‘governor’’ comes from the same
root. The word had been used in a related but more
restricted sense by Ampère in the nineteenth century to
denote a science of government, but Wiener initially was
not aware of this. It also was used much earlier by Plato
with a similar meaning.

The linking of ‘‘animal’’ and ‘‘machine’’ implies that
these have properties in common that allow description
in similar terms. At a simple level this view was not new,
because nerves were identified as communication path-
ways by Descartes in the seventeenth century; however,
later developments, especially during World War II and
including the emergence of analog and digital electronic
computers, allowed a deeper and more fruitful unified
approach. It also was intended that ‘‘animal’’ should be
understood to include organizations and societies, and later
work increasingly has focused on them. A revised definition
that has been suggested is: ‘‘communication and control
within and between man, organizations and society.’’

HISTORY OF CYBERNETICS

The publication of the book by Wiener gave name and status
to the subject area, but earlier origins can be traced. At the
time of the publication, the ideas also were promoted
vigorously by Warren McCulloch (2), and the emergence
of cybernetics has been attributed to the meeting and
collaboration of Wiener with McCulloch and Walter Pitts
(3). McCulloch was a neurophysiologist who epitomized his
own lifetime quest as the attempt to answer the question:
‘‘What is a number, that a man may know it, and a man, that
he may know a number?’’ This question led him to study
medicine and, particularly, neurophysiology. An interna-
tional center for studies of what became known as cyber-
netics was planned by him in the 1920s but had to be
abandoned for financial reasons in the 1930s.

Before the meeting with McCulloch, (2) a number of
influences guided Wiener toward the initiative, a major one
being his wartime work on the possibility of a predictor to
extrapolate the curving path of an enemy aircraft so as to
direct anti-aircraft gunfire more effectively. He had expo-
sure to biological studies in a number of contexts, including
introduction to electroencephalography by W. Grey Walter
in the United Kingdom (4) and work on heart muscle with
the Mexican physiologist Rosenblueth; he also had learned
about biological homeostasis in discussions with Walter
Cannon. He also had been involved with analog and digital
computing.

The topic area, and its designation by name, were
advanced greatly by a series of discussion meetings held

in New York and sponsored by the Josiah Macy, Jr.
Foundation between 1946 and 1953. Ten meetings took
place, chaired by Warren McCulloch (2) and with the
participation of scientists from different specializations,
especially bringing together biological and nonbiological
sciences. The first five meetings, which were not recorded
in print, had various titles that referred to circular
mechanisms and teleology. From the sixth meeting
onward, the proceedings were edited by Heinz von Foer-
ster and published. Wiener’s book had appeared in the
meantime, and in honor of his contribution, the reports on
the last five meetings were entitled: Cybernetics: Circular,
Causal and Feedback Mechanisms in Biological and
Social Systems.

Relevant developments were not confined, however, to
the United States. In Britain, an informal group called the
Ratio Club was founded in 1949 and developed many of
the basic ideas of cybernetics at first independently of the
American work, although links were formed later. It also
is noteworthy that the book by Wiener was published in
French before the appearance of the English version and
gave rise to a Circle of Cybernetic Studies in Paris. The
Ratio Club was considered to have served its purpose,
and the transatlantic separation ended by a conference
in the National Physical Laboratory in Teddington,
United Kingdom in 1958.

FEEDBACK AND SERVOMECHANISMS

What has been termed circular causation is a central
characteristic of living systems as well as of many modern
artifacts. The flow of effect, or causation, is not linear from
input to output but has loops or feedbacks. The system is
sensitive to what it, itself, influences, and it regulates its
influence so as to achieve a desired result. Conscious mus-
cular movement is an obvious example, where the actual
movement is monitored by proprioceptors in joints and
muscles and perhaps also visually and the force exerted
by the muscles is regulated using this feedback so as to keep
the movement close to what is wanted despite unknown
weight to be lifted, friction, and inertia. The feedback that
produces stability is negative feedback, which is to say that
an excessive movement in the desired direction must cause
diminution of muscular effort and conversely for insuffi-
cient movement.

Servomechanisms are artificial devices that similarly
use negative feedback. They featured strongly in wartime
applications, such as control of aircraft gun turrets, but
were known much earlier, examples being the steering
engines of ships and Watt’s governor to regulate the speed
of a steam engine. The use of the term ‘‘governor’’ here
encouraged the later appellation of Wiener. Negative feed-
back also appears in a crude but effective form in the
familiar ball-cock valve of the toilet cistern, which regulates
inflow according to the sensed water level, and in thermo-
stats in rooms, ovens, and refrigerators. Regulation of

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



temperature and many other variables by feedback from
sensors also is a vital feature of biological systems.

Servomechanisms are required to respond rapidly to
disturbances and, at the same time, to give stable control
without large overshoots or oscillation. The achievement of
this stability where the environment includes inertia and
elasticity and viscous friction depends on the mathematical
methods of Wiener and others, including Bode and Nyquist.
One connection with biology noted by Wiener is that the
tremors of a patient with Parkinson’s disease are similar to
the operation of a maladjusted servo. Negative feedback
also is applied in electronic amplification and allows high-
fidelity audio reproduction despite the nonlinear charac-
teristics of the active components, whether vacuum tubes
or transistors; important mathematical theory has been
developed in this context.

NEUROPHYSIOLOGY AND DIGITAL COMPUTING

The nervous system is the most obvious and complex form of
communication ‘‘in the animal,’’ although the endocrine
system also operates in a broadcast or ‘‘to whom it may
concern’’ fashion and other forms are playing a part. McCul-
loch looked to neurophysiology for answers to the question
he posed, and 5 years before the appearance of the book by
Wiener, he and Walter Pitts published a mathematical
proof of the computational capabilities of networks of model
neurons that have some correspondence to the real kind.
Much speculation was aroused by the apparent correspon-
dence between the all-or-nothing response of neurons and
the use of binary arithmetic and two-valued logic in digital
computers.

In this and other ways, interest in cybernetics arose from
advances in electronics, especially those stimulated by
World War II. Young scientists who had worked on military
projects wanted to turn their skills to something to help
humanity, such as biological research. Ways were found of
making micro electrodes that allowed recording from single
neurons and stimulating them, and it looked as though the
nervous system could be analyzed like an electronic device.

A great deal has been learned about the nervous system
using microelectrodes, not least by a group around Warren
McCulloch in the Massachusetts Institute of Technology in
the 1950s and 1960s. Further insight came from theoretical
treatments, including the idealization of neural nets as
cellular automata by John von Neumann and the mathe-
matical treatment of morphogenesis (the development of
pattern or structure in living systems) pioneered by Alan
Turing. Nevertheless, much of the working of the central
nervous system remains mysterious, and in recent decades,
the main focus of cybernetics has shifted to a higher-level
view of thought processes and to examination of inter
personal communication and organizations.

A recurring theme is that of self-organization, with
several conferences in the 1950s and 1960s nominally
devoted to discussion of self-organizing systems. The aim
was to study learning in something like a neural net,
associated with the spontaneous emergence of structure
or at least a major structural change. Von Foerster treated
the topic in terms of thermodynamics and pointed out that

spontaneous emergence in an isolated system would be
contrary to the second law. More recently, self-organization
has been discussed rather differently with emphasis on the
emergence of structure as such, independent of learning or
goal-seeking.

Ilya Prigogine (5) and his followers have resolved the
contradiction between the apparent implications of the
second law of thermodynamics, that entropy or disorder
can increase only, and the observed increase of order in
biological evolution. The contradiction is resolved by obser-
ving that the second law applies to systems close to equili-
brium, and living systems only exist far from equilibrium
and can be termed ‘‘dissipative structures’’ as they receive
energy and pass it to their environments. It has been shown
that spontaneous emergence of structure is natural in such
conditions. Implications for psychology and social systems,
as well as cosmology, are drawn.

INFORMATION THEORY

An important part of cybernetics commonly is called infor-
mation theory, although arguably more appropriately
termed communication theory. It depends on the fact
that information, in a certain sense of the word, can be
measured and expressed in units. The amount of such
information in a message is a measure of the difficulty of
transmitting it from place to place or of storing it, not a
measure of its significance. The unit of information is the
‘‘bit,’’ the word being derived from ‘‘binary digit.’’ It is the
amount of information required to indicate a choice bet-
ween two possibilities that previously were equally prob-
able. The capacity of a communication channel can be
expressed in bits per second. The principal author of the
modern theory is Claude Shannon (6), although a similar
measure of information was introduced by R. V. L. Hartley
as early as 1928. The later work greatly extends the theory,
particularly in taking account of noise.

In its simple form, with reference to discrete choices, the
theory accounts nicely for some biological phenomena, for
instance, the reaction times of subjects in multiple-choice
experiments. It is extended to apply to continuous signals
and to take account of corruption by random disturbances
or ‘‘noise.’’ The mathematical expressions then correspond,
with a reversal of sign, to those expressions for the evalua-
tion of entropy in thermodynamics. The theory applies to
the detection of signals in noise and, therefore, to percep-
tion generally, and one notable treatment deals with its
application to optimal recovery and detection of radar
echoes in noise.

The effects of noise often can be overcome by exploiting
redundancy, which is information (in the special quantita-
tive sense) additional to that needed to convey the message
in the absence of noise. Communication in natural lan-
guage, whether spoken or written, has considerable redun-
dancy, and meaning usually can be guessed with a fair
degree of confidence when a substantial number of letters,
syllables, or words effectively are lost because of noise,
interference, and distortion. Much attention has been given
to error-detecting and error-correcting coding that allow
the introduction of redundancy in particularly effective

2 CYBERNETICS



ways. One theorem of information theory refers to the
necessary capacity of an auxiliary channel to allow the
correction of a corrupted message and corresponds to
Ashby’s (7) principle of requisite variety, which has found
important application in management.

ARTIFICIAL INTELLIGENCE

In the attempt to understand the working of the brain in
mechanistic terms, many attempts were made to model
some aspect of its working, usually that of learning to
perform a particular task. Often the task was a form of
pattern classification, such as recognition of hand-blocked
characters. An early assumption was that an intelligent
artifact should model the nervous system and should con-
sist of many relatively simple interacting units. Variations
on such a scheme, indicated by the term ‘‘perceptron’’
devised by Frank Rosenblatt, could learn pattern classifi-
cation but only of a simple kind without significant learned
generalization. The outcomes of these early attempts to
achieve ‘‘artificial intelligence’’ were not impressive, and at
a conference in 1956 the term ‘‘Artificial Intelligence’’ (with
capitals), or AI, was given a rather different meaning.

The aim of the new AI was to use the full power of
computers, without restriction to a neural net or other
prescribed architecture, to model human capability in
areas that are accepted readily as demonstrating ‘‘intelli-
gence.’’ The main areas that have received attention are as
follows:

Theorem Proving. The automatic proving of mathema-
tical theorems has received much attention, and
search methods developed have been applied in other
areas, such as path planning for robots. They also are
the basis of ways of programming computers declara-
tively, notably using the language PROLOG, rather
than procedurally. In declarative programming, the
required task is presented effectively as a mathema-
tical theorem to be proved and, in some application
areas, allows much faster program development than
is possible by specifying procedures manually.

Game Playing. Chess has been seen as a classical chal-
lenge, and computers now can compete at an extre-
mely high level, such that a computer beat the
highest-scoring human chess player in history,
Gary Kasparov. Important pioneering work was
done using the game of checkers (or ‘‘draughts’’).

Pattern Recognition. Pattern recognition can refer to
visual or auditory patterns; or patterns in other or
mixed modalities; or in no particular modality, as
when used to look for patterns in medical or weather
data. Attention also has been given to the analysis of
complete visual scenes, which presents special diffi-
culty because, among other reasons, objects can have
various orientations and can obscure each other par-
tially. Scene analysis is necessary for advanced devel-
opments in robotics.

Use of Natural Language. Question-answering systems
and mechanical translation have received attention,
andpractical systems for both have been implemented

but leave much to be desired. Early optimistic predic-
tions of computer performance in this area have not
materialized fully. This lack is largely because the
‘‘understanding’’ of text depends on semantic as well
as syntactical features and, therefore, on the huge
amount of knowledge of the world that is accumulated
by a person.

Robotics. Robotics has great practical importance in, for
example, space research, undersea exploration, bomb
disposal, and manufacturing. Many of its challenges
are associated with processing sensorydata, including
video images, so as to navigate, recognize, and manip-
ulate objects with dexterity and energy efficiency.
Apart from their immediate use, these developments
can be expected to throw light on corresponding
biological mechanisms. Bipedal locomotion has been
achieved only with great difficulty, which shows the
complexity of the biological control of posture and
balance. For practical mobile robots, wheeled or
tracked locomotion is used instead. A topic area
associated with advanced robotics projects is that of
virtual reality, where a person is given sensory input
and interactions that simulate a nonexistent environ-
ment. Flight simulators for pilot training were an
early example, and computer games implement the
effect to varying degrees.

Expert Systems. This term has been used to refer to
systems that explicitly model the responses of a
human ‘‘domain expert,’’ either by questioning the
expert about his/her methods or deriving rules from
examples set to him/her. A favourite application area
has been the medical diagnosis in various specializa-
tions, both for direct use and for training students.
The general method has been applied to a very wide
range of tasks in which human judgement is superior
to any known analytic approach. Under the general
heading of diagnosis, this range of topics includes
fault finding in computers and other complex machin-
ery or in organizations. Other applications are made
to business decisions and military strategy.

A great deal has been achieved under the heading of AI.
It has underlined the importance of heuristics, or rules
that do not always ‘‘work’’ (in the sense of leading directly
to a solution of a problem). Heuristics indicate where it
may be useful to look for solutions and are certainly a
feature of human, as well as machine, problem-solving. In
this and other ways, studies of AI have contributed to the
understanding of intelligence, not least by recognizing the
complexity of many of the tasks studied. Apart from this,
the influence of AI studies on computer programming
practice has been profound; for example, the use of
‘‘list-processing,’’ which has sometimes been seen as pecu-
liar to AI programs, is used widely in compilers and
operating systems.

Nevertheless, progress in AI is widely felt to have been
disappointing. Mathematical theorem-proving and chess
playing are forms of intellectual activity that people find
difficult, and AI studies have produced machines proficient
in them but unable to perform ordinary tasks like going

CYBERNETICS 3



round a house and emptying the ashtrays. Recognizing
chairs, tables, ashtrays, and so forth in their almost infinite
variety of shapes and colors is hard because it is hard to
define these objects in a way that is ‘‘understandable’’ to a
robot and because more problems arise in manipulation,
trajectory planning, and balance. If the evolution of
machine intelligence is to have correspondence to that of
natural intelligence, then what are seen as low-level man-
ifestations should appear first. The ultimate possibilities
for machine intelligence were discussed comprehensively
by Turing and more recently and sceptically using the
parable of Searle’s ‘‘Chinese Room’’ in which an operator
manipulates symbols without understanding.

In relatively recent decades a revival of interest has
grown in artificial neural nets (ANNs). This revival of
interest is attributable partly to advances in computer
technology that make feasible the representation and
manipulation of large nets, but a more significant factor
is the invention of useful ways of implementing learning in
ANNs. The most powerful of these ways is ‘‘backpropaga-
tion,’’ which depends on information pathways in the net
that are additional to those serving its primary function,
conducting in the opposite direction. Some applications are
of a ‘‘control’’ or continuous-variable kind where the net
provides a means of learning the continuous relation
between a number of continuous variables, one of them a
desired output that the net learns to compute from the
others. Other application areas have an entirely different
nature and include linguistics.

These relatively recent studies have been driven mainly
by practical considerations, and the correspondence to
biological processing often is controversial. The ‘‘backpro-
pagation of error’’ algorithm, the basis of the majority of
applications, has been argued to be unlikely to operate in
biological processing. However, other forms of backpropa-
gation probably do play a part, and biological considera-
tions are invoked frequently in arguing the merits of
schemes using ANNs.

CYBERNETIC MACHINES

Because a main aim of many cyberneticians is to under-
stand biological learning, various demonstrations have
involved ‘‘learning machines’’ realized either as computer
programs or as special-purpose hardware. The various
schemes for artificial neural nets are examples, and an
earlier one was the ‘‘Homeostat’’ of Ross Ashby (7), which
sought a stable equilibrium despite disturbances that
could include alteration of its physical structure. A num-
ber of workers, starting with Grey Walter (4), made mobile
robots or ‘‘tortoises’’ (land turtles) that showed remark-
ably lifelike behavior from simple internal control
arrangements. They could avoid obstacles and would
seek ‘‘food’’ (electric power) at charging stations when
‘‘hungry.’’ The ‘‘Machina speculatrix’’ by Grey Walter
did not learn, actually, but later developments implemen-
ted learning in various forms.

A task that has been used in a number of studies is pole-
balancing, where the pole is an inverted pendulum con-
strained to pivot about a single axis and mounted on a

trolley. The task is to control the trolley so that the pole does
not fall and the trolley remains within a certain length of
track. The input data to the learning controller are indica-
tions of the position of the trolley on the track and of the
angle of the pendulum, and its output is a signal to drive
the trolley. In one study, the controller was made to copy the
responses of a human performing the task; in others, it
developed its own control policy by trial.

Learning, unless purely imitative, requires feedback of
success or failure, referred to as reinforcement. The term
‘‘reinforcement learning,’’ however, has been given special
significance as indicating methods that respond not only to
an immediate return from actions but also to a potential
return associated with the change of state of the environ-
ment. A means of estimating an ultimate expected return,
or value, for any state has to exist. The most favorable
action is chosen to maximize the sum of the immediate
return and the change in expected subsequent return.
The means of evaluating states is subject, itself to modifica-
tion by learning.

This extension of the meaning of ‘‘reinforcement learn-
ing,’’ having some correspondence to the ‘‘dynamic pro-
gramming’’ of Richard Bellman, has led to powerful
learning algorithms and has been applied successfully to
the pole-balancing problem as well as to writing a program
that learned to play a very powerful game of backgammon.

CYBERSPACE

Interactions using the Internet and other channels of ready
computer communication are said to occur in, and to define,
cyberspace. The new environment and resulting feeling of
community are real and amenable to sociological examina-
tion. The prefix ‘‘cyber-’’ is applied rather indiscriminately
to any entity strongly involving computer communication,
so that a café offering its customers Internet access is
termed a ‘‘cybercafé’’, the provision of bomb-making
instructions on the Internet is described as ‘‘cyberterror-
ism,’’ and so on. In science fiction, such terms as ‘‘cybermen’’
have been used to refer to humans who are subject to
computer control. These uses of the prefix must be depre-
cated as supporting an erroneous interpretation of cyber-
netics.

SECOND-ORDER CYBERNETICS

The idea of the circular causality implicit in cybernetics has
been extended, originally by Heinz von Foerster, to include
the circle comprising an observed system and the observer.
This extension is a departure from traditional Newtonian
science and from earlier views of cybernetics where the
observer is assumed to have autonomy that puts him or her
outside any causal loop. The earlier version of cybernetics is
termed ‘‘first-order’’; the extension is called ‘‘second-order’’
or ‘‘cybernetics of cybernetics.’’

The extension is most clearly relevant to the observation
of social systems and, hence also, to teaching and manage-
ment. In these contexts, an observer must either be part of
the observed system or have involvement with it. In other
contexts, such as those of the so-called exact sciences, the

4 CYBERNETICS



involvement of the observer may be less obvious, but still,
complete objectivity is impossible.

The impossibility of access to anything to be called reality
also has been recognized under the heading of constructi-
vism, a philosophical viewpoint that predates cybernetics.
Clearly the construction formed by an individual has to
allow effective interaction with the environment if he or
she is to operate effectively and, indeed, to survive, but no
precise image or model is implied by this construction.

MANAGEMENT

The application of cybernetics to management was pio-
neered by Stafford Beer (8,9) and is a major field of interest.
In an early paper, he listed characteristics of a cybernetic,
or viable, system that include internal complexity and the
capability of self-organization, along with a means of inter-
acting appropriately with its environment. He indicated
points of similarity between the communications and con-
trol within a firm and a human or animal central nervous
system. For example, he likened the exclusive pursuit of
short-term profit by a firm to the behavior of a ‘‘spinal’’ dog
deprived of cerebral function.

The view of human organizations as viable is supported
by the observation that groups of people in contact sponta-
neously form a social structure. The viability of organiza-
tions has been described as ‘‘social autopoiesis,’’ as part of
sociocybernetics where autopoiesis is a principle originally
used with reference to biological systems to indicate self-
production.

The Beer ‘‘Viable System Model’’ (8,9) has found wide
application in management studies and depends on his
listing of a set of components that are essential for viability.
Failures or inadequacies of management performance may
be attributed to absence or weakness of one or more of these
components. It is asserted that viable systems have recur-
sive character in that they have other viable systems
embedded in them and are themselves components of lar-
ger ones. The cells of the body are viable systems that are
embedded in people, who in turn form organizations, and so
on. Connections to higher and lower viable systems are part
of the model.

An aspect emphasized by Beer (8,9) is the need for a rapid
response to disturbances, achieved in the nervous system by
local reflexes, which respond automatically but also are
subject to higher-level control. His work also makes exten-
sive use of the Ashby (7) principle of Requisite Variety,
which corresponds to a theorem of the Shannon Information
Theory and states that a disturbance of a system only can be
corrected by a control action whose variety, or information
content, is at least equal to that of the disturbance. This view
has been epitomized as: ‘‘only variety can absorb variety.’’
Beer (8,9) analyzed many management situations in terms
of variety, alternatively termed complexity, and claimed to
be practising ‘‘complexity engineering.’’

SYSTEMS SCIENCE

Cybernetics is concerned essentially with systems, and
valuable discussions of the meaning of ‘‘system’’ appear

in works of Ashby (7), Pask (10,11), and Beer (8,9). No firm
distinction exists between cybernetics and systems science
except for a difference of emphasis because of the essen-
tially biological focus of cybernetics. However, the seminal
work of Ludwig von Bertalanffy (12)on systems theory has
very substantial biological content.

SOCIOCYBERNETICS

Cybernetics has social implications under two distinct
headings. One is the social effect of the introduction of
automation, including, with computers and advanced
robots, the automation of tasks of intellectual and skilled
nature. Norbert Wiener, in his book The Human Use of
Human Beings(13), expressed his grave concern over these
aspects.

The topic that has come to be termed sociocybernetics is
not concerned primarily with these aspects but with the
examination of social systems in terms of their control and
informational features and with the use of concepts from
cybernetics and systems theory to describe and model
them. The need for second-order cybernetics became parti-
cularly clear in this context, and its use has allowed valu-
able analyses of, for example, international and inter faith
tensions and aspects of the ‘‘war on terror.’’

The theory of autopoiesis, or self-production, developed
originally by Humberto Maturana (14) and Francisco
Varela with reference to living cells, has been applied to
the self-maintenance of organizations in society as ‘‘social
autopoiesis.’’ This term is applied by Niklas Luhmann (15)
to various entities, including the legal system. The autop-
oietic character is indicated by the reference to ‘‘organiza-
tional (or operative) closure.’’ In management and social
studies, the correspondence of a social entity to a living
organism is emphasized frequently by reference to pathol-
ogy and diagnosis. The theoretical treatment of self-
organization due to Prigogine (5), mentioned earlier,
has been applied in social studies.

A range of topics bearing on psychology and sociology
were treated in cybernetic terms by Gregory Bateson (16)
and his wife the anthropologist Margaret Mead, both par-
ticipants in the Macy conference series. His insights were
based on experience of anthropological fieldwork in Bali
and New Guinea, as well as psychiatry among schizophre-
nics and alcoholics and the study of communication beha-
vior in octopi and dophins. Another study that bears
particularly on education is the ‘‘conversation theory’’ of
Gordon Pask (10,11), with the aim of exteriorizing thought
processes in managed conversations.

GAIA

In 1969 James Lovelock (17) advanced the suggestion that
the totality of living things in the biosphere acts like one
large animal to regulate environmental variables. This
hypothesis has been termed the Gaia hypothesis, where
the name Gaia was one given to the Greek earth goddess. It
was assumed previously that environmental conditions on
the earth (temperature, ocean salinity, oxygen concentra-
tion of the atmosphere, and so on) just happened to be

CYBERNETICS 5



compatible with life. Lovelock points out that these vari-
ables have remained remarkably steady despite distur-
bances, including a large change in the strength of solar
radiation.

The environment is influenced by biological activity to a
greater extent than usually is realized; for example, with-
out life almost no atmosphere would exist. This influence
makes regulation feasible, and the Lovelock theory (17) has
given accurate predictions, including a gloomy view of the
likely consequences of the effects of human activity on Gaia,
especially with regard to carbon emissions and other fac-
tors that contribute to global warming. It is widely
accepted, in fact, that the greatest threat to humanity is
that the feedback mechanisms that regulate the tempera-
ture of the planet may be overwhelmed by the ignorant,
selfish, and short-sighted behavior of humans and that a
greater understanding of these issues urgently is required.

Lovelock (17) has suggested how regulation could have
come into being, with the help of a parable called Daisy-
world. Daisyworld is a simple model of a planet on which
two species of plant (‘‘daisies’’) grow, one species black and
the other white. The dependence of growth rate on tem-
perature is the same for both species. The spread of black
daisies causes the planet to become warmer, and the spread
of white daisies affects the planet conversely.

It has been shown that with reasonable assumptions
about heat conductivity of the planet, such that black
daisies are a little warmer than the planet generally and
white ones a little cooler, effective regulation of tempera-
ture can result. Apart from its environmental significance,
the mechanism is interesting as an example of control
without an obvious set-point.

OTHER TOPICS

Other topics, among many, that impinge on cybernetics
include the use of ‘‘fuzzy’’ methods to allow operation under
uncertainty, based on the introduction of the fuzzy set
theory by Lotfi Zadeh (18), as well as methods for the study
of complex systems under headings of chaos and fractals
and artificial life.

BIBLIOGRAPHY

1. N. Wiener, Cybernetics or Control and Communication in the
Animal and the Machine, New York: Wiley, 1948.

2. W. S. McCulloch, What is a number, that a man may know it,
and a man, that he may know a number?, General Semantics
Bulletin, 26 & 27: 7–18; reprinted in W. S. McCulloch, Embodi-
ments of Mind. Cambridge, MA: MIT Press, 1965, pp. 1–18.

3. W. S. McCulloch and W. Pitts, A logical calculus of the ideas
immanent in nervous activity, Bull. Math. Biophyics, 5:
115–133, 1943.

4. W. G. Walter, The Living Brain, London: Duckworth, 1953.

5. I. Prigogine and I. Stengers, Order Out of Chaos: Man’s New
Dialogue with Nature. London: Flamingo, 1985.

6. C. E. Shannon and W. Weaver, The Mathematical Theory of
Communication. Urbana: University of Illinois Press, 1949.

7. W. R. Ashby, An Introduction to Cybernetics.New York: Wiley,
1956.

8. S. Beer, Cybernetics and Management.London: English Uni-
versities Press, 1959.

9. S. Beer, Towards the cybernetic factory, in H. vonFoerster and
G. W. Zopf (eds.), Principles of Self-Organization.Oxford: Per-
gamon, 1962, pp. 25–89.

10. G. Pask, An Approach to Cybernetics. London: Hutchinson,
1961.

11. G. Pask, Conversation Theory: Applications in Education and
Epistemology. Amsterdam: Elsevier, 1976.

12. L. von Bertalanffy, General Systems Theory. Harmondsworth:
Penguin, 1973. (First published in the United States in 1968).

13. N. Wiener, The Human Use of Human Beings: Cybernetics and
Society, Boston MA: Houghton Mifflin, 1954.

14. H. R. Maturana and B. Poerksen, From Being to Doing: The
Origins of the Biology of Cognition., Carl-Auer Heidelberg,
2002.

15. N. Luhmann, Law as a Social System. Oxford University Press,
2004.

16. G. Bateson, Steps to an Ecology of Mind, London: Paladin, 1973.

17. J. E. Lovelock, Gaia: A New Look at Life on Earth.Oxford
University Press, 1979.

18. L. A. Zadeh, Fuzzy sets, Information and Control, 8: 338–353,
1965.

FURTHER READING

C. Adami, Introduction to Artificial Life, New York: Springer, 1998.

A. M. Andrew, F. Conway, and J. Siegelman, Appendix to review of
Dark Hero of the Information Age: In Search of Norbert Wiener, the
Father of Cybernetics, (2005). Reviewed in: Kybernetes, 34(7/8):
1284–1289, 2005.

M. A. Arbib (ed.), The Handbook of Brain Theory and Neural
Networks. Cambridge, MA: MIT Press, 1998.

S. Beer, Brain of the Firm, 2nd ed. Chichester: Wiley, 1981.

F. Conway and J. Siegelman, Dark Hero of the Information Age: In
Search of Norbert Wiener, the Father of Cybernetics, New York:
Basic Books, 2005.

B. J. Copeland (ed.), The Essential Turing: The Ideas that Gave
Birth to the Computer Age. Oxford University Press, 2004.

E. A. Feigenbaum and J. Feldman, (eds.), Computers and Thought.
New York: McGraw-Hill, 1963.

F. Geyer and J. van derZouwen, Cybernetics and social science:
theoriesand research in sociocybernetics, Kybernetes, 20(6), 81–92,
1991.

O. Holland and P. Husbands, The origins of british cybernetics: The
ratio club, Kybernetes, 2008. In Press.

J. Lovelock, The Revenge of Gaia: Why the Earth is Fighting Back—
and How We Can Still Save Humanity. London: Allen Lane, 2006.

P. R. Masani, Norbert Wiener, 1894–1964, Birkhäuser, Basel,
1990.

H.-O. Peitgen, H. Jürgens and D. Saupe, Chaos and Fractals: New
Frontiers of Science, New York: Springer, 1992.

J. Preston and J. M. Bishop, (eds.), Views into the Chinese Room:
New Essays on Searle and Artificial Intelligence. Oxford University
Press, 2002.

H. Rheingold, Virtual Reality, London: Seeker and Warburg,
1991.

D. E. Rumelhart, J. L. McClelland and the PDP [Parallel Distrib-
uted Processing] Research Group (eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, 2
Vols. Cambridge, MA: MIT Press, 1986.

6 CYBERNETICS



R. S. Sutton and A. G. Barto, Reinforcement Learning: An Intro-
duction, Cambridge, MA: MIT Press, 1998.

H. Von Foerster and B. Poerksen, Understanding Systems: Con-
versations on Epistemology and Ethics. New York: Kluwer/Ple-
num, 2002.

A. J. Watson and J. E. Lovelock, Biological homeostasis of the
global environment: The parable of Daisyworld, Tellus35B:
284–289, 1983.

N. Wiener, I am a Mathematician. London: Gollancz, 1956.

P. M. Woodward, Probability and Information Theory with Appli-
cations to Radar, 2nd ed. Oxford: Pergamon, 1964.

M. Zeleny (ed.), Autopoiesis: A Theory of Living Organization,
New York: North Holland, 1981.

ALEX M. ANDREW

University of Reading
Berkshire, United Kingdom

CYBERNETICS 7



E

EDUCATION AND TRAINING IN SOFTWARE
ENGINEERING

INTRODUCTION

Although the term ‘‘software engineering’’ has been used
widely since the late 1960s, the question of whether to treat
it as a distinct academic discipline has only been addressed
during the past 15 years. The fact that a steadily increasing
number of software engineering degree programs in col-
leges and universities exists throughout the world indi-
cates a greater (although still far from unanimous)
acceptance of software engineering as a separate discipline
of study.

These software engineering degree programs emerged
first at the master’s level, and then more recently at the
bachelor’s and doctoral levels, in a process paralleling the
development of computer science programs in the 1960s
and 1970s. In both cases, the process began with the
introduction of specialized elective courses in an existing
curriculum. With computer science, as the body of knowl-
edge grew, more courses were introduced, relationships
among topics were better understood, textbooks were
written, and better teaching methods were developed.
Eventually, the fundamentals of computer science were
codified in an undergraduate curriculum that provided
the necessary skills to meet the increasing demand for
computing practitioners, whereas the growth of computer
science research and the demand for new faculty in the
discipline led to doctoral programs in the field. Currently,
software engineering is following this same pattern.

In addition, the evolution of software engineering has
meant that industry and government both need to retrain
workers from other fields as software engineer and to
provide additional software engineering skills to current
computing practitioners. Therefore, a variety of software
engineering training courses and techniques has also been
developed over the years.

This article contains:

� A history of software engineering in academia,

� The role of accreditation in various countries,

� Various curriculum models that have been proposed,

� The gap between academic education and professional
knowledge required,

� An overview of software engineering training issues
and academic certificate programs,

� University/industry collaborations in software engi-
neering education,

� Distance learning and web-based education in soft-
ware engineering,

� The role of professional issues in software engineering
education, and

� Information on software engineering education con-
ferences and publications.

HISTORY

In the spring of 1968, Douglas T. Ross taught a ‘‘special
topics’’ graduate course on the topic of software engineering
at the Massachusetts Institute of Technology (1). Ross
claims that it is the first academic course with a title that
used the term ‘‘software engineering’’, James Tomayko, in
his excellent article on the history of software engineering
education (2), agrees that no apparent evidence exists to the
contrary. This was several months before the now-famous
first Conference on Software Engineering sponsored the
North Atlantic Treaty Organization (NATO)!

The idea fostered by that first NATO conference of
applying engineering concepts such as design, reliability,
performance, and maintenance to software was revolution-
ary. As early as 1969, the software community began to
recognize that the graduates of the fledgling computer
science programs in universities were not prepared for
industrial software development. In response, the industry
started to ask for software engineering education rather
than computer science education, including separate
degree programs (3). Sketches of model curricula for soft-
ware engineering programs also began to appear in the
literature (4,5).

Early Software Engineering Courses

The most common form of software engineering education,
even today, is a one-semester survey course, usually with a
toy project built by groups of three students. In the
extended decade between the first appearance of these
courses and the establishment for the first software engi-
neering degree programs, they became the mechanism for
academia to experiment with teaching software engineer-
ing concepts.

Throughout the 1970s, industry continued to struggle to
build larger and more complex software systems, and edu-
cators continued to create and teach the new discipline of
computer science. Recognizing the problem of the diver-
gence of these two communities, in 1976 Peter Freeman of
the University of California, Irvine, and Anthony I. Wasser-
man of the University of California, San Francisco, orga-
nized the first U.S. workshop on software engineering
education. The 40 participants represented academia,
industry, and government, including companies involved
in building large software systems. The workshop focused
on the kind of work a professional software engineer actu-
ally did and on what the academic preparation for such a
profession should be. The proceedings of the workshop (6)
were published and distributed widely, and it still influ-
ences software engineering education today.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



ACM Curriculum 68 and 78 Recommendations

ACM Curriculum 68, the first major undergraduate com-
puter science curriculum modeling effort (7), said little
about learning how to develop complex software, except
through work opportunities (e.g., through summer employ-
ment) or special individual project courses. (The latter
became the basis for the ‘‘senior project’’ courses that are
commonplace today of the undergraduate level, and the
‘‘software studio’’ courses in some graduate curricula.)

Later, ACM Curriculum 78 (8) listed a course in ‘‘soft-
ware design and development’’; however, it was not
required in this undergraduate model. Therefore, although
some growth occurred in software engineering undergrad-
uate education, it remained limited to one or two semesters
for the next 10 years. Meanwhile, software engineering as a
graduate discipline would grow at a faster rate.

First Master’s Degree Programs

Of course, one or two courses do not make a full curriculum.
So, by the late 1970s, a few schools had started Master’s
degree programs in software engineering, primarily
because of the pressure from local industry. To date, most
graduate software engineering degree programs have used
the model of a professional degree such as an MBA. (The
degree title ‘‘Master of Software Engineering,’’ or MSE, will
be used here, although variations of this name are used.) A
professional master’s degree is a terminal degree, with
graduates going into industry rather than academia. In
particular, a software engineering master’s degree has
been a professional degree where the students in the pro-
gram are already programmers or software developers in
the workplace, with either a bachelor’s degree in another
computing discipline, or having completed sufficient under-
graduate leveling to do the graduate coursework.

The first three U.S. MSE-type programs were developed
at Seattle University, Texas Christian University, and the
now-defunct Wang Institute of Graduate Studies in the late
1970s. Texas Christian University, located in Fort Worth,
established a graduate degree program in software engi-
neering in 1978 (9). The original curriculum was influenced
greatly by the 1976 workshop. Because of external pressure
prompted by the absence of an engineering college at the
university, the program name was changed in 1980 to
Master of Software Design and Development, and Texas
Christian later discontinued the program.

In 1977, Seattle University initiated a series of discus-
sions with representatives from local business and industry,
during which software engineering emerged as a critical
area of need for specialized educational programs. Leading
software professionals were invited to assist in the devel-
opment of an MSE program, which was initiated in 1979.

The Wang Institute of Graduate Studies was founded in
1979 by An Wang, founder and chairman of Wang Labora-
tories. It offered an MSE degree beginning in 1978. The
Institute continued to depend heavily on Wang for financial
support, because of the relatively low tuition income from
the small student body (typically 20–30 students per year).
Business declines at Wang Laboratories in the early 1980s
reduced the ability to continue that support, and the
institute closed in the summer of 1987. Its facilities in

Tyngsboro, Massachusetts, were donated to Boston Uni-
versity, and its last few students were permitted to com-
plete their degrees at that school. During its existence, the
Wang program was considered to be the premier program of
its kind.

According to Tomayko (2), by the mid-1980s, these three
programs had similar curricula. The core courses at these
institutions focused on various stages of the life cycle such
as analysis, design, implementation, and testing, whereas
each of the programs had a capstone project course lasting
one or more semesters. These curricula were to have a large
impact not only for future graduate programs, but for
undergraduate curricula as well.

Academic Certificate Programs

Many higher education institutions around the world offer
graduate-level academic certificates in software engineer-
ing. Although such certificate programs are targeted pri-
marily toward those that received their undergraduate
degrees in a non computing field, they differ from training
programs in that they typically consist of several software
engineering courses offered for graduate course credit at
that institution. Typically, such graduate certificate pro-
grams typically the completion of a series of semester-long
courses, constituting some portion of what might be
required for a Bachelor’s degree or Master’s degree pro-
gram. These academic certificate programs should not be
confused with professional certification in software engi-
neering, which will be addressed later in this article.

Development of Undergraduate Degree Programs

Undergraduate degree programs in software engineering
have been slow to develop in most countries. One exception
is the United Kingdom, where the British Computer
Society (BCS) and the Institution of Electrical Engineers
(IEE) have worked together to promote software engineer-
ing as a discipline. One of the oldest undergraduate soft-
ware engineering degree programs in the world is at the
University of Sheffield (10), which started in 1988.

Several Australian universities have also created bache-
lor’s degree programs since the 1990 creation of an under-
graduate program at the University of Melbourne.

The first undergraduate software engineering program
in the United States started at the Rochester Institute of
Technology in the fall of 1996, and now over 30 such
programs exist (11).

Several software engineering undergraduate programs
have been implemented in Canada. The program at
McMaster University is probably the closest to a traditional
engineering program of all those in software engineering,
including requirements for courses in materials, thermo-
dynamics, dynamics, and engineering economics, using a
model outlined by its chair, David Lorge Parnas (12).

SOFTWARE ENGINEERING ACCREDITATION

Usually, accreditation of educational degree programs in a
particular country is performed either by organizations in
conjunction with professional societies or directly by the

2 EDUCATION AND TRAINING IN SOFTWARE ENGINEERING



societies themselves. The mechanisms for software engi-
neering accreditation in several different countries are
provided below. More details are available in Ref. 13.

United States

Accreditation of engineering programs in the United States
is conducted by the Engineering Accreditation Commission
(EAC) of the Accreditation Board of Engineering and Tech-
nology (ABET) and until recently, accreditation of computer
science programs had been conducted by a commission of the
Computer Science Accreditation Board (CSAB).

In the late 1990s, the Institute of Electrical and Elec-
tronics Engineers (IEEE) developed criteria for the
accreditation of software engineering programs by
ABET/EAC (14). ABET and CSAB subsequently merged,
with CSAB reinventing itself as a ‘‘participating society’’
of ABET. (As part of this change, ABET is not considered
an acronym, and the organization bills itself as the accred-
itation body for applied science, computing, engineering,
and technology education.) CSAB has lead responsibility
for the accreditation of software engineering programs by
ABET, which accredited its first programs during the
2002–2003 academic year, and as of October 2006 it has
13 schools accredited.

Canada

Canada had a legal dispute over the use of the term ‘‘engi-
neering’’ by software engineers and in universities (15). The
Association of Professional Engineers and Geoscientists of
Newfoundland (APEGN) and the Canadian Council of Pro-
fessional Engineers (CCPE) filed a Statement of Claim
alleging trademark violation by Memorial University of
Newfoundland (MUN) for using the name ‘‘software engi-
neering’’ for a baccalaureate program. The APEGN and the
CCPE claimed the program was not accreditable as an
engineering program.

Subsequently, the parties came to an agreement: MUN
dropped the use of the title ‘‘software engineering’’ for its
program, APEGN and CCPE discontinued their lawsuit
(with a five-year moratorium placed on new legal action),
and the three organizations agreed to work together to
define the appropriate uses of the term ‘‘software engineer-
ing’’ within Canadian universities (16). As a result of this
action, the Canadian Engineering Accreditation Board
(CEAB) began to develop criteria for accreditation of soft-
ware engineering undergraduate degree programs. CEAB
first accreditations were of three software engineering pro-
grams during the 2000–2001 academic year; nine programs
are accredited as of 2007.

In part because of the five-year moratorium, the
Computer Science Accreditation Council (CSAC), an accred-
iting body for computing programs in Canada sponsored by
the Canadian Information Processing Society (CIPS), also
started accrediting software engineering programs in
2000–2001, and also now has nine accredited schools
(some schools are accredited by both CSAC and CEAB).

McCalla (17) claims that

The difference between the CEAB and CSAC programs is
substantial. The CEAB programs are offered as part of a

standard engineering degree, with students highly constrained
in their options and with the focus heavily on specific software
engineering topics. The CSAC programs are offered as varia-
tions of standard computer science programs, with more flex-
ibility for student choice and with the focus on a wider range of
applied computer science topics than just software engineering.

Despite the end of the five-year moratorium in July
2005, both CEAB and CSAC continue to accredit software
engineering degree programs.

United Kingdom

The BCS and the Institution of Engineering and Technology
(IET) have accredited software engineering programs in the
United Kingdom for several years. As of 2007, 64 schools
with degree courses (programs) that have the words ‘‘soft-
ware engineering’’ in their titles are accredited by BCS,
according to their website at www.bcs.org.

Japan

In 2000, the Japan Board for Engineering Education
(JABEE) applied a trial software engineering accreditation
program (18). The Osaka Institute of Technology (OIT) was
chosen for this trial, and was visited by a JABEE examina-
tion team in December 2000. The criteria used for examin-
ing the OIT program included the J97 curriculum model for
Japanese computer science and software engineering pro-
grams and the IEEE-ACM Education Task Force recom-
mended accreditation guidelines (both are discussed in the
‘‘Curriculum Models’’ section below).

Australia

The Institution of Engineers, Australia (IEAust) has been
accrediting software engineering programs since 1993. A
discussion of the IEAust accreditation process, and how the
University of Melbourne developed an undergraduate soft-
ware engineering degree program that was accredited in
1996, in described in Ref. 19.

CURRICULUM MODELS

Curriculum Development Issues

Below are some primary issues frequently addressed when
developing or evaluating a software engineering curricu-
lum model.

� Software engineering content

� Computer science content

� The role of calculus, laboratory sciences, and engineer-
ing sciences

� Application domain-specific topics

� Capstone experience

� Flexibility

The curriculum models below include some of the ear-
liest, the most recent, and the most widely distributed in
the field of software engineering.

EDUCATION AND TRAINING IN SOFTWARE ENGINEERING 3



Software Engineering Institute MSE Model

The mission of the Software Engineering Institute (SEI) at
Carnegie Mellon University, in Pittsburgh, Pennsylvania
is to provide leadership in advancing the state of the
practice of software engineering to improve the quality of
systems that depend on software. Recognizing the impor-
tance of education in the preparation of software profes-
sionals, the institute’s charter required it to ‘‘influence
software engineering curricula throughout the education
community.’’ Thus, the SEI Education Program began in
1985, only one year after the Institute’s founding. This
program emerged at the right time to play a key role in
the development of software engineering education in the
United States. The program was organized with a perma-
nent staff of educators along with a rotating set of visiting
professors.

Under the direction of Norman Gibbs (1985–1990) and
Nancy Mead (1991–1994), the SEI Education Program
accomplished a wide variety of tasks, including developing
a detailed Graduate Curriculum Model, several curriculum
modules on various topics, an outline of a undergraduate
curriculum model; compiling a list of U.S. graduate soft-
ware engineering degree programs; creating a directory of
software engineering courses offered in U.S. institutions;
developing educational videotape series for both academia
and industry; and creating and initial sponsoring of the
Conference on Software Engineering Education. Although
the Education Program was phased out at SEI in 1994, its
work is still influential today.

With regard to curriculum models, the SEI concen-
trated initially on master’s level programs for two reasons.
First, it is substantially easier within a university to
develop and initiate a one-year master’s program than a
four-year bachelor’s program. Second, the primary client
population at the time was software professionals, nearly
all of whom already have a bachelor’s degree in some
discipline. In 1987, 1989, and 1991, the SEI published
model curricula for university MSE programs (described
below) (20–22).

Because the goal of an MSE degree program is to produce
a software engineer who can assume rapidly a position of
substantial responsibility within an organization, SEI pro-
posed a curriculum designed to give the student a body of
knowledge that includes balanced coverage of the software
engineering process activities, their aspects, and the pro-
ducts produced, along with sufficient experience to bridge
the gap between undergraduate programming and profes-
sional software engineering. Basically, the program was
broken into four parts: undergraduate prerequisites, core
curriculum, the project experience component, and elec-
tives. The minimal undergraduate prerequisites were dis-
crete mathematics, programming, data structures,
assembly language, algorithm analysis, communication
skills, and some calculus. Laboratory sciences were not
required. The six core curriculum courses were:

Specification of Software Systems

Software Verification and Validation

Software Generation and Maintenance

Principles and Applications of Software Design

Software Systems Engineering

Software Project Management

The topics and content of these courses were in many
ways an outgrowth of the common courses identified in the
first MSE programs. These courses would likely be taken in
the first year of a two-year MSE sequence. The bulk of the
report consists of detailed syllabi and lecture suggestions
for these six courses.

The project experience component took the form of the
capstone project, and might require different prerequisites
according to the project. The electives could be additional
software engineering subjects, related computer science
topics, system engineering courses, application domain
courses, or engineering management topics.

Although the final version of the SEI model for an MSE
was released almost 15 years ago, it remains today the most
influential software engineering curriculum model for
Master’s degree programs.

BCS/IEE Undergraduate Model

As stated previously, the BCS and the IET have cooperated
for many years in the development and accreditation of
software engineering degree programs, dating back to the
IEE, one of the two societies that merged to form the IET.
Therefore, it is not surprising that the first major effort to
develop a curriculum model for the discipline was a joint
effort by these two societies (23).

The curriculum content defined in the report was ‘‘delib-
erately designed to be non-prescriptive and to encourage
variety’’ (p. 27). Three types of skills are defined: central
software engineering skills, supporting fundamental skills
(technical communication, discrete math, and various com-
puter science areas), and advanced skills.

At the end of the section on curriculum content, the
authors state ‘‘the topics alone do not define a curriculum,
since it is also necessary to define the depth to which they
may be taught. The same topic may be taught in different
disciplines with a different target result. . .’’ (p. 31). This
reinforces the comments concerning the variety and non
prescriptive nature of the recommendations at the begin-
ning of that section.

It is interesting to note that the curriculum content does
not include a need for skills in areas traditionally taught to
engineers (e.g., calculus, differential equations, chemistry,
physics, and most engineering sciences). It is remarkable
that the computer scientists and electrical engineers on
the working party that produced this report were able to
agree on a curriculum that focused primarily on engineer-
ing process and computer science skills, and did not tie itself
to traditional engineering courses.

SEI Undergraduate Model

In making undergraduate curriculum recommendations,
Gary Ford (24) of SEI wanted a curriculum that would be
compatible with the general requirements for ABET and
CSAB and the core computing curriculum in the IEEE-CS/
ACM Curricula 91 (which was then in draft form). Also,
although he was complimentary of the BCS/IEE recom-
mendations, Ford was more precise in defining his model

4 EDUCATION AND TRAINING IN SOFTWARE ENGINEERING



curriculum. The breakdown (for a standard 120 semester
hour curriculum) was as follows:

Mathematics and Basic Sciences 27 semester hours

Software Engineering Sciences
and Design 45 semester hours

Humanities and Social Sciences 30 semester hours

Electives 18 semester hours

The humanities & social sciences and electives were
included to allow for maximum flexibility in implementing
the curriculum. Mathematics and basic sciences consisted
of two semesters of both discrete mathematics and calculus,
and one semester of probability and statistics, numerical
methods, physics, chemistry, and biology.

In designing the software engineering science and
design component, Ford argues that the engineering
sciences for software are primarily computer science,
rather than sciences such as statics and thermodynamics
(although for particular application domains, such knowl-
edge may be useful). Four different software engineering
areas are defined: software analysis, software architec-
tures, computer systems, and software process.

Ford goes on to define 14 courses (totaling 42 semester
hours; one elective is allowed), with 3 or 4 courses in each of
these four areas, and places them (as well as the other
aspects of the curriculum) in the context of a standard four-
year curriculum. The four software process courses were
placed in the last two years of the program, which allowed
for the possibility of a senior project-type experience.

Thus, several similarities existed between the BCS/IEE
and SEI recommended undergraduate models: they
focused on similar software engineering skills, did not
require standard engineering sciences, and (interestingly)
did not require a capstone experience.

IEEE-ACM Education Task Force

The Education Task Force of an IEEE-ACM Joint Steering
Committee for the Establishment of Software Engineering
developed some recommended accreditation criteria for
undergraduate programs in software engineering (25).
Although no accreditation board has yet adopted these
precise guidelines, it has influenced several accreditation
and curriculum initiatives.

According to their accreditation guidelines, four
areas exist (software engineering, computer science,
and engineering, supporting areas suchc technical
communication and mathematics, and advanced work
in one or more area) that are each about three-sixteenths
of the curriculum, which amounts to 21–24 semester
hours for each area in a 120-hour degree plan. (The
remaining hours were left open, to be used by, for
instance, general education requirements in the United
States). As in the SEI graduate guidelines, a capstone
project is addressed explicitly.

Guidelines for Software Engineering Education

This project was created by a team within the Working
Group for Software Engineering Education and Training

(WGSEET). The Working Group was a ‘‘think tank’’ of
about 30 members of the software engineering and training
communities, who come together twice a year to work on
major projects related to the discipline. WGSEET was
established in 1995 in part to fill a void left by the demise
of the SEI Education Program.

At the November 1997 Working Group meeting, work
began on what was originally called the ‘‘Guidelines for
Software Education.’’ A major difference in goals of the
Guidelines with the previously discussed projects is that
the latter developed computer science, computer engineer-
ing, and information systems curricula with software engi-
neering concentrations in addition to making recomm-
endations for an undergraduate software engineering
curriculum. (This article will focus only on the software
engineering model.)

Here are the recommended number of hours and courses
for each topic area in the software engineering model, from
Ref. 26.

Software Engineering – Required (24 of 120 Semester
Hours)

Software Engineering Seminar (One hour course for
first-semester students)

Introduction to Software Engineering

Formal Methods

Software Quality

Software Analysis and Design I and II

Professional Ethics

Senior Design Project (capstone experience)

Computer Science – Required (21 Semester Hours)

Introduction to Computer Science for Software Engi-
neers 1 and 2

(Similar to first year computer science, but oriented to
software engineering)

Data Structures and Algorithms

Computer Organization

Programming Languages

Software Systems 1 and 2

(Covers operating systems, databases, and other appli-
cation areas)

Computer Science / Software Engineering – Electives (9
Semester Hours)

Various topics

Lab Sciences (12 Semester Hours)

Chemistry 1

Physics 1 and 2

EDUCATION AND TRAINING IN SOFTWARE ENGINEERING 5



Engineering Sciences (9 Semester Hours)

Engineering Economics

Engineering Science 1 and 2

(Provides an overview of the major engineering sciences)

Mathematics (24 Semester Hours)

Discrete Mathematics

Calculus 1, 2 and 3

Probability and Statistics

Linear Algebra

Differential Equations

Communication/Humanities/Social Sciences (18 Semester
Hours)

Communications 1 and 2 (first year writing courses)

Technical Writing

Humanities/Social Sciences electives

Open Electives (3 Semester Hours)

Any course

This model is intended to be consistent with the IEEE-ACM
Education Task Force recommendations and criteria for all
engineering programs accredited by ABET. The nine hours
of engineering sciences is less than for traditional engineer-
ing disciplines and that contained in the McMaster
University degree program, but more than that is required
in the other software engineering curriculum models.

Not much flexibility exists in this model, because only
one technical elective outside of Computer Science/Soft-
ware Engineering can be taken (using the open elective).
However, note that the model is for a minimal number of
semester hours (120), so additional hours could provide
that flexibility.

Information Processing Society of Japan (IPSJ)

IPSJ has developed a core curriculum model for computer
science and software engineering degree programs com-
monly called J97 (18). Unlike the other curriculum models
discussed above, J97 defines a common core curriculum for
every undergraduate computer science and software engi-
neering program. This core curriculum includes the follow-
ing learning units:

Computer Literacy Courses

Computer Science Fundamentals

Programming Fundamentals

Mathematics Courses

Discrete Mathematics

Computing Algorithms

Probability and Information Theory

Basic Logic

Computing Courses

Digital Logic

Formal Languages and Automata Theory

Data Structures

Computer Architecture

Programming Languages

Operating Systems

Compilers

Databases

Software Engineering

The Human-Computer Interface

Note that, unlike most computing curriculum models,
basic programming skills are considered part of basic
computer literacy, whereas algorithm analysis (comput-
ing algorithms) is treated as part of the mathematics
component. The units listed above provide for a broad
background in computer science as well as an education
in basic computer engineering and software engineering
fundamentals.

Computing Curricula – Software Engineering

Over the years, the ACM/IEEE-CS joint Education Task
Force went through several changes, eventually aligning
itself with similar projects being jointly pursued by the two
societies. The Software Engineering 2004 (SE 2004) project
(as it was eventually named) was created to provide
detailed undergraduate software engineering curriculum
guidelines which could serve as a model for higher educa-
tion institutions across the world. The result of this project
was an extensive and comprehensive document which has
indeed become the leading model for software engineering
undergraduate curricula (27). SE 2004 was defined using
the following principles:

1. Computing is a broad field that extends well beyond
the boundaries of any one computing discipline.

2. Software Engineering draws its foundations from a
wide variety of disciplines.

3. The rapid evolution and the professional nature of
software engineering require an ongoing review of
the corresponding curriculum. The professional asso-
ciations in this discipline.

4. Development of a software engineering curriculum
must be sensitive to changes in technologies, prac-
tices, and applications, new developments in peda-
gogy, and the importance of lifelong learning. In a
field that evolves as rapidly as software engineering,
educational institutions must adopt explicit strate-
gies for responding to change.

5. SE 2004 must go beyond knowledge elements to offer
significant guidance in terms of individual curricu-
lum components.

6 EDUCATION AND TRAINING IN SOFTWARE ENGINEERING



6. SE 2004 must support the identification of the
fundamental skills and knowledge that all software
engineering graduates must possess.

7. Guidance on software engineering curricula must be
based on an appropriate definition of software engi-
neering knowledge.

8. SE 2004 must strive to be international in scope.

9. The development of SE2004 must be broadly based.

10. SE 2004 must include exposure to aspects of profes-
sional practice as an integral component of the
undergraduate curriculum.

11. SE 2004 must include discussions of strategies and
tactics for implementation, along with high-level
recommendations.

The SE 2004 document also defines student outcomes;
that is, what is expected of graduates of a software
engineering program using the curriculum guidelines con-
tained within:

1. Show mastery of the software engineering knowledge
and skills, and professional issues necessary to begin
practice as a software engineer.

2. Work as an individual and as part of a team to develop
and deliver quality software artifacts.

3. Reconcile conflicting project objectives, finding accep-
table compromises within limitations of cost, time,
knowledge, existing systems, and organizations.

4. Design appropriate solutions in one or more applica-
tion domains using software engineering approaches
that integrate ethical, social, legal, and economic
concerns.

5. Demonstrate an understanding of and apply current
theories, models, and techniques that provide a basis
for problem identification and analysis, software
design, development, implementation, verification,
and documentation.

6. Demonstrate an understanding and appreciation for
the importance of negotiation, effective work habits,
leadership, and good communication with stake-
holders in a typical software development environ-
ment.

7. Learn new models, techniques, and technologies as
they emerge and appreciate the necessity of such
continuing professional development.

The next step was to define Software Engineering Edu-
cation Knowledge (SEEK), a collection of topics considered
important in the education of software engineering stu-
dents. SEEK was created and reviewed by volunteers in the
software engineering education community. The SEEK
body is a three-level hierarchy, initially divided into knowl-
edge areas (KAs) as follows:

Computing essentials

Mathematical and engineering fundamentals

Professional practice

Software modeling and analysis

Software design

Software verification & validation

Software evolution

Software process

Software quality

Software management

Those KAs are then divided even more into units, and
finally, those units are divided into topics. For example,
DES.con.7 is a specific topic (Design Tradeoffs) in the
Design Concepts unit of the Software Design knowledge
area. Each topic in SEEK is also categorized for its impor-
tance: Essential, Desired, or Optional.

The SE 2004 document also contains recommendations
for possible curricula and courses, tailored towards models
for specific countries and specific kinds of institutions of
higher-level education. Software engineering topics con-
sisted of at least 20% of the overall curriculum in each case.
Most of the models recommended for use in the United
States included some type of introduction to software engi-
neering during the first two years of study, followed by six
SE courses, with a capstone project occurring throughout
the fourth and final (senior) year of study.

THE GAP BETWEEN EDUCATION AND INDUSTRY

Tim Lethbridge of the University of Ottawa has done a
considerable amount of work in attempting to determine
what industry thinks is important knowledge for a software
professional to receive through academic and other educa-
tional venues through a series of surveys (28). The results of
these surveys show that a wide gap still exists between
what is taught in education versus what is needed in
industry. For instance, among the topics required of profes-
sionals that had to be learned on the job include negotiation
skills, human-computer interaction methods, real-time
system design methods, management and leadership skills,
cost estimation methods, software metrics, software relia-
bility and fault tolerance, ethics and professionalism prac-
tice guidelines, and requirements gathering and analysis
skills. Among the topics taught in most educational pro-
grams but not considered important to industry included
digital logic, analog systems, formal languages, automata
theory, linear algebra, physics and chemistry. Industry and
academia agreed that a few things were important,
including data structures, algorithm design, and operating
systems.

The survey results also demonstrate that it is essential
for industry and academia to work together to create future
software engineering curricula, for both groups to use their
resources more wisely and effectively in the development of
software professionals in the future.

Another excellent article outlining the industrial view
was by Tockey (29). Besides stressing the need for software
practitioners to be well-versed in computer science and
discrete mathematics, he identified software engineering
economics as an important ‘‘missing link’’ that current
software professionals do not have when entering the work-
force.

EDUCATION AND TRAINING IN SOFTWARE ENGINEERING 7



TRACKING SOFTWARE ENGINEERING DEGREE
PROGRAMS

Over the years, several surveys have been attempted to
determine what software engineering programs exist in a
particular country or for a particular type of degree. By
1994, 25 graduate MSE-type programs existed in the
United States, and 20 other programs with software
engineering options were in their graduate catalogs,
according to an SEI survey (30) that was revised slightly
for final release in early 1996.

Thompson and Edwards’ excellent article on software
engineering education in the United Kingdom (31) provides
an excellent list of 43 Bachelor’s degree and 11 Master’s
programs in software engineering in the UK.

Doug Grant (32) of the Swinburne University of
Technology reported that Bachelor’s degree programs
insoftware engineering were offered by at least 9 of
Australia’s 39 universities, with more being planned.

In June 2002, Fred Otto of CCPE provided the author
with a list of 10 Canadian schools with undergraduate
software engineering degree programs.

Bagert has in recent years published a list of 32 under-
graduate (11) and 43 Master’s level (33) SE programs in the
United States, along with some information concerning
those programs.

Currently, few doctoral programs in software engineer-
ing exist. In the late 1990s, the first Doctor of Philosophy
(Ph.D.) programs in software engineering in the United
States were approved at the Naval Postgraduate School
(34) and at the Carnegie Mellon University (35). Also, in
1999, Auburn University changed its doctoral degree in
Computer Science to ‘‘Computer Science and Software
Engineering.’’

INDUSTRY/UNIVERSITY COLLABORATIONS

Collaborations between industry and higher education are
common in engineering disciplines, where companies can
give students experience with real-world problems through
project courses. However, formal collaborations between
university and industry have become more frequent in the
last decade. Beckman et al. (36) discussed the benefits to
industry and academia of such collaborations:

� Benefits to industry:

�Cost-effective, customized education and training
�Influence on academic programs
�Access to university software engineering research
�New revenue sources

� Benefits to academia:

�Placement of students
�Insight into corporate issues at the applied, practical
level
�Research and continuing education opportunities for
faculty
�Special funding from a corporate partner to the coop-
erating university

This paper also provided details on three successful
formal university/industry partnerships in software
engineering. Through evaluation of these and other
evaluations, Beckman et al. (36), developed a model for a
successful collaboration which included:

� Formation by the university of an advisory board made
up of representatives of its industrial partners.

� A clear definition of the goals and expectations of the
collaboration.

� Developing and executing a multiphase process for the
collaboration project.

� Defining, measuring, and evaluating effectively
metrics for project success.

WGSEET has documented several innovative formal
industry-university collaborations in software engineering
over the years; (37) Ref. 37 is the seventh and latest edition
of their directory of such collaborations, providing details of
23 such formal partnerships, including the three described
above. The initial results of an even more recent survey by
this group can be found in Ref. 38.

TRAINING IN SOFTWARE ENGINEERING

To this point, this discussion has concentrated on academic
education, as opposed to education within industry
(training). The term software engineering education and
training is used commonly to encompass both academic
education and industrial training issues.

Starting over 20 years ago, several large companies
involved in software development began to embrace the
concept of software engineering. Faced with both a software
development workforce mostly untrained in software
engineering skills and paucity of academic coursework in
software engineering available, many companies began
developing an array of in-house courses to meet the
need. Among the first of these companies was the IBM
Software Engineering Education Program, which was
started in the late 1970s. This program was influenced
greatly by software engineering pioneer Harlan Mills,
who worked for IBM from 1964 to 1987.

Also among the oldest software engineering training
programs is that of the Texas Instruments Defense Sys-
tems and Electronics Group (DSEG), which is now part of
Raytheon. Moore and Purvis (39) discussed the DSEG
software training curriculum as it existed then. First, those
engineers assigned to develop software would take a three-
day ‘‘Software Engineering Workshop’’ for engineers,
which would introduce the workers to DSEG software
practices and standards, as well as DoD life cycle require-
ments. This workshop could be followed with courses such
as software quality assurance, software configuration man-
agement, introduction to real-time systems, structured
analysis, software design, software testing and software
management.

Motorola is another example of a company that has
invested considerably in the software engineering training

8 EDUCATION AND TRAINING IN SOFTWARE ENGINEERING



of its employees. Sanders and Smith (40) estimated that its
software engineering population at the time required
160,000 person-hours of training per year, which it pro-
vided both through its own Motorola University, as well as
through collaborations with various universities (such as
the one with Florida Atlantic University discussed in the
previous section).

Over the years, several companies have offered a wide
variety of software engineering training courses to both
companies and individuals . Construx Software lists on its
web page (41) a wide variety of training seminars. In
addition, Construx has a significant professional develop-
ment program for its own employees, employing readings,
classes, discussion groups, mentoring, and so on.

Typically software engineering training courses offered
by companies are of length anywhere from a half-day course
associated with a meeting such as the International Con-
ference on Software Engineering to a one or two-week
stand-alone course. Generally, such courses cost
$500–1000 U.S. per day for each registrant.

Software process improvement training has increased
significantly over the past 10 years. For instance, several of
companies offer training services to corporations that want
their software divisions to obtain ISO 9000 registration or a
certain level of the Capability Maturity Model Integration
(registered in the U.S. Patent and Trademark office). In
addition, also many training courses exist in both the
Personal Software Process and the related Team Software
Process (e.g., Ref. 42 ) (Personal Software Process and Team
Software Process are service marks of Cargegie Mellon
University, Pittsburgh, PA).

DISTANCE LEARNING AND WEB-BASED EDUCATION

Both software engineering academic and training courses
have been available through various distance means over
the years. A early example was the Software Engineering
Institute’s Video Dissemination Project begun the early
1990s, which provided two series of courses: one to support
academic instruction and the other to continue education.

With the advent of the Internet and advanced
multimedia technology, software engineering distance edu-
cation has increased significantly. Synchronous and asyn-
chronous distance education and training in software
engineering allows for increased schedule flexibility for
the participant, and it also helps to satisfy the demand
for such courses despite the limited number of instructors
available.

Carnegie Mellon offers its entire MSE degree online
through the use various media. The first group of Carnegie
Mellon students to graduate with an MSE without ever
setting foot on campus was in August 2000 (43).

A survey of Master’s level software engineering pro-
grams in the United States by Bagert and Mu (33) found
that of the 43 schools that had ‘‘software engineering’’ as the
name of the Master’s degree, 24 schools deliver the pro-
grams only face-to-face, three only online, and 16 schools
provide for both or have a curriculum that has both face-to-
face and online courses.

THE ROLE OF PROFESSIONAL ISSUES

As software engineering has begun to evolve as a distinct
discipline, various efforts have been related to profes-
sional issues in software engineering, including accred-
itation of degree programs, the identification of the
software engineering body of knowledge, the licensing
and certification of software engineers, and the develop-
ment of a code of ethics and professional practices for
software engineering. The software engineering educa-
tion and training community, recognizing the impact of
professional issues on their curricula, has begun to
address such matters in education and training confer-
ences and publications.

SOFTWARE ENGINEERING EDUCATION CONFERENCES
AND PUBLICATIONS

Since 1987, the Conference on Software Engineering Edu-
cation (CSEE&T) has become tremendously influential to
the software engineering education and training commu-
nity worldwide. Originally created and run by the SEI, the
conference has in recent years been sponsored by the IEEE
Computer Society. As the conference evolved, it grew to
include training (hence the name change) and professional
issues, and for a time was colocated with the ACM SIGCSE
(Special Interest Group on Computer Science Education)
Symposium on Computer Science Education, giving edu-
cators in computer science and software engineering an
opportunity to meet together and discuss issues of common
concern. Today, CSEE&T remains the world’s premiere
conference dedicated to software engineering education,
training, and professional issues.

FASE (Forum for Advancing Software engineering Edu-
cation) was started in 1991 by members of the software
engineering education community to have an electronic
forum for the dissemination and discussion of events
related to software engineering education. The original
acronym for FASE was Forum for Academic Software
Engineering, but it was subsequently changed so that it
was more inclusive to industrial and government training
issues. In the last few years, FASE has also covered a wide
variety of professional issues. During the last few years,
FASE has limited its coverage mostly to announcements of
upcoming events and faculty openings. An archive of all
issues through February 2004 is available at http://cstl-
csm.semo.edu/dbagert/fase.

Although currently no refereed journals are devoted
exclusively to software engineering education, several pub-
lications have devoted special issues to the subject over the
years, including IEEE Software, IEEE Transactions on
Software Engineering, Journal of Systems and Software,
Information and Software Technology, and Computer
Science Education.

CONCLUSIONS AND FUTURE DIRECTIONS

Only a few years ago, the number of software engineer-
ing degree programs were consistently increasing, giving
great hope for the future. However, the rate of increase

EDUCATION AND TRAINING IN SOFTWARE ENGINEERING 9



of such programs has slowed [e.g., its status in the
United States was discussed by Bagert and Chenoweth
(11)]. A unique opportunity in software engineering
education is before the computing and engineering dis-
ciplines, one that has the potential to open both to
tremendous possibilities. However, this can be done
only by a joint effort of the computing and engineering
communities, just as BCS and IEE did in the United
Kingdom almost 20 years ago. In other countries, the
results of such attempted collaborations in other coun-
tries have been at best mixed.

Industrial education, both through training courses and
from collaborations with academic institutions, will con-
tinue to expand as the demand for software engineers also
continues to increase. This requires the continuing educa-
tion of software professionals as well as the retraining of
workers with backgrounds from related disciplines. The
need for more collaboration between industry/university is
especially important in the face of surveys that demon-
strate a distinct gap between academic educational
outcomes and the industrial knowledge required for
software professionals.

It is likely that distance education will be impacting all
academic and professional disciplines in the near future. In
addition, distance learning will be especially important for
the software engineering community as long as instructor
shortages remain.

Finally, perhaps the most critical step required for the
future of software engineering education and training is
the need for a true internationalization of major initia-
tives. Many projects discussed in this article were success-
ful efforts that were developed within a single country.
The SE 2004 project was notable in part for the fact that it
went to great lengths to be a document truly international
in development and scope. Not enough communication of
the successes of a particular country to the international
community exists; for instance, the accomplishments of
BCS and IEE regarding software engineering education in
the United Kingdom over past dozen years is largely
unknown in the United States even today. The challenge
is to use the Internet, the World Wide Web, and other
technological innovations (which were, after all, devel-
oped in large part by software professionals!) to advance
the discipline itself even more by creating an effective and
truly global software engineering education and training
community.

ACKNOWLEDGMENTS

This article builds on the excellent ‘‘Education and Curri-
cula in Software Engineering’’ by Gary A. Ford and James
E. Tomayko, which appeared in the first edition (1994) of
the Encyclopedia of Software Engineering, also published
by John Wiley and Sons.

BIBLIOGRAPHY

1. D. T. Ross, The NATO conferences from the perspective of an
active software engineer, Annals Hist. Comput., 11(2): 133–
141, 1989.

2. J. E. Tomayko, Forging a discipline: an outline history of
software engineering education, Annals Soft. Engineer. 6: 3–
18, 1998.

3. F. F. Kuo, Let’s make our best people into software engineers
and not computer scientists, Computer Decisions1(2): 94, 1969.

4. R. E. Fairley, Toward model curricula in software engineering,
SIGCSE Bulletin, 10(3): 77–79, 1978.

5. R. W. Jensen and C. C. Tonies, Software Engineering,
Englewood Cliffs, NJ: Prentice Hall, 1979.

6. A. I. Wasserman and P. Freeman, eds., Software Engineering
Education: Needs and Objectives, New York: Springer-Verlag,
1976.

7. ACM Curriculum Committee on Computer Science, Curricu-
lum 68: Recommendations for the undergraduate program in
computer science, Communicat. ACM, 11(3): 151–197, 1968.

8. ACM Curriculum Committee on Computer Science, Curricu-
lum 78: Recommendations for the undergraduate program in
computer science, Communicat. ACM, 22(3): 147–166, 1979.

9. J. R. Comer and D. J. Rodjak, Adapting to changing needs: a
new perspective on software engineering education at Texas
Christian University, in N. E. Gibbs and R. E. Fairley, eds.,
Software Engineering Education: The Educational Needs of the
Software Community, New York: Springer-Verlag, 1987, pp.
149–171.

10. A. J. Cowling, The first decade of an undergraduate degree
programme in software engineering, Annals Software Engi-
neer., 6: 61–90, 1999.

11. D. J. Bagert and S. V. Chenoweth, Future growth of software
engineering baccalaureate programs in the United States,
Proc. of the ASEE Annual Conference, Portland, Oregon,
2005, CD-ROM, 8 pp.

12. D. L. Parnas, Software engineering programmes are not com-
puter science programmes, Annals Soft. Enginee.6: 19–37,
1998.

13. D. J. Bagert and N. R. Mead, Software engineering as a
professional discipline, Comp. Sci. Educ., 11(1): 2001 73–87,
2001.

14. G. Gillespie, ABET asks the IEEE to look at software engineer-
ing accreditation, IEEE—The Institute 21 (7): 1, 1997.

15. D. K. Peters, Update on lawsuit about use of the term ’Software
Engineering’, Forum for Advancing Software engineering Edu-
cation (FASE), 9(3): 1999.

16. Association of Universities and Colleges of Canada and Council
of Professional Engineers, Software Engineering Lawsuit Dis-
continued, communiqué reprinted under the heading ‘‘Cana-
dian Lawsuit Discontinued’’ in Forum for Advancing Software
engineering Education (FASE), 9(10): 1999.

17. G. McCalla, Canadian news and views, Comput. Res. News,
16(4): 2004.

18. Y. Matsumoto, Y. Akiyama, O. Dairiki, and T. Tamai, A case of
software engineering accreditation, Proc. of the 14th Conference
on Software Engineering Education and Training, Charlotte,
NC, 2001, pp. 201–209.

19. P. Dart, L. Johnston, C. Schmidt, and L. Sonenberg, Develop-
ing an accredited software engineering program, IEEE Soft-
ware, 14(6): 66–71, 1997.

20. G. A. Ford, N. E. Gibbs, and J. E. Tomayko, Software Engineer-
ing Education: An Interim Report from the Software Engineer-
ing Institute, CMU/SEI-TR-87-109, Pittsburgh, PA: Carnegie
Mellon University, 1987.

21. M. A. Ardis and G. A. Ford, 1989 SEI Report on Graduate
Software Engineering Education, CMU/SEI-89-TR-2, Pitts-
burgh, PA: Carnegie Mellon University, 1989.

10 EDUCATION AND TRAINING IN SOFTWARE ENGINEERING



22. G. A. Ford, 1991 SEI Report on Graduate Software Engineering
Education, CMU/SEI-91-TR-2, Pittsburgh, PA: Carnegie Mel-
lon University, 1991.

23. British Computer Society and The Institution of Electrical
Engineers, A Report on Undergraduate Curricula for Software
Engineering, Institution of Electrical Engineers, 1989.

24. G. A. Ford, 1990 SEl Report on Undergraduate Software
Engineering Education, CMU/SEI-90-TR-3, Pittsburgh, PA:
Carnegie Mellon University, 1990.

25. G. L. Engel, Program criteria For software engineering accred-
itation programs, IEEE Software, 16(6): 31–34, 1999.

26. D. J. Bagert, T. B. Hilburn, G. Hislop, M. Lutz, M. McCracken,
and S. Mengel, Guidelines for Software Engineering Education
Version 1.0. CMU/SEI-99-TR-032, Pittsburgh, PA: Carnegie
Mellon University, 1999.

27. Joint Task Force on Computing Curricula, Software Engineer-
ing 2004, Piscataway, NJ: IEEE Computer Society and the
Association for Computing Machinery.

28. T. Lethbridge, What knowledge is important to a software
professional?, IEEE Computer, 33(5): 44–50, 2000.

29. S. Tockey, A missing link in software engineering, IEEE Soft-
ware, 14(6): 31–36, 1997.

30. G. A. Ford, A Progress Report on Undergraduate Software
Engineering Education, CMU/SEI-94-TR-11, Pittsburgh,
PA: Carnegie Mellon University, 1994.

31. J. B. Thompson and H. M. Edwards, Software engineering in
the UK 2001, Forum for Advancing Software engineering
Education (FASE), 11(11): 2001.

32. D. Grant, Undergraduate software engineering degrees in
Australia, Proc. of the 13th Conference on Software Engineering
Education and Training, Austin, Te, 2000, pp. 308–309.

33. D. J. Bagert and X. Mu, Current state of software engineering
Master’s X. degree programs in the United States, Proc. of the
Frontiers in Education Conference, Indianapolis, Indiana,
2005, F1G1–F1G6.

34. Luqi, Naval Postgraduate School Offers First USA PhD in
Software Engineering, Forum for Advancing Software engi-
neering Education (FASE), 9(7): 1999.

35. D. Garlan, P. Koopman, W. Scherlis, and M. Shaw, PhD in
Software Engineering: A New Degree Program at Carnegie

Mellon University, Forum for Advancing Software engineering
Education (FASE), 10(2): 2000.

36. K. Beckman, N. Coulter, S. Khajenoori and N. Mead, Industry/
university collaborations: closing the gap between industry
and academia, IEEE Software, 14(6): 49–57, 1997.

37. K. Beckman, Directory of Industry and University Collabora-
tions with a Focus on Software Engineering Education and
Training, Version 7, CMU/SEI-99-SR-001, Pittsburgh, PA:

Carnegie Mellon University, 1999.

38. S. Ellis, N. R. Mead and D. Ramsey, Summary of the initial
results of the university/industry survey performed by the
university/industry subgroup of the working group on software
engineering education and training, Forum for Advancing
Software Engineering Education (FASE), 11(1): 2001.

39. F. L. Moore and P. R. Purvis, Meeting the training needs of
practicing software engineers at Texas Instruments, Proc. of
the Second Conference on Software Engineering Education,
Fairfax, VA, 1988, pp. 32–44.

40. G. Sanders and G. Smith, Establishing Motorola-university
relationships: a software engineering training perspective,
Proc. of the Fourth Conference on Software Engineering Edu-
cation, Pittsburgh, PA, 1990, pp. 2–12.

41. Construx Software Construx Public Seminars. [Online]. Con-
strux Software, Bellvue, Washington. 2001. Available: http://
www.construx.com/Page.aspx?nid=12.

42. T. Hilburn, Personal Software ProcessSM and Team Software
ProcessSM 2001 summer faculty workshops, Forum for Advan-
cing Software Engineering Education (FASE), 11(3): 2001.

43. J. E. Tomayko, Master of Software Engineering, Carnegie
Mellon University, Forum for Advancing Software engineering
Education (FASE), 10: 2000.

DONALD J. BAGERT

Southeast Missouri State
University

Cape Girardeau, Missouri

EDUCATION AND TRAINING IN SOFTWARE ENGINEERING 11



E

ETHICS AND PROFESSIONAL RESPONSIBILITY
IN COMPUTING

INTRODUCTION

Computing professionals perform a variety of tasks: They
write specifications for new computer systems, they design
instruction pipelines for superscalar processors, they diag-
nose timing anomalies in embedded systems, they test and
validate software systems, they restructure the back-end
databases of inventory systems, they analyze packet traffic
in local area networks, and they recommend security poli-
cies for medical information systems. Computing profes-
sionals are obligated to perform these tasks conscientiously
because their decisions affect the performance and func-
tionality of computer systems, which in turn affect the
welfare of the systems’ users directly and that of other
people less directly. For example, the software that controls
the automatic transmission of an automobile should mini-
mize gasoline consumption and, more important, ensure
the safety of the driver, any passengers, other drivers, and
pedestrians.

The obligations of computing professionals are similar to
the obligations of other technical professionals, such as civil
engineers. Taken together, these professional obligations
are called professional ethics. Ethical obligations have been
studied by philosophers and have been articulated by reli-
gious leaders for many years. Within the discipline of
philosophy, ethics encompasses the study of the actions
that a responsible individual should choose, the values that
an honorable individual should espouse, and the character
that a virtuous individual should have. For example, every-
one should be honest, fair, kind, civil, respectful, and
trustworthy. Besides these general obligations that every-
one shares, professionals have additional obligations that
originate from the responsibilities of their professional
work and their relationships with clients, employers, other
professionals, and the public.

The ethical obligations of computing professionals go
beyond complying with laws or regulations; laws often lag
behind advances in technology. For example, before the
passage of the Electronic Communications Privacy Act of
1986 in the United States, government officials did not
require a search warrant to collect personal information
transmitted over computer communication networks.
Nevertheless, even in the absence of a privacy law before
1986, computing professionals should have been aware of
the obligation to protect the privacy of personal informa-
tion.

WHAT IS A PROFESSION?

Computing professionals include hardware designers, soft-
ware engineers, database administrators, system analysts,
and computer scientists. In what ways do these occupations

resemble recognized professions such as medicine, law,
engineering, counseling, and accounting? In what ways
do computing professions resemble occupations that are
not thought of traditionally as professions, such as plum-
bers, fashion models, and sales clerks?

Professions that exhibit certain characteristics are
called strongty differentiated professions (1). These profes-
sions include physicians and lawyers, who have special
rights and responsibilities. The defining characteristics
of a strongly differentiated profession are specialized
knowledge and skills, systematic research, professional
autonomy, a robust professional association, and a well-
defined social good associated with the profession.

Members of a strongly differentiated profession have
specialized knowledge and skills, often called a ‘‘body
of knowledge,’’ gained through formal education and prac-
tical experience. Although plumbers also have special
knowledge and skills, education in the trades such as
plumbing emphasizes apprenticeship training rather
than formal education. An educational program in a pro-
fessional school teaches students the theoretical basis of
a profession, which is difficult to learn without formal
education. A professional school also socializes students
to the values and practices of the profession. Engineering
schools teach students to value efficiency and to reject
shoddy work. Medical schools teach students to become
physicians, and law schools teach future attorneys.
Because professional work has a significant intellectual
component, entry into a profession often requires a
post-baccalaureate degree such as the M.S.W. (Master of
Social Work) or the Psy.D. (Doctor of Psychology).

Professionals value the expansion of knowledge through
systematic research; they do not rely exclusively on the
transmission of craft traditions from one generation to the
next. Research in a profession is conducted by academic
members of the professioin and sometimes by practitioner
members too- Academic physicians, for example, conduct
medical research. Because professionals understand that
professional knowledge always advances, professionals
should also engage in continuing education by reading
publications and attending conferences. Professionals
should share general knowledge of their fields, rather
than keeping secrets of a guild. Professionals are obligated,
however, to keep specific information about clients confi-
dential.

Professionals tend to have clients, not customers.
Whereas a sales clerk should try to satisfy the customer’s
desires, the professional should try to meet the client’s
needs (consistent with the welfare of the client and the
public). For example, a physician should not give a patient a
prescription for barbiturates just because the patient wants
the drugs but only if the patient’s medical condition war-
rants the prescription.

Because professionals have specialized knowledge, cli-
ents cannot fully evaluate the quality of services provided
by professionals. Only other members of a profession, the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



professional’s peers, can sufficiently determine the quality
of professional work. The principle of peer review underlies
accreditation and licensing activities: Members of a profes-
sion evaluate the quality of an educational program for
accreditation, and they set the requirements for the licen-
sing of individuals. For example, in the United States, a
lawyer must pass a state’s bar examination to be licensed to
practice in that state. (Most states have reciprocity
arrangements—a professional license granted by one state
is recognized by other states.) The license gives profes-
sionals legal authority and privileges that are not available
to unlicensed individuals. For example, a licensed physi-
cian may legitimately prescribe medications and perform
surgery, which are activities that should not be performed
by people who are not medical professionals.

Through accreditation and licensing, the public cedes
control over a profession to members of the profession. In
return for this autonomy, the profession promises to serve
the public good. Medicine is devoted to advancing human
health, law to the pursuit of justice, and engineering to the
economical construction of safe and useful objects. As an
example of promoting the public good over the pursuit of
self-interest, professionals are expected to provide services
to some indigent clients without charge. For instance,
physicians volunteer at free clinics, and they serve in
humanitarian missions to developing countries. Physicians
and nurses are expected to render assistance in cases of
medical emergency—for instance, when a train passenger
suffers a heart attack. In sum, medical professionals have
special obligations that those who are not medical profes-
sionals do not have.

The purposes and values of a profession, including its
commitment to a public good, are expressed by its code of
ethics. A fortiori, the creation of a code of ethics is one mark
of the transformation of an occupation into a profession.

A profession’s code of ethics is developed and updated by
a national or international professional association. This
association publishes periodicals and hosts conferences to
enable professionals to continue their learning and to net-
work with other members of the profession. The association
typically organizes the accreditation of educational pro-
grams and the licensing of individual professionals.

Do computing professions measure up to these criteria
for a strongly differentiated profession? To become a com-
puting professional, an individual must acquire specialized
knowledge about discrete algorithms and relational data-
base theory and specialized skills such as software devel-
opment techniques and digital system design. Computing
professionals usually learn this knowledge and acquire
these skills by earning a baccalaureate degree in computer
science, computer engineering, information systems, or a
related field. As in engineering, a bachelor’s degree cur-
rently suffices for entry into the computing professions. The
knowledge base for computing expands through research in
computer science conducted in universities and in indus-
trial and government laboratories.

Like electrical engineers, most computing professionals
work for employers, who might not be the professionals’
clients. For example, a software engineer might develop
application software that controls a kitchen appliance; the
engineer’s employer might be different from the appliance

manufacturer. Furthermore, the software engineer should
prevent harm to the ultimate users of the appliance and to
others who might be affected by the appliance. Thus, the
computing professional’s relationship with a client and
with the public might be indirect.

The obligations of computing professionals to clients,
employers, and the public are expressed in several codes of
ethics. The later section on codes of ethics reviews two codes
that apply to computing professionals.

Although the computing professions meet many criteria
of other professions, they are deficient in significant ways.
Unlike academic programs in engineering, relatively few
academic programs in computing are accredited. Further-
more, in the United States, computing professionals cannot
be licensed, except that software engineers can be licensed
in Texas. As of this writing, the Association for Computing
Machinery (ACM) has reaffirmed its opposition to state-
sponsored licensing of individuals (2). Computing profes-
sionals may earn proprietary certifications offered by cor-
porations such as Cisco, Novell, Sun, and Microsoft. In the
United States, the American Medical Association domi-
nates the medical profession, and the American Bar Asso-
ciation dominates the legal profession, but no single
organization defines the computing profession. Instead,
multiple distinct organizations exist, including the ACM,
the Institute of Electrical and Electronics Engineers Com-
puter Society (IEEE-CS), and the Association of Informa-
tion Technology Professionals (AIPT). Although these
organizations cooperate on some projects, they remain
largely distinct, with separate publications and codes of
ethics.

Regardless of whether computing professions are
strongly differentiated, computing professionals have
important ethical obligations, as explained in the remain-
der of this article.

WHAT IS MORAL RESPONSIBILITY IN COMPUTING?

In the early 1980s Atomic Energy of Canada Limited
(AECL) manufactured and sold a cancer radiation treat-
ment machine called the Therac 25, which relied on com-
puter software to control its operation. Between 1985 and
1987, the Therac-25 caused the deaths of three patients and
serious injuries to three others (3). Who was responsible for
the accidents? The operator who administered the massive
radiation overdoses, which produced severe burns? The
software developers who wrote and tested the control soft-
ware, which contained several serious errors? The system
engineers who neglected to install the backup hardware
safety mechanisms that had been used in previous versions
of the machine? The manufacturer, AECL? Government
agencies? We can use the Therac-25 case to distinguish
among four different kinds of responsibility (4,5).

Causal Responsibility

Responsibility can be attributed to causes: For example,
‘‘the tornado was responsible for damaging the house.’’ In
the Therac-25 case, the proximate cause of each accident
was the operator, who started the radiation treatment. But
just as the weather cannot be blamed for a moral failing, the

2 ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING



Therac-25 operators cannot be blamed because they fol-
lowed standard procedures, and the information displayed
on the computer monitors was cryptic and misleading.

Role Responsibility

An individual who is assigned a task or function is con-
sidered the responsible person for that role. In this sense,
a foreman in a chemical plant may be responsible for
disposing of drums of toxic waste, even if a forklift opera-
tor actually transfers the drums from the plant to the
truck. In the Therac-25 case, the software developers and
system engineers were assigned the responsibility of
designing the software and hardware of the machine.
Insofar as their designs were deficient, they were respon-
sible for those deficiencies because of their roles. Even if
they had completed their assigned tasks, however, their
role responsibility may not encompass the full extent of
their professional responsibilities.

Legal Responsibility

An individual or an organization can be legally responsible,
or liable, for a problem. That is, the individual could be
charged with a crime, or the organization could be liable for
damages in a civil lawsuit. Similarly, a physician can be
sued for malpractice. In the Therac-25 case, AECL could
have been sued. One kind of legal responsibility is strict
liability: If a product injures someone, then the manufac-
turer of the product can be found liable for damages in a
lawsuit, even if the product met all applicable safety stan-
dards and the manufacturer did nothing wrong. The prin-
ciple of strict liability encourages manufacturers to be
careful, and it provides a way to compensate victims of
accidents.

Moral Responsibility

Causal, role, and legal responsibilities tend to be exclusive:
If one individual is responsible, then another is not. In
contrast, moral responsibility tends to be shared: many
engineers are responsible for the safety of the products that
they design, not just a designated safety engineer. Further-
more, rather than assign blame for a past event, moral
responsibility focuses on what individuals should do in the
future. In the moral sense, responsibility is a virtue: A
‘‘responsible person’’ is careful, considerate, and trust-
worthy; an ‘‘irresponsible person’’ is reckless, inconside-
rate, and untrustworthy.

Responsibility is shared whenever multiple individuals
collaborate as a group, such as a software development
team. When moral responsibility is shared, responsibility is
not atomized to the point at which no one in the group is
responsible. Rather, each member of the group is accoun-
table to the other members of the group and to those whom
the group’s work might affect, both for the individual’s own
actions and for the effects of their collective effort. For
example, suppose a computer network monitoring team
has made mistakes in a complicated statistical analysis of
network traffic data, and that these mistakes have changed
the interpretation of the reported results. If the team
members do not reanalyze the data themselves, they

have an obligation to seek the assistance of a statistician
who can analyze the data correctly. Different team mem-
bers might work with the statistician in different ways, but
they should hold each other accountable for their individual
roles in correcting the mistakes. Finally, the team has a
collective moral responsibility to inform readers of the
team’s initial report about the mistakes and the correction.

Moral responsibility for recklessness and negligence is
not mitigated by the presence of good intentions or by the
absence of bad consequences. Suppose a software tester
neglects to sufficiently test a new module for a telephone
switching system, and the module fails. Although the sub-
sequent telephone service outages are not intended, the
software tester is morally responsible for the harms caused
by the outages. Suppose a hacker installs a keystroke
logging program in a deliberate attempt to steal passwords
at a public computer. Even if the program fails to work, the
hacker is still morally responsible for attempting to invade
the privacy of users.

An individual can be held morally responsible both for
acting and for failing to act. For example, a hardware
engineer might notice a design flaw that could result in a
severe electrical shock to someone who opens a personal
computer system unit to replace a memory chip. Even if the
engineer is not specifically assigned to check the electrical
safety of the system unit, the engineer is morally respon-
sible for calling attention to the design flaw, and the engi-
neer can be held accountable for failing to act.

Computing systems often obscure accountability (5). In
particular, in an embedded system such as the Therac-25,
the computer that controls the device is hidden. Computer
users seem resigned to accepting defects in computers and
software that cause intermittent crashes and losses of data.
Errors in code are called ‘‘bugs,’’ regardless of whether they
are minor deficiencies or major mistakes that could cause
fatalities. In addition, because computers seem to act
autonomously, people tend to blame the computers them-
selves for failing, instead of the professionals who designed,
programmed, and deployed the computers.

WHAT ARE THE RESPONSIBILITIES OF COMPUTING
PROFESSIONALS?

Responsibilities to Clients and Users

Whether a computing professional works as a consultant to
an individual or as an employee in a large organization, the
professional is obligated to perform assigned tasks compe-
tently, according to professional standards. These profes-
sional standards include not only attention to technical
excellence but also concern for the social effects of compu-
ters on operators, users, and the public. When assessing the
capabilities and risks of computer systems, the professional
must be candid: The professional must report all relevant
findings honestly and accurately. When designing a new
computer system, the professional must consider not only
the specifications of the client but also how the system
might affect the quality of life of users and others. For
example, a computing professional who designs an infor-
mation system for a hospital and should allow speedy access

ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING 3



by physicians and nurses and yet protect patients’ medical
records from unauthorized access; the technical require-
ment to provide fast access may conflict with the social
obligation to ensure patients’ privacy.

Computing professionals enjoy considerable freedom in
deciding how to meet the specifications of a computer
system. Provided that they meet the minimum perfor-
mance requirements for speed, reliability, and functional-
ity, within an overall budget, they may choose to invest
resources to decrease the response time rather than to
enhance a graphical user interface, or vice versa. Because
choices involve tradeoffs between competing values, com-
puting professionals should identify potential biases in
their design choices (6). For example, the designer of a
search engine for an online retailer might choose to display
the most expensive items first. This choice might favor the
interest of the retailer, to maximize profit, over the interest
of the customer, to minimize cost.

Even moderately large software artifacts (computer
programs) are inherently complex and error-prone.
Furthermore, software is generally becoming more com-
plex. It is therefore reasonable to assume that all software
artifacts have errors. Even if a particular artifact does not
contain errors, it is extremely difficult to prove its correct-
ness. Faced with these realities, how can a responsible
software engineer release software that is likely to fail
sometime in the future? Other engineers confront the
same problem, because all engineering artifacts eventually
fail. Whereas most engineering artifacts fail because phy-
sical objects wear out, software artifacts are most likely to
fail because of faults designed into the original artifact. The
intrinsically faulty nature of software distinguishes it from
light bulbs and I-beams, for example, whose failures are
easier to predict statistically.

To acknowledge responsibilities for the failure of soft-
ware artifacts, software developers should exercise due
diligence in creating software, and they should be as candid
as possible about both known and unknown faults in the
software—particularly software for safety-critical systems,
in which a failure can threaten the lives of people. Candor
by software developers would give software consumers
a better chance to make reasonable decisions about soft-
ware before they buy it (7). Following an established tradi-
tion in medicine, Miller (8) advocates ‘‘software informed
consent’’ as a way to formalize an ethical principle that
requires openness from software developers. Software
informed consent requires software developers to reveal,
using explanations that are understandable to their cus-
tomers, the risks of their software, including the likelihoods
of known faults and the probabilities that undiscovered
faults still exist. The idea of software informed consent
motivates candor and requires continuing research into
methods of discovering software faults and measuring risk.

Responsibilities to Employers

Most computing professionals work for employers. The
employment relationship is contractual: The professional
promises to work for the employer in return for a salary and
benefits. Professionals often have access to the employer’s
proprietary information such as trade secrets, and the

professional must keep this information confidential.
Besides trade secrets, the professional must also honor
other forms of intellectual property owned by the employer:
The professional does not have the right to profit from
independent sale or use of this intellectual property, includ-
ing software developed with the employer’s resources.

Every employee is expected to work loyally on behalf of
the employer. In particular, professionals should be aware
of potential conflicts of interest, in which loyalty might be
owed to other parties besides the employer. A conflict of
interest occurs when a professional is asked to render a
judgment, but the professional has personal or financial
interests that may interfere with the exercise of that judg-
ment. For instance, a computing professional may be
responsible for ordering computing equipment, and an
equipment vendor owned by the professional’s spouse
might submit a bid. In this case, others would perceive
that the marriage relationship might bias the professional’s
judgment. Even if the spouse’s equipment would be the best
choice, the professional’s judgment would not be trust-
worthy. In a typical conflict of interest situation, the pro-
fessional should recuse herself: that is, the professional
should remove herself and ask another qualified person
to make the decision.

Many computing professionals have managerial duties,
and some are solely managers. Managerial roles complicate
the responsibilities of computing professionals because
managers have administrative responsibilities and inter-
ests within their organizations in addition to their profes-
sional responsibilities to clients and the public.

Responsibilities to Other Professionals

Although everyone deserves respect from everyone else,
when professionals interact with each other, they should
demonstrate a kind of respect called collegiality. For exam-
ple, when one professional uses the ideas of a second
professional, the first should credit the second. In a
research article, an author gives credit by properly citing
the sources of ideas from other authors in previously pub-
lished articles. Using these ideas without attribution con-
stitutes plagiarism. Academics consider plagiarism
unethical because it represents the theft of ideas and the
misrepresentation of those ideas as the plagiarist’s own.

Because clients cannot adequately evaluate the quality
of professional service, individual professionals know that
their work must be evaluated by other members of the same
profession. This evaluation, called peer review occurs in
both practice and research. Research in computing is pre-
sented at conferences and is published in scholarly jour-
nals. Before a manuscript that reports a research project
can be accepted for a conference or published in a journal,
the manuscript must be reviewed by peer researchers who
are experts in the subject of the manuscript.

Because computing professionals work together, they
must observe professional standards. These standards of
practice are created by members of the profession or within
organizations. For example, in software development, one
standard of practice is a convention for names of variables
in code. By following coding standards, a software devel-
oper can facilitate the work of a software maintainer who

4 ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING



subsequently modifies the code. For many important issues
for which standards would be appropriate theoretically,
however, ‘‘standards’’ in software engineering are contro-
versial, informal, or nonexistent. An example of this pro-
blem is the difficulties encountered when the IEEE and the
ACM attempted to standardize a body of knowledge for
software engineering to enable the licensing of software
engineers.

Senior professionals have an obligation to mentor junior
professionals in the same field. Although professionals are
highly educated, junior members of a profession require
additional learning and experience to develop professional
judgment. This learning is best accomplished under the
tutelage of a senior professional. In engineering, to earn a
P.E. license, a junior engineer must work under the super-
vision of a licensed engineer for at least four years. More
generally, professionals should assist each other in conti-
nuing education and professional development, which are
generally required for maintaining licensure.

Professionals can fulfill their obligations to contribute to
the profession volunteering. The peer review of research
publications depends heavily on volunteer reviewers and
editors, and the activities of professional associations are
conducted by committees of volunteers.

Responsibilities to the Public

According to engineering codes of ethics, the engineer’s
most important obligation is to ensure the safety, health,
and welfare of the public. Although everyone must avoid
endangering others, engineers have a special obligation to
ensure the safety of the objects that they produce. Comput-
ing professionals share this special obligation to guarantee
the safety of the public and to improve the quality of life of
those who use computers and information systems.

As part of this obligation, computing professionals
should enhance the public’s understanding of computing.
The responsibility to educate the public is a collective
responsibility of the computing profession as a whole;
individual professionals might fulfill this responsibility
in their own ways. Examples of such public service include
advising a church on the purchase of computing equipment
and writing a letter to the editor of a newspaper about
technical issues related to proposed legislation to regulate
the Internet.

It is particularly important for computing professionals
to contribute their technical knowledge to discussions
about public policies regarding computing. Many commu-
nities are considering controversial measures such as the
installation of Web filtering software on public access com-
puters in libraries. Computing professionals can partici-
pate in communities’ decisions by providing technical facts.
Technological controversies involving the social impacts of
computers are covered in a separate article of this encyclo-
pedia.

When a technical professional’s obligation of loyalty to
the employer conflicts with the obligation to ensure the
safety of the public, the professional may consider whistle-
bhwing, that is, alerting people outside the employer’s
organization to a serious, imminent threat to public safety.
Computer engineers blew the whistle during the develop-

ment of the Bay Area Rapid Transit (BART) system near
San Francisco (9). In the early 1970s, three BART engi-
neers became alarmed by deficiencies in the design of the
electronics and software for the automatic train control
system, deficiencies that could have endangered passen-
gers on BART trains. The engineers raised their concerns
within the BART organization without success. Finally,
they contacted a member of the BART board of directors,
who passed their concerns to Bay Area newspapers. The
three engineers were immediately fired for disloyalty. They
were never reinstated, even when an accident proved their
concerns were valid. When the engineers sued the BART
managers, the IEEE filed an amicus curiae brief on the
engineers’ behalf, stating that engineering codes of ethics
required the three engineers to act to protect the safety of
the public. The next section describes codes of ethics for
computing professionals.

CODES OF ETHICS

For each profession, the professional’s obligations to cli-
ents, employers, other professionals, and the public are
stated explicitly in the profession’s code of ethics or code of
professional conduct. For computing professionals, such
codes have been developed by ACM, the British Computer
Society (BCS), the, IEEE-CS, the AITP, the Hong Kong
Computer Society, the Systems Administrators Special
Interest Group of USENEX (SAGE), and other associa-
tions. Two of these codes will be described briefly here:
the ACM code and the Software Engineering Code jointly
approved by the IEEE-CS and the ACM.

The ACM is one of the largest nonprofit scientific and
educational organization devoted to computing. In 1966 and
1972, the ACM published codes of ethics for computing
professionals. In 1992, the ACM adopted the current Code
of Ethics and Professional Conduct (10), which appears in
Appendix 1. Each statement of the code is accompanied by
interpretive guidelines.For example, the guideline forstate-
ment 1.8, Honor confidentiality, indicates that other ethical
imperatives such as complying with a law may take prece-
dence.Unlikeethicscodesforotherprofessions,onesectionof
the ACM code states the ethical obligations of ‘‘organiza-
tional leaders,’’ who are typically technical managers.

The ACM collaborated with the IEEE-CS to produce the
Software Engineering Code of Ethics and Professional
Practice (11). Like the ACM code, the Software Engineering
Code also includes the obligations of technical managers.
This code is notable in part because it was the first code to
focus exclusively on software engineers, not on other com-
puting professionals. This code is broken into a short ver-
sion is composed of and a long version. The short version is
composed of a preamble and eight short principles; this
version appears in Appendix 2. The long version expands on
the eight principles with multiple clauses that apply the
principles to specific issues and situations.

Any code of ethics is necessarily incomplete—no docu-
ment can address every possible situation. In addition, a
code must be written in general language; each statement
in a code requires interpretation to be applied in specific
circumstances. Nevertheless, a code of ethics can serve

ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING 5



multiple purposes (12,13). A code can inspire members of a
profession to strive for the profession’s ideals. A code can
educate new members about their professional obligations,
and tell nonmembers what they may expect members to do,
A code can set standards of conduct for professionals and
provide a basis for expelling members who violate these
standards. Finally, a code may support individuals in
making difficult decisions. For example, because all engi-
neering codes of ethics prioritize the safety and welfare of
the public, an engineer can object to unsafe practices not
merely as a matter of individual conscience but also with
the full support of the consensus of the profession. The
application of a code of ethics for making decisions is high-
lighted in the next section.

ETHICAL DECISION MAKING FOR COMPUTING
PROFESSIONALS

Every user of e-mail has received unsolicited bulk commer-
cial e-mail messages, known in a general way as spam. (A
precise definition of ‘‘spam’’ has proven elusive and is
controversial; most people know spam when they see it,
but legally and ethically a universally accepted definition
has not yet emerged.) A single spam broadcast can initiate
millions of messages. Senders of spam claim that they are
exercising their free speech rights, and few laws have been
attempted to restrict it. In the United States, no federal law
prohibited spamming before the CAN-SPAM Act of 2003.
Even now, the CAN-SPAM law does not apply to spam
messages that originate in other countries. Although some
prosecutions have occurred using the CAN-SPAM Act,
most people still receive many e-mail messages that they
consider spam.

Some spam messages are designed to be deceptive and
include intentionally inaccurate information, but others
include only accurate information. Although most spam-
ming is not illegal, even honest spamming is considered
unethical by many people, for the following reasons. First,
spamming has bad consequences: It wastes the time of
recipients who must delete junk e-mail messages, and these
messages waste space on computers; in addition, spam-
ming reduces users’ trust in e-mail. Second, spamming is
not reversible: Senders of spam do not want to receive spam.
Third, spamming could not be allowed as a general practice:
If everyone attempted to broadcast spam messages to wide
audiences, computer networks would become clogged with
unwanted e-mail messages, and no one could communicate
via e-mail at all.

The three reasons advanced against spam correspond to
three ways in which the morality of an action can be eval-
uated: first, whether on balance the action results in more
good consequences than bad consequences; second, whether
the actor would be willing to trade places with someone
affected by the action: and third, whether everyone (in a
similar situation) could choose the same action as a general
rule. These three kinds of moral reasons correspond to three
of the many traditions in philosophical ethics: consequenti-
alism, the Golden Rule, and duty-based ethics.

Ethical issues in the use of computers can also be eval-
uated through the use of analogies to more familiar situa-

tions. For example, a hacker may try to justify gaining
unauthorized access to unsecured data by reasoning that
because the data are not protected, anyone should be able to
read it. But by analogy, someone who finds the front door of
a house unlocked is not justified in entering the house and
snooping around. Entering an unlocked house is trespas-
sing, and trespassing violates the privacy of the house’s
occupants.

When making ethical decisions, computing profes-
sionals can rely not only on general moral reasoning but
also on specific guidance from codes of ethics, such as the
ACM Code of Ethics (10). Here is a fictional example of that
approach.

Scenario: XYZ Corporation plans to monitor secretly
the Web pages visited by its employees, using a data
mining program to analyze the access records. Chris, an
engineer at XYZ, recommends that XYZ purchase a data
mining program from Robin, an independent contractor,
without mentioning that Robin is Chris’s domestic part-
ner. Robin had developed this program while previously
employed at UVW Corporation, without the awareness
of anyone at UVW.
Analysis: First, the monitoring of Web accesses
intrudes on employees’ privacy; it is analogous to eaves-
dropping on telephone calls. Professionals should
respect the privacy of individuals (ACM Code 1.7,
Respect the privacy of others, and 3.5, Articulate and
support policies that protect the dignity of users and
others affected by a computing system). Second, Chris
has a conflict of interest because the sale would benefit
Chris’s domestic partner. By failing to mention this
relationship, Chris was disingenuous (ACM Code 1.3,
Be honest and trustworthy). Third, because Robin devel-
oped the program while working at UVW, some and
perhaps all of the property rights belong to UVW. Robin
probably signed an agreement that software developed
while employed at UVW belongs to UVW. Professionals
should honor property rights and contacts (ACM Code
1.5, Honor property rights including copyrights and
patent, and 2.6, Honor contracts, agreements, and
assigned responsibilities).

Applying a code of ethics might not yield a clear solution
of an ethical problem because different principles in a code
might conflict. For instance, the principles of honesty and
confidentiality conflict when a professional who is ques-
tioned about the technical details of the employer’s forth-
coming product must choose between answering the
question completely and keeping the information secret.
Consequently, more sophisticated methods have been
developed for solving ethical problems. Maner (14) has
studied and collected what he calls ‘‘procedural ethics,
step-by-step ethical reasoning procedures . . . that may
prove useful to computing professionals engaged in ethical
decision-making.’’ Maner’s list includes a method specia-
lized for business ethics (15), a paramedic method (16), and
a procedure from the U.S. Department of Defense (17).
These procedures appeal to the problem-solving ethos of

6 ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING



engineering, and they help professionals avoid specific
traps that might otherwise impair a professional’s ethical
judgment. No procedural ethics method should be inter-
preted as allowing complete objectivity or providing a
mechanical algorithm for reaching a conclusion about an
ethical problem, however, because all professional ethics
issues of any complexity require subtle and subjective
judgments.

COMPUTING AND THE STUDY OF ETHICS: THE ETHICAL
CHALLENGES OF ARTIFICIAL INTELLIGENCE
AND AUTONOMOUS AGENTS

Many ethical issues, such as conflict of interest, are com-
mon to different professions. In computing and engineer-
ing, however, unique ethical issues develop from the
creation of machines whose outward behaviors resemble
human behaviors that we consider ‘‘intelligent.’’ As
machines become more versatile and sophisticated, and
as they increasingly take on tasks that were once assigned
only to humans, computing professionals and engineers
must rethink their relationship to the artifacts they design,
develop, and then deploy.

For many years, ethical challenges have been part of
discussions of artificial intelligence. Indeed, two classic
references in the field are by Norbert Wiener in 1965 (18)
and by Joseph Weizenbaum in 1976 (19). Since the 1990s,
the emergence of sophisticated ‘‘autonomous agents,’’
including Web ‘‘bots’’ and physical robots, has intensified
the ethical debate. Two fundamental issues are of immedi-
ate concern: the responsibility of computing professionals
who create these sophisticated machines, and the notion
that the machines themselves will, if they have not
already done so, become sufficiently sophisticated so
that they will be considered themselves moral agents,
capable of ethical praise or blame independent of the
engineers and scientists who developed them. This area
of ethics is controversial and actively researched. A full
discussion of even some of the nuances is beyond the scope
of this article. Recent essays by Floridi and Sanders (20)
and Himma (21) are two examples of influential ideas in
the area.

APPENDIX 1. ACM CODE OF ETHICS AND PROFESSIONAL
CONDUCT

http://www.acm.org/about/code-of-ethics.

PREAMBLE

Commitment to ethical professional conduct is expected of
every member (voting members, associate members, and
student members) of the Association for Computing
Machinery (ACM).

This Code, consisting of 24 imperatives formulated as
statements of personal responsibility, identifies the ele-
ments of such a commitment. It contains many, but not
all, issues professionals are likely to face. Section 1 out-
lines fundamental ethical considerations, while Section 2

addresses additional, more specific considerations of pro-
fessional conduct. Statements in Section 3 pertain more
specifically to individuals who have a leadership role,
whether in the workplace or in a volunteer capacity such
as with organizations like ACM. Principles involving
compliance with this Code are given in Section 4.

The Code shall be supplemented by a set of Guidelines,
which provide explanation to assist members in dealing
with the various issues contained in the Code. It is expected
that the Guidelines will be changed more frequently than
the Code.

The Code and its supplemented Guidelines are intended
to serve as a basis for ethical decision making in the conduct
of professional work. Secondarily, they may serve as a basis
for judging the merit of a formal complaint pertaining to
violation of professional ethical standards.

It should be noted that although computing is not men-
tioned in the imperatives of Section 1, the Code is concerned
with how these fundamental imperatives apply to one’s
conduct as a computing professional. These imperatives are
expressed in a general form to emphasize that ethical
principles which apply to computer ethics are derived
from more general ethical principles.

It is understood that some words and phrases in a code of
ethics are subject to varying interpretations, and that any
ethical principle may conflict with other ethical principles
in specific situations. Questions related to ethical conflicts
can best be answered by thoughtful consideration of funda-
mental principles, rather than reliance on detailed regula-
tions.

1. GENERAL MORAL IMPERATIVES

As an ACM member I will . . ..

1.1 Contribute to society and human well-being

This principle concerning the quality of life of all people
affirms an obligation to protect fundamental human rights
and to respect the diversity of all cultures. An essential aim
of computing professionals is to minimize negative conse-
quences of computing systems, including threats to health
and safety. When designing or implementing systems,
computing professionals must attempt to ensure that the
products of their efforts will be used in socially responsible
ways, will meet social needs, and will avoid harmful effects
to health and welfare.

In addition to a safe social environment, human well-
being includes a safe natural environment. Therefore,
computing professionals who design and develop systems
must be alert to, and make others aware of, any potential
damage to the local or global environment.

1.2 Avoid harm to others

‘‘Harm’’ means injury or negative consequences, such as
undesirable loss of information, loss of property, property
damage, or unwanted environmental impacts. This prin-
ciple prohibits use of computing technology in ways that
result in harm to any of the following: users, the general
public, employees, employers. Harmful actions include

ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING 7



intentional destruction or modification of files and
programs leading to serious loss of resources or unneces-
sary expenditure of human resources such as the time
and effort required to purge systems of ‘‘computer
viruses.’’

Well-intended actions, including those that accom-
plish assigned duties, may lead to harm unexpectedly.
In such an event the responsible person or persons are
obligated to undo or mitigate the negative consequences
as much as possible. One way to avoid unintentional harm
is to carefully consider potential impacts on all those
affected by decisions made during design and implemen-
tation.

To minimize the possibility of indirectly harming others,
computing professionals must minimize malfunctions by
following generally accepted standards for system design
and testing. Furthermore, it is often necessary to assess the
social consequences of systems to project the likelihood of
any serious harm to others. If system features are misre-
presented to users, coworkers, or supervisors, the indivi-
dual computing professional is responsible for any
resulting injury.

In the work environment the computing professional
has the additional obligation to report any signs of system
dangers that might result in serious personal or social
damage. If one’s superiors do not act to curtail or mitigate
such dangers, it may be necessary to ‘‘blow the whistle’’ to
help correct the problem or reduce the risk. However,
capricious or misguided reporting of violations can, itself,
be harmful. Before reporting violations, all relevant aspects
of the incident must be thoroughly assessed. In particular,
the assessment of risk and responsibility must be credible.
It is suggested that advice be sought from other computing
professionals. See principle 2.5 regarding thorough evalua-
tions.

1.3 Be honest and trustworthy

Honesty is an essential component of trust. Without trust
an organization cannot function effectively. The honest
computing professional will not make deliberately false
or deceptive claims about a system or system design, but
will instead provide full disclosure of all pertinent system
limitations and problems.

A computer professional has a duty to be honest about
his or her own qualifications, and about any circumstances
that might lead to conflicts of interest.

Membership in volunteer organizations such as ACM
may at times place individuals in situations where their
statements or actions could be interpreted as carrying the
‘‘weight’’ of a larger group of professionals. An ACM mem-
ber will exercise care to not misrepresent ACM or positions
and policies of ACM or any ACM units.

1.4 Be fair and take action not to discriminate

The values of equality, tolerance, respect for others, and the
principles of equal justice govern this imperative. Discri-
mination on the basis of race, sex, religion, age, disability,
national origin, or other such factors is an explicit violation
of ACM policy and will not be tolerated.

Inequities between different groups of people may
result from the use or misuse of information and technol-
ogy. In a fair society, all individuals would have equal
opportunity to participate in, or benefit from, the use of
computer resources regardless of race, sex, religion, age,
disability, national origin or other such similar factors.
However, these ideals do not justify unauthorized use of
computer resources nor do they provide an adequate
basis for violation of any other ethical imperatives of
this code.

1.5 Honor property rights including copyrights and patent

Violation of copyrights, patents, trade secrets and the terms
of license agreements is prohibited by law in most circum-
stances. Even when software is not so protected, such
violations are contrary to professional behavior. Copies
of software should be made only with proper authorization.
Unauthorized duplication of materials must not be con-
doned

1.6 Give proper credit for intellectual property

Computing professionals are obligated to protect the
integrity of intellectual property. Specifically, one must
not take credit for other’s ideas or work, even in cases
where the work has not been explicitly protected by copy-
right, patent, etc.

1.7 Respect the privacy of others

Computing and communication technology enables the
collection and exchange of personal information on a scale
unprecedented in the history of civilization. Thus there is
increased potential for violating the privacy of individuals
and groups. It is the responsibility of professionals to
maintain the privacy and integrity of data describing
individuals. This includes taking precautions to ensure
the accuracy of data, as well as protecting it from unauthor-
ized access or accidental disclosure to inappropriate
individuals. Furthermore, procedures must be established
to allow individuals to review their records and correct
inaccuracies.

This imperative implies that only the necessary
amount of personal information be collected in a system,
that retention and disposal periods for that information
be clearly defined and enforced, and that personal infor-
mation gathered for a specific purpose not be used for
other purposes without consent of the individual(s).
These principles apply to electronic communications,
including electronic mail, and prohibit procedures that
capture or monitor electronic user data, including mes-
sages, without the permission of users or bona fide
authorization related to system operation and mainte-
nance. User data observed during the normal duties
of system operation and maintenance must be treated
with strictest confidentiality, except in cases where it is
evidence for the violation of law, organizational regula-
tions, or this Code. In these cases, the nature or contents
of that information must be disclosed only to proper
authorities.

8 ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING



1.8 Honor confidentiality

The principle of honesty extends to issues of confidentiality
of information whenever one has made an explicit promise
to honor confidentiality or, implicitly, when private infor-
mation not directly related to the performance of one’s
duties becomes available. The ethical concern is to respect
all obligations of confidentiality to employers, clients, and
users unless discharged from such obligations by require-
ments of the law or other principles of this Code.

2 MORE SPECIFIC PROFESSIONAL RESPONSIBILITIES

As an ACM computing professional I will . . ..

2.1 Strive to achieve the highest quality, effectiveness
and dignity in both the process and products
of professional work

Excellence is perhaps the most important obligation of a
professional. The computing professional must strive to
achieve quality and to be cognizant of the serious negative
consequences that may result from poor quality in a
system.

2.2 Acquire and maintain professional competence

Excellence depends on individuals who take responsibility
for acquiring and maintaining professional competence. A
professional must participate in setting standards for
appropriate levels of competence, and strive to achieve
those standards. Upgrading technical knowledge and com-
petence can be achieved in several ways: doing independent
study; attending seminars, conferences, or courses; and
being involved in professional organizations.

2.3 Know and respect existing laws pertaining to professional
work

ACM members must obey existing local, state, province,
national, and international laws unless there is a compel-
ling ethical basis not to do so. Policies and procedures of the
organizations in which one participates must also be
obeyed. But compliance must be balanced with the recogni-
tion that sometimes existing laws and rules may be
immoral or inappropriate and, therefore, must be chal-
lenged. Violation of a law or regulation may be ethical
when that law or rule has inadequate moral basis or
when it conflicts with another law judged to be more
important. If one decides to violate a law or rule because
it is viewed as unethical, or for any other reason, one must
fully accept responsibility for one’s actions and for the
consequences.

2.4 Accept and provide appropriate professional review

Quality professional work, especially in the computing
profession, depends on professional reviewing and criti-
quing. Whenever appropriate, individual members should
seek and utilize peer review as well as provide critical
review of the work of others.

2.5 Give comprehensive and thorough evaluations of
computer systems and their impacts, including analysis
of possible risks

Computer professionals must strive to be perceptive, thor-
ough, and objective when evaluating, recommending, and
presenting system descriptions and alternatives. Compu-
ter professionals are in a position of special trust, and
therefore have a special responsibility to provide objective,
credible evaluations to employers, clients, users, and the
public. When providing evaluations the professional must
also identify any relevant conflicts of interest, as stated in
imperative 1.3.

As noted in the discussion of principle 1.2 on avoiding
harm, any signs of danger from systems must be reported to
those who have opportunity and/or responsibility to resolve
them. See the guidelines for imperative 1.2 for more details
concerning harm, including the reporting of professional
violations.

2.6 Honor contracts, agreements, and assigned
responsibilities

Honoring one’s commitments is a matter of integrity
and honesty. For the computer professional this includes
ensuring that system elements perform as intended. Also,
when one contracts for work with another party, one has an
obligation to keep that party properly informed about pro-
gress toward completing that work.

A computing professional has a responsibility to
request a change in any assignment that he or she feels
cannot be completed as defined. Only after serious con-
sideration and with full disclosure of risks and concerns to
the employer or client, should one accept the assignment.
The major underlying principle here is the obligation to
accept personal accountability for professional work. On
some occasions other ethical principles may take greater
priority.

A judgment that a specific assignment should not be
performed may not be accepted. Having clearly identified
one’s concerns and reasons for that judgment, but failing
to procure a change in that assignment, one may yet be
obligated, by contract or by law, to proceed as directed.
The computing professional’s ethical judgment should be
the final guide in deciding whether or not to proceed.
Regardless of the decision, one must accept the respon-
sibility for the consequences.

However, performing assignments ‘‘against one’s own
judgment’’ does not relieve the professional of responsibil-
ity for any negative consequences.

2.7 Improve public understanding of computing and its
consequences

Computing professionals have a responsibility to share
technical knowledge with the public by encouraging
understanding of computing, including the impacts of
computer systems and their limitations. This imperative
implies an obligation to counter any false views related to
computing.

ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING 9



2.8 Access computing and communication resources only
when authorized to do so

Theft or destruction of tangible and electronic property is
prohibited by imperative 1.2 - ‘‘Avoid harm to others.’’
Trespassing and unauthorized use of a computer or com-
munication system is addressed by this imperative. Tres-
passing includes accessing communication networks and
computer systems, or accounts and/or files associated with
those systems, without explicit authorization to do so.
Individuals and organizations have the right to restrict
access to their systems so long as they do not violate the
discrimination principle (see 1.4), No one should enter or
use another’s computer system, software, or data files
without permission. One must always have appropriate
approval before using system resources, including commu-
nication ports, file space, other system peripherals, and
computer time.

3. ORGANIZATIONAL LEADERSHIP IMPERATIVES

As an ACM member and an organizational leader, I will . . ..

BACKGROUND NOTE: This section draws exten-
sively from the draft IFIP Code of Ethics, especially its
sections on organizational ethics and international con-
cerns. The ethical obligations of organizations tend to be
neglected in most codes of professional conduct, perhaps
because these codes are written from the perspective of the
individual member. This dilemma is addressed by stating
these imperatives from the perspective of the organiza-
tional leader. In this context ‘‘leader’’ is viewed as any
organizational member who has leadership or educational
responsibilities. These imperatives generally may apply
to organizations as well as their leaders. In this context
‘‘organizations’’ are corporations, government agencies,
and other ‘‘employers,’’ as well as volunteer professional
organizations.

3.1 Articulate social responsibilities of members
of an organizational unit and encourage full acceptance
of those responsibilities

Because organizations of all kinds have impacts on
the public, they must accept responsibilities to society.
Organizational procedures and attitudes oriented
toward quality and the welfare of society will reduce
harm to members of the public, thereby serving public
interest and fulfilling social responsibility. Therefore,
organizational leaders must encourage full participation
in meeting social responsibilities as well as quality per-
formance.

3.2 Manage personnel and resources to design and build
information systems that enhance the quality of working life

Organizational leaders are responsible for ensuring that
computer systems enhance, not degrade, the quality of
working life. When implementing a computer system, orga-
nizations must consider the personal and professional
development, physical safety, and human dignity of all
workers. Appropriate human-computer ergonomic stan-

dards should be considered in system design and in the
workplace.

3.3 Acknowledge and support proper and authorized uses
of an organization’s computing and communication
resources

Because computer systems can become tools to harm as well
as to benefit an organization, the leadership has the respon-
sibility to clearly define appropriate and inappropriate uses
of organizational computing resources. While the number
and scope of such rules should be minimal, they should be
fully enforced when established.

3.4 Ensure that users and those who will be affected by a
system have their needs clearly articulated during the
assessment and design of requirements; later the system must
be validated to meet requirements

Current system users, potential users and other persons
whose lives may be affected by a system must have their
needs assessed and incorporated in the statement of
requirements. System validation should ensure compliance
with those requirements.

3.5 Articulate and support policies that protect the dignity
of users and others affected by a computing system

Designing or implementing systems that deliberately or
inadvertently demean individuals or groups is ethically
unacceptable. Computer professionals who are in decision
making positions should verify that systems are designed
and implemented to protect personal privacy and enhance
personal dignity.

3.6 Create opportunities for members of the organization
to learn the principles and limitations of computer systems

This complements the imperative on public understanding
(2.7). Educational opportunities are essential to facilitate
optimal participation of all organizational members.
Opportunities must be available to all members to help
them improve their knowledge and skills in computing,
including courses that familiarize them with the conse-
quences and limitations of particular types of systems. In
particular, professionals must be made aware of the dan-
gers of building systems around oversimplified models, the
improbability of anticipating and designing for every pos-
sible operating condition, and other issues related to the
complexity of this profession.

4. COMPLIANCE WITH THE CODE

As an ACM member I will . . ..

4.1 Uphold and promote the principles of this code

The future of the computing profession depends on both
technical and ethical excellence. Not only is it important for
ACM computing professionals to adhere to the principles
expressed in this Code, each member should encourage and
support adherence by other members.

10 ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING



4.2 Treat violations of this code as inconsistent
with membership in the ACM

Adherence of professionals to a code of ethics is largely a
voluntary matter. However, if a member does not follow
this code by engaging in gross misconduct, membership in
ACM may be terminated.

This Code may be published without permission as long
as it is not changed in any way and it carries the copyright
notice. Copyright (c) 1997, Association for Computing
Machinery, Inc.

APPENDIX 2: SOFTWARE ENGINEERING CODE OF ETHICS
AND PROFESSIONAL PRACTICE (SHORT VERSION)

http://www.acm.org/about/se-code/
Short Version

PREAMBLE

The short version of the code summarizes aspirations at a
high level of the abstraction; the clauses that are included
in the full version give examples and details of how these
aspirations change the way we act as software engineer-
ing professionals. Without the aspirations, the details can
become legalistic and tedious; without the details, the
aspirations can become high sounding but empty;
together, the aspirations and the details form a cohesive
code.

Software engineers shall commit themselves to making
the analysis, specification, design, development, testing
and maintenance of software a beneficial and respected
profession. In accordance with their commitment to the
health, safety and welfare of the public, software engineers
shall adhere to the following Eight Principles:

1. PUBLIC - Software engineers shall act consistently
with the public interest.

2. CLIENT AND EMPLOYER - Software engineers
shall act in a manner that is in the best interests of
their client and employer consistent with the public
interest.

3. PRODUCT - Software engineers shall ensure that
their products and related modifications meet the
highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain
integrity and independence in their professional
judgment.

5. MANAGEMENT - Software engineering managers
and leaders shall subscribe to and promote an ethical
approach to the management of software develop-
ment and maintenance.

6. PROFESSION - Software engineers shall advance
the integrity and reputation of the profession consis-
tent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to
and supportive of their colleagues.

8. SELF - Software engineers shall participate in life-
long learning regarding the practice of their profes-
sion and shall promote an ethical approach to the
practice of the profession.

This Code may be published without permission as long
as it is not changed in any way and it carries the copyright
notice. Copyright (c) 1999 by the Association for Computing
Machinery, Inc. and the Institute for Electrical and Elec-
tronics Engineers, Inc.

BIBLIOGRAPHY

1. A. Goldman. The Moral Foundation of Professional Ethics,
Totowa, NJ: Rowman & Littlefield, 1980.

2. J. White and B. Simons, ACM’s position on the licensing of
software engineers, Communications ACM, 45(11): 91, 2002.

3. N. G. Leveson and C. S. Turner, An investigation of the Therac-
25 accidents, Computer, 26(7): 18–41, 1993.

4. J. Ladd, Collective and individual moral responsibility in
engineering: some questions, IEEE Technology and Society
Magazine, 1(2): 3–10, 1982.

5. H. Nissenbaum, Computing and accountability, Communica-
tions of the ACM, 37(1): 73–80, 1994.

6. B. Friedman and H. Nissenbaum, Bias in computer systems,
ACM Transa. Informa. Sys., 14(3): 330–347, 1996.

7. C. Kaner, Blog: Software customer bill of right. Available: from
http://www.satisfice.com/kaner/.

8. K. Miller, Software informed consent: docete emptorem,
not caveat emptor, Science Engineer. Ethics, 4(3): 357–362,
1998.

9. G. D. Friedlander, The case of the three engineers vs. BART,
IEEE Spectrum, 11(10): 69–76, 1974.

10. R. Anderson, D. G. Johnson, D. Gotterbarn, and J. Perrolle,
Using the new ACM code of ethics in decision making, Com-
munications ACM, 36(2): 98–107, 1993.

11. D. Gotterbarn, K. Miller, and S. Rogerson, Software engineer-
ing code of ethics is approved, Communications ACM, 42(10):
102–107, 1999.

12. M. Davis, Thinking like an engineer: the place of a code of ethics
in the practice of a profession, Philosophy and Public Affairs,
20(2): 150–167, 1991.

13. D. Gotterbarn, Computing professionals and your responsibil-
ities: virtual information and the software engineering code of
ethics, in D. Langford (ed.), Internet Ethics, New York: St.
Martin’s Press, 2000, pp. 200–219.

14. W. Maner, Heuristic methods for computer ethics, Metaphilo-
sophy, 33(3): 339–365, 2002.

15. D. L. Mathison, Teaching an ethical decision model that skips
the philosophers and works for real business students, Pro-
ceedings, National Academy of Management, New Orleans:
1987, pp. 1–9.

16. W. R. Collins and K. Miller, A paramedic method for computing
professionals, J. Sys. Software, 17(1): 47–84, 1992.

17. ‘‘United States Department of Defense. Joint ethics regulation
DoD 5500.7-R.’’ 1999. Available: http://www.defenselink.mil/
dodg/defense_ethics/ethics_regulation/jerl-4.doc.

18. N. Wiener, Cybernetics: or the Control and Communication
in the Animal and the Machine, Cambridge, MA: MIT Press,
1965.

ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING 11



19. J. Weizenbaum, Computer Power and Human Reason:
From Judgment to Calcution, New York: WH Freeman &
Co., 1976.

20. L. Floridi and J. Sanders On the morality of artificial agents,
Minds and Machines, 14(3): 349–379, 2004.

21. K. Himma, There’s something about Mary: the moral value of
things qua information objects, Ethics Informat. Technol.,
6(3): 145–159, 2004.

FURTHER READING

D. G. Johnson, Professional ethics, in Computer Ethics, 3rd ed.,
Upper Saddle River, NJ: Prentice Hall, 2001, pp. 54–80.

M. J. Quinn, Professional ethics, in Ethics for the Information Age,
Boston, MA: Pearson/Addison-Wesley, 2005, pp. 365–403.

H. Tavani, Professional ethics, codes of conduct, and moral respon-
sibility, in Ethics and Technology: Ethical Issues in an Age of
Information and Communication Technology, New York: Wiley,
2004, pp. 87–116.

MICHAEL C. LOUI

University of Illinois at
Urbana-Champaign

Urbana, Illinois

KEITH W. MILLER

University of Illinois at
Springfield

Springfield, Illinois

12 ETHICS AND PROFESSIONAL RESPONSIBILITY IN COMPUTING



F

FIXED-POINT COMPUTER ARITHMETIC

INTRODUCTION

This article begins with a brief discussion of the two’s
complement number system in the section on ‘‘Number
Systems.’’ The section on ‘‘Arithmetic Algorithms’’ provides
examples of implementations of the four basic arithmetic
operations (i.e., add, subtract, multiply, and divide).

Regarding notation, capital letters represent digital
numbers (i.e., n-bit words), whereas subscripted lowercase
letters represent bits of the corresponding word. The sub-
scripts range from n – 1 to 0 to indicate the bit position
within the word (xn�1 is the most significant bit of X, x0 is
the least significant bit of X, etc.). The logic designs pre-
sented in this chapter are based on positive logic with AND,
OR, and INVERT operations. Depending on the technology
used for implementation, different logical operations (such
as NAND and NOR) or direct transistor realizations may be
used, but the basic concepts do not change significantly.

NUMBER SYSTEMS

At the current time, fixed-point binary numbers are repre-
sented generally using the two’s complement number sys-
tem. This choice has prevailed over the sign magnitude and
one’s complement number systems, because the frequently
performed operations of addition and subtraction are
easiest to perform on two’s complement numbers. Sign
magnitude numbers are more efficient for multiplication,
but the lower frequency of multiplication and the develop-
ment of the efficient Booth’s two’s complement multiplica-
tion algorithm have resulted in the nearly universal
selection of the two’s complement number system for
most implementations. The algorithms presented in this
article assume the use of two’s complement numbers.

Fixed-point number systems represent numbers, for
example A, by n bits: a sign bit, and n�1 ‘‘data’’ bits. By
convention, the most significant bit, an�1, is the sign bit,
which is generally a ONE for negative numbers and a ZERO
for positive numbers. The n�1 data bits are an�2, an�3,. . .,
a1, a0. In the two’s complement fractional number system,
the value of a number is the sum of n�1 positive binary
fractional bits and a sign bit which has a weight of �1:

A ¼ �an�1 þ
Xn�2

i¼0

ai2
i�nþ1 ð1Þ

Examples of 4-bit fractional two’s complement fractions
are shown in Table 1. Two points are evident from the table:
First, only a single representation of zero exists (specifically
0000) and second, the system is not symmetric because a
negative number exists, �1, (1000), for which no positive
equivalent exists. The latter property means that taking
the absolute value of, negating or squaring a valid number
(�1) can produce a result that cannot be represented.

Two’s complement numbers are negated by inverting all
bits and adding a ONE to the least significant bit position.
For example, to form �3/8:

Truncation of two’s complement numbers never increa-
ses the value of the number. The truncated numbers have
values that are either unchanged or shifted toward nega-
tive infinity. This shift may be seen from Equation (1), in
which any truncated digits come from the least significant
end of the word and have positive weight. Thus, to remove
them will either leave the value of the number unchanged
(if the bits that are removed are ZEROs) or reduce the value
of the number. On average, a shift toward �1 of one-half
the value of the least significant bit exists. Summing many
truncated numbers (which may occur in scientific, matrix,
and signal processing applications) can cause a significant
accumulated error.

 +3/8 = 0011 

 invert all bits = 1100 

 add 1    0001

     1101 = –3/8 

Check: invert all bits = 0010 

 add 1    0001

     0011 = 3/8 

Table 1. 4-Bit fractional two’s complement numbers

Decimal Fraction Binary Representation

þ7/8 0111
þ3/4 0110
þ5/8 0101
þ1/2 0100
þ3/8 0011
þ1/4 0010
þ1/8 0001
þ0 0000
�1/8 1111
�1/4 1110
�3/8 1101
�1/2 1100
�5/8 1011
�3/4 1010
�7/8 1001
�1 1000

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



ARITHMETIC ALGORITHMS

This section presents a reasonable assortment of typical
fixed-point algorithms for addition, subtraction, multipli-
cation, and division.

Addition

Addition is performed by summing the corresponding bits
of the two n-bit numbers, which includes the sign bit.
Subtraction is performed by summing the corresponding
bits of the minuend and the two’s complement of the
subtrahend.

Overflow is detected in a two’s complement adder by
comparing the carry signals into and out of the most

significant adder stage (i.e., the stage which computes
the sign bit). If the carries differ, the addition has over-
flowed and the result is invalid. Alternatively, if the sign
of the sum differs from the signs of the two operands, the
addition has overflowed.

ADDITION IMPLEMENTATION

A wide range of implementations exist for fixed point
addition, which include ripple carry adders, carry looka-
head adders, and carry select adders. All start with a full
adder as the basic building block.

Full Adder

The full adder is the fundamental building block of most
arithmetic circuits. The operation of a full adder is defined
by the truth table shown in Table 2. The sum and carry
outputs are described by the following equations:

sk ¼ ak�bk�ck ð2Þ

ckþ1 ¼ akbk þ akck þ bkck ð3Þ

where ak, bk, and ck are the inputs to the k-th full adder
stage, and sk and ckþ1 are the sum and carry outputs,
respectively, and � denotes the Exclusive-OR logic opera-
tion.

In evaluating the relative complexity of implementa-
tions, often it is convenient to assume a nine-gate realiza-
tion of the full adder, as shown in Fig. 1. For this
implementation, the delay from either ak or bk to sk is six
gate delays and the delay from ck to ckþ1 is two gate delays.
Some technologies, such as CMOS, form inverting gates
(e.g., NAND and NOR gates) more efficiently than the
noninverting gates that are assumed in this article. Cir-
cuits with equivalent speed and complexity can be con-
structed with inverting gates.

Ripple Carry Adder

A ripple carry adder for n-bit numbers is implemented by
concatenating n full adders, as shown in Fig. 2. At the k-th
bit position, bits ak and bk of operands A and B and the carry
signal from the preceding adder stage, ck, are used to
generate the kth bit of the sum, sk, and the carry, ck+1, to

Table 2. Full adder truth table

Inputs Outputs

ak bk ck ckþ1 sk

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

= 0011 3/8 

= 0100+ 1/2 

= 7/8    0111 

= 1101 – 3/8 

= 1100– 1/2 

= –7/8  (1) 1001 Ignore Carry Out 

= 0011 3/8 

= 1100– 1/2 

= –1/8    1111  

= 1101 – 3/8 

= 0100+ 1/2 

= 1/8  (1) 0001 Ignore Carry Out 

= 0101 5/8  

= 0100+ 1/2  

MSB C in ≠ Cout = –7/8    1001  

= 1011 – 5/8  

= 1100– 1/2  

MSB C in ≠ Cout = 7/8    0111  

2 FIXED-POINT COMPUTER ARITHMETIC



the next adder stage. This adder is called a ripple carry
adder, because the carry signals ‘‘ripple’’ from the least
significant bit position to the most significant.

If the ripple carry adder is implemented by concatenat-
ing n of the nine gate full adders, which were shown in
Fig. 1, an n-bit ripple carry adder requires 2n þ 4 gate
delays to produce the most significant sum bit and 2n þ 3
gate delays to produce the carry output. A total of 9n logic
gates are required to implement the n-bit ripple carry
adder. In comparing the delay and complexity of adders,
the delay from data input to most significant sum output
denoted by DELAY and the gate count denoted by GATES
will be used. These DELAY and GATES are subscripted by
RCA to indicate ripple carry adder. Although these simple
metrics are suitable for first-order comparisons, more accu-
rate comparisons require more exact modeling because the
implementations may be realized with transistor networks
(as opposed to gates), which will have different delay and
complexity characteristics.

DELAYRCA ¼ 2nþ 4 ð4Þ
GATESRCA ¼ 9n ð5Þ

Carry Lookahead Adder

Another popular adder approach is the carry lookahead
adder (1,2). Here, specialized logic computes the carries
in parallel. The carry lookahead adder uses eight gate
modified full adders that do not form a carry output
for each bit position and lookahead modules, which
form the carry outputs. The carry lookahead concept is
best understood by rewriting Equation (3) with gk ¼ akbk

and pk ¼ ak þ bk.

ckþ1 ¼ gk þ pkck ð6Þ

This equation helps to explain the concept of carry
‘‘generation’’ and ‘‘propagation’’: A bit position ‘‘generates’’
a carry regardless of whether there is a carry into that bit
position if gk is true (i.e., both ak and bk are ONEs), and a
stage ‘‘propagates’’ an incoming carry to its output if pk is
true (i.e., either ak or bk is a ONE). The eight-gate modified
full adder is based on the nine-gate full adder shown on
Fig. 1. It has AND and OR gates that produce gk and pk with
no additional complexity.

Extending Equation (6) to a second stage:

ckþ2 ¼ gkþ1 þ pkþ1ckþ1

¼ gkþ1 þ pkþ1ðgk þ pkckÞ
¼ gkþ1 þ pkþ1gk þ pkþ1pkck ð7Þ

Equation (7) results from evaluating Equation (6) for the
(k þ 1)th stage and substituting ckþ1 from Equation (6).
Carry ck+2 exits from stage kþ1 if: (1) a carry is generated
there, (2) a carry is generated in stage k and propagates
across stage kþ1, or (3) a carry enters stage k and propa-
gates across both stages k and kþ1, etc. Extending to a
third stage:

ckþ3 ¼ gkþ2 þ pkþ2ckþ2

¼ gkþ2 þ pkþ2ðgkþ1 þ pkþ1gk þ pkþ1pkckÞ
¼ gkþ2 þ pkþ2gkþ1 þ pkþ2pkþ1gk þ pkþ2pkþ1pkck ð8Þ

Although it would be possible to continue this process
indefinitely, each additional stage increases the fan-in
(i.e., the number of inputs) of the logic gates. Four inputs
[as required to implement Equation (8)] frequently are
the maximum number of inputs per gate for current
technologies. To continue the process, block generate
and block propagate signals are defined over 4-bit blocks

an–1

sn–1cn

cn–1

bn–1 a2

s2

c2

b2 a1

s1

c1

b1 a0

s0

c0

b0

Full

Adder

Full

Adder

Full

Adder

Full

Adder

Figure 2. Ripple carry adder.

c k+1

ak

bk

c k

s k

HALF ADDER
HALF ADDER

Figure 1. Nine gate full adder

.

FIXED-POINT COMPUTER ARITHMETIC 3



(stages k to k + 3), gk:k þ 3 and pk:k þ 3, respectively:

gk:kþ3 ¼ gkþ3 þ pkþ3gkþ2 þ pkþ3pkþ2gkþ1

þ pkþ3pkþ2pkþ1gk

ð9Þ

and

pk:kþ3 ¼ pkþ3pkþ2pkþ1pk ð10Þ

Equation (6) can be expressed in terms of the 4-bit block
generate and propagate signals:

ckþ4 ¼ gk:kþ3 þ pk:kþ3ck ð11Þ

Thus, the carry out from a 4-bit wide block can be

computed in only four gate delays [the first to comp-
ute pi and gi for i ¼ k through k þ 3, the second to
evaluate pk:k þ 3, the second and third to evaluate
gk:k þ 3, and the third and fourth to evaluate ck þ 4 using
Equation (11)].

An n-bit carry lookahead adder requires d ðn� 1Þ=
ðr� 1Þ e lookahead logic blocks, where r is the width of
the block. A 4-bit lookahead logic block is a direct imple-
mentation of Equations (6)–(10), with 14 logic gates. In
general, an r-bit lookahead logic block requires 1

2ð3rþ r2Þ
logic gates. The Manchester carry chain (3) is an
alternative switch-based technique to implement a looka-
head logic block.

Figure 3 shows the interconnection of 16 adders and five
lookahead logic blocks to realize a 16-bit carry lookahead
adder. The events that occur during an add operation are:

a3s3

c3

b3 a2 b2 a1 b1 a0 c0b0

Modified

Full

Adder

s2 s1 s0

Lookahead Logic

p3 g3 c2p2 g2 c1p1 g1 p0 g0

a7s7

c7

b7 a6 b6 a5 b5 a4

c4

b4s6 s5 s4

p7 g7 c6p6 g6 c5p5 g5 p4 g4

a11s11

c11

b11 a10 b10 a9 b9 a8

c8

b8s10 s9 s8

p11 g11 c10p10 g10 c9p9 g9 p8 g8

a15s15

c15

b15 a14 b14 a13 b13 a12

c12

b12s14 s13 s12

p15 g15 c14p14 g14 c13p13 g13 p12

Lookahead Logic

Lookahead Logic

Lookahead Logic

g12

Lookahead Logic

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

Modified

Full

Adder

p0:3 g0:3

p4:7 g4:7

p8:11 g8:11

p12:15 g12:15

p0:15
g0:15

c16

Figure 3. 16-bit carry lookahead adder.

4 FIXED-POINT COMPUTER ARITHMETIC



(1) apply A, B, and carry in signals at time 0, (2) each
modified full adder computes P and G, at time 1, (3) first
level lookahead logic computes the 4-bit block propagate at
time 2 and block generate signals by time 3, (4) second level
lookahead logic computes c4, c8, and c12, at time 5, (5) first
level lookahead logic computes the individual carries at
time 7, and (6) each modified full adder computes the sum
outputs at time 10. This process may be extended to larger
adders by subdividing the large adder into 16-bit blocks and
by using additional levels of carry lookahead (e.g., a 64-bit
adder requires three levels).

The delay of carry lookahead adders is evaluated by
recognizing that an adder with a single level of carry looka-
head (for r-bit words) has six gate delays, and that each
additional level of lookahead increases the maximum word
size by a factor of r and adds four gate delays. More gen-
erally, the number of lookahead levels for an n-bit adder is
dLogrn e where r is the ‘‘width’’ of the lookahead logic block
(generally equal to the maximum number of inputs per logic
gate). Because an r-bit carry lookahead adder has six gate
delays and four additional gate delays exist per carry looka-
head level after the first,

DELAYCLA ¼ 2þ 4 dLogrn e ð12Þ

The complexity of an n-bit carry lookahead adder imple-
mented with r-bit lookahead logic blocks is n modified full
adders (each of which requires eight gates) and d ðn� 1Þ=
ðr� 1Þ e lookahead logic blocks (each of which requires
1
2ð3rþ r2Þ gates). In addition, two gates are used to calculate
the carry out from the adder, cn, from p0:n�1 and g0:n�1.

GATESCLA ¼ 8nþ 1
2 ð3rþ r2Þ d ðn� 1Þ=ðr� 1Þ eþ 2 ð13Þ

If r ¼ 4

GATESCLA� 12 2
3 n� 2 2

3 ð14Þ

The carry lookahead approach reduces the delay of
adders from increasing in proportion to the word size (as
is the case for ripple carry adders) to increasing in propor-
tion to the logarithm of the word size. As with ripple carry
adders, the carry lookahead adder complexity grows line-
arly with the word size (for r ¼ 4, the complexity of a carry
lookahead adder is about 40% greater than the complexity

of a ripple carry adder). It is important to realize that most
carry lookahead adders require gates with up to 4 inputs,
whereas ripple carry adders use only inverters and two
input gates.

Carry Select Adder

The carry select adder divides the words to be added into
blocks and forms two sums for each block in parallel
(one with a carry in of ZERO and the other with a carry
in of ONE). As shown for a 16-bit carry select adder in Fig. 4,
the carry out from the previous block controls a multiplexer
that selects the appropriate sum. The carry out is computed
using Equation (11), because the block propagate signal is
the carry out of an adder with a carry input of ONE, and the
block generate signal is the carry out of an adder with a
carry input of ZERO.

If a constant block width of k is used, dn=k e blocks will
exist and the delay to generate the sum is 2k þ 3 gate
delays to form the carry out of the first block, two gate
delays for each of the dn=k e � 2 intermediate blocks, and
three gate delays (for the multiplexer) in the final block.
To simplify the analysis, the ceiling function in the count
of intermediate blocks is ignored. The total delay is
thus

DELAYC�SEL ¼ 2kþ 2n=kþ 2 ð15Þ

where DELAYC–SEL is the total delay. The optimum block
size is determined by taking the derivative of DELAYC–SEL

with respect to k, setting it to zero, and solving for k. The
result is

k ¼ n:5 ð16Þ
DELAYC�SEL ¼ 2þ 4n:5 ð17Þ

The complexity of the carry select adder is 2n� k ripple
carry adder stages, the intermediate carry logic and
ð dn=k e � 1Þ k-bit wide 2:1 multiplexers for the sum bits
and one 1-bit wide multiplexer for the most significant
carry output.

GATESC�SEL ¼ 21n� 12kþ 3 dn=k e � 2 ð18Þ

This result is somewhat more than twice the complexity of
a ripple carry adder.

4-Bit RCA

c0a3:0 b3:0

4-Bit RCA

a7:4 b7:4

s3:0

c4

4-Bit RCA

s7:4

1

0

2:1 MUX

4-Bit RCA

a11:8 b11:8

4-Bit RCA

s11:8

1

0

2:1 MUX

4-Bit RCA

a15:12 b15:12

4-Bit RCA

s15:12

1

0
g7:4

p7:4

c8c12

g11:8

p11:8

c16

2:1 MUX 2:1 MUX

Figure 4. 16-bit carry select adder.

FIXED-POINT COMPUTER ARITHMETIC 5



Slightly better results can be obtained by varying the
width of the blocks. The optimum is to make the two least
significant blocks the same size and make each successively
more significant block one bit larger than its predecessor.
With four blocks, this gives an adder that is 3 bits wider
than the conventional carry select adder.

SUBTRACTION

As noted previously, subtraction of two’s complement num-
bers is accomplished by adding the minuend to the inverted
bits of the subtrahend and adding a one at the least
significant position. Figure 5 shows a two’s comple-
ment subtracter that computes A – B. The inverters com-
plement the bits of B; the formation of the two’s complement
is completed by setting the carry into the least significant
adder stage to a ONE.

MULTIPLICATION

The bit product matrix of a 5-bit by 5-bit multiplier for
unsigned operands is shown on Fig. 5. The two operands, A
and B, are shown at the top, followed by n rows (each
consisting of n bit products) that compose the bit product
matrix. Finally, the product (2n bits wide) is at the bottom.

Several ways exist to implement a multiplier. One
of the oldest techniques is to use an n bit wide adder to
sum the rows of the bit product matrix in a row by row
fashion. This process can be slow because n � 1 cycles
(each long enough to complete an n bit addition) are
required. If a ripple carry adder is used, the time to
multiply two n-bit numbers is proportional to n2. If a
fast adder such as a carry lookahead adder is used, the
time is proportional to n Log2 (n).

Booth Multiplier

The Booth multiplier (4) and the modified Booth multiplier
are attractive for two’s complement multiplication, because
they accept two’s complement operands, produce a two’s
complement product, directly, and are easy to implement.
The sequentialBooth multiplier requires n cycles to formthe
product of a pair of n-bit numbers, where each cycle consists
of an n-bit addition and a shift, an n-bit subtraction and a
shift, or a shift without any other arithmetic operation. The
radix-4 modified Booth multiplier (2) takes half as many
cycles as the ‘‘standard’’ Booth multiplier, although
the operations performed during each cycle are slightly
more complex (because it is necessary to select one of five
possible addends, namely, �2B, �B, or 0 instead of one of
three).

Modified Booth Multiplier

To multiply A B, the radix-4 modified Booth multiplier [as
described by MacSorley (2)] uses n/2 cycles where each cycle
examines three adjacent bits of A, adds or subtracts 0, B, or
2B to the partial product and shifts the partial product two
bits to the right. Figure 7 shows a flowchart for a radix-4
modified Booth multiplier. After an initialization step, there
are n/2 passes through a loop where three bits of A are tested
and the partial product P is modified. This algorithm takes
half the number of cycles of the ‘‘standard’’ Booth multiplier
(4), although the operations performed during a cycle are
slightlymore complex (because it isnecessary to select one of
four possible addends instead of one of two). Extensions to
higher radices that examine more than three bits per cycle
(5) are possible, but generally not attractive because the
addition/subtraction operations involve nonpower of two

b4 b3 b2 b1 b0

a4 a3 a2 a1 a0

a0 b4 a0 b3 a0 b2 a0 b1 a0 b0

a1 b4 a1 b3 a1 b2 a1 b1 a1 b0

a2 b4 a2 b3 a2 b2 a2 b1 a2 b0

a3 b4 a3 b3 a3 b2 a3 b1 a3 b0

a4 b4 a4 b3 a4 b2 a4 b1 a4 b0

p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Figure 6. 5-bit by 5-bit multiplier for unsigned operands.

an-1

sn-1cn

bn-1 a2

s2

b2 a1

s1

b1 a0

s0

c0

b0

n-Bit Adder 1

Figure 5. Two’s complement subtracter.

6 FIXED-POINT COMPUTER ARITHMETIC



multiples of B (such as 3B, 5B, etc.), which raises the
complexity.

The delay of the radix-4 modified Booth multiplier is
relatively high because an n-bit by n-bit multiplication
requires n/2 cycles in which each cycle is long enough to
perform an n-bit addition. It is low in complexity because it
requires only a few registers, an n-bit 2:1 multiplexer, an
n-bit adder/subtracter, and some simple control logic for its
implementation.

Array Multipliers

A more hardware-intensive approach to multiplication
involves the combinational generation of all bit products
and their summation with an array of full adders. The bit
product matrix of a 5-bit by 5-bit array multiplier for two’s
complement numbers (based on Ref. 6, p. 179) is shown in
Fig. 8. It consists of a 5 by 5 array of bit product terms where
most terms are of the form ai AND bj. The terms along the

left edge and the bottom row are the complement of the
normal terms (i.e., a4 NAND b0) as indicated by the over
bar. The most significant term a4b4 is not complemented.
Finally, ONEs are added at the sixth and tenth columns. In
practice, the ONE at the tenth column is usually omitted.

Figure 9 shows an array multiplier that implements a
6-bit by 6-bit array multiplier realizing the algorithm
shown on Fig. 8. It uses a 6 column by 6 row array of cells
to form the bit products and do most of the summation and
five adders (at the bottom of the array) to complete the
evaluation of the product. Five types of cells are used in the
square array: AND gate cells (marked G in Fig. 9) that form
xiyj, NAND gate cells (marked NG) that form x5 NAND yj,
half adder cells (marked HA) that sum the second input to
the cell with xiyj, full adder cells (marked FA) that sum the
second and third inputs to the cell with xiyj, and special full
adder cells (marked NFA) that sum the second and third
inputs to the cell with xi NAND y5. A special half adder,
�HA, (that forms the sum of its two inputs and 1) and

  P = 0
   i = 0
a–1 = 0

ai+1, a , a –1

000
  or 
111

001
  or 
010

011 100
101
  or 
110

P = P + B P = P + 2B P = P – 2B P = P – B

i : n P = 4 P
i = i + 2

LT

GE

P = A B

ii

Figure 7. Flowchart of radix-4 modified booth multiplication.

b4 . b3 b2 b1 b0

a4 . a3 a2 a1 a0

 1 a0 b4

____
  a0 b3 a0 b2 a0 b1 a0 b0

a1 b4

____
  a1 b3 a1 b2 a1 b1 a1 b0

a2 b4

____
  a2 b3 a2 b2 a2 b1 a2 b0

a3 b4

____
  a3 b3 a3 b2 a3 b1 a3 b0

a1 4 b4 a4 b3

____
  a4 b2

____
  a4 b1

____
  a4 b0

____

p9 p8 . p7 p6 p5 p4 p3 p2 p1 p0

Figure 8. 5-bit by 5-bit multiplier for two’s complement operands

.

FIXED-POINT COMPUTER ARITHMETIC 7



standard full adders are used in the five-cell strip at the
bottom. The special half adder takes care of the extra 1 in
the bit product matrix.

The delay of the array multiplier is evaluated by follow-
ing the pathways from the inputs to the outputs. The
longest path starts at the upper left corner, progresses
to the lower right corner, and then progresses across
the bottom to the lower left corner. If it is assumed that
the delay from any adder input (for either half or full
adders) to any adder output is k gate delays, then the total
delay of an n-bit by n-bit array multiplier is:

DELAYARRAY MPY ¼ kð2n� 2Þ þ 1 ð19Þ

The complexity of the array multiplier is n2 AND and
NAND gates, n half adders (one of which is a �half adder),
and n2 � 2n full adders. If a half adder is realized with four
gates and a full adder with nine gates, the total complexity
of an n-bit by n-bit array multiplier is

GATESARRAY MPY ¼ 10n2 � 14n ð20Þ

Array multipliers are laid out easily in a cellular fashion
which makes them attractive for VLSI implementation,
where minimizing the design effort may be more important
than maximizing the speed.

Wallace/Dadda Fast Multiplier

A method for fast multiplication was developed by Wallace
(7) and was refined by Dadda (8). With this method, a three-
step process is used to multiply two numbers: (1) The bit
products are formed, (2) the bit product matrix is ‘‘reduced’’
to a two row matrix whose sum equals the sum of the bit
products, and (3) the two numbers are summed with a fast
adder to produce the product. Although this may seem to be

a complex process, it yields multipliers with delay propor-
tional to the logarithm of the operand word size, which is
‘‘faster’’ than the array multiplier, which has delay propor-
tional to the word size.

The second step in the fast multiplication process is
shown for a 6-bit by 6-bit Dadda multiplier on Fig. 10.
An input 6 by 6 matrix of dots (each dot represents a bit
product) is shown as matrix 0. ‘‘Regular dots’’ are formed
with an AND gate, and dots with an over bar are formed
with a NAND gate. Columns that have more than four dots
(or that will grow to more than four dots because of carries)
are reduced by the use of half adders (each half adder takes
in two dots and outputs one in the same column and one in
the next more significant column) and full adders (each full
adder takes in three dots from a column and outputs one in
the same column and one in the next more significant
column) so that no column in matrix 1 will have more
than four dots. Half adders are shown by two dots connected
by a ‘‘crossed’’ line in the succeeding matrix and full adders
are shown by two dots connected by a line in the succeeding
matrix. In each case, the right-most dot of the pair that are
connected by a line is in the column from which the inputs
were taken in the preceding matrix for the adder. A special
half adder (that forms the sum of its two inputs and 1) is
shown with a doubly crossed line. In the succeeding steps
reduction to matrix 2, with no more than three dots per
column, and finally matrix 3, with no more than two dots
per column, is performed. The reduction shown on Fig. 10
(which requires three full adder delays) is followed by an
10-bit carry propagating adder. Traditionally, the carry
propagating adder is realized with a carry lookahead adder.

The height of the matrices is determined by working
back from the final (two row) matrix and limiting the height
of each matrix to the largest integer that is no more than 1.5

sc c c c cs s s s

G

NG G G G G

FA FA FA FA HA

HA HA HA HA

x0

y0

y 5

FA FA FA FA

y1

y2

y3

y4

p0

p5

p1

p2

p3

p4

x2x3x5 x1x4

p6p8p9 p7p10

G

HA
scs c c s c s c s

FA
scs c c s c s c s

scs c c s c s c s
FA FA FA FA FA

FA FA FA FA FA
scs c c s c s c s

NFA
scs c c s c s c s

*

NFA NFA NFA NFA

NG

NG

NG

NG

Figure 9. 6-bit by 6-bit two’s complement array multiplier.

8 FIXED-POINT COMPUTER ARITHMETIC



times the height of its successor. Each matrix is produced
from its predecessor in one adder delay. Because the num-
ber of matrices is related logarithmically to the number of
rows in matrix 0, which is equal to the number of bits in the
words to be multiplied, the delay of the matrix reduction
process is proportional to log n. Because the adder that
reduces the final two row matrix can be implemented as a
carry lookahead adder (which also has logarithmic delay),
the total delay for this multiplier is proportional to the
logarithm of the word size.

The delay of a Dadda multiplier is evaluated by following
the pathways from the inputs to the outputs. The longest
path starts at the center column of bit products (which
require one gate delay to be formed), progresses through
the successive reduction matrices (which requires approxi-
mately Log1.44 (n) full adder delays) and finally through the
2n – 2-bit carry propagate adder. If the delay from any
adder input (for either half or full adders) to any adder
output is k gate delays, and if the carry propagate adder
is realized with a carry lookahead adder implemented with
4-bit lookahead logic blocks (with delay given by
Equation (12), the total delay (in gate delays) of an n-bit
by n-bit Dadda multiplier is:

DELAYDADDA MPY ¼ 1þ k LOG1:44ðnÞ þ 2

þ 4 dLogrð2n� 2Þ e ð21Þ

The complexity of a Dadda multiplier is determined by
evaluating the complexity of its parts. n2 gates (2n � 2 are
NAND gates, the rest are AND gates) to form the bit

product matrix exist, (n� 2)2 full adders, n� 1 half adders
and one special half adder for the matrix reduction and a
2n� 2-bit carry propagate adder for the addition of the final
two row matrix. If the carry propagate adder is realized
with a carry lookahead adder (implemented with 4-bit
lookahead logic blocks), and if the complexity of a full adder
is nine gates and the complexity of a half adder (either
regular or special) is four gates, then the total complexity
is:

GATESDADDA MPY ¼ 10n2 � 6
2

3
n� 26 ð22Þ

The Wallace tree multiplier is very similar to the Dadda
multiplier, except that it does more reduction in the first
stages of the reduction process, it uses more half adders,
and it uses a slightly smaller carry propagating adder. A dot
diagram for a 6-bit by 6-bit Wallace tree multiplier for two’s
complement operands is shown on Fig. 11. This reduction
(which requires three full adder delays) is followed by an 8-
bit carry propagating adder. The total complexity of the
Wallace tree multiplier is a bit greater than the total
complexity of the Dadda multiplier. In most cases, the
Wallace and Dadda multipliers have about the same delay.

DIVISION

Two types of division algorithms are in common use: digit
recurrence and convergence methods. The digit recurrence
approach computes the quotient on a digit-by-digit basis,

MATRIX 0

MATRIX 1

MATRIX 2

MATRIX 3

1

Figure 10. 6-bit by 6-bit two’s complement Dadda multiplier.

FIXED-POINT COMPUTER ARITHMETIC 9



hence they have a delay proportional to the precision of the
quotient. In contrast, the convergence methods compute an
approximation that converges to the value of the quotient.
For the common algorithms the convergence is quadratic,
which means that the number of accurate bits approxi-
mately doubles on each iteration.

The digit recurrence methods that use a sequence of
shift, add or subtract, and compare operations are rela-
tively simple to implement. On the other hand, the con-
vergence methods use multiplication on each cycle. This
fact means higher hardware complexity, but if a fast
multiplier is available, potentially a higher speed may
result.

Digit Recurrent Division

The digit recurrent algorithms (9) are based on selecting
digits of the quotient Q (where Q ¼ N/D) to satisfy the
following equation:

Pkþ1 ¼ rPk � qn�k�1D for k ¼ 1; 2; . . . ; n� 1 ð23Þ

where Pk is the partial remainder after the selection of the
kth quotient digit, P0 ¼ N (subject to the constraint |P0|<
|D|), r is the radix, qn�k�1 is the kth quotient digit to the
right of the binary point, and D is the divisor. In this
subsection, it is assumed that both N and D are positive,
see Ref. 10 for details on handling the general case.

Binary SRT Divider

The binary SRT division process (also known as radix-2
SRT division) selects the quotient from three candidate
quotient digits {�1, 0}. The divisor is restricted to .5 �
D< 1. A flowchart of the basic binary SRT scheme is shown
in Fig. 12. Block 1 initializes the algorithm. In step 3, 2 Pk

and the divisor are used to select the quotient digit. In step
4, Pk+1 ¼ 2 Pk � q D. Step 5 tests whether all bits of the
quotient have been formed and goes to step 2 if more need to
be computed. Each pass through steps 2–5 forms one digit of
the quotient. The result upon exiting from step 5 is a
collection of n signed binary digits.

Step 6 converts the n digit signed digit number into an n-
bit two’s complement number by subtracting, N, which has a
1 for each bit position where qi ¼ �1 and 0 elsewhere from,
P, which has a 1 for each bit position where qi ¼ 1 and 0
elsewhere. For example:

MATRIX 0

MATRIX 1

MATRIX 2

MATRIX 3

1

Figure 11. 6-bit by 6-bit Two’s Complement Wallace Multiplier.

P = 0 . 1 1 0 0 1

N = 0 . 0 0 1 0 0 

Q = 0 . 1 1 0 0 1 – 0 . 0 0 1 0 0 

Q = 0 . 1 1 0 0 1 + 1 . 1 1 1 0 0 

Q = 0 . 1 0 1 0 1  = 21/32 

Q = 0 . 1 1 –1 0 1  = 21/32 

10 FIXED-POINT COMPUTER ARITHMETIC



The selection of the quotient digit can be visualized with
a P-D Plot such as the one shown in Fig. 13. The plot shows
the divisor along the x axis and the shifted partial remain-
der (in this case 2 Pk) along the y-axis. In the area where 0.5
�D< 1, values of the quotient digit are shown as a function
of the value of the shifted partial remainder. In this case,
the relations are especially simple. The digit selection and
resulting partial remainder are given for the k-th iteration

by the following relations:

If Pk > :5;

If � :5 < Pk < :5;

If Pk � �:5;

qn�k�1 ¼ 1

qn�k�1 ¼ 0

qn�k�1 ¼ �1

and Pkþ1 ¼ 2Pk � D

and Pkþ1 ¼ 2Pk

and Pkþ1 ¼ 2Pk þ D

ð24Þ

ð25Þ

ð26Þ

Computing an n-bit quotient will involve selecting n quo-
tient digits and up to n þ 1 additions.

1.  P0 = N

      k = –1

2.  k = k + 1

3.  Select qn-k-1

Based on 2 Pk & D

     5.

k : n – 1

LT

6.  Form P & N

     Q = P – N

Q = N/D

4.   Pk+1 = 2 Pk – qn-k-1 D

GE

Figure 12. Flowchart of binary SRT division.

2

1

0

–1

–2

10.750.50.25

qi = 1

qi = 0

qi = –1

DIVISOR (D)

S
H

IF
T

E
D

 P
A

R
T

IA
L
 R

E
M

A
IN

D
E

R
 (

2
P

K
)

Figure 13. P-D plot for binary SRT division.

FIXED-POINT COMPUTER ARITHMETIC 11



Radix-4 SRT Divider

The higher radix SRT division process is similar to the
binary SRT algorithms. Radix 4 is the most common higher
radix SRT division algorithm with either a minimally
redundant digit set of {�2, �1, 0} or the maximally redun-
dant digit set of {�3, �2, �1, 0}. The operation of the
algorithm is similar to the binary SRT algorithm shown
on Fig. 12, except that in step 3, 4 Pk, and D are used to
determine the quotient digit. A P-D Plot is shown on Fig. 14
for the maximum redundancy version of radix-4 SRT
division. Seven values are possible for the quotient digit
at each stage. The test for completion in step 5 becomes
k : n

2�1. Also the conversion to two’s complement in step 6 is
modified slightly because each quotient digit provides two
bits of the P and N numbers that are used to form the two’s
complement number.

Newton–Raphson Divider

The second category of division techniques uses a multi-
plication-based iteration to compute a quadratically con-
vergent approximation to the quotient. In systems that
include a fast multiplier, this process may be faster than
the digit recurrent methods. One popular approach is the
Newton-Raphson algorithm that computes an approxima-
tion to the reciprocal of the divisor that is then multiplied by
the dividend toproduce the quotient.The process to compute
Q ¼ N/D consists of three steps:

1. Calculate a starting estimate of the reciprocal
of the divisor, R(0). If the divisor, D, is normalized
(i.e., 1

2 � D< 1), then R(0)¼ 3� 2D exactly computes 1/
D at D ¼ .5 and D ¼ 1 and exhibits maximum
error (of approximately 0.17) at D ¼ 1

2

:5
. Adjusting

R(0) downward to by half the maximum error
gives

Rð0Þ ¼ 2:915� 2D ð27Þ

This produces an initial estimate, that is within
about 0.087 of the correct value for all points in the
interval 1

2 � D< 1.

2. Compute successively more accurate estimates of the
reciprocal by the following iterative procedure:

Rðiþ1Þ ¼ RðiÞð2� D RðiÞÞ for i ¼ 0; 1; . . . ; k ð28Þ

3. Compute the quotient by multiplying the dividend
times the reciprocal of the divisor.

Q ¼ N RðkÞ ð29Þ

where i is the iteration count and N is the numerator.
Figure 15 illustrates the operation of the Newton–
Raphson algorithm. For this example, three itera-
tions (which involve a total of four subtractions and

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

10.750.50.25

qi = 3

qi = 2

qi = 1

qi = 0

qi = –1

qi = –2

qi = –3

DIVISOR (D)

S
H

IF
T

E
D

 P
A

R
T

IA
L
 R

E
M

A
IN

D
E

R
 (

4
P

k
)

Figure 14. P-D Plot for radix-4 maximally redundant SRT division.

12 FIXED-POINT COMPUTER ARITHMETIC



seven multiplications) produces an answer accurate
to nine decimal digits (approximately 30 bits).

With this algorithm, the error decreases quadratically
so that the number of correct bits in each approximation is
roughly twice the number of correct bits on the previous
iteration. Thus, from a 3.5-bit initial approximation, two
iterations produce a reciprocal estimate accurate to 14-bits,
four iterations produce a reciprocal estimate accurate to
56-bits, and so on.

The efficiency of this process is dependent on the availa-
bility of a fast multiplier, because each iteration of
Equation (28) requires two multiplications and a subtrac-
tion. The complete process for the initial estimate, three
iterations, and the final quotient determination requires
four subtraction operations and seven multiplication opera-
tions to produce a 16-bit quotient. This process is faster
than a conventional nonrestoring divider if multipli-
cation is roughly as fast as addition, which is a condition
that is satisfied for some systems that include a hardware
multiplier.

CONCLUSIONS

This article has presented an overview of the two’s
complement number system and algorithms for the basic
fixed-point arithmetic operations of addition, subtrac-
tion, multiplication, and division. When implementing

arithmetic units, often an opportunity exists to optimize
the performance and the complexity to match the
requirements of the specific application. In general,
faster algorithms require more area and power; often
it is desirable to use the fastest algorithm that will fit the
available area and power bugdets.

BIBLIOGRAPHY

1. A. Weinberger and J. L. Smith, A logic for high-speed addition,
National Bureau of Standards Circular, 591: 3–12, 1958.

2. O. L. MacSorley, High-speed arithmetic in binary computers,
Proceedings of the IRE, 49: 67–91, 1961.

3. T. Kilburn, D. B. G. Edwards, and D. Aspinall, A parallel
arithmetic unit using a saturated transistor fast-carry circuit,
Proceedings of the IEEE, Part B, 107: 573–584, 1960.

4. A. D. Booth, A signed binary multiplication technique, Quar-
terly J. Mechanics Appl. Mathemat., 4: 236–240, 1951.

5. H. Sam and A. Gupta, A generalized multibit recoding of two’s
complement binary numbers and its proof with application in
multiplier implementations, IEEE Trans. Comput., 39: 1006–
1015, 1990.

6. B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs, New York: Oxford University Press, 2000.

7. C. S. Wallace, A suggestion for a fast multiplier, IEEE Trans.
Electron. Comput, 13: 14–17, 1964.

8. L. Dadda, Some schemes for parallel multipliers, Alta Fre-
quenza, 34: 349–356, 1965.

= 1.415 (2 – .75 • 1.415)   

= 1.415 • .95875   

R(1) = 1.32833125 

R(2)  = R(1) (2 – B • R(1) 2 Multiplies, 1 Subtract ) 

R(1) = R(0) (2 – B • R(0) 2 Multiplies, 1 Subtract ) 

= 2.915 – 2 • .75 

R(0)

R(0)

1.415 = 

A = .625
B = .75

 = 2.915 – 2 • B 1 Subtract 

= 1.32833125 (2 – .75 • 1.32833125)   

= 1.32833125 • 1.00375156   

R (2) = 1.3333145677 

R(3) = R(2) (2 – B • R(2) 2 Multiplies, 1 Subtract ) 

= 1.3333145677 (2 – .75 • 1.3333145677)   

= 1.3333145677 • 1.00001407   

R(3)  = 1.3333333331 

= A • RQ (3) 1 Multiply  

= .625 • 1.3333333331  

= .83333333319 Q 

Figure 15. Example of Newton–Raphson division.

FIXED-POINT COMPUTER ARITHMETIC 13



9. J. E. Robertson, A new class of digital division methods, IEEE
Trans. Electr. Comput, 7: 218–222, 1958.

10. M. D. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Their Implementations, Boston,
MA: Kluwer Academic Publishers, 1994.

11. IEEE Standard for Binary Floating-Point Arithmetic, IEEE
Std 754–1985, Reaffirmed 1990.

12. M. D. Ercegovac and T. Lang, Digital Arithmetic, San
Francisco, CA: Morgan Kaufmann Publishers, 2004.

13. I. Koren, Computer Arithmetic Algorithms, 2nd Edition,
Natick, MA: A. K. Peters, 2002.

EARL E. SWARTZLANDER, JR.
University of Texas at Austin
Austin, Texas

14 FIXED-POINT COMPUTER ARITHMETIC



F

FLOATING-POINT COMPUTER ARITHMETIC

INTRODUCTION

The field of floating-point computer arithmetic is a subsec-
tion of computer engineering that concentrates on the
development and execution of arithmetic in microprocess-
ors. The floating-point sections of processor chips and
coprocessors are the units in a microprocessor that perform
most of the arithmetic operations for applications such as
3D graphics, multimedia, signal processing, Fourier trans-
forms, etc.

The floating-point format is a form of scientific notation.
A floating-point number may represent a vast range of real
numbers, with values ranging from nearly infinitely large
to nearly infinitely small, all in a finite bit-width. Although
many floating-point formats have been used (1), this chap-
ter is based on the IEEE-754 Standard (2) that is widely
used at the current time.

This article begins with a brief review of the IEEE-754
floating-point format in the section on floating-point num-
ber systems. The next section provides implementation
examples of the fundamental floating-point execution
units: the floating-point adder and the floating-point multi-
plier. Other floating-point mathematical operations are
derived from these two instructions, so most of the same
hardware is used. Finally, the section on other IEEE-754
specifications covers miscellaneous other aspects of the
IEEE-754 specifications, such as convert instructions,
denormalized numbers, and the representation of special
‘‘numbers’’ infinity and zero.

FLOATING-POINT NUMBER SYSTEMS

The IEEE-754 standard sets down specific rules and for-
mats for binary floating-point arithmetic. A processor that
follows every rule in the specification is considered ‘‘IEEE-
754 compliant.’’ Although some specialized machines [such
as DirectX graphics cards (3), CELL processors (4), etc.] are
not fully compliant with all parts of the standard, the
fundamentals of the specification are essentially universal
and should be understood by any engineer or scientist
developing a floating-point application.

The IEEE-754 standard defines a format that consists of
three parts: a sign bit, a significand, and a biased exponent.
Four standard formats are defined: single precision (stored
as a 32-bit number), single extended (often realized as
double precision), double precision (stored as a 64-bit num-
ber), and double extended (stored as greater than 78 bits).

The significand, which is a mixed number with a leading 1
for its integer part, takes the place of the fractional man-
tissa or the integer coefficient of previous floating-point
formats. The significand is a fixed point magnitude in the
range 1 � significand < 2. If the sign ¼ 1, then the number
is negative; if the sign ¼ 0, then the number is positive.
For single-precision numbers, the significand is a 24-bit
magnitude, for double-precision numbers it is a 53-bit
magnitude.

The biased exponent is an excess-127 integer for single
precision and excess-1023 for double precision. The use of
the word ‘‘biased’’ means that the stored integer value in the
exponent bits actually represents that integer number
minus the bias. The rationale behind biased exponents is
to allow an equal range of positive and negative exponents
(i.e., ‘127’ is the midpoint of the linear range in an 8-bit
unsigned binary field. Single-precision stored numbers
above this bias represent positive exponents and those
below are negative exponents).

With all bits combined, the value of a number, A, is given
by:

A ¼ ð�1Þsign A � significandA � 2exponent A�bias ð1Þ

Numbers stored by the processor are ‘‘packed’’ by first
normalizing the significand, which is done by removing the
integer 1. The remaining fraction bits, the sign bit, and
the biased exponent bits are then packed together into a
single entity that is stored. This use of normalized signifi-
cand packing and the removal of the ‘‘hidden one’’ for
storage provide one extra (free) bit of precision.

Following the standard, ‘‘single precision’’ numbers that
consist of 23 fraction bits, 8 biased exponent bits, and 1 sign
bit are stored in a 32-bit register or memory location. The
implicit ‘‘1’’ from the significand is not stored. Double-
precision numbers that consist of 52 fraction bits, 11 biased
exponent bits, and 1 sign bit are stored in a 64-bit register or
memory location. Figure 1 shows the bit partitioning of the
stored binary words.

To clarify the formats, consider the following example:
The decimal number 7.25 is to be saved in memory as a
single-precision number. As a fixed point number, it would
be represented in binary as:

7:25 ¼ 111; 01

The ‘‘;’’ is used throughout this chapter to represent the
binary point (i.e., the numeric split between the integers
and fractions) in binary numbers. Meanwhile, the same
decimal number stored as a single-precision floating-point
number is:

S Exp Fraction

0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign ¼ 0 ðsign ¼ 0 means the number is positiveÞ
Biased Exponent ¼ 1000�0001 ¼ 129

Fraction ¼ 1101�0000�0000�0000�0000�000 ðas stored in memoryÞ
Significand ¼ 1; 1101�0000�0000�0000�0000�000 ðas used in the processorÞ

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Therefore

7:25 ¼ ð�1Þ0 � 2129�127 � ð1; 1101Þ ¼ 1; 1101� 22

¼ 111; 01� 20 ¼ 111; 01

Notice that the position of the binary point is a function
of the biased exponent value, hence the term ‘‘floating-
point.’’ It should be noted that negative numbers in the
IEEE floating-point format are identical to positive num-
bers except for the sign bit of ‘1.’

Arithmetic in Floating-Point Format

The IEEE-754 standard enumerates the required arith-
metic functions that must be supported in a floating-point
machine if it is to be identified as compliant to the standard.
The following operations are required: add; subtract; multi-
ply; divide; square root; remainder; round to integer in
floating-point format; convert between floating-point for-
mats; convert between floating-point and integer; convert
binary to decimal; and compare. The operations may be
implemented in hardware, software, or a combination of the
two (2).

In practice, the key to floating-point arithmetic is
simply keeping track of the various binary-point posi-
tions. For instance, floating-point addition requires
that the binary points of each input number are normal-
ized to the same exponential value before addition may
occur. This task effectively aligns the binary points.

Determining which direction and to what extent a frac-
tional value must shift for this normalization is performed
by a simple difference of biased exponents. In multiplica-
tions, the biased exponents must additively combine to
produce the correct binary-point position. Each case is
shown in examples below.

Floating-Point Addition Example

As an example, consider the addition of two single-precision
floating-point numbers. Each number is stored in a 32-bit
word in memory. The addition of the decimal numbers 7.25
and 1.75 is to be performed. The two numbers are stored in
memory as shown in Fig. 2.

As the numbers are brought into the processor, they are
‘‘unpacked’’ revealing the hidden ‘1’ bits:

1; 1101 0000 0000 0000 0000 000� 2129�127 ¼ 1; 1101� 22

1; 1100 0000 0000 0000 0000 000� 2127�127 ¼ 1; 1100� 20

Currently, the numbers cannot be directly added, as
their exponents differ. The significand of the number
with the smaller exponent needs to shifted down by two
bit positions so that both numbers to have the same expo-
nent. After alignment, the numbers may be correctly
added:

1; 1101 0000 0000 0000 0000 000� 2129�127 ¼ 1; 1101� 22

þ 0; 0111 0000 0000 0000 0000 000� 2129�127 ¼ 0; 0111� 22

10; 0100 0000 0000 0000 0000 000� 2129�127 ¼ 10; 0100� 22

s exponent fraction

1 8 23

msb lsb msb lsb

Single Precision

s exponent fraction

1 11 52

msb lsb msb lsb

Double Precision

Figure 1. The IEEE-754 single and double precision floating-point data types (2).

Fraction Exp S 

0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) Representation of 7.25  

Fraction Exp S 

0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) Representation of 1.75 

Figure 2. The addends as stored in the memory.

2 FLOATING-POINT COMPUTER ARITHMETIC



Before this result is stored back in the memory, the
number must be ‘‘packed,’’ by shifting the significand so
that it is a mixed number with the integer portion being a 1.
In this example, the addition caused an overflow, so
the exponent must be incremented and the significand
normalized:

10; 0100 0000 0000 0000 0000 000� 2129�127

¼ 10; 0100� 22

is normalized to

1; 0010 0000 0000 0000 0000 000� 2130�127

¼ 1; 0010� 23

The result is stored in the memory as observed in Fig. 3.

Floating-Point Multiplication Example

The only difference between fixed-point and floating-point
multiplication is that the exponent values need to be com-
bined. The significands of the floating-point numbers are
multiplied as described in the chapter on fixed-point com-
puter arithmetic.

Assume the same numerical values that were used for
the adder example. The multiplication of the decimal num-
bers 7.25 and 1.75 is to be performed. The significands of
each operand are multiplied:

1; 1101 0000 0000 0000 0000 000
� 1; 1100 0000 0000 0000 0000 000

11; 0010 1100 0000 0000 0000 0000

0000 0000 0000 0000 0000 00

The exponent values are summed and the bias value is
adjusted. For the numerical example:

2129�127 ¼ 22

� 2127�127 ¼ 20

2129þ127�2ðBIASÞ ¼ 22

At this point, both the exponent and the significand have
been multiplied. Because the significand requires no round-
ing, all that remains is to normalize the result to the correct
format before passing it to memory.

11; 0010 1100 0000 0000 0000 000
� 2 129�127 ¼ 11; 0010 1100� 22

is normalized to

1; 1001 0110 0000 0000 0000 000
�2130�127 ¼ 1; 1001 0110� 23

The result is stored as shown in Fig. 4.

Floating-Point Rounding

If the significand of a calculation has too many bits for the
given format (i.e., single precision, single extended pre-
cision, or double precision) the result must be rounded to
the appropriate number of bits. The IEEE-754 standard
requires the support of four rounding modes. These
rounding modes provide numerical precision flexibility
for application programmers.

In hardware designs that conform to this requirement,
rounding is performed at the end of an execution block.
IEEE-754 compliance in rounding is generally considered
to be one of the more difficult and expensive requirements of
the floating-point standard. This requirement is so hard-
ware intensive that it is commonly the first rule ignored in
applications that do not conform entirely to the IEEE-754
standard.

For instance, DirectX (3) compliant graphics cards allow
a greater margin of error in their rounding, specifying that
results must be within 1 least significant bit of an IEEE-754
compliant CPU. Although this change seems small, the
hardware reductions are significant. Additionally, it is
common in noncompliant implementations to ignore round-
ing in the case of massive cancellation (a special case in
subtraction where two operands are nearly identical), as
the hardware cost of maintaining full precision is too
expensive.

The subject of rounding is too large to explain fully in a
short article. This section only covers the basics and pro-
vides a simple example. The subject of floating-point round-
ing methods is quite important, and a more thorough
explanation of corner cases, requirements, and methods
may be found in Refs. 5-8.

The Four IEEE-754 Rounding Modes. The four IEEE-754
rounding modes are: round to nearest-even (RNE), round
toward positive infinity (RPI), round toward negative
infinity (RNI), and round toward zero (RTZ). The math-
ematical behavior required from each of the four round-
ing modes may be observed in Figs. 5–8. The figures
show the real numerical number range centered around
zero. Each tick of the graph represents a numerical value
that may be represented by the result precision range.

Fraction Exp S 

0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3. The sum (= 9) as stored in the memory.

Fraction Exp S 

0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4. The product (= 12.6875) as stored in the memory.

FLOATING-POINT COMPUTER ARITHMETIC 3



The arrows represent the direction that all numbers
between the possible number representations round to
in the different modes. Finally, rounding methods and
precisions generally refer to actions relative to the bin-
ary unit in the last place (ULP) also known as the least
significant bit (LSB).

The most complex of the rounding schemes is round to
nearest-even. The rules of RNE are as follows:

1. If the sum of the bits beyond the LSB is less than LSB/
2, then truncate the bits.

2. If the sum of the bits beyond the LSB is more than
LSB/2, then increment the LSB.

3. If the sum of the bits beyond the LSB is exactly LSB/2,
then round to the nearest even number.

The round to infinity schemes, RPI and RNI, each either
require an increment of the result to round-up or require a
truncation should data exist beyond the desired precision.
The decision to round-up or to truncate is based on which
direction to infinity is specified and the sign of the number.
For RPI, positive data that exceeds the desired precision
require an increment of the least significant bit, whereas
negative data only require truncation. For RNI, positive
data require truncation whereas negative data require an
increment of the least significant bit.

The simplest of the schemes, round to zero, is achieved
by truncating all data beyond the range of the output result.
Once a floating-point result is calculated and normalized
back into the correct format, any bits that exceed the
precision specified by the application are simply discarded.
Positive results see the equivalent of a round-down, and
negative results see the equivalent of a round-up after
truncation.

The Rounding Bits. To perform the rounding required by
the IEEE-754 standard, a series of bits called the ‘‘rounding
bits’’ are commonly used. These bits include the ‘‘guard bit’’
(G), the ‘‘round bit’’ (R), the ‘‘carry bit’’ (C), and the ‘‘sticky
bit’’ (S). Because these bits are not explicitly identified in
the IEEE-754 specification, the naming conventions vary,
but the concepts remain the same.

For floating-point addition and related instructions, the
guard, round, and sticky bits are used for rounding. These
three bits are typically included in order at the end of an
intermediate result. Figure 9 shows the guard bit, G, is in
the bit position directly following the LSB of the intermedi-
ate result. The round bit, R, is adjacent to the guard bit, and
the sticky bit, S, completes the set.

The first bit to understand is the sticky bit. This bit is a
logical OR of all bits in its position and smaller. Figure 10
shows formation of the sticky bit. If the sticky bit is a 0, then
the intermediate result up to the round bit is exact.

The guard and round bits are primarily included to help
determine what action to perform in the RNE mode. Spe-
cifically, in a normal addition, if G ¼ 1, then the result has

Figure 5. Round to nearest-even (RNE).

Figure 6. Round toward positive infinity (RPI).

Figure 7. Round toward negative infinity (RNI).

Figure 8. Round toward zero (RTZ).

Figure 9. Rounding bits for floating-point addition.

Figure 10. Creation of the sticky bit.

4 FLOATING-POINT COMPUTER ARITHMETIC



the value of LSB/2 exceeding the output range. In this case,
if the R¼ 0 and S¼ 0, then the final result should round to
nearest even. If G ¼ 1 and either R ¼ 1 or S ¼ 1, then the
result needs to be rounded up. Finally, if G ¼ 0, then the R
and S bits serve no function, and the result is rounded
down.

In floating-point subtractions, several cases can occur in
which the final result needs to be shifted one position to the
left (i.e., when the result after the subtraction is in the form
0;1XXX. . .). In these cases, the result is shifted and the
guard bit becomes the LSB, which leave the R and S bits to
perform rounding. If the round bit were not present then
the sticky bit would be all that is left to determine rounding,
and an incorrect rounding decision might be made.

Floating-point multiplication shares a similar rounding
scheme for RNE modes, but with slightly different (and
more difficult to calculate) rounding bits. Figure 11 shows
that floating-point multiplication uses a, C, a R, and an S.
No guard bit is needed, as no subtractions are required in
multiplication.

The carry bit is a carry-in from the partial product
combination of all bits below the range of the output result.
Calculating the sticky bit of all out-of-range bits is not
enough for a correctly rounded multiplication, as a partial
product combination that incorrectly kills a carry can cause
a rounding error greater than LSB/2. Because every multi-
plication results in an intermediate result twice as wide as
the original operands, the carry bit requires an adder
structure large enough to propagate a carry all the way
to the upper-half of the result. Because the carry may cause
a carry out of the original MSB of the product, the carry
must be propagated upward before the round and sticky bit
are calculated to determine the final rounded result.

Rounding Example. Assume a 32-bit single-precision
subtraction in RNE mode between the following two data
in memory, as shown in Fig. 12.

The numerical representation of these two numbers is as
follows:

1; 1001 0110 0111 0010 1001 010 � 2129�127¼2

ð�Þ 1; 0000 0111 0111 0111 1010 000 � 2124�127¼�3

The smaller fraction is aligned so that the exponent
values of each operand match and the subtraction may
occur. However, observing that the sign bit of the smaller
operand is a 1, the second operand is a negative number.
Therefore, the subtraction of a negative number is a ‘‘true
addition,’’ which results in the following:

1; 1001 0110 0111 0010 1001 010 000
GRS

� 22

� ð�Þ 0; 0000 1000 0011 1011 1011 110 100� 22

1; 1001 1110 1010 1110 0101 000 100
GRS

� 22

At this point, because the instruction is in RNE mode,
the G, R, and S bits are observed. G ¼ 1, R ¼ 0, and S ¼ 0.
This finding means the intermediate result’s rounding bits
sum to exactly LSB/2. This specific case requires a round to
nearest even. Because the closest even result is a round-
down, the final result truncates the rounding bits and is
stored in memory as:

1; 1001 1110 1010 1110 0101 000� 2129�127¼ 2

Or more formally as is shown in Fig. 13.

FLOATING-POINT HARDWARE

The hardware required to support floating-point operations
can vary widely. As stated in the IEEE-754 specification,
compliant floating-point systems may support the require-
ments in hardware, software, or a combination of both.
Therefore, the actual implementation of the floating-point
arithmetic is at the discretion of the designer.

However, high-performance IEEE-754 compliant machi-
nes typically are implemented mostly in hardware for
performance reasons. Floating-point units (FPUs) are
usually built as co-processors. The first of these by Intel
were off-chip devices that communicated to the central
processing unit (CPU) with an external bus. Because the
original coprocessor and its derivatives were named as some
version of the 8087, the suffix of ‘‘x87’’ to describe floating-
pointlogicstuck.ModernFPUcoprocessorsembeddedonthe
same silicon as the CPU are still referred to as ‘‘x87’’ devices.

A modern x87 FPU typically comprises a scheduler,
register file, load and store units, convert units, MMX units
and floating-point execution units. Although all the pieces
of the x87 coprocessor are necessary and important, the
most critical are the execution units: the floating-point
adder (FPA) and the floating-point multiplier (FPM).

FPA Hardware

The FPA is one of the most fundamental units used in x87
coprocessors. It performs floating-point additions in the
way described by the addition examples in the previous

Figure 11. Floating-point multiplication rounding bits.

Fraction Exp S 

0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0

(a)  Register 1 

Fraction Exp S 

1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 0

(b) Register 2 

Figure 12. The operands as stored in the memory.

Fraction Exp S 

0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0

Figure 13. The RNE rounded result.

FLOATING-POINT COMPUTER ARITHMETIC 5



sections. The unit takes two input floating-point addends
and performs an addition, subtraction, or any derivative of
the fundamental addition instruction. The floating-point
result is rounded according to the IEEE-754 specifications
and passed out of the block. In some designs, more common
in the x86 market, the floating-point adder also produces an
unrounded result so that the control units may detect
special cases, denormals, exceptions, and various other
data for trap handling.

A modern floating-point adder is nearly always designed
using the Farmwald dual-path architecture (9). This gen-
eral scheme, which has also been selected as the floating-
point adder example shown here, splits the addition data-
path into two separate parallel cases. The reason for this is
that the hardware required to handle data for operands
with large exponent differences is very different than that
for exponents that are equal or nearly equal. Floating-point
adders now build two paths to handle these different data
ranges, which are commonly known as the ‘‘far path’’ and
the ‘‘close path.’’

It is important to first identify the two general addition/
subtraction cases possible in floating-point addition. First,
in cases with large exponent differences (i.e., the far path
case), the significands must be aligned via a large shifter
before addition or subtraction may occur. This behavior has
already been demonstrated in the earlier floating-point
addition examples: Given two addends with different expo-
nents, the significand of the addend with the smaller
exponent must be shifted until the exponents are equal
before the significands are added.

However the second close path case was not covered in
the examples. In certain subtraction cases with equal
exponents, subtraction of nearly equal significands may
result in what is called ‘‘massive cancellation,’’ in which the
final significand may be much smaller than the original and
must be normalized via a large shift. Such cases use spe-
cialized hardware in the close path.

For example, two floating-point operands are to be
subtracted. The two numbers themselves also happen to
be nearly identical to one another, say decimal 1.000000
and 1.000001. When the two are subtracted, the result
before normalization is decimal 0.000001. Normalization
requires a large left-shift of the significand and a signifi-
cant reduction in the value of the exponent. Cases like
these use a completely different set of hardware than
normal additions and subtractions. Older floating-point
adder units used to handle all of these cases in a single
serial path, but modern x87 units gain performance by
splitting and parallelizing these mutually exclusive cases
in a ‘‘dual-path’’ FPA.

Figure 14 shows the top-view architecture of a dual-path
floating-point adder. The design is for the IEEE-754 double-
precision format with 64-bit buses for inputs and outputs.
The example architecture uses the Farmwald split, which
employs a far path and close path in parallel. When the
correct path is chosen by the exponent logic, the selected
path sends its data to a combined add/round stage (5,6),
where performance is gained by combining addition and
rounding logic, and both an unrounded and rounded result
are produced.

Far Path Close Path

Exponent
Difference
& Select

Sign Logic

Exponent
Adjust

2:1 2:1

Add/Round
& Post-Normalize

FPA_unrnd_result[63:0]

A_[63:0] B_[63:0]

[51:0] [51:0] [51:0] [51:0][62:52] [62:52]

[63]
[63]

A > B

far_select

δ

exp[11:0] exp_adjust[11:0]
op_greater [55:0] op_smaller[55:0]

comp

[63] [62:52] [51:0]

FPA_rnd_result[63:0]

[63] [62:52] [51:0]

inexact

inc

[55:0][55:0][55:0]
[55:0]

Figure 14. Top view of double-precision floating-point adder.

6 FLOATING-POINT COMPUTER ARITHMETIC



The FPA Far Path. A floating-point adder far path is the
significand datapath for all additions and for all subtrac-
tions when exponents differ by more than two. The expo-
nent difference of two is selected based on mathematical
analysis of floating-point subtraction cases (10). This far
path, shown in Fig. 15, is set up to determine how far
apart the operand exponents are and to align the signifi-
cands so that correct floating-point addition/subtraction
occurs. Additionally, if the smaller operand is out of the
range of what these designs refer to as the ‘‘anchor,’’ or
the larger operand, which has a static position, then the
smaller operand’s significand is collected in a sticky bit for
rounding.

The implementation of the far path scheme uses a
comparator in the exponent logic to determine which oper-
and is larger. When the large operand is identified, the
significands of the inputs pass through the ‘‘swap’’ multi-
plexer stage, which chooses which input is the anchor and
which is the one for alignment. In double precision, the
smaller operand enters a 54-bit aligner and passes any bits
that exceed 54-bits to the sticky tree. The stage is complete
when the smaller operand is aligned to the anchor, and the
far path results are passed out of the block.

The FPA Close Path. The floating-point adder close path
is the significand data path for all subtractions with oper-
and exponents within the difference range of {�1,0,1}. In
this data range, a subtraction may cause massive cancella-
tion, which requires a large normalization before the result
may be correctly rounded. Massive cancellation cases, like
the floating-point adder design presented here, are com-
monly handled by leading zero anticipator blocks (LZAs).

The LZA is a specialized piece of hardware designed to
detect the number of ZEROs above the first ONE in the
significand of the result. The LZA logical block runs in
parallel with the subtraction itself (and sometimes ahead
of it, as seen in this design), calculating only the number of
leading ZEROs, which indicates how many bits of normal-
ization are required. This parallel execution allows for an
immediate normalization after (or before) the subtraction
occurs. The mathematics involved in the construction of an
LZA are complex (11).

The close-path architecture is shown in Fig. 16. The
input significands are passed to a swap block, a comparator,
and three leading-ONEs predictors (LOPs, part of the LZA
algorithm). The block begins by determining which expo-
nent, if any, is greater. Once the exponent difference is
determined, the operands are swapped, putting the greater

2:1 2:1

2:1 2:1

3:1

LOPLOP
LOP x 3 52-bit

Exp 
Predict

Compare 52-bit

Normalize 53-bit Normalize 53-bit

Penc 53-bit

>>1>>1

[52:0]

[52:0]

[53:52] [53:52]

{1'b1, [51:0]}

{1'b1, [51:0]}

[55:0][55:0]

shift_swap

signif_swap

[52:0] [52:0] [52:0]

[52:0]

close_op_smaller[55:0]close_op_greater [55:0]

A_[63:0] B_[63:0]

A >= B

Asignif > Bsignif

Figure 16. Close path of floating-point adder.

2:1 2:1

Exp Diff
Logic

Align 54-bit

Sticky
52-bit

[62:52] [62:52]

{1'b1, [51:0]}

{1'b1, [51:0]}

{1'b1, [51:0]}

{1'b1, [51:0]}

{[52:0],3'b0} [52:0,G,R]

swap

far_op_smaller[55:0]far_op_greater[55:0]

A_[63:0] B_[63:0]

S

A > B

∆[11:0]

Figure 15. Far path of floating-point adder.

FLOATING-POINT COMPUTER ARITHMETIC 7



exponent in the ‘‘greater operand’’ path. Three LOPs are
used: one for A > B, one for A ¼ B, and one for A < B. The
exponent control selects the correct LOP at the same time
as the shift swap. The operands are sorted and the LOP
result is sent to a priority encoder (the second half of a LZA).

In the case when the exponents are equal, the greater
operand is still unknown. To resolve this problem, a second
swap stage uses a significand compare select to determine
the greater operand. When the swap stages are over, the
LZA priority encoder prenormalizes both operands, and the
results are passed to the round stage. Prenormalization (or
normalization before actual subtraction occurs) is valid
because cases of massive cancellation will wipe out any
leading ONE bits when the numbers are subtracted, so
shifting them out early saves a stage after the actual
subtraction occurs.

The FPA Add/Round Stage. Following the parallel proces-
sing of the floating-point adder far and close path, the
greater and smaller operands from each adder merge paths
in two parallel multiplexers. Exponent control has by this
point determined the correct numerical path, and the oper-
ands from the selection are passed to the combined addition
and rounding stage.

The add/round stage architectures used in the floating-
point adder are shown in Fig. 17. Two adders are used in
parallel, one unbiased and one with a constant, to compute
both a rounded and an unrounded result similar to the
suggestions by Quach and colleagues (5,6), and the imple-
mentation of the SPARC-64 (12). The scheme uses the con-

cept thata correct IEEE-754roundedresultmay beobtained
byoperatingontheLSBinanaddersumoranaddersumþ2.

In this implementation, the two input operands are
passed to dual 59-bit adders. One of the adders precombines
the two operands with a constant: a þ2 constant for addi-
tions and a þ1 constant for subtractions. The MSBs and
LSBs of both results are sent to a rounding table, where the
correct rounding decision is made based on rounding con-
trol. The final rounded significand is selected by the final
multiplexer, and both the rounded and un-rounded results
are passed out of the block.

FPM Hardware

The FPM is generally the largest block in a floating-point
unit, which is built to take two input operands and provide a
multiplied and rounded result. The unit itself, when com-
pared with a floating-point adder, has a simpler overall
architecture, but it contains components that use a lot of
area and power.

Adding to the floating-point multiplier’s size and latency
is an array of complex arithmetic functions beyond simple
multiplication. A common floating-point unit uses the mul-
tiplier to process transcendental, divide, and square root
algorithms that use ROM tables and multiplicative itera-
tions. Without this additional burden, the floating-point
multiplier has a very fast performance with low latency.
However, with the additional instructions that must be
handled by the unit, the latency increases and the delay
becomes similar to that of a floating-point adder.

Add 59-bit

3:2 CSA/HA 57-bit

{2'b0, [55:0], op}

{2'b0, [55:0], op}

Add 59-bit

Round-Up Logic

3:1 3:1Round Table

2:1

2:1

{1'b0, [56:0], op}
{1'b0, [56:0], op}

add_result[56:0] add_result_cnst[57:3]

V, LSBs V, LSBs

align/norm

MSB

MSB

over under
norm over under

norm

post-norm

op_greater[55:0] op_smaller[55:0]

op

RC[2:0]

V, MSB

round

Inexact
Logic

inexact

LSB,G,R,S

FPA_unrnd_significand[52:0] FPA_rnd_significand[52:0]

Figure 17. Floating-point adder add/round stage.

8 FLOATING-POINT COMPUTER ARITHMETIC



The floating-point multiplier described here has been
designed without the transcendental, square root, or divi-
sion algorithms. Although these algorithms are necessary
in a floating-point unit that complies with the IEEE-754
standard, the design is intended to provide the implemen-
tation details of a pure floating-point multiplication
instruction.

The floating-point multiplier implemented architecture
is shown in Fig. 18. The multiplier tree product result
passes to a combined add/round stage, where the carry/
save product is combined and rounded. The stage outputs
both an unrounded and rounded result, and the floating-
point multiplication is complete. Both the sign logic and the
exponent datapath run in parallel to the significand pro-
cessing.

The FPM Add/Round Stage. The addition and rounding
stage in a floating-point multiplier requires a rounding
stage more complex than that of a floating-point adder.
As briefly described in earlier sections, the calculation of
the rounding bits for FPM units is not simple. Specifically,
this multiplier needs unique hardware to produce a
rounded result that is the same size as its input operands,
all while correctly propagating carries from the lower half
of the double precision product.

The floating-point multiplier add/round stage, shown in
Fig. 19, uses an architecture similar to those suggested by
the authors of Refs. 7 and 8. The upper half of the input
carry/save product is passed to two half-adder (HA) stages,
where the LSB from each stage is stripped off and sent to a
constant 2-bit adder. The remaining upper half enters a
compound adder, where the sum and augmented sum (sum
þ 1) are calculated.

The lower half of the add/round stage input is sent to a
carry and sticky tree, where the LSB, C, R, and S bits are
produced. These bits combine with rounding control and

select the correct increment of the final result’s lower 2-bits.
Depending on the bit sequence selection of the lower 2-bit
constant adder output, the upper half of the result will
either be ready for post-normalization or will require the
augmented selection. Both the lower 2-bits and the selected
compound adder output are postnormalized, and the pro-
duct is complete.

OTHER IEEE-754 SPECIFICATIONS

The IEEE-754 standard includes far more than precision
specifications and descriptions of addition, multiplication,
and rounding. The standard identifies several other
required mathematical functions, such as divide, square
root, reciprocal, as well as convert instructions to pass data
between fixed point and floating point. Also included are
specifications on reserved values for infinity, not-a-number
(NaN), zero, and denormalized numbers, which are fre-
quently referred to as denormals. Each of these items is
briefly touched on in this section.

The other functionsrequiredby the standard are handled
by different x87 machines in different ways. Performance-
intensiveapplicationscommonlymaptheseothermathema-
ticaloperationstothefloating-pointadderandfloating-point
multiplierhardware.Forinstance,divisioncanbemappedto
either the FPA or FPM, because digit-recurrence (13), Gold-
schmidt, and Newton-Raphson division require either
adders, multipliers, or both in their algorithms (see the
chapter on fixed-point computer arithmetic). Reciprocal
and square-root estimates may be mapped to a FPM that
employs iterative multiplication based on bipartite ROM
initial estimations (14). Transcendentals and CORDIC
algorithms may be realized with combinations of FPA and
FPM hardware. Convert instructions that involve float-to-
float,fixed-to-float,andfloat-to-fixedtranslationsarespecial

Multiplier Tree

[51:0]

Exp Logic

Exp 
Adjust

Sign Logic

[105:1] [105:0]

[62:52]

sign_result [11:0]

exp_inc_ctl[1:0]

[63] [63] [62:52][62:52]

{1'b1, [51:0]}{1'b1, [51:0]}

Add/Round
& Post-Normalize

FPM_unrnd_result[63:0] FPM_rnd_result[63:0]

A_[63:0] B_[63:0]

[62:52][51:0][63] [63] inexact

Figure 18. Top view of the floating-point multiplier.

FLOATING-POINT COMPUTER ARITHMETIC 9



cases of floating-point addition in which one of the operands
is a constant. Depending on the application, convert instruc-
tions may be mapped to the FPA or implemented with a
separate store-convert unit, which is in essence just a sim-
plified version of the FPA. In any case, most IEEE-754
mathematical operations are subsets of the FPA and FPM
operations.

The IEEE-754 specification reserves two exponent fields
for special numbers, specifically the largest and the smal-
lest exponent values. For example, in single-precision, the
exponent value of 1111_1111 is reserved for � infinity and
NaN, whereas the exponent value of 0000_0000 is reserved
for � zero and denormals.

When the exponent is the lowest value (i.e., 0000_0000
for single precision), if the significand is all 0s, then the
number is interpreted as either positive or negative zero,If
the significand is non-zero, then the result is a valid num-
ber, called a ‘‘denormal.’’

Denormals are special numbers that fill the space
between Nmin (i.e., exp ¼ 0000_0001 and a minimum
significand of 1.0000.. . . for single-precision) and zero. In

the normalized floating-point format, no values exist
between Nmin and zero, but rather, the lowest floating-point
value would simply jump from Nmin directly to zero. Denor-
mals solve this problem by holding a numerical value and
indicating to the machine that underflow has occurred.
Figure 20 shows graphical representations of the range
of floating-point values possible with and without denormal
numbers, respectively.

Denormals in the IEEE-754 specification are used to
express values between Nmin and zero. If a number is less
than Nmin, then without denormals the number would be
rounded to either to zero or to Nmin. Instead, denormals
allow the x87 machine to save the denormalized result. In
this fashion, no data are lost.

Actual denormal values are represented in a slightly
different format than normal floating-point numbers.
Specifically, when the exponent value of a number is all
0s, the significand does NOT have an implicit integer 1.
Instead, the significand is assumed to begin with a ‘0’ (i.e.,
0;XXX. . .�2Nmin). For a better understanding of denormals
and how they are handled in x87 machines, refer to Ref. 15.

Figure 20. Representation of small numbers.

HA 54-bit

HA 53-bit

Carry/Sticky
53-bit

Round 
Logic

Round Select and 
Post-Norm

RC[2:0]

[105:52] [105:52] [52:0][52:1]

[0][1]
C

LSB,R,S

[51:0] [51:0]

V

inc

Mul_sum[105:0]Mul_carry[105:1]

52-bit
Cpnd Add

Constant
Add 2-bit Inexact 

Logic

Carry-In Select and 
Post-Norm

FPM_rnd_significand[52:0]FPM_unrnd_significand[52:0]

[52:0][52:0]

inc

exp_adjust[1:0]

inexact

Figure 19. Floating-point multiplier add/round stage.

10 FLOATING-POINT COMPUTER ARITHMETIC



CONCLUSIONS

This article presents an overview of the IEEE-754 specifi-
cation for floating-point numbers and how they are used in
arithmetic operations, such as addition and multiplication.
It then follows with a brief look at floating-point addition
and floating-point multiplication via double-precision
hardware implementations that convey the fundamentals
of an x87 execution unit design. Finally, the article briefly
discusses the various special ‘‘numbers’’ required by the
standard such as denormals, infinites, zeros, and conver-
sions.

Although many modern processors do not necessarily
comply entirely with all elements of the IEEE-754
floating-point standard, the fundamentals of all float-
ing-point systems are similar. This brief introduction
should provide a useful starting point. More details
are available in Refs. 16-19 .

BIBLIOGRAPHY

1. J. B. Gosling, Design of large high-speed floating-point-arith-
metic units, IEE Proceedings, vol. 118, 1971, pp. 493–498.

2. IEEE std 754-1985. IEEE Standard for binary floating-point
arithmetic,

3. Direct3D 10.0 Functional Specification, Redmond, WA, The
Microsoft Corporation, Version 1.06, May 24, 2007.

4. H.-J. Oh, S. M. Mueller, C. Jacobi, K. D. Tran, S. R. Cottier, B.
W. Michael, H. Nishikawa, T. Namatame, N. Yano, T. Machida,
and S. H. Dhong, A fully pipelined single-precision floating-
point unit in the synergistic processor element of a CELL
processor, IEEE J. Solid-State Circ., 41; 759–771, 2006.

5. N. Quach, N. Takagi, and M. Flynn, On Fast IEEE Rounding,
Technical Report CSL-TR-91-459, Computer Systems Labora-
tory, Palo Alto, CA: Stanford University, 1991.

6. N. Quach and M. J. Flynn, An Improved Algorithm for High-
Speed Floating Point Addition, Technical Report CSL-TR-90-
442, Computer Systems Laboratory, Palo Alto, CA: Stanford
University, 1990.

7. G. Even and P. M. Seidel, A Comparison of three rounding
algorithms for IEEE floating-point multiplication, IEEE
Trans. Comput., 49: 638–650, 2000.

8. R. K. Yu and G. B. Zyner, 167 MHz Radix-4 floating-point
multiplier, Proc. of the 12th IEEE Symposium on Computer
Arithmetic, 1995, pp. 149–154.

9. M. P. Farmwald, On the Design of High Performance Digital
Arithmetic Units, Ph.D. Thesis, Palo Alto, CA: Stanford Uni-
versity, 1981.

10. P.-M. Seidel and G. Even, How many logic levels does floating-
point addition require? Proc. of the International Conference on
Computer Design: VLSI in Computers and Processors, 1998,
pp. 142–149.

11. M. S. Schmookler and K. J. Nowka, Leading zero anticipation
and detection – a comparison of methods, Proc. of the 15th IEEE
Symposium on Computer Arithmetic, 2001, pp. 7–12.

12. A. Naini, A. Dhablania, W. James, and D. Das Sarma, 1 GHz
HAL Sparc64 dual floating point unit with RAS features, Proc.
of the 15th IEEE Symposium on Computer Arithmetic, 2001, pp.
173–183.

13. M. D. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations, Boston, MA:
Kluwer Academic Publishers, 1994.

14. M. J. Schulte and J. E. Stine, Symmetric bipartite tables for
accurate function approximation, Proc. of the 13th IEEE Sym-
posium on Computer Arithmetic, 1997, pp. 175–183.

15. E. M. Schwarz, M. Schmookler, and S. D. Trong, FPU imple-
mentation with denormalized numbers, IEEE Trans. Comput.,
54: 825–836, 2006.

16. B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs, New York: Oxford University Press, 2000.

17. I. Koren, Computer Arithmetic Algorithms, 2nd ed., Wellesley,
MA: A K Peters, Ltd., 2001.

18. M. D. Ercegovac and T. Lang, Digital Arithmetic, San Fran-
cisco, CA: Morgan Kaufmann Publishers, 2004.

19. M. L. Overton, Numerical Computing with IEEE Floating
Point Arithmetic, Philadelphia, PA: Society for Industrial
and Applied Mathematics, 2001.

ERIC QUINNELL

Advanced Micro Devices
Austin Texas

EARL E. SWARTZLANDER, JR.
University of Texas at Austin
Austin, Texas

FLOATING-POINT COMPUTER ARITHMETIC 11



F

FLUENCY WITH INFORMATION TECHNOLOGY

Fluency with Information Technology specifies a degree of
competency with computers and information in which
users possess the skills, concepts, and capabilities needed
to apply Information Technology (IT) confidently and effec-
tively and can acquire new knowledge independently. Flu-
ency with Information Technology transcends computer
literacy and prepares students for lifelong learning of IT.

The concept of Fluency with Information Technology
derives from a National Research Council (NRC) study
initiated in 1997 and funded by the National Science
Foundation (NSF). The study focused on defining ‘‘what
everyone should know about Information Technology.’’ For
the purposes of the study, ‘‘everyone’’ meant the population
at large, and IT was defined broadly to include computers,
networking, software and applications, as well as informa-
tion resources—virtually anything one would encounter
using a network-connected personal computer.

The NSF motivation for requesting the study was driven
by the belief that much of the United States population is
already ‘‘computer literate,’’ but that literacy is not enough.
With more knowledge, people would make greater use of IT,
and doing so would generally be beneficial. Specifically, the
NSF noted these points:

� Most users have had no formal training in the use of IT
because of the relatively brief period during which it
has entered our society; more complete knowledge
could be useful.

� Many users seem to have only a limited understanding
of the applications they use and (probably correctly)
assume they are underutilizing them.

� Many users are not confident nor do they feel in control
when confronted with Information Technology oppor-
tunities or problems.

� Extravagant claims have been made about the poten-
tial benefits of IT, but most citizens do not enjoy them;
they want to apply IT to personally relevant goals.

� Informed participation in certain contemporary social
and political discussions—strong encryption, copy-
right, spam, privacy, and so forth—requires a sound
understanding of IT.

What knowledge would address these concerns?

The NRC, under the auspices of the Computer Science
and Telecommunication board, appointed seven experts to
the ad hoc Committee on Information Technology Literacy:

Lawrence Snyder, University of Washington, Chair

Alfred V. Aho, Lucent Technologies

Marcia Linn, University of California at Berkeley

Arnold Packer, The Johns Hopkins University

Allen Tucker, Bowdoin College

Jeffrey Ullman, Stanford University

Andries Van Dam, Brown University

Herbert Lin of the NRC staff assisted the committee.

Meeting over a two-year period, the committee broadly
solicited information, using invited testimony from var-
ious stakeholders, electronic queries to the community at
large, and a public forum. The broad range of views
expressed indicated that computer literacy, which cur-
rently is understood to teach students how to use specific
applications, does not have the ‘‘staying power’’ to prepare
people for the continual change that is so familiar in IT.
Users must be trained to be more adaptive and ready and
willing to change. The committee decided that a deeper,
more foundational understanding was needed that would
allow people to respond to change through a process of
lifelong learning. The term fluency, suggested by Yasmin
Kafai of UCLA, became the moniker for that deeper,
foundational knowledge.

The committee issued its report, Being Fluent with
Information Technology, in June 1999, published by
the National Academy Press (1). The report attracted
considerable interest, and some schools immediately began
offering college-level classes. By July 2002 Addison Wesley
published the first textbook Fluency with Information
Technology. And in the fall of 2003, an online course to
teach the content was launched with NSF funding.

CONTENT OF FLUENCY WITH INFORMATION
TECHNOLOGY

To provide the necessary foundation to support lifelong
learning in IT, the committee recommended a tripartite
body of knowledge that covers contemporary skills, funda-
mental concepts, and intellectual capabilities:

Skills—the ability to use contemporary computer
applications. Skills knowledge makes computers
and information resources useful immediately; it
provides valuable employment training and sup-
ports the other aspects of fluency education. Exam-
ples include word processing, web searching, and so
forth.

Concepts—the fundamental information about IT
drawn from its supporting fields. Concepts knowl-
edge includes both ‘‘general science’’ knowledge, such
as how a computer works, that educated citizens
should know and directly applicable knowledge,
such as algorithmic thinking, that underpins future
applications of IT by users.

Capabilities—the higher-level thinking skills needed for
everything from finding new ways to exploit IT to

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



recovering from errors. Capabilities—reasoning,
debugging, problem solving, and so forth—apply in
everyday life as well as in IT. However, because they
occur often and intensively in IT, it is essential that
users be accomplished with them.

Notice that skills generally align with traditional com-
puter literacy, so fluency includes literacy as a component.

The committee, charged with developing the content,
chose not to enumerate every conceivable skill, concept or
capability but rather to identify the top ten most important
items in each category. Their recommendation (1, p. 4) is
shown in the companion table. NRC Recommended Flu-
ency Topics

Skills –

Set up a personal computer

Use basic operating system facilities

Use a word processor

Use a graphics/artwork/presentation tool

Connect a PC to a network

Search the Internet to locate information

Send and receive e-mail

Use a spreadsheet

Query a database

Use online help and tutorial facilities

Concepts –

Principles of computer operation

Enterprise information systems

Networking

Digital representation of information

Information structure and assessment

Modeling the world with computers

Algorithmic thinking and programming

Universality of computers

Limitations of computers

Information and society

Capabilities –

Engage in sustained reasoning

Manage complexity

Test a solution

Locate bugs in an IT solution

Organize and navigate information structures

Collaborate using IT

Communicate an IT solution to others

Expect the unexpected

Anticipate technological change

Think technologically

An important aspect of the recommended topics is that
the skills, built around contemporary software and sys-
tems, can be expected to change over time. The concepts and
capabilities, focused on fundamental ideas and intellectual
processes, are generally time-invariant.

PROJECTS AS AN INTEGRATING MECHANISM

The committee asserted that skills, concepts, and capabil-
ities are separate but interdependent types of knowledge.
Furthermore, because most nontrivial applications of infor-
mation technology rely on applying all three kinds of knowl-
edge seamlessly, it is best not to teach them in isolation.
Rather, the material should be integrated using projects.
Projects—multi week activities that produce a specific IT
‘‘product’’ such as a web page or database—can be designed
to use several components from each list to give students an
experience that approximates realistic IT situations.
Through the projects, fluency becomes a coherent body of
knowledge rather than a set of 30 disparate topics.

An example of a project might be to build a database to
support patient processing at a storefront medical clinic.
Students would set up the database tables, define the
queries, and design the user interfaces to track patients
through processing at the clinic. In addition to a record of
the visit, documents would be generated for follow-up
actions such as referral letters, labels for specimens for
laboratory tests, prescriptions, (possibly) payment invoices
and receipts, and so foth.

The medical database example combines the use of
several skills, concepts, and capabilities. Among the skills
applied might be Web searching to find out privacy require-
ments, database querying, using basic operating system
facilities, using online help facilities, and probably others.
Among the concepts applied might be fundamentals of
database design, information representation, information
structure and organization, social implications of comput-
ing, and probably others. Among the capabilities applied
might be sustained logical reasoning, debugging, solution
testing, communicating a technological solution, and prob-
ably others. When working on a project, a student is focused
on solving the problem, not on which of the curricular
components he or she is applying at the moment. As a
result, projects produce an integrated application of IT
that conforms closely to how it is used under non academic
circumstances. Furthermore, successful completion of such
substantial efforts can give students a greater degree of
confidence as computer users than can exercises specia-
lized to a particular topic.

Appendix A of the report (1, pp. 67–77) gives a listing of
other sample projects.

ALGORITHMIC THINKING AND PROGRAMMING

Since the introduction of the first computer courses for non
specialists in the 1970s, the question has been debated
whether programming should be a component of the com-
puting knowledge of the general population. The subject is
complex and often has been divisive. Fair-minded commen-

2 FLUENCY WITH INFORMATION TECHNOLOGY



tators have offered thoughtful and substantive arguments
on both sides, but no clear resolution has emerged. Curri-
cula have been developed taking each position.

The NRC committee was confronted with the question,
too: Should programming be listed among the skills, con-
cepts, and capabilities? The matter took ona crisp form inthe
testimony presented to the committee. Most contributors
recommended that algorithmic thinking be a part of ‘‘what
everyone should know about Information Technology.’’ They
asserted that educated people should be able to formulate
procedural solutions to problems with sufficient precision
that someone (or something) else could implement them. It
also was common for the committee to be advised not to
include programming as a requirement for the general
population. Programming embodies professional knowledge
that is too advanced and too detail-oriented to be of value to
users. That is, the committee was told that algorithmic
thinking was essential and programming was not.

Although algorithmic thinking and programming are
distinct, they overlapsubstantially. Thecommittee wrestled
with how to interpret these largely contradictory inputs.
Was the committee being told to prescribe those aspects of
algorithmic thinking that do not involve programming in
any way? Or was it being told to prescribe algorithmic
thinking in full but to include programming only to support
it, not a full, professional-level programming course? In
addition to the algorithmic thinking/programming ques-
tion, related issues existed: What were those individuals
who recommended programming including in their recom-
mendation, passing familiarity to programming or deep
knowledge? Also, because programming is a challenging
engineering discipline, how much aptitude for learning pro-
gramming does the general population possess?

The committee finally resolved these difficult issues by
including algorithmic thinking and programming as item
# 7 among the concepts. In explaining the recommendation
(1, pp. 41–48), the committee stated that programming is
included to the extent necessary to support a thorough
development of algorithmic thinking. It did not recommend
‘‘majors’’ -level programming knowledge. Specifically, the
committee identified a small list of programming concepts
that it regarded as sufficiently fundamental and generally
accessible to be considered part of that programming con-
tent. These concepts include name and value, assignment,
conditional execution, and repeated execution. It supported
the choice by presenting examples where the ideas occur
both within and beyond IT. Since the publication of the
report, its wide distribution has exposed the approach to
considerable scrutiny. Because the fluency concept has
been embraced widely and its algorithmic thinking/pro-
gramming resolution has engendered almost no comment
of any kind, it must be concluded that the committee
recommendation settles—yes, but only a little—the long-
standing programming question.

IMPLEMENTING FLUENCY WITH INFORMATION
TECHNOLOGY

The charge of the NRC committee was to specify only the
contentthat ‘‘everyoneshouldknowaboutInformationTech-

nology.’’ The implementation of FITness—the term used by
the committee to identify those who are fluent with informa-
tion technology—education would be left until later. But the
committee was composed of academics, so, inevitably, teach-
ing fluency at the college level was addressed.

The committee began by noting the desirability of FIT-
ness as a post condition of college, that is, knowledge with
which students leave college. Eventually, the report stated,
FITness should be a pre condition of college, like basic
knowledge of science, math, and foreign languages.
Although appropriate for pre-college, the challenges are
so great for implementing fluency instruction in K–12 that
it will be years before FITness can be an entrance require-
ment. Therefore, teaching fluency in college is essential in
the short run. Also, compared with K–12 public instruction,
post secondary institutions are far more flexible in terms of
their ability to develop curricula and infrastructure for new
pedagogical endeavors.

The NRC committee did not define a curriculum, only the
content. Curriculum development began in the spring term
of 1999 with the offering of the first FITness class, CSE100
Fluency with Information Technology at the University of
Washington. The goal of this class is to teach the recom-
mended skills, concepts and capabilities to freshmen in one
10-week quarter. The class has three lectures and two labs
per week, each of 50 minutes. Skills are taught primarily in
the labs, capabilities are presented primarily as lecture
demonstrations, and concepts are learned primarily through
reading. [Course notes from early offerings of this program
became the textbook, Fluency with Information Technology,
published by Addison Wesley (2).] Three projects integrate
the material. Other universities, colleges, and community
colleges have developed FITness curricula since then.

Because the skills, concepts, and capabilities are such
different kinds of knowledge, teaching fluency requires a
varied strategy.

Skills material—word processing, browsing, processing
e-mail, and so on—is best taught in a lab with a video
projector connected to the computer of the instructor.
In the lab, students ‘‘learn through doing,’’ and,
because an important part of learning an application
is familiarity with the GUI, the video display facil-
itates demonstrations. Furthermore, the detailed
‘‘click here, click there’’ instruction should give way
quickly to more generic instruction that describes
general properties of PC applications. This process
allows students to learn how to learn an application,
which makes them more independent.

Concepts material—computer operation, database prin-
ciples, network protocols, and so forth—is effectively
science and can be learned most efficiently through a
combination of textbook reading and lectures that
amplify and illustrate the ideas. Because computers
are so fast and the common applications are built with
millions of lines of software, students will not be able
to recognize the instruction interpretation cycle of a
computer or TCP/IP in their direct experience. So, the
goal is simply to explain, as is done in physics or
biology, how basic processes work.

FLUENCY WITH INFORMATION TECHNOLOGY 3



Capabilities material—logical reasoning, complexity
management, debugging, and so forth—is higher-
level thinking that often is learned through life
experience. Because capabilities generally are non
algorithmic, they are somewhat more challenging to
teach. Lecture demonstrations are effective because
the class can, say, debug a problem together, which
illustrates the process and provides a context for
commentary on alternative techniques. The capabil-
ities, being instances of thinking, are not learned
entirely in a FITness course; students will continue
to hone their knowledge throughout life.

As noted, projects provide the opportunity to apply and
integrate these three kinds of knowledge.

The committee recommended that the ideal case
would be for fluency instruction to be incorporated into
discipline-specific IT instruction when possible. That is,
as architecture students, business majors, and pharmacists
learn the technology that supports their specialties, they
also learn the recommended skills, concepts, and capabil-
ities. Projects could be specialized to their area of study, and
problem solving could incorporate discipline-specific meth-
odologies. Although it has advantages, the recommenda-
tion implies that students learn FITness relatively late in
their college career, that is, after choosing a major. Because
the material applies across the curriculum, it is advanta-
geous to learn it much earlier, for example, freshman year
or before college, so that it can support the whole academic
program. A compromise would be to offer generic FITness,
as described above, as early as possible, and then to give
further instruction on the capabilities in a research meth-
ods or career tools class once students have specialized in a
major.

NEXT STEPS FOR FLUENCY

Universities, colleges, and community colleges are adopt-
ing fluency courses at a rapid rate, and schools outside the

United States are beginning to promote FITness. These
courses typically replace traditional computer literacy
classes both because fluency provides a more useful body
of knowledge and because a majority of students are com-
puter literate when they enter post secondary schools. So,
college-age students are becoming FIT, but what about the
remainder of the population?

The original NSF question asked what the population
at large should know about IT. Enrolled college students
are only a small part of that, which raises the question of
how the adult population not in school is to become fluent.
This problem remains unsolved. One small contribution to
the effort is a free, online, self-study version of the Uni-
versity of Washington Fluency with Information Technol-
ogy course, called BeneFIT100. Any person with a
computer and Internet connection who speaks basic Eng-
lish, is computer literate enough to browse to the Uni-
versity of Washington Website, is disciplined enough to
take an online class, and is motivated to become fluent can
use BeneFIT100 to do so. Although many people doubtless
meet those five qualifications, still they are a minority.
Expanding access to fluency instruction likely will remain
a difficult problem and the main challenge for the foresee-
able future.

BIBLIOGRAPHY

1. National Research Council, Being Fluent with Information
Technology, Washington, D. C.: National Academy Press, 1999.

2. L. Snyder, Fluency with Information Technology: Skills, Con-
cepts, and Capabilites, 3rd ed., Reading, MA: Addison Wesley,
2007.

LAWRENCE SNYDER

University of Washington—Seattle
Seattle, Washington

4 FLUENCY WITH INFORMATION TECHNOLOGY



I

INFORMATION TECHNOLOGY

This article provides a brief account of information tech-
nology. The purpose of information technology is discussed
and a brief account is given of its historical evolution. Then
the many profound influences that information technology
has had, is having, and will have on organizations, and the
way in which this effect will strongly affect the engineering
of information technology products and services will be
discussed. A presentation of 10 major challenges for infor-
mation technology in the 21st century concludes the article.

Fundamentally, information technology (IT) is con-
cerned with improvements in a variety of human
problem-solving endeavors through the design, develop-
ment, and use of technologically based systems and pro-
cesses that enhance the efficiency and effectiveness of
information and associated knowledge in a variety of stra-
tegic, tactical, and operational situations. Ideally, this is
accomplished through critical attention to the information
needs of humans in problem-solving tasks and in the provi-
sion of technological aids, including computer-based sys-
tems of hardware and software and associated processes,
that assist in these tasks. Information technology activities
complement and enhance, as well as transcend, the bound-
aries of traditional engineering through emphasis on the
information basis for engineering as contrasted with
the physical science basis for traditional engineering
endeavors.

Information technology is composed of hardware and
software that enable the acquisition, representation, sto-
rage, transmission, and use of information. Success in
information technology is dependent upon being able to
cope with the overall architecture of systems, their inter-
faces with humans and organizations, and their relations
with external environments. It is also very critically depen-
dent upon the ability to successfully convert information
into knowledge.

The initial efforts at provision of information technology
based systems concerned implementation and use of new
technologies to support office functions. These have evolved
from electric typewriters and electronic accounting sys-
tems to include very advanced technological hardware,
such as facsimile machines and personal computers to
perform such important functions as electronic file proces-
sing, accounting, and word processing. Now networking is a
major facet of information technology.

It is neither possible nor desirable to provide a detailed
discussion of the present IT based devices and products, or
the many possible future developments in this exciting
area. There are a plethora of relevant articles in this
encyclopedia that discuss these in some detail.

HISTORICAL EVOLUTION OF INFORMATION
TECHNOLOGY

In the early days of human civilization, development was
made possible primarily through the use of human effort, or
labor. Human ability to use natural resources led to the
ability to develop based not only on labor, but also on the
availability of natural resources. Natural resources are
usually denoted land as the classic economic term that
implies natural physical resources. At that time, most
organizations were composed of small proprietorships.
The availability of financial capital during the Industrial
Revolution led to this being a third fundamental economic
resource, and also to the development of large, hierarchical
corporations. This period is generally associated with cen-
tralization, mass production, and standardization.

In the latter part of the industrial revolution, electricity
was discovered, and later the semiconductor. This has led to
the information age, or the information technology age.
Among the many potentially critical information technol-
ogy based tools are: data base machines, E-mail, artificial
intelligence tools, facsimile transmission (fax) devices,
fourth-generation programming languages, local area net-
works (LAN), integrated service digital networks (ISDN),
optical disk storage (CD-ROM) devices, personal compu-
ters, parallel processing algorithms, word processing soft-
ware, computer-aided software engineering packages,
word processing and accounting software, and a variety
of algorithmically based software packages. Virtually any-
thing that supports information acquisition, representa-
tion, transmission, and use can be called an information
technology product.

Easy availability of technologies for information cap-
ture, storage, and processing has led to information, as well
as the product of information in context or knowledge, as a
fourth fundamental economic resource for development.
This is the era of total quality management, mass custo-
mization of products and services, reengineering at the
level of product and process, and decentralization and
horizontalization of organizations, and systems manage-
ment. While information technology has enabled these
changes, much more than just information technology is
needed to bring them about satisfactorily. In this article,
attention will be primarily focused upon information tech-
nology and its use by individuals and organizations to
improve productivity and the human condition.

Commentators such as Bell (1), Toffler (2,3), and Zuboff
(4) have long predicted the coming of the information age.
The characteristics of the information age are described in a
number of contemporary writings as well (5,6). Alvin Tof-
fler writes of three waves: the agriculture, industrial, and

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



information or knowledge ages. Within these ages are
numerous subdivisions. For example, the information
age could be partitioned into the era of vertically integrated
and stand-alone systems, process reengineering, total qual-
ity management, and knowledge and enterprise integra-
tion. Information and knowledge are now fundamental
resources that augment the traditional economic resources:
land or natural resources, human labor, and financial
capital. Critical success factors for success in the third
wave, or information age, have been identified (7) and
include: strategy, customer value, knowledge manage-
ment, business organization, market focus, management
accounting, measurement and control, shareholder value,
productivity, and transformation to the third-wave model
for success.

There are numerous other methods of partition of these
‘‘ages.’’ The information age could be partitioned into the
age of mainframe computers, minicomputers, microcom-
puters, networked and client–server computers, and the
age of knowledge management.

Major growth in the power of systems for computing and
communicating, and associated networking is quite funda-
mental and has changed relationships among people, orga-
nizations, and technology. These capabilities allow us to
study much more complex issues than was formerly possi-
ble. They provide a foundation for dramatic increases in
learning and in both individual and organizational effec-
tiveness. In large part, this is due to the networking cap-
ability that enables enhanced coordination and
communications among humans in organizations. It is
also due to the vastly increased potential availability of
knowledge to support individuals and organizations in
their efforts. However, information technologies need to
be appropriately integrated within organizational frame-
works if they are to be broadly useful. This poses a trans-
disciplinary challenge of unprecedented magnitude if we
are to move from high-performance information technolo-
gies to high-performance organizations.

In years past, broadly available capabilities never
seemed to match the visions offered, especially in terms
of the time frame of their availability. Consequently,
despite compelling predictions, traditional methods of
information access and utilization continued their domi-
nance. As a result, comments that go something like ‘‘com-
puters are everywhere except in productivity statistics’’
have often been made ((8)). In just the past few years,
the pace has quickened quite substantially and the need
for integration of information technology issues with orga-
nizational issues has led to the creation of a field of study
sometimes called ‘‘organizational informatics’’ or, more
recently, ‘‘knowledge management,’’ the objectives of which
generally include:

� Capturing human information and knowledge needs
in the form of system requirements and specifications

� Developing and deploying systems that satisfy these
requirements

� Supporting the role of cross-functional teams in work

� Overcoming behavioral and social impediments to the
introduction of information technology systems in
organizations

� Enhancing human communication and coordination
for effective and efficient workflow through knowledge
management

Networks in general and the internet and World Wide
Web in particular (9,10) have become ubiquitous in sup-
porting these endeavors. Almost everyone is growing up
digital (5), searching for designs for living in the informa-
tion age, and going on line to communicate with one another
and to use digital libraries. It also seems that hardware and
software become obsolete as soon as they are unboxed.
Indeed, with current trends, boxes themselves may become
quaint collectibles. However, organizational productivity is
not necessarily enhanced unless attention is paid to the
human side of developing and managing technological
innovation (11) to ensure that systems are designed for
human interaction.

Because of the importance of information and knowl-
edge to an organization, two related areas of study have
arisen. The first of these is concerned with technologies
associated with the effective and efficient acquisition,
transmission, and use of information, or information tech-
nology. When associated with organizational use, this is
sometimes called organizational intelligence, or organiza-
tional informatics. The second area, known as knowledge
management, refers to an organization’s capacity to gather
information, generate knowledge, and act effectively and in
an innovative manner on the basis of that knowledge. This
provides the capacity for success in the rapidly changing or
highly competitive environments of knowledge organiza-
tions. Developing and leveraging organizational knowl-
edge is a key competency and, as noted, it requires
information technology and much more than information
technology capabilities. Thus, it can be seen that informa-
tion technology has led to organizational informatics, and
in this has led to knowledge management.

It would be very difficult to capture the state of informa-
tion technology in an encyclopedia article without the
article being hopelessly out of date even before the ency-
clopedia emerged from the publisher. Consequently, the
goal of this article is to consider several broad trends, which
we feel will persist regardless of the specific technologies
that enable them. In particular, we focus on effects of
information technology and on the organizational implica-
tions of these effects.

INFORMATION TECHNOLOGY AND INFORMATION
TECHNOLOGY TRENDS

There are several ways in which one can define information
technology. The US Bureau of Economic Analysis appears
to define it in terms of office, computing, and accounting
machinery. Others consider information technology as
equivalent to information-processing equipment, which
includes communications equipment, computers, software,

2 INFORMATION TECHNOLOGY



and related office automation equipment. Still others speak
about the technologies of the information revolution (12)
and identify such technologies as advanced semiconduc-
tors, advanced computers, fiber optics, cellular technology,
satellite technology, advanced networking, improved
human–computer interaction, and digital transmission
and digital compression. We would not quarrel with the
content in this list, although we would certainly add soft-
ware and middleware technology. It could be argued that
software is intimately associated with advanced computers
and communications. This is doubtlessly correct; however,
there is still software associated with the integration of
these various technologies of hardware and software to
comprise the many information technology based systems
in evidence today and which will be in use in the future.

Several trends transcend debates about technology
alternatives—currently alternatives such as PCs versus
Net PCs or ISDN versus cable. These overriding trends
concern directions of computer and communications tech-
nologies, and the impacts of these directions on knowledge
management and organizations.

The information revolution is driven by technology and
market considerations and by market demand and pull for
tools to support transaction processing, information ware-
housing, and knowledge formation. Market pull has been
shown to exert a much stronger effect on the success of an
emerging technology than technology push. There is hardly
any conclusion that can be drawn other than that society
shapes technology (13) or, perhaps more accurately stated,
technology and the modern world shape each other in that
only those technologies which are appropriate for society
will ultimately survive.

The potential result of this mutual shaping of informa-
tion technology and society is knowledge capital, and this
creates needs for knowledge management. The costs of the
information technology needed to provide a given level of
functionality have declined dramatically over the past
decade—especially within the last very few years—due
to the use of such technologies as broadband fiber optics,
spectrum management, and data compression. A transat-
lantic communication link today costs one tenth of the price
that it did a decade ago, and may well decline by another
order of magnitude within the next three or four years. The
power of computers continues to increase and the cost of
computing has declined by a factor of 10,000 or so over the
past 25 years. Large central mainframe computers have
been augmented, and in many cases replaced, by smaller,
more powerful, and much more user-friendly personal
computers. There has, in effect, been a merger of the
computer and telecommunications industries into the
information technology industry and it now is possible to
store, manipulate, process, and transmit voice, digitized
data, and images at very little cost.

Current industrial and management efforts are strongly
dependent on access to information and associated knowl-
edge. The world economy is in a process of globalization and
it is possible to detect several important changes. The
contemporary and evolving world is much more service
oriented, especially in the more developed nations. The
service economy is much more information- and knowl-
edge-dependent and much more competitive. Further, the

necessary mix of job skills for high-level employment is
changing. The geographic distance between manufacturers
and consumers, and between buyers and sellers, is often of
little concern today. Consequently, organizations from
diverse locations compete in efforts to provide products
and services. Consumers potentially benefit as economies
become more transnational.

The information technology revolution is associated
with an explosive increase of data and information, with
the potential for equally explosive growth of knowledge.
Information technology and communication technology
have the capacity to change radically the production and
distribution of products and services and, thereby to bring
about fundamental socioeconomic changes. In part, this
potential for change is due to progressively lowered costs of
computer hardware. This is associated with reduction in
the size of the hardware and, therefore, to dematerializa-
tion of systems. This results in the ability to use these
systems in locations and under conditions that would
have been impossible just a few years ago. Software devel-
opments are similarly astonishing. The capabilities of soft-
ware increase steadily, the costs of production decrease,
reliability increases, functional capabilities can be estab-
lished and changed rapidly, and the resulting systems are
ideally and often user friendly through systems integration
and design for user interaction. The potential for change is
also brought about due to the use of information technology
systems as virtual machines, and the almost unlimited
potential for decentralization and global networking due
to simultaneous progress in optical fiber and communica-
tion satellite technology (10).

The life cycle of information technology development is
quite short and the technology transfer time in the new
‘‘postindustrial,’’ or knowledge-based, society brought
about by the information revolution is usually much less
than in the Industrial Revolution. Information technology
is used to aid problem-solving endeavors by using techno-
logically based systems and processes and effective systems
management. Ideally, this is accomplished through:

� Critical attention to the information needs of humans
in problem-solving and decision-making tasks

� Provision of technological aids, including computer-
based systems of hardware and software and asso-
ciated processes, to assist in these tasks

Success in information technology and engineering-based
efforts depends on a broad understanding of the interac-
tions and interrelations that occur among the components
of large systems of humans and machines. Moreover, a
successful information technology strategy also seeks to
meaningfully evolve the overall architecture of systems,
the systems’ interfaces with humans and organizations,
and their relations with external environments.

As just discussed, the most dominant recent trend in
information technology has been more and more computer
power in less and less space. Gordon Moore, a founder of
Intel, noted that since the 1950s the density of transistors
on processing chips has doubled every 18 to 24 months. This
observation is often called ‘‘Moore’s Law.’’ He projected that

INFORMATION TECHNOLOGY 3



doubling would continue at this rate. Put differently,
Moore’s Law projects a doubling of computer performance
every 18 months within the same physical volume. Schaller
(14) discusses the basis for Moore’s Law and suggests that
this relationship should hold through at least 2010. The
implication is that computers will provide increasingly
impressive processing power. The key question, of course,
is what we will be able to accomplish with this power.

Advances in computer technology have been paralleled
by trends in communications technology. The Advanced
Research Projects Agency Network, or ARPAnet as it is
commonly called, emerged in the 1960s, led to the Internet
Protocol in the 1970s, and the Internet in the 1980s. Con-
nectivity, or the ability to connect to almost any destination,
is now on most desktops, E-mail has become a ‘‘must have’’
business capability, and the World Wide Web is on the verge
of becoming a thriving business channel. The result is an
emerging networking market. Business publications are
investing heavily to attract readers—or browsers—of their
on-line publications (15). Telecommunications companies
are trying to both avoid the obsolescence that this technol-
ogy portends and to figure out how to generate revenues
and profits from this channel. The result has been a flurry of
mergers and acquisitions in this industry.

These strong trends present mixed blessings for end-
users. The dramatic increases of processing power on desk-
tops is quickly consumed by operating systems, browsers,
multimedia demos, and so on. The escalating availability of
data and information often does not provide the knowledge
that users of this information need in order to answer
questions, solve problems, and make decisions. The notion
of ‘‘data smog’’ has become very real to many users (16). Not
surprisingly, data smog possibilities encourage opportu-
nities for technologies for coping with data smog. For
example, ‘‘push’’ technology enables information to find
users (17,18). Another possibility is ‘‘intelligent agent’’
technology whereby users can instruct autonomous pro-
grams to search for relevant data and information (19,20).
While these types of capabilities are far from mature, they
appear quite promising. The specifics of the above trends
will surely change—probably by the time this article
appears in print. However, the overall phenomenon of
greater and greater processing power, connectivity, and
information will be an underlying constant.

That the price of computing has dropped in half approxi-
mately every two years since the early 1980s is nothing
short of astounding. Had the rest of the economy matched
this decline in prices, the price of an automobile would be in
the vicinity of $10. Organizational investments in informa-
tion technologies have increased dramatically and now
account for approximately 10% of new capital equipment
investments by US organizations. Roughly half of the labor
force is employed in information related activities. On the
other hand, productivity growth seems to have continually
declined since the early 1970s, especially in the service
sector that comprises about 80% of information technology
investments (8). This situation implies the need to effec-
tively measure how IT contributes to productivity, to

identify optimal investment strategies in IT, and to
enhance IT effectiveness through knowledge management
for enhanced productivity.

On the basis of a definitive study of IT and productivity,
Brynjolfsson and Yang (8) draw a number of useful conclu-
sions. They suggest that the simple relationship between
decreases of productivity growth in the US economy and the
rapid growth of computer capital is too general to draw
meaningful conclusions. In particular, poor input and out-
put data quality are responsible for many difficulties. Many
of the studies they review suggest that the US economy
would not be enjoying the boom that it is enjoying in the
latter half of the 1990s without information technology
contributions. Their study suggests improvements in
accounting and statistical record keeping to enable better
determination of costs and benefits due to IT. They support
the often expressed notion that information technology
helps us perform familiar tasks better and more produc-
tively, but that the greatest improvement is in enabling us
to perform entirely new activities that would not be possible
without these new information technologies. One of these,
for example, is the ability to make major new product
introductions into the world economy with no macro-level
inventory changes being needed. They indicate some of the
new economic and accounting approaches that are needed
to provide improved measures for performance evaluation,
such as activity based costing and activity based manage-
ment (21,22).

Although information technology does indeed poten-
tially support improvement of the designs of existing orga-
nizations and systems, it is also enables the creation of
fundamentally new ones, such as virtual corporations and
major expansions of organizational intelligence and knowl-
edge. It does so not only by allowing for interactivity in
working with clients to satisfy present needs, but also
through proactivity in planning and plan execution. An
ideal organizational knowledge strategy accounts for
future technological, organizational, and human concerns,
to support the graceful evolution of products and services
that aid clients. Today, we realize that human and orga-
nizational considerations are vital to the success of infor-
mation technology.

This is clearly the network age of information and
knowledge. One of the major challenges we face today is
that of capturing value in the network age (23). Associated
with these changes are a wide range of new organizational
models. Distributed collaboration across organizations and
time zones is becoming increasingly common. The motiva-
tion for such collaboration is the desire to access sources of
knowledge and skills not usually available in one place. The
result of such new developments in information technology
as network computing, open systems architectures, and
major new software advances has been a paradigm shift
that has prompted the reengineering of organizations; the
development of high-performance business teams, inte-
grated organizations, and extended virtual enterprises
(24); the emergence of loosely-structured organizations
(25) and has enabled the United States to regain the

4 INFORMATION TECHNOLOGY



productive edge (26) that it once had but lost in the 1980s
and early 1990s.

INFORMATION TECHNOLOGY CHALLENGES

There are a number of substantial challenges associated
with use of information technology in terms of enhancing
the productive efforts of an individual, a group, and an
organization. Many of these are challenges that affect
managing both people and knowledge. The command-
and-control model of leadership is a poor fit for managing
organizations where the participants are not bound to the
organization by traditional incentive and reward systems
(27). A collaborative effort has to continue to make sense
and to provide value to participants for it to be sustained.
Otherwise, knowledge and skills are quite portable and the
loss of knowledgeable workers is a major potential down-
side risk for organizations today.

There are three keys to organizations prospering in this
type of environment: (1) speed, (2) flexibility, and (3) dis-
cretion (25). Speed means understanding a situation (e.g., a
market opportunity), formulating a plan for pursuing this
opportunity (e.g., a joint venture for a new product), and
executing this plan (e.g., product available in stores)
quickly, in this case all within a few weeks at most. The
need for flexibility is obvious; otherwise, there would not be
any advantage to speed. However, flexibility is also crucial
for reconfiguring and redesigning organizations, and con-
sequently reallocating resources. Functional walls must be
quite portable, if they exist at all.

Discretion is what transforms flexibility into speed.
Distributed organizations must be free to act. While they
may have to conform to established protocols, or play by the
rules of the game—at least the rules of the moment—they
need to be able to avoid having to wait unnecessarily for
permission to proceed. Similarly, they need to be able to
alter courses of action, or pull the plug, when things are not
working. In this way, resources are deployed quickly and
results are monitored just as quickly. Resource invest-
ments that are not paying off in the expected time frame
can be quickly redeployed elsewhere.

A major determinant of these organizational abilities is
the extent to which an organization possesses intellectual
capital, or knowledge capital, such that it can create and
use innovative ideas to produce productive results (28–30)
and the ability to manage in a time of great change (31). We
would add communications, collaboration, and courage to
the formulation of Ulrick (32) representing intellectual
capital to yield:

Intellectual capital ¼ Competence � Commitment
�Communications�Collaboration
� Courage

What matters very much today is the ability to make
sense of market and technology trends, to quickly decide
how to take advantage of these trends, and to act faster than
competitors, or other players. Sustaining competitive
advantage requires redefining market-driven value propo-
sitions and quickly leading in providing value in appropriate

new ways. Accomplishing this in an increasingly informa-
tion-rich environment is a major challenge, both for orga-
nizations experiencing these environments and for those
who devise and provide systems engineering and manage-
ment methods and tools for supporting these new ways of
doing business. Thus we see that the network age of infor-
mation and knowledge is an integrated age in which the
mutually reinforcing influences of information technology,
organizations, and people have led to major challenges and
major opportunities in which the new integrated system
takes on global proportions.

A key issue now is how systems engineering and man-
agement can support business, government, and academia
to address these major issues associated with productive
use of information technology innovations in a successful
manner. The remainder of this article discusses ten chal-
lenges, discussed in more depth in Ref. (33), that this
integrative discipline must pursue and resolve if we are
to support continued progress through information tech-
nology. Addressing these challenges will require much
continued effort.

1. Systems Modeling
Our methods and tools for modeling, optimization,
and control depend heavily on exploiting problem
structure. However, for loosely structured systems,
behavior does not emerge from fixed structures.
Instead, structure emerges from collective behaviors
of agents. The distributed, collaborative, and virtual
organizations that information technology enables
are such that the system elements are quite fluid.
Distinctions between what is inside and outside the
system depend on time-varying behaviors and con-
sequences. Satisfying this need will significantly
challenge typical modeling methods and tools.

2. Emergent and Complex Phenomena
Meeting this modeling challenge is complicated by
the fact that not all critical phenomena cannot be fully
understood, or even anticipated, based on analysis of
the decomposed elements of the overall system. Com-
plexity not only arises from there being many ele-
ments of the system, but also from the possibility of
collective behaviors that even the participants in the
system could not have anticipated (34). An excellent
example is the process of technological innovation.
Despite the focused intentions and immense efforts of
the plethora of inventors and investors attracted by
new technologies, the ultimate market success of
these technologies almost always is other than
what these people expect (35) and new technologies
often cause great firms to fail (36). In other words,
many critical phenomena can only be studied once
they emerge and the only way to identify such phe-
nomena is to let them happen, or to create ways to
recognize the emergence of unanticipated phenom-
ena through modeling and simulation. An important
emergent phenomena is that of path dependence (37).
The essence of this phenomenon begins with a suppo-
sedly minor advantage or inconsequential head start
in the marketplace for some technology, product, or

INFORMATION TECHNOLOGY 5



standard. This minor advantage can have important
and irreversible influences on the ultimate market
allocation of resources even if market participants
make voluntary decisions and attempt to maximize
their individual benefits. One of the potential char-
acteristics of information technology products, espe-
cially software, is that of increasing returns to scale.
Also, there may be a network effect, or ‘‘network
externality,’’ which occurs because the value of a
product for an individual consumer may increase
with increased adoption of that product by other
consumers and this, in turn, raises the potential
value for additional users. An example is the tele-
phone, which is only useful if at least one other person
has one, and for which the utility of the product
becomes increasingly higher as the number of poten-
tial users increases. These are major issues concern-
ing information technology today and are at the heart
of the concern in the late 1990s with respect to the
Windows operating system and Internet Explorer,
each from Microsoft.

3. Uncertainties and Control
Information technology enables systems in which the
interactions of many loosely structured elements can
produce unpredictable and uncertain responses that
may be difficult to control. The challenge is to under-
stand such systems at a higher level and success in
doing this may depend much more on efficient experi-
mentation and simulation than on mathematical
optimization due to the inherent complexities that
are involved.

4. Access and Utilization of Information and Knowledge
Information access and utilization, as well as man-
agement of the knowledge resulting from this pro-
cess, are complicated in a world with high levels of
connectivity and a wealth of data, information, and
knowledge. Ubiquitous networks and data ware-
houses are touted as the information technology
based means to taking advantage of this situation.
However, providers of such ‘‘IT solutions’’ seldom
address the basic issue of what information users
really need, how this information should be processed
and presented, and how it should be subsumed into
knowledge that reflects context and experiential
awareness of related issues. The result is an effort
to obtain massive amounts of data and information,
and associated large investments in information
technology with negligible improvements of produc-
tivity (38). One of the major needs in this regard is for
organizations to develop the capacity to become
learning organizations (39,40) and to support bilat-
eral transformations between tacit and explicit
knowledge (41). Addressing these dilemmas should
begin with the recognition that information is only a
means to gaining knowledge and that information
must be associated with the contingency task struc-
ture to become knowledge. This knowledge is the
source of desired advantages in the marketplace or
versus adversaries. Thus understanding and sup-
porting the transformations from information to

knowledge to advantage are central challenges to
enhancing information access and utilization in orga-
nizations. This requires the contingency task struc-
ture of experiential familiarity with previous
situations and understanding the environmental
context for the present situation.

5. Information and Knowledge Requirements
Beyond adopting a knowledge management perspec-
tive, one must deal with the tremendous challenge of
specifying information requirements in a highly
information-rich environment. Users can have access
to virtually any information they want through mod-
ern information technology, regardless of whether
they know what to do with it or how to utilize the
information as knowledge. While information tech-
nology has evolved quite rapidly in recent decades,
human information processing abilities have not
evolved significantly (8). These limited abilities
become bottlenecks as users attempt to digest the
wealth of information they have requested. The
result is sluggish and hesitant decision making, in
a sense due to being overinformed.

6. Information and Knowledge Support Systems
Information technology based support systems,
including decision support and expert systems, can
potentially provide the means to help users cope with
information-rich environments. However, these sup-
port systems are difficult to define, develop, and
deploy in today’s highly networked and loosely struc-
tured organizations due to inherently less well-
defined contexts and associated tasks and decisions.
Effective definition, development, deployment, and
use of these systems are also complicated by conti-
nually evolving information sources and organiza-
tional needs to respond to new opportunities and
threats. In part, these difficulties can be overcome
by adopting a human-centered approach to informa-
tion and knowledge support system design (42,43).
This approach begins with understanding the goals,
needs, and preferences of system users and other
stakeholders—for example, system maintainers.
This approach focuses on stakeholders’ abilities, lim-
itations, and preferences, and attempts to synthesize
solutions that enhance abilities, overcome limita-
tions, and foster acceptance. From this perspective,
information technology and alternative sources of
information and knowledge are enablers rather
than ends in themselves.

7. Inductive Reasoning
Prior to the development of agent-based simulation
models and complexity theory, most studies involved
use of linear models and assumed time-invariant
processes (i.e., ergodicity). Most studies also assumed
that humans use deductive reasoning and techno-
economic rationality to reach conclusions. But infor-
mation imperfections and limits on available time
often suggest that rationality must be bounded.
Other forms of rationality and inductive reasoning
are necessary. We interpret knowledge in terms of
context and experience by sensing situations and

6 INFORMATION TECHNOLOGY



recognizing patterns. We recognize features similar
to previously recognized situations. We simplify the
problem by using these to construct internal models,
hypotheses, or schemata to use on a temporary basis.
We attempt simplified deductions based on these
hypotheses and act accordingly. Feedback of results
from these interactions enables us to learn more
about the environment and the nature of the task
at hand. We revise our hypotheses, reinforcing appro-
priate ones and discarding poor ones. This use of
simplified models is a central part of inductive beha-
vior (44).

8. Learning Organizations
Realizing the full value of the information obtained
from an IT system, and the ability to interpret this as
knowledge is strongly related to an organization’s
abilities to learn and its ability to become a learning
organization. Learning involves the use of observa-
tions of the relationships between activities and
outcomes, often obtained in an experiential manner,
to improve behavior through the incorporation of
appropriate changes in processes and products. Two
types of organizational learning are defined by
Argyris and Schon (40). Single-loop learning is
learning which does not question the fundamental
objectives or actions of an organization. It enables
the use of present policies to achieve present objec-
tives. The organization may well improve but this
will be with respect to the current way of doing
things. Organizational purpose, and perhaps even
process, are seldom questioned. Often, they need to
be. Double-loop learning involves identification of
potential changes in organizational goals and
approaches to inquiry that allow confrontation
with and resolution of conflicts, rather than contin-
ued pursuit of incompatible objectives which usually
leads to increased conflict. Double-loop learning is
the result of organizational inquiry which resolves
incompatible organizational objectives through the
setting of new priorities and objectives. New under-
standing is developed which results in updated cog-
nitive maps and scripts of organizational behavior.
Studies show that poorly performing organizations
learn primarily on the basis of single-loop learning
and rarely engage in double-loop learning in which
the underlying organizational purposes and objec-
tives are questioned. Peter Senge (39) has discussed
extensively the nature of learning organizations. He
describes learning organizations as ‘‘organizations
where people continually expand their capacity to
create the results they truly desire, where new and
expansive patterns of thinking are nurtured, where
collective aspiration is set free, and where people are
continually learning how to learn together.’’ Five
component technologies, or disciplines, enable this
type of learning: (1) systems thinking; (2) personal
mastery through proficiency and commitment to
lifelong learning; (3) shared mental models of the
organization markets, and competitors; (4) shared
vision for the future of the organization; and (5) team

learning. Systems thinking is denoted as the ‘‘fifth
discipline.’’ It is the catalyst and cornerstone of the
learning organization that enables success through
the other four dimensions. Lack of organizational
capacity in any of these disciplines is called a learn-
ing disability. It is important to emphasize that the
extended discussion of learning organizations in this
section is central to understanding how to create
organizations that can gain full benefits of informa-
tion technology and knowledge management. This is
crucial if we are to transform data to information to
insights to meaningful and effective programs of
action.

9. Planning
Dealing successfully with the above challenges
requires that approaches to planning and its effect
on the other systems life cycles be reconsidered.
Traditionally, planning is an activity that occurs
before engineering production and before systems
are placed into operation. However, for loosely struc-
tured systems, systems planning must be trans-
formed to something done in an interactive and
integrative manner that considers each of the other
life-cycles.

10. Measurement and Evaluation
Successfully addressing and resolving the many
issues associated with the information technology
challenges described in this article requires that a
variety of measurement challenges be understood
and resolved. Systems associated with access and
utilization of information, and knowledge manage-
ment, present particular measurement difficulties
because the ways in which information and knowl-
edge affect behaviors are often rather indirect. For
this and a variety of related reasons, it can be quite
difficult to evaluate the impact of information tech-
nology and knowledge management. Numerous stu-
dies have failed to identify measurable productivity
improvements as the result of investments in these
technologies. The difficulty is that the impact of
information and knowledge is not usually directly
related to numbers of products sold, manufactured,
or shipped. Successful measurement requires under-
standing the often extended causal chain from infor-
mation to knowledge to actions and results.
Transformations from information to knowledge
also present measurement problems. Information
about the physical properties of a phenomena are
usually constant across applications. In contrast,
knowledge about the context-specific implications
of these properties depends on human intentions
relative to these implications. Consequently, the
ways in which information is best transformed to
knowledge depends on the intentions of the humans
involved. The overall measurement problem involves
inferring—or otherwise determining—the intentions
of users of information technology based systems,
both products and processes.

INFORMATION TECHNOLOGY 7



CONCLUSION

Ongoing trends in information technology and knowledge
management pose substantial challenges for electrical and
electronics engineering as implementation technologies
enable enhanced physical system capabilities. Addressing
the ten key challenges elaborated here requires utilizing
many of concepts, principles, methods, and tools discussed
elsewhere in this encyclopedia, especially those associated
with systems engineering and management. In addition, it
requires a new, broader perspective on the nature of infor-
mation access and utilization, as well as knowledge man-
agement. Despite these challenges, there are many
potential applications of information technology. Such stu-
dies as that on integrated manufacturing (45) and the role
of information technology in conflict situations (46) are
continually appearing. That this subject is a most relevant
one for electrical engineering today can hardly be over-
emphasized.

BIBLIOGRAPHY

1. D. Bell, The Coming of Post Industrial Society, New York:
Basic Books, 1973.

2. A. Toffler, The Third Wave, New York: Morrow, Bantam
Books, 1980, 1991.

3. A. Toffler and H. Toffler, Creating a New Civilization, Atlanta:
Andrews and McNeel, 1995.

4. S. Zuboff, In the Age of the Smart Machine: The Future of Work
and Power, New York: Basic Books, 1988.

5. D. Tapscott, Growing up Digital: The Rise of the Net Genera-
tion, New York: McGraw-Hill, 1998.

6. E. Dyson, Release 2.0: A Design for Living in the Digital Age,
New York: Broadway Books, 1997.

7. J. Hope and T. Hope, Competing in the Third Wave: The Ten
Key Management Issues of the Information Age, Boston: Har-
vard Bus. School Press, 1997.

8. E. Brynjolfsson and S. Yang, Information Technology and
Productivity: A Review of the Literature, in M. Yovitz, ed.,
Advances in Computers, New York: Academic Press, 1996, pp.
179–214.

9. National Research Council, More than Screen Deep: Toward
Every-Citizen Interfaces to the Nation’s Information Infra-
structure, Washington, DC: Nat. Academy Press, 1997.

10. M. Dertouzos, What Will Be: How the New World of Information
Will Change Our Lives, New York: HarperCollins, 1997.

11. R. Katz (ed.), The Human Side of Managing Technological
Innovation, London: Oxford Univ. Press, 1997.

12. D. S. Alberts and D. S. Papp (eds.), Information Age Anthology:
Information and Communication Revolution, Washington,
DC: National Defense Univ. Press, 1997.

13. R. Pool, Beyond Engineering: How Society Shapes Technology,
London: Oxford Univ. Press, 1997.

14. R. R. Schaller, Moore’s law: Past, present, and future, IEEE
Spectrum, 34 (6): 52–59, 1997.

15. R. Grover and L. Himelstein, All the news that’s fit to browse,
Business Week, June 16, 1997, pp. 133–134.

16. D. Shenk, Data smog: Surviving the info glut, San Francisco,
CA: Harper, 1998.

17. K. Kelly and G. Wolf, PUSH! Kiss Your Browser Goodbye: The
Radical Future of Media Beyond the Web, Wired, 5 (3), March
1997.

18. W. Andrews, Agent makers expand into push in effort to deliver
increasingly relevant information to users, WebWeek, 3 (14): 1,
1997.

19. P. Maes, Agents that reduce work and information overload,
Comm. ACM, 37 (7): 30–40, 146, 1994.

20. A. Caglayan and C. Harrison, Agent Sourcebook: A Complete
Guide to Desktop, Internet, and Intranet Agents, New York:
Wiley, 1997.

21. R. S. Kaplan and R. Cooper, Cost and Effect: Using Integrated
Cost Systems to Drive Profitability and Performance, Boston:
Harvard Bus. School Press, 1997.

22. R. Cooper and R. S. Kaplan, The Design of Cost Management
Systems, Englewood Cliffs, NJ: Prentice-Hall, 1991.

23. S. P. Bradley and R. L. Nolan, Sense and Respond: Capturing
Value in the Network Age, Boston: Harvard Bus. School Press,
1998.

24. D. Tapscott and A. Caston, Paradigm Shift: The New Promise
of Information Technology, New York: McGraw-Hill, 1993.

25. W. B. Rouse, Connectivity, Creativity, and Chaos: Challenges
of Loosely-Structured Organizations, Proc. 1997 Int. Conf. on
Syst. Man, Cybern., Orlando, FL, October 1997.

26. R. K. Lester, The Productive Edge: How U.S. Industries Are
Pointing the Way to a New Era of Economic Growth, New York:
Norton, 1998.

27. P. F. Drucker, Toward the new organization, Leader to Leader,
3: 6–8, 1997.

28. A. Brooking, Intellectual Capital: Core Asset for the Third
Millennium Enterprise, London: Int. Bus. Press, 1996.

29. L. Edvinsson and M. S. Malone, Intellectual Capital: Realizing
Your Company’s True Value by Finding Its Hidden Brain-
power, New York: HarperCollins, 1997.

30. D. A. Klein, The Strategic Management of Intellectual Capital,
Boston: Butterworth-Heineman, 1998.

31. P. F. Drucker, Managing in a Time of Great Change, New York:
Penguin, 1995.

32. D. Ulrich, Intellectual capital ¼ Competence � commitment,
Sloan Manag. Rev., 39 (2): 15–26, 1998.

33. W. B. Rouse and A. P. Sage, Information Technology and
Knowledge Management, in A. P. Sage and W. B. Rouse
(eds.), Handbook of Systems Engineering and Management,
New York: Wiley, 1999.

34. J. L. Casti, Would-Be Worlds: How Simulation Is Changing the
Frontiers of Science, New York: Wiley, 1997.

35. J. Burke, The Pinball Effect: How Renaissance Water Gardens
Made the Carburetor Possible and Other Journeys Through
Knowledge, Boston: Little, Brown, 1996.

36. C. M. Christensen, The Innovator’s Dilemma: When New Tech-
nologies Cause Great Films to Fail, Boston: Harvard Bus.
School Press, 1997.

37. W. B. Arthur, Increasing Returns and Path Dependence in the
Economy, Ann Arbor, MI: Univ. Michigan Press, 1994.

38. D. H. Harris (ed.), Organizational Linkages: Understanding
the Productivity Paradox, Washington, DC: National Academy
Press, 1994.

39. P. M. Senge, The Fifth Discipline: The Art and Practice of the
Learning Organization, New York: Doubleday, 1990.

40. C. Argyris and A. Schon, Organizational Learning II: Theory,
Method, and Practice, Reading, MA: Addison-Wesley, 1996.

8 INFORMATION TECHNOLOGY



41. I. Nonaka and H. Takeuchi, The Knowledge Creating Com-
pany, London: Oxford Univ. Press, 1995.

42. W. B. Rouse, Design for Success: A Human-Centered Approach
to Designing Successful Products and Systems, New York:
Wiley, 1991.

43. W. B. Rouse, Human-Centered Design of Information Systems,
in J. Wesley-Tanaskovic, J. Tocatlian, and K. H. Roberts (eds.),
Expanding Access to Science and Technology: The Role of
Information Technology, Tokyo: United Nations Univ. Press,
1994, pp. 214–223.

44. J. H. Holland et al., Induction: Processes of Inference, Learning,
and Discovery, Cambridge, MA: MIT Press, 1986.

45. Information Technology for Manufacturing: A Research
Agenda, Natl. Res. Council, Natl. Acad. Press, Washington,
DC, 1995.

46. J. Arquilla and D. Rondfeldt, In Athena’s Camp: Preparing for
Conflict in the Information Age, Santa Monica, CA: RAND,
1997.

ANDREW P. SAGE

George Mason University
Fairfax, Virginia

WILLIAM B. ROUSE

Georgia Institute of Technology
Atlanta, Georgia

INFORMATION TECHNOLOGY 9



K

KERNEL

The kernel is the subset of an operating system’s functions
that must be executed in privileged or supervisor mode, so
that they might properly protect users and allocate
resources among them. The privileged mode gives those
programs unrestricted memory access and the right to
executive sensitive instructions. Kernel functions typically
include:

1. Basic Input/Output System (BIOS). Routines
giving a process access to the essential I/O devices
connected to the system—the display, keyboard,
mouse, hard disks, and network. BIOS starts those
devices and responds to their interrupts when they
are done.

2. Interrupt Management. Routines for transferring
the processor to a high priority task shortly after a
signal indicates the need for the task. The names of
interrupt handling routines are in an ‘‘interrupt vec-
tor.’’ The actual routines are elsewhere; for example,
the page fault handler is part of the memory manager
(see below), and the network packet received handler
is part of the interprocess communication manager
(see below).

3. Process Management. Routines for switching pro-
cessors among processes; using the clock interrupt for
round-robin scheduling; sending semaphore signals
among processes; creating and removing processes;
and controlling entry to supervisor state.

4. Memory Management. Routines for mapping vir-
tual to real addresses; transferring pages between
main memory and secondary memory; controlling
multiprogramming load; and handling page fault
and protection violations.

5. Interprocess Communication. Routines for open-
ing and closing connections between processes;
transferring data over open connections; handling
network protocols and routing; and processing name
service.

6. Security. Routines for enforcing the access and
information-flow control policies of the system, chan-
ging protection domains, and encapsulating pro-
grams.

The kernels of early operating systems were constrained by
memory limitations to be small. MIT’s Compatible Time
Sharing System (1960) had a total of 256 kilobytes of main
memory, of which half was allocated to the kernel. Early
Unix systems (1972) also had small kernels. By the early
1980s, system such as Berkeley Unix grew their kernels to
take advantage of larger main memory. However, large
kernels were more error prone, less secure, and slow.

Operating systems designers introduced the microker-
nel as a way to minimize the operating system code that had
to be main-memory resident and operate in supervisor
mode. Only the bare essentials were included; all other
routines were executed outside the kernel in the user’s
memory space. For example, a device driver can be executed
in user mode; only the instructions that invoke it and
receive its interrupts are privileged. Also, file access control
lists are stored in the file system; the microkernel security
manager simply verifies that a requested access is per-
mitted by the access list. This strategy has led to very
efficient, fast, and compact microkernels for many operat-
ing systems.

PETER J. DENNING

Naval Postgraduate School
Monterey, California

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



M

MONITOR

The term monitor denotes a control program that oversees
the allocation of resources among a set of user programs.
Along with supervisor and executive, it was an early
synonym for operating system. An old example was the
Fortran Monitor System (FMS), which appeared on the
IBM 709 series beginning in the late 1950s to provide run-
time support for Fortran programs. A later example was
the Conversational Monitor System (CMS), a single-user
interactive system that ran on a virtual machine within
the IBM VM/370. Beginning in the early 1970s, the term
monitor was slowly dissociated from operating systems
and associated with object-class managers. The first such
use was in secure operating systems: The reference moni-
tor was an object-class manager that enforced an access
policy among the users of those objects (1).

In 1974, Hoare (2) proposed programming language
structures that simplified operating systems by providing
a separate scheduler for each class of resources. The
monitor maintains records of queues and resource states,
and it gives external processes access through a high-
level interface consisting of monitor procedures (today
called methods). As with abstract data types, the moni-
tor’s methods restrict the caller to a few well-defined
operations on the monitor’s resources, hiding most
details. Unlike abstract data types, monitors have inter-
nal locks that permit only one process to execute monitor
instructions at a time, thereby permitting concurrent
operations on the objects. Other processes must wait in
a queue to enter the monitor. If a process in the monitor
stops to wait for a resource to become available, the
monitor must be unlocked so that another process (nota-
bly one that will release the desired resource) can gain
access.

An example of a resource monitor is given below in Java,
a modern language that supports the concept. With this
monitor, a process can request that it be allocated a unit
from a pool of resources; it can use that unit exclusively for a
period of time, and then release it back to the pool. To set
this up, a programmer includes these statements to declare
a monitor for printers and to initialize it with a vector
containing the names of all available printers:

ResourceMonitor printers;

printers = new ResourceMonitor(. . .);

Thereafter, the programmer can cause a thread (process)
to acquire, use, and release a printer with this pattern:

myPrinter = printers.acquire();

. . .
(use of printer)

. . .
printers.release(myPrinter);

The Java code for the resource monitor is as follows:

class ResourceMonitor {

Vector pool;

/* initialization */

ResourceMonitor(Vector initialResources) {

pool = initialResources;

}

/* acquire an available resource; wait if none

available */

public synchronized Object acquire() {

Object out;

while (pool.isEmpty()) wait();

out = pool.firstElement();

pool.removeElement(out);

return out;

}

/* return a resource to the pool */

publicsynchronizedvoidrelease(Objectin){

pool.addElement(in);

notify();

}

}

The methods acquire() and release() are declared
as public, meaning that any process can call them, and
synchronized, meaning that they are executed atomically.
This implements the central feature of a monitor, which is
that the operations are mutually exclusive and that their
component steps cannot be interleaved. This feature is
implemented by locks inserted by the compiler.

The Java operation wait() suspends the calling thread
(process), releases the mutual exclusion lock on the meth-
ods (acquire, release), and records the process identifier in a
waiting queue; notify() signals one of those. The sig-
naled thread is removed from the queue and resumes its
operation after relocking the monitor. Note that in this
example, the call to wait() appears in a loop; it is possible
that the thread may find the pool empty by the time it
reenters the monitor; in which case, it will call wait()
again. This can occur if another thread overtakes the
signaled one.

Monitors are also useful in structuring distributed sys-
tems. The monitor operations can be called via remote
procedure calls (RPCs). Most RPC mechanisms have
built-in error controls to guard against lost messages; a
lost message could cause a deadlock when a thread called
the release method but the monitor did not receive the
release message.

A monitor callable via RPC must be organized to avoid
deadlock when network connections fail. When a remote call
message arrives at the monitor, the method to be executed is
given to a ‘‘proxy thread’’ running on the server housing the
monitor. Meanwhile, the client application thread that
issued the RPC is suspended on its host computer until

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



the proxy thread completes and returns the result. Even if
the connection or the caller’s host crashes, the proxy thread
will complete and unlock the monitor, allowing other
threads on other computers to call the monitor.

The programmer of the application that called the remote
monitor sees some complications. They originate from the
dynamic bindings between the programmer’s computer and
the server housing the monitor. The complications show up
as new exceptions from the RPC system—e.g., unknown
host, failed or hung connection, parameter marshaling
error, no such remote procedure, no such object, and no
response within the time-out period. The responses to these
exceptions will depend on the application.

BIBLIOGRAPHY

1. P. Denning and G. S. Graham. Protection: principles and prac-
tice, Proc. AFIPS Spring Joint Comput. Conf., 40, 417–429,
1972.

2. C. A. R. Hoare, Monitors: An operating system structuring
concept, Commun. ACM, 17(10), 1974.

FURTHER READING

P. Brinch Hansen, The Architecture of Concurrent Programs.
Englewood Cliffs, NJ: Prentice-Hall, 1977.

K. Arnold and J. Gosling, The Java Programming Language.
Reading, MA: Addison-Wesley, 1996.

PETER J. DENNING

Naval Postgraduate School
Monterey, California

WALTER F. TICHY

University of Karlsruhe
Karlsruhe, Germany

2 MONITOR



O

OVERHEAD

Overhead in computer systems is like overhead in
organizations—shared functions that benefit everyone
but that cannot be conveniently associated with any one
activity. In organizations, rent, furnishings, electricity, tel-
ephones, utilities, supplies, auditing, accounting, general
clerical support, and management are counted as overhead.
In computer systems, allocation of resources, scheduling,
conflict resolution, error correction, exceptional conditions,
protection, security, performance monitoring, auditing,
accounting, input–output control, caching, distributed func-
tions, and network protocols are all counted as overhead. As
in organizations, excessive overhead diminishes capacity
and increases cost without increasing productivity. Over-
head in computer systems manifests as slower processing,
less memory, less network bandwidth, or bigger latencies
than expected.

Overhead is not always easy to measure. The time an
operating system spends in supervisor state is not pure
overhead because many important operations requested by
user tasks are implemented as system functions that run in
supervisor state, for example, input–output, file opera-
tions, and message-passing. A measurement that an
operating system spends 80% of its time in supervisor state
does not mean that the system spends only 20% of its time
doing useful work: We need to know what portion of the 80%
is spent responding to requests from user tasks. Moreover,
many operating systems use special coprocessors to
perform important overhead tasks such as authentication,
virtual memory control, external communications, or
peripheral device management; these coprocessors do not
diminish processor capacity, memory capacity, or band-
width available to user tasks. When coprocessors perform
system functions, a measurement that a processor spends
90% of the time running user tasks does not mean that
overhead is low.

Listed below are the main functions that usually count
as overhead. Each one has a cost in processing time,
memory space, network bandwidth, and latency (response
time).

Allocation of Resources. Many resources such as CPU
cycles, disk sectors, main-memory page frames, local-
network packet slots, and shared files can be used by only
one task at a time. To prevent conflicts and deadlocks, oper-
atingsystemsimplementschedulersfortheseresources.The
timespentrunningaschedulerandthememoryoccupiedbya
scheduler’s queues count as overhead.

Error Correction. Data are stored and transmitted with
redundant bits that permit detecting and correcting errors.
These bits consume some space and bandwidth.

Exceptional Conditions. Most system functions have
normal and error returns; the instructions that test for

and respond to errors consume some space and pro-
cessing time. Examples are arithmetic contingencies,
data transmission failures, addressing snags, and illegal
actions.

Protection and Security. Monitors, firewalls, authenti-
cators, backup systems, virus detectors, and other
means of securing systems against unauthorized use,
denial of service, and intruders are necessary but often
expensive.

Performance Monitoring, Auditing and Accounting.
Recording key actions and events, logging each task’s usage
of resources, figuring costs and billings to users of the
system, and generating statistics on resource usage and
performance cost.

Input–Output Control. Many I/O operations are easy to
specify at the user level—for example, open or read a file.
But the device spoolers and drivers can be complex because
they must queue up requests from multiple tasks, translate
each request into the low-level instruction sets of the
devices, automatically work around known problems
such as bad disk sectors, and handle interrupt conditions
from their devices.

Caching. The speed of operations on secondary storage
devices or remote servers can often be significantly
improved by keeping a copy of the data in a local memory.
Microcomputer register-windows, virtual memories, disk
drivers, open-file managers, network browsers, and
Internet edge servers are among the many prominent
examples of caching. Caching consumes memory and pro-
cessing time to locate and load copies of items into the cache
and to maintain consistency with the originals.

Distributed Functions. Modern operating systems distri-
bute their functions transparently over a collection of
servers and workstations connected by a high-speed local
network. Examples are file servers, printing servers, com-
pute servers, authentication servers, and workstations.
Maintaining the appearance that files, printers, processors,
and login-sites are location independent significantly
improves usability but is not cheap.

Network Protocols. Protocols for opening connections,
transferring data, obtaining encryption keys, routing, and
authenticating access all cost processing time, memory,
and bandwidth.

Mainframe operating systems often charge users for
processor, memory, and disk usage. In these systems, over-
head will be charged back to users as percentage increases
in each of these components. In personal computer net-
works and time-shared research computing systems, users
are not charged for resource usage or overhead.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Overhead detracts from system performance only to the
extent that the overhead functions do not add to the pro-
ductivity of user tasks. Many services are provided by the
system to relieve programmers from having to provide
these functions themselves or to prevent expensive break-
downs. As long as the system can provide these functions
more efficiently than its users, the resulting increases in

overhead are offset by better service, improved perfor-
mance, and lower overall costs.

PETER J. DENNING

Naval Postgraduate School
Monterey, California

2 OVERHEAD



Q

QUALITY IN COMPUTER SCIENCE AND
COMPUTER ENGINEERING EDUCATION

INTRODUCTION

Any attempt to define the concept of quality, as it exists in
higher education, tends to reveal the fact that in some sense
it is elusive; on the other hand, ‘‘you know it when you see
it’’. In his article, Peter Knight (1) articulates some of the
dilemmas such as efficiency or effectiveness, emphasis on
measurement or emphasis on process, and well-specified
procedures or well-rehearsed goals. In some sense, one
must achieve a proper balance. Of necessity, students
themselves must be active, engaged, with and committed
to the educational process. Given the current recognition of
the phenomenon of the globalization of the workforce, it is
very important for students to be competitive in the inter-
national workplace by the time they graduate.

The approaches to quality are many and varied, with
different mechanisms and approaches. In turn these
approaches produce different emphases, and inevitably,
these tend to condition the behavior of those involved.
Invariably, the mechanisms should place an emphasis on
improvement or enhancement, although judgements inevi-
tably have some role when it comes to assessing quality
either through accreditation or through some other process.

The purpose of this article is to focus on the quality
issues within computer science and computer engineering
degree programs. In some countries, program quality is
fostered through an accreditation process, whereas in
others, slightly different approaches are employed. Here
we attempt to span that spectrum.

THE CONCEPT OF QUALITY

Many definitions of the term quality exist as it applies in the
context of higher education. Even in the context of indivi-
dual programs of study, Different ways exist to define in the
concept. In the United Kingdom, for instance, many differ-
ent interpretations exist. Earlier definitions proved exces-
sively complex to manage and to operate. A relatively
recent document outlines certain principles that auditors
should use during the review of programs of study (see Ref.
2). In this document, only seven aspects are most impor-
tant, which include the following:

1. Aims and outcomes. What are the intended learning
outcomes of the program and how were these
obtained (e.g., from guidance from benchmarking
standards, professional body requirements, local
needs)? How do these out comes relate to the overall
aims of the provision? Are staff and students familiar
with these outcomes?

2. Curricula. Does the design and content of the curri-
culum encourage achievement of the full range of

learning outcomes? Do modern approaches to learn-
ing and teaching by current developments and scho-
larship influence the discipline?

3. Assessment. Does the assessment process enable
students to demonstrate acquisition of the full range
of intended learning objectives? Does criteria exist to
define different levels of achievement? Are full secur-
ity and integrity associated with the assessment
processes? Does the program require formative as
well as summative assessment? Does the program
meet benchmarking standards?

4. Enhancement. Does the program use an activity that
seeks to improve standards regularly, (e.g., via inter-
nal or external reviews, appropriate communication
with the external examiner(s), accreditation activity)
and how deep and thorough is that activity? Are data
analyzed regularly and are appropriate actions
taken?

5. Teaching and learning. Are the breadth, depth, and
challenge of the teaching of the full range of skills as
well as the pace of teaching appropriate? Does the
program implement a suitable variety of appropriate
methods? If so, do these methods truly engage and
motivate the students? Are the learning materials of
high quality? Are the students participating in learn-
ing?

6. Student progression. Does the program have an
appropriate strategy for academic support? Is admis-
sions information clear and does it reflect the course
of study faithfully? Are supervision arrangements in
place? Do students receive appropriate induction
throughout their course?

7. Learning resources. Are the teaching staff appropri-
ately qualified to teach the given program of study
and do they have the opportunity to keep teaching
materials as well as their competences up-to-date? is
effective support provided in laboratories and for
practical activity? How does the institution use
resources for the purposes of learning? Is the student
working space attractive and is the general atmo-
sphere in the department conducive to learning?

PARTICULAR APPROACHES

The U.S. Situation—ABET and CC2001

Within the United States, ABET, Inc. (formerly known as
the Accreditation Board for Engineering and Technology,
established in 1932) undertakes accreditation in the field
of applied sciences, computing, engineering, and technol-
ogy. In this capacity, it undertakes the accreditation of
individual programs of study. It recognizes accreditation
that is a process whereby programs are scrutinized to
ascertain whether they meet quality standards estab-

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



lished by the professions. The view is that accreditation
benefits:

� Students who choose programs of study with careers in
mind

� Employers to enable them to recognize graduates who
will meet these standards

� Institutions that are provided with feedback and even
guidance on their courses.

Within ABET, CSAB, Inc. (formerly known as the Com-
puting Sciences Accreditation Board) is a participating
body and it is the lead society to represent programs in
computer science, information systems, software engineer-
ing, and information technology. It is also a cooperating
society (with the IEEE as the lead society) that represents
programs in computer engineering. However, within
ABET, its computing accrediting commission (CAC) is
responsible to conduct the accreditation process for pro-
grams in computer science, information systems, and infor-
mation technology. engineering accreditation commission
(EAC) is responsible for the accreditation of programs in
software engineering and in computer engineering.

Criteria for Accrediting Computer Science Programs. The
ABET criteria for computer science programs may be
found in Ref. 3. What follows is based directly on that
publication.

Each program of study will possess some published
overall set of objectives that aim to capture the philosophy
of the program. Typically, these objective might address
now students are prepare for a variety of possible careers in
computer science or possible advanced study in that field.

A program of study, as defined by the individual mod-
ules, must be consistent with these objectives. Beyond
this, the program requires additional elements phrased
in terms of a general component, a technical computer
science component, a mathematics and science compo-
nent, and a component that addresses additional areas
of study. The requirements themselves stipulate mini-
mum times to devote to particular areas and issues that
rate to content.

To quantify the time element, a typical academic year
consists of two semester terms (though three quarter terms
are also possible). A semester consists of 15 weeks and one
semester hour is equivalent to meeting a class for 50
minutes one time a week for 15 weeks; that is, it is equiva-
lent to 750 minutes of class time during a semester. Stu-
dents take courses minimally worth 30 semester hours per
year for four years; this is equivalent to 120 semester hours
for a baccalaureate degree.

General Component. The general component of the
accreditation criteria stipulates that a degree in computer
science must contain at least 40 semester hours of appro-
priate and up-to-date topics in computer science. In addi-
tion, the degree program must contain 30 semester hours of
mathematics and science, 30 hours of study in the huma-
nities, social sciences, and the arts to provide a broadening
education.

Computer Science Component. Specifically, the study of
computer science must include a broad-based core of com-
puter science topics and should have at least 16 semester
hours; the program should have at least 16 hours of
advanced material that builds on that core. Core material
must cover algorithms, data structures, software design,
concepts in programming languages, and computer archi-
tecture and organization. The program must stress theo-
retical considerations and an ethos of problem solving and
design must exist. In addition, students require exposure to
a variety of programming languages and systems and they
must become proficient in at least one high-level program-
ming language.

Mathematics and Science Component. The program must
contain at least 15 semester hours of mathematics; the
mathematical content must include discrete mathematics,
differential and integral calculus, as well as probability and
statistics. In addition, the program must contain at least 12
semester hours of science to include an appropriate two-
semester sequence of a science course.

Additional Areas of Study. Oral and written communica-
tion skills must be well developed and be applied through-
out the program. Additionally, students must be
knowledgeable about legal, ethical, and professional issues.
Beyond these matters of a technical nature, the program is
also required to have laboratories and general facilities of a
high standard; moreover, the institution must have suffi-
cient resources (interpreted in the broadest sense) to pro-
vide a good environment that is aligned with the objectives
of the program.

Criteria for Accrediting Computer Engineering Pro-
grams. The ABET criteria for computer engineering pro-
grams can be found in Ref. 4. What follows is based directly
on that publication.

The criteria here take a different form from those out-
lined above for computer science; they are phrased in terms
of general criteria that are applicable to all engineering
programs followed by criteria that are specific to computer
engineering. Thus, the general criteria mention students,
program educational objectives, associated outcomes and
assessment, and a professional component. We now
describe these four areas.

Students. The quality and performance of students is an
important measure of the health of the program. Of course,
appropriate advice and guidance must be available to
enhance that quality. Mechanisms must be in place to
ensure that all students meet the stated learning objectives
of the program. Firther more, it is imperative that institu-
tions not only have policies to accept students from else-
where (and recognizing credit gained) but also to validate
courses taken in other institutions.

Program Educational Objectives. The criteria indicate
that detailed published objectives (validated and reviewed
at regular intervals) must exist for each program of study
and these objectives must be consistent with the mission of
the institution. The educational programs must provide

2 QUALITY IN COMPUTER SCIENCE AND COMPUTER ENGINEERING EDUCATION



classes whose successful completion implies that the broad
program meets its aims and objectives.

Program Outcomes and Assessment. This aspect of the
criteria relates to the expected profile of a student when
program of study is completed successfully. Thus, success-
ful completion of the individual classes should produce a
graduate who possesses a range of skill or attributes. These
attributes include appropriate knowledge and skills, the
ability to design and conduct experiments, the ability to
work in multi-disciplinary teams, the ability to communi-
cate effectively, the understanding of professional and
ethical issues, and the ability to apply their skills to under-
take effective engineering practice.

Professional Component. This aspect relates to the inclu-
sion of one year of a combination of mathematics and basic
science, one and a half years of relevant engineering topics,
and a general education program that complements the
technical aspects of the program.

Additional Criteria. Beyond the previous criteria, addi-
tional requirements exist concerning the setting in which
the program is based. Thus, the teaching staff must have an
appropriate background, the facilities must be of high
quality, and the institution must have the general
resources to provide an environment in which successful
and fruitful study can take place.

The specific computer engineering criteria include the
requirement that the program should exhibit both the
breadth and depth across a range of engineering topics
in the area of the program of study. This range must include
knowledge of probability and statistics, mathematics,
including the integral and differential calculus, computer
science, and the relevant engineering sciences needed to
design and develop complex devices.

Computing Curricula 2001. Within the ABET criteria,
core, advanced topics, and so on are mentioned. To provide a
meaning for these terms, several professional societies,
such as the ACM and the IEEE Computer Society, have
worked together to produce curriculum guidance that
includes mention of these terms.

We refer to this recent guidance as Computing Curricula
2001 (or CC 2001 for short). Earlier documents were pub-
lished as single volumes and they tended to focus on com-
puter science programs. The expansion in the field of
computing resulted in an effort to culminate the publishing
of five volumes that cover computer science, information
systems, computer engineering, software engineering, as
well as information technology (see Refs. 5–8). A sixth
volume is intended to provide an overview of the entire
field (see Ref. 9). These references should provide up-to-
date guidance on curriculum development and extends to
detailed outlines for particular programs of study and
classes within these programs. The intent is that these
works will receive updates at regular intervals (e.g., per-
haps every five years) to provide the community with up-to-
date information and advice on these matters.

The System in the United Kingdom

In the United Kingdom, the benchmarking standards cap-
ture important aspects of the quality of programs of study in
individual disciplines. Representative groups from the
individual subject communities have developed these stan-
dards. In the context of computing, the relevant document
(included in Ref. 10) the Quality Assurance Agency (the
government body with general responsibility for quality in
higher education is published in the united kingdom by).
This document also forms the basis for the accreditation of
computing programs in the United Kingdom, an activity to
ensure that institutions provide within their courses the
basic elements or foundations for professionalism.

The benchmarking document in computing is a very
general outline in the sense that it must accommodate a
wide range of existing degree programs; at the time of its
development, an important consideration was that it had
not to stifle, but rather facilitate, the development of new
degree programs. The approach adopted was not to be
dogmatic about content but to place a duty on institutions
to explain how they met certain requirements.

The benchmarking document contains a set of require-
ments that must be met by all honors degrees in computing
offered by U.K. institutions of higher education. This docu-
ment defines minimal criteria for the award of an honors
degree, but it also addresses the criteria expected from an
average honors student; in addition, it indicates that cri-
teria should exist to challenge the higher achieving stu-
dents (e.g., the top 10%) and it provides guidance on
possible programs.

The benchmarking document addresses knowledge and
understanding, cognitive skills, and practical and transfer-
able skills; it views professional, legal, and ethical issues as
important. It recognizes these aspects as interrelated deli-
cately but intimately. Several aspects of the requirements
contained within the benchmarking document require
mentioning these because indicate nequirements funda-
mental thinking.

First, all degree programs should include some theory
that acts as underpinning and institutions are required to
defend their position on this matter. The theory need not be
mathematical (e.g., it might be based on psychology), but it
will serve to identify the fundamentals on which the pro-
gram of study is based. This requirement should guarantee
some level of permanence to benefit the educational provi-
sion.

Furthermore, all degree programs must take students to
thefrontiersofthesubject.Institutionsmustidentifythemes
developed throughout the course of study, from the basics
throughtothefrontiersofcurrentknowledge.Inaddition,all
students should undertake, usually in their final year, an
activity that demonstrates an ability to tackle a challenging
problem within their sphere of study and to solve this pro-
blem using the disciplines of the subject. The essence of this
activityistodemonstrateanabilitytotakeideasfromseveral
classes or modules and explore their integration by solving a
major problem.

Finally, from the point of view of the accreditation
carried out by the British Computer Society (BCS), the
standards impose some additional requirements beyond

QUALITY IN COMPUTER SCIENCE AND COMPUTER ENGINEERING EDUCATION 3



those of the benchmarking standard to allow for some
specific interpretations. For instance, the major final
year activity must be a practical problem-solving activity
that involves implementation.

The Australian Approach

The Australian Universities Quality Agency, AUQA for
short, has a key overarching role in relation to the quality
in Australian Universities (and beyond). Its objectives that
relate primarily to course accreditation appear in Ref. 11.

The objectives specify two main points. First, the need to
arrange and to manage a system of periodic audits of the
quality assurance arrangements of the activities of Aus-
tralian universities, other self-accrediting institutions, and
state and territory higher education accreditation bodies is
specified. In addition, the domument sitpulates that insti-
tutions must monitor, review, analyze, and provide public
reports on quality assurance arrangements in self-accred-
iting institutions, on processes and procedures of state and
territory accreditation authorities, and on the impact of
these processes on the quality of programs.

The AUQA places a great emphasis on the self-review
carried out by each institution. This self review will use a
set of internal quality processes, procedures, and practices
that must be robust and effective, with an emphasis on
improvement. These internal mechanisms should accom-
modate accreditation and other such activities carried out
by professional bodies and must imply peer judgement.

The AUQA itself seeks to encourage improvement and
enhancement through the publication of good practice, as
well as providing advice, and where desirable, consultation.
The possibility of inter-institutional discussion also exists.

The Swedish System

In 1995, the National Agency for Higher Education in
Sweden initiated a set of quality audits of institutions of
higher education. In this audit, institutions were required
to produce a self-evaluation of their provision; to sustain a
team visit of auditors; and to conduct meetings and discus-

sions; After the visit, auditors would discuss their findings
amongst themselves. Although this process had value, most
have deemed it to be less than satisfactory because it failed
to drill down to departmental activity (see Ref. 12).

In December 1999, the Swedish government passed a
bill that placed the student at the very heart of quality and
at the heart of developments in higher education. Since
2002, quality assessment activities would be conducted by
the agency on a six-year cycle. The process would involve
self-assessment, visits from peer review teams, and the
publication of reports. Four main purposes in the new
system (see Ref. 12) are as follows:

� Ensure that students are offered equivalent education
of good quality, regardless of their home institution

� Ensure that assessments place a premium on improve-
ment

� Provide both students and potential students with
information regarding the quality of degree programs

� Allow stakeholders to make comparisons on the aspect
of provision, which should include international com-
parisons

The new activity has improved the level of education
greatly in Sweden.

ADDITIONAL OBSERVATIONS

Bloom’s Taxonomy and Educational Objectives

The seminal work of Bloom et al. (13) has conditioned
heavily current thinking on educational objectives. Since
its publication in 1956, this area has attracted extensive
interest. More recently, the preoccupation with standards
of achievement and more general quality concerns have
resulted in attempts to clarify and to reformulate the
underlying principles. One such reference is Ref. 14, which
forms the basis of the discussion here, see Table 1.

Table 1. The cognitive process dimension (from Ref. 14 with permission)

Process Categories Definitions Illustrations of Cognitive Processes

1. Remember Retrieve knowledge from memory Recognize, recall, define, describe, repeat

2. Understand Construct meaning from Interpret, give examples, place in already defined categories,
summarize, infer, compare, explain, discuss, indicate, interpret,
extrapolate

3. Apply Perform a known procedure in a given
situation

Execute, implement, illustrate, solve, demonstrate, measure

4. Analyze Break material into constituent parts and
determine the relationships between
these parts and how they contribute
to the whole

Discriminate, distinguish, organize, attribute, criticize,
compare, contrast, examine, question, test

5. Evaluate Make judgments based on criteria and on
standards

Check, compare and contrast, critique, defend, estimate, judge,
predict, select, assess, argue

6. Create Put elements together to form a coherent
and/or functional entity

Design, compose, construct, produce, plan, generate, innovate;
introduce new classifications; introduce new procedures

4 QUALITY IN COMPUTER SCIENCE AND COMPUTER ENGINEERING EDUCATION



The typical form of a learning objective is a verb (which
implies an activity that provides evidence of learning and
therefore enhanced behavior) applied to some area of
knowledge. Txpically, The verbs capture what students
must be able to do. The objective must imply the acquisition
of cognitive skills such as the ability to carry out some
activity, or the acquisition of some knowledge.

In its original formulation, Bloom’s taxonomy paid little
attention to the underlying knowledge. Yet, we can identify
different types of knowledge. Within any discipline, of
course, the community will classify knowledge as elemen-
tary and as advanced.

The Knowledge Dimension. We now recognize that dif-
ferent kinds of knowledge exist. In Ref. 14, four different
kinds of knowledge are identified, and these are captured
within Table 1.

The Cognitive Dimension. We base this on a set of levels
that claim to identify key skills in an increasing order of
difficulty. These skills have been refined over the years but
again a recent version taken from Ref. 14 appears in Table 2.

Of course, one can apply learning objectives at different
levels. For example, learning objectives can exist at the
level of:

� A program of study—hence, program objectives

� A module or a class—hence, module or class objectives

� Some knowledge unit—hence, instructional objectives

These objectives range from the general to the particu-
lar. Their role and function are different at these levels.
However, within a particular program of study, the attain-
ment of the lower-level objectives should be consistent with,
and indeed contribute to, the attainment of the higher-level
objectives. A question is generated about consistency; that
is, to determine whether the attainment of the lower-level
learning objectives implies attainment of the higher-level
objectives.

It is now widely recognized in higher education circles
that these levels from Bloom’s taxonomy are most effective
when combined with levels of difficulty and the currency of
the knowledge within the discipline.

Keeping Up-To-Date

Especially for the computing profession, keeping up-to-
date is essentially an attitude of mind. It involves regular
update of technical developments to ensure the mainte-
nance of knowledge as well as skill levels at the forefront of
developments. Doing this requires discipline and support.
Where changes in attitude and/or changes of a fundamen-
tal kind are required, a period of intense study must take
place.

Technological change can herald opportunities for crea-
tivity and innovation. This change can lead to advances
that result in improvements such as greater efficiency,
greater functionality, and greater reliability with enhanced
products or even new products that emerge as a result.
Novel devices and new ways of thinking are especially
cherished.

Higher education must to prepare students for chal-
lenges and opportunities. We can achieve this through
imaginative approaches to teaching as well as through
imaginative assignments and projects. Promoting innova-
tion and creativity is important in computing courses. The
concept of a final-year project in the united kingdom—
similar to a capstone project in U.S. parlance—is an impor-
tant vehicle from this perspective. More generally, it pro-
vides the opportunity for students to demonstrate their
ability to apply the disciplines and techniques of a program
of study by solving a substantial problem. Such exercises
should open up opportunities for the demonstration of
novelty.

We can identify a number of basic strategies to ensure a
stimulating and an up-to-date provision. First, the curri-
culum itself must be up-to-date, the equipment has to be up-
to-date, and faculty need to engage in relevant scholarship.
Teachers can highlight relevant references (textbooks, soft-
ware, websites, case studies, illustrations, etc.) with the by

Table 2. The knowledge dimension (taken from Ref. 14 with permission)

Knowledge Types Definitions Knowledge Subtypes

Factual knowledge Basic terminology and elements of the discipline a) Terminology
b) Specific details and elements

Conceptual knowledge Inter-relationships among different elements of a) Classifications and categories
the discipline, structures and classifications, b) Principles and generalizations
theories, and principles c) Theories, models, and structures

Procedural knowledge Algorithms, methods, methodologies,techniques, a) Subject-specific skills and algorithms
skills, as well as methods of enquiry and b) Techniques and methods
processes c) Criteria for selection of approach

Meta-cognitive knowledge Knowledge of cognition in general and self- a) Strategic knowledge
awareness in this regard b) Knowledge about cognitive tasks,

includinginfluences of context and
constraints

c) Self-knowledge

QUALITY IN COMPUTER SCIENCE AND COMPUTER ENGINEERING EDUCATION 5



identifying sources of up-to-date and interesting informa-
tion. However, more fundamental considerations must be
addressed.

We already mentioned that keeping up-to-date is essen-
tially an attitude of mind. Institutions can foster this
attitude by implementing new approaches to teaching
and learning that continually question and challenge
and by highlighting opportunities for advances. Teachers
can challenge students by developing assessments and
exercises that seek to explore new avenues. It is also
essential to see learning as an aspect that merits attention
throughout the curriculum. For instance, four stages are
identified in Table 3 (15).

Basic Requirements of Assessment and Confidence Building

Certain basic requirements of assessment exist. Assess-
ment must be fair and reliable, of course, and it should
address the true learning objectives of the classes. In
addition, however, appropriate assessment should be
enjoyable and rewarding, but all too often institutions do
not follow these geidelines.

Overall, numerous and different skills require assess-
ment such as transferable skills, technical skills, and cog-
nitive skills. An over-emphasis on assessment, however,
can create an avalanche of anxiety and the normal trade-
offs that are often ‘‘fun’’ become sacrificed, which makes the
situation highly undesirable. Imaginative ways of asses-
sing are needed and should be the subject of continual
change and exploration whereby assessors can discover
better and more enjoyable approaches.

Of course, self-assessment should be encouraged. This
can take (at least) one of two forms, which depend on
whether the student supplies the questions. However,
where students formulate their own assessments, these
tend to be useful at one level, but they tend not to challenge
usefully or extend the horizons of individuals.

One of the important goals of higher education is to
extend the horizons and the capabilities of students and
to build up their confidence. That confidence should to be
well-founded and based on what students have managed to
accomplish and to achieve throughout their study. Accord-
ingly, finding imaginative ways of assessing is important.
Assessment should

� Seek to address a range of issues in terms of skills

� Build on the work of the class in a reasonable and
meaningful manner

� Challenge students whose confidence is enhanced by
successful completion of the work

� Extend the horizons of individuals

� Encourage attention to interesting and stimulating
applications

� Address international issues of interest and relevance
to the students and their future careers

� Encourage excellence through appropriate assess-
ment guidance

As part of the preparation for such activity, students
should understand what teachers expect of them and how
they can achieve the higher, even the highest, grades.

CONCLUDING REMARKS

Ultimately, it is very important not to lose sight of the very
real benefits gained when the teaching staff interacts with
students. Thus, quality is what happens between students
and the teachers of an institution. Often, aspects of bureau-
cracy can tend to mask this important observation, and
metrics and heavy paperwork take over. Fundamentally,
the quality of education is about:

� Teachers who have an interest in students have an
interest in teaching well and in motivating their stu-
dents so that they can be proud of their achievements,
and they have an interest in their subject and its
applications. This often means teachers will adapt to
particular audiences without compromising important
standards.

� Students who feel welcomed and integrated into the
ways of their department, who enjoy learning, and
whose ability to learn is developing so that the process
becomes ever more efficient and effective find their
studies stimulating and interesting, find the material
of the program of study relevant and meeting their
needs, and feel themselves developing and their con-
fidence increasing.

� The provision of induction to give guidance on course
options as well as guidance of what is expected in terms
of achieving the highest standards in particular areas.

� An environment that is supportive with good levels of
up-to-date equipment and resources, with case stu-
dies, and lecture material all being readily available to
inform, stimulate, and motivate.

REFERENCES

1. P. T. Knight, The Achilles’ Heel of Quality: the assessment of
student learning, Quality in Higher Educ., 8(1): 107–115, 2002.

Table 3. (See Ref. 15)

Stage Student Instructor Instructional Example

1 Dependent Authority/coach Lecturing, coaching
2 Interested Motivator/guide Inspirational lecture, discussion group
3 Involved Facilitator Discussion lead by instructor Who participates as equal
4 Self-directed Consultant Internships, dissertations, self-directed study group

6 QUALITY IN COMPUTER SCIENCE AND COMPUTER ENGINEERING EDUCATION



2. Quality Assurance Agency for Higher Education. Handbook
for Academic Review, Gloucester, England: Quality Assurance
Agency for Higher Education.

3. Computing Accreditation Commission, Criteria for Accrediting
Computing Programs, Baltimore, MD: ABET, 2007.

4. Engineering Accreditation Commission, Criteria for Accred-
iting Computing Programs, Baltimore, MD: ABET, 2007.

5. E. Roberts and G. Engel (eds.), Computing Curricula 2001:
Computer Science, Report of The ACM and IEEE-Computer
Society Joint Task Force on Computing Curricula, Final
Report, 2001

6. J. T. Gorgone, G. B. Davis, J. S. Valacich, H. Topi, D. L.
Feinstein, and H. E. Longenecker Jr., IS 2002: Model Curri-
culum for Undergraduate Degree Programs in Information
Systems, New York: ACM, 2002.

7. R. Le Blanc and A. Sobel et al., Software Engineering 2004:
Curriculum Guidelines for Undergraduate Degree Programs in
Computer Engineering, Piscataway, N.J, IEEE Computer
Society, 2006

8. D. Soldan, et al., Computer Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in Soft-
ware Engineering, Piscataway, NJ: IEEE Computer
Society, 2006

9. R. Shackelford, et al., Computing Curricula 2005: The Over-
view Report, New York: Association for Computing Machinery,
2006.

10. Quality Assurance Agency for Higher Education. Academic
Standards – Computing, Gloucester, England: The Quality
Assurance Agency for Higher Education, 2000.

11. Australian universities Quality Agency, AUQA The Audit
Manual, Melbourne: Australian Universities Quality Agency,
version 1, May 2002.

12. [Franke, 2002] S. Franke, From audit to Assessment: a
national perspective on an international issue, Quality in
Higher Educ., 8(1): 23–28, 2002.

13. B.S. Taxonomy of Educational Objectives: The Classification of
Educational goals, Bloom, Handbook 1: Cognitive Domain,
New York: Longmans, 1956.

14. L. W. Anderson, D. R. Kraathwohl, P. W. Airasian, K. A.
Cruikshank, R. E. Mayeer, P. R. Pintrich, J. Raths, M. C.
Wittrock (eds.), A Taxonomy for Learning, Teaching, and
Assessing – A Revision of Bloom’s Taxonomy of Educational
Objectives, Reading, MA: Addison Wesley Longman, Inc., 2001.

15. S. Fellows, R. Culver, P. Ruggieri, W. Benson, Instructional
Tools for Promoting Self-directed Skills in Freshmen, FIE
2002, Boston, November, 2002.

FURTHER READING

D. R. Krathwohl, B. S: Bloom, and B. B. Masia, Taxonomy of
Educational Objectives: the Classification of Educational Goals,
London: Longmans Green and Co., 1956.

[Denning, 2003] P. J. Denning, Great principles of computing,
Comm. ACM, 46(11): 15–20, 2003.

K. McKeown, L. Clarke, and J. Stankovic, CRA Workshop on
Research Related to National Security: Report and Recommenda-
tions, Computing Res. Review News, 15, 2003.

National Science Foundation Blue-Ribbon Advisory Panel, Revo-
lutionizing Science and Engineering Through Cyber-infrastruc-
ture, Arlington, UA: National Science Foundation, 2003.

Quality Assurance Agency for Higher Education. National Qua-
lification Frameworks, published by Gloucester, England: The
Quality Assurance Agency for Higher Education.

ANDREW MCGETTRICK

Glasgow, Scotland

QUALITY IN COMPUTER SCIENCE AND COMPUTER ENGINEERING EDUCATION 7



Q

QUEUEING NETWORKS�

A major airline has set up a computerized transaction sys-
tem used by its ticket agents to sell seats on its aircraft. The
airline has authorized 1000 agents around the country to
make reservations from their workstations. A ‘‘disk farm’’—
a large collection of magnetic-disk storage devices—in New
York contains all the records of flights, routes, and reserva-
tions. On average, each agent issues a transaction against
this database once every 60 seconds. One disk contains a
directory that is consulted during every transaction to locate
other disks that contain the actual data; on average, each
transaction accesses the directory disk 10 times. The direc-
tory disk takesanaverage offivemilliseconds toserviceeach
request, and it is busy 80% of the time.

On the basis of this information, can we calculate the
throughput and response time of this system? Can we find the
bottlenecks? Can we say what happens to the response time if
wereduce directory disk visits by half or doubled the number
of agents?

These performance questions are typical. The answers
help analysts decide whether a system can perform well
under the load offered, and where to add capacity if it is too
slow. Most people think that no meaningful answers can be
given without detailed knowledge of the system structure—
the locations and types of the agents’ workstations, the
communication bandwidth between each workstation and
the disk farm, the number and types of disks in the farm,
access patterns for the disks, local processors and random-
access memory within the farm, the type of operating
system, the types of transactions, and more. It may come
as a surprise, therefore, that the first two questions—con-
cerning throughput, response time, and bottlenecks—can
be answered precisely from the information given. The
second two questions—concerning effects of configuration
changes—can be answered with reasonable estimates
made from the information given and a few plausible
assumptions.

These questions illustrate the two important types of
performance questions: calculation and prediction. Calcu-
lation questions seek metrics in the same observation
period where parameters were measured. Prediction ques-
tions provide metrics in a different (future) observation
period from when parameters were measured.

OPERATIONAL LAWS

A computer network is composed of interconnected servers.
Servers include workstations, disks, processors, databases,

printers, displays, and any other devices that can carry out
computational tasks. Each server receives and queues up
messages from other servers that specify tasks for the
server to carry out; a typical message might ask a server
to run a computationally intensive program, to perform an
input-output transaction, or to access a database. A trans-
action is a specified sequence of tasks submitted to the
network; when a server completes a particular task, it
deletes the request from its queue and sends a request to
another server to perform the next task in the same trans-
action.

Measurements of servers are always made during a
definite observation period. Basic measures typically
include event counters and timers. These and other mea-
sures derived from them are called operational quanti-
ties. Invariant relations among operations quantities
that hold in every observation period are called opera-
tional laws.

By counting outgoing messages and by measuring the
time that a server’s queue is nonempty, it is easy to
measure the output rate X, the mean service time S,
and the utilization U of a server. These three empirical
quantities satisfy the relation U ¼ SX, known as the
utilization law (Fig. 1). Similarly, by measuring the
‘‘space-time’’ accumulated by queued tasks, it is easy to
determine the mean queue length Q and the mean response
time R: These quantities satisfy the relation Q¼RX, which
is known as Little’s Law (Fig. 2).

The utilization law and Little’s law are counterparts of
well-known limit theorems for stochastic queueing systems
in a steady state. These theorems will usually be verified in
actual measurements, not because a steady state has been
attained, but because the measured quantities obey the
operational laws (1, 2).

The tasks that make up a transaction can be regarded
as a sequence of visits by the transaction to the servers of
the network. The average number of visits per transaction
to a particular server i is called the visit ratio Vi for that
server; the server’s output rate Xi and the system’s output
rate X0 satisfy the relation Xi ¼ ViX0, which is known as
the forced-flow law (Fig. 3). This remarkable law shows
that knowledge of the visit ratios and the output rate of
any one server is sufficient to determine the output rates of
every other server and of the system itself. Moreover, any
two networks with the same visit ratios have the same
flows, no matter what is the interconnection structure
among their servers.

In a network, a server’s output is a portion of another
server’s input or of the system’s output. It simplifies an
analysis to assume that the input and output flows of a
server are identical—a condition known as flow balance.
Strictly speaking, ‘‘throughput’’ refers to the rate of a
flow-balanced server. The definitions do not imply flow
balance. In most real systems, a bound is placed on the
number of tasks that can be in the system at once; as long
as the number of completions at every server is large

�This article is adapted from two articles published by the author in
American Scientist magazine in 1991: (a) Queueing in Networks of
Computers, May-June, 206-209, and (b) In the Queue: Mean
Values, September-October, 402-403. Copyright held by the
author.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



compared with this bound, the error introduced by
assuming flow balance will be negligible. For this reason,
flow balance does not generally introduce much error into
the models.

When a network of servers receives all of its requests
from a finite population of N users who each delay an
average of Z seconds until submitting a new transaction,
the response time for a request in the network satisfies the
response-time formula R ¼ N=X0 � Z (Fig. 4). This formula
is exact for flow balance.

These formulas are sufficient to answer the throughput
and response-time calculation questions posed earlier for
the airline reservation network. We are given that each
transaction generates an average of 10 directory-disk
requests, and so Vi ¼ 10 for the server represented by
the directory disk. The mean service time at the directory
disk is five milliseconds, so that Si ¼ 0:005 second. The
directory disk’s utilization is 80%: Ui ¼ 0:8. Combining the
forced-flow law and the utilization law, we have for total

system throughput:

X0 ¼ Ui=ViSi ¼ 0:8=ð10�0:005Þ ¼ 16 transactions per second

Thus, the entire airline reservation system is processing
57,600 transactions per hour. The response time experi-
enced by any one of the 1000 agents is:

R ¼ N=X0 � Z ¼ ð1000=16Þ � 60 ¼ 2:5 seconds:

BOTTLENECKS

Every network has a bottleneck: A server that is slower
than all the others and limits the overall throughput.
Speeding up a bottleneck can yield a significant improve-
ment in system throughput. Speeding up a nonbottleneck
may hardly affect throughput. Our performance predic-
tions will depend our knowledge of the bottlenecks.

Finding the bottleneck is easy. Suppose that the visit
ratios and mean service times do not vary with N. Each
server generates a potential bottleneck that would limit the
system throughput to 1/ViSi and would give a lower bound
to the response time of NViSi � Z. Obviously, the server
with the largest value of ViSi gives the tightest limit and is
the real bottleneck. The products ViSi are sufficient to
determine lower bounds on the response time as a function
of N (Fig. 5).

The operational laws coupled with bottleneck analysis
offer a simple but powerful method for performance ana-
lysis. For systems whose visit ratios and service times do
not vary with overall load, the products ViSi—the total
service time requirement for each server—are sufficient to
answer these questions.

CHANGING THE CONFIGURATION

Consider the two prediction questions we asked at the
beginning. They ask about the future effect of reducing
directory-disk visit ratio or doubling the number of agents.
The operational laws, which deal only with relations among
quantities observed in a single measurement period, are

0 0  0  0  0

0 0  0  0  0

0 0  0  0  0

arrivals counter A

timer B

completions counter C

arrivals completions

Figure 1. The task-processing server is the basic element of a
network of computers. Over an observation period of length T, the
counter A records the number of tasks that arrive at the server, the
counter C records the number of tasks completed, and the timer B
measures the total busy time (time when tasks are present). The
utilization of the server is U¼B/T, the output rate is X¼C/T, and
the mean service time per completed task is S¼ B/C. The identity
B/T¼ (C/T)(B/C) translates to the utilization law: U¼XS. Because
utilization cannot exceed 1, the output rate cannot exceed the
saturation rate of 1/S.

aarreeaa == WW

ta
sk

s,
n(

t)

time, t0 T

Figure 2. The average response time of a server can be calculated from just a few measurements.
Let (nt) denote the number of tasks in the server at time t. Let W denote the area under the graph of
n(t) in the interval from time 0 to time T; W is the number of task-seconds of accumulatedwaiting. The
mean number of tasks at the server is Q ¼W/T, and the mean response time per completed task is
R¼W/C. The identity W/T¼ (C/T)(W/C) translates to Little’s law: Q¼XR. The mean service time
S and the mean response time R are not the same; R includes queueing delay as well as service time.

2 QUEUEING NETWORKS



not sufficient for making predictions. We must introduce
additional forecasting assumptions that extrapolate mea-
sured parameter values from the past observation period
into the future observation period; the laws can then be
used to calculate the response time expected in that future
period.

The most common type of forecasting assumption is
that, unless otherwise specified, the visit ratios Vi, mean
service times Si, think time Z, and overall load N will be the
same. When we change the workload or the strategy for

processing data, or the electrical, mechanical, parallelism
of a server, we alter only the affected parameters.

Our first prediction question asks what happens when
the demand for the directory disk is cut in half (its speed is

server i

server j

server k

Vi

Vj

Vk
Ci

Cj

CkXi

Xj

Xk

X0

C0

observation
point

Figure 3. Flow of transactions through a network of servers can be calculated from a few selected
measurements. Over an observation period T, the system completes C0 transactions. The average
number of tasks per transaction for server i is Vi¼Ci/C0; Vi is called the visit ratio because each task
is regarded as a ‘‘visit’’ by the transaction to the server. Here the transaction visits servers i and k
once and server j twice. The identity C/T¼ (Ci/C0)(C0/T) translates to the forced-flow law: Xi¼ViX0.
This law says that the task flow at one point in the system determines the task flows everywhere. This
law holds regardless of the interconnections among the servers; any two networks with the same visit
ratios will have the same flows. The local throughput constraint Xi � 1/Si translates to a system
throughput constraint X0 � 1/ViSi.

thinkers waiters

Z R

X
0

Figure 4. Users of a transaction system alternate between per-
iods of ‘‘thinking’’ and ‘‘waiting’’ when using the system. The total
number of thinkers and waiters is the number of users N. The
average (waiting) response time per transaction is R and the
average thinking time is Z. Little’s law says that the mean number
of active users in an entire system is equal to the mean cycle time of
the system multiplied by the flow through the system. These three
quantities are, respectively, N, RþZ, and X0. Solving N¼ (RþZ)X0

for the response time, we obtain the response-time formula:
R ¼ N=X0 � Z. In the extreme case of response time almost
zero—because all the servers are ultra-fast—the system through-
put would be X0 ¼ N=Z because transactions are flowing at the rate
individual users complete their thinking intervals.

R(1)

R
es

po
ns

e 
tim

e,
 R

(N
)

Number of users, N

NVbSb -Z

NViSi -Z

NVjSj -Z

1

Figure 5. Bottleneck analysis shows how the response time
changes as a function of N. When N¼ 1, the single user’s transac-
tions encounter no queueing delays from other transactions,
whence Rð1Þ ¼V1S1 þ � � � þ VKSK , where K is the number of ser-
vers. Combining the utilization and forced-flow laws, X0 ¼ Xi=Vi ¼
Ui=ViSi < 1=ViSi because Ui < 1. Thus R(N) > NViSi � Z for all i.
Each of the lines defined by these relations is a potential asymptote
for R(N) with large N. The actual asymptote is determined by the
largest of the potential asymptotes. Taking server b (for bottleneck)
to be the one with the largest ViSi, we have RðNÞ>NVbSb � Z. The
bottleneck analysis assumes that the products ViSi do not vary
with N.

QUEUEING NETWORKS 3



doubled). The answer depends on whether the directory
disk is the bottleneck:

1. If another server is the bottleneck, then speeding up
the directory disk will not change the limit on system
throughput.

2. If the directory disk is initially the bottleneck, but is
no longer the bottleneck after its speed is doubled,
then the throughput improves to the limit imposed by
the second-slowest server.

3. If the directory disk is still the bottleneck after its
speed is increased, then the system throughput
improves to the new limit imposed by the directory
disk.

The limits of cases 2 and 3 may be superseded by a think-
time-imposed limit. No matter how fast the servers
are, the maximum rate at which users submit transac-
tions is N/Z; therefore, N/Z is also a limit on the system
throughput. Cases 2 and 3 cannot improve beyond that
limit.

The operational laws can yield nonsense if the bottle-
neck effects are ignored. For example, if we assume that
doubling the directory disk speed will also double the
system throughput, we would change the throughput
from 16 to 32 in the response time formula and calculate
an absurdity:

R ¼ N=X0 � Z ¼ ð1000=32Þ � 60 ¼ �28:75 seconds;

The think-time constraint on throughput is N/Z ¼ 1000/
60 ¼ 16.7 transactions per second. If we hypothesize that
throughput X0 can be larger, the response time law tells us
that R ¼ N=X0 � Z is less than zero. That is impossible.

All we can say with the given information and the given
forecasting assumptions is that halving the demand for
the directory disk will reduce the response time from 2.5
seconds to some small but still nonzero value. If the 2.5-
second response time is acceptable, then this proposed
change in directory search strategy would not be cost
effective.

Consider the second configuration question: What hap-
pens to the response time if the number of agents is
doubled? Again, we are limited by the lack of knowledge
of the other disks. If the directory disk is the bottleneck,
then doubling the number of agents is likely to increase
its utilization to 100 %, giving a saturation value of
throughput:

X0 ¼ 1=ViSi ¼ 1=ð10�0:005Þ ¼ 20 transaction per second

with corresponding response time,

R ¼ N=X0 � Z ¼ ð2000=20Þ � 60 ¼ 40 second

If the directory disk is not the bottleneck, then some other
server will have a smaller saturation throughput, which
forces response time to be longer than 40 seconds. Thus,

doubling the number of agents will produce a response time
that is likely to be unacceptably high.

COMPUTATIONAL ALGORITHMS

The simple methods described above cannot answer the
more complex question of how throughput and response
vary with the load N on the system. These questions can
be answered with very simple algorithms that can
be programmed easily on a spreadsheet or hand-held
calculator.

The networks-of-queue model was first proposed by
Jackson in 1957 (3), and mathematical expressions for
its steady-state probabilities were presented by Gordon
and Newell in 1967 (4). Their expressions were, unfortu-
nately, exceedingly complex. To calculate a simple quan-
tity such as central processing unit (CPU) usage required
summations over enormous state spaces whose size grew
exponentially with N. The computational algorithms for
these models thus seemed to be intractable. Consequently,
these models were not taken seriously, even though a few
sporadic experimental studies showed they worked well.
In 1973, Jeffrey Buzen presented a breakthrough: an
algorithm that computed performance metrics from the
Gordon-Newell model in time O(N2)(5). Buzen’s algorithm
led to many studies that validated the models and extended
them to many new cases and systems. Performance evalua-
tion became the focus of a large and flourishing industry.
One of the important extensions was Mean Value Analysis
from Martin Reiser and Steve Lavenberg in 1980 (6), which
eventually became the industry standard.

The Mean Value Algorithm is so named because
it computes a set of means for a closed network (fixed
load N)—the response times Ri(N), queue lengths Qi(N),
throughputs Xi(N), and the system throughput X(N) and

response time R(N). (Note that we have dropped the subscript

‘‘0’’ from the system throughput notation.) It does this itera-

tively for N ¼ 1, 2, 3,. . . starting with the observation that the

queue lengths are all 0 when N ¼ 0.

The box below summaries the equations that the algo-
rithm uses to obtain the mean values for load N once the
mean values for load N�1 have been calculated. Following
is an explanation for each of the equations.

Mean Value Equations

(1) RiðNÞ ¼ Sið1þQiðN � 1ÞÞ for all i

(2) RðNÞ ¼
XK
i¼1

ViRiðNÞ

(3) XðNÞ ¼ N

RðNÞ þ Z

(4) QiðNÞ ¼ XðNÞViRiðNÞ for all i

1. When a job arrives at server i, it waits in the queue.
That queue’s length just before the arrival is
approximated as the overall mean queue length

4 QUEUEING NETWORKS



when the arriving job is not present (load N�1). Just
after the arrival, that queue’s length is one larger.
The arriving job’s response time is one service time Si

for each job in the queue just after its arrival. (We
will discuss the accuracy of this approximation
shortly.)

2. The overall response time is the sum of all per-visit
server response times over all visits. This sum is
actually an operational law. Multiply both sides by
X(N), apply Little’s law to reduce the left side to N,
and apply both the forced-flow law and Little’s law to
convert each term X(N)ViRi(N) to Xi(N)Ri(N) and then

to the mean queue Qi(N). The result is the identity that N
is the sum of the queue lengths of all the servers.

3. This equation is the response-time law solved for
X(N).

4. This equation is Little’s law applied at each server.

Figure 6 is a very simple version of the airline reserva-
tion system. Figure 7 illustrates what the Mean Value
Algorithm yields when applied to this model. It is easy to
answer the two prediction questions simply by altering
the parameters to their new values and applying the
algorithm.

THE RANDOM ARRIVAL ASSUMPTION

Our explanation for the Mean Value equations shows
that only the first equation contains an approximation;
the other three equations are operational laws. Let us
consider the nature of this approximation. Whatever
errors exist between values calculated from the model
and values measured in a system develop from this
approximation.

The approximation has two parts: (1) the arriving job
observes the same queue length as a random outside

observer would with one less job in the system, and
(2) all jobs in the queue require the average service time
to complete. These assumptions are not necessarily good
assumptions. Here’s why.

In violation of part 1, the system may have a scheduling
algorithm that admits new jobs to active status only when
another job leaves. It synchronizes job arrivals with
departures. In this case, the arrivals do not act as random
outside observers. The arriving job may observe a queue
that is shorter than what the random outside observer
sees.

In violation of part 2, when a job arrives at a busy server,
there is already a job in progress when it arrives. We know
from queueing theory that the expected time until the job-
in-progress completes is equal to Si only if the distribution
of service times is exponential. If the service times have a
long-tail distribution (not unusual), then the expected time
until the job-in-progress completes may be considerably
larger than Si. Thus, the assumption that every job in
queue needs Si time to complete may not hold for servers
with long-tailed distributions. The arriving job may
observe a response time that is longer than the approxima-
tion implies.

In both cases, Mean Value Equation (1) will underesti-
mate the true response time. The underestimate may be
considerable for long-tailed service distributions.

Few real systems exactly satisfy the assumption behind
Equation (1). Yet extensive experiment studies have
demonstrated that the models based on it are nonetheless
robust: It is almost always possible to construct a model
whose estimates of throughput and utilization are within
5% of the true values and whose estimates of response time
are within 25% of the true values.

agents

CPU
directory

disk

data
disk

Figure 6. The hypothetical airline reservation system serves as
an example of a computer network subject to mathematical per-
formance analysis. In the initial configuration, 1000 agents access
a database at the airline’s central computing facility. Each agent
thinks an average of 60 seconds between transactions. A typical
transaction requires 10 lookups on the directory disk to locate the
information requested, and then one lookup on the data disk to
deliver the result. Each of these 11 disk accesses also requires
service from the CPU. The total CPU time of a transaction averages
50 milliseconds. The directory disk service time is 5 milliseconds,
and the data disk service time is 60.7 milliseconds.

2.5 2.4

61

16 16 16.5

0.8
0.4

0.825

R X U R X U R X U
Initial

configuration
Faster

directory search
Twice as

many agents

Figure 7. The bar graphs show the results of three network
analyses. The original system has an average response time (R)
of 2.5 seconds and a throughput (X) of 16 transactions per second;
the directory, which seems likely to be the bottleneck, has a
utilization (U) of 0.8. If the directory accesses are halved, the
utilization of the directory disk falls to 0.4, but the improvement
in response time is imperceptible. If the number of agents is
doubled, then the response time jumps to 61 seconds.

QUEUEING NETWORKS 5



This is quite a remarkable track record for such a simple
algorithm.

EXTENDING THE MEAN VALUE EQUATIONS

The Mean Value Equation [Equation (1)] is not the only way
to approximate the response time. Yon Bard introduced
another approximation in consultation with Paul Schweitzer
in 1979 (7). The idea was to approximate the mean queue
observed by the arriving job as a simple downward proration
of the current mean queue length:

QiðN � 1Þ ¼ N � 1

N
QiðNÞ

After this subsitution, all the mean values mentioned in the
equations are functions only of the load N, which can be
dropped as an explicit parameter. The result is the simpli-
fied equations in the box below.

Bard-Schwetizer Equations for load N

(5) Ri ¼ Si 1þN � 1

N
Qi

� �
for all i

(6) R ¼
XK
i¼1

ViRi

(7) X ¼ N

Rþ Z

(8) Qi ¼ XViRi for all i

For a given N, these equations are solved iteratively. The
algorithm starts with any guess for the mean queue
lengths, for example all 1. It then cycles through the
Equations (5)–(8), which produces successive new guesses
for mean queue lengths. The sequence of guesses converges
to a set of values that solve the equations. Those mean
values are the estimates of response time, throughput, and
queue lengths for the system at load N.

Experimental validations have confirmed that the Bard-
Schweitzer equations give good approximations in practice,
usually with the same errors as the original Mean Value
equations.

Another approximation addresses one problem men-
tioned earlier, that the actual response time is much larger
than the Mean Value Equation [Equation (1)] assumes for
long-tailed service distributions. It borrows from queueing
theory the Pollaczek-Khintchine formula, which says

Ri ¼ Si

�
1þ Ui

1�Ui

1þ C2
i

2

�

where Ci is the coefficient of variation, namely the ratio of
service time standard deviation to mean. This formula can
replace Equation (5) in the Bard-Schweizer equations, with
Ui¼XiSi. Exponential service time distributions have Ci¼
1, simplifying the formula to Ri ¼ Si/(1�Ui) for those
servers.

OPERATIONAL ANALYSIS

The discussion above is couched in operational terms: All
parameters are taken directly from measured data, and all
computed metrics represent measured metrics. For this
reason, the analytic approach outlined above is called
operational analysis. It begins with the laws and relation-
ships among quantities observable in a system over a time
period. It uses these laws to determine the limits bottle-
necks impose on throughput and response time. With the
additional assumptions of flow balance and random arri-
vals, it leads to the Mean Value Equations for calculating
the throughput, response times, and mean queues. Opera-
tional analysis allows the measurement of errors caused by
assumptions such as flow balance or random arrivals.

Traditional queueing theory assumes that stochastic
(random) processes govern the performance quantities.
Its more powerful methods allow calculation of metrics
based on entire service distributions, not just the means.
Many steady-state limit theorems of queueing theory turn
into operational laws or formulas that hold for flow-
balanced networks.

Operational analysis is more intuitive and easier to
understand in the most common performance evaluation
cases than traditional queueing theory. It gives more cred-
ibility to performance models because its assumptions are
verifiable. It is commonly used in performance evaluation
textbooks to introduce the basic ideas of queueing theory for
computing systems and networks (8). Operational analysis,
however, is not a replacement for traditional queueing
theory.

The genesis of the operational interpretation was in the
mid-1970s, when performance analysts were discovering
that the formulas of Markovian queueing systems worked
very well to predict utilizations, throughputs, and response
times in real networks of computers, even though the
Markovian assumptions themselves were grossly violated.
Jeffrey Buzen proposed the operational hypothesis: Many
traditional steady-state queueing formulas are also rela-
tions among observable quantities under simple, general
conditions (9). This hypothesis has been substantiated in
practice and has underpinned many computer programs
that accurately calculate performance measures for net-
work-of-server models of computer systems, computer net-
works, and manufacturing lines.

REFERENCES

1. P. J. Denning and J. P. Buzen, Operational analysis of queue-
ing networks, ACM Comput. Surv. 10(3): 225–261, 1978.

2. E. D. Lazowksa, J. Zahorjan, G. S. Graham, and K. C. Sevcik,
Quantitative System Performance, Upper Saddle River, NJ:
Prentice-Hall, 1984.

3. J. R. Jackson, Networks of waiting lines Operations Res. 5:
518–521, 1957.

4. W. J. Gordon and G. F. Newell, Closed queueing systems with
exponential servers, Operations Res. 15: 254–256, 1967.

5. J. P. Buzen, Computational algorithms for closed queueing
networks with exponential servers, ACM Commun. 15(9):
527–531, 1973.

6 QUEUEING NETWORKS



6. M. Reiser and S. Lavenberg. Mean value analysis of closed
multichain queueing networks. J. ACM 27: 313–322, 1980.

7. Y. Bard. Some extensions to multiclass queueing network
analysis. Proc. of the Fourth International Symposium on
Computer Performance Modeling, Measurement, and Evalua-
tion (H. Beilner and E. Gelenbe, eds.), Amsterdam: North-
Holland, 1979.

8. D. Menascé, V. Almeida, and L. Dowdy, Capacity Planning and
Performance Modeling, Upper Saddle River, NJ: Prentice-Hall,
1994.

9. J. P. Buzen. Operational analysis: The key to the new genera-
tion of performance prediction tools. Proc. IEEE COMPCON
76, Washington, DC: 166–171, 1976.

FURTHER READING

K. C. Sevcik and I. Mitrani, The distribution of queueing network
states at input and output instants. J. ACM 28: 358–371, 1981.

PETER J. DENNING

Naval Postgraduate School
Monterey, California

QUEUEING NETWORKS 7



S

SWAPPING

Swapping is a general term for exchanging blocks of pro-
gram code or data between main and secondary memory.
An executing program encounters swapping in three ways:

� Swapping in: Moving the entire program into main
memory at the start of execution.

� Swapping out: Moving the entire program out of main
memory at the completion of execution.

� Page swapping: Moving individual pages of the pro-
gram in or out of main memory during execution of a
program.

The time to complete a swap is typically 10,000 to 100,000
times the basic instruction time. Since swapping is so
expensive compared with instruction execution, system
designers have always sought ways to minimize and
mask it.

The term originated in the time-sharing systems of the
early 1960s. These systems had insufficient memory to
allow more than one program to be loaded (swapped in)
for execution at a time. At the end of a time slice or stop for
input/output, their operating systems swapped out the
executing program and then swapped in another program.
A single program could be swapped many times during its
execution. Swapping was a perfect description of the main
work of time-sharing—switching the CPU from one pro-
gram to another.

In those early systems, swapping and CPU execution
were disjoint activities. The operating system controlled
the swapping overhead by setting time slices to be multiples
of the average swapping time. MIT’s CTSS was able to
guarantee that the CPU would be executing programs
about 50% of the time with this strategy (1).

To improve CPU efficiency to near 100%, operating
systems of the late 1960s incorporated multiprogramming.
Swapping was limited to swapping in and swapping out.

The CPU could be switched among loaded programs
without further swapping. Swaps were masked by perform-
ing them in parallel with CPU execution, without inter-
rupting or slowing the CPU.

Multiprogramming is often combined with virtual mem-
ory. In that case, the operating system may allocate fewer
pages of memory to a program than the size of its address
space. There will be page swapping during execution. The
operating system maintains a complete copy of the address
space in a swap file on the disk; each page fault swaps a page
from that file with a page from main memory. The paging
algorithm attempts to minimize page swapping.

Modern operating systems use swapping in all these
forms. Windows XP and Vista, Mac OS 10, and Linux all
combine multiprogramming and virtual memory. They
allow users the option of turning off virtual memory; in
which case, the operating system will swap in a program’s
full address space at the beginning and then execute with-
out page swapping.

BIBLIOGRAPHY

1. F. J. Corbato, M. Merwin-Daggett, and R. C. Daley, An experi-
mental time sharing system, Proceedings of the Spring Joint
Computer Conference 21. In: S. Rosen (ed.), Programming
Languages and Systems. New York, McGraw-Hill, 1967,
pp. 335–344.

FURTHER READING

A. Tanenbaum, Modern Operating Systems, 3rd ed. Englewood
Cliffs, NJ: Prentice-Hall, 2007.

PETER J. DENNING

Naval Postgraduate School
Monterey, California

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



T

THRASHING

Thrashing is an unstable collapse of throughput of a system
as the load is increased. It violates the intuition that
throughput should increase smoothly toward a saturation
level as load increases. Thrashing occurs when contention
for a critical resource prevents most jobs from actually
using the resource.

Thrashing was first observed in the first-generation
multiprogrammed virtual memory computing systems of
the 1960s. Designers expected system throughput to
increase toward a saturation level as the load (level of
multiprogramming) increased. To their great surprise,
throughput dropped suddenly after a critical load (see
Fig. 1). Moreover, throughput would not return to its
former high until the load was reduced below the critical
value that triggered the thrashing — a form of hysteresis.
The system did not crash, but it did slow to an imperceptible
crawl. The engineers called it ‘‘paging to death’’ because all
the jobs were constantly queued up waiting for the paging
disk to satisfy their page faults.

Thrashing was a serious problem. It made the new
generation of operating systems look like multi-million-
dollar liabilities. Who would purchase such a system?

Thrashing was explained in 1968 (1). Increasing load in
a fixed size memory causes the average partition to
decrease, forcing an increase in the rate of page faults.
The load at which the mean CPU time between page faults
equals the disk service time is a tipping point: At higher
loads, most jobs are queued at the paging disk, which
becomes the system bottleneck.

As an example, consider a job that requires 1 second of
CPU time on a system with a page fault service time of 10
milliseconds. At a small load, the job gets a large partition
and generates (say) 20 page faults, which require a total

of 0.2 seconds of disk time; this job’s CPU efficiency is
1/(1 þ 0.2) ¼ 0.83. At an intermediate load, the job’s par-
tition has been squeezed a little and it generates (say) 100
page faults; the CPU efficiency drops to 0.5. At a large
system load, the job’s partition has been squeezed a lot and
it generates (say) 1000 page faults; its efficiency drops to
0.09. At the small loads, the job is CPU-bound; at the large
loads, it is disk-bound. At the tipping point (efficiency 0.5),
the average CPU time between page faults equals the disk
service time.

The solution to thrashing is a load controller that allows
all jobs enough memory space to keep their CPU efficiencies
at 0.5 or higher. To accomplish this, a load controller
separates submitted jobs into two sets: active and waiting.
The active jobs are allowed to hold space in main memory.
All other jobs are waiting. The working-set criterion is the
ideal for deciding when to activate a waiting job. A job’s
working set is the set of pages required to allow the job to
have a CPU efficiency above 0.5. If all active jobs have
efficiencies above 0.5, the system will be below its thrashing
tipping point. As long as every job gets enough space for its
working set, it is impossible to activate enough jobs to push
the system past its thrashing tipping point (2). The
working-set criterion was found empirically not only to
be optimal but to be more robust than other load-control
criteria (3).

Within a decade after these early analyses, queueing
network models were routinely used to quantify the rela-
tionship between throughput and the total demands for
devices, and to help design load controllers to prevent
thrashing (4).

Thrashing has been observed in other systems as well.
Early packet networks provided examples. In unregulated
networks, many servers vie for bandwidth in a common
medium such as a satellite channel or Ethernet cable. When
a server has a packet to transmit, it transmits into the
medium. If another server jams it before completing, it
stops transmitting, and tries again. This simple protocol
works well for low loads, and system throughput increases
with load. However, when the load gets high enough, there
is a good chance that two or more servers will get into a loop
where they start to transmit, detect a jam, stop, and repeat.
Thereafter no one gets to transmit and throughput sud-
denly drops. This behavior was first observed in the
ALOHA satellite communication network in the late
1960s (5).

Again, a properly designed load controller prevents the
thrashing. In this case, the control is on the time interval
from when a server drops out (it detected a jam) until it
retries. It picks a random number for the first wait period; if
that gets jammed, it waits twice as long; if that gets
jammed, it waits twice as long again; and so on. This
increasing-backoff protocol is used in Ethernets and cell
phone networks.

Another instance of thrashing occurs from lock conten-
tion in database systems. A transaction requests and locks

Throughput

Expected

Actual

Multiprogramming
level, MPL

Figure 1. Thrashing in a multiprogrammed computer system.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



all records it needs, but if a requested record is already
locked by another transaction, it releases all its locks and
tries again. Again, the doubling of successive backoff inter-
vals prevents thrashing, a condition in which lock conten-
tion prevents anyone from locking anything.

The common features of these systems are as follows:
(1) A shared resource for which there can be many requests,
and (2) a contention resolution protocol whose delay
increases with the number of contenders. As the number
of contenders increases, more and more time is spent on
contention resolution and few jobs get through to the
resource.

BIBLIOGRAPHY

1. P. J. Denning, Thrashing: Its causes and prevention, Proc.
AFIPS Fall Joint Comput. Conf. 1968; 32: 915–922.

2. P. J. Denning, The working set model for program behavior,
ACM Commun. 1968; 11 (May): 323–333.

3. P. J. Denning, Working sets past and present, IEEE Trans.
Softw. Eng. 1980; SE-6 (January): 64–84.

4. P. J. Courtois, Decomposability. Reading, MA: Academic
Press, 1977.

5. L. Kleinrock, Queueing Theory, vol. 2. New York: Wiley, 1976,
pp. 360–407.

FURTHER READING

A. Tanenbaum, Modern Operating Systems. Englewood Cliffs,
NJ: Prentice-Hall, 1993.

PETER J. DENNING

Naval Postgraduate School
Monterey, California

2 THRASHING



T

THROUGHPUT

The throughput of a system is the number of jobs, tasks, or
transactions the system completes per unit time. If during
an observation period of length T the system completes C
jobs, throughput X is measured as C/T. Throughput is often
used as a figure of merit, with higher values indicating
better performance. System engineers use analytic or simu-
lation models to help determine a system configuration and
server capacities that enable the system to meet through-
put and response-time targets.

The term ‘‘throughput’’ suggests a stream of jobs flowing
through a system. A through job would arrive and depart
during the observation period. Completing jobs that were
already in the system at the start of the observation period
would not be counted. Therefore, counting all completions
in the observation period overestimates throughput. How-
ever, in most systems, there is an upper limit N on the
number of jobs in the system, reflecting the system capacity
or the size of the user population. Therefore, the number of
completions C is within N of the number of through jobs. For
a long observation period, C is large compared with N, and
throughput measured as X ¼ C/T is negligibly different
from ‘‘true’’ throughput.

Throughput considered alone is often a deceptive mea-
sure of performance. One common deception is a server
with a long queue: Its throughput is at saturation.
Although the saturation throughput may be acceptable,
the server’s response time would be unacceptably high.
Acceptable throughput does not guarantee acceptable
response time.

Another deception can occur in a multiserver system.
At a high load, the system’s bottleneck saturates and
produces its maximum possible throughput. In turn
that limits the throughput at every other server in the
system. If a nonbottleneck is used as the throughput
reference point, the unacceptable throughput there will
be due to the bottleneck, not to that server. Increasing
the speed of the nonbottleneck server will not increase
saturation throughput.

The subtle relationships among throughput, response
time, and bottlenecks can be understood with the help of
four fundamental laws of networked systems (1). The para-
meters are as follows:

Vi ¼ number of visits per job to server i

Si ¼ service time per visit at server i

N ¼ number of users in the system

Z ¼ think time of a user before making a new request of the

system

The laws are as follows:

� Utilization Law: A server’s utilization (fraction of time
busy) is the product of its service time and throughput:
Ui ¼ Si � Xi.

� Little’s Law: A server’s mean queue length is the
product of its response time per visit and throughput:
Qi ¼ Ri � Xi.

� Forced Flow Law: A server’s throughput is the
product of the system throughput and visit ratio:
Xi ¼ X � Vi.

� Response Time Law: System response time per job plus
think time is the number of jobs divided by the system
throughput: R þ Z ¼ N/X.

A system bottleneck analysis follows immediately from
these laws.

� Define demand Di ¼ Vi � Si as the total expected job
service required over all visits to a server.

� Since utilization cannot exceed 1, the utilization law
implies Xi � Vi/Di.

� Combining with the forced flow law, the system
throughput X � 1/Di for all servers.

� Therefore, the server with largest Di limits the system
throughput and is the bottleneck.

� Combining with the response time law, the
mean response time cannot be smaller than
Di � N � Z.

An example will help illustrate these concepts. Consider
a two-server system in which a job’s total CPU demand is 2
seconds, a typical job visits a DISK server 100 times for 50
milliseconds each, and there are 10 users with an average
think time of 20 seconds. The CPU demand is D1 ¼ 2
seconds, and the DISK demand is D2 ¼ 5 seconds. The
DISK is the bottleneck, and system throughput is limited to
1/5 job per second. The CPU utilization cannot be higher
than D1/D2 ¼ 2/5. A faster CPU will have a smaller D1—
speeding it up will only reduce its utilization. Speeding up
the DISK will increase system throughput and CPU utili-
zation. The system response time is at least 5�10�20 ¼ 30
seconds. A response time of less than 30 seconds for 10 users
is impossible.

The bottleneck analysis sketched above is for systems in
which the parameters Vi and Si are independent of the load
N in the system. If one Vi depends on N, then the upper
bound on throughput may depend on N. An example of this
occurs in multiprogrammed virtual memories: As load N

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



increases, job memory allocations are squeezed and paging
traffic (Vi for the paging disk) increases. As load N
increases, the total demand for the paging disk eventually
exceeds all others and the paging disk becomes the bottle-
neck, forcing throughput down from a peak. (See ‘‘Thrash-
ing’’ article.)

These simple relationships can be extended to sys-
tems with multiple job classes and variable rate servers (2).

BIBLIOGRAPHY

1. P. Denning and J. Buzen, Operational Analysis of queueing
network models, ACM Comput. Surv., 25 (September): 225–261,
1978.

2. D. Menascé, et al. Capacity Planning. Englewood Cliffs, NJ:
Prentice-Hall, 1994.

PETER J. DENNING

Naval Postgraduate School
Monterey, California

2 THROUGHPUT



V

VIRTUAL MEMORY

Virtual memory is the simulation of a storage space so
large that users do not need to recompile their works when
the capacity of a local memory or the configuration of a
network changes. The name, borrowed from optics, recalls
the virtual images formed in mirrors and lenses—images
that are not there but behave as if they are. The designers
of the Atlas Computer at the University of Manchester
invented paged virtual memory in the 1950s to eliminate
two looming problems: planning and scheduling data
transfers between main and secondary memory and
recompiling programs for each change of size of main
memory.

For the first decade after its invention, virtual memory
was the subject of intense controversies (1). It significantly
improved programming productivity and ease of use, but its
performance was unpredictable and it thrashed under
multiprogramming. These problems were solved by the
1980s (2). Virtual memory is now so ordinary that few
people think much about it. It is one of the engineering
triumphs of the computer age.

One of the early lines of virtual memory accommodated
objects of various sizes, stored in distinct storage segments.
This line produced the first proposal for an object-oriented
operating system (3), which led to a class of machines called
capability machines (4,5), and even to a computer architec-
ture for general object programming (6). The development of
RISC produced such speeds that the special hardware in
capability machines and their successors was not needed.
However, all the methods used in these systems for mapping
objects to their locations, protecting objects, and partition-
ing memory are at the heart of modern object-oriented run-
time systems. We will therefore discuss virtual memory
from an object point of view.

Virtual memory is ubiquitous in networked systems,
which have many things to hide—on-chip caches, separate
RAM chips, local disk storage, network file servers, many
separately compiled program modules, multiple computers
on the network, and the Internet.

MAPPING

The heart of virtual memory is a mapping between an
address space and the real memory. The address space is
a set of addresses sufficient to name all components of a
program independent of their locations in the memory
hierarchy. Virtual addresses do not change as objects are
moved dynamically to various real addresses within the
memory system. Programmers and users see only the
virtual address space; the details of the real memory system
are hidden.

Most early virtual memories were based on paging. A
page is a fixed-size block or program code or data. Main and
secondary memory are divided in slots of the same fixed
size. Pages can then be moved from any memory slot to any

other. Paging yields the simplest form of mapping but
wastes storage in the last page assigned to the object.

Some early virtual memories were based on segmenta-
tion. A segment is a set of contiguous storage locations of
any length. Segments could be sized as exact matches to
objects such as procedures and arrays, but they are more
difficult than pages to place. Segmentation has become
common with object-oriented programming.

The method of mapping virtual addresses to real
addresses is basically the same for both fixed and variable
sized objects (paging and segmentation). The associations
between virtual and real addresses are held in mapping
tables; the hardware looks up the current real address for
any virtual address generated by the processor. A sche-
matic diagram is shown in Fig. 1.

Figure 1 shows the processor on the left and the memory
system on the right. The processor generates virtual
addresses from the address space of the process it is run-
ning. Virtual addresses are of the form (s,b), meaning byte b
within segment s. Objects are stored as contiguous seg-
ments in the main and secondary memories. Figure 1 shows
a segment of k bytes stored at real address c.

Between the processor and the memory is a device called
a mapper. Its job is to translate virtual addresses into their
current real addresses. For objects already loaded into
main memory, translation consists of table lookups that
yield the real address. For objects not loaded, the mapper
first issues an ‘‘up’’ command to move it from its secondary
memory file to an unused segment of main memory; and
then it performs the translation. If main memory is full, the
mapper will also issue ‘‘down’’ commands as needed to copy
loaded objects back to their files and free up their space.

The mapper employs two types of tables, the Descriptor
Table (DT) and the Object Tables (OT). Consider first the
Descriptor Table. It has one entry for each object. Each
object has a unique, system-wide name x. The entry for
object x in this table consists of four parts:

� Presence Bit: P¼1 means the object is loaded in main
memory; P¼0 means not.

� Usage Bit: U¼1 means the object has been modified
since being loaded; U¼0 means not. Modified objects
need to be copied back to their secondary files before
their space can be released.

� Base: The base address of the segment in main
memory.

� Length: The length of the segment in main memory.

The descriptor table is the only table in the system
containing information about the physical locations of
objects. When an object is moved, only the descriptor table
must be updated.

The second table used by the mapper is an Object Table.
There are actually multiple object tables, one for each
process. A process’s address space is called its ‘‘domain,’’
and each address space has a unique domain identifier d. A

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



register in the processor displays the domain of the current
process. When the processor switches to a different process,
its domain identifier register (did) is automatically chan-
ged. Thus, the processor always directs its addresses only to
the objects of the currently executing process.

An object table has an entry for each segment s of its
address space. That entry contains a handle of two parts:

� Access Code: A designates the allowable types of
access, for example, read or write.

� Identifier: ID contains the unique system identifier x
for the object.

The translation of a virtual address (s,b) to the real
address containing the byte is straightforward:

1. From OT[d], get the handle for s and extract its
identifier x.

2. From DT, get the base c from the descriptor for x.

3. Pass the real address c+b to the memory. (If b � k,
stop with an error.)

The object and descriptor tables are actually stored in a
reserved area of main memory belonging to the mapper.
Therefore, the table lookups require extra memory accesses.
Those extra accesses could slow the system down a fraction
of the speed without the mapper.

To bypass the table lookups whenever possible, the
mapper contains a device called the Translation Lookaside
Buffer (TLB) or address cache. It is a small very high-speed
associative memory that holds the most recently used
mapping paths. If segment s has been addressed recently,
there will be an entry (s,A,B,L) in the TLB. It is built from
the A-field of OT[d] plus the B- and L-fields of DT. The two
table lookups are bypassed and are replaced with one
ultrafast TLB lookup.

The mapper’s basic cycle is as follows:

processor places (s,b) in address register
if ((a,c,k)=LOOKUP_TLB(s) undefined)

then

(a,x):=OT[d,s]
(p,c,k):=DT[x]
if p=0 then MISSING FAULT
DT[x].U:=1
LOAD_TLB(s,a,c,k)

endif
if (b �k) then BOUNDS FAULT
if (request not allowed by a) then PROTECTION
FAULT place c+b in memory address register

The operation LOOKUP_TLB(s) scans all the TLB cells in

parallel and returns the contents of the cell whose keymatchess.
The operationLOAD_TLB replaces the least-recently-used cell of
TLB with (s,a,c,k). The mapper sets the usage bit U to 1
whenever the entry is accessed.

If the TLB already contains the path requested, the
mapper bypasses the lookups in the object and descriptor
tables. In practice, small TLBs (e.g., 64 or 128 cells) give
high enough hit ratios that address-translation efficiency
goals are easy to meet (7). The TLB is a powerful and cost-
effective accelerator.

FAULTS

A fault is a condition that prevents additional processing.
The mapper can generate three faults: missing object, out
of bounds, and protection violation. Those three fault
signals trigger the operating system to execute corre-
sponding fault-handler routines that take corrective
action.

The bounds fault and protection fault are fatal. Refer-
ences outside a segment are prohibited because they might
read or write memory allocated to other objects. Unauthor-
ized references of the wrong kind are also prohibited—for
example attempting to write into a read-only object. The
fault handlers for these two faults generally abort the
running process.

The missing object fault occurs when the mapper
encounters a not-present bit (P¼0). The operating system

did

OT[d] DT

IDA
a x

x:
P  U  B  L
l  o  c   k

s  a   c  k

Objects Table Descriptor Table

TLB

s:

Mapper Secondary Memory

Main Memory

d
s b bc c:

c+b:

c+k:

Processor

up

down

Figure 1. Object-oriented virtual memory.

2 VIRTUAL MEMORY



interrupts with a missing object fault routine that

1. Locates the needed object in the secondary memory.

2. Selects a region of main memory to put that object in.

3. Empties that region by copying its contents to the
secondary memory.

4. Copies the needed object into that region.

5. Updates the descriptor table.

6. Restarts the interrupted program, allowing it to com-
plete its reference.

PERFORMANCE

The replacement policy is invoked by the missing object
handler at step 2. The performance of virtual memory
depends critically on the success of the replacement policy.
Each missing object fault carries a huge cost: Accessing the
object in main memory might take 10 nanoseconds while
retrieving it from secondary memory might take 10 milli-
seconds—a speed differential of 100,000. It does not take
very many missing object faults to seriously slow a process
running in a virtual memory.

The ultimate objective of the replacement policy is to
minimize the number of missing object faults. To do this, it
seeks to minimize ‘‘mistakes’’—replacements that are
quickly undone when the process refers to those objects
again. This objective is met ideally when the object selected
for replacement will not be used again for the longest time
among all the loaded objects. Unfortunately, the ideal can-
not be realized because we have no way to look ahead into
the future. A variety of non-lookahead replacement policies
have been studied extensively to see how close they come to
this ideal in practice. When the memory space allocated to a
process is fixed in size, this usually is LRU (least recently
used); when space can vary, it is WS (working set) (2).

The operating system can adjust the size of the main
memory region allocated to a process so that the rate of
missing object faults stays within acceptable limits. System
throughput will be near-optimal when the virtual memory
guarantees each active process just enough space to hold its
working set (2).

PROTECTION

This structure provides the memory partitioning needed for
multiprogramming. A process can refer only to the objects
listed in its object table. It is impossible for a process to
accidentally (or intentionally) read or write objects in
another address space.

This structure also allows the operating system to
restrict every process to a domain of least privilege. Only
the objects listed in a domain’s object table can be accessed
by a process in that domain, and only then in accord with
the access codes stored in the object’s handle. In effect, the
operating system walls each process off, giving it no chance
to read or write the private objects of any other process. This
has important benefits for system reliability. Should a
process run amok, it can damage only its own objects: A
program crash does not imply a system crash. This benefit

is so important that many systems use virtual memory even
if they allocate enough main memory to hold a process’s
entire address space.

THE WWW: VIRTUALIZING THE INTERNET

TheWorldWideWebextendsvirtualmemorytotheInternet.
The Web allows an author to embed, anywhere in a docu-
ment, a ‘‘universal resource locator’’ (URL), which is an
Internet address of a file. By clicking the mouse on a URL
string,theusertriggerstheoperatingsystemtomaptheURL
to the file and then bring a copy of that file from the remote
servertothelocalworkstationforviewing.TheURLsthusact
as virtual addresses, and the combination of a server’s IP
address and a local file path name is the real address.

A URL is invalidated when the object’s owner moves or
renames the object. This can present operational problems
to people who link to that object and depend on its presence.
To overcome this problem, Kahn and Wilensky proposed a
scheme that refers to mobile objects by location-indepen-
dent ‘‘handles’’ and, with special servers, tracks the corre-
spondence between handles and object locations (8). Their
method is equivalent to that described earlier in Fig. 1:
First it maps a URL to a handle, and then it maps the
handle to the Internet location of the object.

CONCLUSION

Virtual memory is one of the great engineering triumphs of
the computing age. Virtual memory systems meet one or
more of the following needs:

Automatic Storage Allocation: Solving the overlay problem
that originates when a program exceeds the size of the main
memory available to it. Also solves the relocation and
partitioning problems that develop with multiprogram-
ming.

Protection: Each process is given access to a limited set of
objects—its protection domain. The operating system
enforces the rights granted in a protection domain by
restricting references to the memory regions in which
objects are stored and by permitting only the types of
reference stated for each object (e.g., read or write). These
constraints are easily checked by the hardware in parallel
with the main computation. The same principles are used
for efficient implementations of object-oriented programs.

Modular Programs: Programmers prepare codes as sepa-
rately compiled, reusable, and sharable components into
programs; their internal structure is hidden behind a pub-
lic interface. Linker programs combine separate modules
into a single address space.

Object-Oriented Programs: Programmers should be able to
define managers of classes of objects and be assured that
only the manager can access and modify the internal
structures of objects (6). Objects should be freely sharable
and reusable throughout a distributed system (9,10). Vir-
tual memory mappings are designed for these objectives.

VIRTUAL MEMORY 3



Data-Centered Programming: Computations in the World
Wide Web tend to consist of many processes navigating
through a space of shared, mobile objects. Objects can be
bound to a computation only on demand.

Parallel Computations on Multicomputers: Scaleable
algorithms that can be configured at run time for any
number of processors are essential to mastery of highly
parallel computations on clusters of computers. Virtual
memory can join the memories of the component compu-
ters into a single address space and can reduce commu-
nication costs by eliminating some of the copying inherent
in message-passing. This is known as distributed virtual
memory (10).

BIBLIOGRAPHY

1. P. J. Denning, Virtual memory, Comput. Surv., 2(3): 153–189,
1970.

2. P. J. Denning, Working sets past and present, IEEE Trans.
Softw. Eng., SE-6(1): 64–84, 1980.

3. J. B. Dennis and E. C. Van Horn, Programming semantics for
multiprogrammed computations, ACM Commun., 9(March):
143–155, 1966.

4. R. Fabry, Capability based addressing, ACM Commun.,
17(July): 403–412, 1974.

5. M. V. Wilkes and R. Needham, The Cambridge CAP Computer
and Its Operating System. Amsterdam, The Netherlands:
North-Holland, 1979.

6. G. J. Myers, Advances in Computer Architecture, 2nd ed.
New York: Wiley, 1982.

7. J. Hennessey and D. Patterson, Computer Architecture: A
Quantitative Approach. New York: Morgan-Kaufmann, 1990.

8. R. Kahn and R. Wilensky, A framework for distributed digital
object services. Technical Note 95-01, Corporation for National
Research Initiatives. Available: http://www.cnri.reston.va.us,
1995.

9. J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska,
Sharing and protection in a single-address-space operating
system, ACM TOCS, 12(4): 271–307, 1994.

10. A. S. Tanenbaum and M. van Steen, Distributed Systems:
Principles and Paradigms. Englewood Cliffs, NJ: Prentice-
Hall, 2006.

FURTHER READING

P. J. Denning, Virtual memory, Comput. Surv., 28(4): 213–216,
1996.

PETER J. DENNING

Naval Postgraduate School
Monterey, California

4 VIRTUAL MEMORY



W

WORKING SET

The working set is a dynamic subset of a process’s address
space that must be loaded in main memory to ensure
acceptable processing efficiency. In the early days of com-
puting, this intuitive idea enabled programmers to plan
their memory usage over time in a constrained main mem-
ory. Later it turned into a formal definition of the ideal
subset of address space to be loaded in main memory.
Eventually the formal definition became the reference
standard for all virtual memory replacement policies.

In early computing systems, programmers built overlay
strategies for their programs. They made maps showing
computational phases on the time axis and instruction or
data block on the vertical axis. They checked off the blocks
that needed to be loaded in main memory for each phase.
They adjusted computational strategies and block contents
until the blocks needed for each phase would fit. Then at the
phase transitions, they programmed ‘‘down’’ and ‘‘up’’ com-
mands. Down commands moved blocks from main to sec-
ondary memory when they were no longer needed in the
next phase. Up commands moved blocks from secondary
and main memory in time for the next phase. The set of
blocks checked in the map was called the ‘‘working set’’ of a
phase. The memory usage of the program could be char-
acterized as a sequence

ðL1;T1ÞðL2;T2ÞðL3;T3Þ . . .

in which each Li is the set of blocks loaded in phase i and Ti
is the duration of the phase.

System designers were concerned that this process,
already tedious and time consuming for small programs,
would become unmanageable for large programs. In the
late 1950s, the designers of the Atlas Computer at the
University of Manchester invented virtual memory to
automate this process. Their system broke program
code and data into fixed size pages. It issued ‘‘up’’ com-
mands at the moments that the program attempted to
access a page not loaded. They invented a replacement
algorithm that decided which loaded page to move ‘‘down’’
to make way for incoming ‘‘up’’ pages. Their algorithm
assumed that each page was in a cycle of use and nonuse;
by measuring the most recent use and nonuse periods,
they predicted when each page would be used again. They
selected for replacement the page not needed for the
longest time.

Many people were attracted to the idea of virtual mem-
ory because of its big boost for programming productivity.
But they were put off by the unpredictability of the replace-
ment algorithms, which worked well for some programs
and poorly for others. There were numerous contradictory
experimental studies, but no one found a replacement
algorithm that worked consistently well for all programs.

In 1966 Les Belady (1) published an extensive study of
replacement algorithms in which he demonstrated that
replacement policies with usage bits performed better
than those without. He suggested that this is due to ‘‘pro-
gram locality,’’ a tendency of programs to cluster references
into subsets of their pages. He suggested that under multi-
programming a program should be given enough space to
hold its ‘‘parachor,’’ which was roughly the space at which
the replacement algorithm’s mean time between page
faults equaled the page fault service time from the second-
ary memory.

In 1967, Denning (2) offered a precise definition of a
working set. He defined it as the set of pages referenced
in a virtual time window looking backwards for time T
into the past. The working set dynamically varied as more
or fewer pages appeared in the window. It was important
to measure in virtual time—that is, not counting any
interruptions—so as to get an intrinsic measure of the
program’s favored pages. He was able to show the some-
what surprising property that the paging rate and mean
working set size could be computed easily from a histo-
gram of the times between repeated references to the
same page. It was then a simple matter to choose the
window size T so that the mean time between page faults
would always be larger than the mean page fault service
time—that is, the CPU efficiency of the program would be
at least 0.5.

Denning also showed that a multiprogrammed memory
managed by a working set policy could not thrash. In later
experiments with students and others, he established that
the working set policy would produce system throughput
within 5% to 10% of optimal, where optimal was defined in
terms of perfect knowledge of the future (3). Thus, the
working set policy became an ideal for other memory man-
agement policies.

The true working set would require measurements in a
sliding window looking backwards from the current time.
Although it worked perfectly (4), the cost of the mechan-
ism was high. Many simpler software approximations
were tried and tested, the most successful being the
‘‘WS Clock’’ (5).

Denning interpreted this definition of working set as a
measure of the program’s intrinsic memory demand. He
hypothesized that programs have inherent tendencies to
cluster their references into small subsets for extended
periods, an idea he called ‘‘locality’’ after Belady. In numer-
ous experiments with students and others, he concluded
that the dynamic locality processes of programs consisted of
phases and transitions; phases were periods of stability,
with all references concentrated in a ‘‘locality set,’’ and
transitions were short periods of instability. In other words,
every program has a natural sequence of locality sets and
phases,

ðL1;T1ÞðL2;T2ÞðL3;T3Þ . . .

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



A memory policy that loads exactly the locality set for each
phase will achieve optimal paging behavior. As long as most
phases are longer than the working set window T, the
working set will be a very close measurement of these
actual locality sets of varying sizes. Locality is the reason
working sets work.

The locality behavior so painstakingly planned by early
programmers is a natural property of programs anyway! It
arises from the way that the human brain solves problems
and pays attention.

In some systems, working sets can be deduced from a
program’s structure rather than by measurement of usage
bits. For example, on machines using block-structured
programming languages such as Ada, the working set
can be defined as the current procedure segment, the stack,
and all other data structures accessible from activated
procedures.

In paging systems, it can be advantageous to ‘‘restruc-
ture’’ a program by clustering small, logical segments of the
same locality on large pages. By preserving in the page
references the locality originally present in the segment
references, this strategy can yield the small working sets
and efficient performance in systems with large page size.
Restructuring is less important in systems with smaller
page sizes.

BIBLIOGRAPHY

1. L. A. Belady, A study of replacement algorithms for virtual
storage computers. IBM Systems J., 5(2): 78–101, 1966.

2. P. J. Denning,The working set model for program behavior.
Commun. ACM,11 5 (May):323–333, 1968. First published in
Proc. ACM Symp. onOperating SystemsPrinciples, Gatlinburg,
TN, 1967.

3. P. J. Denning, Working sets past and present. IEEE Trans.
Software Eng., SE-6 1 (January): 64–84, 1980.

4. J. Rodriguez-Rosell and J. P. Dupuy. The designimplementa-
tion, and evaluation of a working set dispatcher. Commun.
ACM, 16 4 (April), 1973.

5. R. Carr and J. Hennessey, WSCLOCK—a simple and effective
algorithm for virtual memory management. ACM SIGOPS
Review, 18 (December): 87–95, 1981.

FURTHER READING

A. Tanenbaum, Modern Operating Systems, 3rd ed. Englewood
Cliffs, NJ: Prentice-Hall, 2007.

PETER J. DENNING

Naval Postgraduate School
Monterey, California

2 WORKING SET



A

ACTIVE DATABASE SYSTEMS

INTRODUCTION AND MOTIVATION

Traditionally, the database management system (DBMS)
has been viewed as a passive repository of large quantities
of data that are of interest for a particular application,
which can be accessed/retrieved in an efficient manner. The
typical commands for insertion of data records, deletion of
existing ones, and updating of the particular attribute
values for a selected set of items are executed by the
DBMS upon the user’s request and are specified via a
proper interface or by an application program. Basic units
of changes in the DBMS are the transactions, which corre-
spond to executions of user programs/requests, and are
perceived as a sequence of reads and/or writes to the
database objects, which either commit successfully in their
entirety or abort. One of the main benefits of the DBMS is
the ability to optimize the processing of various queries
while ensuring the consistency of the database and
enabling a concurrent processing of multiple users trans-
actions.

However, many applications that require management
of large data volumes also have some behavioral aspects as
part of their problem domain which, in turn, may require an
ability to react to particular stimuli. Traditional exemplary
settings, which were used as motivational scenarios for the
early research works on this type of behavior in the DBMS,
were focusing on monitoring and enforcing the integrity
constraints in databases (1–4). Subsequently, it was recog-
nized that this functionality is useful for a wider range of
applications of DBMS. For example, a database that man-
ages business portfolios may need to react to updates from a
particular stock market to purchase or sell particular
stocks (5), a database that stores users preferences/profiles
may need to react to a location-update detected by some
type of a sensor to deliver the right information content to a
user that is in the proximity of a location of interest (e.g.,
deliver e-coupons when within 1 mile from a particular
store) (6).

An active database system (ADBS) (1,7) extends the
traditional database with the capability to react to various
events, which can be either internal—generated by the
DBMS (e.g., an insertion of a new tuple as part of a given
transaction), or external—generated by an outside DBMS
source (e.g., a RFID-like location sensor). Originally, the
research to develop the reactive capabilities of the active
databases was motivated by problems related to the main-
tenance of various declarative constraints (views, integrity
constraints) (2,3). However, with the evolution of the
DBMS technologies, novel application domains for data
management, such as data streams (8), continuous queries
processing (9), sensor data management, location-based
services, and event notification systems (ENS) (10), have
emerged, in which the efficient management of the reactive
behavior is a paramount. The typical executional paradigm

adopted by the ADBS is the so-called event-condition-action
(ECA) (1,7) which describes the behavior of the form:

ON Event Detection
IF Condition Holds
THEN Execute Action

The basic tools to specify this type of behavior in com-
mercially available DBMS are triggers—statements that
the database automatically executes upon certain modifi-
cations. The event commonly specifies the occurrence of (an
instance of) a phenomenon of interest. The condition, on the
other hand, is a query posed to the database. Observe that
both the detection of the event and the evaluation of the
condition may require access not only to the current
instance of the database but also to its history. The action
part of the trigger specifies the activities that the DBMS
needs to execute—either a (sequence of) SQL statement(s)
or stored procedure calls. As a motivational example to
illustrate the ECA paradigm, consider a scenario in which a
particular enterprise would like to enforce the constraint
that the average salary is maintained below 65K. The
undesired modifications to the average salary value can
occur upon: (1) an insertion of a new employee with above-
average salary, (2) an update that increases the salaries of a
set of employees, and (3) a deletion of employees with below-
average salary. Hence, one may set up triggers that will
react to these types of modifications (event) and, when
necessary (condition satisfied), will perform corrective
actions. In particular, let us assume that we have a relation
whose schema is Employee(Name, ID, Department, Job-
Title, Salary) and that, if an insertion of a new employee
causes the average salary-cap to be exceeded, then the
corrective action is to decrease everyone’s salary by 5%.
The specification of the respective trigger1 in a typical
DBMS, using syntax similar to the one proposed by the
SQL-standard (11), would be:

CREATE TRIGGER New-Employee-Salary-Check
ON INSERT TO Employee
IF (SELECT AVG Employee.Salary) > 65,000
UPDATE Set Employee.
Salary = 0.95�Employee.Salary

This seemingly straightforward paradigm has gener-
ated a large body of research, both academic and indus-
trial, which resulted in several prototype systems as well
as its acceptance as a part of the SQL99 (11) standard that,
in turn, has made triggers part of the commercially avail-
able DBMS. In the rest of this article, we will present some
of the important aspects of the management of reactive
behavior in ADBS and discuss their distinct features. In
particular, in the section on formalizing and reasoning, we

1Observe that to fully capture the behavior described in this
scenario, other triggers are needed—ones that would react to
the UPDATE and DELETE of tuples in the Employee relation.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



motivate the need to formalize the active database beha-
vior. In the section on semantic dimensions, we discuss the
various parameters and the impact of the choice of their
possible values, as they have been identified in the litera-
ture. In the overview section we present the main features
of some prototype ADBS briefly, along with the discussion
of some commercially available DBMS that provide the
triggers capability. Finally, in the last section, we outline
some of the current research trends related to the reactive
behavior in novel application domains for data manage-
ment, such as workflows (12), data streams (8,9), moving
objects databases (13,14), and sensor networks (6).

FORMALIZING AND REASONING ABOUT THE ACTIVE
BEHAVIOR

Historically, the reactive behavior expressed as a set of
condition!action rules (IF condition holds, THEN execute
action) was introduced in the Expert Systems literature
[e.g., OPS5 (15)]. Basically, the inference engine of the
system would ‘‘cycle’’ through the set of such rules and,
whenever a left-hand side of a rule is encountered that
matches the current status of the knowledge base (KB), the
action of the right-hand side of that rule would be executed.
From the perspective of the ECA paradigm of ADBS, this
system can be viewed as one extreme point: CA rules,
without an explicit event. Clearly, some kind of implicit
event, along with a corresponding formalism, is needed so
that the ‘‘C’’-part (condition) can reflect properly and moni-
tor/evaluate the desired behavior along the evolution of the
database. Observe that, in general, the very concept of an
evolution of the database must be defined clearly for exam-
ple, the state of the data in a given instance together with
the activities log (e.g., an SQL query will not change the
data; however, the administrator may need to know which
user queried which dataset). A particular approach to
specify such conditions in database triggers, assuming
that the ‘‘clock-tick’’ is the elementary implicit event,
was presented by Sistla and Wolfson (16) and is based on
temporal logic as an underlying mechanism to evaluate and
to detect the satisfiability of the condition.

As another extreme, one may consider the EA type of
rules, with a missing condition part. In this case, the detec-
tion of events must be empowered with the evaluation of a
particularset of facts in a given stateof the database [i.e., the
evaluation of the ‘‘C’’-part must be embedded within the
detection of the events (5)]. A noteworthy observation is that
even outside the context of the ADBS, the event manage-
ment has spurred a large amount of research. An example is
the field known as event notification systems in which
various users can, in a sense, ‘‘subscribe’’ for notifications
that, in turn, are generated by entities that have a role of
‘‘publishers’’—all in distributed settings (10). Researchers
have proposed various algebras to specify a set of composite
events, based on the operators that are applied to the basic/
primitive events (5,17). For example, the expression E¼E1
^ E2 specifies that an instance of the event E should be
detected in a state of the ADBS in which both E1 and E2 are
present. On the other hand, E ¼ E1;E2 specifies that an
instance of the event E should be detected in a state in which

the prior detection of E1 is followed by a detection of E2 (in
that order). Clearly, one also needs an underlying detection
mechanism for the expressions, for example, Petri Nets (17)
or tree-like structures (5). Philosophically, the reason to
incorporate both ‘‘E’’ and ‘‘C’’ parts of the ECA rules in ADBS
is twofold: (1) It is intuitive to state that certain conditions
should not always be checked but only upon the detection of
certain events and (2) it is more cost-effective in actual
implementations, as opposed to constant cycling through
the set of rules.2 Incorporating both events and conditions in
the triggers has generated a plethora of different problems,
such as the management of database state(s) during the
execution of the triggers (18) and the binding of the detected
events with the state(s) of the ADBS for the purpose of
condition evaluation (19).

The need for formal characterization of the active rules
(triggers) was recognized by the research community in the
early 1990s. One motivation was caused by the observation
that in different prototype systems [e.g., Postgres (4) vs.
Starburst (2)], triggers with very similar syntactic struc-
ture would yield different executional behavior. Along with
this was the need to perform some type of reasoning about
the evolution of an active database system and to predict
(certain aspects of) their behavior. As a simple example,
given a set of triggers and a particular state of the DBMS, a
database/application designer may wish to know whether
a certain fact will hold in the database after a sequence of
modifications (e.g., insertions, deletions, updates) have
been performed. In the context of our example, one may
be interested in the query ‘‘will the average salary of the
employees in the ‘Shipping’ department exceed 55K in any
valid state which results via salary updates.’’ A translation
of the active database specification into a logic program was
proposed as a foundation for this type of reasoning in
Ref. (20).

Two global properties that have been identified as desir-
able for any application of an ADBS are the termination and
the confluence of a given set of triggers (21,22). The termi-
nation property ensures that for a given set of triggers in
any initial state of the database and for any initial mod-
ification, the firing of the triggers cannot proceed indefi-
nitely. On the other hand, the confluence property ensures
that for a given set of triggers, in any initial state of the
database and for any initial modification, the final state of
the database is the same, regardless of the order of execut-
ing the (enabled) triggers. The main question is, given the
specifications of a set of triggers, can one statically, (i.e., by
applying some algorithmic techniques only to the triggers’
specification) determine whether the properties of termi-
nation and/or confluence hold? To give a simple motivation,
in many systems, the number of cascaded/recursive invoca-
tions of the triggers is bounded by a predefined constant to
avoid infinite sequences of firing the triggers because of a
particular event. Clearly, this behavior is undesirable, if
the termination could have been achieved in a few more
recursive executions of the triggers. Although run-time

2A noteworthy observation here is that the occurrence of a parti-
cular event is, strictly speaking, different from its detection, which
is associated with a run-time processing cost.

2 ACTIVE DATABASE SYSTEMS



termination analysis is a possible option, it is preferable to
have static tools. In the earlier draft of the SQL3 standard,
compile-time syntactic restrictions were placed on the
triggers specifications to ensure termination/confluence.
However, it was observed that these specifications may
put excessive limitations on the expressive power on the
triggers language, which is undesirable for many applica-
tions, and they were removed from the subsequent SQL99
draft.

For the most part, the techniques to analyze the termi-
nation and the confluence properties are based on labeled
graph-based techniques, such as the triggering hyper
graphs (22). For a simplified example, Fig. 1a illustrates
a triggering graph in which the nodes denote the particular
triggers, and the edge between two nodes indicates that the
modifications generated by the action part of a given trigger
node may generate the event that enables the trigger
represented by the other node. If the graph contains a cycle,
then it is possible for the set of triggers along that cycle to
enable each other indefinitely through a cascaded sequence
of invocations. In the example, the cycle is formed among
Trigger1, Trigger3, Trigger4, and Trigger5. Hence, should
Trigger1 ever become enabled because of the occurrence of
its event, these four triggers could loop perpetually in a
sequence of cascading firings. On the other hand, figure 1b
illustrates a simple example of a confluent behavior of a set
of triggers. When Trigger1 executes its action, both Trig-
ger2 and Trigger3 are enabled. However, regardless of
which one is selected for an execution, Trigger4 will be
the next one that is enabled. Algorithms for static analysis
of the ECA rules are presented in Ref. (21), which addresses
their application to the triggers that conform to the SQL99
standard.

SEMANTIC DIMENSIONS OF ACTIVE DATABASES

Many of the distinctions among the various systems stem
from the differences in the values chosen for a particular
parameter (23). In some cases, the choice of that value is an

integral part of the implementation (‘‘hard wired’’),
whereas in other cases the ADBS provide a declarative
syntax for the users to select a desired value. To better
understand this concept, recall again our average salary
maintenance scenario from the introduction. One of the
possible sources that can cause the database to arrive at an
undesired state is an update that increases the salary of a
set of employees. We already illustrated the case of an
insertion, now assume that the trigger that would corre-
spond to the second case is specified as follows:

CREATE TRIGGER Update-Salary-Check
ON UPDATE OF Employee.Salary
IF (SELECT AVG Employee.Salary) > 65,000
UPDATE Employee
SET Employee.Salary ¼ 0.95�Employee.Salary

Assume that it was decided to increase the salary of
every employee in the ‘‘Maintenance’’ department by 10%,
which would correspond to the following SQL statement:

UPDATE Employee
SET Employee.Salary ¼ 1.10�Employee.Salary
WHERE Employee.Department ¼ ‘Maintenance’

For the sake of illustration, assume that three employ-
ees are in the ‘‘Maintenance’’ department, Bob, Sam, and
Tom, whose salaries need to be updated. Strictly speaking,
an update is essentially a sequence of a deletion of an old
tuple followed by an insertion of that tuple with the updated
values for the respective attribute(s); however, for the
purpose of this illustration, we can assume that the updates
execute atomically. Now, some obvious behavioral options
for this simple scenario are:

� An individual instance of the trigger Update-Salary-
Check may be fired immediately, for every single
update of a particular employee, as shown in Fig. 2a.

� The DBMS may wait until all the updates are com-
pleted, and then execute the Update-Salary-Check,
as illustrated in Fig. 2b.

Trigger2

Trigger3

Trigger4

Trigger7
Trigger6

Trigger5

Trigger1

Trigger1

Trigger2 Trigger3

Trigger4

(b) Confluent triggers(a) Non terminating cascading triggers 
Figure 1. Triggering graphs for termination
and confluence.

ACTIVE DATABASE SYSTEMS 3



� The DBMS waits for the completion of all the updates
and the evaluation of the condition. If satisfied, the
execution of the action for the instances of the
Update-Salary-Check trigger may be performed
either within the same transaction as the UPDATE
Employee statement or in a different/subsequent
transaction.

These issues illustrate some aspects that have moti-
vated the researchers to identify various semantic dimen-
sions, a term used to collectively identify the various
parameters whose values may influence the executional
behavior of ADBS. Strictly speaking, the model of the
triggers’ processing is coupled closely with the properties
of the underlying DBMS, such as the data model, the
transaction manager, and the query optimizer. However,
some identifiable stages exist for every underlying DBMS:

� Detection of events: Events can be either internal,
caused by a DBMS-invoked modification, transaction
command, or, more generally, by any server-based
action (e.g., clicking a mouse button on the display);
or external, which report an occurrence of something
outside the DBMS server (e.g., a humidity reading of
a particular sensor, a location of a particular user
detected by an RFID-based sensor, etc). Recall that
(c.f. formalizing and reasoning), the events can be
primitive or composite, defined in terms of the primi-
tive events.

� Detection of affected triggers: This stage identifies the
subset of the specified triggers, whose enabling events
are among the detected events. Typically, this stage is
also called the instantiation of the triggers.

� Conditions evaluation: Given the set of instantiated
triggers, the DBMS evaluates their respective condi-
tions and decides which ones are eligible for execution.
Observe that the evaluation of the conditions may
sometimes require a comparison between the values
in the OLD (e.g., pretransaction state, or the state just
before the occurence of the instantiating event) with
the NEW (or current) state of the database.

� Scheduling and execution: Given the set of instan-
tiated triggers, whose condition part is satisfied, this
stage carries out their respective action-parts. In
some systems [e.g., Starburst (2)] the users are
allowed to specify a priority-based ordering among
the triggers explicitly for this purpose. However, in

the SQL standard (11), and in many commercially
available DBMSs, the ordering is based on the time
stamp of the creation of the trigger, and even this may
not be enforced strictly at run-time. Recall (c.f. for-
malizing and reasoning) that the execution of the
actions of the triggers may generate events that
enable some other triggers, which causes a cascaded
firing of triggers.

In the rest of this section, we present a detailed discus-
sion of some of the semantic dimensions of the triggers.

Granularity of the Modifications

In relational database systems, a particular modification
(insertion, deletion, update) may be applied to a single
tuple or to a set of tuples. Similarly, in an object-oriented
database system, the modifications may be applied to a
single object or to a collection of objects—instances of a
given class. Based on this distinction, the active rules can
be made to react in a tuple/instance manner or in a set-
oriented manner. An important observation is that this
type of granularity is applicable in two different places in
the active rules: (1) the events to which a particular rule
reacts (is ‘‘awoken’’ by) and (2) the modifications executed
by the action part of the rules. Typically, in the DBMS
that complies with the SQL standard, this distinction is
specified by using FOR EACH ROW (tuple-oriented) or
FOR EACH STATEMENT (set-oriented) specification in
the respective triggers. In our motivational scenario, if
one would like the trigger Update-Salary to react to the
modifications of the individual tuples, which correspond
to the behavior illustrated in Fig. 2a, its specification
should be:

CREATE TRIGGER Update-Salary-Check
ON UPDATE OF Employee.Salary
FOR EACH ROW
IF SELECT(...)
...

Coupling Among Trigger’s Components

Because each trigger that conforms to the ECA paradigm
has three distinct parts—the Event, Condition, and
Action—one of the important questions is how they are
synchronized. This synchronization is often called the cou-
pling among the triggers components.

Figure 2. Different options for triggers
execution.

begin commit
update

Bob

updateupdate

TomSam

conditions checking

actions executing (if needed)

begin
updateupdateupdate

TomSamBob

commit

conditions checking(all)

actions executing (if needed)

4 ACTIVE DATABASE SYSTEMS



� E-C coupling: This dimension describes the tem-
poral relationship among the events that enable
certain triggers and the time of evaluating their
conditions parts, with respect to the transaction in
which the events were generated. With immediate
coupling, the conditions are evaluated as soon as the
basic modification that produced the events is com-
pleted. Under the delayed coupling mode, the eva-
luation of the conditions is delayed until a specific
point (e.g., a special ‘‘event’’ takes place such as an
explicit rule-processing point in the transaction).
Specifically, if this special event is the attempt to
commit the transaction, then the coupling is also
called deferred.

� C-A coupling: Similarly, for a particular trigger, a
temporal relationship exists between the evaluation
of its condition and (if satisfied) the instant its action
is executed. The options are the same as for the E-C
coupling: immediate, in which case the action is
executed as soon as the condition-evaluation is com-
pleted (in case it evaluates to true); delayed, which
executes the action at some special point/event; and
deferred, which is the case when the actions are
executed at the end (just before commit) of the trans-
action in which the condition is evaluated.

A noteworthy observation at this point is that the
semantic dimensions should not be understood as isolated
completely from each other but, to the contrary, their
values may be correlated. Among the other reasons, this
correlation exists because the triggers manager cannot be
implemented in isolation from the query optimizer and
the transaction manager. In particular, the coupling
modes discussed above are not independent from the
transaction processing model and its relationship with
the individual parts of the triggers. As another semantic
dimension in this context, one may consider whether the
conditions evaluation and the actions executions should
be executed in the same transaction in which the trigger-
ing events have occurred (note that the particular trans-
action may be aborted because of the effects of the triggers
processing). In a typical DBMS setting, in which the
ACID (atomicity, consistency, isolation, and durability)
properties of the transactions must be ensured, one would
like to maintain the conditions evaluations and actions
executions within the same transaction in which the
triggering event originated. However, if a more sophisti-
cated transaction management is available [e.g., nested
transactions (24)] they may be processed in a separate
subtransaction(s), in which the failure of a subtransac-
tion may cause the failure of a parent transaction in
which the events originated, or in two different transac-
tions. This transaction is known commonly as a detached
coupling mode.

Events Consumption and Composition

These dimensions describe how a particular event is trea-
ted when processing a particular trigger that is enabled due
to its occurrence, as well as how the impact of the net effect
of a set of events is considered.

One of the differences in the behavior of a particular
ADBS is caused by the selection of the scope(23) of the event
consumptions:

� NO consumption: the evaluation and the execution of
the conditions part of the enabled/instantiated trig-
gers have no impact on the triggering event. In
essence, this means that the same event can enable
a particular trigger over and over again. Typically,
such behavior is found in the production rule systems
used in expert systems (15).

� Local consumption: once an instantiated trigger has
proceeded with its condition part evaluation, that
trigger can no longer be enabled by the same event.
However, that particular event remains eligible for
evaluation of the condition the other triggers that it
has enabled. This feature is the most common in the
existing active database systems. In the setting of our
motivational scenario, assume that we have another
trigger, for example, Maintain-Statistics, which also
reacts to an insertion of new employees by increasing
properly the total number of the hired employees in
the respective departmental relations. Upon inser-
tion of a set of new employees, both New-Employee-
Salary-Check and Maintain-Statistics triggers will
be enabled. Under the local consumption mode, in
case the New-Employee-Salary-Check trigger exe-
cutes first, it is no longer enabled by the same inser-
tion. The Maintain-Statistics trigger, however, is left
enabled and will check its condition and/or execute its
action.

� Global consumption: Essentially, global consumption
means that once the first trigger has been selected for
its processing, a particular event can no longer be
used to enable any other triggers. In the settings of
our motivational scenario, once the given trigger
New-Employee-Salary-Check has been selected for
evaluation of its condition, it would also disable the
Maintain-Statistics despite that it never had its con-
dition checked. In general, this type of consumption is
appropriate for the settings in which one can distin-
guish among ‘‘regular’’ rules and ‘‘exception’’ rules
that are enabled by the same event. The ‘‘exception’’
not only has a higher priority, but it also disables the
processing of the ‘‘regular’’ rule.

A particular kind of event composition, which is
encountered in practice, frequently is the event net effect.
The basic distinction is whether the system should con-
sider the impact of the occurrence of a particular event,
regardless of what are the subsequent events in the
transaction, or consider the possibility of invalidating
some of the events that have occurred earlier. As a parti-
cular example, the following intuitive policy for computing
the net effects has been formalized and implemented in
the Starburst system (2):

� If a particular tuple is created (and possibly updated)
in a transaction, and subsequently deleted within
that same transaction, the net effect is null.

ACTIVE DATABASE SYSTEMS 5



� If a particular tuple is created (respectively, updated)
in a transaction, and that tuple is updated subse-
quently several times, the net effect is the creation of
the final version of that tuple (respectively, the single
update equivalent to the final value).

� If a particular tuple is updated and deleted subse-
quently in a given transaction, then the net effect is
the deletion of the original tuple.

Combining the computation of the net effects in sys-
tems that allow specification of composite events via an
event algebra (5,17) is a very complex problem. The main
reason is that in a given algebra, the detection of a parti-
cular composite event may be in a state in which several
different instances of one of its constituent events have
occurred. Now, the question becomes what is the policy for
consuming the primitive events upon a detection of a
composite one. An illustrative example is provided in
Fig. 3. Assume that the elementary (primitive) events
correspond to tickers from the stockmarket and the
user is interested in the composite event: CE ¼ (two
consecutive increases of the IBM stock) AND (two conse-
cutive increases of the General Electric [GE] stock). Given
the timeline for the sequence of events illustrated in Fig. 3,
upon the second occurrence of the GE stock increase
(GE2þ), the desired composite event CE can be detected.
However, now the question becomes which of the primi-
tive events should be used for the detection of CE (6 ways
exist to couple IBM-based events), and how should the rest
of the events from the history be consumed for the future
(e.g., if GE2þ is not consumed upon the detection of CE,
then when GE3þ occurs, the system will be able to detect
another instance of CE). Chakravarthy et al. (5) have
identified four different contexts (recent, chronicle, con-
tinuous, and cumulative) of consuming the earlier occur-
rences of the primitive constituent events which enabled
the detection of a given composite event.

Data Evolution

In many ADBSs, it is important to query the history con-
cerning the execution of the transaction(s). For example, in
our motivational scenario, one may envision a modified
constraint that states that the average salary increase in
the enterprise should not exceed 5% from its previous value
when new employees are and/or inserted when the salaries
of the existing employees are updated. Clearly, in such
settings, the conditions part of the respective triggers
should compare the current state of the database with
the older state.

When it comes to past database states, a special syntax is
required to specify properly the queries that will retrieve
the correct information that pertains to the prior database
states. It can be speculated that every single state that
starts from the begin point of a particular transaction

should be available for inspection; however, in practice,
only a few such states are available (c.f. Ref. (23)):

� Pretransaction state: the state of the database just
before the execution of the transaction that generated
the enabling event.

� Last consideration state: given a particular trigger,
the state of the database after the last time that
trigger has been considered (i.e., for its condition
evaluation).

� Pre-event state: given a particular trigger, the state of
the database just before the occurrence of the event
that enabled that trigger.

Typically, in the existing commercially available DBMS
that offers active capabilities, the ability to query the past
states refers to the pretransaction state. The users are
given the keywords OLD and NEW to specify declaratively
which part needs to be queried when specifying the condi-
tion part of the triggers (11).

Another option for inspecting the history of the active
database system is to query explicitly the set of occurred
events. The main benefit of this option is the increased
flexibility to specify the desired behavioral aspects of a
given application. For example, one may wish to query
not all the items affected by a particular transaction, but
only the ones that participated in the generation of the
given composite event that enabled a particular trigger (5).
Some prototype systems, [e.g., Chimera (25) offer this
extended functionality, however, the triggers in the
commercially available DBMS that conform to the SQL
standard are restricted to querying the database states only
(c.f., the OLD and NEW above).

Recent works (26) have addressed the issues of extend-
ing the capabilities of the commercially available ORDBMS
Oracle 10g (27) with features that add a flexibility for
accessing various portions (states) of interest throughout
the evolution of the ADBS, which enable sophisticated
management of events for wide variety of application
domains.

Effects Ordering

We assumed that the execution of the action part of a
particular trigger occurs not only after the occurrence of
the event, but also after the effects of executing the mod-
ifications that generated that event have been incorpo-
rated. In other words, the effects of executing a
particular trigger were adding to the effects of the mod-
ifications that were performed by its enabling event.
Although this seems to be the most intuitive approach,
in some applications, such as alerting or security monitor-
ing, it may be desirable to have the action part of the
corresponding trigger execute before the modifications of
the events take place, or even instead of the modifications.

Figure 3. Composite events and
consumption.

6 ACTIVE DATABASE SYSTEMS



Typical example is a trigger that detects when an unauthor-
ized user has attempted to update the value of a particular
tuple in a given relation. Before executing the user’s
request, the respective log-file needs to be updated prop-
erly. Subsequently, the user-initiated transaction must be
aborted; instead, an alert must be issued to the database
administrator. Commercially available DBMS offer the
flexibility of stating the BEFORE, AFTER, and INSTEAD
preferences in the specification of the triggers.

Conflict Resolution and Atomicity of Actions

We already mentioned that if more than one trigger is
enabled by the occurrence of a particular event, some
selection must be performed to evaluate the respective
conditions and/or execute the actions part. From the
most global perspective, one may distinguish between
the serial execution, which selects a single rule according
to a predefined policy, and a parallel execution of all the
enabled triggers. The latter was envisioned in the HiPAC
active database systems (c.f. Ref. (28)) and requires sophis-
ticated techniques for concurrency management. The
former one can vary from specifying the total priority
ordering completely by the designer, as done in the Postgres
system (4), to partial ordering, which specifies an incom-
plete precedence relationship among the triggers, as is the
case in the Starburst system (20). Although the total order-
ing among the triggers may enable a deterministic behavior
of the active database, it may be too demanding on the
designer, who always is expected to know exactly the
intended behavior of all the available rules (23). Commer-
cial systems that conform with the SQL99 standard do not
offer the flexibility of specifying an ordering among the
triggers. Instead, the default ordering is by the timestamp
of their creation.

When executing the action part of a given trigger, a
particular modification may constitute an enabling event
for some other trigger, or even for a new instance of the
same trigger whose action’s execution generated that
event. One option is to interrupt the action of the currently
executing trigger and process the triggers that were ‘‘awo-
ken’’ by it, which could result in cascaded invocation where
the execution of the trigger that produced the event is
suspended temporarily. Another option is to ignore the
occurrence of the generated event temporarily, until the
action part of the currently executing trigger is completed
(atomic execution). This action illustrates that the values in
different semantic dimensions are indeed correlated.
Namely, the choice of the atomicity of the execution will
impact the value of the E-C/C-A coupling modes: one cannot
expect an immediate coupling if the execution of the actions
is to be atomic.

Expressiveness Issues

As we illustrated, the choice of values for a particular
semantic dimension, especially when it comes to the rela-
tionship with the transaction model, may yield different
outcomes of the execution of a particular transaction by
the DBMS (e.g., deferred coupling will yield different
behavior from the immediate coupling). However, another

subtle aspect of the active database systems is dependent
strongly on their chosen semantic dimensions – the
expressive power. Picouet and Vianu (29) introduced a
broad model for active databases based on the unified
framework of relational Turing machines. By restricting
some of the values of the subset of the semantic dimen-
sions and thus capturing the interactions between the
sequence of the modifications and the triggers, one can
establish a yardstick to compare the expressive powers of
the various ADBSs. For example, it can be demonstrated
that:

� The A-RDL system (30) under the immediate cou-
pling mode is equivalent to the Postgres system (4) on
ordered databases.

� The Starburst system (2) is incomparable to the
Postgres system (4).

� The HiPAC system (28) subsumes strictly the Star-
burst (2) and the Postgres (4) systems.

Although this type of analysis is extremely theoretical
in nature, it is important because it provides some
insights that may have an impact on the overall applica-
tion design. Namely, when the requirements of a given
application of interest are formalized, the knowledge of
the expressive power of the set of available systems may
be a crucial factor to decide which particular platform
should be used in the implementation of that particular
application.

OVERVIEW OF ACTIVE DATABASE SYSTEMS

In this section, we outline briefly some of the distinct
features of the existing ADBS—both prototypes as well
as commercially available systems. A detailed discussion
of the properties of some systems will also provide an
insight of the historic development of the research in the
field of ADBS, can be found in Refs. (1) and (7).

Relational Systems

A number of systems have been proposed to extend the
functionality of relational DBMS with active rules. Typi-
cally, the events in such systems are mostly database
modifications (insert, delete, update) and the language to
specify the triggers is based on the SQL.

� Ariel (31): The Ariel system resembles closely the
traditional Condition ! Action rules from expert
systems literature (15), because the specification of
the Event part is optional. Therefore, in general, NO
event consumption exists, and the coupling modes
are immediate.

� Starburst (2): This system has been used extensively
for database-internal applications, such as integrity
constraints and views maintenance. Its most notable
features include the set-based execution model and
the introduction of the net effects when considering
the modifications that have led to the occurrence
of a particular event. Another particular feature

ACTIVE DATABASE SYSTEMS 7



introduced by the Starburst system is the concept of
rule processing points, which may be specified to
occur during the execution of a particular transaction
or at its end. The execution of the action part is
atomic.

� Postgres (4): The key distinction of Postgres is that the
granularity of the modifications to which the triggers
react is tuple (row) oriented. The coupling modes
between the E-C and the C-A parts of the triggers
are immediate and the execution of the actions part is
interruptable, which means that the recursive
enabling of the triggers is an option. Another notable
feature of the Postgres system is that it allows for
INSTEAD OF specification in its active rules.

Object-Oriented Systems

One of the distinct features of object-oriented DBMS
(OODBMS) is that it has methods that are coupled with
the definition of the classes that specify the structure of the
data objects stored in the database. This feature justifies
the preference for using OODBMS for advanced application
domains that include extended behavior management.
Thus, the implementation of active behavior in these sys-
tems is coupled tightly with a richer source of events for the
triggers (e.g., the execution of any method).

� ODE (32): The ODE system was envisioned as an
extension of the C++ language with database cap-
abilities. The active rules are of the C-A type and are
divided into constraints and triggers for the efficiency
of the implementations. Constraints and triggers are
both defined at a class level and are considered a
property of a given class. Consequently, they can be
inherited. One restriction is that the updates of the
individual objects, caused by private member func-
tions, cannot be monitored by constraints and trig-
gers. The system allows for both immediate coupling
(called hard constraints) and deferred coupling
(called soft constraints), and the triggers can be
declared as executing once-only or perpetually (reac-
tivated).

� HiPAC (28): The HiPAC project has pioneered many
of the ideas that were used subsequently in various
research results on active database systems. Some of
the most important contributions were the introduc-
tion of the coupling modes and the concept of com-
posite events. Another important feature of the
HiPAC system was the extension that provided
the so called delta-relation, which monitors the
net effect of a set of modifications and made it
available as a part of the querying language. HiPAC
also introduced the visionary features of parallel
execution of multiple triggers as subtransactions
of the original transaction that generated their
enabling events.

� Sentinel (5): The Sentinel project provided an active
extension of the OODBMS, which represented the
active rules as database objects and focused on
the efficient integration of the rule processing mod-

ule within the transaction manager. One of the main
novelties discovered this particular research project
was the introduction of a rich mechanism for to
specify and to detect composite events.

� SAMOS (18): The SAMOS active database prototype
introduced the concept of an interval as part of the
functionality needed to manage composite events. A
particular novelty was the ability to include the
monitoring intervals of interest as part of the speci-
fication of the triggers. The underlying mechanism to
detect the composite events was based on Colored
Petri-Nets.

� Chimera (25): The Chimera system was envisioned as
a tool that would seamlessly integrate the aspects of
object orientation, deductive rules, and active rules
into a unified paradigm. Its model has strict under-
lying logical semantics (fixpoint based) and very
intuitive syntax to specify the active rules. It is based
on the EECA (Extended-ECA) paradigm, specified in
Ref. (23), and it provides the flexibility to specify a
wide spectrum of behavioral aspects (e.g., semantic
dimensions). The language consists of two main com-
ponents: (1) declarative, which is used to specify
queries, deductive rules, and conditions of the active
rules; and (2) procedural, which is used to specify the
nonelementary operations to the database, as well as
the action parts of the triggers.

Commercially Available Systems

One of the earliest commercially available active database
systems was DB2 (3), which integrated trigger processing
with the evaluation and maintenance of declarative con-
straints in a manner fully compatible with the SQL92
standard. At the time it served as a foundation model for
the draft of the SQL3 standard. Subsequently, the standard
has migrated to the SQL99 version (11), in which the
specification of the triggers is as follows:

<trigger definition> ::=
CREATE TRIGGER <trigger name>
{BEFORE|AFTER}<trigger event> ON
<table name>

[REFERENCING <old or new values alias list>]
[FOR EACH {ROW | STATEMENT}]
[<trigger condition>]
<trigger action>

<trigger event> ::= INSERT | DELETE | UPDATE
[OF <column name list>]

<old or new values alias list> ::= {OLD | NEW}
[AS] <identifier>|{OLD_TABLE|

NEW_TABLE} [AS] <identifier>

The condition part in the SQL99 triggers is optional and,
if omitted, it is considered to be true; otherwise, it can be
any arbitrarily complex SQL query. The action part, on the
other hand, is any sequence of SQL statements, which
includes the invocation of stored procedures, embedded
within a single BEGIN – END block. The only statements
that are excluded from the available actions pertain
to connections, sessions, and transactions processing.

8 ACTIVE DATABASE SYSTEMS



Commercially available DBMS, with minor variations,
follow the guidelines of the SQL99 standards.

In particular, the Oracle 10g (27), an object-relational
DBMS (ORDBMS), not only adheres to the syntax speci-
fications of the SQL standard for triggers (28), but also
provides some additions: The triggering event can be
specified as a logical disjunction (ON INSERT OR
UPDATE) and the INSTEAD OF option is provided for
the action’s execution. Also, some system events (startup/
shutdown, server error messages), as well as user events
(logon/logoff and DDL/DML commands), can be used as
enabling events in the triggers specification. Just like in
the SQL standard, if more than one trigger is enabled by
the same event, the Oracle server will attempt to assign a
priority for their execution based on the timestamps of
their creation. However, it is not guarantees that this case
will actually occur at run time. When it comes to depen-
dency management, Oracle 10g server treats triggers in a
similar manner to the stored procedures: they are inserted
automatically into the data dictionary and linked with the
referenced objects (e.g., the ones which are referenced by
the action part of the trigger). In the presence of integrity
constraints, the typical executional behavior of the Oracle
10g server is as follows:

1. Run all BEFORE statement triggers that apply to the
statement.

2. Loop for each row affected by the SQL statement.

a. Run all BEFORE row triggers that apply to the
statement.

b. Lock and change row, and perform integrity con-
straint checking. (The lock is not released until the
transaction is committed.)

c. Run all AFTER row triggers that apply to the
statement.

3. Complete deferred integrity constraint checking.

4. Run all AFTER statement triggers that apply to the
statement.

The Microsoft Server MS-SQL also follows closely the
syntax prescribed by the SQL99 standard. However, it has
its own additions; for example, it provides the INSTEAD
OF option for triggers execution, as well as a specification of
a restricted form of composite events to enable the parti-
cular trigger. Typically, the statements execute in a tuple-
oriented manner for each row. A particular trigger is asso-
ciated with a single table and, upon its definition, the server
generates a virtual table automatically for to access the old
data items. For example, if a particular trigger is supposed
to react to INSERT on the table Employee, then upon
insertion to Employee, a virtual relation called Inserted
is maintained for that trigger.

NOVEL CHALLENGES FOR ACTIVE RULES

We conclude this article with a brief description of some
challenges for the ADBSs in novel application domains, and
with a look at an extended paradigm for declaratively
specifying reactive behavior.

Application Domains

Workflow management systems (WfMS) provide tools to
manage (modeling, executing, and monitoring) workflows,
which are viewed commonly as processes that coordinate
various cooperative activities to achieve a desired goal.
Workflow systems often combine the data centric view of
the applications, which is typical for information systems,
with their process centric behavioral view. It has already
been indicated (12) that WfMS could benefit greatly by a full
use of the tools and techniques available in the DBMS when
managing large volumes of data. In particular, Shankar
et al. (12) have applied active rules to the WfMS settings,
which demonstrates that data-intensive scientific work-
flows can benefit from the concept of active tables associated
with the programs. One typical feature of workflows is
that many of the activities may need to be executed by
distributed agents (actors of particular roles), which need
to be synchronized to optimize the concurrent execution.
A particular challenge, from the perspective of triggers
management in such distributed settings, is to establish
a common (e.g., transaction-like) context for their main
components—events, conditions, and actions. As a conse-
quence, the corresponding triggers must execute in a
detached mode, which poses problems related not only to
the consistency, but also to their efficient scheduling and
execution (33).

Unlike traditional database applications, many novel
domains that require the management of large quantities of
information are characterized by the high volumes of data
that arrive very fast in a stream-like fashion (8). One of the
main features of such systems is that the queries are no
longer instantaneous; they become continuous/persistent
in the sense that users expect the answers to be updated
properly to reflect the current state of the streamed-in
values. Clearly, one of the main aspects of the continuous
queries (CQ) management systems is the ability to react
quickly to the changes caused by the variation of the
streams and process efficiently the modification of the
answers. As such, the implementation of CQ systems
may benefit from the usage of the triggers as was demon-
strated in the Niagara project (9). One issue related to the
scalability of the CQ systems is the very scalability of the
triggers management (i.e., many instances of various trig-
gers may be enabled). Although it is arguable that the
problem of the scalable execution of a large number of
triggers may be coupled closely with the nature of the
particular application domain, it has been observed that
some general aspects of the scalability are applicable
universally. Namely, one can identify similar predicates
(e.g., in the conditions) across many triggers and group
them into equivalence classes that can be indexed on
those predicates. This project may require a more involved
system catalog (34), but the payoff is a much more efficient
execution of a set of triggers. Recent research has also
demonstrated that, to capture the intended semantics of
the application domain in dynamic environments, the
events may have to be assigned an interval-based seman-
tics (i.e., duration may need to be associated with
their detection). In particular, in Ref. (35), the authors
have demonstrated that if the commonly accepted

ACTIVE DATABASE SYSTEMS 9



instantaneous semantics for events occurrence is used in
traffic management settings, one may obtain an unin-
tended meaning for the composite events.

Moving objects databases (MODs) are concerned with
the management of large volumes of data that pertain to the
location-in-time information of the moving entities, as well
as efficient processing of the spatio-temporal queries that
pertain to that information (13). By nature, MOD queries
are continuous and the answers to the pending queries
change because of the changes in the location of the mobile
objects, which is another natural setting for exploiting an
efficient form of a reactive behavior. In particular, Ref. (14)
proposed a framework based on the existing triggers in
commercially available systems to maintain the correct-
ness of the continuous queries for trajectories. The problem
of the scalable execution of the triggers in these settings
occurs when a traffic abnormality in a geographically small
region may cause changes to the trajectories that pass
through that region and, in turn, invalidate the answers
to spatio-temporal queries that pertain to a much larger
geographic area. The nature of the continuous queries’
maintenance is dependent largely on the model adopted
for the mobility representation, and the MOD-field is still
very active in devising efficient approaches for the queries
management which, in one way or another, do require some
form of active rules management.

Recently, the wireless sensor networks (WSNs) have
opened a wide range of possibilities for novel applications
domains in which the whole process of gathering and mana-
ging the information of interest requires new ways of per-
ceiving the data management problems (36). WSN consist of
hundreds, possibly thousands, of low-cost devices (sensors)
that are capable of measuring the values of a particular
physical phenomenon (e.g., temperature, humidity) and of
performing some elementary calculations. In addition, the
WSNs are also capable of communicating and self-organiz-
ing into a network in which the information can be gathered,
processed, and disseminated to a desired location. As an
illustrative example of the benefits of the ECA-like rules in
WSN settings, consider the following scenario (c.f. Ref. (6)):
whenever the sensors deployed in a given geographic area of
interest have detected that the average level of carbon
monoxide in the air over any region larger than 1200 ft2

exceeds 22%, an alarm should be activated. Observe that
here the event corresponds to the updates of the (readings
of the) individual sensors; the condition is a continuous
query evaluated over the entire geographic zone of interest,
and with a nested sub-query of identifying the potentially-
dangerous regions. At intuitive level, this seems like a
straightforward application of the ECA paradigm. Numer-
ous factors in sensor networks affect the efficient implemen-
tation of this type of behavior: the energy resource of the
individual nodes is very limited, the communication
between nodes drains more current from the battery than
the sensing and local calculations,andunlike the traditional
systems where there are few vantage points to generate new
events, in WSN settings, any sensor node can be an event-
generator. The detection of composite events, as well as
the evaluation of the conditions, must to be integrated in
a fully distributed environment under severe constraints
(e.g., energy-efficient routing is a paramount). Efficient

implementation of the reactive behavior in a WSN-based
databases is an ongoing research effort.

The (ECA)2 Paradigm

Given the constantly evolving nature of the streaming or
moving objects data, along with the consideration that it
may be managed by distributed and heterogeneous
sources, it is important to offer a declarative tool in which
the users can actually specify how the triggers themselves
should evolve. Users can adjust the events that they
monitor, the conditions that they need to evaluate, and
the action that they execute. Consider, for example, a
scenario in which a set of motion sensors deployed around
a region of interest is supposed to monitor whether an
object is moving continuously toward that region for a
given time interval. Aside from the issues of efficient
detection of such an event, the application may require
an alert to be issued when the status of the closest air field
is such that fewer than a certain number of fighter jets are
available. In this setting, both the event detection and the
condition evaluation are done in distributed manner and
are continuous in nature. Aside from the need of their
efficient synchronization, the application demands that
when a particular object ceases to move continuously
toward the region, the condition should not be monitored
any further for that object. However, if the object in
question is closer than a certain distance (after moving
continuously toward the region of interest for a given
time), in turn, another trigger may be enabled, which
will notify the infantry personnel. An approach for
declarative specification of triggers for such behavior
was presented in Ref. (37) where the (ECA)2 paradigm
(evolving and context-aware event-condition-action) was
introduced. Under this paradigm, for a given trigger, the
users can embed children triggers in the specifications,
which will become enabled upon the occurrences of certain
events in the environment, and only when their respective
parent triggers are no longer of interest. The children
triggers may consume their parents either completely, by
eliminating them from any consideration in the future or
partially, by eliminating only the particular instance from
the future consideration, but allowing a creation of sub-
sequent instances of the parent trigger. Obviously, in
these settings, the coupling modes among the E-C and
C-A components of the triggers must to be detached, and
for the purpose of their synchronization the concept of
meta-triggers was proposed in Ref. (37). The efficient
processing of such triggers is still an open challenge.

BIBLIOGRAPHY

1. J. Widom and S. Ceri, Active Database Systems: Triggers and
Rules for Advanced Database Processing, San Francisco:
Morgan Kauffman, 1996.

2. J. Widom, The Starburst Active Database Rule System, IEEE
Trans. Knowl. Data Enginee., 8(4): 583–595, 1996.

3. R. Cochrane, H. Pirahesh and N. M. Mattos, Integrating Trig-
gers and Declarative Constraints in SQL Database Systems,
International Conference on Very Large Databases, 1996.

10 ACTIVE DATABASE SYSTEMS



4. M. Stonebraker, The integration of rule systems and database
systems, IEEE Trans. Knowl. Data Enginee., 4(5): 416–432,
1992.

5. S. Chakravarthy, V. Krishnaprasad, E. Answar, and S. K. Kim,
Composite Events for Active Databases: Semantics, Contexts
and Detection, International Conference on Very Large Data-
bases (VLDB), 1994.

6. M. Zoumboulakis, G.Roussos, and A.Poulovassilis, Active Rules
for Wireless Networks of Sensors & Actuators, International
Conference on Embedded Networked Sensor Systems, 2003.

7. N. W. Paton, Active Rules in Database Systems, New York:
Springer Verlag, 1999.

8. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
Models and Issues in Data Stream Systems, International
Conference on Principles of Database Systems, 2002.

9. J. Chen, D.J. DeWitt, F. Tian, and Y. Wang, NiagaraCQ: A
Scalable Continuous Query System for Internet Databases,
ACM SIGMOD International Conference on Management of
Data, 2000.

10. A. Carzaniga, D. Rosenblum, and A. Wolf, Achieving Scalabil-
ity and Expressiveness in an Internet-scale Event Notification
Service, ACM Symposium on Principles of Distributed Com-
puting, 2000.

11. ANSI/ISO International Standard: Database Language SQL.
Available: http://webstore.ansi.org.

12. S. Shankar, A. Kini, D. J. DeWitt, and J. F. Naughton, Inte-
grating databases and workflow systems, SIGMOD Record,
34(3): 5–11, 2005.

13. R.H. Guting and M. Schneider, Moving Objects Databases, San
Francisco: Morgan Kaufman, 2005.

14. G. Trajcevski and P. Scheuermann, Reactive maintenance of
continuousqueries,MobileComput. Commun. Rev., 8(3): 22–33,
2004.

15. L. Brownston, K. Farrel, E. Kant, and N. Martin, Programming
Expert Systems in OPS5: An Introduction to Rule-Base Pro-
gramming, Boston: Addison-Wesley, 2005.

16. A.P. Sistla and O. Wolfson, Temporal Conditions and Integrity
Constraints in Active Database Systems ACM SIGMOD, Inter-
national Conference on Management of Data, 1995.

17. S. Gatziu and K. R. Ditrich, Events in an Active Object-Oriented
Database System, International Workshop on Rules in Data-
base Systems, 1993.

18. K. Dittrich, H. Fritschi, S. Gatziu, A. Geppert, and A. Vaduva,
SAMOS in hindsight: Experiences in building an active object-
oriented DBMS, Informat. Sys., 30(5): 369–392, 2003.

19. S.D. Urban, T. Ben-Abdellatif, S. Dietrich, and A. Sundermier,
Delta abstractions: a technique for managing database states
in runtime debugging of active database rules, IEEE-TKDE,
15(3): 597–612, 2003.

20. C. Baral, J. Lobo, and G. Trajcevski, Formal Characterization
of Active Databases: Part II, International Conference on
Deductive and Object-Oriented Databases (DOOD), 1997.

21. E. Baralis and J. Widom, An algebraic approach to static
analysis of active database rules, ACM Trans. Database
Sys., 27(3): 289–332, 2000.

22. S.D. Urban, M.K. Tschudi, S.W. Dietrich, and A.P. Karadimce,
Active rule termination analysis: an implementation and

evaluation of the refined triggering graph method, J. Intell.
Informat. Sys., 14(1): 29–60, 1999.

23. P. Fraternali and L. Tanca, A structured approach for the
definition of the semantics of active databases, ACM Trans.
Database Sys., 22(4): 416–471, 1995.

24. G. Weikum and G. Vossen, Transactional Information Sys-
tems: Theory, Algorithms and the Practice of Concurrency
Control, San Francisco: Morgan Kauffman, 2001.

25. P. Fraternali and S. Parabochi, Chimera: a language for
designing rule applications, in: N. W. Paton (ed.), Active Rules
in Database System, Berlin: Springer-Verlog, 1999.

26. M. Thome, D. Gawlick, and M. Pratt, Event Processing with an
Oracle Database, SIGMOD International Conference on Man-
agement of Data, 2005.

27. K. Owens, Programming Oracle Triggers and Stored Proce-
dures, (3rd ed.), O’Reily Publishers, 2003.

28. U. Dayal, A.P. Buchmann, and S. Chakravarthy, The HiPAC
project, in J. Widom and S. Ceri, Active Database Systems.
Triggers and Rules for Advanced Database Processing, San
Francisco: Morgan Kauffman, 1996.

29. P. Picouet and V. Vianu, Semantics and expressiveness issues
in active databases, J. Comp. Sys. Sci., 57(3): 327–355, 1998.

30. E. Simon and J. Kiernan, The A-RDL system, in J. Widom and
S. Ceri, Active Database Systems: Triggers and Rules for
Advanced Database Processing, San Francisco: Morgan Kauff-
man, 1996.

31. E. N. Hanson, Rule Condition Testing and Action Execution in
Ariel, ACM SIGMOD International Conference on Manage-
ment of Data, 1992.

32. N. Gehani and H.V. Jagadish, ODE as an Active Database:
Constraints and Triggers, International Conference on Very
Large Databases, 1992.

33. S. Ceri, C. Gennaro, S. Paraboschi, and G. Serazzi, Effective
scheduling of detached rules in active databases, IEEE Trans.
Knowl. Data Enginee., 16(1): 2–15, 2003.

34. E.N. Hanson, S. Bodagala, and U. Chadaga, Trigger condition
testing and view maintenance using optimized discrimination
networks, IEEE Trans. Know. Data Enginee., 16(2): 281–300,
2002.

35. R. Adaikkalvan and S. Chakravarthy, Formalization and
Detection of Events Using Interval-Based Semantics, Interna-
tional Conference on Advances in Data Management, 2005.

36. F. Zhao and L. Guibas, Wireless Sensor Networks: An Informa-
tion Processing Approach, San Francisco: Morgan Kaufmann,
2004.

37. G. Trajcevski, P. Scheuermann, O. Ghica, A. Hinze, and A.
Voisard, Evolving Triggers for Dynamic Environments, Inter-
national Conference on Extending the Database Technology,
2006.

PETER SCHEUERMANN

GOCE TRAJCEVSKI

Northwestern University
Evanston, Illinois

ACTIVE DATABASE SYSTEMS 11



A

ALGEBRAIC CODING THEORY

INTRODUCTION

In computers and digital communication systems, informa-
tion almost always is represented in a binary form as a
sequence of bits each having the values 0 or 1. This
sequence of bits is transmitted over a channel from a sender
to a receiver. In some applications the channel is a storage
medium like a DVD, where the information is written to the
medium at a certain time and retrieved at a later time.
Because of the physical limitations of the channel, some
transmitted bits may be corrupted (the channel is noisy)
and thus make it difficult for the receiver to reconstruct the
information correctly.

In algebraic coding theory, we are concerned mainly
with developing methods to detect and correct errors
that typically occur during transmission of information
over a noisy channel. The basic technique to detect and
correct errors is by introducing redundancy in the data that
is to be transmitted. This technique is similar to commu-
nicating in a natural language in daily life. One can under-
stand the information while listening to a noisy radio or
talking on a bad telephone line, because of the redundancy
in the language.

For example, suppose the sender wants to communicate
one of 16 different messages to a receiver. Each message m
can then be represented as a binary quadruple (c0, c1, c2, c3).
If the message (0101) is transmitted and the first position is
corrupted such that (1101) is received, this leads to an
uncorrectable error because this quadruple represents a
different valid message than the message that was sent
across the channel. The receiver will have no way to detect
and to correct a corrupted message in general, because any
quadruple represents a valid message.

Therefore, to combat errors the sender encodes the data
by introducing redundancy into the transmitted informa-
tion. If M messages are to be transmitted, the sender selects
a subset of M binary n-tuples, where M < 2n. Each of the M
messages is encoded into an n-tuple. The set consisting of
the M n-tuples obtained after encoding is called a binary (n,
M) code, and the elements are called codewords. The code-
words are sent over the channel.

It is customary for many applications to let M ¼ 2k, such
that each message can be represented uniquely by a k-tuple
of information bits. To encode each message the sender can
append n � k parity bits depending on the message bits and
use the resulting n bit codeword to represent the corre-
sponding message.

A binary code C is called a linear code if the sum (modulo
2) of two codewords is again a codeword. This is always the
case when the parity bits are linear combinations of the
information bits. In this case, the code C is a vector space of
dimension k over the binary field of two elements, contain-
ing M ¼ 2k codewords, and is called an [n, k] code. The main
reason for using linear codes is that these codes have more

algebraic structure and are therefore often easier to ana-
lyze and to decode in practical applications.

The simplest example of a linear code is the [n, n � 1]
even-weight code (or parity-check code). The encoding con-
sists of appending a single parity bit to the n � 1 informa-
tion bits so that the codeword has an even number of ones.
Thus, the code consists of all 2n�1 possible n-tuples of even
weight, where the weight of a vector is the total number of
ones in its components. This code can detect all errors in an
odd number of positions, because if such an error occurs, the
received vector also will have odd weight. The even-weight
code, however, can only detect errors. For example, if
(000. . .0) is sent and the first bit is corrupted, then
(100. . .0) is received. Also, if (110. . .0) was sent and the
second bit was corrupted, then (100. . .0) is received. Hence,
the receiver cannot correct this single error or, in fact, any
other error.

An illustration of a code that can correct any single error
is shown in Fig. 1. The three circles intersect and divide the
plane into seven finite areas and one infinite area. Each
finite area contains a bit ci for i ¼ 0, 1,. . ., 6. Each of the 16
possible messages, denoted by (c0, c1, c2, c3), is encoded into
a codeword (c0, c1, c2, c3, c4, c5, c6), in such a way that the
sum of the bits in each circle has an even parity.

In Fig. 2, an example is shown of encoding the message
(0011) into the codeword (0011110). Because the sum of two
codewords also obeys the parity-checks and thus is a code-
word, the code is a linear [7, 4] code.

Suppose, for example, that the transmitted codeword is
corrupted in the bit c1 such that the received word is
(0111110). Then, calculating the parity of each of the three
circles, we see that the parity fails for the upper circle as
well as for the leftmost circle, whereas the parity of the
rightmost circle is correct. Hence, from the received vector,
indeed we can conclude that bit c1 is in error and should be
corrected. In the same way, any single error can be cor-
rected by this code.

LINEAR CODES

An (n, M) code is simply a set of M vectors of length n with
components from a finite field F2 ¼ {0, 1}, where addition
and multiplication are done modulo 2. For practical appli-
cations it is desirable to provide the code with more struc-
ture. Therefore, linear codes often are preferred. A linear
[n, k] code C is a k-dimensional subspace C of Fn

2 , where Fn
2

is the vector space of n-tuples with coefficients from the
finite field F2.

A linear code C usually is described in terms of a gen-
erator matrix or a parity-check matrix. A generator matrix
G of C is a k � n matrix whose row space is the code
C; i.e.,

C ¼ fxGjx2Fk
2g

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



A parity-check matrix H is an (n � k) � n matrix such that

C ¼ fc2Fn
2 jcHtr ¼ 0g

where Htr denotes the transpose of H.

Example. The codewords in the code in the previous
section are the vectors (c0, c1, c2, c3, c4, c5, c6) that satisfy
the following system of parity-check equations:

c0 þ c1 þ c2 þ c4 ¼ 0
c0 þ c1 þ c3 þ c5 ¼ 0
c0 þ c2 þ c3 þ c6 ¼ 0

where all additions are modulo 2. Each of the three parity-
check equations corresponds to one of the three circles.

The coefficient matrix of the parity-check equations is
the parity-check matrix

H ¼
1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

0
@

1
A ð1Þ

The code C is therefore given by

C ¼ fc ¼ ðc0; c1; . . . ; c6ÞjcHtr ¼ 0g

A generator matrix for the code in the previous example
is given by

G ¼

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

0
BB@

1
CCA

Two codes are equivalent if the codewords in one of the
codes can be obtained by a fixed permutation of the posi-
tions in the codewords in the other code. If G (respectively,
H) is a generator (respectively, parity-check) matrix of a
code, then the matrices obtained by permuting the columns
of these matrices in the same way give the generator matrix
(respectively, parity-check) matrix of the permuted code.

The Hamming distance between x ¼ (x0, x1,. . ., xn�1)
and y ¼ (y0, y1,. . ., yn�1) in Fn

2 is the number of positions
in which they differ. That is,

dðx; yÞ ¼ jfijxi 6¼ yi; 0 � i � n� 1gj

The Hamming distance has the properties required to be
a metric:

1. d(x, y) � 0 for all x, y 2 Fn
2 and equality holds if and

only if x ¼ y.

2. d(x, y) ¼ d(y, x) for all x, y 2 Fn
2 .

3. d(x, z) � d(x, y) þ d(y, z) for all x, y, z 2 Fn
2 .

For any code C, one of the most important parameters is
its minimum distance, defined by

d ¼ minfdðx; yÞjx 6¼ y; x; y2Cg

The Hamming weight of a vector x in Fn
2 is the number of

nonzero components in x ¼ (x0, x1,. . ., xn�1). That is,

wðxÞ ¼ jfijxi 6¼ 0; 0 � i � n� 1gj ¼ dðx;0Þ

Note that because d(x, y) ¼ d(x � y, 0) ¼ w(x � y) for a
linear code C, it follows that

d ¼ minfwðzÞjz2C; z 6¼ 0g

Therefore, finding the minimum distance of a linear code is
equivalent to finding the minimum nonzero weight among
all codewords in the code.

If w(c) ¼ i, then cHtr is the sum of i columns of H. Hence,
an alternative description of the minimum distance of a
linear code is as follows: the smallest d such that d linearly

c4

c1

c5 c6

c2
c0

c3

Figure 1. The message (c0, c1, c2, c3) is encoded into the codeword
(c0, c1, c2, c3, c4, c5, c6), where c4, c5, c6 are chosen such that there is
an even number of ones within each circle.

1

0
10

1 1 0

Figure 2. Example of the encoding procedure given in Fig. 1. The
message (0011) is encoded into (0011110). Note that there is an
even number of ones within each circle.

2 ALGEBRAIC CODING THEORY



dependent columns exist in the parity-check matrix. In
particular, to obtain a binary linear code of minimum
distance of at least three, it is sufficient to select the
columns of a parity-check matrix to be distinct and nonzero.

Sometimes we include d in the notation and refer to an
[n, k] code with minimum distance d as an [n, k, d] code. If t
components are corrupted during transmission of a code-
word, we say that t errors have occurred or that an error e of
weight t has occurred [where e ¼ (e0, e1,. . ., en�1) 2 Fn

2 ,
where ei ¼ 1 if and only if the ith component was corrupted,
that is, if c was sent, c + e was received].

The error-correcting capability of a code is defined as

t ¼ d� 1

2

� �

where bxc denotes the largest integer � x.
A code with minimum distance d can correct all errors of

weight t or less, because if a codeword c is transmitted and
an error e of weight e � t occurs, the received vector
r ¼ c + e is closer in Hamming distance to the transmitted
codeword c than to any other codeword. Therefore, decod-
ing any received vector to the closest codeword corrects all
errors of weight � t.

The code can be used for error detection only. The code
can detect all errors of weight < d because if a codeword is
transmitted and the error has weight < d, then the
received vector is not another codeword.

The code also can be used for a combination of error-
correction and error-detection. For a given e � t, the code
can correct all errors of weight� e and in addition can detect
all errors of weight at most d � e � 1. This is caused by the
fact that no vector in Fn

2 can be at distance � e from one
codeword and at the same time at a distance � d � e � 1
from another codeword. Hence, the algorithm in this case is
to decode a received vector to a codeword at distance � e if
such a codeword exists and otherwise detect an error.

If C is an [n, k] code, the extended code Cext is the [n + 1,
k] code defined by

cext ¼ ðcext; c0; c1; . . . cn�1Þ
����ðc0; c1; . . . ; cn�1Þ 2C;

�

cext ¼
Xn�1

i¼0

ci

)

That is, each codeword in C is extended by one parity bit
such that the Hamming weight of each codeword becomes
even. In particular, if C has odd minimum distance d, then
the minimum distance of Cext is d + 1. If H is a parity-check
matrix for C, then a parity check matrix for Cext is

1 1
0tr H

� �

where 1 ¼ (11. . .1).
For any linear [n, k] code C, the dual code C? is the

[n, n � k] code defined by

C? ¼ fx2Fn
2 jðx; cÞ ¼ 0 for all c2Cg

where ðx; cÞ ¼
Pn�1

i¼0 xici. We say that x and c are orthogo-
nal if (x, c) ¼ 0. Therefore C? consists of all n-tuples that
are orthogonal to all codewords in C and vice versa; that is,
(C?)? ¼ C. It follows that C? has dimension n � k because
it consists of all vectors that are solutions of a system of
equations with coefficient matrix G of rank k. Hence, the
parity-check matrix of C? is a generator matrix of C, and
similarly the generator matrix of C? is a parity-check
matrix of C. In particular, GHtr ¼ O [the k � (n � k)
matrix of all zeros].

Example. Let C be the [n, n � 1, 2] even-weight code
where

G ¼

1 0 . . . 0 1
0 1 . . . 0 1
..
. ..

. ..
. ..

. ..
.

0 0 . . . 1 1

0
BB@

1
CCA

and

H ¼ ð1 1 . . . 1 1 Þ

Then C? has H and G as its generator and parity-check
matrices, respectively. It follows that C? is the [n, 1, n]
repetition code consisting of the two codewords (00 � � � 000)
and (11 � � � 111).

Example. Let C be the [2m � 1, 2m � 1 � m, 3] code,
where H contains all nonzero m-tuples as its columns.
This is known as the Hamming code. In the case when
m ¼ 3, a parity-check matrix already is described in Equa-
tion (1). Because all columns of the parity-check matrix are
distinct and nonzero, the code has minimum distance of at
least 3. The minimum distance is indeed 3 because three
columns exist whose sum is zero; in fact, the sum of any two
columns of H equals another column in H for this particular
code.

The dual code C? is the [2m � 1, m, 2m�1] simplex code,
all of whose nonzero codewords have weight 2m�1. This
follows because the generator matrix has all nonzero vec-
tors as its columns. In particular, taking any linear combi-
nation of rows, the number of columns with odd parity in
the corresponding subset of rows equals 2m�1 (and the
number with even parity is 2m�1 � 1).

The extended code of the Hamming code is a [2m,
2m � 1 � m, 4] code. Its dual code is a [2m, m + 1, 2m�1]
code that is known as the first-order Reed–Muller code.

SOME BOUNDS ON CODES

The Hamming bound states that for any (n, M, d) code, we
have

M
Xe

i¼0

n

i

� �
� 2n

ALGEBRAIC CODING THEORY 3



where e ¼ b(d � 1)/2c. This follows from the fact that the M
spheres

Sc ¼ fxjdðx; cÞ � eg

centered at the codewords c 2 C are disjoint and that each
sphere contains

Xe

i¼0

n

i

� �

vectors.
If the spheres fill the whole space, that is,

[
c2C

Sc ¼ Fn
2

then C is called perfect. The binary linear perfect codes are
as follows:

� the [n, 1, n] repetition codes for all odd n

� the [2m � 1, 2m � 1 � m, 3] Hamming codes Hm for all
m � 2

� the [23, 12, 7] Golay code G23

We will return to the Golay code later.

GALOIS FIELDS

Finite fields, also known as Galois fields, with pm elements
exist for any prime p and any positive integer m. A Galois
field of a given order pm is unique (up to isomorphism) and is
denoted by Fpm .

For a prime p, let Fp ¼ {0, 1,. . ., p � 1} denote the
integers modulo p with the two operations addition and
multiplication modulo p.

To construct a Galois field with pm elements, select a
polynomial f(x) with coefficients in Fp, which is irreducible
over Fp; that is, f(x) cannot be written as a product of two
polynomials with coefficients from Fp of degree � 1 (irre-
ducible polynomials of any degree m over Fp exist).

Let

F pm ¼fam�1xm�1þ am�2xm�2 þ . . .þ a0ja0; . . . ;am�12F pg

Then F pm is a finite field when addition and multiplica-
tion of the elements (polynomials) are done modulo f(x)
and modulo p. To simplify the notations, let a denote a
zero of f(x), that is, f(a) ¼ 0. If such an a exists, formally it
can be defined as the equivalence class of x modulo f(x).
For coding theory, p ¼ 2 is by far the most important
case, and we assume this from now on. Note that for any
a, b 2 F2m ,

ðaþ bÞ2 ¼ a2 þ b2

Example. The Galois field F24 can be constructed as
follows. Let f(x) ¼ x4 + x + 1 that is an irreducible polyno-
mial over F2. Then a4 ¼ a + 1 and

F24 ¼ fa3a3 þ a2a2 þ a1aþ a0ja0;a1;a2;a3 2F2g

Computing the powers of a, we obtain

a5 ¼ a � a4 ¼ aðaþ 1Þ ¼ a2 þ a

a6 ¼ a � a5 ¼ aða2 þ aÞ ¼ a3 þ a2

a7 ¼ a � a6 ¼ aða3 þ a2Þ ¼ a4 þ a3 ¼ a3 þ aþ 1

and, similarly, all higher powers of a can be expressed as a
linear combination of a3, a2, a, and 1. In particular, a15 ¼ 1.
We get the following table of the powers of a. In the table the
polynomial a3a3 + a2a2 + a1a + a0 is represented as
a3a2a1a0.

Hence, the elements 1, a, a2,. . ., a14 are all the nonzero
elements in F24 . Such an element a that generates the
nonzero elements of F2m is called a primitive element in
F2m . An irreducible polynomial g(x) with a primitive ele-
ment as a zero is called a primitive polynomial. Every finite
field has a primitive element, and therefore, the multi-
plicative subgroup of a finite field is cyclic.

All elements in F2m are roots of the equation x2m þ x ¼ 0.
Let b be an element in F2m . It is important to study the
polynomial m(x) of smallest degree with coefficients in F2,
which has b as a zero. This polynomial is called the minimal
polynomial of b over F2.

First, observe that if mðxÞ ¼
Pk

i¼0 mix
i has coefficients

in F2 and b as a zero, then

mðb2Þ ¼
Xk

i¼0

mib
2i ¼

Xk

i¼0

m2
i b2i ¼

Xk

i¼0

mib
i

 !2

¼ ðmðbÞÞ2 ¼ 0

Hence, m(x) has b;b2; . . . ;b2k�1
as zeros, where k is the

smallest integer such that b2k ¼ b. Conversely, the poly-
nomial with exactly these zeros can be shown to be a binary
irreducible polynomial.

Example. We will find the minimal polynomial of all the
elements in F24 . Let a be a root of x4 + x + 1 ¼ 0; that is,
a4 ¼ a + 1. The minimal polynomials over F2 of ai for 0 � i
�14 are denoted mi(x). Observe by the above argument that
m2i(x) ¼ mi(x), where the indices are taken modulo 15. It

i ai i ai i ai

0 0001 5 0110 10 0111
1 0010 6 1100 11 1110
2 0100 7 1011 12 1111
3 1000 8 0101 13 1101
4 0011 9 1010 14 1001

4 ALGEBRAIC CODING THEORY



follows that

m0ðxÞ ¼ ðxþ a0Þ ¼ xþ 1

m1ðxÞ ¼ ðxþ aÞðxþ a2Þðxþ a4Þðxþ a8Þ ¼ x4 þ xþ 1

m3ðxÞ ¼ ðxþ a3Þðxþ a6Þðxþ a12Þðxþ a9Þ
¼ x4 þ x3 þ x2 þ xþ 1

m5ðxÞ ¼ ðxþ a5Þðxþ a10Þ ¼ x2 þ xþ 1

m7ðxÞ ¼ ðxþ a7Þðxþ a14Þðxþ a13Þðxþ a11Þ ¼ x4 þ x3 þ 1

m9ðxÞ ¼ m3ðxÞ
m11ðxÞ ¼ m7ðxÞ
m13ðxÞ ¼ m7ðxÞ

To verify this, one simply computes the coefficients and
uses the preceding table of F24 in the computations. For
example,

m5ðxÞ ¼ ðxþ a5Þðxþ a10Þ ¼ x2 þ ða5 þ a10Þxþ a5 � a10

¼ x2 þ xþ 1

This also leads to a factorization into irreducible polyno-
mials,

x24 þ x ¼ x
Y14

j¼0

ðxþ a jÞ

¼ xðxþ 1Þðx2 þ xþ 1Þðx4 þ xþ 1Þ
ðx4 þ x3 þ x2 þ xþ 1Þðx4 þ x3 þ 1Þ
¼ xm0ðxÞm1ðxÞm3ðxÞm5ðxÞm7ðxÞ

In fact, in general it holds that x2m
+ x is the product of all

irreducible polynomials over F2 of degree that divides m.
Let Ci ¼ fi 2 j mod nj j ¼ 0; 1; . . .g, which is called the

cyclotomic coset of i (mod n). Then, the elements of the
cyclotomic coset Ci ðmod 2m � 1Þ correspond to the expo-
nents of the zeros of mi(x). That is,

miðxÞ ¼ P
j2Ci

ðx� a jÞ

The cyclotomic cosets (mod n) are important in the next
section when cyclic codes of length n are discussed.

CYCLIC CODES

Many good linear codes that have practical and efficient
decoding algorithms have the property that a cyclic shift of
a codeword is again a codeword. Such codes are called cyclic
codes.

We can represent the set of n-tuples over Fn
2 as poly-

nomials of degree < n in a natural way. The vector

c ¼ (c0, c1,. . ., cn�1)

is represented as the polynomial

c(x) ¼ c0 + c1x + c2x2 + � � � + cn�1xn�1.

A cyclic shift

sðcÞ ¼ ðcn�1; c0; c1; . . . ; cn�2Þ

of c is then represented by the polynomial

sðcðxÞÞ ¼ cn�1 þ c0xþ c1x2 þ � � � þ cn�2xn�1

¼ xðcn�1xn�1 þ c0 þ c1xþ � � � þ cn�2xn�2Þ
þ cn�1ðxn þ 1Þ
� xcðxÞ ðmod xn þ 1Þ

Example. Rearranging the columns in the parity-check
matrix of the [7, 4] Hamming code in Equation (1), an
equivalent code is obtained with parity-check matrix

H ¼
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

0
@

1
A ð2Þ

This code contains 16 codewords, which are represented
next in polynomial form:

1000110$ x5 þ x4 þ 1 ¼ ðx2 þ xþ 1ÞgðxÞ
0100011$ x6 þ x5 þ x ¼ ðx3 þ x2 þ xÞgðxÞ
1010001$ x6 þ x2 þ 1 ¼ ðx3 þ xþ 1ÞgðxÞ
1101000$ x3 þ xþ 1 ¼ gðxÞ
0110100$ x4 þ x2 þ x ¼ xgðxÞ
0011010$ x5 þ x3 þ x2 ¼ x2gðxÞ
0001101$ x6 þ x4 þ x3 ¼ x3gðxÞ
0010111$ x6 þ x5 þ x4 þ x2 ¼ ðx3 þ x2ÞgðxÞ
1001011$ x6 þ x5 þ x3 þ 1 ¼ ðx3 þ x2 þ xþ 1ÞgðxÞ
1100101$ x6 þ x4 þ xþ 1 ¼ ðx3 þ 1ÞgðxÞ
1110010$ x5 þ x2 þ xþ 1 ¼ ðx2 þ 1ÞgðxÞ
0111001$ x6 þ x3 þ x2 þ x ¼ ðx3 þ xÞgðxÞ
1011100$ x4 þ x3 þ x2 þ 1 ¼ ðxþ 1ÞgðxÞ
0101110$ x5 þ x4 þ x3 þ x ¼ ðx2 þ xÞgðxÞ
0000000$ 0 ¼ 0
1111111$ x6 þ x5 þ x4 þ x3 þ x2 þ xþ 1

¼ ðx3 þ x2 þ 1ÞgðxÞ

By inspection it is easy to verify that any cyclic shift of a
codeword is again a codeword. Indeed, the 16 codewords in
the code are 0, 1 and all cyclic shifts of (1000110) and
(0010111). The unique nonzero polynomial in the code of
lowest possible degree is g(x) ¼ x3 þ x þ 1, and g(x) is
called the generator polynomial of the cyclic code. The
code consists of all polynomials c(x), which are multiples
of g(x). Note that the degree of g(x) is n � k ¼ 3 and that g(x)
divides x7 þ 1 because

x7 þ 1 ¼ (x þ 1)(x3 þ x þ 1)(x3 + x2 þ 1).

Therefore the code has a simple description in terms of
the set of code polynomials as

C ¼ fcðxÞjcðxÞ ¼ uðxÞðx3 þ xþ 1Þ; degðuðxÞÞ< 4g

This situation holds in general for any cyclic code.
For any cyclic [n, k] code C, we have

C ¼ fcðxÞjcðxÞ ¼ uðxÞgðxÞ; degðuðxÞÞ< kg

for a polynomial g(x) of degree n � k that divides xn þ 1.

ALGEBRAIC CODING THEORY 5



We can show this as follows: Let g(x) be the generator
polynomial of C, which is the nonzero polynomial of smal-
lest degree r in the code C. Then the cyclic shifts g(x), xg(x),
� � �, xn�r�1g(x) are codewords as well as any linear combina-
tion u(x)g(x), where deg(u(x)) < r. These are the only 2n�r

codewords in the code C, because if c(x) is a codeword, then

cðxÞ ¼ uðxÞgðxÞ þ sðxÞ;where degðsðxÞÞ<degðgðxÞÞ

By linearity, s(x) is a codeword and therefore s(x) ¼ 0
because deg(s(x)) < deg(g(x)) and g(x) is the nonzero poly-
nomial of smallest degree in the code. It follows that C is as
described previously. Since C has 2n�r codewords, it follows
that n � r ¼ k; i.e., deg(g(x)) ¼ n � k.

Finally, we show that g(x) divides xn þ 1. Let c(x) ¼ c0 þ
c1x þ � � � þ cn�1xn�1 be a nonzero codeword shifted such
that cn�1 ¼ 1. Then the cyclic shift of c(x) given by
s(c(x)) ¼ cn�1 þ c0x þ c1x þ � � � þ cn�2xn�1 also is a
codeword and

sðcðxÞÞ ¼ xcðxÞ þ ðxn þ 1Þ

Because both codewords c(x) and s(c(x)) are divisible by
g(x), it follows that g(x) divides xn þ 1.

Because the generator polynomial of a cyclic code divides
xn þ 1, it is important to know how to factor xn þ 1 into
irreducible polynomials. Let n be odd. Then an integer m
exists such that 2m � 1 (mod n) and an element a 2 F2m

exists of order n [if v is a primitive element of F2m , then a

can be taken to be a ¼ vð2
m�1Þ=n].

We have

xn þ 1 ¼ P
n�1

i¼0
ðxþ aiÞ

Let mi(x) denote the minimal polynomial of ai; that is,
the polynomial of smallest degree with coefficients in F2 and
having ai as a zero. The generator polynomial g(x) can be
written as

gðxÞ ¼ P
i2 I
ðxþ aiÞ

where I is a subset of {0, 1,. . ., n � 1}, called the defining set
of C with respect to a. Then mi(x) divides g(x) for all i 2 I.
Furthermore, gðxÞ

Ql
j¼1 mij

ðxÞ for some i1, i2,. . ., il.
Therefore we can describe the cyclic code in alternative

equivalent ways as

C ¼ fcðxÞjmiðxÞdivides cðxÞ; for all i2 Ig
C ¼ fcðxÞjcðaiÞ ¼ 0; for all i2 Ig
C ¼ fc2Fn

q jcHtr ¼ 0g

where

H ¼

1 ai1 a2i1 . . . aðn�1Þi1

1 ai2 a2i2 . . . aðn�1Þi2

..

. ..
. ..

.
} ..

.

1 ail a2il � � � aðn�1Þil

0
BBB@

1
CCCA

The encoding for cyclic codes usually is done in one of two
ways. Let u(x) denote the information polynomial of
degree < k. The two ways are as follows:

1. Encode into u(x)g(x).

2. Encode into c(x) ¼ xn�ku(x) þ s(x), where s(x) is the
polynomial such that
� s(x) � xn�ku(x) (mod g(x)) [thus g(x) divides c(x)],
� deg(s(x)) < deg(g(x)).

The last of these two methods is systematic; that is, the last
k bits of the codeword are the information bits.

BCH CODES

An important task in coding theory is to design codes with a
guaranteed minimum distance d that correct all errors of

Hamming weight b d� 1

2
c . Such codes were designed

independently by Bose and Ray-Chaudhuri (1) and by
Hocquenghem (2) and are known as BCH codes. To con-
struct a BCH code of designed distance d, the generator
polynomial is chosen to have d � 1 ‘‘consecutive’’ powers of
a as zeros

ab;abþ1; . . . ;abþd�2

That is, the defining set I with respect to a contains a set of
d � 1 consecutive integers (mod n). The parity-check
matrix of the BCH code is

H ¼

1 ab a2b . . . aðn�1Þb

1 abþ1 a2ðbþ1Þ . . . aðn�1Þðbþ1Þ

..

. ..
. ..

.
} ..

.

1 abþd�2 a2ðbþd�2Þ . . . aðn�1Þðbþd�2Þ

0
BBB@

1
CCCA

To show that this code has a minimum distance of at
least d, it is sufficient to show that any d � 1 columns are
linear independent. Suppose a linear dependency between
the d � 1 columns corresponds to ai1b;ai2b; . . . ;aid�1b. In this
case the (d � 1) � (d � 1) submatrix obtained by retaining
these columns in H has determinant

ai1b ai2b . . . aid�1b

ai1ðbþ1Þ ai2ðbþ1Þ . . . aid�1ðbþ1Þ

..

. ..
.

} ..
.

ai1ðbþd�2Þ ai2ðbþd�2Þ . . . aid�1ðbþd�2Þ

���������

���������

¼ abði1þi2þ...þid�2Þ

1 1 . . . 1
ai1 ai2 . . . aid�1

..

. ..
. ..

. ..
.

aðd�2Þi1 aðd�2Þi2 . . . aðd�2Þid�1

��������

��������
¼ abði1þi2þ...þid�2Þ

Y
k< r

ðaik � airÞ 6¼ 0

because the elements ai1 , ai2 , � � �, aid�1 are distinct (the last
equality follows from the fact that the last determinant is a
Vandermonde determinant). It follows that the BCH code
has a minimum Hamming distance of at least d.

6 ALGEBRAIC CODING THEORY



If b ¼ 1, which is often the case, the code is called a
narrow-sense BCH code. If n ¼ 2m � 1, the BCH code is
called a primitive BCH code. A binary single error-correct-
ing primitive BCH code is generated by g(x) ¼ m1(x). The
zeros of g(x) are a2i

, i ¼ 0, 1,. . ., m � 1. The parity-check
matrix is

H ¼ ð1 a1 a2 . . . a2m�2 Þ

This code is equivalent to the Hamming code because a is a
primitive element of F2m .

To construct a binary double-error-correcting primitive
BCH code, we let g(x) have a, a2, a3, a4 as zeros. Therefore,
g(x) ¼ m1(x)m3(x) is a generator polynomial of this code.
The parity-check matrix of a double-error-correcting BCH
code is

H ¼ 1 a1 a2 . . . a2m�2

1 a3 a6 . . . a3ð2m�2Þ

� �

In particular, a binary double-error correcting BCH code of
length n ¼ 24 � 1 ¼ 15, is obtained by selecting

gðxÞ ¼ m1ðxÞm3ðxÞ
¼ ðx4 þ xþ 1Þðx4 þ x3 þ x2 þ xþ 1Þ
¼ x8 þ x7 þ x6 þ x4 þ 1

Similarly, a binary triple-error correcting BCH code of
the same length is obtained by choosing the generator
polynomial

gðxÞ ¼ m1ðxÞm3ðxÞm5ðxÞ
¼ ðx4 þ xþ 1Þðx4 þ x3 þ x2 þ xþ 1Þðx2 þ xþ 1Þ
¼ x10 þ x8 þ x5 þ x4 þ x2 þ xþ 1

The main interest in BCH codes is because they have a very
fast and efficient decoding algorithm. We will describe this
later.

AUTOMORPHISMS

Let C be a binary code of length n. Consider a permutation p

of the set {0, 1,. . ., n � 1}; that is, p is a one-to-one function
of the set of coordinate positions onto itself.

For a codeword c 2 C, let

pðcÞ ¼ ðcpð0Þ; cpð1Þ; . . . ; cpðn�1ÞÞ

That is, the coordinates are permuted by the permutation
p. If

fpðcÞjc2Cg ¼ C

then p is called an automorphism of the code C.

Example. Consider the following (nonlinear code):

C ¼ f101; 011g

The actions of the six possible permutations on three
elements are given in the following table. The permuta-
tions, which are automorphisms, are marked by a star.

In general, the set of automorphisms of a code C is a
group, the Automorphism group Aut(C). We note that

Xn�1

i¼0

xiyi ¼
Xn�1

i¼0

xpðiÞypðiÞ

and so (x, y) ¼ 0 if and only if (p(x), p(y)) ¼ 0. In parti-
cular, this implies that

AutðCÞ ¼ AutðC? Þ

That is, C and C? have the same automorphism group.
For a cyclic code C of length n, we have by definition

s(c) 2 C for all c 2 C, where s(i) � i � 1 (mod n). In parti-
cular, s 2 Aut(C). For n odd, the permutation d defined by
d( j) ¼ 2j (mod n) also is contained in the automorphism
group. To show this permutation, it is easier to show that
d�1 2 Aut(C). We have

d�1ð2jÞ ¼ j for j ¼ 0; 1; . . . ; ðn� 1Þ=2
d�1ð2jþ 1Þ ¼ ðnþ 1Þ=2þ j for j ¼ 0; 1; . . . ; ðn� 1Þ=2� 1

Let g(x) be a generator polynomial for C, and letPn�1
i¼0 cix

i ¼ aðxÞgðxÞ. Because xn � 1 (mod xn þ 1), we have

Xn�1

i¼0

cd�1ðiÞx
i ¼

Xðn�1Þ=2

j¼0

c jx
2 j þ

Xðn�1Þ=2

j¼0

cðnþ1Þ=2þ jx
2 jþ1

¼
Xðn�1Þ=2

j¼0

c jx
2 j þ

Xn�1

j¼ðnþ1Þ=2
c jx

2 j

¼ aðx2Þgðx2Þ ¼ ðaðx2ÞgðxÞÞgðxÞ; ðmodxn þ 1Þ

and so d�1(c) 2 C; that is, d�1 2 Aut(C) and so d 2 Aut(C).
The automorphism group Aut(C) is transitive if for each

pair (i, j) a p 2 Aut(C) exists such that p(i) ¼ j. More
general, Aut(C) is t-fold transitive if, for distinct i1, i2,. . .,
it and distinct j1, j2,. . ., jt, a p 2 Aut(C) exists such that
p(i1) ¼ j1, p(i2) ¼ j2,. . ., p(it) ¼ jt.

Example. Any cyclic [n, k] code has a transitive auto-
morphism group because s repeated s times, where
s � i � j (mod n), maps i to j.

Example. The (nonlinear) code C ¼ {101, 011} was con-
sidered previously. Its automorphism group is not transitive
because there is no automorphism p such that p(0) ¼ 2.

pð0Þ pð1Þ pð2Þ pðð101ÞÞ pðð011ÞÞ
0 1 2 101 011 $

0 2 1 110 011
1 0 2 011 101 $

1 2 0 011 110
2 0 1 110 101
2 1 0 101 110

ALGEBRAIC CODING THEORY 7



Example. Let C be the [9, 3] code generated by the matrix

0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0

0
@

1
A

This is a cyclic code, and we will determine its automorph-
ism group. The all zero and the all one vectors in C are
transformed into themselves by any permutation. The
vectors of weight 3 are the rows of the generator matrix,
and the vectors of weight 6 are the complements of these
vectors. Hence, we see that p is an automorphism if and
only if it leaves the set of the three rows of the generator
matrix invariant, that is, if and only if the following con-
ditions are satisfied:

pð0Þ�pð3Þ�pð6Þ ðmod 3Þ
pð1Þ�pð4Þ�pð7Þ ðmod 3Þ
pð2Þ�pð5Þ�pð8Þ ðmod 3Þ

Note that the two permutations s and d defined previously
satisfy these conditions, as they should. They are listed
explicitly in the following table:

The automorphism group is transitive because the code is
cyclic but not doubly transitive. For example, no auto-
morphism p exists such that p(0) ¼ 0 and p(3) ¼ 1 because
0 and 1 are not equivalent modulo 3. A simple counting
argument shows that Aut(C) has order 1296: First choose
p(0); this can be done in nine ways. Then two ways exist to
choose p(3) and p(6). Next choose p(1); this can be done in
six ways. There are again two ways to choose p(4) and p(7).
Finally, there are 3 � 2 ways to choose p(2), p(5), p(8).
Hence, the order is 9 � 2 � 6 � 2 � 3 � 2 ¼ 1296.

Example. Consider the extended Hamming code Hext
m .

The positions of the codewords correspond to the elements
of F2m and are permuted by the affine group

AG ¼ fpjpðxÞ ¼ axþ b;a; b2F2m ;a 6¼ 0g

This is the automorphism group of Hext
m . It is double

transitive.

THE WEIGHT DISTRIBUTION OF A CODE

Let C be a binary linear [n, k] code. As we noted,

dðx; yÞ ¼ dðx� y; 0Þ ¼ wðx� yÞ

If x, y 2 C, then x � y 2 C by the linearity of C. In
particular, this means that the set of distances from a fixed
codeword to all the other codewords is independent of which
codeword we fix; that is, the code looks the same from any
codeword. In particular, the set of distances from the code-
word 0 is the set of Hamming weights of the codewords. For
i ¼ 0, 1, . . ., n, let Ai denote the number of codewords of

weight i. The sequence

A0;A1;A2; . . . ;An

is called the weight distribution of the code C. The corre-
sponding polynomial

ACðzÞ ¼ A0 þ A1zþ A2z2 þþAnzn

is known as the weight enumerator polynomial of C.
The polynomials AC(z) and AC? ðzÞ are related by the

fundamental MacWilliams identity:

AC? ðzÞ ¼ 2�kð1þ zÞnAC
1� z

1þ z

� �

Example. The [2m � 1, m] simplex code has the weight
distribution polynomial 1þ ð2m � 1Þz2m�1

. The dual code is
the [2m � 1, 2m � 1 � m] Hamming code with weight
enumerator polynomial

2�mð1þ zÞ2
m�1 1þ ð2m � 1Þ 1� z

1þ z

� �2m�1
 !

¼ 2�mð1þ zÞ2
m�1 þ ð1� 2�mÞð1� zÞ2

m�1

ð1þ zÞ2
m�1�1

For example, for m ¼ 4, we get the weight distribution of
the [15, 11] Hamming code:

1þ 35z3 þ 105z4 þ 168z5 þ 280z6 þ 435z7 þ 435z8 þ 280z9

þ 168z10 þ 105z11 þ 35z12 þ z15

Consider a binary linear code C that is used purely for
error detection. Suppose a codeword c is transmitted over a
binary symmetric channel with bit error probability p. The
probability of receiving a vector r at distance i from c is
pi(1 � p)n�i, because i positions are changed (each with
probability p) and n � i are unchanged (each with prob-
ability 1 � p). If r is not a codeword, then this will be
discovered by the receiver. If r ¼ c, then no errors have
occurred. However, if r is another codeword, then an unde-
tectable error has occurred. Hence, the probability of unde-
tected error is given by

PueðC; pÞ ¼
X
c0 6¼ c

pdðc0;cÞð1� pÞn�dðc0;cÞ

¼
X
c0 6¼ 0

pwðc0Þð1� pÞn�wðc0Þ

¼
Xn

i¼1

Ai pið1� pÞn�i

¼ ð1� pÞnACð
p

1� p
Þ � ð1� pÞn

From the MacWilliams identity, we also get

PueðC? ; pÞ ¼ 2�kACð1� 2 pÞ � ð1� pÞn

i 0 1 2 3 4 5 6 7 8
sðiÞ 8 0 1 2 3 4 5 6 7
dðiÞ 0 2 4 6 8 1 3 5 7

8 ALGEBRAIC CODING THEORY



Example. For the [2m � 1, 2m � 1 � m] Hamming code
Hm, we get

PueðHm; pÞ ¼ 2�mð1þ ð2m � 1Þð1� 2 pÞ2
m�1

Þ � ð1� pÞ2
m�1

More information on the use of codes for error detection can
be found in the books by Kløve and Korzhik (see Further
Reading).

THE BINARY GOLAY CODE

The Golay code G23 has received much attention. It is
practically useful and has a several interesting properties.
The code can be defined in various ways. One definition is
that G23 is the cyclic code generated by the irreducible
polynomial

x11 þ x9 þ x7 þ x6 þ x5 þ xþ 1

which is a factor of x23 þ 1 over F2. Another definition is the
following: Let H denote the [7, 4] Hamming code, and let H�

be the code whose codewords are the reversed of the code-
words of H. Let

C ¼ fðuþ x; vþ x; uþ vþ xÞju; v2Hext; x2 ðH�Þextg

where Hext is the [8, 4] extended Hamming code and (H�)ext

is the [8, 4] extended H�. The code C is a [24, 12, 8] code.
Puncturing the last position, we get a [23, 12, 7] code that is
(equivalent to) the Golay code.

The weight distribution of G23 is given by the following
table:

The automorphism group Aut(G23) of the Golay code is
the Mathieu group M23, a simple group of order
10200960 ¼ 27 � 32 � 5 � 7 � 11 � 23, which is fourfold
transitive.

Much information about G23 can be found in the book by
MacWilliams and Sloane and in the Handbook of Coding
Theory (see Further Reading).

DECODING

Suppose that a codeword c from the [n, k] code C was sent
and that an error e occurred during the transmission over
the noisy channel. Based on the received vector r ¼ c þ e,
the receiver has to make an estimate of what was the
transmitted codeword. Because error patterns of lower
weight are more probable than error patterns of higher
weight, the problem is to estimate an error ê such that the
weight of ê is as small as possible. He will then decode the
received vector r into ĉ ¼ r þ ê.

If H is a parity-check matrix for C, then cHtr ¼ 0 for all
codewords c. Hence,

rHtr ¼ ðcþ eÞHtr ¼ cHtr þ eHtr ¼ eHtr ð3Þ

The vector

s ¼ eHtr

is known as the syndrome of the error e; Equation (3) shows
that s can be computed from r. We now have the following
outline of a decoding strategy:

1. Compute the syndrome s ¼ rHtr.

2. Estimate an error ê of smallest weight corresponding
to the syndrome s.

3. Decode to ĉ ¼ r þ ê.

The hard part is, of course, step 2.
For any vector x 2 Fn

2, the set {x þ c j c 2 C} is a coset of
C. All the elements of the coset have the same syndrome,
namely, xHtr. There are 2n � k cosets, one for each syndrome
in Fn � k

2 , and the set of cosets is a partition of Fn
2 . We can

rephrase step 2 as follows: Find a vector e of smallest weight
in the coset with syndrome s.

Example. Let C be the [6, 3, 3] code with parity-check
matrix

H ¼
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

0
@

1
A

A standard array for C is the following array (the eight
columns to the right):

Each row in the array is a listing of a coset of C; the first row
is a listing of the code itself. The vectors in the first column
have minimal weight in their cosets and are known as coset
leaders. The choice of coset leader may not be unique. For
example, in the last coset there are three vectors of minimal
weight. Any entry in the array is the sum of the codeword at
the top of the column and the coset leader (at the left in the
row). Each vector of F6

2 is listed exactly once in the array.
The standard array can be used to decode: Locate r in the
array and decode the codeword at the top of the correspond-
ing column (that is, the coset leader is assumed to be the
error pattern). However, this method is not practical;
except for small n, the standard array of 2n entries is too
large to store (also locating r may be a problem). A step to
simplify the method is to store a table of coset leaders
corresponding to the 2n � k syndromes. In the table above,
this method is illustrated by listing the syndromes at the

i Ai

0; 23
7; 16
8; 15

11; 12

1
253
506

1288

000 000000 001011 010101 011110 100110 101101 110011 111000
110 100000 101011 110101 111110 000110 001101 010011 011000
101 010000 011011 000101 001110 110110 111101 100011 101000
011 001000 000011 011101 010110 101110 100101 111011 110000
100 000100 001111 010001 011010 100010 101001 110111 111100
010 000010 001001 010111 011100 100100 101111 110001 111010
001 000001 001010 010100 011111 100111 101100 110010 111001
111 100001 101010 110100 111111 000111 001100 010010 011001

ALGEBRAIC CODING THEORY 9



left. Again this alternative is possible only if n � k is small.
For carefully designed codes, it is possible to compute e from
the syndrome. The simplest case is single errors: If e is an
error pattern of weight 1, where the 1 is in the ith position,
then the corresponding syndrome is in the ith column of H;
hence, from H and the syndrome, we can determine i.

Example. Let H be the m � (2m � 1) parity-check
matrix where the ith column is the binary expansion of
the integer i for i ¼ 1, 2,. . .,2m � 1. The corresponding
[2m � 1, 2m � 1 � m, 3] Hamming code corrects all single
errors. Decoding is done as follows: Compute the syndrome
s ¼ (s0, s1,. . .,sm�1). If s 6¼ 0, then correct position
i ¼

Pm�1
j¼0 s j2

j.

Example. Let

H ¼
�

1 a a2 � � � an�1

1 a3 a6 � � � a3ðn�1Þ

�

where a 2 F2m and n ¼ 2m � 1. This is the parity-check
matrix for the double error-correcting BCH code. It is
convenient to have a similar representation of the syn-
dromes:

s ¼ ðS1;S3Þ where S1;S3 2F2m

Depending on the syndrome, there are several cases:

1. If no errors have occurred, then clearly S1 ¼ S3 ¼ 0.

2. If a single error has occurred in the ith position (that
is, the position corresponding to ai), then S1 ¼ ai and
S3 ¼ a3i. In particular, S3 ¼ S3

1.

3. If two errors have occurred in positions i and j, then

S1 ¼ ai þ a j;S3 ¼ a3i þ a3 j

This implies that S3
1 ¼ S3 þ aiajS1 6¼ S3. Further-

more, x1 ¼ a�i and x2 ¼ a�j are roots of the equation

1þ S1xþ
S3

1 þ S3

S1
x2 ¼ 0: ð4Þ

This gives the following procedure to correct two errors:

� Compute S1 and S3.

� If S1 ¼ S3 ¼ 0, then assume that no errors have
occurred.

� Else, if S3 ¼ S3
1 6¼ 0, then one error has occurred in the

ith position determined by S1 ¼ ai.

� Else (if S3 6¼ S3
1), consider the equation

1þ S1xþ ðS3
1 þ S3Þ=S1x2 ¼ 0

- If the equation has two roots a�i and a�j, then errors
have occurred in positions i and j.

Else (if the equation has no roots in F2m ), then more
than two errors have occurred.

Similar explicit expressions (in terms of the syndrome)
for the coefficients of an equation with the error positions as
roots can be found for t error-correcting BCH codes when

t ¼ 3, t ¼ 4, etc., but they become increasingly compli-
cated. However, an efficient algorithm to determine the
equation exists, and we describe this is some detail next.

Let a be a primitive element in F2m . A parity-check
matrix for the primitive t-error-correcting BCH code is

H ¼

1 a a2 � � � an�1

1 a3 a6 � � � a3ðn�1Þ

..

. ..
. ..

.
} ..

.

1 a2t�1 a2ð2t�1Þ � � � að2t�1Þðn�1Þ

0
BBB@

1
CCCA

where n ¼ 2m � 1. Suppose errors have occurred in posi-
tions i1, i2,. . .,it, where t � t. Let X j ¼ ai j for j ¼ 1, 2,. . .,t.
The error locator polynomial L(x) is defined by

LðxÞ ¼
Yt

j¼1

ð1þ X jxÞ ¼
Xt

l¼0

llx
l

The roots of L(x) ¼ 0 are X�1
j. Therefore, if we can deter-

mine L(x), then we can determine the locations of the
errors. Expanding the expression for L(x), we get

l0 ¼ 1
l1 ¼ X1 þ X2 þ � � � þ Xt

l2 ¼ X1X2 þ X1X3 þ X2X3 þ � � � þ Xt�1Xt

l3 ¼ X1X2X3 þ X1X2X4 þ X2X3X4 þ � � � þ Xt�2Xt�1Xt

..

.

lt ¼ X1X2 � � �Xt

ll ¼ 0 for l> t

Hence ll is the lth elementary symmetric function of X1,
X2,. . .,Xt.

From the syndrome, we get S1, S3,. . .,S2t�1, where

S1 ¼ X1 þ X2 þ � � � þ Xt

S2 ¼ X2
1 þ X2

2 þ � � � þ X2
t

S3 ¼ X3
1 þ X3

2 þ � � � þ X3
t

..

.

S2t ¼ X2t
1 þ X2t

2 þþX2t
t

Furthermore,

S2r ¼ X2r
1 þ X2r

2 þ � � � þ X2r
r ¼ ðXr

1 þ Xr
2 þ � � � þ Xr

r Þ
2 ¼ S2

r

for all r. Hence, from the syndrome we can determine the
polynomial

SðxÞ ¼ 1þ S1xþ S2x2 þ � � � þ S2tx
2t

The Newton equations is a set of relations between the
power sums Sr and the symmetric functions ll, namely

Xl�1

j¼0

Sl� jl j þ lll ¼ 0 for l� 1

Let

VðxÞ ¼ SðxÞLðxÞ ¼
X
l� 0

vlx
l ð5Þ

10 ALGEBRAIC CODING THEORY



Because vl ¼
Pl�1

j¼0 Sl� jl j þ ll, the Newton equations
imply that

vl ¼ 0 for all odd l; 1 � l � 2t� 1 ð6Þ

The Berlekamp–Massey algorithm is an algorithm that,
given S(x), determines the polynomial L(x) of smallest
degree such that Equation (6) is satisfied, where the vl

are defined by Equation (5). The idea is, for r ¼ 0, 1,. . ., t, to
determine polynomials L(r) of lowest degree such that

v
ðrÞ
l ¼ 0 for all odd l; 1 � l � 2r� 1

where

X
l� 0

v
ðrÞ
l xl ¼ SðxÞLðrÞðxÞ

For r ¼ 0, clearly we can let L(0)(x) ¼ 1. We proceed by
induction. Let 0 � r < t, and suppose that polynomials
L(r)(x) have been constructed for 0 � r � r. If v

ðrÞ
2rþ1 ¼ 0,

then we can choose

Lðrþ1ÞðxÞ ¼ LðrÞðxÞ

If, on the other hand, v
ðrÞ
2rþ1 6¼ 0, then we modify L(r)(x) by

adding another suitable polynomial. Two cases to consider
are as follows: First, if L(r)(x) ¼ 1 [in which case L(t)(x) ¼ 1
for 0 � t � r], then

Lðrþ1ÞðxÞ ¼ 1þ v
ðrÞ
2rþ1x2rþ1

will have the required property. If L(r)(x) 6¼ 1, then a max-
imal positive integer r < r such that v

ðrÞ
2rþ1 6¼ 0 exists and

we add a suitable multiple of L(r):

Lðrþ1ÞðxÞ ¼ LðrÞðxÞ þ v
ðrÞ
2rþ1ðv

ðrÞ
2rþ1Þ

�1x2r�2rLðrÞðxÞ

We note that this implies that

Lðrþ1ÞðxÞSðxÞ ¼
X
l� 0

v
ðrÞ
l xl þ v

ðrÞ
2rþ1ðv

ðrÞ
2rþ1Þ

�1
X
l� 0

v
ðrÞ
l xlþ2r�2r

Hence for odd l we get

v
ðrþ1Þ
l ¼

v
ðrÞ
l ¼ 0 for 1 � l � 2r� 2r� 1

v
ðrÞ
l þ v

ðrÞ
2rþ1ðv

ðrÞ
2rþ1Þ

�1v
ðrÞ
l�2rþ2r

¼ 0þ 0 ¼ 0 for 2r� 2rþ 1 � l � 2r� 1

v
ðrÞ
2rþ1 þ v

ðrÞ
2rþ1ðv

ðrÞ
2rþ1Þ

�1v
ðrÞ
2rþ1

¼ v
ðrÞ
2rþ1 þ v

ðrÞ
2rþ1 ¼ 0 for l ¼ 2rþ 1

8>>>>>>>>>><
>>>>>>>>>>:

We now formulate these ideas as an algorithm (in a
Pascal-like syntax). In each step we keep the present L(x)
[the superscript (r) is dropped] and the modifying polyno-

mial [x2r�2r�1 or ðvðrÞ2rþ1Þ
�1x2r�2r�1LðrÞðxÞ], which we denote

by B(x).

Berlekamp–Massey Algorithm in the Binary Case

Input: t and SðxÞ.
LðxÞ :¼ 1; BðxÞ :¼ 1;
for r :¼ 1 to t do

begin

v :¼ coefficient of x2r�1 in SðxÞLðxÞ;
if v ¼ 0 then BðxÞ :¼ x2BðxÞ

else
½LðxÞ; BðxÞ	 :¼ ½LðxÞ þ vxBðxÞ; xLðxÞ=v	 :

end;

The assignment following the else is two assignments
to be done in parallel; the new L(x) and B(x) are computed
from the old ones.

The Berlekamp–Massey algorithm determines the poly-
nomial L(x). To find the roots of L(x) ¼ 0, we try all possible
elements of F2m . In practical applications, this can be
efficiently implemented using shift registers (usually called
the Chien search).

Example. We consider the [15, 7, 5] double-error correct-
ing BCH code; that is, m ¼ 4 and t ¼ 2. As a primitive root,
we choose a such that a4 ¼ a þ 1. Suppose that we have
received a vector with syndrome (S1, S3) ¼ (a4, a5). Since
S3 6¼ S3

1, at least two errors have occurred. Equation (4)
becomes

1þ a4xþ a10x2 ¼ 0

which has the zeros a�3 and a�7. We conclude that the
received vector has two errors (namely, in positions 3 and
7).

Now consider the Berlekamp–Massey algorithm for the
same example. First we compute S2 ¼ S2

1 ¼ a8 and
S4 ¼ S2

2 ¼ a. Hence

SðxÞ ¼ 1þ a4xþ a8x2 þ a5x3 þ ax4:

The values of r, v, L(x), and B(x) after each iteration of the
for-loop in the Berlekamp–Massey algorithm are shown in
the following table:

Hence, L(x) ¼ 1 þ a4x þ a10x2 (as before).
Now consider the same code with syndrome of received

vector (S1, S3) ¼ (a, a9). Because S3 6¼ S3
1, at least two

errors have occurred. We get

LðxÞ ¼ 1þ axþ x2

However, the equation 1 þ ax þ x2 ¼ 0 does not have any
roots in F24 . Hence, at least three errors have occurred, and
the code cannot correct them.

r v L(x) B(x)

1 1
1 a4 1 þ a4x a11x
2 a14 1 þ a4x þ a10x2 ax þ a5x2

ALGEBRAIC CODING THEORY 11



REED–SOLOMON CODES

In the previous sections we have considered binary codes
where the components of the codewords belong to the finite
field F2 ¼ {0, 1}. In a similar way we can consider codes with
components from any finite field Fq.

The Singleton bound states that for any [n, k, d] code
with components from Fq, we have

d � nþ k� 1

A code for which d ¼ n � k þ 1 is called maximum dis-
tance separable (MDS). The only binary MDS codes are the
trivial [n, 1, n] repetition codes and [n, n � 1, 2] even-
weight codes. However, important nonbinary MDS codes
exist (in particular, the Reed–Solomon codes, which we now
will describe).

Reed–Solomon codes are t-error-correcting cyclic codes
with symbols from a finite field Fq, even though they can be
constructed in many different ways. They can be considered
as the simplest generalization of BCH codes. Because the
most important case for applications is q ¼ 2m, we consider
this case here. Each symbol is an element in F2m and can be
considered as an m-bit symbol.

One construction of a cyclic Reed–Solomon code is as
follows: Let a be a primitive element of F2m , and let xi ¼ ai.
Because xi 2 F2m for all i, the minimal polynomial of ai over
F2m is just x � xi. The generator polynomial of a (primitive)
t-error-correcting Reed–Solomon code of length 2m � 1 has
2t consequtive powers of a as zeros:

gðxÞ ¼
a2t�1

i¼0

ðx� abþiÞ

¼ g0 þ g1xþ � � � þ g2t�1x2t�1 þ x2t

The code has the following parameters:

Block length: n ¼ 2m � 1

Number of parity-check symbols: n � k ¼ 2t

Minimum distance: d ¼ 2t þ 1

Thus, the Reed–Solomon codes satisfy the Singleton
bound with equality n � k ¼ d þ 1. That is, they are
MDS codes.

An alternative description of the Reed–Solomon code is

fð f ðx1Þ; f ðx2Þ; . . . ; f ðxnÞÞj
f polynomial of degree less than kg:

The weight distribution of the Reed–Solomon code is (for
i � d)

Ai
n
i

� �Xi�d

j¼0

�1ð Þ j i
j

� �
2mði�d� jþ1Þ � 1
� �

The encoding of Reed–Solomon codes is similar to the
encoding of binary cyclic codes. One decoding is similar to

the decoding of binary BCH codes with one added complica-
tion. Using a generalization of the Berlekamp–Massey
algorithm, we determine the polynomials L(x) and V(x).
From L(x) we can determine the locations of the errors. In
addition, we must determine the value of the errors (in the
binary case, the values are always 1). The value of the error
at location Xj easily can be determined using V(x) and L(x);
we omit further details.

An alternative decoding algorithm can sometimes
decode errors of weight more than half the minimum dis-
tance. We sketch this algorithm, first giving the simplest
version, which works if the errors have weight less than
half the minimum distance; that is, we assume a codeword
c ¼ ð f ðx1Þ; f ðx2Þ; . . . ; f ðxnÞÞwas sent and r ¼ ðr1; r2; . . . ; rnÞ
was received, and wðr� cÞ< ðn� kþ 1Þ=2. It is easy to
show that if Qðx; yÞ is a nonzero polynomial in two variables
of the form

Qðx; yÞ ¼ Q0ðxÞ þQ1ðxÞy

where

Qðxi; riÞ ¼ 0 for i ¼ 1; 2; . . . ;n
Q0ðxÞhas degree at most n� 1� t
Q1ðxÞhas degree at most n� k� t

then Q0ðxÞ þQ1ðxÞ f ðxÞ ¼ 0, and so Qðx; yÞ ¼ Q1ðxÞ
ð y� f ðxÞÞ. Moreover, such a polynomial Qðx; yÞ does exist.
An algorithm to find Qðx; yÞ is as follows:

Input: r ¼ ðr1; r2; . . . rnÞ.
Solve the equations

Pn�1
j¼0 ajx

j
i þ

Pn�k�t
j¼0 b jrix

j
i ¼ 0,

where i ¼ 1; 2; . . . ; n, for the unknown aj and b j;

Q0ðxÞ :¼
Pn�1�t

j¼0 ajx
j;

Q1ðxÞ :¼
Pn�k�t

j¼0 b jx
j;

We now recover f(x) from the relation

Q0ðxÞ þQ1ðxÞ f ðxÞ ¼ 0.

To correct (some) errors of weight more than half the
minimum distance, the method above must be generalized.
The idea is to find a nonzero polynomial Q(x, y) of the form

Qðx; yÞ ¼ Q0ðxÞ þQ1ðxÞyþQ2ðxÞy2 þ � � � þQlðxÞyl

where now, for some integer t and s,

ðxi; riÞ for i ¼ 1; 2; . . . ;n; are zeros of Qðx; yÞ of multiplicity s
QmðxÞhas degree at most sðn� tÞ � 1�mðk� 1Þ

for m ¼ 0; 1; . . . ; l

For such a polynomial one can show that if the weight of the
error is at most t, then y� f (x) divides Q(x,y). Therefore, we
can find all codewords within distance t from r by finding all
factors of Q(x,y) of the form y � h(x), where h(x) is a
polynomial of degree less than k. In general, there may
be more than one such polynomial h(x), of course, but in
some cases, it is unique even if t is larger than half
the minimum distance. This idea is the basis for the
Guruswami–Sudan algorithm.

12 ALGEBRAIC CODING THEORY



Guruswami–Sudan Algorithm.

Input: r ¼ ðr1; r2; . . . rnÞ, t, s.

Solve the nð sþ 1
2
Þ equations

Pl
m¼u

Psðn�tÞ�1�mðk�1Þ
j¼v ðm

u
Þð j
v
Þam; jxm�ui r j�vi ¼ 0

,

where i ¼ 1; 2; . . . ; n, and 0 � uþ v<s,
for the unknown am; j;

for m:=0 to l do

QmðxÞ :¼
Psðn�tÞ�1�mðk�1Þ

j¼0 am; jx
j;

Qðx; yÞ :¼
Pl

m¼0 QmðxÞym
;

for each polynomial h(x) of degree less than k do

if y� hðxÞ divides Qðx; yÞ, then output hðxÞ.

We remark that the last loop of the algorithm is for-
mulated in this simple form to explain the idea. In actual
implementations, this part can be made more efficient. If

t<
nð2l� sþ 1Þ

2ðlþ 1Þ � lðk� 1Þ
2s

, then the polynomial f ðxÞ of the

sent codeword is among the output. The Guruswami–
Sudan algorithm is a recent invention. A textbook covering
it is the book by Justesen and Høholdt given in Further
Reading.

ALGEBRAIC GEOMETRY CODES

Algebraic geometry codes can be considered as general-
izations of Reed–Solomon codes, but they offer a wider
range of code parameters. The Reed–Solomon codes over
Fq have maximum length n ¼ q� 1 whereas algebraic
geometry codes can be longer. One common method to
construct algebraic geometry codes is to select an algebraic
curve and a set of functions that are evaluated on the points
on the curve. In this way, by selecting different curves and
sets of functions, one obtains different algebraic geometry
codes. To treat algebraic codes in full generality is outside
the scope of this article. We only will give a small flavor of
the basic techniques involved by restricting ourselves to
considering the class of Hermitian codes, which is the most
studied class of algebraic geometry codes. This class of
codes can serve as a good illustration of the methods
involved.

The codewords in a Hermitian code have symbols from
an alphabet Fq2 . The Hermitian curve consists of all points
ðx; yÞ 2F2

q2 given by the following equation in two variables:

xqþ1 � yq � y ¼ 0

It is a straightforward argument to show that the number
of different points on the curve is n ¼ q3. To select the
functions to evaluate over the points on the curve, one
needs to define an order function r. The function r is the
mapping from the set of polynomials in two variable over
Fq2 to the set of integers such that

rðxiy jÞ ¼ iqþ jðqþ 1Þ

and rð f ðx; yÞÞ is the maximum over all nonzero terms in
f ðx; yÞ.

Let P1 ¼ ðx1; y1Þ;P2 ¼ ðx2; y2Þ; . . . ;Pn ¼ ðxn; ynÞ denote
all the points on the Hermitian curve. The Hermitian
code Cs is defined by

Cs ¼ fð f ðP1Þ; f ðP2Þ; . . . ; f ðPnÞÞjrð f ðx; yÞÞ � s

and degxð f ðx; yÞÞ � qg

where degxð f ðx; yÞÞ is the maximum degree of x in f ðx; yÞ.
Using methods from algebraic geometry, one obtains the

following parameters of the Hermitian codes. The length of
the code is n ¼ q3, and its dimension is

k ¼ ms if 0 � s � q2 � q� 2
sþ 1� ðq2 � qÞ=2 if q2 � q� 2< s<n� q2 þ q

�

where ms is the number of monomials with
rðxiy jÞ � s and i � q, and the minimum distance is

d�n� s if q2 � q� 2< s<n� q2 þ q

It is known that the class of algebraic geometry codes
contains some very good codes with efficient decoding
algorithms. It is possible to modify the Guruswami–Sudan
algorithm to decode these codes.

NONLINEAR CODES FROM CODES OVER Z4

In the previous sections mainly we have considered binary
linear codes; that is, codes where the sum of two codewords
is again a codeword. The main reason has been that the
linearity greatly simplified construction and decoding of
the codes.

A binary nonlinear ðn;M;dÞ code C is simply a set of M
binary n-tuples with pairwise distance at least d, but with-
out any further imposed structure. In general, to find the
minimum distance of a nonlinear code, one must compute
the distance between all pairs of codewords. This is, of
course, more complicated than for linear codes, where it
suffices to find the minimum weight among all the nonzero
codewords. The lack of structure in a nonlinear code also
makes it difficult to decode in an efficient manner.

However, some advantages to nonlinear codes exist. For
given values of length n and minimum distance d, some-
times it is possible to construct nonlinear codes with more
codewords than is possible for linear codes. For example, for
n ¼ 16 and d ¼ 6, the best linear code has dimension k ¼ 7
(i.e., it contains 128 codewords). The code of length 16
obtained by extending the double-error-correcting primi-
tive BCH code has these parameters.

In 1967, Nordstrom and Robinson (3) found a nonlinear
code with parameters n ¼ 16 and d ¼ 6 containing M ¼ 256
codewords, which has twice as many codewords as the best
linear code for the same values of n and d.

In 1968, Preparata (4) generalized this construction to
an infinite family of codes having parameters

ð2mþ1; 22mþ1�2m�2; 6Þ;m odd; m� 3

ALGEBRAIC CODING THEORY 13



A few years later, in 1972, Kerdock (5) gave another
generalization of the Nordstrom–Robinson code and con-
structed another infinite class of codes with parameters

ð2mþ1; 22mþ2; 2m � 2
m�1

2 Þ; m odd; m� 3

The Preparata code contains twice as many codewords
as the extended double-error-correcting BCH code and is
optimal in the sense of having the largest possible size for
the given length and minimum distance. The Kerdock code
has twice as many codewords as the best known linear code.
In the case m ¼ 3, the Preparata code and the Kerdock
codes both coincide with the Nordstrom–Robinson code.

The Preparata and Kerdock codes are distance invar-
iant, which means that the distance distribution from a
given codeword to all the other codewords is independent of
the given codeword. In particular, because they contain the
all-zero codeword, their weight distribution equals their
distance distribution.

In general, no natural way to define the dual code of a
nonlinear code exists, and thus the MacWilliams identities
have no meaning for nonlinear codes. However, one can
define the weight enumerator polynomial AðzÞ of a non-
linear code in the same way as for linear codes and compute
its formal dual BðzÞ from the MacWilliams identities:

BðzÞ ¼ 1

M
ð1þ zÞnA

1� z

1þ z

� �

The polynomial B(z) obtained in this way has no simple
interpretation. In particular, it may have coefficients that
are nonintegers or even negative. For example, if
C ¼ fð110Þ; ð101Þ; ð111Þg, then AðzÞ ¼ 2z2 þ z3 and
BðzÞ ¼ ð3� 5zþ z2 þ z3Þ=3.

An observation that puzzled the coding theory commu-
nity for a long time was that the weight enumerator of the
Preparata code AðzÞ and the weight enumerator of the
Kerdock code BðzÞ satisfied the MacWilliams identities,
and in this sense, these nonlinear codes behaved like
dual linear codes.

Hammons et al. (6) gave a significantly simpler descrip-
tion of the family of Kerdock codes. They constructed a
linear code over Z4 ¼ f0; 1; 2; 3g, which is an analog of the
binary first-order Reed–Muller code. This code is combined
with a mapping called the Gray map that maps the ele-
ments in Z4 into binary pairs. The Gray map f is defined by

fð0Þ ¼ 00; fð1Þ ¼ 01; fð2Þ ¼ 11; fð3Þ ¼ 10

The Lee weight of an element in Z4 is defined by

wLð0Þ ¼ 0; wLð1Þ ¼ 1; wLð2Þ ¼ 2; wLð3Þ ¼ 1

Extending f in a natural way to a map f : Zn
4!Z2n

2 one
observes thatf is a distance preserving map from Zn

4 (under
the Lee metric) to Z2n

2 (under the Hamming metric).
A linear code over Z4 is a subset of Zn

4 such that any linear
combination of two codewords is again a codeword. From a
linear code C of length n over Z4, one obtains usually a
binary nonlinear code C ¼ fðCÞ of length 2n by replacing

each component in a codeword in C by its image under the
Gray map. This code usually is nonlinear.

The minimum Hamming distance of C equals the mini-
mum Lee distance of C and is equal to the minimum Lee
weight of C because C is linear over Z4.

Example. To obtain the Nordstrom–Robinson code, we
will construct a code over Z4 of length 8 and then apply the
Gray map. Let f(x) ¼ x3 þ 2x2 þ x þ 3 2 Z4[x]. Let b be a
zero of f(x); that is, b3 þ 2b2 þ b þ 3 ¼ 0. Then we can
express all powers of b in terms of 1, b, and b2, as follows:

b3 ¼ 2b2 þ 3bþ 1
b4 ¼ 3b2 þ 3bþ 2
b5 ¼ b2 þ 3bþ 3
b6 ¼ b2 þ 2bþ 1
b7 ¼ 1

Consider the code C over Z4 with generator matrix given by

G ¼ 1 1 1 1 1 1 1 1
0 1 b b2 b3 b4 b5 b6

	 


¼

1 1 1 1 1 1 1 1
0 1 0 0 1 2 3 1
0 0 1 0 3 3 3 2
0 0 0 1 2 3 1 1

2
664

3
775

where the column corresponding to bi is replaced by the
coefficients in its expression in terms of 1, b, and b2. Then
the Nordstrom–Robinson code is the Gray map of C.

The dual code C? of a code C over Z4 is defined similarly
as for binary linear codes, except that the inner product of
the vectors x ¼ (x1, x2,. . .,xn) and y ¼ (y1, y2,. . .,yn) with
components in Z4 is defined by

ðx; yÞ ¼
Xn

i¼1

xiyiðmod 4Þ

The dual code C? of C is then

C? ¼ fx2Zn
4 jðx; cÞ ¼ 0 for all c2Zn

4g

For a linear code C over Z4, a MacWilliams relation
determines the complete weight distribution of the dual
code C? from the complete weight distribution of C. There-
fore, one can compute the relation between the Hamming
weight distributions of the nonlinear codes C ¼ fðCÞ and
C? ¼ fðC? Þ, and it turns out that the MacWilliams iden-
tities hold.

Hence, to find nonlinear binary codes related by the
MacWilliams identities, one can start with a pair of Z4-
linear dual codes and apply the Gray map. For any odd
integer m � 3, the Gray map of the code Km over Z4 with
generator matrix

G ¼ 1 1 1 1 . . . 1
0 1 b b2 . . . b2m�2

	 


14 ALGEBRAIC CODING THEORY



is the binary, nonlinearð2mþ1; 22mþ2; 2m � 2
m�1

2 ÞKerdock

code. The Gray map of K ?m has the same weight distribution
as the ð2mþ1; 22mþ1�2m�2; 6Þ Preparata code. It is not iden-
tical, however, to the Preparata code and is therefore
denoted the ‘‘Preparata’’ code. Hence the Kerdock code
and the ‘‘Preparata’’ code are the Z4-analogy of the first-
order Reed–Muller code and the extended Hamming code,
respectively.

Hammons et al. (6) also showed that the binary code
defined by C ¼ fðCÞ, where C is the quaternary code with
parity-check matrix given by

H ¼
1 1 1 1 . . . 1
0 1 b b2 . . . b2m�2

0 2 2b3 2b6 . . . 2b3ð2m�2Þ

2
4

3
5

is a binary nonlinear ð2mþ1; 22mþ1�3m�2; 8Þ code whenever
m� 3 is odd. This code has the same weight distribution as
the Goethals code, which is a nonlinear code that has four
times as many codewords as the comparable linear
extended triple-error-correcting primitive BCH code. The
code C? ¼ fðC? Þ is identical to a binary nonlinear code,
which was constructed in a much more complicated way by
Delsarte and Goethals (7–9) more than 30 years ago.

To analyze codes obtained from codes over Z4 in this
manner, one is led to study Galois rings instead of Galois
fields. Similar to a Galois field, a Galois ring can be defined
as Zpe ½x	=ð f ðxÞÞ, where f(x) is a monic polynomial of degree
m that is irreducible modulo p. The richness in structure of
the Galois rings led to several recently discovered good
nonlinear codes that have an efficient and fast decoding
algorithm.

BIBLIOGRAPHY

1. R. C. Bose and D. K. Ray-Chaudhuri, On a class of
error correcting binary group codes, Inform. Contr., 3:
68–79, 1960.

2. A. Hocquenghem, Codes correcteur d’erreurs, Chiffres, 2:
147–156, 1959.

3. A. W. Nordstrom and J. P. Robinson, An optimum nonlinear
code, Inform. Contr., 11: 613–616, 1967.

4. F. P. Preparata, A class of optimum nonlinear double-error
correcting codes, Inform. Contr., 13: 378–400, 1968.

5. A. M. Kerdock, A class of low-rate nonlinear binary codes,
Inform. Contr., 20: 182–187, 1972.

6. A. R. Hammons, P. V. Kumar,A. R. Calderbank, N. J. A. Sloane,
and P. Solé, The Z4-linearity of Kerdock, Preparata, Goethals,

and related codes, IEEE Trans. Inform. Theory, 40: 301–319,
1994.

7. P. Delsarte and J. M. Goethals, Alternating bilinear forms over
GF(q), J. Combin. Theory, Series A, 19: 26–50, 1975.

8. J. M. Goethals, Two dual families of nonlinear binary codes,
Electronic Letters, 10: 471–472, 1974.

9. J. M. Goethals, Nonlinear codes defined by quadratic forms
over GF(2), Inform. Contr., 31: 43–74, 1976.

FURTHER READING

R. Blahut, The Theory and Practice of Error Control Codes. Read-
ing, MA: Addison-Wesley, 1983.

R. Blahut, Algebraic Codes for Data Transmission. Cambridge,
MA: Cambridge Univ. Press, 2003.

R. Hill, A First Course in Coding Theory. Oxford: Clarendon Press,
1986.

J. Justesen and T. Høholdt, A Course in Error-Correcting Codes.
European Mathematical Society Publ. House, 2004.

T. Kløve, Codes for Error Detection. Singapore: World Scientific,
2007.

T. Kløve and V. I. Korzhik, Error-Detecting Codes. Boston, MA:
Kluwer Academic, 1995.

R. Lidl and H. Niederreiter, Finite Fields, vol. 20 of Encyclopedia of
Mathematics and Its Applications. Reading, MA: Addison-Wesley,
1983.

S. Lin and D. J. Costello, Jr., Error Control Coding. 2nd edition.
Englewood Cliffs, NJ: Prentice Hall, 2004.

J. H. vanLint, Introduction to Coding Theory. New York, NY:
Springer-Verlag, 1982.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-
Correcting Codes. Amsterdam: North-Holland, 1977.

W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes.
Cambridge, MA: The MIT Press, 1972.

V. S. Pless and W. C. Huffman (eds.), Handbook of Coding Theory,
Vol. I & II. Amsterdam: Elsevier, 1998.

M. Purser, Introduction to Error-Correcting Codes. Boston, MA:
Artech House, 1995.

H. vanTilborg, Error-Correcting Codes—A First Course. Lund:
Studentlitteratur, 1993.

S. A. Vanstone and P. C. van Oorschot, An Introduction to Error-
Correcting Codes with Applications. Boston, MA: Kluwer Aca-
demic, 1989.

TOR HELLESETH

TORLEIV KLØVE

University of Bergen
Bergen, Norway

ALGEBRAIC CODING THEORY 15



B

BIOINFORMATIC DATABASES

At some time during the course of any bioinformatics pro-
ject, a researcher must go to a database that houses bio-
logical data. Whether it is a local database that records
internal data from that laboratory’s experiments or a
public database accessed through the Internet, such as
NCBI’s GenBank (1) or EBI’s EMBL (2), researchers use
biological databases for multiple reasons.

One of the founding reasons for the fields of bioinfor-
matics and computational biology was the need for manage-
ment of biological data. In the past several decades,
biological disciplines, including molecular biology and bio-
chemistry, have generated massive amounts of data that
are difficult to organize for efficient search, query, and
analysis. If we trace the histories of both database devel-
opment and the development of biochemical databases, we
see that the biochemical community was quick to embrace
databases. For example, E. F. Codd’s seminal paper, ‘‘A
Relational Model of Data for Large Shared Data Banks’’ (3),
published in 1970 is heralded as the beginning of the
relational database, whereas the first version of the Protein
Data Bank (PDB) was established at Brookhaven National
Laboratories in 1972 (4).

Since then, especially after the launching of the human
genome sequencing project in 1990, biological databases
have proliferated, most embracing the World Wide Web
technologies that became available in the 1990s. Now there
are hundreds of biological databases, with significant
research efforts in both the biological as well as the data-
base communities for managing these data. There are
conferences and publications solely dedicated to the topic.
For example, Oxford University Press dedicates the first
issue of its journal Nucleic Acids Research (which is freely
available) every year specifically to biological databases.
The database issue is supplemented by an online collection
of databases that listed 858 databases in 14 categories in
2006 (5), including both new and updated ones.

Biological database research now encompasses many
topics, such as biological data management, curation, qual-
ity, integration, and mining (6). Biological databases can be
classified in many different ways, from the topic they cover,
to how heavily annotated they are or which annotation
method they employ, to how highly integrated the database
is with other databases. Popularly, the first two categories
of classification are used most frequently. For example,
there are archival nucleic acid data repositories [GenBank,
the EMBL Data Library, and the DNA Databank of Japan
(7)] as well as protein sequence motif/domain databases,
like PROSITE (8), that are derived from primary source
data.

Modern biological databases comprise not only data, but
also sophisticated query facilities and bioinformatic data
analysis tools; hence, the term ‘‘bioinformatic databases’’ is
often used. This article presents information on some pop-
ular bioinformatic databases available online, including

sequence, phylogenetic, structure and pathway, and micro-
array databases. It highlights features of these databases,
discussing their unique characteristics, and focusing on
types of data stored and query facilities available in the
databases. The article concludes by summarizing impor-
tant research and development challenges for these data-
bases, namely knowledge discovery, large-scale knowledge
integration, and data provenance problems. For further
information about these databases and access to all hyper-
links presented in this article, please visit http://
www.csam.montclair.edu/~herbert/bioDatabases.html.

SEQUENCE DATABASES

Genome and protein sequence databases represent the
most widely used and some of the best established biological
databases. These databases serve as repositories for wet-
lab results and the primary source for experimental results.
Table 1 summarizes these data repositories and gives their
respective URLs.

GenBank, EMBL, and the DNA Databank of Japan

The most widely used biological data bank resource on the
World Wide Web is the genomic information stored in
the U.S.’s National Institutes of Health’s GenBank, the
European Bioinformatics Institutes’ EMBL, and Japan’s
National Institute of Genetics DNA Databank of Japan (1,
2, 7). Each of these three databases was developed sepa-
rately, with GenBank and EMBL launching in 1980 (4).
Their collaboration started soon after their development,
and DDBJ joined the collaboration shortly after its creation
in 1986. The three databases, under the direction of the
International Nucleotide Sequence Database Collabora-
tion (INSDC), gather, maintain, and share mainly nucleo-
tide data, each catering to the needs of the region in which it
is located (4).

The Ensembl Genome Database

The Ensembl database is a repository of stable, automati-
cally annotated human genome sequences. It is available
either as an interactive website or downloadable as flat
files. Ensembl annotates and predicts new genes, with
annotation from the InterPro (9) protein family databases
and with additional annotations from databases of genetic
disease [OMIM (10)], expression [SAGE (11,12)] and gene
family (13). As Ensembl endeavors to be both portable and
freely available, software available at Ensembl is based on
relational database models (14).

GeneDB Database

GeneDB (15) is a genome database for prokaryotic and
eukaryotic organisms. It currently contains data for 37
genomes generated from the Pathogen Sequencing Unit
(PSU) at the Welcome Trust Sanger Institute. The GeneDB

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



database has four key functionalities. First, the database
stores and frequently updates sequences and annotations.
Second, GeneDB provides a user interface, which can be
used for access, visualization, searching, and downloading
of the data. Third, the database architecture allows inte-
gration of different biological datasets with the sequences.
Finally, GeneDB facilitates querying and comparisons
between species by using structured vocabularies (15).

The Arabidopsis Information Resource (TAIR)

TAIR (16) is a comprehensive genome database that allows
for information retrieval and data analysis pertaining to
Arabidopsis thaliana (a small annual plant belonging to
the mustard family). Arabidopsis thaliana has been of
great interest to the biological community and is one of
the few plants whose genome is completely sequenced (16).
Due to the complexity of many plant genomes, Arabidopsis
thaliana serves as a model for plant genome investigations.
The database has been designed to be simple, portable, and
efficient. One innovate aspect of the TAIR website is
MapViewer (http://www.arabidopsis.org/servlets/mapper).
MapViewer is an integrated visualization tool for viewing
genetic, physical, and sequence maps for each Arabidopsis
chromosome. Each component of the map contains a hyper-
link to an output page from the database that displays all
the information related to this component (16).

SGD: Saccharomyces Genome Database

The Saccharomyces Genome Database (SGD) (17) provides
information for the complete Saccharomyces cerevisiae
(baker’s and brewer’s yeast) genomic sequence, along
with its genes, gene products, and related literature. The
database contains several types of data, including DNA
sequence, gene-encoded proteins, and the structures and
biological functions of any known gene products. It also
allows full-text searches of articles concerning Saccharo-
myces cerevisiae. The SGD database is not a primary

sequence repository (17), but a collection of DNA and
protein sequences from existing databases [GenBank (1),
EMBL (2), DDBJ (7), PIR (18), and Swiss-Prot (19)]. It
organizes the sequences into datasets to make the data
more useful and easily accessible.

dbEST Database

dbEST (20) is a division of GenBank that contains sequence
data and other information on short, ‘‘single-pass’’ cDNA
sequences, or Expressed Sequence Tags (ESTs), generated
from randomly selected library clones (http://www.ncbi.
nlm.nih.gov/dbEST/). dbEST contains approximately
36,843,572 entries from a broad spectrum of organisms.
Access to dbEST can be obtained through the Web, either
from NCBI by anonymous ftp or through Entrez (21). The
dbEST nucleotide sequences can be searched using the
BLAST sequence search program at the NCBI website.
In addition, TBLASTN, a program that takes a query amino
acid sequence and compares it with six-frame translations
of dbEST DNA sequences can also be useful for finding
novel coding sequences. EST sequences are available in the
FASTA format from the ‘‘/repository/dbEST’’ directory at
ftp.ncbi.nih.gov.

The Protein Information Resource

The Protein Information Resource (PIR) is an integrated
public bioinformatics resource that supports genomic and
proteomic research and scientific studies. PIR has provided
many protein databases and analysis tools to the scientific
community, including the PIR-International Protein
Sequence Database (PSD) of functionally annotated pro-
tein sequences. The PIR-PSD, originally created as the
Atlas of Protein Sequence and Structure edited by Mar-
garet Dayhoff, contained protein sequences that were
highly annotated with functional, structural, biblio-
graphic, and sequence data (5,18). PIR-PSD is now merged
with UniProt Consortium databases (22). PIR offers the

Table 1. Summary of Genome and Protein Sequence Databases

Database URL Feature

GenBank http://www.ncbi.nlm.nih.gov/ NIH’s archival genetic sequence database
EMBL http://www.ebi.ac.uk/embl/ EBI’s archival genetic sequence database
DDBJ http://www.ddbj.nig.ac.jp/ NIG’s archival genetic sequence database
Ensembl http://www.ensembl.org/ Database that maintains automatic annotation

on selected eukaryotic genomes
GeneDB http://www.cebitec.uni-bielefeld.de/

groups/brf/software/gendb_info/
Database that maintains genomic information

about specific species related to pathogens
TAIR http://www.arabidopsis.org/ Database that maintains genomic information

about Arabidopsis thaliana
SGD http://www.yeastgenome.org/ A repository for baker’s yeast genome and biological data
dbEST http://www.ncbi.nlm.nih.gov/dbEST/ Division of GenBank that contains expression tag

sequence data
Protein Information

Resource (PIR)
http://pir.georgetown.edu/ Repository for nonredundant protein sequences and

functional information
Swiss-Prot/TrEMBL http://www.expasy.org/sprot/ Repository for nonredundant protein sequences and

functional information
UniProt http://www.pir.uniprot.org/ Central repository for PIR, Swiss-Prot, and TrEMBL

2 BIOINFORMATIC DATABASES



PIRSF protein classification system (23) that classifies
proteins, based on full-length sequence similarities and
their domain architectures, to reflect their evolutionary
relationships. PIR also provides the iProClass database
that integrates over 90 databases to create value-added
views for protein data (24). In addition, PIR supports a
literature mining resource, iProLINK (25), which provides
multiple annotated literature datasets to facilitate text
mining research in the areas of literature-based database
curation, named entity recognition, and protein ontology
development.

The Swiss-Prot Database

Swiss-Prot (19) is a protein sequence and knowledge data-
base and serves as a hub for biomolecular information
archived in 66 databases (2). It is well known for its minimal
redundancy, high quality of annotation, use of standar-
dized nomenclature, and links to specialized databases. Its
format is very similar to that of the EMBL Nucleotide
Sequence Database (2). As Swiss-Prot is a protein sequence
database, its repository contains the amino acid sequence,
the protein name and description, taxonomic data, and
citation information. If additional information is provided
with the data, such as protein structures, diseases asso-
ciated with the protein or splice isoforms, Swiss-Prot pro-
vides a table where these data can be stored. Swiss-Prot
also combines all information retrieved from the publica-
tions reporting new sequence data, review articles, and
comments from enlisted external experts.

TrEMBL: A Supplement to Swiss-Prot

Due to the large number of sequences generated by differ-
ent genome projects, the Swiss-Prot database faces several
challenges related to the processing time required for man-
ual annotation. For this reason, the European Bioinfor-
matics Institute, collaborating with Swiss-Prot, introduced
another database, TrEMBL (translation of EMBL nucleo-
tide sequence database). This database consists of compu-
ter-annotated entries derived from the translation of all
coding sequences in the nucleotide databases. This data-
base is divided into two sections: SP-TrEMBL contains
sequences that will eventually be transferred to Swiss-
Prot and REM-TrEMBL contains those that will not go
into Swiss-Prot, including patent application sequences,
fragments of less than eight amino acids, and sequences
that have proven not to code for a real protein (19, 26, 27).

UniProt

With protein information spread over multiple data repo-
sitories, the efforts from PIR, SIB’s Swiss-Prot and EBI’s
TrEMBL were combined to develop the UniProt Consor-
tium Database to centralize protein resources (22). UniProt
is organized into three layers. The UniProt Archive (Uni-
Parc) stores the stable, nonredundant, corpus of publicly
available protein sequence data. The UniProt Knowledge-
base (UniProtKB) consists of accurate protein sequences
with functional annotation. Finally, the UniProt Reference
Cluster (UniRef) datasets provide nonredundant reference
clusters based primarily on UniProtKB. UniProt also offers

users multiple tools, including searches against the indi-
vidual contributing databases, BLAST and multiple
sequence alignment, proteomic tools, and bibliographic
searches (22).

PHYLOGENETIC DATABASES

With all of the knowledge accumulating in the genomic and
proteomic databases, there is a great need for understand-
ing how all these types of data relate to each other. As all
biological things have come about through the evolutionary
process, the patterns, functions, and processes that they
possess are best analyzed in terms of their phylogenetic
histories. The same gene can evolve a different timing of its
expression, a different tissue where it is expressed, or even
gain a whole new function along one phylogenetic branch as
compared with another. These changes along a branch
affect the biology of all descendant species, thereby leaving
phylogenetic patterns in everything we see. A detailed
mapping between biological data and phylogenetic his-
tories must be accomplished so that the full potential of
the data accumulation activities can be realized. Otherwise
it will be impossible to understand why certain drugs work
in some species but not others, or how we can design
therapies against evolving disease agents such as HIV
and influenza.

The need to query data using sets of evolutionary
related taxa, rather than on single species, has brought
up the need to create databases that can serve as reposi-
tories of phylogenetic trees, generated by a variety of
methods. Phylogeny and phylogenetic trees give a picture
of the evolutionary history among species, individuals, or
genes. Therefore, there are at least two distinct goals of a
phylogenetic database: archival storage and analysis (28).
Table 2 summarizes these repositories.

Many of the aforementioned data repositories offer func-
tionalities for browsing phylogenetic and taxonomic infor-
mation. NCBI offers users the Taxonomy Databases (1, 13),
which organize the data maintained in its repositories
from the species perspective and allows the user to
hierarchically browse data with respect to a Tree of Life
organization. NEWT is a taxonomy database (http://
www.ebi.ac.uk/newt/) that connects UniProtKB data to
the NCBI taxonomy data. For every species, NEWT pro-
vides information about the taxon’s scientific name, com-
mon name and synonym(s), lineage, number of UniProtKB
protein entries in the given taxon, and links to each entry.

Tree of Life

The Tree of Life (29) is a phylogenetic repository that aims
to provide users with information from a whole-species
point of view. The Tree of Life allows users to search for
pages about specific species through conventional keyword
search mechanisms. Most interestingly, a user can also
navigate through the ‘‘tree of life’’ using hierarchical
browsing starting at the root organism, popularly referred
to as ‘‘Life,’’ and traverse the tree until a species of interest
is reached. The species web page contains information
gathered and edited by recognized experts about the species

BIOINFORMATIC DATABASES 3



as well as peer-reviewed resources accessible through
hyperlinks (29).

TreeFam

TreeFam is a database of phylogenetic trees of animal gene
families. The goal of TreeFam is to develop a curated
database that provides accurate information about ortho-
log and paralog assignments and evolutionary histories of
various gene families (30). To create and curate the trees
and families, TreeFam has gathered sequence data from
several protein repositories. It contains protein sequences
for human (Homo sapiens), mouse (Mus musculus), rat
(Rattus norvegicus), chicken (Gallus gallus), pufferfish
(Takifugu rubripes), zebrafish (Danio rerio), and fruitfly
(Drosophila melanogaster), which were retrieved from
Ensembl (14), WormBase (31), SGD (17), GeneDB (15),
and TIGR (32). The protein sequences in TreeFam are
grouped into families of genes that descended from a single
gene in the last common ancestor of all animals, or that first
appeared in animals. From the above sources, families and
trees are automatically generated and then manually
curated based on expert review. To manage these data,
TreeFam is divided into two parts. TreeFAM-B consists of
the automatically generated trees. It obtains clusters from
the PhIGs (33) database and uses BLAST (34), MUSCLE
(35), and HMMER (36) and neighbor-joining algorithms
(37) to generate the trees. TreeFAM-A contains the manu-
ally curated trees, which exploit algorithms similar to the
DLI algorithm (DLI: H. Li, unpublished data) and the SDI
algorithm (38). TreeFAM contains 11,646 families includ-
ing about 690 families that have curated phylogenetic
trees. Therefore, as more trees get curated, the Tree-
Fam-A database increases, whereas TreeFam-B decreases
in size.

TreeBASE

TreeBASE (39) was developed to help harness the explo-
sively high growth in the number of published phylogenetic
trees. It is a relational database and contains phylogenetic
trees and the data underlying those trees. TreeBASE is
available at http://www.treebase.org and allows the user to
search the database according to different keywords and to
see graphical representations of the trees. The user can also
access information such as data matrices, bibliographic

information, taxonomic names, character states, algo-
rithms used, and analyses performed. Phylogenetic trees
are submitted to TreeBASE by the authors of the papers
that describe the trees. For data to be accepted by Tree-
BASE, the corresponding paper must pass the journal’s
peer review process (39).

SYSTERS Database

SYSTERS is a protein clustering database based on
sequence similarity (40). It can be accessed at http://SYS-
TERS.molgen.mpg.de/. SYSTERS contains 185,000 dis-
joint protein families gathered from existing sequence
repositories: Swiss-Prot (19), TrEMBL (19) and complete
genomes: Ensembl (14), The Arabidopsis Information
Resource (16), SGD (17), and GeneDB (15). Two innovative
features of this repository are the SYSTERS Table and
SYSTERS Tree. The SYSTERS Table for a family cluster
contains a variety of information, most notably accession
numbers as well as accession numbers for a variety of
external databases [IMB (41), MSD (42), ENZYME (43),
INTERPRO (9), PROSITE (8), GO (44)]. There can be
several redundant entries in the table for one protein
sequence. As SYSTERS data rely on external protein data-
bases, there is always an entry name (protein name) and an
accession number for each entry but there may not be a
gene name. For each family cluster that consists of more
than two nonredundant entries, a phylogenetic tree is
available. The phylogenetic trees are constructed using
the UPGMA (45) method. No more than 200 entries are
displayed in a tree; the selection process when a cluster
contains more than 200 entries is not clear.

PANDIT (Protein and Associated Nucleotide
Domains with Inferred Trees)

PANDIT is a nonredundant repository of multiple sequence
alignments and phylogenetic trees. It is available at http://
www.ebi.ac.uk/goldman-srv/pandit. The database consists
of three portions: protein domain sequence alignments
from Pfam Database (46), alignments of nucleotide
sequences derived from EMBL Nucleotide Sequence Data-
base (2), and phylogenetic trees inferred from each align-
ment. Currently PANDIT contains 7738 families of
homologous protein sequences with corresponding DNA
sequences and phylogenetic trees. All alignments are based

Table 2. Summary of Phylogenetic Data Repositories

Database URL Feature

NCBI Taxonomy
Database

http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db=Taxonomy

Whole-species view of genomic and
proteomic data stored in GenBank

Tree of Life http://tolweb.org/tree/ Species-centric hierarchical browsing database
modeling the evolutionary relationships
between species

TreeFam http://www.treefam.org/ Repository for phylogenetic trees based on animal genomes
TreeBASE http://www.treebase.org/treebase/ Archival peer-reviewed phylogenetic tree repository
SYSTERS http://systers.molgen.mpg.de/ Protein cluster repository with significant phylogenetic

functionalities
PANDIT http://www.ebi.ac.uk/goldman-srv/pandit/ Protein domains repository with inferred phylogenetic trees

4 BIOINFORMATIC DATABASES



on Pfam-A (47) seed alignments, which are manually
curated and, therefore, make PANDIT data high quality
and comparable with alignments used to study evolution.
Each family contains three alignments: PANDIT-aa con-
tains the exact Pfam-A seed protein sequence alignment;
and PANDIT-dna contains the DNA sequences encoding
the protein sequences in PANDIT-aa that could be recov-
ered; and PANDIT-aa-restricted contains only those pro-
tein sequences for which a DNA sequence has been
recovered. The DNA sequences have been retrieved using
cross-references to the EMBL Nucleotide Sequence Data-
base from the Swiss-Prot (19) and TrEMBL (19) databases.
To ensure accuracy, PANDIT performs a translation of the
cross-referenced DNA sequences back to the corresponding
protein sequences.

PANDIT database is intended for studying the molecu-
lar evolution of protein families. Therefore, phylogenetic
trees have been constructed for families of more than two
sequences. For each family, five different methods for tree
estimation have been used to produce candidate trees.
These methods include neighbor-joining (37), BioNJ (48),
Weighbor (49), FastME (50), and PHYML (51). Neighbor-
joining, BioNJ and Weighbor are methods used to produce
phylogenetic tree estimates from a pairwise distance
matrix. FastME uses a minimum evolution criterion with
local tree-rearrangements to estimate a tree, and Phyml
uses maximum likelihood with local tree searching. At the
end, the likelihood of each tree from the candidate set is
computed and the tree with the highest likelihood is added
to the database.

STRUCTURE AND PATHWAY DATABASES

Knowledge of protein structures and of molecular interac-
tions is key to understanding protein functions and com-
plex regulatory mechanisms underlying many biological
processes. However, computationally, these datasets are
highly complex. The most popular ways to model these
datasets are through text, graphs, or images. Text data
tend not to have the descriptive power needed to fully model
this type of data. Graphical and the image data require
complex algorithms that are computationally expensive
and not reliably accurate. Therefore, structural and path-
way databases become an interesting niche from both the
biological and the computational perspectives. Table 3
lists several prominent databases in this field.

The Protein Data Bank

The Protein Data Bank (PDB) is an archive of structural
data of biological macromolecules. PDB is maintained by
the Research Collaboratory for Structural Bioinformatics
(RCSB). It allows the user to view data both in plain text
and through a molecular viewer using Jmol. A key goal of
the PDB is to make the data as uniform as possible while
improving data accessibility and providing advanced
querying options (52, 53).

To have complete information regarding the features of
macromolecular structures, PDB allows a wide spectrum of
queries through data integration. PDB collects and inte-
grates external data from scientists’ deposition, Gene
Ontology (GO) (54), Enzyme Commission (55), KEGG Path-
ways (56), and NCBI resources (57). PDB realizes data
integration through data loaders written in Java, which
extract information from existing databases based on com-
mon identification numbers. PDB also allows data extrac-
tion at query run time, which means implemented Web
services extract information as the query is executing.

The Nucleic Acid Database

Nucleic Acid Database, also curated by RCSB and similar
to the PDB and the Cambridge Structural Database (58), is
a repository for nucleic acid structures. It gives users access
to tools for extracting information from nucleic acid struc-
tures and distributes data and software. The data are
stored in a relational database that contains tables of
primary and derivative information. The primary informa-
tion includes atomic coordinates, bibliographic references,
crystal data, data collection, and other structural descrip-
tions. The derivative information is calculated from the
primary information and includes chemical bond lengths,
and angles, virtual bond lengths, and other measures
according to various algorithms (59, 60). The experimental
data in the NDB database have been collected from pub-
lished literature, as well as from one of the standard
crystallographic archive file types (60, 61) and other
sources. Primary information has been encoded in ASCII
format file (62). Several programs have been developed to
convert between different file formats (60, 63, 64, 65).

The Kyoto Encyclopedia of Genes and Genomes

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
(56) is the primary resource for the Japanese GenomeNet
service that attempts to define the relationships between

Table 3. Summary of Structural and Pathway Databases

Database URL Feature

The Protein Data Bank (PDB) http://www.rcsb.org/pdb/ Protein structure repository that provides
tools for analyzing these structures

The Nucleic Acid Database (NDB) http://ndbserver.rutgers.edu/ Database housing nucleic acid structural information
The Kyoto Encyclopedia of Genes

and Genomes (KEGG)
http://www.genome.jp/kegg/ Collection of databases integrating pathway,

genomic, proteomic, and ligand data
The BioCyc Database Collection http://www.biocyc.org/ Collection of over 200 pathway and genomic databases

BIOINFORMATIC DATABASES 5



the functional meanings and utilities of the cell or the
organism and its genome information. KEGG contains
three databases: PATHWAY, GENES, and LIGAND. The
PATHWAY database stores computerized knowledge on
molecular interaction networks. The GENES database
contains data concerning sequences of genes and proteins
generated by the genome projects. The LIGAND database
holds information about the chemical compounds and che-
mical reactions that are relevant to cellular processes.
KEGG computerizes the data and knowledge as graph
information. The KEGG/PATHWAY database contains
reference diagrams for molecular pathways and complexes
involving various cellular processes, which can readily be
integrated with genomic information (66). It stores data
objects called generalized protein interaction networks
(67, 68). The PATHWAY database is composed of four
levels that can be accessed through the Web browser.
The top two levels contain information about metabolism,
genetic information processing, environmental informa-
tion processing, cellular processes, and human diseases.
The others relate to the pathway diagram and the ortholog
group table, which is a collection of genes and proteins.

The BioCyc Database Collection

The BioCyc Database Collection (69) is a compilation of
pathway and genome information for different organisms.
Based on the number of reviews and updates, BioCyc
databases are organized into several tiers. Tier 1 consists
of three databases, EcoCyc (70), which describes Escher-
ichia coli K-12; MetaCyc (71), which describes pathways for
more than 300 organisms; and the BioCyc Open Com-
pounds Database (69), which contains a collection of che-
mical compound data from BioCyc databases. Tier 2
contains 12 databases computationally generated by the
Pathologic program. These databases have been updated
and manually curated to varying degrees. Tier 3 is com-
posed of 191 databases computationally generated by the
Pathologic program with no review and updating (69).

The BioCyc website allows scientists to perform certain
operations, e.g., to visualize individual metabolic path-
ways, to view the complete metabolic map of an organism,
and to analyze, metabolomics data using the Omics Viewer.
The website also provides a spectrum of browsing capabil-
ities such as moving from a display of an enzyme to a display
of a reaction that the enzyme catalyzes or to the gene that
encodes the enzyme (69).

MICROARRAY AND BOUTIQUE BIOINFORMATIC
DATABASES

Both microarray databases and boutique databases offer
interesting perspectives on biological data. The microarray
databases allow users to retrieve and interact with data
from microarray experiments. Boutique databases offer
users specialty services concerning a particular aspect of
biological data. This section reviews such databases and
synopsizes these reviews in Table 4.

The Stanford Microarray Database

The Stanford Microarray Database (SMD) (72) allows
researchers to retrieve, analyze, and visualize gene expres-
sion data from microarray experiments. The repository also
contains literature data and integrates multiple related
resources, including SGD (17), YPD and WormPD (73),
UniGene (74), dbEST (20), and Swiss-Prot (19).

Due to the large number of experiments and datasets,
SMD uses comprehensive interfaces allowing users to effi-
ciently query the database. For each experiment, the data-
base stores the name of the researcher, the source organism
of the microarray probe sequences, along with a category
and subcategory that describe the biological view of the
experiment. The user can create a query using any of these
criteria to narrow down the number of experiments.

The Yale Microarray Database

The Yale Microarray Database (YMD) (75) is another repo-
sitory for gene expression data. It is Web-accessible and
enables users to perform several operations, e.g., tracking
DNA samples between source plates and arrays and finding
common genes/clones across different microarray plat-
forms. Moreover, it allows the user to access the image
file server, to enter data, and to get integrated data through
linkage of gene expression data to annotation databases for
functional analysis (75). YMD provides several means of
querying the database. The website contains a query cri-
teria interface (75), which allows the user to perform com-
mon queries. The interface also enables the user to choose
the format of the output, e.g., which columns to be included
and the type of output display (HTML, EXCEL, TEXT, or
CLUSTER). Finally, the query output can also be dynami-
cally linked to external annotation databases such as DRA-
GON (76).

Table 4. Summary of Microarray and Boutique Databases

Database URL Feature

The Stanford Microarray
Database

http://genome-www5.stanford.edu/ Repository for raw and normalized
microarray data

The Yale Microarray
Database

http://www.med.yale.edu/microarray/ Repository for raw and normalized
microarray data

The Stem Cell Database http://stemcell.princeton.edu/ Database for human and mice stem cell data
The BrainML Data Server http://www.neurodatabase.org, Databases containing information necessary

for understanding brain processes

6 BIOINFORMATIC DATABASES



The Stem Cell Database

The Stem Cell Database (SCDb) (77), supported by Prince-
ton University and the University of Pennsylvania, is a
unique repository that contains information about hema-
topoietic stem cells from mice and humans. It is closely
associated with the Stromal Cell Database (http://stromal-
cell.princeton.edu/), also supported by Princeton Univer-
sity and the University of Pennsylvania. Data for this
repository are obtained from various peer-reviewed
sources, publications, and libraries. Users can query on
various aspects of the data, including gene name and other
annotations, as well as sequence data (77).

The BrainML Data Server

The BrainML Data Server is a repository containing data
that pertain to the understanding of neural coding, infor-
mation transmission, and brain processes and provides a
venue for sharing neuro-physiological data. It acquires,
organizes, annotates, archives, delivers, and displays
single- and multi-unit neuronal data from mammalian
cerebral cortex (78). Users can obtain the actual datasets,
provided by several laboratories, all in common format and
annotated compatibly. The Web interface provides a tool
called QueryTool that allows the user to search by meta-
data terms submitted by the researchers. Another Tool,
Virtual Scilloscope Java Tool, displays time-series and
histogram datasets dynamically. The datasets can also
be downloaded for analysis.

RESEARCH CHALLENGES AND ISSUES

Although extensive efforts have been made to catalog and
store biological and chemical data, there is still a great
amount of work to be done. Scientists are figuratively
drowning in data. Therefore, there is a strong need for
computational tools that allow scientists to slice through
the mounds of data to pinpoint information needed for
experiments. Moreover, with research methodologies chan-
ging from library-based to Web-based, new methods for
maintaining the quality of the data are needed. Mainte-
nance and updates on bioinformatic databases require not
only automatic tools but in most cases also in the curation
process. This process involves manual checks from biolo-
gists to ensure that data are valid and accurate before
integrating this data into the database. There are two
major research challenges in the area of bioinformatic
databases: (1) development of software tools that are reli-
able, scalable, downloadable, platform-independent, user-
friendly, high performance, and open source for discover-
ing, extracting, and delivering knowledge from large
amounts of text and biomedical data; and (2) development
of large-scale ontology-assisted knowledge integration
systems. The two issues also give rise to others, such as
how we can maintain the quality (79) and the proper
provenance of biological data when it is heavily integrated.
Some work has been done toward the first issue, as dis-
cussed in Ref. 80.

Knowledge Discovery from Data (KDD)

The KDD process, in its most fundamental form, is to
extract interesting, nontrivial, implicit, previously
unknown, and potentially useful information from data.
When applied to bioinformatic databases, KDD refers to
diverse activities, including bioinformatic data cleaning
and preprocessing, pattern and motif discovery, classifica-
tion and clustering, biological network modeling, and bio-
informatic data visualization, to name a few. An annual
KDD Cup is organized as the Data Mining and Knowledge
Discovery competition by the ACM Special Interest Group
(81, 82). Various KDD tools have been developed to analyze
DNA and protein sequences, whole genomes, phylogeny
and evolutionary trees, macromolecule structures, and
biological pathways. However, many of these tools suffer
from inefficiency, low accuracy, and unsatisfactory perfor-
mance due to factors, including experimental noise,
unknown model complexity, visualization difficulties
with very high-dimensional data, and the lack of sufficient
samples for computational validation. Another problem is
that some KDD tools are platform dependent and their
availability is limited.

One emerging trend in KDD is to apply machine learn-
ing, natural language processing, and statistical techni-
ques to text and biomedical literature mining. The goal is to
establish associations between biological objects and pub-
lications from literature databases such as MEDLINE, for
example, finding all related literature studying the same
proteins from different aspects. It has been shown that
incorporating information obtained from biomedical litera-
ture mining into sequence alignment tools such as BLAST
can increase the accuracy of alignment results. This shows
an example of combining KDD methods with traditional
sequence analysis tools to improve their performance.
However, these KDD methods are not yet fully reliable,
scalable, or user-friendly, and many of the methods still
need to be improved.

Large-Scale Knowledge Integration (LKI)

LKI of heterogeneous, distributed bioinformatic data is
supposed to offer users a seamless view of knowledge.
However, with a few exceptions, many current bioinfor-
matic systems use hyperlink navigation techniques to inte-
grate World Wide Web repositories. These techniques
result in semantically meaningless integrations. Often,
websites are not maintained, datasets are poorly curated,
or in some cases, the integration has been done improperly.
With these concerns, efforts based on current biological
data integration that create advanced tools to help deliver
knowledge to the bioinformatics community fail or become
dataset dependent.

A major research challenge in bioinformatics is inte-
grating and representing knowledge effectively. The infor-
matics community has effectively integrated and visualized
data. However, research must be taken to the next phase
where knowledge integration and knowledge management
becomes a key interest. The informatics community must

BIOINFORMATIC DATABASES 7



work with the biomedical community from the ground up.
Effective, structured knowledge bases need to be created
that are also relatively easy to use. The computer science
community is starting to address this challenge with pro-
jects in the areas of the Semantic Web and semantic inte-
gration. The bioinformatics community has started to
create such knowledge bases with projects like the Gene
Ontology (GO) and Stanford’s biomedical ontology (http://
bioontology.org/) (more are listed under the Open Biological
Ontology, http://obo.sourceforge.net/). Ontologies and
meta-data are only the beginning. It is well known in the
computer science community that meta-data management
can be a tricky, complicated process. Attempting this in the
biomedical realm is downright difficult. Researchers cur-
rently must wield complicated ontologies to classify even
more complex data. Extensive research is needed into how
to develop better ontologies as well as to manipulate them
more effectively.

Ontology also assumes that there is a general consensus
within the bioinformatics field as to the format and struc-
ture of the data, with mechanisms for minimizing syno-
nyms and homonyms. This is not true for many types of
data. For example, many plant species have binomial
names identical to animal species. Many genes have
been given different names when found in one species or
one tissue as compared with another. In almost every area
of medicine as well as biology, researchers can identify
contentious nomenclature issues. This standardized nam-
ing problem has serious consequences.

KDD and LKI are not separate; rather, they interact
with each other closely. For example, as mentioned, one
area of KDD is extracting knowledge from peer-reviewed
journal articles for clinical use. However, due to the variety
of ways to specify biological objects such as species, reg-
ulatory pathways, and gene names, KDD tools have diffi-
culty extracting knowledge from these articles. These
articles often represent a majority of data the scientific
community have concerning the various biological objects.
Due to the lack of standardized representations, one can
only employ information retrieval algorithms and give the
user a confidence level to the knowledge extracted. Great
amounts of knowledge are lost because we cannot exploit a
standardized knowledge base while examining peer-
reviewed literature. As another example, the GO contains
a graph structure that illustrates the relationship among
molecular functions attributed to genes. If this structure
can be combined with KDD processes such as clustering
and classification algorithms, one can produce more biolo-
gically meaningful clusters or classification outcomes.
These examples illustrate the importance of combining
KDD and LKI, which is a challenging problem in the field.

Data Provenance

As demonstrated by the above databases as well as the
previous issues, there are large quantities of data inter-
changing between tens if not hundreds of databases reg-
ularly. Furthermore, scientists are revolutionizing how
research is done by relying more and more on the biological
databases and less and less on original journal articles.
Thus, the issue of preserving how the data are obtained

becomes a paramount concern (83). The field of data pro-
venance investigates how to maintain meta-data describ-
ing the history of a data item within the database. With
databases cross-listing each other’s entries, and with data
mining and knowledge discovery algorithms generating
new information based on data published in these data-
bases, the issue of data provenance becomes more and more
significant.

BIBLIOGRAPHY

1. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A.
Rapp, D. L. Wheeler, GenBank, Nuc. Acids Res., 28: 15–18,
2000.

2. G. Cochrane, P. Aldebert, N. Althorpe, M. Andersson, W.
Baker, A. Baldwin, et al., EMBL Nucleotide Sequence Data-
base: developments in 2005, Nuc. Acids Res., 34(1): D10–D15,
2006.

3. E. F. Codd, A relational model of data for large shared data
banks, CACM, 13(6): 377–387, 1970.

4. A. M. Lesk, Database Annotation in Molecular Biology. West
Sussex, England: John Wiley & Sons, 2005.

5. M. Y. Galperin, The molecular biology database collection:
2006 update, Nuc. Acids Res., 34: D3–D5, 2006.

6. J. T. L. Wang, C. H. Wu, and P. P. Wang, Computational
Biology and Genome Informatics, Singapore: World Scientific
Publishing, 2003.

7. K. Okubo, H. Sugawara, T. Gojobori, and Y. Tateno, DDBJ in
preparation for overview of research activities behind data
submissions Nuc. Acids Res., 34(1): D6–D9, 2006.

8. N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. DeCastro, P. S.
Langendijk-Genevaux, M. Pagni, C. J. A. Sigrist. The PRO-
SITE database. Nuc. Acids Res., 34(1): D227–D230, 2006.

9. N. J. Mulder, R. Apweiler, T. K. Attwood, A. Bairoch, A. Bate-
man, D. Binns, et al., InterPro, progress and status in 2005.
Nuc. Acids Res., 33: D201–205, 2006.

10. S. E. Antonarakis and V. A. McKusick, OMIM passes the 1,000-
disease-gene mark, Nature Genet., 25: 11, 2000.

11. V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler,
Serial analysis of gene expression. Science, 270, 484–487, 1995.

12. D. L. Wheeler, D. M. Church, A. E. Lash, D. D. Leipe, T. L.
Madden, J. U. Pontius, G. D. Schuler, L. M. Schriml, T. A.
Tatusova, L. Wagner, and B. A. Rapp, Database resources of
the National Center for Biotechnology Information, Nuc. Acids
Res., 29: 11–16, 2001, Updated article: Nuc. Acids Res., 30:
13–16, 2002.

13. A. J. Enright, I. Iliopoulos, N. C. Kyrpides, and C. A. Ouzounis,
Protein interaction maps for complete genomes based on gene
fusion events, Nature, 402, 86–90, 1999.

14. T. Hubbard, D. Barker, E. Birney, G. Cameron, Y. Chen, L.
Clark, et al., The Ensembl genome database project. Nuc. Acids
Res., 30, 38–41, 2002.

15. C. Hertz-Fowler, C. S. Peacock, V. Wood, M. Aslett, A. Kerhor-
nou, P. Mooney, et al., GeneDB: A resource for prokaryotic and
eukaryotic organisms, Nuc. Acids Res., 32: D339–D343, 2004.

16. D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M.
Koornneef, Arabidopsis thaliana: A model plant for genome
analysis, Science, 282: 679–682, 1998.

17. J. M. Cherry, C. Adler, C. Ball, S. A. Chervitz, S. S. Dwight, E.
T. Hester, Y. Jia, G. Juvik, T. Roe, M. Schroeder, S. Weng, and
D. Botstein, SGD: Saccharomyces Genome Database, Nuc.
Acids Res., 26: 73–79, 1998.

8 BIOINFORMATIC DATABASES



18. C. H. Wu, L. S. Yeh, H. Huang, L. Arminski, J. Castro-Alvear,
Y. Chen, Z. Z. Hu, R. S. Ledley, P. Kourtesis, B. E. Suzek, C. R.
Vinayaka, J. Zhang, W. C. Barker, The protein information
resource, Nuc. Acids Res., 31: 345–347, 2003.

19. C. O’Donovan, M. J. Martin, A. Gattiker, E. Gasteiger, A.
Bairoch, and R. Apweiler, High-quality protein knowledge
resource: SWISSPROT and TrEMBL. Brief. Bioinform., 3:
275–284, 2002.

20. M. S. Boguski, T. M. Lowe, and C. M. Tolstoshev, dbEST —
database for expressed sequence tags, Nature Genet., 4: 332–
333, 1993.

21. G. D. Schuler, J. A. Epstein, H. Ohkawa, and J. A. Kans,
Entrez: Molecular biology database and retrieval system,
Methods Enzymol., 266: 141–162, 1996.

22. C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, W. C. Barker,
B. Boeckmann, et al., The Universal Protein Resource (Uni-
Prot): AN expanding universe of protein information. Nuc.
Acids Res., 34(1): D187–191, 2006.

23. C. H. Wu, A. Nikolskaya, H. Huang, L. S. Yeh, D. A. Natale, C.
R. Vinayaka, et al., PIRSF: Family classification system at the
Protein Information Resource. Nuc. Acids Res., 32: D112–114,
2004.

24. C. H. Wu, H. Huang, A. Nikolskaya, Z. Z. Hu, and W. C. Barker,
The iProClass integrated database for protein functional ana-
lysis. Comput Biol Chem., 28: 87–96, 2004.

25. Z. Z. Hu, I. Mani, V. Hermoso, H. Liu, C. H. Wu, iProLINK: An
integrated protein resource for literature mining. Comput Biol
Chem., 28: 409–416, 2004.

26. E. Gasteiger, E. Jung, and A. Bairoch, SWISS-PROT: Connect-
ing biomolecular knowledge via a protein database, Curr.
Issues Mol. Biol., 3: 47–55, 2001.

27. T. Etzold, and P. Argos, SRS—an indexing and retrieval tool for
flat file data libraries. Comput. Appl. Biosci., 9: 49–57, 2003.

28. J. T. L. Wang, M. J. Zaki, H. T. T. Toivonen, and D. Shasha
(eds), Data mining in Bioinformatics, London, UK: Springer,
2005.

29. D. R. Maddison, and K.-S. Schulz (eds.). The Tree of Life Web
Project. Available: http://tolweb.org. Last accessed July 26,
2006.

30. W. M. Fitch, Distinguishing homologous from analogous pro-
teins, Syst. Zool., 19: 99–113, 1970.

31. N. Chen, T. W. Harris, I. Antoshechkin, C. Bastiani, T. Bieri, D.
Blasiar, et al., WormBase: A comprehensive data resource for
Caenorhabditis biology and genomics, Nuc. Acids Res., 33:
D383–D389, 2005.

32. B. J. Haas, J. R. Wortaman, C. M. Ronning, L. I. Hannick, R. K.
Smith Jr., et al., Complete reannotation of the Arabidopsis
genome: Methods, tools, protocols and the final release. BMC
Biol., 3:7, 2005.

33. P. Dehal, and J. L. Boore, Two rounds of whole genome dupli-
cation in the ancestral vertebrate, PLoS Biol., 3: e314, 2005.

34. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, Gapped BLAST and PSI-BLAST:
A new generation of protein database search programs, Nuc.
Acids Res., 25: 3389–3402, 1997.

35. R. C. Edgar, MUSCLE: A multiple sequence alignment method
with reduced time and space complexity, BMC Bioinformatics,
5:113, 2004.

36. S. R. Eddy, Profile hidden Markov models. Bioinformatics, 14:
755–763, 1998.

37. N. Saitou and M. Nei, The neighbor-joining method: a new
method for reconstructing phylogenetic trees, Mol. Biol. Evol.,
4: 406–425, 1987.

38. C. M. Zmasek and S. R. Eddy, A simple algorithm to infer gene
duplication and speciation events on a gene tree. Bioinfor-
matics, 17: 821–828, 2001.

39. M. J. Sanderson, M. J. Donoghue, W. H. Piel, and T. Eriksson,
TreeBASE: A prototype database of phylogenetic analyses and
an interactive tool for browsing the phylogeny of life, Am. J.
Bot., 81(6): 163 1994.

40. T. Meinel, A. Krause, H. Luz, M. Vingron, and E. Staub, The
SYSTERS Protein Family Database in 2005. Nuc. Acids Res.,
33: D226–D229, 2005.

41. J. Reichert, J. Suhnel, The IMB jena image library of biological
macromolecules: 2002 update, Nuc. Acids Res., 30: 253–254,
2002.

42. H. Boutzelakis, D. Dimitropoulos, J. Fillon, A. Golovin,
K. Henrick, A. Hussain, et al., E-MSD: The Eurepoean Bioin-
formatics Institute Macromolecular Structure Database. Nuc.
Acids Res., 31: 458–462, 2003.

43. A. Bairoch, The ENZYME database in 2000. Nuc. Acids Res.,
28: 304–305, 2000.

44. M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler,
J. M. Cherry, et al., Gene ontology: Tool for the unification of
biology, The Gene Ontology Consortium, Nature Genetics, 25:
25–29, 2000.

45. R. C. Dubes and A. K. Jain. Algorithms for Clustering Data,
Englewood Cliffs, NJ: Prentice Hall, 1988.

46. A. Bateman, E. Birney, L. Cerruti, R. Durbin, L. Etwiller, S. R.
Eddy, S. Griffiths-Jones, K. L. Howe, M. Marshall, E. L. L.
Sonnhammer, The Pfam protein families database, Nuc. Acids
Res., 30: 276–280, 2002.

47. E. L. L. Sonnhammer, S. R. Eddy, and R. Durbin, Pfam: A
comprehensive database of protein domain families based on
seed alignments, Proteins: Struct. Funct. Gene., 28: 405–420,
1998.

48. O. Gascuel, BIONJ: An improved version of the NJ algorithm
based on a simple model of sequence data, Mol. Biol. Evol., 14:
685–695, 1997.

49. W. J. Bruno, N. D. Socci, and A. L. Halpern, Weighted neighbor
joining: A likelihood-based approach to distance-based phylo-
geny reconstruction, Mol. Biol. Evol., 17: 189–197, 2000.

50. R. Desper and O. Gascuel, Fast and accurate phylogeny recon-
struction algorithms based on the minimum-evolution princi-
ple, J. Comput. Biol., 9: 687–705, 2002.

51. S. Guindon and O. Gascuel, A simple, fast and accurate method
to estimate large phylogenies by maximum-likelihood, Syst.
Biol., 52: 696–704, 2003.

52. T. N. Bhat, P. Bourne, Z. Feng, G. Gilliland, S. Jain, V.
Ravichandran, et al., The PDB data uniformity project. Nuc.
Acids Res., 29, 214–218, 2001.

53. N. Deshpande, K. J. Addess, W. F. Bluhm, J. C. Merino-Ott, W.
Townsend-Merino, Q. Zhang, et al., The RCSB Protein Data
Bank: A redesigned query system and relational database
based on the mmCIF schema, Nuc. Acids Res., 33: D233–
D237, 2005.

54. The Gene Ontology Consortium, Gene Ontology: Tool for the
unification of biology, Nature Genetics, 25: 25–29, 2000.

55. G. P. Moss (2006, March 16). Enzyme Nomenclature: Recom-
mendations of the Nomenclature Committee of the Interna-
tional Union of Biochemistry and Molecular Biology on the
Nomenclature and Classification of Enzymes by the Reactions
they Catalyse, Available: http://www.chem.qmul.ac.uk/iubmb/
enzyme/. Accessed: July 27, 2006.

56. M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes
and Genomes, Nuc. Acids Res., 28: 27–30, 2000.

BIOINFORMATIC DATABASES 9



57. D. L. Wheeler, D. M. Church, R. Edgar, S. Federhen, W.
Helmberg, T. L. Madden, et al., Database resources of the
National Center for Biotechnology Information: update, Nuc.
Acids Res., 32: D35–D40, 2004.

58. F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A.
Doubleday, H. Higgs, et al., The Cambridge crystallographic
data centre: Computer-based search, retrieval, analysis and
display of information. Acta Cryst., 35: 2331–2339, 1979.

59. M. S. Babcock and W. K. Olson, A new program for the analysis
of nucleic acid structure: implications for nucleic acid structure
interpretation, Computation of Biomolecular Structures:
Achievements, Problems, and Perspectives, Heidelberg:
Springer-Verlag, 1992.

60. K. Grzeskowiak, K. Yanagi, G. G. Prive, and R. E. Dickerson,
The structure of B-helical C-G-A-T-C-G-A-T-C-G, and compar-
ison with C-C-A-A-C-G-T-T-G-G: the effect ofbase pair rever-
sal. J. Bio. Chem., 266: 8861–8883, 1991.

61. R. Lavery and H. Sklenar, The definition of generalized heli-
coidal parameters and of axis curvature for irregular nucleic
acids, J. Biomol. Struct. Dynam.6: 63–91, 655–667, 1988.

62. H. M. Berman, A. Gelbin, J. Westbrook, and T. Demeny. The
Nucleic Acid Database File Format. New Brunswick, NJ: Rut-
gers University, 1991.

63. S.-H Hsieh. Ndbfilter. A Suite of Translator Programs for
Nucleic Acid Database Crystallographic Archive File Format.
New Brunswick, NJ: Rutgers University, 1992.

64. J. Westbrook, T. Demeny, and S.-H. Hsieh. Ndbquery. A Sim-
plified User Interface to the Nucleic Acid Database. New Bruns-
wick, NJ: Rutgers University, 1992.

65. A. R. Srinivasan and W. K. Olson, Yeast tRNAPhC conforma-
tion wheels: A novel probe of the monoclinic and orthorhombic
models. Nuc. Acid Res., 8: 2307–2329, 1980.

66. M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya, The
KEGG databases at GenomeNet. Nuc. Acid Res., 30: 42–46,
2002.

67. M. Kanehisa, Post-genome Informatics. Oxford, UK: Oxford
University Press, 2000.

68. M. Kanehisa, Pathway databases and higher order function.
Adv. Protein Chem., 54: 381–408, 2000.

69. P.D. Karp, C. A. Ouzounis, C. Moore-Kochlacs, L. Goldovsky, P.
Kaipa, D. Ahren, S. Tsoka, N. Darzentas, V. Kunin, and N.
Lopez-Bigas, Expansion of the BioCyc collection of pathway/
genome databases to 160 genomes, Nuc. Acids Res., 19: 6083–
6089, 2005.

70. R. Caspi, H. Foerster, C. A. Fulcher, R. Hopkinson, J. Ingra-
ham, P. Kaipa, M. Krummenacker, S. Paley, J. Pick, S. Y. R., C.
Tissier, P. Zhang and P. D. Karp, MetaCyc: A multiorganism
database of metabolic pathways and enzymes, Nuc. Acids Res.,
34: D511–D516, 2006.

71. P. Romero, J. Wagg, M. L. Green, D. Kaiser, M. Krumme-
nacker, and P. D. Karp, Computational prediction of human
metabolic pathways from the complete human genome, Gen-
ome Biology, 6: 1–17, 2004.

72. C. A. Ball, I. A. Awad, J. Demeter, J. Gollub, J. M. Hebert, T.
Hernandez-Boussard, H. Jin, J. C. Matese, M. Nitzberg, F.
Wymore, Z. K. Zachariah, P. O. Brown, G. Sherlock, The
Stanford Microarray Database accommodates additional
microarray platforms and data formats, Nuc. Acids Res, 33:
D580–582, 2005.

73. M. C. Costanzo, J. D. Hogan, M. E. Cusick, B. P. Davis, A. M.
Fancher, P. E. Hodges, et al., The Yeast Proteome Database
(YPD) and Caenorhabditis elegans Proteome Database
(WormPD): Comprehensive resources for the organization

and comparison of model organism protein information. Nuc.
Acids Res., 28: 73–76, 2000.

74. G.D. Schuler, Pieces of the puzzle: Expressed sequence tags and
the catalog of human genes, J. Mol. Med., 75: 694–698, 1997.

75. K. H. Cheung, K. White, J. Hager, M. Gerstein, V. Reinke, K.
Nelson, et al., YMD: A microarray database for large-scale gene
expression analysis. Proc. of the American Medical Informatics
Association 2002 Annual Symposium, San Antonio, Texas,
November 9–11, 2002, pp. 140–144.

76. C. M. Bouton and J. Pevsner, DRAGON: Database Referencing
of Array Genes Online. Bioinformatics, 16(11): 1038–1039,
2000.

77. I. R. Lemischka, K. A. Moore, and C. Stoeckert. (2005) SCDb:
The Stem Cell Database, Available: http://stemcell.princeton.
edu/. Accessed: July 28, 2006.

78. D. Gardner, M. Abato, K. H. Knuth, R. DeBellis, and S. M Erde,
Philosophical Transactions of the Royal Society B: Biological
Sciences. 356: 1229–1247, 2001.

79. K. G. Herbert, N. H. Gehani, W. H. Piel, J. T. L. Wang, and C. H.
Wu, BIO-AJAX: An Extensible Framework for Biological Data
Cleaning, ACM SIGMOD Record, 33: 51–57, 2004.

80. G. Chang, M. Haley, J. A. M. McHugh, J. T. L. Wang, Mining
the World Wide Web, Norwell, MA: 2001.

81. H. Shatkay, N. Chen, and D. Blostein, Integrating image data
into biomedical text categorization. Bioinformatics, 22(14):
446–453, 2006.

82. A. S. Yeh, L. Hirschman, and A. A. Morgan, Evaluation of text
data mining fordatabasecuration: lessons learned fromtheKDD
Challenge Cup. Bioinformatics, 19 (Suppl 1): i331–339, 2003.

83. P. Buneman, A. Chapman, and J. Cheney, Provenance Man-
agement in Curated Databases, Proc. of ACM SIGMOD Inter-
national Conference on Management of Data, Chicago, Illinois
June 26–29, 2006.

KATHERINE G. HERBERT

Montclair State University
Montclair, New Jersey

JUNILDA SPIROLLARI

JASON T. L. WANG

New Jersey Institute of
Technology

Newark, New Jersey

WILLIAM H. PIEL

Peabody Museum of Natural
History, Yale University

New Haven, Connecticut

JOHN WESTBROOK

Protein Data Bank and Rutgers,
The State University of New
Jersey

Piscataway, New Jersey

WINONA C. BARKER

ZHANG-ZHI HU

CATHY H. WU

Protein Information Resource
and Georgetown University
Medical Center

Washington, D.C.

10 BIOINFORMATIC DATABASES



C

CONTENT-BASED MULTIMEDIA RETRIEVAL

With rapid advances in storage devices, networks, and
compression techniques, large-scale multimedia data has
become available to average users. How to index and search
multimedia data according to its real content is a challen-
ging problem, which has been studied for decades. Since the
1990s, content-based multimedia retrieval (CBMR) had
become an increasingly active field, which is defined as
searching for desired multimedia data (images or video/
audio segments/clips) relevant with issued queries, such
as image/audio/video examples, keywords, phrases, sen-
tences, or any combination of them.

Different from text retrieval, CBMR is a more challen-
ging task, as certain understanding of the content of multi-
media data is desired. However, the state-of-the-art
techniques for multimedia content understanding are still
far from satisfactory. It is well-known that a large gap
exists between the semantic meaning of multimedia con-
tent (what we really want) and the features of multimedia
data (what we can actually get). To reduce this gap, CBMR
mainly involves two basic problems. One problem is how to
represent queries and multimedia content. The other pro-
blem is how to match the representations of queries and
multimedia content.

Extensive works have been published on CBMR (1),
and different paradigms and techniques have been pro-
posed, such as query-by-example (QBE), annotation-
based retrieval (ABR), and multimodality retrieval.
The target of all these approaches is to address the above
two problems. Table 1 illustrates several techniques and
their corresponding solutions in terms of these two pro-
blems. QBE is the most typical scenario for multimedia
retrieval before the year of 2000, whereas ABR and
querying by combination of text and examples have
become two new mainstream scenarios thereafter. In
this article, we will introduce both classical CBMR and
the current mainstream. In detail, we will introduce the
following topics: feature extraction, query representa-
tion, high-dimensional feature indexing, annotation-
based retrieval, and interactive multimedia retrieval.
Besides that, we will also introduce several specific tech-
niques for web videos search, including categorization,
presentation, and recommendation. Before we introduce
these concepts in detail, we give an overview of all these
techniques.

OVERVIEW

Features for multimedia retrieval can be categorized into
two general types: low-level features and high-level fea-
tures. Low-level features include global features (such as
color histogram, color moment, and texture) and local fea-
tures (such as regional-level features and features extracted
from key-points) (2). High-level features are semantic con-
cepts (or keywords) used to describe the content of multi-

media data in text (3–5). The approaches to high-level
feature extraction are also called video/image annota-
tion or semantic concept detection. Manual annotation of
multimedia data is not only labor-intensive but also a time-
consuming process. Thus, automatic annotation methods
have been widely applied. Typically, it can be accomplished
by machine learning methods. For a given concept, its
annotation can be formulated as a binary classification
task. As a consequence, multimedia annotation has bene-
fited a lot from the advances of machine learning. More
sophisticated methods for multimedia annotation include
semisupervised learning, multiinstance learning, multila-
bel learning, and so on (6).

Queries and multimedia content can be described by low-
level features, high-level features, or both. QBE adopts low-
level features to retrieve desired data, whereas ABR uses
high-level features. InQBE, multimedia data are indexed by
low-level features, where users provide examples (such as
images orvideo clips) to retrieve similar results. However, in
many cases average users would prefer using text to
describe what they want. ABR aims to address this issue,
where multimedia data is annotated with a lexicon of
semantic concepts (i.e., high-level features), and then
queries are also mapped to these concepts and multimedia
data can thus be retrieved by text-based matching. Another
advantage of ABR based approach is that we can leverage
existing text-based indexing and searching technologies to
index and search multimedia content.

Multimodality retrieval, which has been actively stu-
died recently, is a combination of these two methods (QBE
and ABR) (5). For certain types of queries, for example,
those about persons and sports, QBE can achieve better
performance, whereas for some queries, such as those about
scenes, ABR may be better. Thus, multimodal retrieval can
outperform each individual method. It can be accomplished
by analyzing the type of queries and then fusing the two
methods or adopting the most suitable one. Fusing retrieval
results from multimodalities also often generates better
ones.

For QBE-based multimedia retrieval, typically low-
level features of high dimension are required. Computa-
tion cost will be increased significantly when feature
dimension is high and the size of the multimedia database
is large. Therefore, high-dimensional indexing methods
for efficient retrieval, such as k-d tree, are proposed to
tackle this difficulty. Dimension reduction is also a fre-
quently applied approach to deal with high-dimensional
features (7,8).

As mentioned previously, annotation-based retrieval
uses semantic concepts to index and search multimedia
content. The main research problem in ABR is automatic
annotation, which is typically based on a set of predefined
semantic concepts, or we can also call it ‘‘concept lexicon,’’
or ‘‘multimedia semantic ontology.’’ The semantic ontol-
ogy should satisfy several requirements, such as sufficient
broadness and high feasibility. A frequently applied

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



semantic ontology in academia is large-scale concept
ontology for multimedia (LSCOM) (9).

The gap between queries and multimedia content is a
central problem in CBMR. Frequently QBE, ABR, and
multimodal retrieval cannot bridge this gap. Interaction is
a promising approach to deal with this difficulty, which
incorporates human factors into the retrieval loops. Rele-
vance feedback is such an approach, which works in an
iterative manner. In each round, users manually label
some retrieved samples by indicating whether they are
relevant, and then retrieval models can be refined based
on these labeled samples. In this way, the semantic gap
between high-level queries and low-level features can be
gradually bridged. In addition, in ABR, users can improve
the retrieval performance by manually revising their
query representations (for example, changing/adding/
removing keywords) or model parameters according to
the current retrieved results.

Nowadays, many video-sharing websites are getting
popular and attracting more and more attentions. How
to access and manage web videos efficiently has got great
interests recently. Already several research efforts have
focused on web videos, including categorization, retrieval,
and recommendation. Note that web videos have richer
information than other videos as they typically have sur-
rounding textual information from web pages accompanied
with visual and audio content.

FEATURE EXTRACTION

Feature extraction is the basis of content-based image/
video/audio retrieval. The features here include low-level
visual/audio features and high-level semantic features.
Typical low-level visual features include color, texture,
shape, color layout, and spatial location. Low-level audio
features generally are computed on a window basis. These
window-based features can be considered as a short time
description of the signal for that particular moment in time.
In some cases, the low-level feature is not efficient for
content based retrieval (10). If users want to search images
or video segments by text query then semantic concepts are
required to describe the images and video segments. These
concepts may include, for example, human face, car, water,
mountain, beach, people walking, indoor, landscape, and so
on. In this section, we will have a brief introduction of the
widely-applied low-level features and the normally used
visual-semantic mapping methods.

Low-Level Visual Features

To perform content-based retrieval, visual features can
be either extracted from the entire image/key-frame (glo-
bal features) or from regions or feature points (local
features). Global feature-based retrieval is comparatively
simpler, whereas local features-based representation of
images is proved to be more consistent to human percep-
tion.

Color Feature. Color feature is one of the most widely
used features in image and video retrieval. Color features
can be defined based on different color spaces, and some
typical ones include RGB, LAB, LUV, HSV, and YCrCb
(2,10). Generally color features are relatively robust to
complex background and nearly invariant to image scale
and orientation. Color features can either be extracted from
the entire image or regions.

Histogram is the most commonly used color feature for
image and video retrieval. It denotes the joint probability of
the intensities of one or more of the three color channels.
Besides histogram, color moments and color sets are also
frequently applied. To overcome the quantization effects in
the color histogram, Strieker and Orengo (11) proposed to
use the color moments. To facilitate fast search over large-
scale image collections, Smith and Chang (12) proposed
color sets as an approximation to the color histogram.
Correlogramisalsoa frequently applied feature. Itdescribes
image by a table indexed by color pairs, where the kth entry
for<i, j>specifiestheprobabilityoffindingapixelcolor jata
distance k from a pixel of color i in the image. Such an image
feature turns out to be robust in tolerating large changes in
appearance of the same scene caused by changes in viewing
positions, changes in the background scene, partial occlu-
sions,camerazoomthatcausesradicalchangesinshape,and
so on (13).

Texture. Texture provides important structural infor-
mation of many real-world images, such as fruit skin, trees,
clouds, and fabric. Texture features describe the visual
patterns that have properties of homogeneity.

Usually applied texture features for describing the
visual information include spectral features, such as
Gabor texture or wavelet texture, and statistical features
(characterizing texture according to local statistical mea-
sures), such as the six Tamura texture features and the
wold features (2). Among the six Tamura features, that
is, coarseness, directionality, regularity, contrast, line-

Table 1. Several Techniques for CBMR and their Descriptions

Technique Description

Query-By-Example (QBE) Represent queries and multimedia content
by low-level features.

Annotation-Based Retrieval (ABR) Represent queries and multimedia content by
high-level features (i.e., semantic concepts).

Multimodality Retrieval Represent queries and multimedia content by multiple
modalities, such as visual features, audio and textual
features, or low-level features and high-level features.

Relevance Feedback Interactively bridging the gap between queries and
multimedia content.

2 CONTENT-BASED MULTIMEDIA RETRIEVAL



likeness, contrast, and roughness, the first three are more
effective, and the other three are related to the first three
and have less effectiveness on texture description. Among
the various texture features, Gabor texture and wavelet
texture are widely used for image retrieval and have been
reported to well match the perception of human vision (2).
Texture can also be extracted from both the entire image
and regions.

Shape. Some content-based visual information retrieval
applications require the shape representation of objects
that are generally invariant to translation, rotation, and
scaling, while others do not. These features include aspect
ratio, circularity, Fourier descriptors, moment invariants,
consecutive boundary segments, and so on (2,14).

Spatial Location. Besides color and texture, spatial loca-
tion is also useful for region-based retrieval. For example,
‘‘sky’’ and ‘‘sea’’ could have similar color and texture fea-
tures, but their spatial locations are typically different in
images and videos. ‘‘Sky’’ usually appears at the top of an
image, whereas ‘‘sea’’ at the bottom or middle. Spatial loca-
tion can be defined by two approaches. The first one is
absolute spatial location, such as upper, bottom, top, and
centroid, according to the location of the region in an image,
and the other one is relative spatial relationship, such as the
directional relationships between objects: left, right, above,
and below.

Handling Layout Information. Although the global fea-
ture (color, texture, edge, etc.) is simple to calculate and can
provide reasonable discriminating power in visual infor-
mation retrieval, it tends to give too many false positives
when the image collection is large. Many research results
suggested that using layout (both features and spatial
relations) is a better solution to image retrieval. To extend
the global feature to a local one, a natural approach is to
divide the whole image into subblocks and extract features
from each subblock. A variation of this approach is the
quadtree-based layout approach, in which the entire image
was split into a quadtree structure and each tree branch
had its own feature to describe its content.

Low-Level Audio Features

Typically, audio analysis algorithms are based on features
computed on a window basis. These window-based features
can be considered as a short time description of the signal
for that particular moment in time. A wide range of audio
features exist for audio computing tasks. These features
can be divided into two categories: time domain and fre-
quency domain features. The most typical audio features
include mel frequency cepstral coefficient (MFCC), zero
crossing rates, and short time energy.

Temporal Low-Level Features

Temporal low-level features are calculated from a set of
consecutive frames (or a period of time) that have two
typical forms: scalar and vector. Scalar temporal features
generally are statistical measures along a set of consecu-

tive frames (for visual features) or a period of time (for
audio features), say, a shot, a scene, or a 1-second window.
Typical scalar temporal feature is the average of general
low-level features on a set of frames (for visual features) or
a set of time windows (for audio features), for example,
average color histogram of the frames in a shot, and
average onset rate in a scene. Another exemplary scalar
temporal feature is average motion intensity and motion
intensity variance within a shot.

Vector temporal feature generally describes the tem-
poral pattern or variance of a given video clip. For example,
a trajectory of a moving object, curve of frame-based feature
differences, camera motion speed, speaking rate, onset, and
so on, are all vector temporal features.

High-Level Semantic Features

Various high-level semantic concepts, such as Indoor/
Outdoor, People, Car, and Water, occur frequently in the
images and video segments. Type of audio, such as music,
speech and noise; and type of music, such as rock, classical,
and jazz can be regarded as semantic audio features.

Semantic concepts derived from the image or the video
segments are very useful for content-based retrieval. How-
ever, the low-level featurescannotwellrepresenttheseman-
tics,whichisthewell-knownsemanticgapbetweenlow-level
feature and high-level semantic. Lots of approaches are
proposed to map the low-level feature to high-level seman-
tics. For video data, a great many approaches to high-level
semantic extraction have been proposed in the TRECVID
competition organized by NIST (15).

The techniques used to derive high-level semantics
include (1) using ontology to help detect high-level concepts,
(2)usingmachinelearningmethodstomaplow-levelfeatures
to high-level semantic concepts, (3) generating semantic
template to support high-level image retrieval, and (4) mak-
ing use of both the textual information obtained from the Web
and the visual content of images for Web multimedia data
annotation. Most systems exploit one or more of the above
techniques to implement high-level semantic-based retrieval.
As some of these topics will be discussed in other sections, we
will just have a brief introduction on the concept ontology and
machine learning methods.

Concept Ontology. In some cases, semantics can be
derived easily from our daily language. For example, sky
can be described as upper, uniform, and blue region. Using
such simple semantics, different intermediate-level descrip-
tors are defined to describe the low-level image features, for
example, light green, medium green, and dark green. These
descriptors form a simple vocabulary that is the so-called
object-ontology. Images or video keyframes can be classified
into different categories by mapping such descriptors to
high-level semantics (keywords) based on our knowledge,
for example, sky can be defined as light blue (color), uniform
(texture), and upper (spatial location).

As automatic annotation techniques attract increas-
ingly more attention in content based retrieval, it becomes
ever more important to standardize the defined semantic
concepts. Doing so can direct the multimedia research on a
well-defined set of semantics. The LSCOM is designed to

CONTENT-BASED MULTIMEDIA RETRIEVAL 3



optimize simultaneouslyutility to facilitate end-user access,
cover a large semantic space, make automated extraction
feasible, and increase observability in diverse broadcast
news video data sets (15).

In multimedia retrieval, however, ontology typically
only consists of a set of terms (concepts/keywords), it actu-
ally also contains the relationships of these terms, as well as
certain properties of the terms. Ontology with relationship
and properties has been introduced to improve the perfor-
mance of multimedia annotation in recent research.

Machine Learning. In most cases, to derive high-level
semantic features requires the use of formal tools such
as machine learning. The most commonly used learning
techniques in CBMR include supervised learning, semi-
supervised learning, and multiple-instance learning.
Supervised learning predicts the semantic category label
based on a set of input training samples. It is the mostly
used learning technique for feature–concept mapping. By
leveraging unlabeled data with certain assumptions, semi-
supervised learning methods are promising to build
more accurate models compared with supervised learning
methods. Some have been applied to enhance the perfor-
mance of multimedia annotation and retrieval. Multiple-
instance learning (MIL) is a type of learning algorithms to
tackle the problems with coarsely labeled information on
bags of instances. This model assumes that instances are
contained in bags and the instance labels are hidden. The
bag label is related to the hidden labels of the instances as
follows: the bag is labeled as positive if any single instance
in it is positive, otherwise it is labeled as negative. MIL is
widely applied in the content-based image retrieval (CBIR)
systems, in which each image is deemed as a labeled bag
with multiple instances, and the segmented regions in the
images correspond to the instances in the bags. In addition,
semantics from video data can be modeled as a multilayer
MIL (MLMIL) learning problem, in which both shot and
key-frame can be bag when key-frames of the shot and
regions in a key-frames are instances, respectively (16).

EVALUATION MEASURES FOR MULTIMEDIA RETREIVAL

Recall and precision are two widely applied ratios to mea-
sure the success of a retrieval system. Recall is defined as
the number of relevant (or correct) items returned by a
query divided by the total number of relevant items in the
corresponding data collection. Precision is defined as the
number of relevant items returned by a query divided by
the total number of items returned by the query. Usually,
precision and recall have an inverse relationship: the
higher the recall, the lower the precision, and vice versa.
The precision-recall (PR) curve gives a more comprehensive
illustration of a retrieval system’s performance.

Average precision (AP) is also a measure that is often
used in CBMR. Different from precision and recall, which
actuallydonotcounttherankoftheretrievedresult,average
precision measures the performance of a ranked list (a list of
retrieveditemsindescendingorderofrelevancescore).Letxk

be a variable representing the degree of relevance of the kth
item in a ranked list that a retrieval system generates for a
given query. xk ¼ 1 if the kth item is relevant; otherwise

xk ¼ 0. Then the precision of the top-m items is

pm ¼
1

m

Xm
k¼1

xk ð1Þ

Suppose n items are in the ranked list, and R is the number
of relevant items in the list, then the average precision of
this list is defined as

AP ¼ 1

R

Xn

m¼1

xm pm ð2Þ

Average precision is sensitive to the entire ranking, that is,
it will be changed if the order of relevant items and irrele-
vant ones is changed (order change within relevant items
and within irrelevant items will not change average preci-
sion). However, this measure is also stable as a small change
in ranking only makes a relatively small change in the final
score. In addition, average precision has both precision and
recall oriented factors, as it is computed over all relevant
retrieved items.

Recently researchers proposed a new measure called
average typicality precision (ATP) (16), which is more
sensitive to order change. As mentioned above, average
precision will not change if the order of two relevant (irre-
levant) items is changed. That is to say, average precision
actually is not sensitive to the ‘‘ranks’’ or the degree of
relevant of the retrieved relevant items. ATP takes the
degree of relevant (or the typicality score of the retrieved
relevant items) into account. Different from counting AP, in
which we only care whether a retrieved item is relevant or
irrelevant to the query, a score for each retrieved item to
indicate the degree of typicality is used to calculate ATP.
ATP is defined as

ATP ¼ 1

n

Xn

m¼1

tpm ð3Þ

tpm ¼

Pm
r¼1 grPm
r¼1 or

if gr > 0

0 if gr ¼ 0

8><
>: ð4Þ

where gr is the ground-truth of the rth sample’s typicality
score in the ranked list, and or is the r-th highest typi-
cality score in the ground-truth. ATP increases when
more and more highly relevant items are at the top of
the ranked list.

Besides recall, precision, average precision, and average
typicality precision, receiver operating characteristic
(ROC) curve (which actually is equivalent to PR curve
but presented in a different space) and AUC (area under
ROC curve) are applied seldom in multimedia retrieval.

QUERY REPRESENTATION

A query is represented in some specific forms by which the
user delivers the information of interested multimedia
data. Several types of query representation include:
QBE, query by text, and multimodality representation.

4 CONTENT-BASED MULTIMEDIA RETRIEVAL



Query by Text

A text used to specify the query may consist of one or more
keywords, phrases, or sentences, which may be matched
with the tags, annotations, title, and/or filename of the
desired content, to deliver high-level semantic information
for the interested multimedia data. Most commercial image
and video search engines make use of the associated textual
information to perform query by text.

The text can describe an object, a scene, or an action that
appears in the media (e.g. video). For example, the keyword,
‘‘the great wall,’’ means that the ideal video should contain
the object.A query, represented by a phrase ‘‘opening a door’’
may aim to find a video that contains the behavior of opening
a door. The text can also reflect the genre of the queried
video. For example, a query by word ‘‘comedy’’ means that
the user is interested in the comedy videos.

A query represented by a text is an easy way to deliver
users’ query requirements. Extracting the semantic infor-
mation from the video content is still a challenging problem,
and at present it is far away from practicality. It is very
useful in the case that some textual descriptions, including
the title, synopsis, tags, and so on, are associated with the
videos in the database. And automatic annotation is also
another type of text information that can be used to match
with textual query. Then the techniques of document
retrieval are borrowed for multimedia retrieval.

Query by Example (QBE)

QBE is a method that allows a user to specify a query
condition by providing examples that contain the features
of interest. Using this representation, the query condition
may be directly comparable with the objects. For subse-
quent comparison, the multimedia data items in the
database may be put into a preprocessor to extract the
representative features.

Compared with query by text, query by example is an
intuitive way of representing the user’s interest and also an
effective way to deliver the interest information because it
can represent subtle difference more easily than represen-
tation by words. However, extracting the hidden interest
information from the examples is not as straightforward as
query by text. To accomplish this goal, video and/or audio
analyzing and understanding techniques are required.

QBE for Image Retrieval. In QBE for image retrieval, five
popular example representations can be used with different
specified features: image, shape, spatial relation, color, and
texture (1,2,10,17–20).

The simplest representation of QBE is just a sample
image that is much related or similar to the desired images
in the database. This representation is easily given by a
user, but it is not a good way to pass the manifest interest
feature. A subsequent interactive relevance feedback, such
as correcting the retrieved results, may help clarify this
query. For example, a user may label some retrieved images
as relevant, and some retrieved image as irrelevant.
Exploring this feedback and the original query specification
will make the interest information clearer so that the
retrieval will be refined (21,22). More details about rele-
vance feedback will be introduced later in this article.

Query by shape aims to retrieve an image object by
evaluating the shapes of object. This query representation
is usually applied to the shape-related retrieval task. Two
forms of shape specification include: an image with a shape
to be retrieved and a shape drawn by a user (or query by
sketch).

Query by spatial relation is mainly adopted in geogra-
phical image retrieval (e.g., building and river retrieval).
This query specifies one or more component objects as an
example, in which the important information, the spatial
relation among them, is delivered. The possible relations
consist of disjoint, meet, overlap, contain, cover, inside,
covered-by, equal, and others.

Query by color aims to find images such that they have
principal color values and/or spatial distribution similar to
the query specification. The query can be specified by just
giving colors and/or the spatial distribution. Query by color
is often accompanied by the specification of spatial relation
of color components specified. In query evaluation, the color
difference, its spatial distribution, and the spatial relation
of color components may be valued together or separately to
the degree of meeting to the query specification.

Query by texture is typically applied to the task that
images with specific pattern are queried. This query is
specified by a texture image, and then the image database
is searched to find images that contain textures similar to
the specification.

QBE for Video Retrieval. A video consists of a series of
images. The simple way is just viewing it as a collection of
images, and then the techniques of query by example for
image retrieval may be used directly to specify the query for
video retrieval. However, the most important characteris-
tic of videos, which are different from the image, is the
temporal relation. A possible query may be a video clip in
which the temporal relation is latently encoded. Signal-
processing and computer-vision techniques are required to
analyze the spatial and temporal relations of video clips to
extract the interest information, and sometimes reanalysis
is necessary with given relevance feedback. Besides, query
specification techniques that use the temporal relations
mainly include query by motions and query by spatio-
temporal relations.

Query by motions is an approach to retrieve intrinsic
features of video data, that is the motion of objects that
appear in video. Extracting the motion information directly
from a video using the computer vision techniques is still a
difficult problem. Motion by sketch is a practical method to
realize motion-based retrieval. An example of motion may
be specified by moving a mouse, and the trajectory and
velocity are sampled. Additionally, size change of the object
may also be specified by drawing rectangles along with the
timeline. An alternative method is allowing a user to spe-
cify trajectory, duration and scaling as well as the basic
feature of image such as color, texture, and shape.

Query by spatio-temporal relations aims at specifying
the spatio-temporal correlation of multiple objects in the
video. A user may define two or more sets of spatial rela-
tions sequentially in accordance with the time, which
represent spatio-temporal relations of the objects. The
temporal relation of each object can be specified by giving

CONTENT-BASED MULTIMEDIA RETRIEVAL 5



the trajectory, velocity, and size. The spatio-temporal rela-
tion can also be used for multiple color components, in
which the spatial and temporal relations of different color
components are specified simultaneously.

QBE for Audio Retrieval. A general approach to content-
based audio indexing and retrieval is taken as (23):

(1) Audio is classified into a set of predefined types such
as speech, music, and noise. Some types can be
divided into small types. For example, music can
be classified into classical, rock, jazz, dance, and so
on.

(2) Different audio types may be processed and indexed
in different ways. For example, if the audio type is
speech, then speech recognition is typically applied
and the speech is indexed based on recognized text.
For other types, a set of low-level and/or perceptual
features are often extracted. Low-level features
include mel frequency cepstral coefficient (MFCC),
zero crossing rates, and short time energy. Exemp-
lary perceptual features include melody, pitch,
onset, and mood.

(3) Query audio pieces are then similarly classified,
processed, and indexed.

(4) Audio pieces are retrieved based on the similarity
between the query index and the audio indices in the
database.

QBE for audio retrieval are more applied for retrieving
data from music and speech data collections. Query-by-
humming (QBH) (24) is a typical setting for music retrieval.
QBH system aims at searching a desired piece of music by
singing or whistling its tune. It is very useful when you
want to find a song from music library but forget its title or
artist. In a QBH system, a person humming is entered to
the system as an example of a musical phrase. The system
retrieves the melody of songs that well match this given
example. Humming as the way of representing a query
condition for music retrieval is intuitive to a general user.
More audio retrieval techniques can be found in Refs. 2,10,
and 23.

Query by Multimodality. A query may be specified by
multimodality information related with the queried objects,
which usually occurs when multiple modalities associated
with the queried media are available at hand with a user.
Query by multimodality is a more promising specification
scheme than any single query specification, and it poten-
tially makes the retrieval easier because it provides more
solid interest information. For example, in video retrieval,
besides a keyword or phrase, we also can specify a query by
giving a video clip or an audio clip at the same time. Multi-
modality representation also brings a hot topic, that is, how
to fuse the formation derived from multimodality.

The most substantial work in this field is presented in
the TREC Video Retrieval Evaluation (16). It focuses its
efforts to promote progress in content-based retrieval from
video via an open, metrics-based evaluation, which is based
on the common video datasets and a standard set of queries.

The queries include text plus example images and example
videos optionally.

A typical multimodal video search system consists of
several main components, which include query analysis,
uni-modal search, reranking and multimodal fusion. A
generic video search framework is illustrated as Fig. 1.
By analyzing the query, the multimodal query (i.e., text,
key-frames, and shot) are input to individual search mod-
els, such as text-based, example-based, and annotation-
based model. Then a fusion and reranking model is applied
to aggregate the search results.

Usually, video retrieval systems tend to get the most
improvement in a multimodal fusion and reranking by
leveraging the above three uni-modal search models. In
most multimodal fusion systems for video search, different
fusion models are constructed for different query classes,
with the involvement of human knowledge. However, some
query classification methods are designed for a certain
video collection, and they may not be appropriate to other
collections. How to fuse these uni-model search models
remain a challenge and a meaningful research topic.
Reranking is a frequently applied technique to tackle
this problem. More details about this topic will be presented
later in this article.

HIGH-DIMENSIONAL FEATURE INDEXING

The main operations in content-based retrieval, especially
for QBE, include similarity evaluation between the features
of two objects and feature indexing in the database. The
former is time-expensive when the feature is high dimen-
sional, and the latter may suffer from the large-scale data-
base. To make content-based retrieval scalable, especially
for QBE, two techniques, dimension reduction and multi-
dimensional indexing, are explored for efficient retrieval.
Dimension reduction maps high-dimensional features into
lower-dimensional space to save computation cost used for
feature comparison (similarity calculation). Multidimen-
sional indexing is used to find efficient index structure of
a multimedia database to speed up the feature comparison
process between the query and the entire database.

Dimension Reduction

Dimension reduction aims to map a higher-dimensional
space to a lower-dimensional space (7). Two categories of
dimension reduction methods include linear and nonlinear
dimension reduction.

Linear Dimension Reduction. Linear dimension reduc-
tion consists of two basic steps: linear transformation
and dimension discarding. Linear transformation is opti-
mized with various criteria. Principal component analysis
(equivalent to Karhunen-Loeve Transformation) finds a
linear transformation such that the transformed features
are uncorrelated, or equivalently, the covariance matrix of
the transformed data is diagonal. The linear transformation
is obtained by performing singular value decomposition on
the covariance matrix of the original data. The next step
discards some dimensions that have smaller variances. By
incorporating supervised information, the resulted linear

6 CONTENT-BASED MULTIMEDIA RETRIEVAL



transformation may be discriminative. Linear discriminant
analysis is just such a linear transformation to maximize the
between-class variance and minimize the within-class
variance in the lower-dimensional space.

Nonlinear Dimension Reduction. Manyresearchersadvo-
cate the use of multidimensional scaling for content-based
retrieval applications. MDS comes in different flavors and
lacks a general precise definition. A typical approach is to
mapspaceRn intoRmusingmtransformations,eachofwhich
is a linear combination of appropriate radial basis functions.
Isometric feature mapping is a special MDS to find a lower-
dimensional space such that the Euclidean distance is ‘‘close
enough’’ to the ‘‘geodesic distance’’ on the original space.
Another popular method, called locally linear embedding,
aims to find a lower-dimensional space such that the locally
linear reconstructions in the original space are kept. An
augmentedrelationembeddingisproposedtomapthe image
space into a semantic manifold that faithfully grasps the
user’s preferences by combining the similarity relations
entailed by the content-based features, and the relevance
relations specified in the feedback.

Geometric hashing consists of hashing from a high-
dimensional space to a very low-dimensional space. In
general, hashing functions are not data dependent, and
the metric properties of the hashed space can be signifi-
cantly different from those of the original space. Ideally, the
hash function should spread the database uniformly across
the range of the low-dimensionality space, but the design
of the hashing function becomes increasingly complex with
the dimensionality of the original space. Hence it can be
applied to image database only when the dimensionality of
the original space is not so high.

The local linear dimension reduction methods, which
include clustering and singular value decomposition and
vector quantization principal component analysis, are
another categorization of nonlinear dimension-reduction
method. Those methods consist of two steps. First, the data
points are clustered. Second, a linear dimension reduction
method is adopted on each local cluster.

Multidimensional Indexing

Given an object database with multidimensional features,
an appropriate indexing structure should be constructed
to make the retrieval task efficient and effective. Many
methods can be used for indexing, which can be roughly
divided into two classes: vector-space and metric-space
methods (8).

Vector-Space Methods. Vector-space methods represent
objects (or featurevectors)assetsorpoints inad-dimensional
vector space. For example, gray histograms of images can
be viewed as points in high-dimensional (typically 255-
dimensional) space, in which each coordinate corresponds
to a different bin of the histogram. Algorithmically, vector-
space methods can be divided into nonhierarchical methods,
hierarchical decomposition methods, and projection-based
methods.

The basic nonhierarchical method is a brute-force
approach. It scans the whole database table sequentially,
and it apparently is very time consuming and not efficient.
Besides this naive method, mainly two other classes are
suggested: mapping a d-dimensional space onto a real line
through a space-filling curve, and partitioning the space
into nonoverlapping cells of known size. Most former
methods order the database using the positions of the
individual items on a space-filling curve, such as the Hibert
or Peano-Hilbert curve, or the z-ordering, and obtain a one-
dimensional representation. Then, a one-dimensional
indexing structure is used to index the mapped records.
The space-filling curves tend to map nearby points in the
original space into nearby points on a real line, so the one-
dimensional indexing techniques, such as range queries,
nearest-neighbor queries, and a-cut queries, may be rea-
sonably approximated by executing them in the projected
space. The latter partition the search space into a prede-
fined number of nonoverlapping fixed-size regions, which
do not dependent on the actual data contained in the
database. These two methods are well suited to index
low-dimensional spaces (when d < 10), but their efficiency
decays exponentially when d > 20.

Multimodal Fusion and Re-ranking Model

Retrieved
Video Set

Text-based Search

Search Model

Query Analysis

Textual Query

“ Find shots in which a boat
moves past.”

Query Examples

Video
Corpus Concept-based Search Visual Example-based

Search

Figure 1. Framework of multimodal video search system.

CONTENT-BASED MULTIMEDIA RETRIEVAL 7



Locality sensitive hashing is a recent technique which
proposed a locality sensitive hashing function to perform
approximate nearest neighbor searching in high-dimen-
sions. The basic idea is to hash the input items so that
similar items are mapped to the same buckets with high
probability (1).

Hierarchical decomposition methods recursively parti-
tion the search space into progressively smaller regions
that depend on the dataset. The hierarchical decomposition
can be finally represented by a tree. The decomposition
techniques vary at the partitioning step with the different
tree representation. The typical methods include quad-
trees, k-d trees, and R-trees. Those methods were originally
developed for low-dimensional search spaces, and unsur-
prisingly they suffer from the curse of dimensionality and
become ineffective in high-dimension cases (when d > 20).
One of recent researches adopted kd-trees to perform
approximate nearest neighbor searching in arbitrarily
high dimensions (7,8). The hierarchical clustering meth-
ods, such as hierarchical k-means or hierarchical Gaussian
mixture models, can also be used for indexing.

Projection-based methods are indexing structures that
support approximate nearest-neighbor queries. The tech-
niques vary with different types of approximation per-
formed. Basically two categories exist: fixed-radius
queries and (l þ e)-nearest-neighbor queries. Some former
methods project the database onto the coordinate axes,
maintain a list for each collection of projections, and use
the list to identify a region of the search space quickly that
contains a hyper-sphere of radius centered on the query
point. Other methods project the database onto appropriate
(d þ 1)-dimensional hyperplanes, and they find nearest
neighbors by tracing an approximate line query point and
finding its intersection with the hyperspaces. The latter
methods project the high-dimension database into selected
or randomly generated lines and index the projections.
Both methods are proper for high-dimension queries.

Metric-Space Methods. Metric-space methods index the
distances between database items rather than the indivi-
dual database items. They are useful when the distances are
provided with the dataset or where the selected metric is too
computationally complex for interactive retrieval (and
therefore it is more convenient to compute the pairwise
distances while adding items to the database). Most
metric-space methods are designed for nearest-neighbor
queries, few support alpha-cut, and almost no methods
support range queries.

The Voronoi diagram is a method that associates a
Voronoi region to each database item if the distance func-
tion is given. Different distance functions produce different
sets of Voronoi regions. Examples of Voronoi diagrams
include cell-and X-tree-based methods.

The ordered list method is proper when all pairwise
distances between database items are given. Each database
item is associated with an ordered list of all the other items,
which are sorted in ascending order of distance. Nearest-
neighbor queries are reduced to a point query followed by
scanning the list.

Vantage-point methods build a tree structure such that
each internal node indexes a disjoint subset of the database,

has two children nodes, and is associated with a database
item called vantage point. The items indexed by an internal
node are well organized according the distance. For exam-
ple, the median distance is computed, the items closer to the
vantage point than the median distance are associated with
the left subtree and the remaining ones with the right
subtree.

ANNOTATION-BASED RETRIEVAL

Early multimedia search, especially image search, can be
traced back to the 1970s. Since the 1990s, it has witnessed
strong renaissance in the multimedia search, especially the
classic content-based retrieval. Three paradigms exist on
the methodological spectrum of the content-based multi-
media search. At the earliest extreme, it is the pure
manual-labeling paradigm that labels multimedia content,
for example, images and video clips, manually with some
text labels or concepts and then use text retrieval techni-
ques to search multimedia content indirectly. At the other
extreme, it is the automatic content-based search paradigm
that can be fully automatic by using the low-level features
from multimedia analysis. QBE is the most typical method
in this paradigm. However, some difficulties develop in
these two paradigms. As for the first manual-based method,
a large amount of human labors are required, and the
manual labels suffer from the subjectivity of human per-
ception on multimedia content. However, the latter para-
digm of the fully automatic method is subject to the well-
known ‘‘semantic gap’’ between the low-level features and
high-level semantic concepts.

In the past few years, a promising paradigm of the
automatic annotation-based multimedia search has been
brought into many practical search systems. Compared
with the above two extremal paradigms on the methodo-
logical spectrum, the third annotation-based paradigm
strikes a better balance in the middle and it is an auto-
mated method as well (6,9,25). However, this approach is
not purely automatic because we need to label some con-
tent at the beginning as the training set. It is not purely
manual either because once a concept detector is trained
based on the labeled training set, the detector can auto-
matically annotate the same concept for other new images
and video clips.

Figure 2 illustrates a general framework for automatic
annotation (it is also called high-level feature extraction,
semantic concept detection, or concept detection in brief).
First a set of pre-labeled training samples are used to
learn the models of a set of semantic concepts or key-
words. These learned models are trained based on some
extracted features from training samples, such as color
moments, color histograms, color correlogram, wavelet
textures and some region features (e.g., SIFT descriptors,
shape-based features etc.). These obtained models can
then be used to predict the keywords or concepts of any
unlabeled images or video clips. Accordingly the trained
models here are referred to ‘‘classifiers.’’ With these pre-
dicted keywords or concepts, the text-based retrieval
techniques can be adopted to search the multimedia
collections.

8 CONTENT-BASED MULTIMEDIA RETRIEVAL



It is not difficult to recognize that the key factor of the
annotation-based paradigm is the classifiers that are used
to annotate the keywords to each images and video clips.
Some well-defined classifiers have been successfully
adopted in content-based retrieval system. These classi-
fiers can be categorized into two main approaches. The first
one is the generative models. They explicitly assume the
multimedia data is generated by some predefined distribu-
tions, such as Hidden Markov Model, Gaussian Mixture
Model and so on. These models define a joint probability
distribution P(x, y) over the observed low-level features x
and their corresponding labels y. In the step of prediction, a
conditional distribution PðyjxÞ is formed to predict the
keywords of images or video clips. Opposite to the genera-
tive model, the other genre of classifiers is discriminative
model. It directly models the dependence of the labels y on
the low-level features x, that is, the conditional distribution
PðyjxÞ Some examples of discriminative models used in
multimedia retrieval include support vector machine
(SVM), boosting, conditional random field, and so on.
Both generative and discriminative models are called by
‘‘supervised models’’ for they are all constructed on a pre-
labeled training set.

In recent years, another type of so-called ‘‘semisuper-
vised model’’ is also applied into annotation-based retrie-
val. Different from supervised models that only involve
training samples in the modeling step, the semisupervised
model takes into account the unlabeled samples as well. By
leveraging the distribution information revealed by a large
amount of unlabeled samples, the semisupervised model
can tackle the problem of insufficiency of training samples,
and hence the prediction accuracy can be improved. In
multimedia retrieval community, existing semisupervised
models include manifold models, cotraining models, and
so on.

Extracted semantic concepts can be used to index multi-
media content directly using text-based technologies, but
typically they are integrated with other textual informa-
tion, such as recognized speech, closed captions, and sur-
rounding text, or even integrated into a multimodality
multimedia retrieval system in which QBE techniques
are also applied.

The annotation accuracy of the state-of-the-art of
concept-detection algorithms is still not satisfactory in

the current stage. However, researchers proved that
when the number of semantic concepts is relatively large,
even it the annotation accuracy is low, annotated semantic
concepts (with low accuracy) still can improve the accuracy
of the search results significantly (9).

INTERACTIVE MULTIMEDIA RETRIEVAL

As fully automatic content-based retrieval (whether
under the typical query-by-example scenario, text-based,
or annotation-based scenario) frequently gives unsatisfied
results, loop human factor into the retrieval process has
been proposed to refine the retrieval accuracy gradually.
Typical interactive retrieval method is relevance feedback,
whereas interactions can be in other forms, such as manual
parameter adjustment and modality selection (3–5,26).

Relevance Feedback

Relevance feedback was originally developed for textual
document retrieval and then introduced to CBIR, mainly
for QBE scenario. Since then, this topic has attracted
tremendous attention in the CBIR community, and a vari-
ety of solutions has been proposed within a short period
(19,20).

Atypical framework for relevance feedback in CBIR
contains the following three main steps, which can be
expanded easily to handle video and audio data:

Step 1: For a given query, the machine first provides a list
of ranked images according a certain similarity
metric.

Step 2: The user marks certain number of ranked images
as relevant to the query (positive samples). or
irrelevant (negative samples).

Step 3: The machine learns and tries again.

Generally speaking, the earlier CBIR systems without
interaction suffer from the two difficulties:

(1) The gap between high-level concepts and low-level
features: Low-level visual similarity measures, such
as color histogram, do not necessarily match the
high-level semantics of images. For example, all
three images in Fig. 3 are about cars, but they are
of different colors and backgrounds. Their color his-
tograms are very different, although their semantics
are close.

(2) Subjectivity of human’s perception on media con-
tent: Different persons, or the same person under
different circumstances, may perceive the same
visual content differently. For example, in Fig. 4,
one may be interested in the eagle in (a), so (b) is
more relevant to (a) compared with (c). But another
person may be more interested in the water in (a),
and thus (c) is more relevant to what he/she is
looking for.

The early relevance feedback schemes for CBIR sys-
tems can be classified into two approaches: query point

Figure 2. General framework for annotation-based multimedia
retrieval.

CONTENT-BASED MULTIMEDIA RETRIEVAL 9



movement (query refinement) and reweighting (similarity
measure refinement).

The query point movement method tries to improve the
estimate of the ‘‘ideal query point’’ by moving it toward
positive example points and away from bad example points
in the query space. Various ways can be used to update the
query. A frequently used technique is Rocchio’s formula.
That is, for a set of relevant documents DR and non-
relevant documents DN given by a user, the optimal query
is defined as:

Q0 ¼ aQþ b
1

NR

X
i2DR

Di

 !
� g

1

NN

X
i2DN

Di

 !
ð5Þ

where a, b, and g are suitable constants; NR and NN are
the number of documents in DR and DN, respectively.
This technique is also referred to as a learning query
vector. It was used in a multimedia retrieval system
called ‘‘MARS’’ to replace the document vector with visual
feature vectors.

The reweighting method enhances the importance of a
feature’s dimensions that help retrieve relevant images
and reduce the importance of the dimensions that hinder
this process. This process is achieved by updating the
weights of the feature vectors in the distance metric.

One of the most influential classic researches on rele-
vance feedback has clear roots in the document retrieval
field. For example, learning based on ‘‘term frequency’’ and
‘‘inverse document frequency’’ in the text domain was
transformed into learning based on ranks of the positive
and negative images along each feature axis in the con-
tinuous feature space.

The classic query point movement method and reweight-
ing method are both simple learning methods. Relevance
feedback can be considered as a learning problem: A user
provides feedback about examples retrieved as a result of a
query, and the system learns from such examples how to
refine the retrieval results.

Three basic issues are generated in relevant feedback for
multimedia retrieval, which include small sample size,
asymmetry of training samples, and real-time requirement.

The number of training samples is typically less than 20
per round of iteration, which depends on the user’s patience
and willingness to cooperate. It is very small relative to the

dimension of the feature space (from dozens to hundreds, or
even more). For such small sample size, some existing
learning machines such as SVMS cannot give stable or
meaningful results, unless more training samples can be
elicited from the user.

In the relevance feedback process, there are usually
many more negative feedback samples than positive
ones. Learning algorithms tend to be overwhelmed by
the major class and ignore the minor one.

Because the user is interacting with the machine in real
time, the algorithm should be sufficiently fast and should
avoid heavy computations over the whole dataset.

Most published work has focused on the above three
issues. However, it should be noted these do not cover all
the issues when addressing relevance in CBIR as a learn-
ing problem. Other important ones include how to accu-
mulate knowledge learned from the feedback and how to
integrate low-level visual and high-level semantic fea-
tures in query.

Interactive Search

Image/video search is defined as searching for the relevant
image/video with issued textual queries (keywords,
phrases, or sentences) and/or provided image examples
or video clips (or some combination of the two). In the
TRECVID video search task hold by NIST, prior work
has established that a human searcher in the loop signifi-
cantly outperforms fully automated video search systems
without such a human searcher.

Actually, relevance feedback can also be regarded as a
type of interactive search, whereas the interactions in
interactive search can be in different forms instead of
only indicating whether a certain number of retrieved
results are positive or negative. Interactive search is first
proposed in TRECVID video search.

InTRECVIDvideosearch,interactivesearchallowsusers
to fuse together multiple searches within each query, which
wastypicallydone foranswering the query topics. A success-
ful example of interactive search is the IBM Marvel Multi-
media Analysis and Retrieval System (IBM, Armonk, NY).
It provides search facilities for classic content-based retrie-
val, model-based (annotation-based) retrieval, and text/
speech-based retrieval, and any combination of them. Given
the statement of information need and query content, the

Figure 3. The gap between high-level
concepts and low-level features.

Figure 4. Subjectivity of human per-
ception.

10 CONTENT-BASED MULTIMEDIA RETRIEVAL



user would typically issue multiple searches based on the
example content, models/concepts, and speech terms.

Multiple searches are combined using a set of aggrega-
tion functions. Consider scored results list Rk for query k,
where Dk(n) gives the score of item with id = n and Qd(n) the
scored result for each item n in the current user-issued
search, then the aggregation function rescores the items
using function Diþ1ðnÞ ¼ FaðDiðnÞ;QdðnÞÞ. The following
aggregation functions are frequently applied:

Average: Taking the average of the scores of prior result list
and current user-search. ‘‘Average’’ deals with ‘‘and’’
semantics, that is, it can be used for queries like ‘‘retrieve
items that are indoors and contain faces’’:

Diþ1ðnÞ ¼
1

2
ðDiðnÞ;QdðnÞÞ ð6Þ

Minimum: Retaining lowest score from prior result list and
current user-issued search. ‘‘Minimum’’ provides ‘‘or’’
semantics. This function can be useful in searches such
as ‘‘retrieve items that are outdoors or have music’’

Diþ1ðnÞ ¼ minðDiðnÞ;QdðnÞÞ ð7Þ

Sum: Taking the sum of scores of prior results list and
current user-search. Provides ‘‘and’’ semantics.

Diþ1ðnÞ ¼ DiðnÞ þQdðnÞ ð8Þ

Product: Taking the product of scores of prior results list
and current user-search. Provides ‘‘and’’ semantics and
better favors those matches that have low scores compared
to ‘‘average.’’

Diþ1ðnÞ ¼ DiðnÞ �QdðnÞ ð9Þ

Consider user looking for items showing a beach scene.
Without interaction, the user can issue a query with the
following sequence of searches:

(1) Search for images with color similar to example
query images of beach scenes.

(2) Combine results with model¼ ‘‘sky’’ using ‘‘average’’
aggregation function

(3) Combine with model ¼ ‘‘water’’ using ‘‘product’’
aggregation function

(4) Combine with text ¼ ‘‘beach’’ using ‘‘minimum’’
aggregation function

On the other hand, for interactive search operations the
user can issue the following sequence of searches in which
the user views the results at each stage, which corresponds
to the following query:

(1) Search for text ¼ ‘‘beach’’,

(2) Then, select results that best depict beach scenes and
search again based similar color. And then combine
with previous results using ‘‘product’’ aggregation
function,

(3) Combine with model¼ ‘‘sky’’ using ‘‘average’’ aggre-
gation function,

(4) Combine with model ¼ ‘‘water’’ using ‘‘product’’
aggregation function

The user interactively builds a query by choosing
sequentially among the descriptors and by selecting from
various combining and score aggregation functions to fuse
results of individual searches. The additional interactivity
improves the retrieval performance.

CONTENT-BASED WEB VIDEO RETRIEVAL

Content-based video retrieval, as a challenging yet promis-
ing approach to video search, has attracted the attentions
of many researchers during the last decades. Many meth-
ods are proposed, and some systems are also realized.
Currently, with the advent of new video techniques and
ever developing network technology, video-sharing web-
sites and video-related Internet-based services are becom-
ing more and more important on the Web. As a result, many
videos are generated or uploaded onto the Web every day.
This situation brings new challenges and difficulties to
content-based video retrieval (27).

Large-Scale Web Video Categorization

Video categorization is used to classify videos into some
predefined categories. Traditionally, most methods of video
categorization categorize videos into certain typical genres,
such as movies, commercials, cartoons, and so on. However,
for web videos, the categories include not only genres, but
also semantic concepts, such as autos, animals, and so on.
Figure 5 shows the category definition excerpted from
YouTube (YouTube, LLC, Mountain View, CA).

Using multimodality is a promising approach to cate-
gorize web videos. Low-level and semantic features from
different information sources, such as visual, audio, and the
surrounding text in the web page affiliated with the video
can be applied. A classifier can be trained based on one type
of features, and then improved results can be obtained by
fusing all the output from these classifiers (27).

Content-Based Search Result Re-Ranking

For video retrieval, many information sources can contri-
bute to the final ranking, including visual, audio, concept
detection, and text (ASR, OCR, etc.). Combining the
evidence from the various modalities often improves the
performance of content-based search significantly (28).

One intuitive solution to combine such modalities is to
fuse the ranking scores outputted by the search engines
using each modality. However, simply fusing them will lead
to inaccuracy and maybe propagate the noise. Some
researchers propose to train the fusion model separately
for different query classes. Some efforts focus on how to

CONTENT-BASED MULTIMEDIA RETRIEVAL 11



classify the queries automatically, which still remains an
open problem.

In the experiments of video retrieval, text information
often leads to better performance than other individual
modalities. Hence, some methods emerge that first use
text information to rank the videos and then use other
evidences to adjust the order of videos in the rank list. It is
called reranking. Some researchers used the technique
called pseudo relevance feedback to rerank the video search
results. They assume that the top and bottom fractions of
the rank list can be regarded as the positive and negative
samples with significant confidences, and then they use
these samples to train a model to rerank the search result.

However, such assumption cannot be satisfied in most
situations because the state-of-the-art performance of text-
based video search is low. One proposed two methods to
rerank the video search result from different viewpoints.
One is information theory driven reranking, called IB-
reranking. It assumes the videos that have many visually
similar videos with high text relevance should be ranked
top in the search result. The other is context ranking,
which formulate the reranking problem into a random
work framework.

Content-based search result reranking, although
attracted the attentions from the researchers and is applied
successfully to TRECVID video search task, many issues
need to be solved. The most important is deploying it into
real-world video search system to observe whether it can
improve the performance.

Content-Based Search Result Presentation

Search result presentation is a critical component for web
video retrieval as it is the direct interface to the users. A

good search result presentation makes users browse the
videos effectively and efficiently.

Typical video presentation forms include static thumb-
nail, motion thumbnail, and multiple thumbnails.

Static Thumbnail: an image chosen from the video frame
sequence, that can represent the video content briefly.

Motion Thumbnail: a video clip composed of the smaller
clips selected from the original video sequence based on
some criteria to maximize the information preserved in the
thumbnail. Motion thumbnail generation uses the same or
similar technology for video summarization.

Multiple Thumbnails: selecting multiple representative
frames from the video sequence and show them to the user
so that the user can quickly recognize the meaning of the
video. The number of thumbnails can be determined by the
complexity of thevideocontentorcanbescalable (that is, can
bechangedaccordingtousers’request).Multiplethumbnails
are also generated by video summarization algorithms.

Content-Based Duplicate Detection

As the techniques and tools for copying, recompressing, and
transporting videos can be acquired easily, the same videos,
although with different formats, frame rates, frame sizes,
or even some editing, so-called duplicates, are distributed
over the Internet. In some video services, such as video
search and video recommendation, duplicated videos that
appear in the results will degrade the user experience.
Therefore, duplicate detection is becoming an ever impor-
tant problem, especially when facing web videos. In addi-
tion, integrating the textual information of video duplicates
also help build a better video index.

Figure 5. The categories excerpted
from YouTube.

12 CONTENT-BASED MULTIMEDIA RETRIEVAL



Video duplicate detection is similar to QBE-based video
search in that they are both to find similar videos, with the
difference in similarity measure between videos. For video
search, the returned videos should be the videos semanti-
cally related to or matching the query video, whereas for
duplicate detection, only the duplicates should be returned.
Three components for duplicate detection are video signa-
ture generation, similarity computation, and search
strategy.

Video signature is a compact and effective video repre-
sentation. Because videos are a temporal image sequence, a
sequence of the feature vectors of the frames sampled from
the video can be viewed as the video signature. Also, shot
detection can be processed first and then the feature vector
sequence extracted from the shot key frames can be
regarded as video signature. In addition, the statistical
information of the frames can be employed as video signa-
ture.

The similarity measure depends on the video signature
algorithm, which includes L1 norm, L2 norm, and so on.
The high-dimensional indexing techniques can be used to
speed up the search for duplicate detection, and some
heuristic methods that use the characteristics of the spe-
cific video signatures can also be employed.

The difficulties of video duplicate detection lie in that:
(1) It requires low computational cost for video signature
generation as well as the duplicate search so as to be applied
in large-scale video set and (2) the forms of the video
duplicates are diverse so that it requires an effective and
robust video signature and similarity measure.

A closely related topic to duplicate detection is copy
detection, which is a more general algorithm to detect
duplicates. Technologies for copy detection often are also
called video signatures. Different from duplicate detection,
which only cares about videos of the same or close dura-
tions, copy detection also needs to detect whether a short
clip exists in a longer video, or even whether two videos
share one or more segments. Copy detection is generally
used against pirating.

Web Video Recommendation

Helping users to find their desired information is a central
problem for research and industry. For video information,
basically three approaches are dedicated to this problem:
video categorization, video search, and video recommenda-
tion. Many video-sharing websites, like YouTube, MSN
Soapbox, and even most video search websites, like Google
(Mountain View, CA) and Microsoft Live Search (Microsoft,
Redmond, WA), have provided video recommendation
service.

Video recommendation, in some sense, is related to video
search in that they both find the videos related to the query
(for video search) or a certain video (for video recommenda-
tion). However, they are also different in two aspects. First,
video search finds the videos mostly matching the query,
whereas video recommendation is to find the videos related
to the source video. For example, ‘‘Apple’’ video is not a good
search result for a query ‘‘Orange’’, whereas it may be a
good recommendation for an ‘‘Orange’’ video. Second, the

user profile is an important component for video recom-
mendation.

Most recommendation systems use the user profiles to
provide recommended video lists to the specific user. The
user’s click and selection of videos and ratings to some items
can be parts of user profile, besides the user location and
other user information. As well, most video recommenda-
tion systems use the text information (such as the name of
actors, actresses, directors for the movie, and the surround-
ing text for the web video) to generate the recommendation
list. Content-based video analysis techniques can provide
important evidence besides user profile and text to improve
the recommendation. With such information, video recom-
mendation can be formulated into a multi-modality analy-
sis framework (29).

CONCLUSION

As aforementioned, CBMR is more challenging than a text
search as it requires certain understanding the content of
multimedia data, whereas the state-of-the-art of visual and
audiocontentunderstandingisstillfarfromapplicable.Most
existing content-based systems are based on low-level fea-
ture comparison, and some are based on limited semantic
analysis. One of the most significant problems of existing
CBMR systems is that they are basically only applicable for
relatively smaller data collections. Existing widely-applied
large-scale multimedia retrieval systems, such as, video and
image search engines provided by Yahoo (Sunnyvale, CA),
Microsoft, and Google, are mostly based on textual keyword
indexing and search (surrounding text, file metadata, tags
andrecognizedspeech).DevelopmenthasAlongwaytogofor
applicable large-scale content-based multimedia retrieval.

High-dimensional feature indexing is still a challenging
problem for QBE-based multimedia retrieval, especially for
enabling large-scale data indexing and search. Represen-
tative content-aware features are also still not satisfactory
in the current stage. Multimedia annotation-based retrie-
val is a promising direction, but current applicable key-
words are still limited and large-scale (in term of both
semantic concepts and multimedia dataset) and compre-
hensive annotation is still difficult. Recently, by leveraging
resources including existing textual information, tags, and
community of users in CBIR attracts more and more inter-
ests of researchers. Some researchers believe leveraging
these resources is promising to solve difficult problems as
multimedia content understanding. Integrating active
learning and/or relevance feedback alike technologies are
possible solutions to using these information.

BIBLIOGRAPHY

1. V. N. Gudivada and V. V. Raghavan, Content based image
retrieval systems, Computer 28 (9): 18–22, 1995.

2. J. Foote, An overview of audio information retrieval, Multim.
Syst., 7: 2–10, 1999.

3. T.-S. Chua et al., TRECVID 2004 search and feature extraction
task by NUS PRIS, TREC Video Retrieval Evaluation Online
Proc., 2004.

CONTENT-BASED MULTIMEDIA RETRIEVAL 13



4. M. Campbell, et al., IBM research trecvid-2006 video retrieval
system, In TREC Video Retrieval Evaluation (TRECVID)
Proc., 2006.

5. S.-F. Chang, et al., Columbia University trecvid-2006 video
search and high-level feature extraction, In TREC Video
Retrieval Evaluation (TRECVID) Proc., 2006.

6. G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, T. Mei, and H.-J. Zhang,
Correlative multi-label video annotation, ACM Internat. Conf.
Multimedia (ACM MM), Augsburg, Germany, 2007.

7. M. Beatty and B. S. Manjunath, Dimensionality reduction
using multi-dimensional scaling for content-based retrieval,
ICIP 2: 835–838, 1997.

8. V. Castelli, Multidimensional indexing structures for content-
based retrieval, Image Datab. 373–433, 2002.

9. A. G. Hauptmann, R. Yan, and W.-H. Lin, How many high-
level concepts will fill the semantic gap in news video retrie-
val? Internat. Conf. on Image and Video Retrieval (CIVR),
2007.

10. A. Yoshitaka and T. Ichikawa, A survey on content-based
retrieval for multimedia databases, IEEE Trans. Knowl.
Data Eng., 11(1): 81–93, 1999.

11. M. Strieker and M. Orengo, Similarity of color images, Proc. Of
SPIE: Storage and Retrieval for Image and Video Databases
III, Vol. 2420, 1995, pp. 381–392.

12. J. R. Smith and S.-F. Chang, Single color extraction and image
query, Proc. IEEE Int. Conf. on Image Proc., 1995.

13. J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih,
Image indexing using color correlograms, Proc. IEEE Comp.
Soc. Conf. Comp. Vis. And Patt. Rec., 1997, pp. 762–768.

14. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image
Processing and Applications, Berlin: Springer, 2000.

15. A. F. Smeaton, P. Over and W. Kraaij, 2006. Evaluation
campaigns and TRECVid, Proc. of the 8th ACM International
Workshop on Multimedia Information Retrieval (MIR), Santa
Barbara, California, 2006. ACM Press, New York, 321–330.

16. Z. Gu, Tao Mei, J. Tang, X. Wu and X.-S. Hua. MILC^2: A
multi-layer multi-instance learning approach to video concept
detection, Int. Conf. on Multi-Media Modeling (MMM) Kyoto,
Japan, 2008.

17. W. Niblack, R. Barber, et al., The QBIC project: querying
images by content using color, texture and shape, Proc.
SPIE Storage and Retrieval for Image and Video Databases,
1994.

18. W. Y. Ma and B. Manjunath, Netra: a toolbox for navigating
large image databases, Proc. of the IEEE International Con-
ference on Image Processing, 1997, pp. 568–571.

19. A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and
R. Jain, Content-based image retrieval at the end of the early
years, Trans. Patt. Analy. Mach. Intell., 22(12): 1349–1380,
2000.

20. F. Long, H. J. Zhang, and D. G. Feng, Fundamental of content-
based image retrieval, In: Multimedia Information Retrieval
and Management, Berlin: Springer Press, 2002.

21. Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra, Relevance
feedback: a power tool for interactive content-based image
retrieval, IEEE Transactions on Circuits and Systems for
Video (CSVT), 1998.

22. X. S. Zhou and T. S. Huang, Relevance feedback in image
retrieval: a comprehensive review, Multimedia Sys., 2003.

23. G. Lu, Indexing and retrieval of audio: a survey, Multime. Tools
Applicat., 15: 269–290, 2001.

24. A. Ghias, J. Logan, and D. Chamberlin, Query by humming,
Proc. ACM Multimedia, 1995, pp. 231–236.

25. Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, A survey of content-
based image retrieval with high-level semantics, Pattern
Recognit., 40: 262–282, 2007.

26. J. R. Smith, A. Jaimes, C. Y. Lin, M. Naphade, and A. P. Natsev,
Interactive search fusion methods for video database retrieval,
Proc. of International conference on Image Processing (ICIP),
2003.

27. L. Yang, J. Liu, X. Yang, and X.-S. Hua, Multi-Modal Web
Video Categorization, ACM SIGMM International Conference
Workshop on Multimedia Information Retrieval (ACM MIR), in
conjunction with ACM Multimedia, Augsburg, Germany, 2007.

28. W. H. Hsu, L. Kennedy, and S.-F. Chang, Reranking methods
for visual search, IEEE Multime. Mag., 13(3), 2007.

29. B. Yang, T. Mei, X.-S. Hua, L. Yang, S.-Q. Yang, and M. Li,
Online Video Recommendation Based on Multimodal Fusion
and Relevance Feedback, ACM Internat. Conf. on Image and
Video Retrieval (CIVR 2007), Amsterdam, The Netherlands,
2007.

FURTHER READING

Y. Rui, T. S. Huang, and S.-F. Chang, Image retrieval: current
techniques, promising directions, and open issues, J. Vis. Commu-
nicat. Image Represen.10:39–62,1999.

X.-S. Hau and G.-J. Qi, Online multi-label active annotation –
towards large-scale content-based video search, ACM Multimedia
2008, Vancouver, Canada, 2008.

X. Tian, L. Yang, et al., Bayesian video search reranking, ACM
Multimedia 2008, Vancouver, Canada, 2008.

XIAN-SHENG HUA

Microsoft Research Asia
Beijing, China

YONG RUI

Microsoft Advanced Technology
Center

Beijing, China

14 CONTENT-BASED MULTIMEDIA RETRIEVAL



C

COOPERATIVE DATABASE SYSTEMS

Consider posing a query to a human expert. If the posed
query has no answer or the complete data for an answer are
not available, one does not simply get a null response. The
human expert attempts to understand the gist of the query,
to suggest or answer related questions, to infer an answer
from data that are accessible, or to give an approximate
answer. The goal of cooperative database research is to
create information systems with these characteristics (1).
Thus, the system will provide answers that cooperate with
the user. The key component in cooperative query answer-
ing is the integration of a knowledge base (represents data
semantics) with the database. Research in cooperative
answering stems from three areas: natural language inter-
face and dialogue systems, database systems, and logic
programming and deductive database systems. In this
article, we shall place emphasis on cooperative databases.

We shall first provide an overview of cooperative data-
base systems which covers such topics as presuppositions,
misconceptions, intensional query answering, user model-
ing, query relaxation, and associative query answering.
Then, we present the concept of the Type Abstraction
Hierarchy (TAH) which provides a structured approach
for query relaxation. Methodologies for automatic TAH
generation are discussed. Next, we present the cooperative
primitives for query relaxation and selected query exam-
ples for relational databases. Then, we present the relaxa-
tion controls for providing efficient query processing and
the filtering of unsuitable answers for the user. The case-
based approach for providing relevant information to query
answers is then presented. The performance of a set of
sample queries generated from an operational cooperative
database system (CoBase) on top of a relational database is
reported. Finally, we discuss the technology transfer of
successful query relaxation to transportation, logistics
planning applications, medical image databases, and elec-
tronic warfare applications.

OVERVIEW

Presuppositions

Usually when one asks a query, one not only presupposes
the existence of all the components of the query, but one also
presupposes an answer to the query itself. For example,
suppose one asks ‘‘Which employees own red cars?’’ One
assumes there is an answer to the query. If the answer is
‘‘nobody owns a red car,’’ the system should provide the user
with further explanation (e.g., in the case where no
employee owns a red car because no employee owns a car
at all). To avoid misleading the user, the answer should be
‘‘There are no employees who own a red car because no
employee owns a car at all.’’ Therefore in many queries,
‘‘No’’ as an answer does not provide the user with sufficient
information. Further clarification is necessary to resolve

the presupposition problem (2). False presuppositions
usually occur with respect to the database’s state and
schema. Presuppositions assume that the query has an
answer. If any presuppositions are false, the query is non-
sensical. The following is a method to detect false presup-
positions. Let us represent a query as a graph consisting of
arcs at the nodes and binary relations between the arcs. The
graph is a semantic network, and the query is reexpressed
in binary notation. The query answering system checks to
see that each connected subgraph is nonempty. If any is
empty, this indicates a failed presupposition. A prototype
system called COOP (A Cooperative Query System) was
constructed and operated with a CODASYL database to
demonstrate such cooperative concepts (3).

Misconceptions

A query may be free of any false presuppositions but can still
cause misconceptions. False presuppositions concern the
schema of the knowledge base. Misconceptions concern
the scope of the domain of the knowledge base. Miscon-
ceptions arise when the user has a false or unclear under-
standing of what is necessarily true or false in the database.
For example, for the query, ‘‘Which teachers take CS10?’’,
the corresponding answer will be ‘‘None’’ followed by the
explanation from the domain knowledge, ‘‘Teachers teach
courses’’ and ‘‘Students take courses’’ (4). Whenever the user
poses a query that has no answer, the system infers the
probable mismatches between the user’s view of the world
and the knowledge in the knowledge base. The system then
answers with a correction to rectify the mismatch (5).

Intensional Query Answering

Intensional query answering provides additional informa-
tion about the extensional answer such as information
about class hierarchies that define various data classes
and relationships, integrity constraints to state the rela-
tionships among data, and rules that define new classes
in terms of known classes. Intensional query answering
can also provide abstraction and summarization of the
extensional answer. As a result, the intensional answers
can often improve and compliment extensional answers.
For example, consider the query ‘‘Which cars are equipped
with air bags?’’ The extensional answer will provide a very
long list of registration numbers of all the cars that are
equipped with air bags. However, an intensional answer
will provide a summaried answer and state ‘‘All cars
built after 1995 are equipped with air bags.’’ Note that
intensional answering gives more meaning to the answer
than does the extensional answer. Furthermore, inten-
sional answers take less time to compute than extensional
answers. There are different approaches to compute
intensional query answers which yield different quality
of answers (6–12). The effectiveness of the answer can be
measured by completeness, nonredundancy, optimality,
relevance, and efficiency (13).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



User Models

Cooperative query answering depends on the user and
context of the query. Thus, a user model will clearly aid
in providing more specific query answering and thus
improve search efficiency.

User models contain a representation of characteristic
information about the user as well as a description of the
user’s intentions and goals. These models help interpret the
content of a user’s query and effectively customize results
by guiding the query facility in deriving the answer.

Three types of knowledge about a user that are relevant
to cooperative query answering are interests and prefer-
ences, needs, and goals and intentions. Interests and pre-
ferences direct the content and type of answers that should
be provided. For example, (14) and (15) rewrite queries to
include relevant information that is of interest to the user.
User needs may vary from user to user. They can be
represented by user constraints (16). The notion of user
constraints is analogous to the integrity constraints in
databases. Unlike integrity constraints, user constraints
do not have to be logically consistent with the database.
Goals and intentions do not vary from user to user. Rather,
they vary from session to session and depend on the user
who is attempting to achieve the goal. Past dialogue, user
models, and other factors can help a system to determine
the probable goals and intentions of the user (17–20) and
also clarify the user’s goals (21). The system can also
explain the brief of the system that conflicts with the user’s
belief to resolve the user’s misconceptions (22,23). Hemerly
et al. (24) use a predefined user model and maintain a log of
previous interactions to avoid misconstruction when pro-
viding additional information.

Query Relaxation

In conventional databases, if the required data is missing, if
an exact answer is unavailable, or if a query is not well-
formed with respect to the schema, the database just
returns a null answer or an error. An intelligent system
would be much more resourceful and cooperative by relax-
ing the query conditions and providing an approximate
answer. Furthermore, if the user does not know the exact
database schema, the user is permitted to pose queries
containing concepts that may not be expressed in the
database schema.

A user interface for relational databases has been pro-
posed (25) that is tolerant of incorrect user input and allows
the user to select directions of relaxation. Chu, et al. (26)
proposed to generalize queries by relaxing the query con-
ditions via a knowledge structure called Type Abstraction
Hierarchy (TAH). TAHs provide multilevel representation
of domain knowledge. Relaxation can be performed via
generalization and specialization (traversing up and
down the hierarchy). Query conditions are relaxed to their
semantic neighbors in the TAHs until the relaxed query
conditions can produce approximate answers. Conceptual
terms can be defined by labeling the nodes in a type
abstraction hierarchy. To process a query with conceptual
terms, the conceptual terms are translated into numeric
value ranges or a set of nonnumeric information under that
node. TAHs can then be generated by clustering algorithms

from data sources. There are numerical TAHs that gener-
ate by clustering attributes with numerical databases
(27,28) and nonnumerical TAHs that generate by rule
induction from nonnumerical data sources (29).

Explicit relaxation operators such as approximate, near-
to (distance range), and similar-to (based on the values of a
set of attributes) can also be introduced in a query to relax
the query conditions. Relaxation can be controlled by users
with operators such as nonrelaxable, relaxation order,
preference list, the number of answers, etc., which can
be included in the query. A cooperative languge for rela-
tional databases, CoSQL, was developed (30,31) and
extended the Structured Query Language (SQL) with these
constructs. A cooperative database interface called CoBase
was developed to automatically rewrite a CoSQL query
with relaxation and relaxation control into SQL state-
ments. As a result, CoBase can run on top of conventional
relational databases such as Oracle, Sybase, etc., to provide
query relaxation as well as conceptual query answering
(answering to a query with conceptual terms) (27,31).

Gaasterland, et al. (32) have used a similar type of
abstraction knowledge representation for providing query
relaxation in deductive databases by expanding the scope of
query constraints. They also used a meta-interpreter to
provide users with choices of relaxed queries.

Associative Query Answering

Associative Query Answering provides the user with addi-
tional useful relevant information about a query even if the
user does not ask for or does not know how to ask for such
information. Such relevant information can often expedite
the query answering process or provide the user with
additional topics for dialogue to accomplish a query goal.
It can also provide valuable past experiences that may be
helpful to the user in problem solving and decision making.
For example, consider the query ‘‘Find an airport that can
land a C5.’’ In addition to the query answer regarding the
location of the airport, additional relevant information for a
pilot may be the weather and runway conditions of the
airport. The additional relevant information for a trans-
portation planner may be the existence of railway facilities
and storage facilities nearby the airport. Thus associative
information is both user- and context-sensitive. Cuppens
and Demolombe (14) use a rule-based approach to rewrite
queries by adding additional attributes to the query vector
to provide additional relevant information. They defined a
meta-level definition of a query, which specifies the query in
three parts: entity, condition, and retrieved attributes.
Answers to queries provide values to the variables desig-
nated by the retrieved attributes. They have defined meth-
ods to extend the retrieved attributes according to
heuristics about topics of interest to the user.

CoBase uses a case-based reasoning approach to match
past queries with the posed query (33). Query features
consist of the query topic, the output attribute list, and
the query conditions (15). The similarity of the query
features can be evaluated from a user-specific semantic
model based on the database schema, user type, and con-
text. Cases with the same topic are searched first. If insuf-
ficient cases were found, then cases with related topics are

2 COOPERATIVE DATABASE SYSTEMS



searched. The attributes in the matched cases are then
extended to the original query. The extended query is then
processed to derive additional relevant information for
the user.

STRUCTURED APPROACH FOR QUERY RELAXATION

Query relaxation relaxes a query scope to enlarge the
search range or relaxes an answer scope to include addi-
tional information. Enlarging and shrinking a query scope
can be accomplished by viewing the queried objects at
different conceptual levels because an object representa-
tion has wider coverage at a higher level and, inversely,
more narrow coverage at a lower level. We propose the
notion of a type abstraction hierarchy (27–29) for providing
an efficient and organized framework for cooperative query
processing. A TAH represents objects at different levels of
abstraction. For example, in Fig. 1, the Medium-Range (i.e.,
from 4000 to 8000 ft) in the TAH for runway length is a more
abstract representation than a specific runway length in
the same TAH (e.g., 6000 ft). Likewise, SW Tunisia is a
more abstract representation than individual airports (e.g.,
Gafsa). A higher-level and more abstract object representa-
tion corresponds to multiple lower levels and more specia-
lized object representations. Querying an abstractly
represented object is equivalent to querying multiple spe-
cialized objects.

A query can be modified by relaxing the query conditions
via such operations as generalization (moving up the TAH)
and specialization (moving down the TAH, moving, for exam-
ple, from 6000 ft to Medium-Range to (4000 ft, 8000 ft).
In addition, queries may have conceptual conditions such
as runway-length ¼ Medium-Range. This condition can
be transformed into specific query conditions by speciali-
zation. Query modification may also be specified explicitly
by the user through a set of cooperative operators such as
similar-to, approximate, and near-to.

The notion of multilevel object representation is not
captured by the conventional semantic network and
object-oriented database approaches for the following
reasons. Grouping objects into a class and grouping several
classes into a superclass provide only a common title (type)
for the involved objects without concern for the object
instance values and without introducing abstract object
representations. Grouping several objects together and

identifying their aggregation as a single (complex) object
does not provide abstract instance representations for its
component objects. Therefore, an object-oriented database
deals with information only at two general layers: the
metalayer and the instance layer. Because forming an
object-oriented type hierarchy does not introduce new
instance values, it is impossible to introduce an additional
instance layer. In the TAH, instances of a supertype and a
subtype may have different representations and can be
viewed at different instance layers. Such multiple-layer
knowledge representation is essential for cooperative query
answering.

Knowledge for query relaxation can be expressed as a set
of logical rules, but such a rule-based approach (14) lacks a
systematic organization to guide the query transformation
process. TAHs provide a much simpler and more intuitive
representation for query relaxation and do not have the
complexity of the inference that exists in the rule-based
system. As a result, the TAH structure can easily support
flexible relaxation control, which is important to improve
relaxation accuracy and efficiency. Furthermore, knowl-
edge represented in a TAH is customized; thus changes in
one TAH represent only a localized update and do not affect
other TAHs, simplifying TAH maintenance (see subsection
entitled ‘‘Maintenance of TAHs’’). We have developed tools
to generate TAHs automatically from data sources (see the
next section), which enable our system to scale up and
extend to large data sources.

AUTOMATIC KNOWLEDGE ACQUISITION

The automatic generation of a knowledge base (TAHs)
from databases is essential for CoBase to be scalable to
large systems. We have developed algorithms to generate
automatically TAHs based on database instances. A brief
discussion about the algorithms and their complexity
follow.

Numerical TAHs

COBWEB (34), a conceptual clustering system, uses cate-
gory utility (35) as a quality measure to classify the objects
described by a set of attributes into a classification tree.
COBWEB deals only with categorical data. Thus, it cannot
be used for abstracting numerical data. For providing

SE TunisiaSW Tunisia

Gafsa
El_Borma

Sfax, Gabes,
Jerba

Bizerte, Djedeida,
Tunis, Saminjah

Monastir

NE TunisiaNW Tunisia

Tunisia

South Tunisia North Tunisia

0        4k 4k    6k   8k

Medium-rangeShort Long

8k        10k. . . . . .

All

Latitude [34.72, 37.28]
Longitude [10.23, 11.4]

Latitude [34.72,  37.28]
Longitude [8.1, 10.23]

Latitude [31 .72, 34.72]
Longitude [9.27, 11.4]

Latitude [31.72,  34.72]
Longitude [8.1, 9.27]

Latitude [34.72, 37.28]
Longitude [8.1, 11.4]

Latitude [31.72,  37.28]
Longitude [8.1, 11.4]

Latitude [31.72,  34.72]
Longitude [8.1, 11.4]

Figure 1. Type abstraction hierarchies: (a) runway length and (b) airport location in Tunisia.

COOPERATIVE DATABASE SYSTEMS 3



approximate answers, we want to build a classification tree
that minimizes the difference between the desired answer
and the derived answer. Specifically, we use relaxation
error as a measure for clustering. The relaxation error
(RE) is defined as the average difference between the
requested values and the returned values. RE1(C) can
also be interpreted from the standpoint of query relaxation.
Let us define the relaxation error of xi, RE1(xi), as the
average difference from xi to xj, j ¼ 1; . . . ;n. That is,

RE1ðxiÞ ¼
Xn

j¼1

Pðx jÞjxi � x jj ð1Þ

where P(xj) is the occurrence probability of xj in C. RE1(xi)
can be used to measure the quality of an approximate
answer where xi in a query is relaxed to xj, j ¼ 1; . . . ;n.
Summing RE1(xi) over all values xi in C, we have

RE1ðCÞ ¼
Xn

i¼1

PðxiÞRE1ðxiÞ ð2Þ

Thus, RE1(C) is the expected error of relaxing any value
in C.

If RE1(C) is large, query relaxation based on C may
produce very poor approximate answers. To overcome
this problem, we can partition C into subclusters to reduce
relaxation error. Given a partition P ¼ fC1; C2; . . . ;CNg of
C, the relaxation error of the partition P is defined as

RE1ðPÞ ¼
XN
k¼1

PðCkÞRE1ðCkÞ ð3Þ

where P(Ck) equals the number of tuples in Ck divided by
the number of tuples in C. In general, RE1(P) < RE1(C).

Relaxation error is the expected pairwise difference
between values in a cluster. The notion of relaxation
error for multiple attributes can be extended from single
attributes.

Distribution Sensitive Clustering (DISC) (27,28) parti-
tions sets of numerical values into clusters that minimize
the relaxation error. We shall now present a class of DISC

algorithms for clustering numerical values. We shall pre-
sent the algorithm for a single attribute and then extend it
for multiple attributes.

The Clustering Algorithm for a Single Attribute. Given a
cluster with n distinct values, the number of partitions is
exponential with respect to n, so the best partition takes
exponential time to find. To reduce computation complex-
ity, we shall consider only binary partitions. Later we shall
show that a simple hill-climbing strategy can be used for
obtaining N-ary partitions from binary partitions.

Our method is top down: we start from one cluster
consisting of all the values of an attribute, and then we
find cuts to partition recursively the cluster into smaller
clusters. (A cut c is a value that separates a cluster of
numbers fxja � x � bg into two subclusters fxja � x � cg
and fxjc< x � bg.) The partition result is a concept hier-
archy called type abstraction hierarchy. The clustering
algorithm is called the DISC method and is given in Table 1.

In Ref. 30, an implementation of the algorithm Binary-
Cut is presented whose time complexity is O(n). Because
DISC needs to execute BinaryCut n � 1 times at most to
generate a TAH, the worst case time complexity of DISC is
O(n2). [The average case time complexity of DISC is O(n log
n).]

N-ary Partitioning. N-ary partitions can be obtained
from binary partitions by a hill-climbing method. Starting
from a binary partition, the subcluster with greater relaxa-
tion error is selected for further cutting. We shall use RE as
a measure to determine if the newly formed partition is
better than the previous one. If the RE of the binary
partition is less than that of the trinary partition, then
the trinary partition is dropped, and the cutting is termi-
nated. Otherwise, the trinary partition is selected, and the
cutting process continues until it reaches the point where a
cut increases RE.

The Clustering Algorithm for Multiple Attributes. Query
relaxation for multiple attributes using multiple single-
attribute TAHs relaxes each attribute independently dis-
regarding the relationships that might exist among attri-
butes. This may not be adequate for the applications where

Table 1. The Algorithms DISC and BinaryCut

Algorithm DISC(C)
if the number of distinct values 2C<T, return /� T is a threshold �/
let cut ¼ the best cut returned by BinaryCut(C)
partition values in C based on cut
let the resultant subclusters be C1 and C2

call DISC(C1) and DISC(C2)

Algorithm BinaryCut(C)
/� input cluster C ¼ fx1; . . . ; xng �/

for h ¼ 1 to n � 1/� evaluate each cut�/
Let P be the partition with clusters C1 ¼ fx1; . . . ; xhg and C2 ¼ fxhþ1; . . . ; xng
compute RE1(P)
if RE1(P) < MinRE then

MinRE ¼ RE1ðPÞ, cut ¼ h=� the best cut �/
Return cut as the best cut

4 COOPERATIVE DATABASE SYSTEMS



attributes are dependent. (Dependency here means that all
the attributes as a whole define a coherent concept. For
example, the length and width of a rectangle are said to be
‘‘semantically’’ dependent. This kind of dependency should
be distinguished from the functional dependency in data-
base theory.) In addition, using multiple single-attribute
TAHs is inefficient because it may need many iterations of
query modification and database access before approximate
answers are found. Furthermore, relaxation control for
multiple TAHs is more complex because there is a large
number of possible orders for relaxing attributes. In gen-
eral, we can rely only on simple heuristics such as best first
or minimal coverage first to guide the relaxation (see sub-
section entitled ‘‘Relaxation Control’’). These heuristics
cannot guarantee best approximate answers because
they are rules of thumb and not necessarily accurate.

Most of these difficulties can be overcome by using
Multiattribute TAH (MTAH) for the relaxation of multiple
attributes. Because MTAHs are generated from semanti-
cally dependent attributes, these attributes are relaxed
together in a single relaxation step, thus greatly reducing
the number of query modifications and database accesses.
Approximate answers derived by using MTAH have better
quality than those derived by using multiple single-attri-
bute TAHs. MTAHs are context- and user-sensitive
because a user may generate several MTAHs with different
attribute sets from a table. Should a user need to create an
MTAH containing semantically dependent attributes from
different tables, these tables can be joined into a single view
for MTAH generation.

To cluster objects with multiple attributes, DISC can be
extended to Multiple attributes–DISC or M-DISC (28).
MTAHs are generated. The algorithm DISC is a special
case of M-DISC, and TAH is a special case of MTAH. Let us
now consider the time complexity of M-DISC. Let m be the
number of attributes and n be the number of distinct
attribute values. The computation of relaxation error for
a single attribute takes O(n log n) to complete (27). Because
the computation of RE involves computation of relaxation
error for m attributes, its complexity is O(mn log n). The
nested loop in M-DISC is executed mn times so that the time
complexity of M-DISC is O(m2n2 log n). To generate an
MTAH, it takes no more than n calls of M-DISC; therefore,
the worst case time complexity of generating an MTAH is
O(m2n3 log n). The average case time complexity is
O[m2n2(log n)2] because M-DISC needs only to be called
log n times on the average.

Nonnumerical TAHs

Previous knowledge discovery techniques are inadequate
for clustering nonnumerical attribute values for generating
TAHs for Cooperative Query Answering. For example,
Attribute Oriented Induction (36) provides summary infor-
mation and characterizes tuples in the database, but is
inappropriate since attribute values are focused too closely
on a specific target. Conceptual Clustering (37,38) is a top-
down method to provide approximate query answers, itera-
tively subdividing the tuple-space into smaller sets. The
top-down approach does not yield clusters that provide
the best correlation near the bottom of the hierarchy.

Cooperative query answering operates from the bottom
of the hierarchy, so better clustering near the bottom is
desirable. To remedy these shortcomings, a bottom-up
approach for constructing attribute abstraction hierarchies
called Pattern-Based Knowledge Induction (PKI) was devel-
oped to include a nearness measure for the clusters (29).

PKI determines clusters by deriving rules from the
instance of the current database. The rules are not 100%
certain; instead, they are rules-of-thumb about the data-
base, such as

If the car is a sports car, then the color is red

Each rule has a coverage that measures how often the
rule applies, and confidence measures the validity of the rule
in the database. In certain cases, combining simpler rules
can derive a more sophisticated rule with high confidence.

The PKI approach generates a set of useful rules that
can then be used to construct the TAH by clustering the
premises of rules sharing a similar consequence. For exam-
ple, if the following two rules:

If the car is a sports car, then the color is red

If the car is a sports car, then the color is black

have high confidence, then this indicates that for sports
cars, the colors red and black should be clustered together.
Supporting and contradicting evidence from rules for other
attributes is gathered and PKI builds an initial set of
clusters. Each invocation of the clustering algorithm
adds a layer of abstraction to the hierarchy. Thus, attribute
values are clustered if they are used as the premise for rules
with the same consequence. By iteratively applying the
algorithm, a hierarchy of clusters (TAH) can be found. PKI
can cluster attribute values with or without expert direc-
tion. The algorithm can be improved by allowing domain
expert supervision during the clustering process. PKI also
works well when there are NULL values in the data. Our
experimental results confirm that the method is scalable to
large systems. For a more detailed discussion, see (29).

Maintenance of TAHs

Because the quality of TAH affects the quality of derived
approximate answers, TAHs should be kept up to date. One
simple way to maintain TAHs is to regenerate them when-
ever an update occurs. This approach is not desirable
because it causes overhead for the database system.
Although each update changes the distribution of data
(thus changing the quality of the corresponding TAHs),
this may not be significant enough to warrant a TAH
regeneration. TAH regeneration is necessary only when
the cumulative effect of updates has greatly degraded the
TAHs. The quality of a TAH can be monitored by comparing
the derived approximate answers to the expected relaxa-
tion error (e.g., see Fig. 7), which is computed at TAH
generation time and recorded at each node of the TAH.
When the derived approximate answers significantly devi-
ate from the expected quality, then the quality of the TAH is
deemed to be inadequate and a regeneration is necessary.
The following incremental TAH regeneration procedure

COOPERATIVE DATABASE SYSTEMS 5



can be used. First, identify the node within the TAH that
has the worst query relaxations. Apply partial TAH regen-
eration for all the database instances covered by the node.
After several such partial regenerations, we then initiate a
complete TAH regeneration.

The generated TAHs are stored in UNIX files, and a TAH
Manager (described in subsection entitled ‘‘TAH Facility’’)
is responsible to parse the files, create internal representa-
tion of TAHs, and provide operations such as generalization
and specialization to traverse TAHs. The TAH Manager
also provides a directory that describes the characteristics
of TAHs (e.g., attributes, names, user type, context, TAH
size, location) for the users/systems to select the appropri-
ate TAH to be used for relaxation.

Our experience in using DISC/M-DISC and PKI for
ARPA Rome Labs Planning Initiative (ARPI) transportation
databases (94 relations, the biggest one of which has 12
attributes and 195,598 tuples) shows that the clustering
techniques for both numerical and nonnumerical attributes
can be generated from a few seconds to a few minutes
depending on the table size on a SunSPARC 20 Workstation.

COOPERATIVE OPERATIONS

The cooperative operations consist of the following
four types: context-free, context-sensitive, control, and
interactive.

Context-Free Operators

� Approximate operator ^v relaxes the specified value v
within the approximate range predefined by the user.
For example, ^9am transforms into the interval (8am,
10am).

� Between (v1, v2) specifies the interval for an attribute.
For example, time between (7am, ^9am) transforms
into (7am, 10am). The transformed interval is prespe-
cified by either the user or the system.

Context-Sensitive Operators

� Near-to X is used for specification of spatial nearness of
object X. The near-to measure is context- and user-
sensitive. ‘‘Nearness’’ can be specified by the user. For
example, near-to ‘BIZERTE’ requests the list of
cities located within a certain Euclidean distance
(depending on the context) from the city Bizerte.

� Similar-to X based-on [(a1 w1)(a2 w2) � � � (an wn)] is
used to specify a set of objects semantically similar
to the target object X based on a set of attributes
(a1, a2, . . ., an) specified by the user. Weights (w1,
w2, . . ., wn) may be assigned to each of the attributes
to reflect the relative importance in considering the
similarity measure. The set of similar objects can be
ranked by the similarity. The similarity measures that
computed from the nearness (e.g., weighted mean
square error) of the prespecified attributes to that of
the target object. The set size is bound by a prespecified
nearness threshold.

Control Operators

� Relaxation-order (a1, a2, . . ., an) specifies the order of
the relaxation among the attributes (a1, a2, . . ., an) (i.e.,
ai precedes ai+1). For example, relaxation-order
(runway_length, runway_width) indicates that if
no exact answer is found, then runway_length should
be relaxed first. If still no answer is found, then relax
the runway_width. If no relaxation-order control is
specified, the system relaxes according to its default
relaxation strategy.

� Not-relaxable (a1, a2, . . ., an) specifies the attributes
(a1, a2, . . ., an) that should not be relaxed. For example,
not-relaxable location_name indicates that the
condition clause containing location_name must not
be relaxed.

� Preference-list (v1, v2, . . ., vn) specifies the preferred
values (v1, v2, . . ., vn) of a given attribute, where vi is
preferred over vi+1. As a result, the given attribute is
relaxed according to the order of preference that the
user specifies in the preference list. Consider the attri-
bute ‘‘food style’’; a user may prefer Italian food to
Mexican food. If there are no such restaurants within
the specified area, the query can be relaxed to include
the foods similar to Italian food first and then similar to
Mexican food.

� Unacceptable-list (v1, v2, . . ., vn) allows users to inform
the system not to provide certain answers. This control
can be accomplished by trimming parts of the TAH
from searching. For example, avoid airlines X and
Y tells the system that airlines X and Y should not be
considered during relaxation. It not only provides
more satisfactory answers to users but also reduces
search time.

� Alternative-TAH (TAH-name) allows users to use the
TAHs of their choices. For example, a vacation traveler
may want to find an airline based on its fare, whereas a
business traveler is more concerned with his schedule.
To satisfy the different needs of the users, several
TAHs of airlines can be generated, emphasizing dif-
ferent attributes (e.g., price and nonstop flight).

� Relaxation-level (v) specifies the maximum allowable
range of the relaxation on an attribute, i.e., [0, v].

� Answer-set (s) specifies the minimum number of
answers required by the user. CoBase relaxes query
conditions until enough number of approximate
answers (i.e., � s) are obtained.

� Rank-by ((a1, w1), (a2, w2), . . ., (an, wn)) METHOD
(method � name) specifies a method to rank the
answers returned by CoBase.

User/System Interaction Operators

� Nearer, Further provide users with the ability to con-
trol the near-to relaxation scope interactively. Nearer
reduces the distance by a prespecified percentage,
whereas further increases the distance by a prespeci-
fied percentage.

6 COOPERATIVE DATABASE SYSTEMS



Editing Relaxation Control Parameters

Users can browse and edit relaxation control parameters to
better suit their applications (see Fig. 2). The parameters
include the relaxation range for the approximately-equal
operator, the default distance for the near-to operator, and
the number of returned tuples for the similar-to operator.

Cooperative SQL (CoSQL)

The cooperative operations can be extended to the rela-
tional database query language, SQL, as follows: The con-
text-free and context-sensitive cooperative operators can be
used in conjunction with attribute values specified in the
WHERE clause. The relaxation control operators can be
used only on attributes specified in the WHERE clause, and
the control operators must be specified in the WITH clause
after the WHERE clause. The interactive operators can be
used alone as command inputs.

Examples. In this section, we present a few selected
examples that illustrate the capabilities of the cooperative
operators. The corresponding TAHs used for query mod-
ification are shown in Fig. 1, and the relaxable ranges are
shown in Fig. 2.

Query 1. List all the airports with the runway length
greater than 7500 ft and runway width greater than 100 ft.
If there is no answer, relax the runway length condition
first. The following is the corresponding CoSQL query:

SELECT aport_name, runway_length_ft,
runway_width_ft

FROM aports
WHERE runway_length_ft > 7500 AND
runway_width_ft > 100

WITH RELAXATION-ORDER (runway_length_ft,
runway_width_ft)

Based on the TAH on runway length and the relaxation
order, the query is relaxed to

SELECT aport_name, runway_length_ft,
runway_width_ft

FROM aports
WHERE runway_length_ft >= 7000 AND
runway_width_ft > 100

If this query yields no answer, then we proceed to relax
the range runway width.

Query 2. Find all the cities with their geographical
coordinates near the city Bizerte in the country Tunisia.
If there is no answer, the restriction on the country should
not be relaxed. The near-to range in this case is prespecified
at 100 miles. The corresponding CoSQL query is as follows:

SELECT location_name, latitude, longitude
FROM GEOLOC
WHERE location_name NEAR-TO ‘Bizerte’
AND country_state_name = ‘Tunisia’

WITH NOT-RELAXABLE country_state_name

Based on the TAH on location Tunisia, the relaxed
version of the query is

SELECT location_name, latitude, longitude
FROM GEOLOC
WHERE location_name IN {‘Bizerte’, ‘Djedeida’,
‘Gafsa’,

‘Gabes’, ‘Sfax’, ‘Sousse’, ‘Tabarqa’,
‘Tunis’}

AND country_state_name_= ‘Tunisia’

Query 3. Find all airports in Tunisia similar to the
Bizerte airport. Use the attributes runway_length_ft and
runway_width_ft as criteria for similarity. Place more
similarity emphasis on runway length than runway width;
their corresponding weight assignments are 2 and 1,
respectively. The following is the CoSQL version of the
query:

SELECT aport_name
FROM aports, GEOLOC
WHERE aport_name SIMILAR-TO ‘Bizerte’

BASED-ON ((runway_length_ft 2.0)
(runway_width_ft 1.0))

AND country_state_name = ‘TUNISIA’
AND GEOLOC.geo_code = aports.geo_code

To select the set of the airport names that have the
runway length and runway width similar to the ones for
the airport in Bizerte, we shall first find all the airports in
Tunisia and, therefore, transform the query to

SELECT aport_name
FROM aports, GEOLOC
WHERE country_state_name_ = ‘TUNISIA’
AND GEOLOC.geo_code = aports.geo_code

After retrieving all the airports in Tunisia, based on the
runway length, runway width, and their corresponding
weights, the similarity of these airports to Bizerte can be
computed by the prespecified nearness formula (e.g.,

Approximate operator relaxation range

Relation name

Aports Runway_length_ft 500

Aports Runway_width_ft 10

Aports Parking_sq_ft 100000

GEOLOC Latitude 0.001

GEOLOC

GEOLOC

Longitude 0.001

Attribute name Range

Near-to operator relaxation range

Relation name Attribute name Near-to range Nearer/further

Aports Aport_name

Location_name

100 miles

200 miles

50%

50%

Figure 2. Relaxation range for the approximate and near-to
operators.

COOPERATIVE DATABASE SYSTEMS 7



weighted mean square error). The order in the similarity
set is ranked according to the nearness measure, and the
size of the similarity set is determined by the prespecified
nearness threshold.

A SCALABLE AND EXTENSIBLE ARCHITECTURE

Figure 3 shows an overview of the CoBase System. Type
abstraction hierarchies and relaxation ranges for the expli-
cit operators are stored in a knowledge base (KB). There is a
TAH directory storing the characteristics of all the TAHs in
the system. When CoBase queries, it asks the underlying
database systems (DBMS). When an approximate answer
is returned, context-based semantic nearness will be pro-
vided to rank the approximate answers (in order of near-
ness) against the specified query. A graphical user interface
(GUI) displays the query, results, TAHs, and relaxation
processes. Based on user type and query context, associa-
tive information is derived from past query cases. A user
can construct TAHs from one or more attributes and modify
the existing TAH in the KB.

Figure 4 displays the various cooperative modules:
Relaxation, Association, and Directory. These agents
are connected selectively to meet applications’ needs.
An application that requires relaxation and association
capabilities, for example, will entail a linking of Relaxa-
tion and Association agents. Our architecture allows

incremental growth with application. When the demand
for certain modules increases, additional copies of the
modules can be added to reduce the loading; thus, the
system is scalable. For example, there are multiple copies
of relaxation agent and association agent in Fig. 4.
Furthermore, different types of agents can be intercon-
nected and communicate with each other via a common
communication protocol [e.g., FIPA (http.//www.fipa.org),
or Knowledge Query Manipulation Language (KQML)
(39)] to perform a joint task. Thus, the architecture is
extensible.

Relaxation Module

Query relaxation is the process of understanding the
semantic context, intent of a user query and modifying
the query constraints with the guidance of the customized
knowledge structure (TAH) into near values that provide
best-fit answers. The flow of the relaxation process is
depicted in Fig. 5. When a CoSQL query is presented to
the Relaxation Agent, the system first go through a pre-
processing phase. During the preprocessing, the system
first relaxes any context-free and/or context-sensitive coop-
erative operators in the query. All relaxation control opera-
tions specified in the query will be processed. The
information will be stored in the relaxation manager and
be ready to be used if the query requires relaxation. The
modified SQL query is then presented to the underlying
database system for execution. If no answers are returned,
then the cooperative query system, under the direction of
the Relaxation Manager, relaxes the queries by query
modification. This is accomplished by traversing along
the TAH node for performing generalization and speciali-
zation and rewriting the query to include a larger search
scope. The relaxed query is then executed, and if there is no
answer, we repeat the relaxation process until we obtain
one or more approximate answers. If the system fails to
produce an answer due to overtrimmed TAHs, the relaxa-
tion manager will deactivate certain relaxation rules to
restore part of a trimmed TAH to broaden the search scope
until answers are found. Finally, the answers are postpro-
cessed (e.g., ranking and filtering).

Figure 4. A scalable and extensi-
ble cooperative information system.

Applications

Applications

Mediator
layer

Module requirement

Module capability

Information
sources

Dictionary/Directory

R: Relaxation module
A: Association module
D: Directory module

Users

R

R

R R

D
AA

DB-1 DB-1 DB-1 DB-1

A

A

. . . . . .

. . .
. . .

. . . . . .

Database

Database

Geographical
information

system

GUI UserKnowledge
editor

Knowledge bases

Data sources

TAHs,
user profiles,
query cases

Relaxation
module

Association
module

Figure 3. CoBase functional architecture.

8 COOPERATIVE DATABASE SYSTEMS



Relaxation Control. Relaxation without control may gen-
erate more approximations than the user can handle. The
policy for relaxation control depends on many factors,
including user profile, query context, and relaxation control
operators as defined previously. The Relaxation Manager
combines those factors via certain policies (e.g., minimizing
search time or nearness) to restrict the search for approx-
imate answers. We allow the input query to be annotated
with control operators to help guide the agent in query
relaxation operations.

If control operators are used, the Relaxation Manager
selects the condition to relax in accordance with the
requirements specified by the operators. For example, a
relaxation-order operator will dictate ‘‘relax location first,
then runway length.’’ Without such user-specified require-
ments, the Relaxation Manager uses a default relaxation
strategy by selecting the relaxation order based on the
minimum coverage rule. Coverage is defined as the ratio
of the cardinality of the set of instances covered by the
entire TAH. Thus, coverage of a TAH node is the percentage
of all tuples in the TAH covered by the current TAH node.
The minimum coverage rule always relaxes the condition
that causes the minimum increase in the scope of the query,
which is measured by the coverage of its TAH node. This
default relaxation strategy attempts to add the smallest
number of tuples possible at each step, based on the ratio-
nale that the smallest increase in scope is likely to generate
the close approximate answers. The strategy for choosing
which condition to be relaxed first is only one of many
possible relaxation strategies; the Relaxation Manager
can support other different relaxation strategies as well.

Let us consider the following example of using control
operators to improve the relaxation process. Suppose a pilot
is searching for an airport with an 8000 ft runway in Bizerte
but there is no airport in Bizerte that meets the specifica-
tions. There are many ways to relax the query in terms of
location and runway length. If the pilot specifies the relaxa-
tion order to relax the location attribute first, then the
query modification generalizes the location Bizerte to
NW Tunisia (as shown in Fig. 1) and specifies the locations
Bizerte, Djedeida, Tunis, and Saminjah, thus broadening
the search scope of the original query. If, in addition, we
know that the user is interested only in the airports in West
Tunisia and does not wish to shorten the required runway

length, the system can eliminate the search in East Tunisia
and also avoid airports with short and medium runways, as
shown in Fig. 6. As a result, we can limit the query relaxa-
tion to a narrower scope by trimming the TAHs, thus
improving both the system performance and the answer
relevance.

Spatial Relaxation and Approximation. In geographical
queries, spatial operators such as located, within, contain,
intersect, union, and difference are used. When there are no
exact answers for a geographical query, both its spatial and
nonspatial conditions can be relaxed to obtain the approx-
imate answers. CoBase operators also can be used for
describing approximate spatial relationships. For example,
‘‘an aircraft-carrier is near seaport Sfax.’’ Approximate
spatial operators, such as near-to and between are devel-
oped for the approximate spatial relationships. Spatial
approximation depends on contexts and domains (40,41).
For example, a hospital near to LAX is different from an
airport near to LAX. Likewise, the nearness of a hospital in
a metropolitan area is different from the one in a rural area.
Thus, spatial conditions should be relaxed differently in
different circumstances. A common approach to this pro-
blem is the use of prespecified ranges. This approach
requires experts to provide such information for all possible
situations, which is difficult to scale up to larger applica-
tions or to extend to different domains. Because TAHs are
user- and context-sensitive, they can be used to provide
context-sensitive approximation. More specifically, we can
generate TAHs based on multidimensional spatial attri-
butes (MTAHs).

Furthermore, MTAH (based on latitude and longitude)
is generated based on the distribution of the object loca-
tions. The distance between nearby objects is context-sen-
sitive: the denser the location distribution, the smaller the
distance among the objects. In Fig. 7, for example, the
default neighborhood distance in Area 3 is smaller than
the one in Area 1. Thus, when a set of airports is clustered
based on the locations of the airports, the ones in the same
cluster of the MTAH are much closer to each other than to
those outside the cluster. Thus, they can be considered
near-to each other. We can apply the same approach to
other approximate spatial operators, such as between (i.e.,
a cluster near-to the center of two objects). MTAHs also can

Present
answers

Query
relaxation

Query
processing

Satisfactory
answers

Postprocess
modules

Relaxation
Select

relaxation 
heuristic

Parsed query

YesNo

Preprocess
modules

Approximate
answers

Figure 5. Flow chart for proces-
sing CoBase queries.

COOPERATIVE DATABASE SYSTEMS 9



be used to provide context-sensitive query relaxation. For
example, consider the query: ‘‘Find an airfield at the city
Sousse.’’ Because there is no airfield located exactly at
Sousse, this query can be relaxed to obtain approximate
answers. First, we locate the city Sousse with latitude 35.83
and longitude 10.63. Using the MTAH in Fig. 7, we find that
Sousse is covered by Area 4. Thus, the airport Monastir is
returned. Unfortunately, it is not an airfield. So the query
is further relaxed to the neighboring cluster—the four
airports in Area 3 are returned: Bizerte, Djedeida, Tunis,

and Saminjah. Because only Djedeida and Saminjah are
airfields, these two will be returned as the approximate
answers.

MTAHs are automatically generated from databases by
using our clustering method that minimizes relaxation
error (27). They can be constructed for different contexts
and user type. For example, it is critical to distinguish a
friendly airport from an enemy airport. Using an MTAH for
friendly airports restricts the relaxation only within the set
of friendly airports, even though some enemy airports are

Figure 6. TAH trimming based on
relaxation control operators.

Tunisia

NE_Tun

Monastir

NW_Tun SE_Tun SW_Tun

Bizerte
Djedeida
Tunis
Saminjah

Sfax
Gabes
Jerba

Gafsa
El Borma

0 – 4k 4k – 8k   

MediumShort Long

8k – 10k

All
Runway_lengthLocation

Type abstraction hierarchies

Constraints

Trimmed type abstraction hierarchies

Do not relax to short or medium runway
Limit  location to NW_Tun and SW_Tun

Relaxation
manager

Tunisia

NW_Tun SW_Tun

Bizerte
Djedeida
Tunis
Saminjah

Gafsa
El Borma

Long

8k – 10k

All
Runway_lengthLocation

Figure 7. An MTAH for the airports
in Tunisia and its corresponding two-
dimensional space.

RE: 0.625 RE: 0.282

Latitude [34.72, 37.28]
Longitude [8.1, 11.4]

Relaxation error: 0.677

34.72

31.72
8.1 9.27

37.28

3

10.23

11.4

Latitude [31.72,  34.72]
Longitude [8.1, 11.4]

Latitude [31.72,  37.28]
Longitude [8.1, 11.4]

Latitude
(34.72)

Longitude,
10.23

Longitude,
9.27

Monastir

Sousse City

Monastir

Bizerte
Djedeida
Tunis
Saminjah

RE: 0.145

RE: 0

Gafsa
El_Borma

Sfax
Gabes
Jerba

RE: 0.359 RE: 0.222

3 41 2

Longitude

L
a

tit
u

d
e

4

1 2

10 COOPERATIVE DATABASE SYSTEMS



geographically nearby. This restriction significantly
improves the accuracy and flexibility of spatial query
answering. The integration of spatial and cooperative
operators provides more expressiveness and context-sensi-
tive answers. For example, the user is able to pose such
queries as, ‘‘find the airports similar-to LAX and near-to
City X.’’ When no answers are available, both near-to and
similar-to can be relaxed based on the user’s preference
(i.e., a set of attributes). To relax near-to, airports from
neighboring clusters in the MTAH are returned. To relax
similar-to, the multiple-attribute criteria are relaxed by
their respective TAHs.

Cooperativeness in geographic databases was studied in
Ref. 42. A rule-based approach is used in their system for
approximate spatial operators as well as query relaxation.
For example, they define that ‘‘P is near-to Q iff the distance
from P to Q is less than n�length_unit, where length_unit is
a context dependent scalar parameter, and n is a scalar
parameter that can be either unique for the application and
thus defined in domain model, or specific for each class of
users and therefore defined in the user models.’’ This
approach requires n and length_unit be set by domain
experts. Thus, it is difficult to scale up. Our system uses
MTAHs as a representation of the domain knowledge. The
MTAHs can be generated automatically from databases
based on contexts and provide a structured and context-
sensitive way to relax queries. As a result, it is scalable to
large applications. Further, the relaxation error at each
node is computed during the construction of TAHs and
MTAHs. It can be used to evaluate the quality of relaxations
and to rank the nearness of the approximate answers to the
exact answer.

Associative Query Answering via Case-Based Reasoning

Often it is desirable to provide additional information
relevant to, though not explicitly stated in, a user’s query.
For example, in finding the location of an airport satisfying
the runway length and width specifications, the association
module (Fig. 8) can provide additional information about
the runway quality and weather condition so that this
additional information may help the pilot select a suitable
airport to land his aircraft. On the other hand, the useful
relevant information for the same query if posed by a

transportation planner may be information regarding rail-
way facilities and storage facilities nearby the airport.
Therefore, associative information is user- and context-
sensitive.

Association in CoBase is executed as a multistep post-
process. After the query is executed, the answer set is
gathered with the query conditions, user profile, and appli-
cation constraints. This combined information is matched
against query cases from the case base to identify relevant
associative information (15,33). The query cases can take
the form of a CoBase query, which can include any CoBase
construct, such as conceptual conditions (e.g., runway_-
length_ft ¼ short) or explicitly cooperative operations (city
near-to ‘BIZERTE’).

For example, consider the query

SELECT name, runway_length_ft
FROM airports
WHERE runway_length_ft > 6000

Based on the combined information, associative attri-
butes such as runway conditions and weather are derived.
The associated information for the corresponding airports
is retrieved from the database and then appended to the
query answer, as shown in Fig. 9.

Our current case base, consisting of about 1500 past
queries, serves as the knowledge server for the association
module. The size of the case base is around 2 Mb. For
association purposes, we use the 300-case set, which is
composed of past queries used in the transportation
domain. For testing performance and scalability of the

Case matching,
association,
reasoning

Query
extension

Query &
answer

User profile Case base

User

Extended
query

Capabilities:

- Adaptation of associative
attributes

- Ranking of associative
attributes

- Generate associative
query

Requirements:

- Query conditions
- Query context
- User type
- Relevance feedback

Source
mediator

TAH
mediator

Learning

feedback

Figure 8. Associative query an-
swering facility.

Name

Query answer

Jerba

Runway_condition

Damaged

Monastir Good

Tunis Good

Runway_length

9500

6500

8500

Weather

Sunny

Foggy

Good

Associative information

Figure 9. Query answer and associative information for the
selected airports.

COOPERATIVE DATABASE SYSTEMS 11



system, we use a 1500-case set, which consists of randomly
generated queries based on user profile and query template
over the transportation domain. Users can also browse and
edit association control parameters such as the number of
association subjects, the associated links and weights of a
given case, and the threshold for association relevance.

PERFORMANCE EVALUATION

In this section, we present the CoBase performance based
on measuring the execution of a set of queries on the CoBase
testbed developed at UCLA for the ARPI transportation
domain. The performance measure includes response time
for query relaxation, association, and the quality of
answers. The response time depends on the type of queries
(e.g., size of joins, number of joins) as well as the amount of
relaxation, and association, required to produce an answer.
The quality of the answer depends on the amount of relaxa-
tion and association involved. The user is able to specify the
relaxation and association control to reduce the response
time and also to specify the requirement of answer accu-
racy. In the following, we shall show four example queries
and their performances. The first query illustrates the
relaxation cost. The second query shows the additional
translation cost for the ‘‘similar-to’’ cooperative operator,
whereas the third query shows the additional association
cost. The fourth query shows the processing cost for
returned query answers as well as the quality of answers
by using TAH versus MTAH for a very large database table
(about 200,000 tuples).

Query 4. Find nearby airports can land C-5.
Based on the airplane location, the relaxation module

translates nearby to a prespecified or user-specified lati-
tude and longitude range. Based on the domain knowledge
of C-5, the mediator also translates land into required
runway length and width for landing the aircraft. The
system executes the translated query. If no airport is found,
the system relaxes the distance (by a predefined amount)
until an answer is returned. In this query, an airport is
found after one relaxation. Thus, two database retrievals
(i.e., one for the original query and one for the relaxed
query) are performed. Three tables are involved: Table
GEOLOC (50,000 tuples), table RUNWAYS (10 tuples),
and table AIRCRAFT_AIRFIELD_CHARS (29 tuples).
The query answers provide airport locations and their
characteristics.

Elapsed time: 5 seconds processing time for
relaxation

40secondsdatabaseretrievaltime

Query 5. Find at least three airports similar-to Bizerte
based on runway length and runway width.

The relaxation module retrieves runway characteristics
of Bizerte airport and translates the similar-to condition
into the corresponding query conditions (runway length
and runway width). The system executes the translated
query and relaxes the runway length and runway width
according to the TAHs until at least three answers are

returned. Note that the TAH used for this query is a Run-
way-TAH based on runway length and runway width,
which is different from the Location-TAH based on latitude
and longitude (shown in Fig. 7). The nearness measure is
calculated based on weighted mean square error. The
system computes similarity measure for each answer
obtained, ranks the list of answers, and presents it to the
user. The system obtains five answers after two relaxa-
tions. The best three are selected and presented to the user.
Two tables are involved: table GEOLOC (50000 tuples) and
table RUNWAYS (10 tuples).

Elapsed time: 2 seconds processing time for
relaxation

10secondsdatabaseretrievaltime

Query 6. Find seaports in Tunisia with a refrigerated
storage capacity of over 50 tons.

The relaxation module executes the query. The query is
not relaxed, so one database retrieval is performed. Two
tables are used: table SEAPORTS (11 tuples) and table
GEOLOC (about 50,000 tuples).

Elapsed time: 2 seconds processing time for
relaxation

5 seconds database retrieval time

The association module returns relevant information
about the seaports. It compares the user query to previous
similar cases and selects a set of attributes relevant to the
query. Two top-associated attributes are selected and
appended to the query. CoBase executes the appended
query and returns the answers to the user, together with
the additional information. The two additional attributes
associated are location name and availability of railroad
facility near the seaports.

Elapsed time: 10 seconds for association
computation time

Query 7. Find at least 100 cargos of code ‘3FKAK’
with the given volume (length, width, height), code is
nonrelaxable.

The relaxation module executes the query and relaxes
the height, width, and length according to MTAH, until at
least 100 answers are returned. The query is relaxed four
times. Thus, five database retrievals are performed. Among
the tables accessed is table CARGO_DETAILS (200,000
tuples), a very large table.

Elapsed time: 3 seconds processing time for
relaxation using MTAH

2 minutes database retrieval time
for 5 retrievals

By using single TAHs (i.e., single TAHs for height,
width, and length, respectively), the query is relaxed 12
times. Thus, 13 database retrievals are performed.

Elapsed time: 4 seconds for relaxation by
single TAHs

5 minutes database retrieval time
for 13 retrievals

12 COOPERATIVE DATABASE SYSTEMS



For queries involving multiple attributes in the same
relation, using an MTAH that covers multiple attributes
would provide better relaxation control than using a com-
bination of single-attribute TAHs. The MTAH compares
favorably with multiple single-attribute TAHs in both
quality and efficiency. We have shown that an MTAH yields
a better relaxation strategy than multiple single-attribute
TAHs. The primary reason is that MTAHs capture attri-
bute-dependent relationships that cannot be captured
when using multiple single-attribute TAHs.

Using MTAHs to control relaxation is more efficient
than using multiple single-attribute TAHs. For this exam-
ple, relaxation using MTAHs require an average of 2.5
relaxation steps, whereas single-attribute TAHs require
8.4 steps. Because a database query is posed after each
relaxation step, using MTAHs saves around six database
accesses on average. Depending on the size of tables and
joins involved, each database access may take from 1 s to
about 30 s. As a result, using MTAHs to control relaxation
saves a significant amount of user time.

With the aid of domain experts, these queries can be
answered by conventional databases. Such an approach
takes a few minutes to a few hours. However, without the
aid of the domain experts, it may take hours to days to
answer these queries. CoBase incorporates domain knowl-
edge as well as relaxation techniques to enlarge the search
scope to generate the query answers. Relaxation control
plays an important role in enabling the user to control the
relaxation process via relaxation control operators such as
relaxation order, nonrelaxable attributes, preference list,
etc., to restrict the search scope. As a result, CoBase is able
to derive the desired answers for the user in significantly
less time.

TECHNOLOGY TRANSFER OF COBASE

CoBase stemmed from the transportation planning appli-
cation for relaxing query conditions. CoBase was linked
with SIMS (43) and LIM (44) as a knowledge server for the
planning system. SIMS performs query optimizations for
distributed databases, and LIM provides high-level lan-
guage query input to the database. A Technical Integration
Experiment was performed to demonstrate the feasibility
of this integrated approach. CoBase technology was imple-
mented for the ARPI transportation application (45).
Recently, CoBase has also been integrated into a logistical
planning tool called Geographical Logistics Anchor Desk
(GLAD) developed by GTE/BBN. GLAD is used in locating
desired assets for logistical planning which has a very large

database (some of the tables exceed one million rows).
CoBase has been successfully inserted into GLAD (called
CoGLAD), generating the TAHs from the databases, pro-
viding similarity search when exact match of the desired
assets are not available, and also locating the required
amount of these assets with spatial relaxation techniques.
The spatial relaxation avoids searching and filtering the
entire available assets, which greatly reduces the compu-
tation time.

In addition, CoBase has also been successfully applied to
the following domains. In electronic warfare, one of the key
problems is to identify and locate the emitter for radiated
electromagnetic energy based on the operating parameters
of observed signals. The signal parameters are radio fre-
quency, pulse repetition frequency, pulse duration, scan
period, and the like. In a noisy environment, these para-
meters often cannot be matched exactly within the emitter
specifications. CoBase can be used to provide approximate
matching of these emitter signals. A knowledge base (TAH)
can be constructed from the parameter values of previously
identified signals and also from the peak (typical, unique)
parameter values. The TAH provides guidance on the
parameter relaxation. The matched emitters from relaxa-
tion can be ranked according to relaxation errors. Our
preliminary results have shown that CoBase can signifi-
cantly improve emitter identification as compared to con-
ventional database techniques, particularly in a noisy
environment. From the line of bearing of the emitter signal,
CoBase can locate the platform that generates the emitter
signal by using the near-to relaxation operator.

In medical databases that store x rays and magnetic
resonance images, the images are evolution and temporal-
based. Furthermore, these images need to be retrieved by
object features or contents rather than patient identifica-
tion (46). The queries asked are often conceptual and not
precisely defined. We need to use knowledge about the
application (e.g., age class, ethnic class, disease class,
bone age), user profile and query context to derive such
queries (47). Further, to match the feature exactly is very
difficult if not impossible. For example, if the query ‘‘Find
the treatment methods used for tumors similar to Xi

ðlocationxi
; sizexi

Þ on 12-year-old Korean males’’ cannot
be answered, then, based on the TAH shown in Fig. 10,
we can relax tumor Xi to tumor Class X, and 12-year-old
Korean male to pre-teen Asian, which results in the follow-
ing relaxed query: ‘‘Find the treatment methods used for
tumor Class X on pre-teen Asians.’’ Further, we can obtain
such relevant information as the success rate, side effects,
and cost of the treatment from the association operations.
As a result, query relaxation and modification are essential

Preteens Asian African

Ethnic group
Tumor classes
(location, size)

European
Class X [l1, ln] Class Y [l1, ln]

l: location
s: size

[s1, sn]

(I1, s1) (I2, s2) (In, sn)
x1 Y1 Y1′

x2 xn

Teens

9 10 11 12 Korean Chinese Japanese Filipino

Adult

Age

. . .

. . . Y1′′

Figure 10. Type abstraction
hierarchies for the medical query
example.

COOPERATIVE DATABASE SYSTEMS 13



to process these queries. We have applied CoBase technol-
ogy to medical imaging databases (48). TAHs are generated
automatically based on context-specific (e.g., brain tumor)
image features (e.g., location, size, shape). After the TAHs
for the medical image features have been constructed,
query relaxation and modification can be carried out on
the medical features (49).

The use of CoSQL constructs such as similar-to, near-to,
and within can be used in combination, thus greatly
increasing the expressibility for relaxation. For example,
we can express ‘‘Find tumors similar-to the tumor x based-
on (shape, size, location) and near-to object O within a
specific range (e.g., angle of coverage).’’ The relaxation
control operators, such as matching tumor features in
accordance to their importance, can be specified by the
operator relaxation-order (location, size, shape), to improve
the relaxation quality.

CONCLUSIONS

After discussing an overview of cooperative database
systems, which includes such topics as presuppositions,
misconceptions, intensional query answering, user mod-
eling, query relaxation, and associative query answering,
we presented a structured approach to query relaxation
via Type Abstraction Hierarchy (TAH) and a case-based
reasoning approach to provide associative query answer-
ing. TAHs are user- and context-sensitive and can be
generated automatically from data sources for both
numerical and nonnumerical attributes. Therefore,
such an approach for query relaxation can scale to large
database systems. A set of cooperative operators for
relaxation and relaxation control was presented in which
these operators were extended to SQL to form a coopera-
tive SQL (CoSQL). A cooperative database (CoBase) has
been developed to automatically translate CoSQL queries
into SQL queries and can thus run on top of conventional
relational databases to provide query relaxation and
relaxation control.

The performance measurements on sample queries
from CoBase reveal that the cost for relaxation and asso-
ciation is fairly small. The major cost is due to database
retrieval which depends on the amount of relaxation
required before obtaining a satisfactory answer. The
CoBase query relaxation technology has been successfully
transferred to the logistics planning application to provide
relaxation of asset characteristics as well as spatial
relaxation to locate the desired amount of assets. It has
also been applied in a medical imaging database (x ray,
MRI) for approximate matching of image features and
contents, and in electronic warfare for approximate
matching of emitter signals (based on a set of parameter
values) and also for locating the platforms that generate
the signals via spatial relaxation.

With the recent advances in voice recognition systems,
more and more systems will be providing voice input fea-
tures. However, there are many ambiguities in the natural
language. Further research in cooperative query answer-
ing techniques will be useful in assisting systems to under-
stand users’ dialogue with the system.

ACKNOWLEDGMENTS

The research and development of CoBase has been a team
effort. I would like to acknowledge the past and present
CoBase members—Hua Yang, Gladys Kong, X. Yang,
Frank Meng, Guogen Zhang, Wesley Chuang, Meng-feng
Tsai, Henrick Yau, and Gilles Fouques—for their contribu-
tions toward its design and implementation. The author
also wishes to thank the reviewers for their valuable
comments.

BIBLIOGRAPHY

1. T. Gaasterland, P. Godfrey, and J. Minker, An overview of
cooperative answering, J. Intell. Inf. Sys., 1: 123–157, 1992.

2. A. Colmerauer and J. Pique, About natural logic, in H. Gallaire,
et al. (eds.), Proc. 5th ECAI, Orsay, France, 1982, pp. 343–365.

3. S. J. Kaplan, Cooperative Responses from a portable natural
language query system, Artificial Intelligence, 19(2): 165–187,
1982.

4. E. Mays, Correcting misconceptions about database structure,
Proc. CSCSI 80, 1980.

5. K. McCoy, Correcting object-related misconceptions, Proc.
COLING10, Stanford, CA, 1984.

6. L. Cholvy and R. Demolombe, Querying a rule base, Proc. 1st
Int. Conf. Expert Database Syst., 1986, pp. 365–371.

7. T. Imielinski, Intelligent query answering in rule based sys-
tems, in J. Minker (ed.), Foundations of Deductive Databases
and Logic Programming, Washington, DC: Morgan Kaufman,
1988.

8. A. Motro, Using integrity constraints to provide intensional
responses to relational queries, Proc. 15th Int. Conf. Very Large
Data Bases, Los Altos, CA, 1989, pp. 237–246.

9. A. Pirotte, D. Roelants, and E. Zimanyi, Controlled generation
of intensional answers, IEEE Trans. Knowl. Data Eng., 3: 221–
236, 1991.

10. U. Chakravarthy, J. Grant, and J. Minker, Logic based
approach to semantic query optimization, ACM Trans. Data-
base Syst., 15(2): 162–207, 1990.

11. C. Shum and R. Muntz, Implicit representation for extensional
answers, in L. Kershberg (ed.), Expert Database Systems,
Menlo Park, CA: Benjamin/Cummings, 1986, pp. 497–
522.

12. W. W. Chu, R. C. Lee, and Q. Chen, Using type inference and
induced rules to provide intensional answers, Proc. IEEE
Comput. Soc. 7th Int. Conf. Data Eng., Washington, DC,
1991, pp. 396–403.

13. A. Motro, Intensional answers to database queries, IEEE
Trans. Knowl. Database Eng., 6(3): 1994, pp. 444–454.

14. F. Cuppens and R. Demolombe, How to recognize interesting
topics to provide cooperative answering, Inf. Syst., 14(2): 163–
173, 1989.

15. W. W. Chu and G. Zhang, Associative query answering via
query feature similarity, Int. Conf. Intell. Inf. Syst., pp. 405–
501, Grand Bahama Island, Bahamas, 1997.

16. T. Gaasterland, J. Minker, and A. Rajesekar, Deductive data-
base systems and knowledge base systems, Proc. VIA 90,
Barcelona, Spain, 1990.

17. B. L. Webber and E. Mays, Varieties of user misconceptions:
Detection and correction, Proc. 8th Int. Conf. Artificial Intell.,
Karlsruhe, Germany, 1983, pp. 650–652.

14 COOPERATIVE DATABASE SYSTEMS



18. W. Wahlster et al., Over-answering yes-no questions: Extended
responses in a NL interface to a vision system, Proc. IJCAI
1983, Karlsruhe, West Germany, 1983.

19. A. K. Joshi, B. L. Webber, and R. M. Weischedel, Living up to
expectations: Computing expert responses, Proc. Natl. Conf.
Artificial. Intell., Univ. Texas at Austin: The Amer. Assoc.
Artif. Intell., 1984, pp. 169–175.

20. J. Allen, Natural Language Understanding, Menlo Park, CA:
Benjamin/Cummings.

21. S. Carberry, Modeling the user’s plans and goals, Computa-
tional Linguistics, 14(3): 23–37, 1988.

22. K. F. McCoy, Reasoning on a highlighted user model to respond
to misconceptions, Computational Linguistics, 14(3): 52–63,
1988.

23. A. Quilici, M. G. Dyer, and M. Flowers, Recognizing and
responding to plan-oriented misconceptions, Computational
Linguistics, 14(3): 38–51, 1988.

24. A. S. Hemerly, M. A. Casanova, and A. L. Furtado, Exploiting
user models to avoid misconstruals, in R. Demolombe and T.
Imielinski (eds.), Nonstandard Queries and Nonstandard
Answers, Great Britain, Oxford Science, 1994, pp. 73–98.

25. A. Motro, FLEX: A tolerant and cooperative user interface to
database, IEEE Trans. Knowl. Data Eng., 4: 231–246, 1990.

26. W. W. Chu, Q. Chen, and R. C. Lee, Cooperative query answer-
ing via type abstraction hierarchy, in S. M. Deen (ed.), Coop-
erating Knowledge Based Systems, Berlin: Springer-Verlag,
1991, pp. 271–292.

27. W. W. Chu and K. Chiang, Abstraction of high level concepts
from numerical values in databases, Proc. AAAI Workshop
Knowl. Discovery Databases, 1994.

28. W. W. Chu et al., An error-based conceptual clustering method
for providing approximate query answers [online], Commun.
ACM, Virtual Extension Edition, 39(12): 216–230, 1996. Avail-
able: http://www.acm.org/cacm/extension.

29. M. Merzbacher and W. W. Chu, Pattern-based clustering for
database attribute values, Proc. AAAI Workshop on Knowl.
Discovery, Washington, DC, 1993.

30. W. W. Chu and Q. Chen, A structured approach for cooperative
query answering, IEEE Trans. Knowl. Data Eng., 6: 738–749,
1994.

31. W. Chu et al., A scalable and extensible cooperative informa-
tion system, J. Intell. Inf. Syst., pp. 223–259, 1996.

32. T. Gaasterland, P. Godfrey, and J. Minker, Relaxation as a
platform of cooperative answering, J. Intell. Inf. Syst., 1: 293–
321, 1992.

33. G. Fouque, W. W. Chu, and H. Yau, A case-based reasoning
approach for associative query answering, Proc. 8th Int. Symp.
Methodologies Intell. Syst., Charlotte, NC, 1994.

34. D. H. Fisher, Knowledge acquisition via incremental concep-
tual clustering, Machine Learning, 2(2): 139–172, 1987.

35. M. A. Gluck and J. E. Corter, Information, uncertainty, and the
unity of categories, Proc. 7th Annu. Conf. Cognitive Sci. Soc.,
Irvine, CA, 1985, pp. 283–287.

36. Y. Cai, N. Cercone, and J. Han, Attribute-oriented induction in
relational databases, in G. Piatetsky-Shapiro and W. J. Fraw-
ley (eds.), Knowledge Discovery in Databases, Menlo Park, CA:
1991.

37. J. R. Quinlan, The effect of noise on concept learning, in R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell (eds.), Machine
Learning, volume 2, 1986.

38. R. E. Stepp III and R. S. Michalski, Conceptual clustering:
Inventing goal-oriented classifications of structured objects, in
R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (eds.),
Machine Learning, 1986.

39. T. Finin et al., KQML as an agent communication language,
Proc. 3rd Int. Conf. Inf. Knowl. Manage., Gaithersburg, MD,
1994, pp. 456–463.

40. D. M. Mark and A. U. Frank, Concepts of space and spatial
language, Proc. 9th Int. Symp. Comput.-Assisted Cartography,
Baltimore, MD, 1989, pp. 538–556.

41. R. Subramanian and N. R. Adam, Ill-defined spatial operators
in geographic databases: Their nature and query processing
strategies, Proc. ACM Workshop Advances Geographical Inf.
Syst., Washington, DC, 1993, pp. 88–93.

42. A. S. Hemerly, A. L. Furtado, and M. A. Casanova, Towards
cooperativeness in geographic databases, Proc. 4th Int. Conf.
Database Expert Syst. Appl., Prague, Czech Republic, 1993.

43. Y. Arens and C. Knoblock, Planning and reformulating queries
for semantically-modelled multidatabase systems, Proc. 1st
Int. Conf. Inf. Knowl. Manage. (CIKM), Baltimore, MD,
1992, pp. 92–101.

44. D. P. McKay, J. Pastor, and T. W. Finin, View-concepts: Knowl-
edge-based access to databases, Proc. 1st Int. Conf. Inf. Knowl.
Manage. (CIKM), Baltimore, MD, 1992, pp. 84–91.

45. J. Stillman and P. Bonissone, Developing new technologies for
the ARPA-Rome Planning Initiative, IEEE Expert, 10(1): 10–
16, Feb. 1995.

46. W. W. Chu, I. T. Ieong, and R. K. Taira, A semantic modeling
approach for image retrieval by content, J. Very Large Data-
base Syst., 3: 445–477, 1994.

47. W. W. Chu, A. F. Cardenas, and R. K. Taira, KMeD: A knowl-
edge-based multimedia medical distributed database system,
Inf. Syst., 20(2): 75–96, 1995.

48. H. K. Huang and R. K. Taira, Infrastructure design of a picture
archiving and communication system, Amer. J. Roentgenol.,
158: 743–749, 1992.

49. C. Hsu, W. W. Chu, and R. K. Taira, A knowledge-based
approach for retrieving images by content, IEEE Trans. Knowl.
Data Eng., 8: 522–532, 1996.

WESLEY W. CHU

University of California
at Los Angeles

Los Angeles, California

COOPERATIVE DATABASE SYSTEMS 15



C

CoXML: COOPERATIVE XML QUERY
ANSWERING

INTRODUCTION

As the World Wide Web becomes a major means in dissemi-
nating and sharing information, there has been an expo-
nential increase in the amount of data in web-compliant
format such as HyperText Markup Language (HTML) and
Extensible Markup Language (XML). XML is essentially a
textual representation of the hierarchical (tree-like) data
where a meaningful piece of data is bounded by matching
starting and ending tags, such as <name> and </name>.
As a result of the simplicity of XML as compared with
SGML and the expressiveness of XML as compared with
HTML, XML has become the most popular format for
information representation and data exchange.

To cope with the tree-like structure in the XML model,
many XML-specific query languages have been proposed
(e.g., XPath1 and XQuery (1)). All these query languages
aim at the exact matching of query conditions. Answers are
found when those XML documents match the given query
condition exactly, which however, may not always be the
case in the XML model. To remedy this condition, we
propose a cooperative query answering framework that
derives approximate answers by relaxing query conditions
to less restricted forms. Query relaxation has been success-
fully used in relational databases (e.g., Refs. 2–6) and is
important for the XML model because:

1. Unlike the relational model where users are given a
relatively small-sized schema to ask queries, the
schema in the XML model is substantially bigger
and more complex. As a result, it is unrealistic for
users to understand the full schema and to compose
complex queries. Thus, it is desirable to relax the
user’s query when the original query yields null or not
sufficient answers.

2. As the number of data sources available on the Web
increases, it becomes more common to build systems
where data are gathered from heterogeneous data
sources. The structures of the participating data
source may be different even though they use the
same ontologies about the same contents. Therefore,
the need to be able to query differently structured
data sources becomes more important (e.g., (7,8)).
Query relaxation allows a query to be structurally
relaxed and routed to diverse data sources with dif-
ferent structures.

Query relaxation in the relational model focuses on
value aspects. For example, for a relational query ‘‘find a
person with a salary range 50K–55K,’’ if there are no

answers or insufficient results available, the query can
be relaxed to ‘‘find a person with a salary range 45K–
60K.’’ In the XML model, in addition to the value relaxation,
a new type of relaxation called structure relaxation is
introduced, which relaxes the structure conditions in a
query. Structure relaxation introduces new challenges to
the query relaxation in the XML model.

FOUNDATION OF XML RELAXATION

XML Data Model

We model an XML document as an ordered, labeled tree
in which each element is represented as a node and each
element-to-subelement relationship is represented as
an edge between the corresponding nodes. We represent
each data node u as a triple (id, label, <text>), where id
uniquely identifies the node, label is the name of the
corresponding element or attribute, and text is the corre-
sponding element’s text content or attribute’s value. Text is
optional because not every element has a text content.

Figure 1 presents a sample XML data tree describing
an article’s information. Each circle represents a node
with the node id inside the circle and label beside the
circle. The text of each node is represented in italic at
the leaf level.

Due to the hierarchical nature of the XML data model,
we consider the text of a data node u as part of the text of
any of u’s ancestor nodes in the data tree. For example, in
the sample XML data tree (Fig. 1), the node 8 is an ancestor
of the node 9. Thus, the text of the node 9 (i.e., ‘‘Algorithms
for mining frequent itemsets. . .’’) is considered part of the
text of the node 8.

XML Query Model

A fundamental construct in most existing XML query
languages is the tree-pattern query or twig, which selects
elements or attributes with a tree-like structure. In this
article, we use the twig as our basic query model. Similar
to the tree representation of XML data, we model a query
twig as a rooted tree. More specifically, a query twig T is
a tuple (root, V, E), where

� root is the root node of the twig;

� V is the set of nodes in the twig, where each node is a
tripe (id, label, <cont>), where id uniquely identifies
the node, label is the name of the corresponding ele-
ment or attribute, and cont is the content condition
on the corresponding node. cont is optional because
not every query node may have a content condition;

� The content condition for a query node is either a
database-style value constraint (e.g., a Boolean con-
dition such as equality, inequality, or range con-
straint) or an IR-style keyword search. An IR-style
content condition consists of a set of terms, where

*This work is supported by NSF Award ITR#: 0219442
1See http://www.w3.org/TR/xpath/.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



each term is either a single word or a phrase. Each
term may be prefixed with modifiers such as ‘‘þ’’ or ‘‘�’’
for specifying preferences or rejections over the term.
An IR-style content condition is to be processed in a
nonBoolean style; and

� E is the set of edges in the twig. An edge from nodes $u2

to $v, denoted as e$u,$v, represents either a parent-to-
child (i.e., ‘‘/’’) or an ancestor-to-descendant (i.e., ‘‘//’’)
relationship between the nodes $u and $v.

Given a twig T, we use T.root, T.V, and T.E to represent
its root, nodes, and edges, respectively. Given a node $v
in the twig T (i.e., v 2 T:V), we use $v.id, $v.label, and
$v.cont to denote the unique ID, the name, and the content
condition (if any) of the node respectively. The IDs of the
nodes in a twig can be skipped when the labels of all the
nodes are distinct.

For example, Fig. 2 illustrates a sample twig, which
searches for articles with a title on ‘‘data mining,’’ a year in
2000, and a body section about ‘‘frequent itemset algo-
rithms.’’ In this query, the user has a preference over the
term algorithm. The twig consists of five nodes, where each
node is associated with an unique id next to the node. The
text under a twig node, shown in italic, is the content or
value condition on the node.

The terms ‘‘twig’’ and ‘‘query tree’’ will be used inter-
changeably throughout this article.

XML Query Answer

With the introduction of XML data and query models, we
shall now introduce the definition of an XML query answer.
An answer for a query twig is a set of data nodes that satisfy
the structure and content conditions in the twig. We for-
mally define a query answer as follows:

Definition 1. Query Answer Given an XML data tree
D and a query twig T, an answer for the twig T, denoted
asAT

D, is a set of nodes in the data D such that:

� 8 $u2 T:V , there exists an unique data node u in
AT

D s:t $u:label ¼ u:label. Also, if $u:cont 6¼null and
$u:cont is a database-style value constraint, then the
text of the data node u:text satisfies the value con-
straint. If $u:cont 6¼ null and $u.cont is an IR-style

content condition, then the text of u.text should contain
all the terms that are prefixed with ‘‘þ’’ in $u:cont and
must not contain any terms that are prefixed with ‘‘�’’
in $u:cont;

� 8 e$u;$v 2T:E, let u and v be the data nodes in AT
D that

correspond to the query node $u and $v, respectively,
then the structural relationship between u and v
should satisfy the edge constraint e$u;$v.

For example, given the twig in Fig. 2, the set of nodes
{1, 2, 6, 7, 8} in the sample XML data tree (Fig. 1) is an
answer for the query, which matches the query nodes
{$1, $2, $3, $4, $5}, respectively. Similarly, the set of nodes
{1, 2, 6, 7, 12} is also an answer to the sample query.
Although the text of the data node 10 contain the phrase
‘‘frequent itemset,’’ it does not contain the term algo-
rithm, which is prefixed with ‘‘þ.’’ Thus, the set of data
nodes {1, 2, 6, 7, 10} is not an answer for the twig.

XML Query Relaxation Types

In the XML model, there are two types of query relaxations:
value relaxation and structure relaxation. A value relaxa-
tion expands a value scope to allow the matching of addi-
tional answers. A structure relaxation, on the other hand,
derives approximate answers by relaxing the constraint
on a node or an edge in a twig. Value relaxation is ortho-
gonal to structure relaxation. In this article, we focus on
structure relaxation.

Many structure relaxation types have been proposed
(8–10). We use the following three types, similar to the
ones proposed in Ref. 10, which capture most of the relaxa-
tion types used in previous work.

� Node Relabel. With this relaxation type, a node
can be relabeled to similar or equivalent labels accord-
ing to domain knowledge. We use rel($u, l) to represent
a relaxation operation that renames a node $u to
label l. For example, the twig in Fig. 2 can be relaxed
to that in Fig. 3(a) by relabeling the node section to
paragraph.

� Edge Generalization. With an edge relaxation, a
parent-to-child edge (‘/’) in a twig can be generalized to
an ancestor-to-descendant edge (‘//’). We use gen(e$u;$v)
to represent a generalization of the edge between
nodes $u and $v. For example, the twig in Fig. 2 can
be relaxed to that in Fig. 3(b) by relaxing the edge
between nodes body and section.

2To distinguish a data node from a query node, we prefix the
notation of a query node with a $.

article $1

bodytitle

section“data
mining”

“frequent itemset”, 
+algorithms

year

2000

$3$2 $4

$5

Figure 2. As sample XML twig.

title body

section

author

titlenameAdvances in 
Data Mining

IEEE XYZ
Fellow

Existing tools for 
mining frequent 

itemsets…

A Survey of 
frequent itemsets 
mining algorithms

1 article

2 3

4 5

7

10

11 13 referenceparagraph

12 section

year6

2000

9

Algorithms for 
mining frequent 

itemsets…

title

section8

Figure 1. A sample XML data tree.

2 COXML: COOPERATIVE XML QUERY ANSWERING



� Node Deletion. With this relaxation type, a node
may be deleted to derive approximate answers. We
use del($v) to denote the deletion of a node $v. When
$v is a leaf node, it can simply be removed. When $v is
an internal node, the children of node $v will be con-
nected to the parent of $v with ancestor-descendant
edges (‘‘//’’). For instance, the twig in Fig. 2 can be
relaxed to that in Fig. 3(c) by deleting the internal
node body. As the root node in a twig is a special node
representing the search context, we assume that any
twig root cannot be deleted.

Given a twig T, a relaxed twig can be generated by
applying one or more relaxation operations to T. Let m
be the number of relaxation operations applicable to T,
then there are at most

�m

1

�
þ . . .þ

�m

m

�
¼ 2m relaxation

operation combinations. Thus, there are at most 2m

relaxed twigs.

XML QUERY RELAXATION BASED ON SCHEMA
CONVERSION

One approach to XML query relaxation is to convert XML
schema, transform XML documents into relational tables
with the converted schema, and then apply relational query
relaxation techniques. A schema conversion tool, called
XPRESS (Xml Processing and Relaxation in rElational
Storage System) has been developed for these purposes:

XML documents are mapped into relational formats so
that queries can be processed and relaxed using existing
relational technologies. Figure 4 illustrates the query
relaxation flow via the schema conversion approach. This
process first begins by extracting the schema inform-
ation, such as DTD, from XML documents via tools such
as XML Spy(see http://www.xmlspy.com.) Second, XML
schema is transformed to relational schema via schema
conversion ([e.g., XPRESS). Third, XML documents are
parsed, mapped into tuples, and inserted into the relational
databases. Then, relational query relaxation techniques
[e.g., CoBase (3,6)] can be used to relax query conditions.
Further, semi-structured queries over XML documents
are translated into SQL queries. These SQL queries are
processed and relaxed if there is no answer or there
are insufficient answers available. Finally, results in
the relational format are converted back into XML (e.g.,
the Nesting-based Translation Algorithm (NeT) and
Constraints-based Translation Algorithm (CoT) (11) in
XPRESS). The entire process can be done automatically
and is transparent to users. In the following sections, we
shall briefly describe the mapping between XML and rela-
tional schema.

Mapping XML Schema to Relational Schema

Transforming a hierarchical XML model to a flat rela-
tional model is a nontrivial task because of the following

article

title body

paragraph“data 
mining”

“frequent 
itemset”, 

+algorithms

year

2000

(a) Node relabel

article

title body

section“data 
mining”

“frequent 
itemset”, 

+algorithms

year

2000

(b) Edge generalization

article

title section

“data
mining”

“frequent 
itemset”,  

+algorithms

year

2000

(c) Node delete
Figure 3. Examples of structure relaxations for
Fig.2.

extract DTD from XML 
file 

schema map 

DTD XML Spy 

XML → 
Relational 

Relational 
→ XML 

XML → 
Relational 

XML 
Queries 

query processing 
query relaxation 

SQL 

TAH 

RDB 

6 4 

7 5 

3 2 

1 

Relaxed 
Answers 

Relaxed 
Answers in 

XML formats 

generate TAHs 

XML 
doc 

data map 

Figure 4. The processing flow of XML query relaxation via schema conversion.

COXML: COOPERATIVE XML QUERY ANSWERING 3



inherent difficulties: the nontrivial 1-to-1 mapping, exis-
tence of set values, complicated recursion, and/or frag-
mentation issues. Several research works have been
reported in these areas. Shanmugasundaram et al. (12)
mainly focuses on the issues of structural conversion. The
Constraints Preserving Inline (CPI) algorithm (13) consi-
ders the semantics existing in the original XML schema
during the transformation. CPI inclines as many descen-
dants of an element as possible into a single relation. It
maps an XML element to a table when there is 1-to-f0; . . .g
or 1-to-f1; . . .g cardinality between its parent and itself.
The first cardinality has the semantics of ‘‘any,’’ denoted
by * in XML. The second means ‘‘at least,’’ denoted byþ. For
example, consider the following DTD fragment:

<!ELEMENT author (name, address)>
<!ELEMENT name (firstname?, lastname)>

A naive algorithm will map every element into a sepa-
rate table, leading to excessive fragmentation of the
document, as follows:

author (address, name_id)
name (id, firstname, lastname)

The CPI algorithm converts the DTD fragment above
into a single relational table as author (firstname, last-
name, address).

In addition, semantics such as #REQUIRED in XML
can be enforced in SQL with NOT NULL. Parent-to-child
relationships are captured with KEYS in SQL to allow
join operations. Figure 5 overviews the CPI algorithm,
which uses a structure-based conversion algorithm (i.e.,
a hybrid algorithm) (13), as a basis and identifies various
semantic constraints in the XML model. The CPI algo-
rithm has been implemented in XPRESS, which reduces
the number of tables generated while preserving most
constraints.

Mapping Relational Schema to XML Schema

After obtaining the results in the relational format, we
may need to represent them in the XML format before
returning them back to users. XPRESS developed a Flat
Translation (FT) algorithm (13), which translates
tables in a relational schema to elements in an XML
schema and columns in a relational schema to attributes
in an XML schema. As FT translates the ‘‘flat’’ relational
model to a ‘‘flat’’ XML model in a one-to-one manner, it
does not use basic ‘‘non-flat’’ features provided by the
XML model such as representing subelements though
regular expression operator (e.g., ‘‘*’’ and ‘‘þ’’). As a result,
the NeT algorithm (11) is proposed to decrease data

redundancy and obtains a more intuitive schema by: (1)
removing redundancies caused by multivalued dependen-
cies; and (2) performing grouping on attributes. The NeT
algorithm, however, considering tables one at a time,
cannot obtain an overall picture of the relational schema
where many tables are interconnected with each other
through various other dependencies. The CoT algorithm
(11) uses inclusion dependencies (INDs) of relational
schema, such as foreign key constraints, to capture the
interconnections between relational tables and represent
them via parent-to-child hierarchical relationships in the
XML model.

Query relaxation via schema transformation (e.g.,
XPRESS) has the advantage of leveraging on the well-
developed relational databases and relational query
relaxation techniques. Information, however, may be lost
during the decomposition of hierarchical XML data into
‘‘flat’’ relational tables. For example, by transforming the
following XML schema into the relational schema author
(firstname, lastname, address), we lose the hierarchical
relationship between element author and element name,
as well as the information that element firstname is
optional.

<!ELEMENT author (name, address)>
<!ELEMENT name (firstname?,lastname)>

Further, this approach does not support structure
relaxations in the XML data model. To remedy these short-
comings, we shall perform query relaxation on the XML
model directly, which will provide both value relaxation
and structure relaxation.

A COOPERATIVE APPROACH FOR XML QUERY
RELAXATION

Query relaxation is often user-specific. For a given query,
different users may have different specifications about
which conditions to relax and how to relax them. Most
existing approaches on XML query relaxation (e.g., (10))
do not provide control during relaxation, which may yield
undesired approximate answers. To provide user-specific
approximate query answering, it is essential for an XML
system to have a relaxation language that allows users to
specify their relaxation control requirements and to have
the capability to control the query relaxation process.

Furthermore, query relaxation usually returns a set of
approximate answers. These answers should be ranked
based on their relevancy to both the structure and the
content conditions of the posed query. Most existing rank-
ing models (e.g., (14,15)) only measure the content simila-
rities between queries and answers, and thus are

Figure 5. Overview of the CPI algorithm.

DTD
Relational Scheme

Integrity Constraint

hybrid()

FindConstraints()

Relational SchemaCPI

2

1

3

4 COXML: COOPERATIVE XML QUERY ANSWERING



inadequate for ranking approximate answers that use
structure relaxations. Recently, in Ref. (16), the authors
proposed a family of structure scoring functions based on
the occurrence frequencies of query structures among data
without considering data semantics. Clearly, using the rich
semantics provided in XML data in design scoring func-
tions can improve ranking accuracy.

To remedy these shortcomings, we propose a new para-
digm for XML approximate query answering that places
users and their demands in the center of the design
approach. Based on this paradigm, we develop a coopera-
tive XML system that provides userspecific approximate
query answering. More specifically, we first, develop a
relaxation language that allows users to specify approxi-
mate conditions and control requirements in queries (e.g.,
preferred or unacceptable relaxations, nonrelaxable condi-
tions, and relaxation orders).

Second, we introduce a relaxation index structure that
clusters twigs into multilevel groups based on relaxation
types and their distances. Thus, it enables the system to
control the relaxation process based on users’ specifications
in queries.

Third, we propose a semantic-based tree editing dis-
tance to evaluate XML structure similarities, which is
based on not only the number of operations but also
the operation semantics. Furthermore, we combine struc-
ture and content similarities in evaluating the overall
relevancy.

In Fig. 6, we present the architecture of our CoXML
query answering system. The system contains two major
parts: offline components for building relaxation indexes
and online components for processing and relaxing queries
and ranking results.

� Building relaxation indexes. The Relaxation Index
Builder constructs relaxation indexes, XML Type
Abstraction Hierarchy (XTAH), for a set of document
collections.

� Processing, relaxing queries, and ranking results.
When a user posts a query, the Relaxation Engine
first sends the query to an XML Database Engine to
search for answers that exactly match the structure

conditions and approximately satisfy the content con-
ditions in the query. If enough answers are found,
the Ranking Module ranks the results based on their
relevancy to the content conditions and returns the
ranked results to the user. If there are no answers or
insufficient results, then the Relaxation Engine, based
on the user-specified relaxation constructs and con-
trols, consults the relaxation indexes for the best
relaxed query. The relaxed query is then resubmitted
to the XML Database Engine to search for approxi-
mate answers. The Ranking Module ranks the
returned approximate answers based on their rele-
vancies to both structure and content conditions in the
query. This process will be repeated until either there
are enough approximate answers returned or
the query is no longer relaxable.

The CoXML system can run on top of any existing
XML database engine (e.g., BerkeleyDB3, Tamino4,
DB2XML5) that retrieves exactly matched answers.

XML QUERY RELAXATION LANGUAGE

A number of XML approximate search languages have
been proposed. Most extend standard query languages
with constructs for approximate text search (e.g., XIRQL
(15), TeXQuery (17), NEXI (18)). For example, TeXQuery
extends XQuery with a rich set of full-text search primi-
tives, such as proximity distances, stemming, and thesauri.
NEXI introduces about functions for users to specify
approximate content conditions. XXL (19) is a flexible
XML search language with constructs for users to specify
both approximate structure and content conditions. It,
however, does not allow users to control the relaxation
process. Users may often want to specify their preferred
or rejected relaxations, nonrelaxable query conditions, or
to control the relaxation orders among multiple relaxable
conditions.

To remedy these shortcomings, we propose an XML
relaxation language that allows users both to specify
approximate conditions and to control the relaxation pro-
cess. A relaxation-enabled query Q is a tuple (T , R, C, S),
where:

� T is a twig as described earlier;

� R is a set of relaxation constructs specifying which
conditions in T may be approximated when needed;

� C is a boolean combination of relaxation control stating
how the query shall be relaxed; and

� S is a stop condition indicating when to terminate the
relaxation process.

The execution semantics for a relaxation-enabled query
are as follows: We first search for answers that exactly
match the query; we then test the stop condition to check
whether relaxation is needed. If not, we repeatedly relax

   

relaxation-enabled
XML query

ranked
results

Ranking
Module

Relaxation
Engine

Relaxation
Indexes

Relaxation
Index Builder

XML
Database Engine

XML
Documents

CoXML

Figure 6. The CoXML system architecture.

3See http://www.sleepycat.com/
4See http://www.softwareag.com/tamino
5See http://www.ibm.com/software/data/db2/

COXML: COOPERATIVE XML QUERY ANSWERING 5



the twig based on the relaxation constructs and control
until either the stop condition is met or the twig cannot be
further relaxed.

Given a relaxation-enabled query Q, we use Q:T , Q:R,
Q:C, and Q:S to represent its twig, relaxation constructs,
control, and stop condition, respectively. Note that a twig is
required to specify a query, whereas relaxation constructs,
control, and stop condition are optional. When only a twig is
present, we iteratively relax the query based on similarity
metrics until the query cannot be further relaxed.

A relaxation construct for a query Q is either a specific
or a generic relaxation operation in any of the following
forms:

� rel(u,�), where u 2Q:T :V , specifies that node u may
be relabeled when needed;

� del(u), where u 2Q:T :V , specifies that node u may be
deleted if necessary; and

� gen(eu,v), where eu;v 2Q:T :E, specifies that edge eu,v

may be generalized when needed.

The relaxation control for a query Q is a conjunction of
any of the following forms:

� Nonrelaxable condition !r, where r2frelðu;�Þ; delðuÞ;
gen ðeu; vÞju; v 2 Q:T :V ; eu; v 2Q; T :Eg, specifies that
node u cannot be relabeled or deleted or edge eu,v

cannot be generalized;

� Pre ferðu; l1; . . . ; lnÞ, where u 2 Q:T :V and li is a label
ð1 � i � nÞ, specifies that node u is preferred to be
relabeled to the labels in the order of ðl1; . . . ; lnÞ;
� Reject(u; l1; . . . ; ln), where u 2 Q:T :V , specifies a set

of unacceptable labels for node u;

� RelaxOrderðr1; . . . ; rnÞ, where ri 2 Q:R: ð1 � i � nÞ,
specifies the relaxation orders for the constructs in
R to be ðr1; . . . ; rnÞ; and

� UseRTypeðrt1; . . . ; rtkÞ, where rti 2fnode relabel; node
delete; edge generalizegð1 � i � k � 3Þ, specifies the set
of relaxation types allowed to be used. By default, all
three relaxation types may be used.

A stop condition S is either:

� AtLeast(n), where n is a positive integer, specifies the
minimum number of answers to be returned; or

� dðQ:T :T0Þ � t, where T0 stands for a relaxed twig and t
a distance threshold, specifies that the relaxation
should be terminated when the distance between
the original twig and a relaxed twig exceeds the
threshold.

Figure 7 presents a sample relaxation-enabled query.
The minimum number of answers to be returned is 20.
When relaxation is needed, the edge between body and
section may be generalized and node year may be deleted.
The relaxation control specifies that node body cannot be
deleted during relaxation. For instance, a section about
‘‘frequent itemset’’ in an article’s appendix part is irrele-
vant. Also, the edge between nodes article and title and the
edge between nodes article and body cannot be generalized.
For instance, an article with a reference to another article
that possesses a title on ‘‘data mining‘‘ is irrelevant.
Finally, only edge generalization and node deletion can
be used.

We now present an example of using the relaxation
language to represent query topics in INEX 056. Figure 8
presents Topic 267 with three parts: castitle (i.e., the query
formulated in an XPath-like syntax), description, and
narrative. The narrative part describes a user’s detailed in-
formation needs and is used for judging result relevancy.

The user considers an article’s title (atl) non-relaxable
and regards titles about ‘‘digital libraries’’ under the bib-
liography part (bb) irrelevant. Based on this narrative, we
formulate this topic using the relaxation language as
shown in Fig. 9. The query specifies that node atl cannot
be relaxed (either deleted or relabeled) and node fm cannot
be relabeled to bb.

Figure 8. Topic 267 in INEX 05.

<inex_topic topic_id="267"  query_type="CAS" ct_no="113" >
<castitle>//article//fm//atl[about(., "digital libraries")]</castitle>
<description>Articles containing "digital libraries" in their title.</description>
<narrative>I'm interested in articles discussing Digital Libraries as their main subject. 
Therefore I require that the title of any relevant article mentions "digital library" explicitly. 
Documents that mention digital libraries only under the bibliography are not relevant, as well 
as documents that do not have the phrase "digital library" in their title.</narrative>
</inex_topic>

article

title body

section“data 
mining”

“frequent itemset”, 
+algorithms

$1

year

2000

$3$2 $4

$5

R = {gen(e$4,$5), del($3)} 

C = !del($4) ∧ !gen(e$1,$2) ∧ !gen(e$1, $4) ∧
UseRType(node_delete, edge_generalize)

S = AtLeast(20)

Figure 7. A sample relaxation-enabled query.

6Initiative for the evaluation of XML retrieval, See http://
inex.is.informatik.uni-duisburg.de/

C = !rel($3, -) ∧ !del($3) ∧ Reject($2, bb) article

fm

atl

“digital libraries”

$1

$2

$3

C = !rel($3, -) ∧ !del($3) ∧ Reject($2, bb) article

fm

atl

“digital libraries”

$1

$2

$3

article

fm

atl

“digital libraries”

$1

$2

$3

Figure 9. Relaxation specifications for Topic 267.

6 COXML: COOPERATIVE XML QUERY ANSWERING



XML RELAXATION INDEX

Several approaches for relaxing XML or graph queries
have been proposed (8,10,16,20,21). Most focus on efficient
algorithms for deriving top-k approximate answers with-
out relaxation control. For example, Amer-yahia et al. (16)
proposed a DAG structure that organizes relaxed twigs
based on their ‘‘consumption’’ relationships. Each node in
a DAG represents a twig. There is an edge from twig TA

to twig TB if the answers for TB is a superset of those for
TA. Thus, the twig represented by an ancestor DAG node
is always less relaxed and thus closer to the original twig
than the twig represented by a descendant node. There-
fore, the DAG structure enables efficient top-k searching
when there are no relaxation specifications. When there are
relaxation specifications, the approach in Ref. 16 can also
be adapted to top-k searching by adding a postprocessing
part that checks whether a relaxed query satisfies the
specifications. Such an approach, however, may not be
efficient when relaxed queries do not satisfy the relaxation
specifications.

To remedy this condition, we propose an XML relaxa-
tion index structure, XTAH, that clusters relaxed twigs
into multilevel groups based on relaxation types used by
the twigs and distances between them. Each group con-
sists of twigs using similar types of relaxations. Thus,
XTAH enables a systematic relaxation control based on
users’ specifications in queries. For example, Reject can
be implemented by pruning groups of twigs using unac-
ceptable relaxations. RelaxOrder can be implemented by
scheduling relaxed twigs from groups based on the specified
order.

In the following, we first introduce XTAH and then
present the algorithm for building an XTAH.

XML Type Abstraction Hierarchy—XTAH

Query relaxation is a process that enlarges the search scope
for finding more answers. Enlarging a query scope can be
accomplished by viewing the queried object at different
conceptual levels.

In the relational database, a tree-like knowledge repre-
sentation called Type Abstraction Hierarchy (TAH) (3) is
introduced to provide systematic query relaxation gui-
dance. A TAH is a hierarchical cluster that represents
data objects at multiple levels of abstractions, where objects
at higher levels are more general than objects at lower
levels. For example, Fig. 10 presents a TAH for brain tumor
sizes, in which a medium tumor size (i.e., 3–10 mm) is a
more abstract representation than a specific tumor size

(e.g., 10 mm). By such multilevel abstractions, a query can
be relaxed by modifying its conditions via generalization
(moving up the TAH) and specialization (moving down the
TAH). In addition, relaxation can be easily controlled via
TAH. For example, REJECT of a relaxation can be imple-
mented by pruning the corresponding node from a TAH.

To support query relaxation in the XML model, we
propose a relaxation index structure similar to TAH, called
XML Type Abstraction Hierarchy (XTAH). An XTAH for a
twig structure T, denoted as XTT , is a hierarchical cluster
that represents relaxed twigs of T at different levels of
relaxations based on the types of operations used by the
twigs and the distances between them. More specifically, an
XTAH is a multilevel labeled cluster with two types of
nodes: internal and leaf nodes. A leaf node is a relaxed
twig of T. An internal node represents a cluster of relaxed
twigs that use similar operations and are closer to each
other by distance. The label of an internal node is the
common relaxation operations (or types) used by the twigs
in the cluster. The higher level an internal node in the
XTAH, the more general the label of the node, the less
relaxed the twigs in the internal node.

XTAH provides several significant advantages: (1) We
can efficiently relax a query based on relaxation cons-
tructs by fetching relaxed twigs from internal nodes whose
labels satisfy the constructs; (2) we can relax a query at
different granularities by traversing up and down an
XTAH; and (3) we can control and schedule query relaxa-
tion based on users’ relaxation control requirements. For
example, relaxation control such as nonrelaxable condi-
tions, Reject or UseRType, can be implemented by prun-
ing XTAH internal nodes corresponding to unacceptable
operations or types.

Figure 11 shows an XTAH for the sample twig in
Fig. 3(a).7 For ease of reference, we associate each node
in the XTAH with a unique ID, where the IDs of internal
nodes are prefixed with I and the IDs of leaf nodes are
prefixed with T’.

Given a relaxation operation r, let Ir be an internal
node with a label frg. That is, Ir represents a cluster of
relaxed twigs whose common relaxation operation is r. As
a result of the tree-like organization of clusters, each
relaxed twig belongs to only one cluster, whereas the
twig may use multiple relaxation operations. Thus, it
may be the case that not all the relaxed twigs that use
the relaxation operation r are within the group Ir. For
example, the relaxed twig T02, which uses two operations
genðe$1;$2Þ and genðe$4;$5Þ, is not included in the internal
node that represents fgenðe$4;$5Þg, I7, because T02 may
belong to either group I4 or group I7 but is closer to the
twigs in group I4.

To support efficient searching or pruning of relaxed
twigs in an XTAH that uses an operation r, we add a virtual
link from internal node Ir to internal node Ik, where Ik is
not a descendant of Ir, but all the twigs within Ik use
operation r. By doing so, relaxed twigs that use operation
r are either within group Ir or within the groups connected
to Ir by virtual links. For example, internal node I7 is
connected to internal nodes I16 and I35 via virtual links.

all

small medium large

…0 3mm 10mm 15mm4mm3mm 10mm …

Figure 10. A TAH for brain tumor size.

7Due to space limitations, we only show part of the XTAH here.

COXML: COOPERATIVE XML QUERY ANSWERING 7



Thus, all the relaxed twigs using the operation genðe$4;$5Þ
are within the groups I7, I16, and I35.

Building an XTAH

With the introduction of XTAH, we now present the algo-
rithm for building the XTAH for a given twig T.

Algorithm 1 Building the XTAH for a given twig T

Input: T: a twig
K: domain knowledge about similar node labels

Output: XTT : an XTAH for T
1: ROT GerRelaxOperations(T, K) {GerRelaxOperations

(T, K) returns a set of relaxation operations applicable to the
twig T based on the domain knowledge K}

2: let XTT be a rooted tree with four nodes: a root node relax
with three child nodes node_relabel, node_delete and
edge_generalization

3: for each relaxation operation r2ROT do
4: rtype the relaxation type of r
5: InsertXTNode(/relax/rtype, {r}) {InsertXTNode(p, n)

inserts node n into XTT under path p}
6: T0  the relaxed twig using operation r
7: InsertXTNode ð=relax=rtype; =frg;T0Þ
8: end for
9: for k ¼ 2 tojROTj do

10: Sk all possible combinations of k relaxation operations
in ROT

11: for each combination s2Sk do
12: let s ¼ fr1; . . . ; rkg
13: if the set of operations in s is applicable to T then
14: T0  the relaxed twig using the operations in s
15: Ii the node representing s � frigð1 � i � kÞ
16: Ij the node s.t. 8 i;dðT0; IjÞ � dðT0; IiÞð1 � i; j � kÞ
17: InsertXTNodeð===Ij; fr1; . . . ; rkgÞ
18: InsertXTNodeð==Ij=fr1; . . . ; rkg; T0Þ
19: AddVLinkð==frjg; ==IjÞ {AddV Link(p1,p2) adds a

virtual link from the node under path p1 to the node
under path p2}

20: end if
21: end for
22: end for

In this subsection, we assume that a distance function
is available that measures the structure similarity
between twigs. Given any two twigs T1 and T2, we use
d(T1, T2) to represent the distance between the two twigs.
Given a twig T and an XTAH internal node I, we measure
the distance between the twig and the internal node,
d(T, I), as the average distance between T and any twig
T0 covered by I.

Algorithm 1 presents the procedure of building the
XTAH for twig T in a top-down fashion. The algorithm first
generates all possible relaxations applicable to T (Line 1).
Next, it initializes the XTAH with the top two level nodes
(Line 2). In Lines 3–8, the algorithm generates relaxed
twigs using one relaxation operation and builds indexes
on these twigs based on the type of the relaxation used:
For each relaxation operation r, it first adds a node to
represent r, then inserts the node into the XTAH based
on r’s type, and places the relaxed twig using r under the
node. In Lines 9–22, the algorithm generates relaxed twigs
using two or more relaxations and builds indexes on these
twigs. Let s be a set of k relaxation operations ðk� 2Þ; T0 a
relaxed twig using the operations in s, and I an internal
node representing s. Adding node I into the XTAH is a
three-step process: (1) it first determines I’s parent in the
XTAH (Line 16). In principle, any internal node that uses a
subset of the operations in s can be I’s parent. The algorithm
selects an internal node Ij to be I’s parent if the distance
between T0 and Ij is less than the distance between T0 and
other parent node candidates; (2) It then connects node I to
its parent Ij and adds a leaf node representing T0 to node I
(Lines 17 and 18). (3) Finally, it adds a virtual link from the
internal node representing the relaxation operation rj to
node I (Line 19), where rj is the operation that occurs in the
label of I but not in label of its parent node Ij .

article

body

section

$1

year $3title $2 $4

$5

Twig T

...…

…

relax

{gen(e$4, $5)}

{gen(e$1,$2), 
gen(e$4,$5)}

{del($4)}

edge_generalization I1

I7I4

I16

I2

I10

I3

I11 I15

I0

node_delete

{gen(e$1,$2)} …

…

node_relabel

...

Virtual links

…T1
’ article

bodytitle

section

year T8
’ article

bodytitle

section

year

T25
’ article

title sectionyear

…

{del($3)}

I35 {del($3), 
gen(e$4, $5)}

…

article

bodytitle 

section

T15
’

article

bodytitle

section

T16
’

…

{del($2)}

article

bodyyear

section

T10
’

T2
’ article

bodytitle

section

year

Figure 11. An example of XML relaxation index structure for the twig T.

8 COXML: COOPERATIVE XML QUERY ANSWERING



QUERY RELAXATION PROCESS

Query Relaxation Algorithm

Algorithm 2 Query Relaxation Process

Input: XTT: an XTAH
Q ¼ fT ; R; C; Sg: a relaxation-enabled query

Output: A: a list of answers for the query Q
1: A SearchAnswer(Q:T); {Searching for exactly matched

answers for Q:T}
2: if (the stop condition Q:S is met) then
3: return A
4: end if
5: if (the relaxation controls Q:C are non-empty) then
6: PruneXTAH(XTT, Q:C) {Pruning nodes in XTT that

contain relaxed twigs using unacceptable relaxation
operations based on Q:C}

7: end if
8: if the relaxation constructs Q:R are non-empty then
9: while (Q:S is not met)&&(not all the constructs inQ:R have

been processed) do
10: T0  the relaxed twig from XTT that best satisfies the

relaxation specifications Q:R & Q:C
11: Insert SearchAnswer(T0) into A
12: end while
13: end if
14: while (Q:T is relaxable)&&(Q:S is not met) do
15: T0  the relaxed twig from XTT that is closest toQ:T based

on distance
16: Insert SearchAnswer(T0) into A
17: end while
18: return A

Figure 12 presents the control flow of a relaxation pro-
cess based on XTAH and relaxation specifications in a
query. The Relaxation Control module prunes irrelevant
XTAH groups corresponding to unacceptable relaxation
operations or types and schedules relaxation operations
based on Prefer and RelaxOrder as specified in the query.
Algorithm 2 presents the detailed steps of the relaxation
process:

1. Given a relaxation-enabled query Q ¼ fT ; R; C; Sg
and an XTAH forQ:T , the algorithm first searches for
exactly matched answers. If there are enough num-
ber of answers available, there is no need for relaxa-
tion and the answers are returned (Lines 1–4).

2. If relaxation is needed, based on the relaxation control
Q:C (Lines 5–7), the algorithm prunes XTAH internal
nodes that correspond to unacceptable operations

such as nonrelaxable twig nodes (or edges), unaccep-
table node relabels, and rejected relaxation types.
This step can be efficiently carried out by using
internal node labels and virtual links. For example,
the relaxation control in the sample query (Figure 7)
specifies that only node_delete and edge_generaliza-
tion may be used. Thus, any XTAH node that uses
node_relabel, either within group I2 or connected to I2

by virtual links, is disqualified from searching. Simi-
larly, the internal nodes I15 and I4, representing the
operations del($4) and gen(e$1, $2), respectively, are
pruned from the XTAH by the Relaxation Control
module.

3. After pruning disqualified internal groups, based on
relaxation constructs and control, such as RelaxOr-
der and Prefer, the Relaxation Control module sche-
dules and searches for the relaxed query that best
satisfies users’ specifications from the XTAH. This
step terminates when either the stop condition is met
or all the constructs have been processed. For exam-
ple, the sample query contains two relaxation con-
structs: gen(e$4,$5) and del($3). Thus, this step selects
the best relaxed query from internal groups, I7 and
I11, representing the two constructs, respectively.

4. If further relaxation is needed, the algorithm then
iteratively searches for the relaxed query that is
closest to the original query by distance, which
may use relaxation operations in addition to those
specified in the query. This process terminates when
either the stop condition holds or the query cannot be
further relaxed.

5. Finally, the algorithm outputs approximate answers.

Searching for Relaxed Queries in an XTAH

We shall now discuss how to efficiently search for the
best relaxed twig that has the least distance to the query
twig from its XTAH in Algorithm 2.

A brute-force approach is to select the best twig by
checking all the relaxed twigs at the leaf level. For a
twig T with m relaxation operations, the number of relaxed
twigs can be up to 2m. Thus, the worst case time complexity
for this approach is O(2m), which is expensive.

To remedy this condition, we propose to assign repre-
sentatives to internal nodes, where a representative sum-
marizes the distance characteristics of all the relaxed twigs
covered by a node. The representatives facilitate the
searching for the best relaxed twig by traversing an

Query 
Processing

Satisfactory
Answers?

Ranking

Relaxation-
enabled Query

Ranked Answers

XTAH

YesNo

Relaxed 
Queries

Relaxation Control
(Pruning & Scheduling)

Figure 12. Query relaxation control flow.

COXML: COOPERATIVE XML QUERY ANSWERING 9



XTAH in a top-down fashion, where the path is determined
by the distance properties of the representatives. By doing
so, the worst case time complexity of finding the best
relaxed query is O(d * h), where d is the maximal degree
of an XTAH node and h is the height of the XTAH. Given an
XTAH for a twig T with m relaxation operations, the
maximal degree of any XTAH node and the depth of the
XTAH are both O(m). Thus, the time complexity of the
approach is O(m2), which is far more efficient than the
brute-force approach (O(2m)).

In this article, we use M-tree (22) for assigning repre-
sentatives to XTAH internal nodes. M-tree provides an
efficient access method for similarity search in the ‘‘metric
space,’’ where object similarities are defined by a distance
function. Given a tree organization of data objects where
all the data objects are at the leaf level, M-tree assigns a
data object covered by an internal node I to be the repre-
sentative object of I. Each representative object stores
the covering radius of the internal node (i.e., the maximal
distance between the representative object and any data
object covered by the internal node). These covering radii
are then used in determining the path to a data object at the
leaf level that is closest to a query object during similarity
searches.

XML RANKING

Query relaxation usually generates a set of approximate
answers, which need to be ranked before being returned to
users. A query contains both structure and content condi-
tions. Thus, we shall rank an approximate answer based on
its relevancy to both the structure and content conditions
of the posed query. In this section, we first present how
to compute XML content similarity, then describe how to
measure XML structure relevancy, and finally discuss how
to combine structure relevancy with content similarity to
produce the overall XML ranking.

XML Content Similarity

Given an answer A and a query Q, the content similarity
between the answer and the query, denoted as cont_sim(A
and Q), is the sum of the content similarities between the
data nodes and their corresponding matched query nodes.
That is,

cont simðA;QÞ ¼
X

v2A; $u2Q:T :n;u matches $u

cont simðv; $uÞ

(1)

For example, given the sample twig in Fig. 2, the set of
nodes {1, 2, 6, 7, 8} in the sample data tree is an answer.
The content similarity between the answer and the twig
equals to cont_sim(2, $2)þ cont_sim(6, $3)þ cont_sim(8, $5).

We now present how to evaluate the content similarity
between a data node and a query node. Ranking models in
traditional IR evaluate the content similarity between a
document to a query and thus need to be extended to
evaluating the content similarity between an XML data

node and a query node. Therefore, we proposed an extended
vector space model (14) for measuring XML content simi-
larity, which is based on two concepts: weighted term
frequency and inverse element frequency.

Weighted Term Frequency. Due to the hierarchical struc-
ture of the XML data model, the text of a node is also
considered as a part of the ancestor nodes’ text, which
introduces the challenge of how to calculate the content
relevancy of an XML data node v to a query term t, where t
could occur in the text of any node nested within the node
v. For example, all three section nodes (i.e., nodes 8, 10, and
12) in the XML data tree (Fig. 1) contain the phrase
‘‘frequent itemsets’’ in their text parts. The phrase ‘‘fre-
quent itemsets’’ occurs at the title part of the node 8, the
paragraph part in the node 10, and the reference part in
the node 12. The same term occurring at the different
text parts of a node may be of different weights. For
example, a ‘‘frequent itemset’’ in the title part of a section
node has a higher weight than a ‘‘frequent itemset’’ in the
paragraph part of a section node, which, in turn, is more
important than a ‘‘frequent itemset’’ in the reference part
of a section node. As a result, it may be inaccurate to
measure the weight of a term t in the text of a data node
v by simply counting the occurrence frequency of the
term t in the text of the node v without distinguishing
the term’s occurrence paths within the node v.

To remedy this condition, we introduce the concept of
‘‘weighted term frequency,’’ which assigns the weight of a
term t in a data node v based on the term’s occurrence
frequency and the weight of the occurrence path. Given
a data node v and a term t, let p¼ v1.v2. . .vk be an occur-
rence path for the term t in the node v, where vk is a
descendant node of v, vk directly contains the term t, and
v! v1! . . . ! vk represents the path from the node v to
the node vk. Let w(p) and w(vi) denote the weight for the
path p and the node vi, respectively. Intuitively, the weight
of the path p ¼ v1.v2. . .vk is a function of the weights of
the nodes on the path (i.e., w(p) ¼ f(w(v1), . . . w(vk))), with
the following two properties:

1. f(w(v1), w(v2), . . ., w(vk)) is a monotonically increas-
ing function with respect to w(vi) (1 � i � k); and

2. f(w(v1), w(v2), . . ., w(vk))) ¼ 0 if any w(vi) ¼ 0 (1 �
i � k).

The first property states that the path weight function
is a monotonically increasing function. That is, the weight
of a path is increasing if the weight of any node on the
path is increasing. The second property states that if
the weight of any node on the path is zero, then the weight
of the path is zero. For any node vi (1 � i � k) on the path p,
if the weight of the node vi is zero, then it implies that
users are not interested in the terms occurring under
the node vi. Therefore, any term in the text of either the
node vi or a descendant node of vi is irrelevant.

A simple implementation of the path weight func-
tion f(w(v1), w(v2), . . ., w(vk)) that satisfies the properties
stated above is to let the weight of a path equal to the

10 COXML: COOPERATIVE XML QUERY ANSWERING



product of the weights of all nodes on the path:

wðpÞ ¼
Yk
i¼1

wðviÞ (2)

With the introduction of the weight of a path, we shall
now define the weighted term frequency for a term t in a
data node v, denoted as t fw(v, t), as follows:

t f wðv; tÞ ¼
Xm
j¼1

wðpjÞ � tf ðv;pj; tÞ (3)

where m is the number of paths in the data node v con-
taining the term t and tf (v, pj, t) is the frequency of the
term t occurred in the node v via the path pj.

For example, Fig. 13 illustrates an example of an XML
data tree with the weight for each node shown in italic
beside the node. The weight for the keyword node is 5
(i.e., w(keyword)¼ 5). From Equation (2), we have
w( front_matter.keyword) ¼ 5*1 ¼ 5, w(body.section.para-
graph) ¼ 2*1*1 ¼ 2, and w(back_matter.reference) ¼ 0*1 ¼
0, respectively. The frequencies of the term ‘‘XML’’ in the
paths front_matter.keyword, body.section.paragraph, and
back_ matter.reference are 1, 2, and 1, respectively. There-
fore, from Equation (3), the weighted term frequency for the
term ‘‘XML’’ in the data node article is 5*1þ 2*2þ 0*1¼ 9.

Inverse Element Frequency. Terms with different popu-
larity in XML data have different degrees of discrimi-
native power. It is well known that a term frequency (tf)
needs to be adjusted by the inverse document frequency
(idf) (23). A very popular term (with a small idf) is less
discriminative than a rare term (with a large idf). There-
fore, the second component in our content ranking model
is the concept of ‘‘inverse element frequencys’’ (ief), which
distinguishes terms with different discriminative powers
in XML data. Given a query Q and a term t, let $u be the
node in the twig Q:T whose content condition contains
the term t (i.e., t2 $u:cont). Let DN be the set of data nodes
such that each node in DN matches the structure condi-
tion related with the query node $u. Intuitively, the more
frequent the term t occurs in the text of the data nodes in
DN, the less discriminative power the term t has. Thus,
the inverse element frequency for the query term t can be
measured as follows:

ie f ð$u; tÞ ¼ log
N1

N2
þ 1

� �
(4)

where N1 denotes the number of nodes in the set DN and
N2 represents the number of the nodes in the set DN
that contain the term t in their text parts.

For example, given the sample XML data tree (Fig. 1)
and the query twig (Fig. 2), the inverse element fre-
quency for the term ‘‘frequent itemset’’ can be calculated
as follows: First, the content condition of the query node
$5 contains the term ‘‘frequent itemset’’; second, there
are three data nodes (i.e., nodes 8, 10, and 12) that match
the query node $5; and third, all the three nodes contain
the term in their text. Therefore, the inverse element
frequency for the term ‘‘frequent itemset’’ is log(3/3 þ 1)
¼ log2. Similarly, as only two nodes (i.e., nodes 8 and 12)
contain the term ‘‘algorithms,’’ the inverse element fre-
quency for the term ‘‘algorithms’’ is log(3/2 þ 1) ¼ log(5/2).

Extended Vector Space Model. With the introduction
‘‘weighted term frequency’’ and ‘‘inverse element fre-
quency,’’ we now first present how we compute the con-
tent similarity between a data node and a query node and
then present how we calculate the content similarity
between an answer and a query.

Given a query node $u and a data node v, where the
node v matches the structure condition related with the
query node $u, the content similarity between the nodes v
and $u can be measured as follows:

cont simðv;$uÞ ¼
X

t2 $u:cont

wðmðtÞÞ� t fwðv; tÞ� ie f ð$u; tÞ (5)

where t is a term in the content condition of the node $u,
m(t) stands for the modifier prefixed with the term t (e.g.,
‘‘þ’’, ‘‘ ’’, ‘‘�’’), and w(m(t)) is the weight for the term modifier
as specified by users.

For example, given the section node, $5, in the sample
twig (Fig. 2), the data node 8 in Fig. 1 is a match for the
twig node $5. Suppose that the weight for a ‘‘þ’’ term
modifier is 2 and the weight for the title node is 5, respec-
tively. The content similarity between the data node 8
and the twig node $5 equals to t fw(8, ‘‘frequent itemset’’)�
ie f($5, ‘‘frequent itemset’’)þw(‘þ’)� t fw(8, ‘‘algorithms’’)�
ief($5, ‘‘algorithms’’), which is 5 � log2 þ 2 � 5 � log(5/2) ¼
18.22. Similarly, the data node 2 is a match for the twig node
title (i.e., $2) and the content similarity between them is
t fw(2, ‘‘data mining’’) � ie f($2, ‘‘data mining’’) ¼ 1.

Discussions. The extended vector space model has
shown to be very effective in ranking content similarities

1

5

2 0

1

2

3

4

5

7

6

8

front_matter

keyword

body

section

paragraph

back_matter

reference

XML

XML…XML

XML

1

1

1

article 1

i j

i: node id

j: node weight

1

5

2 0

1

2

3

4

5

7

6

8

front_matter

keyword

body

section

paragraph

back_matter

reference

XML

XML…XML

XML

1

1

1

article 1

i j

i: node id

j: node weight

i ji j

i: node id

j: node weight Figure 13. An example of weighted term frequency.

COXML: COOPERATIVE XML QUERY ANSWERING 11



of SCAS retrieval results8(14). SCAS retrieval results are
usually of relatively similar sizes. For example, for the
twig in Fig. 2, suppose that the node section is the target
node (i.e., whose matches are to be returned as answers).
All the SCAS retrieval results for the twig will be sections
inside article bodies. Results that approximately match the
twig, however, could be nodes other than section nodes,
such as paragraph, body, or article nodes, which are of
varying sizes. Thus, to apply the extended vector space
model for evaluating content similarities of approximate
answers under this condition, we introduce the factor of
‘‘weighted sizes’’ into the model for normalizing the biased
effects caused by the varying sizes in the approximate
answers (24):

cont simðA;QÞ ¼
X

v2A; $u2 Q:T :V; v matches $u

cont simðv; $uÞ
log2 wsizeðvÞ

(6)

where wsize(v) denotes the weighted size of a data node v.
Given an XML data node v, wsize(v) is the sum of the

number of terms directly contained in node v’s text, size-
(v.text), and the weighted size of all its child nodes adjusted
by their corresponding weights, as shown in the following
equation.

wsizeðvÞ ¼ sizeðv:textÞ þ
X

vi s:t: vjvi

wsizeðviÞ �wðviÞ (7)

For example, the weighted size of the paragraph node
equals the number of terms in its text part, because the
paragraph node does not have any child node.

Our normalization approach is similar to the scoring
formula proposed in Ref. 25, which uses the log of a docu-
ment size to adjust the product of t f and idf.

Semantic-based Structure Distance

The structure similarity between two twigs can be mea-
sured using tree editing distance (e.g., (26)), which is fre-
quently used for evaluating tree-to-tree similarities. Thus,
we measure the structure distance between an answer
A and a query Q, struct_dist(A, Q), as the editing distance
between the twig Q �T and the least relaxed twig T0,
d(Q:T , T0), which is the total costs of operations that relax
Q:T to T0:

struct distðA;QÞ ¼ dðQ:T ;T0Þ ¼
Xk

i¼1

costðriÞ (8)

where {r1, . . ., rk} is the set of operations that relaxes Q:T
to T0 and cost(ri) ð0 � costðriÞ � 1Þ is equal to the cost of
the relaxation operation rið1 � i � kÞ.

Existing edit distance algorithms do not consider ope-
ration cost. Assigning equal cost to each operation is
simple, but does not distinguish the semantics of different

operations. To remedy this condition, we propose a
semantic-based relaxation operation cost model.

We shall first present how we model the semantics of
XML nodes. Given an XML dataset D, we represent each
data node vi as a vector {wi1, wi2, . . ., wiN}, where N is the
total number of distinct terms in D and wij is the weight of
the jth term in the text of vi. The weight of a term may be
computed using tf*idf (23) by considering each node as a
‘‘document.’’ With this representation, the similarity
between two nodes can be computed by the cosine of their
corresponding vectors. The greater the cosine of the two
vectors, the semantically closer the two nodes.

We now present how to model the cost of an operation
based on the semantics of the nodes affected by the opera-
tion with regard to a twig T as follows:

� Node Relabel – rel(u, l)
A node relabel operation, rel(u, l), changes the label of
a node u from u.label to a new label l. The more
semantically similar the two labels are, the less the
relabel operation will cost. The similarity between two
labels, u.label and l, denoted as sim(u.label, l), can be
measured as the cosine of their corresponding vector
representations in XML data. Thus, the cost of a
relabel operation is:

costðrelðu; lÞÞ ¼ 1� simðu:lable; lÞ (9)

For example, using the INEX 05 data, the cosine of
the vector representing section nodes and the vector
representing paragraph nodes is 0.99, whereas the
cosine of the vector for section nodes and the vector
for figure nodes is 0.38. Thus, it is more expensive to
relabel node section to paragraph than to figure.

� Node Deletion – del(u)
Deleting a node u from the twig approximates u to its
parent node in the twig, say v. The more semantically
similar node u is to its parent node v, the less the
deletion will cost. Let Vv=u and Vv be the two vectors
representing the data nodes satisfying v/u and v,
respectively. The similarity between v/u and v,
denoted as sim(v/u, v), can be measured as the cosine
of the two vectors Vv/u and Vv. Thus, a node deletion
cost is:

costðdelðuÞÞ ¼ 1� simðv=u; uÞ (10)

For example, using the INEX 05 data, the cosine of
the vector for section nodes inside body nodes and the
vector for body nodes is 0.99, whereas the cosine of
the vector for keyword nodes inside article nodes
and the vector for article nodes is 0.2714. Thus, delet-
ing the keyword node in Fig. 3(a) costs more than
deleting the section node.

� Edge Generalization – gen(ev,u)
Generalizing the edge between nodes $v and $u
approximates a child node v/u to a descendant node
v//u. The closer v/u is to v//u in semantics, the less
the edge generalization will cost. Let Vv/u and Vv//u

be two vectors representing the data nodes satisfying

8In a SCAS retrieval task, structure conditions must be matched
exactly whereas content conditions are to be approximately
matched.

12 COXML: COOPERATIVE XML QUERY ANSWERING



v/u and v//u, respectively. The similarity between v/
u and v//u, denoted as sim(v/u, v//u), can be mea-
sured as the cosine of the two vectors Vv/u and Vv//u.
Thus, the cost for an edge generalization can be mea-
sured as:

costðgenðev;uÞÞ ¼ 1� simðv=u; v==uÞ (11)

For example, relaxing article/title in Fig. 3(a) to
article//title makes the title of an article’s author
(i.e., /article/author/title) an approximate match.
As the similarity between an article’s title and an
author’s title is low, the cost of generalizing article/
title to article//title may be high.

Note that our cost model differs from Amer-Yahia et al.
(16) in that Amer-Yahia et al. (16) applies idf to twig
structures without considering node semantics, whereas
we applied tf*idf to nodes with regard to their correspond-
ing data content.

The Overall Relevancy Ranking Model

We now discuss how to combine structure distance and
content similarity for evaluating the overall relevancy.

Given a query Q, the relevancy of an answer A to the
query Q, denoted as sim(A, Q), is a function of two
factors: the structure distance between A and Q (i.e.,
struct_dist(A, Q)), and the content similarity between A
and Q, denoted as cont_sim(A, Q). We use our extended
vector space model for measuring content similarity (14).
Intuitively, the larger the structure distance, the less the
relevancy; the larger the content similarity, the greater

the relevancy. When the structure distance is zero
(i.e., exact structure match), the relevancy of the answer
to the query should be determined by their content
similarity only. Thus, we combine the two factors in a
way similar to the one used in XRank (27) for combining
element rank with distance:

simðA;QÞ ¼ astruct distðA;QÞ � cost simðA;QÞ (12)

where a is a constant between 0 and 1.

A SCALABLE AND EXTENSIBLE ARCHITECTURE

Figure 14 illustrates a mediator architecture framework
for a cooperative XML system. The architecture consists of
an application layer, a mediation layer, and an information
source layer. The information source layer includes a set of
heterogeneous data sources (e.g., relational databases,
XML databases, and unstructured data), knowledge bases,
and knowledge base dictionaries or directories. The knowl-
edge base dictionary (or directory) stores the characteris-
tics of all the knowledge bases, including XTAH and domain
knowledge in the system. Non-XML data can be converted
into the XML format by wrappers. The mediation layer
consists of data source mediators, query parser mediators,
relaxation mediators, XTAH mediators, and directory med-
iators. These mediators are selectively interconnected to
meet the specific application requirements. When the
demand for certain mediators increases, additional copies
of the mediators can be added to reduce the loading. The
mediator architecture allows incremental growth with
application, and thus the system is scalable. Further,

XML 
DB

Unstructured 
Data

Wrapper

Relational 
DB

KB1
Dictionary/ 
Directory

...

KB

n

Application

Mediation

Information 
Sources

QPM: Query Parser Mediator
DSM: Data Source Mediator
RM: Relaxation Mediator
XTM: XTAH Mediator
DM: Directory of Mediators

Mediation Capability

Mediation Requirement

Mediation Capability

Mediation Requirement

Wrapper

...

XML 
DB

XML 
DB

...

...
...

User

... ...

Application

... DMDMDM

QPM

RM

DSM

QPMQPM

RMRM

DSMDSM

QPM

RM

DSM

QPMQPM

RMRM

DSMDSM

QPM

RM

XTM

QPMQPM

RMRM

XTMXTM

QPM

RM

XTM

QPMQPM

RMRM

XTMXTM

Figure 14. A scalable and extensible
cooperative XML query answering system.

COXML: COOPERATIVE XML QUERY ANSWERING 13



different types of mediators can be interconnected and can
communicate with each other via a common communica-
tion protocol (e.g., KQML (28), FIPA9) to perform a joint
task. Thus, the architecture is extensible.

For query relaxation, based on the set of frequently used
query tree structures, the XTAHs for each query tree
structure can be generated accordingly. During the query
relaxation process, the XTAH manager selects the appro-
priate XTAH for relaxation. If there is no XTAH available,
the system generates the corresponding XTAH on-the-fly.

We shall now describe the functionalities of various
mediators as follows:

� Data Source Mediator (DSM)
The data source mediator provides a virtual database
interface to query different data sources that usually
have different schema. The data source mediator
maintains the characteristics of the underlying data
sources and provides a unified description of these
data sources. As a result, XML data can be accessed
from data sources without knowing the differences of
the underlying data sources.

� Query Parser Mediator (PM)
The query parser mediator parses the queries from the
application layer and transforms the queries into
query representation objects.

� Relaxation Mediator (RM)
Figure 15 illustrates the functional components of the
relaxation mediator, which consists of a pre-processor,
a relaxation manager, and a post-processor. The flow
of the relaxation process is depicted in Fig. 16. When a

relaxation-enabled query is presented to the relaxa-
tion mediator, the system first goes through a pre-
processing phase. During pre-processing, the system
transforms the relaxation constructs into standard
XML query constructs. All relaxation control opera-
tions specified in the query are processed and for-
warded to the relaxation manager and are ready for
use if the query requires relaxation. The modified
query is then presented to the underlying databases
for execution. If no answers are returned, then the
relaxation manager relaxes the query conditions
guided by the relaxation index (XTAH). We repeat
the relaxation process until either the stop condition is
met or the query is no longer relaxable. Finally, the
returned answers are forwarded to the post-proces-
sing module for ranking.

� XTAH Mediator (XTM)
The XTAH mediator provides three conceptually sepa-
rate, yet interlinked functions to peer mediators:
XTAH Directory, the XTAH Management, and the
XTAH Editing facilities, as illustrated in Fig. 17.

Usually, a system contains a large number of
XTAHs. To allow other mediators to determine which
XTAHs exist within the system and their char-
acteristics, the XTAH mediator contains a directory.
This directory is searchable by the XML query tree
structures.

The XTAH management facility provides client
mediators with traversal functions and data extrac-
tion functions (for reading the information out of
XTAH nodes). These capabilities present a common
interface so that peer mediators can traverse and
extract data from an XTAH. Further, the XTAH

Figure 16. The flow chart of XML query relaxa-
tion processing.

Preprocessor

Query Processing

Postprocessor

Present Answers

Satisfactory
Answers?

Relaxation 
ManagerXTAH

Query Relaxation

Parsed Query
Approximate 

Answers

Relaxation Mediator

9See http://www.fipa.org.

Preprocessor

Relaxation 
Manager

Post-
processor

Data Source 
Mediator

XTAH 
MediatorRanked

Answers 

Figure 15. The relaxation mediator.

XTAH Management

XTAH Editor

XTAH Directory

Capability:

Generate XTAH
Browse XTAH
Edit and reformat XTAH
Traverse XTAH nodes

Requirements:
Data sources     

Figure 17. The XTAH mediator.

14 COXML: COOPERATIVE XML QUERY ANSWERING



mediator has an editor that allows users to edit XTAHs
to suit their specific needs. The editor handles recal-
culation of all information contained within XTAH
nodes during the editing process and supports expor-
tation and importation of entire XTAHs if a peer
mediator wishes to modify it.

� Directory Mediator (DM)
The directory mediator provides the locations, char-
acteristics, and functionalities of all the mediators in
the system and is used by peer mediators for locating a
mediator to perform a specific function.

A COOPERATIVE XML (CoXML) QUERY ANSWERING
TESTBED

A CoXML query answering testbed has been developed at
UCLA to evaluate the effectiveness of XML query relaxa-
tion through XTAH. Figure 18 illustrates the architecture
of CoXML testbed, which consists of a query parser, a
preprocessor, a relaxation manager, a database manager,
an XTAH manager, an XTAH builder, and a post-processor.
We describe the functionality provided by each module as
follows:

� XTAH Builder. Given a set of XML documents and the
domain knowledge, the XTAH builder constructs a set
of XTAHs that summarizes the structure character-
istics of the data.

� Query Parser. The query parser checks the syntax of
the query. If the syntax is correct, then it extracts
information from the parsed query and creates a query
representation object.

� Preprocessor. The pre-processor transforms relaxa-
tion constructs (if any) in the query into the standard
XML query constructs.

� Relaxation Manager. The relaxation manager per-
forms the following services: (1) building a relaxation
structure based on the specified relaxation constructs
and controls; (2) obtaining the relaxed query condi-
tions from the XTAH Manager; (3) modifying the
query accordingly; and (4) retrieving the exactly
matched answers.

� Database Manager. The database manager interacts
with an XML database engine and returns exactly
matched answers for a standard XML query.

� XTAH Manager. Based on the structure of the query
tree, the XTAH manager selects an appropriate XTAH
to guide the query relaxation process.

� Post-processor. The post-processor takes unsorted
answers as input, ranks them based on both structure
and content similarities, and outputs a ranked list of
results.

EVALUATION OF XML QUERY RELAXATION

INEX is a DELOS working group10 that aims to provide a
means for evaluating XML retrieval systems in the form of
a large heterogeneous XML test collection and appropriate
scoring methods. The INEX test collection is a large set of
scientific articles, represented in XML format, from pub-
lications of the IEEE Computer Society covering a range of
computer science topics. The collection, approximately 500
megabytes, contains over 12,000 articles from 18 maga-
zines/transactions from the period of 1995 to 2004, where
an article (on average) consists of 1500 XML nodes. Differ-
ent magazines/transactions have different data organiza-
tions, although they use the same ontology for representing
similar content.

There are three types of queries in the INEX query sets:
content-only (CO), strict content and structure (SCAS), and
vague content and structure (VCAS). CO queries are tradi-
tional information retrieval (IR) queries that are written in
natural language and constrain the content of the desired
results. Content and structure queries not only restrict
content of interest but also contain either explicit or impli-
cit references to the XML structure. The difference between
a SCAS and a VCAS query is that the structure conditions
in a SCAS query must be interpreted exactly whereas the
structure conditions in a VCAS query may be interpreted
loosely.

To evaluate the relaxation quality of the CoXML system,
we perform the VCAS retrieval runs on the CoXML testbed
and compare the results against the INEX’s relevance
assessments for the VCAS task, which can be viewed as
the ‘‘gold standard.’’ The evaluaion studies reveal the
expressiveness of the relaxation language and the effec-
tiveness of using XTAH in providing user-desired relaxa-
tion control. The evaluation results demonstrate that our
content similarity model has significantly high precision at
low recall regions. The model achieves the highest average
precision as compared with all the 38 official submissions in

e
Query 
Parser

Pre-
processor

Database 
Manager

XTAH
Manager

Relaxation 
Manager

XTAH
Builder

…. Domain 
Knowledge

XTAH

Post-
Processor

Relaxation-
enabled query

Ranked
Approximate

Answers

XML DB1XML DB1 XML DBnXML DBn

Figure 18. The architecture of the CoXML testbed.
10See http://www.iei.pi.cnr.it/DELOS

COXML: COOPERATIVE XML QUERY ANSWERING 15



INEX 03 (14). Furthermore, the evaluation results also
demonstrate that using the semantic-based distance func-
tion yields results with greater relevancy than using the
uniform-cost distance function. Comparing with other sys-
tems in INEX 05, our user-centeric relaxation approach
retrieves approximate answers with greater relevancy (29).

SUMMARY

Approximate matching of query conditions plays an impor-
tant role in XML query answering. There are two
approaches to XML query relaxation: either through
schema conversion or directly through the XML model.
Converting the XML model to the relational model by
schema conversion can leverage on the mature relational
model techniques, but information may be lost during such
conversions. Furthermore, this approach does not support
XML structure relaxation. Relaxation via the XML model
approach remedies these shortcomings. In this article, a
new paradigm for XML approximate query answering is
proposed that places users and their demands at the center
of the design approach. Based on this paradigm, we develop
an XML system that cooperates with users to provide user-
specific approximate query answering. More specifically, a
relaxation language is introduced that allows users to
specify approximate conditions and relaxation control
requirements in a posed query. We also develop a relaxation
index structure, XTAH, that clusters relaxed twigs into
multilevel groups based on relaxation types and their
interdistances. XTAH enables the system to provide user-
desired relaxation control as specified in the query.
Furthermore, a ranking model is introduced that combines
both content and structure similarities in evaluating the
overall relevancy of approximate answers returned from
query relaxation. Finally, a mediatorbased CoXML archi-
tecture is presented. The evaluation results using the INEX
test collection reveal the effectiveness of our proposed user-
centric XML relaxation methodology for providing user-
specific relaxation.

ACKNOWLEDGMENTS

The research and development of CoXML has been a team
effort. We would like to acknowledge our CoXML members,
Tony Lee, Eric Sung, Anna Putnam, Christian Cardenas,
Joseph Chen, and Ruzan Shahinian, for their contributions
in implementation, testing, and performance evaluation.

BIBLIOGRAPHY

1. S. Boag, D. Chamberlin, M. F Fernandez, D. Florescu, J.
Robie, and J. S. (eds.), XQuery 1.0: An XML Query Language.
Available http://www.w3.org/TR/xquery/.

2. W. W Chu ,Q. Chen, and A. Huang, Query Answering via
Cooperative Data Inference. J. Intelligent Information Sys-
tems (JIIS), 3 (1): 57–87, 1994.

3. W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, and C.
Larson, CoBase: A scalable and extensible cooperative infor-
mation system. J. Intell. Inform. Syst., 6 (11), 1996.

4. S. Chaudhuri and L. Gravano, Evaluating Top-k Selection
Queries. In Proceedings of 25th International Conference on
Very Large Data Bases, September 7–10, 1999, Edinburgh,
Scotland, UK.

5. T. Gaasterland, Cooperative answering through controlled
query relaxation, IEEE Expert, 12 (5): 48–59, 1997.

6. W.W. Chu, Cooperative Information Systems, in B. Wah (ed.),
The Encyclopedia of Computer Science and Engineering,
New York: Wiley, 2007.

7. Y. Kanza, W. Nutt, and Y. Sagiv, Queries with Incomplete
Answers Over Semistructured Data. In Proceedings of the
Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, May 31 – June 2, 1999,
Philadelphia, Pennsylvania.

8. Y. Kanza and Y. Sagiv, In Proceedings of the Twentieth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 21–23, 2001, Santa Barbara,
California.

9. T. Schlieder, In Proceedings of 10th International Conference
on Extending Database Technology, March 26–31, 2006,
Munich, Germany.

10. S. Amer-Yahia, S. Cho, and D. Srivastava, XML Tree Pattern
Relaxation. In Proceedings of 10th International Conference on
Extending Database Technology, March 26–31, 2006, Munich,
Germany.

11. D. Lee, M. Mani, and W. W Chu, Schema Conversions
Methods between XML and Relational Models, Knowledge
Transformation for the Semantic Web. Frontiers in Artificial
Intelligence and Applications Vol. 95, IOS Press, 2003,
pp. 1–17.

12. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt
and J. Naughton. Relational Databases for Querying XML
Documents: Limitations and Opportunities. In Proceedings of
25th International Conference on Very Large Data Bases,
September 7–10, 1999, Edinburgh, Scotland, UK.

13. D. Lee and W.W Chu, CPI: Constraints-preserving Inlining
algorithm for mapping XML DTD to relational schema, J. Data
and Knowledge Engineering, Special Issue on Conceptual
Modeling, 39 (1): 3–25, 2001.

14. S. Liu, Q. Zou, and W. Chu, Configurable Indexing and Rank-
ing for XML Information Retrieval. In Proceedings of the 27th

Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, July 25–29, 2004,
Sheffield, UK.

15. N. Fuhr and K. Grobjohann, XIRQL: A Query Language for
Information Retrieval in XML Documents. In Proceedings of
the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
September 9–13, 2001, New Orleans Louisiana.

16. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and
D. Toman, Structure and Content Scoring for XML. In Proceed-
ings of the 31st International Conference on Very Large Data
Bases, August 30– September 2, 2005, Trondheim, Norway.

17. S. Amer-Yahia, C. Botev, and J. Shanmugasundaram, TeXQu-
ery: A Full-Text Search Extension to XQuery. In Proceedings of
13th International World Wide Web Conference. May 17–22,
2004, New York.

18. A. Trotman and B. Sigurbjornsson, Narrowed Extended XPath
I NEXI. In Proceedings of the 3rd Initiative of the Evaluation of
XML Retrieval (INEX 2004) Workshop, December 6–8, 2004,
Schloss Dagstuhl, Germany,

19. A. Theobald and G. Weikum, Adding Relevance to XML. In
Proceedings of the 3rd International Workshop on the Web and

16 COXML: COOPERATIVE XML QUERY ANSWERING



Databases, WebDB 2000, Adam’s, May 18–19, 2000, Dallas,
Texas.

20. A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava,
Adaptive Processing of Top-k Queries in XML. In Proceedings
of the 21st International Conference on Data Engineering, ICDE
2005, April 5–8, 2005, Tokyo, Japan.

21. I. Manolescu, D. Florescu, and D. Kossmann, Answering
XML Queries on Heterogeneous Data Sources. In Proceedings
of 27th International Conference on Very Large Data Bases,
September 11–14, 2001, Rome, Italy.

22. P. Ciaccia, M. Patella, and P. Zezula, M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces. In
Proceedings of 23rd International Conference on Very Large
Data Bases, August 25–29, 1997, Athens, Greece.

23. G. Salton and M. J McGill, Introduction to Modern Information
Retrieval, New York: McGraw-Hill, 1983.

24. S. Liu, W. Chu, and R. Shahinian, Vague Content and Struc-
ture Retrieval(VCAS) for Document-Centric XML Retrieval.
Proceedings of the 8th International Workshop on the Web and
Databases (WebDB 2005), June 16–17, 2005, Baltimore,
Maryland.

25. W. B Frakes and R. Baeza-Yates, Information Retreival: Data
Structures and Algorithms, Englewood Cliffs, N.J.: Prentice
Hall, 1992.

26. K. Zhang and D. Shasha, Simple fast algorithms for the editing
distance between trees and related problems, SIAM J. Com-
put., 18 (6):1245– 1262, 1989.

27. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram,
XRANK: Ranked Keyword Search Over XML Document. In
Proceedings of the 2003 ACM SIGMOD International Confer-
ence on Management of Data, June 9–12, 2003, San Diego,
California.

28. T. Finin, D. McKay, R. Fritzson, and R. McEntire, KQML: An
information and knowledge exchange protocol, in K. Fuchi and
T. Yokoi, (eds), Knowledge Building and Knowledge Sharing,
Ohmsha and IOS Press, 1994.

29. S. Liu and W. W Chu, CoXML: A Cooperative XML Query
Answering System. Technical Report # 060014, Computer
Science Department, UCLA, 2006.

30. T. Schlieder and H. Meuss, Querying and ranking XML
documents, J. Amer. So. Inf. Sci. Technol., 53 (6):489.

31. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt,
and J. Naughton, Relational Databases for Querying
XML Documents: Limitations and Opportunities. In VLDB,
1999.

WESLEY W. CHU

SHAORONG LIU

University of California,
Los Angeles

Los Angeles, California

COXML: COOPERATIVE XML QUERY ANSWERING 17



D

DATA ANALYSIS

What is data analysis? Nolan (1) gives a definition, which is
a way of making sense of the patterns that are in, or can be
imposed on, sets of figures. In concrete terms, data analysis
consists of an observation and an investigation of the given
data, and the derivation of characteristics from the data.
Such characteristics, or features as they are sometimes
called, contribute to the insight of the nature of data.
Mathematically, the features can be regarded as some
variables, and the data are modeled as a realization of
these variables with some appropriate sets of values. In
traditional data analysis (2), the values of the variables are
usually numerical and may be transformed into symbolic
representation. There are two general types of variables,
discrete and continuous. Discrete variables vary in units,
such as the number of words in a document or the popula-
tion in a region. In contrast, continuous variables can vary
in less than a unit to a certain degree. The stock price and
the height of people are examples of this type. The suitable
method for collecting values of discrete variables is count-
ing, and for continuous ones, it is measurement.

The task of data analysis is required among various
application fields, such as agriculture, biology, economics,
government, industry, medicine, military, psychology, and
science. The source data provided for different purposes
may be in various forms, such as text, image, or waveform.
There are several basic types of purposes for data analysis:

1. Obtain the implicit structure of data.

2. Derive the classification or clustering of data.

3. Search particular objects in data.

For example, the stockbroker would like to get the future
trend of the stock price, the biologist needs to divide the
animals into taxonomies, and the physician tries to find
the related symptoms of a given disease. The techniques
to accomplish these purposes are generally drawn from
statistics that provide well-defined mathematical models
and probability laws. In addition, some theories, such as
fuzzy-set theory, are also useful for data analysis in parti-
cular applications. This article is an attempt to give a brief
introduction of these techniques and concepts of data ana-
lysis. In the following section, a variety of fundamental data
analysis methods are introduced and illustrated by exam-
ples. In the second section, the methods for data analysis on
two types of Internet data are presented. Advanced meth-
ods for Internet data analysis are discussed in the third
section. At last, we give a summary of this article and
highlight the research trends.

FUNDAMENTAL DATA ANALYSIS METHODS

In data analysis, the goals are to find significant patterns in
the data and apply this knowledge to some applications.

Data analysis is generally performed in the following
stages:

1. Feature selection.

2. Data classification or clustering.

3. Conclusion evaluation.

The first stage consists of the selection of the features in
the data according to some criteria. For instance, features
of people may include their height, skin color, and finger-
prints. Considering the effectiveness of human recognition,
the fingerprint, which is the least ambiguous, may get the
highest priority in the feature selection. In the second
stage, the data are classified according to the selected
features. If the data consist of at least two features, e.g.,
the height and the weight of people, which can be plotted in
a suitable coordinate system, we can inspect so-called
scatter plots and detect clusters or contours for data group-
ing. Furthermore, we can investigate ways to express data
similarity. In the final stage, the conclusions drawn from
the data would be compared with the actual demands. A set
of mathematical models has been developed for this eva-
luation. In the following, we first divide the methods of data
analysis into two categories according to different initial
conditions and resultant uses. Then, we introduce two
famous models for data analysis. Each method will be
discussed first, followed by examples. Because the feature
selection depends on the actual representations of data, we
postpone the discussion about this stage until the next
section. In this section, we focus on the classification/clus-
tering procedure based on the given features.

A Categorization of Data Analysis Methods

There are a variety of ways to categorize the methods of
data analysis. According to the initial conditions and the
resultant uses, there can be two categories, supervised
data analysis and unsupervised data analysis. The term
supervised means that the human knowledge has to be
provided for the process. In supervised data analysis, we
specify a set of classes called a classification template and
select some samples from the data for each class. These
samples are then labeled by the names of the associated
classes. Based on this initial condition, we can automati-
cally classify the other data termed as to-be-classified
data. In unsupervised data analysis, there is no classifica-
tion template, and the resultant classes depend on
the samples. The following are descriptions of supervised
and unsupervised data analysis with an emphasis on
their differences.

Supervised Data Analysis. The classification template
and the well-chosen samples are given as an initial state
and contribute to the high accuracy of data classification.
Consider the K nearest-neighbor (K NNs) classifier, which
is a typical example of supervised data analysis. The input

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



to the classifier includes a set of labeled samples S, a
constant value K, and a to-be-classified datum X.
The output after the classification is a label denoting a
class to which X belongs. The classification procedure is
as follows:

1. Find the K NNs of X from S.

2. Choose the dominant classes by K NNs.

3. If only one dominant class exists, label X by this
class; otherwise, label X by any dominant class.

4. Add X to S and the process terminates.

The first step selects K samples from S such that the values
of the selected features (also called patterns) of these K
samples are closest to those of X. Such a similarity may
be expressed in a variety of ways. The measurement of
distances among the patterns is one of the suitable instru-
ments, for example, the Euclidean distance as shown in
Equation (1). Suppose the K samples belong to a set of
classes; the second step is to find the set of dominant classes
C’. A dominant class is a class that contains the majority of
the K samples. If there is only one element in C’, say class Ci,
we assign X to Ci. On the other hand, if C’ contains more
than one element, X is assigned to an arbitrary class in C’.
After deciding the class of X, we label it and add it into the
set S.

dðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

ðXk � YkÞ2
vuut ð1Þ

where each datum is represented by m features.

Example. Suppose there is a dataset about the salaries
and ages of people. Table 1 gives such a set of samples S and
the corresponding labels. There are three labels that denote
three classes: Rich, Fair, and Poor. These classes are
determined based on the assumption that the Richness
depends on the values of the salary and age. In Table 1,
we also append the rules of assigning labels for each age
value. From the above, we can get the set membership of

each class:

CRich ¼ fY1; Y4;Y8g; CFair ¼ fY2;Y5;Y6;Y10g;
CPoor ¼ fY3;Y7;Y9g

If there is a to-be-classified datum X with age 26 and salary
$35,000 (35k), we apply the classification procedure to
classify it. Here we let the value of K be 4 and use the
Euclidean distance as the similarity measure:

1. The set of 4 NNs is fY4;Y5;Y6;Y9g.
2. The dominant class is the class CFair because Y6,

Y5 2CFair; Y4 2CRich; and Y9 2CPoor.

3. Label X by CFair.

4. New S contains an updated class CFair ¼ fY2;Y5;Y6;
Y10;Xg.

We can also give an assumed rule to decide the corres-
ponding label for the age of X as shown in Table 1.
Obviously, the conclusion drawn from the above classi-
fication coincides with such an assumption from human
knowledge.

Unsupervised Data Analysis. Under some circumstances,
data analysis consists of a partition of the whole data set
into many subsets. Moreover, the data within each subset
have to be similar to a high degree, whereas the data
between different subsets have to be similar to a very
low degree. Such subsets are called clusters, and the way
to find a good partition is sometimes also called cluster
analysis. A variety of methods have been developed to
handle this problem. A common characteristic among
them is the iterative nature of the algorithms.

The c-mean clustering algorithm is representative in
this field. The input contains the sample set S and a given
value c, which denotes the number of clusters in the final
partition. Notice that no labels are assigned to the samples
in S in advance. Before clustering, we must give an initial
partition W0 with c clusters. The algorithm terminates
when it converges to a stable situation in which the current
partition remains the same as the previous one. Different
initial partitions can lead to different final results. One way
to get the best partition is to apply this algorithm with all
different W0’s. To simplify the illustration, we only consider
a given W0 and a fixed c. The clustering procedure is as
follows.

1. Let W be W0 on S.

2. Compute the mean of each cluster in W.

3. Evaluate the nearest mean of each sample and move a
sample if its current cluster is not the one correspond-
ing to its nearest mean.

4. If any movement occurs, go to step 2; otherwise, the
process terminates.

The first step sets the current partition W to be W0. Then
we compute a set of means M in W. In general, a mean is
a virtual sample representing the whole cluster. It is
straightforward to use averaging as the way to find M.

Table 1. A Set of Samples with the Salary and Age Data

Sample Age Salary Label Assumed Rules to Assign Labels

Y1 20 25k Rich Rich, >20k; Poor, <10k
Y2 22 15k Fair Rich, >26k; Poor, <13k
Y3 24 15k Poor Rich, >35k; Poor, <16k
Y4 24 40k Rich
Y5 28 25k Fair Rich, >44k; Poor, <22k
Y6 30 40k Fair Rich, > 50k; Poor, <25k
Y7 30 20k Poor
Y8 32 60k Rich Rich, >56k; Poor, <28k
Y9 36 30k Poor Rich, >68k; Poor, <34k

Y10 40 70k Fair Rich, >80k; Poor, <40k

X 26 35k Fair Rich, >38k; Poor, <19k

2 DATA ANALYSIS



Next, we measure the similarity between each sample in S
and every mean in M. Suppose a sample Yj belongs to a
cluster Ci in the previous partition W, whereas another
cluster Ck has a mean nearest to Yj. Then we move Yj from
Ci to Ck. Finally, if such a sample movement exists, the
partition W would become a new one and requires more
iteration. On the other hand, if no such movement occurs
during iteration, the partition would become stable and the
final clustering is produced.

Example. Consider the data in Table 1 again. Suppose
there is no label on each sample and only the salary and the
age data are used as the features for analysis. For clarity,
we use a pair of values on the two features to represent a
sample; for instance, the pair (20, 25k) refers to the sample
Y1. Suppose there is an initial partition containing two
clusters C1 and C2. Let the means of these clusters be M1

and M2, respectively. The following shows the iterations for
the clustering:

1. For the initial partition W : C1 ¼ fY1;Y2;Y3;Y4;Y5g;
C2 ¼ fY6;Y7;Y8;Y9;Y10g.
a. The first iteration: M1 ¼ ð23:6; 26kÞ; M2 ¼ ð33:6;

44kÞ.
b. Move Y4 from C1 to C2, move Y7 and Y9 from C2

to C1.

2. For the new partition W : C1 ¼ fY1;Y2;Y3;Y5;Y7;
Y9g; C2 ¼ fY4;Y6;Y8;Y10g.
a. The second iteration: M1 ¼ ð26:6; 21:6kÞ; M2 ¼
ð31:5; 52:5kÞ.

b. There is no sample movement; the process termi-
nates.

We can easily find a simple discriminant rule behind this
final partition. All the samples with salaries lower than 40k
belong to C1, and the others belong to C2. Hence we may
conclude with a discriminant rule that divides S into two
clustersbycheckingthesalarydata.Ifweuseanotherinitial
partition, say W’, where C1 is fY1;Y3;Y5;Y7;Y9g and C2 is
fY2;Y4;Y6;Y8;Y10g, the conclusion is the same. The follow-
ing process yields another partition with three clusters.

1. For the initial partition W : C1 ¼ fY1;Y4;Y7g; C2 ¼
fY2;Y5;Y8g;C3 ¼ fY3;Y6;Y9;Y10g.
a. The first iteration: M1 ¼ ð24:6; 28:3kÞ; M2 ¼
ð27:3; 33:3kÞ; M3 ¼ ð32:5; 38:7kÞ.

b. Move Y4 from C1 to C2, move Y2 and Y5 from C2 to
C1, move Y8 from C2 to C3, move Y3 from C3 to C1,
move Y9 from C3 to C2.

2. For the new partition W : C1 ¼ fY1;Y2;Y3;Y5;Y7g;
C2 ¼ fY4;Y9g;C3 ¼ fY6;Y8;Y10g.
a. The second iteration: 2 M1¼ (24.8, 20k), M2¼ (30,

35k), M3 ¼ (34, 56.6k).

b. Move Y6 from C3 to C2.

3. For the new partition W : C1 ¼ fY1;Y2;Y3;Y5;Y7g;
C2 ¼ fY4;Y6;Y9g;C3 ¼ fY8;Y10g.
a. The third iteration: M1 ¼ ð24:8; 20kÞ; M2 ¼
ð30; 36:6kÞ; M3 ¼ ð36; 65kÞ.

b. There is no sample movement; the process termi-
nates.

After three iterations, we have a stable partition and con-
clude with a discriminant rule that all samples with sal-
aries lower than 30k belong to C1, the other samples with
salaries lower than 60k belong to C2 and the remainder
belongs to C3. The total number of iterations depends on
the initial partition, the number of clusters, the given
features, and the similarity measure.

Methods for Data Analysis

In the following, we introduce two famous methods for
data analysis. One is Bayesian data analysis based on
probability theory, and the other is fuzzy data analysis
based on fuzzy-set theory.

Bayesian Data Analysis. Bayesian inference, as defined
in Ref. 3, is the process of fitting a probability model to a set
of samples, which results in a probability distribution to
make predictions for to-be-classified data. In this environ-
ment, a set of samples is given in advance and labeled by
their associated classes. Observing the patterns contained
in these samples, we can obtain not only the distributions
of samples for the classes but also the distributions of
samples for the patterns. Therefore, we can compute a
distribution of classes for these patterns and use this dis-
tribution to predict the classes of the to-be-classified data
based on their patterns. A typical process of Bayesian data
analysis contains the following stages:

1. Compute the distributions from the set of labeled
samples.

2. Derive the distribution of classes for the patterns.

3. Evaluate the effectiveness of these distributions.

Suppose a sample containing the pattern a on some fea-
tures is labeled class Ci. First, we compute a set of prob-
abilities P(Ci) that denotes a distribution of samples for
different classes and let each PðajCiÞ denote the condi-
tional probability of a sample containing the pattern
a, given that the sample belongs to the class Ci. In the
second stage, the conditional probability of a sample
belonging to the class Ci, given that the sample contains
the pattern a, can be formulated as follows:

PðCijaÞ ¼
PðajCiÞ � PðCiÞ

PðaÞ ; where

PðaÞ ¼
X

j

PðajCjÞ � PðC jÞ ð2Þ

From Equation (2), we can derive the probabilities of a
sample belonging to classes according to the patterns con-
tained in the sample. Finally, we can find a way to determine
the class by using these probabilities. The following is a
simple illustration of data analysis based on this technique.

Example. Consider the data in Table 1. We first gather
the statistics and transform the continuous values into
discrete ones as in Table 2. Here we have two discrete

DATA ANALYSIS 3



levels, young and old, representing the age data, and three
levels, low, median, and high, referring to the salary data.
We collect all the probabilities and derive the ones for
prediction based on Equation (2):

P(young, low|CRich) ¼ 1/3, P(young, low|CFair) ¼ 1/2,
P(young, low|CPoor) ¼ 1/3,

P(young, median|CRich) ¼ 1/3, P(young, median|
CFair) ¼ 0, P(young, median|CPoor) ¼ 0, . . .

P(young, low) ¼ 4/10, P(young, median) ¼ 1/10,
P(young, high) ¼ 0, . . .

P(CRich) ¼ 3/10, P(CFair) ¼ 2/5, P(CPoor) ¼ 3/10

P(CRich|young, low) ¼ 1/4, P(CFair|young, low) ¼ 1/2,
P(CPoor|young, low) ¼ 1/4,

P(CRich|young,median) ¼ 1, P(CFair|young,median) ¼ 0,
P(CPoor|young, median) ¼ 0, . . .

Because there are two features representing the data, we
compute the joint probabilities instead of individual prob-
abilities. Here we assume that the two features have the
same degree of significance. At this point, we have con-
structed a model to express the data with their two features.
The derived probabilities can be regarded as a set of rules to
decide the classes of to-be-classified data.

If there is a to-be-classified datum X whose age is 26 and
salary is 35k, we apply the derived rules to label X. We
transform the pattern of X to indicate that the age is young
and the salary is low. To find the suitable rules, we can
define a penalty function lðCijCjÞ, which denotes the
payment when a datum belonging to Cj is classified into
Ci. Let the value of this function be 1 if Cj is not equal to
Ci and 0 if two classes are the same. Furthermore, we can
define a distance measure iðX; CiÞ as in Equation (3), which
represents the total amount of payments when we classify
X into Ci. We conclude that the lower the value of i(X, Ci),
the higher the probability that X belongs to Ci. In this
example, we labelX byCFair because i(X, CFair) is the lowest.

iðX; CiÞ ¼
X

j

lðCijCjÞ � PðC jjXÞ

; iðX; CRichÞ ¼ 3=4; iðX; CFairÞ ¼ 1=2; iðX; CPoorÞ ¼ 3=4

ð3Þ

Fuzzy Data Analysis. Fuzzy-set theory, established by
Zadeh (4) allows a gradual membership MFA(X) for any
datum X on a specified set A. Such an approach more
adequately models the data uncertainty than using the

common notion of set membership. Take cluster analysis
as an example. Each datum belongs to exactly one cluster
after the classification procedure. Often, however, the data
cannot be assigned exactly to one cluster in the real world,
such as the jobs of a busy person, the interests of a
researcher, or the conditions of the weather. In the following,
we replace the previous example for supervised data ana-
lysis with the fuzzy-set notion to show its characteristic.

Consider a universe of data U and a subset A of U.
Set theory allows us to express the membership of A on
U by the characteristic function FAðXÞ : U!f0; 1g.

FAðXÞ ¼
1;X 2A
0;X =2A

�
ð4Þ

From the above, it can be clearly determined whether X is
an element of A. However, many real-world phenomena
make such a unique decision impossible. In this case,
expressing in a degree of membership is more suitable. A
fuzzy set A on U can be represented by the set of pairs that
describe the membership function MFAðXÞ : U!½0; 1� as
defined in Ref. 5.

A ¼ fðX; MFAðXÞÞjX 2U; MFAðXÞ 2 ½0; 1�g ð5Þ

Example. Table 3 contains a fuzzy-set representation of
the dataset in Table 1. The membership function of each
sample is expressed in a form of possibility that stands for
the degree of the acceptance that a sample belongs to a
class. Under the case of supervised data analysis, the to-be-
classified datum X needs to be labeled using an appropriate
classification procedure. The distance between each sample
and X is calculated using the two features and Euclidean
distance:

1. Find the K NNs of X from S.

2. Compute the membership function of X for each class.

3. Label X by the class with a maximal membership.

4. Add X to S and stop the process.

The first stage in finding K samples with minimal dis-
tances is the same, so we have the same set of 4 NNs

Table 2. A Summary of Probability Distribution for the
Data in Table 1

Sample Rich Fair Poor
Expressions of New
Condensed Features

Young 2 2 1 Age is lower than 30

Old 1 2 2 The others

Low 1 2 3 Salary is lower than 36k
Median 1 1 0 The others
High 1 1 0 Salary is higher than 50k

Table 3. Fuzzy-Set Membership Functions for the Data
in Table 1

Sample Rich Fair Poor

Estimated Distance
Between Each
Sample and X

Y1 0.5 0.2 0.3 11.66
Y2 0.1 0.5 0.4 20.39
Y3 0 0.2 0.8 20.09
Y4 0.6 0.3 0.1 5.38
Y5 0.2 0.5 0.3 10.19
Y6 0.2 0.5 0.2 6.4
Y7 0 0 1 15.52
Y8 0.9 0.1 0 25.7
Y9 0 0.3 0.7 11.18

Y10 0.4 0.6 0 37.69

X 0.2 0.42 0.38

4 DATA ANALYSIS



fY4;Y5;Y6;Y9gwhen the value of K¼ 4. Let dðX; Y jÞ denote
the distance between X and the sample Yj. In the next
stage, we calculate the membership function MFCi

ðXÞ of X
for each class Ci as follows:

MFCi
ðXÞ ¼

X
j

MFCi
ðYjÞ � dðX; YjÞ

X
j

dðX; YjÞ
; 8Yj2K NNs of X ð6Þ

MFCrich
ðXÞ

¼0:6� 5:38þ 0:2� 10:19þ 0:2� 6:4þ 0� 11:18

5:38þ 10:19þ 6:4þ 11:18
�0:2

MFCfair
ðXÞ

¼0:3� 5:38þ 0:5� 10:19þ 0:6� 6:4þ 0:3� 11:18

5:38þ 10:19þ 6:4þ 11:18
�0:42

MFCpoor
ðXÞ

¼0:1� 5:38þ 0:3� 10:19þ 0:2� 6:4þ 0:7� 11:18

5:38þ 10:19þ 6:4þ 11:18
�0:38

Because the membership of X for class CFair is higher
than all others, we label X by CFair. The resultant
membership directly gives a confidence measure of this
classification.

INTERNET DATA ANALYSIS METHODS

The dramatic growth of information systems over the past
years has brought about the rapid accumulation of data
and an increasing need for information sharing. The
World Wide Web (WWW) combines the technologies of
the uniform resource locator (URL) and hypertext to
organize the resources in the Internet into a distributed
hypertext system (6). As more and more users and servers
register on the WWW, data analysis on its rich content is
expected to produce useful results for various applica-
tions. Many research communities such as network man-
agement (7), information retrieval (8), and database
management (9) have been working in this field.

The goal of Internet data analysis is to derive a classi-
fication or clustering of Internet data, which can provide a
valuable guide for the WWW users. Here the Internet data
can be two kinds of materials, web page and web log. Each
site within the WWW environment contains one or more
web pages. Under this environment, any WWW user can
make a request to any site for any web page in it, and the
request is then recorded in its log. Moreover, the user can
also roam through different sites by means of the anchors
provided in each web page. Such an approach leads to the
essential difficulties for data analysis:

1. Huge amount of data.

2. Frequent changes.

3. Heterogeneous presentations.

Basically the Internet data originate from all over the
world; the amount of data is huge. As any WWW user
can create, delete, and update the data, and change the
locations of the data at any time, it is difficult to get a

precise view of the data. Furthermore, the various forms of
expressing the same data also reveal the status of the
chaos on the WWW. As a whole, Internet data analysis
should be able to handle the large amount of data and to
control the uncertainty factors in a practical way. In this
section, we first introduce the method for data analysis on
web pages and then describe the method for data analysis
on web logs.

Web Page Analysis

Many tools for Internet resource discovery (10) use the
results of data analysis on the WWW to help users find
the correct positions of the desired resources. However,
many of these tools essentially keep a keyword-based
index of the available web pages. Owing to the imprecise
relationship between the semantics of keywords and
the web pages (11), this approach clearly does not fit the
user requests well. From the experiments in Ref. 12, the
text-based classifier that is 87% accurate for Reuters
(news documents) yields only 32% precision for Yahoo
(web pages). Therefore, a new method for data analysis
on web pages is required. Our approach is to use the
anchor information in each web page, which contains
much stronger semantics for connecting the user interests
and those truly relevant web pages.

A typical data analysis procedure consists of the
following stages:

1. Observe the data.

2. Collect the samples.

3. Select the features.

4. Classify the data.

5. Evaluate the results.

In the first stage, we observe the data and conclude with
a set of features that may be effective for classifying
the data. Next, we collect a set of samples based on a given
scope. In the third stage, we estimate the fitness of each
feature for the collected samples to determine a set of effec-
tive features. Then, we classify the to-be-classified data
according to the similarity measure on the selected
features. At last, we evaluate the classified results and
find a way for the further improvement. In the following,
we first give some results of the study on the nature of web
pages. Then we show the feature selection stage and a
procedure to classify the web pages.

Data Observation. In the following, we provide two
directions for observing the web pages.

Semantic Analysis. We may consider the semantics of a
web page as potential features. Keywords contained in a
web page can be analyzed to determine the semantics such
as which fields it belongs to or what concepts it provides.
There are many ongoing efforts on developing techniques to
derive the semantics of a web page. The research results of
information retrieval (13,14) can also be applied for this
purpose.

DATA ANALYSIS 5



Observing the data formats of web pages, we can find
several parts expressing the semantics of the web pages to
some extent. For example, the title of a web page usually
refers to a general concept of the web page. An anchor,
which is constructed by the web page designer, provides a
URL of another web page and makes a connection between
the two web pages. As far as the web page designer is
concerned, the anchor texts must sufficiently express the
semantics of the whole web page to which the anchor points.
As to the viewpoint of a WWW user, the motivation to follow
an anchor is based on the fact that this anchor expresses
desired semantics for the user. Therefore, we can make a
proper connection between the user’s interests and those
truly relevant web pages. We can group the anchor texts to
generate a corresponding classification of the web pages
pointed to by these anchor texts. Through this classifica-
tion, we can relieve the WWW users of the difficulties on
Internet resource discovery through a query facility.

Syntactic Analysis. Because the data formats of web
pages follow the standards provided on the WWW, for
example, hypertext markup language (HTML), we can
find potential features among the web pages. Consider
the features shown in Table 4. The white pages, which
mean the web pages with a list of URLs, can be distin-
guished from the ordinary web pages by a large number of
anchors and the short distances between two adjacent
anchors within a web page. Note that here the distance
between two anchors means the number of characters
between them. For the publication, the set of headings
has to contain some specified keywords, such
as ‘‘bibliography’’ or ‘‘reference.’’ The average distance
between two adjacent anchors has to be lower than a given
threshold, and the placement of anchors has to center to the
bottom of the web page.

According to these features, some conclusions may
be drawn in the form of classification rules. For instance,
the web page is designed for publication if it satisfies the
requirements of the corresponding features. Obviously, this
approach is effective only when the degree of support for
such rules is high enough. Selection of effective features is a
way to improve the precision of syntactic analysis.

Sample Collection. It is impossible to collect all web
pages and thus, choosing a set of representative samples
becomes a very important task. On the Internet, we have
two approaches to gather these samples, as follows:

1. Supervised sampling.

2. Unsupervised sampling.

Supervised sampling means that the sampling process is
based on the human knowledge specifying the scope of the
samples. In supervised data analysis, a classification tem-
plate that consists of a set of classes exists. The sampling
scope can be set based on the template. The sampling is
more effective when all classes in the template contain at
least one sample. On the other hand, we consider unsu-
pervised sampling if there is not enough knowledge about
the scope, as in the case of unsupervised data analysis. The
most trivial way to get samples is to choose any subset of
web pages. However, this arbitrary sampling may not fit
the requirement of random sampling well. We recommend
the use of search engines that provide different kinds of web
pages in the form of a directory.

Feature Selection. In addition to collecting enough sam-
ples, we have to select suitable features for the subsequent
classification. No matter how good the classification scheme
is, the accuracy of the results would not be satisfactory
without effective features. A measure for the effectiveness
of a feature is to estimate the degree of class separability. A
better feature implies higher class separability. This mea-
sure can be formulated as a criterion to select effective
features.

Example. Consider the samples shown in Table 5.
From Table 4, there are two potential features for white
pages, the number of anchors (F0) and the average dis-
tance between two adjacent anchors (F1). We assume that
F0 � 30 and F1� 3 when the sample is a white
page. However, a sample may actually belong to the class
of white pages although it does not satisfy the assumed
conditions. For example, Y6 is a white page although its F0

< 30. Therefore, we need to find a way to select effective
features.

From the labels, the set membership of the two classes is
as follows, where the class C1 refers to the class of white
pages:

C0 ¼ fY1;Y2;Y3;Y4;Y5g;C1 ¼ fY6;Y7;Y8;Y9;Y10g

We can begin to formulate the class separability. In
the following formula, we assume that the number of
classes is c, the number of samples within class Cj is nj,

Table 4. Potential Features for Some Kinds of Home Pages

Type of Web Page Potential Feature

White page Number of anchors, average distance
between two adjacent anchors

Publication Headings, average distance between two
adjacent anchors, anchor position

Person Title, URL directory
Resource Title, URL filename

Table 5. A Set of Samples with Two Features

Sample F0 F1 White Page

Y1 8 5 No
Y2 15 3.5 No
Y3 25 2.5 No
Y4 35 4 No
Y5 50 10 No
Y6 20 2 Yes
Y7 25 1 Yes
Y8 40 2 Yes
Y9 50 2 Yes
Y10 80 8 Yes

Note: F0 denotes the number of anchors.

F1 denotes the average distance for two adjacent anchors.

The labels are determined by human knowledge.

6 DATA ANALYSIS



and Yi
k denotes the kth sample in the class Ci. First, we

define interclass separability Db, which represents the
ability of a feature to distinguish the data between two
classes. Next, we define the intraclass separability Dw,
which expresses the power of a feature to separate the
data within the same class. The two measures are for-
mulated in Equations (7) and (8) based on the Euclidean
distance defined in Equation (1). As a feature with larger
Db and smaller Dw can get a better class separability, we
define a simple criterion function DFj

[Equation (9)] as a
composition of Db and Dw to evaluate the effectiveness of a
feature Fj. Based on this criterion function, we get DF0

¼
1:98 and DF1

¼ 8:78. Therefore, F1 is more effective than
F0 because of its higher class separability.

Db ¼
1

2

Xc

i¼1

Pi

X
j 6¼ i

P j
1

ni � n j

Xni

k¼l

Xnj

m¼l

dðYi
k; Y j

mÞ; where

Pi ¼
niPc

j¼1

n j

ð7Þ

Dw ¼
1

2

Xc

i¼l

Pi

X
j¼i

P j
1

ni � n j

Xni

k¼l

Xnj

m¼l

dðYi
k;Y

i
mÞ; where

Pi ¼
niPc

j¼l

n j

ð8Þ

DFj
¼ Db �Dw ð9Þ

We have several ways to choose the most effective set of
features, as follows:

1. Ranking approach.

2. Top-down approach.

3. Bottom-up approach.

4. Mixture approach.

The ranking approach selects the features one by one
according to the rank of their effectiveness. Each time we
include a new feature from the rank, we compute the joint
effectiveness of the features selected so far by Equations
(7)–(9). When the effectiveness degenerates, the process
terminates. Using a top-down approach, we consider all
features as the initial selection and drop the features one by
one until the effectiveness degenerates. On the contrary,
the bottom-up approach adds a feature at each iteration.
The worse case of the above two approaches occurs if we
choose the bad features earlier in the bottom-up approach
or the good features earlier in the top-down approach. The
last approach allows us to add and drop the features at each
iteration by combining the above two approaches. After
determining the set of effective features, we can start the
classification process.

Data Classification. In the following, we only consider
the anchor semantics as the feature, which is based on the
dependency between an anchor and the web page to which
the anchor points. As mentioned, the semantics expressed

by the anchor implies the semantics of the web page to
which the anchor points, and describes the desired web
pages for the users. Therefore, grouping the semantics of
the anchors is equivalent to classifying the web pages into
different classes. The classification procedure consists of
the following stages:

1. Label all sample pages.

2. For each labeled page, group the texts of the anchors
pointing to it.

3. Record the texts of the anchors pointing to the to-be-
classified page.

4. Classify the to-be-classified page based on the anchor
information.

5. Refine the classification process.

In the beginning, we label all samples and record all
anchors pointing to them. Then we group together the
anchor texts contained in the anchors pointing to the
same page. In the third stage, we group the anchor texts
contained in the anchors pointing to the to-be-classified
page. After the grouping, we decide the class of the to-be-
classified page according to the corresponding anchor texts.
At last, we can further improve the effectiveness of the
classification process. There are two important measures
during the classification process. One is the similarity
measure of two data, and the other is the criterion for
relevance feedback.

Similarity Measure. After the grouping of samples, we
have to measure the degree of membership between the to-
be-classified page and each class. Considering the Eucli-
dean distance again, there are three kinds of approaches for
such measurement:

1. Nearest-neighbor approach.

2. Farthest-neighbor approach.

3. Mean approach.

The first approach finds the sample in each class nearest to
the to-be-classified page. Among these representative sam-
ples, we can choose the class containing the one with a
minimal distance and assign the page to it. On the other
hand, we can also find the farthest sample in each class
from the page. Then we assign the page to the class that
contains the representative sample with a minimal dis-
tance. The last approach is to take the mean of each class
into consideration. As in the previous approaches, the mean
of each class represents a whole class, and the one with a
minimal distance from the page would be chosen. An exam-
ple follows by using the mean approach.

Example. Inspect the data shown in Table 6. There are
several web pages and anchor texts contained in some
anchors pointing to the web pages. Here we consider six
types of anchor texts, T1, T2, . . ., and T6. The value of an
anchor text for a web page stands for the number of the
anchors pointing to the web page, which contain the anchor
text. The labeling is the same as in the previous example.

DATA ANALYSIS 7



We calculate the means of the two classes as follows:

M0 ¼ ð0:4; 1; 1; 1; 0:2; 1Þ; M1 ¼ ð4:2; 3:4; 2:6; 1:4; 2; 1:4Þ

Suppose there is a web page X to be classified as shown in
Table 6. We can compute the distances between X and the
two means. They are dðX; M0Þ ¼ 6:94 and dðX; M1Þ ¼ 4:72.
Thus, we assign X to class C1.

Relevance Feedback. The set of samples may be enlarged
after a successful classification by including the classified
pages. However, the distance between a to-be-classified page
and the nearest mean may be very large, which means that
the current classification process does not work well on this
web page. In this case, we reject to classify such a web page
and wait until more anchor texts for this web page are
accumulated. This kind of rejection not only expresses the
extent of the current ability to classify web pages, but also it
promotes the precision of the classified results. Furthermore,
by the concept of class separability formulated in Equations
(7)–(9), we can define a similar criterion function DS to
evaluate the performance of the current set of samples:

DS ¼ DFðSÞ ð10Þ

where F is the set of all effective features and S is the current
set of samples.

Example. Reconsider the data shown in Table 6. Before
we assign X to C1, the initial DS equals to 0.75. When C1

contains X, DS[fXg yields a smaller value 0.16. On the other
hand, DS[fXg becomes 1.26 if we assign X to C0. Hence,
although X is labeled by C1, it is not suitable to become a
new sample for the subsequent classification. The set of
samples can be enlarged only when such an addition of new
samples gains a larger DS value, which means the class
separability is improved.

Web Log Analysis

The browsing behavior of the WWW users is also interest-
ing to data analyzers. Johnson and Fotouhi (15) propose a

technique to aid users in roaming through the hypertext
environment. They gather and analyze the browsing paths
of some users to generate a summary as a guide for other
users. Within the WWW environment, the browsing beha-
vior can be found in three positions, the history log of the
browser, the access log of the proxy server, and the request
log of the web server. Data analysis on the web logs at
different positions will lead to different applications. Many
efforts have been made to apply the results of web log
analysis, for example, the discovery of marketing knowl-
edge (16) the dynamic generation of anchors (17) and the
quality evaluation of website design (18).

For web log analysis, we can also follow the typical data
analysis procedure as described previously. Here we illus-
trate with an example of unsupervised data analysis. In
the first stage, we observe the content of the web log to
identify a set of features that can represent the desired
user behavior. Next, we may collect a set of samples from
the entire log to reduce the processing cost. In the third
stage, we choose a proper subset of feature values accord-
ing to some criteria such as arrival time and number of
occurrences. Then, we divide the users into clusters
according to the similarity measure on the features repre-
senting their behaviors. At last, we evaluate the clustered
results and find a way for further improvement. In the
following, we first introduce two kinds of representations
of user behavior, or user profiles as they are sometimes
called (19). Then we show a procedure to derive user
clusters from the web log.

Data Observation and Feature Selection. The web log
usually keeps the details of each request. The following
is an example record:

890984441.324 0 140.117.11.12 UDP_MISS/000 76 ICP_QU-
ERY http://www.yam.org.tw/b5/yam/. . .

According to application needs, only parts of the fields are
retrieved, for instance, arrival time (890984441.324), IP
address (140.117.11.12), and URL (http://www.yam.org.tw/
b5/yam/). The records with the same IP address can be
concatenated as a long sequence by the order of their arrival
times. Such a long sequence often spans a long time and
implies the user behavior composed of more than one
browses, where a browse means a series of navigations
for a specific goal. We can examine the arrival times of every
two consecutive requests to cut the sequence into shorter
segments, which exactly correspond to the individual
browses. In this way, a browse is represented as a sequence
of requests (URLs) within a time limit.

We may also represent the browsing behavior without
temporal information. For a sequence of URLs, we can
count the number of occurrences for each URL in it and
represent this sequence as a vector. For example, we can
represent a sequence <a; b; a; b; c; d; b; c> as a vector
[2 3 2 1], where each value stands for the number of
occurrences of a, b, c, and d, respectively. Compared with
the previous one, this representation emphasizes the fre-
quency of each URL instead of their order in a browse.

Table 6. A Set of Home Pages with Corresponding Anchor
Texts and Labels

Sample T1 T2 T3 T4 T5 T6 White Page

Y1 0 0 0 1 1 2 No
Y2 0 1 2 0 0 2 No
Y3 0 2 0 4 0 0 No
Y4 0 0 3 0 0 1 No
Y5 2 2 0 0 0 0 No
Y6 1 3 0 0 2 3 Yes
Y7 3 3 1 6 3 0 Yes
Y8 4 2 5 0 1 0 Yes
Y9 5 5 3 0 0 2 Yes

Y10 8 4 4 1 4 2 Yes

X 5 2 0 0 5 0 Yes

Note: T1 ¼ ‘‘list’’, T2 ¼ ‘‘directory’’, T3 ¼ ‘‘classification’’, T4 ¼ ‘‘bookmark’’,

T5¼ ‘‘hot’’, and T6 = ‘‘resource’’.

The labels are determined by human knowledge.

8 DATA ANALYSIS



User Clustering. In the following, we consider the vector
representation as the browsing behavior and assume that
similar vectors imply two browses with similar infor-
mation needs. Therefore, clustering the vectors is equi-
valent to clustering the users’ information needs. We use
the leader algorithm (20) and Euclidean distance as
defined in Equation (1) for clustering. The input is a set
of vectors S and the output is a set of clusters C. Two
thresholds min and max are also given to limit, respec-
tively, the sum of values in a vector and the distance
between two vectors in the same cluster. The algorithm
processes the vectors one by one and terminates after all of
them are processed. Different orderings of vectors can lead
to different final partitions. One way to get the best
partition is to try this algorithm on all different orderings.
Without loss of generality, we consider that a fixed order-
ing of vectors and the clustering procedure is as follows:

For each vector v in S, do the following steps:

1. If the sum of values in v is smaller than min,
discard v.

2. Compute the distance between v and the mean of
each cluster in C; let the cluster with the minimum
distance be c, and let d denote the minimum distance.

3. If d is larger than max, create a new cluster {v} and
add it to C; otherwise, assign v to c.

4. Compute the mean of each cluster in C.

The first step filters out the vector with a small number of
requests because it is not very useful in applications. Then
the distance between the vector v and the mean of each
cluster is computed. The cluster c with the minimum dis-
tance d is then identified. If d is large, we treat v as the mean
of a new cluster; otherwise, v is assigned to c.

Example. Consider the data in Table 7. There is a set of
vectors on four URLs. Let min and max be set to 2 and 6,
respectively. The following shows the iterations for the
clustering:

For Y1 ¼ [0 0 0 1],
1 The sum of value <min) discard Y1.

For Y2 ¼ [1 3 0 0],
1–3 Create C1 ¼ fY2g.
4 Set the median M1 ¼ ½1 3 0 0�.

For Y3 ¼ [3 3 1 6],
1,2 Compute the distance between Y3 and M1:

d1 ¼ 6.4.
3 d1 >max)Create C2 ¼ fY3g.
4 Set the median M2 ¼ ½3 3 1 6�.

For Y4 ¼ [4 2 5 0],
1,2 Compute the distance between Y4 and M1: d1¼

5.9; the distance between Y4 and M2: d2 ¼ 7.3.
3 d1 <max) assign Y4 to C1 ¼ fY2; Y4g.

4 Compute the new median M1 ¼ [2.5 2.5 2.5 0].

For Y5 ¼ [5 5 3 0],
1,2 Compute the distance between Y5 and M1: d1¼

3.6; the distance between Y5 and M2 : d2 ¼ 6.9.
3 d1 <max) assign Y5 to C1 ¼ fY2; Y4; Y5g.
4 Compute the new median M1 ¼ [3.3 3.3 2.7 0].

ADVANCED INTERNET DATA ANALYSIS METHODS

Although the previous procedures fit the goal of data
analysis well, there are still problems, such as speed or
memory requirements and the complex nature of real-
world data. We have to use some advanced techniques
to improve the performance. For example, the number of
clusters given in unsupervised data analysis has a sig-
nificant impact on the time spent in each iteration and the
quality of final partition. Notice that the initial partition
may contribute to a specific sequence of adjustments and
then to a particular solution. Therefore, we have to find an
ideal number of clusters during the analysis according to
the given initial partition. The bottom-up approach with
decreasing the number of clusters in iterations is a way to
adjust the final partition. Given a threshold of similarity
among the clusters, we can merge two clusters that are
similar enough to become a new single cluster. The num-
ber of clusters is determined when there are no more
similar clusters to be merged. In the following subsections,
we introduce two advanced techniques for Internet data
analysis.

Techniques for Web Page Analysis

The approach to classifying Web pages by anchor seman-
tics requires a large amount of anchor texts. These anchor
texts may be contained in the anchors pointing to the
Web pages in different classes. An anchor text is said to
be indiscernible when it cannot be used to distinguish the
Web pages in different classes. We use the rough-set
theory (21, 22) to find the indiscernible anchor texts, which
will then be removed. The remaining anchor texts will
contribute to a higher degree of accuracy for the subse-
quent classification. In addition, the cost of distance com-
putation can also be reduced. In the following, we
introduce the basic idea of the rough-set theory and an
example for the reduction of anchor texts (23).

Rough-Set Theory. By the rough-set theory, an informa-
tion system is modeled in the form of a 4-tuple (U, A, V, F),
where U represents a finite set of objects, A refers to a
finite set of attributes, V is the union of all domains of the
attributes in A, and F is a binary function ðF : U � A!VÞ.
The attribute set A often consists of two subsets, one
refers to condition attribute C and the other stands for
decision attribute D. In the classification on web pages, U
stands for all web pages, A is the union of the anchor texts

Table 7. A Set of Vectors on Six URLs

Vector URL1 URL2 URL3 URL4

Y1 0 0 0 1
Y2 1 3 0 0
Y3 3 3 1 6
Y4 4 2 5 0
Y5 5 5 3 0

DATA ANALYSIS 9



(C) and the class of web pages (D), V is the union of all the
domains of the attributes in A, and F handles the mappings.
Let B be a subset of A. A binary relation called the indis-
cernibility relation is defined as

INDB ¼ fðXi; X jÞ 2U �Uj 8 p2B; pðXiÞ ¼ pðX jÞg ð11Þ

That is, Xi and Xj are indiscernible by the set of attributes B
if p(Xi) is equal to p(Xj) for every attribute p in B. INDB is an
equivalence relation that produces an equivalence class
denoted as [Xi]B for each sample Xi. Two web pages Xi

and Xj, which have the same statistics for each anchor
text in C, belong to the same equivalence class [Xi]C (or
[Xj]C). Let U’ be a subset of U. A lower approximation
LOWB,U’, which contains all samples in each equivalence
class [Xi]B contained in U’, is defined as

LOW
B;U’ ¼ fXi 2Uj½Xi�B�U’g ð12Þ

Based on Equation (12), LOWC;½Xi�D contains the web
pages in the equivalence classes produced by INDC, and
these equivalence classes are contained in [Xi]D for a
given Xi. A positive region POSC,D is defined as the union
of LOWC;½Xi�D for each equivalence class produced by
INDD�POSC,D refers to the samples that belong to the
same class when they have the same anchor texts. As
defined in Ref. 24, C is independent on D if each subset
Ci in C satisfies the criterion that POSC;D 6¼ POSCi;D; other-
wise, C is said to be dependent on D. The degree of
dependency gC,D is defined as

gC;D ¼
cardðPOSC;DÞ

cardðUÞ ð13Þ

where card denotes set cardinality.

CON p;gC;D
¼ gC;D � gC�fpg;D ð14Þ

From these equations, we define the contribution
CON p;gC;D

of an anchor text p in C to the degree of depen-
dency gC,D by using Equation (14). According to Equation
(13), we say an anchor text p is dispensable if
gC�fpg;D ¼ gC;D. That is, the anchor text p makes no con-
tribution to gC,D and the value of CON p;gC;D

equals 0. The set
of indispensable anchor texts is the core of the reduced set
of anchor texts. The remaining task is to find a minimal
subset of C called a reduct of C, which satisfies Equation
(15) and the condition that the minimal subset is inde-
pendent on D.

POSC;D ¼ POSminimal subset of C;D ð15Þ

Reduction of Anchor Texts. To employ the concepts of
the rough-set theory for the reduction of anchor texts, we
transform the data shown in Table 6 into those in Table 8.
The numeric value of each anchor text is transformed into
a symbol according to the range in which the value falls.
For instance, a value in the range between 0 and 2 is
transformed into the symbol L. This process is a general-
ization technique usually used for a large database.

By Equation (14), we can compute CON p;gC;D
for each anchor

text p and sort them in ascending order. In this case, all
CON p;gC;D

are 0 except CONT1;gC;D
. That is, only the anchor

text T1 is indispensable, which becomes the unique core of
C. Next, we use a heuristic method to find a reduct of C
because such a task has been proved to be NP-complete in
Ref. 25. Based on an arbitrary ordering of the dispensable
anchor texts, we check the first anchor text to see whether it
is dispensable. If it is, then remove it and continue to check
the second anchor text. This process continues until no
more anchor texts can be removed.

Example. Suppose we sort the dispensable anchor texts
as the sequence<T2, T3, T4, T5, T6>, we then check one at
a time to see whether it is dispensable. At last, we obtain
the reduct fT1; T6g. During the classification process, we
only consider these two anchor texts for a similarity
measure. Let the symbols used in each anchor text be
transformed into three discrete values, 0, 1, and 2. The
means of the two classes are M0 ¼ (0, 0) and M1 ¼ (1, 0.8).
Finally, we classify X into the class C1 due to its minimum
distance. When we use the reduct fT1; T6g to classify data,
the class separability DfT1;T6g is 0.22. Different reducts
may result in different values of class separability. For
instance, the class separability becomes 0.27 if we choose
the reduct fT1; T2g.

Techniques for Web Log Analysis

The approach to clustering the user behaviors must adapt
itself to the rich content, large amount, and dynamic nature
of log data. As mentioned, the web log can provide a variety
of descriptions of a request. Consider the web log of an
online bookstore. As the user browses an article in it, the
web log may record several fields about that article, such as
URL, title, authors, keywords, and categories. Notice that
the last three fields represent a request as a set of items, and
thus, a browse is represented as a sequence of itemsets. In
addition, the dynamic nature of log data implies that the
users may change their interests or behaviors as time
passes. Therefore, extracting the most significant informa-
tion from a long history of user browsing is important. We

Table 8. A Set of Data in Symbolic Values Transformed
from Table 6

Sample T1 T2 T3 T4 T5 T6 White Page

Y1 L L L L L L No
Y2 L L L L L L No
Y3 L L L M L L No
Y4 L L M L L L No
Y5 L L L L L L No
Y6 L M L L L M Yes
Y7 M M L H M L Yes
Y8 M L M L L L Yes
Y9 M M M L L L Yes

Y10 H M M L M L Yes

X M L L L M L Yes

Note: L ¼ [0, 2], M ¼ [3, 5], H ¼ [6, 8].

10 DATA ANALYSIS



apply the association mining concepts (26) to extract the
most representative information (use profile) from a
sequence of itemsets. In the following, we introduce the
basic concepts used in the data mining field and illustrate
by an example how to derive the user profile with data
mining techniques (27).

Association Mining Concepts. According to the definition
in Ref. 26, a transaction has two fields, transaction-time
and the items purchased. An itemset is a nonempty set
of items, and thus, each transaction is also an itemset.
The length of an itemset is the total number of items in it.
A k-itemset stands for an itemset with length k. Further-
more, if a transaction contains an itemset I, we call
that the transaction supports I. The support of an
itemset is the percentage of transactions that support
it in the entire database. If the support of an itemset is
larger than a minimum support threshold, we call it a
frequent itemset. Given a transaction database, the goal of
association mining is to efficiently find all the frequent
itemsets.

Consider the web log analysis for an online bookstore.
We can regard a transaction as the set of categories (or
authors or keywords) logged during a time period that the
user enters the online bookstore. The categories in a trans-
action are equally treated. Thus, for each user, there will be
a series of transactions recorded in the web log. Moreover,
we can identify a set of categories, for instance, {‘‘data
mining’’, ‘‘database’’, ‘‘multimedia’’}, which has frequently
appeared in these transactions, to represent the user’s
interests.

Profile Derivation. We employ the association mining
concepts to derive the user profile from the transactions
in the web log. Due to the accumulation of transactions,
the profile derivation may incur high overheads if we
use the traditional mining method (28). Therefore, we
adopt an incremental method to derive the user profile.
The core of our method is the interest table, which is built
for each user to keep the categories in the transactions. An
interest table consists of four columns, while each row of
the table refers to a category. An example with four
transactions is shown in Table 9. The Category column
lists the categories that appear in the transactions. The
First and Last columns record the first and the last trans-
actions in which each category appears, respectively.
Finally, the Count column keeps the number of occur-
rences for each category since its first transaction. From
the interest table, we can compute the support of each
category as follows (where c is a category and T is the

current transaction):

SupportðcÞ ¼ CountðcÞ=ðT � FirstðcÞ þ 1Þ ð16Þ

This formula indicates that only the transactions after the
first transaction of this category are considered in the
support measure. In other words, we ignore the effects
of the transactions before the first transaction of this
category. Consider the scenario that a category first
appears in T91 and then continually shows up from T92
to T100. By the traditional method, its support is small
(10%). In contrast, our formula computes the support at
100%, indicating that this category appears frequently in
the recent transactions. Given a threshold a, the user
profile is fcjSupportðcÞ� ag.

By Equation (16), when a category first appears, its
support will be always 100%, which is not reasonable.
Therefore, we define a threshold, called minimal count
(denoted by b), to filter out the categories with very small
counts. On the other hand, we observe that the support of a
category can be very low if its first transaction is very far
from the current transaction. Consider the scenario that a
category first appears in T1, disappears from T2 to T91, and
continually shows up from T92 to T100. By Equation (16),
its support is just 10%. However, the fact that this category
appears frequently in the recent transactions implies that
the user is getting interested in it recently. Therefore, we
define another threshold, called expired time (denoted by g),
to restrict the interval between the last and the current
transactions. When this interval exceeds g, both the First
and the Last columns of the category are changed to the
current transaction.

Example. Take the four transactions in Table 9 as an
example. As category c appears in T1, T2, and T4, its count
has a value 3. Moreover, the first and the last transactions
of category c are T1 and T4, respectively. The rightmost
column of Table 9 lists the support of each category. In this
example, the thresholds a, b, and g are set to 75%, 2, and 4,
respectively. We do not compute the support of category a
because its count is less than b. As a result, fc; d; eg is
derived as the user profile.

When a new transaction T5 arrives, we recalculate the
supports of the categories that appear in T5 or the user
profile to update the interest table. As Table 10 shows, the
supports of all categories except a are recalculated. By a,
we derive the new user profile fb; c; e; fg. Note that
category d is removed from the user profile because its
new support is lower than a.

Table 9. Four Transactions and the Interest Table

Transactions Category First Last Count Support

T1 {a, c, e} a T1 T1 1 N/A
T2 {b, c, e, f} b T2 T4 2 67%
T3 {d, e, f} c T1 T4 3 75%
T4 {b, c, d} d T3 T4 2 100%

e T1 T3 3 75%
f T2 T3 2 67%

Table 10. The Interest Table After T5 Arrives

Transactions Category First Last Count Support

T1 {a, c, e} a T1 T1 1 N/A
T2 {b, c, e, f} b T2 T5 3 75%
T3 {d, e, f} c T1 T5 4 80%
T4 {b, c, d} d T3 T4 2 67%
T5 {b, c, e, f, g} e T1 T5 4 80%

f T2 T5 3 75%
g T5 T5 1 N/A

DATA ANALYSIS 11



SUMMARY

In this article, we describe the techniques and concepts of
data analysis. A variety of data analysis methods are
introduced and illustrated by examples. Two categories,
supervised data analysis and unsupervised data analysis,
are presented according to their different initial conditions
and resultant uses. Two methods for data analysis are also
described, which are based on probability theory and fuzzy-
set theory, respectively. The methods for data analysis on
two types of Internet data are presented. Advanced tech-
niques for Internet data analysis are also discussed.

Research Trends

The research trend of data analysis can be seen from two
viewpoints. From the viewpoint of data, new data types
such as transactions, sequences, trees, graphs, and rela-
tional tables, bring new challenges to data analysis. From
the viewpoint of knowledge, or the result of data analysis,
new interestingness measures of patterns, such as support,
confidence, lift, chi-square value, and entropy gain, also
bring new challenges to data analysis. It is not easy to come
up with a single method that can meet all combinations of
these challenges. Several ideas and solutions have been
proposed, but many challenges remain. In the following, we
introduce two research directions that have recently
attracted great attention from the data analyzers.

In many of the new applications, several continuous
data streams rapidly flow through computers to be either
read or discarded by people. Examples are the data flows
on computer, traffic, and telecommunication networks.
Recently, data analysis on continuous data streams has
become widely recognized (29). Its applications include
intrusion detection, trend analysis, and grid computing.
The characteristics of data analysis on continuous data
streams are as follows:

1. Continuity—Data are continuous and arrive at a
variable rate.

2. Infinity—The total amount of data is unbounded.

3. Uncertainty—The order of data cannot be predeter-
mined.

4. Expiration—Data can be read only once.

5. Multiplicity—More than one data stream may arrive
at a single site for data analysis.

Data analysis on graphs has become popular due to a
variety of new applications emerging in the fields like
biology, chemistry, and networking (30). The prevalent
use of HTML and XML formats also pushes the data
analyzers toward this research direction. The characteris-
tics of data analysis on graphs are as follows:

1. Variety—Graph has various substructures such as a
connected subgraph, an ordered tree, and a path.

2. Isomorphism—It is NP-complete to decide whether
one graph is a subgraph of another one.

3. Interestingness—The measure of pattern interest-
ingness depends on application needs.

4. Complexity—A very efficient mechanism is required
to keep the complex structure of graph data.

BIBLIOGRAPHY

1. B. Nolan, Data Analysis: An Introduction, Cambridge, UK:
Polity Press, 1994.

2. J. W. Tukey, Exploratory Data Analysis, Reading, MA: Addi-
son-Wesley, 1977.

3. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian
Data Analysis, London: Chapman & Hall, 1995.

4. L. A. Zadeh, Fuzzy sets, Information Control, 8: 338–353, 1965.

5. H. Bandemer and W. Nather, Fuzzy Data Analysis, Dordrecht:
Kluwer, 1992.

6. T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A.
Secret, The world wide web, Communications of the ACM, 37
(8): 76–82, 1994.

7. M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm,
Enhancing the web’s infrastructure: From caching to replica-
tion, IEEE Internet Computing, 1(2): 18–27, 1997.

8. V. N. Gudivada, V. V. Raghavan, W. I. Grosky, and R. Kasa-
nagottu, Information retrieval on the world wide web, IEEE
Internet Computing, 1 (5): 58–68, September/October 1997.

9. D. Florescu, A. Levy, and A. Mendelzon, Database techniques
for the world wide web: A survey, ACM SIGMOD Record, 27 (3):
59–74, September 1998.

10. K. Obraczka, P. B. Danzig, and S. H. Li, Internet resource
discovery services, IEEE Comp. Mag., 26 (9): 8–22, 1993.

11. C. S. Chang and A. L. P. Chen, Supporting conceptual and
neighborhood queries on www, IEEE Trans. on Systems, Man,
and Cybernetics, 28 (2): 300–308, 1998.

12. S. Chakrabarti, B. Dom, and P. Indyk, Enhanced hypertext
categorization using hyperlinks, Proc. of ACM SIGMOD Con-
ference on Management of Data, Seattle, WA, 1998, pp. 307–318.

13. G. Salton and M. J. McGill, Introduction to Modern Informa-
tion Retrieval, New York: McGraw-Hill, 1983.

14. G. Salton, Automatic Text Processing, Reading, MA: Addison
Wesley, 1989.

15. A. Johnson and F. Fotouhi, Automatic touring in hypertext
systems, Proc. of IEEE Phoenix Conference on Computers and
Communications, Phoenix, AZ, 1993, pp. 524–530.

16. A. Büchner and M. D. Mulvenna, Discovering internet market-
ing intelligence through online analytical web usage mining,
ACM SIGMOD Record, 27 (4): 54–61, 1998.

17. T. W. Yan, M. Jacobsen, H. Garcia-Molina, and U. Dayal, From
user access patterns to dynamic hypertext linking, Computer
Networks and ISDN Systems, 28: 1007–1014, 1996.

18. M. Perkowitz and O. Etzioni, Adaptive web sites, Communica-
tions of the ACM, 43 (8): 152–158, 2000.

19. Y. H. Wu and A. L. P. Chen, Prediction of web page accesses by
proxy server log, World Wide Web: Internet and Web Informa-
tion Systems, 5 (1): 67–88, 2002.

20. J. A. Hartigan, Clustering Algorithms, New York: Wiley, 1975.

21. Z. Pawlak, Rough sets, Communications of the ACM, 38 (11):
88–95, 1995.

22. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Knowledge, Norwell, MA: Kluwer, 1991.

23. A. L. P. Chen and Y. H. Wu, Data analysis, Wiley Encyclopedia
of Electrical and Electronics Engineering, New York: Wiley,
1999.

12 DATA ANALYSIS



24. X. Hu and N. Cercone, Mining knowledge rules from databases:
A rough-set approach, Proc. of IEEE Conference on Data Engi-
neering, New Orleans, LA, 1996, pp. 96–105.

25. R. Slowinski (ed.), Handbook of Applications and Advances
of the Rough Sets Theory, Norwell MA: Kluwer Academic
Publishers, 1992.

26. J. Han and M. Kamber, Data Mining: Concepts and Techni-
ques, New York: Morgan Kaufman Publishers, 2000.

27. Y. H. Wu, Y. C. Chen, and A. L. P. Chen, Enabling personalized
recommendation on the web based on user interests and beha-
viors, Proc. of IEEE Workshop on Research Issues in Data
Engineering, Heidelberg, Germany, 2001, pp. 17–24.

28. R. Agrawal and R. Srikant, Fast algorithms for mining associa-
tion rules, Proc. of Conference on Very Large Data Base, San-
tiago de Chile, Chile, 1994, pp. 487–499.

29. L. Golab and M. T. Özsu, Issues in data stream management,
ACM SIGMOD Record, 32 (2): 5–14, 2003.

30. T. Washio and H. Motoda, State of the art of graph-based data
mining, ACM SIGKDD Explorations, 5 (1): 2003.

YI-HUNG WU

Chung Yuan Christian
University

Chungli, Taiwan

ARBEE L. P. CHEN

National Chengchi University
Taipei, Taiwan

DATA ANALYSIS 13



D

DATABASE LANGUAGES

BACKGROUND

The DBMS has a DDL complier that processes DDL state-
ments to generate the schema descriptions and store them
into the DBMS catalog. The catalog contains metadata that
are consulted before the actual data are accessed.

There are two types of DMLs: low-level or procedural
DMLs and high-level or nonprocedural DMLs. A low-level
DML requires the user to specify how the data are manipu-
lated. This type of DML typically retrieves and processes
individual records from a database. Therefore, a low-level
DML is also called a record-at-a-time DML. A high-level
DML allows users to specify what the result is, leaving the
decision about how to get the result to the DBMS. There-
fore, a high-level DML is also called a declarative DML. A
high-level DML can specify and retrieve many records
in a single statement and is hence called a set-at-a-time
or set-oriented DML. A declarative DML is usually easier to
learn and use than a procedural DML. In addition, a
declarative DML is sometimes faster in overall processing
than its procedural counterpart by reducing the number of
communications between a client and a server. A low-level
DML may be embedded in a general-purpose programming
language such as COBOL, C/Cþþ, or Java. A general-
purpose language in this case is called the host language,
and the DML is called the data sublanguage. On the other
hand, a high-level DML called a query language can be used
in a standard-alone and interactive manner.

The main criterion used to classify a database language
is the data model based on which the language is defined.
The existing data models fall into three different groups:
high-level or conceptual data models, implementation data
models, and physical data models (1). Conceptual models
provide concepts that are close to the way users perceive
data, whereas physical data models provide concepts for
describing the details about how data are stored. Imple-
mentation data models specify the overall logical struc-
ture of a database and yet provide a high-level description of
the implementation.

High-level data models are sometimes called object-
based models because they mainly describe the objects
involved and their relationships. The entity-relationship
(E–R) model and the object-oriented model are the most
popular high-level data models. The E–R model (2) is
usually used as a high-level conceptual model that can
be mapped to the relational data model. The object-oriented
data model adapts the object-oriented paradigm for a data-
base by adding concepts in object-oriented programming
such as persistence and collection.

Implementation data models are used most fre-
quently in a commercial DBMS. There are three widely

used implementation data models: relational, network, and
hierarchical. They organize the data in record structures
and hence are sometimes called record-based data models.
Many database systems in early days were built based on
either the network model or the hierarchical model. How-
ever, because these two models only support low-level
queries and record-at-a-time retrievals, their importance
has decreased over the years. The relational model has
been successfully used in most commercial database
management systems today. This is because the relational
model and relational database languages provide high-
level query specifications and set-at-a-time retrievals.

The object-relational data model is a hybrid of the
object-oriented and the relational models. It extends the
relational data model by providing an extended type sys-
tem and object-oriented concepts such as object identity,
inheritance, encapsulation, and complex objects.

With the popularity of Extensible Markup Language
(XML), XML is becoming a standard tool for data repre-
sentation and exchange between multiple applications and
database systems. Later, we will discuss some advanced
database languages developed based on temporal, spatial,
and active models.

RELATIONAL DATA MODEL, RELATIONAL ALGEBRA,
RELATIONAL CALCULUS, AND RELATIONAL QUERY
LANGUAGES

Relational Data Model

The relational data model was introduced by Codd (3). It
was developed based on the mathematical notion of a
relation. Its root in mathematics allows it to provide the
simplest and the most uniform and formal representation.
The relational data model represents the data in a data-
base as a collection of relations. Using the terms of the
E–R model, both entity sets and relationship sets are rela-
tions. A relation is viewed as a two-dimensional table in
which the rows of the table correspond to a collection of
related data values and the values in a column all come
from the same domain. In database terminology, a row is
called a tuple and a column name is called an attribute.
A relation schema R, denoted by RðA1; A2; . . . ;AnÞ, is a
set of attributes R ¼ fA1; A2; . . . ;Ang. Each attribute Ai

is a descriptive property in a domain D. The domain of Ai

is denoted by dom(Ai). A relation schema is used to des-
cribe a relation, and R is called the name of the relation.
The degree of a relation is the number of the attributes of
its relation schema. A relation instance r of the relation
schema RðA1; A2; . . . ;AnÞ, also denoted by r(R), is a set of
m-tuples r ¼ ft1; t2; . . . ; tmg. Each tuple t is an ordered
list of n values t ¼ < v1; v2; . . . ; vn > , where each value
vi is an element of dom(Ai).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Relational Algebra

A query language is a language in which users can request
data from a database. Relational algebra is a procedural
language. The fundamental operations in the relational
algebra are usually divided into two groups. The first group
includes select, project, and join operations that are devel-
oped specifically for relational databases. The second group
includes set operations from mathematical set theory such
as union, interaction, difference, and Cartesian product.
These operations allow us to perform most data retrieval
operations.

The Select Operation. The select operation selects a sub-
set of the tuples from a relation. These tuples must satisfy
a given predicate. The lowercase Greek letter sigma (s) is
used to denote the select operation and followed by a
predicate as a subscript to s. The argument relation R
is given in the parentheses following s. Suppose we have
a sample University database that consists of three rela-
tions: Faculty, Department, and Membership as shown in
Fig. 1. If we wish to find information of all faculty members
whose salary is greater than $50,000, we would write

ssalary> 50000ðFacultyÞ

In general, the select operation is denoted by

sSconditioniðRÞ

Note that the select operation is commutative; that is,

scondition1ðscondition2ðRÞÞ ¼ scondition2ðscondition1ðRÞÞ

In addition, we can combine a cascade of select operations
into a single select operation with logical ‘‘AND’’ connec-
tives; that is,

scondition1ðscondition2ð. . . sconditionnRÞÞÞ

¼ scondition1 ANDscondition2 AND ... AND sconditionnðRÞ

The Project Operation. The project operation produces a
vertical subset of the table by extracting the values from
a set of specified columns, eliminating duplicates and pla-
cing the values in a new table. The lowercase Greek letter
pi (p) is used to denote the project operation and followed
by a list of attribute names that we wish to extract in the
result as a subscript to p. For example, the following
operation produces the names and birthdates of all faculty
members:

pname; birthdateðFacultyÞ

Relational Expressions. As each relational algebra ope-
ration produces a set, we can combine several relational
algebra operations into a relational expression. For
example, suppose that we want the names of all faculty
members whose salary is greater than 50,000 (Fig. 1). We
can write a relational expression as follows:

pnameðssalary>50000ðFacultyÞÞ

The Cartesian Product Operation. The Cartesian product
operation, denoted by a cross (X), allows us to combine
tuples from two relations so that the result of R1ðA1;
A2; . . . ; AnÞ X R2ðB1; B2; . . . ; BmÞ is a relation Q with
nþm attributes QðA1; A2; . . . ; An; B1; B2; . . . ; BmÞ in

Figure 1. Instance of the University database.

Faculty
fid name birthdate salary (dollar) dcode 
91239876 John Smith 01/09/67 40000 2 
33489783 Perry Lee 12/08/55 68000 2 
78738498 Tom Bush 06/20/41 79000 4 
12323567 Jane Rivera 09/15/72 35000 3 
87822384 Joyce Adams 11/10/59 54000 1 
78898999 Frank Wong 07/31/79 30000 3 
22322123 Alicia Johnson 08/18/80 28000 1 

Department
dcode name 
1 Chemical Engineering 
2 Computer Science 
3 Electrical Engineering 
4 Mechanical Engineering 

Membership
fid society 
91239876 American Database Association 
33489783 American Software Engineering Society 
78738498 International Mechanical Engineering Association 
12323567 International Electrical Engineering Association 
87822384 International Chemical Engineering Association 
78898999 International Electrical Engineering Association 
22322123 Advocate for Women in Engineering 

2 DATABASE LANGUAGES



that order. The tuples of the relation Q are all combinations
of the rows from R1 and R2. Specifically, it combines
the first row of R1 with the first row of R2, then with the
second row of R2, and so on, until all combinations of the
first row of R1 with all the rows of R2 have been formed.
The procedure is repeated for the second row of R1,
then the third row of R1, and so on. Assume that we
have p tuples in R1 and q tuples in R2. Then, there are
p� q tuples in Q.

The Join Operation. In fact, the Cartesian product is
rarely used by itself. We can define several useful operations
based on the Cartesian product operation. The join opera-
tion, denoted by ffl , is used to combine related tuples from
two relations. The general form of the join operation on two
relations R1ðA1; A2; . . . ; AnÞ and R2 ðB1; B2; . . . ; BmÞ is

R1ffl < join condition>R2

The result of the join operation is a relation QðA1;
A2; . . . ; An; B1; B2; . . . ; BmÞ that satisfies the join condi-
tion. The join condition is specified on the attributes of
R1 and R2 and is evaluated for each tuple from the Carte-
sian product R1 � R2. The join condition is of the form:

< condition> AND < condition> AND . . . AND < condition>

where each condition is of the form AiQB j, Ai is an attri-
bute of R1;Bj is an attribute of R2, both Ai and Bj belong
to the same domain, and Q is one of the following comparison
operators:¼; �; < ; > ; � ; 6¼ . A join operation with such a
general join condition is called a theta join.

The most common join operation involves only equality
comparisons. When a join only involves join conditions
with equality operators, such a join is called an equijoin.
As an illustration of an equijoin join, the following query

retrieves the names of all faculty members of each depart-
ment in the University database:

pnameðFacultyffl Faculty:dcode¼Department:dcodeDepartmentÞ

The result of the equijoin is shown in Fig. 2. You may notice
that we always have at least two attributes that have
identical values in every tuple as shown in Fig. 2. As it is
unnecessary to include repeated columns, we can define a
natural join by including an equality comparison between
every pair of common attributes and eliminating the
repeated columns in the result of an equijoin. A natural
join for the above example can be expressed as follows in
Fig. 3.

Relational Calculus

Relational calculus is a declarative query language in
which users specify what data should be retrieved, but
not how to retrieve them. It is a formal language, based
on predicate calculus, a branch of mathematical logic.
There are two types of relational calculus: tuple-related
calculus and domain-related calculus. Both are subsets of
predicate calculus, which deals with quantified variables
and values.

A query in the tuple-related calculus is expressed as

ftjPðtÞg

which designates the set of all tuples t such that the
predicate P(t) is true.

We may connect a set of predicates by the logical connec-
tives AND (^ ), OR (_ ), and NOT (� ) to form compound
predicates such as P(t) AND Q(t), P(t) OR NOT Q(t), and
NOT P(t) OR Q(t), which can be written as PðtÞ ^QðtÞ;
PðtÞ _ �QðtÞ, and �PðtÞ _QðtÞ, respectively. A conjunction
consists of predicates connected by a set of logical ANDs,

fid Faculty.name birthdate salary 
(dollar) 

Faculty.
dcode

Department.
dcode

Department.name 

91239876 John Smith 01/09/67 40000 2 2 Computer Science 
33489783 Perry Lee 12/08/55 68000 2 2 Computer Science 
78738498 Tom Bush 06/20/41 79000 4 4 Mechanical 

Engineering 
12323567 Jane Rivera 09/15/72 35000 3 3 Electrical Engineering 
87822384 Joyce Adams 11/10/59 54000 1 1 Chemical Engineering 
78898999 Frank Wong 07/31/79 30000 3 3 Electrical Engineering 
22322123 Alicia Johnson 08/18/80 28000 1 1 Chemical Engineering 

Figure 2. Result of an equijoin of
Faculty and Department.

fid Faculty.name birthdate salary (dollar) Faculty.
dcode

Department.name 

91239876 John Smith 01/09/67 40000 2 Computer Science 
33489783 Perry Lee 12/08/55 68000 2 Computer Science 
78738498 Tom Bush 06/20/41 79000 4 Mechanical Engineering 
12323567 Jane Rivera 09/15/72 35000 3 Electrical Engineering 
87822384 Joyce Adams 11/10/59 54000 1 Chemical Engineering 
78898999 Frank Wong 07/31/79 30000 3 Electrical Engineering 
22322123 Alicia Johnson 08/18/80 28000 1 Chemical Engineering 

Figure 3. Result of the natural join of
Faculty and Department.

DATABASE LANGUAGES 3



a disjunction consists of predicates connected by a set of
logical ORs, and a negation is a predicate preceded by a
NOT. For example, to retrieve all faculty members whose
salary is above $50,000, we can write the following tuple-
related calculus expression:

ftjFacultyðtÞ ^ t:Salary> 50000g

where the condition Faculty(t) specifies that the range of
the tuple variable t is Faculty and each Faculty tuple t
satisfies the condition t:Salary> 50000.

There are two quantifiers, the existential quantifier ( 9 )
and the universal quantifier ( 8 ), used with predicates to
qualify tuple variables. An existential quantifier can be
applied to a variable of predicate to demand that the pre-
dicate must be true for at least one tuple of the variable. A
universal quantifier can be applied to a variable of a pre-
dicate to demand that the predicate must be true for all
possible tuples that may instantiate the variable. Tuple
variables without any quantifiers applied are called free
variables. A tuple variable that is quantified by a 9 or 8 is
called a bound variable.

In domain-related calculus, we use variables that take
their values directly from individual domains to form a
tuple variable. An expression in domain-related calculus is
of the form

f< x1; x2; . . . ; xn > jPðx1; x2; . . . ; xnÞg

where < x1; x2; . . . ; xn > represents domain variables and
Pðx1; x2; . . . ; xnÞ stands for a predicate with these vari-
ables. For example, to retrieve the names of all faculty
members whose salary is above $50,000, we can write the
following domain-related calculus expression:

f<n> jð 9 nÞFacultyð f ; n; b; s; dÞ ^ s> 50000g

where f, n, b, s, and d are variables created from the
domain of each attribute in the relation Faculty, i.e., fid,
name, birthdate, salary, and dcode, respectively.

Structured Query Language (SQL)

A formal language such as relational algebra or relational
calculus provides a concise notation for representing
queries. However, only a few commercial database lan-
guages have been proposed based directly on a formal
database language. A Structured Query Language (SQL)
is a high-level relational database language developed
based on a combination of the relational algebra and
relational calculus. SQL is a comprehensive database
language that includes features for data definition, data
manipulation, and view definition.

Originally, SQL was designed and implemented in a
relational DBMS called SYSTEM R developed by IBM. In
1986, the America National Standards Institute (ANSI)
published an SQL standard, called SQL86, and the Inter-
national Standards Organization (ISO) adopted SQL86 in
1987. The U. S. Government’s Federal Information Proces-
sing Standard (FIPS) adopted the ANSI/ISO standard. In

1989, a revised standard known commonly as SQL89 was
published.

The SQL92 was published to strength the standard in
1992. This standard addressed several weaknesses in
SQL89 as well as extended SQL with some additional
features. The main updated features include session
management statements; connection management, includ-
ing CONNECT, SET CONNECTION, and DISCONNECT;
self-referencing DELETE, INSERT, and UPDATE state-
ments; subqueries in a CHECK constraint; and deferrable
constraints.

More recently, in 1999, the ANSI/ISO SQL99 standard
was released. The SQL99 (4,5) is the newest SQL stan-
dard. It contains many additional features beyond SQL92.
This standard addresses some of the more advanced and
previously nonaddressed areas of modern SQL systems,
such as object-oriented, call-level interfaces, and integrity
management.

Data Definition. The basic commands in SQL for data
definition include CREATE, ALTER, and DROP. They are
used to define the attributes of a table, to add an attribute
to a table, and to delete a table, respectively. The basic
format of the CREATE command is

CREATE TABLE table-name < attribute-name >:

< attribute-type >: ½< constraints >�

where each attribute is given its name, a data type defines
its domain, and possibly some constraints exist.

The data types available are basic types including
numeric values and strings. Numeric data types include
integer number, real number, and formatted number. A
String data type may have a fixed length or a variable
length. There are also special data types, such as date and
currency.

As SQL allows NULL (which means ‘‘unknown’’) to be
an attribute value, a constraint NOT NULL may be speci-
fied on an attribute if NULL is not permitted for that
attribute. In general, the primary key attributes of a table
are restricted to be NOT NULL. The value of the primary
key can identify a tuple uniquely. The same constraint
can also be specified on any other attributes whose values
are required to be NOT NULL. The check clause specifies a
predicate P that must be satisfied by every tuple in the
table. The table defined by the CREATE TABLE state-
ment is called a base table, which is physically stored in
the database. Base tables are different from virtual tables
(views), which are not physically stored in the database.
The following example shows how a Faculty table can be
created using the above CREATE TABLE command:

CREATE TABLE Faculty
(fid: char (10) NOT NULL,
name: char(20) NOT NULL,
‘‘birthdate’’: date,
salary: integer,
dcode: integer
PRIMARY KEY (fid),
CHECK (salary >¼ 0))

4 DATABASE LANGUAGES



If we want to add an attribute to the table, we can use
the ALTER command. In this case, the new attributes
may have NULL as the value of the new attribute. For
example, we can add an attribute SSN (Social Security
Number) to the Faculty table with the following command:

ALTER TABLE Faculty
ADD SSN char(9)

If the Faculty table is no longer needed, we can delete
the table with the following command:

DROP TABLE Faculty

Data Manipulation—Querying. SQL has one basic state-
ment for retrieving information from a database: the
SELECT statement. The basic form of the SELECT state-
ment consists of three clauses: SELECT, FROM, and
WHERE and has the following form:

SELECT <attribute list>
FROM <table list>
WHERE <condition>

where the SELECT clause specifies a set of attributes to
be retrieved by the query, the FROM clause specifies a
list of tables to be used in executing the query, and the
WHERE clause consists of a set of predicates that qualifies
the tuples of the tables involved in forming the final result.

The followings are three example queries, assuming
that the tables Faculty, Department, and Membership
are defined as follows:

Faculty (fid, name, birthdate, salary, dcode)
Department (dcode, name)
Membership (fid, society)

Query 1. Retrieve the faculty IDs and names of all faculty
members who were born on August 18, 1980.

SELECT fid, name
FROM Faculty
WHERE birthdate ¼ ‘08/18/80’

Query 2. Retrieve the names of all faculty members asso-
ciated with the Computer Science department.

SELECT Faculty.name
FROM Faculty, Department
WHERE Department.name ¼ ‘Computer Science’ AND

Faculty.dcode ¼ Department.dcode

Query 3. Retrieve the faculty IDs and names of all faculty
members who are members of any society of which Frank
Wong is a member.

SELECT Faculty.fid, Faculty.name
FROM Faculty, Membership

WHERE Faculty.fid ¼ Membership.fid AND
society IN (SELECT society

FROM Membership, Faculty
WHERE Faculty.fid ¼ Membership.fid AND

Faculty.name ¼ ‘Frank Wong’)

Note that Query 3 is a nested query, where the inner
query returns a set of values, and it is used as an operand
in the outer query.

Aggregate functions are functions that take a set of
values as the input and return a single value. SQL offers
five built-in aggregate functions: COUNT, SUM, AVG,
MAX, and MIN. The COUNT function returns the number
of values in the input set. The functions SUM, AVG, MAX,
and MIN are applied to a set of numeric values and return
the sum, average, maximum, and minimum, respectively.
In many cases, we can apply the aggregate functions to
subgroups of tuples based on some attribute values. SQL
has a GROUP BY clause for this purpose. Some example
queries are as follows:

Query 4. Find the average salary of all faculty members
associated with the Computer Science department.

SELECT AVG (salary)
FROM Faculty, Department
WHERE Faculty.dcode ¼ Department.code AND

Department.name ¼ ‘Computer Science’

Query 5. For each department, retrieve the department
name and the average salary.

SELECT Department.name, AVG(salary)
FROM Faculty, Department
WHERE Faculty.dcode ¼ Department.dcode
GROUP BY Department.name

Sometimes it is useful to state a condition that applies
to groups rather than to tuples. For example, we might be
interested in only those departments where the average
salary is more than $60,000, This condition does not apply
to a single tuple but applies to each group of tuples con-
structed by the GROUP BY clause. To express such a query,
the HAVING clause is provided, which is illustrated in
Query 6.

Query 6. Find the departments whose the average salary
is more than $60,000.

SELECT Department.name, AVG(salary)
FROM Faculty, Department
WHERE Faculty.dcode ¼ Department.dcode
GROUP BY Department.name
HAVING AVG(salary) > 60000

Data Manipulation—Updates. In SQL, there are three
commands to modify a database: INSERT, DELETE, and
UPDATE. The INSERT command is used to add one or
more tuples into a table. The values must be listed in the
same order as the corresponding attributes are defined in

DATABASE LANGUAGES 5



the schema of the table if the insert column list is not
specified explicitly. The following example shows a query
to insert a new faculty member into the Faculty table:

INSERT Faculty
VALUES (‘78965456’, ‘Gloria Smith’, ‘12/12/81’,

25000, 1)

The DELETE command removes tuples from a table. It
includes a WHERE clause to select the tuples to be deleted.
Depending on the number of tuples selected by the condi-
tion in the WHERE clause, the tuples can be deleted by a
single DELETE command. A missing WHERE clause indi-
cates that all tuples in the table are to be deleted. We must
use the DROP command to remove a table completely. The
following example shows a query to delete those faculty
members with the highest salary:

DELETE FROM Faculty
WHERE salary IN (SELECT MAX (salary) FROM Faculty)

Note that the subquery is evaluated only once before
executing the command.

The UPDATE command modifies certain attribute
values of some selected tuples. As in the DETELTE com-
mand, a WHERE clause in the UPDATE command selects
the tuples to be updated from a single table. A SET clause
specifies the attributes to be modified and their new values.
The following example shows a query to increase by 10% the
salary of each faculty member in the Computer Science
department:

UPDATE Faculty
SET salary ¼ salary � 1.1
WHERE dcode IN (SELECT code

FROM Department
WHERE name=‘Computer Science’)

View Definition. A view in SQL is a table that is derived
from other tables. These other tables can be base tables or
previously defined views. A view does not exist in the
physical form, so it is considered a virtual table in contrast
to the base tables that physically exist in a database. A view
can be used as a table in any query as if it existed physically.
The command to define a view is as follows:

CREATE VIEW <view name>
AS <query statement>

The following example shows the definition of a view
called Young-Faculty-Members who were born after 01/01/
1970:

CREATE VIEW Young-Faculty-Members
AS SELECT name, birth-date

FROM Faculty
WHERE birth-date > ‘01/01/1970’

Object-Oriented Database Model and Languages

The object-oriented data model was developed based on the
fundamental object-oriented concepts from a database per-
spective. The basic concepts in the object-oriented model
include encapsulation, object identity, inheritance, and
complex objects.

The object-oriented concepts had been first applied to
programming. The object-oriented approach to program-
ming was first introduced by the language, Simular67.
More recently, Cþþ and Java have become the most widely
known object-oriented programming languages. The
object-oriented database model extends the features of
object-oriented programming languages. The extensions
include object identity and pointer, persistence of data
(which allows transient data to be distinguished from
persistent data), and support for collections.

A main difference between a programming language
and a database programming language is that the latter
directly accesses and manipulates a database (called per-
sistent data), whereas the objects in the former only last
during program execution. In the past, two major
approaches have been taken to implement database pro-
gramming languages. The first is to embed a database
language such as SQL in conventional programming lan-
guages; these languages are called embedded languages.
The other approach is to extend an existing programming
language to support persistent data and the functionality of
a database. These languages are called persistent program-
ming languages.

However, the use of embedded languages leads to a
major problem, namely impedance mismatch. In other
words, conventional languages and database languages
differ in their ways of describing data structures. The
data type systems in most programming languages do
not support relations in a database directly, thus requiring
complex mappings from the programmer. In addition,
because conventional programming languages do not
understand database structures, it is not possible to check
for type correctness.

In a persistent programming language, the above mis-
match can be avoided. The query language is fully inte-
grated with the host language, and both share the same
type system. Objects can be created and stored in a data-
base without any explicit type change. Also, the code for
data manipulation does not depend on whether the data it
manipulated are short-lived or persistent. Despite these
advantages, however, persistent programming languages
have some drawbacks. As a programming language
accesses a database directly, it is relatively easy to make
programming errors that damage the database. The com-
plexity of such languages also makes high-level optimiza-
tion (e.g., disk I/O reduction) difficult. Finally, declarative
querying is, in general, not supported.

Object Database Management Group (ODMG). The
Object Database Management Group (ODMG), which is
a consortium of object-oriented DBMS vendors, has been
working on standard language extensions including class
libraries to Cþþ and Smalltalk to support persistency. The
standard includes a common architecture and a definition

6 DATABASE LANGUAGES



for object-oriented DBMS, a common object model with an
object definition language, and an object query language
for Cþþ, Smalltalk, and Java. Since ODMG published
ODMG1.0 for their products in 1993, ODMG 2.0 and
ODMG 3.0 were released in 1997 and 2000, respectively (6).

The components of the ODMG specification include an
Object Model, an Object Definition Language (ODL), an
Object Query Language (OQL), and language bindings to
Java, Cþþ, and Smalltalk:

ODMG Object Model is a superset of the Object Manage-
ment Group (OMG) Object Model that gives it database
capabilities, including relationships, extents, collection
classes, and concurrency control. It is the unifying concept
for the ODMG standard and is completely language-
independent.

Object Definition Language (ODL) is used to define a
database schema in terms of object types, attributes, rela-
tionships, and operations. The resulting schema can be
moved from one database to another and is programming
language-independent. ODL is a superset of OMG’s Inter-
face Definition Language (IDL).

Object Query Language (OQL) is an ODMG’s query
language. It closely resembles SQL99, and it includes sup-
port for object sets and structures. It also has object exten-
sions to support object identity, complex objects, path
expressions, operation invocation, and inheritance.

The language bindings to Java, Cþþ, and Smalltalk are
extensions of their respective language standards to allow
the storage of persistent objects. Each binding includes
support for OQL, navigation, and transactions. The advan-
tage of such an approach is that users can build an entire
database application from within a single programming
language environment.

The following example shows the schema of two object
types, Faculty and Course, in ODMG ODL:

interface Faculty (extent Faculties, key fid) {
attribute integer fid;
attribute string name;
attribute birthdate date;
attribute salary integer;
relationship Set<Course> teachCourses
inverse Course::faculties;

};
interface Course (extent Courses, key CID) {

attribute string CID;
attribute string title;
relationship Set<Faculty>Faculties
inverse Faculty::teachCourses;

};

where interface names an ODL description, extent names
the set of objects declared, key declares the key, attribute
declares an attribute, set declares a collection type, rela-
tionship declares a relationship, and inverse declares an
inverse relationship to specify a referential integrity con-
straint.

The following example shows an example query in
ODMG OQL to retrieve the course IDs and course titles
of the courses instructed by John Smith:

SELECT f.teachCourse.CID, f. teachCourse.title
FROM Faculties f
WHERE f.name ¼ ‘John Smith’;

Note that the FROM clause f refers to the extent Facul-
ties, not the class Faculty. The variable f is used to range
over the objects in Faculties. Path expressions using a dot (.)
to separate attributes at different levels are used to access
any property (either an attribute or a relationship) of an
object.

Object-Relational Database Model and Languages

The object-relational data model extends the relational
data model by providing extended data types and object-
oriented features such as inheritance and references to
objects. Extended data types include nested relations
that support nonatomic data types such as collection types
and structured types. Inheritance provides reusability for
attributes and methods of exiting types. A reference is
conceptually a pointer to tuples of a table. An object-
relational database language extends a relational langu-
age such as SQL by adding object-oriented features. The
following discussion is primarily based on the SQL99
standard (4,5):

Object Type. Objects are typed in an object-relational
database. A value of an object type is an instance of that
type. An object instance is also called an object. An object
type consists of two parts: attributes and methods. Attri-
butes are properties of an object and hold values at a given
moment. The values of attributes describe an object’s state.
An attribute may be an instance of a declared object type,
which can, in turn, be of another object type. Methods are
invoked and executed in response to a message. An object
type may have any number of methods or no method at all.
For instance, we can define an object type Address as
follows:

CREATE TYPE Address AS
(street varchar(20),
city varchar(20),
state varchar(2))

METHOD change-address()

In the above, the object type Address contains the attri-
butes street, city, and state, and a method change-address().

Collection Type. Collection types such as sets, arrays,
and multisets are used to permit mulivalued attributes.
Arrays are supported by SQL99. The following attribute
definition illustrates the declaration of a Course-array that
contains up to 10 course names taught by a faculty member:

Course-array varchar(20) ARRAY [10]

Large Object Type. To deal with multimedia data types
such as texts, audios, images, and video streams, SQL99
supports largeobject types.Two types of large objects (LOBs)
can be defined depending on their locations: internal LOB

DATABASE LANGUAGES 7



and external LOB. Internal LOBs are stored in the database
space, whereas external LOBs, or BFILEs (Binary FILEs),
are stored in the file system that is outside of the database
space. The following example shows the declaration of some
LOB types:

Course-review CLOB (10KB)
Course-images BLOB (10MB)
Course-video BLOB (2GB)

Structured Type. In the relational model, the value of
an attribute must be primitive as required by the first
normal form. However, the object relational model extends
the relational model so that the value of an attribute can
be an object or a set of objects. For example, we may define
an object type Faculty as follows:

create type Address AS
(street varchar(20),
city varchar(20),
state varchar(2))

create type Name as
(firstname varchar(20),
middlename varchar(20),
lastname varchar(20))

create type Faculty as
(fid integer,
name Name,
address Address,
Course-array varchar(20) array[10])

Type Inheritance. Inheritance allows an existing type’s
attributes and methods to be reused. Thus, it enables users
to construct a type hierarchy to support specialization
and globalization. The original type that is used to derive
a new one is called a supertype and the derived type is called
a subtype. For example, we can define two types Graduate-
student and University-staff as two subtypes of University-
personnel as follows:

CREATE TYPE University-personnel AS
(name Name,
address Address)

CREATE TYPE Graduate-student
UNDER University-personnel

(student-id char(10),
department varchar(20))

CREATE TYPE University-staff
UNDER University-personnel

(years-of-experience: integer
salary: integer)

METHOD compute-salary()

Both Graduate-student and University-staff types
inherit the attributes from the type University-personnel
(i.e., name and address). Methods of a supertype are inher-
ited by its subtypes, just as attributes are. However, a
subtype can redefine the method it inherits from its super-

type. Redefining an inherited method allows the subtype
to execute its own method. Executing its own method
results in overriding an inherited method. For example,
the type Research-assistant has its own method compute-
salary(), which overrides computer-salary() defined in
Graduate-student:

CREATE TYPE Research-assistant
UNDER University-staff, Graduate-student
METHOD compute-salary()

In the above example, the subtype Research-assistant
inherits the attributes and methods defined in University-
staff and Graduate-student. This is called multiple
inheritance.

Reference Type. A reference can refer to any object
created from a specific object type. A reference enables
users to navigate between objects. The keyword REF is
used to declare an attribute to be of the reference type. The
restriction that the scope of a reference is the objects in a
table is mandatory in SQL99. For example, we can include a
reference to the Faculty object type in the Graduate-student
object type as follows:

CREATE TYPE Graduate-student
UNDER University-personnel

(student-id char(10),
department varchar(20)
advisor REF(Faculty) scope Faculty)

Here, the reference is restricted to the objects of the
Faculty table.

Extensible Markup Language (XML)

Extensible Markup Language, abbreviated XML, des-
cribes a class of data objects called XML documents, which
are well formed (7). XML is a subset of Standard
Generalized Markup Language (SGML) and was originally
developed for document management in the World Wide
Web (WWW) environment as was the Hyper-Text Markup
Language (HTML). However, unlike SGML and HTML,
XML is also playing an important role in representing and
exchanging data.

XML can be used for data-centric documents as well
as document-centric documents. In general, document-
centric documents are used by humans and characterized
by less regular structures and larger grained data. On the
other hand, data-centric document are designed to faci-
litate the communication between applications. When
XML is used for data-centric documents, many database
issues develop, including mapping from the logical model
to the XML data model, organizing, manipulating, query-
ing, and storing XML data.

As other markup languages, XML takes the form of tags
enclosed in a pair of angle brackets. Tags are used in pairs
with <tag-name> and </tag-name> delimiting the begin-
ning and the end of the elements, which are the funda-
mental constructs in an XML document. An XML document
consists of a set of elements that can be nested and may

8 DATABASE LANGUAGES



have attributes to describe each element. The nested ele-
ments are called subelements. For example, we may have a
nested XML representation of a university information
document as follows:

<university>
<faculty>

<fid> 91239876 </fid>
<name> John Smith </name>
<birthdate> 01/09/67 </birthdate>
<salary> 40000 </salary>
<dcode> 2 </dcode>

</faculty>
<faculty>

<fid> 33489783 </fid>
<name> Perry Lee </name>
<birthdate> 12/08/55 </birthdate>
<salary> 68000 </salary>
<dcode> 2 </dcode>

</faculty>
</university>

XML Data Modeling. The mapping from the entity-
relationship model to the XML data model is fairly straight-
forward. An entity becomes an element, and the attributes
of an entity often become subelements. These subelements
are sometimes consolidated into a complex type. Moreover,
XML supports the concepts of collections including one-to-
many and many-to-many relationships and references.

Like the mapping from the E–R model to the XML data
model, mapping an XML schema to a relational schema is
straightforward. An XML element becomes a table and
it’s attributes become columns. However, for an XML ele-
ment that contains complex elements, key attributes must
be considered depending on whether the element repre-
sents a one-to-many or many-to-many relationship.

XML Document Schema. The document type definition
(DTD) language allows users to define the structure of a
type of XML documents. A DTD specification defines a set of
tags, the order of tags, and the attributes associated with
each tag. A DTD is declared in the XML document using the
!DOCTYPE tag. A DTD can be included within an XML
document, or it can be contained in a separate file. If a DTD
is in a separate file, say document.dtd, the corresponding
XML document may reference it using:

<!DOCTYPE Document SYSTEM "document.dtd">

The following shows a part of an example DTD for a
university information document:

<!DOCTYPE university [
<!ELEMENT university (faculty)>
<!ELEMENT faculty (fid name birthdate

salary dcode)>
<!ELEMENT fid (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birth-date (#PCDATA)>
<!ELEMENT salary (#PCDATA)>

<!ELEMENT dcode (#PCDATA)>
]>

where the keyword # PCDATA refers to text data and its
name was derived from ‘‘parsed character data.’’

XML Schema (8) offers facilities for describing the struc-
tures and constraining the contents of XML documents by
exploiting the XML namespace facility. The XML Schema,
which is itself represented in XML and employs name-
spaces, substantially reconstructs and considerably
extends the capabilities supported by DTDs. XML Schema
provides several benefits: It provides user-define types, it
allows richer and more useful data types, it is written in
the XML syntax, and it supports namespaces. The follow-
ing shows an XML Schema for a university information
document:

<xsd:schema xmlns:xsd="http://www.w3.org/
2001/XMLschema.xsd">

<xsd:element name="university" type=
"UniveristyType">

<xsd:elemant name="faculty">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="fid" type="xsd:string"/>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="birthdate" type="xsd:string"/>

<xsd:element name="salary" type="xsd:decimal"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:complexType name="UniversityType">
<xsd:sequence>

<xsd:element ref="faculty" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

XML Query Language. The World Wide Web Consortium
(W3C) has been developing XQuery (9), a query language of
XML. XQuery uses the structure of XML and expresses
queries across diverse data sources including structured
and semi-structured documents, relational databases, and
object repositories. XQuery is designed to be broadly appli-
cable across many types of XML data sources.

XQuery provides a feature called a FLWOR expression
that supports iteration and binding of variables to inter-
mediate results. This kind of expression is often useful for
computing joins between two or more documents and
for restructuring data. The name FLWOR, pronounced
‘‘flower,’’ came from the keywords for, let, where, order
by, and return.

The for clause in a FLWOR expression generates a
sequence of variables. The let clause allows complicated
expressions to be assigned to variable names for simplicity.
The where clause serves to filter the variables, retaining
some result and discarding the others. The order by clause
imposes an ordering on the result. The return clause con-
structs the result of the FLWOR expression.

DATABASE LANGUAGES 9



A simple FLWOR expression that returns all faculty
members whose salary is over $50,000 by checking the
salaries based on an XML document is as follows:

for $x in /university/faculty/name
where $x/salary > 50000
return <fid>$x </fid>

where /university/faculty is a path expression (10) that
shows a sequence of locations separated by ‘‘/’’. The initial
‘‘/’’ indicated the root of the document. The path expression /
university/faculty/name would return <name>John
Smith</name> <name>Perry Lee</name>. With a con-
dition, $x/salary > 50000, the tuple <name>Perry
Lee</name> is returned as the result for the above
XQuery.

ADVANCED DATABASE MODELS AND LANGUAGES

Although relation, object-oriented, and object-relational
databases have been used successfully in various areas,
specialized databases are required for many applications.
For example, in order to deal with temporal data, spatial
data, and rules, we may need a temporal database, spatial
database, and active database, respectively.

Temporal Database Models and Languages

Time is an important aspect of real-world applications.
However, most nontemporal database models do not
capture the time-varying nature of the problems they
model. Nontemporal databases represent the current
state of a database and their languages provide inadequate
support for time-varying applications.

In general, a temporal database must support time
points, time intervals, and relationships involving time
such as before, after, and during. Temporal data models
also need to represent time-varying information and
time-invariant information separately. The temporal rela-
tional model (11) extends the relational model based on the
above consideration. In this model, a database is classified
as two sets of relations Rs and Rt, where Rs is the set of
time-invariant relations and Rt is the set of time-varying
relations. Every time-variant relation must have two time
stamps (stored as attributes): time start (Ts) and time
end (Te). An attribute value is associated with Ts and
Te if it is valid in [Ts, Te].

TSQL2 is an extension of SQL92 with temporal con-
structs. TSQL2 allows both time-varying relations and
time-invariant relations. Thus, SQL92 is directly applic-
able to time-invariant relations. TSQL2 has been proposed
to be included as a part of SQL99. TSQL2 has a number of
major temporal constructs as illustrated by the following
example relation:

Faculty (fid, name, birthdate, rank, salary, Ts, Te)

where a tuple (f, n, b, r, s, Ts, Te) states the salary history of
a faculty member whose name is n and birth-date is b.

For example, suppose that the following table stores
Perry Lee’s salary history:

fid name birth-date rank salary Ts Te

33489783 Perry Lee 12/08/55 Assistant 40000 01/01/91 12/31/97

33489783 Perry Lee 12/08/55 Associate 52000 01/01/98 12/31/02

33489783 Perry Lee 12/08/55 Full 68000 01/01/03 12/31/03

The following query retrieves Perry Lee’s history in
TSQL2;

Query: Retrieve Perry Lee’s salary history.

SELECT salary
FROM Faculty
WHERE Name ¼ ‘Perry Lee’

Spatial Data Models and Languages

Spatial databases deal with spatial objects. For modeling
spatial objects, the fundamental abstractions are point,
line, and region. A point can be represented by a set of
numbers. In a two-dimensional space, a point can be
modeled as (x, y). A line segment can be represented by
two endpoints. A polyline consists of a connected sequence
of line segments. An arbitrary curve can be modeled as a
set of polylines. We can represent a polygon by a set of
vertices in order. An alternative representation of polygon
is to divide a polygon into a set of triangles. The process
of dividing a more complex polygon into simple triangles
is called triangulation. Geographic databases are a subset
of spatial databases created for geographic information
management such as maps. In a geographic database, a
city may be modeled as a point. Roads, rivers, and phone
cables can be modeled as polylines. A country, a lake, or a
national park can be modeled as polygons.

In nonspatial databases, the most common queries are
exact match queries, in which all values of attributes
must match. In a spatial database, approximations such
as nearness queries and region queries are supported.
Nearness queries search for objects that lie near a specified
location. A query to find all gas stations that lie within a
given distance of a car is an example of a nearness query.
A nearest-neighbor query searches for the objects that
are the nearest to a specified location. Region queries
(range queries) search for objects that lie inside or partially
inside a specified region. For example, a query to locate
all the restaurants in a given square-mile area is a region
query. Queries may also request intersections and unions of
regions. Extensions of SQL have been proposed to permit
relational databases to store and retrieve spatial informa-
tion to support spatial queries as illustrated below (12):

Query: Find all gas stations within 5 miles from the
current location of the car ‘1001’

SELECT g.name
FROM Gas AS g, Car AS c
WHERE c.id ¼ ‘1001’ and
distance (c.location , g.location) < 5

10 DATABASE LANGUAGES



ACTIVE DATABASE MODELS AND LANGUAGES

Conventional database systems are passive. In other
words, data are created, retrieved, and deleted only in
response to operations posed by the user or from application
programs. Sometimes, it is more convenient that a database
system itself performs certain operations automatically in
response to certain events or conditions that must be
satisfied. Such systems are called active. Typically, an
active database supports (1) specification and monitoring
of general integrity constraints, (2) flexible timing of con-
straint verification, and (3) automatic execution of actions.

A major construct in active database systems is the
notion of event-condition-action (EAC) rules. An active
database rule is triggered when its associated event occurs;
in the meantime, the rule’s condition is checked and, if the
condition is true, it’s action is executed. Typical triggering
events include data modifications (i.e., insertion, deletion,
and update), data retrieval, and user-defined events. The
condition part of an ECA rule is a WHERE clause and an
action could be a data modification, data retrieval, or call to
a procedure in an application program. The following SQL-
like statement illustrates the use of an ECA rule:

<EVENT>: UPDATE Faculty
Set salary ¼ salary � 1.1

<CONDITION>: salary > 100000
<ACTION>: INSERT INTO High-paid-faculty-member

Several commercial relational database systems sup-
port some forms of active database rules, which are usually
referred to as triggers. In SQL99, each trigger reacts to a
specific data modification on a table. The general form of a
trigger definition is as follows (13):

<SQL99 trigger>::¼ CREATE TRIGGER <trigger name>
{BEFORE|AFTER }<trigger event>
ON <table name>
[FOREACH{ROW|STATEMENT}]
WHEN <condition>
<SQL procedure statements>

<trigger-event>::¼ INSERT|DELETE|UPDATE

where<trigger-event> is a monitored database operation,
<condition> is an arbitrary SQL predicate, and <action>
is a sequence of SQL procedural statements that are
serially executed. A trigger may be executed BEFORE or
AFTER the associated event, where the unit of data that
can be processed by a trigger may be a tuple or a transac-
tion. A trigger can execute FOR EACH ROW (i.e., each
modified tuple) or FOR EACH STATEMENT (i.e., an entire
SQL statement).

CONCLUSION

We have considered several modern database languages
based on their underlying data models. The main criterion
used to classify database languages is the data model on
which they are defined. A comparison of the database
languages discussed in this article is summarized in
Table 1.

BIBLIOGRAPHY

1. A. Silberschatz, H. F. Korth, and S. Sudarshan, Data models,
ACM Comput. Surveys, 28 (1): 105–108, 1996.

2. P. P. Chen, The entity-relationship model: Toward a unified
view of data, ACM Trans. Database Syst., 1 (1): 9–36, 1976.

3. E. F. Codd, A relational model for large shared data banks,
Commun. ACM, 13 (6): 377–387, 1970.

4. IBM DB2 Universal Database SQL Reference Volume 1 Version
8, 2002.

5. Oracle 9i Application Developer’s Guide – Object-Relational
Features, Release 1 (9.0.1), June 2001, Part No. A88878-01.

6. ODMG3.0. Available: http://www.service-architecture.com/
database/articles/odmg_3_0.html.

7. Extensible Markup Language (XML) 1.0. Available: http://
www.w3.org/TR/1998/REC-xml-19980210#dt-xml-doc.

8. XML Schema Part 1: Structures. Available: http://
www.w3.org/TR/2001/REC-xmlschema-1-20010502/struc-
tures.xml.

9. XQuery 1.0: An XML Query Language. Available: http://
www.w3.org/TR/xquery/.

10. XML Path Language (XPath) Version 1.0. Available: http://
www.w3.org/TR/xpath.

Table 1. Comparison of database languages

Relational
Object-

Relational
Object-

Oriented XML Temporal Spatial Active

Structure Flat table Nested table Class XML
document

Table with time Table Table with
trigger

Query type Declarative Declarative Procedural,
Declarative

Declarative Declarative Declarative Declarative

Language SQL SQL99 Persistent Cþþ XQuery TSQL, SQL99 SQL99 SQL99
Optimization System System User System System System System

DATABASE LANGUAGES 11



11. T. Theory, Database Modeling & Design. San Francisco, CA:
Morgan Kaufmann, 1999.

12. M. Stonebaker and P. Brown, Object-Relational DBMSs –
Tracking the Next Great Wave. San Francisco, CA: Morgan
Kaufmann, 1999.

13. J. Widom and S. Ceri, Active Database Systems: Triggers and
Rules For Advanced Database Processing. San Mateo, CA:
Morgan Kaufmann, 1996.

FURTHER READING

R. Elmarsri and S. B. Navathe, Fundamentals of Database Sys-
tems. Menlo Park, CA: Benjamin/Cummings, 1994.

A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System
Concepts. New York: McGraw-Hill, 2002.

M. Stonebraker and J. Hellerstein (eds.), Readings in Database
Systems, San Francisco, CA: Morgan Kaufmann, 1998.

C. Zaniolo, S. Ceri, C. Faloutsos, R. Snodgrass, V. Subrahmanian,
and R. Zicari, Advanced Database Systems. San Francisco, CA:
Morgan Kaufmann, 1997.

GEORGE (TAEHYUNG) WANG

California State University,
Northridge

Northridge, California

PHILLIP C-Y SHEU

University of California, Irvine
Irvine, California

ATSUSHI KITAZAWA

HIROSHI YAMAGUCHI

NEC Soft, Ltd.
Japan

12 DATABASE LANGUAGES



D

DATA CLASSIFICATION

INTRODUCTION

To succeed in data classification, we have to begin to survey
data and usually to preprocess it to have suitable forms of
data to be input to a classification program. In the following
discussion, a cavalcade of focal classification methods are
briefly described and shown how they can be used for an
actual classification problem stemmed from medical infor-
matics. First, a dataset and its features are introduced
because these naturally have influence on the preproces-
sing needed and on the opportunities to apply classification
methods.

An ample variety of classification methods are available
that use different approaches to group objects into different
classes. Discriminant analysis, cluster analysis, nearest-
neighbor searching, Bayesian rule, and decision trees have
been applied (1). Later, new methods have been developed
such as neural networks and support vector machines (1, 2).

In the following discussion, classification algorithms are
not presented thoroughly to delimit the text, but a practical
view is introduced for how they can be applied to a non-
trivial dataset. Numerous literary sources are available for
classification methods (1–4). Instead, fewer presentations
are given to explain how to exploit them for real-world data.

VARIABLES AND DATA

Variables are also called attributes or features. Although a
dataset can comprise one or more variable types, most
datasets consist of one variable type, usually binary, inte-
ger, or real values. The statistical convention to categorize
them is very suitable: binary, nominal, ordinal, interval, or
ratio scales. Actually, binary variables are a special case of
nominal variables, but here a variable is called nominal if it
has more than two discrete categories. The difference in
interval and ratio scales is that the latter has a genuinely
fixed zero point, where the quantity represented by the
variable disappears. Temperature can have different
scales, but length and weight have exactly one constant
zero value. For classification purpose, these two are recog-
nized as one common type.

Data can include symbolic variables, but such variable
values have to be coded with numeric values in some sui-
table way. If only two variable values or categories are used,
then the binary type is selected. For example, for the replies
of a question, two alternatives ‘‘no’’ and ‘‘yes’’, are typically
encoded with 0 and 1. For more alternatives, a nominal
variable is used. For instance, for ‘‘black’’, ‘‘brown’’, and
‘‘white’’, the categories would be 0, 1, and 2. Because these
values are nominal, it is important to remember which
statistics can be calculated for them. For example, the
mode can be determined, but not the mean. If there is an
order between them, like ‘‘no symptom’’, ‘‘mild’’, ‘‘strong’’,
and ‘‘severe’’, the data are encoded as an ordinal variable of

categories 0, 1, 2, and 3. If we measure some phenomenon
with a device understood—it could even be a mere ruler—
very widely, we obtain a recording of a sample or several
samples. These values form a sample sequence, which is
always discrete even if it describes some continuous phe-
nomenon recorded typically in the course of time. Such
samples are of interval or ratio scale types encoded with
integer or real values. We can also name the variable types
as qualitative, which are binary and nominal, and quanti-
tative, which are the others.

It is straightforward to assume a dataset to include only
integers or real values and then to apply different distance
measures in their computation. However, what would a
difference or distance be for ‘‘black’’, ‘‘brown’’, or ‘‘white’’?
When these values are encoded with 0, 1, and 2, a difference
can ‘‘technically’’ be computed, but it would be meaningless.
The consequences of this error may be difficult to observe.
Therefore, it is important to employ proper distance mea-
sures. We call a difference to be distance, but dissimilarity
is used, and it is the opposite of similarity. The latter
naturally requires slightly modified equations, for ins-
tance,

sðx; yÞ ¼ 1� dsðx; yÞ

in which similarity s of instances x and y is defined to be
equal to 1 if they are entirely similar (i.e., identical), and 0 if
they are entirely different. Dissimilarity ds is defined in the
opposite way. The minimum and maximum of a distance
can likewise be other than 0 and 1 (e.g., 0 and 100).

Obviously, the best-known distance measure is Eucli-
dean distance

Dðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

dðxi; yiÞ2
vuut ;dðxi; yiÞ ¼

jxi � yij
Ri

where the differences of n variables are computed for
instances x and y and where Ri is the range (the minimum
subtracted from the maximum) of variable i used to normal-
ize the absolute difference. Normalization or scaling with Ri

is often, but not always, important to set all variables to the
same scale. Some classification methods can be sensitive to
different scales and could give more influence on variables,
(e.g., with the scale of [0,100] than for those of [0,1]). It is
important to remember that this distance is inappropriate
for nominal variables (except binary).

For a nominal variable, an appropriate method is to
calculate differences between variables with the following
formula:

dðxi; yiÞ ¼
1; xi 6¼ yi

0; xi ¼ yi

�

This formula determines the minimum of 0 for identical
values and the maximum of 1 for different values.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Several distance measures have been designed especially
for binary data (2). Perhaps the Hamming distance is the
simplestmeasure.Let elementn1,1 be equal to the number of
binary variables that have value pair i ¼ 1 and j ¼ 1 (i.e.,
both are 1), n0,0 equal to the number of i ¼ 0 and j ¼ 0, and
n1,0 and n0,1 be the opposite cases. Hamming distance is
defined as the number of variables with opposite values.

Hði; jÞ ¼ n1;0 þ n0;1

Several distance measures of binary data are known. The
following equations are given as exemplar similarity mea-
sures: Jaccard coefficient J and Dice coefficient Di.

Jði; jÞ¼ n1;1

n1;1 þ n1;0 þ n0;1

Diði; jÞ ¼ 2n1;1

2n1;1 þ n1;0 þ n0;1

We often expect no missing value, which is not always
self-evident. If a person is interviewed according to a list of
questions, then it is possible that some questions receive no
reply. The alternatives to treat such a situation in classi-
fication are either (1) to leave out such an instance or even
the whole variable or (2) to estimate the missing value
somehow (5). This preprocessing step is often necessary
before classification. However, some classification methods
like decision trees can be programmed to cope with data
with missing values, but it can mean that the program does
not use the variable with a missing value at all for some
decision steps, which may partly lose decision information
slightly. Several missing values is a problem. If a consider-
able quantity of the values of individual variables is miss-
ing, then these variables can be useless, and it can be best to
abandon them. The significance or usefulness of variables
for classification can be important, and it is reasonable to
investigate with statistical methods like correlation and
statistical tests. Algorithms are used to evaluate the use-
fulness of variables based on their values and distributions
(4, 6). ‘‘Dead’’ variables rarely exist, which are constant for
all instances. All dead variables can be discarded self-
evidently, which also decreases dimensionality.

A possible way to handle missing values is to modify a
distance measure that defines a maximum difference when
one or both values are unknown or missing. This ‘‘pessimis-
tic’’ method assumes the worst case (i.e., the farthest dis-
tance).Forbinaryandnominalvariables, it canbeasfollows:

dðxi; yiÞ ¼
1; xi 6¼ yi

1; xi or yi unknown

0; xi ¼ yi

8<
:

For quantitative variables we could use the following defini-
tion:

dðxi; yiÞ ¼
jxi � yij

Ri
1; xi or yi unknown

8<
:

where range Ri (the minimum subtracted from the max-
imum) of variable i is used as above.

A dataset may contain several types of variables. Dis-
tance measures are used for these variables. For instance, a
heterogeneous Euclidean-overlap metric (7) uses the pre-
ceding d(xi,yi) values and the above formula D(x,y). In fact,
this measure is not metric but pseudometric, because dis-
tance D(a,a) ¼ 0 for the case of instance a is not true if it
includes missing values. The other conditions required that
a measure be a metric for instances a, b, and c are D(a,b)>0,
if a 6¼ b, D(a,b) ¼ D(b,a), and D(a,c) � D(a,b) þ D(b,c)
(triangular inequality). The metric property is very useful
for the purpose of distance computation; but even without
it, we can come through, even with a more limited selection
of computational methods.

A DATASET

In the following discussion, we consider a medical dataset of
vertiginous patients to show how it is prepared for classi-
fication and how the methods selected classify its instances.
Medical data are interesting, because their classification is
often a complicated and elaborate task. Often, several
different types of data are present in such a dataset. Vertigo
or dizziness and other balance disorders are a common
nuisance and can be symptoms of a serious disease. These
problems are investigated in otoneurology (8) to find their
causes, to devise new treatments, and to prevent possible
accidents originated from such harms. For this purpose,
computational classification methods can be used to iden-
tify a patient’s disease and to separate disease instances
from each other.

The dataset consisted of 815 patient cases, whose diag-
noses were made by two specialists in otoneurology. Six
diseases appeared with frequencies as follows: 130 vestib-
ular schwannoma cases (16%), 146 benign positional cases
(18%), 313 Menière’s disease cases (38%), 41 sudden deaf-
ness cases (5%), 65 traumatic vertigo cases (8%), and 120
vestibular neuritis cases (15%). In all, 38 variables were
discovered among patients’ symptoms, medical history, and
clinical findings (Table 1). These variables were found to be
the most important of a larger variable set in our research
(8) and fairly infrequently contained missing values. Over-
all, 11% of values were missing in the whole dataset. They
were imputed or substituted using modes for 11 binary
variables and 1 nominal variable and using medians for 10
ordinal and 16 quantitative variables. The mean could have
been applied to the quantitative variables, but as known
from statistics, in principle, it is a poorer central tendency
estimate under the circumstances of scarce data or biased-
value distributions. The only genuine nominal (four-
valued) variable [14] in Table 1 was still substituted by
three binary variables to enable the use of a Euclidean
measure in its strictest way. As mentioned, the Euclidean
measure cannot be applied to nominal attributes. When its
four values were ‘‘no hearing loss’’, ‘‘sudden’’, ‘‘progressive’’,
and ‘‘both disorders’’, the last three corresponded to new
three binary variables with value 1. If all of them were
equal to 0, then it was the same as ‘‘no hearing loss’’ of the
original variable. Thus, we had 40 variables altogether.

2 DATA CLASSIFICATION



Imputation was carried out class by class, it was impor-
tant to follow class-wise variable distributions because it is
essential that differences exist between classes, which is
actually the ground of any classification. Using modes and
medians in imputation is straightforward but sufficient in
this case, because the number of the missing values was
pretty small. We observed (10) that the more sophisticated
techniques of linear regression and the Expectation-Max-
imization algorithm (11) gave no better results while using
discriminant analysis for the classification of otoneurolo-
gical data. Of course, such a property of missing values is
not common. Each dataset has its own peculiarities that
must be analyzed before classification (12).

Often, numbers that describe the central tendency, for
example, modes for binary and nominal variables and
medians or means for other variable types, are used to
impute data. It is realistic to assume that the data are
missing at random (11) (i.e., the missing values of a variable
may depend on the values of other variables, but not on the
values of the variable itself). Then likelihood-based meth-
ods, such as the Expectation-Maximization method, are
appropriate. Linear regression and nearest-neighbor esti-
mator (11) are also used for imputation.

Outliers (1, 13) are data that are exceptional or incon-
sistent with other values of one or more variables. They are
often some measurement or input errors. They can usually
be revealed considering variable distributions. In the cur-
rent dataset of vertiginous patients, 14 subjects were ori-
ginally used, whose data included zero ages. This was
observed on the basis of the distribution of age variable
(1) (Table 1). Because it was surely known for the sake of
medical reasons that the data could not contain ages below
six years, these values were erroneous. If such values had
not been corrected. then these patient cases should have
been eliminated from the dataset.

The subset of Menière’s disease was essentially larger
than two small subsets of sudden deafness and traumatic
vertigo. This imbalanced class distribution is an ordinary

nuisance in actual datasets. It is a difficulty for some
classification methods, at least for multilayer perceptron
neural networks. Because neural networks are learning
methods, they may learn majority classes and lose minority
classes.

Principal component analysis (1, 2, 13, 14) is often used
to reduce a high dimensionality. It can be also applied to
visualize data distribution crudely between different
classes. It can be understood as a rotation of the axes of
the original coordinate system to a new system of orthogo-
nal axes ordered in terms of the magnitude of variation that
they account for in the original data. Forty principal com-
ponents were computed from the original data. The most
important two components are shown in Fig. 1(a), which
indicates that the six disease classes are more or less
divided into separate areas, which is essential for classifi-
cation. Their importance was calculated on the basis of
their eigenvalues [Fig. 1(b)], which explained 31.5% of data
variance with the two first principal components. The
principal components slowly decreased down to almost
zero while advancing to the fortieth component. Including
no clear abrupt decrease between the successive eigenva-
lues, this indicated that it was not sensible to reduce the
dimensionality of the data, but almost all 40 components
included useful information.

CLASSIFICATION METHODS AND THEIR TESTING

The following methods are examined and compared with
the given dataset: Bayesian decision rule, k–nearest-
neighbor searching, discriminant analysis, k-means
clustering, decision trees, multilayer perceptron neural
networks, Kohonen networks (self-organizing maps), and
support-vector machines. All implementations were pro-
grammed with Matlab using various values of control
parameters like numbers of clusters or network hidden
nodes.

Table 1. Variables and their Types: B ¼ Binary, N ¼ Nominal, O ¼ Ordinal, and Q ¼ Quantitative; Category Numbers After
the Nominal and Ordinal

Variable Type Variable Type Variable Type

[1] patient’s age Q [14] hearing loss type N 4 [27] caloric asymmetry % Q
[2] time from symptoms O 7 [15] severity of tinnitus O 4 [28] nystagmus to right Q
[3] frequency of spells O 6 [16] time of first tinnitus O 7 [29] nystagmus to left Q
[4] duration of attack O 6 [17] ear infection B [30] pursuit eye movement

amplitude gain % Q
[5] severity of attack O 5 [18] ear operation B [31] and its latency (ms) Q
[6] rotational vertigo Q [19] head or ear trauma with noise injury B [32] audiometry 500 Hz right ear (dB) Q
[7] swinging or floating vertigo or

unsteadiness Q
[20] chronic noise exposure B [33] audiometry 500 Hz left ear (dB) Q

[8] Tumarkin-type drop attacks O 4 [21] head trauma B [34] audiometry 2 kHz right (dB) Q
[9] positional vertigo Q [22] ear trauma B [35] and left ear (dB) Q
[10] unsteadiness outside attacks O 4 [23] spontaneous nystagmus B [36] nausea or vomiting O 4
[11] duration of hearing symptoms O 7 [24] swaying velocity of posturography

eyes open (cm/s) Q
[37] fluctuation of hearing B

[12] hearing loss of right ear
between attacks B

[25] swaying velocity of posturography
eyes closed (cm/s) Q

[38] lightheadedness B

[13] hearing loss of left ear between
attacks B

[26] spontaneous nystagmus
(eye movement) velocity (8/s) Q

DATA CLASSIFICATION 3



Maybe the simplest classification method is based on
conditional probabilities determined by Bayesian rule

pðckj xÞ ¼
pðxjckÞpðckÞ
Pk
i¼1

pðxjciÞpðciÞ

in which the formula estimates the probability of class ck

given instance (vector of variables) x. Altogether, there are
K classes whose a priori probabilities p(ci) are known or
estimated from data. Actually, the formula is based on
finding all identical instances in each class and counting
the numbers of such identical instances. Unfortunately,
there were several variables (40), and it was then very

improbable that there would be any identical instances. An
additional difficulty was that there were some real (con-
tinuous) variables that make it virtually impossible to find
any identical instances. Thus, there were none in our
dataset.

We can sometimes attempt to bypass the preceding
problem by means of discretization of quantitative vari-
ables. Although it is not important in the current context,
it can be useful for such classification or other data-
analysis methods that provide discrete integer values.
Several algorithms for this purpose can divide the range
of a variable into uniform intervals (e.g., 10 intervals).
More sophisticated techniques function on the basis of the
value distribution of a variable (6). We could apply another

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1st principal component

2n
d 

pr
in

ci
pa

l c
om

po
ne

nt

vestibular schwannoma
benign positional vertigo

Meniere's disease

sudden deafness
traumatic vertigo
vestibular neuritis

(a)

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

principal component

%

(b)

Figure 1. (a) The data distribution of the vertiginous patient cases into six classes according to the
two first principal components. (b) Eigenvalue spectrum (in percents) of 40 principal components as
the ratio between each eigenvalue and the sum of all eigenvalues.

4 DATA CLASSIFICATION



way, which is often a good and reliable choice: the use of
expert knowledge. Two experienced otoneurologists
defined 2–5 suitable values for the quantitative variables
in Table 1: [1], [6], [7], [9], [24]–[35]. For instance, they
discretised the audiometric variables of [32]–[35] with 5
values: 0 for hearing decrease of 0–15 dB (normal hear-
ing), 1 for 16–30 dB (slight hearing loss), 2 for 31–60 dB
(moderate hearing loss), 3 for 61–90 dB (severe hearing
loss), and 4 for 91–120 dB (deaf). The specialists’ discre-
tization is not possible if hundreds or more variables are
used.

Notwithstanding discretization, no identical instances
were encountered in the current dataset. This result is
understandable because there were 40 variables. If all the
variables were binary (i.e., including the minimum of
categories per variable), then there would be
240 ¼ 10244 different permutations of variable values.
Consequently, identical instances would be very improb-
able; thus, we gave up the current discretization and
returned to the original data of 40 variables and applied
the Bayesian rule (13, 14) in a more sophisticated manner
as follows. Let us assume that a normal distribution
underlies every variable. We computed the Bayesian deci-
sion rule for the q-dimensional (q ¼ 40) Gaussian (nor-
mal) distribution (3), which gives the probability for
instance vector x provided class c j; j ¼ 1; . . . ; 6; when
mean sj and covariance matrix

P
j were computed from

the instances of class j of a training set.

pðxjc jÞ ¼ 2p�
q
2

����
X

j

����
�1

2

exp

�
� 1

2
ðx� s jÞT

X�1

j

ðx� s jÞ
�

Let p(cj) be the probability of class j. The Bayesian
decision rule then predicted class j for test case x if

pðxjc jÞ>
pðckÞ
pðc jÞ

pðxjckÞ

for all k 6¼ j; k in f1; . . . ; 6g.
Nonetheless, data matrices required by Bayesian rule

were singular for the current dataset because they incor-
porated such variables that included purely zeroes for some
classes (not for the whole data). These crucial variables
were impossible to eliminate. Singular matrices would rule
out their inversions required. If no singular matrices occur
that highly depend on data, the naı̈ve Bayesian method can
give good results.

A crude way is to ignore dependence between variables,
which is not made above. If we assume them to be inde-
pendent, then we obtain the following joint probability.

pðxjc jÞ ¼ pðx1; . . . ; xnjc jÞ ¼ pðc jÞ
Yn
i¼1

pðxijc jÞ

Independent conditional probabilities pðxijc jÞ can be esti-
mated from data. Because this computation includes no
iterative training algorithm, its execution is normally far
faster than those of machine learning methods that will be
dealt with subsequently. By allowing one or more depen-

dences between variables, frequently efficient Bayesian
networks (1) can be formed. However, these networks
are skipped here.

To test classification methods, we need training and
testing sets that are independent of each other but
extracted from the same data source. If such a data source
encompassed virtually almost unlimited number of data,
we would extract many separate training and test sets. A
training set is used to train a classification algorithm
programmed, and the corresponding test set is used to
test its capability to classify correctly. Several training
and test-set pairs are necessary to justify statistically a
final conclusion about the capability of the method. Inas-
much as we survey actual datasets, the preceding ideal
circumstances are infrequently met. Therefore, we have to
use more complicated techniques to infer statistical evi-
dence about tests. One common way is to employ cross-
validation.

We divided our dataset of N instances into 10 pairs of a
learning subset (90% of instances) and a test subset (10%) in
accordance with 10-fold cross-validation, so that every
instance was incorporated in exactly one test set. The
selection into the subsets was performed randomly, but
in accordance with the class distribution. In other words,
when the frequency of Menière’s disease was 38% in our
dataset, the same approximate proportion was preserved in
all training and test sets. Most classification methods
involve random initializations. Therefore, 10 runs for
each crossvalidation pair and 100 runs altogether were
repeated with an exception. Two test and training set pairs
were discarded for discriminant analysis, because they
consisted of matrices, which were not positive definitive
(i.e., their processing could not be continued). Accordingly,
80 runs were executed for it. The same pairs of training and
test sets were applied to all classification methods to be
presented.

Other ways to test with a restricted dataset are leave-
one-out and bootstrapping (4). In the former, each instance
is used alternately as a single test set, and the other
instances are used as the corresponding training set. In
a way, this method is the extreme N-fold cross-validation
situation, where the size of every training set is maximal in
accordance with the principle that such a training set is
statistically as representative as possible. The latter effi-
ciently exploits random sampling, in which extracted
instances are returned to the dataset for the later process,
(i.e., they are replaced, which is not done in cross-
validation).

Means and standard deviations can be calculated for
sensitivity, specificity, positive predictive value, and accu-
racy. Let us define tp as the number of true positive classi-
fications, fn the number of false-negative classifications, fp
as the number of false-positive classifications, and tn as the
number of true negative classifications. Their sum is natu-
rally equal to the whole number N of instances. The term
‘‘positive’’ now means that some certain disease class is
predicted to an instance. It is either true or false, depending
on the matter whether this instance really belongs to the
predicted class. The term ‘‘negative’’ means that an
instance is classified into some other than the certain class,
either correctly or incorrectly.

DATA CLASSIFICATION 5



Sensitivity is given as the ratio:

sens ¼ tp

tpþ fn
100%

Specificity is defined as the formula:

spec ¼ tn

tnþ fp
100%

Positive predictive value is equal to:

ppv ¼ tp

tpþ fp
100%

Accuracy is as follows:

a ¼ tpþ tn

tpþ tnþ fpþ fn
100% ¼ tpþ tn

N
100%

In the following discussion, sensitivity and accuracy are
given to delimit the number of results presented. Other
validation quantities are applied to testing, but many of
them, [e.g., negative predictive value, receiver operating
characteristic (ROC) curves, and area under ROC curves
(AUC)], are related to the aforementioned basic quanti-
ties. In addition, some quantities are unsuitable for multi-
class circumstances; instead, they are meant for two-class
classification. These terms are used commonly in medical
informatics. Elsewhere various terms can be used, often
for the same concepts. For instance, recall and precision
are used. The former is equivalent to sensitivity, and the
latter is equal to positive predictive value.

Nearest-neighbor searching techniques (1, 2, 13, 14) are
straightforward.They areheuristic, which means thatnoth-
ing guarantees that a correct solution is found. Despite this

theoretical concept, they can function efficiently in practice.
They search for the nearest instance from the training set
and label a test instance according to the class of the nearest
neighbor. Neighbors can be weighted, for example, using the
inverse of the distance between the test instance and the
near instance next to be processed. The nearer the training
case is to the test case, the greater weight is given it. We
computed tests of nearest-neighbor searching for one, three,
and five nearest neighbors using Euclidean metric. Their
average results are presented in Table 2. An increase of
nearest neighbors k did not improve otherwise satisfactory
results, which is possible depending on the data. The results
of vestibular schwannoma and benign positional vertigo
varieddependingonk,whichrepresents thattheir instances
were mixed erroneously between the two classes. The
weighted nearest-neighbor searching produced similar
results. When the accuracy value of each class was weighted
with its number of the instances, mean weighted accuracies
were as follows: 93.5 � 2.3, 93.0 � 2.9 and 93.2 � 2.8% for
k equal to 1, 3, and 5, and 93.1� 2.9 and 93.5� 2.8% for the
weighted versions of k equal to 3 and 5. When all means are
considerably high and standard deviations are small, these
examples show how this simple method classified this com-
plicated data.

In discriminant analysis (13, 14), the aim is to split the
variable space including all instances so that its parts
represent the different classes. Bounds between such parts
discriminate the classes to separate regions. The simplest
choice is linear discriminant analysis, which is also run for
the current dataset by applying the Euclidean metric. Its
results are characterized in Table 3. This analysis was
exceptionally successful for the class of sudden deafness,
which can be hard to distinguish medically because it is the
smallest class. The other classes were also detected suc-
cessfully. A mean weighted accuracy of 95.5 � 1.8% was
obtained.

Table 2. Means and Standard Deviations of Nearest-Neighbor Searching (%) for 100 Test Runs

Number of
Neighbors Static

Vestibular
Schwannoma

Benign
Positional
Vertigo

Menière’s
Disease

Sudden
Deafness

Traumatic
Vertigo

Vestibular
neuritis

1-nearest Sensitivity 88.5 � 9.8 80.7 � 19.7 87.6 � 6.5 92.5 � 12.1 82.6 � 19.7 86.7 � 13.1
Accuracy 96.4 � 1.6 91.8 � 3.6 90.4 � 4.8 99.4 � 1.0 97.8 � 2.2 96.6 � 2.1

3-nearest Sensitivity 89.2 � 10.4 77.3 � 23.6 87.9 � 5.6 92.5 � 12.1 78.8 � 16.5 84.2 � 13.9
Accuracy 96.0 � 2.5 91.2 � 4.3 89.6 � 5.2 99.4 � 1.0 97.6 � 2.4 96.5 � 2.5

5-nearest Sensitivity 79.2 � 16.2 83.3 � 18.9 89.5 � 5.8 90.5 � 12.3 80.2 � 16.4 90.0 � 11.7
Accuracy 96.4 � 2.7 92.2 � 3.4 89.1 � 6.0 99.4 � 0.9 97.9 � 1.7 97.1 � 2.2

weighted
3-nearest

Sensitivity 88.5 � 10.4 77.3 � 23.6 87.9 � 5.6 92.5 � 12.1 84.5 � 15.2 84.2 � 13.9
Accuracy 95.8 � 2.7 91.6 � 4.3 89.5 � 5.2 99.4 � 1.0 98.0 � 2.3 96.5 � 2.5

weighted
5-nearest

Sensitivity 79.2 � 16.2 82.7 � 19.4 90.1 � 6.1 92.5 � 12.1 83.1 � 15.8 90.8 � 11.4
Accuracy 96.5 � 2.6 92.5 � 3.3 89.6 � 5.3 99.5 � 0.9 98.0 � 1.7 97.1 � 2.2

Table 3. Means and Standard Deviations of Linear Discriminant Analysis (%) for 80 Test Runs

Static
Vestibular
Schwannoma

Benign
Positional Vertigo

Menière’s
Disease

Sudden
Deafness Traumatic Vertigo

Vestibular
Neuritis

Sensitivity 87.5 � 8.6 87.5 � 15.5 89.6 � 4.8 100.0 � 0.0 90.5 � 13.3 95.8 � 8.4
Accuracy 97.5 � 1.5 93.2 � 2.4 93.4 � 3.1 99.5 � 0.6 98.8 � 1.2 98.2 � 1.7

6 DATA CLASSIFICATION



By attempting to apply Mahalanobis (generalized Eucli-
dean metric) or quadratic discriminant function, discrimi-
nant analysis suffered from the similar complication of
unsatisfying the requirement of positive-definite matrices
as the naı̈ve Bayesian rule.

Clustering (1, 2, 13, 14) is an old technique to group
instances by computing distances between instances and
assigning them to separate groups or clusters on the basis of
the mutual distances between clusters and between
instances. Many ways can be used to compute distances
between clusters and between instances (1, 3). Table 4
introduces results yielded by k-means clustering with
Euclidean metric; from the results, several values of k
five alternatives are given. Here, as with most other meth-
ods, more variations were computed to find proper limits of
classifier structures, for instance, for k in clustering. We
present conditions with small system-parameter values of k
here and then increase it to reasonably large values related
to the methods and to the numbers of instances and vari-
ables. The minimum of the clusters was six, which is the
same number of the classes. Apart from sudden deafness,
the number k of clusters between 12 and 40 produced
equally high average results. For sudden deafness, 20
clusters sufficed to evolve sensitivities up to 89%. Benign
positional vertigo remained the poorest recognized class
here. Mean weighted accuracies of 90.9 � 3.8, 92.8 � 3.5,
92.9 � 3.6, and 92.8 � 3.7% were achieved for k equal to 6,
12, 20, and 30.

A decision tree (2, 12) selects a variable, which, at the
current stage of process, best divides instances between
classes and sets the variable to the next node built in the
tree. Such an evaluation of variables is based on various
principles of information theory. We exploited the pruning
leaves of decision trees to estimate the best tree size accord-
ing to residual variance. The best size gained was 36.2
leaves on average. As to the current data, decision trees
were not effective for benign positional vertigo and espe-
cially sudden deafness (Table 5), although their variances

were large (i.e., some trees were good but others were poor).
This evaluation stemmed from a special situation that
variable [14] named ‘hearing loss type’ in Table 2; is this
variable crucial for sudden deafness. Thus, decision trees
often ‘‘raised’’ it high in their process, in which variables are
chosen according to criteria based on their information
theoretic values. Unfortunately, in this specific data, lots
of values were missing for this variable, in which for the six
diseases 88%, 54%, 59%, 15%, 34%, and 62% of the values
were absent. Altogether, 53% of all values of variable (14)
were missing. Although sudden deafness was the best of all
with only 15% of data missing, the others suffered from too
many missing values. Note that the missing values were
imputed, but because of their high numbers, most instances
received the same mode within each class. In this method,
the variable did not aid separate instances successfully.
Therefore, decision trees occasionally misclassified data,
whereas other methods were not so dependent on single
variables, because their computation approaches were dif-
ferent. A mean weighted accuracy of 89.4 � 2.5% was
gained for the decision trees.

Multilayer percepton networks (12–17) could not clas-
sify the dataset tending to put most cases to the largest
Menière’s disease class and to lose the two smallest classes
entirely. Hence, principal component analysis (1) was first
computed as described at the end of the third section, using
transformed values according to all 40 principal compo-
nents as input data. Its main role is to reduce the dimen-
sions of highly variable numbers. In a way, via its
coordinate system, transform data are rearranged to a
more appropriate form. Here, the idea was not to decrease
the number of variables, but to use its rearrangement.
Every perceptron network comprised 40 input nodes for
principal components and 6 output nodes after the diseases.
The only free parameter in the network topology was the
number of hidden nodes. Adaptive learning and momen-
tum coefficient were used with the backpropagation train-
ing algorithm, which was to run no more than 200 epochs to

Table 5. Means and Standard Deviations of Decision Trees (%) for 100 Test Runs

Static
Vestibular
Schwannoma

Benign
Positional Vertigo

Menière’s
Disease

Sudden
Deafness

Traumatic
Vertigo

Vestibular
Neuritis

Sensitivity 72.7 � 22.4 63.8 � 32.5 87.4 � 10.7 43.6 � 39.4 81.1 � 17.3 80.1 � 17.0
Accuracy 95.3 � 3.5 89.0 � 4.5 82.6 � 4.8 94.9 � 2.4 96.6 � 2.1 95.4 � 3.1

Table 4. Means and Standard Deviations of k-means Clustering (%) for 100 Test Runs

Number k
of Clusters Static

Vestibular
Schwannoma

Benign
Positional Vertigo

Menière’s
Disease

Sudden
Deafness

Traumatic
Vertigo

Vestibular
Neuritis

6 Sensitivity 81.2 � 14.2 66.2 � 33.4 92.8 � 7.3 12.0 � 32.7 53.8 � 44.4 84.8 � 20.2
Accuracy 93.7 � 3.2 88.1 � 6.0 88.0 � 6.7 95.5 � 1.6 95.3 � 3.4 94.9 � 5.1

8 Sensitivity 80.5 � 15.0 70.1 � 29.9 93.1 � 6.5 41.5 � 48.4 78.1 � 30.2 86.9 � 14.6
Accuracy 94.6 � 3.2 91.4 � 5.0 88.3 � 6.2 97.0 � 2.3 97.0 � 3.1 96.2 � 4.0

12 Sensitivity 80.8 � 13.1 71.7 � 28.5 93.3 � 6.2 68.3 � 40.0 87.2 � 16.3 86.3 � 14.4
Accuracy 95.7 � 2.7 92.5 � 4.9 88.7 � 6.2 98.2 � 2.1 97.8 � 2.6 96.4 � 3.2

20 Sensitivity 81.2 � 13.3 74.9 � 26.0 91.2 � 8.1 88.8 � 17.5 85.7 � 18.4 87.2 � 13.6
Accuracy 96.0 � 2.4 92.3 � 5.4 88.6 � 6.4 99.3 � 1.0 97.9 � 2.2 96.8 � 2.2

30 Sensitivity 83.0 � 13.9 74.8 � 25.4 90.3 � 9.0 87.5 � 17.9 83.9 � 17.9 85.8 � 13.5
Accuracy 96.4 � 2.5 91.4 � 5.8 88.7 � 6.5 99.2 � 1.0 97.6 � 2.6 96.7 � 2.5

DATA CLASSIFICATION 7



prevent overlearning. Overlearning means learning con-
tinued too long so that the weights of the network start to
adapt to random noises present in the data. Tests were
conducted using 4–16 hidden nodes. A recommendation
states that the number of connections (weights) in a per-
ceptron neural network should not be greater than one
tenth of a training set, so that efficient learning would
succeed (1, 17). Nevertheless, the networks with 6–16
hidden nodes produced valid results (Table 6). Benign
positional vertigo was the most difficult to detect. Mean
weighted accuracies of 92.9 � 3.5%, 94.9 � 2.9%, 95.0 �
3.0%, and 95.0 � 2.9% were achieved for 4, 6, 10, and 16
hidden nodes.

Kohonen neural networks (13–17) were run varying
their sizes from 3 � 3 to 10 � 10 nodes. A hexagonal
neighborhood pattern was employed as the topological
structure with link distance. For every network, 400 learn-
ing epochs were completed. According to the results, 7 � 7
nodes were sufficient for the current data, and data as small
as 5 � 5 nodes were available for the other than sudden
deafness. Table 7 includes a breakdown for four network
sizes. Benign positional vertigo and sudden deafness
obtained slightly poorer results compared with the remain-
ing four classes. Mean weighted accuracies of 90.3 � 3.7%,

92.1 � 3.5%, 92.7 � 3.3%, and 92.7 � 3.3% were attained
for these networks.

Support vector machines (1, 13) map data nonlinearly to
a multidimensional space where it can be linearly classified.
Kernel functions are used to decrease the number of com-
putation needed in optimization. We employed two-degree
radial basis and polynomial functions as kernels (Table 8).
Their mean weighted accuracies were 93.8� 2.3% and 93.7
� 2.3%. Linear and Gaussian kernels did not facilitate
reasonable outcomes.

The running time (100 tests with a 2.6-GHz processor) of
discriminant analysis was approximately 10 seconds. They
were 23–104 seconds for clusterings, 68–90 seconds for
nearest-neighbor searchings, 5 minutes 30 seconds
for decision trees and multilayer perceptron networks,
23–29 hours for Kohonen networks and 2–3 minutes for
support vector machines. Because these were slow Matlab
programs and not optimized at all, running times could
naturally be decreased. Although Kohonen networks were
very slow, it is worth noting that the training phase took
most of the time. In classification, however, training is
seldom necessary in actual applications, because a trained
classifier is run mostly to classify, not to test its effective-
ness.

Table 6. Means and Standard Deviations of Multilayer Perceptron Networks (%) for 100 Test Runs

Number of
Hidden Nodes Static

Vestibular
Schwannoma

Benign
Positional Vertigo

Menière’s
Disease

Sudden
Deafness

Traumatic
Vertigo

Vestibular
Neuritis

4 Sensitivity 86.5 � 15.7 77.6 � 21.3 91.9 � 5.9 32.8 � 47.0 58.6 � 43.2 87.5 � 20.3
Accuracy 95.2 � 4.5 91.6 � 5.1 90.9 � 5.9 96.4 � 2.2 95.3 � 3.1 94.9 � 4.2

6 Sensitivity 89.3 � 9.6 79.0 � 20.8 91.53 � 5.5 93.2 � 23.4 86.9 � 16.7 91.9 � 10.9
Accuracy 97.7 � 1.8 93.0 � 4.1 91.7 � 5.4 99.3 � 1.2 98.2 � 1.6 97.3 � 2.4

10 Sensitivity 89.2 � 9.0 80.3 � 18.6 91.8 � 5.7 99.8 � 2.5 88.9 � 12.9 92.8 � 10.6
Accuracy 97.7 � 1.5 93.5 � 4.0 92.3 � 5.3 99.7 � 0.5 98.4 � 1.4 97.6 � 2.0

16 Sensitivity 89.4 � 8.7 80.1 � 18.3 91.5 � 5.6 99.8 � 2.5 89.4 � 12.9 92.8 � 10.7
Accuracy 97.7 � 1.4 93.3 � 3.8 92.2 � 5.2 99.6 � 0.6 98.5 � 1.3 97.6 � 2.1

Table 7. Means and Standard Deviations of Kohonen Networks (%) for 100 Test Runs

Number of
nodes Static

Vestibular
Schwannoma

Benign
Positional Vertigo

Menière’s
Disease

Sudden
Deafness

Traumatic
Vertigo

Vestibular
Neuritis

3 � 3 Sensitivity 78.5 � 17.2 66.1 � 27.2 94.1 � 6.6 32.2 � 28.5 13.9 � 27.6 84.5 � 16.5
Accuracy 94.3 � 2.8 86.6 � 4.9 87.2 � 7.0 93.9 � 2.3 91.6 � 2.9 96.2 � 2.8

5 � 5 Sensitivity 82.2 � 14.1 71.4 � 27.3 90.1 � 7.1 57.4 � 32.3 80.0 � 19.2 82.8 � 15.4
Accuracy 95.1 � 2.5 91.1 � 5.0 88.2 � 5.8 96.3 � 2.4 96.8 � 2.4 96.1 � 2.7

8 � 8 Sensitivity 86.2 � 12.9 74.6 � 24.5 88.1 � 7.7 79.4 � 26.6 84.8 � 18.2 84.6 � 15.4
Accuracy 95.9 � 2.5 91.5 � 5.2 88.7 � 5.9 98.4 � 1.8 97.7 � 2.3 96.4 � 2.6

10 � 10 Sensitivity 84.3 � 14.0 75.1 � 24.4 87.4 � 7.6 83.7 � 18.8 85.5 � 17.4 85.4 � 14.6
Accuracy 95.8 � 2.5 91.3 � 5.0 88.8 � 5.6 98.6 � 1.3 97.9 � 2.2 96.7 � 2.4

Table 8. Means and Standard Deviations of Support Vector Machines (%) for 100 Test Runs

Type Static
Vestibular
Schwannoma

Benign
Positional Vertigo

Menière’s
Disease

Sudden
Deafness

Traumatic
Vertigo

Vestibular
Neuritis

Radial basis Sensitivity 86.9 � 8.5 80.7 � 17.8 92.7 � 3.8 92.5 � 11.5 80.2 � 18.1 83.3 � 14.0
Accuracy 96.9 � 1.3 94.3 � 2.6 89.9 � 4.0 99.4 � 0.6 97.3 � 2.5 96.6 � 2.2

Polynomial Sensitivity 83.8 � 11.2 79.3 � 19.8 94.2 � 3.8 92.5 � 11.5 83.6 � 17.9 82.5 � 14.7
Accuracy 96.6 � 1.7 94.5 � 3.1 89.4 � 3.9 99.4 � 0.6 97.9 � 2.3 96.6 � 2.2

8 DATA CLASSIFICATION



CONCLUSION AND SUMMARY

By adopting the best results from Tables 2–8, simple linear
discriminant analysis was the best method by correctly
classifying with the mean weighted accuracy of 95.5%,
and decision trees yielded the poorest results of 89.4%.
Statistically significant differences between the most of
the methods were found according to t test (0.001 signifi-
cance level). The results of individual disease classes varied
between the methods and between the classifier structures
(table rows). The results typically become more reliable
when a structure was extended. Such an increase cannot be
continued further, since the size of training sets was lim-
ited. Naturally, results always depend on data. Another
dataset could result in different outcomes. No general
conclusion between the methods could be drawn according
to the computations of merely one dataset. Their motivation
was to demonstrate actual applications.

Methods other than multilayer perceptron networks did
not benefit from using principal components as input
because the results were very reliable. For linear discrimi-
nant analysis, the results were identical independent of
this preprocessing for the sake of its linear character as is
also in principal component analysis.

This article focused on a practical approach to how
classification methods can be applied to a complicated
dataset. Data preprocessing was emphasised because
this sector is often neglected or ignored, which, neverthe-
less, is crucial for successful classification.

To observe the classification algorithms in detail, the
attached book references are a good start.

ACKNOWLEDGMENTS

The author is grateful to Docent Erna Kentala, M.D., and
Prof. Ilmari Pyykkö, M.D., for the data and medical infor-
mation. The dataset was collected and screened at the
Department of Otorhinolaryngology, Helsinki University
Central Hospital, Finland.

BIBLIOGRAPHY

1. A.R. Webb, Statistical Pattern Recognition, 2nd ed. Chichester,
England: Wiley, 2002.

2. K.J. Cios, W. Pedrycz, R.W. Swiniarski, and L.A. Kurgan, Data
Mining, A Knowledge Discovery Approach, New York:
Springer Science+Business Media, 2007.

3. R. Schalkoff, Pattern Recognition, Statistical, Structural and
Neural Approaches, New York: Wiley, 1992.

4. I.H. Witten, and E. Frank, Data Mining, Practical Machine
Learning Tools and Techniques with Java Implementations,
San Francisco, CA: Morgan Kaufmann, 2000.

5. I. Fortes, L. Mora-López, R. Morales, and F. Triguero, Induc-
tive learning models with missing values, Math. Comput.
Model., 44, 790–806, 2006.

6. D. Pyle, Data Preparation for Data Mining, San Francisco, CA:
Morgan Kaufmann, 1999.

7. D.R. Wilson, and T.R. Martinez, Improved heterogeneous dis-
tance functions, J. Artif. Intelligence Research, 6, 1–34, 1997.

8. J. Furman (ed.), Otoneurology, in: Neurologic Clinics, Vol. 23–2,
Netherlands: Elsevier, 2005.

9. E. Kentala, I. Pyykkö, Y. Auramo, and M. Juhola, Database for
vertigo, Otolaryngology, Head Neck Surgery, 112, 383–390,
1995.

10. J. Laurikkala, E. Kentala, M. Juhola, I. Pyykkö, and S. Lammi,
Usefulness of imputation for the analysis of incomplete oto-
neurological data, Int. J. Med. Inform., 58–59, 235–242, 2001.

11. R.J.A. Little, and D.B. Rubin, Statistical Analysis with Missing
Data, New York: Wiley, 1987.

12. M.Y. Kiang, A comparative assessment of classification meth-
ods, Decision Support Systems, 35, 441–454, 2003.

13. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification,
2nd ed., New York: Wiley, 2001.

14. S. Theodoridis, and K. Koutroumbas, Pattern Recognition, 3rd
ed., San Diego, CA: Academic Press (Elsevier), 2006.

15. C.M. Bishop, Neural Networks for Pattern Recognition, New
York: Oxford University Press, 1997.

16. S. Haykin, Neural Networks, A Comprehensive Foundation,
Upper Saddle River, NJ: Prentice-Hall, 1994.

17. K. Swingler, Applying Neural Networks, Practical Guide,
London, UK: Academic Press, 1996.

MARTTI JUHOLA

University of Tampere
Tampere, Finland

DATA CLASSIFICATION 9



D

DATA COMMUNICATION

INTRODUCTION

This chapter considers data communication as the data
exchange process between devices linked directly by a
transmission medium with or without multiaccess, and
without intermediate switching nodes. The scope of discus-
sion is confined to the physical and data link layers in the
Open Systems Interconnection (OSI) reference model.

The physical layer focuses on the exchange of an
unstructured data bit stream via modulated electromag-
netic signals (i.e., electrical and optical) transmission over a
physical link channel. Modulation determines the spectral
efficiency or the ratio of transmitted data bit rate to the
signal bandwidth. Data bits may be received in error when
signal waveforms are impaired by channel noises. Long-
distance transmission involves signal propagation and
regeneration by repeaters. Unlike analog transmission,
digital transmission must recover the binary data content
first before regenerating the signals. The physical layer
specifies the mechanical and the electromagnetic charac-
teristics of the transmission medium, and the access inter-
face between the device and the transmission medium.
Transmission between two devices can be simplex (unidir-
ectional), full-duplex (simultaneous bidirectional), or half-
duplex (bidirectional but one direction at a time).

The data link layer is concerned with the exchange of
structured data bit stream via frames over a logical link
channel with error recovery control to optimize link relia-
bility. Channel coding adds structured redundancy to the
data bit stream to enable error detection or error correction.
Each frame consists of data payload and control overhead
bits, which convey control procedures between sending and
receiving devices. Link control procedures include flow
control, error recovery, and device addressing in multi-
access medium.

Elements of Data Communication System

Figure 1 illustrates the elements of a data communication
system. The elements include digital source, digital sink,
transmitter interface, receiver interface, and physical med-
ium of a communication channel.

The digital source consists of data source and source
encoder. The data source generates either an analog signal
(e.g., audio, video), or a digital data stream (sequence of
discrete symbols or binary bits stored in computing mem-
ory) to the source encoder. The analog-to-digital converter
(ADC) converts an analog signal to a digital data stream of
bits through discrete sampling and quantization of the
analog signal. Common ADC schemes include pulse code
modulation (PCM) that maps each sampled signal-ampli-

tude to a digital data, and delta modulation (DM) that maps
the change from the previous sampled value to a digital
data.

The source encoder employs data compression coding to
reduce data redundancy and communication capacity
requirements for more efficient data transmission over
the communication channel. Lossless compression algo-
rithms (e.g., Huffman) result in decompressed data that
is identical to the original data. Lossy compression algo-
rithms (e.g., discrete cosine transform, wavelet compres-
sion) result in decompressed data that is a qualified
approximation to the original data. Information theory
defines the compression ratio limit without data informa-
tion loss for a given data stream (1).

The transmitter interface consists of the channel enco-
der and the signal waveform generator in the form of a
digital modulator. The channel encoder employs error-
detection or error-correction coding to introduce structured
redundancy in digital data to combat signal degradation
(noise, interference, etc.) in channel. The digital modulator
enables baseband or passband signaling for digital data.
The digital baseband modulator maps the digital data
stream to the modulated pulse train of discrete-level digital
signals. The digital passband modulator maps the digital
data stream to the modulated sinusoidal waveform of con-
tinuous-level analog signals.

The transmitted digital or analog signals propagate
through the physical medium (wire or wireless) of a com-
munication channel. Signal transmission impairments can
be caused by the attenuation of signal energy along propa-
gation path, delay distortions because of the propagation
velocity variation with frequency, and noises because of the
unwanted energy from sources other than transmitter.
Thermal noise is caused by the random motion of electrons.
Cross talk noise is caused by the unwanted coupling
between signal paths. Impulse noise is a spike caused by
external electromagnetic disturbances such as lightning
and power line disturbances.

The receiver interface consists of the channel decoder
and the signal waveform detector or digital demodulator.
The digital demodulator converts the incoming modulated
pulse train or sinusoidal waveform to a digital data stream
with potential bit errors incurred by signal transmission
impairments. The channel decoder detects or corrects bit
errors in received data.

The digital sink consists of a source decoder and a data
sink. The source decoder maps incoming compressed digital
data into original digital data transmitted by the data
source. The digital-to-analog converter (DAC) converts a
digital data stream to an analog signal. The data sink
receives either an analog signal or a digital data from
the source decoder.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



PHYSICAL LAYER

Communication Channel

The physical medium of a communication channel is used to
transmit electromagnetic signals from the transmitter to
the receiver. The physical media can be either guided media
for wired transmission, or unguided media for wireless
transmission. A signal that propagates along a guided
medium is directed and is contained within a physical
conductor. An unguided medium transports signal without
using a physical conductor.

Guided media include twisted-pair cable, coaxial cable,
and optical fiber. Figure 2 shows the electromagnetic spec-
trum used by wired transmission in these guided media.
Consisting of two insulated copper conductors twisted
together; twisted-pair cables commonly are used in sub-
scriber loops to telephone networks. Coaxial cable consists
of an inner solid wire conductor surrounded by an outer
conductor of metal braid, with an insulting ring between
the two conductors. Coaxial cables are used widely in cable
TV networks, local area networks, and long-distance tele-
phone networks. Coaxial cable offers a larger bandwidth
and less interference or crosstalk than that of twisted-pair
cable.

Consisting of a thin glass or plastics central core sur-
rounded by a cladding layer, optical fiber transports light
signal through the core by means of reflection. Optical fiber
offers a wider bandwidth, lower attenuation, and lighter
weight than that of coaxial or twisted-pair cables. The
wider bandwith is achieved at a relatively higher cost.
Optical fiber cables commonly are used in backbone net-
works and in long-haul undersea links because its wide
bandwidth is cost effective.

Unguided media include the air atmosphere, outer
space, and water. Wireless transmission and the reception
of electromagnetic signals in unguided media are accom-
plished through an antenna. For unidirectional wireless
transmission, the transmitted signal is a focused electro-

magnetic beam and the receiving antenna must be aligned
properly for signal reception. For omni-directional wireless
transmission, the transmitted signal spreads out in all
directions to enable reception by many antennas. Antenna
size depends on the operating frequency of electromagnetic
wave (2).

Wireless transmission in the air medium commonly is
classified according to the operational frequency ranges or
bands of the electromagnetic signals. These signals include
radio waves that range from 3 KHz to 1 GHz, microwaves
that range from 1 GHz to 300 GHz, and infrared waves that
range from 300 GHz to 400 THz. Radio waves mostly are
omni-directional; these waves are appropriate for multi-
casting or broadcasting communication. Their applications
include AM and FM radio, television, and cordless phones.
Microwaves are unidirectional and are appropriate for
unicast communication. Their applications include cellu-
lar, satellite, and wireless local area networks. Infrared
waves are unidirectional and cannot penetrate physical
barriers, thus they can be used for short-range unicast
communication. Their applications include communica-
tions between computers and peripheral devices such as
keyboards, mice, and printers. Figure 2 shows the electro-
magnetic spectrum used by wireless transmission in the air
medium.

Channel capacity is the maximum rate at which data can
be transmitted over a medium, using whatever means, with
negligible errors. For binary digital data, the transmission
rate is measured in bits-per-seconds (bps). Channel
capacity increases with transmission bandwidth (W in
Hz) and increases with the ratio of received signal power
(S in Watts) to noise power (R in Watts); also it is limited
by the Shannon theorem: Channel Capacity ¼W�log2 (1 þ
S/R).

Channel Transmission Impairments. Communication
channels impair transmitted signals, and the exact form
of signal degradation depends primarily on the type of
transmission medium. Affecting all channels, additive

Figure 1. Elements of data communication system.

Digital Data 

Analog Signal

Digital Data 

Communication 
Channel

Data Source

Transmitter Interface 

Source 
Encoder

(Compressor)

Channel 
Encoder

Signal 
Waveform 
Generator

(Modulator)

Receiver Interface

Channel 
Decoder

Signal
Waveform 
Detector

(Demodulator)

ADC: Analog to Digital Converter
DAC: Digital to Analog Converter

ADC

Source 
Decoder

(Decompressor)

Digital Source 

Digital Sink 

Digital Data 

Analog Signal

Digital Data 

Data Sink

DAC

2 DATA COMMUNICATION



noise is an unwanted electromagnetic signal that is super-
imposed on the transmitted waveform. Noise is the single
most important factor that limits the performance of a
digital communication system. Other channel impairments
include attenuation, dispersion, and fading. Attenuation is
the decrease of transmitted signal strength as observed
over distance. Dispersion is caused by delay distortions.
Dispersion in wireless medium is caused by multipath
propagation, which occurs when a transmitted signal is
received via multiple propagation paths of different delays.
It leads to inter-symbol interference (ISI), or the smearing
of transmission pulses that represent transmitted symbols
causing mutual interference between adjacent symbols.
Fading is another problem that is associated with multi-
path propagation over a wireless medium. It occurs when
signal components that arrive via different paths add
destructively at the receiver.

In wireline medium, the dispersion and the ISI is caused
by amplitude and phase distortion properties of the parti-
cular medium. The ISI could be minimized by several
techniques, including limiting data rate R to less than twice
the channel bandwidth W (i.e., R < 2�W), pulse shaping
(e.g., raised cosine spectrum), adaptive equalization, and
correlative coding.

The objective of the data communication system design
is to implement a system that minimizes channel impair-
ments. The performance of the digital channel is measured
in terms of bit-error-probability or bit-error-rate (BER),
block-error probability, and error-free seconds. The com-
munication problem can be stated as follows: given the
communication medium, data rate, design transmitter/

receiver so as to minimize BER subject to given power
and bandwidth constraints; or to minimize power and/or
bandwidth subject to given BER objective.

Communication Channel Models. The simplest and most
used model for both wireline and wireless communication
channels is the additive noise channel. The cumulative
noises are caused by thermal noise in the channel and
electronic noise in devices. Under this model, the commu-
nication channel is assumed to add a random noise process
on the transmitted signal. When the statistics of the noise
process is assumed to be uncorrelated (white) Gaussian, the
model is known as additive white Gaussian noise (AWGN)
channel. Channel attenuation can be incorporated into this
model by introducing a multiplicative term. The linear filter
channel model is similar to the additive noise channel,
which differs only in the linear filtering operation that
precedes noise addition. For wireline channels, the filtering
effect usually is assumed to be time-invariant.

Digital transmission over wireless mobile channels
must account for signal fading because of multipath pro-
pagation and Doppler shift. Multipath propagation occurs
when a direct line-of-sight (LOS) path and multiple indirect
paths exist between a transmitter and a receiver. Signal
components that arrive at a receiver with different delay
shifts and combine in a distorted version of the transmitted
signal. Frequency-selective fading occurs when the ampli-
tudes and the phases of the signal’s frequency components
are distorted or faded independently.

Doppler shift occurs when a transmitter and a receiver
are in a relative motion, which causes the multipath
received signal components to undergo different frequency
shifts and to combine in a distorted version of the trans-
mitted signal. Time-selective fading occurs when the sig-
nal’s time components are faded independently.

A wireless mobile channel is modeled as a Rayleigh
fading channel when a dominant path does not exist among
direct and indirect paths between the transmitter and the
receiver. The rayleigh model can be applied in complex
outdoor environments with several obstructions, such as
urban downtown. A wireless mobile channel is modeled as a
Rican fading channel when a dominant direct or LOS path
exists. The rican model can be applied in an open-space,
outdoor environment or an indoor environment.

Digital Modulation: Signal Waveform Generation

Digital modulation enables a digital data stream to encode
its information contents onto a pulse train signal via base-
band modulation, or onto a sinusoidal carrier signal via
passband modulation. Each signal element of the resulting
waveform can carry one or more data elements or bits of the
data stream. The data rate and the signal rate measures
respectively the number of bits and signal elements trans-
mitted in one second. The signal rate is also referred as the
baud rate or modulation rate. The signal rate is propor-
tional directly to the date rate, and proportional inversely
to the number of data elements carried per signal element.

Besides single-carrier modulation (baseband and pass-
band), this section will also present spreading code mod-
ulation (i.e., spread spectrum) that hides the signal behind

Radio
Waves

Microwaves

Infrared

Visible Light

Audio Band

Very Low Frequency (VLF)

Low Frequency (LF)

Medium Frequency (MF)

High Frequency (HF)

Very High Frequency (VHF)

Ultra High Frequency (UHF)

Super High Frequency (SHF)

Extremely High Frequency (EHF)

Infrared
Waves

Frequency BandUnguided Air Medium
Wireless Transmission

Guided Media
Wired Transmission

Twisted
Pair

Cable

Coaxial
Cable

Coaxial
Cable

Optical Fiber

1 kHz

10 kHz

100 kHz

1 MHz

10 MHz

100 MHz

1 GHz

10 GHz

100 GHz

1012 Hz

1013 Hz

1014 Hz

1015 Hz

Figure 2. Electromagnetic spectrum used for wired
and wireless transmission.

DATA COMMUNICATION 3



the noise to minimize signal jamming and interception.
Multicarrier modulation maximizes the spectral efficiency
of a frequency-selective fading channel.

Digital Baseband Modulation. Digital baseband modula-
tion or line coding is the process of converting a digital data
stream to an amplitude modulated pulse train of discrete-
level for transmission in low-pass communication channel.
The pulse amplitude modulation formats or line codes
include unipolar, polar, bipolar, and biphase. For unipolar
codes, the signal has single polarity pulses, which results in
a direct current (DC) component. Unipolar codes include
unipolar return-to-zero (RZ) that specifies ‘‘on’’ pulses for
half bit duration followed by a return to the zero level; and
unipolar non-return-to-zero (NRZ) that specifies ‘‘on’’
pulses for full bit duration.

For polar and bipolar codes, the signal has opposite
polarity pulses, which reduce the DC component. Polar
codes include polar NRZ with signal levels that include
positive and negative, and polar RZ with signal levels that
include positive, negative, and zero. Bipolar codes specify
that data bits with one binary level are represented by zero,
whereas successive data bits with the other binary level are
represented by pulses with alternative polarity. Bipolar
codes include bipolar alternate mark inversion or pseudo-
ternary with signal levels that include positive, negative,
and zero.

For biphase codes, a transition at the middle of each data
bit period always exists to provide clocking synchroniza-
tion. Biphase codes include Manchester that specifies low-
to-high and high-to-low transitions to represent ‘‘1’’ and ‘‘0’’
bits, respectively, and differential Manchester that com-
bines transitions at the beginning and the middle of data bit
periods.

The selection of signaling type depends on design con-
siderations such as bandwidth, timing recovery, error
detection, and implementation complexity. Bipolar and
biphase signaling have no DC spectral component. Also,
the main lobe of biphase spectrum is twice as wide as NRZ
and bipolar (tradeoff between synchronization or timing
recovery and bandwidth).

Signal waveform detection or demodulation recovers the
original data sequence from the incoming signal at the
receiver end. The original data sequence is subjected to
channel impairments. Consider the simplest case of NRZ
signaling. The simplest detection is to sample the received
pulses at the mid-points of bit periods. This detection
method suffers from the poor noise immunity. Optimum
detection employs a correlator or a matched filter (integrate
and dump for NRZ). This achieves better noise immunity
because the noise perturbation is averaged over bit period.

Digital Passband Modulation. Digital passband modula-
tion is the process of converting a digital data stream to a
modulated sinusoidal waveform of continuous-level for
transmission in band-pass communication channel, which
passes frequencies in some frequency bands (3). The con-
version process imbeds a digital data stream onto a sinu-
soidal carrier by changing (keying) one or more of its key
parameters such as amplitude, phase, or frequency. Digital
passband modulation schemes include amplitude shift key-

ing (ASK), phase shift keying (PSK), and frequency shift
keying (FSK).

In binary ASK, the binary data values are mapped to two
distinct amplitude variations; one of them is zero and the
other one is specified by the presence of the carrier signal.
In binary FSK, the binary data values are mapped to two
distinct frequencies usually that are of equal but opposite
offset from the carrier frequency. In binary PSK, the binary
data values are mapped to two distinct phases of the carrier
signal; one of them with a phase of 0 degrees, and the other
one with a phase of 180 degrees.

In M-ary or multilevel ASK, FSK, and PSK modulation,
each signal element of M-levels carries log2M bits. Quad-
rature amplitude modulation (QAM) combines ASK and
PSK. In QAM, two carriers (one shifted by 90 degrees in
phase from the other) are used with each carrier that is ASK
modulated.

Spreading Code Modulation: Spread Spectrum. Spreading
spectrum (4) enables a narrow-band signal to spread across
a wider bandwidth of a wireless channel by imparting its
information contents onto a spreading code (generated by a
pseudo-noise or pseudo-number generator), with the com-
bined bit stream that attains the data rate of the original
spreading code bit stream. Spread spectrum technique
hides the signal behind the noise to minimize signal jam-
ming and interception. Two common techniques to spread
signal bandwidth are frequency hopping spreading
spectrum (FHSS) and direct sequence spread spectrum
(DSSS).

On the transmitter side, FHSS enables the original
signal to modulate or to hop between a set of carrier
frequencies at fixed intervals. A pseudo-random number
generator or pseudo-noise (PN) source generates a spread-
ing sequence of numbers, with each one serving as an index
into the set of carrier frequencies. The resulting bandwidth
of the modulated carrier signal is significantly greater than
that of the original signal. On the receiver side, the same
spreading sequence is used to demodulate the spread spec-
trum signal.

On the transmitter side, DSSS spreads the original
signal by replacing each data bit with multiple bits or chips
using a spreading code. A PN source generates a pseudo-
random bit stream, which combines with the original signal
through multiplication or an exclusive-OR operation to
produce the spread spectrum signal. On the receiver
side, the same spreading code is used to despread the
spread spectrum signal. Multiple DSSS signals can share
the same air link if appropriate spreading codes are used
such that the spread signals are mutually orthogonal (zero
cross-correlation), or they do not interfere with the dis-
preading operation of a particular signal.

Multi-carrier Modulation: Orthogonal Frequency Division
Multiplexing (OFDM). OFDM coverts a data signal into
multiple parallel data signals, which modulate multiple
closely spaced orthogonal subcarriers onto separate sub-
channels. Each subcarrier modulation employs conven-
tional single-carrier passband signaling scheme, such as
quadrature phase shift keying (QPSK). When a rectan-
gular subcarrier pulse is employed, OFDM modulation

4 DATA COMMUNICATION



can be performed by a simple inverse discrete fourier
transform (IDFT) to minimize equipment complexity.
OFDM increases the spectral efficiency (ratio of trans-
mitted data rate to signal bandwidth) of a transmission
channel by minimizing subcarrier frequency channel
separation while maintaining orthogonality of their cor-
responding time domain waveforms; and by minimizing
intersymbol interference (e.g., in mulitpath fading chan-
nel) with lower bit-rate subchannels.

Multiplexing

Multiplexing is a methodology to divide the resource of a
link into accessible components, to enable multiple data
devices to share the capacity of the link simultaneously or
sequentially. Data devices access a link synchronously
through a single multiplexer. In a later section on general
multiple access methodology, data devices can access a link
synchronously or asynchronously through distributed
access controllers.

Frequency Division Multiplexing (FDM). FDM divides a
link into a number of frequency channels assigned to
different data sources; each has full-time access to a portion
of the link bandwidth via centralized access control. In
FDM, signals are modulated onto different carrier frequen-
cies. Each modulated signal is allocated with a frequency
channel of specified bandwidth range or a band centered on
its carrier frequency. Guard bands are allocated between
adjacent frequency channels to counteract inter-channel
interference. Guard bands reduce the overall capacity of a
link.

Wavelength division multiplexing is similar to FDM, but
it operates in the optical domain. It divides an optical link or
a fiber into multiple optical wavelength channels assigned
to different data signals, which modulate onto optical car-
riers or light beams at different optical wavelengths. Opti-
cal multiplexers and demultiplexers can be realized via
various mechanical devices such as prisms and diffraction
gratings.

Time Division Multiplexing (TDM). TDM divides a link
into a number of time-slot channels assigned to different
signals; each accesses the full bandwidth of the channel
alternately at different times via centralized transmission
access control. The time domain is organized into periodic
TDM frames, with each frame containing a cycle of time
slots. Each signal is assigned with one or more time-slots in
each frame. Therefore, the time-slot channel is the
sequence of slots assigned from frame to frame. TDM
requires a guard-time for each time slot to counteract
inter-channel interference in the time domain.

Instead of preassigning time slots to different signals,
statistical time division multiplexing (asynchronous TDM
with on-demand sharing of time slots) improves bandwidth
efficiency by allocating time slots dynamically only when
data sources have data to transmit. In statistical TDM, the
number of time slots in each frame is less than the number
of data sources or input lines to the multiplexer. Data from
each source is accompanied by the line address such that
the demultiplexer can output the data to the intended

output line. Short-term demand exceeding link capacity
is handled by buffering within the multiplexer.

Code Division Multiplexing (CDM). CDM divides a wire-
less channel into code channels assigned to different data
signals, each of which modulates an associated unique
spreading code to span the whole spectrum of the wireless
channel (see previous section on spread spectrum modula-
tion). A receiver retrieves the intended data signal by
demodulating the input with the associated spreading
code. CDM employs orthogonal spreading codes (e.g.,
Walsh codes) in which all pair-wise cross correlations are
zero.

OFDM. OFDM divides a link into multiple frequency
channels with orthogonal subcarriers. Unlike FDM, all of
the subchannels are assigned to a single data signal.
Furthermore, OFDM specifies the subcarriers to maintain
orthogonality of their corresponding time domain wave-
forms. This technigue allows OFDM to minimize guard-
band overhead even though signal spectra that corresponds
to the subcarriers overlap in the frequency domain. OFDM
can be used to convert a broadband and a wireless channel
with frequency-selective fading into multiple frequency-
flat subcarrier channels (i.e., transmitted signals in sub-
carrier channels experience narrowband fading). The
multi-carrier modulation aspect of OFDM has been dis-
cussed in a previous section.

Multiplexed Transmission Network: Synchronous Optical
Network (SONET). TDM-based transmission networks
employ either back-to-back demultiplexer–multiplexer
pairs or add-drop multiplexers (ADMs) to add or to extract
lower-rate signals (tributaries) to or from an existing high-
rate data stream. Former plesiochronous TDM-based
transmission networks require demultiplexing of a whole
multiplexed stream to access a single tributary, and then
remultiplexing of the reconstituted tributaries via back-to-
back demultiplexer–multiplexer pairs. Current synchro-
nous TDM-based transmission networks employ ADMs
that allow tributaries addition and extraction without
interfering with other bypass tributaries.

The SONET employs electrical ADMs and converts the
high-rate data streams into optical carrier signals via
electrical-optical converters for transmission over optical
fibers. SONET ADMs can be arranged in linear and ring
topologies to form a transmission network. SONET stan-
dard specifies the base electrical signal or synchronous
transport signal level-1 (STS-1) of 51.84 Mbps, and the
multiplexed higher-rate STS-n electrical signals with cor-
responding optical carrier level-n (OC-n) signal. Repeating
8000 times per second, a SONETSTS-1 frame (9� 90 byte-
array) consists of transport overhead (9�3 byte-array) that
relates to the transmission section and line, and to the
synchronous payload envelope (9 � 87 byte-array) includ-
ing user data and transmission path overhead. A pointer
structure in the transport overhead specifies the beginning
of a tributary, and this structure enables the synchroniza-
tion of frames and tributaries even when their clock fre-
quencies differ slightly.

DATA COMMUNICATION 5



DATA LINK LAYER

The physical layer of data communications provides an
exchange of data bits in the form of a signal over a trans-
mission link between two directly connected devices or
stations. The data link layer organizes the bit stream
into blocks or frames with control information overhead,
and provides a reliable exchange of data frames (blocks of
bits) over a data communication link between transmitter
and receiver devices. Using a signal transmission service
provided by the physical layer, the data link layer provides
a data communication service to the network layer. Main
data link control functions include frame synchronization,
flow control and error recovery (particularly important
when a transmission link is error prone), and medium
access control to coordinate multiple devices to share and
to access the medium of a transmission link.

FRAME SYNCHRONIZATION

A data frame consists of a data payload field and control
information fields in the form of header, trailer, and flags.
Headers may include start of frame delimiter, character or
bit constant, control signaling, and sender and receiver
address. Trailes may include an error detection code and
an end of frame delimiter. The framing operation packages
a sending data message (e.g., network layer data packet)
into data frames for transmission over the data link. The
frame design should enable a receiver to identify an indi-
vidual frame after an incoming bit stream is organized into
a continuous sequence of frames.

The beginning and the ending of a data frame must be
identifiable uniquely. Frames can be of fixed or variable
size. Fixed size frames can be delimited implicitly. Variable
size frames can be delimited explicitly through a size count
encoded in a header field. Transmission error could corrupt
the count field, so usually the count field is complemented
with starting/ending flags to delimit frames.

In a character-oriented protocol, a data frame consists of
a variable number of ASCII-coded characters. Special flag
characters are used to delimit the beginning and the end of
frames. When these special flag characters appear in the
data portion of the frame, character stuffing is used by the
sender to insert an extra escape character (ESC) character
just before each flag character, followed by the receiver to
remove the ESC character.

In a bit-oriented protocol, a data frame consists of a
variable number of bits. Special 8-bit pattern flag 01111110
is used to delimit the frame boundary. To preserve data
transparency through bit stuffing, the sender inserts an
extra 0 bit after sending five consecutive 1 bits, and the
receiver discards the 0 bit that follows five consecutive 1
bits.

Channel Coding

Channel encoding is the process of introducing structured
redundancy in digital data to allow the receiver to detect or
to correct data errors caused by to transmission impair-
ments in the channel. The ratio of redundant bits to the
data bits and their relationship determines the error detec-

tion and the correction capability of a coding scheme.
Channel coding schemes include block coding and convolu-
tional coding schemes (5).

In block coding, data bits are grouped into blocks or
datawords (each of k bits); and r redundant bits are added to
each block to form a codeword (each of n ¼ k + r bits). The
number of possible codewords is 2n and 2k of them are valid
codewords, which encode the datawords.

The Hamming distance dH between two codewords is the
number of bit positions in which the corresponding bits
differ, e.g., dH (01011, 11110) ¼ 3. The minimum distance
dmin of a block code (that consists of a set of valid codewords)
is the minimum dH between any two different valid code-
wordsintheset,e.g.,dmin(00000,01011,10101,11110)¼3.A
block code with dmin can detect all combinations of (dmin�1)
errors. A block code with dmin can correct all combinations of
errors specified by the largest integer that is less than or
equal to (dmin�1)/2.

Figure 3 illustrates the error detection operation based
on the parity check code. The channel encoder adds a parity
bit to the 7-bit dataword (1100100) to produce an even-
parity 8-bit codeword (11001001). The signal waveform
generator maps the codeword into a NRZ-L baseband sig-
nal. The received signal was corrupted by channel noise,
one of the 0 bits was received and it was detected as a 1 bit.
The channel decoder concludes that the received odd-parity
codeword (11000001) is invalid.

Block codes that are deployed today are mostly linear,
rather than nonlinear. For linear block codes, the modulo-2
addition of two valid codewords creates another valid code-
word. Common linear block coding schemes include simple
parity check codes, hamming codes, and cyclic redundancy
check (CRC) codes. In a CRC code, the cyclic shifted version
of a codeword is also a codeword. This allows for simple
implementation by using shift registers. Bose–Chaudhuri–
Hocqunghem (BCH) codes constitute a large class of power-
ful cyclic block codes. Reed–Solomon (RS) codes commonly
are used in commercial applications, such as in digital
subscriber line for Internet access and in video broadcast-
ing for digital video. For integers m and t, RS coding
operates in k symbols of data information (with m bit per
symbol), n symbols (2m� 1) of data block, and 2t symbols of
redundancy with dmin ¼ 2t + 1.

If the data source and the sink transmit and receive in a
continuous stream, a block code would be less convenient
than a code that generates redundant bits continuously
without bits blocking. In convolutional coding, the coding
structure extends over the entire transmitted data stream
effectively, instead of being limited to data blocks or code-
words as in block coding. Convolutional or trellis coding is
applicable for communication systems configured with
simple encoders and sophisticated decoders; such as space
and satellite communication systems.

The channel coding selection for a channel should
account for the channel condition, including channel error
characteristics. All block and convolutional codes can be
used in AWGN channels that produce random errors.
However, convolutional codes tend to be ineffective in fad-
ing channels that produce burst errors. On the other hand,
RS block codes are much more capable of correcting burst
errors. For block codes designed for correcting random

6 DATA COMMUNICATION



errors, they can be combined with block interleaving to
enhance the capability of burst error correction. In block
interleaving, L codewords of n-bit block to be transmitted
are stored row-by-row in a rectangular L � n array buffer,
and then data is transmitted over the channel column-by-
column. The interleaving depth L determines the distribu-
tion of the errors of a burst over the codewords. Burst error
correction is effective if the resulting number of errors to be
distributed in each codeword is within the block code’s error
correction capability.

Flow Control

Flow control enables the receiver to slow down the sender so
that the data frames are not sent at a rate higher than the
receiver could handle. Otherwise, the receive buffers would
overflow, which results in data frame loss. The sender is
allowed to send a maximum number of frames without
receiving acknowledgment from the receiver. Those frames
sent but not yet acknowledged (outstanding) would be
buffered by the sender in case they need to be retransmitted
because of transmission error. The receiver can flow control
the sender by either passively withholding acknowledg-
ment, or actively signaling the sender explicitly that it is
not ready to receive.

Error Control

Transmission errors can result in either lost frames or
damaged frames with corrupted bits because of noise and
interference in the channel. Error recovery enables a reli-
able data transfer between the sender and the receiver.
When a return channel is available for data acknowledg-

ment and recovery control, the receiver employs error
detection via channel coding violation; and then requests
for retransmission via automatic repeat request (ARQ)
procedure. When the return channel is not available, the
receiver employs forward error correction that detects an
error via channel coding violation; and then the receiver
corrects it by estimating the most likely data transmitted
by sender.

ARQ Protocols

ARQ is a general error recovery approach that includes
retransmission procedures at the sender to recover from
data frames detected with error at receiver, or missing data
frames (i.e., very corrupted frames not recognized by recei-
ver). It also includes a procedure to recover from missing
acknowledgment frames. With data frames that incorpo-
rate error detection codes, the receiver discards data frames
with detected errors. The receiver sends an acknowledg-
ment (ACK) frame to indicate the successful reception of
one or more data frames. The receiver sends an negative
acknowledgment (NAK) frame to request retransmission of
one or more data frames in error. The sender sets a transmit
timer when a data frame is sent, and retransmits a frame
when the timer expires to account for a potentially missing
data frame.

Data frames and corresponding ACK/NAK frames are
identified by k-bit modulo-2 sequence numbers (Ns). The
sequence numbers enable the receiver to avoid receiving
duplicate frames because of lost acknowledgments. Data
frames could carry a piggyback acknowledgment for data
frames transmitted in the opposite direction. Acknowledg-
ment sequence number (Nr) identifies the next data frame
expected by the receiver, and acknowledges all outstanding
frames up to Nr � 1. Outstanding data frames that have
been sent but not yet acknowledged would be buffered in
transmit buffers in case they need to be retransmitted
because of a transmission error.

ARQ protocols combine error recovery control with slid-
ing-window flow control. The sender can send multiple
consecutive data frames without receiving acknowledg-
ment from the receiver. The sender and the receiver main-
tain flow control state information through sending and
receiving windows.

The sending window contains sequence numbers of data
frames that the sender is allowed to send, and it is parti-
tioned into two parts. From the trailing edge to the parti-
tion, the first part consists of outstanding frames. From the
partition to the leading edge, the second part consists of
frames yet to be sent. The sending window size (Ws) equals
the maximum number of outstanding frames or the number
of transmit buffers. The sender stops accepting data frames
for transmission because of flow control when the partition
overlaps the leading edge, i.e., all frames in window are
outstanding. When an ACK is received with Nr, the window
slides forward so that the trailing edge is at Nr.

The receiving window contains the sequence numbers of
the data frames that the receiver is expecting to receive.
Receiving window size (Wr) is equal to the number of receive
buffers. The receive data frames with sequence numbers
outside receive window are discarded. The accepted data

C
h

an
n

el

Signal
Waveform
Generator

Channel
Encoder

Signal
Waveform
Detector

Channel
Decoder

1   1   0   0   1   0   0 Digital Data

1   1   0   0   1   0   0 1

Parity
Bit

Baseband Signal (NRZ-L)

1   1   0   0   0   0   0 1

Received Signal

Odd Parity Check

1   1   0   0   0   0   0 Parity Error Detected

Channel Noise

Even Parity Check

Parity
Bit

Figure 3. Example of parity-based error detection.

DATA COMMUNICATION 7



frames are delivered to the upper layer (i.e., network layer)
if their sequence numbers follow immediately that of the
last frame delivered; or else they are stored in receive
buffers. The acknowledgment procedures are as follows.
First, the receiver sets an acknowledgment timer when a
frame is delivered. If it is possible to piggyback an ACK, the
receiver does so and resets the timer. Second, when an
acknowledgment timer expires, it will send a self-contained
ACK frame. For both cases, the receiver sets Nr to be the
sequence number at the trailing edge of the window at the
time the ACK is sent.

Common ARQ protocols include the stop-and-wait ARQ,
and the sliding-window based go-back-n ARQ and selective-
repeat ARQ. The sending and receiving window sizes spe-
cified for these protocols are summarized in Table 1.

Stop-and-Wait ARQ. The stop-and-wait ARQ specifies
that both the sending and the receiving window sizes are
limited to one. Single-bit modulo-2 sequence numbers are
used. The sender and receiver process one frame at a time.
This ARQ is particularly useful for the half-duplex data
link as the two sides never transmit simultaneously. After
sending one data frame, the sender sets the transmit timer
and waits for an ACK before sending the next data frame.
The sender retransmits the data frame if NAK is received or
if the transmit timer expires.

Go-Back-N ARQ. The go-back-n ARQ specifies that the
sending window size can range from one to 2k� 1; whereas
the receiving window size is limited to one. If a data frame is
received in error, all subsequent frames will not fall within
the receiving window and will be discarded. Consequently,
retransmission of all these frames will be necessary. The
receiver may seek retransmission actively by sending an
NAK with Nr being set to sequence number of the receive
window, and then resetting the running acknowledgment
timer.

The sender retransmission procedures are as follows.
First, the sender sets a transmit timer when a frame is
transmitted or retransmitted and resets the timer when
frame is acknowledged. Second, when the transmit timer
for the oldest outstanding frame expires, the sender
retransmits all of the outstanding frames in the sending
window. Third, if NAK with Nr is received, the sender slides
a sending window to Nr and retransmits all of the out-
standing frames in the new window.

Selective-Repeat ARQ. The selective-repeat ARQ speci-
fies that the sending window size can range from one to
2(k�1); whereas the receiving window size is less than or
equal to the sending window size. Instead of retransmit-
ting every frame in pipeline when a frame is received in
error, only the frame in error is retransmitted. Received
frames with a sequence number inside receiving window
but out of order are stored in buffers. Then the receiver
sends a NAK with Nr set to the trailing edge of the receive
window, and resets the acknowledgment timer.

The sender retransmission procedures are as follows:
The sender retransmits each outstanding frame when the
transmit timer for that frame times out. If NAK is received,
the sender retransmits the frame indicated by the Nr field

in the NAK, slides the window forward if necessary, and
sets the transmit timer.

Medium Access Control (MAC)

For the multiaccess or the shared-medium link as illu-
strated in Fig. 4, the OSI reference model divides the
data link layer into the upper logical link control (LLC)
sublayer and the lower medium access control (MAC) sub-
layer. Like the standard data link layer that provides
services to the network layer, the LLC sublayer enables
transmission control between two directly connected data
devices. The MAC sublayer provides services to the LLC
sublayer, and enables distributed data devices to access a
shared-medium. Although the MAC protocols are medium
specific, the LLC protocols are medium independent. The
MAC protocol can be classified based on its multiple access
and resource sharing methodologies.

Multiple Access Methodology. In multiplexing control,
data devices access a link synchronously through a single
multiplexer. In multiple access control, distributed data
devices access a link synchronously or asynchronously
through distributed controllers. An example of synchro-
nous multiple access would be down-link transmissions
from a cellular base station to wireless mobile devices.
An example of asynchronous multiple access would be an
up-link transmission from a wireless mobile device to a
cellular base station. Like multiplexing, multiples access
divides the resource of a transmission channel into acces-
sible portions or subchannels identified by frequency sub-
bands, time-slots, or spreading codes.

Frequency division multiple access (FDMA) schemes
divide the frequency-domain resource of a link into portions
of spectrum bands that are separated by guard-bands to
reduce inter-channel interference. Data devices can trans-
mit simultaneously and continuously on assigned sub-
bands. For a wireless fading channel with mobile
devices, FDMA requires a larger guard-band between
the adjacent frequency channels to counteract the Doppler
frequency spread caused by the data sources mobility.

Time division multiple access (TDMA) schemes divide
the time-domain resource of a link into time-slots, sepa-
rated by guard-times. Data devices take turn and transmit
in assigned time-slots, which makes use of the entire link
bandwidth. For the wireless fading channel, TDMA
requires a larger guard-time for each time slot to counteract
the delay spread caused by the multi-path fading.

Code division multiple access (CDMA) schemes divide
the code-domain resource of a link into a collection of
spreading codes. Data devices transmit their spread spec-
trum signals via assigned codes. In synchronous CDMA,
orthogonal spreading codes are employed in which all pair-
wise cross-correlations are zero. In asynchronous CDMA,
data devices access the code channels via distributed access
controls without coordination, which prohibit the employ-
ment of orthogonal spreading codes because of arbitrary
random transmission instants. Spreading pseudo-noise
sequences are employed instead, which are statistically
uncorrelated. This causes multiple access interference

8 DATA COMMUNICATION



(MAI), which is proportional directly to the number of
spreading signals received at the same power level.

Orthogonal frequency division multiple access
(OFDMA) schemes divide the frequency-domain resource
into multiple frequency channels with orthogonal subcar-
riers. As discussed in a previous section, OFDM is consid-
ered as a multi-carrier modulation technique, rather than a
multiplexing technique, when all of the subchannels are
assigned to a single user signal. In OFDMA, multiple
subsets of subchannels are assigned to different user sig-
nals.

Resource Sharing Methodology. Resource sharing control
can occur either through a centralized resource scheduler
with global resource availability information, or a distrib-
uted scheduler with local or isolated resource availability
information. Resource sharing schemes include preassign-
ment, random access (contention), limited-contention, and
on-demand assignment. Preassignment allows devices with
predetermined and fixed allocation of link resources regard-
less of their needs to transmit data. Random access allows
devices to contend for the link resources by transmitting
data whenever available. On-demand assignment allows
devices to reserve data for link resources based on their
dynamic needs to transmit data.

Preassignment MAC Protocols. These protocols employ
static channelization. Link capacity is preassigned or allo-
cated a priori to each station in the frequency domain via
FDMA or in the time domain via TDMA. With FDMA-based
protocols, disjointed frequency bands (separated by guard
bands) are assigned to the links that connect the stations.
For a single channel per carrier assignment, each fre-
quency band carries only one channel of nonmultiplexed
traffic. With TDMA-based protocols, stations take turns to
transmit a burst of data over the same channel. Stations
must synchronize with the network timing and the TDMA
frame structure. These protocols achieve high efficiency if
continuous streams of traffic are exchanged between sta-
tions, but they incur poor efficiency under bursty traffic.

Random Access (Contention) MAC Protocols. With ran-
dom access or contention MAC protocols, no scheduled
times exist for stations to transmit and all stations compete
against each other to access to the full capacity of the data
link. Thus, it is a distributed MAC protocol. Simultaneous
transmissions by two or more stations result in a collision
that causes all data frames involved to be either destroyed
or modified. Collision is recovered by retransmissions after

some random time. Delay may become unbounded under
heavy traffic, and channel use is relatively poor compared
with other MAC protocols that avoid collision, resolve
collision, or limit contention. Common random access
MAC protocols include Pure ALOHA, Slotted ALOHA,
carrier sense multiple access (CSMA), and CSMA with
collision detection or with collision avoidance.

Pure ALOHA protocol allows the station to send data
frame whenever it is ready, with no regard for other sta-
tions (6). The station learns about the collision of its data
frame by monitoring its own transmission (distributed
control), or by a lack of acknowledgment from a control
entity within a time-out period (centralized control). The
station retransmits the collided data frame after a random
delay or a back-off time. Suppose a station transmits a
frame at time to, and all data frames are of equal duration
Tframe. Collision occurs if one of more stations transmit
frames within the time interval (to � Tframe, to þ Tframe),
which is referred to as the vulnerable period of length
2Tframe.

Heavy traffic causes high collision probability, which
increases traffic because of retransmission. In turn, this
traffic increases collision probability, and the vicious cycle
would cause system instability because of the loss of colli-
sion recovery capability. Short term load fluctuations could
knock the system into instability. Stabilizing strategies
include increasing the range of back-off with increasing
number of retransmissions (e.g., binary exponential back-
off), and limiting the maximum number of retransmissions.

Slotted ALOHA protocol is similar to that of pure
ALOHA, but stations are synchronized to time slots of
duration equal to the frame duration Tframe. Stations
may access the medium only at the start of each time
slot. Thus, arrivals during each time slot are transmitted
at the beginning of the next time slot. Collision recovery is
the same as pure ALOHA. Collisions are in the form of a
complete frame overlap, and the vulnerable period is of
length Tframe, which is half that of pure ALOHA. The
maximum throughput achieved is twice that of pure
ALOHA.

CSMA protocols reduce the collision probability by sen-
sing the state of the medium before transmission. Each
station proceeds to transmit the data frame if the medium is
sensed to be idle. Each station defers the data frame
transmission and repeats sensing if the medium is sensed
to be busy. Collision still could occur because the propaga-
tion delay must be accounted for the first bit to reach every
station and for every station to sense it. The vulnerable
period is the maximum propagation delay incurred for a
signal to propagate between any two stations. It can be
shown that CSMA protocols outperform ALOHA protocols
if propagation delay is much smaller than the frame dura-
tion. Depending on how they react when the medium is
sensed to be busy or idle, CSMA schemes are classified
additionally into nonpersistent CSMA, 1-persistent CSMA,
and p-persistent CSMA.

With nonpersistent CSMA (slotted or unslotted), a sta-
tion waits for a random delay to sense again if the medium is
busy; it transmits as soon as medium is idle. With 1-
persistent CSMA (slotted or unslotted), a station continues
to sense if the medium is busy; it transmits as soon as

Table 1. Window Sizes for ARQ Protocols

ARQ
Protocol

Sending
Window
Size (Ws)

Receiving
Window
Size (Wr)

Stop-and-wait 1 1
Go-Back-N 1 < Ws < 2k � 1 1
Selective Repeat 1 < Ws < 2(k�1) 1 < Wr < Ws

Note: k = Number of bits available for frame sequence number.

DATA COMMUNICATION 9



the medium is idle. With p-persistent CSMA (slotted), a
station continues sensing if the medium is busy; it trans-
mits in the next slot with probability p, and delay one slot
with probability (1-p) if the medium is idle.

The similarities and the differences between these
CSMA schemes are summarized in Table 2.

CSMA with Collision Detection (CSMA/CD) protocol
enhances the additionally CSMA operations by enabling
the stations to continue sensing the channel and detecting
collision while transmitting data frames (7). If a collision is
detected (e.g., received signal energy is greater than that of
sent signal, and encoding violation), the involved station
would abort frame transmission. After transmitting a brief
jamming signal to assure other stations would detect the
collision, the involved station would back off and repeat
the carrier sensing. Successful frame transmission is
assured if no collision is detected within round-trip propa-
gation delay (with regard to the furthest station) of frame
transmission.

CSMA with Collision Avoidance (CSMA/CA) protocol
enables stations to avoid collisions in wireless networks,
where collision detection is not practical because the
dynamic range of wireless signals is very large. If the
medium is sensed to be idle, a station continues to monitor
the medium for a time interval known as the inter-frame
space (IFS). If the medium remains idle after IFS, the
station chooses the time after a binary exponential back
off to schedule its transmission, and then continues to
monitor the medium. If the medium is sensed to be busy
either during IFS or back off waiting, the station continues
to monitor the medium until the medium becomes idle. At
the scheduled time, the station transmits the data frame
and waits for its positive acknowledgment. The station
increases the back off if its transmission fails, and con-
tinues to monitor the medium until the medium becomes
idle.

Limited-Contention MAC Protocols. These MAC proto-
cols limit the number of contending stations per slot to
maximize the probability of success. Different groups of
stations contend for repetitive series of different slots. The
large group size and the high repetition rate are assigned
for light traffic, whereas a small group size and low repeti-
tion rate are assigned for heavy traffic. These protocols
combine the best properties of contention and contention-
free protocols. It achieves low access delay under light
traffic and high throughput under heavy traffic. It is applic-
able to slotted ALOHA and slotted CSMA.

The splitting algorithms (8) are employed commonly by
limited-contention MAC protocols. These algorithms split
the colliding stations into two groups or subsets; one subset
is allowed to transmit in the next slot. The splitting con-
tinues until the collision is resolved. Each station can
choose whether or not to transmit in the successive slots
(i.e., belong to the transmitting subset) according to the
random selection, the arrival time of its collided data, or the
unique identifier of the station.

On-Demand Assignment MAC. These types of protocols
set up an orderly access to the medium. These protocols
require the stations to exchange status information of
readiness to transmit data frames, and a station can trans-
mit only when it has been authorized by other stations or a
centralized control entity. Common on-demand assign-
ment MAC protocols include reservation-based protocols
and token-passing protocols.

Reservation-based protocols require a station to reserve
link resources before transmitting data. The reservation
request could be signaled to other distributed stations or to
a centralized reservation control entity. For example, in
TDMA-based channelization, each TDMA frame could con-
sist of data slots and reservation slots (usually smaller in
size). Each station could signal a request in its own reser-
vation slot, and transmit data in the next TDMA frame.

Figure 4. Data link layer.

Point-to-Point Logical Connection

Physical Link

3

2

1

OSI Layer

Network

MAC

Physical

LLC
Multilateral

Logical
Connections

Physical Link with Multi-access Medium

3

2b

2a

1

OSI Layer

Network

MAC

Physical

LLC

Network

MAC

Physical

LLC

Network

Physical

Data Link

Network

Physical

Data Link

Multilateral
Logical

Connections

10 DATA COMMUNICATION



Token-passing protocols require a special bit pattern
(token) to be passed from station to station in a round robin
fashion. The token can be passed via a point-to-point line
that connects one station to the next (token ring), or via a
broadcast bus that connects all stations (token bus). Only a
station that posses a token is allowed to send data. A station
passes the token to the next station after sending data, or if
it has no data to send. Each station is given the chance to
send data in turns, and no contention occurs. The average
access delay is the summation of the time to pass token
through half the stations and the frame transmission time.
The average access delay could be fairly long, but it is
bounded even under heavy traffic. Token-passing protocols
rely on distributed control with no need for network syn-
chronization.

MULTI-INPUT MULTI-OUTPUT (MIMO) TRANSMISSION

MIMO and MIMO-OFDM have emerged as the next gen-
eration wireless transmission technologies with antenna
arrays for mobile broadband wireless communications. As
illustrated in Fig. 5, MIMO (9) is a multi-dimensional
wireless transmission system with a transmitter that
has multiple waveform generators (i.e., transmit anten-
nas), and a receiver that has multiple waveform detectors
(i.e., receive antennas). Multiplexing and channel coding in
a MIMO channel would operate over the temporal dimen-
sion and the spatial dimension of transmit antennas.
MIMO systems can be used either to achieve a diversity
gain through space time coding (STC) to counteract multi-
path fading, or to achieve a throughput capacity gain
through space division multiplexing (SDM) to counteract
the bandwidth limitation of a wireless channel.

STC

STC is a two-dimensional channel coding method to max-
imize spectral efficiency in a MIMO channel by coding over
the temporal dimension and the spatial dimension of trans-
mit antennas. STC schemes can be based on either space
time block codes (STBCs) or by space time trellis codes
(STTCs). For a given number of transmit antennas (NTA),
an STBC scheme maps a number of modulated symbols
(NMS) into a two-dimensional NTA � NMS codeword that
spans in the temporal and the spatial dimensions. On the
other hand, the STTC scheme encodes a bit stream through
a convolutional code, and then maps the coded bit stream
into the temporal and the spatial dimensions.

SDM

SDM is a two-dimensional multiplexing method to increase
data throughput in a MIMO channel by enabling simulta-
neous transmissions of different signals at the same carrier
frequency through multiple transmit antennas. The mixed
signals that arrived at the receiver can be demultiplexed by
employing spatial sampling via multiple receive antennas
and corresponding signal processing algorithms.

Combined MIMO–OFDM Transmission

As discussed in a previous section, OFDM can be used to
convert a broadband wireless channel with frequency-
selective fading into a several frequency-flat, subcarrier
channels. A combined MIMO–OFDM system performs
MIMO transmission per subcarrier channel with narrow-
band fading, thus enabling MIMO systems to operate with
more optimality in broadband communications. Multiplex-
ing and coding in a MIMO–OFDM system would operate
over three dimensions (i.e., temporal, spatial, and sub-
carrier dimensions).

CONCLUSION

The maximum error-free data rate or capacity of an AWGN
channel with a given channel bandwidth is determined by
the Shannon capacity. Continuous improvements have
been made to design modulation and coding schemes to
approach the theoretical error-free capacity limit under the
limitations of channel bandwidth and transmission power.
Design objectives have always been to increase the spectral
efficiency and the link reliability. Modulation can be used to
increase spectral efficiency by sacrificing link reliability
through modulation, whereas channel coding can be used to
increase link reliability by sacrificing spectral efficiency.
The performance of modulation and channel coding
schemes depend on channel conditions. Existing AWGN-
based modulation and coding schemes do not perform
optimally in Rayleigh fading channels, whose error-free
capacity are considerably less than that of AWGN chan-
nels. As fading channels have been increasing used to
deploy cellular and Wi-Fi access applications, increasingly
needs exist to deploy the next-generation wireless mobile
technologies that are best suited for fading channels under
all sorts of channel conditions (i.e., flat, frequency-selective,
and time-selective fading). The emerging MIMO-OFDM
technologies are promising. MIMO optimizes throughput

Table 2. CSMA Schemes Classification

CSMA Schemes

Medium Sensing
Status

Non-Persistent
(Slotted or Unslotted)

l-Persistent
(Slotted or Unslotted)

p-Persistent
(Slotted)

Idle Send with Probability ¼ 1 Send with Probability ¼ 1 Send with Probability ¼ p
Busy Wait random delay, then

sense channel
Continue sensing channel
until idle

Continue sensing channel
until idle

Collision Wait random delay, then start over carrier sensing

DATA COMMUNICATION 11



capacity and link reliability by using antenna arrays;
whereas OFDM optimizes spectral efficiency and link relia-
bility by converting a broadband frequency-selective fading
channel into a set of frequency flat fading channels with less
signal distortions.

BIBLIOGRAPHY

1. D. Hankerson, G. Harris, and P. Johnson, Introduction to
Information Theory and Data Compression, Boca Raton, FL:
CRC Press, 1998.

2. W. Stallings, Wireless Communications and Networks,
Englewood Cliffs, NJ: Prentice Hall, 2001.

3. S. G. Wilson, Digital Modulation and Coding, Upper Saddle
River, NJ: Prentice Hall, 1996, pp. 1–286.

4. R. E. Ziemer, R. L. Peterson, and D. E. Borth, Introduction to
Spread Spectrum Communications, Upper Saddle River, NJ:
Prentice Hall, 1995.

5. T. K. Moon, Error Correcting Coding: Mathematical Methods
and Algorithms, Hoboken, NJ: John Wiley & Sons Inc., 2005.

6. N. Abramson andF. Kuo,The ALOHA system in Computer
Communication Networks,Englewood Cliffs, NJ:Prentice-
Hall,1973, pp.501–518.

7. IEEE Standard 802.3, CSMA/CD Access Method

8. D. Bertsekas,R. Gallager,Data Networks,2nd ed.,Englewood
Cliffs, NJ:Prentice Hall,1992.

9. G. L. Stuber,J. R. Barry,S. W. McLaughlin, andY. Li,‘‘Broad-
band MIMO-OFDM wireless communications,’’Proc. of the
IEEE,92(2):2004,271–294.

FURTHER READING

S. Haykin, Communication Systems, 4th ed., New York: John
Wiley & Sons, Inc., 2001.

B. Sklar, Digital Communications: Fundamentals and Applica-
tions, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 2001.

B. P. Lathi, Modern Digital and Analog Communication Systems,
3rd ed., New York: Oxford, 1998.

OLIVER YU

University of Illinois at Chicago
Chicago, Illinois

Figure 5. MIMO transmission.

Transmitter Interface 

Space 
Time
Channel 
Encoder

Signal Waveform Generator

Digital
Source 

Signal Waveform Generator

Receiver Interface 

Space 
Time
Channel 
Decoder

Signal Waveform Detector

Digital 
Sink 

Signal Waveform Detector

Multipath Fading Channel 

12 DATA COMMUNICATION



D

DATA COMPRESSION CODES, LOSSY

INTRODUCTION

In many data compression applications, one does not insist
that the reconstructed data (¼decoder output) is absolutely
identical to the original source data (¼ encoder input). Such
applications typically involve image or audio compression
or compression results of various empirical measurements.
Small reconstruction errors may be indistinguishable to a
human observer, or small compression artifacts may be
tolerable to the application. For example, human eye and
ear are not equally sensitive to all frequencies, so informa-
tion may be removed from less important frequencies with-
out visual or audible effect.

The advantage of lossy compression stems from the fact
that allowing reconstruction errors typically results in
much higher compression rates than is admitted by lossless
methods. This higher compression rate is understandable
because several similar inputs now are represented by the
same compressed file; in other words, the encoding process
is not one to one. Hence, fewer compressed files are avail-
able, which results in the reduction in the number of bits
required to specify each file.

It also is natural that a tradeoff exists between the
amounts of reconstruction error and compression: Allowing
bigger error results in higher compression. This tradeoff is
studied by a subfield of information theory called the rate-
distortion theory.

Information theory and rate-distortion theory can be
applied to general types of input data. In the most impor-
tant lossy data compression applications, the input data
consists of numerical values, for example, audio samples
or pixel intensities in images. In these cases, a typical
lossy compression step is the quantization of numerical
values. Quantization refers to the process of rounding
some numerical values into a smaller range of values.
Rounding an integer to the closest multiple of 10 is a
typical example of quantization. Quantization can be
performed to each number separately (scalar quantiza-
tion), or several numbers can be quantized together (vec-
tor quantization). Quantization is a lossy operation as
several numbers are represented by the same value in
the reduced range.

In compression, quantization is not performed directly
on the original data values. Rather, the data values are
transformed first in such a way that quantization provides
maximal compression gain. Commonly used transforma-
tions are orthogonal linear transformations (e.g., discrete
cosine transform DCT). Also, prediction-based transfor-
mations are common: Previous data values are used to
form a prediction for the next data value. The difference
between the actual data value and the predicted value is
the transformed number that is quantized and then
included in the compressed file. The purpose of these

transformations is to create numerical representations
where many data values are close to zero and, hence,
will be quantized to zero. The quantized data sets have
highly uneven distributions, including many zeroes, and
therefore they can be effectively compressed using
entropy coding methods such as Huffman or arithmetic
coding. Notice that quantization is the only operation that
destroys information in these algorithms. Otherwise they
consist of lossless transformations and entropy coders.

For example, the widely used lossy image compression
algorithm JPEG is based on DCT transformation of 8 � 8
image blocks and scalar quantization of the transformed
values. DCT transformation separates different frequen-
cies so the transformed values are the frequency compo-
nents of the image blocks. Taking advantage of the fact that
the human visual system is more sensitive to low than high
frequencies, the high frequency components are quantized
more heavily than the low frequency ones. Combined with
the fact that typical images contain more low than high
frequency information, the quantization results in very few
non zero high-frequency components. The components are
ordered according to the frequency and entropy coded using
Huffman coding.

The following sections discuss in more detail the basic
ideas of lossy information theory, rate-distortion theory,
scalar and vector quantization, prediction-based coding,
and transform coding. Image compression algorithm
JPEG is presented also.

THEORY

The Shannon information theory (1) allows one to ana-
lyze achievable rate-distortion performance for lossy
compression. For simplicity, in the following illustration
of the key concepts we assume a finite, independent, and
identically distributed (or iid) source X. This means that
the input data to be compressed consists of a sequence
x1,x2,x3,. . . of symbols from a finite source alphabet X
where each member xi 2X of the sequence is produced
with the same fixed probability distribution P on X,
independent of other members of the sequence. The
entropy of such a source is

HðXÞ ¼ �
X
x2X

PðxÞlog PðxÞ

that is, the weighted average of the self-information
IðxÞ ¼ �logPðxÞ of elements x2X. All logarithms are
taken in base two, assuming that the compressed data
is expressed in bits. The entropy measures the average
amount of uncertainty that we have about the output
symbol emitted by the source. It turns out that the
entropy HðXÞ is the best expected bitrate per source
symbol that any lossless code for this source can

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



achieve (1). See Ref. 2 or any other standard information
theory text for more details.

Lossy Information Theory

Suppose then that we allow errors in the reconstruction. In
the general set-up we can assume an arbitrary reconstruc-
tion alphabet Y. Typically Y ¼ X, as it is natural to recon-
struct into the original symbol set, but this is not required.
Let us specify desired conditional reconstruction
probabilities PðyjxÞ for all x2X and y2Y , where for every
x2X we have

X
y2Y

PðyjxÞ ¼ 1

Value PðyjxÞ is the probability that source symbol x will be
reconstructed as y. Our goal is to design a code that realizes
these conditional reconstruction probabilities and has as
low an expected bitrate as possible. Note that the code can
reconstruct source symbol x into various reconstruction
symbols y2Y , depending on the other elements of the input
sequence. This is due to the fact that we do not encode
individual symbols separately, but coding is done on longer
segments of source symbols. Conditional probabilities
PðyjxÞ provide the desired reconstruction distribution. For-
mula for the best achievable bitrate, as provided by the
Shannon theory (1,3), is presented below. See also Refs. 2
and 4.

Example 1. Consider a binary iid source X with source
alphabet f0; 1g and source probabilities Pð0Þ ¼ Pð1Þ ¼ 1

2.
We encode source sequences in segments of three bits by
assigning code c0 to segments with more 0s than 1s and
code c1 to segments with more 1s than 0s. The entropy of
the code is 1 bit per code, or 1

3 bits per source symbol. Hence,
we obtain compression ratio 1:3.

Let us reconstruct code c0 as segment 000 and c1 as 111.
Then, source segments 000,001,010, and 100 get all recon-
structed as 000, whereas segments 111,110,101, and 011
get reconstructed as 111. The encoding/decodong process is
deterministic, but source symbols 0 get reconstructed as 1
one quarter of the time (whenever they happen to be in the
same segment with two 1s). We say that the conditional
reconstruction probabilities are

Pð0j0Þ ¼ Pð1j1Þ ¼ 3
4

Pð1j0Þ ¼ Pð0j1Þ ¼ 1
4 &

For every fixed x2X, the conditional reconstruction
probabilities PðyjxÞ are a probability distribution on Y,
whose entropy

HðY jxÞ ¼ �
X
y2Y

PðyjxÞlog PðyjxÞ

measures the amount of uncertainty about the reconstruc-
tion if the source symbol is known to be x. Their average,
weighted by the source probabilities PðxÞ, is the condi-
tional entropy

HðY jXÞ ¼
X
x2X

PðxÞHðY jxÞ ¼ �
X
x2X

X
y2Y

Pðx; yÞlog PðyjxÞ

where Pðx; yÞ ¼ PðxÞPðyjxÞ is the joint probability of x2X
and y2Y . Conditional entropy HðY jXÞ measures the
expected amount of uncertainty about the reconstruction
to an observer that knows the corresponding source
symbol.

The source probabilities PðxÞ and the conditional recon-
struction probabilities PðyjxÞ also induce an overall prob-
ability distribution on the reconstruction alphabet Y, where
for every y2Y

PðyÞ ¼
X
x2X

PðxÞPðyjxÞ

We additionally can calculate the conditional source prob-
abilities given the reconstruction symbol y2Y as

PðxjyÞ ¼ Pðx; yÞ
PðyÞ

The reconstruction entropy HðYÞ and the conditional
source entropy HðXjYÞ in this direction are calculated as
follows:

HðYÞ ¼ �
X
y2Y

PðyÞlog PðyÞ

HðXjYÞ ¼ �
X
x2X

X
y2Y

Pðx; yÞlog PðxjyÞ

They key concept of average mutual information is defined
as the difference

IðX;YÞ ¼ HðXÞ �HðXjYÞ

between the source entropy HðXÞ and the conditional source
entropy HðXjYÞ. It measures the expectation of how much
the uncertainty about the source symbol is reduced if the
corresponding reconstruction symbol is known. It can be
proved easily that IðX;YÞ� 0 and that I ðX;YÞ ¼ IðY ;XÞ
where we denote IðY ;XÞ ¼ HðYÞ �H ðY jXÞ (2). Hence, the
average mutual information also is the amount by which the
uncertainty about the reconstruction is reduced if the source
symbol is known.

It turns out that IðX;YÞ is the best bitrate that any code
realizing the desired conditional reconstruction probabil-
ities PðyjxÞ can achieve. More precisely, this statement
contains two directions: the direct statement that states
that IðX;YÞ is a bitrate that can be achieved, and the
converse statement that states that no code can have a

2 DATA COMPRESSION CODES, LOSSY



bitrate below IðX;YÞ. More precisely, the direct lossy
source coding theorem can be formulated as follows: For
every positive number e > 0, no matter how small, a code
exists such that

(i) For every x2X and y2Y the probability that x gets
reconstructed as y is within e of the desired PðyjxÞ,
and

(ii) Source sequences are compressed into at most
IðX;YÞ þ e expected bits per source symbol.

The converse of the lossy source coding theorem states that
no code that realizes given reconstruction probabilities
PðyjxÞ can have an expected bitrate below IðX;YÞ.

The proof of the converse statement is easier. The direct
theorem is proved using the Shannon random coding tech-
nique. This technique is an example of the probabilistic
argument, successfully applied in many areas in combina-
torics and graph theory. The proof shows the existence of
good codes, but it does not provide practical means of
constructing such codes. Approaching the limit IðX;YÞ
requires that long segments of the input sequence are
encoded together.

Example 2. Let us return to the setup of Example 1, and
let us use the obtained conditional reconstruction probabil-
ities

Pð0j0Þ ¼ Pð1j1Þ ¼ 3
4

Pð1j0Þ ¼ Pð0j1Þ ¼ 1
4

as our target. The average mutual information is then

IðX;YÞ ¼ 3

4
log23� 1� 0:1887

This value is significantly lower than the rate 1
3 bits

obtained by the code of Example1 . According to the Shan-
non theory, by increasing the block length of the codes, one
can approach rate IðX;YÞ� 0:1887 while keeping the con-
ditional reconstruction probabilities arbitrarily close to the
target values. &

This section only discussed the source coding of finite iid
sources. The main theorem remains valid in more general
setups as well, in particular for continuous valued sources
and ergodic, stationary Markov sources, that is, sources
with memory.

Rate-Distortion Theory

In lossy compression, usually one does not want to specify
for each source symbol the whole conditional probability
distribution of reconstruction symbols. Rather, one is con-
cerned with the amount of distortion made in the recon-
struction. A distortion function on source alphabet X and
reconstruction alphabet Y is a mapping

d : X � Y!Rþ

into the non-negative real numbers. The value dðx; yÞ
represents the amount of distortion caused when source
symbol x gets reconstructed as y. Typically (but not neces-
sarily) X ¼ Y ; dðx; xÞ ¼ 0 for all x2X, and dðx; yÞ> 0 when
x 6¼ y. Common distortion functions in the continuous
valued case X ¼ Y ¼ R are the squared error distortion

dðx; yÞ ¼ ðx� yÞ2

and the absolute error distortion

dðx; yÞ ¼ jx� yj

Hamming distortion refers to the function

dðx; yÞ ¼ 0; if x ¼ y
1; if x 6¼ y

�

The distortion between two sequences of symbols is defined
as the average of the distortions between the corresponding
elements. One talks about the mean squared error (MSE) or
the mean absolute error (MAE) if the distortion function is
the squared error or the absolute error distortion, respec-
tively. These measures are the most widely used error
measures in digital signal processing.

Consider the setup of the previous section where source
symbols x are reconstructed as symbols y with probabilities
PðyjxÞ. This setup imposes distortion d(x, y) with probability
Pðx; yÞ ¼ PðxÞPðyjxÞ, so the expected distortion is

X
x2X

X
y2Y

PðxÞPðyjxÞdðx; yÞ

The goal is to find the highest achievable compression
rate for a given target distortion D, which leads to the
problem of identifying conditional reconstruction prob-
abilities PðyjxÞ such that the expected distortion is at most
D while IðX;YÞ is as small as possible. Note how we no
longer ‘‘micromanage’’ the reconstruction by preselecting
the conditional probabilities. Instead, we only care about
the overall reconstruction error induced by the probabil-
ities and look for the probabilities that give the lowest
bitrate IðX;YÞ.

This process leads to the definition of the rate-distortion
function R(D) of the source:

RðDÞ ¼ minfIðX;YÞjPðyjxÞ such thatX
x2X

X
y2Y

PðxÞPðyjxÞdðx; yÞ � Dg

The minimization is over all conditional probabilities PðyjxÞ
that induce at most distortion D. According to the source
coding statement of the previous section, R(D) is the best
achievable rate at distortion D.

Example 3. (2) Consider a binary source that emits
symbols 0 and 1 with probabilities p and 1 – p, respectively,
and let us use the Hamming distortion function. By sym-
metry we do not lose generality if we assume that

DATA COMPRESSION CODES, LOSSY 3



p � 1� p. The rate-distortion function of this source is

RðDÞ ¼ hðpÞ � hðDÞ; for 0 � D � p
0; for D> p

�

where hðrÞ ¼ �r logðrÞ � ð1� rÞlogð1� rÞ is the binary
entropy function. See Fig. 1(a) for a plot of function R(D).

For a continuous valued example, consider a source that
emits real numbers iid under the Gaussian probability
distribution with variance �2, that is, the probability den-
sity function of the source is

pðxÞ ¼ 1

�
ffiffiffiffiffiffi
2p
p e

�z2

2�2

Consider the squared error distortion function. The corre-
sponding rate distortion function is

RðDÞ ¼ logð�Þ � 1
2 logðDÞ; for 0<D � �2

0; for D>�2

�

see Fig. 1(b). &

Denote by Dmin the smallest possible expected distor-
tion at any bitrate (i.e., the distortion when the bitrate is
high enough for lossless coding) and by Dmax the smallest
expected distortion corresponding to bitrate zero (i.e., the
case where the reconstruction is done without receiving
any information from the source). In the Gaussian exam-
ple above, Dmin¼ 0 and Dmax¼ �2, and in the binary source
example, Dmin ¼ 0 and Dmax ¼ p. Values of R(D) are
interesting only in the interval Dmin�D�Dmax. Function

R(D) is not defined for D < Dmin, and it has value zero for
all D > Dmax. It can be proved that in the open interval
Dmin < D < Dmax the rate-distortion function R(D) is
strictly decreasing, continuously differentiable and con-
vex downward. Its derivative approaches �1 when D
approaches Dmin(3,5,4).

In Example 3 , we had analytic formulas for the rate-
distortion functions. In many cases such formulas cannot
be found, and numerical calculations of rate-distortion
functions become important. Finding R(D) for a given
finite iid source is a convex optimization problem and
can be solved effectively using, for example, the
Arimoto–Blahut algorithm (6,7).

QUANTIZATION

In the most important application areas of lossy compres-
sion, the source symbols are numerical values. They can be
color intensities of pixels in image compression or audio
samples in audio compression. Quantization is the process
of representing approximations of numerical values using a
small symbol set. In scalar quantization each number is
treated separately, whereas in vector quantization several
numbers are quantized together. Typically, some numer-
ical transformation first is applied to initialize the data into
a more suitable form before quantization. Quantization is
the only lossy operation in use in many compression algo-
rithms. See Ref. 8 for more details on quantization.

Scalar Quantization

A scalar quantizer is specified by a finite number of avail-
able reconstruction values r1; . . . ; rn 2R, ordered r1 < r2 <
. . . < rn, and the corresponding decision intervals. Decision
intervals are specified by their boundaries b1; b2; . . . ;

(b)(a)

Figure 1. The rate-distortion function of (a) binary source with p¼0.5 and (b) Gaussian source with�¼ 1. Achievable rates reside above the
curve.

4 DATA COMPRESSION CODES, LOSSY



bn�1 2R, also ordered b1 < b2 < . . . < bn�1. For each i¼1,. . .,
n, all input numbers in the decision interval ðbi�1; biÞ are
quantized into ri, where we use the convention that b0 ¼
�1and bn ¼ þ1. Only index i needs to be encoded, and the
decoder knows to reconstruct it as value ri. Note that all
numerical digital data have been quantized initially from
continuous valued measurements into discrete values. In
digital data compression, we consider, additional quantiza-
tion of discrete data into a more coarse representation to
improve compression.

The simplest form of quantization is uniform quantiza-
tion. In this case, the quantization step sizes bi � bi�1 are
constant. This process can be viewed as the process of
rounding each number x into the closest multiple of some
positive constant b. Uniform quantizers are used widely
because of their simplicity.

The choice of the quantizer affects both the distortion
and the bitrate of a compressor. Typically, quantization is
the only lossy step of a compressor, and quantization error
becomes distortion in the reconstruction. For given distor-
tion function and probability distribution of the input
values, one obtains the expected distortion. For the analysis
of bitrate, observe that if the quantizer outputs are entropy
coded and take advantage of their uneven probability dis-
tribution, then the entropy of the distribution provides the
achieved bitrate. The quantizer design problem then is the
problem of selecting the decision intervals and reconstruc-
tion values in a way that provides minimal entropy for
given distortion.

The classic Lloyd–Max (9,10) algorithm ignores the
entropy and only minimizes the expected distortion of
the quantizer output for a fixed number n of reconstruction
values. The algorithm, hence, assumes that the quantizer
output is encoded using fixed length codewords that ignore
the distribution. The Lloyd–Max algorithm iteratively
repeats the following two steps:

(i) Find reconstruction values ri that minimize the
expected distortion, while keeping the interval
boundaries bi fixed, and

(ii) Find optimal boundaries bi, while keeping the
reconstruction values fixed.

If the squared error distortion is used, the best choice of ri in
step (i) is the centroid (mean) of the distribution inside the
corresponding decision interval ½bi�1; biÞ. If the error is
measured in absolute error distortion, then the best choice
of ri is the median of the distribution in ½bi�1; biÞ. In step (ii),
the optimal decision interval boundaries bi in both distor-

tions are the midpoints riþriþ1

2 between consecutive recon-

struction values.
Each iteration of (i) and (ii) lowers the expected distor-

tion so the process converges toward a local minimum. A
Lloyd–Max quantizer is any quantizer that is optimal in the
sense that (i) and (ii) do not change it.

Modifications of the Lloyd–Max algorithm exist that
produce entropy-constrained quantizers (8). These quanti-
zers incorporate the bitrate in the iteration loop (i)–(ii).
Also, a shortest path algorithm in directed acyclic graph
can be used in optimal quantizer design (11).

Vector Quantization

From information theory, it is known that optimal lossy
coding of sequences of symbols requires that long blocks
of symbols are encoded together, even if they are inde-
pendent statistically. This means that scalar quantiza-
tion is suboptimal. In vector quantization, the input
sequence is divided into blocks of length k, and each
block is viewed as an element of Rk, the k-dimensional
real vector space. An n-level vector quantizer is specified
by n reconstruction vectors ~r1; . . . ;~rn 2Rk and the corre-
sponding decision regions. Individual reconstruction vec-
tors are called code vectors, and their collection often is
called a code book.

Decision regions form a partitioning of Rk into n parts,
each part representing the input vectors that are quan-
tized into the respective code vector. Decision regions do
not need to be formed explicitly, rather, one uses the
distortion function to determine for any given input
vector which of the n available code vectors ~ri gives
optimal representation. The encoder determines for
blocks of k consecutive input values the best code vector
~ri and communicates the index i to the decoder. The
decoder reconstructs it as the code vector ~ri. Typically,
each vector gets quantized to the closest code vector
available in the code book, but if entropy coding of the
code vectors is used, then the bitrate also may be incorpo-
rated in the decision.

Theoretically, vector quantizers can encode sources as
close to the rate-distortion bound as desired. This encoding,
however, requires that the block length k is increased,
which makes this fact have more theoretical than practical
significance.

The Lloyd–Max quantizer design algorithm easily
generalizes into dimension k. The generalized Lloyd–
Max algorithm, also known as the LBG algorithm after
Linde, Buzo, and Gray (12), commonly is used with
training vectors ~t1; . . .~tm 2Rk. These vectors are sample
vectors from representative data to be compressed. The
idea is that although the actual probability distribution
of vectors from the source may be difficult to find, obtain-
ing large collections of training vectors is easy, and it
corresponds to taking random samples from the distribu-
tion.

The LBG algorithm iteratively repeats the following two
steps. At all times the training vectors are assigned to
decision regions.

(i) For each decision region i find the vector ~ri that
minimizes the sum of the distortions between~ri and
the training vectors previously assigned to region
number i.

(ii) Change the assignment of training vectors: Go over
the training vectors one by one and find for each
training vector~t j the closest code vector~ri under the
given distortion. Assign vector~t j in decision region
number i.

In step (i), the optimal choice of ~ri is either the coordinate
wise mean or median of the training vectors in decision

DATA COMPRESSION CODES, LOSSY 5



region number i, depending on whether the squared error
or absolute error distortion is used.

Additional details are needed to specify how to initialize
the code book and what is done when a decision region
becomes empty. One also can incorporate the bitrate in the
iteration loop, which creates entropy-constrained vector
quantizers. For more details on vector quantization see,
for example, Ref. 13.

DATA TRANSFORMATIONS

In data compression situations, it is rarely the case that the
elements of source sequences are independent of each
other. For example, consecutive audio samples or neighbor-
ing pixel values in images are highly correlated. Any effec-
tive compression system must take advantage of these
correlations to improve compression—there is no sense
in encoding the values independently of each other as
then their common information gets encoded more than
once. Vector quantization is one way to exploit correlations.
Scalar quantization, however, requires some additional
transformations to be performed on the data to remove
correlation before quantization.

Prediction-Based Transformations

One way to remove correlation is to use previously pro-
cessed data values to calculate a prediction x̂i 2R for the
next data value xi 2R. As the decoder calculates the same
prediction, it is enough to encode the prediction error

ei ¼ xi � x̂i

In lossy compression, the prediction error is scalar quan-
tized. Let ei denote ei quantized. Value ei is entropy coded
and included in the compressed file. The decoder obtains ei

and calculates the reconstruction value

xi ¼ ei þ x̂i

Note that the reconstruction error xi � xi is identical to the
quantization error ei � ei so the quantization directly con-
trols the distortion.

In order to allow the encoder and decoder to calculate an
identical prediction x̂i, it is important that the predictions
are based on the previously reconstructed values x j, not the
original values x j; j< i. In other words,

x̂i ¼ f ðxi�1; xi�2; xi�3; . . .Þ

where f is the prediction function. In linear prediction,
function f is a linear function, that is,

x̂i ¼ a1xi�1 þ a2xi�2 þ . . .þ akxi�k

for some constants a1; a2; . . . ;ak 2R. Here, k is the order of
the predictor. Optimal values of parameters a1; a2; . . . ;ak

that minimize the squared prediction error can be found by
solving a system of linear equations, provided autocorrela-
tion values of the input sequences are known (14).

In prediction-based coding, one has strict control of the
maximum allowed reconstruction error in individual
source elements xi. As the reconstruction error is identical
to the quantization error, the step size of a uniform
quantizer provides an upper bound on the absolute recon-
struction error. Compression where a tight bound is
imposed on the reconstruction errors of individual num-
bers rather than an average calculated over the entire
input sequence is termed near-lossless compression.

Linear Transformations

An alternative to prediction-based coding is to perform a
linear transformation on the input sequence to remove
correlations. In particular, orthogonal transformations
are used because they keep mean squared distances invar-
iant. This method allows easy distortion control: The MSE
quantization error on the transformed data is identical to
the MSE reconstruction error on the original data.

Orthogonal linear transformation is given by an ortho-
gonal square matrix, that is, an n�n matrix M whose rows
(and consequently also columns) form an orthonormal
basis of Rn. Its inverse matrix is the same as its transpose
MT. The rows of M are the basis vectors of the transforma-
tion.

A data sequence of length n is viewed as ann-dimensional
column vector~x2Rn. This vector can be the entire input, or,
more likely, the input sequence is divided into blocks of
length n, and each block is transformed separately. The
transformed vector is M~x, which is also a sequence of n real
numbers. Notice that theelements of the transformed vector
are the coefficients in the expression of~x as a linear combi-
nation of the basis vectors.

The inverse transformation is given by matrix MT. In the
following, we denote the i’th coordinate of~x by~x(i) for i¼ 1,
2,. . ., n. If the transformed data is quantized into ~y2Rn,
then the reconstruction becomes MT~y. Orthogonality guar-
antees that the squared quantization error kM~x�~yk2 is
identical to the squared reconstruction error k~x�MT~yk2.
Here, we use the notation

k~rk2 ¼
Xn

i¼1

~rðiÞ2

for the square norm in Rn.

KLT Transformation. The goal is to choose a transforma-
tion that maximally decorrelates the coordinates of the data
vectors. At the same time, one hopes that as many coordi-
nates as possible become almost zero, which results in low
entropy in the distribution of quantized coordinate values.
The second goal is called energy compaction.

Let us be more precise. Consider a probability distribu-
tion on the input data vectors with mean ~m2Rn. The
variance in coordinate i is the expectation of ð~xðiÞ �
~mðiÞÞ2 when ~x2Rn is drawn from the distribution. The
energy in coordinate i is the expectation of ~xðiÞ2. The total
variance (energy) of the distribution is the sum of the n
coordinate-wise variances (energies). Orthogonal transfor-
mation keeps the total variance and energy unchanged, but

6 DATA COMPRESSION CODES, LOSSY



a shift of variances and energies between coordinates can
occur. Variance (energy) compaction means that as much
variance (energy) as possible gets shifted into as few coor-
dinates as possible.

The covariance in coordinates i and j is the expectation of

ð~xðiÞ � ~mðiÞÞð~xð jÞ � ~mð jÞÞ

Coordinates are called uncorrelated if the covariance
is zero. Decorrrelation refers to the goal of making the
coordinates uncorrelated. Analogously, we can call the
expectation of ~xðiÞ~xð jÞ the ‘‘coenergy’’ of the coordinates.
Notice that the variances and covariances of a distribution
are identical to the energies and coenergies of the trans-
lated distribution of Rn by the mean ~m.

Example 4. Let n ¼ 2, and let us build a distribution of
vectors by sampling blocks from a grayscale image. The
image is partitioned into blocks of 1 � 2 pixels, and each
such block provides a vector ðx; yÞ 2R2 where x and y are the
intensities of the two pixels. See Fig. 2 (a) for a plot of the
distribution. The two coordinates are highly correlated,
which is natural because neighboring pixels typically
have similar intensities. The variances and energies in
the two coordinates are

Energy Variance

x 17224 2907

y 17281 2885

total 34505 5792

The covariance and coenergy between the x and y coordi-
nates are 17174 and 2817, respectively.

Let us perform the orthogonal transformation

1ffiffiffi
2
p 1 1

�1 1

� �

that rotates the points 45 degrees clockwise, see Fig. 2 (b)
for the transformed distribution. The coordinates after
the transformation have the following variances and
energies:

Energy Variance

x 34426 5713

y 79 79

total 34505 5792

Energy and variance has been packed in the first coordi-
nate, whereas the total energy and variance remained
invariant. The effect is that the second coordinates became
very small (and easy to compress), whereas the first coor-
dinates increased.

After the rotation, the covariance and the coenergy are -
29 and 11, respectively. The transformed coordinates are
uncorrelated almost, but not totally. &

The two goals of variance compaction and decorrelation
coincide. An orthogonal transformation called KLT (Kar-
hunen–Loève transformation) makes all covariances
between different coordinates zero. It turns out that at
the same time KLT packs variance in the following, optimal
way: For every k � n the variance in coordinates 1,2,. . ., k
after KLT is as large as in any k coordinates after any
orthogonal transformation. In other words, no orthogonal
transformation packs more variance in the first coordinate
than KLT nor more variance in two coordinates than KLT,
and so forth. The rows of the KLT transformation matrix
are orthonormal eigenvectors of the covariance matrix, that
is, the matrix whose element i,j is the covariance in coor-
dinates i and j for all 1 � i; j � n. If energy compaction
rather than variance compaction is the goal, then one
should replace the covariance matrix by the analogous
coenergy matrix.

Example 5. In the case of Example 4 the covariance
matrix is

2907 2817
2817 2885

� �

The corresponding KLT matrix

0:708486 0:705725
�0:705725 0:708486

� �

consists of the orthonormal eigenvectors. It is the clockwise
rotation of R2 by 44.88 degrees. &

Figure 2. The sample distribution (a) before and (b) after the orthogonal transformation.

DATA COMPRESSION CODES, LOSSY 7



KLT transformation, although optimal, is not used
widely in compression applications. No fast way exists
to take the transformation of given data vectors—one
has to multiply the data vector by the KLT matrix. Also,
the transformation is distribution dependent, so that the
KLT transformation matrix or the covariance matrix has
to be communicated to the decoder, which adds overhead
to the bitrate. In addition, for real image data it turns out
that the decorrelation performance of the widely used DCT
transformation is almost as good. KLT is, however, an
important tool in data analysis where it is used to lower the
dimension of the data set by removing the less significant
dimensions. This method also is known as the principal
component analysis.

DCT Transformation. The discrete cosine transform
(DCT) is an orthogonal linear transformation whose basis
vectors are obtained by uniformly sampling the cosine
function, see Fig. 3. More precisely, the element i, j of
the n � n DCT matrix is

Cicosðip 2 jþ 1

2n
Þ

where i, j ¼ 0,1,. . ., n–1 and Ci is the normalization factor

Ci ¼
ffiffiffiffiffiffiffiffi
1=n

p
; if i ¼ 0ffiffiffiffiffiffiffiffi

2=n
p

; otherwise

�

Different basis vectors of DCT capture different frequen-
cies present in the input. The first basis vector (i ¼ 0) is
constant, and the corresponding transformed value is called

the DC coefficient. The DC coefficient gives the average of
the input. Other transformed values are AC coefficients.
DCT has good energy compaction properties where typically
most energy is packed into the low frequency coefficients.

There are fast DCT algorithms that perform the trans-
formation faster than the straightforward multiplication of
the data by the transformation matrix. See Ref. 15 for these
and other details on DCT.

Linear Transformations in Image Compression. In image
data, the pixels have a two-dimensional arrangement. Cor-
relations between pixels also are current in both horizontal
and vertical directions. DCT, however, is natively suitable
for one-dimensional signals because it separates frequen-
cies in the direction of the signal. Also, other common
transformations are designed for signals along a one-dimen-
sional line. To use them on images, the transformation is
done twice: first along horizontal lines of the image and then
again on vertical lines on the output of the first round. (The
same result is obtained if the vertical transformation is
executed first, followed by the horizontal direction.) The
combined effect again is an orthogonal transformation of the
input image.

For example, the basis vectors of DCT on 8�8 image data
is shown in Fig. 4. The transformation decomposes an input
image into a linear combination of the shown basis vectors.
Typically, high-frequency coefficients corresponding to
basis vectors at the lower right corner are very small,
whereas the low frequency basis vectors at the upper left
corner capture most of the image energy. This fact is
exploited in the JPEG image compression algorithm dis-
cussed below.

JPEG

This section outlines the JPEG (Joint Photographic
Experts Group) image compression standard as an illus-
tration of the concepts discussed in previous sections. JPEG
is based on the DCT transformation of 8 � 8 image blocks;

0 0.5 1
0
1
2

0 0.5 1
−1

0
1

0 0.5 1
−1

0
1

0 0.5 1
−1

0
1

0 0.5 1
−1

0
1

0 0.5 1
−1

0
1

0 0.5 1
−1

0
1

0 0.5 1
−1

0
1

Figure 3. Size n ¼ 8 DCT basis vectors.

Figure 4. Basis vectors of the 8 � 8 DCT.

8 DATA COMPRESSION CODES, LOSSY



uniform scalar quantization of the transformed values,
where different step sizes can be used at different frequency
components; ordering of the quantized values from the low
frequency to the high frequency; and Huffman coding of the
ordered, quantized coefficients. The bitrate and the quality
are controlled through the selection of the quantizer step
sizes. For details of JPEG, see Ref. 16.

If the input image is a color image, it has three color
components, each of which is compressed as a grayscale
image. But the commonly used RGB (red, green, and blue)
color representation first is converted into a luminance–
chrominance representation where the luminance compo-
nent is the intensity and two chrominance components give
the color. The chrominance components typically compress
much better than the luminance component that contains
most of the image information. In addition, the human
visual system is not as sensitive to the chrominance
data, so the chrominance components often are subsampled
by removing half of the rows and/or columns. Also, the
chrominance components can be quantized more heavily.

Next, the image is partitioned into non overlapping 8� 8
squares. As an example, take the image block

or

77 76 80 80 83 85 114 77

75 80 80 80 87 105 169 133

81 77 80 86 116 167 171 180

67 79 86 135 170 169 169 161

80 87 119 168 176 165 159 161

83 122 166 175 177 163 166 155

117 168 172 179 165 162 162 159

168 174 180 169 172 162 155 160

extracted from a test picture. The intensity values are
integers in the interval 0. . .255. First, 128 is subtracted
from all intensities, and the result is transformed using the
8 � 8 DCT. The transformed values of the sample block—
rounded to the closest integer—are

28 �158 �47 �5 �14 8 �17 5

�212 �61 56 32 �9 22 �9 7

�27 104 44 �12 �23 7 �6 9

�30 29 �50 �25 �1 11 �10 5

�11 21 �23 19 25 0 0 1

�3 2 �12 4 �4 �12 �2 �9

2 0 1 6 �1 �5 19 3

0 0 11 2 3 �2 11 �11

Notice that the high frequency values at the lower right
corner are relatively small. This phenomenon is common as
typical images contain more low than high frequencies. The
next step is the lossy step of scalar quantization. Different
frequencies may be quantized differently. Typically, the
high-frequency values are quantized more coarsely than
the low frequencies because the human visual system is less
sensitive to high frequencies. The quantizer step sizes are
specified in an 8� 8 array, called the quantization table. In
our example, let us use the following quantization table:

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

The transformed data values are divided by the correspond-
ing element of the quantization table and rounded to the
closest integer. The result is

2 �14 �5 0 �1 0 0 0

�18 �5 4 2 0 0 0 0

�2 8 3 0 �1 0 0 0

�2 2 �2 �1 0 0 0 0

�1 1 �1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Notice the large number of zeroes in the high-frequency
part of the table. This large number is because of two
factors: Higher frequencies were quantized more, and
the input contain less high frequency information (energy)
in the first place.

Next, the quantized values need to be entropy coded.
Huffman coding (or arithmetic coding) is used. The DC
coefficient (number 2 in our example) simply is subtracted
from the DC coefficient of the previous block, and the differ-
ence is entropy coded. The other 63 values—the AC coeffi-

DATA COMPRESSION CODES, LOSSY 9



cients—are lined up according to the following zigzag order:

The purpose is to have the large low-frequency values first,
and hopefully many zeroes at the end. In our example, this
produces the sequence

� 14; �18; �2; �5; �5; 0; 4; 8; �2; �1; 2; 3; 2;�1; 0; 0; 0;

� 2; 1; 0; 0; 0; �1; �1; �1; 0; 0; . . .

where the end of the sequence contains only zeroes. Huffman
coding is used where each Huffman code word represents a
non zero value and the count of zeroes before it. In other
words, Huffman code words are used for the non zero values
only, although these code words also specify the positions of
zeroes. A specific code word also exists for the end of the block
that is inserted after the last non zero value. In this way, the
long sequence of zeroes at the end can be skipped.

From the compressed file, the decoder obtains the quan-
tized DCT output. Multiplying the values by the entries of
the quantization table and applying the inverse DCT
produces the reconstructed image block. In our example,
this block is

70 87 86 71 77 100 100 78

84 82 72 69 93 130 145 138

84 74 71 91 127 160 175 177

68 72 97 135 163 169 166 166

66 90 133 171 180 165 154 154

94 125 161 178 174 164 161 163

132 160 178 172 164 168 168 161

154 180 188 169 162 172 165 144

or

The level of the compression artifacts is controlled by the
selection of the quantization table. Typical artifacts in
JPEG with coarse quantization are: blocking along the
boundaries of the 8 � 8 blocks, blending of colors
because of high quantization of chrominance components,
and ringing on edges because of the loss of high-frequency
information.

SUBBAND CODING AND WAVELETS

Typical image data contains localized high frequencies on
the boundaries of objects. Within an object, usually large
low frequency areas exist. Classical transformations into
the frequency domain, such as DCT, measure the total
amounts of various frequencies in the input. To localize
the effect of sharp edges, DCT commonly is applied on
relatively small image blocks. In this way, image edges
only affect the compression of the block that contains the
edge. This method, however, leads to blocking artifacts seen
in JPEG.

Alternative linear, even orthogonal, transformations
exist that measure frequencies locally. A simple example
is the Haar transformation. It is based an a multilevel
application of a 45 degree rotation of R2, specified by the
matrix

M ¼ 1ffiffiffi
2
p 1 1

�1 1

� �

On the first level, the input signal of length n is partitioned
into segments of two samples and each segment is trans-
formed using M. The result is shuffled by grouping
together the first and the second coefficients from all
segments, respectively. This shuffling provides two sig-
nals of length n/2, where the first signal consists of moving
averages and the second signal of moving differences of
the input. These two signals are called subbands, and they
also can be viewed as the result of filtering the input signal
by FIR filters whose coefficients are the rows of matrix M,
followed by subsampling where half of the output values
are deleted.

The high-frequency subband that contains the moving
differences typically has small energy because consecutive
input samples are similar. The low-frequency subband that
contains the moving averages, however, is a scaled version
of the original signal. The second level of the Haar trans-
formation repeats the process on this low-frequency sub-
band. This process again produces two subbands (signals of
length n/4 this time) that contain moving averages and
differences. The process is repeated on the low-frequency
output for as many levels as desired.

The combined effect of all the levels is an orthogonal
transformation that splits the signal into a number of
subbands. Notice that a sharp transition in the input signal
now only affects a small number of values in each subband,
so the effect of sharp edges remains localized in a small
number of output values.

10 DATA COMPRESSION CODES, LOSSY



Haar transformation is the simplest subband transfor-
mation. Other subband coders are based on the similar idea
of filtering the signal with two filters—one low-pass and one
high-pass filter—followed by subsampling the outputs by a
factor of two. The process is repeated on the low-pass output
and iterated in this fashion for as many levels as desired.
Different subband coders differ in the filters they use. Haar
transformation uses very simple filters, but other filters
with better energy compaction properties exist. See, for
example, Ref. 17 for more details on wavelets and subband
coding.

When comparing KLT (and DCT) with subband trans-
formations on individual inputs, one notices that
although KLT packs energy optimally in fixed, predeter-
mined coefficients, subband transformations pack the
energy better in fewer coefficients, however, the positions
of those coefficients depend on the input. In other words,
for good compression one cannot order the coefficients in a
predetermined zigzag order as in JPEG, but one has to
specify also the position of each large value.

Among the earliest successful image compression algo-
rithms that use subband transformations are the
embedded zerotree wavelet (EZW) algorithm by J. M.
Shapiro (18) and the set partitioning in hierarchical trees
(SPIHT) algorithm by A. Said and W. A. Pearlman (19).
The JPEG 2000 image compression standard is based on
subband coding as well (20).

CONCLUSION

A wide variety of specific lossy compression algorithms
based on the techniques presented here exist for audio,
speech, image, and video data. In audio coding, linear
prediction commonly is used. Also, subband coding and
wavelets are well suited. If DCT type transformations
are used, they are applied commonly on overlapping seg-
ments of the signal to avoid blocking artifacts.

In image compression, JPEG has been dominant. The
wavelet approach has become more popular after the intro-
duction of the wavelet-based JPEG 2000. At high quantiza-
tion levels, JPEG 2000 exhibits blurring and ringing on
edges, but it does not suffer from the blocking artifacts
typical to JPEG.

Video is an image sequence, so it is not surprising that
the same techniques that work in image compression also
work well with video data. The main difference is the
additional temporal redundancy: Consecutive video frames
are very similar, and this similarity can be used to get good
compression. Commonly, achieving this good compression
is done through block-based motion compensation, where
the frame is partitioned into blocks (say of size 16� 16) and
for each block a motion vector that refers to a reconstructed
block in a previously transmitted frame is given. The
motion vector specifies the relative location of the most
similar block in the previous frame. This reference block is
used by the decoder as the first approximation. The differ-
ence of the correct block and the approximation then is
encoded as a still image using DCT. Common standards
such as MPEG-2 are based on this principle. At high
compression, the technique suffers from blocking artifacts,

especially in the presence of high motion. This difficulty is
because the motion vectors of neighboring blocks can differ
significantly, which results in visible block boundaries, and
because at high-motion areas the motion compensation
leaves large differences to be encoded using DCT, which
can be done within available bit budget only by increasing
the level of quantization.

See Refs. 21–24 for more information on lossy compres-
sion and for details of specific algorithms.

BIBLIOGRAPHY

1. C. E. Shannon, A mathematical theory of communication, Bell
System Technical Journal, 27: 379–423; 623–656, 1948.

2. T. Cover and J. Thomas, Elements of Information Theory. New
York: Wiley & Sons, 1991.

3. C. E. Shannon, Coding theorems for a discrete source with a
fidelity criterion, IRE Nat. Conv. Rec., 7: 142–163, 1959.

4. T. Berger and J. D. Gibson, Lossy source coding, IEEE Trans-
actions on Information Theory, 44(6), 2693–2723, 1998.

5. T. Berger, Rate Distortion Theory: A Mathematical Basis for
Data Compression, Englewood Cliffs, NJ: Prentice Hall,
1971.

6. S. Arimoto, An algorithm for computing the capacity of arbi-
trary discrete memoryless channels, IEEE Transactions on
Information Theory, 18(1): 14–20, 1972.

7. R. E. Blahut, Computation of channel capacity and
rate- distortion function, IEEE Trans. Information Theory,
18(4): 460–473, 1972.

8. R. M. Gray and D. L. Neuhoff, Quantization, IEEE Transac-
tions on Information Theory, 44: 2325–2384, 1998.

9. S. P. Lloyd, Least squared quantization in PCM. Unpublished,
Bell Lab. 1957. Reprinted in IEEE Trans. Information Theory,
28: 129–137, 1982.

10. J. Max, Quantizing for minimum distortion, IEEE Trans.
Information Theory, 6(1), 7–12, 1960.

11. D. Mureson and M. Effros, Quantization as histogram segmen-
tation: Globally optimal scalar quantizer design in network
systems, Proc. IEEE Data Compression Conference 2002, 2002,
pp. 302–311.

12. Y. Linde, A. Buzo, and R. M. Gray, An algorithm for vector
quantizer design, IEEE Trans. Communications, 28: 84–95,
1980.

13. A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression. New York: Kluwer Academic Press, 1991.

14. J. D. Markel and A. H. Gray, Linear Prediction of Speech. New
York: Springer Verlag, 1976.

15. K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms,
Advantages, Applications. New York: Academic Press, 1990.

16. W. B. Pennebaker and J. L. Mitchell, JPEG Still Image
Compression Standard. Amsterdam, the Netherlands: Van
Nostrand Reinhold, 1992.

17. G. Strang and T. Nguyen, Wavelets and Filter Banks. Well-
esley-Cambridge Press, 1996.

18. J. M. Shapiro, Embedded Image Coding Using Zerotrees of
Wavelet Coefficients. IEEE Trans. Signal Processing, 41(12),
3445–3462, 1993.

19. A. Said and W. A. Pearlman, A new fast and efficient image
codec based on set partitioning in hierarchical trees, IEEE
Trans. Circuits and Systems for Video Technology, 6: 243–250,
1996.

DATA COMPRESSION CODES, LOSSY 11



20. D. S. Taubman and M. W. Marcellin, JPEG 2000: Image
Compression, Fundamentals, Standards, and Practice. New
York: Kluwer Academic Press, 2002.

21. K. Sayood, Introduction to Data Compression, 2nd ed. Morgan
Kaufmann, 2000.

22. D. Salomon, Data Compression: the Complete Reference, 3rd
ed. New York: Springer, 2004.

23. M. Nelson and J. L. Gailly, The Data Compression Book, 2nd
ed. M & T Books, 1996.

24. M. Rabbani and P. W. Jones, Digital Image Compression
Techniques. Society of Photo-Optical Instrumentation Engi-
neers (SPIE) Tutorial Text, Vol. TT07, 1991.

JARKKO KARI

University of Turku
Turku, Finland

12 DATA COMPRESSION CODES, LOSSY



D

DATA HANDLING IN INTELLIGENT
TRANSPORTATION SYSTEMS

INTRODUCTION

Within the domain of computer science, data handling is
the coordinated movement of data within and between
computer systems. The format of the data may be changed
during these movements, possibly losing information dur-
ing conversions. The data may also be filtered for privacy,
security, or efficiency reasons. For instance, some informa-
tion transmitted from an accident site may be filtered for
privacy purposes before being presented to the general
public (e.g., license numbers and names). The motivation
for this article is to be an updated reference of the various
mechanisms and best practices currently available for
handling intelligent transportation systems (ITSs) data.
In the sections that follow, data handling within ITS is
discussed in detail.

What are Intelligent Transportation Systems?

Intelligent transportation systems apply computer, com-
munication, and sensor technologies in an effort to improve
surface transportation. The application of these technolo-
gies within surface transportation typically has been lim-
ited (e.g., car electronics and traffic signals). One goal of ITS
is to broaden the use of these technologies to integrate more
closely travelers, vehicles, and their surrounding infra-
structure. Used effectively, ITS helps monitor and manage
traffic flow, reduce congestion, provide alternative routes to
travelers, enhance productivity, respond to incidents, and
save lives, time, and money. Over the past ten years, the
public and private sectors have invested billions of dollars
in ITS research and development and in initial deployment
of the resulting products and services.

Given the potential benefits of ITS, the U.S. Congress
specifically supported anITS programinthe Transportation
Equity Act for the 21st Century (TEA-21) in 1998. As defined
by TEA-21, the ITS program provides for the research,
development, and operational testing of ITSs aimed at sol-
ving congestion and safety problems, improving operating
efficiencies in transit and commercialvehicles, and reducing
the environmental impact of growing travel demand. Tech-
nologies that were cost effective were deployed nationwide
within surface transportation systems as part of TEA-21.

Intelligent transportation systems can be broken down
into three general categories: advanced traveler informa-
tion systems, advanced traffic management systems, and
incident management systems.

Advanced Traveler Information Systems (ATISs) deliver
data directly to travelers, empowering them to make better
choices about alternative routes or modes of transportation.
When archived, this historical data provide transportation
planners with accurate travel pattern information, opti-
mizing the transportation planning process.

Advanced TrafficManagementSystems (ATMSs) employ
a variety of relatively inexpensive detectors, cameras, and
communication systems to monitor traffic, optimize signal
timings on major arterials, and control the flow of traffic.

Incident Management Systems, for their part, provide
traffic operators with the tools to allow a quick and efficient
response to accidents, hazardous spills, and other emer-
gencies. Redundant communications systems link data
collection points, transportation operations centers, and
travel information portals into an integrated network
that can be operated efficiently and ‘‘intelligently.’’

Some example ITS applications include on-board naviga-
tion systems, crash notification systems, electronic payment
systems, roadbed sensors, traffic video/control technologies,
weather information services, variable message signs, fleet
tracking, and weigh in-motion technologies.

MAJOR CHALLENGES

One major challenge in handling ITS data involves mana-
ging the broad spectrum of requirements inherent in a
transportation system. ITS data must flow from and
between a variety of locations and devices such as in-vehicle
sensors, police dispatch centers, infrastructure sensors,
computers, and databases. Each of these options has dif-
ferent bandwidth, formatting, and security requirements.
A ‘‘one-solution-fits-all’’ approach is not appropriate in this
type of environment. Fortunately, many standards can be
applied in concert with one another to cover all require-
ments. These standards and how they are used are dis-
cussed in the sections that follow.

DATA HANDLING IN ITS

Data within an ITS originates at various sensors, such as in-
pavement inductive loop detectors for measuring the pre-
sence of a vehicle, transponders for collecting toll fees, video
cameras, and operator input. These data typically are col-
lected and aggregated by a transportation agency for use in
managing traffic flow and in detecting and responding to
accidents. These data are often archived, and later data-
mining techniques are used to detect traffic trends. These
data also make their way to information providers for use in
radio, television, and Web traffic reports.

The different requirements for ITS data handling depend
on the medium used. For instance, the requirements for
data handling in communications stress the efficient use of
bandwidth and low latency, whereas data handling for data-
mining applications require fast lookup capabilities.

Data Types and Formats

Various types of data are stored and manipulated by an ITS.
The types of data are discussed in the sections that follow.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Traffic Statistics. Speed, travel time, volume, and occu-
pancy data or other numeric measurements are used to
characterize the flow of vehicles at a specific point or over a
specific segment of roadway. These data can be generated
from many types of detection systems, such as loop detec-
tors, microwaves, infrared or sonic detectors, video image
detection, automatic vehicle identification, license plate
matching systems, and wireless phone probes.

Weather/Environmental. Wind speed, wind direction,
temperature, humidity, visibility, and precipitation data
are collected by weather stations. This information can be
used to determine whether road salt is needed because of
icing conditions or whether danger exists to large vehicles
because of high wind speeds.

Video/Images. Video cameras are mounted high to pro-
vide unobstructed views of traffic. Video data are in the
form of encoded data streams or still images. Video feeds
are used to determine the cause and location of incidents
and to determine the overall level of service (congestion).

Incident/Event Reports. Incidents, construction/ mainte-
nance, events, and road conditions are some types of data
collected. This information usually is entered manually
into the ‘‘system’’ because an automated means of detecting
an incident has yet to be developed. The reports provide
descriptive information on planned or unplanned occur-
rences that affect or may affect traffic flow.

Data Attributes. The following attributes are common
within ITS data: Accuracy—How precise is the data?
Detail—Is the data a direct measurement or an esti-
mated/indirect measurement? Timeliness—How fresh is
the data? Availability/Reliability—How dependable is
the flow of data? Density—How close together/far apart
are the data collection sources? Accessibility—How easy is
the data accessed by a data consumer? Confidence—Is the
data trustworthy? Coverage—Where is the data collected?

Standards for Data Handling

Standards provide a mechanism to ensure compatibility
among various disparate systems. These standards reduce
costs because software and hardware can be developed to
make use of a handful of standards rather than of hundreds
of proprietary protocols.

The following organizations are involved in the devel-
opment of ITS standards: the American Association of State
Highway and Transportation Officials (AASHTO), Amer-
ican National Standards Institute (ANSI), American
Society for Testing & Materials (ASTM), Consumer Elec-
tronics Association (CEA), Institute of Electrical and Elec-
tronics Engineers (IEEE), Institute of Transportation
Engineers (ITE), Society of Automotive Engineers (SAE),
National Electrical Manufacturers Association (NEMA),
and the National Transportation Communications for
ITS Protocol (NTCIP). Note that NTCIP is a joint effort
among AASHTO, ITE, and NEMA.

The Federal Geographic Steering Committee (FGSC)
provides staff to support the U.S. Department of the Inter-

ior to manage and facilitate the National Spatial Data
Infrastructure (NSDI) (1).

Data Formats and Communication Protocols. Standards
are built off of one another. For instance, ITS standards
make use of standards for data formatting and communica-
tions, such as Extensible Markup Language (XML), Com-
mon Object Request Broker Architecture (CORBA), or
Abstract Syntax Notation number One (ASN.1). To better
understand ITS standards, these underlying standards
will be discussed first.

Extensible Markup Language. XML is a standard of the
World Wide Web Consortium (W3C) (2). XML is a means of
encoding data so that computers can send and receive
information. XML allows computers to understand the
information content of the data and act on that content
(e.g., process the information, display the information to a
human, store the information in a database, and issue a
command to a field device). Unlike most computer encoding
standards (e.g., Basic Encoding Rules, Octet Encoding
Rules, Packed Encoding Ruled, Common Data Representa-
tion, and Hypertext Markup Language), no single set of
encoding rules exists for XML. Instead, XML encoding
rules are customized for different applications. Further-
more, XML encoding rules include a mechanism for iden-
tifying each element of an XML document or message. See
Ref. 3 for an overview of XML use in ITS applications.

The advantages of using XML for ITS data handling are
for communications. It has pervasive support among soft-
ware companies, standards organizations, and government
agencies. Also, XML formatted data are often bundled with
Web services over Hyper-Text Transmission Protocol
(HTTP) via SOAP (4) or XML-RPC (5). This bundling allows
the data and associated commands to traverse firewalls
more easily. Some may see this process as a disadvantage,
however, because it basically is hiding the services from
network administrators and granting potentially unse-
cured access to important functions.

XML format is not well suited for data storage, how-
ever, because its hierarchal data structure does not lend
itself to easy storage and retrieval from relational data-
bases. However, XML databases, which natively can
store, query, and retrieve XML-formatted documents,
are now available (6).

A disadvantage to XML-formatted data is that the tags
and the textual nature of the documents tend to make them
much more verbose. This verbosity, in turn, requires higher
bandwidth communication links and more data processing
to encode and decode ITS data as compared with CORBA or
ASN.1 (7,8).

Common Object Request Broker Architecture. CORBA is
an Object Management Group (OMG) standard for com-
munications between computers (9). As part of CORBA, the
interface definition language (IDL) provides a platform and
computer language-independent specification of the data to
be transmitted and the services that are available to a
CORBA application. The OMG requires CORBA implemen-
tations to make use of the Internet Inter-ORB Protocol



(IIOP) for encoding messages over the Internet. This pro-
tocol ensures that CORBA implementations from different
vendors running on different operating systems can inter-
act with one another. NTCIP has a CORBA-based standard
for communications between transportation centers,
NTCIP 2305 (10). CORBA inherently is object oriented,
which allows for the definition of both data structures and
for commands in the form of interfaces.

One advantage to using CORBA are its relatively lower
bandwidthrequirementsascomparedwithXML-basedcom-
munications. CORBA has wide industry support, and many
open-source implementations are available (11,12). Because
CORBA is based on the IIOP communications standard, the
various commercial and open-source implementations can
interoperate with one another. CORBA has the advantage,
ascomparedwithASN.1orXML, inthat itdescribesboththe
structure of the data to be transmitted and what is to be done
with the data. Finally, many counterpart extensions to
CORBA handle such things as authentication.

The disadvantages to CORBA are that it requires spe-
cialized knowledge to integrate it into ITS data handling
systems. Also, because CORBA does not make use of the
HTTP protocol, it does not traverse Web firewalls as easily
as XML-RPC or SOAP.

Abstract Syntax Notation. ASN.1 is a standard of the
International Standards Organization (ISO) that defines
a formalism for the specification of abstract data types.
ASN.1 is a formal notation used for describing data trans-
mission protocols, regardless of language implementation
and physical representation of these data, whatever the
application, whether complex or very simple. ASN/DATEX
is a NTCIP standard (NTCIP 2304). ASN.1 is not a com-
munication or data storage mechanism, but it is a standard
for expressing the format of complex data structures in a
machine-independent manner. Many encoding rules can
encode and decode data via ASN.1 such as the basic encod-
ing rules (BERs), canonical encoding rules (CERs), and
distinguished encoding rules (DERs) (13).

ASN.1 has the advantage that it unambiguously defines
the structure for ITS data and the various encoding
schemes allow for efficient transmission of the data over
even lower bandwidth communication systems. Many soft-
ware libraries are also available that handle the encoding
and decoding of ASN.1 data structures (14).

ITS Data Bus. Chartered in late 1995, the Data Bus
Committee is developing the concept of a dedicated ITS
data bus that may be installed on a vehicle to work in
parallel with existing automotive electronics (15). When
complete, the data bus will facilitate the addition of ITS
electronics devices to vehicles without endangering any of
its existing systems.

The ITS data bus will provide an open architecture to
permit interoperability that will allow manufacturers,
dealers, and vehicle buyers to install a wide range of
electronics equipment in vehicles at any time during the
vehicle’s lifecycle, with little or no expert assistance
required. The goal of the Data Bus Committee is to develop

SAE recommended practices and standards that define the
message formats, message header codes, node IDs, applica-
tion services and service codes, data definitions, diagnostic
connectors, diagnostic services and test mode codes, ITS
data bus–vehicle bus gateway services and service codes,
network management services/functionality, and other
areas as may be needed.

National ITS Architecture. The National ITS Architec-
ture provides a common framework for planning, defining,
and integrating intelligent transportation systems (16). It
is a mature product that reflects the contributions of a
broad cross section of the ITS community: transportation
practitioners, systems engineers, system developers, tech-
nology specialists, and consultants. The architecture pro-
vides high-level definitions of the functions, physical
entities, and information flows that are required for ITS.
The architecture is meant to be used as a planning tool for
state and local governments.

Traffic Management Data Dictionary. The Data Diction-
ary for Advanced Traveler Information Systems, Society of
Automotive Engineers (SAE) standard J2353, provides
concise definitions for the data elements used in advanced
traveler information systems (ATIS) (17). These definitions
provide a bit-by-bit breakdown of each data element using
ASN.1. The traffic management data dictionary is meant to
be used in conjunction with at least two other standards,
one for defining the message sets (e.g., SAE J2354 and SAE
J2369) and the other for defining the communication pro-
tocol to be used.

TransXML. XML Schemas for the exchanges of Trans-
portation Data (TransXML) is a fledgling standard with the
goal to integrate various standards such as LandXML,
aecXML, ITS XML, and OpenGIS into a common frame-
work. This project has not had any results yet; see Ref. 18
for more information.

Geography Markup Language. Geography markup lan-
guage (GML) is an OpenGIS standard based on XML that is
used for encoding and storing geographic information,
including the geometry and properties of geographic fea-
tures (19). GML was developed by an international, non-
profit standards organization, the Open GIS Consortium,
Inc. GML describes geographic features using a variety of
XML elements such as features, coordinate referencing
systems, geometry, topology, time, units of measure, and
generalized values.

Spatial Data Transfer Standard. The Spatial Data Trans-
fer Standard (SDTS) is a National Institute of Standards
(NIST) standard for the exchange of digitized spatial data
between computer systems (20). SDTS uses ISO 8211 for its
physical file encoding and breaks the file down into mod-
ules, each of which is composed of records, which in turn are
composed of fields. Thirty-four different types of modules
currently are defined by the standard, some of which are
specialized for a specific application.



LandXML. LandXML is an industry-developed stan-
dard schema for the exchange of data created during
land planning, surveying, and civil engineering design
processes by different applications software. LandXML
was developed by an industry consortium of land devel-
opers, universities, and various government agencies.
LandXML is used within GIS applications, survey field
instruments, civil engineering desktop and computer
aided design (CAD)-based applications, instant three-
dimensional (3-D) viewers, and high-end 3D visualization
rendering applications. LandXML has provisions for not
only the storage of a feature’s geometry, but also for its
attributes, such as property owner and survey status.
LandXML can be converted readily to GML format.

Scalable Vector Graphics. Scalable vector graphics
(SVG) is an XML-based standard for the storage and dis-
play of graphics using vector data and graphic primitives. It
primarily is used in the design of websites, but also it has
application for the display and transfer of vector-based
geographic data. It does not, however, have specific provi-
sions for the attributes that are associated with geographic
data such as road names and speed limits.

Location Referencing Data Model. The location referen-
cing data model is a National Cooperative Highway
Research Program (NCHRP) project that defines a location
referencing system. Within this system, a location can be
defined in various formats such as mile points or addresses.
It also provides for the conversion of a location between the
various formats and for the definition of a location in one,
two, or more dimensions (21).

International Standards Organization Technical Commit-
tee 211. The International Standards Organization Tech-
nical Committee 211 (ISO TC/211) has several geographic
standards that are of importance to intelligent transporta-
tion systems: Geographic information—Rules for Applica-
tion Schema; ISO 19123, Geographic information—
Schema for coverage geometry and functions; and ISO
19115, Geographic information—Metadata.

Data Mining and Analysis

Data mining and analysis of transportation data are useful
for transportation planning purposes (e.g., transit devel-
opment, safety analysis, and road design). Data quality
especially is important because the sensors involved can
malfunction and feed erroneous data into the analysis
process (22). For this reason, ITS data typically needs to
be filtered carefully to assure data quality. This filtering is
accomplished by throwing out inconsistent data. For
instance, a speed detector may be showing a constant
free flow speed while its upstream and downstream coun-
terparts show much slower speeds during peak usage
hours. In this case, the inconsistent detector data would
be thrown out and an average of the up and downstream
detectors would be used instead.

BIBLIOGRAPHY

1. National Spatial Data Infrastructure. Available: http://
www.geo-one-stop.gov/.

2. Extensible Markup Language (XML) 1.0 Specification. Avail-
able: http://www.w3.org/TR/REC-xml/.

3. XML in ITS Center-to-Center Communications. Available:
http://www.ntcip.org/library/documents/pdf/
9010v0107_XML_in_C2C.pdf.

4. SOAP Specifications. Available: http://www.w3.org/TR/soap/.

5. XML-RPC Home Page. Available: http://www.xmlrpc.com/.

6. XML:DB Initiative. Available: http://xmldb-org.sourcefor-
ge.net/.

7. James Kobielus, Taming the XML beast,. Available: http://
www.networkworld.com/columnists/2005/011005kobie-
lus.html.

8. R. Elfwing, U. Paulsson, and L. Lundberg, Performance of
SOAP in web service environment compared to CORBA,
Proc. of the Ninth Asia-Pacific Software Engineering Confer-
ence, 2002, pp. 84.

9. CORBA IIOP Specification. Available: http://www.omg.org/
technology/documents/formal/corba_iiop.htm.

10. NTCIP 2305 - Application Profile for CORBA. Available: http://
www.ntcip.org/library/documents/pdf/2305v0111b.pdf.

11. MICO CORBA. Available: http://www.mico.org/.

12. The Community OpenORB Project. Available: http://open-
orb.sourceforge.net/.

13. X.690 ASN.1 encoding rules: Specification of Basic Encoding
Rules, Canonical Encoding Rules and Distinguished Encoding
Rules. Available: http://www.itu.int/ITU-T/studygroups/
com17/languages/X.690-0207.pdf.

14. ASN.1 Tool Links. Available: http://asn1.elibel.tm.fr/links.

15. ITS Data Bus Committee. Available: http://www.sae.org/tech-
nicalcommittees/databus.htm.

16. National ITS Architecture. Available: http://itsarch.iteris.-
com/itsarch/.

17. SAE J2353 Advanced Traveler Information Systems (ATIS)
DataDictionary. Available: http://www.standards.its.dot.gov/
Documents/J2353.pdf.

18. XML Schemas for Exchange of Transportation Data
(TransXML). Available: http://www4.trb.org/trb/crp.nsf/0/
32a8d2b6bea6dc3885256d0b006589f9?OpenDocument.

19. OpenGIS1 Geography Markup Language (GML) Implemen-
tationSpecification. Available: http://www.opengis.org/docs/
02-023r4.pdf.

20. Spatial Data Transfer Standard (SDTS). Available: http://
ssdoo.gsfc.nasa.gov/nost/formats/sdts.html.

21. N. Koncz, and T. M. Adams, A data model for multi-dimen-
sional transportation location referencing systems, Urban
Regional Informa. Syst. Assoc. J., 14(2), 2002. Available:
http://www.urisa.org/Journal/protect/Vol14No2/Koncz.pdf.

22. M. Flinner, and H. Horsey, Traffic data edit procedures pooled
fund study traffic data quality (TDQ), 2000, SPR-2 (182).

JOHN F. DILLENBURG

PETER C. NELSON

University of Illinois at Chicago
Chicago, Illinois



D

DATA PRIVACY

The definition of privacy varies greatly among societies,
across time, and even among individuals; with so much
variation and interpretation, providing a single concrete
definition is difficult. Several concepts that are related to
privacy are as follows:

Solitude: The right of an individual to be undisturbed
by, or invisible from, some or all other members of
society, including protection of the home, work, or a
public place from unwanted intrusion.

Secrecy: The ability to keep personal information
secret from some or all others, including the right
to control the initial and onward distribution of per-
sonal information and the ability to communicate
with others in private.

Anonymity: The right to anonymity by allowing an
individual to remain nameless in social or commercial
interaction.

LEGAL BACKGROUND

In their influential article entitled ‘‘The Right to Privacy’’
published in the Harvard Law Review in 1890, Samuel D.
Warren and Louis D. Brandeis described how ‘‘[i]nstanta-
neous photographs and newspaper enterprise have
invaded the sacred precincts of private and domestic life;
and numerous mechanical devices threaten to make good
the prediction that ‘what is whispered in the closet shall be
proclaimed from the house-tops.’’’

Warren and Brandeis described how U.S. common law
could be used to protect an individual’s right to privacy. The
article has been very influential in the subsequent devel-
opment of legal instruments to protect data privacy. In
1948, the General Assembly of the United Nations passed
the Declaration of Human Rights, of which Article 12
states, ‘‘[n]o one shall be subjected to arbitrary interference
with his privacy, family, home or correspondence, nor to
attacks upon his honour and reputation. Everyone has the
right to the protection of the law against such interference
or attacks.’’ The majority of countries in the world now
consider privacy as a right and have enacted laws describ-
ing how and when citizens can expect privacy.

The level of legal protection of privacy varies from one
country to another. In the United States, there is no general
privacy protection law to regulate private industry; instead
specific federal legislation is introduced to deal with parti-
cular instances of the collection and processing of personal
information. In addition, some states have amended their
consititutions to include specific rights to privacy. In areas
not covered by specific federal or state laws, companies are
left to self-regulate. The new executive post of Chief Privacy
Officer has been adopted by some companies, with respon-
sibilities including the development of privacy policy,

tracking legislation, monitoring competitors, training
employees, and if necessary, performing damage control
in the press.

The European Union has a comprehensive framework to
control the collection and distribution of personally identi-
fiable information by both state and private-sector institu-
tions. The 1998 EU Data Protection Directive is the latest
piece of European legislation that follows on from a series of
national laws initially developed in the 1970s and earlier
EU directives and OECD guidelines.

The EU Directive requires that all personal data are as
follows:

� Processed fairly and lawfully

� Collected for explicit purposes and not further pro-
cessed in any way incompatible with those purposes

� Relevant and not excessive in relation to the collected
purposes

� Accurate and up to date

� Kept in a form that identifies an individual for no
longer than neccessary to meet the stated purpose

Companies, governments, and in some cases individuals
who process personal information must register their
intent to do so with an independent supervisory authority
and outline the requirement for, and purpose of, data
processing. The supervisory authority has the power to
investigate the processing of personal data and impose
sanctions on those who do not adhere to the Directive.
Individuals are entitled to receive a copy of their personal
data held by a third-party ‘‘at reasonable intervals and
without excessive delay or expense.’’

The European model has been widely copied elsewhere,
in part because the Directive requires adequate levels of
protection for the processing of personal data be available
in all countries that receive personal data from within the
EU. The provision of adequate protection is open to inter-
pretation, and in some cases, it has been condemned for
being too low; for example, the 2004 agreement between the
European Commission and the United States to share air-
line passenger screening data has been widely criticized.

THE EFFECT OF TECHNOLOGY ON PRIVACY

Developments in science and technology continue to pro-
vide individuals, governments, and private industry with
new ways to invade the privacy of others. In particular, the
ability of computers to record, process, and communicate
personal data has increased exponentially during the latter
decades of the twentieth century. This increase in comput-
ing power has been used by governments, companies, and
individuals to process an increasing quantity of personally
identifiable data. Globalization has driven the desire to
distribute personal information to different parts of the
world and has encouraged the development of standards

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



such as the Internet Protocol suite and XML, enabling an
efficient exchange of digital information on a global scale.

The widespread use of the personal computer and the
Internet has provided a variety of both legitimate and
malicous reasons for individuals to process personal
data. Social networking websites allow people to search
for user profiles matching certain criteria. Similarly, query-
ing a Web search engine for an individual’s name reveals a
wealth of information about the person, including archived
posts on mailing lists and newsgroups, personal home
pages, business web pages, and telephone numbers. Often
this information is intentionally published by, or on behalf
of, the individual, but this copious amount of information
can be easily misused. More serious invasions of privacy are
possible when personal computers are connected to the
Internet and contain sensitive personal data, for example,
financial records and medical information. Many compu-
ters today are relatively insecure and are easy prey for
malicious code in the form of viruses, trojans, and worms.
Once compromised, a computer falls under the complete
control of an attacker who may freely access any private
data stored there.

The quantity and quality of personal information avail-
able on the Internet can be sufficient for a malicious person
to perform identity theft, allowing them to impersonate a
victim for illicit financial gain. Cyberstalkers use informa-
tion available online to harrass their victims, sometimes
with violent consequences. Anti-abortion activists have
created websites detailing the home addresses of abortion
doctors and photos of women who receive an abortion; these
details have then been used by violent extremists, some-
times resulting in murder.

Governments process personal data for a variety of
different purposes. Census data are collected from citizens
in many countries to enable strategic planning of state and
private sector services. Financial data such as bank account
transactions are examined in the fight against organized
crime, and biological data such as photographs, finger-
prints, iris scans, and DNA profiles can be collected for
both research and forensic analysis purposes. Tradition-
ally, different government departments, like separate com-
panies, have kept separate databases, but in some cases,
disparate systems are in the process of, or have already
been merged, enabling far more in-depth citizen profiling.

Companies compile personal information about custo-
mers to process orders, determine effective marketing
strategies, and direct advertisements toward individuals
who are likely to be receptive to them. Targetted adver-
tisements are often used to increase consumer loyalty by
providing discount points, tokens, or coupons on products of
interest to a specific individual.

In economics, the act of charging different prices to
different customers is known as price discrimination and
is common practice in many markets worldwide. There are
several different mechanisms by which sellers can perform
price discrimination, including individual bartering,
schemes of quantity discounts, and market segmentation.
Sellers who have collected detailed personal information on
buyers can employ a fourth mechanism. They can compute
directly how much a user can pay for a product.

In markets with large up-front costs and low produc-
tion costs, sellers can sacrifice the privacy of buyers to
good effect, maximizing their profits without having to
unnecessarily inconvenience anyone. For example,
sellers no longer need to employ market segmentation
to force poorer buyers to purchase third-class tickets;
instead everyone can get the same high-quality service
but for different prices: a potential social benefit. Societies
have yet to decide whether this represents a reasonable
invasion of privacy or something requiring government
regulation.

Small and mobile computational devices are becoming
increasingly popular. The GSM Association estimated that
in early 2004, more than one billion people—one sixth of the
world’s population—had a GSM mobile phone. As devices
like these continue to proliferate, the volume of personal
information processed by computers will continue to
increase, not just because there are more devices, but
because these devices increasingly need to collect more
personal information to function effectively (see UBIQUITOUS

COMPUTING). As a consequence, providing privacy in the
twenty-first century will become increasingly difficult
and important.

USING TECHNOLOGY TO PROTECT PRIVACY

Although computer-related technologies are increasing the
ability of individuals, companies, and governments to
invade personal privacy, technology can also be used to
increase the level of privacy available to individuals.
Several solutions can be used depending on the level of
trust placed in the recipients of private information.

Secrecy

Developments in cryptography have enabled information
and communications to be encrypted, maintaining their
secrecy in the presence of attacks by other individuals,
companies, and even governments. In the latter part of
the twentieth century, governments were reluctant to
allow individuals access to strong encryption and therefore
attempted to control the distribution of strong encryption
technology. The development of the personal computer
made governmental restriction on strong encryption ulti-
mately impossible, because individuals could purchase
computers powerful enough to perform both symmetric
and public key cryptography in software.

Pretty Good Privacy (PGP) was one of the first programs
developed to take advantage of the power of personal
computers and offer individuals access to strong encryption
schemes to keep documents secret from corporations and
governments; it was so successful at this that its author,
Phil Zimmerman, was charged with (but later acquitted of)
violating U.S. export laws. More recently, Transport Layer
Security (TLS) has been developed for the World Wide Web
to enable end-to-end privacy of communications between
two participants. As such, TLS has been a key enabling
technology in the development of e-commerce over the
Internet, enabling buyers and sellers to exchange credit
card information in a secure way.

2 DATA PRIVACY



Access Control

Cryptography is excellent at protecting privacy when the
data are controlled by its owner and it is shared with
relatively few other parties who trust each other to keep
the data secret. Sharing data with a larger set of parti-
cipants increases the likelihood that trust is misplaced
in at least one party, thereby jeopardizing data secrecy.
The number of participants with access to private informa-
tion can often be reduced by implementing multilateral
security, where information is stored in compartments
accessable to only a few individuals, and the flow of infor-
mation between compartments is restricted (see COMPUTER

SECURITY).
A recent example of using multilateral security to pro-

tect privacy is the British Medical Association model for
controlling access to electronic patient records. In the
model, patients do not have a single electronic record;
rather, they have a set of records (or compartments),
each of which has a separate list of health-care workers
who have the permission to read or append information to
it. The flow of information between different records is
restricted to prevent particularly sensitive information
detailed in one record, such as a positive HIV test, from
being introduced into other records.

Reciprocity

Configuring fine-grained access control parameters can be
time consuming and difficult to get right. An alternative
solution is to use reciprocity, where two or more entities
agree to the mutual exchange of private data. The exchange
of information is symmetric if each party in the reciprocal
transaction reveals the same piece of private data to all
other parties; for example, three friends share their cur-
rent mobile phone location with each other through their
mobile phone operator. An exchange of data is asymmetric
if information is provided in return for the knowledge of the
recepient’s identity. For example, in the United Kingdom,
consumer credit ratings employ reciprocity: If a company
queries a credit rating of an individual, that fact is recorded
in the database so that when an individual queries their
credit rating at a later date, they can see which companies
examined their record.

Asymmetric reciprocity requires those requesting data
to have a reputation worth protecting so that they obey
acceptable social conventions when asking for informa-
tion. Therefore, an abusive information request should
reduce the attacker’s reputation so that a requester with
a poor reputation forfeits all future access. Symmetric
reciprocity requires that the information shared by each
participant is of similar value and therefore constitutes a
fair exchange. This is not always true; for example, the
home phone number of a famous individual may be con-
sidered more valuable than the phone number of an ordi-
nary citizen.

A centralized authority is usually required to enforce
reciprocity by authenticating both the identities of
those who access private data and the actual content of
the mutually shared information. Authentication gua-
rantees the identities of the parties, and the content of
the exchanged information cannot be forged; therefore,

the central authority must be trusted by all parties who
use the system.

Anonymity

Sometimes there no trust relationship exists between
the owner of personal information and a third-party, and
yet they still want to exchange information. For example,
individuals may not want to reveal the contents of
their medical records to drug companies; yet the develop-
ment of pharmaceutical products clearly benefits from
access to the information contained within such docu-
ments. It is often possible to provide access to a subset of
the data that satisfies the demands of the third party and
simultaneously protects the privacy of an individual
through anonymization.

Anonymization protects an individual’s privacy by
removing all personally identifiable data before delivering
it to an untrusted third party. Therefore, once data are
successfully anonymized an adversary cannot infer the
real-world individual represented by the data set. Anon-
ymization is not an easy process; it is not sufficient to simply
remove explicit identifiers such as a name or telephone
number, because a combination of other attributes may
enable a malicious data recipient to infer the individual
represented by the data set. For example, in the set of
medical records for Cambridge, England, there may be
only one 42-year-old professor who has lost sight in one
eye. If the data presented to the third party contains
information concerning the individual’s home city, profes-
sion, date of birth, and ophthalmology in sufficient detail,
then it may be possible to associate this data with a real-
world entity and therefore associate any other data in this
record with a concrete identity. In this case, the privacy of
the professor is effectively lost and the contents of his
medical record, as presented to the third party, are
revealed.

Successful anonymization may require the values in the
released data set to be modified to prevent the third party
from inferring the real-world identity associated with a
record. For example, reducing the accuracy of the indivi-
dual’s age from 42 to the range (40–50) may prevent an
attacker associating an identity with the record. Whether
this reduction alone is sufficient depends on the data held in
the other records (in the example above, it depends on the
number of other professors between the ages of 40 and 50
with sight in only one eye). In general, anonymization of
data is achieved through a thorough statistical analysis of
the data set that takes into account the amount of informa-
tion known by an attacker; such analysis is called Statis-
tical Disclosure Control.

IS PRIVACY ALWAYS WORTH PROTECTING?

The rigorous protection of privacy is not always of benefit to
the individual concerned or society at large. Professor Anita
Allen observed that privacy in the home and workplace has
been a problem for women where it led to ‘‘imposed mod-
esty, chastity, and domestic isolation.’’ Such enforced soli-
tude can prevent the exposure of criminal acts such as
domestic abuse. Allowing government ministers and

DATA PRIVACY 3



departments privacy in their professional duties is at odds
with the principles of openness and accountability. Most
people would agree on the need for secrecy and privacy in
the realm of international espionage but would hesitate in
restricting the freedom of the press to uncover corruption
and financial irregularities.

Similarly, company directors are ultimately accountable
to shareholders; however, the desire for openness with
investors must be reconciled with the need to protect busi-
ness secrets from competitors. Most countries use legal
measures to force businesses to make certain information
publically available, for example, the filing of public
accounts; yet financial scandals are still not uncommon.
In many instances, an individual’s right to privacy must be
balanced with the need to protect themselves or others.

FURTHER READING

Web Links

Center for Democracy and Technology. Available: http://
www.cdt.org.

Electronic Frontier Foundation. Available: http://www.eff.org.

Electronic Privacy Information Center. Available: http://www.
epic.org.

Privacy International, Privacy and Human Rights Survey.
Available: http://www.privacyinternational.org/survey.

Books

R. Anderson, Security Engineering, New York: Wiley, 2001.

S. Garfinkel, Database Nation: The Death of Privacy in the 21st

Century, O’Reilly & Associates, 2001.

L. Lessig, Code and Other Laws of Cyberspace, Basic Books, 2000.

J. Rosen, The Unwanted Gaze: The Distruction of Privacy in
America, Vintage Books, 2001.

L. Willenborg and T. de Waal, Elements of Statistical Disclosure
Control, Lecture Notes in Statistics, Vol. 155, New York: Springer,
2001.

ALASTAIR BERESFORD

DAVID SCOTT

University of Cambridge
Cambridge, United Kingdom

4 DATA PRIVACY



D

DATA SEARCH ENGINE

INTRODUCTION

The World Wide Web was first developed by Tim Berners-
Lee and his colleagues in 1990. In just over a decade, it has
become the largest information source in human history.
The total number of documents and database records that
are accessible via the Web is estimated to be in the hun-
dreds of billions (1). By the end of 2005, there were already
over 1 billion Internet users worldwide. Finding informa-
tion on the Web has become an important part of our daily
lives. Indeed, searching is the second most popular activity
on the Web, behind e-mail, and about 550 million Web
searches are performed every day.

The Web consists of the Surface Web and the Deep Web
(Hidden Web or Invisible Web). Each page in the Surface
Web has a logical address called Uniform Resource Locator
(URL). The URL of a page allows the page to be fetched
directly. In contrast, the Deep Web contains pages that
cannot be directly fetched and database records stored in
database systems. It is estimated that the size of the Deep
Web is over 100 times larger than that of the Surface Web
(1).

The tools that we use to find information on the Web are
called search engines. Today, over 1 million search engines
are believed to be operational on the Web (2). Search
engines may be classified based on the type of data that
are searched. Search engines that search text documents
are called document search engines, whereas those that
search structured data stored in database systems are
called database search engines. Many popular search
engines such as Google and Yahoo are document search
engines, whereas many e-commerce search engines such as
Amazon.com are considered to be database search engines.
Document search engines usually have a simple interface
with a textbox for users to enter a query, which typically
contains some key words that reflect the user’s information
needs. Database search engines, on the other hand, usually
have more complex interfaces to allow users to enter more
specific and complex queries.

Most search engines cover only a small portion of the
Web. To increase the coverage of the Web by a single search
system, multiple search engines can be combined. A search
system that uses other search engines to perform the search
and combines their search results is called a metasearch
engine. Mamma.com and dogpile.com are metasearch
engines that combine multiple document search engines
whereas addall.com is a metasearch engine that combines
multiple database search engines for books. From a user’s
perspective, there is little difference between using a search
engine and using a metasearch engine.

This article provides an overview of some of the main
methods that are used to create search engines and meta-
search engines. In the next section, we describe the basic
techniques for creating a document search engine. Then we

sketch the idea of building a database search engine.
Finally, we introduce the key components of metasearch
engines, including both document metasearch engines
and database metasearch engines, and the techniques for
building them.

DOCUMENT SEARCH ENGINE

Architecture

Although the architectures of different Web search engines
may vary, a typical document search engine generally
consists of the following four main components as shown
in Fig. 1: Web crawler, Indexer, Index database, and Query
engine. A Web crawler, also known as a Web spider or a Web
robot, traverses the Web to fetch Web pages by following the
URLs of Web pages. The Indexer is responsible for parsing
the text of each Web page into word tokens and then
creating the Index database using all the fetched Web
pages. When a user query is received, the Query engine
searches the Index database to find the matching Web
pages for the query.

Crawling the Web

A Web crawler is a computer program that fetches Web
pages from remote Web servers. The URL of each Web page
identifies the location of the page on the Web. Given its
URL, a Web page can be downloaded from a Web server
using the HTTP (HyperText Transfer Protocol). Starting
from some initial URLs, a Web crawler repeatedly fetches
Web pages based on their URLs and extracts new URLs
from the downloaded pages so that more pages can be
downloaded. This process ends when some termination
conditions are satisfied. Some possible termination condi-
tions include (1) no new URL remains and (2) a preset
number of pages have been downloaded. As a Web crawler
may interact with numerous autonomous Web servers, it is
important to design scalable and efficient crawlers.

To crawl the Web quickly, multiple crawlers can be
applied. These crawlers may operate in two different man-
ners (i.e., centralized and distributed). Centralized craw-
lers are located at the same location running on different
machines in parallel. Distributed crawlers are distributed
at different locations of the Internet, and controlled by a
central coordinator; each crawler just crawls the Web sites
that are geographically close to the location of the crawler.
The most significant benefit of distributed crawlers is the
reduction in communication cost incurred by crawling
activity. Centralized crawlers, however, are easier to
implement and control than distributed crawlers.

As the Web grows and changes constantly, it is neces-
sary to have the crawlers regularly re-crawl the Web and
make the contents of the index database up to date. Fre-
quent re-crawling of the Web will waste significant
resources and make the network and Web servers over-

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



loaded. Therefore, some incremental crawling strategies
should be employed. One strategy is to re-crawl just the
changed or newly added Web pages since the last crawling.
The other strategy is to employ topic-specific crawlers to
crawl the Web pages relevant to a pre-defined set of topics.
Topic-specific crawling can also be used to build specialized
search engines that are only interested in Web pages in
some specific topics.

Conventional Web crawlers are capable of crawling only
Web pages in the Surface Web. Deep Web crawlers are
designed to crawl information in the Deep Web (3). As
information in the Deep Web is often hidden behind the
search interfaces of Deep Web data sources, Deep Web
crawlers usually gather data by submitting queries to these
search interfaces and collecting the returned results.

Indexing Web Pages

After Web pages are gathered to the site of a search engine,
they are pre-processed into a format that is suitable for
effective and efficient retrieval by search engines. The
contents of a page may be represented by the words it
has. Non-content words such as ‘‘the’’ and ‘‘is’’ are usually
not used for page representation. Often, words are con-
verted to their stems using a stemming program to facil-
itate the match of the different variations of the same word.
For example, ‘‘comput’’ is the common stem of ‘‘compute’’
and ‘‘computing’’. After non-content word removal and
stemming are performed on a page, the remaining words
(called terms or index terms) are used to represent the page.
Phrases may also be recognized as special terms. Further-
more, a weight is assigned to each term to reflect the
importance of the term in representing the contents of
the page.

The weight of a term t in a page p within a given set P of
pages may be determined in a number of ways. If we treat
each page as a plain text document, then the weight of t is
usually computed based on two statistics. The first is its
term frequency (tf) in p (i.e., the number of times t appears in
p), and the second is its document frequency (df) in P (i.e.,
the number of pages in P that contain t). Intuitively, the
more times a term appears in a page, the more important
the term is in representing the contents of the page. There-
fore, the weight of t in p should be a monotonically increas-
ing function of its term frequency. On the other hand, the
more pages that have a term, the less useful the term is in
differentiating different pages. As a result, the weight of a

term should be a monotonically decreasing function of its
document frequency. Currently, most Web pages are for-
matted in HTML, which contains a set of tags such as title
and header. The tag information can be used to influence
the weights of the terms for representing Web pages. For
example, terms in the title of a page or emphasized using
bold and italic fonts are likely to be more important in
representing a page than terms in the main body of the page
with normal font.

To allow efficient search of Web pages for any given
query, the representations of the fetched Web pages are
organized into an inverted file structure. For each term t, an
inverted list of the format [(p1, w1), . . ., (pk, wk)] is generated
and stored, where each pj is the identifier of a page contain-
ing t and wj is the weight of t in pj, 1�j�k. Only entries with
positive weights are kept.

Ranking Pages for User Queries

A typical query submitted to a document search engine
consists of some keywords. Such a query can also be repre-
sented as a set of terms with weights. The degree of match
between a page and a query, often call the similarity, can be
measured by the terms they share. A simple approach is to
add up the products of the weights corresponding to the
matching terms between the query and the page. This
approach yields larger similarities for pages that share
more important terms with a query. However, it tends to
favor longer pages over shorter ones. This problem is often
addressed by dividing the above similarity by the product of
the lengths of the query and the page. The function that
computes such type of similarities is called the Cosine
function (4). The length of each page can be computed
beforehand and stored at the search engine site.

Many methods exist for ranking Web pages for user
queries, and different search engines likely employ differ-
ent ranking techniques. For example, some ranking meth-
ods also consider the proximity of the query terms within a
page. As another example, a search engine may keep track
of the number of times each page has been accessed by users
and use such information to help rank pages. Google
(www.google.com) is one of the most popular search engines
on the Web. A main reason why Google is successful is its
powerful ranking method, which has the capability to
differentiate more important pages from less important
ones even when they all contain the query terms the
same number of times. Google uses the linkage information
among Web pages (i.e., how Web pages are linked) to derive
the importance of each page. A link from page A to page B is
placed by the author of page A. Intuitively, the existence of
such a link is an indication that the author of page A
considers page B to be of some value. On the Web, a page
may be linked from many other pages and these links can be
aggregated in some way to reflect the overall importance of
the page. For a given page, PageRank is a measure of the
relative importance of the page on the Web, and this
measure is computed based on the linkage information
(5). The following are the three main ideas behind the
definition and computation of PageRank. (1) Pages that
are linked from more pages are likely to be more important.
In other words, the importance of a page should be reflected

World Wide Web

Web Crawler Indexer

Query engine Index
database

Web pages

Query

Query reponse
User
query

Query
resuts

User Interface

Figure 1. The general architecture of a document search engine.

2 DATA SEARCH ENGINE



by the popularity of the page among the authors of all Web
pages. (2) Pages that are linked from more important pages
are likely to be more important themselves. (3) Pages that
have links to more pages have less influence over the
importance of each of the linked pages. In other words, if
a page has more child pages, then it can only propagate a
smaller fraction of its importance to each child page. Based
on the above insights, the founders of Google developed a
method to calculate the importance (PageRank) of each
page on the Web (5). The PageRanks of Web pages can be
combined with other, say content-based, measures to
indicate the overall relevance of a page with respect to
a given query. For example, for a given query, a page may
be ranked based on a weighted sum of its similarity with
the query and its PageRank. Among pages with similar
similarities, this method will rank those that have higher
PageRanks.

Effective and Efficient Retrieval

For a given query, a page is said to be relevant if the sender
of the query finds the page useful. For a given query
submitted by a user against a fixed set of pages, the set
of relevant pages is also fixed. A good retrieval system
should return a high percentage of relevant pages to the
user and rank them high in the search result for each query.
Traditionally, the effectiveness of a text retrieval system is
measured using two quantities known as recall and preci-
sion. For a given query and a set of documents, recall is the
percentage of the relevant documents that are retrieved
and precision is the percentage of the retrieved documents
that are relevant. To evaluate the effectiveness of a text
retrieval system, a set of test queries is often used. For each
query, the set of relevant documents is identified in
advance. For each test query, a precision value at a differ-
ent recall point is obtained. When the precision values at
different recall values are averaged over all test queries, an
average recall-precision curve is obtained, which is used as
the measure of the effectiveness of the system. A system is
considered to be more effective than another system if the
recall-precision curve of the former is above that of the
latter. A perfect text retrieval system should have both
recall and precision equal to 1 at the same time. In other
words, such a system retrieves exactly the set of relevant
documents for each query. In practice, perfect performance
is not achievable for many reasons, for example, a user’s
information needs usually cannot be precisely specified by
the used query and the contents of documents and queries
cannot be completely represented by weighted terms.

Using both recall and precision to measure the effec-
tiveness of traditional text retrieval systems requires
knowing all the relevant documents for each test query
in advance. This requirement, however, is not practical for
independently evaluating large search engines because it is
impossible to know the number of relevant pages in a search
engine for a query unless all the pages are retrieved and
manually examined. Without knowing the number of rele-
vant pages for each test query, the recall measure cannot be
computed. As a result of this practical constraint, search
engines are often evaluated using the average precision
based on the top k retrieved pages for a set of test queries,

for some small integer k, say 20, or based on the average
position of the first relevant page among the returned
results for each test query (6).

A large search engine may index hundreds of millions or
even billions of pages, and process millions of queries on a
daily basis. For example, by the end of 2005, the Google
search engine has indexed about 10 billion pages and
processed over 200 million queries every day. To accom-
modate the high computation demand, a large search
engine often employs a large number of computers and
efficient query processing techniques. When a user query is
received by a search engine, the inverted file structure of
the pre-processed pages, not the pages themselves, are used
to find matching pages. Computing the similarity between
a query and every page directly is very inefficient because
the vast majority of the pages likely do not share any term
with the query and computing the similarities of these
pages with the query is a waste of resources. To process
a query, a hash table is first used to locate the storage
location of the inverted file list of each query term. Based on
the inverted file lists of all the terms in the query, the
similarities of all the pages that contain at least one term in
common with the query can be computed efficiently.

Result Organization

Most search engines display search results in descending
order of their matching scores with respect to a given query.
Some search engines, such as the Vivisimo search engine
(www.vivisimo.com), organize their results into groups
such that pages that have certain common features are
placed into the same group. Clustering/categorizing search
results is known to be effective in helping users identify
relevant results in two situations. One is when the number
of results returned for a query is large, which is mostly true
for large search engines, and the other is when a query
submitted by a user is short, which is also mostly true as the
average number of terms in a search engine query is
slightly over two. When the number of results is large,
clustering allows the searcher to focus the attention on a
small number of promising groups. When a query is short,
the query may be interpreted in different ways, in this case,
clustering can group results based on different interpreta-
tions that allow the searcher to focus on the group with
desired interpretation. For example, when query ‘‘apple’’ is
submitted to the Vivisimo search engine, results related to
Apple computer (Macintosh) forms one group and results
related to fruit forms another group, which makes it easy
for a user to focus on the results he/she wants.

Challenges of Document Search Engines

Although Web search engines like Google, Yahoo, and MSN
are widely used by numerous users to find the desired
information on the Web, there are still a number of chal-
lenges for enhancing their quality (7,8). In the following, we
briefly introduce some of these challenges.

Freshness. Currently, most search engines depend on
Web crawlers to collect Web pages from numerous Web
sites and build the index database based on the fetched Web
pages. To refresh the index database so as to provide

DATA SEARCH ENGINE 3



up-to-date pages, they periodically (e.g., once every month)
recollect Web pages from the Internet and rebuild the
index database. As a result, pages that are added/
deleted/changed since the last crawling are not reflected
in the current index database, which makes some pages not
accessible via the search engine, some retrieved pages not
available on the Web (i.e., deadlinks), and the ranking of
some pages based on obsolete contents. How to keep the
index database up-to-date for large search engines is a
challenging issue.

Coverage. It was estimated that no search engine
indexes more than one-third of the ‘‘publicly indexable
Web’’ (9). One important reason is that the Web crawlers
can only crawl Web pages that are linked to the initial seed
URLs. The ‘‘Bow Tie’’ theory about the Web structure (10)
indicates that only 30% of the Web pages are strongly
connected. This theory further proves the limitation of
Web crawlers. How to fetch more Web pages, including
those in the Deep Web, is a problem that needs further
research.

Quality of Results. Quality of results refers to how well
the returned pages match the given keywords query. Given
a keywords query, a user wants the most relevant pages to
be returned. Suppose a user submits ‘‘apple’’ as a query, a
typical search engine will return all pages containing the
word ‘‘apple’’ no matter if it is related to an apple pie recipe
or Apple computer. Both the keywords-based similarity and
the lack of context compromise the quality of returned
pages. One promising technique for improving the quality
of results is to perform a personalized search, in which a
profile is maintained for each user that contains the user’s
personal information, such as specialty and interest, as well
as some information obtained by tracking the user’s Web
surfing behaviors, such as which pages the user has clicked
and how long the user spent on reading them; a user’s query
can be expanded based on his/her profile, and the pages are
retrieved and ranked based on how well they match the
expanded query.

Natural Language Query. Currently, most search
engines accept only keywords queries. However, keywords
cannot precisely express users’ information needs. Natural
language queries, such as ‘‘Who is the president of the
United States?’’ often require clear answers that cannot
be provided by most current search engines. Processing
natural language queries requires not only the understand-
ing of the semantics of a user query but also a different
parsing and indexing mechanism of Web pages. Search
engine ask.com can answer some simple natural language
queries such as ‘‘Who is the president of the United States?’’
and ‘‘Where is Chicago?’’ using its Web Answer capability.
However, ask.com does not yet have the capability to answer
general natural language queries. There is still a long way to
go before general natural language queries can be precisely
answered.

Querying Non-Text Corpus. In addition to textual Web
pages, a large amount of image, video, and audio data also
exists on the Web. How to effectively and efficiently index

and retrieve such data is also an open research problem in
data search engines. Although some search engines such as
Google and Yahoo can search images, their technologies are
still mostly keywords-match based.

DATABASE SEARCH ENGINE

In comparison with document search engines, database
search engines are much easier to build because they do
not need crawlers to crawl the Web to build the index
database. Instead, traditional database systems such as
Oracle or SQL-server are usually used by database search
engines to store and manage data. The stored data are often
compiled and entered by human users. Unlike Web pages
that have little structure, the data in database search
engines are generally well structured. For example, the
database of an online Web bookstore contains various
books, and every book has attributes such as title, author,
ISBN, publication date, and so on.

To make the data in a database search engine Web-
accessible, an HTML form-based Web search interface like
Fig. 2 is created on top of the underlying database system.
The Web search interface often has multiple fields for users
to specify queries that are more complex than the keywords
queries for document Web search engines. For example, the
search interface of bn.com (Fig. 2) contains fields like title,
author, price, format, and so on. A user query submitted
through the Web search interface of a database search
engine is usually converted to a database query (e.g.,
SQL) that can be processed by the underlying database
system; after the results that satisfy the query conditions
are returned by the database system, they are wrapped by
appropriate HTML tags and presented to the user on the
dynamically generated Web page.

Database search engines are often used by organizations
or companies that want to publish their compiled data on
the Web for information sharing or business benefits. For
example, a real estate company may employ a database
search engine to post housing information, and an airline
may use a database search engine to allow travelers to
search and purchase airplane tickets.

It should be noted that structured data that are stored in
database systems and are accessible via database search
engines constitute a major portion of the Deep Web. A

Figure 2. The book search interface of bn.com.engine.

4 DATA SEARCH ENGINE



recent survey (2) estimated that, by April 2004, among the
450,000 search engines for the Deep Web, 348,000 were
database search engines.

METASEARCH ENGINE

A metasearch engine is a system that provides unified
access to multiple existing search engines. When a meta-
search engine receives a query from a user, it sends the
query to multiple existing search engines, and it then
combines the results returned by these search engines
and displays the combined results to the user. A meta-
search engine makes it easy for a user to search multiple
search engines simultaneously while submitting just one
query. A big benefit of a metasearch engine is its ability to
combine the coverage of many search engines. As meta-
search engines interact with the search interfaces of search
engines, they can use Deep Web search engines just as
easily as Surface Web search engines. Therefore, meta-
search engine technology provides an effective mechanism
to reach a large portion of the Deep Web by connecting to
many Deep Web search engines.

Metasearch Engine Architecture

A simple metasearch engine consists of a user interface for
users to submit queries, a search engine connection com-
ponent for programmatically submitting queries to its
employed search engines and receiving result pages from
them, a result extraction component for extracting the
search result records from the returned result pages, and
a result merging component for combining the results (11).
If a metasearch engine employs a large number of search
engines, then a search engine selection component is
needed. This component determines which search engines
are likely to contain good matching results for any given
user query so that only these search engines are used for
this query. Search engine selection is necessary for effi-
ciency considerations. For example, suppose only the
20 best-matched results are needed for a query and there
are 1000 search engines in a metasearch engine. It is clear
that the 20 best-matched results will come from at most
20 search engines, meaning that at least 980 search engines
are not useful for this query. Sending a query to useless
search engines will cause serious inefficiencies, such
as heavy network traffic caused by transmitting unwanted
results and the waste of system resources for evaluating the
query.

We may have metasearch engines for document search
engines and metasearch engines for database search
engines. These two types of metasearch engines, though
conceptually similar, need different techniques to build.
They will be discussed in the next two subsections.

Document Metasearch Engine

A document metasearch engine employs document search
engines as its underlying search engines. In this subsec-
tion, we discuss some aspects of building a document meta-
search engine, including search engine selection, search
engine connection, result extraction, and merging.

Search Engine Selection. When a metasearch engine
receives a query from a user, the metasearch engine makes
a determination on which search engines likely contain
useful pages to the query and therefore should be used to
process the query. Before search engine selection can be
performed, some information representing the contents of
the set of pages of each search engine is collected. The
information about the pages in a search engine is called
the representative of the search engine (11). The represen-
tatives of all search engines used by the metasearch engine
are collected in advance and are stored with the metasearch
engine. During search engine selection for a given query,
search engines are ranked based on how well their repre-
sentatives match with the query.

Different search engine selection techniques exist and
they often employ different types of search engine repre-
sentatives. A simple representative of a search engine may
contain only a few selected key words or a short description.
This type of representative is usually produced manually
by someone who is familiar with the contents of the
search engine. When a user query is received, the meta-
search engine can compute the similarities between the
query and the representatives, and then select the search
engines with the highest similarities. Although this
method is easy to implement, this type of representative
provides only a general description about the contents of
search engines. As a result, the accuracy of the selection
may be low.

More elaborate representatives collect detailed statisti-
cal information about the pages in each search engine.
These representatives typically collect one or several pieces
of statistical information for each term in each search
engine. As it is impractical to find out all the terms that
appear in some pages in a search engine, an approximate
vocabulary of terms for a search engine can be used. Such
an approximate vocabulary can be obtained from pages
retrieved from the search engine using sample queries
(12). Some of the statistics that have been used in proposed
search engine selection techniques include, for each term,
its document frequency, its average or maximum weight in
all pages having the term, and the number of search
engines that have the term. With the detailed statistics,
more accurate estimation of the usefulness of each search
engine with respect to any user query can be obtained. The
collected statistics may be used to compute the similarity
between a query and each search engine, to estimate the
number of pages in a search engine whose similarities with
the query are above a threshold value, and to estimate the
similarity of the most similar page in a search engine with
respect to a query (11). These quantities allow search
engines to be ranked for any given query and the top-
ranked search engines can then be selected to process
the query.

It is also possible to generate search engine representa-
tives by learning from the search results of past queries. In
this case, the representative of a search engine is simply the
knowledge indicating its past performance with respect to
different queries. In the SavvySearch metasearch engine
(13) (now www.search.com), the learning is carried out as
follows. For a search engine, a weight is maintained for
each term that has appeared in previous queries. The

DATA SEARCH ENGINE 5



weight of a term for a search engine is increased or
decreased depending on whether the search engine returns
useful results for a query containing the term. Over time, if
a search engine has a large positive (negative) weight for a
term, the search engine is considered to have responded
well (poorly) to the term in the past. When a new query is
received by the metasearch engine, the weights of the query
terms in the representatives of different search engines are
aggregated to rank the search engines. The ProFusion
metasearch engine also employs a learning-based approach
to construct the search engine representatives (14).
ProFusion uses training queries to find out how well
each search engine responds to queries in 13 different
subject categories. The knowledge learned about each
search engine4 from training queries is used to select
search engines to use for each user query and the knowl-
edge is continuously updated based on the user’s reaction to
the search result (i.e., whether a particular page is clicked
by the user).

Search Engine Connection. Usually, the search interface
of a search engine is implemented using an HTML form tag
with a query textbox. The form tag contains all information
needed to connect to the search engine via a program. Such
information includes the name and the location of the
program (i.e., the search engine server) that processes
user queries as well as the network connection method
(i.e., the HTTP request method, usually GET or POST).
The query textbox has an associated name and is used to fill
out the query. The form tag of each search engine interface
is pre-processed to extract the information needed for
program connection. After a query is received by the meta-
search engine and the decision is made to use a particular
search engine, the query is assigned to the name of the
query textbox of the search engine and sent to the server of
the search engine using the HTTP request method sup-
ported by the search engine. After the query is processed by
the search engine, a result page containing the search
results is returned to the metasearch engine.

Search Result Extraction. A result page returned by a
search engine is a dynamically generated HTML page. In
addition to the search result records for a query, a result
page usually also contains some unwanted information/
links such as advertisements, search engine host infor-
mation, or sponsored links. It is essential for the meta-
search engine to correctly extract the search result
records on each result page. A typical search result record
corresponds to a Web page found by the search engine and
it usually contains the URL and the title of the page as
well as some additional information about the page
(usually the first few sentences of the page plus the
date at which the page was created, etc.; it is often called
the snippet of the page).

As different search engines organize their result pages
differently, a separate result extraction program (also
called extraction wrapper) needs to be generated for each
search engine. To extract the search result records of a
search engine, the structure/format of its result pages
needs to be analyzed to identify the region(s) that contain
the records and separators that separate different records

(15). As a result, a wrapper is constructed to extract the
results of any query for the search engine. Extraction
wrappers can be manually, semi-automatically, or auto-
matically constructed.

Result Merging. Result merging is the task of combining
the results returned from multiple search engines into a
single ranked list. Ideally, pages in the merged result
should be ranked in descending order of the global match-
ing scores of the pages, which can be accomplished by
fetching/downloading all returned pages from their local
servers and computing their global matching scores in the
metasearch engine. For example, the Inquirus metasearch
engine employs such an approach (7). The main drawback
of this approach is that the time it takes to fetch the pages
might be long.

Most metasearch engines use the local ranks of the
returned pages and their snippets to perform result mer-
ging to avoid fetching the actual pages (16). When snippets
are used to perform the merging, a matching score of each
snippet with the query can be computed based on several
factors such as the number of unique query terms that
appear in the snippet and the proximity of the query terms
in the snippet. Recall that when search engine selection is
performed for a given query, the usefulness of each search
engine is estimated and is represented as a score. The
search engine scores can be used to adjust the matching
scores of retrieved search records, for example, by multi-
plying the matching score of each record by the score of the
search engine that retrieved the record. Furthermore, if the
same result is retrieved by multiple search engines, the
multiplied scores of the result from these search engines
are aggregated, or added up, to produce the final score for
the result. This type of aggregation gives preference to
those results that are retrieved by multiple search engines.
The search results are then ranked in descending order of
the final scores.

Database Metasearch Engine

A database metasearch engine provides a unified access to
multiple database search engines. Usually, multiple data-
base search engines in the same application domain (e.g.,
auto, book, real estate, flight) are integrated to create a
database metasearch engine. Such a metasearch engine
over multiple e-commerce sites allows users to do compar-
ison-shopping across these sites. For example, a meta-
search engine on top of all book search engines allows
users to find desired books with the lowest price from all
booksellers.

A database metasearch engine is similar to a document
metasearch engine in architecture. Components such as
search engine connection, result extraction, and result
merging are common in both types of metasearch engines,
but the corresponding components for database meta-
search engines need to deal with more structured data.
For example, result extraction needs to extract not only the
returned search records (say books) but also lower level
semantic data units within each record such as the titles
and prices of books. One new component needed for a
database metasearch engine is the search interface inte-

6 DATA SEARCH ENGINE



gration component. This component integrates the search
interfaces of multiple database search engines in the same
domain into a unified interface, which is then used by users
to specify queries against the metasearch engine. This
component is not needed for document metasearch engines
because document search engines usually have very simple
search interfaces (just a textbox). In the following subsec-
tions, we present some details about the search interface
integration component and the result extraction compo-
nent. For the latter, we focus on extracting lower level
semantic data units within records.

Search Interface Integration. To integrate the search
interfaces of database search engines, the first step is to
extract the search fields on the search interfaces from the
HTML Web pages of these interfaces. A typical search
interface of a database search engine has multiple search
fields. An example of such an interface is shown in Fig. 2.
Each search field is implemented by text (i.e., field label)
and one or more HTML form control elements such as
textbox, selection list, radio button, and checkbox. The
text indicates the semantic meaning of its corresponding
search field. A search interface can be treated as a partial
schema of the underlying database, and each search field
can be considered as an attribute of the schema. Search
interfaces can be manually extracted but recently there
have been efforts to develop techniques to automate the
extraction (17). The main challenge of automatic extraction
of search interfaces is to group form control elements and
field labels into logical attributes.

After all the search interfaces under consideration have
been extracted, they are integrated into a unified search
interface to serve as the interface of the database meta-
search engine. Search interface integration consists of
primarily two steps. In the first step, attributes that
have similar semantics across different search interfaces
are identified. In the second step, attributes with similar
semantics are mapped to a single attribute on the unified
interface. In general, it is not difficult for an experienced
human user to identify matching attributes across different
search interfaces when the number of search interfaces
under consideration is small. For applications that need to
integrate a large number of search interfaces or need to
perform the integration for many domains, automatic inte-
gration tools are needed. WISE-Integrator (18) is a tool that
is specifically designed to automate the integration of
search interfaces. It can identify matching attributes
across different interfaces and produce a unified interface
automatically.

Result Extraction and Annotation. For a document search
engine, a search result record corresponds to a retrieved
Web page. For a database search engine, however, a
search result record corresponds to a structured entity
in the database. The problem of extracting search result
records from the result pages of both types of search
engines is similar (see search result extraction section).
However, a search result record of a database entity is
more structured than that of a Web page, and it usually
consists of multiple lower level semantic data units that
need to be extracted and annotated with appropriate

labels to facilitate further data manipulation such as
result merging.

Wrapper induction in (19) is a semi-automatic technique
to extract the desired information from Web pages. It needs
users to specify what information they want to extract, and
then the wrapper induction system induces the rules to
construct the wrapper for extracting the corresponding
data. Much human work is involved in such wrapper con-
struction. Recently, research efforts (20,21) have been put
on how to automatically construct wrapper to extract struc-
tured data. To automatically annotate the extracted data
instances, currently there are three basic approaches:
ontology-based (22), search interface schema-based, and
physical layout-based. In the ontology-based approach, a
task-specific ontology (i.e., conceptual model instance) is
usually predefined, which describes the data of interest,
including relationships, lexical appearance, and context
keywords. A database schema and recognizers for con-
stants and keywords can be produced by parsing the ontol-
ogy. Then the data units can be recognized and structured
using the recognizers and the database schema. The search
interface schema-based approach (23) is based on the obser-
vation that the complex Web search interfaces of database
search engines usually partially reflect the schema of the
data in the underlying databases. So the data units in the
returned result record may be the values of a search field on
search interfaces. The search field labels are thereby
assigned to corresponding data units as meaningful labels.
The physical layout-based approach assumes that data
units usually occur together with their class labels; thus
it annotates the data units in such a way that the closest
label to the data units is treated as the class label. The
headers of a visual table layout are also another clue for
annotating the corresponding column of data units. As none
of the three approaches is perfect, a combination of them
will be a very promising approach to automatic annotation.

Challenges of Metasearch Engines

Metasearch engine technology faces very different chal-
lenges compared with search engine technology, and some
of these challenges are briefly described below.

Automatic Maintenance. Search engines used by meta-
search engines may change their connection parameters
and result display format, and these changes can cause the
search engines not usable from the metasearch engines
unless the corresponding connection programs and result
extraction wrappers are changed accordingly. It is very
expensive to manually monitor the changes of search
engines and make the corresponding changes in the meta-
search engine. Techniques that can automatically detect
search engine changes and make the necessary adjust-
ments in the corresponding metasearch engine components
are needed.

Scalability. Most of today’s metasearch engines are very
small in terms of the number of search engines used. A
typical metasearch engine has only about a dozen search
engines. The current largest metasearch engine AllInOne-
News (www.allinonenews.com) connects to about 1500

DATA SEARCH ENGINE 7



news search engines. But it is still very far away from
building a metasearch engine that uses all of the over
half million document search engines currently on the
Web. There are number of challenges in building very
large-scale metasearch engines, including automatic main-
tenance described above, and automatic generation and
maintenance of search engine representatives that are
needed to enable efficient and effective search engine selec-
tion.

Entity Identification. For database metasearch engines,
data records retrieved from different search engines
that correspond to the same real-world entities must be
correctly identified before any meaningful result merging
can be performed. Automatic entity identification across
autonomous information sources has been a very challen-
ging issue for a long time. A related problem is the auto-
matic and accurate data unit annotation problem as
knowing the meanings of different data units in a record
can greatly help match the records. Although research on
both entity identification and data unit annotation is being
actively pursued, there is still long way to go to solve these
problems satisfactorily.

ACKNOWLEDGMENT

This work is supported in part by the following NSF grants:
IIS-0414981, IIS-0414939, and CNS-0454298. We also
would like to thank the anonymous reviewers for valuable
suggestions to improve the manuscript.

BIBLIOGRAPHY

1. M. Bergman. The Deep Web: Surfacing the Hidden Value.
BrightPlanet White Paper. Available: http://www.brightpla-
net.com/images/stories/pdf/deepwebwhitepaper.pdf, October
16, 2006.

2. K. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured
databases on the Web: observations and Implications.
SIGMOD Record, 33 (3): 61–70, 2004.

3. S. Raghavan, and H. Garcia-Molina. Crawling the hidden Web.
VLDB Conference, 2001.

4. G. Salton, and M. McGill. Introduction to modern information
retrieval. New York: McCraw-Hill, 2001.

5. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
Citation Ranking: Bring Order to the Web. Technical Report,
Stanford University, 1998.

6. D. Hawking, N. Craswell, P. Bailey, and K. Griffiths. Measur-
ing search engine quality. J. Inf. Retriev., 4 (1): 33–59, 2001.

7. S. Lawrence, and C. Lee Giles. Inquirus, the NECi Meta
Search Engine. Seventh International World Wide Web con-
ference, Brisbane, Australia, 1998, pp. 95–105.

8. M. R. Henzinger, and R. Motwani, and C. Silverstein. Chal-
lenges in Web Search Engines. Available http://citeseer.ist.
psu.edu/henzinger02challenges.html, 2002.

9. S. Lawrence, and C. Lee Giles. Accessibility of information on
the Web. Nature, 400: 1999.

10. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopa-
lan, R. Stata, A. Tomkins, and J. Wiener. Graph Structure in
the Web. The 9th International World Wide Web Conference,
Amsterdam, 2001.

11. W. Meng, C. Yu, and K. Liu. Building Efficient and Effective
Metasearch Engines. ACM Comput. Surv., 34 (1), 48–84, 2002.

12. J. Callan, M. Connell, and A. Du, Automatic Discovery of
Language Models for Text Databases. ACM SIGMOD Confer-
ence, Philadelphia, PA, 1999, pp. 479–490.

13. D. Dreilinger, and A. Howe. Experiences with selecting search
engines using metasearch. ACM Trans. Inf. Syst., 15 (3): 195–
222.

14. Y. Fan, and S. Gauch. Adaptive Agents for Information Gath-
ering from Multiple, Distributed Information Sources. AAAI
Symposium on Intelligent Agents in Cyberspace Stanford
University, 1999, pp. 40–46.

15. H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully
automatic wrapper generation for search engines. World Wide
Web Conference, 2005.

16. Y. Lu, W. Meng, L. Shu, C. Yu, and K. Liu. Evaluation of result
merging strategies for metasearch engines. WISE Conference ,
2005.

17. Z. Zhang, B. He, and K. Chang. Understanding Web query
interfaces: best-effort parsing with hidden syntax. ACM SIG-
MOD Conference, 2004.

18. H. He, W. Meng, C. Yu, and Z. Wu. Automatic integration of
web search interfaces with wise-integrator. VLDB J. 13 (3):
256–273, 2004.

19. C. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accurately
and reliably extracting data from the Web: a machine learning
approach. IEEE Data Eng. Bull. 23 (4):2000.

20. A. Arasu, and H. Garcia-Molina. Extracting Structured Data
from Web pages. SIGMOD Conference, 2003.

21. V. Crescenzi, G. Mecca, and P. Merialdo. RoadRUNNER:
Towards Automatic Data Extraction from Large Web Sites.
VLDB Conference, Italy, 2001.

22. D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, D. W.
Lonsdale, Y. K. Ng, R. D. Smith, Conceptual-model-based data
extraction from multiple-record Web pages. Data Knowledge
Eng., 31 (3): 227–251, 1999.

23. J. Wang, and F. H. Lochovsky. Data Extraction and Label
Assignment for Web Databases. WWW Conference, 2003.

FURTHER READING

S. Kirsch. The future of internet search: infoseek’s experiences
searching the Internet. ACM SIGIR Forum , 32 (2): 3–7, 1998.

WEIYI MENG

HAI HE

State University of New York
Binghamton, New York

8 DATA SEARCH ENGINE



D

DATA SECURITY

INTRODUCTION

The term data security refers to the protection of infor-
mation against possible violations that can compromise
its secrecy (or confidentiality), integrity, or availability.
Secrecy is compromised if information is disclosed to users
not authorized to access it. Integrity is compromised if
information is improperly modified, deleted, or tampered.
Availability is compromised if users are prevented from
accessing data for which they have the necessary permis-
sions. This last problem is also known as denial-of-service.

The problem of protecting information has existed since
information has been managed. However, as technology
advances and information management systems become
more and more powerful, the problem of enforcing informa-
tion security also becomes more critical. The increasing
development of information technology in the past few
years, which has led to the widespread use of computer
systems to store and manipulate information and greatly
increased the availability and the processing and storage
power of information systems, has also posed new serious
security threats and increased the potential damage that
violations may cause. Organizations more than ever today
depend on the information they manage. A violation to the
security of the information may jeopardize the whole sys-
tem working and cause serious damages. Hospitals, banks,
public administrations, and private organizations, all of
them depend on the accuracy, availability, and confidenti-
ality of the information they manage. Just imagine what
could happen, for instance, if a patient’s data were impro-
perly modified, were not available to the doctors because of
a violation blocking access to the resources, or were dis-
closed to the public domain.

Many are the threats to security to which information
is exposed. Threats can be nonfraudulent or fraudulent.
The first category comprises all threats resulting in non-
intentional violations, such as natural disasters, errors or
bugs in hardware or software, and human errors. The
second category comprises all threats causing intentional
violations. Such threats can be represented by authorized
users (insiders), who can misuse their privileges and
authority, or external users (intruders), who can impro-
perly get access to the system and its resources. Ensuring
protection against these threats requires the application
of different protection measures. This article focuses,
in particular, on the protection of information against
possible violations by users, insiders, or intruders. The
following services are crucial to the protection of data
within this context (1):

1. Identification and Authentication. It provides the
system with the ability of identifying its users and
confirming their identity.

2. Access Control. It evaluates access requests to the
resources by the authenticated users, and based on
some access rules, it determines whether they must
be granted or denied.

3. Audit. Itprovidesapost factoevaluationof therequests
and the accesses occurred to determine whether viola-
tions have occurred or have been attempted.

4. Encryption. It ensures that any data stored in the
system or is sent over the network can be deciphered
only by the intended recipient. In network commu-
nication, it can also be used to ensure the authenticity
of the information transmitted and of the parties
involved in the communication.

Figure 1 illustrates the position of these services within
the system working. Their treatment is the focus of this
article.

IDENTIFICATION AND AUTHENTICATION

Authentication is the process of certifying the identity of a
party to another. In the most basic form, authentication
certifies the identity of a human user to the computer
system. Authentication is a prerequisite for a correct access
control, because the correctness of the access control relies
on the correctness of the identity of the subject requesting
access. Good authentication is also important for account-
ability, whereby users can be retained accountable for the
actions accomplished when connected to the system. In the
authentication process, we can generally distinguish an
identification phase, where users declare their identity to
the computer and submit a proof for it; and an actual
authentication phase, where the declared identity and
the submitted proof are evaluated. The most common
ways to enforce user to computer authentication are based
on the use of:

� Something the user knows, such as a password.

� Something the user possesses, such as a magnetic card.

� Something the user is or does, such as her physical
characteristics.

These techniques can be used in alternative or in combina-
tion, thus providing a stronger protection. For instance, a
smartcard may require that a password be entered to
unlock it.

Authentication Based on Knowledge

The most common technique based on user’s knowledge
uses secret keywords, named passwords. A password,
known only to the user and the system, proves the identity
of the user to the system. Users wishing to log into the
computer enter their identity (login) and submit a secret
keyword (password) as proof of their identity. Passwords

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



are the most commonly used authentication techniques for
controlling access to computers. The wide use of this tech-
nique is because it is very simple, cheap, and easily enforce-
able. As a drawback, however, this technique is vulnerable.
Passwords can often be easily guessed, snooped by people
observing the legitimate user keying it in, sniffed during
transmission, or spoofed by attackers impersonating login
interfaces. By getting a user’s password, an attacker can
then ‘‘impersonate’’ this user and enter the system. An
important aspect necessary to limit the vulnerability of
passwords is a good password management. A good pass-
word management requires users to change their password
regularly, choose passwords that are not easy to guess, and
keep the password private. Unfortunately these practices
are not always followed. Having to remember passwords
can become a burden for a user, especially when multiple
passwords, necessary to access different accounts, need to
be remembered. To avoid this problem, many systems
enforce automatic controls regulating the specification
and use of passwords. For instance, it is possible to enforce

restrictions on the minimum number of digits a password
must have, possibly requiring the use of both alphanumeric
and non-alphanumeric characters. Also, often systems
check passwords against language dictionaries and reject
passwords corresponding to words of the language (which
would be easily retrieved by attackers enforcing dictionary
attacks). It is also possible to associate a maximum lifetime
with passwords and require users to change their password
when it expires. Passwords that remain unchanged for a
long time are more vulnerable, and, if guessed and never
changed, would allow attackers to freely access the system
impersonating the legitimate users. A history log can also
be kept to make sure users do not just pretend to change the
password while reusing instead the same one. Sometimes a
minimum lifetime can also be associated with passwords.
The reason is for users to avoid reusing the same password
over and over again despite the presence of lifetime and
history controls. Without a minimum lifetime, a user
required to change password but unwilling to do so could
simply change it and then change it back right away to the

Figure 1. Authentication, access control,
audit, and encryption.

Reference
Monitor

Access
rules

ADMINISTRATION

ENCRYPTION

ACCESS CONTROLAUTHENTICATION

TARGET SYSTEM

LOGGING

Security Administrator

User

Data

Auditor

AUDITING

Security violations

2 DATA SECURITY



old value. A minimum lifetime restriction would forbid
this kind of operation.

Authentication Based on Possession

In this category, also called token-based, all techniques
exist that require users to present a token as a proof of
their identity. A token is a credit-size card device storing
some information establishing and proving the token’s
identity. The simplest form of token is a memory card
containing magnetically recorded information, which can
be read by an appropriate card reader. Essentially, this
technique authenticates the validity of the token, not of the
user: Possession of the token establishes identity for the
user. The main weakness of such an approach is that tokens
can be forged, lost, or stolen. To limit the risk of security
breaches due to such occurrences, often memory cards are
used together with a personal identification number (PIN),
generally composed of four numeric digits, that works like a
password. To enter the system, a user needs both to present
the token and to enter the PIN. Like passwords, PIN can be
guessed or spoofed, thus possibly compromising authenti-
cation, because an attacker possessing the token and know-
ing the PIN will be able to impersonate the legitimate user
and enter the system. To limit the vulnerability from
attackers possessing a token and trying to guess the corre-
sponding PIN to enter the system, often the authentication
server terminates the authentication process, and possibly
seizes the card, upon submission of few bad tries for a PIN.
Like passwords, tokens can be shared among users, thus
compromising accountability. Unlike with passwords, how-
ever, because possession of the token is necessary to enter
the system, only one user at a time is able to enter the
system. Memory cards are very simple and do not have any
processing power. They cannot therefore perform any check
on the PIN or encrypt it for transmission. This requires
sending the PIN to the authentication server in the clear,
exposing the PIN to sniffing attacks and requiring trust in
the authentication server. The ATM (Automatic Teller
Machine) cards are provided with processing power, which
allows the checking and encrypting of the PIN before its
transmission to the authentication server.

In token devices provided with processing capabilities,
authentication is generally based on a challenge-response
handshake. The authentication server generates a chal-
lenge that is keyed into the token by the user. The token
computes a response by applying a cryptographic algorithm
to the secret key, the PIN, and the challenge, and returns it
to the user, who enters this response into the workstation
interfacing the authentication server. In some cases, the
workstation can directly interface the token, thus eliminat-
ing the need for the user to type in the challenge and the
response. Smartcards are sophisticated token devices
that have both processing power and direct connection to
the system. Each smartcard has a unique private key stored
within it. To authenticate the user to the system, the
smartcard verifies the PIN. It then enciphers the user’s
identifier, the PIN, and additional information like
date and time, and it sends the resulting ciphertext to
the authentication server. Authentication succeeds if the
authentication server can decipher the message properly.

Authentication Based on Personal Characteristics

Authentication techniques in this category establish the
identity of users on the basis of their biometric character-
istics. Biometric techniques can use physical or behavioral
characteristics, or a combination of them. Physical char-
acteristics are, for example, the retina, the fingerprint,
and the palmprint. Behavioral characteristics include
handwriting, voiceprint, and keystroke dynamics (2). Bio-
metric techniques require a first phase in which the char-
acteristic is measured. This phase, also called enrollment,
generally comprises several measurements of the char-
acteristic. On the basis of the different measurements, a
template is computed and stored at the authentication
server. A User’s identity is established by comparing their
characteristics with the stored templates. It is important
to note that, unlike passwords, biometric methods are not
exact. A password entered by a user either matches the one
stored at the authentication server or it does not. A bio-
metric characteristic instead cannot be required to exactly
match the stored template. The authentication result is
therefore based on how closely the characteristic matches
the stored template. The acceptable difference must be
determined in such a way that the method provides a high
rate of successes (i.e., it correctly authenticates legitimate
users and rejects attackers) and a low rate of unsuccesses.
Unsuccesses can either deny access to legitimate users
or allow accesses that should be rejected. Biometric tech-
niques, being based on personal characteristics of the
users, do not suffer of the weaknesses discusses above
for password or token-based authentication. However,
they require high-level and expensive technology, and
they may be less accurate. Moreover, techniques based
on physical characteristics are often not well accepted by
users because of their intrusive nature. For instance,
retinal scanners, which are one of the most accurate
biometric methods of authentication, have raised concerns
about possible harms that the infrared beams sent to
the eye by the scanner can cause. Measurements of
other characteristics, such as fingerprint or keystroke
dynamics, have instead raised concerns about the privacy
of the users.

ACCESS CONTROL

Access control evaluates the requests to access resources
and services and determines whether to grant or deny
them. In discussing access control, it is generally useful
to distinguish between policies and mechanisms. Policies
are high-level guidelines that determine how accesses are
controlled and access decisions are determined. Mechan-
isms are low-level software and hardware functions imple-
menting the policies. There are several advantages in
abstracting policies from their implementation. First, it
is possible to compare different policies and evaluate their
properties without worrying about how they are actually
implemented. Second, it is possible to devise mechanisms
that enforce different policies so that a change of policy does
not necessarily require changing the whole implementa-
tion. Third, it is possible to devise mechanisms that can
enforce multiple policies at the same time, thus allowing

DATA SECURITY 3



users to choose the policy that best suits their needs when
stating protection requirements on their data (3–6). The
definition and formalization of a set of policies specifying
the working of the access control system, providing thus an
abstraction of the control mechanism, is called a model.

Access control policies can be divided into three major
categories: discretionary access control (DAC), mandatory
access control (MAC), and the most recent role-based access
control (RBAC).

Discretionary Policies

Discretionary access control policies govern the access of
users to the system on the basis of the user’s identity and of
rules, called authorizations, that specify for each user (or
group of users) the types of accesses the user can/cannot
exercise on each object. The objects to which access can be
requested, and on which authorizations can be specified,
may depend on the specific data model considered and on
the desired granularity of access control. For instance, in
operating systems, objects can be files, directories, or pro-
grams. In relational databases, objects can be databases,
relations, views, and, possibly tuples or attributes within a
relation. In object-oriented databases, objects include
classes, instances, and methods. Accesses executable on
the objects, or on which authorizations can be specified,
may correspond to primitive operations like read, write,
and execute, or to higher level operations or applications.
For instance, in a bank organization, operations like, debit,
credit, inquiry, an extinguish can be defined on objects of
type accounts.

Policies in this class are called discretionary because
they allow users to specify authorizations. Hence, the
accesses to be or not to be allowed are at the discretion of
the users. An authorization in its basic form is a triple
huser, object, modei stating that the user can exercise
the accessmode on theobject.Authorizations of this form
represent permission of accesses. Each request is con-
trolled against the authorizations and allowed only if a
triple authorizing it exists. This kind of policy is also called
closed policy, because only accesses for which an explicit
authorization is given are allowed, whereas the default
decision is to deny access. In an open policy, instead,
(negative) authorizations specify the accesses that should
not be allowed. All access requests for which no negative
authorizations are specified are allowed by default. Most
systems support the closed policy. The open policy can be
applied in systems with limited protection requirements,
where most accesses are to be allowed and the specification
of negative authorizations results is therefore more
convenient.

Specification of authorizations for each single user, each
single access mode, and each single object can become an
administrative burden. By grouping users, modes, and
objects, it is possible to specify authorizations holding for
a group of users, a collection of access modes, and/or a set of
objects (4,7–9). This grouping can be user defined or derived
from the data definition or organization. For instance,
object grouping can be based on the type of objects (e.g.,
files, directories, executable programs); on the application/
activity in which they are used (e.g., ps-files, tex-files, dvi-

files, ascii); on data model concepts (e.g., in object-oriented
systems, a group can be defined corresponding to a class
and grouping all its instances); or on other classifications
defined by users. Groups of users generally reflect the
structure of the organization. For instance, examples of
groups can be employee, staff, researchers, or con-
sultants. Most models considering user groups allow
groups to be nested and nondisjoint. This means that users
can belong to different groups and groups themselves can
be members of other groups, provided that there are no
cycles in the membership relation (i.e., a group cannot be a
member of itself). Moreover, a basic group, called public,
generally collects all users of the system.

The most recent authorization models supports group-
ing of users and objects, and both positive and negative
authorizations (4,6,8,10–14). These features, toward the
development of mechanisms able to enforce different poli-
cies, allow the support of both the closed and the open policy
within the same system. Moreover, they represent a con-
venient means to support exceptions to authorizations. For
instance, it is possible to specify that a group of users, with
the exception of one of its members, can execute a particular
access by granting a positive authorization for the access to
the group and a negative authorization for the same access
to the user. As a drawback for this added expressiveness
and flexibility, support of both positive and negative
authorizations complicates authorization management.
In particular, conflicts may arise. To illustrate, consider
the case of a user belonging to two groups. One group has a
positive authorization for an access; the other has a nega-
tive authorization for the same access. Conflict control
policies should then be devised that determine whether
the access should in this case be allowed or denied. Differ-
ent solutions can be taken. For instance, deciding on the
safest side, the negative authorizations can be considered to
hold (denials take precedence). Alternatively, conflicts may
be resolved on the basis of possible relationships between
the involved groups. For instance, if one of the groups is a
member of the other one, then the authorization specified
for the first group may be considered to hold (most specific
authorization takes precedence). Another possible solution
consists in assigning explicit priorities to authorizations; in
the case of conflicts, the authorization with greater priority
is considered to hold.

DAC Mechanisms. A common way to think of author-
izations at a conceptual level is by means of an access
matrix. Each row corresponds to a user (or group), and
each column corresponds to an object. The entry crossing
a user with an object reports the access modes that the
user can exercise on the object. Figure 2(a) reports an
example of an access matrix. Although the matrix repre-
sents a good conceptualization of authorizations, it is not
appropriate for implementation. The access matrix may
be very large and sparse. Storing authorizations as an
access matrix may therefore prove inefficient. Three
possible approaches can be used to represent the matrix:

� Access Control List (ACL). The matrix is stored by
column. Each object is associated with a list, indicat-

4 DATA SECURITY



ing, for each user, the access modes the user can
exercise on the object.

� Capability. The matrix is stored by row. Each user has
associated a list, called a capability list, indicating for
each object in the system the accesses the user is
allowed to exercise on the object.

� Authorization Table. Nonempty entries of the matrix
are reported in a three-column table whose columns are
users, objects, and access modes, respectively. Each
tuple in the table corresponds to an authorization.

Figure 2(b)–(d) illustrates the ACLs, capabilities, and
authorization table, respectively, corresponding to the
access matrix in Fig. 2(a).

Capabilities and ACLs present advantages and disad-
vantages with respect to authorization control and man-
agement. In particular, with ACLs, it is immediate to check
the authorizations holding on an object, whereas retrieving
all authorizations of a user requires the examination of the
ACLs for all objects. Analogously, with capabilities, it is
immediate to determine the privileges of a user, whereas
retrieving all accesses executable on an object requires the
examination of all different capabilities. These aspects
affect the efficiency of authorization revocation upon dele-
tion of either users or objects.

In a system supporting capabilities, it is sufficient for a
user to present the appropriate capability to gain access to
an object. This represents an advantage in distributed
systems because it avoids multiple authentication of a
subject. A user can be authenticated at a host, acquire

the appropriate capabilities and present them to obtain
accesses at the various servers of the system. Capabilities
suffers, however, from a serious weakness. Unlike tickets,
capabilities can be copied. This exposes capabilities to the
risk of forgery, whereby an attacker gains access to the
system by copying capabilities. For these reasons, capabil-
ities are not generally used. Most commercial systems use
ACLs. The Linux file system uses a primitive form of
authorizations and ACLs. Each user in the system belongs
to exactly one group, and each file has an owner (generally
the user who created it). Authorizations for each file can be
specified for either the owner, the group to which she
belongs, or ‘‘the rest of the world.’’ Each file has associated
a list of nine privileges: read, write, and execute, each
defined three times, at the level of user, group, and other.
Each privilege is characterized by a single letter: r for
read;w for write;x for execute; the absence of the privilege
is represented by character -. The string presents first the
user privileges, then group, and finally other. For instance,
the ACL rwxr-x--x associated with a file indicates that
the file can be read, written, and executed by its owner; read
and executed by the group to which the owner belongs; and
executed by all other users.

Weakness of Discretionary Policies: The Trojan Horse Pro-
blem. In discussing discretionary policies, we have
referred to users and to access requests on objects sub-
mitted by users. Although it is true that each request is
originated because of some user’s actions, a more precise
examination of the access control problem shows the utility

File 1 File 2 File 3 Program 1
own read execute

Ann read write
write

Bob read read
write

Carl read execute
read

(a)

File 1 Ann

own
read
write

Ann

read

Bob

CarlFile 2

File 3

write
read

read

read

write

Ann

execute read
execute

CarlProgram 1

Bob

Program 1

execute
own
read
write

File 1 File 2

read
write

File 1

read
writeread

File 3

File 2

read

Ann

Bob

Carl Program 1

execute
read

(b)

User Access mode Object

Ann own File 1
Ann read File 1
Ann write File 1
Ann read File 2
Ann write File 2
Ann execute Program 1
Bob read File 1
Bob read File 2
Bob write File 2
Carl read File 2
Carl execute Program 1
Carl read Program 1

(d)(c)

Figure 2. (a) An example of access matrix, (b) corresponding ACL, (c) capabilities, and (d) and authorization table.

DATA SECURITY 5



of separating users from subjects. Users are passive entities
for whom authorizations can be specified and who can
connect to the system. Once connected to the system, users
originate processes (subjects) that execute on their behalf
and, accordingly, submit requests to the system. Discre-
tionary policies ignore this distinction and evaluate all
requests submitted by a process running on behalf of
some user against the authorizations of the user. This
aspect makes discretionary policies vulnerable from pro-
cesses executing malicious programs exploiting the author-
izations of the user on behalf of whom they are executing. In
particular, the access control system can be bypassed by
Trojan Horses embedded in programs. A Trojan Horse is a
computer program with an apparently or actually useful
function, which contains additional hidden functions that
surreptitiously exploit the legitimate authorizations of the
invoking process. A Trojan Horse can improperly use any
authorization of the invoking user; for example, it could
even delete all files of the user (this destructive behavior is
not uncommon in the case of viruses). This vulnerability to
Trojan Horses, together with the fact discretionary policies
do not enforce any control on the flow of information once
this information is acquired by a process, makes it possible
for processes to leak information to users not allowed to
read it. This can happen without the cognizance of the data
administrator/owner, and despite the fact that each single
access request is controlled against the authorizations. To
understand how a Trojan Horse can leak information to
unauthorized users despite the discretionary access con-
trol, consider the following example. Assume that within an
organization, Vicky, a top-level manager, creates a file
Market containing important information about releases
of new products. This information is very sensitive for the
organization and, according to the organization’s policy,
should not be disclosed to anybody besides Vicky. Consider
now John, one of Vicky’s subordinates, who wants to
acquire this sensitive information to sell it to a competitor
organization. To achieve this, John creates a file, let’s call it
Stolen, and gives Vicky the authorization to write the file.
Note that Vicky may not even know about the existence of
Stolen or about the fact that she has the write authorization
on it. Moreover, John modifies an application generally
used by Vicky, to include two hidden operations, a read
operation on file Market and a write operation on file Stolen
[Fig. 3(a)]. Then, he gives the new application to his man-
ager. Suppose now that Vicky executes the application. As
the application executes on behalf of Vicky, every access is
checked against Vicky’s authorizations, and the read and
write operations above will be allowed. As a result, during
execution, sensitive information in Market is transferred to
Stolen and thus made readable to the dishonest employee
John, who can then sell it to the competitor [Fig. 3(b)].

The reader may object that there is little point in
defending against Trojan Horses leaking information
flow: Such an information flow could have happened
anyway, by having Vicky explicitly tell this information
to John, possibly even off-line, without the use of the
computer system. Here is where the distinction between
users and subjects operating on their behalf comes in.
Although users are trusted to obey the access restrictions,
subjects operating on their behalf are not. With reference to

our example, Vicky is trusted not to release the sensitive
information she knows to John, because, according to the
authorizations, John cannot read it. However, the pro-
cesses operating on behalf of Vicky cannot be given the
same trust. Processes run programs that, unless properly
certified, cannot be trusted for the operations they execute,
as illustrated by the example above. For this reason,
restrictions should be enforced on the operations that
processes themselves can execute. In particular, protection
against Trojan Horses leaking information to unauthorized
users requires controlling the flows of information within
process execution and possibly restricting them (13–18).
Mandatory policies provide a way to enforce information
flow control through the use of labels.

Mandatory Policies

Mandatory security policies enforce access control on the
basis of classifications of subjects and objects in the system.
Objects are the passive entities storing information, such as
files, records, records’ fields, in operating systems; or data-
bases, tables, attributes, and tuples in relational database
systems. Subjects are active entities that request access to
the objects. An access class is defined as consisting of two
components: a security level and a set of categories. The

product release-date price

X Dec. 99 7,000
Y Jan. 99 3,500
Z March 99 1,200

read Market

write Stolen

Table Market

Application

Table Stolen

prod date cost

owner Vicky owner John
Vicky,write,Stolen

(a)

product release-date price

X Dec. 99 7,000
Y Jan. 99 3,500
Z March 99 1,200

read Market

write Stolen

prod date cost

X Dec. 99 7,000
Y Jan. 99 3,500
Z March 99 1,200

Table Market

Vicky
invokes

Application

Table Stolen

owner Vicky owner John
Vicky,write,Stolen

(b)

Figure 3. An example of a Trojan Horse.

6 DATA SECURITY



security level is an element of a hierarchically ordered set.
The levels generally considered are Top Secret (TS), Secret
(S), Confidential (C), and Unclassified (U), where TS> S>
C>U. The set of categories is a subset of an unordered set,
whose elements reflect functional or competence areas
(e.g., NATO, Nuclear, Army for military systems; Finan-
cial, Administration, Research, for commercial systems).
Access classes are partially ordered as follows: an access
class c1 dominates (�) an access class c2 iff the security level
of c1 is greater than or equal to that of c2 and the categories
of c1 include those of c2. Two classes c1 and c2 are said to be
incomparable if neither c1 � c2 nor c2 � c1 holds. Access
classes together with the dominance relationship between
them form a lattice. Figure 4 illustrates the security lattice
for the security levels TS and S and the categories Nuclear
and Army. Each object and each user in the system is
assigned an access class. The security level of the access
class associated with an object reflects the sensitivity of the
information contained in the object, that is, the potential
damage that could result from the unauthorized disclosure
of the information. The security level of the access class
associated with a user, also called clearance, reflects the
user’s trustworthiness not to disclose sensitive information
to users not cleared to see it. Categories are used to provide
finer grained security classifications of subjects and objects
than classifications provided by security levels alone, and
they are the basis for enforcing need-to-know restrictions.
Users can connect to their system at any access class
dominated by their clearance. A user connecting to the

system at a given access class originates a subject at that
access class. For instance, a user cleared (Secret,Ø) can
connect to the system as a (Secret,Ø), (Confiden-
tial,Ø), or (Unclassified,Ø) subject. Requests by a
subject to access an object are controlled with respect to
the access class of the subject and the object and granted
only if some relationship, depending on the requested
access, is satisfied. In particular, two principles, first for-
mulated by Bell and LaPadula (19), must be satisfied to
protect information confidentiality:

No Read Up. A subject is allowed a read access to an
object only if the access class of the subject dominates the
access class of the object.

No Write Down. A subject is allowed a write access to an
object only if the access class of the subject is dominated by
the access of the object. (In most applications, subjects are
further restricted to write only at their own level, so that no
overwriting of sensitive information by low subjects not
even allowed to see it can take place.)

Satisfaction of these two principles prevents informa-
tion to flow from high-level subjects/objects to subjects/
objects at lower levels, thereby ensuring the satisfaction
of the protection requirements (i.e., no process will be able
to make sensitive information available to users not cleared
for it). This is illustrated in Fig. 5. Note the importance of
controlling both read and write operations, because both
can be improperly used to leak information. Consider the
example of the Trojan Horse in Fig. 3. Possible classifica-
tions reflecting the specified access restrictions could be
Secret for Vicky and Market, and Unclassified for John and
Stolen. In the respect of the no-read-up and no-write-down
principles, the Trojan Horse will never be able to complete
successfully. If Vicky connects to the system as a Secret (or
Confidential) subject, and thus the application runs with a
Secret (or Confidential) access class, the write operation
would be blocked. If Vicky invokes the application as an
Unclassified subject, the read operation will be blocked
instead.

Given the no-write-down principle, it is clear now why
users are allowed to connect to the system at different
access classes, so that they are able to access information
at different levels (provided that they are cleared for it). For
instance, Vicky has to connect to the system at a level below

TS,{Army,Nuclear}

TS,{Army} TS,{Nuclear}

TS,{ }

S,{Army,Nuclear}

S,{Army} S,{Nuclear}

S,{ }

Figure 4. An example of a classification lattice.

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

SUBJECTS OBJECTS

w
ri

te
s

sd
ae

r

sd
ae

r

sd
a e

r

sd
ae

r

w
ri

te
s

w
ri

te
s

w
ri

te
s

TS

S

C

U

In
fo

rm
at

io
n 

Fl
ow

TS

S

C

U
Figure 5. Controlling information flow for
secrecy.

DATA SECURITY 7



her clearance if she wants to write some Unclassified
information, such as working instructions for John. Note
also that a lower class does not mean ‘‘less’’ privileges in
absolute terms, but only less reading privileges, as it is clear
from the example above.

The mandatory policy that we have discussed above
protects the confidentiality of the information. An analo-
gous policy can be applied for the protection of the integrity
of the information, to avoid untrusted subjects from mod-
ifying information they cannot write and compromise its
integrity. With reference to our organization example, for
example, integrity could be compromised if the Trojan
Horse implanted by John in the application would write
data in the file Market. Access classes for integrity comprise
an integrity level and a set of categories. The set of cate-
gories is as seen for secrecy. The integrity level associated
with a user reflects the user’s trustworthiness for inserting,
modifying, or deleting information. The integrity level
associated with an object reflects both the degree of trust
that can be placed on the information stored in the object
and the potential damage that could result from an
unauthorized modification of the information. An example
of integrity levels includes Crucial (C), Important (I), and
Unknown (U). Access control is enforced according to the
following two principles:

No Read Down. A subject is allowed a read access to an
object only if the access class of the subject is dominated by
the access class of the object.

No Write Up. A subject is allowed a write access to an
object only if the access class of the subject is dominates the
access class of the object.

Satisfaction of these principles safeguards integrity by
preventing information stored in low objects (and therefore
less reliable) to flow to high objects. This is illustrated
in Fig. 6.

As it is visible from Figs. 5 and 6, secrecy policies allow
the flow of information only from lower to higher (security)
levels, whereas integrity policies allow the flow of infor-
mation only from higher to lower security levels. If both
secrecy and integrity have to be controlled, objects and
subjects have to be assigned two access classes, one for
secrecy control and one for integrity control.

The main drawback of mandatory protection policies is
the rigidity of the control. They require the definition and
application of classifications to subjects and objects. This

may not always be feasible. Moreover, accesses to be
allowed are determined only on the basis of the classifica-
tions of subjects and objects in the system. No possibility is
given to the users for granting and revoking authorizations
to other users. Some approaches have been proposed that
complement flow control with discretionary access control
(13,15,17).

Role-based Policies

A class of access control policies that has been receiving
considerable attention recently is represented by role-
based policies (20–22). Role-based policies govern the
access of users to the information on the basis of their
organizational role. A role can be defined as a set of actions
and responsibilities associated with a particular working
activity. Intuitively, a role identifies a task, and corre-
sponding privileges, that users need to execute to perform
organizational activities. Example of roles can be secre-
tary, dept-chair, programmer, payroll-officer,
and so on. Authorizations to access objects are not specified
directly for users to access objects: Users are given author-
izations to activate roles, and roles are given authorizations
to access objects. By activating a given role (set of roles), a
user will be able to execute the accesses for which the role is
(set of roles are) authorized. Like groups, roles can also be
organized in a hierarchy, along which authorizations can be
propagated.

Note the different semantics that groups, presented in
Section 3.1, and roles carry. Roles can be ‘‘activated’’ and
‘‘deactivated’’ by users at their discretion, whereas group
membership always applies; that is, users cannot enable
and disable group memberships (and corresponding
authorizations) at their will. Note, however, that a same
‘‘concept’’ can be seen both as a group and as a role. To
understand the difference between groups and roles, con-
sider the following example. We could define a group, called
G�programmer, consisting all users who are program-
mers. Any authorization specified for G�programmer is
propagated to its members. Thus, if an authorization to
read tech-reports is given to G�programmer, its mem-
bers can exercise this right. We could also define a role,
called R�programmer, and associate with it those privi-
leges that are related to the programming activity and
necessary for the programmers to perform their jobs
(such as compiling, debugging, and writing reports). These
privileges can be exercised by authorized users only when
they choose to assume the role R�programmer. It is impor-
tant to note that roles and groups are two complementary
concepts; they are not mutually exclusive.

The enforcement of role-based policies present several
advantages. Authorization management results are sim-
plified by the separation of the users’ identity from the
authorizations they need to execute tasks. Several users
can be given the same set of authorizations simply by
assigning them the same role. Also, if a user’s responsibil-
ities change (e.g., because of a promotion), it is sufficient
to disable her for the previous roles and enable her for a
new set of roles, instead of deleting and inserting the
many access authorizations that this responsibility
change implies. A major advantage of role-based policies

. . . . . . .

. . . . . . .

. . . . . . .

SUBJECTS OBJECTS

C

I

U

 
Inform

ation Flow

re
ad

s

re
ad

s

re
ad

s

w
rites w

rites

w
rites

C

I

U

Figure 6. Controlling information flow for integrity.

8 DATA SECURITY



is represented by the fact that authorizations of a role are
enabled only when the role is active for a user. This allows
the enforcement of the least privilege principle, whereby a
process is given only the authorizations it needs to complete
successfully. This confinement of the process in a defined
workspace is an important defense against attacks aiming
at exploiting authorizations (as the Trojan Horse example
illustrated). Moreover, the definition of roles and related
authorizations fits with the information system organiza-
tion and allows us to support related constraints, such as,
for example, separation of duties (23–25). Separation of
duties requires that no user should be given enough privi-
leges to be able to misuse the system. For instance, the
person authorizing a paycheck should not be the same
person who prepares it. Separation of duties can be
enforced statically, by controlling the specification of roles
associated with each user and authorizations associated
with each role, or dynamically, by controlling the actions
actually executed by users when playing particular roles
(4,24).

AUDIT

Authentication and access control do not guarantee com-
plete security. Indeed, unauthorized or improper uses of the
system can still occur. The reasons for this are various.
First, security mechanisms, like any other software or
hardware mechanism, can suffer from flaws that make
them vulnerable to attacks. Second, security mechanisms
have a cost, both monetary and in loss of system’s perfor-
mances. The more protection to reduce accidental and
deliberate violations is implemented, the higher the cost
of the system will be. For this reason, often organizations
prefer to adopt less secure mechanisms, which have little
impact on the system’s performance, with respect to more
reliable mechanisms, that would introduce overhead pro-
cessing. Third, authorized users may misuse their privi-
leges. This last aspect is definitely not the least, as misuse of
privileges by internal users is one major cause of security
violations.

This scenario raises the need for audit control. Audit
provides a post facto evaluation of the requests and the
accesses occurred to determine whether violations have
occurred or have been attempted. To detect possible viola-
tions, all user requests and activities are registered in an
audit trail (or log), for their later examination. An audit
trail is a set of records of computer events, where a computer
event is any action that happens on a computer system (e.g.,
logging into a system, executing a program, and opening a
file). A computer system may have more than one audit
trail, each devoted to a particular type of activity. The kind
and format of data stored in an audit trail may vary from
system to system; however, the information that should be
recorded for each event includes the subject making the
request, the object to which access is requested, the opera-
tion requested, the time and location at which the operation
was requested, the response of the access control, and the
amount of resources used. An audit trail is generated by an
auditing system that monitors system activities. Audit
trails have many uses in computer security:

� Individual Accountability An individual’s actions are
tracked in an audit trail making users personally
accountable for their actions. Accountability may
have a deterrent effect, as users are less likely to
behave improperly if they know that their activities
are being monitored.

� Reconstructing Events Audit trails can be used to
reconstruct events after a problem has occurred. The
amount of damage that occurred with an incident can
be assessed by reviewing audit trails of system activity
to pinpoint how, when, and why the incident occurred.

� Monitoring Audit trails may also be used as on-line
tools to help monitoring problems as they occur. Such
real-time monitoring helps in detecting problems like
disk failures, over utilization of system resources, or
network outages.

� Intrusion Detection Audit trails can be used to identify
attempts to penetrate a system and gain unauthorized
access.

It is easy to see that auditing is not a simple task, also
due to the huge amount of data to be examined and to the
fact that it is not always clear how violations are reflected in
the users’ or system’s behaviors. Recent research has
focused on the development of automated tools to help audit
controls. In particular, a class of automated tools is repre-
sented by the so-called intrusion detection systems, whose
purpose is to automate the data acquisition and their
analysis. The issues to be addressed in data acquisition
and analysis are as folows:

� Audit data retention: If the audit control is based
on history information, then audit records al ready
examined must be maintained. However, to avoid the
‘‘history log’’ to grow indefinitely, pruning operations
should be executed removing records that do not
need to be considered further.

� Audit level: Different approaches can be taken with
respect to the level of events to be recorded. For
instance, events can be recorded at the command level,
at the level of each system call, at the application level,
and so on. Each approach has some advantages and
disadvantages, represented by the violations that can
be detected and by the complexity and volume of audit
records that have to be stored, respectively.

� Recording time: Different approaches can be taken
with respect to the time at which the audit records
are to be recorded. For instance, accesses can be
recorded at the time they are requested or at the
time they are completed. The first approach provides
a quick response to possible violations, and the second
provides more complete information for analysis.

� Events monitored: Audit analysis can be performed on
any event or on specific events such as the events
regarding a particular subject, object, operation, or
occurring at a particular time or in a particular
situation.

DATA SECURITY 9



� Audit control execution time: Different approaches can
be taken with respect to the time at which the audit
control should be executed.

� Audit control mechanism location: The intrusion
detection system and the monitored system may reside
on the same machine or on different machines. Placing
the audit control mechanism on different machines has
advantages both in terms of performances (audit con-
trol does not interfere with normal system operation)
and security, as the audit mechanism will not be
affected by violations to the system under control.

DATA ENCRYPTION

Another measure for protecting information is provided by
cryptography. Cryptographic techniques allow users to
store, or transmit, encoded information instead of the
actual data. An encryption process transforms the plaintext
to be protected into an encoded ciphertext, which can then
be stored or transmitted. A decryption process allows us to
retrieve the plaintext from the ciphertext. The encryption
and decryption functions take a key as a parameter. A user
getting access to data, or sniffing them from the network,
but lacking the appropriate decryption key, will not be able
to understand them. Also, tampering with data results is
difficult without the appropriate encryption key.

Cryptographic techniques must be proved resistant to
attacks by cryptoanalysts trying to break the system to
recover the plaintext or the key, or to forge data (generally,
messages transmitted over the network). Cryptanalysis
attacks can be classified according to how much informa-
tion the cryptanalyst has available. In particular, with
respect to secrecy, attacks can be classified as ciphertext
only, known-plaintext, and chosen-plaintext. In ciphertext-
only attacks, the cryptanalyst only knows the ciphertext,
although she may know the encryption algorithm, the
plaintext language, and possibly some words that are prob-
ably used in the plaintext. In known-plaintext attacks, the
cryptanalyst also knows some plaintext and corresponding
ciphertext. In chosen-plaintext attacks, the cryptanalyst
can acquire the ciphertext corresponding to a selected
plaintext. Most cryptographic techniques are designed to
withstand chosen-plaintext attacks. The robustness of
cryptographic algorithms relies on the amount of work

and time that would be necessary to a cryptanalyst to break
the system, using the best available techniques. With
respect to protecting the authenticity of the information,
there are two main classes of attacks: impersonation attack,
in which the cryptanalyst creates a fraudulent ciphertext
without knowledge of the authentic cipher-text; and sub-
stitution attacks, in which the cryptanalyst intercepts the
authentic ciphertext and improperly modifies it.

Encryption algorithms can be divided into two main
classes: symmetric, or secret key, and asymmetric, or public
key. Symmetric algorithms encrypt and decrypt text by
using the same key. Public key algorithms use, instead,
two different keys. A public key is used to encrypt, and a
private key, which cannot be guessed by knowing the public
key, is used to decrypt. This is illustrated in Fig. 7. Sym-
metric algorithms rely on the secrecy of the key. Public key
algorithms rely on the secrecy of the private key.

Symmetric Key Encryption

Most symmetric key encryption algorithms are block
ciphers; that is, they break up the plaintext into blocks of
a fixed length and encrypt one block at a time. Two well-
known classes of block ciphers are based on substitution
techniques and transposition techniques.

Substitution Algorithms. Substitution algorithms define
a mapping, based on the key, between characters in the
plaintext and characters in the ciphertext. Some substitu-
tion techniques are as follows.

Simple Substitution. Simple substitution algorithms are
based on a one-to-one mapping between the plaintext
alphabet and the ciphertext alphabet. Each character in
the plaintext alphabet is therefore replaced with a fixed
substitute in the ciphertext alphabet. An example of simple
substitution is represented by the algorithms based on
shifted alphabets, in which each letter of the plaintext is
mapped onto the letter at a given fixed distance from it in
the alphabet (wrapping the last letter with the first). An
example of such algorithms is the Caesar cipher in which
each letter is mapped to the letter three positions after it in
the alphabet. Thus, A is mapped to D, B to E, and Z to C. For
instance, thistext would be encrypted as wklvwhaw.
Simple substitution techniques can be broken by analyzing
single-letter frequency distribution (26).

plaintext ciphertextsecret key

encrypt

decrypt

plaintext ciphertext

private key

public key

encrypt

decrypt

Figure 7. Secret key versus public key cryptography.

10 DATA SECURITY



Homophonic Substitution. Homophonic substitution
algorithms map each character of the plaintext alphabet
onto a set of characters, called its homophones, in the
ciphertext alphabet. There is therefore a one-to-many map-
ping between a plaintext character and the corresponding
characters in the ciphertext. (Obviously, the vice versa is
not true as decrypting cannot be ambiguous.) In this way,
different occurrences of the same character in the plaintext
may be mapped to different characters in the ciphertext.
This characteristic allows the flattening of the letter fre-
quency distribution in the ciphertext and proves a defense
against attacks exploiting it. A simple example of homo-
phonic substitution (although not used for ciphering) can be
seen in the use of characters for phone numbers. Here, the
alphabet of the plaintext are numbers, the alphabet of the
ciphertext are the letters of the alphabet, but Q and Z which
are not used, plus numbers 0 and 1 (which are not mapped
to any letter). Number 2 maps to the first three letters of the
alphabet, number 3 to the second three letters, and so on.
For instance, number 6974663 can be enciphered as
myphone, where the three occurrences of character 6
have been mapped to three different letters.

Polyalphabetic Substitution. Polyalphabetic substitution
algorithms overcome the weakness of simple substitution
through the use of multiple substitution algorithms. Most
polyalphabetic algorithms use periodic sequences of alpha-
bets. For instance, the Vigenère cipher uses a word as a key.
The position in the alphabet of the ith character of the key
gives the number of right shifts to be enforced on each ith
element (modulo the key length) of the plaintext. For
instance, if key crypt is used, then the first, sixth,
eleventh, . . . , character of the plaintext will be shifted by
3 (the position of c in the alphabet); the second, seventh,
twelfth, . . . , character will be shifted by 17 (the position of r
in the alphabet); and so on.

Polygram Substitution. Although the previous algo-
rithms encrypt a letter at the time, polygram algorithms
encrypt blocks of letters. The plaintext is divided into blocks
of letters. The mapping of each character of a block depends
on the other characters appearing in the block. As an
example, the Playfair cipher uses as key a 5� 5 matrix,
where the 25 letters of the alphabet (J was not considered)
are inserted in some order. The plaintext is divided into
blocks of length two. Each pair of characters is mapped onto
a pair of characters in the ciphertext, where the mapping
depends on the position of the two plaintext characters in
the matrix (e.g., whether they are in the same column and/
or row). Polygram substitution destroys single-letter fre-
quency distribution, thus making cryptanalysis harder.

Transposition Algorithms. Transposition algorithms
determine the ciphertext by permuting the plaintext char-
acters according to some scheme. The ciphertext, therefore,
contains exactly the same characters as the plaintext but in
different order. Often, the permutation scheme is deter-
mined by writing the plaintext in some geometric figure and
then reading it by traversing the figure in a specified order.
Some transposition algorithms, based on the use of
matrixes, are as follows.

Column Transposition. The plaintext is written in a
matrix by rows and re-read by columns according to an
order specified by the key. Often the key is a word: The
number of characters in the key determines the number of
columns, and the position of the characters considered in
alphabetical order determines the order to be considered in
the reading process. For instance, key crypt would imply
the use of a five-column matrix, where the order of the
columns to be read is 14253 (the position in the key of the
key characters is considered in alphabetical order). Let’s
say now that the plaintext to be encrypted is acme has
discovered a new fuel. The matrix will look like as
follows:

c r y p t

1 3 5 2 4
a c m e h

a s d i s

c o v e r

e d a n e

w f u e l

The corresponding ciphertext is aaceweienecsodfhs-
relmdvau.

Periodic Transposition. It is a variation of the previous
technique, where the text is also read by rows (instead of by
columns) according to a specified column order. More pre-
cisely, instead of indicating the columns to be read, the key
indicates the order in which the characters in each row
must be read, and the matrix is read row by row. For
instance, by using key crypt, the ciphertext is obtained
by reading the first, fourth, second, fifth, and third char-
acter of the first row, then the second row is read in the
same order, the third row, and so on. This process is
equivalent to breaking the text in blocks with the same
length as the key, and to permuting the characters in each
block according to the order specified by the key. In this
case, the ciphertext corresponding to the plaintext acme
has discovered a new fuel is aechmaissdceorven-
deaweflu.

Pure transposition and substitution techniques prove
very vulnerable. For instance, transposition algorithms
can be broken through anagramming techniques, because
the characters in the ciphered text correspond exactly to the
characters in the plaintext. Also, the fact that a transposi-
tion method has been used to encrypt can be determined by
the fact that the ciphertext respects the frequency letter
distribution of the considered alphabet. Simple substitu-
tion algorithms are vulnerable from attacks exploiting
single-letter frequency distribution. Among them, shifted
alphabet ciphers are easier to break, given that the map-
ping function applies the same transformation to all char-
acters. Stronger algorithms can be obtained by combining
the two techniques (27).

Advanced Encryption Standard (AES). In November 2001,
the National Institute of Standards and Technology
announced the approval of a new secret key cipher standard
chosen among 15 candidates. This new standard algorithm
was meant to replace the old DES algorithm (28), whose key

DATA SECURITY 11



sizes were becoming too small. Rijndael, a compressed
name taken from its inventors Rijmen and Daemen, was
chosen to become the future Advanced Encryption
Standard (AES) (29). AES is a block cipher that can process
128-bit block units using cipher keys with lengths of 128,
192, and 256 bits. Strictly speaking, AES is not precisely
Rijndael (although in practice they are used interchange-
ably) as Rijndael supports a larger range of block and key
sizes. Figure 8 illustrates the AES operational mode. It
starts with an initial round followed by a number of stan-
dard rounds and ends with a final round. The number of
standard round is dependent on the key length as illu-
strated in Table 1. AES operates on a 4� 4 array of bytes
(the intermediate cipher result), called the state.

AddRoundKey. The AddRoundKey operation is a simple
EXOR operation between the state and the roundkey. The
roundkey is derived from the secret key by means of a key
schedule. The number of roundkey necessary to encrypt one
block of the plaintext depends on the key length as this
determines the number of rounds. For instance, for a key
length of 128 bits, 11 roundkeys are needed. The keys are
generated recursively. More precisely, key ki of the ith
round is obtained from the key expansion routine using
subkey ki�1 of round i� 1-th and the secret key.

SubBytes. In the SubBytes operation, each byte in the
state is updated using an 8-bit S-box. This operation
provides the nonlinearity in the cipher. The AES S-box is
specified as a matrix M16� 16. The first digit d1 of the
hexadecimal number corresponding to a state byte is
used as a row index and the second digit d2 as a column
index. Hence, cell M[d1, d2] contains the new hexadecimal
number.

Shift Rows. In the ShiftRows operation, the rows of state
are cyclically shifted with different offsets. The first row is
shifted over 1 byte, the second row over 2 bytes, and the
third row over 3 bytes.

MixColumns. The MixColumns operation operates on
the columns of the state, combining the four bytes in
each column using a linear transformation. Together
with ShiftRows, MixColumns provides diffusion1 in the
cipher.

Note that in the AES algorithm encipherment and deci-
pherment consists of different operations. Each operation
that is used for encryption must be inverted to make it
possible to decrypt a message (see Fig. 8).

Asymmetric Key Encryption

Asymmetric key encryption algorithms use two different
keys for encryption and decryption. They are based on the
application of one-way functions. A one-way function is a

Figure 8. Encryption and decryption
phases of the AES algorithm.

Initial round

AddRoundKey

Standard round

AddRoundKey
MixColumns

SubBytes

Final round
SubBytes

ShiftRows

ShiftRows
AddRoundKey

plaintext

ciphertext

Nr−1
round

K

K

K

Encryption

plaintext

ciphertext

Nr−1
round

K

K

K

InvInitial round

InvFinal round

AddRoundKey

AddRoundKey
InvMixColumns

InvShiftRows
InvSubBytes

AddRoundKey
InvShiftRows
InvSubBytes

InvStandard round

Decryption

Table 1. Number of rounds

Key length (words) Number of rounds (Nr)

AES-128 4 10
AES-192 6 12
AES-256 8 14

1A word is 32 bits.

1Diffusion refers to the property that redundancy in the statistics of
the plaintext is ‘‘dissipated’’ in the statistics of the ciphertext (27).
In a cipher with good diffusion, flipping an input bit should change
each output bit with a probability of one half.

12 DATA SECURITY



function that satisfies the property that it is computation-
ally infeasible to compute the input from the result. Asym-
metric key encryption algorithms are therefore based on
hard-to-solve mathematical problems, such as computing
logarithms, as in the proposals by Diffie and Hellman (30),
(the proponents of public key cryptography) and by
ElGamal (31), or factoring, as in the RSA algorithm illu-
strated next.

The RSA Algorithm. The most well-known public key
algorithm is the RSA algorithm, whose name is derived
from the initials of its inventor (Rivest, Shamir, and
Adleman) (32). It is based on the idea that it is easy to
multiply two large prime numbers, but it is extremely
difficult to factor a large number. The establishment of
the pair of keys works as follows. The user wishing to
establish a pair of keys chooses two large primes p and q
(which are to remain secret) and computes n ¼ pq and
fðnÞ ¼ ðp� 1Þðq� 1Þ, where fðnÞ is the number of ele-
ments between 0 and n� 1 that are relatively prime
to n. Then, the user chooses an integer e between 1 and
fðnÞ � 1 that is relatively prime to fðnÞ, and computes its
inverse d such that ed� 1 modfðnÞ. d can be easily com-
puted by knowing fðnÞ. The encryption function E raises
the plaintext M to the power e, modulo n. The decryption
function D raises the ciphertext C to the power d, modulo n.
That is, EðMÞ ¼Me mod n and DðCÞ ¼ Cd mod n. Here, the
public key is represented by the pair (e, n) and the private
key by d. Because fðnÞ cannot be determined without
knowing the prime factors p and q, it is possible to keep
d secret even if e and n are made public. The security of the
algorithm depends therefore on the difficulty of factoring n
into p and q. Usually a key with n of 512 bits is used, whose
factorization would take a half-million MIPS-years with
the best techniques known today. The algorithm itself,
however, does not constraint the key length. The key length
is variable. A longer key provides more protection, whereas a
shorter key proves more efficient. The authors of the algo-
rithm suggested using a 100-digit number for p and q, which
would imply a 200-digit number for n. In this scenario,
factoring n would take several billion years. The block
size is also variable, but it must be smaller than the length
of the key. The ciphertext block is the same length as the key.

Application of Cryptography

Cryptographic techniques can be used to protect the secrecy
of information stored in the system, so that it will not be
understandable to possible intruders bypassing access con-
trols. For instance, password files are generally encrypted.
Cryptography proves particularly useful in the protection
of information transmitted over a communication network
(33). Information transmitted over a network is vulnerable
from passive attacks, in which intruders sniff the informa-
tion, thus compromising its secrecy, and from active
attacks, in which intruders improperly modify the informa-
tion, thus compromising its integrity. Protecting against
passive attacks means safeguarding the confidentiality of
the message being transmitted. Protecting against active
attacks requires us to be able to ensure the authenticity of
the message, its sender, and its receiver. Authentication of

the receiver means that the sender must be able to verify
that the message is received by the recipient for which it
was intended. Authentication of the sender means that the
recipient of a message must be able to verify the identity of
the sender. Authentication of the message means that
sender and recipient must be able to verify that the message
has not been improperly modified during transmission.

Both secret and public key techniques can be used to
provide protection against both passive and active attacks.
The use of secret keys in the communication requires the
sender and the receiver to share the secret key. The sender
encrypts the information to be transmitted by using the
secret key and then sends it. Upon reception, the receiver
decrypts the information with the same key and recovers
the plaintext. Secret key techniques can be used if there is
confidence in the fact that the key is only known by the
sender and recipient and no disputes can arise (e.g., a
dispute can arise if the sender of a message denies having
ever sent it). Public keys, like secret keys, can provide
authenticity of the sender, the recipient, and the message
as follows. Each user establishes a pair of keys: The private
key is known only to her, and the public key can be known to
everybody. A user wishing to send a message to another
user encrypts the message by using the public key of the
receiver and then sends it. Upon reception, the receiver
decrypts the message with his/her private key. Public keys
can also be used to provide nonrepudiation, meaning the
sender of a message cannot deny having sent it. The use of
public keys to provide nonrepudiation is based on the
concept of digital signatures, which, like handwritten sig-
natures, provide a way for a sender to sign the information
being transmitted. Digital signatures are essentially
encoded information, a function of the message and the
key, which are appended to a message. Digital signatures
can be enforced through public key technology by having
the sender of a message encrypting the message with her
private key before transmission. The recipient will retrieve
the message by decrypting it with the public key of the
sender. Nonrepudiation is provided because only the sen-
der knows her public key and therefore only the sender
could have produced the message in question. In the appli-
cation of secret keys, instead, the sender can claim that the
message was forged by the recipient herself, who also
knows the key. The two uses of public keys can be combined,
thus providing sender, message, and recipient authentica-
tion, together with nonrepudiation.

Public key algorithms can do everything that secret key
algorithms can do. However, all known public key algo-
rithms are orders of magnitude slower than secret key
algorithms. For this reason, often public key techniques
are used for things that secret key techniques cannot do. In
particular, they may be used at the beginning of a commu-
nication for authentication and to establish a secret key
with which to encrypt information to be transmitted.

AUTHENTICATION AND ACCESS CONTROL IN OPEN
SYSTEMS

Throughout this chapter, we illustrated the services crucial
to the protection of data. In this section, we present ongoing

DATA SECURITY 13



work addressing authentication and access control in emer-
ging applications and new scenarios.

Authentication in Open Environments

Today, accessing information on the global Internet has
become an essential requirement of the modern economy.
Recently, the focus has shifted from access to traditional
information stored in WWW sites to access to large
e-services (34). Global e-services are also coming of age,
designed as custom applications exploiting single
e-services already available on the Internet and integra-
ting the results. In such a context, users normally have to
sign-on to several distributed systems where e-services
were built up in a way that they act independently as
isolated security domains. Therefore, each user who wants
to enter one of these domains has to authenticate herself
at each of these security domains by the use of separate
credentials (see Fig. 9). However, to realize the cooperation
of services located in different domains, there is a need to
have some authentication mechanism that does not require
the user to authenticate and enter her user credentials
several times. On corporate networks as well as on the
global Net, access to services by single-sign-on authentica-
tion is now becoming a widespread way to authenticate
users. Single-sign-on authentication relying on digital
certificates (35) is currently the most popular choice for
e-business applications. The widespread adoption of
advanced Public-Key Infrastructure (PKI) technology and
PKI-based solutions has provided secure techniques for
outsourcing digital certificate management. Basically,
any certificate-based authentication language needs a
subject description, including a set of attributes. Several

standardization efforts are aimed at exploiting such
descriptions; for example, the Liberty Alliance (www.pro-
jectliberty.org) consortium is promoting a set of open stan-
dards for developing federated identity management
infrastructures. However, the most successful standard
is SAML (36), an authentication protocol handling authen-
tication information across transactions between parties.
Such an authentication information, which is wrapped into
a SAML document, is called an assertion and it belongs to
an entity (i.e., a human person, a computer, or any other
subject as well). According to the specifications, an asser-
tion may carry information about:

� Authentication acts performed by the subject.

� Attributes of the subject.

� Authorization decisions relating to the subject.

SAML assertions are usually transferred from identity
providers (i.e., authorities that provide the user’s identity
to the affiliated services) to service providers (i.e., entities
that simply offer services) and consist of one or more
statements. Three kinds of statements are allowed: authen-
tication statements, attribute statements, and authori-
zation decision statements. Authentication statements
assert to the service provider that the principal did indeed
authenticate with the identity provider at a particular time
using a particular method of authentication. Other infor-
mation about the principal may be disclosed in an auth-
entication statement. For instance, in the authentication
statement in Fig. 10, the e-mail address of the principal is
disclosed to the service provider. Note that the three state-
ment types are not mutually exclusive. For instance, both

Figure 9. Multiple domains
requiring multiple credentials.

Domain 1

Domain 3

User

 

credential 1

Domain 2

credential 2

credential 3

14 DATA SECURITY



authentication statements and attribute statements may
be included in a single assertion. Beside the format of the
assertion, the SAML specifications include an XML-based
request-response protocol for interchanging the assertions.
By the use of this protocol, an assertion consuming service
can request a specified assertion belonging to a given sub-
ject or entity. This protocol can be based on various existing
transport protocols such as HTTP or SOAP over HTTP.

Attribute-based Access Control

As said, in open environments, resource/service requesters
are not identified by unique names but depend on their
attributes (usually substantiated by certificates) to gain
accesses to resources. Basing authorization on attributes
of the the resource/service requester provides flexibility
and scalability that is essential in the context of large
distributed open systems, where subjects are identified
by using a certificate-based authentication language. Attri-
bute-based access control differs from the traditional dis-
cretionary access control model by replacing both the
subject by a set of attributes and the objects by descriptions
in terms of available properties associated with them. The
meaning of a stated attribute may be a granted capability
for a service, an identity, or a nonidentifying characteristic
of a user (e.g., a skill). Here, the basic idea is that not all
access control decisions are identity based. For instance,
information about a user’s current role (e.g., physician) or a
client’s ability to pay for a resource access may be more
important than the client’s identity.

Several proposals have been introduced for access con-
trol to distributed heterogeneous resources from multiple
sources based on the use of attribute certificates (37–40). In
such a context, two relevant access control languages using
XML are WS-Policy (41) and XACML (42). Based on the
WS-Security (43), WS-Policy provides a grammar for
expressing Web service policies. The WS-Policy includes
a set of general messaging related assertions defined in
WS-Policy Assertions (44) and a set of security policy
assertions related to supporting the WS-Security specifica-
tion defined in WS-SecurityPolicy (45). In addition to the
WS-Policy, WS-Policy Attachment (46) defines how to
attach these policies to Web services or other subjects

(e.g., service locators). The eXtensible Access Control
Markup Language (XACML) (42) is the result of a recent
OASIS standardization effort proposing an XML-based
language to express and interchange access control poli-
cies. XACML is designed to express authorization policies
in XML against objects that are themselves identified in
XML. The language can represent the functionalities of
most policy representation mechanisms. The main concep-
tual difference between XACML and WS-Policy is that
although XACML is based on a model that provides a
formal representation of the access control security policy
and its workings, WS-Policy has been developed without
taking into consideration this modeling phase. The result is
an ambiguous language that is subject to different inter-
pretations and uses. This means that given a set of policies
expressed by using the syntax and semantics of WS-Policy,
their evaluation may have a different result depending on
how the ambiguities of the language have been resolved.
This is obviously a serious problem, especially in the access
control area, where access decisions have to be determinis-
tic (47,48). In the remainder of this section, we focus on
XACML.

XACML Policy Language Model. XACML describes both
an access control policy language and a request/response
language. The policy language is used to express access
control policies (who can do what when). The request/
response language expresses queries about whether a par-
ticular access (request) should be allowed and describes
answers (responses) to those queries (see the next subsec-
tion). Figure 11 formally illustrates the XACML policy
language model, where the main concepts of interests
are rule, policy, and policy set. An XACML policy has as
a root element, either a Policy or a PolicySet. A
PolicySet is a collection of Policy or PolicySet. An
XACML policy consists of a target, a set of rules, an optional
set of obligations, and a rule combining algorithm.

Target. A Target basically consists of a simplified set of
conditions for the subject, resource, and action that must be
satisfied for a policy to be applicable to a given access
request: If all conditions of a Target are satisfied, its

Figure 10. An example of SAML authentication assertion.

DATA SECURITY 15



associated Policy (or Policyset) applies to the request.
If a policy applies to all subjects, actions, or resources, an
empty element, named AnySubject, AnyAction, and
AnyResource, respectively, is used.

Rule. A Rule specifies a permission (permit) or a denial
(deny) for a subject to perform an action on an object. The
components of a rule are a target, an effect, and a condition.
The target defines the set of resources, subjects, and actions
to which the rule is intended to apply. The effect of the rule
can be permit or deny. The condition represents a boolean
expression that may further refine the applicability of the
rule. Note that the Target element is an optional element:
A rule with no target applies to all possible requests. An
important feature of XACML is that a rule is based on the
definition of attributes corresponding to specific character-
istics of a subject, resource, action, or environment. For
instance, a physician at a hospital may have the attribute of
being a researcher, a specialist in some field, or many other
job roles. According to these attributes, that physician can
perform different functions within the hospital. As another
example, a particular function may be dependent on the
time of the day (e.g., access to the patient records can
be limited to the working hours of 8:00 am to 6:00 pm).
An access request is mainly composed of attributes that
will be compared with attribute values in a policy to
make an access decision. Attributes are identified by the

SubjectAttributeDesignator, ResourceAttribu-
teDesignator, ActionAttributeDesignator, and
EnvironmentAttributeDesignator elements. These
elements use the AttributeValue element to define
the value of a particular attribute. Alternatively, the
AttributeSelector element can be used to specify
where to retrieve a particular attribute. Note that both
the attribute designator and the attribute selector elements
can return multiple values. For this reason, XACML pro-
vides an attribute type called bag. A bag is an unordered
collection and it can contain duplicates values for a parti-
cular attribute. In addition, XACML defines other standard
value types such as string, boolean, integer, and time.
Together with these attribute types, XACML also defines
operations to be performed on the different types, such
as equality operation, comparison operation, and string
manipulation.

Obligation. An Obligation is an operation that has to
be performed in conjunction with the enforcement of an
authorization decision. For instance, an obligation can
state that all accesses on medical data have to be logged.
Note that only policies that are evaluated and have
returned a response of permit or deny can return obliga-
tions. More precisely, an obligation is returned only if the
effect of the policy matches the value specified in the Full-
fillOn attribute associated with the obligation. This means

Figure 11. XACML policy language model 42.

PolicySet

Policy
Combining
Algorithm

Rule
Combining
Algorithm

Policy Obligations

Rule

Condition

Effect

Target

Subject Resource Action

1 1

1

1

1

1 1 1 1

1

1

1 1 1

1

1

1

1

0..*

0..*0..*

0..*

1..*1..*1..*

0..1
0..1
0..1

0..1

16 DATA SECURITY



that if a policy evaluates to indeterminate or not
applicable, then the associated obligations are not
returned.

Rule Combining Algorithm. Each Policy also defines a
rule combining algorithm used for reconciling the decisions
each rule makes. The final decision value, called the author-
ization decision, inserted into the XACML context is the
value of the policy as defined by the rule combining algo-
rithm. XACML defines different combining algorithms.
Examples of these are as follows:

� Deny overrides. If a rule exists that evaluates to deny
or, if all rules evaluate to not applicable, then the

result is deny. If all rules evaluate to permit, then
the result ispermit. If some rules evaluate topermit
and some evaluate to not applicable, then the
result is permit.

� Permit overrides. If a rule exists that evaluates to
permit, then the result ispermit. If all rules evaluate
to not applicable, then the result is deny. If some
rules evaluate to deny and some evaluate to not
applicable, then the result is deny.

� First applicable. Each rule is evaluated in the order in
which it appears in the Policy. For each rule, if the
target matches and the conditions evaluate to true,
then the result is the effect (permit or deny) of such a
rule. Otherwise, the next rule is considered.

Figure 12. An example of
XACML policy.

DATA SECURITY 17



� Only-one-applicable. If more than one rule applies,
then the result is indeterminate. If no rule applies,
then the result is not applicable. If only one policy
applies, the result coincides with the result of eva-
luating that rule.

In summary, according to the selected combining algo-
rithm, the authorization decision can be permit, deny,
not applicable (when no applicable policies or rules
could be found), or indeterminate (when some errors
occurred during the access control process).

The PolicySet element consists of a set of policies, a
target, an optional set of obligations, and a policy combining
algorithm. The policy, target, and obligation components
are as described above. The policy combining algorithms
define how the results of evaluating the policies in the policy
set have to be combined when evaluating the policy set.
This value is then inserted in the XACML response context.
As an example of policy, suppose that there is a hospital
where a high-level policy states that:

Any member of the SeniorResearcher group can read
the research report web page www.hospital.com/research
report/reports.html.

Figure 12 shows the XACML policy corresponding to this
high-level policy. The policy applies to requests on the web
page http://www.hospital.com/research report/reports.html.
It has one rule with a target that requires an action of read
and a condition that applies only if the subject is a member of
the group SeniorResearcher.

XACML Request and Response

XACML defines a standard format for expressing requests
and responses. More precisely, the original request is
translated, through the context handler, in a canonical
form and is then evaluated. Such a request contains attri-
butes for the subject, resource, action, and optionally, for
the environment. Each request includes exactly one set
of attributes for the resource and action and at most one
set of environment attributes. There may be multiple sets of
subject attributes, each of which is identified by a category
URI. Figure 13(a) illustrates the XSD Schema of the
request. A response element contains one or more results,
each of which correspond to the result of an evaluation.
Each result contains three elements, namely Decision,
Status, and Obligations. The Decision element spe-
cifies the authorization decision (i.e., permit, deny,
indeterminate,not applicable), the Status element
indicates if some error occurred during the evaluation
process, and the optional Obligations element states
the obligations that must be fulfilled. Figure 13(b) illus-
trates the XSD Schema of the response.

As an example of request and response, suppose now
that a user belonging to group SeniorResearcher and
with email user1@hospital.com wants to read the www.ex-
ample.com/forum/private.html web page. The correspond-
ing XACML request is illustrated in Fig. 14(a). This request
is compared with the XACML policy in Fig. 12. The result is

that the user is allowed to access the requested web page.
The corresponding XACML response is illustrated in
Fig. 14(b).

CONCLUSIONS

Ensuring protection to information stored in a computer
system means safeguarding the information against pos-
sible violations to its secrecy, integrity, or availability. This
is a requirement that any information system must satisfy
and that requires the enforcement of different protection
methods and related tools. Authentication, access control,
auditing, and encryption are all necessary to this task. As it
should be clear from this article, these different measures
are not independent but strongly dependent on each other.
Access control relies on good authentication, because
accesses allowed or denied depend on the identity of the
user requesting them. Strong authentication supports good
auditing, because users can be held accountable for their
actions. Cryptographic techniques are necessary to ensure
strong authentication, for example, to securely store or
transmit passwords. A weakness in any of these measures
may compromise the security of the whole system (a chain is
as strong as its weakness link). Their correct and coordi-
nated enforcement is therefore crucial to the protection of
the information.

ACKNOWLEDGMENT

This work was supported in part by the European Union
within the PRIME Project in the FP6/IST Programme
under contract IST-2002-507591 and by the Italian
MIUR within the KIWI and MAPS projects.

Figure 13. (a) XACML request schema and (b) response
schema.

18 DATA SECURITY



BIBLIOGRAPHY

1. S. Castano, M.G. Fugini, G. Martella, and P. Samarati, Data-
base Security, Reading, MA: Addison-Wesley, 1995.

2. F. Monrose and A. Rubin, Authentication via keystroke
dynamics, Proc. of the ACM Conference on Computer and
Communications Security, Zurich, Switzerland, 1997.

3. T. Fine and S. E. Minear, Assuring distributed trusted mach,
Proc. IEEE Symp. on Security and Privacy, Oakland, CA, 1993,
pp. 206–218.

4. S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian,
Flexible support for multiple access control policies, ACM
Transactions on Database Systems, 26 (2): 214–260, 2001.

5. O.S. Saydjari, S.J. Turner, D.E. Peele, J.F. Farrell, P.A.
Loscocco, W. Kutz, and G.L. Bock, Synergy: A distributed,
microkernel-based security architecture, Technical report,
National Security Agency, Ft. George G. Meade, MD,
November 1993.

6. T.Y.C. Woo and S.S. Lam, Authorizations in distributed sys-
tems: A new approach, Journal of Computer Security, 2 (2,3):
107–136, 1993.

7. R.W. Baldwin, Naming and grouping privileges to simplify
security management in large databases, Proc. IEEE Sympo-
sium on Security and Privacy, Oakland, CA, 1990, pp. 61–70.

8. T. Lunt, Access control policies: Some unanswered questions,
IEEE Computer Security Foundations Workshop II, Franconia,
NH, June 1988, pp. 227–245.

9. H. Shen and P. Dewan, Access control for collaborative envir-
onments, Proc. Int. Conf. on Computer Supported Cooperative
Work, November pp. 51–58.

10. E. Bertino, S. Jajodia, and P. Samarati, Supporting multiple
access control policies in database systems, Proc. IEEE
Symp. on Security and Privacy, Oakland, CA, 1996.

11. E. Bertino, S. Jajodia, and P. Samarati, A flexible authorization
mechanism for relational data management systems, ACM
Transactions on Information Systems, 17 (2): 101–140, 1999.

12. F. Rabitti, E. Bertino, W. Kim, and D. Woelk, A model of
authorization for next-generation database systems, ACM
Transactions on Database Systems, 16 (1), 1991.

13. E. Bertino, S. De Capitani di Vimercati, E. Ferrari, and P.
Samarati, Exception-based information flow control! in object-
oriented systems, ACM Transactions on Information and Sys-
tem Security,1 (1): 26–65, 1998.

14. D.E. Denning, A lattice model of secure information flow,
Communications of the ACM, 19 (5): 236–243, 1976.

15. R. Graubart, On the need for a third form of access control,
NIST-NCSC National Computer Security Conference, 1989,
pp. 296–303.

16. P.A. Karger, Limiting the damage potential of discretionary
trojan horses, Proc. IEEE Symposium on Security and Privacy,
Oakland, CA, 1987.

17. C.J. McCollum, J.R. Messing, and L. Notargiacomo, Beyond
the pale of mac and dac - defining new forms of access control,
Proc. IEEE Computer Society Symposium on Security and
Privacy, Oakland, CA, 1990, pp. 190–200.

18. J. McLean, Security models and information flow, Proc. IEEE
Computer Society Symposium on Research in Security and
Privacy, Oakland, CA, 1990, pp. 180–187.

Figure 14. (a) An example of
XACML request and (b) response.

DATA SECURITY 19



19. D.E. Bell and L.J. LaPadula, Secure computer systems: Unified
exposition and Multics interpretation, Technical report, The
Mitre Corp., March 1976.

20. D.F. Ferraiolo and R. Kuhn, Role-based access controls, Proc.
of the NIST-NCSC National Computer Security Conference,
Baltimore, MD, 1993, pp. 554–563.

21. R. Sandhu, E.J Coyne, H.L. Feinstein, and C.E. Youman, Role-
based access control models, IEEE Computer, 29 (2): 38–47,
1996.

22. D.J. Thomsen, Role-based application design and enforcement,
in S. Jajodia and C.E. Landwehr, (eds.), Database Security IV:
Status and Prospects, North-Holland, 1991, pp. 151–168.

23. D.F.C Brewer and M.J. Nash, The chinese wall security policy,
Proc. IEEE Computer Society Symposium on Security and
Privacy, Oakland, CA, 1989, pp. 215–228.

24. M.N. Nash and K.R. Poland, Some conundrums concerning
separation of duty, Proc. IEEE Computer Society Symposium
on Security and Privacy, Oakland, CA, 1982, pp. 201–207.

25. R. Sandhu, Transaction control expressions for separation of
duties, Fourth Annual Computer Security Application Confer-
ence, Orlando, FL, 1988, pp. 282–286.

26. D.E. Denning, Cryptography and Data Security. Reading, MA:
Addison-Wesley, 1982.

27. C.E. Shannon, Communication theory of secrecy systems, Bell
System Technical Journal, 28 (4): 656–715, October 1949.

28. National Bureau of Standard, Washington, D.C, Data Encryp-
tion Standard, January 1977. FIPS PUB 46.

29. National Institute of Standards and Technology (NIST),
Washington, D.C, Advanced Encryption Standard (AES),
November 2001. FIPS-197.

30. W. Diffie and M. Hellman, New directions in cryptography,
IEEE Transaction on Information Theory, 22 (6): 644–654,
1976.

31. T. ElGamal, A public key cryptosystem and a signature
scheme based on discrete logarithms, IEEE Transaction on
Information Theory, 31 (4): 469–472, 1985.

32. R.L. Rivest, A. Shamir, and L. Adleman,A method for obtaining
digital signatures and public-key cryptosystems, Communica-
tions of the ACM, 21 (2): 120–126, February 1978.

33. C. Kaufman, R. Perlman, and M. Speciner, Network Security,
Englewood Cliffs, NJ: Prentice Hall, 1995.

34. S. Feldman, The Changing Face of E-Commerce, IEEE Inter-
net Computing, 4 (3): 82–84, 2000.

35. P. Samarati and S. De Capitani di Vimercati, Access control:
Policies, models, and mechanisms, in R. Focardi and R.
Gorrieri, (eds.), Foundations of Security Analysis and Design,
LNCS 2171. Springer-Verlag, 2001.

36. OASIS, Security Assertion Markup Language (SAML)
V1.1,2003. Available: http://www.oasis-open.org/committees/
security/.

37. P. Bonatti and P. Samarati, A unified framework for regulating
access and information release on the web, Journal of Com-
puter Security, 10 (3): 241–272, 2002.

38. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P.
Samarati, Securing SOAP E-services, International Journal of
Information Security (IJIS), 1 (2): 100–115, 2002.

39. J.A. Hine, W. Yao, J. Bacon, and K. Moody, An architecture for
distributed OASIS services, Proc. of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms nd Open
Distributed Processing, Hudson River Valley, New York, 2000.

40. H. Koshutanski and F. Massacci, An access control framework
for business processes for web services, Proc. of the 2003 ACM
workshop on XML security, Fairfax, VA, 2003.

41. D. Box et al., Web Services Policy Framework (WS-Policy)
version 1.1. Available: http://msdn. microsoft.com/library/en-
us/dnglobspec/html/ws-policy.asp, May 2003.

42. OASIS eXtensible Access Control Markup Language (XACML)
version 1.1. Available: http://www. oasis-open.org/committees/
xacml/repository/cs-xacml-specific%ation-1.1.pdf.

43. B. Atkinson and G. Della-Libera et al. Web services security
(WS-Security). http://msdn. microsoft.com/library/en-us/
dnglobspec/html/ws-security.asp%, April 2002.

44. D. Box et al., Web services policy assertions language (WS-
PolicyAssertions) version 1.1. http://msdn.microsoft.com/
library/en-us/dnglobspec/html/ws-policyassert%ions.asp,
May 2003.

45. Web services security policy (WS-SecurityPolicy), Available:
http://www-106.ibm.com/developerworks/library/ws-secpol/.
December 2002.

46. D. Boxet al. Web Services Policy Attachment (WS-PolicyAt-
tachment) version 1.1. Available: http://msdn.microsoft.com/
library/en-us/dnglobspec/html/ws-policyattach%ment.asp,
May 2003.

47. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, An XPath-based
preference language for P3P, Proc. of the World Wide Web
Conference, Budapest, Hungary, 2003.

48. C. Ardagna and S. De Capitani di Vimercati, A comparison of
modeling strategies in defining xml-based access control lan-
guages, Computer Systems Science & Engineering Journal,19
(3), 2004.

SABRINA DE CAPITANI DI

VIMERCATI

PIERANGELA SAMARATI

Università degli Studi di Milano
Crema, Italy

SUSHIL JAJODIA

George Mason University
Fairfax, Virginia

20 DATA SECURITY



D

DATA STRUCTURES AND ALGORITHMS

INTRODUCTION

An algorithm is a finite procedure, with a well-defined set
of steps, aimed at solving a specific problem. Algorithms
are present in any problem-solving task involving the use
of computers in numerical or nonnumerical applications.
An algorithm is usually required to stop in a finite number
of steps, although some useful procedures are meant
to be run continuously, such as operating systems and
related system software. These procedures are sometimes
not regarded as algorithms, but simply as programs. In
general, a program is a set of machine-readable and
executable codes used to implement algorithms.

These definitions make clear the fact that an algorithm
is a high-level description, which should be indepen-
dent of the underlying machine that is used to implement
it. This requirement is important to simplify the task of
analysis of the properties of an algorithm: We do not
need to consider all possible machine details necessary
to implement it, but only the properties common to all
such implementations.

Algorithms can be classified and studied according to
their performance characteristics. Among all algorithms to
solve a specific problem, we clearly want the ones that have
better performance, according to established performance
measurements for an application. Among the performance
parameters used for classification purposes, the most
important are time and space. For a specified problem,
the time and space taken by the algorithm with best pos-
sible performance are called the time and space complexity
measures for the problem.

Space is a simpler measure to analyze, as it is clearly tied
to time: An algorithm cannot use more than t units of space,
where t is the total time spent by the algorithm. Usually,
the space used by an algorithm is clearly identifiable from
the data structures used in its operation. For example, if an
algorithm operates using only a vector that depends on the
size of the input, the space complexity of the algorithm can
be bounded by a function of the input size.

On the other hand, time complexity is difficult to char-
acterize in general. In fact, the most fundamental question
about an algorithm, whether it stops in finite time or not, is
known to be undecidable (i.e., it cannot be answered in
general). Although this result is a very negative result, it is
still possible to analyze the time complexity of several
classes of practical algorithms, which is the main objective
of the area of analysis of algorithms. This type of analysis is
important because time complexity is the main restriction
on applying an algorithm in practice. Consider, for exam-
ple, an algorithm that takes time exponential in the size of
the input. Such an algorithm is not practical, unless the size
of the inputs for the considered problem is always very
small. For general inputs, such algorithm will easily sur-
pass any reasonable time limit.

More formally, the time complexity of an algorithm is
usually defined as the total number of elementary opera-
tions (arithmetic operations, comparisons, branching
instructions, etc.) performed. The time complexity is gen-
erally quantified as a function of the input size. The input
size of a problem is the total number of bits required to
represent all data necessary for solving the problem. For
example, if an algorithm receives as input a vector with n
integer values, each value represented in binary notation,
then the number of bits required to represent the input is
n[log K], where K is an upper bound on the maximum value
stored on any position of the input vector (note that all
logarithms discussed in this article are taken with respect
to the base 2). It is common to assume that integer numbers
used in an algorithm are all limited in size to a given upper
bound, unless it is an important parameter (for example, in
numerical algorithms such as factorization). Thus, it is
usual to say that the input size for a vector of n integers
is equal to n.

When analyzing an algorithm, the main concern is in
understanding its performance under different conditions.
Most common conditions considered are the following:

� Worst case: By the worst case of an algorithm, we mean
the maximum time necessary to compute its result, for
some fixed input size. The worst case analysis is
usually considered the best way of analyzing algo-
rithms, because it gives a time complexity bound
that is independent of the input. It is also surprisingly
easy to compute for most problems.

� Average case: The average case analysis of an algo-
rithm is concerned with the expected time necessary
for the algorithm to run, for all data inputs with fixed
size. Average case analysis generally requires some
assumptions about the probabilistic distribution of
input data, and therefore the results are dependent
on such assumptions, which are not easy to guess in
most cases. Moreover, the stochastic analysis of even
the simplest algorithms may become a daunting task.

� Best case: It is the time complexity of an algorithm
under the best conditions for a specific input size.
Although simple to compute in most cases, the best
case analysis is not very useful to predict the actual
performance of an algorithm in real situations.

From the three types of analysis shown above, worst case
analysis is the most interesting from the theoretical as well
as practical point of view. As an example of the above
complexity cases, consider the classic problem of searching
a specific value x in a list of n elements. The simplest
algorithm consists of comparing x with each element in
sequence, from positions 1 to n. The worst case of this
algorithm occurs when the element searched is not present,
or when present in the last position. The best case occurs
when the searched element is in position 1. The average
case of the algorithm, however, depends on the distribution

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



of the input. If we assume that each value has the same
probability to occur in each position and there are no
repeated values, then, on average, n/2 comparisons are
necessary to find the desired element.

To simplify the study of time and space requirements of
algorithms, asymptotic notation is usually employed. This
notation allows one to ignore constant factors in the run-
ning time, making the analysis independent of different
specific details developing from the algorithm implementa-
tion. Given the integer functions f and g, we say that f ðnÞ ¼
OðgðnÞÞ (which is read as ‘‘f(n) is of the order of g(n)’’) if there
are constants c> 0 and N> 0, such that f ðnÞ � c � gðnÞ for
all n�N. Similarly, given the integer functions f and g, we
say that f ðnÞ ¼ VðnÞ if there are constants c> 0 and N> 0,
such that f ðnÞ� c � gðnÞ for all n�N. The notations for O
and V can be also combined by saying that f ðnÞ ¼ QðnÞ if
and only if f ðnÞ ¼ OðnÞ and f ðnÞ ¼ VðnÞ.

DATA STRUCTURES

Data structures are a fundamental aspect of algorithms,
because they describe how data will be manipulated in the
computer’s memory. The organization of data can make the
difference between effcient and inefficient algorithms. Con-
sider, for example, the problem of inserting a number in the
middle of an ordered list with n elements. This operation
can be done in constant (Oð1Þ) time if the list is manipulated
as a set of linked elements. On the other hand, if it is
represented as an array with fixed positions, it is necessary
to create space in the array for the required position, which
requires at least n/2 elements to be moved. Thus, the time
complexity in this case is OðnÞ.

Data structures can be studied from a high-level stand-
point, where we consider only the operations performed on
data. Data structures described in this way are called
abstract data types (ADT). ADTs are important because
they allow an abstraction of the properties of a data struc-
ture, which can have several implementations. Thus, a
second way of looking at data structures is through the
analysis of the actual implementation of its ADT, as data is
organized in the computer’s memory.

Queues and Stacks

AsanexampleofADT,considertheconceptofqueue.Aqueue
canreceivenewelementsatitsend.Elementscanberemoved
only at the beginning of the queue. The concept leads to the
formulation of the following natural operations: ADD(ELE-

MENT): adds ELEMENT to the end of the queue; REMOVE(ELE-

MENT): removes ELEMENT from the beginning of the queue.
The ADT queue can be implemented using several data

structures. The simplest implementation uses an array a
with n positions to hold the elements, considering that n is
the maximum size of the queue. This implementation has
the following properties: The ADD operation can be per-
formed in constant time, as we need only to update the
location of the last element (in this implementation, the
array is circular, for example, element a[1] comes right
after position a[n]). Similarly, the REMOVE operation can be
implemented just by decreasing the position of the front of
the queue, and therefore it can be performed in constant

time. A second implementation of queue uses doubly linked
lists. This implementation has similar time complexity,
because it needs only to add or remove an element and
its corresponding links. However, it has the advantage that
it is not restricted to the size of a preallocated array.

A second useful ADT is the stack. It has the same
operations as a queue, but the semantic of the operations
is different: ADD puts a new element on the top of a stack,
and REMOVE takes the element that is at its top. Similarly to
queues, implementations can be based on arrays or linked
lists, operating in constant time.

Queues and stacks are examples of more general data
structures that support a set of operations, in this case ADD

and REMOVE. This class of data structures include all gen-
eral lists, where insertion and removal can occur in any
position of the list.

A well-known class of data structures is the dictionary,
with the operations INSERT, DELETE, and SEARCH. Still
another class is the priority queue, where the desired
operations are FIND-MIN, DELETE-MIN, and INSERT.

Binary Trees

A binary tree is a recursive structure that can be either
empty or have a root node with two children, which are
themselves binary trees. Binary trees are important data
structures used to implement abstract data types. An
example of abstract structure that can be implemented
with binary trees are dictionaries.

A special node in the binary tree is the root node, which is
the top level node. At the lower level of the tree are the
leaves, defined as subtrees with empty children. The level of
a node x is an indicator of distance from x to the root node.
The level of the root is defined to be 1, and the level a child
node is defined as 1 plus the level of its parent node. The
height of a tree is the maximum level of any of its nodes.

The main feature of binary trees is that they can be used
to segment the domain of elements stored in their nodes
into two subdomains at each node, which allows some
algorithms running in binary trees to operate on time
Oðlog nÞ. Consider a binary tree implementing a dictionary,
where the elements are integer numbers. We can store a
number x in the tree using the following strategy: Check
initially the root node. If it is empty, store x in the root of the
subtree. Otherwise, let the value stored there be equal to r.
If x< r, then check recursively the left child tree; if x> r,
then check recursively the left child tree. Searching the
binary tree (instead of inserting a node) is similar, but we
just need to check if x ¼ r and return when this is true. Note
that we are partitioning the solution space into two subsets
at each step of the algorithm. The resulting data structure
is called a binary search tree.

As an example of binary tree, consider Fig. 1. We assume
that we want to insert the value 36 into the tree. The first
comparison with the root node will determine that the
position of the value must be on the right subtree. The
second comparison with 45 will then result in the selection
of the left subtree. Comparing with the value 38, we see that
the element must be on the left subtree. Finally, the com-
parison with the empty subtree shows that it is the position
at which the node with value 36 should be inserted.

2 DATA STRUCTURES AND ALGORITHMS



A closer examination of the tree in Fig. 1 reviews that
a possible order for insertion of the values in the tree is
38, 17, 45, 8, 32, and 41 when starting from an empty
binary tree. Any other ordering of these numbers accord-
ing to nondecreasing levels in the final tree would pro-
duce the same result. However, some orderings of these
values may produce trees with large height, which is not
desirable as we discuss below. For example, the ordering 8,
17, 32, 38, 41, and 45 will generate a tree that has only
one branch with height 6.

It is easy to check that operations in binary trees such as
FIND or INSERT have to perform at most h comparisons,
where h is the height of the tree. It is also simple to show
that the height of a binary tree satisfies h ¼ Vðlog nÞ. There-
fore, it is an important goal for any algorithm applied to
binary trees to keep the height as close as possible to the
lower bound of log n. If true, then the algorithms for binary
tree operations discussed above will also take time Qðlog nÞ.

Several methods have been developed to guarantee that
binary trees produced by insertion and searching proce-
dures have the height Oðlog nÞ. These methods, which
include red-black trees, 2-3 trees, and AVL trees, provide
elaborate techniques for rotating an existing configuration
of nodes in the tree, such that the final binary tree is
balanced (i.e., it has height close to O(log n)). These ideas
can be stated as in the following theorem:

Theorem 1. A dictionary and a priority queue can be
implemented such that the Find and Insert operations take
time Qðlog nÞ.

Graphs

A graph is a data structure that represents a set of nodes
(possibly with labels), together with relations between
pairs of nodes. Graphs are denoted as G ¼ ðV ;EÞ, where
V is a nonempty set and E�V � V . They are a fundamental
data structure for processing discrete information, because
a large number of combinatorial problems can be expressed
using graphs. A well-known example is the traveling sales-
man problem. Consider a set of n cities, with a set of roads
connecting pairs of cities. This system can be represented as
a graph G ¼ ðV ;EÞ, where V is the set of cities and E is the
set of all pairs ðu; vÞ 2V � V such that there is a road
between cities u and v with cost c(u, v). The problem
requires finding a tour through all cities with minimum
cost.

Graphs are classified into directed and undirected
graphs. In a directed graph, the edge (i, j) has an associated
direction. In an undirected graph, however, the direction is

not specified, and therefore {i, j} and {j, i} are notations for
the same edge.

A graph is an abstract data type with the following basic
operations: INSERTEDGE, REMOVEEDGE, FIND, ADJACENT, and
CONNECTED. Other operations are also interesting, but
they vary according to the application. Graphs can be
represented using different data structures. The simplest
representation is called the node incidence matrix repre-
sentation. In this case, the graph G ¼ ðV ;EÞwith n nodes is
represented by a n� n matrix A ¼ ðai jÞ, such that ai j ¼ 1 if
ði; jÞ 2E and ai j ¼ 0 otherwise. A graph is called sparse
when the number of edges is OðjV jÞ. The node incidence
matrix is a convenient representation, but it usually
leads to suboptimal algorithm performance, especially
when the graph is sparse, which happens, for example,
when the algorithm needs to find all edges in a graph, which
requires Qðn2Þ in the matrix representation, as all pairs
ði; jÞ 2V � V need to be probed for adjacency.

A variation of the first representation for graphs is the
node-edge incidence matrix. This representation is more
useful for directed graphs, although it can also be used with
undirected graphs by simultaneously considering both the
edges (i, j) and (j, i). In the node-edge incidence matrix
representation, a graph G ¼ ðV ;EÞ with n nodes and m
edges is represented by an n � m matrix A ¼ ðaieÞ, where
aie ¼ �1 if e ¼ ði; jÞ 2E, aie ¼ 1 if e ¼ ð j; iÞ 2E, and aie ¼ 0
otherwise.

A third representation for graphs, which is more useful
when the graph is sparse, is called the adjacency list
representation. In this representation, an array a with
n positions is used, where a[i] keeps a link to a list of nodes
that are adjacent to node i. With this data representation,
it is possible to iterate over all edges of the graph by
looking at each linked list, which takes time VðjEjÞ,
instead of VðjV j2Þ as in the node incidence matrix repre-
sentation, which means that all algorithms that need to
iterate over the edges of a graph will have improved
performance on sparse graphs, when compared with the
matrix representations.

ADVANCED DATA STRUCTURES

Problems involving data manipulation can usually benefit
from the use of more advanced data structures. Examples
can be found in areas such as computational geometry,
search and classification of Internet content, and fast
access to external memory. Although the complex techni-
ques employed in such applications cannot be fully
described here because of space constraints, we provide
references for some problems that employ advanced data
structures to be solved.

External memory algorithms have application when-
ever there is a large amount of data that cannot fit in the
computer’s main memory. Examples of such applications
include manipulation of scientific data, such as meteorolo-
gic, astrophysical, geological, geographical, and medical
databases. The general problem, however, is the same
encountered in any computer system with memory hier-
archies levels, such as cache memory, main memory, and
external disk storage.

17

8

45

41

38

32

Figure 1. An example of binary tree.

DATA STRUCTURES AND ALGORITHMS 3



A data structure frequently used to access out-of-
memory data is the B-tree. A B-tree is a type of balanced
tree designed to perform optimally when large parts of the
stored data is out of the computer’s main memory. The
challenge in this kind of application is that accessing
secondary storage, such as a hard disk, is many orders of
magnitude slower than accessing the main memory. Thus,
the number of accesses to secondary storage is the bottle-
neck that must be addressed. The basic design strategy of
B-trees is to reduce the amount of blocks of the hard disk
that must be read, in order to locate some specific informa-
tion in the data structure. This strategy minimizes the time
lost in accessing secondary storage. Several improvements
to B-trees have been proposed in the last decades, with the
objective of making this adequate for new applications. For
example, cache-oblivious B-trees (1,2) are extensions of the
B-tree model where the algorithm has no information about
the sizes of the main memory cache or secondary storage
block.

Another example of external memory data structure
that tries to reduce the number of disk accesses is the buffer
tree (3). The basic idea of a buffer tree is that elements of the
tree are considered to be blocks of the secondary storage
medium, so that access to these blocks is minimized.

An example of application of external memory algo-
rithms to geographical databases is the problem of proces-
sing line segments (4). In such databases, large amounts of
data must be processed, and questions must be answered
fast, with the minimum number of accesses to secondary
storage. The type of questions occurring here include how to
find if two line segments stored in the database intersect, or
how to optimally triangulate a specific area.

Data structures for external memory algorithms
also play an important role in the solution of some graph
theory problems, occurring in applications such as telecom-
munications, financial markets, medicine, and so on. An
example of large network database is provided by the so-
called call graph, created from information about calls
among users of AT&T (5). The call graph is defined as
having nodes representing the users of the telephony sys-
tem. Edges connect nodes whenever there is a call between
the corresponding users during some specified period of
time. The resulting database had several million nodes and
a similar number of edges. The whole amount of data had to
be held on special data structures for fast processing.

Questions that are interesting in this kind of graph are,
for example, the number of connected components, the
average size of such connected components, and the max-
imum size of cliques (groups of completely connected users)
in the graph. In this application, special data structures
had to be created to explore the sparsity of the graph and
avoid the access to secondary storage, which resulted in an
algorithm with efficient performance that was able to find
large sets of completely connected nodes in the call graph.

ALGORITHMS

General Techniques

The development of a new algorithm for a problem is always
a creative effort, because there is no easy, general way of

doing that (note also, that some problems may have not a
finite algorithm (6)). However, some general approaches
used for the construction of algorithms have demonstrated
their usefulness and applicability for solving different pro-
blems of varied natures and origins. Next, we briefly
describe some of these techniques.

Divide and conquer is a strategy for development
of algorithms in which the problem is divided into
smaller parts that are then solved recursively (a recursive
algorithm is an algorithm that calls itself). This strategy
has been successful in several areas, such as sorting,
searching, and computational geometry algorithms. In
the next section, we discuss examples of this approach.
The simplicity of this type of algorithm stems from its
recursive nature: We do not have to regard the solution of
large problems, because the recursion will break the input
data into smaller pieces.

Dynamic programming is a technique that also tries to
divide the problem into smaller pieces; however, it does it in
the way that solutions of smaller problems can be orderly
reused, and therefore they do not need to be computed more
than once. An example of such an algorithm is the Floid’s
method for finding all shortest paths in a graph. The
algorithm basically computes solutions where paths can
pass only through some subset of nodes. Then, the final
solution is built using this information.

Greedy methods have been frequently used for the con-
struction of efficient algorithms. A greedy algorithm always
makes decisions that will maximize a short-term goal, and
employs the results to build a complete solution for the
problem. Using again the shortest path problem as an
example, the Dijkstra’s algorithm is a type of greedy
method. In this case, the function that is minimized at
each step is the distance to the set of nodes previously
considered by the algorithm.

Finally, we can mention some other important algo-
rithm construction methods such as backtracking, enu-
meration, and randomization. The use of such techniques
has allowed to develop many efficient algorithms, which
provides optimal or approximate solutions to a great variety
of problems in numerous areas.

Algorithms for Some Basic Problems

In this section, we discuss some basic algorithms for pro-
blems such as binary search, sorting, matrix multiplica-
tion, and minimum weight spanning tree.

Sorting. Suppose we are given an array of numbers
a1; . . . ;an. Our task is to sort this array in nondecreasing
order such that a1 � a2 � . . . � an. Probably the most
obvious algorithm for this problem is the so-called selection
sort. Its main idea is the following. First, we find the
smallest number of these n elements and interchange it
with a1. The number of comparisons we need is exactly
(n�1). Next, we repeat this procedure with the array
a2; . . . ;an, then with the array a3; . . . ;an, and so on. The
total number of required comparisons is

ðn� 1Þ þ ðn� 2Þ þ . . .þ 1 ¼ Qðn2Þ

4 DATA STRUCTURES AND ALGORITHMS



A better algorithm called the merge sort can be devel-
oped using the divide and conquer strategy. Initially, we
divide the input vector into two parts, say from a1 to an=2

and from an=2þ1 to an. Then, we can call the sorting algo-
rithm recursively for the smaller vectors a1; . . . ;an=2 and
an=2þ1; . . . ;an (the recursion can be solved very easily when
the vectors to be sorted have size 1 or 2; therefore, the
algorithm will always end with a correctly sorted vector).
Finally, we need to merge these two sorted arrays into one
sorted array. This procedure can be done in QðnÞ time. If
T(n) is the total number of comparisons made by an algo-
rithm for the input array of size n, then for the described
algorithm T(n) satisfies TðnÞ ¼ 2Tðn=2Þ þQðnÞ, which
results in TðnÞ ¼ Qðn log nÞ.

Next, we show that merging two arrays respectively
with l and m elements can be done in QðlþmÞ time. Let
X ¼ x1; . . . ; xl and Y ¼ y1; . . . ; ym be our two input arrays
sorted in nondecreasing order and Z be an auxiliary vector
of length l + m. As X and Y are sorted, if we compare x1 and
y1, then the smallest of these two numbers is also the
smallest number of X and Y combined. Suppose, for exam-
ple, x1 � y1. Let z1 ¼ x1 and remove x1 from X. Repeating
the procedure described above with new X and Y, we obtain
z2. Proceed this way until one of the arrays becomes empty.
Finally, keeping the order, we can output all the elements of
the remaining array to Z. Obviously, the obtained array Z
contains the needed result. It is also easy to observe that
every time we move an element to Z we remove one of the
elements of X or Y and make exactly one comparison. There-
fore, the number of comparisons we perform is QðlþmÞ.

Proposition 1. We can sort an array with n elements in
Qðn log nÞ time.

It can also be shown that any sorting algorithm requires
at least Vðn log nÞ comparisons. Therefore, the merge sort is
asymptotically optimal.

Binary Search. In the binary search problem, for an
array a1; . . . ; an sorted in nondecreasing order, we need
to check if a given element x is present in this array. A
divide-and-conquer strategy can be used to design a simple
and effective algorithm for solving this problem.

As the first step of the algorithm, we check whether
x ¼ an=2. If it is true, then the problem is solved. Otherwise,
because the array is sorted in nondecreasing order, if
x>an=2, then we conclude that x cannot be in the first
part of the array, for example, x cannot be present in
a1; . . . ;an=2. Applying the same argument, if x < an=2,
then the second part of the array, which is an=2; . . . ;an,
can be excluded from our consideration. Next, we repeat the
procedure described above with the remaining half of the
initial array. At every step, the size of the array reduces by a
factor of 2. Therefore, denoting by T(n) the number of
comparisons, we obtain that TðnÞ ¼ 2Tðn=2Þ þ 1. Solving
the recurrence equation, we have TðnÞ ¼ Qðlog nÞ.

Matrix Multiplication. Suppose that, given two n � n
matrices A and B, we need to calculate their product
C ¼ AB. Let ai j, bi j, and ci j be the elements of matrices
A, B, and C, respectively. Then, by definition, for all i and j,
we have ci j ¼

Pn
k¼1 aikbk j. Using this formula, every

element cij of C can be calculated in QðnÞ time. As there
are n2 elements in the matrix C, the matrix C can be
computed in Qðn3Þ time.

Strassen developed an algorithm based on a divide-
and-conquer strategy, which requires only Qðnlog27Þ time.
The main idea of the algorithm is based on the simple
observation that two matrices of size 2 � 2 can be multi-
plied using only 7 multiplications (instead of 8) and 18
additions (fortunately, the running time of the algorithm
asymptotically is not sensible to increasing the number of
additions). Let the matrices A and B in the problem be
partitioned as follows:

A ¼ A11 A12

A21 A22

� �

B ¼ B11 B12

B21 B22

� �

where the size of matrices Aij and Bij is ðn=2Þ � ðn=2Þ. Then
calling the algorithm recursively and applying the
Strassen formulas, we obtain the following formula for
the running time T(n) of the algorithm:

TðnÞ ¼ 7Tðn=2Þ þQðn2Þ

The solution of the recursive formula above is
TðnÞ ¼ Qðnlog27Þ. A more detailed description of the algo-
rithm can be found in textbooks on algorithms, which are
listed in the last section of this article.

Minimum Weight Spanning Tree. A tree is a connected
graph without cycles; that is, it contains a path between
every pair of nodes, and this path is unique. Consider
an undirected connected graph G ¼ ðV ;EÞ, where each
edge (i, j) has a weight wij. A spanning tree TG of the graph
G is a subgraph of G that is a tree and spans (i.e., contains)
all nodes in V. The minimum spanning tree (MST) problem
is to find a spanning tree with minimum total sum of its
edge weights.

The following algorithm for solving this problem is
designed using the greedy approach. Initially, we sort all
the edges of the given graph G in nondecreasing order and
create a list of edges L. Let T be an empty subgraph of G.
Pick an elementof L withminimumweight (say e), add e toT,
and remove it from L. Proceed with this procedure checking
at every step that adding the new edge does not create a cycle
in T (if this happens, then we do not add the corresponding
edge to T). After n � 1 edges are added to T, where n is the
number of nodes in G, stop. Denote the obtained subgraph by
TG. The following proposition can be proved:

Proposition 2. The greedy algorithm described above
returns a minimum weight spanning tree TG.

Analysis of Algorithms and Complexity Issues

As mentioned above, worst case analysis is probably
the most widely used criteria for evaluating algorithms.
The basic algorithms discussed (binary search, sorting,
selection, matrix multiplication) require only a polynomial

DATA STRUCTURES AND ALGORITHMS 5



number of elementary operations in the size of the input
data. In the area of analysis of algorithms and complexity
theory, the set of all problems that can be solved in poly-
nomial time (i.e., by a polynomialtime algorithm) is usually
denoted by P. Another important class of problems is NP,
defined as the collection of all problems for which the cor-
rectness of a solution, described using a polynomial-sized
encoding,canbeverifiedinpolynomial time.Obviously,P isa
subset of NP (i.e., P�NP). On the other hand, deciding
whether P 6¼NP is probably the most famous open problem
in theoretical computer science.

We say that problem II is polynomial-time reducible to
problem II1 if given an instance I(II) of problem II, we can,
in polynomial time, obtain an instance I(II1) of problem II1

such that by solving I(II1) one can compute in polynomial
time an optimal solution to I(II). In other words, under this
type of reduction, the existence of a polynomial algorithm
for solving II1 will imply the existence of a polynomial
algorithm for II. A problem II is called NP-complete if II
2NP, and any problem in NP can be reduced in polynomial
time to II, therefore, the class of NP-complete problems
consists of the hardest problems in NP. Notice that if any
NP-complete problem can be solved in polynomial time,
then all problems in NP can be solved in polynomial time
(i.e., P ¼ NP).

In 1971, Steve Cook provided the foundation of
NP-completeness theory, proving that the SATISFIABILITY

problem is NP-complete (7) (a formal definition of this
problem is omitted here). Since that time, the number of
NP-complete problems has been significantly increased.
Another classic NP-complete problem is the so-called
SUBSET SUM problem: Given a set of positive integers S ¼
fs1; s2; . . . ; sng and a positive integer K, does there exist a
vector x2f0; 1gn, such that

Pn
i¼1 sixi ¼ K? Other examples

of NP-complete problems include the TSP (see section
Graphs), SET COVER, VERTEX COVER, PARTITION, and so on.

Although it is not known whether P 6¼NP, it is generally
assumed that all NP-complete problems are hard to solve.
In other words, proving that some problem belongs to the
class of NP-complete problems implies that it cannot be
solved in polynomial time. The standard procedure of prov-
ing that a problem II1 is NP-complete consists of two steps:
(1) proving that II12NP and (2) reducing in polynomial time
some known NP-complete problem II to the problem II1.

Finally, let us also consider the definition of NP-
hardness. We say that a problem II belongs to the class
of NP-hard problems if there exists an NP-complete pro-
blem that can be reduced in polynomial time to II. There-
fore, the problem II is at least as hard to solve as any other
NP-complete problem, but it is not known whether this
problem belongs to NP.

For more detailed information on the theory of NP-
completeness and rigorous definitions (including the for-
mal Turing machine model), we refer to the famous book by
Garey and Johnson (8) or to the more recent book by
Papadimitriou (6).

Approximation Algorithms

The notion of NP-hardness (8) leads researchers to con-
sider alternative strategies to solve problems that are

intractable. A possible technique in this case is to solve
the problem in an approximate way by not requiring an
exact solution, but a solution with an approximation
guarantee.

An approximation algorithm is defined as follows. Let II
be a minimization problem, f be the objective function that
is minimized by II, and OPT(x) be the optimum solution
cost for instance x of II (i.e., OPT(x) is the minimum value
(over all feasible solutions s of II) of f(s)). Given a mini-
mization problem II and an algorithm A for II, we say that
A is an approximation algorithm with approximation
guarantee (or performance guarantee, or performance
ratio) d> 1 if, for every instance x of II, the resulting
solution s returned by A on instance x has value
f ðsÞ � dOPTðxÞ. A similar definition applies when II is a
maximization problem, but in this case 0< d< 1 and we
want f ðsÞ� dOPTðxÞ.

Approximation algorithms have been studied since the
1970s (9,10). In the last few years, however, the area has
received more attention due to great advances in the under-
standing of approximation complexity. Other recent
advances include the use of mathematical programming
techniques (linear programming, semidefinite program-
ming) to study the quality of relaxations for some problems
and determining approximation guarantees.

A simple example of approximation algorithm was pro-
posed by Christofides (10) for the traveling salesman pro-
blem (see Graphs section). The TSP is known to be strongly
NP-hard, and therefore no polynomial time exact algorithm
is known for solving it. It is also known that the problem
cannot be approximated in general. However, if the dis-
tances considered are Euclidean, therefore obeying the
triangular inequality, we can use Christofides’ algorithm to
find an approximate solution in the following way:

1. Algorithm Christofides

2. Input: Graph G ¼ ðV ;EÞ
3. Find a minimum spanning tree T connecting V(G)

4. Double each edge in T, resulting in T0

5. Find a circuit C in T0 starting from any node

6. Shortcut C whenever a node is repeated (i.e., sub-
stitute (a, b, c) �C for (a, c), whenever b was visited
previously)

7. return C

Theorem 2. Christofides’ algorithm has an approxima-
tion guarantee of 2.

Proof. Just notice that the cost of a minimum spanning
tree is a lower bound of the cost of the optimum solution,
because, given a solution to TSP, we can find a minimum
spanning tree by removing one of its edges. Thus, doubling
the edges of T will only multiply the bound by two. Then,
the shortcuting operation in line 6 is guaranteed not to
increase the cost of the solution, because of the triangular
inequality satisfied by G. &

The algorithm above shows that simple strategies
may lead to good guarantees of approximation. However,
it is known that many problems have no constant app-
roximation guarantee, such as the SET COVER problem,
unless P ¼ NP (a large list of impossibility results for

6 DATA STRUCTURES AND ALGORITHMS



approximation is given in Ref. (11)). More elaborate algo-
rithms are based on linear programming (LP) duality and
semidefinite programming. These two mathematical pro-
gramming techniques are frequently useful to provide
lower bounds for the solutions obtained by combinatorial
algorithms.

Randomized Algorithms

Randomized algorithms correspond to a different way of
looking at the task of solving a problem using computers.
The usual way of thinking about algorithms is to design a
set of steps that will correctly solve the problem whenever
the input is given correctly, within a pre-established time,
which, however, may not be the simplest or even the more
effective way of solving a problem. We might consider
algorithms that give the right solution for the problem
with some known probability. We can also consider algo-
rithms that always provide the right solution, but with a
running time that as known just through its probabilistic
distribution. Such algorithms are called randomized
algorithms.

Randomized algorithms are usually described as
algorithms that use ‘‘coin tossing’’ (i.e., a randomizer) or
a random number generator. There are two major types of
randomized algorithms: Las Vegas and Monte Carlo.

A Las Vegas algorithm is defined as a randomized
algorithm, which always provides the correct answer but
whose running time is a random variable. A Monte Carlo
algorithm is a randomized algorithm that always has a
predetermined running time (which, of course, may depend
on the input size) but whose output is correct with high
probability. If n is the input size of the algorithm, then by
the high probability we imply a probability, which is equal
to or greater than 1� n�a for some fixed a� 1.

Next we describe a simple example of a Monte-Carlo
algorithm. Suppose we are given an array A ¼ a1; . . . ;an of
n numbers, where all elements are distinct and n is even.
The task is to find an element of A greater than the median
M of the given array.

In the first step of the algorithm, we randomly choose
a log n elements of the input array A. Let us denote this
subset by Ã . Thus, jÃj ¼ a log n and Ã�A. Then, we find
the largest number from the selected subset. Obviously, we
can do it in Qðlog nÞ time. We argue that this element is the
correct answer with high probability. The algorithm fails if
all elements of the randomly selected subset are less than
or equal to the median M. As elements of Ã are randomly
selected, it is easy to observe that any element of Ã is less
than or equal to the median M with probability 1/2. There-
fore, the probability of failure is P f ¼ ð1=2Þa log n ¼ n�a. In
summary, we can conclude that if the size of the subset Ã
satisfies jÃj � a log n, then the largest element of Ã is a
correct result with probability at least 1� n�a. Applying
the randomized algorithm, we solve the problem in Qðlog nÞ
time with high probability.

Parallel Algorithms

Parallel algorithms provide methods to harness the power
of multiple processors working together to solve a problem.
The idea of using parallel computing is natural and has

been explored in multiple ways. Theoretical models for
parallel algorithms have been developed, including the
shared memory and message passing (MP) parallel systems.

The PRAM (Parallel Random Access Machine) is a sim-
ple model in which multiple processors access a shared
memory pool. Each read or write operation is executed
asynchronously by the processors. Different processors
collaborate to solve a problem by writing information
that will be subsequently read by others. The PRAM is a
popular model that captures the basic features of parallel
systems, and there is a large number of algorithms devel-
oped for this theoretical model. However, the PRAM is not
a realistic model: Real systems have difficulty in guaran-
teeing concurrent access to memory shared by several
processors.

Variations of the main model have been proposed to
overcome the limitations of PRAM. Such models have
additional features, including different memory access
policies. For example, the EREW (exclusive read, exclusive
write) allows only one processor to access the memory for
read and write operations. The CREW model (concurrent
read, exclusive write) allows that multiple processors read
the memory simultaneously, whereas only one processor
can write to memory at each time.

MP is another basic model that is extensively used in
parallel algorithms. In MP, all information shared by pro-
cessors is sent via messages; memory is local and accessed
by a single processor. Thus, messages are the only mechan-
ism of cooperation in MP. A major result in parallel pro-
gramming is that the two mechanisms discussed (shared
memory and MP) are equivalent in computational power.

The success of a parallel algorithm is measured by the
amount of work that it can evenly share among processors.
Therefore, we need to quantify the speedup of a parallel
algorithm, given the size of the problem, the time TS(n)
necessary to solve the problem in a sequential computer,
and the time TP(n, p) needed by the parallel algorithm with
p processors. The speedup fðn; pÞ can be computed as
fðn; pÞ ¼ TSðnÞ=TPðn; pÞ, and the asymptotic speedup
f1ðpÞ is the value of fðn; pÞ when n approaches infinity
(i.e., f1ðpÞ ¼ limn!1fðn; pÞ). The desired situation is
that all processors can contribute to evenly reduce the
computational time. In this case, fðn; pÞ ¼ OðpÞ, and we
say that the algorithm has linear speedup.

We show a simple example of parallel algorithm. In
the prefix computation problem, a list L ¼ fl1; . . . ; lng of
numbers is given, and the objective is to compute the
sequence of values

P j
i¼1 li for j2f1; . . . ;ng. The following

algorithm uses n processors to compute the parallel prefix
of n numbers in Oðlog nÞ time.

1. Algorithm Parallel-prefix

2. Input: L ¼ fl1; . . . ; lng
3. for k 0 to b log n c � 1 do

4. Execute the following instructions in parallel:

5. for j 2k þ 1 to n do

6. l j l j�2k þ l j

7. end

8. end

DATA STRUCTURES AND ALGORITHMS 7



As a sequential algorithm for this problem has complex-
ity QðnÞ, the speedup of using the parallel algorithm is
fðn;nÞ ¼ Qðn=log nÞ.

Heuristics and Metaheuristics

One of the most popular techniques for solving computa-
tionally hard problems is to apply the so-called heuristic
approaches. A heuristic is an ad hoc algorithm that applies
a set of rules to create or improve solutions to an NP-hard
problem. Heuristics give a practical way of finding solutions
that can be satisfactory for most purposes. The main dis-
tinctive features of these type of algorithms are fast exe-
cution time and the goal of finding good-quality solutions
without necessarily providing any guarantee of quality.
Heuristics are particularly useful for solving in practice
hard large-scale problems for which more exact solution
methods are not available.

As an example of a simple heuristic, we can consider a
local search algorithm. Suppose we need to solve a combi-
natorial optimization problem, where we minimize an
objective function f(x), and the decision variable x is a vector
of n binary variables (i.e., xi 2f0; 1g for i2f1; . . . ;ng). For
each problem, we define a neighborhood N(x) of a feasible
solution x as the set of feasible solutions x0 that can be
created by a well-defined modification of x. For example,
let x2f0; 1gn be a feasible solution, then N(x) can be defined
as the set of solutions xk such that

xk
i ¼

1� xi if i ¼ k
xi otherwise

�

for k2f1; . . . ;ng. A point x2f0; 1gn is called a local opti-
mum if it does not have a neighbor whose objective value is
strictly better than f(x). In our example, which we suppose
is a minimization problem, it means that if x is a local
optimum, then f ðxÞ � f ðxkÞ for all k2f1; . . . ;ng. In this
case, if we can generate a feasible solution x, then we can
check if x is locally optimal in time OðnÞ (notice that other
neighborhoods may lead to different search times). Let
x̃2NðxÞ, with f ðx̃Þ < f ðxÞ. Assigning x x̃, we can repeat
the afore-mentioned procedure that searches for a locally
optimal solution while the optimality criterion is reached.
For many problems, local search-based approaches similar
to the one described above proved to be very successful.

A metaheuristic is a family of heuristics that can be
applied to find good solutions for difficult problems. The
main difference between metaheuristics and heuristics is
that, while a heuristic is an ad hoc procedure, a metaheur-
istic must follow a well-defined sequence of steps and use
some specified data structures. However, the exact imple-
mentation of some of the steps in a metaheuristic may be
customized, according to the target problem. Therefore, a
concrete implementation of a metaheuristic provides a
heuristic for a specific problem (hence, the use of the prefix
‘‘meta’’). Elements of heuristics such as local search or
greedy methods are usually combined in metaheuristics
in order to find solutions of better quality.

Examples of metaheuristic methods include simulated
annealing, genetic algorithms, tabu search, GRASP, path

relinking, reactive search, ant colony optimization, and
variable neighborhood search.

BIBLIOGRAPHIC NOTES

Algorithms and data structures have a vast literature, and
we provide only some of the most important references.
Popular books in algorithms and data structures include the
ones by Cormen et al. (12), Horowitz et al. (13), Sedgewick
(14), and Knuth (15). Networks and graph algorithms are
covered in depth in Ahuja et al. (16). Books on data struc-
tures include the classics by Aho et al. (17) and Tarjan (18).

NP-hard problems have been discussed in several books,
but the best-known reference is the compendium by Garey
and Johnson (8). A standard reference on randomized
algorithms is Ref. (19). For more information on parallel
algorithms, and especially PRAM algorithms, see the book
by Jaja (20). Good reviews of approximation algorithms are
presented in the book edited by Hochbaum (21), and by
Vazirani (22). For a more detailed discussion of different
metaheuristics and related topics, the reader is referred to
Ref. (23).

Information about the complexity of numerical optimi-
zation problems is available in the paper by Pardalos and
Vavasis (24) and the books listed in Refs. (25) and (26).

BIBLIOGRAPHY

1. E. D. Demaine, Cache-oblivious algorithms and data struc-
tures, in Lecture Notes from the EEF Summer School on
Massive Data Sets, Lecture Notes in Computer Science.
New York: Springer-Verlag, 2002.

2. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,
Cache-oblivious algorithms, in Proc. of 40th Annual Sympo-
sium on Foundations of Computer Science, New York, 1999.

3. L. Arge, The buffer tree: A new technique for optimal I/O
algorithms, in Proceedings of Fourth Workshop on Algorithms
and Data Structures (WADS), volume 955 of Lecture Notes in
Computer Science. New York: Springer-Verlag, 1995, pp. 334–
345.

4. L. Arge, D. Vengroff, and J. Vitter, External-memory algo-
rithms for processing line segments in geographic information
systems, in Proceedings of the Third European Symposium on
Algorithms, volume 979 of Lecture Notes in Computer Science.
New York: Springer-Verlag, 1995, pp. 295–310.

5. J. Abello, P. Pardalos, and M. Resende (eds.), Handbook of
Massive Data Sets. Dordrecht, the Netherlands: Kluwer Aca-
demic Publishers, 2002.

6. C. H. Papadimitriou, Computational Complexity. Reading,
MA: Addison-Wesley, 1994.

7. S. Cook, The complexity of theorem-proving procedures,
in Proc. 3rd Ann. ACM Symp. on Theory of Computing.
New York: Association for Computing Machinery, 1971, pp.
151–158.

8. M. R. Garey and D. S. Johnson, Computers and Intractability -
A Guide to the Theory of NP-Completeness. New York: W. H.
Freeman and Company, 1979.

9. D. Johnson, Approximation algorithms for combinatorial pro-
blems, J. Comp. Sys. Sci., 9(3): 256–278, 1974.

10. N. Christofides, Worst-case analysis of a new heuristic for the
travelling salesman problem, in J. F. Traub (ed.), Symposium

8 DATA STRUCTURES AND ALGORITHMS



on New Directions and Recent Results in Algorithms and
Complexity. New York: Academic Press, 1976, p. 441.

11. S. Arora and C. Lund, Hardness of approximations, in D.
Hochbaum (ed.), Approximation Algorithms for NP-hard Pro-
blems. Boston, MA: PWS Publishing, 1996.

12. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed., Cambridge, MA: MIT
Press, 2001.

13. E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algo-
rithms. New York: Computer Science Press, 1998.

14. R. Sedgewick, Algorithms. Reading, MA: Addison-Wesley,
1983.

15. D. Knuth, The Art of Computer Programming – Fundamental
Algorithms. Reading, MA: Addison-Wesley, 1997.

16. R. Ahuja, T. Magnanti, and J. Orlin, Network Flows. Engle-
wood Cliffs, NJ: Prentice-Hall, 1993.

17. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures
and Algorithms. Computer Science and Information Proces-
sing. Reading, MA: Addison-Wesley, 1982.

18. R. E. Tarjan, Data Structures and Network Algorithms. Regio-
nal Conference Series in Applied Mathematics. Philadelphia,
PA: Society for Industrial and Applied Mathematics, 1983.

19. R. Motwani and P. Raghavan, Randomized Algorithms.
Cambridge: Cambridge University Press, 1995.

20. J. JaJa, An Introduction to Parallel Algorithms. Reading, MA:
Addison-Wesley, 1992.

21. D. Hochbaum (ed.), Approximation Algorithms for NP-hard
Problems. Boston, MA: PWS Publishing, 1996.

22. V. Vazirani, Approximation Algorithms. New York: Springer-
Verlag, 2001.

23. M. Resende and J. de Sousa (eds.), Metaheuristics: Computer
Decision-Making. Dordrecht, the Netherlands: Kluwer Aca-
demic Publishers, 2004.

24. P. M. Pardalos and S. Vavasis, Complexity issues in numerical
optimization, Math. Program. B, 57(2): 1992.

25. P. Pardalos (ed.), Complexity in Numerical Optimization.
Singapore: World Scientific, 1993.

26. P. Pardalos (ed.), Approximation and Complexity in Numerical
Optimization: Continuous and Discrete Problems. Dordrecht,
the Netherlands: Kluwer Academic Publishers, 2000.

CARLOS A.S. OLIVEIRA

Oklahoma State University
Stillwater, Oklahoma

PANOS M. PARDALOS

OLEG A. PROKOPYEV

University of Florida
Gainesville, Florida

DATA STRUCTURES AND ALGORITHMS 9



D

DATA WAREHOUSE

INTRODUCTION

For a few decades, the role played by database technology in
companies and enterprises has only been that of storing
operational data, that is data generated by daily, routine
operations carried out within business processes (such as
selling, purchasing, and billing). On the other hand,
managers need to access quickly and reliably the strategic
information that supports decision making. Such informa-
tion is extracted mainly from the vast amount of operational
data stored in corporate databases, through a complex
selection and summarization process.

Very quickly, the exponential growth in data volumes
made computers the only suitable support for the decisional
process run by managers. Thus, starting from the late
1980s, the role of databases began to change, which led
to the rise of decision support systems that were meant as
the suite of tools and techniques capable of extracting
relevant information from a set of electronically recorded
data. Among decision support systems, data warehousing
systems are probably those that captured the most
attention from both the industrial and the academic world.

A typical decision-making scenario is that of a large
enterprise, with several branches, whose managers wish
to quantify and evaluate the contribution given from each of
them to the global commercial return of the enterprise.
Because elemental commercial data are stored in the enter-
prise database, the traditional approach taken by the
manager consists in asking the database administrators
to write an ad hoc query that can aggregate properly the
available data to produce the result. Unfortunately, writing
such a query is commonly very difficult, because different,
heterogeneous data sources will be involved. In addition,
the query will probably take a very long time to be executed,
because it will involve a huge volume of data, and it will run
together with the application queries that are part of the
operational workload of the enterprise. Eventually, the
manager will get on his desk a report in the form of a either
summary table, a diagram, or a spreadsheet, on which he
will base his decision.

This approach leads to a useless waste of time and
resources, and often it produces poor results. By the way,
mixing these ad hoc, analytical queries with the operational
ones required by the daily routine causes the system to slow
down, which makes all users unhappy. Thus, the core idea
of data warehousing is to separate analytical queries,
which are commonly called OLAP (On-Line Analytical
Processing) queries, from the operational ones, called
OLTP (On-Line Transactional Processing) queries, by
building a new information repository that integrates the
elemental data coming from different sources, organizes
them into an appropriate structure, and makes them avail-
able for analyses and evaluations aimed at planning and
decision making.

Among the areas where data warehousing technologies
are employed successfully, we mention but a few: trade,
manufacturing, financial services, telecommunications,
and health care. On the other hand, the applications of
data warehousing are not restricted to enterprises: They
also range from epidemiology to demography, from natural
sciences to didactics. The common trait for all these fields is
the need for tools that enable the user to obtain summary
information easily and quickly out of a vast amount of data,
to use it for studying a phenomenon and discovering sig-
nificant trends and correlations—in short, for acquiring
useful knowledge for decision support.

BASIC DEFINITIONS

A data warehousing system can be defined as a collection of
methods, techniques, and tools that support the so-called
knowledge worker (one who works primarily with informa-
tion or develops and uses knowledge in the workplace: for
instance, a corporate manager or a data analyst) in decision
making by transforming data into information. The main
features of data warehousing can be summarized as fol-
lows:

� Easy access to nonskilled computer users.

� Data integration based on a model of the enterprise.

� Flexible querying capabilities to take advantage of the
information assets.

� Synthesis, to enable targeted and effective analysis.

� Multidimensional representation to give the user an
intuitive and handy view of information.

� Correctness, completeness, and freshness of informa-
tion.

At the core of this process, the data warehouse is a
repository that responds to the above requirements.
According to the classic definition by Bill Inmon (see
Further Reading), a data warehouse is a collection of
data that exhibits the following characteristics:

1. Subject-oriented, which means that all the data items
related to the same business object are connected.

2. Time-variant, which means that the history of busi-
ness is tracked and recorded to enable temporal
reports.

3. Nonvolatile, which means that data are read-only
and never updated or deleted.

4. Integrated, which means that data from different
enterprise applications are collected and made con-
sistent.

Although operational data commonly span a limited
time interval, because most business transactions only
involve recent data, the data warehouse must support

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



analyses that cover some years. Thus, the data warehouse
is refreshed periodically starting from operational data.
According to a common metaphor, we can imagine that
photographs of operational data are periodically taken; the
sequence of photos is then stored in the data warehouse,
where a sort of movie is generated that depicts the history of
business up to the current time.

Because in principle data are never deleted, and
refreshes are made when the system is offline, a data
warehouse can be considered basically as a read-only data-
base. This feature, together with the importance given to
achieving good querying performances, has two main con-
sequences. First, the database management systems
(DBMSs) used to manage the data warehouse do not
need sophisticated techniques for supporting transactions.
Second, the design techniques used for data warehouses are
completely different from those adopted for operational
databases.

As mentioned, another relevant difference between
operational databases and data warehouses is related to
the types of queries supported. OLTP queries on opera-
tional databases typically read and write a relatively small
number of records from some tables related by simple
relationships (e.g., search for customers’ data to insert
new orders). Conversely, OLAP queries on data ware-
houses commonly read a huge number of records to com-
pute a few pieces of summary information. Most
importantly, although the OLTP workload is ‘‘frozen’’
within applications and only occasionally ad hoc queries
are formulated, the OLAP workload is intrinsically inter-
active and dynamic.

ARCHITECTURES

To preserve the separation between transactional and
analytical processing, most data warehousing architec-
tures are based on at least two data levels: the data sources
and the data warehouse.

Data sources are heterogeneous; they may be part of
the corporate information system (operational databases,
legacy systems, spreadsheets, flat files, etc.). or even
reside outside the company (Web databases, streams,
etc.). These data are extracted, cleaned, completed, vali-
dated, integrated into a single schema, and loaded into the
data warehouse by the so-called ETL (Extraction, Trans-
formation, and Loading) tools.

The data warehouse is the centralized repository for the
integrated information. Here, different from the sources,
data are stored in multidimensional form, and their struc-
ture is optimized to guarantee good performance for OLAP
queries. In practice, most often, the data warehouse is
replaced physically by a set of data marts that include
the portion of information that is relevant to a specific
area of business, division of the enterprise, and category
of users. Note the presence of a metadata repository that
contains the ‘‘data about data,’’ for example, a description of
the logical organization of data within the sources, the data
warehouse, and the data marts.

Finally, the information in the data warehouse is
accessed by users by means of different types of tools:

reporting tools, OLAP tools, data-mining tools, and what-
if analysis tools.

Some architectures include an additional level called the
reconciled level or operational data-store. It materializes
the operational data obtained by extracting and cleaning
source data: Thus, it contains integrated, consistent, cor-
rect, detailed, and current data. These reconciled data are
then used to feed the data warehouse directly. Although the
reconciled level introduces a significant redundancy, it also
bears some notable benefits. In fact, it defines a reference
data model for the whole company, and at the same time, it
introduces a clear separation between the issues related to
data extraction, cleaning and integration and those related
to data warehouse loading. Remarkably, in some cases, the
reconciled level is also used to better accomplish some
operational tasks (such as producing daily reports that
cannot be prepared satisfactorily using the corporate appli-
cations).

In the practice, these ingredients are blended differently
to give origin to the five basic architectures commonly
recognized in the literature:

� Independent data marts architecture

� Bus architecture

� Hub-and-spoke architecture

� Centralized data warehouse architecture

� Federated architecture

In the independent data mart architecture, different
data marts are designed separately and built in a noninte-
grated fashion (Fig. 1). This architecture, although some-
times initially adopted in the absence of a strong
sponsorship toward an enterprise-wide warehousing
project or when the organizational divisions that make
up the company are coupled loosely, tends to be soon
replaced by other architectures that better achieve data
integration and cross-reporting.

The bus architecture is apparently similar to the previous
one, with one important difference: A basic set of conformed
dimension and facts, derived by a careful analysis of the
main enterprise processes, is adopted and shared as a
common design guideline to ensure logical integration of
data marts and an enterprise-wide view of information.

In the hub-and-spoke architecture, much attention is
given to scalability and extensibility and to achieving an
enterprise-wide view of information. Atomic, normalized
data are stored in a reconciled level that feeds a set of data
marts containing summarized data in multidimensional
form (Fig. 2). Users mainly access the data marts, but they
occasionally may query the reconciled level.

The centralized architecture can beviewed asa particular
implementation of the hub-and-spoke architecture where
the reconciled level and the data marts are collapsed into a
single physical repository.

Finally, the federated architecture is sometimes adopted
in contexts where preexisting data warehouses/data marts
are to be integrated noninvasively to provide a single, cross-
organization decision support environment (e.g., in the case
of mergers and acquisitions). Each data warehouse/data
mart is either virtually or physically integrated with the

2 DATA WAREHOUSE



others by leaning on a variety of advanced techniques such
as distributed querying, ontologies, and metadata inter-
operability.

ACCESSING THE DATA WAREHOUSE

This section discusses how users can exploit information
stored in the data warehouse for decision making. In the
following subsection, after introducing the particular
features of the multidimensional model, we will survey
the two main approaches for analyzing information:
reporting and OLAP.

The Multidimensional Model

The reasons why the multidimensional model is adopted
universally as the paradigm for representing data in data
warehouses are its simplicity, its suitability for business
analyses, and its intuitiveness for nonskilled computer
users, which are also caused by the widespread use of
spreadsheets as tools for individual productivity. Unfortu-
nately, although some attempts have been made in the
literature to formalize the multidimensional model (e.g.,
Ref. 1), none of them has emerged as a standard so far.

The multidimensional model originates from the obser-
vation that the decisional process is ruled by the facts of the
business world, such as sales, shipments, bank transac-
tions, and purchases. The occurrences of a fact correspond
to events that occur dynamically: For example, every sale or
shipment made is an event. For each fact, it is important to
know the values of a set of measures that quantitatively
describe the events: the revenue of a sale, the quantity
shipped, the amount of a bank transaction, and the dis-
count on a purchase.

The events that happen in the enterprise world are
obviously too many to be analyzed one by one. Thus, to
make them easily selectable and groupable, we imagine

arranging them within an n-dimensional space whose axes,
called dimensions of analysis, define different perspectives
for their identification. Dimensions commonly are discrete,
alphanumeric attributes that determine the minimum
granularity for analyzing facts. For instance, the sales in
a chain of stores can be represented within a three-dimen-
sional space whose dimensions are the products, the stores,
and the dates.

The concepts of dimension gave birth to the well-known
cube metaphor for representing multidimensional data.
According to this metaphor, events correspond to cells of
a cube whose edges represents the dimensions of analysis.
A cell of the cube is determined uniquely by assigning a
value to every dimension, and it contains a value for each
measure. Figure 3 shows an intuitive graphical represen-
tation of a cube centered on the sale fact. The dimensions
are product, store, and date. An event corresponds to the
selling of a given product in a given store on a given day, and
it is described by two measures: the quantity sold and the
revenue. The figure emphasizes that the cube is sparse, i.e.,
that several events did not happen at all: Obviously, not all
products are sold every day in every store.

Normally, each dimension is structured into a hierarchy
of dimension levels (sometimes called roll-up hierarchy)
that group its values in different ways. For instance, pro-
ducts may be grouped according to their type and their
brand, and types may be grouped additionally into cate-
gories. Stores are grouped into cities, which in turn are
grouped into regions and nations. Dates are grouped into
months and years. On top of each hierarchy, a final level
exists that groups together all possible values of a hierarchy
(all products, all stores, and all dates). Each dimension level
may be described even more by one or more descriptive
attributes (e.g., a product may be described by its name, its
color, and its weight).

A brief mention to some alternative terminology used
either in the literature or in the commercial tools is useful.

Figure 1. Independent data marts and bus
architectures (without and with conformed
dimensions and facts).

DATA WAREHOUSE 3



Although with the term dimension we refer to the attribute
that determines the minimum fact granularity, sometimes
the whole hierarchies are named as dimensions. Measures
are sometimes called variables, metrics, categories, proper-
ties, or indicators. Finally, dimension levels are sometimes
called parameters or attributes.

We now observe that the cube cells and the data they
contain, although summarizing the elemental data stored
within operational sources, are still very difficult to analyze
because of their huge number. Two basic techniques are
used, possibly together, to reduce the quantity of data and
thus obtain useful information: restriction and aggrega-
tion. For both, hierarchies play a fundamental role because
they determine how events may be aggregated and
selected.

Restricting data means cutting out a portion of the cube
to limit the scope of analysis. The simplest form of restric-
tion is slicing, where the cube dimensionality is reduced by
focusing on one single value for one or more dimensions. For
instance, as depicted in Fig. 4, by deciding that only sales of
store ‘‘S-Mart’’ are of interest, the decision maker actually
cuts a slice of the cube obtaining a two-dimensional sub-
cube. Dicing is a generalization of slicing in which a sub-
cube is determined by posing Boolean conditions on
hierarchy levels. For instance, the user may be interested
in sales of products of type ‘‘Hi-Fi’’ for the stores in Rome
during the days of January 2007 (see Fig. 4).

Although restriction is used widely, aggregation plays
the most relevant role in analyzing multidimensional data.
In fact, most often users are not interested in analyzing
events at the maximum level of detail. For instance, it may
be interesting to analyze sale events not on a daily basis but

by month. In the cube metaphor, this process means group-
ing, for each product and each store, all cells corresponding
to the days of the same month into one macro-cell. In the
aggregated cube obtained, each macro-cell represents a
synthesis of the data stored in the cells it aggregates: in
our example, the total number of items sold in each month
and the total monthly revenue, which are calculated by
summing the values of quantity and revenue through the
corresponding cells. Eventually, by aggregating along the
time hierarchy, an aggregated cube is obtained in which
each macro-cell represents the total sales over the whole
time period for each product and store. Aggregation can
also be operated along two or more hierarchies. For
instance, as shown in Fig. 5, sales can be aggregated by
month, product type, and city.

Noticeably, not every measure can be aggregated con-
sistently along all dimensions using the sum operator. In
some cases, other operators (such as average or minimum)
can be used instead, whereas in other cases, aggregation is
not possible at all. For details on the two related problems of
additivity and summarizability, the reader is referred to
Ref. 2.

Reporting

Reporting is oriented to users who need to access periodi-
cally information structured in a fixed way. For instance, a
hospital must send monthly reports of the costs of patient
stays to a regional office. These reports always have the
same form, so the designer can write the query that gen-
erates the report and ‘‘freeze’’ it within an application so
that it can be executed at the users’ needs.

A report is associated with a query and a presentation.
The query typically entails selecting and aggregating
multidimensional data stored in one or more facts. The
presentation can be in tabular or graphical form (a dia-
gram, a histogram, a cake, etc.). Most reporting tools also
allow for automatically distributing periodic reports to
interested users by e-mail on a subscription basis or for
posting reports in the corporate intranet server for down-
loading.

OLAP

OLAP, which is probably the best known technique for
querying data warehouses, enables users to explore inter-
actively and analyze information based on the multidimen-
sional model. While the users of reporting tools essentially
play a passive role, OLAP users can define actively a
complex analysis session where each step taken follows
from the results obtained at previous steps. The impromptu
character of OLAP sessions, the deep knowledge of data
required, the complexity of the possible queries, and the
orientation toward users not skilled in computer science
maximize the importance of the employed tool, whose inter-
face necessarily has to exhibit excellent features of
flexibility and friendliness.

An OLAP session consists in a ‘‘navigation path’’ that
reflects the course of analysis of one or more facts from
different points of view and at different detail levels. Such a
path is realized into a sequence of queries, with each
differentially expressed with reference to the previous

Figure 2. Hub-and-spoke architecture; ODS stands for opera-
tional data store.

4 DATA WAREHOUSE



query. Query results are multidimensional; like for
reporting, OLAP tools typically represent data in either
tabular or graphical form.

Each step in the analysis session is marked by the
application of an OLAP operator that transforms the pre-
vious query into a new one. The most common OLAP
operators are as follows:

� Roll-up, which aggregates data even more (e.g., from
sales by product, nation, and month to sales by cate-
gory, nation, and year).

� Drill-down, which adds detail to data (e.g., from sales
by category, nation, and year to sales by category, city,
and year).

� Slice-and-dice, which selects data by fixing values or
intervals for one or more dimensions (e.g., sales of
products of type ‘‘Hi-Fi’’ for stores in Italy).

� Pivoting, which changes the way of visualizing the
results by rotating the cube (e.g., swaps rows with
columns).

� Drill-across, which joins two or more correlated cubes
to compare their data (e.g., join the sales and the
promotions cubes to compare revenues with dis-
counts).

We close this section by observing that, in several appli-
cations, much use is made of an intermediate approach
commonly called semistatic reporting, in which only a

reduced set of OLAP navigation paths are enabled to avoid
obtaining inconsistent or wrong results by incorrectly using
aggregation, while allowing for some flexibility in manip-
ulating data.

IMPLEMENTATIONS OF THE MULTIDIMENSIONAL MODEL

Two main approaches exist for implementing a data ware-
house: ROLAP, which stands for relational OLAP, and
MOLAP, which stands for multidimensional OLAP.
Recently a third, intermediate approach has been adopted
in some commercial tools: HOLAP, that is, hybrid OLAP.

Relational OLAP

On a ROLAP platform, the relational technology is
employed to store data in multidimensional form. This
approach is motivated by the huge research work made
on the relational model, by the widespread knowledge of
relational databases and their administration, and by the
excellent level of performance and flexibility achieved by
relational DBMSs. Of course, because the expressiveness of
the relational model does not include the basic concepts of
the multidimensional model, it is necessary to adopt spe-
cific schema structures that allow the multidimensional
model to be mapped onto the relational model. Two main
such structures are commonly adopted: the star schema
and the snowflake schema.

Thestarschemaisarelationalschemacomposedofasetof
relations called dimension tables and one relation called a
fact table. Each dimension table models a hierarchy; it
includes a surrogate key (i.e., a unique progressive number
generated by the DBMS) and one column for each level and
descriptiveattributeof thehierarchy.The fact table includes
a set of foreign keys, one that references each dimension
table, which together define the primary key, plus one col-
umn for each measure. Figure 6 shows a star schema for the
sales example. Noticeably, dimension tables are denorma-
lized (they are not in the third normal form); this is aimed at
reducing the number of relational joins to be computed when
executing OLAP queries, so as to improve performance.

A snowflake schema is a star schema in which one or
more dimension tables have been partially or totally nor-
malized to reduce redundancy. Thus, a dimension table can
be split into one primary dimension table (whose surrogate
key is references by the fact table) and one or more

Figure 3. The three-dimensional cube that models the sales in
a chain of shops. In the S-Mart store, on 5/1/2007, three LE32M
TVs were sold, for a total revenue of $2500.

Figure 4. Slicing (left) and dicing (right) on the sales cube.

DATA WAREHOUSE 5



secondary dimension tables (each including a surrogate key
and referencing the key of another dimension table). Figure
7 shows an example for the sale schema, in which the
product dimension has been normalized partially.

Multidimensional OLAP

Differently from ROLAP, a MOLAP system is based on a
native logical model that directly supports multidimen-
sional data and operations. Data are stored physically
into multidimensional arrays, and positional techniques
are used to access them.

The great advantage of MOLAP platforms is that OLAP
queries can be executed with optimal performances, with-
out resorting to complex and costly join operations. On the
other hand, they fall short when dealing with large volumes
of data, mainly because of the problem of sparseness: In
fact, when a large percentage of the cube cells are empty, a
lot of memory space is wasted uselessly unless ad hoc
compression techniques are adopted.

Hybrid OLAP

HOLAP can be viewed as an intermediate approach
between ROLAP and MOLAP, because it tries to put
together their advantages into a single platform. Two basic
strategies are pursued in commercial tools to achieve this
goal. In the first strategy, detailed data are stored in a
relational database, whereas a set of useful preaggregates
are stored on proprietary multidimensional structures. In
the second strategy, cubes are partitioned into dense and
sparse subcubes, with the former being stored in multi-
dimensional form, and the latter in relational form.

DESIGN TECHNIQUES

Despite the basic role played by a well-structured metho-
dological framework in ensuring that the data warehouse
designed fully meets the user expectations, a very few
comprehensive design methods have been devised so far
(e.g., Refs.3 and4). None of themhasemerged asa standard,
but all agree on one point: A bottom-up approach is prefer-
able to a top-down approach, because it significantly reduces
the risk of project failure. While in a top-down approach the
data warehouse is planned and designed initially in its
entirety, in a bottom-up approach, it is built incrementally
by designing and prototyping one data mart at a time,
starting from the one that plays the most strategic business
role. In general terms, the macro-phases for designing a
data warehouse can be stated as follows:

� Planning, based on a feasibility study that assesses the
project goals, estimates the system borders and size,
evaluates costs and benefits, and analyzes risks and
users’ expectations.

� Infrastructure design, aimed at comparing the differ-
ent architectural solutions, at surveying the available
technologies and tools, and at preparing a draft design
of the whole system.

� Data mart development, which iteratively designs,
develops, tests and deploys each data mart and the
related applications.

As concerns the design of each data mart, the methodol-
ogy proposed in Ref. 3 encompasses eight closely related,
but not necessarily strictly sequential, phases:

1. Data source analysis. The source schemata are
analyzed and integrated to produce a reconciled
schema describing the available operational data.

2. Requirement analysis. Business users are inter-
viewed to understand and collect their goals and
needs, so as to generate requirement glossaries and
a preliminary specification of the core workload.

3. Conceptual design. Starting from the user require-
ments and from the reconciled schema, a conceptual
schema that describes the data mart in an implemen-
tation-independent manner is derived.

4. Schema validation. The preliminary workload is bet-
ter specified and tested against the conceptual
schema to validate it.

Figure 5. Aggregation on the sales cube.

Figure 6. Star schema for the sales example (primary keys are
underlined).

6 DATA WAREHOUSE



5. Logical design. The conceptual schema is translated
into a logical schema according to the target logical
model (relational or multidimensional), considering
the expected workload and possible additional
constraints related to space occupation and querying
performances.

6. ETL design. The ETL procedures used to feed the
data mart starting from the data sources via the
reconciled level are designed.

7. Physical design. Physical optimization of the logical
schema is done, depending on the specific character-
istic of the platform chosen for implementing the data
mart.

8. Implementation. The physical schema of the data
mart is deployed, ETL procedures are implemented,
and the applications for data analysis are built and
tested.

Several techniques for supporting single phases of
design have been proposed in the literature; a brief survey
of the most relevant approaches is reported in the following
subsections.

Data Source Analysis

A huge literature about schema integration has been
accumulating over the last two decades. Integration
methodologies have been proposed (e.g., Ref. 5), together
with formalisms to code the relevant information (e.g.,
Ref. 6). However, the integration tools developed so far
[such as TSIMMIS (7) and MOMIS (8)] should still be
considered research prototypes rather than industrial
tools, with the notable exception of Clio (9), which is sup-
ported by IBM.

Requirement Analysis

A careful requirement analysis is one of the keys to reduce
dramatically the risk of failure for warehousing projects.
From this point of view, the approaches to data warehouse
design usually are classified in two categories:

� Supply-driven (or data-driven) approaches design the
data warehouse starting from a detailed analysis of the
data sources (e.g., Ref. 10). User requirements impact
design by allowing the designer to select which chunks
of data are relevant for the decision-making process
and by determining their structuring according to the
multidimensional model.

� Demand-driven (or requirement-driven) approaches
start from determining the information requirements
of business users (like in Ref. 11). The problem of
mapping these requirements onto the available data
sources is faced only a posteriori, by designing proper
ETL routines, and possibly by accommodating data
sources to accomplish the information needs.

A few mixed approaches were also devised (12,13), where
requirement analysis and source inspection are carried out
in parallel, and user requirements are exploited to reduce
the complexity of conceptual design.

Conceptual Design

Although no agreement exists on a standard conceptual
model for data warehouses, most authors agree on the
importance of a conceptual design phase providing a
high level of abstraction in describing the multidimen-
sional schema of the data warehouse aimed at achieving
independence of implementation issues. To this end, con-
ceptual models typically rely on a graphical notation that
facilitates writing, understanding, and managing concep-
tual schemata by designers and users.

The existing approaches may be framed into three cate-
gories: extensions to the entity-relationship model (e.g, Ref.
14), extensions to UML (e.g., Ref. 15), and ad hoc models
(e.g., Ref. 16). Although all models have the same core
expressivity, in that they all allow the basic concepts of
the multidimensional model to be represented graphically,
they significantly differ as to the possibility of representing
more advanced concepts such as irregular hierarchies,
many-to-many associations, and additivity.

Logical Design

The goal of logical design is to translate a conceptual
schema into a logical schema for the data mart. Although
on MOLAP platforms this task is relatively simple, because
the target logical model is multidimensional like the source
conceptual one, on ROLAP platforms, two different models
(multidimensional and relational) have to be matched. This
is probably the area of data warehousing where research
has focused the most during the last decade (see, for
instance, Ref. 17); in particular, a lot has been written
about the so-called view materialization problem.

View materialization is a well-known technique for
optimizing the querying performance of data warehouses
by physically materializing a set of (redundant) tables,
called views, that store data at different aggregation
levels. In the presence of materialized views, an ad hoc
component of the underlying DBMS (often called aggre-
gate navigator) is entrusted with the task of choosing, for
each query formulated by the user, the view(s) on which

Figure 7. Snowflake schema for the sales example.

DATA WAREHOUSE 7



the query can be answered most cheaply. Because the
number of potential views is exponential in the number
of hierarchy levels, materializing all views would be pro-
hibitive. Thus, research has focused mainly on effective
techniques for determining the optimal subset of views to
be materialized under different kinds of constraints (e.g.,
Ref. 18).

Another optimization technique that is sometimes
adopted to improve the querying performance is fragmen-
tation (also called partitioning or striping). In particular, in
vertical fragmentation, the fact tables are partitioned into
smaller tables that contain the key and a subset of mea-
sures that are often accessed together by the workload
queries (19).

ETL Design

This topic has earned some research interest only in the last
few years. The focus here is to model the ETL process either
from the functional, the dynamic, or the static point of view.
In particular, besides techniques for conceptual design of
ETL (20), some approaches are aimed at automating (21)
and optimizing (22) the logical design of ETL. Although the
research on ETL modeling is probably less mature than
that on multidimensional modeling, it will probably have a
very relevant impact on improving the overall reliability of
the design process and on reducing its duration.

Physical Design

Physical design is aimed at filling the gap between the
logical schema and its implementation on the specific
target platform. As such, it is concerned mainly with
the problem of choosing which types of indexes should
be created on which columns of which tables. Like the
problem of view selection, this problem has exponential
complexity. A few papers on the topic can be found in the
literature: For instance, Ref. 23 proposes a technique that
jointly optimizes view and index selection, whereas Ref. 24
selects the optimal set of indexes for a given set of views in
the presence of space constraints. The problem is made
even more complex by the fact that ROLAP platforms
typically offer, besides classic B-trees, other types of
indexes, such as star indexes, projection indexes, and
bitmap indexes (25).

Note that, although some authors consider both view
selection and fragmentation as part of physical design, we
prefer to include them into logical design for similarity with
the design of operational databases (26).

ADVANCED TOPICS

Several other topics besides those discussed so far have
been addressed by the data warehouse literature. Among
them we mention:

� Query processing. OLAP queries are intrinsically dif-
ferent from OLTP queries: They are read-only queries
requiring a very large amount of data, taken from a few
tables, to be accessed and aggregated. In addition,
DBMSs oriented to data warehousing commonly sup-

port different types of specialized indexes besides B-
trees. Finally, differently from the OLTP workload, the
OLAP workload is very dynamical and subject to
change, and very fast response times are needed.
For all these reasons, the query processing techniques
required by data warehousing systems are signifi-
cantly different from those traditionally implemented
in relational DBMSs.

� Security. Among the different aspects of security, con-
fidentiality (i.e., ensuring that users can only access
the information they have privileges for) is particu-
larly relevant in data warehousing, because business
information is very sensitive. Although the classic
security models developed for operational databases
are used widely by data warehousing tools, the parti-
cularities of OLAP applications ask for more specific
models centered on the main concepts of multidimen-
sional modeling—facts, dimensions, and measures.

� Evolution. The continuous evolution of the application
domains is bringing to the forefront the dynamic
aspects related to describing how the information
stored in the data warehouse changes over time.
As concerns changes in values of hierarchy data
(the so-called slowly changing dimensions), several
approaches have been devised, and some commercial
systems allow us to track changes and to query cubes
effectively based on different temporal scenarios. Con-
versely, the problem of managing changes on the
schema level has only been explored partially, and
no dedicated commercial tools or restructuring meth-
ods are available to the designer yet.

� Quality. Because of the strategic importance of data
warehouses, it is absolutely crucial to guarantee their
quality (in terms of data, design, technology, business,
etc.) from the early stages of a project. Although some
relevant work on the quality of data has been carried
out, no agreement still exists on the quality of the
design process and its impact on decision making.

� Interoperability. The wide variety of tools and software
products available on the market has lead to a broad
diversity in metadata modeling for data warehouses.
In practice, tools with dissimilar metadata are inte-
grated by building complex metadata bridges, but
some information is lost when translating from one
form of metadata to another. Thus, a need exists for a
standard definition of metadata in order to better
support data warehouse interoperability and integra-
tion, which is particularly relevant in the recurrent
case of mergers and acquisitions. Two industry stan-
dards developed by multivendor organizations have
originated in this context: the Open Information Model
(OIM) by the Meta Data Coalition (MDC) and the
Common Warehouse Metamodel (CWM) by the OMG.

� New architectures and applications. Advanced archi-
tectures for business intelligence are emerging to sup-
port new kinds of applications, possibly involving new
and more complex data types. Here we cite spatial data
warehousing, web warehousing, real-time data ware-
housing, distributed data warehousing, and scientific
data warehousing. Thus, it becomes necessary to adapt

8 DATA WAREHOUSE



and specialize the existing design and optimization
techniques to cope with these new applications.

See Ref. 26 for an up-to-date survey of open research
themes.

BIBLIOGRAPHY

1. H. Lenz and A. Shoshani, Summarizability in OLAP and
statistical data bases, Proc. Int. Conf. on Scientific and Statis-
tical Database Management, Olympia, WA, 1997, pp. 132–143.

2. R. Agrawal, A. Gupta, and S. Sarawagi, Modeling multidimen-
sional databases, IBM Research Report, IBM Almaden
Research Center, 1995.

3. M. Golfarelli and S. Rizzi, A methodological framework for data
warehouse design, Proc. Int. Workshop on Data Warehousing
and OLAP, Washington DC; 1998; pp. 3–9.

4. S. Luján-Mora and J. Trujillo, A comprehensive method for
data warehouse design, Proc. Int. Workshop on Design and
Management of Data Warehouses, Berlin;Germany; 2003;

pp. 1.1–1.14.

5. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R.
Rosati, A principled approach to data integration and reconci-
liation in data warehousing, Proc. Int. Workshop on Design and
Management of Data Warehouses, Heidelberg;Germany; 1999;

pp. 16.1–16.11.

6. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R.
Rosati, Description logic framework for information integra-
tion, Proc. Int. Conf. on Principles of Knowledge Representation
and Reasoning, Trento; Italy; 1998; pp. 2–13.

7. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinou, J. Ullman, and J. Widom, The TSIMMIS
project: integration of heterogeneous information sources,
Proc. Meeting of the Inf. Processing Soc. of Japan,Tokyo, Japan,
1994, pp. 7–18.

8. D. Beneventano, S. Bergamaschi, S. Castano, A. Corni, R.
Guidetti, G. Malvezzi, M. Melchiori, and M. Vincini, Informa-
tion integration: the MOMIS project demonstration, Proc. Int.
Conf. on Very Large Data Bases, Cairo;Egypt; 2000; pp. 611–614.

9. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth, Clio
grows up: from research prototype to industrial tool, Proc.
SIGMOD Conf., Baltimore; MD; 2005; pp. 805–810.

10. M. Golfarelli, D. Maio, and S. Rizzi, The dimensional fact
model: a conceptual model for data warehouses, Int. J. Coope.
Informat. Sys., 7(2-3): 215–247, 1998.

11. N. Prakash and A. Gosain, Requirements driven data ware-
house development, CAiSE Short Paper Proc., Klagenfurt/
Velden, Austria, 2003, pp. 13–16.

12. A. Bonifati, F. Cattaneo, S. Ceri, A. Fuggetta, and S. Para-
boschi, Designing data marts for data warehouses,
ACM Trans: Softw: Engineer. Methodol., 10(4): 452–483, 2001.

13. P. Giorgini, S. Rizzi, and M. Garzetti, Goal-oriented require-
ment analysis for data warehouse design, Proc. Int. Workshop
on Data Warehousing and OLAP, Bremen, Germany, 2005,
pp. 47–56.

14. C. Sapia, M. Blaschka, G. Höfling, and B. Dinter, Extending the
E/R model for the multidimensional paradigm, Proc. Int. Work-
shop on Design and Management of Data Warehouses, Singa-
pore, 1998, pp. 105–116.

15. S. Luján-Mora, J. Trujillo, and I. Song, A UML profile for
multidimensional modeling in data warehouses, Data Know.
Engineer., 59(3): 725–769, 2006.

16. S. Rizzi, Conceptual modeling solutions for the data ware-
house, in R. Wrembel and C. Koncilia (eds.), Data Warehouses
and OLAP: Concepts, Architectures and Solutions, IRM Press:
2006, pp. 1–26.

17. J. Lechtenbörger and G. Vossen, Multidimensional normal
forms for data warehouse design, Informat. Sys., 28(5):
415–434, 2003.

18. D. Theodoratos and M. Bouzeghoub, A general framework for
the view selection problem for data warehouse design and
evolution, Proc. Int. Workshop on Data Warehousing and
OLAP, Washington DC, 2000, pp. 1–8.

19. M. Golfarelli, V. Maniezzo, and S. Rizzi, Materialization of
fragmented views in multidimensional databases, Data Knowl.
Engineer., 49(3): 325–351, 2004.

20. P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, Conceptual
modeling for ETL processes, Proc. Int. Workshop on Data
Warehousing and OLAP, McLean, 2002, pp. 14–21.

21. A. Simitsis, Mapping conceptual to logical models for ETL
processes, Proc. Int. Workshop on Data Warehousing and
OLAP, Bremen, Germany, 2005, pp. 67–76.

22. A. Simitsis, P. Vassiliadis, and T. K. Sellis, Optimizing ETL
processes in data warehouses, Proc. Int. Conf. on Data Engi-
neering, Tokyo, Japan, 2005, pp. 564–575.

23. H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman,
Index selection for OLAP, Proc. Int. Conf. on Data Engineering,
Birmingham, UK, 1997, pp. 208–219.

24. M. Golfarelli, S. Rizzi, and E. Saltarelli, Index selection for data
warehousing, Proc. Int. Workshop on Design and Management
of Data Warehouses, Toronto, Canada, 2002, pp. 33–42.

25. P. O’Neil and D. Quass, Improved query performance with
variant indexes, Proc. SIGMOD Conf., Tucson, AZ, 1997,
pp. 38–49.

26. S. Rizzi, A. Abell, J. Lechtenbörger, and J. Trujillo, Research in
data warehouse modeling and design: Dead or alive? Proc. Int.
Workshop on Data Warehousing and OLAP, Arlington, VA,
2006, pp. 3–10.

FURTHER READING

B. Devlin, Data Warehouse: From Architecture to Implementation,
Reading, MA: Addison-Wesley Longman, 1997.

W. H. Inmon, Building the Data Warehouse, 4th ed. New York:
John Wiley & Sons, 2005.

M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis, Funda-
mentals of Data Warehouse, New York: Springer, 2000.

R. Kimball, L. Reeves, M. Ross, and W. Thornthwaite, The Data
Warehouse Lifecycle Toolkit, New York: John Wiley & Sons, 1998.

R. Mattison, Data Warehousing, New York: McGraw-Hill, 1996.

STEFANO RIZZI

University of Bologna
Bologna, Italy

DATA WAREHOUSE 9



D

DECISION SUPPORT SYSTEMS: FOUNDATIONS
AND VARIATIONS

INTRODUCTION

Over the past quarter century, economic and technological
forces have produced radical redefinitions of work, the
workplace, and the marketplace. They have ushered in
the era of knowledge workers, knowledge-based organiza-
tions, and the knowledge economy. People have always
used the knowledge available to them to make decisions
that shape the world in which they live. Decisions of work-
ers, consumers, and organizations range from those affect-
ing the world in some small or fleeting way to those of global
and lasting proportions. In recent times, the number of
decisions being made per time period and the complexity of
factors involved in decision activities have grown drama-
tically. As the world’s supply of knowledge continues to
accelerate, the amount of knowledge used in making deci-
sions has exploded. Computer-based systems that help
decision makers deal with both the knowledge explosion
and the incessant demands for decisions in a fast-paced,
complicated world are called decision support systems
(DSSs). Such systems have become practically indispensa-
ble for high performance, competitiveness, and even orga-
nizational survival.

Imagine an organization in which managers and other
workers cannot use computers to aid any of their decisional
activities. Contrast this fantasy with the vision of an orga-
nization whose managers and other knowledge workers
routinely employ computers to get at and process knowl-
edge that has a bearing on decisions being made. These
DSSs store and process certain kinds of knowledge in much
higher volumes and at much higher speeds than the human
mind. In addition to such efficiency advantages, they can
also be more effective for certain kinds of knowledge hand-
ling because they are not subject to such common human
conditions as oversight, forgetfulness, miscalculation, bias,
and stress. Failure to appreciate or exploit such decision
support capabilities puts individuals and organizations at a
major disadvantage

As a prelude to considering the characteristics of DSSs,
we need to examine a couple of preliminaries: decision
making and knowledge. Understanding what it means to
make a decision provides a useful basis for exploring deci-
sion support possibilities. Understanding salient aspects of
knowledge gives a starting point for appreciating ways in
which computers can support the use of knowledge during
decision making.

DECISION MAKING

General agreement in the management literature exists
that a decision is a choice. It may be a choice about a ‘‘course
of action’’ (1,2), choice of a ‘‘strategy for action’’ (3), or a
choice leading to a certain desired objective’’(4). Thus, we

can think of decision making as an activity culminating in
the selection of one from among multiple alternative
courses of action.

In general, the number of alternatives identified and
considered in decision making could be very large. The
work involved in becoming aware of alternatives often
makes up a major share of a decision-making episode. It
is concerned with such questions as ‘‘Where do alternatives
come from?’’ ‘‘How many alternatives are enough?’’ ‘‘How
can large numbers of alternatives be managed so none is
forgotten or garbled?’’ A computer-based system (i.e, a DSS)
can help a decision maker cope with such issues.

Ultimately, one alternative is selected. But, which one?
This choice depends on a study of the alternatives to under-
stand their various implications as well as on a clear
appreciation of what is important to the decision maker.
The work involved in selecting one alternative often makes
up a major share of a decision-making episode. It is con-
cerned with such questions as: ‘‘To what extent should each
alternative be studied?’’ ‘‘How reliable is our expectation
about an alternative’s impacts?’’ ‘‘Are an alternative’s
expected impacts compatible with the decision maker’s
purposes?’’ ‘‘What basis should be used to compare alter-
natives with each other?’’ ‘‘What strategy will be followed in
arriving at a choice?’’ Computer-based systems (i.e., DSSs)
can be very beneficial in supporting the study of alterna-
tives. Some systems even recommend the selection of a
particular alternative and explain the rationale underlying
that advice.

Complementing the classic view of decisions and deci-
sion making, there is the knowledge-based view that holds
that a decision is knowledge that indicates the nature of an
action commitment (5). When we regard a decision as a
piece of knowledge, making a decision means we are mak-
ing a new piece of knowledge that did not exist before,
manufacturing new knowledge by transforming or assem-
bling existing pieces of knowledge. The manufacturing
process may yield additional new knowledge as byproducts
(e.g., knowledge derived as evidence to justify the decision,
knowledge about alternatives that were not chosen, knowl-
edge about improving the decision manufacturing process
itself). Such byproducts can be useful later in making other
decisions. A DSS is a computer-based system that aids the
manufacturing process, just as machines aid in the man-
ufacturing of material goods.

According to Mintzberg (6), there are four decisional
roles: entrepreneur, disturbance handler, resource alloca-
tor, and negotiator. When playing the entrepreneur role, a
decision maker searches for opportunities to advance in
new directions aligned with his/her/its purpose. If such an
opportunity is discovered, the decision maker initiates and
devises controlled changes in an effort to seize the oppor-
tunity. As a disturbance handler, a decision maker initiates
and devises corrective actions when facing an unexpected
disturbance. As a resource allocator, a decision maker
determines where efforts will be expended and how assets

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



will be deployed. This decision can be thought of as deter-
mining a strategy for structuring available resources.
When playing the negotiator role, a decision maker bar-
gains with others to try to reach a joint decision. Decision
support systems are capable of supporting these four roles,
although a particular DSS can be oriented more toward one
role than the others.

A DSS can also vary to suit other particularities of
contexts in which it is to be used. For instance, the context
could be strategic decision making (concerned with decid-
ing on purposes to fulfill, objectives to meet, changes in
objectives, policies to adopt) decision making to ensure
objectives are met and policies are observed, or operational
decision making about performing specific tasks. These
contexts vary along such dimensions as time horizons for
deciding, extent of precision and detailed knowledge
needed, narrow to wide-ranging knowledge, rhythm to
decision-making activities, and degree of creativity or qua-
litative judgment required.

As another example of decision context, consider the
maturity of the situation in which a decision is being made.
Some decisions are made in established situations, whereas
others are made in emergent situations. Well-established
situations imply considerable experience in previously hav-
ing made similar kinds of decisions, with a relatively high
level of knowledge existing about the current state of affairs
and the history of previous decisions of a similar nature. In
contrast, emergent situations are characterized not only by
some surprising new knowledge, but also often by a scarcity
of relevant knowledge as well, often with intense effort
required to acquire needed knowledge. The type of support
likely to be most useful for established contexts could be
quite different than what is valuable in the case of emergent
settings.

Simon (2,7) says that decisions comprise a continuum
ranging from structured to unstructured. The structured-
ness of a decision is concerned with how routine and
repetitive is the process that produced it. A highly struc-
tured decision is one that has been manufactured in an
established context. Alternatives from which the choice is
made are clear-cut, and each can be readily evaluated in
light of purposes and goals. All knowledge required to make
the decision is available in a form that makes it straightfor-
ward to use. Unstructured decisions tend to be produced
in emergent contexts. Issues pertinent to producing a
decision are not well understood. Some issues may be
entirely unknown to the decision maker; alternatives
from which a choice will be made are vague or unknown,
are difficult to compare and contrast, or cannot be easily
evaluated. In other words, the knowledge required to pro-
duce a decision is unavailable, difficult to acquire, incom-
plete, suspect, or in a form that cannot be readily used by
the decision maker. Semistructured decisions lie between
the two extremes.

DSSs of varying kinds can be valuable aids in the
manufacture of semistructured and unstructured decisions
(8), as well as structured decisions (9). For the former, DSSs
can be designed to facilitate the exploration of knowledge,
help synthesize methods for reaching decisions, catalog and
examine the results of brainstorming, provide multiple
perspectives on issues, or stimulate a decision maker’s

creative capabilities. For structured decisions, DSSs auto-
matically carry out some portion of the process used to
produce a decision.

Because decisions are not manufactured in a vacuum, an
appreciation of decision contexts and types can help us
understand what features would be useful to have in a
DSS. The same can be said for an appreciation of decision
makers and decision processes, which we now consider in
turn.

Decision making can involve an individual participant
or multiple participants. In the multiparticipant case, the
power to decide may be vested in a single participant, with
other participants having varying degrees of influence over
what the decision will be and how efficiently it will be
produced. They do so by specializing in assorted knowledge
processing tasks assigned to them during the making of the
decision. These supporting participants function as exten-
sions to the deciding participant’s own knowledge proces-
sing capabilities. At the other extreme of multiparticipant
decision making, participants share equal authority over
the decision being made, with little formal specialization in
knowledge processing tasks. This is referred to as a group
decision maker, whereas the other extreme is called an
organization decision maker. There are many variations
between these extremes. Correspondingly, DSSs for these
different kinds of multiparticipant decision makers can be
expected to exhibit some different kinds of features. More-
over, a particular DSS may assist a specific participant,
some subset of participants, or all participants involved in a
multiparticipant decision.

Now, as for the process of decision making, Simon (2)
says there are three important phases, which he calls
intelligence, design, and choice. Moreover, running
through the phases in any decision-making process, a
decision maker is concerned with recognizing and solving
some problems in some sequence (10). A decision-making
process is governed by the decision maker’s strategy for
reaching a choice (11).

The intelligence phase is a period when the decision
maker is alert for occasions to make decisions, preoccupied
with collecting knowledge, and concerned with evaluating it
in light of a guiding purpose. The design phase is a period
wherein the decision maker formulates alternative courses
of action, analyzes those alternatives to arrive at expecta-
tions about the likely outcomes of choosing each, and eval-
uates those expectations with respect to a purpose or
objective. During the design phase, the decision maker
may find that additional knowledge is needed, triggering
a return to the intelligence phase to satisfy that need before
continuing with the design activity. Evaluations of the
alternatives are carried forward into the choice phase of
the decision process, where they are compared and one is
chosen. This choice is made in the face of internal and
external pressures related to the nature of the decision
maker and the decision context. It may happen that none
of the alternatives are palatable, that several competing
alternatives yield very positive evaluations, or that the state
of the world has changed significantly since the alternatives
were formulated and analyzed. So, the decision maker may
return to one of the two earlier phases to collect more up-
to-date knowledge, formulate new alternatives, reanalyze

2 DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS



alternatives, reevaluate them, and so forth. Any phase is
susceptible to computer-based support.

Recognizing and solving problems is the essence of
activity within intelligence, design, and choice phases.
For structured decisions, the path toward the objective of
producing a decision is well charted. Problems to be sur-
mounted are recognized easily, and the means for solving
them are readily available. Unstructured decisions take us
into uncharted territory. Problems that will be encountered
along the way are not known in advance. Even when
stumbled upon, they may be difficult to recognize and
subsequently solve. Ingenuity and an exploratory attitude
are vital for coping with these types of decisions.

Thus, a decision-making process can be thought of as a
flow of problem-recognition and problem-solving exercises.
In the case of a multiparticipant decision maker, this flow
has many tributaries, made up of different participants
working on various problems simultaneously, in parallel,
or in some necessary sequence. Only if we solve its sub-
problems can we solve an overall decision problem. DSSs
can help decision makers in recognizing and/or solving
problems.

A decision-making process, and associated knowledge
processing, are strongly colored by the strategy being used
to choose an alternative. Well-known decision-making stra-
tegies include optimizing, satisficing, elimination-by-
aspects, incrementalism, mixed scanning, and the analytic
hierarchy process. As a practical matter, each strategy has
certain strengths and limitations (9). A DSS designed to
support an optimizing strategy may be of little help when a
satisficing strategy is being adopted and vice versa.

We close this brief overview of decision making by con-
sidering two key questions about decision support: Why
does a decision maker need support? What is the nature of
the needed support? Computer systems to support decision
makers are not free. Not only is there the cost of purchasing
or developing a DSS, costs are also associated with learning
about, using, and maintaining a DSS. It is only reasonable
that the benefits of a DSS should be required to outweigh its
costs. Although some DSS benefits can be difficult to mea-
sure in precise quantitative terms, all benefits are the
result of a decision maker’s need for support in overcoming
cognitive, economic, or time limits (9).

Cognitive limits refer to limits in the human mind’s
ability to store and process knowledge. A person does not
know everything all the time, and what is known cannot
always be recalled in an instantaneous, error-free fashion.
Because decision making is a knowledge-intensive activity,
cognitive limits substantially restrict an individual’s pro-
blem-solving efficiency and effectiveness. They may even
make it impossible for the individual to reach some deci-
sions. If these limits are relaxed, decision-maker produc-
tivity should improve. The main reason multiparticipant
decision makers exist is because of this situation. Rather
than having an individual find and solve all problems
leading to a decision, additional participants serve as
extensions to the deciding participant’s own knowledge-
handling skills, allowing problems to be solved more reli-
ably or rapidly. A DSS can function as a supporting parti-
cipant in decision making, essentially extending a person’s
cognitive capabilities.

To relax cognitive limits as much as possible, we could
consider forming a very large team of participants. But this
can be expensive not only in terms of paying and equipping
more people, but also with respect to increased commu-
nication and coordination costs. At some point, the benefits
of increased cognitive abilities are outweighed by the costs
of more people. Decision support systems can soften the
effects of economic limits when they are admitted as deci-
sion-making participants. If properly conceived and used,
added DSSs increase the productivity of human partici-
pants and allow the organization decision maker to solve
problems more efficiently and effectively.

A decision maker may be blessed with extraordinary
cognitive abilities and vast economic resources but very
little time. Time limits can put severe pressure on the
decision maker, increasing the likelihood of errors and
poor-quality decisions. There may not be sufficient time
to consider relevant knowledge, to solve relevant problems,
or to employ a desirable decision-making strategy. Because
computers can process some kinds of knowledge much
faster than humans, are not error-prone, work tirelessly,
and are immune to stresses from looming deadlines, DSSs
can help lessen the impacts of time limits.

To summarize, the support that a DSS offers normally
includes at least one of the following:

� Alerts user to a decision-making opportunity or chal-
lenge

� Recognizes problems that need to be solved as part of
the decision-making process

� Solves problems recognized by itself or by the user

� Facilitates or extends the user’s ability to process (e.g.,
acquire, transform, and explore) knowledge

� Offers advice, expectations, evaluations, facts, ana-
lyses, and designs to users

� Stimulates the user’s perception, imagination, or crea-
tive insight

� Coordinates/facilitates interactions within multipar-
ticipant decision makers

Because knowledge forms the fabric of decision making, all
the various kinds of support that a DSS can provide are
essentially exercises in knowledge management. Thus, we
now take a closer look at the matter of knowledge.

KNOWLEDGE MATTERS

Now, consider the notion of knowledge in more detail. A
decision maker possesses a storehouse of knowledge, plus
abilities to both alter and draw on the contents of that
inventory (12). This characterization holds for all types of
decision makers—individuals, groups, and organizations.
In the multiparticipant cases, both knowledge and proces-
sing abilities are distributed among participants. Knowl-
edge is extracted on an as-needed basis from the inventory
and manipulated to produce solutions for the flow of pro-
blems that constitutes a decision manufacturing process.
When the inventory is inadequate for solving some pro-
blem, outgoing messages are used in an effort to acquire the

DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS 3



additional knowledge. The solution to each problem arising
during the manufacturing process is itself a piece of knowl-
edge. In turn, it may be used to find or solve other problems,
whose solutions are knowledge allowing still other pro-
blems to be solved, and so forth, until the overall problem
of producing a decision is solved (10). Thus, knowledge is
the raw material, work-in-process, byproduct, and finished
good of decision making.

If a system has and can use a representation of ‘‘some-
thing (an object, a procedure, . . . whatever), then the system
itself can also be said to have knowledge, namely, the
knowledge embodied in that representation about that
thing’’ (13). Knowledge is embodied in usable representa-
tions, where a representation is a pattern of some kind:
symbolic, digital, mental, behavioral, audio, visual, etc. To
the extent that we can make use of that representation, it
embodies knowledge. Of particular interest for DSSs are
the representations that a computer can use and the knowl-
edge processing ability corresponding to each knowledge
representation approaches permitted in its portion of the
knowledge storehouse. A DSS cannot process knowledge
that it cannot represent. Conversely, a DSS cannot know
what is represented by some pattern that it cannot process.

When designing or encountering a particular DSS, we
should examine it in terms of the possibilities it presents for
representing and processing knowledge—that is, the
knowledge-management abilities it has to supplement
human cognitive abilities. Over the years, several compu-
ter-based techniques for managing knowledge have been
successfully applied to support decision makers, including
text/hypertext/document management, database manage-
ment, data warehousing, solver management spreadsheet
analysis, rule management, message management, process
management, and so forth (5). Each of these techniques can
represent and process one or more of the three basic types of
knowledge important for study of DSSs: descriptive, pro-
cedural, and reasoning knowledge (12,14).

Knowledge about the state of some world is called
descriptive knowledge. It includes descriptions of past,
present, future, and hypothetical situations. This know-
ledge includes data and information. In contrast, procedural
knowledge is concerned with step-by-step procedures for
accomplishing some task. Reasoning knowledge specifies
conclusions that can be drawn when a specified situation
exists. Descriptive, procedural, and reasoning knowledge
can be used together within a single DSS to support decision
making (10). For example, a DSS may derive (e.g., from past
data) descriptive knowledge (e.g., a forecast) as the solution
to a problem by using procedural knowledge indicating how
to derive the new knowledge (e.g., how to calculate a forecast
from historical observations). Using reasoning knowledge
(e.g., rules) about what procedures are valid under different
circumstances, the DSS infers which procedure is appro-
priate for solving the specific forecasting problem or to infer
a valid sequence of existing procedures that, when carried
out, would yield a solution.

Aside from knowledge type, knowledge has other attri-
bute dimensions relevant to DSSs (15,16). One of these
dimensions is knowledge orientation, which holds that a
processor’s knowledge can be oriented in the direction of the
decision domain, of other related processors with which it

interacts, and/or itself. A DSS can thus possess domain
knowledge, which is descriptive, procedural, and/or reason-
ing (DPR) knowledge that allows the DSS to find or solve
problems about a domain of interest (e.g., finance). It can
possess relational knowledge, which is DPR knowledge
that is the basis of a DSS’s ability to effectively relate
to (e.g., interact with) its user and other processors in
the course of decision making. A DSS may also have self-
knowledge, which is DPR knowledge about what it knows
and what it can do. An adaptive DSS is one for which DPR
knowledge for any of these three orientations can change by
virtue of the DSS’s experiences.

DECISION SUPPORT SYSTEM ROOTS, CHARACTERISTICS,
AND BENEFITS

Rooted in an understanding of decision making, appreciat-
ing the purposes of DSSs serves as a starting point for
identifying possible characteristics and benefits that we
might expect a DSS to exhibit. These purposes include:

� Increase a decision maker’s efficiency and/or effective-
ness

� Help a decision maker successfully deal with the deci-
sional context

� Aid one or more of the three decision-making phases

� Help the flow of problem-solving episodes proceed
more smoothly or rapidly

� Relax cognitive, economic, and/or temporal con-
straints on a decision maker

� Help manage DPR knowledge that is important for
reaching decisions

Decision support systems are deeply rooted in the evolu-
tion of business computing systems (aka information sys-
tems). Another way to appreciate characteristics and
benefits of DSSs is to compare/contrast them with traits
of their two predecessors in this evolution: data processing
systems (DPS) and management information systems
(MIS). All three share the traits of being concerned with
record keeping; however, they differ in various ways,
because each serves a different purpose in managing
knowledge resources.

The main purpose of DPS was and is to automate the
handling of large numbers of transactions. For example, a
bank must deal with large volumes of deposit and with-
drawal transactions every day, properly track each trans-
action’s effect on one or more accounts, and maintain a
history of all transactions to give a basis for auditing its
operations. At the heart of a DPS lies a body of descriptive
knowledge—computerized records of what is known as a
result of transactions having happened. A data processing
system has two major abilities related to the stored data:
record keeping and transaction generation. The former
keeps the records up-to-date in light of incoming transac-
tions and can cause creation of new records, modification of
existing records, deletion of obsolete records, or alteration
of relationships among records. The second DPS ability
is production of outgoing transactions based on stored

4 DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS



descriptive knowledge, and transmitted to such targets as
customers, suppliers, employees, or governmental
regulators.

Unlike DPS, the central purpose of MIS was and is to
provide periodic reports that recap certain predetermined
aspects of past operations. They give regular snapshots of
what has been happening. For instance, MIS might provide
manufacturing managers with daily reports on parts usage
and inventory levels, weekly reports on shipments received
and parts ordered, a monthly report of production expen-
ditures, and an annual report on individual workers’ levels
of productivity. Whereas DPS concern is with transforming
transactions into records and generating transactions from
records, MIS concern with record keeping focuses on using
this stored descriptive knowledge as a base for generating
recurring standard reports. Of course, an MIS also has
facilities for creating and updating the collection of records
that it keeps. Thus, an MIS can be regarded as extending
the DPS idea to emphasize production of standard reports
rather than producing voluminous transactions for custo-
mers, suppliers, employees, or regulators.

Information contained in standard MIS reports cer-
tainly can be factored into their users’ decision-making
activities. When this is the case, MIS can be fairly regarded
as a kind of DSS. However, the nature of such support is
very limited in light of our understanding of decision mak-
ing. Reports generated by MIS are defined before the
system is created. However, the situation surrounding a
decision maker can be very dynamic. Except for the most
structured kinds of decisions, information needs can arise
unexpectedly and change more rapidly than MIS can be
built or revised. Even when some needed information exists
in a stack of reports accumulated from MIS, it may be
buried within other information held by a report, scattered
across several reports, and presented in a fashion not
suitable for a user. Moreover, relevant information existing
in MIS reports may not only be incomplete, difficult to dig
out, unfocused, or difficult to grasp, it may also be in need of
additional processing. For instance, a series of sales reports
may list daily sales levels for various products, when a user
actually needs projections of future sales based on data in
these reports. Decision making proceeds more efficiently
and effectively when a user can easily get complete,
fully processed, focused descriptive knowledge (or even
procedural and reasoning knowledge) presented in the
desired way.

Standard reports generated by MIS are typically issued
at set time intervals. But decisions that are not fully
structured tend to be required at irregular, unanticipated
times. The knowledge needed for manufacturing decisions
must be available on an ad hoc, spur-of-the-moment, as-
needed basis. Another limit on MIS ability to support
decisions stems from their exclusive focus on managing
descriptive knowledge. Decision makers frequently need
procedural and/or reasoning knowledge as well. While an
MIS deals with domain knowledge, decision making can
often benefit from relational and self-knowledge possessed
by its participants.

Decision support capabilities can be built on top of DPS
and MIS functions. For instance, so-called digital dash-
boards are a good example. A digital dashboard integrates

knowledge from multiple sources (e.g., external feeds and
departmental DPSs and MISs) and can present various
measures of key performance indicators (e.g., sales figures,
operations status, balanced scorecards, and competitor
actions) as an aid to executives in identifying and formulat-
ing problems in the course of decision making. Executives
can face decisions, particularly more strategic decisions,
that involve multiple inter-related issues involving mar-
keting, strategy, competition, cash flow, financing, outsour-
cing, human resources, and so forth. In such circumstances,
it is important for the knowledge system contents to be
sufficiently wide ranging to help address cross-functional
decisions.

DSS Characteristics

Ideally, a decision maker should have immediate, focused,
clear access to whatever knowledge is needed on the spur-
of-the-moment. Pursuit of this ideal separates decision
support systems from their DPS and MIS ancestors. It
also suggests characteristics we might expect to observe
in a DSS:

� A DSS includes a body of knowledge that describes
some aspects of the decision domain, that specifies how
to accomplish various tasks, and/or that indicates what
conclusions are valid in various circumstances.

� A DSS may also possess DPR knowledge of other
decision-making participants and itself as well.

� A DSS has an ability to acquire, assimilate, and alter
its descriptive, procedural, and/or reasoning knowl-
edge.

� A DSS has an ability to present knowledge on an ad hoc
basis in various customized ways as well as in standard
reports.

� A DSS has an ability to select any desired subset of
stored knowledge for either presentation or deriving
new knowledge in the course of problem recognition
and/or problem solving.

� DSS can interact directly with a participant in a deci-
sion maker in such a way that there is flexibility in
choosing and sequencing knowledge manipulation
activities.

There are, of course, variations among DSSs with respect to
each of these characteristics. For instance, one DSS may
possess descriptive and procedural knowledge, another
holds only descriptive and reasoning knowledge, and
another DSS may store only descriptive knowledge. As
another example, there can be wide variations in the nature
of users’ interactions with DSSs (push versus pull interac-
tions). Regardless of such variations, these characteristics
combine to amplify a decision maker’s knowledge manage-
ment capabilities.

The notion of DSSs arose in the early 1970s (17,18).
Within a decade, each of the characteristics cited had been
identified as an important DSS trait (8,19–21). In that
period, various DSSs were proposed or implemented for
specific decision-making applications such as those for
corporate planning (22), water-quality planning (23),

DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS 5



banking (24), and so forth (19). By the late 1970s, new
technological developments were emerging that would
prove to give tremendous impetus to the DSS field. These
developments included the microcomputer, electronic
spreadsheets, management science packages, and ad
hoc query interfaces (9). Technological advances impact-
ing the DSS field have continued, including progress in
artificial intelligence, collaborative technologies, and the
Internet.

It is also notable that DSS characteristics are increas-
ingly appearing in software systems not traditionally
thought of as providing decision support, such as enterprise
systems (25). They also commonly appear in websites,
supporting decisions of both users and providers of those
sites (26).

DSS Benefits

Benefits of a particular DSS depend not only on its precise
characteristics, but also on the nature of the user and on the
decision context. A good fit among these three factors must
exist if potential benefits of the DSS are to become practical
realities. A DSS that one user finds very beneficial may be of
little value to another user, even though both are facing
similar decisions. Or, a DSS that is beneficial to a user in
one decision context may not be so valuable to that user in
another context.

Nevertheless, we can identify potential DSS benefits
(9,27), one or more of which is exhibited by any specific DSS:

� In a most fundamental sense, a DSS augments a user’s
own innate knowledge and knowledge manipulation
skills by extending the user’s capacity for representing
and processing knowledge in the course of decision
making.

� A DSS may be alert for events that lead to problem
recognition, that demand decisions, or that present
decisional opportunities and notify users.

� A user can have the DSS solve problems that the user
alone would not even attempt or that would consume a
great deal of time because of their complexity and
magnitude.

� Even for relatively simple problems encountered in
decision making, a DSS may be able to reach solutions
faster and/or more reliably than the user.

� Even though a DSS may be unable to find or solve a
problem facing a user, it may be used to guide the user
into a rational view of the problem or otherwise sti-
mulate the user’s thoughts about the problem. For
instance, the DSS may be used in an exploratory
way to browse selectively through stored data or to
analyze selectively the implications of ideas related to
the problem. The user may ask the DSS for advice
about dealing with the problem. Perhaps the user can
have the DSS solve a similar problem to trigger
insights about the problem actually being faced.

� The very activity of constructing a DSS may reveal new
ways of thinking about the decision domain, relational
issues among participants, or even partially formalize
various aspects of decision making.

� A DSS may provide additional compelling evidence to
justify a user’s position, helping secure agreement or
cooperation of others. Similarly, a DSS may be used by
the decision maker to check on or confirm the results of
problems solved independently of the DSS.

� Because of the enhanced productivity and/or agility a
DSS fosters, it may give users or their organizations
competitive advantages or allow them to stay compe-
titive.

Empirical evidence supporting the actual existence of these
benefits is examined in Ref. 28. Because no one DSS pro-
vides all these benefits to all decision makers in all decision
situations, frequently many DSSs within an organization
help to manage its knowledge resources. A particular deci-
sion maker may also make use of several DSSs within a
single decision-making episode or across different decision-
making situations.

DECISION SUPPORT SYSTEM ARCHITECTURE

We are now in a good position to examine the architecture of
DSSs, which identifies four essential elements of a DSS and
explains their interrelationships. A DSS has a language
system, presentation system, knowledge system, and pro-
blem-processing system (9,10,29). By varying the makeup
of these four elements, different DSSs are produced. Special
cases of the generic DSS architecture vary in terms of the
knowledge representation and processing approaches they
employ giving DSS categories such as text-oriented DSSs,
database-oriented DSSs, spreadsheet-oriented DSSs, sol-
ver-oriented DSSs, rule-oriented DSSs, compound DSSs,
and collaborative DSSs (9).

The Generic Architecture

A decision support system can be defined in terms of three
systems of representation:

� A language system (LS) consists of all messages the
DSS can accept.

� A presentation system (PS) consists of all messages the
DSS can emit.

� A knowledge system (KS) consists of all knowledge the
DSS has assimilated and stored.

By themselves, these three kinds of systems can do
nothing. They simply represent knowledge, either in the
sense of messages that can be passed or representations that
have been accumulated for possible processing. Yet they are
essential elements of a DSS. Each is used by the fourth
element: the problem-processing system (PPS). This system
is the active part of a DSS, its software engine. As its name
suggests, a PPS is what tries to recognize and solve problems
(i.e., process problems) during the making of a decision.

Figure 1 illustrates how the four subsystems are related
to each other and to a DSS user. The user is typically a
human participant in the decision making but could also be
the DSS developer, administrator, knowledge-entry person/
device, or even another DSS. In any case, a user makes a

6 DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS



request by selecting an element of the LS. It could be a
request to accept/provide knowledge, clarify previous
requests/responses, and find/solve a problem. Once the
PPS has been requested to process a particular LS element,
it does so. This processing may very well require the PPS to
draw on KS contents in order to interpret the request and
develop a response to it. The processing may also change the
knowledge held in the KS. In either event, the PPS may
issue a response to the user. It does so by choosing to present
one PS element to the user. The presentation choice is
determined by the processing carried out with KS contents
in response to the user’s request. In some cases, PPS activity
is triggered by an event rather than by a user’s request, with
the processing result being pushed to the user.

This simple architecture captures crucial and funda-
mental aspects common to all DSSs. To more fully appreci-
ate the nature of a specific DSS, we must know about the
requests that make up its LS, the responses that make up
its PS, the knowledge representations allowed and existing
in its KS, and the knowledge-processing capabilities of its
PPS. Developers of DSSs must pay careful attention to all
these elements when they design and build DSSs.

Requests that comprise a LS include those seeking:

� Recall or derivation of knowledge (i.e., solving a pro-
blem)

� Clarification of prior responses or help in making
subsequent responses

� Acceptance of knowledge from the user or other exter-
nal sources

� To govern a higher order process (e.g., launch a work-
flow)

Similarly, PS subsets include those that:

� Provide knowledge or clarification

� Seek knowledge or clarification from the user or other
external sources

These LS and PS categorizations are based on message
semantics. Yet another way of categorizing LS requests and
PS responses could be based on distinctions in the styles of
messages (e.g., menu, command, text, form, graphic, audio,
direct manipulation, video, and animation).

A KS can include DPR knowledge for any of the orien-
tations (domain, relational, and/or self), although the
emphasis is commonly on domain-oriented knowledge.
Many options are available to DSS developers for repre-
sentations to employ in a KS, including text, hypertext,
forms, datasets, database, spreadsheet, solvers, pro-
grams, rules, case bases, grammars, dictionaries, seman-
tic nets, frames, documents, and video/audio records. The
key point is that, for any of these representations to
convey knowledge, it must be a representation that is
usable by the DSS’s problem processing system. That
is, a PPS must have processing capabilities that corre-
spond the each knowledge representation technique
employed in its KS.

Regardless of the particular knowledge processing tech-
nique(s) it uses, a PPS tends to have the following knowl-
edge manipulation abilities (9,10,16):

� Acquire knowledge from outside itself (interpreting it
along the way)

� Select knowledge from its KS (e.g., for use in acquiring,
assimilating, generating, and emitting knowledge)

� Assimilate knowledge into its KS (e.g., incorporate
acquired or generated knowledge subject to mainte-
nance of KS quality)

� Generate knowledge (e.g., derive or discover new
knowledge)

� Emit knowledge to the outside (packaging it into sui-
table presentations along the way)

Some PPSs do not have all five abilities (e.g., can select
knowledge, but not generate it). In addition, a PPS may

Descriptive
Knowledge

Procedural
Knowledge

Reasoning
Knowledge

Acquisition

Selection

Assimilation

Generation

Emission

Coordination

Control

Measurement

Public 

System
Problem

Processing
System

Recall/Derive Knowledge 
Clarify/Help
Accept Knowledge 
Govern Higher Order 
   Processes

Users

Language
System

Presentation
System

Provide
   Knowledge/Clarification 
Seek

Responses 

Requests 

Domain
Knowledge

           Self 
           Knowledge 

                        Relational 
                        Knowledge 

Private 
Knowledge

Knowledge

Knowledge

Knowledge/Clarification

Figure 1. Decision support system architecture.

DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS 7



have some higher order abilities that guide/govern the
patterns of acquisition, selection, generation, assimilation,
and emission activities that occur during a decisional epi-
sode (9,16):

� Measurement of knowledge and processing (allowing
subsequent evaluation and learning)

� Control of knowledge and processing (ensuring integ-
rity, quality, security, and privacy)

� Coordination of knowledge and processing (e.g., rout-
ing communications among participants, guiding
workflows, promoting incentives to participants, inter-
vening in negotiations, and enforcing processing prio-
rities across concurrent decisional episodes)

The generic DSS architecture gives us a common base
and fundamental terms for discussing, comparing, and
contrasting specific DSSs and classes of DSSs.

DSS Classes

A useful way to look at KS contents and PPS abilities is in
terms of the knowledge management techniques employed
by a DSS (5,9). This gives rise to many special cases of the
generic DSS architecture, several classes of these being
considered here.

A text-oriented DSS supports decision makers by keep-
ing track of textually represented DPR knowledge that
could have a bearing on decisions (30,31). It allows docu-
ments to be created, revised, and reviewed by decision
makers on an as-needed basis. The viewing can be explora-
tory browsing in search of stimulation or a focused search
for some particular piece of knowledge needed in the man-
ufacture of a decision. In either event, there is a problem
with traditional text management: It is not convenient to
trace a flow of ideas through separate pieces of text in the
KS, as there are no explicit relationships among them.

This limitation is remedied in a hypertext-oriented DSS,
whose KS is comprised of pieces of text explicitly linked to
other pieces of text that are conceptually related to it. The
PPS capabilities include creation, deletion, and traversal of
nodes and links. The hypertext-oriented DSS supplements
a decision maker’s own associative capabilities by accu-
rately storing and recalling large volumes of concepts and
connections (32,33).

Another special case of the DSS architecture uses the
database technique of knowledge management, especially
relational and multidimensional approaches. Database-
oriented DSSs have been used since the early years of
the DSS field (34–36), tending to handle rigidly structured,
often extremely voluminous, descriptive knowledge. The
PPS is a database control system, plus an interactive query
processing system and/or various custom-built processing
systems, to satisfy user requests. Data warehouses (37) and
data marts belong to this DSS class.

Well known for solving ‘‘what-if’’ problems, spreadsheet-
oriented DSSs are in widespread use (38). The KS holds
descriptive and procedural knowledge in spreadsheets.
Using the spreadsheet technique, a DSS user not only
can create, view, and modify procedural knowledge held
in the KS but also can tell the PPS to carry out the

instructions they contain. This capability gives DSS users
much more power in handling procedural knowledge than
is typical with either text management or database man-
agement. However, it is not nearly as convenient as data-
base management in handling large volumes of descriptive
knowledge, or text management in representing and pro-
cessing unstructured textual passages.

Another class of DSSs is based on the notion of a solver—
an executable algorithm that solves any member of a
particular class of problems. Solver management is con-
cerned with storage and use of a collection of solvers. Two
approaches to solver-oriented DSS are fixed and flexible. In
the fixed approach, solvers are part of the PPS, which
means that a solver cannot be easily added to, or deleted
from, the DSS nor readily modified. With the flexible
approach, the PPS is designed to manipulate (e.g., create,
delete, update, combine, and coordinate) solver modules
held in the KS according to user requests.

The KS for a fixed solver-oriented DSS is typically able to
hold datasets (groupings of numbers organized according to
conventions required by the solvers). Many solvers can use
a dataset, and a given solver can feed on multiple datasets.
It is not uncommon for the KS to also hold editable problem
statements and report format descriptions. In addition to
solver modules, the KS flexible approach also accommo-
dates datasets and perhaps problem statements or report
formats. Each module requires certain data to be available
for its use before its instructions can be carried out. Some of
that data may already exist in KS datasets. The remaining
data must either be furnished by the user (i.e., in the
problem statement) or produced by executing other mod-
ules. In other words, a single module may not be able to
solve some problems. Yet they can be solved by executing a
certain sequence of modules. The results of carrying out
instructions in the first module are used as data inputs in
executing the second module, whose results become data
for the third or subsequent module executions, and so forth,
until a solution is achieved. Thus, the PPS coordinates the
executions of modules that combine to make up the solver
for a user’s problem statement.

Another special case of the generic DSS architecture
involves representing and processing rules (i.e., reasoning
knowledge), (21,39). The KS of a rule-oriented DSS holds
one or more rule sets, each pertaining to reasoning about
what recommendation to give a user seeking advice on some
subject. In addition to rule sets, it is common for the KS to
contain descriptions of the current state. A user can request
advice and explanation of the rationale for that advice. The
PPS can do logical inference (i.e., to reason) with a set of
rules to produce advice sought by a user. The problem
processor examines pertinent rules in a rule set, looking
for those whose premises are true for the current situation.
This situation is defined by current state descriptions and
the user’s request for advice. When the PPS finds a true
premise, it takes the actions specified in that rule’s conclu-
sion. This action sheds additional light on the situation,
which allows premises of still other rules to be established
as true, which causes actions in their conclusions to be
taken. Reasoning continues in this way until some action is
taken that yields the request advice or the PPS gives up
because of insufficient knowledge in its KS. The PPS also

8 DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS



has the ability to explain its behavior both during and after
conducting the inference.

Rule-based inference is an artificial intelligence techni-
que. A rule-oriented DSS is an example of what is called an
intelligent DSS (21,39). Generally, any of the DSS cate-
gories can include systems that incorporate artificial intel-
ligence mechanisms to enhance their problem processing
capabilities. These mechanisms include natural language
processing (for understanding and interpreting natural
language), intelligent tutoring features (for offering help
to users), machine learning approaches such as genetic
algorithms or neural networks (for giving a DSS the ability
to adapt its behavior based on its experiences), knowledge
representation approaches such as semantic networks
(for KS enrichment), search strategies (for knowledge selec-
tion and acquisition), and intelligent agent architectures
(for event monitoring, collaborative processing, etc).

Each foregoing DSS class emphasizes a single knowl-
edge management technique, supporting users in ways
that cannot be easily replicated by DSSs based on different
techniques. If a user needs the kinds of support offered by
multiple knowledge management techniques, there are two
basic options:

� Use multiple DSSs, each oriented toward a particular
technique.

� Use a single DSS that encompasses multiple techni-
ques.

The latter is a compound DSS, having a PPS equipped
with the knowledge manipulation abilities of two or more
techniques. The KS holds knowledge representations asso-
ciated with all of these techniques. A good example of a
compound DSS is evident in the architecture introduced by
Sprague and Carlson (40), which combines database man-
agement and solver management into a single system, so
that solvers (aka models) can operate against full-scale
databases instead of datasets. Online analytic processing
systems when operating against data warehouses belong to
this class of compound DSSs. Software tools such as Knowl-
edgeMan (aka the Knowledge Manager) and Guru have
been used as prefabricated PPSs for building compound
DSSs, synthesizing many knowledge management techni-
ques in a single system (5,35,39). Such prefabricated PPSs
are a realization of the concept of a generalized problem
processing system (9,10).

Another important class, multiparticipant decision
support systems (MDSSs), involves DSSs specifically
designed to support decision-making efforts of a decision
maker comprised of multiple participants. An MDSS that
supports a group decision maker is called a group decision
support system (GDSS). An MDSS that supports other
kinds of multiparticipant decision makers, such as hier-
archic teams, project teams, firms, agencies, or markets, is
called an organizational decision support system (ODSS).
Compared with a group, an organization has greater
differentiation/specialization of participant roles in the
decision making, greater coordination among these roles,
greater differentiation in participants’ authority over the
decision, and more structured message flows among

participants (9). It is possible that an MDSS supports
negotiations among participants to resolve points of con-
tention. If so, it is a negotiation support system (NSS) as
well as being a GDSS or ODSS.

The KS and/or PPS of an MDSS can be distributed across
multiple computers, which may be in close physical proxi-
mity (e.g., an electronic meeting room) or dispersed world-
wide (e.g., as Internet nodes). Participants in the decision
may interact at the same time or asynchronously. Although
MDSSs can take on any of the characteristics and employ
any of the knowledge management techniques discussed
above, their hallmark is a focus on strong PPS coordination
ability, perhaps with some control and measurement abil-
ities as well. Examples of such ability includes (41-43):

� PPS controls what communication channels are open
for use at any given time.

� PPS guides deliberations in such ways as monitoring
and adjusting for the current state of participants’
work, requiring input from all participants, permitting
input to be anonymous, enforcing a particular coordi-
nation method (e.g., nominal group technique), and
handling/tabulating participant voting.

� PPS continually gathers, organizes, filters, and for-
mats public materials generated by participants dur-
ing the decision-making process, electronically
distributing them to participants periodically or on
demand; it permits users to transfer knowledge readily
from private to public portions of the KS (and vice
versa) and perhaps even from one private store to
another.

� PPS continually tracks the status of deliberations as a
basis for giving cues to participants (e.g., who has
viewed or considered what, where are the greatest
disagreements, where is other clarification or analysis
needed, when is there a new alternative to be consid-
ered, and who has or has not voted).

� PPS regulates the assignment of participants to roles
(e.g., furnishing an electronic market in which they bid
for the opportunity to fill roles).

� PPS implements an incentive scheme designed to
motivate and properly reward participants for their
contributions to decisions.

� By tracking what occurred in prior decision-making
sessions, along with recording feedback on the results
for those sessions (e.g., decision quality, process inno-
vation), a PPS enables the MDSS to learn how to
coordinate better or to avoid coordination pitfalls in
the future.

For each of these abilities, a PPS may range from offer-
ing relatively primitive to relatively sophisticated features.

Thus, the KS of an MDSS typically includes a group/
organization memory of what has occurred in decisional
episodes. In addition to public knowledge that can be
selected by any/all participants, the KS may also accom-
modate private knowledge spaces for each participant.
Similarly, the LS (and PS) may include both a public
language (and presentations) comprising messages suited

DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS 9



to all participants and private languages (and presenta-
tions) available to specific participants. In addition to the
kinds of users noted in Fig. 1, an MDSS may also interact
with a facilitator(s), who helps the participants (individu-
ally and collectively) make effective use of the MDSS.

A GDSS seeks to reduce losses that can result from
working as a group, while keeping (or enhancing) the
gains that group work can yield (44). DeSanctis and Gallupe
(45) identify three levels of GDSSs, differing in terms of
features they offer for supporting a group decision maker. A
Level-1 GDSS reduces communication barriers that would
otherwise occur among participants, stimulating and has-
tening messages exchanges. A Level-2 GDSS reduces uncer-
tainty and ‘‘noise’’ that can occur in a group’s decision
process via various systematic knowledge manipulation
techniques like those encountered in the DSS classes pre-
viously described. A Level-3 GDSS governs timing, content,
or patterns of messages exchanged by participants, actively
driving or regulating a group’s decision process.

Nunamaker et al. (44) draw the following conclusions
from their observations of GDSSs in the laboratory and the
field:

� Parallel communication encourages greater participa-
tion and reduces the likelihood of a few participants
dominating the proceedings.

� Anonymity reduces apprehensions about participating
and lessens the pressure to conform, allowing for more
candid interactions.

� Existence of a group memory makes it easier for par-
ticipants to pause and ponder the contributions of
others during the session, as well as preserving a
permanent record of what has occurred.

� Process structuring helps keep the participants
focused on making the decision, reducing tendencies
toward digression and unproductive behaviors.

� Task support and structuring give participants the
ability to select and derive needed knowledge.

The notion of an ODSS has long been recognized, with an
early conception viewing an organizational decision maker
as a knowledge processor having multiple human andmulti-
ple computer components, organized according to roles and
relationships that divide their individual labors in alterna-
tive ways in the interest of solving a decision problem facing
the organization (46). Each component (human or machine)
is an intelligent processor capable of solving some class of
problems either on its own or by coordinating the efforts of
other components—passing messages to them and receiving
messages from them. The key ideas in this early framework
for ODSS are the notions of distributed problem solving by
human and machine knowledge processors, communication
among these problem solvers, and coordination of interre-
lated problem-solving efforts in the interest of solving an
overall decision problem. To date, organizational DSSs have
not received nearly as much attention as group DSSs.

George (47) identifies three main ODSS themes:

� Involves computer-based technologies and may
involve communication technology

� Accommodates users who perform different organiza-
tional functions and who occupy different positions in
the organization’s hierarchical levels

� Is primarily concerned with decisions that cut across
organizational units or impact corporate issues

and organizes candidate technologies for ODSS develop-
ment into several categories:

� Technologies to facilitate communication within the
organization and across the organization’s boundaries

� Technologies to coordinate use of resources involved in
decision making

� Technologies to filter and summarize knowledge (e.g.,
intelligent agents)

� Technologies to track the status of the organization
and its environment

� Technologies to represent and process diverse kinds of
knowledge needed in decision making

� Technologies to help the organization and its partici-
pants reach decisions

Computer systems designed for specific business pro-
cesses, such as customer relationship management,
product lifecycle management, and supply chain manage-
ment are evolving from an initial emphasis on transaction
handling and reporting, to increasingly offer decision
support characteristics. As such, they can be considered
to be ODSSs. The most extensive of these systems are
enterprise resource planning systems, which seek to inte-
grate traditionally distinct business applications into a
single system with a common knowledge store. Although
these systems often regarded from the perspectives of data
processing and management information systems,
research indicates that enterprise systems do have some
ODSS features and do provide decision support benefits to
organizations (25,28). Their potential as decision support
platforms is increasingly reflected in new product offerings
of software vendors.

Although some GDSSs and ODSSs have features that
can benefit negotiators, these features have not been the
central motive or interest of such systems. DSSs designed
specifically for supporting negotiation activities are called
negotiationsupport systems. Pioneering tools for NSS
development include NEGO, a PPS designed to help nego-
tiators change their strategies, form coalitions, and evalu-
ate compromises (48), and NEGOPLAN, an expert system
shell that represents negotiation issues and decomposes
negotiation goals to help examine consequences of different
negotiation scenarios (49). See Refs. 50 and 51 for surveys of
NSS software and Ref. 52 for a formal theoretical founda-
tion of NSSs.

CONCLUSION

Decision support systems have major socioeconomic
impacts and are so pervasive as to be practically invisible.
The study and application of DSSs comprises a major
subject area within the information systems discipline.

10 DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS



This extensive area, has unifying principles rooted in
knowledge management and the generic architecture
shown in Fig. 1; it is also an area rich in diversity, nuances,
and potential for additional advances. For a thorough,
in-depth appreciation of the DSS area, consult the two-
volume Handbook on Decision Support Systems(53), the
flagship journal Decision Support Systems, the DSS appli-
cations-intensive Interfaces, the Journal of Decision Sys-
tems, Journal of Data Warehousing, and Business
Intelligence Journal.

For all their value, we must keep in mind the fact that
DSSs have limitations. They cannot make up for a faulty
(e.g., irrational) decision maker, and the efficacy of the
support they provide is constrained by the extent and
quality of their knowledge systems relative to the decision
situation being faced (9). Their effectiveness is influenced
by such factors as adequacy of a user’s problem formula-
tions, capture of relevant variables, and timely and accu-
rate knowledge about the status of these decision
parameters. Ultimately, the value of a DSS does not derive
simply from its existence, but it depends very much on how
it is designed, used, maintained, and evaluated, plus the
decision maker’s assumptions about the DSS.

BIBLIOGRAPHY

1. T. W. Costello and S. S. Zalkind, Psychology in Administration:
A Research Orientation, Englewood Cliffs, NJ: Prentice Hall,
1963.

2. H. A. Simon, The New Science of Management Decision, New
York: Harper & Row, 1960.

3. P. C. Fishburn, Decision and Value Theory, New York: John
Wiley, 1964.

4. C. W. Churchman, Challenge to Reason, New York: McGraw-
Hill, 1968.

5. C. W. Holsapple and A. B. Whinston, The Information Jungle,
Homewood, IL: Dow Jones-Irwin, 1988.

6. H. Mintzberg, The Nature of Managerial Work, Englewood
Cliffs, NJ: Prentice Hall, (first published in 1973), 1980.

7. H. A. Simon, Models of Man, New York: John Wiley, 1957.

8. P. G. W. Keen and M. S. ScottMorton, Decision Support
Systems: An Organizational Perspective, Reading, MA: Addi-
son-Wesley, 1978.

9. C. W. Holsapple and A. B. Whinston, Decision Support Sys-
tems: A Knowledge-Based Approach, St. Paul, MN: West, 1996.

10. R. H. Bonczek, C. W. Holsapple, and A. B. Whinston, Founda-
tions of Decision Support Systems, New York: Academic Press,
1981.

11. I. L. Janis and I. Mann, Decision Making: A Psychological
Analysis of Conflict, Choice, and Commitment, New York:
The Free Press, 1977.

12. C. W. Holsapple, Knowledge management in decision making
and decision support, Knowledge and Policy: The Internat.
J. Knowledge Trans. Utilization, 8(1): 1995.

13. A. Newell, The knowledge level, Artificial Intelli., 18(1): 1982.

14. C. W. Holsapple, The inseparability of modern knowledge
management and computer-based technology, J. Knowledge
Management, 9(1): 2005.

15. C. W. Holsapple, Knowledge and its attributes, in C. W.
Holsapple (ed.), Handbook on Knowledge Management, Vol.
1, Berlin: Springer, 2003.

16. C. W. Holsapple and K. D. Joshi, A formal knowledge manage-
ment ontology: conduct, activities, resources, and influences,
J. Amer. Soc. Infor. Sci. Technol., 55(7): 2004.

17. T. P. Gerrity, Design of man-machine decision systems: an
application to portfolio management, Sloan Management
Review, Winter, 1971.

18. M. S. Scott Morton, Management Decision Systems: Computer-
Based Support for Decision Making, Cambridge, MA: Division
of Research, Harvard University, 1971.

19. S. L. Alter, Decision Support Systems: Current Practice and
Continuing Challenges, Reading, MA: Addison-Wesley, 1980.

20. R. H. Bonczek, C. W. Holsapple and A. B. Whinston, The
evolving roles of models within decision support systems,
Decision Sciences, April, 1980.

21. R. H. Bonczek, C. W. Holsapple, and A. B. Whinston, Future
directions for developing decision support systems, Decision
Sciences, October, 1980.

22. R. A. Seaberg and C. Seaberg, Computer-based decision sys-
tems in Xerox corporate planning, Management Science, 20(4):
1973.

23. C. W. Holsapple and A. B. Whinston, A decision support system
for area-wide water quality planning, Socio-Economic Plan-
ning Sciences, 10(6): 1976.

24. R. H. Sprague, Jr., and H. J. Watson, A decision support system
for banks, Omega, 4(6): 1976.

25. C. W. Holsapple and M. Sena, Decision support characteristics
of ERP systems, Internat. J. Human-Computer Interaction,
16(1): 2003.

26. C. W. Holsapple, K. D. Joshi, and M. Singh, in M. Shaw (ed.),
Decision support applications in electronic commerce, Hand-
book on Electronic Commerce, Berlin: Springer, 2000.

27. C. W. Holsapple, Adapting demons to knowledge management
environments, Decision Support Systems, 3(4): 1987.

28. C. W. Holsapple and M. Sena, ERP plans and decision support
benefits, Decision Support Systems, 38(4): 2005.

29. B. Dos Santos and C. W. Holsapple, A framework for design-
ing adaptive DSS interfaces, Decision Support Systems, 5(1):
1989.

30. J. Fedorowicz, Evolving technology for document-based DSS,
in R. Sprague, Jr. and H. Watson (eds.), Decision Support
Systems: Putting Theory into Practice, 2nd ed., Englewood
Cliffs, NJ: Prentice-Hall, 1989.

31. P. G. W. Keen, Decision support systems: The next decade,
Decision Support Systems, 3(3): 1987.

32. M. Bieber, Automating hypermedia for decision support,
Hypermedia, 4(2): 1992.

33. R. P. Minch, Application research areas for hypertext in deci-
sion support systems, J. Managem. Informat. Syst., 6(2): 1989.

34. R. C. Bonczek, C. W. Holsapple, and A. B. Whinston, A decision
support system for area-wide water quality planning, Socio-
Economic Planning Sciences, 10(6): 1976.

35. J. D. Joyce and N. N. Oliver, Impacts of a relational information
system in industrial decisions, Database, 8(3): 1977.

36. R. L. Klaas, A DSS for airline management, Database, 8(3):
1977.

37. P. Gray and H. J. Watson, Decision Support in the Data Ware-
house, Upper Saddle River, NJ: Prentice-Hall, 1998.

38. P. B. Cragg and M. King, A review and research agenda for
spreadsheet based DSS, International Society for Decision
Support Systems Conference, Ulm, Germany, 1992.

39. C. W. Holsapple and A. B. Whinston, Manager’s Guide to
Expert Systems, Homewood, IL: Dow Jones-Irwin, 1986.

DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS 11



40. R. H. Sprague, Jr. and E. D. Carlson, Building Effective
Decision Support Systems, Englewood Cliffs, NJ: Prentice
Hall, 1982.

41. C. Ching, C. W. Holsapple, and A. B. Whinston, Reputation,
learning, and organizational coordination, Organization
Science, 3(2): 1992.

42. J. A. Hoffer and J. S. Valacich, Group memory in group support
systems: A foundation for design, in L. Jessup and J. Valacich
(eds.), Group Support Systems: New Perspectives, New York:
Macmillan, 1993.

43. M. Turoff, M. S. R. Hiltz, A. N. F. Bahgat, and A. R. Rana,
Distributed group support systems, MIS Quarterly, 17(4):
1993.

44. J. F. Nunamaker, Jr.A. R. Dennis, J. S. Valacich, D. R. Vogel,
and J. F. George, Group support systems research: Experience
from the lab and field, in L. Jessup and J. Valacich (eds.), Group
Support Systems: New Perspectives, New York: Macmillan,
1993.

45. G. DeSanctis and R. B. Gallupe, A foundation for study of group
decision support systems, Management Science, 33(5): 1987.

46. R. H. Bonczek, C. W. Holsapple, and A. B. Whinston, Computer
based support of organizational decision making, Decision
Sciences, April, 1979.

47. J. F. George, The conceptualization and development of orga-
nizational decision support systems, J. Management Inform.
Sys., 8(3): 1991.

48. G. Kersten, NEGO—group decision support system, Inform.
and Management, 8: 1985.

49. S. Matwin, S. Szpakowicz, E. Koperczak, G. Kersten, and W.
Michalowski, Negoplan: An expert system shell for negotiation
support, IEEE Expert, 4(1): 1989.

50. R. C. Anson and M. T. Jelassi, A developmental framework for
computer-supported conflict resolution, European J. Opera-
tional Res., 46: 1990.

51. M. Jelassi and A. Foroughi, Negotiation support systems: An
overview of design issues and existing software, Decision Sup-
port Systems, 5(2): 1989.

52. C. W. Holsapple, H. Lai, and A. B. Whinston, A formal basis for
negotiation support system research, Group Decision and
Negotiation, 7(3): 1995.

53. F. Burstein and C. W. Holsapple, Handbook on Decision Sup-
port Systems, Berlin: Springer, 2008.

FURTHER READING

R. H. Bonczek, C. W. Holsapple, and A. B. Whinston, Aiding
decision makers with a generalized database management system,
Decision Sciences, April, 1978.

P. B. Osborn and W. H. Zickefoose, Building expert systems from
the ground up, AI Expert, 5(5): 1990.

CLYDE W. HOLSAPPLE

University of Kentucky
Lexington, Kentucky

12 DECISION SUPPORT SYSTEMS: FOUNDATIONS AND VARIATIONS



D

DEDUCTIVE DATABASES

INTRODUCTION

The field of deductive databases is based on logic. The
objective is to derive new data from facts in the database
and rules that are provided with the database. In the
Background section, a description is provided of a deduc-
tive database, of a query and of an answer to a query in a
deductive database. Also discussed is how deductive
databases extend relational databases (see RELATIONAL

DATABASES) and form a subset of logic programming
(see AI LANGUAGES AND PROCESSING). In the Historical
Background of Deductive Databases section, we discuss
the pre-history, the start of the field, and the major
historical developments including the formative years
and initial prototype systems. Then we first present
Datalog databases with recursion but without negation
and also explain semantic query optimization (SQO) and
cooperative answering; then we introduce default nega-
tion for stratified databases; discuss current stratified
prototype systems; the introduction of deductive database
concepts into the relational database language SQL:99;
why the deductive database technology has not led to
commercial systems; and introduce the concept of nonstra-
tified deductive databases. The Disjunctive Deduc-
tive Databases section describes incomplete databases,
denoted Datalog:disj, that permit more expressive knowl-
edge base systems. We discuss the need for disjunction in
knowledge base systems; disjunctive deductive databases
that do not contain default negation; the extension of dis-
junctive systems to include default and logical negation; the
extension of the answer set semantics to incorporate
default negation; and methods to select an appropriate
semantics. In the next section, implementations of
nonstratified deductive and disjunctive databases are
presented and we define a knowledge base system in terms
of the extensions to relational databases described in this
article. The Applications section has brief descriptions of
some of the applications of deductive databases: data inte-
gration, handling preferences, updates, AI planning, and
handling inconsistencies. The Final section summarizes
the work.

BACKGROUND

A deductive database is an extension of a relational
database. Formally, a deductive database, (DDB) is a
triple, < EDB, IDB, IC >, where EDB is a set of facts,
called the extensional database, IDB is a set of rules,
called the intensional database, and IC is a set of inte-
grity constraints. A DDB is based on first-order logic. An
atomic formula is a k-place predicate letter whose argu-
ments are constants or variables. Atomic formulas eval-
uate to true or false. The EDB consists of ground atomic
formulas or disjunctions of ground atomic formulas.

An atomic formula is ground if it consists of a predicate
with k arguments, where the arguments are constants.
Examples of ground atomic formulas are supplies(acme,
shovels), and supplies (acme, screws), whose intended
meaning is: ‘‘The Acme Corporation supplies shovels
and screws.’’ An example of a disjunction is: supplierlo-
c(acme, boston)_ supplierloc(acme, washington), whose
intended meaning is: ‘‘The Acme Corporation is located
either in Boston or in Washington, or in both locations.’’
Corresponding to an atomic formula, there is a relation
that consists of all tuples whose arguments are in an
atomic formula with the same name. For the supplies
predicate, there is a relation, the SUPPLIES relation,
that consists of a set of tuples (e.g., {< acme, shovels >, <
acme, screws>}) when the SUPPLIES relation consists of
the above two facts. In a relational database, the EDB
consists only of atoms. Throughout the article, predicate
letters are written in lower case and arguments of pre-
dicates that are constants are also written in lower case,
whereas upper-case letters denote variables.

The intensional database consists of a set of rules of the
form:

L1; . . . ; Ln M1; . . . ;Mm; not Mmþ1; . . . ; not Mmþl ð1Þ

where the Li and the Mj are atomic formulas and not
is default negation (discussed below). Intensional rules
are universally quantified and are an abbreviation of the
formula:

8X1 . . . ;XkðL1 _ . . . _Ln M1 ^ . . . ^Mm ^not Mmþ1

^ . . . ^not MmþlÞ

where the X1, . . . , Xk lists all free variables.
A rule with n ¼ 0 is either a query or an integrity

constraint. When n> 0, the rule is either an IDB rule
used to derive data or it may be an integrity constraint
that restricts what tuples may be in the database. Rules for
which n � 1 and l ¼ 0 are called Horn rules.

DDBs restrict arguments of atomic formulas to con-
stants and variables, whereas in first-order logic atomic
formulas may also contain function symbols as argu-
ments, which assures that answers to queries in DDBs
are finite1. Rules may be read either declaratively or
procedurally. A declarative reading of Formula (1) is:

L1 or L2 or . . . or Ln is true if M1 and M2 and . . . and Mm

and not Mmþ1 and . . . and not Mmþl are all true.

A procedural reading of Formula (1) is:

1When there are function symbols, an infinite number of terms may
be generated from the finite number of constants and the function
symbols; hence, the answer to a query may be infinite.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



L1 or L2 or . . . or Ln are solved if M1 and M2 and . . . and
Mm and not Mmþ1 and . . . and not Mmþl are solved.

The left-hand side of the implication, L1 or . . . or Ln, is called
the head of the rule, whereas the right-hand side,

M1 and M2 and . . . and Mm and not Mmþ1 and . . . and not
Mmþl is called the body of the rule.

Queries to a database, QðX1; . . . ;XrÞ; are of the form
9X1 . . . 9Xr ðL1 ^ L2 . . . ^ LsÞ, written as  L1; L2; . . . ;Ls,
where s� 1, the Li are literals and the Xi; 1 � i � r; are
the free variables in Q. An answer to a query has the form
< a11; . . . ;a1r > þ <a21; . . . ; a2r > þ . . . þ <ak1; . . . ;akr >
such that Qða11; . . . ;a1rÞ _Qða21; . . . ;a2rÞ _ . . . _ Qðak1; . . . ;
akrÞ is provable from the database, which means that an
inference system is used to find answers to queries.

DDBs are closely related to logic programs when the
facts are restricted to atomic formulas and the rules have
only one atom in the left-hand side of a rule. The main
difference is that a logic program query search is for a single
answer, proceeding top-down from the query to an answer.
In DDBs, searches are bottom-up, starting from the facts,
to find all answers. A logic program query might ask for
an item supplied by a supplier, whereas in a deductive
database, a query asks for all items supplied by a supplier.
DDBs restricted to atoms as facts, and rules that consist of
single atoms on the left-hand side of a rule and atoms on the
right-hand side of a rule that do not contain the default rule
for negation, not, are called Datalog databases, (i.e., rules in
Formula(1), where n ¼ 1; m� 0, and l ¼ 0). Rules in Data-
log databases may be recursive. A traditional relational
database is a DDB where the EDB consists of atoms and
IDB rules are not recursive.

There are several different concepts of the relationship
of integrity constraints to the union of the EDB and the
IDB in the DDB. Two such concepts are consistency and
theoremhood. In the consistency approach (proposed by
Kowalski), the IC must be consistent with ED B[ I DB.
In the theoremhood approach (proposed by Reiter and by
Lloyd and Topor), each integrity constraint must be a
theorem of EDB[ IDB.

To answer queries that consist of conjunctions of posi-
tive and default negated atoms in Datalog requires that
semantics be associated with negation because only posi-
tive atoms can be derived from Datalog DDBs. How one
interprets the semantics of default negation can lead to
different answers. Two important semantics for handling
default negation are termed the closed-world assumption
(CWA), due to Reiter, and negation-as-finite-failure (NFF),
due to Clark. In the CW A, failure to prove the positive
atom implies that the negated atom is true. In the NFF,
predicates in the EDB and the IDB are considered the
if portion of the database and are closed by effectively
reversing the implication to achieve the only if part of
the database. The two approaches lead to slightly different
results. Negation, as applied to disjunctive theories, is
discussed later.

Example 1 (Ancestor). Consider the following database
that consists of parents and ancestors. The database con-
sists of two predicates, whose schema are p(X, Y), intended
to mean that Y is a parent of X, and a(X, Y), intended to
mean that Y is an ancestor of X. The database consists of
five EDB statements and two IDB rules:

r1. p(mike, jack)

r2. p(sally, jack)

r3. p(katie, mike)

r4. p(beverly, mike)

r5. p(roger, sally)

r6. a(X, Y) p(X, Y)

r7. a(X, Y) p(X, Z), a(Z, Y)

The answer to the question p(mike, X) is jack. The answer
to the question a(mike, X) is jack using rule r6. An answer to
the query a(roger, X) is sally using rule r6. Another answer
to the query a(roger, X), jack, is found by using rule r7.

For the query p(katie, jack), the answer by the CWA is
no; jack is not a parent of katie. The reason is that there
are only five facts, none of which specify p(katie, jack), and
there are no rules that can be used to find additional
parents.

More expressive power may be obtained in a DDB by
allowing negated atoms on the right-hand side of a rule. The
semantics associated with such databases depends on how
the rule of negation is interpreted, as discussed in the
Datalog and Extended Deductive Databases section and
the Disjunctive Deductive Databases section.

HISTORICAL BACKGROUND OF DEDUCTIVE DATABASES

The prehistory of DDBs is considered to be from 1957 to
1970. The efforts in this period used primarily ad hoc or
simple approaches to perform deduction. The period 1970 to
1978 were the formative years, which preceded the start of
the field. The period 1979 to 2003 saw the development of a
theoretical framework and prototype systems.

Prehistory of Deductive Databases

In 1957, a system called ACSI-MATIC was under develop-
ment to automate work in Army intelligence. An objective
was to derive new data based on given information and
general rules. Chains of related data were sought and the
data contained reliability estimates. A prototype system
was implemented to derive new data whose reliability
values depended on the reliability of the original data.
The deduction used was modus ponens (i.e., from p and
p ! q, one concludes q, where p and q are propositions).

Several DDBs were developed in the 1960s. Although
in 1970 Codd founded the field of Relational Databases,
relational systems were in use before then. In 1963, using
a relational approach, Levien and Maron developed a sys-
tem, Relational Data File (RDF), that had an inferential
capability, implemented through a language termed
INFEREX. An INFEREX program could be stored in the
system (such as in current systems that store views) and
re-executed, if necessary. A programmer specified reason-

2 DEDUCTIVE DATABASES



ing rules via an INFEREX program. The system handled
credibility ratings of sentences in forming deductions.
Theoretical work by Kuhns on the RDF project recognized
that there were classes of questions that were, in a sense,
not ‘‘reasonable.’’ For example, let the database consist of
the statement, ‘‘Reichenbach wrote Elements of Symbolic
Logic.’’ Whereas the question, ‘‘What books has Reichen-
bach written?’’, is reasonable, the questions, ‘‘What books
has Reichenbach not written?’’, or, ‘‘Who did not write
‘Elements of Symbolic Logic’?’’, are not reasonable. It is
one of the first times that the issue of negation in queries
was explored.

In 1964, Raphael, for his Ph.D. thesis at M.I.T., devel-
oped a system called Semantic Information Retrieval (SIR),
which had a limited capability with respect to deduction,
using special rules. Green and Raphael subsequently desi-
gned and implemented several successors to SIR: QA� 1, a
re-implementation of SIR; QA � 2, the first system to
incorporate the Robinson Resolution Principle developed
for automated theorem proving; QA � 3 that incorporated
added heuristics; and QA � 3.5, which permitted alter-
native design strategies to be tested within the context
of the resolution theorem prover. Green and Raphael were
the first to recognize the importance and applicability
of the work performed by Robinson in automated theorem
proving. They developed the first DDB using formal tech-
niques based on the Resolution Principle, which is a gen-
eralization of modus ponens to first-order predicate logic.
The Robinson Resolution Principle is the standard method
used to deduce new data in DDBs.

Deductive Databases: The Formative Years 1969–1978

The start of deductive databases is considered to be
November 1977, when a workshop, ‘‘Logic and Data Bases,’’
was organized in Toulouse, France. The workshop included
researchers who had performed work in deduction from
1969 to 1977 and used the Robinson Resolution Principle to
perform deduction. The Workshop, organized by Gallaire
and Nicolas, in collaboration with Minker, led to the pub-
lication of papers from the workshop in the book, ‘‘Logic and
Data Bases,’’ edited by Gallaire and Minker.

Many significant contributions were described in the
book. Nicolas and Gallaire discussed the difference between
model theory and proof theory. They demonstrated that the
approach taken by the database community was model
theoretic (i.e., the database represents the truths of the
theory and queries are answered by a bottom-up search).
However, in logic programming, answers to a query used
a proof theoretic approach, starting from the query, in a
top-down search. Reiter contributed two papers. One
dealt with compiling axioms. He noted that if the IDB
contained no recursive axioms, then a theorem prover
could be used to generate a new set of axioms where the
head of each axiom was defined in terms of relations in a
database. Hence, a theorem prover was no longer needed
during query operations. His second paper discussed the
CWA, whereby in a theory, if one cannot prove that an
atomic formula is true, then the negation of the atomic
formula is assumed to be true. Reiter’s paper elucidated
three major issues: the definition of a query, an answer to

a query, and how one deals with negation. Clark pre-
sented an alternative theory of negation. He introduced
the concept of if-and-only-if conditions that underly the
meaning of negation, called negation-as-finite-failure.
The Reiter and Clark papers are the first to formally
define default negation in logic programs and deductive
databases. Several implementations of deductive data-
bases were reported. Chang developed a system called
DEDUCE; Kellogg, Klahr, and Travis developed a system
called Deductively Augmented Data Management System
(DADM); and Minker described a system called Maryland
Refutation Proof Procedure 3.0 (MRPPS 3.0). Kowalski
discussed the use of logic for data description. Darvas,
Futo, and Szeredi presented applications of Prolog to drug
dataanddruginteractions.NicolasandYazdaniandescribed
the importance of integrity constraints in deductive data-
bases. The book provided, for the first time, a comprehensive
description of the interaction between logic and databases.

References to work on the history of the development of
the field of deductive databases may be found in Refs. 1 and
2. A brief description of the early systems is contained in
Ref. 1.

Deductive Databases: Prototypes, 1979–2004

During the period 1979 through today, a number of proto-
type systems were developed based on the Robinson Reso-
lution Principle and bottom-up techniques. Most of the
prototypes that were developed during this period either
no longer exist or are not supported. In this section, we
describe several efforts because these systems contributed
to developments that were subsequently incorporated into
SQL as described in the SQL: 1999 section.

These systems include Validity developed by Nicolas and
Vieille; Coral, developed by Ramakrishnan at the University
of Wisconsin; and NAIL!,developed byUllman and hisgroup
at Stanford University. All of these prototypes introduced
new techniques for handling deductive databases.

The Validity system’s predecessor was developed at the
European Computer Research Consortium, was directed
by Nicolas, and started in 1984. It led to the study of
algorithms and prototypes: deductive query evaluation
methods (QSQ/SLD and others); integrity checking
(Soundcheck); hypothetical reasoning and IC checking;
and aggregation through recursion.

Implementation at Stanford University, directed by
Ullman, started in 1985 on NAIL! (Not Another Implemen-
tation of Logic!). The effort led to the first paper on recur-
sion using the magic sets method. See the Datalog
Databases section for a discussion of magic sets. Other
contributions were aggregation in logical rules and
theoretical contributions to negation: stratified negation
by Van Gelder, well-founded negation by Van Gelder,
Ross and Schlipf, (see the Nonstratified Deductive Data-
bases section for a discussion of stratification and well-
foundedness) and modularly stratified negation (3).

Implementation efforts at the University of Wisconsin,
directed by Ramakrishnan, on the Coral DDBs started in
the 1980s. Bottom-up and magic set methods were imple-
mented. The declarative query language supports general
Horn clauses augmented with complex terms, set-grouping,

DEDUCTIVE DATABASES 3



aggregation, negation, and relations with tuples that con-
tain universally quantified variables.

DATALOG AND EXTENDED DEDUCTIVE DATABASES

The first generalization of relational databases was to
permit function-free recursive Horn rules in a database
(i.e., rules in which the head of a rule is an atom and the
body of a rule is a conjunction of atoms). So, in Formula (1),
n ¼ 1, m� 1 and l ¼ 0. These databases are called DDBs, or
Datalog databases.

Datalog Databases

In 1976, van Emden and Kowalski formalized the seman-
tics of logic programs that consist of Horn rules, where the
rules are not necessarily function-free. They recognized
that the semantics of Horn theories can be characterized
in three distinct ways: by model, fixpoint, or proof theory.
These three characterizations lead to the same semantics.
When the logic program is function-free, their work pro-
vides the semantics for Datalog databases.

To better understand model theory we need to introduce
the concept of Herbrand universe, which is the set of con-
stants of the database. The Herbrand base is the set of all
atoms that can be constructed from the predicates using
only elements from the Herbrand universe for the argu-
ments. A set of atoms from the Herbrand base that satisfies
all the rules is called a Herbrand model.

Model theory deals with the collection of models that
captures the intended meaning of the database. Fixpoint
theory deals with a fixpoint operator that constructs the
collection of all atoms that can be inferred to be true from
the database. Proof theory provides a procedure that
finds answers to queries with respect to the database.
van Emden and Kowalski showed that the intersection
of all Herbrand models of a Horn DDB is the unique
minimal model, which is the same as all of the atoms in
the fixpoint and are exactly the atoms provable from the
theory.

Example 2 (Example of Semantics). Consider Example 1.
The unique minimal Herbrand model of the database is:

M ¼ { p(mike, jack), p(sally, jack), p(katie, mike), p(bev-
erly, mike), p(roger, sally), a(mike, jack), a(sally,
jack), a(katie, mike), a(beverly, mike), a(roger, sally),
a(katie, jack), a(beverly, jack), a(roger, jack)}.

These atoms are all true, and when substituted into the
rules in Example 1, they make all of the rules true. Hence,
they form a model. If we were to add another fact to the
model M, say, p(jack, sally), it would not contradict any of
the rules, and it would also be a model. However, this fact
can be eliminated because the original set was a model and
is contained in the expanded model. That is, minimal
Herbrand models are preferred. It is also easy to see that
the atoms in M are the only atoms that can be derived from
the rules and the data. In Example 3, below, we show that
these atoms are in the fixpoint of the database.

To find if the negation of a ground atom is true, one can
subtract from the Herbrand base the minimal Herbrand
model. If the atom is contained in this set, then it is assumed
false. Alternatively, answering queries that consist of
negated atoms that are ground may be achieved using
negation-as-finite failure as described by Clark.

Initial approaches to answering queries in DDBs did not
handle recursion and were primarily top-down (or back-
ward reasoning). However, answering queries in relational
database systems was bottom-up (or forward reasoning) to
find all answers. Several approaches were developed to
handle recursion, two of which are called the Alexander
and magic set methods, which make use of constants that
appear in a query and perform search by bottom-up reason-
ing. Rohmer, Lescoeur, and Kerisit introduced the Alex-
ander method. Bancilhon, Maier, Sagiv, and Ullman
developed the concept of magic sets. These methods take
advantage of constants in the query and effectively com-
pute answers using a combined top-down and bottom-up
approach. Bry reconciled the bottom-up and top-down
methods to compute recursive queries. He showed that
the Alexander and magic set methods based on rewriting
and methods based on resolution implement the same top-
down evaluation of the original database rules by means of
auxiliary rules processed bottom-up. In principle, handling
recursion poses no additional problems. One can iterate
search (referred to as the naive method) until a fixpoint is
reached, which can be achieved in a finite set of steps
because the database has a finite set of constants and is
function-free. However, it is unknown how many steps will
be required to obtain the fixpoint. The Alexander and magic
set methods improve search time when recursion exists,
such as for transitive closure rules.

Example 3 (Fixpoint). The fixpoint of a database is the
set of all atoms that satisfy the EDB and the IDB. The
fixpoint may be found in a naive manner by iterating until
no more atoms can be found. Consider Example 1 again.

Stepð0Þ ¼ f. That is, nothing is in the fixpoint.

Stepð1Þ ¼ { p(mike, jack), p(sally, jack), p(katie, mike),
p(beverly, mike), p(roger, sally)}.

These are all facts, and satisfy r1, r2, r3, r4, and r5. The
atoms in Stepð0Þ [Stepð1Þ now constitutes a partial
fixpoint.

Stepð2Þ ¼ {a(mike, jack), a(sally, jack), a(katie, mike),
a(beverly, mike), a(roger, sally)}
are found by using the results of Stepð0Þ [Stepð1Þ on
rules r6 and r7. Only rule r6 provides additional
atoms when applied. Stepð0Þ [Stepð1Þ [Stepð2Þ
becomes the revised partial fixpoint.

Stepð3Þ ¼ {a(katie, jack), a(beverly, jack), a(roger, jack)},
which results from the previous partial fixpoint. These
were obtained from rule r7, which was the only rule
that provided new atoms at this step. The new partial
fixpoint is Stepð0Þ [Stepð1Þ [Stepð2Þ [Stepð3Þ.

Stepð4Þ ¼ f. No additional atoms can be found that
satisfy the EDB[ IDB. Hence, the fixpoint iteration
may be terminated, and the fixpoint is Stepð0Þ [
Stepð1Þ [Stepð2Þ [Stepð3Þ.

4 DEDUCTIVE DATABASES



Notice that this result is the same as the minimal
model M in Example 2.

Classes of recursive rules exist where it is known how
many iterations will be required. These rules lead to what
has been called bounded recursion, noted first by Minker
and Nicolas and extended by Naughton and Sagiv. Example
4 illustrates bounded recursion.

Example 4 (Bounded Recursion). If a rule is singular, then
it is bound to terminate in a finite number of steps inde-
pendent of the state of the database. A recursive rule is
singular if it is of the form

R F ^R1 ^ . . . ^Rn

where F is a conjunction of possibly empty base relations
(i.e., empty EDB) and R, R1, R2, . . ., Rn are atoms that have
the same relation name if:

1. each variable that occurs in an atom Ri and does
not occur in R only occurs in Ri;

2. each variable in R occurs in the same argument
position in any atom Ri where it appears, except
perhaps in at most one atom R1 that contains all of
the variables of R.

Thus, the rule

RðX;Y ;ZÞ RðX;Y 0;ZÞ;RðX;Y ;Z0Þ

is singular because (a) Y0 and Z0 appear, respectively, in the
first and second atoms in the head of the rule (condition 1),
and (b) the variables X, Y, Z always appear in the same
argument position (condition 2).

The major use of ICs has been to assure that a database
update is consistent. Nicolas showed how to improve the
speed of update, using techniques from DDBs. Reiter
showed that Datalog databases can be queried with or
without ICs and the answer to the query is identical, which,
however, does not preclude the use of ICs in the query
process. Although ICs do not affect the result of a query,
they may affect the efficiency to compute an answer. ICs
provide semantic information about the data in the data-
base. If a query requests a join (see RELATIONAL DATABASES) for
which there will never be an answer because of the con-
straints, this can be used to omit trying to answer the
query and return the empty answer set and avoids unne-
cessary joins on potentially large relational databases, or
performing a long deduction in a DDB. The use of ICs to
constrain search is called semantic query optimization
(SQO). McSkimin and Minker were the first to use ICs
for SQO in DDBs. Hammer and Zdonik as well as King first
applied SQO to relational databases. Chakravarthy, Grant,
and Minker formalized SQO and developed the partial sub-
sumption algorithm and method of residues, which provide
a general technique applicable to any relational or DDB.
Godfrey, Gryz, and Minker applied the technique bottom-
up. Semantic query optimization is being incorporated into
relational databases. In DB2, cases are recognized when

only one answer is to be found and the search is terminated.
In other systems, equalities and other arithmetic con-
straints are being added to optimize search. One can envi-
sion the use of join elimination in SQO to be introduced to
relational technology. One can now estimate when it will be
useful to eliminate a join. The tools and techniques already
exist and it is merely a matter of time before users and
system implementers have them as part of their database
systems.

A topic related to SQO is that of cooperative answering
systems. The objective is to give a user the reason why a
particular query succeeded or failed. When a query fails,
one generally cannot tell why failure occurred. There may
be several reasons: The database currently does not contain
information to respond to the user or there will never be an
answer to the query. The distinction may be useful. User
constraints (UCs) are related to ICs. A user constraint is a
formula that models a user’s preferences. It may omit
answers to queries in which the user has no interest
(e.g., stating that, in developing a route of travel, the
user does not want to pass through a particular city) or
provide other constraints to restrict search. When UCs are
identical in form to ICs, they can be used for this purpose.
Although ICs provide the semantics of the entire database,
UCs provide the semantics of the user. UCs may be incon-
sistent with a database. Thus, a separation of these two
semantics is essential. To maintain the consistency of the
database, only ICs are relevant. A query may then be
thought of as the conjunction of the original query and
the UCs. Hence, a query can be semantically optimized
based both on ICs and UCs.

Other features may be built into a system, such as the
ability to relax a query that fails, so that an answer to a
related query may be found. This feature has been termed
query relaxation.

The first article on magic sets may be found in Ref. 4. A
description of the magic set method to handle recursion in
DDBs may be found in Refs. 5 and 6. References to work in
bounded recursion may be found in Ref. 2. For work on
fixpoint theory of Datalog, and the work of van Emden and
Kowalski, see the book by Lloyd,(7). A comprehensive
survey and references to work in cooperative answering
systems is in Ref. 8. References to alternative definitions of
ICs, semantic query optimization, and the method of partial
subsumption may be found in Ref. 2.

Stratified Deductive Databases

Logic programs that use default negation in the body of a
clause were first used in 1986. Apt, Blair, and Walker, and
Van Gelder introduced the concept of stratification to logic
programs in which L1 and the Mj, 1 � j � mþ l, in Formula
(1) are atomic formulas and there is no recursion through
negation. They show that there is a unique preferred
minimal model, computed from strata to strata. Przymu-
sinski termed this minimal model the perfect model. When
a theory is stratified, rules can be placed in different strata,
where the definition of a predicate in the head of a rule is in
a higher stratum than the definitions of predicates negated
in the body of the rule. The definition of a predicate is the
collection of rules containing the predicate in their head.

DEDUCTIVE DATABASES 5



Thus, one can compute positive predicates in a lower stra-
tum and a negated predicate’s complement is true in the
body of the clause if the positive atom has not been com-
puted in the lower stratum. The same semantics is obtained
regardless of how the database is stratified. When the
theory contains no function symbols, the DDB is termed
Datalog: . If a database can be stratified, then there is no
recursion through negation, and the database is called
Datalog:strat.

Example 5 (Stratified Program). The rules,

r1 : p q; not r

r2 : q p

r3 : q s

r4 : s

– – – – – – –

r5 : r t

comprise a stratified theory in which there are two strata.
The rule r5 is in the lowest stratum, whereas the other rules
are in a higher stratum. The predicate p is in a higher
stratum than the stratum for r because it depends negatively
on r. q is in the same stratum as p because it depends on p.
s is also in the same stratum as q. The meaning of the
stratified program is that {s, q, p} are true, whereas {t, r}
are false. t is false because there is no defining rule for t.
As t is false, and there is only one rule for r, r is false. s is
given as true, and hence, q is true. As q is true and r is
false, from rule r1, p is true.

Current Prototypes

In this section, we discuss two systems that are currently
active: Aditi and LDLþþ. In addition, relational databases
such as Oracle and IBM DB2 have incorporated deductive
features from the language SQL, discussed in the next
subsection.

Aditi. The Aditi system has been under development
at the University of Melbourne under the direction of
Dr. Ramamohanarao. A beta release of the system took
place approximately in December 1997. Aditi handles
stratified databases and recursion and aggregation in
stratified databases. It optimizes recursion with magic
sets and semi-naive evaluation. The system interfaces
with Prolog. Aditi continues to be developed. Its program-
ming language is Mercury, which contains Datalog as a
subset. Aditi can handle transactions and has traditional
recovery procedures as normally found in commercial data-
bases. There is currently no security-related implementa-
tions in the system, but several hooks are available in the
system to add these features, which are contemplated for
future releases. However, parallel relational operations
have not been implemented. It is unclear if Aditi will be
developed for commercial use.

LDLþþ. Implementation efforts at MCC, directed by
Tsur and Zaniolo, started in 1984 and emphasized bot-
tom-up evaluation methods and query evaluation using
such methods as seminaive evaluation, magic sets and
counting, semantics for stratified negation and set-group-
ing, investigation of safety, the finiteness of answer sets,
and join order optimization. The LDL system was imple-
mented in 1988 and released in the period 1989 to 1991. It
was among the first widely available DDBs and was dis-
tributed to universities and shareholder companies of
MCC. This system evolved into LDLþþ. No commercial
development is currently planned for the system.

To remedy some of the difficulties discovered in applica-
tions of LDL, the system called LDLþþ was designed in
the early 1990s. This system was finally completed as a
research prototype in 2000 at UCLA. LDLþþ has many
innovative features particularly involving its language
constructs for allowing negation and aggregates in recur-
sion; its execution model is designed to support data inten-
sive applications, and its application testbed can be used to
evaluate deductive database technology on domains such
as middleware and data mining. In this summary, we
concentrate on two language features. A thorough overview
of the system is given in Ref. 9.

A special construct choice is used to enforce a functional
dependency integrity constraint. Consider the case with
student and professor data in which each student has one
advisor who must be in the same department as the stu-
dent. Suppose we have the following facts:

student( jeff, cs)

professor ( grant, cs)

professor(minker, cs)

The rule for eligible advisor is

elig� advðS; PÞ studentðS; MajorÞ;
professorðP; MajorÞ

Thus, we deduce elig � adv(jeff, grant) and elig �
adv( jeff, minker). However, a student can have
only one advisor. The rule for advisor is

advisor(S, P) student(S, Major), professor(P, Major),
choice((S), (P)).

Thus, choice enforces the functional dependency

advisor : S!P

but the result is nondeterministic. It turns out that the use
of choice in deductive databases has a well-behaved seman-
tics, works well computationally even in the case of stra-
tified negation, and leads to a simple definition of
aggregates, including user-defined aggregates.

In the Stratified Deductive Databases section we dis-
cussed stratification. LDLþþ introduced the notion of an
XY-stratified program. In the Background section we gave
an example of the computation of ancestor. Here we show
how to compute ancestors as well as how to count up the
number of generations that separate them from the person,
mike, in this case.

6 DEDUCTIVE DATABASES



delta� ancð0;mikeÞ
delta� ancðJ þ 1;YÞ delta� ancðJ;XÞ;

parentðY ;XÞ; not all� ancðJ;YÞ
all� ancðJ þ 1;XÞ all� ancðJ;XÞ
all� ancðJ;XÞ delta� ancðJ;XÞ

Assuming additional facts about parents, the query all –
anc(3, X) will give all great-grandparents (third-
generation ancestors) of Mike. This program is not strati-
fied, but it is XY-stratified, has a unique stable model
(see the Nonstratified Deductive Databases section), and
allows for efficient computation.

SQL:1999

Many techniques introduced within DDBs are finding their
way into relational technology. The new SQL standards for
relational databases are beginning to adopt many of the
powerful features of DDBs. The SQL:1999 standard
includes queries involving recursion and hence recursive
views (10). The recursion must be linear with at most one
invocation of the same recursive item. Negation is stratified
by allowing it to be applied only to predicates defined
without recursion. The naive algorithm must have a unique
fixpoint, and it provides the semantics of the recursion;
however, an implementation need not use the naive algo-
rithm.

To illustrate the syntax, we show an example of a
recursive query. We assume a relation called family with
attributes child and parent. The query asks for all the
ancestors of John. We write this query in a way that is
more complicated than needed, just for illustration, by
creating the relation ancestor recursively and then using
it to find John’s ancestors.

With Recursive Ancestor(child,anc) as
(Select child, parent
From Family
Union All

Select Family.child, Ancestor.anc
From Family, Ancestor
Where Family.parent ¼ Ancestor.child)

Select anc
From Ancestor
Where child ¼ ‘John’;

The language also allows for the specification of depth-
first or breadth-first traversal. Breadth-first traversal
would ensure that all parents are followed by all grand-
parents, and so on.

Also in SQL:1999, a carryover from SQL-92, is a general
class of integrity constraints called Asserts, which allow for
arbitrary relationships between tables and views to be
declared. These constraints exist as separate statements
in the database and are not attached to a particular table or
view. This extension is powerful enough to express the
types of integrity constraints generally associated with
DDBs.

Linear recursion, in which there is at most one subgoal of
any rule that is mutually recursive with the head, is

currently a part of the client server of IBM’s DB2 system.
They are using the magic sets method to perform linear
recursion. Indications are that the ORACLE database sys-
tem will support some form of recursion.

Summary of Stratified Deductive Database Implementations

As discussed, the modern era of deductive databases
started in 1977 with the workshop ‘‘Logic and Data Bases’’
organized in Toulouse, France, that led to the publication of
the book Logic and Data Bases edited by Gallaire and
Minker (11). As of the writing of this article, no commercial
deductive databases are available. Among the prototype
systems developed, the only ones remaining are Aditi and
LDLþþ. There are no current plans to make LDLþþ
commercially available. Aditi may, in the future, be
made commercially available, but it is not yet a commercial
product.

Deductive databases have had an influence in commer-
cial relational systems. SQL:1999 adopted an approach to
SQL recursion that makes use of stratified negation. Thus,
the use of recursive rules and stratified deductive data-
bases can be handled to some extent in relational database
systems that follow these rules.

There are two possible reasons why deductive databases
have not been made commercially available. The first rea-
son is the prohibitive expense to develop such systems.
They are more expensive to implement than were relational
databases. The second reason is that relational database
systems now incorporate deductive database technology, as
discussed above.

As more sophisticated applications are developed that
are required for knowledge base systems (see section on
DDB, DDDB, and EDDB Implementations for Knowledge
Base Systems), additional tools will be required to handle
them. Some tools required for applications may be able to be
added to SQL so that they may be incorporated into exten-
sions of relational database technology. For example, add-
ing a capability to provide cooperative answering may be
one such tool (see Datalog Databases section). However,
other tools needed will be difficult to incorporate into rela-
tional technology. For example, handling inconsistent,
incomplete, or disjunctive databases are examples of
such tools (see DDB, DDDB, and EDDB Implementations
for Knowledge Base Systems section). In the remainder of
this article, we discuss developments in extending deduc-
tive database technology to be able to handle complicated
databases, and we also discuss current prototype systems.

Nonstratified Deductive Databases

The theory of stratified databases was followed by permit-
ting recursion through negation in Formula (1) where the
L1 and Mj are atomic formulas, n ¼ 1; m� 0; l� 0. In the
context of DDBs, they are called normal deductive data-
bases. Many semantics have been developed for these
databases. The most prominent are the well-founded
semantics of Van Gelder, Ross, and Schlipf and the stable
semantics of Gelfond and Lifschitz. When the well-founded
semantics is used, the database is called Datalog:norm;wfs;
and when the stable semantics is used, the database is
called Datalog:norm; stable. The well-founded semantics leads

DEDUCTIVE DATABASES 7



to a unique three-valued model, whereas the stable seman-
tics leads to a (possibly empty) collection of models.

Example 6 [Non-Stratified Database]. Consider the data-
base given by:

r1 : pðXÞ not qðXÞ
r2 : qðXÞ not pðXÞ
r3 : rðaÞ pðaÞ
r4 : rðaÞ qðaÞ

Notice that r1 and r2 are recursive through negation. Hence,
the database is not stratified. According to the well-founded
semantics, { p(a), q(a), r(a)} are assigned unknown. How-
ever, for the stable model semantics, there are two minimal
stable models: {{p(a), r(a)}, {q(a), r(a)}}. Hence, one can
conclude that r(a) is true and the disjunct, p(a) _ q(a), is
also true in the stable model semantics. The stable model
semantics has been renamed the answer set semantics and
throughout the remainder of this article, we will use that
term. Because of the importance of this semantics, we dis-
cuss it in some detail below in a more expressive context.

Extended Deductive Databases

The ability to develop a semantics for databases in which
rules have a literal (i.e., an atomic formula or the negation
of an atomic formula) in the head and literals with possibly
negated-by-default literals in the body of a rule, has sig-
nificantly expanded the ability to write and understand the
semantics of complex applications. Such rules, called
extended clauses, contain rules in Formula (1) where
n ¼ 1; m� 0; l� 0, and the Ls and Ms are literals. Such
databases combine classical negation (represented by : )
and default negation (represented by not immediately pre-
ceding a literal), and are called extended deductive data-
bases. Combining classical and default negation provides
users greater expressive power.

The material on answer set semantics is drawn from Ref.
12. For a comprehensive discussion of ANS semantics, see
Ref. 13. The ANS semantics is important for Knowledge
Base Systems (KBS) semantics.

By an extended deductive database, P, is meant a collec-
tion of rules of the form (1) where n ¼ 1 and the Mi, 1 �
i � mþ l , are literals.

The set of all literals in the language of P is denoted by
Lit. The collection of all ground literals formed by the
predicate p is denoted by Lit(p). The semantics of an
extended deductive database assigns to it a collection of
its answer sets—sets of literals that correspond to beliefs
that can be built by a rational reasoner on the basis of P.
A literal :p is true in an answer set S if :p2S. We
say that not p is true in S if p =2S. We say that P’s answer
set to a literal query q is yes if q is true in all answer sets
of P, no if : q is true in all answer sets of P, and unknown
otherwise.

The answer set of P not containing default negation not
is the smallest (in the sense of set-theoretic inclusion)
subset S of Lit such that

1. if all the literals in the body of a rule of P are in S,
then L1 2S; and

2. if S contains a pair of complementary literals, then
S ¼ Lit. (That is, the extended deductive database is
inconsistent.)

Every deductive database that does not contain default
negation has a unique answer set, denoted by bðPÞ. The
answer set bðPÞ of an extended deductive database P that
contains default negation without variables, and hence is
said to be ground, is obtained as follows. Let S be a candi-
date answer set and let PS be the program obtained from P

by deleting

1. each rule that has a default negation not L in its body
with L2S, and

2. all default negations not L in the bodies of the remain-
ing rules.

It is clear that PS does not contain not, so that bðPSÞ is
already defined. If this answer set coincides with S, then
we say that S is an answer set of P. That is, the answer
sets of P are characterized by the equation S ¼ bðPSÞ.

As an example, consider the extended deductive data-
base P1 that consists of one rule:

: q not p:

The rule intuitively states: ‘‘q is false if there is no
evidence that p is true.’’ The only answer set of this
program is : q. Indeed, here S ¼ f:qg, and

PS ¼ f:q g. Thus, answers to the queries p and q
are unknown and false, respectively.

There have been several implementations that incor-
porate the well-founded and the answer set semantics.
These systems can handle large knowledge bases that
consist of data facts and rules. In addition, in the following
section, we discuss the extension of deductive systems to
handle incomplete information and disjunctive informa-
tion. There have been implementations of such systems.
In the DDB, DDDB, and EDDB Implementations for
Knowledge Base Systems section, we describe the most
important systems that contain the well-founded seman-
tics, the answer set semantics, or the disjunctive semantics.

DISJUNCTIVE DEDUCTIVE DATABASES

The Need for Disjunction

In the databases considered so far, information is definite.
However, many applications exist where knowledge of the
world is incomplete. For example, when a null value
appears as an argument of an attribute of a relation, the
value of the attribute is unknown. Also, uncertainty in
databases may be represented by probabilistic information.
Another area of incompleteness occurs when it is unknown
which among several facts are true, but it is known that one
or more are true. It is, therefore, necessary to be able to
represent and understand the semantics of theories that
include incomplete data. The case in which there is dis-

8 DEDUCTIVE DATABASES



junctive information is discussed below. A natural exten-
sion is to permit disjunctions in the EDB and disjunctions in
the heads of IDB rules. These rules are represented in
Formula(1), where n� 1; m� 0, and l� 0, and are called
extended disjunctive rules. Such databases are called
extended disjunctive deductive databases (EDDDBs), or
Datalog:disj; ext. Below, we illustrate a knowledge base sys-
tem that contains disjunctive information, logical negation
(: ), and default negation (not).

Example 7 (Knowledge Base (13)). Consider the database,
where p(X,Y) denotes X is a professor in department Y,
a(X, Y) denotes individual X has an account on machine Y,
ab(W, Z) denotes it is abnormal in rule W to be individual Z.

We wish to represent the following information where
mike and john are professors in the computer science
department:

1. As a rule, professors in the computer science depart-
ment have m1 accounts. This rule is not applicable to
Mike, represented by ab(r4,mike) (that is, that it is
abnormal that in rule r4 we have mike). He may or
may not have an account on that machine.

2. Every computer science professor has either an m1 or
an m2 account, but not both.

These rules are reflected in the following extended
disjunctive database.

r1 pðmike; csÞ 
r2 pð john; csÞ 
r3 :pðX;YÞ not pðX;YÞ
r4 aðX;m1Þ pðX; csÞ; not abðr4; XÞ; not:aðX;m1Þ
r5 abðr4; mikeÞ 
r6 aðX;m1Þ _aðX;m2Þ pðX; csÞ;abðr4;XÞ
r7 :aðX;m2Þ pðX; csÞ;aðX;m1Þ
r8 :aðX;m1Þ pðX; csÞ;aðX;m2Þ
r9 aðX;m2Þ :aðX;m1Þ; aðX; csÞ

Rule r3 states that if by default negation p(X, Y) fails,
then p(X, Y) is logically false. The other rules encode the
statements listed above. From this formalization, one can
deduce that john has an m1 account, whereas mike has
either an m1 or an m2 account, but not both.

The semantics of DDDBs is discussed first, where
clauses are given by Formula (1), literals are restricted
to atoms, and there is no default negation in the body of a
clause. Then the semantics of EDDDBs, where there are no
restrictions on clauses in Formula (1), is discussed.

Disjunctive Deductive Databases (DDDBs)

The field of disjunctive deductive databases (DDDBs),
referred to as Datalog:disj, started in 1982 by Minker who
described how to answer both positive and negated queries
in such databases. A major difference between the seman-
tics of DDBs and DDDBs is that DDBs usually have a
unique minimal model, whereas DDDBs generally have
multiple minimal models.

To answer positive queries over DDDBs, it is sufficient to
show that the query is satisfied in every minimal model of
the database. Thus, for the DDDB,fa_ bg, there are two
minimal models, {{a}, {b}}. The query a is not satisfied in the
model {b}, and hence, it cannot be concluded that a is true.
However, the query fa_ bg is satisfied in both minimal
models and hence the answer to the query fa_ bg is yes. To
answer negated queries, it is not sufficient to use Reiter’s
CWA because, as he noted, from DB ¼ fa_ bg, it is not
possible to prove a, and it is not possible to prove b. Hence,
by the CWA, not a and not b follow. But, {a_ b, not a, not b}
is not consistent. The Generalized Closed World Assump-
tion (GCWA), developed by Minker, resolves this problem
by specifying that a negated atom is true if the atom does
not appear in any minimal model of the database, which
provides a model theoretic definition of negation. An
equivalent proof theoretic definition, also by Minker, is
that an atom a is considered false if whenever a_C is
proved true, then C can be proven true, where C is an
arbitrary positive clause.

Answering queries in DDDBs has been studied by sev-
eral individuals. Fernández and Minker developed the
concept of a model tree, a tree whose nodes consist of atoms.
Every branch of the model tree is a model of the database.
They show how one can incrementally compute sound and
complete answers to queries in hierarchical DDDBs, where
the database has no recursion. However, one can develop a
fixpoint operator over trees to capture the meaning of a
DDDB that includes recursion. Fernández and Minker
compute the model tree of the extensional DDDB once.
To answer queries, intensional database rules may be
invoked. However, the models of the extensional disjunc-
tive part of the database do not have to be generated for
each query. Their approach to compute answers gener-
alizes to stratified and normal DDDBs.

Fernández and Minker also developed a fixpoint char-
acterization of the minimal models of disjunctive and stra-
tified disjunctive deductive databases. They proved that
the operator iteratively constructs the perfect models
semantics (Przymusinski) of stratified DDBs. Given the
equivalence between the perfect model semantics of strati-
fied programs and prioritized circumscription as shown by
Przymusinski, their characterization captures the mean-
ing of the corresponding circumscribed theory. They pre-
sent a bottom-up evaluation algorithm for stratified
DDDBs. This algorithm uses the model-tree data structure
to compute answers to queries.

Loveland and his students have developed a top-down
approach when the database is near Horn, that is, there are
few disjunctive statements. They developed a case-based
reasoner that uses Prolog to perform the reasoning and
introduced a relevancy detection algorithm to be used with
SATCHMO, developed by Manthey and Bry, for automated
theorem proving. Their system, termed SATCHMORE
(SATCHMO with RElevancy), improves on SATCHMO
by limiting uncontrolled use of forward chaining. There
are currently several efforts devoted to implementing dis-
junctive deductive databases from a bottom-up approach,
prominent among these is the system DLV discussed in
the next section.

DEDUCTIVE DATABASES 9



Alternative semantics were developed for nonstratifi-
able normal DDDBs by: Ross (the strong well-founded
semantics); Baral, Lobo, and Minker (Generalized Disjunc-
tive Well-Founded Semantics (GDWFS)); Przymusinski
(disjunctive answer set semantics); Przymusinski (station-
ary semantics); and Brass and Dix (D-WFS semantics).
Przymusinski described a semantic framework for disjunc-
tive logic programs and introduced the static expansions
of disjunctive programs. The class of static expansions
extends both the classes of answer sets, well-founded and
stationary models of normal programs, and the class of
minimal models of disjunctive programs. Any static expan-
sion of a program P provides the corresponding semantics
for P consisting of the set of all sentences logically implied
by the expansion. The D-WFS semantics permits a general
approach to bottom-up computation in disjunctive pro-
grams. The Answer set semantics has been modified to
apply to disjunctive as well as extended DDBs. Answer
set semantics has become the most used semantics for these
types of databases. The semantics encompasses the answer
set semantics, and hence the Smodels semantics. We dis-
cuss this semantics in the following subsection.

Answer Set Semantics for EDDDBs

A disjunctive deductive database is a collection of rules
of the form (1) where the Ls and Ms are literals. When the
Ls and Ms are atoms, the program is called a normal
disjunctive program. When l ¼ 0 and the Ls and Ms are
atoms, the program is called a positive disjunctive deduc-
tive database.

An answer set of a disjunctive deductive database P not
containing not is a smallest (in a sense of set-theoretic
inclusion) subset S of Lit such that

1. for any rule of the form (1), if M1; . . . ;Mm 2S, then for
some i; 0 � i � n; Li 2S; and

2. If S contains a pair of complementary literals, then
S ¼ Lit (and hence is inconsistent).

The answer sets of a disjunctive deductive database that
does not contain not is denoted as aðSÞ. A disjunctive
deductive database without not may have more than one
answer set.

A set of literals S is said to be an answer set of a
disjunctive deductive database P if S2aðPSÞ, where PS

is defined in the Extended Deductive Databases section.

Consider the disjunctive deductive database,
P0 ¼ pðaÞ _ pðbÞ :
This deductive database has two answer sets: { p(a)}
and { p(b)}.
The disjunctive deductive database,
P1 ¼ P0 [frðXÞ not pðXÞg;
has two answer sets: {p(a), r(b)} and {p(b), r(a)}.

Selecting Semantics for EDDBs and EDDDBS

There are a large number of different semantics, in addition
to those listed here. A user who wishes to use such a system
is faced with the problem of selecting the appropriate
semantics for his needs. No guidelines have been devel-

oped. However, one way to assess the semantics desired is
to consider the complexity of the semantics. Results have
been obtained for these semantics by Schlipf and by Eiter
and Gottlob.

Ben-Eliahu and Dechter showed that there is an inter-
esting class of disjunctive databases that are tractable. In
addition to work on tractable databases, consideration has
been given to approximate reasoning where one may give
up soundness or completeness of answers. Selman and
Kautz developed lower and upper bounds for Horn (Data-
log) databases, and Cadoli and del Val developed techni-
ques for approximating and compiling databases.

A second way to determine the semantics to be used is
through their properties. Dix proposed criteria that are
useful to consider in determining the appropriate seman-
tics to be used. Properties deemed to be useful are: elimina-
tion of tautologies, where one wants the semantics to
remain the same if a tautology is eliminated; generalized
principle of partial evaluation, where if a rule is replaced by
a one-step deduction, the semantics is unchanged; positive/
negative reduction; elimination of nonminimal rules, where
if a subsumed rule is eliminated, the semantics remains
the same; consistency, where the semantics is not empty
for all disjunctive databases; and independence, where if a
literal l is true in a program P and P0 is a program whose
language is independent of the language of P, then l
remains true in the program consisting of the union of
the two languages.

A semantics may have all the properties that one may
desire, and be computationally tractable and yet not pro-
vide answers that a user expected. If, for example, the user
expected an answer r(a) in response to a query r(X), and the
semantics were, for Example 6, the well-founded seman-
tics, the user would receive the answer, r(a) is unknown.
However, if the answer set semantics had been used, the
answer returned would be r(a). Perhaps the best that can be
expected is to provide users with complexity results and
criteria by which they may decide which semantics meets
the needs of their problems. However, to date, the most
important semantics have been the answer set semantics
and the well-founded semantics, discussed earlier.

Understanding the semantics of disjunctive theories is
related to nonmonotonic reasoning. The field of nonmono-
tonic reasoning has resulted in several alternative
approaches to perform default reasoning. Hence, DDDBs
may be used to compute answers to queries in such theories.
Cadoli and Lenzerini developed complexity results con-
cerning circumscription and closed world reasoning. Przy-
musinski and Yuan and You describe relationships
between autoepistemic circumscription and logic program-
ming. Yuan and You use two different belief constraints to
define two semantics the stable circumscriptive semantics,
and the well-founded circumscriptive semantics for auto-
epistemic theories.

References to work by Fernández and Minker and by
Minker and Ruiz may be found in Ref. 2. Work on com-
plexity results appears in Schlipf (15) and in Eiter and
Gottlob Refs. (16,17). Relationships between Datalog:ext

and nonmonotonic theories may be found in Ref. 2. Proto-
type implementations of extended deductive and extended

10 DEDUCTIVE DATABASES



disjunctive deductive databases are given in the following
section.

DDB, DDDB, AND EDDB IMPLEMENTATIONS
FOR KNOWLEDGE BASE SYSTEMS

General Considerations

Chen and Warren implemented a top-down approach to
answer queries in the well-founded semantics, whereas
Leone and Rullo developed a bottom-up method for
Datalog:norm;wfs databases. Several methods have been
developed for computing answers to queries in answer
set semantics. Fernández, Lobo, Minker, and Subrahma-
nian developed a bottom-up approach to compute answers
to queries in answer set semantics based on the concept of
model trees. Bell, Nerode, Ng, and Subrahmanian devel-
oped a method based on linear programming.

These notions of default negation have been used as
separate ways to interpret and to deduce default informa-
tion. That is, each application chose one notion of negation
and applied it to every piece of data in the domain of the
application. Minker and Ruiz defined a more expressive
DDB that allows several forms of default negation in the
same database. Hence, different information in the domain
may be treated appropriately. They introduced a new
semantics called the well-founded stable semantics that
characterizes the meaning of DDBs that combine well-
founded and stable semantics.

Knowledge bases are important for artificial intelligence
and expert system developments. A general way to repre-
sent knowledge bases is through logic. Work developed for
extended DDBs concerning semantics and complexity apply
directly to knowledge bases. For an example of a knowledge
base, see Example 7. Extended DDBs permit a wide range of
knowledge bases (KBs) to be implemented.

Since alternative extended DDBs have been implemen-
ted, the KB expert can focus on writing rules and integrity
constraints that characterize the problem, selecting the
semantics that meets the needs of the problem, and employ-
ing a DDB system that uses the required semantics.

Articles on stratified databases by Apt, Blair, and
Walker, by Van Gelder, and by Przymusinski may be
found in Ref. 18. See Refs. 5 and 6 for a description of
computing answers to queries in stratified databases.
For an article on the semantics of Datalog:wfs; see Ref. 19
see Ref. 20 for the answer set semantics; see Ref. 2
for references to work on other semantics for normal
extended deductive databases and Schlipf (21) for a com-
prehensive survey article on complexity results for deduc-
tive databases. For results on negation in deductive
databases, see the survey article by Shepherdson (22).
The development of the semantics and complexity results
of extended DDBs that permit a combination of classical
negation and multiple default negations in the same DDB
are important contributions to database theory. They per-
mit wider classes of applications to be developed.

There have been several implementations of systems for
handling extended databases and extended disjunctive
databases. There have also been many semantics proposed
for these systems. However, of these systems, the most

important systems are the well-founded semantics (WFS)
and the answer set semantics (ANS). See Ref. 2 for a
discussion of the alternate proposals. There is one major
system developed and in use for the WFS, and there are
several implementations for the ANS.

Implementation of the Well-Founded Semantics

Warren, Swift, and their associates (23) developed an effi-
cient deductive logic programming system, XSB, that com-
putes the well-founded semantics. XSB is supported to the
extent of answering questions and fixing bugs within the
time schedule of the developers. The system extends the full
functionality of Prolog to the WFS. XSB forms the core
technology of a start-up company, XSB, Inc., whose current
focus is application work in data cleaning and mining. In
Ref. 24, it is shown how nonmonotonic reasoning may be
done within XSB and describes mature applications in
medical diagnosis, model checking, and parsing. XSB
also permits the user to employ Smodels, discussed below.
XSB is available on the Internet and is available as open-
source. There is no intent by XSB, Inc. to market the
program.

Implementation of Answer Set Semantics

Three important implementations of answer set semantics
are by Marek and Truszczyński (25), by Niemelä and
Simons (26–28), and by Eiter and Leone (29,30). Marek
and Truszczyński developed a program, Default Reasoning
System (DeReS), that implements Reiter’s default logic. It
computes extensions of default theories. As logic program-
ming with answer set semantics is a special case of Reiter’s
default logic, DeReS also computes the answer sets of logic
programs. To test DeReS, a system, called TheoryBase, was
built to generate families of large default theories and logic
programs that describe graph problems such as existence of
colorings, kernels, and Hamiltonian cycles. No further
work is anticipated on the system.

Niemelä and Simons developed a system, Smodels, to
compute the answer sets of programs in Datalog with
negation. At present, Smodels is considered the most effi-
cient implementation of answer set semantics computa-
tion. Smodels is based on two important ideas: intelligent
grounding of the program, limiting the size of the ground-
ing, and use of the WFS computation as a pruning techni-
que. The system is used at many sites throughout the world.
New features are continually being added. The system is
available for academic use. It is possible to license the
system from a company in Finland called Neotide.

Implementation of Disjunctive Deductive Databases

Eiter and Leone developed a system, DLV (DataLog with
Or), that computes answer sets (in the sense of Gelfond and
Lifschitz) for disjunctive deductive databases in the syntax
generalizing Datalog with negation. As Smodels, DLV also
uses a very powerful grounding engine and some variants of
WFS computation as a pruning mechanism. The method
used to compute disjunctive answer sets is described in
Ref. 31. The work is the joint effort between Tech U, Austria
and U Calabria, Italy. Many optimization techniques have

DEDUCTIVE DATABASES 11



been added to the system (e.g., magic sets and new heur-
istics), the system language has been enhanced (e.g., aggre-
gate functions), and new front ends were developed for
special applications such as planning.

Definition of a Knowledge Base System

Knowledge bases are important for artificial intelligence
and expert system developments. A general way to repre-
sent knowledge bases is through logic. All work developed
for extended DDBs concerning semantics and complexity
apply directly to knowledge bases. Baral and Gelfond (14)
describe how extended DDBs may be used to represent
knowledge bases. Many papers devoted to knowledge bases
consider them to consist of facts and rules, which is cer-
tainly one aspect of a knowledge base, as is the ability to
extract proofs. However, integrity constraints supply
another aspect of knowledge and differentiate knowledge
bases that may have the same rules but different integrity
constraints. Since alternative extended deductive data-
bases have been implemented, knowledge base experts
can focus on the specification of the rules and integrity
constraints and employ the extended deductive databases
that have been implemented.

Work on the implementation of semantics related to
extended disjunctive deductive databases has been very
impressive. These systems can be used for nonmonotonic
reasoning. Brewka and Niemela (32) state as follows:

At the plenary panel session2, the following major trends
were identified in the field: First, serious systems for nonmo-
notonic reasoning are now available (XSB, SMODELS, DLV).
Second, people outside the community are starting to use these
systems with encouraging success (for example, in planning).
Third, nonmonotonic techniques for reasoning about action
are used in highly ambitious long-term projects (for example,
the WITAS Project, www.ida.liu.se/ext/witas/eng.html). Fourth,
causality is still an important issue; some formal models of
causality have surprisingly close connections to standard
nonmonotonic techniques. Fifth, the nonmonotonic logics
being used most widely are the classical ones: default logic,
circumscription, and autoepistemic logic.

APPLICATIONS

There are many applications that cannot be handled
by relational database technolgy, but are necessary for
advanced knowledge base and artificial intelligence appli-
cations (AI). One cannot handle disjunctive information,
databases that have default negation that are not stratified,
incomplete information, planning for robotics, handling
databases with preferences, and other topics. However,
all of the above topics can be handled by extensions to
databases as described in the previous sections. In this
section, we discuss how the following topics can be handled
by deductive databases: data integration in which one can
combine databases; handling preferences in databases;
updating deductive databases; AI planning problems;

and handling databases that may be inconsistent. The
applications described can be incorporated or implemented
on the deductive databases discussed in the previous sec-
tion. These applications form a representative sample of
capabilities that can be implemented with extended deduc-
tive database capabilities.

Two specific examples of deductive database applica-
tions are briefly discussed here. Abduction is a method of
reasoning, which, given a knowledge base and one or more
observations, finds possible explanations of the observa-
tions in terms of predicates called abducible predicates. The
concept of abduction has been used in such applications as
law, medicine, diagnosis, and other areas; Refs. 14 and 33.
With the vast number of heterogeneous information
sources now available, particularly on the world wide
web, multiagent systems of information agents have
been proposed for solving information retrieval problems,
which requires advanced capabilities to address complex
tasks, query planning, information merging, and handling
incomplete and inconsistent information. For a survey of
applications to intelligent information agents see Ref. 34.

Data Integration

Data integration deals with the integration of data from
different databases and is a relevant issue when many
overlapping databases are in existence. In some cases,
various resources exist that are more efficient to access
than the actual relations or, in fact, the relations may even
be virtual so that all data must be accessed through
resources. We review here the approach given in Ref. 35.
The basis of this approach is the assumption that the
resources are defined by formulas of deductive databases
and that integrity constraints can be used, as in SQO, to
transform a query from the extensional and intensional
predicates to the resources. Grant and Minker show how to
handle arbitrary constraints, including the major types of
integrity constraints, such as functional and inclusion
dependencies. Negation and recursion are also discussed
in this framework. We use a simple example to illustrate
the basic idea.

Assume that there are three predicates:

p1(X, Y, Z), p2(X, U), and p3(X, Y),

and an integrity constraint:

p3ðX;YÞ p1ðX;Y ;ZÞ; Z> 0:

The resource predicate is defined by the formula

rðX;Y ;ZÞ p1ðX;Y ;ZÞ; p2ðX;UÞ:
Let the query be:

p1(X, Y, Z), p2(X, U), p3(X, Y), Z > 1.

Intuitively one can see from the integrity constraint that
p3 is superfluous in the query, hence is not needed, and
therefore the resource predicate can be used to answer the
query. Formally, the first step involves reversing the
resource rules to define the base predicates, p1 and p2 in
this case, in terms of the resource predicates. This step is
justified by the fact that the resource predicate definition
really represents an if-and-only-if definition and is the
Clark completion, as mentioned in the Deductive Data-

2The plenary panel session was held at the Seventh International
Workshop on Nonmonotonic Reasoning as reported in (32).

12 DEDUCTIVE DATABASES



bases: The Formative Years 1969–1978 section. In this
case, the rules are:

p1ðX;Y ;ZÞ rðX;Y ;ZÞ
p2ðX; f ðX;Y ;ZÞÞ rðX;Y ;ZÞ.

It is possible then to use resolution theorem proving, start-
ing with the query, the integrity constraint, and these new
rules, to obtain a query in terms of r, namely

 rðX;Y ;ZÞ;Z> 1:

That is, to answer the original query, a conjunction of three
predicates and a select condition, one need only perform a
select on the resource predicate.

Handling Preferences

In a standard deductive database, all the clauses are con-
sidered to have equal status. But, as was shown, there may
be several answer sets for a deductive database. In some
cases, one answer set may be preferred over another
because there may be preferences among the clauses. Con-
sider the following simple propositional example with two
clauses.

r1 : a not b

r2 : b not a

There are two answer sets: {a} and {b}. If r1 is preferred over
r2, then the preferred answer set is {a}.

The general approach to handling preferences has been
to use a meta-formalism to obtain preferred answer sets.
One way is to generate all answer sets and then select the
ones that are preferred. A somewhat different approach is
taken in Ref. 36 and is briefly reviewed here.

They start with the original deductive database and
using the preferences between clauses transform (compile)
them to another deductive database such that the answer
sets of the new (tagged) deductive database are exactly the
preferred answer sets of the original deductive database.
For the simple propositional example with two clauses
given above, the new deductive database (actually a sim-
plified version) would be:

ok(r1)  
ok(r2)  ap(r1)

ok(r2)  bl(r1)

ap(r1)  ok(r1), not b

ap(r2)  ok(r2), not a

a  ap(r1)

b  ap(r2)

bl(r1) b

bl(r2) a

There are three new predicates: ok, ap (for applicable), and
bl (for blocked). The first three rules reflect the preference of
r1 over r2. The next four rules are obtained from r1 and r2
by adding the ok of the appropriate rules and deducing a

(resp. b) in two steps. The last two rules show when a rule is
blocked. There is one answer set in this case:

{ok(r1), ap(r1), a, bl(r2), ok(r2)}

whose set of original atoms is {a}.

This article handles both static rules and dynamic rules,
that is, rules that are themselves considered as atoms in
rules. The implementation is straightforward and the
complexity is not higher than for the original deductive
database.

Updates

Although the study of deductive databases started in 1977,
as discussed in the Deductive Databases section, for many
years it dealt with static databases only. More recently,
researchers have tried to incorporate update constructs
into deductive databases. We briefly consider here an
extension of Datalog, called DatalogU (37). This extension
has the capability to apply concurrent, disjunctive, and
sequential update operations in a direct manner and it
has a clear semantics.

We illustrate DatalogU by giving a couple of simple
examples. Consider a predicate employee with three argu-
ments: name, department, and salary.

To insert a new employee, joe into department 5 with
salary 45000, we write insertemployee(joe, 5,45000)

To delete all employees from department 7, write

deleteemployee(N, 7, S)

Consider now the update that gives every employee in
department 3 a 5% raise deleteemployee(N, 3, S),
S0 ¼ S� 1:05, insertemployee(N, 3, S0)

DatalogU allows writing more general rules, such as

raiseSalaryðN;D;PÞ deleteemployeeðN;D;SÞ;S0 ¼
S� ð1þ PÞ; insertemployeeðN;D;S0Þ

that can be used, such as

raiseSalary(N, D, 0.1)

to give everyone a 10% raise.

Another example is the rule for transferring money from
one bank account to another. We can use the following
rules:

transferðB A1; B A2; AmtÞ withdrawðB A1; AmtÞ;
depositðB A2; AmtÞ;B A1 6¼B A2

withdrawðBA;AmtÞ deleteaccountðBA;BalÞ;
insertaccountðBA;Bal0Þ;Bal�Amt;Bal0 ¼ Bal� Amt

depositðBA;AmtÞ deleteaccountðBA;BalÞ;
insertaccountðBA;Bal0Þ;Bal0 ¼ Balþ Amt

So now, to transfer $200 from account A0001 to A0002, we
write transfer (A0001, A0002, 200).

AI Planning

Planning in AI can be formalized using deductive data-
bases, as shown in Ref. 38. A planning problem can be
described in terms of an initial state, a goal state, and a set

DEDUCTIVE DATABASES 13



of possible actions. A successful plan is a sequence of
actions that, starting with the initial state and applying
the actions in the given sequence, leads to the goal. Each
action consists of preconditions before the action can take
place as well as the addition and deletion of atoms leading
to postconditions that hold after the action has taken
place. The following simple example for illustration
involves a world of named blocks stacked in columns on
a table. Consider the action pickup (X) meaning that the
robot picks up X. In this case,

Pre ¼ fonTableðXÞ; clearðXÞ;handEmptyg
Post ¼ f: onTableðXÞ; :handEmpty;holdingðXÞg

So before the robot can pick up a block, the robot’s hand
must be empty and the block must be on the table with no
block above it. After the robot picks up the block, it is
holding it, its hand is not empty, and the block is not on
the table.

The idea of the formalization is to write clauses repre-
senting postconditions, such as

postcondðpickupðXÞ; onTableðXÞ;negÞ

and use superscripts to indicate the step number in the
action, such as in

addJðCondÞ firedJðaÞ; postcondða;Cond; posÞ

to indicate, for instance, that if an action a is fired at step J,
then a particular postcondition is added. A tricky issue is
that at each step only one action can be selected among all
the firable actions. A nondeterministic choice operator (see
also Current Prototype section on LDLþþ) is used to
express this concept:

firedJðaÞ firableJðaÞ; : firableJðendÞ; choiceJðaÞ

We have left out many details, but the important issue is
that the existence of a solution for a planning problem is
equivalent to the existence of a model in the answer set
semantics for the planning deductive database and the
conversion of the problem to the deductive database can
be done in linear time. In fact, each answer set represents a
successful plan. These results are also generalized in var-
ious ways, including to parallel plans.

The oldest problem in AI planning, the ability of an agent
to achieve a specified goal, was defined by McCarthy (39).
He devised a logic-based approach to the problem based on
the situation calculus that was not entirely satisfactory.
One of the problems with the approach was how to handle
the frame problem, the seeming need for frame axioms, to
represent changes in the situation calculus. Lifschitz
et al. (40) have shown how to solve this problem. They
state, ‘‘The discovery of the frame problem and the inven-
tion of the nonmonotonic formalisms that are capable of
solving it may have been the most significant events so far
in the history of reasoning about actions.’’ See the paper by
Litschitz et al. for their elegant solution to the McCarthy AI
planning problem.

Handling Inconsistencies

As explained in The Background section, a database must
satisfy its integrity constraints. However, there may be
cases where a database becomes inconsistent. For example,
a database obtained by integrating existing databases (see
Data Integration section) may be inconsistent even though
each individual database is consistent. Reference 41 pre-
sents a comprehensive approach to dealing with inconsis-
tent databases through giving consistent answers and
computing repairs, which is accomplished by transforming
the database into extended disjunctive database rules; the
answer sets of this database are exactly the repairs of the
inconsistent database. We note that the basic definitions for
querying and repairing inconsistent databases were intro-
duced in Ref. 47.

We illustrate the technique on a simple example. Let

EDB ¼ fpðaÞ; pðbÞ; qðaÞ; qðcÞg and IC ¼ fqðxÞ pðxÞg.

This database is inconsistent because it contains p(b) but
not q(b). There are two simple ways of repairing the data-
base: (1) delete p(b), (2) insert q(b). However, even though
the database is inconsistent, certain queries have the same
answers in both repairs. For example,  qðxÞ;not pðXÞ has
c as its only answer. In this example, the transformation
modifies the IC to the rule

: puðXÞ _ quðXÞ pðXÞ;not qðXÞ

where pu and qu are new ‘‘update’’ predicates. The
meaning of this rule is that in case p(X) holds and q(X)
does not hold, either delete p(X) or insert q(X). The answer
sets of the transformed database are

M1 ¼ fpðaÞ; pðbÞ; qðaÞ; qðcÞ; :puðpÞg and M2 ¼ fpðaÞ;
pðbÞ; qðaÞ; qðcÞ; quðbÞg leading to the two repairs men-
tioned above.

SUMMARY AND REFERENCES

The article describes how the rule of inference, based upon
the Robinson Resolution Principle (developed by J.A.
Robinson (42)), started in 1968 with the work of Green
and Raphael (43,44), led to a number of systems and
culminated in the start of the field of deductive databases
in November 1977, with a workshop held in Toulouse,
France that resulted in the appearance of a book edited
by Gallaire and Minker (11).

The field has progressed rapidly and has led to an
understanding of negation, has provided a theoretical fra-
mework so that it is well understood what is meant by a
query, and an answer to a query. The field of relational
databases is encompassed by the work in DDBs. As dis-
cussed, some concepts introduced in deductive databases
have been incorporated into relational technology. As
noted, complex knowledge based systems can be imple-
mented using advanced deductive database concepts not
contained in relational technology. There are, however,
many different kinds of DDBs as described in this article.
Theoretical results concerning fixpoint theory for DDBs

14 DEDUCTIVE DATABASES



may be found in Lloyd (7), while fixpoint theory and the-
ories of negation for disjunctive deductive databases may be
found in Lobo, Minker, and Rajasekar (45). Complexity
results have not been summarized in this article. The
least complex DDBs are, in order, Datalog, Datalog:str,
Datalog:wfs;and Datalog:stab. The first three databases result
in unique minimal models. Other databases are more com-
plex and, in addition, there is no current semantics that is
uniformly agreed on for Datalogdisj. However, the answer
set semantics discussed in the Extended Deductive Data-
bases section for deductive databases and in the Answer Set
Semantics for EDDDBs section for disjunctive deductive
databases appears to be the semantics generally favored.
As noted in the Selecting Semantics for EDDBs and
EDDDBs section, a combination of properties of DDBs,
developed by Dix and discussed in Ref. 46, (and the com-
plexity of these systems as described in Ref. 15–17), could
be used once such systems are developed.

BIBLIOGRAPHY

1. J. Minker, Perspectives in deductive databases, Journal of
Logic Programming, 5: 33–60, 1988.

2. J. Minker, Logic and databases: a 20 year retrospective, in D.
Pedreschi and C. Zaniolo (eds.), Logic in Databases, Proc. Int.
Workshop LID’96, San Miniato, Italy, 1996, pp. 3–57.

3. K.A. Ross, Modular stratification and magic sets for datalog
programs with negation, Proc. ACM Symp. on Principles of
Database Systems, 1990.

4. F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman, Magic sets and
other strange ways to implement logic programs, Proc. ACM
Symp. on Principles of Database Systems, 1986.

5. J.D. Ullman, Principles of Database and Knowledge-Base
Systems I. Principles of Computer Science Series, Rockville,
MD: Computer Science Press, 1988.

6. J.D. Ullman, Principles of Database and Knowledge-Base
Systems II, Principles of Computer Science Series, Rockville,
MD: Computer Science Press, 1988.

7. J.W. Lloyd, Foundations of Logic Programming. New York:
2nd ed. Springer-Verlag, 1987.

8. T. Gaasterland, P. Godfrey, and J. Minker, An overview of
cooperative answering, Journal of Intelligent Information
Systems, 1 (2): 123–157, 1992.

9. F. Arni, K. Ong, S. Tsur, H. Wang, and C. Zaniolo, The
deductive database system ldlþþ, Theory and Practice of
Logic Programming, 3: 61–94, January 2003.

10. J. Melton and A. R. Simon, SQL:1999 Understanding
Relational Language Components, San Francisco: Morgan
Kaufmann, 2002.

11. H. Gallaire and J. Minker, (eds.), Logic and Data Bases,
Plenum Press, New York: 1978.

12. T. Gaasterland and J. Lobo, Qualified answers that reflect user
needs and preferences, International Conference on Very Large
Databases, 1994.

13. C. Baral, Knowledge representation, reasoning and declarative
problem solving, Cambridge, MA: Cambridge University
Press, 2003.

14. C. Baral, and M. Gelfond, Logic programming and knowledge
representation, Journal of Logic Programming, 19/20: 73–148,
1994.

15. J.S. Schlipf, A survey of complexity and undecidability results
in logic programming, in H. Blair, V.W. Marek, A. Nerode, and
J. Remmel, (eds.), Informal Proc. of the Workshop on Structural
Complexity and Recursion-theoretic Methods in Logic Pro-
gramming., Washington, D.C.1992, pp. 143–164.

16. T. Eiter and G. Gottlob, Complexity aspects of various seman-
tics for disjunctive databases, Proc. of the Twelfth ACM
SIGART–SIGMOD–SIGART Symposium on Principles of
Database Systems (PODS-93), May 1993, pp. 158–167.

17. T. Eiter and G. Gottlob, Complexity results for disjunctive
logic programming and application to nonmonotonic logics,
D. Miller, (ed.), Proc. of the International Logic Programming
Symposium ILPS’93, Vancouver, Canada, 1993, pp. 266–278.

18. J. Minker, (ed.), Foundations of Deductive Databases and Logic
Programming, New York: Morgan Kaufmann, 1988.

19. A. VanGelder, K. Ross, and J.S. Schlipf, Unfounded Sets and
Well-founded Semantics for General Logic Programs, Proc. 7th

Symposium on Principles of Database Systems, 1988, pp. 221–
230 .

20. M. Gelfond and V. Lifschitz, The Stable Model Semantics for
Logic Programming, R.A. Kowalski and K.A. Bowen, (eds.),
Proc. 5th International Conference and Symposium on Logic
Programming, Seattle, WA, 1988, pp. 1070–1080.

21. J.S. Schlipf, Complexity and undecidability results for logic
programming, Annals of Mathematics and Artificial Intelli-
gence, 15 (3–4): 257–288, 1995.

22. J.C. Shepherdson, Negation in Logic Programming, in
J. Minker, (ed.), Foundations of Deductive Databases and
Logic Programming, New York: Morgan Kaufman, 1988, pp.
19–88.

23. P. Rao, K. Sagonas, T. Swift, D.S. Warren, and J. Friere, XSB: A
system for efficiently computing well-founded semantics, in
J. Dix, U. Ferbach, and A. Nerode, (eds.), Logic and Non-
monotonic Reasoning - 4th International Conference, LPNMR
‘97, Dagstuhl Castle, Germany, 1997, pp. 430–440.

24. T. Swift, Tabling for non-monotonic programming, technical
report, SUNY Stony Brook, Stony Brook, NY: 1999.

25. P. Cholewiński, W. Marek, A. Mikitiuk, and M. Truszczyński,
Computing with default logic, Artificial Intelligence, 112: 105–
146, 1999.

26. I. Niemelä and P. Simons, Efficient implementation of the well-
founded and stable model semantics, in I. Niemelä and T.
Schaub, (eds.), Proc. of JICSLP-96, Cambridge, 1996.

27. I. Niemelä, Logic programs with stable model semantics as a
constraint programming paradigm, in I. Niemelä and T.
Schaub, (eds.), Proc. of the Workshop on Computational Aspects
of Nonmonotonic Reasoning, 1998, pp. 72–79.

28. I. Niemelä and P. Simons, Smodels - an implementation of the
stable model and well-founded semantics for normal logic
programs, in J. Dix, U. Furbach, and A. Nerode, (eds.), Logic
Programming and Nonmonotonic Reasoning - 4th Interna-
tional Conference, LPNMR ‘97, Dagstuhl Castle, Germany,
1997, pp. 420–429.

29. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello, A
deductive system for non-monotonic reasoning, Jürgen Dix,
Ulrich Furbach, and Anil Nerode, (eds.), Proc. of the 4th Inter-
national Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR97), number 1265 in LNCS, San
Francisco, CA, 1997, pp. 364–375.

30. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello, The
kr system dlv: Progress report, comparisons, and benchmarks,
A.G. Cohn, L. Schubert, and S.C. Shapiro, (eds.), Proc.
Sixth International Conference on Principles of Knowledge

DEDUCTIVE DATABASES 15



Representation and Reasoning (KR-98), San Francisco, CA,
1998, pp. 406–417.

31. N. Leone, P. Rullo, and F. Scarcello, Disjunctive stable models:
Unfounded sets, fixpoint semantics and computation, Informa-
tion and Computation, 135: 69–112, 1997.

32. G. Brewka and I. Niemelä, Report on the SeventhInternational
Workshop on Nonmonotonic Reasoning, AI Magazine, 19 (4):
139–139, 1998.

33. A.C. Kakas, A.R. Kowalski, and F. Toni, The role of abduction
in logic programming, in D.M. Gabbay, C.J. Hogger, and J.A.
Robinson, (eds.), Handbook of Logic in Artificial Intelligence
and Logic Programming Volume 5, Oxford: Oxford University
Press, 1998, pp. 235–324.

34. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits, Using methods
of declarative logic programming for intelligent information
agents, Theory and Practice of Logic Programming, 2: 645–709,
November 2002.

35. J. Grant and J. Minker, A logic-based approach to data inte-
gration, Theory and Practice of Logic Programming, 2: 323–
368, 2002.

36. J. P. Delgrande, T. Schaub, and H. Tompits, A framework for
compiling preferences in logic programs, Theory and Practice of
Logic Programming, 3: 129–187, March 2003.

37. M. Liu, Extending datalog with declarative updates, Journal of
Intelligent Information Systems, 20: 107–129, March 2003.

38. A. Brogi, V. S. Subrahmanian, and C. Zaniolo, A deductive
database approach to ai planning, Journal of Intelligent Infor-
mation Systems, 20: 215–253, May 2003.

39. J. McCarthy, Programs with common sense, Proc. Teddington
Conf. on the Mechanisation of Thought Processes, London,
1959, pp. 75–91.

40. V. Lifschitz, N. McCain, E. Remolina, and A. Tacchella, Getting
to the airport: The oldest planning problem in AI, in Jack

Minker, (ed.), Logic-Based Artificial Intelligence, Dordrecht:
Kluwer Academic Publishers, 2000, pp. 147–165.

41. G. Greco, S. Greco, and E. Zumpano, A logical framework for
querying and repairing inconsistent databases, IEEE Trans-
actions on Knowledge and Data Engineering, 15: 1389–1408,
Nov/Dec 2003.

42. J.A. Robinson, A Machine-Oriented Logic Based on the Resolu-
tion Principle, J.ACM, 12 (1), January, 1965.

43. C.C. Green and B. Raphael, Research in intelligent question
answering systems, Proc. ACM 23rd National Conference,
1968, pp. 169–181.

44. C.C. Green and B. Raphael, The use of theorem-proving tech-
niques in question-answering systems, Proc. 23rd National
Conference ACM, 1968.

45. J. Lobo, J. Minker, and A. Rajasekar, Foundations of Disjunc-
tive Logic Programming, Cambridge MA: The MIT Press, 1992.

46. G. Brewka, J. Dix, and K. Konolige, Nonmonotonic Reasoning:
An Overview, Center for the Study of Language and Informa-
tion, Stanford, CA, 1997.

47. M. Arenas, L. Bertossi, and J. Chomicki, Consistent query
answers in inconsistent databases, PODS 1999, New York:
ACM Press, 1999, pp. 68–79.

JOHN GRANT

Towson University
Towson, Maryland

JACK MINKER

University of Maryland at
College Park

College Park, Maryland

16 DEDUCTIVE DATABASES



D

DISCRETE EVENT SYSTEMS: UNTIMED MODELS
AND THEIR ANALYSIS

INTRODUCTION

Mathematical system theory is concerned with modeling,
analyzing, and controlling dynamic systems, that is, sys-
tems described by variables that evolve over time. A ‘‘sys-
tem’’ is an abstract concept to describe an entity that
comprises input, state, and output variables. An important
class of dynamic systems is that of electromechanical
systems. Examples of such dynamic systems abound
around us at all scales of human activity including disk
drives in computers; heating, ventilation, and air condition-
ing systems in buildings; powertrains in automobiles; jet
engines; power distribution networks, and so on. Their
associated variables, such as rotation speed, temperature,
torque, and voltage, are continuous in nature, and the laws
of electricity and mechanics can be used to obtain a math-
ematical model of their behavior over time, usually in the
form of differential or difference equations.

Another important class of dynamic systems is the class
of discrete event systems. The distinguishing features of
discrete event systems are (1) their variables do not evolve
according to differential or difference equations, but rather
according to the occurrence of asynchronous ‘‘events’’, and
(2) these variables belong to a discrete (as opposed to con-
tinuous) set. The proliferation of technological systems that
comprise computers interconnected by networks has led to
the development of a mathematical system theory for dis-
crete event systems. A communication protocol between a
sender and a receiver ina network isanexample ofa discrete
event system. The ‘‘state’’ of the sender belongs to a discrete
set that includes states such as idle, ready-to-send, waiting-
for-acknowledgment, and so forth, with similar states for
the receiver. The dynamical evolution of the states of the
sender and receiver is described by the occurrence of asyn-
chronous events such as packet-sent, packet-received, timer-
started, and timer-expired. To contrast this kind of behavior
with that of a system described by a differential equation,
the dynamics are said to be event-driven instead of being
time-driven. Thus, the rules of the protocol lead to a mathe-
matical model of this discrete event system.

Discrete event systems arise in many areas of computer
science and engineering, which involve both hardware and
software, such as protocols, databases, server systems, and
so on. They also are generated in many classes of techno-
logical systems that involve automation, such as manu-
facturing, robotics, transportation, and so forth. The
mathematical theory of discrete event systems is multi-
disciplinary in nature and involves concepts and techniques
from computer science theory, dynamic systems, control
theory, and operations research. A wide variety of modeling
formalisms is used to describe and study the behavior of
discrete event systems. Two widely used modeling formal-
isms for discrete event systems are automata and Petri nets.

Once a discrete event model of a system has been
obtained, it can be used to analyze the behavior of the
system in a formal manner. Many analytical questions
are often posed in a verification context. Namely, along
with the model of the system, one is also given a set of
specifications or requirements regarding the desired beha-
vior of the system. Three main categories of specifications
are safety, liveness, and diagnosability. Safety specifica-
tions are concerned with the reachability of illegal states or
illegal sequences of events in the behavior of the system.
Liveness specifications pertain to the ability of the system to
complete the tasks it starts. Diagnosability specifications
arise in partially observed systems and refer to the ability of
detecting the occurrence of significant unobservable events
based on the observed sequences of events and the model of
the system. If the result of the verification phase is that the
behavior of the system is unsatisfactory in terms of safety,
liveness, or diagnosability, then feedback control can be
used to alter its behavior and ensure that all specifications
are met. A controller module is adjoined to the system; this
module is synthesized in such a way that the behavior of the
closed-loop system, that is, the system plus the controller, is
guaranteed to meet all specifications. Clearly, controller
existence issues are of concern in systems where sensing
and actuation limitations restrict the ability of the con-
troller module to observe and affect the behavior of the
system.

The remainder of this article will introduce the reader to
modeling and analysis of discrete event systems. The dis-
cussion will be centered around the automaton modeling
formalism.

MODELING AND ANALYSIS USING AUTOMATA

When modeling electromechanical systems in terms of the
usual continuous variables of interest, for example, cur-
rent, voltage, and position, the laws of nature can be used to
obtain differential equations that model the behavior of
these variables accurately over time. If necessary, techni-
ques such as linearization can be used to obtain a model
that is more analytically tractable. When modeling how
packets are moved in a digital communications network, or
how robots interact with conveyors and automated guided
vehicles in moving parts in an automated manufacturing
plant, models based on the asynchronous occurrences of a
set of discrete events are more appropriate than models
based on differential equations.

The first step in modeling a discrete event system is to
identify a relevant set of events that capture all possible
behaviors of the system at the desired level of abstraction.
The concept of event is an intuitive one and does not require
a formal definition. The level of granularity to consider
when defining events depends on the level of abstraction
of the verification or control task at hand. Here, one can
argue that discrete event modeling is more art than science,
in the sense that the knowledge of an expert is needed to

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.
Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



choose the right level of abstraction at which to study the
system. When modeling the flow of traffic through a sig-
nalized intersection, one could define events such as vehicle
arrives, vehicle turns left, signal changes to red, and so
forth, if the goal is to keep track of how many vehicles are
present at each approach. Individual vehicle dynamics,
which are based on differential equations, would be too
detailed for this kind of analysis.

Events cause state changes in the variables of interest in
the system. That is why the dynamics are said to be event
driven as opposed to time driven. For instance, the number
of customers present in a queueing system will change
during an arrival event or a service-starts event. The vari-
ables of interest have values that belong to a discrete set.
They could be numerical, (e.g., the number of customers in
the queue) or logical (e.g., the state of the server is idle or
busy). The state of the entire system is formed by consider-
ing the states of its variables of interest. In the study of a
communication protocol between two nodes in a network,
the global state would be composed of the states of the
sender, channel, and receiver.

Discrete event models of dynamic systems are classified
in terms of how they abstract timing information and
randomness in the system behavior. Untimed models
abstract away precise timing issues by focusing only on
the ordering of the events and not on the exact times of their
occurrence. Untimed models also abstract away statistical
information about the probabilities of the events and con-
sider all possible ‘‘sample paths’’ in the system behavior.
Untimed models are often referred to as ‘‘logical’’ models. A
large class of logical specifications that involve safety,
liveness, and diagnosability can be addressed with untimed
models. Timed models enrich untimed models and expli-
citly include timing information. This information may be
provided in a ‘‘non-stochastic’’ manner or in a ‘‘stochastic’’
manner. Event occurrence times can be specified in terms of
time intervals for instance, or by means of probability
distribution functions. Timed models are necessary to
study specifications that involve real time and deadlines.
Stochastic models are used for performance analysis under
specific statistical assumptions. The process of model
refinement from untimed models to [non-]stochastic timed
ones is discussed in detail in the textbook by Cassandras
and Lafortune (1). The remainder of this article is con-
cerned exclusively with untimed models of discrete event
systems.

Languages

Let E be the finite set of events associated with the discrete
event system under consideration. This set consists of all
events that can possibly be executed by the system. A string
(or trace) is a finite sequence of events from E. Thus, a string
models one possible behavior of the system during its
operation. In the case of untimed models of discrete event
systems, the exact time of occurrence of the event is
abstracted away in the string; only the ordering of the
events is retained. The length of a string s, denoted by
|s|, is a non-negative integer that corresponds to the
number of events composing the string, counting multiple
occurrences of the same event. The empty string, which is

denoted by e (not to be confused with the generic event
e2E), is the string containing no events (i.e., jej ¼ 0). The
concatenation of two strings s1 and s2 is the trace s1s2 (i.e.,
s1 followed by s2). Thus, the empty string e can be inter-
preted as the identity element for concatenation.

The concept of language is central for modeling a dis-
crete event system. An untimed language, or simply lan-
guage, is a set of strings of events over an event set. The set
of all finite strings of elements of E, including the empty
string e, is denoted by E�; the � operation is called the Kleene
closure. For example, if E ¼ fa; b; cg, then

E� ¼ fe;a; b; c;aa; ab;ac; ba; bb; bc; ca; cb; cc;aaa; . . . g

If t1t2t3 ¼ s with t1; t2; t3 2E�, then t1 is called a prefix of s,
t2 a substring of s, and t3 a suffix of s. Both e and s are
prefixes of s by definition.

Clearly, a given system with event set E cannot in
general execute all possible strings in E�. The set of all
possible behaviors of a discrete event system is therefore
modeled by a subset of E� (i.e., by a language). The language
associated with a discrete event system is usually infinite,
because the system behavior might include repetitions. It is
impractical to represent a language by enumerating all its
elements. A discrete event modeling formalism is a mechan-
ism for representing in a compact manner the language
associated with the system. It can be thought of as a data
structure as well as an analytical tool.

Automata

The automaton modeling formalism is the most widely used
and studied.

Definition – Automaton. A deterministic automaton,
denoted by G, is a six-tuple

G ¼ ðX;E; f ;G; x0;XmÞ

where X is the set of states, which could be infinite; E is the
finite set of events associated with the transitions in G; f :
X � E!X is the transition function; f ðx; eÞ ¼ y means that
there is a transition labeled by event e from state x to state y
(in general, f is a partial function on its domain); G : X!2E

is the feasible event function.1GðxÞ is the set of all events e
for which f ðx; eÞ is defined; x0 is the initial state; Xm�X is
the set of marked states.

Proper selection of which states to mark is a modeling
issue that depends on the problem of interest. By designat-
ing certain states as marked, one may for instance be
recording that the system, on entering these states, has
completed some operation or task.

When jXj is finite and small, it is convenient to represent
automata graphically by means of their state transition
diagrams. The state transition diagram of an automaton is
a directed graph in which nodes represent states, and
labeled arcs between nodes are used to represent the tran-
sition function f: if f ðx; eÞ ¼ y, then an arc labeled by ‘‘e’’ is

1Given a set A, the notation 2A means the power set of A (i.e., the
set of all subsets of A).

2 DISCRETE EVENT SYSTEMS: UNTIMED MODELS AND THEIR ANALYSIS



drawn from x to y. Special notation is used to identify the
initial state and marked states when drawing a state
transition diagram.

Automata are used to represent and manipulate lan-
guages. For the sake of convenience, the transition function
f of an automaton is extended from domain X � E to domain
X � E� in the following recursive manner:2

f ðx; eÞ :¼ x
f ðx; seÞ :¼ f ð f ðx; sÞ; eÞ for s2E� and e2E

The language generated by G is

LðGÞ :¼ fs2E� : f ðx0; sÞ is definedg

The language marked by G is

LmðGÞ :¼ fs2LðGÞ : f ðx0; sÞ 2Xmg

The language LðGÞ represents all directed paths that
can be followed along the state transition diagram of G
starting at the initial state; the string corresponding to a
path is the concatenation of the event labels of the transi-
tions that compose the path. Therefore, a string s is inLðGÞ
if and only if it corresponds to an admissible path in the
state transition diagram, equivalently, if and only if f is
defined at ðx0; sÞ. The second language represented by G,
LmðGÞ, is the subset ofLðGÞ that consists only of the strings
s for which f ðx0; sÞ 2Xm, that is, these strings correspond to
paths that end at marked states in the state transition
diagram.

The prefix-closure of a language L, which is denoted by
L, is the language that consists of all prefixes of all the
strings in L. In general, L�L. L is said to be prefix-closed if
L ¼ L. Clearly,LðGÞ is prefix-closed by definition, because a
path is only possible if all its prefixes are also possible. If f is
a total function over its domain, then necessarily
LðGÞ ¼ E�. However, the language marked by G, LmðGÞ,
is not prefix-closed in general, unless all the reachable
states of G are marked. The language marked is also called
the language recognized by the automaton, and the given
automaton is often referred to as a recognizer of the given
language.

An automaton G thus represents two languages: LðGÞ
and LmðGÞ. In the standard definition of automaton in
automata theory, the function f is required to be a total
function, and the notion of language generated is not mean-
ingful because it is always equal to E�. Allowing f to be a
partial function is a consequence of the fact that a discrete
event system may not produce (or execute) all the strings
in E�.

A language is said to be regular if it can be marked by a
finite-state automaton (i.e., by an automaton where X is a
finite set). The class of regular languages is denoted byR.
It can be shown that R is a proper subset of 2E� , which is
the class of all languages over event set E. The class R is
very important because it delimits the languages that
possess automata representations that require finite

memory when stored in a computer. In other words,
automata are a practical means of manipulating regular
languages in analysis or controller synthesis problems. A
textbook on automata and language theory, such as the
book by Sipser (2), can be consulted for additional study of
the properties ofR. However, automata are not a practical
means for representing nonregular languages, because
they would require infinite memory. The Petri net model-
ing formalism has proved useful for modeling many
classes of nonregular languages. It will not be discussed
more in this article. The interested reader is referred to
Chapter 4 in Cassandras and Lafortune (1) and to the book
by Hrúz and Zhou (3).

Reachability and Blocking

From the definitions of LðGÞ and LmðGÞ, all states of G that
are not accessible or reachable from x0 by some string in
LðGÞ can be deleted without affecting the languages gen-
erated and marked by G. When ‘‘deleting’’ a state, all
transitions that are attached to that state are also deleted.
This operation is denoted by AcðGÞ, where Ac stands for
taking the ‘‘accessible’’ part.

In general, from the definitions of G, LðGÞ, and LmðGÞ,
the following set inclusions hold:

LmðGÞ� LmðGÞ�LðGÞ

The first set inclusion occurs because Xm may be a proper
subset of X, whereas the second set inclusion is a conse-
quence of the definition of LmðGÞ and the fact that LðGÞ is
prefix-closed. It is worth examining this second set inclu-
sion in more detail. An automaton G could reach a state x
where GðxÞ ¼ ; but x =2Xm. This result is called a deadlock
because no other event can be executed in a state that is not
marked. Another issue to consider is when a set of
unmarked states in G form a strongly connected component
(i.e., these states are reachable from one another) but with
no transition going out of the set. When the system enters
this set of states, its resulting behavior is a livelock.
Although the system is ‘‘live’’ in the sense that it can always
execute an event, it can never complete the task started
because no state in the set is marked, and the system cannot
leave this set of states.

Automaton G is said to be blocking if LmðGÞ�LðGÞ
where the set inclusion is proper,3 and nonblocking when
LmðGÞ ¼ LðGÞ. Thus, if an automaton is blocking, then
deadlock and/or livelock can happen. The notion of marked
states and the above definitions for language generated,
language marked, and blocking, provide an approach for
considering deadlock and livelock that is useful in a wide
variety of applications.

Composition of Automata

Discrete event models of complex dynamic systems are
built rarely in a monolithic manner. Instead, a modular
approach is used where models of individual components
are built first, followed by the composition of these models to

2The Notation ‘‘:=’’ stands for ‘‘equal to by definition.’’

3The notation� is for ‘‘strictly contained in’’ and� is for ‘‘contained
in or equal to.’’

DISCRETE EVENT SYSTEMS: UNTIMED MODELS AND THEIR ANALYSIS 3



obtain the model of the overall system. In the automaton
modeling formalism, the synchronization, or coupling,
between components is captured by the use of common
events. Namely, if components GA and GB share event c,
then event c should only occur if both GA and GB execute it.
The process of composing individual automata (that model
interacting system components) in a manner that captures
the synchronization constraints imposed by their common
events is formalized by the parallel composition operation,
which is denoted by jj.

Consider the two automata G1 ¼ ðX1;E1; f1;G1; x01;Xm1Þ
and G2 ¼ ðX2;E2; f2;G2; x02;Xm2Þ. The parallel composition
of G1 and G2 is the automaton

G1 jjG2 :¼ AcðX1 � X2;E1 [E2; f ;G1jj2; ðx01; x02Þ;Xm1 � Xm2Þ

where

f ððx1; x2Þ; eÞ :¼

ð f1ðx1; eÞ; f2ðx2; eÞÞ if e2G1ðx1Þ \G2ðx2Þ
ð f1ðx1; eÞ; x2Þ if e2G1ðx1Þ n E2

ðx1; f2ðx2; eÞÞ if e2G2ðx2Þ n E1

undefined otherwise

8>><
>>:

and thus G1jj2ðx1; x2Þ ¼ ½G1ðx1Þ \G2ðx2Þ� [ ½G1ðx1Þ n E2� [
½G2ðx2Þ n E1�.

Associativity is used to extend the definition of parallel
composition to more than two automata. The accessible
operation is used to capture the fact that only the states
reachable from ðx01; x02Þ need to be considered. In the
parallel composition, a common event (i.e., an event in
E1 \E2) can only be executed if the two automata both
execute it simultaneously. Thus, the two automata are
‘‘synchronized’’ on their common events. The ‘‘private’’
events, namely, those in ðE2 n E1Þ [ ðE1 n E2Þ, are not
subject to such a constraint and can be executed whenever
possible by an automaton without the participation of the
other automaton. Thus, the required synchronization on
common events provides a modeling strategy to capture
interactions among components in a system.

If E1 ¼ E2, then the parallel composition of G1 and G2

results in their lock-step behavior: They must jointly exe-
cute every single event. If E1 \E2 ¼ ;, then no synchro-
nized transitions occur, and G1jjG2 is the concurrent
behavior of G1 and G2. This behavior is often termed the
shuffle of G1 and G2.

Analysis

Once a complete system model has been obtained by par-
allel composition of a set of automata, the resulting mono-
lithic model, which is denoted by Gall, can be used to analyze
the properties of the system. Safety properties are proper-
ties that are concerned with the reachability of certain
undesirable states (from the initial state or from some other
state) in Gall, the presence of certain undesirable strings or
substrings in LðGallÞ, or more generally the inclusion of
LðGallÞ in a given language, which is referred to as the
‘‘legal’’ or ‘‘admissible’’ language. When Gall is finite state,
safety properties can be answered by examination and/or
manipulation of its transition structure; such tests are
usually of polynomial-time complexity in the size of the
state set of Gall. Blocking properties are properties that

are concerned with the presence of deadlock and/or livelock
in Gall. Observe that G1jjG2 may be blocking even if G1 and
G2 are each nonblocking. Thus, it is necessary to examine
the transition structure of Gall to answer blocking proper-
ties. Again, this process can be done in polynomial-time
complexity in the size of the state set.

It should be noted that the size of the state set of Gall may
in the worst case grow exponentially in the number of
automata that are composed by jj. This process is known
as the ‘‘curse of dimensionality’’ in the study of complex
systems composed of many interacting components. The
presence of common events can curtail this growth signifi-
cantly by means of the synchronization constraints that it
imposes.

Example. Consider the sequential transmission of pack-
ets between two nodes, which are denoted by A and B, in a
data network. The transmission channel is noisy, and thus
packets can ‘‘get lost’’ (namely, they can be corrupted by
errors or dropped if memory buffers are full). One class of
protocols that control the transmission between A and B is
the class of STOP and WAIT protocols. These protocols
operate as follows:

1. A sends packet to B then starts timer;

2.a. A receives acknowledgement (ACK) from B: Go
back to 1;

2.b. A times out: A resends packet to B and starts timer.
Go back to 2.

A little thought shows that node B needs to know
whether a packet received is a new packet or a retrans-
mission of a previous packet by node A, because the
transmission delay is not known exactly and ACKs can
get lost too. A widely used strategy to address this problem
is to add one bit to each packet header, which results in ‘‘0-
packets’’ and ‘‘1-packets.’’ This header bit is flipped by
node A each time A sends a new packet (as opposed to a
retransmission). This protocol is called the alternating bit
protocol (ABP). It is desired to model a simple version of
ABP, for transmission from A to B only, using the auto-
maton modeling formalism. Assume that the channel
can only contain one packet at a time (half-duplex case).
Based on the above discussion, the following list of nine
events is defined for this system. [This modeling strategy
is inspired by that in the book by Tanenbaum (4, sections
3.3.3 and 3.5.1).]

� lost: contents of channel lost

� new0: 0-packet received by B; ACK sent by B to A;
0-packet delivered by node B

� ack þ 1: ACK received by A; 1-packet sent by A to B

� new1: 1-packet received by B; ACK sent by B to A;
1-packet delivered by node B

� ack þ 0: ACK received by A; 0-packet sent by A to B

� repeat0: 0-packet received by B; ACK sent by B to A

� repeat1: 1-packet received by B; ACK sent by B to A

� timeoutþ 0: timeout at A; 0-packet retransmitted to B

� timeoutþ 1: timeout at A; 1-packet retransmitted to B

4 DISCRETE EVENT SYSTEMS: UNTIMED MODELS AND THEIR ANALYSIS



A packet is ‘‘delivered by node B’’ when B forwards the
packet to the application program running at that node.

Three automata are defined as follows: S, the sender
automaton, C, the channel automaton, and R, the receiver
automaton. They are shown in Figs. 1, 2, and 3, respec-
tively. The software tool DESUMA (5) was used to
perform the calculations on automata discussed in this
article and to draw the transition diagrams in the figures.4

The sender has two states: State i models the situation
where the sender is attempting to send an i-packet. Simi-
larly, state i of the receiver models the situation where
the receiver is expecting an i-packet. The four states of
the channel refer to its four possible contents: EMPTY, 0- or
1-packet, and ACK. The initial state of the system is chosen
to be that where S is sending a 0-packet (state 0 in Fig. 1),
C contains a 0-packet (state 0 in Fig. 2), and R is expecting
a 0-packet (state 0 in Fig. 3), which is the starting point of
the ABP protocol after proper initialization of the commu-
nication session between A and B transmission of the first
packet. Only the relevant events are included in each
automaton. The event set of the sender is ES ¼ fackþ 0;
ackþ 1; timeoutþ 0; timeoutþ 1g. The event set of
the receiver is ER ¼ fnew0;new1; repeat0; repeat1g. The

event set of the channel is ES [ER plus the event lost.
Common events are used to capture the coupling between
the sender and the channel and between the receiver and
the channel.

The parallel composition SCR ¼ SjjCjjR is shown in
Fig. 4; note that states of SCR are triples formed by the
corresponding states of S, C, and R. SCR has 10 reachable
states from its initial state (0,0,0), which is less than the 16
possible combinations of states of S, R, and C. Because the
only marked states in S, C, and R are their respective
initial states, then state (0,0,0) is the only marked state of
SCR. Because any state of SCR can eventually reach state
(0,0,0), automaton SCR is nonblocking. It can be observed
from the transition diagram of SCR that events new0 and
new1 alternate, and that no ackþ1 events occur between
events new1 and new0, and no ackþ0 events occur
between events new0 and new1. Thus, it can be concluded
that all new packets transmitted by A are eventually
delivered by B.

The book by Holzmann (6) may be consulted for further
reading on the formal study of communication/computer
protocols using discrete-event modeling formalisms such as
automata.

1 timeout+1

0

ack+0 ack+1

timeout+0

Figure 1. Sender automaton S. The event set is ES ¼ fackþ
0;ackþ 1; timeoutþ 0; timeoutþ 1g.

1

EMPTY

lost

ACK

new1 repeat1

timeout+1

0

timeout+0 ack+1

lost

ack+0

lost

new0 repeat0

Figure 2. Channel automaton C.

1 repeat0

0

new1 new0

repeat1

Figure 3. Receiver automaton R.

Figure 4. SCR: Parallel composition of sender, channel, and
receiver.

4DESUMA uses the color blue to identify the initial state and draws
double circles around marked states. We will indicate in the text
the initial state of each automaton.

DISCRETE EVENT SYSTEMS: UNTIMED MODELS AND THEIR ANALYSIS 5



PARTIALLY OBSERVED SYSTEMS

Automata models of discrete event systems often include
descriptive properties for the events, such as observability
and controllability, that capture sensing and actuation
capabilities. An event is said to be observable if it is
‘‘seen’’ by an outside observer of the system behavior. In
practice, observable events are those recorded by the sen-
sors attached to the system. Let the set E of events of an
automaton G be partitioned into the set of observable
events, Eo, and the set of unobservable events, Euo, where
E ¼ Eo [Euo and Eo \Euo ¼ ;. From the point of view of the
outside observer (whose task may be state estimation,
diagnostics, or control), the unobservable transitions of G
are not observed; thus, the outside observer may not know
the exact state of the system even if it knows the initial
state.

To capture the unobservability of events in Euo in the
strings of a language, a projection operation is introduced.
It is denoted by P and it projects strings in E� to strings in
E�o : P : E� ! E�o where

PðeÞ :¼ e

PðeÞ :¼
�

e if e2Eo

e if e2Euo ¼ E nEo

PðseÞ :¼ PðsÞPðeÞ for s2E�; e2E

(Recall that e is the symbol for the empty string.) As can be
observed from the definition, the projection operation takes
a string formed from the event set E and erases events in it
that are unobservable. The corresponding inverse map
P�1 : E�o! 2E� is defined as follows:

P�1ðtÞ :¼ fs2E� : PðsÞ ¼ tg

Given a string of observable events, the inverse projection
P�1 returns the set of all strings in E� that project, with P, to
the given string. The projection P and its inverse P�1 are
extended to languages by simply applying them to all the
strings in the language. For L�E�,

PðLÞ :¼ ft2E�o : ð 9 s2LÞ ½PðsÞ ¼ t�g

and for Lo�E�o,

P�1ðLoÞ :¼ fs2E� : ð 9 t2LoÞ ½PðsÞ ¼ t�g

Observer Automata

Given a language K represented by nonblocking automaton
G [i.e., LmðGÞ ¼ K and LðGÞ ¼ K], an automaton represen-
tation of language PðKÞ can be obtained by replacing
all occurrences of unobservable events in the transition
diagram of G by e; let us denote the resulting automaton
by PðGÞ. The inclusion of e-transitions makes PðGÞ a
nondeterministic automaton. It is desired to obtain a
deterministic automaton that will represent the language
PðKÞ. Such an automaton can be constructed from G by
adopting the standard determinization algorithm of auto-
mata theory. In the terminology of discrete event systems,

the resulting automaton is called the observer of G and
denoted by ObsðGÞ. The construction of ObsðGÞ uses the
notion of unobservable reach of state x, which is the set of
states reachable from x by unobservable transitions,
including x itself. Formally,

URðxÞ ¼ fy2X : ð 9 t2E�uoÞ ½ f ðx; tÞ ¼ y�g

This definition is extended to sets of states B�X as follows:
URðBÞ ¼ [ x2BURðxÞ.

Procedure for Building Observer Obs(G) of Automaton G
with Unobservable Events. Let G ¼ ðX;E; f ;G; x0;XmÞ be a
deterministic automaton and let E ¼ Eo [Euo.

Then ObsðGÞ ¼ ðXobs;Eo; fobs;Gobs; x0; obs;Xm; obsÞ and it is
built as follows.

Step 1: Define x0; obs :¼ URðx0Þ.
Set Xobs ¼ fx0; obsg.

Step 2: For each B2Xobs and e2Eo, define

fobsðB; eÞ :¼ URðfx2X :ð9 xe 2BÞ ½x¼ f ðxe; eÞ�gÞ

whenever f ðxe; eÞ is defined for some xe 2B. In
this case, add the state fobsðB; eÞ to Xobs. If
f ðxe; eÞ is not defined for any xe 2B, then
fobsðB; eÞ is not defined.

Step 3: Repeat Step 2 until the entire accessible part of
ObsðGÞ has been constructed.

Step 4: Gobs is inferred from fobs and Xm; obs :¼
fB2Xobs : B\Xm 6¼ ;g.

By construction, ObsðGÞ is a deterministic automaton
such that LðObsðGÞÞ ¼ P½LðGÞ� and LmðObsðGÞÞ ¼
P½LmðGÞ�. Moreover, let BðtÞ�X be the state of ObsðGÞ
that is reached after string t2P½LðGÞ� ½i.e., BðtÞ ¼
fobsðx0; obs; tÞ�. Then x2BðtÞ iff X is reachable in G by a
string in P�1ðtÞ \LðGÞ. In this sense, state BðtÞ of ObsðGÞ
is the best possible estimate of the state of G after the
observed string of events t.

Observer automata are used to study properties of par-
tially observed discrete event systems. One such property
is diagnosability, and it is briefly discussed in the next
section.

Example. Recall the automaton SCR shown in Fig. 4.
Let the set of observable events be Eo ¼ ES, namely, the
event set of the sender. The observer automaton of SCR for
this set of observable events is given in Fig. 5. The initial
state of ObsðSCRÞ is fð0; 0; 0Þ; ð0;EMPTY ; 0Þ; ð0;ACK; 1Þ;
ð0;EMPTY ; 1Þg, which is the unobservable reach of state
ð0; 0; 0Þ in Fig. 4.

Diagnoser Automata

When the system model contains unobservable events, one
may be interested in determining whether certain unob-
servable events occurred in the string of events executed by
the system. This question is the problem of event diagnosis.
If these unobservable events of interest model faults
of system components, then knowing that one of these
events has occurred is very important when monitoring

6 DISCRETE EVENT SYSTEMS: UNTIMED MODELS AND THEIR ANALYSIS



the performance of the system. The key point here is that as
more observations of the system behavior are recorded,
uncertainty about prefixes of the string of events executed
by the system can be reduced.

Consider for instance automaton SCR of Fig. 4. An
observer with knowledge of this model but having only
access to the events in ES at run time would deduce, on
the occurrence of timeoutþ0 or timeoutþ1, that unobserva-
ble event lost must have occurred in the string of events
executed so far by the system. It is desirable to ‘‘automate’’
this inferencing process using the system model and
the string of observable events. The observer ObsðSCRÞ
in Fig. 5 is not sufficient for this purpose; as was discussed
earlier, the observer returns the estimate of the state of
the system but without accounting for past occurrences
of specific unobservable events. Labels can be attached
to the states of G in the observer to record execution of
specific unobservable events. Assume a single unobservable
event denoted by d needs to be diagnosed. Let label N
denote that the event has not yet occurred and label
Y denote that it has occurred. The label of the initial
state x0 is always N. Once label N has been updated to y
to record the occurrence of d, the label will remain Y for
all future reachable states. Namely, d causes the label
to change from N to Y, after which no additional label
change occurs. This label propagation rule can be captured
in the form of an automaton. Consider the automaton in
Fig. 6. Let us refer to this automaton as the label automaton
for diagnosing event d and denote it by Alabel :¼
ðfN;Yg; fdg; flabel;Glabel; N; fN;YgÞ. The state names in
Alabel contain the label information. All the states of Alabel

are marked, and N is the initial state.
An automaton called diagnoser automaton and denoted

by DiagðGÞ is built for the purpose of event diagnosis. First,
G is composed with Alabel by parallel composition; note that

all states of Alabel were marked to guarantee that state
marking in GjjAlabel is consistent with that in G. Second, the
observer of GjjAlabel is constructed for the given set of
observable events by applying the construction procedure
described earlier. Overall:

DiagðGÞ ¼ ObsðGjjAlabelÞ

The parallel composition does not affect the language gen-
erated by G but it will result in attaching labels to the states
of G as the states of GjjAlabel are of the form ðx; labelÞ, where
label2fN;Yg. The label attached to x will depend on the
absence (N) or presence (Y) of d in strings that reach x from
x0. State splitting will occur for those states of G that are
reachable by strings that contain d and by strings that do
not contain d.

Example. Recall again the automaton SCR shown in
Fig. 4, and let the set of observable events be Eo ¼ ES.
Two diagnoser automata are constructed: one for diagnos-
ing unobservable event lost the other for diagnosing
unobservable event new0. The diagnoser for lost is
shown in Fig. 7; in this case, the label F1 is used in place
of Y 5. The initial state of this diagnoser is the initial
state of the observer in Fig. 5 with label information
attached:f½ð0; 0; 0Þ;N�; ½ð0;EMPTY ; 0Þ;F1�; ½ð0;ACK; 1Þ;N�;
½ð0;EMPTY ; 1Þ;F1�.The diagnoser for new0 is shown in
Fig. 8; in this case, the label F2 is used in place of Y.
Similarly, its initial state is f½ð0; 0; 0Þ;N�; ½ð0;EMPTY ; 0Þ;
N�; ½ð0;ACK; 1Þ;F2�; ½ð0;EMPTY ; 1Þ;F2�g.

Online (or ‘‘on-the-fly’’) diagnosis of event d is per-
formed by tracking the current diagnoser state in
response to the observable events executed by the system
G. First, if all states of G in the current state of DiagðGÞ
have label N, then it is certain that event d has not
occurred yet. Such a state is called a negative state.
Second, if all states of G in the current state of DiagðGÞ
have label Y, then it is certain that event d has occurred at

Figure 5. ObsðSCRÞ: Observer automaton of SCR for the set of observable events ES.

N Y
d

d

Figure 6. Automaton for building diagnoser.

5This result is a consequence of the notation employed by the
software tool DESUMA.

DISCRETE EVENT SYSTEMS: UNTIMED MODELS AND THEIR ANALYSIS 7



some point in the past. Such a state is called a positive
state. If t2P½LðGÞ� has been observed and fdðx0;d; tÞ is
positive, where x0;d is the initial state of DiagðGÞ and fd its
transition function, then all strings in P�1ðtÞ \LðGÞmust
contain d. If not, one state of G in fdðx0;d; tÞ would have
label N as all the strings in P�1ðtÞ \LðGÞ lead to state

fdðx0;d; tÞ of DiagðGÞ. Last, if the current state of DiagðGÞ
contains at least one state of G with label N and at least one
state of G with label Y, then event d may or may not have
occurred in the past. Such a state is called an uncertain
state. In this case, two strings exist in LðGÞ, say s1 and s2,
such that Pðs1Þ ¼ Pðs2Þ (hence, they lead to the same state

Figure 7. Diagnoser automaton of SCR for event lost and observable event set ES. The label F1 is used to record occurrences of lost.

Figure 8. Diagnoser automaton of SCR for event new0 and observable event set ES. The label F2 is used to record occurrences of new0.

8 DISCRETE EVENT SYSTEMS: UNTIMED MODELS AND THEIR ANALYSIS



in DiagðGÞÞ, where s1 contains d but s2 does not. Note that
state marking information in DiagðGÞ is not used in event
diagnosis.

Returning to automaton G in Fig. 4 and its diagnoser
DiagðGÞ for event d¼ new0 in Fig. 8, let us consider the two
following strings inLðGÞ: sN ¼ ðlost timeoutþ 0Þm and sY ¼
new0 ðlost timeoutþ 0 repeat0Þm. String sY has the follow-
ing property: Given any n2N, m always exists such that
the suffix of sY after event d = new0 has length greater than
n. In other words, ‘‘sY is of arbitrarily long length after d.’’
An examination of the transition diagram of G reveals that
the suffix of sY after d loops in a cycle of G. Clearly,
PðsNÞ ¼ PðsY Þ. Thus, if sY is executed by the system,
then it is not possible to diagnose with certainty
the occurrence of d ¼ new0. After the occurrence of d,
PðsY Þ ¼ PðsNÞ will cycle in uncertain states in DiagðGÞ.
In Fig. 8, a self-loop is caused by event timeoutþ0 at
state f½ð0; 0; 0Þ;N�; ½ð0;EMPTY ; 0Þ;N�; ½ð0;ACK; 1Þ;F2�;
½ð0;EMPTY ; 1Þ;F2�; ½ð0; 0; 1Þ;F2�g. When such strings sY

and sN exist, the occurrence of d in sY is not diagnosable.
To formalize the notion of diagnosability, consider for

simplicity languages that are live, that is, languages that do
not contain terminating strings. A language L is said to be
live if whenever s2L, then e2E exists such that se2L. In
terms of automata, an automaton that has no deadlock
state generates a live language. Unobservable event d is not
diagnosable in live language LðGÞ if two strings sN and sY

exist in LðGÞ that satisfy the following conditions: (1) sY

contains d and sN does not, (2) sY is of arbitrarily long length
after d, and (3) PðsNÞ ¼ PðsY Þ. When no such pair of strings
exists, d is said to be diagnosable in LðGÞ.

To avoid situations where G keep executing unobserva-
ble events after the occurrence of d, which means that no
diagnosis can be performed as the state of DiagðGÞ never
gets updated, it is customary to assume that G has no cycles
of unobservable events that are reachable after any occur-
rence of d. When the property of diagnosability is satisfied,
if d occurs, then DiagðGÞ will necessarily enter a positive
state in a bounded number of events after the occurrence
of d. To see this, observe that (1) G does not have a loop of
unobservable events after d (by hypothesis), (2) DiagðGÞ
cannot loop in a cycle of uncertain states as this would
contradict diagnosability, and (3) DiagðGÞ has a finite set of
states. An examination of G in Fig. 4 and its diagnoser
DiagðGÞ for event d¼ lost in Fig. 7 confirms that event lost
is indeed diagnosable. The cycle formed by events ackþ0
and ackþ1 in DiagðGÞ and that involves uncertain states
does not lead to the existence of a pair of strings sY and sN

violating diagnosability; indeed, no sY with the above
properties exists, and this cycle will be exited by events

timeoutþ0 or timeoutþ1 should event lost occur, taking the
diagnoser to positive states.

DISCUSSION

This article has introduced modeling and analysis of
discrete event systems represented by finite-state auto-
mata. An example from communication protocols was
used to illustrate key concepts. The interested reader is
encouraged to consult recent textbooks in discrete event
systems, such as the books by Cassandras and Lafortune
(1), Hrúz and Zhou (3), and Zimmermann (7). More
advanced treatments of control of discrete event systems
can be found in the notes of Wonham (8) as well as in the
book of Iordache and Antsaklis (9). Simulation of stocha-
stic discrete event systems is treated in the book by
Law (10).

BIBLIOGRAPHY

1. C. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. New York: Springer, 2007.

2. M. Sipser, Introduction to the Theory of Computation, 2nd ed.
Boston, MA: Thomson Course Technology, 2006.

3. B. Hrúz and M. C. Zhou, Modeling and Control of Discrete-
Event Dynamic Systems. London: Springer, 2007.

4. A. Tanenbaum, Computer Networks-3rd ed., Upper Saddle
River, NJ: Prentice-Hall, 1996.

5. L. Ricker, S. Lafortune, and S. Genc, DESUMA: a tool inte-
grating GIDDES and UMDES, in Proceedings of the 8th Inter-
national Workshop on Discrete Event Systems, Ann Arbor, MI,
2006, pp. 392–393.

6. G. J. Holzmann, Design and Validation of Computer Protocols.
Englewood Cliffs, NJ: Prentice-Hall, 1991.

7. A. Zimmermann, Stochastic Discrete Event Systems: Modeling,
Evaluation, Applications. New York: Springer, 2007.

8. W. M. Wonham, Supervisory Control of Discrete-Event Sys-
tems. Available: http://www.control.utoronto.ca/DES/won-
ham.html, updated 1 July 2007.

9. M. V. Iordache and P. J. Antsaklis, Supervisory Control of
Concurrent Systems - A Petri Net Structural Approach. Boston,
MA: Birkhäuser, 2006.

10. A. M. Law, Simulation Modeling & Analysis, 4th ed., Boston,
MA: McGraw-Hill, 2007.

STÉPHANE LAFORTUNE

University of Michigan
Ann Arbor, Michigan

DISCRETE EVENT SYSTEMS: UNTIMED MODELS AND THEIR ANALYSIS 9



D

DISK STORAGE

CONCEPT

Disk storage is a general category of computer storage, in
which data are recorded on planar, round, and rotating
surfaces (disks, discs, or platters). A disk drive is a periph-
eral device from which information is collected. Main
implementations are hard disks, floppy disks, and optical
discs.

Nowadays the term ‘‘disk storage’’ almost exclusively
refers tohard disk ormagnetic disk, in whicha thinspinning
disk with magnetic coating is used to hold data. Read/write
heads are placed above and/or below the disk so that as the
disk spins, each head traverses a circle, called a track,
around the disk’s upper or lower surface. Since a track
can contain more information than we would normally
want to manipulate at any one time, each track is divided
into arcs called sectors on which information is recorded as a
continuous string of bits (1, 2).

The location of tracks and sectors is not a permanent
part of a disk’s physical structure. Instead, they are marked
magnetically through a process called ‘‘formatting the disk’’
(1). This process is usually performed by the disk’s manu-
facturer or an end user, resulting in what are known as
formatted disks. In an exemplified Microsoft Windows/MS-
DOS formatting operation, some code such as File Alloca-
tion Table (FAT) is copied into the boot sector. The boot
sector is a special area used by the computer to start the
process of booting the computer.

Disk storage is usually managed by a (disk) file system.
In the view screen of an application program, a file is a
sequence of logic blocks (each block is one or more sectors).
A file has a structure that determines how its blocks are
organized. The file system also includes software routines
used to control access to the storage on a hard disk system.
The disk directory knows how big a file is and when it was
created. For example, FAT stores the location of the first
block for a given filename (Fig. 1) and knows where the
other blocks are located.

The physical structure is associated with how a file is
actually organized on the storage medium on which it
resides. In a Windows environment, FAT is supposed to
translate a logic location to a physical location. The FAT
contains information about which blocks are assigned to
which file. FAT is such an important file on a disk that
destroying the FAT makes the disk useless. When a file is
written to a hard disk, it is unlikely to have it in a con-
secutive order. The file (blocks) would be scattered over
different sectors. To preserve the proper order, most oper-
ating systems maintain a linked list of the blocks on which
the file is stored. By means of this list, the operating system
can retrieve the sectors in the proper sequence, and there-
fore, the application software can be written as if the file
were stored sequentially, even though the file is actually
scattered over various portions of the disk (Fig. 1).

In Unix/Linux environments, indoe (3) is used to pre-
serve a file’s order on a disk (Fig. 2). The first 12 of these
pointers point to direct blocks; that is, they contain
addresses of blocks that contain data of the file. Thus,
the data for small (no more than 12 blocks) files do not
need a separate index block. The next three pointers point
to indirect blocks. The first indirect pointer is the address of
a single index block, containing not data, but rather the
addresses of blocks that do contain data. This approach
could be continued to a second indirect level or third indir-
ect level, depending on the desired maximum file size.

DISK STORAGE HISTORY

In 1956, IBM launched a 305 RAMAC system that consisted
of fifty 24-inch diameter disk platters, superseding mag-
netic cores and magnetic drums. Weighting over a ton and
storing 5 MB of data, the 305 RAMAC is the beginning of
what we currently call a ‘‘disk drive’’ in which data are
stored on magnetic disk platters and accessed by moving
disk heads. The random-access, low-density storage of
disks also complements the already used sequential-access,
high-density storage provided by magnetic tape (4).

Over the past five decades, the disk drive has experi-
enced dramatic development. For example, the recording
density has achieved over six orders of magnitude and the
performance has been improved over four orders. However,
the basic mechanical architecture in disk drive has not been
changed too much (4).

The need for large-scale, reliable storage, independent of
a particular device, led to the introduction of various disk
storage configurations such as redundant array of indepen-
dent disks (RAID), massive array of idle disks (MAID),
network attached storage (NAS), grid-oriented storage
(GOS) (5), and storage area network (SAN) that provide
efficient, reliable, and remote access to large volumes of
data in network and/or grid environments.

DISK STORAGE TECHNIQUES

In disk storage, degradation in performance over time is a
serious and common concern. Sometimes, people bench-
mark their disks when new, and then many months later,
they are surprised to find that the disk is getting slower. In
fact, the disk most likely has not changed at all, but the
second benchmark may have been run on tracks closer to
the center of the disk. The tracks on the outside are much
longer than the ones on the inside, typically doubling the
circumference or more and, therefore containing more data,
but the angular velocity of the platters is constant regard-
less of which track is being read. To counteract the above
disk devolution process, an evolutionary disk storage sys-
tem is constructed.

Modern hard disks employ zoned bit recording (ZBR).
Tracks are grouped into zones (6). ZBR stores more sectors

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



per track on outer tracks than on inner tracks. The raw data
transfer rate of the disk when reading the outside cylinders
is much higher than when reading the inside ones.

In the ZBR-based evolutionary disk storage system, the
outer 10% of cylinders are grouped into the fast band that
absorbs the frequent data, whereas the remaining inner
90% of cylinders, which are grouped into the slow band,
contain relatively infrequent data. Object frequency is used
to move frequently accessed data to their optimal locations
during idle periods, so as not to conflict with system use (7).

The same technique can also be used in a hybrid disk (8).
A hybrid hard disk drive was originally concepted by Sam-
sung, which incorporates a flash memory into a magnetic
disk. The hybrid disk outplays the above fast band disk at
little additional cost on a flash memory.

The combined ultra-high-density benefits of magnetic
storage and the low-power and fast read access of NAND
technology inspires the construction of redundant arrays
of hybrid disks (RAHD; Fig. 3) (9) to offer a possible
alternative to today’s RAID and/or MAID. Two separable

consists FAT: my_file

of 3 logically 

sequential blocks

1st block
2nd block

0

103

217

331

331

217

103my_file …
file_name

directory entry

start block

end-of-file

3rd block

Figure 1. Disk storage replies on a FAT to preserve a file’s order in a Microsoft’s Windows environment. Each block is one or more sectors.

Pointer 0

Pointer 1

Pointer 2

Pointer 12

Pointer 13

Pointer 14

Pointer 15

direct

1st indirect

2nd indirect

3rd indirect
1st block: data 

Unix 

inode

15th block: data

14th block: data

13th block: 

1024 pointers

2nd block: data

Figure 2. In Unix/Linux environments, indoe is used to preserve a file’s order on a disk. The first 12 of these pointers point to direct blocks.
The first indirect pointer is the address of a single index block, containing not data, but rather the addresses of blocks that do contain data.

2 DISK STORAGE



working modes have been designed for RAHD arrays: (1)
high-speed (HS) mode targeting at displaying the full
potential speed of hybrid disks; and (2) energy-efficient
(EE) mode targeting at reducing the energy consumption
while maintaining acceptable performance.

In the HS mode, the flash memory always contains
frequent data objects. Two schemes have been designed
to move the frequent data blocks into the flash memory: (1)
using the decision tree from data mining to predict the
frequencies of data blocks (file attributes of a newly gen-
erated file are used to predict its frequency). Blocks with
high (predicted) frequency are then written onto the flash
memory; (2) Tracking the frequencies of data blocks (when
the disk is being used) and then migrating the most fre-
quently accessed data blocks into the flash memory during
the system idle periods (9). Because of the high skew in
common application loads, most requests are likely to be
satisfied in the flash memory without bothering the slower
disks.

In the EE mode, some ‘‘active drives’’ remain constantly
spinning, whereas the remaining ‘‘passive drives’’ are
allowed to spin-down after a period of inactivity. A request
is directed to the flash in the first instance. If the request is
fulfilled by hitting the flash memory, there is no need to
awaken the sleeping disk. Otherwise, the request will be
forwarded to the disk that is already active or needs to be
awakened from sleep (9).

DISK STORAGE APPLICATIONS

Disk storage was originally developed for use with compu-
ters. In the twenty-first century, applications for disk sto-
rage have expanded beyond computers to include digital
video recorders, digital audio players, personal digital
assistants, digital cameras, and video game consoles. In
2005, the first mobile phones to include disks were intro-
duced by Samsung and Nokia (10).

Hybrid disks are specially designed for personal and
mobile applications, whereas the RAHD can be used more
broadly. It is found that a RAHD will provide improvements

in performance, power consumption, and scalability. It is a
conceptually simple technique for dramatically improving
disk storage performance, which is desirable for super-
computers and transaction processing.

BIBLIOGRAPHY

1. J. G. Brookshear, Computer Science: An Overview, 6th ed.,
Reading, MA: Addison-Wesley, 2000

2. http://en.wikipedia.org/wiki/Hard_disk_drive.

3. A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System
Concepts, 6th ed., New York: John Wiley, 2002.

4. R. J. T. Morris and B. J. Truskowski. The evolution of storage
systems. IBM Sys. J.,42(2): 2003.

5. F. Wang, S. Wu, N. Helian, A. Parker, Y. Guo, Y. Deng, and
V. Khare, Grid-oriented storage: A single-image, cross-domain,
high-bandwidth architecture, IEEE Trans. Comput., 56(4):
2007.

6. http://en.wikipedia.org/wiki/Zone_bit_recording.

7. F. Wang, Y. Deng, N. Helian, S. Wu, V. Khare, C. Liao, and
A. Parker, Evolutionary storage: speeding up a magnetic disk by
clustering frequent data, IEEE Trans. Magnetics, 43(6):2007.

8. www.samsung.com/, 2006.

9. F. Wang, N. Helian, S. Wu, D. Deng, C. Liao, M. Rashidi, and
A. Parker, A case for redundant arrays of hybrid disks (RAHD),
Proc. IEEE INTERMAG Conference, Madrid, Spain, May
2008.

10. Finally! The Samsung SPH-V5400, world’s first cellphone with
a hard drive, Available: engadget.com, September 2004.

FRANK ZHIGANG WANG,
SINING WU

DEREK DENG

Cambridge-Cranfield High Performance
Computing Facility

Cranfield, Bedfordshire, United Kingdom

NA HELIAN

University of Hertfordshire
Hatfield, Hertfordshire, United Kingdom

Array Controller

Disk Cache

Flash

Disk

Hybrid Disk

Disk Cache

Flash

Disk

Hybrid Disk

…
Disk Cache

Flash

Disk

Hybrid Disk

Data

Migration 

(offline)

=

Flash: first 

10%

Disk: the 

remaining 

90%

An enlarged virtual disk 

space that is still 

logically continuous

Figure 3. RAHD. Based on the observation that the majority of the disk I/Os are probably going to less than 10% of the total disk space, a
flash memory occupies the first 10% of an enlarged disk space that is virtually continuous. Accordingly, the most frequently accessed data
blocks are migrated into the flash memory periodically.

DISK STORAGE 3



E

ENTITY-RELATIONSHIP MODEL

Data modeling is an important phase in the development of
a database system. The entity-relationship (ER) model was
introduced by Chen (1). This model has been widely used for
conceptual data modeling and has become a tool for com-
munication between database designers and end users at
the analysis phase of database development. The main
constructs of the ER model—entities and relationships
and their associated attributes—provide natural modeling
concepts of the real world. The ER model has been extended
and refined in variuos ways to include additional constructs
(2,3) and notations (4).

In this article, we describe the basic concepts in the ER
model and some of its extensions. We also discuss how
conceptual database design can be carried out using the
ER model, the normal form ER diagram, and its properties.
Then we present the translation of an ER diagram to the
relational database model. Finally, we conclude with sev-
eral applications of the ER model including view update
and schema integration.

BASIC CONCEPTS

The basic concepts in the ER model are entity type and
relationship type. An entity is an object that exists in our
mind and can be distinctly identified. For example, we can
have a person entity Ng Hong Kim with IC# 0578936I, or a
car entity with licence plate number SBG 3538P. Entities
can be classified into different types. An entity type contains
a set of entities that each satisfy a set of predefined common
properties. For example, every person is an instance of the
entity type PERSON.

A relationship is an association among several entities.
For example, we can have a relationship that associates
person ‘‘Ng Hong Kim’’ with bank account 50756. A rela-
tionship type is a set of relationships of the same type that
satisfy a set of predefined common properties. Formally, if
E1, E2, . . ., En are entity types, then a relationship type R is
a subset of the Cartesian product E1�E2� . . .�En, that is,

R�E1� E2� . . .� En or

R�fðe1; e2; . . . ; enÞjei2Ei; i ¼ 1; 2; . . . ;ng

where (e1, e2, . . ., en) is a relationship. For example, we can
define the relationship type CUSTACCT to denote the
association between customers and the bank accounts
that they have, that is,

CUSTACCT�CUSTOMER� ACCT:

The entity types involved in a relationship type are
called participants of the relationship type. The number
of participants in a relationship is called the degree of the
relationship type. A relationship can be binary, ternary, or
even recursive.

An entity type E (or a relationship type R) has attributes
that represent the structural (static) properties of E (or R
respectively). An attribute A is a mapping from E (or R) into
a Cartesian Product of n values sets, V1� V2� . . .� Vn. If
n � 2, then A is a composite attribute. Otherwise, A is a
simple attribute. For example, Date is a composite attribute
with values sets Day, Month, Year. The mapping can be
one-to-one (1:1), many-to-one (m:1), one-to-many (1:m), or
many-to-many (m:m). If an attribute is a 1:1 or m:1 map-
ping from E (or R) into the associated value sets, then A is
called a single-valued attribute, otherwise it is called a
multivalued attribute.

A minimal set of attributes K of an entity type E that
defines a one-to-one mapping from E into the Cartesian
product of the associated value sets of K is called a key of E.
One key of an entity type is designed as the identifier. Let K
be a set of identifiers of some entity types that participate in
a relationship type R. K is called a key of the relationship
type R if a 1:1 mapping exists from R into the Cartesian
product of the associated value sets of K and no proper
subset of K has such property. One key of R is designed as
the identifier of R.

ENTITY-RELATIONSHIP DIAGRAM

The structure (or schema) of a database organized accord-
ing to the ER approach can be represented graphically
using an entity-relationship diagram (ERD). An entity
type is represented by the rectangle symbol, whereas a
relationship type is represented by the diamond symbol
connected by lines to the related entity types. Attributes are
denoted by ellipses that are connected by arrowed lines to
their owner entity type or relationship type. We use the
notation$,!,!!, h�ii, to denote that an attribute has a
one-to-one (1:1), many-to-one (m:1), many-to-many (m:m),
or one-to-many (1:m) mapping, respectively.

Figure 1 shows a simplified ER diagram for a company.
The entity type EMP has four attributes: Emp#, Name,
Qual, and Child, whereas the entity type PROJ has two
attributes, Proj# and Budget. The attributes Emp# and
Proj# are the identifiers of the entity types EMP and PROJ,
respectively. Hence, they have a mapping of 1:1, as denoted
by $. Because each employee has a name and may have
many qualifications and each project has a budget, the
attributes Name and Budget have a m: 1 mapping, denoted
by !, whereas the attribute Qual has a m:m mapping,
denoted by !!. The attribute Child of EMP has a 1:m
mapping, which indicates that an employee may have many
children but one child can only belong to one employee. The
relationship type WORKFOR associates the entity types
EMP and PROJ, and it has one attribute Effort. {Emp#,
Proj#} is the only key of the relationship type WORKFOR.
The cardinalities of EMP and PROJ in WORKFOR are m
and m, which indicate that the relationship type WORK-
FOR between employees and projects is a many-to-many
relationship.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Note that the original ER diagram proposed by Chen (1)
does not distinguish between the different mappings for the
attributes. As such, one cannot automatically obtain the
functional dependencies that involve attributes. The work
in Ref. 5 provides a set of heuristics to derive the set of
functional dependencies based on the associations among
the entity types and their attributes. However, using the
arrow notations to specify the mappings for the attributes
in the ER diagram as described in Ref. 6, we can directly
obtain the functional dependencies as follows:

1. The identifier or 1:1 attributes of an entity type or
relationship type functionally determines the single-
valued attributes in the entity type or relationship
type respectively.

2. The identifier of an entity type or relationship type
multidetermines each multivalued attribute in the
entity type or relationship type respectively.

3. A 1:m attribute of an entity type or relationship type
functionally determines the identifier of the entity
type or relationship type.

4. A 1:1 attribute of of an entity type or relationship type
functionally determines the identifier of the entity
type or relationship type.

For example, in Fig. 1, we can obtain the functional
dependencies: Emp# ! Name, Emp# !! Qual, Child !
Emp#, Proj# ! Budget, {Emp#, Proj#} ! Effort.

Figure 2 shows examples of ternary relationship types
that involve three participating entity types A, B, and C, as
well as their cardinalities. To simplify discussion, we use A,
B, and C to denote the identifiers of entity types A, B, and C,
respectively. The cardinalities of the participating entity

types imply the functional dependencies that hold in the
relationship type. Except for the case in which all partici-
pating entity types have a cardinality of m (or 1), a parti-
cipating entity type occurs on the left-hand side of the
functional dependency if it has a cardinality of m. Similarly,
a participating entity type occurs on the right-hand side of
the functional dependency if it has a cardinality of 1. If all
the participating entity types have a cardinality of m, as
shown in relationship type R1 in Fig. 2(a), then no func-
tional dependency exists in R1. On the other hand, if all the
participating entity types have a cardinality of 1, as shown
in the relationship type R4 in Fig. 2(d), then the functional
dependencies A! BC, B! AC and C! AB hold in R4. In
Fig. 2(b), the functional dependency AB!C in R2, because
both A and B have the cardinality m whereas C has the
cardinality 1. The functional dependency A! BC holds in
R3 [see Fig. 2(c)] because A is the only entity type with the
cardinality m.

A relationship type could also have multiple sets of
cardinalities for its participating entity types. This finding
is illustrated by the relationship type R5 in Fig. 2(e), which
has two functional dependencies AB! C and C! A. The
first functional dependency AB ! C is obtained from the
cardinalities m, m, and 1 for A, B, and C, respectively. The
second functional dependency C! A is obtained from the
cardinalities m, 1 for C and A, respectively. The symbol ‘‘/’’
separates the different sets of cardinalities, whereas the
symbol ‘‘-’’ for the participating entity type B in R5 indicates
that B is not involved in the second functional dependency.
By providing for multiple sets of cardinalities in a relation-
ship type, we can express any number of functional depen-
dencies that involve the participating entity types of the
relationship type.

Note that the methods discussed in Refs 5 and 7 cannot
express the types of functional dependencies shown in Fig.
2(c–e).

In addition to the specification of key constraints, the ER
model also allows participation constraints to be specified.
The participation constraints of an entity type in a relation-
ship type is denoted by x:y, where x and y denote the mini-
mum and maximum cardinality respectively. These
constraints indicate the minimum and maximum number
of relationships in which each participating entity can par-

EMP Emp#

Name 

Qual

WORKFOR PROJ
m m

Effort BudgetProj#
Child

Figure 1. Example ER diagram.

A

R1

m

m m
B C

(a) No FD 

A

R2

m

m 1
B C

(b) FD: AB C

A

R3

m

1 1
B C

(c) FD: A  BC

A

R4

1

1 1
B C

(d) FDs: A  BC 
              B  AC 
              C  AB 

A

R5

m/1 

m/- 1/m
B C

(e) FDs: AB  C 
                C   A 

Figure 2. Examples of ternary relationship types.

2 ENTITY-RELATIONSHIP MODEL



ticipate. The values of x and y can be any integer including 0,
or m to indicate an unconstrained value. Figure 3 shows the
participation constraints of the entity types STUDENT and
COURSE in a relationship type ENROL where each student
enrolls ina minimum of 2 courses andmaximum of 8 courses,
and each course should have at least 5 student enrollments
with no limit on the class size.

Note that participation constraints cannot be used to
express all possible functional dependencies for n-ary rela-
tionship types when n � 3. For example, in Fig. 2(a and b),
the participation constraints of all the entity types are
either 0:n or 1:n depending on whether the participation
is optional or mandatory. Hence, we cannot obtain the
functional dependency AB! C for Fig. 2(b) using partici-
pation constraints only.

Entity types can be regular or weak. A weak entity is one
that is existence-dependent on some other entity type, that
is, it cannot exist if the other entity does not exist. In Fig.
4(a), the existence of a CHILD entity depends on the
existence of an associated EMPLOYEE entity. Thus, if
an employee entity is deleted, then its associated child
entities are also deleted. The dependent entity type CHILD
is a weak entity type (represented by a double rectangle),
and EMPLOYEE is a regular entity type. A relationship
type that involves a weak entity type is called existence-
dependency relationship type (denoted by ‘‘EX’’ together
with a relationship type name). Note that an EX relation-
ship type is a one-to-many (1:m) relationship type.

If an entity cannot be identified by the value of its own
attributes, but it has to be identified by its relationship with
other entities, then such a relationship is called identifier-
dependency relationship type (denoted by ID). Figure 4(b)

shows a typical example of an ID relationship type in which
a city can only be uniquely identified together with its
country(e.g., the city London can be a city in UK or a city
of in the province Ontario in Canada). By definition, an
identifier-dependency relationship type is also an exis-
tence-dependency relationship type.

Relationship types can be recursive when they involve
an entity type twice. Figure 5 shows the relationship type
MANAGE that associates the STAFF entity type twice; one
has a role name of Superior whereas the other has a role
name of Subordinate. Similarly, the relationship type
BILL-OF-MATERIAL associates PART entity type twice.

We can also have more than one relationship type
between the same set of entity types. Figure 6 shows the
two relationship types OWN and LIVE-IN between the
entity types PERSON and HOUSE where a person may
own many houses but live in one house; a house may be co-
owned by several persons and many persons can live in one
house.

EXTENDED ER MODEL

The ER model can be extended to include the notions of
superclass/subclass relationships between entities as well
as specialization and generalization. Set operations such as
UNION, INTERSECT, and DECOMPOSE can also be
incorporated to link different entity types. We will illus-
trate these extensions briefly here.

In the real world, entities in an entity type typically can
be organized into subgroups that are meaningful and
require explicit representation. For instance, in a univer-
sity database application, the entity type PERSON can be
classified even more into STAFF and STUDENT; STAFF
can be subclassified into ACAD and ADMIN; STUDENT
can be subclassified into UNDERGRAD and GRAD. These
entity types can be linked together in an ISA hierarchy as

STUDENT ENROL COURSE
2:8 5:m

SSNO Name Hobby Grade CodeC#

Figure 3. Example to illustrate participation constraints.

COUNTRY

(b) (a) 

ID

Sex 

CHILD

NRIC

Name

DOB

EX
DEPENDENT 

EMPLOYEE 

PROVINCE

ID

CITY

Figure 4. Examples of existence-dependency relationship types
and weak entity types.

PART

BILL-OF- 
MATERIAL

MajorPart MinorPart

m m
MANAGE STAFF 

Superior

Subordinate

1

m

Figure 5. Examples of recursive relationship types.

PERSON

OWN

HOUSE

m

m

m

1
LIVE-IN 

Figure 6. Two relationship types between the same set of entity
types.

ENTITY-RELATIONSHIP MODEL 3



shown in Fig. 7. We call PERSON a superclass of STAFF
and STUDENT, whereas STAFF and STUDENT are sub-
classes of PERSON. The ISA hierarchy is also known as
type inheritance. An entity in a subclass represents the
same real-world entity in the superclass, and thus it inher-
its all attributes and relationships of the entity in the
superclass in addition to its own specific attributes and
relationships.

We can also use set operations to link different entity
types together as shown in Fig. 8.

Generalization is the result of taking the union of two or
more (lower level) entity types to produce a higher-level
entity type. Generalization is the same as UNION, and it is
used to emphasize the similarity among lower-level entity
types and to hide their differences. Specialization is the
result of taking a subset of a higher-level entity type to form
a lower-level entity type. Specialization is the same as ISA,
and its main aim is to highlight the special properties of the
lower-level entity types. The attributes of the higher-level
entity types are to be inherited by lower-level entity types.
Figure 9 shows how an ACCOUNT entity type can be
specialized into FIXED-DEP and CHECKING-ACCT
entity types. Besides their own specific attributes, that
is, FIXED-DEP has InterestRate, StartDate, and Matur-
ityDate, whereas CHECKING-ACCT has OverdraftLimit;
these entity types also inherit the attributes Acct#, Name,
and Balance from their superclass ACCOUNT. Note that in
generalization, every higher-level entity must also be a
lower-level entity, whereas specialization does not have
this constraint.

Other extensions to the ERmodel include allowingaggre-
gations and composite constructs to model relationships
among relationship types and complex object classes (com-
plex entity types). Aggregation is an abstraction through
which relationships are treated as higher-level entities. The
ER diagram in Fig. 10 treats the relationship type WORK,
which is defined between the entity types EMPLOYEE and
PROJECT, as a higher-level entity type called WORK. We
can then define a many-to-many relationship type between
WORK and MACHINE, that is, each work uses many
machines and a machine can be used by many works.
Note that if the cardinality of a relationship type is not
explicitly specified, then by default, it is many-to-many.

We can also use a construct called COMPOSITE to
construct complex objects (complex entities) from some
other simple and/or complex objects (see Fig. 11). The

PERSON

IS-A

STAFF STUDENT

IS-A

ACAD ADMIN UNDER
GRAD

GRAD

IS-A

IS-A IS-A IS-A

Figure 7. Subtype relationships organized into an ISA hierarchy.

PERSON

MALE FEMALE 

UNION 

JOINT APPT 

BUSINESS
FACULTY

INTERSECT

ENGR
FACULTY

Figure 8. Using set operators to link entity types.

ACCOUNT

Acct#

Name

Balance

ISA ISA

FIXED-
DEP

CHECKING-
ACCT

Interest 
Rate

Overdraft 
Limit Maturity

Date

StartDate

Figure 9. Specialization of ACCOUNT entity type into SAVING-
ACCT and CHECKING-ACCT.

KITCHEN BATHRM

APARTMENT 

BEDRM

COMPOSITE 

LIVING-
RM

Figure 11. Using the composite construct to model complex
objects.

WORK PROJECTEMPLOYEE 

USES

MACHINE

Figure 10. Using aggregations to model relationships among
relationships.

4 ENTITY-RELATIONSHIP MODEL



complex object and its component objects are not necessa-
rily type (or object) compatible.

CONCEPTUAL DATABASE DESIGN USING ER MODEL

Using the ER approach for database design has three
advantages. First, it is database management system inde-
pendent. Second, the designer can concentrate on ‘‘infor-
mation requirements’’ and not on ‘‘storage or access
efficiency’’. Third, the ER diagram is easy to understand
by users and database designers. Five main steps to data-
base design exist using the ER approach.

Step 1. Identify the entity types and the attributes that
clearly belong to them.

Step 2. Identify the relationship types and their parti-
cipating entity types as well as the attributes that
clearly belong to the relationship types.

Step 3. Identify the remaining attributes, keys, and
identifiers of each entity type and relationship type
and obtain an ER diagram.

Step 4. Convert the ER diagram to a normal form ER
diagram (NF-ER).

Step 5. Translate the NF-ER diagram to a relational
database schema (or other data models such as object-
oriented data model).

We will cover the first three steps in this section and
discuss Steps 4 and 5 separately in the subsequent two
sections.

To accomplish steps 1 to 3 properly, the database
designer not only has to interview users but also must
study the system specification documents that are written
in some natural language, such as English. The work in Ref.
8 presented guidelines/rules for translating English sen-
tences into ER diagrams. We list some guidelines below.

R1. A common noun (such as student and employee) in
English corresponds to an entity type in an ER
diagram.

Note that proper nouns such as John, Singapore, and
New York City are entities, not entity type.

R2. A transitive verb in English corresponds to a rela-
tionship type in an ER diagram. Note that a tran-
sitive verb must have an object.

For example, a person may own one or more cars and a
car is owned by only one person. The cardinalities of PER-
SON and CAR in the OWNS relationship type are 1 and m,
respectively, and the participation of PERSON in the
OWNS relationship type is optional as some people may
not own any car [see Fig. 12(a)].

R3. An adjective in English corresponds to an attribute
of an entity type in an ER diagram.

R4. An adverb in English corresponds to an attribute of a
relationship type in an ER diagram.

For example, the ER diagram in Fig. 12(b) models a
London supplier sells a part with part name lamp for $50.

R5. A gerund in English corresponds to a high-level
entity type (or aggregation) converted from a rela-
tionship type in an ER diagram. A gerund is a noun in
the form of the present participle of a verb.

For example, ‘‘shopping’’ in the sentence ‘‘I like shop-
ping.’’ Figure 12(c) shows the ER diagram that models the
situation in which products are shipped to customers, and
the shipping is done by delivery men.

R6. A clause in English is a high-level entity type
abstracted from a group of interconnected low-level
entity and/or relationship types in an ER diagram. A
clause is a group of words that contains a subject and
a verb, but it is usually only part of a sentence.

PERSON
1 m

OWNS CARO

(a) Mapping of a transitive verb to a relationship type.

SUPPLIER SELL PART 

LOCATION  PRICE PNAME

“London” “$50” “lamp” 

(b) Mapping of an adverb to an attribute of a relationship type.

SHIPTO CUSTOMERPRODUCT

DONEBY

DELIVERY 
MEN

(c) Mapping of a gerund to high-level entity type.

ASSIGNTO EMPLOYEE MACHINE 

DECIDE 

MANAGER

(d) Mapping of a clause to high-level entity type 

Figure 12. Examples to illustrate the translation of english sen-
tences into ER diagrams.

ENTITY-RELATIONSHIP MODEL 5



For example, Fig. 12(d) models the case in which man-
agers decide which machine is assigned to which employee.

Example 1. We will now work through a case study to
illustrate how an ERD can be obtained. Suppose we need to
design a database for an order-entry system. The database
will capture the following information about customers,
items, and orders. For each customer, we record the cus-
tomer number (unique), valid ‘‘ship to’’ address (several per
customer), balance, credit limit, and discount. For each
order, we have a header that contains customer number,
‘‘ship to’’ address, date of order, and detail lines (several per
order), each giving the item number and quantity ordered.
For each item, we record the item number (unique), ware-
houses, quantity on hand at each warehouse, and item
description. For internal processing reasons, a quantity
outstanding value is associated with each detail line of
each order. Figure 13(a) shows the ERD after performing
Step 1 and Step 2. After Step 3, we will obtain the ERD as
shown in Fig. 13(b).

TRANSLATION OF (NORMAL FORM) ER DIAGRAM TO
RELATIONAL MODEL

After obtaining the conceptual design in ER diagram, we
can now map it to the relational model. The resulting
relational schema may not be in normal form and we can
use the normalization theory in relational model to derive a
third normal form relational schema. Alternatively, we can
first convert the ER diagram to a normal form (6) before
mapping it to the relational model, and the relational
schema obtained is guaranteed to be in normal form. In
this section, we will discuss the steps to translate an ER
diagram to the relational schema. The algorithm to obtain a
normal form ER diagram will be presented in the next
section.

Step 1. Assign role names to certain arcs in a cycle in the
ER diagram to conform to the universal relation
assumption. Here, a cycle in an ER diagram is defined
as a cycle in the corresponding graph of the ER
diagram in which all entity types and relationship
types are nodes in the graph and arcs that connect
entity types and relationship types are edges in the
graph, except for cycles formed only by ISA, UNION,
INTERSECT, and DECOMPOSE special relation-
ships.

Step 2. Assign identifiers for entity types involved in
special relationship such as ISA, UNION, INTER-
SECT, and DECOMPOSE.

Step 3. Generate relations for each entity type.

a) All the m:1 and 1:1 attributes of an entity type E
form a relation. The keys and identifier of E are the
keys and primary key of the generated relation.

b) Each m:n attribute and the identifier of E form an
all key relation.

c) Each 1:m attribute and the identifier of E form a
relation with the 1:m attribute as its key.

Note that all composite attributes are replaced by their
components in the generated relations.

Step 4. Generate relations for each regular relationship
type R.

a) All the identifiers of the entity types participating
in R and all the m:1 and 1:1 attributes of R form a
relation. Keys and 1:1 attributes of R are keys of
the generated relation, and the identifier of R is
the primary key of the generated relation.

Furthermore, if A ! B is a full functional
dependency in the generated relation and A is
not a key of R, then we record A!B as a constraint
of the relation generated.

b) Each m:m attribute of R and the identifier of R
form an all key relation.

c) Each1:mattributeofRandthe identifierofR forma
relation with the 1:m attribute as the key of the
relation.

Example 2. We will use the ER diagram in Fig. 14 to
illustrate the translation process. The role names AX, AY,

(a) ER Diagram obtained after applying Step 1 and Step 2.

CUSTOMER

ORDER

(b) ER Diagram obtained after applying Step 3 by adding attributes.

CUSTOMER

1

C# Address Balance Credit
Limit 

Discount

QOH

m

WAREHOUSEItem# 

1

EX

m

m m
ITEM

m

m

WAREHOUSE

EX
DesciptionItem# 

m

m
ORDER

m
ITEM

m

Order#
ShipTo
Address 

QtyQOS

Date

Figure 13. Example to illustrate conceptual database design
using the ER diagram.

6 ENTITY-RELATIONSHIP MODEL



BX, and BY are assigned by Step 1. Note that the relation-
ship type R3 has two functional dependencies, namely {E#,
D#}!A#, and A#!D#, we will have {E#, D#} and {A#, E#}
as the keys of R3, and we designate {E#, D#} as the identifier
of R3. The relations generated are as follows:

For entity type A, AE1 A#, A1, A2) and AE3(A3, A#).

For entity type B, BE1(B#, B1) and BE2(B#,B2).

For entity type C, CE1(C#, C1).

Note that C# is generated and we have the constraint C#
ISA B# of BE1, that is, CE1[C#] � BE1[B#].

For entity type D, DE1(D#, D1, D2).

Note that D12 is replaced by D1 and D2.

For entity type E, EE1(E#, E1, E2, E3) where E# is
primary key.

For relationship type R1, R1R1(AX, BX).

Note that AX and BX are generated, and we have the
constraints AX ISA A# and BX ISA B#.

For relationship type R2, R2R1(AY, BY, S2) and
R2R2(AY, BY, S3).

Again, AY and BY are generated and we have the
constraints AY ISA A# and BY ISA B#.

For relationship type R3, R3R1(A#, E#, D#, S1).

{D#, E#} is the primary key and we have the constraint
A#!D#. Note that R3R1 is in 3NF but not in BCNF.
Furthermore no relation is generated for the ISA
relationship. Instead, it is translated to C# ISA B#.

Similarly, the ER diagram in Fig. 15 can be translated to
the following relations.

Entity relations: Employee (E#, Name, Salary)
Employee_Hobby (E#, Hobby)
Employee_skill (E#, Skill)Project (P#, Pname, Budget)
Relationship relation: Emp_Proj (E#, P#, Progress)

NORMAL FORM ER DIAGRAM

The work in Ref. 6 introduced the notion of a normal form
ER diagram. The objectives for defining a normal form for
(ERD) are threefold. First, it aims to capture and preserve

all the semantics of the real world of a database that can be
expressed in terms of functional, multivalued, and join
dependencies, by representing them explicitly in the
ERD. Second, it ensures that all the relationship types
represented in the ERD are nonredundant. Finally, the
normal form ERD ensures that all the relations translated
from the ERD are in good normal form: either in 3NF or
5NF.

A normal form ERD may consist of composite attributes,
multivalued attributes, weak entity types and special rela-
tionships such as existence dependent, identifier depen-
dent, ISA, UNION, INTERSECT, and DECOMPOSE
relationships. The main steps for deriving a normal form
ERD are as follows:

1. Define the set of basic dependencies of an entity type

2. Define the entity normal form (E-NF)

3. Define the set of basic dependencies of a relationship
type

4. Define the relationship normal form (R-NF)

5. Define the set of basic dependencies of an ERD

6. Define the normal form ERD (ER-NF)

7. Convert an ERD to a normal form ERD

Definition 1. The set of basic dependencies of entity type
E with identifier K, denoted by BD(E), is defined as:

(i) For each m:1 attribute A of E, we have K ! A 2
BD(E)

(ii) For each 1:m multivalued attribute A of E, we have
A ! K 2 BD(E)

(iii) For each 1:m or m:n multivalued attribute A of E,
we have K!! A 2 BD(E)

(iv) For each key K1 of E, K1 6¼K, K!K1 2 BD(E) and
K1 ! K 2 BD(E)

(v) No other FDs or MVDs are in BD(E).

Definition 2. An entity type E is in E-NF if and only if all
the given FDs and MVDs which only involve the attributes
of E, can be derived from BD(E).

Informally, BD(E) is the set of functional dependencies
and multivalued dependencies involving only the attri-
butes of E, which are explicitly represented in the ERD.

Consider the ERDs in Fig. 16. The entity type
EMPLOYEE in Fig. 16(a) has the set of basic dependencies
BD(EMPLOYEE) = {E#! SSNO, Name, Gender; SSNO!

E

A B

R1

R2

R3

D

ISA

C

E# E1 E2 E3 

A2A# A1 A3

S2

B# B1

B2

S3

D#D1 D2
C# C1

S1

m/- 
m/1 

1/m 
AX

AY

BX

BY

D12

Figure 14. Example to illustrate translation of ER diagram to
relations.

EMPLOYEE WORKSON PROJECT 

E# Name Salary 

Hobby Skill

P# Pname Budget

m m

Progress

Figure 15. Example ER diagram.

ENTITY-RELATIONSHIP MODEL 7



E#; E# !! Skill; E# !! Degree}. Furthermore,
EMPLOYEE is in E-NF. In contrast, the entity type SUP-
PLIER in Fig. 16(b) is not in E-NF. It is because we have
BD(SUPPLIER) = {S#! Sname, S#! {City, Street, Zip}}.
However, the two known functional dependencies {City,
Street} ! Zip, and Zip ! City cannot be derived from
BD(SUPPLIER).

Definition 3. Let R be a relationship type with identifier
K, and F be the associated set of FDs that only involve the
identifiers of the set of entity types participating in R. The
set of basic dependencies of R, BD(R) is defined as:

(i) For each 1:1 attribute A of R, we have K ! A 2
BD(R) and A ! K 2 BD(R)

(ii) For each m:1 single valued attribute A of R, we have
K ! A 2 BD(R)

(iii) For each 1:m multivalued attribute A of R, we have
A! K 2 BD(R)

(iv) For each 1:m or m:m multivalued attribute A of R,
we have K !! A 2 BD(R)

(v) Let A!B be a full functional dependency inF such
that A is a set of identifiers of entity types partici-
pating in R, and B is the identifier of some entity
type participating in R. If A is a key of R or B is part
of key of R, then we have A ! B 2 BD(R)

(vi) No other FDs or MVDs are in BD(R).

In other words, BD(R) is the set of functional depen-
dencies and multivalued dependencies involving only the
identifiers of the participating entity types of R and
attributes of R that are explicitly represented in the
ERD.

Definition 4. An relationship type R of an ERD is in
R-NF if and only if all the given FDs and MVDs that only

involve the attributes of R and the identifiers of the entity
types participating in R are implied by BD(R).

Consider the ERDs in Figure 17. ABD is the identifier of
relationship type R1 in Fig. 17(a). BD(R1) = ABD! EG, G
! ABD, ABD !! F, ABD! C} and R1 is in R-NF.

Suppose we have C ! D 2 F , then C ! D is also in
BD(R1) by definition and hence R1 is still in R-NF. In Fig.
17(b), we have BD(R2) = {AB! CD} and C!D =2 BD(R2)+.
Hence, R2 is not in R-NF.

Definition 5. The set of basic dependencies of an ERD D,
denoted by BD(D), is defined as the union of the sets of basic
dependencies of all the entity types of D and the sets of basic
dependencies of all relationship types of D.

Definition 6. An ERD D is in normal form (ER-NF) if is
satisfies the following conditions:

(1) All attribute names are distinct and of different
semantics.

(2) Every entity type in the ERD is in E-NF.

(3) Every relationship type in the ERD is in R-NF.

(4) All given relationships and dependencies are implied
by BD(D).

(5) No relationship type (including its attributes) can be
derived from other relationship types by using join
and projection.

Note that condition 1 in Definition 6 is required in order
to conform to the universal relation assumption; condition 2
ensures that all relations generated for all entity types are
in 5NF; condition 4 ensures that ERD has captured all
relationship types and dependencies of the given database;
conditions 3 and 5 ensure that all relations generated for all
regular relationship types are either in 3NF or in 5NF, and
no relation exists in BCNF but not in 4NF or 5NF, that is, no

A

C D

R1

B

E

F
G

m m

1 m

A

C D

R2

B

m/- m/- 

1/m 1/1

(b) (a) 

Figure 17. ER Diagram to illustrate basic dependencies in relationship types.

Degree
Skill

(a) (b) 

SUPPLIER 

S# Sname 
Zip

City

EMPLOYEE Street 

E# SSNO

Gender

Name 

Figure 16. ER diagrams to illustrate basic dependencies in entity types.

8 ENTITY-RELATIONSHIP MODEL



relationship type (together with its attributes) can be
derived from other relationship types using join and projec-
tion operations.

We have the following important property.

Theorem. The relations generated for each of entity type
of a NF-ER diagram are in 5NF. The relations generated for
each of the relationship type of a NF-ER diagram are either
in 3NF or 5NF.

Based on the above definitions, we can now convert an
ERD to a normal form ERD as follows.

Step 1. Ensure that all attribute names are unique and of
different semantics to conform to the Universal Rela-
tion Assumption.

Step 2. Convert any non E-NF entity type to E-NF.
Remove all undesirable FDs and/or MVDs by intro-
ducing new entity types and relationship types.

Step 3. Convert any non–R-NF relationship type to
R-NF. Remove all undesirable FDs, MVDs, and/or
JDs by introducing new entity types and relation-
ship types or by splitting the relationship type into
smaller ones.

Step 4. Remove relationship types that have no asso-
ciated attributes and are equal to the join and/or
projection of other relationship types as they can
be derived.

We will now give two examples on how to convert an
ERD that is not in NF-ERD to one that is in NF-ERD.
Details of the conversion process can be found in Ref. 6.

Example 3. Consider the ERD in Fig. 18(a). If the entity
type A has additional dependencies A1! A2 and A#!!
A4, then A is not in E-NF. To make A into entity normal
form because A1! A2 =2 BD(A)+, we convert the attribute
A1 into an entity type with identifier A1 and a single-valued
attribute A2, and create a binary relationship type R
between A and A1. Furthermore, because A# !! A4 =2

BD(A)+, we split the multivalued composite attribute into
two multivalued attributes A4 and A5. The resulting ERD
is shown in Fig. 18(b). Note that the two dependencies A1!
A2 and A# !! A4 are now explicitly represented in Fig.
18(b). The entity types A and A1 are in E-NF.

Example 4. Next, let us examine the ERD in Fig. 19(a). If
the relationship type R has additional dependencies AB!
F and D ! E, then R is not in R-NF. Because D ! E =2
BD(R)+, we convert D into an entity type with identifier D
and attribute E, and connect the entity type D with the
relationship type R. Because AB! F =2BD(R)+, we create a
new binary relationship type R1 between A and B with
single-valued attribute F. We make R1 as a high-level
entity type (aggregation) and redefine the relationship
type R as a relationship type that associates this high-level
entity type R1 and entity types C and D. The resulting ERD
shown in Fig. 19(b) is a NF-ERD.

CONCLUSION

In this chapter, we have reviewed the basic concepts of the
ER model as well as some commonly used extensions. The
semantics captured in the ER model provides for the intui-
tive modeling of real-world concepts. We have discussed
how the conceptual design of a database can be carried out
using the ER model and the translation to the relational
database. We have also shown the properties of a normal-
form ERD and how it can be obtained.

Besides conceptual database design, the semantics in
the ER model also play an important role in view updates
(9) and schema integration (10,11). Views are external
schemas. They increase the flexibility of a database by
allowing multiple users to observe the data in different
ways. Views also provide logical independence by allowing
some changes to be made to the conceptual schema without
affecting the application programs. For a view to be useful,
users must be able to apply retrieval and update operations
to it. These update operations on the view are allowed only

A

A1

R

A

A# A1 A2 A3

A1 A2

A3A#

A4

A5

A4

A5

(b) A is now in E-NF (a) A is not in E-NF 

Figure 18. ER diagram to illustrate entity normal form.

D

R

A

D E

F

C

R

A

D

F

B

E

BR

C

m m

m

m

m 1

(b) ERD is now in NF-ERD (a) R is not in E-NF 

Figure 19. Example to illustrate normal form ERD.

ENTITY-RELATIONSHIP MODEL 9



if they can be translated into the corresponding update
operations on the conceptual schema instances.

Reference 12 describes how one can automatically
generate the external-to-conceptual mapping and the
conceptual-to-internal mapping of an ER based database
management system. Using this mapping, retrievals from a
view can always be mapped into equivalent retrievals from
the conceptual schema. A mapping is also required to
translate view updates into the corresponding updates
on the conceptual schema. However, such a mapping
does not always exist, and even when it does exist, it
may not be unique. We can model views using ER diagrams
and use the semantics captured to help resolve any ambi-
guity when translating view updates. Ling and Lee (8)
develop a theory within the framework of the ER approach
that characterizes the conditions under which mappings
exist from view updates into conceptual schema updates.
Concepts such as virtual updates and three types of inser-
tions are introduced.

Schema integration is essential to define a global
schema that describes all the data in existing databases
participating in a distributed or federated database man-
agement system. Lee and Ling (10) describe how the
semantics in the ER model can facilitate schema integra-
tion. For example, the ER model can easily help in the
resolution of structural conflicts, that is, when related real
world concepts are modeled using different constructs in
different schemas. An attribute in one schema can be
transformed into an equivalent entity type in another
schema without any loss of semantics or functional depen-
dencies which approaches based on the relational model
have not considered. Furthermore, from the ER model, we
can conclude that an entity type in one schema cannot be
equivalent to (or modeled as) a relationship set in another
schema, that is, this type of conflict inherently does not
exist.

The ER model captures semantics that are essential
for view update translation and meaningful schema inte-
gration. Many semantics cannot be captured by the
relational model, and therefore, view update translation
and schema integration using the relational model is
limited.

BIBLIOGRAPHY

1. P. P. Chen, The entity-relationship model-toward a unified
view of data, ACM Trans. Database Syst., 1(1): 9–36, 1976.

2. T. J. Teory, D. Yang, and J. P. Fry, A logical design methodology
for relational databases using the extended entity-relationship
model, ACM Comput. Surv., 18(2): 197–222, 1986.

3. V. C. Storey, Relational database design based on the entity-
relationship model, IEEE Trans. Data Knowl. Engineer. 7: 47–
83, 1991.

4. T. H. Jones and I.-Y Song, Binary representations of ternary
relationships in ER conceptual modelling, 14th International
Conference on Object-Oriented and Entity-Relationship Mod-
elling, 1995, pp. 216–225.

5. S. Ram, Deriving functional dependencies from the entity-
relationship model, Communi. ACM, 1995, pp. 95–107.

6. T. W. Ling, A normal form for entity-relationship diagrams, 4th
International Conference on Entity-Relationship Approach,
1985, pp. 24–35.

7. T. J. Teory, D. Yang, and J. P. Fry, A logical design methodology
for relational database using the extended entity-relationship
model, ACM Comput. Surv. 18(2): 1986.

8. P. P. Chen, English sentence structure and entity-relationship
diagrams, Informat. Sci. 29(2–3): 127–149, 1983.

9. T. W. Ling and M. L. Lee, A theory for entity-relationship view
updates, 11th International Conference on Entity-Relationship
Approach, 1992, pp. 262–279.

10. M. L. Lee and T. W. Ling, Resolving structural conflicts in the
integration of entity-relationship schemas, 14th International
Conference on Object-Oriented and Entity-Relationship Mod-
elling, 1995, pp. 424–433.

11. M. L. Lee and T. W. Ling, Resolving constraint conflicts in the
integration of entity-relationship schemas, 16th International
Conference on Entity-Relationship Approach, 1997, pp.
394–407.

12. T. W. Ling and M. L. Lee, A prolog implementation of an ER
based DBMS, 10th International Conference on ER Approach,
1991, pp. 587–605.

TOK WANG LING

National University of
Singapore

MONG LI LEE

National University of
Singapore

10 ENTITY-RELATIONSHIP MODEL



M

MULTIAGENT SYSTEMS

INTRODUCTION

A multiagent system (MAS) is a system composed of several
computing entities called ‘‘agents.’’ Being a sub-discipline
of distributed artificial intelligence (DAI), multiagent sys-
tems research represents a new paradigm for conceptualiz-
ing, designing, and implementing large-scale and complex
systems that require spatially, functionally, or temporally
distributed processing (1–3).

Agents in a MAS typically have distributed resource,
expertise, intelligence, and processing capabilities, and
they need to work collaboratively to solve complex problems
that are beyond the capabilities of any individuals. MAS
research covers a very broad areas, including multiagent
learning, distributed resource planning, coordination, and
interagent communications, to mention only a few (1,4,5),
and many studies have insights drawn from other disci-
plines, such as game theories, communications research,
and statistical approaches. In addition to the wide applica-
tions in industries (e.g., Network-Centric Warfare, air-
traffic control, and trading agents), multiagent systems
have also been used in simulating, training, and supporting
collaborative activities in human teams.

Different perspectives exist on multiagent systems
research. From the AI perspective, people may focus on
fundamental issues such as coordination algorithms, agent
architectures, and reasoning engines. From the engineer-
ing perspective, people may concern system building meth-
odologies, property verifications, and agent-oriented
programming. Detailed reviews of MAS from several dis-
tinct perspectives have been provided in Sycara (3), Stone
and Veloso (2), Bond and Gasser (6), O’Hare and Jennings
(7), and Huhns and Singh (8). The objective of this article is
to briefly present a view of MAS from the perspective of
multiagent teamwork. The remainder is organized as fol-
lows. The next section introduces the concept of shared
mental models that underpin team-based agent systems.
Then some generic multiagent architectures in the litera-
ture are described, and the issue of interagent coordination
is discussed. Communication and helping behaviors are
reviewed, and a summary is given in the last section.

SHARED MENTAL MODELS

The notion of shared mental models (SMMs) is a hypothe-
tical construct that has been put forward to explain certain
coordinated behaviors of human teams (6,9). An SMM
produces a mutual situation awareness, which is the key
for supporting many interactions within a team that lead to
its effectiveness and efficiency (10). The scope of shared
mental models is very broad, which may involve shared
ontology (11), common knowledge and/or beliefs (12), joint
goals/intentions (13), shared team structures (5), common
recipes (14), shared plans (15), and so on.

A shared ontology provides the common vocabulary for a
group of agents to communicate directly. Without a shared
ontology, agents can communicate only through a ‘‘broker’’
who provides translations between different ontologies.
Because of its importance, ontology is covered in KQML
(Knowledge Query and Manipulation Language), and
many efforts such as DARPA Agent Markup Language
(DAML) have been aimed to facilitate sharing ontology
on the semantic web (11).

Agents in a MAS typically have a collection of overlapped
knowledge/beliefs that serve as a common basis for the
agents to understand and respond to each other’s beha-
viors. Such common knowledge/beliefs may be the descrip-
tion of domain tasks (up to certain levels of detail), the
communication protocols to be used, the social laws or social
normatives to follow, and so on.

Some MASs also allow individual agents to have a
partial picture of the organizational structure (5), which
may include information regarding membership of a group,
sub-group relations, predetermined group leader, roles
each member can play, capability requirements on each
role, and so forth. Having a well-defined structure does not
imply that the structure is static. A system can still have
flexibility in changing its structure through dynamically
assigning responsibility to the agents in the system. Having
a shared team structure enables an agent to develop a
higher level abstraction about the capabilities, expertise,
and responsibilities of other agents. It is important for an
agent to initiate helping behaviors proactively.

Having a shared objective (goal) is a key characteristic of
agent teams (13,16–18), a kind of tightly coupled MASs. A
common goal can serve as a cohesive force that binds team
members together (16). To distinguish team behavior from
coordinated individual behavior (individuals’ goal happen
to be the same), a notion of joint mental attitude (i.e., joint
intention) is introduced based on the concept of joint per-
sistent goal (13). A joint intention can be viewed as a shared
commitment to perform a collective action to achieve a
shared goal. The joint intentions theory requires a team
of agents with a joint intention to not only each try to do its
part in achieving the shared goal but also commit to inform-
ing others when an individual agent detects that the goal
has been accomplished, becomes impossible to achieve, or
becomes irrelevant. Thus, having a joint intention not only
means all the team members have established the same
goal, but also it means that they have committed to main-
taining the consistency about the dynamic status of the
shared goal. The joint intentions theory is important
because it not only offers a framework for studying numer-
ous teamwork issues, but also it provides a foundation for
implementing multiagent systems (4).

Joint intentions prescribe how agents should behave
when certain things go wrong; it thus indicates that robust
multiagent systems can be implemented to work in
a dynamic environment if agents can monitor joint inten-
tions and rationally react to changes in the environment.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Jennings pointed out that this is desirable but not sufficient
(14). He proposed the joint responsibility model with the
explicit representation of cooperation using common
recipes. A common recipe provides a context for the per-
formance of actions in much the same way as the joint
goal guides the objectives of the individuals (14). Mainly
focusing on handling unexpected failures, the joint respon-
sibility model refines Cohen and Levesque’s work (16,19) on
joint intentions and explicitly captures different causes of
recipe failures. In particular, it clearly specifies the condi-
tions under which an agent involved in a team activity
should reconsider its commitments (three related to joint
goal commitment: goal has been attained, goal will never be
attained, or goal motivation no longer present; four related
to common recipe commitment: desired outcome is avail-
able, or recipe becomes invalid, untenable, or violated). The
model furthermore describes how the agent should behave
both locally and with respect to its fellow team members if
any such situations develop. It should drop the commit-
ment and must endeavor to inform all other team members
so that futile activities can be stopped at the earliest
possible opportunity.

Although Jennings gave a simple distributed planning
protocol for forming teams and for achieving agreement on
the details (i.e., timing constraints, and actual performers)
of common recipe (14), Grosz and Kraus prescribed a more
general process for collaboratively evolving partial shared
plans into complete shared plans (15,20). A shared plan is
characterized in a mental-state view as a particular collec-
tion of beliefs and intentions. An agent is said to have a
shared plan with others if and only if the agent works
toward establishing and maintaining those required men-
tal attitudes, and it believes that the other agents do so
likewise. The common recipes in the SharedPlan theory
and in the joint responsibility model have different mean-
ings. In the joint responsibility model, each team member
will have the same picture of the common recipe being
adopted. Whereas in the SharedPlan theory, even though
the common recipe is complete from the external, different
team members may have different partial views of the
common recipe being considered. In pursuing their com-
mon goals, it is the shared plans that ensure team members
cooperate smoothly rather than prohibit each other’s beha-
vior, which may occur otherwise because of the partial
views of common recipes.

Jennings admitted that an agent must track the ongoing
cooperative activity to fulfill its social roles (14). However, it
is insufficient to allow agents to monitor simply the viability
of their commitment through continuously monitoring the
relevant events that may occur within the system, as is
implemented in GRATE*. The monitoring of teamwork
progress is also important for agents to gain awareness
of the current context so that they can (1) better anticipate
others’ needs (e.g., relevant information needs) and avoid
performing irrelevant actions (e.g., communicating irrele-
vant information), and (2) dynamically adapt the team
process to external changes. For example, the already
executed part of a team process may never be re-invoked
again; thus, the associated information-needs become no
longer active. A team process may include decision points,
each of which can specify several potential ways to proceed

based on the current situation. Each team member needs to
track the team’s choices at these points because they may
affect significantly their information-needs in the future.
The CAST (5) system implements a richer notion of shared
mental models that covers the dynamic status of team
processes. Each member of a CAST agent team can monitor
dynamically the progress of team activities that are repre-
sented internally as Petri nets.

MULTIAGENT ARCHITECTURES

We here focus on multiagent architectures only. Individual
agent architectures such as reactive architectures and
BDI-style architectures (21), are beyond the scope.

Multiagent architectures can be classified into two
categories: facilitator-based architectures and layered
architectures. Figures 1 and 2 illustrate a generic facil-
itator-based architecture and a generic layered architec-
ture, respectively.

In a facilitator-based architecture, facilitator agents
play an important role in linking individual agents. Typi-
cally, a facilitator maintains knowledge that records the
capabilities of a collection of agents or subfacilitators and
uses that knowledge to establish connections between
service requesters and providers. As well as providing a
general notion of transparent delegation, facilitators also
offer a mechanism for organizing an agent society in a
hierarchical way. OAA (Open Agent Architecture) (22) is
a representative of facilitator-based architectures. OAA
adopts a blackboard-based framework that allows indivi-
dual agents to communicate by means of goals posted on
blackboard controlled by facilitator agents. Basically, when

reactive level

knowledge level

social level

reactive level

knowledge level

social level

reactive level

knowledge level

social level

Environment

physical
connection

logical
connection

Figure 2. Layered architecture.

Facilitator

Facilitator Facilitator Agent Agent

Facilitator Facilitator Agent Agent

Figure 1. Facilitator-based architecture.

2 MULTIAGENT SYSTEMS



a local facilitator agent determines that none of its
subordinate agents can achieve the goal posted on its
blackboard, it propagates the goal to a higher level black-
board controlled by a higher level facilitator, who in turn
can propagate the goal to its superior facilitator if none of its
subsidiary blackboards can handle the goal.

Most existing multiagent systems have a layered archi-
tecture that can be divided into three levels (see Fig. 2):
reactive level, knowledge level, and social level (3). Agent
behavior at the reactive level responds to external changes
perceived directly from the environment. Deliberative (or
reflective) behaviors are often covered at the knowledge
level, where an agent achieves situation awareness by
translating the external input into internal representa-
tions and may project into the future (refer to the Endsley’s
PCP model of situation awareness in Ref. 23). Social or
collaborative behaviors are reflected at the social level,
where an agent identifies collaboration needs, adjusts
self behavior, and exchanges information to coordinate
joint behaviors.

The representatives with such an architecture include
TEAMCORE (24), RETSINA (25), JACK (26), and CAST (5).

TEAMCORE is an extension of STEAM (a Shell for
TEAMwork) (4), which takes the perspective of team-
oriented programming. STEAM is a hybrid teamwork
model built on top of the SOAR architecture (27). STEAM
borrows insights from both the joint intentions theory and
the SharedPlans formalism. It uses joint intentions as a
building block to hierarchically build up the mental atti-
tude of individual team members and to ensure that
team members pursue a common solution path. STEAM
exhibits two valuable features: selective communication
and a way of dealing with teamwork failures. In STEAM,
communication is driven by commitments embodied in the
joint intentions theory as well as by explicit declaration of
information-dependency relationships among actions. To
make a decision on communication, STEAM agents take
into consideration the communication costs, benefits, and
the likelihood that some relevant information may be
mutually believed already. To handle failures, STEAM
uses role-monitoring constraints (AND, OR, dependency)
to specify the relationship of a team operator and an
individual’s or subteam’s contributions to it. When an agent
is unable to complete actions in its role and the embedding
team operator is still achievable, the remaining agents will
invoke a repair plan accordingly.

TEAMCORE realized a wrapper agent by combining the
domain-independent team expertise initially encoded in
STEAM and the domain-specific knowledge at the team
level. Hence, a TEAMCORE wrapper agent is a purely
social agent that only has core teamwork capabilities.
This team-readiness layer hides the details of the coordina-
tion behavior, low-level tasking, and replanning (24). To
map TEAMCORE to Fig. 2, the TEAMCORE wrapper
agent lies at the social level, whereas domain agents imple-
mented using SOAR encompass functionalities required by
the knowledge and reactive levels.

RETSINA multiagent infrastructure (25) (RETSINA-
MAS) is extended from the RETSINA individual agent
architecture (28). A RETSINA agent has four components:
Communicator, HTN Planner, Enabled Action Scheduler,

and Execution Monitor. RETSINA-MAS agents interact
with each other via capability-based and team-oriented
coordination as follows. Initially all agents have a commonly
agreed partial plan for fulfilling a team task (goal). Each
agent then matches his/her capabilities to the requirements
of the overall team goal within the constraints of his/her
authority and other social parameters. This process will
produce a set of candidate roles for the agent, who can select
some and communicate to teammates as proposals for his/
her role in the team plan. Once the team members have
reached a consensus that all plan requirements are covered
by the role proposals without any conflicts, they can commit
to executing the team plan. The team-oriented coordination
implemented in RETSINA-MAS lies at the social level,
whereas the RETSINA architecture covers reactive and
deliberative behaviors.

JACK Teams (26) is an extension to JACK Intelligent
Agents that provides a team-oriented modeling framework.
JACK agents are BDI-style agents each with beliefs,
desires, and intentions. A JACK team is an individual
reasoning entity that is characterized by the roles it per-
forms and the roles it requires others to perform. To form a
team is to set up the declared role obligation structure by
identifying particular subteams capable of performing the
roles to be filled. JACK Teams has constructs particularly
for specifying team-oriented behaviors. For instance,
Teamdata is a concept that allows propagation of beliefs
from teams to subteams and vice versa. Statements
@team_achieve and @parallel are used in JACK for hand-
ling team goals. An @parallel allows several branches of
activity in a team plan to progress in parallel. An @parallel
statement can specify success condition, termination con-
dition, how termination is notified, and whether to monitor
and control the parallel execution. JACK Teams can also be
viewed as a team wrapper that provides programmable
team-level intelligence.

CAST (Collaborative Agents for Simulating Teamwork)
(5) is a team-oriented agent architecture that supports
teamwork using a shared mental model among teammates.
The structure of the team (roles, agents, subteams, etc.) as
well as team processes (plans to achieve various team tasks)
are described explicitly in a declarative language called
MALLET (29). Statements in MALLET are translated
into PrT nets (specialized Petri-Nets), which use predicate
evaluation at decision points. CAST supports predicate
evaluation using a knowledge base with a Java-based back-
ward-chaining reasoning engine called JARE. The main
distinguishing feature of CAST is proactive team behavior
enabled by the fact that agents within a CAST architecture
share the same declarative specification of team structure
and team process. Therefore, every agent can reason about
what other teammates are working on, what the precondi-
tions of the teammate’s actions are, whether the teammate
can observe the information required to evaluate a pre-
condition, and hence what information might be potentially
useful to the teammate. As such, agents can figure out what
information to deliver proactively to teammates and can
use a decision-theoretic cost/benefit analysis of the proac-
tive information delivery before actually communicating.
Compared with the architectures mentioned above, the
layered behavior in CAST is flexible: It depends more on

MULTIAGENT SYSTEMS 3



the input language than on the architecture. Both indivi-
dual reactive behaviors and planned team activities can be
encoded in MALLET, whereas the CAST kernel dynami-
cally determines the appropriate actions based on the
current situation awareness and on the anticipation of
teammates’ collaboration needs.

COORDINATION

Agents in MAS possess different expertise and capabilities.
A key issue to a multiagent system is how it can maintain
global coherence among distributed agents without explicit
global control (13). This process requires agent coordina-
tion.

Distributed agents need to coordinate with one another
when they pursue a joint goal, but the achievement of the
goal is beyond the capability, knowledge, or capacity of any
individuals. Team tasks in multiagent systems can be
classified into three categories: atomic team actions, coor-
dinated tasks, and planned team activities.

Atomic team actions refer to those atomic actions that
cannot be done by a single agent and must involve at least
two agents to do it. For instance, lifting a heavy object is a
team operator. Before doing a team operator, the asso-
ciated preconditions should be satisfied by all agents
involved, and the agents should synchronize when per-
forming the action. The team-oriented programming
paradigm (hereafter TOP) (30) and CAST support atomic
team operators. In CAST, the number of agents required
by a team operator can be specified as constraints using
the keyword num. For example, the following MALLET
code specifies a team operator called co_fire that requires
at least three agents firing at a given coordinate simulta-
neously:

(toper co_fire (?x ?y) (num ge 3). . .).

By coordinated tasks, we refer to those short-term (com-
pared with long-term) activities involving multiple agents.
Executing a coordinated task often requires the involved
agents to establish joint and individual commitments to the
task or subtasks, to monitor the execution of the task, to
broadcast task failures or task irrelevance whenever they
occur, and to replan doing the task if necessary. A coordi-
nated task is composed typically of a collection of tempo-
rally or functionally related subtasks, the assigned doers of
which have to synchronize their activities at the right time
and be ready to backup others proactively. STEAM (4) uses
role-constraints (a role is an abstract specification of a set of
activities in service of a team’s overall activity) to specify
the relationship between subtasks of a coordinated task.
An AND-combination is used when the success of the
task as a whole depends on the success of all subtasks;
An OR-combination is used when any one subtask can bring
success to the whole task; and role-dependency can be used
when the execution of one subtask depends on another.
Complex joint team activities can be specified by using
these role-constraints combinatively and hierarchically.
Similarly, in CAST (5), the Joint-Do construct provides a
means for describing multiple synchronous processes to be
performed by the identified agents or teams in accordance

with the specified share type. A share type is either
AND, OR, or XOR. For an AND share type, all specified
subprocesses must be executed. For an XOR, exactly one
subprocess must be executed, and for an OR, one or more
subprocesses must be executed. A Joint-Do statement is
not executed until all involved team members have
reached this point in their plans. Furthermore, the state-
ment after a Joint-Do statement in the team process does
not begin until all involved team members have completed
their part of the Joint-Do.

Planned team activities refer to common recipes that
govern the collaboration behaviors of teammates in solving
complex problems. A planned team activity is a long-term
process that often involves team formation, points of syn-
chronization, task allocation, execution constraints, and
temporal ordering of embedded subactivities. GRATE (14)
has a recipe language, where trigger conditions and struc-
ture of suboperations can be specified for a recipe. STEAM
(4) uses the notion of team operator to prescribe the decom-
position of task structures. RETSINA-MAS (25) also uses
the concept of shared plans to coordinate individual beha-
viors, but it lacks an explicit team plan encoding language.
Instead of providing a higher level planning encoding
language, JACK Teams (26) tried to extend a traditional
programming language (i.e., Java) with special statements
for programming team activities. In JACK, team-oriented
behaviors are specified in terms of roles using a construct
called teamplan. TOP (30) uses social structures to govern
team formation, and it is assumed that each agent parti-
cipating in the execution of a joint plan knows the details of
the whole plan.

In MALLET, plans are decomposable higher level
actions, which are built on lower level actions or atomic
operators hierarchically. A plan specifies which agents
(variables), under what preconditions, can achieve which
effects by following which processes, and optionally under
which conditions the execution of the plan can be termi-
nated. The process component of a plan plays an essential
role in supporting coordination among team members. A
process can be specified using constructs such as sequential
(SEQ), parallel (PAR), iterative (WHILE, FOREACH,
FORALL), conditional (IF), and choice (CHOICE).

MALLET has a powerful mechanism for dynamically
binding agents with tasks. The AgentBind construct intro-
duces flexibility to a teamwork process in the sense that
agent selection can be performed dynamically based on the
evaluation of certain teamwork constraints (e.g., finding an
agent with specific capabilities). For example,

(AgentBind (?f)
(constraints (playsRole ?f fighter)
(closestToFire ?f ?fireid)))

states that the agent variable ?f needs to be instantiated
with an agent who can play the role of fighter and is the
closest to the fire ?fireid (?fireid already has a value from
the preceding context). The selected agent is then respon-
sible for performing later steps (operators, subplans, or
processes) associated with ?f. An agent-bind statement
becomes eligible for execution at the point when progress
of the embedding plan has reached it, as opposed to being

4 MULTIAGENT SYSTEMS



executed when the plan is entered. The scope for the
binding to an agent variable extends to either the end of
the plan in which the variable appears or the beginning
of the next agent-bind statement that binds the same
variable, whichever comes first. AgentBind statements
can be anywhere in a plan as long as agent variables are
instantiated before they are used. External semantics
can be associated with the constraints described in an
AgentBind statement. For instance, a collection of con-
straints can be ordered increasingly in terms of their
priorities. The priority of a constraint represents its
degree of importance compared with others. In case
not all constraints can be satisfied, the constraints
with the least priority will be relaxed first.

Agents also need to coordinate when to make choices on
the next course of actions. The Choice construct in MAL-
LET can be used to specify explicit choice points in a
complex team process. For example, suppose a fire-fighting
team is assigned to extinguish a fire caused by an explosion
at a chemical plant. After collecting enough information
(e.g., nearby chemicals or dangerous facilities), the team
needs to decide how to put out the fire. They have to select a
suitable plan among several options. The Choice construct
is composed of a list of branches, each of which invokes a
plan (a course of actions) and is associated with preference
conditions and priority information. The preference condi-
tions of a branch describe the situation in which the branch
is preferred to others. If the preference conditions of more
than one branch are satisfied, the one with the highest
priority is chosen. In implementation (31), some specific
agents can be designated as decision makers at the team
level to simplify the coordination process. For instance, at a
choice point, each agent can check whether it is the desig-
nated decision maker. If it is, the agent evaluates the
preference conditions of the potential alternatives based
on the information available currently. If no branch exists
whose preference condition can be satisfied, the agent
simply waits and reevaluates when more information
becomes available. If more than one selectable branch
exists, the agent can choose one randomly from those
branches with the highest priority. The agent then informs
others of the chosen branch before performing it. For those
agents who are not the designated decision maker, they
have to wait until they are informed of the choice from the
decision maker. However, while waiting, they still could
help in delivering information proactively to the decision
maker to make better decisions.

COMMUNICATION

Communication is essential to an effective functional team.
For instance, communication plays an important role in
dynamic team formation, in implementing team-oriented
agent architectures, and more theoretically, in the forming,
evolving, and terminating of both joint intentions (16) and
SharedPlans (15). Interagent communications can be clas-
sified into two categories: reactive communications and
proactive communications.

Reactive communications (i.e., ask/reply) are used
prevalently in existing distributed systems. Although the

ask/reply approach is useful and necessary in many cases, it
exposes several limitations. First, an information consu-
mer may not realize certain information it has is already
out of date. If this agent needs to verify the validity of every
piece of information before they are used (e.g., for decision-
making), the team can be overwhelmed easily by the
amount of communications entailed by these verification
messages. Second, an agent may not realize it needs certain
information because of its limited knowledge (e.g., distrib-
uted expertise). For instance, a piece of information may be
obtained only through a chain of inferences (e.g., being
fused according to certain domain-related rules). If the
agent does not have all the knowledge needed to make
such a chain of inferences, it will not be able to know it
needs the information, not to mention request for it.

Proactive information delivery means ‘‘providing rele-
vant information without being asked.’’ As far as the
above-mentioned issues are concerned, proactive infor-
mation delivery by the information source agents offers
an alternative, and it shifts the burden of updating
information from the information consumer to the infor-
mation provider, who has direct knowledge about the
changes of information. Proactive information delivery
also allows teammates to assist the agent who cannot
realize it needs certain information because of its limited
knowledge.

In fact, to overcome the above-mentioned limitations of
‘‘ask,’’ many human teams incorporate proactive informa-
tion delivery in their planning. In particular, psychological
studies about human teamwork have shown that members
of an effective team can often anticipate the needs of other
teammates and choose to assist them proactively based on a
shared mental model (32).

Interagent communication has been studied extensively
(38). For instance, many researchers have been studying
agent communication languages (ACLs), by which agents
in distributed computing environments can share informa-
tion. KQML (34) and FIPA’s ACL (35) are two attempts
toward a standardized ACL. A complete ACL often covers
various categories of communicative acts, such as asser-
tives, directives, commissives, permissives, prohibitives,
declaratives, and expressives. Some reseachers even
argued for the inclusion of proactives (i.e., proactive per-
formatives) (36).

The mental-state semantics of ACL is one of the most
developed areas in agent communication, where most
efforts are based on Cohen and Levesque’s work (19). For
instance, the semantics of FIPA’s performatives are given
in terms of Attempt, which is defined within Cohen and
Levesque’s framework (35). The semantics of proactive
performatives are also treated as attempts but within an
extended SharedPlans framework (36).

To understand fully the ties between the semantics of
communicative acts and the patterns of these acts, con-
versation policies or protocols have been studied heavily in
the ACL field (33). More recently, social agency is empha-
sized as a complement to mental agency because commu-
nication is inherently public (37), which requires the
social construction of communication to be treated as a
first-class notion rather than as a derivative of the men-
talist concepts. For instance, in Ref. 37, speech acts are

MULTIAGENT SYSTEMS 5



defined as social commitments, which are obligations
relativized to both the beneficiary agent and the whole
team as the social context.

Implemented systems often apply the joint intentions
theory (13) in deriving interagent communications. The
joint intentions theory requires that all agents involved in
a joint persistent goal (JPG) take it as an obligation to
inform other agents regarding the achievement or impos-
sibility of the goal. Communication in STEAM (4) is driven
by commitments embodied in the joint intentions theory.
STEAM also integrated decision-theoretic communica-
tion selectivity: Agents deliberate on communication
necessities vis-à-vis incoherency, considering communi-
cation costs and benefits as well as the likelihood that
some relevant information may be mutually believed
already.

GRATE*(14), which was built on top of the joint respon-
sibility model, relies even more on communications. As we
mentioned, the joint responsibility model clearly specifies
the conditions under which an agent involved in a team
activity should reconsider its commitments. For instance,
as well as communications for dropping a joint intention, an
agent should also endeavor to inform all other team mem-
bers whenever it detects that either one of the following
happens to the common recipe on which the group are
working: The desired outcome is available already, the
recipe becomes invalid, the recipe becomes untenable, or
the recipe is violated.

The strong requirement on communication among
teammates by the joint intentions theory is necessary to
model coherent teamwork, but in a real case, it is too
strong to achieve effective teamwork; enforced commu-
nication is not necessary and even impossible in time-
stress domains. Rather than forcing agents to communi-
cate, CAST (5) allows agents to anticipate others’ informa-
tion needs, which depending on the actual situations, may
or may not result in communicative actions. The proactive
information delivery behavior is realized in the DIARG
(Dynamic Inter-Agent Rule Generator) algorithm. Com-
munication needs are inferred dynamically through rea-
soning about the current progress of the shared team
process. The following criteria are adopted in Ref. 38.
First, a team process may include choice (decision) points,
each of which can specify several branches (potential
ways) to achieving the goal associated with the choice
point. Intuitively, those information needs that emerge
from the branches should not be activated until a specific
branch is selected. Second, a team or an agent may dyna-
mically select goals to pursue. The information needed to
pursue one goal may be very different from those needed in
another. Third, the already executed part of a team pro-
cess may never be reinvoked again; thus, the associated
information needs become no longer ‘‘active.’’ DIARG is
designed to generate interagent communication based on
the identified information needs and on the speaker’s
model of others mental models. For instance, an agent
will not send a piece of information if the possibility of the
information being observed by the potential receiver is
high enough. A decision-theoretic approach is also
employed in CAST to evaluate the benefits and cost of
communications.

HELPING BEHAVIORS

Pearce and Amato (39) have developed an empirically-
derived taxonomy of helping behaviors. The model has a
threefold structure of helping: (1) doing what one can
(direct help) versus giving what one has (indirect help),
(2) spontaneous help (informal) versus planned help (for-
mal), and (3) serious versus nonserious help. These three
dimensions correspond to the type of help offered, the social
setting where help is offered, and the degree of need of the
recipient.

Helping behavior in MASs can be defined as helping
other team members perform their roles under conditions of
poor workload distributions or asymmetric resource alloca-
tions or as helping team members when they encounter
unexpected obstacles. As indicated by the above taxonomy,
helping behaviors can come in many different forms, such
as emergency aids and philanthropic acts. However,
planned direct help and spontaneous indirect help are
the two predominant forms of helping behaviors in
MASs. For example, agents for an operational cell in simu-
lated battlefields often have contingency plans in respond-
ing to environmental uncertainties. Collaborative agents
also tend to deliver relevant information only to informa-
tion consumers by first filtering irrelevant information
away.

Helping behaviors can also be classified as reactive help-
ing and proactive helping. Much helping that occurs in
MASs is reactive: in response to specific requests for
help. For instance, in the RoboRescue domain, fire fighters
ask police agents to clear a blocked area when detecting
such a place. A fire-fighting team asks another one for help
when the fire is getting out-of-control.

Proactive helping refers to the helping that is not
initiated by requests from recipients but by the anticipation
of others’ needs from shared mental models—even if those
needs are not expressed directly (40). Proactive helping
often occurs in highly effective human teams. For instance,
providing assistance to others who need it has been identi-
fied as a key characteristic of human teamwork (41).

The joint intentions theory and the SharedPlans theory
are two widely accepted formalisms for modeling team-
work; each has been applied successfully in guiding the
design and the implementation of multiagent systems, such
as GRATE*(14), STEAM (4), and CAST (5). Both theories
allow agents to derive helping behaviors. In particular, the
joint intentions theory implies that an agent will intend to
help if it is mutually known that one team member requires
the assistance of the agent (13).

Grosz and Kraus even proposed axioms for deriving
helpful behaviors (15,20). For instance, axiom A5 and A6
in (15) state that an agent will form a potential intention
to do ALL the actions it thinks might be helpful. whereas
Axiom 2 in Ref. 20 states that if an agent intends that a
property p hold and some alternative actions exist the
agent can take that would lead to p holding, then
the agent must be in one of three potential states: (1)
The agent holds a potential intention to do some of these
actions, (2) the agent holds an intention to do some of
these actions; or (3) the agent has reconciled all possible
actions it could take and has determined they each

6 MULTIAGENT SYSTEMS



conflict in some way with other intentions. These two
treatments are actually consistent; they characterize
‘‘intending-that’’ from two perspectives. The former
shows how potential intentions are triggered from inten-
tions. The latter reflects the process of means-ends rea-
soning: An agent first adopts a potential intention, then
reconciles the potential intention with existing inten-
tions—either adopts it as an actual intention or drops
it and considers other options, and then it abandons—if
all potential intentions serving the same ends have been
tried but none can be reconciled into actual intentions.
For instance, suppose an agent A has an intention to
make the property p true. A will adopt a potential inten-
tion to do action a if the performance of a will enable
another agent B to perform some action b, which would
directly make p true. Ask/reply is an instance of using
this axiom. Enabling other’s physical actions also falls
into this category. For example, a logistics person sup-
plies ammunition to a fighter in a joint mission.

However, the axioms in the SharedPlans theory are
still not rich enough to cover helping behaviors involving
three or more parties. Such behaviors occur predomi-
nantly in large hierarchical teams with subteams. For
instance, as a team scales up in size, the team is often
organized into subteams, each of which may be divided
even more into smaller subteams, and so on. In such
cases, team knowledge might be distributed among sev-
eral subteams. Hence, agents in one subteam might not
be able to anticipate the information needs of agents in
other subteams because they may not share the
resources for doing so, such as the subteam process,
the plans, and the task assignments. To enable informa-
tion sharing among subteams, some agents in a subteam
are often designated as the point of contacts with other
subteams. For example, an agent who simultaneously
participates in the activities of two subteams can be
designated as the broker agent of the two subteams.
These broker agents play a key role in informing agents
outside the subteam about the information needs of
agents in the subteam. Such helping behaviors involving
more than two parties can be accounted for by the axiom
given in Ref. 42, which establishes a basis for third-party
communicative acts.

SUMMARY

Multiagent systems offer a new way of analyzing, design-
ing, and implementing large-scale, complex systems, and
they have been applied in an increasing range of software
applications. Here, we discussed the concept of shared
mental models, multiagent architectures, coordination,
communications, and helping behaviors, which are critical
in developing team-based multiagent systems. This article
certainly is not an exhaustive summary of MAS research; it
simply covers a limited view of the MAS research from
teamwork perspective. Readers are encouraged to refer to
the key conferences in MAS area (such as AAMAS, KIMAS,
IAT), which have been attracting a growing number of
researchers to present, demonstrate, and share their sys-
tems and ideas.

BIBLIOGRAPHY

1. V. R. Lesser, Multiagent systems: an emerging subdiscipline of
AI source, ACM Comp. Surv., 27(3): 340–342, 1995.

2. P. Stone and M. Veloso, Multiagent systems: a survey from a
machine learning perspective, Autonomous Robots, 8(3): 345–
383, 2000.

3. K. Sycara, Multi agent systems, AI Magazine19(2): 1998.

4. M. Tambe, Towards flexible teamwork, J. Artificial Intell. Res.,
7: 83–124, 1997.

5. J. Yen, J. Yin, T. Ioerger, M. Miller, D. Xu and R. Volz, CAST:
collaborative agents for simulating teamwork, In Proceedings
of the 7th International Joint Conference on Artificial Intelli-
gence (IJCAI-01), 2001, pp. 1135–1142.

6. A. H. Bond and L. Gasser, Readings in Distributed Artificial
Intelligence. San Francisco, CA: Morgan Kaufmann, 1988.

7. G. O’Hare and N. Jennings, Foundations of Distributed Arti-
ficial Intelligence. New York: Wiley, 1996.

8. M. Huhns and M. Singh, Readings in Agents, San Francisco,
CA: Morgan Kaufmann, 1997.

9. K. Sycara and C. M. Lewis, Forming shared mental models,
Proceedings of the Thirteenth Annual Meeting of the Cognitive
Science Society, Chicago, IL: 1991, pp. 400–405.

10. J. Orasanu, Shared mental models and crew performance,
Proceedings of the 34 Annual Meeting of the Human Factors
Society, Orlando, FL, 1990.

11. D. Fensel, I. Horrocks, F. V. Harmelen, D. L. McGuinness
and Peter F. Patel-Schneider, oil: an ontology infras-
tructure for the semantic web, IEEE Intell. Sys., 16(2):
38–45, 2001.

12. R. Fagin, J. Y. Halpern, Y. Moses and M. Y. Vardi, Reasoning
About Knowledge, Cambridge, MA: MIT Press, 1995.

13. P. R. Cohen and H. J. Levesque, Teamwork, Nous, 25(4): 487–
512, 1991.

14. N. R. Jennings, Controlling cooperative problem solving in
industrial multi-agent systems using joint intentions, Artifi-
cial Intelligence, 75(2): 195–240, 1995.

15. B. Grosz and S. Kraus, Collaborative plans for complex group
actions, Artificial Intelligence, 269–358, 1996.

16. P. R. Cohen and H. J. Levesque, On team formation, in J.
Hintikka and R. Tuomela (eds.), Contemporary Action Theory,
1997.

17. J. Searle, Collective intentions and actions, in P. R. Cohen, J.
Morgan and M. E. Pollack, eds., Intentions in Communication.
Cambridge, MA: MIT Press, 1990, pp. 401–416.

18. R. Tuomela and K. Miller, We-intentions. Philos. Stud. 53:
367–389, 1988.

19. P. R. Cohen and H. J. Levesque, Rational interaction as a basis
for communication, in Intentions in Communication, MIT
Press, 1990, pp. 221–225.

20. B. Grosz and S. Kraus, The evolution of sharedplans, in A. Rao
and M. Wooldridge (eds.), Foundations and Theories of
Rational Agencies, 1998, pp. 227–262.

21. A. S. Rao and M. P. Georef, BDI-agents: from theory to practice,
Proceedings of the First Intl. Conference on Multiagent Sys-
tems, San Francisco, CA, 1995.

22. D. Martin, A. Cheyer and D. Moran, The Open agent
architecture: a framework for building distributed software
systems. Applied Artificial Intelligence, 13(1-2): 91–128,
1999.

23. M. R. Endsley, Towards a theory of situation awareness in
dynamic systems, Human Factors, 37: 32–64, 1995.

MULTIAGENT SYSTEMS 7



24. D. V. Pynadath, M. Tambe, N. Chauvat and L. Cavedon,
Toward team-oriented programming, in Agent Theories, Archi-
tectures, and Languages, 1999, pp. 233–247.

25. J. A. Giampapa and K. Sycara, Team-Oriented Agent Coordi-
nation in the RETSINA Multi-Agent System, tech. report
CMU-RI-TR-02-34, Robotics Institute, Carnegie Mellon Uni-
versity, 2002.

26. JACK Teams manual. Available: http://www.agentsoftware.com/
shared/ demosNdocs/JACK-Teams-Manual.pdf, 2003.

27. J. Laird, A. Newell and P. Rosenbloom, SOAR: an architecture
for general intelligence, Artificial Intelligence, 33(1): 1–64,
1987.

28. K. Sycara, K. Decker, A. Pannu, M. Williamson and D. Zeng,
Distributed intelligent agents, IEEE Expert, Intelli. Syst.
Applicat. 11(6): 36–45, 1996.

29. X. Fan, J. Yen, M. Miller and R. Volz, The Semantics of
MALLET—an agent teamwork encoding language, 2004
AAMAS Workshop on Declarative Agent Languages and Tech-
nologies, 2004.

30. G. Tidhar, Team oriented programming: preliminary report.
Technical Report 41, AAII, Australia, 1993.

31. J. Yen, X. Fan, S. Sun, T. Hanratty and J. Dumer, Agents with
shared mental models for enhancing team decision-makings,
Decision Support Sys., Special issue on Intelligence and Secur-
ity Informatics, 2004.

32. J. A. Cannon-Bowers, E. Salas and S. A. Converse, Cognitive
psychology and team training: training shared mental models
and complex systems, Human Factors Soc. Bull., 33: 1–4, 1990.

33. F. Dignum and M. Greaves, Issues in agent communication,
LNAI 1916, Springer-Verlag, Berlin, 2000.

34. Y. Labrou and T. Finin, Semantics for an agent communication
language, in M. Wooldridge, M. Singh, and A. Rao (eds),
Intelligent Agents IV: Agent Theories, Architectures and Lan-
guages (LNCS 1365), 1998.

35. FIPA: Agent Communication Language Specification. Avail-
able: http://www.fipa.org/, 2002.

36. J. Yen, X. Fan and R. A. Volz, Proactive communications in
agent teamwork, (F. in Dignum, ed., Advances in Agent Com-
munication LNAI-2922), Springer, 2004, pp. 271–290.

37. M. P. Singh, Agent communication languages: Rethinking the
principles, IEEE Computer, 31(12): 40–47, 1998.

38. X. Fan, J. Yen, R. Wang, S. Sun and R. A. Volz, Context-centric
proactive information delivery, Proceedings of the 2004 IEEE/
WIC Intelligent Agent Technology Conference, 2004.

39. P. L. Pearce and P. R. Amato, A taxonomy of helping: a multi-
dimensional scaling analysis, Social Psychology Quart, 43(4):
363–371, 1980.

40. M. A. Marks, S. J. Zaccaro and J. E. Mathieu, Performance
implications of leader briefings and team interaction training
for team adaptation to novel environments, J. Applied Psy-
chol., 85: 971–986, 2000.

41. T. L. Dickinson and R. M. McIntyre, A conceptual framework
for teamwork measurement, in M. T. Brannick, E. Salas, and C.
Prince (Eds), Team Performance Assessment and Measure-
ment: Theory, Methods and Applications, 1997, pp. 19–44.

42. X. Fan, J. Yen and R. A. Volz, A theoretical framework on
proactive information exchange in agent teamwork, Artificial
Intell., 169: 23–97, 2005.

FURTHER READING

B. Grosz and C. Sidner, Plans for discourse, in P. Cohen, J. Morgan
and M. Pollack (eds.), Intentions in Communication, Cambridge,
MA: MIT Press, 1990, pp. 417–444.
M. N. Huhns, L. M. Stephens, Multiagent systems and societies of
agents, G. Weiss (ed.), In Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence, Cambridge, MA: MIT Press,
1999, pp. 79–120.

M. Wooldridge, An Introduction to MultiAgent Systems, New York:
John Wiley & Sons, 2002.

M. Wooldridge and N. Jennings, Intelligent agents: theory and
practice. Knowledge Engine. Rev., 10(2): 115–152, 1995.

M. J. Wooldridge and N. R. Jennings, Pitfalls of Agent-Oriented
Development, Proc. of the 2nd Int. Conf. on Autonomous Agents,
Minneapolis MN, 1998, pp. 385–391.

XIAOCONG FAN

The Pennsylvania State University
Erie, Pennsylvania

8 MULTIAGENT SYSTEMS



O

OBJECT-ORIENTED DATABASES

Traditional database management systems (DBMSs),
which are based on the relational data model, are adequate
for business and administrative applications and are char-
acterized by data with a very simple structure and by the
concurrent execution of several not-so-complex queries and
transactions. The rapid technologic evolution raised, since
the early 1980s, new application requirements for which
the relational model demonstrated as inadequate. The
relational model, indeed, is not suitable to handle data
typical of complex applications, such as design and manu-
facturing systems, scientific and medical databases, geo-
graphical information systems, and multimedia databases.
Those applications have requirements and characteristics
different from those typical of traditional database applica-
tions for business and administration. They are character-
ized by highly structured data, long transactions, data
types for storing images and texts, and nonstandard, appli-
cation-specific operations. To meet the requirements
imposed by those applications, new data models and
DBMSs have been investigated, which allow the represen-
tation of complex data and the integrated specification of
domain-specific operations.

Getting a closer look at the large variety of applications
DBMSs are mainly used by, we can distinguish different
types of applications, with each characterized by different
requirements toward data handling. The most relevant
application types include business applications, which are
characterized by large amounts of data, with a simple
structure, on which more or less complex queries and
updates are executed, which must be accessed concur-
rently by several applications and require functionalities
for data management, like access control; complex navi-
gational applications, such as CAD and telecommunica-
tions, that need to manipulate data whose structures and
relationships are complex and to efficiently traverse such
relationships; multimedia applications, requiring storage
and retrieval of images, texts and spatial data, in addition
to data representable in tables, that require the definition
of application-specific operations, and the integration of
data and operations from different domains. Relational
DBMSs handle and manipulate simple data; they support
a query language (SQL) well suited to model most business
applications, and they offer good performance, multiuser
support, access control, and reliability. They have demon-
strated extremely successfully for the first kind of appli-
cations, but they have strong limitations with respect to
the others.

The object-oriented approach, which was becoming
powerful in the programming language and software engi-
neering areas in the early 1980s, seemed a natural candi-
date, because it provides the required flexibility not being
constrained by the data types and query languages avail-
able in traditional database systems and specifies both the
structures of complex objects and the operations to manip-

ulate these structures. The basic principle of the object-
oriented approach in programming is indeed to consider the
program consisting of independent objects, grouped in
classes, communicating among each other through mes-
sages. Classes have an interface, which specifies the opera-
tions that can be invoked on objects belonging to the class,
and an implementation, which specifies the code imple-
menting the operations in the class interface. The encap-
sulation of class implementation allows for hiding data
representation and operation implementation. Inheritance
allows a class to be defined starting from the definitions of
existing classes, called superclasses. An object can use
operations defined in its base class as well as in its super-
classes. Inheritance is thus a powerful mechanism for code
reuse. Polymorphism (overloading) allows for defining
operations with the same name for different object types;
together with overriding and late binding, this function-
ality allows an operation to behave differently on objects of
different classes. The great popularity of the object-
oriented approach in software development is mainly
caused by the increased productivity: The development
time is reduced because of specification and implementa-
tion reuse; the maintenance cost is reduced as well because
of the locality of modifications. Another advantage of object
orientation is represented by the uniqueness of the para-
digm: All phases of the software lifecycle (analysis, design,
programming, etc.) rely on the same model, and thus, the
transition from one phase to another is smooth and natural.
Moreover, the object-oriented paradigm represents a fun-
damental shift with respect to how the software is pro-
duced: The software is no longer organized according to the
computer execution model (in a procedural way); rather, it
is organized according to the human way of thinking.
Objects encapsulate operations together with the data
these operations modify, which thus provides a data-
oriented approach to program development. Finally, the
object-oriented paradigm, because of encapsulation, is well
suited for heterogeneous system integration, which is
required in many applications.

In an object-oriented programming language, objects
exist only during program execution. In a database, by
contrast, objects can be created that persist and can
be shared by several programs. Thus, object databases
must store persistent objects in secondary memory and
must support object sharing among different applications.
This process requires the integration of the object-oriented
paradigm with typical DBMS mechanisms, such as index-
ing mechanisms, concurrency control, and transaction
management mechanisms. The efforts toward this integra-
tion led to the definition and development of object-oriented
database management systems (OODBMSs) (1–4) and,
later on, of object relational database management systems
(5–7). Object-oriented databases are based on an object data
model, which is completely different from the traditional
relational model of data, whereas object relational
databases rely on extensions of the relational data

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



model with the most distinguishing features of the object
paradigm. Thanks to their ‘‘evolutive’’ nature with respect
to relational DBMSs, object relational systems are succeed-
ing in the marketplace and the data model of the SQL
standard has been an object relational data model since
SQL: 1999 (7).

OODBMSs have been proposed as an alternative tech-
nology to relational DBMSs. They mainly result from the
introduction of typical DBMS functionality in an object-
oriented programming environment (8). OODBMSs allow
for directly representing complex objects and efficiently
supporting navigational applications. Because the under-
lying data model is an object model, they allow you to
‘‘store your data in the same format you want to use your
data’’ (9), and thus, they overcome the impedance mis-
match between the programming language and the DBMS
(10). Research in the area of object-oriented databases has
been characterized by a strong experimental work and the
development of several prototype systems, whereas only
later theoretical foundations have been investigated and
standards have been developed. The ODMG (Object Data
Management Group) standard for OODBMSs was indeed
first proposed in 1993, several years later than the first
OODBMSs were on the market. Moreover, because
OODBMSs mainly originated from object-oriented pro-
gramming languages, systems originating from different
languages rely on different data models. Even nowadays,
despite the advent of Java, that de facto standardized the
object model in programming, sensible differences persit
among different systems, even those participating in the
ODMG consortium. This lack of an initial common refer-
ence model and the low degree of standardization,
together with the limited support for powerful declara-
tive, high-level query languages, and functionalities not
comparable with those of relational DBMSs for what
concerned data security, concurrency control, and recov-
ery, are among the main reasons because OODBMSs could
not impose themselves in the marketplace.

Object relational DBMSs, by contrast, which were born
as an extension of the relational technology with the
characteristics of the object model, needed to support a
wider range of applications. They are motivated by the
need to provide relational DBMS functionalities in ‘‘tradi-
tional’’ data handling while extending the data model so
that complex data can be handled. The choice is to intro-
duce the distinguishing features of the object paradigm in
the relational model without changing the reference
model. As relational DBMSs, indeed, object relational
DBMSs handle rows of tables, provide a declarative query
language (SQL), and inherit the strength of relational
systems in terms of efficiency and reliability in data
management.

In this article, we discuss the application of the object-
oriented paradigm to the database context, with a focus on
data model and query language aspects. We first introduce
the main notions of object-oriented data models and query
languages, and then present the ODMG standard. Existing
OODBMSs are then surveyed briefly, and object-relational
databases are introduced. We conclude by mentioning some
issues in object databases that are not dealt with in the
article.

OBJECT-ORIENTED DATA MODELS

In this section, we introduce the main concepts of object-
oriented data models, namely, objects, classes, and inheri-
tance. In the next section, we will present the data model of
the ODMG standard.

Objects

An object-oriented database is a collection of objects. In
object-oriented systems, each real-world entity is repre-
sented by an object. Each object has an identity, a state, and
a behavior. The identity is different from the identity of any
other object and is immutable during the object lifetime; the
state consists of the values of the object attributes; the
behavior is specified by the methods that act on the object
state, which is invoked by the corresponding operations.

Many OODBMs actually do not require each entity to be
represented as an object; rather, they distinguish between
objects and values. The differences between values and
objects are as follows (11)

� Values are universally known abstractions, and they
have the same meaning for each user; objects, by
contrast, correspond to abstractions whose meaning
is specified in the context of the application.

� Values are built-in in the system and do not need to be
defined; objects, by contrast, must be introduced in the
system through a definition.

� The information represented by a value is the value
itself, whereas the meaningful information repre-
sented by an object is given by the relationships it
has with other objects and values; values are therefore
used to describe other entities, whereas objects are the
entities being described.

Thus, values are elements of built-in domains, whereas
objects are elements of uninterpreted domains. Typical
examples of values are integers, reals, and strings. Each
object is assigned an immutable identifier, whereas a value
has no identifier; rather it is identified by itself.

Object Identity. Each object is identified uniquely by an
object identifier (OID), which provides it with an identity
independent from its value. The OID is unique within the
system, and it is immutable; that is, it does not depend on
the state of the object. Object identifiers are usually not
visible and accessible directly by the database users; rather
they are used internally by the system to identify objects
and to support object references through object attribute
values. Objects can thus be interconnected and can share
components. The semantics of object sharing is illustrated
in Fig. 1. The figure shows two objects that, in case (b), share
a component, whereas in case (a), they do not share any
object and simply have the same value for the attribute
date. Although in case (a) a change in the publication date
of Article [i] from March 1997 to April 1997 does not
affect the publication date of Article [j], in case (b), the
change is also reflected on Article[j].

The notion of object identifier is different from the notion
of key used in the relational model to identify uniquely each

2 OBJECT-ORIENTED DATABASES



tuple in a relation. A key is defined as the value of one or
more attributes, and it can be modified, whereas an OID is
independent from the value of an object state. Specifically,
two different objects have different OIDs even when all
their attributes have the same values. Moreover, a key is
unique with respect to a relation, whereas an OID is unique
within the entire database. The use of OIDs, as an identi-
fication mechanism, has several advantages with respect
to the use of keys. First, because OIDs are implemented by
the system, the application programmer does not have to
select the appropriate keys for the various sets of objects.
Moreover, because OIDs are implemented at a low level by
the system, better performance is achieved. A disadvantage
in the use of OIDs with respect to keys could be the fact that
no semantic meaning is associated with them. Note, how-
ever, that very often in relational systems, for efficiency
reasons, users adopt semantically meaningless codes as
keys, especially when foreign keys need to be used.

The notion of object identity introduces at least two
different notions of object equality:

� Equality by identity: Two objects are identical if
they are the same object, that is, if they have the same
identifier.

� Equality by value: Two objects are equal if the values
for their attributes are equal recursively.

Obviously, two identical objects are also equal, whereas
the converse does not hold. Some object-oriented data
models also provide a third kind of equality, which is
known as shallow value equality by which two objects
are equal, although not being identical, if they share all
attributes.

Object State. In an object-oriented database, the value
associated with an object (that is, its state) is a complex
value that can be built starting from other objects and
values, using some type constructors. Complex (or struc-
tured) values are obtained by applying those constructors to
simpler objectsandvalues.Examplesof primitive values are
integers, characters, strings, booleans, and reals. The mini-
mal set of constructors that a system should provide include
sets, lists, and tuples. In particular, sets are crucial because
they are a natural way to represent real-world collections
and multivalued attributes; the tuple constructor is impor-
tant because it provides a natural way to represent the
properties of an entity; lists and arrays are similar to
sets, but they impose an order on the elements of the
collection and are needed in many scientific applications.
Those constructors can be nested arbitrarily. A complex
value can contain as components (references to) objects.

Many OODBMSs, moreover, support storage and retrie-
val of nonstructured values of large size, such as character
strings or bit strings. Those values are passed as they are,
that is, without being interpreted, to the application pro-
gram for the interpretation. Those values, which are known
as BLOBs (binary large objects), are big-sized values like
image bitmaps or long text strings. Those values are not
structured in that the DBMS does not know their structure;
rather the application using them knows how to interpret
them. For example, the application may contain some
functions to display an image or to search for some key-
words in a text.

Object Behavior. Objects in an object-oriented database
are manipulated through methods. A method definition
consists of two components: a signature and an implemen-
tation. The signature specifies the method name, the names
and types of method arguments, and the type of result, for
methods returning a result value. Thus, the signature is a
specification of the operation implemented by the method.
Some OODBMSs do not require the specification of argu-
ment types; however, this specification is required in sys-
tems performing static-type checking. The method
implementation consists of a set of instructions expressed
in a programming language. Various OODBMSs exploited
different languages. For instance, ORION exploited Lisp;
GemStone a Smalltalk extension, namely OPAL; and O2 a C
extension, namely CO2; other systems, among which are
ObjectStore, POET, and Ode, exploited Cþþ or Java.

The use of a general-purpose, computationally complete
programming language to code methods allows the whole

(a)

1.

2.

                Article[i]

title: CAD Databases - Models
authors: {Author[i], Author[k]}
journal:  CAD Journal
date:  March 1997

                Article[i]

title: CAD Databases - Models
authors: {Author[i], Author[k]}
journal:  CAD Journal
date: April 1997

             Article[j]

title: CAD Databases - Tools
authors: {Author[i], Author[k]}
journal:  CAD Journal
date: March 1997

             Article[j]

title: CAD Databases - Tools
authors: {Author[i], Author[k]}
journal:  CAD Journal
date: March 1997

                Article[i]

title: CAD Databases - Models
authors: {Author[i], Author[k]}
journal:  CAD Journal
date: 

             Article[j]

title: CAD Databases - Tools
authors: {Author[i], Author[k]}
journal:  CAD Journal
date: 

  Date[i]

month: March
year: 1997

(b)

1.

2.

  Date[i]

month: April
year: 1997

             Article[j]

title: CAD Databases - Tools
authors: {Author[i], Author[k]}
journal:  CAD Journal
date: 

                Article[i]

title: CAD Databases - Models
authors: {Author[i], Author[k]}
journal:  CAD Journal
date: 

Figure 1. Object-sharing semantics.

OBJECT-ORIENTED DATABASES 3



application to be expressed in terms of objects. Thus no need
exists, which is typical of relational DBMSs, to embed the
query language (e.g., SQL) in a programming language.

Encapsulation. InarelationalDBMS,queriesandapplica-
tion programs that act on relations are expressed in an
imperative language incorporating statements of the data
manipulation language (DML), and they are stored in a
traditional file system rather than in the database. In such
an approach, therefore, a sharp distinction is made between
programs and data and between query language and pro-
gramminglanguage. Inanobject-orienteddatabase,dataand
operations manipulating them are encapsulated in a single
structure: the object. Data and operations are thus designed
together, and they are both stored in the same system.

This notion of encapsulation in programming languages
derives from the concept of abstract data type. In this view,
an object consists of an interface and an implementation.
The interface is the specification of the operations that can
be executed on the object, and it is the only part of the object
that can be observed from outside. Implementation, by
contrast, contains data, that is, the representation or state
of the object, and methods specifying the implementation of
each operation. This principle, in the database context, is
reflected in that an object contains both programs and data,
with a variation: In the database context, it is not clear
whether the structure that defines the type of object is part
of the interface. In the programming language context, the
data structure is part of the implementation and, thus, not
visible. For example, in a programming language, the data
typelist should be independent fromthe fact that listsare
implemented as arrays or as dynamic structures; thus,
this information is hidden correctly. By contrast, in the
database context, the knowledge of an object attributes,
and references made through them to other objects, is often
useful.

Some OODBMSs, like ORION, allow us to read and
write the object attribute values, which thus violates encap-
sulation. The reason is to simplify the development of
applications that simply access and modify object attri-
butes. Obviously, those applications are very common in
the database context. Strict encapsulation would require
writing many trivial methods. Other systems, like O2, allow
for specifying which methods and attributes are visible in
the object interface and thus can be invoked from outside
the object. Those attributes and methods are called public,
whereas those that cannot be observed from outside the
object are called private. Finally, some other systems,
including GemStone, force strict encapsulation.

Classes

Instantiation is the mechanism that offers the possibility of
exploiting the same definition to generate objects with the
same structure and behavior. Object-oriented languages
provide the notion of class as a basis for instantiation. In
this respect, a class acts as a template, by specifying a
structure, that is, the set of instance attributes, which is
a set of methods that define the instance interface (method
signatures) and implement the instance behavior (method

implementations). Given a class, the new operation gener-
ates objects answering to all messages defined for the class.
Obviously, the attribute values must be stored separately
for each object; however, no need exists to replicate method
definitions, which are associated with the class.

However, some class features cannot be observed as attri-
butes of its instances, such as the number of class instances
present in each moment in the database or the average value
of an attribute. An example of anoperation that is invoked on
classes rather than on objects is the new operation for creat-
ing new instances. Some object-oriented data models, like
those of GemStone and ORION, allow the definition of attri-
butes and methods that characterize the class as an object,
which are, thus, not inherited by the class instances.

Aggregation Hierarchy and Relationships. In almost all
object-oriented data models, each attribute has a domain,
that specifies the class of possible objects that can be
assigned as values to the attribute. If an attribute of a class
C has a class C0 as domain, each C instance takes as value for
the attribute an instance of C0 or of a subclass of its. More-
over, an aggregation relationship is established between
the two classes. An aggregation relationship between the
class C and the class C0 specifies that C is defined in terms of
C0. Because C0 can be in turn defined in terms of other
classes, the set of classes in the schema is organized into
an aggregation hierarchy. Actually, it is not a hierarchy in a
strict sense, because class definitions can be recursive.

An important concept that exists in many semantic
models and in models for the conceptual design of data-
bases (12) is the relationship. A relationship is a link
between entities in applications. A relationship between
a person and his employer (�) is one example; another
(classic) example is the relationship among a product, a
customer, and a supplier (��), which indicates that a given
product is supplied to a given customer by a given sup-
plier. Associations are characterized by a degree, which
indicates the number of entities that participate in the
relationship, and by some cardinality constraints, which
indicate the minimum and maximum number of relation-
ships in which an entity can participate. For example,
relationship (�) has degree 2; that is, it is binary, and its
cardinality constraints are (0,1) for person and (1,n) for
employer. This example reflects the fact that a person can
have at most one employer, whereas an employer can have
more than one employee. Referring to a maximum cardin-
ality constraint, relationships are partitioned in one-to-
one, one-to-many, and many-to-many relationships.
Finally, relationships can have their own attributes; for
example, relationship (��) can have attributes quantity
and unit price, which indicate, respectively, the quan-
tity of the product supplied and the unit price quoted. In
most object-oriented data models, relationships are repre-
sented through object references. This approach, how-
ever, imposes a directionality on the relationship. Some
models, by contrast, allow the specification of binary
relationships, without, however, proper attributes.

Extent and Persistence Mechanisms. Besides being a tem-
plate for defining objects, in some systems, the class also

4 OBJECT-ORIENTED DATABASES



denotes the collection of its instances; that is, the class has
also the notion of extent. The extent of a class is the
collection of all instances generated from this class. This
aspect is important because the class is the basis on which
queries are formulated: Queries are meaningful only when
they are applied to object collections. In systems in which
classes do not have the extensional function, the extent of
each class must be maintained by the applications through
the use of constructors such as the set constructor. Differ-
ent sets can contain instances of the same class. Queries are
thus formulated against such sets and not against classes.
The automatic association of an extent with each class (like
in the ORION system) has the advantage of simplifying the
management of classes and their instances. By contrast,
systems (like O2 and GemStone) in which classes define
only specification and implementation of objects and
queries are issued against collections managed by the
applications, which provide a greater flexibility at the price
of an increased complexity in managing class extents.

An important issue concerns the persistence of class
instances, that is, the modalities by which objects are
made persistent (that is, inserted in the database) and
are deleted eventually (that is, removed from the database).
In relational databases, explicit statements (like INSERT
and DELETE in SQL) are provided to insert and delete data
from the database. In object-oriented databases, two dif-
ferent approaches can be adopted with respect to object
persistence:

� Persistence is an implicit property of all class
instances; the creation (through the new operation)
of an instance also has the effect of inserting the
instance in the database; thus, the creation of an
instance automatically implies its persistence. This
approach usually is adopted in systems in which
classes also have an extensional function. Some sys-
tems provide two different new operations: one for
creating persistent objects of a class and the other
one for creating temporary objects of that class.

� Persistence is an orthogonal properties of objects; the
creation of an instance does not have the effect of
inserting the instance in the database. Rather, if an
instance has to survive the program that created it, it
must be made persistent, for example, by assigning it a
name or by inserting it into a persistent collection of
objects. This approach usually is adopted in systems in
which classes do not have the extensional function.

With respect to object deletion, two different approaches
are possible:

� The system provides an explicit delete operation. The
possibility of explicitly deleting objects poses the pro-
blem of referential integrity; if an object is deleted and
other objects refer to it, references are not any longer
valid (such references are called as dangling refer-
ences). The explicit deletion approach was adopted
by the ORION and Iris systems.

� The system does not provide an explicit delete opera-
tion. A persistent object is deleted only if all references

to it have been removed (a periodic garbage collection
is performed). This approach, which was adopted
by the GemStone and O2 systems, ensures referential
integrity.

Migration. Because objects represent real-world enti-
ties, they must be able to reflect the evolution in time of
those entities. A typical example is that of a person who is
first of all a student, then an employee, and then a retired
employee. This situation can be modeled only if an object
can become an instance of a class different from the one
from which it has been created. This evolution, known as
object migration, allows an object to modify its features,
that is, attributes and operations, by retaining its identity.
Object migration among classes introduces, however,
semantic integrity problems. If the value for an attribute
A of an object O is another object O0, an instance of the class
domain of A, and O0 changes class, if the new class of O0 is no
more compatible with the class domain of A, the migration
of O0 will result in O containing an illegal value for A. For
this reason, migration currently is not supported in most
existing systems.

Inheritance

Inheritance allows a class, called a subclass, to be defined
starting from the definition of another class, called a super-
class. The subclass inherits attributes and methods of its
superclass; a subclass may in addition have some specific,
noninherited features. Inheritance is a powerful reuse
mechanism. By using such a mechanism, when defining
two classes their common properties, if any, can be identi-
fied and factorized in a common superclass. The definitions
of the two classes will, by contrast, specify only the distin-
guishing specific properties of these classes. This approach
not only reduces the amount of code to be written, but it also
has the advantage of giving a more precise, concise, and rich
description of the world being represented.

Some systems allow a class to have several direct super-
classes; in this case, we talk of multiple inheritance. Other
systems impose the restriction to a single superclass; in this
case, we talk of single inheritance. The possibility of defin-
ing a class starting from several superclasses simplifies the
task of the class definition. However, conflicts may develop.
Such conflicts may be solved by imposing an ordering
on superclasses or through an explicit qualification
mechanism.

In different computer science areas and in various
object-oriented languages, different inheritance notions
exist. In the knowledge representation context, for
instance, inheritance has a different meaning from the
one it has in object-oriented programming languages. In
the former context, a subclass defines a specialization with
respect to features and behaviors of the superclass,
whereas in the latter, the emphasis is on attribute and
method reuse. Different inheritance hierarchies can then
be distinguished: subtype hierarchy, which focuses on con-
sistency among type specifications; classification hierar-
chy, which expresses inclusion relationships among object
collections; and implementation hierarchy, which allows
code sharing among classes. Each hierarchy refers to

OBJECT-ORIENTED DATABASES 5



different properties of the type/class system; those hierar-
chies, however, generally are merged into a single inheri-
tance mechanism.

Overriding, Overloading, and Late Binding. The notion of
overloading is related to the notion of inheritance. In many
cases, it is very useful to adopt the same name for different
operations, and this possibility is extremely useful in the
object-oriented context. Consider as an example (9) a
display operation receiving as input an object and display-
ing it. Depending on the object type, different display
mechanisms are exploited: If the object is a figure, it should
appear on the screen; if the object is a person, its data
should be printed in some way; if the object is a graph, a
graphical representation of it should be produced. In an
application developed in a conventional system, three dif-
ferent operations display_graph, display_person,
and display_figure would be defined. This process
requires the programmer to be aware of all possible object
types and all associated display operations and to use them
properly.

In an object-oriented system, by contrast, the display
operation can be defined in a more general class in the class
hierarchy. Thus, the operation has a single name and can be
used indifferently on various objects. The operation imple-
mentation is redefined for each class; this redefinition is
known as overriding. As a result, a single name denotes
different programs, and the system takes care of selecting
the appropriate one at each time during execution. The
resulting code is simpler and easier to maintain, because
the introduction of a new class does not require modifica-
tion of the applications. At any moment, objects of other
classes, for example, information on some products, can be
added to the application and can be displayed by simply
defining a class, for example, product, to provide a proper
(re)definition of the display operation. The application
code would not require any modification.

To support this functionality, however, the system can no
longer bind operation names to corresponding code at compile
time; rather, it must perform such binding at run time: This
late translation is known as late binding. Thus, the notion of
overriding refers to the possibility for a class of redefining
attributes and methods it inherits from its superclasses; thus,
the inheritance mechanism allows for specializing a class
through additions and substitutions. Overriding implies
overloading, because an operation shared along an inheri-
tance hierarchy can have different implementations in the
classes belonging to this hierarchy; therefore, the same opera-
tion name denotes different implementations.

An Example

Figure 2 illustrates an example of object-oriented database
schema. In the figure, each node represents a class. Each
node contains names and domains of the attributes of the
class it represents. For the sake of simplicity, we have
included in the figure neither operations nor class features.
Moreover, only attributes and no relationships have been
included in classes. Nodes are connected by two different
kinds of arcs. The node representing a class C can be linked
to the node representing class C0 through:

1. A thin arc, which denotes that C0 is the domain of an
attribute A of C (aggregation hierarchy).

2. A bold arc, which denotes that C0 is superclass of C
(inheritance hierarchy).

QUERY LANGUAGES

Query languages are an important functionality of any
DBMS. A query language allows users to retrieve data
by simply specifying some conditions on the content of those
data. In relational DBMSs, query languages are the only

Figure 2. An example of object-oriented
database schema.

Project
name : String
documents : 
leader :
tasks :

Set Document

Task

title : String
authors :  
state : String
content : ......

man_month : Number
start_date : Date 
end_date : Date
coordinator : 

List

journal :  String
publ_date : Date  

Article

Employee

name : String
salary : Number 
phone_nbr : Number
project :
tasks :
manager :

institution :  String
number: Number
date : Date  

Technical
Report

Set

Set

6 OBJECT-ORIENTED DATABASES



way to access data, whereas OODBMSs usually provide two
different modalities to access data. The first one is called
navigational and is based on object identifiers and on the
aggregation hierarchies into which objects are organized.
Given a certain OID, the system can access directly and
efficiently the object referred by it and can navigate
through objects referred by the components of this object.
The second access modality is called associative, and it is
based on SQL-like query languages. These two different
access modalities are used in a complementary way: A
query is evaluated to select a set of objects that are then
accessed and manipulated by applications through the
navigational mechanism. Navigational access is crucial
in many applications, such as graph traversal. Such type
of access is inefficient in relational systems because it
requires the execution of a large number of join operations.
Associative access, by contrast, has the advantage of sup-
porting the expression of declarative queries, which
reduces thus application development time. Relational
DBMSs are successful mostly because of their declarative
query languages.

A first feature of object-oriented query languages is the
possibility they offer of imposing conditions on nested attri-
butes of an object aggregation hierarchy, through path
expressions, which allows for expressing joins to retrieve
the values of the attributes of an object components. In
object-oriented query languages, therefore, two different
kinds of join can be distinguished: implicit join, which
derives from the hierarchical structure of objects, and expli-
cit join, which, as in relational query languages, explicitly
compares two objects. Other important aspects are related
to inheritance hierarchies and methods. First, a query can
be issued against a class or against a class and all its
subclasses. Most existing languages support both of these
possibilities. Methods can be used as derived attributes or as
predicate methods. A method used as a derived attribute is
similar to an attribute; however, whereas the attribute
stores a value, the method computes a value starting
from data values stored in the database. A predicate method
is similar, but it returns the Boolean constants true or false.
A predicate method evaluates some conditions on objects
and can thus be part of the Boolean expressions that deter-
mine which objects satisfy the query.

Moreover, object-oriented query languages often pro-
vides constructs for expressing recursive queries, although
recursion is not a peculiar feature of the object-oriented
paradigm and it has been proposed already for the rela-
tional data model. It is, however, important that some kind
of recursion can be expressed, because objects relevant for
many applications are modeled naturally through recur-
sion. The equality notion also influences query semantics.
The adopted equality notion determines the semantics and
the execution strategy of operations like union, difference,
intersection, and duplicate elimination. Finally, note that
external names that some object-oriented data models allow
for associating with objects provides some semantically
meaningful handlers that can be used in queries.

A relevant issue for object-oriented query languages is
related to the language closure. One of the most remarkable
characteristics of relational query languages is that the
results of a query are in turn relations. Queries can then

be composed; that is, the result of a query can be used as an
operand in another query. Ensuring the closure property in
an object-oriented query language is by contrast more diffi-
cult: The result of a query often is a set of objects, whose class
does not exist in the database schema and that is defined by
the query. The definition of a new class ‘‘on-the-fly’’ as a
result of a query poses many difficulties, including where to
position the new class in the inheritance hierarchy and
which methods should be defined for such class. Moreover,
the issue of generating OIDs for the new objects, which are
the results of the query and instances of the new class, must
be addressed.

To ensure the closure property, an approach is to impose
restrictions on the projections that can be executed on
classes. A common restriction is that either all the object
attributes are returned by the query or only a single attri-
bute is returned. Moreover, no explicit joins are allowed. In
this way the result of a query is always a set of already
existing objects, which are instances of an already existing
class; the class can be a primitive class (such as the class of
integers, string, and so forth) or a user-defined class. If one
wants to support more general queries with arbitrary pro-
jections and explicit joins, a first approach to ensure closure
is to consider the results of a query as instances of a general
class, accepting all objects and whose methods only allow for
printing or displaying objects. This solution, however, does
not allow objects to be reused for other manipulations and,
therefore, limits the nesting of queries, which is the main
motivation for ensuring the closure property. Another pos-
sible approach is to consider the result of a query as a
collection of objects, instances of a new class, which is
generated by the execution of the query. The class implicitly
defined by the query has no methods; however, methods for
reading and writing attributes are supposed to be available,
as system methods. The result of a query is thus similar to a
set of tuples. An alternative solution (11) is, finally, that of
including relations in the data model and of defining the
result of a query as a relation.

THE ODMG STANDARD

ODMG is an OODBMS standard, which consists of a data
model and a language, whose first version was proposed in
1993 by a consortium of major companies producing
OODBMSs (covering about 90% of the market). This con-
sortium included as voting members Object Design, Objec-
tivity, O2 Technology, and Versant Technology and as
nonvoting members HP, Servio Logics, Itasca, and Texas
Instruments. The ODMG standard consists of the following
components:

� A data model (ODMG Object Model)

� A data definition language (ODL)

� A query language (OQL)

� Interfaces for the object-oriented programming lan-
guages Cþþ Java, and Smalltalk and data manipula-
tion languages for those languages

The ODMG Java binding is the basis on which the Java
Data Objects specification (13) has been developed, which

OBJECT-ORIENTED DATABASES 7



provides the reference data model for persistent Java
applications. In this section, we briefly introduce the
main features of the ODMG 3.0 standard data model and
of its query language OQL (14).

Data Definition in ODMG

ODMG supports both the notion of object and the notion of
value (literal in the ODMG terminology). Literals can
belong to atomic types like long, short, float, double, Boo-
lean, char, and string; to types obtained through the set,
bag, list, and array constructors; to enumeration types
(enum); and to the structured types date, interval, time,
and timestamp.

A schema in the ODMG data model consists of a set of
object types related by inheritance relationships. The model
provides two different constructs to define the external
specification of an object type. An interface definition only
defines the abstract behavior of an object type, whereas a
class definition defines the abstract state and behavior of an
object type. The main difference between class and interface
types is that classes are types that are instantiable directly,
whereas interfaces are types that cannot be instantiated
directly. Moreover, an extent and one or more keys can be
associated optionally with a class declaration. The extent of
a type is the set of all instances of the class.

Objects have a state and a behavior. The object state
consists of a certain number of properties, which can be
either attributes or relationships. An attribute is related to
a class, whereas a relationship is defined between two
classes. The ODMG model only supports binary relation-
ships, that is, relationships between two classes. One-to-
one, one-to-many, and many-to-many relationships are
supported. A relationship is defined implicitly through
the specification of a pair of traversal paths, which enable
applications to use the logical connection between objects
participating in the relationship. Traversal paths are
declared in pairs, one for each traversal direction of the
binary relationship. The inverse clause of the traversal
path definition specifies that two traversal paths refer to
the same relationship. The DBMS is responsible for ensur-
ing value consistency and referential integrity for relation-
ships, which means that, for example, if an object
participating in a relationship is deleted, any traversal
path leading to it is also deleted.

Like several object models, the ODMG object model
includes inheritance-based type–subtype relationships.
More precisely, ODMG supports two inheritance relation-
ships: the ISA relationship and the EXTENDS relation-
ships. Subtyping through the ISA relationship pertains to
the inheritance of behavior only; thus, interfaces may
inherit from other interfaces and classes may also inherit
from interfaces. Subtyping through the EXTENDS relation-
ship pertains to the inheritance of both state and behavior;
thus, this relationship relates only to classes. Multiple
inheritance is allowed for the ISA, whereas it is not allowed
for the EXTENDS relationship.

The ODMG class definition statement has the following
format:

class ClassName [:SuperInterface List]
[EXTENDS SuperClass]

[(extentExtentName [key[s]AttributeList])]
{Attribute List
Relationship List
Method List }

In the above statement:

� The : clause specifies the interfaces by which the class
inherits through ISA.

� The EXTENDS clause specifies the superclass by which
the class inherits through EXTENDS.

� Theextent clause specifies that the extent of the class
must be handled by the OODBMS.

� The key [s] clause, which can appear only if the
extent clause is present, specifies a list of attributes
for which two different objects belonging to the extent
cannot have the same values.

� Each attribute in the list is specified as

attribute Domain Name;

� Each relationship in the list is specified as

relationship Domain Name
inverse Class:: Inverse Name
where Domain can be either Class, in the case of unary

relationships, or a collection of Class elements, and Inverse
Name is the name of the inverse traversal path.

� Each method in the list is specified as

Type Name(Parameter List) [raises Exception
List]

where Parameter List is a list of parameters specified as

in | out | inout Parameter Name

and the raises clause allows for specifying the excep-
tions that the method execution can introduce.

The following ODL definition defines the following
classes: Employee, Document, Article, Project,
and Task of the database schema of Fig. 2, in which
some relationships between projects and employees (rather
than the leader attribute of class Project), and between
employees and tasks (rather than the tasks attribute of
class Employee), have been introduced. The main differ-
ence in representing a link between objects as a relation-
ship rather than as a reference (that is, attribute value) is in
the nondirectionality of the relationship. If, however, only
one direction of the link is interesting, the link can be
represented as an attribute.

class Employee (extent Employees key name)
{ attribute string name;
attribute unsigned short salary;
attribute unsigned short phone_nbr[4];
attribute Employee manager;
attribute Project project;
relationship Project leads

inverse Project::leader;

8 OBJECT-ORIENTED DATABASES



relationship Set<Task> tasks
inverse Task:participants;

}

class Document (extent Documents key title)
{ attribute string title;
attribute List<Employee> authors;
attribute string state;
attribute string content;

}

class Article EXTENDS Document (extent Articles)
{ attribute string journal;
attribute date publ_date;

}

class Project (extent Projects key name)
{ attribute string name;
attribute Set<Document> documents;
attribute Set<Task> tasks;
relationship Employee leader
inverse Employee::leads;

}

class Task (extent Tasks)
{ attribute unsigned short man_month;
attribute date start_date;
attribute date end_date;
attribute Employee coordinator;
relationship Set<Employee> participants
inverse Employee::tasks;

}

Data Manipulation in ODMG

ODMG does not support a single DML; rather, three dif-
ferent DMLs are provided, which are related to Cþþ, Java,
and Smalltalk, respectively. These OMLs are based on
different persistence policies, which correspond to different
object-handling approaches in the languages. For example,
Cþþ OML supports an explicit delete operation (dele-
te_object), whereas Java and Smalltalk OMLs do not
support explicit delete operations; rather, they are based on
a garbage collection mechanism.

ODMG,bycontrast, supportsanSQL-likequerylanguage
(OQL), which is based on queries of theselect from where
form that has been influenced strongly by the O2 query
language (15). The query returning all tasks with a man-
power greater than 20 months, whose coordinator earns
more than $20,000, is expressed in OQL as follows:

select t
from Tasks t
where t.man_month > 20 and
t.coordinator.salary > 20000

OQL is a functional language in which operators can be
composed freely as a consequence of the fact that query
results have a type that belongs to the ODMG type system.
Thus, queries can be nested. As a stand-alone language,
OQL allows for querying objects denotable through their
names. A name can denote an object of any type (atomic,

collection, structure, literal). The query result is an object
whose type is inferred from the operators in the query
expression. The result of the query ‘‘retrieve the starting
date of tasks with a man power greater than 20 months,’’
which is expressed in OQL as

select distinct t.start_date
from Tasks t
where t.man_month > 20

is a literal of type Set < date >.
The result of the query ‘‘retrieve the starting and ending

dates of tasks with a man power greater than 20 months,’’
which is expressed in OQL as

select distinct struct(sd: t.start_date,
ed: t.end_date)

from Tasks t
where t.man_month > 20

is a literal of type Set < struct(sd : date, ed :
date) >.

A query can return structured objects having objects as
components, as it can combine attributes of different
objects. Consider as an example the following queries.
The query ‘‘retrieve the starting date and the coordinator
of tasks with a man power greater than 20 months,’’ which
is expressed in OQL as

select distinct struct(st: t.start_date,
c: coordinator)

from Tasks t
where t.man_month > 20

produces as a result a literal with type Set <
struct(st:date,c:Employee)>. The query ‘‘retrieve
the starting date, the names of the coordinator and of
participants of tasks with a man power greater than 20
months,’’ which is expressed in OQL as

select distinct struct(sd: t.start_date,
cn: coordinator.name,
pn: (select p.name
from t.participants p))

from Tasks t
where t.man_month > 20

produces as a result a literal with type Set <
struct(st : date, cn : string, pn : bag < string
>) >.

OQL is a very rich query language. In particular it
allows for expressing, in addition to path expressions
and projections on arbitrary sets of attributes, which are
illustrated by the above examples, explicit joins and queries
containing method invocations. The query ‘‘retrieve the
technical reports having the same title of an article’’, is
expressed in OQL as

select tr
from Technical_Reports tr, Articles a
where tr.title = a title

OBJECT-ORIENTED DATABASES 9



The query ‘‘retrieve the name and the bonus of employ-
ees having a salary greater than 20000 and a bonus greater
than 5000’’ is expressed in OQL as

select distinct struct(n: e.name, b: e.bonus)
from Employees e
where e.salary > 20000 and e.bonus > 5000

OQL finally supports the aggregate functions min,
max, count, sum, and avg. As an example, the query
‘‘retrieve the maximum salary of coordinators of tasks of
the CAD project’’ can be expressed in OQL as

select max(select t.coordinator.salary
from p.tasks t)

from Projects p
where p.name = ’CAD’

OBJECT-ORIENTED DBMSs

As we have discussed, the area of object-oriented data-
bases has been characterized by the development of sev-
eral systems in the early stages, followed only later by the
development of a standard. Table 1 compares some of the
most influential systems along several of dimensions. In
the comparison, we distinguish systems in which classes
have an extensional function, that is, in which with a class
the set of its instances is associated automatically, from
those in which object collections are defined and handled
by the application. We point out, moreover, the adopted
persistence mechanism, which distinguishes among sys-
tems in which all objects are created automatically as
persistent, systems in which persistence is ensured by
linking an object to a persistence root (usually an external
name), and systems supporting two different creation
operations, one for creating temporary objects and the
other one for creating persistent objects. The different

policies with respect to encapsulation are also shown,
which distinguishes among systems forcing strict encap-
sulation, systems supporting direct accesses to attribute
values, and systems distinguishing between private and
public features. Finally, the O2 system allows the speci-
fication of exceptional instances, that is, of objects that can
have additional features and/or redefine (under certain
compatibility restrictions) features of the class of which
they are instances.

Most OODBMSs in Table 1, although they deeply influ-
enced the existing OODBMSs and the ODMG standard, are
no more available in the marketplace. Table 2 lists most
popular commercial and open-source OODBMSs available
in 2007 (www.odbms.org). Although most of their produ-
cers are ODMG members, the system still exhibits different
levels of ODMG compliance.

OBJECT RELATIONAL DATABASES

As discussed at the beginning of this article, object rela-
tional databases rely on extensions of the relational data
model with the most distinguishing features of the object
paradigm. One of the first object relational DBMS is
UniSQL (24), and nowadays object relational systems
include, among others, DB2 (25,26), Oracle (27), Microsoft
SQL Server (28), Illustra/Informix (29), and Sybase (30).
All of these systems extend a relational DBMS with object-
oriented modeling features. In all those DBMSs, the type
system has been extended in some way and the possibility
has been introduced of defining methods to model user-
defined operations on types. The SQL standard, since its
SQL:1999 version (7), has been based on an object-
relational data model. In what follows, we discuss briefly
the most relevant type system extensions according to the
most recent version of the SQL standard, namely,
SQL:2003 (31).

Table 1. Comparison among data models of most influential OODBMSs

Gem-Stone Iris O2 Orion Object-Store Ode ODMG

Reference (16) (17) (18), (19) (20), (21) (22) (23) (14)
Class extent NO YES NO YES NO YES YESa

Persistence R A R A R 2op Ab

Explicit deletion NO YES NO YES YES YES YESb

Direct access to attributes NO YES P YES P P YES
Domain specification for attributes O M M M M M M
Class attributes and methods YES NO NO YES NO NO NO
Relationships NO YES NO NO YES NO YES
Composite objects NO NO NO YES NO NO NO
Referential integrity YES NO YES NO YESc NO YESc

Multiple inheritance NO YES YES YES YES YES YES
Migration L YES NO NO NO NO NO
Exceptional instances NO NO YES NO NO NO NO

R ¼ root persistence, A ¼ automatic, 2op ¼ two different new operations.

P ¼ only for public attributes.

O ¼ optional, M ¼ mandatory.

L ¼ in limited form.
aFor those classes in which definition of an extent clause is specified.
b In Cþþ OML, created objects are automatically persistent and explicit deletion is supported; in Smalltalk OML, persistence is by root and no explicit delete

operation exists.
c Referential integrity is ensured for relationships but not for attributes.

10 OBJECT-ORIENTED DATABASES



Primitive Type Extensions

Most DBMSs support predefined types like integers, float-
ing points, strings, and dates. Object relational DBMSs
support the definition of new primitive types starting from
predefined primitive types and the definition of user-
defined operations for these new primitive types. Opera-
tions on predefined types are inherited by the user-defined
type, unless they are redefined explicitly. Consider as an
example a yen type, which corresponds to the Japanese
currency. In a relational DBMS, this type is represented
as a numeric type with a certain scale and precision, for
exampleDECIMAL(8,2). The predefined operations of the
DECIMAL type can be used on values of this type, but no
other operations are available. Thus, any additional
semantics, for instance, as to convert yens to dollars,
must be handled by the application, as the display in an
appropriate format of values of that type. In an object
relational DBMS, by contrast, a type yen can be defined as
follows:

CREATE TYPE yen AS Decimal(8,2);
and the proper functions can be associated with it.

Complex Types

A complex, or structured, type includes one or more
attributes. This notion corresponds to the notion of struct
of the C language or to the notion of record of the Pascal
language. Complex types are called structured types in
SQL:2003 (31). As an example, consider the type
t_Address, defined as follows:

CREATE TYPE t_Address AS (street VARCHAR(50),
number INTEGER,
city CHAR(20),
country CHAR(2),
zip INTEGER),

Relations can contain attributes whose type is a complex type,

as shown by the following example:

CREATE TABLE Employees(name CHAR(20),
emp# INTEGER,
curriculum CLOB,
salary INTEGER,
address t_Address);

This relation can be defined as equivalently :

CREATE TYPE t_Employee AS (name CHAR(20),
emp# INTEGER,

curriculum CLOB,
salary INTEGER,
address t_Address);
CREATE TABLE Employees OF t_Employee;

Note that for what concerns the structure of the tuples in
the relation, the above declarations are equivalent to the
following one, which makes use of an anonymous row type
for specifying the structure of addresses:

CREATE TABLE Employees (name CHAR(20),
emp# INTEGER,
curriculum CLOB,
salary INTEGER,

address ROW (street VARCHAR(50),
number INTEGER,
city CHAR(20),
country CHAR(2),
zip INTEGER));

Components of attributes, whose domain is a complex
type, are accessed by means of the nested dot notation. For
example, the zipcode of the address of an employee is
accessed as Employees.address.zip.

Table 2. OODBMS scenario in 2007 www.odbms.org

Commercial systems

Company System(s) Web reference

db4objects db4o www.db4o.com
Objectivity Objectivity/DB www.objectivity.com
Progress ObjectStore, PSE Pro www.progress.com
Versant Versant Object Database,

FastObjects
www.versant.com

InterSystems Cache www.intersystems.com
GemStone GemStone/S, Facets www.facetsodb.com
Matisse Matisse www.matisse.com
ObjectDB ObjectDB www.objectdb.com

W3apps Jeevan www.w3apps.com

Open source systems

System Web reference

db4o www.db4o.com
EyeDB www.eyedb.com
Ozone www.ozone-db.com
Perst www.mcobject.com/perst/
Zope (ZODB) www.zope.org

OBJECT-ORIENTED DATABASES 11



Methods. Methods can be defined on simple and complex
types, as part of the type definition. Each method has a
signature and an implementation that can be specified in
SQL/PSM (31) or in different programming languages. The
method body can refer to the instance on which the method
is invoked through the SELF keyword.

The definition of the type t_Employee can, for example,
be extended with the definition of some methods as follows:

CREATE TYPE t_Employee (...)
INSTANCE METHOD double_salary()

RETURNS BOOLEAN;
INSTANCE METHOD yearly_salary()

RETURNS INTEGER;
INSTANCE METHOD add_telephone(n CHAR(15))

RETURNS BOOLEAN;

With each complex type, a constructor method, which is
denoted byNEW and the name of the type, is associated. This
method creates an instance of the type, given its attribute
values. As an example, the invocation

NEW t_address(’via pisa’, 36, ’genova’,
’italy’, 16146)
returns a new instance of the t_address type.

For each attribute A in a complex type, an accessor
method A, returning the attribute value, and a mutator
method A, taking as input a value v and setting the attri-
bute value to v, are associated implicitly with the type.

Referring to type t_Employee and to relation Employees
above, the statement:

SELECT address.city()
FROM Employees;

contains an invocation of the accessor method for attribute

city. Because the method has no parameters, the brackets can

be omitted (i.e., address.city). By contrast, the statement:

UPDATE Employees
SET address = address.city(’genova’)
WHERE empl# = 777;

contains an invocation of the mutator method for attribute

city.

Collection Types

Object relational DBMSs support constructors for grouping
several instances of a given type, which thus models collec-
tions of type instances. Specifically, SQL:2003 supports
ARRAY and MULTISET collections. Referring to the
Employees relation above, suppose we want to add a
tel_nbrs attribute as a collection of telephone numbers
(strings). An attribute declared as

tel_nbrs CHAR(15) ARRAY [3]
allows for representing a maximum of three telephone numbers,

ordered by importance. By contrast, an attribute declared as

tel_nbrs CHAR(15) MULTISET
allows for representing an unlimited number of telephone

numbers, without specifying an order among them. Note that

duplicates are allowed because the collection is a multiset.

Elements of the collections are denoted by indexes in
case of arrays (for example, tel_nbrs [2] accesses the

second number in the array), whereas multisets can be
converted to relations through the UNNEST function and
then they can be iterated over through an SQL query as any
other relation. The following SQL statement:

SELECT e.name, T.N
FROM Employees e, UNNEST(e.tel_nbrs) T(N)
WHERE e.emp# = 777;
returns the employee name and the set of its telephone

numbers. In the previous statement, T is the name of a virtual

table and N is the name of its single column.

Reference Types

Aswehaveseen,astructuredtypecanbeusedinthedefinition
of types and tables. Its instances are complex values. Struc-
tured types can be used as well for defining objects, as tuples
with an associated identifier. These tuples are contained in
typed tables, which are characterized by an additional identi-
fier field, which is specified as REF IS. Note that the unique-
ness of identifiers is not ensured across relations. The
Employees relation above can be specified as a typed table
as follows (provided the definition of type t_Employee:

CREATE TABLE Employees OF t_Employee
(REF IS idE);

The values for the idE additional field are system-generated.

Reference types allow a column to refer a tuple contained
in a typed table through its identifier. Thus, those types
allow a tuple in a relation to refer to a tuple in another
relation. The reference type for a type T is the type of the
identifier of instances of T and is denoted by REF(T). Given
the following declaration and the above declarations of the
Employees relation:

CREATE TYPE t_Department (name CHAR(10),
dept# INTEGER,
chair REF(t_Employee),
dependents REF(t_Employee)
MULTISET);

CREATE TABLE Departments
OF t_Department
(REF IS idD);
the values of the chair and dependents attributes are

identifiers of instances of type t_Employee. This definition,

however, does not provide information about the relation con-

taining the instances of the type (SQL:2003 calls these uncon-
strained references). To ensure referential integrity, a SCOPE
clause, which requires the reference to belong to the extent

associated with a typed table, can be used. With the following

declaration of the Departments relation:

CREATE TABLE Departments OF t_Department
(REF IS idD,
chair WITH OPTIONS SCOPE Employees,
dependents WITH OPTIONS SCOPE Employees);
for each tuple in the Departments relation, the chair
column is guaranteed to refer to a tuple of the Employees
relation (corresponding to the department chair) and the values

in the multiset in the dependent column are guaranteed to

refer to tuples of the Employees relation.

To manipulate reference-type instances, SQL provides
the dereferencing function DEREF, returning the tuple

12 OBJECT-ORIENTED DATABASES



referenced by a reference, and the reference function ->,
returning the value of a specific attribute of the tuple
referenced by a reference. The attributes of a referred
instance can be accessed by means of the dot notation.
For example, referring to the example above, the
name of a department chair can be denoted either
as Departments.chair->name or Departments.
DEREF(chair).name.

Inheritance

Inheritance specifies subtype/supertype relationships
among types. Subtypes inherit attributes and methods of
their supertypes. Object relational DBMSs allow for speci-
fying inheritance links both among types and among rela-
tions. The following declarations specify types t_ Student
and t_Teacher as subtypes of the t_Person type:

CREATE TYPE t_Person AS (name CHAR(20),
ssn INTEGER,
b_date DATE,
address t_Address);

CREATE TYPE t_Teacher UNDER t_Person AS
(salary DECIMAL(8,2),
dept REF t_Department,
teaches REF(t_Course)MULTISET);

CREATE TYPE t_Student UNDER t_Person AS
(avg_grade FLOAT,
attends REF(t_Course)MULTISET);

The following declarations, by contrast, specify inheritance

relationships among relations:

CREATE TABLE Persons OF t_Person;
CREATE TABLE Teachers OF t_Teacher
UNDER Persons;
CREATE TABLE Students OF t_Student
UNDER Persons;

At the data level, those two declarations imply that
instances of Teachers and Students relations are also
instances of the Persons relation (inheritance among rela-
tions) and that instances of those relations have name, ssn,
b_date, and address as attributes (inheritance among
types). The following query:

SELECT name, address
FROM Teachers
WHERE salary > 2000

can thus be expressed.

Inheritance among types also implies method inheri-
tance and method overloading. Overriding and late binding
are supported.

LOBs

Object relational DBMSs, finally, provide LOB types to
support the storage of multimedia objects, such as docu-
ments, images, and audio messages. LOBs are stored
semantically as a column of the relation. Physically,
however, they are stored outside the relations, typically
in an external file. Usually, for efficiency reasons, those

external files are not manipulated under transactional
control (or, at least, logging is disabled). LOBs can be either
CLOBs (characters) or BLOBs (binaries). Ad hoc indexing
mechanisms are exploited to handle LOBs efficiently.

CONCLUDING REMARKS

In this article, we have focused on the modeling aspects and
query and data manipulation languages of OODBMs and
object relational DBMSs. The effective support of object-
oriented data models and languages requires revisiting and
possibly extending techniques and data structures used in
DBMS architectures. In this section, we briefly discuss
some of those architectural issues and point out relevant
references. We mention moreover some relevant issues in
OODBMSs not dealt with in the article.

An important aspect is related to the indexing techniques
used to speed up query executions. Three object-oriented
concepts have an impact on the evaluation of object-oriented
queries as well as on the indexing support required: the
inheritance hierarchy, the aggregation hierarchy, and the
methods. For what concerns inheritance, a query on a class
C has two possible interpretations. In a single-class query,
objects are retrieved from only the queried class C itself,
whereas in a class-hierarchy query, objects are retrieved
from all the classes in the inheritance hierarchy rooted at C.
To facilitate the evaluation of such types of queries, a class-
hierarchy index needs to support efficient retrieval of objects
from a single class as well as from all the classes in the class
hierarchy. A class-hierarchy index is characterized by two
parameters: the hierarchy of classes to be indexed and the
index attribute of the indexed hierarchy.

Two approaches to class-hierarchy indexing exist: The
class-dimension-based approach(32,33) partitions the data
space primarily on the class of an object, and the attribute-
dimension-based approach(32) partitions the data space
primarily on the indexed attribute of an object. Although
the class-dimension-based approach supports single-class
queries efficiently, it is not effective for class-hierarchy
queries because of the need to traverse multiple single-
class indexes. On the other hand, the attribute-dimension-
based approach generally provides efficient support for
class-hierarchy queries on the root class (i.e., retrieving
objects of all indexed classes), but it is inefficient for single-
class queries or class-hierarchy queries on a subhierarchy
of the indexed class hierarchy, as it may need to access
many irrelevant leaf nodes of the single index structure. To
support both types of queries efficiently, the index must
support both ways of data partitioning (34). However, this
is not a simple or direct application of multi-dimensional
indexes, because totally ordering of classes is not possible
and, hence, partitioning along the class dimension is
problematic.

A second important issue in indexing techniques is
related to aggregation hierarchies and to navigational
accesses along these hierarchies. Navigational access is
based on traversing object references; a typical example is
represented by graph traversal. Navigations from one
object in a class to objects in other classes in a
class aggregation hierarchy are essentially expensive

OBJECT-ORIENTED DATABASES 13



pointer-chasing operations. To support navigations effi-
ciently, indexing structures that enable fast path instan-
tiation have been developed, including the the multi-index
technique, the nested index, the path index, and the join
hierarchy index. In practice, many of these structures are
based on precomputing traversals along aggregation hier-
archies. The major problem of many of such indexing
techniques is related to update operations that may
require access to several objects to determine the index
entries that need updating. To reduce update overhead
and yet maintain the efficiency of path indexing struc-
tures, paths can be broken into subpaths that are then
indexed separately (35,36). The proper splitting and
allocation is highly dependent on the query and update
patterns and frequencies. Therefore, adequate index
allocation tools should be developed to support the optimal
index allocation.

Finally, a last issue to discuss is related to the use of
user-defined methods into queries. The execution of a query
involving a method may require the execution of such
method for a large number of instances. Because a method
can be a general program, the query execution costs may
become prohibitive. Possible solutions are based on method
precomputation; such approaches, however, make object
updates rather expensive. We refer the reader to Ref. 37, for
an extensive discussion on indexing techniques for
OODBMSs.

Another important issue, which is related to perfor-
mance, is query optimization. Because most object-oriented
queries only require implicit joins through aggregation
hierarchies, the efficient support of such a join is important.
Therefore, proposed query execution strategies have
focused on efficient traversal of aggregation hierarchies.
Because aggregation hierarchies can be represented as
graphs, and a query can be observed as a visit of a portion
of such a graph, traversal strategies can be formalized as
strategies for visiting nodes in a graph. The main methods
proposed for such visits include forward traversal, reverse
traversal, and mixed traversal. They differ with respect to
the order according to which the nodes involved in a given
query are visited. A second dimension in query processing
strategies concerns how instances from the visited class are
retrieved. The two main strategies are the nested-loop and
the sort-domain. Each of those strategies can be combined
with each node traversal strategy, which results in a wide
spectrum of strategies. We refer the reader to Ref. 1 for an
extensive discussion on query execution strategies and
related cost models.

Other relevant issues that we do not discuss here, but
are dealt with in Ref. 1, include access control mechanisms,
versioning models, schema evolutions, benchmarks, con-
currency control, and transaction management mechan-
isms. Another aspect concerns integrity constraint and
trigger support (38).

A final topic we would like to mention is related to the
modeling and the management of spatiotemporal and mov-
ing objects. A large percentage of data managed in a variety
of different application domains has spatiotemporal char-
acteristics. For what concerns the spatial characteristics of
data, for instance, an object may have a geographical loca-
tion. Specifically, geographic objects, such as a land parcel, a

car, and a person, do have a location. The location of a
geographic object is a spatial attribute value, whose data
type can be, for instance, a polygon or a point. Moreover,
attribute values of geographic objects may be space depen-
dent, which is different from spatial attribute values. For
instance, the soil type of a land parcel applies to the entire
spatial extent (i.e., the location of the land parcel) and it is
not a ‘‘normal’’ attribute of a land parcel, but it is inherited
from the underlying geographical space via the object loca-
tion. This means that the attribute can be modeled as a
function from the spatial domain. For what concerns the
temporal characteristics of objects, both the time when some
property holds (valid time) and the time when something is
believed in/recorded as current in the database (transaction
time) can be of interest. Several kinds of applications can be
devised in which both spatial and temporal aspects of objects
are important, among which at least three different types
can be distinguished: cadastral applications, in which the
spatial aspects are modeled primarily as regions and points
and changes occur discretely across time; transportation
applications, in which the spatial aspects are modeled pri-
marily as linear features, graphs, and polylines and changes
occur discretely across time; and environmental applica-
tions, or ‘‘location-based services,’’ characterized by continu-
ously changing spatial aspects. Several proposals that
provide an integrated approach for the management of
spatial and temporal information have been presented in
the recent past (39,40). A growing interest has been devised
also in the area of moving and geometric objects, mainly
involving abstract modeling. Recently, spatiotemporal
extensions of SQL:1999 and the ODMG model also have
been proposed (41–43).

BIBLIOGRAPHY

1. E. Bertino and L. D. Martino, Object-Oriented Database
Systems - Concepts and Architecture, Reading, MA: Addison-
Wesley, 1993.

2. R. Cattel, Object Data Management - Object-Oriented and
Extended Relational Database Systems, Reading, MA: Addison-
Wesley, 1991.

3. A. Kemper and G. Moerkotte, Object-Oriented Database Man-
agement: Applications in Engineering and Computer Science,
Englewood Coiffs, NJ: Prentice-Hall, 1994.

4. W. Kim and F. H. Lochovsky, Object-Oriented Concepts,
Databases, and Applications, Reading, MA: Addison-Wesley,
1989.

5. M. Stonebraker and D. Moore, Object-Relational DBMSs: The
Next Great Wave, San Francisco, CA: Morgan Kaufmann, 1996.

6. M. Carey, D. Chamberlin, S. Narayanan, B. Vance, D. Doole, S.
Rielau, R. Swagerman, and N. Mattos, O-O, What’s happening
to DB2? Proc. of the ACM SIGMOD Int’l Conf. on Management
of Data, 1999, pp. 511–512.

7. J. Melton and A.R. Simon, SQL:1999 - Understanding Rela-
tional Language Components, San Francisco, CA: Morgan-
Kaufmann, 2001.

8. A.B. Chaudhri and R. Zicari, Succeeding with Object Data-
bases, New York: John Wiley & Sons, 2001.

9. W. Cook, et al., Objects and Databases: State of the Union in
2006. Panel at OOPSLA 2006, New York: ACM Press, 2006.

14 OBJECT-ORIENTED DATABASES



10. M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier,
and S. Zdonik, The object-oriented database system manifesto.
in W. Kim, et al., (eds.), Proc. First Int’l Conf. on Deductive and
Object-Oriented Databases, 1989, pp. 40–57.

11. C. Beeri, Formal models for object-oriented databases, in W.
Kim, et al., (eds.), Proc. First Int’l Conf. on Deductive and
pp. Object-Oriented Databases, 1989, pp. 370–395.

12. P. Chen, The entity-relationship model - towards a unified view
of data, ACM Trans. Database Sys., 1(1): 9–36, 1976.

13. Sun Microsystems, Java Data Objects Version 1.0.1. 2003.
Available: http://java.sun.com/products/jdo.

14. R. Cattel, D. Barry, M. Berler, J. Eastman, D. Jordan, C.
Russel, O. Schadow, T. Stanienda, and F. Velez, The Object
Database Standard: ODMG 3.0, San Francisco, CA: Morgan-
Kaufmann, 1999.

15. S. Cluet, Designing OQL: allowing objects to be queried, Infor-
mat. Sys., 23(5): 279–305, 1998.

16. R. Breitl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein,
E. H. Williams, and M. Williams, The GemStone data manage-
ment system, in W.F. Kim and F.H. Lochovsky (eds.), Ref. 4. pp.
283–308.

17. D. H. Fishman et al. Overview of the Iris DBMS. In Ref. 4, pp.
219-250.

18. F. Bancilhon, C. Delobel, and P. Kanellakis, Building an
Object-Oriented Database System: The Story of O2, San Fran-
cisco, CA: Morgan-Kaufmann, 1992.

19. O. Deux, The Story of O2, IEEE Trans. Knowl, Data Engineer.,
2(1): 91–108, 1990.

20. W. Kim, et al., Features of the ORION object-oriented database
system. In Ref. 4, pages. 251-282.

21. W. Kim, Introduction to Object-Oriented Databases, Cam-
bridge, MA: The MIT Press, 1990.

22. Object Design. ObjectStore Java API User Guide (ObjectStore
6.0). 1998. Available at http://www.odi.com.

23. R. Agrawal and N. Gehani, ODE (Object Database and Envir-
onment): the language and the data model, in Proc. of the
ACM SIGMOD Int’l Conf. on Management of Data, 1989, pp.
36–45.

24. W. Kim, UniSQL/X unified relational and object-oriented data-
base system, Proc. of the ACM SIGMOD Int’l Conf. on Manage-
ment of Data, 1994, p. 481.

25. D. Chamberlin, Using the New DB2 - IBM’s Object-Relational
Database System, San Franciso, CA: Morgan-Kaufmann, 1996.

26. IBM DB2 Universal Database SQL Reference, Volume 1. IBM
Corp., 2004.

27. Oracle Database. Application Developer’s Guide - Object-Rela-
tional Features. Oracle Corp., 2005.

28. Microsoft Corporation. Microsoft SQL Server, Version 7.0, 1999.

29. Illustra Information Technologies, Oakland, California. Illus-
tra User’s Guide. Release 2.1.

30. SYBASE Inc., Berkley, California. Transact-SQL User’s Guide
for Sybase. Release 10.0.

31. A. Eisenberg, J. Melton, K. Kulkharni, J.E. Michels, and F.
Zemke, SQL:2003 has been published. SIGMOD Record, 33(1):
119–126, 2004.

32. W. Kim, K.C. Kim, and A. Dale, Indexing techniques for object-
oriented databases, In [Ref. 4], pages. 371-394.

33. C. C. Low, B. C. Ooi, and H. Lu, H-trees: a dynamic associa-
tive search index for OODB. Proc. 1992 ACM SIGMOD
International Conference on Management of Data, 1992,
pp. 134–143.

34. C.Y. Chan, C.H. Goh and B. C. Ooi, Indexing OODB instances
based on access proximity, Proc. 13th International Conference
on Data Engineering, 1997, pp. 14–21.

35. E. Bertino, On indexing configuration in object-oriented data-
bases, VLDB J., 3(3): 355–399, 1994.

36. Z. Xie and J. Han, Join index hierarchy for supporting effi-
cient navigation in object-oriented databases, Proc. 20th
International Conference on Very Large Data Bases, 1994,
pp. 522–533.

37. E. Bertino, R. Sacks-Davis, B. C. Ooi, K. L. Tan, J. Zobel, B.
Shidlovsky, and B. Catania, Indexing Techniques for Advanced
Database Systems, Dordrecht: Kluwer, 1997.

38. E. Bertino, G. Guerrini, I. Merlo, Extending the ODMG object
model with triggers, IEEE Trans. Know. Data Engin., 16(2):
170–188, 2004.

39. G. Langran, Time in Geographic Information Systems, Oxford:
Taylor & Francis, 1992.

40. M. Worboys, A unified model for spatial and temporal informa-
tion, Computer J., 37(1): 26–34, 1994.

41. C. Chen and C. Zaniolo, SQLST: a spatio-temporal data model
and query language, Proc. of Int’l Conference on Conceptual
Modeling/the Entity Relational Approach, 2000.

42. T. Griffiths, A. Fernandes, N. Paton, K. Mason, B. Huang, M.
Worboys, C. Johnsonon, and J.G. Stell, Tripod: a comprehen-
sive system for the management of spatial and aspatial histor-
ical objects, Proc. of 9th ACM Symposium on Advances in
Geographic Information Systems, 2001.

43. B. Huang and C. Claramunt, STOQL: an ODMG-based spatio-
temporal object model and query language, Proc. of 10th Int’l
Symposium on Spatial Data Handling, 2002.

ELISA BERTINO

Purdue University
West Lafayette, Indiana

GIOVANNA GUERRINI

Università degli Studi di Genova
Genova, Italy

OBJECT-ORIENTED DATABASES 15



P

PROCESS-AWARE INFORMATION SYSTEMS:
DESIGN, ENACTMENT, AND ANALYSIS

INTRODUCTION

Information technology has changed business processes
within and between enterprises. More and more work
processes are being conducted under the supervision of
information systems that are driven by process models.
Examples are workflow management systems such as File-
Net P8, Staffware, WebSphere, FLOWer, and YAWL and
enterprise resource planning (ERP) systems such as SAP
and Oracle. Moreover, many domain-specific systems have
components driven by (process) models. It is hard to ima-
gine enterprise information systems that are unaware of
the processes taking place. Although the topic of business
process management using information technology has
been addressed by consultants and software developers
in depth, more fundamental approaches toward such
process-aware information systems (PAISs) have been
rare (1). Only since the 1990s have researchers started to
work on the foundations of PAISs.

The goal of this article is to (a) provide an overview of
PAISs and put these systems in a historical context, (b) to
show their relevance and potential to improve business
processes, dramatically, and (c) to discuss some more
advanced topics to provide insights in current challenges
and possible inhibitors. Before going into more detail, we
first provide some definitions and give an overview of the
different types of PAISs.

PAISs play an important role in business process man-
agement (BPM). Many definitions of BPM exist. Here we
will use the following definition: ‘‘Business process man-
agement (BPM) is a field of knowledge that combines
knowledge from information technology and knowledge
from management sciences and applies this to operational
business processes.’’ BPM can be viewed as an extension of
workflow management (WFM), which primarily focuses on
the automation of business processes.

Figure 1 shows the relation among PAISs, BPM, and
WFM. Note that the term ‘‘PAIS’’ refers to software,
whereas the terms ‘‘BPM’’ and ‘‘WFM’’ refer to fields of
knowledge in which PAISs can be used. Workflow manage-
ment systems (WFMSs) can be seen as a particular kind of
PAISs where the emphasis is on process automation rather
than on redesign and analysis. A definition of WFMS could
be ‘‘a generic software system that is driven by explicit
process designs to enact and manage operational business
processes.’’ Clearly, a WFMS should be process-aware and
generic in the sense that it is possible to modify the pro-
cesses it supports. Note that the process designs automated
by a WFMS are often graphical and that the focus is on
structured processes that need to handle many cases.

Although a WFMS can be seen as a prototypical example
of a PAIS, not all PAISs can be classified as pure WFMSs. As
shown in Fig. 1, WFMSs are considered to be a subclass of all

PAISs. Many examples of systems are process-aware, but
they do not provide a generic approach to the modeling and
enactment of operational business processes. For example,
there may be systems where processes are hard-coded and
cannot be modified. For example, many processes supported
by an ERP system (e.g., SAP R/3) are hard-coded in software
and can only be modified through explicit configuration
parameters; that is, the set of possible variation points is
predefined, and no notion of a process model can be modified
freely. Many organizations have developed software to sup-
port processes without using a WFMS; for example, many
banks, hospitals, electronic shops, insurance companies,
and municipalities have created custom-made software to
support processes. These systems are process-aware but are
developed without using a WFMS. Another difference
between PAISs and WFMSs is the fact that process auto-
mation is just one aspect of BPM. Process analysis and
diagnosing existing processes clearly extend the scope
beyond pure process automation.

Figure 1 also shows some more terms that are relevant
in this context (BPR, SOA, BAM, etc.). Business process
redesign (BPR) is concerned with finding better process
designs. BPR efforts can be supported and enabled by
PAISs. Business activity monitoring (BAM) uses informa-
tion about running processes extracted from PAISs. Pro-
cess mining techniques can be used to analyze this
information and to come up with ideas to improve pro-
cesses. Recently, the so-called service-oriented architecture
(SOA) has been proposed as a platform for realizing PAISs.
SOA is an architectural style whose goal is to achieve loose
coupling among interacting parties. A service is a unit of
work done by a service provider to achieve desired end
results for a service consumer. Both provider and consumer
are roles played by different pieces of software. The provi-
der and consumer may reside in the same organization but
also within different organizations. By using the SOA, it
becomes easier to compose and maintain PAISs, because
application functionality can be wrapped into servers that
are invoked using a BPEL engine. The Business Process
Execution Language (BPEL) (2) is the de facto standard for
process execution in a SOA environment. In BPEL one can
specify processes and enact them using the process engines
of systems such as IBM’s WebSphere or Oracle BPEL.

BPEL is a textual XML-based language, and its con-
structs are close to programming (2). People talk about
‘‘programming in the large’’ illustrating that it is not easy
for nonprogrammers to model processes using BPEL.
Therefore, languages such as BPMN (Business Process
Modeling Notation) (3) have been proposed. Note that
many modeling tools support languages similar to BPMN
(e.g., ARIS and Protos). Figure 1 shows that the emphasis
of execution languages like BPEL is on enactment, whereas
languages like BPMN, EPCs, and Protos focus more on
(re)design. Note that BPMN is not executable and has no
formal semantics. However, in many cases, it is possible to
generate some BPEL template code (3,4).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



A PAIS requires the modeling of different perspectives
(e.g., control flow, information, and organization/
resources). This article will mention the different perspec-
tives, but it will focus primarily on the control-flow per-
spective. Moreover, we use a particular technique to model
this perspective: Petri nets (5).

In the remainder of this article, we will first put BPM
and related PAIS technology in their historical context (see
the next Section 2). Then, we discuss models for process
design. As PAIS are typically driven by explicit models, it is
important to use the right techniques. Therefore, we dis-
cuss techniques for the analysis of process models. We will
argue that it is vital to have techniques to assert the
correctness of workflow designs. Based on this argument,
we focus on systems for process enactment (i.e., systems
that actually make the ‘‘work flow’’ based on a model of the
processes and organizations involved). Finally, we focus on
two more advanced topics: process flexibility and process
mining.

BUSINESS PROCESS MANAGEMENT FROM A HISTORICAL
PERSPECTIVE

To show the relevance of PAISs, it is interesting to put them
in a historical perspective (6). Consider Fig. 2, which shows
some ongoing trends in information systems. This figure
shows that today’s information systems consist of several
layers. The center is formed by the operating system (i.e.,
the software that makes the hardware work). The second
layer consists of generic applications that can be used in a
wide range of enterprises. Moreover, these applications are
typically used within multiple departments within the
same enterprise. Examples of such generic applications
are a database management system, a text editor, and a
spreadsheet program. The third layer consists of domain-
specific applications. These applications are only used
within specific types of enterprises and departments.
Examples are decision support systems for vehicle routing,
call center software, and human resource management
software. The fourth layer consists of tailor-made applica-
tions. These applications are developed for specific organi-
zations.

In the 1960s, the second and third layer were missing.
Information systems were built on top of a small operating
system with limited functionality. As no generic nor

domain-specific software was available, these systems
mainly consisted of tailor-made applications. Since
then, the second and third layer have developed and
the ongoing trend is that the four circles are increasing
in size (i.e., they are moving to the outside while absorbing
new functionality). Today’s operating systems offer much
more functionality. Database management systems that
reside in the second layer offer functionality that used to
be in tailor-made applications. As a result of this trend, the
emphasis has shifted from programming to assembling of
complex software systems. The challenge no longer is the
coding of individual modules but the orchestrating and
gluing together of pieces of software from each of the four
layers.

Another trend is the shift from data to processes. The
1970s and 1980s were dominated by data-driven
approaches. The focus of information technology was on
storing and retrieving information, and as a result, data
modeling was the starting point for building an information
system. The modeling of business processes was often
neglected, and processes had to adapt to information tech-
nology. Management trends such as business process reen-
gineering illustrate the increased emphasis on processes.
As a result, system engineers are resorting to a more
process-driven approach.

The last trend we would like to mention is the shift from
carefully planned designs to redesign and organic growth.
Because of to the omnipresence of the Internet and its
standards, information systems change on the fly. Few
systems are built from scratch. In most cases, existing
applications are partly used in the new system. As a result,
software development is much more dynamic.

The trends shown in Fig. 2 provide a historical context
for PAISs. PAISs are either separate applications residing
in the second layer or are integrated components in the
domain-specific applications (i.e., the third layer). Notable
examples of PAISs residing in the second layer are
WFMSs (7–9) such as Staffware, FileNet P8, and COSA,

Figure 1. Relating PAISs to other approaches and tools in BPM.

operating
system

generic
applications

domain
specific

applications

tailor-made
applications

Trends in

information

systems

1. From programming to

assembling.

2. From data orientation to

process orientation.

3. From design to redesign

and organic growth.

Figure 2. Trends relevant for business process management.

2 PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS



and case handling systems such as FLOWer. Middleware
platforms such as IBM’s WebSphere provide a workflow
engine (typically based on BPEL (2). Moreover, many
open-source WFMSs exist (cf. ActiveBPEL, Enhydra-
Shark, jBPM, and YAWL). Note that leading ERP sys-
tems populating the third layer also offer a workflow
management module. The workflow engines of SAP,
Baan, PeopleSoft, Oracle, and JD Edwards can be con-
sidered integrated PAISs. The idea to isolate the manage-
ment of business processes in a separate component is
consistent with the three trends identified. PAISs can be
used to avoid hard-coding the work processes into tailor-
made applications and thus support the shift from pro-
gramming to assembling. Moreover, process orientation,
redesign, and organic growth are supported. For example,
today’s workflow management systems can be used to
integrate existing applications and to support process
change by merely changing the workflow diagram. Given
these observations, we hope to have demonstrated the
practical relevance of PAISs. In the remainder of this
article, we will focus more on the scientific importance
of these systems. Moreover, for clarity, we will often
restrict the discussion to clear-cut business process man-
agement systems such as WFMSs.

An interesting starting point from a scientific perspec-
tive is the early work on office information systems. In the
1970s, people like Skip Ellis (10), Anatol Holt (11), and
Michael Zisman (12) already worked on so-called office
information systems, which were driven by explicit process
models. It is interesting to see that the three pioneers in this
area independently used Petri net variants to model office
procedures. During the 1970s and 1980s, there was great
optimism about the applicability of office information sys-
tems. Unfortunately, few applications succeeded. As a
result of these experiences, both the application of this
technology and the research almost stopped for a decade.
Consequently, hardly any advances were made in the
1980s. In the 1990s, there again was a huge interest in
these systems. The number of WFMSs developed in the past
decade and the many papers on workflow technology illus-
trate the revival of office information systems. Today
WFMSs are readily available. However, their application
is still limited to specific industries such as banking and
insurance. As indicated by Skip Ellis, it is important to
learn from these ups and downs. The failures in the 1980s
can be explained by both technical and conceptual pro-
blems. In the 1980s, networks were slow or not present
at all, there were no suitable graphical interfaces, and
proper development software was missing. However,
more fundamental problems also existed: A unified way
of modeling processes was missing, and the systems
were too rigid to be used by people in the workplace.
Most of the technical problems have been resolved by
now. However, the more conceptual problems remain.
Good standards for business process modeling are still
missing, and even today’s WFMSs are too rigid.

One of the great challenges of PAISs is to offer both
support and flexibility. Today’s systems typically are too
rigid, thus, forcing people to work around the system. One
of the problems is that software developers and computer
scientists are typically inspired by processes inside a

computer system rather than by processes outside a com-
puter. As a result, these engineers think in terms of control
systems rather than in terms of support systems, which
explains why few of the existing WFMSs allow for the
so-called implicit choice (i.e., a choice resolved by the envir-
onment rather than by the system).

To summarize we would like to state that, although the
relevance of PAISs is undisputed, many fundamental pro-
blems remain to be solved. In the remainder of this article,
we will try to shed light on some of these problems.

MODELS FOR PROCESS DESIGN

PAISs are driven by models of processes and organizations
(1). By changing these models, the behavior of the system
adapts to its environment and changing requirements.
These models cover different perspectives. Figure 3 shows
some of the perspectives relevant for PAISs (9). The process
perspective describes the control flow (i.e., the ordering of
tasks). The information perspective describes the data that
are used. The resource perspective describes the structure
of the organization and identifies resources, roles, and
groups. The task perspective describes the content of indi-
vidual steps in the processes. Each perspective is relevant.
However, the process perspective is dominant for the type
of systems addressed in this article.

Many techniques have been proposed to model the pro-
cess perspective. Some of these techniques are informal in
the sense that the diagrams used have no formally defined
semantics. These models are typically very intuitive, and
the interpretation shifts depending on the modeler, appli-
cation domain, and characteristics of the business pro-
cesses at hand. Examples of informal techniques are
ISAC, DFD, SADT, and IDEF. These techniques may
serve well for discussing work processes. However, they
are inadequate for directly driving information systems
because they are incomplete and subject to multiple inter-
pretations. Therefore, more precise ways of modeling are
required.

Figure 4 shows an example of an order handling process
modeled in terms of a so-called workflow net (13). Work-
flow nets are based on the classic Petri net model invented
by Carl Adam Petri in the early 1960s (5). The squares are

process perspective

task
perspective

information
perspective

resource
perspective

Figure 3. Perspectives of models driving PAISs.

PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS 3



the active parts of the model and correspond to tasks. The
circles are the passive parts of the model and are used to
represent states. In the classic Petri net, the squares are
named transitions and the circles places. A workflow net
models the lifecycle of one case. Examples of cases are
insurance claims, tax declarations, and traffic violations.
Cases are represented by tokens, and in this case, the
token in start corresponds to an order. Task register is a
so-called AND-split and is enabled in the state shown. The
arrow indicates that this task requires human interven-
tion. If a person executes this task, the token is removed
from place start and two tokens are produced: one for c1
and one for c2. Then, in parallel, two tasks are enabled:
check_availability and send_bill. Depending on the eager-
ness of the workers executing these two tasks, either
check_available or send_bill is executed first. Suppose
check_availability is executed first. If the ordered goods
are available, they can be shipped by executing task
ship_goods. If they are not available, either a replenish-
ment order is issued or not. Note that check_availability is
an OR-split and produces one token for c3, c4, or c5.
Suppose that not all ordered goods are available but
that the appropriate replenishment orders were already
issued. A token is produced for c3, and task update
becomes enabled. Suppose that at this point in time
task send_bill is executed, resulting in the state with a
token in c3 and c6. The token in c6 is input for two tasks.
However, only one of these tasks can be executed, and in
this state, only receive_payment is enabled. Task receive_
payment can be executed the moment the payment is
received. Task reminder is an AND-join/AND-split and
is blocked until the bill is sent and the goods have been
shipped. Note that the reminder is sent after a specified
period as indicated by the clock symbol. However, it is only
possible to send a remainder if the goods have been actu-
ally shipped. Assume that in the state with a token in c3
and c6, task update is executed. This task does not require
human involvement and is triggered by a message of the
warehouse indicating that relevant goods have arrived.
Again check_availability is enabled. Suppose that this
task is executed and that the result is positive. In the
resulting state, ship_goods can be executed. Now there is a
token in c6 and c7, thus enabling task reminder. Execut-
ing task reminder again enables the task send_bill. A new
copy of the bill is sent with the appropriate text. It is
possible to send several reminders by alternating remin-
der and send_bill. However, let us assume that after the
first loop, the customer pays resulting in a state with a
token in c7 and c8. In this state, the AND-join archive is
enabled and executing this task results in the final state
with a token in end.

This very simple workflow net shows some of the routing
constructs relevant for business process modeling. Sequen-
tial, parallel, conditional, and iterative routing are present
in this model. There also are more advanced constructs such
as the choice between receive_payment and reminder, which
is a so-called implicit choice (14) because it is not resolved by
the system but by the environment of the system. The
moment the bill is sent, it is undetermined whether recei-
ve_payment or reminder will be the next step in the process.
Another advanced construct is the fact that task reminder is

blocked until the goods have been shipped. The latter con-
struct is a so-called milestone (14). The reason that we point
out both constructs is that many systems have problems
supporting these fundamental process patterns (14).

Workflow nets have clear semantics. The fact that one
can play the so-called ‘‘token game’’ using a minimal set of
rules shows the fact that these models are executable. None
of the informal informal techniques mentioned before (i.e.,
ISAC, DFD, SADT, and IDEF) have formal semantics.
Besides these informal techniques, many formal techni-
ques also exist. Examples are the many variants of process
algebra and statecharts. The reason we prefer to use a
variant of Petri nets is threefold (13):

� Petri nets are graphical and yet precise.

� Petri nets offer an abundance of analysis techniques.

� Petri nets treat states as first-class citizens.

The latter point deserves some more explanation. Many
techniques for business process modeling focus exclusively
on the active parts of the process (i.e., the tasks), which is
very strange because in many administrative processes,
the actual processing time is measured in minutes and the
flow time is measured in days. This process for measuring
means that most of the time cases are in between two
subsequent tasks. Therefore, it is vital to model these states
explicitly.

At the beginning of this section, we mentioned that
there are informal techniques (without formal semantics)
and rigorous formal methods such as Petri nets. Over the
last two decades, many semiformal methods have been
proposed (i.e., in between the two extreme classes men-
tioned earlier). These methods are informal, however,
because the models that need to be transformed into
executable code for more rigorous interpretations are
added afterward. The UML (Unified Modeling Language)
(15) in an example of such a language. It has become the de
facto standard for software development. UML has four
diagrams for process modeling. UML supports variants of
statecharts, and its activity diagrams are inspired by Petri
nets (i.e., a token-based semantics is used). Many nota-
tions exist that are at the same level as UML activity
diagrams. BPMN (3) diagrams and event-driven process
chains (EPCs) (16) are examples of such languages. Many
researchers are trying to provide solid semantics for UML,
EPCs, BPMN, BPEL, and so on. For subsets of these
languages, there are formalizations in terms of Petri
nets and transition systems. These formalizations typi-
cally reveal ambiguous constructs in the corresponding
language.

Note that the goal of this article is not to advocate Petri
nets as an end-user modeling language. UML, EPCs, and
BPMN provide useful constructs that support the work-
flow designer. However, Petri nets serve as an important
foundation for PAIS technology. Without such founda-
tions it is impossible to reason about semantics, correct-
ness, completeness, and so on. A nice illustration is the
OR-join in EPC and BPMN models that have semantics
leading to paradoxes such as the ‘‘vicious circle’’ (16).
Moreover, a solid foundation can be used for analysis as
will be shown next.

4 PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS



TECHNIQUES FOR PROCESS ANALYSIS

Many PAISs allow organizations to change their processes
by merely changing the models. The models are typically
graphical and can be changed ability to change easily. This
provides more flexibility than conventional information
systems. However, by reducing the threshold for change,
errors are introduced more easily. Therefore, it is impor-
tant to develop suitable analysis techniques. However, it is
not sufficient to just develop these techniques. It is as least
as important to look at methods and tools to make them
applicable in a practical context.

Traditionally, most techniques used for the analysis of
business processes originate from operations research. All
students taking courses in operations management will
learn to apply techniques such as simulation, queuing
theory, and Markovian analysis. The focus mainly is on
performance analysis, and less attention is paid to the
correctness of models. Verification and validation are often
neglected. As a result, systems fail by not providing the
right support or even break down. Verification is needed to
check whether the resulting system is free of logical errors.

Many process designs suffer from deadlocks and livelocks
that could have been detected using verification techni-
ques. Validation is needed to check whether the system
actually behaves as expected. Note that validation is con-
text dependent, whereas verification is not. A system that
deadlocks is not correct in any situation. Therefore, verify-
ing whether a system exhibits deadlocks is context inde-
pendent. Validation is context dependent and can only be
done with knowledge of the intended business process.

To illustrate the relevance of validation and verification
and to demonstrate some of the techniques available, we
return to the workflow net shown in Fig. 4. This workflow
process allows for the situation where a replenishment is
issued before any payment is received. Suppose that we
want to change the design such that replenishments are
delayed until receiving payment. An obvious way to model
this change is to connect task receive_payment with replen-
ish using an additional place c9 as shown in Fig. 5. Although
this extension seems to be correct at first glance, the
resulting workflow net exhibits several errors. The work-
flow will deadlock if a second replenishment is needed and
something is left behind in the process if no replenishments

start register

send_bill

receive_payment

archive

ship_goodscheck_availability

replenish

update

reminder

end

c1

c2

c3

c4

c5

c6

c7

c8

c9

Figure 5. An incorrect WF net. Place c9 has
been added to model that a replenishment
order can only be placed if the customer has
paid. However, because of this addition, the
process can deadlock and a token is left behind
in the process if no replenishments are needed.

start register

send_bill

receive_payment

archive

ship_goodscheck_availability

replenish

update

reminder

end

c1

c2

c3

c4

c5

c6

c7

c8
Figure 4. A WF net modeling the
handling of orders. The top part
models the logistical part of the pro-
cess, whereas the bottom part mod-
els the financial part.

PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS 5



are needed. These logical errors can be detected without
any knowledge of the order handling process. For verifica-
tion, application-independent notions of correctness are
needed. One of these notions is the so-called soundness
property(13). A workflow net is sound if an only if the
workflow contains no dead parts (i.e., tasks that can never
be executed), from any reachable state it is always possible
to terminate, and the moment the workflow terminates all
places except the sink place are empty. Note that soundness
rules out logical errors such as deadlocks and livelocks. The
notion of soundness is applicable to any workflow language.
An interesting observation is that soundness corresponds
to liveness and boundedness of the short-circuited net (13).
The latter properties have been studied extensively (17). As
a result, powerful analysis techniques and tools can be
applied to verify the correctness of a workflow design.
Practical experience shows that many errors can be
detected by verifying the soundness property. Moreover,
Petri net theory can also be applied to guide the designer
toward the error.

Soundness does not guarantee that the workflow net
behaves as intended. Consider, for example, the workflow
net shown in Fig. 6. Compared with the original model, the
shipment of goods is skipped if some goods are not available.
Again this idea may seem like a good one at first glance.
However, customers are expected to pay even if the goods
are never delivered. In other words, task receive_payment
needs to be executed although task ship_goods may never
be executed. The latter error can only be detected using
knowledge about the context. Based on this context, one
may decide whether this is acceptable. Few analysis tech-
niques exist to support this kind of validation automati-
cally. The only means of validation offered by today’s
WFMSs is gaming and simulation.

An interesting technique to support validation is inheri-
tance of dynamic behavior. Inheritance can be used as a
technique to compare processes. Inheritance relates sub-
classes with superclasses (18). A workflow net is a subclass
of a superclass workflow net if certain dynamic properties
are preserved. A subclass typically contains more tasks. If
by hiding and/or blocking tasks in the subclass one obtains
the superclass, the subclass inherits the dynamics of the
superclass.1 The superclass can be used to specify the
minimal properties the workflow design should satisfy.

By merely checking whether the actual design is a subclass
of the superclass, one can validate the essential properties.
Consider, for example, Fig. 7. This workflow net describes
the minimal requirements the order handling process
should satisfy. The tasks register, ship_goods, receive_
payment, and archive are mandatory. Tasks ship_goods
and receive_payment may be executed in parallel but
should be preceded by register and followed by archive.
The original order handling process shown in Fig. 4 is a
subclass of this superclass. Therefore, the minimal require-
ments are satisfied. However, the order handling process
shown in Fig. 6 is not a subclass. The fact that task
ship_goods can be skipped demonstrates that not all prop-
erties are preserved.

Inheritance of dynamic behavior is a very powerful
concept that has many applications. Inheritance-
preserving transformation rules and transfer rules
offer support at design time and at run time (19).
Subclass–superclass relationships also can be used to
enforce correct processes in an e-commerce setting. If
business partners only execute subclass processes of
some common contract process, then the overall workflow
will be executed as agreed. It should be noted that work-
flows crossing the borders of organizations are particu-
larly challenging from a verification and validation point
of view. Errors resulting from miscommunication
between business partners are highly disruptive
and costly. Therefore, it is important to develop
techniques and tools for the verification and validation
of these processes. For example, in the context of SOA-
based processes (e.g., BPEL processes), the so-called open
WF nets (OWF-nets) (20,21) are used to study notions such
as controllability and accordance.

Few mature tools aiming at the verification of
workflow processes exist. Woflan (22) is one of the notable
exceptions. Figure 8 shows a screenshot of Woflan. Woflan
combines state-of-the-art scientific results with practical
applications (22). Woflan can interface with WFMSs such
as Staffware, Websphere, Oracle BPEL, COSA, and YAWL.
It can also interface with BPR tools such as Protos and
process mining tools such as ProM (23). Workflow processes

1We have identified four notions of inheritance. In this article, we
only refer to life-cycle inheritance.

start register

send_bill

receive_payment

archive

ship_goodscheck_availability

reminder

end

c1

c2

c4

c5

c6

c7

c8

Figure 6. A sound but incorrect WF net. The
shipping of goods is no longer guaranteed.

6 PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS



designed using any of these tools can be verified for correct-
ness. It turns out that the challenge is not to decide whether
the design is sound. The real challenge is to provide diag-
nostic information that guides the designer to the error.
Woflan also supports the inheritance notions mentioned
before. Given two workflow designs, Woflan can decide
whether one is a subclass of the other. Tools such as Woflan
illustrate the benefits of a more fundamental approach.
Recently, several tools have been developed for the analysis
of BPEL processes. The Tools4BPEL toolset consisting of
Fiona, LoLa, and BPEL2oWFN is an example of a state-of-
the-art BPEL analyzer (21).

To conclude this section, we would like to refer to a
study reported in Ref. 24. This study shows that of the 604
process models in the SAP R/3 Reference Model, 20%
contain errors that can easily be discovered using verifica-
tion. Since the middle of the 1990s, the SAP R/3 Reference
Model has been available in different versions to support
the implementation and configuration of the SAP system.
The reference model is not only included in the SAP
system, but also it is shipped with the business process
modeling tools ARIS of IDS Scheer or NetProcess of Intel-
liCorp. The reference model covers several modeling per-
spectives such as data and organization structure, but the

main emphasis is on 604 nontrivial business processes
represented as EPCs. More than 20% of these EPCs con-
tain errors stemming from incorrect combinations of con-
nector elements such as deadlocks and livelocks. A
deadlock describes a situation in a process model where
a customer order remains waiting for an activity to com-
plete that can never be executed. A simple pattern leading
to a deadlock is an XOR split is joined with an AND. A
livelock is an infinite loop (i.e., it is impossible to move
beyond a certain point and terminate). The many errors in
the SAP R/3 Reference Model illustrate the need for
rigorous analysis techniques.

SYSTEMS FOR PROCESS ENACTMENT

Progress in computer hardware has been incredible. In
1964 Gordon Moore predicted that the number of elements
on a produced chip would double every 18 months.2 Up
until now, Moore’s law still applies. Information technol-
ogy has also resulted in a spectacular growth of the
information being gathered. The commonly used term
‘‘information overload’’ illustrates this growth. Already
in 2003, it is estimated that for each individual (i.e., child,
man, and woman), 800 megabytes of data are gathered
each year (25). The Internet and the World Wide Web have
made an abundance of information available at low costs.
However, despite the apparent progress in computer
hardware and information processing, many information
systems leave much to be desired. One problem is that
process logic is mixed with application logic. As a result, it
is difficult to change a system and people need to ‘‘work
around the system’’ rather than getting adequate support.
To improve flexibility and reliability, process logic should
be separated from application logic. These observations
justify the use of solid models and analysis techniques, as
discussed before.

Thus far, the focus of this article has been on the design
and analysis of work processes. Now it is time to focus on the
systems to enact these work processes. Fig. 9 shows the
typical architecture of a business process management
system. The designer uses the design tools to create models
describing the processes and the structure of the organiza-
tion. The manager uses management tools to monitor the
flow of work and act if necessary. The worker interacts with
the enactment service. The enactment service can offer
work to workers, and workers can search, select, and per-

Figure 8. A screenshot showing the verification and validation
capabilities of Woflan.

start register

receive_payment

archive

ship_goods

end

c1

c2

c3

c4

Figure 7. A superclass WF net.

PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS 7



form work. To support the execution of tasks, the enact-
ment service may launch various kinds of applications.
Note that the enactment service is the core of the system
deciding on ‘‘what,’’ ‘‘how,’’ ‘‘when,’’ and ‘‘by whom.’’ Clearly,
the enactment service is driven by models of the processes
and the organizations. By merely changing these models,
the system evolves and adapts, which is the ultimate
promise of PAISs.

However, PAIS systems are not the ‘‘silver bullet’’ that
solves all problems (i.e., ‘‘there is no such thing as a free
lunch’’), and rigorous modeling is needed to capture pro-
cesses adequately. Moreover, existing WFMSs still have
problems supporting flexibility.

Today’s WFMSs have an architecture consistent with
Fig. 9. Consider, for example, the screenshots of Staffware
shown in Fig. 10. Staffware is one of the leading WFMSs.
The top window shows the design tool of Staffware while
defining a simple workflow process. Work is offered through
so-called work queues. One worker can have multiple work
queues, and one work queue can be shared among multiple
workers. The window in the middle shows the set of avail-
able work queues (left) and the content of one of these work
queues (right). The bottom window shows an audit trail of a
case. The three windows show only some of the capabilities
offered by contemporary workflow management systems. It
is fairly straightforward to map these windows onto the
architecture. In other processes-aware information sys-
tems such as, for example, enterprise resource planning
systems, one will find the architecture shown in Fig. 9
embedded in a larger architecture.

The architecture shown in Fig. 9 assumes a
centralized enactment service. Inside a single organization
such an assumption may be realistic. However, in a cross-
organizational setting, this is not the case. Fortunately,
most vendors now support the SOA, mentioned earlier. In a
SOA, tasks are subcontracted to other parties (i.e., what is
one task for the service consumer may be a complex process
for a service consumer). The Web services stack using
standards such as WSDL and BPEL facilitates the devel-
opment of cross-organizational workflows.

Despite the acceptance of PAISs, the current generation
of products leaves much to be desired. To illustrate,

we focus on the current generation of WFMSs. We will
use Fig. 9 to identify five problems.

First of all, there is a lack of good standards for work-
flow management. There is, for example, not a good stan-
dard for exchanging process models. Existing formats
have no clearly defined semantics and fail to capture
many routing constructs. Current standards for workflow
management are incomplete, inconsistent, at the wrong
abstraction level, and mainly driven by the commercial
interests of workflow vendors. The Workflow Manage-
ment Coalition (WfMC) has been trying to standardize
workflow processes since the early 1990s. This effort
resulted in the Workflow Process Definition Language
(WPDL) and the XML Process Definition Language
(XPDL). Only a few vendors actively supported these
standards. The standards had no clearly defined seman-
tics and encouraged vendors to make product-specific
extensions. The BPEL (2) emerged later and is currently
the de facto standard for process execution in a SOA
environment. However, this language also has no clearly
defined semantics and is at a technical level (26). BPEL
has the look and feel of a programming language rather
than a high-level modeling language.

Second, the expressive power (i.e., the ability to repre-
sent complex work processes) of the current generation of
WFMSs is insufficient. Several evaluations revealed that
the classic WFMSs support less than half of the desirable
workflow patterns (14). As an example, consider the work-
flow process shown in Fig. 4. Few systems can handle the
implicit choice and milestone construct identified before.
Fortunately, modern systems (e.g., based on BPEL) sup-
port more patterns.

offer
workenactment

service

m
an

ag
em

en
t

to
ol

s

design tools

run-time data

process
data

organizational
data

perform
work worker

management

designerhistorical
data

case
dataapplications

Figure 9. The architecture of a PAIS.

Figure 10. The Graphical Workflow Definer, Work Queue, and
Audit Trail of Staffware.

8 PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS



A third problem is the lack of understanding of how
people actually work. Work processes are more than the
ordering of tasks. Work is embedded in a social context.
A better understanding of this context is needed to make
systems socially aware as well. Modeling processes as if
people are ‘‘machines’’ is a too limited view of reality. It
is vital to empower workers and to provide more
flexibility.

The fourth problem is the limited support for workflow
analysis. As indicated before, there are powerful techni-
ques for workflow analysis. However, few systems embed
advanced analysis techniques. Besides model-based ver-
ification, validation, and performance analysis, new types
of analysis are possible. The combination of historical and
run-time data, on the one hand, and workflow designs, on
the other, offers breathtaking possibilities. Historical
data can be used to obtain stochastic data about routing
and timing. Using run-time data to reconstruct the cur-
rent state in a simulation model allows for on-the-fly
simulation. Simulation based on the current state, histor-
ical data, and a good model offers high-quality information
about potential problems in the near future. Historical
data can also be used for process mining. The goal of
workflow mining is to derive process models from transac-
tion logs.

Finally, many technical problems remain. Some of
these problems can be resolved using Internet-based tech-
nology and standards. However, many problems related to
the integration of components and long-lived transactions
remain unsolved. Since the early 1990s (8) many database
researchers have been focusing on transactional aspects of
workflows. Note that an instance of a workflow can be
viewed as a long running transaction [e.g., some cases
(such as a mortgage or insurance) may run dozens of
years] (27).

In the remainder, we would like to focus on two parti-
cular challenges: process flexibility and process mining.

CHALLENGE: FLEXIBILITY

Adaptability has become one of the major research topics in
the area of workflow management (28). Today’s WFMSs
and many other PAISs have problems supporting flexibil-
ity. As a result, these systems are not used to support
dynamically changing business processes or the processes
are supported in a rigid manner (i.e., changes are not
allowed or handled outside of the system). These problems
have been described and addressed extensively in the
literature (29–36). Nevertheless, many problems related
to flexibility remain unsolved.

In this section, we provide a taxonomy of flexibility
because it is probably the biggest challenge today’s PAISs
are facing. To clarify things, we focus on WFMSs rather
than on the broader class of PAISs.

To start, let us identify the different phases of a process
(instance) in the context of a WFMS:

� Design time. At design time, a generic process model is
created. This model cannot be enacted because it is not
connected to some organizational setting.

� Configuration time. At configuration time, a generic
model is made more specific and connected to some
organizational context that allows it to be instantiated.

� Instantiation time. At instantiation time, a process
instance is created to handle a particular case (e.g.,
a customer order or travel request).

� Run time. At run time, the process instance is executed
according to the configured model. The different activ-
ities are being enacted as specified.

� Auditing time. At auditing time, the process instance
has completed; however, its audit trail is still available
and can be inspected and analyzed.

Flexibility plays a role in most phases. At design time,
some modeling decisions can be postponed to run time. At
run time, one can decide to deviate from the model, and at
instantiation time, one can change the process model used
for the particular instance. When it comes to flexibility, we
identify three flexibility mechanisms:

� Defer, i.e., decide to decide later. This flexibility
mechanism deliberately leaves freedom to maneuver
at a later phase. Examples are the use of a declarative
process modeling language that allows for the ‘‘under
specification’’ of processes and the use of late binding
(i.e., the process model has a ‘‘hole’’ that needs to be
filled in a later phase).

� Change, i.e., decide to change model. Most researchers
have addressed flexibility issues by allowing for
change. Decisions made at an earlier phase may be
revisited. For example, for premium customers,
the process may be adapted in an ad hoc manner.
The change may refer to the model for a single instance
(adhoc change) or to all future cases (evolutionary
change). In both cases, a change can create inconsis-
tencies. For evolutionary change, cases may also need
to be migrated.

� Deviate, i.e., decide to ignore model. The third mechan-
ism is to deviate from the model (e.g., tasks are skipped
even if the model does not allow for this to happen). In
many environments, it is desirable that people are in
control (i.e., the system can only suggest activities but
not force them to happen).

Figure 11 relates the two dimensions just mentioned.
Based on the different phases and the three mechanisms,
different types of flexibility are classified. Note that we did
not mention any examples of flexibility at auditing time.
After the process instance completes, it is not possible to
defer, change, or violate things, because this would imply
fraud. Figure 11 can be used to characterize the support for
flexibility of a concrete WFMS. Unfortunately, today’s
systems support only a few forms of flexibility, thus limiting
the applicability of PAISs.

It is impossible to provide a complete overview of the
work done on flexibility in workflows. The reader is
referred to Ref. 28 for another taxonomy. Many authors
have focused on the problems related to change (31–34)
(cf. the cell ‘‘change at run time’’ in Fig. 11). The problem of
changing a process while instances are running was first

PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS 9



mentioned in Ref. 31. In the context of ADEPT (32,34),
many problems have been addressed. See Ref. 34 for an
excellent overview of problems related to dynamic change
(the cell ‘‘change at run time’’ in Fig. 11). Other authors
approach the problem by avoiding change, for example,
either by using a more declarative language (33) or by late
binding (30,35,36) (also referred to as worklets, pockets of
flexibility, or process fragments). These approaches fit
into the column ‘‘defer’’ in Fig. 11. Another interesting
approach is provided by the system FLOWer of Pallas
Athena. This system uses the so-called ‘‘case handling’’
concept to provide more flexibility (29). Most of the ideas of
case handling relate to the ‘‘defer’’ and ‘‘deviate’’ columns
in Fig. 11.

CHALLENGE: PROCESS MINING

Process mining has emerged as a way to analyze systems
and their actual use based on the event logs they produce
(37,38). Process mining always starts with event logs.
Events logs may originate from all kinds of PAISs. Exam-
ples are classic WFMSs, ERP systems (e.g., SAP), case
handling systems (e.g., FLOWer), PDM systems (e.g.,
Windchill), CRM systems (e.g., Microsoft Dynamics
CRM), middleware (e.g., IBM’s WebSphere), hospital infor-
mation systems (e.g., Chipsoft), and so on. These systems
provide very detailed information about the activities that
have been executed.

The goal of process mining is to extract information (e.g.,
process models) from these logs (i.e., process mining
describes a family of a posteriori analysis techniques
exploiting the information recorded in the event logs).
Typically, these approaches assume that it is possible to
record events sequentially such that each event refers to an
activity (i.e., a well-defined step in the process) and is
related to a particular case (i.e., a process instance).
Furthermore, some mining techniques use additional infor-
mation such as the performer or originator of the event
(i.e., the person/resource executing or initiating the activ-
ity), the timestamp of the event, or data elements recorded
with the event (e.g., the size of an order).

Process mining addresses the problem that most
‘‘process/system owners’’ have limited information about
what is actually happening. In practice, there is often a
significant gap between what is prescribed or supposed to
happen and what actually happens. Only a concise assess-
ment of reality, which process mining strives to deliver, can
help in verifying process models and ultimately be used in
system or process redesign efforts.

The idea of process mining is to discover, monitor, and
improve real processes (i.e., not assumed processes) by
extracting knowledge from event logs. We consider three
basic types of process mining (Fig. 12):

� Discovery: No a priori model exists (i.e., based on an
event log, some model is constructed). For example,
using the a-algorithm (37), a process model can be
discovered based on low-level events.

� Conformance: An a priori model exists. This model is
used to check whether reality conforms to the model.
For example, a process model may indicate that pur-
chase orders of more than one million Euro require
two checks. Another example is the checking of the

design time

defer
(decide to decide 

later)

configuration  time

instantiation  time

run  time

auditing  time

change
(decide to change 

model)

deviate
(decide to ignore 

model)
e.g., defer to run-time by 

using late binding or
declarative modeling

A/NA/N

A/NA/NA/N

e.g., change model for
running instance or migrate

instance to new model
N/A

e.g., skip or redo a task
while this is not specified

N/A

e.g., violate a configuration
constraint

e.g., modify model for a 
particular customer

e.g., remodel parts of the
process at configuration

time

e.g., defer configuration
decisions

e.g., defer the selection of
parameters or process 

fragments

Figure 11. Classification of the different types of
flexibility based on the phase and mechanism.

models
analyzes

records
events, e.g., 
messages,

transactions,
etc.

specifies
configures
implements

analyzes

supports/
controls

people machines

organizations
components

business processes

Figure 12. Three types of process mining: (1) discovery, (2)
conformance, and (3) extension.

10 PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS



four-eyes principle. Conformance checking may be
used to detect deviations, to locate and explain these
deviations, and to measure the severity of these devia-
tions.

� Extension: An a priori model exists. This model is
extended with a new aspect or perspective (i.e., the
goal is not to check conformance but to enrich the
model with the data in the event log). An example is
the extension of a process model with performance
data (i.e. some a priori process model is used on which
bottlenecks are projected).

Traditionally, process mining has been focusing on dis-
covery (i.e., deriving information about the original process
model, the organizational context, and execution properties
from enactment logs). An example of a technique addres-
sing the control flow perspective is the a-algorithm, which
constructs a Petri net model (17) describing the behavior
observed in the event log. However, process mining is not
limited to process models (i.e., control flow) and recent
process mining techniques are more and more focusing
on other perspectives (e.g., the organizational perspective
or the data perspective). For example, there are approaches
to extract social networks from event logs and analyze them
using social network analysis. This allows organizations to
monitor how people, groups, or software/system compo-
nents are working together.

Conformance checking compares an a priori model with
the observed behavior as recorded in the log. In Ref. 39, it is
shown how a process model (e.g., a Petri net) can be
evaluated in the context of a log using metrics such as
‘‘fitness’’ (Is the observed behavior possible according to the
model?) and ‘‘appropriateness’’ (Is the model ‘‘typical’’ for
the observed behavior?). However, it is also possible to
check conformance based on organizational models, pre-
defined business rules, temporal formulas, quality of ser-
vice (QoS) definitions, and so on.

There are different ways to extend a given process model
with additional perspectives based on event logs (e.g.,
decision mining, performance analysis, and user profiling).
Decision mining, also referred to as decision point analysis,
aims at the detection of data dependencies that affect the
routing of a case. Starting from a process model, one can
analyze how data attributes influence the choices made in
the process based on past process executions. Classic data
mining techniques such as decision trees can be leveraged
for this purpose. Similarly, the process model can be ex-
tended with timing information (e.g., bottleneck analysis).

At this point in time there are mature tools such as the
ProM framework (23), featuring an extensive set of analysis
techniques that can be applied to real-life logs while sup-
porting the whole spectrum depicted in Fig. 12.

Although flexibility requirements may form an inhibitor
for the application of PAISs, process mining techniques
may in fact increase the value of a PAIS. The structured
analysis of the event logs of PAISs provides an added value
over information systems that are not aware of the pro-
cesses these support.

Process mining is strongly related to classic data mining
approaches (40). However, the focus is not on data but on

process-related information (e.g., the ordering of activities).
Process mining is also related to monitoring and business
intelligence (41).

CONCLUSION

Process-aware information systems (PAISs) follow a
characteristic lifecycle. Figure 13 shows the four phases
of such a lifecycle (7). In the design phase, the processes are
(re)designed. In the configuration phase, designs are imple-
mented by configuring a PAIS (e.g., a WFMS). After con-
figuration, the enactment phase starts where the
operational business processes are executed using the sys-
tem configured. In the diagnosis phase, the operational
processes are analyzed to identify problems and to find
things that can be improved. The focus of traditional work-
flow management (systems) is on the lower half of the
lifecycle. As a result, there is little support for the diagnosis
phase. Moreover, support in the design phase is limited to
providing a graphical editor while analysis and real design
support are missing.

In this article, we showed that PAISs support opera-
tional business processes by combining advances in infor-
mation technology with recent insights from management
science. We started by reviewing the history of such
systems and then focused on process design. From the
many diagramming techniques available, we chose one
particular technique (Petri nets) to show the basics. We
also emphasized the relevance of process analysis, for
example, by pointing out that 20% of the more than 600
process models in the SAP reference model are flawed (24).
We also discussed the systems that enact such process
designs (e.g., the workflow engines embedded in various
systems) and concluded by elaborating on two challenges:
flexibility and process mining. More flexibility is needed to
widen the scope of PAISs. Today’s systems tend to restrict
people in their actions, even if this is not desired. Process
mining is concerned with extracting knowledge from
event logs. This is relatively easy in the context of PAISs
and offers many opportunities to improve the performance
of the underlying business processes. Moreover, process
mining is an essential factor in closing the PAIS lifecycle
shown in Fig. 13.

Figure 13. PAIS lifecycle.

PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS 11



BIBLIOGRAPHY

1. M. Dumas, W. M. P. van derAalst, and A. H. M. ter Hofstede,
Process-Aware Information Systems: Bridging People and Soft-
ware through, Process Technology, New York: Wiley & Sons,
2005.

2. A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera,
M. Ford, Y. Goland, A. Guzar, N. Kartha, C. K. Liu, R. Khalaf,
Dieter Koenig, M. Marin, V. Mehta, S. Thatte, D. Rijn,
P. Yendluri, and A. Yiu, Web Services Business Process Execu-
tion Language Version 2.0 (OASIS Standard). WS-BPEL TC
OASIS. Available: http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.html.

3. S. A. White et al., Business Process Modeling Notation Speci-
fication (Version 1.0, OMG Final Adopted Specification), 2006.

4. C. Ouyang, M. Dumas, A. H. M. terHofstede, and W. M. P. van
der Aalst, Pattern-Based Translation of BPMN Process Mod-
els to BPEL Web Services, Int. J. Web Serv. Res., 5(1): 42–62,
2007.

5. W. Reisig and G. Rozenberg, ed., Lectures on Petri Nets I: Basic
Models, volume 1491 of Lecture Notes in Computer Science,
Berlin: Springer-Verlag, 1998.

6. W. M. P. van der Aalst, Making, work flow: On the application
of Petri nets to business process management, in J. Esparza
and C. Lakos (eds.), Application and Theory of Petri Nets 2002,
Vol. 2360 of Lecture Notes in Computer Science. Berlin:
Springer-Verlag, 2002, pp. 1–22.

7. W. M. P. van der Aalst and K. M. van Hee, Workflow Manage-
ment: Models, Methods, and Systems, Cambridge, MA: MIT
Press, 2004.

8. D. Georgakopoulos, M. Hornick, and A. Sheth, An overview of
workflow management: From process modeling to workflow
automation infrastructure, Dist. Parallel Databases, 3: 119–
153, 1995.

9. S. Jablonski, and C. Bussler, Workflow Management: Modeling
Concepts, Architecture, and Implementation, London: Interna-
tional Thomson Computer Press, 1996.

10. C. A. Ellis, Information control nets: A mathematical model of
office information flow, Proc. Conference on Simulation, Mea-
surement and Modeling of Computer Systems, ACM Press:
Boulder, Colorado, 1979, pp. 225–240.

11. A. W. Holt, Coordination technology and Petri nets, in
G. Rozenberg (ed.), Advances in Petri Nets 1985, Vol. 222 of
Lecture Notes in Computer Science. Berlin: Springer-Verlag,
1985, pp. 278–296.

12. M. D. Zisman, Representation, Specification and Automation of
Office Procedures. PhD thesis, University of Pennsylvania,
Warton School of Business, 1977.

13. W. M. P. van der Aalst, The application of Petri nets to workflow
management, J. Circuits, Sys. Comp., 8(1): 21–66, 1998.

14. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,
and A. P. Barros, Workflow patterns, Dist. Parallel Databases,
14(1): 5–51, 2003.

15. Object Management Group, OMG Unified Modeling Language
2.0. OMG, Available: http://www.omg.com/uml/, 2005.

16. E. Kindler. On the semantics of EPCs: A framework for
resolving the vicious circle, Data Know. Eng., 56(1): 23–40,
2006.

17. J. Desel and J. Esparza, Free Choice Petri Nets, Vol. 40 of
Cambridge Tracts in Theoretical Computer Science. Cam-
bridge UK: Cambridge University Press, 1995.

18. T. Basten and W. M. P. van der Aalst, Inheritance of behavior,
J. Logic Algebraic Programming, 47(2): 47–145, 2001.

19. W. M. P. van der Aalst and T. Basten, Inheritance of workflows:
An approach to tackling problems related to change, Theor.
Comp. Sci., 270(1–2): 125–203, 2002.

20. W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl,
and K. Wolf. From public views to private views: Correctness-
by-design for services, in M. Dumas and H. Heckel (eds.),
Informal Proc. of the 4th International Workshop on Web
Services and Formal Methods (WS-FM 2007); QUT, Brisbane
Australia, 2007, 119–134.

21. N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg, Analyz-
ing interacting BPEL processes, in S. Dustdar, J. L. Faideiro,
and A. Sheth (eds.), International Conference on Business
Process Management (BPM 2006), Vol. 4102 of Lecture Notes
in Computer Science, Berlin: Springer-Verlag, 2006, 17–32.

22. H. M. W. Verbeek, T. Basten, and W. M. P. van der Aalst,
Diagnosing workflow, processes using woflan, Comp. J., 44(4):
246–279, 2001.

23. W. M. P. van der Aalst, B. F. van Dongen, C. W. Günther, R. S.
Mans, A. K. Alves de Medeiros, A. Rozinat, V. Rubin, M. Song,
H. M. W. Verbeek, and A. J. M. M. Weijters. ProM 4.0: Com-
prehensive support for real process analysis, in J. Kleijn and A.
Yakovlev (eds.), Application and Theory of Petri Nets and Other
Models of Concurrency (ICATPN 2007), Vol. 4546 of Lecture
Notes in Computer Science. Berlin: Springer-Verlag, 2007,
pp. 484–494.

24. J. Mendling, G. Neumann, and W. M. P. van der Aalst. Under-
standing the occurrence of errors in process models based on
metrics, in F. Curbera, F. Leymann, and M. Weske (eds.), Proc.
OTM Conference on Cooperative information Systems (CoopIS
2007), Vol. 4803 of Lecture Notes in Computer Science. Berlin:
Springer-Verlag, 2007, pp. 113–130.

25. P. Lyman and H. Varian, How Much Information. Available:
http://www.sims.berkeley.edu/how-much-info.

26. W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N.
Russell, H. M. W. Verbeek, and P. Wohed, Life after BPEL?, in
M. Bravetti, L. Kloul, and G. Zavattaro (eds.), WS-FM 2005,
Vol. 3670 of Lecture Notes in Computer Science, Berlin:
Springer-Verlag, 2005, 35–50.

27. G. Weikum and G. Vossen, Transactional Information Sys-
tems: Theory, Algorithms, and the Practice of Concurrency
Control and Recovery, San Francisco, CA: Morgan Kaufmann
Publishers, 2002.

28. W. M. P. van der Aalst and S. Jablonski, Dealing with workflow
change: identification of issues and solutions, Int. J. Comp.
Sys., Sci., Eng., 15(5): 267–276, 2000.

29. W. M. P. van der Aalst, M. Weske, and D. Grünbauer. Case
handling: A new paradigm for business process support. Data
Knowl. Eng., 53(2): 129–162, 2005.

30. M. Adams, A. H. M. ter Hofstede, W. M. P. van der Aalst, and D.
Edmond, Dynamic, extensible and context-aware exception
handling for workflows, in F. Curbera, F. Leymann, and M.
Weske (eds.), Proc. OTM Conference on Cooperative informa-
tion Systems (CoopIS 2007), Vol. 4803 of Lecture Notes in
Computer Science, Berlin: Springer-Verlag, 2007, 95–112.

31. C. A. Ellis, K. Keddara, and G. Rozenberg, Dynamic change
within workflow systems, in N. Comstock, C. Ellis, R. Kling,
J. Mylopoulos, and S. Kaplan (eds.), Proc. Conference on Orga-
nizational Computing Systems; pages 10–21, Milpitas,
California, 1995.

32. M. Reichert and P. Dadam, ADEPTflex: Supporting dynamic
changes of workflow without loosing control, J. Intell. Inf. Sys.,
10(2): 93–129, 1998.

33. M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. van der
Aalst. Constraint-based workflow models: Change made easy,

12 PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS



in F. Curbera, F. Leymann, and M. Weske (eds.), Proc. OTM
Conference on Cooperative information Systems (CoopIS 2007),
Vol. 4803 of Lecture Notes in Computer Science. Berlin:
Springer-Verlag, 2007, pp. 77–94.

34. S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria
for dynamic changes in workflow systems: A survey, Data
Know. Eng., 50(1): 9–34, 2004.

35. S. Sadiq, W. Sadiq, and M. Orlowska, Pockets of flexibility in
workflow specification, in Proc. 20th International Conference
on Conceptual Modeling (ER 2001), Vol. 2224 of Lecture
Notes in Computer Science, Berlin: Springer-Verlag, 2001,
pp. 513–526.

36. M. Weske, Formal foundation and conceptual design of
dynamic adaptations in a workflow management system, in
R. Sprague (ed.), Proc. Thirty-Fourth Annual Hawaii Interna-
tional Conference on System Science (HICSS-34). Los Alamitos,
CA: IEEE Computer Society Press, 2001.

37. W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster,
Workflow mining: Discovering process models from event logs,
IEEE Trans. Knowl. Data Eng., 16(9): 1128–1142, 2004.

38. W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F.
vanDongen, A. K. Alves de Medeiros, M. Song, and H. M. W.

Verbeek, Business process mining: An industrial application,
Inf. Sys., 32(5): 713–732, 2007.

39. A. Rozinat and W. M. P. van der Aalst, Conformance testing:
Measuring the fit and appropriateness of event logs and process
models, in C. Bussler et al. (ed.), BPM 2005 Workshops
(Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, Berlin: Springer-Verlag,
2006, 163–176.

40. I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques (2nd edition). San Francisco,
CA: Morgan Kaufmann, 2005.

41. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and
M. C. Shan, Business process intelligence, Comp. Ind., 53(3):
321–343, 2004.

WIL M.P. VAN DER AALST

Eindhoven University of Technology
Eindhoven, The Netherlands

PROCESS-AWARE INFORMATION SYSTEMS: DESIGN, ENACTMENT, AND ANALYSIS 13



R

REAL TIME DATABASE SYSTEMS

INTRODUCTION

A real-time database system (RTDBS) is a database system
providing all the features of a traditional database system
such as data independence and concurrency control, while
also enforcing real-time constraints that applications may
have (1). Like a traditional database system, a RTDBS
functions as a repository of data, provides efficient storage,
and performs retrieval and manipulation of information.
However, as a part of a real-time system, tasks have time
constraints; therefore, an RTDBS has the added require-
ment of ensuring some degree of confidence in meeting the
system’s timing requirements (2). A real-time database is a
database in which transactions have deadlines or timing
constraints (3). Real-time databases are commonly used in
real-time computing applications that require timely
access to data. And, usually, the definition of timeliness
is not quantified; for some applications, it is milliseconds,
and for others, it is minutes (4).

Traditional database systems differ from an RTDBS in
many aspects. Most importantly, RTDBSs have a different
performance goal, correctness criteria, and assumptions
about the applications. Unlike a traditional database sys-
tem, an RTDBS may be evaluated based on how often
transactions miss they deadlines, the average lateness
or tardiness of late transactions, the cost incurred in trans-
actions missing their deadlines, data external consistency,
and data temporal consistency.

For example, a stock market changes very rapidly and is
dynamic. The graphs of the different markets appear to be
very unstable, and yet, a database has to keep track of the
current values for all of the markets of the stock exchange.

Numerous real-word applications contain time-con-
strained access to data as well as access to data that has
temporal validity (5). Consider, for example, a telephone
switching system, network management, navigation sys-
tems, stock trading, and command and control systems.
Moreover, consider the following tasks within these envir-
onments: looking up the ‘‘800 directory,’’ obstacle detection
and avoidance, radar tracking, and recognition of objects.
All of these tasks entail gathering data from the environ-
ment, processing information in the context of information
obtained in the past, and contributing a timely response.
Another characteristic of these examples is that they entail
processing both temporal data, which lose their validity
after certain time intervals, as well as historical data.

Traditional databases, hereafter referred to as data-
bases, deal with persistent data. Transactions access these
data while preserving their consistency. The goal of trans-
action and query processing approaches chosen in data-
bases is to get a good throughput or response time. In
contrast, real-time systems can also deal with temporal
data, i.e., data that becomes outdated after a certain time.
Because of the temporal character of the data and the

response-time requirements forced by the environment,
tasks in real-time systems have time constraints, e.g.,
periods or deadlines. The important difference is that the
goal of real-time systems is to meet the time constraints of
the tasks.

One of the most important points to remember here is
that real time does not just mean fast (4). Furthermore, real
time does not mean timing constraints that are in nanose-
conds or microseconds. Real time means the need to man-
age explicit time constraints in a predictable fashion, that
is, to use time-cognizant methods to deal with deadlines or
periodicity constraints associated with tasks. Databases
are useful in real-time applications because they combine
several features that facilitate (1) the description of data,
(2) the maintenance of correctness and integrity of the data,
(3) efficient access to the data, and (4) the correct executions
of query and transaction execution despite concurrency and
failures (6).

Previous work on real-time databases in general has
been based on simulation. However, several prototypes of
general-purpose, real-time databases has been introduced.
One of the first real-time database implementations was
the disk-based transaction processing testbed, RT-CARAT
(7). Some of the early prototype projects are the REACH
(Real-time Active and Heterogeneous) mediator system
project (8) and the STRIP (Stanford Real-time Information
Processor) project (9).

Kim and Son (10) have presented a StarBase real-time
database architecture. This architecture has been devel-
oped over a real-time microkernel operating system, and it
is based on relational model. Wolfe et al. (11) have imple-
mented a prototype of the object-oriented, real-time data-
base architecture RTSORAC. Their architecture is based on
open OODB architecture with real-time extensions.
The database is implemented over a thread-based POSIX-
compliant operating system. Additionally, the DeeDS
project at the University of Skövde (12) and the BeeHive
project at the University of Virginia (13) are examples of
more recent RTDBS prototype projects.

Another object-oriented architecture is presented by
Cha et al. (14). Their M2RTSS-architecture is a main-
memory database system. It provides classes that imple-
ment the core functionality of storage manager, real-time
transaction scheduling, and recovery. Real-Time Object-
Oriented Database Architecture for Intelligent Networks
(RODAIN) (15) is an architecture for a real-time, object-
oriented, and fault-tolerant database management system.
The RODAIN prototype system is a main-memory data-
base, which uses priority- and criticality-based scheduling
and optimistic concurrency control.

At the same time, commercial ‘‘real-time’’ database sys-
tem products have started to appear on the marked, such as
Eaglespeed-RTDB (16), Clustra (17), Timesten (18),
Empress (19), eXtremeDB (20), and SolidDB (21). Although
these products may not be considered true RTDBS from the
viewpoint of many researchers in the RTDB community

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



since most of them only have very limited real-time fea-
tures, they represent a significant step forward in the
success of RTDB. Most of these products use main-memory
database techniques to achieve a better real-time perfor-
mance. Additionally, some of them include features for real-
time transaction management.

Several research angles emerge from real-time data-
bases: real-time concurrency control (e.g., Refs. 22–24),
buffer management (e.g., Refs. 25), disk scheduling (e.g.,
Refs. 26 and 27), system failure and recovery (e.g., Refs. 28
and 29), overload management (e.g., Refs. 30–32), sensor
data (e.g., Ref. 32, 33), security (e.g., Refs. 34–36), and
distributed real-time database systems (e.g., Refs. 37–44).

While developing RTDB systems that provide the
required timeliness of the data and transactions, several
issues must be considered. Below is a list of some of the
issues that have been the subject of research in this
field (45).

� Data, transactions, and system characteristics: An
RTDB must maintain not only the logical consistency
of the data and transactions, but it must also maintain
transaction timing properties as well as the temporal
consistency of the data. These issues will be presented
in more detail in the next section.

� Scheduling and transaction processing: Scheduling
and transaction processing issues that consider data
and transaction features have been a major part of the
research that has been performed in the field of RTDB.
These issues will be discussed in more detail in the
third section.

� Managing I/O and buffers: Although the scheduling of
CPU and data resources have been studied exten-
sively, study of other resources like disk I/O and buf-
fers has begun only recently (25, 45). Work presented
in Refs. 46–48, 27, 49, and 26 has shown that transac-
tion priorities must be considered in the buffer man-
agement and disk I/O.

� Concurrency control: Concurrency control has been
one of the main research areas in RTDBSs. This issue
will be discussed in the fourth section.

� Distribution: Many applications that require RTDB
are not located on a single computer. Instead, they
are distributed and may require that real-time data
be distributed as well. Issues involved with distri-
buting data include deadline assignment (41, 44,
33, 50), distributed database architectures (12), dis-
tributed resource management (51) data replication
(43), replication consistency (52) distributed tran-
saction processing (53, 54, 40, 38), and distributed -
concurrency control (55, 51).

� Quality of service and quality of data: Maintaining
logical consistency of the database and the temporal
consistency of the data is hard (56). Therefore, there

must be a trade-off made to decide which is more
important (57, 58).

REAL-TIME DATABASE MODEL

A real-time system consists of a controlling system and a
controlled system (3). The controlled system is the environ-
ment with which the computer and its software interacts.
The controlling system interacts with its environment
based on the data read from various sensors, e.g., distance
and speed sensors. It is essential that the state of
the environment is consistent with the actual state of the
environment to a high degree of accuracy. Otherwise,
the actions of the controlling systems may be disastrous.
Hence, timely monitoring of the environment as well as
timely processing of the information from the environment
is necessary. In many cases, the read data are processed to
derive new data (59).

This section discusses the characteristics of data and the
characteristics of transactions in real-time database sys-
tems.

Data and Consistency

In addition to the timing constraints that originate from the
need to continuously track the environment, the timing
correctness requirements in a real-time database system
also surface because of the need to make data available to
the controlling system for its decision-making activities
(60). The need to maintain consistency between the actual
state of the environment and the state as reflected by the
contents of the database leads to the notion of temporal
consistency. Temporal consistency has two components
(61):

� Absolute consistency: Data are only valid between
absolute points in time. This is due to the need to
keep the database consistent with the environment.

� Relative consistency: Different data items that are
used to derive new data must be temporally consistent
with each other. This requires that a set of data items
used to derive a new data item form a relative consis-
tency set R.

Data Item d is temporally consistent if and only if d is
absolutely consistent and relatively consistent (3). Every
data item in the real-time database consists of the current
state of the object (i.e., current value stored in that data
item) and two timestamps. These timestamps represent the
time when this data item was last accessed by the com-
mitted transaction. These timestamps are used in the con-
currency control method to ensure that the transaction
reads only from committed transactions and writes after
the latest committed write. Formally,

Definition 2.1. A data item in the real-time database is
denoted by d: (value, RTS, WTS, avi), where dvalue denotes
the current state of d; dRTS denotes when the last committed

2 REAL TIME DATABASE SYSTEMS



transaction has read the current state of d; dWTS denotes
when the last committed transaction has written d, i.e.,
when the observation relating to d was made; and davi

denotes d’s absolute validity interval, i.e., the length of
the time interval following RWTS during which d is con-
sidered to have absolute validity.

A set of data items used to derive a new data item form a
relative consistency set R. Each such set R is associated
with a relative validity interval. Assume that d2R. d has a
correct state if and only if (3):

1. dvalue is logically consistent, i.e., satisfies all integrity
constraints.

2. d is temporally consistent:

�Data item d2R is absolutely consistent if and only if
(current_time – dobservationtime)� dabsolutevalidityinterval.

� Data items are relatively consistent if and only if
8d0 2Rjd0timestam p � d0timestam pj � Rrelativevalidityinterval:

In this section we do not consider temporal data or
temporal constraints. A good book on temporal databases
can be found in Ref. 62. A discussion on integration of
temporal and real-time database systems can be found
from (63). Finally, temporal consistency maintenance is
discussed in Refs. 64 and 65.

Transactions in Real-Time Database System

In this section, transactions are characterized along three
dimensions: the manner in which data is used by transac-
tions, the nature of time constraints, and the significance of
executing a transaction by its deadline, or more precisely,
the consequence of missing specified time constraints (66).

To reason about transactions and about the correctness
of the management algorithms, it is necessary to define the
concept formally. For the simplicity of the exposition, it is
assumed that each transaction reads and writes a data item
at most once. From now on, the abbreviations r, w, a, and c
are used for the read, write, abort, and commit operations,
respectively.

Definition 2.2. A transaction Ti is partial order with an
ordering relation � i, where (67):

1. Ti�fri½x�;wi½x�jx is a data itemg[ fai; cig;
2. ai 2 Ti if and only if ci =2Ti;

3. if t is ci or ai, for any other operation p2Ti; p� i t; and

4. if ri½x�; wi½x� 2Ti; then
either ri½x� � i wi½x� or wi½x� � i ri½x�.

Informally, (1) a transaction is a subset of read, write,
and abort or commit operations. (2) If the transaction
executes an abort operation, then the transaction is not
executing a commit operation. (3) If a certain operation t is
abort or commit, then the ordering relation defines that for
all other operations precede operation t in the execution of
the transaction. (4) If both read and write operation are
executed to the same data item, then the ordering relation
defines the order between these operations.

A real-time transaction is a transaction with additional
real-time attributes. We have added additional attributes
for a real-time transaction. These attributes are used by the
real-time scheduling algorithm and concurrency control
method. Additional attributes are as follows (2):

� Timing constraints—For example, the deadline is a
timing constraint associated with the transaction.

� Criticalness—It measures how critical it is that a
transaction meets its timing constraints. Different
transactions have different criticalness. Furthermore,
criticalness is a different concept from deadline
because a transaction may have a very tight deadline,
but missing it may not cause great harm to the system.

� Value function—The value function is related to a
transaction’s criticalness. It measures how valuable
it is to complete the transaction at some point in time
after the transaction arrives.

� Resource requirements—Indicates the number of I/O
operations to be executed, expected CPU usage, and so
on.

� Expected execution time—Generally very hard to pre-
dict but can be based on an estimate or experimentally
measured value of worst-case execution time.

� Data requirements—Read sets and write sets of trans-
actions.

� Periodicity—If a transaction is periodic, what its per-
iod is.

� Time of occurrence of events—At which point in time a
transaction issues a read or write request.

� Other semantics—Transaction type (read-only, write-
only, etc.).

Based on the values of the above attributes, the avail-
ability of the information, and other semantics of the
transactions, a real-time transaction can be characterized
as follows (68):

� Implication of missing deadline: hard, critical, or soft
(firm) real time.

� Arrival pattern: periodic, sporadic, or aperiodic.

� Data access pattern: predefined (read-only, write-only,
or update) or random.

� Data requirement: known or unknown.

� Runtime requirement, i.e., pure processor or data
access time: known or unknown.

� Accessed data type: continuous, discrete, or both.

The real-time database system applies all three types of
transactions discussed in the database literature (69):

� Write-only transactions obtain the state of the envir-
onment and write into the database.

� Update transactions derive a new data item and store
it in the database.

� Read-only transactions read data from the database
and transmit that data or derived actions based on that
data to the controlling system.

REAL TIME DATABASE SYSTEMS 3



The above classification can be used to tailor the
appropriate concurrency control methods (2). Some trans-
action-time constraints come from temporal consistency
requirements, and some come from requirements imposed
on system reaction time. The former typically take the
form of periodicity requirements. Transactions can also
be distinguished based on the effect of missing a transac-
tion’s deadline.

Transaction processing and concurrency control in a
real-time database system should be based on priority
and the criticalness of the transactions (70). Traditional
methods for transaction processing and concurrency con-
trol used in a real-time environment would cause some
unwanted behavior. Below the four typified problems are
characterized and priority is used to denote either schedul-
ing priority or criticality of the transaction:

� wasted restart: A wasted restart occurs if a higher
priority transaction aborts a lower priority transac-
tion, and later, the higher priority transaction is dis-
carded when it misses its deadline.

� wasted wait: A wasted wait occurs if a lower priority
transaction waits for the commit of a higher priority
transaction, and later, the higher priority transaction
is discarded when it misses its deadline.

� wasted execution: A wasted execution occurs when a
lower priority transaction in the validation phase is
restarted due to a conflicting higher priority transac-
tion that has not finished yet.

� unnecessary restart: An unnecessary restart occurs
when a transaction in the validation phase is restarted
even when history would be serializable.

Traditional two-phase locking methods suffer from the
problem of wasted restart and wasted wait. Optimistic
methods suffer the problems of wasted execution and unne-
cessary restart (71).

TRANSACTION PROCESSING IN THE REAL-TIME DATABASE
SYSTEM

This section presents several characteristics of transaction
and query processing. Transactions and queries have time
constraints attached to them, and there are different effects
of not satisfying those constraints (3). A key issue in trans-
action processing is predictability (72). If a real-time trans-
action misses its deadline, it can have catastrophic
consequences. Therefore, it is necessary to able to predict
that such transactions will complete before their deadlines.
This prediction will be possible only if the worst-case
execution time of a transaction and the data and resource
needs of the transaction is known.

In a database system, several sources of unpredictability
exist (3):

� Dependence of the transaction’s execution sequence on
data values.

� Data and resource conflicts.

� Dynamic paging and I/O.

� Transactions abort and the resulting rollbacks and
restarts.

� Communication delays and site failures on distributed
databases.

Because a transaction’s execution path can depend on
the values of the data items it accessed, it may not be
possible to predict the worst-case execution time of the
transaction. Similarly, it is better to avoid using unbounded
loops and recursive or dynamically created data structures
in real-time transactions. Dynamic paging and I/O unpre-
dictability can be solved by using main memory databases
(73). Additionally, I/O unpredictability can be decreased
using deadlines and priority-driven I/O controllers
(e.g. 48, 46 ).

Transaction rollbacks also reduce predictability. There-
fore, it is advisable to allow a transaction to write only to
its own memory area and after the transaction is guaran-
teed to commit write the transaction’s changes to the
database (71).

Scheduling Real-Time Transactions

A transaction scheduling policy defines how priorities are
assigned to individual transactions (66). The goal of trans-
action scheduling is that as many transactions as possible
will meet their deadlines. Numerous transaction schedul-
ing policies are denned in the literature. Only a few exam-
ples are quoted here.

Transactions in a real-time database can often be
expressed as tasks in a realtime system (66). Scheduling
involves the allocation of resources and time to tasks in
such a way that certain performance requirements are met.
A typical real-time system consists of several tasks, which
must be executed concurrently. Each task has a value,
which is gained to the system if a computation finishes
in a specific time. Each task also has a deadline, which
indicates a time limit, when a result of the computing
becomes useless.

In this section, the terms hard, soft, and firm are used to
categorize the transactions (66). This categorization tells
the value imparted to the system when a transaction meets
its deadline. In systems that use priority-driven scheduling
algorithms, value and deadline are used to derive the
priority (74, 75).

A characteristic of most real-time scheduling algorithms
is the use of priority based scheduling (66). Here transac-
tions are assigned ‘‘priorities’’ which are implicit or explicit
functions of their deadlines or criticality or both. The criti-
cality of a transaction is an indication of its level of impor-
tance. However, these two requirements sometimes conflict
with each other. That is, transactions with very short
deadlines might not be very critical, and vice versa (76).
Therefore, the criticality of the transactions is used in place
of the deadline in choosing the appropriate value to priority.
This avoids the dilemma of priority scheduling, yet inte-
grates criticality and deadline so that not only the more
critical transactions meet their deadlines. The overall goal
is to maximize the net worth of the executed transactions to
the system.

4 REAL TIME DATABASE SYSTEMS



Whereas arbitrary types of value functions can be asso-
ciated with transactions (77–79), the following simple func-
tions occur more often (see also Fig. 1):

� Hard deadline transactions are those that may
result in a catastrophe if the deadline is missed. One
can say that a large negative value is imparted to the
system if a hard deadline is missed. These are typically
safety-critical activities, such as those that respond to
life or environment-threatening emergency situations
(80, 81).

� Soft deadline transactions have some value even after
their deadlines. Typically, the value drops to zero at a
certain point past the deadline (82, 54).

� Firm deadline transactions impart no value to the
system once their dead lines expire; i.e., the value
drops to zero at the deadline (30, 78).

Scheduling Paradigms

Several scheduling paradigms emerge, depending on (1)
whether a system performs a schedulability analysis; (2) if
it does, whether it is done statically or dynamically; and (3)
whether the result of the analysis itself produces a schedule
or plan according to which tasks are dispatched at run time.
Based on this, the following classes of algorithms can be
identified (83):

� Static table-driven approaches: These perform a static
schedulability analysis, and the resulting schedule is
used at run time to decide when a task must begin
execution.

� Static priority-driven preemptive approaches: These
perform a static schedu lability analysis, but unlike the
previous approach, no explicit schedule is constructed.
At run time, tasks are executed using a highest priority
first policy.

� Dynamic planning-based approaches: The feasibility
is checked at run time; i.e., a dynamically arriving task
is accepted for execution only if it is found feasible.

� Dynamic best effort approaches: The system tries to do
its best to meet deadlines.

In the earliest deadline first (EDF) (80) policy, the
transaction with the earliest deadline has the highest
priority. Other transactions will receive their priorities
in descending deadline order. In the least slack first
(LSF) (66) policy, the transaction with the shortest slack
time is executed first. The slack time is an estimate of how
long the execution of a transaction can be delayed and still
meet its deadline. In the highest value (HV) (74) policy,
transaction priorities are assigned according to the trans-
action value attribute. A survey of transaction scheduling
policies can be found in Ref. 66.

Priority Inversion

In a real-time database environment, resource control may
interfere with CPU scheduling (84). When blocking is used
to resolve a resource allocation such as in 2PL (85), a
priority inversion (73) event can occur if a higher priority
transaction gets blocked by a lower priority transaction.

Figure 2 illustrates an execution sequence, where a
priority inversion occurs. A task T3 executes and reserves
a resource. A higher priority task T1 preempts task T3 and
tries to allocate a resource reserved by task T3. Then, task
T2 becomes eligible and blocks T3. Because T3 cannot be
executed, the resource remains reserved suppressing T1.
Thus, T1 misses its deadline due to the resource conflict.

In Ref. 86, a priority inheritance approach was proposed
to address this problem. The basic idea of priority inheri-
tance protocols is that when a task blocks one or more
higher priority tasks, the lower priority transaction inher-
its the highest priority among conflicting transactions.

Figure 3 illustrates how a priority inversion problem
presented in Fig. 2 can be solved with the priority inheri-
tance protocol. Again, task T3 executes and reserves a
resource, and a higher priority task T1 tries to allocate
the same resource. In the priority inheritance protocol, task
T3 inherits the priority of T1 and executes. Thus, task T2

cannot preempt task T3. When T3 releases the resource, the
priority of T3 returns to the original level. Now T1 can
acquire the resource and complete before its deadline.

Value

-

Time

Hard 

Firm

Soft

Deadlines to be met

Figure 1. The deadline types.

.

Start of task execution

Completion of task

Context switch

Lock resource and continue

Try to lock resource and wait

Time
T3

T2

T1

deadline of T1

Figure 2. Priority inversion example.

REAL TIME DATABASE SYSTEMS 5



CONCURRENCY CONTROL IN REAL-TIME DATABASES

A Real-Time Database System (RTDBS) processes transac-
tions with timing constraints such as deadlines (3). Its
primary performance criterion is timeliness, not average
response time or throughput. The scheduling of transac-
tions is driven by priority order. Given these challenges,
considerable research has recently been devoted to design-
ing concurrency control methods for RTDBSs and to eval-
uating their performance (7, 73, 87, 88, 89, 90). Most of
these methods are based on one of the two basic concur-
rency control mechanisms: locking (85) or optimistic con-
currency control (OCC) (91).

In real-time database systems, transactions are sched-
uled according to their timing constraints. Task scheduler
assigns a priority for a task based on its timing constraints
or criticality or both (3). Therefore, higher priority trans-
actions are executed before lower priority transactions.
This is true only if a high-priority transaction has some
database operation ready for execution. If no operation
from a higher priority transaction is ready for execution,
then an operation from a lower priority transaction is
allowed to execute its database operation. Therefore,
the operation of the higher priority transaction may con-
flict with the already executed operation of the lower
priority transaction. In non-preemptive methods, a higher
priority transaction must wait for the release of the
resource. This is the priority inversion problem presented
earlier. Therefore, data conflicts in concurrency control
should also be based on transaction priorities or critical-
ness or both. Hence, numerous traditional concurrency
control methods have been extended to the real-time
database systems.

There are many ways in which the schedulers can be
classified (67). One obvious classification criterion is the
mode of database distribution. Some schedulers that
have been proposed require a fully replicated database,
whereas others can operate on partially replicated or
partitioned databases. The schedulers can also be classified
according to network topology. The most common classifi-
cation criterion, however, is the synchronization primitive,
i.e., those methods that are based on mutually exclusive
access to shared data and those that attempt to order

the execution of the transactions according to a set of rules
(92). There are two possible views: the pessimistic view that
many transactions will conflict with each other, or the
optimistic view that not too many transactions will conflict
with each other. Pessimistic methods synchronize the con-
current execution of transactions early in their execution,
and optimistic methods delay the synchronization of trans-
actions until their terminations (93). Therefore, the basic
classification is as follows:

� Pessimistic Methods

– Timestamp Ordering Methods (94, 95)

– Serialization Graph Testing (67)

– Locking Methods (19, 39, 40, 96–98)

� Optimistic Methods

– Backward Validation Methods (99)

– Forward Validation Methods (90, 100–103)

– Serialization Graph Testing (67, 94, 104)

– Hybrid Methods (105)

� Hybrid Methods (88, 89, 106–108)

In the locking-based methods, the synchronization of
transactions is acquired by using physical or logical locks on
some portion or granule of the database. The timestamp
ordering method involves organizing the execution order of
transactions so that they maintain mutual and internal
consistency. This ordering is maintained by assigning time-
stamps to both the transactions and the data that are stored
in the database (92).

The state of a conventional non-versioning database
represents the state of a system at a single moment of
time. Although the contents of the database change as new
information is added, these changes are viewed as modifica-
tion to thestate.Thecurrentcontentsof thedatabasemay be
viewed as a snapshot of the system. Additionally, conven-
tional DBSs provide no guarantee of transaction completion
times.

In the following sections, recent related work on locking
and optimistic methods for real-time databases are pre-
sented.

priority

T1

T3

T2

deadline of T1

Time

Start of task execution

Completion of task

Context switch

Lock resource and continue

Try to lock resource and wait

Release resource

Inherit

priority

of T1

Return

original

Figure 3. Priority inheritance example.

6 REAL TIME DATABASE SYSTEMS



Locking Methods in Real-Time Databases

In this section, we present some well-known pessimistic
concurrency control methods. Most of these methods are
based on 2PL.

2PL High Priority. In the 2PL-HP (2PL High Priority)
concurrency control method (73, 109, 97), conflicts are
resolved in favor of the higher priority transactions. If
the priority of the lock requester is higher than the priority
of the lock holder, the lock holder is aborted, rolled back,
and restarted. The lock is granted to this requester, and
the requester can continue its execution. If the priority of
the lock requester is lower than that of the lock holder, the
requesting transaction blocks to wait for the lock holder to
finish and release its locks. High Priority concurrency
control may lead to the cascading blocking problem, a
deadlock situation, and priority inversion.

2PL Wait Promote. In 2PL-WP (2PL Wait Promote)
(84, 97), the analysis of the concurrency control method
is developed from Ref. 73. The mechanism presented uses
shared and exclusive locks. Shared locks permit multiple
concurrent readers. A new definition is made—the prior-
ity of a data object, which is defined to be the highest
priority of all the transactions holding a lock on the data
object. If the data object is not locked, its priority is
undefined.

A transaction can join in the read group of an object if
and only if its priority is higher than the maximum priority
of all transactions in the write group of an object. Thus,
conflicts originate from the incompatibility of locking
modes as usual. Particular attention is given to conflicts
that lead to priority inversions. A priority inversion occurs
when a transaction of high priority requests and blocks for
an object that has lesser priority. This means that all the
lock holders have less priority than the requesting transac-
tion. This same method is also called 2PL-PI (2PL Priority
Inheritance) (97).

2PL Conditional Priority Inheritance. Sometimes high
priority may be too strict a policy. If the lock holding
transaction Th can finish in the time that the lock
requesting transaction Tr can afford to wait, that is within
the slack time of Tr, and let Th proceed to execution and
Tr wait for the completion of Th. This policy is called
2PL-CR (2PL Conditional Restart) or 2PL-CPI (2PL
Conditional Priority Inheritance) (97).

Priority Ceiling Protocol (55, 86). The focus is to minimize
the duration of blocking to at most one lower priority task
and to prevent the formation of deadlocks. A real-time
database can often be decomposed into sets of database
objects that can be modeled as atomic data sets. For exam-
ple, two radar stations track an aircraft representing the
local view in data objects O1 and O2. These objects might
include, e.g., the current location, velocity, and so on. Each
of these objects forms an atomic data set, because the
consistency constraints can be checked and validated
locally. The notion of atomic data sets is especially useful
for tracking multiple targets.

A simple locking method for elementary transactions is
the two-phase locking method; a transaction cannot release
any lock on any atomic data set unless it has obtained all the
locks on that atomic data set. Once it has released its locks,
it cannot obtain new locks on the same atomic data set;
however, it can obtain new locks on different data sets. The
theory of modular concurrency control permits an elemen-
tary transaction to hold locks across atomic data sets. It
increases the duration of locking and decreases preempt-
ibility. In this study, transactions do not hold locks across
atomic data sets.

Priority Ceiling Protocol minimizes the duration of
blocking to at most one elementary lower priority task
and prevents the formation of deadlocks (55, 86). The
idea is that when a new higher priority transaction pre-
empts a running transaction, its priority must exceed the
priorities of all preempted transactions, taking the priority
inheritance protocol into consideration. If this condition
cannot be met, the new transaction is suspended and the
blocking transaction inherits the priority of the highest
transaction it blocks.

The priority ceiling of a data object is the priority of the
highest priority transaction that may lock this object
(55, 86). A new transaction can preempt a lock-holding
transaction if and only if its priority is higher than the
priority ceilings of all the data objects locked by the lock-
holding transaction. If this condition is not satisfied, the
new transaction will wait and the lock-holding transaction
inherits the priority of the highest transaction that it
blocks. The lock-holder continues its execution, and
when it releases the locks, its original priority is resumed.
All blocked transactions are awakened, and the one with
the highest priority will start its execution.

The fact that the priority of the new lock-requesting
transaction must be higher than the priority ceiling of all
the data objects that it accesses prevents the formation of a
potential deadlock. The fact that the lock-requesting trans-
action is blocked only at most the execution time of one
lower priority transaction guarantees, the formation of
blocking chains is not possible (55, 86).

Read/Write Priority Ceiling. The Priority Ceiling Proto-
col is further advanced in Ref. 96, where the Read/Write
Priority Ceiling Protocol is introduced. It contains two basic
ideas. The first idea is the notion of priority inheritance.
The second idea is a total priority ordering of active trans-
actions. A transaction is said to be active if it has started but
not completed its execution. Thus, a transaction can exe-
cute or wait caused by a preemption in the middle of its
execution. Total priority ordering requires that each active
transaction execute at a higher priority level than the
active lower priority transaction, taking priority inheri-
tance and read/write semantics into consideration.

OPTIMISTIC METHODS IN REAL-TIME DATABASES

Optimistic Concurrency Control (OCC) (99, 91), is based on
the assumption that conflict is rare, and that it is more
efficient to allow transactions to proceed without delays.
When a transaction desires to commit, a check is performed

REAL TIME DATABASE SYSTEMS 7



to determine whether a conflict has occurred. Therefore,
there are three phases to an optimistic concurrency control
method:

� Read phase: The transaction reads the values of all
data items it needs from the database and stores them
in local variables. Concurrency control scheduler
stores identity of these data items to a read set. How-
ever, writes are applied only to local copies of the data
items kept in the transaction workspace. Concurrency
control scheduler stores identity of all written data
items to a write set.

� Validation phase: The validation phase ensures that
all the committed transactions have executed in a
serializable fashion. For a read-only transaction,
this consists of checking that the data values read
are still the current values for the corresponding
data items. For a transaction that has writes, the
validation consists of determining whether the current
transaction has executed in a serializable way.

� Write phase: This follows the successful validation
phase for transactions, including write operations.
During the write phase, all changes made by the
transaction are permanently stored into the database.

In the following discussion, we introduce some well-
known optimistic methods for realtime database systems.

Broadcast Commit. For RTDBSs, a variant of the classic
concurrency control method is needed. In Broadcast Com-
mit, OPT-BC (87), when a transaction commits, it notifies
other running transactions that conflict with it. These
transactions are restarted immediately. There is no need
to check a conflict with committed transactions since the
committing transaction would have been restarted in the
event of a conflict. Therefore, a validating transaction is
always guaranteed to commit. The broadcast commit
method detects the conflicts earlier than the conventional
concurrency control mechanism, resulting in earlier
restarts, which increases the possibility of meeting the
transaction deadlines (87).

The main reason for the good performance of locking in a
conventional DBMS is that the blocking-based conflict
resolution policy results in conservation of resources,
whereas the optimistic method with its restart-based con-
flict resolution policy wastes more resources (87). But in an
RTDBS environment, where conflict resolution is based on
transaction priorities, the OPT-BC policy effectively pre-
vents the execution of a lower priority transaction that
conflicts with a higher priority transaction, thus decreasing
the possibility of further conflicts and the waste of resources
is reduced. Conversely, 2PL-HP loses some of the basic 2PL
blocking factor because of the partially restart-based nat-
ure of the High Priority scheme.

The delayed conflict resolution of optimistic methods
aids in making better decisions since more information
about the conflicting transactions is available at this stage
(87). Compared with 2PL-HP, a transaction could be
restarted by, or wait for, another transaction that is later
discarded. Such restarts or waits are useless and cause

performance degradation. OPT-BC guarantees the commit,
and thus the completion of, each transaction that reaches
the validation stage. Only validating transactions can
cause the restart of other transactions; thus, all restarts
generated by the OPT-BC method are useful.

First of all, OPT-BC has a bias against long transactions
(i.e., long transactions are more likely to be aborted if there
are conflicts), like in the conventional optimistic methods
(87). Second, as the priority information is not used in the
conflict resolution, a committing lower priority transaction
can restart a higher priority transaction very close to its
validation stage, which will cause missing the deadline of
the restarted higher priority transaction (100).

Opt-Sacrifice. In the OPT-SACRIFICE (100) method,
when a transaction reaches its validation phase, it checks
for conflicts with other concurrently running transactions.
If conflicts are detected and at least one of the conflicting
transactions has a higher priority, then the validating
transaction is restarted, i.e., sacrificed in favor of the higher
priority transaction. Although this method prefers high-
priority transactions, it has two potential problems. First, if
a higher priority transaction causes a lower priority trans-
action to be restarted, but fails in meeting its deadline,
the restart was useless. This degrades the performance.
Second, if priority fluctuations are allowed, there may be
the mutual restarts problem between a pair of transactions
(i.e., both transactions are aborted). These two drawbacks
are analogous to those in the 2PL-HP method (100).

Opt-Wait and Wait-X. When a transaction reaches its
validation phase, it checks whether any of the concurrently
running other transactions have a higher priority. In the
OPT-WAIT (100) case, the validating transaction is made to
wait, giving the higher priority transactions a chance to
make their deadlines first. While a transaction is waiting, it
is possible that it will be restarted because of the commit of
one of the higher priority transactions. Note that the wait-
ing transaction does not necessarily have to be restarted.
Under the broadcast commit scheme, a validating transac-
tion is said to conflict with another transaction, if the
intersection of the write set of the validating transaction
and the read set of the conflicting transaction is not empty.
This result does not imply that the intersection of the write
set of the conflicting transaction and the read set of the
validating transaction is not empty either (100).

The WAIT-50 (100) method is an extension of the OPT-
WAIT—it contains the priority wait mechanism from the
OPT-WAIT method and a wait control mechanism. This
mechanism monitors transaction conflict states and dyna-
mically decides when and for how long a lower priority
transaction should be made to wait for the higher priority
transactions. In WAIT-50, a simple 50% rule is used—a
validating transaction is made to wait while half or more of
its conflict set is composed of transactions with higher
priority. The aim of the wait control mechanism is to detect
when the beneficial effects of waiting are outweighed by its
drawbacks (100).

We can view OPT-BC, OPT-WAIT, and WAIT-50 as
being special cases of a general WAIT-X method, where
X is the cutoff percentage of the conflict set composed of

8 REAL TIME DATABASE SYSTEMS



higher priority transactions. For these methods X takes the
values infinite, 0, and 50, respectively.

Validation Methods

The validation phase ensures that all the committed trans-
actions have executed in a serializable fashion (91). Most
validation methods use the following principles to ensure
serializability. If a transaction Ti is before transaction Tj in
the serialization graph (i.e., Ti�Tj), the following two
conditions must be satisfied (71):

1. No overwriting. The writes of Ti should not overwrite
the writes of Tj.

2. No read dependency. The writes of Tj should not
affect the read phase of Ti.

Generally, condition 1 is automatically ensured in
most optimistic methods because I/O operations in the
write phase are required to be done sequentially in the
critical section (71). Thus, most validation schemes con-
sider only condition 2. During the write phase, all changes
made by the transaction are permanently installed into
the database. To design an efficient real-time optimistic
concurrency control method, three issues have to be con-
sidered (71):

1. which validation scheme should be used to detect
conflicts between transactions;

2. how to minimize the number of transaction restarts;
and

3. how to select a transaction or transactions to restart
when a nonserializable execution is detected.

In Backward Validation (99), the validating transaction
is checked for conflicts against (recently) committed trans-
actions. Conflicts are detected by comparing the read set of
the validating transaction and the write sets of the com-
mitted transactions. If the validating transaction has a
data conflict with any committed transactions, it will be
restarted. The classic optimistic method in Ref. 91 is based
on this validation process.

In Forward Validation (99), the validating transaction
is checked for conflicts against other active transactions.
Data conflicts are detected by comparing the write set of the
validating transaction and the read set of the active trans-
actions. If an active transaction has read an object that has
been concurrently written by the validating transaction, the
values of the object used by the transactions are not con-
sistent. Such a data conflict can be resolved by restarting
either the validating transaction or the conflicting transac-
tions in the read phase. Optimistic methods based on this
validation process are studied in Ref. 99. Most of the pro-
posed optimistic methods are based on Forward Validation.

Forward Validation is preferable for the real-time data-
base systems because Forward Validation provides flex-
ibility for conflict resolution (99). Either the validating
transaction or the conflicting active transactions may be
chosen to restart. In addition to this flexibility, Forward
Validation has the advantage of early detection and resolu-
tion of data conflicts. In recent years, the use of optimistic

methods for concurrency control in real-time databases has
received more and more attention. Different real-time opti-
mistic methods have been proposed.

Forward Validation (OCC-FV) (99) is based on the
assumption that the serialization order of transactions is
determined by the arriving order of the transactions at the
validation phase. Thus, the validating transaction, if not
restarted, always precedes concurrently running active
transactions in the serialization order. A validation process
based on this assumption can cause restarts that are not
necessary to ensure data consistency. These restarts should
be avoided.

The major performance problem with optimistic concur-
rency control methods is the late restart (71). Sometimes
the validation process using the read sets and write sets
erroneously concludes that a nonserializable execution has
occurred, even though it has not done so in actual execution
(106) (see Example 1). Therefore, one important mechan-
ism to improve the performance of an optimistic concur-
rency control method is to reduce the number of restarted
transactions.

Example 1. Consider the following transactions T1, T2

and history H1:

T1: r1[x]c1

T2: w2[x]c2

H1: r1[x]w2[x]c2

Based on the OCC-FV method (99), T1 has to be restarted.
However, this is not necessary, because when T1 is allowed
to commit such as:

H2 : r1½x�w2½x�c2c1;

then the schedule of H2 is equivalent to the serialization
order T1 ! T2 as the actual write of T2 is performed after
its validation and after the read of T1. There is no cycle in
their serialization graph and H2 is serializable.

One way to reduce the number of transaction restarts is
to adjust dynamically the serialization order of the conflict-
ing transactions (71). Such methods are called dynamic
adjustment of the serialization order (71). When data con-
flicts between the validating transaction and active trans-
actions are detected in the validation phase, there is no
need to restart conflicting active transactions immediately.
Instead, a serialization order of these transactions can be
dynamically defined.

Definition 4.1. Suppose there is a validating transaction
Tv and a set of active transactions Tjð j ¼ 1; 2; . . . ;nÞ. Three
possible types of data conflicts can cause a serialization
order between Tv and Tj (71,110,106):

1. RSðTvÞ \WSðTjÞ 6¼? (read–write conflict)
A read–write conflict between Tv and Tj can be resol-
ved by adjusting the serialization order between Tv

and Tj as Tv ! Tj so that the read of Tv cannot be
affected by Tj’s write. This type of serialization
adjustment is called forward ordering or forward
adjustment.

REAL TIME DATABASE SYSTEMS 9



2. WSðTvÞ \RSðT jÞ 6¼? (write–read conflict)
A write–read conflict between Tv and Tj can be
resolved by adjusting the serialization order between
Tv and Tj as Tj ! Tv. It means that the read phase of
Tj is placed before the write of Tv. This type of serial-
ization adjustment is called backward ordering or
backward adjustment.

3. WSðTvÞ \WSðTjÞ 6¼? (write–write conflict)
A write–write conflict between Tv and Tj can be
resolved by adjusting the serialization order between
Tv and Tj as Tv ! Tj such that the write of Tv cannot
overwrite Tj’s write (forward ordering).

OCC-TI. The OCC-TI (71,111) method resolves conflicts
using the timestamp intervals of the transactions. Every
transaction must be executed within a specific time slot.
When an access conflict occurs, it is resolved using the read
and write sets of the transaction together with the allocated
time slot. Time slots are adjusted when a transaction
commits.

OCC-DA. OCC-DA (90) is based on the Forward Valida-
tion scheme (99). The number of transaction restarts is
reduced by using dynamic adjustment of the serialization
order.This issupportedwiththeuseofadynamictimestamp
assignment scheme. Conflict checking is performed at the
validation phase of a transaction. No adjustment of
the timestamps is necessary in case of data conflicts in the
readphase. InOCC-DA,theserializationorderofcommitted
transactions may be different from their commit order.

OCC-DATI. Optimistic Concurrency Control with
Dynamic Adjustment using Timestamp Intervals (OCC-
DATI) (112). OCC-DATI is based on forward validation.
The number of transaction restarts is reduced by dynamic
adjustment of the serialization order that is supported by
similar timestamp intervals as in OCC-TI. Unlike the OCC-
TI method, all checking is performed at the validation
phase of each transaction. There is no need to check for
conflicts while a transaction is still in its read phase. As the
conflict resolution between the transactions in OCC-DATI
is delayed until a transaction is near completion, there will
be more information available for making the choice in
resolving the conflict. OCC-DATI also has a new final
timestamp selection method compared with OCC-TI.

SUMMARY

The field of real-time database research has evolved greatly
over the relatively short time of its existence. The future of
RTDB research is dependent of continues progress of this
evolution. Research on this field should continue to pursue
state-of-the-art applications and to apply both existing tech-
niques to them as well as develop new ones when needed.

BIBLIOGRAPHY

1. A. Buchmann, Real Time Database Systems, Idea Group,
2002.

2. B. Kao and H. Garcia-Molina, An overview of real-time data-
base systems, in S. H. Son, (ed.), Advances in Real-Time
Systems, Englewood Cliffs, NJ: Prentice Hall, 1995, pp.
463–486.

3. K. Ramamritham, Real-time databases. Distributed Parallel
Databases, 1: 199–226, 1993.

4. J. A. Stankovic, S. H. Son, and J. Hansson, Misconceptions
about real-time databases, IEEE Computer, 32 (6): 29–36,
1999.

5. D. Locke, Applications and system characteristics, in Real-
Time Database Systems - Architecture and Techniques,
Norwell, MA: Kluwer Academic Publishers, 2001, pp. 17–26.

6. B. Purimetla, R. M. Sivasankaran, K. Ramamritham, and J.
A. Stankovic, Real-time databases: Issues and applications, in
S. H. Son, (ed.), Advances in Real-Time Systems, Englewood
Cliffs, NJ: Prentice Hall, 1996, pp. 487–507.

7. J. Huang, J. A. Stankovic, D. Towsley, and K. Ramamritham,
Experimental evaluation of real-time transaction processing,
Proc of the 10th IEEE Real-Time Systems Symposium, Santa
Monica, California, USA, 1989, pp. 144–153.

8. A. P. Buchmann, H. Branding, T. Kudrass, and J. Zimmer-
mann, Reach: a real-time, active and heterogeneous mediator
system, IEEE Data Eng. Bull., 15 (1–4): 44–47, 1992.

9. B. Adelberg, B. Kao, and H. Garcia-Molina, Overview of the
stanford real-time information processor, SIGMOD Record,
25 (1): 34–37, 1996.

10. Y. K. Kim and S. H. Son, Developing a real-time database: The
starbase experience, in A. Bestavros, K. Lin, and S. Son (eds.),
Real-Time Database Systems: Issues and Applications,
Boston, MA: Kluwer, 1997, pp. 305–324.

11. V. Wolfe, L. DiPippo, J. Prichard, J. Peckham, and P. Fortier,
The design of real-time extensions to the open object-oriented
database system, Technical report TR-94-236, University of
Rhode Island, 1994.

12. S. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson,
and B. Eftring, Deeds towards a distributed and active real-
time database system, SIGMOD Record, 25 (1): 38–40, 1996.

13. John A. Stankovic, Sang H. Son, and Jörg Liebeherr, Beehive:
Global multimedia database support for dependable, real-
time applications, RTDB, 1997, pp. 409–422.

14. S. Cha, B. Park, S. Lee, S. Song, J. Park, J. Lee, S. Park, D.
Hur, and G. Kim, Object-oriented design of main-memory
DBMS for real-time applications, 2nd Int. Workshop on Real-
Time Computing Systems and Applications, Tokyo, Japan,
1995, pp. 109–115.

15. J. Kiviniemi, T. Niklander, P. Porkka, and K. Raatikainen,
Transaction processing in the RODAIN real-time database
system, in A. Bestavros and V. Fay-Wolfe, (eds.), Real-Time
Database and Information Systems, London: Kluwer Aca-
demic Publishers, 1997, pp. 355–375.

16. Lockheed Martin Corporation, Available: http://www.loc-
kheedmartin.com/products/eaglespeedrealtimedatabasema-
nager/index.html.

17. S. O. Hvasshovd, Ø. Torbjørnsen, S. E. Bratsberg, and P.
Holager, The ClustRa telecom database: High availability,
high throughput, and real-time response, Proc of the 21st
VLDB Conference, San Mateo, California, 1995. pp. 469–477.

18. Oracle Corp, Available: http://www.oracle.com/database/
timesten.html.

19. Empress Software Inc., Available http://www.empress.com.

20. McObject LLC, Available: http://www.mcobject.com/.

10 REAL TIME DATABASE SYSTEMS



21. Solid Information Technology Ltd, Available: http://www.
solidtech.com/en/products/relationaldatabasemanagement-
software/embed.asp.

22. T.-W. Kuo and K.-Y. Lam, Conservative and optimistic
protocols, in Real-Time Database Systems Architecture and
Techniques, Norwell, MA: Kluwer Academic Publishers,
2001, pp. 29–44.

23. A. Datta, S. H. Son, and V. Kumar, Is a bird in the hand worth
more than two in the bush? Limitations of priority cognizance
in conflict resolution for firm real-time database systems,
IEEE Trans. Comput., 49 (5): 482–502, 2000.

24. J. Lee and S. H. Son, An optimistic concurrency control
protocol for real-time database systems, in 3rd International
Conference on Database Systems for Advanced Applications
(DASFAA), 1993, pp. 387–394.

25. A. Datta and S. Mukherjee, Buffer management in real-time
active database systems, Real-Time Database Systems -
Architecture and Techniques, Norwell, MA: Kluwer Academic
Publishers, 2001, pp. 77–96.

26. B. Kao and R. Cheng, Disk scheduling, in Real-Time Database
Systems-Architecture and Techniques, Norwell, MA: Kluwer
Academic Publishers, 2001, pp. 97–108.

27. S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley,
Performance evaluation of two new disk scheduling algo-
rithms for real-time systems, J. Real-Time Systems, 3 (3):
307–336, 1991.

28. M. Sivasankaram, R. and J. Ramamritham, K. an Stankovic,
System failure and recovery, in Real-Time Database Systems
–Architecture and Techniques, Norwell, MA: Kluwer Aca-
demic Publishers, 2001, pp. 109–124.

29. LihChjun. Shu, J. A. Stankovic, and Sang. H. Son, Achieving
bounded and predictable recovery using real-time logging,
Comput. J., 47 (3): 373–394, 2004.

30. A. Datta, S. Mukherjee, P. Konana, I. Viguier, and A. Bajaj,
Multiclass transaction scheduling and overload management
in firm real-time database systems, Information Sys., 21 (1):
29–54, 1996.

31. J. Hansson and S. H. Son, Overload management in RTDBS,
In Real-Time Database Systems - Architecture and Techni-
ques, Norwell, MA: Kluwer Academic Publishers, 2001,
pp. 125–140.

32. T. Gustafsson and J. Hansson, Data freshness and overload
handling in embedded systems, RTCSA, 2006, pp. 173–182.

33. K. D. Kang, S. H. Son, and J. A. Stankovic, Managing deadline
miss ratio and sensor data freshness in real-time databases,
IEEE Trans. Knowl. Data Eng, 16 (10): 1200–1216, 2004.

34. B.-S. Jeong, D. Kim, and S. Lee, Optimistic secure real-time
concurrency control using multiple data version, in Lecture
Notes in Computer Science, volume 1985, 2001.

35. H. Han, S. Park, and C. Park, A concurrency control protocol
for read-only transactions in real-time secure database
systems, Proc of the 7th International Conference on
Real-Time Computing Systems and Applications, 2000,
pp. 458–462.

36. S. H. Son, D. Rasikan, and B. Thuraisingham, Improving
timeliness in real-time secure database systems, SIGMOD
Record, 25 (1): 25–33, 1996.

37. J. R. Haritsa, K. Ramamritham, and R. Gupta, Real-time com-
mit processing, in Real-Time Database Systems-Architecture
and Techniques, Norwell, MA: Kluwer Academic Publishers,
2001, pp. 227–244.

38. K. Y. Lam and T. W. Kuo, Mobile distributed real-
time database systems, in Real-Time Database Systems-

Architecture and Techniques, Norwell, MA: Kluwer Academic
Publishers, 2001, pp. 245–258.

39. K. Y. Lam, S. L. Hung, and S. H. Son, On using real-time static
locking protocols for distributed real-time databases, J. Real-
Time Sys., 13 (2): 141–166, 1997.

40. K. Y. Lam and S. L. Hung, Concurrency control for time-
constrained transactions in distributed databases systems,
Comput. J., 38 (9): 704–716, 1995.

41. V. C. S. Lee, K.-Y. Lam, and S.-L. Hung, Virtual deadline
assignment in distributed real-time database systems, Sec-
ond International Workshop on Real-Time Computing Sys-
tems and Applications, 1995.

42. U. Halici and A. Dogac, An optimistic locking technique for
concurrency control in distributed databases, IEEE Trans.
Software Eng., 17 (7): 712–724, 1991.

43. K.-J. Lin and M.-J. Lin, Enhancing availability in distributed
real-time databases, ACM SIGMOD Record, 17 (1): 34–43,
1988.

44. Yuan. Wei, Sang. H. Son, and John. A. Stankovic, Maintain-
ing data freshness in distributed real-time databases, in
ECRTS, 2004, pp. 251–260.

45. Krithi. Ramamritham, S. H. Son, and Lisa. Cingiser. DiPippo,
Real-time databases and data services, Real-Time Sys., 28 (2–
3): 179–215, 2004.

46. B. Sprunt, D. Kirj, and L. Sha, Priority-driven, preemptive i/o
controllers for real-time systems, Proc of the International
Symposium on Computer Architecture, Honolulu, Hawaii,
USA, 1988, pp. 152–159.

47. M. J. Carey, R. Jauhari, and M. Livny, Priority in DBMS
resource scheduling, VLDB, 1989, pp. 397–410.

48. R. Abbott and H. Garcia-Molina, Scheduling I/O requests with
deadlines: A performance evaluation, Proc of the 11th IEEE
Real-Time Systems Symposium, 1990, pp. 113–124.

49. W. Kim and J. Srivastava, Enhancing real-time DBMS per-
formance with multiversion data and priority based disk
scheduling, Proc of the 12th IEEE Real-Time Systems Sym-
posium, Los Alamitos, California, 1991, pp. 222–231.

50. Ming. Xiong and Krithi. Ramamritham, Deriving deadlines
and periods for real-time update transactions, IEEE Trans.
Computers, 53 (5): 567–583, 2004.

51. T. He, J. A. Stankovic, M. Marley, C. Lu, Y. Lu, T. F. Abdel-
zaher, S. H. Son, and G. Tao, Feedback control-based dynamic
resource management in distributed real-time systems,
J. Sys. Software, 80 (7): 997–1004, 2007.

52. Ming. Xiong, Krithi. Ramamritham, Jonh. R. Haritsa, and
Jayant. A. Stankovic, Mirror: a state-conscious concurrency
control protocol for replicated real-time databases, Inf. Syst.,
27 (4): 277–297, 2002.

53. Ö. Ulusoy and G. G. Belford. A simulation model for distrib-
uted real-time database systems, Proc of the 25th Annual
Simulation Symposium, Los Alamitos, Calif., 1992, pp. 232–
240.

54. B. Kao and H. Garcia-Molina, Deadline assigment in a dis-
tributed soft real-time system, Proc of the 13th International
Conference on Distributed Computing Systems, Pittsburgh,
PA, USA, 1993, pp. 428–437.

55. L. Sha, R. Rajkumar, and J. P. Lehoczky, Concurrency control
for distributed real-time databases, ACM SIGMOD Record,
17 (1): 82–98, 1988.

56. A. K. Jha, M. Xiong, and K. Ramamritham, Mutual consis-
tency in real-time databases, RTSS, 2006, pp. 335–343.

57. M. Amirijoo, J. Hansson, and S. H. Son, Specification and
management of qos in real-time databases supporting

REAL TIME DATABASE SYSTEMS 11



imprecise computations, IEEE Trans. Comput., 55 (3): 304–
319, 2006.

58. Y. Wei, V. Prasad, S. H. Son, and J. A. Stankovic, Prediction-
based qos management for real-time data streams, in RTSS,
2006, pp. 344–358.

59. M. H. Graham, Issues in real-time data management, J. Real-
Time Sys., 4: 185–202, 1992.

60. M. H. Graham, How to get serializability for real-time trans-
actions without having to pay for it, Proc of the 14th IEEE
Real-time Systems Symposium, 1993, pp. 56–65.

61. R. Snodgrass and I. Ahn, Temporal databases, IEEE Comput.,
19 (9): 35–42, 1986.

62. A. Tansel, J. Clifford, S. Jojodia, A. Segev, and R. Snodgrass,
Temporal Databases: Theory, Design, and Implementation,
Redwood City, CA: Benjamin/Cummings, 1994.

63. R. Ramamritham, R. M. Sivasankaran, J. A. Stankovic, D. F.
Towsley, and M. Xiong, Integrating temporal, real-time, and
active databases, SIGMOD Record, 25 (1): 8–12, 1996.

64. M. Xiong, J. A. Stankovic, R. Ramamritham, D. F. Towsley,
and R. M. Sivasankaran, Maintaining temporal consistency:
Issues and algorithms, In RTDB, 1996, pp. 1–6.

65. Ming. Xiong, Krithi. Ramamritham, John. A. Stankovic, D. F.
Towsley, and R. M. Sivasankaran, Scheduling transactions
with temporal constraints: Exploiting data semantics, IEEE
Trans. Knowl. Data Eng., 14 (5): 1155–1166, 2002.

66. R. Abbott and H. Garcia-Molina, Scheduling real-time trans-
actions, ACM SIGMOD Record, 17 (1): 71–81, 1988.

67. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems, Reading, MA:
Addison-Wesley, 1987.

68. Y.-K. Kim and S. H. Son, Predictability and consistency in
real-time database systems, in Real-Time Database Systems-
Architecture and Techniques, Norwell, MA: Kluwer Academic
Publishers, 1995, pp. 509–531.

69. I. Ahn, Database issues in telecommunications network man-
agement, ACM SIGMOD Record, 23 (2): 37–43, 1994.

70. J. A. Stankovic and W. Zhao, On real-time transactions, ACM
SIGMOD Record, 17 (1): 4–18, 1988.

71. J. Lee and S. H. Son, Using dynamic adjustment of serial-
ization order for real-time database systems, Proc of the 14th
IEEE Real-Time Systems Symposium, Raleigh-Durham, NC,
USA, 1993, pp. 66–75.

72. J. Stankovic and K. Ramamritham, What is predictability for
real-time systems? J. Real-Time Sys., 2: 247–254, 1990.

73. R. Abbott and H. Garcia-Molina, Scheduling real-time trans-
actions: A performance evaluation, Proc of the 14th VLDB
Conference, Los Angeles, California, 1988, pp. 1–12.

74. J. Haritsa, M. Carey, and M. Livny, Value-based scheduling
in real-time database systems, Tech. Rep. CS-TR-91–1024,
Madison, WI: University of Winconsin, 1991.

75. S.-M. Tseng, Y. H. Chin, and W.-P. Yang, Scheduling real-
time transactions with dynamic values: A performance eva-
luation, Proc of the Second International Workshop on Real-
Time Computing Systems and Applications, Tokio, Japan,
1995.

76. S. R. Biyabani, J. A. Stankovic, and K. Ramamritham, The
integration of deadline and criticalness in hard real-time
scheduling, Proc of the 8th IEEE Real-Time Systems Sympo-
sium, Huntsville, Alabama, 1988, pp. 487–507.

77. A. P. Buchmann, D. R. McCarthy, M. Hsu, and U. Dayal,
Time-critical database scheduling: A framework for integrat-
ing real-time scheduling and concurrency control, Proc of the

5th International Conference on Data Engineering, Los
Angeles, California, USA, 1989, pp. 470–480.

78. J. R. Haritsa, M. J. Carey, and M. Livny, Data access schedul-
ing in firm real-time database systems, J. Real-Time Systems,
4 (2): 203–241, 1992.

79. E. D. Jensen, C. D. Locke, and H. Tokuda, A time-driven
scheduling model for real-time systems, Proc of the 5th IEEE
Real-Time Systems Symposium, San Diego, California, USA,
1985, pp. 112–122.

80. C. L. Liu and J. W. Layland, Scheduling algorithms for multi-
programming in a hard real-time environment, J. ACM,
20 (1): 46–61, 1973.

81. K. W. Lam, V. Lee, S. L. Hung, and K. Y. Lam, An augmented
priority ceiling protocol for hard real-time systems, J. Com-
puting Information, Special Issue: Proc of Eighth Interna-
tional Conference Comput. Information, 2 (1): 849–866, 1996.

82. J. Huang, J. A. Stankovic, K. Ramamritham, D. Towsley, and
B. Purimetla, Priority inheritance in soft real-time databases,
J. Real-Time Sys., 4 (2): 243–268, 1992.

83. K. Ramamritham and J. Stankovic, Scheduling algorithms
and operating systems support for real-time systems,
Proc IEEE, 82 (1): 55–67, 1994.

84. R. Abbott and H. Garcia-Molina, Scheduling real-time trans-
actions with disk resident data, Proc of the 15th VLDB Con-
ference, Amsterdam, 1989, pp. 385–396.

85. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, The
notions of consistency and predicate locks in a database
system, Communications ACM, 19 (11): 624–633, 1976.

86. L. Sha, R. Rajkumar, and J. P. Lehoczky, Priority inheritance
protocols: An approach to real-time synchronization, IEEE
Trans. on Comput., 39 (9): 1175–1185, 1990.

87. J. R. Haritsa, M. J. Carey, and M. Livny, On being optimistic
about real-time constraints, Proc of the 9th ACM Symposium
on Principles of Database Systems, 1990, pp. 331–343.

88. J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley,
Experimental evaluation of real-time optimistic concurrency
control schemes, Proc of the 17th VLDB Conference,
Barcelona, Catalonia, Spain, September 1991, pp. 35–46.

89. K. W. Lam, S. H. Son, and S. Hung, A priority ceiling protocol
with dynamic adjustment of serialization order, Preceeding of
the 13th IEEE Conference on Data Engineering, Birmingham,
UK, 1997.

90. K. W. Lam, K. Y. Lam, and S. Hung, An efficient real-time
optimistic concurrency control protocol, Proc of the First
International Workshop on Active and Real-Time Database
Systems, New York: Springer, 1995, pp. 209–225.

91. H. T. Kung and J. T. Robinson, On optimistic methods for
concurrency control, ACM Trans. Database Sys., 6 (2): 213–
226, 1981.

92. M. T. Özsu and P. Valduriez, Principles of Distributed Data-
base System, Englewood Cliffs, NJ: Prentice Hall, 1999.

93. G. Weikum and G. Vossen, Transactional Information Sys-
tems: Theory, algorithms, and the practice of concurrency
control and recovery, San Mateo, CA: Morgan Kaufmann,
2002.

94. K. Marzullo, Concurrency control for transactions with prio-
rities, tech. report TR 89-996, Cornell University, Ithaca, NY,
1989.

95. Ö. Ulusoy and G. Belford, Real-time transaction scheduling in
database systems, Information Sys., 18 (6): 559–580, 1993.

96. L. Sha, R. Rajkumar, S. H. Son, and C.-H. Chang, A real-time
locking protocol, IEEE Trans. Comput., 40 (7): 793–800, 1991.

12 REAL TIME DATABASE SYSTEMS



97. J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley,
On using priority inheritance in real-time databases, Proc of
the 12th IEEE Real-Time Systems Symposium, San Antonio,
Texas, USA, 1991, pp. 210–221.

98. D. Agrawal, A. E. Abbadi, and R. Jeffers, Using delayed
commitment in locking protocols for real-time databases,
Proc of the 1992 ACM SIGMOD International Conference
on Management of Data, 1992, pp. 104–113.

99. T. Härder, Observations on optimistic concurrency control
schemes, Information Sys., 9 (2): 111–120, 1984.

100. J. R. Haritsa, M. J. Carey, and M. Livny, Dynamic real-time
optimistic concurrency control, Proc of the 11th IEEE Real-
Time Systems Symposium, 1990, pp. 94–103.

101. K. W. Lam, K. Y. Lam, and S. Hung, Real-time optimistic
concurrency control protocol with dynamic adjustment of
serialization order, Proc of the IEEE Real-Time Technology
and Application Symposium, 1995, pp. 174–179.

102. I. Yoon and S. Park, Enhancement of alternative version
concurrency control using dynamic adjustment of serializa-
tion order, Proc of the Second International Workshop on
Real-Time Databases: Issues and Applications, Burlington,
Vermont, USA, 1997.

103. U. Lee and B. Hwang, Optimistic concurrency control based
on timestamp interval for broadcast environment, Proc.
Advances in Databases and Information Systems, 6th East
European Conference,ADBIS 2002, Bratislava, Slovakia, Vol.
2435 of Lecture Notes in Computer Science, 2002.

104. V. C. S. Lee and K.-W. Lam, Conflict free transaction schedul-
ing using serialization graph for real-time databases, J. Sys.
Software, 55 (1): 57–65, 2000.

105. V. C. S. Lee and K.-W. Lam, Optimistic concurrency control in
broadcast environments: Looking forward at the server and
backward at the clients, in H. V. Leong, W.-C. Lee, B. Li, and

L. Yin, (eds.), First International Conference on Mobile Data
Access, Lecture Notes in Computer Science, 1748, Verlag:
Springer, 1999, pp. 97–106.

106. S. H. Son, J. Lee, and Y. Lin, Hybrid protocols using dynamic
adjustment of serialization order for real-time concurrency
control, J. Real-Time Sys., 4 (2): 269–276, 1992.

107. P. S. Yu and D. M. Dias, Analysis of hybrid concurrency
control for a high data contention environment, IEEE Trans.
on Software Eng., SE-18 (2): 118–129, 1992.

108. P. Graham and K. Barker, Effective optimistic concurrency
control in multiversion object bases, Lecture Notes Computer
Science, 858: 313–323, 1994.

109. R. Abbott and H. Garcia-Molina, Scheduling real-time trans-
actions: A performance evaluation, ACM Transactions Data-
base Sys., 17 (3): 513–560, 1992.

110. Y. Lin and S. H. Son, Concurrency control in real-time data-
bases by dynamic adjustment of serialization order, Proc of
the 11th IEEE Real-Time Systems Symposium, Los Alamitos,
California, 1990, pp. 104–112.

111. J. Lee, Concurrency Control Algorithms for Real-Time Data-
base Systems. PhD Thesis, Charolotte suille, VA: University
of Virginia, 1994.

112. J. Lindström and K. Raatikainen, Dynamic adjustment of
serialization order using timestamp intervals in real-time
databases, Proc of the 6th International Conference on
Real-Time Computing Systems and Applications, 1999, pp.
13–20.

JAN LINDSTRÖM

IBM Corporation
Helsinki, Finland

REAL TIME DATABASE SYSTEMS 13



R

RELATIONAL DATABASES

To manage a large amount of persistent data with compu-
ters requires storing and retrieving these data in files.
However, it was found in the early 1960s that files are
not sufficient for the design and use of more and more
sophisticated applications. As a consequence, database sys-
tems have become a very important tool for many applica-
tions over the past 30 years. Database management systems
(DBMSs) aim to provide users with an efficient tool for good
modeling and for easy and efficient manipulation of data. It
is important to note that concurrency control, data confi-
dentiality, and recovery from failure also are important
services that a DBMS should offer. The very first DBMSs,
known as hierarchical and then as network systems, were
based on a hierarchical and then network-like conceptual
data organization, which actually reflects the physical orga-
nization of the underlying files. Thus, these systems do not
distinguish clearly between the physical and the conceptual
levels of data organization. Therefore, these systems,
although efficient, have some important drawbacks, among
which we mention data redundancies (which should be
avoided) and a procedural way of data manipulation, which
is considered not easy enough to use.

The relational model, proposed by Codd in 1970 (1),
avoids the drawbacks mentioned above by distinguishing
explicitly between the physical and the conceptual levels of
data organization. This basic property of the relational
model is a consequence of the fact that, in this model, users
see the data as tables and do not have to be aware of how
these tables are stored physically. The tables of a relational
database are accessed and manipulated as a whole, con-
trary to languages based on hierarchical or network
models, according to which data are manipulated on a
record-by-record basis. As a consequence, data manipula-
tion languages for relational databases are set-oriented,
and so, they fall into the category of declarative languages,
in which there is no need of control structures, such as
conditional or iterative statements. On the other hand,
because relations are a well-known mathematical concept,
the relational model stimulated a lot of theoretical
research, which led to successful implementations. As an
example of a relational database, Fig. 1 shows the two
tables, called EMP and DEPT, of a sample database for a
business application.

The main results obtained so far are summarized as
follows:

1. The expressional power of relational data manipula-
tion languages is almost that of first-order logic with-
out function symbols. Moreover, relational languages

have large capabilities of optimization. This point is of
particular importance, because it guarantees that
data are efficiently retrieved, independently of the
way the query is issued by the user.

2. Integrity constraints, whose role is to account for
properties of data, are considered within the model.
The most important and familiar are the functional
dependencies. Research on this topic led to theoreti-
cal criteria for what is meant by a ‘‘good’’ conceptual
data organization for a given application.

3. A theory of concurrency control and transaction man-
agement has been proposed to account for the dynamic
aspects of data manipulation with integrity con-
straints. Research in this area led to actual methods
and algorithms that guarantee that, in the presence of
multiple updates in a multiuser environment, the
modified database still satisfies the integrity con-
straints imposed on it.

These fundamental aspects led to actual relational sys-
tems that rapidly acquired their position in the software
market and still continue to do so today. Relational DBMSs
are currently the key piece of software in most business
applications running on various types of computers, ran-
ging from mainframe systems to personal computers (PCs).
Among the relational systems available on the market-
place, we mention DB2 (IBM), INGRES (developed at the
University of California, Berkeley), ORACLE (Oracle
Corp.), and SQLServer (Microsoft Corp.), all of which
implement the relational model of databases together
with tools for developing applications.

In the remainder of this article, we focus on the theory of
the relational model and on basic aspects of dependency
theory. Then, we deal with problems related to updates and
transaction management, and we briefly describe the struc-
ture of relational systems and the associated reference
language called SQL. We conclude with a brief discussion
on several extensions of the relational model.

THEORETICAL BACKGROUND OF RELATIONAL
DATABASES

The theory of the relational model of databases is based on
relations. Although relations are well known in mathe-
matics, their use in the field of databases requires defini-
tions that slightly differ from those used in mathematics.
Based on these definitions, basic operations on relations
constitute the relational algebra, which is related closely to
first-order logic. Indeed, relational algebra has the same
expressional power as a first-order logic language, called
relational calculus, and this relationship constitutes the
basis of the definition of actual data manipulation

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



languages, among which the language called SQL is now
the reference.

Basic Definitions and Notations

The formal definition of relational databases starts with a
finite set, called the universe, whose elements are called
attributes. If U denotes a universe, each attribute A of U is
associated with a nonempty and possibly infinite set of
values (or constants), called the domain of A and denoted
by dom(A). Every nonempty subset of U is called a relation
scheme and is denoted by the juxtaposition of its elements.
For example, in the database of Fig. 1, the universe U
contains the attributes empno, ename, sal, deptno, dname,
and mgr standing, respectively, for numbers of employees,
names of employees, salaries of employees, numbers of
departments, names of departments and numbers of man-
agers. Moreover, we consider here that empno, deptno, and
mgr have the same domain, namely the set of all positive
integers, whereas the domain of the attributes ename and
dname is the set of strings of alphabetic characters of length
at most 10.

Given a relation scheme R0, a tuple t over R is a mapping
from R to the union of the domains of the attributes in R, so
that, for every attribute A in R, t(A) is an element of dom(A).
Moreover, if R0 is a nonempty subset of R the restriction of t
to R, being the restriction of a mapping, is also a tuple,
denoted by t.R0. As a notational convenience, tuples are
denoted by the juxtaposition of their values, assuming that
the order in which values are written corresponds to the
order in which attributes in R are considered.

Given a universe U and a relation scheme R, a relation
over R is a finite set of tuples over R, and a database over
U is a set of relations over relations schemes obtained
from U.

Relational Algebra

From a theoretical point of view, querying a database
consists of computing a relation (which in practice is dis-
played as the answer to the query) based on the relations in
the database. The relation to be computed can be expressed
in two different languages: relational algebra, which expli-
citly manipulates relations, and relational calculus, which
is based on first-order logic. Roughly speaking, relational

calculus is the declarative counterpart of relational alge-
bra, which is observed as a procedural language.

The six fundamental operations of the relational algebra
are union, difference, projection, selection, join, and renam-
ing (note that replacing the join operation by the Cartesian
product is another popular choice discussed in Refs. (2) and
(3)). The formal definitions of these operations are as
follows: Let r and s be two relations over relation schemes
R and S, respectively. Then

1. Union. If R = S, then r[ s is a relation defined over R,
such that r[ s ¼ ftjt2 r or t2 sg. Otherwise r[ s is
undefined.

2. Difference. If R = S, then r� s is a relation defined
over R, such that r� s ¼ ftjt2 r and t =2 sg. Otherwise
r� s is undefined.

3. Projection. Let Y be a relation scheme. If Y�R, then
pYðrÞ is a relation defined over Y, such that
pYðrÞ ¼ ftj 9u2 r such that u:Y ¼ tg. Otherwise pYðrÞ
is undefined.

4. Selection of r with respect to a condition C: scðrÞ is a
relation defined over R, such that
scðrÞ ¼ ftjt2 r and t satisfies Cg. Selection conditions
are either atomic conditions or conditions obtained
by combination of atomic conditions, using the logical
connectives _ (or), ^ (and), or : (not). An atomic
condition is an expression of the form AQA0 or AQa
where A and A0 are attributes in R whose domains are
‘‘compatible’’ [i.e., it makes sense to compare a value
in dom(A) with a value in dom(A0)], a is a constant in
dom(A), and Qis an operator of comparison, such as<,
>, �, �, or ¼.

5. Join. rffl s is a relation defined over R[S, such that
rffl s ¼ ftjt:R 2 r and t:S 2 sg.

6. Renaming. If A is an attribute in R and B is an
attribute not in R, such that dom(A) = dom(B),
then rB AðrÞ is a relation defined over ðR�
fAgÞ[ fBg whose tuples are the same as those in r.

For example, in the database of Fig. 1, the following
expression computes the numbers and names of all depart-
ments having an employee whose salary is less than
$10,000:

E : pdeptno dname½ssal< 10;000ðEMPfflDEPTÞ�

Figure 2 shows the steps for evaluating this expression
against the database of Fig. 1. As an example of using
renaming, the following expression computes the numbers
of employees working in at least two different departments:

E1 : pempno½sdeptno 6¼ dnumberðEMPÞffl rdnumber deptno

½pdeptno empnoðEMPÞ��

The operations introduced previously enjoy properties,
such as commutativity, associativity, and distributivity
(see Ref. (3) for full details). The properties of the relational
operators allow for syntactic transformations according to
which the same result is obtained, but through a more
efficient computation. For instance, instead of evaluating

EMP empno ename sal deptno

123

234

345

456

567

john

julia

peter

laura

paul

23,000

50,000

7,500

12,000

8,000

1

1

2

2

1

DEPT deptno dname mgr

1

2

sales

staff

234

345

Figure 1. A sample relational database D.

2 RELATIONAL DATABASES



the previous expression E, it is more efficient to consider the
following expression:

E0 : pdeptno dname½ssal<10;000ðEMPÞfflpdeptno dnameðDEPTÞ�

Indeed, the intermediate relations computed for this
expression are ‘‘smaller’’ than those of Fig. 2 in the number
of rows and the number of columns.

Such a transformation is known as query optimization.
To optimize an expression of the relational algebra, the
expression is represented as a tree in which the internal
nodes are labeled by operators and the leaves are labeled by
the names of the relations of the database. Optimizing an
expression consists of applying properties of relational
operators to transform the associated tree into another
tree for which the evaluation is more efficient. For instance,
one of the most frequent transformations consists of push-
ing down selections in the tree to reduce the number of rows
of intermediate relations. We refer to Ref. (2) for a complete
discussion of query optimization techniques. Although effi-
cient in practice, query optimization techniques are not
optimal, because, as Kanellakis notices in Ref. (4), the
problem of deciding whether two expressions of the rela-
tional algebra always yield the same result is impossible to
solve.

Relational Calculus

The existence of different ways to express a given query in
the relational algebra stresses the fact that it can be seen as
a procedural language. Fortunately, relational algebra has
a declarative counterpart, namely the relational calculus.
This result comes from the observation that, if r is a relation
defined over a relation scheme R containing n distinct
attributes, then membership of a given tuple t in r is
equivalently expressed by first-order formalism if we
regard r as an n-ary predicate, and t as an n-ary vector
of constants, and if we state that the atomic formula r(t) is
true. More formally, the correspondence between relational

algebra and calculus is as follows: Given a database D ¼
fr1; r2; . . . ; rng over a universe U and with schema
fR1;R2; . . . ;Rng, we consider a first-order alphabet with
the usual connectives ð ^ ; _ ; : Þ and quantifiers ð 9 ; 8 Þ
where

1. the set of constant symbols is the union of all domains
of the attributes in U;

2. the set of predicate symbols is fr1; r2; . . . ; rng, where
each ri is a predicate symbol whose arity is the car-
dinality of Ri; and

3. the variable symbols may range over tuples, in which
case, the language is called tuple calculus, or over
domain elements, in which case, the language is
called domain calculus.

One should notice that no function symbols are consid-
ered in relational calculus. Based on such an alphabet,
formulas of interest are built up as usual in logic, but
with some syntactic restrictions explained later. Now we
recall that without loss of generality, a well-formed formula
has the form c¼(Q1)(Q2). . .(Qk)[w(x1, x2, . . ., xk, y1, y2, . . .,
y1)], where x1, x2, . . ., xk, y1, y2, . . ., y1 are the only variable
symbols occurring in w, where (Qi) stands for (9xi) or (8xi),
and where w is a quantifier-free formula built up from
connectives and atomic formulas (atomic formulas have
the form r(t1, t2, . . ., tn), where r is an n-ary predicate symbol
and tj is either a variable or a constant symbol). Moreover,
in the formula c, the variables xi are bound (or quantified)
and the variables yj are free (or not quantified). See Ref. (5)
for full details on this topic.

In the formalism of tuple calculus, the relational expres-
sion E is written as

fzjð 9 xÞð 9 yÞðEMPðxÞ ^ DEPTðyÞ ^ y:de ptno ¼ z:deptno
^ y:dname ¼ z:dname
^ x:de ptno ¼ y:deptno^ x:sal

< 10; 000Þg

(a)

(b)

(c)

EMP DEPT

(EMP DEPT)

empno ename sal deptno dname mgr

123
234
345
456
578

john
julia
peter
laura
paul

23,000
50,000
7,500

12,000
8,000

1
1
2
2
1

sales
sales
staff
staff
sales

234
234
345
345
234

empno ename sal deptno dname mgr

deptno dname

sal<10,000

sal<10,000(EMP      DEPT)]deptno dname [

345
578

peter
paul

7,500
8,000

2
1

2
1

staff
sales

staff
sales

345
234

Figure 2. The intermediate relations in the computation of expression E applied to the database D of Fig. 1. (a) The computation of the join,
(b) the computation of the selection, and (c) the computation of the projection.

RELATIONAL DATABASES 3



One should note that, in this formula, variables stand for
tuples, whose components are denoted as restrictions in the
relational algebra. Considering domain calculus, the pre-
vious formula is written as follows:

fðz1; z2Þjð 9 x1Þð 9 x2Þð 9 x3Þð 9 x4Þð 9 y1Þð 9 y2Þð 9 y3Þ
ðEMPðx1; x2; x3; x4Þ ^DEPTðy1; y2; y3Þ ^ z1

¼ y1 ^ z2 ¼ y2 ^ x4 ¼ y1 ^ x1 <10; 000Þg

The satisfaction of a formula c in a database D is defined in
a standard way, as in first-order logic. In the context of
databases, however, some well-formed formulas must be
discarded because relations are assumed to be finite and,
thus, so must be the set of tuples satisfying a given formula
in a database. For instance, the domain calculus formula
ð 9 xÞ½ : rðx; yÞ�must be discarded, because in any database,
the set of constants a satisfying the formula : rðr0; aÞ for
some appropriate x0 may be infinite (remember that
domains may be infinite). The notion of safeness is based
on what is called the domain of a formula c, denoted by
DOM(c). DOM(c) is defined as the set of all constant
symbols occurring in c, together with all constant symbols
of tuples in relations occurring in c as predicate symbols.
Hence, DOM(c) is a finite set of constants and c is called
safe if all tuples satisfying it in D contain only constants of
DOM(c). To illustrate the notion of safeness, again consider
the formula c ¼ ð9 xÞ½ : rðx; yÞ�. Here DOM(c) = {aja occurs
in a tuple of r}, and so, c may be satisfied in D by values b not
in DOM(c). Therefore, c is a nonsafe formula. On the other
hand, the formula c0 ¼ ð 9 xÞ½ : rðx; yÞ ^ sðx; yÞ� is safe,
because every b satisfying c0 in D occurs in DOMðc0Þ.

It is important to note that tuple and domain calculus
are equivalent languages that have resulted in the emer-
gence of actual languages for relational systems. A formal
proof of the equivalence between relational calculus and
relational algebra was given by Codd in Ref. (6).

DATA DEPENDENCIES

The theory of data dependencies has been motivated by
problems of particular practical importance, because in all
applications, data stored in a database must be restricted so
as to satisfy some required properties or constraints. For
instance, in the database of Fig. 1, two such properties could
be (1) two departments with distinct names cannot have the
same number and (2) a department has only one manager,
so that the relation DEPT cannot contain two distinct
tuples with the same deptno value. Investigations on con-
straints in databases have been carried out in the context of
the relational model to provide sound methods for the
design of database schemas. The impact of constraints on
schema design is exemplified through properties (1) and (2).
Indeed, assume that the database consists of only one
relation defined over the full universe. Then clearly, infor-
mation about a given department is stored as many times as
the number of its employees, which is redundant. This
problem has been solved by the introducing normal forms
in the case of particular dependencies called functional
dependencies. On the other hand, another problem that

arises in the context of our example is the following:
Assuming that a database D satisfies the constraints (1)
and (2), does D satisfy other constraints? Clearly, this
problem, called the implication problem, has to be solved
to make sure that all constraints are considered at the
design phase just mentioned. Again, the implication
problem has been solved in the context of functional depen-
dencies. In what follows, we focus on functional dependen-
cies, and then, we outline other kinds of dependencies that
have also been the subject of research.

The Theory of Functional Dependencies

Let r be a relation over a relation scheme R, and let X and Y
be two subschemes of R. The functional dependency from X
to Y, denoted by X ! Y, is satisfied by r if, for all tuples t and
t0 in r, the following holds: t:X ¼ t0:X) t:Y ¼ t0:Y. Then,
given a set F of functional dependencies and a dependency
X ! Y, F implies X ! Y if every relation satisfying the
dependencies in F also satisfies the dependency X ! Y. For
instance, for R = ABC and F = {A ! B, AB ! C}, F implies
A ! C. However, this definition of the implication of func-
tional dependencies is not effective from a computational
point of view. An axiomatization of this problem, proposed
in Ref. (7), consists of the following rules, where X, Y, and Z
are relation schemes:

1. Y�X)X!Y

2. X!Y)XZ!YZ

3. X!Y;Y!Z)X!Z

A derivation using these axioms is defined as follows: F
derives X ! Y if either X ! Y is in F or X ! Y can be
generated from F using repeatedly the axioms above. Then,
the soundness and completeness of these axioms is
expressed as follows: F implies X ! Y if and only if F
derives X ! Y, thus providing an effective way for solving
the implication problem in this case.

An important aspect of functional dependencies is that
they allow for the definition of normal forms that charac-
terize suitable database schemas. Normal forms are based
on the notion of key defined as follows: If R is a relation
scheme with functional dependencies F, then K is a key of
(R, F) if K is a minimal relation scheme with respect to set
inclusion such that F implies (or derives) K ! R. Four
normal forms can be defined, among which we mention
here only three of them:

1. The first normal form (1NF) stipulates that attributes
are atomic in the relational model, which is implicit in
the definitions of relational databases but restricts
the range of applications that can be taken easily into
account. It explains, in particular, the emergence of
object-oriented models of databases.

2. The thirdnormal form(3NF)stipulates thatattributes
participating in no keys depend fully and exclusively
on keys. The formal definition is as follows: (R, F) is in
3NF if, for every derived dependency X ! A from F,
such that A is an attribute not in X andappearing in no
keys of (R, F), X contains a key of (R, F).

4 RELATIONAL DATABASES



3. The Boyce–Codd normal form (BCNF) is defined as
the previous form, except that the attribute A may
now appear in a key of (R, F). Thus, the formal
definition is the following: (R, F) is in BCNF if, for
every derived dependency X ! A from F, such that A
is an attribute not in X, X contains a key of (R, F).

It turns out that every scheme (R, F) in BCNF is in 3NF,
whereas the contrary is false in general. Moreover, 3NF
and BCNF characterize those schemes recognized as sui-
table in practice. If a scheme (R, F) is neither 3NF nor
BCNF, then it is always possible to decompose (R, F) into
subschemes that are at least 3NF. More precisely, by
schema decomposition, we mean the replacement of (R,
F) by schemes (R1, F1), (R2, F2), . . ., (Rk, Fk), where

1. each Ri is a subset of R and R in the union of the Ris;

2. each Fi is the set of all dependencies X ! Y derivable
from F, such that XY�Ri; and

3. each (Ri, Fi) is in 3NF or in BCNF.

Furthermore, this replacement must ensure that data
and dependencies are preserved in the following sense:

1. Data preservation: starting with a relation r that
satisfies F, the relations ri are the projections of r
over Ri, and their join must be equal to r.

2. Dependency preservation: the set F and the union of
the sets Fi must derive exactly the same functional
dependencies.

In the context of functional dependencies, data preser-
vation is characterized as follows, in the case where k = 2:
The decomposition of (R, F) into (R1, F1), (R2, F2) preserves
the data if F derives at least one of the two functional
dependencies R1 \R2!R1 or R1 \R2!R2. If k is greater
than 2, then the previous result can be generalized using
properties of the join operator. Unfortunately, no such easy-
to-check property is known for dependency preservation.
What has to be done in practice is to make sure that every
dependency of F can be derived from the union of the Fis.

It has been shown that it is always possible to decompose
a scheme (U, F) so that data and dependencies are pre-
served and the schemes (Ri, Fi) are all at least in 3NF. But it
should be noticed that BCNF is not guaranteed when
decomposing a relation scheme. Two kinds of algorithms
have been implemented for schema decomposition: the
synthesis algorithms (which generate the schemes based
on a canonical form of the dependencies of F) and the
decomposition algorithms (which repeatedly split the uni-
verse U into two subschemes). Synthesis algorithms ensure
data and dependency preservation together with schemes
in 3NF (at least), whereas decomposition algorithms ensure
data preservation together with schemes in BCNF, but at
the cost of a possible loss of dependencies.

More on Data Dependencies

Dependencies other than functional dependencies have
been widely studied in the past. In particular, multivalued
dependencies and their interaction with functional depen-
dencies have motivated much research. The intuitive idea
behind multivalued dependencies is that, in a relation over

R, a value over X is associated with a set of values over Y,
and is independent of the values over R � XY. An example
of multivalued dependencies is the following: assume that
we have R = {empno, childname, car}, to store the names of
the children and the cars of employees. Clearly, every
empno value is associated with a fixed set of names (of
children), independent of the associated car values. Multi-
valued dependencies and functional dependencies have
been axiomatized soundly and completely, which has led
to an additional normal form, called the fourth normal
form, and defined similarly to BCNF.

Other dependencies of practical interest which have
been studied are inclusion dependencies. For example, in
the database of Fig. 1, stating that every manager must be
an employee is expressed by the following inclusion depen-
dency: pmgrðDEPTÞ�pempoðEMPÞ. In general, an inclusion
dependency is an expression of the form pXðrÞ�pYðsÞ
where r and s are relations of the database and where X
and Y are relation schemes, such that the projections and
the inclusion are defined. Although it has been shown that
the implication problem for inclusion dependencies in the
presence of functional dependencies is not decidable (see
Ref. (2)), a restricted case of practical significance is decid-
able in polynomial time: The restriction is roughly that the
relations in inclusion dependencies are all unary.

DATABASE UPDATES

Although updates are an important issue in databases, this
areahasreceived lessattention fromtheresearchcommunity
than the topics just addressed. Roughly speaking, updates
are basic insert, delete, or modify operations defined on
relations seen as physical structures, and no theoretical
background similar to that discussed for queries is available
for updates. As a consequence, no declarative way of con-
sidering updates has been proposed so far, although there is
much effort in this direction. Actually, current relational
systems handle sophisticated updates procedurally, based
on the notion of transactions, which are programs containing
update statements. An important point is that, to maintain
data consistency, these programs must be considered as
units, in the sense that either all or none of their statements
are executed. For instance, if a failure occurs during the
execution of a transaction, all updates performed before
the failure must be undone before rerunning the whole
program. In what follows, we first discuss the relation
between updates and data dependencies, and then, we give
a short introduction to transaction execution.

Updates and Data Dependencies

There are two main ways to maintain the database consis-
tent with respect to constraints in the presence of updates:
(1) reject all updates contradicting a constraint and (2) take
appropriate actions to restore consistency with respect to
constraints. To illustrate these two ways of treating updates,
let us consider again the database of Fig. 1 and let us assume
that the relation DEPT must satisfy the functional depen-
dency deptno ! dname mgr. According to (1) previous, the
insertion in DEPT of the tuple 1 toy 456 is rejected, whereas
it is accepted according to (2) previous, if, in addition, the

RELATIONAL DATABASES 5



tuple 1 sales 234 is removed from DEPT. Actually, it turns
out that (1) gives priority to ‘‘old’’ knowledge over ‘‘new’’
knowledge, whereas (2) does the opposite. Clearly, updating
a database according to (1) or (2) depends on the application.
In practice, policy (1) is implemented as such for keys and
policy (2) is specified by transactions.

Before we come to problems related to transaction execu-
tion, we would like to mention that an important issue
related to policy (2) is that of active rules. This concept is
considered the declarative counterpart of transactions, and
thus, is meant as an efficient tool to specify how the data-
base should react to updates, or, more generally, to events.

Active rules are rules of the form: on heventi if
hconditioni then hactioni, and provide a declarative form-
alism for ensuring that data dependencies remain satisfied
in the presence of updates. For example, if we consider the
database of Fig. 1 and the inclusion dependency
pmgrðDEPTÞ�pempnoðEMPÞ, the insertion of a new depart-
ment respects this constraint if we consider the following
active rule:

on insertðn; d;mÞ into DEPT

i f m =2pempnoðEMPÞ
then call insert�EMPðm; dÞ

where insert_EMP is an interactive program asking for a
name and a salary for the new manager, so that the
corresponding tuple can be inserted in the relation EMP.

Another important feature of active rules is their ability
to express dynamic dependencies. The particularity of
dynamic dependencies is that they refer to more than
one database state (as opposed to static dependencies
that refer to only one database state). A typical dynamic
dependency, in the context of the database of Fig. 1, is to
state that salaries must never decrease, which corresponds
to the following active rule:

on update�salðne;new-salÞin EMP

i f new-sal>psalðsempno¼neðEMPÞÞ
then set sal ¼ new-sal where empno ¼ ne

where update_sal is the update meant to assign the salary
of the employee number ne to the value new-sal and where
the set instruction actually performs the modification.

Although active rules are an elegant and powerful way
to specify various dynamic aspects of databases, they raise
important questions concerning their execution. Indeed, as
the execution of an active rule fires other active rules in its
action, the main problem is to decide how these rules are
fired. Three main execution modes have been proposed so
far in the literature: the immediate mode, the deferred
mode, and the concurrent mode. According to the immedi-
ate mode, the rule is fired as soon as its event occurs while
the condition is true. According to the deferred mode, the
actions are executed only after the last event occurs and the
last condition is evaluated. In the concurrent mode, no
policy of action execution is considered, but a separate
process is spawned for each action and is executed concur-
rently with other processes. It turns out that executing the
same active rules according to each of these modes gener-

ally gives different results and the choice of one mode over
the others depends heavily on the application.

Transaction Management

Contrary to what has been discussed before, the problem of
transaction management concerns the physical level of
DBMSs and not the conceptual level. Although transaction
execution is independent of the conceptual model of data-
bases being used (relational or not), this research area has
been investigated in the context of relational databases. The
problem is that, in a multiuser environment, several trans-
actions may have to access the same data simultaneously,
and then, in this case the execution of these transactions
may leave the database inconsistent, whereas each transac-
tion executed alone leaves the database in a consistent state
(an example of such a situation will be given shortly).
Additionally, modifications of data performed by transac-
tions must survive possible hardware or software failures.

To cope with these difficulties, the following two pro-
blems have to be considered: (1) the concurrency control
problem (that is, how to provide synchronization mechan-
isms which allow for efficient and correct access of multiple
transactions in a shared database) and (2) the recovery
problem (that is, how to provide mechanisms that react to
failures in an automated way). To achieve these goals, the
most prominent computational model for transactions is
known as the read-write model, which considers transac-
tions as sequences of read and write operations operating
on the tuples of the database. The operation read(t) indi-
cates that t is retrieved from the secondary memory and
entered in the main memory, whereas the operation wri-
te(t) does the opposite: The current value of t in the main
memory is saved in the secondary memory, and thus sur-
vives execution of the transaction. Moreover, two addi-
tional operations are considered, modeling, respectively,
successful or failed executions: the commit operation
(which indicates that changes in data must be preserved),
and the abort operation (which indicates that changes in
data performed by the transaction must be undone, so that
the aborted transaction is simply ignored). For example,
call t the first tuple of the relation EMP of Fig. 1, and
assume that two transactions T1 and T2 increase John’s
salary of 500 and 1,000, respectively. In the read-write
model, both T1 and T2 have the form: read(t); write(t0);
commit, where t0.sal = t.sal + 500 for T1 and where
t0.sal = t.sal + 1,000 for T2.

Based on these operations, the criterion for correctness
of transaction execution is known as serializability of sche-
dules. A schedule is a sequence of interleaved operations
originating from various transactions, and a schedule built
up from transactions T1, T2, . . ., Tk is said to be serializable
if its execution leaves the database in the same state as the
sequential execution of transactions Ti’s, in some order
would do. In the previous example, let us consider the
following schedule:

read1ðtÞ; read2ðtÞ; write1ðt1Þ; commit1; write2ðt2Þ; commit2

where the subscripts correspond to the transaction where
the instructions occur. This schedule is not serializable,

6 RELATIONAL DATABASES



because its execution corresponds neither to T1 followed by
T2 nor to T2 followed by T1. Indeed, transactions T1 and T2

both read the initial value of t and the effects of T1 on tuple t
are lost, as T2 commits its changes after T1.

To characterize serializable schedules, one can design
execution protocols. Here again many techniques have
been introduced, and we focus on the most frequent of
them in actual systems, known as the two-phase locking
protocol. The system associates every read or write opera-
tion on the same object to a lock, respectively, a read-lock or
a write-lock, and once a lock is granted for a transaction,
other transactions cannot access the corresponding object.
Additionally, no lock can be granted to a transaction that
has already released a lock. It is easy to see that, in the
previous example, such a protocol prevents the execution of
the schedule we considered, because T2 cannot read t unless
T1 has released its write-lock.

Although efficient and easy to implement, this protocol
has its shortcomings. For example, it is not free of dead-
locks, that is, the execution may never terminate because
two transactions are waiting for the same locks at the same
time. For instance, transaction T1 may ask for a lock on
object o1, currently owned by transaction T2 which in turn
asks for a lock on object o2, currently owned by transaction
T1. In such a situation, the only way to restart execution is
to abort one of the two transactions. Detecting deadlocks is
performed by the detection of cycles in a graph whose nodes
are the transactions in the schedule and in which an edge
from transaction T to transaction T0means that T is waiting
for a lock owned by T0.

RELATIONAL DATABASE SYSTEMS AND SQL

In this section, we describe the general architecture of
relational DBMSs, and we give an overview of the language
SQL which has become a reference for relational systems.

The Architecture of Relational Systems

According to a proposal by the ANSI/SPARC normalization
group in 1975, every database system is structured in three
main levels:

1. the internal (or physical) level which is concerned
with the actual storage of data and by the manage-
ment of transactions;

2. the conceptual level which allows describing a given
application in terms of the DBMSs used, that is, in
terms of relations in the case of a relational DBMSs;
and

3. the external level which is in charge of taking user’s
requirements into account.

Based on this three-level general architecture, all rela-
tional DBMSs are structured according to the same general
schema that is seen as two interfaces, the external interface
and the storage interface.

The external interface, which is in charge of the com-
munication between user’s programs and the database,
contains five main modules: (1) precompilers allowing for

the use of SQL statements in programs written in proce-
dural languages such as COBOL, C, PASCAL, or JAVA, (2)
an interactive interface for a real-time use of databases, (3)
an analyzer which is in charge of the treatment of SQL
statements issued either from a user’s program or directly
by a user via the interactive interface, (4) an optimizer
based on the techniques discussed previously, and (5) a
catalog, where information about users and about all data-
bases that can be used, is stored. It is important to note that
this catalog, which is a basic component for the manage-
ment of databases, is itself organized as a relational data-
base, usually called the metadatabase, or data dictionary.

The storage interface, which is in charge of the commu-
nications between database and the file management sys-
tem, also contains five main modules: (1) a journal, where all
transactions on the database are stored so that the system
restartssafely incaseoffailures, (2) thetransactionmanager
which generally works under the two-phase locking protocol
discussed previously, (3) the index manager (indexes are
created to speed up the access to data), (4) the space disk
manager which is charge of defining the actual location of
data on disks, and (5) the buffer manager which is in charge
of transferring data between the main memory and the disk.
The efficiency of this last module is crucial in practice
because accesses on disks are very long operations that
must be optimized. It is important to note that this general
architecture is the basis for organizing relational system
that also integrate network and distributed aspects in a
client-server configuration or distributed database systems.

An Overview of SQL

Many languages have been proposed to implement rela-
tional calculus. For instance, the language QBE (Query By
Example) is based on domain calculus, whereas the lan-
guage QUEL (implemented in the system INGRES) is
based on tuple calculus. These languages are described
in Ref. (2). We focus here on language SQL which is now
implemented in all relational systems.

SQL is based on domain calculus but also refers to the
tuple calculus in some of its aspects. The basic structure of
an SQL query expression is the following:

SELECT hlist of attributesi
FROM hlist of relationsi
WHERE hconditioni

which roughly corresponds to a relational expression con-
taining projections, selections, and joins. For example, in
the database of Fig. 1, the query E is expressed in SQL as
follows:

SELECT EMP.deptno, dname

FROM EMP, DEPT

WHERE sal < 10,000 AND EMP.deptno ¼
DEPT.deptno

We draw attention to the fact that the condition part
reflects not only the selection condition from E, but also
that, to join tuples from the relations EMP and DEPT, their

RELATIONAL DATABASES 7



deptno values must be equal. This last equality must be
explicit in SQL, whereas, in the relational algebra, it is a
consequence of the definition of the join operator. We also
note that terms such as EMP.deptno or DEPT.deptno can
be seen as terms from tuple calculus, whereas terms such as
deptno or dname, refer to domain calculus. In general,
prefixing an attribute name by the corresponding relation
name is required if this attribute occurs in more than one
relation in the FROM part of the query.

The algebraic renaming operator is implemented in
SQL, but concerns relations, rather than attributes as in
relational algebra. For example, the algebraic expression
E1 (which computes the number of employees working in at
least two distinct departments) is written in SQL as follows:

SELECT EMP.empno

FROM EMP,EMP EMPLOYEES

WHERE EMP.deptno != EMPLOYEES.deptno AND

EMP.empno = EMPLOYEES.empno

Set theoretic operators union, intersection, and differ-
ence are expressed as such in SQL, by the keywords
UNION, INTERSECT, and MINUS (or EXCEPT), respec-
tively. Thus, every expression of relational algebra can be
written as a SQL statement, and this basic result is known
as the completeness of the language SQL. An important
point in this respect is that SQL expresses more queries
than relational algebra as a consequence of introducing
functions (whereas function symbols are not considered in
relational calculus) and ‘‘grouping’’ instructions in SQL.
First, because relations are restricted to the first normal
form, it is impossible to consider structured attributes, such
as dates or strings. SQL overcomes this problem by provid-
ing usual functions for manipulating dates or strings, and
additionally, arithmetic functions for counting or for com-
puting minimum, maximum, average, and sum are avail-
able in SQL. Moreover, SQL offers the possibility of
grouping tuples of relations, through the GROUP BY
instruction. As an example of these features, the numbers
of departments together with the associated numbers of
employees are obtained in the database of Fig. 1 with the
following SQL query (in which no WHERE statement
occurs, because no selection has to be performed):

SELECT deptno, COUNT(empno)

FROM EMP

GROUP BY deptno

On the other hand, a database system must incorporate
many other basic features concerning the physical storage
of tuples, constraints, updates, transactions, and confiden-
tiality. In SQL, relations are created with the CREATE
TABLE instruction, where the name of the relation
together with the names and types of the attributes are
specified. It is important to note that this instruction allows
specifying constraints and information about the physical
storage of the tuples. Moreover, other physical aspects are
taken into account in SQL by creating indexes or clusters to
speed up data retrieval.

Update instructions in SQL are either insertion, dele-
tion, or modification instructions in which WHERE state-

ments are incorporated to specify which tuples are affected
by the update. For example, in the database of Fig. 1,
increasing the salaries of 10% of all employees working
in department number 1 is achieved as follows:

UPDATE EMP

SET sal ¼ sal � 1.1

WHERE deptno ¼ 1

Transactions are managed in SQL by the two-phase
locking protocol, using different kinds of locks, allowing
only read data or allowing read and write data. Moreover,
activeness in databases is taken into account in SQL
through the notion of triggers, which are executed accord-
ing to the immediate mode.

Data confidentiality is another very important issue,
closely related to data security, but has received very little
attention at the theoretical level. Nevertheless, this pro-
blem is addressed in SQL in two different ways: (1) by
restricting the access to data to specified users and (2) by
allowing users to query only the part of the database they
have permission to query. Restricting access to data by
other users is achieved through the GRANT instruction,
that is specified by the owner either on a relation or on
attributes of a relation. A GRANT instruction may concern
queries and/or updates, so that, for example, a user is
allowed to query for salaries of employees, while forbidding
the user to modify them. On the other hand, a different way
to ensure data confidentiality consists in defining derived
relations called views. For instance, to prevent users from
seeing the salaries of employees, one can define a view from
the relation EMP of Fig. 1 defined as the projection of this
relation over attributes empno, ename, and deptno. A view
is a query, whose SQL code is stored in the metadatabase,
but whose result is not stored in the database. The concept
of views is a very efficient tool for data confidentiality,
thanks to the high expressional power of queries in SQL.
However, the difficulty with views is that they are not
updatable, except in very restricted cases. Indeed, because
views are derived relations, updates on views must be
translated into updates on the relations of the database,
and this translation, when it exists, is generally not unique.
This problem, known as the nondeterminism of view updat-
ing, is the subject of many research efforts, but has not yet
been satisfactorily solved.

We conclude by mentioning that relational systems are
successful in providing powerful database systems for
many applications, essentially for business applications.
However, these systems are not adapted to many new
applications, such as geographical information systems
or knowledge-based management because of two kinds of
limitations on the relational model:

1. Relations are flat structures which prevent easily
managing data requiring sophisticated structures.
This remark led to the emergence of object-oriented
database systems that are currently the subject of
important research efforts, most of them originating
from concepts of object-oriented languages, and
also from concepts of relational databases. As

8 RELATIONAL DATABASES



another research direction in this area, we mention
the emergence of object-relational data models that
extend the relational model by providing a richer type
system including object orientation, and that add
constructs to relational languages (such as SQL) to
deal with the added data types. An introductory
discussion on object-oriented databases and object-
relational data models is given in Ref. (8), whereas a
complete and formal description of these models can
be found in Refs. (2) and (9).

2. Relational algebra does not allow for recursivity (see
Ref. (3)), and thus, queries, such as the computation of
the transitive closure of a graph cannot be expressed.
This remark has stimulated research in the field of
deductive databases, a topic closely related to logic
programming but which also integrates techniques
and concepts from relational databases. The basic
concepts of deductive databases and their connec-
tions with relational databases are presented in
Refs. (2) and (9) and studied in full detail in Ref. (10).

We finally mention several new and important fields of
investigation that have emerged during the last decade.
These fields are data mining, data warehousing, and semi-
structured data. Indeed, extracting abstracted information
from many huge and heterogeneous databases is now a
crucial issue in practice. As a consequence, many research
efforts are still currently devoted to the study of efficient
tools for knowledge discovery in databases (KDD or data
mining), as well as for data integration in a data warehouse.
It is important to note that these new fields rely heavily on
the concept of relational databases, because the relational
model is the basic database model under consideration.
Data mining and data warehousing are briefly discussed
in Ref. (8) and are introduced in more details in Refs. (2) and
(11). On the other hand, the Web is causing a revolution in
how we represent, retrieve, and process information. In this
respect, the language XML is recognized as the reference
for data exchange on the Web, and the field of semistruc-
tured data aims to study how XML documents can be
managed. Here again, relational database theory is the
basic reference for the storage and the manipulation of
XML documents. An in-depth and up-to-date look at this
new topic can be found in Ref. (12).

We note that the latest versions of DBMSs now available
on the marketplace propose valuable and efficient tools for
dealing with data mining, data warehousing, and semi-
structured data.

BIBLIOGRAPHY

1. E. F. Codd, A relational model of data for large shared data
banks, Commun. ACM, 13: 377–387, 1970.

2. H. Garcia-Molina, J. D. Ullman, and J. D. Widom, Database
Systems: The Complete Book, Englewood Cliffs, NJ: Prentice-
Hall, 2001.

3. D. Maier, The Theory of Relational Databases, Rockville, MD:
Computer Science Press, 1983.

4. P. C. Kanellakis,Elements of relational database theory, in J.
VanLeuwen (ed.), Handbook of Theoretical Computer Science,
Vol. B: Formal and Semantics. Amsterdam: North Holland,
1990, pp. 1073–1156.

5. J. W. Lloyd, Foundations of Logic Programming, 2nd ed.,
Berlin: Springer-Verlag, 1987.

6. E. F. Codd, Relational completeness of data base sublanguages,
in R. Rustin (ed.), Data Base Systems, Englewood Cliffs, NJ:
Prentice-Hall, 1972, pp. 65–98.

7. W. W. Armstrong, Dependency structures of database rela-
tions. Proc. IFIP Congress, Amsterdam: North Holland, 1974,
pp. 580–583.

8. A. Silberschatz, H. F. Korth, and S. Sudarshan, Database
System Concepts, 3rd ed., New York: McGraw-Hill series in
Computer Science, 1996.

9. S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases,
Reading, MA: Addison-Wesley, 1995.

10. S. Ceri, G. Gottlob, and L. Tanca, Logic Programming and
Databases, Berlin: Springer-Verlag, 1990.

11. J. Han and M. Kamber, Data Mining: Concepts and Techni-
ques, San Francisco, CA: Morgan Kaufman, 2006.

12. S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web: From
relations to Semistructured Data and Xml, San Francisco, CA:
Morgan Kaufman, 1999.

FURTHER READING

P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems, Reading, MA: Addi-
son-Wesley, 1987. A good introduction and a fine reference source
for the topic of transaction management.

C. J. Date, Introduction to Database Systems, 8th ed., Reading, MA:
Addison-Wesley, 2003. One of the reference textbooks on relational
databases.

R. Elmasri and S. B. Navathe, Fundamentals of Database Systems,
2nd ed., Redwood City, CA: Benjamin Cummings, 1994. One of the
most widely used database textbooks.

M. Levene and G. Loizou, A Guided Tour of Relational Databases
and Beyond, Berlin: Springer-Verlag, 1999. A complete textbook
that addresses theoretical and practical aspects of relational data-
bases.

C. H. Papadimitriou, The Theory of Database Concurrency Control,
Rockville, MD: Computer Science Press, 1986. A reference source
for the theoretical foundations of concurrency control.

J. D. Ullman, Principles of Database and Knowledge Base Systems,
Vol. I, II, Rockville MD: Computer Science Press, 1988. One of the
first complete and reference textbooks on databases.

M. Y. Vardi, Fundamentals of dependency theory, in E. Borger
(ed.), Trends in Theoretical Computer Science, Rockville, MD:
Computer Science Press, 1987, pp. 171–224. A complete introduc-
tion to theoretical aspects of dependency theory.

G. Vossen, Data Models, Database Languages, and Database
Management Systems, Workingham, UK: Addison-Wesley, 1991.
This book is a fine introduction to the theory of databases.

DOMINIQUE LAURENT

University of Cergy-Pontoise
Cergy-Pontoise, France

RELATIONAL DATABASES 9



S

SPATIAL DATABASES

INTRODUCTION

Spatial database management systems (1–6) aim at the
effective and efficient management of data related to

� space in the physical world (geography, urban plan-
ning, astronomy, human anatomy, fluid flow, or an
electromagnetic field),

� biometrics (fingerprints, palm measurements, and
facial patterns),

� engineering design (very large-scale integrated cir-
cuits, layout of a building, or the molecular structure
of a pharmaceutical drug), and

� conceptual information space (virtual reality environ-
ments and multidimensional decision-support sys-
tems).

A spatial database management system (SDBMS) can be
characterized as follows:

� A SDBMS is a software module that can work with
an underlying database management system, for
example, an object-relational database management
system or object-oriented database management
system.

� SDBMSs support multiple spatial data models,
commensurate spatial abstract data types (ADTs),
and a query language from which these ADTs are
callable.

� SDBMSs support spatial indexing, efficient algorithms
for spatial operations, and domain-specific rules for
query optimization.

Spatial database research has been an active area for
several decades. The results of this research are being used
several areas. To cite a few examples, the filter-and-refine
technique used in spatial query processing has been applied
to subsequence mining; multidimensional-index structures
such as R-tree and Quad-tree used in accessing spatial data
are applied in the field of computer graphics and image
processing; and space-filling curves used in spatial query
processing and data storage are applied in dimension-reduc-
tionproblems.Thefieldofspatialdatabasescanbedefinedby
itsaccomplishments;currentresearchisaimedat improving
its functionality, extensibility, and performance. The
impetus for improving functionality comes from the needs
of existing applications such as geographic information
systems (GIS), location-based services (LBS) (7), sensor net-
works (8), ecology and environmental management (9),
public safety, transportation (10), earth science, epidemiol-
ogy (11), crime analysis (12), and climatology.

Commercial examples of spatial database management
include ESRI’s ArcGIS Geodatabase (13), Oracle Spatial

(14), IBM’s DB2 Spatial Extender and Spatial Datablade,
and future systems such as Microsoft’s SQL Server 2008
(code-named Katmai) (15). Spatial databases have played a
major role in the commercial industry such as Google Earth
(16) and Microsoft’s Virtual Earth (17). Research prototype
examples of spatial database management systems include
spatial datablades with PostGIS (18), MySQL’s Spatial
Extensions (19), Sky Server (20), and spatial extensions.
The functionalities provided by these systems include a set
of spatial data types such as a points, line segments and
polygons, and a set of spatial operations such as inside,
intersection, and distance. The spatial types and operations
may be made a part of a query language such as SQL, which
allows spatial querying when combined with an object-
relational database management system (21,22). The per-
formance enhancement provided by these systems includes
a multidimensional spatial index and algorithms for spatial
database modeling such as OGC (23) and 3-D topological
modeling; spatial query processing including point, regio-
nal, range, and nearest-neighbor queries; and spatial data
methods that use a variety of indexes such as quad trees
and grid cells.

Related Work and Our Contributions

Published work related to spatial databases can be classi-
fied broadly as follows:

� Textbooks (3,4,6,24), which explain in detail various
topics in spatial databases such as logical data models
for spatial data, algorithms for spatial operations, and
spatial data access methods. Recent textbooks (6,25)
deal with research trends in spatial databases such as
spatio–temporal databases and moving objects data-
bases.

� Reference books (26,27), which are useful for studying
areas related to spatial databases, for example, multi-
dimensional data structures and geographic informa-
tion systems (GIS).

� Journals and conference proceedings (28–37), which
are a source of in-depth technical knowledge of specific
problem areas in spatial databases.

� Research surveys (1,38,39), which summarize key
accomplishments and identify research needs in var-
ious areas of spatial databases at that time.

Spatial database research has continued to advance
greatly since the last survey papers in this area were
published (1,38,39). Our contribution in this chapter is to
summarize the most recent accomplishments in spatial
database research, a number of which were identified as
research needs in earlier surveys. For instance, bulk load-
ing techniques and spatial join strategies are rereferenced
here as well as other advances in spatial data mining and
conceptual modeling of spatial data. In addition, this chap-
ter provides an extensive updated list of research needs in

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



such areas as management of 3-D spatial data, visibility
queries, and many others. The bibliography section at the
end of this chapter contains a list of over 100 references,
updated with the latest achievements in spatial databases.

Scope and Outline

The goal of this chapter is to provide the reader with a broad
introduction to spatial database systems. Spatial databases
are discussed in the context of object-relational databases
(21,22,40), which provide extensibility to many components
of traditional databases to support the spatial domain.
Three major areas that receive attention in the database
context—conceptual, logical, and physical data models—
are discussed (see Table 1). In addition, applications of
spatial data for spatial data mining are also explored.

Emerging needs for spatial database systems include
the handling of 3-D spatial data, spatial data with temporal
dimension, and effective visualization of spatial data. The
emergence of hardware technology such as storage area
networks and the availability of multicore processors are
two additional fields likely to have an impact on spatial
databases. Such topics of research interest are introduced
at the end of each section. References are provided for more
exploration. Because of the size constraints of this chapter,
several other overlapping research needs such as spatio–
temporal databases and uncertainty are not included in
this chapter.

The rest of this chapter is organized as follows:
Fundamental concepts helpful to understand spatial
databases are presented. Spatial database modeling is
described at the conceptual and logical levels; techniques
for spatial query processing are discussed; file organiza-
tions and index data structures are presented; and spa-
tial data mining patterns and techniques are explored.

MATHEMATICAL FRAMEWORK

Accomplishments

Spatial data are relatively more complex compared with
traditional business data. Specific features of spatial data
include: (1) rich data types (e.g., extended spatial objects),
(2) implicit spatial relationships among the variables, (3)
observations that are not independent, and (4) spatial
autocorrelation among the features.

Spatial data can be considered to have two types of
attributes: nonspatial attributes and spatial attributes.
nonspatial attributes are used to characterize nonspatial
features of objects, such as name, population, and unem-
ployment rate for a city. Spatial attributes are used to
define the spatial location and extent of spatial objects

(41). The spatial attributes of a spatial object most often
include information related to spatial locations, for exam-
ple, longitude, latitude, elevation, and shape. Relation-
ships among nonspatial objects are explicit in data inputs,
e.g., arithmetic relation, ordering, instance of, subclass of,
and membership of. In contrast, relationships among
spatial objects are often implicit, such as overlap, inter-
sect, and behind.

Space is a framework to formalize specific relationships
among a set of objects. Depending on the relationships of
interest, different models of space such as set-based space,
topological space, Euclidean space, metric space, and net-
work space can be used (6). Set-based space uses the basic
notion of elements, element-equality, sets, and member-
ship to formalize the set relationships such as set-equality,
subset, union, cardinality, relation, function, and convex-
ity. Relational and object-relational databases use this
model of space.

Topological space uses the basic notion of a neighborhood
and points to formalize the extended object relations such as
boundary, interior, open, closed, within, connected, and
overlaps, which are invariant under elastic deformation.
Combinatorial topological space formalizes relationships
such as Euler’s formula (number of faces þ number of
vertices � number of edges ¼ 2 for planar configuration).
Network space is a form of topological space in which the
connectivity property among nodes formalizes graph prop-
erties such as connectivity, isomorphism, shortest-path, and
planarity.

Euclidean coordinatized space uses the notion of a
coordinate system to transform spatial properties and
relationships to properties of tuples of real numbers.
Metric spaces formalize the distance relationships using
positive symmetric functions that obey the triangle
inequality. Many multidimensional applications use
Euclidean coordinatized space with metrics such as dis-
tance.

Research Needs

Many spatial applications manipulate continuous spaces of
different scales and with different levels of discretization. A
sequence of operations on discretized data can lead to
growing errors similar to the ones introduced by finite-
precision arithmetic on numbers. Preliminary results (1)
are available on the use of discrete basis and bounding
errors with peg-board semantics. Another related problem
concerns interpolation to estimate the continuous field
from a discretization. Negative spatial autocorrelation
makes interpolation error-prone. More work is needed on
a framework to formalize the discretization process and its
associated errors, and on interpolation.

Table 1. Spatial database topics

Mathematical Framework
Conceptual Data Model
Logical Data Model Trends: Spatial Data Mining
Query Languages
Query Processing
File Organizations and Indices

2 SPATIAL DATABASES



SPATIAL-DATABASE CONCEPTUAL MODELING

Accomplishments

Entity relationship (ER) diagrams are commonly used in
designing the conceptual model of a database. Many exten-
sions (42) have been proposed to extend ER to make the
conceptual modeling of spatial applications easier and more
intuitive. One such extension is the use of pictograms (43).
A pictogram is a graphical icon that can represent a spatial
entity or a spatial relationship between spatial entities.
The idea is to provide constructs to capture the semantics of
spatial applications and at the same time to keep the
graphical representation simple. Figure 2 provides differ-
ent types of pictograms for spatial entities and relation-
ships. In the following text we define pictograms to
represent spatial entities and relationships and their gram-
mar in graphical form.

Pictogram: A pictogram is a representation of the object
inserted inside of a box. These iconic representations
are used to extend ER diagrams and are inserted at
appropriate places inside the entity boxes. An entity
pictogram can be of a basic shape or a user-defined
shape.

Shape: Shape is the basic graphical element of a picto-
gram that represents the geometric types in the
spatial data model. It can be a basic shape, a multi-
shape, a derived shape, or an alternate shape. Most
objects have simple (basic) shapes [Fig. 1 (b)].

Basic Shape: In a vector model, the basic elements are
point, line, and polygon. In a forestry example, the

user may want to represent a facility as a point (0-D),
a river or road network as lines (1-D), and forest areas
as polygons (2-D) [Fig. 1(d)].

Multishape: To deal with objects that cannot be repre-
sented by the basic shapes, we can use a set of
aggregate shapes. Cardinality is used to quantify
multishapes. For example, a river network that is
represented as a line pictogram scale will have car-
dinality 0 [Fig. 1(b) and (e)].

Derived shape: If the shape of an object is derived from
the shapes of other objects, its pictogram is italicized.
For example, we can derive a forest boundary (poly-
gon) from its ‘‘forest-type’’ boundaries (polygon), or a
country boundary from the constituent-state bound-
aries [Fig. 1(c) and (g)].

Alternate shape: Alternate shapes can be used for the
same object depending on certain conditions; for
example, objects of size less than x units are repre-
sented as points, whereas those greater than x units
are represented as polygons. Alternate shapes are
represented as a concatenation of possible picto-
grams. Similarly, multiple shapes are needed to
represent objects at different scales; for example, at
higher scales lakes may be represented as points and
at lower scales as polygons [Fig. 1(d) and (h)].

Any possible shape: A combination of shapes is repre-
sented by a wild card � symbol inside a box, which
implies that any geometry is possible (Fig. 1(e)).

User-defined shape: Apart from the basic shapes of point,
line, and polygon, user-defined shapes are possible.
User-defined shapes are represented by an exclama-
tion symbol (!) inside a box [Fig. 1(a)].

*

!

<Relationship>

<Basic Shape>

<Multi-Shape>

<Derived Shape>

<Alternate Shape>

part_of (partition)

part_of (highrarchical)

<Cardinality> 0, 1

1

1, n

0,n

n

<Derived Shape> <Basic Shape>

<Alternate Shape> <Basic Shape> <Derived Shape> 

<Basic Shape> <Basic Shape>

<Raster Partition> Raster

Thiessen

TIN

<Multi-Shape> <Basic Shape> <Cardinality>

<Shape>

<Relationship>

<BasicShape>

<Pictogram>                         <Shape>

(G)

(A)

(B)

(C)

(D)

(E)

(F)

(I)

(H)

(D) Basic Shape, (E) Multi-Shape,

(F) Cardinality, (G) Derived Shape,
(H) Alternate Shape, (I) Raster Partition

Grammar for:  (A) Pictogram, (B) Shape, (C) Relationship

Figure 1. Pictograms.

SPATIAL DATABASES 3



Relationship pictograms: Relationship pictograms are
used to model the relationship between entities. For
example, part_of is used to model the relationship
between a route and a network, or it can be used to
model the partition of a forest into forest stands [Fig.
1(c)].

The popularity of object-oriented languages such as
Cþþ and Java has encouraged the growth of object-
oriented database systems (OODBMS). The motivation
behind this growth in OODBMS is that the direct mapping
of the conceptual database schema into an object-oriented
language leads to a reduction of impedance mismatch
encountered when a model on one level is converted into
a model on another level.

UML is one of the standards for conceptual-level model-
ing for object-oriented software design. It may also be
applied to an OODBMS to capture the design of the system
conceptually. A UML design consists of the following build-
ing blocks:

Class: A class is the encapsulation of all objects that
share common properties in the context of the appli-
cation. It is the equivalent of the entity in the ER
model. The class diagrams in a UML design can be
further extended by adding pictograms. In a forestry
example, classes can be forest, facility, forest stand,
and so forth.

Attributes: Attributes characterize the objects of the
class. The difference between an attribute ER and
a UML model design is that no notion of a key
attribute exists in UML, in an object-oriented system,
each object has an implicit system-generated unique
identification. In UML, attributes also have a scope
that restricts the attribute’s access by other classes.
Three levels of scope exist, and each has a special
symbol: þ Public: This symbol allows the attribute
to be accessed and manipulated from any class.

- Private: Only the class that owns the attribute is
allowed to access the attribute. # Protected: Other
than the class that owns the attribute, classes derived
from the class that owns can access the attibute.

Methods: Methods are functions and a part of class
definition. They are responsible for modifying the
behavior or state of the class. The state of the class
is embodied in the current values of the attributes. In
object-oriented design, attributes should only be
accessed through methods.

Relationships: Relationships relate one class to another
or to itself. This concept is similar to the concept of
relationship in the ER model. Three important cate-
gories of relationships are as follows:

� Aggregation: This category is a specific construct to
capture the part–whole relationship. For instance,
a group of forest–stand classes may be aggregated
into a forest class.

� Generalization: This category describes a relation-
ship in which a child class can be generalized to a
parent class. For example, classes such as point,
line, and polygon can be generalized to a geometry
class.

� Association: This category shows how objects of
different classes are related. An association is bin-
ary if it connects two classes or ternary if it con-
nects three classes. An example of a binary
association is supplieswater to between the classes
river and facility.

Figures 2 and 3 provide an example for modeling a State-
Park using ER and UML with pictograms, respectively.

Research Needs

Conceptual modeling for spatio–temporal and moving-
object data needs to be researched. Pictograms as intro-
duced in this section may be extended to handle such data.

Name

Name

RIVERsupplies_water_to

Name

 M

N

M

 M1

NumofLanes

Specie
1

Age

 MANAGER

1

1

 manages monitors

Stand-id

 Volume Name

11

Length

Name

part_of

Accesses

belongs_to
FOREST-STANDFOREST

FIRE-STATION

ROAD

FACILITY

Gender

    Elevation

Name

Figure 2. Example ER diagram with pictograms.

4 SPATIAL DATABASES



Models used in the spatial representation of data can be
extended to conside the time dimension. For instance, the
nine-intersection matrix used to represent topology can be
differentiated to consider the change in topology over a
period of time. Similarly, other spatial properties such as
position, orientation, and shape can be differentiated to
consider effects over time such as motion, rotation, and
deformation of a spatial object. Similarly, series of points
can be accumulated to represent time-varying spatial data
and properties.

Another area of research is the use of ontology for
knowledge management. An ontology defines a common
vocabulary that allows knowledge to be shared and reused
across different applications. Ontologies provide a shared
and common understanding of some domain that can be
communicated across people and computers.

Geospatial ontology (44) is specific to the geospatial
domain. Research in geospatial ontology is needed to pro-
vide interoperability between geospatial data and software.
Developing geospatial ontologies is one of the long-term
research challenges for the University Consortium for
Geographic Information Systems (UCGIS) (37). Research
in this area is also being carried out by companies such as
CYC for geospatial ontology.

Geospatial ontology can be extended to include the
temporal dimension. The ontology of time has been
researched in the domain of artificial intelligence as situa-
tion calculus. OWL-Time (45) is an ontology developed to
represent time.

Semantic web (46) is widely known as an efficient way to
represent data on the Web. The wealth of geographic
information currently available on the Web has prompted
research in the area of GeoSpatial Semantic Web (47,48). In
this context, it becomes necessary to create representations
of the geographic information resources. This necessity
must lead to a framework for information retrieval based
on the semantics of spatial ontologies. Developing the geo-

spatial ontology that is required in a geo-spatial semantic
web is challenging because the defining properties of geo-
graphic entities are very closely related to space (i.e., multi-
dimensional space). In addition, each entity may have
several subentities resulting in a complex object (48).
One popular data model used in representing semantic
web is the resource description framework (RDF) (49).

RDF is being extended (GeoRDF) (50) to include spatial
dimensions and hence to provide the necessary support for
geographica data on the web.

SPATIAL DATA MODELS AND QUERY LANGUAGES

Accomplishments

Data Models. A spatial data model provides the data
abstraction necessary to hide the details of data storage.
The two commonly used models are the field-based model
and the object-based model. Whereas the field-based model
adopts a functional viewpoint, the object-based model
treats the information space as a collection of discrete,
identifiable, spatially referenced entities. Based on the
type of data model used, the spatial operations may change.
Table 2 lists the operations specific to the field-based and
object-based models. In the context of object-relational
databases, a spatial data model is implemented using a
set of spatial data types and operations. Over the last two
decades, an enormous amount of work has been done in the
design and development of spatial abstract data types and
their embedding in a query language. Serious efforts are
being made to arrive at a consensus on standards through
the OGC (51).

OGC proposed the general feature model (51) where
features are considered to occur at two levels, namely,
feature instances and feature types. A geographic feature
is represented as a discrete phenomenon characterized by
its geographic and temporal coordinates at the instance

+  GetNumofLanes()

+  GetName()

#   NumofLanes

ROAD

#   Name

#   Name

 belongs_to
accesses

 +   GetSpecieName()

#   SpecieName

FOREST-STAND
FIRE-STATION

 +   GetName()

 * 

manages

+ GetGender()
+ GetAge()
+ GetName()

#  Gender
#  Age

1

LEGEND

Strong

Aggregation

Aggregation
Weak

* .. *   Cardinality

1

#  Name

1

1 .. *

monitor

11 .. *

*

 1..*

MANAGER

*

*

supplies-water-to

 #    Volume

SUPPLIES-WATER-TO

1..*

       Point
 +   GetElevation():

 +   GetName()

 +   GetLength()

#   Length

RIVER

 +   GetName()

#   Name

#   Elevation
#   Name

 FORESTFACILITY

#   Name

 +   GetName()

Figure 3. Example UML class diagram with pictograms.

SPATIAL DATABASES 5



level, and the instances with common characteristics are
grouped into classes called feature types. Direction is
another important feature used in spatial applications. A
direction feature can be modeled as a spatial object (52).
Research has also been done to efficiently compute the
cardinal direction relations between regions that are com-
posed of sets of spatial objects (53).

Query Languages. When it comes to database sytems,
spatial database researchers prefer object-based models
because the data types provided by object-based database
systems can be extended to spatial data types by creating
abstract data types (ADT). OGC provides a framework for
object-based models. Figure 4 shows the OpenGIS
approach to modeling geographic features. This framework
provides conceptual schemas to define abstract feature
types and provides facilities to develop application schemas
that can capture data about feature instances. Geographic
phenomena fall into two broad categories, discrete and
continuous. Discrete phenomena are objects that have
well-defined boundaries or spatial extent, for example,
buildings and streams. Continuous phenomena vary over
space and have no specific extent (e.g., temperature and
elevation). A continuous phenomenon is described in terms
of its value at a specific position in space (and possibly time).
OGC represents discrete phenomena (also called vector
data) by a set of one or more geometric primitives (points,
curves, surfaces, or solids). A continuous phenomenon is
represented through a set of values, each associated with
one of the elements in an array of points. OGC uses the term
‘‘coverage’’ to refer to any data representation that assigns
values directly to spatial position. A coverage is a function
from a spatio–temporal domain to an attribute domain.
OGC provides standardized representations for spatial
characteristics through geometry and topology. Geometry

provides the means for the quantitative description of the
spatial characteristics including dimension, position, size,
shape, and orientation. Topology deals with the character-
istics of geometric figures that remain invariant if the space
is deformed elastically and continuously. Figure 5 shows
the hierarchy of geometry data types. Objects under pri-
mitive (e.g., points and curves) will be open (i.e., they will
not contain their boundary points), and the objects under
complex (e.g., disjoint objects) will be closed.

In addition to defining the spatial data types, OGC also
defines spatial operations. Table 3 lists basic operations
operative on all spatial data types. The topological opera-
tions are based on the ubiquitous nine-intersection model.
Using the OGC specification, common spatial queries can
be posed intuitively in SQL. For example, the query Find all
lakes which have an area greater than 20 sq. km. and are
within 50 km. from the campgrounds can be posed as shown
in Table 4 and Fig. 6. Other GIS and LBS example queries
are provided in Table 5. The OGC specification is confined to
topological and metric operations on vector data types.
Also, several spatio–temporal query languages have been
studied that are trigger-based for relational-oriented mod-
els (54), moving objects (55), future temporal languages
(56), and constraint-based query languages (57).

For spatial networks, commonly used spatial data types
include objects such as node, edge, and graph. They may be
constructed as an ADT in a database system. Query lan-
guages based on relational algebra are unable to express
certain important graph queries without making certain
assumptions about the graphs. For example, the transitive
closure of a graph may not be determined using relational
algebra. In the SQL3, a recursion operation RECURSIVE
has been proposed to handle the transitive closure
operation.

Research Needs

Map Algebra. Map Algebra (58) is a framework for raster
analysis that has now evolved to become a preeminent
language for dealing with field-based models. Multiple
operations can be performed that take multiple data layers
that are overlayed upon each other to create a new layer.
Some common groups of operations include local, focal, and
zonal. However, research is needed to account for the
generalization of temporal or higher dimensional data
sets (e.g., 3-D data).

Table 2. Data model and operations

Data Model Operator Group Operation

Vector Object Set-Oriented equals, is a member of, is empty, is a subset of, is disjoint
from, intersection, union, difference, cardinality

Topological boundary, interior, closure, meets, overlaps, is inside, covers,
connected, components, extremes, is within

metric distance, bearing/angle, length, area, perimeter
Direction east, north, left, above, between
Network successors, ancestors, connected, shortest-path
Dynamic translate, rotate, scale, shear, split, merge

Raster Field Local point-wise sums, differences, maximumms, means, etc.
Focal slop, aspect, weighted average of neighborhood
Zonal sum or mean or maximum of field values in each zone

Figure 4. Modeling geographic information [source: (51)].

6 SPATIAL DATABASES



Modeling 3-D Data. The representation of volumetric
data is another field to be researched. Geographic attri-
butes such as clouds, emissions, vegetation, and so forth.
are best described as point fields on volumetric bounds.
Sensor data from sensor technologies such as LADAR
(Laser Detection and Ranging), 3-D SAR (Synthtic Arper-

ture Radar), and EM collect data volumetrically. Because
volumetric data is huge, current convention is to translate
the data into lower-dimensional representations such as
B-reps, Point clouds, NURBS, and so on. This action results
in loss of intrinsic 3-D information. Efforts (59) have been
made to develop 3-D data models that emphasize the

MultiLineString

Geometry CollectionSurface

SpatialReferenceSystemGeometry

1..*

1 ..*

  1..*
2 .. *

2 ..*

Point

MultiPoint

MultiPolygonLinearRingLine

MultiCurve

Curve

MultiSurfacePolygonLineString

Figure 5. Hierarchy of data types.

Table 3. A sample of operations listed in the OGC standard for SQL

Basic Functions

SpatialReference() Returns the underlying coordinate system of the geometry
Envelope() Returns the minimum orthogonal bounding rectangle of the geometry
Export () Returns the geometry in a different representation
IsEmpty() Returns true if the geometry is an empty set.
IsSimple() Returns true if the geometry is simple (no self-intersection)
Boundary () Returns the boundary of the geometry

Topological/ Set Operators

Equal Returns true if the interior and boundary of the two
geometries are spatially equal

Disjoint Returns true if the boundaries and interior do not intersect.
Intersect Returns true if the interiors of the geometries intersect
Touch Returns true if the boundaries intersect but the interiors do not.
Cross Returns true if the interior of the geometries intersect but the

boundaries do not
Within Returns true if the interior of the given geometry

does not intersect with the exterior of another geometry.
Contains Tests if the given geometry contains another given geometry
Overlap Returns true if the interiors of two geometries

have non-empty intersection

Spatial Analysis

Distance Returns the shortest distance between two geometries
Buffer Returns a geometry that consists of all points

whose distance from the given geometry is less than or equal to the
specified distance

ConvexHull Returns the smallest convex set enclosing the geometry
Intersection Returns the geometric intersection of two geometries
Union Returns the geometric union of two geometries
Difference Returns the portion of a geometry which does not intersect

with another given geometry
SymmDiff Returns the portions of two geometries which do

not intersect with each other

SPATIAL DATABASES 7



significance of the volumetric shapes of physical world
objects. This topological 3-D data model relies on Poincare
algebra. The internal structure is based on a network of
simplexes, and the internal data structure used is a tetra-
hedronized irregular network (TIN) (59,60), which is the
three-dimensional variant of the well-known triangulated
irregular network (TIN).

Modeling Spatial Temporal Networks. Graphs have been
used extensively to represent spatial networks. Consider-
ing the time-dependence of the network parameters and
their topology, it has become critically important to incor-
porate the temporal nature of these networks into their
models to make them more accurate and effective. For
example, in a transportation network, the travel times
on road segments are often dependent on the time of the
day, and there can be intervals when certain road segments
are not available for service. In such, time-dependent net-
works modeling the time variance becomes very important.
Time-expanded graphs (61) and time-aggregated graphs
(62) have been used to model time-varying spatial net-
works. In the time-expanded representation, a copy of
the entire network is maintained for every time instant,
whereas the time-aggregated graphs maintain a time ser-
ies of attributes, associated to every node and edge.

Network modeling can be extended to consider 3-D
spatial data. Standard road network features do not repre-
sent 3-D structure and material properties. For instance,
while modeling a road tunnel, we might want to represent
its overpass clearance as a spatial property. Such proper-
ties will help take spatial constraints into account while
selecting routes.

Modeling Moving Objects. A moving object database is
considered to be a spatio–temporal database in which the
spatial objects may change their position and extent over a
period of time. To cite a few examples, the movement of taxi
cabs, the path of a hurricane over a period of time, and the
geographic profiling of serial criminals are a few examples
in which a moving-objects database may be considered.
Referances 25 and 63 have provided a data model to support
the design of such databases.

Markup Languages. The goals of markup languages, such
as geography markup language (GML) (64), are to provide a
standard for modeling language and data exchange formats
for geographic data. GML is an XML-based markup lan-
guage to represent geographic entities and the relation-
ships between them. Entities associated with geospatial
data such as geometry, coordinate systems, attributes, and

Table 4. SQL query with spatial operators

SELECT L.name
FROM Lake L, Facilities Fa
WHERE Area(L.Geometry) > 20 AND
Fa.name ¼ ’campground’ AND
Distance(Fa.Geometry, L.Geometry) < 50

L.name

Area(L.Geometry) > 20

Fa.name = ‘campground’

Distance(Fa.Geometry, L.Geometry) <  50

Facilities Fa

(a)

Lake L

σ

σ

π

Figure 6. SQL query tree.

Table 5. Typical spatial queries from GIS and LBS

GIS Queries

Grouping Recode all land with silty soil to silt-loadm soil
Isolate Select all land owned by Steve Steiner
Classify If the population density is less than 100 people / sq. mi., land is acceptable
Scale Change all measurement’s’ to the metric system
Rank If the road is an Interstate, assign it code 1; if the road

is a state or US highway, assign it code 2; otherwise assign it code 3
Evaluate If the road code is 1, then assign it Interstate; if the road code is 2,

then assign it Main Artery; if the road code is 3, assign it Local Road
Rescale Apply a function to the population density
Attribute Join Join the Forest layer with the layer containing forest-cover codes
Zonal Produce a new map showing state populations given county population
Registration Align two layers to a common grid reference
Spatial Join Overlay the land-use and vegetation layers to produce a new layer

LBS Queries

Nearest Neighbor List the nearest gas stations
Directions Display directions from a source to a destation

(e.g. Google Maps, Map Quest)
Local Search Search for restaurants in the neighborhood

(e.g. Microsoft Live Local, Google Local)

8 SPATIAL DATABASES



so forth, can be represented in a standard way using GML.
Several computational challenges exist with GML, such as
spatial query processing and indexing (65). CityGML (66) is
a subclass of GML useful for representing 3-D urban
objects, such as buildings, bridges, tunnels, and so on.
CityGML allows modeling of spatial data at different levels
of detail regarding both geometry and thematic differentia-
tion. It can be used to model 2.5-D data (e.g., digital terrain
model), and 3-D data (walkable architecture model). Key-
hole markup language (KML) (67) is another XML-based
markup language popular with commercial spatial soft-
ware from Google. Based on a structure similar to GML,
KML allows representation of points, polygons, 3-D objects,
attributes, and so forth.

SPATIAL QUERY PROCESSING

Accomplishments

The efficient processing of spatial queries requires both
efficient representation and efficient algorithms. Common
representations of spatial data in an object model include
spaghetti, the node-arc-node (NAA) model, the doubly con-
nected-edge-list (DCEL), and boundary representation,
some of which are shown in Fig. 7 using entity-relationship
diagrams. The NAA model differentiates between the topo-
logical concepts (node, arc, and areas) and the embedding
space (points, lines, and areas). The spaghetti-ring and
DCEL focus on the topological concepts. The representation
of the field data model includes a regular tessellation
(triangular, square, and hexagonal grid) and triangular
irregular networks (TIN).

Query processing in spatial databases differs from that
of relational databases because of the following three major
issues:

� Unlike relational databases, spatial databases have no
fixed set of operators that serve as building blocks for
query evaluation.

� Spatial databases deal with extremely large volumes of
complex objects. These objects have spatial extensions

and cannot be naturally sorted in a one-dimensional
array.

� Computationally expensive algorithms are required to
test for spatial predicates, and the assumption that I/O
costs dominate processing costs in the CPU is no longer
valid.

In this section, we describe the processing techniques for
evaluating queries on spatial databases and discuss open
problems in spatial query processing and query optimiza-
tion.

Spatial Query Operations. Spatial query operations can
be classified into four groups (68).

� Update Operations: These include standard data-
base operations such as modify, create, and delete.

� Spatial Selection: These can be of two types:

– Point Query: Given a query point, find all spatial
objects that contain it. An example is the following
query, ‘‘Find all river flood-plains which contain
the SHRINE.’’

– Regional Query: Given a query polygon, find all
spatial objects that intersect the query polygon.
When the query polygon is a rectangle, this query
is called a window query. These queries are some-
times also referred to as range queries. An example
query could be ‘‘Identify the names of all forest
stands that intersect a given window.’’

– Spatial Join: Like the join operator in relational
databases, the spatial join is one of the more impor-
tant operators. When two tables are joined on a
spatial attribute, the join is called a spatial join. A
variant of the spatial joinandan importantoperator
in GIS is the map overlay. This operation combines
two sets of spatial objects to form new ones. The
‘‘boundaries’’ of a set of these new objects are deter-
mined by the nonspatial attributes assigned by the
overlay operation. For example, if the operation
assigns the same value of the nonspatial attribute

Sequence No.

Sequence No.
Double–Connected–Edge List Model.

Sequence No.

Spaghelti Data Model

Sequence

Sequence Sequence Point

Embeds

Node

Node

Ends

Ends

Left
Bounded

Left
Bounded

Is
Previous

Is
Next

Right
Bounded

Right
Bounded

Area Area

Area

Polygon

Embeds
Embeds

Node–Arc–Area Model

Polyline

Begins

Begins

Directed
Arc

Directed
Arc

Points

Figure 7. Entity relationship diagrams for common representations of spatial data.

SPATIAL DATABASES 9



to two neighboring objects, then the objects are
‘‘merged.’’ Some examples of spatial join predicates
are intersect, contains, is_enclosed_by, distance,
northwest, adjacent, meets, and overlap. A query
example of a spatial join is ‘‘Find all forest-stands
and river flood-plains which overlap.’’

– Spatial Aggregate: An example of a spatial
aggregate is ‘‘Find the river closest to a camp-
ground.’’ Spatial aggregates are usually variants
of the Nearest Neighbor (69–71) search problem:
Given a query object, find the object having mini-
mum distance from the query object. A Reverse
Nearest Neighbor (RNN) (72–76) query is another
example of a spatial aggregate. Given a query
object, a RNN query finds objects for which the
query object is the nearest neighbor. Applications
of RNN include army strategic planning where a
medical unit, A, in the battlefield is always in
search of a wounded soldier for whom A is the
nearest medical unit.

Visibility Queries. Visibility has been widely studied in
computer graphics. Visibility may be defined as the parts of
objects and the environment that are visible from a point in
space. A visibility query can be thought of as a query that
returns the objects and part of the environment visible at
the querying point. For example, within a city, if the cover-
age area of a wireless antenna is considered to be the visible
area, then the union of coverage areas of all the antennas in
the city will provide an idea about the area that is not
covered. Such information may be used to place a new
antenna strategically at an optimal location. In a visibility
query, if the point in space moves, then the area of visibility
changes. Such a query may be called a continuous visibility
query. For example, security for the president’s motorcade
involves cordoning off the buildings that have route visi-
bility. In such a case, the visibility query may be thought of
as a query that returns the buildings visible at different
points on the route.

Visual Queryings. Many spatial applications present
results visually, in the form of maps that consist of graphic
images, 3-D displays, and animations. These applications
allow users to query the visual representation by pointing to
the visual representation using pointing devices such as a
mouseorapen.Suchgraphicalinterfacesareneededtoquery
spatial data without the need by users to write any SQL
statements. In recent years, map services, such as Google
Earth and Microsoft Earth, have become very popular. more
work is needed to explore the impact of querying by pointing
and visual presentation of results on database performance.

Two-Step Query Processing of Spatial Operations.
Because spatial query processing involves complex data
types, a lake boundary might need a thousand vertices for
exact representation. Spatial operations typically follow a
two-step algorithm (filter and refinement) as shown in Fig. 8
to process complex spatial objects efficiently (77). Approx-
imate geometry, such as the minimal orthogonal bounding
rectangle of an extended spatial object, is first used to filter
out many irrelevant objects quickly. Exact geometry then is
used for the remaining spatial objects to complete the
processing.

� Filter step: In this step, the spatial objects are repre-
sented by simpler approximations like the minimum
bounding rectangle (MBR). For example, consider the
following point query, ‘‘Find all rivers whose flood-
plains overlap the SHRINE.’’ In SQL this query will be:

SELECT river. name
FROM river
WHERE overlap (river. flood-plain, :
SHRINE)

If we approximate the flood-plains of all rivers with
MBRs, then it is less expensive to determine whether
the point is in a MBR than to check whether a point is in
an irregular polygon, that is, in the exact shape of the
flood-plain. The answer from this approximate test is a
superset of the real answer set. This superset is some-
timescalledthecandidateset.Eventhespatialpredicate

load object geometry

refinement stepfilter step

test on exact
geometry

Query result

Query

candidate set

spatial index

hitsfalse hits

Figure 8. Two-step processing.

10 SPATIAL DATABASES



may be replaced by an approximation to simplify a
query optimizer. For example, touch (river.flood-plain,
:SHRINE)maybereplacedbyoverlap(MBR(river.flood-
plain, :SHRINE), and MBR(:SHRINE)) in the filter
step. Many spatial operators, for example, inside,
north-of, and buffer, can be approximated using the
overlap relationship among corresponding MBRs.
Such a transformation guarantees that no tuple from
the final answer using exact geometry is eliminated in
the filter step.

� Refinement step: Here, the exact geometry of each
element from the candidate set and the exact spatial
predicate is examined. This examination usually
requires the use of a CPU-intensive algorithm. This
step may sometimes be processed outside the spatial
database in an application program such as GIS, using
the candidate set produced by the spatial database in
the filter step.

Techniques for Spatial Operations. This section presents
several common operations between spatial objects: selec-
tion, spatial join, aggregates, and bulk loading.

Selection Operation. Similar to traditional database sys-
tems, the selection operation can be performed on indexed
or non indexed spatial data. The difference is in the tech-
nique used to evaluate the predicate and the type of index.
As discussed in the previous section, a two-step approach,
where the geometry of a spatial object is approximated by a
rectangle, is commonly used to evaluate a predicate. Pop-
ular indexing techniques for spatial data are R-tree, and
space-filling curves. An R-tree is a height-balanced tree
that is a natural extension of a B-tree for k-dimensions. It
allows a point search to be processed in O(log n) time. Hash
filling curves provide one-to-one continuous mappings that
map points of multidimensional space into one-dimensional
space. This mapping allows the user to impose order on
higher-dimensional spaces. Common examples of space-
filling curves are row-order Peano, Z-order, and Hilbert
curves. Once the data has been ordered by a space-filling
curve, a B-tree index can be imposed on the ordered entries
to enhance the search. Point search operations can be
performed in O(log n) time.

Spatial Join Operation. Conceptually, a join is defined as
a cross product followed by a selection condition. In prac-
tice, this viewpoint can be very expensive because it
involves materializing the cross product before applying
the selection criterion. This finding is especially true for
spatial databases. Many ingenious algorithms have been
proposed to preempt the need to perform the cross product.
The two-step query-processing technique described in the
previous section is the most commonly used. With such
methods, the spatial join operation can be reduced to a
rectangle–rectangle intersection, the cost of which is rela-
tively modest compared with the I/O cost of retrieving pages
from secondary memory for processing.

A number of strategies have been proposed for proces-
sing spatial joins. Interested readers are encouraged to
refer to Refs. 78 through 82.

Aggregate Operation: Nearest Neighbor, Reverse Nearest
Neighbor. Nearest Neighbor queries are common in many
applications. For example, a person driving on the road may
want to find the nearest gas station from his current loca-
tion. Various algorithms exist for nearest neighbor queries
(69–71,83,84). Techniques based on Voronoi diagrams,
Quad-tree indexing, and Kd-trees have been discussed in
Ref. 27.

Reverse Nearest Neighbor queries were introduced in
Ref. 72 in the context of decision support systems. For
example, a RNN query can be used to find a set of customers
who can be influenced by the opening of a new store-outlet
location.

Bulk Loading. Bulk operations affect potentially a large
set of tuples, unlike other database operations, such as
insert into a relation, which affects possibly one tuple at a
time. Bulk loading refers to the creation of an index from
scratch on a potentially large set of data. Bulk loading has
its advantages because the properties of the data set may be
known in advance. These properties may be used to design
efficiently the space-partitioning index structures com-
monly used for spatial data. An evaluation of generic
bulk loading techniques is provided in Ref. 85.

Parallel GIS. A high-performance geographic informa-
tion system (HPGIS) is a central component of many inter-
active applications like real-time terrain visualization,
situation assessment, and spatial decision-making. The
geographic information system (GIS) often contains large
amounts of geometric and feature data (e.g., location, ele-
vation, and soil type) represented as large sets of points,
chains of line segments, and polygons. This data is often
accessed via range queries. The existing sequential meth-
ods for supporting GIS operations do not meet the real-time
requirements imposed by many interactive applications.

Hence, parallelization of GIS is essential for meeting
the high performance requirements of several realtime
applications. A GIS operation can be parallelized either
by function partitioning (86–88) or by data partitioning
(89–97). Function-partitioning uses specialized data
structures (e.g., distributed data structures) and algo-
rithms that may be different from their sequential coun-
terparts. Data partitioning techniques divide the data
among different processors and independently execute
the sequential algorithm on each processor. Data parti-
tioning in turn is achieved by declustering (98,99) the
spatial data. If the static declustering methods fail to
distribute the load equally among different processors,
the load balance may be improved by redistributing
parts of the data to idle processors using dynamic load-
balancing (DLB) techniques.

Research Needs

This section presents the research needs for spatial query
processing and query optimization.

Query Processing. Many open research areas exist at the
logical level of query processing, including query-cost mod-
eling and queries related to fields and networks. Cost

SPATIAL DATABASES 11



models are used to rank and select the promising processing
strategies, given a spatial query and a spatial data set.
However, traditional cost models may not be accurate in
estimating the cost of strategies for spatial operations,
because of the distance metric and the semantic gap
between relational operators and spatial operation. Com-
parison of the execution costs of such strategies required
that new cost models be developed to estimate the selectiv-
ity of spatial search and join operations. Preliminary work
in the context of the R-tree, tree-matching join, and fractal-
model is promising (100,101), but more work is needed.

Many processing strategies using the overlap predicate
have been developed for range queries and spatial join
queries. However, a need exists to develop and evaluate
strategies for many other frequent queries such as those
listed in Table 6. These include queries on objects using
predicates other than overlap, queries on fields such as
slope analysis, and queries on networks such as the short-
est path to a set of destinations.

Depending on the type of spatial data and the nature of
the query, other research areas also need to be investi-
gated. A moving objects query involves spatial objects that
are mobile. Examples of such queries include ‘‘Which is the
nearest taxi cab to the customer?’’, ‘‘Where is the hurri-
cane expected to hit next?’’, and ‘‘What is a possible loca-
tion of a serial criminal?’’ With the increasing
availability of streaming data from GPS devices, contin-
uous queries has become an active area of research. Sev-
eral techniques (25,102,103) have been proposed to
execute such queries.

A skyline query (104) is a query to retrieve a set of
interesting points (records) from a potentially huge collec-
tion of points (records) based on certain attributes. For
example, considering a set of hotels to be points, the skyline
query may return a set of interesting hotels based on a
user’s preferences. The set of hotels returned for a user who
prefers a cheap hotel may be different from the set of hotels
returned for a user who prefers hotels that are closer to the
coast. Research needed for skyline query operation includes
computation of algorithms and processing for higher
dimensions (attributes). Other query processing techni-
ques in which research is required are querying on 3-D
spatial data and spatio-temporal data.

Query Optimization. The query optimizer, a module in
database software, generates different evaluation plans
and determines the appropriate execution strategy. Before
the query optimizer can operate on the query, the high-level

declarative statement must be scanned through a parser.
The parser checks the syntax and transforms the statement
into a query tree. In traditional databases, the data types
and functions are fixed and the parser is relatively simple.
Spatial databases are examples of an extensible database
system and have provisions for user-defined types and
methods. Therefore, compared with traditional databases,
the parser for spatial databases has to be considerably more
sophisticated to identify and manage user-defined data
types and map them into syntactically correct query trees.
In the query tree, the leaf nodes correspond to the relations
involved and the internal nodes correspond to the basic
operations that constitute the query. Query processing
starts at the leaf nodes and proceeds up the tree until
the operation at the root node has been performed.

Consider the query, ‘‘Find all lakes which have an area
greater than 20 sq. km. and are within 50 km. from the
campground.’’ Let us assume that the Area() function is not
precomputed and that its value is computed afresh every
time it is invoked. A query tree generated for the query is
shown in Fig. 9(a). In the classic situation, the rule ‘‘select
before join’’ would dictate that the Area function be
computed before the join predicate function, Distance()
[Fig. 9(b)], the underlying assumption being that the com-
putational cost of executing the select and join predicate is
equivalent and negligible compared with the I/O cost of the
operations. In the spatial situation, the relative cost per
tuple of Area() and Distance() is an important factor in
deciding the order of the operations (105). Depending the
implementation of these two functions, the optimal strat-
egy may be to process the join before the select operation
[Fig. 9(c)]. This approach thus violates the main heuristic
rule for relational databases, which states ‘‘Apply select
and project before the join and binary operations’’ are no
longer unconditional. A cost-based optimization technique
exists to determine the optimal execution strategy from a
set of execution plans. A quantitative analysis of spatial
index structures is used to calculate the expected number of
disk accesses that are required to perform a spatial query
(106). Nevertheless, in spite of these advances, query opti-
mization techniques for spatial data need more study.

SPATIAL FILE ORGANIZATION AND INDICES

Accomplishments

Space-Filling Curves. The physical design of a spatial
database optimizes the instructions to storage devices for

Table 6. Difficult spatial queries from GIS

Voronoize Classify households as to which supermarket they are closest to
Network Find the shortest path from the warehouse to all delivery stops
Timedependentnetwork Find the shortest path where the road network is dynamic
Allocation Where is the best place to build a new restaurant
Transformation Triangulate a layer based on elevation
BulkLoad Load a spatial data file into the database
Raster$ Vector Convert between raster and vector representations
Visibility Find all points of objects and environment visible from a point
EvacuationRoute Find evacuation routes based on capacity and availability constraints
PredictLocation Predict the location of a mobile person based on personal route patterns

12 SPATIAL DATABASES



performing common operations on spatial data files. File
designs for secondary storage include clustering methods
and spatial hashing methods. Spatial clustering techniques
are more difficult to design than traditional clustering
techniques because no natural order exista in multidimen-
sional space where spatial data resides. This situation is
only complicated by the fact that the storage disk is a logical
one-dimensional device. Thus, what is needed is a mapping
from a higher-dimensional space to a one-dimensional
space that is distance-preserving: This mapping ensures
that elements that are close in space are mapped onto
nearby points on the line and that no two points in the
space are mapped onto the same point on the line (107).
Several mappings, none of them ideal, have been proposed
to accomplish this feat. The most prominent ones include
row-order, Z-order, and the Hilbert-curve (Fig. 10).

Metric clustering techniques use the notion of distance
to group nearest neighbors together in a metric space.
Topological clustering methods like connectivity-clustered
access methods (108) use the min-cut partitioning of a
graph representation to support graph traversal operations
efficiently. The physical organization of files can be supple-
mented with indices, which are data structures to improve
the performance of search operations.

Classical one-dimensional indices such as the Bþ-tree
can be used for spatial data by linearizing a multidimen-
sional space using a space-filling curve such as the Z-order.
Many spatial indices (27) have been explored for multi-
dimensional Euclidean space. Representative indices for
point objects include grid files, multidimensional grid files

(109), Point-Quad-Trees, and Kd-trees. Representative
indices for extended objects include the R-tree family,
the Field-tree, Cell-tree, BSP-tree, and Balanced and
Nested grid files.

Grid Files. Grid files were introduced by Nievergelt
(110). A grid file divides the space into n-dimensional spaces
that can fit into equal-size buckets. The structures are not
hierarchical and can be used to index static uniformly
distributed data. However, because of its structure, the
directory of a grid file can be so sparse and large that a large
main memory is required. Several variations of grid files,
exists to index data efficiently and to overcome these
limitations (111,112). An overview of grid files is given in
Ref. 27.

Tree indexes. R-tree aims to index objects in a hierarch-
ical index structure (113). The R-tree is a height-balanced
tree that is the natural extension of the B-tree for k-dimen-
sions. Spatial objects are represented in the R-tree by their
minimum bounding rectangle (MBR). Figure 11 illustrates
spatial objects organized as an R-tree index. R-trees can be
used to process both point and range queries.

Several variants of R-trees exist for better performance
of queries and storage use. The R+-tree (114) is used to store
objects by avoiding overlaps among the MBRs, which
increases the performance of the searching. R

�
-trees

(115) rely on the combined optimization of the area, margin,
and overlap of each MBR in the intermediate nodes of the
tree, which results in better storage use.

 L.name

Area(L.Geometry) > 20

Fa.name = ‘campground’

Distance(Fa.Geometry, L.Geometry) <  50

Facilities FaLake L

σ

σ

π

(a)

Facilities Fa

Fa.name = ‘campground’

Distance(Fa.Geometry, L.Geometry) <  50

σ

π

Lake L

Area(L.Geometry) > 20σ

 L.name

(b)

Distance(Fa.Geometry, L.Geometry) <  50

Fa.name = ‘campground’

Facilities Fa

σ

 L.name
π

Area(L.Geometry) > 20

Lake L

σ

(c)

Figure 9. (a) Query tree, (b) ‘‘pushing down’’: select operation, and (c) ‘‘pushing down’’ may not help.

Row Peano–Hilbert Morton / Z–order

Figure 10. Space-filling curves to linearize a multidimensional space.

SPATIAL DATABASES 13



Many R-tree-based index structures (116–119,120,121)
have been proposed to index spatio–temporal objects. A
survey of spatio–temporal access methods has been pro-
vided in Ref. 122.

Quad tree(123) is a space-partitioning index structure in
which the space is divided recursively into quads. This
recursive process is implemented until each quad is homo-
geneous. Several variations of quad trees are available to
store point data, raster data, and object data. Also, other
quad tree structures exist to index spatio–temporal data
sets, such as overlapping linear quad trees (24) and multi-
ple overlapping features (MOF) trees (125).

The Generalized Search Tree (GiST) (126) provides a
framework to build almost any kind of tree index on any
kind of data. Tree index structures, such as Bþ-tree and
R-tree, can be built using GiST. A spatial-partitioning
generalized search tree (SP-GiST) (127) is an extensible
index structure for space-partitioning trees. Index trees
such as quad tree and kd-tree can be built using SP-GiST.

Graph Indexes. Most spatial access methods provide
methods and operators for point and range queries over
collections of spatial points, line segments, and polygons.
However, it is not clear if spatial access methods can
efficiently support network computations that traverse
line segments in a spatial network based on connectivity
rather than geographic proximity. A connectivity-clustered
access method for spatial network (CCAM ) is proposed to
index spatial networks based on graph partitioning (108) by
supporting network operations. An auxiliary secondary
index, such as Bþ-tree, R-tree, and Grid File, is used to
support network operations such as Find(), get-a-Succes-
sor(), and get-Successors().

Research Needs

Concurrency Control. The R-link tree (128) is among the
few approaches available for concurrency control on the
R-tree. New approaches for concurrency-control techni-
ques are needed for other spatial indices. Concurrency is
provided during operations such as search, insert, and
delete. The R-link tree is also recoverable in a write-ahead
logging environment. Reference 129 provides general algo-
rithms for concurrency control for GiST that can also be
applied to tree-based indexes. Research is required for
concurrency control on other useful spatial data structures.

TRENDS: SPATIAL DATA MINING

Accomplishments

The explosive growth of spatial data and widespread use of
spatial databases emphasize the need for the automated
discovery of spatial knowledge. Spatial data mining is the
process of discovering interesting and previously unknown,
but potentially useful, patterns from spatial databases.
Some applications are location-based services, studying
the effects of climate, land-use classification, predicting
the spread of disease, creating high-resolution three-
dimensional maps from satellite imagery, finding crime
hot spots, and detecting local instability in traffic. A
detailed review of spatial data mining can be found in
Ref. 130.

The requirements of mining spatial databases are dif-
ferent from those of mining classic relational databases.
The difference between classic and spatial data mining
parallels the difference between classic and spatial statis-
tics. One fundamental assumption that guides statistical
analysis is that the data samples are generated indepen-
dently, as with successive tosses of a coin or the rolling of a
die. When it comes to the analysis of spatial data, the
assumption about the independence of samples is generally
false. In fact, spatial data tends to be highly self-correlated.
For example, changes in natural resources, wildlife, and
temperature vary gradually over space. The notion of spa-
tial autocorrelation, the idea that similar objects tend to
cluster in geographic space, is unique to spatial data
mining.

For detailed discussion of spatial analysis, readers are
encouraged to refer to Refs. 131 and 132.

Spatial Patterns. This section presents several spatial
patterns, specifically those related to location prediction,
Markhov random fields, spatial clustering, spatial outliers,
and spatial colocation.

Location Prediction. Location prediction is concerned
with the discovery of a model to infer locations of a spatial
phenomenon from the maps of other spatial features. For
example, ecologists build models to predict habitats for
endangered species using maps of vegetation, water bodies,
climate, and other related species. Figure 12 shows the
learning data set used in building a location-prediction

C
d

e

f
g

B

A

h

f g h i jei

j

A B C

d

Figure 11. Spatial objects (d, e, f, g, h, and i) arranged in an R-tree hierarchy.

14 SPATIAL DATABASES



model for red-winged blackbirds in the Darr and Stubble
wetlands on the shores of Lake Erie in Ohio. The data set
consists of nest location, vegetation durability, distance to
open water, and water depth maps. Spatial data mining
techniques that capture the spatial autocorrelation
(133,134) of nest location such as the spatial autoregression
model (SAR) and markov random fields (MRF) are used for
location-prediction modeling.

Spatial Autoregression Model. Linear regression models
are used to estimate the conditional expected value of a
dependent variable y given the values of other variables X.
Such a model assumes that the variables are independent.
The spatial autoregression model (131,135–137) is an
extension of the linear regression model that takes spatial
autocorrelation into consideration. If the dependent values
y and X are related to each other, then the regression
equation (138) can be modified as

y ¼ rWyþ Xbþ e ð1Þ

Here, W is the neighborhood relationship contiguity
matrix, and ? is a parameter that reflects the strength of
the spatial dependencies between the elements of the
dependent variable. Notice that when r ¼ 0, this equation

collapses to the linear regression model. If the spatial
autocorrelation coefficient is statistically significant, then
SAR will quantify the presence of spatial autocorrelation.
In such a case, the spatial autocorrelation coefficient will
indicate the extent to which variations in the dependent
variable (y) are explained by the average of neighboring
observation values.

Markov Random Field. Markov random field-based (139)
Bayesian classifiers estimate the classification model, f̂ c,
using MRF and Bayes’ rule. A set of random variables
whose interdependency relationship is represented by an
undirected graph (i.e., a symmetric neighborhood matrix) is
called a Markov random field. The Markov property spe-
cifies that a variable depends only on its neighbors and is
independent of all other variables. The location prediction
problem can be modeled in this framework by assuming
that the class label, li ¼ fC(si), of different locations, si,
constitutes an MRF. In other words, random variable li is
independent of li if W(si,sj) ¼ 0.

The Bayesian rule can be used to predict li from feature
value vector X and neighborhood class label vector Li as
follows:

PrðlijX;LiÞ ¼
PrðXjli;LiÞPrðlijLiÞ

PrðXÞ ð2Þ

Figure 12. (a) Learning data set: The geometry of the Darr wetland and the locations of the nests, (b) the spatial distribution of vegetation
durability over the marshland, (c) the spatial distribution of water depth, and (d) the spatial distribution of distance to open water.

SPATIAL DATABASES 15



The solution procedure can estimate Pr(li|Li) from the
training data, where Li denotes a set of labels in the
neighborhood of si excluding the label at si. It makes this
estimate by examining the ratios of the frequencies of class
labels to the total number of locations in the spatial frame-
work. Pr(X|li, Li) can be estimated using kernel functions
from the observed values in the training data set.

A more detailed theoretical and experimental compar-
ison of these methods can be found in Ref. 140. Although
MRF and SAR classification have different formulations,
they share a common goal of estimating the posterior
probability distribution. However, the posterior probability
for the two models is computed differently with different
assumptions. For MRF, the posterior is computed using
Bayes’ rule, whereas in SAR, the posterior distribution is
fitted directly to the data.

Spatial Clustering. Spatial clustering is a process of
grouping a set of spatial objects into clusters so that objects
within a cluster have high similarity in comparison with
one another but are dissimilar to objects in other clusters.

For example, clustering is used to determine the ‘‘hot
spots’’ in crime analysis and disease tracking. Many crim-
inal justice agencies are exploring the benefits provided by
computer technologies to identify crime hot spots to take
preventive strategies such as deploying saturation patrols
in hot-spot areas.

Spatial clustering can be applied to group similar spatial
objects together; the implicit assumption is that patterns in
space tend to be grouped rather than randomly located.
However, the statistical significance of spatial clusters
should be measured by testing the assumption in the
data. One method to compute this measure is based on
quadrats (i.e., well-defined areas, often rectangular in
shape). Usually quadrats of random location and orienta-
tions in the quadrats are counted, and statistics derived
from the counters are computed. Another type of statistics
is based on distances between patterns; one such type is
Ripley’s K-function (141). After the verification of the sta-
tistical significance of the spatial clustering, classic clus-
tering algorithms (142) can be used to discover interesting
clusters.

Spatial Outliers. A spatial outlier (143) is a spatially
referenced object whose nonspatial attribute values differ
significantly from those of other spatially referenced objects
in its spatial neighborhood. Figure 13 gives an example of
detecting spatial outliers in traffic measurements for sen-
sors on highway I-35W (North bound) for a 24-hour time
period. Station 9 seems to be a spatial outlier as it exhibits
inconsistent traffic flow as compared with its neighboring
stations. The reason could be that the sensor at station 9 is
malfunctioning. Detecting spatial outliers is useful in many
applications of geographic information systems and spatial
databases, including transportation, ecology, public safety,
public health, climatology, and location-based services.

Spatial attributes are used to characterize location,
neighborhood, and distance. Nonspatial attribute dimen-
sions are used to compare a spatially referenced object
with its neighbors. Spatial statistics literature provides
two kinds of bipartite multidimensional tests, namely

graphical tests and quantitative tests. Graphical tests,
which are based on the visualization of spatial data, high-
light spatial outliers, for example, variogram clouds (141)
and Moran scatterplots (144). Quantitative methods pro-
vide a precise test to distinguish spatial outliers from the
remainder of data. A unified approach to detect spatial
outliers efficiently is discussed in Ref. 145., Referance
146 provides algorithms for multiple spatial-outlier detec-
tion.

Spatial Colocation The colocation pattern discovery
process finds frequently colocated subsets of spatial event
types given a map of their locations. For example, the
analysis of the habitats of animals and plants may identify
the colocations of predator–prey species, symbiotic species,
or fire events with fuel, ignition sources and so forth. Figure
14 gives an example of the colocation between roads and
rivers in a geographic region.

Approaches to discovering colocation rules can be cate-
gorized into two classes, namely spatial statistics and data-
mining approaches. Spatial statistics-based approaches
use measures of spatial correlation to characterize the
relationship between different types of spatial features.
Measures of spatial correlation include the cross K-function
with Monte Carlo simulation, mean nearest-neighbor dis-
tance, and spatial regression models.

Data-mining approaches can be further divided into
transaction-based approaches and distance-based approa-
ches. Transaction-based approaches focus on defining
transactions over space so that an a priori-like algorithm
can be used. Transactions over space can be defined by a
reference-feature centric model. Under this model, trans-
actions are created around instances of one user-specified
spatial feature. The association rules are derived using the
a priori (147) algorithm. The rules formed are related to the
reference feature. However, it is nontrivial to generalize
the paradigm of forming rules related to a reference feature
to the case in which no reference feature is specified. Also,
defining transactions around locations of instances of all
features may yield duplicate counts for many candidate
associations.

In a distance-based approach (148–150), instances of
objects are grouped together based on their Euclidean
distance from each other. This approach can be considered
to be an event-centric model that finds subsets of spatial

Figure 13. Spatial outlier (station ID 9) in traffic volume data.

16 SPATIAL DATABASES



features likely to occur in a neighborhood around instances
of given subsets of event types.

Research Needs

This section presents several research needs in the area of
spatio–temporal data mining and spatial–temporal net-
work mining.

Spatio–Temporal Data Mining. Spatio–temporal (ST)
data mining aims to develop models and objective functions
and to discover patterns that are more suited to Spatio–
temporal databases and their unique properties (15). An
extensive survey of Spatio–temporal databases, models,
languages, and access methods can be found in Ref. 152.
A bibliography of Spatio–temporal data mining can be
found in Ref. 153.

Spatio–temporal pattern mining focuses on discovering
knowledge that frequently is located together in space and
time. Referances 154, 155, and 156 defined the problems of
discovering mixed-drove and sustained emerging Spatio–
temporal co-occurrence patterns and proposed interest
measures and algorithms to mine such patterns. Other
research needs include conflation, in which a single feature
is obtained from several sources or representations. The
goal is to determine the optimal or best representation
based on a set of rules. Problems tend to occur during
maintenance operations and cases of vertical obstruction.

In several application domains, such as sensor net-
works, mobile networks, moving object analysis, and image
analysis, the need for spatio–temporal data mining is
increasing drastically. It is vital to develop new models
and techniques, to define new spatio–temporal patterns,
and to formulize monotonic interest measures to mine these
patterns (157).

Spatio–Temporal Network Mining. In the post-9/11 world
of asymmetric warfare in urban area, many human activ-
ities are centered about ST infrastructure networks, such

as transportation, oil/gas-pipelines, and utilities (e.g.,
water, electricity, and telephone). Thus, activity reports,
for example, crime/insurgency reports, may often use
network-based location references, for exmple, street
address such as ‘‘200 Quiet Street, Scaryville, RQ
91101.’’ In addition, spatial interaction among activities
at nearby locations may be constrained by network con-
nectivity and network distances (e.g., shortest path along
roads or train networks) rather than geometric distances
(e.g., Euclidean or Manhattan distances) used in tradi-
tional spatial analysis. Crime prevention may focus on
identifying subsets of ST networks with high activity
levels, understanding underlying causes in terms of ST-
network properties, and designing ST-network-control
policies.

Existing spatial analysis methods face several chal-
lenges (e.g., see Ref. 158). First, these methods do not model
the effect of explanatory variables to determine the loca-
tions of network hot spots. Second, existing methods for
network pattern analysis are computationally expensive.
Third, these methods do not consider the temporal aspects
of the activity in the discovery of network patterns. For
example, the routes used by criminals during the day and
night may differ. The periodicity of bus/train schedules can
have an impact on the routes traveled. Incorporating the
time-dependency of transportation networks can improve
the accuracy of the patterns.

SUMMARY

In this chapter we presented the major research accom-
plishments and techniques that have emerged from the
area of spatial databases in the past decade. These accom-
plishments and techniques include spatial database mod-
eling, spatial query processing, and spatial access methods.
We have also identified areas in which more research is
needed, such as spatio–temporal databases, spatial data
mining, and spatial networks.

Figure 15 provides a summary of topics that continue to
drive the research needs of spatial database systems.
Increasingly available spatial data in the form of digitized
maps, remotely sensed images, Spatio–temporal data (for
example, from videos), and streaming data from sensors
have to be managed and processed efficiently. New ways of
querying techniques to visualize spatial data in more than
one dimension are needed. Several advances have been
made in computer hardware over the last few years, but
many have yet to be fully exploited, including increases in
main memory, more effective storage using storage area
networks, greater availability of multicore processors, and
powerful graphic processors. A huge impetus for these
advances has been spatial data applications such as land
navigation systems and location-based services. To mea-
sure the quality of spatial database systems, new bench-
marks have to be established. Some benchmarks (159,160)
established earlier have become dated. Newer benchmarks
are needed to characterize the spatial data management
needs of other systems and applications such as Spatio–
temporal databases, moving-objects databases, and loca-
tion-based services.

Figure 14. Colocation between roads and rivers in a hilly terrain
(Courtesy: Architecture Technology Corporation).

SPATIAL DATABASES 17



ACKNOWLEDGMENTS

We thank the professional organizations that have funded
the research on spatial databases, in particular, the
National Science Foundation, Army Research Laboratory,
Topographic Engineering Center, Oak Ridge National
Laboratory, Minnesota Department of Transportation,
and Microsoft Corporation. We thank members of the
spatial database and spatial data mining research group
at the University of Minnesota for refining the content of
this chapter. We also thank Kim Koffolt for improving the
readability of this chapter.

BIBLIOGRAPHY

1. R. H. Guting, An introduction to spatial database systems,
VLDB Journal, Special Issue on Spatial Database Systems,
3(4): 357–399, 1994.

2. W. Kim, J. Garza, and A. Kesin, Spatial data management in
database systems, in Advances in Spatial Databases, 3rd
International Symposium, SSD’93, Vol. 652. Springer, 1993.

3. Y. Manolopoulos, A. N. Papadopoulos, and M. G. Vassilako-
poulos, Spatial Databases: Technologies, Techniques and
Trends. Idea Group Publishing, 2004.

4. S. Shekhar and S. Chawla, Spatial Databases: A Tour. Pre-
ntice Hall, 2002.

5. Wikipedia. Available: http://en.wikipedia.org/wiki/Spatial_
Database, 2007.

6. M. Worboys and M. Duckham, GIS: A Computing Perspective,
2nd ed. CRC, 2004.

7. J. Schiller, Location-Based Services. Morgan Kaufmann,
2004.

8. A. Stefanidis and S. Nittel, GeoSensor Networks. CRC, 2004.

9. R. Scally, GIS for Environmental Management. ESRI Press,
2006.

10. L. Lang, Transportation GIS, ESRI Press, 1999.

11. P. Elliott, J. C. Wakefield, N. G. Best, and D. J. Briggs, Spatial
Epidemiology: Methods and Applications. Oxford University
Press, 2000.

12. M. R. Leipnik and D. P. Albert, GIS in Law Enforcement:
Implementation Issues and Case Studies, CRC, 2002.

13. D. K. Arctur and M. Zeiler, Designing Geodatabases, ESRI
Press, 2004.

14. E. Beinat, A. Godfrind, and R. V. Kothuri, Pro Oracle Spatial,
Apress, 2004.

15. SQL Server 2008 (Code-name Katmai). Available: http://
www.microsoft.com/sql/prodinfo/futureversion/
default.mspx, 2007.

16. Google Earth. Available: http://earth.google.com, 2006.

17. Microsoft Virtual Earth. Available: http://www.microsoft.
com/virtualearth, 2006.

18. PostGIS. Available: http://postgis.refractions.net/, 2007.

19. MySQL Spatial Extensions. Available: http://dev.mysql.com/
doc/refman/5.0/en/spatial-extensions.html, 2007.

20. Sky Server, 2007. Available: http://skyserver.sdss.org/.

21. D. Chamberlin, Using the New DB2: IBM’s Object Relational
System, Morgan Kaufmann, 1997.

22. M. Stonebraker and D. Moore, Object Relational DBMSs: The
Next Great Wave. Morgan Kaufmann, 1997.

23. OGC. Available: http://www.opengeospatial.org/standards,
2007.

24. P. Rigaux, M. Scholl, and A. Voisard, Spatial Databases: With
Application to GIS, Morgan Kaufmann Series in Data Man-
agement Systems, 2000.

25. R. H. Guting and M. Schneider, Moving Objects Databases
(The Morgan Kaufmann Series in Data Management Sys-
tems). San Francisco, CA: Morgan Kaufmann Publishers Inc.,
2005.

26. S. Shekhar and H. Xiong, Encyclopedia of GIS, Springer,
2008, forthcoming.

27. H. Samet, Foundations of Multidimensional and Metric Data
Structures, Morgan Kaufmann Publishers, 2006.

28. ACM Geographical Information Science Conference. Avail-
able: http://www.acm.org.

29. ACM Special Interest Group on Management Of Data.
Available: http://www.sigmod.org/.

30. Geographic Information Science Center Summer and Winter
Assembly. Available: http://www.gisc.berkeley.edu/.

31. Geoinformatica. Available: http://www.springerlink.com/
content/100268/.

32. IEEE International Conference on Data Engineering. Avail-
able: http://www.icde2007.org/icde/.

33. IEEE Transactions on Knowledge and Data Engineering
(TKDE). Available: http://www.computer.org/tkde/.

34. International Journal of Geographical Information Science.
Available: http://www.tandf.co.uk/journals/tf/13658816.html.

35. International Symposium on Spatial and Temporal Data-
bases. Available: http://www.cs.ust.hk/ sstd07/.

36. Very Large Data Bases Conference. Available: http://
www.vldb2007.org/.

37. UCGIS, 1998.

38. S. Shekhar, R. R. Vatsavai, S. Chawla, and T. E. Burke,
Spatial Pictogram Enhanced Conceptual Data Models
and Their Translations to Logical Data Models, Integrated

Videos
Remotely sensed
  imagery

Internet
Dual Core Processors
Storage Area Networks
XML Database
Stream Database

GIS
Location Based Services
Navigation
Cartography
Spatial Analysis

Data Out

3D  Visualization
Animation

2D  Maps

Digital photos

Spatial
Database
System

Data In

Applications

Platform

Digitized maps
Sensors

Figure 15. Topics driving future research needs in spatial data-
base systems.

18 SPATIAL DATABASES



Spatial Databases: Digital Images and GIS, Lecture Notes in
Computer Science, 1737: 77–104, 1999.

39. N. R. Adam and A. Gangopadhyay, Database Issues in Geo-
graphic Information Systems, Norwell, MA: Kluwer Aca-
demic Publishers, 1997.

40. M. Stonebraker and G. Kemnitz, The Postgres Next Genera-
tion Database Management System, Commun. ACM, 34(10):
78–92, 1991.

41. P. Bolstad, GIS Fundamentals: A First Text on Geographic
Information Systems, 2nd ed. Eider Press, 2005.

42. T. Hadzilacos and N. Tryfona, An Extended Entity-Relation-
ship Model for Geographic Applications, ACM SIGMOD
Record, 26(3): 24–29, 1997.

43. S. Shekhar, R. R. Vatsavai, S. Chawla, and T. E. Burk, Spatial
pictogram enhanced conceptual data models and their trans-
lation to logical data models, Lecture Notes in Computer
Science, 1737: 77–104, 2000.

44. F. T. Fonseca and M. J. Egenhofer, Ontology-driven geo-
graphic information systems, in Claudia Bauzer Medeiros
(ed.), ACM-GIS ’99, Proc. of the 7th International Symposium
on Advances in Geographic Information Systems, Kansas
City, US 1999, pp. 14–19. ACM, 1999.

45. Time ontology in owl, Electronic, September 2005.

46. H. J. Berners-Lee, T. Lassila, and O. Lassila, The semantic
web, The Scientific American, 2001, pp. 34–43.

47. M. J. Egenhofer, Toward the semantic geospatial web, Proc.
Tenth ACM International Symposium on Advances in Geo-
graphic Information Systems, 2002.

48. F. Fonseca and M. A. Rodriguez, From geo-pragmatics to
derivation ontologies: New directions for the geospatial
semantic web, Transactions in GIS, 11(3), 2007.

49. W3C. Resource Description Framework. Available: http://
www.w3.org/RDF/,2004.

50. G. Subbiah, A. Alam, L. Khan, B. Thuraisingham, An inte-
grated platform for secure geospatial information exchange
through the semantic web, Proc. ACM Workshop on Secure
Web Services (SWS), 2006.

51. Open Geospatial Consortium Inc. OpenGIS Reference Model.
Available: http://orm.opengeospatial.org/, 2006.

52. S. Shekhar and X. Liu, Direction as a Spatial Object: A
Summary of Results, in R. Laurini, K. Makki, and N. Pissi-
nou, (eds.), ACM-GIS ’98, Proc. 6th international symposium
on Advances in Geographic Information Systems. ACM, 1998,
pp. 69–75.

53. S. Skiadopoulos, C. Giannoukos, N. Sarkas, P. Vassiliadis,
T. Sellis, and M. Koubarakis, Computing and managing
cardinal direction relations, IEEE Trans. Knowledge and
Data Engineering, 17(12): 1610–1623, 2005.

54. A Spatiotemporal Model and Language for Moving Objects on
Road Networks, 2001.

55. Modeling and querying moving objects in networks, volume
15, 2006.

56. Modeling and Querying Moving Objects, 1997.

57. On Moving Object Queries, 2002.

58. K. K. L. Chan and C. D. Tomlin, Map Algebra as a Spatial
Language, in D. M. Mark and A. U. Frank, (eds.), Cognitive
and Linguistic Aspects of Geographic Space. Dordrecht,
Netherlands: Kluwer Academic Publishers, 1991, pp. 351–
360.

59. W. Kainz, A. Riedl, and G. Elmes, eds, A Tetrahedronized
Irregular Network Based DBMS Approach for 3D Topo-
graphic Data, Springer Berlin Heidelberg, September 2006.

60. C. Arens, J. Stoter, and P. Oosterom, Modeling 3D Spatial
Objects in a Geo-DBMS Using a 3D Primitive, Computers and
Geosciences, 31(2): 165–177, act 2005.

61. E. Köhler, K. Langkau, and M. Skutella, Time-expanded
graphs for flow-dependent transit times, in ESA ’02: Proceed-
ings of the 10th Annual European Symposium on Algorithms.
London, UK: Springer-Verlag, 2002, pp. 599–611.

62. B. George and S. Shekhar, Time-aggregated graphs for mod-
eling spatio–temporal networks, in ER (Workshops), 2006,
pp. 85–99.,

63. K. Eickhorst, P. Agouris, and A. Stefanidis, Modeling and
Comparing Spatiotemporal Events, in Proc. 2004 annual
national conference on Digital government research. Digital
Government Research Center, 2004, pp. 1–10.

64. Geographic Markup Language. Available: http://www.open-
gis.net/gml/, 2007.

65. S. Shekhar, R. R. Vatsavai, N. Sahay, T. E. Burk, and S. Lime,
WMS and GML based Interoperable Web Mapping System, in
9th ACM International Symposium on Advances in Geo-
graphic Information Systems, ACMGIS01. ACM, November
2001.

66. CityGML, 2007. Available: http://www.citygml.org/.

67. Keyhole Markup Language. Available: http://code.google.-
com/apis/kml/documentation/, 2007.

68. V. Gaede and O. Gunther, Multidimensional access methods,
ACM Computing Surveys, 30, 1998.

69. G. R. Hjaltason and H. Samet, Ranking in spatial data–
bases, in Symposium on Large Spatial Databases, 1995,
pp. 83–95.

70. N. Roussopoulos, S. Kelley, and F. Vincent, Nearest neighbor
queries, in SIGMOD ’95: Proc. 1995 ACM SIGMOD interna-
tional conference on Management of data, New York: ACM
Press, 1995, pp. 71–79.

71. D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui, Aggregate
nearest neighbor queries in spatial databases, ACM Trans.
Database Systems, 30(2): 529–576, 2005.

72. F. Korn and S. Muthukrishnan, Influence Sets Based on
Reverse Nearest Neighbor Queries, in Proc. ACM Interna-
tional Conference on Management of Data, SIGMOD, 2000,
pp. 201–212.

73. J. M. Kang, M. Mokbel, S. Shekhar, T. Xia, and D. Zhang,
Continuous evaluation of monochromatic and bichromatic
reverse nearest neighbors, in Proc. IEEE 23rd International
Conference on Data Engineering (ICDE), 2007.

74. I. Stanoi, D. Agrawal, and A. ElAbbadi, Reverse Nearest
Neighbor Queries for Dynamic Databases, in ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge
Discovery, 2000, pp. 44–53.

75. A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos, C2P:
Clustering based on Closest Pairs, in Proc. International
Conference on Very Large Data Bases, VLDB, 2001, pp.
331–340.

76. T. Xia and D. Zhang, Continuous Reverse Nearest Neighbor
Monitoring, in Proc. International Conference on Data Engi-
neering, ICDE, 2006.

77. T. Brinkoff, H.-P. Kriegel, R. Schneider, and B. Seeger, Multi-
step processing of spatial joins, In Proc. ACM International
Conference on Management of Data, SIGMOD, 1994, pp. 197–
208.

78. L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J.S.
Vitter, Scalable sweeping-based spatial join, in Proc. Very
Large Data Bases (VLDB), 1998, pp. 570–581.

SPATIAL DATABASES 19



79. N. Mamoulis and D. Papadias, Slot index spatial join, IEEE
Trans. Knowledge and Data Engineering, 15(1): 211–231,
2003.

80. M.-J. Lee, K.-Y. Whang, W.-S. Han, and I.-Y. Song, Trans-
form-space view: Performing spatial join in the transform
space using original-space indexes, IEEE Trans. Knowledge
and Data Engineering, 18(2): 245–260, 2006.

81. S. Shekhar, C.-T. Lu, S. Chawla, and S. Ravada, Efficient join-
index-based spatial-join processing: A clustering approach, in
IEEE Trans. Knowledge and Data Engineering, 14(6): 1400–
1421, 2002.

82. M. Zhu, D. Papadias, J. Zhang, and D. L. Lee, Top-k spatial
joins, IEEE Trans. Knowledge and Data Engineering, 17(4):
567–579, 2005.

83. H. Hu and D. L. Lee, Range nearest-neighbor query, IEEE
Trans. Knowledge and Data Engineering, 18(1): 78–91, 2006.

84. M. L. Yiu, N. Mamoulis, and D. Papadias, Aggregate nearest
neighbor queries in road networks, IEEE Trans. Knowledge
and Data Engineering, 17(6): 820–833, 2005.

85. J. van den Bercken and B. Seeger, An evaluation of generic
bulk loading techniques, in VLDB ’01: Proc. 27th Interna-
tional Conference on Very Large Data Bases. San Francisco,
CA: Morgan Kaufmann Publishers Inc., 2001, pp. 461–470.

86. A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and C.
Yap, Parallel computational geometry. Proc. 25th IEEE Sym-
posium on Foundations of Computer Science, 1985, pp. 468–
477.

87. S. G. Akl and K. A. Lyons, Parallel Computational Geometry,
Englewood Cliffs, NJ: Prentice Hall, 1993.

88. R. Sridhar, S. S. Iyengar, and S. Rajanarayanan, Range
search in parallel using distributed data structures, Interna-
tional Conference on Databases, Parallel Architectures, and
Their Applications, 1990, pp. 14–19.

89. M. P. Armstrong, C. E. Pavlik, and R. Marciano, Experiments
in the measurement of spatial association using a parallel
supercomputer, Geographical Systems, 1: 267–288, 1994.

90. G. Brunetti, A. Clematis, B. Falcidieno, A. Sanguineti, and M.
Spagnuolo, Parallel processing of spatial data for terrain
characterization, Proc. ACM Geographic Information Sys-
tems, 1994.

91. W. R. Franklin, C. Narayanaswami, M. Kankanahalli, D.
Sun, M. Zhou, and P. Y. F. Wu, Uniform grids: A technique
for intersection detection on serial and parallel machines,
Proc. 9th Automated Cartography, 1989, pp. 100–109.

92. E. G. Hoel and H. Samet, Data Parallel RTree Algorithms,
Proc. International Conference on Parallel Processing, 1993.

93. E. G. Hoel and H. Samet, Performance of dataparallel spatial
operations, Proc. of the 20th International Conference on Very
Large Data Bases, 1994, pp. 156–167.

94. V. Kumar, A. Grama, and V. N. Rao, Scalable load balancing
techniques for parallel computers, J. Parallel and Distributed
Computing, 22(1): 60–69, July 1994.

95. F. Wang, A parallel intersection algorithm for vector polygon
overlay, IEEE Computer Graphics and Applications, 13(2):
74–81, 1993.

96. Y. Zhou, S. Shekhar, and M. Coyle, Disk allocation methods
for parallelizing grid files, Proc. of the Tenth International
Conference on Data Engineering, IEEE, 1994, pp. 243–
252.

97. S. Shekhar, S. Ravada, V. Kumar, D. Chubband, and G.
Turner, Declustering and load-balancing methods for paral-
lelizing spatial databases, IEEE Trans. Knowledge and Data
Engineering, 10(4): 632–655, 1998.

98. M. T. Fang, R. C. T. Lee, and C. C. Chang, The idea of
de-clustering and its applications, Proc. of the International
Conference on Very Large Data Bases, 1986, pp. 181–188.

99. D. R. Liu and S. Shekhar, A similarity graph-based approach
to declustering problem and its applications, Proc. of the
Eleventh International Conference on Data Engineering,
IEEE, 1995.

100. A. Belussi and C. Faloutsos. Estimating the selectivity of
spatial queries using the ‘correlation’ fractal dimension, in
Proc. 21st International Conference on Very Large Data
Bases, VLDB, 1995, pp. 299–310.

101. Y. Theodoridis, E. Stefanakis, and T. Sellis, Cost models for
join queries in spatial databases, in Proceedings of the IEEE
14th International Conference on Data Engineering, 1998, pp.
476–483.

102. M. Erwig, R. Hartmut Guting, M. Schneider, and M. Vazir-
giannis, Spatio–temporal data types: An approach to modeling
and querying moving objects in databases, GeoInformatica,
3(3): 269–296, 1999.

103. R. H. Girting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A.
Lorentzos, M. Schneider, and M. Vazirgiannis, A foundation
for representing and querying moving objects, ACM Transac-
tions on Database Systems, 25(1): 1–42, 2000.

104. S. Borzsonyi, D. Kossmann, and K. Stocker, The skyline
operator, In Proc. the International Conference on Data Engi-
neering, Heidelberg, Germany, 2001, pp. 421–430.

105. J. M. Hellerstein and M. Stonebraker, Predicate migration:
Optimizing queries with expensive predicates, In Proc. ACM-
SIGMOD International Conference on Management of Data,
1993, pp. 267–276.

106. Y. Theodoridis and T. Sellis, A model for the prediction of
r-tree performance, in Proceedings of the 15th ACM Sympo-
sium on Principles of Database Systems PODS Symposium,
ACM, 1996, pp. 161–171.

107. T. Asano, D. Ranjan, T. Roos, E. Wiezl, and P. Widmayer,
Space-filling curves and their use in the design of geometric
data structures, Theoretical Computer Science, 181(1): 3–15,
July 1997.

108. S. Shekhar and D.R. Liu, A connectivity-clustered access
method for networks and network computation, IEEE Trans.
Knowledge and Data Engineering, 9(1): 102–119, 1997.

109. J. Lee, Y. Lee, K. Whang, and I. Song, A physical database
design method for multidimensional file organization, Infor-
mation Sciences, 120(1): 31–65(35), November 1997.

110. J. Nievergelt, H. Hinterberger, and K. C. Sevcik, The grid file:
An adaptable, symmetric multikey file structure, ACM
Trancsactions on Database Systems, 9(1): 38–71, 1984.

111. M. Ouksel, The interpolation-based grid file, Proc. of Fourth
ACM SIGACT-SIGMOD Symposium on Principles of Data-
base Systems, 1985, pp. 20–27.

112. K. Y. Whang and R. Krishnamurthy, Multilevel grid files,
IBM Research Laboratory Yorktown, Heights, NY, 1985.

113. A. Guttman, R-trees: A Dynamic Index Structure for Spatial
Searching, Proc. of SIGMOD International Conference on
Management of Data, 1984, pp. 47–57.

114. T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+-tree: A
dynamic index for multidimensional objects, Proc. 13th Inter-
national Conference on Very Large Data Bases, September
1987, pp. 507–518.

115. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, The
R�-tree: An Efficient and Robust Access Method for Points and
Rectangles, Proc. ACM SIGMOD International Conference on
Management of Data, 1990, pp. 322–331.

20 SPATIAL DATABASES



116. Y. Theodoridis, M. Vazirgiannis, and T. Sellis, Spatio–tem-
poral indexing for large multimedia applications, Interna-
tional Conference on Multimedia Computing and Systems,
1996, pp. 441–448.

117. S. Saltenis and C.S. Jensen, R-tree based indexing of general
Spatio–temporal data, Technical Report TR-45 and Choro-
chronos CH-99-18, TimeCenter, 1999.

118. M. Vazirgiannis, Y. Theodoridis, and T. Sellis, Spatio–tem-
poral composition and indexing large multimedia applica-
tions, Multimedia Systems, 6(4): 284–298, 1998.

119. M. Nascimiento, R. Jefferson, J. Silva, and Y. Theodoridis,
Evaluation of access structures for discretely moving points,
Proc. International Workshop on Spatio–temporal Database
Management, 1999, pp. 171–188.

120. S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez,
Indexing the positions of continuously moving objects, in
SIGMOD Conference, 2000, pp. 331–342.

121. Y. Tao, D. Papadias, and J. Sun, The TPR�-Tree: An Opti-
mized Spatio–temporal Access Method for Predictive
Queries, in VLDB, 2003, pp. 790–801.

122. M. F. Mokbel, T. M. Ghanem, and W. G. Aref, Spatio-temporal
access methods, IEEE Data Engineering Bulletin, 26(2): 40–
49, 2003.

123. R. A. Finkel and J. L. Bentley, Quad trees: A data structure for
retrieval on composite keys, Acta Informatica, 4:1–9, 1974.

124. T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos,
Overlapping linear quadtrees: A Spatio–temporal access
method, ACM-Geographic Information Systems, 1998, pp.
1–7.

125. Y. Manolopoulos, E. Nardelli, A. Papadopoulos, and G.
Proietti, MOF-Tree: A Spatial Access Method to Manipulate
Multiple Overlapping Features, Information Systems, 22(9):
465–481, 1997.

126. J. M. Hellerstein, J. F. Naughton, and A. Pfeffer, Generalized
Search Trees for Database System, Proc. 21th International
Conference on Very Large Database Systems, September 11–
15 1995.

127. W. G. Aref and I. F. Ilyas. SP-GiST: An Extensible Database
Index for Supporting Space Partitioning Trees, J. Intell. Inf.
Sys., 17(2–3): 215–240, 2001.

128. M. Kornacker and D. Banks, High-Concurrency Locking in
R-Trees, 1995.

129. M. Kornacker, C. Mohan, and Joseph M. Hellerstein, Con-
currency and recovery in generalized search trees, in SIG-
MOD ’97: Proc. 1997 ACM SIGMOD international
conference on Management of data. New York, ACM Press,
1997, pp. 62–72.

130. S. Shekhar, P. Zhang, Y. Huang, and R. R. Vatsavai, Spatial
data mining, in Hillol Kargupta and A. Joshi, (eds.), Book
Chapter in Data Mining: Next Generation Challenges and
Future Directions.

131. N. A. C. Cressie, Statistics for Spatial Data. New York: Wiley-
Interscience, 1993.

132. R. Haining, Spatial Data Analysis : Theory and Practice,
Cambridge University Press, 2003.

133. Y. Jhung and P. H. Swain, Bayesian Contextual Classifica-
tion Based on Modified M-Estimates and Markov Random
Fields, IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 34(1): 67–75, 1996.

134. A. H. Solberg, T. Taxt, and A. K. Jain, A MarkovRandom Field
Model for Classification of Multisource Satellite Imagery,
IEEE Trans. Geoscience and Remote Sensing, 34(1): 100–
113, 1996.

135. D.A. Griffith, Advanced Spatial Statistics. Kluwer Academic
Publishers, 1998.

136. J. LeSage, Spatial Econometrics. Available: http://www.spa-
tial-econometrics.com/, 1998.

137. S. Shekhar, P. Schrater, R. Raju, and W. Wu, Spatial con-
textual classification and prediction models for mining geos-
patial data, IEEE Trans. Multimedia, 4(2): 174–188, 2002.

138. L. Anselin, Spatial Econometrics: methods and models, Dor-
drecht, Netherlands: Kluwer, 1988.

139. S.Z. Li, A Markov Random Field Modeling, Computer Vision.
Springer Verlag, 1995.

140. S. Shekhar et al. Spatial Contextual Classification and Pre-
diction Models for Mining Geospatial Data, IEEE Transac-
tion on Multimedia, 4(2), 2002.

141. N. A. Cressie, Statistics for Spatial Data (revised edition).
New York: Wiley, 1993.

142. J. Han, M. Kamber, and A. Tung, Spatial Clustering Methods
in Data Mining: A Survey, Geographic Data Mining and
Knowledge Discovery. Taylor and Francis, 2001.

143. V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed.
New York: John Wiley, 1994.

144. A. Luc, Local Indicators of Spatial Association: LISA, Geo-
graphical Analysis, 27(2): 93–115, 1995.

145. S. Shekhar, C.-T. Lu, and P. Zhang, A unified approach to
detecting spatial outliers, GeoInformatica, 7(2), 2003.

146. C.-T. Lu, D. Chen, and Y. Kou, Algorithms for Spatial Outlier
Detection, IEEE International Conference on Data Mining,
2003.

147. R. Agrawal and R. Srikant, Fast algorithms for mining asso-
ciation rules, in J. B. Bocca, M. Jarke, and C. Zaniolo (eds.),
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, Morgan
Kaufmann, 1994, pp. 487–499.

148. Y. Morimoto, Mining Frequent Neighboring Class Sets in
Spatial Databases, in Proc. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2001.

149. S. Shekhar and Y. Huang, Co-location Rules Mining: A Sum-
mary of Results, Proc. Symposium on Spatial and Spatio–
temporal Databases, 2001.

150. Y. Huang, S. Shekhar, and H. Xiong, Discovering Co-location
Patterns from Spatial Datasets: A General Approach, IEEE
Trans. Knowledge and Data Engineering, 16(12): 1472–1485,
December 2005.

151. J. F. Roddick and B. G. Lees, Paradigms for spatial and
Spatio–temporal data mining. Taylor and Frances, 2001.

152. M. Koubarakis, T. K. Sellis, A. U. Frank, S. Grumbach,
R. Hartmut Guting, C. S. Jensen, N. A. Lorentzos, Y. Man-
olopoulos, E. Nardelli, B. Pernici, H.-J. Schek, M. Scholl, B.
Theodoulidis, and N. Tryfona, eds, Spatio–temporal Data-
bases: The CHOROCHRONOS Approach, Vol. 2520 of Lec-
ture Notes in Computer Science. Springer, 2003.

153. J. F. Roddick, K. Hornsby, and M. Spiliopoulou, An updated
bibliography of temporal, spatial, and Spatio–temporal data
mining research, Proc. First International Workshop on Tem-
poral, Spatial and Spatio–temporal Data Mining, 2001, pp.
147–164.

154. M. Celik, S. Shekhar, J. P. Rogers, and J. A. Shine, Sustained
emerging Spatio–temporal co-occurrence pattern mining: A
summary of results, 18th IEEE International Conference on
Tools with Artificial Intelligence, 2006, pp. 106–115.

155. M. Celik, S. Shekhar, J. P. Rogers, J. A. Shine, and J. S. Yoo,
Mixed-drove Spatio–temporal co-occurrence pattern mining:
A summary of results, Sixth International Conference on Data
Mining, IEEE, 2006, pp. 119–128.

SPATIAL DATABASES 21



156. M. Celik, S. Shekhar, J. P. Rogers, J. A. Shine, and J. M. Kang,
Mining at most top-k mixed-drove Spatio–temporal co-occur-
rence patterns:A summary of results, in Proc. of the Workshop
on Spatio–temporal Data Mining (In conjunction with ICDE
2007), 2008, forthcoming.

157. J. F. Roddick, E. Hoel, M. J. Egenhofer, D. Papadias, and B.
Salzberg, Spatial, temporal and Spatio–temporal databases -
hot issues and directions for phd research, SIGMOD record,
33(2), 2004.

158. O. Schabenberger and C. A. Gotway, Statistical Methods for
Spatial Data Analysis. Chapman & Hall/CRC, 2004.

159. M. Stonebraker, J. Frew, K. Gardels, and J. Meredith, The
Sequoia 2000 Benchmark, in Peter Buneman and Sushil

Jajodia (eds.), Proc. 1993 ACM SIGMOD International Con-
ference on Management of Data. ACM Press, 1993. pp. 2–11.

160. J. M. Patel, J.-B. Yu, N. Kabra, K. Tufte, B. Nag, J. Burger, N.
E. Hall, K. Ramasamy, R. Lueder, C. Ellmann, J. Kupsch, S.
Guo, D. J. DeWitt, and J. F. Naughton, Building a scaleable
geo-spatial dbms: Technology, implementation, and evalua-
tion, in ACM SIGMOD Conference, 1997, pp. 336–347.

VIJAY GANDHI

JAMES M. KANG

SHASHI SHEKHAR

University of Minnesota
Minneapolis, Minnesota

22 SPATIAL DATABASES



S

STATISTICAL DATABASES

INTRODUCTION

Statistical databases are databases that contain statistical
information. Such databases normally are released by
national statistical institutes, but on occasion they can
also be released by health-care authorities (epidemiology)
or by private organizations (e.g., consumer surveys). Sta-
tistical databases typically come in three formats:

� Tabular data, that is, tables with counts or magni-
tudes, which are the classic output of official statistics.

� Queryable databases, that is, online databases to
which the user can submit statistical queries (sums,
averages, etc.).

� Microdata, that is, files in which each record contains
information on an individual (a citizen or a company).

The peculiarity of statistical databases is that they
should provide useful statistical information, but they
should not reveal private information on the individuals
to whom they refer (respondents). Indeed, supplying data to
national statistical institutes is compulsory in most coun-
tries, but in return those institutes commit to preserving
the privacy of respondents. Inference control in statistical
databases, also known as statistical disclosure control
(SDC), is a discipline that seeks to protect data in statistical
databases so that they can be published without revealing
confidential information that can be linked to specific indi-
viduals among those to whom the data correspond. SDC is
applied to protect respondent privacy in areas such as
official statistics, health statistics, and e-commerce (shar-
ing of consumer data). Because data protection ultimately
means data modification, the challenge for SDC is to
achieve protection with minimum loss of accuracy sought
by database users.

In Ref. 1, a distinction is made between SDC and other
technologies for database privacy, like privacy-preserving
data mining (PPDM) or private information retrieval
(PIR): What makes the difference between those technol-
ogies is whose privacy they seek. Although SDC is aimed
at respondent privacy, the primary goal of PPDM is to
protect owner privacy when several database owners wish
to cooperate in joint analyses across their databases with-
out giving away their original data to each other. On its
side, the primary goal of PIR is user privacy, that is, to
allow the user of a database to retrieve some information
item without the database exactly knowing which item
was recovered.

The literature on SDC started in the 1970s, with the
seminal contribution by Dalenius (2) in the statistical
community and the works by Schlörer (3) and Denning
et al. (4) in the database community. The 1980s saw
moderate activity in this field. An excellent survey of the
state of the art at the end of the 1980s is in Ref. 5. In the

1990s, renewed interest occurred in the statistical
community and the discipline was developed even more
under the names of statistical disclosure control in Europe
and statistical disclosure limitation in America. Subse-
quent evolution has resulted in at least three clearly differ-
entiated subdisciplines:

� Tabular data protection. The goal here is to publish
static aggregate information, i.e., tables, in such a way
that no confidential information on specific individuals
among those to which the table refers can be inferred.
See Ref. 6 for a conceptual survey.

� Queryable databases. The aggregate information
obtained by a user as a result of successive queries
should not allow him to infer information on specific
individuals. Since the late 1970s, this has been
known to be a difficult problem, which is subject
to the tracker attack (4,7). SDC strategies here
include perturbation, query restriction, and camou-
flage (providing interval answers rather than exact
answers).

� Microdata protection. It is only recently that data
collectors (statistical agencies and the like) have
been persuaded to publish microdata. Therefore, micro-
data protection is the youngest subdiscipline, and it has
experienced continuous evolution in the last few years.
Its purpose is to mask the original microdata so that the
masked microdata still are useful analytically but can-
not be linked to the original respondents.

Several areas of application of SDC techniques exist,
which include but are not limited to the following:

� Official statistics. Most countries have legislation that
compels national statistical agencies to guarantee
statistical confidentiality when they release data col-
lected from citizens or companies. It justifies the
research on SDC undertaken by several countries,
among them the European Union (e.g., the CASC
project) and the United States.

� Health information. This area is one of the most sen-
sitive regarding privacy. For example, in the United
States, the Privacy Rule of the Health Insurance
Portability and Accountability Act (HIPAA) requires
the strict regulation of protected health information
for use in medical research. In most Western countries,
the situation is similar.

� E-commerce. Electronic commerce results in the
automated collection of large amounts of consumer
data. This wealth of information is very useful to
companies, which are often interested in sharing
it with their subsidiaries or partners. Such consumer
information transfer should not result in public
profiling of individuals and is subject to strict
regulation.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



THEORY

Formal Definition of Data Formats

A microdata file X with s respondents and t attributes is an
s � t matrix, where Xij is the value of attribute j for respon-
dent i. Attributes can be numerical (e.g., age or salary) or
categorical (e.g., gender or job).

The attributes in a microdata set can be classified in four
categories that are not necessarily disjoint:

� Identifiers. These attributes unambiguously identify
the respondent. Examples are the passport number,
social security number, and name-surname.

� Quasi-identifiers or key attributes. These attributes
identify the respondent with some degree of ambigu-
ity. (Nonetheless, a combination of key attributes may
provide unambiguous identification.) Examples are
address, gender, age, and telephone number.

� Confidential outcome attributes. These attributes con-
tain sensitive information on the respondent. Exam-
ples are salary, religion, political affiliation, and health
condition.

� Nonconfidential outcome attributes. These attributes
contain nonsensitive information on the respondent.

From microdata, tabular data can be generated by cross-
ing one or more categorical attributes. Formally, a table is a
function

T : DðXi1Þ �DðXi2Þ � :::�DðXilÞ!R or N

where l � t is the number of crossed categorical attributes
and D(Xij) is the domain where attribute Xij takes its
values.

Two kinds of tables exist: frequency tables that display
the count of respondents at the crossing of the categorical
attributes (in N) and magnitude tables that display infor-
mation on a numeric attribute at the crossing of the
categorical attributes (in R). For example, given some
census microdata containing attributes ‘‘Job’’ and
‘‘Town,’’ one can generate a frequency table that displays
the count of respondents doing each job type in each town.
If the census microdata also contain the ‘‘Salary’’ attri-
bute, one can generate a magnitude table that displays the
average salary for each job type in each town. The number
n of cells in a table is normally much less than the number
s of respondent records in a microdata file. However,
tables must satisfy several linear constraints: marginal
row and column totals. Additionally, a set of tables is
called linked if they share some of the crossed categorical
attributes: For example, ‘‘Job’’ � ‘‘Town’’ is linked to
‘‘Job’’ � ‘‘Gender.’’

Overview of Methods

Statistical disclosure control will be first reviewed for tab-
ular data, then for queryable databases, and finally for
microdata.

Methods for Tabular Data

Even if tables display aggregate information, a risk of
disclosure exists in tabular data release. Several attacks
are conceivable:

� External attack. For example, let a frequency table
‘‘Job’’ � ‘‘Town’’ be released where a single respondent
exists for job Ji and town Tj. Then if a magnitude table
is released with the average salary for each job type
and each town, the exact salary of the only respondent
with job Ji working in town Tj is disclosed publicly.

� Internal attack. Even if two respondents for job Ji and
town Tj exist, the salary of each of them is disclosed to
each other.

� Dominance attack. If one (or a few) respondents dom-
inate in the contribution to a cell of a magnitude table,
the dominant respondent(s) can upper-bound the con-
tributions of the rest (e.g., if the table displays the total
salary for each job type and town and one individual
contributes 90% of that salary, he knows that his
colleagues in the town are not doing very well).

SDC methods for tables fall into two classes: nonpertur-
bative and perturbative. Nonperturbative methods do not
modify the values in the tables; the best known method in
this class is cell suppression (CS). Perturbative methods
output a table with some modified values; well-known
methods in this class include controlled rounding (CR)
and the recent controlled tabular adjustment (CTA).

The idea of CS is to suppress those cells that are identified
as sensitive, i.e., from which the above attacks can extract
sensitive information, by the so-called sensitivity rules (e.g.,
the dominance rule, which identifies a cell as sensitive if it is
vulnerable to a dominance attack). Sensitive cells are the
primary suppressions. Then additional suppressions (sec-
ondary suppressions) are performed to prevent primary
suppressions from being computed or even inferred within
a prescribed protection interval using the row and column
constraints (marginal row and column totals). Usually, one
attempts to minimize either the number of secondary sup-
pressions or their pooled magnitude, which results in com-
plex optimization problems. Most optimization methods
used are heuristic, based on mixed integer linear program-
ming or network flows (8), and most of them are implemen-
ted in the t-Argus free software package (9). CR rounds
values in the table to multiples of a rounding base, which
may entail rounding the marginal totals as well. On its side,
CTA modifies the values in the table to prevent the inference
of values of sensitive cells within a prescribed protection
interval. The idea of CTA is to find the closest table to the
original one that ensures such a protection for all sensitive
cells. It requires optimization methods, which are typically
based on mixed linear integer programming. Usually CTA
entails less information loss than does CS.

Methods for Queryable Databases

In SDC of queryable databases, three main approaches
exist to protect a confidential vector of numeric data
from disclosure through answers to user queries:

2 STATISTICAL DATABASES



� Data perturbation. Perturbing the data is a simple
and effective approach whenever the users do not
require deterministically correct answers to queries
that are functions of the confidential vector. Pertur-
bation can be applied to the records on which queries
are computed (input perturbation) or to the query
result after computing it on the original data (output
perturbation). Perturbation methods can be found in
Refs. 10–12.

� Query restriction. This approach is right if the user
does require deterministically correct answers and
these answers have to be exact (i.e., a number).
Because exact answers to queries provide the user
with very powerful information, it may become neces-
sary to refuse to answer certain queries at some stage
to avoid disclosure of a confidential datum. Several
criteria decide whether a query can be answered; one of
them is query set size control, that is, to refuse answers
to queries that affect a set of records that is too small.
An example of the query restriction approach can be
found in Ref. 13.

� Camouflage. If deterministically correct, nonexact
answers (i.e., small-interval answers) suffice, confi-
dentiality via camouflage [CVC, (14)] is a good option.
With this approach, unlimited answers to any con-
ceivable query types are allowed. The idea of CVC is to
‘‘camouflage’’ the confidential vector a by making it
part of the relative interior of a compact set P of
vectors. Then each query q ¼ f(a) is answered with
an inverval [q�, qþ] that contains [f �, f þ], where f �

and f þ are, respectively, the minimum and the max-
imum of f over P.

Methods for Microdata

Microdata protection methods can generate the protected
microdata set X0

� Either by masking original data, i.e., generating a
modified version X0 of the original microdata set X.

� Or by generating synthetic data X0 that preserve some
statistical properties of the original data X.

Masking methods can in turn be divided in two cate-
gories depending on their effect on the original data (6):

� Perturbative. The microdata set is distorted before
publication. In this way, unique combinations of
scores in the original dataset may disappear, and
new, unique combinations may appear in the per-
turbed dataset; such confusion is beneficial for pre-
serving statistical confidentiality. The perturbation
method used should be such that statistics computed
on the perturbed dataset do not differ significantly
from the statistics that would be obtained on the
original dataset. Noise addition, microaggregation,
data/rank swapping, microdata rounding, resam-
pling, and PRAM are examples of perturbative mask-
ing methods (see Ref. 8 for details).

� Nonperturbative. Nonperturbative methods do not
alter data; rather, they produce partial suppressions
or reductions of detail in the original dataset. Sam-
pling, global recoding, top and bottom coding, and local
suppression are examples of nonperturbative masking
methods.

Although a reasonable overview of the methods for
protecting tables or queryable databases has been given
above, microdata protection methods are more diverse, so
that a description of some of them is needed.

Some Microdata Protection Methods

Additive Noise. Additive noise is a family of perturbative
masking methods. The noise addition algorithms in the
literature are as follows:

� Masking by uncorrelated noise addition. The vector of
observations xj for the jth attribute of the original
dataset Xj is replaced by a vector

z j ¼ x j þ e j

where ej is a vector of normally distributed errors drawn
from a random variable e j�Nð0;s2

e j
Þ, such that

Covðet; elÞ ¼ 0 for all t 6¼ l. This algorithm neither pre-
serves variances nor correlations.

� Masking by correlated noise addition. Correlated noise
addition also preserves means and additionally allows
preservation of correlation coefficients. The difference
with the previous method is that the covariance matrix
of the errors is now proportional to the covariance
matrix of the original data, i.e., e�Nð0;SeÞ, where
Se ¼ aS, with S being the covariance matrix of the
original data.

� Masking by noise addition and linear transformation.
In Ref. 15, a method is proposed that ensures by
additional transformations that the sample covar-
iance matrix of the masked attributes is an unbiased
estimator for the covariance matrix of the original
attributes.

� Masking by noise addition and nonlinear transforma-
tion. Combining simple additive noise and nonlinear
transformation has also been proposed in such a way
that application to discrete attributes is possible and
univariate distributions are preserved. Unfortunately,
the application of this method is very time-consuming
and requires expert knowledge on the dataset and the
algorithm. See Ref. 8 for more details.

In practice, only simple noise addition (two first var-
iants) or noise addition with linear transformation are
used. When using linear transformations, a decision has
to be made whether to reveal them to the data user to allow
for bias adjustment in the case of subpopulations.

In general, additive noise is not suitable to protect
categorical data. On the other hand, it is well suited for
continuous data for the following reasons:

STATISTICAL DATABASES 3



� It makes no assumptions on the range of possible
values for Xi (which may be infinite).

� The noise being added typically is continuous and with
mean zero, which suits well continuous original data.

Microaggregation. Microaggregation is a family of SDC
techniques for continous microdata. The rationale behind
microaggregation is that confidentiality rules in use allow
publication of microdata sets if records correspond to
groups of k or more individuals, where no individual dom-
inates (i.e., contributes too much to) the group and k is a
threshold value. Strict application of such confidentiality
rules leads to replacing individual values with values com-
puted on small aggregates (microaggregates) before pub-
lication. It is the basic principle of microaggregation.

To obtain microaggregates in a microdata set with n
records, these are combined to form g groups of size at least
k. For each attribute, the average value over each group is
computed and is used to replace each of the original aver-
aged values. Groups are formed using a criterion of max-
imal similarity. Once the procedure has been completed,
the resulting (modified) records can be published.

The optimal k-partition (from the information loss point
of view) is defined to be the one that maximizes within-
group homogeneity; the higher the within-group homoge-
neity, the lower the information loss, because microaggre-
gation replaces values in a group by the group centroid. The
sum of squares criterion is common to measure homogene-
ity in clustering. The within-groups sum of squares SSE is
defined as

SSE ¼
Xg

i¼1

Xni

j¼1

ðxi j�xiÞ0ðxi j�xiÞ

The lower the SSE, the higher the within-group homo-
geneity. Thus, in terms of sums of squares, the optimal k-
partition is the one that minimizes SSE.

Given a microdata set that consists of p attributes, these
can be microaggregated together or partitioned into several
groups of attributes. Also, the way to form groups may vary.
Several taxonomies are possible to classify the microaggre-
gation algorithms in the literature: (1) fixed group size
(16–18) versus variable group size (19–21), (2) exact opti-
mal [only for the univariate case, (22)] versus heuristic
microaggregation (the rest of the microaggregation litera-
ture), and (3) categorical (18,23) versus continuous (the rest
of references cited in this paragraph).

To illustrate, we next give a heuristic algorithm called
MDAV [maximum distance to average vector, (18,24)] for
multivariate fixed-group-size microaggregation on unpro-
jected continuous data. We designed and implemented
MDAV for the m-Argus package (17).

1. Compute the average record x of all records in the
dataset. Consider the most distant record xr to the
average record x (using the squared Euclidean dis-
tance).

2. Find the most distant record xs from the record xr

considered in the previous step.

3. Form two groups around xr and xs, respectively. One
group contains xr and the k � 1 records closest to xr.
The other group contains xs and the k � 1 records
closest to xs.

4. If at least 3k records do not belong to any of the two
groups formed in Step 3, go to Step 1, taking as a new
dataset the previous dataset minus the groups
formed in the last instance of Step 3.

5. If between 3k � 1 and 2k records do not belong to any
of the two groups formed in Step 3: a) compute the
average record x of the remaining records, b) find the
most distant record xr from x, c) form a group contain-
ing xr and the k � 1 records closest to xr, and d) form
another group containing the rest of records. Exit the
Algorithm.

6. If less than 2k records do not belong to the groups
formed in Step 3, form a new group with those records
and exit the Algorithm.

The above algorithm can be applied independently to
each group of attributes that results from partitioning
the set of attributes in the dataset.

Data Swapping and Rank Swapping. Data swapping ori-
ginally was presented as a perturbative SDC method for
databases that contain only categorical attributes. The
basic idea behind the method is to transform a database
by exchanging values of confidential attributes among
individual records. Records are exchanged in such a way
that low-order frequency counts or marginals are main-
tained.

Even though the original procedure was not used often
in practice, its basic idea had a clear influence in subse-
quent methods. A variant of data swapping for microdata is
rank swapping, which will be described next in some detail.

Although originally described only for ordinal attributes
(25), rank swapping can also be used for any numeric
attribute. First, values of an attribute Xi are ranked in
ascending order; then each ranked value of Xi is swapped
with another ranked value randomly chosen within a
restricted range (e.g., the rank of two swapped values
cannot differ by more than p% of the total number of
records, where p is an input parameter). This algorithm
independently is used on each original attribute in the
original dataset.

It is reasonable to expect that multivariate statistics
computed from data swapped with this algorithm will be
less distorted than those computed after an unconstrained
swap.

PRAM. The post-randomization method [PRAM, (26)]
is a probabilistic, perturbative method for disclosure pro-
tection of categorical attributes in microdata files. In the
masked file, the scores on some categorical attributes for
certain records in the original file are changed to a differ-
ent score according to a prescribed probability mechan-
ism, namely a Markov matrix called the PRAM matrix.
The Markov approach makes PRAM very general because
it encompasses noise addition, data suppression, and data
recoding.

4 STATISTICAL DATABASES



Because the PRAM matrix must contain a row for each
possible value of each attribute to be protected, PRAM
cannot be used for continuous data.

Sampling. This approach is a nonperturbative masking
method. Instead of publishing the original microdata
file, what is published is a sample S of the original set of
records (6).

Sampling methods are suitable for categorical micro-
data, but for continuous microdata they probably should be
combined with other masking methods. The reason is that
sampling alone leaves a continuous attribute Xi unper-
turbed for all records in S. Thus, if attribute Xi is present
in an external administrative public file, unique matches
with the published sample are very likely: Indeed, given
a continuous attribute Xi and two respondents o1 and o2,
it is highly unlikely that Xi will take the same value for both
o1 and o2 unless o1 ¼ o2 (this is true even if Xi has been
truncated to represent it digitally).

If, for a continuous identifying attribute, the score of a
respondent is only approximately known by an attacker, it
might still make sense to use sampling methods to protect
that attribute. However, assumptions on restricted
attacker resources are perilous and may prove definitely
too optimistic if good-quality external administrative files
are at hand.

Global Recoding. This approach is a nonperturbative
masking method, also known sometimes as generalization.
For a categorical attribute Xi, several categories are com-
bined to form new (less specific) categories, which thus
result in a new X 0i with jDðX 0iÞj< jDðXiÞj, where j � j is the
cardinality operator. For a continuous attribute, global
recoding means replacing Xi by another attribute X 0i;which
is a discretized version of Xi. In other words, a potentially
infinite range D(Xi) is mapped onto a finite range DðX 0iÞ.
This technique is used in the m-Argus SDC package (17).

This technique is more appropriate for categorical
microdata, where it helps disguise records with strange
combinations of categorical attributes. Global recoding is
used heavily by statistical offices.

Example. If a record exists with ‘‘Marital status ¼
Widow/er’’ and ‘‘Age ¼ 17,’’ global recoding could be applied
to ‘‘Marital status’’ to create a broader category ‘‘Widow/er or
divorced’’ so that the probability of the above record being
unique would diminish. &

Global recoding can also be used on a continuous attri-
bute, but the inherent discretization leads very often to an
unaffordable loss of information. Also, arithmetical opera-
tions that were straightforward on the original Xi are no
longer easy or intuitive on the discretized X 0i.

Top and Bottom Coding. Top and bottom coding are
special cases of global recoding that can be used on attri-
butes that can be ranked, that is, continuous or categorical
ordinal. The idea is that top values (those above a certain
threshold) are lumped together to form a new category. The
same is done for bottom values (those below a certain
threshold). See Ref. 17.

Local Suppression. This approach is a nonperturbative
masking method in which certain values of individual
attributes are suppressed with the aim of increasing the
set of records agreeing on a combination of key values. Ways
to combine local suppression and global recoding are imple-
mented in the m-Argus SDC package (17).

If a continuous attribute Xi is part of a set of key
attributes, then each combination of key values probably
is unique. Because it does not make sense to suppress
systematically the values of Xi, we conclude that local
suppression is oriented to categorical attributes.

Synthetic Microdata Generation. Publication of
synthetic —i.e.,simulated— data was proposed long ago
as a way to guard against statistical disclosure. The idea is
to generate data randomly with the constraint that certain
statistics or internal relationships of the original dataset
should be preserved.

More than ten years ago, Rubin suggested in Ref. 27 to
create an entirely synthetic dataset based on the original
survey data and multiple imputation. A simulation study of
this approach was given in Ref. 28.

We next sketch the operation of the original proposal by
Rubin. Consider an original microdata set X of size n
records drawn from a much larger population of N indivi-
duals, where background attributes A, nonconfidential
attributes B, and confidential attributes C exist. Back-
ground attributes are observed and available for all N
individuals in the population, whereas B and C are only
available for the n records in the sample X. The first step is
to construct from X a multiply-imputed population of N
individuals. This population consists of the n records in X
and M (the number of multiple imputations, typically
between 3 and 10) matrices of (B, C) data for the N � n
nonsampled individuals. The variability in the imputed
values ensures, theoretically, that valid inferences can
be obtained on the multiply-imputed population. A model
for predicting (B, C) from A is used to multiply-impute (B, C)
in the population. The choice of the model is a nontrivial
matter. Once the multiply-imputed population is available,
a sample Z of n0 records can be drawn from it whose
structure looks like the one of a sample of n0 records drawn
from the original population. This process can be done M
times to create M replicates of (B, C) values. The result are
M multiply-imputed synthetic datasets. To make sure no
original data are in the synthetic datasets, it is wise to draw
the samples from the multiply-imputed population exclud-
ing the n original records from it.

Synthetic data are appealing in that, at a first glance,
they seem to circumvent the reidentification problem:
Because published records are invented and do not derive
from any original record, it might be concluded that no
individual can complain from having been reidentified. At
a closer look this advantage is less clear. If, by chance, a
published synthetic record matches a particular citizen’s
nonconfidential attributes (age, marital status, place of
residence, etc.) and confidential attributes (salary, mort-
gage, etc.), reidentification using the nonconfidential
attributes is easy and that citizen may feel that his con-
fidential attributes have been unduly revealed. In that
case, the citizen is unlikely to be happy with or even

STATISTICAL DATABASES 5



understand the explanation that the record was generated
synthetically.

On the other hand, limited data utility is another pro-
blem of synthetic data. Only the statistical properties
explicitly captured by the model used by the data protector
are preserved. A logical question at this point is why not
directly publish the statistics one wants to preserve rather
than release a synthetic microdata set.

One possible justification for synthetic microdata would
be whether valid analyses could be obtained on several
subdomains; i.e., similar results were obtained in several
subsets of the original dataset and the corresponding sub-
sets of the synthetic dataset. Partially synthetic or hybrid
microdata are more likely to succeed in staying useful for
subdomain analysis. However, when using partially syn-
thetic or hybrid microdata, we lose the attractive feature of
purely synthetic data that the number of records in the
protected (synthetic) dataset is independent from the num-
ber of records in the original dataset.

EVALUATION

Evaluation of SDC methods must be carried out in terms of
data utility and disclosure risk.

Measuring Data Utility

Defining what a generic utility loss measure is can be a
tricky issue. Roughly speaking, such a definition should
capture the amount of information loss for a reasonable
range of data uses.

We will attempt a definition on the data with maximum
granularity, that is, microdata. Similar definitions apply to
rounded tabular data; for tables with cell suppressions,
utility normally is measured as the reciprocal of the num-
ber of suppressed cells or their pooled magnitude. As to
queryable databases, they can be viewed logically as tables
as far as data utility is concerned: A denied query answer is
equivalent to a cell suppression, and a perturbed answer is
equivalent to a perturbed cell.

We will say little information loss occurs if the protected
dataset is analytically valid and interesting according to
the following definitions by Winkler (29):

� A protected microdata set is analytically valid if it
approximately preserves the following with respect
to the original data (some conditions apply only to
continuous attributes):

1. Means and covariances on a small set of subdomains
(subsets of records and/or attributes)

2. Marginal values for a few tabulations of the data

3. At least one distributional characteristic

� A microdata set is analytically interesting if six
attributes on important subdomains are provided
that can be validly analyzed.

More precise conditions of analytical validity and ana-
lytical interest cannot be stated without taking specific

data uses into account. As imprecise as they may be, the
above definitions suggest some possible measures:

� Compare raw records in the original and the protected
dataset. The more similar the SDC method to the
identity function, the less the impact (but the higher
the disclosure risk!). This process requires pairing
records in the original dataset and records in the
protected dataset. For masking methods, each record
in the protected dataset is pairednaturally to the record
in the original dataset from which it originates. For
synthetic protected datasets, pairing is less obvious.

� Compare some statistics computed on the original and
the protected datasets. The above definitions list some
statistics that should be preserved as much as possible
by an SDC method.

A strict evaluation of information loss must be based on
the data uses to be supported by the protected data. The
greater the differences between the results obtained on
original and protected data for those uses, the higher the
loss of information. However, very often microdata protec-
tion cannot be performed in a data use-specific manner, for
the following reasons:

� Potential data uses are very diverse, and it may be
even hard to identify them all at the moment of data
release by the data protector.

� Even if all data uses could be identified, releasing
several versions of the same original dataset so that
the ith version has an information loss optimized for
the ith data use may result in unexpected disclosure.

Because data often must be protected with no specific
data use in mind, generic information loss measures are
desirable to guide the data protector in assessing how much
harm is being inflicted to the data by a particular SDC
technique.

Information loss measures for numeric data. Assume a
microdata set with n individuals (records) I1, I2, . . ., In and p
continuous attributes Z1, Z2, . . ., Zp. Let X be the matrix that
represents the original microdata set (rows are records and
columns are attributes). Let X0 be the matrix that represents
the protected microdata set. The following tools are useful to
characterize the information contained in the dataset:

� Covariance matrices V (on X) and V0 (on X0).

� Correlation matrices R and R0.

� Correlation matrices RF and RF0 between the p attri-
butes and the p factors PC1, . . ., PCp obtained through
principal components analysis.

� Communality between each p attribute and the first
principal component PC1 (or other principal compo-
nents PCi’s). Communality is the percent of each
attribute that is explained by PC1 (or PCi). Let C be
the vector of communalities for X and C0 be the
corresponding vector for X0.

� Factor score coefficient matrices F and F0. Matrix
F contains the factors that should multiply each

6 STATISTICAL DATABASES



attribute in X to obtain its projection on each principal
component. F0 is the corresponding matrix for X0.

A single quantitative measure does not seem to reflect
completely those structural differences. Therefore, we
proposed in Refs. 30 and 31 to measure information loss
through the discrepancies between matrices X, V, R, RF, C,
and F obtained on the original data and the corresponding
X0, V0, R0, RF0, C0, and F0 obtained on the protected dataset.
In particular, discrepancy between correlations is related
to the information loss for data uses such as regressions and
cross tabulations.

Matrix discrepancy can be measured in at least three
ways:

Mean square error. Sum of squared component-wise
differences between pairs of matrices, divided by the
number of cells in either matrix.

Mean absolute error. Sum of absolute component-
wise differences between pairs of matrices, divided
by the number of cells in either matrix.

Mean variation. Sum of absolute percent variation of
components in the matrix computed on protected
data with respect to components in the matrix com-
puted on original data, divided by the number of cells
in either matrix. This approach has the advantage of
not being affected by scale changes of attributes.

The following table summarizes the measures proposed
in the above references. In this table, p is the number of
attributes, n is the number of records, and the components
of matrices are represented by the corresponding lower-
case letters (e.g., xij is a component of matrix X). Regarding
X � X0 measures, it also makes sense to compute those on
the averages of attributes rather than on all data (call this
variant X � X

0
). Similarly, for V � V0 measures, it would

also be sensible to use them to compare only the variances
of the attributes, i.e., to compare the diagonals of the
covariance matrices rather than the whole matrices
(call this variant S � S0).

Information loss measures for categorical data. These
measures can be based on a direct comparison of categorical
values, or on a comparison of contingency tables or on
Shannon’s entropy. See Ref. 30 for more details.

Bounded information loss measures. The information
loss measures discussed above are unbounded, (i.e., they
do not take values in a predefined interval) On the other
hand, as discussed below, disclosure risk measures are
bounded naturally (the risk of disclosure is bounded natu-
rally between 0 and 1). Defining bounded information loss
measures may be convenient to enable the data protector to
trade off information loss against disclosure risk. In Ref. 32,
probabilistic information loss measures bounded between 0
and 1 are proposed for continuous data.

Measuring Disclosure Risk

In the context of statistical disclosure control, disclosure
risk can be defined as the risk that a user or an intruder
can use the protected dataset X0 to derive confidential
information on an individual among those in the original
dataset X.

Disclosure risk can be regarded from two different
perspectives:

1. Attribute disclosure. This approach to disclosure is
defined as follows. Disclosure takes place when an
attribute of an individual can be determined more
accurately with access to the released statistic than it
is possible without access to that statistic.

2. Identity disclosure. Attribute disclosure does not
imply a disclosure of the identity of any individual.

Mean square error Mean absolute error Mean variation

X � X0
Pp

j¼1

Pn
i¼1ðxi j�x0i jÞ

2

n p

Pp
j¼1

Pn
i¼1 jxi j � x0i jj
n p

Pp
j¼1

Pn
i¼1

jxi j � x0i jj
jxi jj

n p

V � V0
Pp

j¼1

P
1�i� jðvi j�v0i jÞ

2

pðpþ 1Þ
2

Pp
j¼1

P
1�i� j jvi j � v0i jj

pðpþ 1Þ
2

Pp
j¼1

P
1�i� j

jvi j � v0i jj
jvi jj

pðpþ 1Þ
2

R � R0
Pp

j¼1

P
1�i< jðri j � r0i jÞ

2

pðp� 1Þ
2

Pp
j¼1

P
1�i< j jri j � r0i jj

pðp� 1Þ
2

Pp
j¼1

P
1�i< j

jri j � r0i jj
jri jj

pðp� 1Þ
2

RF � RF0
Pp

j¼1 wj

Pp
i¼1ðr fi j � r f 0i jÞ

2

p2

Pp
j¼1 wj

Pp
i¼1 jr fi j � r f 0i jj
p2

Pp
j¼1 wj

Pp
i¼1

jr fi j � r f 0i jj
jr fi jj

p2

C � C0
Pp

i¼1ðci � c0iÞ
2

p

Pp
i¼1 jci � c0ij

p

Pp
i¼1

jci�c0ij
jcij

p

F � F0
Pp

j¼1 wj

Pp
i¼1ð fi j � f 0i jÞ

2

p2

Pp
j¼1 wj

Pp
i¼1 j fi j � f 0i jj
p2

Pp
j¼1 wj

Pp
i¼1

j fi j � f 0i jj
j fi jj

p2

STATISTICAL DATABASES 7



Identity disclosure takes place when a record in the
protected dataset can be linked with a respondent’s
identity. Two main approaches usually are employed
for measuring identity disclosure risk: uniqueness
and reidentification.

2.1 Uniqueness. Roughly speaking, the risk of
identity disclosure is measured as the probabil-
ity that rare combinations of attribute values in
the released protected data are indeed rare in
the original population from which the data
come. This approach is used typically with non-
perturbative statistical disclosure control meth-
ods and, more specifically, with sampling. The
reason that uniqueness is not used with pertur-
bative methods is that when protected attribute
values are perturbed versions of original attri-
bute values, it does not make sense to investi-
gate the probability that a rare combination of
protected values is rare in the original dataset,
because that combination is most probably not
found in the original dataset.

2.2 Reidentification. This empirical approach
evaluates the risk of disclosure. In this case,
record linkage software is constructed to esti-
mate the number of reidentifications that might
be obtained by a specialized intruder. Reidenti-
fication through record linkage provides a more
unified approach than do uniqueness methods
because the former can be applied to any kind of
masking and not just to nonperturbative mask-
ing. Moreover, reidentification can also be
applied to synthetic data.

Trading off Information Loss and Disclosure Risk

The mission of SDC to modify data in such a way that
sufficient protection is provided at minimum information
loss suggests that a good SDC method is one achieving a
good tradeoff between disclosure risk and information
loss. Several approaches have been proposed to handle
this tradeoff. We discuss SDC scores, R-U maps, and k-
anonymity.

Score Construction. Following this idea, Domingo-
Ferrer and Torra (30) proposed a score for method perfor-
mance rating based on the average of information loss and
disclosure risk measures. For each method M and para-
meterization P, the following score is computed:

ScoreðX;X0Þ ¼ ILðX;X0Þ þ DR0ðX;X0Þ
2

where IL is an information loss measure, DR is a disclosure
risk measure, and X0 is the protected dataset obtained after
applying method M with parameterization P to an original
dataset X.

In Ref. 30, IL and DR were computed using a weighted
combination of several information loss and disclosure risk
measures. With the resulting score, a ranking of masking
methods (and their parameterizations) was obtained. To

illustrate how a score can be constructed, we next describe
the particular score used in Ref. 30.

Example. Let X and X0 be matrices that represent origi-
nal and protected datasets, respectively, where all attri-
butes are numeric. Let V and R be the covariance matrix
and the correlation matrix of X, respectively; let X be the
vector of attribute averages for X, and let S be the diagonal
of V. Define V0, R0, X

0
, and S0 analogously from X0. The

Information Loss (IL) is computed by averaging the mean
variations of X � X0, X � X

0
, V � V0, S � S0, and the mean

absolute error of R � R0 and by multiplying the resulting
average by 100. Thus, we obtain the following expression
for information loss:

IL ¼ 100

5

Pp
j¼1

Pn
i¼1

jxi j � x0i jj
jxi jj

n p
þ

Pp
j¼1

jn 1
j � x

0
jj

jn 1
jj

p

0
BBBB@

þ

Pp
j¼1

P
1�i� j

jvi j � v0i jj
jvi jj

pðpþ 1Þ
2

þ

Pp
j¼1

jv j j � v0j jj
jv j jj

p

þ
Pp

j¼1

P
1�i� j jri j � r0i jj

pðp� 1Þ
2

1
CCCCA

The expression of the overall score is obtained by com-
bining information loss and information risk as follows:

Score ¼
ILþ ð0:5DLDþ0:5PLDÞþID

2

2

Here, DLD (distance linkage disclosure risk) is the percen-
tage of correctly linked records using distance-based record
linkage (30), PLD (probabilistic linkage record disclosure
risk) is the percentage of correctly linked records using
probabilistic linkage (33), ID (interval disclosure) is the
percentage of original records falling in the intervals
around their corresponding masked values, and IL is the
information loss measure defined above.

Based on the above score, Domingo-Ferrer and Torra
(30) found that, for the benchmark datasets and the intru-
der’s external information they used, two good performers
among the set of methods and parameterizations they tried
were as follows: (1) rankswapping with parameter p around
15 (see the description above) and (2) multivariate micro-
aggregation on unprojected data taking groups of three
attributes at a time (Algorithm MDAV above with parti-
tioning of the set of attributes). &

Using a score permits regarding the selection of a mask-
ing method and its parameters as an optimization problem.
A masking method can be applied to the original data file,
and then a postmasking optimization procedure can be
applied to decrease the score obtained.

On the negative side, no specific score weighting can do
justice to all methods. Thus, when ranking methods, the

8 STATISTICAL DATABASES



values of all measures of information loss and disclosure
risk should be supplied along with the overall score.

R-U maps. A tool that may be enlightening when trying
to construct a score or, more generally, to optimize the
tradeoff between information loss and disclosure risk is a
graphical representation of pairs of measures (disclosure
risk, information loss) or their equivalents (disclosure risk,
data utility). Such maps are called R-U confidentiality
maps (34). Here, R stands for disclosure risk and U stands
for data utility. In its most basic form, an R-U confidenti-
ality map is the set of paired values (R,U), of disclosure risk
and data utility that correspond to various strategies for
data release (e.g., variations on a parameter). Such (R,U)
pairs typically are plotted in a two-dimensional graph, so
that the user can grasp easily the influence of a particular
method and/or parameter choice.

k-Anonymity. A different approach to facing the conflict
between information loss and disclosure risk is suggested
by Samarati and Sweeney (35). A protected dataset is said
to satisfy k-anonymity for k > 1 if, for each combination of
key attribute values (e.g., address, age, and gender), at
least k records exist in the dataset sharing that combina-
tion. Now if, for a given k, k-anonymity is assumed to be
enough protection, one can concentrate on minimizing
information loss with the only constraint that k-anonymity
should be satisfied. This method is a clean way of solving the
tension between data protection and data utility. Because
k-anonymity usually is achieved via generalization
(equivalent to global recoding, as said above) and local
suppression, minimizing information loss usually trans-
lates to reducing the number and/or the magnitude of
suppressions.

k-Anonymity bears some resemblance to the underlying
principle of multivariate microaggregation and is a useful
concept because key attributes usually are categorical or
can be categorized, [i.e., they take values in a finite (and
ideally reduced) range] However, reidentification is not
based on necessarily categorical key attributes: Sometimes,
numeric outcome attributes, which are continuous and
often cannot be categorized, give enough clues for reiden-
tification. Microaggregation was suggested in Ref. 18 as a
possible way to achieve k-anonymity for numeric, ordinal,
and nominal attributes: The idea is to use multivariate
microaggregation on the key attributes of the dataset.

Future

Many open issues in SDC exist, some of which hopefully can
be solved with additional research and some of which are
likely to stay open because of the inherent nature of SDC.
We first list some of the issues that probably could and
should be settled in the near future:

� Identifying a comprehensive listing of data uses (e.g.,
regression models, and association rules) that would
allow the definition of data use-specific information
loss measures broadly accepted by the community;
those new measures could complement and/or replace
the generic measures currently used. Work in this line

was started in Europe in 2006 under the CENEX SDC
project sponsored by Eurostat.

� Devising disclosure risk assessment procedures that
are as universally applicable as record linkage while
being less greedy in computational terms.

� Identifying, for each domain of application, which are
the external data sources that intruders typically can
access to attempt reidentification. This capability
would help data protectors to figure out in more rea-
listic terms which are the disclosure scenarios they
should protect data against.

� Creating one or several benchmarks to assess the
performance of SDC methods. Benchmark creation
currently is hampered by the confidentiality of the
original datasets to be protected. Data protectors
should agree on a collection of nonconfidential, origi-
nal-looking datasets (financial datasets, population
datasets, etc.), which can be used by anybody to com-
pare the performance of SDC methods. The benchmark
should also incorporate state-of-the-art disclosure risk
assessment methods, which requires continuous
update and maintenance.

Other issues exist whose solution seems less likely in the
near future, because of the very nature of SDC methods. If
an intruder knows the SDC algorithm used to create a
protected data set, he can mount algorithm-specific reiden-
tification attacks that can disclose more confidential infor-
mation than conventional data mining attacks. Keeping
secret the SDC algorithm used would seem a solution, but
in many cases, the protected dataset gives some clues on the
SDC algorithm used to produce it. Such is the case for a
rounded, microaggregated, or partially suppressed micro-
data set. Thus, it is unclear to what extent the SDC algo-
rithm used can be kept secret.

CROSS-REFERENCES

statistical disclosure control. See Statistical Databases.

statistical disclosure limitation. See Statistical Data-
bases.

inference control. See Statistical Databases.

privacy in statistical databases. See Statistical Data-
bases.

BIBLIOGRAPHY

1. J. Domingo-Ferrer, A three-dimensional conceptual frame-
work for database privacy, in Secure Data Management-4th
VLDB Workshop SDM’2007, Lecture Notes in Computer
Science, vol. 4721. Berlin: Springer-Verlag, 2007, pp. 193–202.

2. T. Dalenius, The invasion of privacy problem and statistics
production. An overview, Statistik Tidskrift, 12: 213–225, 1974.

3. J. Schlörer, Identification and retrieval of personal records
from a statistical data bank. Methods Inform. Med., 14(1):
7–13, 1975.

4. D. E. Denning, P. J. Denning, and M. D. Schwartz, The
tracker: a threat to statistical database security, ACM Trans.
Database Syst., 4(1): 76–96, 1979.

STATISTICAL DATABASES 9



5. N. R. Adam and J. C. Wortmann, Security-control for statistical
databases: a comparative study, ACM Comput. Surv., 21(4):
515–556, 1989.

6. L. Willenborg and T. DeWaal, Elements of Statistical Disclo-
sure Control, New York: Springer-Verlag, 2001.

7. J. Schlörer, Disclosure from statistical databases: quantitative
aspects of trackers, ACM Trans. Database Syst., 5: 467–492,
1980.

8. A. Hundepool, J. Domingo-Ferrer, L. Franconi, S. Giessing,
R. Lenz, J. Longhurst, E. Schulte-Nordholt, G. Seri, and P.-P.
DeWolf, Handbook on Statistical Disclosure Control (version
1.0). Eurostat (CENEX SDC Project Deliverable), 2006.
Available: http://neon.vb.cbs.nl/CENEX/.

9. A. Hundepool, A. van deWetering, R. Ramaswamy, P.-P.
deWolf, S. Giessing, M. Fischetti, J.-J. Salazar, J. Castro,
and P. Lowthian, t-ARGUS v. 3.2 Software and User’s Manual,
CENEX SDC Project Deliverable, 2007. Available: http://
neon.vb.cbs.nl/casc/TAU.html.

10. G. T. Duncan and S. Mukherjee, Optimal disclosure limitation
strategy in statistical databases: deterring tracker attacks
through additive noise, J. Am. Statist. Assoc., 45: 720–729,
2000.

11. K. Muralidhar, D. Batra, and P. J. Kirs, Accessibility, security
and accuracy in statistical databases: the case for the multi-
plicative fixed data perturbation approach, Management Sci.,
41: 1549–1564, 1995.

12. J. F. Traub, Y. Yemini, and H. Wozniakowski, The statistical
security of a statistical database, ACM Trans. Database Syst.,
9: 672–679, 1984.

13. F. Y. Chin and G. Ozsoyoglu, Auditing and inference control in
statistical databases, IEEE Trans. Software Engin., SE-8:
574–582, 1982.

14. R. Gopal, R. Garfinkel, and P. Goes, Confidentiality via camou-
flage: The CVC approach to disclosure limitation when answer-
ing queries to databases, Operations Res., 50: 501–516, 2002.

15. J.J. Kim,A method for limitingdisclosure in microdatabased on
random noise and transformation, Proceedings of the Section on
Survey Research Methods, Alexandria, VA, 1986, pp. 303–308.

16. D. Defays and P. Nanopoulos, Panels of enterprises and
confidentiality: the small aggregates method, Proc. of 92 Sym-
posium on Design and Analysis of Longitudinal Surveys,
Ottawa: 1993, pp. 195–204. Statistics Canada.

17. A. Hundepool, A. Van deWetering, R. Ramaswamy, L. Fran-
coni, A. Capobianchi, P.-P. DeWolf, J. Domingo-Ferrer, V.
Torra, R. Brand, and S. Giessing, m-ARGUS version 4.0 Soft-
ware and User’s Manual, Statistics Netherlands, Voorburg NL,
2005. Available: http://neon.vb.cbs.nl/casc.

18. J. Domingo-Ferrer and V. Torra, Ordinal, continuous and
heterogenerous k-anonymity through microaggregation,
Data Mining Knowl. Discov., 11(2): 195–212, 2005.

19. J. Domingo-Ferrer and J. M. Mateo-Sanz, Practical data-
oriented microaggregation for statistical disclosure control,
IEEE Trans. Knowledge Data Engin., 14(1): 189–201, 2002.

20. M. Laszlo and S. Mukherjee, Minimum spanning tree parti-
tioning algorithm for microaggregation, IEEE Trans. Knowl-
edge Data Engineer., 17(7): 902–911, 2005.

21. J. Domingo-Ferrer, F. Sebé, and A. Solanas, A polynomial-time
approximation to optimal multivariate microaggregation,
Computers Mathemat. Applicat., 55(4): 714–732, 2008.

22. S. L. Hansen and S. Mukherjee, A polynomial algorithm for
optimal univariate microaggregation, IEEE Trans. Knowl.
Data Engineer., 15(4): 1043–1044, 2003.

23. V. Torra, Microaggregation for categorical variables: a median
based approach, in Privacy in Statistical Databases-PSD 2004,
Lecture Notes in Computer Science, vol. 3050. Berlin: Springer-
Verlag, 2004, pp. 162–174.

24. J. Domingo-Ferrer, A. Martı́nez-Ballesté, J. M. Mateo-Sanz,
and F. Sebé, Efficient multivariate data-oriented microaggre-
gation, VLDB Journal, 15: 355–369, 2006.

25. B. Greenberg, Rank swapping for ordinal data, 1987, Washing-
ton, DC: U. S. Bureau of the Census (unpublished manuscript).

26. J. M. Gouweleeuw, P. Kooiman, L. C. R. J. Willenborg, and P.-
P. DeWolf, Post randomisation for statistical disclosure con-
trol: theory and implementation, 1997. Research Paper no.
9731. Voorburg: Statistics Netherlands.

27. D. B. Rubin, Discussion of statistical disclosure limitation, J.
Official Stat., 9(2): 461–468, 1993.

28. J. P. Reiter, Satisfying disclosure restrictions with synthetic
data sets, J. Official Stat., 18(4): 531–544, 2002.

29. W. E. Winkler, Re-identification methods for evaluating the
confidentiality of analytically valid microdata, Rese. in Offi-
cial Stat., 1(2): 50–69, 1998.

30. J. Domingo-Ferrer and V. Torra, A quantitative comparison of
disclosure control methods for microdata, in P. Doyle, J. I.
Lane, J. J. M. Theeuwes, and L. Zayatz (eds.), Confidentiality,
Disclosure and Data Access: Theory and Practical Applications
for Statistical Agencies, Amsterdam: North-Holland, 2001,
pp. 111–134.

31. F. Sebé, J. Domingo-Ferrer, J. M. Mateo-Sanz, and V. Torra,
Post-masking optimization of the tradeoff between information
loss and disclosure risk in masked microdata sets, in Inference
Control in Statistical Databases, Lecture Notes in Computer
Science, vol. 2316. Springer-Verlag, 2002, pp. 163–171.

32. J. M. Mateo-Sanz, J. Domingo-Ferrer, and F. Sebé, Probabil-
istic information loss measures in confidentiality protection
of continuous microdata, Data Min. Knowl. Disc., 11(2):
181–193, 2005.

33. I. P. Fellegi and A. B. Sunter, A theory for record linkage,
J. Am. Stat. Associat., 64(328): 1183–1210, 1969.

34. G. T. Duncan, S. E. Fienberg, R. Krishnan, R. Padman, and S.
F. Roehrig, Disclosure limitation methodsand information loss
for tabular data, in P. Doyle, J. I. Lane, J. J. Theeuwes, and L.
V. Zayatz (eds.), Confidentiality, Disclosure and Data Access:
Theory and Practical Applications for Statistical Agencies,
Amsterdam: North-Holland, 2001, pp. 135–166.

35. P. Samarati and L. Sweeney, Protecting privacy when disclos-
ing information: k-anonymity and its enforcement through
generalization and suppression, Technical Report, SRI Inter-
national, 1998.

FURTHER READING

A. Hundepool, J. Domingo-Ferrer, L. Franconi, S. Giessing, R.
Lenz, J. Longhurst, E. Schulte-Nordholt, G. Seri, and P.-P. DeWolf,
Handbook on Statistical Disclosure Control (version 1.0), Eurostat
(CENEX SDC Project Deliverable), 2006. Available: http://
neon.vb.cbs.nl/CENEX/.

L. Willenborg and T. DeWaal, Elements of Statistical Disclosure
Control, New York: Springer-Verlag, 2001.

JOSEP DOMINGO-FERRER

Rovira i Virgili University
Tarragona, Catalonia, Spain

10 STATISTICAL DATABASES



S

SYSTEM MONITORING

The term system refers to a computer system that is com-
posed of hardware and software for data processing. System
monitoring collects information about the behavior of a
computer system while the system is running. What is of
interest here is run-time information that cannot be
obtained by static analysis of programs. All collected infor-
mation is essentially about system correctness or perfor-
mance. Such information is vital for understanding how a
system works. It can be used for dynamic safety checking
and failure detection, program testing and debugging,
dynamic task scheduling and resource allocation, per-
formance evaluation and tuning, system selection and
design, and so on.

COMPONENTS AND TECHNIQUES FOR SYSTEM
MONITORING

System monitoring has three components. First, the jobs to
be run and the items to be measured are determined. Then,
the system to be monitored is modified to run the jobs and
take the measurements. This is the major component.
Monitoring is accomplished in two operations: triggering
and recording (1). Triggering, also called activation, is the
observation and detection of specified events during system
execution. Recording is the collection and storage of data
pertinent to those events. Finally, the recorded data are
analyzed and displayed.

The selection and characterization of the jobs to be run
for monitoring is important, because it is the basis for
interpreting the monitoring results and guaranteeing
that the experiments are repeatable. A collection of jobs
to be run is called a test workload (2–4); for performance
monitoring, this refers mainly to the load rather than the
work, or job. A workload can be real or synthetic. A real
workload consists of jobs that are actually performed by the
users of the system to be monitored. A synthetic workload,
usually called a benchmark, consists of batch programs or
interactive scripts that are designed to represent the actual
jobs of interest. Whether a workload is real or synthetic
does not affect the monitoring techniques.

Items to be measured are determined by the applica-
tions. They can be about the entire system or about differ-
ent levels of the system, from user-level application
programs to operating systems to low-level hardware cir-
cuits. For the entire system, one may need to know whether
jobs are completed normally and performance indices such
as job completion time, called turnaround time in batch
systems and response time in interactive systems, or the
number of jobs completed per unit of time, called through-
put (3). For application programs, one may be interested in
how often a piece of code is executed, whether a variable is
read between two updates, or how many messages are sent
by a process. For operating systems, one may need to know
whether the CPU is busy at certain times, how often paging

occurs, or how long an I/O operation takes. For hardware
circuits, one may need to know how often a cache element is
replaced, or whether a network wire is busy.

Monitoring can use either event-driven or sampling
techniques (3). Event-driven monitoring is based on obser-
ving changes of system state, either in software programs
or hardware circuits, that are caused by events of interest,
such as the transition of the CPU from busy to idle. It is
often implemented as special instructions for interrupt–
intercept that are inserted into the system to be monitored.
Sampling monitoring is based on probing at selected time
intervals, into either software programs or hardware cir-
cuits, to obtain data of interest, such as what kinds of
processes occupy the CPU. It is often implemented as timer
interrupts during which the state is recorded. Note that the
behavior of the system under a given workload can be
simulated by a simulation tool. Thus monitoring that
should be performed on the real system may be carried
out on the simulation tool. Monitoring simulation tools is
useful, or necessary, for understanding the behavior of
models of systems still under design.

Monitoring can be implemented using software, hard-
ware, or both (1,3–5). Software monitors are programs that
are inserted into the system to be monitored. They are
triggered upon appropriate interrupts or by executing
the inserted code. Data are recorded in buffers in the
working memory of the monitored system and, when neces-
sary, written to secondary storage. Hardware monitors are
electronic devices that are connected to specific system
points. They are triggered upon detecting signals of inter-
est. Data are recorded in separate memory independent of
the monitored system. Hybrid monitors combine techni-
ques from software and hardware. Often, the triggering is
carried out using software, and the data recording is carried
out using hardware.

The data collected by a monitor must be analyzed and
displayed. Based on the way in which results are analyzed
and displayed, a monitor is classified as an on-line monitor
or a batch monitor. On-line monitors analyze and display
the collected data in real-time, either continuously or at
frequent intervals, while the system is still being moni-
tored. This is also called continuous monitoring (6). Batch
monitors collect data first and analyze and display them
later using a batch program. In either case, the analyzed
data can be presented using many kinds of graphic charts,
as well as text and tables.

ISSUES IN SYSTEM MONITORING

Major issues of concern in monitoring are at what levels we
can obtain information of interest, what modifications to
the system are needed to perform the monitoring, the
disturbance of such modifications to the system behavior,
and the cost of implementing such modifications. There are
also special concerns for monitoring real-time systems,
parallel architectures, and distributed systems.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Activities and data structures visible to the user process
can be monitored at the application-program level. These
include function and procedure calls and returns, assign-
ments to variables, loopings and branchings, inputs and
outputs, as well as synchronizations. Activities and data
structures visible to the kernel can be monitored at the
operating-system level; these include system state transi-
tions, external interrupts, system calls, as well as data
structures such as process control blocks. At the hardware
level, various patterns of signals on the buses can be
monitored. Obviously, certain high-level information can-
not be obtained by monitoring at a lower level, and vice
versa. It is worth noting that more often high-level infor-
mation can be used to infer low-level information if one
knows enough about all the involved components, such as
the compilers, but the converse is not true, simply because
more often multiple high-level activities are mapped to the
same low-level activity.

In general, the software and hardware of a system are
not purposely designed to be monitored. This often restricts
what can be monitored in a system. To overcome these
restrictions, modifications to the system, called instrumen-
tation, are often required, for example, inserting interrupt
instructions or attaching hardware devices. The informa-
tion obtainable with a monitor and the cost of measure-
ments determine the measurability of a computer system
(3,7). At one extreme, every system component can be
monitored at the desired level of detail, while at the other
extreme, only the external behavior of the system as a
whole can be monitored. When a low degree of detail is
required, a macroscopic analysis, which requires measure-
ment of global indices such as turnaround time and
response time, is sufficient. When a high degree of detail
is needed, a microscopic analysis, which requires, say, the
time of executing each instruction or loading each indivi-
dual page, must be performed.

Monitoring often interferes with the system behavior,
since it may consume system resources, due to the time of
performing monitoring activities and the space of storing
collected data, which are collectively called the overhead of
monitoring. A major issue in monitoring is to reduce the
perturbation. It is easy to see that a macroscopic analysis
incurs less interference than a microscopic analysis.
Usually, sampling monitoring causes less interference
than event-driven monitoring. In terms of implementation,
software monitors always interfere and sometimes inter-
fere greatly with the system to be monitored, but hardware
monitors cause little or no interference.

Implementing monitoring usually has a cost, since it
requires modification to the system to be monitored. There-
fore, an important concern is to reduce the cost. Software
monitors are simply programs, so they are usually less
costly to develop and easier to change. In contrast, hard-
ware monitors require separate hardware devices and thus
are usually more difficult to build and modify.

Finally, special methods and techniques are necessary
for monitoring real-time systems, parallel architectures,
and distributed systems. Real-time systems have real-time
constraints, so interference becomes much more critical.
For parallel architectures, monitoring needs to handle
issues arising from interprocessor communication and

scheduling, cache behavior, and shared memory behavior.
For distributed systems, monitoring must take into account
ordering of distributed events, message passing, synchro-
nization, as well as various kinds of failures.

MONITORING PRINCIPLES

A set of principles is necessary to address all the issues
involved in monitoring. The major task is to determine the
monitoring techniques needed based on the applications
and the trade-offs. Methods and tools that facilitate mon-
itoring are also needed.

Consider the major task. Given the desired information,
one first needs to determine all levels that can be monitored
to obtain the information. For each possibility, one deter-
mines all modifications of the system that are needed to
perform the monitoring. Then one needs to assess the
perturbation that the monitoring could cause. Finally,
one must estimate the cost of the implementations. Clearly,
unacceptable perturbation or cost helps reduce the possi-
bilities. Then, one needs to evaluate all possibilities based
on the following trade-offs.

First, monitoring at a higher level generally requires
less modification to the system and has smaller implemen-
tation cost, but it may have larger interference with the
system behavior. Thus one principle is to monitor at the
highest level whose interference is acceptable. This implies
that, if a software monitor has acceptable interference, one
should avoid using a hardware monitor. Furthermore, to
reduce implementation cost, for a system being designed or
that is difficult to measure, one can use simulation tools
instead of the real system if credibility can be established.

Second, macroscopic analysis generally causes less per-
turbation to the system behavior than microscopic analysis,
and it often requires less modification to the system and has
smaller cost. Therefore, a second principle is to use macro-
scopic analysis instead of microscopic analysis if possible.
While sampling is a statistical technique that records data
only at sampled times, event detection is usually used to
record all potentially interesting events and construct the
execution trace. Thus one should avoid using tracing if the
desired information can be obtained by sampling.

Additionally, one should consider workload selection
and data analysis. Using benchmarks instead of real work-
load makes the experiments repeatable and facilitates
comparison of monitoring results. It can also reduce the
cost, since running real jobs could be expensive or impos-
sible. Thus using benchmarks is preferred, but a number of
common mistakes need to be carefully avoided (4). Data
analysis involves a separate trade-off: the on-line method
adds time overhead but can reduce the space overhead.
Thus even when monitoring results do not need to be
presented in an on-line fashion, on-line analysis can be
used to reduce the space overhead and, when needed,
separate processors can be used to reduce also the time
overhead.

Finally, special applications determine special monitor-
ing principles. For example, for monitoring real-time sys-
tems, perturbation is usually not tolerable, but a full trace
is often needed to understand system behavior. To address

2 SYSTEM MONITORING



this problem, one may perform microscopic monitoring
based on event detection and implement monitoring in
hardware so as to sense signals on buses at high speed
and with low overhead. If monitoring results are needed in
an on-line fashion, separate resources for data analysis
must be used. Of course, all these come at a cost.

To facilitate monitoring, one needs methods and tools for
instrumenting the system, efficient data structures and
algorithms for storing and manipulating data, and tech-
niques for relating monitoring results to the source
program to identify problematic code sections. Instrumen-
tation of programs can be done via program transformation,
by augmenting the source code, the target code, the run-
time environment, the operating system, or the hardware.
Often, combinations of these techniques are used. Efficient
data structures and algorithms are needed to handle
records of various execution information, by organizing
them in certain forms of tables and linked structures.
They are critical for reducing monitoring overhead. Addi-
tional information from the compiler and other involved
components can be used to relate monitoring results with
points in source programs. Monitoring results can also help
select candidate jobs for further monitoring.

In summary, a number of trade-offs are involved in
determining the monitoring techniques adopted for a par-
ticular application. Tools should be developed and used to
help instrument the system, reduce the overhead, and
interpret the monitoring results.

WORKLOAD SELECTION

To understand how a complex system works, one first needs
to determine what to observe. Thus before determining how
to monitor a system, one must determine what to monitor
and why it is important to monitor them. This enables one
to determine the feasibility of the monitoring, based on the
perturbation and the cost, and then allows repeating and
justifying the experiments.

Selecting candidate jobs to be run and measurements to
be taken depends on the objectives of monitoring. For
monitoring that is aimed at performance behavior, such
as system tuning or task scheduling, one needs to select the
representative load of work. For monitoring that is aimed at
functional correctness, such as for debugging and fault-
tolerance analysis, one needs to isolate the ‘‘buggy’’ or
faulty parts.

A real workload best reflects system behavior under
actual usage, but it is usually unnecessarily expensive,
complicated, or even impossible to use as a test workload.
Furthermore, the test results are not easily repeated and
are not good for comparison. Therefore, a synthetic work-
load is normally used. For monitoring the functional cor-
rectness of a system, a test suite normally consists of data
that exercise various parts of the system, and monitoring at
those parts is set up accordingly. For performance monitor-
ing, the load of work, rather than the actual jobs, is the
major concern, and the approaches below have been used
for obtaining test workloads (3,4,8).

Addition instruction was used to measure early com-
puters, which had mainly a few kinds of instructions.

Instruction mixes, each specifying various instructions
together with their usage frequencies, were used when
the varieties of instructions grew. Then, when pipelining,
instruction caching, and address translation mechanisms
made computer instruction times highly variable, kernels,
which are higher-level functions, such as matrix inver-
sion and Ackermann’s function, which represent services
provided by the processor, came into use. Later on, as input
and output became an important part of real workload,
synthetic programs, which are composed of exerciser
loops that make a specified number of service calls or I/O
requests, came into use. For domain-specific kinds of
applications, such as banking or airline reservation, appli-
cation benchmarks, representative subsets of the functions
in the application that make use of all resources in the
system, are used. Kernels, synthetic programs, and appli-
cation benchmarks are all called benchmarks. Popular
benchmarks include the sieve kernel, the LINPACK
benchmarks, the debit–credit benchmark, and the SPEC
benchmark suite (4).

Consider monitoring the functional behavior of a sys-
tem. For general testing, the test suite should have com-
plete coverage, that is, all components of the system should
be exercised. For debugging, one needs to select jobs that
isolate the problematic parts. This normally involves
repeatedly selecting more specialized jobs and more focused
monitoring points based on monitoring results. For correct-
ness checking at given points, one needs to select jobs that
lead to different possible results at those points and monitor
at those points. Special methods are used for special classes
of applications; for example, for testing fault-tolerance in
distributed systems, message losses or process failures can
be included in the test suite.

For system performance monitoring, selection should
consider the services exercised as well as the level of detail
and representativeness (4). The starting point is to consider
the system as a service provider and select the workload
and metrics that reflect the performance of services pro-
vided at the system level and not at the component level.
The amount of detail in recording user requests should be
determined. Possible choices include the most frequent
request, the frequency of request types, the sequence of
requests with time stamps, and the average resource
demand. The test workload should also be representative
of the real application. Representativeness is reflected at
different levels (3) at the physical level, the consumptions
of hardware and software resources should be representa-
tive; at the virtual level, the logical resources that are closer
to the user’s point of view, such as virtual memory space,
should be representative; at the functional level, the test
workload should include the applications that perform the
same functions as the real workload.

Workload characterization is the quantitative descrip-
tion of a workload (3,4). It is usually done in terms of
workload parameters that can affect system behavior.
These parameters are about service requests, such as
arrival rate and duration of request, or about measured
quantities, such as CPU time, memory space, amount of
read and write, or amount of communication, for which
system independent parameters are preferred. In addition,
various techniques have been used to obtain statistical

SYSTEM MONITORING 3



quantities, such as frequencies of instruction types, mean
time for executing certain I/O operations, and probabilities
of accessing certain devices. These techniques include
averaging, histograms, Markov models, and clustering.
Markov models specify the dependency among requests
using a transition diagram. Clustering groups similar com-
ponents in a workload in order to reduce the large number
of parameters for these components.

TRIGGERING MECHANISM

Monitoring can use either event-driven or sampling tech-
niques for triggering and data recording (3). Event-driven
techniques can lead to more detailed and accurate informa-
tion, while sampling techniques are easier to implement
and have smaller overhead. These two techniques are not
mutually exclusive; they can coexist in a single tool.

Event-Driven Monitoring

An event in a computer system is any change of the system’s
state, such as the transition of a CPU from busy to idle, the
change of content in a memory location, or the occurrence of
a pattern of signals on the memory bus. Therefore, a way of
collecting data about system activities is to capture all
associated events and record them in the order they occur.
A software event is an event associated with a program’s
function, such as the change of content in a memory location
or the start of an I/O operation. A hardware event is a
combination of signals in the circuit of a system, such as
a pattern of signals on the memory bus or signals sent to the
disk drive.

Event-driven monitoring using software is done by
inserting a special trap code or hook in specific places of
the application program or the operating system. When an
event to be captured occurs, the inserted code causes con-
trol to be transferred to an appropriate routine. The routine
records the occurrence of the event and stores relevant data
in a buffer area, which is to be written to secondary storage
and/or analyzed, possibly at a later time. Then the control is
transferred back. The recorded events and data form an
event trace. It can provide more information than any other
method on certain aspects of a system’s behavior.

Producing full event traces using software has high
overhead, since it can consume a great deal of CPU time
by collecting and analyzing a large amount of data. There-
fore, event tracing in software should be selective, since
intercepting too many events may slow down the normal
execution of the system to an unacceptable degree. Also, to
keep buffer space limited, buffer content must be written to
secondary storage with some frequency, which also con-
sumes time; the system may decide to either wait for the
completion of the buffer transfer or continue normally with
some data loss.

In most cases, event-driven monitoring using software is
difficult to implement, since it requires that the application
program or the operating system be modified. It may also
introduce errors. To modify the system, one must under-
stand its structure and function and identify safe places for
the modifications. In some cases, instrumentation is not
possible when the source code of the system is not available.

Event-driven monitoring in hardware uses the same
techniques as in software, conceptually and in practice,
for handling events. However, since hardware uses sepa-
rate devices for trigger and recording, the monitoring over-
head is small or zero. Some systems are even equipped with
hardware that makes event tracing easier. Such hardware
can help evaluate the performance of a system as well as
test and debug the hardware or software. Many hardware
events can also be detected via software.

Sampling Monitoring

Sampling is a statistical technique that can be used when
monitoring all the data about a set of events is unnecessary,
impossible, or too expensive. Instead of monitoring the
entire set, one can monitor a part of it, called a sample.
From this sample, it is then possible to estimate, often with
a high degree of accuracy, some parameters that charac-
terize the entire set. For example, one can estimate the
proportion of time spent in different code segments by
sampling program counters instead of recording the event
sequence and the exact event count; samples can also be
taken to estimate how much time different kinds of pro-
cesses occupy CPU, how much memory is used, or how often
a printer is busy during certain runs.

In general, sampling monitoring can be used for mea-
suring the fractions of a given time interval each system
component spends in its various states. It is easy to imple-
ment using periodic interrupts generated by a timer. Dur-
ing an interrupt, control is transferred to a data-collection
routine, where relevant data in the state are recorded. The
data collected during the monitored interval are later
analyzed to determine what happened during the interval,
in what ratios the various events occurred, and how differ-
ent types of activities were related to each other. Besides
timer interrupts, most modern architectures also include
hardware performance counters, which can be used for
generating periodic interrupts (9). This helps reduce the
need for additional hardware monitoring.

The accuracy of the results is determined by how repre-
sentative a sample is. When one has no knowledge of
the monitored system, random sampling can ensure repre-
sentativeness if the sample is sufficiently large. It should
be noted that, since the sampled quantities are functions
of time, the workload must be stationary to guarantee
validity of the results. In practice, operating-system
workload is rarely stationary during long periods of time,
but relatively stationary situations can usually be obtained
by dividing the monitoring interval into short periods of,
say, a minute and grouping homogeneous blocks of data
together.

Sampling monitoring has two major advantages. First,
the monitored program need not be modified. Therefore,
knowledge of the structure and function of the monitored
program, and often the source code, is not needed for
sampling monitoring. Second, sampling allows the system
to spend much less time in collecting and analyzing a much
smaller amount of data, and the overhead can be kept less
than 5% (3,9,10). Furthermore, the frequency of the inter-
rupts can easily be adjusted to obtain appropriate sample
size and appropriate overhead. In particular, the overhead

4 SYSTEM MONITORING



can also be estimated easily. All these make sampling
monitoring particularly good for performance monitoring
and dynamic system resource allocation.

IMPLEMENTATION

System monitoring can be implemented using software
or hardware. Software monitors are easier to build and
modify and are capable of capturing high-level events and
relating them to the source code, while hardware monitors
can capture rapid events at circuit level and have lower
overhead.

Software Monitoring

Software monitors are used to monitor application pro-
grams and operating systems. They consist solely of instru-
mentation code inserted into the system to be monitored.
Therefore, they are easier to build and modify. At each
activation, the inserted code is executed and relevant data
are recorded, using the CPU and memory of the monitored
system. Thus software monitors affect the performance and
possibly the correctness of the monitored system and are
not appropriate for monitoring rapid events. For example, if
the monitor executes 100 instructions at each activation,
and each instruction takes 1 ms, then each activation takes
0.1 ms; to limit the time overhead to 1%, the monitor must
be activated at intervals of 10 ms or more, that is, less than
100 monitored events should occur per second.

Software monitors can use both event-driven and sam-
pling techniques. Obviously, a major issue is how to reduce
the monitoring overhead while obtaining sufficient infor-
mation. When designing monitors, there may first be a
tendency to collect as much data as possible by tracing or
sampling many activities. It may even be necessary to add a
considerable amount of load to the system or to slow down
the program execution. After analyzing the initial results,
it will be possible to focus the experiments on specific
activities in more detail. In this way, the overhead can
usually be kept within reasonable limits. Additionally,
the amount of the data collected may be kept to a minimum
by using efficient data structures and algorithms for sto-
rage and analysis. For example, instead of recording the
state at each activation, one may only need to maintain a
counter for the number of times each particular state has
occurred, and these counters may be maintained in a hash
table (9).

Inserting code into the monitored system can be done in
three ways: (1) adding a program, (2) modifying the appli-
cation program, or (3) modifying the operating system
(3). Adding a program is simplest and is generally pre-
ferred to the other two, since the added program can easily
be removed or added again. Also, it maintains the inte-
grity of the monitored program and the operating system.
It is adequate for detecting the activity of a system or a
program as a whole. For example, adding a program that
reads the system clock before and after execution of a
program can be used to measure the execution time.

Modifying the application program is usually used for
event-driven monitoring, which can produce an execution
trace or an exact profile for the application. It is based on the

use of software probes, which are groups of instructions
inserted at critical points in the program to be monitored.
Each probe detects the arrival of the flow of control at the
point it is placed, allowing the execution path and the
number of times these paths are executed to be known.
Also, relevant data in registers and in memory may be
examined when these paths are executed. It is possible to
perform sampling monitoring by using the kernel interrupt
service from within an application program, but it can be
performed more efficiently by modifying the kernel.

Modifying the kernel is usually used for monitoring the
system as a service provider. For example, instructions can
be inserted to read the system clock before and after a
service is provided in order to calculate the turnaround
time or response time; this interval cannot be obtained from
within the application program. Sampling monitoring can
be performed efficiently by letting an interrupt handler
directly record relevant data. The recorded data can be
analyzed to obtain information about the kernel as well as
the application programs.

Software monitoring, especially event-driven monitor-
ing in the application programs, makes it easy to obtain
descriptive data, such as the name of the procedure that is
called last in the application program or the name of the file
that is accessed most frequently. This makes it easy to
correlate the monitoring results with the source program,
to interpret them, and to use them.

There are two special software monitors. One keeps
system accounting logs (4,6) and is usually built into the
operating system to keep track of resource usage; thus
additional monitoring might not be needed. The other
one is program execution monitor (4,11), used often for
finding the performance bottlenecks of application pro-
grams. It typically produces an execution profile, based
on event detection or statistical sampling. For event-driven
precise profiling, efficient algorithms have been developed
to keep the overhead to a minimum (12). For sampling
profiling, optimizations have been implemented to yield an
overhead of 1% to 3%, so the profiling can be employed
continuously (9).

Hardware Monitoring

With hardware monitoring, the monitor uses hardware to
interface to the system to be monitored (5,13–16). The
hardware passively detects events of interest by snooping
on electric signals in the monitored system. The monitored
system is not instrumented, and the monitor does not share
any of the resources of the monitored system. The main
advantage of hardware monitoring is that the monitor does
not interfere with the normal functioning of the monitored
system and rapid events can be captured. The disadvantage
of hardware monitoring is its cost and that it is usually
machine dependent or at least processor dependent. The
snooping device and the signal interpretation are bus and
processor dependent.

In general, hardware monitoring is used to monitor the
run-time behavior of either hardware devices or software
modules. Hardware devices are generally monitored to
examine issues such as cache accesses, cache misses, mem-
ory access times, total CPU times, total execution times, I/O

SYSTEM MONITORING 5



requests, I/O grants, and I/O busy times. Software modules
are generally monitored to debug the modules or to examine
issues such as the bottlenecks of a program, the deadlocks,
or the degree of parallelism.

A hardware monitor generally consists of a probe, an
event filter, a recorder, and a real-time clock. The probe is
high-impedance detectors that interface with the buses of
the system to be monitored to latch the signals on the buses.
The signals collected by the probe are manipulated by the
event filter to detect events of interest. The data relevant to
the detected event along with the value of the real-time
clock are saved by the recorder. Based on the implementa-
tion of the event filter, hardware tools can be classified as
fixed hardware tools, wired program hardware tools, and
stored program hardware tools (5,13).

With fixed hardware tools, the event filtering mechan-
ism is completely hard-wired. The user can select neither
the events to be detected nor the actions to be performed
upon detection of an event. Such tools are generally
designed to measure specific parameters and are often
incorporated into a system at design time. Examples of
fixed hardware tools are timing meters and counting
meters. Timing meters or timers measure the duration of
an activity or execution time, and counting meters or coun-
ters count occurrences of events, for example, references to
a memory location. When a certain value is reached in a
timer (or a counter), an electronic pulse is generated as an
output of the timer (or the counter), which may be used to
activate certain operations, for instance, to generate an
interrupt to the monitored system.

Wired-program hardware tools allow the user to detect
different events by setting the event filtering logic. The
event filter of a wired-program hardware tool consists of a
set of logic elements of combinational and sequential cir-
cuits. The interconnection between these elements can be
selected and manually manipulated by the user so as to
match different signal patterns and sequences for different
events. Thus wired-program tools are more flexible than
fixed hardware tools.

With stored-program hardware tools, filtering func-
tions can be configured and set up by software. Generally,
a stored-program hardware tool has its own processor,
that is, its own computer. The computer executes pro-
grams to set up filtering functions, to define actions in
response to detected events, and to process and display
collected data. Their ability to control filtering makes
stored-program tools more flexible and easier to use.
Logical state analyzers are typical examples of stored-
program hardware tools. With a logical state analyzer,
one can specify states to be traced, define triggering
sequences, and specify actions to be taken when certain
events are detected. In newer logical state analyzers, all
of this can be accomplished through a graphical user
interface, making them very user-friendly.

Hybrid Monitoring

One of the drawbacks of the hardware monitoring approach
is that as integrated circuit techniques advance, more
functions are built on-chip. Thus desired signals might
not be accessible, and the accessible information might

not be sufficient to determine the behavior inside the
chip. For example, with increasingly sophisticated caching
algorithms implemented for on-chip caches, the informa-
tion collected from external buses may be insufficient to
determine what data need to be stored. Prefetched instruc-
tions and data might not be used by the processor, and some
events can only be identified by a sequence of signal pat-
terns rather than by a single address or instruction. There-
fore passively snooping on the bus might not be effective.
Hybrid monitoring is an attractive compromise between
intrusive software monitoring and expensive nonintrusive
hardware monitoring.

Hybrid monitoring uses both software and hardware to
perform monitoring activities (5,16–18). In hybrid moni-
toring, triggering is accomplished by instrumented soft-
ware and recording is performed by hardware. The
instrumented program writes the selected data to a hard-
ware interface. The hardware device records the data at
the hardware interface along with other data such as the
current time. Perturbation to the monitored system is
reduced by using hardware to store the collected data
into a separate storage device.

Current hybrid monitoring techniques use two different
triggering approaches. One has a set of selected memory
addresses to trigger data recording. When a selected
address is detected on the system address bus, the moni-
toring device records the address and the data on the
system data bus. This approach is called memory-mapped
monitoring. The other approach uses the coprocessor
instructions to trigger event recording. The recording
unit acts as a coprocessor that executes the coprocessor
instructions. This is called coprocessor monitoring.

With memory-mapped monitoring, the recording part of
the monitor acts like a memory-mapped output device with
a range of the computer’s address space allocated to it
(5,16,17). The processor can write to the locations in that
range in the same way as to the rest of the memory. The
system or program to be monitored is instrumented to
write to the memory locations representing different
events. The recording section of the monitor generally
contains a comparator, a clock and timer, an overflow con-
trol, and an event buffer. The clock and timer provide the
time reference for events. The resolution of the clock
guarantees that no two successive events have the same
time stamp. The comparator is responsible for checking the
monitored system’s address bus for designated events.
Once such an address is detected, the matched address,
the time, and the data on the monitored system’s data bus
are stored in the event buffer. The overflow control is used
to detect events lost due to buffer overflow.

With coprocessor monitoring, the recording part is
attached to the monitored processor through a coprocessor
interface, like a floating-point coprocessor (18). The recor-
der contains a set of data registers, which can be accessed
directly by the monitored processor through coprocessor
instructions. The system to be monitored is instrumented
using two types of coprocessor instructions: data instruc-
tions and event instructions. Data instructions are used
to send event-related information to the data registers
of the recorder. Event instructions are used to inform the
recorder of the occurrence of an event. When an event

6 SYSTEM MONITORING



instruction is received by the recorder, the recorder saves
its data registers, the event type, and a time stamp.

DATA ANALYSIS AND PRESENTATION

The collected data are voluminous and are usually not in a
form readable or directly usable, especially low-level data
collected in hardware. Presenting these data requires auto-
mated analyses, which may be simple or complicated,
depending on the applications. When monitoring results
are not needed in an on-line fashion, one can store all
collected data, at the expense of the storage space, and
analyze them off-line; this reduces the time overhead of
monitoring caused by the analysis. For monitoring that
requires on-line data analysis, efficient on-line algorithms
are needed to incrementally process the collected data, but
such algorithms are sometimes difficult to design.

The collected data can be of various forms (4). First,
they can be either qualitative or quantitative. Qualitative
data form a finite category, classification, or set, such as
the set {busy, idle} or the set of weekdays. The elements
can be ordered or unordered. Quantitative data are
expressed numerically, for example, using integers or float-
ing-point numbers. They can be discrete or continuous. It is
easy to see that each kind of data can be represented in a
high-level programming language and can be directly dis-
played as text or numbers.

These data can be organized into various data struc-
tures during data analysis, as well as during data col-
lection, and presented as tables or diagrams. Tables and
diagrams such as line charts, bar charts, pie charts,
and histograms are commonly used for all kinds of data
presentation, not just for monitoring. The goal is to make
the most important information the most obvious, and
concentrate on one theme in each table or graph; for
example, concentrate on CPU utilization over time, or
on the proportion of time various resources are used.
With the advancement of multimedia technology, moni-
tored data are now frequently animated. Visualization
helps greatly in interpreting the measured data. Moni-
tored data may also be presented using hypertext or
hypermedia, allowing details of the data to be revealed
in a step-by-step fashion.

A number of graphic charts have been developed spe-
cially for computer system performance analysis. These
include Gantt charts and Kiviat graphs (4).

Gantt charts are used for showing system resource
utilization, in particular, the relative duration of a number
of Boolean conditions, each denoting whether a resource is
busy or idle. Figure 1 is a sample Gantt chart. It shows the
utilization of three resources: CPU, I/O channel, and net-
work. The relative sizes and positions of the segments are
arranged to show the relative overlap. For example, the
CPU utilization is 60%, I/O 50%, and network 65%. The
overlap between CPU and I/O is 30%, all three are used
during 20% of the time, and the network is used alone 15%
of the time.

A Kiviat graph is a circle with unit radius and in which
different radial axes represent different performance
metrics. Each axis represents a fraction of the total time

during which the condition associated with the axis is true.
The points corresponding to the values on the axis can be
connected by straight-line segments, thereby defining a
polygon. Figure 2 is a sample Kiviat graph. It shows the
utilization of CPU and I/O channel. For example, the CPU
unitization is 60%, I/O 50%, and overlap 30%. Various
typical shapes of Kiviat graphs indicate how loaded and
balanced a system is. Most often, an even number of metrics
are used, and metrics for which high is good and for which
low is good alternate in the graph.

APPLICATIONS

From the perspective of application versus system, mon-
itoring can be classified into two categories: that required
by the user of a system and that required by the system
itself. For example, for performance monitoring, the former
concerns the utilization of resources, including evaluating
performance, controlling usage, and planning additional
resources, and the latter concerns the management of the
system itself, so as to allow the system to adapt itself
dynamically to various factors (3).

From a user point of view, applications of monitoring can
be divided into two classes: (1) testing and debugging, and
(2) performance analysis and tuning. Dynamic system
management is an additional class that can use techniques
from both classes.

Testing and Debugging

Testing and debugging are aimed primarily at system cor-
rectness. Testing checks whether a system conforms to its
requirements, while debugging looks for sources of bugs.
They are two major activities of all software development.

Network

I/O

CPU

100%80%60%40%20%

20 20

30 20

60

10 15

0%

Figure 1. A sample Gantt chart for utilization profile.

CPU and
I/O busy

30%

CPU busy
60%

I/O busy
50%

Figure 2. A sample Kiviat graph for utilization profile.

SYSTEM MONITORING 7



Systems are becoming increasingly complex, and static
methods, such as program verification, have not caught
up. As a result, it is essential to look for potential problems
by monitoring dynamic executions.

Testing involves monitoring system behavior closely
while it runs a test suite and comparing the monitoring
results with the expected results. The most general strat-
egy for testing is bottom-up: unit test, integration test, and
system test. Starting by running and monitoring the func-
tionality of each component separately helps reduce the
total amount of monitoring needed. If any difference
between the monitoring results and the expected results
is found, then debugging is needed.

Debugging is the process of locating, analyzing,
and correcting suspected errors. Two main monitoring
techniques are used: single stepping and tracing. In
single-step mode, an interrupt is generated after each
instruction is executed, and any data in the state can be
selected and displayed. The user then issues a command to
let the system take another step. In trace mode, the user
selects the data to be displayed after each instruction is
executed and starts the execution at a specified location.
Execution continues until a specified condition on the data
holds. Tracing slows down the execution of the program, so
special hardware devices are needed to monitor real-time
operations.

Performance Evaluation and Tuning

A most important application of monitoring is performance
evaluation and tuning (3,4,8,13). All engineered systems
are subject to performance evaluation. Monitoring is the
first and key step in this process. It is used to measure
performance indices, such as turnaround time, response
time, throughput, and so forth.

Monitoring results can be used for performance evalua-
tion and tuning in as least the following six ways (4,6).
First, monitoring results help identify heavily used seg-
ments of code and optimize their performance. They can
also lead to the discovery of inefficient data structures that
cause excessive amount of memory access. Second, mon-
itoring can be used to measure system resource utilization
and find performance bottleneck. This is the most popular
use of computer system monitoring (6). Third, monitoring
results can be used to tune system performance by balan-
cing resource utilization and favoring interactive jobs. One
can repeatedly adjust system parameters and measure the
results. Fourth, monitoring results can be used for work-
load characterization and capacity planning; the latter
requires ensuring that sufficient computer resources will
be available to run future workloads with satisfactory
performance. Fifth, monitoring can be used to compare
machine performance for selection evaluation. Monitoring
on simulation tools can also be used in evaluating the
design of a new system. Finally, monitoring results can
be used to obtain parameters of models of systems and to
validate models. They can also be used to validate models,
that is, to verify the representativeness of a model. This is
done by comparing measurements taken on the real system
and on the model.

Dynamic System Management

For a system to manage itself dynamically, typically mon-
itoring is performed continuously, and data are analyzed in
an on-line fashion to provide dynamic feedback. Such feed-
back can be used for managing both the correctness and the
performance of the system.

An important class of applications is dynamic safety
checking and failure detection. It is becoming increasingly
important as computers take over more complicated
and safety-critical tasks, and it has wide applications in
distributed systems, in particular. Monitoring system
state, checking whether it is in an acceptable range, and
notifying appropriate agents of any anomalies are essen-
tial for the correctness of the system. Techniques for
testing and debugging can be used for such monitoring
and checking.

Another important class of applications is dynamic
task scheduling and resource allocation. It is particularly
important for real-time systems and service providers,
both of which are becoming increasingly widely used. For
example, monitoring enables periodic review of program
priorities on the basis of their CPU utilization and analysis
of page usage so that more frequently used pages can
replace less frequently used pages. Methods and tech-
niques for performance monitoring and tuning can be
used for these purposes. They have low overhead and
therefore allow the system to maintain a satisfactory level
of performance.

MONITORING REAL-TIME, PARALLEL,
AND DISTRIBUTED SYSTEMS

In a sequential system, the execution of a process is deter-
ministic, that is, the process generates the same output in
every execution in which the process is given the same
input. This is not true in parallel systems. In a parallel
system, the execution behavior of a parallel program in
response to a fixed input is indeterminate, that is, the
results may be different in different executions, depending
on the race conditions present among processes and syn-
chronization sequences exercised by processes (1). Moni-
toring interference may cause the program to face different
sets of race conditions and exercise different synchroniza-
tion sequences. Thus instrumentation may change the
behavior of the system. The converse is also true: removing
instrumentation code from a monitored system may cause
the system to behave differently.

Testing and debugging parallel programs are very diffi-
cult because an execution of a parallel program cannot
easily be repeated, unlike sequential programs. One chal-
lenge in monitoring parallel programs for testing and
debugging is to collect enough information with minimum
interference so the execution of the program can be
repeated or replayed. The execution behavior of a parallel
program is bound by the input, the race conditions, and
synchronization sequences exercised in that execution.
Thus data related to the input, race conditions, and syn-
chronization sequences need to be collected. Those events
are identified as process-level events (1). To eliminate the
behavior change caused by removing instrumentation code,

8 SYSTEM MONITORING



instrumentation code for process-level events may be kept
in the monitored system permanently. The performance
penalty can be compensated for by using faster hardware.

To monitor a parallel or distributed system, all the three
approaches—software, hardware, and hybrid—may be
employed. All the techniques described above are applic-
able. However, there are some issues special to parallel,
distributed, and real-time systems. These are discussed
below.

To monitor single-processor systems, only one event-
detection mechanism is needed because only one event of
interest may occur at a time. In a multiprocessor system,
several events may occur at the same time. With hardware
and hybrid monitoring, detection devices may be used for
each local memory bus and the bus for the shared memory
and I/O. The data collected can be stored in a common
storage device. To monitor distributed systems, each
node of the system needs to be monitored. Such a node is
a single processor or multiprocessor computer in its own
right. Thus each node should be monitored accordingly as if
it were an independent computer.

Events generally need to be recorded with the times at
which they occurred, so that the order of events can be
determined and the elapsed time between events can be
measured. The time can be obtained from the system being
monitored. In single-processor or tightly coupled multi-
processor systems, there is only one system clock, so it is
guaranteed that an event with an earlier time stamp
occurred before an event with a later time stamp. In other
words, events are totally ordered by their time stamps.
However, in distributed systems, each node has its own
clock, which may have a different reading from the clocks
on other nodes. There is no guarantee that an event with an
earlier time stamp occurred before an event with a later
time stamp in distributed systems (1).

In distributed systems, monitoring is distributed to each
node of the monitored system by attaching a monitor to each
node. The monitor detects events and records the data on
that node. In order to understand the behavior of the
system as a whole, the global state of the monitored system
at certain times needs to be constructed. To do this, the data
collected at each individual node must be transferred to a
central location where the global state can be built. Also,
the recorded times for the events on different nodes must
have a common reference to order them. There are two
options for transferring data to the central location. One
option is to let the monitor use the network of the monitored
system. This approach can cause interference to the com-
munication of the monitored system. To avoid such inter-
ference, an independent network for the monitor can be
used, allowing it to have a different topology and different
transmission speed than the network of the monitored
system. For the common time reference, each node has a
local clock and a synchronizer. The clock is synchronized
with the clocks on other nodes by the synchronizer.

The recorded event data on each node can be transmitted
immediately to a central collector or temporarily stored
locally and transferred later to the central location. Which
method is appropriate depends on how the collected
data will be used. If the data are used in an on-line fashion
for dynamic display or for monitoring system safety

constraints, the data should be transferred immediately.
This may require a high-speed network to reduce the
latency between the system state and the display of that
state. If the data are transferred immediately with a high-
speed network, little local storage is needed. If the data are
used in an off-line fashion, they can be transferred at any
time. The data can be transferred after the monitoring is
done. In this case, each node should have mass storage to
store its local data. There is a disadvantage with this
approach. If the amount of recorded data on nodes is not
evenly distributed, too much data could be stored at one
node. Building a sufficiently large data storage for every
node can be very expensive.

In monitoring real-time systems, a major challenge is
how to reduce the interference caused by the monitoring.
Real-time systems are those whose correctness depends not
only on the logical computation but also on the times at
which the results are generated. Real-time systems must
meet their timing constraints to avoid disastrous conse-
quences. Monitoring interference is unacceptable in most
real-time systems (1,14), since it may change not only the
logical behavior but also the timing behavior of the mon-
itored system. Software monitoring generally is unaccep-
table for real-time monitoring unless monitoring is
designed as part of the system (19). Hardware monitoring
has minimal interference to the monitored system, so it is
the best approach for monitoring real-time systems. How-
ever, it is very expensive to build, and sometimes it might
not provide the needed information. Thus hybrid monitor-
ing may be employed as a compromise.

CONCLUSION

Monitoring is an important technique for studying the
dynamic behavior of computer systems. Using collected
run-time information, users or engineers can analyze,
understand, and improve the reliability and performance
of complex systems. This article discussed basic concepts
and major issues in monitoring, techniques for event-
driven monitoring and sampling monitoring, and their
implementation in software monitors, hardware monitors,
and hybrid monitors. With the rapid growth of computing
power, the use of larger and more complex computer sys-
tems has increased dramatically, which poses larger chal-
lenges to system monitoring (20–22). Possible topics for
future study include:

� New hardware and software architectures are being
developed for emerging applications. New techniques
for both hardware and software systems are needed to
monitor the emerging applications.

� The amount of data collected during monitoring will be
enormous. It is important to determine an appropriate
level for monitoring and to represent this information
with abstractions and hierarchical structures.

� Important applications of monitoring include using
monitoring techniques and results to improve the
adaptability and reliability of complex software sys-
tems and using them to support the evolution of these
systems.

SYSTEM MONITORING 9



� Advanced languages and tools for providing more user-
friendly interfaces for system monitoring need to be
studied and developed.

BIBLIOGRAPHY

1. J. J. P. Tsai et al. Distributed Real-Time Systems: Monitoring,
Visualization, Debugging and Analysis, New York: Wiley,
1996.

2. D. Ferrari, Workload characterization and selection in compu-
ter performance measurement, IEEE Comput., 5(7): 18–24,
1972.

3. D. Ferrari, G. Serazzi, and A. Zeigner, Measurement and
Tuning of Computer Systems, Englewood Cliffs, NJ: Pre-
ntice-Hall, 1983.

4. R. Jain, The Art of Computer Systems Performance Analysis,
New York: Wiley, 1991.

5. P. McKerrow, Performance Measurement of Computer Sys-
tems, Reading, MA: Addison-Wesley, 1987.

6. G. J. Nutt, Tutorial: Computer system monitors, IEEE Com-
put., 8(11): 51–61, 1975.

7. L. Svobodova, Computer Performance Measurement and
Evaluation Methods: Analysis and Applications, New York:
Elsevier, 1976.

8. H. C. Lucas, Performance evaluation and monitoring, ACM
Comput. Surv., 3(3): 79–91, 1971.

9. J. M. Anderson et al., Continuous profiling: Where have all the
cycles gone, Proc. 16th ACM Symp. Operating Syst. Principles,
New York: ACM, 1997.

10. C. H. Sauer and K. M. Chandy, Computer Systems Per-
formance Modelling, Englewood Cliffs, NJ: Prentice-Hall,
1981.

11. B. Plattner and J. Nievergelt, Monitoring program execution:
A survey, IEEE Comput., 14(11): 76–93, 1981.

12. T. Ball and J. R. Larus, Optimally profiling and tracing
programs, ACM Trans. Program. Lang. Syst., 16: 1319–
1360, 1994.

13. D. Ferrari, Computer Systems Performance Evaluation,
Englewood Cliffs, NJ: Prentice-Hall, 1978.

14. B. Plattner, Real-time execution monitoring, IEEE Trans.
Softw. Eng., SE-10: 756–764, 1984.

15. B. Lazzerini, C. A. Prete, and L. Lopriore, A programmable
debugging aid for real-time software development, IEEE
Micro, 6(3): 34–42, 1986.

16. K. Kant and M. Srinivasan, Introduction to Computer System
Performance Evaluation, New York: McGraw-Hill, 1992.

17. D. Haban and D. Wybranietz, Real-time execution monitoring,
IEEE Trans. Softw. Eng., SE-16: 197–211, 1990.

18. M. M. Gorlick, The flight recorder: An architectural aid for
system monitoring, Proc. ACM/ONR Workshop Parallel Dis-
tributed Debugging, New York: ACM, May 1991, pp. 175–183.

19. S. E. Chodrow, F. Jahanian, and M. Donner, Run-time
monitoring of real-time systems, in R. Werner (ed.), Proc.
12th IEEE Real-Time Syst. Symp., Los Alamitos, CA: IEEE
Computer Society Press, 1991, pp. 74–83.

20. R. A. Uhlig and T. N. MudgeTrace-driven memory simulation:
A survey, ACM Comput. Surg., 29(2): 128–170, 1997.

21. M. Rosenblum et al., Using the SimOS machine simulator to
study complex computer systems, ACM Trans. Modeling Com-
put. Simulation, 7: 78–103, 1997.

22. D. R. Kaeli et al., Performance analysis on a CC-PUMA
prototype, IBM J. Res. Develop., 41: 205–214, 1997.

YANHONG A. LIU

Indiana University
Bloomington, Indiana

JEFFREY J. P. TSAI

University of Illinois
Chicago, Illinois

10 SYSTEM MONITORING



T

TEMPORAL DATABASES

A temporal database keeps time-varying data (past, pre-
sent, and/or future) and the capabilities to query the stored
data in contrast to a conventional database that stores only
the current and recent data. The maintenance of temporal
data is required in many application domains, such as
document management, medicine, spatial data, insurance,
financial data, and others.

Temporal extensions to common data models are avail-
able: relational, entity relationship, and object oriented
data models. Relational databases, because of their wide-
spread use and availability, are a good vehicle for demon-
strating the subtle issues in modeling and querying
temporal data. It also provides a base for handling temporal
data.

An obvious approach for handling temporal data within
the relational databases is to add one or more time columns
to a relation. Although this solution seems to be simple, it
does not address many subtle issues peculiar to temporal
data (i.e., comparing database states at two different time
instances or periods, capturing the periods for concurrent
events and accessing the times beyond these periods, hand-
ling attributes with multiple values at a time instance,
grouping and restructuring temporal data, etc). Addressing
these issues and their implications for modeling and query-
ing temporal data is important for the management of
temporal data.

Research in modeling and querying temporal data
started in the early 1980s and gained momentum from
then on. Several conferences were dedicated to the tem-
poral databases such as Temporal Aspects of Information
Systems (1987), Time Conferences (1994 and on), work-
shops on an Infrastructure on Temporal Databases (1993),
and Spatiotemporal Databases (1999–2006), as well as
the Dagstuhl Seminar on Temporal Databases (1997). In
the mean time, several books on temporal databases were
published.

REPRESENTING TEMPORAL DATA

Time

Time is continuous, dense, linearly increasing, and a total
order under�. So, time is the set of time points (instances)
T ¼ {. . . t0 . . . ti, ti þ 1, ti þ n, Now. . .1} where the symbol
Now represents the current time and its value advances as
the clock ticks. Time points beyond Now represent the
future until infinity (1). Figure 1 gives the time line. The
difference between two consecutive time points (ti and
ti þ 1) is one unit depending on the time granularity
used, such as day, month, year, and so on. Moreover,
the inside of a time unit is invisible regardless of its
duration unless a finer time granularity is used. It is
also customary to designate a relative time origin such
as t0 depending on the application domain.

Any subset of T is a temporal set. Time between two time
points, ti and ti þ n, is represented either as a closed interval
[ti, ti þ n] or as a half-open interval [ti, ti þ nþ 1). An
example for the temporal set is {2/07, 3/07, 4/07, 7/07, 8/07,
11/07} and [2/07, 4/07], [7/07, 9/07), and [11/07 12/07) are
the corresponding intervals. A temporal element (1) is a
finite union of intervals and it allows different representa-
tions for the same set of time points depending on the
intervals used. A noteworthy representation for a temporal
element is the one that contains the maximal intervals that
are not adjacent or do not overlap. One possible temporal
element, the maximal one for the temporal set given earlier
is {[2/07, 5/07) [ [7/07, 9/07) [ [11/07 12/07)}. Temporal
elements are closed under set-theoretic operations whereas
intervals are not. Any interval, temporal element, or tem-
poral set that includes Now expands as the time advances.
Moreover, Now can be replaced by the special symbols,
‘‘Until changed’’ or infinity (1).

Various aspects of objects and their attribute values
exist with respect to time (2). The time at which an attribute
value becomes effective is called valid time. However,
transaction time refers to the time a data value is recorded
in the database. Other times of interest are available
depending on the application domain, such as birth date,
delivery date, or decision date, that can be stored as the user
defined time, which is an ordinary attribute whose data
type is ‘‘date’’. The rest of this entry focuses on the valid
time and transaction time aspects of temporal data.

Temporal Data

Events (transactions) take place concurrently or in increas-
ing time order and may cause a change in the database state
in the form of insertions, deletions, or modifications. In
Fig. 1, related events e1, e2, and e3 take place at time
instances t2, t5, and t6, respectively. The effect of event e1

starts at time instant t2 and continues until time instant t5

at which time a new value is created by the event e2. At time
instance t6 there is another value created by the event e3

whose effect continues until another event changes it.
Attribute values may have different behaviors. An attri-

bute value, once assigned, may never change anytime
afterwards (i.e., it stays constant). The attribute value
may only be valid at that time instance only. Still another
possibility is that it may change continuously with time.
Finally, the attribute value is valid for a while and then
changes to different values at other times.

The set U is all of the atomic values such as reals,
integers, character strings, and the value null. Time-
varying data are commonly represented by time-stamping
values in U. A fact has a time and a value component. It can
be represented as a temporal atom (3), which has three
forms. A bitemporal atom is a triplet, <Tt, Vt, v> where Tt
and Vt are timestamps Tt�T, Vt�T, and v2U. The symbol
Tt is the transaction time, Vt is the valid time, and v is a
value. A bitemporal atom asserts that the value v is valid
during Vt and is recorded in the database at time Tt. One

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



timestamp in a bitemporal atom may be omitted.<Tt, v> is
a transaction time atom and asserts that the value v is
recorded in the data base at time Tt. Similarly,<Vt, v> is a
valid time atom that asserts that the value v is valid during
Vt. In a temporal atom, the timestamps can be time points,
time intervals, temporal sets or temporal elements. As an
example, consider the projects and their budgets. Figure 2
depicts the budget history of a project as temporal atoms
[Fig. 2(b)] and the sequence of events that created that
history [Fig. 2(a)]. Note that the valid time atoms give the
history after the most recent changes [Fig. 2(d)]. However,
transaction time atoms [Fig. 2(c)] reflect the changes on the
most recent values but not changes in the past values. In
other words, event e6 can not be stored in a transaction time
database. Note that Fig. 2(b) is a complete bitemporal
history of the events given in Fig. 2(a).

Types of Temporal Databases

Transaction time and valid time are the two time dimen-
sions commonly used in a temporal database (2). A tradi-
tional database is a database of snapshot relations because
it does not contain any time dimensions and keeps the most
recent data [Fig. 3(a)]. A database that has relations with
only valid time dimension is called a Valid Time Database
or a Historical Database [Fig. 3(b)]. It gives a correct state of
the history as we know it as of Now. Considering the data
given in Fig. 2(d), events e5 and e6 replace the past values.
Any correction in an attribute value replaces it, and there is
no trace of the correction in the database. A Transaction
Time database stores relations with only the transaction
time and it is append-only [Fig. 3(c)]. Valid time and
transaction time relations have the same form, but their
content evolves differently; the former allows replacement
of stored (past) data, and the latter does not. Transactions
append attribute values that are new values or corrections

for the most recent attribute value stored in the database.
Past values may not be corrected as in the case of event e5 in
Fig. 2(c), which can not be recorded in the database. It is
possible to roll back a transaction time database to any of its
states in the past. A bitemporal database supports both the
transaction time and the valid time [Fig. 3(d)]. It allows
retroactive and postactive changes and keeps a complete
history of these changes. A bitemporal database can be
rolled back to any of its states in the past. The term
temporal database is used loosely in the literature to
mean a bitemporal, transaction time, or valid time data-
base.

REPRESENTING TEMPORAL DATA

A fundamental issue in modeling temporal data is the
representation of temporal atoms in the relational data
model or in other data models. Representing a temporal
atom involves adding timestamps to the relations, tuples,
or attributes. The choice has implications for both model-
ing—the type of relations used and querying the temporal
data. It also determines the expressive power of a temporal
data model and its query languages (4).

For the sake of simplicity, valid time relations are con-
sidered to demonstrate temporal issues. The discussion
extends to the transaction-time databases in a straightfor-
ward manner. The same applies to bitemporal databases,
although it is more complicated.

In tuple time stamping (TTS), temporal atoms are
broken into their time and value components. The rela-
tion scheme is augmented with two additional columns to
represent the end points of time intervals (periods). It is
also possible to store a time interval, temporal element,
or a temporal set in one column as a composite data type.
Figure 4 gives the project data in TTS: Project_N(P_No,
P_Name), Project_B(P_No, P_Budget), and Pro-
ject_M(P_No, P_Manager) relations. P_No, P_Name,
P_Budget, and P_Manager denote project number, pro-
ject name, project budget, and project manager, respec-
tively. Obviously, budget and manager are temporal
attributes, whereas project number and project name

T ∝

t0 t1 t2 t3 t4 t5 t6 t7 now

Figure 1. Time Points.

2/07
5/07
7/07
10/07
12/07

2/08

Posting
Time 

e1: The project starts with a budget of 50K at 2/2007. 
e2:  Project’s budget increases to 60K at 5/2007. 
e3:  Project is suspended at 7/2007. 
e4:  Project resumes with a budget of 50K at 10/2007. 
e5:  At 11/2007, an error is discovered. The project’s last 
budget is 70K. 
e6:  At 12/2007 an error is discovered. The project’s budget 
at 2/2007 was 55K, not 50K. 

(a) Events

<[2/07, 5/07), [2/07, 5/07), 50K> 
<[5/07, 7/07), [5/07, 7/07), 60K> 

<[10/07, 11/07), [10/07, 11/07), 50K> 
<[12/07, Now], [10/07, Now], 70K> 
<[2/08, Now], [2/07, 5/07), 55K> 

(b)  Bitemporal atoms 

<[2/07, 5/07), 50K> 
<[5/07, 7/07), 60K> 

<[10/07, 11/07), 50K> 
<[12/07, Now], 70K> 

(c) Transaction time atoms 

<[2/07, 5/07), 55K> 
<[5/07, 7/07), 60K> 
<[10/07, Now], 70K> 

(d) Valid time atoms 

Figure 2. Different types of temporal atoms.

2 TEMPORAL DATABASES



are not. Project_B and Project_M relations are augmen-
ted with two additional attributes, Start and End. These
columns can be explicit (i.e., like any other ordinary
attribute) or implicit (i.e., special time attributes main-
tained by the system) (2). This, causes limitations as
explained below.

In attribute time stamping (ATS), attribute values are
temporal atoms, and the entire history of an attribute is
stored as a set of temporal atoms that requires N1NF
relations that allow relations as attribute values in contrast
to 1NF (flat) relations. Moreover, it is possible to attach a
timestamp to any part of a N1NF relation. In this case, the
value part of a temporal atom becomes a N1NF relation
which is beyond the focus of this entry. Figure 5 gives the
project data in attribute time stamping. Three separate
relations in tuple timestamping are combined into one
single relation, namely Project in ATS: Project(P_No,
P_Name, P_Budget, P_Manager). Temporal attributes
P_Budget and P_Manager are sets of temporal atoms,
whereas P_No and P_Name are constant and atomic. These
attributes can also be represented as temporal atoms where
the timestamp is the life of the database (i.e., <[t0,1), p1>
where t0 is the time origin) (5). The choice depends on the
type of temporal query language designed.

Time stamping a relation visualizes a temporal relation
as a sequence of snapshot relation instances at each time
point (i.e., indexed by time).

In case of tuple and attribute timestamping, time points
cannot capture the full extent of the temporal reality. Time

points have limitations as a timestamp because extrapolat-
ing the attribute values beyond the time points creates
undue complications. These complications occur because
the starting time of a value is not sufficient to indicate the
whole period over which that value is valid, as the end of
this period is indicated by the starting time of the value in
another tuple. If the history is discontinuous, then it
requires special null values to determine the validity period
of a data value correctly. However, handling these null
values in a query language is complicated (6). In the special
case when an attribute is valid over just one time point, time
points may be used as a timestamp. In the literature, this
special case is called an Event relation (2).

One noteworthy aspect of data presented in Fig. 5 is
that the timestamps are glued to values in temporal atoms
(7). In forming new relations, these timestamps stay with
the attribute values. However, in implicit tuple time
stamping, a timestamp is glued to a tuple. Therefore, it
restricts the time of a new tuple created from two con-
stituent tuples, that is, each tuple may not keep its
own timestamp, and a new timestamp needs to be
assigned to the resulting tuple. It is possible to consider
unglued timestamps (i.e., explicit timestamp attributes)
and allow multiple timestamps in a tuple. In this case, two
tuples may be combined to form a new tuple, each of which
carries its own time reference. However, it would be
difficult to provide support for this in a query language,
and the user would need to keep track of these separate
time references.

P_No P_Name P_Bu
dget

P_Ma
nager

p1 Moon 50K Bill

p2 Star 70K Ann

(a) Snapshot database

(b)Valid time database (c) Transaction time database

TUPLETUPLE

TIMETIME

ATTRIBUTEATTRIBUTE

P_No P_NAME P_ManagerP_BudgetP_No P_NAME P_ManagerP_Budget

p1p1 MoonMoon

50K
60K

55K

60K
50K

70K70K BillBill

TIM
TIM

11K

18K AL

TOM11K

18K AL

TOM

Ann70KStar
nownow

p2 Ann70KStarp2

TUPLE

TIME

ATTRIBUTE

P_No P_NAME P_ManagerP_Budget

p1 Moon

50K

60K

70K TIM

11K

18K AL

TOM

now

Ann70KStarp2

TUPLE

TIME

ATTRIBUTE

P_No P_NAME P_ManagerP_Budget

p1 Moon

50K
60K

50K
70K Bill

TIM

11K

18K AL

TOM

now

Ann70KStarp2

TUPLE

TIME

ATTRIBUTE

P_No P_NAME P_ManagerP_Budget

p1 Moon

50K
60K

50K
70K Bill

TIM

11K

18K AL

TOM

now

Ann70KStarp2

T

10/07 12/07 now ∝
(d) Bitemporal database

Figure 3. Types of temporal databases.

TEMPORAL DATABASES 3



Note that in tuple time stamping, a relation may only
contain attributes that change at the same time (i.e., attri-
butes that change at different times require different rela-
tions).

Temporal Grouping

In both tuple and attribute timestamping, there is a unique
representation of temporal data (5, 7, 8). The Project rela-
tion of Fig. 5 is a unique and compact representation of the
projects’ data in which each tuple contains the entire
history of a project. This represantation is called temporally
grouped (1). The same data are broken into several tuples in
Fig. 4. Tuples that have the same project number are
related and belong to the same object (entity) or relation-
ship. This table is also a unique representation of temporal
data in tuple timestamping. Hence, tuple time stamping is
temporally ungrouped (1).

The project number is a temporal grouping identifier
because it is unique. It does not change with time and
identifies the tuples that belong to the same object. In
case of attribute timestamping, only one tuple exists for
each project number value. Temporal grouping identifier
also serves as a temporal primary key, which is the attri-
bute(s) that serves as a primary key for each snapshot of a
temporal relation. Unique representations in TTS and
ATS, as given in Figs. 4 and 5 are suitable for most applica-
tions. However, other temporal relation forms in between
may be of theoretical significance or suitable for certain
type of applications.

In a conventional database, the primary key values are
expected to be constant. However, in a temporal database
the value of a temporal grouping (object) identifier may
change. In this case, a temporal grouping (object) identifier
becomes a set of values, and a N1NF temporal relation can
store it (8). However, using 1NF relations requires a sepa-
rate tuple for each change in the temporal grouping (object)
identifier value. The fact that these tuples are related and
belong to the same object (temporal group) is lost, and this
information can only be recovered by adding an artificial,
nonchanging object identifier to each tuple.

Weak Temporal Relations. For the temporal data in
unique representation, many other possible representa-
tions can be obtained by taking subsets of timestamps
and creating several tuples for the same unique tuple. In
other words, one tuple in the unique representations is
broken into several tuples whose timestamps are the sub-
sets of the timestamp(s) of the original tuple. These rela-
tions are called weak relations (4, 9) because they contain
the same data but are not identical to a relation in its
unique representation. For instance, a weak relation
may contain tuples (p1, 55K, 2/07, 4/07) and (p1, 55K,
3/07, 5/7) in place of the first tuple of the relation Project_B
in Fig. 4. These two tuples are value equivalent because
their values are identical, but their timestamps are differ-
ent. Value equivalent tuples can be combined (collapsed)
back to a unique tuple (6).

Homogenous Temporal Relations. A homogenous tuple
has the same time reference in its attributes (5). A temporal
relation is homogenous if all its tuples are homogeneous.
This restriction simplifies the model and allows modeling
and querying the homogeneous part of the real world
unambiguously. If an object’s attributes have values over
different periods of time, then the attributes of that object
can only be represented over the common time periods of its
attributes. Moreover, Cartesian product operation can only
be defined for the common time period of the operand
tuples. Let t1 and t2 be tuples from homogenous temporal
relations and t1 and t2 be their timestamps, respectively.
Cartesian product of these two tuples can only be defined
over t1 \ t2. Parts of t1 and t2 outside of their intersection
are not accessible (i.e., t1�t2 or t1�t2. If t1 and t2 do not
intersect, then it is not even possible to extract information
from these two tuples at all. Temporal relations in TTS are
homogenous by definition, whereas temporal relations in
ATS may or may not be homogenous (8).

Entities and Relationships

In tuple timestamping, 1NF relations are sufficient to
represent both the entity types and their relationships.
Each temporal attribute generally requires a separate
relation. However, in attribute timestamping, N1NF rela-
tions are needed, and one level of nesting can model an
entity type where a temporal attribute is a set of temporal
atoms.

One or two levels of nesting can represent the history
of a relationship. In modeling a many-to-many relation-
ship, identifiers of the related objects form a grouping
identifier for the relationship. Consider a relationship

P_Manager P_Budget P_Name P_No 

<[2/07, 5/07), 55K> Moon p1 
<[5/07, 7/07), 60K> 
<[10/07, Now], 70K> 

<[2/07, 6/07), Tom> 
<[6/07, Now], Bill> 

<[4/07, Now], 70K> Star p2 <[4/07, Now], Ann> 

Figure 5. Project relation in attribute time stamping.

P_Name P_No 

Moon p1 
Star p2 

(a) Project_N 
Relation

EndStart P_BudgetP_No 

5/072/07 55K p1 
7/075/07 60K p1 

10/0770K P1 Now
4/07 70K p2 Now

EndStart P_Manager P_No

6/072/07 Tom p1 

6/07 Bill p1 Now
4/07 Ann p2 Now

(c) Project_M Relation (b) Project_B Relation 

Figure 4. Project data in tuple time stamping.

4 TEMPORAL DATABASES



relation between projects and the tools they use, Project_-
Tool(P_No, T_No, Budget) where Budget denotes the allo-
cation of a tool to a project. The attribute combination
(P_No, T_No) is a temporal grouping identifier for the
relationship between projects, and Tools and Budget will
be a set of temporal atoms. However, this relationship can
be embedded into Project or Tool relations, which requires
two levels of nesting: one level for the history of the relation-
ship and another level for the history of budget.

TEMPORAL QUERY LANGUAGES

Many Temporal Relational Algebra (TRA) and Temporal
Relational Calculus (TRC) languages are available for
temporal databases. The languages depend on how the
temporal data are represented (i.e., how the temporal
atoms are stored in relations, and the type of timestamps
and where they are attached). This in turn determines how
temporal data are processed and possible evaluation
(semantics) of temporal query languages. Two commonly
adopted approaches are as follows: Snapshot (point or
sequenced) evaluation that manipulates the snapshot rela-
tion at each time point, like temporal logic (1, 5, 6) or
traditional (nonsequenced) evaluation that manipulates
the entire temporal relation much like the traditional
relational languages (7). It is also possible to mix these
approaches. Snapshot evaluation requires homogeneous
tuples; otherwise, it may have null values that leads to
complications (5).

If temporal relations are in 1NF and temporal atoms are
already broken into their components (i.e., TTS), then these
components are referred directly in TRA and TRC. More-
over, for reaching time points, interval or temporal ele-
ments can be expanded to time points or vice versa. In case
N1NF relations and temporal atoms are used (i.e., ATS),
operations are needed to flatten (unnest) them to 1NF
relations or transforming (nesting) 1NF relations back to
N1NF relations. Operations for breaking and forming new
temporal atoms are also required.

Temporal query languages are defined independent of
time granularities. However, if operand relations are
defined on different time granularities, then a granularity
conversion is required as part of processing the operation.

Temporal Relational Algebras

The syntax of temporal algebras closely follows the syntax
of traditional relational algebra. The five basic Temporal
Algebra operations,[t,�t, pt, st, and xt in snapshot evalua-
tion are given below (1, 5). Let Q, R, and S be relations that
may be defined in ATS or TTS. Assume Q, R, and S in ATS
are Project, pP_No, Buget(Project_Tool), and pP_No, Buget(Pro-
ject), respectively.

� R [t St is Rt [ St for all t in T

� R �t St is Rt-St for all t in T

� pt
A1,A2,. . .,An (R) is pA1,A2,. . .,An (Rt) for all t in T

� st
F(R) is sF(Rt) for all t in T; Formula F includes

traditional predicates and temporal predicates like
Before, After, Overlaps, etc

� R �t Q is Rt � Qt for all t in T

In temporal algebras that use traditional evaluation,
[t,�t, pt, st, and xt may be defined exactly the same as the
relational algebra operations or they may include tem-
poral semantics. The temporal set-theoretic operations
may be defined by considering the value equivalent
tuples. Let {(p1, <[2/07,11/07), 55K>)} and {(p1, <[6/
07,8/07), 55K>)} be tuples in R and S, respectively. These
two tuples are value equivalent. Set union operation, R [t

S combines value equivalent tuples into one single tuple
and carries the remaining tuples directly into the result.
Considering the former tuples the result is {(p1,<[2/
07,11/07), 55K>)}. Set difference however, R�t S removes
the common portion of the timestamps for the value
equivalent tuples. For the above tuples the result is
{p1, <[2/07,6/07), 55K>), (p1, <[8/07,11/07), 55K>)}. If
the temporal semantics is not included in operations, the
temporal coalescing operation combines value equivalent
tuples into a single tuple.

The definition of temporal projection (pt) is straightfor-
ward. However, it may generate value-equivalent tuples
much like the traditional projection operation creates
duplicate tuples, and it is costly to eliminate them.

The formula F in the Selection operation [st
F(Q)] may

include time points, the end points of intervals, or temporal
elements as well as temporal predicates like Before, After,
Overlaps, and so on. It is possible to simulate the temporal
predicates by conditions referring to time points or end
points of intervals.

Other temporal algebra operations, such as temporal set
intersection or temporal join, are defined similarly. Many
different versions of temporal join are available. Intersec-
tion join is computed over the common time of operand
relations. For instance, if {(p1, Moon, <[1/07, 5/07), 80K>,
<[1/07, 4/07), Tom>)} is a tuple in Q, then the natural join
(QfflR) contains the tuple {(p1, Moon,<[1/07, 5/07), 80K>,
<[1/07, 4/07), Tom>,<[2/07,11/07), 55K>)}. If this were an
intersection natural join, times of the attributes in this
tuple would be restricted to their common time period [2/07,
4/07). It is also possible to define temporal outer joins.
Temporal aggregates may be calculated at each time point
or cumulatively over a period(s) of time. Temporal query
optimization is based on temporal algebraic identities simi-
lar to traditional query optimization.

Time Slice operation in valid time databases slices (cuts)
the timestamp of a temporal attribute by a specified con-
stant timestamp or by the timestamp of another temporal
attribute (7). Time slicing every attribute in a temporal
relation by a time point (or timestamp) generates a
snapshot (or temporal relation) at that time point (or
timestamp). The time slice operation conveniently imple-
ments the ‘‘when’’ predicate in natural languages. The
symmetric operation in transaction time databases is
Rollback (10). Applied on a temporal attribute, this opera-
tion rolls it back to the designated time point (or time-
stamp). Applying it on all the attributes of a temporal
relation rolls it back to designated time point (or time-
stamp). In a bitemporal algebra, both operations are
available.

TEMPORAL DATABASES 5



Temporal Relational Calculus

A temporal tuple (domain) relational calculus expression is
{t|c(t)}, where t is a free tuple (domain) variable and c(t) is a
well-formed formula that contains traditional relational
calculus terms and formulas in addition to their temporal
counterparts. They provide references to the end points of
intervals or time points in temporal elements or temporal
sets. In case of N1NF temporal relations, a set membership
operator (2) is needed for reaching the elements in a set.
Additionally, set formation is achieved by assigning a well-
formed formula to a component of a tuple variable or a
domain variable, much like the aggregation operation in
relational calculus. However, the calculus language with
the set membership operator and the set formation formula
is more expressive than the relational algebra that has nest
and unnest operators (8). The capability to refer to the time
reference of an attribute or a formula is useful in temporal
relational calculus and algebra expressions

Temporal Structured Query Language (SQL)

SQL2 includes a diverse set of temporal data types: date,
time, timestamp, and interval. However, temporal support
in SQL2 is limited and left mostly for the applications
programming. Temporal atoms cannot be implemented
directly, and only tuple timestamping is available. How-
ever, SQL3 allows direct implementation of temporal atoms
and therefore supports both attribute and tuple time
stamping. Temporal atoms can be defined easily as new
data types. Thus, current database systems that contain
object relational features and adhere to SQL3 standard can
be used to implement any of the relations given in Figs. 4
and 5. Moreover, SQL2 and SQL3 include a period data type
whose values are time durations in contrast to time
instants. Other than some basic operations on temporal
types, the details of temporal support are again left for the
applications.

Several temporal extension proposals to SQL have been
suggested. One noteworthy example is TSQL2 (8). These
extensions augment SQL statements with ‘‘when’’ clauses
for valid time or bitemporal atoms formation and/or to
implement temporal conditions. Another addition is the
‘‘as of’’ clause that accomplishes rollback to a time in the
past in case of transaction time or bitemporal relations.
Time-by-example temporal query language proposal fol-
lows the syntax and semantics of Query by Example (QBE)
and QBE-like languages (11).

REQUIRMENTS FOR TEMPORAL DATA MODELS

Many properties are desirable for temporal databases (4).
Let DBt denote the database state at time t, where t may be
a time point, time interval, temporal element, or temporal
set):

1. The data model should be capable of modeling and
querying the database at any instance of time (i.e.,
Dt). The data model should at least provide the mod-
eling and querying power of a 1NF relational data
model. Note that when t is now, Dt corresponds to
traditional database.

2. The data model should be capable of modeling and
querying the database at two different times (i.e., Dt

and D0t, where t 6¼ t0). This model should be the case for
the different types of timestamps.

3. The data model should allow different periods of
existence in attributes within a tuple (i.e., non-
homogenous (heterogeneous) tuples should be
allowed).

4. The data model should allow multivalued attributes
at any time point (i.e., in Dt).

5. A temporal query language should have the capabil-
ity to return the same type of objects it operates on.

6. A temporal query language should have the capabil-
ity to regroup the temporal data according to a dif-
ferent temporal attribute. Homogenous relations
simplify the regrouping operation.

7. The data model should be capable of expressing set-
theoretic operations, as well as set comparison tests,
on the timestamps, be it time points, time intervals,
temporal sets, or temporal elements.

TEMPORAL INTEGRITY CONSTRAINTS

Each object, such as a project, exists in a certain period of
time, which is a subset of [0, 1). Call this period as the
object’s life, denoted as l(o) for the object o. Any temporal
atom that is the value of an attribute of object o contains a
timestamp that is a subset of l(o). Constant attributes of an
object o do not change during l(o), whereas time-dependent
attributes assume different values during this period. They
may even be null in parts or all of l(o). Moreover, a constant
attribute, such as a project name, can be represented with
no timestamp, in which its time reference is implied as l(o)
or a temporal atom whose time reference is l(o).

Existence and referential integrity also have their tem-
poral counterparts. Temporal grouping identifier or tem-
poral key in a temporal relation may not be null at any time
instance. Also, an object may only participate in a relation-
ship only during its life. Let p and t be the tuples in Project
and Project_Tool relations, respectively. Referential integ-
rity requires that l(p)� l(t) in addition to the restrictions on
the respective attribute components of p and t.

DESIGNING TEMPORAL RELATIONS

Traditional relational database design into BCNF and
4NF, and the design of N1NF relations are based on the
functional and multivalued dependencies. The same prin-
ciples can also be applied on the design of temporal data-
bases. A functional dependency in a snapshot database
turns into a multivalued dependency in a temporal data-
base. A multivalued dependency in a snapshot database is
still a multivalued dependency in a temporal database.

In attribute time stamping, temporal relations that are
in nested normal form (10) do not suffer from insertion,
deletion, and update anomalies. The Project relation in
Fig. 5 is in nested normal form.

In tuple timestamping, 4NF decomposition places each
temporal attribute into a separate relation because the

6 TEMPORAL DATABASES



temporal grouping identifier functionally determines con-
stant attributes (i.e., P_Name) and multidetermines each
temporal attribute (i.e., P_Budget, and P_Manager).
Decomposing Project relation of Fig. 5 gives the Project_N,
Project_B, and Project_M relations of Fig. 4. Project_N is in
BCNF, and Project_B and Project_M are in 4NF.

CURRENT STATE OF TEMPORAL DATABASES

Many index structures have been proposed for accessing
temporal data. Modeling and index structures for spatio-
temporal data are also studied. Research in temporal query
processing and optimization has been limited and needs
more investigation.

Proof-of-concept temporal prototypes have been imple-
mented on top of commercial database management sys-
tems. However, no commercial temporal database product
or a temporal add-on is available in the market yet. Devel-
oping temporal database applications or temporal database
add-ons are within the reach of application developers
throughthe useof recentobject relationaldatabasemanage-
ment systems that are available in the market.

BIBLIOGRAPHY

1. J. Clifford, A. Croker, and A. Tuzhilin, On completeness of
historical data models, ACM Trans. Database Sys., 19(1): 64–
116, 1994.

2. R. Snodgrass, The temporal query language Tquel, ACM
Trans. Database Sys., 12(2): 247–298, 1987.

3. A. U. Tansel, Temporal relational data model, IEEE Trans.
Knowledge Database Eng., 9(3): 464–479, 1997.

4. A. U. Tansel and E. Tin, Expressive power of temporal rela-
tional query languages, IEEE Transactions on Knowledge and
Database Engineering, 9(1): 120–134, 1997.

5. S. K. Gadia, A homogeneous relational model and query lan-
guages for temporal databases, ACM Trans. Database Sys.,
13(4): 418–448, 1988.

6. M. H. Böhlen, C. S. Jensen, R. T. Snodgrass, Temporal state-
ment modifiers. ACM Trans. Database Sys., 25(4): 407–456,
2000.

7. J. Clifford, and A. U. Tansel, On an algebra for historical
relational databases: Two views, in Proc. of ACM SIGMOD
International Conference on Management of Data, 247–265,
1985.

8. R. T. Snodgrass (ed.), The TSQL2 Temporal Query Language,
Norwell, MA: Kluwer 1995.

9. G. Bhargava, S. K. Gadia, Relational database systems with
zero information loss. IEEE Trans. Knowledge & Data Engi-
neering, 5(1): 76–87, 1993.

10. M. Z. Ozsoyoglu, L-Y Yuan, A new normal form for nested
relations, ACM Trans. Database Sys., 12(1): 111–136, 1987.

11. A. U. Tansel, M. E. Arkun, and G. Ozsoyoglu, Time-by-example
query language for historical databases, IEEE Trans. Software
Eng.15(4): 464–478, 1989.

FURTHER READING

C. Betteni, S. Jajodia, S. Wang, Time granularities in databases,
data mining and temporal reasoning, Springer Verlag, 1998.

O. Etzion, S. Jajodia, S. Sripada (eds.), Temporal Databases:
Research and Practice, New York. Springer Verlag, 1998.

C. S. Jensen, et al., TDB Glossary, Availabble: http://
www.cs.aau.dk/�csj/Glossary/index.html, 1994.

R. T. Snodgrass, Developing time oriented Applications in SQL,
New York Morgan Kaufmann, 2000.

A. U. Tansel, et al. (eds.), Temporal Databases: Theory, Design and
Implementation, San Eranciscon, Benjamin/Cummings, 1993.

ABDULLAH UZ TANSEL

Baruch College and the
Graduate Center

City University of New York
New York, New York

TEMPORAL DATABASES 7



T

TRANSACTION PROCESSING IN MOBILE,
HETEROGENEOUS DATABASE SYSTEMS

INTRODUCTION

The proliferation of mobile devices has brought about the
realization of ubiquitous access to information through
the wide breadth of devices with different memory, storage,
network, power, and display capabilities. Additionally,
with the explosion of data available via the Internet and
in private networks, the diversity of information that is
accessible to a user at any given time is expanding rapidly.

Current multi-database systems (MDBS) are designed
to allow timely and reliable access to large amounts of
heterogeneous data from different data sources. Within
the scope of these systems, multi-database researchers
have addressed issues such as autonomy, heterogeneity,
transaction management, concurrency control, transpar-
ency, and query resolution (1). These solutions were based
on fixed clients and servers connected over a reliable net-
work infrastructure. However, the concept of mobility,
where a user accesses data through a remote connection
with a portable device, has introduced additional complex-
ities and restrictions (2). These include (1) limited network
connections, (2) processing and resource constraints, and
(3) the problem of effectively locating and accessing infor-
mation from a multitude of sources. An MDBS with such
additional restrictions is called a mobile data access
system (MDAS). Within the scope of this infrastructure,
two types of services are available to the user: on demand-
based services and broadcast-based services (3).

Broadcast-Based Services

Many applications are directed toward public information
(i.e., news, weather information, traffic information, and
flight information) that are characterized by (1) the mas-
sive number of users, (2) the similarity and simplicity in the
requests solicited by the users, and (3) the fact that data are
modified by a few. The reduced bandwidth attributed to the
wireless environment places limitations on the rate and
amount of communication. Broadcasting is a potential
solution to this limitation. In broadcasting, information
is generated and broadcast to all users on the air channels.
Mobile users are capable of searching the air channels and
pulling the information they want. The main advantage of
broadcasting is that it scales up as the number of users
increases. In addition, the broadcast channel can be con-
sidered as an additional storage available over the air for
the mobile clients. Finally, it is shown that pulling infor-
mation from the air channel consumes less power than
pushing information to the air channel. Broadcasting is
an attractive solution, because of the limited storage, pro-
cessing capability, and power sources of the mobile unit.
Further discussion about the broadcasting is beyond the
scope of this article, and the interested reader is referred to
ref. (3).

On-Demand-Based Services

Private data (personal schedules, phone numbers, etc.) and
shared data (i.e., a group data, replicated, data or fragmen-
ted data of a database) are the subject of these services in
which users obtain answers to requests through a two-way
communication with the database server; the user request
is pushed to the system, data sources are accessed, query
operations are performed, partial results are collected and
integrated, and generated information is communicated
back to the user. This requires a suitable solution that
addresses issues such as security and access control, iso-
lation, semantic heterogeneity, autonomy, query proces-
sing and query optimization, transaction processing and
concurrency control, data integration, browsing, distribu-
tion and location transparency, and limited resources (3).

Among these issues, this article concentrates on trans-
action processing and concurrency control. Traditionally,
in a distributed environment, to achieve high performance
and throughput, transactions are interleaved and executed
concurrently. Concurrent execution of transactions should
be coordinated such that there is no interference among
them. In an MDAS environment, the concurrent execution
of transactions is a more difficult task to control than in
distributed database systems, due to the conflicts among
global transactions, conflicts among global and local trans-
actions, local autonomy of each site, and frequent network
disconnections. Furthermore, some form of data replication
should be used at the mobile unit to provide additional
availability in case of a weak connection or disconnection.

Researchers have extensively studied caching and
replication schemes that may be used to address the con-
straints of a wireless link. Current distributed database
replication and caching schemes are not suitable for an
MDAS environment because consistency cannot be effec-
tively maintained due to local autonomy requirements and
communication constraints. In addition, because of the
autonomy requirements of the local DBMS, the local infor-
mation about the validity of a page or file is not available
globally. Accordingly, any type of invalidation, polling, or
timestamp-based method would be too impractical and
inefficient to use and, in many cases, impossible.

The use of a hierarchical concurrency control algorithm
reduces the required communication overhead in an MDAS
and offers higher overall throughput and faster response
times. The concurrency control for global transactions is
performed at the global level in a hierarchical, distributed
manner. The application of the hierarchical structure to
enforce concurrency control offers higher performance and
reliability.

The limited bandwidth and local autonomy restrictions
of an MDAS can be addressed by using an automated
queued queriys (AQ2) and caching of data in the form of a
bundled query (BUNQ). An AQ2 is a form of prefetching
that preloads data onto the mobile unit. A bundled query is
an object that consists of a query and its associated data.
Read-only queries are cached as a bundled query and are

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



validated using a simple parity-checking scheme. Guaran-
teeing write consistency while disconnected is extremely
difficult or impossible due to local autonomy requirements
in an MDAS. Consequently, any transactions containing
write operations are directly submitted to the MDAS sys-
tem or are queued during disconnection and submitted
during reconnection. The caching and prefetching policies
reduce the access latency and provide timely access to data,
notwithstanding the limited bandwidth restrictions
imposed by an MDAS environment.

BACKGROUND

Accessing a large amount of data over a limited capability
network connection involves two general aspects: the
mobile networking environment and mobility issues. The
mobile environment includes the physical network archi-
tecture and access devices. Mobility issues include
adaptability to a mobile environment, autonomy, and het-
erogeneity. A mobile application must be able to adapt to
changing conditions including the network environment
and resources available to the application. A resource-
scarce mobile system is better served by relying on a server.
However, frequent network disconnections, limited net-
work bandwidth, and power restrictions argue for some
degree of autonomy.

Multi-databases

An (MDBS) provides a logical integrated view and method
to access multiple preexisting local database systems, pro-
viding the hardware and software transparencies and
maintaining the local autonomy. In addition to autonomy,
heterogeneity is also an important aspect of a multi-data-
base system. Support for heterogeneity is a tradeoff
between developing and making changes in both hardware
and software and limiting participation (1). Consequently,
as the number of systems and the degree of heterogeneity
among these systems increases, the cost of integration into
the global MDBS increases. Access to the local DBMS
through a much more diverse and restrictive communica-
tion and access device is the natural extension to a tradi-
tional MDBS environment, i.e., an MDAS environment (5).

The Summary Schemas Model for Multidatabase Systems.
The summary schemas model (SSM) has been proposed
as an efficient means to access data in a heterogeneous
multi-database environment (4). The identification of the
terms that are semantically similar is one key concept in
SSM. SSM uses the taxonomy of the English language that
contains at least hypernym/hyponym and synonym links
among terms to build a hierarchical meta-data. This hier-
archical meta-structure provides an incrementally concise
view of the data in the form of summary schemas. The SSM
hierarchy consists of leaf-node schemas and summary
schemas. A leaf-node schema represents an actual data-
base, whereas a summary schema gives an abstract view of
the information available at the schemas of its children.
The hypernyms of terms in the children of a particular SSM
node form the summary schema of that node. As hypernyms
are more general or abstract than their hyponyms, many

terms could map into a common hypernym. This reduces
the overall memory requirements of the SSM meta-data as
compared with the global schema approach. The semantic
distance metric between the hypernym and their respective
hyponyms are relatively small; hence, even though each
summary schema does not contain exact information of
its children but only an abstracted version, it preserves
the semantic contents of its children. The ability to browse/
view the global data and to perform an imprecise query, and
the small size of the meta-data of the SSM provide several
benefits to the traditional multi-database systems that can
be directly applied to an MDAS.

SSM can also play an interesting role in the arena of
the semantic web. As Tim Berners-Lee pointed out in his
1998 draft ‘‘Semantic Web Roadmap’’ (5), the rationale
behind the semantic web is to express information in a
machine-understandable form. To this end, a set of stan-
dards and tools of the eXtensible Markup Language
(XML) (6) is used to create structured web pages: the
XML Schema (6), the Resource Description Framework
(RDF) (7), the RDF Schema (7), and the Web Ontology
Language (OWL) (8). SSM provides a semi-automated
solution for millions of existing web pages, which are only
human-understandable, to enter the semantic web world.
In this application, existing web pages act as local data-
bases and SSM as the portal for information exchange
between traditional web pages and the semantic web space.

The MDAS Environment. Overall, the main differentiat-
ing feature between an MDAS and an MDBS is the con-
nection of servers and/or clients through a wireless
environment and the devices used to access the data.
However, both environments are intended to provide
timely and reliable access to the globally shared data.
Due to the similarities in the objectives of effectively acces-
sing data in a multi-database and a wireless-mobile
computing environment, a wireless-mobile computing
environment can be easily superimposed on an MDBS.
The resulting system is called an MDAS. By superimposing
an MDBS onto a mobile computing environment, solutions
from one environment are easily mapped to another.

Transaction Management and Concurrency Control

Data access in an MDBS is accomplished through trans-
actions. Concurrency control involves coordinating the
operations of multiple transactions that operate in parallel
and access shared data. By interleaving the operations
in such a manner, the potential of interference between
transactions arises. The concurrent execution of trans-
actions is considered correct when the ACID properties
(atomicity, consistency, isolation, and durability) hold for
each transaction (9). The autonomy requirement of local
databases in an MDAS introduces additional complexities
in maintaining serializable histories because the local
transactions are not visible at the global level. Conse-
quently, the operations in a transaction can be subjected
to large delays, frequent or unnecessary aborts, incon-
sistency, and deadlock. Two types of conflicts may arise
due to the concurrent execution of transactions—direct and
indirect conflicts (10).

2 TRANSACTION PROCESSING IN MOBILE, HETEROGENEOUS DATABASE SYSTEMS



Definition 1. A direct conflict between two transactions
Ta and Tb exists if and only if an operation of Ta on data
item x [(denoted o(Ta(x)))] is followed by o(Tb(x)), where Ta

does not commit or abort before o(Tb(x)), and either o(Ta(x))
or o(Tb(x)) is a write operation.

Definition 2. An indirect conflict between two trans-
actions Ta and Tb exists if, and only if, a sequence of
transactions T1, T2, . . . Tn exists such that Ta is in direct
conflict with T1, T1 is in direct conflict with T2, . . ., and Tn is
in direct with Tb.

An MDAS should maintain a globally serializable his-
tory for correct execution of concurrent transactions, which
means that the global history should be conflict free while
preserving as much local autonomy as possible. Although
the MDBS is responsible for producing a globally serial-
izable history, it is assumed that the local concurrency
control system will produce a locally serializable history
as well. It is important to note that the MDBS needs to
address both direct and indirect conflicts between global
transactions. For more information about the concurrency
control algorithms that have been advanced in the litera-
ture, the reader is referred to ref. 11.

Data Replication for Weak Connectionsand Disconnection.
The communication limitations of an MDAS environment
may require that a portion of the data in some form be made
readily available to the mobile unit. A large amount of
related work has been reported in the area of distributed
file systems, distributed replication, and distributed/web
caches. The local autonomy requirement of an MDAS
environment does not lend itself to the direct application
of these works. Data consistency and access time are two
main objectives in maintaining replicated data in a mobile
or distributed environment.

Replication schemes differ slightly from caching
schemes in that the replicated data are accessible by other
systems outside of the system on which the data resides.
Two types of general replication schemes exist: primary/
secondary copy (PSC) replication and voting-based replica-
tion schemes. PSC replication does not work in an MDAS
environment because write operations to replicated data
do not reach the primary copy when disconnected. There-
fore, write consistency is not guaranteed. In a distributed
system, data consistency is guaranteed with voting-based
replications; however, they tend to be more expensive
and require much more communication. In an MDAS
environment, the local replica, while disconnected, cannot
participate in the decision/voting process, and any changes
to the local data may result in an inconsistency.

Caching is an effective means of data duplication that
is used to reduce the latency of read and write operations
on data. Early research on the disconnected operation was
done with file system-based projects. When a disconnection
occurs, a cache manager services all file system requests
from the cache contents. As with replication, the invalida-
tion of data is not possible when disconnected, and thus,
consistency cannot be guaranteed. Web-based caching (12)
offers the two most common forms of cache consistency

mechanisms, i.e., time-to-live (TTL) and client polling (13).
The disconnected operation of a mobile system and the local
autonomy requirements of the local systems make the
application of these schemes impractical in an MDAS
environment. Some schemes try to use the concept of
compensating transactions (or operations) to keep repli-
cated data consistent. However, compensating transac-
tions are difficult to implement, and in some cases, a
compensating transaction cannot semantically undo the
transaction (or operation) (10).

CONCURRENCY CONTROL AND DATA REPLICATION
FOR MDAS

The proposed concurrency control algorithm is defined
in an environment where information sources are station-
ary and user requests are aimed at shared data sources.
Under these conditions, the v-locking algorithm is intended
to reduce the amount of communication and hence to
reduce the effect of frequent disconnections in wireless
environment.

The V-Locking Concurrency Control Scheme

The proposed v-locking algorithm uses a global locking
scheme (GLS) to serialize conflicting operations of global
transactions. Global locking tables are used to lock data
items involved in a global transaction in accordance to the
two-phase locking (2PL) rules. In typical multi-database
systems, maintaining a global locking table would require
communication of information from the local site to the
global transaction manager (GTM). In an MDAS environ-
ment, this is impractical due to the delay, amount of
communication overhead, and frequent disconnections
involved. In our underlying infrastructure, software is
distributed in a hierarchical structure similar to the hier-
archical structure of the SSM. Subsequently, transaction
management is performed at the global level in a hierarch-
ical, distributed manner. A global transaction is submitted
at any node in the hierarchy—either at a local node or at a
summary schema node. The transaction is resolved and
mapped into subtransactions, and its global transaction
coordinator is determined by the SSM structure (4).

The v-locking algorithm is based on the following
assumptions:

1. There is no distinction between local and global
transactions at the local level.

2. A local site is completely isolated from other local
sites.

3. Each local system ensures local serializability and
freedom from local deadlocks.

4. A local database may abort any transaction at any
time within the constraints of a distributed atomic
commit protocol.

5. Information pertaining to the type of concurrency
control used at the local site will be available. For
systems to provide robust concurrency and consis-
tency, in most systems, a strict history is produced

TRANSACTION PROCESSING IN MOBILE, HETEROGENEOUS DATABASE SYSTEMS 3



through the use of a strict 2PL scheme. Therefore,
most local sites will use a strict 2PL scheme for local
concurrency control.

Consequently, the MDAS coordinates the execution of
global transactions without the knowledge of any control
information from local DBMS. The only information (loss
of local autonomy) required by the algorithm is the type of
concurrency control protocol performed at the local sites.
The semantic information contained in the summary sche-
mas is used to maintain global locking tables. As a result,
the ‘‘data’’ item being locked is reflected either exactly or as
a hypernym term in the summary schema of the trans-
action’s GTM. The locking tables can be used in an aggres-
sive manner where the information is used only to detect
potential global deadlocks. A more conservative approach
can be used where the operations in a transaction are
actually delayed at the GTM until a global lock request
is granted. Higher throughput at the expense of lower
reliability is the direct consequence of the application of
semantic contents rather than exact contents for an aggres-
sive approach. In either case, the global locking table is
used to create a global wait-for-graph, which is subse-
quently used to detect and resolve potential global dead-
locks. In the proposed v-locking algorithm, due to the
hierarchical nature of the summary schemas model, the
global wait-for-graphs are maintained in hierarchical
fashion within the summary schemas nodes. In addition,
edges in the wait-for-graphs as discussed later are labeled
as exact or imprecise.

During the course of operations, the wait-for-graph is
constructed based on the available communication. Three
cases are considered: (1) Each operation in the transaction
is individually acknowledged; (2) write operations are only
acknowledged; and (3) only the commit or abort of the
transaction is acknowledged. For the first case, based on
the semantic contents of the summary schema node, an
edge inserted into the wait-for-graph is marked as being an
exact or imprecise data item. For each acknowledgment
signal received, the corresponding edge in the graph is
marked as exact. In the second case, where each write
operation generates an acknowledgment signal, for each
signal only the edges preceding the last known acknowl-
edgment are marked as being exact. Other edges that have
been submitted but that have not been acknowledged are
marked as pending. As in the previous two cases, in the
third case, the edges are marked as representing exact or
imprecise data. However, all edges are marked as pending
until the commit or abort signal is received. Keeping the
information about the data and status of the acknowledg-
ment signals enables one to detect cycles in the wait-for-
graph. The wait-for-graph is checked for cycles after a time
threshold for each transaction. For all transactions
involved in a cycle, if the exact data items are known
and all acknowledgments have been received, then a dead-
lock is precisely detected and broken. When imprecise data
items are present within a cycle, the algorithm will consider
the cycle a deadlock only after a longer time threshold has
passed. Similarly, a pending acknowledgment of a transac-
tion is only used to break a deadlock in a cycle after an even
longer time threshold has passed. The time thresholds can

be selected and adjusted dynamically to prevent as many
false deadlocks as possible.

Handling Unknown Local Data Sources

The v-locking algorithm has been extended to handle the
local ‘‘black box’’ site in which the global level knows
nothing about the local concurrency control. As nearly
every commercial database system uses some form of
2PL, this case will only comprise a small percentage of
local systems. The algorithm merely executes global trans-
actions at such a site in a serial order. This is done by
requiring any transaction involving the ‘‘black-box’’ to
obtain a site lock before executing any operations in the
transaction. These types of locks will be managed by esca-
lating any lock request to these sites to the highest level
(site lock).

Data Replication Protocol

Communication Protocol. Maintaining the ACID pro-
perties of a transaction with replicated data in an MDAS
environment is very difficult. The proposed scheme con-
siders three levels of connectivity in which a mobile unit
operates. During a strong connection, the mobile unit
sends/receives all transactions and returns data directly
to/from land-based, fixed sites for processing. When the
communication link degrades to a weak connection, trans-
actions are queued at the mobile unit and passed through
the system according to the availability of bandwidth.
Returned data are also queued at the fixed site. The queu-
ing of operations during a weak connection allows a mobile
unit to continue processing at the expense of increased
latency.

In the disconnected state, a user may perform read-only
queries on any cached data. For this case, the consistency of
the data is not guaranteed, i.e., the user may receive stale
data. Any transaction that contains a write operation is
queued and submitted to the system when the connection is
reestablished. Naturally, if a read-only access does not find
the data locally, the query is queued and submitted later
when the connection is established.

Cached Data—Bundled Queries (BUNQ). Data that are
cached on the mobile unit consist of a query and its asso-
ciated data. Several reasons exist for using a BUNQ instead
of page-based or file-based data. In a tightly coupled dis-
tributed system, it is possible to cache data at the local unit.
However, in a multi-database system, the structure of the
data at the local databases will vary (structural differ-
ences—the information may be stored as structured data,
unstructured data, web pages, files, objects, etc.). This
variation of data at each local site makes it difficult to cache
the data in a uniform manner. In addition, the autonomy
requirement of the local database imposes further restric-
tions for caching data. It may not be possible to determine
the underlying structure of the data at the local site without
violating local autonomy requirements. Consequently,
instead of caching individual data items from each local
source, the data set associated with a particular trans-
action is cached—a bundled query. By caching a BUNQ,
the resolution of the structural differences is done at the

4 TRANSACTION PROCESSING IN MOBILE, HETEROGENEOUS DATABASE SYSTEMS



MDAS level, while maintaining the local autonomy
requirements. The primary advantage is the ease and
simplicity of implementation, which comes at the expense
of retaining data in the cache at a very coarse-grained level.

Prefetching and Replacement/Invalidation Policy
Prefetching. The prefetching algorithms can be devel-

oped based on user profiles and usage histories. The limited
power, storage, processing capability, and bandwidth of a
mobile unit make the incorrect prefetch of data extremely
expensive. The idea is to prefetch enough data such that
the user can still operate during a disconnection (albeit
with relaxed consistency requirements) while minimizing
the use of additional energy and bandwidth.

Allowing the user to specify a particular read-only trans-
action as an automated queued query prefetches the data.
An AQ2 has a relaxed requirement for consistency, which is
defined by the user. The user sets a valid time threshold for
each AQ2 when defining such a transaction. The mobile unit
automatically submits the transaction to the MDAS when
the threshold has expired, i.e., prefetches the data. The
results are stored as a BUNQ. If the user requests the data
in the AQ2 before the BUNQ is invalidated, the query is
serviced from the local cache.

Replacement. The data in the cache consists of both
automated queued queries and other user-submitted
read-only queries. The data in the cache are replaced based
on the least recently used (LRU) policy. The LRU policy has
its advantages in that it is well understood and easy to
implement. Moreover, other than some web-based caching
algorithms, the LRU policy is the most widely used replace-
ment policy in DBMS caches (13).

Invalidation. To maintain consistency between the
copies of data residing on the fixed and mobile units, the
data in the cache must be correctly invalidated when
the main copy changes. A parity-based signature could
be used to accomplish this task for each BUNQ in the
cache (p-caching). When the user submits a transaction,
if a corresponding BUNQ is present in the cache, the
transaction (along with the parity code) is sent to the fixed
node. The fixed node then performs the query and delays
the transmission of the information back to the mobile unit
until it generates and compares the two parity codes. If
they are identical, only an acknowledgment is sent back
to the mobile unit and the data are read locally from the
cache. Otherwise, the resultant data, along with its new
parity sequence, is returned and replaced in the cache. The
old copy of the BUNQ is invalidated according to the LRU
rules.

PERFORMANCE EVALUATION

Simulator Design

The performance of the proposed v-locking and p-caching
algorithms was evaluated through a simulator written in
Cþþ using CSIM. The simulator measures performance
in terms of global transaction throughput, response time,
and CPU, disk I/O, and network utilization. In addition, the

simulator was extended to compare and contrast the beha-
vior of the v-lock algorithm against the site-graph, potential
conflict graph, and the forced conflict algorithms. This
includes an evaluation with and without the cache. It
should be noted that the simulator is designed to be versa-
tile to evaluate the v-locking algorithm based on various
system configurations. At each moment in time, a fixed
number of active global and local transactions is present in
the system. Each operation of the transaction is scheduled
and is communicated to the local system based on the
available bandwidth. The global scheduler acquires the
necessary global virtual locks and processes the operation.
The operation(s) then uses the CPU and I/O resources and
is communicated to the local system based on the available
bandwidth. When acknowledgments or commit/abort sig-
nals are received from the local site, the algorithm deter-
mines whether the transaction should proceed, commit, or
abort. For read-only transactions after a global commit, a
parity code is generated for the resultant data and com-
pared with the parity code of the BUNQ. For a matching
code, only an acknowldgment signal is sent back to the
mobile unit. Otherwise, the data and the new parity code
are sent back to the mobile unit. Transactions containing a
write operation are placed directly in the ready queue. If
a deadlock is detected, or an abort message is received from
a local site, the transaction is aborted at all sites and the
global transaction is placed in the restart queue. After a
specified time elapses, the transaction is again placed on
the active queue.

System Parameters

The underlying global information-sharing process is com-
posed of 10 local sites. The size of the local databases at each
site can be varied and has a direct effect on the overall
performance of the system. The simulation is run for 5000
time units. The global workload consists of randomly gen-
erated global queries, spanning over a random number of
sites. Each operation of a subtransaction (read, write,
commit, or abort) may require data and/or acknowledg-
ments to be sent from the local DBMS. The frequency of
messages depends on the quality of the network link. To
determine the effectiveness of the proposed algorithm,
several parameters are varied for different simulation
runs.

A collection of mobile units submits global queries
(selected from a pool of 500 queries) to the MDAS. The
connection between the mobile unit and the MDAS has a
50% probability of having a strong connection and a 30%
probability of having a weak connection. There is a 20%
probability of being disconnected. A strong connection
has a communication service time of 0.1 to 0.3 seconds,
whereas a weak connection has a service time range of
0.3 to 3 seconds. When a disconnection occurs, the mobile
unit is disconnected for 30 to 120 seconds. Initially, one
third of the pool consists of read-only queries, which
are locally cached as a BUNQ. Additionally, 10% of the
read-only queries are designated as an AQ2. For read-only
queries, the local cache is first checked for an existing
BUNQ. If present, the query is submitted along with the
associated parity sequence. The MDAS returns either the

TRANSACTION PROCESSING IN MOBILE, HETEROGENEOUS DATABASE SYSTEMS 5



data or an acknowledgment signal for a matching BUNQ.
Subsequently, if signatures do not match, the mobile unit
updates the cache with the new data according to the LRU
scheme. Upon termination of a transaction, a new query is
selected and submitted to the MDAS.

The local systems perform two types of transactions—
local and global. Global subtransactions are submitted to
the local DBMS and appear as local transactions. Local
transactions generated at the local sites consist of a random
number of read/write operations. The only difference
between the two transactions is that a global subtransac-
tion will communicate with the global system, whereas the
local transaction terminates upon a commit or abort. The
local system may abort a transaction, global or local, at any
time. If a global subtransaction is aborted locally, it is
communicated to the global system and the global transac-

tion is aborted at all sites. Table 1 summarizes all para-
meters used in the simulation. It should be noted that
Table 1 shows the default values; however, the simulator
is flexible enough to simulate the behavior of the v-locking
algorithm for various system parameters.

Simulation Results and Analysis

The v-locking algorithm has been simulated and compared
against some other concurrency control algorithms, i.e.,
potential conflict graph (PCG), forced-conflict, and site-
graph algorithms with and without the proposed p-caching
scheme. Figures 1 and 2 show the results. As expected, the
v-locking algorithm offers the highest throughput. This
result is consistent with the fact that the v-locking algo-
rithm is better able to detect global conflicts and thus

Table 1. Simulation Parameters

Parameters Default Value

Global System Parameters
The number of local sites in the system. 10
The number of data items per local site. 100
The maximum number of global transactions in the system. This number

represents the global multi-programming level.
10

The maximum number of operations that a global transaction contains. 8
The minimum number of operations that a global transaction contains. 1
The service time for the CPU queue. 0.005 s
The service time for the IO queue. 0.010 s
The service time for each communicated message to the local site. 0.100 s
The number of messages per operation (read/write). 2

Mobile Unit Parameters
The maximum number of mobile units in the system. This number represents

the global multi-programming level.
10

The maximum number of operations that a global transaction contains. 8
The minimum number of operations that a global transaction contains. 1
The service time for the CPU queue. 0.005 s
The service time for the IO queue. 0.010 s
The service time for each communicated message to the global system for a

strong connection, randomly selected.
0.100–0.300 s

The service time for each communicated message to the global system for
a weak connection, randomly selected.

0.300–3 s

The service time for a disconnection, randomly selected 30–120 s
The probability of a strong connection. 0.50
The probability of a weak connection. 0.30
The probability of a disconnection. 0.20
The number of messages per operation (read/write). 2
The average size of each message. 1,024 bytes
The size of the mobile unit cache. 1 Megabyte
The probability that a query is read-only. 1/3
The probability that a read-only query is submitted as an AQ2. 0.1

Local System Parameters
The maximum number of local transactions per site. This number represents

the local multi-programming level.
10

The maximum number of write operations per transaction. 8
The maximum number of read operations per transaction. 8
The minimum number of write operations per transaction. 1
The minimum number of read operations per transaction. 1
The service time for the local CPU queue. 0.005
The service time for the local IO queue. 0.010
The service time for each communicated message to the MDAS. 0.100
The number of messages per operation (read/write). 2

6 TRANSACTION PROCESSING IN MOBILE, HETEROGENEOUS DATABASE SYSTEMS



achieves higher concurrency than the other algorithms. As
can be abserved, the maximum throughput occurs at a
multi-programming level approximately equal to 40. As
the number of concurrent global transactions increases,
the number of completed global transactions decreases due
to the increase in the number of conflicts. The peak
throughput for each concurrency control scheme is slightly
higher with the use of caching. Furthermore, for all simu-
lated algorithms, the caching scheme allows a higher num-
ber of active global transactions and, hence, higher
throughput. This characteristic is attributed to the cache
hits on the read-only data. For the non-cache case, the
throughput is low until the active number of global trans-
actions reaches about 30, with a rapid increase of the
throughput from 30 to 40 active transactions. This occurs
because of the weak connections and disconnections. With
the p-caching algorithm, the rate of the increase in through-
put is more gradual because the local cache can service the
read-only queries under weak connectivity or disconnec-
tion.

The gain in the throughput, sensitivity, of the p-caching
algorithm for different concurrency control schemes, is
shown in Fig. 3. The v-locking scheme shows the greatest
sensitivity to the caching algorithm. At 20 active global
transactions, there is an improvement in the throughput of
approximately 0.6 when using a cache. At the peak
throughput of 40 simultaneous transactions, the through-
put is increased by 0.2. The PCG, site-graph, and forced
conflict algorithms show similar characteristics to the
v-locking algorithm; however, the sensitivity of these algo-
rithms is less. The caching becomes ineffective for all

schemes when the number of active global transactions is
greater than 75.

The simulator also measured the percentage of com-
pleted transactions for the various concurrency control
algorithms. In general, for all schemes, the number of
completed transactions decreased as the number of con-
current transactions increased, due to more conflicts
among the transactions. However, the performance of
both the forced conflict and the site-graph algorithms
decreased at a faster rate, which is due to the increase in
the number of false aborts detected by these algorithms.
The v-locking algorithm more accurately detects deadlocks
by differentiating between global and indirect conflicts and,
therefore, performs better than the PCG algorithm.

The simulator also measured the communication utili-
zation. It was found that the communication utilization
decreases with the use of the cache. At 20 active global
transactions, the v-locking algorithm uses 40% of the
communication bandwidth versus 69% utilization without
the cache. Similarly, with 30 active global transactions,
there is a 75% versus 91% communication utilization with
and without the cache, respectively. This result is attri-
buted to the reduction in transferred data from parity
acknowledgments and local accesses to the cache. At
peak throughput, both locking algorithms (v-locking and
PCG) were using nearly 100% of the communication chan-
nel. The communication utilization was about 100% at peak
throughput and decreased slightly as the number of
concurrent transactions increased. It is easy to determine
from this result that the communication requirements for
the v-locking algorithm represent the bottleneck of the
system for both the caching and the non-caching case.

FUTURE RESEARCH DIRECTIONS

The requirements of an ‘‘anytime, anywhere’’ computing
environment motivate new concepts that effectively allow a
user to access information in a timely and reliable manner.
In such an environment, a potentially large number of
users may simultaneously access a rapidly increasing
amount of aggregate, distributed data. This usage moti-
vates the need for a proper concurrency control algorithm
that offers higher throughput in the face of the limitations
imposed by technology. A distributed, hierarchically orga-
nized concurrency control algorithm was presented and

Gain in Throughput between Cache and Non-Cache

–0.10
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

5 10 15 20 30 40 50 75 100

Number of Active Global Transactions

T
h

ro
u

g
h

p
u

t 
G

ai
n

V-Lock
PCG
Forced Conflicts
Site-Graph

Figure 3. Comparisonof thesensitivityof theP-Cachingalgorithm.

Global Throughput without Cache

0

0.5

1

1.5

5 15 30 50 100

Number of Active Global Transactions

T
h

ro
u

g
h

p
u

t 
(T

/s
ec

)

V-Lock

PCG

Forced Conflicts

Site-Graph

Figure 2. Global throughput without P-Caching.

Global Throughput with Cache

0.00

0.50

1.00

1.50

2.00

5 10 15 20 30 40 50 75 100

Number of Active Global Transactions

T
h

ro
u

g
h

p
u

t 
(T

/s
ec

)

V-Lock

PCG

Forced Conflicts

Site-Graph

Figure 1. Global throughput with P-Caching.

TRANSACTION PROCESSING IN MOBILE, HETEROGENEOUS DATABASE SYSTEMS 7



evaluated that satisfies these limitations. The semantic
information contained within the SSM was used to main-
tain the global locking tables to serialize conflicting opera-
tions of global transactions and to detect and break
deadlocked transactions. Data duplication in the form of
replication and caches was also used to lessen the effects of
weak communications or disconnection. The duplicated
data at the mobile node allow the user to continue to
work in case of a weak connection or disconnection. Auto-
mated queued queries and bundled queries could be used to
address the limited bandwidth and local autonomy restric-
tions in an MDAS environment.

The work presented in this article can be extended in
several directions:

� Application of mobile agents: Recently the literature
has shows a growing interest in the application and
incorporation of mobile agent paradigm in an informa-
tion retrieval system (14). When mobile agents are
introduced into the system, mobile agents can roam
the network and fulfill their tasks without the owner’s
intervention; consequently, mobile users only need to
maintain the communication connection during the
agent submission and retraction. In addition, by
migrating from the mobile device to the core network,
the agents can take full advantage of the high band-
width of the wired portion of the network and the high
computation capability of servers/workstations. More-
over, mobile agents’ migration capability allows them
to handle tasks locally instead of passing messages
between the involved data sources and, hence, reduce
the number of messages that are needed in accomplish-
ing a task. To summarize, the use of mobile agents
relaxes requirements on mobile users’ critical resour-
ces such as connectivity, bandwidth, and energy.
Therefore, within the scope of the MDAS, it would
be of interest to investigate concurrency control algo-
rithms at the presence of the mobile agents in the
system.

� Multimedia databases: The demand of image data
management has raised the research on content-based
retrieval models (15, 16). In contrast to the traditional
text-based systems, these applications usually consist
of a large volume of image data whose semantic con-
tents cannot be represented efficiently using the tradi-
tional database models. Most of the present content-
based image retrieval approaches employ the feature
vectors to facilitate content-based query processing—
the features are extracted from image pixels, heuris-
tically or empirically, and combined into vectors
according to the application criterion. However, these
low-level features cannot represent the semantic con-
tents and therefore do not provide an ideal basis for
semantic-based image retrieval. To introduce novel
schemes to facilitate semantic-based image content
query/transaction management in a distributed het-
erogeneous database environment, i.e., MDAS, will be
of great interest to both academia and industry.

� Quality-of-Service Cache Coherence: The p-caching
strategy showed promising results in improving the

performance of the read-only query and hence overall
system’s throughput. The effect of the cache on the
MDAS environment should be studied. This could be
done by changing the cache-hit ratio to a raw prob-
ability that a read-only query is valid or invalid. A
quality-of-service QOS approach is ideally suited for
such a general-purpose cache coherence protocol, pro-
viding strong consistency for those data items that
require it while permitting weaker consistency for
less critical data (12). Therefore, it would be interest-
ing to investigate the effectiveness of such a QOS
approach on the performance metrics that determine
the effectiveness of the concurrency control policies.

BIBLIOGRAPHY

1. A. R. Hurson and M. W. Bright, Multidatabase systems: An
advanced concept in handling distributed data, Adv. Comput.,
32: 149–200, 1991.

2. J. B. Lim and A. R. Hurson, Heterogeneous data access in a
mobile environment—issues and solutions, Adv. Comput., 48:
119–178, 1999.

3. A. R. Hurson and Y. Jiao, Data broadcasting in a mobile
environment, in D. Katsaros et al. (eds.), Wireless Information
Highway., Hershey, PA: IRM Press, 2004, pp. 96–154.

4. M. W. Bright, A. R. Hurson, and S. H. Pakzad, Automated
resolution of semantic heterogeneity in multidatabases,
ACM Trans. Database Syst., 19(2): 212–253, 1994.

5. T. Berners-Lee, Semantic Web Roadmap. Available: http://
www.w3.org/DesignIssues/Semantic.html.

6. W3C(a), Extensible Markup Language. Available: http://
www.w3.org/XML/.

7. W3C(b), Resource Description Framework. Available: http://
www.w3.org/RDF/.

8. W3C(c), OWL Web Ontology Language Overview. Available:
http://www.w3.org/TR/owl-features/.

9. J. Lim and A. R. Hurson, Transaction processing in mobile,
heterogeneous database systems, IEEE Trans. Knowledge
Data Eng., 14(6): 1330–1346, 2002.

10. Y. Breitbart, H. Garcia–Molina, and A. Silberschatz, Overview
of multidatabase transaction management, VLDB J., 1(2):
181–239, 1992.

11. K. Segun, A. R. Hurson, V. Desai, A. Spink, and L. L. Miller,
Transaction management in a mobile data access system, Ann.
Rev. Scalable Comput., 3: 85–147, 2001.

12. J. Sustersic and A. R. Hurson, Coherence protocols for bus-
based and scalable multiprocessors, Internet, and wireless
distributed computing environment: A survey, Adv. Comput.,
59: 211–278, 2003.

13. P. Cao and C. Liu, Maintaining strong cache consistency in the
World Wide Web, IEEE Trans. Comput., 47(4): 445–457, 1998.

14. Y. Jiao and A. R. Hurson, Applicationof mobile agents in mobile
data access systems—a prototype, J. Database Manage., 15(4):
1–24, 2004.

15. B. Yang and A. R. Hurson, An extendible semantic-based
content representation method for distributed image databases,
Proc. International Symposium on Multimedia Software
Engineering, 2004, pp. 222–226.

16. B. Yang, A. R. Hurson, and Y. Jiao, On the Content Predict-
ability of Cooperative Image Caching in Ad Hoc Networks,

8 TRANSACTION PROCESSING IN MOBILE, HETEROGENEOUS DATABASE SYSTEMS



Proc. International Conference on Mobile Data Management,
2006.

FURTHER READING

A. Elmagarmid, J. Jing, and T. Furukawa, Wireless client/server
computing for personal information services and applications,
ACM Sigmod Record, 24(4): 16–21, 1995.

M. Franklin, M. Carey, and M. Livny, Transactional client-server
cache consistency: Alternatives and performance, ACM Trans.
Database Syst., 22(3): 315–363, 1995.

S. Mehrotra, H. Korth, and A. Silberschatz, Concurrency control in
hierarchical multi-database systems, VLDB J., 6: 152–172, 1997.

E. Pitoura and B. Bhargava, A framework for providing consistent
and recoverable agent-based access to heterogeneous mobile data-
bases, ACM Sigmod Record, 24(3): 44–49, 1995.

A. Brayner and F. S. Alencar, A semantic-serializability based
fully-distributed concurrency control mechanism for mobile multi-
database systems, proc. International Workshop on Database and
Expert Systems Applications, 2005.

R. A. Dirckze and L. Gruenwald, A pre-serialization transaction
management technique for mobile multi-databases, Mobile
Networks Appl., 5: 311–321, 2000.

J. B. LIM

MJL Technology
Seoul, South Korea

A. R. HURSON

Y. JIAO

The Pennsylvania State
University

State College, Pennsylvania

TRANSACTION PROCESSING IN MOBILE, HETEROGENEOUS DATABASE SYSTEMS 9



V

VERY LARGE DATABASES

A growing number of database applications require online,
interactive access to very large volumes of data to perform a
variety of data analysis tasks. As an example, large tele-
communication and Internet service providers typically col-
lect and store Gigabytes or Terabytes of detailed usage
information (Call Detail Records, SNMP/RMON packet
flow data, etc.) from the underlying network to satisfy the
requirements of various network management tasks, includ-
ing billing, fraud/anomaly detection, and strategic planning.
Such large datasets are typically represented either as mas-
sive alphanumeric data tables (in the relational data model)
or as massive labeled data graphs (in richer, semistructured
data models, such as extensible markup language (XML)). In
order to deal with the huge data volumes, high query com-
plexities, and interactive response time requirements char-
acterizing these modern data analysis applications, the idea
of effective, easy-to-compute approximations over precom-
puted, compact data synopses has recently emerged as a
viable solution. Due to the exploratory nature of most target
applications, there are a number of scenarios in which a
(reasonably accurate) fast approximate answer over a small-
footprint summary of the database is actually preferable over
an exact answer that takes hours or days to compute. For
example, during a drill-down query sequence in ad hoc data
mining, initial queries in the sequence frequently have the
sole purpose of determining the truly interesting queries and
regions of the database. Providing fast approximate answers
to these initial queries gives users the ability to focus their
explorationsquicklyandeffectively,withoutconsuming inor-
dinate amounts of valuable system resources. The key, of
course, behind such approximate techniques for dealing with
massive datasets lies in the use of appropriate data reduction
techniques for constructing compact data synopses that can
accurately approximate the important features of the under-
lying data distribution. In this article, we provide an over-
view of date reduction and approximation methods for
massive databases and discuss some of the issues that
develop from different types of data, large data volumes,
and applications-specific requirements.

APPROXIMATION TECHNIQUES FOR MASSIVE
RELATIONAL DATABASES

Consider a relational table R with d data attributes X1,
X2, . . . Xd. We can represent the information in R as a
d-dimensional array AR , whose jth dimension is indexed
by the values of attribute Xj and whose cells contain the
count of tuples in R having the corresponding combination
of attribute values. AR is essentially the joint frequency
distribution of all the data attributes of R. More formally,
let D ¼ fD1; D2; . . . ; Ddg denote the set of dimensions of
AR, where dimension Dj corresponds to the value domain of

attribute Xj . Without loss of generality, we assume that
each dimension Dj is indexed by the set of integers
f0; 1; . . . ; jDjj � 1g, where jDjj denotes the size of dimen-
sion Dj. We assume that the attributes {X1,. . .,Xd} are
ordinal in nature, that is, their domains are naturally
ordered, which captures all numeric attributes (e.g., age,
income) and some categorical attributes (e.g., education).
Such domains can always be mapped to the set of integers
mentioned above while preserving the natural domain
order and, hence, the locality of the distribution. It is
also possible to map unordered domains to integer values;
however, such mappings do not always preserve locality.
For example, mapping countries to integers using alpha-
betic ordering can destroy data locality. There may be
alternate mappings that are more locality preserving,
(e.g., assigning neighboring integers to neighboring coun-
tries). (Effective mapping techniques for unordered attri-
butes are an open research issue that lies beyond the scope
of this article.) The d-dimensional joint-frequency array AR

comprises N ¼ Pd
i¼1jDij cells with cell AR [i1, i2,. . ., id]

containing the count of tuples in R having Xj ¼ i j for
each attribute 1 � j � d.

The common goal of all relational data reduction tech-
niques is to produce compact synopsis data structures
that can effectively approximate the d-dimensional joint-
frequency distribution AR. In what follows, we give an
overview of a few key techniques for relational data reduc-
tion, and discuss some of their main strengths and weak-
nesses as well as recent developments in this area of
database research. More exhaustive and detailed surveys
can be found elsewhere; see, for example, Refs. 1 and 2.

Sampling-Based Techniques

Sampling methods are based on the notion that a large
dataset can be represented by a small uniform random
sample of data elements, an idea that dates back to the end
of the nineteenth century. In recent years, there has been
increasing interest in the application of sampling ideas as
a tool for data reduction and approximation in relational
database management systems (3–8). Sample synopses
can be either precomputed and incrementally maintained
(e.g., Refs. 4 and 9) or they can be obtained progressively
at run-time by accessing the base data using specialized
data access methods (e.g., Refs. 10 and 11). Appropriate
estimator functions can be applied over a random sample
of a data collection to provide approximate estimates for
quantitative characteristics of the entire collection (12).
The adequacy of sampling as a data-reduction mechanism
depends crucially on how the sample is to be used. Random
samples can typically provide accurate estimates for
aggregate quantities (e.g., COUNTs or AVERAGEs) of a
(sub)population (perhaps determined by some selection
predicate), as witnessed by the long history of successful
applications of random sampling in population surveys

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



(12,13). An additional benefit of random samples is that
they can provide probabilistic guarantees (i.e., confidence
intervals) on the quality of the approximation (7,11). On
the other hand, as a query approximation tool, random
sampling is limited in its query processing scope, espe-
cially when it comes to the ‘‘workhorse’’ operator for
correlating data collections in relational database sys-
tems, the relational join. The key problem here is that a
join operator applied on two uniform random samples
results in a nonuniform sample of the join result that
typically contains very few tuples, even when the join
selectivity is fairly high (9). Furthermore, for nonaggre-
gate queries, execution over random samples of the data is
guaranteed to always produce a small subset of the exact
answer, which is often empty when joins are involved
(9,14). The recently proposed ‘‘join synopses’’ method (9)
provides a (limited) sampling-based solution for handling
foreign-key joins that are known beforehand (based on an
underlying ‘‘star’’ or ‘‘snowflake’’ database schema). Tech-
niques for appropriately biasing the base-relation sam-
ples for effective approximate join processing have also
been studied recently (3).

Histogram-Based Techniques

Histogramsynopses orapproximatingone-dimensional data
distributions have been extensively studied in the research
literature (15–19), and have been adopted by several com-
mercial database systems. Briefly, a histogram on an attri-
bute X is constructed by employing a partitioning rule to
partition thedatadistributionof X intoanumber of mutually
disjoint subsets (called buckets), and approximating the
frequencies and values in each bucket in some common
fashion. Several partitioning rules have been proposed for
the bucketization of data distribution points—some of the
most effective rules seem to be ones that explicitly try to
minimize the overall variance of the approximation in the
histogram buckets (17–19). The summary information
stored in each bucket typically comprises (1) the number
of distinct data values in the bucket, and (2) the average
frequency of values in the bucket, which are used to
approximate the actual bucket contents based on appropri-
ate uniformity assumptions about the spread of different
values in the bucket and their corresponding frequencies
(19).

One-dimensional histograms can also be used to approx-
imate a (multidimensional) joint-frequency distribution
AR through a mutual-independence assumption for the
data attributes {X1, . . ., Xd}. Mutual independence essen-
tially implies that the joint-frequency distribution can be
obtained as a product of the one-dimensional marginal
distributions of the individual attributes Xi. Unfortunately,
experience with real-life datasets offers overwhelming evi-
dence that this independence assumption is almost always
invalid and can lead to gross approximation errors in
practice (20,21). Rather than relying on heuristic indepen-
dence assumptions, multidimensional histograms [origin-
ally introduced by Muralikrishna and DeWitt (22)] try to
directly approximate the joint distribution of {X1,. . ., Xd}
by strategically partitioning the data space into d-dimen-
sional buckets in a way that captures the variation in data

frequencies and values. Similar to the one-dimensional
case, uniformity assumptions are made to approximate
the distribution of frequencies and values within each
bucket (21). Finding optimal histogram bucketizations is
a hard optimization problem that is typically NP-complete
even for two dimensions (23). Various greedy heuristics for
multidimensional histogram construction have been pro-
posed (21,22,24) and shown to perform reasonably well for
low to medium data dimensionalities (e.g., d ¼ 2�5).

Recent work has demonstrated the benefits of histogram
synopses (compared with random samples) as a tool for
providing fast, approximate answers to both aggregate and
nonaggregate (i.e., ‘‘set-valued’’) user queries over low-
dimensional data (14). Other studies have also considered
the problem of incrementally maintaining a histogram
synopsis over updates (25,26) or using query feedback
(27,28), and the effectiveness of random sampling for
approximate histogram construction (29). Unfortunately,
like most techniques that rely on space partitioning (includ-
ing the wavelet-based techniques of the next section),
multidimensional histograms also fall victim to the ‘‘curse
of dimensionality,’’ which renders them ineffective above
5–6 dimensions (24).

Wavelet-Based Techniques

Wavelets are a mathematical tool for the hierarchical
decomposition of functions with several successful appli-
cations in signal and image processing (30,31). Broadly
speaking, the wavelet decomposition of a function consists
of a coarse overall approximation along with detail coeffi-
cients that influence the function at various scales (31). A
number of recent studies have also demonstrated the
effectiveness of the wavelet decomposition (and Haar
wavelets, in particular) as a data reduction tool for data-
base problems, including selectivity estimation (32) and
approximate query processing over massive relational
tables (33–35).

Suppose we are given the one-dimensional data fre-
quency vector A containing the N ¼ 8 values A ¼ ½2; 2; 0;
2; 3; 5; 4; 4�. The Haar wavelet decomposition of A can be
computed as follows. We first average the values together
pairwise to get a new ‘‘lower-resolution’’ representation of
the data with the following average values [2,1,4,4]. In
other words, the average of the first two values (that is, 2
and 2) is 2, that of the next two values (that is, 0 and 2) is 1,
and so on. Obviously, some information has been lost in
this averaging process. To be able to restore the original
values of the frequency array, we need to store some detail
coefficients that capture the missing information. In Haar
wavelets, these detail coefficients are simply the differ-
ences of the (second of the) averaged values from the
computed pairwise average. Thus, in our simple example,
for the first pair of averaged values, the detail coefficient is
0 because 2� 2 ¼ 0; for the second sample, we again need
to store �1 because 1� 2 ¼ �1. Note that no information
has been lost in this process—it is fairly simple to recon-
struct the eight values of the original data frequency array
from the lower-resolution array containing the four
averages and the four detail coefficients. Recursively
applying the above pairwise averaging and differencing

2 VERY LARGE DATABASES



process on the lower-resolution array containing the
averages, we get the following full decomposition:

Resolution Averages Detail Coefficients

3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, �1, �1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [�5/4]

The Haar wavelet decomposition of A is the single
coefficient representing the overall average of the fre-
quency values followed by the detail coefficients in the
order of increasing resolution. Thus, the one-dimensional
Haar wavelet transform of A is given by WA ¼ ½11=4; �5=4;
1=2; 0; 0; �1; �1; 0�. Each entry in WA is called a wavelet
coefficient. The main advantage of using WA instead of the
original frequency vector A is that for vectors containing
similar values most of the detail coefficients tend to have
very small values. Thus, eliminating such small coefficients
from the wavelet transform (i.e., treating them as zeros)
introduces only small errors when reconstructing the ori-
ginal data, resulting in a very effective form of lossy data
compression (31). Furthermore, the Haar wavelet decom-
position can also be extended to multidimensional joint-
frequency distribution arrays through natural generaliza-
tions of the one-dimensional decomposition process
described above (33,35). Thus, the key idea is to apply
the decomposition process over an input dataset along
with a thresholding procedure in order to obtain a compact
data synopsis comprising of a selected small set of Haar
wavelet coefficients. The results of several research studies
(32–37) have demonstrated that fast and accurate approx-
imate query processing engines (for both aggregate and
nonaggregate queries) can be designed to operate solely
over such compact wavelet synopses.

Other recent work has proposed probabilistic counting
techniques for the efficient online maintenance of wavelet
synopses in the presence of updates (38), as well as time-
and space-efficient techniques for constructing wavelet
synopses for datasets with multiple measures (such as
those typically found in OLAP applications) (39). All the
above-mentioned studies rely on conventional schemes
for eliminating small wavelet coefficients in an effort to
minimize the overall sum-squared error (SSE). Garofalakis
and Gibbons (34,36) have shown that such conventional
wavelet synopses can suffer from several important pro-
blems, including the introduction of severe bias in the data
reconstruction and wide variance in the quality of the data
approximation, as well as the lack of nontrivial guarantees
for individual approximate answers. In contrast, their
proposed probabilistic wavelet synopses rely on a probabil-
istic thresholding process based on randomized rounding
that tries to probabilistically control the maximum relative
error in the synopsis by minimizing appropriate probabil-
istic metrics.

In more recent work, Garofalakis and Kumar (40) show
that the pitfalls of randomization can be avoided by intro-
ducing efficient schemes for deterministic wavelet thresh-
olding with the objective of optimizing a general class of
error metrics (e.g., maximum or mean relative error). Their

optimal and approximate thresholding algorithms are
based on novel Dynamic-Programming (DP) techniques
that take advantage of the coefficient-tree structure of the
Haar decomposition. This turns out to be a fairly powerful
idea for wavelet synopsis construction that can handle a
broad, natural class of distributive error metrics (which
includes several useful error measures for approximate
query answers, such as maximum or mean weighted rela-
tive error and weighted Lp-norm error) (40). The above
wavelet thresholding algorithms for non-SSE error metrics
consider only the restricted version of the problem, where
the algorithm is forced to select values for the synopsis from
the standard Haar coefficient values. As observed by Guha
and Harb (41), such a restriction makes little sense when
optimizing for non-SSE error, and can, in fact, lead to sub-
optimal synopses. Their work considers unrestricted Haar
wavelets, where the values retained in the synopsis are
specifically chosen to optimize a general (weighted) Lp-
norm error metric. Their proposed thresholding schemes
rely on a DP over the coefficient tree (similar to that in (40)
that also iterates over the range of possible values for each
coefficient. To keep time and space complexities manage-
able, techniques for bounding these coefficient-value
ranges are also discussed (41).

Advanced Techniques

Recent research has proposed several sophisticated
methods for effective data summarization in relational
database systems. Getoor et al. (42) discuss the applica-
tion of Probabilistic Relational Models (PRMs) (an exten-
sion of Bayesian Networks to the relational domain) in
computing accurate selectivity estimates for a broad class
of relational queries. Deshpande et al. (43) pro-posed
dependency-based histograms, a novel class of histogram-
based synopses that employs the solid foundation of
statistical interaction models to explicitly identify and
exploit the statistical characteristics of the data and, at
the same time, address the dimensionality limitations of
multidimensional histogram approximations. Spiegel
and Polyzotis (44) propose the Tuple-Graph synopses
that view the relational database as a semi-structured
data graph and employ summarization models inspired
by XML techniques in order to approximate the joint
distribution of join relationships and values. Finally,
Jagadish et al. (45) and Babu et al. (46) develop semantic
compression techniques for massive relational tables
based on the idea of extracting data mining models
from an underlying data table, and using these models
to effectively compress the table to within user-specified,
per-attribute error bounds.

Traditional database systems and approximation tech-
niques are typically based on the ability to make multiple
passes over persistent datasets that are stored reliably in
stable storage. For several emerging application domains,
however, data arrives at high rates and needs to be pro-
cessed on a continuous ð24� 7Þ basis, without the benefit of
several passes over a static, persistent data image. Such
continuous data streams occur naturally, for example, in
the network installations of large telecom and Internet
service providers where detailed usage information (call

VERY LARGE DATABASES 3



detail records (CDRs), SNMP/RMON packet-flow data,
etc.) from different parts of the underlying network needs
to be continuously collected and analyzed for interesting
trends. As a result, we are witnessing a recent surge of
interest in data stream computation, which has led to
several (theoretical and practical) studies proposing novel
one-pass algorithms for effectively summarizing massive
relational data streams in a limited amount of memory
(46–55).

APPROXIMATION TECHNIQUES FOR MASSIVE XML
DATABASES

XML (56) has rapidly evolved from a markup language for
web documents to an emerging standard for data exchange
andintegrationovertheInternet.Thesimple,self-describing
nature of the XMLstandard promises to enable a broad suite
ofnext-generationInternetapplications, rangingfromintel-
ligentwebsearchingandqueryingtoelectroniccommerce.In
many respects, XML represents an instance of semistruc-
tured data (57): The underlying data model comprises a
labeled graph of element nodes, where each element can be
either an atomic data item (i.e., raw character data) or a
composite data collection consisting of references (repre-
sented as graph edges) to other elements in the graph.
Moreformally,anXMLdatabasecanbemodeledasadirected
graph G(VG, EG), where each node u 2 VG corresponds to a
document element, or an element attribute, with label
label(u). If u is a leaf node, then it can be associated
with a value value(u). An edge (u, v) denotes either the
nesting of v under u in the XML document, or a reference
from u to v, through ID/IDREF attributes or XLink con-
structs (58–60).

XML query languages use two basic mechanisms for
navigating the XML data graph and retrieving qualifying
nodes, namely, path expressions and twig queries. A path
expression specifies a sequence of navigation steps, where
each step can be predicated on the existence of sibling paths
or on the value content of elements, and the elements
at each step can be linked through different structural
relationships (e.g., parent-child, ancestor-child, or
relationships that involve the order of elements in
the document). As an example, the path expression
==author ½ =book==year ¼ 2003� ==paper will select all
paper elements with an author ancestor, which is the root of
at least one path that starts with book and ends in year, and
the value of the ending element is 2003. The example
expression is written in the XPath (61) language, which
lies at the core of XQuery (62) and XSLT (63), the dominant
proposals from W3C for querying and transforming XML
data.

A twig query uses multiple path expressions in order to
express a complex navigation of the document graph and
retrieve combinations of elements that are linked through
specific structural relationships. As an example, consider
the following twig query, which is expressed in the XQuery
(62) language: for $a in //author, $p in $a//paper/
title, $b in $a//book/title. The evaluation of the
path expressions proceeds in a nested-loops fashion, by
using the results of ‘‘parent’’ paths in order to evaluate

‘‘nested’’ paths. Thus, the first expression retrieves all
authors, and, for each one, the nested paths retrieve the
titles of their papers and books. The final result contains all
possible combinations of an author node, with a paper title
node and a book title node that it reaches. Twig queries
represent the equivalent of the SQL FROM clause in the
XML world, as they model the generation of element tuples,
which will eventually be processed to compute the final
result of the XML query.

The goal of existing XML data reduction techniques is
to summarize, in limited space, the key statistical pro-
perties of an XML database in order to provide selectivity
estimates for the result size of path expressions or twig
queries. Selectivity estimation is a key step in the opti-
mization of declarative queries over XML repositories and
is thus key for the effective implementation of high-level
query languages (64–66). Given the form of path expres-
sions and twig queries, an effective XML summary needs
to capture accurately both the path structure of the data
graph and the value distributions that are embedded
therein. In that respect, summarizing XML data is a
more complex problem than relational summarization,
which focuses mainly on value distributions. As with any
approximation method, the proposed XML techniques
store compressed distribution information on specific
characteristics of the data, and use statistical assumptions
in order to compensate for the loss of detail due to compres-
sion. Depending on the specifics of the summarization
model, the proposed techniques can be broadly classified
in three categories: (1) techniques that use a graph
synopsis, (2) techniques that use a relational summariza-
tion method, such as histograms or sampling, and (3)
techniques that use a Markovian model of path distribu-
tion. It should be noted that, conceptually, the proposed
summarization techniques can also be used to provide
approximate answers for XML queries; this direction, how-
ever, has not been explored yet in the current literature
and it is likely to become an active area of research in the
near future.

Graph-Synopsis-Based Techniques

At an abstract level, a graph synopsis summarizes the basic
path structure of the document graph. More formally, given
a data graph G ¼ ðVG; EGÞ, a graph synopsis SðGÞ ¼
ðVS; ESÞ is a directed node-labeled graph, where (1) each
node v 2 VS corresponds to a subset of element (or attri-
bute) nodes in VG (termed the extent of) that have the same
label, and (2) an edge in (u, v) 2 EG is represented in ES as
an edge between the nodes whose extents contain the two
endpoints u and v. For each node u, the graph synopsis
records the common tag of its elements and a count field for
the size of its extent.

In order to capture different properties of the underlying
path structure and value content, a graph synopsis is
augmented with appropriate, localized distribution infor-
mation. As an example, the structural XSKETCH-summary
mechanism (67), which can estimate the selectivity of
simple path expressions with branching predicates, aug-
ments the general graph-synopsis model with localized

4 VERY LARGE DATABASES



per-edge stability information, indicating whether the
synopsis edge is backward-stable or forward-stable. In
short, an edge (u, v) in the synopsis is said to be forward-
stable if all the elements of u have at least one child in v;
similarly, (u, v) is backward-stable if all the elements in v
have at least one parent in u [note that backward/forward
(B/F) stability is essentially a localized form of graph bisi-
milarity (68)]. Overall, edge stabilities capture key proper-
ties of the connectivity between different synopsis nodes
and can summarize the underlying path structure of the
input XML data.

In a follow-up study (69), the structural XSketch model
is augmented with localized per-node value distribution
summaries. More specifically, for each node u that repre-
sents elements with values, the synopsis records a sum-
mary H(u), which captures the corresponding value
distribution and thus enables selectivity estimates for
value-based predicates. Correlations among different value
distributions can be captured by a multidimensional sum-
mary H(u), which approximates the joint distribution of
values under u and under different parts of the document.
It should be noted that, for the single-dimensional case,
H(u) can be implemented with any relational summariza-
tion technique; the multidimensional case, however,
imposes certain restrictions due to the semantics of path
expressions, and thus needs specialized techniques that
can estimate the number of distinct values in a distribution
[examples of such techniques are range-histograms (69),
and distinct sampling (70)].

The TWIGXSKETCH (71) model is a generalization
of the XSKETCH synopses that deals with selectivity
estimation for twig queries. Briefly, the key idea in
TWIGXSKETCHes is to capture, in addition to localized
stability information, the distribution of document edges
for the elements in each node’s extent. In particular, each
synopsis node records an edge histogram, which sum-
marizes the distribution of child counts across different
stable ancestor or descendant edges. As a simple example,
consider a synopsis node u and two emanating synopsis
edges (u, v) and (u, w); a two-dimensional edge histogram
Hu(c1, c2) would capture the fraction of data elements in
extent(u) that have exactly c1 children in extent(v) and
c2 children in extent(w). Overall, TWIGXSKETCHes store
more fine-grained information on the path structure of
the data, and can thus capture, in more detail, the joint
distribution of path counts between the elements of the
XML dataset.

Recent studies (73–75) have proposed a variant of
graph-synopses that employ a clustering-based model in
order to capture the path and value distribution of the
underlying XML data. Under this model, each synopsis
node is viewed as a ‘‘cluster’’ and the enclosed elements
are assumed to be represented by a corresponding ‘‘cen-
troid,’’ which is derived in turn by the aggregate character-
istics of the enclosed XML elements. The TREESKETCH (72)
model, for instance, defines the centroid of a node ui as a
vector of average child counts ðc1; c2; � � � ; cnÞ, where c j is the
average child count from elements in Ai to every other node
uj. Thus, the assumption is that each element in ui has
exactly c j children to node uj. Furthermore, the clustering
error, that is, the difference between the actual child counts

in ui and the centroid, provides a measure of the error of
approximation. The TREESKETCH study has shown that a
partitioning of elements with low clustering error provides
an accurate approximation of the path distribution, and
essentially enables low-error selectivity estimates for struc-
tural twig queries. A follow-up study has introduced the
XCLUSTERs (73) model that extends the basic TREESKETCH

synopses with information on element content. The main
idea is to augment the centroid of each cluster with a value-
summary that approximates the distribution of values in
the enclosed elements. The study considers three types of
content: numerical values queried with range predicates,
string values queried with substring predicates, and text
values queriedwith term-containment predicates.Thus, the
key novelty of XCLUSTERs is that they provide a unified
platform for summarizing the structural and heterogeneous
value content of an XML data set. Finally, Zhang et al. have
proposed the XSeed (74) framework for summarizing the
recursive structure of an XML data set. An XSeed summary
resembles a TREESKETCH synopsis where all elements of the
same tag are mapped to a single cluster. The difference is
that each synopsis edge may be annotated with multiple
counts, one per recursive level in the underlying data. To
illustrate this, consider an element path =e1=e

0
1=e2=e

0
2 where

e1 and e2 correspond to cluster u and e01 and e02 to cluster u0.
The sub-path e1=e

0
1 will map to an edge between u and u0 and

will contribute to the first-level child count. The sub-path
e2=e

0
2 will map to the same edge, but will contribute to the

second-level child count from u to u0. Hence, XSeed stores
more fine-grained information compared to a TREESKETCH

synopsis that uses a single count for all possible levels. This
level-based information is used by the estimation algorithm
in order to approximate more accurately the selectivity of
recursive queries (i.e., with the ‘‘//’’ axis) on recursive data.

Histogram- and Sampling-Based Techniques

Several XML-related studies attempt to leverage the avail-
able relational summarization techniques by casting the
XML summarization problem into a relational context.
More specifically, the proposed techniques represent the
path structure and value content of the XML data in terms
of flat value distributions, which are then summarized
using an appropriate relational technique.

The StatiX (75) framework uses histogram-based tech-
niques and targets selectivity estimation for twig queries
over tree-structured data (note, however, that StatiX needs
the schema of the XML data in order to determine the set of
histograms, which makes the technique nonapplicable to
the general case of schema-less documents). StatiX parti-
tions document elements according to their schema type
and represents each group as a set of (pid, count) pairs,
where pid is the id of some element p and count is the
number of elements in the specific partition that have p as
parent. Obviously, this scheme encodes the joint distribu-
tion of children counts for the elements of each partition.
This information is then compressed using standard rela-
tional histograms, by treating pid as the value and count as
the frequency information.

A similar approach is followed in position histograms
(76), which target selectivity estimation for two-step path

VERY LARGE DATABASES 5



expressions of the form A//B. In this technique, each ele-
ment is represented as a point (s, e) in 2-dimensional space,
where s and e are the start and end values of the element in
the depth-first traversal of the document tree; thus, (sa, ea )
is an ancestor of (sb, eb ), if sa < sb < eb < ea. The proposed
summarization model contains, for each tag in the docu-
ment, one spatial histogram that summarizes the distribu-
tion of the corresponding element points. A spatial join
between histograms is then sufficient to approximate
the ancestor-descendant relationship between elements
of different tags.

A recent study (77) has introduced two summarization
models, namely the Position Model and the Interval
Model, which are conceptually similar to position histo-
grams but use a different encoding of structural relation-
ships. Again, the focus is on selectivity estimation for two-
step paths of the form A//B. The Position Model encodes
each element in A as a point (sa, ea), and each element in B
as a point sb; the selectivity is then computed as the
number of sb points contained under an (sa, ea ) interval.
In the Interval Model, a covering matrix C records the
number of points in A whose interval includes a specific
start position, whereas a position matrix P includes the
start positions of elements in B; the estimate is then
computed by joining the two tables and summing up the
number of matched intervals. Clearly, both models reduce
the XML estimation problem to operations on flat value
distributions, which can be approximated using relational
summarization techniques.

Markov-Model-Based Techniques

At an abstract level, the path distribution of an XML
dataset can be modeled with the probability of observing
a specific tag as the next step of an existing path. Recent
studies have investigated data reduction techniques that
summarize the path structure by approximating, in limited
space, the resulting path probability distribution. The
principal idea of the proposed techniques is to compress
the probability distribution through a Markovian assump-
tion: If p is a path that appears in the document and l is a
tag, then the probability that p/l is also a path depends only
on a suffix p of p (i.e., the next step is not affected by distant
ancestor tags). Formally, this assumption can be expressed
as P½p=l� ¼ P½p� � P½ljp¯ �, where P½q� is the probability of
observing path q in the data. Of course, the validity of
this independence assumption affects heavily the accuracy
of the summarization methods.

Recent studies (78,79) have investigated the applica-
tion of a k-order Markovian assumption, which limits the
statistically correlated suffix of p to a maximum prede-
fined length of k. Thus, only paths of length up to k need to
be stored in order to perform selectivity estimation. The
proposed techniques further compress this information
with a Markov histogram, which records the most fre-
quently occurring such paths. Less frequent paths are
grouped together, either according to their prefix (if the
aggregate frequency is high enough), or in a generic ’�’
bucket. In order to estimate the occurrence probability of a
longer path, the estimation framework identifies sub-
paths that are present in the Markov histogram and

combines the recorded probabilities using the Markovian
independence assumption.

Correlated Suffix Trees (CSTs) (80) employ a similar
Markovian assumption in order to estimate the selectivity
of twig queries. The path distribution of the document is
stored in a tree structure, which records the most fre-
quently occurring suffixes of root-to-leaf paths; thus, the
tree encodes frequent paths of variable lengths, instead of
using a predefined fixed length as the Markov Histogram
approach. In addition to frequent path suffixes, the sum-
mary records a hash signature for each outgoing path of a
tree node, which encodes the set of elements in the node’s
extent that have at least one matching outgoing document
path. Intuitively, an ‘‘intersection’’ of hash signatures,
where each signature corresponds to a different label
path, approximates the number of elements that have
descendants along all represented paths. Combined with
path frequency information, this information yields an
approximation of the joint path-count distribution for
different subsets of document elements.

BIBLIOGRAPHY

1. D. Barbarà, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M.
Hellerstein, Y. Ioannidis, H. V. Jagadish, T. Johnson, R. Ng, V.
Poosala, K. A. Ross, and K. C. Sevcik, The New Jersey data
reduction report, IEEE Data Eng. Bull., 20(4): 3–45, 1997,
(Special Issue on Data Reduction Techniques).

2. M. Garofalakis and P. B. Gibbons, Approximate query proces-
sing: Taming the Terabytes, Tutorial in 27th Intl. Conf. on Very
Large Data Bases, Roma, Italy, September 2001.

3. S. Chaudhuri, R. Motwani, and V. Narasayya, On random
sampling over joins, in Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, Philadel-
phia, PA, May 1999, pp. 263–274.

4. P. B. Gibbons and Y. Matias, New sampling-based summary
statistics for improving approximate query answers, in Pro-
ceedings of the 1998 ACM SIGMOD International Conference
on Management of Data, Seattle, WA, June 1998, pp. 331–342.

5. P. J. Haas and A. N. Swami, Sequential sampling procedures
for query size estimation, in Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data,
San Diego, CA, June 1992, pp. 341–350.

6. R. J. Lipton, J. F. Naughton, and D. A. Schneider, Practical
selectivity estimation through adaptive sampling, in Proceed-
ings of the 1990 ACM SIGMOD International Conference on
Management of Data, Atlantic City, NJ, May 1990, pp. 1–12.

7. R. J. Lipton, J. F. Naughton, D. A. Schneider, and S. Seshadri,
Efficient sampling strategies for relational database opera-
tions, Theoret. Comp. Sci., 116: 195–226, 1993.

8. F. Olken and D. Rotem, Simple random sampling from rela-
tional databases, in Proceedings of the Twelfth International
Conference on Very Large Data Bases, Kyoto, Japan, August
1986, pp. 160–169.

9. S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, Join
synopses for approximate query answering, in Proceedings of
the 1999 ACM SIGMOD International Conference on Manage-
ment of Data, Philadelphia, PA, May 1999, pp. 275–286.

10. P. J. Haas and J. M. Hellerstein, Ripple joins for online aggre-
gation, in Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, Philadelphia, PA, May
1999, pp. 287–298.

6 VERY LARGE DATABASES



11. J. M. Hellerstein, P. J. Haas, and H. J. Wang, Online aggrega-
tion, in Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, Tucson, AZ, May 1997.

12. W. G. Cochran, Sampling Techniques, 3rd ed. New York: John
Wiley & Sons, 1977.

13. C.-E. Särndal, B. Swensson, and J. Wretman, Model Assisted
Survey Sampling, New York: Springer-Verlag (Springer Series
in Statistics), 1992.

14. Y. E. Ioannidis and V. Poosala, Histogram-based approxima-
tion of set-valued query answers, in Proceedings of the 25th
International Conference on Very Large Data Bases, Edin-
burgh, Scotland, September 1999.

15. Y. E. Ioannidis, Universality of serial histograms, in Proceed-
ings of the Nineteenth International Conference on Very Large
Data Bases, Dublin, Ireland, August 1993, pp. 256–267.

16. Y. E. Ioannidis and S. Christodoulakis, Optimal histograms for
limiting worst-case error propagation in the size of join results,
ACM Trans. Database Sys., 18(4): 709–748, 1993.

17. Y. E. Ioannidis and V. Poosala, Balancing histogram optimality
and practicality for query result size estimation, in Proceedings
of the 1995 ACM SIGMOD International Conference on Man-
agement of Data, May 1995, pp. 233–244.

18. H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K.
Sevcik, and T. Suel, Optimal histograms with quality guaran-
tees, in Proceedings of the 24th International Conference on
Very Large Data Bases, New York City, NY, August 1998.

19. V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita,
Improved histograms for selectivity estimation of range pre-
dicates, in Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data, Montreal, Quebec,
June 1996, pp. 294–305.

20. C. Faloutsos and I. Kamel, Beyond uniformity and indepen-
dence: Analysis of R-trees using the concept of fractal dimen-
sion, in Proceedings of the Thirteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Min-
neapolis, MN, May 1994, pp. 4–13.

21. V. Poosala and Y. E. Ioannidis, Selectivity estimation without
the attribute value independence assumption, in Proceedings
of the 23rd International Conference on Very Large Data Bases,
Athens, Greece, August 1997, pp. 486–495.

22. M. Muralikrishna and D. J. DeWitt, Equi-depth histograms for
estimating selectivity factors for multi-dimensional queries, in
Proceedings of the 1988 ACM SIGMOD International Confer-
ence on Management of Data, Chicago, IL, June 1988, pp. 28–
36.

23. S. Muthukrishnan, V. Poosala, and T. Suel, On rectangular
partitionings in two dimensions: Algorithms, complexity, and
applications, in Proceedings of the Seventh International Con-
ference on Database Theory (ICDT’99), Jerusalem, Israel, Jan-
uary 1999.

24. D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi,
Approximating multi-dimensional aggregate range queries
over real attributes, in Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, Dallas, TX,
May 2000.

25. D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan, Dynamic
histograms: Capturing evolving data sets, in Proceedings of the
Sixteenth International Conference on Data Engineering, San
Diego, CA, March 2000.

26. P. B. Gibbons, Y. Matias, and V. Poosala, Fast incremental
maintenance of approximate histograms, in Proceedings of the
23rd International Conference on Very Large Data Bases,
Athens, Greece, August 1997, pp. 466–475.

27. A. Aboulnaga and S. Chaudhuri, Self-tuning histograms:
Building histograms without looking at data, in Proceedings
of the 1999 ACM SIGMOD International Conference on
Management of Data, Philadelphia, PA, May 1999, pp. 181–
192.

28. N. Bruno, S. Chaudhuri, and L. Gravano, STHoles: A Multi-
dimensional workload-aware histogram, in Proceedings of the
2001 ACM SIGMOD International Conference on Management
of Data, Santa Barbara, CA, May 2001.

29. S. Chaudhuri, R. Motwani, and V. Narasayya, Random sam-
pling for histogram construction: How much is enough?, in
Proceedings of the 1998 ACM SIGMOD International Confer-
ence on Management of Data, Seattle, WA, June 1998.

30. B. Jawerth and W. Sweldens, An overview of wavelet based
multiresolution analyses, SIAM Rev., 36(3): 377–412, 1994.

31. E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, Wavelets for
Computer Graphics—Theory and Applications, San Francisco,
CA: Morgan Kaufmann Publishers, 1996.

32. Y. Matias, J. S. Vitter, and M. Wang, Wavelet-based histo-
grams for selectivity estimation, in Proceedings of the 1998
ACM SIGMOD International Conference on Management of
Data, Seattle, WA, June 1998, pp. 448–459.

33. K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim.,
Approximate query processing using wavelets, in Proceedings
of the 26th International Conference on Very Large Data Bases,
Cairo, Egypt, September 2000, pp. 111–122.

34. M. Garofalakis and P. B. Gibbons, Wavelet synopses with error
guarantees, in Proceedings of the 2002 ACM SIGMOD Inter-
national Conference on Management of Data, Madison, WI,
June 2002, pp. 476–487.

35. J. S. Vitter and M. Wang, Approximate computation of multi-
dimensional aggregates of sparse data using wavelets, in Pro-
ceedings of the 1999 ACM SIGMOD International Conference
on Management of Data, Philadelphia, PA, May 1999.

36. M. Garofalakis and P. B. Gibbons, Probabilistic wavelet
synopses, ACM Trans. Database Syst., 29 (1): 2004. (SIG-
MOD/PODS Special Issue).

37. R. R. Schmidt and C. Shahabi, ProPolyne: A fast wavelet-based
algorithm for progressive evaluation of polynomial range-sum
queries, in Proceedings of the 8th International Conference on
Extending Database Technology (EDBT’2002), Prague, Czech
Republic, March 2002.

38. Y. Matias, J. S. Vitter, and M. Wang, Dynamic maintenance of
wavelet-based histograms, in Proceedings of the 26th Interna-
tional Conference on Very Large Data Bases, Cairo, Egypt,
September 2000.

39. A. Deligiannakis and N. Roussopoulos, Extended wavelets for
multiple measures, in Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, San Diego,
CA, June 2003.

40. M. Garofalakis and A. Kumar, Wavelet synopses for general
error metrics, ACM Trans. Database Syst., 30(4), 2005.

41. S. Guha and B. Harb, Wavelet synopsis for data streams:
Minimizing non-euclidean error, in Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Chicago, IL, August 2005.

42. L. Getoor, B. Taskar, and D. Koller, Selectivity estimation
using probabilistic models, in Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data,
Santa Barbara, CA, May 2001.

43. A. Deshpande, M. Garofalakis, and R. Rastogi, Independence
is good: Dependency-based histogram synopses for high-
dimensional data, in Proceedings of the 2001 ACM SIGMOD

VERY LARGE DATABASES 7



International Conference on Management of Data, Santa Bar-
bara, CA, May 2001.

44. J. Spiegel and N. Polyzotis, Graph-based synopses for rela-
tional selectivity estimation, in Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data,
Chicago, IL, 2006, pp. 205–216.

45. H. V. Jagadish, J. Madar, and R. Ng, Semantic compression
and pattern extraction with fascicles, in Proceedings of the 25th
International Conference on Very Large Data Bases, Edin-
burgh, Scotland, September 1999, pp. 186–197.

46. S. Babu, M. Garofalakis, and R. Rastogi, SPARTAN: A model-
based semantic compression system for massive data tables, in
Proceedings of the 2001 ACM SIGMOD International Confer-
ence on Management of Data, Santa Barbara, CA, May 2001.

47. N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy, tracking join
and self-join sizes in limited storage, in Proceedings of the
Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Philadeplphia, PA, May 1999.

48. N. Alon, Y. Matias, and M. Szegedy, The space complexity of
approximating the frequency moments, in Proceedings of the
28th Annual ACM Symposium on the Theory of Computing,
Philadelphia, PA, May 1996, pp. 20–29.

49. A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, Proces-
sing complex aggregate queries over data streams, in Proceed-
ings of the 2002 ACM SIGMOD International Conference on
Management of Data, Madison, WI, June 2002, pp. 61–72.

50. J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan,
An approximate L1-difference algorithm for massive data
streams, in Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science, New York, NY, October
1999.

51. S. Ganguly, M. Garofalakis, and R. Rastogi, Processing set
expressions over continuous update streams, in Proceedings of
the 2003 ACM SIGMOD International Conference on Manage-
ment of Data, San Diego, CA, June 2003.

52. M. Greenwald and S. Khanna, Space-efficient online computa-
tion of quantile summaries, in Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data,
Santa Barbara, CA, May 2001.

53. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss,
Surfing wavelets on streams: One-pass summaries for approx-
imate aggregate queries, in Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases, Roma, Italy,
September 2001.

54. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss,
How to summarize the universe: Dynamic maintenance of
quantiles, in Proceedings of the 28th International Conference
on Very Large Data Bases, Hong Kong, China, August 2002, pp.
454–465.

55. P. Indyk, Stable distributions, pseudorandom generators,
embeddings and data stream computation, in Proceedings of
the 41st Annual IEEE Symposium on Foundations of Computer
Science, Redondo Beach, CA, November 2000, pp. 189–197.

56. N. Thaper, S. Guha, P. Indyk, and N. Koudas, Dynamic multi-
dimensional histograms, in Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data,
Madison, WI, June 2002, pp. 428–439.

57. T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler,
Extensible Markup Language (XML) 1.0, 2nd ed. W3C Recom-
mendation. Available: http://www.w3.org/TR/REC-xml/).

58. S. Abiteboul, Querying semi-structured data, in Proceedings of
the Sixth International Conference on Database Theory
(ICDT’97), Delphi, Greece, January 1997.

59. R. Goldman and J. Widom, DataGuides: Enabling query for-
mulation and optimization in semistructured databases, in
Proceedings of the 23rd International Conference on Very Large
Data Bases, Athens, Greece, August 1997, pp. 436–445.

60. R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes, Exploit-
ing local similarity for efficient indexing of paths in graph
structured data, in Proceedings of the Eighteenth Interna-
tional Conference on Data Engineering, San Jose, CA,
February 2002.

61. T. Milo and D. Suciu, Index structures for path expressions, in
Proceedings of the Seventh International Conference on Data-
base Theory (ICDT’99), Jerusalem, Israel, January 1999.

62. J. Clark, and S. DeRose, XML Path Language (XPath), Version
1.0, W3C Recommendation. Available: http://www.w3.org/TR/
xpath/.

63. D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu, XQuery 1.0: An XML query language, W3C
Working Draft 07. Available. http://www.w3.org/TR/xquery/).

64. J. Clark, XSL Transformations (XSLT), Version 1.0, W3C
Recommendation. Available: http://www.w3.org/TR/xslt/).

65. Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and S. Papar-
izos, From tree patterns to generalized tree patterns: On
efficient evaluation of XQuery, in Proceedings of the 29th
International Conference on Very Large Data Bases, Berlin,
Germany, September 2003.

66. A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krishna-
murthy, A. N. Rao, F. Tian, S. Viglas, Y. Wang, J. F. Naughton,
and D. J. DeWitt, Mixed mode XML query processing, in
Proceedings of the 29th International Conference on Very Large
Data Bases, Berlin, Germany, September 2003.

67. J. McHugh and J. Widom, Query optimization for XML, in
Proceedings of the 25th International Conference on Very Large
Data Bases, Edinburgh, Scotland, September 1999.

68. N. Polyzotis and M. Garofalakis, Statistical synopses for graph-
structured XML databases, in Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data,
Madison, WI, June 2002.

69. R. Milner, Communication and Concurrency, Englewood
Cliffs, NJ: Prentice Hall (Intl. Series in Computer Science),
1989.

70. N. Polyzotis and M. Garofalakis, Structure and value synopses
for XML data graphs, in Proceedings of the 28th International
Conference on Very Large Data Bases, Hong Kong, China,
August 2002.

71. P. B. Gibbons, Distinct sampling for highly-accurate answers
to distinct values queries and event reports, in Proceedings of
the 27th International Conference on Very Large Data Bases,
Roma, Italy, September 2001.

72. N. Polyzotis, M. Garofalakis, and Y. Ioannidis, Selectivity
estimation for XML twigs, in Proceedings of the Twentieth
International Conference on Data Engineering, Boston, MA,
March 2004.

73. N. Polyzotis, M. Garofalakis, and Y. Ioannidis, Approximate
XML query answers, in Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, 2004, pp.
263–274.

74. N. Polyzotis and M. Garofalakis, XCluster synopses for struc-
tured XML content, in Proceedings of the 22nd International
Conference on Data Engineering, 2006.

75. N. Zhang, M.T. Ozsu, A. Aboulnaga, and I.F. Ilyas, XSEED:
Accurate and fast cardinality estimation for XPath queries, in
Proceedings of the 22nd International Conference on Data
Engineering, 2006.

8 VERY LARGE DATABASES



76. J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Siméon,
StatiX: Making XML count, in Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data,
Madison, WI, June 2002.

77. Y. Wu, J. M. Patel, and H. V. Jagadish, Estimating answersizes
for XML queries, in Proceedings of the 8th International Con-
ference on Extending Database Technology (EDBT’2002), Pra-
gue, Czech Republic, March 2002.

78. W. Wang, H. Jiang, H. Lu, and J. X. Yu, Containment join size
estimation: Models and methods, in Proceedings of the 2003
ACM SIGMOD International Conference on Management of
Data, San Diego, CA, June 2003.

79. A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton, Estimat-
ing the selectivity of XML path expressions for internet
scale applications, in Proceedings of the 27th International
Conference on Very Large Data Bases, Roma, Italy, September
2001.

80. L. Lim, M. Wang, S. Padamanabhan, J. S. Vitter, and R. Parr,
XPath-Learner: An on-line self-tuning Markov histogram for
XML path selectivity estimation, in Proceedings of the 28th

International Conference on Very Large Data Bases, Hong
Kong, China, August 2002.

81. Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrish-
nan, R. Ng, and D. Srivastava, Counting twig matches in a tree,
in Proceedings of the Seventeenth International Conference on
Data Engineering, Heidelberg, Germany, April 2001.

MINOS GAROFALAKIS

Yahoo! Research
Berkeley, California, and
University of California, Berkeley
Santa Clara, California

NEOKLIS POLYZOTIS

University of California,
Santa Cruz
Santa Cruz, California

VERY LARGE DATABASES 9



V

VISUAL DATABASE

INTRODUCTION

We humans are most adept and comfortable with visual
information, using our vision for routine activities as well as
for sophisticated reasoning andplanning. The increased use
of images, video, and graphics in computing environments
has catalyzed the development of data management tools
for accessing, retrieving, and presenting visual information
or alphanumeric information in visual ways. Some of
these tools are developed to create, store, and retrieve visual
data in the form of images or video to realize advanced
multimedia applications. Other tools use extensively visual
representation in user interfaces and provide essential
visual mechanisms to access alphanumeric or visual data
in databases. The development of these tools involves
concepts, algorithms, and techniques from diversified
fields such as database management systems, image
processing, information retrieval, and data visualization.
Consequently, the field of visual database represents
several diversified areas. These areas include at least the
following:

1. Database systems to manage visual information in
the form of images, video, or geometric entities; that
is, the data subject is visual.

2. Visual interfaces to query databases; that is, the
query interface is visual.

3. Visual interfaces to interpret information retrieved
from databases; that is, the data presentation is
visual.

The first area is related closely to the study of image and
multimedia databases. The second area has an impact
beyond databases and has been studied in programming
languages and programming environments. The third area
is the focus of data visualization study. These areas are
related closely with each other: The management of visual
data needs visual queries and visual presentation of query
results; on the other hand, the last two areas are applicable
not only to databases managing visual data but also to
alphanumeric databases. This article focuses on the first
area and the visual query interfaces of databases in the first
area. In other words, this article introduces principles and
techniques developed for the management of visual data
and techniques on visual interfaces to formulate queries
against databases that manage the visual data.

In a database system that manages visual data, many
issues exist to consider beyond those in alphanumeric
databases. Using image database as an example, these
issues typically include:

� Image features—what image features are most useful
in each particular application?

� Content-based retrieval—how are images searched
effectively and efficiently based on image contents?

� Storage and indexing—what are the proper storage
techniques for large amounts of image data, and what
are the proper indexing techniques to support content-
based retrieval of image data?

� User interface—how should the user browse and
search for images? What is a suitable user interface?
How is an image database made accessible through the
World Wide Web?

Other issues include those unique to visual databases
in query processing, transaction management, and data-
base recovery. In recent years, researchers have paid
attention to bridging the semantic gap between low-level
image features and high-level semantic concepts. This
article gives an overview of principles and techniques on
these topics. Given the broad and fast-expanding nature of
this field, we are bound to have omitted significant contents
and references. In addition, we devote a disproportionate
amount of attention to some issues at the expense of others.
It is better to introduce basic concepts and techniques well
rather than to give a quick run-through of broad topics. To
give real-world examples, nevertheless, this article pre-
sents an overview of three visual database systems. For
more comprehensive coverage and technical details, inter-
ested readers are invited to consult the survey papers listed
in the last section.

HISTORY AND THE STATE OF THE ART

Database management systems, especially relational data-
base management systems, have been extensively studied
in the past 40 years. Rigorous theory has been discovered,
and efficient techniques have been developed for the man-
agement of alphanumeric data. When new types of data
such as images and video were first brought into a database
environment, it was natural that the data needed to be
transformed so that they could be represented in existing
database management systems. In a relational database,
therefore, visual data are usually represented by their
alphanumeric attributes, which are stored as tuples over
relations. Kunii et al. (1) first attempted extending a rela-
tional database scheme to accommodate visual information
by describing the color and textural properties of images.
Physical visual data were stored in a separate storage and
were linked through references to their tuples in the rela-
tional database. The alphanumeric attributes of a visual
object are called features of the object. The features, which
act together as a proxy of the object, are used in answering a
user’s queries. In the 1970s and the early 1980s, several
image database systems (2–5) were developed to manage
images and graphics using relational databases. Research-
ers believed initially that this setting is all what they would
need for the management of visual data. They also believed

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.
Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



that most relational database techniques, including index-
ing, query optimization, concurrency control, and recovery,
would also work in parallel in the intended environments of
visual data management.

It was only after some experience working with visual
data that researchers realized the mismatch between the
nature of visual data and the way both the user and the
system were forced to query and operate on them. One
major technical challenge to visual database management
is data retrieval. The creation of mere visual data reposi-
tories is of little value unless methods are available for
flexible retrieval of visual data based on their contents.
Content-based retrieval means that the search will analyze
the actual contents of the image. The term ‘‘content’’ in this
context might refer to image features, such as colors,
shapes, textures, or any other information that can be
derived from the image itself. Without the ability to exam-
ine image content, searches must rely on textual informa-
tion, such as captions or keywords, which in many
applications have to be entered manually for every image
in the database.

The way people access visual information is fundamen-
tally different to the way they access alphanumeric infor-
mation. Relational queries and operations are not enough
for querying visual data, for which browsing, descriptive
query, and query by examples are important query para-
digms. Therefore, unique issues in visual database query
include how to support the content-based retrieval, how to
support image manipulations such as browsing and zoom-
ing, and how to support image processing operations for
feature extraction. Visual database systems differentiate
from each other in their ways to work around these issues.
As an example, the QBIC (6) system has a visual user
interface in which queries are posed by drawing, selec-
tion, and other graphical means. It supports image
queries using image features such as color, texture,
shape, and motion of images and video. Researchers
also attempted to manage geometric and spatial data in
relational databases. For example, PSQL (7) extends the
relational model in a disciplined way over three spatial
data types: points, line segments, and regions. Geometric
and spatial data pose unique problems to visual data
management. These problems include storage and index-
ing of spatial data and database query supported by
spatial operations.

For relational databases, a classic example of a visual
query interface is QBE (8). It is a very user-friendly tabular
query language based on domain relational calculus. To
formulate a query, a user enters example elements and fills
out tables supplied by the system. QBE has influenced the
graphical query facilities in modern database products,
particularly personal database software. As an extension
of QBE to the image database, QPE (9) introduced built-in
support of image operations. PICQUERY (10) proposed
a comprehensive list of image operations that should be
supported by an image database system and classified
these operations into image manipulation operations, pat-
tern recognition operations, spatial operations, function
operations, user-defined operations, and input/output
operations.

After the development of object-oriented databases and
logical databases, attempts were made to deal with seman-
tic modeling of images with complex structures (11) and
logic for visual databases (12). PROBE (13) is a spatial
object-oriented database system whose data model sup-
ports two basic types of data, objects and functions, where
functions uniformly represent properties, relationships,
and operations associated with objects. Chang et al.(14)
presented an image database system based on spatial
reasoning by two-dimensional (2-D) strings and image
database operations. Brink et al. (15) developed a multi-
media system that provides a shell/compiler to build meta-
data atop the physical medium for most media data. With
this kind of independence, visual database systems can be
built for a variety of applications.

Once image features were extracted, the question
remained as to how they could be matched against each
other for retrieval. The success of content-based image
retrieval depends on the definition of similarity measures
to measure quantitatively the similarities between images.
A summary of similarity measures was given in Ref. (16),
where similarity measures were grouped as feature-based
matching, object silhouette-based matching, structural fea-
ture matching, salient feature matching, matching at the
semantic level, and learning-based approaches for similar-
ity matching.

In addition to designing powerful low-level feature
extraction algorithms, researchers have also focused on
reducing the semantic gap (16,17) between the image fea-
tures and the richness of human semantics. One common
approach is to use object ontology, which is a simple voca-
bulary providing qualitative definitions of high-level con-
cepts. Images are classified into different categories by
mapping descriptions of image features to semantic key-
words. Such an association of low-level features with
high-level semantic concepts can take advantages of
classification and clustering algorithms developed in
machine learning and data mining. In addition to object
ontology, query results can be refined by learning the user’s
intention using relevance feedback, which is an interactive
process of automatically adjusting the execution of a query
using information fed back from the user about the rele-
vance of the results of the query.

In recent years, image retrieval on the World Wide Web
has become an active area of research. Systems like Web-
seer (18) and WebSEEK (19) can locate images on the Web
using image contents in addition to texts. MetaSEEK (20)
can distribute a user query to several independent image
search engines on the Web and then combine the results
to give the benefits of all of them. An image search on the
Web has enormous commercial potential. Many popular
commercial search engines have image and video search
functionalities. These search engines include Google Image
Search (http://images.google.com), Lycos Search (http://
search.lycos.com), AltaVista Image Search (http://www.
altavista.com/image), MSN Search (http://www.msn.com),
and Yahoo! Image Search (http://images.search.yahoo.
com). These search engines use text to search for images
or video, with little or no consideration of image contents.
Recently, Web-based communities become popular where
developers and end users use the Web as a platform for

2 VISUAL DATABASE



collaboration and resource sharing. Popular examples
include Flickr (http://www.flickr.com), which is a photo-
sharing website, and YouTube (http://www.youtube.com),
which is a video-sharing website. Both websites support
image or video search as part of the services they offer.

Given distinct methods and solutions to a problem as
open-ended as visual data retrieval, a natural question
that develops is how to make a fair comparison among
them. Evaluation of visual data retrieval has been an
ongoing challenging problem. Perhaps the most complete
video evaluation project has been the TRECVID evalua-
tion (21) (http://www-nlpir.nist.gov/projects/trecvid). The
project keeps close connections between private industry
and academic research where a realistic task-specific test
set is gathered, discussed, and agreed to. Several research
teams then attempt to provide the best video retrieval
system for the test set. TRECVID participants meet reg-
ularly for continual evolution toward improving the test
sets.

IMAGE FEATURES

Features of an image are a set of terms or measurements
that can be used to represent the image. An image can be
assigned features either manually or automatically.

A simple and reliable way to catch the content of an
image is to annotate manually the image with keywords. In
fact, it may be the only way to describe images in many
applications. A good example is the San Francisco de Young
Museum (http://www.thinker.org), which uses manual
annotation to identify images. Each image in the museum’s
extensive collection has a description, and some descrip-
tions are remarkably detailed. Free text retrieval techni-
ques are used to search for images based on the text
descriptions.

Many kinds of images cannot be annotated manually. A
typical example is a database of human facial images where
it is sometimes impossible to assign a unique keyword to
each facial image. Manual annotation is impractical for
very large databases or for images that are generated
automatically or streamed, for example, from surveillance
cameras. In such applications, it is attractive to extract
automatically features of visual data for content-based
retrieval. However, automatic extraction of image contents
is difficult. Except for a few special applications, such as
optical character recognition, the current state of the art in
image understanding cannot label an image with descrip-
tive terms that convincingly characterize the content of the
image. Furthermore, objects in an image can be occluded by
other objects or by shadows, be articulated, or have a shape
that is difficult to describe. The fundamental problem is
that so far it is not clear how human beings recognize
images and what features are used by human beings to
distinguish one image from another. It is not yet possible for
cognitive science to provide practical hints to computer
recognition of images.

An image in a database is represented typically by
multiple measures. According to the scope on the image
these measures are collected, image features can be classi-
fied as follows:

� Global features, which include average values, stan-
dard derivations, and histograms of measurements
calculated for the entire image.

� Regional features, which are measured on fixed
regions or regions having homogeneous properties.

� Object features, which are calculated for each object in
the image. Objects can be segmented either manually,
semiautomatically or automatically. Segmentation
techniques include thresholding, flood-fill using seed
points, and manual segmentation using shape models.

Image features are calculated typically off-line, and
thus, efficient computation is not a critical criterion as
opposed to efficient feature matching in answering user
queries. Commonly used primitive features include color
histogram, texture, shape, and contour measures. These
image features are well explained in image processing
textbooks such as Refs. (22 and 23).

A histogram of a grayscale image is a plot of the number
of pixels for each particular intensity value in the image. A
color image can be characterized by three histograms, one
for each of the three color components, in terms of either
RGB (red, green, and blue) or HSV (hue, saturation, and
value). Location information is lost totally in a histogram. A
histogram of an given image can be compared with the
stored set of histograms in the database to find an image
that is similar in color distribution to the given image.

Texture measures include almost all local features such
as energy, entropy, contrast, coarseness, correlation, ani-
sotropy, directionality, stripes, and granularity. Texture
measures have been used to browse large-scale aerial
photographs (24), where each photograph is segmented
to obtain a texture image thesaurus. The texture image
thesaurus is clustered. The user can indicate a small region
of interest on a photograph, and the system will retrieve
photographs that have similar textured regions.

Edges and their directions in images are also valuable
features. Edge information can be extracted in several
ways, for example, by using Gabor filters, Sobel operators,
or various edge detectors.

An effective method for representing an image is image
transformation, for example, wavelet transformation. The
low-frequency coefficients of the transform of an image
often represent objects in the image and can be used as
features of the image.

The above primitive features can be used to derive new
features, for example, curvatures, shapes of regions or
objects, locations, and spatial relations. In fact, these
‘‘intermediate’’ features are primitive building blocks of
object ontology, which provides qualitative descriptions
of image contents and associates images with semantic
concepts. The user can continue to mark interesting areas,
not necessarily objects, from which features are calculated.
An example is a physician marking interesting areas in the
positions of lung in chest x-ray images and calculating
texture features only from the marked areas.

In addition to the above features that are extracted
from individual images, features can also be extracted
from a set of images by analysis of correlations among the
images. Statistical and machine learning techniques are

VISUAL DATABASE 3



often applied to a set of images to find uncorrelated
components that best describe the set of images. For
example, the eigenface technique (25) applies principal
component analysis for image feature extraction. Given a
set of images and by arranging pixel values of each image
into a vector, one can form a covariance matrix of the set of
images. Eigenvectors that correspond to the largest eigen-
values of the covariance matrix contain the principal
components of the set of images. Each image is then
approximated with a linear combination of these eigen-
vectors and can be represented by the weights of these
eigenvectors in the combination. Recently, researchers
have developed nonlinear methods (26–28) in manifold
learning for feature extraction and dimensionality reduc-
tion. By assuming images as points distributed on a mani-
fold in high-dimensional space, these methods can often
unfold the manifold to a very low-dimensional space and
use the coordinates in the low-dimensional space as image
features.

Techniques have also been proposed for feature extrac-
tion and matching of three-dimensional (3-D) shapes (29). A
histogram can be used as a feature for 3-D shapes in the
same way as it is used for 2-D images. Curvature and
curvature histogram have also been used as features of
3-D shapes. Another promising way to represent 3-D
shapes is to use skeletal structures. One widely used ske-
letal structure is the medial axis model (30). Recently, an
interesting approach called topological matching (31) has
been proposed to represent 3-D shapes using multiresolu-
tion Reeb graphs. The graphs represent skeletal and topo-
logical structures of 3-D shapes, are invariant to
geometrical transformations, and are particularly useful
for interactive search of 3-D objects.

A video is often characterized by selecting key frames
that form a ‘‘story board’’ of the video (32). Once key frames
are obtained, one can use image retrieval techniques to
search a video database for frames that match a key frame.
The story-board frames can be obtained by carrying out a
frame-to-frame analysis that looks for significant changes
and by taking advantage of domain knowledge of how a
video is constructed.

Using an improper set of features may get irrelevant
query results. For example, an image histogram loses
location information of image pixels. If the query image
contains a small region of particular importance, the region
will get lost in an overall histogram. A solution to the
problem is to partition the image and to calculate the
features for each partition of the image. The user can
indicate a region of interest in the query image, and only
features of that portion will be used in the similarity
measure.

Different image features are often used together for
image retrieval. In a human facial image retrieval system
(33), for example, a human facial image is characterized by
six facial aspects: chin, hair, eyes, eyebrows, nose, and
mouth. Each facial aspect contains numerical attributes
as well as possibly descriptive values (such as large and
small) for each attribute. In practice, these featuremeasures
are often used together with other statistical measures, such
as textures or principal components of colors.

Matching long complex feature vectors is often expen-
sive computationally. Because some features are usually
more useful than the others, a subset of the most useful
feature measures can often be selected manually in practice
to accelerate the matching process. Techniques such as
principal component analysis and vector quantization
can be applied to a set of image feature vectors. Principal
component analysis is applied to find a subset of significant
feature measures. Vector quantization is used to quantize
the feature space. For instance, a set of images can
be clustered, and each cluster is represented by a prototype
vector. The search starts by comparing the query feature
vector with the prototype vectors to find the closest cluster
and then to find the closest feature vectors within that
cluster. In this way, a visual data search can be directed in a
hierarchical manner.

VISUAL DATA RETRIEVAL

One of the biggest challenges for a visual database comes
from the user requirement for visual retrieval and techni-
ques to support visual retrieval. Visual retrieval has to
support more retrieval methods in addition to those con-
ventional retrieval methods in alphanumeric databases.
Correspondingly, these extra retrieval methods call for new
data indexing mechanisms. Figure 1 summarizes typical
retrieval methods for image databases and their relation-
ships with different kinds of data indexes. Retrieval by
attributes is a conventional data access method. The user
selects features that might characterize the type of
expected images; for example, use color and texture mea-
sures to find dresses or wallpapers. The user can also select
the weight of each feature for feature matching. Image
retrieval can then be made by the comparison of weighted
differences of the features of the query image against the
features of the images in the database.

Other retrieval methods, namely, free text retrieval,
fuzzy retrieval, visual browsing, and similarity retrieval,
are content-based retrieval and are special to visual data-
bases. Free text retrieval and fuzzy retrieval are descrip-
tive. Visual browsing and similarity retrieval are visual
and require visual interfaces. Unlike query processing
with well-defined formalities in alphanumeric databases,
similarity retrieval intends to combine image features and
texts to retrieve images similar to an example image. A
user can specify the example image in several ways.
Usually, the user shows a real image and tells the system
what is important in the image by selecting features of or
regions/objects in the image (the regions/objects can either
be automatically or manually segmented). Alternatively,
the user can sketch an example image. The sketch can be a
contour sketch showing the shapes of the objects to
retrieve or in the form of colored boxes indicating colors,
sizes, and positions of the objects to retrieve. Using a well-
defined set of features and a good similarity measure, the
system retrieves images similar to the one supplied by the
user.

One problem in content-based retrieval is how to define
the similarity measure. In general, we cannot expect to find
a generic similarity measure that suites all user needs.

4 VISUAL DATABASE



Manually selecting relevant features and weights in a
similarity measure can be difficult, especially when the
features are complicated. A user should therefore be given a
chance to interact with the system and to have the simi-
larity learned by the system. This interaction can be more
or less natural for the user. Relevance feedback(34) is a
technique that removes the burden of specifying manually
the weights of features. It allows the user to grade the
retrieved images by their relevance, for example, highly
relevant, relevant, nonrelevant, or highly nonrelevant. The
system then uses the grades to learn relevant features and
similarity metrics. The grading can be made after each
retrieval, thereby progressively improving the quality of
the retrieved results.

Other problems in content-based retrieval include how
to organize and index the extracted features, how to incor-
porate these features and indexes into existing databases,
and how to formulate visual queries throughuser interfaces.

Descriptive Retrieval

Free text retrieval uses text descriptions of visual data to
retrieve the visual data. Many techniques, typically those
(35) developed for and used in Web search engines, can
be used for free text retrieval of visual data. Many of these
approaches work in similar ways. First, every word in
the text description is checked against a list of stop words.
The list consists of the commonly used words, such as
‘‘the’’, and ‘‘a,’’ which bear little semantic significance
within the context. Words in the stop word list are ignored.
Words such as ‘‘on,’’ ‘‘in,’’ and ‘‘near’’ are essential to
represent the location of special features, and therefore,
they cannot be included in the stop word list. The remain-
ing words are then stemmed to remove the word variants.
Stemmed words are indexed using conventional database
indexing techniques. In free text retrieval, users are asked
to submit a query in free text format, which means that the
query can be a sentence, a short paragraph, or a list of

keywords and/or phrases. After initial search, records that
are among the best matches are presented to the user in an
sorted order according to their relevances to the search
words.

Human descriptions of image contents are neither
exact nor objective. Image retrieval based on fuzzy queries
(36) is a natural way to get information in many applica-
tions. An image is represented by a set of segmented
regions, each of which is characterized by a fuzzy feature
(fuzzy set) reflecting color, texture, and shape properties.
As a result, an image is associated with a family of fuzzy
sets corresponding to regions. The fuzzy sets together
define a fuzzy space. When a fuzzy query is defined incom-
pletely, it represents a hypercube in the fuzzy space. To
evaluate a fuzzy query is to map image feature measures
from the feature space to the fuzzy space. After mapping,
images in the database are represented as points in the
fuzzy space. The similarity between a fuzzy query and an
image can then be computed as the distance between the
point that represents the image and the hypercube that
represents the fuzzy query. Images that are close to the
query definition are retrieved. The fuzzy query processing
produces an ordered set of images that best fit a query.
Fuzzy space is not Cartesian; ordinary correlation and
Euclidean distance measurements may not be used as
similarity measures.

Visual Retrieval

Two types of visual retrievals exist: similarity retrieval and
visual browsing. Similarity retrieval allows users to search
for images most similar to a given sample image. Visual
browsing allows users to browse through the entire collec-
tion of images in several different ways based on simila-
rities between images.

Similarity retrieval uses similarity measures to search
for similar images. To accelerate the search process, simi-
larity retrieval is often implemented by traversing a

retrieval
by attributes

similarity
retrieval

visual
browsing

fuzzy
retrieval

attribute
index

feedback

iconic
index

fuzzy
index

sample
input

data
composition

free text
retrieval

index

Database

free text

Conventional
Retrieval Content-Based Retrieval

Visual Query

Descriptive Query

Figure 1. Visual retrieval methods.

VISUAL DATABASE 5



multidimensional tree index. It behaves in a similar way as
pattern classification via a decision tree. At each level of the
tree, a decision is made by using a similarity measure. At
the leaf node level, all leaf nodes similar to the sample
image will be selected. By modifying weights of different
features, one gets different similarity measures and, con-
sequently, different query results.

Visual browsing allows a user to thumb through images,
which again can be achieved via a traversal of the index
tree, where each internal node piggybacks an iconic image
representing the node. The system presents the user with
the root of the index tree by displaying the icons of its
descendants. At each node of the tree, the user chooses
browsing directions: up, down, left, and right. Going up is
implemented via a pointer to its parent node, whereas
moving down is accomplished by selecting the icon repre-
senting a specific descendant node. The selected descen-
dant node is then considered as the current node, and the
icons of its children are displayed. This process is vertical
browsing. By selecting icons of sibling nodes, a user can
perform horizontal browsing in a similar way.

A graphic user interface is required to retrieve images or
video in an interactive ‘‘thumb through’’ mode. The system
displays to the user retrieved icons of images that are
relevant to the query image, and the user can iterate by
clicking an image that best satisfies the query. Such an
intuitive user interface combines browsing, search, navi-
gation, and relevance feedback. It may address demands
from a wide variety of users, including nontechnical users.

VISUAL DATA INDEXING

Indexing is a process of associating a key with correspond-
ing data records. In addition to traditional tree-based and
hash-based indexing techniques used in alphanumeric
databases, visual databases need special indexing techni-
ques to manage, present, and access visual data. Over the
years, many indexing techniques have been proposed for
various types of applications. Using image database as an
example, we can classify these indexing techniques into two
categories: interimage indexing and intraimage indexing.
Interimage indexing assumes each image as an element
and indexes a set of such images by using their features. A
representative interimage indexing technique is feature-
based iconic indexing (33). It indexes a set of visual data to
support both feature-based similarity query and visual
browsing in addition to exact-match query and range query
on the set of data. On the other hand, intraimage indexing
indexes elements (regions, points, and lines) within an
image. Representative techniques are quadtree and related
hierarchical data structures.

Feature-Based Iconic Indexing

Because features can be assumed as vectors in high-
dimensional space, any multidimensional indexing
mechanisms (37) that support a nearest-neighbor search
can be used to index visual data. Although this generic
mechanism is universal, various specialized, more effi-
cient indexing methodologies may develop for particular
types of visual database applications.

An image indexing mechanism should support both a
feature-based similarity search and visual browsing. As an
example, feature-based iconic indexing (33) is an indexing
mechanism that is specialized for visual retrieval. In alpha-
numeric databases, tree indexes are organized such that
(1) a tree is built on a set of key attributes; (2) key attributes
are of primitive data types, such as string, integer, or real;
and (3) the grouping criterion usually specifies a range of
values on a particular attribute. To make index trees
applicable to visual features, feature-based iconic indexing
makes the following generalizations:

1. The first generalization is to allow attributes to be
structured data. For example, an attribute can be a
feature vector that is a multidimensional array.

2. As a result of the first generalization, the grouping
criteria are defined on similarity measures. The most
commonly used similarity measure is distance in the
feature space.

3. The third generalization is that different levels of the
index tree may have different key attributes. This
generalization facilitates visual browsing and navi-
gation.

The iconic index tree can be built either top-down or
bottom-up. A top-down algorithm typically consists of two
steps. The first step selects a feature aspect and clusters
the images into m classes. Many approaches are available
to do this step, for example, the k-means clustering algo-
rithm (38) or the self-organization neural network (39).
The second step repeats the first step until each node has
at most m descendants. Each node of the index tree has the
following fields: (1) node type: root, internal, or leaf node;
(2) feature vector; (3) iconic image; (4) pointer to its parent
node; (5) number of children and pointers to its children;
and (6) number of sibling nodes and pointers to the sibling
nodes. The pointers to sibling nodes are referred to as
horizontal links and provide a means for horizontal brows-
ing. An example node structure of a feature-based iconic
index tree is shown in Fig. 2. Horizontal links are created
only for the feature aspects that have already been used as
the key feature aspect at levels above the current level. For
example, if F3 is the key feature aspect at the current
level, F1 and F2 are key feature aspects at above levels;
then the nodes under the same parent node at this level
represent images having similar F1, similar F2, and dif-
ferent F3s. For horizontal browsing of images of similar
F1, similar F2, and different F3s, a horizontal link is
created to link these nodes at this level. Other horizontal
links such as a link for similar F1, similar F3, and different
F2 can be created as well.

Quadtree and Other Hierarchical Data Structures

Quadtree and related hierarchical data structures provide
mechanisms for intraimage indexing. As an example of the
type of problems to which these data structures are applic-
able, consider a geographical information system that
consists of several of maps, each of which contains images,
regions, line segments, and points. A typical query is to

6 VISUAL DATABASE



determine all hotels within 20 miles from the user’s
current location. Another typical query is to determine
the regions that are within 1000 feet above sea level in a
geographic area. Such analyses could be costly, depending
on the way the data are represented. Hierarchical data
structures are based on the principle of recursive decom-
position of space. They are useful because of their ability to
organize recursively subparts of an image in a hierarch-
ical way.

Quadtree has been studied extensively to represent
regional data. It is based on successive subdivision of a
binary image into four equal-sized quadrants. If the binary
image does not consist entirely of 1s or 0s, it is then divided
into quadrants, subquadrants, and so on, until blocks
(single pixels in extreme cases) that consist entirely of 1s
or 0s are obtained. Each nonleaf node of a quadtree has four
children. The root node corresponds to the entire image.
Each child of a node represents a quadrant of the region
represented by the node. Leaf nodes of the tree correspond
to those blocks for which no additional subdivision is
necessary.

Hierarchical data structures have been studied exten-
sively, and many variants have been proposed (37). They
are differentiated mainly on the following aspects: (1) the
type of data (points, line segments, or regions) that they
are used to represent, (2) the principle guiding the
decomposition process, and (3) tree balance (fixed or
variable depth). Hierarchical data structures have
been used to represent point data, regions, curves, sur-
faces, and volumes. It is worthwhile to mention that,
instead of equal subdivision in quadtrees, the decompo-
sition process may divide a binary image according to the
distribution of elements in the image. Furthermore, the
idea of decomposition is not restricted to 2-D images and
can be extended to data distributions in high-dimen-
sional space. For example, kd-tree and its derivatives
are studied extensively to index point data in high-
dimensional space. These techniques have other applica-
tions beyond visual databases. These applications
include alphanumeric databases, data warehousing,
and data visualization.

OTHER DATABASE ISSUES

A typical database management system consists of modules
for query processing, transaction management, crash
recovery, and buffer management. For a complete discus-
sion of technical details, readers may refer to a database
textbook such as Ref. (40). These modules in a visual
database management system are different from the cor-
responding ones in traditional alphanumeric databases.

Query Processing

As we have introduced, query processing in visual data-
bases must support a similarity match in addition to an
exact match. Similarity measures between visual objects
are usually real valued, say, ranging from 0 (completely
different) to 1 (exactly the same). Strictly speaking, the
result of a visual query can be all images in the entire
database, each ranked from 0 to 1 based on its similarity to
the query image. The user will specify a threshold so that an
image is not retrieved if its rank is below the threshold
value. Images with ranks above the threshold value are
then ordered according to their ranks. A similarity search is
often computing intensive. For query optimization, there-
fore, visual database systems supporting a similarity
search and user-defined access methods need to know
the costs associated with these methods. The costs of
user-defined functions in terms of low-level access methods,
such as those related to similarity search, must also be
made known to the database system (41).

Transaction Management

In visual databases, traditional lock-based and timestamp-
based concurrency control techniques can be used; the
results would still be correct. However, the concurrency
of the overall system would suffer because transactions in
visual databases tend to be long, computing-intensive,
interactive, cooperative, and to refer to many other data-
base objects. Suppose an updating transaction inserts
interactively subtitles to a video, for example; traditional
lock-based concurrency control locks the entire video,

vertical
browsing

horizontal browsing

Feature F1

Feature F2

Feature F3

point to similar F2 different F1

point to similar F3 different F2

Figure 2. Feature-based iconic index tree facilitates similarity search and visual browsing. Reprinted with permission from Ref. 33.

VISUAL DATABASE 7



which decreases the throughput of other transactions refer-
ring to other frames in the same video. Visual data are large
in size, making it impractical to create multiple copies of the
data, as is necessary in the multiversion approach to con-
currency control. Optimistic methods for concurrency con-
trol are not suitable either, as frequent abortion and restart
of a visual presentation would be unacceptable to the
viewer.

To increase system concurrency in such an environment,
transaction models defined for object-oriented environ-
ments, long cooperative activities, real-time database
applications, and workflow management are usually con-
sidered. Techniques developed for nested transactions are
particularly useful, in which a transaction consists of sub-
transactions, each of which can commit or abort indepen-
dently. Another observation is that even though a
nonserializable schedule may leave the database in an
inconsistent state, the inconsistent state may not be fatal.
If a few contiguous frames of a video presentation have been
changed by another transaction, then, such subtle changes
usually would not cause any problem to the viewers.

Storage Management

One challenge of storage management of visual data is to
serve multiple requests for multiple data to guarantee
that these requests do not starve while minimizing the
delay and the buffer space used. Techniques such as data
striping, data compression, and storage hierarchies have
been employed to reduce this bottleneck. Data striping,
as is used in redundant array of inexpensive disks
(RAIDs), allocates space for a visual object across several
parallel devices to maximize data throughput. Also stu-
died are storage hierarchies in which tertiary storage can
be used for less frequently used or high-resolution visual
objects and faster devices for more frequently used or low-
resolution visual objects. As hard disks become larger
and cheaper, however, tertiary storage is less necessary
than it was before.

Recovery

Many advanced transaction models have generalized
recovery methods. In a long cooperative design environ-
ment, undoing complete transactions is wasteful. A poten-
tially large amount of work, some of it correct, might not
have to be undone. It makes more sense to remove the
effects of individual operations rather than undo a whole
transaction. To do so, however, the log must contain not
only the history of a transaction but also the dependencies
among individual operations.

Advanced transaction models for long-running activities
include compensating transactions and contingency trans-
actions. A compensating transaction undoes the effect of an
already committed transaction. In video delivery, for exam-
ple, a unique concern is how to compensate a transaction
with acceptable quality of service. Unlike compensating
transaction, a contingency transaction provides alternative
routes to a transaction that could not be committed. For
example, a contingency transaction for showing an image
in GIF format might show the image in JPEG format.

EXAMPLE VISUAL DATABASE SYSTEMS

Because of space limitations, this section introduces three
example visual database systems: QBIC (6) by IBM;
MARS (34) developed at the University of Illinois at
Urbana-Champaign; and VisualSEEK (19,42) developed
at Columbia University. The last section gives references
to other visual database systems

QBIC

QBIC was probably the first commercial content-based
image retrieval system. It is available either in stand-alone
form or as part of other IBM DB2 database products. The
features it uses include color, texture, shape, and keywords.

QBIC quantizes each color in the RGB color space into k
predefined levels, giving the color space a total of k3 cells.
Color cells are aggregated into super cells using a clustering
algorithm. The color histogram of an image represents the
normalized count of pixels falling into each super cell. To
answer a similarity query, the histogram of the query
image is matched with the histograms of images in the
database. The difference zi is computed for each color super
cell.The similarity measure is given as

P
i; j ai jziz j, where aij

measures the similarity of the ith and the jth colors.
Texture measures used by QBIC include coarseness,

contrast, and directionality. Coarseness measures texture
scale (average size of regions that have the same intensity).
Contrast measures vividness of the texture (depending on
the variance of the gray-level histogram). Directionality
gives the main direction of the image texture (depending on
the number and shape of peaks of the distribution of
gradient directions).

QBIC also uses shape information, such as area, major
axis orientation (eigenvector of the principal component),
and eccentricity (ratio of the largest eigenvalue against the
smallest eigenvalue); various invariants; and tangent
angles as image features. It also supports search of video
data by using motion and shot detection.

QBIC supports queries based on example images, user-
constructed sketches and drawings, and color and texture
patterns. The user can select colors and color distributions,
select textures, and adjust relative weights among the
features. Segmentation into objects can be done either fully
automatically (for a restricted class of images) or semiau-
tomatically. In the semiautomatic approach, segmentation
is made in a flood-fill manner where the user starts by
marking a pixel inside an object and the system grows the
area to include adjacent pixels with sufficiently similar
colors. Segmentation can also be made by snakes (active
contours) where the user draws an approximate contour of
the object that is aligned automatically with nearby image
edges.

MARS

MARS uses relevance feedback to learn similarity mea-
sures. The system has access to a variety of features and
similarity measures and learns the best ones for a parti-
cular query by letting the user grade retrieved images as
highly relevant, relevant, no-opinion, nonrelevant, or

8 VISUAL DATABASE



highly nonrelevant. MARS uses image features such as
color, texture, shape and wavelet coefficients. MARS
calculates color histogram and color moments represented
in the HSV color space. It uses co-occurrence matrices
in different directions to extract textures such as coarse-
ness, contrast, directionality, and inverse difference
moments. It also uses Fourier transform and wavelet coef-
ficients to characterize images. The information in each
type of features (e.g., color) is represented by a set of
subfeatures (e.g., color histogram or color moments). The
subfeatures and similarity measures are normalized.
Users from various disciplines have been invited to com-
pare the performance between the relevance feedback
approach in MARS and the computer centric approach
where the user specifies the relative feature weights.
Almost all users have rated the relevance feedback
approach much higher than the computer-centric approach
in terms of capturing their perception subjectivity and
information needed.

VisualSEEK/WebSEEK

VisualSEEK is an image database system that integrates
feature-based image indexing with spatial query methods.
Because global features such as color histograms lack
spatial information, VisualSEEK uses salient image
regions and their colors, sizes, spatial locations, and rela-
tionships, to describe images. The integration of global
features and spatial locations relies on the representation
of color regions by color sets. Because color sets can be
indexed for retrieval of similar color sets, unconstrained
images are decomposed into nearly symbolic images that
lend to efficient spatial query.

VisualSEEK quantizes the HSV color space into 166
regions. Quantized images are then filtered morphologi-
cally and analyzed to reveal spatially localized color
regions. A region is represented by the dominant colors
in the region. The color distribution in a region is repre-
sented by a color set, which is a 166-dimensional binary
vector approximating the color histogram of the region. The
similarity between two color sets, c1 and c2, is given by
ðc1 � c2ÞTAðc1 � c2Þ, where elements of the matrix A denote
the similarity between colors. In addition, VisualSEEK
uses features such as centroid and minimum bounding
box of each region. Measurements such as distances
between regions and relative spatial locations are also
used in the query.

VisualSEEK allows the user to sketch spatial arrange-
ments of color regions, position them on the query grid, and
assign them properties of color, size, and absolute location.
The system then finds the images that contain the most
similar arrangements of regions. The system automatically
extracts and indexes salient color regions from the images.
By using efficient indexing techniques on color, region
sizes, and both absolute and relative spatial locations, a
wide variety of color/spatial visual queries can be com-
puted.

WebSEEK searches the World Wide Web for images
and video by looking for file extensions such as .jpg, .mov,
.gif, and .mpeg. The system extracts keywords from
the URL and hyperlinks. It creates a histogram on the

keywords to find the most frequent ones, which are put
into classes and subclasses. An image can be put into more
than one classes. An image taxonomy is constructed in a
semiautomatic way using text features (such as associated
html tags, captions, and articles) and visual features (such
as color, texture, and spatial layout) in the same way as
they are used in VisualSEEK. The user can search for
images by walking through the taxonomy. The system
displays a selection of images, which the user can search
by using similarity of color histograms. The histogram can
be modified either manually or through relevance feed-
back.

BIBLIOGRAPHIC NOTES

Comprehensive surveys exist on the topics of content-based
image retrieval, which include surveys by Aigrain et al.
(43), Rui et al. (44), Yoshitaka and Ichikawa (45),
Smeulders et al. (16), and recently, Datta et al. (46,47).
Multimedia information retrieval as a broader research
area covering video, audio, image, and text analysis has
been surveyed extensively by Sebe et al. (48), Snoek and
Worring (32), and Lew et al. (49). Surveys also exist on
closely related topics such as indexing methods for visual
data by Marsicoi et al. (50), face recognition by Zhao et al.
(51), applications of content-based retrieval to medicine by
Müller et al. (52), and applications to cultural and historical
imaging by Chen et al. (53).

Image feature extraction is of ultimate importance to
content-based retrieval. Comparisons of different image
measures for content-based image retrieval are given in
Refs. (16,17 and 54).

Example visual database systems that support content-
based retrieval include IBM QBIC (6), Virage (55), and
NEC AMORE (56) in the commercial domain and MIT
Photobook (57), UIUC MARS (34,58), Columbia Visual-
SEEK (42), and UCSB NeTra (59) in the academic
domain. Practical issues such as system implementation
and architecture, their limitations and how to overcome
them, intuitive result visualization, and system evaluation
were discussed by Smeulders et al. in Ref. (16). Many of
these systems such as AMORE or their extensions such as
UIUC WebMARS (60) and Columbia WebSEEK (19) sup-
port image search on the World Wide Web. Webseer (18)
and ImageScape (61) are systems designed for Web-based
image retrieval. Kherfi et al. (62) provides a survey of these
Web-based image retrieval systems.

Interested readers may refer to Refs. (16,17, 49 and 63)
for surveys and technical details of bridging the semantic
gap. Important early work that introduced relevance
feedback into image retrieval included Ref. (34), which
was implemented in the MARS system (58). A review of
techniques for relevance feedback is given by Zhou and
Huang (64).

Readers who are interested in the quadtree and related
hierarchical data structures may consult the survey (65) by
Samet. An encyclopedic description of high-dimensional
metric data structures was published recently as a book
(37). Bohm et al. (66) give a review of high-dimensional
indexing techniques of multimedia data.

VISUAL DATABASE 9



Relational database management systems have been
studied extensively for decades and have resulted in
numerous efficient optimization and implementation
techniques. For concepts and techniques in relational
database management, readers may consult popular data-
base textbooks, such as Ref. (40). Common machine learn-
ing and data mining algorithms for data clustering and
classification can be found in data mining textbooks, such
as Ref. (61). Image feature extraction depends on image
processing algorithms and techniques, which are
well explained in image processing textbooks, such as
Refs. (22 and 23).

BIBLIOGRAPHY

1. T. Kunii, S. Weyl, and J. M. Tenenbaum, A relational data-
base scheme for describing complex picture with color
and texture, Proc. 2nd Internat. Joint Conf. Pattern Recogni-
tion, Lyngby-Coperhagen, Denmark, 1974, pp. 73–89.

2. S. K. Chang and K. S. Fu, (eds.), Pictorial Information Systems,
Lecture Notes in Computer Science 80, Berlin: Springer-Verlag,
1980.

3. S. K. Chang and T. L. Kunii, Pictorial database systems, IEEE
Computer, 14 (11): 13–21, 1981.

4. S. K. Chang, (ed.), Special issue on pictorial database systems,
IEEE Computer, 14 (11): 1981.

5. H. Tamura and N. Yokoya, Image database systems: a survey,
Pattern Recognition, 17 (1): 29–43, 1984.

6. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang,
B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele,
and P. Yanker, Query by image and video content: the QBIC
system, IEEE Computer, 28 (9): 23–32, 1995.

7. N. Roussopoulos, C. Faloutsos, and T. Sellis, An efficient
pictorial database system for PSQL, IEEE Trans. Softw.
Eng., 14 (5): 639–650, 1988.

8. M. M. Zloof, Query-by-example: a database language, IBM
Syst. J., 16 (4): 324–343, 1977.

9. N. S. Chang and K. S. Fu, Query-by-pictorial example, IEEE
Trans. Softw. Eng., 6 (6): 519–524, 1980.

10. T. Joseph and A. F. Cardenas, PICQUERY: a high level query
language for pictorial database management, IEEE Trans.
Softw. Eng., 14 (5): 630–638, 1988.

11. L. Yang and J. K. Wu, Towards a semantic image database
system, Data and Knowledge Enginee, 22 (2): 207–227, 1997.

12. K. Yamaguchi and T. L. Kunii, PICCOLO logic for a picture
database computer and its implementation, IEEE Trans. Com-
put., C-31 (10): 983–996, 1982.

13. J. A. Orenstein and F. A. Manola, PROBE spatial data model-
ing and query processing in an image database application,
IEEE Trans. Softw. Eng., 14 (5): 611–629, 1988.

14. S. K. Chang, C. W. Yan, D. C. Dimitroff, and T. Arndt, An
intelligent image database system, IEEE Trans. Softw. Eng.,
14 (5): 681–688, 1988.

15. A. Brink, S. Marcus, and V. Subrahmanian, Heterogeneous
multimedia reasoning, IEEE Computer, 28 (9): 33–39, 1995.

16. A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R.
Jain, Content-based image retrieval at the end of the early
years, IEEE Trans. Patt. Anal. Machine Intell., 22 (12): 1349–
1380, 2000.

17. Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, A survey of content-
based image retrieval with high-level semantics, Pattern
Recognition, 40 (1): 262–282, 2007.

18. C. Frankel, M. J. Swain, and V. Athitsos, Webseer: an image
search engine for the world wide web, Technical Report TR-96-
14, Chicago, Ill.: University of Chicago, 1996.

19. J. R. Smith and S.-F. Chang, Visually searching the web for
content, IEEE Multimedia, 4 (3): 12–20, 1997.

20. A. B. Benitez, M. Beigi, and S.-F. Chang, Using relevance
feedback in content-based image metasearch, IEEE Internet
Computing, 2 (4): 59–69, 1998.

21. A. F. Smeaton, P. Over, and W. Kraaij, Evaluation campaigns
and TRECVid, MIR’06: Proc. 8th ACM Internat. Workshop on
Multimedia Information Retrieval, Santa Barbara, California,
2006, pp. 321–330.

22. J. C. Russ, The Image Processing Handbook, 5th Ed. Boca
Raton, FL: CRC Press, 2006.

23. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd
Ed. Englewood Cliffs, NJ: Prentice Hall, 2007.

24. W.-Y Ma and B. S. Manjunath, A texture thesaurus for brows-
ing large aerial photographs, J. Am. Soc. Informa. Sci. 49 (7):
633–648, 1998.

25. M. Turk and A. Pentland, Eigen faces for recognition, J.
Cognitive Neuro-science, 3 (1): 71–86, 1991.

26. J. B. Tenenbaum, V. deSilva, and J. C. Langford, A global
geometric framework for nonlinear dimensionality reduction,
Science, 290: 2319–2323, 2000.

27. S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduc-
tion by locally linear embedding, Science, 290: 2323–2326,
2000.

28. L. Yang, Alignment of overlapping locally scaled patches for
multidimensional scaling and dimensionality reduction, IEEE
Trans. Pattern Analysis Machine Intell., In press.

29. A. D. Bimbo and P. Pala, Content-based retrieval of 3D models,
ACM Trans. Multimedia Computing, Communicat. Applicat.,
2 (1): 20–43, 2006.

30. H. Du and H. Qin, Medial axis extraction and shape manipula-
tion of solid objects using parabolic PDEs, Proc. 9th ACM Symp.
Solid Modeling and Applicat., Genoa, Italy, 2004, pp. 25–35.

31. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, Topol-
ogy matching for fully automatic similarity estimation of 3D
shapes, Proc. ACM SIGGRAPH 2001, Los Angeles, CA, 2001,
pp. 203–212.

32. C. G. Snoek and M. Worring, Multimodal video indexing: a
review of the state-of-the-art, Multimedia Tools and Applicat.,
25 (1): 5–35, 2005.

33. J.-K. Wu, Content-based indexing of multimedia databases,
IEEE Trans. Knowledge Data Engineering, 9 (6): 978–989,
1997.

34. Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra, Relevance
feedback: A power tool in interactive content-based image
retrieval, IEEE Trans. Circuits Systems Video Technol., 8
(5): 644–655, 1998.

35. M. Kobayashi and K. Takeda, Information retrieval on the web,
ACM Comput. Surv., 32 (2): 144–173, 2000.

36. Y. Chen and J. Z. Wang, A region-based fuzzy feature matching
approach to content-based image retrieval, IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 24 (9): 1252–1267,
2002.

37. H. Samet, Foundations of Multidimensional and Metric Data
Structures, San Francisco, CA: Morgan Kaufmann, 2006.

10 VISUAL DATABASE



38. J. B. MacQueen, Some methods for classification and analysis
of multivariate observations, Proc. 5th Berkeley Symp.
Mathematical Statistics and Probability, Berkeley, CA,
1967, pp. 281–297.

39. T. Kohonen, Self-Organizating Maps, 3rd Ed. Berlin: Springer,
2000.

40. R. Ramakrishnan and J. Gehrke, Database Management Sys-
tems, 3rd Ed. New York: McGraw-Hill, 2002.

41. S. Chaudhuri and L. Gravano, Optimizing queries over multi-
media repositories, Proc. 1996 ACM SIGMOD Internat. Conf.
Management of Data (SIGMOD’96), Montreal, Quebec,
Canada, 1996, pp. 91–102.

42. J. R. Smith and S.-F. Chang, VisualSEEk: A fully automated
content-based image query system, Proc. 4th ACM
Internat. Conf. Multimedia, Boston, MA, 1996, pp. 87–98.

43. P. Aigrain, H. Zhang, and D. Petkovic, Content-based repre-
sentation and retrieval of visual media: A state-of-the-art
review, Multimedia Tools and Applicat., 3 (3): 179–202, 1996.

44. Y. Rui, T. S. Huang, and S.-F. Chang, Image retrieval: current
techniques, promising directions and open issues, J. Visual
Communicat. Image Represent., 10 (1): 39–62, 1999.

45. A. Yoshitaka and T. Ichikawa, A survey on content-based
retrieval for multimedia databases, IEEE Trans. Knowledge
and Data Engineering, 11 (1): 81–93, 1999.

46. R. Datta, D. Joshi, J. Li, and J. Z. Wang, Image retrieval: Ideas,
influences, and trends of the new age, ACM Comput. Surv.
In press.

47. R. Datta, J. Li, and J. Z. Wang, Content-based image retrieval:
approaches and trends of the new age, Proc. 7th ACM SIGMM
Internat. Workshop on Multimedia Information Retrieval (MIR
2005), 2005, pp. 253–262.

48. N. Sebe, M. S. Lew, X. S. Zhou, T. S. Huang, and E. M. Bakker,
The state of the art in image and video retrieval, Proc. 2nd
Internat. Conf. Image and Video Retrieval, Lecture Notes in
Computer Science 2728, Urbana-Champaign, IL, 2003. pp. 1–8.

49. M. S. Lew, N. Sebe, C. Djeraba, and R. Jain, Content-based
multimedia information retrieval: State of the art and chal-
lenges, ACM Trans. Multimedia Computing, Communicat.
Applicat., 2 (1): 1–19, 2006.

50. M. D. Marsicoi, L. Cinque, and S. Levialdi, Indexing pictorial
documents by their content: A survey of current techniques,
Image and Vision Computing, 15 (2): 119–141, 1997.

51. W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, Face
recognition: a literature survey, ACM Comput. Surv., 35 (4):
399–458, 2003.

52. H. Müller, N. Michoux, D. Bandon, and A. Geissbuhler, A
review of content-based image retrieval systems in medical
applications - clinical benefits and future directions, Internat.
J. Medical Informatics, 73 (1): 1–23, 2004.

53. C.-C. Chen, H. D. Wactlar, J. Z. Wang, and K. Kiernan, Digital
imagery for significant cultural and historical materials - an
emerging research field bridging people, culture, and technol-
ogies, Internat. J. Digital Libraries, 5 (4): 275–286, 2005.

54. B. M. Mehtre, M. S. Kankanhalli, and W. F. Lee, Shape
measures for content based image retrieval: a comparison,
Information Processing and Management, 33 (3): 319–337,
1997.

55. A. Gupta and R. Jain, Visual information retrieval, Commun.
ACM, 40 (5): 70–79, 1997.

56. S. Mukherjea, K. Hirata, and Y. Hara, Amore: a world wide web
image retrieval engine, World Wide Web, 2 (3): 115–132,
1999.

57. A. Pentland, R. W. Picard, and S. Sclaroff, Photobook: Tools for
content-based manipulation of image databases. Technical
Report TR-255, MIT Media Lab, 1996.

58. M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrotra,
and T. S. Huang, Supporting ranked boolean similarity queries
in MARS, IEEE Trans. Knowledge Data Engineering, 10 (6):
905–925, 1998.

59. W.-Y. Ma and B. S. Manjunath, Netra: a toolbox for navigating
large image databases, Multimedia Systems, 7 (3): 184–198,
1999.

60. M. Ortega-Binderberger, S. Mehrotra, K. Chakrabarti, and K.
Porkaew, WebMARS: a multimedia search engine. Technical
Report TR-DB-00-01, Information and Computer Science, Uni-
versity of California at Irvine, 2000.

61. M. S. Lew, Next-generation web searches for visual content,
IEEE Computer, 33 (11): 46–53, 2000.

62. M. L. Kherfi, D. Ziou, and A. Bernardi, Image retrieval from the
world wide web: Issues, techniques, and systems, ACM Com-
put. Surv., 36 (1): 35–67, 2004.

63. N. Vasconcelos, From pixels to semantic spaces: advances in
content-based image retrieval, IEEE Computer, 40 (7): 20–26,
2007.

64. X. S. Zhou and T. S. Huang, Relevance feedback in image
retrieval: a comprehensive review, Multimedia Systems, 8
(6): 536–544, 2003.

65. H. Samet, The quadtree and related hierarchical data struc-
tures, ACM Comput. Surv., 16 (2): 187–260, 1984.

66. C. B—hm, S. Berchtold, and D. A. Keim, Searching in high-
dimensional spaces: Index structures for improving the per-
formance of multimedia databases, ACM Comput. Surv., 33 (3):
322–373, 2001.

67. J. Han and M. Kamber, Data Mining: Concepts and Techni-
ques, 2nd Ed. San Francisco, CA: Morgan Kaufmann,
2005.

LI YANG

Western Michigan University
Kalamazoo, Michigan

TOSIYASU L. KUNII

Kanazawa Institute of
Technology

Tokyo, Japan

VISUAL DATABASE 11



A

ALGEBRAIC GEOMETRY

INTRODUCTION

Algebraic geometry is the mathematical study of geometric
objects by means of algebra. Its origins go back to the
coordinate geometry introduced by Descartes. A classic
example is the circle of radius 1 in the plane, which is
the geometric object defined by the algebraic equation
x2 þ y2 ¼ 1. This generalizes to the idea of a systems of
polynomial equations in many variables. The solution sets
of systems of equations are called varieties and are the
geometric objects to be studied, whereas the equations and
their consequences are the algebraic objects of interest.

In the twentieth century, algebraic geometry became
much more abstract, with the emergence of commutative
algebra (rings, ideals, and modules) and homological
algebra (functors, sheaves, and cohomology) as the founda-
tional language of the subject. This abstract trend culmi-
nated in Grothendieck’s scheme theory, which includes not
only varieties but also large parts of algebraic number
theory. The result is a subject of great power and scope—
Wiles’ proof of Fermat’s Last Theorem makes essential
use of schemes and their properties. At the same time,
this abstraction made it difficult for beginners to learn
algebraic geometry. Classic introductions include Refs. 1
and 2, both of which require a considerable mathematical
background.

As the abstract theory of algebraic geometry was being
developed in the middle of the twentieth century, a parallel
development was taking place concerning the algorithmic
aspects of the subject. Buchberger’s theory of Gröbner bases
showed how to manipulate systems of equations system-
atically, so (for example) one can determine algorithmically
whether two systems of equations have the same solutions
over the complex numbers. Applications of Gröbner bases
are described in Buchberger’s classic paper [3] and now
include areas such as computer graphics, computer vision,
geometric modeling, geometric theorem proving, optimiza-
tion, control theory, communications, statistics, biology,
robotics, coding theory, and cryptography.

Gröbner basis algorithms, combined with the emer-
gence of powerful computers and the development of com-
puter algebra (see SYMBOLIC COMPUTATION), have led to
different approaches to algebraic geometry. There are
now several accessible introductions to the subject, includ-
ing Refs. 4–6.

In practice, most algebraic geometry is done over a field,
and the most commonly used fields are as follows:

� The rational numbers Q used in symbolic computation.

� The real numbers R used in geometric applications.

� The complex numbers C used in many theoretical
situations.

� The finite field Fq with q ¼ pm elements (p prime) used
in cryptography and coding theory.

In what follows, k will denote a field, which for concrete-
ness can be taken to be one of the above. We now explore
the two main flavors of algebraic geometry: affine and
projective.

AFFINE ALGEBRAIC GEOMETRY

Given a field k, we have n-dimensional affine space kn,
which consists of all n-tuples of elements of k. In some
books, kn is denoted An(k). The corresponding algebraic
object is the polynomial ring k[x1, . . . , xn] consisting of all
polynomials in variables x1, . . . , xn with coefficients in k.
By polynomial, we mean a finite sum of terms, each of which
is an element of k multiplied by a monomial

xa1

1 xa2

2 � � � xan
n

where a1, . . . , an are non-negative integers. Polynomials
can be added and multiplied, and these operations are
commutative, associative, and distibutive. This is why
k[x1, . . . , xn] is called a commutative ring.

Given polynomials f1,. . ., fs in k[x1, . . . , xn ], the affine
variety V(f1, . . . , fs) consists of all points (u1, . . . , un) in kn

that satisfy the system of equations

f1ðu1; . . . ;unÞ ¼ � � � ¼ fsðu1; . . . ;unÞ ¼ 0:

Some books (such as Ref. 1) call V(f1, . . . , fs) an affine
algebraic set.

The algebraic object corresponding to an affine variety is
called an ideal. These arise naturally from a system of
equations f1 ¼ � � � ¼ fs ¼ 0 as follows. Multiply the first
equation by a polynomial h1, the second by h2, and so on.
This gives the equation

h ¼ h1 f1 þ � � � þ hs fs ¼ 0;

which is called a polynomial consequence of the original
system. Note that hðu1; . . . ;unÞ ¼ 0 for every (u1, . . . , un)
in V(f1, . . . , fs). The ideal hf1, . . . , fsi consists of all poly-
nomial consequences of the system f1 ¼ � � � ¼ fs ¼ 0.
Thus, elements of hf1, . . . , fsi are linear combinations of
f1, . . . , fs, where the coefficients are allowed to be arbitrary
polynomials.

A general definition of ideal applies to any commutative
ring. The Hilbert Basis Theorem states that all ideals in a
polynomial ring are of the form hf1, . . . , fsi. We say that
f1, . . . , fs is a basis of hf1, . . . , fsi and that hf1, . . . , fsi is gen-
erated by f1, . . . , fs. This notion of ‘‘basis’’ differs from how
the term is used in linear algebra because linear indepen-
dence fails. For example, x, y is a basis of the ideal hx, yi in
k[x, y], even though y � xþ ð�xÞ � y ¼ 0.

A key result is that if V(f1, . . . , fs) ¼ V{g1, . . . , gt) when-
ever hf1, . . . , fsi ¼ hg1, . . . , gti. This is useful in practice
because switching to a different basis may make it easier
to understand the solutions of the equations. From the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



theoretical point of view, this shows that an affine variety
depends on the ideal I generated by the defining equations,
so that the affine variety can be denoted V(I). Thus, every
ideal gives an affine variety.

We can also reverse this process. Given an affine variety
V, let I(V) consist of all polynomials that vanish on all points
of V. This satisfies the abstract definition of ideal. Thus,
every affine variety gives an ideal, and one can show that we
always have

V ¼ VðIðVÞÞ:

However, the reverse equality may fail. In other words,
there are ideals I such that

I 6¼ IðVðIÞÞ:

An easy example is provided by I ¼ hx2i in k|x|, because
IðVðIÞÞ ¼ hxi 6¼ I. Hence, the correspondence between
ideals and affine varieties is not a perfect match. Over
the complex numbers, we will see below that there is
nevertheless a nice relation between I and I(V(I)).

One can prove that the union and intersection of affine
varieties are again affine varieties. In fact, given ideals
I and J, one has

VðIÞ [VðJÞ ¼ VðI \JÞ
VðIÞ \VðJÞ ¼ VðI þ JÞ;

where

I\J ¼ fg j g is in both I and Jg
I þ J ¼ fgþ h j g is in I and h is in Jg

are the intersection and sum of I and J (note that I\J
and I þ J are analgous to the intersection and sum of
subspaces of a vector space). In this way, algebraic opera-
tions on ideals correspond to geometric operations on vari-
eties. This is part of the ideal-variety correspondence
explained in Chapter 4 of Ref. 4.

Sometimes an affine variety can be written as a union of
strictly smaller affine varieties. For example,

Vððx� yÞðx2 þ y2 � 1ÞÞ ¼ Vðx� yÞ [Vðx2 þ y2 � 1Þ

expresses the affine variety Vððx� yÞðx2 þ y2 � 1ÞÞ as the
union of the line y ¼ x and the unit circle (Fig. 1).

In general, an affine variety is irreducible if it has no
such decomposition. In books such as Ref. 1, varieties are
always assumed to be irreducible.

One can show that every affine variety V can be written
as

V ¼ V1 [ � � � [Vm

where each Vi is irreducible and no Vi is contained in Vj

for j 6¼ i. We say that the Vi are the irreducible components
of V. Thus, irreducible varieties are the ‘‘building blocks’’
out of which all varieties are built. Algebraically, the above
decomposition means that the ideal of V can be written as

IðVÞ ¼ P1 \ � � � \Pm

where each Pi is prime (meaning that if a product ab lies in
Pi, then so does a or b) and no Pi contains Pj for j 6¼ i. This
again illustrates the close connection between the algebra
and geometry. (For arbitrary ideals, things are a bit more
complicated: The above intersection of prime ideals has to
be replaced with what is called a primary decomposition—
see Chapter 4 of Ref. 4).

Every variety has a dimension. Over the real numbers
R, this corresponds to our geometric intuition. But over the
complex numbers C, one needs to be careful. The affine
space C2 has dimension 2, even though it looks four-
dimensional from the real point of view. The dimension
of a variety is the maximum of the dimensions of its
irreducible components, and irreducible affine varieties
of dimensions 1, 2, and 3 are called curves, surfaces, and
3-folds, respectively. An affine variety in kn is called a
hypersurface if every irreducible component has dimension
n � 1.

PROJECTIVE ALGEBRAIC GEOMETRY

One problem with affine varieties is that intersections
sometimes occur ‘‘at infinity.’’ An example is given by the
intersection of a hyperbola with one of its asymptotes in
Fig. 2. (Note that a line has a single point at infinity.)

Points at infinity occur naturally in computer graphics,
where the horizon in a perspective drawing is the ‘‘line at
infinity’’ where parallel lines meet. Adding points at infi-
nity to affine space leads to the concept of projective space.

1

1

x

y

Figure 1. Union of a line and a circle.

x

y ← meet at
infinity

meet at the same
point at infinity 

↓

Figure 2. A hyperbola and one of its asymptotes.

2 ALGEBRAIC GEOMETRY



The most common way to define n-dimensional projective
space Pn(k) is via homogeneous coordinates. Every point in
Pn(k) has homogeneous coordinates [u0, . . . , un], where
(u0, . . . , un) is an element of kn+l different from the zero
element (0, . . . , 0). The square brackets in [u0, . . . , un] indi-
cate that homogeneous coordinates are not unique; rather,

½u0; . . . ;un� ¼ ½v0; . . . ; vn�

if and only if there is a nonzero l in k such that lui ¼ vi

for i ¼ 0; . . . ;n, i.e., lðu0; . . . ;unÞ ¼ ðv0; . . . ; vnÞ. This means
that two nonzero points in kn+1 give the same point in Pn(k)
if and only if they lie on the same line through the origin.

Consider those points in Pn(k) where u0 6¼ 0. As (1=u0)
(u0, u1, . . . , un) ¼ (l, u1=u0, . . . , un=un), one sees easily that

PnðkÞ ¼ kn [Pn�1ðkÞ:

We call Pn�1 (k) the hyperplane at infinity in this situation.
One virtue of homogeneous coordinates is that they have a
rich supply of coordinate changes. For example, an inver-
tible 4 � 4 matrix with real entries gives an invertible
transformation from P3(R) to itself. The reason you see
4 � 4 matrices in computer graphics is that you are really
working in three-dimensional projective space P3(R),
although this is rarely mentioned explicitly. See THREE-
DIMENSIONAL GRAPHICS.

Now that we have Pn(k), we can define projective vari-
eties as follows. A polynomial F in k[x0, . . . , xn] is homo-
geneous of degree d if every monomial xa0

0 . . . xan
n appearing

in F has degree d, i.e., a0 þ � � � þ an ¼ d. Such a polynomial
has the property that

Fðlx0; . . . ; lxnÞ ¼ ldFðx0; . . . ; xnÞ:

For a point [u0, . . . , un] of Pn(k), the quantity F(u0, . . . , un)
is not well defined because of the ambiguity of homo-
geneous coordinates. But when F is homogeneous, the
equation Fðu0; . . . ;unÞ ¼ 0 is well defined. Then, given
homogeneous polynomials F1, . . . , Fs, the projective variety
V(F1, . . . , Fs) consists of all points [u0, . . . , un] in Pn(k)
that satisfy the system of equations

F1ðu1; . . . ;unÞ ¼ � � � ¼ Fsðu1; . . . ;unÞ ¼ 0:

Some books (such as Ref. 1) call V(F1, . . . , Fs) a projective
algebraic set.

The algebraic object corresponding to Pn(k) is the polyno-
mial ring k[x0, . . . , xn], which we now regard as a graded ring.
This means that by grouping together terms of the same de-
gree,everypolynomial fofdegreedcanbeuniquelywrittenas

f ¼ f0 þ f1 þ � � � þ fd;

where fi is homogeneous of degree i (note that fi may
be zero). We call the fi the homogeneous components of f.
An ideal I is homogeneous if it is generated by homogeneous
polynomials. If I is homogeneous, then a polynomial lies
in I if and only if its homogeneous components lie in I.

Most concepts introduced in the affine context carry over
to the projective setting. Thus, we can ask whether a

projective variety is irreducible and what is its dimension.
We also have a projective version of the ideal-variety cor-
respondence, where homogeneous ideals correspond to
projective varieties. This is a bit more sophisticated than
the affine case, in part because the ideal hx0, . . . , xni defines
the empty variety because homogeneous coordinates are
not allowed to all be zero.

Given a projective variety V in Pn(k), we get a homo-
geneous ideal I ¼ IðVÞ in k[x0, . . . , xn]. Let Id consist of all
homogeneous polynomials of degree d that lie in I. Then Id is
a finite-dimensional vector space over k, and by a theorem
of Hilbert, there is a polynomial P(x), called the Hilbert
polynomial, such that for all sufficiently large integers d
sufficiently large, we have

nþ d
n

� �
� dimkId ¼ PðdÞ;

where the binomial coefficient ðnþd
n
Þ is the dimension of the

space of all homogeneous polynomials of degree n. Then one
can prove that the dimension m of V equals the degree of
P(x). Furthermore, if we write the Hilbert polynomial P(x)
in the form

PðxÞ ¼ D

m!
xm þ terms of lower degree;

then D is a positive integer called the degree of V. For
example, when V is defined by F ¼ 0 over the complex
numbers, where F is irreducible and homogeneous of
degree d, then V has degree d according to the above
definition. This shows just how much information is packed
into the ideal I. Later we will discuss the algorithmic
methods for computing Hilbert polynomials.

THE COMPLEX NUMBERS

Although many applications of algebraic geometry work
over the real numbers R, the theory works best over the
complex numbers C. For instance, suppose that V ¼
Vð f1; . . . ; fsÞ is a variety in Rn of dimension d. Then we
expect V to be defined by at least n� d equations because
(roughly speaking) each equation should lower the dimen-
sion by one. But if we set f ¼ f 2

1 þ � � � þ f 2
s , then f ¼ 0

is equivalent to f1 ¼ � � � ¼ fs ¼ 0 because we are working
over R. Thus, V ¼ Vð f1; . . . ; fsÞ can be defined by one
equation, namely f ¼ 0. In general, the relation between
ideals and varieties is complicated when working over R.

As an example of why things are nicer over C, consider
an ideal I in C[x1, . . . , xn] and let V ¼ VðIÞ be the corres-
ponding affine variety in Cn. The polynomials in I clearly
vanish on V, but there may be others. For example,
suppose that f is not in I but some power of f, say f ‘, is
in I. Then f ‘ and hence f vanish on V. The Hilbert Null-
stellensatz states that these are the only polynomials that
vanish on V, i.e.,

IðVÞ ¼ IðVðIÞÞ

¼ f f in C½x1; . . . ; xn�j f ‘ is in I for some integer ‘� 0g:

ALGEBRAIC GEOMETRY 3



The ideal on the right is called the radical of I and is denoted
rad(I). Thus, the Nullstellensatz asserts that over C, we
have IðVðIÞÞ ¼ radðIÞ. It is easy to find examples where this
fails over R.

Another example of why C is nice comes from Bézout’s
Theorem in Fig. 3. In its simplest form, this asserts that
distinct irreducible plane curves of degrees m and n inter-
sect in mn points, counted with multiplicity. For example,
consider the intersection of a circle and an ellipse. These are
curves of degree 2, so we should have four points of inter-
section. But if the ellipse is really small, it can fit entirely
inside the circle, which makes it seem that there are no
points of intersection, as in Fig. 3. This is because we are
working over R; over C, there really are four points of
intersection.

Bézout’s Theorem also illustrates the necessity of work-
ing over the projective plane. Consider, for example, the
intersection of a hyperbola and one of its asymptotes in
Fig. 4. These are curves of degree 2 and 1, respectively, so
there should be 2 points of intersection. Yet there are none
in R2 or C2. But once we go to P2(R) or P2(C), we get one
point of intersection at infinity, which has multiplicity 2
because the asymptote and the hyperbola are tangent at
infinity. We will say more about multiplicity later in the
article.

In both the Nullstellensatz and Bézout’s theorem, we
can replace C with any algebraically closed field, meaning
a field where every nonconstant polynomial has a root. A
large part of algebraic geometry involves the study of
irreducible projective varieties over algebraically closed
fields.

FUNCTIONS ON AFFINE AND PROJECTIVE VARIETIES

In mathematics, one often studies objects by considering
the functions defined on them. For an affine variety V in kn,
we let k[V] denote the set of functions from V to k given
by polynomials in k[x1, . . . , xn]. One sees easily that k[V]
is a ring, called the coordinate ring of V.

An important observation is that two distinct poly-
nomials f and g in k[x1, . . . , xn] can give the same function
on V. This happens precisely when f � g vanishes on V,
i.e., when f � g is in the ideal I(V). We express this by
writing

f � g mod IðVÞ;

similar to the congruence notation introduced by Gauss.
It follows that computations in k[x1, . . . , xn] modulo I(V)
are equivalent to computations in k[V]. In the lang-
uage of abstract algebra, this is expressed by the ring
isomorphism

k½x1; . . . ; xn�=IðVÞ’ k½V �;

where k[x1, . . . , xn]/I(V) is the set of equivalence classes of
the equivalence relation f � g mod I(V). More generally,
given any ideal I in k[x1, . . . , xn], one gets the quotient ring
k[x1, . . . , xn]/I coming from the equivalence relation f � g
mod I. We will see later that Gröbner bases enable us to
compute effectively in quotient rings.

We can use quotients to construct finite fields as
follows. For a prime p, we get Fp by considering the inte-
gers modulo p. To get F pm when m> 1, take an irreducible
polynomial f in Fp[x] of degree m. Then the quotient
ring Fp[x]/hfi is a model of Fpm . Thus, for example, compu-
tations in F2[x] modulo x2 þ xþ 1 represent the finite
field F4. See ALGEBRAIC CODING THEORY for more on finite
fields.

The coordinate ring C[V] of an affine variety V in Cn has
an especially strong connection to V. Given a point
(u1, . . . , un) of V, the functions in C[V] vanishing at
(u1, . . . , un) generate a maximal ideal, meaning an ideal
of C[V] not equal to the whole ring but otherwise as
big as possible with respect to inclusion. Using the
Nullstellensatz, one can show that all maximal ideals of
C[V] arise this way. In other words, there is a one-to-one
correspondence

points of V !maximal ideals of C½V �:

Later we will use this correspondence to motivate the
definition of affine scheme.

Functions on projective varieties have a different flavor,
since a polynomial function defined everywhere on a con-
nected projective variety must be constant. Instead, two
approaches are used, which we will illustrate in the case
of Pn(k). In the first approach, one considers rational
functions, which are quotients

Fðx0; . . . ; xnÞ
Gðx0; . . . ; xnÞ

x

y

Figure 3. A circle and an ellipse.

x

y ← meet at
infinity

meet at the same
point at infinity 

↓

Figure 4. A hyperbola and one of its asymptotes.

4 ALGEBRAIC GEOMETRY



of homogeneous polynomials of the same degree, say d. This
function is well defined despite the ambiguity of homoge-
neous coordinates, because

Fðlx0; . . . ; lxnÞ
Gðlx0; . . . ; lxnÞ

¼ ldFðx0; . . . ; xnÞ
ldGðx0; . . . ; xnÞ

¼ Fðx0; . . . ; xnÞ
Gðx0; . . . ; xnÞ

:

However, this function is not defined when the deno-
minator vanishes. In other words, the above quotient is
only defined where G 6¼ 0. The set of all rational func-
tions on Pn(k) forms a field called the field of rational
functions on Pn(k). More generally, any irreducible
projective variety V has a field of rational functions,
denoted k(V).

The second approach to studying functions on Pn(k)
is to consider the polynomial functions defined on
certain large subsets of Pn(k). Given projective variety
V in Pn(k), its complement U consists of all points of Pn(k)
not in V. We call U a Zariski open subset of Pn(k). Then let
GðUÞbe the ring of all rational functions on Pn(k) defined at
all points of U. For example, the complement U0 of V(x0)
consists of points where x0 6¼ 0, which is a copy of kn. So
here GðU0Þ is the polynomial ring k[x1=x0, . . . , xn=x0]. When
we consider the rings GðUÞ for all Zariki open subsets U,
we get a mathematical object called the structure sheaf
of Pn(k). More generally, any projective variety V has
a structure sheaf, denoted OV. We will see below that
sheaves play an important role in abstract algebraic
geometry.

GRÖBNER BASES

Buchberger introduced Gröbner bases in 1965 in order to
do algorithmic computations on ideals in polynomial
rings. For example, suppose we are given polynomials f,
f1; . . . ; fs 2 k½x1; . . . ; xn�, where k is a field whose elements
can be represented exactly on a computer (e.g., k is a finite
field or the field of rational numbers). From the point of
view of pure mathematics, either f lies in the ideal
hf1, . . . , fsi or it does not. But from a practical point of
view, one wants an algorithm for deciding which of
these two possibilities actually occurs. This is the ideal
membership question.

In the special case of two univariate polynomials f, g
in k[x], f lies in hgi if and only if f is a multiple of g, which
we can decide by the division algorithm from high-school
algebra. Namely, dividing g into f gives f ¼ qgþ r, where
the remainder r has degree strictly smaller than the degree
of g. Then f is a multiple of g if and only if the remainder
is zero. This solves the ideal membership question in our
special case.

To adapt this strategy to k[x1, . . . , xn], we first need to
order the monomials. In k[x], this is obvious: The mono-
mials are 1, x, x2, etc. But there are many ways to do this
when there are two or more variables. A monomial order>
is an order relation on monomials U, V, W,. . . in k[x1, . . . , xn]
with the following properties:

1. Given monomials U and V, exactly one of U >V ,
U ¼ V , or U <V is true.

2. If U >V , then UW >VW for all monomials W.

3. If U 6¼ 1, then U> 1; i.e., 1 is the least monomial with
respect to >.

These properties imply that> is a well ordering, mean-
ing that any strictly decreasing sequence with respect to
> is finite. This is used to prove termination of various
algorithms. An example of a monomial order is lexico-
graphic order, where

xa1

1 xa2

2 . . . xan
n > xb1

1 xb2

2 . . . xbn
n

provided

a1 > b1; or a1 ¼ b1 and a2 > b2; or a1 ¼ b1;

a2 ¼ b2 and a3 > b3; etc:

Other important monomial orders are graded lexico-
graphic order and graded reverse lexicographic order.
These are described in Chapter 2 of Ref. 4.

Now fix a monomial order >. Given a nonzero poly-
nomial f, we let lt(f ) denote the leading term of f, namely
the nonzero term of f whose monomial is maximal with
respect to > (in the literature, lt(f) is sometimes called
the initial term of f, denoted in(f)). Given f1, . . . , fs, the
division algorithm produces polynomials q1, . . . , qs and
r such that

f ¼ q1 f1 þ � � � þ qs fs þ r

where every nonzero term of r is divisible by none of
lt(f1), . . . , lt(fs). The remainder r is sometimes called the
normal form of f with respect to f1, . . . , fs. When s ¼ 1 and f
and f1 are univariate, this reduces to the high-school
division algorithm mentioned earlier.

In general, multivariate division behaves poorly. To
correct this, Buchberger introduced a special kind of
basis of an ideal. Given an ideal I and a monomial order,
its ideal of leading terms lt(I) (or initial ideal in(I)is the
ideal generated by lt(f) for all f in I. Then elements
g1, . . . , gt of I form a Gröbner basis of I provided that
lt(g1), . . . , lt(gt) form a basis of lt(I). Buchberger showed
that a Gröbner basis is in fact a basis of I and that, given
generators f1, . . . , fs of I, there is an algorithm (the
Buchberger algorithm) for producing the corresponding
Gröbner basis. A description of this algorithm can be found
in Chapter 2 of Ref. 4.

The complexity of the Bucherger algorithm has been
studied extensively. Examples are known where the input
polynomials have degree � d, yet the corresponding
Gröbner basis contains polynomials of degree 22d

. Theo-
retical results show that this doubly exponential behavior
is the worst that can occur (for precise references, see
Chapter 2 of Ref. 4). However, there are many geometric
situations where the complexity is less. For example, if the
equations have only finitely many solutions over C, then
the complexity drops to a single exponential. Further-
more, obtaining geometric information about an ideal,
such as the dimension of its associated variety, often
has single exponential complexity. When using graded

ALGEBRAIC GEOMETRY 5



reverse lexicographic order, complexity is related to the
regularity of the ideal. This is discussed in Ref. 7. Below we
will say more about the practical aspects of Gröbner basis
computations.

Using the properties of Gröbner bases, one gets the
following ideal membership algorithm: Given f, f1, . . . , fs,
use the Buchberger algorithm to compute a Gröbner basis
g1, . . . , gt of h f1, . . . , fsi and use the division algorithm
to compute the remainder of f on division by g1, . . . , gt.
Then f is in the ideal h f1, . . . , fsi if and only if the remainder
is zero.

Another important use of Gröbner bases occurs in elimi-
nation theory. For example, in geometric modeling, one
encounters surfaces in R3 parametrized by polynomials, say

x ¼ f ðs; tÞ; y ¼ gðs; tÞ; z ¼ hðs; tÞ:

To obtain the equation of the surface, we need to elim-
inate s, t from the above equations. We do this by consider-
ing the ideal

hx� f ðs; tÞ; y� gðs; tÞ; z� hðs; tÞi

in the polynomial ring R[s, t, x, y, z] and computing a
Gröbner basis for this ideal using lexicographic order,
where the variables to be eliminated are listed first. The
Elimination Theorem (see Chapter 3 of Ref. 4) implies that
the equation of the surface is the only polynomial in the
Gröbner basis not involving s, t. In practice, elimination is
often done by other methods (such as resultants) because of
complexity issues. See also the entry on SURFACE MODELING.

Our final application concerns a system of equations
f1 ¼ � � � ¼ fs ¼ 0 in n variables over C. Let I ¼ h f1; . . . ; fsi,
and compute a Gröbner basis of I with respect to any
monomial order. The Finiteness Theorem asserts that the
following are equivalent:

1. The equations have finitely many solutions in Cn.

2. The Gröbner basis contains elements whose leading
terms are pure powers of the variables (i.e., x1 to a
power, x2 to a power, etc.) up to constants.

3. The quotient ring C[x1, . . . , xn]=I is a finite-dimensional
vector space over C.

The equivalence of the first two items gives an algorithm
for determining whether there are finitely many solutions
over C. From here, one can find the solutions by several
methods, including eigenvalue methods and homotopy con-
tinuation. These and other methods are discussed in Ref. 8.
The software PHCpack (9) is a freely available implemen-
tation of homotopy continuation. Using homotopy techni-
ques, systems with 105 solutions have been solved. Without
homotopy methods but using a robust implementation of
the Buchberger algorithm, systems with 1000 solutions
have been solved, and in the context of computational
biology, some highly structured systems with over 1000
equations have been solved.

However, although solving systems is an important
practical application of Gröbner basis methods, we want
to emphasize that many theoretical objects in algebraic

geometry, such as Hilbert polynomials, free resolutions (see
below), and sheaf cohomology (also discussed below), can
also be computed by these methods. As more and more of
these theoretical objects are finding applications, the abil-
ity to compute them is becoming increasingly important.

Gröbner basis algorithms have been implemented in
computer algebra systems such as Maple (10) and Mathe-
matica (11). For example, the solve command in Maple and
Solve command in Mathematica make use of Gröbner basis
computations. We should also mention CoCoA (12), Macau-
lay 2 (13), and Singular (14), which are freely available on
the Internet. These powerful programs are used by
researchers in algebraic geometry and commutative alge-
bra for a wide variety of experimental and theoretical
computations. With the help of books such as Ref. 5 for
Macaulay 2, Ref. 15 for CoCoA, and Ref. 16 for Singular,
these programs can be used by beginners. The program
Magma (17) is not free but has a powerful implementation
of the Buchberger algorithm.

MODULES

Besides rings, ideals, and quotient rings, another impor-
tant algebraic structure to consider is the concept of module
over a ring. Let R denote the polynomial ring k[x0, . . . , xn].
Then saying that M is an R-module means that M has
addition and scalar multiplication with the usual proper-
ties, except that the ‘‘scalars’’ are now elements of R. For
example, the free R-module Rm consists of m-tuples of
elements of R. We can clearly add two such m-tuples and
multiply an m-tuple by an element of R.

A more interesting example of an R-module is given by
an ideal I ¼ h f1; . . . ; fsi in R. If we choose the generating set
f1, . . . , fs to be as small as possible, we get a minimal basis of
I. But when s� 2, f1, . . . , fs cannot be linearly independent
over R, because f j � f i þ ð� fiÞ � f j ¼ 0 when i 6¼ j. To see
how badly the fi fail to be independent, consider

Rs! I! 0;

where the first arrow is defined using dot product with
(f1, . . . , fs) and the second arrow is a standard way of
saying the first arrow is onto, which is true because
I ¼ h f1; . . . ; fsi. The kernel or nullspace of the first arrow
measures the failure of the fi to be independent. This kernel
is an R-module and is called the syzygy module of f1, . . . , fs,
denoted Syz( f1, . . . , fs).

The Hilbert Basis Theorem applies here so that there
are finitely many syzygies h1, . . . , h‘ in Syz (f1, . . . , fs) such
that every syzygy is a linear combination, with coefficients
in R, of h1, . . . , h‘. Each hi is a vector of polynomials; if we
assemble these into a matrix, then matrix multiplication
gives a map

R‘!Rs

whose image is Syz(f1, . . . , fs). This looks like linear algebra,
except that we are working over a ring instead of a field. If
we think of the variables in R ¼ k½x1; . . . ; xn� as parameters,
then we are doing linear algebra with parameters.

6 ALGEBRAIC GEOMETRY



The generating syzgyies hi may fail to be independent,
so that the above map may have a nonzero kernel. Hence
we can iterate this process, although the Hilbert Syzygy
Theorem implies that kernel is eventually zero. The result
is a collection of maps

0!Rt! � � � !R‘!Rs! I!0;

where at each stage, the image of one map equals the kernel
of the next. We say that this is a free resolution of I. By
adapting Gröbner basis methods to modules, one obtains
algorithms for computing free resolutions.

Furthermore, when I is a homogeneous ideal, the whole
resolution inherits a graded structure that makes it
straightforward to compute the Hilbert polynomial of I.
Given what we know about Hilbert polynomials, this gives
an algorithm for determining the dimension and degree
of a projective variety. A discussion of modules and free
resolutions can be found in Ref. 18.

Although syzygies may seem abstract, there are situa-
tions in geometric modeling where syzygies arise naturally
as moving curves and moving surfaces (see Ref. 19). This
and other applications show that algebra needs to be added
to the list of topics that fall under the rubric of applied
mathematics.

LOCAL PROPERTIES

In projective space Pn(k), let Ui denote the Zariski
open subset where xi 6¼ 0. Earlier we noted that U0 looks
the affine space kn; the same is true for the other Ui.
This means that Pn(k) locally looks like affine space.
Furthermore, if V is a projective variety in Pn(k), then
one can show that Vi ¼ V \Ui is a affine variety for all i.
Thus, every projective variety locally looks like an affine
variety.

In algebraic geometry, one can get even more local.
For example, let p ¼ ½u0; . . . ;un� be a point of Pn(k). Then
let Op consist of all rational functions on Pn(k) defined at p.
Then Op is clearly a ring, and the subset consisting of
those functions that vanish at p is a maximal ideal. More
surprising is the fact that this is the unique maximal ideal
of Op. We call Op the local ring of Pn(k) at p, and in general, a
commutative ring with a unique maximal ideal is called a
local ring. In a similar way, a point p of an affine or
projective variety V has a local ring OV,p.

Many important properties of a variety at a point are
reflected in its local ring. As an example, we give the
definition of multiplicity that occurs in Bézout’s Theorem.
Recall the statement: Distinct irreducible curves in P2(C)
of degrees m and n intersect at mn points, counted
with multiplicity. By picking suitable coordinates, we
can assume that the points of intersection lie in C2 and
that the curves are defined by equations f ¼ 0 and g ¼ 0 of
degrees m and n, respectively. If p is a point of intersection,
then its multiplicity is given by

multðpÞ ¼ dimC Op=h f ; gi; Op ¼ local ring of P2ðCÞ at p;

and the precise version of Bézout’s Theorem states that

m n ¼
X

f ðpÞ¼gðpÞ¼0

multðpÞ:

A related notion of multiplicity is the Hilbert–Samuel
multiplicity of an ideal in Op, which arises in geometric
modeling when considering the influence of a basepoint
on the degree of the defining equation of a parametrized
surface.

SMOOTH AND SINGULAR POINTS

In multivariable calculus, the gradient r f ¼ @ f
@x iþ @ f

@y j
is perpendicular to the level curve defined by f ðx; yÞ ¼ 0.
When one analzyes this carefully, one is led to the following
concepts for a point on the level curve:

� A smooth point, where r f is nonzero and can be used
to define the tangent line to the level curve.

� A singular point, wherer f is zero and the level curve
has no tangent line at the point.

These concepts generalize to arbitrary varieties. For any
variety, most points are smooth, whereas others—those
in the singular locus—are singular. Singularities can be
important. For example, when one uses a variety to des-
cribe the possible states of a robot arm, the singularities of
the variety often correspond to positions where the motion
of the arm is less predictable (see Chapter 6 of Ref. 4 and
the entry on ROBOTICS).

A variety is smooth or nonsingular when every point
is smooth. When a variety has singular points, one can
use blowing up to obtain a new variety that is less
singular. When working over an algebraically closed field
of characteristic 0 (meaning fields that contain a copy of
Q), Hironaka proved in 1964 that one can always find a
sequence of blowing up that results in a smooth variety.
This is called resolution of singularities. Resolution of
singularities over a field of characteristic p (fields that
contain a copy of Fp) is still an open question. Reference 20
gives a nice introduction to resolution of singularities.
More recently, various groups of people have figured out
how to do this algorithmically, and work has been done
on implementing these algorithms, for example, the soft-
ware desing described in Ref. 21. We also note that singu-
larities can be detected numerically using condition
numbers (see Ref. 22).

SHEAVES AND COHOMOLOGY

For an affine variety, modules over its coordinate ring play
an important role. For a projective variety V, the corre-
sponding objects are sheaves of OV-modules, where OV is
the structure sheaf of V. Locally, V looks like an affine
variety, and with a suitable hypothesis called quasi-
coherence, a sheaf of OV-modules locally looks like a module
over the coordinate ring of an affine piece of V.

ALGEBRAIC GEOMETRY 7



From sheaves, one is led to the idea of sheaf cohomology,
which (roughly speaking) measures how the local pieces of
the sheaf fit together. Given a sheaf F on V, the sheaf
cohomology groups are denoted H i(V,F). We will see below
that the sheaf cohomology groups are used in the classifica-
tion of projective varieties. For another application of sheaf
cohomology, consider a finite collection V of points in Pn(k).
From the sheaf point of view, V is defined by an ideal sheaf
IV. In interpolation theory, one wants to model arbitrary
functions on V using polynomials of a fixed degree, say m. If
m is too small, this may not be possible, but we always
succeed if m is large enough. A precise description of which
degrees m work is given by sheaf cohomology. The ideal
sheaf IV has a twist denoted IV (m). Then all functions on V
come from polynomials of degree m if and only if
H1ðPnðkÞ; IV ðmÞÞ ¼ f0g. We also note that vanishing theo-
rems for sheaf cohomology have been used in geometric
modeling (see Ref. 23).

References 1, 2, and 24 discuss sheaves and sheaf
cohomology. Sheaf cohomology is part of homological alge-
bra. An introduction to homological algebra, including
sheaves and cohomology, is given in Ref. 5.

SPECIAL VARIETIES

We next discuss some special types of varieties that have
been studied extensively.

1. Elliptic Curves and Abelian Varieties. Beginning
with the middle of the eighteenth century, elliptic
integrals have attracted a lot of attention. The study
of these integrals led to both elliptic functions and
elliptic curves. The latter are often described by an
equation of the form

y2 ¼ ax3 þ bx2 þ cxþ d;

where ax3 þ bx2 þ cxþ d is a cubic polynomial with
distinct roots. However, to get the best properties,
one needs to work in the projective plane, where the
above equation is replaced with the homogeneous
equation

y2z ¼ ax3 þ bx2zþ cxz2 þ dz3:

The resulting projective curve E has an extra struc-
ture: Given two points on E, the line connecting them
intersects E at a third point by Bézout’s Theorem.
This leads to a group structure on E where the point at
infinity is the identity element.

Over the field of rational numbers Q, elliptic curves
have a remarkably rich theory. The group structure is
related to the Birch–Swinnerton-Dyer Conjecture, and
Wiles’s proof of Fermat’s Last Theorem was a corollary
of his solution of a large part of the Taniyama–
Shimura Conjecture for elliptic curves over Q. On
the other hand, elliptic curves over finite fields are
used in cryptography (see Ref. 25). The relation
between elliptic integrals and elliptic curves has
been generalized to Hodge theory, which is described

in Ref. 24. Higher dimensional analogs of elliptic
curves are called abelian varieties.

2. Grassmannians and Schubert Varieties. In Pn(k), we
use homogeneous coordinates [u0, . . . , un], where
½u0; . . . ;un� ¼ ½v0; . . . ; vn� if both lie on the same line
through the origin in kn+1. Hence points of Pn(k)
correspond to one-dimensional subspaces of kn+1.
More generally, the Grassmannian G(N, m)(k) con-
sists of all m-dimensional subspaces of kn. Thus,
Gðnþ 1; 1ÞðkÞ ¼ PnðkÞ.

Points of G(N, m)(k) have natural coordi-
nates, which we describe for m ¼ 2. Given a two-
dimensional sub-space W of kN, consider a 2 � N
matrix

u1 u2 . . . uN

v1 v2 . . . vN

� �

whose rows give a basis of W. Let pi j; i < j, be the
determinant of the 2 � 2 matrix formed by the ith
and jth columns. The M ¼ N

2

� �
numbers pij are the

Plücker coordinates of W. These give a point in
P M�1(k) that depends only on W and not on the
chosen basis. Furthermore, the subspace W can be
reconstructed from its Plücker coordinates. The
Plücker coordinates satisfy the Plücker relations

pi j pkl � pik p jl þ pil p jk ¼ 0;

and any set of numbers satisfying these relations
comes from a subspace W. It follows that the Plücker
relations define G(N, 2)(k) as a projective variety in
PM�1(k). In general, G(N, m)(k) is a smooth projec-
tive variety of dimension m(N � m).

The Grassmannian G(N, m)(k) contains interest-
ing varieties called Schubert varieties. The Schuberi
calculus describes how these varieties intersect.
Using the Schubert calculus, one can answer ques-
tions such as how many lines in P3(k) intersect four
lines in general position? (The answer is two.) An
introduction to Grassmannians and Schubert var-
eties can be found in Ref. 26.

The question about lines in P3(k) is part of enum-
erative algebraic geometry, which counts the num-
ber of geometrically interesting objects of various
types. Bezout’s Theorem is another result of enu-
merative algebraic geometry. Another famous enu-
merative result states that a smooth cubic surface in
P3(C) contains exactly 27 lines.

3. Rational and Unirational Varieties. An irreducible
variety V of dimension n over C is rational if there is a
one-to-one rational parametrization U!V , where U
is a Zariski open subset of Cn. The simplest example of
a rational variety is Pn(C). Many curves and surfaces
that occur in geometric modeling are rational.

More generally, an irreducible variety of dimen-
sion n is unirational if there is a rational parametri-
zation U!V whose image fills up most of V, where U
is a Zariski open subset of Cm, m�n. For varieties of
dimension 1 and 2, unirational and rational coincide,

8 ALGEBRAIC GEOMETRY



but in dimensions 3 and greater, they differ. For
example, a smooth cubic hypersurface in P4(C) is
unirational but not rational.

A special type of rational variety is a toric variety.
In algebraic geometry, a torus is (C	)n, which is the
Zariski open subset of Cn where all coordinates are
nonzero. A toric variety V is an n-dimensional irre-
ducible variety that contains a copy of (C	)n as a
Zariski open subset in a suitably nice manner.
Both Cn and Pn(C) are toric varieties. There are
strong relations between toric varieties and poly-
topes, and toric varieties also have interesting
applications in geometric modeling (see Ref. 27),
algebraic statistics, and computational biology (see
Ref. 28). The latter includes significant applications
of Gröbner bases.

4. Varieties over Finite Fields. A set of equations defin-
ing a projective variety V over Fp also defines V as a
projective variety over F pm for every m� 1. As PnðF pmÞ
is finite, we let Nm denote the number of points of V
when regarded as lying in PnðF pmÞ. To study the
asymptotic behavior of Nm as m gets large, it is
convenient to assemble the Nm into the zeta function

ZðV ; tÞ ¼ exp
X1
m¼1

Nmtm=m

 !
:

The behavior of Z(V, t) is the subject of some deep
theorems in algebraic geometry, including the
Riemann hypothesis for smooth projective varieties
over finite fields, proved by Deligne in 1974.

Suppose for example that V is a smooth curve.
The genus g of V is defined to be the dimension of
the sheaf cohomology group H1(V, OV). Then the
Riemann hypothesis implies that

jNm � pm � 1j � 2 g pm=2:

Zeta functions, the Riemann hypothesis, and other
tools of algebraic geometry such as the Riemann–
Roch Theorem have interesting applications in
algebraic coding theory. See Ref. 29 and the entry
on ALGEBRAIC CODING THEORY. References 18 and 30
discuss aspects of coding theory that involve Gröbner
bases.

CLASSIFICATION QUESTIONS

One of the enduring questions in algebraic geometry
concerns the classification of geometric objects of various
types. Here is a brief list of some classification questions
that have been studied.

1. Curves. For simplicity, we work over C. The main
invariant of smooth projective curve is its genus g,
defined above as the dimension of H1(V, OV). When
the genus is 0, the curve is P1(C), and when the genus
is 1, the curve is an elliptic curve E. After a coordinate

change, the affine equation can be written as

y2 ¼ x3 þ axþ b; 4a3 þ 27b2 6¼ 0:

The j-invariant j(E) is defined to be

jðEÞ ¼ 2833a3

4a3 þ 27b2

and two elliptic curves over C are isomorphic as
varieties if and only if they have the same j-invariant.
It follows that isomorphism classes of elliptic curves
correspond to complex numbers; one says that C is the
moduli space for elliptic curves. Topologically, all
elliptic curves look like a torus (the surface of a
donut), but algebraically, they are the same if and
only if they have the same j-invariant.

Now consider curves of genus g� 2 over C. Topo-
logically, these look like a surface with g holes, but
algebraically, there is a moduli space of dimension
3g� 3 that records the algebraic structure. These
moduli spaces and their compactifications have
been studied extensively. Curves of genus g� 2
also have strong connections with non-Euclidean
geometry.

2. Surfaces. Smooth projective surfaces over C have a
richer structrure and hence a more complicated clas-
sification. Such a surface S has its canonical
bundle vS, which is a sheaf of OS-modules that
(roughly speaking) locally looks like multiples of
dxdy for local coordinates x, y. Then we get the
associated bundle vm

S , which locally looks like multi-
ples of (dxdy)m. The dimension of the sheaf cohomol-
ogy group H0(S, vm

S ) grows like a polynomial in m, and
the degree of this polynomial is the Kodaira
dimensionk of S, where the zero polynomial has
degree �1. Using the Kodaira dimension, we get
the following Enriques-Kodaira classification:

k ¼ �1: Rational surfaces and ruled surfaces over
curves of genus > 0.

k ¼ 0: K3 surfaces, abelian surfaces, and Enriques
surfaces.

k ¼ 1: Surfaces mapping to a curve of genus � 2 whose
generic fiber is an elliptic curve.

k ¼ 2: Surfaces of general type.

One can also define the Kodaira dimension for curves,
where the possible values k ¼ �1, 0, 1 correspond to the
classication by genus g ¼ 0, 1 or � 2. One difference in the
surface case is that blowing up causes problems. One needs
to define the minimal model of a surface, which exists in
most cases, and then the minimal model gets ‘‘classified’’ by
describing its moduli space. These moduli spaces are well
understood except for surfaces of general type, where many
unsolved problems remain.

To say more about how this classification works, we
need some terminology. Two irreducible varieties are
birational if they have Zariski open subsets that are iso-
morphic. Thus, a variety over C is rational if and only if it

ALGEBRAIC GEOMETRY 9



is birational to Pn(C), and two smooth projective surfaces
are birational if and only if they have the same minimal
model. As for moduli, consider the equation

a x4
0 þ x4

1 þ x4
2 þ x4

3

� �
þ x0x1x2x3 ¼ 0:

This defines a K3 surface in P3(C) provided a 6¼ 0. As we
vary a, we get different K3 surfaces that can be deformed
into each other. This (very roughly) is what happens in a
moduli space, although a lot of careful work is needed to
make this idea precise.

The Enriques–Kodaira classification is described in
detail in Ref. 31. This book also discuss the closely related
classication of smooth complex surfaces, not necessarily
algebraic.

1. Higher Dimensions. Recall that a three-fold is a vari-
ety of dimension 3. As in the surface case, one uses the
Kodaira dimension to break up all three-folds into
classes, this time according to k ¼ �1, 0, 1, 2, 3. One
new feature for three-folds is that although minimal
models exist, they may have certain mild singulari-
ties. Hence, the whole theory is more sophisticated
than the surface case. The general strategy of the
minimal model program is explained in Ref. 32.

2. Hilbert Schemes. Another kind of classification ques-
tion concerns varieties that live in a fixed ambient
space. For example, what sorts of surfaces of small
degree exist in P4(C)? There is also the Hartshorne
conjecture, which asserts that a smooth variety V of
dimension n in PN(C), where N< 3

2 n, is a complete
intersection, meaning that V is defined by a system of
exactly N � n equations.

In general, one can classify all varieties in Pn(C) of
given degree and dimension. One gets a better clas-
sification by looking at all varieties with given Hilbert
polynomial. This leads to the concept of a Hilbert
scheme. There are many unanswered questions about
Hilbert schemes.

3. Vector Bundles. A vector bundle of rank r on a variety
V is a sheaf that locally looks like a free module of rank
r. For example, the tangent planes to a smooth sur-
face form its tangent bundle, which is a vector bundle
of rank 2.

Vector bundles of rank 1 are called line bundles or
invertible sheaves. When V is smooth, line bundles
can be described in terms of divisors, which are formal
sums a1D1 þ � � � þ amDm, where ai is an integer and
Di is an irreducible hypersurface. Furthermore, line
bundles are isomorphic if and only if their correspond-
ing divisors are rationally equivalent. The set of iso-
morphism classes of line bundles on V forms the
Picard group Pic(V).

There has also been a lot of work classifying vector
bundles on Pn(C). For n ¼ 1, a complete answer is
known. For n> 2, one classifies vector bundles E
according to their rank r and their Chern classes
ci(E). One important problem is understanding how
to compactify the corresponding moduli spaces.

This involves the concepts of stable and semistable
bundles. Vector bundles also have interesting con-
nections with mathematical physics (see Ref. 33).

4. Algebraic Cycles. Given an irreducible variety V of
dimension n, a variety W contained in V is called a
subvariety. Divisors on V are integer combinations of
irreducible subvarieties of dimension n� 1. More
generally, an m-cycle on V is an integer combination
of irreducible subvarieties of dimension m. Cycles are
studied using various equivalence relations, includ-
ing rational equivalence, algebraic equivalence,
numerical equivalence, and homological equivalence.
The Hodge Conjecture concerns the behavior of cycles
under homological equivalence, whereas the Chow
groups are constructed using rational equivalence.

Algebraic cycles are linked to other topics in
algebraic geometry, including motives, intersection
theory, and variations of Hodge structure. An intro-
duction to some of these ideas can be found in Ref. 34.

REAL ALGEBRAIC GEOMETRY

In algebraic geometry, the theory usually works best over C
or other algebraically closed fields. Yet many applications
of algebraic geometry deal with real solutions of polynomial
equations. We will explore several aspects of this question.

When dealing with equations with finitely many solu-
tions, there are powerful methods for estimating the num-
ber of solutions, including a multivariable version of
Bézout’s Theorem and the more general BKK bound,
both of which deal with complex solutions. But these
bounds can differ greatly from the number of real solutions.
An example from Ref. 35 is the system

axyzm þ bx þ cy þ d ¼ 0
a0xyzm þ b0x þ c0y þ d0 ¼ 0
a00xyzm þ b00xþ c00yþ d00 ¼ 0

where m is a positive integer and a, b, . . . , c00,d00 are random
real coefficients. The BKK bound tells us that there are
m complex solutions, and yet there are at most two real
solutions.

Questions about the number of real solutions go back to
Descartes’ Rule of Signs for the maximum number of posi-
tive and negative roots of a real univariate polynomial.
There is also Sturm’s Theorem, which gives the number of
real roots in an interval. These results now have multi-
variable generalizations. Precise statements can be found
in Refs. 18 and 30.

Real solutions also play an important role in enumera-
tive algebraic geometry. For example, a smooth cubic
surface S defined over R has 27 lines when we regard
S as lying in P3(C). But how many of these lines are
real? In other words, how many lines lie on S when it is
regarded as lying in P3(R)? (The answer is 27, 15, 7, or 3,
depending on the equation of the surface.) This and other
examples from real enumerative geometry are discussed
in Ref. 35.

10 ALGEBRAIC GEOMETRY



Over the real numbers, one can define geometric
objects using inequalities as well as equalities. For exam-
ple, a solid sphere of radius 1 is defined by x2 þ y2 þ z2� 1.
In general, a finite collection of polynomial equations and
inequalities define what is known as a semialgebraic
variety. Inequalities arise naturally when one does quan-
tifier elimination. For example, given real numbers a
and b, the question

Does there exist x in R with x2 þ bxþ c ¼ 0?

is equivalent to the inequality

b2 � 4c� 0

by the quadratic formula. The theory of real quantifier
elimination is due to Tarksi, although the first practical
algorithmic version is Collin’s cylindrical algebraic
decomposition. A brief discussion of these issues appears
in Ref. 30. Semialgebraic varieties arise naturally in
robotics and motion planning, because obstructions like
floors and walls are defined by inequalities (see ROBOTICS).

SCHEMES

An affine variety V is the geometric object corresponding to
the algebraic object given by its coordinate ring k[V]. More
generally, given any commutative ring R, Grothendieck
defined the affine scheme Spec (R) to be the geometric object
corresponding to R. The points of Spec(R) correspond to
prime ideals of R, and Spec(R) also has a structure sheaf
OSpec(R) that generalizes the sheaves OV mentioned earlier.

As an example, consider the coordinate ring C[V] of an
affine variety V in Cn. We saw earlier that the points of V
correspond to maximal ideals of C[V]. As maximal ideals
are prime, it follows that Spec(C[V]) contains a copy of V.
The remaining points of Spec(C[V]) correspond to the other
irreducible varieties lying in V. In fact, knowing Spec(C[V])
is equivalent to knowing V in a sense that can be made
precise.

Affine schemes have good properties with regard to
maps between rings, and they can be patched together to
get more general objects called schemes. For example, every
projective variety has a natural scheme structure. One way
to see the power of schemes is to consider the intersection of
the curves in C2 defined by f ¼ 0 and g ¼ 0, as in our
discussion of Bezout’s Theorem. As varieties, this intersec-
tion consists of just points, but if we consider the intersec-
tion as a scheme, then it has the additional structure
consisting of the ring Op/hf, gi at every intersection point
p. So the scheme–theoretic intersection knows the multi-
plicities. See Ref. 36 for an introduction to schemes. Scheme
theory is also discussed in Refs. 1 and 2.

BIBLIOGRAPHY

1. R. Hartshorne, Algebraic Geometry, New York: Springer, 1977.

2. I. R. Shafarevich, Basic Algebraic Geometry, New York:
Springer, 1974.

3. B. Buchberger, Gröbner bases: An algorithmic method in poly-
nomial ideal theory, in N. K. Bose (ed.), Recent Trends in
Multidimensional Systems Theory, Dordrecht: D. Reidel, 1985.

4. D. Cox, J. Little, and D. O’Shea, Ideals, Varieties and
Algorithms, 3rd ed., New York: Springer, 2007.

5. H. Schenck, Computational Algebraic Geometry, Cambridge:
Cambridge University Press, 2003.

6. K. Smith, L. Kahanpää, P. Kekäläinen, and W. Traves, An
Invitation to Algebraic Geometry, New York: Springer, 2000.

7. D. Bayer and D. Mumford, What can be computed in algebraic
geometry? in D. Eisenbud and L. Robbiano (eds.), Computa-
tional Algebraic Geometry and Commutative Algebra,
Cambridge: Cambridge University Press, 1993.

8. A. Dickenstein and I. Emiris, Solving Polynomial Systems,
New York: Springer, 2005.

9. PHCpack, a general purpose solver for polynomial systems by
homotopy continuation. Available: http://www.math.uic.edu/

jan/PHCpack/phcpack.html.

10. Maple. Available: http://www.maplesoft.com.

11. Mathematica. Available: http://www.wolfram.com.

12. CoCoA, Computational Commutative Algebra. Available:
http://www.dima.unige.it.

13. Macaulay 2, a software for system for research in algebraic
geometry. Available: http://www.math.uiuc.edu/Macaulay2.

14. Singular, a computer algebra system for polynomial computa-
tions. Available: http://www.singular.uni-kl.de.

15. M. Kreuzer and L. Robbiano, Computational Commutative
Algebra 1, New York: Springer, 2000.

16. G.-M. Greuel and G. Pfister, A Singular Introduction of Com-
mutative Algebra, New York: Springer, 2002.

17. Magma, The Magma Computational Algebra System. Avail-
able: http://magma.maths.usyd.edu.au/magma/.

18. D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry,
2nd ed., New York: Springer, 2005.

19. T. W. Sederberg and F. Chen, Implicitization using moving
curves and surfaces, in S. G. Mair and R. Cook (eds.), Proceed-
ings of the 22nd Annual Conference on Computer graphics and
interactive techniques (SIGGRAPH1995), New York: ACM
Press, 1995, pp. 301–308.

20. H. Hauser, The Hironaka theorem on resolution of singula-
rities (or: a proof we always wanted to understand), Bull. Amer.
Math. Soc., 40: 323–403, 2003.

21. G. Bodnár and J. Schicho, Automated resolution of singula-
rities for hypersurfaces, J. Symbolic Computation., 30: 401–
429, 2000. Available: http://www.rise.uni-linz.ac.at/projects/
basic/adjoints/blowup.

22. H. Stetter, Numerical Polynomial Algebra, Philadelphia:
SIAM, 2004.

23. D. Cox, R. Goldman, and M. Zhang, On the validity of impli-
citization by moving quadrics for rational surfaces with no base
points, J. Symbolic Comput., 29: 419–440, 2000.

24. P. Griffiths and J. Harris, Principles of Algebraic Geometry,
New York: Wiley, 1978.

25. N. Koblitz, A Course in Number Theory and Cryptography,
2nd ed., New York: Springer, 1994.

26. S. L. Kleiman and D. Laksov, Schubert calculus, Amer. Math.
Monthly, 79: 1061–1082, 1972.

27. R. Goldman and R. Krasauskas (eds.), Topics in Algebraic
Geometry and Geometric Modeling, Providence, RI: AMS, 2003.

28. L. Pachter and B. Sturmfels (eds.), Algebraic Statistics for
Computational Biology, Cambridge: Cambridge University
Press, 2005.

ALGEBRAIC GEOMETRY 11



29. C. Moreno, Algebraic Curves over Finite Fields, Cambridge:
Cambridge University Press, 1991.

30. A. M. Cohen, H. Cuypers, and H. Sterk (eds.), Some Tapas of
Computer Algebra, New York: Springer, 1999.

31. W. P. Barth, C. A. Peters, and A. A. van de Ven, Compact
Complex Surfaces, New York: Springer, 1984.

32. C. Cadman, I. Coskun, K. Jarbusch, M. Joyce, S. Kovács,
M. Lieblich, F. Sato, M. Szczesny, and J. Zhang, A first
glimpse at the minimal model program, in R. Vakil (ed.),
Snowbird Lectures in Algebraic Geometry, Providence, RI:
AMS, 2005.

33. V. S. Vardarajan, Vector bundles and connections in physics
and mathematics: Some historical remarks, in V. Lakshmibai,
V. Balaji, V. B. Mehta, K. R. Nagarajan, K. Paranjape,
P. Sankaran, and R. Sridharan (eds), A Tribute to C. S. Sesha-
dri, Basel: Birkhäuser-Verlag, 2003, pp. 502–541.

34. W. Fulton, Introduction to Intersection Theory in Algebraic
Geometry, Providence, RI: AMS, 1984.

35. F. Sottile, Enumerative real algebraic geometry, in S. Basu and
L. Gonzalez-Vega (eds.), Algorithmic and quantitative real
algebraic geometry (Piscataway, NJ, 2001), Providence, RI:
AMS, 2003, pp. 139–179.

36. D. Eisenbud and J. Harris, The Geometry of Schemes,
New York: Springer, 2000.

DAVID A. COX

Amherst College
Amherst, Massachusetts

12 ALGEBRAIC GEOMETRY



C

CHOICE UNCERTAINTY PRINCIPLE1

The choice uncertainty principle says that it is impossible to
make an unambiguous choice between near-simultaneous
events under a deadline. This principle affects the design of
logic circuits in computer hardware, real-time systems, and
decision systems.

One of the first persons to notice that a fundamental
principle might be at work in circuits that make decisions
was David Wheeler of the University of Cambridge. In the
early 1970s, he sought to build a computer whose hardware
did not suffer from ‘‘hardware freezes’’ that were common in
earlier computers. Wheeler noticed the lockups never
occurred when the interrupts were turned off. Interrupt
signals were recorded on a flip-flop the CPU consulted
between instructions: The CPU decided either to enter
the next instruction cycle or to jump to a dedicated sub-
routine that responded to the interrupt signal. He sus-
pected that the timing of the interrupt signal’s arrival to
that flip-flop occasionally caused it to misbehave and hang
the computer. Imagine that: The simplest, most fundamen-
tal memory circuit of a computer could malfunction.

THE HALF-SIGNAL

A digital machine consists of storage elements intercon-
nected by logic circuits. The storage elements, implemented
as arrays of flip-flops, hold the machine’s state. The
machine operates in a cycle: (1) flip-Flops enter a state;
the switching time is 10�12 to 10�15 seconds. (2) The logic
circuits take the state as input and produce a new state; the
propagation time of all inputs through the circuits is slower,
10�9 to 10�10 seconds. (3) The new state is read into the
flip-flops. A clock sends pulses that tell the flip-flops when
to read in the next state.

The clock cycle must be longer than the propagation
delay of the logic circuits. If it is any shorter, the inputs to
some flip-flops may still be changing at the moment the
clock pulse arrives. If an input voltage is changing between
the 0 and 1 values at the time the clock pulse samples it, the
flip-flop sees a ‘‘half signal’’—an in-between voltage but not
a clear 0 or 1. Its behavior becomes unpredictable. A com-
mon malfunction is that the flip-flop ends up in the wrong
state: The clock-sampled value of an input intended to
switch the flip-flop to 1 might not be strong enough, so
the flip-flop remains 0.

THE METASTABLE STATE

Unfortunately, there is a worse malfunction. A half-signal
input can cause the flip-flop to enter a ‘‘metastable state’’ for
an indeterminate time that may exceed the clock interval

by a large amount. The flip-flop eventually settles into a
stable state, equally likely to be 0 or 1.

A flip-flop’s state is actually a voltage that moves con-
tinuously between the 0 and 1 values. The 0 and 1 states are
stable because they are attractors: Any small perturbation
away from either is pulled back. A flip-flop switches because
the input adds enough energy to push the state voltage
closer to the other attractor. However, a half-signal input
can sometimes leave the state voltage poised precisely at
the midpoint between the attractors. The state balances
precariously there until some noise pushes it closer to one of
the attractors. That midpoint is called the metastable state.
The metastable state is like a ball poised perfectly on the
peak of a roof: It can sit there for a long time until air
molecules or roof vibrations cause it to lose its balance,
causing it to roll down one side of the roof.

In 1973, Chaney and Molnor at Washington University
in St Louis measured the occurrence rate and holding times
of metastable states (1); see Fig. 1. By synchronizing clock
frequency with external signal frequency, they attempted
to induce a metastable event on every external signal
change. They saw frequent metastable events on their
oscilloscope, some of which persisted 5, 10, or even 20 clock
intervals. Three years later, Kinniment and Woods docu-
mented metastable states and mean times until failure for a
variety of circuits (2).

In 2002, Sutherland and Ebergen reported that contem-
porary flip-flops switched in about 100 picoseconds (10�10

seconds) and that a metastable state lasting 400 picose-
conds or more occurred once every 10 hours of operation (3).

Xilinx.com reports that its modern flip-flops have essen-
tially zero chance of observing a metastable state when
clock frequencies are 200 MHz or less (4). At these frequen-
cies, the time between clock pulses (5 nanoseconds) is
longer than all metastable events. But in experiments
with interrupt signals arriving 50 million times a second,
a metastable state occurs about once a minute at a clock
frequency of 300 MHz, and about once every two millise-
conds at a clock frequency of 400 MHz.

WHEELER’S THRESHOLD FLIP-FLOP

Aware of the Chaney–Molnor experiments, Wheeler rea-
lized that an interrupt flip-flop-driven metastable by an
ill-timed interrupt signal can still be metastable at the next
clock tick. Then the CPU reads neither a definite 0 nor a
definite 1 and can malfunction.

Wheeler saw he could prevent the malfunction if he
could guarantee that the CPU could only read the interrupt
flip-flop while it was stable. He made an analogy with the
common situation of two people about to collide on a side-
walk. On sensing their imminent collision, they both stop.
They exchange eye signals, gestures, head bobs, sways,
dances, and words until finally they reach an agreement
that one person goes to the right and the other to the left.
This could take a fraction or a second or minutes. They then

1This article is adapted from the author’s article of the same title,
ACM Communications 50 50: 9–14, 2007.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.
Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



resume walking and pass one another without a collision.
The key is that the two parties stop for as long as is needed
until they decide.

Wheeler designed a flip-flop with an added threshold
circuit that output 1 when the flip-flop state was near 0 or 1.
He used this for the interrupt flip-flop with the threshold
output wired to enable the clock to tick (see Fig. 2). The CPU
could not run as long as the interrupt flip-flop was in a

metastable state, and thus, it could observe that flip-flop
only when it was stable.

With threshold interrupt flip-flops, Wheeler’s computer
achieved the reliability he wanted.

ARBITER CIRCUIT

Unambiguous choices between near-simultaneous signals
must be made in many parts of computing systems, not just
at interrupt flip-flops. Examples:

� Two CPUs request access to the same memory bank.

� Two transactions request a lock on the same record of a
database.

� Two external events arrive at an object at the same
time.

� Two computers try to broadcast on an Ethernet at the
same time.

� Two packets arrive together to the network card.

� An autonomous agent receives two request signals at
the same time.

� A robot perceives two alternatives at the same time.

In each case, a chooser circuit must select one of the alter-
natives for immediate action and defer the other for later
action. There is no problem if the signals are separated
enough that the chooser can tell which one came first. But if
the two signals are near simultaneous, the chooser must
make an arbitrary selection. This selection problem is also
called the arbitration problem, and the circuits that accom-
plish it are called arbiter or synchronizer circuits (5,6). Ran
Ginosar gives a nice account of modern synchronizers (7).

The arbiter incorporates circuits, as in the Wheeler
flip-flop, that will prevent it from sending signals while
in a metastable state. Therefore, all entities interacting
with the arbiter will be blocked while the arbiter is meta-
stable, and there is no need to stop a clock. The main effect of
the metastable state is to add an unknown delay to the
access time to the shared entity.

THE UNCERTAINTY PRINCIPLE

We can summarize the analysis above as the Choice Uncer-
tainty Principle (8): ‘‘No choice between near-simultaneous
events can be made unambiguously within a preset dead-
line.’’ The source of the uncertainty is the metastable state
that can be induced in the chooser by conflicting forces
generatedwhentwodistinctsignalschangeatthesametime.

In 1984, Leslie Lamport stated this principle in a slightly
different way: ‘‘A discrete decision based upon an input
having a continuous range of values cannot be made within
a bounded length of time’’ (9). He gave numerous examples
of decision problems involving continuous inputs with
inherent uncertainty about decision time. The source of
the uncertainty, however, is not necessarily the attempt to
sample a continuous signal; it is the decision procedure
itself. A device that selects among alternatives can become
metastable if the signals denoting alternatives arrive at
nearly the same time.

in out

clk

Clock
signal

External

Clock

Output

External
signal Monitor

FF

Figure 1. Experimental setup for observing flip-flop (FF) metast-
ability. Each clock pulse triggers the FF state to match the input
signal. If the input signal is changing when the clock pulse arrives,
FF may enter an indefinite state that lasts more than one clock
interval (dotted lines). The test repeats cyclically after the external
signal returns to 0. To maximize metastable events, the clock
frequency is tuned to a multiple of the external signal frequency.
In a digital computer, the indefinite output becomes the input of
other logic circuits at the next clock pulse, causing half-signal
malfunctions.

CPU

int

in out

clk

clk

external
interrupt
signal

TFF
clock

T en

Figure 2. Threshold flip-flop (TFF) output T is 1 when the state is
0 or 1 and is 0 when the state is metastable. Output T enables the
clock. TFF can become metastable if the external interrupt signal
changes just as the clock pulse arrives. Since the CPU does not run
when the clock is off, it always sees a definite 0 or 1 when it samples
for interrupts.

2 THE CHOICE UNCERTAINTY PRINCIPLE



It might be asked whether there is a connection between
the choice uncertainty principle and the Heisenberg
Uncertainty Principle (HUP) of quantum physics. The
HUP says that the product of the standard deviations of
position and momentum is lower-bounded by a number on
the order of 10�34 joule-seconds. Therefore, an attempt to
reduce the uncertainty of position toward zero may
increase the uncertainty of momentum; we cannot know
the exact position and speed of a particle at once. This
principle manifests at quantum time scales and subatomic
particle sizes—look at how small that bound is—but does
notsaymuchaboutthemacroeffectsofmillionsofelectrons
flowing in logic circuits.

The HUP is sometimes confused with a simpler phenom-
enon, which might be called the observer principle. This
principle states that if the process of observing a system
either injects or withdraws energy from the system, the act
of observation may influence the state of the system. There
is, therefore, uncertainty about whether what is observed is
the same as what is in the system when there is no observer.
The observer principle plays an important role in quantum
cryptography, where the act of reading the quantum state
of a photon destroys the state. The information of the state
is transferred to the observer and is no longer in the system.

The choice uncertainty principle is not an instance of the
Heisenberg principle because it applies to macrolevel
choices as well as to microscopic circuit choices. Neither
is it an instance of the observer principle because the
metastable state is a reaction of the observer (arbiter) to
the system and does not exchange information with the
system. (Neither is it related to the Axiom of Choice in
mathematics, which concerns selecting one representative
from each of an infinite number of sets.)

CHOICE UNCERTAINTY AS A GREAT PRINCIPLE

The choice uncertainty principle is not about how a system
reacts to an observer, but how an observer reacts to a
system. It also applies to choices at time scales much slower
than computer clocks. For example,

� A teenager must choose between two different, equally
appealing prom invitations.

� Two people on a sidewalk must choose which way each
goes to avoid a collision.

� A driver approaching an intersection must choose to
brake or accelerate on seeing the traffic light change to
yellow.

� The commander in the field must choose between two
adjutants, both demanding quick decisions on complex
tactical issues at different locations.

� A county social system must choose between a devel-
opment plan that limits growth and one that promotes
growth.

These examples all involve perceptions; the metastable
(indecisive) state occurs in single or interacting brains as
they try to choose between equally attractive perceptions.
At these levels, a metastable (indecisive) state can persist
for seconds, hours, days, months, or even years.

The possibility of indefinite indecision is often attributed
to the fourteenth century philosopher Jean Buridan, who
described the paradox of the hungry dog that, being placed
midway between two equal portions of food, starved (5).
[Some authors use the example of an ass (donkey) instead of
a dog, but it is the same problem (3,9)]. If he were discussing
this today with cognitive scientists, Buridan might say that
the brain can be immobilized in a metastable state when
presented with equally attractive alternatives.

At these levels, it is not normally possible to turn off
clocks until the metastable state is resolved. What happens
if the world is impatient and demands a choice from a
metastable chooser? A common outcome is that no choice
is made and the opportunities represented by the choices
are lost. For example, the teenager gets no prom date,
the pedestrians collide, the driver runs a red light, the
commander loses both battles, or the county has no plan
at all. Another outcome is that the deciding parties get
flustered, adding to the delay of reaching a conclusion.

CONCLUSION

Modern software contains many external interactions with
a network and must frequently choose between near-simul-
taneous signals. The process of choosing will always involve
the possibility of a metastable state and, therefore, a long
delay for the decision. Real-time control systems are parti-
cularly challenging because they constantly make choices
under deadlines.

The metastable state can occur in any choice process
where simultaneous alternatives are equally attractive. In
that case, the choosing hardware, software, brain, or social
process cannot make a definitive choice within any preset
interval. If we try to force the choice before the process exits
a metastable state, we are likely to get an ambiguous result
or no choice at all.

The choice uncertainty principle applies at all levels,
from circuits, to software, to brains, and to social systems.
Every system of interactions needs to deal with it. It,
therefore, qualifies as a Great Principle.

It is a mistake to think that the choice uncertainty
principle is limited to hardware. Suppose that your soft-
ware contains a critical section guarded by semaphores.
Your proof that the locks choose only one process at a time to
enter the critical section implicitly assumes that only one
CPU at a time can gain access to the memory location
holding the lock value. If that is not so, then occasionally
your critical section will fail no matter how careful your
proofs. Every level of abstraction at which we prove
freedom from synchronization errors always relies on a
lower level at which arbitration is solved. But arbitration
can never be solved absolutely.

Therefore, software’s assumption that variables denot-
ing alternatives are well defined and unchanging when we
look at them is not always valid. The choice uncertainty
principle warns us of this possibility and helps to manage it.

REFERENCES

1. T. J. Chaney and C. E. Molnor, Anomalous behavior of syn-
chronizer and arbiter circuits, IEEE, Trans. Comput., 22:
421–422, 1973.

THE CHOICE UNCERTAINTY PRINCIPLE 3



2. D. J. Kinniment and J. V. Woods, Synchronization and arbi-
tration circuits in digital systems, IEEE Proc., 961–966, 1976.

3. I. Sutherland and J. Ebergen, Computers without clocks,
Scientif. Am. 62–69, August 2002. Available from Sun
Microsystems. http://research.sun.com/async/Publications/
KPDisclosed/SciAm/SciAm.pdf

4. P. Alfke, Metastable recovery in Virtex-II Pro FPGAs. Tech-
nical Report xapp094 (Feb 2005). Available from the Xilinx.
com website.

5. P. Denning, The arbitration problem, Am. Scient., 73:
516–518, 1985. It is interesting that some authors ascribe
the indecision paradox to an ‘‘ass,’’ although Buridan’s origi-
nal text refers to a ‘‘dog.’’

6. C. L. Seitz, System timing, in C. Mead and L. Conway (ed.),
Introduction to VLSI Systems. Reading, MA: Addison-Wesley,
1980, pp. 218–262.

7. R. Ginosar, Fourteen ways to fool your synchronizer, Proc.
9th Int’l Symp. on Asynchronous Circuits and Systems, IEEE,
2003, 8pp.Available:http://www.ee.technion.ac.il/�ran/papers/
Sync_Errors_Feb03.pdf

8. Great Principles Web site: http://cs.gmu.edu/cne/pjd/GP

9. L. Lamport, Buridan’s Principle. Technical Report. 1984.
Available: http://research.microsoft.com/users/lamport/pubs/
buridan.pdf

PETER J. DENNING

Naval Postgraduate School
Monterey, California

4 THE CHOICE UNCERTAINTY PRINCIPLE



C

COMPUTATIONAL COMPLEXITY THEORY

Complexity theory is the part of theoretical computer
science that attempts to prove that certain transformations
from input to output are impossible to compute using a
reasonable amount of resources. Theorem 1 below illus-
trates the type of ‘‘impossibility’’ proof that can sometimes
be obtained (1); it talks about the problem of determining
whether a logic formula in a certain formalism (abbreviated
WS1S) is true.

Theorem 1. Any circuit of AND, OR, and NOT gates
that takes as input a WS1S formula of 610 symbols and
outputs a bit that says whether the formula is true must
have at least 10125gates.

This is a very compelling argument that no such circuit
will ever be built; if the gates were each as small as a proton,
such a circuit would fill a sphere having a diameter of 40
billion light years! Many people conjecture that somewhat
similar intractability statements hold for the problem of
factoring 1000-bit integers; many public-key cryptosys-
tems are based on just such assumptions.

It is important to point out that Theorem 1 is specific
to a particular circuit technology; to prove that there is
no efficient way to compute a function, it is necessary to
be specific about what is performing the computation.
Theorem 1 is a compelling proof of intractability precisely
because every deterministic computer that can be pur-
chased today can be simulated efficiently by a circuit con-
structed with AND, OR, and NOT gates. The inclusion of the
word ‘‘deterministic’’ in the preceding paragraph is signifi-
cant; some computers are constructed with access to
devices that are presumed to provide a source of random
bits. Probabilistic circuits (which are allowed to have some
small chance of producing an incorrect output) might be a
more powerful model of computing. Indeed, the intract-
ability result for this class of circuits (1) is slightly weaker:

Theorem 2. Any probabilistic circuit of AND, OR, and
NOT gates that takes as input a WS1S formula of 614
symbols and outputs a bit that says whether the formula
is true (with error probability at most 1/3) must have at
least 10125gates.

The underlying question of the appropriate model of
computation to use is central to the question of how relevant
the theorems of computational complexity theory are. Both
deterministic and probabilistic circuits are examples of
‘‘classical’’ models of computing. In recent years, a more
powerful model of computing that exploits certain aspects
of the theory of quantum mechanics has captured the
attention of the research communities in computer science
and physics. It seems likely that some modification of
theorems 1 and 2 holds even for quantum circuits. For
the factorization problem, however, the situation is
different. Although many people conjecture that classical

(deterministic or probabilistic) circuits that compute the
factors of 1000-bit numbers must be huge, it is known that
small quantum circuits can compute factors (2). It remains
unknown whether it will ever be possible to build quantum
circuits, or to simulate the computation of such circuits
efficiently. Thus, complexity theory based on classical
computational models continues to be relevant.

The three most widely studied general-purpose ‘‘realis-
tic’’ models of computation today are deterministic, prob-
abilistic, and quantum computers. There is also interest in
restricted models of computing, such as algebraic circuits or
comparison-based algorithms. Comparison-based models
arise in the study of sorting algorithms. A comparison-
based sorting algorithm is one that sorts n items and is
not allowed to manipulate the representations of those
items, other than being able to test whether one is greater
than another. Comparison-based sorting algorithms
require time V(n log n), whereas faster algorithms are
sometimes possible if they are allowed to access the bits
of the individual items. Algebraic circuits operate under
similar restrictions; they cannot access the individual bits
of the representations of the numbers that are provided
as input, but instead they can only operate on those num-
bers via operations such asþ,�, and�. Interestingly, there
is also a great deal of interest in ‘‘unrealistic’’ models of
computation, such as nondeterministic machines. Before
we explain why unrealistic models of computation are of
interest, let us see the general structure of an intract-
ability proof.

DIAGONALIZATION AND REDUCIBILITY

Any intractability proof has to confront a basic question:
How can one prove that there is not a clever algorithm for

a certain problem? Here is the basic strategy that is used to
prove theorems 1 and 2. There are three steps.

Step 1 involves showing that there is program A that
uses roughly 2n bits of memory on inputs of size n such that,
for every input length n, the function that A computes on
inputs of length n requires circuits as large as are required
by any function on n bits. The algorithm A is presented by
a ‘‘diagonalization’’ argument (so-called because of simi-
larity to Cantor’s ‘‘diagonal’’ argument from set theory).
The same argument carries through essentially unchanged
for probabilistic and quantum circuits. The problem com-
puted by A is hard to compute, but this by itself is not very
interesting, because it is probably not a problem that any-
one would ever want to compute.

Step 2 involves showing that there is an efficiently
computable function f that transforms any input instance
x for A into a WS1S formula fði:e:; f ðxÞ ¼ fÞ with the pro-
perty that A outputs ‘‘1’’ on input x if and only if the
formula f is true. If there were a small circuit deciding
whether a formula is true, then there would be a small
circuit for the problem computed by A. As, by step 1, there is

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



no such small circuit for A, it follows that there is no small
circuit deciding whether a formula is true.

Step 3 involves a detailed analysis of the first two steps,
in order to obtain the concrete numbers that appear in
Theorem 1.

Let us focus on step 2. The function f is called a reduction.
Any function g such that x is in B if and only if g(x) is in C is
said to reduce B to C. (This sort of reduction makes sense
when the computational problems B and C are problems
that require a ‘‘yes or no’’ answer; thus, they can be viewed
as sets, where x is in B if B outputs ‘‘yes’’ on input x. Any
computational problem can be viewed as a set this way. For
example, computing a function h can be viewed as the set
{(x, i) : the ith bit of f(x) is 1}.)

Efficient reducibility provides a remarkably effective
tool for classifying the computational complexity of a great
many problems of practical importance. The amazing thing
about the proof of step 2 (and this is typical of many
theorems in complexity theory) is that it makes no use at
all of the algorithm A, other than the fact that A uses at
most 2n memory locations. Every problem that uses at most
this amount of memory is efficiently reducible to the pro-
blem of deciding whether a formula is true. This provides
motivation for a closer look at the notion of efficient redu-
cibility.

EFFICIENT COMPUTATION, POLYNOMIAL TIME

Many notions of efficient reducibility are studied in com-
putational complexity theory, but without question the
most important one is polynomial-time reducibility. The
following considerations explain why this notion of redu-
cibility arises.

Let us consider the informal notion of ‘‘easy’’ functions
(functions that are easy to compute). Here are some con-
ditions that one might want to satisfy, if one were trying to
make this notion precise:

� If f and g are easy, then the composition f o g is also
easy.

� If f is computable in time n2 on inputs of length n, then
f is easy.

These conditions might seem harmless, but taken
together, they imply that some ‘‘easy’’ functions take
time n100 to compute. (This is because there is an ‘‘easy’’
function f that takes input of length n and produces output
of length n2. Composing this function with itself takes time
n4, etc.) At one level, it is clearly absurd to call a function
‘‘easy’’ if it requires time n100 to compute. However, this is
precisely what we do in complexity theory! When our goal is
to show that certain problems require superpolynomial
running times, it is safe to consider a preprocessing step
requiring time n100 as a ‘‘negligible factor’’.

A polynomial-time reduction f is simply a function that
is computed by some program that runs in time bounded
by p(n) on inputs of length n, for some polynomial p. (That
is, for some constant k, the running time of the program
computing f is at most nk þ k on inputs of length n.) Note
that we have not been specific about the programming

language in which the program is written. Traditionally,
this is made precise by saying that f is computed by a Turing
machine in the given time bound, but exactly the same
class of polynomial-time reductions results, if we use any
other reasonable programming language, with the usual
notion of running time. This is a side-benefit of our overly
generous definition of what it means to be ‘‘easy’’ to
compute.

If f is a polynomial-time reduction of A to B, we denote
this A � p

m B. Note that this suggests an ordering, where B is
‘‘larger’’ (i.e., ‘‘harder to compute’’) than A. Any efficient
algorithm for B yields an efficient algorithm for A; if A
is hard to compute, then B must also be hard to compute.
If A � p

m B and B �p
m A, this is denoted A� p

mB.
One thing that makes complexity theory useful is that

naturally-arising computational problems tend to clump
together into a shockingly small number of equivalence
classes of the � p

m relation. Many thousands of problems
have been analyzed, and most of these fall into about a
dozen equivalence classes, with perhaps another dozen
classes picking up some other notably interesting groups
of problems.

Many of these equivalence classes correspond to inter-
esting time and space bounds. To explain this connection,
first we need to talk about complexity classes.

COMPLEXITY CLASSES AND COMPLETE SETS

A complexity class is a set of problems that can be computed
within certain resource bounds on some model of computa-
tion. For instance, P is the class of problems computable by
programs that run in time at most nkþ k for some constant
k; ‘‘P’’ stands for ‘‘polynomial time.’’ Another important
complexity class is EXP: the set of problems computed by
programs that run for time at most 2nkþk on inputs of length
n. P and EXP are both defined in terms of time complexity.
It is also interesting to bound the amount of memory used
by programs; the classes PSPACE and EXPSPACE consist
of the problems computed by programs whose space
requirements are polynomial and exponential in the input
size, respectively.

An important relationship exists between EXP and the
game of checkers; this example is suitable to introduce the
concepts of ‘‘hardness’’ and ‘‘completeness.’’

Checkers is played on an 8-by-8 grid. When the rules are
adapted for play on a 10-by-10 grid, the game is known as
‘‘draughts’’ (which can also be played on boards of other
sizes). Starting from any game position, there is an optimal
strategy. The task of finding an optimal strategy is a natural
computational problem. N � N-Checkers is the function
that takes as input a description of a N�N draughts board
with locations of the pieces, and returns as output the move
that a given player should make, using the optimal strat-
egy. It is known that there is a program computing the
optimal strategy for N � N-Checkers that runs in time
exponential in N2; thus, N �N-Checkers2EXP.

More interestingly, it is known that for every problem
A2EXP; A �p

m N �N-Checkers. We say that A �p
m N�

N-Checkers is hard for EXP (3).

2 COMPUTATIONAL COMPLEXITY THEORY



More generally, if C is any class of problems, and B is a
problem such that A �p

m B for every B2C, then we say that
B is hard for C. If B is hard for C and B2C, then we say that
B is complete for C. Thus, in particular, N �N-Checkers
is complete for EXP. This means that the complexity of N �
N-Checkers is well understood, in the sense that the fastest
program for this problem cannot be too much faster than
the currently known program. Here is why: We know (via a
diagonalization argument) that there is some problem A in
EXP that cannot be computed by any program that runs in
time asymptotically less than 2n. As N �N-Checkers is
complete for EXP, we know there is a reduction from A
to N �N-Checkers computable in time nk for some k, and
thus N �N-Checkers requires running time that is asymp-
totically at least 2n1=k

.
It is significant to note that this yields only an asymptotic

lower bound on the time complexity of N �N-Checkers.
That is, it says that the running time of any program for this
problem must be very slow on large enough inputs, but (in
contrast to Theorem 1) it says nothing about whether this
problem is difficult for a given fixed input size. For instance,
it is still unknown whether there could be a handheld device
that computes optimal strategies for 100 � 100-Checkers
(although this seems very unlikely). To mimic the proof of
Theorem 1, it would be necessary to show that there is a
problem in EXP that requires large circuits. Such problems
are known to exist in EXPSPACE; whether such problems
exist in EXP is one of the major open questions in computa-
tional complexity theory.

The complete sets for EXP (such as N �N-Checkers)
constitute one of the important � p

m-equivalence classes;
many other problems are complete for PSPACE and EXP-
SPACE (and of course every nontrivial problem that can be
solved in polynomial time is complete for P under � p

m

reductions). However, this accounts for only a few of the
several � p

m-equivalence classes that arise when consider-
ing important computational problems. To understand
these other computational problems, it turns out to be
useful to consider unrealistic models of computation.

UNREALISTIC MODELS: NONDETERMINISTIC MACHINES
AND THE CLASS NP

Nondeterministic machines appear to be a completely
unrealistic model of computation; if one could prove this
to be the case, one would have solved one of the most
important open questions in theoretical computer science
(and even in all of mathematics).

A nondeterministic Turing machine can be viewed as a
program with a special ‘‘guess’’ subroutine; each time this
subroutine is called, it returns a random bit, zero or one.
Thus far, it sounds like an ordinary program with a random
bit generator, which does not sound so unrealistic. The
unrealistic aspect comes with the way that we define
how the machine produces its output. We say that a non-
deterministic machine accepts its input (i.e., it outputs one)
if there is some sequence of bits that the ‘‘guess’’ routine
could return that causes the machine to output one; other-
wise it is said to reject its input. If we view the ‘‘guess’’ bits as

independent coin tosses, then the machine rejects its input
if and only if the probability of outputting one is zero;
otherwise it accepts. If a nondeterministic machine runs
for t steps, the machine can flip t coins, and thus, a non-
deterministic machine can do the computational equivalent
of finding a needle in a haystack: If there is even one
sequence r of length t (out of 2t possibilities) such that
sequence r leads the machine to output one on input
x, then the nondeterministic machine will accept x, and
it does it in time t, rather than being charged time 2t for
looking at all possibilities.

A classic example that illustrates the power of nonde-
terministic machines is the Travelling Salesman Problem.
The input consists of a labeled graph, with nodes (cities)
and edges (listing the distances between each pair of cities),
along with a bound B. The question to be solved is as follows:
Does there exist a cycle visiting all of the cities, having
length at most B? A nondeterministic machine can solve
this quickly, by using several calls to the ‘‘guess’’ subroutine
to obtain a sequence of bits r that can be interpreted as a list
of cities, and then outputting one if r visits all of the cities,
and the edges used sum up to at most B.

Nondeterministic machines can also be used to factor
numbers; given an n-bit number x, along with two other
numbers a and b with a< b, a nondeterministic machine
can accept whether there is a factor of x that lies between a
and b.

Of course, this nondeterministic program is of no use at
all in trying to factor numbers or to solve the Traveling
Salesman Problem on realistic computers. In fact, it is hard
to imagine that there will ever be an efficient way to
simulate a nondeterministic machine on computers that
one could actually build. This is precisely why this model is
so useful in complexity theory; the following paragraph
explains why.

The class NP is the class of problems that can be solved
by nondeterministic machines running in time at most
nk þ k on inputs of size n, for some constant k; NP stands
for Nondeterministic Polynomial time. The Traveling
Salesman Problem is one of many hundreds of very impor-
tant computational problems (arising in many seemingly
unrelated fields) that are complete for NP. Although it is
more than a quarter-century old, the volume by Garey and
Johnson (4) remains a useful catalog of NP-complete pro-
blems. The NP-complete problems constitute the most
important � p

m-equivalence class whose complexity is unre-
solved. If any one of the NP-complete problems lies in P,
then P¼NP. As explained above, it seems much more likely
that P is not equal to NP, which implies that any program
solving any NP-complete problem has a worst-case running
time greater than n100,000 on all large inputs of length n.

Of course, even if P is not equal to NP, we would still have
the same situation that we face with N �N-Checkers, in
that we would not be able to conclude that instances of
some fixed size (say n ¼ 1,000) are hard to compute. For
that, we would seem to need the stronger assumption that
there are problems in NP that require very large circuits; in
fact, this is widely conjectured to be true.

COMPUTATIONAL COMPLEXITY THEORY 3



Although it is conjectured that deterministic machines
require exponential time to simulate nondeterministic
machines, it is worth noting that the situation is very
different when memory bounds are considered instead. A
classic theorem of complexity theory states that a nonde-
terministic machine using space s(n) can be simulated by a
deterministic machine in space s(n)2. Thus, if we define
NPSPACE and NEXPSPACE by analogy to PSPACE and
EXPSPACE using nondeterministic machines, we obtain
the equalities PSPACE ¼ NPSPACE and EXPSPACE ¼
NEXPSPACE.

We thus have the following six complexity classes:

P�NP� PSPACE�EXP�NEXP�EXPSPACE

Diagonalization arguments tell us that P 6¼EXP; NP 6¼
NEXP; and PSPACE 6¼EXPSPACE. All other relationships
are unknown. For instance, it is unknown whether P ¼
PSPACE, and it is also unknown whether PSPACE ¼
NEXP (although at most one of these two equalities can
hold). Many in the community conjecture that all of these
classes are distinct, and that no significant improvement
on any of these inclusions can be proved. (That is, many
people conjecture that there are problems in NP that
require exponential time on deterministic machines, that
there are problems in PSPACE that require exponential
time on nondeterministic machines, that there are pro-
blems in EXP that require exponential space, etc.) These
conjectures have remained unproven since they were first
posed in the 1970s.

A THEORY TO EXPLAIN OBSERVED DIFFERENCES IN
COMPLEXITY

It is traditional to draw a distinction between mathematics
and empirical sciences such as physics. In mathematics,
one starts with a set of assumptions and derives (with
certainty) the consequences of the assumptions. In con-
trast, in a discipline such as physics one starts with exter-
nal reality and formulates theories to try to explain (and
make predictions about) that reality.

For some decades now, the field of computational com-
plexity theory has dwelt in the uncomfortable region
between mathematics and the empirical sciences. Com-
plexity theory is a mathematical discipline; progress is
measured by the strength of the theorems that are proved.
However, despite rapid and exciting progress on many
fronts, the fundamental question of whether P is equal to
NP remains unsolved.

Until that milestone is reached, complexity theory can
still offer to the rest of the computing community some of
the benefits of an empirical science, in the following sense.
All of our observations thus far indicate that certain pro-
blems (such as the Traveling Salesman Problem) are intrac-
tible. Furthermore, we can observe that with surprisingly
few exceptions, natural and interesting computational pro-
blems can usually be shown to be complete for one of a
handful of well-studied complexity classes. Even though we
cannot currently prove that some of these complexity
classes are distinct, the fact that these complexity classes

correspond to natural or unnatural models of computation
gives us an intuitively appealing explanation for why these
classes appear to be distinct. That is, complexity theory
gives us a vocabulary and a set of plausible conjectures that
helps explain our observations about the differing compu-
tational difficulty of various problems.

NP AND PROVABILITY

There are important connections between NP and mathe-
matical logic. One equivalent way of defining NP is to say
that a set A is in NP if and only if there are short proofs of
membership in A. For example, consider the Traveling
Salesman Problem. If there is a short cycle that visits all
cities, then there is a short proof of this fact: Simply present
the cycle and compute its length. Contrast this with the
task of trying to prove that there is not a short cycle that
visits all cities. For certain graphs this is possible, but
nobody has found a general approach that is significantly
better than simply listing all (exponentially many) possible
cycles, and showing that all of them are too long. That is, for
NP-complete problems A, it seems to be the case that the
complement of A (denoted co-A) is not in NP.

The complexity class coNP is defined to be the set of all
complements of problems in NP; coNP ¼ fco� A : A2NPg.
This highlights what appears to be a fundamental dif-
ference between deterministic and nondeterministic
computation. On a deterministic machine, a set and its
complement always have similar complexity. On nondeter-
ministic machines, this does not appear to be true (although
if one could prove this, one would have a proof that P is
different from NP).

To discuss the connections among NP, coNP, and logic
in more detail, we need to give some definitions related to
propositional logic. A propositional logic formula consists
of variables (which can take on the values TRUE and FALSE),
along with the connectives AND, OR, and NOT. A formula is
said to be satisfiable if there is some assignment of truth
values to the variables that causes it to evaluate to TRUE; it
is said to be a tautology if every assignment of truth values
to the variables causes it to evaluate to TRUE. SAT is the set
of all satisfiable formulas; TAUT is the set of all tautologies.
Note that the formulaf is in SAT if and only if ‘‘NOTf’’ is not
in TAUT.

SAT is complete for NP; TAUT is complete for coNP.
[This famous theorem is sometimes known as ‘‘Cook’s
Theorem’’ (5) or the ‘‘Cook-Levin Theorem’’ (6).]

Logicians are interested in the question of how to prove
that a formula is a tautology. Many proof systems have
been developed; they are known by such names as resolu-
tion, Frege systems, and Gentzen calculus. For some of these
systems, such as resolution, it is known that certain tautol-
ogies of n symbols require proofs of length nearly 2n(7). For
Frege systems and proofs in the Gentzen calculus, it is
widely suspected that similar bounds hold, although this
remains unknown. Most logicians suspect that for any
reasonable proof system, some short tautologies will
require very long proofs. This is equivalent to the conjecture
that NP and coNP are different classes; if every tautology
had a short proof, then a nondeterministic machine could

4 COMPUTATIONAL COMPLEXITY THEORY



‘‘guess’’ the proof and accept if the proof is correct. As TAUT
is complete for coNP, this would imply that NP ¼ coNP.

The P versus NP question also has a natural inter-
pretation in terms of logic. Two tasks that occupy mathe-
maticians are as follows:

1. Finding proofs of theorems.

2. Reading proofs that other people have found.

Most mathematicians find the second task to be con-
siderably simpler than the first one. This can be posed as a
computational problem. Let us say that a mathematician
wants to prove a theorem f and wants the proof to be at
most 40 pages long. A nondeterministic machine can take
as input f followed by 40 blank pages, and ‘‘guess’’ a proof,
accepting if it finds a legal proof. If P ¼ NP, the mathema-
tician can thus determine fairly quickly whether there is a
short proof. A slight modification of this idea allows the
mathematician to efficiently construct the proof (again,
assuming that P ¼ NP). That is, the conjecture that P is
different than NP is consistent with our intuition that
finding proofs is more difficult than verifying that a given
proof is correct.

In the 1990s researchers in complexity theory discov-
ered a very surprising (and counterintuitive) fact about
logical proofs. Any proof of a logic statement can be encoded
in such a way that it can be verified by picking a few bits at
random and checking that these bits are sufficiently con-
sistent. More precisely, let us say that you want to be 99.9%
sure that the proof is correct. Then there is some constant k
and a procedure such that, no matter how long the proof is,
the procedure flips O(log n) coins and picks k bits of the
encoding of the proof, and then does some computation,
with the property that, if the proof is correct, the procedure
accepts with probability one, and if the proof is incorrect,
then the procedure detects that there is a flaw with prob-
ability at least 0.999. This process is known as a probabi-
listically checkable proof. Probabilistically checkable proofs
have been very useful in proving that, for many optimiza-
tion algorithms, it is NP-complete not only to find an
optimal solution, but even to get a very rough approxima-
tion to the optimal solution.

Some problems in NP are widely believed to be intract-
able to compute, but are not believed to be NP-complete.
Factoring provides a good example. The problem of comput-
ing the prime factorization of a number can be formulated
in several ways; perhaps the most natural way is as the set
FACTOR¼ {(x, i, b): the ith bit of the encoding of the prime
factorization of x is b}. By making use of the fact that
primality testing lies in P (8), set FACTOR is easily seen
to lie in NP\ coNP. Thus, FACTOR cannot be NP-complete
unless NP ¼ coNP.

OTHER COMPLEXITY CLASSES: COUNTING,
PROBABILISTIC, AND QUANTUM COMPUTATION

Several other computational problems appear to be inter-
mediate in complexity between NP and PSPACE that are
related to the problem of counting how many accepting
paths a nondeterministic machine has. The class #P is the

class of functions f for which there is an NP machine M with
the property that, for each string x, f(x) is the number of
guess sequences r that cause M to accept input x. #P is a
class of functions, instead of being a class of sets like all
other complexity classes that we have discussed. #P is
equivalent in complexity to the class PP (probabilistic
polynomial time) defined as follows. A set A is in PP if there
is an NP machine M such that, for each string x, x is in A if
and only if more than half of the guess sequences cause M to
accept x. If we view the guess sequences as flips of a fair coin,
this means that x is in A if and only the probability that M
accepts x is greater than one half. It is not hard to see that
both NP and coNP are subsets of PP; thus this is not a very
‘‘practical’’ notion of probabilistic computation.

In practice, when people use probabilistic algorithms,
they want to receive the correct answer with high prob-
ability. The complexity class that captures this notion is
called BPP (bounded-error probabilistic polynomial time).
Some problems in BPP are not known to lie in P; a good
example of such a problem takes two algebraic circuits as
input and determines whether they compute the same
function.

Early in this article, we mentioned quantum computa-
tion. The class of problems that can be solved in polynomial
time with low error probability using quantum machines is
called BQP (bounded-error quantum polynomial time).
FACTOR (the problem of finding the prime factorization
of a number) lies in BQP (2). The following inclusions are
known:

P�BPP�BQP� PP� PSPACE

P�NP� PP

No relationship is known between NP and BQP or between
NP and BPP. Many people conjecture that neither NP nor
BQP is contained in the other.

In contrast, many people now conjecture that BPP ¼ P,
because it has been proved that if there is any problem
computable in time 2n that requires circuits of nearly
exponential size, then there is an efficient deterministic
simulation of any BPP algorithm, which implies that P ¼
BPP (9). This theorem is one of the most important in a
field that has come to be known as derandomization,
which studies how to simulate probabilistic algorithms
deterministically.

INSIDE P

Polynomial-time reducibility is a very useful tool for clar-
ifying the complexity of seemingly intractible problems, but
it is of no use at all in trying to draw distinctions among
problems in P. It turns out that some very useful distinc-
tions can be made; to investigate them, we need more
refined tools.

Logspace reducibility is one of the most widely used
notions of reducibility for investigating the structure of
P; a logspace reduction f is a polynomial-time reduction
with the additional property that there is a Turing
machine computing f that has (1) a read-only input tape,
(2) a write-only output tape, and (3) the only other data

COMPUTATIONAL COMPLEXITY THEORY 5



structure it can use is a read/write worktape, where it
uses only O(log n) locations on this tape on inputs of length
n. If A is logspace-reducible to B, then we denote this by
A �log

m B. Imposing this very stringent memory restriction
seems to place severe limitations on polynomial-time com-
putation; many people conjecture that many functions
computable in polynomial time are not logspace-computa-
ble. However, it is also true that the full power of polynomial
time is not exploited in most proofs of NP-completeness. For
essentially all natural problems that have been shown to be
complete for the classes NP, PP, PSPACE, EXP, and so on
using polynomial-time reducibility, it is known that
they are also complete under logspace reducibility. That
is, for large classes, logspace reducibility is essentially as
useful as polynomial-time reducibility, but logspace reduci-
bility offers the advantage that it can be used to find
distinctions among problems in P.

Logspace-bounded Turing machines give rise to some
natural complexity classes inside P: If the characteristic
function of a set A is a logspace reduction as defined in the
preceding paragraph, then A lies in the complexity class L.
The analogous class, defined in terms of nondeterministic
machines, is known as NL. The class #P also has a logspace
analog, known as #L. These classes are of interest primarily
because of their complete sets. Some important complete
problems for L are the problem of determining whether two
trees are isomorphic, testing whether a graph can be
embedded in the plane, and the problem of determining
whether an undirected graph is connected (10). Determin-
ing whether a directed graph is connected is a standard
complete problem for NL, as is the problem of computing
the length of the shortest path between two vertices in a
graph. The complexity class #L characterizes the complex-
ity of computing the determinant of an integer matrix as
well as several other problems in linear algebra.

There are also many important complete problems for P
under logspace reducibility, such as the problem of evalu-
ating a Boolean circuit, linear programming, and certain
network flow computations. In fact, there is a catalog of P-
complete problems (11) that is nearly as impressive as the
list of NP-complete problems (4). Although many P-com-
plete problems have very efficient algorithms in terms of
time complexity, there is a sense in which they seem to be
resistent to extremely fast parallel algorithms. This is
easiest to explain in terms of circuit complexity. The size
of a Boolean circuit can be measured in terms of either the
number of gates or the number of wires that connect the
gates. Another important measure is the depth of the
circuit: the length of the longest path from an input gate
to the output gate. The problems in L, NL, and #L all have
circuits of polynomial size and very small depth (O(log2n)).
In contrast, all polynomial-size circuits for P-complete
problems seem to require a depth of at least n1=k.

Even a very ‘‘small’’ complexity class such as L has an
interesting structure inside it that can be investigated
using a more restricted notion of reducibility than �log

m

that is defined in terms of very restricted circuits. Further
information about these small complexity classes can be
found in the textbook by Vollmer (12).

We have the inclusions L�NL� P�NP� PP� PSPACE.
Diagonalization shows that NL 6¼ PSPACE, but no other

separations are known. In particular, it remains unknown
whether the ‘‘large’’ complexity class PP actually coincides
with the ‘‘small’’ class L.

TIME-SPACE TRADEOFFS

Logspace reducibility (and in general the notion of Turing
machines that have very limited memory resources) allows
the investigation of another aspect of complexity: the
tradeoff between time and space. Take, for example, the
problem of determining whether an undirected graph is
connected. This problem can be solved using logarithmic
space (10), but currently all ‘‘space-efficient’’ algorithms
that are known for this problem are so slow that they will
never be used in practice, particularly because this problem
can be solved in linear time (using linear space) using a
standard depth-first-search algorithm. However, there is
no strong reason to believe that no fast small-space algo-
rithm for graph connectivity exists (although there have
been some investigations of this problem, using ‘‘restricted’’
models of computation, of the type that were discussed at
the start of this article).

Some interesting time-space tradeoffs have been proved
for the NP-complete problem SAT. Recall that it is still
unknown whether SAT lies in the complexity class L. Also,
although it is conjectured that SAT is not solvable in time nk

for any k, it remains unknown whether SAT is solvable in
time O(n). However, it is known that if SAT is solvable in
linear time, then any such algorithm must use much more
than logarithmic space. In fact, any algorithm that solves
SAT in time n1.7 must use memory n1/k for some k(13,14).

CONCLUSION

Computational complexity theory has been very successful
in providing a framework that allows us to understand why
several computational problems have resisted all efforts to
find efficient algorithms. In some instances, it has been
possible to prove very strong intractibility theorems, and in
many other cases, a widely believed set of conjectures
explains why certain problems appear to be hard to com-
pute. The field is evolving rapidly; several developments
discussed here are only a few years old. Yet the central
questions (such as the infamous P vs. NP question) remain
out of reach today.

By necessity, a brief article such as this can touch on
only a small segment of a large field such as computational
complexity theory. The reader is urged to consult the texts
listed below, for a more comprehensive treatment of the
area.

FURTHER READING

D.-Z. Du and K.-I. Ko, Theory of Computational Complexity. New
York: Wiley, 2000.

L. A. Hemaspaandra and M. Ogihara, The Complexity Theory
Companion. London: Springer-Verlag, 2002.

D. S. Johnson, A catalog of complexity classes, in J. van Leeuwen,
(ed.), Handbook of Theoretical Computer Science, Vol. A:

6 COMPUTATIONAL COMPLEXITY THEORY



Algorithms and Complexity. Cambridge, MA: MIT Press, 1990, pp.
69–161.

D. Kozen, Theory of Computation. London: Springer-Verlag, 2006.

C. Papadimitriou, Computational Complexity. Reading, MA:
Addison-Wesley, 1994.

I. Wegener, Complexity Theory: Exploring the Limits of Efficient
Algorithms. Berlin: Springer-Verlag, 2005.

BIBLIOGRAPHY

1. L. Stockmeyer and A. R. Meyer, Cosmological lower bound
on the circuit complexity of a small problem in logic, J. ACM,
49: 753–784, 2002.

2. P. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM J.
Comput. 26: 1484–1509, 1997.

3. J. M. Robson, N by N Checkers is EXPTIME complete, SIAM J.
Comput.13: 252–267, 1984.

4. M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. San Francisco, CA:
Freeman, 1979.

5. S. Cook, The complexity of theorem proving procedures, Proc.
3rd Annual ACM Symposium on Theory of Computing (STOC),
1971, pp. 151–158.

6. L. Levin, Universal search problems, Problemy Peredachi Infor-
matsii, 9: 265–266, 1973 (in Russian). English translation: B. A.
Trakhtenbrot, A survey of Russian approaches to perebor
(brute-force search) algorithms, Ann. History Comput., 6:
384–400, 1984.

7. A. Haken, The intractability of resolution, Theor. Comput. Sci.,
39: 297–308, 1985.

8. M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann.
Math., 160: 781–793, 2004.

9. R. Impagliazzo and A. Wigderson, P¼BPP unless E has sub-
exponential circuits, Proc. 29th ACM Symposium on Theory of
Computing (STOC), 1997, pp. 220–229.

10. O. Reingold, Undirected ST-connectivity in log-space, Proc.
37th Annual ACM Symposium on Theory of Computing
(STOC), 2005, pp. 376–385.

11. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to Parallel
Computation: P-Completeness Theory. New York: Oxford Uni-
versity Press, 1995.

12. H. Vollmer, Introduction to Circuit Complexity. Berlin:
Springer-Verlag, 1999.

13. L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas, Time-
space lower bounds for satisfiability, J. ACM, 52: 835–865,
2005.

14. R. Williams, Better time-space lower bounds for SAT and
related problems, Proc. 20th Annual IEEE Conference on
Computational Complexity (CCC), 2005, pp. 40–49.

ERIC ALLENDER

Rutgers University
Piscataway, New Jersey

COMPUTATIONAL COMPLEXITY THEORY 7



C

COMPUTATIONAL NUMBER THEORY

In the contemporary study of mathematics, number theory
stands out as a peculiar branch, for many reasons. Most
development of mathematical thought is concerned with
the identification of certain structures and relations in
these structures. For example, the study of algebra is
concerned with different types of operators on objects,
such as the addition and multiplication of numbers, the
permutation of objects, or the transformation of geometric
objects—and the study of algebra is concerned with the
classification of the many such types of operators.

Similarly, the study of analysis is concerned with the
properties of operators that satisfy conditions of continuity.

Number theory, however, is the study of the properties of
those few systems that arise naturally, beginning with the
natural numbers (which we shall usually denote N), pro-
gressing to the integers (Z), the rationals (Q), the reals (R),
and the complex numbers (C). Rather than identifying very
general principles, number theory is concerned with very
specific questions about these few systems.

For that reason, for many centuries, mathematicians
thought of number theory as the purest form of inquiry.
After all, it was not inspired by physics or astronomy or
chemistry or other ‘‘applied’’ aspects of the physical uni-
verse. Consequently, mathematicians could indulge in
number theoretic pursuits while being concerned only
with the mathematics itself.

But number theory is a field with great paradoxes. This
purest of mathematical disciplines, as we will see below,
has served as the source for arguably the most important
set of applications of mathematics in many years!

Another curious aspect of number theory is that it is
possible for a very beginning student of the subject to pose
questions that can baffle the greatest minds. One example is
the following: It is an interesting observation that there are
many triples of natural numbers (in fact, an infinite num-
ber) that satisfy the equation x2 þ y2 ¼ z2. For example,
32 þ 42 ¼ 52, 52 þ 122 ¼ 132, 72 þ 242 ¼ 252, and so on.

However, one might easily be led to the question, can we
find (nonzero) natural numbers x, y, and z such that
x3 þ y3 ¼ z3? Or, indeed, such that xn+ yn ¼ zn, for any
natural number n > 2 and nonzero integers x, y and z?

The answer to this simple question was announced by
the famous mathematician, Pierre Auguste de Fermat, in
his last written work in 1637. Unfortunately, Fermat did
not provide a proof but only wrote the announcement in the
margins of his writing. Subsequently, this simply stated
problem became known as ‘‘Fermat’s Last Theorem,’’ and
the answer eluded the mathematics community for 356
years, until 1993, when it was finally solved by Andrew
Wiles (1).

The full proof runs to over 1000 pages of text (no, it will
not be reproduced here) and involves mathematical techni-
ques drawn from a wide variety of disciplines within mathe-
matics. It is thought to be highly unlikely that Fermat,

despite his brilliance, could have understood the true com-
plexity of his ‘‘Last Theorem.’’ (Lest the reader leave for
want of the answer, what Wiles proved is that there are no
possible nonzero x, y, z, and n> 2 that satisfy the equation.)

Other questions that arise immediately in number the-
ory are even more problematic than Fermat’s Last Theo-
rem. For example, a major concern in number theory is the
study of prime numbers—those natural numbers that are
evenly divisible only by themselves and 1. For example, 2, 3,
5, 7, 11, and 13 are prime numbers, whereas 9, 15, and any
even number except 2 are not (1, by convention, is not
considered a prime).

One can easily observe that small even numbers can be
described as the sum of two primes: 2 þ 2 ¼ 4, 3 þ 3 ¼ 6,
3 þ 5 ¼ 8, 3 þ 7 ¼ 5 þ 5 ¼ 10, 5 þ 7 ¼ 12; 7 þ 7 ¼ 14,
and so on. One could ask, can all even numbers be expressed
as the sum of two primes? Unfortunately, no one knows the
answer to this question. It is known as the Goldbach
Conjecture, and fame and fortune (well, fame, anyway)
await the person who successfully answers the question (2).

In this article, we will attempt to describe some principal
areas of interest in number theory and then to indicate
what current research has shown to be an extraordinary
application of this purest form of mathematics to several
very current and very important applications.

Although this will in no way encompass all of the areas of
development in number theory, we will introduce:

Divisibility: At the heart of number theory is the study of
the multiplicative structure of the integers under multi-
plication. What numbers divide (i.e., are factors of ) other
numbers? What are all the factors of a given number?
Which numbers are prime?

Multiplicative functions: In analyzing the structure of
numbers and their factors, one is led to the consideration of
functions that are multiplicative: In other words, a function
is multiplicative if f ða� bÞ ¼ f ðaÞ � f ðbÞ for all a and b.

Congruence: Two integers a and b are said to be con-
gruent modulo n (where n is also an integer), and written
a� b ðmod nÞ, if their difference is a multiple of n; alterna-
tively, that a and b yield the same remainder when divided
(integer division) by n. The study of the integers under
congruence yields many interesting properties and is fun-
damental to number theory. The modular systems so devel-
oped are called modulo n arithmetic and are denoted either
Z=nZorZn.

Residues: In Zn systems, solutions of equations (techni-
cally, congruences) of the form x2�aðmod nÞ are often stu-
died. In this instance, if there is a solution for x, a is called a
quadratic residue of n. Otherwise, it is called a quadratic
nonresidue of n.

Prime numbers: The prime numbers, with their special
property that they have no positive divisors other than
themselves and 1, have been of continuing interest to
number theorists. In this section, we will see, among other
things, an estimate of how many prime numbers there are
less than some fixed number n.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Diophantine equations: The term Diophantine equation
is used to apply to a family of algebraic equations in a
number system such as Z or Q. A good deal of research in
this subject has been directed at polynomial equations with
integer or rational coefficients, the most famous of which
being the class of equations xn þ yn ¼ zn, the subject of
Fermat’s Last Theorem.

Elliptic curves: A final area of discussion in number
theory will be the theory of elliptic curves. Although gen-
erally beyond the scope of this article, this theory has been
so important in contemporary number theory that some
discussion of the topic is in order. An elliptic curve repre-
sents the set of points in some appropriate number system
that are the solutions to an equation of the form
y2 ¼ Ax3 þ Bx2 þ Cx þ D when A, B, C, D 2 Z.

Applications: The final section of this article will address
several important applications in business, economics,
engineering, and computing of number theory. It is remark-
able that this, the purest form of mathematics, has found
such important applications, often of theory that is hun-
dreds of years old, to very current problems in the afore-
mentioned fields!

It should perhaps be noted here that many of the results
indicated below are given without proof. Indeed, because
of space limitations, proofs will only be given when
they are especially instructive. Several references will
be given later in which proofs of all of the results cited
can be found.

DIVISIBILITY

Many questions arising in number theory have as
their basis the study of the divisibility of the integers.
An integer n is divisible by k if another integer m exists
such that k � m ¼ n. We sometimes indicate divisibility
of n by k by writing kjn or kjn if n is not divisible by k.

A fundamental result is the division algorithm. Given m,
n2Z, with n > 0, unique integers c and d exist such that
m ¼ c � n þ d and 0 � d < n.

Equally as fundamental is the Euclidean algorithm.

Theorem 1. Let m, n2Z, both m, n 6¼ 0. A unique integer
c exists satisfying c> 0; cjm; cjn; and if djm and djn;
then djc.

Proof. Consider fdjd ¼ amþ bn; 8 a; b2Zg. Let c� be
the smallest natural number in this set. Then c� satisfies
the given conditions.

Clearly c�> 0: c�ja, because by the division algorithm,
s and t there exist such that a ¼ cs þ t with 0 � t < u.
Thus, a ¼ c�s þ t ¼ ams þ bns þ t; thus, a(1�ms) þ
b(�ns) ¼ t. As t < c�, this implies that t ¼ 0, and thus
a ¼ c�s or c� | a. Similarly c� | b. c� is unique because, if
c’ also meets the conditions, then c� | c’ and c’ | c�, so c’ ¼ c�.

The greatest common divisor of two integers m and n is
the largest positive integer [denoted GCD(m,n)] such that
GCD(m,n) | m and GCD (m,n) | n.

Theorem 2 (Greatest Common Divisor). The equation
am þ bn ¼ r has integer solutions a; b,GCDðm;nÞjr.

Proof. Let r 6¼ 0. It is not possible that GCD(m,n) | r
because GCD(m,n) | m and GCD(m,n) | n; thus, GCD(m,n)
| (am þ bn) ¼ r. By Theorem 1, this means that there exist
a0, b0 such that a0m þ b0n ¼ GCD(m,n).

Thus, a00 ¼ ra0/GCD(m,n), b0 0 ¼ rb0/GCD(m,n) represent
an integer solution to a00m þ b0 0n ¼ r.

A related concept to the GCD is the least common multi-
ple (LCM). It can be defined as the smallest positive integer
that a and b both divide. It is also worth noting that
GCD(m,n) � LCM(m,n) ¼ m � n.

Primes

A positive integer p> 1 is called prime if it is divisible only
by itself and 1. An integer greater than 1 and not prime is
called composite. Two numbers m and n with the property
that GCD(m,n) ¼ 1 are said to be relatively prime (or
sometimes coprime).

Here are two subtle results.

Theorem 3. Every integer greater than 1 is a prime or a
product of primes.

Proof. Suppose otherwise. Let n be the least integer that
is neither; thus, n is composite. Thus n ¼ ab and a,b < n.
Thus, a and b are either primes or products of primes, and
thus so is their product, n.

Theorem 4. There are infinitely many primes.

Proof (Euclid). If not, let p1, . . ., pn be a list of all the
primes, ordered from smallest to largest. Then consider
q ¼ (p1p2. . . pn) þ 1. By the previous statement,

q ¼ p01 p02 . . . p0k (1)

p01 must be one of the p1, . . ., pn, say pj (as these were all
the primes), but pj|q, because it has a remainder of 1. This
contradiction proves the theorem.

Theorem 5 (Unique Factorization). Every positive integer
has a unique factorization into a product of primes.

Proof. Let

a ¼ pa1

1 . . . pak

k ¼ P

¼ q
b1

1 . . . q
bm
m ¼ Q ð2Þ

For each pi, pi | Q ) pi | q
bs
s for some s, 1 � s � m.

Since pi and qs are both primes, pi ¼ qs. Thus, k ¼ m and
Q ¼ p

b1

1 . . . p
bk

k . We only need to show that the ai and bi are
equal. Divide both decompositions P and Q by pai

i . If ai 6¼ bi,
on the one hand, one decomposition a=pai

i will contain pi,
and the other will not. This contradiction proves the
theorem.

What has occupied many number theorists was a quest
for a formula that would generate all of the infinitely many
prime numbers.

For example, Marin Mersenne (1644) examined num-
bers of the form Mp ¼ 2p � 1, where p is a prime (3). He

2 COMPUTATIONAL NUMBER THEORY



discovered that some of these numbers were, in fact,
primes. Generally, the numbes he studied are known as
Mersenne numbers, and those that are prime are called
Mersenne primes. For example, M2 ¼ 22 � 1 ¼ 3 is prime;
as are M3 ¼ 23 � 1 ¼ 7; M5 ¼ 25 � 1 ¼ 31; M7 ¼ 27�
1 ¼ 127. Alas, M11 ¼ 211 � 1 ¼ 2047 ¼ 23 � 89 is not.
Any natural number �2 ending in an even digit 0, 2, 4,
6, 8 is divisible by 2. Any number�5 ending in 5 is divisible
by 5. There are also convenient tests for divisibility by 3 and
9—if the sum of the digits of a number is divisible by 3 or 9,
then so is the number; and by 11—if the sum of the digits in
the even decimal places of a number, minus the sum of the
digits in the odd decimal places, is divisible by 11, then so is
the number.

Several other Mersenne numbers have also been deter-
mined to be prime. At the current writing, the list includes
42 numbers:

Mn, where n ¼ 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127,
521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941,
11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
216091, 756839, 859433, 1257787, 1398269, 2976221,
3021377, 6972593, 13466917, 20996011, 24036583,
25964951.

With current technology, particularly mathematical
software packages such as Mathematica or Maple, many
of these computations can be done rather easily. For exam-
ple, a one-line program in Mathematica, executing for 6.27
hours on a Pentium PC, was capable of verifying the
primality of all Mn up to M1000, and thus determining
the first 14 Mersenne primes (up to M607). It is not known
whether an infinite number of the Mersenne numbers are
prime.

It is known that mc � 1 is composite if m > 2 or if c is
composite; for if c ¼ de, we have:

ðmc � 1Þ ¼ ðme � 1Þðmeðd�1Þ þmeðd�1Þ þ . . .þmeðd�1Þ þ 1Þ
(3)

We can also show that mc þ 1 is composite if m is odd or if c
has an odd factor. Certainly if m is odd, mc is odd, and
mc þ 1 is even and thus composite. If c ¼ d(2k þ 1), then

mc þ 1 ¼ ðmd þ 1Þðm2de �mdð2e�1Þ þmdð2e�2Þ � . . .þ 1Þ
(4)

and md þ 1 > 1.
Another set of numbers with interesting primality prop-

erties are the Fermat numbers, Fn ¼ 22n þ 1. Fermat’s
conjecture was that they were primes. He was able
to verify this for F1 ¼ 5, F2 ¼ 17, F3 ¼ 257, and
F4 ¼ 216 þ 1 ¼ 65537. But then, Euler showed that

Theorem 6. 641|F5.

Proof. 641 ¼ 24 þ 54 ¼ 5 � 27 þ 1; thus 24 ¼ 641 � 54.
Since 232 ¼ 24 � 228 ¼ 641 � 228 � (5 � 27)4 ¼ 641 � 228 �
(641 � 1)4 ¼ 641k � 1.

To this date, no other Fermat numbers Fn with n > 4
have been shown to be prime. It has been determined that
the other Fermat numbers through F20 are composite.

MULTIPLICATIVE FUNCTIONS

Functions that preserve the multiplicative structure of the
number systems studied in number theory are of particular
interest, not only intrinsically, but also for their use in
determining other relationships among numbers.

A function f defined on the integers that takes values in a
set closed under multiplication is called a number theoretic
function. If the function preserves multiplication for num-
bers that are relatively prime (f(m) � f(n) ¼ f(m � n)), it is
called a multiplicative function; it is called completely multi-
plicative if the restriction GCD(m, n) ¼ 1 can be lifted.

Consider any number theoretic function f, and define a
new function F by the sum of the values of f taken over the
divisors of n

FðnÞ ¼
X
djn

f ðdÞ ¼
X
djn

f ðn=dÞ; the latter being

the former sum in reverse order

(5)

Theorem 7. If f is a multiplicative function, then so is F.

Proof. Let GCD(m, n) ¼ 1; then d | mn can be uniquely
expressed as gh, where g|m,h|n, with GCD(g,h) ¼ 1.

FðmnÞ ¼
X
djmn

f ðdÞ ¼
XX
gjm hjn

f ðghÞ ¼
XX
gjm hjn

f ðgÞ f ðhÞ

¼
X
gjm

f ðgÞ f ðh1Þ þ . . .þ
X
gjm

f ðgÞ f ðhkÞ

¼ FðmÞ
�X

hjn
f ðhÞ

�
¼ FðmÞFðnÞ

(6)

Two multiplicative functions of note are the divisor function
t(n) defined as the number of positive divisors of n and the
function s(n), defined as the sum of the positive divisors
of n.

Theorem 8. t and s are multiplicative.

Proof. Both t and s are the ‘‘uppercase’’ functions for the
obviously multiplicative functions 1(n) ¼ 1 for all n, and
i(n) ¼ n for all n. In other words,

tðnÞ ¼
X
djn

1ðdÞ and sðnÞ ¼
X
djn

iðdÞ (7)

In order to compute t and s for a prime p, note that

tðpnÞ ¼ 1þ nðbecause the

divisors of pn are 1; p; p2; . . . ; pnÞ ð8Þ

sðpnÞ ¼ 1þ pþ p2 þ . . .þ pn ¼ ðpnþ1 � 1Þ=ðp� 1Þ (9)

Thus, for any n ¼ p1an1 p2an2 . . . pkank ,

tðnÞ ¼
Yk
i¼1

ð1þ niÞ and sðnÞ ¼
Yk
i¼1

ðpniþ1
i � 1Þ=ðpi � 1Þ

(10)

COMPUTATIONAL NUMBER THEORY 3



In very ancient times, numbers were sometimes considered
to have mystical properties. Indeed, the Greeks identified
numbers that they called perfect: numbers that were
exactly the sums of all their proper divisors, in other words,
that s(n) ¼ n. A few examples are 6 ¼ 1 þ 2 þ 3,
28 ¼ 1 þ 2 þ 4 þ 7 þ 14, and 496 ¼ 1 þ 2 þ 4 þ 8 þ
16 þ 31 þ 62 þ 124 þ 248. It is not known whether there
are any odd perfect numbers, or if an infinite number of
perfect numbers exists.

Theorem 9. n is even and perfect ,n ¼ 2p�1ð2p � 1Þ
where both p and 2p � 1 are primes.

In other words, there is one perfect number for each
Mersenne prime.

Another multiplicative function of considerable impor-
tance is the Möbius function m.

mð1Þ ¼ 1; mðnÞ ¼ 0 if n has a square factor; m(p1, p2 . . .
pk) ¼ (�1)k if p1, . . ., pk are distinct primes.

Theorem 10. m is multiplicative, and the ‘‘uppercase’’
function is 0 unless n ¼ 1, when it takes the value 1.

Theorem 11. (Möbius Inversion Formula). If f is a number
theoretic function and FðnÞ ¼

P
djn f ðdÞ, then

f ðnÞ ¼
X
d=n

FðdÞmðn=dÞ ¼
X
d=n

Fðn=dÞmðnÞ (11)

Proof.

X
d=n

mðdÞFðn=dÞ

¼
X

d1d2¼n

mðd1ÞFðn=d2Þ ðtaking pairs d1d2 ¼ nÞ ð12Þ

¼
X

d1d2¼n

½mðd1Þ
X
djd2

f ðdÞ� ðdefinition of FÞ ð13Þ

¼
X

drdjn
mðd1Þ f ðdÞ ðmultiplying the terms in bracketsÞ ð14Þ

¼
X
djn

f ðdÞ
X

d1jðn=dÞ
mðd1Þ ðcollecting multiples of f ðdÞÞ ð15Þ

¼ f ðnÞ

Theorem 12. If F is a multiplicative function, then so is f.
A final multiplicative function of note is the Euler func-

tion f(n). It is defined for n to be the number of numbers less
than n and relatively prime to n. For primes p, f(p) ¼ p�1.

Theorem 13. f is multiplicative.

CONGRUENCE

The study of congruence leads to the definition of new
algebraic systems derived from the integers. These
systems, called residue systems, are interesting in and of
themselves, but they also have properties that allow for
important applications.

Consider integers a, b, n with n > 0. Note that a and b
could be positive or negative. We will say that a is congruent
to b, modulo n [written a � b (mod n)] , njða� bÞ. Alter-
natively, a and b yield the same remainder when divided by
n. In such a congruence, n is called the modulus and b is
called a residue of a.

An algebraic system can be defined by considering
classes of all numbers satisfying a congruence with fixed
modulus. It is observed that congruence is an equivalence
relation and that the definition of addition and multiplica-
tion of integers can be extended to the equivalence classes.
Thus, for example, in the system with modulus 5 (also
called mod 5 arithmetic), the equivalence classes are {. . .,
�5,0,5,. . .}, {. . .,�4,1,6,. . .}, {. . .,�3,2,7,. . .}, {. . .,�2,3,8,. . .},
and {. . .,�1,4,9,. . .}. It is customary to denote the class by
the (unique) representative of the class between 0 and n�1.
Thus the five classes in mod 5 arithmetic are denoted 0, 1, 2,
3, 4. Formally, the mod n system can be defined as the
algebraic quotient of the integers Z and the subring defined
by the multiples of n (nZ). Thus, the mod n system is
often written Z/nZ. An alternative, and more compact
notation, is Zn.

Addition and multiplication are defined naturally in
Zn. Under addition, every Zn forms an Abelian group [that
is, the addition operation is closed, associative, and com-
mutative; 0 is an identity; and each element has an
additive inverse—for any a, b ¼ n�a always yields
a þ b � 0 (mod n)].

In the multiplicative structure, however, only the clo-
sure, associativity, commutativity, and identity (1) are
assured. It is not necessarily the case that each element
will have an inverse. In other words, the congruence ax� 1
(mod n) will not always have a solution.

Technically, an algebraic system with the properties
described above is called a commutative ring with
identity. If it is also known that, if each (nonzero) ele-
ment of Zn has an inverse, the system would be called a
field.

Theorem 14. Let a, b, n be integers with n> 0. Then ax�
1 (mod n) has a solution , GCDða;nÞ ¼ 1. If x0 is a solution,
then there are exactly GCD(a,n) solutions given by {x0,
x0 þ n/GCD(a,n), x0 þ 2n/GCD(a,n), . . ., x0 þ (GCD(a,n)
�1)n/GCD(a,n)}.

Proof. This theorem is a restatement of Theorem 2.
For an element a in Zn to have an inverse, alternatively

to be a unit, by the above theorem, it is necessary and
sufficient for a and n to be relatively prime; i.e.,
GCD(a,n) ¼ 1. Thus, by the earlier definition of the Euler
function, the number of units in Zn is f(n).

The set of units in Zn is denoted (Zn)�, and it is easily
verified that this set forms an Abelian group under multi-
plication. As an example, consider Z12 or Z/12Z. Note that
(Z12)� ¼ {1,5,7,11}, and that each element is its own
inverse: 1 � 1 � 5 � 5 � 7 � 7 � 11 � 11 � 1 (mod 12).
Further more, closure is observed because 5�7� 11, 5� 11
� 7, and 7 � 11 � 5 (mod 12).

Theorem 15. If p is a prime number, then Zp is a field
with p elements. If n is composite, Zn is not a field.

4 COMPUTATIONAL NUMBER THEORY



Proof. If p is a prime number, every element a 2 (Zp)� is
relatively prime to p; that is, GCD(a,p) ¼ 1. Thus ax � 1
(mod p) always has a solution. As every element in (Zp)�has
an inverse, (Zp)� is a field. If n is composite, there are
integers 1 < k, l < n such that kl ¼ n. Thus, kl � 0 (mod
n), and so it is impossible that k could have an inverse.
Otherwise, l� (k�1k)� l� k�1 (k� l)� k�1� 0� 0 (mod n),
which contradicts the assumption that l < n.

One of the most important results of elementary number
theory is the so-called Chinese Remainder Theorem(4). It is
given this name because a version was originally derived by
the Chinese mathematician Sun Tse almost 2000 years ago.
The Chinese Remainder Theorem establishes a method of
solving simultaneously a system of linear congruences in
several modular systems.

Theorem 16 (Chinese Remainder). Given a system x � ai

(mod ni), i ¼ 1,2,. . .m. Suppose that, for all i ¼ j,
GCD(ni,nj) ¼ 1. Then there is a unique common solution
modulo n ¼ n1n2. . .nm.

Proof (By construction). Let ni
0 ¼ n/ni, i ¼ 1,. . .,m. Note

that GCD(ni,ni
0) ¼ 1. Thus, an integer exists ni

00 such that
ni
0ni
0 0 � 1(mod ni). Then

x�a1n1
0n1
00 þ a2n2

0n2
00 þ � � � þ amnm

0nm
00ðmod nÞ (16)

is the solution. As ni|nj’ if i 6¼ j, x� aini’ni’’� ai (mod ni). The
solution is also unique. If both x and y are common
solutions, then x�y � 0 (mod n).

An interesting consequence of this theorem is that there
is a 1� 1 correspondence, preserved by addition and multi-
plication, of integers modulo n, and m-tuples of integers
modulo ni(5). Consider {n1,n2,n3,n4} ¼ {7,11,13,17}, and
n ¼ 17017. Then

95!ða1; a2; a3; a4Þ ¼ ð95 mod 7; 95 mod 11; 95 mod 13; 95
mod 17Þ ¼ ð4; 7; 4; 10Þ also 162!ð1; 8; 6; 9Þ

Performing addition and multiplication tuple-wise:

ð4; 7; 4; 10Þ þ ð1; 8; 6; 9Þ ¼ ð5 mod 7; 15 mod 11; 10 mod 13;
19 mod 17Þ ¼ ð5; 4; 10; 2Þ; ð4; 7; 4; 10Þ � ð1; 8; 6; 9Þ ¼ ð4 mod

7; 56 mod 11; 24 mod 13; 90 mod 17Þ ¼ ð4; 1; 11; 5Þ

Now verify that 95 þ 162 ¼ 257 and 95�162 ¼ 15,390 are
represented by (5,4,10,2) and (4,1,11,5) by reducing each
number mod n1, . . ., n4.

Another series of important results involving the pro-
ducts of elements in modular systems are the theorems of
Euler, Fermat, and Wilson. Fermat’s Theorem, although
extremely important, is very easily proved; thus, it is some-
times called the ‘‘Little Fermat Theorem’’ in contrast to the
famous Fermat’s Last Theorem described earlier.

Theorem 17 (Euler). GCD If(a,n) ¼ 1, then afðnÞ �
1 ðmod nÞ.

Theorem 18 (Fermat). If p is prime, then ap�a ðmod pÞ.

Proof (of Euler’s Theorem). Suppose A ¼ {a1, . . .,af(n)} is a
list of the set of units in Zn. By definition, each of the ai has

an inverse ai
�1. Now consider the product b ¼ a1a2. . .af(n).

It also has an inverse, in particular b�1 ¼ a�1
1 a�1

2 � � �a�1
fðnÞ

.
Choose any of the units; suppose it is a. Now consider the set
A0¼ faa1; aa2;aafðnÞ g. We need to show that as a set, A0 ¼ A.
It is sufficient to show that the aai are all distinct. As there
are f(n) of them, and they are all units, they represent all of
the elements of A.

Suppose that aai� aaj for some i 6¼ j. Then, as a is a unit,
we can multiply by a�1, yielding (a�1a)ai� (a�1a)aj or ai�aj

(mod n), which is a contradiction. Thus, the aai are all
distinct and A ¼ A’.

Now compute

YfðnÞ
i¼1

ðaaiÞ� bðmod nÞ because A ¼ A0

afðnÞb� bðmod nÞ

afðnÞbb�1� bb�1ðmod nÞ multiplying by b�1

afðnÞ � 1ðmod nÞ
(18)

Although the Chinese Remainder Theorem gives a solution
for linear congruences, one would also like to consider non-
linear or higher degree polynomial congruences. In the case
of polynomials in one variable, in the most general case,

f ðxÞ� 0ðmod nÞ (19)

If n ¼ p a1
1 � � �p ak

k is the factorization of n, then the Chinese
Remainder Theorem assures solutions of (19), each of

f ðxÞ� 0ðmod pai

i Þ i ¼ 1; 2; . . . ; k (20)

has a solution.
As fðpÞ ¼ p� 1 for p a prime, Fermat’s Theorem is a

direct consequence of Euler’s Theorem.
Other important results in the theory of polynomial

congruences are as follows:

Theorem 19 (Lagrange). If f(x) is a nonzero polynomial of
degree n, whose coefficients are elements of Zp for a prime p,
then f(x) cannot have more than n roots.

Theorem 20 (Chevalley). If f(x1,. . .,xn) is a polynomial
with degree less than n, and if the congruence

f ðx1; x2; . . . ; xnÞ� 0ðmod pÞ

has either zero or at least two solutions.
The Lagrange Theorem can be used to demonstrate the

result of Wilson noted above.

Theorem 21 (Wilson). If p is a prime, then (p �1)! � �1
(mod p).

Proof. If p ¼ 2, the result is obvious. For p an odd prime,
let

f ðxÞ ¼ xb�1 � ðx� 1Þðx� 2Þ . . . ðx� pþ 1Þ � 1:

(17)

COMPUTATIONAL NUMBER THEORY 5



Consider any number 1 � k � p �1. Substituting k for x
causes the term (x�1)(x�2). . .(x�p þ 1) to vanish; also, by
Fermat’s theorem, k p�1� 1ðmod pÞ. Thus, f ðkÞ� 0ðmod pÞ.
But k has degree less than p � 1; and so by Lagrange’s
theorem, f(x) must be identically zero, which means all
of the coefficients must be divisible by p. The constant
coefficient is

�1� ðp� 1Þ!ðmod pÞ

and thus

ðp� 1Þ!� � 1ðmod pÞ

QUADRATIC RESIDUES

Having considered general polynomial congruences,
now we restrict consideration to quadratics. The study
of quadratic residues leads to some useful techniques
as well as having important and perhaps surprising
results.

The most general quadratic congruence (in one vari-
able) is of the form ax2 þ bx þ c � 0 (mod m). Such a
congruence can always be reduced to a simpler form. For
example, as indicated in the previous section, by the
Chinese remainder theorem, we can assume the modulus
is a prime power. As in the case p ¼ 2 we can easily
enumerate the solutions, we will henceforth consider
only odd primes. Finally, we can use the technique of
‘‘completing the square’’ from elementary algebra to
transform the general quadratic into one of the form x2

� a (mod p).
If p þ a, then if x2 � a (mod p) is soluble, a is called a

quadratic residue mod p; if not, a is called a quadratic
nonresidue mod p.

Theorem 22. Exactly one half of the integers a, 1� a� p
�1, are quadratic residues mod p.

Proof. Consider the set of mod p values QR ¼ {12,
22,. . ., ((p �1)/2)2}. Each of these values is a quadratic
residue. If the values in QR are all distinct, there are at
least (p �1)/2 quadratic residues. Suppose two of these
values, say t and u, were to have t2 � u2 (mod p). Then
since t2 – u2 � 0 (mod p)) t þ u � 0 (mod p) or t – u � 0
(mod p). Since t and u are distinct, the second case is not
possible; and since t and u must be both< (p�1)/2, so t þ u
< p and neither is the first case. Thus there are at least
(p � 1)/2 quadratic residues.

If x0 solves x2 � a (mod p), then so does p – x0, since
p2 � 2 px0 þ x2

0� x2
0�aðmod pÞ, and p � x0Tx0 (mod p).

Thus we have found (p� 1)/2 additional elements of Zp,
which square to elements of QR and therefore p � 1
elements overall. Thus there can be no more quadratic
residues outside of QR, so the result is proved.

An important number theoretic function to evaluate
quadratic residues is the Legendre symbol. For p an
odd prime, the Legendre symbol for a (written alternatively

(a / p) or ða
p
Þ) is

a
p

� �
¼ þ1 if a is a quadratic residue mod p

¼ 0 if pja
�1 if a is a quadratic nonresidue mod p

One method of evaluating the Legendre symbol uses
Euler’s criterion. If p is an odd prime and GCD(a,p) ¼ 1,
then

a
p

� �
¼ 1,aðp�1Þ=2� 1ðmod pÞ

Equivalently, ða
p
Þ� að p�1Þ=2ðmod pÞ.

Here are some other characteristics of the Legendre

symbol:

Theorem 23. (i) ða b
p
Þ ¼ ða

p
Þð b

p
Þ; (ii) if a � b (mod p),

then ða
p
Þ ¼ ð b

p
Þ; (iii) ða

2

p
Þ ¼ 1; ð1

p
Þ ¼ 1; (iv) ð1

p
Þð�1=pÞ

¼ ð�1Þðp�1Þ=2.

Suppose we want to solve x2 � 518 (mod 17). Then,

compute ð518
17
Þ ¼ ð 8

17
Þ ¼ ð 2

17
Þ. But ð 2

17
Þ ¼ 1 since 62 ¼

36� 2ðmod 17Þ. Thus, x2 � 518 (mod 17) is soluble.
Computation of the Legendre symbol is aided by the

following results. First, define an absolute least residue
modulo p as the representation of the equivalence class of a
mod p, which has the smallest absolute value.

Theorem 24 (Gauss’ Lemma). Let GCD(a,p) ¼ 1. If d is
the number of elements of {a,2a,. . .,(p�1)a} whose absolute
least residues modulo p are negative, then

a
p

� �
¼ ð�1Þd

Theorem 25. 2 is a quadratic residue (respectively, quad-
ratic nonresidue) of primes of the form 8k	 1 (respectively,
8k 	 3). That is,

2
p

� �
¼ ð�1Þð p

2�1Þ=8

Theorem 26. (i) If k> 1, p ¼ 4k þ 3, and p is prime, then
2p þ 1 is also prime , 2p � 1 (mod 2p þ 1).

(ii) If 2p þ 1 is prime, then 2p þ 1 | Mp, the pth Mers-
enne number, and Mp is composite.

A concluding result for the computation of the Legendre
symbol is one that, by itself, is one of the most famous—and
surprising—results in all of mathematics. It is called
Gauss’ Law of Quadratic Reciprocity. What makes it so
astounding is that it manages to relate prime numbers and
their residues that seemingly bear no relationship to one
another (6).

|fflfflfflffl{zfflfflfflffl}

6 COMPUTATIONAL NUMBER THEORY



Suppose that we have two odd primes, p and q. Then, the
Law of Quadratic Reciprocity relates the computation of
their Legendre symbols; that is, it determines the quadratic
residue status of each prime with respect to the other.

The proof, although derived from elementary principles,
is long and would not be possible to reproduce here. Several
sources for the proof are listed below.

Theorem 27 (Gauss’ Law of Quadratic Reciprocity).

ð p
q
Þð q

p
Þ ¼ ð�1Þð p�1Þðq�1Þ=4.

A consequence of the Law of Quadratic Reciprocity is as
follows.

Theorem 28. Let p and q be distinct odd primes, and a�

1. If p � 	 q (mod 4a), then ða
p
Þ ¼ ða

q
Þ.

An extension of the Legendre symbol is the Jacobi
symbol. The Legendre symbol is defined only for primes
p. By a natural extension, the Jacobi symbol, also denoted
(an), is defined for any n > 0, assuming that the prime
factorization of n is p1. . .pk, by

ða
n
Þ ½jacobi symbol� ¼ ða

p1
Þða

p2
Þ � � � ða

pk
Þ½Legendre symbols�

PRIME NUMBERS

The primes themselves have been a subject of much inquiry
in number theory. We have observed earlier that there are
an infinite number of primes, and that they are most useful
in finite fields and modular arithmetic systems.

One subject of interest has been the development of a
function to approximate the frequency of occurrence of
primes. This function is usually called p(n)—it denotes
the number of primes less than or equal to n.

In addition to establishing various estimates for p(n),
concluding with the so-called Prime Number Theorem, we
will also state a number of famous unproven conjectures
involving prime numbers.

An early estimate for p(n), by Chebyshev, follows:

Theorem 29 (Chebyshev). If n> 1, then n/(8 log n)< p(n)
< 6n/log n.

The Chebyshev result tells us that, up to a constant
factor, the number of primes is of the order of n/log n. In
addition to the frequency of occurrence of primes, the great-
est gap between successive primes is also of interest (7).

Theorem 30 (Bertrand’s Partition). If n � 2, there is a
prime p between n and 2n.

Two other estimates for series of primes are as follows.

Theorem 31.
X
p�n

ðlog pÞ=p ¼ log nþOð1Þ.

Theorem 32.
X
p�n

1=p ¼ log log xþ aþOð1=log xÞ

Another very remarkable result involving the genera-
tion of primes is from Dirichlet.

Theorem 33 (Dirichlet). Let a and b be fixed positive

integers such that GCD(a,b) ¼ 1. Then there are an infinite
number of primes in the sequence {a þ bn | n ¼ 1, 2,. . . }.

Finally, we have the best known approximation to the
number of primes (8).

Theorem 34 (Prime Number Theorem). p(n)
n/log n. The
conjectures involving prime numbers are legion, and even
some of the simplest ones have proven elusive for mathe-
maticians. A few examples are the Goldbach conjecture, the
twin primes conjecture, the interval problem, the Dirichlet
series problem, and the Riemann hypothesis.

Twin Primes. Two primes p and q are called twins if
q ¼ p þ 2. Examples are (p,q) ¼ (5,7); (11,13); (17,19);
(521,523). If p2(n) counts the number of twin primes less
than n, the twin prime conjecture is that p2ðnÞ!1 as
n!1. It is known, however, that there are infinitely many
pairs of numbers (p,q), where p is prime, q ¼ p þ 2, and q
has at most two factors.

Goldbach Conjecture. As stated, this conjecture is that
every even number >2, is the sum of two primes. What is
known is that every large even number can be expressed as
p þ q,wherepisprimeandqhasatmosttwofactors.Also,itis
knownthateverylargeoddintegeristhesumofthreeprimes.

Interval Problems. It was demonstrated earlier that
there is always a prime number between n and 2n. It is
not known, however, whether the same is true for other
intervals, for example, such as n2 and (n þ 1)2.

Dirichlet Series. In Theorem 33, a series containing an
infinite number of primes was demonstrated. It was not
known whether there are other series that have a greater
frequency of prime occurrences, at least until recent
research by Friedlander and Iwaniec (9), who showed
that series of the form {a2 þ b4} not only have an infinite
number of primes, but also that they occur more rapidly
than in the Dirichlet series.

Riemann Hypothesis. Although the connection to
prime numbers is not immediately apparent, the
Riemann hypothesis has been an extremely important
pillar in the theory of primes. It states that, for the complex
function

zðsÞ ¼
X1
n¼1

n�s s ¼ sþ it 2C

there are zeros at s ¼ �2, �4, �6,. . ., and no more zeros
outside of the ‘‘critical strip’’ 0 � s � 1. The Riemann
hypothesis states that all zeros of z in the critical strip
lie on the line s ¼ ½ þ it.

Examples of important number theoretic problems
whose answer depends on the Riemann hypothesis are
(1) the existence of an algorithm to find a nonresidue
mod p in polynomial time and (2) if n is composite, there
is at least one b for which neither bt� 1ðmod nÞnor b2rt�
�1 ðmod nÞ. This latter example is important in algorithms
needed to find large primes (10).

COMPUTATIONAL NUMBER THEORY 7



DIOPHANTINE EQUATIONS

The term Diophantine equation is used to apply to a family
of algebraic equations in a number system such as Z or Q.
To date, we have certainly observed many examples of
Diophantine equations. A good deal of research in this
subject has been directed at polynomial equations with
integer or rational coefficients, the most famous of which
being the class of equations xn þ yn ¼ zn, the subject of
Fermat’s Last Theorem.

One result in this study, from Legendre, is as follows.

Theorem 35. Let a; b; c; 2 Z such that (i) a > 0, b,
c < 0; (ii) a, b, and c are square-free; and (iii)
GCD(a,b) ¼ GCD(b,c) ¼ GCD(a,c) ¼ 1. Then

ax2 þ by2 þ cz2 ¼ 0

has a nontrivial integer solution , � ab2 QRðcÞ;�bc2
QRðaÞand � ca 2 QRðbÞ.

Example. Consider the equation 3x2 � 5y2 � 7z2 ¼ 0.
With a ¼ 3, b ¼ �5, and c ¼ �7, apply Theorem 35. Note
that ab��1 (mod 7), ac��1 (mod 5), and bc��1 (mod 3).
Thus, all three products are quadratic residues, and the
equation has an integer solution. Indeed, the reader may
verify that x ¼ 3, y ¼ 2, and z ¼ 1 is one such solution.

Another result, which consequently proves Fermat’s
Last Theorem in the case n ¼ 4, follows. (Incidentally, it
has also been long known that Fermat’s Last Theorem
holds for n ¼ 3.)

Theorem 36. x4 þ y4 ¼ z2 has no nontrivial solutions in
the integers.

A final class of Diophantine equations is known gener-
ically as Mordell’s equation: y2 ¼ x3 þ k. In general, solu-
tions to Mordell’s equation in the integers are not known.
Two particular solutions are as follows.

Theorem 37. y2 ¼ x3 þ m2 – jn2 has no solution in the
integers if

(i) j ¼ 4, m � 3 (mod 4) and pT 3 (mod 4) when p | n.

(ii) j ¼ 1, m � 2 (mod 4), n is odd, and pT 3 (mod 4) when

p | n.

Theorem 38. y2 ¼ x3 þ 2a3 – 3b2 has no solution in the
integers if ab 6¼ 0, aT 1 (mod 3), 3 | b, a is odd if b is even, and
p ¼ t2 þ 27u2 is soluble in integers t and u if p | a and p� 1
(mod 3).

ELLIPTIC CURVES

Many recent developments in number theory have come as
the byproduct of the extensive research performed in a
branch of mathematics known as elliptic curve theory (11).

An elliptic curve represents the set of points in some
appropriate number system that are the solutions to an
equation of the form y2 ¼ Ax3 þ Bx2 þ Cx þ D when A, B,
C, D 2 Z.

A major result in this theory is the theorem of Mordell
and Weil. If K is any algebraic field, and C(K) the points
with rational coordinates on an elliptic curve, then this
object C(K) forms a finitely generated Abelian group.

APPLICATIONS

In the modern history of cryptology, including the related
area of authentication or digital signatures, dating roughly
from the beginning of the computer era, there have been
several approaches that have had enormous importance for
business, government, engineering, and computing. In
order of their creation, they are (1) the Data Encryption
Standard or DES (1976); (2) the Rivest–Shamir–Adelman
Public Key Cryptosystem, or RSA (1978); (3) the Elliptic
Curve Public Key Cryptosystem or ECC (1993); and (4)
Rijndael or the Advanced Encryption Standard, or AES
(2001). RSA, DSS (defined below), and ECC rely heavily on
techniques described in this article.

Data Encryption Standard (DES)

DES was developed and published as a U.S. national stan-
dard for encryption in 1976 (12). It was designed to trans-
form 64-bit messages to 64-bit ciphers using 56-bit keys. Its
structure is important to understand as the model for many
other systems such as AES. In particular, the essence of
DES is a family of nonlinear transformations known as the
S-boxes. The S-box transformation design criteria were
never published, however, and so there was often reluctance
in the acceptance of the DES. By the mid-1990s, however,
effective techniques to cryptanalyze the DES had been
developed, and so research began to find better approaches.

Historically, cryptology required that both the sending
and the receiving parties possessed exactly the same infor-
mation about the cryptosystem. Consequently, that infor-
mation that they both must possess must be communicated
in some way. Encryption methods with this requirement,
such as DES and AES, are also referred to as ‘‘private key’’
or ‘‘symmetric key’’ cryptosystems.

The Key Management Problem

Envision the development of a computer network consist-
ing of 1000 subscribers where each pair of users requires a
separate key for private communication. (It might be
instructive to think of the complete graph on n vertices,
representing the users; with the n(n �1)/2 edges
corresponding to the need for key exchanges. Thus, in
the 1000-user network, approximately 500,000 keys must
be exchanged in some way, other than by the network!)

In considering this problem, Diffie and Hellman asked
the following question: Is it possible to consider that a key
might be broken into two parts, k ¼ (kp, ks), such that only
kp is necessary for encryption, while the entire key k ¼ (kp,
ks) would be necessary for decryption (13)?

If it were possible to devise such a cryptosystem, then the
following benefits would accrue. First of all, as the informa-
tion necessary for encryption does not, a priori, provide an
attackerwithenoughinformationtodecrypt, thenthereisno
longer any reason to keep it secret. Consequently kp can be

8 COMPUTATIONAL NUMBER THEORY



made public to all users of the network. A cryptosystem
devisedinthiswayiscalledapublickeycryptosystem(PKC).

Furthermore, the key distribution problem becomes
much more manageable. Consider the hypothetical net-
work of 1000 users, as before. The public keys can be listed
in a centralized directory available to everyone, because the
rest of the key is not used for encryption; the secret key does
not have to be distributed but remains with the creator of
the key; and finally, both parts, public and secret, must be
used for decryption.

Therefore, if we could devise a PKC, it would certainly
have most desirable features.

In 1978, Rivest, Shamir, and Adelman described a pub-
lic-key cryptosystem based on principles of number theory,
with the security being dependent on the inherent difficulty
of factoring large integers.

Factoring

Factoring large integers is in general a very difficult problem
(14). The best-known asymptotic running-time solution today
is Oðeðð64n=9ÞÞ1=3ðlog nÞ2=3Þ for an n-bit number. More concretely,
in early 2005, a certain 200-digit number was factored into
two 100-digit primes using the equivalent of 75 years of
computing time on a 2.2-GHz AMD Opteron processor.

Rivest–Shamir–Adelman Public Key Cryptosystem (RSA)

The basic idea of Rivest, Shamir, and Adelman was to take
two large prime numbers, p and q (for example, p and q each
being
10200,andtomultiplythemtogethertoobtainn ¼ pq.
n is published. Furthermore, two other numbers, d and e, are
generated, where d is chosen randomly, but relatively prime
to the Euler function f(n) in the interval [max(p,q) þ 1,
n �1]. As we have observed, f(n) ¼ (p – 1) (q – 1) (15).

Key Generation

1. Choose two 200-digit prime numbers randomly from
the set of all 200-digit prime numbers. Call these p
and q.

2. Compute the product n ¼ pq. n will have approxi-
mately 400 digits.

3. Choose d randomly in the interval [max(p,q) þ 1, n
�1], such that GCD(d, f(n)) ¼ 1.

4. Compute e � d�1 (modulo f(n)).

5. Publish n and e. Keep p, q, and d secret.

Encryption

1. Divide the message into blocks such that the bit-
string of the message can be viewed as a 400-digit
number. Call each block, m.

2. Compute and send c � me (modulo n).

Decryption

1. Compute cd�ðmeÞd�med�mkfðnÞþ1�mkfðnÞ �m�m
ðmodulo nÞ

Note that the result mkfðnÞ � 1 used in the preceding line
is the Little Fermat Theorem.

Although the proof of the correctness and the security
of RSA are established, there are several questions about
the computational efficiency of RSA that should be raised.

Is it Possible to Find Prime Numbers of 200 Decimal Digits
in a Reasonable Period of Time? The Prime Number Theo-
rem 34 assures us that, after a few hundred random selec-
tions, we will probably find a prime of 200 digits.

We can never actually be certain that we have a prime
without knowing the answer to the Riemann hypothesis;
instead we create a test (the Solovay–Strassen test), which
if the prime candidate passes, we assume the probability
that p is not a prime is very low (16). We choose a number
(say 100) numbers ai at random, which must be relatively
prime to p. For each ai, if the Legendre symbol
ða

p
Þ ¼ a

ðp�1Þ=2
i ðmod pÞ, then the chance that p is not a prime

and passes the test is 1/2 in each case; if p passes all tests,
the chances are 1/2100 that it is not prime.

Is it Possible to Find an e Which is Relatively Prime to
f(n)? Computing the GCD(e,f(n)) is relatively fast, as is
computingthe inverseofemodn.Here isanexampleofa (3�
2)array computationthat determines both GCD and inverse
[in the example, GCD(1024,243) and 243�1 (mod 1024)].
First, create a (3� 2) array where the first row are the given
numbers; the second and third rows are the (2� 2) identity
matrix. In each successive column, subtract the largest
multiplemofcolumnk less thanthefirstrowentryofcolumn
(k � 1) to form the new column (for example, 1024 �4 �
243 ¼ 52). When 0 is reached in the row A[1,�], say A[1,n],
boththeinverse(if itexists)andtheGCDarefound.TheGCD
is the element A[1,n�1]m and if this value is 1, the inverse
exists and it is the value A[3,n�1] [243� 59� 1 (mod 1024)].

Column 1 2 3 4 5 6 7

m 4 4 1 2 17
A[1,�] 1024 243 52 35 17 1 0
A[2,�] 1 0 1 4 5 �14
A[3,�] 0 1 �4 17 �21 59

Is it Possible to Perform the Computation e � d Where e
and d are Themselves 200-digit Numbers? Computing me

(mod n) consists of repeated multiplications and integer
divisions. In a software package such as Mathematica, such
a computation with 200-digit integers can be performed in
0.031 seconds of time on a Pentium machine.

Oneshortcutincomputingalargeexponentistomakeuse
of the ‘‘fastexponentiation’’ algorithm:Expresstheexponent
as a binary, e ¼ bnbn�1. . .b0. Then compute me as follows:

ans ¼ m
for i ¼ n� 1 to 0 do

ans ¼ ans� ans
if bi ¼ 1 then ans ¼ ans� x
end;

The result is ans. Note that the total number of multi-
plications is proportional to the log of e.

Example: Compute x123.

COMPUTATIONAL NUMBER THEORY 9



123 ¼ (1111011)binary. So n ¼ 6. Each arrow below
represents one step in the loop. All but the fourth pass
through the loop require squaring and multiplying by x,
since the bits processed are 111011.

ans ¼ x! x2 � x ¼ x3! x6 � x ¼ x7! x14 � x

¼ x15! x30! x60 � x ¼ x61! x122 � x ¼ x123

In a practical version of the RSA algorithm, it is recom-
mended by Rivest, Shamir, and Adelman that the primes p
and q be chosen to be approximately of the same size, and
each containing about 100 digits.

The other calculations necessary in the development of
an RSA cryptosystem have been shown to be relatively
rapid. Except for finding the primes, the key generation
consists of two multiplications, two additions, one selection
of a random number, and the computation of one inverse
modulo another number.

The encryption and decryption each require at most 2
log2n multiplications (in other words, one application of the
Fast Exponentiation algorithm) for each message block.

DIGITAL SIGNATURES

It seems likely that, in the future, an application similar to
public key cryptology will be even more widely used. With
vastly expanded electronic communications, the require-
ments for providing a secure way of authenticating an
electronic message—a digital signature—will be required
far more often than the requirement for transmitting
information in a secure fashion.

As with public key cryptology, the principles of number
theory have been essential in establishing methods of
authentication.

The authentication problem is the following: Given a
message m, is it possible for a user u to create a ‘‘signature’’,
su; dependent on some information possessed only by u, so
that the recipient of the message (m,su) could use some
public information for u (a public key), to be able to deter-
mine whether the message was authentic.

Rivest, Shamir, and Adelman showed that their public
keyencryptionmethodcouldalsobeused forauthentication.

For example, for A to send a message to B that B can
authenticate, assume an RSA public key cryptosystem has
been established with encryption and decryption keys eA,
dA, eB, dB, and a message m to authenticate. A computes
and sends c�meBdAðmod nÞ. B both decrypts and authenti-
cates by computing ðceAdBÞ� ðmeBdAÞeAdB �meBdAeAdB �
meBdB �mðmod nÞ.

However, several other authors, particularly El Gamal
(17) and Ong et al. (18), developed more efficient solutions
to the signature problem. More recently, in 1994, the
National Institute of Standards and Technology, an agency
of the United States government, established such a
method as a national standard, now called the DSS or
Digital Signature Standard (19).

The DSS specifies an algorithm to be used in cases where
a digital authentication of information is required.
We assume that a message m is received by a user. The
objective is to verify that the message has not been altered,

and that we can be assured of the originator’s identity. The
DSS creates for each user a public and a private key. The
private key is used to generate signatures, and the public
key is used in verifying signatures.

The DSS has two parts. The first part begins with a
mechanism for hashing or collapsing any message down to
one of a fixed length, say 160 bits. This hashing process is
determined by a secure hash algorithm (SHA), which is
very similar to a (repeated) DES encryption. The hashed
message is combined with public and private keys derived
from two public prime numbers. A computation is made by
the signatory using both public and private keys, and the
result of this computation, also 160 bits, is appended to the
original message. The receiver of the message also performs
a separate computation using only the public key knowl-
edge, and if the receiver’s computation correctly computes
the appended signature, the message is accepted. Again, as
with the RSA, the critical number theoretic result for the
correctness of the method is the Little Fermat Theorem.

Elliptic Curve Public Key Cryptosystem (ECC)

One form of the general equation of an elliptic curve, the
family of equations y2 ¼ x3 þ ax þ b (a, b2Z) has proven to
be of considerable interest in their application to cryptology
(20). Given two solutions p ¼ (x1, y1) and Q ¼ (x2, y2), a
third point R in the Euclidean plane can be found by the
following construction: Find a third point of intersection
between the line PQ and the elliptic curve defined by all
solutions to y2 ¼ x3 þ ax þ b; then the point R is the reflec-
tion of this point of intersection in the x-axis. This point R
may also be called P þ Q, because the points so found follow
the rules for an Abelian group by the Theorem of Mordell
and Weil, with the identity 0 = P + (�P) being the point at
infinity.

As an analogy to RSA, a problem comparable with the
difficulty of factoring is the difficulty of finding k when
kP ¼ P þ P þ . . . þ P (k times) is given. Specifically, for a
cryptographic elliptic curve application, one selects an ellip-
tic curve over a Galois field GF(p) or GF(2m), rather than the
integers. Then, as a public key, one chooses a secret k and a
public p and computes kP ¼ Q, with Q also becoming public.

One application, for example, is a variation of the widely
used Diffie–Hellman secret sharing scheme (13). This
scheme enables two users to agree on a common key without
revealing any information about the key. If the two parties
are A and B, each chooses at random a secret integer xA and
xB. Then, A computes yA ¼ xAP in a public elliptic curve with

x

P = (–2,0) 
R=P+Q=(2.16,–1.19 ) 

P
Q

y

Q =(–1/4,√(15)/4)

y2= x 

2 –4x

Figure 1. An example of addition of points on the elliptic curve
y2 = x3 �4x.

10 COMPUTATIONAL NUMBER THEORY



base point P. Similarly, B computes yB ¼ xBP. A sends yA to
B and vice versa. Then, A computes xAyBP, and the resulting
point Q ¼ (xAyB)P ¼ (xByA)P is the shared secret.

For computational reasons, it is advised to choose elliptic
curves over specific fields. For example, a standard called
P192 uses GF(p), where p ¼ 2192 �264 þ 1 for efficient
computation. Thus, xA, xB, yA, yB must all be less than p.

Advanced Encryption Standard or Rijndael (AES)

After it was generally accepted that a new U.S. standard
was needed for symmetric key encryption, an international
solicitation was made, with an extensive review process, for
a new national standard. In late 2001, a system known as
Rijndael, created by Vincent Rijmen and Joan Daemen, was
selected as the U.S. Advanced Encryption Standard, or
AES (21).

Although this method has some similarities to the DES,
it has been widely accepted, particularly since the
nonlinear S-boxes have, in contrast to the DES, a very
understandable, although complex structure. The S-box
in AES is a transformation derived from an operator in
one of the so-called Galois fields GF(28). It is a well-known
result of algebra that all finite fields have several elements
that is a prime power, that all finite fields with the same
number of elements are isomorphic, and that a finite field
with pn elements can be represented as the quotient field of
the ring of polynomials whose coefficients are mod p num-
bers, modulo an irreducible polynomial whose highest
power is n.

BIBLIOGRAPHY

1. A. Wiles, Modular elliptic-curves and Fermat’s Last Theorem.
Ann. Math.141, 443–551, 1995.

2. Y. Wang. (ed.), Goldbach conjecture, Series in Pure
Mathematics volume 4, Singapore: World Scientific, 1984,
pp. xi þ 311.

3. H. de Coste, La vie du R P Marin Mersenne, theologien,
philosophe et mathématicien, de l’Ordre der Peres Minim
(Paris, 1649).

4. O. Ore, Number Theory and Its History, New York: Dover
Publications, 1976.

5. M. Abdelguerfi, A. Dunham, W. Patterson, MRA: A Computa-
tional Technique for Security in High-Performance Systems,
Proc. of IFIP/Sec ‘93, International Federation of Information
Processing Societies, World Symposium on Computer Security,
Toronto, Canada, 1993, pp. 381–397.

6. E. W. Weisstein. Quadratic Reciprocity Theorem. From Math-
World–A Wolfram Web Resource. http://mathworld.wolfram.-
com/QuadraticReciprocityTheorem.html.

7. Wikipedia, Proof of Bertrand’s postulate, http://www.
absoluteastronomy.com/encyclopedia/p/pr/proof_of_bertrands_
postulate.htm.

8. A. Selberg An elementary proof of the prime number
theorem, Ann. Math., 50: 305–313, 1949. MR 10,595b
[[HW79, sections 22.15–16] gives a slightly simpler, but less
elementary version of Selberg’s proof.]

9. J. Friedlander and H. Iwaniec, Using a parity-sensitive sieve to
count prime values of a polynomial, Proc. Nat. Acad. Sci., 94:
1054–1058, 1997.

10. S. Smale, Mathematical problems for the next century. Math.
Intelligencer 20(2): 7–15, 1998.

11. J. H. Silverman, The Arithmetic of Elliptic Curves, New York:
Springer, 1994.

12. National Bureau of Standards, Data Encryption Standard,
Federal Information Processing Standards Publication 46,
January 1977.

13. W. Diffie and M. E. Hellman, New Directions in Cryptography,
IEEE Trans. on Information Theory, IT-22, 1976, pp. 644–654.

14. C. Pomerance, Analysis and comparison of some integer factor-
ing algorithms, in H. W. Lenstra, Jr., and R. Tijdeman, (eds.),
Computational Number Theory: Part 1, Math. Centre,
Tract 154, Math. Centre, The Netherlands: Amsterdam,
1982, pp. 89–139.

15. R. L. Rivest, A. Shamir, and L. Adelman, A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems, Comm.
of the ACM, 1978, pp. 120–126.

16. R. Solovay and V. Strassen, A fast monte-carlo tests for prim-
ality, SIAM Journal on Computing, 6: 84–85, 1977.

17. T. El Gamal, A public key cryptosystem and a signature scheme
based on discrete logarithms, Proc. of Crypto 84, New York:
Springer, 1985, pp. 10–18.

18. H. Ong, C. P. Schnorr, and A. Shamir, An efficient signature
scheme based on polynomial equations, Proc. of Crypto 84,
New York: Springer, 1985, pp. 37–46.

19. National Institute of Standards and Technology, Digital Sig-
nature Standard, Federal Information Processing Standards
Publication 186, May 1994.

20. N. Koblitz, Elliptic curve cryptosystems, Mathematics of Com-
putation 48: 203–209, 1987.

21. J. Daemen and V. Rijmen, The Design of Rijndael: AES—The
Advanced Encryption Standard, Berun, Germany: Springer-
Verlag, 2002.

FURTHER READING

D. M. Burton, Elementary Number Theory, Boston: Allyn and
Bacon, 1980.

H. Cohen, A Second Course in Number Theory, New York: Wiley,
1962.

L. E. Dickson, A History of the Theory of Numbers, 3 vols., Washing-
ton, D.C.: Carnegie Institution, 1919–23.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers, 3rd ed., Oxford: Clarendon Press, 1954.

K. Ireland and M. Rosen, A Classical Introduction to Modern
Number Theory, 2nd ed., New York: Springer-Verlag, 1990.

I. Niven and H. S. Zuckerman, An Introduction to the Theory of
Numbers, 4th ed., New York: Wiley, 1980.

W. Patterson, Mathematical Cryptology, Totowa, NJ: Rowman and
Littlefield, 1987.

H. E. Rose, A Course in Number Theory, Oxford: Oxford University
Press, 1988.

H. N. Shapiro, Introduction to the Theory of Numbers, New York:
Wiley-Interscience, 1983.

H. Stark, An Introduction to Number Theory, Chicago, IL:
Markham, 1970.

WAYNE PATTERSON

Howard University
Washington, D.C.

COMPUTATIONAL NUMBER THEORY 11



C

CONVEX OPTIMIZATION

MOTIVATION AND A BRIEF HISTORY

An optimization problem can be stated in the so-called
standard form as follows:

minimize f ðxÞ : Rn!R
subject to gðxÞ � 0; g : Rm!Rn (1)

representing the minimization of a function f of n variables
under constraints specified by inequalities determined by
functions g ¼ ½g1; g2; . . . ; gm�T. The functions f and gi are, in
general, nonlinear functions. Note that ‘‘�’’ inequalities can
be handled under this paradigm by multiplying each side by
�1 and equalities by representing them as a pair of inequal-
ities. The maximization of an objective function function f(x)
can be achieved by minimizing �f(x). The set F ¼
fxjgðxÞ � 0g that satisfies the constraints on the nonlinear
optimization problem is known as the feasible set or the
feasible region. If F covers all of (a part of) Rn, then the
optimization is said to be unconstrained (constrained).
The above standard form may not directly be applicable to
design problems where multiple conflicting objectives must
be optimized. In such a case, multicriterion optimization
techniques and Pareto optimality can be used to identify non-
inferior solutions (1). In practice, however, techniques to
map the problem to the form in Equation (1) are often used.

When the objective function is a convex function and the
constraint set is a convex set (both terms will be formally
defined later), the optimization problem is known as a
convex programming problem. This problem has the
remarkable property of unimodality; i.e., any local mini-
mum of the problem is also a global minimum. Therefore, it
does not require special methods to extract the solution out
of local minima in a quest to find the global minimum.
Although the convex programming problem and its unim-
odality property have been known for a long time, it is only
recently that efficient algorithms for solving of these pro-
blems have been proposed. The genesis of these algorithms
can be traced back to the work of Karmarkar (2) that
proposed a polynomial-time interior-point technique for
linear programming, a special case of convex programming.
Unlike the simplex method for linear programming, this
technique was found to be naturally extensible from the
problem of linear programming to general convex program-
ming formulations. It was shown that this method belongs
to the class of interior penalty methods proposed by Fiacco
and McCormick (3) using barrier functions. The work of
Renegar (4) showed that a special version of the method of
centers for linear programming is polynomial. Gonzaga (5)
showed similar results with the barrier function associated
with a linear programming problem, with a proof of
polynomial-time complexity. Nesterov and Nemirovsky
(6) introduced the concept of self-concordance, studying
barrier methods in their context. Further improvements

in the computational complexity using approximate solu-
tions and rank-one updates were shown in the work of
Vaidya (7). The work of Ye (8) used a potential function
to obtain the same complexity as Renegar’s work without
following the central path too closely.

DEFINITIONS OF CONVEXITY

Convex Sets

Definition. A set C2Rn is said to be a convex set if, for
every x1, x2 2C and every real number a; 0 � a � 1, the
point a x1 þ ð1� aÞx2 2C.

This definition can be interpreted geometrically as stat-
ing that a set is convex if, given two points in the set, every
point on the line segment joining the two points is also a
member of the set. Examples of convex and nonconvex sets
are shown in Fig. 1.

Elementary Convex Sets
Ellipsoids. An ellipsoid Eðx;B; rÞ 2Rn centered at point

x2Rn is given by the equation

fyjðy� xÞT Bðy� xÞ � r2g

If B is a scalar multiple of the unit matrix, then the
ellipsoid is called a hypersphere. The axes of the ellipsoid
are given by the eigenvectors, and their lengths are related
to the corresponding eigenvalues of B.

Hyperplanes. A hyperplane in n dimensions is given by
the region

cTx ¼ b; c2Rn; b2R:

Half-Spaces. A half-space in n dimensions is defined by
the region that satisfies the inequality

cTx � b; c2Rn; b2R:

Polyhedra. A (convex) polyhedron is defined as an inter-
section of half-spaces and is given by the equation

P ¼ fxjAx � bg; A2Rm�n; b2Rm;

corresponding to a set of m inequalities aT
i x � bi; ai 2Rn. If

the polyhedron has a finite volume, it is referred to as a
polytope. An example of a polytope is shown in Fig. 2.

Some Elementary Properties of Convex Sets
Property. The intersection of convex sets is a convex set.

The union of convex sets is not necessarily a convex set.

Property. (Separating hyperplane theorem) Given two
nonintersecting convex sets A and B, a separating hyper-
plane cTx ¼ b exists such that A lies entirely within the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



half-space cTx� b and B lies entirely within the half-space
cTx � b. This is pictorially illustrated in Fig. 3.

Property. (Supporting hyperplane theorem) Given a
convex set C and any point x on its boundary, a supporting
hyerplane cTx ¼ b exists such that the convex set C lies
entirely within the half-space cTx � b. This is illustrated in
Fig. 4.

Definition. The convex hull of m points, x1; x2 . . . ;
xm 2Rn, denoted co(x1, x2, . . ., xm), is defined as the set of
points y2Rn such that

y ¼
X

i¼1 to m

aixi ai� 0 8 i
X

i¼1 to m

ai ¼ 1:

The convex hull is thus the smallest convex set that con-
tains the m points. An example of the convex hull of five
points in the plane is shown by the shaded region in Fig. 5.
If the set of points xi is of finite cardinality (i.e., m is finite),
then the convex hull is a polytope. Hence, a polytope is also
often described as the convex hull of its vertices.

Convex Functions

Definition. A function f defined on a convex set V is said
to be a convex function if, for every x1, x2 2V, and every
a; 0 � a � 1,

fða x1 þ ð1� aÞx2Þ � a fðx1Þ þ ð1� aÞ fðx2Þ

f is said to be strictly convex if the above inequality is
strict for 0<a< 1.

Geometrically, a function is convex if the line joining two
points on its graph is always above the graph. Examples of
convex and nonconvex functions on Rn are shown in Fig. 6.

Some Elementary Properties of Convex Functions
Property. A function f(x) is convex over the set S if and

only if

f ðxÞ� f ðx0Þ þ ½r f ðx0Þ�Tðx� x0Þ 8 x; x0 2S;

where r f corresponds to the gradient of f with respect to
the vector x. Strict convexity corresponds to the case in
which the inequality is strict.

Property. A function f(x) is convex over the convex set S if
and only if

r2 f ðx0Þ� 0 8 x0 2S

i.e., its Hessian matrix is positive semidefinite over S. For
strict convexity, r2 f ðx0Þ must be positive definite.

Property. If f(x) and g(x) are two convex functions on
the convex set S, then the functions f þ g and max(f, g) are
convex over S.

Definition. The level set of a function f(x) is the set
defined by f ðxÞ � c where c is a constant.

An example of the level sets of f ðx; yÞ ¼ x2 þ y2 is shown
in Fig. 7. Observe that the level set for f ðx; yÞ � c1 is
contained in the level set of f ðx; yÞ � c2 for c1 < c2.

y

x

Figure 2. An example convex polytope in two dimensions as an
intersection of five half-spaces.

A

B

Figure 3. A separating hyperplane (line) in two dimensions
between convex sets A and B.

S

Figure 4. A supporting hyperplane (line) in two dimensions at
the bounary point of a convex set S.

X1

X1

X2

X2

Convex set Nonconvex set

Figure 1. Convex and nonconvex sets.

2 CONVEX OPTIMIZATION



Property. If f is a convex function in the space S, then
the level set of f is a convex set in S. This is a very useful
property, and many convex optimization algorithms
depend on the fact that the constraints are defined by an
intersection of level sets of convex functions.

Definition. A function g defined on a convex set V is said
to be a concave function if the function f ¼ �g is convex.
The function g is strictly concave if �g is strictly convex.

For a fuller treatment on convexity properties, the
reader is referred to Ref. (9).

CONVEX OPTIMIZATION

Convex Programming

Definition. A convex programming problem is an
optimization problem that can be stated as follows:

minimize f ðxÞ
such that x2 s

(2)

where f is a convex function and S is a convex set. This
problem has the property that any local minimum of f over S
is a global minimum.

Comment. The problem of maximizing a convex function
over a convex set does not have the above property. How-
ever, it can be shown (10) that the maximum value for such
a problem lies on the boundary of the convex set.

For a convex programming problem of the type in
Equation (2), we may state without loss of generality that
the objective function is linear. To see this, note that

Equation (2) may equivalently be written as fmin t :
f ðxÞ � t; gðxÞ � 0g.

Linear programming is a special case of nonlinear opti-
mization and, more specifically, a special type of convex
programming problem where the objective and constraints
are all linear functions. The problem is stated as

mnimize cTx
subject to A x � b; x� 0
where A2Rm�n; b2Rm; c2Rn; x2Rn:

(3)

The feasible region for a linear program corresponds to a
polyhedron in Rn. It can be shown that an optimal solution
to a linear program must necessarily occur at one of the
vertices of the constraining polyhedron. The most com-
monly used technique for solution of linear programs,
the simplex method (11), is based on this principle and
operates by a systematic search of the vertices of the poly-
hedron. The computational complexity of this method can
show an exponential behavior for pathological cases, but for
most practical problems, it has been observed to grow
linearly with the number of variables and sublinearly
with the number of constraints. Algorithms with polyno-
mial time worst-case complexity do exist; these include
Karmarkar’s method (2), and the Shor–Khachiyan ellipsoi-
dal method (12). The computational times of the latter,
however, are often seen to be impractical from a practical
standpoint.

In the remainder of this section, we will describe various
methods used for convex programming and for mapping
problems to convex programs.

Path-Following Methods

This class of methods proceeds iteratively by solving a
sequence of unconstrained problems that lead to the solu-
tion of the original problem. In each iteration, a technique
based on barrier methods is used to find the optimal solu-
tion. If we denote the optimal solution in the kth iteration as
x�k, then the path x�1, x�2, . . . in Rn leads to the optimal

x1

x2

x3

x4 x5

Figure 5. An example showing the convex hull of five points.

x1 x2 x2x1

Convex function Nonconvex function

g(x)

x

f(x)

Figure 6. Convex and nonconvex functions.

x

y

c=1 c=2 c=3

Figure 7. Level sets of f ðx; yÞ ¼ x2 þ y2.

CONVEX OPTIMIZATION 3



solution, and hence, this class of techniques are known as
path-following methods.

Barrier Methods. The barrier technique of Fiacco and
McCormick (3) is a general technique to solve any con-
strained nonlinear optimization problem by solving a
sequence of unconstrained nonlinear optimization pro-
blems. This method may be used for the specific case of
minimizing a convex function over a convex set S described
by an intersection of convex inequalities

S ¼ fxjgiðxÞ � 0; i ¼ 1; 2; . . . ; mg

where each gi(x) is a convex function. The computation
required of the method is dependent on the choice of the
barrier function. In this connection, the logarithmic bar-
rier function (abbreviated as the log barrier function) for
this set of inequalities is defined as

FðxÞ ¼ �
Xn

i¼1

log½�giðxÞ� for x2S

0 otherwise

8<
:

Intuitively, the idea of the barrier is that any iterative
gradient-based method that tries to minimize the barrier
function will be forced to remain in the feasible region, due
to the singularity at the boundary of the feasible region. It
can be shown that FðxÞ is a convex function over S and its
value approaches 1. as x approaches the boundary of S.
Intuitively, it can be seen that FðxÞ becomes smallest when
x is, in some sense, farthest away from all boundaries of S.
The value of x at which the function FðxÞ is minimized is
called the analytic center of S.

Example. For a linear programming problem of the type
described in Equation (3), with constraint inequalities
described by aT

i x � bi, the barrier function in the feasible
region is given by

FðxÞ ¼ �
X

i¼1 to n

logðbi � aT
i xÞ

The value of (bi � aT
i x) represents the slack in the ith

inequality, i.e., the distance between the point x and the
corresponding constraint hyperplane. The log barrier func-
tion, therefore, is a measure of the product of the distances

from a point x to each hyperplane, as shown in Fig. 8(a). The
value of FðxÞ is minimized when

Q
i¼1 to nðbi � aT

i xÞ is max-
imized. Coarsely speaking, this occurs when the distance to
each constraint hyperplane is sufficiently large.

As a cautionary note, we add that although the analytic
center is a good estimate of the center in the case where all
constraints present an equal contribution to the boundary,
the presence of redundant constraints can shift the analytic
center. The effect on the analytic center of repeating the
constraint p five times is shown in Fig. 8(b).

We will now consider the convex programming problem
specified as

minimize fðxÞ
such that giðxÞ � 0; i ¼ 1; 2; . . . ; m

where each gi(x) is a convex function. The traditional
barrier method (3) used to solve this problem would
formulate the corresponding unconstrained optimization
problem

minimize BðaÞ ¼ a fðxÞ þFðxÞ

and solve this problem for a sequence of increasing (con-
stant) values of the parameter a. When a is zero, the
problem reduces to finding the center of the convex set
constraining the problem. As a increases, the twin objec-
tives of minimizing f(x) and remaining in the interior of
the convex set are balanced. As a approaches 1, the
problem amounts to the minimization of the original objec-
tive function, f.

In solving this sequence of problems, the outer iteration
consists of increasing the values of the parameter a. The
inner iteration is used to minimize the value of B(a) at that
value of a, using the result of the previous outer iteration as
an initial guess. The inner iteration can be solved using
Newton’s method (10). For positive values of a, it is easy to
see that B(a) is a convex function. The notion of a central
path for a linearly constrained optimization problem is
shown in Fig. 9.

Method of Centers. Given a scalar value t> f(x*), the
method of centers finds the analytic center of the set
of inequalities f ðxÞ � t and giðxÞ � 0 by minimizing the

Figure 8. (a) Physical meaning of
the barrier function for the feasible
region of a linear program. (b) The
effect of redundant constraints on the
analytic center.

Analytic center Analytic center

pp

(a) (b)

4 CONVEX OPTIMIZATION



function

�logðt� f ðxÞÞ þFðxÞ

where FðxÞ is the log barrier function defined earlier. The
optimal value x* associated with solving the optimization
problem associated with finding the analytic center for
this barrier function is found and the value of t is updated
to be a convex combination of t and f(x*) as

t ¼ utþ ð1� uÞ f ðx*Þ; u> 0

The Self-Concordance Property and Step Length. The
value of u above is an adjustable parameter that would
affect the number of Newton iterations required to find the
optimum value of the analytic center. Depending on the
value of u chosen, the technique is classified as a short-step,
medium-step, or long-step (possibly with even u> 1)
method. For a short-step method, one Newton iteration
is enough, whereas for longer steps, further Newton itera-
tions may be necessary.

Nesterov and Nemirovsky (17) introduced the idea of the
self-concordance condition, defined as follows.

Definition. A convex function w : S!R is self-
concordant with parameter a� 0 (a-selfconcordant) on
S; if w is three times continuously differentiable on S and
for all x2S and h2Rm, the following inequality holds:

jD3wðxÞ½h; h; h�j � 2 a�1=2ðD2wðxÞ½h; h�Þ3=2

where Dk wðxÞ½h1; h2; . . . hk� denotes the value of the kth
differential of w taken at x along the collection of directions
½h1; h2; . . . hk�.

By formulating logarithmic barrier functions that are
self-concordant, proofs of the polynomial-time complexity
of various interior point methods have been shown. An
analysis of the computational complexity in terms of the

number of outer and inner (Newton) iterations is presented
in Refs. (6) and (13).

Other Interior Point Methods

Affine Scaling Methods. For a linear programming pro-
blem, the nonnegativity constraints x� 0 are replaced by
constraints of the type kX�1ðx� xcÞk<b � 1, representing
an ellipsoid centered at xc. The linear program is then
relaxed to the following form whose feasible region is con-
tained in that of the original linear program:

minfcT x : Ax ¼ b; kX�1ðx� xcÞk<b � 1g

Note that the linear inequalities in Equation (3) have been
converted to equalities by the addition of slack variables.
This form has the following closed-form solution:

xðbÞ ¼ x� b
XPAXXc

kPAXXck

where PAX ¼ ð1� XATðAX2ATÞ�1AXÞ. The updated value
of x is used in the next iteration, and so on. The search
direction XPAXXc is called the primal affine scaling direc-
tion and corresponds to the scaled projected gradient with
respect to the objective function, with scaling matrix X.
Depending on the value of b, the method may be a short-
step or a long-step (with b> 1) method, and convergence
proofs under various conditions are derived. For details of
the references, the reader is referred to Ref. (13).

For a general convex programming problem of the type
(note that the linear objective function form is used here),

fmin f ðyÞ ¼ bTy : giðyÞ � 0g

The constraint set here is similarly replaced by the ellip-
soidal constraint (ðy� ycÞTHðy� ycÞ � b2, where yc is the
center of the current ellipsoid, y is the variable over which
the minimization is being performed, and H is the Hessian
of the log-barrier function �

P
i¼1 to n logð�giðyÞÞ. The pro-

blem now reduces to

fmin bTy : ðy� ycÞTHðy� ycÞ � b2g

which has a closed-form solution of the form

yðbÞ ¼ y� b
H�1bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bTH�1b
p

This is used as the center of the ellipsoid in the next
iteration. The procedure continues iteratively until conver-
gence.

Potential-Based Methods. These methods formulate a
potential function that provides a coarse estimate of how
far the solution at the current iterate is from the optimal
value. At each step of a potential reduction method, a
direction and step size are prescribed; however, the poten-
tial may be minimized further by the use of a line search
(large steps). This is in contrast with a path-following

α=0
(analytic center)

α=10

α=100

optimum

Figure 9. Central path for a linearly constrained convex
optimization problem.

CONVEX OPTIMIZATION 5



method that must maintain proximity to a prescribed
central path. An example of a potential-based technique
is one that uses a weighted sum of the gap between the
value of the primal optimization problem and its dual, and
of the log-barrier function value as the potential. For a more
detailed description of this and other potential-based meth-
ods, the reader is referred to Refs. (6) and (13).

Localization Approaches

Polytope Reduction. This method begins with a polytope
P 2 Rn that contains the optimal solution xopt. The polytope
P may, for example, be initially selected to be an n-dimen-
sional box described by the set

fxjXmin � xðiÞ � Xmaxg;

where xmin and xmax are the minimum and maximum
values of each variable, respectively. In each iteration,
the volume of the polytope is shrunk while keeping xopt

within the polytope, until the polytope becomes sufficiently
small. The algorithm proceeds iteratively as follows.

Step 1. A center xc deep in the interior of the polytope P
is found.

Step 2. The feasibility of the center xc is determined by
verifying whether all of the constraints of the optimization
problem are satisfied at xc. If the point xc is infeasible, it is
possible to find a separating hyperplane passing through xc

that divides P into two parts, such that the feasible region
lies entirely in the part satisfying the constraint

cTx�b

where c ¼ �½rgpðxÞ�T is the negative of the gradient of a
violated constraint, gp, and b ¼ cTxc. The separating hyper-
plane above corresponds to the tangent plane to the violated

constraint. If the point xc lies within the feasible region,
then a hyperplane cTx�b exists that divides the polytope
into two parts such that xopt is contained in one of them,
with c ¼ �½r f ðxÞ�T being the negative of the gradient of
the objective function and b being defined as b ¼ cTxc once
again. This hyperplane is the supporting hyperplane for the
set f ðxÞ � f ðxcÞand thus eliminates from the polytope a set
of points whose value is larger than the value at the current
center. In either case, a new constraint cTx�b is added to
the current polytope to give a new polytope that has roughly
half the original volume.

Step 3. Go to Step 1 and repeat the process until the
polytope is sufficiently small.

Note that the center in Step 1 is ideally the center of
gravity of the current polytope because a hyperplane pas-
sing through the center of gravity is guaranteed to reduce
the volume of the polytope by a factor of (1� 1=e) in each
iteration. However, because finding the center of gravity is
prohibitively expensive in terms of computation, the ana-
lytic center is an acceptable approximation.

Example. The algorithm is illustrated by using it to solve
the following problem in two dimensions:

minimize f ðx1; x2Þ
such thatðx1; x2Þ 2S

where S is a convex set and f is a convex function. The
shaded region in Fig. 10(a) is the set S, and the dotted lines
show the level curves of f. The point xopt is the solution to
this problem. The expected solution region is first bounded
by a rectangle with center xc, as shown in Fig. 10(a). The
feasibility of xc is then determined; in this case, it can be
seen that xc is infeasible. Hence, the gradient of the con-
straint function is used to construct a hyperplane through
xc such that the polytope is divided into two parts of roughly
equal volume, one of which contains the solution xc. This is

xc

xopt

xc

xopt

xc

xoptxopt

xc

(a)

(c)(d)

(b)

f decreasing

Figure 10. Cutting plane approach.

6 CONVEX OPTIMIZATION



illustrated in Fig. 10(b), where the region enclosed in
darkened lines corresponds to the updated polytope. The
process is repeated on the new smaller polytope. Its center
lies inside the feasible region, and hence, the gradient of the
objective function is used to generate a hyperplane that
further shrinks the size of the polytope, as shown in Fig.
10(c). The result of another iteration is illustrated in Fig.
10(d). The process continues until the polytope has been
shrunk sufficiently.

Ellipsoidal Method. The ellipsoidal method begins with
a sufficiently large ellipsoid that contains the solution to
the convex optimization problem. In each iteration, the size
of the ellipsoid is shrunk, while maintaining the invariant
that the solution lies within the ellipsoid, until the ellipsoid
becomes sufficiently small. The process is illustrated in
Fig. 11.

The kth iteration consists of the following steps, starting
from the fact that the center xk of the ellipsoid Ek is known.

Step 1. In case the center is not in the feasible region, the
gradient of the violated constraint is evaluated; if it is
feasible, the gradient of the objective function is found.
In either case, we will refer to the computed gradient as
rhðxkÞ.

Step 2. A new ellipsoid containing the half-ellipsoid
given by

Ek \fxjrhðxkÞTx � rhðxkÞTxkg

is computed. This new ellipsoid Ekþ1 and its center xkþ1

are given by the following relations:

Xkþ1 ¼ Xk �
1

nþ 1
Ak~gk

Akþ1 ¼
n2

n2 � 1
ðAk �

2

nþ 1
Ak~gk~gk

TAkÞ

where

~gk ¼
rhðxkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rhðxkÞTAkrhðxkÞ
q

Step 3. Repeat the iterations in Steps 1 and 2 until the
ellipsoid is sufficiently small.

RELATED TECHNIQUES

Quasiconvex Optimization

Definition. A function f : S!R, where S is a convex set,
is quasiconvex if every level set La ¼ fxj f ðxÞ � ag is a
convex set. A function g is quasiconcave if �g is quasi-
convex over S. A function is quasilinear if it is both
quasiconvex and quasiconcave.

Examples. Clearly, any convex (concave) function is also
quasiconvex (quasiconcave).

Any monotone function f : R!R is quasilinear.
The linear fractional function f ðxÞ ¼ ðaTxþ bÞ=

ðcTxþ dÞ, where a; c; x2Rn, is quasilinear over the half-
space fxjcTxþ d> 0g.

Other Characterizations of Quasiconvexity. A function f
defined on a convex set V is quasiconvex if, for every x1,
x2 2V,

1. For every a; 0 � a � 1; f ða x1 þ ð1� aÞx2Þ � max

½f ðx1Þ; f ðx2Þ�.
2. If f is differentiable, f ðx1Þ � f ðx2Þ) ðx2 � x1ÞT
r f ðx1Þ � 0.

Property. If f, g are quasiconvex over V, then the
functions af for a> 0, and max(f,g) are also quasiconvex
over V. The composed function g(f(x)) is quasiconvex pro-
vided g is monotone increasing. In general, the function
ð f þ gÞ is not quasiconvex over V.

As in the case of convex optimization, the gradient of a
quasiconvex objective can be used to eliminate a half-space
from consideration. The work in Ref. (14) presents an
adaptation of the ellipsoidal method to solve quasiconvex
optimization problems.

Semidefinite Programming

The problem of semidefinite programming (15) is stated as
follows:

minimize cTx
subject to FðxÞ� 0
where FðxÞ 2Rm�m; c; x2Rn

(4)

Here, FðxÞ ¼ F0 þ F1x1 þ . . .þ FnXn is an affine matrix
function of x and the constraint FðxÞ� 0 represents the fact
that this matrix function must be positive semidefinite, i.e.,
zTFðxÞz� 0 for all z2Rn. The constraint is referred to as a
linear matrix inequality. The objective function is linear,
and hence convex, and the feasible region is convex because
if FðxÞ� 0 and FðyÞ� 0, then for all 0 � l � 1, it can be
readily seen that l FðxÞ þ ð1� lÞFðyÞ � 0.

A linear program is a simple case of a semidefinite
program. To see this, we can rewrite the constraint set;
A x� b (note that the ‘‘� ’’ here is a component-wise
inequality and is not related to positive semidefiniteness),

∇f(xk)

xk

k

k+1

Figure 11. The ellipsoidal method.

CONVEX OPTIMIZATION 7



as FðxÞ ¼ diagðA x� bÞ; i.e., F0 ¼ diagðbÞ; Fj ¼ diag
ðajÞ; j ¼ 1; . . . ;n, where A ¼ ½a1 a2 . . . an� 2Rm�n.

Semidefinite programs may also be used to represent
nonlinear optimization problems. As an example, consider
the problem

minimize
ðcTxÞ2

dTx
subject to Axþ b� 0

where we assume that dTx> 0 in the feasible region. Note
that the constraints here represent, as in the case of a linear
program, component-wise inequalities. The problem is first
rewritten as minimizing an auxiliary variable t subject to
the original set of constraints and a new constraint

ðcTxÞ2

dTx
� t

The problem may be cast in the form of a semidefinite
program as

minimize t

subject to

diagðAxþ bÞ 0 0
0 t cTx
0 cTx dTx

2
4

3
5� 0

The first constraint row appears in a manner similar to the
linear programming case. The second and third rows use
Schur complements to represent the nonlinear convex
constraint above as the 2� 2 matrix inequality

t cTx
cTx dTx

� �
� 0

The two ‘‘tricks’’ shown here, namely, the reformulation of
linear inequations and the use of Schur complements, are
often used to formulate optimization problems as semide-
finite programs.

Geometric Programming

Definition. A posynomial is a function h of a positive
variable x2Rm that has the form

hðxÞ ¼
X

j

gj

Y
i¼1 to n

x
aði; jÞ
i

where the exponents aði; jÞ 2R and the coefficients
g j > 0; g j 2R.

For example, the function f ðx; y; zÞ ¼ 7:4 xþ
2:6 y3:18z�4:2 þ

ffiffiffi
3
p

y�2y�1:4z
ffiffi
5
p

is a posynomial in the vari-
ables x, y, and z. Roughly speaking, a posynomial is a
function that is similar to a polynomial, except that the
coefficients g j must be positive, and an exponent aði; jÞ
could be any real number and not necessarily a positive
integer, unlike a polynomial.

A posynomial has the useful property that it can be
mapped onto a convex function through an elementary
variable transformation, xðiÞ ¼ ezðiÞ(16). Such functional

forms are useful because in the case of an optimization
problem where the objective function and the constraints
are posynomial, the problem can easily be mapped onto a
convex programming problem.

For some geometric programming problems, simple
techniques based on the use of the arithmetic-geometric
inequality may be used to obtain simple closed-form solu-
tions to the optimization problems (17). The arithmetic–
geometric inequality states that if u1, u2; . . . ;un > 0, then
the arithmetic mean is no smaller than the geometric
mean; i.e.,

ðu1 þ u2 þ . . .þ unÞ=n�ððu1Þðu2Þ . . . ðunÞÞ1=n;

with equality occurring if and only if u1 ¼ u2 ¼ . . . ¼ un.
A simple illustration of this technique is in minimizing

the outer surface area of an open box of fixed volume (say,
four units) and sides of length x1, x2, x3. The problem can be
stated as

minimize x1x2 þ 2 x1x3 þ 2 x1x3

subject to x1x2x3 ¼ 4

By setting u1 x1; x2; u2 ¼ 2 x1 x3; u3 ¼ 2 x1x3; and applying
the condition listed above, the minimum value of the objec-
tive function is 3ððu1Þðu2Þðu3ÞÞ1=3 ¼ 3ð4 x2

1x2
2x2

3Þ ¼ 12. It is
easily verified that this corresponds to the values
x1 ¼ 2; x2 ¼ 2, and x3 ¼ 1. We add a cautionary note that
some, but not all, posynomial programming problems may
be solved using this simple solution technique. For further
details, the reader is referred to Ref. (17).

An extension of posynomials is the idea of generalized
posynomials (18), which are defined recursively as follows:

A generalized posynomial of order 0, G0(x), is simply a
posynomial, defined earlier; i.e.,

G0ðxÞ ¼
X

j

gj

Y
i¼1 to n

x
aði; jÞ
i

A generalized posynomial of order k> 1 is defined as

GkðxÞ ¼
X

j

l j

Y
i¼1 to n

½Gðk�1Þ;iðxÞ�aði; jÞ

where Gðk�1Þ;iðxÞ is a generalized posynomial of order less
than or equal to k� 1, each exponent aði; jÞ 2R, and the
coefficients g j > 0; g j 2R.

Like posynomials, generalized posynomials can be
transformed to convex functions under the transform
xðiÞ ¼ ezðiÞ, but with the additional restriction that
aði; jÞ� 0 for each i, j. For a generalized posynomial of
order 1, observe that the term in the innermost bracket,
G0,i(x), represents a posynomial function. Therefore, a
generalized posynomial of order 1 is similar to a posyno-
mial, except that the place of the x(i) variables is taken by
posynomial. In general, a generalized posynomial of order
k is similar to a posynomial, but x(i) in the posynomial
equation is replaced by a generalized posynomial of a lower
order.

8 CONVEX OPTIMIZATION



Optimization Involving Logarithmic Concave Functions

A function f is a logarithmic concave (log-concave) function
if log(f) is a concave function. Logconvex functions are
similarly defined. The maximization of a log-concave func-
tion over a convex set is therefore a unimodal problem; i.e.,
any local minimum is a global minimum. Log-concave
functional forms are seen among some common probability
distributions on Rn, for example:

(a) The Gaussian or normal distribution

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞndetS

p e�0:5ðx�xcÞTS
�1ðx�xcÞ

where S� 0.

(b) The exponential distribution

f ðxÞ ¼
Y

i¼1 to n

lðiÞ
 !

e�ðlð1Þxð1Þþlð2Þxð2Þþ...þlðnÞxðnÞÞ

The following properties are true of log-concave func-
tions:

1. If f and g are log-concave, then their product f.g is log-
concave.

2. If f(x) is log-concave, then the integral
R

S f ðxÞdx is log-
concave provided S is a convex set.

3. If f(x) and g(x) are log-concave, then the convolutionR
S f ðx� yÞgðyÞdy is log-concave if S is a convex set

(this follows from Steps 1 amd 2).

Convex Optimization Problems in Computer Science and
Engineering

There has been an enormous amount of recent interest in
applying convex optimization to engineering problems,
particularly as the optimizers have grown more efficient.
The reader is referred to Boyd and Vandenberghe’s lecture
notes (19) for a treatment of this subject. In this section, we
present a sampling of computer science and computer
engineering problems that can be posed as convex pro-
grams to illustrate the power of the technique in practice.

Design Centering

While manufacturing any system, it is inevitable that
process variations will cause design parameters, such as
component values, to waver from their nominal values. As a
result, after manufacture, the system may no longer meet
some behavioral specifications, such as requirements on
the delay, gain, and bandwidth, which it has been designed
to satisfy. The procedure of design centering attempts to
select the nominal values of design parameters to ensure
that the behavior of the system remains within specifica-
tions, with the greatest probability and thus maximize the
manufacturing yield.

The random variations in the values of the design para-
meters are modeled by a probability density function,

cðx; xcÞ : Rn!½0; 1�, with a mean corresponding to the
nominal value of the design parameters. The yield of the
manufacturing process Y as a function of the mean xc is
given by

YðxcÞ ¼
Z

F
cðx; xcÞdx

where F corresponds to the feasible region where all design
constraints are satisfied.

A common assumption made by geometrical design
centering algorithms for integrated circuit applications is
that F is a convex bounded body. Techniques for approx-
imating this body by a polytope P have been presented in
Ref. (20). When the probability density functions that
represent variations in the design parameters are Gaus-
sian in nature, the design centering problem can be posed
as a convex programming problem. The design centering
problem is formulated as (21)

maximize YðxcÞ ¼
Z

P
cðx; xcÞdx

where P is the polytope approximation to the feasible region
R . As the integral of a logconcave function over a convex
region is also a log-concave function (22), the yield function
Y(x) is log-concave, and the above problem reduces to a
problem of maximizing a log-concave function over a convex
set. Hence, this can be transformed into a convex program-
ming problem.

VLSI Transistor and Wire Sizing

Convex Optimization Formulation. Circuit delays in inte-
grated circuits often have to be reduced to obtain faster
response times. Given the circuit topology, the delay of a
combinational circuit can be controlled by varying the sizes
of transistors, giving rise to an optimization problem of
finding the appropriate area-delay tradeoff. The formal
statement of the problem is as follows:

minimize Area
subject to Delay � Tspec

(5)

The circuit area is estimated as the sum of transistor sizes;
i.e.,

Area ¼
X

i¼1 to n

xi

where xi is the size of the ith transistor and n is the number
of transistors in the circuit. This is easily seen to be a
posynomial function of the xi’s. The circuit delay is esti-
mated using the Elmore delay estimate (23), which calcu-
lates the delay as maximum of path delays. Each path delay
is a sum of resistance-capacitance products. Each resis-
tance term is of the form a/xi, and each capacitance term is
of the type Sbixi, with the constants a and bi being positive.
As a result, the delays are posynomial functions of the xi’s,
and the feasible region for the optimization problem is an

CONVEX OPTIMIZATION 9



intersection of constraints of the form

ðposynomial function in xi’sÞ � tspec

As the objective and constraints are both posynomial
functions in the xi’s, the problem is equivalent to a convex
programming problem. Various solutions to the problem
have been proposed, for instance, in Refs. (24) and (25).
Alternative techniques that use curve-fitted delay models
have been used to set up a generalized posynomial formu-
lation for the problem in Ref. (21).

Semidefinite Programming Formulation. In Equation (5),
the circuit delay may alternatively be determined from the
dominant eigenvalue of a matrix G�1C, where G and C are,
respectively, matrices representing the conductances (cor-
responding to the resistances) and the capacitances
referred to above. The entries in both G and C are affine
functions of the xi’s. The dominant time constant can be
calculated as the negative inverse of the largest zero of the
polynomial detðs CþGÞ. It is also possible to calculate it
using the following linear matrix inequality:

Tdom ¼ minfTjTG� C� 0g

Note that the ‘‘� 0’’ here refers to the fact that the matrix
must be positive definite. To ensure that Tdom � Tmax for a
specified value of Tmax, the linear matrix inequality Tmax ¼
GðxÞ � CðxÞ� 0 must be satisfied. This sets up the problem
in the form of a semidefinite program as follows (26):

minimize
Xn

i¼1

lixi

subject to TmaxGðxÞ � CðxÞ� 0
xmin� x� xmax

Largest Inscribed Ellipsoid in a Polytope

Consider a polytope in Rn given by P ¼ fxjaT
i x � bi; i ¼

1; 2; . . . ;Lg into which the largest ellipsoid E, described
as follows, is to be inscribed:

E ¼ fB yþ djkyk � 1g;B ¼ BT > 0

The center of this ellipsoid is d, and its volume is propor-
tional to det(B). The objective here is to find the entries in
the matrix B and the vector d. To ensure that the ellipsoid is
contained within the polytope, it must be ensured that for
all y such that kyk � 1,

aT
i ðByþ dÞ � bi

Therefore, it must be true that supkyk�1ðaT
i B yþ aT

i dÞ � bi,
or in other words, kB aik � bi � aT

i d. The optimization pro-
blem may now be set up as

maximize log det B
subject to B ¼ BT > 0
kB aik � bi � ai d; i ¼ 1; 2; . . . ;L

This is a convex optimization problem (6) in the variables B
and d, with a total dimension of nðnþ 1Þ=2 variables cor-
responding to the entries in B and n variables correspond-
ing to those in d.

CONCLUSION

This overview has presented an outline of convex program-
ming. The use of specialized techniques that exploit the
convexity properties of the problem have led to rapid recent
advances in efficient solution techniques for convex pro-
grams, which have been outlined here. The applications of
convex optimization to real problems to engineering design
have been illustrated.

BIBLIOGRAPHY

1. W. Stadler, Multicriteria Optimization in Engineering and in
the Sciences, New York: Plenum Press, 1988.

2. N. Karmarkar, A new polynomial-time algorithm for linear
programming, Combinatorica, 4: 373–395, 1984.

3. A. V. Fiacco and G. P. McCormick, Nonlinear Programming,
New York: Wiley, 1968.

4. J. Renegar, A Polynomial Time Algorithm, based on Newton’s
method, for linear programming, Math. Programming, 40:
59–93, 1988.

5. C. C. Gonzaga, An algorithm for solving linear programming
problems in O(nL) operations, in N. Meggido, (ed.), Progress in
Mathematical Programming: Interior Point and Related Meth-
ods,, New York: Springer-Verlag, 1988, PP. 1–28,.

6. Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial
Algorithms in Convex Programming, SIAM Studies in Applied
Mathematics series, Philadelphia, PA: Society for Industrial
and Applied Mathematics, 1994.

7. P. M. Vaidya, An algorithm for linear programming which
requires Oðððmþ nÞn2 þ ðmþ nÞ1:5nÞLÞ arithmetic operations,
Math. Programming, 47: 175–201, 1990.

8. Y. Ye, An O(n3L) potential reduction algorithm for linear
programming, Math. Programming, 50: 239–258, 1991.

9. R. T. Rockafellar, Convex Analysis, Princeton, NJ:Princeton
University Press, 1970.

10. D. G. Luenberger, Linear and Nonlinear Programming, Read-
ing, MA: Addison-Wesley, 1984.

11. P. E. Gill, W. Murray and M. H. Wright, Numerical Linear
Algebra and Optimization, Reading, MA: Addison-Wesley,
1991.

12. A. J. Schrijver, Theory of Linear and Integer Programming,
New York: Wiley, 1986.

13. D. den Hertog, Interior Point Approach to Linear, Quadratic
and Convex Programming, Boston, MA: Kluwer Academic
Publishers, 1994.

14. J. A. dos Santos Gromicho, Quasiconvex Optimization and
Location Theory, Amsterdam, The Netherlands:Thesis Pub-
lishers, 1995.

15. L. Vandenberghe and S. Boyd, Semidefinite programming,
SIAM Rev., 38 (1): 49–95, 1996.

16. J. G. Ecker, Geometric programming: methods, computations
and applications, SIAM Rev., 22 (3): 338–362, 1980.

17. R. J. Duffin and E. L. Peterson, Geometric Programming:
Theory and Application, New York: Wiley, 1967.

10 CONVEX OPTIMIZATION



18. K. Kasamsetty, M. Ketkar, and S. S. Sapatnekar, A new class of
convex functions for delay modeling and their application to the
transistor sizing problem, IEEE Trans. on Comput.-Aided
Design, 19 (7): 779–778, 2000.

19. S. Boyd and L. Vandenberghe, Introduction to Convex Optimi-
zation with Engineering Applications, Lecture notes, Electrical
Engineering Department, Stanford University, CA, 1995.
Available http://www-isl.stanford.edu/~boyd.

20. S. W. Director and G. D. Hachtel, ‘‘The simplicial approxima-
tion approach to design centering,’’ IEEE Trans. Circuits Syst.,
CAS-24 (7): 363–372, 1977.

21. S. S. Sapatnekar, P. M. Vaidya and S. M. Kang, Convexity-
based algorithms for design centering, IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., 13 (12): 1536–1549, 1994.

22. A. Prekopa, Logarithmic concave measures and other topics,
in M. Dempster, (ed.), Stochastic Programming, London,
England: Academic Press, 1980, PP. 63–82.

23. S. S. Sapatnekar and S. M. Kang, Design Automation for
Timing-driven Layout Synthesis, Boston, MA:Kluwer Aca-
demic Publishers, 1993.

24. J. Fishburn and A. E. Dunlop, TILOS: a posynomial program-
ming approach to transistor sizing, Proc. IEEE Int. Conf.
Comput.-Aided Des., 1985, PP. 326–328.

25. S. S. Sapatnekar, V. B. Rao, P. M. Vaidya and S. M. Kang, An
exact solution to the transistor sizing problem using convex
optimization, IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst., 12 (11): 1621–1632, 1993.

26. L. Vandenberghe, S. Boyd and A. El Gamal, Optimal wire and
transistor sizing for circuits with non-tree topology, Proc. IEEE
Int. Conf. Comput.-Aided Des., 1997, PP. 252–259.

SACHIN S. SAPATNEKAR

University of Minnesota
Minneapolis, Minnesota

CONVEX OPTIMIZATION 11



D

DYNAMIC PROGRAMMING

The objective of the DP algorithm is to solve the sequential
decision problem optimally. The problem typically uses an
automaton model. Therefore, we start by constructing an
automaton model of a sequential decision process. Then the
principle of optimality is explained as a basic and driving
concept to establish a DP algorithm for the sequential
decision process. To explain how the principle works in
establishing the algorithm, we focus on the relationship
between the representation of the automaton and its opti-
mal solution algorithm by DP. At this stage, the DP algo-
rithm still seems abstract. We describe a more concrete DP
algorithm to optimally solve a so-called nonlinear time
alignment problem, which is widely used in many applica-
tion domains. The relationship between an automaton
model and the DP algorithm of nonlinear time alignment
is also described.

Many types of DP algorithms have been developed due to
the various applications that are possible. We use a DP
algorithm as an example to show how a basic DP algorithm
can be extended to create another algorithm applicable to
another field.

This article comprises sections that describe these
subtopics: (1) automaton model of sequential decision pro-
cess as a simple framework for dealing with DP, (2) principle
of optimality as key concept of DP, (3) baseline algorithm as
a simplest realization of DP, (4) time-alignment algorithm
as one of the most popular applications using DP,
(5) numerical computation of time-alignment algorithm
for understanding each step of computation, (6) continuous
dynamic programming as a useful extension of time-align-
ment algorithm, and (7) other applications including
Markov decision process.

AUTOMATON MODEL OF SEQUENTIAL DECISION
PROCESS

A sequential decision process can be modeled by an auto-
maton composed of four components: state Sk decision
qk 2Q, state transition Sk ¼ TkðSk�1; qkÞ, and gain
gkðSk�1; qkÞ, where Q is a set of decisions and 1 � k � K
Then the total gain function of the so-called additive gain
model is defined as follows and is used to evaluate the
decision sequence:

G ¼
XK
k¼1

gkðSk�1; qkÞ

The additive gain model is widely used in real application
domains. The relationship of these four components and the
total gain G is shown in Fig. 1.

Dynamic programming can be understood simply
through the procedure for developing an algorithm that
gives the maximum value of G. A dynamic programming
algorithm is a realization of the so-called principle of

optimality proposed by R. Bellman (1, 2); therefore, that
principle is described first.

PRINCIPLE OF OPTIMALITY

Understanding the principle of optimality is heuristically
easy. Assume that the path formed by A and B as shown in
Fig. 2, is the full optimal path uniquely determined from
initial state S0 to terminal state Sk and including state Sk. If
two other optimal paths exist, namely A0 (not A) from S0 to
Sk and B0 (not B) from Sk to SK, then the path formed by the
two paths A0 and B0 becomes another full optimal path from
S0 to SK. This mechanism contradicts the assumption that
the path formed by A and B is the full optimal path uniquely
determined from S0 to SK. The principle of optimality
guarantees that an arbitrary state Sk on the full optimal
path from S0 to SK can uniquely divide a full optimal path
into two optimal partial paths.

Formal Definition of the Principle of Optimality

Let q1 be an initial decision. Then the optimal path to reach
state Sk�1 gives a maximum gain G�k�1ðS0; q1Þ for 2 � k � K
The principle of optimality defines the following equation
for 2 � k � K:

G�kðS0Þ ¼ max
q1 2Q

G�k�1ðS0; q1Þ

The equation for k ¼ 1 is defined using a gain function
G1ðS0; q1Þ by

G�1ðS0Þ ¼ max
q1 2Q

G1ðS0; q1Þ

The maximum gain, G�KðS0Þ, has only two parameters, K
and S0 [see (3)].

The Curse of Dimensionality

When obtaining an optimal solution of optimization pro-
blem, DP can reduce the computational burden compared
with that of naÿve algorithms. But the computational
burden of DP increases rapidly with numbers of states
and decisions because the problem domain is still combi-
natorial. This is called ‘‘the curse of dimensionality.’’ Some
methods (4,5) have been proposed to avoid the obstacle in
practical applications.

BASE-LINE DP ALGORITHM OF ITERATIVE COMPUTATION

When applying the principle of optimality to an automaton
of a sequential decision process, as shown in Fig. 1, we can
obtain the following iterative computation.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



First, we describe total gain G of an additive gain model
as follows:

G ¼ g1ðS0; q1Þ þ g2ðS1; q2Þ þ g3ðS2; q3Þ þ � � �

þ gKðSK�1; qKÞ

The states Sk; k ¼ 0; 1; 2; . . . ;K � 1, are not the states on the
full optimal path shown in Fig. 2. A state Sk in this section is
regarded as a working state.

Second, let G1 be g1þg2 assuming that state S0 in G is
given. Then G1 has two variables, q1 and q2, recalling that
S1 ¼ T1ðS0; q1Þ. If G1 is maximized with respect to q1

assuming that q2 is a fixed value, then G�1ðq2Þ¼
max

q1

G1ðq1; q2Þ and q�1¼q�1ðq2Þ ¼ arg fmax
q1

G1ðq1; q2Þg are

obtained, where the superscript asterisks denote
optimality. Let G2 be G�1ðq2Þ þ g3ðS2; q3Þ; then G2 has two
variables, q2 and q3, recalling that S2 ¼ T2ðS1; q2Þ. If we
maximize G2 with respect to q2 assuming that q3 is a
fixed value, then G�2ðq3Þ ¼ max

q2

G2ðq2; q3Þ and q�2 ¼ q�2ðq3Þ ¼
argfmax

q2

G2ðq2; q3Þg are obtained. Then the following equa-

tion holds for k, 2 � k � K � 1:

G�kðqkþ1Þ ¼ max
qk

fG�k�1ðqkÞ þ gkþ1ðSk:qkþ1Þg

where q�k ¼ q�kðqkþ1Þ ¼ argfmax
qk

Gkðqk; qkþ1Þg

Third, let us consider the case where k ¼ K�1.
The function GK�1ð¼ G�K�2ðqK�1Þþ gKðSK�1; qKÞÞ takes into
account all gain functions, and GK�1 has two variables
qK�1; qK . If we maximize GK�1 with respect to qK�1 assu-
ming that qK is a fixed value, then G�K� 1 ðqKÞ ¼ max

q
K�1

GK �1

ðqK�1; qKÞ and q�K�1 ¼ q�K�1ðqKÞ ¼ argfmax
q

K�1

GK�1ðqK�1; qKÞg
are obtained. Here, qK is still a variable.

Finally, optimal value q�K is determined by maximizing
G�K�1ðqKÞ with respect to qK under the constraints of both
terminal state SK and transition SK ¼ TKðSK�1; qK

Þ if such
constraints are given. Here, q�K is not a variable but a value.
After optimal value q�K is determined, q�K�1 is determined by
q�K�1 ¼ q�K�1ðq�KÞ. Here, q�K�1 is also no longer a function of
q

K
, being different from that of forward computation. This

backward computation continues to determine values
q�K�2; q

�
K�3; q

�
K�4 . . . ; q�1. At the same time, the optimal state

sequence S0;S
�
1;S

�
2;S

�
3; . . . ;S�K�1;S

�
K , is determined by

using S�k ¼ TkðS�K�1; q
�
kÞ; k ¼ 1; 2; . . . ;K where S�0 ¼ S0.

The maximum value of G,G,� is also determined by using
q�k and S�k, k ¼ 1; 2; . . . ;K.

The above iterative procedure considers all possible
combinations of q1; q2; q3; . . . ; qK�1; qK

to obtain the max-
imum value of G applying the principle of optimality. It is
also confirmed when we consider that the sequence
S0;S1;S2;S3; . . . ;SK�1;SK in Fig. 2 is taken by the sequence
S0;S

�
1;S

�
2;S

�
3; . . . ;S�K�1;S

�
K obtained in this section. In other

words, each kth step of the iterative computation discovers
state Sk on the full optimal path in Fig. 2 satisfying the
principal of optimality.

The key factor for understanding the procedural aspects
of iterative DP computation consists of three parts:

1) consideration of Gk with two variables, qk�1 and qk,
2) treatment of qk as a fixed value when determining the

optimum qk�1 in Gkðqk�1; qkÞ in the forward computa-
tion, and

3) backward determination of values q�k from k ¼ K � 1
to k ¼ 1 using the formula q�k ¼ q�k ð q�kþ1Þ ¼
argfmax

qk

Gkðqk; q
�
kþ1Þg,where q�kðqkþ1Þand Gk ðqk; qkþ1Þ

should be stored (memoization) at each kth step of the
forward computation.

Constraints

We must consider two kinds of constraints, local and global,
when establishing an iterative computation of DP. The
constraints model the requirements provided by each appli-
cation.

1) A local constraint is represented by TkðSk�1; qkÞ. It
determines the relationship between Sk�1 and qk to
reach Sk.

2) A global constraint is represented by spatial allocation
or algebraic structure of states fS0;S1;
S2;S3; . . . ;SK�1;SKg. It is independent of local con-
straints. Assignment of conditions for S0 and SK is a
global constraint.

Because the explanations in this section may not be
sufficient to gain a thorough understanding of DP, we
present more concrete examples.

TIME ALIGNMENT

In the fields of speech recognition (6), biological information
processing (7), and other applications including artificial
intelligence and information retrieval, so-called nonlinear

Figure 1. Automaton model of sequential decision process.

Figure 2. Schematic diagram of the principle of optimality.

2 DYNAMIC PROGRAMMING



alignment algorithms based on DP are widely used. Each of
them is a different realization of dynamic programming for
a different sequential decision problem.

We consider a simple algorithm of a time alignment
problem to explain how DP is implemented in such applica-
tion domains. The main objective of this time alignment
problem is to obtain an optimal correspondence between two
time sequences that minimizes the total sum of the mutual
distance by choosing optimal time pairs from two time
sequences under local and global constraints, as shown in
Fig. 3. In the figure, fIðiÞ : 1 � i � Ng is an input time
sequence of a feature vector, whereas fRð jÞ : 1 � j �Mg
is another sequence of a feature vector called a reference
time sequence. The bold line in Fig. 3 shows a sequence of
optimal pairs composed of ði�k; j�kÞ; ðk ¼ 1; 2; . . . ;KÞ, where
the optimality means minimization of the total sum of
distance function, considering possible pairs (i, j) under
the following conditions:

1) Boundary conditions ði�1; j�1Þ ¼ ð1; 1Þ and ði�K ; j�KÞ ¼
ðN;MÞ are satisfied,

2) Local paths are determined using a local constraint,
and

3) The optimal path must be included in the area deter-
mined by global constraint.

The nonlinear time-alignment problem belongs to the
class of sequential decision problems, and its solution cre-
ates an automaton as the other representation mentioned
above. The automaton and its DP algorithm are two repre-
sentations of a sequential decision process, and they are
coupled tightly with each other.

Through the correspondence between them we can
understand how DP is actually implemented. Therefore,
we make an automaton of a nonlinear time-alignment
problem by taking into account the correspondences
between components of the two representations.

First, state Sk of the automaton of Fig. 1 corresponds to a
location (i,j) on a two-dimensional array of the alignment
problem, where i and j are discrete points on time axes of
input and reference time sequences, respectively. A decision
qk of the automaton of Fig. 1 corresponds to selection of a
path among a set of local paths to reach location (i, j). In
Fig. 3, the set of local paths consists of three paths, namely,

paths from location ði� 1; jÞ; ði� 1; j� 1Þ, or ði; j� 1Þ to
(i, j). The selection of a path is the result of evaluating
each path based on a criterion described later.

Second, a transition Sk ¼ TkðSk�1; qkÞ of Fig. 1 corre-
sponds to a transition from one of three locations
ði� 1; jÞ; ði� 1; j� 1Þ; ði; j� 1Þ, to location (i, j) by selecting
a path, and Sk�1 corresponds to all three locations.

Finally, we consider a distance function instead of a gain
function gkðSk�1; qkÞ. Here, we recall the automaton model
of the sequential decision process and its iterative compu-
tation of dynamic programming mentioned above. Let us
assign a variable G�k of the iterative computation to a state
Sk of the automaton model. Then a similar assignment for
the alignment problem leads to the correspondence of a
variable D(i,j) to a location (i, j) by introducing D(i, j) as a
minimum accumulated distance. To introduce D(i,j), we use
the normalized sum of weighted distance, defined by

J ¼ 1

W

XK
k¼1

wkdkðik; jkÞ

The boundary conditions, ði1; j1Þ ¼ ð1; 1Þ; ðiK ; jKÞ ¼ ðN;MÞ,
and the total sum of weights W ¼

P
wk are used. If we use

weight wk attached to each local path shown in Fig. 3, then
value W takes a constant value NþM for an arbitrary path
from ði1; j1Þ ¼ ð1; 1Þ to ðiK ; jKÞ ¼ ðN;MÞ because of the
property of rectilinear city block distance. Therefore,
weight Wk takes a value of 1 for transition from ði� 1; jÞ
or ði; j� 1Þ to (i, j) and 2 for transition from ði� 1; j� 1Þ to
(i, j), as shown in Fig. 3, because weights attached to local
paths are parts of rectilinear city block distance. The term
wkdkðik; jkÞ corresponds to a gain function gkðSk�1; qkÞ. In a
real application, dði; jÞ ¼ dðIðiÞ;Rð jÞÞ is usually defined by
a distance measure between feature vectors I(i) and R(j).
Then we can obtain the following iterative form of dynamic
programming regarding Dði; jÞ along with the transition of
the state by choosing one of the following paths:

Dði; jÞ ¼ min

Dði� 1; jÞ þ dði; jÞ
Dði� 1; j� 1Þ þ 2dði; jÞ
Dði; j� 1Þ þ dði; jÞ

8<
:

The boundary condition of the above equation is Dð0; jÞ ¼
Dði; 0Þ ¼ 1; i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ;M. The role of deci-
sion qk in the automaton model is regarded as selection of
the minimum of three values in the alignment model. In
other words, decision qk does not appear explicitly in the
alignment model. The selection is determined by finding
the minimum among three candidates, each of which is
composed of Dði; jÞ and dði; jÞ.

Local Constraint and Semimonotonic Property

Generally, the form of iterative computation depends
mainly on the type of local constraint. The local con-
straint shown in Fig. 3 has the property of semimono-
tonic increase of the location parameter (i, j) in local
transition: ik � ikþ1 and jk � jkþ1 hold for any transition
from ðik; jkÞ to ðikþ1; jkþ1Þ. The semimonotonic property of a

Figure 3. Nonlinear time alignment using dynamic program-
ming.

DYNAMIC PROGRAMMING 3



time parameter is a natural characteristic of a time
sequence because of causality. Embedding the property
into the local constraint guarantees retention of the prop-
erty of a semimonotonic increase in time parameters in
optimally corresponding sequences. In most real applica-
tions, we must consider a global constraint for the states to
properly execute the iterative computation for D(i, j) and
eliminate the effects of irregular situations. In Fig. 3, the
global constraint determines the area bordered by six
solid lines in which actual working states are allowed,
and such constraint is realized by the assignment of an
infinite value for all Dði; jÞ beyond the area during the
computation.

Recognition

The value 1
MþN DðN;MÞ becomes the output, which indi-

cates the minimum value of J obtained by choosing the
optimal path from ði1; j1Þ ¼ ð1; 1Þ to ðiK ; jKÞ ¼ ðN;MÞ.
When m reference sequences are used to represent m
classes and one input sequence, then m output values
are obtained. These m values can be compared and the
minimum found to determine the nearest class because
their values are normalized for different lengths of refer-
ence sequence.

NUMERICAL EXAMPLE

Figure 4 shows a simple numerical example of nonlinear
time alignment. The input and reference time sequences are
IðiÞ ¼ 1; 2; 4; 4; 3; 3; 2 and Rð jÞ ¼ 2; 3; 4; 2; 2, respectively.
The distance measure is defined by dði; jÞ ¼ jIðiÞ � Rð jÞj,
and the start and end states are given by ði1; j1Þ ¼ ð1; 1Þ and
ðik; jkÞ ¼ ð7; 5Þ. A global constraint for the states is modeled
by the assignment of infinite value1 around two corners of
the array. Figure 4 shows a 5� 7 array of values assigned to
D(i, j) as the result of iterative computation, where para-
meter i indicates the horizontal axis, and parameter j indi-
cates the vertical axis and counts from the bottom of the
array.

The numerical computation takes the following proce-
dure. We use a variable of 6 � 8 array including mar-
ginal components, namely, Dði; jÞ : i ¼ 0; 1; 2; 3; 4; 5; 6; 7;

j ¼ 0; 1; 2; 3; 4; 5. The initial condition of marginal compo-
nents of D(i, j) is determined by Dði; 0Þ ¼ 1; i ¼
0; 1; 2; 3; 4; 5; 6; 7 and Dð0; jÞ ¼ 1; j ¼ 0; 1; 2; 3; 4; 5.

To avoid extreme nonlinear alignment we establish
a global constraint such as D(1,4)¼D(1,5)¼D(2,5)¼
D(6,1) ¼ D(7,1) ¼ D(7,2) ¼ 1. We initially determine
Dð1; 1Þ ¼ jIð1Þ � Rð1Þj ¼ j1� 2j ¼ 1. Then an iterative com-
putation starts from i ¼ 1 to i ¼ 7 for j ¼; 1; 2; 3; 4; 5.

In the case of i ¼ 1 and j ¼ 2; 3; 4; 5, the following equa-
tion

Dð1; jÞ ¼ min

Dð0; jÞ þ dð1; jÞ
Dð0; j� 1Þ þ 2dð1; jÞ
Dð1; j� 1Þ þ dð1; jÞ

8<
:

determines the values of the first column ði ¼ 1Þ, namely,
D(1,2) ¼ 1þ2 ¼ 3, D(1,3) ¼ 3þ3 ¼ 6, D(1,4) ¼ D(1,5) ¼1
using dð1; 2Þ ¼ 2;dð1; 3Þ ¼ 3;dð1; 4Þ ¼ 1;dð1; 5Þ ¼ 1. The
result Dð1; 4Þ ¼ Dð1; 5Þ ¼ 1, is because of the global con-
straint.

In the case of i ¼ 2 and j ¼ 1; 2; 3; 4; 5, the equation

Dð2; jÞ ¼ min

Dð1; jÞ þ dð2; jÞ
Dð1; j� 1Þ þ 2dð2; jÞ
Dð2; j� 1Þ þ dð2; jÞ

8<
:

determines the values of the second column ði ¼ 2Þ, namely,
Dð2; 1Þ¼1þ 0;Dð2; 2Þ¼1þ1¼ 2;Dð2; 3Þ¼ 2þ2¼ 4;Dð2; 4Þ¼
4þ 0 ¼ 4;Dð2; 5Þ ¼ 1 using dð2; 1Þ ¼ 0;dð2; 2Þ ¼ 1;d�
ð2; 3Þ ¼ 2,d ð2; 4Þ ¼ dð2; 5Þ ¼ 0. The result Dð2; 5Þ ¼ 1 is
because of the global constraint.

We continue this computation until i ¼ 7. Then for the
case j ¼ 1; 2; 3; 4; 5; the equation

Dð7; jÞ ¼ min

Dð6; jÞ þ dð7; jÞ
Dð6; j� 1Þ þ 2dð7; jÞ
Dð7; j� 1Þ þ dð7; jÞ

8<
:

determines the values of the seventh column (i ¼ 7),
namely, D(7, 1) ¼ 1;D(7, 2) ¼ 1;D(7, 3) ¼ 6, D(7, 4) ¼ 4,
D(7, 5)¼ 4 using d(7, 1)¼ 0, d(7, 2) ¼ 1, d(7, 3)¼ 2, d(7,4)¼
d(7, 5)¼ 0. The result D(7, 1)¼D(7, 2)¼1 is because of the
global constraint.

The final results of the time alignment are the minimum
of J ¼ Dð7; 5Þ=ð7þ 5Þ ¼ 4=12 ¼ 1=3, and the alignment
trajectory indicates a chain of arrows in the figure between
two sequences obtained by tracing back from location (7, 5)
to (1, 1). Moreover, the value of K becomes 9. The tracing
back from the terminal location (7, 5) selects the local
optimal path for D(7, 5) in the equation

Dð7; 5Þ ¼ min

Dð6; 5Þ þ dð7; 5Þ
Dð6; 4Þ þ 2dð7; 5Þ
Dð7; 4Þ þ dð7; 5Þ;

8<
:

Figure 4. Numerical example of time alignment.

4 DYNAMIC PROGRAMMING



where dð7; 5Þ ¼ 0 and Dð6; 5Þþ dð7; 5Þ ¼ 6;Dð6; 4Þþ
2dð7; 5Þ ¼ 5;Dð7; 4Þþ dð7; 5Þ ¼ 4. It is clear that the
backtracing path from (7,5) reaches location (7,4). Then
we continue tracing back from location (7,4) using the
equation

Dð7; 4Þ ¼ min

Dð6; 4Þ þ dð7; 4Þ
Dð6; 3Þ þ 2dð7; 4Þ
Dð7; 3Þ þ dð7; 4Þ

8<
:

where dð7; 4Þ ¼ 0 and Dð6; 4Þ þ dð7; 4Þ ¼ 5;Dð6; 3Þþ
2dð7; 4Þ ¼ 4;Dð7; 3Þ þ dð7; 4Þ ¼ 6. It is clear that the
backtracing path recovers location (6,3). We continue
the same neighborhood-bound computation until reach-
ing location (1,1). Then the complete path of tracing back is
obtained and also K ¼ 9 is determined. The arrow
sequence of Fig. 4 indicates alignment path from (1,1)
to (7,5) using the reverse of complete backtrace.

CONTINUOUS DYNAMIC PROGRAMMING

The time-alignment algorithm would seem to be very useful
in many application domains. However, the algorithm
described in the previous section still has restricted proper-
ties when considered for application to other real-world
time-alignment problems. Therefore, many extended
algorithms have been developed. One of them is called
continuous dynamic programming (CDP) (8). CDP extends
the previously described alignment problem, with an input
sequence of a fixed length, to accept an endless stream of an
input time sequence while the reference sequence is still a
fixed interval of a time sequence. In other words, CDP
performs segmentation-free matching between an endless
input sequence and a reference sequence with fixed length
without a priori segmentation of the input stream. The
automaton model of CDP is simply described by taking a set
of states, fði; jÞ : �1 < i < þ1; 1 � j � Tg, while the
alignment problem outlined in the previous section takes
a rectangular array fði; jÞ : 1 � i � N; 1 � j �Mgas the set
of states. Then the iterative algorithm of CDP is des-
cribed using the parameters t,t instead of i, j so that input

and reference time sequences are respectively denoted
f ðtÞ;�1< t <þ1, and ZðtÞ; 1 � t � T. We use the type of
local constraint with weights shown in Fig. 5 and the local
distance function dðt; tÞ ¼ dð f ðtÞ;ZðtÞÞ, but no global con-
straint is imposed on the states. However, at each time t the
local constraint creates a moving triangular area, as shown
in Fig. 5. This area is made from possible combinations of
local constraints so that the optimal path is included. The
moving triangular area behaves similarly to a global con-
straint by restricting the admissible area of the (t,t)-plane
at time t. Moreover, the local constraint in Fig. 5 guarantees
the property of monotonic increase in the alignment tra-
jectory constructed by possible combinations of local paths
to reach (t,T).

An accumulated minimum distance Pðt; tÞ is introduced
and assigned to location (t,t). Then the iterative computa-
tion of CDP is expressed by

Pðt; 1Þ ¼ 3dðt; 1Þ;

Pðt; 2Þ ¼ min

Pðt� 2; 1Þ þ 2dðt� 1; 2Þ þ dðt; 2Þ
Pðt� 1; 1Þ þ 3dðt; 2Þ
Pðt; 1Þ þ 3dðt; 2Þ

8<
:

Pðt; tÞ ¼ min

Pðt� 2; t� 1Þ þ 2dðt� 1; tÞ þ dðt; tÞ
Pðt� 1; t� 1Þ þ 3dðt; tÞ
Pðt� 1; t� 2Þ þ 3dðt; t� 1Þ þ 3dðt; tÞ

8<
:

ð3 � t � TÞ

where the initial condition is given by

Pð�1; tÞ ¼ Pð0; tÞ ¼ 1 ð1 � t � TÞ

The normalized minimum accumulated distance at time t
is determined by

CðtÞ ¼ Pðt;TÞ
3T

where the total sum of weights is a constant value 3T for
any optimal path because the weights in the local con-
straint take city block distances, as shown in Fig. 5. A
simple comparison with the relationship between J and
D(i, j) in the previous section reveals that the output of CDP
at time t can be expressed by

CðtÞ ¼ 1

3T
min

ðt1;t1Þ�ðt2;t2Þ� ��� �ðtK :tKÞ

�XK
k¼1

wkdðtk; tkÞ
�

where causal monotonicity ðtk; tkÞ � ðtkþ1; tkþ1Þ means
that both tk � tkþ1 and tk � tkþ1 hold.Figure 5. Continuous dynamic programming.

DYNAMIC PROGRAMMING 5



Segmentation-Free Recognition

The variable C(t) is regarded as the output stream of CDP
that is used to frame-wisely recognize a category repre-
sented by a reference pattern fZðtÞ : t ¼ 1; 2; . . . ;Tg and
also detect an interval in an endless input stream at time t�

when C(t) takes a local minimum at t� under threshold
value h. Here, the detection is dependent only on the local
minimum of C(t). At the same time, by tracing back the
trajectory starting at location ðt�;TÞ, we can find the loca-
tion ðt�s ; 1Þ on the two-dimensional array fðt; tÞ : �1 < t <
þ1; 1 � t � Tg. Then it is possible to segment the interval
½t�s ; t�� in the input stream that is optimally aligned to the
reference time interval. To carry out the backtracing
processing, it is necessary to recall the optimal local paths
to reach location ðt�;TÞ from location ðt�s ; 1Þ, where ðt�s ; 1Þ is
determined as the end state of the backtracing. The detec-
tion of the interval ½t�s ; t�� is a segmentation that needs no
assumption beforehand for segmentation.Therefore, this
processing performs segmentation-free or spotting recog-
nition of the reference time sequence that represents a
category, such as a word. In other words, CDP simulta-
neously performs both segmentation and recognition by
detecting a local minimum of the output stream of CDP.

We must now describe an important factor regarding
CDP in which the segmentation-free recognition is based
not on a global but a local minimum of the output stream
of CDP. The detection of the local minimum is easily
accomplished. From the viewpoint of real-time proce-
ssing, this scope is suitable for its realization, because
it means simply monitoring the stream of C(t). The
detection works well to perform segmentation-free recog-
nition or retrieval of intervals frame-wisely from a data-
base of sequences that are similar to a query sequence of a
fixed length (8).

OTHER APPLICATIONS

Modifications of Local Distance and Constraints

The time-alignment algorithm described can be modified to
solve a problem of string matching by using another type of
local distance measure that deals with insertion, erasure,
and confusion (replacement) between symbols in two
strings.

Global and local constraints of time-alignment problems
mentioned above are relatively simple, but generally, local
and global constraints in many applications take different
types. In creating DP algorithms based on more complex or
different constraints, constraints are usually transformed
into those of the baseline algorithm. One method to trans-
form a given problem into the problem solved by the base-
line algorithm is to transform a global constraint into a local
constraint. For instance, consider the case that a global
constraint of the automaton model of Fig. 1 imposes the
relationship q1 þ q2 þ . . .þ qk ¼ C, (C: constant value),
assuming that each decision qk takes a value, and a local
constraint is taken such as qk� 0 for k ¼ 1; 2; � � � ;K.
We introduce a variable Pk with the relationship
qk ¼ pk � pk�1. Then the global constraint changes to a
part of the local constraint, namely pK ¼ C, and the rest of

the local constraint is composed of p1� 0; pk� pk�1 for k ¼
2; 3 � � � ;K and Sk ¼ TkðSk�1; pkÞ while gain gk becomes a
function of ðpk� pk�1Þand Sk�1: In other words,we have the
expression g1ðp1Þ; g2ðp1; p2Þ; g3ðp2;p3Þ; . . . ; gK ðpK�1; pkÞ;
so the DP algorithm to solve the transformed problem is

formally equivalent to the baseline algorithm of DP. The
key factor for understanding the procedural aspects men-
tioned in baseline DP algorithm is also valid.

Markov Decision Process

DP is applicable to a stochastic decision model. A simple
algorithm for Markov decision process has been described
(9). Let us define N states, S1;S2;S3; . . . ;Si; . . . ;SN, and M
decisions, d1;d2;d3; . . . ;dm; . . . ;dM. The set of decisions is
denoted by D and any decision is applicable to each Si. A
decision dm 2D for state Sj determines both transition
probability rij(m) from state Si to Sj and gain gij(m) of state
Sj. Then each kth step of the optimal decision process with
total gain G�i ðkÞ starting state from Si satisfies the recursive
equation of DP:

G�i ðkþ 1Þ ¼ max
dm 2D

(XN
j¼1

ri jðmÞðgi jðmÞ þG�jðkÞÞ
)

Building Block

Alternatively, DP can be embedded into another algo-
rithm. For instance, a Hidden Markov Model uses a DP
kernel as its important search engine called the Viterbi
algorithm. Moreover we find the usage of DP in the follow-
ing problems and algorithms: the Cocke-Younger-Kasami
algorithm, the Earley algorithm, the knapsack problem,
computer chess, games, traveling salesman problem, opti-
mizing the order of chain matrix multiplication, stereo
image matching, and image registration. Therefore, we
often use DP as a building block to construct larger algo-
rithms for specific purposes.

BIBLIOGRAPHY

1. R. E. Bellman, Dynamic Programming. Princeton, NJ: Prin-
ceton University Press, 1957.

2. R. E. Bellman, Applied Dynamic Programming. Princeton, NJ:
Princeton University Press, 1962.

3. Mathematical Society of Japan, KiyosiIt Itô (ed.), Encyclopedic
Dictionary of Mathematics, 2nd ed., Cambridge, MA: MIT
Press, 1993.

4. A. Yamamoto, R. G. Haight, and J. D. Brodie, A comparison of
the pattern search algorithm and modified path algorithm for
optimizing an individual tree model, Forest Sci., 36 (2): 394–
412, 1990.

5. B. V. Roy, Neuro-dynamic programming: overview and recent
trends, in E. Feinberg and A. Schwartz, (Eds.) Handbook of
Markov Decision Process: Method and Application, Amsterdam,
The Netherlands: Kluwer, 2001.

6. H. Sakoe and S. Chiba, Dynamic programming algorithm
optimization for spoken word recognition, IEEE Trans. Acous-
tic Speech Signal Proc., 26 (2), 43–49, 1978.

6 DYNAMIC PROGRAMMING



7. R. P. William, Protein sequence comparison and protein evolu-
tion, Tutorial- ISBM2000, UC San Diego, CA, 2000.

8. R. Oka, Spotting method for classification of real world data,
Comput. J., 42 (8): 559–565, 1998.

9. R. A. Howard, Dynamic Programming and Markov Process,
New York: Technology Press/John Wiley, 1960.

FURTHER READING

M. Sniedovich, Dynamic Programming. Boca Raton, FL: CRC
Press, 1992.

S. Theodoridis and K. Koutroumbas, Pattern Recognition, 2nd
ed. New York: Academic Press, 2003. Dynamic programming.
Available: http: / / en.wikipedia.org / w/index.php?title = Dynamic_
programming & oldid=157608766.

RYUICHI OKA

AIZU-WAKAMATSU

University of Aizu
Aizu-Wakamatsu,

Japan

DYNAMIC PROGRAMMING 7



F

FORMAL LOGIC

INTRODUCTION

Logic studies the validity of arguments. A typical case in
point is that of syllogisms: logical arguments in which,
starting from two premises, a conclusion is reached. For
example, given that

There are horses in Spain.

All horses are mammals.

it can be inferred that

There are mammals in Spain.

Of course, if instead of the second premise we had the
weaker one

Some horses are mammals.

where the universal (all) has been replaced with an exis-
tential (some/exists), then the argument would not be
valid. In Ancient Greece, Aristotle exhaustively considered
all possible combinations of universals and existentials in
syllogisms, allowing also for the possibility of negations,
and collected those corresponding to valid inferences in a
classification theorem. For many centuries, that classifica-
tion (slightly enhanced by the scholastics during the Middle
Ages) was all there was to know about logic.

In its origin, the term ‘‘formal’’ logic used to be a refer-
ence to the form of the arguments. The validity of an
argument depends exclusively on the form of the premises
and on the conclusion, not on whether these are true or
false. In the previous example, if we were to replace
‘‘horses’’ with ‘‘unicorns,’’ the argument would still be valid,
regardless of the fact that unicorns do no exist.

Nowadays, however, ‘‘formal’’ refers to the use of the
formal and rigorous methods of mathematics in the study
of logic that began to be put into practice in the second half
of the nineteenth century with George Boole and, especially,
Gottlob Frege (see Ref. 1). This trend started with a shift to
a symbolic notation and artificial languages, and gradually
it evolved until, in 1933 with Tarski (2), it culminated with
the withdrawal from an absolute notion of Truth and
instead focused on the particular truths of concrete struc-
tures or models.

Propositional logic

Arguably, the simplest logic is propositional logic, and we
will use it to introduce the underlying elements of every
logic. Given a set A ¼ fp; q; r; . . .g of atomic propositions,
the language of propositional logic is constructed according

to the following rules:

w ::¼ p2A j :p jw_w jw^w jw!w jw$ w

: means ‘No’ ! means ‘Implies=Then’
_ means ‘Or’ $ means ‘If and only if’
^ means ‘And’

For example, let us assume that p represents ‘‘The chef is
competent,’’ q represents ‘‘The ingredients are expired,’’
and r represents ‘‘The cake is delicious.’’ Then, the premise
‘‘If the chef is competent and the ingredients are not
expired, then the cake will be delicious’’ could be repre-
sented in the language of propositional logic as follows:

ðp^ : qÞ! r

Furthermore, if we assume that the chef is actually com-
petent, that is, if we assume p as the second premise, we can
conclude that ‘‘If the cake is not delicious, the ingredients
are expired’’, or, formally:

: r! q

But how and why can we conclude that this last sentence
follows from the previous two premises? Or, more gener-
ally, how can we determine whether a formula w is a valid
consequence of a set of formulas fw1; . . . ;wng? Modern logic
offers two possible ways, which used to be fused in the time
of syllogisms: the model-theoretic approach and the proof-
theoretic one.

In model theory, it is necessary to assign a meaning to
the formulas, to define a semantics for the language. The
central notion is that of truth and of deciding the circum-
stances under which a formula is true. The more complex
the logic, the more difficult this assignment is and hence the
more complex the semantics. In propositional logic, we have
to start by assigning arbitrary values to the atomic proposi-
tions: A valuation V is defined as a function that maps
atomic propositions to either 0 (meaning, intuitively, false)
or 1 (true). The meaning I V ðwÞ of an arbitrary formula w is
defined recursively:

I V ðpÞ ¼ VðpÞ

I V ð :wÞ ¼
�

1 if I V ðwÞ ¼ 0
0 if I V ðwÞ ¼ 1

I V ðw_cÞ ¼
�

1 if I V ðwÞ ¼ 1 or I V ðcÞ ¼ 1
0 otherwise

I V ðw^cÞ ¼
�

1 if I V ðwÞ ¼ 1 and I V ðcÞ ¼ 1
0 otherwise

I V ðw!cÞ ¼
�

1 if I V ðwÞ ¼ 0 or I V ðcÞ ¼ 1
0 otherwise

I V ðw$cÞ ¼
�

1 if I V ðwÞ ¼ I V ðcÞ
0 otherwise

For example, if VðpÞ ¼ VðqÞ ¼ 0 and VðrÞ ¼ 1, then
I V ð :pÞ ¼ 1; I V ð :p^ qÞ ¼ 0, and I V ðr!ð: p^ qÞÞ ¼ 0:

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



If I V ðwÞ ¼ 1, then it is said that V is a model of w, or that
V satisfies w; it is a ‘‘world’’ in which w is true. A formula is
said to be valid if it is true under all circumstances, that is, if
every valuation is a model of w:

w is valid if I V ðwÞ ¼ 1 for all valuations V

For instance, it is easy to check that p!ðq! pÞ is a valid
formula. Similarly, if V is a model of all the formulas in a
set G, then V is said to be a model of G. A formula w is a
semantic consequence of a set G of formulas, written G � w, if
every model of G is also a model of w or, alternatively, if w is
true whenever all formulas in G are true:

G � w if I V ðwÞ ¼ 1 whenever I V ðcÞ ¼ 1 for all c2G:

In the proof-theoretic approach, the central concept is
that of proof: to show that a statement follows from some
others, one has to make use of a deduction system. Deduction
systems are syntactic in nature, caring only about the form
of sentences and not about what they represent or their
possible meaning. One such system, the axiomatic method,
distinguishes a subset of formulas, called axioms, formed by
all sentences that match any of the following patterns:

w!ðc!wÞ
ðw!ðc!xÞÞ! ððw!cÞ! ðw!xÞÞ
ð :w! :cÞ! ðc! wÞ

Given a set of formulas G, a formula w is said to be a logical
consequence of G, written G‘w, if there is a sequence of
formulas w1;w2; . . . ;wn such that:

1. wn ¼ w.

2. For all i � n, either wi is an axiom, or wi belongs to G, or
j, k < i exist such that wk ¼ w j!wi.

This corresponds to an iterative process in which we can
add to the set of provable sentences, at every stage, either
an axiom (whose validity is clear according to the defined
semantics), an element of G (a hypothesis we are assuming
as given), or a formula wi whenever we have previously
proved w j and that w j implies wi.

The axiomatic method is not the only deduction system.
In natural deduction, rules are associated with the con-
nectives: introduction rules, to prove formulas containing
the connective, and elimination rules, to obtain conse-
quences from a formula with a given connective. For exam-
ple, the following are prototypical:

w c

w^c

w^c

w

w^c

c w
if w2G

The first rule is the introduction rule for the logical ‘‘and,’’
and it captures the idea that ifwandc can both be proved, so
can their conjunction; the next two are elimination rules,
stating that from a conjunction, both its conjuncts can be
derived; the last allows the derivation of a hypothesis.
Similar rules are associated with the remaining connec-
tives. Compared with the axiomatic method, natural deduc-
tion has a richer set of rules: As a result, it is easier to
prove things in the logic using natural deduction, but the
simplicity of the axiomatic method comes in handy if one is
interested in proving something about the logic. Although

the presentations of deduction systems vary, they all allow
the derivation of the same set of sentences (assuming they
are properly designed).

Let us return to the example of the chef and the cake. In
symbols, the argument can now be expressed as follows:

fðp^ :qÞ! r; pg� :r! q

Although it is a bit tedious, one can consider all eight
possible assignments of values to p, q, and r and check
that it is actually a semantic consequence.

But then the following question can be raised. How come
the argument cannot be expressed instead as follows:

fðp^ :qÞ! r; pg ‘ :r!q

Indeed, we have defined two different notions of conse-
quence, semantic and logical, and although both are rea-
sonable, they do not seem to have much in common: Which
one should be chosen? This is an important metalogical
question. Fortunately, in the case of propositional logic, it
does not matter for it can be proved that

G‘w if and only if G � w

The implication from left to right, that asserts that any
proof-theoretic logical consequence is also a semantic con-
sequence, is known as the soundness of propositional logic.
The implication from right to left, which claims that any
semantic consequence has a syntactic derivation, is the
completeness of propositional logic.

Assume that we have a finite set G of assumptions. We
then have two methods at our disposal to decide whether a
given formula follows from G. Either we build a syntactic
proof, or we show that all models of the assumptions also
satisfy the formula. In particular, since we are working
with a finite set of formulas, there is only a finite number of
atomic propositions involved. We can consider all possible
valuations and study whether there is one that satifies G

but not w. Hence, for propositional logic, the validity pro-
blem is decidable, in the precise sense that there is an
effective procedure or algorithm that solves it (see the
article on Computability).

This ends the presentation of propositional logic. Sum-
ming up, the most important elements introduced, common
toall logicsare as follows: a syntax thatdefines the language;
a semantics to assign meaning to the formulas; logical and
semantic consequences and relationships between them;
and the validity problem.

PREDICATE LOGIC

The simplicity of propositional logic comes at a price. Its
expressive power is limited; in particular, it cannot deal
with syllogisms like that at the beginning of this article:

There are horses in Spain.

All horses are mammals.

which implies that

There are mammals in Spain.

2 FORMAL LOGIC



In propositional logic we would have to formalize the first
premisebymeansofanatomicpropositionp, thesecondwith
q, and the conclusion r would not be a valid consequence.

To remedy this issue, predicate logic (also known as
first-order logic) introduces predicates and quantifiers.
Assume that we use HðxÞ; SðxÞ, and MðxÞ to express
that x is a horse, x dwells in Spain, and x is a mammal,
respectively. Then, the syllogism can be presented as a
valid argument in predicate logic as follows:

9 xðHðxÞ ^SðxÞÞ
8 xðHðxÞ!MðxÞÞ
9 xðMðxÞ ^SðxÞÞ

where the quantifier 8means ‘‘for all’’ and 9means ‘‘there
exists.’’

But predicate logic goes beyond syllogisms. It not only
allows multiple premises, but also predicates with an arbi-
trary number of arguments. For example, a statement like
‘‘the ancestor of an ancestor is also an ancestor’’ has no room
in the syllogistic theory, whereas it can be dealt with in
predicate logic by using a binary predicate A(x, y) with the
meaning x is an ancestor of y:

Aðx; yÞ ^Aðy; zÞ!Aðx; zÞ

In predicate logic, one can distinguish two levels: terms
and formulas. Terms denote individuals, whereas formulas
are statements about those individuals. Terms are con-
structed from a set of variables ðx0; x1; x2; . . .Þ and a set of
constants and function symbols with arbitrary arities:

t ::¼ x j c j f ðt1; . . . ; tnÞ f function symbol of arity n

Thus, if mother is a unary function symbol, the fact that
one’s mother is an ancestor can be expressed with
A(mother(x), x).

Formulas, in turn, are constructed from terms and a set
of predicate symbols:

w ::¼ t1¼ t2

jRðt1; . . . ;tnÞ j :w jw_w jw^w jw!w jw$w j 8xw j 9xw

where R is a predicate symbol of arity n. The resulting set of
formulas depends on the concrete sets of function and
predicate symbols, F and P. We will write L(F, P) to denote
the set of formulas, or language, built using the sets F and
P, or just L if no ambiguity develops. For example, if peter is
a constant that represents a concrete boy and S is a binary
predicate that stands for ‘‘sibling,’’ the sentence

8xðSðx; peterÞ! 8zðAðz; peterÞ$Aðz;xÞÞÞ

expresses that peter has the same ancestors as his siblings.
For another, less-contrived example, consider the func-

tion symbols 0 (constant), suc (unary), andþ, *(binary), and
the predicate < (binary), which give rise to the language of
arithmetic for obvious reasons. Commutativity of addition

is then expressed as follows:

8 x 8 yþ ðx; yÞ ¼ þðy; xÞ

Although awkward, this is the correct notation; however,
we will usually stick to the standard infix notation and
write þ(x, y) as x þ y.

Note that quantifiers are variable binding operators in
the same sense as the summation symbol

P
in an expres-

sion like
P9

x¼1 x, where the variable x cannot ‘‘vary’’ and
take any arbitrary value. (This will become more clear
once the semantics of quantifiers is presented in the next
section.) In 8 xwand 9 xw, the formulaw is said tobe the scope
of the quantifier. Then, an occurrence of a variable in an
arbitrary formula is said to be free if it falls under the scope
of no quantifier; otherwise, that occurrence is called bound.

Semantics

First of all, the universe of discourse, the elements to be
referred to by terms, has to be fixed; then, function and
predicate symbols from the sets F and P have to be inter-
preted over it. More precisely, a structure A is a tuple

hA; cA; . . . ; f A; . . . ;RA . . .i

such that

� A is a nonempty set;

� for every constant c2F; cA 2A;

� for every n-ary function symbol f 2F; f A is a function
from An to A;

� for every n-ary predicate symbol R2P;RA is a subset
of An.

An obvious structure N for the language of arithmetic
consists of the set N of natural numbers as universe, with
0N the number zero, sucN the successor operation, þN and

*
N addition and multiplication of natural numbers, and< N

the ‘‘less-than’’ relation. Note, however, that the structure
can be arbitrary. Another valid structure isM, where:

� the universe M is the set of digits 0; 1; 2; . . . ; 9;

� 0M is the digit 9;

� sucM returns 0 when applied to 9 and the following
digit in the usual order otherwise;

� þM, when applied to two digits, returns the smallest
one;

� *
M returns the greatest digit;

� <M is the set of all pairs (u, v) with u greater than v.

More generally, the set A can consist of letters, derivable
functions, matrices, or whatever elements one chooses.

Before meaning can be ascribed to terms, yet another
component is needed: an assignment mapping variables to
elements of A. Then, an interpretation I ¼ ðA;VÞ is a pair
formed by a structure and an assignment V. The meaning of
a term in a given interpretation, that is, the individual it

FORMAL LOGIC 3



refers to in the universe, can now be defined recursively:

IðxÞ ¼ VðxÞ
IðcÞ ¼ cA

Ið f ðt1; . . . ; tnÞÞ ¼ f AðIðt1Þ; . . . ; IðtnÞÞ

Let us consider the previously defined structureN , and
let V be an assignment such that VðxÞ ¼ 3 and VðyÞ ¼ 5. In
the interpretation I ¼ ðN ;VÞ; Iðx * sucðsucð0ÞÞÞ ¼ 6 and
Iðxþ sucðyÞÞ ¼ 9. On the other hand, in the interpretation
J ¼ ðM;WÞ, where W(x) ¼ 3 and W(y) ¼ 5, those same two
terms get very different meanings: J ðx*sucðsucð0ÞÞÞ ¼ 3
and J ðxþ sucðyÞÞ ¼ 3.

A last piece of machinery is needed. Given an assign-
ment V, a variable x, and an element a of the universe, we
write V ½a=x� for the assignment that maps x to a and
coincides with V in the remaining variables. The truth
value of a formula, 0 (false) or 1 (true), with respect to an
interpretation I can finally be defined:

� Iðt1 ¼ t2Þ ¼ 1 if Iðt1Þ ¼ Iðt2Þ, and 0 otherwise;

� IðRðt1; . . . ; tnÞÞ ¼ 1 if ðIðt1Þ; . . . ; IðtnÞ 2RA;

� Ið :wÞ; Iðw^cÞ; Iðw_cÞ; Iðw!cÞ; Iðw$cÞ are
defined analogously to the propositional case ;

� Ið 8 xwÞ ¼ 1 if J ðwÞ ¼ 1 for all a2A, where
J ¼ ðA;V ½a=x�Þ;

� Ið 9 xwÞ ¼ 1 if a2A exists with J ðwÞ ¼ 1, where
J ¼ ðA;V ½a=x�Þ.

As in propositional logic, if IðwÞ is 1, we say that I is a
model of w or that I satisfies w, and we denote it byI � w. We
write G � w if every model of all formulas in G is also a model
of w.

Note that assignments are only needed to ascribe a
meaning to free occurrences of variables. If there are
none, the interpretation of a formula is the same regardless
of the assignment. Now it can be checked that the formulas

8 xð0 < sucðxÞÞ and 8 x9 yðx < yÞ

are both true in the interpretation N but false inM.

Proof Theory

Deduction systems for predicate logic extend those of pro-
positional logic to take care of predicates and quantifiers.
In the axiomatic method, the main difference originates
from the extension of the set of axioms.

A valuation in predicate logic is a function from the set
of formulas to the set f0; 1g that respects the meaning
of propositional connectives; that is, f ð :wÞ ¼ 1� f ðwÞ;
f ðw^cÞ ¼ 1 if and only if f ðwÞ ¼ f ðcÞ ¼ 1; . . . . The set of
axioms is then the set of formulas with one of the following
forms:

1. Formulas that are mapped to 1 by all valuations.

2. 8 xðw!cÞ! ð 8 xw! 8 xcÞ.
3. w! 8 xw, with no free occurrences of x in w.

4. 9 xðx ¼ tÞ where t is a term that does not contain x.

5. t1 ¼ t2!ðw!cÞwhere w contains no quantifiers and
c is obtained from w by replacing an occurrence of t1 in
w with t2.

A derivation of w from G is a sequence w1; . . . ; wn such
that:

1. wn ¼ w.

2. For all i � n, either:

a. wi is an axiom;

b. wi belongs to G;

c. j, k < i exist such that wk ¼ wj! wi;

d. j < i exists and a variable x such that wi is 8 xw j.

The formula w is then a logical consequence of G, and it is
denoted with G‘w.

Likewise, a system of natural deduction for predicate
logic is obtained, essentially, by extending the propositional
one with the rules

w

8 xw

8 xw

w½t=x�

subject to a couple of technical conditions that are omitted
and where w½t=x� means that every free occurrence of x in
w is replaced by t.

Completeness and Decidability

Deduction systems are designed so that they are sound,
that is, so that a logical consequence is also a semantic
consequence, and it is not hard to show that this is the case
in predicate logic. The converse implication, completeness,
is much harder to prove, but it was also shown to hold for
predicate logic by Gödel (3) in 1929. Therefore, for a set of
formulas G and a formula w,

G‘w if and only if G � w

Faced with the problem of deciding whether a given
formula is a consequence of a set of premises, we again
have the same two alternatives as in propositional logic:
either build a derivation or consider the models involved.
Now, however, there is a crucial difference. The set of
models is not finite, and thus, in general, it will not be
possible from their study to conclude whether a formula is
a semantic consequence of the premises. Hence, if we
intend to obtain a mechanical procedure, an algorithm,
to decide the validity of a formula, we are only left with
the proof-theoretic approach.

Assume that we want to determine whether a formula
w is valid, that is, whether ‘ w (it can be derived from no
hypothesis). By using the axiomatic method, we can enu-
merate all valid formulas. First, all derivations w1 that use
axioms of length up to, say 10, are listed; since there can
only be a finite number of these, the process ends. Next,
derivations w1 and w1;w2 with axioms of length up to 11 are
considered; again, there is only a finite number of such
derivations. In the next step, derivations of up to three steps
with axioms of length less than or equal to 12 are listed; and

4 FORMAL LOGIC



so on. The process is tedious, but it is mechanizable and
considers all posible derivations. If w is valid, then it has a
corresponding derivation and this procedure will even-
tually produce it. But what if w is not valid? Then the
procedure will not terminate and will offer no clue as to
the validity of w. Indeed, that it is no accident but an
unavoidable shortcoming of any procedure to decide the
validity of a formula is the content of the undecidability
theorem proved independently by Church and Turing (4, 5)
in 1936.

Note that this does not mean that it is not possible to
decide whether a given formula is valid, but that it is not
possible to develop a general procedure that always works.
For example, if all predicates considered are monadic (take
one argument), the resulting language is decidable, and in
this case, a computer could be programmed to solve the
validity problem.

A GLIMPSE OF OTHER LOGICS

Second-Order and Higher Order Logic

In predicate logic, variables range over the elements of the
universe in the structure; this is why it is also called first-
order logic. But in mathematics it is often necessary to
refer, not to single individuals, but to collections of these. As
a result, it is sometimes convenient to consider an extension
of predicate logic with second-order variables that range
over subsets or, more generally, over n-ary relations of the
universe.

The syntax and semantics of second-order logic are
defined similarly to those of predicate logic. Now, if X is
an n-ary variable and t1; . . . ; tn are terms, Xðt1; . . . ; tnÞ is
also a formula. Second-order logic is more expressive than
predicate logic. For example, the structure of the natural
numbers cannot be characterized by means of predicate
formulas because the induction principle can only be
approximated by means of all formulas of the form

wð0Þ ^ 8 xðwðxÞ! wðsucðxÞÞÞ! 8 xw

In second-order logic, however, the induction principle is
formally captured by the single formula

8XðXð0Þ ^ 8 xðXðxÞ!XðsucðxÞÞÞ! 8 x XðxÞÞ

where X is a unary variable, and the structure of natural
numbers is characterizable.

Second-order logic allows the expression of mathemati-
cal facts in a more natural way; however, this additional
expressive power makes the logic much more complex, with
many useful properties of predicate logic no longer holding.
In particular, there is no deduction system both sound and
complete; of course, this is no obstacle for setting up correct
and useful (although incomplete) systems. Also, the vali-
dity problem is even more undecidable (in a precise tech-
nical sense, see the Computability article) than in the
first-order case.

Although second-order logic allows for quantifying over
predicates,higher order logic (historically, proposed a couple

of decades earlier than predicate logic) goes a step beyond
and considers, and allows quantification over, predicates
that take other predicates as arguments, and predicates
that take predicates that take predicates, . . .. The resulting
logic is, again, very complex but extremely expressive, and
it has proved to be very useful in computer science.

Intuitionistic Logic

In traditional (also called classical) mathematics, noncon-
structive arguments are valid proof methods. It is possible
to show that there has to exist an element satisfying a
certain property without actually producing a witness to it,
and the statement that either a proposition or its negation
holds is admitted as true even if none of them has been
proved. Some mathematicians object against such princi-
ples when working with infinite sets and advocate the
practice of constructive procedures. In particular:

� a statement of the form 9 xw is not proved until a
concrete term t has been constructed such that
w½t=x� is proved;

� a proof of a disjunction w_c is a pair ha; bi such that
if a ¼ 0 then b proves w, and if a 6¼ 0 then b proves c.

Intuitionistic logic captures the valid principles of infer-
ence for constructive mathematics. In this new setting,
familiar statements cease to hold. For example, w_ :w is
not universally true, and, although the implication
ð :w_ :cÞ! :ðw^cÞ can still be proved, it is not possible
to strenghten it to a biconditional. Perhaps surprisingly, a
deductive system for intuitionistic logic can be obtained
from a classical one just by preventing the law of double
negation

::w!w

or any other equivalent to it, from being used as an axiom.
In this sense, intuitionistic logic is a subset of classical

logic. On the other hand, classical logic can also be
embedded in intuitionistic logic. For every formula w, a
formula c can be constructed such that w is derivable in the
classical calculus if and only if c is derivable in the intui-
tionistic one.

Since the deduction system has been restricted, it is still
sound with respect to the semantics for predicate logic, but it
is no longer complete. Several semantics for intuitionistic
logic have been defined, the simplest of which isprobably the
one introduced by Kripke. For propositional intuitionistic
logic, a Kripke structure is a partially ordered set hK;�i
together with an assignment V of atomic propositions to the
elements of K such that, if k � k0;VðkÞ�Vðk0Þ. One can
think of the elements in K as stages in time and then
V(k) would be the ‘‘basic facts’’ known at instant k. Satisfac-
tion of a formula by a model, called forcing and representing
the knowledge at a certain stage, is defined recursively:

� k forces p if p2VðkÞ.
� k forces :w if for no k0 � k does k0 force w.

� k forces w^c if k forces w and k forces c.

FORMAL LOGIC 5



� k forces w_c if k forces w or k forces c.

� k forces w!c if, for every k0 � k, if k0 forces w, then k0

forces c.

The intuition for all clauses except the second and the fifth
is clear. One knows w!c at instant k, even if none of w or c

is yet known, if one knows that for all future instants one
can establish c if w can be established. As for the negation,
:w is known when no evidence for w can be found at a later
stage.

A Kripke structure forces a formula if all its elements do
so, and the intuitionistic calculus is sound and complete
with respect to forcing. Kripke structures and forcing can
be extended to predicate logic so that the corresponding
deduction system also becomes sound and complete. Like
their classical counterparts, intuitionistic propositional
logic is decidable, whereas intuitionistic predicate logic is
not.

Predicate Logic in Perspective

In mathematics, predicate logic has been a great success,
to the point of being often deemed as the logic. It is in
principle sufficient for mathematics, has a sound and com-
plete deduction system, and satisfies important semantic
results. Indeed Lindstrom’s theorems show that there
can be no logical system with more expressive power
than predicate logic and with the same good semantic pro-
perties.

By contrast, computer science (and other fields) has seen
a cornucopia of logics suited for different purposes. To cite
a few:

� Modal logic. It is a logic to reason about concepts such
as possibility or necessity.

� Temporal logic. It is a brand of modal logic with
operators to talk about the passage of time.

� Fuzzy logic. To deal with approximate, or vague con-
cepts such as the distinction between ‘‘warm’’ and
‘‘hot.’’

� Probabilistic logic. In which the truth values of for-
mulas are probabilities.

� Nonmonotonic logic. In this logic, an established piece
of knowledge may have to be retracted if additional
facts are later known.

Moreover, these logics come in different flavors, usually
admitting propositional, first-order, higher order, and
intuitionistic presentations, as well as combinations of
these and many ad hoc variants.

LOGIC AND COMPUTER SCIENCE

Although profound and important, the practical signifi-
cance for mathematics of the results obtained during the
blossoming of logic in the twentieth century has been
limited. By contrast, logic has risen to prominence in
computer science where it is expected to play a role analo-
gous to that of calculus in physics. Specification and
programming rank among its most important areas of

application, which also include fields as diverse as descrip-
tive complexity, compiler techniques, databases, or type
theory (6).

Specification and Verification

Computer programs are extremely complex entities, and
reasoning about them, except for the smallest instances, is
no easy feat. A given computer program poses two related
problems: deciding what it is supposed to do and then
checking whether it does it. Logic can help here, first,
with the formal specification of the expected behavior of
a program and, second, in the process of verifying that the
program indeed abides by its specification.

In its first use, logic can be seen as a tool to resolve
ambiguities. Assume that a programmer is asked to write a
program that, given two integers a and b, returns the
quotient and remainder of dividing a by b. The behavior
of the program when a and b are positive should be obvious,
but if one of them is negative, say a¼ 5 and b¼� 2, and the
mathematical training of the programmer is a bit shaky, he
might be inclined to admit�3 and�1 as valid quotient and
remainder. Furthermore, what should the behavior be
when the divisor is 0? A bullet-proof, unambiguos specifica-
tion of the behavior of the program would look like:

w�a;b integers

fun divisionða;bÞreturnshq;ri
c�ðq;r integers;a¼ b	qþ r;0� r< jbjÞ_ðb¼ 0^q¼ r¼�1Þ

In this specification, the precondition w requires the argu-
ments to be integers, whereas the postcondition c imposes
that q and r are the appropriate quotient and remainder if
b 6¼ 0, and sets them both to �1 if b is 0 to mark the error
condition. Alternatively, one could assume/require that b is
never instantiated with 0 as value:

w�a; b integers; b 6¼0
fun divisionða; bÞ returns hq; ri
c� q; r integers;a ¼ b 	 qþ r; 0 � r< jbj

In this case, the postcondition c leaves unspecified the
behavior of the program if b is 0, so that it should be used
only at one’s own risk.

In general, the precondition imposes some requirements
on the input, whereas the postcondition states all proper-
ties that can be assumed about the output. Anything not
reflected in them falls outside the programmer’s responsi-
bility. To express the precondition and postcondition, any
logic can be used.

A specification imposes a contract on the programmer
who, given that programming is an error-prone task, would
like to have a means to verify that his final code actually
satisfies those requirements (see the Formal Program
Verification article). The prototypical example of the use
of logic in this regard is Hoare logic, designed for imperative
programming languages. It defines a derivation system
consisting of a set of rules of the form

Condition

w instruction c

6 FORMAL LOGIC



for every instruction in the programming language, estab-
lishing the conditions under which a precondition w and
postcondition c hold. For example, to the assignment
instruction it corresponds the rule

w½e=x� x :¼ e w

which states that some property holds for variable x after
the instruction is executed only if it already held when the
expression e was substituted for x. Similarly, for sequential
composition of instructions, we have the rule

w instruction1 c c instruction2 x

w instruction1 ; instruction2 x

which states the conditions required for x to hold after
executing instruction1 followed by instruction2. Ideally,
to show that a program P satisfies a specification w P c,
one would start with c and the final line of P and proceed
backward by applying the corresponding rule in the calcu-
lus. The fact that programs are hundreds of thousands of
lines long and that the application of some of the rules
require human intervention makes this direct approach
unfeasible in practice.

A different flavor in which logic supports the verification
process comes in the form of proof assistants or theorem
provers (see the Automated Theorem Proving article).
These are usually embedded within verification systems
that allow for formally specifying functions and predicates,
to state mathematical theorems and to develop formal
proofs. Many of these systems are based on higher order
logic, but some use predicate logic. These environments do
not directly work with the program code but instead focus
on the algorithms that implement, by translating them into
an appropriate logical language and then formally proving
the properties they are required to satisfy. These systems
are very powerful, and some impressive results have been
achieved in the verification of certain hardware architec-
tures and protocols, but they present as a major drawback
their dependency on user interaction.

In contrast to theorem provers, model checkers are
fully automated and their underlying logic is some varia-
tion of temporal logic. Model checking was proposed in the
early 1980s to verify complex hardware controllers and
has also come to be used in the verification of software
since then. A model checker explores all posible states in a
system to check for a counterexample of the desired prop-
erty and herein lies its limitation: Whereas hardware
controllers have a finite, if huge, number of states, typical
programs have an infinite number. Even for hardware
systems, the number of states can grow exponentially
giving rise to what is known as the explosion problem.
Hence, the devise of abstraction techniques that signifi-
cantly reduce the size of a system to make it amenable to
model checking, without altering its ‘‘main’’ properties, is
an active area of research.

Programming

Logic also serves as the foundation of programming lan-
guages and has given rise to the declarative paradigm.

Logic Programming. Imagine a problem for which all
assumptions and requirements have been expressed as
predicate logic formulas and gathered in a set G. For this
problem, we are interested in determining whether a solu-
tion exists, an element that under the given requirements
satisfies a certain condition. Formally, we are interested in
the entailment

G‘ 9 x wðxÞ

Furthermore, we are probably interested not only in finding
out if such an element exists but also in a concrete instance,
that is, a term t such that G‘w½t=x�.

In general, from G‘ 9 x w, it does not follow that w½t=x� for
some term t; think of G ¼ f9 x RðxÞg for a counterexample.
Logic programming is the area of research that studies the
conditions that guarantee the existence of t and the ways
of obtaining it (see the Answer Set Programming article).
In logic programming, the formulas in G are restricted to
universal Horn formulas of the forms

8 x1 . . . 8 xnw and 8 x1 . . . 8 xnðw1 ^ . . . ^wm! wÞ

whereas the goal is an existential formula

9 x1 . . . 9 xnðw1 ^ . . . ^wmÞ

and all wi and w have the form t ¼ t0 or Rðt1; . . . ; tnÞ. Under
these conditions, if the goal can be proved, then concrete
terms t1; . . . ; tn exist for which w holds. In principle, these
terms can be found by systematically applying the rules of
any of the deduction systems presented earlier. However,
given the restricted form of Horn formulas, a rule of infer-
ence more suitable for logic programming called resolution
has been developed that computes all terms that make
w1 ^ . . . ^wm true. Recall that the validity problem in pre-
dicate logic is undecidable; this is reflected in logic pro-
gramming in the fact that every implementation of
resolution may loop forever if there are no solutions to
the problem.

As an example of a logic program, let us consider the
problem of finding paths in a directed graph. Assuming
we use constants a; b; . . . ; f to represent the nodes and
corresponding binary predicates arc and path, the condi-
tions of the problem can be represented as follows (omitting
quantifiers, as customary in this context):

arcða; bÞ
arcða; cÞ
arcðb;dÞ
arcðe; f Þ
arcð f ; eÞ
arcðx; yÞ! pathðx; yÞ
arcðx; zÞ ^ pathðz; yÞ! pathðx; yÞ

A path from x to y is specified either as a direct arc between
the nodes or as an arc from x to an intermediate node z
followed by a path from z to y. Now, to obtain all nodes
reachable from a, the goal path(a, x) would be used and the
resolution procedure would return b, c, and d as possible
values for x.

FORMAL LOGIC 7



Imposing additional restrictions on the form of the for-
mulas has led to the definition of query languages for
deductive databases.

Functional Programming. Functional programming lan-
guages are based on the lambda calculus. Although there
are many variants and they all favor an operational inter-
pretation, lambda calculi can be endowed with both seman-
tics and sound and complete deduction systems (but note
that it took almost 40 years to define a semantics for the
original, untyped lambda calculus), thus partaking in the
main logical features. Unlike predicate logic, functions are
first-class citizens in the lambda calculus and can therefore
be passed as arguments to other functions and returned as
results.

Functional languages come in many different flavors
(see the Functional Programming article), but the central
notion in all of them is that of definition t � s, which is
interpreted operationally as a rule that allows the trans-
formation of the term in the left-hand side t into the one in
the right-hand side s in a process called rewriting. A pro-
gram consists simply of a set of definitions. For example, the
program

square:Integer!Integer
square x� x*x

apply:ðInteger!IntegerÞ!Integer
apply f x� f x

defines a function square that returns the square of its
argument, and a function apply that takes a function f and
an integer as arguments and applies f to that integer. The
term apply square 2 would then be rewritten first to square
2 and then to 2 * 2 (which the compiler would evaluate to 4).
For some terms, however, the process of reduction may
never stop:

infinity : Integer

infinity� infinityþ1

Terms such as this do not denote well-defined values in the
normal mathematical sense. Another potential difficulty
lies in the possible existence of different rewriting
sequences for the same term. Given definitions t�t0

and t�t00, in principle t could be reduced to either t0 or t00,
and there are no guarantees that these two terms can be
further reduced to a common one. In functional program-
ming, if two different rewriting sequences terminate, then
they converge; that is, they lead to the same result.

Other Paradigms and Tidbits. Logic and functional pro-
gramming are the two main representatives of declarative
programming. Their main advantage is their logical foun-
dation, which makes it possible to mathematically reason
about the programs themselves and enormously facilitates
the verification process. This has led many researchers
to seek ways of enhancing their expressive power while
remaining in the corresponding framework and thus
retaining their good properties, and has produced lang-
uages in which convergence may not happen and nonde-

terminism is allowed or where (some) a priori infinite
computations can be dealt with. Also, both approaches
have been integrated in what is known as functional logic
programming; here the computational process is guided
not by resolution nor rewriting, but by a technique called
narrowing.

Some languages have withdrawn from predicate logic
and the lambda calculus and are based on equational logic,
which is quite a restrictive subset of them both and pre-
cludes the use of functions. The loss in expressivity is
made up with the gain in efficiency and simplicity of
the mathematical reasoning about the programs. More
recently, a whole family of languages has been designed
based on yet another logic, rewriting logic, which extends
equational logic with rules to allow a natural treatment of
concurrency and nondeterminism. Unlike equations, a rule
t! s does not express the identity between the meanings of
the two terms but rather that the state represented by
t evolves to that represented by s.

CODA

The previous sections may convey the impression that a
logic is a precisely defined entity, when there is actually no
consensus about what constitutes a logic. It is true that
most logics have both a model and a proof-theory, but that is
not always the case and, even when it is, one of the
approaches may be clearly emphasized over the other.
For Quine (7) on more philosophical grounds, even a full-
fledged logic like second-order logic should be regarded as a
mathematical theory since its logical truths by themselves
capture substantial mathematical statements. Together
with the explosion in the number of proposed logics, this
diversity has spurred work in research with a unifying aim
that has resulted in the development of:

� logical frameworks that are logics in which other logics
can be represented and used, and

� extremely abstract formalisms, such as institutions,
that intend to capture the defining characteristics of
any logic.

A detailed discussion on these topics, as well as on many
others not mentioned in this article, can be found in the
comprehensive surveys (8–10).

Much of the impetus for the development of mathema-
tical logic came from the desire of providing a solid founda-
tion for mathematics. Nowadays it is computer science that
has taken the leading role, and it will be the applications
and needs in this area that are bound to guide the future of
formal logic.

BIBLIOGRAPHY

1. M. Davis, Engines of Logic: Mathematicians and the Origin
of the Computer, 2nd edition. New York: W. W. Norton &
Company, 2001.

2. A. Tarski, The concept of truth in the languages of the deduc-
tive sciences (in Polish), Prace Towarzystwa Naukowego

8 FORMAL LOGIC



Warszawskiego, Wydzial III Nauk Matematyczno-Fizycznych,
34, 1933. Expanded English translation in Ref. (11).

3. K. Gödel, The completeness of the axioms of the functional
calculus of logic (in German). Monatshefte für Mathematik und
Physik, 37: 349–360, 1930. Reprinted in Ref. (12).

4. A. Church, A note on the Entscheidungsproblem, J. Symbolic
Logic, 1: 40–41, 1936.

5. A. M. Turing, On computable numbers, with an application to
the Entscheidungsproblem, Pro. Lond. Math. Soc., 42: 230–
265, 1936.

6. J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Y.
Vardi, and V. Vianu, On the unusual effectiveness of logic in
computer science. Bull. Symbolic Logic, 7(2): 213–236, 2001.

7. W. V. Quine, Philosophy of Logic, 2nd edition. Cambridge, MA:
Harvard University Press, 1986.

8. S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, eds.
Handbook of Logic in Computer Science. Cambridge, UK:
Oxford Science Publications, 1993.

9. D. M. Gabbay, C. J. Hogger, and J. A. Robinson, eds. Handbook
of Logic in Artificial Intelligence and Logic Programming.
Cambridge, UK: Oxford Science Publications, 1993.

10. D. M. Gabbay and F. Guenthner, eds. Handbook of Philoso-
phical Logic. 2nd edition. New York: Springer, 2001.

11. A. Tarski, Logic, Semantics, Metamathematics, Papers from
1923 to 1938. Indianapolis, IN: Hackett Publishing Company,
1983.

12. K. Gödel, Collected Works I: Publications 1929–1936. London,
UK: Oxford University Press, 1986.

FURTHER READING

D. van Dalen, Logic and Structure. Fourth Edition. New York:
Springer, 2004.

H.-D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical Logic,
Second Edition. New York: Springer, 1996.

J. A. Goguen and G. Malcolm, Algebraic Semantics of Imperative
Programs. Cambridge, MA: The MIT Press, 1996.

MIGUEL PALOMINO

Universidad Complutense
Madrid, Spain

FORMAL LOGIC 9



F

FRACTALS

Even though no consensus exists on a mathematical defini-
tion of what constitutes a fractal, it is usually clear what
one means by a fractal. A fractal object has strong sca-
ling behavior. That is, some relation exists between the
‘‘behavior’’ at one scale and at (some) finer scales.

Benoit Mandelbrot suggested defining a fractal as an
object that has a fractional dimension (see the section on
Fractal Dimension). This definition captures the idea that a
fractal has complex behavior at all size scales.

Figure 1 illustrates some geometric fractals (that is, the
‘‘behavior’’ is geometrical). The first two images are exactly
self-similar fractals. Both of them consist of unions of
shrunken copies of themselves. In the first fractal (the
one that looks like a complicated plus sign), five copies of
the large figure combine together, and in the second fractal
(the twindragon tile), it only requires two copies. The third
fractal in the figure is not exactly self-similar. It is made up
of two distorted copies of the whole. The fourth fractal is an
image of a Romanesco Broccoli, which is an amazingly
beautiful vegetable! The fractal structure of this plant is
evident, but it is clearly not an exact fractal.

In Fig. 2, the well-known Mandelbrot Set is explored by
successively magnifying a small portion from one frame
into the next frame. The first three images in the series
indicate the region that has been magnified for the next
image. These images illustrate the fact that the Mandelbrot
Set has infinitely fine details that look similar (but not
exactly the same) at all scales.

One amazing feature of many fractal objects is that the
process by which they are defined is not overly complicated.
The fact that these seemingly complex systems can arise
from simple rules is one reason that fractal and ‘‘chaotic’’
models have been used in many areas of science. These
models provide the possibility to describe complex interac-
tions among many simple agents. Fractal models cannot
efficiently describe all complex systems, but they are
incredibly useful in describing some of these systems.

THE MANDELBROT SET

The Mandelbrot Set (illustrated in the first frame of Fig. 2),
named after Benoit Mandelbrot (who coined the term frac-
tal and introduced fractals as a subject), is one of the most
famous of all fractal objects. The Mandelbrot Set is defi-
nitely not an exactly self-similar fractal. Zooming in on the
set continues to reveal details at every scale, but this detail
is never exactly the same as at previous scales. It is con-
formally distorted, so it has many features that are the
same, but not exactly the same.

Although the definition of the Mandelbrot Set might
seem complicated, it is (in some sense) much less compli-
cated than the Mandelbrot Set itself. Consider the
polynomial with complex coefficients Qc(x) ¼ x2 þ c, where
c¼aþbi is some (fixed) complex number. We are interested

in what happens when we iterate this polynomial starting
at x ¼ 0. It turns out that one of two things happens,
depending on c. Either Qn

c ð0Þ!1 or it stays bounded for
all time. That is, either the iterates get larger and larger,
eventually approaching infinitely large, or they stay
bounded and never get larger than a certain number.
The Mandelbrot Set is defined as

M ¼ fc : Qn
c ð0Þ‰1g

that is, it is those c in the complex plane for which the
iteration does not tend to infinity. Most images of the
Mandelbrot Set are brilliantly colored. This coloration is
really just an artifact, but it indicates how fast those points
that are not in the Mandelbrot Set tend to infinity. The
Mandelbrot Set itself is usually colored black. In our gray-
level images of the Mandelbrot Set (Fig. 2), the Mandelbrot
Set is in black.

FRACTAL DIMENSION

Several parameters can be associated with a fractal object.
Of these parameters, fractal dimension (of which there are
several variants) is one of the most widely used. Roughly
speaking, this ‘‘dimension’’ measures the scaling behavior
of the object by comparing it to a power law.

An example will make it more clear. Clearly the line
segment L ¼ [0,1] has dimension equal to one. One way to
think about this is that, if we scale L by a factor of s, the
‘‘size’’ of L changes by a factor of s1. That is, if we reduce it by
a factor of 1/2, the new copy of L has 1/2 the length of the
original L.

Similarly the square S ¼ [0,1] � [0,1] has dimension
equal to two because, if we scale it by a factor of s, the ‘‘size’’
(in this case area) scales by a factor of s2. How do we know
that the ‘‘size’’ scales by a factor of s2? If s¼ 1/3, say, then we
see that we can tile S by exactly 9 ¼ 32 reduced copies of S,
which means that each copy has ‘‘size’’ (1/3)2 times the size
of the original.

For a fractal example, we first discuss a simple method
for constructing geometric fractals using an ‘‘initiator’’ and
a ‘‘generator.’’ The idea is that we start with the ‘‘initiator’’
and replace each part of it with the ‘‘generator’’ at each
iteration. We see this in Figs. 3 and 4. Figure 3 illustrates
the initiator and generator for the von Koch curve, and Fig.
4 illustrates the iterative stages in the construction, where
at each stage we replace each line segment with the gen-
erator. The limiting object is called the von Koch curve.

In this case, the von Koch curve K is covered by four
smaller copies of itself, each copy having been reduced in
size by a factor of three. Thus, for s ¼ 1/3, we need four
reduced copies to tile K. This gives

size of original copy ¼ 4 � size of smaller copy

¼ 4 � ð1=3ÞD size of orginal copy

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



so 4(1/3)D¼ 1 or D¼ log(3)/log(2). That is, for the von Koch
curve, if we shrink it by a factor of 1/3, then the ‘‘size’’ gets
reduced by a factor of ð1=3Þlogð4Þ=logð3Þ ¼ 1=4. In this sense,
the von Koch curve has dimension logð4Þ=logð3Þ� 1:2619, so
it has a dimension that is fractional and is a ‘‘fractal.’’

This way of computing a fractal dimension is very intui-
tive, but it only works for sets that are exactly self-similar
(and thus is called the similarity dimension). We need a
different method/definition for the fractal dimension of
objects that are not exactly self-similar. The diffusion-

limited aggregation (DLA) fractal shown later in Fig. 16
is a fractal, but it is not strictly self-similar.

One very common way to estimate the dimension of such
an object is the box counting method. To do this, cover the
image with a square grid (of side length e) and count how
many of these boxes are occupied by a point in the image.
Let N(e) be this number. Now repeat this for a sequence of
finer and finer grids (letting e tend to 0). We want to fit the
relationN(e)¼ae�D, sowetakelogarithmsofbothsidestoget
log(N) ¼ log(a) – D log(e). To estimate D, we plot log(N(e))
versus log(e) and find the slope of the least-squares
line.

For the object in Fig. 16, we have the data in Table 1,
which gives a fractal dimension of 1.60.

It is interesting to apply this method to exactly self-
similar objects, such as the von Koch curve. For this curve,
it is convenient to use boxes of size e¼ 3�n and to align them
so that they form a nice covering of the von Koch curve (that
is, we do not necessarily have to have the boxes form a grid).
Assume that the initial lengths of the line segments in the
generator for the von Koch curve are all equal to 1/3. In this
case, it is easy to see that we require 4n boxes of side length
1/3n to cover the curve, so we solve

4n ¼ að1=3nÞ�D)a ¼ 1; D ¼ logð4Þ=logð3Þ

as before.

Figure 1. Some fractal shapes.

Figure 2. Zooming into the Mandelbrot Set.

Figure 3. The initiator and generator for the von Koch curve.

Figure 4. Construction of the von Koch curve.

Table 1.

e N(e)

1/2 4
1/4 16
1/8 52
2�4 174
2�5 580
2�6 1893
2�7 6037
2�8 17556
2�9 44399
2�10 95432

2 FRACTALS



IFS FRACTALS

The Iterated Function Systems (IFS, for short) are a math-
ematical way of formalizing the notion of self-similarity. An
IFS is simply a collection of functions from some ‘‘space’’ to
itself, wi: X!X. Usually it is required that these functions
are contractive, in that the distance between the images of
any two points is strictly less than the distance between the
original points. Mathematically, w is a contraction if there is
some number s with 0 � s< 1 and dðwðxÞ; wðyÞÞ � sdðx; yÞ
for any x and y, where dðx; yÞ somehow measures the
distance between the points x and y. In this case, it is
well known (by the Banach Contraction Theorem) that there
is a unique fixed point x with wðxÞ ¼ x.

Given an IFS fwig, the attractor of the IFS is the unique
set A (A should be nonempty and compact, to be technically
precise), which satisfies the self-tiling (or fixed point)
condition

A ¼ w1ðAÞ [w2ðAÞ [ � � � [wnðAÞ

so that A is made up of ‘‘smaller’’ copies of itself (smaller by
the individual wi, that is). Under some general conditions
this attractor always exists and is uniquely specified by the
functions wi in the IFS. Furthermore, one can recover the
attractor A by starting with any set B and iterating the IFS.
The iteration proceeds by first generating the n distorted
and smaller copies of B (distorted and shrunk by the
individual wi’s) and combining them to get a new set B1

B1 ¼ w1ðBÞ [w2ðBÞ [ � � � [wnðBÞ

Repeating this, we get a sequence of sets B2; B3; . . . ;Bn; . . . ;
which will converge to the attractor A.

To illustrate, take the three contractions w1, w2, w3

given by

w1ðx; yÞ ¼ ðx=2; y=2Þ; w2ðx; yÞ ¼ ðx=2þ 1=2; y=2Þ;

w3ðx; yÞ ¼ ðx=2; y=2þ 1=2Þ

Each of these three maps shrinks all distances by a factor of
two (because we are reducing in both the horizontal and the
vertical direction by a factor of 2). These maps are examples
of similarities, because they preserve all angles and lines
but only reduce lengths; geometric relationships within an
object are (mostly) preserved.

We think of these maps as acting on the unit square, that
is, all points (x, y) with 0 � x � 1 and 0 � y � 1. In this case,
the action of each map is rather simple and is illustrated in
Fig. 5. For instance, map w2 takes whatever is in the square,
shrinks it by a factor of two in each direction, and then places
it in the lower right-hand corner of the square.

The attractor of this 3-map IFS is the Sierpinski Gasket,
which is illustrated in Fig. 6. The self-tiling property is
clear, because the Sierpinski Gasket is made up of three
smaller copies of itself. That is, S ¼ w1ðSÞ [w2ðSÞ [w3ðSÞ.

Now, one amazing thing about IFS is that iterating the
IFS on any initial set will yield the same attractor in the
limit. We illustrate this in Fig. 7 with two different starting
images.The attractor of the IFS iscompletely encodedby the
IFS maps themselves; no additional information is required.

w3

w1 w2

Figure 5. Action of the three maps.

Figure 6. The Sierpinski Gasket.

Figure 7. Two different deterministic iterations.

FRACTALS 3



The Collage Theorem

Given an IFS it is easy to compute the attractor of the IFS by
iteration. The inverse problem is more interesting, how-
ever. Given a geometric object, how does one come up with
an IFS whose attractor is close to the given object?

The Collage Theorem provides one answer to this ques-
tion. This theorem is a simple inequality but has strong
practical applications.

Collage Theorem. Suppose that T is a contraction with
contraction factor s < 1 and A is the attractor of T (so that
T(A) ¼ A). Then for any B we have

dðA;BÞ � dðTðBÞ;BÞ
1� s

What does this mean? In practical terms, it says that, if we
want to find an IFS whose attractor is close to a given set B,
then what we do is look for an IFS that does not ‘‘move’’ the
set B very much. Consider the maple leaf in Fig. 8. We see
that we can ‘‘collage’’ the leaf with four transformed copies
of itself. Thus, the IFS that is represented by these four
transformations should have an attractor that is close to
the maple leaf. The second image in Fig. 8 is the attractor
of the given IFS, and it is clearly very similar to a maple
leaf.

As another example, it is easy to find the collage to
generate the attractor in Fig. 9. It requires 11 maps in
the IFS.

However, the real power of the Collage Theorem comes
in when one wants to find an IFS for more complicated self-
affine fractals or for fractal objects that are not self-similar.
One such application comes when using IFS for image
representation (see the section on Fractals and Image
Compression).

Fractal Functions

Geometric fractals are interesting and useful in many
applications as models of physical objects, but many times
one needs a functional model. It is easy to extend the IFS
framework to construct fractal functions.

There are several different IFS frameworks for con-
structing fractal functions, but all of them have a common
core, so we concentrate on this core. We illustrate the ideas
by constructing fractal functions on the unit interval; that
is, we construct functions f : ½0; 1�!R. Take the three
mappings w1ðxÞ ¼ x/4, w2ðxÞ ¼ x/2þ 1/4; and w3ðxÞ ¼ x/4þ
3/4 and notice that ½0; 1� ¼ w1½0; 1� [w2½0; 1� [ w3½0; 1�, so
that the images of [0, 1] under the wi’s tile [0, 1].

Choose three numbers a1, a2 a3 and three other numbers
b1, b2, b3 and define the operator T by

Tð f ÞðxÞ ¼ aif ðw�1
i ðxÞÞ þ bi if x 2 wið½0; 1�Þ

where f : ½0; 1�!R is a function. Then clearly Tðf Þ:
½0; 1�!R is also a function, so T takes functions to functions.

There are various conditions under which T is a con-
traction. For instance, if jaij< 1 for each i, then T is
contractive in the supremum norm given by

k fksup ¼ sup
x�½0; 1�

j f ðxÞj

so Tnð f Þ converges uniformly to a unique fixed point f for
any starting function f.

Figure 10 illustrates the limiting fractal functions in the
case where a1 ¼ a2 ¼ a3 ¼ 0:3 and b1 ¼ �b2 ¼ b3 ¼ �1.

It is also possible to formulate contractivity conditions in
other norms, such as the Lp norms. These tend to have
weaker conditions, so apply in more situations. However,
the type of convergence is clearly different (the functions
need not converge pointwise anywhere, for instance, and
may be unbounded).

The same type of construction can be applied for func-
tions of two variables. In this case, we can think of such
functions as grayscale images on a screen. For example,

Figure 8. Collage for maple leaf and attractor of the IFS.

Figure 9. An easy collage to find. Figure 10. The attractor of an IFS on functions.

4 FRACTALS



using the four ‘‘geometric’’ mappings

w1ðx; yÞ ¼
x

2
;
y

2

� �
; w2ðx; yÞ ¼

xþ 1

2
;
y

2

� �
;

w3ðx; yÞ ¼
x

2
;
yþ 1

2

� �
; w4ðx; yÞ ¼

xþ 1

2
;
yþ 1

2

� �

and the a and b values given by

a 0.5 0.5 0.4 0.5
b 80 40 132 0

we get the attractor function in Fig. 11. The value 255
represents white and 0 represents black.

FRACTALS AND IMAGE COMPRESSION

The idea of using IFS for compressing images occurred to
Barnsley and his co-workers at the Georgia Institute of
Technology in the mid-1980s. It seems that the idea arose
from the amazing ability of IFS to encode rather compli-
cated images with just a few parameters. As an example,
the fern leaf in Fig. 12 is defined by four affine maps, so it is
encoded by 24 parameters.

Of course, this fern leaf is an exact fractal and most
images are not. The idea is to try to find approximate self-
similarities, because it is unlikely there will be many exact
self-similarities in a generic image. Furthermore, it is also
highly unlikely that there will be small parts of the image
that look like reduced copies of the entire image. Thus, the
idea is to look for ‘‘small’’ parts of the image that are similar
to ‘‘large’’ parts of the same image. There are many different
ways to do this, so we describe the most basic here.

Given an image, we form two partitions of the image.
First, we partition the image into ‘‘large’’ blocks, we will call
these the parent blocks. Then we partition the image into
‘‘small’’ blocks; here we take them to be one half the size of
the large blocks. Call these blocks child blocks. Figure 13
illustrates this situation. The blocks in this figure are made
large enough to be clearly observed and are much too large
to be useful in an actual fractal compression algorithm.

Given these two block partitions of the image, the fractal
block encoding algorithm works by scanning through all
the small blocks and, for each such small block, searching
among the large blocks for the best match. The likelihood of
finding a good match for all of the small blocks is not very
high. To compensate, we are allowed to modify the large
block. Inspired by the idea of an IFS on functions, the
algorithm is:

1. for SB in small blocks do

2. for LB in large blocks do

Figure 11. The attractor of an IFS on functions f : R2!R.

Figure 12. The fern leaf.

Figure 13. The basic block decomposition.

FRACTALS 5



3. Downsample LB to the same size as SB

4. Use leastsquares to find the best parameters a and b

for this combination of LB and SB. That is, to make
SB � aLB þ b.

5. Compute error for these parameters. If error is smal-
ler than for any other LB, remember this pair along
with the a and b.

6. end for

7. end for

At the end of this procedure, for each small block, we
have found an optimally matching large block along with
the a and b parameters for the match. This list of triples
(large block, a, b) forms the encoding of the image. It is
remarkable that this simple algorithm works! Figure 14
illustrates the first, second, third, fourth, and tenth itera-
tions of the reconstruction. One can see that the first stage
of the reconstruction is basically a downsampling of the
original image to the ‘‘small’’ block partition. The scheme
essentially uses the b parameters to store this coarse ver-
sion of the image and then uses the a parameters along with
the choice of which parent block matched a given child block
to extrapolate the fine detail in the image from this coarse
version.

STATISTICALLY SELF-SIMILAR FRACTALS

Many times a fractal object is not self-similar in the IFS
sense, but it is self-similar in a statistical sense. That is,
either it is created by some random self-scaling process

(so the steps from one scale to the next are random) or it
exhibits similar statistics from one scale to another. In fact,
most naturally occurring fractals are of this statistical type.

The object in Fig. 15 is an example of this type of fractal.
It was created by taking random steps from one scale to the
next. In this case, it is a subset of an exactly self-similar
fractal.

These types of fractals are well modeled by random IFS
models, where there is some randomness in the choice of the
maps at each stage.

MORE GENERAL TYPES OF FRACTALS

IFS-type models are useful as approximations for self-
similar or almost self-similar objects. However, often
these models are too hard to fit to a given situation. For
these cases we have a choice—we can either build some
other type of model governing the growth of the object OR
we can give up on finding a model of the interscale behavior
and just measure aspects of this behavior.

An example of the first instance is a simple model for
DLA, which is illustrated in Fig. 16. In this growth model,
we start with a seed and successively allow particles to drift

Figure 14. Reconstruction: 1, 2, 3, 4, and 10
iterations and the original image.

Figure 15. A statistically self-similar fractal. Figure 16. A DLA fractal.

6 FRACTALS



around until they ‘‘stick’’ to the developing object. Clearly
the resulting figure is fractal, but our model has no explicit
interscale dependence. However, these models allow one to
do simulation experiments to fit data observed in the
laboratory. They also allow one to measure more global
aspects of the model (like the fractal dimension).

Fractal objects also frequently arise as so-called strange
attractors in chaotic dynamical systems. One particularly
famous example is the butterfly shaped attractor in the
Lorentz system of differential equations, seen in Fig. 17.
These differential equations are a toy model of a weather
system that exhibits ‘‘chaotic’’ behavior. The attractor of
this system is an incredibly intricate filigree structure of
curves. The fractal nature of this attractor is evident by the
fact that, as you zoom in on the attractor, more and more
detail appears in an approximately self-similar fashion.

FRACTAL RANDOM PROCESSES

Since the introduction of fractional Brownian motion (fBm)
in 1968 by Benoit Mandelbrot and John van Ness, self-
similar stochastic processes have been used to model a
variety of physical phenomena (including computer net-
work traffic and turbulence). These processes have power
spectral densities that decay like 1/fa.

A fBm is a Gaussian process x(t) with zero mean and
covariance

EðxðtÞxðsÞ� ¼ ðs2=2Þ ½jtj2H þ jsj2H � jt� sj2H �

and is completelycharacterizedby theHurst exponent H and
thevarianceE½xð1Þ2� ¼ s2. fBmisstatistically sell-similar in
the sense that, for any scaling a > 0, we have

xðatÞ ¼ aHxðtÞ

where by equality we mean equality in distribution. (As an
aside and an indication of one meaning of H, the sample
paths ol fBm with parameter H are almost surely Hölder
continuous with parameter H, so the larger the value of H,
the smoother the sample paths of the fBm). Because of this
scaling behavior, fBm exhibits very strong long-time depen-
dence. It is also clearly not a stationary (time-invariant)

process, which causes many problems with traditional
methods of signal synthesis, signal estimation, and para-
meter estimation. However, wavelet-based methods work
rather well, as the scaling and finite time behavior of
wavelets matches the scaling and nonstationarity of the
fBm. With an appropriately chosen (i.e., sufficiently smooth)
wavelet, the wavelet coefficients of an fBm become a sta-
tionary sequence without the long range dependence prop-
erties. This aids in the estimation of the Hurst parameter H.

Several generalizations of fBm have been defined,
including a multifractal Brownian motion (mBm). This
particular generalization allows the Hurst parameter to
be a changing function of time H(t) in a continuous way.
Since the sample paths of fBm have Hölder continuity H
(almost surely), this is particularly interesting for modeling
situations where one expects the smoothness of the sample
paths to vary over time.

FRACTALS AND WAVELETS

We briefly mention the connection between fractals and
wavelets. Wavelet analysis has become a very useful part of
any data analyst’s toolkit. In many ways, wavelet analysis
is a supplement (and, sometimes, replacement) for Fourier
analysis; the wavelet functions replace the usual sine and
cosine basis functions.

The connection between wavelets and fractals comes
because wavelet functions are nearly self-similar functions.
The so-called ‘‘scaling function’’ is a fractal function, and
the ‘‘mother wavelet’’ is simply a linear combination of
copies of this scaling function. This scaling behavior of
wavelets makes it particularly nice for examining fractal
data, especially if the scaling in the data matches the
scaling in the wavelet functions. The coefficients that
come from a wavelet analysis are naturally organized in
a hierarchy of information from different scales, and hence,
doing a wavelet analysis can help one to find scaling rela-
tions in data, if such relations exist.

Of course, wavelet analysis is much more than just an
analysis to find scaling relations. There are many different
wavelet bases. This freedom in choice of basis gives greater
flexibility than Fourier analysis.

FURTHER READING

M. G. Barnsley, Fractals Everywhere, New York: Academic Press,
1988.

M. G. Barnsley and L. Hurd, Fractal Image Compression,
Wellesley, Mass: A.K. Peters, 1993.

M. Dekking, J. Lévy Véhel, E. Lutton, and C. Tricot (eds). Fractals:
Theory and Applications in Engineering, London: Springer,
1999.

K. J. Falconer, The Geometry of Fractal Sets, Cambridge, UK:
Cambridge University Press, 1986.

K. J. Falconer, The Fractal Geometry: Mathematical Foundations
and Applications, Toronto, Canada: Wiley, 1990.

J. Feder, Fractals, New York: Plenum Press, 1988.

Y. Fisher, Fractal Image Compression, Theory and Applications,
New York: Springer, 1995.

Figure 17. The Lorentz attractor.

FRACTALS 7



J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math.
J. 30: 713–747.

J. Lévy Véhel, E. Lutton, and C. Tricot (eds). Fractals in Enginee-
ring, London: Springer, 1997.

J. Lévy Véhel and E. Lutton (eds). Fractals in Engineering: New
Trends in Theory and Applications, London: Springer, 2005.

S. Mallat, A Wavelet Tour of Signal Processing, San Diego, CA:
Academic Press, 1999.

B. Mandelbrot, The Fractal Geometry of Nature, San Francisco,
CA: W. H. Freeman, 1983.

B. Mandelbrot and J. van Ness, Fractional Brownian motions,
fractional noises and applications, SIAM Review 10: 422–437,
1968.

H. Peitgen and D. Saupe (eds). The Science of Fractal Images,
New York: Springer, 1998.

H. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New
Frontiers, of Science, New York: Springer, 2004.

D. Ruelle, Chaotic Evolution and Strange Attractors: The Statis-
tical Analysis of Time Series for Deterministic Nonlinear Systems,
Cambridge, UK: Cambridge University Press, 1988.

F. MENDIVIL

Acadia University
Wolfville, Nova Scotia, Canada

8 FRACTALS



G

GEOMETRIC PROGRAMMING

INTRODUCTION

Nonlinearprogrammingdealswithoptimizationproblemsin
which both the objective and constraint functions are non-
linear. Of the many special cases of a nonlinear program,
geometric programs are a class that involves a highly non-
linear function called a posynomial (as detailed later). Func-
tionsofthistypewerefirstformalizedbyDuffinetal.(1)inthe
seminalworkentitledGeometricProgramming.Inthatbook,
manyintriguingpropertiesofposynomialfunctionsaregiven
along with many applications to engineering design. Subse-
quent work developed in two significantly different direc-
tions: Signomial programming and Generalized Geometric
Programming, both of which are reviewed in this article (2).

Signomial programming, which was first developed by
Passy and Wilde (3), sought to relax the restriction of the
functions treated by geometric programming to the form of
polynomials. With the relaxation to polynomials, one loses
convexity and, hence, one can only hope for a local mini-
mum, not a global minimum. Generalized geometric pro-
gramming proceeds to generalize the type of function
considered from posynomial to convex. This generalization
maintains the convexity of the problem, and hence, one can
find the global solution to the mathematical program.

The relationship among the various developments may
outwardly seem tenuous, because geometric programming
should not be thought of as a class of mathematical pro-
grams but instead as a method of analysis of mathematical
programs. In this respect, geometric programming has
much in common with dynamic programming. Dynamic
programming makes use of recursive functions. Geometric
programming makes use of linearity, separability, convex-
ity, and duality.

Linearity

Most mathematical programming is conducted over linear
vector spaces. The usual choice is Euclidean n-dimensional
space (En). Here, a vector is represented by an n-tuple of
real components. Taking any two vectors x1 and x2 that
belong to the space, and real scalars a and b, a linear vector
space has the property that the linear combination ax1 þ
bx2 belongs to the space. In the context of functions, a
function ‘ðxÞ is said to be linear if for any scalars a and
b, ‘ðaxþ byÞ ¼ a‘ðxÞ þ b‘ðyÞ. Linear functions have many
important properties. They are both convex and concave.
Furthermore, a first-order Taylor series expansion approx-
imates the linear function exactly. The value of linearity to
mathematical programming is best exemplified by the
fruitful area of linear programming.

Separability

A function f ðx1; x2; . . . ; xnÞ is separable if it can be written
as f ðx1; x2; . . . ; xnÞ ¼ f1ðx1Þ þ f2ðx2Þ þ � � � þ fnðxnÞ. This

property is important as it allows one to treat an n-dimen-
sional function as n functions of one-dimension, which is
much simpler from a computational point of view.

Convexity

A set A is convex if for any x1; x2 2 A and
0 � l � 1; lx1 þ ð1� lÞx2 2A. To extend the concept to a
function f(x) defined for x2C; a convex set, we require the
following definition. The epigraph of a function f defined
on C is the set A defined by: A ¼ fða; xÞja� f ðxÞ; x2Cg: f ðxÞ
is a convex function if A is a convex set. Convex functions
have several powerful properties. The most important for
mathematical programs with a convex objective function
and a convex constraint set is that any local minimum is
also a global minimum. Additional properties of convexity
will be given in the section on Generalized Geometric
Programming.

Duality

For a linear space X ¼ En, linear functions may be written
in the form ha; xi ¼

Pn
i¼1 aixi, where a is a vector parameter.

The set of all linear functions (parameterized by the vector
a) is a space and is called the dual space ðX�Þ. The duality
develops from the fact that ha; xi is symmetric in a and x. For
finite dimensional spaces, the set of linear functions on X�

turns out to be the original space X. Hence there is a
symmetric relationship between X and X�.

Of importance to mathematical programming is the
pairing of sub-spaces in primal and dual spaces with
respect to the inner product. Let x be a subspace of X.
Then x? ¼ fyjhy ; xi ¼ 0; 8 x 2xg is called the orthogonal
complementary subspace of x. Any point in x? is orthogo-
nal to any point in x by construction. If y1; y2 2x? and a, b

are scalars, then it is easy to observe that ay1 þ by2 2x? .
The importance of the concepts of linearity, separabil-

ity, convexity, and duality in the development of geometric
programming will remain obscure in the sections on
unconstrained polysynomial programming constrained
polysynomial programming and signomial programming.
However, their paramount role will become clear in the
section on Generalized geometric programming. The last
section uses this generalized theory to rederive the theory
of posynomial programs, and the central role played by
these concepts will be clarified even more. Throughout
this article, theory will be reinforced by examples drawn
mainly from the area of inventory theory. The examples
presented are relatively simple to highlight the use of
geometric programming theory. The article concludes
with examples from many other areas.

UNCONSTRAINED POSYNOMIAL PROGRAMMING

Here we consider the following nonlinear problem:

Minimize gðtÞ ¼
Xn

i¼1

ui ð1Þ

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.
Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



where u1; i ¼ 1; . . . ;n; are posynomials defined by

ui ¼ ci

Ym
j¼1

t
ai j

j ð2Þ

ci > 0; 8 i; t j > 0; 8 j; and ai j are arbitrary real constants;
t ¼ ðt1; . . . ; tmÞT and T denotes a transpose. In the usual
situation, g(t) represents a composite cost made up of
component costs ui; i ¼ 1; . . . ;n. We term this the primal
problem.

In principle, the primal problem could be solved by the
methods of differential calculus. This problem will develop
a set of nonlinear equations which, in general, are difficult
to solve. Hence, in practice, one would invariably resort to a
numerical solution by an iterative descent-type method.
Here, we propose to construct a geometric programming
dual program to the primal. In certain cases, this proposi-
tion admits a trivial solution to the problem. Furthermore,
this dual problem has an interesting and informative
practical interpretation. A central idea here is the arith-
metic–geometric mean inequality, henceforth termed the
geometric inequality. In fact, the name ‘‘geometric pro-
gramming’’ comes from the importance of this inequality
to the original theory. It states that

Xn

i¼1

divi�
Yn
i¼1

ðviÞdi ð3Þ

where
Pn

i¼1 di ¼ 1; di� 0; 8 i; vi > 0; 8 i. Equality is
attained when v1 ¼ v2 ¼ � � � ¼ vn. It is convenient to set
vi ¼ ui=di; 8 i in Equation (3) to obtain

Xn

i¼1

ui�
Yn
i¼1

ðui=diÞdi ð4Þ

In this form, we can use the geometric inequality to obtain a
lower bound on our primal optimization problem. Hence,
substituting Equation (2) into Equation (1) and using
Equation (4), we have that

gðt Þ�
Yn
i¼1

ðci=diÞdi
Ym
j¼1

t

Pn

i¼1
ai jdi

j ð5Þ

If we choose the weights, di, 8 i, such that

Xn

i¼1

ai jdi ¼ 0; j ¼ 1; . . . ;m ð6Þ

then the variables t j; j ¼ 1; . . . ;m on the right hand side of
inequality (5) may be eliminated. In this case, we have that

gðt Þ�
Yn
i¼1

ðci=diÞdi ¼ vðd Þ ð7Þ

where vðd Þ is the dual function which gives a lower bound

on the minimum of gðt Þ. Equation (7) implies that

min gðt Þ� max vðd Þ ð8Þ

under conditions t> 0; d� 0;
Pn

i¼1 di ¼ 1 and Equation (6).
It may be shown that there exists an optimal t* [in the

sense of minimizing g(t)] and an optimal d� [in the sense of
maximizing vðd Þ] to satisfy inequality (8) at equality. In this
case the relation between t* and d� is given by

d�i ¼ uiðt�Þ=gðt�Þ ð9Þ

Hence the following dual program to the original primal
program may be constructed:

Maximize vðd Þ ¼
Yn
i¼1

ðci=diÞdi ð10Þ

subject to the normalization condition

Xn

i¼1

di ¼ 1; di� 0 ð11Þ

and the orthogonality condition

Xn

i¼1

ai jdi ¼ 0; j ¼ 1; . . . ;m ð12Þ

At optimality gðt�Þ ¼ vðd�Þ.
From Equation (9), we can interpret the dual variables

at optimality, d�i ; 8 i; as the relative contribution of each
component cost ui to the composite cost g(t ). Furthermore,
we obtain the following relationship between the primal
and dual variables

Inðd�i vðd�Þ=ciÞ ¼
Xm
j¼1

ai jlog t�j ð13Þ

This equation is a system of linear equations in
logt j; j ¼ 1; . . . ;m, which are readily solvable once the
dual program has been solved.

We note that the dual program maximizes a nonlinear
function subject to linear equality constraints. A dual
variable di is associated with each term i ¼ 1; . . . ;n in the
primal formulation. In the case that the number of terms in
the primal n is equal to the number of variables in the
primal m plus one (i.e., n ¼ mþ 1) the linear constraints
admit a unique solution d�, and the optimization problem in
the dual is trivial. The quantity n� ðmþ 1Þ is termed the
degree of difficulty of a geometric program and is, in some
sense, a measure of the computational complexity of the
dual program.

Example. We consider the well known ‘‘Economic Lot
Size’’ problem from inventory theory. Items are withdrawn
continuously from inventory at a known constant rate a.
Items are ordered in equal numbers Q at a time and
production is instantaneous. The problem is to determine

2 GEOMETRIC PROGRAMMING



how often to make a production run and how much to order,
Q, each time to minimize the cost C per unit time, where
C ¼ aK=Qþ hQ=2þ ac, and K is the fixed set-up cost, h is
the inventory holding cost per item per unit time, and c is
the variable production cost per item. Neglecting the con-
stant part, ac, we require to

Minimize C1 ¼ aK=Qþ hQ=2

This equation is an unconstrained posynomial program.
The corresponding dual program, from Equations (10), (11),
and (12), is to maximize

ðaK=d1Þd1ðh=2d2Þd2

subject to d1 þ d2 ¼ 1 ðnormalityÞ
�d1 þ d2 ¼ 0 ðorthogonalityÞ
d1� 0; d2� 0

Here the constraint equations can be uniquely solved to
yield d�1 ¼ d�2 ¼ 1=2, and no maximization problem exists.
We have a program with zero degree of difficulty. The
interpretation of this result is that at optimality, the set-
up cost per unit time and the holding cost per unit time
contribute equal amounts to the optimal cost, that is, the
optimal distribution of cost is an invariant with respect to
the cost coefficients. Hence, from Equations (10) and (13),
the optimal cost is

ffiffiffiffiffiffiffiffiffiffiffiffi
2aKh
p

, and the optimal order quantity isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aK=h

p
.

Suppose now that the production process is a lengthy one
so that the assumption of instantaneous availability is no
longer acceptable. Furthermore, the size of the lot deter-
mines the length of the production process, and this in turn
determines the in-process inventory holding cost. In this
case, a modified economic lot size model could be to mini-
mize C1 ¼ aK=Qþ hQ=2þ IQT=2, where I is the in-process
inventory holding cost per unit time, and T is the length of
the production process, given by TðQÞ ¼ nQþm, where n
and m are empirically determined constants. In this case,
we have the unconstrained posynomial program:

Minimize C1 ¼ aK=QþQðh=2þ Im=2Þ þ InQ2=2

The corresponding dual program is given by

Maximize ðaK=d1Þd1ððhþ ImÞ=2d2Þd2ðIn=2d3Þd3

subject to

d1 þ d2 þ d3 ¼ 1
�d1 þ d2 þ 2d3 ¼ 0
d1 > 0; d2 > 0; d3 > 0

Here, we have two equations and three unknowns; in
effect, a degree of difficulty of one. One could proceed to
solve this problem as an unconstrained maximization
problem in one variable or as a constrained maximization.
However, insight may be gained without going into this
detail. Manipulation of the constraint equations gives the
following inequalities: 0:5 � d1 � 1:0 and 0:33 � d1 � 0:66,
which imply that at optimality, the set-up cost makes a

contribution between 50% and 66% to the optimal compo-
site cost. Similar insights may be obtained from the other
dual variables.

CONSTRAINED POSYNOMIAL PROGRAMMING

Here we consider the minimization of a posynomial form
subject to constraints that are also posynomials, which is
the primal formulation.

Minimize g0ðtÞ ð14Þ

subject to gkðt Þ � 1; k ¼ 1; . . . ; p ð15Þ

t j > 0; j ¼ 1; . . . ;m ð16Þ

where

gkðt Þ ¼
X
i2 ½k�

ci

Ym
j¼1

t
ai j

j ; k ¼ 0; . . . ; p ð17Þ

½k� ¼ fmk;mk þ 1; . . . ;nkg; k ¼ 0; . . . ; p
and

m0 ¼ 1;m1 ¼ n0 þ 1; . . . ;m p ¼ n p�1 þ 1;n p ¼ n:
ð18Þ

f½k�g; k ¼ 0; 1; . . . ; p is a sequential partition of the integers
1 to n. As before aij are arbitrary real exponents and the
coefficients ci are positive.

To handle constraints, we need a generalization of the
geometric inequality in which the di’s are not normalized.
We let

lk ¼
X
i2 ½k�

di ð19Þ

for a particular constraint k. Hence the geometric inequal-
ity Equation (4) may be written in a convenient form as

X
i2 ½k�

ui

0
@

1
A

lk

�
Y

i2 ½k�
ðuk=diÞdillk

k ð20Þ

Combining Equations (15), (17), and (20) we have that

1� gkðtÞlk �
Y

i2fkg
ci

Ym
j 1

t
ai j

j =di

0
@

1
A

di

llk

k ð21Þ

for any constraint k ¼ 1; . . . ; p. For the objective function,
we normalize the di; i2 ½0�. Hence

g0ðt Þ�
Y

i2 ½0�
ci

Yn
j¼1

t
ai j

j =di

0
@

1
A

di

ð22Þ

and

X
i2 ½0�

di ¼ 1 ð23Þ

GEOMETRIC PROGRAMMING 3



Combining results from Equations (21) and (22), we
obtain the inequality

g0ðt Þ�
Yn
i¼1

ðci=diÞdi
Yp

k¼1

llk

i ð24Þ

Hence, using the same lines of reasoning as for the uncon-
strained problem, the dual problem is given by:

Maxmize vðd Þ ¼
Yn
i¼1

ðci=diÞdi
Yp

k¼1

llk

k ð25Þ

subject to the linear constraints

X
i2 ½0�

di ¼ 1 ðnormalizationÞ ð26Þ

Xn

i¼1

ai jdi ¼ 0; j ¼ 1; . . . ;m ðorthogonalityÞ ð27Þ

di� 0; i ¼ 1; . . . ;n ð28Þ

We note that the primal problem is a highly nonlinear
mathematical program, whereas the dual is the maximiza-
tion of a concave function subject to linear constraints. Once
again, if n ¼ mþ 1, the program has zero degree of diffi-
culty, and the dual program is trivial. It may be shown in
Equation (3) that at optimality the primal variables t� and
the dual variables d� are related by

ci

Ym
j¼1

t
�ai j

j ¼ d�i vðd�Þ; i2 ½0�
d�i =lkðd�Þ; i2 ½k�; lkðd�Þ> 0; k ¼ 1; . . . ; p

�

ð29Þ

Hence d�i ; i2 ½0� gives the relative contribution of each com-
ponent cost to the composite cost. Also at optimality, the
primal and dual objective functions are equal in value
[i.e., g0ðt�Þ ¼ vðd�Þ�.

Example. We consider an economic lot size model with
multiproducts and a resource constraint. In this case, we
have the following constrained posynomial program:

Minimize
XN
i¼1

ðaiKi=Qi þ hiQi=2Þ

subject to a resource constraint

XN
i¼1

biQi � W

where bi and W are given constants. From Equations (25–
28), we find the corresponding dual program:

Maximize
YN
i¼1

ðaiKi=diÞdi
Y2N

i¼Nþ1

ðhi=2diÞdi
Y3N

i¼2Nþ1

ðbi=WdiÞdill

subject to
X2N

i¼1

di ¼ 1

l ¼
X3N

i¼2Nþ1

di

�di þ dNþi þ d2Nþi ¼ 0; i ¼ 1; . . . ;N
di� 0; i ¼ 1; . . . ; 3N

SIGNOMIAL PROGRAMMING

Although posynomial programming has found application
in a variety of areas, many problems of interest have fallen
outside the posynomial form. Often, it was the positivity
condition on the coefficients that were violated. However,
the benefits of posynomial programming were too tempting
to be rejected. Passy and Wilde (2) introduced a general-
ization of posynomial programming, in which the coeffi-
cients of the terms were not required to be positive. This
class of programs is called signomial. In signomial pro-
gramming, a global minimum cannot be guaranteed. How-
ever, the properties of the dual subspace are maintained.

Duffin et al. (3) have developed methods for the analysis
of signomials and an algorithm for solving them (at least for
a local solution, if not for a global solution). To use the
analysis, signomial programs must first be converted into
posynomial programs. Any signomial f(t ) can be written as
a difference of two posynomials, say r(t) and s(t) hence

f ðtÞ � 1$ rðtÞ � sðtÞ � 1$ rðtÞ � sðtÞ þ 1
f ðtÞ � 1$ rðtÞ � sðtÞ� 1$ rðtÞ� sðtÞ þ 1
f ðtÞ � 0$ rðtÞ � sðtÞ � 0$ rðtÞ � sðtÞ

Because rðtÞ; sðtÞ, and sðtÞ þ 1 are all non-negative for all
values of t, in each case a new variable t can be introduced
so that

rðtÞ � t � sðtÞ þ 1$ rðtÞ=t � 1 and 1 � sðtÞ=t þ 1=t
rðtÞ� t� sðtÞ þ 1$ rðtÞ=t � 1 and 1 � sðtÞ=t
rðtÞ � t � sðtÞ$ rðtÞ=t � 1 and 1 � sðtÞ=t

These transformations on a signomial produce a posyno-
mial program with reversed constraints:

Minimize g0ðtÞ ð30Þ

subject to gkðtÞ � 1 k ¼ 1; . . . ; p ð31Þ

gkðtÞ� 1 k ¼ pþ 1; . . . ; r ð32Þ

t> 0 ð33Þ

4 GEOMETRIC PROGRAMMING



where the functions gkðtÞ are posynomials defined by Equa-
tion (17). The difference in this formulation is the reversed
constraints [Equation (32)]. Although the constraints
[Equation (31)] define a convex region, the reversed con-
straints make the region nonconvex. The dual to the primal
program defined by Equations (30)–(33) is given by:

Maximize vðdÞ

¼
Y

i2 ½0�
ðci=diÞdi

Yp

k¼1

Y
i2 ½k�
ðcilk=diÞdk

Yr
k¼pþ1

Y
i2 ½k�
ðcilk=diÞ�di

ð34Þ

subject to same constraints as for posynomials, namely

X
i2 ½0�

di ¼ 1 ð35Þ

lk ¼
X
i2 ½k�

di; k ¼ 1; . . . ; r ð36Þ

Xp

k¼1

X
i2 ½k�

ai jdi �
Xr

k¼pþ1

X
i�½k�

ai jdi ¼ 0; j ¼ 1; . . . ;m ð37Þ

di� 0; i ¼ 1; . . . ;n ð38Þ

We note that log vðdÞ is concave in the variables associated
with the regular constraints k ¼ 1; . . . ; p and the objective
function. However, it is convex in the variables associated
with the reversed constraints k ¼ pþ 1; . . . ; r. In the posy-
nomial case, the dual program required finding the max-
imum of a concave function subject to linear constraints.
Here we are looking for the maximum of several saddle
points of a concave-convex function subject to linear con-
straints. If the program has degree of difficulty of zero, then
it is possible that a solution can be found readily but, in the
general case, the program is very difficult to solve. To cope
with this problem, Duffin et al. (3) apply the arithmetic–
harmonic mean inequality to convert the reversed con-
straints into regular constraints. This approximation has
the advantage that the linear constraints in the dual are the
same for all such approximations. As such, the sequence of
all regular posynomial programs generated is monotone
and decreases in the value of the objective function. Thus
one can only improve any feasible solution.

The arithmetic–harmonic inequality, given parameters
ai; i2 ½k�, positive and

P
i2 ½k� ai ¼ 1; is

X
i2 ½k�

ui

0
@

1
A
�1

�
Y

i2 ½k�
ðai=uiÞai �

X
i2 ½k�

a2
i =ui ð39Þ

with equality holding when

ai ¼ ui=
X
i2 ½k�

ui

0
@

1
A ð40Þ

The means in Equation (30) are the harmonic, geometric
and arithmetic respectively. Consider any reversed con-
straint

gkðtÞ� 1 or ðgkðtÞÞ�1 � 1

We set gkðt;aÞ ¼
P

i2 ½k� a
2
i =ui, which is a posynomial for

fixed a. We note that gkðt;aÞ � 1 implies that gkðtÞ� 1.
Using Equation (40) for any t such that gkðtÞ� 1, one can
generate an a such that gkðt;aÞ � 1. Hence, by use of the
arithmetic–harmonic inequality, we may reduce a posyno-
mial program with reversed constraints to a regular posy-
nomial program parameterized with respect to a, viz.

Minimize g0ðtÞ ð41Þ

subject to gkðtÞ � 1; k ¼ 1; . . . ; p ð42Þ

gkðt;aÞ � 1; k ¼ pþ 1; . . . ; r ð43Þ

t> 0 ð44Þ

To obtain a monotone-decreasing sequence of programs, we
solve the program above for a particular a and then reset
the as using Equation (40).

Example. We return to the multiproduct economic lot
size problem given in the section on Constrained polysy-
nomial programming. Here, we add consideration of the
distribution effort. Sales are now a function of the allocation
of effort to distribution, and we seek to maximize profit. The
problem becomes:

Maximize
XN
i¼1

ðð pi � ciÞaiD
di

i �Di � KiaiD
di

i =Qi � hiQi=3Þ

subject to
XN
i¼1

biQi � W

Qi� 0; Di� 0; 8 i

Here pi � ci is the sales price minus the cost for product
i; aiD

di

i are the sales generated by a distribution effort of Di

and ai and di are parameters. All other symbols have been
defined previously. This model is a signomial program and
is equivalent to the following program:

Minimize 1=P

subject to
XN
i¼1

biQi=W � 1

XN
i¼1

ðpi � ciÞaiD
di

i �Di � KiaiD
di

i =Qi � hiQi=2�P

Qi� 0; Di� 0; 8 i

ð45Þ

P is a new variable that indicates profit. Taking the

GEOMETRIC PROGRAMMING 5



negative terms in Equation (45) to the right hand side and
inserting a new variable R between the sides of the inequal-
ity as in the theory, we obtain the program:

Minimize 1=P

subject to
XN
i¼1

biQi=W � 1

P=Rþ
X

i

ðDi=Rþ KiaiD
di

i =ðQiRÞ þ hiQi=ð2RÞÞ � 1

X
i

ðpi � ciÞaiD
di

i =R� 1

Qi� 0; Di� 0 8 i

ð46Þ

Our original signomial program is now in the form of a
posynomial program with one reversed constraint [Equa-
tion (46)]. This equation may be harmonized to become

X
i

a2
i R=ððpi � ciÞaiD

di

i Þ � 1 ð47Þ

where the ai > 0 (and
P

i ai ¼ 1) are parameters to be
varied. To find a local solution, we take a feasible set of
distribution efforts Di to evaluate ai which is given by [see
equation (40)].

ai ¼ ðpi � ciÞaiD
di

i =
X

i

ðpi � ciÞaiD
di

i

 !
; 8 i ð48Þ

We now solve the posynomial program with Equation (46)
replaced by Equation (47). With the resulting value of Di

obtained, we reset ai from Equation (48) and resolve the
program with this new value of ai. We repeat this procedure
until no significant change is observe in the solution.

GENERALIZED GEOMETRIC PROGRAMMING

Generalized geometric programming deals with the ana-
lysis of convex mathematical programs. Commonly these
appear in the form as follows:

Minimize g0ðzÞ ð49Þ

subject to giðzÞ � 0; i2 I ð50Þ

z2C ð51Þ

where C is a convex set, and gi; i2f0g[ I are convex func-
tions. In the generalized geometric programming approach,
we first separate the arguments of the constraints and
objective functions. We introduce the following notation:

z ¼ x0 ¼ xi; 8 i2 I
x ¼ x0� xi 2X:

i2 I

x ¼ fxjx0 ¼ xi; 8 i2 Ig a subspace of X
Ci ¼ C; 8 i2f0g[ I

The program defined by Equations (49)–(51) may now be
rewritten as:

Minimize g0ðx0Þ ð52Þ

subject to giðxiÞ � 0 i2 I ð53Þ

xi 2Ci; i2f0g[ I ð54Þ

x2x ð55Þ

This formulation separates the constraints and the objec-
tive function excepting for the subspace condition which
ties the problem together. The subspace captures the lin-
earity of the problem.

At this stage we require further ideas relating to con-
vexity. Recall from the section on convexity the definition of
an epigraph to a pair ½g;C� of a convex function g defined on
a convex set C. Each nonvertical hyperplane that supports
the epigraph of a convex function g at a boundary point
½x0; gðx0Þ� produces a subgradient of g at x0 , i.e., a vector
y2R� with

gðx0Þ þ hy; x� x0i � gðxÞ; 8 x2C ð56Þ

The subgradient set ½@gðx0Þ� that consists of all such vectors
y is generally a closed convex subset of En, which contains
only a single vector iff g is differentiable at x0. In this case
the single vector is the usual gradient vector rgðx0Þ.

A convex function ½g;C� is said to be closed if its epigraph
is a closed set. We shall assume that all functions are closed.

The conjugate transform ½h;D� of an arbitrary convex
function ½g;C� is defined by:

hðyÞ ¼ sup
x 2C
ðhy; xi � gðxÞÞ ð57Þ

and

D ¼ fyj sup
x 2C
ðhy; xi � gðxÞÞ < þ1g ð58Þ

We note that hðyÞ ¼ hy; x0i � gðx0Þ for each y2 @gðx0Þ.
By construction ½h;D� is a closed convex function defined

on a convex set. Another consequence of the conjugate
transform is the conjugate inequality which states that

gðxÞ þ hðyÞ� hx; yi ð59Þ

for x2C and y2D, with equality iff y2 @gðxÞ or equivalently
x2 @hðyÞ. To handle constraints, we require the conjugate
transform of a particular function ½0; gðxÞ � 0; x2C�. This

6 GEOMETRIC PROGRAMMING



transform is related to the transform of ½g;C� and is called
the positive homogeneous extension of ½hþ;Dþ�. This exten-
sion is denoted by ½h0;D0� where

hþðy; lÞ ¼
lhðy=lÞ; l> 0
sup
x 2C
hy; xi; l ¼ 0

(
ð60Þ

and

Dþ ¼ fðy; lÞjy=l2D; l> 0g[ fðy; 0Þj sup
x 2C
hy; xi <1g ð61Þ

The conjugate inequality in this case is given by

0þ hþðy; lÞ� hx; yi ð62Þ

for ðy; lÞ 2Dþ and x2C with equality iff y 2 l@gðxÞ or
x 2 @hþðy; lÞ.

We now apply these ideas of conjugate transform theory
to the program defined by Equations (52)–(55). This pro-
gram is the primal mathematical program. For the objec-
tive function, we have from Equation (59) that

g0ðx0Þ þ h0ðy0Þ� hx0; y0i ð63Þ

and for each constraint, from Equation (62), we have that

0þ hþi ðy
i; liÞ� hxi; yii; i2 I ð64Þ

Adding the inequalities in Equations (63) and (64), we have
that

g0ðx0Þ þ h0ðy0Þ þ
X
i2 I

hþi ðy
i; liÞ� hx; yi ð65Þ

where x ¼ x0 �i2 I xi and y ¼ y0 �i2 I yi. By restricting
x2x and y2x? , Equation (65) becomes

g0ðx0Þ þ h0ðy0Þ þ
X
i2 I

hþi ðy
i; liÞ� 0 ð66Þ

with equality when

y0 2 @g0ðx0Þ or x0 2 @h0ðy0Þ ð67Þ

and

yi 2 li@giðxiÞ or xi 2 @hþi ðy
i; liÞ; i2 I ð68Þ

Hence the geometric programming dual to the primal
program [equations (52)–(55)] is given by:

Minimize h0ðy0Þ þ
X
i2 I

hþi ðy
i; liÞ ð69Þ

subject to
y2x?

y0 2D0; ðyi; liÞ 2Dþi ; i2 I ð70Þ

The dual program can have certain advantages over the
original primal program:

� The nonlinear constraints are incorporated into the
objective function.

� If x is of dimension n and x is of dimension m, then x? ,
the orthogonal complement of x, is of dimension n�m.
With the possibility of n�m being much smaller than
m and the elimination of explicit nonlinear con-
straints, the dual may turn out to be a much simpler
problem to solve.

� The fact that the primal and dual objectives sum to
zero at optimality, that is g0ðx0Þ þ h0ðy0Þ þP

i2 I hþi ðyi; liÞ ¼ 0 provides a good stopping criterion
for an algorithm. The conditions for optimality are

x0 2C0 y0 2D0

giðxiÞ � 0; xi 2Ci ðyi; liÞ 2Dþi ; i2 I

x2x y2x?

x0 2 @h0ðy0Þ or y0 2 @g0ðx0Þ
xi 2 @hiðyi; liÞ or yi 2 li@giðxiÞ; i2 I

ð71Þ

From these conditions, one may calculate the optimal
solution for one problem from the optimal solution of the
other.

It is important to note the roles played by the four
concepts of linearity, separability, convexity, and duality
in generalized geometric programming theory. Linearity
may occur naturally in the problem (e.g., as linear con-
straints), or it may be induced by the need to separate the
variables as in the program at the beginning of this section.
Any linearity is usually captured conveniently in the sub-
space condition. Separability is necessary to facilitate a
simple computation of conjugate transforms. Convexity
(and closure) guarantees that there is no duality gap,
that is the primal and dual objectives sum to zero at
optimality. Duality is the goal of generalized geometric
programming theory.

Example. A well-known problem in inventory control is
to select a set fxi; t ¼ 1; . . . ;Tg of production levels to mini-
mize, over a planning horizon of length T, the sum of
production and holding costs while meeting demand. For-
mally the problem may be posed as follows:

Minimize
XT
t¼1

cðxtÞ þ htyt ð72Þ

GEOMETRIC PROGRAMMING 7



subject to the inventory balance dynamics

y1 ¼ x1 � d1

yt � yt�1 ¼ xt � dt; t ¼ 2; . . . ;T � 1
�yT�1 ¼ xT � dT

ð73Þ

and the non-negativity constraints

yt� 0; t ¼ 1; . . . ;T
xt� 0; t ¼ 1; . . . ;T

ð74Þ

Here yt denotes the inventory level in period t, dt is the
demand in period t, cðxtÞ is the production cost (assumed
convex and strictly monotonically increasing) and ht is the
holding cost per unit in period t.

To invoke the theory of generalized geometric program-
ming, we need to put the constraints from Equation (73)
into a subspace. Hence we introduce a new variable
at; t ¼ 1; . . . ;T, and restrict it to a one point domain
fdtg; t ¼ 1; . . . ;T. This variable is then associated with
an additive component of the objective function, which is
identically zero. Hence, we obtain a subspace condition

y1 � x1 þ a1 ¼ 0
yt � yt�1 � xt þ at ¼ 0; t ¼ 2; . . . ;T � 1
�yT�1 � xT þ aT ¼ 0

ð75Þ

It is convenient to treat the non-negativity constraints
xt� 0; yt� 0; t ¼ 1; . . . ;T, in an implicit way (i.e.,
C0 ¼ fxtjxt� 0; yt� 0;dt ¼ at; t ¼ 1; . . . ;Tg). Our problem
is now in a form that is directly suitable for application
of the theory. We note that in this problem no explicit
constraints are evident. The dual objective is given by

sup
xt; yt;at

xt� 0
yt� 0

X
t

ðxtut þ ytvt þ atbt � cðxtÞ � htytÞ

¼ sup
xt � 0

X
t

ðxtut � cðxtÞÞ þ sup
at

X
t

atbt þ sup
yt �0

X
t

ðytvt � htytÞ

¼
X

t

c�ðutÞ þ dtbt

where

c�ðutÞ ¼ sup
xt � 0
ut 2 @cðxtÞ

xtut � cðxtÞ

and

vt � ht

Usually cðxtÞ is a quadratic function and c�ðutÞ is readily
calculated. Furthermore we require the orthogonal com-
plement to the subspace defined by Equation (61), i.e.

fðut; vt;btÞj
X

t

ðutxt þ vtyt þ btatÞ ¼ 0; 8 xt; yt;atg

satisfying Equation (75). A straightforward calculation
shows that

vt ¼ pt � ptþ1; t ¼ 1; . . . ;T � 1
ut ¼ �pt; t ¼ 1; . . . ;T
bt ¼ pt; t ¼ 1; . . . ;T

Hence the dual problem is

Minimize
XT
t¼1

c�ð� ptÞ þ dt pt

subject to pt � ptþ1 � ht � 0; t ¼ 1; . . . ;T � 1

For constant ht, we have a minimization over a monoto-
nically increasing set of decision variables.

THE ANALYSIS OF POSYNOMIAL PROGRAMMING BY
GENERALIZED GEOMETRIC PROGRAMMING

Recall that in the preceding section we used the convexity of
the functions of a convex mathematical program by apply-
ing separability and then using linearity and duality to
derive a potentially simpler problem. To bring this struc-
ture out in posynomial programming, we consider the
following convex function:

X
i2 ½k�

dilogdi=ci ð76Þ

defined on

di� 0; i2 ½k� and
X
i2 ½k�

di ¼ 1 ð77Þ

Here the parameters ci > 0; i2 ½k�. The conjugate trans-
form of the function defined by Equation (76) taken over the
set defined by Equation (77) may be shown to be

log
X
i2 ½k�

ciexpðziÞ ð78Þ

Hence the conjugate inequality from Equation (59) is:

X
i2 ½k�

dilogdi=ci þ log
X
i2 ½k�

ciexpðziÞ

0
@

1
A� X

i2 ½k�
dizi ð79Þ

with equality when

di ¼ ciexpðziÞ=
X
i2 ½k�

ciexpðziÞ

0
@

1
A ð80Þ

8 GEOMETRIC PROGRAMMING



To handle constraints of the form

log
X
i2 ½k�

ci expðziÞ � 0 ð81Þ

we require the positive homogeneous extension of function
[Equation (76)] defined over the set [Equation (77)], which
is given by

X
i2 ½k�

dilogðdi=ðlkciÞÞ ð82Þ

defined for

li ¼
X
i2 ½k�

di; di� 0; i2 ½k� ð83Þ

To relate functions of the form in Equation (64) to posy-
nomial geometric programs discussed in Section 3 we set

x j ¼ log t j; 8 j ð84Þ

and

zi ¼
Xm
j¼1

ai jx j; 8 i ð85Þ

in Equations (14) and (15). Equation (85) is the subspace
condition in the generalized theory. Making the above
substitution and taking logs, our posynomial program is
as follows:

Minimize log
X
i2 ½0�

ciexpðziÞ

subject to log
X
i2 ½k�

ciexpðziÞ � 0; i ¼ 1; . . . ; p

z2X ¼ fzjzi ¼
Xm
j¼1

ai jx j; j ¼ 1; . . . ;ng

In the above form, the theory of generalised geometric
programming may be invoked since we have already cal-
culated the relevant conjugate transforms [see Equations
(76), (77), (82) and (83)]. Hence, using Equations (69), (70),
and (71), the dual to a posynomial program is given by

Minimize
Xn

i¼1

dilogdi=ci �
Xp

k¼1

lkloglk

subject to
X
i2 ½0�

di ¼ 1

di� 0; 8 i
lk ¼

X
i2 ½k�

di; k ¼ 1; . . . ; p

d2X ? ¼ fdj
Xn

i¼1

ai jdi ¼ 0; j ¼ 1; . . . ;mg

The above objective function is equivalent to maximizing

Yn
i¼1

ðci=diÞdi
Yp

k¼1

llk

k

which is the original form of the dual objective function for
posynomial programming [see Equations (25)–(28)].
Furthermore, it is straightforward to obtain the optimality
conditions between the primal and dual variables, Equa-
tion (29) from the general optimality conditions in the
section on Generalized geometric programming.

APPLICATIONS

In the previous sections, we have shown the development of
the theory of geometric programming. Included in the
references are various books and papers that describe
applications of geometric programming. Here, we provide
a couple of relevant applications and then a survey of
geometric programming applications.

Transformer Design

Transformer design is a major application of geometric
programming. Geometric programming produces a mini-
mum cost design that can be quickly redesigned when costs
or specifications of materials change. Consider the design of
a simple interlocking coil and core transformer. We wish to
convert a primary electric power with voltage Vp and
current Jp into a secondary electric power of voltage Vs

and current Js. To design a transformer with such specifi-
cations, we use fundamental relationships of electricity and
magnetism. Faraday’s Law of Induction is

/
Z

E � ds ¼ 10�8B
�
AFc

The electromotive force equals the ratio of voltage over the
number of turns of the copper wire for the primary and
secondary circuits. We have

/
Z

E � ds ¼ V p=N p

and

/
Z

E � ds ¼ Vs=Ns

Thus V p=N p ¼ Vs=Ns.
Ampere’s Law for an electric current with the integral

taken around both the primary and secondary coils is

/
Z

H � ds ¼ 0:4pJtotal

Because Jtotal is approximately zero, we have

J pN p ¼ JsNs

GEOMETRIC PROGRAMMING 9



Combining this result with that of voltage and turns we
have primary power approximately equal to secondary
power.

J pV p ¼ JsVs

With this knowledge of electromagnetics, we are ready to
construct the geometric program for the transformer
design. We must have a large enough cross-sectional
area of the iron core to be able to generate a sufficient
electromotive force, which means that

10�8B
˙
AFe�V p=N p

With the assumption that there is a equal split between the
primary and secondary coils the requirement for copper
must satisfy the following inequality:

iACu=2�N pJ p

Replace B
˙

by vB=2t=2 with B being the magnetic flux
amplitude and v the circular frequency. Combining the
above two inequalities, we can eliminate Np.

2�3=2 � 10�8vBiAFeACu�J pV p

We must also limit magnetic loss and ohmic loss to have a
functioning transformer.

DvB3:5VFe �Ml

The magnetic loss constraint is approximate for the level of
20,000 gauss.

ri2VCu � Ol

The cross-sectional areas and volumes can be related to the
transformer dimensions by using the mean iron length LFe

and mean copper length LCu, as well as the dimensions of
the iron core window and the copper coil window.

AFe ¼ a0b
˙ 0

ACu ¼ ab
2aþ 2bþ 2a0 þD � LFe

2a0 þ 2b0 þ pa=2þD0 � LCu

VFe ¼ LFeAFe

VCu ¼ LCuACu

Putting this all together into a geometric program we will
minimize the cost of materials subject to design constraints
and eliminate variables to simplify the formulation.

Min CCuabLCu þ CFea
0b0LFe

subject to

Dva0b0B3:5LFe=Ml � 1
ri2abLCu=Ot � 1

J pV p23=2 � 108v�1B�1i�1ða0b0Þ�1a�1b�1 � 1
2a=LFe þ 2b=LFe þ 2a0=LFe þD=LFe � 1
2a0=LCu þ 2b0=LCu þ pa=2LCu þD0=LCu � 1

Tables 1 and 2 show of parameters and variables. Eight
design variables remain in the formulation, and there are
13 terms. The degree of difficulty for this problem is 4 (this
is the dimension of the dual geometric program). It can be
solved using a standard nonlinear programming package or
one specifically designed for geometric programming.
Because it is a geometric program, we are assured of finding
the optimum solution. Additional analysis of this and other
transformer designs can be found in Duffin et al.(3).

Information Theory

C. E. Lemke recognized that the dual geometric program
was of the form of chemical equilibrium or free energy
models in chemistry. Shannon used a similar formulation
to model problems in information theory. Here, we will look
at the problem of finding the most efficient source for

Variables Design Variable Units

E Electric field Volts per centimeter
B Magnetic flux density Gauss
AFe Cross-sectional area of the

iron core
Cm2

Np Number of primary turns Integer
Ns Number of secondary turns Integer
i Current current density Amperes per cm2

ACu Cross-sectional area of copper
coils

Cm2

a Width of iron core window Cm
b Height of iron core window Cm
LFe Mean iron length Cm
a0 Width of copper coil window Cm
b0 Height of copper coil window Cm
LCu Mean copper length Cm
VFe Volume of iron Cm3

VCu Volume of Copper Cm3

Parameter Definition Units

Vp Primary voltage Volts
Jp Primary current Ampres
Vs Secondary voltage Volts
Js Secondary current Ampres
Jtotal Primary and secondary current Ampres
H Magnetomotive force Oersteds
Ml Magnetic loss Gauss
D Magnetic loss factor
Ol Ohmic loss Ohms
v Circular frequency Integer
r Resistivity Ohm cm
CCu Copper cost per cm3 $
CFe Iron cost per cm3 $
D Clearance for Iron Cm
D0 Clearance for Copper Cm

10 GEOMETRIC PROGRAMMING



communications as a dual of a geometric program in infinite
dimensions.

The problem is first formulated as an entropy maxima-
tion problem with m moment constraints.

Max HðpÞ ¼ �
Zþ1

�1

pðxÞln pðxÞdx

subject to

Zþ1

�1

pðxÞdx ¼ 1

pðxÞ� 0

Zþ1

�1

fiðxÞpðxÞdx ¼ ai; i ¼ 1; . . . ;m

Here, we are optimizing over the probability distribution p.
The dual of the above problem is the following geometric

program:

Min GðqÞ ¼ ln

Zþ1

�1

exp½qðxÞ�dx

subject to

qðxÞ ¼ �
X

i

zið fiðxÞ � aiÞ

With the zi are m scalar variables. This mathematical
program can be reduced to an unconstrained finite dimen-
sional optimization problem:

Min GðzÞ ¼ ln

Zþ1

�1

exp½�
X

i

zið fiðxÞ � aiÞ�dx

Because it is a geometric program, we know that the global
optimum can be found. At optimality the we can recognize
that the optimal primal distribution will take the form:

pðxÞ ¼ exp½�
P

i zið fiðxÞ � aiÞ�Rþ1
�1exp½�

P
i zið fiðx0Þ � aiÞ�dx0

Thus, we know that the solution to this communications
problem comes from the exponential family.

Survey of Geometric Programming Applications

Engineering Design. The reason for geometric program-
ming was Zener’s interest in engineering design pro-
blems. Electrical engineering design appears in both books
(1,4) in the form of transformer design. In fact, the method
can be used for other devices that involve the use of induc-
tion coils. More recently, it has been used in circuit design

and manufacture (5,6). The second example was mechan-
ical engineering. Duffin et al. (1) used geometric program-
ming to design an ocean thermal energy conversion system.
Power turbines and cooling towers can be designed using
geometric programming (7). Control system design is a
geometric program (8). Steel plate girders can be designed
by geometric programming as well (9).

In Zener’s book (4), the third application of geometric
programming was civil engineering (bridges and build-
ings). Also designed are floor and roof systems, frames
structures, hydraulic networks and pipelines, and waste-
water treatment (10).

Lemke identified the dual of a geometric program as
having the same form as chemical equilibrium. The con-
sequence of this comment is included in the textbook (3) as
an appendix. Wilde and his students (11) introduced geo-
metric programming to chemical engineering. Chemical
engineering applications appear in the Beightler and Phil-
lips textbook (12). Geometric programming has been used
in ethylene plant optimization. Chemical reactors, complex
chemical equilibria, and mineral processing can also ben-
efit from geometric programming.

Passy (13) was the first person to apply geometric pro-
gramming to industrial engineering problems [see also
Jung et al. (14)]. Machining economics (tool life) has
been modelled using geometric programming (15). It is
used in bottleneck scheduling (16). Replacement (reliabil-
ity) problems can be solved by geometric programming (17).
Optimal tolerancing (18) can be solved as a geometric
program. Generalized geometric programming can solve
location problems (19).

Geometric programming has been applied to nuclear
engineering, naval architecture, aeronautical engineering,
and agricultural engineering. A collection of papers on
optimal design (using geometric programming) was pub-
lished in 1973 (20).

Business. In 1974, Balachandran and Gensch (21) first
analyzed the marketing mix problem using geometric pro-
gramming. Capital budgeting benefits from geometric pro-
gramming analysis (22,23). Accounting estimates and
valuations are found by entropy (24,25). Cost benefit analy-
sis can be analyzed using generalized geometric program-
ming (26). A variety of applications from the management
sciences, using geometric programming, are presented in a
book (27).

Transportation and Regional Planning. Jefferson (1972)
was the first to apply geometric programming to transpor-
tation planning and trip distribution (28). The application
of geometric programming to entropy models for trip dis-
tribution and regional planning was particularly worth-
while. See for example, Refs. 29 and 30.

Information and Communications. In 1977, Scott and
Jefferson (31) were the first to apply geometric program-
ming to information theory. Modern communications pro-
blems can be modeled as geometric programs (32,33).

Stochastic Models and Statistics. In 1966, Avriel (34) was
the first to work on stochastic geometric programming.

GEOMETRIC PROGRAMMING 11



Stochastic geometric programming has been applied to
industrial engineering and finance (22, 35). Probability
can be analyzed by geometric programming (36). Geometric
programming aids in estimation and sampling (25).

Curve Fitting. Peterson and Ecker (37) first applied geo-
metric programming concepts to lp-approximation (37).
Geometric programming provides an effective framework
for curve fitting with spline functions (38,39).

ALGORITHMS

Initially, the geometric programs were small, and the dual
program was only a single point or up to a few dimensions.
Problems could be solved by hand or with a simple program.
As geometric programming grew in popularity, people
wanted to solve larger problems and problems modeled as
signomials. By the mid-1970s, the computer code of choice
written by Dembo et al. (40) used cutting planes to approx-
imate the posynomials with a single term (called a mono-
mial) and linear programming. It could solve moderate-
sized problems efficiently. For signomials, it could improve
on a starting solution but there was no guarantee on the
solution being globally optimal.

In the 1990s, interior point methods were applied
with success to geometric programming. Nesterov and
Nemirovsky (41) developed an interior point method for
convex programs that could solve geometric programs.
Separately Zhu et al. (42) provided a good stable interior
point algorithm built on the work of Fang et al. (43). Next
Kortanek et al. (44) developed an infeasible interior point
algorithm that searches for the Karush-Kuhn-tucker point
for the geometric program and that makes use of the sparse
structure of the logarithmic dual objective function (this is
the form described in the section entitled ‘‘The analysis of
posynomial programming by generalized geometric pro-
gramming’’). Anderson and Ye (45) have also developed a
solution method for large-scale geometric programs with a
single-phase interior point method.

The research into algorithms for geometric programs
has taught us that geometric programs are nicely struc-
tured problems, and if one makes the transformations used
in the section entitled ‘‘The analysis of posynomial pro-
gramming by generalised geometric programming’’, they
can be solved easily. If one does not have access to special
geometric programming packages, then a general non-
linear programming package can solve moderate-sized pro-
blems. These packages are available on most computers by
simply using the nonlinear feature of your spreadsheet
program on your. AMPL personal computer provides an
excelent modeling language and a GRG nonlinear program-
ming package to solve medium-sized problems. MOSEK
can be interfaced with AMPL to allow one to work on large
geometric programs.

CONCLUSIONS

Geometric programming has evolved from the study of
posynomial programs to signomial programs and, through
generalized geometric programming, to convex programs.

The areas of application are ever growing (over 500 pub-
lications use geometric programming across its 40-year
history). The reason for its popularity is that it is fairly
easy to formulate many problems as geometric programs
because it advantageously captures the inherent structure
found in real problems. Many programs so formulated can
be converted into convex programs. They can now be solved
easily using special purpose algorithms or by generally
available nonlinear programming packages, even if they
are large. Geometric programming provides a dual that can
help in understanding the problem and in the sensitivity
analysis of the solution. Thus geometric programming
remains an important method in optimization. See the
Further Reading list at the end of the chapter for more
information.

BIBLIOGRAPHY

1. R. J. Duffin, E. L. Peterson, and C. Zener, Geometric Program-
ming, New York: Wiley, 1967.

2. E. L. Peterson, Geometric programming, SIAM Review, 18:
1–52, 1976.

3. U. Passy and D. J. Wilde, Generalized polynomial optimiza-
tion, SIAM Appl. Math, 15: 1344–1356, 1987.

4. C. Zener, Engineering Design by Geometric Programming,
New York: Wiley, 1971.

5. M. Chiang, C. W. Tan, D. P. Palomar, D.O’Neill, and D.
Julian, power control by geometric programming, IEEE
Trans. Wireless Communicat., 6: 2640–2651, 2007.

6. S. P.Boyd , S. J. Kim, D. D. Patil, and M. A. Horowitz, Digital
circuit optimization via geometric programming, Operat.
Res., 53: 899–932, 2005.

7. J. G. Ecker and R. D. Wiebking, Optimal design of a dry
type natural-draft cooling tower by geometric programming,
Jour. Opt. Thy. Appns, 26: 305–323, 1978.

8. E. V. Bohn, Optimum design of control-system compensators
by geometric programming, J. Dynamic Syst. Meas. Control-
Trans. ASME, 102: 106–113, 1980.

9. S. Abuyounes and H. Adeli, Optimization of steel plate girders
via general geometric programming, J. Struct. Mech., 14:
501–524, 1986.

10. J. G. Ecker, A geometric programming model for optimal
allocation of stream dissolved oxygen, Manage. Sci., 21:
658–668, 1975.

11. D. J. Wilde, A review of optimization theory, Indust. Engineer.
Chem., 57: 1965.

12. C. S. Beightler and D. T. Phillips, Applied Geometric Program-
ming, New York: Wiley, 1976.

13. U. Passy, Nonlinear assignment problems treated by geometric
programming, Operat Res., 19: 1675–1690, 1971.

14. H. Jung, C. M. Klein, and M. Cerry, Optimal inventory policies
for profit maximizing EOQ models, under various cost func-
tions, Euro. J. Operat. Res., 174: 689–705, 2006.

15. C. H. Scott , T. R. Jefferson, and A. Lee, Stochastic tool manage-
ment via composite geometric programming, Optimization,
36: 59–74, 1996.

16. G. J. Plenert, Generalized-model for solving constrained
bottlenecks, J. Manufact. Sys., 12: 506–513, 1993.

17. T. C. E. Cheng, Optimal replacement of aging equipment
using geometric programming, Internat. J. of Product. Res.,
30: 2151–2158, 1992.

12 GEOMETRIC PROGRAMMING



18. T. R. Jefferson and C. H. Scott, Quality tolerancing and con-
jugate duality, Ann. Operat. Res., 105: 183–198, 2001.

19. E. L. Peterson and R. E. Wendell, Optimal location by geo-
metric programming, Research. Report, IE, Chicago, IL:
Northwestern, 1974.

20. M. Avriel, M. S. Rijckaert, and D. J. Wilde, eds., Optimization
and Design, Englewood Cliffs, NJ: Prentice-Hall, 1973.

21. V. Balachandran and D. H. Gensch, Solving the marketing
mix problem using geometric programming, Managen. Sci.
21: 160–171, 1974.

22. T. R. Jefferson, C. H. Scott, and J. Cozzolino, The analysis of
risky portfolios by geometric programming, Zeitschrift fur
Operations Research, Series A 23: 207–218, 1979.

23. C. H. Scott , T. R. Jefferson, and P. Kerdvonbundit, Geometric
programming duality applied to the resource allocation pro-
blem, INFOR, 1: 133–137, 1979.

24. T. R. Jefferson, W. Rodgers, and C. H. Scott, Estimating
financial statement Information: an entropy approach, J.
Accoun. Fin., 13: 1–19, 1999.

25. J. R. Rajasekera and M. Yamada, Estimating the firm value
distribution function by entropy optimization and geometric
programing, Ann. Operat. Res., 105: 61–75, 2001.

26. C. H. Scott and T. R. Jefferson, A convex dual for quadratic-
concave fractional programs, J. Optimiz. Theory Applicat., 91:
115–122, 1996.

27. P. Hayes, Mathematical Methods in the Social and Managerial
Sciences, New York: Wiley, 1975.

28. T. R. Jefferson, Geometric programming with an application to
transportation planning, Ph.D dissertation, Evanstion, IL:
Northwestern University, 1972.

29. J. J. Dinkel, G. A. Kochenberger, and S. N. Wong, Entropy
maximization and geometric programming, Environment and
Planning A, 9: 419–427, 1977.

30. T. R. Jefferson and C. H. Scott, Geometric programming applied
to transportation planning, Opsearch, IS: 22–34, 1978.

31. C. H. Scott and T. R. Jefferson, A generalisation of geometric
programming with an application to information theory,
Informat. Sci., 12: 263–269, 1977.

32. M. Chiang and S. Boyd, Geometric programming duals of
channel Capacity and rate distortion, IEEE Trans. Informat.
Theory, 50: 245–258, 2004.

33. M. Chiang, C. W. Tan, D. Palomar, D.O’Neill, and D. Julian,
Geometric programming for wireless network power control,
Resource Allocation in Next Generation Wireless Networks,
2005.

34. M. Avriel, Topics in optimization; block search; applied and
stochastic geometric programming, Ph. D. Thesis, New York:
Stanford University, 1966.

35. C. H. Scott and T. R. Jefferson, Dynamic financial planning:
certainty equivalents, stochastic constraints and functional
conjugate duality, IEEE Trans., 37: 931–938, 2005.

36. M. Mazumdar and T. R. Jefferson, Maximum-likelihood esti-
mates for multinomial probabilities via geometric-program-
ming, Biometrika, 70: 257–261, 1983.

37. E. L. Peterson and J. G. Ecker, Geometric programming:
duality in quadratic programming and lp-approximation II:
canonical programs, SIAM J. Appl. Math. 17: 317–340,
1969.

38. S. C. Fang, Y. B. Zhao, and J. E. Lavery, Geometric Dual
Formulation of the first derivative based C1-smooth univariate
cubic L1 spline functions, J. Global Optimiz, In Press.

39. S. C. Fang and W. Zhang, Y. Wang , and J. E. Lavery, Cubic L1
splines on triangulated irregular networks, Pacific J. Optimi-
zat., 2: 289–317, 2006.

40. M. Avriel, R. Dembo, and U. Passy, Solution of generalised
geometric programs, Int. J. Numerical Methods in Eng., 9:
149–169, 1975.

41. Y. Nesterov and A. Nemirovski, Multi-parameter surfaces of
analytic centers and long-step surface-following interior point
methods, Mathemat. Operat. Res. Inst., 23: 38, 1998.

42. K. Zhu, K. O. Kortanek, and S. Huang, Controlled dual per-
turbations for central path trajectories in geometric-program-
ming, Europ. J. Operat. Res., 73: 524–531, 1994.

43. S. C. Fang, E. L. Peterson, J. R. Rajasekera , Minimum cross-
entropy analysis with entropy-type constraints, J. Computat.
Applied Mathemt., 39: 165–178, 1992.

44. K. O. Kortanek, X. Xu, and Y. Ye, An infeasible interior-point
algorithm for solving primal and dual geometric programs,
Mathemat. Prog., 76: 155–181, 1997.

45. E. D. Andersen and Y. Y. Ye, A computational study of the
homogeneous algorithm for large scale convex optimization,
Computat. Optimiz. Applicat., 10: 243–269, 1998.

FURTHER READING

C. S. Beightler and D. T. Phillips, Applied Geometric Program-
ming, New York: John Wiley and Sons, Inc., 1976.

M. Chiang, Geometric Programming for Communications System,
Hanover, MA: Now Publishers Inc., 2005.

R. J. Duffin, Peterson, and C. Zener, Geometric Programming, New
York: John Wiley and Sons, Inc., 1967.

S. C. Fang, J. R. Rajasekera, and H.-S. J. Tsao, Entropy Optimiza-
tion and Mathematical Programming, Dordrecht, The Nether-
lands: Kluwer International, 1997.

S. C. Fang and C. H. Scott, Annals of Operations Research Special
Issue on Geometric Programing, Entropy Optimization and Gen-
eralizations, Vol. 105, 2001.

C. Zener, Engineering Design by Geometric Programming, New
York: John Wiley and Sons, Inc., 1971.

T. R. JEFFERSON

C. H. SCOTT

University of California, Irvine
Irvine, California

GEOMETRIC PROGRAMMING 13



G

GRAPH THEORY AND ALGORITHMS

GRAPH THEORY FUNDAMENTALS

A graph GðV ;EÞ consists of a set V of nodes (or vertices)
anda set E of pairs of nodes from V, referred to as edges. An
edge may have associated with it a direction, in which
case, the graph is called directed (as opposed to undir-
ected), or a weight, in which case, the graph is called
weighted. Given an undirected graph GðV ;EÞ, two nodes
u; v2V for which an edge e ¼ ðu; vÞ exists in E are said to
be adjacent and edge e is said to be incident on them. The
degree of a node is the number of edges adjacent to it. A
(simple) path is a sequence of distinct nodes ða0;a1; . . . ; akÞ
of V such that every two nodes in the sequence are adja-
cent. A (simple) cycle is a sequence of nodes (a0, a1, . . ., ak,
a0) such that ða0;a1; . . . ;akÞ is a path and ak; a0 are
adjacent. A graph is connected if there is a path between
every pair of nodes. A graph G0ðV 0;E0Þ is a subgraph of
graph G(V, E) if V 0 �V and E0 �E. A spanning tree of a
connected graph G(V, E) is a subgraph of G that comprises
all nodes of G and has no cycles. A graph G0(V0, E0) is a
subgraph of graph G(V, E) if V 0 �V and E0 �E. An inde-
pendent set of a graph G(V, E) is a subset V 0 �V of nodes
such that no two nodes in V0 are adjacent in G. A clique of a
graph G(V, E) is a subset V 0 �V of nodes such that any two
nodes in V0 are adjacent in G. Given a subset V 0 �V , the
induced subgraph of G(V, E) by V0 is a subgraph G0(V0, E0),
where E0 comprises all edges (u, v) in E with u, v2V 0.

In a directed graph, each edge (sometimes referred to
as arc) is an ordered pair of nodes and the graph is denoted
by G(V, A). For an edge (u, v) 2 A,v is called the head and u
the tail of the edge. The number of edges for which u is a tail
is called the out-degree of u and the number of edges for
which u is a head is called the in-degree of u. A (simple)
directed path is a sequence of distinct nodes (a0, a1, . . ., ak)
of V such that (ai, aiþ1), 8 i; 0 � i � k� 1, is an edge of the
graph. A (simple) directed cycle is a sequence of nodes (a0,
a1, . . ., ak, a0) such that (a0, a1, . . ., ak) is a directed path and
(ak, a0) 2 A. A directed graph is strongly connected if
there is a directed path between every pair of nodes. A
directed graph is weakly connected if there is an undirec-
ted path between every pair of nodes.

Graphs (1–5) are a very important modeling tool that
can be used to model a great variety of problems in areas
such as operations research (6–8), architectural level syn-
thesis (9), computer-aided Design (CAD) for very large-
scale integration (VLSI) (9,10) and computer and commu-
nications networks (11).

In operations research, a graph can be used to model the
assignment of workers to tasks, the distribution of goods
from warehouses to customers, etc. In architectural level
synthesis, graphs are used for the design of the data path
and the control unit. The architecture is specified by a
graph, a set of resources (such as adders and multipliers),
and a set of constraints. Each node corresponds to an

operation that must be executed by an appropriate
resource, and a directed edge from u to v corresponds to
a constraint and indicates that task u must be executed
before task v. Automated data path synthesis is a schedul-
ing problem where each task must be executed for some
time at an appropriate resource. The goal is to minimize the
total time to execute all tasks in the graph subject to the
edge constraints. In computer and communications net-
works, a graph can be used to represent any given inter-
connection, with nodes representing host computers or
routers and edges representing communication links.

In CAD for VLSI, a graph can be used to represent a
digital circuit at any abstract level of representation. CAD
for VLSI consists of logic synthesis and optimization, ver-
ification, analysis and simulation, automated layout, and
testing of the manufactured circuits (12). Graphs are used
in multilevel logic synthesis and optimization for combina-
tional circuits, and each node represents a function that is
used for the implementation of more than one output (9).
They model synchronous systems by means of finite state
machines and are used extensively in sequential logic
optimization (9). Binary decision diagrams are graphical
representations of Boolean functions and are used exten-
sively in verification. Algorithms for simulation and timing
analysis consider graphs where the nodes typically corre-
spond to gates or flip-flops. Test pattern generation and
fault grading algorithms also consider graphs where faults
may exist on either the nodes or the edges. In the automated
layout process (10), the nodes of a graph may represent
modules of logic (partitioning and floor-planning stages),
gates or transistors (technology mapping, placement, and
compaction stages), or simply pins (routing, pin assign-
ment, and via minimization stages).

There are many special cases of graphs. Some of the most
common ones are listed below. A tree is a connected graph
that contains no cycles. A rooted tree is a tree with a
distinguished node called a root. All nodes of a tree that
are distinguished from the root and are adjacent to only one
node are called leaves. Trees are used extensively in the
automated layout process of intergated circuits. The clock
distribution network is a rooted tree whose root corre-
sponds to the clock generator circuit and whose leaves
are the flip-flops. The power and ground supply networks
are rooted trees whose root is either the power or the ground
supply mechanism and whose leaves are the transistors in
the layout. Many problem formulations in operations
research, architectural level synthesis, CAD for VLSI,
and networking allow for fast solutions when restricted
to trees. For example, the simplified version of the data path
scheduling problem where all the tasks are executed on the
same type of resource is solvable in polynomial time if the
task graph is a rooted tree. This restricted scheduling
problem is also common in multiprocessor designs (9).

A bipartite graph is a graph with the property that its
node set V can be partitioned into two disjoint subsets V1

and V2, V1 [V2 ¼ v, such that every edge in E comprises

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



one node from V1 and one node from V2. Bipartite graphs
appear often in operations research (6–8) and in VLSI CAD
applications (9,10).

A directed acyclic graph is a directed graph that contains
no directed cycles. Directed acyclic graphs can be used to
represent combinational circuits in VLSI CAD. Timing
analysis algorithms in CAD for VLSI or software timing
analysis algorithms of synthesizable hardware description
language code operate on directed acyclic graphs.

A transitive graph is a directed graph with the property
that for any nodes u; v;w2V for which there exist edges
ðu; vÞ; ðv;wÞ 2A, edge (u, w) also belongs to A. Transitive
graphs find applications in resource binding of tasks in
architectural level synthesis (9) and in fault collapsing for
digital systems testing (12).

A planar graph is a graph with the property that its
edges can be drawn on the plane so as not to cross each
other. Many problems in the automated layout for VLSI are
modeled using planar graphs. Many over-the-cell routing
algorithms require the identification of circuit lines to be
routed on a single layer. Single-layer routing is also desir-
able for detailed routing of the interconnects within each
routing layer (10).

A cycle graph is a graph that is obtained by a cycle with
chords as follows: For every chord (a,b) of the cycle, there is
a node vða;bÞ in the cycle graph. There is an edge ðvða;bÞ; vðc;dÞÞ
in the cycle graph if and only if the respective chords (a, b)
and (c, d) intersect. Cycle graphs find application in VLSI
CAD, as a channel with two terminal nets, or a switchbox
with two terminal nets can be represented as a cycle graph.
Then the problem of finding the maximum number of nets
in the channel (or switchbox) that can be routed on the
plane amounts to finding a maximum independent set in
the respective cycle graph (10).

A permutation graph is a special case of a cycle graph. It
is based on the notion of a permutation diagram. A permu-
tation diagram is simply a sequence of N integers in the
range from 1 to N (but not necessarily ordered). Given an
ordering, there is a node for every integer in the diagram
and there is an edge (u,v) if and only if the integers u,v are
not in the correct order in the permutation diagram. A
permutation diagram can be used to represent a special
case of a permutable channel in a VLSI layout, where all
nets have two terminals that belong to opposite channel
sides. The problem of finding the maximum number of nets
in the permutable channel that can be routed on the plane
amounts to finding a maximum independent set in the
respective permutation graph. This, in turn, amounts to
finding the maximum increasing (or decreasing) subse-
quence of integers in the permutation diagram (10).

Graphs have also been linked with random processes,
yielding what is known as random graphs. Random graphs
consist of a given set of nodes while their edges are added
according to some random process. For example, G(n,p)
denotes a random graph with n nodes but whose edges are
chosen independently with probability p. Typical questions
that arise in the study of random graphs concern their
probabilistic behavior. For example, given n and p we may
want to find the probability that G(n,p) is connected (which
has direct application to the reliability of a network whose

links fail probabilistically). Or we may want to determine
whether there is a threshold on some parameter (such as
the average node degree) of the random graph after which
the probability of some attribute (such as connectivity,
colorability, etc) changes significantly.

ALGORITHMS AND TIME COMPLEXITY

An algorithm is an unambiguous description of a finite set
of operations for solving a computational problem in a finite
amount of time. The set of allowable operations corresponds
to the operations supported by a specific computing
machine (computer) or a model of that machine.

A computational problem comprises a set of parameters
that have to satisfy a set of well-defined mathematical
constraints. A specific assignment of values to these para-
meters constitutes an instance of the problem. For some
computational problems, there is no algorithm as defined
above to find a solution. For example, the problem of
determining whether an arbitrary computer program ter-
minates in a finite amount of time given a set of input data
cannot be solved (it is ‘‘undecidable’’) (13). For the computa-
tional problems for which there does exist an algorithm, the
point of concern is how ‘‘efficient’’ is that algorithm. The
efficiency of an algorithm is primarily defined in terms of
how much time the algorithm takes to terminate. (Some-
times, other considerations such as the space requirement
in terms of the physical information storage capacity of the
computing machine are also taken into account, but in this
exposition we concentrate exclusively on time.)

To formally define the efficiency of an algorithm, the
following notions are introduced.

The size of an instance of a problem is defined as the total
number of symbols for the complete specification of the
instance under a finite set of symbols and a ‘‘succinct’’
encoding scheme. A ‘‘succinct’’ encoding scheme is consid-
ered to be a logarithmic encoding scheme, in contrast to a
unary encoding scheme. The time requirement (time com-
plexity) of an algorithm is expressed then as a function f(n)
of the size n of an instance of the problem and gives the total
number of ‘‘basic’’ steps that the algorithm needs to go
through to solve that instance. Most of the time, the number
of steps is taken with regard to the worst case, although
alternative measures like the average number of steps can
also be considered. What constitutes a ‘‘basic’’ step is pur-
posely left unspecified, provided that the time the basic step
takes to be completed is bounded from above by a constant,
that is, a value not dependent on the instance. This hides
implementation details and machine-dependent timings
and provides the required degree of general applicability.

An algorithm with time complexity f(n) is said to be of the
order of g(n) [denoted as O(g(n))], where g(n) is another
function, if there is a constant c such that f ðnÞ � c � gðnÞ, for
all n� 0. For example, an algorithm for finding the mini-
mum element of a list of size n takes time O(n), an algorithm
for finding a given element in a sorted list takes time O(log
n), and algorithms for sorting a list of elements can take
time O(n2), O(n log n), or O(n) (the latter when additional
information about the range of the elements is known). If

2 GRAPH THEORY AND ALGORITHMS



moreover, there are constants cL and cH such that
cL � gðnÞ � f ðnÞ � cH � gðnÞ, for all n� 0, then f(n) is said
to be Q(g(n)).

The smaller the ‘‘order-of ’’ function, the more efficient
an algorithm is generally taken to be, but in the analysis of
algorithms, the term ‘‘efficient’’ is applied liberally to any
algorithm whose ‘‘order-of’’ function is a polynomial p(n).
The latter includes time complexities like O(n log n) or
Oðn

ffiffiffi
n
p
Þ, which are clearly bounded by a polynomial.

Any algorithm with a nonpolynomial time complexity is
not considered to be efficient. All nonpolynomial-time
algorithms are referred to as exponential and include
algorithms with such time complexities as O(2n), O(n!),
O(nn), O(nlog n) (the latter is sometimes referred to as
subexponential). Of course, in practice, for an algorithm
of polynomial-time complexity O(p(n)) to be actually effi-
cient, the degree of polynomial p(n) as well as the constant
of proportionality in the expression O(p(n)) should be small.
In addition, because of the worst-case nature of the O()
formulation, an ‘‘exponential’’ algorithm might exhibit
exponential behavior in practice only in rare cases (the
latter seems to be the case with the simplex method for
linear programming). However, the fact on the one hand
that most polynomial-time algorithms for the problems
that occur in practice tend indeed to have small polynomial
degrees and small constants of proportionality, and on the
other that most nonpolynomial algorithms for the problems
that occur in practice eventually resort to the trivial
approach of exhaustively searching (enumerating) all can-
didate solutions, justifies the use of the term ‘‘efficient’’ for
only the polynomial-time algorithms.

Given a new computational problem to be solved, it
is of course desirable to find a polynomial-time algorithm
to solve it. The determination of whether such a
polynomial-time algorithm actually exists for that problem
is a subject of primary importance. To this end, a whole
discipline dealing with the classification of the com-
putational problems and their interrelations has been
developed.

P, NP, and NP-Complete Problems

The classification starts technically with a special class of
computational problems known as decision problems. A
computational problem is a decision problem if its solution
can actually take the form of a ‘‘yes’’ or ‘‘no’’ answer. For
example, the problem of determining whether a given
graph contains a simple cycle that passes through every
node is a decision problem (known as the Hamiltonian cycle
problem). In contrast, if the graph has weights on the edges
and the goal is to find a simple cycle that passes through
every node and has a minimum sum of edge weights is not a
decision problem but an optimization problem (the corre-
sponding problem in the example above is known as the
Traveling Salesman problem). An optimization problem
(sometimes also referred to as a combinatorial optimization
problem) seeks to find the best solution, in terms of a well-
defined objective function Q(), over a set of feasible solu-
tions. Interestingly, every optimization problem has a
‘‘decision’’ version in which the goal of minimizing

(or maximizing) the objective function Q() in the optimiza-
tion problem corresponds to the question of whether a
solution exists with Q() � k (or Q() � k) in the decision
problem, where k is now an additional input parameter to
the decision problem. For example, the decision version of
the Traveling Salesman problem is, given a graph and an
integer K, to find a simple cycle that passes through every
node and whose sum of edge weights is no more than K.

All decision problems that can be solved in polynomial
time comprise the so-called class P (for ‘‘Polynomial’’).
Another established class of decision problems is the NP
class, which consists of all decision problems for which a
polynomial-time algorithm can verify if a candidate solu-
tion (which has polynomial size with respect to the original
instance) yields a ‘‘yes’’ or ‘‘no’’ answer. The initials ‘‘NP’’
stand for ‘‘Non-deterministic Polynomial’’ in that if a yes-
answer exists for an instance of an NP problem, that answer
can be obtained nondeterministically (in effect, ‘‘guessed’’)
and then verified in polynomial time. Every problem in
class P belongs clearly to NP, but the question of whether
class NP strictly contains P is a famous unresolved pro-
blem. It is conjectured that NP 6¼ P, but there has been no
actual proof until now. Notice that to simulate the non-
deterministic ‘‘guess’’ in the statement above, an obvious
deterministic algorithm would have to enumerate all pos-
sible cases, which is an exponential-time task. It is in fact
the question of whether such an ‘‘obvious’’ algorithm is
actually the best one can do that has not been resolved.

Showing that an NP decision problem actually belongs
to P is equivalent to establishing a polynomial-time algo-
rithm to solve that problem. In the investigation of the
relations between problems in P and in NP, the notion of
polynomial reducibility plays a fundamental role. A pro-
blem R is said to be polynomially reducible to another
problem S if the existence of a polynomial-time algorithm
for S implies the existence of a polynomial-time algorithm
for R. That is, in more practical terms, if the assumed
polynomial-time algorithm for problem S is viewed as a
subroutine, then an algorithm that solves R by making a
polynomially bounded number of calls to that subroutine
and taking a polynomial amount of time for some extra
work would constitute a polynomial-time algorithm for R.

There is a special class of NP problems with the pro-
perty that if and only if any one of those problems could be
solved polynomially, then so would all NP problems (i.e.,
NP would be equal to P). These NP problems are known as
NP-complete. An NP-complete problem is an NP problem to
which every other NP problem reduces polynomially. The
first problem to be shown NP-complete was the Satisfia-
bility problem (13). This problem concerns the existence of
a truth assignment to a given set of Boolean variables so
that the conjunction of a given set of disjunctive clauses
formed from these variables and their complements
becomes true. The proof (given by Stephen Cook in 1971)
was done by showing that every NP problem reduces poly-
nomially to the Satisfiability problem. After the establi-
shment of the first NP-complete case, an extensive and
ongoing list of NP-complete problems has been established
(13).

GRAPH THEORY AND ALGORITHMS 3



Some representative NP-complete problems on graphs
that occur in various areas in digital design automation,
computer networks, and other areas in electrical and com-
puter engineering are listed as follows:

� Longest path: Given a graph G(V, E) and an integer
K � jV j, is there a simple path in G with at least K
edges?

� Vertex cover: Given a graph G(V, E) and an integer
K � jV j, is there a subset V 0 �V such that jV 0j � K and
for each edge ðu; vÞ 2E, at least one of u, v belongs to V0?

� Clique: Given a graph G(V, E) and an integer K � jV j,
is there a clique C among the nodes in V such that
jCj � K?

� Independent set: Given a graph G(V, E) and an integer
K � jV j, is there a subset V 0 �V such that jV 0j �K and
no two nodes in V0 are joined by an edge in E?

� Feedback node set: Given a directed graph G(V, A) and
an integer K � jV j, is there a subset V 0 �V such that
jV 0j � K and every directed cycle in G has at least one
node in V0?

� Hamiltonian cycle: Given a graph G(V, E), does G
contain a simple cycle that includes all nodes of G?

� Traveling Salesman: Given a weighted graph G(V, E)
and a bound K, is there a path that visits each node
exactly once and has a total sum of weights no more
than K?

� Graph colorability: Given a graph G(V, E) and an
integer K � jV j, is there a ‘‘coloring’’ function f :
V! 1; 2; . . . ;K such that for every edge ðu; vÞ 2E;
f ðuÞ 6¼ f ðvÞ?

� Graph bandwidth: Given a graph G(V,E) and an inte-
ger K � jV j, is there a one-to-one function f :
V! 1; 2; . . . ; jV j such that for every edge ðu; vÞ 2E;
j f ðuÞ � f ðvÞj � K?

� Induced bipartite subgraph: Given a graph G(V, E)
and an integer K � jV j, is there a subset V 0 �V
such that jV 0j �K and the subgraph induced by V0 is
bipartite?

� Planar subgraph: Given a graph G(V, E) and an integer
K � jEj, is there a subset E0 �E such that jE0j �K and
the subgraph G0(V,E0) is planar?

� Steiner tree: Given a weighted graph G(V, E), a subset
V 0 �V , and a positive integer bound B, is there a
subgraph of G that is a tree, comprises at least all
nodes in V0, and has a total sum of weights no more
than B?

� Graph partitioning: Given a graph G(V, E) and two
positive integers K and J, is there a partition of V
into disjoint subsets V1, V2,. . .,Vm such that each sub-
set contains no more than K nodes and the total
number of edges that are incident on nodes in two
different subsets is no more than J?

� Subgraph isomorphism: Given two graphs G(VG, EG)
and H(VH, EH), is there a subgraph H0(VH0 , EH0) of
H such that G and H0 are isomorphic (i.e., there is a

one-to-one function f : VG!VH0 such that ðu; vÞ 2EG

if and only if ð f ðuÞ; f ðvÞÞ 2EH0 )?

The interest in showing that a particular problem R is
NP-complete lies exactly in the fact that if it finally turns
out that NP strictly contains P, then R cannot be solved
polynomially (or, from another point of view, if a
polynomial-time algorithm happens to be discovered for
R, then NP ¼ P). The process of showing that a decision
problem is NP-complete involves showing that the problem
belongs to NP and that some known NP-complete problem
reduces polynomially to it. The difficulty of this task lies in
the choice of an appropriate NP-complete problem to reduce
from as well as in the mechanics of the polynomial reduc-
tion. An example of an NP-complete proof is given below.

Theorem 1. The Clique problem is NP-complete
Proof. The problem belongs clearly to NP, because once

a clique C of size jCj �K has been guessed, the verification
can be done in polynomial (actually OðjCj2Þ) time. The
reduction is made from a known NP-complete problem,
the 3-Satisfiability problem, or 3SAT (13). The latter pro-
blem is a special case of the Satisfiability problem in that
each disjunctive clause comprises exactly three literals.

Let j be a 3SAT instance with n variables x1,. . ., xn and
m clauses C1,. . ., Cm. For each clause Cj, 1 � j � m seven
new nodes are considered, each node corresponding to
one of the seven minterms that make Cj true. The total
size of the set V of nodes thus introduced is 7m. For every
pair of nodes u, v in V, an edge is introduced if and only if
u and v correspond to different clauses and the minterms
corresponding to u and v are compatible (i.e., there is no
variable in the intersection of u and v that appears as both
a negated and an unnegated literal in u and v).

The graph G(V, E) thus constructed has O(m) nodes
and O(m2) edges. Let the lower bound K in the Clique
problem be K ¼ m. Suppose first that j is satisfiable; that
is, there is a true–false assignment to the variables x1,. . .,
xn that make each clause true. This characteristic means
that, in each clause Cj, exactly one minterm is true and all
such minterms are compatible. The set of the nodes corre-
sponding to these minterms has size m and constitutes a
clique, because all compatible nodes have edges among
themselves.

Conversely, suppose that there is a clique C in G(V, E) of
size jCj �m. As there are no edges among any of the seven
nodes corresponding to clause Cj, 1 � j � m, the size of
the clique must be exactly jCj ¼m; that is, the clique con-
tains exactly one node from each clause. Moreover, these
nodes are compatible as indicated by the edges among
them. Therefore, the union of the minterms corresponding
to these nodes yields a satisfying assignment for the 3SAT
instance.&

It is interesting to note that seemingly related prob-
lems and/or special cases of many NP-complete problems
exhibit different behavior. For example, the Shortest
Path problem, related to the Longest Path problem, is
polynomially solvable. The Longest Path problem

4 GRAPH THEORY AND ALGORITHMS



restricted to directed acyclic graphs is polynomially solva-
ble. The Graph Colorability problem for planar graphs and
for K ¼ 4 is also polynomially solvable.

On the other hand, the Graph Isomorphism problem,
related to the Subgraph Isomorphism but now asking if
the two given graphs G and H are isomorphic, is thought
to be neither an NP-complete problem nor a polynomially
solvable problem, although this has not been proved. There
is a complexity class called Isomorphic-complete, which is
thought to be entirely disjoint from both NP-complete and
P. However, polynomial-time algorithms exist for Graph
Isomorphism when restricted to graphs with node degree
bounded by a constant (14). In practice, Graph Isomorph-
ism is easy except for pathologically difficult graphs.

NP-Hard Problems

A generalization of the NP-complete class is the NP-hard
class. The NP-hard class is extended to comprise opti-
mization problems and decision problems that do not
seem to belong to NP. All that is required for a problem
to be NP-hard is that some NP-complete problems reduce
polynomially to it. For example, the optimization version of
the Traveling Salesman problem is an NP-hard problem,
because if it were polynomially solvable, the decision
version of the problem (which is NP-complete) would be
trivially solved in polynomial time.

If the decision version of an optimization problem is
NP-complete, then the optimization problem is NP-hard,
because the ‘‘yes’’ or ‘‘no’’ answer sought in the decision
version can readily be given in polynomial time once the
optimum solution in the optimization version has been
obtained. But it is also the case that for most NP-hard
optimization problems, a reverse relation holds; that is,
these NP-hard optimization problems can reduce polyno-
mially to their NP-complete decision versions. The strategy
is to use a binary search procedure that establishes the
optimal value after a logarithmically bounded number of
calls to the decision version subroutine. Such NP-hard
problems are sometimes referred to as NP-equivalent.
The latter fact is another motivation for the study of
NP-complete problems: A polynomial-time algorithm for
any NP-complete (decision) problem would actually provide
a polynomial-time algorithm for all such NP-equivalent
optimization problems.

Algorithms for NP-Hard Problems

Once a new problem for which an algorithm is sought is
proven to be NP-complete or NP-hard, the search for a
polynomial-time algorithm is abandoned (unless one seeks
to prove that NP ¼ P), and the following basic four
approaches remain to be followed:

(1) Try to improve as much as possible over the straight-
forward exhaustive (exponential) search by using
techniques like branch-and-bound, dynamic pro-
gramming, cutting plane methods, and Lagrangian
techniques.

(2) For optimization problems, try to obtain a polynomial-
time algorithm that finds a solution that is prov-
ably close to the optimal. Such an algorithm is
known as an approximation algorithm and is gene-
rally the next best thing one can hope for to solve
the problem.

(3) For problems that involve numerical bounds, try to
obtain an algorithm that is polynomial in terms of
the instance size and the size of the maximum
number occurring in the encoding of the instance.
Such an algorithm is known as pseudopolynomial-
time algorithm and becomes practical if the numbers
involved in a particular instance are not too large. An
NP-complete problem for which a pseudopolyno-
mial-time algorithm exists is referred to as weakly
NP-complete (as opposed to strongly NP-complete).

(4) Use a polynomial-time algorithm to find a ‘‘good’’
solution based on ‘‘rules of thumb’’ and insight. Such
an algorithm is known as a ‘‘heuristic.’’ No proof is
provided about how good the solution is, but
well-justified arguments and empirical studies jus-
tify the use of these algorithms in practice.

In some cases, before any of these approaches is exam-
ined, one should check whether the problem of concern is
actually a polynomially or pseudopolynomially solvable
special case of the general NP-complete or NP-hard pro-
blem. Examples include polynomial algorithms for finding
a longest path in a directed acyclic graph, and finding a
maximum independent set in a transitive graph. Also, some
graph problems that are parameterized with an integer k
exhibit the fixed-parameter tractability property; that is,
for each fixed value of k, they are solvable in time bounded
by a polynomial whose degree is independent of k. For
example, the problem of whether a graph G has a cycle
of length at least k, although NP-complete in general, is
solvable in time O(n) for fixed k, where n is the number of
nodes in G. [For other parameterized problems, however,
such as the Dominating Set, where the question is whether
a graph G has a subset of k nodes such that every node not
in the subset has a neighbor in the subset, the only solu-
tion known has time complexity Oðnkþ1Þ.]

In the next section, we give some more information about
approximation and pseudopolynomial-time algorithms.

POLYNOMIAL-TIME ALGORITHMS

Graph Representations and Traversals

There are two basic schemes for representing graphs in
a computer program. Without loss of generality, we assume
that the graph is directed [represented by G(V,A)].
Undirected graphs can always be considered as bidirected.
In the first scheme, known as the Adjacency Matrix repre-
sentation, a jV j � jV j matrix M is used, where every row
and column of the matrix corresponds to a node of the
graph, and entry M(a, b) is 1 if and only if ða; bÞ 2A. This
simple representation requires OðjV j2Þ time and space.

GRAPH THEORY AND ALGORITHMS 5



In the second scheme, known as the Adjacency List
representation, an array L½1::jV j� of linked lists is used.
The linked list starting at entry L[i] contains the set of all
nodes that are the heads of all edges with tail node i. The
time and space complexity of this scheme is ðjV j þ jEjÞ.

Both schemes are widely used as part of polynomial-time
algorithms for working with graphs (15). The Adjacency
List representation is more economical to construct, but
locating an edge using the Adjacency Matrix representa-
tion is very fast [takes O(1) time compared with the OðjV jÞ
time required using the Adjacency List representation].
The choice between the two depends on the way the algo-
rithm needs to access the information on the graph.

A basic operation on graphs is the graph traversal,
where the goal is to systematically visit all nodes of the
graph. There are three popular graph traversal methods:
Depth-first search (DFS), breadth-first search (BFS), and
topological search. The last applies only to directed acyclic
graphs. Assume that all nodes are marked initially as
unvisited, and that the graph is represented using an
adjacency list L.

Depth-first search traverses a graph following the dee-
pest (forward) direction possible. The algorithm starts by
selecting the lowest numbered node v and marking it as
visited. DFS selects an edge (v, u), where u is still unvisited,
marks u as visited, and starts a new search from node u.
After completing the search along all paths starting at u,
DFS returns to v. The process is continued until all nodes
reachable from v have been marked as visited. If there are
still unvisited nodes, the next unvisited node w is selected
and the same process is repeated until all nodes of the graph
are visited.

The following is a recursive implementation of sub-
routine of DFS(v) that determines all nodes reachable
from a selected node v. L[v] represents the list of all nodes
that are the heads of edges with tail v, and array M[u]
contains the visited or unvisited status of every node u.

Procedure DFSðvÞ
M½v� :¼ visited;

FOR each node u 2 L½v�DO

IF M½u� ¼ unvisited THEN Call DFSðuÞ;
END DFS

The time complexity of DFS(v) is OðjVvj þ jEvjÞ, where
jVvj; jEvj are the numbers of nodes and edges that have been
visited by DFS(v). The total time for traversing the graph
using DFS is OðjEj þ jV jÞ ¼ OðjEjÞ.

Breadth-first search visits all nodes at distance k from
the lowest numbered node v before visiting any nodes at
distance kþ1. Breadth-first search constructs a breadth-
first search tree, initially containing only the lowest num-
bered node. Whenever an unvisited node w is visited in the
course of scanning the adjacency list of an already visited
node u, node w and edge (u, w) are added to the tree. The
traversal terminates when all nodes have been visited.
The approach can be implemented using queues so that
it terminates in OðjEjÞ time.

The final graph traversal method is the topological
search, which applies only to directed acyclic graphs. In
directed acyclic graphs, nodes have no incoming edges and
nodes have no outgoing edges. Topological search visits a
node only if it has no incoming edges or all its incoming
edges have been explored. The approach can be also be
implemented to run in OðjEjÞ time.

Design Techniques for Polynomial-Time Algorithms

We describe below three main frameworks that can be used
to obtain polynomial-time algorithms for combinatorial
optimization (or decision) problems: (1) greedy algorithms;
(2) divide-and-conquer algorithms; and (3) dynamic pro-
gramming algorithms. Additional frameworks such as
linear programming are available, but these are discussed
in other parts of this book.

Greedy Algorithms. These algorithms use a greedy
(straightforward) approach. As an example of a greedy
algorithm, we consider the problem of finding the chro-
matic number (minimum number of independent sets) in
an interval graph. An interval is a line aligned to the y-axis,
and each interval i is represented by its left and right
endpoints, denoted by li and ri, respectively. This repre-
sentation of the intervals is also referred to as the inter-
val diagram.

In an interval graph, each node corresponds to an inter-
val and two nodes are connected by an edge if the two
intervals overlap. This problem finds immediate appli-
cation in VLSI routing (10). The minimum chromatic
number corresponds to the minimum number of tracks
so that all intervals allocated to a track do not overlap
with each other.

The greedy algorithm is better described on the interval
diagram instead of the interval graph; i.e., it operates on
the intervals rather than or the respective nodes on the
interval graph. It is also known as the left-edge algorithm
because it first sorts the intervals according to their left-
edge values li and then allocates them to tracks in ascend-
ing order of li values.

To allocate a track to the currently examined interval i,
the algorithm serially examines whether any of the existing
tracks can accommodate it. (The existing tracks have been
generated to accommodate all intervals j such that l j � li.)
Net i is greedily assigned to the first existing track that can
accommodate it. A new track is generated, and interval i is
assigned to that track only if i has a conflict with each
existing track.

It can be shown that the algorithm results to minimum
number of tracks; i.e., it achieves the chromatic number of
the interval graph. This happens because if more than one
track can accommodate interval i, then any assignment
will lead to an optimal solution because all nets k with
lk� li can be assigned to the unselected tracks.

Divide-and-Conquer. This methodology is based on a
systematic partition of the input instance in a top–down
manner into smaller instances, until small enough
instances are obtained for which the solution of the problem

6 GRAPH THEORY AND ALGORITHMS



degenerates to trivial computations. The overall optimal
solution, i.e., the optimal solution on the original input
instance, is then calculated by appropriately working on
the already calculated results on the subinstances. The
recursive nature of the methodology necessitates the solu-
tion of one or more recurrence relations to determine the
execution time.

As an example, consider how divide-and-conquer can
be applied to transform a weighted binary tree into a heap.
A weighted binary tree is a rooted directed tree in which
every nonleaf node has out-degree 2, and there is a value
(weight) associated with each node. (Each nonleaf node is
also referred to as parent, and the two nodes it points to
are referred to as its children.) A heap is a weighted binary
tree in which the weight of every node is no smaller than the
weight of either of its children.

The idea is to recursively separate the binary tree into
subtrees starting from the root and considering the sub-
trees rooted at its children, until the leaf nodes are encoun-
tered. The leaf nodes constitute trivially a heap. Then,
inductively, given two subtrees of the original tree that
are rooted at the children of the same parent and have been
made to have the heap property, the subtree rooted at the
parent can be made to have the heap property too by simply
finding which child has the largest weight and exchanging
that weight with the weight of the parent in case the latter
is smaller than the former.

Dynamic Programming. In dynamic programming, the
optimal solution is calculated by starting from the simplest
subinstances and combining the solutions of the smaller
subinstances to solve larger subinstances, in a bottom-up
manner. To guarantee a polynomial-time algorithm, the
total number of subinstances that have to be solved must be
polynomially bounded. Once a subinstance has been solved,
any larger subinstance that needs that subinstance’s solu-
tion, does not recompute it, but looks it up in table where it
has been stored. Dynamic programming is applicable only
to problems that obey the principle of optimality. This
principle holds whenever in an optimal sequence of choices,
each subsequence is also optimal. The difficulty in this
approach is to come up with a decomposition of the problem
into a sequence of subproblems for which the principle of
optimality holds and can be applied in polynomial time.

We illustrate the approach by finding the maximum
independent set in a cycle graph in O(n2) time, where n
is the number of chordal endpoints in the cycle (10). Note
that the maximum independent set is NP-hard on general
graphs.

Let G(V, E) be a cycle graph, and vab 2V correspond to
a chord in the cycle. We assume that no two chords share an
endpoint, and that the endpoints are labeled from 0 to
2n � 1, where n is the number of chords, clockwise around
the cycle. Let Gij be the subgraph induced by the set of nodes
vab 2V such that i � a; b � j.

Let M(i, j) denote a maximum independent set of Gi, j.
M(i, j) is computed for every pair of chords, but M(i, a) must
be computed before M(i, b) if a< b. Observe that, if i� j,
Mði; jÞ ¼ 0 because Gi, j has no chords. In general, to com-
pute M(i, j), the endpoint k of the chord with endpoint
j must be found. If k is not in the range [i, j � 1], then

Mði; jÞ ¼Mði; j� 1Þ because graph Gi, j is identical to
graph Gi,j�1. Otherwise we consider two cases: (1) If
vk j 2Mði; jÞ, then M(i, j) does not have any node vab, where
a2 ½i; k� 1� and b2 ½kþ 1; j�. In this case, Mði; jÞ ¼Mði; k�
1Þ [MðK ¼ 1; j� 1Þ [ vk j. (2) If vk j =2Mði; jÞ, then
Mði; jÞ ¼Mði; j� 1Þ. Either of these two cases may apply,
but the largest of the two maximum independent sets will
be allocated to M(i, j). The flowchart of the algorithm is
given as follows:

Procedure MIS(V)
FOR j ¼ 0 TO 2n � 1 DO

Let (j, k) be the chord whose one endpoint is j;
FOR i ¼ 0 TO j � 1 DO

IF i�k� j�1 AND |M(i,k�1)|þ1þ|M(kþ 1, j�1)|>
|M(i, j�1)| THEN M(i, j)¼M(i, k� 1) [ vkj [M(kþ
1, j�1);

ELSE M(i, j) ¼ M(i, j�1);
END MIS

Basic Graph Problems

In this section, we discuss more analytically four problems
that are widely used in VLSI CAD, computer networking,
and other areas, in the sense that many problems are
reduced to solving these basic graph problems. They are
the shortest path problem, the flow problem, the graph
coloring problem, and the graph matching problem.

Shortest Paths. The instance consists of a graph G(V, E)
with lengths l(u, v) on its edges (u, v), a given source s2V ,
and a target t2V . We assume without loss of generality
that the graph is directed. The goal is to find a shortest
length path from s to t. The weights can be positive or
negative numbers, but there is no cycle for which the sum of
the weights on its edges is negative. (If negative length
cycles are allowed, the problem is NP-hard.) Variations of
the problem include the all-pair of nodes shortest paths and
the m shortest path calculation in a graph.

We present here a dynamic programming algorithm
for the shortest path problem that is known as the
Bellman–Ford algorithm. The algorithm has O(n3) time
complexity, but faster algorithms exist when all the weights
are positive [e.g., the Dijkstra algorithm with complexity
Oðn �minflogjEj; jV jgÞ] or when the graph is acyclic (based
on topological search and with linear time complexity). All
existing algorithms for the shortest path problem are based
on dynamic programming. The Bellman–Ford algorithm
works as follows.

Let l(i, k) be the length of edge (i, j) if directed edge (i, j)
exists and 1 otherwise. Let s( j) denote the length of the
shortest path from the source s to node j. Assume that
the source has label 1 and that the target has label n ¼ jV j.
We have that sð1Þ ¼ 0. We also know that in a shortest path
to any node j there must exist a node k, k 6¼ j, such that
sð jÞ ¼ sðkÞ þ lðk; jÞ. Therefore,

sð jÞ ¼ min
k 6¼ j
fsðkÞ þ lðk; jÞg; j� 2

Bellman–Ford’s algorithm, which eventually computes
all s( j), 1 � j � n, calculates optimally the quantity

GRAPH THEORY AND ALGORITHMS 7



sð jÞmþ1 defined as the length of the shortest path to node
j subject to the condition that the path does not contain
more than m þ 1 edges, 0 � m � jV j � 2. To be able to
calculate quantity sð jÞmþ1 for some value m þ 1, the
s( j)m values for all nodes j have to be calculated.

Given the initialization sð1Þ1 ¼ 0; sð jÞ1 ¼ lð1; jÞ, j 6¼ 1,
the computation of sð jÞmþ1 for any values of j and m can
be recursively computed using the formula

sð jÞmþ1 ¼ minfsð jÞm;minfsðkÞm þ lðk; jÞg

The computation terminates when m ¼ jV j � 1, because
no shortest path has more than jV j � 1 edges.

Flows. All flow problem formulations consider a directed
or undirected graph G ¼ ðV ;EÞ, a designated source s, a
designated target t, and a nonnegative integer capacity
c(i, j) on every edge (i, j). Such a graph is sometimes
referred to as a network. We assume that the graph is
directed. A flow from s to t is an assignment F of num-
bers f(i, j) on the edges, called the amount of flow through
edge (i, j), subject to the following conditions:

0 � f ði; jÞ � cði; jÞ (1)

Every node i, except s and t, must satisfy the conservation
of flow. That is,

X
j

f ð j; iÞ �
X

j

f ði; jÞ ¼ 0 (2)

Nodes s and t satisfy, respectively,

X
j

f ð j; iÞ �
X

j

f ði; jÞ ¼ �v; if i ¼ s;

X
j

f ð j; iÞ �
X

j

f ði; jÞ ¼ v; if i ¼ t ð3Þ

where v ¼
P

j f ðs; jÞ ¼
P

j f ð j; tÞ is called the value of the
flow.

A flow F that satisfies Equations (1–3) is called feasible.
In the Max Flow problem, the goal is to find a feasible flow F
for which v is maximized. Such a flow is called a maximum
flow. There is a problem variation, called the Minimum
Flow problem, where Equation (1) is substituted by
f ði; jÞ� cði; jÞ and the goal is to find a flow F for which v
is minimized. The minimum flow problem can be solved
by modifying algorithms that compute the maximum flow
in a graph.

Finally, another flow problem formulation is the Mini-
mum Cost Flow problem. Here each edge has, in addition
to its capacity c(i, j), a cost p(i, j). If f(i, j) is the flow through
the edge, then the cost of the flow through the edge is
p(i, j) � f(i, j) and the overall cost C for a flow F of a value
v is

P
i; j pði; jÞ � f ði; jÞ. The problem is to find a minimum

cost flow F for a given value v.
Many problems in VLSI CAD, computer networking,

scheduling, and so on can be modeled or reduced to one of
these three flow problem variations. All three problems can
be solved in polynomial time using as subroutines shortest

path calculations. We describe below for illustration
purposes an OðjV j3Þ algorithm for the maximum flow pro-
blem. However, faster algorithms exist in the literature. We
first give some definitions and theorems.

Let P be an undirected path from s to t; i.e., the direction
of the edges is ignored. An edge ði; jÞ 2P is said to be a
forward edge if it is directed from s to t and backward
otherwise. P is said to be an augmenting path with respect
to a given flow F if f ði; jÞ< cði; jÞ for each forward edge and
f ði; jÞ> 0 for each backward edge in P.

Observe that if the flow in each forward edge of the
augmenting path is increased by one unit and the flow in
each backward edge is decreased by one unit, the flow
is feasible and its value has been increased by one unit.
We will show that a flow has maximum value if and only if
there is no augmenting path in the graph. Then the max-
imum flow algorithm is simply a series of calls to a sub-
routine that finds an augmenting path and increments the
value of the flow as described earlier.

Let S	V be a subset of the nodes. The pair (S, T) is
called a cutset if T ¼ V � S. If s2S and t2T, the (S, T)
is called an (s, t) cutset. The capacity of the cutset (S, T) is
defined as cðS;TÞ ¼

P
i2S

P
j2T cði; jÞ, i.e., the sum of the

capacities of all edges from S to T. We note that many
problems in networking, operations research, scheduling,
and VLSI CAD (physical design, synthesis, and testing)
are formulated as minimum capacity (s, t) cutset problems.
We show below that the minimum capacity (s, t) problem
can be solved with a maximum flow algorithm.

Lemma 1. The value of any (s, t) flow cannot exceed the
capacity of any (s, t) cutset.

Proof. Let F be an (s, t) flow with value v. Let (S, T) be
an (s, t) cutset. From Equation 3 the value of the flow v is
also v ¼

P
i2Sð

P
j f ði; jÞ �

P
j f ð j; iÞÞ¼

P
i2S

P
j2Sðf ði; jÞ�

f ð j; iÞÞþ
P

i2S

P
j2Tð f ði; jÞ � f ð j; iÞÞ¼

P
i2S

P
j2Tð f ði; jÞ�

f ð j; iÞÞ, because
P

i2S

P
j2Sð f ði; jÞ � f ð j; iÞÞ is 0. But

f ði; jÞ � cði; jÞ and f ð j; iÞ� 0. Therefore, v �
P

i2S

P
j2S

cði; jÞ ¼ cðS;TÞ.&

Theorem 2. A flow F has maximum value v if and only if
there is no augmenting path from s to t.

Proof. If there is an augmenting path, then we can
modify the flow to get a larger value flow. This contradicts
the assumption that the original flow has a maximum
value.

Suppose on the other hand that F is a flow such that
there is no augmenting path from s to t. We want to show
that F has the maximum flow value. Let S be the set of all
nodes j (including s) for which there is an augmenting path
from s to j. By the assumption that there is an augmenting
path from s to t, we must have that t =2S. Let T ¼ V � S
(recall that t2T). From the definition of S and T, it follows
that f ði; jÞ ¼ cði; jÞ and f ð j; iÞ ¼ 0, 8 i2S; j2T.

Now v ¼
P

i2Sð
P

j f ði; jÞ �
P

j f ð j; iÞÞ ¼
P

i2S

P
j2S

ð f ði; jÞ�f ð j; iÞÞþ
P

i2S

P
j2Tð f ði; jÞ� f ð j; iÞÞ¼

P
i2S

P
j2T

ð f ði; jÞ � f ð j; iÞÞ ¼
P

i2S

P
j2S cði; jÞ, because cði; jÞ ¼

f ði; jÞ and f ð j; iÞ ¼ 0, 8 i; j. By Lemma 1, the flow has
the maximum value.&

8 GRAPH THEORY AND ALGORITHMS



Next, we state two theorems whose proof is straightfor-
ward.

Theorem 3. If all capacities are integers, then a max-
imum flow F exists, where all f(i, j) are integers.

Theorem 4. The maximum value of an (s, t) flow is equal
to the minimum capacity of an (s, t) cutset.

Finding an augmenting path in a graph can be done by a
systematic graph traversal in linear time. Thus, a straight-
forward implementation of the maximum flow algorithm
repeatedly finds an augmenting path and increments the
amount of the (s, t) flow. This is a pseudopolynomial-time
algorithm (see the next section), whose worst-case time
complexity is Oðv � jEjÞ. In many cases, such an algorithm
may turn out to be very efficient. For example, when all
capacities are uniform, then the overall complexity
becomes OðjEj2Þ.

In general, the approach needs to be modified using the
Edmonds–Karp modification (6), so that each flow aug-
mentation is made along an augmenting path with a mini-
mum number of edges. With this modification, it has
been proven that a maximum flow is obtained after no
more than jEj � jV j=2 augmentations, and the approach
becomes fully polynomial. Faster algorithms for maximum
flow computation rely on capacity scaling techniques and
are described in Refs. 8 and 15, among others.

Graph Coloring. Given a graph G(V, E), a proper k-
coloring of G is a function f from V to a set of integers
from 1 to k (referred to as colors) such that f ðuÞ 6¼ f ðvÞ, if
ðu; vÞ 2E. The minimum k for which a proper k-coloring
exists for graph G is known as the chromatic number of G.
Finding the chromatic number of a general graph and
producing the corresponding coloring is an NP-hard pro-
blem. The decision problem of graph k-colorability is NP-
complete in the general case for fixed k� 3. For k ¼ 2, it is
polynomially solvable (bipartite matching). For planar
graphs and for k ¼ 4, it is also polynomially solvable.

The graph coloring problem finds numerous applica-
tions in computer networks and communications, architec-
tural level synthesis, and other areas. As an example, the
Federal Communications Commission (FCC) monitors
radio stations (modeled as nodes of a graph) to make
sure that their signals do not interfere with each other.
They prevent interference by assigning appropriate fre-
quencies (each frequency is a color) to each station. It is
desirable to use the smallest possible number of frequen-
cies. As another example, several resource binding algo-
rithms for data path synthesis at the architectural level are
based on graph coloring formulations (9).

There is also the version of edge coloring: A proper
k-edge-coloring of G is a function f from E to a set of integers
from 1 to k such that f ðe1Þ 6¼ f ðe2Þ, if edges e1 and e2 share a
node. In this case, each color class corresponds to a match-
ing in G, that is, a set of pairwise disjoint edges of G. The
minimum k for which a proper k-edge-coloring exists for
graph G is known as the edge-chromatic number of G. It
is known (Vizing’s theorem) that for any graph with max-
imum node degree d, there is a (d þ 1)-edge coloring.

Finding such a coloring can be done in O(n2) time. Notice
that the edge-chromatic number of a graph with maximum
node degree d is at least d. It is NP-complete to determine
whether the edge-chromatic number is d, but given Vizing’s
algorithm, the problem is considered in practice solved.

Graph Matching. A matching in a graph is a set M	E
such that no two edges in M are incident to the same node.

The Maximum Cardinality Matching problem is the
most common version of the matching problem. Here the
goal is to obtain a matching so that the size (cardinality) of
M is maximized.

In the Maximum Weighted Matching version, each edge
ði; jÞ 2V has a nonnegative integer weight, and the goal is
to find a matching M so that

P
e2M wðeÞ is maximized.

In the Min-Max Matching problem, the goal is to find a
maximum cardinality matching M where the minimum
weight on an edge in M is maximized. The Max-Min Match-
ing problem is defined in an analogous manner.

All above matching variations are solvable in poly-
nomial time and find important applications. For example,
a variation of the min-cut graph partitioning problem,
which is central in physical design automation for VLSI,
asks for partitioning the nodes of a graph into sets of size
at most two so that the sum of the weights on all edges
with endpoints in different sets is minimized. It is easy to
see that this partitioning problem reduces to the maximum
weighted matching problem.

Matching problems often occur on bipartite GðV1 [
V2;EÞ graphs. The maximum cardinality matching pro-
blem amounts to the maximum assignment of elements
in V1 (‘‘workers’’) on to the elements of V2 (‘‘tasks’’) so that no
‘‘worker’’ in V1 is assigned more than one ‘‘task.’’ This finds
various applications in operations research.

The maximum cardinality matching problem on a
bipartite graph GðV1 [V2;EÞ can be solved by a maximum
flow formulation. Simply, each node v2V1 is connected to
a new node s by an edge (s, v) and each node u2V2 to a new
node t by an edge (u, t). In the resulting graph, every edge
is assigned unit capacity. The maximum flow value v
corresponds to the cardinality of the maximum matching
in the original bipartite graph G.

Although the matching problem variations on bipar-
tite graphs are amenable to easily described polynomial-
time algorithms, such as the one given above, the existing
polynomial-time algorithms for matchings on general
graphs are more complex (6).

Approximation and Pseudopolynomial Algorithms

Approximation and pseudopolynomial-time algorithms
concern mainly the solution of problems that are proven
to be NP-hard, although they can sometimes be used on
problems that are solvable in polynomial time, but for
which the corresponding polynomial-time algorithm
involves large constants.

An a-approximation algorithm A for an optimization
problem R is a polynomial-time algorithm such that, for

any instance I of R, jSAðIÞ�SOPTðIÞj
SOPTðIÞ � aþ c, where SOPT(I) is the

cost of the optimal solution for instance I, SA(I) is the cost
of the solution found by algorithm A, and c is a constant.

GRAPH THEORY AND ALGORITHMS 9



As an example, consider a special but practical version of
the Traveling Salesman problem that obeys the triangular
inequality for all city distances. Given a weighted graph
G(V, E) of the cities, the algorithm first finds a minimum
spanning tree T of G (that is, a spanning tree that has
minimum sum of edge weights). Then it finds a minimum
weight matching M among all nodes that have odd degree in
T. Lastly, it forms the subgraph G0(V, E0), where E0 is the set
of all edges in T and M and finds a path that starts from and
terminates to the same node and passes through every edge
exactly once (such a path is known as ‘‘Eulerian tour’’).
Every step in this algorithm takes polynomial time. It

has been shown that jSAðIÞ�SOPTðIÞj
SOPTðIÞ � 1

2.
Unfortunately, obtaining a polynomial-time approxi-

mation algorithm for an NP-hard optimization problem
can be very difficult. In fact, it has been shown that this
may be impossible for some cases. For example, it has been
shown that unless NP ¼ P, there is no a-approximation
algorithm for the general Traveling Salesman problem for
any a> 0.

A pseudopolynomial-time algorithm for a problem R
is an algorithm with time complexity O(p(n, m)), where
p() is a polynomial of two variables, n is the size of the
instance, and m is the magnitude of the largest number
occuring in the instance. Only problems involving numbers
that are not bounded by a polynomial on the size of the
instance are applicable for solution by a pseudopolynomial-
time algorithm. In principle, a pseudopolynomial-time
algorithm is exponential given that the magnitude of a
number is exponential to the size of its logarithmic encod-
ing in the problem instance, but in practice, such an algo-
rithm may be useful in cases where the numbers involved
are not large.

NP-complete problems for which a pseudopolynomial-
time algorithm exists are referred to as weakly NP-
complete, whereas NP-complete problems for which no
pseudopolynomial-time algorithm exists (unless NP ¼ P)
are referred to as strongly NP-complete. As an example, the
Network Inhibition problem, where the goal is to find
the most cost-effective way to reduce the ability of a net-
work to transport a commodity, has been shown to be
strongly NP-complete for general graphs and weakly NP-
complete for series-parallel graphs (16).

Probabilistic and Randomized Algorithms

Probabilistic algorithms are a class of algorithms that do
not depend exclusively on their input to carry out the
computation. Instead, at one or more points in the course
of the algorithm where a choice has to be made, they use a
pseudorandom number generator to select ‘‘randomly’’ one
out of a finite set of alternatives for arriving at a solution.
Probabilistic algorithms are fully programmable (i.e., they
are not nondeterministic), but in contrast with the deter-
ministic algorithms, they may give different results for the
same input instance if the initial state of the pseudorandom
number generator differs each time.

Probabilistic algorithms try to reduce the computation
time by allowing a small probability of error in the com-
puted answer (‘‘Monte Carlo’’ type) or by making sure that

the running time to compute the correct answer is small for
the large majority of input instances (‘‘Las Vegas’’ type).
That is, algorithms of the Monte Carlo type always run fast,
but the answer they compute has a small probability of
being erroneous, whereas algorithms of the Las Vegas
type always compute the correct answer but they occasion-
ally may take a long time to terminate. If there is an
imposed time limit, Las Vegas-type algorithms can alter-
natively be viewed as always producing either a correct
answer or no answer at all within that time limit.

An example of a probabilistic algorithm on graphs is
the computation of a minimum spanning in a weighted
undirected graph by the algorithm of (17). This algorithm
computes a minimum spanning tree in O(m) time, where m
is the number of edges, with probability 1� e�VðmÞ.

Randomization is also very useful in the design of heur-
istic algorithms. A typical example of a randomized heur-
istic algorithm is the simulated annealing method, which is
very effective for many graph theoretic formulations in
VLSI design automation (10). In the following we outline
the use of simulated annealing in the graph balanced
bipartitioning problem, where the goal is to partition the
nodes of a graph in two equal-size sets so that the number of
edges that connect nodes in two different sets is minimized.
This problem formulation is central in the process of
obtaining a compact layout for the integrated circuit whose
components (gates or modules) are represented by the
graph nodes and its interconnects by the edges.

The optimization in balanced bipartitioning with a very
large number of nodes is analogous to the physical process
of annealing where a material is melted and subsequently
cooled down, under a specific schedule, so that it will
crystallize. The cooling must be slow so that thermal equi-
librium is reached at each temperature so that the atoms
are aranged in a pattern that resembles the global energy
minimum of the perfect crystal.

While simulating the process, the energy within the
material corresponds to a partitioning score. The process
starts with a random initial partitioning. An alternative
partitioning is obtained by exchanging nodes that are in
opposite sets. If the change in the score d is negative,
then the exchange is accepted because this represents
reduction in the energy. Otherwise, the exchange is
accepted with probability e�d=t; i.e., the probability of accep-
tance decreases with the increase in temperature t. This
method allows the simulated annealing algorithm to climb
out of local optimums in the search for a global optimum.

The quality of the solution depends on the initial value of
the temperature value and the cooling schedule. Such
parameters are determined experimentally. The quality
of the obtained solutions is very good, altough the method
(being a heuristic) cannot guarantee optimality or even a
provably good solution.

FURTHER READING

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
New York: Computer Science Press, 1984.

10 GRAPH THEORY AND ALGORITHMS



BIBLIOGRAPHY

1. B. Bollobas, Modern Graph Theory. New York: Springer
Verlag, 1988.

2. S. Even, Graph Algorithms. New York: Computer Science
Press, 1979.

3. J. L. Gross and J. Yellen, Graph Theory and its Applications.
CRC Press, 1998.

4. R. Sedgewick, Algorithms in Java: Graph Algorithms.
Reading, MA: Addison-Wesley, 2003.

5. K. Thulasiraman and M. N. S. Swamy, Graphs: Theory and
Algorithms. New York: Wiley, 1992.

6. E. L. Lawler, Combinatorial Optimization—Networks and
Matroids. New York: Holt, Rinehart and Winston, 1976.

7. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimi-
zation: Algorithms and Complexity. Englewood Cliffs, NJ:
Prentice Hall, 1982.

8. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows.
Englewood Cliffs, NJ: Prentice Hall, 1993.

9. G. De Micheli, Synthesis and Optimization of Digital Circuits.
New York: McGraw-Hill, 1994.

10. N. A. Sherwani, Algorithms for VLSI Physical Design Auto-
mation. New York: Kluwer Academic, 1993.

11. D. Bertsekas and R. Gallagher, Data Networks. Upper Saddle
River, NJ: Prentice Hall, 1992.

12. M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital
Systems Testing and Testable Design. New York: Computer
Science Press, 1990.

13. M. R. Garey and D. S. Johnson, Computers and Intractability—
A Guide to the Theory of NP-Completeness. New York: W. H.
Freeman, 1979.

14. S. Skiena, Graph isomorphism, in Implementing Discrete
Mathematics: Combinatorics and Graph Theory with Mathe-
matica. Reading, MA: Addison-Wesley, 1990, pp. 181–187.

15. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA: MIT Press, 1990.

16. C. A. Phillips, The network inhibition problem, Proc. 25th
Annual ACM Symposium on the Theory of Computing, 1993,
pp. 776–785.

17. D. R. Karger, P. N. Klein, and R. E. Tarjan, A randomized linear
time algorithm to find minimum spanning trees, J. ACM, 42(2):
321–328, 1995.

DIMITRI KAGARIS

SPYROS TRAGOUDAS

Southern Illinois University
Carbondale, Illinois

GRAPH THEORY AND ALGORITHMS 11



I

INFORMATION ALGEBRA

INTRODUCTION

Many apparently very different problems from computer
science can be solved by fast generic algorithms because
they develop from instances of a very general abstract
structure called information algebra. To illustrate in a
simple way these generic problems and the nature of the
fast algorithms derived from them, we consider the follow-
ing example:

Let f(X1, X2), g(X2, X3), and h(X2, X4, X5) be given real-
valued functions, where X1; . . . ;X5 are variables that take
values from a finite set X with n elements. Such discrete
functions can be represented in tabular form. Suppose we
are given the task to compute the values of a(X1, X2) and
b(X2, X3), which are defined as follows:

aðX1;X2Þ ¼
X

X3;X4;X5

f ðX1;X2ÞgðX2;X3ÞhðX2;X4;X5Þ

bðX2;X3Þ ¼
X

X1;X4;X5

f ðX1;X2ÞgðX2;X3ÞhðX2;X4;X5Þ

ð1Þ

Here, the summation over a list of variables adds up to the
summation over all possible assignments to those vari-
ables, and the task consists in the computation of the values
of a and b for all possible assignments to X1, X2 and X2, X3,
respectively. If we compute the sums directly as they are
written here, then both sums require the multiplication of
O(n5) values, which results in a table with the same number
of elements, and then O(n5) additions. This method can be
done much more efficiently. So, the first sum can be com-
puted as

aðX1;X2Þ ¼ f ðX1;X2Þ

X
X3

gðX2; X3Þ
 ! X

X4;X5

hðX2; X4; X5Þ

0
@

1
A

0
@

1
A
ð2Þ

Here, we need O(n2) multiplications and the tables have
never more than n2 elements and only O(n3) additions. This
result is different with respect to the first, direct computa-
tion. Of course, we need to verify that Equation (2) yields in
fact the same result as Equation (1). This method involves
essentially the distributive law of arithmetic. Similarly, the
second sum can be computed as

bðX2; X3Þ ¼ gðX2; X3Þ

X
X1

f ðX1; X2Þ
X

X4;X5

hðX2; X4; X5Þ

0
@

1
A

0
@

1
A ð3Þ

But it needs again only O(n2) multiplications; the resulting
tables have never more that n2 elements, and only O(n3)

additions are needed. Once more, this result represents an
important gain. The gain obtained by clever use of the
distributive law becomes even more important if we are
charged with computations that contain hundreds or thou-
sands of variables.

Distributive laws hold in more general mathematical
structures than simple arithmetic, and consequently, fast
algorithms based on this law can be developed in more
general structures. In the next section, we propose an
abstract algebraic framework that proves to be sufficient
to enable the generic fast algorithms we have in mind.
These algorithms are described in a generic way in the
section on Local Computation. In the section on Semiring
Valuations we present an important class of models of this
axiomatic frame, which contains also the example dis-
cussed above. These abstract generic structures cover a
great many problems of computer science, which include
basic problems from relational databases, constraint sys-
tems, propositional and predicate logic, as well as many
other logic systems. More problems are located in the field
of numerical analysis, which includes systems of linear
equations and linear inequalities, decoding algorithms as
for instance Viterbi’s algorithm, fast Fourier transforms,
and belief propagation algorithms from artificial intelli-
gence. Not to be forgotten are methods based on probability
networks, possibility theory and fuzzy sets, belief functions
from Dempster-Shafer theory of evidence, and many more.

AXIOMATICS

We abstract the illustrating example in the previous
section with the interpretation as a framework for the
processing of information. In all the examples of computa-
tional problems referred to at the end of the previous
section, in some way or another information is processed.
Now, information pertains to questions, for instance to the
possible values of certain variables X1;X ; . . . Xm out of a
set r of variables. Let F be a set of elements whose generic
elements are denoted by small Greek letters like f;c; . . ..
Each element of F pertains to some subset s � r of vari-
ables. This subset is determined by the labeling function
d : F!D, where D is the powerset of r. The elements of F
can be thought of as pieces of information f that pertains
to sets of variables dðfÞ. We call dðfÞ also the domain of f.
For instance, the functions f, g, and h in the example of the
previous section could be recognized as such pieces of
informations that refer to the sets of variables
fX1;X2g; fX2;X3g, and fX2;X4;X5g; respectively.

We consider now a two-sorted algebra (F, D) with three
operations that are defined as follows:

1. Labeling: F!D, f!dðfÞ,
2. Combination: F�F!F, ðf;cÞ!f�c,

3. Projection: F�D!F, ðf; sÞ!f # s, defined s�dðfÞ.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Combination can be thought of as the operation of
aggregation of information. In the example of the first
section for instance, the combination is defined as multi-
plication:

ð f� gÞðX1; X2; X3Þ ¼ f ðX1;X2ÞgðX2; X3Þ:

Projection represents extraction of information regarding a
specified set of variables. In the introductory example,
projection is defined as summation:

f # fX1gðX1Þ ¼
X
X2

f ðX1;X2Þ

Now these operations must satisfy certain axioms:

1. Semigroup: The operation of combination is commu-
tative and associative, that is,

f�c ¼ c�f; ðf�cÞ�� ¼ f�ðc� �Þ:

2. Labeling: dðf�cÞ ¼ dðfÞ [dðcÞ.
3. Projection: dðf # sÞ ¼ s.

4. Transitivity of projection: If t� s�dðfÞ, then

ðf # sÞ # t ¼ f # t:

5. Distributivity of combination over projection: If
dðfÞ ¼ s, dðcÞ ¼ t and u2D such that s�u� s[ t,
then

ðf�cÞ #u ¼ f�c #u\ t:

The main axioms are (4) and especially (5). Axiom (4)
states that projection can be done in steps. Axiom (5) is the
generalized distributive law that allows fast algorithms
(see the section Local Computation). It suggests that pro-
jection can, in certain important cases, be done before
combination. In terms of the example of the first section,
it reads as follows:

X
X3

f ðX1;X2ÞgðX2;X3Þ ¼ f ðX1;X2Þ
X
X3

gðX2;X3Þ

According to axiom (1), F is a commutative semigroup
under combination. Axiom (2) says that domains of aggre-
gated pieces of information are joined. Finally, axiom (3)
assures that the domain of a projected information is the
domain on which it is projected. This algebraic structure
captures already essential elements of what is expected of a
concept of information regarding aggregation (combina-
tion) and focusing (projection). Because one important ele-
ment is still missing, which we would expect for a concept of
information (see the section on idempotency), we call a two-

sorted algebra (F, D) satisfying the axioms (1)–(5) a valua-
tion algebra and not yet a proper information algebra.
However, valuation algebras represent the framework
that defines the generic fast algorithms we have in mind
and that will be discussed in the section entitled ‘‘Local
computation’’.

Some valuation algebras have additional properties.
Some models have neutral elements es on any domain s,
such that es�f ¼ f for all elements with dðfÞ ¼ s. These
elements represent vacuous information with respect to the
variables in s. Sometimes, null elements zs are on every
domain s 2 D, such that zs�f ¼ zs for all elements with
dðfÞ ¼ s. These elements represent falsity or contradiction;
elements such that f�c ¼ zs must be considered to repre-
sent contradictory information.

In the next section, an important class of valuation
algebras will be presented. This class contains also many
important examples. More examples are given in the last
section.

The general inference problem associated with a valua-
tion algebra (F, D) can be stated as follows: We are given a
finite set of pieces of information f1; . . .fm 2F with
domains si ¼ dðfiÞ for i ¼ 1; � � � ;m and one or several
domains x1; . . . ; xk 2D. Then, the following projections
have to be computed:

ðf1� � � � �fmÞ # x j for j ¼ 1; . . . ; k ð4Þ

This formula is called the projection problem. The
domains si are called data domains and the xj goal domains.
The tasks of computing aðX1;X2Þ and bðX2;X3Þ in the first
section are examples of projection problems as it will be
explained in the next section. Just as in these examples, the
naive computation based on the expression given in Equa-
tion (4) is not efficient and in many cases is intractable. But
again, the distributivity axiom together with the transitiv-
ity axiom allow for efficient algorithms to solve the projec-
tion problem. This method will be explained in the section
entitled ‘‘Local compution.’’

We remark that we can adjoin an element e with domain
d(e) ¼ ; to a valuation algebra (F, D) and define f� e ¼
e�f ¼ f for all f2F, as well as e� e ¼ e and e #;¼ e.
Clearly, the augmented algebra ðF[feg;DÞ is still a valua-
tion algebra. The element e is called the identity element.

SEMIRING VALUATIONS

Often, configurations of possible values of a set s of vari-
ables are evaluated by values from a commutative semiring.
A commutative semiring is a set A with two binary opera-
tionsþ and�, where both operations are commutative and
associative and where � distributes over þ so that for
a,b,c 2 A,

a� ðbþ cÞ ¼ a� bþ a� c

Often, we simply speak of a semiring, but we always
mean a commutative one. With respect to the introduction,

2 INFORMATION ALGEBRA



in which more efficient computations are found by use of the
distributive law, we may say that a semiring constitutes the
simplest mathematical structure where the distributive
law still holds. Below, several important examples of semir-
ings are given, and we also point out that a ring is a
semiring with additive inverses, and a field is a ring with
multiplicative inverses.

To formulate the idea of a semiring valuation more
precisely, assume as before that the variables X1; . . . ;Xm

take values in a finite set X. A mapping x : s!X is called a
tuple on the variable set s. The set of all s-tuples will be
denoted by X s. If s is the empty set, then we define ^ to be
the only s-tuple. If x is a tuple on s and t a subset of s, then
x # t denotes the tuple on t obtained from the s-tuple x by
restriction to the indices in t. If we want to emphasize the
decomposition of a s-tuple x into disjoint components that
belong to the subsets t and s\t of s, we write x ¼ ðx # t; x # sntÞ.
A semiring valuation on s is then a mapping f : Xs!A,
where A is a semiring. Let Fs denote the set of all semiring
valuations on s and

FA ¼ [
s� r

Fs

We define now a two-sorted algebra (FA, D), where D is as
before the powerset of r. In fact, we define the three opera-
tions required for a valuation algebra as follows:

1. Labeling: dðfÞ ¼ s, if f2Fs:

2. Combination: The semiring valuation f�c, where f
and c are semiring valuations on s and t, respectively,
is defined for all s [ t-tuple x by

ðf�cÞðxÞ ¼ fðx # sÞ � cðx # tÞ

3. Projection: The semiring valuation f # t, were f is a
semiring valuation on s and t� s, is defined for any
t-tuple x by

f # tðxÞ ¼
X

y2Xsnt

fðx; yÞ

The semiring properties are then sufficient to guarantee
that the axioms of a valuation algebra are satisfied. Thus,
for any semiring A, the algebra ðFA;DÞ is a valuation
algebra. If f and c are semiring valuations on s and t
respectively, then the combination law of the semiring
valuation algebra takes the following form; if x is an s-tuple
and s�u� s[ t,

X
z2Xtnu

fðxÞ � cðx # t\u; zÞ ¼ fðxÞ �
X

z2Xtnu

cðx # t\u; zÞ

This method follows directly from the distributive law in
semirings. If f is a semiring valuation and t� s�dðfÞ ¼ u,
then the transitivity of projection in the semiring valuation

algebra becomes

X
z2Xsnt

X
y2Xuns

fðx; y; zÞ ¼
X

y2Xuns; z2Xsnt

fðx; y; zÞ

1
A

0
@

This result is a consequence of the associativity and
commutativity of addition.

In Table 1, a couple of semiring examples are given. The
example of the first section is based on the arithmetic
semiring. This example yields the valuation algebra under-
lying probability networks, in particular Bayesian net-
works, and shows that the problem of computing
aðX1; X2Þ and bðX2; X3Þ in the first section are indeed
instances of the general projection problem in valuation
algebras. The Boolean semiring induces the valuation
algebra for classic constraint systems and the tropical
semirings model optimization problems. Moreover, taking
maximization for addition and an arbitrary t-norm for
multiplication leads always to a semiring. A t-norm (trian-
gular norm) is a binary operation on the unit interval that is
associative, commutative, and nondecreasing in both argu-
ments. The corresponding t-norm semirings induce valua-
tion algebras used in maximum likelihood estimation in
general, and in particular in decoding theory. But they also
cover possibility theory and fuzzy set theory.

LOCAL COMPUTATION

In this section, an efficient algorithm for the projection
problem [Equation (4)] in a valuation algebra is described.
It uses the concept of a join (or junction) tree. A labeled tree
T ¼ ðV ;E; lÞ with nodes V, edges E�V � V , and with
labels l : V!D is called a join tree, if

lðuÞ \ lðvÞ� lðwÞ

for every node w on the path between nodes u and v in the
tree T. A join tree is covering a projection problem [Equa-
tion (4)], if for every data domain si, there is a node v 2 V
such that si� lðvÞ, and similarly for every goal domain xj,
there is also a node u2V such that x j� lðuÞ. In this case, we
may assign any data domain si to a covering node, that is,
we can define a mapping a : f1; . . . ;mg!V such that
si� lðaðiÞÞ. If several nodes cover si, then we select arbi-
trarily one of them. Similarly, we can define a mapping
b : f1; . . . ;ng!V , such that x j� lðbð jÞÞ. Then define for
any node v 2 V

cðvÞ ¼ �
i:aðiÞ¼v

fi

Table 1. Semiring example catalog

A þ �

R�0 þ � Arithmetic semiring
R[f�1g max min Bottleneck semiring
B ¼ f0; 1g _ ^ Boolean semiring
N[f0;1g min þ Tropical semiring
R[f�1g max þ Tropical semiring
[0, 1] max t-norm T-norm semiring

INFORMATION ALGEBRA 3



If no index i exists such that aðiÞ ¼ v, then cðvÞ ¼ e, the
adjoined identity element (introduced in the second sec-
tion). Then it holds that

f1� � � � �fm ¼ �
v2V

cðvÞ

Now, an efficient algorithm for solving the projection pro-
blem for a selected and fixed goal domain xj can be for-
mulated: Fix the node b( j) and orient all edges of the
covering join tree toward it. Then, every node v, except
b( j), has a unique neighbor (child) ch(v) toward b( j).
Imagine a storage location associated with each node v
and describe its content by s(v). Initially set sðvÞ :¼cðvÞ
for all v2V .

The algorithm can now be described by the following two
rules:

1. EachnodevsendsamessagemðvÞ :¼ sðvÞ #dðcðvÞÞ \ lðchðvÞÞ

to its neighbor ch(v), when it has received all messages
from its parents. Leaf nodes can send messages right
away.

2. The receiving node ch(v) updates its storage by
sðchðvÞÞ :¼ sðchðvÞÞ� mðvÞ.

When the root node b( j) has received all messages, the
algorithm stops. The solution of the projection problem for
the goal domain xj is then obtained as sðbð jÞÞ # x j . The
efficiency of this algorithm stems from the fact that never
a combination or projection operation takes place on a
domain larger than the domains lðvÞ of the covering join
tree. These domains are usually much smaller than the
combined domain s1 [ . . . [ sm of the combination
f1� � � � �fm, which occurrs in the naive solution of the
projection problem.

As an example, reconsider Equations (2) and (3) for an
efficient computation of aðX1;X2Þ and bðX2;X3Þ, respec-
tively. It turns out that these computations correspond to
possible runs of the algorithm above. For an illustration we
refer to Fig. 1, which the messages sent among the nodes of
the covering join trees are depicted as arrows.

It may be noted that this algorithm allows for parallel
and distributed computing. The projection problem for
other goal domains xi different from xj are obtained in
the same way by selecting b(i) as root node. This method
involves reorienting certain edges with respect to the first

computation. But edges can remain unchanged, as shown
in Fig. 1. This result means that the messages on these
edges can be reused. In summary, by caching the computa-
tions, the solution of several projection problems can be
optimized further considerably. Several architectures are
known for this (1, 2). Some of them exploit properties of the
underlying valuation algebra, such as the possibility of
division.

IDEMPOTENCY

An information in the usual sense of the word does not
change if it is repeated. That is, an idempotency law such as
f�f ¼ f holds. More precisely, a piece of information
combined with a part of itself should give nothing new.
This information can be formulated in an additional axiom:

6. Idempotency of combination: If dðfÞ ¼ s and t� s, then

f�f # t ¼ f

A valuation algebra with this additional axiom is called an
information algebra. It has many interesting properties.
First, especially efficient architectures of local computation
exist for information algebras (1, 2). Second, in information
algebras, an information order can be introduced by defin-
ing f � c, reading f is less informative than c, if f�c ¼ c.
This method puts information algebra in relation to domain
theory, and the related theory of information systems (3, 4).

Relational algebra from relational database theory is a
prototype of an information algebra. Furthermore, many
logic systems induce information algebras, which includes
classic propositional and predicate logic. Systems of linear
equalities or inequalities generate associated information
algebras, as well as certain semiring valuation algebras, for
instance the constraints systems that arise from to the
Boolean semiring, and many more.

BIBLIOGRAPHY

1. J. Kohlas, Information Algebras: Generic Structures for Infer-
ence. Berlin: Springer-Verlag, 2003.

2. C. Schneuwly, M. Pouly, and J. Kohlas. Local Computation in
Covering Join Trees. Technical Report 04-16. Department of
Informatics, University of Fribourg.

3. B. A. Davey and H. A. Priestley, Introduction to Lattices and
Order. Cambridge UK: Cambridge University Press, 1990.

4. D. S. Scott, Outline of a mathematical theory of computation,
Proc. of the 4th Annual Princeton Conference On Information
Science and Systems, 1970, pp. 169–176.

FURTHER READING

J. Kohlas and P. P. Shenoy, Computation in Valuation Algebras.
Handbook of Defeasible Reasoning and Uncertainty Management
Systems, Volume 5: Algorithms for Uncertainty and Defeasible
Reasoning. The Netherlands: Dordrecht, Kluwer, 2000.

J. Kohlas and N. Wilson, Semiring Induced Valuation Algebras:
Exact and Approximate Local Computation Algorithms. New York:
Elsevier Science, 2006.

Figure 1. Graphical representation of the efficient computation
of aðX1; X2Þ (on the left) and bðX2; X3Þ (on the right) as given in
Equations (2) and (3), respectively.

4 INFORMATION ALGEBRA



C. Schneuwly, Computing in valuation algebras. PhD Thesis,
Department of Informatics, Fribourg, Switzerland: University of
Fribourg, 2007.

M. Pouly, A generic framework for local computation. PhD Thesis,
Department of Informatics, Fribourg, Switzerland: University of
Fribourg, 2008.

P. P. Shenoy and G. Shafer, Axioms for probability and belief-
function proagation. Uncertainty in Artificial Intelligence 4. Series:
Machine intelligence and pattern recognition. R. D. Shachter, T. S.
Levitt, L. N. Kanal, J. F. Lemmer.

S. M. Aji and R. J. McEliece, The generalized distributive law,
IEEE Trans. Informat. Theory, 46(2): 325–343, 2000.

JÜRG KOHLAS

MARC POULY

CESAR SCHNEUWLY

University of Fribourg
Fribourg, Switzerland

INFORMATION ALGEBRA 5



L

LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION

An optimization problem is a mathematical problem in
which data are used to find the values of n variables so
as to minimize or maximize an overall objective while
satisfying a finite number of imposed restrictions on the
values of those variables. For example:

Linear Program (LP1) Nonlinear Program (NLP1)

maximize
subject to

x1 þ x2 minimize
subject to

�3x1 � 2x2

x1 þ 3x2 � 6 ðaÞ
2x1 þ x2 � 4 ðbÞ

x1 � 0 ðcÞ
x2 � 0 ðdÞ

x2
1 þ x2

2 � 9 ðaÞ
x2

1 � 6x1 þ x2
2 � 6 ðbÞ

x1 unrestricted

x2 � 0 ðcÞ

The expression being maximized or minimized is called the
objective function, whereas the remaining restrictions
that the variables must satisfy are called the constraints.
The problem on the left is a linear program (LP) because the
objective function and all constraints are linear and all
variables are continuous; that is, the variables can assume
any values, including fractions, within a given (possibly
infinite) interval. In contrast, the problem on the right is a
nonlinear program (NLP) because the variables are contin-

uous but the objective function or at least one constraint is not

linear. Applications of such problems in computer science,

mathematics, business, economics, statistics, engineering,

operations research, and the sciences can be found in Ref. 1.

LINEAR PROGRAMMING

The geometry of LP1 is illustrated in Fig. 1(a). A feasible
solution consists of values for the variables that simulta-
neously satisfy all constraints, and the feasible region is
the set of all feasible solutions. The status of every LP is
always one of the following three types:

� Infeasible, which means that the feasible region is
empty; that is, there are no values for the variables
that simultaneously satisfy all of the constraints.

� Optimal, which means that there is an optimal
solution; that is, there is a feasible solution that
also provides the best possible value of the objective
function among all feasible solutions. (The optimal
solution for LP1 shown in Fig. 1(a) is x1 ¼ 1:2 and
x2 ¼ 1:6.)

� Unbounded, which means that there are feasible
solutions that can make the objective function as large
(if maximizing) or as small (if minimizing) as desired.

Note that the feasible region in Fig. 1(a) has a finite
number of extreme points (the black dots), which are fea-
sible points where at least n of the constraints hold with
equality. Based on this observation, in 1951, George
Dantzig (2) developed the simplex algorithm (SA) that, in
a finite number of arithmetic operations, will determine the
status of any LP and, if optimal, will produce an optimal
solution. The SA is the most commonly used method for
solving an LP and works geometrically as follows:

Step 0 (Initialization). Find an initial extreme point,
say a vector x ¼ ðx1; . . . xnÞ, or determine none exists;
in which case, stop, the LP is infeasible.

Step 1 (Test for Optimality). Perform a relatively
simple computation to determine whether x is an
optimal solution and, if so, stop.

Step 2 (Move to a Better Point). If x is not optimal,
use that fact to

(a) (Direction of Movement). Find a direction in
the form of a vector d ¼ ðd1; . . . dnÞ that points
from x along an edge of the feasible region so
that the objective function value improves as
you move in this direction.

(b) (Amount of Movement). Determine a real num-
ber t that represents the maximum amount you
can move from x in the direction d and stay
feasible. If t ¼ 1, stop, the LP is unbounded.

(c) (Move). Move from x to the new extreme point
xþ td, and return to Step 1.

The translation of these steps to algebra constitutes
the SA. Because the SA works with algebra, all inequality
constraints are first converted to equality constraints. To
do so, a nonnegative slack variable is added to (subtracted
from) each � (� ) constraint. For given feasible values of
the original variables, the value of the slack variables
represents the difference between the left and the right
sides of the inequality constraint. For example, the cons-
traint x1 þ 3x2 � 6 in LP1 is converted to x1 þ 3x2 þ s1 ¼ 6,
and if x1 ¼ 2 and x2 ¼ 0, then the value of the slack variable
is s1 ¼ 4, which is the difference between the left side of
x1 þ 3x2 and the right side of 6 in the original constraint.
The algebraic analog of an extreme point is called a basic
feasible solution.

Step 0 of the SA is referred to as phase 1, whereas Steps 1
and 2 are called phase 2. Phase 2 is finite because there
are a finite number of extreme points and no such point
visited by the SA is repeated because the objective function
strictly improves at each iteration, provided that t> 0 in
Step 2(b) (even in the degenerate case when t ¼ 0, the
algorithm can be made finite). Also, a finite procedure for
phase 1 is to use the SA to solve a special phase 1 LP that
involves only phase 2. In summary, the SA is finite.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



See Ref. 3 for improvements in the computational effi-
ciency and numerical accuracy of the SA. Many commercial
software packages use the SA, from Solver, an add-in to a
Microsoft (Redmond, WA) Excel spreadsheet, to CPLEX
(ILOG, Mountain View, CA) and LINDO (LINDO Systems,
Inc., Chicago, IL), stand-alone professional codes for sol-
ving large real-world problems with many thousands of
variables and constraints. These packages provide the
optimal solution and other economic information used in
postoptimality and sensitivity analysis to answer questions
of the form, ‘‘What happens to the optimal solution and
objective function value if some of the data change?’’ Such
questions are asked because the data are often estimated
rather than known precisely. Although you can always
change data and resolve the problem, you can sometimes
answer these questions without having to use a computer
when only one objective function coefficient or one value on
the right-hand side (rhs) of a constraint is changed.

Much postoptimality analysis is based on duality theory,
which derives from the fact that associated with every
original primal LP having n variables and m constraints
is another dual LP that has m variables and n constraints.
Where the primal problem is to be maximized (minimized),
the dual problem is to be minimized (maximized), for
example:

Primal LP Dual LP

min c1x1 þ � � � þ cnxn

s:t: a11x1 þ � � � þ a1nxn �b1

..

. ..
. ..

. ..
.

am1x1 þ � � � þ amnxn� bm

x1 ; � � � ; xn� 0

max b1u1 þ � � � þ bmum

s:t: a11u1 þ � � � þ am1um � c1

..

. ..
. ..

. ..
.

a1nu1 þ � � � þ amnum � cn

u1 ; � � � ; un �0

Duality theory is used in the following ways:

1. As a test for optimality in Step 1 of the SA. (If x is
feasible for the primal LP and u is feasible for the dual
LP, and the objective function values of the primal

and dual at x and u are equal, then x and u are
optimal solutions for their respective problems.)

2. To determine the status of an LP without having to
use a computer. (For example, if the primal LP is
feasible and the dual LP is infeasible, then the primal
LP is unbounded.)

3. To provide economic information about the primal
LP. (For example, the optimal value of a dual vari-
able, also called the shadow price of the associated
primal constraint, represents the change in the opti-
mal objective function value of the primal LP per unit
of increase in the right-hand side of that constraint—
within a certain range of values around that right-
hand side—if all other data remain unchanged.)

4. To develop finite algorithms for solving the dual LP
and, in so doing, provide a solution to the primal LP,
assuming that both problems have optimal solutions.

Although efficient for solving most real-world problems,
many versions of the SA can, in the worst case, visit an
exponential (in terms of n) number of extreme points (see
Ref. 4 for the first such example). It is an open question
as to whether there is a version of the SA that, in the worst
case, is polynomial (in the size of the data) although
Borgwardt (5) proved that a version of the SA is polynomial
on average. In 1979, Khachian (6) proposed the first poly-
nomial algorithm for solving every LP. Karmarkar (7)
subsequently developed the first polynomial algorithm
that was also efficient in practice. These interior point
methods (IPM) go through the inside of the feasible region
[see Fig. 1(a)] rather than along the edges like the SA
does. Computational experience with current versions of
these IPMs indicate that they can be more efficient than
the SA for solving specially-structured large LPs but
generally are not more efficient than the SA for other
LPs. See Refs. 8 and 9 for a discussion of IPMs and
Ref. 10 for linear programming and the SA.

NONLINEAR PROGRAMMING

An NLP differs from an LP in both the problem structure
and the ability to obtain solutions. Although an LP always
has constraints (otherwise, the LP is unbounded), an NLP
can be unconstrained—that is, have no constraints—or
constrained, for example, find x ¼ ðx1; . . . ; xnÞ to:

Unconstrained Problem (NLP2) Constrained Problem (NLP3)

minimize f ðxÞ minimize f ðxÞ
subject to g1ðxÞ � 0

..

. ..
. ..

.

gmðxÞ � 0

Other differences between an LP and an NLP arise due
to nonlinearities in the objective function and cons-
traints of an NLP. Where an LP must be either infeasible,

x1

x2

1 2

1

2

Feasible 
Region

Extreme 
Points

Optimal Solution 
(Extreme Point)

x1

x2

1 2

1

2

Optimal 
Solution

(a)

(b)
(c)

(d)
3

3

Feasible 
Region

(a) The Geometry of LP1 (b) The Geometry of NLP1

Figure 1. The geometry of LP1 and NLP1.

2 LINEAR AND NONLINEAR PROGRAMMING



optimal, or unbounded, with a nonlinear objective function,
an NLP can additionally approach, but never attain, its
smallest possible objective function value. For example,
when minimizing f ðxÞ ¼ e�x, the value of f approaches 0
as x approaches þ1 but never attains the value 0.

The linear objective function and constraints in an
LP allow for a computationally efficient test for opti-
mality to determine whether a given feasible solution
x ¼ ðx1; . . . ; xnÞ is optimal. In contrast, given a feasible point
x for an NLP with general nonlinear functions, there is no
known efficient test to determine whether x is a global
minimum of an NLP, that is, a point such that for every
feasible point y ¼ ðy1; . . . ; ynÞ, f ðxÞ � f ðyÞ. There is also no
known efficient test to determine whether x is a local
minimum, that is, a feasible point such that there is a
real number d> 0 for which every feasible point y with
kx� yk< d satisfies f ðxÞ � f ðyÞ [where kx� yk ¼Pn

i¼1ðxi � yiÞ2].
In the absence of an efficient test for optimality, many

NLP algorithms instead use a stopping rule to determine
whether the algorithm should terminate at the current
feasible point x. As described in the next two sections, these
stopping rules are typically necessary conditions for x
to be a local minimum and usually have the following
desirable properties:

� It is computationally practical to determine whether
the current feasible solution x satisfies the stopping
rule.

� If x does not satisfy the stopping rule, then it is
computationally practical to find a direction in which
to move from x, stay feasible at least for a small amount
of movement in that direction, and simultaneously
improve the objective function value.

Be aware that if x is a feasible point for an NLP that
satisfies the stopping rule, this does not mean that x is a
global minimum (or even a local minimum) of the NLP.
Additional conditions on the nonlinear functions—such as
convexity—are required to ensure that x is a global mini-
mum. Indeed, it is often the case that nonconvex functions
make it challenging to solve an NLP because there can be
many local minima. In such cases, depending on the initial
values chosen for the variables, algorithms often terminate
at a local minimum that is not a global minimum. In
contrast, due to the (convex) linear functions in an LP,
the simplex algorithm always terminates at an optimal
solution if one exists, regardless of the initial starting
feasible solution.

A final difficulty caused by nonlinear functions is that
algorithms for attempting to solve such problems are
usually not finite (unlike the simplex algorithm for LP).
That is, NLP algorithms usually generate an infinite
sequence of feasible values for the variables, say
X ¼ ðx0; x1; x2; . . .Þ. Under fortunate circumstances, these
points will converge, that is, get closer to specific values for
the variables, say x�, where x� is a local or global minimum
for the NLP, or at least satisfies the stopping rule. In

practice, these algorithms are made to stop after a finite
number of iterations with an approximation to x�.

In the following discussion, details pertaining to
developing such algorithms are presented for the uncon-
strained NLP2 and the constrained NLP3, respectively.
From here on, it is assumed that the objective function f
and all constraint functions g1; . . . ; gm are differentiable.
See Refs. 11 and 12 for a discussion of nondifferentiable
optimization, also called nonsmooth optimization.

Unconstrained Nonlinear Programs

The unconstrained problem NLP2 differs from an LP
in that (1) the objective function of NLP2 is not linear
and (2) every point is feasible for NLP2. These differences
lead to the following algorithm for attempting to solve
NLP2 by modifying the simplex algorithm described
previously:

Step 0 (Initialization). Start with any values, say
x ¼ ðx1; . . . ; xnÞ, for NLP2 because NLP2 has no con-
straints that must be satisfied.

Step 1 (Stopping Rule). Stop if the current point x ¼
ðx1; . . . ; xnÞ for NLP2 satisfies the following stopping
rule, which uses the partial derivatives of f and is a
necessary condition for x to be a local minimum:

r f ðxÞ ¼ @ f

@x1
ðxÞ; . . . ;

@ f

@xn
ðxÞ

� �
¼ ð0; . . . ; 0Þ:

Note that finding a point x wherer f ðxÞ ¼ ð0; . . . ; 0Þ is
a problem of solving a system of n nonlinear equations
in the n unknowns x1; . . . ; xn, which can possibly be
done with Newton’s method or some other algorithm
for solving a system of nonlinear equations.

Step 2 (Move to a Better Point). Ifr f ðxÞ 6¼ ð0; . . . ; 0Þ,
use that fact to

(a) (Direction of Movement). Find a direction of
descent d so that all small amounts of movement
from x in the direction d result in points that have
smaller objective function values than f(x). (One
such direction is d ¼ �r f ðxÞ, but other directions
that are usually computationally more efficient
exist.)

(b) (Amount of Movement). Perform a possibly
infinite algorithm, called a line search, that
may or may not be successful, to find a value of
a real number t> 0 that provides the smallest
value of f ðxþ tdÞ. If t ¼ 1, stop without finding
an optimal solution to NLP2.

(c) (Move). Move from x to the new point xþ td, and
return to Step 1.

The foregoing algorithm may run forever, generating a
sequence of values for the variables, say X ¼ ðx0; x1; x2; . . .Þ.
Under fortunate circumstances, these points will con-
verge to specific values for the variables, say x�, where x�

LINEAR AND NONLINEAR PROGRAMMING 3



is a local or global minimum for NLP2 or at least satisfies
r f ðxÞ ¼ ð0; . . . ; 0Þ.

Constrained Nonlinear Programs

Turning now to constrained NLPs, as seen by comparing
Fig. 1(a) and (b), the feasible region of a constrained NLP
can be different from that of an LP and the optimal solution
need not be one of a finite number of extreme points. These
differences lead to the following algorithm for attempting to
solve NLP3 by modifying the simplex algorithm described
previously:

Step 0 (Initialization). There is no known finite pro-
cedure that will find an initial feasible solution for
NLP3 or determine that NLP3 is infeasible. Thus, a
possibly infinite algorithm is needed for this step and,
under favorable circumstances, produces a feasible
solution.

Step 1 (Stopping Rule). Stop if the current feasible
solution x ¼ ðx1; . . . ; xnÞ for NLP3 satisfies the follow-
ing stopping rule: Real numbers u1; . . . ;um exist such
that the following Karush–Kuhn–Tucker (KKT)
conditions hold at the point x (additional conditions
on f and gi, such as convexity, are required to ensure
that x is a global minimum):

(a) (feasibility) For each i ¼ 1; . . . ;m; giðxÞ � 0 and

ui� 0.

(b) (complementarity) For each i ¼ 1; . . . ;m;
uigiðxÞ � 0.

(c) (gradient condition) r f ðxÞþ
Pm

i¼1 uirgiðxÞ ¼
ð0; . . . ; 0Þ.

Note that when there are no constraints, the KKT
conditions reduce to r f ðxÞ ¼ ð0; . . . ; 0Þ. Also, when f
and gi are linear, and hence NLP3 is an LP, the values
u ¼ ðui; . . . ;um) that satisfy the KKT conditions are
optimal for the dual LP. That is, conditions (a) and (c)
of the KKT conditions ensure that x is feasible for the
primal LP and u is feasible for the dual LP, whereas
conditions (b) and (c) ensure that the objective func-
tion value of the primal LP at x is equal to that of the
dual LP at u. Hence, as stated in the first use of
duality theory in the ‘‘Linear Programming’’ section,
x is optimal for the primal LP and u is optimal for the
dual LP.

Step 2 (Move to a Better Point). If x is not a KKT
point, use that fact to

(a) (Direction of Movement). Find a feasible direc-
tion of improvementd so that all small amounts of
movement from x in the direction d result in
feasible solutions that have smaller objective
function values than f(x).

(b) (Amount of Movement). Determine the max-
imum amount t� you can move from x in the
direction d, and stay feasible. Then perform a
possibly infinite algorithm, called a constrained
line search, in an attempt to find a value of t that
minimizes f ðxþ tdÞ over the interval ½0; t��. If

t ¼ 1, stop without finding an optimal solution
to NLP3.

(c) (Move). Move from x to the new feasible point
xþ td, and return to Step 1.

The foregoing algorithm may run forever, generating a
sequence of values for the variables, say X ¼ ðx0; x1; x2; . . .Þ.
Under fortunate circumstances, these points will converge
to specific values for the variables, say x�, where x� is a local
or global minimum for NLP3 or a KKT point.

In addition to the foregoing methods of feasible direc-
tions, many other approaches have been developed for
attempting to solve NLP2 and NLP3, including conjugate
gradient methods, penalty and barrier methods, sequen-
tial quadratic approximation algorithms, and fixed-point
algorithms (see Ref. 13 for details). A discussion of interior
point methods for solving NLPs can be found in Ref. 14.
Commercial software packages from Solver in Excel and
GRG exist for attempting to solve such problems and can
currently handle up to about 100 variables and 100 con-
straints. However, if an NLP has special structure, it may
be possible to develop an efficient algorithm that can solve
substantially larger problems.

Topics related to LP and NLP include integer program-
ming (in which the value of one or more variable must be
integer), network programming, combinatorial optimiza-
tion, large-scale optimization, fixed-point computation, and
solving systems of linear and nonlinear equations.

BIBLIOGRAPHY

1. H. P. Williams, Model Building in Mathematical Program-
ming, 4th ed., New York: Wiley, 1999.

2. G. B. Dantzig, Maximization of a linear function of variables
subject to linear inequalities, in T. C. Koopmans (ed.), Activity
Analysis of Production and Allocation. New York: Wiley, 1951.

3. R. E. Bixby, Solving real-world linear programs: A decade and
more of progress, Oper. Res., 50(1): 3–15, 2002.

4. V. Klee and G. J. Minty, How good is the simplex algorithm?
O. Shisha (ed.), Inequalities III, New York: Academic Press,
1972.

5. K. H. Borgwardt, Some distribution independent results about
the assymptotic order of the average number of pivot steps in
the simplex algorithm, Math. Oper. Res., 7: 441–462, 1982.

6. L. G. Khachian, Polynomial algorithms in linear programming
(in Russian), Doklady Akademiia Nauk SSSR, 244: 1093–
1096, 1979; English translation: Soviet Mathematics Doklady,
20: 191–194.

7. N. Karmarkar, A new polynomial-time algorithm for linear
programming, Combinatorica, 4: 373–395, 1984.

8. C. Roos, T. Terlaky, and J. P. Vial, Theory and Algorithms for
Linear Optimization: An Interior Point Approach, New York:
Wiley, 1997.

9. Stephen J. Wright, Primal-dual Interior-Point Methods,
Society for Industrial and Applied Mathematics, Philadelphia,
1997.

10. C. M. S. Bazaraa, J. J. Jarvis, and H. Sherali, Linear Pro-
gramming and Network Flows, 3rd ed., New York: Wiley, 2004.

11. G. Giorgi, A. Guerraggio, and J. Thierfelder, Mathematics
of Optimization: Smooth and Nonsmooth Case, 1st ed.,
Amsterdam: Elsevier, 2004.

4 LINEAR AND NONLINEAR PROGRAMMING



12. D. Klatte and B. Kummer, Nonsmooth Equations in Optimiza-
tion—Regularity, Calculus, Methods and Applications, Dor-
drecht: Kluwer Academic, 2002.

13. C. M. S. Bazaraa, H. Sherali, and C. M. Shetty, Nonlinear
Programming: Theory and Algorithms, 2nd ed., New York:
Wiley, 1993.

14. T. Terlaky (ed.), Interior Point Methods of Mathematical Pro-
gramming, Dordrecht, The Netherlands: Kluwer Academic,
1996.

DANIEL SOLOW

Case Western Reserve
University

Cleveland, Ohio

LINEAR AND NONLINEAR PROGRAMMING 5



L

LOCALITY PRINCIPLE

Locality is a universal behavior of all computational pro-
cesses: They tend to refer repeatedly to subsets of their
resources over extended time intervals. System designers
have exploited this behavior to optimize performance in
numerous ways, which include caching, clustering of
related objects, search engines, organization of database,
spam filters, and forensics.

Every executing computation generates references to
objects, such as memory pages, disk sectors, database
records, and web pages. These references are not uniform:
Some objects are referenced more often than others, and
references to each object come in bursts. Another way to say
this is that execution of a computation consists of a series of
phases; phase i has holding time Ti and locality set Li. The
locality set is the set of objects referenced in the phase. A
particular object is referenced only in the phases in which it
is a member of the locality set. Thus, the history of the
computation appears as a sequence,

ðL1;T2Þ; ðL2;T2Þ; ðL3;T3Þ; . . . ; ðLi;TiÞ; . . .

The locality set of a multithreaded computation at a parti-
cular time is the union of the individual thread locality sets
at that time.

Knowledge of a computation’s locality behavior has
several significant benefits:

� The local storage of a processor (cache) needs to contain
only the current localities, not the entire object space.
The cache provides in significant savings in local sto-
rage without loss of performance.

� If the phase boundaries are unknown (the usual
case), the best predictor of objects the computation
will use in the immediate future is its current
locality set.

� Objects that tend to be in the same locality sets can be
grouped in storage systems so that they can be loaded
together (efficiently) into a processor’s cache.

There are two aspects of locality: (1) temporal locality
means that references to the same objects are grouped
in time, and (2) spatial locality means that objects close
to each other tend to be referenced together. These two
aspects give the phase-transition definition above.

Locality is among the oldest systems principles in com-
puter science. It was discovered in 1966 during efforts to
make early virtual memory systems work well. Working-
set memory management was the first exploitation of this
principle; it prevented thrashing while maintaining near
optimal system throughput, and eventually it enabled
virtual memory systems to be reliable, dependable, and
transparent. Today the locality principle is being applied
to computations that adapt to the neighborhoods in
which users are situated, inferring those neighborhoods

by observing user actions, and then optimizing perfor-
mance for users.

The remainder of this article reviews the history of the
locality principle and its new applications in context-aware
computing.

MODELS OF LOCALITY

A model of locality is a description of a mechanism to
generate the locality behavior of a computation without
having to run the computation. The earliest notion of
locality was a nonuniform distribution of references over
a computation’s objects. Thus, the objects could be ordered
so that their probabilities of use follow the relation

p1> p2> p3> . . . > pk> . . .

When these probabilities are measured, they often follow
a Zipf Law, which means that pk is proportional to 1/k.

This law is called a static representation of locality
because a single distribution of probabilities holds for all
time; there is no differentiation into phases. Empirically,
when a computation is modeled this way, the model over-
estimates the average locality size by factors of 2 or 3.

In contrast are dynamic representations that recognize
phases and allow for different probability distributions in
each phase. Dynamic models tend to estimate average
locality size well.

The phase-transition model is a successful dynamic
model. It consists of a macromodel that generates phase
and transition intervals and their holding times, and a
micromodel that generates references from a locality set
associated with the phase. The holding times in the states
are random variables, with the average holding in the
phase state being much longer than in the transition state.
While in the phase state, the model uses a static represen-
tation for a single locality set, such as the distribution
above. During the transition phase, the model allows for
random references to all objects (1).

The working set model defines a program’s working set
at time t, W(t,T), as the set of objects referenced in the time
window of length T extending backward from the current
time t. It is usually possible to choose the window size T so
that it is contained within phases most of time, in which
case the working set measures the current locality set.
Thus, the working set is a good way to track the localities
and phases of a program dynamically (2).

HISTORY

Locality was discovered from efforts to make virtual mem-
ory systems work well. Virtual memory was first developed
in 1959 on the Atlas system at the University of Manchester
(3). Its superior programming environment doubled or
tripled programmer productivity. Its automatic caching
boosted performance (4). But its finicky performance was

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



sensitive to the choice of replacement algorithm and to the
ways compilers grouped code on to pages. Worse, when it
was coupled with multiprogramming, it was prone to
thrashing, the near-complete collapse of system through-
put because of heavy paging (5). The locality principle
guided the design of robust replacement algorithms, com-
piler code generators, and thrashing-proof systems. It
transformed virtual memory from an unpredictable to a
robust technology that regulated itself dynamically and
optimized throughput without user intervention.

Atlas included the first demand-paged virtual memory,
which automated the process of transferring pages
between random access memory (RAM) and disk. The
designers grappled with two performance problems,
either one of which could scuttle the system: One was
addresses to locations, the other pages already loaded into
RAM. They quickly found a solution to the translation
problem using page tables stored in RAM and address
caches in the central processing unit (CPU). The replace-
ment problem was much more difficult.

Because the disk access time was about 10,000 times
slower than the CPU instruction cycle, each page fault
added a significant delay to a job’s completion time.
Therefore, minimizing page faults was critical to system
performance. The ideal page to replace from main mem-
ory is the one that will not be used again for the longest
time. But next-use time cannot be known with certainty.
The Atlas system used a ‘‘learning algorithm’’ that
hypothesized a loop cycle for each page, measured each
page’s period, and estimated which page was not needed
for the longest time.

The learning algorithm was controversial. It performed
well on programs with well-defined loops and poorly on
many other programs. In numerous experimental studies
well into the 1960s, researchers sought to determine what
replacement rules might work best over the widest possible
range of programs. Belady’s study in 1966 (6) was the most
comprehensive and scientific. Eventually, it became appar-
ent that the volatility resulted from variations in compiling
methods: The way in which a compiler grouped code blocks
onto pages strongly affected the program’s performance
under a given replacement strategy (7).

The major computer makers were drawn to multipro-
grammed virtual memory because of its superior program-
ming environment. RCA, General Electric, Burroughs, and
Univac all included virtual memory in their operating
systems of the mid-1960s. Because a bad replacement
algorithm could cost a million dollars of lost machine
time over the life of a system, they all had a keen interest
in finding good replacement algorithms.

Imagine their chagrin when by 1966 these companies
reported a new, unexplained, catastrophic problem they
called thrashing. It was a sudden collapse of throughput as
the multiprogramming level rose. It had nothing to do with
the choice of replacement policy. A thrashing system spent
most of its time resolving page faults and little running the
CPU. Thrashing was far more damaging than a poor repla-
cement algorithm. It scared the daylights out of the com-
puter makers.

IBM avoided these uncertainties by excluding virtual
memory from its OS360 in 1964. Instead, it sponsored at

its Watson laboratory one of the most comprehensive
experimental systems projects of all time. Led by Bob
Nelson, Les Belady, and David Sayre, the project team
built the first virtual-machine operating system and used
it to study the performance of virtual memory. (The term
‘‘virtual memory’’ seems to have come from this project.)
By 1966 they had tested every replacement policy that
anyone had ever proposed and a few more they invented.
Many of their tests involved the use bits built into page
tables. By periodically scanning and resetting the bits, the
replacement algorithm distinguishes recently referenced
pages from others. Belady concluded that policies that
favor recently used pages performed better than other
policies; least recently used replacement was consistently
the best performer among those tested (6). He said that
this resulted from reference clustering locality behavior.
His colleagues verified that many programs exhibited
locality behavior (6).

At MIT Project MAC in 1966, Peter Denning hypothe-
sized that the controversies over replacement algorithms
could be settled by defining an intrinsic memory demand:
‘‘This process needs p pages at time t.’’ Intrinsic demand
was the first notion of ‘‘working set.’’ Individual replace-
ment algorithms could then be rated by their abilities to
detect working sets. Inspired by Belady’s concept of local-
ity, Denning formally defined a process’s working set as
the set of pages used during a fixed-length sampling
window in the immediate past (2). A working set could
be measured by periodically reading and resetting the use
bits in a page table.

This method solved thrashing because if every process
is guaranteed its working set, then no process can over-
load the paging disk and system throughput can be
maintained (5). Thrashing is impossible for a working-
set policy. Experiments with real operating systems con-
firmed that this policy gives high efficiency and prevents
thrashing (9).

The working-set idea worked because the pages
observed in the backward window were highly likely to
be used again in the immediate future. Was this assump-
tion justified? The idea that reference behavior could be
described as a sequence of phases and locality sets seemed
natural because programmers planned overlays using dia-
grams that showed subsets and time phases (Fig. 1). But
what was strikingly interesting was that programs showed
this behavior even when it was not explicitly preplanned.
Each program had its own distinctive usage pattern, like a
voiceprint (Fig. 2).

Two effects could make this happen: (1) temporal clus-
tering caused by looping and executing within modules with
private data and (2) spatial clustering caused by related
values being grouped into arrays, sequences, modules, and
other data structures. Both these reasons followed from the
human practice of ‘divide and conquer’—breaking a large
probleminto parts and working separately on each part.The
locality bit maps captured someone’s problem-solving
method in action. The working set measures an approxima-
tion of a program’s intrinsic locality sequence.

A distance function gives a single measure of temporal
and spatial locality. D(x,t) measures the distance from the
current execution point of the process to an object x at time t.

2 LOCALITY PRINCIPLE



Distances can be temporal, such as the time since prior
reference or access time within a network; spatial, measur-
ing hops in a network or address separation in a sequence;
or cost, which measures any nondecreasing accumulation
of cost since prior reference. Object x is in the locality set at
time t if the distance is within a threshold: D(x,t) � T.

By 1980, the locality principle was understood as a
package of three ideas (1):

1. Computational processes pass through a sequence of
phases.

2. The locality sets of phases can be inferred by applying
a distance function to a program’s address trace
observed during a backward window.

3. Memory management is optimal when it guarantees
each program that its locality sets will be present in
high-speed memory.

ADOPTION OF LOCALITY PRINCIPLE

The locality principle was adopted almost immediately by
operating systems, databases and hardware architects. It
was soon adopted into ever-widening circles:

� In virtual memory to organize caches for address
translation and to design the replacement algorithms

� In data caches for CPUs, originally as mainframes and
now as microchips

� In buffers between main memory and secondary mem-
ory devices

� In buffers between computers and networks

� In video boards to accelerate graphics displays

� In modules that implement the information-hiding
principle

� In accounting and event logs in that monitor activities
within a system

� In alias lists that associate longer names or addresses
with short nicknames

� In the ‘‘most recently used’’ object lists of applications

� In Web browsers to hold recent web pages

� In file systems, to organize indexes (e.g., B-trees) for
fastest retrieval of file blocks

� In database systems, to manage record-flows between
levels of memory

� In search engines to find the most relevant responses
to queries

� In classification systems that cluster related data ele-
ments into similarity classes

� In spam filters, which infer which categories of e-mail
are in the user’s locality space and which are not

� In ‘‘spread spectrum’’ video streaming that bypasses
network congestion and reduces the apparent distance
to the video server

� In ‘‘edge servers’’ to hold recent web pages accessed by
anyone in an organization or geographical region

� In the field of computer forensics to infer criminal
motives and intent by correlating event records in
many caches

� In the field of network science by defining hierarchies
of self-similar locality structures within complex
power-law networks

MODERN MODEL OF LOCALITY: CONTEXT AWARENESS

As the uses of locality expanded into more areas, our
understanding of locality has evolved. Locality is the con-
sequence of a more basic principle: Everything we do, we do
in a context. Context awareness embraces four key ideas:

� An observer
� Neighborhoods: One or more sets of objects that are

most relevant to the observer at any given time

� Inference: A method of identifying the most relevant
objects by monitoring the observer’s actions and inter-
actions and other information about the observer con-
tained in the environment

� Optimal actions: An expectation that the observer
will complete work in the shortest time if neighborhood
objects are ready accessible in nearby caches

Figure 1. Locality sequence behavior diagrammed by program-
mer during overlay planning.

Figure 2. Locality sequence behavior observed by sampling use
bits during program execution. Programs exhibit phases and
localities naturally, even when overlays are not preplanned.

LOCALITY PRINCIPLE 3



These four ideas can be recognized in the original defini-
tion. The observer is the execution point of the computa-
tional process; the neighborhood is the current locality set;
the distance function is the inference mechanism; the
optimal action is to guarantee that the current locality is
present in a processor’s cache. Let us examine the general-
izations of these ideas.

The observer is the agent who is trying to accomplish
tasks with the help of software, and who places expecta-
tions on its function and performance (Fig. 3). In most cases,
the observer is the user who interacts with software. In
some cases, such as a program that computes a mathema-
tical model, the observer can be built into the software
itself.

A neighborhood is a group of objects related to the
observer by some metric. Newer examples of neighbor-
hoods include e-mail correspondents, non-spam e-mail,
colleagues, teammates, objects used in a project, favorite
objects, user’s web, items of production, texts, and direc-
tories. Some neighborhoods can be known by explicit
declarations, for example, a user’s file directory, address
book, or web pages. But most neighborhoods can only be
inferred by monitoring the event sequences of an observer’s
actions and interactions.

Inference can be any reasonable method that measures
the content of neighborhoods. Newer inference methods
include Google’s counting of incoming hyperlinks to a web
page, patterns generated by connectionist networks after
being presented with many examples, and Bayesian spam
filters.

Optimal actions are performed by the software on behalf
of the observer. These actions can come either from inside
the software with which the observer is interacting, or from
outside that software, in the run-time system.

The matrix below shows four quadrants that correspond
to the four combinations of inference data collection and
locus of action just mentioned. Examples of software are
namedineachquadrantandaresummarizedbelow. ‘‘Inside’’
and ‘‘outside’’ are relative to the context-aware software.

� Amazon.com, Bayesian spam filters. Amazon col-
lects data about user purchasing histories and recom-
mends other purchases, by the user or others, that
resemble the user’s previous purchases. Bayesian
spam filters gather data about which e-mails the
user considers relevant and then block irrelevant
e-mails. (Data collection inside, optimal actions inside.)

� Semantic web, Google. Semantic web is a set of
declarations of structural relationships that constitute
context of objects and their connections. Programs
read and act on it. Google gathers data from the
Web and uses it to rank pages that seem to be most
relevant to a keyword query posed by user. (Data
collection outside, optimal actions inside.)

� Linkers and loaders. These workhorse systems
gather library modules mentioned by a source program
and link them together into a self-contained executable
module. The libraries are neighborhoods of the source

Figure 3. The modern view of locality is a means of
inferring the context of an observer using software, so
that the software can dynamically adapt its actions to
produce optimal behavior for the observer.

Origin of Data for Inference
Inside Outside

LOCUS OF
ADAPTIVE
ACTION

Inside Amazon.com
Bayesian spam

filter

Semantic web
Google

Outside Linkers
and loaders

Working sets,
Ethernet load

control

4 LOCALITY PRINCIPLE



program. (Data collection inside, optimal action
outside.)

� Working sets, ethernet load controls. Virtual
memory systems measure working sets and guarantee
programs enough space to contain them, which
thereby prevents thrashing. Ethernet prevents the
contention-resolving protocol from getting overloaded
by making competing transactions wait longer for
retries if load is heavy (10). (Data collection outside,
optimal action outside.)

In summary, the modern principle of locality is that
observers operate in one or more neighborhoods that can
be inferred from dynamic action sequences and static struc-
tural declarations. Systems can optimize the observer’s pro-
ductivitybyadaptingtotheobserver’sneighborhoods,which
they can estimate by distance metrics or other inferences.

FUTURE USES OF LOCALITY PRINCIPLE

Locality principles are certain to remain at the forefront of
systems design, analysis, and performance, because local-
ity flows from human cognitive and coordinative behavior.
The mind focuses on a small part of the sensory field and can
work most quickly on the objects of its attention. People
organize their social and intellectual systems into neigh-
borhoods of related objects, and they gather the most useful
objects of each neighborhood close around them to minimize
the time and work of using them. These behaviors are
transferred into computational systems they design and
into the expectations users have about how their systems
should interact with them.

Here are seven modern areas that offer challenging
research problems that locality may be instrumental in
solving.

Architecture

Computer architects have heavily exploited the locality
principle to boost the performance of chips and systems.
Putting cache memory near the CPU, either on board the
same chip or on a neighboring chip, has enabled modern
CPUs to pass the 1-GHz speed mark. Locality within
threaded instruction sequences is being exploited by a
new generation of multicore processor chips. The ‘‘system
on a chip’’ concept places neighboring functions on the same
chip to decrease delays of communicating between compo-
nents significantly. Animated sequences of pictures can be
compressed by locality: by detecting the common neighbor-
hood behind a sequence, transmitting it once, and then
transmitting the differences for each picture. Architects
will continue to examine locality carefully to find new ways
to speed up chips, communications, and systems.

Caching

The locality principle is useful wherever there is an advan-
tage in reducing the apparent distance from a process to the
objects it can access. Objects in the neighborhood of the
process are kept in a local cache with fast access time. The
performance acceleration of a cache generally justifies the
modest investment in the cache storage. Novel forms of

caching have sprung up in the Internet. One prominent
example is edge servers that store copies of Web objects
near their users. Another example is the clustered data-
bases built by search engines (like Google) to retrieve
relevant objects instantly from the same neighborhoods
as the asker. Similar capabilities are available in MacOS
Windows to speed up finding relevant objects.

Bayesian Inference

A growing number of inference systems exploit Bayes’s
principle of conditional probability to compute the most
likely internal (hidden) states of a system given observable
data about the system. Spam filters, for example, use it to
infer the e-mail user’s mental rules for classifying certain
objects as spam. Connectionist networks use it for learning:
Their internal states abstract from desired input-output
pairs shown to the network; the network gradually acquires
a capability for new action. Bayesian inference is an exploi-
tation of locality because it infers a neighborhood given
observations of what a user or process is doing.

Forensics

The burgeoning field of computer forensics owes much of its
success to the ubiquity of caches. They are literally every-
where in an operating systems and applications. By reco-
vering evidence from these caches, forensics experts can
reconstruct (infer) an amazing amount of a criminal’s
motives and intent (11). Criminals who erase data files
are still not safe, because experts use advanced signal-
processing methods to recover the faint magnetic traces
of the most recent files from the disk (12). Learning to draw
valid inferences from data in a computer’s caches, and from
correlated data in caches in other computers with which the
subject has communicated, is a challenging research
problem.

Web-Based Business Processes

Web-based business systems allow buyers and sellers to
engage in transactions using Web interfaces to sophisti-
cated database systems. Amazon.com illustrates how a
system can infer ‘‘book interest neighborhoods’’ of custo-
mers and (successfully) recommend additional sales. Many
businesses employ customer relationship management sys-
tems that infer ‘‘customer interest neighborhoods’’ and
allow the company to provide better, more personalized
service. Database, network, server, memory, and other
caches optimize the performance of these systems (13).

Context-Aware Software

More software designers are coming to believe that most
software failures can be traced to the inability of software to
be aware of and act on the context in which it operates. More
and more modern software uses inferred context to be con-
sistentlymorereliable, dependable,usable, safe,andsecure.

Network Science

Many scientists have begun to apply statistical mechanics
to large random networks, typically finding that the

LOCALITY PRINCIPLE 5



distribution of node connections is power law with degree
�2 to �3 (14,15). These networks are self-similar, which
means that if all neighborhoods (nodes within a maximum
distance of each other) are collapsed to single nodes, then
the resulting network has the same power distribution as
the original (16). The idea that localities are natural in
complex systems is not new; in 1976, Madison and Batson
(17) reported that program localities have self-similar sub-
localities ; in 1977, P. J. Courtois (18) applied it to cluster
similar states of complex systems to simplify their perfor-
mance analyses. The locality principle may offer new
understandings of the structure of complex networks.

Researchers looking for challenging problems can find
many in these areas and can exploit the principle of locality
to solve them.

BIBLIOGRAPHY

1. P. J. Denning, Working sets past and present, IEEE Trans.
Softw. Eng., SE-6(1): 64–84, 1980.

2. P. J. Denning, The working set model for program behavior,
ACM Commun., 11(5): 323–333, 1968.

3. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner,
One-level storage system, IRE Trans., EC-11: 223–235, 1962.

4. M. V. Wilkes, Slave memories and dynamic storage allocation,
IEEE Trans. Comp., EC-14(4): 270–271, 1965.

5. P. J. Denning, Thrashing: Its causes and prevention, Proc.
AFIPS Fall Joint Computer Conference 33, Thompson, 1968,
pp. 915–922.

6. L. A. Belady, A study of replacement algorithms for virtual
storage computers, IBM Systems J., 5(2): 78–101, 1966.

7. D. Ferrari, Improving locality by critical working sets, ACM
Commun.17(11): 614–620, 1974.

8. B. Brawn, and F. G. Gustavson, Program behavior in a paging
environment, Proc. AFIPS Fall Joint Computer Conference 33,
Thompson, 1968, pp. 1019–1032.

9. J. Rodriguez-Rosell, and J. P. , Dupuy, The design, implemen-
tation, and evaluation of a working set dispatcher, ACM
Commun.,16(4): 247–253, 1973.

10. R. M. Metcalfe, and D. Boggs, Ethernet: Distributed packet
switching for local networks, ACM Commun., 19(7): 395–404,
1976.

11. D. Farmer, and W. Venema, Forensic Discovery, Reading, MA:
Addison Wesley, 2004.

12. B. Carrier, File System Forensic Analysis. Reading, MA:
Addison Wesley, 2005.

13. D. Menasce, and V. Almeida, Scaling for E-Business: Technol-
ogies, Models, Performance, and Capacity Planning. Engle-
wood Cliffs, NJ: Prentice-Hall, 2000.

14. A. L. Barabasi, Linked: The New Science of Networks, Perseus
Books, 2002.

15. P. J. Denning, Network laws, ACM Commun, 47(11):15–20,
2004.

16. C. , Song, S. Havlin, and H. Makse, Self-similarity of complex
networks, Nature, 433(1): 392–395, 2005.

17. A. W. Madison, and A. Batson, Characteristics of program
localities, ACM Commun., 19(5): 285–294, 1976.

18. P. J. Courtois, Decomposability. New York: Academic Press,
1977.

PETER J. DENNING

Naval Postgraduate School
Monterey, California

6 LOCALITY PRINCIPLE



M

MARKOV CHAIN MONTE CARLO
SIMULATIONS

Markov Chain Monte Carlo (MCMC) simulations are
widely used in many branches of science. They are nearly
as old as computers themselves, since they started in earn-
est with a 1953 paper by Nicholas Metropolis, Arianna
Rosenbluth, Marshall Rosenbluth, Augusta Teller, and
Edward Teller (1) at the Los Alamos National Laboratory,
New Mexico.These authors invented what is nowadays
called the Metropolis algorithm. Various applications
and the history of the basic ideas are reviewed in
the proceedings (2) of the 2003 Los Alamos conference,
which celebrated the fiftieth anniversary of the Metropolis
algorithm.

OVERVIEW

The Monte Carlo method to compute integrals (3) amounts
to approximate an integral

R
V

dmðXÞOðXÞ, inside a volume
V, where dmðXÞ is some integration measure andR

V
dmðXÞ <1, by sampling. Without loss of generality,

one can assume that
R

V
dmðXÞ ¼ 1, and consider accord-

ingly dmðXÞ as a probability measure. Drawing indepen-
dently Nsample values of X 2V according to this probability
measure, one has

Z
V

dmðXÞOðXÞ� 1

Nsamples

XNsamples

s¼1

OðXsÞ (1)

where Xs is the s’th random variable drawn. The right hand
side of Equation 1 is an unbiased estimator of the integral,
namely it is exact in average, for any Nsample. It converges
toward the correct value when Nsamples!1, with a
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsamples

p
leading correction. This method is of practical

use if one can easily draw, in a computer program, random
values Xs 2V according to the measure dmðXÞ. This is the
case in particular if one integrates inside an N- dimensional
hypercube with the flat measure dmflatðXÞ/

QN
k¼1 dXðkÞ,

where the XðkÞ’s are the Cartesian components of X, or
when the integral reduces to a finite sum. This is not the
case in the situation where this simple measure is multi-
plied by a nontrivial function vðXÞ of the components XðkÞ.
If vðXÞ is a smooth function in V with a limited range of
variations, one can still draw values of X according to the
simple measure dmflat and write (assuming without loss of
generality that

R
V dmðXÞ ¼ 1 and

R
V dmflatðXÞ ¼ 1)

Z
V

dmðXÞOðXÞ ¼
Z

V

dmflatðXÞvðXÞOðXÞ

� 1

Nsamples

XNsample

s¼1

vðXsÞOðXsÞ ð2Þ

If the function vðXÞ has a very large range of variations
with one or several sharp peaks, the sum in Equation 2 is
dominated by a few rare configurations, and the Monte
Carlo method does not work (most samples are drawn in
vain). This is the case of the problem considered in Ref. 1,
where vðXÞ is a Boltzmann weight, the exponential of N
times a function of order one, with N the number of mole-
cules in a box, which is a notoriously large number.

The Markov chain Monte Carlo method allows overcom-
ing this problem by generating a set of random X 2V,
distributed according to the full measure dmðXÞ, using
an auxiliary Markov chain. Note that often, in particular
in the physics literature, Monte Carlo is used as a short
name for Markov chain Monte Carlo (MCMC). MCMC is
sometimes called dynamic Monte Carlo, in order to distin-
guish it from the usual, ‘‘static,’’ Monte Carlo. Many prob-
ability distributions, which cannot be sampled directly,
allow for MCMC sampling. From now on we write a formula
for a discrete space V with Kst states, although the results
can be generalized. A Markov chain (4–7) is a sequence of
random variables X1; X2; X3; . . ., that can be viewed as
the successive states of a system as a function of a discrete
time t, with a transition probability PðXtþ1 ¼ rjXt ¼ sÞ ¼
Wr;s that is a function of r and s only. The next future state
Xtþ1 is a function of the current state Xt alone. Andrey
Markov (8) was the first to analyze these processes. In order
to analyze Markov chains, one introduces an ensemble of
chains with an initial probability distribution PðX0 ¼ sÞ. By
multiplying this vector by the transition matrix repeatedly,
one obtains PðX1 ¼ sÞ, and then PðX2 ¼ sÞ; . . . ; successively.
The natural question is whether this sequence converges.
One says that a probability distribution w ¼ fwsgs2V is an
equilibrium distribution of a Markov chain if it is let
invariant by the chain, namely if

XKst

s¼1

Wr;svs ¼ vr (3)

This condition is called balance in the physics literature.
A Markov chain is said to be ergodic (irreducible and
aperiodic in the mathematical literature) if for all states
r; s2V there is a Nr;s such that for all t>Nr;s the probability
ðWtÞs;r to go from r to s in t steps is nonzero. If an equilibrium
distribution exists and if the chain is irreducible and aper-
iodic, one can show (4–7) that, starting from any distribu-
tion PðX0 ¼ sÞ, the distribution after t steps PðXt ¼ sÞ
converges when t!1 toward the equilibrium configura-
tion vs.

The Metropolis algorithm (see the next section) offers a
practical way to generate a Markov chain with a desired
equilibrium distribution, on a computer using a pseudor-
andom numbers generator. Starting from an initial config-
uration X0, successive configurations are generated. In
most cases, the convergence of PðXt ¼ sÞ toward vs is expo-
nential in t and one can safely assume that, after some
number of steps teq, ‘‘equilibrium is reached’’ and that the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



configurations Xteqþ1;Xteqþ2; . . . are distributed according to
vðXÞ.

Whereas the random samples used in a conventional
Monte Carlo (MC) integration are obviously statistically
independent, those used in MCMC are correlated. The
effective number of independent events generated by an
equilibrated Markov chain is given by the number of
steps done divided by a quantity called ‘‘integrated auto-
correlation time’’ tint. In most cases, tint does not depend on
the quantityOmeasured, but there are exceptions like, for
example the vicinity of a second-order (continuous) phase
transition. The algorithm will fail if tint is too big. In
practice it can be quite difficult to estimate tint reliably
and there can also be a residual effect of the starting
position. More sophisticated MCMC-based algorithms
such as ‘‘coupling from the past’’ (9,10) produce indepen-
dent samples rigorously but at the cost of additional
computation and an unbounded (although finite on aver-
age) running time.

The method was originally developed to investigate a
statistical physics problem. Suitable applications arise as
well in computational biology, chemistry, physics, econom-
ics, and other sciences. MCMC calculations have also revo-
lutionized the field of Bayesian statistics.

Most concepts of modern MCMC simulation were ori-
ginally developed by physicists and chemists, who still
seem to be at the cutting edge of new innovative develop-
ments into which mathematician, computer scientists, and
statisticians have joined. Their interest developed mainly
after a paper by Hastings (11), who generalized the accept/
reject step of the Metropolis method. Unfortunately a lan-
guage barrier developed that inhibits cross-fertilization.
For instance the ‘‘heat bath’’ algorithm, which may be
applied when the conditional distributions can be sampled
exactly, was introduced by physicist Refs. (12) and (13).
Then it was rediscovered in the context of Bayesian restora-
tion of images under the name ‘‘Gibbs sampler’’ (14).
Another example is the ‘‘umbrella sampling’’ algorithm
(15) that was invented in chemical physics and later redis-
covered and improved by physicists. This is just two of
many examples of how different names for the same
method emerged. The reader should be aware that this
article was written by physicists, so that their notations
and views are dominant in this article. The book by Liu (16)
tries to some extent to bridge the language barrier. Other
textbooks include those by Robert and Casella (17) for the
more mathematically minded reader, Landau and Binder
(18) for statistical physicists, Berg (19) from a physicist
point of view, but also covering statistics and providing
extensive computer code (in Fortran). Kendall, et al. (20)
edited a book that combines expositions from physicists,
statisticians, and computer scientists.

In the following discussion, we will first explain the basic
method and illustrate it for a simple statistical physics
system, the Ising ferromagnet in two dimensions, followed
by a few remarks on autocorrelations and cluster algo-
rithms. An overview of the MCMC updating scheme is
subsequently given. The final section of this article focuses
on so-called generalized ensemble algorithms.

MCMC AND STATISTICAL PHYSICS

As mentioned, the MCMC algorithm was invented to inves-
tigate problems in statistical physics. The aim of statistical
physics is to predict the average macroscopic properties of
systems made of many constituents, which can be, for
example, molecules in a box (as in the original article of
Metropolis et al.), magnetic moments (called spins) at fixed
locations in a piece of material, or polymer chains, in a
solvent. If one considers the so-called canonical ensemble,
where the system has a fixed temperature T, one knows that
the probability to observe a given microscopic configuration
(or micro state) s (defined in the three examples given above
by the positions and velocities of all molecules; the orienta-
tions of all the spins; and the exact configuration of all the
polymer chains, respectively) is proportional to the Boltz-
mann weight expð�Es=kBTÞ ¼ expð�bEsÞ, where Es is the
energy of the configuration s, kB is the Boltzmann constant,
and T is the temperature. (In the following discussion, we
will use a unit of temperature such that kB ¼ 1). Let Os be
the value ofO computed in configuration s. The mean value
of any macroscopic observableO (e.g. the energy) is given by
the average ofOs over all possible configurations s, weighted
by the Boltzmann weight of the configuration. This sum
(or integral if one has continuous variables) is to be normal-
ized by the sum over all configurations of the Boltzmann
weight [the so-called partition function ZðTÞ], namely

Ô ¼ ÔðTÞ ¼ hOi ¼ Z�1ðTÞ
XKst

s¼1

Ose
�Es=T (4)

where ZðTÞ ¼
XKst

s¼1
expð�Es=TÞ. The index s ¼ 1; . . . ;Kst

labels the configuration (states) of the system.
A particularly simple system is the Ising model for which

the energy is given by

E ¼
X
< i j>

sis j (5)

Here the sum is over the nearest-neighbor sites of a hyper-
cubic D-dimensional lattice and the Ising spins take the
values si ¼ �1, i ¼ 1; . . . ;N for a system of N ¼

QD
i¼1 Li

spins. Periodic boundary conditions are used in most simu-
lations. The energy per spin is e ¼ E=N. The model
describes a ferromagnet for which the magnetic moments
are simplified to �1 spins at the sites of the lattice. In the
N!1 limit (and for D> 1), this model has two phases
separated by a phase transition (a singularity) at the
critical temperature T ¼ Tc. This is a second-order phase
transition, which is continuous in the energy, but not in
specific heat. This model can be solved analytically when
D ¼ 2. (This means that one can obtain exact analytical
expressions for the thermodynamic quantities, e.g., the
energy per spin, as a function of temperature, in the
N!1 limit.) This makes the two-dimensional (2-D) Ising
model an ideal testbed for MCMC algorithms.

2 MARKOV CHAIN MONTE CARLO SIMULATIONS



The number of configurations of the Ising model is
Kst ¼ 2N, because each spin can occur in two states (up
or down). Already for a moderately sized lattice, say linear
dimension L1 ¼ L2 ¼ 100 in D ¼ 2, Kst is a tremendously
large number. With the exception of very small systems, it
is therefore impossible to do the sums in Equation 4 expli-
citly. Instead, the large value of Kst suggests a statistical
evaluation.

IMPORTANCE SAMPLING THROUGH MCMC

As explained in the previous section, one needs a procedure
that generates configurations s with the Boltzmann prob-
ability

PB;s ¼ cB wB;s ¼ cBe�bEs (6)

where the constant cB is determined by the conditionX
s
PB;s ¼ 1. The vector PB :¼ fPB;sg is called the Boltz-

mann state. When configurations are generated with the
probability PB;s, the expectation values [Equation (4)] are
estimated by the arithmetic averages:

hOi ¼ lim
Nsamples!1

1

Nsamples

XNsamples

s¼1

Os (7)

With the MCMC algorithm, this is obtained from a Markov
chain with the following properties:

1. Irreducibility and aperiodicity (ergodicity in the phy-
sics literature): For any two configurations r and s, an
integer Nr;s exists such that for all n>Nr;s, the prob-
ability ðWnÞr;s is nonzero.

2. Normalization:
X

r

Wr;s ¼ 1.

3. Stationarity of the Boltzmann distribution (balance
in the physics literature): The Boltzmann state [Equa-
tion (6)] is an equilibrium distribution, namely a right
eigenvector of the matrix W with eigenvalue one, i.e.,X

s
Wr;se

�bEs ¼ e�bEr holds.

There are many ways to construct a Markov process
satisfying 1, 2, and 3. In practice, MCMC algorithms are
often based on a stronger condition than 3, namely,

3. Detailed balance:

Wr;se
�bEs ¼ Ws;re

�bEr 8 r; s: (8)

METROPOLIS ALGORITHM AND ILLUSTRATION FOR THE
ISING MODEL

Detailed balance obviously does not uniquely fix the transi-
tion probabilities Wr;s. The original Metropolis algorithm
(1) has remained a popular choice because of its generality
(it can be applied straightforwardly to any statistical phy-
sics model) and its computational simplicity. The original
formulation generates configurations with the Boltzmann
weights. It generalizes immediately to arbitrary weights

(see the last section of this article). Given a configuration s,
the algorithm proposes a new configuration r with a priori
probabilities f ðr; sÞ. This new configuration r is accepted
with probability

ar;s ¼ min 1;
PB;r

PB;s

� �
¼ 1 for Er <Es

e�bðEr�EsÞ for Er >Es

�
(9)

If the new configuration is rejected, the old configuration is
kept and counted again. For such decisions one uses nor-
mally a pseudorandom number generator, which delivers
uniformly distributed pseudorandom numbers in the range
½0; 1Þ; see Refs. (18) and (19) for examples, and Ref. (21) for
the mathematics involved. The Metropolis algorithm gives
then rise to the transition probabilities

Wr;s ¼ f ðr; sÞar;s r 6¼ s (10)

and

Ws;s ¼ f ðs; sÞ þ
X
r 6¼ s

f ðr; sÞð1� ar;sÞ (11)

Therefore, the ratio Wr;s=Ws;r satisfies the detailed balance
condition [Equation (8)] if

f ðr; sÞ ¼ f ðs; rÞ (12)

holds. This condition can be generalized when also the
acceptance probability is changed (11). In particular such
‘‘biased’’ Metropolis algorithms allow for approaching the
heat-bath updating scheme (22).

For the Ising model, the new putative configuration
differs from the old one by the flip of a single spin. Such a
‘‘single spinupdate’’ requiresa numberofoperationsoforder
one and leads to a ratio PB;r=PB;s in Equation (9). This is
fundamental in order to have an efficient MCMC algorithm.
The spin itself may be chosen at random, although some
sequential procedure is normally more efficient (19). The
latter procedure violates the detailed balance condition but
fulfills the balance condition, and thus, it does lead to the
probability of states approaching the Boltzmann distribu-
tion [Equation (6)]. The unit of Monte Carlo time is usually
defined by N single spin updates, aka a lattice sweep or ‘‘an
update per spin.’’ Many ways to generate initial configura-
tions exist. Two easy to implement choices are as follows:

1. Use random sampling to generate a configuration of
�1 spins.

2. Generate a completely ordered configuration, either
all spin þ1 or �1.

Figure 1 shows two Metropolis energy time series (the
successive values of the energy as a function of the discrete
Monte Carlo time) of 6000 updates per spin for a 2D Ising
model on a 100� 100 lattice at b ¼ 0:44, which is close to
the (infinite volume) phase transition temperature of this
model (bc ¼ lnð1þ

ffiffiffi
2
p
Þ=2 ¼ 0:44068 . . .). One can compare

with the exact value for e (23) on this system size, which is
indicated by the straight line in Fig. 1. The time series

MARKOV CHAIN MONTE CARLO SIMULATIONS 3



corresponding to the ordered start begins at e ¼ �2 and
approaches the exact value from below, whereas the other
time series begins (up to statistical fluctuation) at e ¼ 0 and
approaches the exact value from above. It takes a rather
long MCMC time of about 3000 to 4000 updates per spin
until the two time series start to mix. For estimating
equilibrium expectation values, measurements should
only be counted from there on. A serious error analysis
for the subsequent equilibrium simulation finds an inte-
grated autocorrelation time of tint� 1700 updates per spin.
This long autocorrelation time is related to the proximity of
the phase transition (this is the so-called critical slowing
down of the dynamics). One can show that, at the transition
point, tint diverges like a power of N.

For this model and a number of other systems with
second-order phase transitions, cluster algorithms
(24,25) are known, which have much shorter autocorrela-
tion times, in simulations close to the phase transition
point. For the simulation of Fig. 1, tint� 5 updates per
spin instead of 1700. Furthermore, for cluster algorithms,
tint grows much slower with the system size N than for the
Metropolis algorithm. This happens because these algo-
rithms allow for the instantaneous flip of large clusters of
spins (still with order one acceptance probability) in con-
trast to the local updates of single spins done in the Metro-
polis and heat-bath-type algorithms. Unfortunately such
nonlocal updating algorithms have remained confined to
special situations. The interested reader can reproduce
these Ising model simulations discussed here using the
code that comes with Ref. 19.

UPDATING SCHEMES

We give an overview of MCMC updating schemes that is,
because of space limitations, not complete at all.

1. We have already discussed the Metropolis scheme (1)
and its generalization by Hastings (7). Variables of
the system are locally updated.

2. Within such local schemes, the heat-bath method
(12-14) is usually the most efficient. In practice it

can be approximated by tabulating Metropolis–Hast-
ings probabilities (22).

3. For simulations at (very) low temperatures, event-
driven simulations (26,27), also known as the ‘‘N-fold
way,’’ are most efficient. They are based on Metropolis
or heat-bath schemes.

4. As mentioned before, for a number of models with
second order phase transitions the MCMC efficiency
is greatly improved by using nonlocal cluster updat-
ing (24).

5. Molecular dynamics (MD) moves can be used as
proposals in MCMC updating (28,29), a scheme called
‘‘hybrid MC’’, see Ref. (30) for a review of MD simula-
tions.

More examples can be found in the W. Krauth contribu-
tion in Ref. (31) and A. D. Sokal in Ref. (32).

GENERALIZED ENSEMBLES FOR MCMC SIMULATIONS

The MCMC method, which we discussed for the Ising
model, generates configurations distributed according to
the Boltzmann–Gibbs canonical ensemble, with weights
PB;s. Mean values of physical observables at the tempera-
ture chosen are obtained as arithmetic averages of the
measurements made [Equation 7]. There are, however,
in statistical physics, circumstances where another ensem-
ble (other weights PNB;s) can be more convenient. One case
is the computation of the partition function ZðTÞ as a
function of temperature. Another is the investigation of
configurations of physical interest that are rare in the
canonical ensemble. Finally the efficiency of the Markov
process, i.e., the computer time needed to obtain a desired
accuracy, can depend greatly on the ensemble in which the
simulations are performed. This is the case, for example
when taking into account the Boltzmann weights, the
phase space separates, loosely speaking, into several popu-
lated regions separated by mostly vacant regions, creating
so-called free energy barriers for the Markov chain.

A first attempt to calculate the partition function by
MCMC simulations dates back to a 1959 paper by Salsburg
et al. Ref. (33). As noticed by the authors, their method is
restricted to very small lattices. The reason is that their
approach relies on what is called in the modern language
‘‘reweighting.’’ It evaluates results at a given temperature
from data taken at another temperature. The reweighting
method has a long history. McDonald and Singer (34) were
the first to use it to evaluate physical quantities over a
range of temperatures from a simulation done at a single
temperature. Thereafter dormant, the method was redis-
covered in an article (35) focused on calculating complex
zeros of the partition function. It remained to Ferrenberg
and Swendsen (36), to formulate a crystal clear picture for
what the method is particularly good, and for what it is not:
The reweighting method allows for focusing on maxima of
appropriate observables, but it does not allow for covering a
finite temperature range in the infinite volume limit.

To estimate the partition function over a finite energy
density range De, i.e., DE�N, one can patch the histograms

Figure 1. Two-dimensional Ising model: Two initial Metropolis
time series for the energy per spin e.

4 MARKOV CHAIN MONTE CARLO SIMULATIONS



from simulations at several temperatures. Such multi-his-
togram methods also have a long tradition. In 1972 Valleau
and Card (37) proposed the use of overlapping bridging
distributions and called their method ‘‘multistage
sampling.’’ Free energy and entropy calculations become
possible when one can link the temperature region of
interest with a range for which exact values of these
quantities are known. Modern work (38,39) developed effi-
cient techniques to combine the overlapping distributions
into one estimate of the spectral density rðEÞ [with
ZðTÞ ¼

R
dErðEÞexpð�bEÞ] and to control the statistical

errors of the estimate. However, the patching of histograms
from canonical simulations faces several limitations:

1. The number of canonical simulations needed diverges
like

ffiffiffiffiffi
N
p

when one wants to cover a finite, noncritical
range of the energy density.

2. At a first-order phase transition point, the canonical
probability of configurations with an interface
decreases exponentially with N.

One can cope with the difficulties of multi-histogram
methods by allowing arbitrary sampling distributions
instead of just the Boltzmann–Gibbs ensemble. This was
first recognized by Torrie and Valleau (15) when they
introduced umbrella sampling. However, for the next 13
years, the potentially very broad range of applications of
the basic idea remained unrecognized. A major barrier,
which prevented researchers from trying such extensions,
was certainly the apparent lack of direct and straightfor-
ward ways of determining suitable weighting functions
PNB;s for problems at hand. In the words of Li and Scheraga
(40): The difficulty of finding such weighting factors has
prevented wide applications of the umbrella sampling
method to many physical systems.

This changed with the introduction of the multicanoni-
cal ensemble multicanonical ensemble (41), which focuses

on well-defined weight functions and offers a variety of
methods to find a ‘‘working approximation.’’ Here a working
approximation is defined as being accurate enough, so that
the desired energy range will indeed be covered after the
weight factors are fixed. A similar approach can also be
constructed for cluster algorithms (42). A typical simula-
tion consists then of three parts:

1. Construct a working approximation of the weight
function Pmuca. The Wang–Landau recursion (43) is
an efficient approach. See Ref. (44) for a comparison
with other methods.

2. Perform a conventional MCMC simulation with these
weight factors.

3. Reweight the data to the desired ensemble: hOi ¼

lim
Nsamples!1

1

Nsamples

XNsamples

s¼1

OsPB;s=Pmuca;s Details can be

found in Ref. 19.

Another class of algorithms appeared in a couple of years
around 1991 in several papers (45–50), which all aimed at
improving MCMC calculations by extending the confines of
the canonical ensemble. Practically most important has
been the replica exchange method, which is also known
under the names parallel tempering and multiple Markov
chains. In the context of spin glass simulations, an
exchange of partial lattice configurations at different tem-
peratures was proposed by Swendsen and Wang (45). But it
was only recognized later (46,50) that the special case for
which entire configurations are exchanged is of utmost
importance, see Ref. 19 for more details. Closely related
is the Jump Walker (J-Walker) approach (51), which feeds
replica from a higher temperature into a simulation at a
lower temperature instead of exchanging them. But in
contrast to the replica exchange method this procedure
disturbs equilibrium to some extent. Finally, and perhaps
most importantly, from about 1992 on, applications of
generalized ensemble methods diversified tremendously
as documented in a number of reviews (52–54).

Figure 2. Multicanonical PmucaðEÞ together with canonical PðEÞ
energy distribution as obtained in Ref. 41 for the 2d 10-state Potts
model on a 70� 70 lattice. In the multicanonical ensemble, the gap
between the two peaks present in PðEÞ is filled up, accelerating
considerably the dynamics of the Markov Chain.

Figure 3. Canonical energy distributions PðEÞ from a parallel
tempering simulation with eight processes for the 2d 10-state Potts
model on 20� 20 lattices (Fig. 6.2 in Ref. 19).

MARKOV CHAIN MONTE CARLO SIMULATIONS 5



The basic mechanisms for overcoming energy barriers
with the multicanonical algorithm are best illustrated for
first-order phase transitions (namely a transition with a
nonzero latent heat, like the ice–water transition), where
one deals with a single barrier. For a finite system the
temperature can be fine-tuned to a pseudocritical value,
which is defined so that the energy density exhibits two
peaks of equal heights. To give an example, Fig. 2 shows for
the 2d 10-state Potts (55) the canonical energy histogram at
a pseudocritical temperature versus the energy histogram
of a multicanonical simulation (41). The same barrier can
also be overcome by a parallel tempering simulation but in a
quite different way. Figure 3 shows the histograms from a
parallel tempering simulation with eight processes on
20� 20 lattices. The barrier can be ‘‘jumped’’ when there
are on both sides temperatures in the ensemble, which are
sufficiently close to a pseudocritical temperature for which
the two peaks of the histogram are of competitive height. In
complex systems with a rugged free energy landscape (spin
glasses, biomolecules, . . .), the barriers can no longer be
explicitly controlled. Nevertheless it has turned out that
switching to the discussed ensembles can greatly enhance
the MCMC efficiency (53,54). For a recent discussion of
ensemble optimization techniques, see Ref. (56) and refer-
ences given therein.

BIBLIOGRAPHY

1. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, Equation of state calculations by fast
computing machines. J. Chem. Phys., 21: 1087–1092, 1953.

2. J. Gubernatis (Editor). The Monte Carlo method in the physical
sciences: Celebrating the 50th anniversary of the Metropolis
algorithm, AIP Conference Proc. Vol 690, Melville, NY, 2003.

3. N. Metropolis and S. Ulam, The Monte Carlo method. J. Am.
Stat. Assoc., 44: 335–341, 1949.

4. J. G. Kemeny and J. L. Snell, Finite Markov Chains.New York:
Springer, 1976.

5. M. Iosifescu, Finite Markov Processes and Their Applica-
tions.Chichester: Wiley, 1980.

6. K. L. Chung, Markov Chains with Stationary Transition Prob-
abilities, 2nd ed., New York: Springer, 1967.

7. E. Nummelin, General Irreducible Markov Chains and Non-
Negative Operators.Cambridge: Cambridge Univ. Press, 1984.

8. A. A. Markov, Rasprostranenie zakona bol’shih chisel na veli-
chiny, zavisyaschie drug ot druga. Izvestiya Fiziko-matema-
ticheskogo obschestva pri Kazanskom Universitete, 2-ya
seriya, tom 15: 135–156, 1906.

9. J. G. Propp and D. B. Wilson, Exact sampling with coupled
Markov chains and applications in statistical mechanics. Ran-
dom Structures and Algorithms, 9: 223–252, 1996.

10. J. G. Proof and D. B. Wilson, Coupling from the Past User’s
Guide. DIMACS Series in Discrete Mathematics and Theore-
tical Computer Science (AMS), 41: 181–192, 1998.

11. W. K. Hastings, Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57: 97–109, 1970.

12. R. J. Glauber, Time-dependent statistics of the Ising model. J.
Math. Phys., 4: 294–307, 1963.

13. M. Creutz, Monte Carlo study of quantized SU(2) gauge theory.
Phys. Rev. D., 21: 2308–2315, 1980.

14. S. Geman and D. Geman, Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images. IEEE Trans.
Pattern Anal. Machine Intelli. 6: 721–741, 1984.

15. G. M. Torrie and J. P. Valleau, Nonphysical sampling distribu-
tions in Monte Carlo free energy estimation: Umbrella sam-
pling. J. Comp. Phys., 23: 187–199, 1977.

16. J. S. Liu, Monte Carlo strategies in scientific computing.
New York: Springer, 2001.

17. C. P. Robert and G. Casella, Monte Carlo statistical methods
(2nd ed.), New York: Springer, 2005.

18. D. P. Landau and K. Binder, A guide to Monte Carlo simula-
tions in statistical physics. Cambridge: Cambridge University
Press, 2000.

19. B. A. Berg, Markov chain Monte Carlo simulations and their
statistical analysis. Singapore: World Scientific, 2004.

20. W. S. Kendall, F. Liang, and J.-S. Wang (Eds), Markov Chain
Monte Carlo: Innovations and applications (Lecture Notes
Series, Institute for Mathematical Sciences, National Univer-
sity of Singapore). Singapore: World Scientific, 2005.

21. D. Knuth, The art of computer programming, Vol 2: Semi
numerical algorithms, Third Edition. Reading, MA: Addison-
Wesley, 1997, pp. 1193

22. A. Bazavov and B. A. Berg, Heat bath efficiency with Metro-
polis-type updating. Phys. Rev. D., 71: 114506, 2005.

23. A. E. Ferdinand and M. E. Fisher, Bounded and inhomoge-
neous Ising models. I. Specific-heat anomaly of a finite lattice.
Phys. Rev., 185: 832–846, 1969.

24. R. H. Swendsen and J.-S. Wang, Non-universal critical
dynamics in Monte Carlo simulations. Phys. Rev. Lett., 58:
86–88, 1987.

25. U. Wolff, Collective Monte Carlo updating for spin systems.
Phys. Rev. Lett., 62: 361–363, 1989.

26. A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, A new algorithm
for Monte Carlo simulation of Ising spin systems. J. Comp.
Phys., 17: 10–18, 1975.

27. M. A. Novotny, A tutorial on advanced dynamic Monte carlo
methods for systems with discrete state spaces. Ann. Rev.
Comp. Phys., 9: 153–210, 2001.

28. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth,
Hybrid Monte Carlo. Phys. Lett. B., 195: 216–222, 1987.

29. B. Mehlig, D. W. Heermann, and B. M. Forrest, Hybrid Monte
Carlo Methods for condensed-matter systems. Phys. Rev. B.,
45: 679–685, 1992.

30. D. Frenkel and B. Smit, Understanding molecular simulation.
San Diego CA: Academic Press, 1996.

31. J. Kertesz and I. Kondor (Ed.), Advances in Computer Simula-
tion. Lecture Notes in Physics, Heidelberg: Springer Verlag,
1998.

32. K. Binder (Ed.), Monte Carlo and molecular dynamics simula-
tions in polymer science, Oxford: Oxford University Press, 1996.

33. Z. W. Salsburg, J. D. Jacobson, W. S. Fickett, and W. W. Wood.
Applications of the Monte Carlo method to the lattice-gas
model. I. Two-dimensional triangular lattice. J. Chem.
Phys., 30: 65–72, 1959.

34. I. R. McDonald and K. Singer, Calculation of thermodynamic
properties of liquid argon from Lennard-Jones parameters by a
Monte Carlo Method. Discussions Faraday Soc., 43: 40–49,
1967.

35. M. Falcioni, E. Marinari, L. Paciello, G. Parisi, and B.
Taglienti, Complex zeros in the partition function of four-
dimensional SU(2) lattice gauge model. Phys. Lett. B., 108:
331–332, 1982.

6 MARKOV CHAIN MONTE CARLO SIMULATIONS



36. A. M. Ferrenberg and R. H. Swendsen, New Monte Carlo
technique for studying phase transitions. Phys. Rev. Lett.,
61: 2635–2638, 1988; 63: 1658, 1989.

37. J. P. Valleau and D. N. Card, Monte Carlo estimation of the free
energy by multistage sampling. J. Chem. Phys., 37: 5457–5462,
1972.

38. A. M. Ferrenberg and R. H. Swendsen, Optimized Monte Carlo
data analysis. Phys. Rev. Lett., 63: 1195–1198, 1989.

39. N. A. Alves, B. A. Berg, and R. Villanova, Ising-Model Monte
Carlo simulations: Density of states and mass gap. Phys. Rev.
B., 41: 383–394, 1990.

40. Z. Li and H. A. Scheraga, Structure and free energy of complex
thermodynamic systems. J. Mol. Struct. (Theochem), 179: 333–
352, 1988.

41. B. A. Berg and T. Neuhaus, Multicanonical ensemble: A new
approach to simulate first-order phase transitions. Phys. Rev.
Lett., 68: 9–12, 1992.

42. W. Janke and S. Kappler, Multibondic cluster algorithm for
Monte Carlo simulations of first-order phase transitions. Phys.
Rev. Lett., 74: 212–215, 1985.

43. F. Wang and D. P. Landau, Efficient, multiple-range random
walk algorithm to calculate the density of states. Phys. Rev.
Lett., 86: 2050–2053, 2001.

44. Y. Okamoto, Metropolis algorithms in generalized ensemble.
In Ref. (2), pp. 248–260. On the web at http://arxiv.org/abs/
cond-mat/0308119.

45. R. H. Swendsen and J.-S. Wang, Replica Monte Carlo simula-
tions of spin glasses. Phys. Rev. Lett., 57: 2607–2609, 1986.

46. C. J. Geyer, Markov Chain Monte Carlo maximum likelihood,
in E. M. Keramidas (ed.), Computing Science and Statistics,
Proc. of the 23rd Symposium on the Interface. Fairfax, VA,
Interface Foundation, 1991, pp. 156–163.

47. C. J. Geyer and E. A. Thompson, Annealing Markov chain
Monte Carlo with applications to ancestral inference. J. Am.
Stat. Ass., 90: 909–920, 1995.

48. E. Marinari and G. Parisi, Simulated tempering: A new Monte
Carlo scheme. Europhys. Lett., 19: 451–458, 1992.

49. A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkanov, and
P. N. Vorontsov-Velyaminov, New approach to Monte Carlo

calculation of the free energy: Method of expanded ensembles.
J. Chem. Phys., 96: 1776–1783, 1992.

50. K. Hukusima and K. Nemoto, Exchange Monte Carlo method
and applications to spin glass simulations. J. Phys. Soc. Japan,
65: 1604–1608, 1996.

51. D. D. Frantz, D. L. Freemann, and J. D. Doll, Reducing quasi-
ergodic behavior in Monte Carlo simulations by J-walking:
Applications to atomic clusters. J. Chem. Phys., 93: 2769–
2784, 1990.

52. W. Janke, Multicanonical Monte Carlo simulations. Physica
A., 254: 164–178, 1998.

53. U. H. Hansmann and Y. Okamoto, The generalized-ensemble
approach for protein folding simulations. Ann. Rev. Comp.
Phys., 6: 129–157, 1999.

54. A. Mitsutake, Y. Sugita, and Y. Okamoto, Generalized-
ensemble algorithms for molecular simulations of biopolymers.
Biopolymers (Peptide Science), 60: 96–123, 2001.

55. F. Y. Wu, The Potts model. Rev. Mod. Phys., 54: 235–268, 1982.

56. S. Trebst, D. A. Huse, E. Gull, H. G. Katzgraber, U. H. E.
Hansmann, and M. Troyer, Ensemble optimization techniques
for the simulation of slowly equilibrating systems, Invited talk
at the19th Annual Workshop on Computer Simulation Studies
in Condensed Matter Physics, in D. P. Landau, S. P. Lewis, and
H.-B. Schuettler (eds.), Athens, GA, 20–24 February 2006;
Springer Proceedings in Physics, Vol. 115, 2007. Available
on the internet at: http://arxiv.org/abs/cond-mat/0606006.

BERND A. BERG

Florida State University
Tallahassee, Florida

ALAIN BILLOIRE

Service de Physique Théorique
CEA Saclay
Gif-sur-Yvette, France

MARKOV CHAIN MONTE CARLO SIMULATIONS 7



M

MARKOV CHAINS

INTRODUCTION

A Markov chain is, roughly speaking, some collection of
random variables with a temporal ordering that have the
property that conditional upon the present, the future does
not depend on the past. This concept, which can be viewed
as a form of something known as the Markov property, will
be made precise below, but the principle point is that such
collections lie somewhere between one of independent
random variables and a completely general collection,
which could be extremely complex to deal with.

Andrei Andreivich Markov commenced the analysis of
such collections of random variables in 1907, and their
analysis remains an active area of research to this day.
The study of Markov chains is one of the great achieve-
ments of probability theory. In his seminal work (1),
Andrei Nikolaevich Kolmogorov remarked, ‘‘Historically,
the independence of experiments and random variables
represents the very mathematical concept that has given
probability its peculiar stamp.’’

However, there are many situations in which it is neces-
sary to consider sequences of random variables that cannot
be considered to be independent. Kolmogorov went on to
observe that ‘‘[Markov et al.] frequently fail to assume
complete independence, they nevertheless reveal the
importance of assuming analogous, weaker conditions, in
order to obtain significant results.’’ The aforementioned
Markov property, the defining feature of the Markov chain,
is such an analogous, weaker condition and it has proved
both strong enough to allow many, powerful results to be
obtained while weak enough to allow it to encompass a
great many interesting cases.

Much development in probability theory during the
latter part of the last century consisted of the study of
sequences of random variables that are not entirely inde-
pendent. Two weaker, but related conditions proved to be
especially useful: the Markov property that defines the
Markov chain and the martingale property. Loosely
speaking, a martingale is a sequence of random variables
whose expectation at any point in the future, which is
conditional on the past and the present is equal to
its current value. A broad and deep literature exists on
the subject of martingales, which will not be discussed
in this article. A great many people have worked on the
theory of Markov chains, as well as their application to
problems in a diverse range of areas, over the past century,
and it is not possible to enumerate them all here.

There are two principal reasons that Markov chains play
such a prominent role in modern probability theory.
The first reason is that they provide a powerful yet tractable
framework in which to describe, characterize, and analyze
a broad class of sequences of random variables that find
applications in numerous areas from particle transport
through finite state machines and even in the theory of

gene expression. The second reason is that a collection of
powerful computational algorithms have been developed to
provide samples from complicated probability distributions
via the simulation of particular Markov chains: These
Markov chain Monte Carlo methods are now ubiquitous
in all fields in which it is necessary to obtain samples from
complex probability distributions, and this has driven
much of the recent research in the field of Markov chains.

The areas in which Markov chains occur are far too
numerous to list here, but here are some typical examples:

� Any collection of independent random variables forms
a Markov chain: In this case, given the present, the
future is independent of the past and the present.

� The celebrated symmetric random walk over the inte-
gers provides a classic example: The next value taken
by the chain is one more or less than the current value
with equal probability, regardless of the route by which
the current value was reached. Despite its simplicity,
this example, and some simple generalizations, can
exhibit a great many interesting properties.

� Many popular board games have a Markov chain
representation, for example, ‘‘Snakes and Ladders,’’
in which there are 100 possible states for each counter
(actually, there are somewhat fewer, as it is not
possible to end a turn at the top of a snake or the
bottom of a ladder), and the next state occupied by any
particular counter is one of the six states that can be
reached from the current one, each with equal prob-
ability. So, the next state is a function of the current
state and an external, independent random variable
that corresponds to the roll of a die.

� More practically, the current amount of water held in a
reservoir can be viewed as a Markov chain: The volume
of water stored after a particular time interval will
depend only on the volume of water stored now and two
random quantities: the amount of water leaving the
reservoir and the amount of water entering the reser-
voir. More sophisticated variants of this model are
used in numerous areas, particularly within the field
of queueing theory (where water volume is replaced by
customers awaiting service).

� The evolution of a finite state machine can be viewed as
the evolution of a (usually deterministic) Markov
chain.

It is common to think of Markov chains as describing the
trajectories of dynamic objects. In some circumstances, a
natural dynamic system can be associated with a collection
of random variables with the right conditional indepen-
dence structure—the random walk example discussed pre-
viously, for example, can be interpreted as moving from one
position to the next, with the nth element of the associated
Markov chain corresponding to its position at discrete time
index n. As the distribution of each random variable in the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



sequence depends only on the value of the previous element
of the sequence, one can endow any such collection
(assuming that one can order the elements of the collection,
which the definition of a Markov chain employed here
ensures is always possible) with a dynamic structure.
One simply views the distribution of each element, condi-
tional on the value of the previous one as being the
probability of moving between those states at that time.
This interpretation provides no great insight, but it can
allow for simpler interpretations and descriptions of the
behavior of collections of random variables of the sort
described here. Indeed, it is the image of a chain of states,
with each one leading to the next that suggests the term
‘‘Markov chain.’’

STOCHASTIC PROCESSES

To proceed to the formal definition of a Markov chain, it is
first necessary to make precise what is meant by a collection
of random variables with some temporal ordering. Such a
collection of random variables may be best characterized as
a stochastic process. An E-valued process is a function X :
I !E that maps values in some index set I to some other
space E. The evolution of the process is described by
considering the variation of Xi :¼ XðiÞ with i. An E-valued
stochastic process (or random process) can be viewed as a
process in which, for each i2I , Xi is a random variable
taking values in E.

Although a rich literature on more general situations
exists, this article will consider only discrete time stochas-
tic processes in which the index set I is the natural
numbers, N (of course, any index set isomorphic to N

can be used in the same framework by simple relabeling).
The notation Xi is used to indicate the value of the process
at time i (note that there need be no connection between
the index set and real time, but this terminology is both
convenient and standard). Note that the Markov property
may be extended to continuous time processes in which the
index set is the positive real numbers, and this leads to a
collection of processes known as either Markov processes
or continuous time Markov chains. Such processes are not
considered here in more detail, as they are of somewhat
lesser importance in computer science and engineering
applications. A rich literature on these processes does
exist, and many of the results available in the discrete
time case have continuous time analog—indeed, some
results may be obtained considerably more naturally in
the continuous time setting.

At this point, a note on terminology is necessary.
Originally, the term ‘‘Markov chain’’ was used to describe
any stochastic process with the Markov property and a
finite state space. Some references still use this definition
today. However, in computer science, engineering, and
computational statistics, it has become more usual to use
the term to refer to any discrete time stochastic process with
the Markov property, regardless of the state space, and this
is the definition used here. Continuous time processes with
the Markov property will be termed Markov processes, and
little reference will be made to them. This usage is moti-
vated by considerations developing from Markov chain

Monte Carlo methods and is standard in more recent
literature.

Filtrations and Stopping Times

This section consists of some technical details that,
although not essential to a basic understanding of the
stochastic process or Markov chains in particular, are
fundamental and will be encountered in any work dealing
with these subjects.

A little more technical structure is generally required to
deal with stochastic processes than with simple random
variables. Although technical details are avoided as far as
possible in this article, the following concept will be needed
to understand much of the literature on Markov chains.

To deal with simple random variables, it suffices to
consider a probability space ðV;F ;PÞ in which V is the
set of events, F is the s-algebra corresponding to the
collection of measurable outcomes (i.e., the collection of
subsets of V to which it is possible to assign a probability;
typically the collection of all subsets of V in the discrete
case), and P is the probability measure, which tells us the
probability that any element of F contains the event that
occurs as follows: P : F !½0; 1�. To deal with stochastic
processes, it is convenient to define a filtered probability
spaceðV;F ; fF igi2N;PÞ. The collection of sub-s-algebras,
fF igi2N, which is termed a filtration, has a particular
structure:

F 1�F2� . . .�Fn�Fnþ1� . . .�F

and its most important property is that, for any n, the collec-
tion of variables X1;X2; . . .;Xn must be measurable with
respect to Fn. Although much more generality is possible,
it is usually sufficient to consider the natural filtration of a
process: that is the one generated by the process itself. Given
any collection of random variables of a common probability
space, a smallest s-algebra exists with respect to which
those random variables are jointly measurable. The natural
filtration is the filtration generated by setting eachFn equal
to the smallest s-algebra with respect to which X1; . . .;Xn

are measurable. Only this filtration will be considered in the
current article. An intuitive interpretation of this filtration,
which provides increasingly fine subdivisions of the prob-
ability space, is that Fn tells us how much information can
be provided by knowledge of the values of the first n random
variables: It tells us which events can be be distinguished
given knowledge of X1; . . .;Xn.

It is natural when considering a process of this sort to
ask questions about random times: Is there anything to stop
us from defining additional random variables that have an
interpretation as the index, which identifies a particular
time in the evolution of the process? In general, some care is
required if these random times are to be useful: If the
temporal structure is real, then it is necessary for us to
be able to determine whether the time which has been
reached so far is the time of interest, given some realization
of the process up to that time. Informally, one might require
that ft ¼ ng can be ascribed a probability of zero or one,
given knowledge of the first n states, for any n. In fact, this
is a little stronger than the actual requirement, but it

2 MARKOV CHAINS



provides a simple interpretation that suffices for many
purposes. Formally, if t : V!I is a random time, and
the event f! : tð!Þ ¼ ng2Fn for all n, then t is known as
a stopping time. Note that this condition amounts to requir-
ing that the event f! : tð!Þ ¼ ng is independent of all
subsequent states of the chain, Xnþ1;Xnþ2; . . . conditional
upon X1; . . .;Xn. The most common example of a stopping
time is the hitting time, tA, of a set A:

tA :¼ inffn : Xn 2Ag

which corresponds to the first time that the process enters
the set A. Note that the apparently similar

t0A ¼ inffn : Xnþ1 2Ag

is not a stopping time (in any degree of generality) as the
state of the chain at time nþ 1 is not necessarily known in
terms of the first n states.

Note that this distinction is not an artificial or frivolous
one. Consider the chain produced by setting Xn ¼ Xn�1 þ
Wn where fWng are a collection of independent random
variables that correspond to the value of a gambler’s win-
nings, in dollars, in the nth independent game that he
plays. If A ¼ ½10; 000;1Þ, then tA would correspond to
the event of having won $10,000, and, indeed, it would
be possible to stop when this occurred. Conversely, if
A ¼ ð�1;�10; 000�, then t0A would correspond to the last
time before that at which $10,000 have been lost. Although
many people would like to be able to stop betting immedi-
ately before losing money, it is not possible to know that one
will lose the next one of a sequence of independent games.

Given a stopping time, t, it is possible to define the
stopped process, Xt

1;X
t
2; . . ., associated with the process

X1;X2; . . ., which has the expected definition; writing
m^n for the smaller of m and n, define Xt

n ¼ Xt^n. That
is, the stopped process corresponds to the process itself at all
times up to the random stopping time, after which it takes
the value it had at that stopping time: It stops. In the case of
tA, for example, the stopped process mirrors the original
process until it enters A, and then it retains the value it had
upon entry to A for all subsequent times.

MARKOV CHAINS ON DISCRETE STATE SPACES

Markov chains that take values in a discrete state space,
such as the positive integers or the set of colors with
elements red, green, and blue, are relatively easy to define
and use. Note that this class of Markov chains includes
those whose state space is countably infinite: As is often the
case with probability, little additional difficulty is intro-
duced by the transition from finite to countable spaces, but
considerably more care is needed to deal rigorously with
uncountable spaces.

To specify the distribution a Markov chain on a discrete
state space, it is intuitively sufficient to provide an initial
distribution, the marginal distribution of its first element,
and the conditional distributions of each element given the
previous one. To formalize this notion, and precisely what
the Markov property referred to previously means, it is

useful to consider the joint probability distribution of the
first n elements of the Markov chain. Using the definition of
conditional probability, it is possible to write the joint
distribution of n random variables, X1; . . .;Xn, in the follow-
ing form, using X1:n to denote the vector ðX1; . . .;XnÞ:

PðX1:n ¼ x1:nÞ ¼ PðX1 ¼ x1ÞYn

i¼2
PðXi ¼ xijX1:i�1 ¼ x1:i�1Þ

The probability that each of the first n elements takes
particular values can be decomposed recursively as the
probability that all but one of those elements takes the
appropriate value and the conditional probability that
the remaining element takes the specified value given
that the other elements take the specified values.

This decomposition could be employed to describe the
finite-dimensional distributions (that is, the distribution of
the random variables associated with finite subsets of I ) of
any stochastic process. In the case of a Markov chain, the
distribution of any element is influenced only by the pre-
vious state if the entire history is known: This is what is
meant by the statement that ‘‘conditional upon the present,
the future is independent of the past.’’ This property may be
written formally as

PðXn ¼ xnjX1:n�1 ¼ x1:n�1Þ ¼ PðXn ¼ xnjXn�1 ¼ xn�1Þ

and so for any discrete state space Markov chain:

PðX1:n ¼ x1:nÞ ¼ PðX1 ¼ x1Þ
Yn

i¼2
PðXi ¼ xijXi�1 ¼ xi�1Þ

As an aside, it is worthwhile to notice that Markov
chains encompass a much broader class of stochastic pro-
cesses than is immediately apparent. Given any stochastic
process in which for all n>L and x1:n�1,

PðXn¼xnjX1:n�1¼ x1:n�1Þ¼PðXn¼xnjXn�L:n�1¼xn�L:n�1Þ

it suffices to consider a process Y on the larger space EL

defined as

Yn ¼ ðXn�Lþ1; . . .;XnÞ

Note that ðX1�L; . . .;X0Þ can be considered arbitrary with-
out affecting the argument. Now, it is straightforward to
determine that the distribution of Ynþ1 depends only on
Yn. In this way, any stochastic process with a finite mem-
ory may be cast into the form of a Markov chain on an
extended space.

The Markov property, as introduced above, is more
correctly known as the weak Markov property, and in
the case of Markov chains in which the transition prob-
ability is not explicitly dependent on the time index, it is
normally written in terms of expectations of integrable
test function j : Em!R, where m may be any positive
integer. The weak Markov property in fact tells us that
the expected value of the integral of any integrable test
function over the next m states of a Markov chain depends

MARKOV CHAINS 3



onlyonthevalueofthecurrentstate,soforanynandanyx1:n:

E½jðXnþ1; . . .;XnþmÞjX1:n� ¼ E½jðXnþ1; . . .;Xnþmþ1ÞjXn�

It is natural to attempt to generalize this by considering
random times rather than deterministic ones. The strong
Markov property requires that, for any stopping time t, the
following holds:

E½jðXtþ1; . . .;XtþmÞjX1:t� ¼ E½jðXtþ1; . . .;Xtþmþ1ÞjXt�

In continuous time settings, these two properties allow us
to distinguish between weak and strong Markov pro-
cesses (the latter is a strict subset of the former, because
t ¼ n is a stopping time). However, in the discrete
time setting, the weak and strong Markov properties
are equivalent and are possessed by Markov chains as
defined above.

It is conventional to view a Markov chain as describing
the path of a dynamic object, which moves from one state to
another as time passes. Many physical systems that can be
described by Markov chains have precisely this property—
for example, the motion of a particle in an absorbing
medium. The position of the particle, together with an
indication as to whether it has been absorbed or not,
may be described by a Markov chain whose states contain
coordinates and an absorbed/not-absorbed flag. It is then
natural to think of the initial state as having a particular
distribution, say, mðx1Þ ¼ PðX1 ¼ x1Þ and, furthermore, for
there to be some transition kernel that describes the
distribution of moves from a state xn�1 to a state xn at
time n, say, Knðxn�1; xnÞ ¼ PðXn ¼ xnjXn�1 ¼ xn�1Þ. This
allows us to write the distribution of the first n elements
of the chain in the compact form:

PðX1:n ¼ x1:nÞ ¼ mðx1Þ
Yn

i¼2
Kiðxi�1; xiÞ

Nothing is preventing these transition kernels from being
explicitly dependent on the time index; for example, in the
reservoir example presented above, one might expect both
water usage and rainfall to have a substantial seasonal
variation, and so the volume of water stored tomorrow
would be influenced by the date as well as by that volume
stored today. However, it is not surprising that for a great
many systems of interest (and most of those used in com-
puter simulation) that the transition kernel has no depen-
dence on the time. Markov chains that have the same
transition kernel at all times are termed time homogeneous
(or sometimes simply homogeneous) and will be the main
focus of this article.

In the time homogeneous context, the n-step transition
kernels denoted Kn, which have the property that
PðXmþn ¼ xmþnjXm ¼ xmÞ ¼ Knðxm; xmþnÞ may be obtained
inductively, as

Knðxm; xmþnÞ ¼
X
xmþ1

Kðxm; xmþ1ÞKn�1ðxmþ1; xmþnÞ

for any n> 1, whereas K1ðxm; xmþ1Þ ¼ Kðxm; xmþ1Þ.

A Matrix Representation

The functional notation above is convenient, as it gener-
alizes to Markov chains on state spaces that are not
discrete. However, discrete state space Markov chains
exist in abundance in engineering and particularly in
computer science. It is convenient to represent probability
distributions on finite spaces as a row vector of probability
values. To define such a vector m, simply set mi ¼ PðX ¼ iÞ
(where X is some random variable distributed according to
m). It is also possible to define a Markov kernel on this
space by setting the elements of a matrix K equal to the
probability of moving from a state i to a state j; i.e.:

Ki j ¼ PðXn ¼ jjXn�1 ¼ iÞ

Although this may appear little more than a notational
nicety, it has some properties that make manipulations
particularly straightforward; for example, if X1�m,
then:

PðX2 ¼ jÞ ¼
X

i

PðX1 ¼ iÞPðX2 ¼ jjX1 ¼ iÞ

¼
X

i

miKi j

¼ ðmKÞ j

where mK denotes the usual vector matrix product and
ðmKÞ j denotes the jth element of the resulting row vector.In
fact, it can be showninductively that PðXn ¼ jÞ ¼ ðmKn�1Þ j,
where Kn�1 is the usual matrix power of K. Even more
generally, the conditional distributions may be written in
terms of the transition matrix, K:

PðXnþm ¼ jjXn ¼ iÞ ¼ ðKmÞi j

and so a great many calculations can be performed via
simple matrix algebra.

A Graphical Representation

It is common to represent a homogeneous, finite-state
space Markov chain graphically. A single directed graph
with labeled edges suffices to describe completely the
transition matrix of such a Markov chain. Together
with the distribution of the initial state, this completely
characterizes the Markov chain. The vertices of the graph
correspond to the states, and those edges that exist illus-
trate the moves that it is possible to make. It is usual to
label the edges with the probability associated with the
move that they represent, unless all possible moves are
equally probable.

A simple example, which also shows that the matrix
representation can be difficult to interpret, consists of the
Markov chain obtained on the space f0; 1; . . .; 9g in which
the next state is obtained by taking the number rolled on an
unbiased die and adding it, modulo 10, to the current state
unless a 6 is rolled when the state is 9, in which case, the
chain retains its current value. This has a straightforward,

4 MARKOV CHAINS



but cumbersome matrix representation, in which:

K ¼ 1

6

0 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1
1 0 0 0 0 1 1 1 1 1
1 1 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 1 1
1 1 1 1 1 0 0 0 0 1
1 1 1 1 1 0 0 0 0 1

2
666666666666664

3
777777777777775

Figure 1 shows a graphical illustration of the same
Markov transition kernel—transition probabilities are
omitted in this case, as they are all equal. Although it
may initially seem no simpler to interpret than the matrix,
on closer inspection, it becomes apparent that one can
easily determine from which states it is possible to reach
any selected state, which states it is possible to reach from
it and those states it is possible to move between in a
particular number of moves without performing any
calculations. It is these properties that this representa-
tion makes it very easy to interpret even in the case of
Markov chains with large state spaces for which the
matrix representation rapidly becomes very difficult to
manipulate. Note the loop in the graph showing the
possibility of remaining in state 9—this is equivalent to
the presence of a nonzero diagonal element in the
transition matrix.

MARKOV CHAINS ON GENERAL STATE SPACES

In general, more subtle measure theoretic constructions are
required to define or study Markov chains on uncountable

state spaces—such as the real numbers or the points in
three-dimensional space. To deal with a fully general state
space, a degree of measure theoretic probability beyond that
which can be introduced in this article is required. Only
Markov chains on some subset of d-dimensional, Euclidean
space, Rd with distributions and transition kernels that
admit a density (for definiteness, with respect to Lebesgue
measure—that which attributes to any interval mass cor-
responding to its length—over that space) will be considered
here. Knðx; yÞ (or Kðx; yÞ in the time homogeneous case)
denotes a density with the property that

PðXn 2AjXn�1 ¼ xn�1Þ ¼
Z

A
Knðxn�1; yÞdy

This approach has the great advantage that many concepts
may be written for discrete and continuous state space cases
in precisely the same manner, with the understanding that
the notation refers to probabilities in the discrete case and
densities in the continuous setting. To generalize things, it
is necessary to consider Lebesgue integrals with respect to
the measures of interest, but essentially, one can replace
equalities of densities with those of integrals over
any measurable set and the definitions and results
presented below will continue to hold. For a rigorous and
concise introduction to general state space Markov chains,
see Ref. 2. For a much more detailed exposition, Ref. 3 is
recommended highly.

STATIONARY DISTRIBUTIONS AND ERGODICITY

The ergodic hypothesis of statistical mechanics claims,
loosely, that given a thermal system at equilibrium, the
long-term average occurrence of any given system config-
uration corresponds precisely to the average over an infinite

0

1

2

3

4

5

6

7

8

9

Figure 1. A graphical representation of a Markov chain.

MARKOV CHAINS 5



ensemble of identically prepared systems at the same tem-
perature. One area of great interest in the analysis of
Markov chains is that of establishing conditions under
which a (mathematically refined form of) this assertion
can be shown to be true: When are averages obtained by
considering those states occupied by a Markov chain over a
long period of its evolution close to those that would be
obtained by calculating the average under some distribution
associated with that chain? Throughout this section, inte-
grals over the state space are used with the understanding
that in the discrete case these integrals should be replaced
by sums. This process minimizes the amount of duplication
required to deal with both discrete and continuous state
spaces, which allows the significant differences to be empha-
sized when they develop.

One of the most important properties of homogeneous
Markov chains, particularly within the field of simulation,
is that they can admit a stationary (or invariant) distribu-
tion. A transition kernel K is p-stationary if

Z
pðxÞKðx; yÞdx ¼ pðyÞ

That is, given a sample X ¼ x from p, the distribution of a
random variable Y, drawn from Kðx; �Þ is the same as that of
X, although the two variables are, of course, not indepen-
dent. In the discrete case, this becomes

X
i

pðiÞKði; jÞ ¼ pð jÞ

or, more succinctly, in the matrix representation, pK ¼ p.
The last of these reveals a convenient characterization
of the stationary distributions, where they exist, of a
transition kernel: They are the left eigenvectors (or eigen-
functions in the general state space case) of the transition
kernel with an associated eigenvalue of 1. Viewing the
transition kernel as an operator on the space of distribu-
tions, the same interpretation is valid in the general state
space case.

It is often of interest to simulate evolutions of Markov
chains with particular stationary distributions. Doing so is
the basis of Markov chain Monte Carlo methods and is
beyond the scope of this article. However, several theore-
tical concepts are required to determine when these dis-
tributions exist, when they are unique, and when their
existence is enough to ensure that a large enough sample
path will have similar statistical properties to a collection of
independent, identically distributed random variables
from the stationary distribution. The remainder of this
section is dedicated to the introduction of such concepts
and to the presentation of two results that are of great
importance in this area.

One property useful in the construction of Markov
chains with a particular invariant distributions is that of
reversibility. A stochastic process is termed reversible if the
statistical properties of its time reversal are the same as
those of the process itself. To make this concept more
formal, it is useful to cast things in terms of certain joint
probability distributions. A stationary process is reversible
if for any n;m, the following equality holds for all measur-

able sets An; . . .;Anþm:

PðXn 2An; . . .;Xnþm 2AnþmÞ¼PðXn 2An; . . .;Xn�m 2AnþmÞ

It is simple to verify that, in the context of a Markov chain,
this is equivalent to the detailed balance condition:

PðXn 2An;Xnþ1 2Anþ1Þ ¼ PðXn 2Anþ1;Xnþ1 2AnÞ

A Markov chain with kernel K is said to satisfy detailed
balance for a distribution p if

pðxÞKðx; yÞ ¼ pðyÞKðy; xÞ

It is straightforward to verify that, if K is p-reversible, then
p is a stationary distribution of K:

Z
pðxÞKðx; yÞdy ¼

Z
pðyÞKðy; xÞdy

pðxÞ ¼
Z

pðyÞKðy; xÞdy

This is particularly useful, as the detailed balance condition
is straightforward to verify.

Given a Markov chain with a particular stationary dis-
tribution, it is important to be able to determine whether,
over a long enough period of time, the chain will explore all
of the space, which has a positive probability under that
distribution. This leads to the concepts of accessibility,
communication structure, and irreducibility.

In the discrete case, a state j is said to be accessible from
another state i written as i! j, if for some n, Knði; jÞ> 0.
That is, a state that is accessible from some starting point is
one that can be reached with positive probability in some
number of steps. If i is accessible from j and j is accessible
from i, then the two states are said to communicate, and this
is written as i$ j. Given the Markov chain on the space
E ¼ f0; 1; 2g with transition matrix:

K ¼
1 0 0

0 1
2

1
2

0 1
2

1
2

2
64

3
75

it is not difficult to verify that the uniform distribution m ¼
ð13; 1

3;
1
3Þ is invariant under the action of K. However, if

X1 ¼ 0, then Xn ¼ 0, for all n: The chain will never reach
either of the other states, whereas starting from X1 2f1; 2g,
the chain will never reach 0. This chain is reducible: Some
disjoint regions of the state space do not communicate.
Furthermore, it has multiple stationary distributions;
ð1; 0; 0Þ and ð0; 1

2;
1
2Þ are both invariant under the action of

K. In the discrete setting, a chain is irreducible if all states
communicate: Starting from any point in the state space,
any other point may be reached with positive probability in
some finite number of steps.

Although these concepts are adequate for dealing with
discrete state spaces, a little more subtlety is required in
more general settings: As ever, when dealing with prob-
ability on continuous spaces, the probability associated
with individual states is generally zero and it is necessary

6 MARKOV CHAINS



to consider integrals over finite regions. The property that
is captured by irreducibility is that, wherever the chain
starts from, a positive probability of it reaches anywhere in
the space. To generalize this to continuous state spaces, it
suffices to reduce the strength of this statement very
slightly: From ‘‘most’’ starting points, the chain has a
positive probability of reaching any region of the space
that itself has positive probability. To make this precise,
a Markov chain of stationary distribution p is said to be p-
irreducible if, for all x (except for those lying in a set of
exceptional points that has probability 0 under p), and all
sets A with the property that

R
A pðxÞdx> 0,

9n :

Z
A

Knðx; yÞdy> 0

The terms strongly irreducibleand stronglyp-irreducibleare
sometimes used when the irreducibility or p-irreducibility
condition, respectively, holds for n ¼ 1. Notice that any
irreducible Markov chain is p-irreducible with respect to
any measure p.

These concepts allow us to determine whether a Markov
chain has a ‘‘joined-up’’ state space: whether it is possible to
move around the entire space (or at least that part of the
space that has mass under p). However, it tells us nothing
about when it is possible to reach these points. Consider the
difference between the following two transition matrices on
the space f0; 1g; for example,

K ¼
1
2

1
2

1
2

1
2

" #
and L ¼ 0 1

1 0

� �

Both matrices admit p ¼ ð12; 1
2Þ as a stationary distribution,

and both are irreducible. However, consider their respec-
tive marginal distributions after several iterations:

Kn ¼
1
2

1
2

1
2

1
2

" #
;whereas Ln ¼

0 1

1 0

� �
n odd

1 0

0 1

� �
n even

8>>><
>>>:

In other words, if m ¼ ðm1;m2Þ, then the Markov chain
associated with K has distribution mKn ¼ ð12; 1

2Þ after n
iterations, whereas that associated with L has distribution
ðm2;m1Þ after any odd number of iterations and distribution
ðm1;m2Þ after any even number. L, then, never forgets its
initial conditions, and it is periodic.

Although this example is contrived, it is clear that such
periodic behavior is significant and that a precise char-
acterization is needed. This is straightforward in the case
of discrete state space Markov chains. The period of any
state, i in the space is defined, using gcd to refer to
the greatest common divisor (i.e., the largest common
factor), as

d ¼ gcdfn : Knði; iÞ> 0g

Thus, in the case of L, above, both states have a period
d ¼ 2. In fact, it can be shown easily, that any pair of states

that communicate must have the same period. Thus,
irreducible Markov chains have a single period, 2, in
the case of L, above and 1, in the case of K. Irreducible
Markov chains may be said to have a period themselves,
and when this period is 1, they are termed aperiodic.

Again, more subtlety is required in the general case. It is
clear that something is needed to fill the role that individual
states play in the discrete state space case and that indi-
vidual states are not appropriate in the continuous case. A
set of events that is small enough that it is, in some sense,
homogeneous and large enough that it has positive prob-
ability under the stationary distribution is required. A set C
is termed small if some integer n, some probability distri-
bution n, and some e> 0 exist such that the following
condition holds:

inf
x2C

Knðx; yÞ� enðyÞ

This condition tells us that for any point in C, with
probability e, the distribution of the next state the chain
enters is independent of where in C it is. In that sense, C is
small, and these sets are precisely what is necessary to
extend much of the theory of Markov chains from the
discrete state space case to a more general setting. In
particular, it is now possible to extend the notion of period
from the discrete state space setting to a more general one.
Note that in the case of irreducible aperiodic Markov
chains on a discrete state space, the entire state space
is small.

A Markov chain has a cycle of length d if a small set C
exists such that the greatest common divisor of the length of
paths from C to a measurable set of positive probability B is
d. If the largest cycle possessed by a Markov chain has
length 1, then that chain is aperiodic. In the case of p-
irreducible chains, every state has a common period (except
a set of events of probability 0 under p), and the above
definition is equivalent to the more intuitive (but more
difficult to verify) condition, in which a partition of the
state space, E, into d disjoint subsets E1; . . .;Ed exists with
the property that PðXnþ1 6¼ 2EjjXn 2EiÞ ¼ 0 if
j ¼ iþ 1 mod d.

Thus far, concepts that allow us to characterize those
Markov chains that can reach every important part of the
space and that exhibit no periodic structure have been
introduced. Nothing has been said about how often a given
region of the space might be visited. This point is particu-
larly important: A qualitative difference exists between
chains that have a positive probability of returning to a
set infinitely often and those that can only visit it finitely
many times. Let hA denote the number of times that a set A
is visited by a Markov chain; that is, hA ¼ jfXn 2A : n2Ngj.
A p-irreducible Markov chain is recurrent if E½hA� ¼ 1 for
every A with positive probability under p. Thus, a recurrent
Markov chain is one with positive probability of visiting any
significant (with respect to p) part of the state space infi-
nitely often: It does not always escape to infinity. A slightly
stronger condition is termed Harris recurrence; it requires
that every significant state is visited infinitely often (rather
than this event having positive probability); i.e., PðhA ¼
1Þ ¼ 1 for every set A for which

R
A pðxÞdx> 0. A Markov

chain that is not recurrent is termed transient.

MARKOV CHAINS 7



The following example illustrates the problems that can
originate if a Markov chain is p-recurrent but not Harris
recurrent. Consider the Markov chain over the positive
integers with the transition kernel defined by

Kðx; yÞ ¼ x�2d1ðyÞ þ ð1� x�2Þdxþ1ðyÞ

where for any state, x, dx denotes the probability distribu-
tion that places all of its mass at x. This kernel is clearly d1-
recurrent: If the chain is started from 1, it stays there
deterministically. However, as the sum

X1
k¼2

1

k2
<1

the Borel–Cantelli lemma ensures that whenever the
chain is started for any x greater than 1, a positive
probability exists that the chain will never visit
state 1—the chain is p-recurrent, but it is not Harris
recurrent. Although this example is somewhat contrived,
it illustrates an important phenomenon—and one that
often cannot be detected easily in more sophisticated
situations. It has been suggested that Harris recurrence
can be interpreted as a guarantee that no such patholo-
gical system trajectories exist: No parts of the space exist
from which the chain will escape to infinity rather than
returning to the support of the stationary distribution.

It is common to refer to a p-irreducible, aperiodic,
recurrent Markov chain as being ergodic and to an ergodic
Markov chain that is also Harris recurrent as being Harris
ergodic. These properties suffice to ensure that the Mar-
kov chain will, on average, visit every part of the state
space in proportion to its probability under p, that it
exhibits no periodic behavior in doing so, and that it might
(or will, in the Harris case) visit regions of the state space
with positive probability infinitely often. Actually, ergo-
dicity tells us that a Markov chain eventually forgets its
initial conditions—after a sufficiently long time has
elapsed, the current state provides arbitrarily little infor-
mation about the initial state. Many stronger forms of
ergodicity provide information about the rate at which the
initial conditions are forgotten; these are covered in great
detail by Meyn and Tweedie (3). Intuitively, if a sequence
of random variables forgets where it has been, but has
some stationary distribution, then one would expect the
distribution of sufficiently widely separated samples to
approximate that of independent samples from that sta-
tionary distribution. This intuition can be made rigorous
and is strong enough to tell us a lot about the distribution
of large samples obtained by iterative application of the
Markov kernel and the sense in which approximations of
integrals obtained by using the empirical average
obtained by taking samples from the chain might converge
to their integral under the stationary measure. This sec-
tion is concluded with two of the most important results in
the theory of Markov chains.

The ergodic theorem provides an analog of the law of
large numbers for independent random variables: It tells us
that under suitable regularity conditions, the averages
obtained from the sample path of a Markov chain will

converge to the expectation under the stationary distribu-
tion of the transition kernel. This mathematically refined,
rigorously proved form of the ergodic hypothesis was
alluded to at the start of this section. Many variants of
this theorem are available; one particularly simple form is
the following: If fXng is a Harris ergodic Markov chain of
invariant distribution p, then the following strong law of
large numbers holds for any p-integrable function f :
E!R (convergence is with probability one):

lim
n!1

1

n

Xn

i¼1

f ðXiÞ!
Z

f ðxÞpðxÞdx

This is a particular case of Ref. 5 (p. 241, Theorem 6.63), and
a proof of the general theorem is given there. The same
theorem is also presented with proof in Ref. 3 (p. 433,
Theorem 17.3.2).

A central limit theorem also exists and tells us some-
thing about the rate of convergence of averages under the
sample path of the Markov chain. Under technical
regularity conditions (see Ref. 4 for a summary of various
combinations of conditions), it is possible to obtain a
central limit theorem for the ergodic averages of a Harris
recurrent, p-invariant Markov chain, and a function that
has at least two finite moments, f : E!R (with E½ f �<1
and E½ f 2�<1).1

lim
n!1

ffiffiffi
n
p 1

n

Xn

i¼1

f ðXiÞ �
Z

f ðxÞpðxÞdx

" #
d!Nð0;s2ð f ÞÞ

s2ðf Þ¼E½ð f ðX1Þ�f Þ2�þ2
X1
k¼2

E½ð f ðX1Þ�f Þðf ðXkÞ � f Þ�

where d! denotes convergence in distribution, Nð0;s2Þ is
the normal distribution of mean 0, and variance s2ð f Þ and
f ¼

R
f ðxÞpðxÞdx.

A great many refinements of these results exist in the
literature. In particular, cases in which conditions may be
relaxed or stronger results proved have been studied
widely. It is of particular interest in many cases to obtain
quantitative bounds on the rate of convergence of ergodic
averages to the integral under the stationary distribution.
In general, it is very difficult to obtain meaningful bounds of
this sort for systems of real practical interest, although
some progress has been made in recent years.

SELECTED EXTENSIONS AND RELATED AREAS

It is unsurprising that a field as successful as that of Markov
chains has several interesting extensions and related areas.
This section briefly describes two of these areas.

So-called adaptive Markov chains have received a
significant amount of attention in the field of Monte Carlo
methodology in recent years. In these systems, the transi-
tion kernel used at each iteration is adjusted depending on

1Depending on the combination of regularity condition assumed,
it may be necessary to have a finite moment of order 2 þ d.

8 MARKOV CHAINS



the entire history of the system or some statistical
summary of that history. Although these adaptive systems
are attractive from a practical viewpoint, as they allow for
automatic tuning of parameters and promise simpler
implementation of Monte Carlo methods in the future, a
great deal of care must be taken when analyzing them. It is
important to notice that because the transition kernel
depends on more than the current state at the time of its
application, it does not give rise to a Markov chain.

Feynman–Kac formulas were first studied in the context
of describing physical particle motion. They describe a
sequence of probability distributions obtained from a col-
lection of Markov transition kernels Mn and a collection of
potential functions Gn. Given a distribution hn�1 at time
n� 1, the system is mutated according to the transition
kernel to produce an updated distribution:

ĥnðxnÞ ¼
Z

hn�1ðxn�1ÞMnðxn�1; xnÞdxn�1

before weighting the probability of each state/region of the
space according to the value of the potential function:

hnðxnÞ ¼
ĥnðxnÞGnðxnÞR
ĥnðxÞGnðxÞdx

Many convenient ways of interpreting such sequences of
distributions exist. One way is that if hn�1 describes the
distribution of a collection of particles at time n� 1, which
have dynamics described by the Markov kernel Mn in an
absorbing medium that is described by the potential func-
tion Gn (in the sense that the smaller the value of Gn at a
point, the greater the probability that a particle at that
location is absorbed), then hn describes the distribution of
those particles that have not been absorbed at time n. These
systems have found a great deal of application in the fields
of Monte Carlo methodology, particularly sequential and
population-based methods, and genetic algorithms. The
latter method gives rise to another interpretation: The
Markov kernel can be observed as describing the mutation
undergone by individuals within a population, and the
potential function GnðxnÞ the fitness of an individual

with genetic makeup xn, which governs the success of
that individual in a selection step.

Alternatively, one can view the evolution of a Feynman–
Kac system as a nonlinear Markov Chain in which the
distribution of Xn depends on both Xn�1 and its distribution
hn�1. That is, if Xn�1�hn�1, then the distribution of Xn is
given by

hnð�Þ ¼
Z

hn�1ðxn�1ÞKn;hn�1
ðxn�1; �Þdxn�1

where the nonlinear Markov kernel Kn;hn
is defined as the

composition of selection and mutation steps (numerous such
kernels may be associated with any particular Feynman–
Kac flow).

An excellent monograph on Feynman–Kac formulas
and their mean field approximations has been written
recently (6).

BIBLIOGRAPHY

1. A. N. Kolmogorov, Foundations of the Theory of Probability,
Chelsea Publishing Company, 2nd ed., 1956.

2. E. Nummelin, General Irreducible Markov Chains and Non-
Negative Operators, Number 83 in Cambridge Tracts in
Mathematics, 1st ed., Cambridge, UK: Cambridge University
Press, 1984.

3. S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic
Stability, Berlin Springer Verlag, 1993.

4. G. L. Jones, On the Markov chain central limit theorem,
Probability Surv.1: 299–320, 2004.

5. C. P. Robert and G. Casella, Monte Carlo Statistical Methods,
2nd ed., New York: Springer Verlag, 2004.

6. P. Del Moral, Feynman-Kac formulae: genealogical and
interacting particle systems with applications. Probability
and Its Applications. New York: Springer Verlag, 2004.

ADAM M. JOHANSEN

University of Bristol
Bristol, United Kingdom

MARKOV CHAINS 9



M

MIXED INTEGER PROGRAMMING

INTRODUCTION

A (linear) mixed integer program (MIP) is an optimization
problem over a set of integer variables (unknowns) and a set
of real-valued (continuous) variables, the constraints are
all linear equations or inequalities, and the objective is a
linear function to be minimized (or maximized). This can be
written mathematically as

min cxþ hy
AxþGy� b
x2R

p
þ; y2Zn

þ

where R
p
þ denotes the space of p-dimensional non-

negative real vectors: Zn
þ denotes the space of n-

dimensional non-negative integer vectors: x denotes the
p continuous variables: y, denotes the n integer variables; A
and G are m� p and m�n matrices, respectively; b is an m-
vector (the requirements or right-hand side vector) and c
and h are p-and n-dimensional row vectors. Often one
specifically distinguishes constraints of the form l � x �
u or l0 � y � u0, known as lower and upper bound con-
straints—thus, the problem above is the special case where
all the coordinates of l and l0 are zero and all the coordinates
of u and u0 are þ1.

MIPs in which p ¼ 0 are called (linear) integer pro-
grams (IP): those in which the bounds on the integer
variables are all 0 and 1 are called binary or 0–1 MIPs,
and those in which n¼ 0 are called linear programs (LP). A
problem in which the objective function and/or constraints
involve nonlinear functions of the form

minfcðx; yÞ : giðx; yÞ� bi i ¼ 1; . . . ;m; x2R
p
þ; y2Zn

þg

is a mixed integer nonlinear program (MINLP).
MIPs in general, are difficult problems ðNP—hard in

the complexity sense), as are 0–1 MIPs and IPs. However,
LPs are easy (polynomially solvable), and linear program-
ming plays a very significant role in both the theory and
practical solution of linear MIPs. Readers are referred to
the entry ‘‘linear programming’’ for background and some
basic terminology.

We now briefly outlinewhat follows. In ‘‘The Formulation
of various MIPs’’ section, we present the formulations of
three typical optimization problems as mixed integer pro-
grams. In the ‘‘Basic Properties of MIPs’’ section, we present
some basic properties of MIPs that are used later. In ‘‘The
Branch-and-Cut Algorithms for MIPs’’ section, we explain
how the majority of MIPsare solved in practice.All the state-
of-the-art solvers use a combination of linear programming
combined with intelligent enumeration (known as branch-
and-bound), preprocessing using simple tests to get a better

initial representation of the problem, reformulation with
additional constraints (valid inequalities or cutting planes),
extended reformulation with additional variables, and
heuristics to try to find good feasible solutions quickly.

In the ‘‘References and Additional Topics’’ section, we
give references for the basic material described in this
article and for more advanced topics, including decomposi-
tion algorithms, MIP test instances, MIP modeling and
optimization software, and nonlinear MIPs.

THE FORMULATION OF VARIOUS MIPS

MIPs are solved on a regular basis in many areas of busi-
ness, management, science and engineering. Modeling pro-
blems as MIPs is nontrivial. One needs to define first the
unknowns (or variables), then a set of linear constraints so
as to characterize exactly the set of feasible solutions, and
finally a linear objective function to be minimized or max-
imized. Here we present three simplified problems that
exemplify such applications.

A Capacitated Facility Location Problem

Given m clients with demands ai for i¼1,. . ., m, n potential
depots with annual throughput of capacity bj for j ¼1,. . ., n
where the annual cost of opening depot j is fj, suppose that
the potential cost of satisfying one unit of demand of client i
from depot j is cij. The problem is to decide which depots to
open so as to minimize the total annual cost of opening the
depots and satisfying the annual demands of all the clients.

Obviously, one wishes to know which set of depots to open
and which clients to serve from each of the open depots. This
situation suggests the introduction of the following variables:

yj ¼1 if depot j is opened, and yj¼0 otherwise.

xij is the amount shipped from depot j to client i.

The problem now can be formulated as the following
MIP:

min
Xn

j¼1

fiy j þ
Xm
i¼1

Xn

j¼1

ci jxi j ð1Þ

Xn

j¼1

xi j ¼ ai for i ¼ 1; . . . ;m ð2Þ

Xm
i¼1

xi j � b jy j for j ¼ 1; . . . ;n ð3Þ

x2Rmn
þ ; y2f0; 1gn ð4Þ

where the objective function in Equation (1) includes terms
for the fixed cost of opening the depots and for the variable
shipping costs, the constraints in Equation (2) ensure that

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



the demand of each client is satisfied, the constraints in
Equation (3) ensure that, if depot j is closed, nothing is
shipped from that depot, and otherwise at most bj is
shipped, and finally Equation (4) indicates the variable
types and bounds.

A Multi-Item Production Planning Problem

Given m items to be produced over a time horizon of n
periods with known demands di

t for 1 � i � m, 1 � t � n; all
the items have to be processed on a single machine. The
capacity of the machine in period t is Lt, and the production
costs are as follows: A fixed set-up cost of qi

t exists if item i is
produced in period t, as well as a per unit variable cost pi

t; a
storage cost hi

t exists for each unit of i in stock at the end of
period t. The problem is to satisfy all the demands and
minimize the total cost.

Introducing the variables

xi
t is the amount of item i produced in period t,

si
t is the amount of item i in stock at the end of period t,

yi
t ¼ 1 if there is production of item i in period t, and

yi
t ¼ 0 otherwise,

a possible MIP formulation of the problem is:

min
Xm
i¼1

Xn

t¼1

pi
tx

i
t þ qi

ty
i
t þ hi

ts
i
t

� �

si
t�1 þ xi

t ¼ di
t þ si

t for i ¼ 1; . . . ;m; t ¼ 1; . . . ;n

ð5Þ

xi
t � Lty

i
t for i ¼ 1; . . . ;m; t ¼ 1; . . . ;n ð6Þ

Xm
i¼1

xi
t � Lt for t ¼ 1; . . . ;n

s; x2Rmn
þ ; y2f0; 1gmn

ð7Þ

where constraints in Equation (5) impose conservation of
product from one period to the next (namely end-stock of
item i in t� 1þ production of i in t¼ demand for i in tþ end-
stock of i in t), Equation (6) forces the set-up variable yi

t to 1
if there is production (xi

t > 0), and Equation (7) ensures that
the total amount produced in period t does not exceed the
capacity.

Traveling Salesman Problem with Time Windows

Suppose that a truck (or salesperson) must leave the depot,
visit a set of n clients, and then return to the depot. The
travel times between clients (including the depot, node 0)
are given in an (nþ 1)� (nþ 1) matrix c. Each client i has a
time window ½ai; bi� during which the truck must make its
delivery. The delivery time is assumed to be negligible. The
goal is to complete the tour and return to the depot as soon
as possible while satisfying the time window constraints of
each client. Two possible sets of variables are

yij ¼ 1 if the truck travels directly from i to j,
i, j2f0; 1 . . . ;ng.

tj is the time of delivery to client j, j2f0; . . . ;ng.
t is the time of return to the depot.

The problem now can be formulated as the following
MIP:

min t� t0 ð8Þ

Xn

j¼0

yi j ¼ 1; i2f0; . . . ;ng ð9Þ

Xn

i¼0

yi j ¼ 1; j2f0; . . . ;ng ð10Þ

X
i2S; j =2S

yi j� 1; f�S�f1; . . . ;ng ð11Þ

t j� ti þ ci jyi j �Mð1� yi jÞ;

i2f0; . . . ;ng; j2f1; . . . ;ng
ð12Þ

t� ti þ ci0yi0 �Mð1� yi0Þ; i2f1; . . . ;ng ð13Þ

ai � ti � bi; i2f1; . . . ;ng
t2R; t2Rnþ1; y2f0; 1g

ðnþ1Þðnþ2Þ
2

ð14Þ

where M is a large value exceeding the total travel time, the
objective function in Equation (8) measures the difference
between the time of leaving and returning to the depot,
Equations (9) and (10) ensure that the truck leaves/arrives
once at site i and Equation (11) ensures that the tour of the
truck is connected. Constraints in Equations (12) and (13)
ensure that if the truck goes from i to j, the arrival time in j
is at least the arrival time in i plus the travel time from i to j.
Finally, Equation (14) ensures that the time window con-
straints are satisfied.

BASIC PROPERTIES OF MIPS

Given the MIP

z ¼ minfcxþ hy : AxþGy� b; x2R
p
þ; y2Zn

þg

several important properties help us to understand such
problems. In particular the linear program obtained by
dropping the integrality constraints on the y variables:

zLP ¼ minfcxþ hy : AxþGy� b; x2R
p
þ; y2Zn

þg

is called the linear relaxation of the original MIP.

Observation 1. Considering the MIP and its linear
relaxation:

(i) zLP � z, and

(ii) if (x�, y�) is an optimal solution of LP and y� is
integral, then (x�, y�) is an optimal solution of MIP.

Definition 2. A set of the formfx2Rn : Ax� bgwith A an
m � n matrix is a polyhedron.

The convex hull of a set of points X�Rn is the smallest
convex set containing X, denoted conv(X).

2 MIXED INTEGER PROGRAMMING



Observation 3. The set XMIP ¼ fðx; yÞ 2R
p
þ � Zn

þ : Axþ
Gy� bgis known as the feasible region of the MIP. When
A, G, b are rational matrices, then

(i) conv(XMIP) is a polyhedron, namely convðXMIPÞ ¼
fðx; yÞ 2R

pþn
þ : A0xþG0y� b0gfor some A0;G0; b0,

and

(ii) the linear program minfcxþ hy : ðx; yÞ 2 conv

ðXMIPÞg solves MIP. In Fig.1 one sees tha t an
optimal vertex of convðXMIPÞ lies in XMIP.

The last observation suggests that it it is easy to solve an
MIP. Namely, it suffices to find the convex hull of the set of
feasible solutions and then solve a linear program. Unfor-
tunately, it is rarely this simple. Finding convðXMIPÞ is
difficult, and usually an enormous number of inequalities
are needed to describe the resulting polyhedron.

Thus, one typically must be less ambitious and examine

(i) whether certain simple classes of MIPs exist for
which one can find an exact description of
convðXMIPÞ, and

(ii) whether one can find a good approximation of
convðXMIPÞ by linear inequalities in a reasonable
amount of time.

Below, in looking at ways to find such a description of
XMIP and in using it in solving an MIP, we often will mix two
distinct viewpoints:

(i) Find sets X1; . . . ;Xk such that

XMIP ¼ [
k

i¼1
Xi

where optimizing over Xi is easier than optimizing over
XMIP for i ¼ 1; . . . ; k, and where possibly good descrip-
tions of the sets convðXiÞ are known. This decomposition
forms the basis of the branch-and-bound approach
explained in the next section.

(ii) Find sets X1; . . . ;Xk such that

XMIP ¼ \
k

i¼1
Xi

where a good or exact description of convðXiÞ is known for
i ¼ 1; . . . ; k. Then, a potentially effective approximation
to convðXMIPÞ is given by the set \ k

i¼1convðXiÞ. This
decomposition forms the basis of the preprocessing
and cut generation steps used in the branch-and-cut
approach.

THE BRANCH-AND-CUT ALGORITHM FOR MIPs

Below we will examine the main steps contributing to a
branch-and-cut algorithm. The first step is the underlying
branch-and-bound algorithm. This algorithm then can be
improved by (1) a priori reformulation, (2) preprocessing,
(3) heuristics to obtain good feasible solutions quickly, and
finally (4) cutting planes or dynamic reformulation in which
case we talk of a branch-and-cut algorithm.

Branch-and-Bound

First, we discuss the general ideas, and then we discuss how
they typically are implemented. Suppose the MIP to be
solved is z ¼ minfcxþ hy : ðx; yÞ 2XMIPg with

XMIP ¼ [
k

i¼1
Xi

where Xi ¼ fðx; yÞ 2R
p
þ � Zn

þ : AixþGiy� big for i ¼ 1;
. . . ; k. In addition suppose that we know the value of
each linear program

zi
LP ¼ minfcxþ hy : AixþGiy� bi; x2R

p
þ; y2Rn

þg

and the value z , of the best known feasible solution ðx ; y Þ of
MIP found so far, known as the incumbent value.

Observation 4.

(i) z � z and z�mini zi
LP for i ¼ 1; . . . ; k:

(ii) If zi
LP� z for some i, then no feasible solution with

an objective value better than that of the incumbent
lies in Xi. Thus, the set Xi has been enumerated
implicitly, and can be ignored (pruned by bound).

(iii) If zi
LP� z and the optimal solution of the linear

program corresponding to Xi has y integer, then
using Observation 1, this solution is feasible and
optimal in Xi and feasible in XMIP. Now the incum-
bent value z can be improved z  zi

LP, and the set Xi

has been enumerated implicitly and, thus, can be
ignored (pruned by optimality).

Now we outline the steps of the algorithm.

10 32 4 5

1

2

3

4

Ax+Gy>=b

A’x+G’y> = b’ min cx + hy

Optimal MIP Solution

Figure 1. Linear Relaxation and Convex Hull.

MIXED INTEGER PROGRAMMING 3



A list L contains a list of unexplored subsets of XMIP, each
possibly with some lower bound, as well as an incumbent
value z. Initially, the list just contains XMIP and z ¼ 1.

If the list is empty, stop. The best solution found so far is
optimal and has value z.

Otherwise, select and remove a set Xt from the list L.

Solve the corresponding linear program (with optimal
solution ðx t; y tÞ and value zt

LP). If it is infeasible, so
Xt ¼ f, or if one of the conditions ii) or iii) of Observation
4 hold, we update the incumbent if appropriate, prune
Xt, and return to the list.

If the node is not pruned (z> zt
LP and yt is fractional), we

have not succeeded in finding the optimal solution in Xt, so
we branch (i.e., break the set Xt into two or more pieces). As
the linear programming solution was not integral, some
variable yj takes a fractional value yt

j. The simplest and
most common branching rule is to replace Xt by two new
sets

Xt
� ¼ Xt \fðx; yÞ : yj � b yt

j cg;

Xt
� ¼ Xt \fðx; yÞ : yj� d yt

j e g

whose union is Xt. The two new sets are added to the list L,
and the algorithm continues.

Obvious questions that are important in practice are the
choice of branching variable and the order of selection/
removal of the sets from the list L. ‘‘Good’’ choices of branch-
ing variable can reduce significantly the size of the enu-
meration tree. ‘‘Pseudo-costs’’ orapproximate dual variables
are used to estimate the costs of different variable choices.
‘‘Strong branching’’ is very effective—this involves selecting
a subset of the potential variables and temporarily branch-
ing and carrying out a considerable number of dual pivots
with each of them to decide which is the most significant
variable on which to finally branch. The order in which
nodes/subproblems are removed from the list L is a com-
promise between different goals. At certain moments one
may use a depth-first strategy to descend rapidly in the tree
so as to find feasible solutions quickly: however, at other
moments one may choose the node with the best bound so as
not to waste time on nodes that will be cut off anyway once a
better feasible solution is found.

The complexity or running time of the branch-and-
bound algorithm obviously depends on the number of sub-
sets Xt that have to be examined. In the worst case, one
might need to examine 2n such sets just for a 0–1 MIP.
Therefore, it is crucial to improve the formulation so that
the value of the linear programming relaxation gives better
bounds and more nodes are pruned, and/or to find a good
feasible solution as quickly as possible.

Ways to improve the formulation, including preproces-
sing, cutting planes and a priori reformulation, are dis-
cussed in the next three subsections. The first two typically
are carried out as part of the algorithm, whereas the MIP
formulation given to the algorithm is the responsibility of
the user.

Preprocessing

Preprocessing can be carried out on the initial MIP, as
well as on each problem Xt taken from the list L. The idea
is to improve the formulation of the selected set Xt. This
action typically involves reducing the number of con-
straints and variables so that the linear programming
relaxation is solved much faster and tightening the
bounds so as to increase the value of the lower bound
zt

LP, thereby increasing the chances of pruning Xt or its
descendants.

A variable can be eliminated if its value is fixed. Also, if a
variable is unrestricted in value, it can be eliminated by
substitution. A constraint can be eliminated if it is shown to
be redundant. Also, if a constraint only involves one vari-
able, then it can be replaced by a simple bound constraint.
These observations and similar, slightly less trivial obser-
vations often allow really dramatic decreases in the size of
the formulations.

Now we give four simple examples of the bound tighten-
ing and other calculations that are carried out very rapidly
in preprocessing:

(i) (Linear Programming) Suppose that one constraint
of Xt is

P
j2N1

ajx j �
P

j2N2
ajx j� b;aj > 0 for all

j2N1 [N2 and the variables have bounds
l j � x j � uj.

If
P

j2N1
aju j �

P
j2N2

ajl j < b, then the MIP is
infeasible

If
P

j2N1
ajl j �

P
j2N2

aju j� b, then the con-
straint is redundant and can be dropped.

For a variable t2N1, we have atxt� bþ
P

j2N2

aj x j �
P

j2N1nftg aj x j� bþ
P

j2N2
aj l j �

P
j2N1nftg

aju j. Thus, we have the possibly improved bound on
xt

xt�max½lt;
bþ

P
j2N2

a jl j �
P

j2N1nftg a ju j

at
�

One also possibly can improve the upper bounds on xj

for j2N2 in a similar fashion.

(ii) (Integer Rounding) Suppose that the bounds on an
integer variable l j � y j � u j just have been updated
by preprocessing. If l j;uj =2Z, then these bounds can
be tightened immediately to

dl je � y j � bu jc

(iii) (0-1 Logical Deductions) Suppose that one of the
constraints can be put in the form

P
j2N ajy j �

b; y j 2f0; 1g for j2N with aj > 0 for j2N.

If b< 0, then the MIP is infeasible.
If aj > b� 0, then one has y j ¼ 0 for all points of
XMIP.
If aj þ ak > b�maxfaj;akg, then one obtains the
simple valid inequality y j þ yk � 1 for all points of
XMIP.

4 MIXED INTEGER PROGRAMMING



(iv) (Reduced cost fixing) Given an incumbent value z
from the best feasible solution, and a representation
of the objective function in the form zt

LP þ
P

j c jx j þP
j ~c j yj with c j� 0 and ~c j� 0 obtained by linear

programming, any better feasible solution in Xt

must satisfy

X
j

c jx j þ
X

j

~c jy j < z� zt
LP

Thus, any such solution satisfies the bounds x j �
z�zt

LP
c̄ j

and y j � b
z�zt

LP
c̄ j
c . (Note that reductions such as

in item iv) that take into account the objective function
actually modify the feasible region XMIP).

Valid Inequalities and Cutting Planes

Definition 5. An inequality
Pp

j¼1 p jx j þ
Pn

j¼1 m jy j�p0 is
a valid inequality (VI) for XMIP if it is satisfied by every
point of XMIP.

The inequalities added in preprocessing typically are
very simple. Here, we consider all possible valid inequal-
ities, but because infinitely many of them exist, we restrict
our attention to the potentially interesting inequalities. In
Figure 1, one sees that only a finite number of inequalities
(known as facet-defining inequalities) are needed to
describe convðXMIPÞ. Ideally, we would select a facet-
defining inequality among those cutting off the present
linear programming solution ðx�; y�Þ Formally, we need
to solve the

Separation Problem: Given XMIP and a point
ðx�; y�Þ 2R

p
þ � Rn

þ either show that ðx�; y�Þ 2 convðXMIPÞ, or
find a valid inequality pxþ my�p0 for XMIP cutting off
ðx�; y�Þðpx� þ my�<p0Þ.
Once one has a way of finding a valid inequality cutting off
noninteger points, the idea of a cutting plane algorithm is
very natural. If the optimal linear programming solution
ðx�; y�Þ for the initial feasible set XMIP has y� fractional and a
valid inequality cutting off the point is known (for example,
given by an algorithm for the Separation Problem), then the
inequality is added, the linear program is resolved, and the
procedure is repeated until no more cuts are found. Note
that this process changes the linear programming repre-
sentation of the set XMIP and that this new representation
must be used from then on.

Below we present several examples of cutting planes.

(i) (Simple Mixed Integer Rounding) Consider the MIP
set X ¼ fðx; yÞ 2R1

þ � Z1 : y � bþ xg It can be
shown that every point of X satisfies the valid
inequality

y � b b c þ x

1� f

where f ¼ b� b b c is the fractional part of b.

(ii) (Mixed Integer Rounding) Consider an arbitrary
row or combination of rows of XMIP of the form:

X
j2P

a jx j þ
X
j2N

g jy j � b

x2R
p
þ; y2Zn

þ

Using the inequality from i), it is easy to establish
validity of the mixed integer rounding (MIR) inequality:

X
j2P:aj < 0

a j

1� f
x j þ

X
j2N

ð b g j c þ
ð f j � f Þþ

1� f
Þy j � bb c

where f ¼ b� b b c and f j ¼ g j � b g j c . The Separa-
tion Problem for the complete family of MIR inequalities
derived from all possible combinations of the initial
constraints, namely all single row sets of the form:

uAxþ uGy�ub; x2R
p
þ; y2Zn

þ

where u� 0, is NP-hard.

(iii) (Gomory Mixed Integer Cut) When the linear pro-
gramming solution ðx�; y�Þ =2XMIP; some row exists
from a representation of the optimal solution of the
form

yu þ
X
j2Pu

a jx j þ
X
j2Nu

g jy j ¼ a0

with y�u ¼ a0 =2Z1; x�j ¼ 0 for j2Pu;and y�u ¼ 0 for

j2Nu. Applying the MIR inequality and then eliminat-
ing the variable yu by substitution, we obtain the valid
inequality

X
j2Pu:a j > 0

a jx j �
X

j2Pu:aj < 0

f0
1� f0

a jx j þ
X

j2Nu: f j� f0

f jy j

þ
X

j2Nu: f j > f0

f0ð1� f jÞ
1� f0

y j� f0

called the Gomory mixed integer cut, where
f j ¼ g j � b g j c for j2Nu [f0g. This inequality cuts
off the LP solution ðx�; y�Þ. Here, the Separation Problem
is trivially solved by inspection and finding a cut is
guaranteed. However, in practice the cuts may be judged
ineffective for a variety of reasons, such as very small
violations or very dense constraints that slow down the
solution of the LPs.

(iv) (0–1 MIPs and Cover Inequalities) Consider a 0–1
MIP with a constraint of the form

X
j2N

g jy j � bþ x; x2R1
þ; y2Z

jNj
þ

with g j > 0 for j2N. A set C�N is a cover if
P

j2 c g j ¼
bþ l with l > 0. The MIP cover inequality is

X
j2C

y j � jCj � 1þ x

l

MIXED INTEGER PROGRAMMING 5



Using appropriate multiples of the constraints y j� 0
and y j � 1, the cover inequality can be obtained as a
weakening of an MIR inequality. When x ¼ 0, the
Separation Problem for such cover inequalities can be
shown to be an NP-hard, single row 0–1 integer pro-
gram.

(v) (Lot Sizing) Consider the single item uncapacitated
lot-sizing set

XLS�U ¼
�
ðx; s; yÞ 2Rn

þ � Rn
þ � f0; 1g

n :

st�1 þ xt ¼ dt þ st 1 � t � n

xt �
�Xn

u¼t

du

�
yt 1 � t � n

�

Note that the feasible region XPP of the production
planning problem formulated in ‘‘A Multi-Item Produc-
tion Planning Problem’’ section can be written as
XPP ¼ \m

i¼1XLS�U
i \Y where Y �f0; 1gmn contains the

joint machine constraints in Equation (7) and the pos-
sibly tighter bound constraints in Equation (6).

Select an interval ½k; kþ 1; . . . ; l� with 1 � k � l � n and
some subset T�fk; . . . ; lg: Note that if k � u � l and no
production exists in any period in fk; . . . ;ugnTði:e:;P

j2fk;...;ugnT y j ¼ 0Þ; then the demand du in period u must
either be part of the stock sk�1 or be produced in some
period in T\fk; . . . ;ug. This establishes the validity of the
inequality

sk�1 þ
X
j2T

x j�
Xl

u¼k

du 1�
X

j2fk;...;ugnT
y j

0
@

1
A (15)

Taking l as above, L ¼ f1; . . . ; lg, and S ¼ f1; . . . ; k� 1g
[T;, the above inequality can be rewritten as a so-called
(l,S)-inequality:

X
j2S

x j þ
X

j2LnS

Xl

u¼ j

du

0
@

1
Ay j�

Xl

u¼1

du

This family of inequalities suffices to describe conv (XLS�U )
Now, given a point ðx�; s�; y�Þ, the Separation Problem for

the (l,S) inequalities is solved easily by checking if

Xl

j¼1

min x�j;
Xl

u¼ j

du

0
@

1
Ay�j

2
4

3
5<Xl

u¼1

du

for some l. If it does not, the point lies in conv(XLS�U ):
otherwise a violated (l, S) inequality is found by taking S ¼
f j2f1; . . . ; lg : x�j <

�Pl
u¼ j du

�
y�jg:

A Priori Modeling or Reformulation

Below we present four examples of modeling or a priori
reformulations in which we add either a small number of
constraints or new variables and constraints, called
extended formulations, with the goal of obtaining tighter

linear programming relaxations and, thus, much more
effective solution of the corresponding MIPs.

(i) (Capacitated Facility Location—Adding a Redun-
dant Constraint) The constraints in Equations (2)
through (4) obviously imply validity of the con-
straint

Xn

j¼1

b jy j�
Xm
i¼1

ai

which states that the capacity of the open depots must
be at least equal to the sum of all the demands of the
clients. As y2f0; 1gn, the resulting set is a 0–1 knap-
sack problem for which cutting planes are derived
readily.

(ii) (Lot Sizing—Adding a Few Valid Inequalities) Con-
sider again the single item, uncapacitated lot-sizing
set XLS�U : In item v) of the ‘‘Valid Inequalities and
Cutting Planes’’ sections, we described the inequal-
ities that give the convex hull. In practice, the most
effective inequalities are those that cover a few
periods. Thus, a simple a priori strengthening is
given by adding the inequalities in Equation (15)
with T ¼ f and l � kþ k

sk�1�
Xl

u¼k

du 1�
Xu

j¼k

y j

0
@

1
A

for some small value of k:

(iii) (Lot Sizing—An Extended Formulation) Consider
again the single item, uncapacitated lot-sizing set
XLS�U. Define the new variables zut with u � t as
the amount of demand for period t produced in
period u. Now one obtains the extended formulation

Xt

u¼1

zut ¼ dt; 1 � t � n

zut � dtyu; 1 � u � t � n

xu ¼
Xn

t¼u

zut; 1 � u � n

st�1 þ xt ¼ dt þ st; 1 � t � n

x; s2Rn
þ; z2R

nðnþ1Þ=2
þ ; y2 ½ 0; 1 � n

whose ðx; s; yÞ solutions are just the points of conv
(XLS�U). Thus, the linear program over this set solves
the lot-sizing problem, whereas the original description
of xLS�U provides a much weaker formulation.

(iv) (Modeling Disjunctive or ‘‘Or’’ Constraints—An
Extended Formulation)Numerousproblems involve
disjunctions,—for instance, given two jobs i, and j to
be processed on a machine with processing times pi,
pj, respectively, suppose that either job i must
be completed before job j or vice versa. If ti, tj are
variables representing the start times, we have the
constraint EITHER ‘‘job i precedes job j’’ OR ‘‘job j

6 MIXED INTEGER PROGRAMMING



precedes job i,’’ which can be written more formally
as

ti þ pi � t j or t j þ p j � ti

More generally one often encounters the situation where
one must select a point (a solution) from one of k sets or
polyhedra (a polyhedron is a set described by a finite
number of linear inequalities):

x2 [k
i¼1

Pi where Pi ¼ fx : Aix� big�Rn

When each of the sets Pi is nonempty and bounded, the set
[ k

i¼1Pi can be formulated as the MIP:

x ¼
Xk

i¼1

zi (16)

Aizi � biyi for i ¼ 1; . . . ; k (17)

Xk

i¼1

yi ¼ 1 (18)

x2Rn; z2Rnk; y2f0; 1gk (19)

where yi ¼ 1 indicates that the point lies in Pi. Given a
solution with yi ¼ 1, the constraint in Equation (18) then
forces yj ¼ 0 for j 6¼ i and the constraint in Equation (17)
then forces zi 2Pi and z j ¼ 0 for j 6¼ i. Finally, Equation (16)
shows that x2Pi if and only if yi ¼ 1 as required, and it
follows that the MIP models [ k

i¼1Pi. What is more, it has
been shown (6) that the linear programming relaxation of
this set describes conv([ k

i¼1Pi), so this again is an inter-
esting extended formulation.

Extended formulations can be very effective in giving
better bounds, and they have the important advantage
that they can be added a priori to the MIP problem, which
avoids the need to solve a separation problem whenever
one wishes to generate cutting planes just involving the
original (x, y) variables. The potential disadvantage is that
the problem size can increase significantly and, thus, the
time to solve the linear programming relaxations also may
increase.

Heuristics

In practice, the MIP user often is interested in finding a
good feasible solution quickly. In addition, pruning by
optimality in branch-and-bound depends crucially on
the value of the best known solution value z. We now
describe several MIP heuristics that are procedures
designed to find feasible, and hopefully, good, solutions
quickly.

In general, finding a feasible solution to an MIP is an
NP-hard problem, so devising effective heuristics is far
from simple. The heuristics we now describe are all based
on the solution of one or more MIPs that hopefully are much
simpler to solve than the original problem.

We distinguish between construction heuristics, in
which one attempts to find a (good) feasible solution from
scratch, and improvement heuristics, which start from a
feasible solution and attempt to find a better one. We start
with construction heuristics.

Rounding . The first idea that comes to mind is to take
the solution of the linear program and to round the values
of the integer variables to the nearest integer. Unfortu-
nately, this solution is rarely feasible in XMIP.

A Diving Heuristic. This heuristic solves a series of
linear programs. At the tth iteration, one solves

minfcxþ hy : AxþGy� b; x2R
p
þ; y2Rn

þ; y j ¼ y�j for j2Ntg

If this linear program is infeasible, then the heuristic has
failed. Otherwise, let ðxt; ytÞ be the linear programming
solution.

Now if yt 2Zn
þ, then a diving heuristic solution has been

found. Otherwise, if yt =2Zn
þ, then at least one other vari-

able is fixed at an integer value. Choose j2NnNt with
ȳt

j =2Z1 	 Set Ntþ1 ¼ Nt [f jg and t tþ 1. For example, one
chooses to fix a variable whose LP value is close to an
integer, i.e., j ¼ argmin

k:yt

k =2 z1 ½minðyt
k � b yt

k c ; d yt
k e Þ � yt

k�:

A Relax-and-Fix Heuristic. This heuristic works by
decomposing the variables into K blocks in natural way,
such as by time period, geographical location, or other. Let
N ¼ f1; . . . ng ¼ [ K

k¼1Ik with intervals Ik ¼ ½sk; tk� such that
s1 ¼ 1; tK ¼ n; and sk ¼ tk�1 þ 1 for k ¼ 2; . . . ;K.

One solves K MIPs by progressively fixing the integer
variables in the sets I1, I2,. . ., IK. Each of these MIPs is much
easier because in the k-th problem only the variables in Ik

are integer. The k-th MIP is

min cxþ hy
AxþGy� b
x2R

p
þ; y j ¼ y j for j2 [ k�1

t¼1 Ik;

y j 2Z1
þ for j2 Ik; y j 2R1

þ for j2 [K
t¼kþ1It

If ð~x; ~yÞ is an optimal solution, then one sets yj ¼ ~yj for
j2 Ik and k kþ 1. If the Kth MIP is feasible, then a
heuristic solution is found; otherwise, the heuristic fails.

Now we describe three iterative improvement heuris-
tics. For simplicity, we suppose that the integer variables
are binary. In each case one solves an easier MIP by
restricting the values taken by the integer variables to
some neighborhood N(y�) of the best-known feasible solu-
tion (x�, y�) and one iterates. Also, let (xLP, yLP) be the
current LP solution. In each case, we solve the MIP

min cxþ hy
AxþGy� b
x2R

p
þ; y2Z n

þ; y2Nðy�Þ

with a different choice of Nðy�Þ.

MIXED INTEGER PROGRAMMING 7



The Local Branching Heuristic. This heuristic restricts
one to a solution at a (Hamming-) distance at most k from y�:

Nðy�Þ ¼ fy2f0; 1gn : jy j � y�jj � kg
This neighborhood can be represented by a linear con-

straint

Nðy�Þ ¼ fy2f0; 1gn :
X

j:y�
j
¼0

y j þ
X

j:y�
j
¼1

ð1� y jÞ � kg

The Relaxation Induced Neighborhood Search Heuristic
(RINS). This heuristic fixes all variables that have the
same value in the IP and LP solutions and leaves the others
free. Let A ¼ f j2N : yIP

j ¼ y�jg. Then

Nðy�Þ ¼ fy : y j ¼ y�j for j2Ag

The Exchange Heuristic. This heuristic allows the user to
choose the set A of variables that are fixed. As for the Relax-
and-Fix heuristic, if a natural ordering of the variables
exists then, a possible choice is to fix all the variables except
for those in one interval Ik. Now if A ¼ N\Ik, the neighbor-
hood can again be taken as

Nðy�Þ ¼ fy : y j ¼ y�j for j2Ag

One possibility then is to iterate over k ¼ 1,. . ., K, and
repeat as long as additional improvements are found.

The Branch-and-Cut Algorithm

The branch-and-cut algorithm is the same as the branch-
and-bound algorithm except for one major difference. Pre-
viously one just selected a subset of solutions Xt from the list
L that was described by the initial problem representation
AxþGy� b; x2R

p
þ; y2Zn

þ and the bound constraints on the
integer variables added in branching lt � y � ut. Now, one
retrieves a set Xt from the list, along with a possibly
tightened formulation (based on preprocessing and cutting
planes)

Pt ¼ fðx; yÞ 2R p þ Rn
þ : AtxþGty� bt; lt � y � utg

where Xt ¼ Pt \ ðR p � ZnÞ.
Now the steps, once Xt is taken from the list, L are

(i) Preprocess to tighten the formulation Pt.

(ii) Solve the linear program zt
LP ¼ minfcxþ hy :

ðx; yÞ 2Ptg.
(iii) Prune the node, if possible, as in branch-and-bound.

(iv) Call one or more heuristics. If a better feasible
solution is obtained, Then update the incumbent
value z.

(v) Look for violated valid inequalities. If one or more
satisfactory cuts are found, then add them as cuts,
modify Pt, and repeat ii).

(vi) If no more interesting violated inequalities are
found, Then branch as in the branch-and-bound
algorithm and add the two new sets Xt

� and Xt
�

to the list L, along with their latest formulations P t.

Then one returns to the branch-and-bound step of select-
ing a new set from the list and so forth.

In practice, preprocessing and cut generation always are
carried out on the original set XMIP and then on selected sets
drawn from the list (for example, sets obtained after a
certain number of branches or every k-th set drawn from
the list). Often, the valid inequalities added for set Xt are
valid for the original set XMIP; in which case the inequalities
can be added to each set P t. All the major branch-and-cut
systems for MIP use preprocessing, and heuristics, such as
diving and RINS, and the valid inequalities generated
include MIR inequalities, Gomory mixed integer cuts,
0–1 cover inequalities, and path inequalities, generalizing
the (l, S) inequalities. A flowchart of a branch-and-cut
algorithm is shown in Fig. 2.

REFERENCES AND ADDITIONAL TOPICS

Formulations of Problems as Mixed Integer Programs

Many examples of MIP models from numerous areas,
including air and ground transport, telecommunications,
cutting and loading, and finance can be found in Heipcke (2)
and Williams (3), as well as in the operations research
journals such as Operations Research, Management

Initial formulation on list L

List empty?

Remove X
t 
with formulation P

t
from list.

Preprocess.

Solve LP.

Call heuristics. Update incumbent.

Prune by 

infeasibility 

optimality, or 

bound?

Separation. Cuts found?

Branch. Add two new nodes to list L.

Update formulation P .
t

YES

NO

YES

NO

NO

Stop. Incumbent is optimal.
YES

Figure 2. Branch-and-cut schema.

8 MIXED INTEGER PROGRAMMING



Science, Mathematical Programming, Informs Journal of
Computing, European Journal of Operational Research,
and more specialized journals such as Transportation
Science, Networks, Journal of Chemical Engineering,
and so forth.

Basic References

Two basic texts on integer and mixed integer programming
are Wolsey (4) and part I of Pochet and Wolsey (5). More
advanced texts are Schrijver (6) and Nemhauser and Wol-
sey (7). Recent surveys on integer and mixed integer pro-
gramming with an emphasis on cutting planes include
Marchand et al. (8), Fugenschuh and Martin (9), Cornuejols
(10), and Wolsey (11).

Preprocessing is discussed in Savelsbergh (12) and
Andersen and Andersen (13), and branching rules are dis-
cussed in Achterberg et al. (14). Much fundamental work on
cutting planes is due to Gomory (15,16). The related mixed
integer rounding inequality appears in chaper II.1 of Nem-
hauser and Wolsey (7), and cover inequalities for 0–1 knap-
sack constraints are discussed in Balas (17), Hammer et al.
(18), and Wolsey (19). The local branching heuristic appears
in Fischetti and Lodi (29): RINS and diving appears in
Danna et al. (21).

Decomposition Algorithms

Significant classes of MIP problems cannot be solved
directly by the branch-and-cut approach outlined above.
At least three important algorithmic approaches use the
problem structure to decompose a problem into a sequence
of smaller/easier problems. One such class, known as
branch-and-price or column generation, see, for instance,
Barnhart et al. (22), extends the well-known Dantzig–
Wolfe algorithm for linear programming (23) to IPs and
MIPs. Essentially, the problem is reformulated with a
huge number of columns/variables, then dual variables or
prices from linear programming are used to select/gen-
erate interesting columns until optimality is reached, and
then the whole is embedded into a branch-and-bound
approach. Very many problems in the area of airlines,
road and rail transport, and staff scheduling are treated in
this way. A related approach, Lagrangian relaxation (24),
uses the prices to transfer complicating constraints into
the objective function. The resulting, easier problem pro-
vides a lower bound on the optimal value, and the prices
then are optimized to generate as good a lower bound as
possible.

An alternative decomposition strategy, known as Bend-
ers’ decomposition (25), takes a different approach. If the
value of the integer variables is fixed, then the remaining
problem is a linear program fðyÞ ¼ minfcx : Ax� b�
Gy; x2R

p
þg and the original problem can be rewritten as

minffðyÞ þ hy : y2Zn
þg. Although fðyÞ is not known expli-

citly, whenever a linear program is solved for some y�, a
support of the function fðyÞ is obtained and the algorithm
works by simultaneously enumerating over the y variables
and continually updating the approximation to fðyÞ until
an optimal solution is obtained.

MIP Test Problems and Software

An important source for test instances is the MIPLIB
library (26). Several commercial branch-and-cut systems
are available, of which three of the most well known are
Cplex (27), Xpress-MP (28), and Lindo (29). See OR-MS
Today for regular surveys of such systems. Among non
commercial systems, several MIP codes exist in the Coin
library (30), as well as several other research codes, includ-
ing SCIP (31) and MINTO (32). In addition, modeling
languages such as AMPL (33), LINGO (29) and MOSEL
(28) that facilitate the modeling and generation of linear
and mixed integer programs.

Nonlinear Mixed Integer Programming

The study of algorithms for nonlinear MIPs is, relatively, in
its infancy. Portfolio optimization problems with integer
variables are being tackled using convex (second order
cone) optimization as relaxations: see Ben Tal and Nemir-
ovsky (34). Two approaches for nonconvex MINLPs are
generalized Benders’ decomposition, see Geoffrion (35),
and outer approximation algorithms (36, 37). References
include the book of Floudas (38) and the lecture notes of
Weismantel (39). Software includes the Dicopt code (40)
and the BARON code of Sahinidis and Tawarmalami (41):
see also Ref. 42 for recent computational results. SeDuMi
(43) is one of the most widely used codes for convex opti-
mization. The Cplex and Xpress-MP systems cited above
allow for nonlinear MIPs with quadratic convex objective
functions and linear constraints. Heuristics for nonlinear
MIPs are presented in Ref. 44, and a test set of nonlinear
MIPs is in preparation (45).

BIBLIOGRAPHY

1. E. Balas, Disjunctive programming: Properties of the convex
hull of feasible points, Invited paper with foreword by G.
Cornuéjols and W. R. Pulleyblank, Discrete Applied Mathe-
matics, 89: 1–44, 1998.

2. S. Heipcke, Applications of Optimization with Xpress. Dash
Optimization Ltd, 2002.

3. H. P. Williams, Model Building in Mathematical Program-
ming. John Wiley and Sons, 1999.

4. L. A. Wolsey, Integer Programming. John Wiley and Sons,
1998.

5. Y. Pochet and L. A. Wolsey, Production Planning by Mixed
Integer Programming. Springer, 2006.

6. A. Schrijver, Theory of Linear and Integer Programming., John
Wiley and Sons, 1986.

7. G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial
Optimization. John Wiley and Sons, 1988.

8. H. Marchand, A. Martin, R. Weismantel, and L. A. Wolsey,
Cutting planes in integer and mixed integer programming,
Discrete Applied Mathematics, 123/124: 397–446, 2002.

9. A. Fugenschuh and A. Martin, Computational integer pro-
gramming and cutting planes, in K. Aardal, G. L. Nemhauser,
and R. Weismantel, (eds.) Combinatorial Optimization, Vol. 12
of Handbooks in Operations Research and Management
Science, chapter 2, pages 69-121. Elsevier, 2006.

MIXED INTEGER PROGRAMMING 9



10. G. Cornuéjols. Valid inequalities for mixed integer linear pro-
grams, Mathematical Programming B, 112: 3–44, 2007.

11. L. A. Wolsey, Strong formulations for mixed integer programs:
Valid inequalities and extended formulations, Mathematical
Programming B, 97: 423–447, 2003.

12. M. W. P. Savelsbergh, Preprocessing and probing for mixed
integer programming problems, ORSA J. of Computing, 6:
445–454, 1994.

13. E. D. Andersen and K. D. Andersen, Presolving in linear
programming, Mathematical Programming, 71: 221–245,
1995.

14. T. Achterberg, T. Koch, and A. Martin, Branching rules revis-
ited, Operations Research Letters, 33: 42–54, 2005.

15. R. E. Gomory, Solving linear programs in integers, in R. E.
Belmman and M. Hall, Jr.(eds.), Combinatorial Analysis.
American Mathematical Society, 211–216, 1960.

16. R. E. Gomory, An algorithm for the mixed integer problem,
RAND report RM-2597, 1960.

17. E. Balas, Facets of the knapsack polytope, Mathematical Pro-
gramming, 8: 146–164, 1975.

18. P. L. Hammer, E. L. Johnson, and U. N. Peled, Facets of
regular 0–1 polytopes, Mathematical Programming, 8: 179–
206, 1975.

19. L. A. Wolsey, Faces for linear inequalities in 0–1 variables,
Mathematical Programming8: 165–178, 1975.

20. M. Fischetti and A. Lodi, Local branching, Mathematical Pro-
gramming, 98: 23–48, 2003.

21. E. Danna, E. Rothberg, and C. Le Pape, Exploring relaxation
induced neighborhoods to improve MIP solutions, Mathema-
tical Programming, 102: 71–90, 2005.

22. C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P Savels-
bergh, and P. H. Vance, Branch-and-price: Column generation
for huge integer programs, Operations Research, 46: 316–329,
1998.

23. G. B. Dantzig and P. Wolfe, Decomposition principle for linear
programs, Operations Research, 8: 101–111, 1960.

24. A. M. Geoffrion, Lagrangean relaxation for integer program-
ming, Mathematical Programming Study, 2: 82–114, 1974.

25. J. F. Benders, Partitioning procedures for solving mixed vari-
ables programming problems, Numerische Mathematik, 4:
238–252, 1962.

26. T. Achterberg, T. Koch, and A. Martin, MIPLIB 2003, Opera-
tions Research Letters, 34: 1–12, 2006. Available: http://miplib:
zib.de.

27. ILOG CPLEX, Using the Cplex callable library. Available:
http://www.ilog.com/cplex.

28. Xpress-MP, Xpress-MP optimisation subroutine library. Avail-
able: http://www.dashoptimization.com.

29. LINDO, Optimization modeling with Lindo, Available: http://
www.lindo.com.

30. COIN-OR, Computational infrastructure for operations
research. Available: http://www.coin-or.org/.

31. T. Achterberg, SCIP—a framework to integrate constraint and
mixed integer programs, ZIB Report 04-19. Konrad-Zuse Zen-
trum, Berlin 2004. Available:http://scip.zib.de.

32. MINTO, Mixed integer optimizer, Developed and maintained
by M. W. P Savelsbergh, Georgia Institute of Technology.
Available: http://www2.isye.gatech.edu/ mwps/software/.

33. R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A model-
ing language for mathematical programming Duxbury Press/
Brooks Cole Publishing Co. 2002. Available: http://
www.ampl.com/.

34. A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex
Optimization: Analysis, Algorithms and Engineering Applica-
tions, MPS-SIAM Series on Optimization, Philadelphia, 2001.

35. A. M. Geoffrion, Generalized Benders’ decomposition, Jo. Opti-
mization Theory and Applications, 10: 237–260, 1972.

36. R. Fletcher and S. Leyffer, Solving mixed integer nonlinear
programs by outer approximation, Mathematical Program-
ming, 66: 327–349, 1994.

37. M. A. Duran and I. E Grossman, An outer approximation
algorithm for a class of mixed-integer nonlinear programs,
Mathematical Programming, 36: 307–339, 1986.

38. C. A. Floudas, Nonlinear and Mixed-Integer Optimization:
Fundamentals and Applications. Oxford University Press,
1995.

39. R. Weismantel, Mixed Integer Nonlinear Programming. CORE
Lecture Series. CORE, Université catholique de Louvain, Bel-
gium, 2006.

40. Dicopt. Framework for solving MINLP (mixed integer non-
linear programming) models. Available: http://www.gams.-
com.

41. BARON,Branch and reduce optimization navigator. Available:
http://neos.mcs.anl.gov/neos/solvers/go:BARON/GAMS.html.

42. M. Tawarmalami and N. V. Sahinidis, Global optimization of
mixed-integer nonlinear programs: A theoretical and compu-
tational study, Mathematical Programming, 99: 563–591,
2004.

43. SeDuMi, Software for optimization over symmetric cones.
Available: http://sedumi.mcmaster.ca/.

44. P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuejols, I. E.
Grossman, C. D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya,
and A. Wächter, An algorithmic framework for convex mixed
integer nonlinear programs, Technical report RC23771, IBM
T. J. Watson Research Center, Discrete Optimization. In press.

45. N. W. Sawaya, C. D. Laird, and P. Bonami, A novel library of
nonlinear mixed-integer and generalized disjuctive program-
ming problems. In press, 2006.

LAURENCE A. WOLSEY

Université Catholique de
Louvain

Louvain–la–Neuve, Belgium

10 MIXED INTEGER PROGRAMMING



M

MULTIGRID METHODS

INTRODUCTION

Numerical modeling in science and engineering has
emerged in recent years as a viable alternative to a more
conventional experimental approach, which has some
shortfalls, such as the cost, the time consumption, the
difficulties with accuracy, or the ethical issues. As compu-
ter processing power continues to increase, nowadays it is
possible to perform modeling and simulation studies for
large-scale problems in important areas, such as conti-
nuum mechanics, electromagnetism, quantum physics,
and so forth. Modern trends also involve modeling of the
complex systems with the constitutive parts from different
areas, which are often referred to as multi-physics systems.
The growing appetite for even larger models requires also a
development of sophisticated algorithms and numerical
techniques for efficient solution of underlying equations.

Computer-aided modeling represents the space and
time continuum by a finite set of properly selected discrete
coordinate points. These points typically are connected to
form a mesh over the domain of interest. A discrete phy-
sical or numerical variable is associated with the mesh
points. Such a discrete variable is referred to as the grid
variable. A set of grid variables, together with the
algebraic equations that define their implicit dependen-
cies, represent a grid problem. A process of approximating
a continuous problem by an appropriate grid problem is
called the discretization. The most common class of
continuous problems that require discretization are
differential equations (DEs).

DEs are the mathematical expressions that relate
unknown functions and their derivatives in continuous
space and time. The local connectivity among the mesh
points is used to approximate the derivatives of the
unknown function. The order of this approximation deter-
mines the order of accuracy of the method itself. The size of
the resulting grid problem is proportional to the number of
mesh points. Some well-known methods for the discretiza-
tion of DEs are the finite difference method (FDM), the finite
element method (FEM), and the finite volume method (1–3).
A common feature of the grid problems obtained by discre-
tization of DEs by these methods is the local dependence of
grid variables. Namely, a single grid variable depends only
on a small set of grid variables in its close neighborhood.

The solution of the grid problems created by the dis-
cretization of DEs, which usually take the form of linear or
non linear systems of algebraic equations, is obtained by
applying a certain solution procedure. Iterative methods
start from an initial approximation to the solution, which is
improved over a number of iterations until the discrete
solution is obtained within the prescribed accuracy. The
difference between the initial discrete approximation and
the discrete solution represents the iteration error that is
eliminated during an iterative solution procedure. An opti-

mal iterative solver is the one that scales optimally with the
problem size. That is, the computing resources employed by
the solver and the execution time should be proportional to
the problem size. To achieve an optimal iterative solution
procedure, we must ensure that it converges to a prescribed
accuracy within a constant, presumably small, number of
iterations, regardless of the problem size or any other
problem-specific parameters.

Simple iterative methods often fail in fulfilling the
optimality condition when applied to discretized DEs. To
understand the problem, we shall consider the solution
error in the Fourier space, represented as a linear combi-
nation of the wave-like components having the shape of sine
or cosine functions with different wavelengths (or frequen-
cies). Simple iterative methods are very efficient in
eliminating the high-frequency (short wavelength) error
components because these require only the information
from the closest grid neighbors. This behavior is known
as the smoothing property of the iterative methods
(4, p. 412–419). After this initial phase, when rapid con-
vergence is observed within a few iterations, the simple
iterative solvers have to work hard to reduce the remaining
error that is now dominated by the low-frequency (long
wavelength) error components. The reduction of low-fre-
quency errors requires communication among distant grid
variables and takes a much larger number of iterations
than in the case of the high-frequency error components.
This reason is why the simple iterative procedures become
nonoptimal.

The splitting into high-frequency and low-frequency
error components is introduced, in principle, relative to
the characteristic distance between neighboring mesh
points or the mesh size. Namely, the wavelengths of the
high-frequency solution error components are comparable
with the mesh size. Obviously, a part of the low-frequency
error components can be regarded as the high-frequency
components if the problem is discretized using a coarser
mesh. This situation naturally leads to the idea of using a
coarser grid problem to improve the convergence and
reduce the numerical cost of an iterative solution scheme.
But we need to keep in mind that only the fine grid problem
approximates the continuous DE with the required accu-
racy. Therefore, both problems should be combined in a
proper way to produce an effective solution algorithm.
Moreover, some low-frequency error components still can
represent a problem for iterative procedures on the coarser
mesh. These components can be reduced by introducing a
sequence of additional progressively coarser meshes and
corresponding grid problems associated with them. This
idea leads to multigrid methods (MG) that employ a hier-
archy of discrete grid problems to achieve an optimal solu-
tion procedure.

In this section, we present only a high-level descrip-
tion of the MG heuristics. For additional technical
details, the reader is referred to the next two sections.
After a few steps of a simple iterative procedure at the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



finest grid, the high-frequency error components are
eliminated from the initial solution error. This procedure
is called the smoothing. The remaining low-frequency
error then is transferred to the coarser grid by a process
called the restriction. The same procedure (smoothing
and restriction) is repeated on the coarser level. The
remaining low-frequency error components at the
coarser level are transfered further to a coarser grid,
and the smoothing procedure is repeated. This pair of
operations (the smoothing and the error transfer to a
coarser grid) is repeated until a sufficiently coarse grid,
with only a few nodes, is reached. The coarsest grid
solution (with the low-frequency errors removed by the
application of a direct-solution method) then is used
to correct the corresponding discrete solutions on the
finer grid levels using prolongation or interpolation.
The prolongation steps often are followed by additional
postsmoothing steps to eliminate the remaining
high-frequency error components that could be intro-
duced.

The first MG scheme was introduced by Fedorenko in
the early 1960s (5). It was presented in the context of the
Poisson equation on the unit square domain. However,
the full potential of the MG approach was not realized
until the work of Brandt in the mid 1970s (6). Since
then, a tremendous amount of theory and application
related to MG methods has been published, including
several monographs (7–15). Over time, MG methods
have evolved into an independent field of research, inter-
acting with numerous engineering application areas and
having major impact in almost all scientific and engineer-
ing disciplines.

A typical application for MG is in the numerical solution
of discrete elliptic, self-adjoint, partial differential equations
(PDEs), where it can be applied in combination with any of
the common discretization techniques. In such cases, MG is
among the fastest-known solution techniques. MG also is
directly applicable to more complicated, nonsymmetric, and
non linear DE problems, systems of DEs, evolution pro-
blems, and integral equations. In recent years we have seen
an increased development of multi level (ML) solvers for the
solution of DE problems in various areas, including aero-
dynamics (16), atmospheric and oceanic modeling (17),
structural mechanics (18), quantum mechanics, statistical
physics, (19), semiconductor fabrication (20), and electro-
magnetism (21–23). In all these applications, MG methods
can be used as the building blocks of an overall solver, with
an aim of reaching the convergence rate that is nearly
independent of the number of unknown grid variables or
other problem parameters. Such solvers would be capable of
reducing the solution error to the order of the computer
truncation error with (nearly) optimal computational cost.

In contrast to other numerical methods, MG represents
a computational principle rather than a particular compu-
tational technique, and, therefore, it is not restricted by
the type of problem, domain, and mesh geometry, or dis-
cretization procedure. MG methods even may be applied
successfully to algebraic problems that do not involve geo-
metric information and do not even originate from the
discretization of DEs. To this end, special techniques
are developed to create a required hierarchy that uses

only algebraic information available for the ‘‘grid’’ variable
dependencies. In addition, a broad range of problems in
science and engineering require multi scale modeling and
simulation techniques (e.g., oil reservoir modeling). The
range of scales involved in such problems induce a prohibi-
tively large number of variables in the classic mono scale
modeling approach. MG methods also naturally apply to
such cases.

BASIC CONCEPTS

The basic MG ideas are developed more in this section
within the context of second-order, elliptic, self-adjoint DE
problems. We first introduce the model problem in one
spatial dimension. The FDM/FEM discretization of this
problem produces a linear system that will serve as an
example for studying the efficiency of the basic iterative
schemes (fixed-point iterations). Lack of efficiency of
simple iterations in this context is the main motivation
behind the application of these schemes in a recursive
fashion. This naturally leads to MG methods. We describe
the main algorithmic components of MG, its arithmetic
complexity, and its effectiveness.

Continuous and Discrete Single-Grid Problems

A general, time-dependent, DE in d spatial dimensions can
be written as

A t;u;
@u

@t
;
@2u

@t2
; . . . ;

@ku

@xk1

1 � � � @xkd

d

; � � �
 !

¼ 0 on V� T ð1Þ

where x ¼ ðx1; . . . ; xdÞ 2V�Rd and T ¼ ½0; t�. To ensure
well-posedness of the solution, an appropriate set of bound-
ary conditions (BCs) and initial conditions (ICs) need to be
imposed. By covering the domain of interest V by a mesh Vh

and by applying a suitable spatial discretization procedure,
such as the FDM or the FEM, the continuous differential
problem becomes a system of differential–algebraic equa-
tions:

Ah t;uh;
@uh

@t
;
@2uh

@t2
; . . . ;

@kuh

@xk1

1 � � � @xkd

d

; � � �
 !

¼ 0 on Vh � T

ð2Þ

where uh represents a discrete solution variable of dimen-
sion nh associated with the mesh Vh. The BCs are included
in the formulation in Equation (2). If the discrete problem is
stationary, Equation (2) reduces to a non linear algebraic
system

AhðuhÞ ¼ 0 on Vh ð3Þ

Finally, in the case of linear stationary problems, the
discrete solution uh is defined as a linear algebraic system

Ahuh ¼ fh on Vh ð4Þ

where Ah is a coefficient matrix and fh is the right-hand
side vector.

2 MULTIGRID METHODS



A simple practical example that will serve to introduce
the basic MG concepts is the one-dimensional model–
problem

AðuÞ ¼ �d2u

dx2
¼ f in V ¼ ð0; 1Þ ð5Þ

subject to the homogeneous Dirichlet BCs

uð0Þ ¼ uð1Þ ¼ 0 ð6Þ

Choosing a mesh Vh to be a set of nh þ 1 uniformly spaced
points xi ¼ ih; i ¼ 0; . . . ;nh where h ¼ 1=nh; and replacing
the second derivative at the mesh points by a central finite-
difference approximation (3), we obtain a discrete problem

Ahuh ¼
�uhðxiþ1Þ þ 2uhðxiÞ � uhðxi�1Þ

h2
¼ fhðxiÞ;

i ¼ 1; . . . ;nh � 1

ð7Þ

with uhðx0Þ ¼ uhðxnhþ1Þ ¼ 0. The coefficient matrix of the
linear system in Equation (7) is a symmetric tridiagonal
matrix Ah ¼ 1

h2 tridiag½�1 2 � 1�. Although the linear
system in Equation (7), because of its simplicity, can be
solved efficiently by a direct method, it is used as an
example to explain the main algorithmic features of MG.

The extension of the model–problem in Equations (5) and
(6) and MG concepts to two or more spatial dimensions is
straightforward. For this purpose, we introduce a natural
extension of the model–problem in Equations (5) and (6) to
two spatial dimensions, known as the Poisson equation (2,
Ch. 1):

AðuÞ ¼ � @2u

@x2
1

þ @
2u

@x2
2

 !
¼ f in V ¼ ð0; 1Þ � ð0; 1Þ ð8Þ

with the homogeneous Dirichlet BCs

u ¼ 0 on @V ð9Þ

In Equation (8) we adopted, for simplicity, the unit
square domain V ¼ ð0; 1Þ � ð0; 1Þ�R2. Central finite-
difference approximation of the second derivatives in
Equation (8), defined on a grid of uniformly spaced points
ððx1Þi; ðx2Þ jÞ ¼ ðih; jhÞ; i; j ¼ 1; . . . ;nh � 1, results in a lin-
ear system in Equation (4), in which the coefficient matrix
Ah can be represented in stencil notation as

Ah ¼
1

h2

�1
�1 4 �1

�1

2
4

3
5 ð10Þ

We remark that the discretization in Equation (10) of the
two-dimensional model problem on a uniform Cartesian
grid is obtained as a tensor product of two one-dimensional
discretizations in x1 and x2 coordinate directions.

The Smoothing Property of Standard Iterative Methods

When an approximate solution ~uh of the system in Equation
(4) is computed, it is important to know how close it is to
the true discrete solution uh. Two quantitative measures

commonly are used in this context. The error is defined as
eh ¼ uh � ~uh and the residual as rh ¼ fh � Ah ~uh. Note that
if the residual is small, this does not imply automatically
that the approximation ~uh is close to the solution uh. The
error eh and the residual rh are connected by the residual
equation

Aheh ¼ rh ð11Þ

The importance of Equation (11) can be seen from the fact
that if the approximation ~uh to the solution uh of Equation
(4) is computed by some iterative scheme, it can be
improved as uh ¼ ~uh þ eh.

The simplest iterative schemes that can be deployed
for the solution of sparse linear systems belong to the
class of splitting iterations (see Refs 2,4,7,8, and 10 for
more details). In algorithmic terms, each splitting iteration
starts from the decomposition of the coefficient matrix
Ah as Ah ¼Mh �Nh, with Mh being a regular matrix (det
ðMhÞ 6¼ 0Þ, such that the linear systems of the form Mhuh ¼
fh are easy to solve. Then, for a suitably chosen initial
approximation of the solution ~uð0Þ an iteration is formed:

~u
ðkþ1Þ
h ¼M�1

h Nh ~uðkÞ þM�1
h fh; k ¼ 0; 1; . . . ð12Þ

Note that Equation (12) also can be rewritten to include the
residual vector r

ðkÞ
h ¼ fh � A~u

ðkÞ
h :

~u
ðkþ1Þ
h ¼ ~u

ðkÞ
h þM�1

h r
ðkÞ
h ; k ¼ 0; 1; . . . ð13Þ

Some well-known methods that belong to this category
are the fixed-point iterations, or the relaxation methods,
such as the Jacobi method, the Gauss-Seidel method, and
its generalizations SOR and SSOR (4). To introduce these
methods, we start from the splitting of the coefficient
matrix Ah in Equation (4) in the form Ah ¼ Dh � Lh �Uh,
where Dh ¼ diagðAhÞ and �Lh and �Uh are strictly the
lower and the upper triangular part of Ah, respectively.
In this way, the system in Equation (4) becomes ðDh � Lh �
UhÞuh ¼ fh and we can form a variety of iterative methods
of the form in Equation (12) by taking suitable choices for
the matrices Mh and Nh.

In the Jacobi method, the simplest choice for Mh is taken,
that is Mh ¼ Dh; Nh ¼ Lh þUh and the iteration can be
written as:

~u
ðkþ1Þ
h ¼ D�1

h ðLh þUhÞ~u
ðkÞ
h þD�1

h fh; k ¼ 0; 1; . . . ð14Þ

A slight modification of the original method in Equation
(14) is to take the weighted average between ~u

ðkþ1Þ
h and ~u

ðkÞ
h

to form a new iteration,

~u
ðkþ1Þ
h ¼ ½ð1� vÞI þ vD�1

h ðLh þUhÞ�~u
ðkÞ
h þ vD�1

h fh;

k ¼ 0; 1; . . .
ð15Þ

where v2R. Equation (15) represents the weighted or
damped Jacobi method. For v ¼ 1, Equation (15) reduces
to the standard Jacobi method in Equation (14).

MULTIGRID METHODS 3



The Gauss–Seidel method involves the choice
Mh ¼ Dh � Lh, Nh ¼ Uh and can be written as

~u
ðkþ1Þ
h ¼ ðDh � LhÞ�1Uh ~u

ðkÞ
h þ ðDh � LhÞ�1 fh;

k ¼ 0; 1; . . .
ð16Þ

The main advantage of the Gauss–Seidel method is that
the components of the new approximation ~u

ðkþ1Þ
h can be used

as soon as they are computed. Several modifications of the
standard Gauss–Seidel method were developed with the
aim of improving the convergence characteristics or paral-
lelizability of the original algorithm in Equation (16) (sym-
metric, red-black, etc. see Refs. 4,7, and 8).

When applied to the solution of linear systems in Equa-
tion (7) that arise from the discretization of the model–
problem in Equations (5) and (6), the convergence of split-
ting iterations is initially rapid, only to slow down signifi-
cantly after a few iterations. More careful examination of
the convergence characteristics using Fourier analysis (7–
10) reveal different speeds of convergence for different
Fourier modes. That is, if different Fourier modes (vectors
of the form ðvlÞi ¼ sinðilp=nhÞ; i ¼ 1; . . . ;nh � 1, where l is
the wave number) are used as the exact solutions of the
residual Equation (11) with a zero initial guess, the con-
vergence speed of the splitting iterations improves with the
increasing wave number l. This means that the conver-
gence is faster when l is larger, that is, when the error in the
solution uh contains the high-frequency (highly oscillatory)
components. Thus, when a system in Equation (7) with an
arbitrary right-hand side is solved using a simple splitting
iteration with an arbitrary initial guess ~u

ð0Þ
h , the initial fast

convergence is because of the rapid elimination of the high-
frequency components in the error eh. A slow decrease in
the error at the later stages of iteration indicates the
presence of the low-frequency components. We assume
that the Fourier modes in the lower half of the discrete
spectrum (with the wave numbers 1 � l<nh=2) are
referred to as the low-frequency (smooth) modes, whereas
the modes in the upper half of the discrete spectrum (with
the wave numbers nh=2 � l � nh � 1) are referred to as the
high-frequency (oscillatory) modes.

If we rewrite a general splitting iteration in Equation
(12) as ~u

ðkþ1Þ
h ¼ Gh ~u

ðkÞ
h þ gh, then the matrix Gh is referred

to as the iteration matrix. The error e
ðkÞ
h ¼ uh � ~u

ðkÞ
h after k

iterations satisfies the relation e
ðkÞ
h ¼ Gk

he
ð0Þ
h . A sufficient

and necessary condition for a splitting iteration to con-
verge to the solution ðf~u

ðkÞ
h g!uhÞ is that the spectral

radius of the iteration matrix Gh is less than 1 (24). The
spectral radius is defined as rðGhÞ ¼ maxjl jðGhÞj, where
l jðGhÞ are the eigenvalues of Gh [recall that for a sym-
metric and positive definite (SPD) matrix, all the eigen-
values are real and positive (24)]. The speed of
convergence of a splitting iteration is determined by the
asymptotic convergence rate (4)

t ¼ �ln lim
k!1

keðkÞh k
keð0Þh k

 !1=k

ð17Þ

For the case of the linear system in Equation (7) obtained
from the discretization of the model–problem in Equations
(5) and (6), the eigenvalues of the iteration matrix
GJ

h ¼ I � vh2

2 Ah for the damped Jacobi method are
given by l jðGJ

hÞ ¼ 1� 2v sin2ð jp
2nh
Þ; j ¼ 1; . . . ;nh � 1.

Thus, jl j ðGJ
hÞj< 1 for each j if 0<v< 1, and the method

is convergent. However, different choices of the damping
parameter v have a crucial effect on the amount by which
different Fourier components of the error are reduced.
One particular choice is to find the value of the para-
meter v that maximizes the effectiveness of the damped
Jacobi method in reducing the oscillatory components of
the error (the components with the wave numbers
nh=2 � l � nh � 1). The optimal value for the linear sys-
tem in Equation (7) is v ¼ 2=3(7), and for this value we
have jl jj< 1=3 for nh=2 � j � nh � 1. This means that each
iteration of the damped Jacobi method reduces the mag-
nitude of the oscillatory components of the error by at least
a factor 3. For the linear system obtained from the FEM
discretization of the two-dimensional model–problem in
Equation (8), the optimal value of v is 4/5 for the case of
linear approximation and v ¼ 8=9 for bilinear case, (2, p.
100, 4). For the Gauss–Seidel method, the eigenvalues of
the iteration matrix for the model-problem in Equation (7)
are given by l jðGGS

h Þ ¼ cos2ð jpnh
Þ; j ¼ 1; . . . ;nh � 1. As in the

case of the damped Jacobi method, the oscillatory modes in
the error are reduced rapidly, whereas the smooth modes
persist.

The property of the fixed-point iteration schemes to
reduce rapidly the high-frequency components in the error
is known as the smoothing property, and such schemes
commonly are known as the smoothers. This property is, at
the same time, the main factor that impairs the applic-
ability of these methods as stand-alone solvers for linear
systems that arise in FDM/FEM discretizations of PDEs.

Two-Grid Correction Method

Having introduced the smoothing property of standard
iterative methods, we investigate possible modifica-
tions of such iterative procedures that would enable the
efficient reduction of all frequency components of the
solution error eh. Again, we study the model–problem in
Equations (5) and (6) discretized on the uniform grid
Vh ¼ fxi ¼ ihg; h ¼ 1=nh; i ¼ 1; . . . ;nh � 1 yielding a linear
system in Equation (7). The mesh Vh may be regarded as a
‘‘fine’’ mesh obtained by the uniform refinement of a
coarse mesh VH ¼ fxi ¼ iHg; H ¼ 2h; i ¼ 1; . . . ;nH � 1.
The coarse mesh contains only the points of the fine mesh
with the even numbers. After applying several steps of a
fixed-point method to the h-system in Equation (7), only the
smooth components of the error remain. The questions that
naturally arise in this setting concern the properties of
the smooth error components from the grid Vh, when
represented on the coarse grid VH. These components
seem to be more oscillatory on VH than on Vh (see Ref. 7).
Notice that on the coarse grid VH, we have only half as many
Fourier modes compared with the fine grid VhðnH ¼ 1

2 nhÞ.
The fact that the smooth error components from the fine grid
seem less smooth on the coarse grid offers a potential
remedy for the situation when a fixed-point iteration loses

4 MULTIGRID METHODS



its effectiveness—we need to move to a coarse grid VH,
where a fixed-point iteration will be more effective in redu-
cing the remaining error components. This idea forms the
basis of the two-grid method, which is summarized in the
Algorithm 1.

Algorithm 1. Two-grid correction scheme.

1: ~uh Gv1

h ð~u
ð0Þ
h ; fhÞ

2: rh ¼ fh � Ah ~uh

3: rH ¼ RH
h rh

4: Solve approximately AHeH ¼ rH

5: eh ¼ Ph
HeH

6: ~uh ¼ ~uh þ eh

7: ~uh Gv2

h ð~uh; fhÞ

In Algorithm 1, Gv
hð~uh; fhÞ denotes the application of v

iterations of a fixed-point iteration method to a linear
system in Equation (7) with the initial guess ~uh. At Step
4 of Algorithm 1, the coarse-grid problem AHeH ¼ rH needs
to be solved. The coarse-grid discrete operator AH can be
obtained either by the direct discretization of the contin-
uous problem on a coarse mesh VH or from the fine-grid
discrete operator Ah by applying the Galerkin projection
Ah ¼ RH

h AhPh
H. After solving the coarse grid problem (Step

4), we need to add the correction eH, defined on the coarse
grid VH, to the current approximation of the solution ~uh,
which is defined on the fine grid Vh. It is obvious that these
two vectors do not match dimensionally. Thus, before the
correction, we need to transform the vector eH to the vector
eh. The numerical procedure that implements the transfer
of information from a coarse to a fine grid is referred to
as interpolation or prolongation. The interpolation can
be presented in operator form as vh ¼ Ph

HvH, where
vH 2RnH ; vh 2Rnh , and Ph

H 2Rnh�nH . Here, nh denotes the
size of a discrete problem on the fine grid and nH denotes
the size of a discrete problem on the coarse grid. Many
different strategies exist for doing interpolation when MG
is considered in the FDM setting (see Refs. 4,7,8, and 10).
The most commonly used is linear or bilinear interpolation.
In a FEM setting, the prolongation operator Ph

H is
connected naturally with the FE basis functions associated
with the coarse grid (see Refs 1,7, and 8). In the case of
the one-dimensional problem in Equations (5) and (6), the
elements of the interpolation matrix are given by
ðPh

HÞgð jÞ;gðlÞ ¼ fH
l ðx jÞ, where gðlÞ is the global number of

the node l on the coarse grid VH and g(j) is the global
number of the node j on the fine grid Vh. fH

l ðx jÞ is the value
of the FE basis function associated with the node l from the
coarse grid VH at the point j of the fine grid with the
coordinate xj.

Before solving the coarse grid problem AHeH ¼ rH, we
need to transfer the information about the fine grid residual
rh to the coarse grid VH, thus getting rH. This operation is
the reverse of prolongation and is referred to as restriction.
The restriction operator can be represented as vH ¼ RH

h vh,
where RH

h 2RnH�nh . The simplest restriction operator is
injection, defined in one dimension as ðvHÞ j ¼ ðvhÞ2 j,
j ¼ 1; . . . ;nH � 1, and the coarse grid vector takes the
immediate values from the fine grid vector. Some more
sophisticated restriction techniques include half injection
and full weighting (see Refs 4,7, and 8). The important

property of the full weighting restriction operator in
the FDM setting is that it is the transpose of the linear
interpolation operator up to the constant that depends
on the spatial dimension d, Ph

H ¼ 2dðRH
h Þ

T. In the FEM
setting, the restriction and the interpolation operators
simply are selected as the transpose of each other,
Ph

H ¼ ðRH
h Þ

T. The spatial dimension-dependent factor 2d

that appears in the relation between the restriction RH
h

and the interpolation Ph
H is the consequence of the residuals

being taken pointwise in the FDM case and being element-
weighted in the FEM case.

If the coarse grid problem is solved with sufficient accu-
racy, the two-grid correction scheme should work effi-
ciently, providing that the interpolation of the error from
coarse to fine grid is sufficiently accurate. This happens in
cases when the error eH is smooth. As the fixed-point
iteration scheme applied to the coarse-grid problem
smooths the error, it forms a complementary pair with
the interpolation, and the pair of these numerical proce-
dures work very efficiently.

V-Cycle Multigrid Scheme and Full Multigrid

If the coarse-grid problem AHeH ¼ rH in Algorithm 1 is
solved approximately, presumably by using the fixed-point
iteration, the question is how to eliminate successfully the
outstanding low-frequency modes on VH? The answer lies
in the recursive application of the two-grid scheme. Such a
scheme would require a sequence of nested grids
V0�V1� � � � �VL, where V0 is a sufficiently coarse grid
(typically consisting of only a few nodes) to allow efficient
exact solution of the residual equation, presumably by a
direct solver. This scheme defines the V-cycle of MG, which
is summarized in Algorithm 2:

Algorithm 2. V-Cycle multigrid (recursive definition):
uL ¼ MGðAL; fL; ~u

ð0Þ
L ; v1; v2;LÞ:

1: function MG ðAl; fl; ~u
ð0Þ
l ; v1; v2; lÞ

2: ~ul Gv1

h ð~u
ð0Þ
l ; flÞ

3: rl ¼ fl � Al ~ul;

4: rl�1 ¼ Rl�1
l rl

5: if l� 1 ¼ 0 then
6: Solve exactly Al�1el�1 ¼ rl�1

7: else
8: el�1 ¼MGðAl�1; rl�1; 0; v1; v2; l� 1Þ
9: el ¼ Pl

l�1el�1

10: ~ul ¼ ~ul þ el

11: ~ul Gv2

h ð~ul; flÞ
12: end if
13: return ~ul

14: end function

A number of modifications of the basic V-cycle exist. The
simplest modification is to vary the number of recursive
calls g of the MG function in Step 8 of the Algorithm 2. For
g ¼ 1, we have the so-called V-cycle, whereas g ¼ 2 pro-
duces the so-called W-cycle (7).

Until now, we were assuming that the relaxation on the
fine grid is done with an arbitrary initial guess ~u

ð0Þ
L , most

commonly taken to be the zero vector. A natural question in
this context would be if it is possible to obtain an improved

MULTIGRID METHODS 5



initial guess for the relaxation method. Such an approxima-
tion can be naturally obtained by applying a recursive
procedure referred to as nested iteration (7,8,10). Assume
that the model–problem in Equation (7) is discretized using
a sequence of nested grids V0�V1� � � � �VL. Then we can
solve the problem on the coarsest level V0 exactly, inter-
polate the solution to the next finer level, and use this value
as the initial guess for the relaxation (i.e., ~u

ð0Þ
1 ¼ P1

0 ~u0). This
procedure can be continued until we reach the finest level L.
Under certain assumptions, the error in the initial guess
~u
ð0Þ
L ¼ PL

L�1 ~uL�1 on the finest level is of the order of the
discretization error and only a small number of MG V-cycles
is needed to achieve the desired level of accuracy. The
combination of the nested iteration and the MG V-cycle
leads to the full multigrid (FMG) algorithm, summarized
in Algorithm 3:

Algorithm 3. Full multigrid: ~uL ¼ FMGðAL; fL; v1; v2;LÞ:
1: function ~uL ¼ FMGðAL; fL; v1; v2; lÞ
2: Solve A0 ~u0 ¼ f0

with sufficient accuracy
3: for l¼1, L do
4: ~u

ð0Þ
l ¼ P̂

l

l�1 ~ul�1
5: ~ul ¼ MGðAl; fl; ~u

ð0Þ
l ; v1; v2; lÞ % Algorithm 2

6: end for
7: return ~uL
8: end function

The interpolation operator P̂
l

l�1 in the FMG scheme can
be different, in general, from the interpolation operator
Pl

l�1 used in the MG V-cycle. A FMG cycle can be viewed as a
sequence of V-cycles on progressively finer grids, where
each V-cycle on the grid l is preceeded by a V-cycle on the
grid l � 1.

Computational Complexity of Multigrid Algorithms

We conclude this section with an analysis of algorithmic
complexity for MG, both in terms of the execution time and
the storage requirements. For simplicity, we assume that
the model problem in d spatial dimensions is discretized on
a sequence of uniformly refined grids (in one and two spatial
dimensions, the model–problem is given by Equations (5)
and (6) and Equations (8) and (9), respectively). Denote the
storage required to fit the discrete problem on the finest
grid by ML. The total memory requirement for the MG
scheme then is MMG ¼ mML, where m depends on d but not
on L. This cost does not take into account the storage needed
for the restriction/prolongation operators, although in
some implementations of MG, these operators do not
need to be stored explicitly. For the case of uniformly
refined grids, the upper bound for the constant m is 2 in
one dimension, and 4

3 in two dimensions (by virtue of
m ¼

PL
j¼0

1
2 j�d <

P1
j¼0

1
2 j�d). For non uniformly refined grids,

m is larger but MMG still is a linear function of ML, with the
constant of proportionality independent of L.

Computational complexity of MG usually is expressed
in terms of work units (WU). One WU is the arithmetic
cost of one step of a splitting iteration applied to a discrete
problem on the finest grid. The computational cost of a
V(1, 1) cycle of MG (V(1,1) is a V-cycle with one pre

smoothing and one post smoothing iteration at each level
and is v times larger than WU, with v ¼ 4 for d ¼ 1, v ¼ 8

3
for d ¼ 2 and v ¼ 16

7 for d ¼ 3 (7). These estimates do not
take into account the application of the restriction/inter-
polation. The arithmetic cost of the FMG algorithm is
higher than that of a V-cycle of MG. For the FMG with one
relaxation step at each level, we have v ¼ 8 for d ¼ 1, v ¼ 7

2
for d ¼ 2, and v ¼ 5

2 for d ¼ 3 (7). Now we may ask how
many V-cycles of MG or FMG are needed to achieve an
iteration error commensurate with the discretization
error of the FDM/FEM. To answer this question, one
needs to know more about the convergence characteristics
of MG. For this, deeper mathematical analysis of spectral
properties of the two-grid correction scheme is essential.
This analysis falls beyond the scope of our presentation.
For further details see Refs 7–10. If a model–problem in d
spatial dimensions is discretized by a uniform square grid,
the discrete problem has OðmdÞ unknowns, where m is
the number of grid lines in each spatial dimension. If the
Vðv1; v2Þ cycle of MG is applied to the solution of
the discrete problem with fixed parameters v1 and v2,
the convergence factor t in Equation (17) is bounded
independently of the discretization parameter h (for a
rigorous mathematical proof, see Refs 8–10). For
the linear systems obtained from the discretization of
the second-order, elliptic, self-adjoint PDEs, the conver-
gence factor t of a V-cycle typically is of order 0.1. To
reduce the error eh ¼ uh � ~uh to the level of the disretiza-
tion error, we need to apply O(log m) V-cycles. This means
that the total cost of the V-cycle scheme is Oðmd log mÞ. In
the case of the FMG scheme, the problems discretized on
grids Vl; l ¼ 0; 1; . . . ;L� 1 already are solved to the level of
discretization error before proceeding with the solution of
the problem on the finest grid VL. In this way, we need to
perform only O(1) V-cycles to solve the problem on the
finest grid. This process makes the computational cost of
the FMG scheme OðmdÞ, and it is an optimal solution
(method).

ADVANCED TOPICS

The basic MG ideas are introduced in the previous section
for the case of a linear, scalar and stationary DE with a
simple grid hierarchy. This section discusses some impor-
tant issues when MG is applied to more realistic problems
(non linear and/or time-dependent DEs and systems of
DEs), with complex grid structures in several spatial
dimensions, and when the implementation is done on mod-
ern computer architectures.

Non linear Problems

The coarse grid correction step of the MG algorithm is not
directly applicable to discrete non linear problems as the
superposition principle does not apply in this case. Two
basic approaches exist for extending the application of MG
methods to non linear problems. In the indirect approach,
the MG algorithm is employed to solve a sequence of linear
problems that result from certain iterative global linear-
ization procedures, such as Newton’s method. Alternately,
with the slight modification of the grid transfer and coarse

6 MULTIGRID METHODS



grid operators, the MG algorithm can be transformed into
the Brandt Full Approximation Scheme (FAS) algorithm
(6,7), which can be applied directly to the non linear discrete
equations.

In the FAS algorithm, the non linear discrete problem
defined on a fine grid Vh as AhðuhÞ ¼ fh is replaced by

Ahð~uh þ ehÞ � Ahð~uhÞ ¼ fh � Ahð~uhÞ ð18Þ

The Equation (18) reduces in the linear case to the
residual Equation (11). Define a coarse-grid approxima-
tion of Equation (18)

AH R̂
H

h ~uh þ eH

� �
� AH R̂

H

h ~uh

� �
¼ R̂

H

h f h � Ahð~uhÞ
� �

ð19Þ

where R̂
H
h is some restriction operator. Note that if the

discrete non linear problem in Equation (3) comes from the
FEM approximation, the restriction operators R̂

H

h in
Equation (19) should differ by the factor of 2d, where d
is the spatial dimension (see the discussion in the section
‘‘Two-Grid Correction Method’’). Introducing the approx-
imate coarse grid discrete solution ~uH ¼ R̂H

h
~uh þ eH and

the fine-to-coarse correction th
H ¼ AHðR̂H

h
~uhÞ �R̂H

h Ahð~uhÞ,
the coarse grid problem in the FAS MG algorithm becomes

AHð~uHÞ ¼ RH
h fh þ th

H ð20Þ

Then, the coarse grid correction

~uh ~uh þ P̂
h

HeH ¼ ~uh þ P̂
h

H ~uH � R̂
H

h ~uh

� �
ð21Þ

can be applied directly to non linear problems. In Equ-
ation (21) R̂H

h ~uh represents the solution of Equation (20) on
coarse grid VH. This means that once the solution of the
fine grid problem is obtained, the coarse grid correction
does not introduce any changes through the interpolation.
The fine-to-coarse correction th

H is a measure of how close
the approximation properties of the coarse grid equations
are to that of the fine grid equations.

When the FAS MG approach is used, the global Newton
linearization is not needed, thus avoiding the storage of
large Jacobian matrices. However, the linear smoothing
algorithms need to be replaced by non linear variants of the
relaxation schemes. Within a non linear relaxation method,
we need to solve a non linear equation for each component of
the solution. To facilitate this, local variants of the Newton
method commonly are used. The FAS MG algorithm struc-
ture and its implementation are almost the same as the
linear case and require only small modifications. For non
linear problems, a proper selection of the initial approx-
imation is necessary to guarantee convergence. To this end,
it is recommended to use the FMG method described in the
Basic Concepts section above.

Systems of Partial Differential Equations

Many complex problems in physics and engineering cannot
be described by simple, scalar DEs. These problems, such as
DEs with unknown vector fields or multi-physics problems,
usually are described by systems of DEs. The solution of

systems of DEs is usually a challenging task. Although no
fundamental obstacles exist to applying standard MG algo-
rithms to systems of DEs, one needs to construct the grid
transfer operators and to create the coarse grid discrete
operators. Moreover, the smoothing schemes need to be
selected carefully.

Problems in structural and fluid mechanics frequently
are discretized using staggered grids (10). In such cases,
different physical quantities are associated with different
nodal positions within the grid. The main reason for such
distribution of variables is the numerical stability of such
schemes. However, this approach involves some restric-
tions and difficulties in the application of standard MG
methods. For instance, using the simple injection as a
restriction operator may not be possible. An alternative
construction of the restriction operator is based on aver-
aging the fine grid values. Moreover, the non matching
positions of fine and coarse grid points considerably com-
plicates the interpolation near the domain boundaries. The
alternative approach to the staggered grid discretization is
to use non structured grids with the same nodal positions
for the different types of unknowns. Numerical stabiliza-
tion techniques are necessary to apply in this context (2,8).

The effectiveness of standard MG methods, when
applied to the solution of systems of DEs, is determined
to a large extent by the effectiveness of a relaxation proce-
dure. For scalar elliptic problems, it is possible to create
nearly optimal relaxation schemes based on standard fixed-
point iterations. The straightforward extension of this
scalar approach to systems of DEs is to group the discrete
equations either with respect to the grid points or with
respect to the discrete representations of each DE in the
system (the latter corresponds to the blocking of a linear
system coefficient matrix). For effective smoothing, the
order in which the particular grid points/equations are
accessed is very important and should be adjusted for
the problem at hand. Two main approaches exist for the
decoupling of a system: global decoupling, where for each
DE all the grid points are accessed simultaneously, and
local decoupling, where all DEs are accessed for each grid
point.

The local splitting naturally leads to collective or block
relaxation schemes, where all the discrete unknowns at a
given grid node, or group of nodes, are relaxed simulta-
neously. The collective relaxation methods are very attrac-
tive within the FAS MG framework for non linear problems.
Another very general class of smoothing procedures that
are applicable in such situations are distributive relaxa-
tions (20). The idea is to triangulate locally the discrete
operator for all discrete equations and variables within the
framework of the smoother. The resulting smoothers also
are called the transforming smoothers (25).

In the section on grid-coarsening techniques, an
advanced technique based on the algebraic multigrid
(AMG) for the solution of linear systems obtained by the
discretization of systems of PDEs will be presented.

Time-Dependent Problems

A common approach in solving time-dependent problems
is to separate the discretization of spatial unknowns in

MULTIGRID METHODS 7



the problem from the discretization of time derivatives.
Discretization of all spatial variables by some stan-
dard numerical procedure results in such cases in a dif-
ferential-algebraic system (DAE). A number of numerical
procedures, such as the method of lines, have been devel-
oped for the solution of such problems. Numerical proce-
dures aimed at the solution of algebraic-differential
equations usually are some modifications and general-
izations of the formal methods developed for the solution
of systems of ODEs [e.g., the Runge–Kutta method, the
linear multistep methods, and the Newmark method
(26,27)]. In a system of DAEs, each degree of freedom
within the spatial discretization produces a single ODE
in time. All methods for the integration of DAE systems
can be classified into two groups: explicit and implicit.
Explicit methods are computationally cheap (requiring
only the sparse matrix–vector multiplication at each
time step) and easy to implement. Their main drawback
lies in stability, when the time step size changes (i.e., they
are not stable for all step sizes). The region of stability of
these methods is linked closely to the mesh size used in
spatial discretization (the so-called CFL criterion). How-
ever, if a particular application requires the use of small
time steps, then the solution algorithms based on explicit
time-stepping schemes can be effective. The implicit time-
stepping schemes have no restrictions with respect to the
time step size, and they are unconditionally stable for all
step sizes. The price to pay for this stability is that at each
time step one needs to solve a system of linear or non linear
equations. If sufficiently small time steps are used with
the implicit schemes, standard iterative solvers based on
fixed-point iterations or Krylov subspace solvers (4) can
be more effective than the use of MG solvers. This parti-
cularly applies if the time extrapolation method or an
explicit predictor method (within a predictor–corrector
scheme) is used to provide a good initial solution for the
discrete problem at each time step.

However, if sufficiently large time steps are used in the
time-stepping algorithm, the discrete solution will contain
a significant proportion of low-frequency errors introduced
by the presence of diffusion in the system (20,27). The
application of MG in such situations represents a feasible
alternative. In this context, one can use the so-called
‘‘smart’’ time-stepping algorithms (for their application
in fluid mechanics see Ref. 27). In these algorithms (based
on the predictor–corrector schemes), the time step size is
adjusted adaptively to the physics of the problem. If a
system that needs to be solved within the corrector is
non linear, the explicit predictor method is used to provide
a good initial guess for the solution, thus reducing the
overall computational cost. MG can be used as a building
block for an effective solver within the corrector (see the
section on preconditioning for the example of such solver in
fluid mechanics).

Multigrid with Locally Refined Meshes

Many practically important applications require the reso-
lution of small-scale physical phenomena, which are loca-
lized in areas much smaller than the simulation domain.
Examples include shocks, singularities, boundary layers,

or non smooth boundaries. Using uniformly refined grids
with the mesh size adjusted to the small-scale phenomena
is costly. This problem is addressed using adaptive mesh
refinement, which represents a process of dynamic intro-
duction of local fine grid resolution in response to unre-
solved error in the solution. Adaptive mesh refinement
techniques were introduced first by Brandt (6). The criteria
for adaptive grid refinement are provided by a posteriori
error estimation (2).

The connectivity among mesh points is generally speci-
fied by the small subgroup of nodes that form the mesh cells.
Typically, each cell is a simplex (for example, lines in one
dimension; triangles or quadrilaterals in two dimensions;
and tetrahedra, brick elements, or hexahedra in three
dimensions). The refinement of a single grid cell is achieved
by placing one or more new points on the surface of, or
inside, each grid cell and connecting newly created and
existing mesh points to create a new set of finer cells. A
union of all refined cells at the given discretization level
forms a new, locally refined, grid patch. Because adaptive
local refinement and MG both deal with grids of varying
mesh size, the two methods naturally fit together. However,
it is necessary to perform some adaptations on both sides to
make the most effective use of both procedures. To apply
MG methods, the local grid refinement should be performed
with the possibility of accessing locally refined grids at
different levels.

The adaptive mesh refinement (AMR) procedure starts
from a basic coarse grid covering the whole computational
domain. As the solution phase proceeds, the regions
requiring a finer grid resolution are identified by an error
estimator, which produces an estimate of the discretiza-
tion error, one specific example being eh ¼ R̂

h
u� uh(28).

Locally refined grid patches are created in these regions.
This adaptive solution procedure is repeated recursively
until either a maximal number of refinement levels is
reached or the estimated error is below the user-specified
tolerance. Such a procedure is compatible with the FMG
algorithm. Notice that a locally refined coarse grid should
contain both the information on the correction of the
discrete solution in a part covered by it and the discrete
solution, itself, in the remainder of the grid. The simplest
and most natural way to achieve this goal is to employ a
slightly modified FAS MG algorithm. The main difference
between the FAS MG algorithm and the AMR MG algo-
rithm is the additional interpolation that is needed at the
interior boundary of each locally refined grid patch. For
unstructured grids, it is possible to refine the grid cells
close to the interior boundary in such a way to avoid
interpolation at the interor boundaries altogether. For
structured meshes, the internal boundaries of locally
refined patches contain the so-called hanging nodes
that require the interpolation from the coarse grid to
preserve the FE solution continuity across the element
boundaries. This interpolation may need to be defined in a
recursive fashion if more than one level of refinement is
introduced on a grid patch (this procedure resembles the
long-range interpolation from the algebraic multigrid).
The interpolation operator at the internal boundaries of
the locally refined grids could be the same one used in the
standard FMG algorithm. Figure 1 shows an example of

8 MULTIGRID METHODS



the adaptive grid structure comprising several locally
refined grid patches dynamically created in the simula-
tion of dopant redistribution during semiconductor fabri-
cation (20). Other possibilities exist in the context of the
FAS MG scheme, for example, one could allow the exis-
tence of hanging nodes and project the non conforming
solution at each stage of the FAS to the space where the
solution values at the hanging nodes are the interpolants
of their coarse grid parent values (29).

Various error estimators have been proposed to support
the process of the local grid refinement. The multi level
locally refined grid structure and the MG algorithm provide
additional reliable and numerically effective evaluation of
discretization errors. Namely, the grid correction operator
th

H [introduced in Equation (20)] represents the local dis-
cretization error at the coarse grid level VH (up to a factor
that depends on the ratio H/h). It is the information
inherent to the FAS MG scheme and can be used directly
as a part of the local grid refinement process. The other
possibility for error estimation is to compare discrete solu-
tions obtained on different grid levels of FMG algorithms to
extrapolate the global discretization error. In this case, the
actual discrete solutions are used, rather than those
obtained after fine-to-coarse correction.

Another class of adaptive multi level algorithms are the
fast adaptive composite-grid (FAC) methods developed in
the 1980s (30). The main strength of the FAC is the use of
the existing single-grid solvers defined on uniform meshes
to solve different refinement levels. Another important
advantage of the FAC is that the discrete systems on locally
refined grids are given in the conservative form. The FAC
allows concurrent processing of grids at given refinement
levels, and its convergence rate is bounded independently
of the number of refinement levels. One potential pitfall of
both AMR MG and the FAC is in the multiplicative way
various refinement levels are treated, thus implying
sequential processing of these levels.

Grid-Coarsening Techniques and Algebraic Multigrid (AMG)

A multi level grid hierarchy can be created in a straightfor-
ward way by successively adding finer discretization levels
to an initial coarse grid. To this end, nested global and local
mesh refinement as well as non-nested global mesh gen-
eration steps can be employed. However, many practical
problems are defined in domains with complex geometries.

In such cases, an unstructured mesh or a set of composite
block-structured meshes are required to resolve all the
geometric features of the domain. The resulting grid could
contain a large number of nodes to be used as the coarsest
grid level in the MG algorithms. To take full advantage of
MG methods in such circumstances, a variety of techniques
have been developed to provide multi level grid hierarchy
and generate intergrid transfer operators by coarsening a
given fine grid.

The first task in the grid-coarsening procedure is to
choose the coarse-level variables. In practice, the qual-
ity of the selected coarse-level variables is based on heur-
istic principles (see Refs. 4,7, and 8). The aim is to achieve
both the quality of interpolation and a significant reduc-
tion in the dimension of a discrete problem on the coarse
grids. These two requirements are contradictory, and in
practice some tradeoffs are needed to meet them as closely
as possible. The coarse-level variables commonly are
identified as a subset of the fine grid variables based on
the mesh connectivity and algebraic dependencies. The
mesh connectivity can be employed in a graph-based
approach, by selecting coarse-level variables at the fine
mesh points to form the maximal independent set (MIS) of
the fine mesh points. For the construction of effective
coarse grids and intergrid transfer operators, it often is
necessary to include the algebraic information in the
coarse nodes selection procedure. One basic algebraic
principle is to select coarse-level variables with a strong
connection to the neighboring fine-level variables
(strength of dependence principle) (31). This approach
leads to a class of MG methods referred to as algebraic
multigrid (AMG) methods. Whereas geometric MG meth-
ods operate on a sequence of nested grids, AMG operates
on a hierarchy of progressively smaller linear systems,
which are constructed in an automatic coarsening pro-
cess, based on the algebraic information contained in the
coefficient matrix.

Another class of methods identifies a coarse grid variable
as a combination of several fine-grid variables. It typically
is used in combination with a finite-volume discretization
method (10), where the grid variables are associated with
the corresponding mesh control volumes. The volume
agglomeration method simply aggregates the fine control
volumes into larger agglomerates to form the coarse grid
space. The agglomeration can be performed by a greedy
algorithm. Alternatively, the fine grid variables can be
clustered directly (aggregated) into coarse-level variables
based on the algebraic principle of strongly or weakly
coupled neighborhoods. The aggregation method is intro-
duced in Ref. 32, and some similar methods can be found in
Refs. 33 and 34. The agglomeration method works also in
the finite element setting (35).

The most common approach in creating the intergrid
transfer operators within the grid-coarsening procedure is
to formulate first the prolongation operator Ph

H and to use
RH

h ¼ ðPh
HÞ

T as a restriction operator. One way of construct-
ing the prolongation operator from a subset of fine grid
variables is to apply the Delauney triangulation procedure
to the selected coarse mesh points. A certain finite element
space associated to this triangulation can be used to create
the interpolation operator Ph

H. The prolongation operators

Figure 1. Composite multi level adaptive mesh for the MG solu-
tion of a dopant diffusion equation in a semiconductor fabrication.

MULTIGRID METHODS 9



for the agglomeration and aggregation methods are defined
in the way that each fine grid variable is represented by a
single (agglomerated or aggregated) variable of the coarse
grid.

The interpolation operator also can be derived using
purely algebraic information. We start from a linear dis-
crete problem in Equation (4) and introduce a concept of
algebraically smooth error eh. Algebraically smooth error is
the error that cannot be reduced effectively by a fixed-point
iteration. Note that the graph of an algebraically smooth
error may not necessarily be a smooth function (7). The
smooth errors are characterized by small residuals, for
example, componentwise jrij�aiijeij. This condition can
be interpreted broadly as

Ae� 0 ð22Þ

For the cases of model–problems in Equations (5) and (6)
and Equations (8) and (9), where the coefficient matrices
are characterized by zero row sums, Equation (22) means
that we have component-wise

aiiei� �
X
j 6¼ i

ai je j ð23Þ

The relation in Equation (23) means that the smooth error
can be approximated efficiently at a particular point if one
knows its values at the neighboring points. This fact is the
starting point for the development of the interpolation
operator Ph

H for AMG. Another important feature in con-
structing the AMG interpolation is the fact that the
smooth error varies slowly along the strong connections
(associated with large negative off-diagonal elements in
the coefficient matrix). Each equation in the Galerkin
system describes the dependence between the neighbor-
ing unknowns. The i-th equation in the system determines
which unknowns u j affect the unknown ui the most. If the
value ui needs to be interpolated accurately, the best
choice would be to adopt the interpolation points u j

with large coefficients ai j in the Galerkin matrix. Such
points u j are, in turn, good candidates for coarse grid
points. The quantitative expression that ui depends
strongly on u j is given by

�ai j	 u max
1�k�n

f�aikg; 0< u � 1 ð24Þ

Assume that we have partitioned the grid points into the
subset of coarse grid points C and fine grid points F. For
each fine grid point i, its neighboring points, defined by the
nonzero off-diagonal entries in the i-th equation, can be
subdivided into three different categories, with respect to
the strength of dependence: coarse grid points with strong
influence on iðCiÞ, fine grid points with strong influence on
iðFs

i Þ, and the points (both coarse and fine) that weakly
influence iðDiÞ. Then, the relation in Equation (23) for
algebraically smooth error becomes (for more details, see
Ref. 31)

aiiei� �
X
j2Ci

ai je j �
X
j2Fs

i

ai je j �
X
j2Di

ai je j ð25Þ

The sum over weakly connected points Di can be lumped
with the diagonal terms, as ai j is relatively small compared
with aii. Also, the nodes j2Fs

i should be distributed to the
nodes in the set Ci. In deriving this relation, we must
ensure that the resulting interpolation formula works cor-
rectly for the constant functions. The action of the inter-
polation operator Ph

H obtained in this way can be
represented as

ðPh
HeÞi ¼

ei i2CX
j2Ci

vi je j i2F

8<
: ð26Þ

where

vi j ¼ �

ai j þ
X

k2Fs
i

aikak jX
l2Ci

akl

aii þ
X

m2Di

aim

ð27Þ

Finally, the coarse grid discrete equations should be
determined. The volume agglomeration methods allow
us, in some cases, to combine the fine grid discretization
equations in the formulation of the coarse grid ones. How-
ever, in most cases, the explicit discretization procedure is
not possible and coarse grid equations should be con-
structed algebraically. An efficient and popular method
to obtain a coarse-level operator is through the Galerkin
form

AH ¼ RH
h AhPh

H ð28Þ

For other, more sophisticated methods based on con-
strained optimization schemes see Ref. 36.

The AMG approach that was introduced previously is
suitable for the approximate solution of linear algebraic
systems that arise in discretizations of scalar elliptic
PDEs. The most robust performance of AMG is observed
for linear systems with coefficient matrices being SPD and
M-matrices (the example being the discrete Laplace opera-
tor) (24). A reasonably good performance also can be
expected for the discrete systems obtained from the discre-
tizations of the perturbations of elliptic operators (such as
the convection–diffusion–reaction equation). However,
when the AMG solver, based on the standard coarsening
approach, is applied to the linear systems obtained from
the discretization of non scalar PDEs or systems of PDEs
(where the coefficient matrices are substantially different
from the SPD M-matrices), its performance usually deterio-
rates significantly (if converging atall).Thereason for this is
that the classical AMG uses the variable-based approach.
This approach treats all the unknowns in the system
equally. Thus, such approach cannot work effectively for
systems of PDEs, unless a very weak coupling exists
between the different unknowns. If the different types of
unknowns in a PDE system are coupled tightly, some mod-
ifications and extensions of the classical approach are
needed to improve the AMG convergence characteristics
and robustness (see Ref. 37).

An initial idea of generalizing the AMG concept to sys-
tems of PDEs resulted in the unknown-based approach. In

10 MULTIGRID METHODS



this approach, different types of unknowns are treated
separately. Then, the coarsening of the set of variables
that corresponds to each of the unknowns in a PDE system
is based on the connectivity structure of the submatrix that
corresponds to these variables (the diagonal block of the
overall coefficient matrix, assuming that the variables cor-
responding to each of the unknowns are enumerated con-
secutively), and interpolation is based on the matrix entries
in each submatrix separately. In contrast, the coarse-level
Galerkin matrices are assembled using the whole fine level
matrices. The unknown-based approach is the simplest way
of generalizing the AMG for systems of PDEs. The addi-
tional information that is needed for the unknown-based
approach (compared with the classical approach) is the
correspondence between the variables and the unknowns.
The best performance of AMG with the unknown-based
approach is expected if the diagonal submatrices that corr-
spond to all the unknowns are close to M-matrices. This
approach is proved to be effective for the systems involving
non scalar PDEs [such as linear elasticity (38)]. However,
this approach loses its effectiveness if different unknowns in
the system are coupled tightly.

The latest development in generalizations of AMG for
the PDE systems is referred to as the point-based approach.
In this approach, the coarsening is based on a set of points,
and all the unknowns share the same ‘‘grid’’ hierarchy. In a
PDE setting, points can be regarded as the physical grid
points in space, but they also can be considered in an
abstract setting. The coarsening process is based on an
auxiliary matrix, referred to as the primary matrix. This
matrix should be defined to be the representative of the
connectivity patterns for all the unknowns in the system, as
the same coarse levels are associated to all the unknowns.
The primary matrix is defined frequently based on the
distances between the grid points. Then, the associated
coarsening procedure is similar to that of geometric MG.
The interpolation procedure can be defined as block inter-
polation (by approximating the block equations), or one
can use the variable-based approaches, which are the same
(s-interpolation) or different (u-interpolation) for each
unknown. The interpolation weights are computed based
on the coefficients in the Galerkin matrix, the coefficients of
the primary matrix, or the distances and positions of the
points. The interpolation schemes deployed in classical
AMG [such as direct, standard, or multi pass interpolation
(8)] generalize to the point-based AMG concept.

Although great progress has been made in developing AMG
for systems of PDEs, no unique technique works well for all
systemsofPDEs.Concrete instancesof this conceptare foundto
work well for certain important applications, such as CFD (seg-
regated approaches in solving the Navier–Stokes equations),
multiphase flow in porous media (39), structural mechanics,
semiconductor process and device simulation (40,41), and so
further. Finally, it should be pointed out that the code SAMG
(42), based on the point approach, was developed at Fraunhofer
Institute in Germany.

Multigrid as a Preconditioner

In the Basic Concepts section, the fixed-point iteration
methods were introduced. Their ineffectiveness when deal-

ing with the low-frequency error components motivated the
design of MG techniques. Fixed-point iterations are just
one member of the broad class of methods for the solution of
sparse linear systems, which are based on projection. A
projection process enables the extraction of an approximate
solution of a linear system from a given vector subspace.
The simplest case of the projection methods are one-dimen-
sional projection schemes, where the search space is
spanned by a single vector. The representatives of one-
dimensional projection schemes are the steepest descent
algorithm and the minimum residual iteration (4).

One way of improving the convergence characteristics of
the projection methods is to increase the dimension of the
vector subspace. Such approach is adopted in the Krylov
subspace methods (2,4). Krylov methods are based on the
projection process onto the Krylov subspace defined as

KmðA; yÞ ¼ span ðy;Ay; . . . ;Am�1yÞ ð29Þ

In Equation (29), A is the coefficient matrix and the vector y
usually is taken to be the initial residual r½0� ¼ f � Ax½0�.
The main property of the Krylov subspaces is that their
dimension increases by 1 at each iteration. From the defini-
tion in Equation (29) of the Krylov subspace, it follows that
the solution of a linear system Ax ¼ f is approximated by
x ¼ A�1 f � qm�1ðAÞrj0j, where qm�1ðAÞ is the matrix poly-
nomial of degree m� 1. All Krylov subspace methods work
on the same principle of polynomial approximation. Differ-
ent types of Krylov methods are obtained from different
types of orthogonality constraints imposed to extract the
approximate solution from the Krylov subspace (4). The
well-known representative of the Krylov methods aimed for
the linear systems with SPD coefficient matrices is the
conjugate gradient (CG) algorithm.

The convergence characteristics of Krylov iterative sol-
vers depend crucially on the spectral properties of the
coefficient matrix. In the case of the CG algorithm, the
error norm reduction at the k-th iteration can be repre-
sented as (2,4)

ke½k�kA
ke½0�kA

� min
qk�1 2P0

k�1

max
j
jqk�1ðl jÞj ð30Þ

where qk�1 is the polynomial of degree k� 1 such that
qk�1ð0Þ ¼ 1 and k � k2A ¼ ðA�; �Þ. The estimate in Equation
(30) implies that the contraction rate of the CG algorithm at
the iteration k is determined by the maximum value of the
characteristic polynomial qk�1 evaluated at the eigenva-
lues l j of the coefficient matrix. This implies that the rapid
convergence of the CG algorithm requires the construction
of the characteristic polynomial q of relatively low degree,
which has small value at all eigenvalues of A. This con-
struction is possible if the eigenvalues of A are clustered
tightly together. Unfortunately, the coefficient matrices
that arise in various discretizations of PDEs have the
eigenvalues spread over the large areas of the real axis
(or the complex plane). Moreover, the spectra of such
coefficient matrices change when the discretization para-
meter or other problem parameters vary. The prerequisite
for rapid and robust convergence of Krylov solvers is the

MULTIGRID METHODS 11



redistribution of the coefficient matrix eigenvalues. Ideally,
the eigenvalues of the transformed coefficient matrix
should be clustered tightly, and the bounds of the clusters
should be independent on any problem or discretization
parameters. As a consequence, the Krylov solver should
converge to a prescribed tolerance within a small, fixed
number of iterations. The numerical technique that trans-
forms the original linear system Ax ¼ f to an equivalent
system, with the same solution but a new coefficient matrix
that has more favorable spectral properties (such as a
tightly clustered spectrum), is referred to as precondition-
ing (2,4). Designing sophisticated preconditioners is pro-
blem-dependent and represents a tradeoff between
accuracy and efficiency.

Preconditioning assumes the transformation of the ori-
ginal linear system Ax ¼ f to an equivalent linear system
M�1Ax ¼M�1 f . In practice, the preconditioning matrix (or
the preconditioner) M is selected to be spectrally close to the
matrix A. The application of a preconditioner requires at
each iteration of a Krylov solver that one solves (exactly or
approximately) a linear system Mz ¼ r, where r is the
current residual. This operation potentially can represent
a considerable computational overhead. This overhead is
the main reason why the design of a good preconditioner
assumes the construction of such matrix M that can be
assembled and computed the action of its inverse to a vector
at optimal cost. Moreover, for preconditioning to be effec-
tive, the overall reduction in number of iterations of the
preconditioned Krylov solver and, more importantly, the
reduction in the execution time should be considerable,
when compared with a non preconditioned Krylov solver
(43). To design a (nearly) optimal Krylov solver for a parti-
cular application, the preconditioner needs to take into
account the specific structure and spectral properties of
the coefficient matrix.

In previous sections, we established MG as the optimal
iterative solver for the linear systems that arise in discre-
tizations of second-order, elliptic, PDEs. As an alternative
to using MG as a solver, one may consider using it as a
preconditioner for Krylov subspace solvers. When MG is
used as a preconditioner, one applies a small number
(typically 1 to 2) of V-cycles, with a small number of pre-
and post smoothing iterations, at each Krylov iteration to
approximate the action of M�1 to a residual vector. This
approach works well for SPD linear systems arising from
the discretization of second-order, elliptic PDEs. A number
of similar MG-based approaches work well in the same
context.

One group of MG-based preconditioners creates expli-
citly the transformed system matrix M�1

L AM�1
R , where ML

and MR are the left and the right preconditioning
matrices, respectively. A typical representative is the
hierarchical basis MG (HBMG) method (44). The HBMG
method is introduced in the framework of the FE approx-
imations based on nodal basis. In the HBMG method, the
right preconditioning matrix MR is constructed in such a
way that the solution x is contained in the space of
hierarchical basis functions. Such space is obtained by
replacing, in a recursive fashion, the basis functions
associated with the fine grid nodes that also exist at
the coarser grid level, by the corresponding coarse grid

nodal basis functions. The process is presented in Fig. 2,
where the fine grid basis functions that are replaced by
the coarse grid basis functions are plotted with the
dashed lines. The HBMG may be interpreted as the
standard MG method, with the smoother at each level
applied to the unknowns existing only at this level (and
not present at coarser levels). The common choice ML ¼
Mt

R extends the important properties of the original
coefficient matrix, such as symmetry and positive defi-
nitness, to the preconditioned matrix. The HBMG
method is suitable for implementation on adaptive,
locally refined grids. Good results are obtained for the
HBMG in two dimensions (with uniformly/locally refined
meshes), but the efficiency deteriorates in 3-D.

Another important MG-like preconditioning method is
the so-called BPX preconditioner (45). It belongs to a class
of parallel multi level preconditioners targeted for the
linear systems arising in discretizations of second-order,
elliptic PDEs. The main feature of this preconditioner is
that it is expressed as a sum of independent operators
defined on a sequence of nested subspaces of the finest
approximation space. The nested subspaces are asso-
ciated with the sequence of uniformly or adaptively
refined triangulations and are spanned by the standard
FEM basis sets associated with them. Given a sequence of
nested subspaces Sh

1 �Sh
2 � � � �Sh

L with Sh
l ¼ spanffl

kg
Nl

k¼1,
the action of the BPX preconditioner to a vector can be
represented by

P�1v ¼
XL

l¼1

XNl

k¼1

ðv;fl
kÞfl

k ð31Þ

The condition number of the preconditioned discrete
operator P�1A is at most OðL2Þ, and this result is inde-
pendent on the spatial dimension and holds for both quasi-
uniform and adaptively refined grids. The preconditioner
in Equation (31) also can be represented in the operator
form as

P�1 ¼
XL
l¼1

RlQl ð32Þ

where Rl is an SPD operator Sh
l 7!Sh

l and Ql : Sh
L 7!Sh

l is
the projection operator defined by ðQlu; vÞ ¼ ðu; vÞ for
u2Sh

L and v2Sh
l [ð�; �Þ denotes the l2-inner product].

The cost of applying the preconditioner P will depend
on the choice of Rl. The preconditioner in Equation (32)

Figure 2. The principles of creating hierarchical basis in HBMG
methods.

12 MULTIGRID METHODS



is linked closely to the MG V-cycle. The operator Rl has the
role of a smoother; however, in BPX, preconditioner
smoothing at every level is applied to a fine grid residual
(which can be done concurrently). In MG, smoothing of the
residual at a given level cannot proceed until the residual
on that level is formed using the information from the
previous grids. This process also involves an extra com-
putational overhead in the MG algorithm. Parallelization
issues associated with the BPX preconditioner will be
discussed in the final section.

Many important problems in fundamental areas, such
as structural mechanics, fluid mechanics, and electromag-
netics, do not belong to the class of scalar, elliptic PDEs.
Some problems are given in so-called mixed forms (2) or as
the systems of PDEs. The latter is the regular case when
multiphysics and multiscale processes and phenomena
are modeled. When the systems of PDEs or PDEs with
unknown vector fields are solved, the resulting discrete
operators (coefficient matrices) have spectral properties
that are not similar to the spectral properties of discrete
elliptic, self-adjoint problems, for which MG is particu-
larly suited. Thus, direct application of standard MG as a
preconditioner in such complex cases is not effective. In
such cases, it is possible to construct the block precondi-
tioners—an approach that proved efficient in many impor-
tant cases (2). A coefficient matrix is subdivided into
blocks that correspond to different PDEs/unknowns in
the PDE system (similarly to the unknown-based
approach in the AMG for systems of PDEs). If some
main diagonal blocks represent the discrete second-order,
elliptic PDEs (or their perturbations), they are suitable
candidates to be approximated by the standard MG/AMG
with simple relaxation methods. The action of the inverse
of the whole preconditioner is achieved by the block back-
substitution. Successful block preconditioners have been
developed for important problems in structural mechanics
(46), fluid mechanics (2,47), and electromagnetics (48). In
the following list, a brief review of some of these techni-
ques is given.

1. Mixed formulation of second-order elliptic proble-
ms. The boundary value problem is given by

A�1 u
! �rp ¼ 0

r � u
! ¼ � f

ð33Þ

in V�Rd, subject to suitable BCs. In Equation (33)
A : R 7!Rd�d is a symmetric and uniformly positive definite
matrix function, p is the pressure, and u

! ¼ A�1 p is the
velocity. Problems of this type arise in modeling of fluid flow
through porous media. The primal variable formulation of
Equation (33) is �r � Arp ¼ f , but if u

!
is the quantity of

interest, a numerical solution of the mixed form in Equation
(33) is preferable. Discretization of Equation (33) using
Raviart–Thomas FEM leads to a linear system with an
indefinite coeffiient matrix

MA Bt

B 0

� �
u
p

� �
¼ g

f

� �
ð34Þ

with ðMAÞi j ¼ ðA w
!

i; w
!

jÞ; i; j ¼ 1; . . . ;m. For details, see
Ref. 47. The optimal preconditioner for the linear system
in Equation (34) is given by

M ¼ MA 0
0 BM�1

A Bt

� �
ð35Þ

The exact implementation of this preconditioner requires
the factorization of the dense Schur complement matrix
S ¼ BM�1

A Bt). The matrix S can be approximated with-
out significant loss of efficiency by the matrix
SD ¼ Bdiag ðM�1

A ÞB
t, which is a sparse matrix. The action

of S�1
D to a vector can be approximated further by a small

number of AMG V-cycles (47).

2. Lame’s equations of linear elasticity. This problem is a
fundamental problem in structural mechanics. It also
occurs in the design of integrated electronic components
(microfabrication). The equations by Lamé represent a
displacement formulation of linear elasticity:

r
@2~u

@t2
� mD~uþ ðlþ mÞrðr � ~uÞ ¼ ~f ð36Þ

subject to a suitable combination of Dirichlet and Neu-
mann BCs. Equation (36) is a special case of non linear
equations of visco-elasticity. In Equation (36), r denotes
density of a continuous material body, ~u is the displace-
ment of the continuum from the equilibrium position
under the combination of external forces ~f , and l and m

are the Lamé constants (see Ref. 49 for more details).
After the discretization of Equation (36) by the FEM, a
linear system Aeu ¼ f is obtained, with Ae 2Rnd�nd;u,
and f 2Rnd, where n is the number of unconstrained
nodes and d is the spatial dimension. If the degrees of
freedom are enumerated in such a way that the displace-
ments along one Cartesian direction (unknowns that
correspond to the same displacement component) are
grouped together, the PDE system in Equation (36) con-
sists of d scalar equations and can be preconditioned
effectively by a block-diagonal preconditioner. For this
problem, effective solvers/preconditioners based on the
variable and the point approach in AMG also are devel-
oped. However, the block-diagonal preconditioner, deve-
loped in (46) uses classical (unknown-based) AMG. From
Equation (36) it can be seen that each scalar PDE repre-
sents a pertur- bation of the standard Laplacian operator.
Thus, the effectiveness of MG applied in this context
depends on the relative size of the perturbation term.
For compressible materials (l away from 1), the block-
diagonal preconditioner (46) is very effective. For nearly
incompressible cases (l!1), an alternative formulation
of the linear elasticity problem in Equation (36) is needed
(see the Stokes problem).

3. The biharmonic equation. The biharmonic problem
D2u ¼ f arises in structural and fluid mechanics (2,49).
FEM discretization of the original formulation of the bihar-
monic problem requires the use of Hermitian elements that
result in a system with SPD coefficient matrix, which is not

MULTIGRID METHODS 13



an M-matrix. Consequently, direct application of the stan-
dard GMG/AMG preconditioners will not be effective.

An alternative approach is to reformulate the biharmo-
nic problem as the system of two Poisson equations:

�Du ¼ v
�Dv ¼ f

ð37Þ

subject to suitable BCs (2). Discretization of Equation (37)
can be done using the standard Lagrangian FEM, produ-
cing an indefinite linear system

MB At

A 0

� �
v
u

� �
¼ f

0

� �
ð38Þ

with ðMBÞi j ¼ ðfi;f jÞ; i; j ¼ 1; . . . ;m, and ðAÞi j ¼ ðrf j;
rfiÞ; i ¼ 1; . . . ;n; j ¼ 1; . . . ;m. In Ref. 50, the application
of a modified MG method to the Schur complement
system obtained from Equation (38) is discussed. Another
nearly optimal preconditioner for the system in Equation
(38) can be obtained by decoupling the free and constr-
ained nodes in the first equation of Equation (37). This
decoupling introduces a 3� 3 block splitting of the coeffi-
cient matrix, and the preconditioner is given by (see Ref. 51)

M ¼
0 0 At

I
0 MB At

B
AI AB 0

2
4

3
5 ð39Þ

In Equation (39), the matrix block AI 2Rn�n corresponds
to a discrete Dirichlet Laplacian operator and it can be
approximated readily by a small fixed number of GMG/
AMG V-cycles.

The Stokes Problem. The Stokes equations represent a
system of PDEs that model visous flow:

�D u
! þrp ¼ 0

!

r � u
! ¼ 0

ð40Þ

subject to a suitable set of BCs (see Ref. 2). The variable u
!

is a vector function representing the velocity, wheras the
scalar function p is the pressure. A host of suitable pairs of
FE spaces can be used to discretize Equation (40). Some
combinations are stable, and some require the stabiliza-
tion (2,27). If a stable discretization is applied (see Ref. 2
for more discussion), the following linear system is
obtained

A Bt

B 0

� �
u
p

� �
¼ f

g

� �
ð41Þ

In Equation (41), A2Rm�m represents the vector Laplacian
matrix (a block-diagonal matrix consisting of d scalar dis-
rete Laplacians where d is the spatial dimension), and
B2R n�m is the discrete divergence matrix. The unknown
vectors u and p are the discrete velocity and pressure
solutions, respectively.

Optimal preconditioners for the discrete Stokes problem
in Equation (41) are of the form:

M ¼ A 0
0 Mp

� �
ð42Þ

where Mp is the pressure mass matrix, which is spectrally
equivalent to the Schur complement matrix BA�1Bt. The
vector Laplacian matrix A can be approximated compo-
nentwise by a small number of V-cycles of GMG/AMG (2).

The Navier–Stokes Problem. The Navier–Stokes equa-
tions have similar block structure as the Stokes equations,
with the vector Laplacian operator replaced by the vector
convection-diffusion operator. The steady-state Navier–
Stokes system is given by

�vr2 u
! þ u

! � r u
! þrp ¼ f

!

r � u
! ¼ 0

ð43Þ

In Equation (43), u
!

and p are the velocity and pressure and
v> 0 is kinematic viscosity. The Navier–Stokes equations
represent a model of fluid flow of an incompressible New-
tonian fluid. The system in Equation (43) is non linear. The
use of mixed FEM for the discretization of Equation (43)
leads to a non linear system of algebraic equations. Such
systems need to be solved iteratively, either by the Picard
method or the Newton method. If a stable discretization
method is used in conjuction with the Picard linearization,
we obtain the discrete Oseen problem(2):

F Bt

B 0

� �
Du
D p

� �
¼ f

g

� �
ð44Þ

In Equation (44), F ¼ vAþ C is the discrete vetor con-
vection-diffusion operator and B is, as before, the diver-
gence matrix. The ideal preconditioning of the system in
Equation (44) an be achieved by the blocks-triangular
matrix (2)

M ¼ MF Bt

0 �MS

� �
ð45Þ

In Equation (45), MF is the spectrally equivalent approx-
imation of the matrix F. This approximation can be
achieved by a small number of V-cycles of GMG/AMG
with appropriate smoothing [line, ILU(0)] applied to
each component of F (2). The optimal choice for the block
MS would be BF�1Bt (the Schur complement). As the
Schur complement is a dense matrix, some effective
approximations are needed. One such choice leads to
the pressure convection-diffusion preconditioner (2) with

BF�1Bt�BM�1
u BtF�1

p Mu ð46Þ

In Equation (46), Mu is the velocity mass matrix and Fp is
the discretization of the convection-diffusion equation on

14 MULTIGRID METHODS



the pressure space. Another effective choice for the Schur
complement matrix approximation is to take (2)

BF�1Bt�ðBM�1
u BtÞðBM�1

u FM�1
u BtÞ�1ðBM�1

u BtÞ ð47Þ

Parallel Multigrid Methods

The MG methods commonly are applied to large-scale
computational problems that involve millions of unknowns,
which frequently are non linear and/or time-dependent, for
which the use of modern parallel computers is essential. To
benefit from MG in such cases, various techniques to par-
allelize MG algorithms have been developed.

The simplest and most commonly used approach of
implementing MG algorithms in parallel is to employ the
grid partitioning technique (52,53). This technique involves
no real change to the basic MG algorithm. Namely, the
finest grid level, level Vh, can be partitioned in a non
overlapping set of subgrids

Vh ¼ [
P

i¼1
V
ðiÞ
h ð48Þ

and each of the resulting subgrids V
ðiÞ
h can be assigned to one

of P parallel processors. The partition on the finest grid
induces, naturally, a similar partitioning of the coarser
levels. The partitioning in Equation (48) should be per-
formed in such a way that the resulting subgrids have
approximately the same number of nodes. This requirement
is necessary for good load balancing of the computations. In
addition, the grid partitioning should introduce a small
number of grid lines between the neighboring subdomains.
It also is beneficial that the grid lines stretching between the
neighboring subdomains define the weak connections
between the unknowns. The former requirement is related
to the minimization of the communication overhead
between the neighboring processors, whereas the latter
affects the efficiency and the convergence characteristics
of the parallel MG algorithm. For structured grids defined
on regular geometries, the partitioning in Equation (48) can
be done fairly simply. However, this problem becomes
progressively more complicated for non trivial geometries
(possibly with the internal boundaries) on which a problem
is discretized by unstructured or adaptively refined grids. In
such cases, general-purpose algorithms for graph partition-
ing, such as METIS (54), provide the required balanced grid
subdivision.

Two strategies of combining MG and domain decompo-
sition for parallel computers exist. The simpler choice is to
apply a serial MG algorithm on each of the subdomain
problems, communicating the solution among the proces-
sors only at the finest level. This method is particularly
effective if the subdomains are connected along physically
narrow areas that actually are not visible on coarse levels. A
more complex choice is to extend the communication to the
coarse grid levels.

In some parallel MG algorithms based on the grid
decomposition, different grid levels still are processed
sequentially. When the number of grid variables at the

coarse grid levels falls below a certain threshold, some
processors could become idle. This effect can be particu-
larly pronounced in applications with the local grid refine-
ment. In some extreme cases, no single level, may exist
with enough grid points to keep all the processors busy.
Moreover, the number of grid levels obtained by the
coarsening could be limited by the number of partitions
in the domain decomposition. Therefore, the grid decom-
position based parallelization of MG methods make sense
only if the total number of unknowns in the multi level
grid structure is significantly larger than the number of
available processors.

The problem of sequential processing of different grid
levels in standard MG algorithm can potentially repre-
sent a serious bottleneck for large-scale applications.
The solution to this problem is to use a class of multi
level (ML) methods known as the additive ML methods.
In these methods, the solution (or the preconditioning)
procedure is defined as a sum of independent operators.
It should be emphasised that this type of parallelism is
completely independent of the parallelism induced by the
grid partitioning. As a result, the two techniques can be
combined together, giving a powerful parallel solver/
preconditioner for elliptic problems. An example of a
parallel ML preconditioner, in which different grid levels
can be processed simultaneously, is the BPX precondi-
tioner (45) introduced in the previous section. The
smoothing operator Rk in Equation (32) applies to the
fine grid residual for all levels k. This application allows
the smoothing operation to be performed concurrently for
all levels. Another example of additive ML method can be
derived from the FAC method introduced in the section
on MG with locally refined meshes. The original FAC
algorithm is inherently sequential in the sense that,
although different grid levels can be processed asynchro-
nously, the various refinement levels are treated in a
multiplicative way (i.e., the action of the FAC solver/
preconditioner is obtained as a product of the actions
from different refinement levels). To overcome this
obstacle, an asynchronous version of the FAC algorithm,
referred to as AFAC, was developed (55). The AFAC has
the convergence rate independent of the number of
refinement levels and allows the use of uniform grid
solvers on locally refined grid patches. However, these
uniform grid solvers are, themselves, MG-based, which
can lead potentially to a substantial computational over-
head. A new version, AFACx (56), is designed to use the
simple fixed-point iterations at different refinement
levels without significant deterioration of the conver-
gence characteristics when compared with the previous
versions.

In this article, AMG was introduced as a prototype of a
black-box solver and a preconditioner for elliptic PDEs and
some other class of problems where the coefficient matrix
has the properties that resemble the M-matrix. Because of
its robustness and ease of use, AMG has become an obvious
candidate as a solver for a variety of large-scale scientific
applications. In such cases, the performance characteris-
tics of the sequential AMG may not be sufficient. This
reason is why a considerable research effort was devoted
to the parallelization of AMG.

MULTIGRID METHODS 15



The application of AMG to the solution of a linear system
consists of two phases: the coarsening and the solve phase
(which implements the MG V-cycle). The parallelization of
AMG is done using the domain decomposition approach
based on the grid decomposition in Equation (48). In the
solve phase, parallelization is restricted to fixed-point itera-
tions. In this context, instead of the standard versions, some
modifications are needed. The most common approach is the
CF Gauss–Seidel method, which is performed indepen-
dently on each subdomain using the frozen values in the
boundary areas. The values in these areas are refreshed by
the data communication between the neighboring subdo-
mains.

In most of the application areas, the coarsening phase is
the most time-consuming part of the algorithm. Thus, the
efficient parallelization of AMG coarsening will have a
major impact on AMG parallel performance. The problem
is that the previously introduced classical coarsening algo-
rithm, which also is referred to as the Ruge–Stüben (RS)
coarsening, is inherently sequential. To perform the sub-
division of a set of variables at each ‘‘grid’’ level into coarse
(C) and fine (F) variables, based on the strength of depen-
dence principle, one needs to start from an arbitrary vari-
able and visit all the remaining variables in succession. To
parallelize this process, a combination of the domain
decomposition methodology and the RS coarsening was
proposed. To facilitate this approach, a partitioning of
the graph associated with the coefficient matrix is per-
formed. In this context, it is desirable that the partitioning
cuts only (or mostly) the weak connections in the graph.
Moreover, it is necessary to mark the unknowns that have
some of their connections cut, as these unknowns belong to
the boundary layer between the neighboring subdomains
and will be involved subsequently in the interprocessor
communication. Most of the parallel coarsening schemes
are based on the application of the standard RS coarsening
scheme applied concurrently on each of the subdomains,
employing some kind of special treatment of the points in
the boundary layers. Two main reasons exist for this special
treatment; the standard coarsening scheme usually creates
an unnecessarily high concentration of the C points close to
the processor boundaries, and possible coarsening incon-
sistencies may appear. The latter are manifested in strong
F–F couplings across the subdomain boundaries, where
both F points do not have a common C point. Several
different modifications have been proposed to alleviate
such problems. In the sequel, a brief review of some well-
known modifications of the classical coarsening scheme is
given.

Minimum Subdomain Blocking (MSB). This approach was
the first used to parallelize the AMG coarsening phase (57).
In this approach, the coarsening process in each subdomain
is decoupled into the coarsening of the variables in the
boundary layer (done by the classical RS coarsening
scheme, taking into account only the connections within
the layer) and the coarsening of the remainder of the
subdomain (again, done by the classical RS algorithm).
Such heuristics ensures that each of the F-points in the
boundary layer has at least one connection to a C-point
within the boundary layer. The main drawback of this

approach is that the strong couplings across the subdomain
boundaries are not taken into account. When MSB is used,
the assembly of the interpolation operators is local for each
subdomain (requiring no communication). The assembly of
the coarse grid discrete operators does require some com-
munication; however, it is restricted to the unknowns in the
boundary layers of the neighboring subdomains.

Third-Pass Coarsening (RS3). This coarsening is an alter-
native approach to correct the problem of F–F dependencies
across the subdomain boundaries that do not have a com-
mon C-point (58). In this approach, a two-pass standard RS
coarsening is performed on each subdomain concurrently,
before the third pass is performed on the points within the
boundary layers. This method requires the communication
between the neighboring subdomains. In the RS3 coarsen-
ing, additional coarse grid points can be created in each of
the subdomains on demand from its neighboring subdo-
mains. This fact may lead potentially to the load imbalance
between the subdomains. One drawback of the RS3 coar-
sening is the concentration of the coarse points near the
subdomain boundaries. Another problem is that the intro-
duction of a large number of subdomains will make the
coarsest grid problem unacceptably large (as each of the
subdomains cannot be coarsened beyond a single grid
point).

The CLJP Coarsening. This procedure is based on parallel
graph-partitioning algorithms and is introduced in Ref. 59.
In this approach, a directed weighted graph is defined with
the vertices corresponding to the problem unknowns and
the edges corresponding to the strong couplings. A weight is
associated with each vertex, being equal to the number of
strong couplings of the neighboring vertices to this vertex
plus a random number. Random numbers are used to
break ties between the unknowns with the same number
of strong influences (and thus to enable parallelization of
the coarsening procedure). The coarsening process pro-
ceeds iteratively, where at each iteration an independent
set is chosen from the vertices of the directed graph. A point
i is selected to be in an independent set if its weight is larger
than the weights of all neighboring vertices. Then, the
points in the independent set are declared as C-points.
The main advantage of the CLJP coarsening is that it is
entirely parallel and it always selects the same coarse grid
points, regardless of the number of subdomains (this is not
the case with the RS and the RS3 coarsenings). A drawback
is that the CLJP coarsening process selects the coarse grids
with more points than necessary. This action, in turn,
increases the memory requirements and the complexity
of the solution phase. A recent modification of the CLJP
scheme that addresses these issues is proposed in [Ref. 60].
The interpolation operators and the coarse grid discrete
operators are assembled in a usual way.

The Falgout Coarsening. This hybrid scheme involves
both the classical RS and the CLJP coarsening, designed
with the aim of reducing the drawbacks that each of these
two schemes introduce. The Falgout coarsening (58) uses
the RS coarsening in the interior of the subdomains and the
CLJP coarsening near the subdomain boundaries.

16 MULTIGRID METHODS



Parallel AMG as a Preconditioner for 3-D Applications.
When traditional coarsening schemes are applied to
large-scale problems obtained from the discretizations
of 3-D PDEs, the computational complexity and the
memory requirements increase considerably, diminish-
ing the optimal scalability of AMG. If AMG is used as a
preconditioner in this context, the two coarsening
schemes, based on the maximal independent set algo-
rithm, referred to as the parallel modified independent
set (PMIS) and the hybrid modified independent set
(HIMS) (introduced in Ref. 61), can reduce the complexity
issues significantly.

FINAL REMARKS

MG methods have been a subject of considerable research
interest over the past three decades. Research groups at
many institutions are involved in ongoing projects related
to both theoretical and practical aspects of MG. It is
virtually impossible to cover all the aspects of this versa-
tile area of research and to cite all the relevant references
within the limited space of this review. A comprehensive
reference list with over 3500 units on MG can be found at
[Ref. 62], together with some publicly available MG soft-
ware (63). The ongoing interest of the scientific commu-
nity in MG methods is reflected in two long-running
regular conference series on MG methods (64,65), which
attract an ever-increasing number of participants. Some
additional relevant monographs, that were not previously
mentioned in this presentation, include Refs. 11–15 and
Ref. 66.

BIBLIOGRAPHY

1. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computa-
tional Differential Equations. Cambridge: Cambridge Univer-
sity Press, 1996.

2. H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements
and Fast Iterative Solvers. Oxford: Oxford University Press,
2005.

3. A. R. Mitchell and D. F. Griffiths, The Finite Difference
Method in Partial Differential Equations. Chichester: Wiley,
1980.

4. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
Philadelphia, PA: SIAM, 2003.

5. R. P. Fedorenko, A relaxation method for solving elliptic dif-
ference equations, USSR Computational Math. and Math.
Physics, 1: 1092–1096, 1962.

6. A. Brandt, Multi-level adaptive solutions to boundary-value
problems, Math. Comput., 31: 333–390, 1977.

7. W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid
tutorial, 2nd ed. Philadelphia, PA: SIAM, 2000.

8. U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid.
London: Academic Press, 2001.

9. W. Hackbusch, Multi-grid methods and applications. Berlin:
Springer, 2003.

10. P. Wesseling, An Introduction to Multigrid Methods. Philadel-
phia, PA: R.T. Edwards, 2004.

11. J. H. Bramble, Multigrid Methods. Harlow: Longman Scientific
and Technical, 1993.

12. U. Rüde, Mathematical and Computational Techniques for
Multilevel Adaptive Methods, Vol. 13, Frontiers in Applied
Mathematics. Philadelphia, PA: SIAM, 1993.

13. S. F. McCormick, Multilevel Adaptive Methods for Partial
Differential Equations, Vol. 6, Frontiers in Applied Mathe-
matics. Philadelphia, PA: SIAM, 1989.

14. V.V. Shaidurov, Multigrid Methods for Finite Elements.
Dordrecht: Kluwer, 1995.

15. M. Griebel and C. Zenger: Numerical simulation in science and
engineering, Notes on numerical fluid mechanics, Vol. 48.
Braunschweig: Vieweg Verlag, 1994.

16. B. Koren, Multigrid and Defect Correction for the Steady
Navier–Stokes Equations Applications to Aerodynamics.
Amsterdam: Centrum voor Wiskunde en Informatica, 1991.

17. C. Douglas and G. Haase, Algebraic multigrid and Schur
complement strategies within a multilayer spectral element
ocean model, Math. Models Meth. Appl. Sci., 13(3): 309–322,
2003.

18. M. Brezina, C. Tong, and R. Becker, Parallel algebraic multi-
grid for structural mechanics, SIAM J. Sci. Comput., 27(5):
1534–1554, 2006.

19. A. Brandt, J. Bernholc, and K. Binder (eds.), Multiscale Com-
putational Methods in Chemistry and Physics. Amsterdam:
IOS Press, 2001.

20. W. Joppich and S. Mijalković, Multigrid Methods for Process
Simulation. Wien: Springer-Verlag, 1993.

21. G. Haase, M. Kuhn, and U. Langer, Parallel multigrid 3D
Maxwell solvers, Parallel Comput., 27(6): 761–775, 2001.

22. J. Hu, R. Tuminaro, P. Bochev, C. Garassi, and A. Robinson,
Toward an h-independent algebraic multigrid for Maxwell’s
equations, SIAM J. Sci. Comput., 27(5): 1669–1688, 2006.

23. J. Jones and B. Lee, A multigrid method for variable coefficient
Maxwell’s equatons, SIAM J. Sci. Comput, 27(5): 1689–1708,
2006.

24. G. H. Golub and C. F. Vanloan, Matrix computations.
Baltimore, MD: J. Hopkins University Press, 1996.

25. G. Wittum, Multigrid methods for Stokes and Navier–Stokes
equations—transforming smoothers: Algorithms and numer-
ical results, Numer. Math., 54: 543–563, 1989.

26. U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical
Solution of Boundary Value Problems for Ordinary Differential
Equations. Philadelphia, PA: SIAM, 1995.

27. P. M. Gresho and R. L. Sani, Incompressible Flow and the
Finite Element Method. Chichester: Wiley, 1998.

28. R. E. Bank, PLTMG: A software package for solving elliptic
partial differential equations, Users’ Guide 7.0, Vol. 15, Fron-
tiers in applied mathematics, Philadelphia, PA: SIAM,
1994.

29. A. C. Jones, P. K. Jimack, An adaptive multigrid tool for elliptic
and parabolic systems, Int. J. Numer. Meth. Fluids, 47: 1123–
1128, 2005.

30. S. McCormick, Fast Adaptive Composite Grid (FAC) methods:
Theory for the variational case, in: K. Bohmer and H. Setter
(eds.), Defect Correction Methods: Theory and Applications,
Computation Supplementation, Vol. 5. Berlin: Springer
Verlag, 1984, pp. 131–144.

31. J. W. Ruge and K. Stüben, Algebraic multigrid, in: S. F.
McCormick (ed.), Multigrid methods, Vol. 3, Frontiers in
applied mathematics, Philadelphia, PA: SIAM, 1987, pp.
73–130.

32. P. Vanek, J. Mandel, and M. Brezina, Algebraic multigrid by
smoothed aggregation for second and fourth order elliptic
problems, Computing, 56: 179–196, 1996.

MULTIGRID METHODS 17



33. M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E.
Jones, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge,
Algebraic multigrid based on element interpolation (AMGe),
SIAM J. Sci. Comput., 22(5): 1570–1592, 2000.

34. T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T.
Manteuffel, S. McCormick, J. Ruge, and P. Vassilevski, Spec-
tral AMGe (rAMGe), SIAM J. Sci. Comput., 25(1): 1–26, 2003.

35. J. E. Jones, P. S. Vassilevski, AMGe based on element agglom-
eration, SIAM J. Sci. Comput., 23(1): 109–133, 2001.

36. A. Brandt, General highly accurate algebraic coarsening,
Electronic Trans. Numerical Analysis, 10: 1–20, 2000.

37. K. Stüben, A review of algebraic multigrid, J. Comput. Appl.
Math., 128: 281–309, 2001.

38. T. Füllenbach, K. Stüben, and S. Mijalković, Application of
algebraic multigrid solver to process simulation problems,
Proc. Int. Conf. of Simulat. of Semiconductor Processes and
Devices, 2000, pp. 225-228.

39. K. Stüben, P. Delaney, and S. Chmakov, Algebraic multigrid
(AMG) for ground water flow and oil reservoir simulation, Proc.
MODFLOW 2003.

40. T. Füllenbach and K. Stüben, Algebraic multigrid for selected
PDE systems, Proc. 4th Eur. Conf. on Elliptic and Parabolic
Problems, London, 2002, pp. 399-410.

41. T. Clees and K. Stüben, Algebraic multigrid for industrial
semiconductor device simulation, Proc. 1st Int. Conf. on
Challenges in Sci. Comput., 2003.

42. K. Stüben and T. Clees, SAMG user’s manual, Fraunhofer
Institute SCAI. Available: http://www.scai.fhg.de/samg.

43. J. J. Dongarra, I. S. Duff, D. Sorensen, and H. vander Vorst,
Numerical Linear Algebra for High-Performance Computers.
Philadelphia, PA: SIAM, 1998.

44. R. E. Bank, T. Dupont, and H. Yserentant, The hierarchical
basis multigrid method, Numer. Math., 52: 427–458, 1988.

45. J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel
preconditioners, Math. Comput., 55: 1–22, 1990.

46. M. D. Mihajlović and S. Ž. Mijalković, A component decom-
position preconditioning for 3D stress analysis problems,
Numer. Linear Algebra Appl., 9(6-7): 567–583, 2002.

47. C. E. Powell and D. J. Silvester, Optimal preconditioning for
Raviart–Thomas mixed formulation of second-order elliptic
problems, SIAM J. Matrix Anal. Appl., 25: 718–738, 2004.

48. I. Perugia, V. Simoncini, and M. Arioli, Linear algebra methods
in a mixed approximation of magnetostatic problems, SIAM J.
Sci. Comput., 21(3): 1085–1101, 1999.

49. G. Wempner, Mechanics of Solids. New York: McGraw-Hill,
1973.

50. M. R. Hanisch, Multigrid preconditioning for the biharmonic
Dirichlet problem, SIAM J. Numer. Anal., 30: 184–214, 1993.

51. D. J. Silvester and M. D. Mihajlović, A black-box multigrid
preconditioner for the biharmonic equation, BIT, 44(1): 151–
163, 2004.

52. B. Smith, P. Bjøstrad, and W. Gropp, Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential
Equations. Cambridge: Cambridge University Press, 2004.

53. A. Brandt, Multigrid solvers on parallel computers, in M. H.
Schultz (ed.), Elliptic Problem Solvers. New York: Academic
Press, 1981, pp. 39–83.

54. METIS, A family of multilevel partitioning algorithms. Avail-
able: http://glaros.dtc.umn.edu/gkhome/views/metis.

55. L. Hart and S. McCormick, Asynchronous multilevel adaptive
methods for solving partial differential equations: Basic ideas,
Parallel Comput., 12: 131–144, 1989.

56. B. Lee, S. McCormick, B. Philip, and D. Quinlan, Asynchronous
fast adaptive composite-grid methods for elliptic problems:
theoretical foundations, SIAM J. Numer. Anal., 42: 130–152,
2004.

57. A. Krechel and K. Stüben, Parallel algebraic multigrid based
on subdomain blocking, Parallel Comput., 27: 1009–1031,
2001.

58. V. E. Henson and U. Meier Yang, BoomerAMG: A parallel
algebraic multigrid solver and preconditioner, Appl. Numer.
Math., 41: 155–177, 2002.

59. A. J. Cleary, R. D. Falgout, V. E. Henson, and J. E. Jones,
Coarse-grid selection for parallel algebraic multigrid, Lecture
Notes in Computer Science. New York: Springer, 1998, pp. 104–
115.

60. D. M. Alber, Modifying CLJP to select grid hierarchies with
lower operator complexities and better performance, Numer.
Linear Algebra Appl., 13: 87–104, 2006.

61. H. De Sterck, U. Meier Yang, and J. J. Heys, Reducing complex-
ity in parallel algebraic multi grid preconditioners, SIAM
J. Matrix Anal. Appl., 27: 1019–1039, 2006.

62. C. C. Douglas, and M. B. Douglas, MGNet bibliography. Avail-
able: http://www.mgnet.org/bib/mgnet.bib. New Haven, CT:
Yale University, Department of Computer Science, 1991-2002.

63. MGNet: A repository for multigrid and other methods.
Available: http://www.mgnet.org/.

64. Copper mountain conference on multigrid methods. Available:
http://amath.colorado.edu/faculty/copper/.

65. European conference on multigrid, multilevel and multiscale
methods. Available: http://pcse.tudelft.nl/emg2005/

66. R. Wienands and W. Joppich, Practical Fourier Analysis for
Multigrid Methods. Boca Raton: Chapman & Hall/CRC, 2005.

SLOBODAN Ž. MIJALKOVIĆ

Silvaco Technology Centre
Cambridge, United Kingdom

MILAN D. MIHAJLOVIĆ

University of Manchester
Manchester, United Kingdom

18 MULTIGRID METHODS



P

POSETS AND LATTICES

PARTIALLY ORDERED SETS

In this section, we introduce the reader to the basic notion of
partially ordered sets according to the following definition.

Definition 1. A partially ordered set (poset, for short) is
a structure hP;�i where P is a nonempty set and � is a
partial order relation on P, i.e., a binary relation such
that for arbitrary a, b, c 2 P the following conditions
hold:

ðor1Þ a � a ðreflexiveÞ
ðor2Þ a � b and b � a imply a ¼ b ðantisymmetricÞ
ðor3Þ a � b and b � c imply a � c ðtransitiveÞ

If a�b, then we say that a is less than or equal to b, or that
b is greater than or equal to a, also written in this case as
b � a. Some other terminology frequently adopted in this
case is that a precedes or is smaller than b and that b follows
or dominates or is larger than a.

Example 1. Let us denote by P(X) the power set of a
set (also universe) X, i.e., the collection of all subsets of X.
The usual set theoretic inclusion on pairs A, B of
subsets of X defined as ‘‘A�B iff every element of A is
also an element of B’’ (formally, ‘‘a 2 A implies a 2 B’’) is
a partial order relation on P(X). Thus hPðXÞ; �i is a
poset.

Example 2. Let 2X denote the collection of all Boolean-
valued functionals defined on the set X, i.e., the collection
of all mappings x : X 7! f0; 1g. For any pair of such map-
pings x1; x2 2 2X , the binary relation defined as follows:

x1 � x2 iff 8 x2X; x1ðxÞ � x2ðxÞ ð1Þ

is a partial order relation for 2X, also called the pointwise
order relation. Thus, h2X ;�i is a poset.

Let us introduce some notions that can be derived in any
poset structure. First of all, in a poset hP;�i we can dis-
tinguish a strict partial ordering, written <, which means
‘‘x precedes y and x does not coincide with y’’; formally, x< y
iff x � y and x 6¼ y. For example, if � is the set inclusion �,
then A < B means that A is a proper subset of B (there
exists an element b in B that does not belong to A), i.e.,
A�B. Moreover, we say that z covers y iff y< z and y� x� z
implies either x ¼ y or x ¼ z (x < y and there is no element
between x and y).

It is possible to give a graphical representation of a
poset with a finite number of elements representing
the fact that x covers y by drawing y below x and connec-
ting them by a line segment according to the following
figure:

x

y

The global figure so obtained is called the Hasse diagram
of the finite poset.

Example 3. The Hasse diagram of a poset with five
elements is presented in Fig. 1.

By the property of transitivity of a partial ordering, we
read right from the diagram that a� d because there exists
the path a� c and c� d that moves steadily upward from a
to d. Note that, in general, transitive relation can be run
together without causing confusion: x � y � z means x � y
and y � z, from which x � z.

Two elements a, b from a poset are called comparable iff
one of the two cases, either a � b or b � a, holds; two
elements c, d that are not comparable are said to be incom-
parable. For example, in Fig. 1, the elements a and c are
comparable, whereas a and b are not.

A poset P is a totally (or linearly) ordered poset iff
8 x; y2P either x� y or y� x, that is, iff any two elements
a, b from the poset P are comparable. A totally ordered
poset is also called chain. Examples of totally ordered
posets are the set of all natural numbers N ¼
f0; 1; 2; 3; 4; 5 . . .g with the standard ordering, the set of
all real numbers R and the unit interval ½0; 1� :¼fx2R :
0 � x � 1g with the usual order on real numbers, this
latter being a bounded chain.

It is possible to define special elements in a posetP and so
to introduce operations in such a structure. First, an ele-
ment 0 2 P is said to be the least (1) (or minimum, first, or
zero) element inP iff 0�a for everya2P; if the leastelement
0 exists, then it is unique. Similarly, if a poset contains an
element 1 2 P such that a � 1 for every element a in the
poset, then this element is uniquely determined and will be
called the greatest (1) (or maximum, last, or unit) element.
The poset S5 of Fig. 1 has neither least nor greatest element.

Definition 2. A partially ordered set with a minimum
and a maximum element (also called bounded poset) is a

Figure 1. The poset S5.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



structurehP;�; 0; 1i, where� is a partial order relation onP
such that 0 and 1 are the least (minimum) and the greatest
(maximum) element with respect to�, respectively. In other
words, for all b2P : 0 � b � 1.

In a poset with the least element hP;�; 0i, every element
that covers the 0 element is called atom. We say that P is
atomic iff for every x 6¼ 0 at least one atom a inP exists such
that a � x holds.

Example 4. The power set P(X) of a universe X is atomic;
every singlet set {a} for a 2 X is an atom of the poset. For
instance, in the lattice 22 of all subsets of the universe that
consist of two elements X ¼ {1,2}, the singletons {1} and {2}
are atoms (see Fig. 2).

Example 5. An example of poset without atoms is the real
unit interval [0,1] endowed with the usual order on num-
bers. If to [0,1] we add an element 0 < a < 1 such that a is
incomparable with all elements in (0,1) (see the Hasse
diagram of Fig. 3), we obtain a poset with an atom a that
is nonatomic.

Let A be a subset of a poset hP;�i. Then the ordering�
of P induces an order on A in the following way: If a, b 2A,
then a�b as elements of A iff a� b as elements ofP. In this
case, we shall say that the pair hA;�i is a subposet of
hP;�i. Note that a subposet of a poset P may be totally
ordered, also if P is not. For instance, in the nonlinear
poset represented by the diagram of Fig. 1, the two sub-
posets {b, c, e} and {a, d} are totally ordered, i.e., chains,
whereas the subposet {a, b, c} is not. Any way, a subposet of
a chain is always a chain.

Definition 3. Let S 6¼ ; be a nonempty set, subset of the
poset P.

i) An element x 2 P is said to be the least upper bound
(l.u.b.) of S, written x ¼ supðSÞðalso x ¼ _SÞ, iff:

a) 8 s2S; s � x

b) if c 2 P satisfies s � c for any s 2 S, then x � c

If only condition i) holds, then the element s is said to be an
upper bound of S.

ii) An element y 2 P is said to be the greatest lower
bound (g.l.b.) of S, written y ¼ in f(S) (also y ¼ ^S),
iff:

a) 8 s2S; y � s

b) if d 2 P satisfies d � s for any s 2 S, then d � y

If only condition i) holds, the element s is said to be a
lower bound of S.

Hence, an upper bound lies ‘‘above’’ every element of the
set S, whereas a lower bound lies ‘‘below’’ each element
with respect to the involved partial ordering. The l.u.b. and
the g.l.b. are the ‘‘smallest’’ upper bound and the ‘‘largest’’
lower bound of the set, respectively. If S is a finite set, say
S ¼ fa1; . . . ;ang; it is customary to write (if they exist)
^ n

i¼1ai or a1 ^ . . . ^an and _ n
i¼1ai or a1 _ . . . _an instead

of ^S and _S. In particular, we denote by a _ b and a ^
b, if they exist, the l.u.b. and the g.l.b. of the pair a, b 2 P
respectively. Let us note that in the case of a bounded poset
P we have that x _ 0¼ x, x^ 0¼ 0 and x^ 1¼ x, x ^ 1¼ x for
any element x 2 P.

Example 6. InFig.1, theset {d, e} hasno l.u.b.,whereas its
g.l.b. isc¼d^e; theset{a,b}hasg.l.b.c¼a_b,butthel.u.b.of
this set does not exist. Moreover, the whole poset hasneither
the minimum element 0 nor the maximum element 1.

Example 7. In the set of all integer numbers Z, with the
standard partial ordering, number 8 is an upper bound of
the two subsets S ¼ {�2,0,1,3,4} and Q ¼ {�4,�1,2,4,8},
which is the l.u.b of Q but not of S. Similarly, �4 is a lower
bound of both S and Q, which is the g.l.b of Q.

In the poset of all real numbers R , number 8 is an upper
bound of the open intervals (�2,6) and (6,8) and also of
the closed intervals [�5,�2] and [�1,8]. Moreover, it is the
l.u.b of both (6, 8) and [�1,8]; in this second case, 8 belongs
to the interval, contrary to the former one. In an analogous
way,�5 is a lower bound of all these intervals, which is the
g.l.b. of [�5,�2].

There cannot be a number Y (resp., Z ) that is an upper
(resp., lower) bound of the whole set Z of all integer num-
bers, or of all real numbers R for that matter, Because
Y (resp., Z ) is evidently strictly less (resp., great) than
the number Y þ 1 (resp., Z � 1).

In the following proposition, for a pair of subsets Y1 and
Y2 of a posetP we adopt the convention to denote by Y1�Y2

the fact that y1 � y2 for every y1 2 Y1 and every y2 2 Y2.

Proposition 1. Let hP;�i be a poset.

1) Let Y be a subset of P; then the elements sup(Y) and
inf(Y), if they exist, are unique.

2) Let Y1 and Y2 be subsets of P such that Y1 � Y2 and
both inf(Y1) and sup(Y2) exist; then inf(Y1) � sup(Y2).

3) x � y iff x ^ y ¼ x and x _ y ¼ y

Figure 2. The atomic lattice 22 of all subsets of the universe {1,2}. Figure 3. The nonatomic real unit interval plus an atom a.

2 POSETS AND LATTICES



Proof 1. Let x1¼ sup(Y) and x2¼ sup(Y). Then from (i-b)
of Definition 3 applied to x1, we have in particular that y�h
for any y 2Y implies x1� h. On the other hand, from (i-a) of
the same definition applied to x2, we have that y� x2 for any
y 2 Y; hence x1 � x2. Reversing the role of these two
elements, we arrive at the result that x2� x1 and so x1¼ x1.

A similar proof can be given in the case of inf(Y). The
proofs of points 2 and 3 are trivial.

Proposition 2. A poset P that has the l.u.b. _P and the
g.l.b. ^P is bounded; indeed, ^P � x � _P for every x 2 P.

Given the poset hP;�i, it is possible to construct the
binary relation �c on P defined as x �c y iff y � x, which
trivially is itself a partial ordering on P called the converse
of �.

Other interesting notions involving posets are the follo-
wing.

Definition 4. A meet (resp., join)-semilattice is a poset for
which the g.l.b.a^ b(resp., l.u.b. a_ b)exists for any pair a, b
of elements from the poset.

Example 8. LetusconsiderafinitesetA¼ fa1;a2: . . . ;ang;
the alphabet of this example, whose elements ai are sym-
bols, also called letters. A word of the alphabetA is any finite
sequence (also called string) of elements from A, whose
collection will be denoted by A�. The string with no letters
at all, denoted by2, is a special word ofA� called the empty or
null word. The length of a word w 2 A�, denoted by |w|, is
the number of letters forming w, counting each appearance
of a letter; in particular |2|¼0. For instance, in the case of a
Boolean alphabet A ¼ {0,1}, the finite sequence 0010101 is
a word, i.e., an element from {0,1}�, of length 7.

A standard inner operation on A� is the so-called
concatenation (also juxtaposition): Let u ¼ u1u2 . . . uh and
w ¼ w1w2 . . . wk be two words in A� (of length h and k,
respectively); then one can construct the new word
uw ¼ u1u2 . . . uhw1w2 . . . wk, which is another element of
A� (of length h þ k). Concatenation with the empty word
leaves the word unchanged: wE ¼ Ew ¼ w whatever be
w 2A�. In the case of a nontrivial alphabet (i.e., containing
two or more letters), this operation is not commutative;
for instance, in {0,1}� the two words u¼ 00 and w¼ 100 are
such that uw¼ 00100 and wu¼ 10000, which are different:
uw 6¼ wu.

OnA�, the binary relation u�w means that the word u2
A� is the initial segment of the word w 2 A�, formally that
there exists a word v2A� such that uv¼w; in this case, u is
said to be a prefix of w. For instance, in the case of the
Boolean alphabet, the two words 010 and 010011 are com-
parable, with 010 � 010011, because there exists the word
011 such that 010011¼ (010)(011). The poset {0,1}� has the
empty word2as its minimum element; indeed, for any word
w 2A� the property 2w¼w means that 2�w. Moreover, it
is a meet-semilattice; for instance, with respect to the meet,
we have 110^10 = 1, 010^1¼2, but the join of the words 10
and 01 does not exists because there is no upper bound w
such that 10�w and 01�w, i.e., two words u1 and u2 such
that 10u1 ¼ 01u2 ¼ w.

From the computational point of view, strings of an
alphabet, for instance, the Boolean one, ‘‘may be thought

of as information encoded in binary form: the longer the
string the greater the information content. Further, given
any string v, we may think of elements u with u < v as
providing approximations to v’’ 2. Extending in an obvious
way these considerations to the collection A�� of all finite
and infinite sequences of letters from the alphabet A, ‘‘any
infinite string is, in an [intuitive] sense, the limit of its finite
initial substrings’’ (2).

LATTICES

In the following, if they exist, we shall denote by_aj and^aj

the l.u.b. and the g.l.b. of any family faj : j2Jg of elements
from a poset P, respectively.

Definition 5. A lattice is a poset hL;�i such that both
x^ y:¼ in ffx; yg (the lattice meet or conjunction)
andx_ y:¼ supfx; yg (the lattice join or disjunction) exist
for every pair of elements x, y 2 L. To be precise, the lattice
meet satisfies the conditions

ðLM1Þ a^ b � fa; bg
ðLM2Þ x � fa; bg implies x � a^ b

whereas the lattice join satisfies the conditions

ðLJ1Þ fa; bg � a_ b
ðLJ2Þ fa; bg � x implies a_ b � x

Example 9. LetPðXÞ be the poset of all subsets of a given
universe X with respect to the usual set theoretic inclusion
relation�. A subset A of the universe X can be defined by a
property P(x) characterizing just the elements of the uni-
verse that satisfies this property, and, in this case, we write
A ¼ fx2X : PðxÞg where the symbol ‘‘:’’ has the meaning of
such that. If the element x belongs to the set A, then we
write x 2 A.

If the universe is finite, then a set can be given by listing
all its elements: A ¼ fx1; x2; . . . ; xng. For instance, in the
universe [0, 10]N that consist of all integer numbers
between 0 and 10, the set of even numbers less than 10
can be specified as {x: x is integer, x < 10, x mod 2 ¼ 0} or
equivalently as {2, 4, 6, 8}.

A special set is the empty set, which is a set with no
elements, denoted by the symbol ;. On the opposite site is
the universe X, which is the set of all the elements of a given
domain of interest. With respect to the poset hPðXÞ; �i of all
subsets of a universe X, the set ; is the least element and X
the greatest one:

8A2PðXÞ : ;�A�X

Given two subsets A ¼ fa2X : PðaÞg and B ¼ fb2X :
QðbÞg of X defined by the properties P and Q, respectively,
their set intersection and union are given by:

A\B ¼ fx2X : PðxÞ and QðxÞg ¼ fx2X : x2A and x2Bg
A[B ¼ fy2X : PðyÞ or QðyÞg ¼ fy2X : y2A or y2Bg

POSETS AND LATTICES 3



It is easy to verify that the poset hPðXÞ; �;;Xi is a lattice
because inf{A, B} and sup{A, B} coincide with their set
intersection and union, respectively:

A^B ¼ A\B and A_B ¼ A[B ð2Þ

Indeed, the set union A[B contains both A and B; hence,
it is an upper bound of A and B. However, every subset C of
X that contains both A and B (that is, every upper bound of A
and B) contains their union too; thus, A [ B is the smallest
upper bound of A and B. We apply the same procedure to the
intersection.

To stress the set operations of intersection\ and union[
as lattice meet and join, respectively, the power set-
bounded lattice based on the universe X will be denoted
in the sequel as the system hPðXÞ; \ ; [ ; ;;Xi.

Remark 1. The formal definition of set union (resp.,
intersection) of two elements A and B of PðXÞ [as collection
of all points from X that belong to at least (resp., both) the
sets A and B] is very different from the formal definition of
least upper (resp., greatest lower) bound of the same ele-
ments according to Definition 3. We have just proved that
these two formal definitions coincide on PðXÞ in the sense
that they produce the same subsets of X.

Example 10. The poset 2X of all Boolean-valued func-
tionals on X is a lattice where the meet and join of any pair of
such functionals x1, x2 are defined for every point x 2 X as
follows:

ðx1 ^ x2ÞðxÞ ¼ inffx1ðxÞ; x2ðxÞg and ðx1 _ x2ÞðxÞ
¼ supfx1ðxÞ; x2ðxÞg

ð3Þ

Now, the following result is very important because it
assures that the operators of meet^ and join_ of a latticeL
are interchangeable, i.e., it validates the dualization of all
theorems with respect toL in the sense that the join may be
replaced by the meet, and conversely.

Proposition 3 (Duality Principle). Let us consider a
latticehL;�i, with associated converse lattice hL;�ci.
Then, for any pair x,y 2 L the following holds:

(ia) If x ^ y is the lattice meet of the pair x, y with respect
to the ordering �, then x ^ y is the lattice join of the
same pair with respect to the converse ordering �c;
formally, x _c y exists and x _c y ¼ x ^ y.

(ib) If x_ y is the lattice join of the pair x, y with respect to
the ordering �, then x _ y is the lattice meet of the
same pair with respect to the converse ordering �c;
formally, x ^c y exists and x ^c y ¼ x _ y.

(iia) If x^c y is the lattice meet of the pair x,y with respect
to the ordering �c, then x ^c y is the lattice join of the
same pair with respect to the converse ordering �;
formally, x _ y exists and x _ y ¼ x ^c y.

(iib) If x ^c y is the lattice join of the pair x, y with respect
to the ordering�c, then x _c y is the lattice meet of the
same pair with respect to the converse ordering �;
formally, x ^ y exists and x ^ y ¼ x ^c y.

The results (ia) and (iib) can be summarized in the
unique formulation:

x^ y under � iff x_ y under �c

Similarly, the results (ib) and (iia) can be summarized in the
unique formulation:

x_ y under � iff x^ y under �c

Proof. Let us set h¼ x^ y. Then, the condition h � fx; yg
(lower bound of the pair x, y) translates in the ‘‘converse’’
condition {x, y} �c h (upper bound of the same pair). More-
over, the fact that d� {x,y} implies d� h (l.u.b. of x, y) leads
to the fact that {x, y}�c d implies h�c d. So we have proved
that if x ^ y is the lattice meet of the pair x, y with respect to
the ordering �, then the same element x ^ y is the lattice
join of the same pair with respect to the ordering �c;
formally, x _c y exists and x _c y ¼ x ^ y.

The case of the join (ib), and the corresponding dual, can
be proved likewise.

Definition 6. An s-lattice is a poset for which the sup and
inf exist for any countable collection of its elements.

Example 11. Let us recall that a measurable space is a
pair (X,A(X)) consisting of a nonempty set X and a family
A(X) of its subsets, called measurable sets, that satisfy the
following conditions:

(M1) The empty set is measurable: ; 2 A(x).

(M2) The set union of countable measurable sets is
measurable: Let Mn 2 A(x): n2N , then
[ n2N Mn 2AðxÞ.

(M3) The set complement of a measurable set is mea-
surable: Mc 2AðXÞ for every M 2 A(X).

The s-algebra (A(X), �) equipped with the set inclusion
is an s-lattice, bounded by the least element ; 2 A(X) and
the greatest one X ¼ ;c 2AðXÞ. Indeed, for any countable
family of measurable sets, from (M2) _Mn ¼ [Mn follows,
and because \Mn ¼ ð[ ðMnÞcÞc 2AðXÞ from (M2) and
(M3), also ^ Mn ¼ \Mn. Note that in this example, the
meet is the set intersection and the join the set union.

Definition 7. A lattice L is complete iff both inf(S) and
sup(S) exist for every nonempty subset, i.e., any S � L with
S 6¼ ;.

Every finite lattice is obviously complete. Every com-
plete lattice L is bounded because 0:¼ inf(L) is the least
element and 1 :¼ sup(L) is the greatest one.

Example 12. Given a universe X, the two latticesP(X) (of
all subsets of X) and 2X (of all Boolean-valued functionals
defined on X) are complete lattices because the operations
introduced in Equations (2) and (3) can be extended to
arbitrary families.

Example 13. Let us recall that a topological space is a
pair (X,C(X)) that consists of a set X and a family C(X) of its

4 POSETS AND LATTICES



subsets, called closed sets, which satisfies the following
conditions:

(T1) The empty set and the whole space X are closed ;,X2
C(X).

(T2) The set intersection of any family of closed sets is
closed: Let Ci 2CðXÞ, with i running on an arbitrary
index set I, then \ i2 ICi 2CðXÞ.

(T3) The finite union of closed sets is closed:
[ j¼1;...kCk 2CðXÞ for any finite collection
C1; . . . ;Ck of closed sets.

Then (C(X), �), being � the usual set inclusion, is a
complete lattice in which the meet is the set intersection
ð ^Ci ¼ \ iCiÞ, whereas the join is the closure of the set
union [_Cj ¼ [ jC j, obtained as the set intersection
of all closed sets containing [Cj, formally _Cj ¼
\fK 2CðXÞ : [Cj�Kg, which is closed owing to (T2)].
Therefore, if we exclude the case of a finite number of closed
sets, then the join is, in general, different from the set union.

For instance, if one considers the real line R . with the
standard Euclidean topology, then the sequence of closed
sets In ¼ ½� 1

n; 1þ 1
n� (for n 2 N) has the set union

[
n2N

In ¼ ð0; 1Þ

which is an open set whose closure is the interval [0,1], the
intersection of all closed sets containing the union [ In ¼
(0,1):

_
n2N

In ¼ ½0; 1� 6¼ ð0; 1Þ ¼ [
n2N

In

This is not the unique situation in which some lattice
operation does not coincide with the set theoretic ones.

Example 14. LetVðXÞ ¼ hX;þ;K i be a linear space, i.e., a
nonempty set of vectors containing a privileged element 0
and equipped with a binary operation of sumþ : X�X!X
(of abelian group with 0 as the zero vector) and an external
operation:K �X!X of multiplication of scalars from a field
K (usually K ¼R or K ¼ C) with vectors from X to produce a
new vector in X.

A linear subspace, simply subspace in the following, is a
nonempty subset M of X (in general 0 2M), which is closed
with respect to the inner sum (for any pair of vectors x, y 2
M, it is xþy 2 M) and the external product of scalars with
vectors (a2K and x2M imply a	x2M). The collection of all

subspaces of X will be denoted byMðXÞ, which is a poset
with respect to the set inclusion, bounded by the least
element {0}, the subspace consisting of the unique zero
vector, and the greatest element X, the whole space;
formally, for any subspace M 2 M(X), it is {0} � M � X
with both {0}, X 2 M(X). Then it is easy to show that the
set intersection of any family of subspaces is a subspace too:

\
i2 I

Mi 2MðXÞ for any family of subspaces Mi 2MðXÞ

In this way, the lattice meet of any family of subspaces is
their set intersection:

î2 I
Mi ¼ \

i2 I
Mi

whereas, the lattice join of the same family is the subspace
generated by the set union, which is the intersection of all
subspaces that contain the union [Mi:

_
i2 I

Mi ¼ \fH 2MðXÞ : [ i2 IMi�Hg

For instance, in the linear space R
2, the two subspaces

Mx ¼ fðx; 0Þ 2R
2 : x2Rg and Mp=4 ¼ fðx; xÞ 2R

2 : x2Rg
are both (one-dimensional) subspaces for which
Mx ^Mp=4 ¼Mx \Mp=4 ¼ f0g and Mx _Mp=4 ¼ R

2 (because
R

2 is the unique subspace that contains both Mx and Mp=4),
this latter being strictly greater than the set union of these
two subspaces.

If one represents any one-dimensional subspace of R
2 by

the angle a2 ½0;pÞ between this subspace and the x-axis,
written as Ma, then the complete lattice MðR 2Þ can be
represented by the Hasse diagram of the right side of
Fig. 4, where it is clear that for any pair of different one-
dimensional subspaces Ma and Mb, it is Ma ^Mb¼ f0g and
Ma _Mb ¼ R

2.
Note that in this lattice, the distributivity conditions

of the two lattice meet and join operations do not hold.
For instance, if one considers two different one-dimensional
subspaces a 6¼b, which are both different from the x-
axis, too, then Ma ^ ðMb _MxÞ ¼Ma ^R

2 ¼Ma, whereas
ðMa ^MbÞ _ ðMa ^MxÞ ¼ f0g_ f0g ¼ f0g. Similarly, Ma _
ðMb ^ MxÞ ¼ Ma _ f0g ¼ Ma, whereas ðMa _ MbÞ ^
ðMa _MxÞ ¼ R

2 ^R
2 ¼ R

2.

α

αΜβΜ
β

R
2

{0}

α0 πβπ/2

Figure 4. The two-dimensional linear
space R

2 with two one-dimensional sub-
spaces Ma, Mb (left) and the corresponding
Hasse diagram representation of the (non-
distributive) lattice (right).

POSETS AND LATTICES 5



Lattices and Related Algebras

As we have seen before, a partially ordered set hL;�i is a
lattice iff both the g.l.b. and the l.u.b exist for every pair of
elements x, y 2 L [and are unique according to point 1 of
Proposition 1 applied to the subset Y ¼ {x,y}]. Because of
their properties of existence and uniqueness, we can think
of inf(x, y) and sup(x, y), with x and y running on the lattice
L, as the results of two binary operations onL. In this way, a
lattice can be considered as a particular algebraic structure
hL; ^ ; _ i, based on a set L equipped with two inner com-
position laws.

^ : L � L 7!L; ðx; yÞ! x^ y :¼ inffx; yg ð4Þ

_ : L � L 7!L; ðx; yÞ! x_ y :¼ supfx; yg ð5Þ

It is possible to make a link between the lattice hL;�i and
the algebra hL; ^ ; _ i, whose proof can be found in Ref. 1 on
page 8.

Theorem 1. LethL;�ibe a lattice. Then, the algebraic
structurehL; ^ ; _ i, where^ and_ are the binary operations
onL of meet in Equation(4) and join in Equation(5), satisfies
the following laws for every x, y, z 2 L:

(L1) x^ x ¼ x; and x_ x ¼ x ðidempotenceÞ
(L2) x^ y ¼ y^ x and x_ y ¼ y_ x ðcommutativityÞ
(L3) x^ ðy^ zÞ ¼ ðx^ yÞ ^ z and x_ ðy_ zÞ

¼ ðx_ yÞ _ z ðassociativityÞ
(L4) x^ ðx_ yÞ ¼ x and x_ ðx^ yÞ ¼ x ðabsorptonÞ

Moreover the two consistence properties hold:

(L5a) x � y is equivalent to x ¼ x^ y

(L5b) x � y is equivalent to y ¼ x_ y

Let us notice that according to this result, the algebraic
version hL; ^ ; _ i of the lattice is defined in an entirely
equational way. Moreover, the peculiar form of the proper-
ties (L1)–(L4) gives a corroboration of the duality principle
expressed in Proposition 3 because if we consider one of the
properties that defines a lattice and we replace each symbol
^ by _ and each _with ^, then we obtain the dual property.
Thus, it follows that any theorem, result, or identity that
holds for a lattice will remain true if we dualize it, that is, if
we replace each ^ by _ and each _ by ^.

We recall the following result whose proof can be found
in Ref. 1 on page 22.

Theorem 2. Postulates (L2)–(L4) for lattices imply (L1),
but the six identities of (L2)–(L4) are independent.

Properties (L2)–(L4) characterize lattices completely, in
a sense expressed by the following theorem.

Theorem 3. Let hL; ^ ; _ i be an algebraic structure
where:

i) L is a nonempty set,

ii) ^ and _ are two binary operations on L satisfying
properties (L2)–(L4).

If we define the following binary relation on L:

x � y iff y ¼ x_ y ðequivalently; iff x ¼ x^ yÞ ð6Þ

then hL;�i is a lattice such that

x_ y ¼ supfx; yg and x^ y ¼ inffx; yg

Moreover, the following result assures the ‘‘categorical
equivalence’’ between the two versions of the lattice
notions, the poset one and the algebraic one.

Proposition 4. Starting with a poset version of a lattice
hL;�i, forming its algebraic version hL; ^ ; _ i, and then
forming its corresponding poset version, denoted by hL; 
i,
then this latter gives us back our original poset structure,
i.e., 
 is the partial order � we started with.

Vice versa, starting from an algebraic version of a lattice
hL; ^ ; _ i, forming its poset version hL;�i, and then forming
its corresponding algebraic version, denoted by hL; u ; _ i,
then one obtains the original algebraic structure, i.e., ^ ¼ u
and _ ¼ t.

Until now we have considered inf and sup as two binary
operations holding between two generic elements of a set. It
is time for us to ask if we can find neutral elements for these
operations.

Proposition 5. LethL; ^ ; _ ibe the algebraic formulation
of a lattice.

i) If a neutral element exists for the binary operation_,
called the algebraic zero, then this element is unique
and turns out to be the minimum element 0 with
respect to partial ordering in Equation (6) induced
from the algebra.

ii) If the neutral element exists for the binary operation
^, called the algebraic unity, then this element is
unique and turns out to be the maximum element 1
with respect to partial ordering in Equation (6)
induced from the algebra.

Proof. By definition of _–neutral element we have that
8 x2L : x_ 0 ¼ x, that is, 0� x for every element x, accord-
ing to Equation (6). This result means that if the zero
element exists in the algebraic version of a lattice
hL; ^ ; _ i, then it is the minimum element relative to the
induced poset hL;�i, and it is unique at the same time.

Ontheotherside,alwaysaccordingtoEquation(6),x^l¼x
for everyx2L is equivalent tox�1; so if the algebraic unity1
exists in L, then this unity is unique and is the maximum
element in the induced poset structure hL;�i.

The case of a bounded lattice has an interesting peculiar
algebraic characterization, at least in terms of the join
operation.

Proposition 6. Let hL;�; 0i be a bounded lattice; then, the
binary operation of join _ satisfies the equations for all x, y,
and z:

6 POSETS AND LATTICES



(L1) x_ x ¼ x ðidempotenceÞ
(L2) x_ y ¼ y_ x ðcommutativityÞ
(L3) x_ ðy_ zÞ ¼ ðx_ yÞ _ z ðassociativityÞ
(L0) x_ 0 ¼ x ðunit elementÞ

Briefly, the structure hL; _ ; 0i is a commutative monoid
(semigroup with unity) in which any element is idempotent.

Conversely, we have that if hL; _ ; 0i is a commutative
monoid in which every element is idempotent, then there
exists a unique partial ordering on L such that x _ y is the
lattice join of any pair x and y, and 0 is the least element.

This situation means that this structure is a join-semi-
lattice, and so a semilattice can be defined either in terms of
the order relation or in terms of join operation.

Definition 8. Two lattices L1 and L2 are said to be iso-
morphic if there exists a bijective mapping of L1 into L2, say
f: L1 7!L2, such that for arbitrary x; y2L1

fðx^ yÞ ¼ fðxÞ ^fðyÞ and fðx_ yÞ ¼ fðxÞ _fðyÞ ð7Þ

Of course, if f : L1 7!L2 is a lattice isomorphism, then its
inverse f�1 : L2 7!L1 is a lattice isomorphism, too. Trivi-
ally, a lattice isomorphism preserves the ordering, i.e., it is
a poset isomorphism:

x � y implies fðxÞ � fðyÞ
fðxÞ � fðyÞ implies x � y

Indeed, x � y is equivalent to x ¼ a ^ y, and so
fðxÞ ¼ fðxÞ ^fðyÞ, which means that fðxÞ � fðyÞ. The sec-
ond condition can be proved in a similar, if a little bit
complicated, way.

Proposition 7. If two bounded lattices are isomorphic,
then the additional conditions are satisfied:

fð0Þ ¼ 0 and fð1Þ ¼ 1

Proof. If we apply the first part of Equation (7) to the
particular case y ¼ 0, then we obtain that for every x it is
f(0) ¼ f(x) ^ f(0), i.e., f(0) � f(x). Because this inequality
holds for every element x of the lattice L1, let us denote by
x0 ¼ f�1ð0Þ the inverse imagine of the 0 2 L2; then, we
have that f(0) � 0, i.e., f(0) ¼ 0. The second statement
can be proved analogously.

Example 15. Let us consider the two bounded lattices
P(X) and 2X of Examples 1 and 2, respectively. The lattice
structure of the power lattice P(X) of the universe X has
been widely discussed in Example 9. Now, let us consider
the mapping

x : PðXÞ 7! 2X

associating with any subset A of X its characteristic func-
tional xA : X 7! f0; 1g, i.e., the Boolean-valued functional
defined as xAðxÞ ¼ 1 if x 2 A and ¼ 0 otherwise.

This mapping is a bijection because (1) it is injective: A 6¼
B trivially implies that xA 6¼ xB, and (2) it is surjective
because for any c : X 7! f0; 1g in 2X, constructed the subset
AðcÞ :¼fx2X : cðxÞ ¼ 1g, the corresponding characteristic
functional is such that xAðcÞ ¼ c.

With respect to the meet and join operations, recalling
that the lattice meet and join of two characteristic func-
tionals xA; xB 2 2X with respect to the partial ordering in
Equation (1) both exist (Example 10), we have the following
correspondences whatever be A, B 2 P(X):

A\B ��!x xA\B ¼ xA ^ xB

A[B ��!x xA[B ¼ xA _ xB

i.e., x is a lattice isomorphism, which allows one to identify
the subset A of the universe X with its characteristic func-
tional xA. Let us note that if one interprets the Boolean
values 0 and 1 as two membership degrees, with 1 (resp., 0)
the membership certainty (resp., impossibility), in fuzzy set
theory the characteristic functional xA is considered as the
crisp representation of the set A (see Refs. 3 and 4. In this
context, x; is the identical zero function, also denoted by 0,
that assigns to any x the value 0; similarly, xX is the
identical one function, also denoted by 1, that assigns to
any x the value 1. Of course, the lattice 2X is bounded
because for any x2 2X , it is 0 � x � 1.

DISTRIBUTIVE AND MODULAR LATTICES

In the context of lattices, we can distinguish at least
two different classes: distributive lattices and modular
lattices.

Definition 9. A lattice L is said to be distributive if and
only if the following equalities hold:

(d1) for every x; y; z2L; x_ ðy^ zÞ ¼ ðx_ yÞ ^ ðx_ zÞ
(d2) for every x; y; z2L; x^ ðy_ zÞ ¼ ðx^ yÞ _ ðx^ zÞ

Remark 2. As remarked in Ref. 1 on page 11, conditions
(d1) and (d2) are mutually equivalent, and so only one of
these equalities is enough to define a distributive lattice
[either (d1) or (d2)]. Notice that in the proof of this equiva-
lence property, a determinant role is played by the uni-
versal quantifier in the sense that these two conditions are
equivalent if they hold for any triple of elements from the
lattice ð 8 x; y; z2LÞ.

If the lattice is not distributive, then there might be
particular triples of individual elements ð 9 x0; y0; z0 2LÞ
such that x0 _ ðy0 ^ z0Þ ¼ ðx0 _ y0Þ ^ ðx0 _ z0Þ, but with
respect to which x0 ^ ðy0 _ z0Þ 6¼ ðx0 ^ y0Þ _ ðx0 ^ z0Þ, and
vice versa.

Example 16. The lattice N5 shown in Fig. 5 is not dis-
tributive.

Indeed, one has that b^ ða_ cÞ ¼ ðb^aÞ _ ðb^ cÞ ¼ b,
i.e., the (ordered) triple (b, a, c) is (d2)-distributive, but
b_ ða^ cÞ ¼ b 6¼a ¼ ðb_aÞ ^ ðb_ cÞ, i.e., this triple is not
(d1)-distributive.

POSETS AND LATTICES 7



In Ref. 5, one can find the following result, which is the
distributive analogous of Theorem 3 that links lattices and
algebraic structures.

Theorem 4. Let hL; ^ ; _ i be an algebraic structure
where:

1) L is a nonempty set, and

2) ^ and _ are two binary operations on L satisfying
properties:

(DL1) x ¼ x^ ðx_ yÞ
(DL2) x^ ðy_ zÞ ¼ ðz^ xÞ _ ðy^ xÞ

Then, L is a distributive lattice.

Definition 10. A latticeL is said to be modular if and only
if the following equality holds:

(m1) for every x,y,z 2 L, x � z implies x_ ðy^ zÞ ¼
ðx_ yÞ ^ z

Remark 3. As (d1) and (d2) are dual forms, one is sug-
gested to consider the dual of (m1) whose form is

(m2) z � x implies x^ ðy_ zÞ ¼ ðx^ yÞ _ z

However, if one makes the substitutions x̂ :¼ z and ẑ :¼ x,
then the (m2) assumes the form

(m2) x̂ � ẑ implies ẑ^ ðy_ x̂Þ ¼ ðẑ^ yÞ _ x̂

which is nothing else than the original (m1).
From Definitions 9 and 10, it is straightforward to prove

that every distributive lattice is modular too; indeed, from
(d1) x_ ðy^ zÞ ¼ ðx_ yÞ ^ ðx_ zÞ the condition x� z, i.e., z¼ x
_ z, leads to (m1). The vice versa is in general not true
because it is possible to find modular lattices that are not
distributive.

Example 17. This situation is exactly the case of the
finite lattice M5 which has its Hasse diagram represented
in Fig. 6.

Indeed, we have a^ ðb_ cÞ¼a^ 1¼a and ða^ bÞ _ ða^ cÞ
¼ 0_ 0 ¼ 0, from which it follows that a^ ðb_ cÞ 6¼
ða^ bÞ _ ða^ cÞ, i.e., this lattice is not distributive.

We prove now that this lattice is modular. Let x � z be
two nontrivial (6¼ 0,1) elements in M5; then, from the
particular structure of M5 it follows that x_ ðy^ zÞ ¼
x_ ðy^ xÞ ¼ x and ðy_ zÞ ^ z ¼ ðx_ yÞ ^ x ¼ x, by absorption
(this latter does not hold in the lattice of 5 where, for
instance, b�a, but ðb_ cÞ ^ a 6¼ ðb_ cÞ ^ bÞ. In the nontrivial
cases, we have to consider two subcases 0 < a and a < 1 by
symmetry; in the first, we obtain 0_ ðy^aÞ ¼ y^a and
ð0_ yÞ ^a ¼ y^a; whereas in the latter, we have
a_ ðy^ 1Þ ¼ a_ y and ða_ yÞ ^ 1 ¼ a_ y.

As a concrete example of this behavior, let us consider
the complete lattice MðR 2Þ of all subspaces of the two-
dimensional linear space R

2. Then, if one set 0 :¼f0g (the
subspace consisting of the zero vector) and 1 ¼ R

2, the
following subspaces realize the Hasse diagram of Fig. 6:

a :¼Mx ¼ fðx; 0Þ : x2Rg b :¼Myfð0; yÞ : y2Rg
c :¼Mp=4 ¼ fðx; xÞ : x2Rg

In general, it can be proved that

any finite dimensional (real or complex) linear space is such that
the complete lattice of all its subspaces is modular: ‘‘In parti-
cular, set–products and straight linear sums are known to
satisfy the so-called modular identity’’ 6.

This result is very simple to prove in the two-dimensional
case, whereas the proof of the general finite-dimensional
case can be found in Ref. 6 (Footnote 23 of section 11).

Example 18. The lattice MðR 2Þ of all subspaces of the
real vector space R

2 has been represented by the Hasse
diagram in the right side of Fig. 4. To verify the condition
(m1) of Definition 10, we first consider the trivial case of
a ¼ g. Because for any b it is a � b_a, we have
a ¼ a^ ðb_aÞ. If b represents any subspace different
from a and R

2, then b^a ¼ f0g, and so a ¼ a_f0g ¼
a_ ðb^aÞ : if b ¼ R

2, then a ¼ R
2 ^a, and so a ¼ a_a ¼

a_ ðR 2 ^aÞ. Thus, we have obtained that when a = g, it is
a^ ðb_aÞ ¼ a ¼ a_ ðb^aÞ.

1

a c b

0

Figure 6. The modular lattice M5.

1

a c

b

0

Figure 5. The nondistributive lattice N5.

8 POSETS AND LATTICES



Let us now consider the strict ordering a<g. It is obvious
that this condition implies that a ¼ f0g or g = R

2. But, if
a ¼ f0g, then f0g_ ðg^bÞ ¼ g^b ¼ ðf0g_ gÞ ^b, and if b¼
R

2, then it is a_ ðg^R
2Þ ¼ a_ g ¼ ða_ gÞ ^R

2.
Lastly, we have lattices like the one shown in Fig. 5,

which does not belong to the class of modular lattices.
Indeed, for this lattice b � a, but b_ ðc^ aÞ ¼ b_ 0 ¼ b
and ðb_ cÞ ^a ¼ 1^a ¼ a; from a 6¼ b we can deduce
b_ ðc^ aÞ 6¼ ðb_ cÞ ^a.

BOOLEAN LATTICES AND ALGEBRAS

The concept of complement has a great importance in
lattice theory.

Definition 11. Let L be a bounded lattice. We identify the
element y2L as the complement of a given element x2L if it
is such that

x_ y ¼ 1 and x^ y ¼ 0

It is easy to see that if y is the x complement, then x is the
y complement, as well. However, the following relations 0_
1 ¼ 1 and 0 ^ 1 ¼ 0 imply that these two elements are
complements of each other. Moreover, it is easy to prove the
following result.

Proposition 8. If in a distributive lattice L the comple-
ment of a given element exists, then it is unique.

Proof. Suppose thatL is a distributive lattice and that a
is an element with two complements a1 and a2. Then, from a
_ a2 ¼ 1 and a ^ a1 ¼ 0 it follows that

a1 ¼ a1 ^ ða_a2Þ ¼ distributivity ¼ ða1 ^aÞ _ ða1 ^a2Þ

¼ a1 ^a2 � a2

Similarly, a2 � a1, so a1 = a2.

In a nondistributive lattice, this uniqueness property, in
general, does not hold.

Example 19. In the modular lattice M5 of Fig. 6, both c
and b are complements of the element a because a^ c¼a^b
¼ 0 and a _ c¼ a _ b¼ l. In general, for any x 2 {a, b, c}, the
two elements y 2 {a, b, c} such that y 6¼ x are both comple-
ments of x.

But, there could exist distributive bounded lattice in
which only the elements 0 and 1 have the complement
(which is 1 and 0, respectively).

Example 20. Let L be a totally ordered bounded lattice
that contain more than two elements. Then it is easy to see
that this lattice is distributive, but no other element than 0
and 1 can have a complement.

Definition 12. We have a complementable bounded lat-
tice when every element of the lattice has at least one
complement. We have a bounded complemented lattice
when every element a of the lattice has just one complement,
denoted by a0.

A Boolean lattice B is a distributive bounded lattice
equipped with a complementation unary mapping, i.e.,
every element x has a well-defined (unique) complement,
denoted by x0. The operation of assigning the complement x0

to every element x of the lattice defines a unary operation 0

from B onto itself, called complementation. These very
important structures were introduced by George Boole in
1854. At that time, Boole was trying to define a logical
calculus that could coincide with the propositional (enun-
ciative) calculus. Later on, it was possible to recognize as
another important concrete Boolean lattice class, the power
set P(X) of a universe X equipped with the set theoretic
union and intersection, and the set theoretic complementa-
tion operations. Formally, a Boolean lattice is defined in the
following way:

Definition 13. A Boolean lattice is a struc-
turehB; ^ ; _ ; 0; 0; 1iwhere

(b1) B is a set that contains two distinct elements 0
and 1,

(b2) ^ and _ are two binary operations onB with respect
to which the structurehB; ^ ; _ ; 0; 1iis a distributive
lattice bounded by the least element 0 and the
greatest element 1: 8 x2B; 0 � x � 1, and

(b3) For everyx 2 Bthere existsx0 2 Bsuch thatx ^ x0 = 0
andx _ x0 = 1; x0 is the complement of x.

The following are very important examples of Boolean
lattice:

Example 21. Let hf0; 1g;�i be the set consisting of the
two elements 0,1 equipped with the usual order relation 0�
1. This poset is a Boolean lattice with respect to the opera-
tions presented in the tables below (at the left the lattice
operations and at the right the complementation):

This part is usually known as the two-valued or two-
elements Boolean lattice, denoted by B ¼ hf0; 1g; ^ ;
_ ; 0; 0; 1i.

Example 22. The power set PðXÞ of a universe X dis-
cussed in Example 9 is a Boolean lattice if we choose the set
theoretic complement Ac ¼ XnA :¼fx2X : x2X and x =2Ag
as the complement of a given set A in the universe X.
Such a Boolean lattice is P ¼ hPðXÞ; \ ; [ ;c ; ;;Xi.

Example 23. The collection 2X of all two-valued func-
tionals on the universe X introduced in Example 10 is a
Boolean lattice if we choose the functional x0 :¼ 1� x as the
complement of a given functional x. Such a lattice is
E ¼ h2X ; ^ ; _ ; 0 ; 0; 1i.

a b a ^ b a _ b

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

x x0

0 1
1 0

POSETS AND LATTICES 9



Example 24. In example 14, we have investigated the
lattice of all closed sets of a topological space X. Taking
inspiration from usual set theory, a natural way to intro-
duce a complement of a generic closed set K could be its set
complement Kc. The problem is that in general this latter is
not a closed set. For instance, in the usual topology of R by
closed sets, the closed interval ½a; b� :¼fx; 2R : a � x � bg
(for a � b) has set complement ½a; b�c ¼ ð�1;aÞ [ ðb;þ1Þ
that is not closed.

In general, if C(X) is the collection of all closed sets (as
primitive notion of a topology), then the collection of all set
complement of closed sets determines (as derived notion in
this context) the family O(X) of all open sets; formally,
O2OðXÞ iff there exists a closed set K 2CðXÞ such that
O ¼ Kc. On the basis of this definition and the properties
(T1)–(T3) of Example 13, it is easy to prove that the family
O(X) satisfies the following conditions:

(O1) The empty set and the whole space X are open
;;X 2OðXÞ.

(O2) The set union of any family of open sets is open, and

(O3) The finite intersection of open sets is open.

Now if one considers the collection COðXÞ of all subsets of
X that are both closed and open (the so-called clopen sets),
then according to (T2) and (O2), the induced partial order
structure is the one of complete lattice; moreover, for any
clopen set U, its set complement Uc is obviously clopen, too,
and so one obtains that hCOðXÞ; \ ; [ ;c ; ;;Xi is a Boolean
algebra.

In the topological space R , the unique clopen sets are
the trivial ones ; and R , a very poor collection. A canonical
way to obtain a sufficiently rich topology of clopen is the
following one. Let us consider a partition space (X,p),
which consists of a nonempty universe X equipped with
a partition p, i.e., a collection of nonempty subsets of X
that are pairwise disjoint and whose set union covers
the universe. Let us denote by COðX;pÞ the collection of
all subsets of X that are union of equivalence classes
from p (i.e., E 2 COðX;pÞ iff there exists a family
fAig�p such that E ¼ [Ai) plus the empty set. Trivially,
for any pair of sets, E;F 2COðX;pÞ, also, E[F 2COðX;pÞ
and E\F 2COðX;pÞ; moreover, if E2COðX;pÞ, then its
set complement Ec 2COðX;pÞ, too (it is also a set union
of equivalence classes from p). Then, the structure
hCOðX;pÞ; \ ; [ ;c ;�;Xi is the Boolean lattice induced
from the partition p of X that, from the topological point
of view, is a topological space of clopen sets.

This Boolean lattice is the basic structure of the so-
called approach to rough sets as introduced by Pawlak
in Ref. 7 (see Ref. 8 for the abstract approach to this
argument). In this framework, one considers an informa-
tion system formalized as a mapping F : X � Att 7! val
defined on pairs (x, a) 2 X � Att consisting of an object
x and an attribute a, and furnishing the value F(x, a) 2 val
assumed by the object x relatively to the attribute a.
For any family of attributes A � Att, it is possible to
introduce the equivalence relation of indistinguishability
on objects: xðIndÞAy iff for any a2A : Fðx;aÞ ¼ Fðy;aÞ, i.e.,
two objects are equivalent if they cannot be distinguished

relatively to the knowledge supported by all the attributes
of A.

Example 25. Let D¼ {1, 2, 5, 7,10,14, 35, 70} be the set of
all divisors of 70. Once defined x ^ y¼mcd(x, y) (5 ^ 14¼ 1,
10 ^ 35 ¼ 5), x _ y ¼ mcm(x, y) (5 _ 14 ¼ 70, 10 _ 35 ¼ 70)
and x0 ¼ 70

x ð5
0 ¼ 14Þ, the structure hD; ^ ; _ ; 0; 1; 70i is a

Boolean lattice.
Summarizing, a Boolean lattice is a distributive, com-

plementable lattice. But, we have seen that in a distribu-
tive lattice, the uniqueness property of the complement of
each element holds, and so in a complementable distribu-
tive latticeB;we can introduce a unary operation0:B 7!B, x
! x0, the complementation, which associates with each
element x its unique complement x0. In this way, we can
have the following equivalent, but equational, algebraic
definition.

Definition 14. A Boolean algebra is a sextuple
hB; ^ ; _ ; 0; 0; 1i, where:

i) B is a set that contains two distinct elements, 0 and
1,

ii) ^ and _ are binary operations on B, and
(iii) 0 : B 7!B is a unary operation from B onto B,

such that for every x,y,z 2 B, the following axioms hold:

1) x ^ y ¼ y ^ x and x _ y ¼ y _ x

2) x ^ (y _ z) ¼ (x ^ y) _ (x ^ z) and x _ (y ^ z) ¼ (x _ y) ^
(x _ z)

3) x _ 0 ¼ x and x ^ 1 ¼ x

4) x _ x0 ¼ 1 and x ^ x0 ¼ 0

An alternative system of axioms for Boolean algebras is
presented in Ref. 1.

Definition 15. A structure hB; ^ ; _ ; 0; 0; 1i with ^ and _
binary operations onBand0 a unary operation on the same
set is a Boolean algebra iff the following properties are
satisfied for all a, b 2 B:

(B1) a^ b ¼ ða0 _ b0Þ0

(B2) a _ b ¼ b _ a

(B3) a_ ðb_ cÞ ¼ ða_ bÞ _ c

(B4) ða^ bÞ _ ða^ b0Þ ¼ a

In this case, axioms (B1)–(B4) are independent, that is,
no one of them can be derived from the other; if one’s
eliminates then the structure hB; ^ ; _ ; 0; 0; 1i is no more
a Boolean algebra. Independence is an important property
of an algebra, because it enables us to determine which are
the necessary properties to define it. Given a set of axioms,
it is possible to prove the independence of one of them by
finding a model (a concrete example) of the structure that
satisfies all the axioms but this chosen one.

Example 26. Let us consider axioms (B1)–(B4). We show
that (B2) is independent from the others. To do this, we give
a structure, that satisfies (B1), (B3), (B4) and not (B2). The

10 POSETS AND LATTICES



structure is the following: hf0; 1g; ^ ; ^ ; ii (this means that
_:¼^), where i(x)¼ x and 0^ x¼0, 1^ x¼1. As can be easily
seen, (B2) is not satisfied: 0 _ l ¼ 0 6¼ 1 ¼ l _ 0.

Proposition 9. 1. In any Boolean algebra, it is possible to
prove that the following properties hold:

1) The lattice conditions

a_a ¼;a^a ¼ a ðidempotencyÞ
a_ b ¼ b_a;a^ b ¼ b^ a ðcommutativityÞ
a_ ðb_ cÞ ¼ ða_ bÞ _ c ð _ associativityÞ
a^ ðb^ cÞ ¼ ða^ bÞ ^ c ð ^ associativityÞ
a_ ða^ bÞ ¼ a;a^ ða_ bÞ ¼ a ðabsorptionÞ

2) The distributivity conditions

a_ ðb^ cÞ ¼ ða_ bÞ ^ ða_ cÞ ð _ distributivityÞ
a^ ðb_ cÞ ¼ ða^ bÞ _ ða^ cÞ ð ^ distributivityÞ

3) The lattice zero and unit elements

a_ 0 ¼ a;a_ 1 ¼ 1 ð _ boundry conditionsÞ
a^ 0 ¼ 0;a^ 1 ¼ a ð ^ boundry conditionsÞ

4) The orthocomplementation conditions

ða0Þ0 ¼ a ðinvolutionÞ
ða^ bÞ0 ¼ a0 _ b0 ð _ de Morgan lawÞ
ða_ bÞ0 ¼ a0 ^ b0 ð ^ de Morgan lawÞ
a_a0 ¼ 1 ðexcluded middle lawÞ
a^a0 ¼ 0 ðnoncontradiction lawÞ

Also, for the case of Boolean lattices, in Ref. 5 it is
possible to find a result that represents the analog of
Theorem 3 (for lattices) and Theorem 4 (for distributive
lattices).

Theorem 5. Let hB; ^ ; _ i be an algebraic structure
where:

1) L is a nonempty set, and

2) ^ and _ are two binary operations on L satisfying
properties:

(DL1) x = x ^ (x _ y)

(DL2) x ^ (y _ z) = (z ^ x) _ (y ^ x)

(BL) to each y there corresponds some y0 such that

x^ ðy_ y0Þ ¼ x_ ðy^ y0Þ

Then, L is a Boolean lattice.

Now we can extend the notion of lattice isomorphism to
the case of Boolean algebras.

Definition 16. Two Boolean algebras B1 and B2 are said
to be isomorphic iff there exists a lattice isomorphism f :
B1 7!B2 that preserves the complementation,

8 x2B1; fðx0Þ ¼ fðxÞ0

Example 27. The lattice isomorphism seen in Example
15 between the power set PðXÞ of a universe X and the
collection 2X of all the Boolean–valued functionals on
X; x : PðXÞ 7! 2X ;A2PðXÞ!xA 2 2X , is, indeed, a Boolean
lattice isomorphism because trivially for any subset A of X

xAc ¼ 1� xA

As we have seen in Example 22, the collection of all
subsets of a universe X is a Boolean algebra under set
inclusion (with associated set union and intersection)
and set complementation. The following is an interesting
representation theorem of finite Boolean algebras.

Theorem 6 (Stone’s Representation Theorem). Every finite
Boolean algebraB is isomorphic to the algebra of parts of the
set of its atoms.

The preceding theorem causes the following important
consequences:

1) The cardinality of every finite Boolean algebra is a
power of 2.

2) Two finite Boolean algebras with the same cardinal-
ity are isomorphic to each other.

Let us explain this procedure with one example.

Example 28. In Fig. 7, the left side is the Hassediagram of
the (finite) Boolean lattice B8, whose atoms are the elements

Figure 7. The finite Boolean lattice B8
with its Stone representation 23 of all sub-
sets of the universe {a, b, n}.

POSETS AND LATTICES 11



a, b, and c. If one then considers the universe X ¼ {a, b, c}
formed by all atoms of B8, the power set 23 of this universe
ordered with the standard set theoretic ordering (the right
side of the figure) is the Stone representation of B8.

The general procedure is the following one. Let B be a
finite Boolean lattice, and let us denote by AðBÞ the collec-
tion of all its atoms, assumed as the universe of the Stone
representation of B. Then, let us construct the mapping
f : B 7!PðAðBÞÞ that assigns to any element x 2 B of the
Boolean lattice the subset fðxÞ ¼ fa2AðBÞÞ : a � xg, ele-
ment of the power set PðAðBÞÞ obtained as the collection of
all atoms a that precede x. For instance, in the example
below, f(e) ¼ {a, b} because a and b are the two atoms that
precede e. Trivially, the mapping f is a Boolean lattice
isomorphism. For instance, fðe_ gÞ ¼ fð1Þ ¼ fa; b; cg ¼
fa; bg[ fb; cg ¼ fðeÞ _fðgÞ.

The extension of this representation procedure to the
case of an infinite Boolean lattice presents some problems
because it is easy to give examples either of nonatomic or of
noncomplete Boolean algebras and any Boolean algebra
PðXÞ of all subsets of a universe X has both these proper-
ties. The best results of this situation are given by the
following.

Proposition 10. Let B be an abstract Boolean algebra,
and let AðBÞ denote the set of all its atoms. Then, the
mapping f : B 7!PðAðBÞÞ associating with any element
x 2 B the subset of atoms fðxÞ :¼fa2AðBÞ : a � xg is a
homomorphism of Boolean lattices, i.e., both conditions
in Equation (7) of Definition 8 are satisfied by the mapping
f without the certainty that the bijective condition is
assured. Moreover,

i) if B is atomic, then the mapping f is injective, and

ii) if B is complete, then the mapping f is surjective.

Proof. The fact that f is a Boolean algebras homo-
morphism follows from the remark that an atom a satisfies
the condition a� x_ y iff either a� x or a� y. Analogously,
an atom a satisfies the condition a� x ^ y iff both a� x and
a � y.

IfB is atomic, then for any pair of its elements x 6¼ y, their
symmetric difference xDy :¼ðx^ y0Þ _ ðy^ x0Þ admits an
atom a � ðxDyÞ; this implies that either a � x^ y0 or a �
y^ x0 but not both (otherwise, for instance, a � x^ x0 ¼ 0).
Hence, a will be in just one, and only one, of f(x) and f(y).

IfB is complete, then for any subset Y of AðBÞ there exists
the element z ¼ _fy : y2Yg in B such that f(z) ¼ Y.

As an immediate consequence, we have:

Theorem 7. A Boolean algebra B is isomorphic to the
algebra PðXÞof all subsets of some universe X iff it is atomic
and complete.

This result states the problem of what happens in all the
other cases of Boolean algebras for which at least one of the
above conditions does not hold. In Example 24, we have
seen that given a topological space X, the clopen subsets of X
are closed under intersection, union, and complementation
forming a Boolean algebra. Note that, in general, the
topology of clopen set COðXÞ of a space X is contained in

the power set of this latter, COðXÞ�PðXÞ, in other words, it
is a subBoolean algebra of the power set. A well-known
theorem of Stone 9 asserts that every Boolean algebra is
represented isomorphically by one of such and that if one
requires the topological space to be compact Hausdorff as
well as totally disconnected (what is now called Stone space,
whereas Stone originally called these spaces with the name
of Boolean spaces), then this representation is essentially
uniquely determined by the Boolean algebra. The meaning
of this isomorphism is that any algebraic fact about Boolean
algebras could be translated into a topological fact about
Stone spaces, and vice versa.

Ortholattices

Point 4 of Proposition 9 lists the conditions that are satisfied
by the complement of a Boolean algebra. Relative to this
point, and as the consequence of the uniqueness of the
complement a0 of a given element a from the Boolean
algebra B, it is possible to introduce a unary operation 0 :
B 7!B; a!a0 that satisfies the condition of involution, both
the de Morgan laws, the excluded middle, and the noncon-
tradiction laws. We can formalize this situation in the
following way:

Definition 17. An orthocomplemented lattice, ortholat-
tice for short, is a structure hL; ^ ; _ ; 0; 0i of lower-bounded
lattice hL; ^ ; _ ; 0i equipped with an ortho-complementa-
tion mapping0 : L 7!Lthat satisfies the equational condi-
tions:

ðoc1Þ x ¼ x00 ðdouble negationÞ
ðoc2aÞ x0 ^ y0 ¼ ðx_ yÞ0 ðde MorganÞ
ðoc3aÞ x^ x0 ¼ 0 ðnoncontradictionÞ

With respect to the properties listed in point 4 of Pro-
position 9, in the now-introduced definition, it involves only
one de Morgan property. Also, the two properties of point 3
in the same proposition are simplified by the unique (oc3).
But the following results hold:

Proposition 11. In any lattice, under condition (oc1), the
following are equivalent:

ðoc2aÞ x0 ^ y0 ¼ ða_ yÞ0 ðfirst de Morgan lawÞ
ðoc2bÞ x0 _ y0 ¼ ða^ yÞ0 ðsecond de Morgan lawÞ
ðoc2cÞ x � y implies y0 � x0 ðcontraposition lawÞ
ðoc2dÞ x0 � y0 implies y � x ðdual contraposition lawÞ

In a similar way, in any bounded lattice under condi-
tions (oc1) and (oc2), the following two are equivalent:

ðoc3aÞ x^ x0 ¼ 0 ðnoncontradiction lawÞ
ðoc3bÞ x_ y0 ¼ 1 ðexcluded middle lawÞ

Let us stress that the just-introduced notion of ortholat-
tice can be applied to lattice that are not necessarily dis-
tributive, but with the loss of the uniqueness of the
orthocomplementation mapping that characterizes Boolean

12 POSETS AND LATTICES



algebras. In this way, the complementation mapping
assumes an important role, outside the ‘‘restricted’’ class
of Boolean algebras. We clarify this fact with an example
from the larger class of modular lattices.

Example 29. Let us consider the (six-elements) modular
lattice M6 represented by the Hasse diagram of Fig. 8.

Then, any nontrivial element x 6¼ 0,l has three comple-
ments, precisely every nontrivial y 6¼ 0,1 such that y 6¼ x. So,
this lattice is complementable, but it is possible to assign
more than one orthocomplementation mapping, two of
which are represented by the diagrams drawn in Fig. 9.

Example 30. Let us consider the two-dimensional linear
space R

2. We have seen in Example 14 that the collection
MðR 2Þ of all its subspaces is a modular (nondistributive)
lattice, bounded by the minimum subspace 0 ¼ f0g and
the maximum subspace 1 ¼ R

2. In this lattice any one-
dimensional subspace a–has an infinite collection of com-
plements, i.e., any one-dimensional subspace b 6¼ a is a
complement of a. At a first glance, it seems that there could
be no intuitive criterium to select for each a one of these
infinite subspaces, say a0, as its unique orthocomplement.

But, R
2 can be equipped with the inner product defined

for any pair of its vectors x ¼ ðx1; x2Þ and y ¼ ðy1; y2Þ as the
real number

hxjyi :¼ x1y1 þ x2y2

The standard notion of orthogonality is the following one:

x? y iff hxjyi ¼ 0

Now, for any subspace M of R
2 (i.e., the trivial subspaces

f0g and R
2, and all one-dimensional subspaces) one can

define its complement, denoted by M? as the subspace that
is orthogonal to M. Formally,

M? :¼fh2R
2 : 8m2M; hhjmi ¼ 0g

This is a subspace, and the mapping ? :MðR 2Þ 7!
MðR 2Þ;M 7!M? is an orthocomplementation acting on a
modular lattice. Probably, this example has been the cause
of the term orthocomplementation given to any mapping
that satisfies the above conditions (oc1)–(oc3).

For instance, if one considers the subspace Mp=4 ¼
fðx; xÞ 2R

2; x2Rg then its orthocomplement is ðMp=4Þ? ¼
fðh;�hÞ 2R

2 : h2Rg ¼Mð3=4Þp because a fixed generic vec-
tor ðh0;�h0Þ 2 ðMp=4Þ? is such that for any ðx; xÞ 2Mp=4 the
orthogonality condition hðh0;�h0Þjðx; xÞi ¼ 0 holds. How-
ever, Mx ¼ fðx; 0Þ : x2Rg and My ¼ fð0; yÞ : y2Rg are such
that trivially ðMxÞ? ¼My and ðMyÞ? ¼Mx. If one considers
the modular sublattice ofMðR 2Þ consisting of the six sub-
spaces ff0g;Mx;Mp=2;My;Mð3=4Þp;R

2g, then the corre-
sponding Hasse diagram has the form of the one depicted
in the right side of Fig. 9 by the identifications a ¼Mx; b ¼
Mp=2; c ¼My and d ¼Mð3=4Þp.

Let us make now a brief discussion about the semantical
interpretation of the algebraic operations of an orthocom-
plemented lattice with respect to the ordinary propositional
logic, the so–called algebraic semantic of a logic. First of all,
let us stress that ‘‘when interpreting [lattice] structures
from the viewpoint of logic, it is customary to interpret the
lattice elements [a, b,. . .] as propositions, the meet opera-
tion [^] as conjunction [logical AND], the join operation [_]
as disjunction [logical OR], and the orthocomplement [:] as
negation [logical NOT]’’ (10). Hence, from the point of view of
algebraic semantic, ‘‘clearly L1–L4 [of a lattice, according to
Theorem 1] are well-known properties of AND and OR in
ordinary logic. This gives an algebraic reason for admitting
as a postulate (if necessary) the statement that a given
calculus of proposition is a lattice’’ 6. In this lattice context,
‘‘it is generally agreed that the partial ordering� of a lattice
[. . .] can be logically interpreted as a relation of implication,
more specifically semantic entailment’’(6), which must not
be confused with an implication logical connective that, like
conjunction and disjunction, forms propositions out of pro-
positions remaining at the same linguistic level.

In particular, Boolean algebras have a significant role in
classical logic. Indeed, once interpreted the elements of the
algebra ‘‘as representing [. . .] propositions or statements or
sentences’’ (11), then all the postulates (axioms) of a Boolean
algebra represent axioms of Boolean logic.

However, the modular distributive lattice of all sub-
spaces of a finite-dimensional (complex) linear space (or,
better, the orthomodular version of any infinite-dimen-
sional complex separable Hilbert space) has a significant
role in the so–called quantum logic or logic of quantum
mechanics, as described by Birkhoff and von Neumann in
their seminal paper about this subject 6. Quoting from the
latter: ‘‘The object of the present paper is to discover what

Figure 9. Two different orthocomplemen-
tations of the modular lattice M6 of Fig. 8.

Figure 8. The six elements modular lattice M6.

POSETS AND LATTICES 13



logical structure one may hope to find in physical theories
which, like quantum mechanics, do not conform to classi-
cal logic. Our main conclusion . . . is that one can reason-
ably expected to find a calculus of propositions which is
formally indistinguishable from the calculus of linear
subspaces with respect to set products [i.e., intersection],
linear sums [i.e., linear subspace generated by the set
union], and orthogonal complements – and resembles the
usual calculus of propositions with respect to and, or, and
not.’’

Coming back to the general situation of an orthocomple-
mentation ina generic lattice, condition (oc1) is the algebraic
counterpart of the strong double negation law of a negation.
Conditions (oc2a,b) are the de Morgan laws, whereas (oc2c)
is the contraposition law and (oc2d) its dual. Finally, con-
dition (oc3a) is the lattice realization of the noncontradiction
law and (oc3b) of the excluded middle law.

Let us stress that conditions (oc3a) and (oc3b) define the
mapping 0 as a complementation, whereas conditions (oc1)
and (oc2a–d) define 0 as an orthogonality operator because
one can introduce the orthogonality binary relation a? b iff
a� b0 or equivalently b�a0. For these reasons, the mapping
0 has been called an orthocomplementation. Sometimes, for
the sake of simplicity, we shall also name this mapping as
complementation and the lattice as complemented lattice, if
no confusion is likely.

CHARACTERISTIC FUNCTIONS ON A UNIVERSE
AS SHARP SETS

As we have seen in Example 15, in the power setPðXÞ based
on a universe X, any subset A of X can be represented by the
corresponding characteristic functionalxA : X 7! f0; 1g,
which is the crisp (or exact, also sharp) realization of the
set A, i.e., a mapping defined as follows:

xAðxÞ :¼ 1; iff x2A
0; iff x =2A

�

In this way, the set eðXÞ :¼ f0; 1gX of all characteristic
functionals on X has the structure heðXÞ;�; 0; 0; 1i of Boo-
lean complete lattice (0 ¼ x� and 1 ¼ xX being the char-
acteristic functionals of the empty set and of the whole
space respectively) with respect to the usual pointwise
ordering:

ðorÞ xA � xB iff for all x2X; xAðxÞ � xBðxÞ

The lattice meet of any two sharp sets xA; xB 2 eðXÞ is the
sharp set xA ^ xB 2 eðXÞdefined 8 x2X in the following way:

ðxA ^ xBÞðxÞ ¼ minfxAðxÞ; xBðxÞg ð8aÞ

¼ maxf0; xAðxÞ þ xBðxÞ � 1g ð8bÞ

¼ xAðxÞ 	 xBðxÞ ð8cÞ

The lattice join of any two sharp sets xA; xB 2 eðXÞ is the
sharp set xA _ xB 2 eðXÞ defined 8 x2X by the law

ðxA _ xBÞðxÞ ¼ maxfxAðxÞ; xBðxÞg ð9aÞ

¼ minf1; xAðxÞ þ xBðxÞg ð9bÞ

¼ xAðxÞ þ xBðxÞ � xAðxÞ 	 xBðxÞ ð9cÞ

The orthocomplementation mapping associates to any
characteristic functional xA the characteristic functional

ðxAÞ0ðxÞ ¼ ð1� xAÞðxÞ ð10aÞ

¼ 1; iff xAðxÞ ¼ 0
0; iff xAðxÞ ¼ 1

�
ð10bÞ

Of course, the mapping x : PðXÞ 7! eðXÞ;A 7!xA is an
isomorphism between the two Boolean lattice structures
hPðXÞ; \ ; [ ;c ; ;;Xi and heðXÞ; ^ ; _ ; 0; 0; 1i because besides
the identities xA\B ¼ xA ^ xB and xA[B ¼ xA _ xB, one has
that xAc ¼ ðxAÞ

0 ¼ 1� xA. This isomorphism preserves also
the partial ordering:

A�B iff xA � xB

According to the classic logic approach, the implication
connective is algebraically realized by the characteristic
function of the set A!B :¼ Ac [B

xA!B ¼ xAc [B ¼ maxf1� xA; xBg ð11Þ

from which trivially the minimal implication condition
xA!B ¼ 1 iff A�B follows.

GENERALIZED CHARACTERISTIC FUNCTIONS AS FUZZY
(UNSHARP) SETS

The more natural generalization of the notion of charac-
teristic (or, equivalently, Boolean-valued) functional on
the reference space X is the notion of generalized char-
acteristic functional or fuzzy set, which is defined as a
functional f : X 7! ½0; 1� whose range may assume all the
real values of the interval [0,1], not only the extreme ones,
either 0 or 1. Let us stress that in fuzzy theory, any value
f ðxÞ 2 ½0; 1� is not interpreted as a possible probability
value assumed by the object x 2 X but, on the contrary,
as a degree of membership of this object relative to the
fuzzy set f under consideration.

Example 31. Let us define the fuzzy set of tall people. So,
we have that x is a man/woman belonging to a certain
universe X, and h(x) is a real positive number, which

14 POSETS AND LATTICES



represents the height of x in meters (see Fig. 10). The tall
fuzzy set is defined as:

tðxÞ :¼
1 hðxÞ� 1:80
hðxÞ � 1:50

0:30
1:50<hðxÞ< 1:80

0 hðxÞ � 1:50

8><
>:

The set FðXÞ :¼ ½0; 1�X of all generalized characteristic
functionals is a partially ordered set with respect to the
ordering

ðor� FÞ f1 � f2 iff f1ðxÞ � f2ðxÞ; for all x2X

which is an extension of the ordering (or) previously
introduced on the set eðXÞ of all crisp characteristic func-
tionals. With respect to this ordering,FðXÞ turns out to be
a distributive complete lattice. In particular, we have that
the g.l.b. f ^ g and the l.u.b. f _ g of two fuzzy sets with
respect to this ordering are given, for any x 2 X, respec-
tively as

ð f ^ gÞðxÞ ¼ minf f ðxÞ; gðxÞg ¼ f ðxÞ ^ gðxÞ ð12Þ

ð f _ gÞðxÞ ¼ maxf f ðxÞ; gðxÞg ¼ f ðxÞ _ gðxÞ ð13Þ

These operations are just the operation of intersection
and union that are customarily introduced in the usual
theory of fuzzy set (see Ref. 3).

Example 32. Let us define the fuzzy set of short people, s
for all x 2 X, as

sðxÞ :¼
1 hðxÞ � 1:45
1:70� hðxÞ

0:25
1:45<hðxÞ< 1:70

0 hðxÞ� 1:70

8><
>:

Considering also the fuzzy set of tall people defined in
Example 31, the set of tall or short people, i.e., t _ s is
defined 8 x2X as

ðt_ sÞðxÞ :¼

1 hðxÞ � 1:45 or hðxÞ� 1:80
1:70� hðxÞ

0:25
1:45<hðxÞ< 1:61

hðxÞ � 1:50

0:30
1:61 � hðxÞ< 1:70

8>>><
>>>:

The set of tall and short people i.e., t ^ s, is defined for
all x

ðt^ sÞðxÞ :¼

0 hðxÞ � 1:50 or hðxÞ� 1:70
hðxÞ � 1:50

0:30
1:50<hðxÞ< 1:61

1:70� hðxÞ
0:25

1:61 � hðxÞ< 1:80

8>>><
>>>:

In Fig. 11, both fuzzy set intersection t^ s and union t_ s
of tall and short people are drawn.

Let us remark that a person can be at the same time and
with a certain degree tall and short. Let us consider for
example that x is a person who has an eighth of h(x)¼ 1.55
meters. Then, x is ‘‘tall and short’’ with a degree {t ^ s)(x)¼
0.17.

Negations in Fuzzy Set Theory

The generalization of the orthocomplement of a fuzzy set f,
starting from the equivalent forms in Equation (10) of the
crisp case, presents some trouble because it is not so uni-
vocal as it could seem, and, moreover, all the here-analyzed

1

1.8 h(x)0 1.51.45 1.70

1

1.8 h(x)0 1.51.45 1.70

Figure 11. Fuzzy set of intersection (at left) and union (at right) of tall and short people.

1

1.81.5 h(x)0

Figure 10. Fuzzy set of tall people.

POSETS AND LATTICES 15



versions present some pathological behavior with respect to
the standard properties that characterize the standard
version of negation (i.e., orthocomplementation) as intro-
duced in Definition 17, with the Proposition 11. First of all,
we can have at least these three distinct possibilities of
fuzzy negation:

1) The diametrical orthocomplement

f 0ðxÞ :¼ð1� f ÞðxÞ ð14aÞ

which is an extension of Equation (10a), and the
following, which are two different extensions of Equa-
tion (10b)

2) The intuitionistic orthocomplement

f � ðxÞ :¼ 1; if f ðxÞ ¼ 0
0; if f ðxÞ 6¼ 0

�
ð14baÞ

3) The anti-intuitionistic orthocomplement

f [ðxÞ :¼ 1; if f ðxÞ 6¼ 1
0; if f ðxÞ ¼ 1

�
ð14caÞ

Remark 4. If one introduces the subset of the universe

A0ð f Þ :¼ fx2X : f ðxÞ ¼ 0g

collection of all objects from the universe X in which the
fuzzy set f is impossible (the membership degree is 0), called
the certainly not or impossibility domain of f, then f� is the
crisp set f � ¼ xA0ð f Þ. Similarly, if one defines as con-
tingency domain of f the subset

Acð f Þ :¼ fx2X : f ðxÞ 6¼ 1g

collection of all objects in which the membership degree of f
is not certain, then f b is the crisp set f b ¼ xAcð f Þ.

Trivially, for the ordering point of view

f � � f 0 � f b

Example 33. Let us consider the fuzzy set of tall people.
Using the diametrical negation (see Fig. 12), the set of not
tall people is thus defined as:

ðt0ÞðxÞ ¼
0 hðxÞ� 1:80
1:80� hðxÞ

0:30
1:50 < hðxÞ < 1:80

1 hðxÞ � 1:50

8><
>:

The impossible tall people with respect to the intuitio-
nistic negation is:

ðt� ÞðxÞ ¼ 1 if hðxÞ � 1:50
0 otherwise

�

Finally, using the anti–intuitionistic negation (see Fig. 13)
we obtain that the contingent tall people is:

ðtbÞðxÞ ¼ 1 if hðxÞ � 1:80
0 otherwise

�

Hence, if we consider a person whose height is hðxÞ ¼ 1:70,
we have that he/she is not tall with values: ðt0Þð1:70Þ ¼
1

3
; ðt� Þð1:70Þ ¼ 0, and ðtbÞð1:70Þ ¼ 1.

Diametrical Complementation

The diametrical complementation allows one to introduce
the mapping 0 : FðXÞ!FðXÞ; f! f 0, which is a unusual

1

1.81.5 h(x)0

Figure 12. Fuzzy set of not tall people with respect to diametrical
complementation.

1

1.81.5 h(x)0

1

1.81.5 h(x)0

Figure 13. Fuzzy set of not tall people with respect to intuitonistic (at left) and anti-intuitionistic (at right) complementation.

16 POSETS AND LATTICES



orthocomplementation because it satisfies only the follow-
ing conditions:

ðoclÞ f 00 ¼ f ; for all f 2FðXÞ

ðoc2aÞ Let f ; g2FðXÞ; then f 0 ^ g0 ¼ ð f _ gÞ0
ðoc2bÞ Let f ; g2FðXÞ; then f 0 _ g0 ¼ ð f ^ gÞ0
ðoc2cÞ Let f ; g2FðXÞ; then f � g implies g0 � f 0

ðoc2dÞ Let f ; g2FðXÞ; then f 0 � g0 implies g � f

Moreover, the diametrical orthocomplementation satisfies
the following Kleene condition:

ðKLÞ for every f ; g2FðXÞ; f ^ f 0 � g_ g0

Remark 5. As stressed before, under condition (oc1), all
the conditions (oc2a–d) are mutually equivalent among
them.

Let us denote by k, for any fixed k2 ½0; 1�, the fuzzy set
8 x2X; kðxÞ ¼ k. We observe that the fuzzy set 1/2, called
the half fuzzy set, satisfies 1/2 ¼ (1/2)0. Making use of the
half fuzzy set, condition (KL) can be strengthened more in
the form:

ðKLaÞ For every f ; g2FðXÞ; f ^ f 0 � 1=2 � g_ g0

The unusual behavior of this weak form of negation with
respect to the standard orthocomplementation is that the
contradiction law 0 8 f ; f ^ f 0 ¼ 00, and the excluded middle
law 0 8 f ; f _ f 0 ¼ 10, in general, do not hold for the diame-
trical orthocomplementation. In particular, we have that

ð1=2Þ ^ ð1=2Þ0 ¼ ð1=2Þ _ ð1=2Þ0 ¼ ð1=2Þ 6¼0;1

The Intuitionistic Complementation

The intuitionistic complementation allows one to introduce
the mapping � : FðXÞ!FðXÞ; f ! f � , which also, in this
case, turns out to be an unusual orthocomplementation
because the following conditions are fulfilled:

ðwoc1Þ f � f � � ; for all f :

ðwoc2aÞ Let f ; g2FðXÞ; then f � ^ g� ¼ ð f _ gÞ� :
ðwoc2bÞ Let f ; g2FðXÞ; then f � g implies g� � f � :

ðwoc3Þ f ^ f � ¼ 0; for all f:

The anti-intuitionistic complementation can be derived
from the other two complementations according to the
formula:

f b ¼ f 0 � 0

Remark 6. From the general point of view, in an abstract
lattice, the condition (woc1) implies only the equivalence
between (woc2a) and (woc2b); the de Morgan law ‘‘dual’’ of
(woc2a) f � _ g� ¼ ð f ^ gÞ� in general is not true.

A dual behavior can be stated for the anti–intuitionistic
complementation. For these reasons the following result is
quite important because it shows a behavior that is peculiar
of classic fuzzy set theory.

Proposition 12. The distributive complete lattice of all
fuzzy sets on the universe X satisfies the ‘‘dual’’ de Morgan
laws:

ðwoc2cÞ Let f ; g2FðXÞ; then f � _ g� ¼ ð f ^ gÞ� :
ðaoc2cÞ Let f ; g2FðXÞ; then f b ^ gb ¼ ð f _ gÞb:

Proof. For any fixed point x2X, without losing in gen-
erality, we can assume that f ðxÞ � gðxÞ. Then, owing to
(woc2b), g� ðxÞ � f � ðxÞ, from which we get f � ðxÞ
_ g� ðxÞ ¼ f � ðxÞ. However ð f ^ gÞðxÞ ¼ f ðxÞ, and so
ð f ^ gÞ� ðxÞ ¼ f � ðxÞ. Therefore, 8 x2X; ð f � _ g� ÞðxÞ ¼
ð f ^ gÞ� ðxÞ.

The anti-intuitionistic case can be proved in a similar
way.

The intuitionistic-like orthocomplementation satisfies
the weak double negation law (woc1), which algebraically
expresses the fact that any proposition f ‘‘implies’’ its double
negation f � � , but, in general, the vice versa does not hold.
In particular, ð1=2Þ� ¼ 0, from which it follows that
ð1=2Þ� � ¼ 0� ¼ 1, concluding that ð1=2Þ < ð1=2Þ� � ,
with ð1=2Þ 6¼ ð1=2Þ� � .

The excluded middle law for the intuitionistic-like ortho-
complementation 0 8 f ; f _ f � ¼ 10, does not hold. Indeed,
as a simple example, we have that ð1=2Þ _ ð1=2Þ� ¼
ð1=2Þ _0 ¼ ð1=2Þ 6¼1. As another, less-trivial example, let
us consider the fuzzy set on the universe X = R

f ðxÞ ¼
1 if x2 ½0; 1�
1=2 if x2 ð1;þ1Þ
0 otherwise

then f � ðxÞ¼ 1 if x2 ð�1; 0Þ
0 otherwise

�8<
:

from which we have

ð f _ f � ÞðxÞ ¼ 1 if x2 ð�1; 0Þ
1=2 otherwise

�

and so f _ f � 6¼1.
Summarizing, both the intuitionistic-like and the fuzzy-

like orthocomplementation do not satisfy the ‘‘excluded mid-
dle’’ law. Moreover, the intuitionistic-like negation does not
satisfy the strong ‘‘double negation’’ law, and the ‘‘contra-
diction’’ law,too,whicharesubstitutedbytheweakerKleene
condition (K). Indeed, if for a certain fuzzy set f ^ f 0 ¼ 0 and
f _ f 0 ¼ 1, then trivially f ^ f 0 � f _ f 0. For a complete
discussion of the role of negation in intuitionistic logic or
better, in its algebraic semantic, let us refer to Ref. 12.

Let us note that the negations of impossibility (i.e., the
possibility) and contingency (i.e., the necessity) assume the
form:

ð4aÞ (ð f ÞðxÞ :¼ f �
0 ðxÞ ¼

�
1; if f ðxÞ 6¼ 0

0; if f ðxÞ ¼ 0

ð4bÞ &ð f ÞðxÞ :¼ f b0 ðxÞ ¼
�

1; if f ðxÞ ¼ 1

0; if f ðxÞ 6¼ 1

POSETS AND LATTICES 17



Remark 7. If one associates with any fuzzy set f the
possibility domain A pð f Þ :¼ fx2X : f ðxÞ 6¼ 0g and the
necessity domain A1ð f Þ :¼ fx2X : f ðxÞ ¼ 1g, then, as in
the two cases of Remark 5, we have to do with two crisp
sets:

&ð f Þ ¼ xA1ð f Þ and (ð f Þ ¼ xA pð f Þ

The Lattice of Ordered-Pairs of Crisp Sets (OCS)

Note that the necessity &ð f Þ (resp., possibility (ð f Þ) is the
best crisp approximation of the fuzzy set f from the bottom
(resp., top): &ð f Þ � f � (ð f Þ. For this reason, in the
application of roughness theory to fuzzy sets (see Ref.
12), the rough approximation of the fuzzy set f by crisp
sets is defined as the pair of crisp sets

rð f Þ :¼&ðð f Þ; (ð f ÞÞ ¼ ðxA1ð f Þ; xA pð f ÞÞ with

xA1ð f Þ � xA pð f Þ

This rough approximation can be identified with the pair
rð f Þ ¼ ðA1ð f Þ;A pð f ÞÞ by the bijective correspondence
r : f 2FðXÞ! rð f Þ ¼ ðA1ð f Þ;A pð f ÞÞ 2PðXÞ � PðXÞ, with
A1ð f Þ�A pð f Þ.

These considerations lead one to treat as interesting the
so-called ordered pairs of crisp sets (OCS) defined as pair
ðA1;ApÞ of subsets of the universe X under the condition
that A1�Ap whose collection will be denoted by OC(X). To
the best of our knowledge, the concept of OCS was intro-
duced for the first time by M. Yves Gentilhomme in Ref. 13.
(see also Ref. 14). Let us now investigate the lattice beha-
vior of an OCS. First of all, let us introduce on OC(X) the
following Gentilhomme binary operations:

ðA1;A pÞ u ðB1;B pÞ ¼ ðA1 \B1;A p \BpÞ
ðA1;A pÞ t ðB1;B pÞ ¼ ðA1 [B1;A p [BpÞ

Now, the structure hOCðXÞ; u ; t i is a distributive lattice
whose induced partial order relation is

ðA1;A pÞv ðB1;B pÞ iff A1�B1 and A p�B p

This lattice is bounded by the least element 0 ¼ ðu; uÞ and
the greatest element 1 = (X,X).

As to the negation, we have the two cases

�ðA1;A pÞ ¼ ððA pÞc; ðA1ÞcÞ
� ðA1;A pÞ ¼ ððA pÞc; ðA pÞcÞ

The operation – is a Kleene complementation because
ðoc1Þ � ð�ðA1;ApÞÞ ¼ ðA1;A pÞ; ðoc2cÞ ðA1;ApÞv ðB1;BpÞ
implies � ðB1;BpÞ ¼ ððBpÞc; ðB1ÞcÞv ððApÞc; ðA1ÞcÞ ¼ �ðA1;
ApÞ. Moreover, this lattice admits the half element 1

2 ¼
ð;;XÞ with respect to the negation —, because

� 1

2
¼ �ð;;XÞ ¼ 1

2
. As a consequence, with respect to this

complement, the lattice OC(X) is not Boolean. As to the
Kleene condition, let us observe that ðA1;A pÞ u �
ðA1;ApÞ ¼ ð�; ðA1Þc \ApÞ (with ðA1Þc \Ap the boundary
of the OCS ðA1;ApÞ), ðB1;BpÞ t � ðB1;BpÞ ¼ ðB1 [
ðBpÞc;XÞ, and so

ðA1;A0Þ u � ðA1;A0Þv ðu;XÞv ðB1;B0Þ t � ðB1;B0Þ:

In a similar way, it is easy to prove that the operation� is
an intuitionistic complementation, i.e., conditions (woc1)-
(woc3) are all satisfied.

BIBLIOGRAPHY

1. G. Birkhoff, Lattice Theory, 3rd ed., American Mathematical
Society Colloquium Publication, Vol. 25. American Mathema-
tical Society, 1967. Providence, Rhode Island; (first edition,
1940; second (revisited) edition, 1948).

2. B. A. Davey and H. A. Priestley, Introduction to Lattices and
Order, Cambridge: Cambridge University Press, 1990.

3. L. A. Zadeh, Fuzzy sets, Information and Control 8: 338–353,
1965.

4. D. Dubois and H. Prade, Fuzzy Sets and Systems. Theory and
Applications, New York: Academic Press, 1980.

5. M. Sholander, Postulates for distributive lattices, Canadian J.
Mathematics 3: 29–30, 1951.

6. G. Birkhoff and J. von Neumann, The logic of quantum
mechanics, Annals of Mathematics, 37: 823–843, 1936.

7. Z. Pawlak, Rough sets, Int. J. of Computer and Information
Sciences11: 341–356, 1982.

8. G. Cattaneo, Abstract approximation spaces for rough theories,
in L. Polkowski and A. Skowron Rough Sets in Knowledge
Discovery 1. Heidelberg: Physica-Verlag, 1998, pp. 59–98.

9. M. H. H, The theory of representation for Boolean algebras,
Trans. American Mathematical Society 40: 37–111, 1936.

10. G. M. M, Material implication in orthomodular (and Boolean)
lattices, Notre Dame J. Modal Logic 22: 163–182, 1981.

11. O. Frink, New algebras of logic, American Mathematical
Monthly 45: 210–219, 1938.

12. G. Cattaneo and D. Ciucci, Basic intuitionistic principles in
fuzzy set theories and its extensions (a terminological debate
on Atanassov IFS), Fuzzy Sets and Systems 157: 3198–3219,
2006.

13. M. Y. Gentilhomme, Les ensembles flous en linguistique,
Cahiers de linguistique theoretique et applique, Bucarest 47:
47–65, 1968.

14. G. C. Moisil, Les ensembles flous et la logique a trois valeurs
(texte inedit), in Essais sur les Logiques non Chrysippiennes,
Edition de l’Académie de la République Socialiste de
Roumanie, 99–103, 1972.

GIANPIERO CATTANEO

DAVIDE CIUCCI

Università di Milano–Bicocca
Milano, Italy

18 POSETS AND LATTICES



P

PROBABILITY AND STATISTICS

As an introductory definition, we consider probability to be
a collection of concepts, methods, and interpretations that
facilitate the investigation of nondeterministic phenom-
ena. Although more mathematically precise definitions
will appear in due course, this broadly inclusive description
certainly captures the nonspecialist’s meaning of prob-
ability, and it aligns closely with the intuitive appreciation
shared by engineering and computer science professionals.
That is, probability is concerned with chance. In a general
context, probability represents a systematic attempt to
cope with fluctuations of the stock market, winning and
losing streaks at the gaming table, and trends announced
by economists, sociologists, and weather forecasters. In
more scientific contexts, these examples extend to traffic
flow patterns on computer networks, request queue lengths
at a database server, and charge distributions near a
semiconductor junction.

Modern life, despite the predictability afforded by scien-
tific advances and technological accomplishments, offers
frequent exposure to chance happenings. It is a safe con-
clusion that this situation has been part of human existence
from prehistoric times. Indeed, despite the associated anxi-
ety, it seems that humans actively seek chance encounters
and that they have done so from earliest times. For exam-
ple, archeological evidence confirms that gambling, typi-
cally in the form of dice games, has been with us for
thousands of years. Given this long history, we might
expect some accumulation of knowledge, at least at the
level of folklore, that purports to improve the outcomes of
chance encounters. In Europe, however, no evidence of a
science of gambling appears before the fifteenth century,
and it is only in the middle of the seventeenth century that
such knowledge starts to encompass chance phenomena
outside the gaming sphere.

A science of chance in this context means a set of con-
cepts and methods that quantifies the unpredictability of
random events. For example, frequency of occurrence pro-
vides a useful guideline when betting on a roll of the dice.
Suppose your science tells you, from observation or calcula-
tion, that a seven occurs about once in every 6 throws and a
two occurs about once in every 36 throws. You would then
demand a greater payoff for correctly predicting the next
throw to be a two than for predicting a seven. Although the
dice rolls may be random, a pattern applies to repeated
rolls. That pattern governs the relative abundance of
sevens and twos among the outcomes.

Probability as a science of chance originated in efforts to
quantify such patterns and to construct interpretations
useful to the gambler. Many historians associate the birth
of probability with a particular event in mid-seventeenth-
century France. In 1654, the Chevalier de Mère, a gambler,
asked Blaise Pascal and Pierre Fermat, leading mathema-
ticians of the time, to calculate a fair disposition of stakes
when a game suffers a premature termination. They rea-

soned that it was unfair to award all stakes to the party who
was leading at the point of interruption. Rather, they
computed the outcomes for all possible continuations of
the game. Each party is allocated that fraction of the out-
comes that result in a win for him. This fraction constitutes
the probability that the party would win if the game were
completed. Hence, the party’s ‘‘expectation’’ is that same
fraction of the stakes and such should be his fair allocation
in the event of an interrupted game. We note that this
resolution accords with the intuition that the party who is
ahead at the time of interruption should receive a larger
share of the stakes. Indeed, he is ‘‘ahead’’ precisely because
the fraction of game continuations in his favor is noticeably
larger than that of his opponent.

For his role in gambling problems, such as the one
described above, and for his concept of dominating strate-
gies in decision theory, Pascal is sometimes called the
father of probability theory. The title is contested, however,
as there are earlier contributers. In the 1560s, Girolamo
Cardano wrote a book on games of chance, and Fra Luca
Paciuoli described the division of stakes problem in 1494.
In any case, it is not realistic to attribute such a broad
subject to a single parental figure. The mid-seventeenth-
century date of birth, however, is appropriate. Earlier
investigations are frequently erroneous and tend to be
anecdotal collections, whereas Pascal’s work is correct by
modern standards and marks the beginning of a systematic
study that quickly attracted other talented contributors.

In 1657, Christian Huygens introduced the concept of
expectation in the first printed probability textbook. About
the same time John Wallis published an algebra text that
featured a discussion of combinatorics. Appearing posthu-
mously in 1713, Jacques Bernoulli’s Ars Conjectandi (The
Art of Conjecture) presented the first limit theorem, which
is today known as the Weak Law of Large Numbers. Soon
thereafter, Abraham de Moivre demonstrated the normal
distribution as the limiting form of binomial distributions, a
special case of the Central Limit Theorem. In marked
contrast with its earlier focus on gambling, the new science
now found application in a variety of fields. In the 1660s,
John Hudde and John de Witt provided an actuarial foun-
dation for the annuities used by Dutch towns to finance
public works. In 1662, John Graunt published the first set of
statistical inferences from mortality records, a subject of
morbid interest in those times when the plague was devas-
tating London. Around 1665, Gottfried Leibniz brought
probability to the law as he attempted to assess the credi-
bility of judicial evidence.

Excepting Leibniz’s concern with the credibility of evi-
dence, all concepts and applications discussed to this point
have involved patterns that appear over repeated trials of
some nondeterministic process. This is the frequency-of-
occurrence interpretation of probability, and it presents
some dificulty when contemplating a single trial. Suppose a
medical test reveals that there is a 44% chance of your
having a particular disease. The frequency-of-occurrence

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



interpretation is that 44% of a large number of persons
with the same test results have actually had the disease.
What does this information tell you? At best, it seems to be a
rough guideline. If the number were low, say 0.01%, then
you might conclude that you have no medical problem. If
it were high, say 99.9%, then you would likely conclude
that you should undergo treatment. There is a rather large
gap between the two extremes for which it is dificult to
reach any conclusion. Even more tenuous are statements
such as ‘‘There is a 30% chance of war if country X acquires
nuclear weapons.’’ In this case, we cannot even envision the
‘‘large number of trials’’ that might underlie a frequency-of-
occurrence interpretation. These philosophical issues have
long contributed to the uneasiness associated with prob-
abilistic solutions. Fortunately for engineering and com-
puter science, these questions do not typically arise. That is,
probability applications in these disciplines normally admit
a frequency-of-occurrence interpretation. If, for example,
we use probability concepts to model query arrivals at a
database input queue, we envision an operating environ-
ment in which a large number of such queries are generated
with random time spacings between them. We want to
design the system to accommodate most of the queries in
an economic manner, and we wish to limit the consequences
of the relatively rare decision to reject a request.

In any case, as probability developed a sophisticated
mathematical foundation, the mathematics community
took the opportunity to sidestep the entire issue of inter-
pretations. A movement, led primarily by Andrei Kolmo-
gorov, developed axiomatic probability theory. This theory
defines the elements of interest, such as probability spaces,
random variables, and distributions and their transforms,
as abstract mathematical objects. In this setting, the the-
orems have specific meanings, and their proofs are the
timeless proofs of general mathematics. The theorems
easily admit frequency-of-occurrence interpretations, and
other interpretations are simply left to the observer with-
out further comment. Modern probability theory, meaning
probability as understood by mathematicians since the first
third of the twentieth century, is grounded in this
approach, and it is along this path that we now begin a
technical overview of the subject.

PROBABILITY SPACES

Formally, a probability space is a triple ðV;F ;PÞ. The first
component V is simply a set of outcomes. Examples are V ¼
fheads; tailsg for a coin-flipping scenario, V ¼ f1; 2; 3; 4; 5; 6g
for a single-die experiment, or V ¼ fx : 0 � x< 1g for a
spinning pointer that comes to rest at some fraction of a
full circle. The members of V are the occurrences over which
we wish to observe quantifiable patterns. That is, we envi-
sion that the various members will appear nondeterminis-
tically over the course of many trials, but that the relative
frequencies of these appearances will tend to have estab-
lished values. These are values assigned by the function P
to outcomes or to collections of outcomes. These values are
known as probabilities. In the single-die experiment, for
example, we might speak of Pð3Þ ¼ 1=6 as the probability of
obtaining a three on a single roll. A composite outcome,

such as three or four on a single roll, is the probability
Pf3; 4g ¼ 1=3.

How are these values determined? In axiomatic prob-
ability theory, probabilities are externally specified. For
example, in a coin-tossing context, we might know from
external considerations that heads appears with relative
frequency 0.55. We then simply declare PðheadsÞ ¼ 0:55 as
the probability of heads. The probability of tails is then
1:0� 0:55 ¼ 0:45. In axiomatic probability theory, these
values are assigned by the function P, the third component
of the probability space triple. That is, the theory develops
under the assumption that the assignments are arbitrary
(within certain constraints to be discussed shortly), and
therefore any derived results are immediately applicable to
any situation where the user can place meaningful fre-
quency assignments on the outcomes.

There is, however, one intervening technical dificulty.
The function P does not assign probabilities directly to the
outcomes. Rather, it assigns probabilities to events, which
are subsets of V. These events constitute F , the second
element of the probability triple. In the frequency-of-occur-
rence interpretation, the probability of an event is the
fraction of trials that produces an outcome in the event.
A subset in F may contain a single outcome from V, in
which case this outcome receives a specific probability
assignment. However, some outcomes may not occur as
singleton subsets in F . Such an outcome appears only
within subsets (events) that receive overall probability
assignments. Also, all outcomes of an event E2F may
constitute singleton events, each with probability assign-
ment zero, whereas E itself receives a nonzero assignment.
Countability considerations, to be discussed shortly, force
these subtleties in the general case to avoid internal con-
tradictions. In simple cases where V is a finite set, such
as the outcomes of a dice roll, we can take F to be all
subsets of V, including the singletons. In this case, the
probability assignment to an event must be the sum of the
assignments to its constituent outcomes.

Here are the official rules for constructing a probability
space ðV;F ;PÞ. First, V may be any set whatsoever. For
engineering and computer science applications, the most
convenient choice is often the real numbers, but any set will
do. F is a collection of subsets chosen from V. F must
constitute a s-field, which is a collection containing f,
the empty subset, and closed under the operations of com-
plement and countable union. That is,

� f2F .

� A2F forces A ¼ V� A2F .

� An 2F for n ¼ 1; 2; . . . forces [1n¼1An 2F .

Finally, the function P maps subsets in F to real num-
bers in the range zero to one in a countably additive
manner. That is,

� P : F !½0; 1�:
� PðfÞ ¼ 0.

� PðVÞ ¼ 1.

� Pð [1n¼1AnÞ ¼
P1

n¼1 PðAnÞ for pairwise disjoint subsets
A1, A2,. . ..

2 PROBABILITY AND STATISTICS



The events in F are called measurable sets because the
function P specifies their sizes as probability allotments.
You might well wonder about the necessity of the s-field F .
As noted, when V is a finite outcome set, F is normally
taken to be the collection of all subsets of V. This maximal
collection clearly satisfies the requirements. It contains all
singleton outcomes as well as all possible groupings. More-
over, the rule that P must be countably additive forces the
probability of any subset to be the sum of the probabilities of
its members. This happy circumstance occurs in experi-
ments with dice, coins, and cards, and subsequent sections
will investigate some typical probability assignments in
those cases.

A countable set is one that can be placed in one-to-one
correspondence with the positive integers. The expedient
introduced for finite V extends to include outcome spaces
that are countable. That is, we can still choose F to be all
subsets of the countably infinite V. The probability of a
subset remains the sum of the probabilities of its members,
although this sum now contains countably many terms.
However, the appropriate V for many scientific purposes is
the set of real numbers. In the nineteenth century, Georg
Cantor proved that the real numbers are uncountable, as is
any nonempty interval of real numbers.

When V is an uncountable set, set-theoretic conun-
drums beyond the scope of this article forceF to be smaller
than the collection of all subsets. In particular, the coun-
table additivity requirement on the function P cannot
always be achieved if F is the collection of all subsets of
V. On most occasions associated with engineering or
computer science applications, the uncountable V is the
real numbers or some restricted span of real numbers. In
this case, we take F to be the Borel sets, which is the
smallest s-field containing all open intervals of the form
(a, b).

Consider again the example where our outcomes are
interarrival times between requests in a database input
queue. These outcomes can be any positive real numbers,
but our instrumentation cannot measure them in infinite
detail. Consequently, our interest normally lies with events
of the form (a, b). The probability assigned to this interval
should reflect the relative frequency with which the inter-
arrival time falls between a and b. Hence, we do not need all
subsets of the positive real numbers among our measurable
sets. We need the intervals and interval combinations
achieved through intersections and unions. Because F
must be a s-field, we must therefore take some s-field
containing the intervals and their combinations. By defini-
tion the collection of Borel sets satisfies this condition, and
this choice has happy consequences in the later develop-
ment of random variables.

Although not specified explicitly in the defining con-
straints, closure under countable intersections is also a
property of a s-field. Moreover, we may interpret countable
as either finite or countably infinite. Thus, every s-field is
closed under finite unions and finite intersections. From
set-theoretic arguments, we obtain the following properties
of the probability assignment function P:

� PðAÞ ¼ 1� PðAÞ.

� Pð [1n¼1AnÞ �
P1

n¼1 PðAnÞ, without regard to disjoint-
ness among the An.

� If A�B, then PðAÞ � PðBÞ.
� If A1�A2� . . ., then Pð [1n¼1AnÞ ¼ limn!1PðAnÞ.
� If A1�A2� . . ., then Pð \1n¼1AnÞ ¼ limn!1PðAnÞ.

The final two entries above are collectively known as the
Continuity of Measure Theorem. A more precise continuity
of measure result is possible with more refined limits. For a
sequence a1, a2,. . . of real numbers and a sequence A1,
A2, . . . of elements from F , we define the limit supremum
and the limit infimum as follows:

limsup an
n!1

¼ limsup an
k!1n�k

limsup An
n!1

¼ \1k¼1 [
1
n¼k An

liminf an
n!1

¼ liminf an
k!1n�k

liminf An
n!1

¼ [1k¼1 \
1
n¼k An

We adopt the term extended limits for the limit supremum
and the limit infimum. Although a sequence of bounded
real numbers, such as probabilities, may oscillate indefi-
nitely and therefore fail to achieve a well-defined limiting
value, every such sequence nevertheless achieves extended
limits. We find that liminf an� limsup an in all cases, and if
the sequence converges, then liminf an ¼ lim an ¼ limsup
an. For a sequence of subsets in F , we adopt equality of the
extended limits as the definition of convergence. That is,
lim An ¼ A if liminf An ¼ limsup An ¼ A.

When applied to subsets, we find liminf An� limsup An.
Also, for increasing sequences, A1�A2� . . ., or decreasing
sequences, A1�A2� . . ., it is evident that the sequences
converge to the countable union and countable intersection,
respectively. Consequently, the Continuity of Measure
Theorem above is actually a statement about convergent
sequences of sets: Pðlim AnÞ ¼ lim PðAnÞ. However, even if
the sequence does not converge, we can derive a relation-
ship among the probabilities: P(liminf An)� liminf P(An)�
limsup P(An) � P(limsup An).

We conclude this section with two more advanced results
that are useful in analyzing sequences of events. Suppose
An, for n ¼ 1; 2; . . ., is a sequence of events in F for whichP1

n¼1 PðAnÞ<1. The Borel Lemma states that, under these
circumstances, Pðliminf AnÞ ¼ Pðlimsup AnÞ ¼ 0.

The second result is the Borel–Cantelli Lemma, for which
we need the definition of independent subsets. Two subsets
A, B in F are independent if PðA\BÞ ¼ PðAÞPðBÞ. Now
suppose that Ai and Aj are independent for any two distinct
subsets in the sequence. Then the lemma asserts that ifP1

n¼1 PðAnÞ ¼ 1, then Pðlimsup AnÞ ¼ 1. A more general
result, the Kochen–Stone Lemma, provides a lower bound
on P(limsup An) under slightly more relaxed conditions.

COMBINATORICS

Suppose a probability space ðV;F ;PÞ features a finite
outcome set V. If we use the notation |A| to denote the
number of elements in a set A, then this condition is jVj ¼ n

PROBABILITY AND STATISTICS 3



for some positive integer n. In this case, we takeF to be the
collection of all subsets of V. We find that jF j ¼ 2n, and a
feasible probability assignment allots probability 1/n to
each event containing a singleton outcome. The countable
additivity constraint then forces each composite event to
receive probability equal to the sum of the probabilities of
its constituents, which amounts to the size of the event
divided by n. In this context, combinatorics refers to meth-
ods for calculating the size of V and for determining the
number of constituents in a composite event.

In the simplest cases, this computation is mere enu-
meration. If V contains the six possible outcomes from the
roll of a single die, then V ¼ 1; 2; 3; 4; 5; 6. We observe that
n ¼ 6. If an event E is described as ‘‘the outcome is odd or it
is greater than 4,’’ then we note that outcomes 1, 3, 5, 6
conform to the description, and we calculate PðEÞ ¼ 4=6. In
more complicated circumstances, neither n nor the size of
E is so easily available. For example, suppose we receive
5 cards from a shuffled deck of 52 standard playing cards.
What is the probability that we receive five cards of the
same suit with consecutive numerical values (a straight
flush)? How many possible hands exist? How many of those
constitute a straight flush?

A systematic approach to such problems considers
sequences or subsets obtained by choosing from a common
pool of candidates. A further distinction appears when we
consider two choice protocols: choosing with replacement
and choosing without replacement. Two sequences differ if
they differ in any position. For example, the sequence 1, 2, 3
is different from the sequence 2, 1, 3. However, two sets
differ if one contains an element that is not in the other.
Consequently, the sets 1, 2, 3 and 2, 1, 3 are the same set.

Suppose we are choosing k items from a pool of n without
replacement. That is, each choice reduces that size of the
pool available for subsequent choices. This constraint
forces k � n. Let Pk,n be the number of distincts sequences
that might be chosen, and let Ck,n denote the number of
possible sets. We have

Pk;n ¼ ðnÞ #k �nðn� 1Þðn� 2Þ 	 	 	 ðn� kþ 1Þ ¼ n!

k!

Ck;n ¼
n

k

� �
� n!

k!ðn� kÞ!

Consider again the scenario mentioned above in which we
receive five cards from a shuffled deck. We receive one of
ð52Þ #5 ¼ 311875200 sequences. To determine whether we
have received a straight flush, however, we are allowed to
reorder the cards in our hand. Consequently, the size of the
outcome space is the number of possible sets, rather than
the number of sequences. As there are ð52

5 Þ ¼ 2598960 such
sets, we conclude that the size of the outcome space is
n ¼ 2598960. Now, how many of these possible hands con-
stitute a straight flush?

For this calculation, it is convenient to introduce another
useful counting tool. If we can undertake a choice as a
succession of subchoices, then the number of candidate
choices is the product of the number available at each stage.
A straight flush, for example, results from choosing one of
four suits and then one of nine low cards to anchor the

ascending numerical values. That is, the first subchoice has
candidates: clubs, diamonds, hearts, spades. The second
subchoice has candidates: 2, 3,. . ., 10. The number of can-
didate hands for a straight flush and the corresponding
probability of a straight flush are then

Nðstraight flushÞ ¼
4

1

 !
9

1

 !
¼ 36

Pðstraight flushÞ ¼ 36

2598960
¼ 0:0000138517

The multiplicative approach that determines the num-
ber of straight flush hands amounts to laying out the hands
in four columns, one for each suit, and nine rows, one for
each low card anchor value. That is, each candidate from
the first subchoice admits the same number of subsequent
choices, nine in this example. If the number of subsequent
subchoices is not uniform, we resort to summing the values.
For example, how many hands exhibit either one or two
aces? One-ace hands involve a choice of suit for the ace,
followed by a choice of any 4 cards from the 48 non-aces.
Two-ace hands require a choice of two suits for the aces,
followed by a selection of any 3 cards from the 48 non-aces.
The computation is

Nðone or two acesÞ ¼
4

1

 !
48

4

 !
þ

4

2

 !
48

3

 !
¼ 882096

Pðone or two acesÞ ¼ 882096

2598960
¼ 0:3394

When the selections are performed with replacement,
the resulting sequences or sets may contain duplicate
entries. In this case, a set is more accurately described
as a multiset, which is a set that admits duplicate members.
Moreover, the size of the selection k may be larger than
the size of the candidate pool n. If we let Pk;n and Ck;n denote
the number of sequences and multisets, respectively, we
obtain

Pk;n ¼ nk

Ck;n ¼ nþ k� 1
k

� �

These formulas are useful in occupancy problems. For
example, suppose we have n bins into which we must
distribute k balls. As we place each ball, we choose one of
the n bins for it. The chosen bin remains available for
subsequent balls, so we are choosing with replacement. A
generic outcome is (n1, n2,. . ., nk), where ni denotes the bin
selected for ball i. There are nk such outcomes correspond-
ing to the number of such sequences.

If we collect birthdays from a group of 10 persons, we
obtain a sequence n1, n2,. . ., n10, in which each entry is an
integer in the range 1 to 365. As each such sequence
represents one choice from a field of P365;10 ¼ 36510, we

4 PROBABILITY AND STATISTICS



can calculate the probability that there will be at least
one repetition among the birthdays by computing the
number of such sequences with at least one repetition
and dividing by the size of the field. We can construct a
sequence with no repetitions by selecting, without replace-
ment, 10 integers from the range 1 to 365. There are P365,10

such sequences, and the remaining sequences must all
correspond to least one repeated birthday among the 10
people. The probability of a repeated birthday is then

Pðrepeated birthdayÞ ¼
36510 � P365;10

36510

¼ 1� ð365Þð364Þ . . . ð365Þ
36510

¼ 0:117

As we consider larger groups, the probability of a
repeated birthday rises, although many people are sur-
prised by how quickly it becomes larger than 0.5. For
example, if we redo the above calculation with 23 persons,
we obtain 0.5073 for the probability of a repeated birthday.

Multisets differ from sequences in that a multiset is
not concerned with the order of its elements. In the bin-
choosing experiment above, a generic multiset outcome is
k1, k2,. . ., kn, where ki counts the number of times bin i was
chosen to receive a ball. That is, ki is the number of
occurrences of i in the generic sequence outcome n1,
n2,. . ., nk, with a zero entered when a bin does not appear
at all. In the birthday example, there are C365;10 such day-
count vectors, but we would not consider them equally
likely outcomes. Doing so would imply that the probability
of all 10 birthdays coinciding is the same as the probability
of them dispersing across several days, a conclusion that
does not accord with experience.

As an example of where the collection of multisets
correctly specifies the equally likely outcomes, consider
the ways of writing the positive integer k as a sum of n
nonnegative integers. A particular sum k1þ k2þ . . .þ kn¼
k is called a partition of k into nonnegative components. We
can construct such a sum by tossing k ones at n bins. The
first bin accumulates summand k1, which is equal to
the number of times that bin is hit by an incoming one.
The second bin plays a similar role for the summand k2 and
so forth. There are C3;4 ¼ 15 ways to partition 4 into 3
components:

0þ 0þ 4 0þ 1þ 3 0þ 2þ 2 0þ 3þ 1 0þ 4þ 0
1þ 0þ 3 1þ 1þ 2 1þ 2þ 1 1þ 3þ 0
2þ 0þ 2 2þ 1þ 1 2þ 2þ 0
3þ 0þ 1 3þ 1þ 0
4þ 0þ 0

We can turn the set of partitions into a probability space
by assigning probability 1/15 to each partition. We would
then speak of a random partition as 1 of these 15 equally
likely decompositions.

When the bin-choosing experiment is performed with
distinguishable balls, then it is possible to observe the
outcome n1, n2,. . ., nk, where ni is the bin chosen for ball
i. There are Pn;k such observable vectors. If the balls are
not distinguishable, the outcome will not contain enough

information for us to know the numbers ni. After the
experiment, we cannot locate ball i, and hence, we cannot
specify its bin. In this case, we know only the multiset
outcome k1, k2,. . ., kn, where ki is the number of balls in bin
i. There are only Cn;kobservable vectors of this latter type.
In certain physics contexts, probability models with Pn;k

equally likely outcomes accurately describe experiments
with distinguishable particles across a range of energy
levels (bins). These systems are said to obey Maxwell–
Boltzmann statistics. On the other hand, if the experiment
involves indistinguishable particles, the more realistic
model use Cn;k outcomes, and the system is said to obey
Bose–Einstein statistics.

The discussion above presents only an introduction to
the vast literature of counting methods and their inter-
relationships that is known as combinatorics. For our
purposes, we take these methods as one approach to estab-
lishing a probability space over a finite collection of out-
comes.

RANDOM VARIABLES AND THEIR DISTRIBUTIONS

A random variable is a function that maps a probability
space into the real numbersR. There is a subtle constraint.
Suppose ðV;F ;PÞ is a probability space. Then X : V!R is a
random variable if X�1ðBÞ 2F for all Borel sets B
R. This
constraint ensures that all events of the form
fo2Vja<XðoÞ< bg do indeed receive a probability assign-
ment. Such events are typically abbreviated (a<X <
b) and are interpreted to mean that the random variable (for
the implicit outcomeo) lies in the interval (a, b). The laws of
s-fields then guarantee that related events, those obtained
by unions, intersections, and complements from the open
intervals, also receive probability assignments. In other
words, X constitutes a measurable function from ðV;FÞ to
R.

If the probability space is the real numbers, then the
identity function is a random variable. However, for any
probability space, we can use a random variable to transfer
probability to the Borel sets B via the prescription P0ðBÞ ¼
Pðfo2VjXðoÞ 2BgÞ and thereby obtain a new probability
space ðR;B;P0Þ. Frequently, all subsequent analysis takes
place in the real number setting, and the underlying out-
come space plays no further role.

For any x2R, the function FXðxÞ ¼ P0ðX � xÞ is called
the cumulative distribution of random variable X. It is
frequently written F(x) when the underlying random vari-
able is clear from context. Distribution functions have the
following properties:

� F(x) is monotone nondecreasing.

� limx!�1FðxÞ ¼ 0; limx!þ1FðxÞ ¼ 1.

� At each point x, F is continuous from the right and
possesses a limit from the left. That is, limy! x�FðyÞ �
FðxÞ ¼ limy! xþFðyÞ.

� The set of discontinuities of F is countable.

Indeed, any function F with these properties is the
distribution of some random variable over some probability

PROBABILITY AND STATISTICS 5



space. If a nonnegative function f exists such that FðxÞ ¼R x
�1 f ðtÞdt, then f is called the density of the underlying

random variable X. Of course, there are actually many
densities, if there is one, because f can be changed arbi-
trarily at isolated points without disturbing the integral.

Random variables and their distributions provide the
opening wedge into a broad spectrum of analytical results
because at this point the concepts have been quantified. In
working with distributions, we are working with real-
valued functions. The first step is to enumerate some dis-
tributions that prove useful in computer science and
engineering applications. In each case, the underlying
probability space is scarcely mentioned. After transfering
probability to the Borel sets within the real numbers, all
analysis takes place in a real-number setting. When the
random variable takes on only a countable number of
discrete values, it is traditionally described by giving the
probability assigned to each of these values. When the
random variable assumes a continuum of values, it is
described by its density or distribution.

The Bernoulli random variable models experiments
with two outcomes. It is an abstraction of the coin-tossing
experiment, and it carries a parameter that denotes the
probability of ‘‘heads.’’ Formally, a Bernoulli random vari-
able X takes on only two values: 0 or 1. We say that X is a
Bernoulli random variable with parameter p if PðX ¼ 1Þ ¼
p and (necessarily) PðX ¼ 0Þ ¼ 1� p.

The expected value of a discrete random variable X,
denoted E[X], is

E½X� ¼
X1
n¼1

tn 	 PðX ¼ tnÞ

where t1, t2,. . . enumerates the discrete values that X
may assume. The expected value represents a weighted
average across the possible outcomes. The variance of a
discrete random variable is

Var½X� ¼
X1
n¼1

ðtn � E½X�Þ2

The variance provides a summary measure of the disper-
sion of the X values about the expected value with low
variance corresponding to a tighter clustering. For a
Bernoulli random variable X with parameter p, we have
E½X� ¼ p and Var½X� ¼ pð1� pÞ.

An indicator random variable is a Bernoulli random
variable that takes on the value 1 precisely when some
other random variable falls in a prescribed set. For exam-
ple, suppose we have a random variable X that measures
the service time (seconds) of a customer with a bank teller.
We might be particularly interested in lengthy service
times, say those that exceed 120 seconds. The indicator

Ið120;1Þ ¼
1; X> 120
0; X � 120

�

is a Bernoulli random variable with parameter p ¼
PðX> 120Þ.

Random variables X1, X2,. . ., Xn are independent if, for
any Borel sets B1, B2,. . ., Bn, the probability that all n
random variables lie in their respective sets is the product
of the individual occupancy probabilities. That is,

P
\n
i¼1

ðXi 2BiÞ
 !

¼
Yn
i¼1

PðXi 2BiÞ

This definition is a restatement of the concept of inde-
pendent events introduced earlier; the events are now
expressed in terms of the random variables. Because
the Borel sets constitute a s-field, it suffices to check the
above condition on Borel sets of the form (X � t). That is,
X1, X2,. . ., Xn are independent if, for any n-tuple of real
numbers t1, t2,. . .,tn, we have

P
\n
i¼1

ðXi � tiÞ
 !

¼
Yn
i¼1

PðXi � tiÞ ¼
Yn
i¼1

FXðtiÞ

The sum of n independent Bernoulli random variables,
each with parameter p, exhibits a binomial distribution.
That is, if X1, X2,. . ., Xn are Bernoulli with parameter p
and Y ¼

Pn
i¼1 Xi, then

PðY ¼ iÞ ¼ n
i

� �
pið1� pÞn�i

for i ¼ 0; 1; 2; . . . ;n. This random variable models, for exam-
ple, the number of heads in n tosses of a coin for which the
probability of a head on any given toss is p. For linear
combinations of independent random variables, expected
values and variances are simple functions of the component
values.

E½a1X1 þ a2X2 þ . . .� ¼ a1E½X1� þ a2E½X2� þ . . .
Var½a1X1 þ a2X2 þ . . .� ¼ a2

1Var½X1� þ a2
2Var½X2� þ . . .

For the binomial random variable Y above, therefore, we
have E½Y � ¼ n p and Var½Y � ¼ n pð1� pÞ.

A Poisson random variable X with parameter l has
PðX ¼ kÞ ¼ e�llk=k!. This random variable assumes all
nonnegative integer values, and it is useful for modeling
the number of events occurring in a specified interval when
it is plausible to assume that the count is proportional to the
interval width in the limit of very small widths. Specifically,
the following context gives rise to a Poisson random vari-
able X with parameter l. Suppose, as time progresses, some
random process is generating events. Let Xt;D count the
number of events that occur during the time interval
½t; tþ D�. Now, suppose further that the generating process
obeys three assumptions. The first is a homogeneity con-
straint:

� PðXt1 ; D ¼ kÞ ¼ PðXt2 ; D ¼ kÞ for all integers k�0

That is, the probabilities associated with an interval
of width do not depend on the location of the interval.
This constraint allows a notational simplification, and
we can now speak of XD because the various random

6 PROBABILITY AND STATISTICS



variables associated with different anchor positions t all
have the same distribution. The remaining assumptions
are as follows:

� PðXD ¼ 1Þ ¼ lDþ o1ðDÞ
� PðXD > 1Þ ¼ o2ðDÞ

where the oi(D) denote anonymous functions with the prop-
erty that oiðDÞ=D! 0 as D!0. Then the assignment PðX ¼
kÞ ¼ limD!0PðXD ¼ kÞ produces a Poisson random variable.

This model accurately describes such diverse phenom-
ena as particles emitted in radioactive decay, customer
arrivals at an input queue, flaws in magnetic recording
media, airline accidents, and spectator coughing during a
concert. The expected value and variance are both l. If we
consider a sequence of binomial random variables Bn,p,
where the parameters n and p are constrained such that
n!1 and p!0 in a manner that allows n p! l> 0, then
the distributions approach that of a Poisson random vari-
able Y with parameter l. That is, PðBn;p ¼ kÞ!PðY ¼ kÞ ¼
e�llk=k!.

A geometric random variable X with parameter p exhi-
bits PðX ¼ kÞ ¼ pð1� pÞk for k ¼ 0; 1; 2; . . .. It models, for
example, the number of tails before the first head in
repeated tosses of a coin for which the probability of heads
is p. We have E½X� ¼ ð1� pÞ=p and Var½X� ¼ ð1� pÞ=p2.
Suppose, for example, that we have a hash table in which j
of the N addresses are unoccupied. If we generate random
address probes in search of an unoccupied slot, the prob-
ability of success is j/N for each probe. The number of
failures prior to the first success then follows a geometric
distribution with parameter j/N.

The sum of n independent geometric random variables
displays a negative binomial distribution. That is, if X1,
X2,. . ., Xn are all geometric with parameter p, then Y ¼
X1 þ X2 þ . . .þ Xn is negative binomial with parameters (n,
p). We have

PðY ¼ kÞ ¼ Cnþk�1;k pnð1� pÞk

E½Y � ¼ nð1� pÞ
p

Var½Y � ¼ nð1� pÞ
p2

where Cnþk�1;k is the number of distinct multisets avail-
able when choosing k from a field of n with replacement.
This random variable models, for example, the number of
tails before the nth head in repeated coin tosses, the num-
ber of successful fights prior to the nth accident in an airline
history, or the number of defective parts chosen (with
replacement) from a bin prior to the nth functional one.
For the hash table example above, if we are trying to fill n
unoccupied slots, the number of unsuccessful probes in the
process will follow a negative binomial distribution with
parameters n, j/N. In this example, we assume that n is
significantly smaller than N, so that insertions do not
materially change the probability j/N of success for each
address probe.

Moving on to random variables that assume a conti-
nuum of values, we describe each by giving its density
function. The summation formulas for the expected value
and variance become integrals involving this density. That
is, if random variable X has density f, then

E½X� ¼
Z1

�1

t f ðtÞdt

Var½X� ¼
Z1

�1

½t� E½X��2 f ðtÞdt

In truth, precise work in mathematical probability uses
a generalization of the familiar Riemann integral known
as a measure-theoretic integral. The separate formulas,
summation for discrete random variables and Riemann
integration against a density for continuous random vari-
ables, are then subsumed under a common notation. This
more general integral also enables computations in cases
where a density does not exist. When the measure in
question corresponds to the traditional notion of length
on the real line, the measure-theoretic integral is known
as the Lebesgue integral. In other cases, it corresponds to
a notion of length accorded by the probability distri-
bution: P(a < X < t) for real a and b. In most instances of
interest in engineering and computer science, the form
involving ordinary integration against a density suffices.

The uniform random variable U on [0, 1] is described
by the constant density f ðtÞ ¼ 1 for 0 � t � 1. The prob-
ability that U falls in a subinterval (a, b) within [0, 1] is
simply b � a, the length of that subinterval. We have

E½U� ¼
Z 1

0
tdt ¼ 1

2

Var½U� ¼
Z1

0

t� 1

2

� �2

dt ¼ 1

12

The uniform distribution is the continuous analog of the
equally likely outcomes discussed in the combinatorics
section above. It assumes that any outcome in the interval
[0, 1] is equally likely to the extent possible under the
constraint that probability must now be assigned to Borel
sets. In this case, all individual outcomes receive zero
probability, but intervals receive probability in proportion
to their lengths. This random variable models situations
such as the final resting position of a spinning pointer,
where no particular location has any apparent advantage.

The most famous continuous random variable is the
Gaussian or normal random variable Zm;s. It is character-
ized by two parameters, m and s, and has density, expected
value, and variance as follows:

f zm;sðtÞ ¼
1

s
ffiffiffiffiffiffi
2p
p eðt�mÞ

2=2s2

E½Zm;s� ¼ m

Var½Zm;s� ¼ s2

PROBABILITY AND STATISTICS 7



The well-known Central Limit Theorem states that the
average of a large number of independent observations
behaves like a Gaussian random variable. Specifically, if
X1, X2,. . . are independent random variables with identical
finite-variance distributions, say E½Xi� ¼ a and
Var½Xi� ¼ c2, then for any t,

lim
n!1

P
1ffiffiffiffiffiffiffiffi
nc2
p

Xn

i¼1

ðXi � aÞ � t

 !
¼ PðZ0;1 � tÞ

For example, if we toss a fair coin 100 times, what is the
probability that we will see 40 or fewer heads? To use the
Central Limit Theorem, we let Xi ¼ 1 if heads occurs on the
ith toss and zero otherwise. With this definition, we have
E½Xi� ¼ 0:5 and Var½Xi� ¼ 0:25, which yields

P
X100

i¼1

Xi � 40

 !
¼ P

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100ð0:25Þ

p X100

i¼1

ðXi � 0:5Þ � 40� 100ð0:5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100ð0:25Þ

p
 !

�PðZ0;1 � �2Þ ¼ 0:0288

The last equality was obtained from a tabulation of such
values for the standard normal random variable with
expected value 0 and variance 1.

Because it represents a common limiting distribution for
an average of independent observations, the Gaussian
random variable is heavily used to calculate confidence
intervals that describe the chance of correctly estimating
a parameter from multiple trials. We will return to this
matter in a subsequent section.

The Gamma function is GðtÞ ¼
R1

0 xt�1e�xdx, defined for
t< 0. The Gamma random variable X with parameters (g, l)
(both positive) is described by the density

f ðxÞ ¼ lgxg�1e�lx=GðgÞ;
0;

for x� 0
for x < 0

�

It has E½X� ¼ g=l and Var½X� ¼ g=l2. For certain specific
values of g, the random variable is known by other names.
If g ¼ 1, the density reduces to f ðxÞ ¼ le�lx for x � 0, and
X is then called an exponential random variable. The
exponential random variable models the interarrival
times associated with events such as radioactive decay
and customer queues, which were discussed in connnection
with Poisson random variables above. Specifically, if a
Poisson random variable with parameter lT models the
number of events in interval T, then an exponential random
variable with parameter l models their interarrival times.
Consequently, the exponential random variable features
prominently in queueing theory.

Exponential random variables possess a remarkable
feature; they are memoryless. To understand this concept,
we must first define the notion of conditional probability.
We will use the exponential random variable as an exam-
ple, although the discussion applies equally well to random
variables in general. Notationally, we have a probability

space ðV;F ;PÞ and a random variable X, for which

Pfo2V : XðoÞ> tg ¼
Z 1

t
le�lxdx ¼ e�lt

for t� 0. Let t1 be a fixed positive real number, and consider
a related probability space ðV̂; F̂ ; P̂Þ, obtained as follows:

V̂ ¼ fo2V : XðoÞ> t1g
F̂ ¼ fA\ V̂ : A2Fg

P̂ðBÞ ¼ PðBÞ=PðV̂Þ; for all B2 F̂

By restricting its domain, we can consider X to be a ran-
dom variable on V̂. For anyo2 V̂, we have XðoÞ> t1, but we
can legitimately ask the probability, using the new mea-
sure P̂, that X(o) exceeds t1 by more than t.

P̂ðX> t1 þ tÞ ¼ PðX> t1 þ t2Þ
PðX> t1Þ

¼ e�lðt1þtÞ

e�lt1

¼ e�lt ¼ PðX> tÞ

The probability P̂ðBÞ is known as the conditional prob-
ability of B, given V̂. From the calculation above, we see
that the conditional probability that X exceeds t1 by t or
more, given that X> t1 is equal to the unconditional prob-
ability that X> t. This is the memoryless property. If X is an
exponential random variable representing the time
between query arrivals to a database input queue, then
the probability that 6 microseconds or more elapses before
the next arrival is the same as the probability that an
additional 6 microseconds or more elapses before the
next arrival, given that we have already waited in vain
for 10 microseconds.

In general, we can renormalize our probability assign-
ments by restricting the outcome space to some particular
event, such as the V̂ in the example. The more general
notation is P(B|A) for the conditional probability of B given
A. Also, we normally allow B to be any event in the original
F with the understanding that only that part of B that
intersects A carries nonzero probability under the new
measure. The definition requires that the conditioning
event A have nonzero probability. In that case,

PðBjAÞ ¼ PðB\AÞ
PðAÞ

specifies the revised probabilities for all events B. Note that

PðBjAÞ ¼ PðA\BÞ
PðAÞ ¼ PðA\BÞ

PðA\BÞ þ PðA\BÞ

¼ PðAjBÞPðBÞ
PðAjBÞPðBÞ þ PðAjBÞPðBÞ

This formula, a simple form of Bayes’ Law, relates the
conditional probability of B given A to that of A given B.
It finds frequent use in updating probability assignments to
reflect new information. Specifically, suppose we know P(B)
and therefore PðBÞ ¼ 1� PðBÞ. Such probabilities are

8 PROBABILITY AND STATISTICS



called prior probabilities because they reflect the chances of
a B occurrence in the absence of further knowledge about
the underlying random process. If the actual outcome
remains unknown to us, but we are told that event A has
occurred, we may want to update our probability assign-
ment to reflect more accurately the chances that B has
also occurred. That is, we are interested in the posterior
probability P(B|A). Bayes’ Law allows us to compute this
new value, provided we also have the reverse conditional
probabilities.

For example, suppose a medical test for a specific disease
is applied to a large population of persons known to have
the disease. In 99% of the cases, the disease is detected. This
is a conditional probability. If we let S be the event ‘‘person
is sick’’ and ‘‘þ’’ be the event ‘‘medical test was positive,’’
we have PðþjSÞ ¼ 0:99 as an empirical estimate. Applying
the test to a population of persons known not to have the
disease might reveal PðþjSÞ ¼ 0:01 as a false alarm rate.
Suppose further that the fraction PðSÞ ¼ 0:001 of the
general population is sick with the disease. Now, if you
take the test with positive results, what is the chance that
you have the disease? That is, what is PðSjþÞ? Applying
Bayes’ Law, we have

PðSjþÞ ¼ PðþjSÞPðSÞ
PðþjSÞPðSÞ þ PðþjSÞPðSÞ

¼ 0:99ð0:001Þ
0:99ð0:001Þ þ 0:01ð0:99Þ ¼ 0:0909

You have only a 9% chance of being sick, despite having
scored positive on a test with an apparent 1% error rate.
Nevertheless, your chance of being sick has risen from a
prior value of 0.001 to a posterior value of 0.0909. This is
nearly a hundredfold increase, which is commensurate
with the error rate of the test.

The full form of Bayes’ Law uses an arbitrary partition of
the outcome space, rather than a simple two-event decom-
position, such as ‘‘sick’’ and ‘‘not sick.’’ Suppose the event
collection fAi : 1 � i � ng is a partition of the outcome space
V. That is, the Ai are disjoint, each has nonzero probability,
and their union comprises all of V. We are interested in
which Ai has occurred, given knowledge of another event B.
If we know the reverse conditional probabilities, that is if
we know the probability of B given each Ai, then Bayes’ Law
enables the computation

PðAijBÞ ¼
PðBjAiÞPðAiÞXn

j¼1

PðBjA jÞPðA jÞ
:

Returning to the Gamma random variable with para-
meters (g, l), we can distinguish additional special cases. If
g ¼ n, a positive integer, then the corresponding distri-
bution is called an Erlang distribution. It models the time
necessary to accumulate n events in a process that follows a
Poisson distribution for the number of events in a specified
interval. An Erlang distribution, for example, describes
the time span covering the next n calls arriving at a tele-
phone exchange.

If g ¼ n=2 for a positive integer n and l ¼ 1=2, then the
corresponding Gamma random variable is called a chi-
square random variable. It exhibits the distribution of
the sum of n independent squares, Y ¼

Pn
i¼1 Z2

i , where
each Zi is a Gaussian random variable with ðm;s2Þ ¼
ð0; 1Þ. These distributions are useful in computing confi-
dence intervals for statistical estimates.

Gamma distributions are the limiting forms of negative
binomial random variables in the same manner that the
Poisson distribution is the limit of binomials. That is,
suppose we have a sequence Cn of negative binomial ran-
dom variables. The parameters of Cn are (m, pn). As n!1,
we assume that pn!0 in a manner that allows
n pn! l> 0. Then the limiting distribution of Cn/n is the
Gamma (Erlang) distribution with parameters (m, g). In
particular, if m ¼ 1, the Cn are geometric and the limit is
exponential.

Figure 1 summarizes the relationships among the ran-
dom variables discussed in this section.

The renewal count arrow from exponential to Poisson
refers to the fact that a phenomenon in which the event
interarrival time is exponential (l) will accumulate
events in an interval T according to a Poisson distribution
with parameter lT . That is, if the sequence X1, X2,. . . of
random variables measures time between successive
events, then the random variable

NT ¼ max kj
Xk

i¼1

Xi � T

( )

is called a renewal count for the sequence. If the Xi are
independent exponentials with parameter l, then NT has
a Poisson distribution with parameter lT.

A similar relationship holds between a sequence G1þ 1,
G2 þ 1,. . . of geometric random variables with a common
parameter p. The difference is that the observation interval
T is now a positive integer. The renewal count NT then
exhibits a binomial distribution with parameters (T, p).

CONVERGENCE MODES

For a sequence of real numbers, there is a single mode
of convergence: A tail of the sequence must enter and
remain within any given neighborhood of the limit. This
property either holds for some (possibly infinite) limiting
value or it does not. Sequences of random variables
exhibit more variety in this respect. There are three
modes of convergence.

A sequence X1, X2,. . . of random variables converges
pointwise to a random variable Y if XnðoÞ!YðoÞ as a
sequence of real numbers for every point o in the under-
lying probability space. We may also have pointwise
convergence on sets smaller than the full probability space.
If pointwise convergence occurs on a set of probability one,
then we say that the sequence converges almost surely. In
this case, we use the notation Xn!Ya.s.

The sequence converges in probability if, for every posi-
tive e, the measure of the misbehaving sets approaches

PROBABILITY AND STATISTICS 9



zero. That is, as n!1,

Pðfo : jXnðoÞ � YðoÞj>�gÞ!0

If Xn!Y a.s, then it also converges in probability. How-
ever, it is possible for a sequence to converge in probability
and at the same time have no pointwise limits.

The final convergence mode concerns distribution func-
tions. The sequence converges in distribution if the corre-
sponding cumulative distribution functions of the Xn

converge pointwise to the distribution function of Y at all
points where the cumulative distribution function of Y is
continuous.

The Weak Law of Large Numbers states that the average
of a large number of independent, identically distributed
random variables tends in probability to a constant, the
expected value of the common distribution. That is, if X1,
X2,. . . is an independent sequence with a common distri-
bution such that E½Xn� ¼ m and Var½Xn� ¼ s2 <1, then for
every positive �,

P o :

Pn
i¼1 Xi

n
� m

����
����>�

� �� �
!0

as n!1.
Suppose, for example, that a random variable T mea-

sures the time between query requests arriving at a data-
base server. This random variable is likely to exhibit an
exponential distribution, as described in the previous sec-
tion, with some rate parameter l. The expected value and
variance are 1/l and 1/l2, respectively. We take n observa-
tions of T and label them T1, T2,. . . , Tn. The weak law
suggests that the number

Pn
i¼1 Ti=n will be close to 1/l. The

precise meaning is more subtle. As an exponential random
variable can assume any nonnegative value, we can ima-
gine a sequence of observations that are all larger than, say,
twice the expected value. In that case, the average would
also be much larger than 1/l. It is then clear that not all
sequences of observations will produce averages close to
1/l. The weak law states that the set of sequences that
misbehave in this fashion is not large, when measured in
terms of probability.

We envision an infinite sequence of independent data-
base servers, each with its separate network of clients. Our
probability space now consists of outcomes of the form
o ¼ ðt1; t2; . . .Þ, which occurs when server 1 waits t1 seconds
for its next arrival, server 2 waits t2 seconds, and so forth.
Any event of the form ðt1 � x1; t2 � x2; . . . ; t p � x pÞ has
probability equal to the product of the factors Pðt1 � xiÞ,
which are in turn determined by the common exponential
distribution of the Ti. By taking unions, complements, and
intersections of events of this type, we arrive at a s-field
that supports the probability measure. The random vari-
ables

Pn
i¼1 Ti=n are well defined on this new probability

space, and the weak law asserts that, for large n, the set of
sequences (t1, t2,. . .) with misbehaving prefixes (t1, t2,. . . , tn)
has small probability.

A given sequence can drift into and out of the misbehav-
ing set as n increases. Suppose the average of the first 100
entries is close to 1/l, but the next 1000 entries are all larger

than twice 1/l. The sequence is then excluded from the
misbehaving set at n ¼ 100 but enters that set before
n ¼ 1100. Subsequent patterns of good and bad behavior
can migrate the sequence into and out of the exceptional
set. With this additional insight, we can interpret more
precisely the meaning of the weak law.

Suppose 1=l ¼ 0:4. We can choose � ¼ 0:04 and let Yn ¼Pn
i¼1 Ti=n. The weak law asserts that PðjYn � 0:4j>

0:04Þ!0, which is the same as Pð0:36 � Yn � 0:44Þ! 1.
Although the law does not inform us about the actual size
of n required, it does say that eventually this latter
probability exceeds 0.99. Intuitively, this means that if
we choose a large n, there is a scant 1% chance that our
average will fail to fall close to 0.4. Moreover, as we choose
larger and larger values for n, that chance decreases.

The Strong Law of Large Numbers states that the
average converges pointwise to the common expected
value, except perhaps on a set of probability zero. speci-
fically, if X1, X2,. . . is is an independent sequence with
a common distribution such that E½Xn� ¼ m (possibly infi-
nite), then

Xn

i¼1

Xi

n
!m a:s:

as n!1.
Applied in the above example, the strong law asserts

that essentially all outcome sequences exhibit averages
that draw closer and closer to the expected value as n
increases. The issue of a given sequence forever drifting
into and out of the misbehaving set is placed in a pleasant
perspective. Such sequences must belong to the set with
probability measure zero. This reassurance does not mean
that the exceptional set is empty, because individual out-
comes (t1, t2,. . .) have zero probability. It does mean that
we can expect, with virtual certainty, that our average of
n observations of the arrival time will draw ever closer
to the expected 1/l.

Although the above convergence results can be obtained
with set-theoretic arguments, further progress is greatly
facilitated with the concept of characteristic functions,
which are essentially Fourier transforms in a probability
space setting. For a random variable X, the characteristic
function of X is the complex-valued functionbXðuÞ ¼ E½eiuX �.
The exceptional utility of this device follows because
there is a one-to-one relationship between characteristic
functions and their generating random variables (distri-
butions). For example, X is Gaussian with parameters
m ¼ 0 and s2 ¼ 1 if and only if bXðuÞ ¼ eu2=2. X is Poisson
with parameter l if and only if bXðuÞ ¼ expð�lð1� eiuÞÞ.

If X has a density f(t), the computation of bX is a common
integration: bXðuÞ ¼

R1
�1 eiut f ðtÞdt. Conversely, if bX is

absolutely integrable, then X has a density, which can be
recovered by an inversion formula. That is, if

R1
�1 jbðuÞj

du<1, then the density of X is

fXðtÞ ¼
1

2p

Z 1
�1

e�iutbðuÞdu

10 PROBABILITY AND STATISTICS



These remarks have parallel versions if X is integer-
valued. The calculation of bX is a sum: bXðuÞ ¼

P1
n¼�1

eiunPðX ¼ nÞ. Also, if bX is periodic with period 2p, then
the corresponding X is integer-valued and the point prob-
abilities are recovered with a similar inversion formula:

PðX ¼ nÞ ¼ 1

2p

Z p

�p
e�iunbðuÞdu

In more general cases, the bX computation requires
the measure-theoretic integral referenced earlier, and
the recovery of the distribution of X requires more complex
operations on bX . Nevertheless, it is theoretically possible
to translate in both directions between distributions and
their characteristic functions.

Some useful properties of characteristic functions are as
follows:

� (Linear combinations) If Y ¼ aX þ b, then bY ðuÞ ¼
eiubbXðauÞ.

� (Independent sums) If Y ¼ X1 þ X2 þ . . .þ Xn, where
the Xi are independent, then bY ðuÞ ¼

Qn
i¼1 bXi

ðuÞ.
� (Continuity Theorem) A sequence of random variables

X1, X2,. . . converges in distribution to a random vari-
able X if and only if the corresponding characteristic
functions converge pointwise to a function that is
continuous at zero; in which case, the limiting function
is the characteristic function of X.

� (Moment Theorem) If E½jXjn� <1, then bX has deri-
vatives through order n and E½Xn� ¼ ð�iÞnbðnÞX ð0Þ,
where bðnÞX ðuÞ is the nth derivative of bX .

These features allow us to study convergence in distribu-
tion of random variables by investigating the more tract-
able pointwise convergence of their characteristic
functions. In the case of independent, identically distrib-
uted random variables with finite variance, this method
leads quickly to the Central Limit Theorem cited earlier.

For a nonnegative random variable X, the moment gen-
erating function fXðuÞ is less difficult to manipulate. Here
fXðuÞ ¼ E½e�uX �. For a random variable X that assumes
only nonnegative integer values, the probability generating
function rXðuÞ is another appropriate transform. It is
defined by rXðuÞ ¼

P1
n¼0 PðX ¼ nÞun. Both moment and

probability generating functions admit versions of the
moment theorem and the continuity theorem and are there-
fore useful for studying convergence in the special cases
where they apply.

COMPUTER SIMULATIONS

In various programming contexts, particularly with simu-
lations, the need arises to generate samples from some
particular distribution. For example, if we know that
PðX ¼ 1Þ ¼ 0:4 and PðX ¼ 0Þ ¼ 0:6, we may want to realize
this random variable as a sequence of numbers x1; x2; . . ..
This sequence should exhibit the same variability as
would the original X if outcomes were directly observed.
That is, we expect a thorough mixing of ones and zeros, with

about 40% ones. Notice that we can readily achieve this
result if we have a method for generating samples from a
uniform distribution U on [0, 1]. In particular, each time we
need a new sample of X, we generate an observation U and
report X ¼ 1 if U � 0:4 and X ¼ 0 otherwise.

This argument generalizes in various ways, but the
gist of the extension is that essentially any random variable
can be sampled by first sampling a uniform random
variable and then resorting to some calculations on the
observed value. Although this reduction simplifies the
problem, the necessity remains of simulating observations
from a uniform distribution on [0, 1]. Here we encounter
two dificulties. First, the computer operates with a finite
register length, say 32 bits, which means that the values
returned are patterns from the 232 possible arrangements
of 32 bits. Second, a computer is a deterministic device.

To circumvent the first problem, we put a binary point at
the left end of each such pattern, obtaining 232 evenly
spaced numbers in the range [0, 1). The most uniform
probability assignment allots probability 1/232 to each
such point. Let U be the random variable that operates
on this probability space as the identity function. If we
calculate P(a < U < b) for subintervals (a, b) that are
appreciably wider than 1/232, we discover that these prob-
abilities are nearly b � a, which is the value required for a
true uniform random variable. The second dificulty is over-
come by arranging that the values returned on successive
calls exhaust, or very nearly exhaust, the full range of
patterns before repeating. In this manner, any determinis-
tic behavior is not observable under normal use. Some
modern supercomputer computations may involve more
than 232 random samples, an escalation that has forced
the use of 64-bit registers to maintain the appearance of
nondeterminism.

After accepting an approximation based on 232 (or more)
closely spaced numbers in [0, 1), we still face the problem of
simulating a discrete probability distribution on this finite
set. This problem remains an area of active research today.
One popular approach is the linear congruential method.
We start with a seed sample x0, which is typically obtained
in some nonreproducible manner, such as extracting a
32-bit string from the computer real-time clock. Subse-
quent samples are obtained with the recurrence xnþ1 ¼
ðaxn þ bÞ mod c, where the parameters a, b, c are chosen
to optimize the criteria of a long period before repetition and
a fast computer implementation. For example, c is fre-
quently chosen to be 232 because the (axn þ b) mod 232

operation involves retaining only the least significant 32
bits of (axn þ b). Knuth (1) discusses the mathematics
involved in choosing these parameters.

On many systems, the resulting generator is called
rand(). A program assignment statement, such as x ¼
randðÞ, places a new sample in the variable x. From this
point, we manipulate the returned value to simulate
samples from other distributions. As noted, if we wish to
sample B, a Bernoulli random variable with parameter p,
we continue by setting B ¼ 1 if x � p and B ¼ 0 otherwise.
If we need an random variable Ua,b, uniform on the interval
[a, b], we calculate Ua;b ¼ aþ ðb� aÞx.

If the desired distribution has a continuous cumulative
distribution function, a general technique, called distri-

PROBABILITY AND STATISTICS 11



bution inversion, provides a simple computation of sam-
ples. Suppose X is a random variable for which the cumu-
lative distribution FðtÞ ¼ PðX � tÞ is continuous and
strictly increasing. The inverse F�1ðuÞ then exists for 0
< u < 1, and it can be shown that the derived random
variable Y ¼ FðXÞ has a uniform distribution on (0, 1).
It follows that the distribution of F�1ðUÞ is the same as
that of X, where U is the uniform random variable approxi-
mated by rand(). To obtain samples from X, we sample U
instead and return the values F�1ðUÞ.

For example, the exponential random variable X with
parameter l has the cumulative distribution function
FðtÞ ¼ 1� e�lt, for t� 0, which satisfies the required con-
ditions. The inverse is F�1ðuÞ ¼ �½logð1� uÞ�=l. If U is
uniformly distributed, so is 1�U. Therefore, the samples
obtained from successive �½logðrandðÞÞ�=l values exhibit
the desired exponential distribution.

A variation is necessary to accommodate discrete ran-
dom variables, such as those that assume integer values.
Suppose we have a random variable X that assumes non-
negative integer values n with probabilities pn. Because
the cumulative distribution now exhibits a discrete jump
at each integer, it no longer possesses an inverse. Never-
theless, we can salvage the idea by acquiring a rand()
sample, say x, and then summing the pn until the accumu-
lation exceeds x. We return the largest n such thatPn

i¼0 pi � x. A moment’s reflection will show that this is
precisely the method we used to obtain samples from a
Bernoulli random variable above.

For certain cases, we can solve for the required n. For
example, suppose X is a geometric random variable with
parameter p. In this case, pn ¼ pð1� pÞn. Therefore if x is
the value obtained from rand(), we find

max n :
Xn

k¼0

pk � x

( )
¼ logx

logð1� pÞ

	


For more irregular cases, we may need to perform the
summation. Suppose we want to sample a Poisson random
variable X with parameter l. In this case, we have
pn ¼ e�lln=n!, and the following pseudocode illustrates
the technique. We exploit the fact that p0 ¼ e�l and
pnþ1 ¼ pnl=ðnþ 1Þ.

x ¼ rand();
p ¼ exp(�l);
cum ¼ p;
n ¼ 0;
while (x > cum){

n ¼ n þ 1;
p ¼ p * l/(n þ 1);
cum ¼ cum þ p;}

return n;

Various enhancements are available to reduce the num-
ber of iterations necessary to locate the desired n to return.
In the above example, we could start the search near
n ¼ b l c , because values near this expected value are
most frequently returned.

Another method for dealing with irregular discrete
distributions is the rejection filter. If we have an algorithm
to simulate distribution X, we can, under certain con-
ditions, systematically withhold some of the returns to
simulate a related distribution Y. Suppose X assumes
nonnegative integer values with probabilities p0; p1; . . .,
Y assumes the same values but with different probabilities
q0; q1; . . .. The required condition is that a positive K exists
such that qn � K pn for all n. The following pseudocode
shows how to reject just the right number of X returns so
as to correctly adjust the return distribution to that of Y .
Here the routine X() refers to the existing algorithm that
returns nonnegative integers according to the X distri-
bution. We also require that the pn be nonzero.

while (true) {
n ¼ X();
x ¼ rand();
if (x < qn/(K * pn))

return n;}

STATISTICAL INFERENCE

Suppose we have several random variables X,Y,. . . of
interest. For example, X might be the systolic blood pres-
sure of a person who has taken a certain drug, whereas Y
is the blood pressure of an individual who has not taken
it. In this case, X and Y are defined on different probability
spaces. Each probability space is a collection of persons
who either have or have not used the drug in question. X
and Y then have distributions in a certain range, say
[50, 250], but it is not feasible to measure X or Y at each
outcome (person) to determine the detailed distributions.
Consequently, we resort to samples. That is, we observe X
for various outcomes by measuring blood pressure for a
subset of the X population. We call the observations
X1;X2; . . . ;Xn. We follow a similar procedure for Y if we
are interested in comparing the two distributions. Here,
we concentrate on samples from a single distribution.

A sample from a random variable X is actually another
random variable. Of course, after taking the sample, we
observe that it is a specific number, which hardly seems to
merit the status of a random variable. However, we can
envision that our choice is just one of many parallel obser-
vations that deliver a range of results. We can then speak of
events such as PðX1 � tÞ as they relate to the disparate
values obtained across the many parallel experiments as
they make their first observations. We refer to the distri-
bution of X as the population distribution and to that of Xn

as the nth sample distribution. Of course, PðXn � tÞ ¼
PðX � tÞ for all n and t, but the term sample typically
carries the implicit understanding that the various Xn

are independent. That is, PðXn � t1; . . . ;Xn � tnÞ ¼Qn
i¼1 PðXi � tiÞ. In this case, we say that the sample is a

random sample.
With a random sample, the Xn are independent, identi-

cally distributed random variables. Indeed, each has the
same distribution as the underlying population X. In prac-
tice, this property is assured by taking precautions to avoid
any selection bias during the sampling. In the blood pres-
sure application, for example, we attempt to choose persons

12 PROBABILITY AND STATISTICS



in a manner that gives every individual the same chance of
being observed.

Armed with a random sample, we now attempt to infer
features of the unknown distribution for the population
X. Ideally, we want the cumulative distribution of FX(t),
which announces the fraction of the population with blood
pressures less than or equal to t. Less complete, but still
valuable, information lies with certain summary features,
such as the expected value and variance of X.

A statistic is simply a function of a sample. Given the
sample X1;X2; . . . ;Xn;, the new random variables

X ¼ 1

n

Xn

k¼1

Xk

S2 ¼ 1

n� 1

Xn

k¼1

ðXk � XÞ2

are statistics known as the sample mean and sample vari-
ance respectively. If the population has E½X� ¼ m and
Var½X� ¼ s2, then E½X� ¼ m and E½S2� ¼ s2. The expected
value and variance are called parameters of the population,
and a central problem in statistical inference is to estimate
such unknown parameters through calculations on sam-
ples. At any point we can declare a particular statistic to be
an estimator of some parameter. Typically we only do so
when the value realized through samples is indeed an
accurate estimate.

Suppose y is some parameter of a population distribu-
tion X. We say that a statistic Y is an unbiased estimator
of y if E½Y � ¼ y. We then have that the sample mean and
sample variance are unbiased estimators of the population
mean and variance. The quantity

Ŝ
2 ¼ 1

n

Xn

k¼1

ðXk � XÞ2

is also called the sample variance, but it is a biased esti-
mator of the population variance s2. If context is not clear,
we need to refer to the biased or unbiased sample variance.

In particular E½Ŝ2� ¼ s2ð1� 1=nÞ, which introduces a bias
of b ¼ �s2=n. Evidently, the bias decays to zero with in-
creasing sample size n. A sequence of biased estimators
with this property is termed asymptotically unbiased.

A statistic can be a vector-valued quantity. Consequently,
the entire sample (X1, X2,. . ., Xn) is a statistic. For any
given t, we can compute the fraction of the sample values
that is less than or equal to t. For a given set of t values,
these computation produce a sample distribution function:

F nðtÞ ¼
#fk : Xk � tg

n

Here we use #{. . .} to denote the size of a set. For each t,
the Glivenko–Cantelli Theorem states that the Fn(t) con-
stitute an asymptotically unbiased sequence of estimators
for FðtÞ ¼ PðX � tÞ.

Suppose X1, X2,. . ., Xn is a random sample of the popu-
lation random variable X, which has E½X� ¼ m and Var½X� ¼
s2 <1. The Central Limit Theorem gives the limiting

distribution for
ffiffiffi
n
p
ðX � mÞ=s as the standard Gaussian

Z0,1. Let us assume (unrealistically) for the moment that
we know s2. Then, we can announce X as our estimate of
m, and we can provide some credibility for this estimate
in the form of a confidence interval. Suppose we want a
90% confidence interval. From tables for the standard
Gaussian, we discover that PðjZ0;1j � 1:645Þ ¼ 0:9. For
large n, we have

0:9 ¼ PðjZ0;1j � 1:645Þ�P

ffiffiffi
n
p
ðX � mÞ

s

����
���� � 1:645

� �

¼ P jX � mj � 1:645sffiffiffi
n
p

� �

If we let d ¼ 1:645s=
ffiffiffi
n
p

, we can assert that, for large n,
there is a 90% chance that the estimate X will lie within
d of the population parameter m. We can further mani-
pulate the equation above to obtain PðX � d � m �
X þ dÞ� 0:9. The specific interval obtained by substi-
tuting the observed value of X into the generic form
½X � d;X þ d� is known as the (90%) confidence interval.
It must be properly interpreted. The parameter m is an
unknown constant, not a random variable. Consequently,
either m lies in the specified confidence interval or it does
not. The random variable is the interval itself, which
changes endpoints when new values of X are observed.
The width of the interval remains constant at d. The
proper interpretation is that 90% of these nondeter-
ministic intervals will bracket the parameter m.

Under more realistic conditions, neither the mean m nor
the variance s2 of the population is known. In this case, we
can make further progress if we assume that the indi-
vidual Xi samples are normal random variables. Various
devices, such as composing each Xi as a sum of a subset of
the samples, render this assumption more viable. In any
case, under this constraint, we can show that nðX � mÞ2= s2

and ðn� 1ÞS2=s2 are independent random variables with
known distributions. These random variables have chi-
squared distributions.

A chi-squared random variable with m degrees of free-
dom is the sum of the squares of m independent standard
normal random variables. It is actually a special case of the
gamma distributions discussed previously; it occurs when
the parameters are g ¼ m and l ¼ 1=2. If Y1 is chi-squared
with m1 degrees of freedom and Y2 is chi-squared with m2

degrees of freedom, then the ratio m2Y1/(m1Y2) has an F
distribution with (n,m) degree of freedom. A symmetric
random variable is said to follow a t distribution with m2

degrees of freedom if its square has an F distribution with
(1,m2) degrees of freedom. For a given random variable R
and a given value p in the range (0, 1), the point rp for which
PðR � rpÞ ¼ p is called the pth percentile of the random
variable. Percentiles for F and t distributions are available
in tables.

Returning to our sample X1, X2,. . ., Xn, we find that
under the normal inference constraint, the two statistics
mentioned above have independent chi-squared distribu-
tions with 1 and n�1 degrees of freedom, respectively.
Therefore the quantity

ffiffiffi
n
p
jX � mj=

ffiffiffiffi
S
p 2

has a t distribution
with n�1 degrees of freedom. Given a confidence level, say

PROBABILITY AND STATISTICS 13



90%, we consult a table of percentiles for the t distribution
with n�1 degrees of freedom. We obtain a symmetric
interval [�r, r] such that

0:9 ¼ P

ffiffiffi
n
p
jX � mjffiffiffiffi

S
p 2

� r

 !
¼ P jX � mj � r

ffiffiffiffi
S
p 2

ffiffiffi
n
p

 !

Letting d ¼ r
ffiffiffiffi
S
p 2

=
ffiffiffi
n
p

, we obtain the 90% confidence inter-
val ½X � d;X þ d� for our estimate X of the population
parameter m. The interpretation of this interval remains
as discussed above.

This discussion above is an exceedingly abbreviated
introduction to a vast literature on statistical inference.
The references below provide a starting point for further
study.

FURTHER READING

B. Fristedt and L. Gray, A Modern Approach to Probability
Theory. Cambridge, MA: Birkhuser, 1997.

A. Gut, Probability: A Graduate Course. New York: Springer, 2006.

I. Hacking, The Emergence of Probability. Cambridge, MA:
Cambridge University Press, 1975.

I. Hacking, The Taming of Chance. Cambridge, MA: Cambridge
University Press, 1990.

J. L. Johnson, Probability and Statistics for Computer Science.
New York: Wiley, 2003.

O. Ore, Cardano, the Gambling Scholar. Princeton, NJ: Princeton
University Press, 1953.

O. Ore, Pascal and the invention of probability theory, Amer. Math.
Monthly, 67: 409–419, 1960.

C. A. Pickover, Computers and the Imagination. St. Martin’s Press,
1991.

S. M. Ross, Probability Models for Computer Science. New York:
Academic Press, 2002.

H. Royden, Real Analysis, 3rd ed. Englewood Cliffs, NJ: Prentice-
Hall, 1988.

BIBLIOGRAPHY

1. D. E. Knuth, The Art of Computer Programming, Vol. 2
3rd ed. Reading, MA: Addison-Welsey, 1998.

JAMES JOHNSON

Western Washington University
Bellingham, Washington

14 PROBABILITY AND STATISTICS



P

PROOFS OF CORRECTNESS IN MATHEMATICS
AND INDUSTRY

THE QUALITY PROBLEM

Buying a product from a craftsman requires some care.
For example, in the Stone Age, an arrow, used for hunting
and hence for survival, needed to be inspected for its
sharpness and proper fixation of the stone head to the
wood. Complex products of more modern times cannot be
checked in such a simple way and the idea of warranty
was born: A nonsatisfactory product will be repaired or
replaced, or else you get your money back. This puts the
responsibility for quality on the shoulders of the manufac-
turer, who has to test the product before selling. In con-
temporary IT products, however, testing for proper
functioning in general becomes impossible. If we have an
array of 17�17 switches in a device, the number of possible
positions is 2172 ¼ 2289� 1087, more than the estimated
number of elementary particles in the universe. Modern
chips have billions of switches on them, hence, a state space
of a size that is truly dwarfing astronomical numbers.
Therefore, in most cases, simple-minded testing is out of
the question because the required time would surpass by
far the lifetime expectancy of the universe. As these chips
are used in strategic applications, like airplanes, medical
equipment, and banking systems, there is a problem with
how to warrant correct functioning.

Therefore, the need for special attention to the quality of
complex products is obvious, both from a user’s point of view
and that of a producer. This concern is not just academic. In
1994 the computational number theorist T. R. Nicely dis-
covered by chance a bug1 in a widely distributed Pentium
chip. After an initial denial, the manufacturer eventually
had to publicly announce a recall, replacement, and
destruction of the flawed chip with a budgeted cost of US
$475 million.

Fortunately, mathematics has found a way to handle
within a finite amount of time a supra-astronomical num-
ber of cases, in fact, an infinity of them. The notion of proof
provides a way to handle all possible cases with certainty.
The notion of mathematical induction is one proof method
that can deal with an infinity of cases: If a property P is
valid for the first natural number 0 (or if you prefer 1) and if
validity of P for n implies that for nþ 1, then P is valid for all
natural numbers. For example, for all n one has

Xn

k¼0

k2 ¼ 1

6
nðnþ 1Þð2nþ 1Þ: PðnÞ

This can be proved by showing it for n ¼ 0; and then
showing that if P(n) holds, then also pðnþ 1Þ. Indeed P(0)
holds:

P0
k¼0 k2 ¼ 0. If P(n) holds, then

Xnþ1

k¼0

k2 ¼
Xn

k¼0

k2

 !
þ ðnþ 1Þ2

¼ 1

6
nðnþ 1Þð2nþ 1Þ þ ðnþ 1Þ2

¼ 1

6
ðnþ 1Þðnþ 2Þð2nþ 3Þ;

hence Pðnþ 1Þ. Therefore P(n) holds for all natural num-
bers n.

Another method to prove statements valid for an
infinite number of instances is to use symbolic rewriting:
From the usual properties of addition and multiplication
over the natural numbers (proved by induction), one can
derive equationally that ðxþ 1Þðx� 1Þ ¼ x2 � 1, for all
instances of x.

Proofs have been for more than two millennia the
essence of mathematics. For more than two decades, proofs
have become essential for warranting quality of complex IT
products. Moreover, by the end of the twentieth century,
proofs in mathematics have become highly complex. Three
results deserve mention: the Four Color Theorem, the
Classification of the Finite Simple Groups, and the correct-
ness of the Kepler Conjecture (about optimal packing of
equal three-dimensional spheres). Part of the complexity
of these proofs is that they rely on large computations by a
computer (involving up to a billion cases). A new technology
for showing correctness has emerged: automated verifica-
tion of large proofs.

Two methodological problems arise (1). How do proofs
in mathematics relate to the physical world of processors
and other products? (2) How can we be sure that complex
proofs are correct? The first question will be addressed in
the next section, and the second in the following section.
Finally, the technology is predicted to have a major impact
on the way mathematics will be done in the future.

SPECIFICATION, DESIGN, AND PROOFS OF CORRECTNESS

The Rationality Square

The ideas in this section come from Ref. 2 and make explicit
what is known intuitively by designers of systems that use
proofs. The first thing to realize is that if we want quality of
a product, then we need to specify what we want as its
behavior. Both the product and its (desired) behavior are in
‘‘reality’’, whereas the specification is written in some pre-
cise language. Then we make a design with the intention to
realize it as the intended product. Also the design is a
formal (mathematical) object. If one can prove that the
designed object satisfies the formal specification, then it
is expected that the realization has the desired behavior

1It took Dr. Nicely several months to realize that the inconsistency
he noted in some of his output was not due to his algorithms, but
caused by the (microcode on the) chip. See Ref. 1 for a description of
the mathematics behind the error.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



(see Fig. 1). For this it is necessary that the informal
(desired) behavior and the specification are close to each
other and can be inspected in a clearly understandable
way. The same holds for the design and realization. Then
the role of proofs is in its place: They do not apply to an
object and desired behavior in reality but to a mathematical
descriptions of these.

In this setup, the specification language should be close
enough to the informal specification of the desired beha-
vior. Similarly, the technology of realization should also be
reliable. The latter again may depend on tools that are
constructed component wise and realize some design (e.g.,
silicon compilers that take as input the design of a chip
and have as output the instructions to realize them). Hence,
the rationality square may have to be used in an earlier
phase.

This raises, however, two questions. Proofs should be
based on some axioms. Which ones? Moreover, how do we
know that provability of a formal (mathematical) property
implies that we get what we want? The answers to these
questions come together. The proofs are based on some
axioms that hold for the objects of which the product is
composed. Based on the empirical facts that the axioms
hold, the quality of the realized product will follow.

Products as Chinese Boxes of Components

Now we need to enter some of the details of how the
languages for the design and specification of the products
should look. The intuitive idea is that a complex product
consists of components b1,. . ., bk put together in a specific
way yielding FðkÞðb1; . . . ; bkÞ. The superscript ‘‘(k)’’ indicates
the number of arguments that F needs. The components
are constructed in a similar way, until one hits the basic
components O0;O1; . . . that no longer are composed. Think
of a playing music installation B. It consists of a CD, CD-
player, amplifier, boxes, wires and an electric outlet, all put
together in the right way. So

B ¼ Fð6ÞðCD;CD-player; amplifyer; boxes;wires; outletÞ;

where F(6) is the action that makes the right connections.
Similarly the amplifier and other components can be
described as a composition of their parts. A convenient
way to depict this idea in general is the so-called Chinese
box (see Fig. 2). This is a box with a lid. After opening the lid
one finds a (finite) set of ‘‘neatly arranged’’ boxes that either
are open and contain a basic object or are again other
Chinese boxes (with lid). Eventually one will find some-
thing in a decreasing chain of boxes. This corresponds to the

component-wise construction of anything, in particular of
hardware, but also of software2. It is easy to construct a
grammar for expressions denoting these Chinese boxes.
The basic objects are denoted by o0; o1; . . .. Then there are
‘‘constructors’’ that turn expressions into new expressions.
Each constructor has an ‘‘arity’’ that indicates how many
arguments it has. There may be unary, binary, ternary, and
so on constructors. Such constructors are denoted by

f
ðkÞ
0 ; f

ðkÞ
1 ; . . . ;

where k denotes the arity of the constructor. If b1,. . ., bk

are expressions and f
ðkÞ
i is a constructor of arity k, then

f
ðkÞ
i ðb1; . . . ; bkÞ

is an expression. A precise grammar for such expressions is
as follows.

Definition

1. Consider the following alphabet:

X
¼ foiji2Ng[ f f k

i ji; k2Ng[ f;; ð; Þg:

2. Expressions E form the smallest set of words over S

satisfying

b1; . . . ; bk 2E) f
ðkÞ
i

oi 2E;

ðb1; . . . ; bkÞ 2 E:

An example of a fully specified expression is

f
ð2Þ
1 ðo0; f 1

3 ðo1; o2; o0ÞÞ:

Design
proof

realization

Specification

requirement

Product warranty Behavior

Figure 1. Wupper’s rationality square.

2In order that the sketched design method works well for software,
it is preferable to have declarative software, i.e., in the functional or
logic programming style, in particular without side effects.

Figure 2. Partially opened Chinese box.

2 PROOFS OF CORRECTNESS IN MATHEMATICS AND INDUSTRY



The partially opened Chinese box in Fig. 2 can be denoted
by

f
ð5Þ
1 ðb1; b2; o1; b4; b5Þ;

where

b4 ¼ f
ð6Þ
2 ðo2; b4;2; b4;3; b4;4; b4;5; b4;6Þ;

b4;4 ¼ f
ð12Þ
4 ðb4;4;1; o3; b4;4;3; o4; b4;3;5; b4;4;6; o5;

b4;4;8; o6; o7; o8; o9Þ;

and the other bk still have to be specified.

Definition. A design is an expression b2E.

Specification and Correctness of Design

Following the rationality square, one now can explain the
role of mathematical proofs in industrial design.

Some mathematical language is needed to state in a
precise way the requirements of the products. We suppose
that we have such a specification language L, in which the
expressions in E are terms. We will not enter into the details
of such a language, but we will mention that for IT products,
it often is convenient to be able to express relationships
between the states before and after the execution of a
command or to express temporal relationships. Temporal
statements include ‘‘eventually the machine halts’’ or
‘‘there will be always a later moment in which the system
receives input’’. See Refs. 3–6 for possible specification
languages, notably for reactive systems, and Ref. 7 for a
general introduction to the syntax and semantics of logical
languages used in computer science.

Definition. A specification is a unary formula3 Sð�Þ in L.

Suppose we have the specification S and a candidate
design b as given. The task is to prove in a mathematical
way S(b), i.e., that S holds of b. We did not yet discuss any
axioms, or a way to warrant that the proved property is
relevant. For this we need the following.

Definition. A valid interpretation for L consists of the
following.

1. For basic component expressions o, there is an inter-
pretation O in the ‘‘reality’’ of products.

2. For constructors f ðkÞ, there is a way to put together k
products p1; . . . ; pk to form FðkÞðp1; . . . ; pkÞ.

3. By (1) and (2), all designs have a realization. For
example, the design f

ð2Þ
1 ðo0; f

ð1Þ
3 ðo1; o2; o0ÞÞ is inter-

preted as F
ð2Þ
1 ðO0;F

ð1Þ
3 ðO1;O2;O0ÞÞ.

4. (4) There are axioms of the form

PðcÞ
8 x1 . . . xk½Qðx1; . . . ; xkÞ)Rð f ðkÞðx1; . . . ; xkÞÞ�:

Here P, Q, and R are formulas (formal statements)
about designs: P and R about one design and Q about
k designs.

5. The formulas of L have a physical interpretation.

6. By the laws of physics, it is known that the inter-
pretation given by (5) of the axioms holds for the
interpretation described in the basic components
and constructors. The soundness of logic then implies
that statements proved from the axioms will also hold
after interpretation.

This all may sound a bit complex, but the idea is simple
and can be found in any book on predicate logic and its
semantics (see Refs. 7 and 8). Proving starts from the
axioms using logical steps; validity of the axioms and
soundness of logic implies that the proved formulas are
also valid.

The industrial task of constructing a product with a
desired behavior can be fulfilled as follows.

Design Method (I)

1. Find a language L with a valid interpretation.

2. Formulate a specification S, such that the desired
behavior becomes the interpretation of S.

3. Construct an expression b, intended to solve the task.

4. Prove S(b) from the axioms of the interpretation men-
tioned in (1).

5. The realization of b is the required product.

Of course the last step of realizing designs may be non-
trivial. For example, transforming a chip design to an
actual chip is an industry by itself. But that is not the
concern now. Moreover, such a realization process can be
performed by a tool that is the outcome of a similar speci-
fication-design-proof procedure.

The needed proofs have to be given from the axioms in the
interpretation. Design method I builds up products from
‘‘scratch’’. In order not to reinvent the wheel all the time, one
can base new products on previously designed ones.

Design Method (II). Suppose one wants to construct b
satisfying S.

1. Find subspecifications S1; . . . ;Sk and a constructor
f ðkÞ such that

S1ðxiÞ & . . . & SkðxkÞ)Sðf ðkÞðx1; . . . ; xkÞÞ:

2. Find (on-the-shelf) designs b1; . . . ; bk such that for
1 � i � k, one has

SiðbiÞ:

3. Then the design b ¼ f ðkÞðb1; . . . ; bkÞ solves the task.

Again this is done in a context of a language L with a valid
interpretation and the proofs are from the axioms in the
interpretation.

3Better: A formula S ¼ SðxÞ ¼ Sð�Þ with one free variable x in S.

PROOFS OF CORRECTNESS IN MATHEMATICS AND INDUSTRY 3



After having explained proofs of correctness, the cor-
rectness of proofs becomes an issue. In an actual non-
trivial industrial design, a software system controlling
metro-trains in Paris without a driver, one needed to prove
about 25,000 propositions in order to get reliability. These
proofs were provided by a theorem prover. Derivation rules
were added to enhance the proving power of the system. It
turned out that if no care was taken, 2% to 5% of these added
derivation rules were flawed and led to incorrect state-
ments; see Ref. 9. The next section deals with the problem
of getting proofs right.

CORRECTNESS OF PROOFS

Methodology

Both in computer science and in mathematics proofs can
become large. In computer science, this is the case because
the proofs that products satisfy certain specifications, as
explained earlier, may depend on a large number of cases
that need to be analyzed. In mathematics, large proofs occur
as well, in this case because of the depth of the subject. The
example of the Four Color Theorem in which billions of cases
need to be checked is well known. Then there is the proof of
the classification theorem for simple finite groups needing
thousands of pages (in the usual style of informal rigor).

That there are long proofs of short statements is not an
accident, but a consequence of a famous undecidability
result.

Theorem (Turing). Provability in predicate logic is unde-
cidable.

PROOF. See, for example, Ref. 10. &

Corollary. For predicate logic, there is a number n and
a theorem of length n, with the smallest proof of length at
least nn!.

PROOF. Suppose that for every n theorems of length at
least n, a proof of length < nn! exists. Then checking all
possible proofs of such length provides a decision method
for theoremhood, contradicting the undecidablity result. &

Of course this does not imply that there are interesting
theorems with essentially long proofs.

The question now arises, how one can verify long proofs
and large numbers of shorter ones? This question is both
of importance for pure mathematics and for the industrial
applications mentioned before.

The answer is that the state of the foundations of mathe-
matics is such that proofs can be written in full detail,
making it possible for a computer to check their correctness.
Currently, it still requires considerable effort to make such
‘‘formalizations’’ of proofs, but there is good hope that in the
future this will become easier. Anyway, industrial design,
as explained earlier, already has proved the viability and
value of formal proofs. For example, the Itanium, a succes-
sor of the Pentium chip, has a provably correct arithmetical
unit; see Ref. 11.

Still one may wonder how one can assure the correct-
ness of mathematical proofs via machine verification, if
such proofs need to assure the correctness of machines. It
seems that there is here a vicious circle of the chicken-and-
the-egg type. The principal founder of machine verification
of formalized proofs is the Dutch mathematician N. G. de
Bruijn4; see Ref. 13. He emphasized the following criterion
for reliable automated proof-checkers: Their programs
must be small, so small that a human can (easily) verify
the code by hand. In the next subsection, we will explain
why it is possible to satisfy this so-called de Bruijn criterion.

Foundations of Mathematics

The reason that fully formalized proofs are possible is that
for all mathematical activities, there is a solid foundation
that has been laid in a precise formal system. The reason
that automated proof-checkers exist that satisfy the de
Bruijn criterion is that these formal systems are simple
enough, allowing a logician to write them down from
memory in a couple of pages.

Mathematics is created by three mental activities: struc-
turing, computing, and reasoning. It is an art and crafts-
manship ‘‘with a power, precision and certainty, that is
unequalled elsewhere in life5.’’ The three activities, res-
pectively, provide definitions and structures, algorithms
and computations, and proofs and theorems. These activ-
ities are taken as a subject of study by themselves, yielding
ontology (consisting either of set, type, or category theory),
computability theory, and logic.

During the history of mathematics these activities enjoyed
attention in different degrees. Mathematics started with
the structures of the numbers and planar geometry.
Babylonian–Chinese–Egyptian mathematics, was mainly
occupied with computing. In ancient Greek mathematics,
reasoning was introduced. These two activities came
together in the work of Archimedes, al-Kwarizmi, and New-
ton. For a long time only occasional extensions of the number
systems was all that was done as structuring activity. The
art of defining more and more structures started in the
ninteenth century with the introduction of groups by Galois
and non-Euclidean spaces by Lobachevsky and Bolyai. Then
mathematics flourished as never before.

4McCarthy described machine proof-checking some years earlier
(see, Ref. 12), but did not come up with a formal system that had a
sufficiently powerful and convenient implementation.
5From: The man without qualities, R. Musil, Rohwolt.
6Formerly called ‘‘Recursion Theory’’.

Activity Tools Results Meta study

Structuring Axioms
Definitions

Structures Ontology

Computing Algorithms Answers Computability6

Reasoning Proofs Theorems Logic

Figure 3. Mathematical activity: tools, results, and meta study.

4 PROOFS OF CORRECTNESS IN MATHEMATICS AND INDUSTRY



Logic. Thequest forfindingafoundationforthethreeacti-
vities started with Aristotle. This search for ‘‘foundation’’
does not imply that one was uncertain how to prove theo-
rems. Plato had already emphasized that any human being
of normal intelligence had the capacity to reason that was
required for mathematics. What Aristotle wanted was a
survey and an understanding of that capacity. He started
the quest for logic. At the same time Aristotle introduced
the ‘‘synthetic way’’ of introducing new structures: the
axiomatic method. Mathematics consists of concepts and
of valid statements. Concepts can be defined from other
concepts. Valid statements can be proved from other such
statements. To prevent an infinite regress, one had to start
somewhere. For concepts one starts with the primitive
notions and for valid statements with the axioms. Not
long after this description, Euclid described geometry using
the axiomatic method in a way that was only improved by
Hilbert, more than 2000 years later. Also Hilbert gave the
right view on the axiomatic method: The axioms form an
implicit definition of the primitive notions.

Frege completed the quest of Aristotle by giving a precise
description of predicate logic. Gödel proved that his system
was complete, i.e., sufficiently strong to derive all valid
statements within a given axiomatic system. Brouwer and
Heyting refined predicate logic into the so-called intuitio-
nistic version. In their system, one can make a distinction
between a weak existence (‘‘there exists a solution, but it is
not clear how to find it’’) and a constructive one (‘‘there
exists a solution and from the proof of this fact one can
construct it’’) (see Ref. 14).

Ontology. An early contribution to ontology came from
Descartes, who introduced what is now called Cartesian
products (pairs or more generally tuples of entities), thereby
relating geometrical structures to arithmetical (in the sense
of algebraic) ones. When in the nineteenth century, there
was a need for systematic ontology, Cantor introduced set
theory in which sets are the fundamental building-blocks of
mathematics. His system turned out to be inconsistent, but
Zermelo and Fraenkel removed the inconsistency and
improved the theory so that it could act as an ontological
foundation for large parts of mathematics, (see Ref 15).

Computability. As soon as the set of consequences of an
axiom system had become a precise mathematical object,
results about this collection started to appear. From the
work of Gödel, it followed that the axioms of arithmetic
are essentially incomplete (for any consistent extension of
arithmetic, there is an independent statement A that is
neither provable nor refutable). An important part of the
reasoning of Gödel was that the notion ‘‘p is a proof of A’’ is
after coding a computable relation. Turing showed that
predicate logic is undecidable (it cannot be predicted by
machine whether a given statement can be derived or not).
To prove undecidability results, the notion of computation
needed to be formalized. To this end, Church came with a
system of lambda-calculus (see Ref. 16), later leading to the
notion of functional programming with languages such as
Lisp, ML, and Haskell. Turing came with the notion of the
Turing machine, later leading to imperative programming
with languages such as Fortran and C and showed that it

gave the same notion of computability as Church’s. If we
assume the so-called Church–Turing thesis that humans
and machines can compute the same class of mathematical
functions, something that most logicians and computer
scientists are willing to do, then it follows that provability
in predicate logic is also undecidable by humans.

Mechanical Proof Verification

As soon as logic was fully described, one started to formalize
mathematics. In this endeavor, Frege was unfortunate
enough to base mathematics on the inconsistent version
of Cantorian set theory. Then Russell and Whitehead came
with an alternative ontology, type theory, and started to
formalize very elementary parts of mathematics. In type
theory, that currently exists in various forms, functions
are the basic elements of mathematics and the types form
a way to classify these. The formal development of mathe-
matics, initiated by Russell and Whitehead, lay at the
basis of the theoretical results of Gödel and Turing. On
the other hand, for practical applications, the formal proofs
become so elaborate that it is almost undoable for a human
to produce them, let alone to check that they are correct.

It was realized by J. McCarthy and independently by
N. G. de Bruijn that this verification should not be done by
humans but by machines. The formal systems describing
logic, ontology, and computability have an amazingly small
number of axioms and rules. This makes it possible to
construct relatively small mathematical assistants. These
computer systems help the mathematician to verify
whether the definitions and proofs provided by the human
are well founded and correct.

Based on an extended form of type theory, de Bruijn
introduced the system AUTOMATH (see Ref. 17), in
which this idea was first realized, although somewhat
painfully, because of the level of detail in which the proofs
needed to be presented. Nevertheless, proof-checking by
mathematical assistants based on type theory is feasible
and promising. For some modern versions of type theory
and assistants based on these, see Refs. 17–21.

Soon after the introduction of AUTOMATH, other
mathematical assistants were developed, based on different
foundational systems. There is the system MIZAR based on
set theory; the system HOL(-light) based on higher order
logic; and ACL2 based on the computational model ‘‘primi-
tive recursive arithmetic.’’ See Ref. 22 for an introduction
and references and Ref. 23 for resulting differences of views
in the philosophy of mathematics. To obtain a feel of the
different styles of formalization, see Ref. 24.

In Ref. 25, an impressive full development of the Four
Color Theorem is described. Tom Hales of the University of
Pittsburgh, assisted by a group of computer scientists,
specializing in formalized proof-verification, is well on
his way to verifying his proof of the Kepler conjecture
(26); see Ref. 27. The Annals of Mathematics published
that proof and considered adding—but finally did not do so–
a proviso, that the referees became exhausted (after 5
years) from checking all of the details by hand; therefore,
the full correctness depends on a (perhaps not so reliable)
computer computation. If Hales and his group succeed in
formalizing and verifying the entire proof, then that will be

PROOFS OF CORRECTNESS IN MATHEMATICS AND INDUSTRY 5



of a reliability higher than most mathematical proofs, one
third of which is estimated to contain real errors, not just
typos.7

The possibility of formalizing mathematics is not in
contradiction with Gödel’s theorem, which only states
the limitations of the axiomatic method, informal or formal
alike. The proof of Gödel’s incompleteness theorem does in
fact heavily rely on the fact that proof-checking is decidable
and uses this by reflecting over the notion of provability (the
Gödel sentence states: ‘‘This sentence is not provable’’).

One particular technology to verify that statements are
valid is the use of model-checking. In IT applications the
request ‘‘statement A can be proved from assumptions G

(the ‘situation’)’’ often boils down to ‘‘A is valid in a model
A ¼ AG depending on G’’. (In logical notation

G ‘ A,AG � A:

This is so because of the completeness theorem of logic
and because of the fact that the IT situation is related to
models of digital hardware that are finite by its nature.)
Now, despite the usual huge size of the model, using some
cleverness the validity in several models in some indust-
rially relevant cases is decidable within a feasible ammount
of time. One of these methods uses the so-called binary
decision diagrams (BDDs). Another ingredient is that uni-
versal properties are checked via some rewriting rules, like
ðxþ 1Þðx� 1Þ ¼ x2 � 1.

For an introduction to model-checkers, see Ref. 20.
For successful applications, see Ref. 29. The method of
model-checking is often somewhat ad hoc, but nevertheless
important. Using ‘‘automated abstraction’’ that works in
many cases (see Refs. 30 and 31), the method becomes
more streamlined.

SCALING-UP THROUGH REFLECTION

As to the question of whether fully formalized proofs are
practically possible, the opinions have been divided.
Indeed, it seems too much work to work out intuitive steps
in full detail. Because of industrial pressure, however, full
developments have been given for correctness of hardware
and frequently used protocols. Formalizations of substan-
tial parts of mathematics have been lagging behind.

There is a method that helps in tackling larger proofs.
Suppose we want to prove statement A. Then it helps if
we can write A$Bð f ðtÞÞ, where t belongs to some col-
lection X of objects, and we also can see that the truth of
this is independent of t; i.e., one has a proof 8 x2X:Bð f ðxÞÞ.
Then Bð f ðtÞÞ, hence A.

An easy example of this was conveyed to me by A.
Mostowski in 1968. Consider the following formula as proof

obligation in propositional logic:

A ¼ p$ðp$ðp$ðp$ðp$ðp$ðp$ðp$ðp$
ðp$ðp$ÞÞÞÞÞÞÞÞÞÞ:

Then A$Bð12Þ, with Bð1Þ ¼ p;Bðnþ 1Þ ¼ ðp$BðnÞÞ. By
induction on n one can show that for all natural numbers
n� 1, one has B(2 � n). Therefore, B(12) and hence A,
because 2� 6 ¼ 12. A direct proof from the axioms of
propositonal logic would be long. Much more sophisticated
examples exist, but this is the essence of the method of
reflection. It needs some form of computational reasoning
inside proofs. Therefore, the modern mathematical assis-
tants contain a model of computation for which equalities
like 2 � 6 ¼ 12 and much more complex ones become prov-
able. There are two ways to do this. One possibility is that
there is a deduction rule of the form

AðsÞ
AðtÞ s H Rt:

This so-called Poincaré Principle should be interpreted
as follows: From the assumption A(s) and the side con-
dition that s computationally reduces in several steps to
t according to the rewrite system R, it follows that A(t).
The alternative is that the transition from A(s) to A(t) is
only allowed if s ¼ t has been proved first. These two ways
of dealing with proving computational statements can be
compared with the styles of, respectively, functional and
logical programming. In the first style, one obtains proofs
that can be recorded as proof-objects. In the second style,
these full proofs become too large to record as one object,
because computations may take giga steps. Nevertheless
the proof exists, but appearing line by line over time, and
one speaks about an ephemeral proof-object.

In the technology of proof-verification, general state-
ments are about mathematical objects and algorithms,
proofs show the correctness of statements and computa-
tions, and computations are dealing with objects and
proofs.

RESULTS

The state-of-the-art of computer-verified proofs is as fol-
lows. To formalize one page of informal mathematics, one
needs four pages in a fully formalized style and it takes
about five working days to produce these four pages (see
Ref. 22). It is expected that both numbers will go down.
There have been formalized several nontrivial statements,
like the fundamental theorem of algebra (also in a con-
structive fashion; it states that every non-constant poly-
nomial over the complex numbers has a root), the prime
number theorem (giving an asymptotic estimation of the
number of primes below a given number), and the Jordan
curve theorem (every closed curve divides the plane into
two regions that cannot be reached without crossing this
curve; on the torus surface, this is not true). One of the great
success stories is the full formalization of the Four Color
Theorem by Gonthier (see Ref. 25). The original proof of

7It is interesting to note that, although informal mathematics often
contains bugs, the intuition of mathematicians is strong enough
that most of these bugs usually can be repaired.

6 PROOFS OF CORRECTNESS IN MATHEMATICS AND INDUSTRY



this result was not completely trustable for its correctness,
as a large number of cases needed to be examined by
computer. Gonthier’s proof still needs a computer-aided
computation, but all steps have been formally verified by an
assistant satisfying the de Bruijn principle.

BIBLIOGRAPHY

1. Alan Edelman, The mathematics of the Pentium division bug,
SIAM Review, 37: 54–67, 1997.

2. H. Wupper, Design as the discovery of a mathematical
theorem – What designers should know about the art of mathe-
matics, in Ertas, et al., (eds.), Proc. Third Biennial World Conf.
on Integrated Design and Process Technology (IDPT), 1998, pp.
86–94; J. Integrated Des. Process Sci., 4 (2): 1–13, 2000.

3. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems: Specification, New York: Springer, 1992.

4. K. R. Apt and Ernst-Rüdiger Olderog, Verification of Sequen-
tial and Concurrent Programs, Texts and Monographs in
Computer Science, 2nd ed. New York: Springer-Verlag, 1997.

5. C.A.P Hoare and H. Jifeng, Unifying Theories of Programming,
Englewood Cliffs, N.J.: Prentice Hall, 1998.

6. J. A. Bergstra, A. Ponse, and S. A. Smolka, eds., Handbook of
Process Algebra, Amsterdam: North-Holland Publishing Co.,
2001.

7. B.-A. Mordechai, Mathematical Logic for Computer Science,
New York: Springer, 2001.

8. W. Hodges, A Shorter Model Theory, Cambridge, U.K.: Cam-
bridge University Press, 1997.

9. J.-R. Abrial, On B, in D. Bert, (ed.), B’98: Recent Advances in
the Development and Use of the B Method: Second Interna-
tional B Conference Montpellier, in Vol. 1393 of LNCS, Berlin:
Springer, 1998, pp. 1–8.

10. M. Davis, ed., The Undecidable, Mineola, NY: Dover Publica-
tions Inc., 2004.

11. B. Greer, J. Harrison, G. Henry, W. Li, and P. Tang, Scientific
computing on the Itaniumr processor, Scientific Prog., 10 (4):
329–337, 2002,

12. J. McCarthy, Computer programs for checking the correctness
of mathematical proofs, in Proc. of a Symposium in Pure
Mathematics, vol. V., Providence, RI, 1962, pp. 219–227.

13. N. G. de Bruijn, The mathematical language AUTOMATH, its
usage, and some of its extensions, in Symposium on Automatic
Demonstration, Versailles, 1968, Mathematics, 125: 29–61,
Berlin: Springer, 1970.

14. D. van Dalen,Logic and Structure, Universitext, 4th ed. Berlin:
Springer-Verlag, 2004.

15. P. R. Halmos, Naive Set Theory, New York: Springer-Verlag,
1974.

16. H. P. Barendregt, Lambda calculi with types, in Handbook of
Logic in Computer Science, Vol. 2, New York: Oxford Univ.
Press, 1992, pp. 117–309.

17. R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, Twenty-five
years of Automath research, in Selected Papers on Automath,
volume 133 of Stud. Logic Found, Math., North-Holland,
Amsterdam, 1994, pp. 3–54.

18. P. Martin-Löf, Intuitionistic type theory, volume 1 of Studies
in Proof Theory, Lecture Notes, Bibliopolis, Naples, Italy, 1984.

19. R. L. Constable, The structure of Nuprl’s type theory, in Logic
of Computation (Marktoberdorf, 1995), vol. 157 of NATO Adv.
Sci. Inst. Ser. F Comput. Systems Sci., Berlin: Springer, 1997,
pp. 123–155.

20. H. P. Barendregt and H. Geuvers, Proof-assistants using
dependent type systems, in A. Robinson and A. Voronkov,
(eds.), Handbook of Automated Reasoning, Elsevier Science
Publishers B.V., 2001, pp. 1149–1238.

21. Y. Bertot and P. Castéran, Coq’Art: The Calculus of Inductive
Constructions, Texts in Theoretical Computer Science, Berlin:
Springer, 2004.

22. H. P. Barendregt and F. Wiedijk, The challenge of computer
mathematics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., 363 (1835): 2351–2375, 2005.

23. H. P. Barendregt, Foundations of mathematics from the per-
spective of computer verification, in Mathematics, Computer
Science, Logic – A Never Ending Story. New York: Springer-
Verlag, 2006. To appear. Available www.cs.ru.nl/~henk/
papers.html.

24. F. Wiedijk, The Seventeen Provers of the World, vol. 3600 of
LNCS, New York: Springer, 2006.

25. G. Gonthier, A computer checked proof of the Four Colour
Theorem, 2005. Available: hresearch.microsoft.com/~gonthier/
4colproof.pdfi.

26. T. C. Hales, A proof of the Kepler conjecture, Ann. of Math. (2),
162 (3): 1065–1185, 2005.

27. T. C. Hales, The flyspeck project fact sheet. Available:
www.math.pitt.edu/~thales/flyspeck/index.html.

28. E. M. Clarke Jr., O. Grumberg, and D. A. Peled, Model Check-
ing, Cambridge, MA: MIT Press, 1999.

29. G. J. Holzmann, The SPIN model checker, primer and reference
manual, Reading, MA: Addison-Wesley, 2003.

30. S. Bensalem, V. Ganesh, Y. Lakhnech, C. Mu noz, S. Owre, H.
Rue, J. Rushby, V. Rusu, H. Sadi, N. Shankar, E. Singerman,
and A. Tiwari, An overview of SAL, in C. M. Holloway, (ed.),
LFM 2000: Fifth NASA Langley Formal Methods Workshop,
2000, pp. 187–196.

31. F. W. Vaandrager, Does it pay off? Model-based verificationand
validation of embedded systems! in F. A. Karelse, (ed.), PRO-
GRESS White papers 2006. STW, the Netherlands, 2006.
Available: www.cs.ru.nl/ita/publications/papers/fvaan/white-
paper.

HENK BARENDREGT

Radboud University Nijmegen
Nijmegen, The Netherlands

PROOFS OF CORRECTNESS IN MATHEMATICS AND INDUSTRY 7



R

REGRESSION ANALYSIS

In statistics, regression is the study of dependence. The goal
of regression is to study how the distribution of a response
variable changes as values of one or more predictors are
changed. For example, regression can be used to study
changes in automobile stopping distance as speed is varied.
In another example, the response could be the total profit-
ability of a product as characteristics of it like selling price,
advertising budget, placement in stores, and so on, are
varied. Key uses for regression methods include prediction
of future values and assessing dependence of one variable
on another.

The study of conditional distributions dates at least to
the beginning of the nineteenth century and the work of
A. Legendre and C. F. Gauss. The use of the term regression
is somewhat newer, dating to the work of F. Galton at the
end of the nineteenth century; see Ref. 1 for more history.

GENERAL SETUP

For the general univariate regression problem, we use the
symbol Y for a response variable, which is sometimes called
the dependent variable. The response can be a continuous
variable like a distance or a profit, or it could be discrete,
like success or failure, or some other categorical outcome.
The predictors, also called independent variables, carriers,
or features, can also be continuous or categorical; in the
latter case they are often called factors or class variables.
For now, we assume only one predictor and use the symbol
X for it, but we will generalize to many predictors shortly.
The goal is to learn about the conditional distribution of Y
given that X has a particular value x, written symbolically
as FðY jX ¼ xÞ.

For example, Fig. 1 displays the heights of n ¼ 1375
mother–daughter pairs, with X ¼ mother’s height on the
horizontal axis and Y ¼ daughter’s height on the vertical
axis, in inches. The conditional distributions FðY jX ¼ xÞ
correspond to the vertical spread of points in strips in this
plot. In Fig. 1, three of these conditional distributions are
highlighted, corresponding to mother’s heights of 58, 61,
and 65 inches. The conditional distributions almost cer-
tainly differ in mean, with shorter mothers on average
having shorter daughters than do taller mothers, but there
is substantial overlap between the distributions.

Most regression problems center on the study of the
mean function, to learn about the average value of Y given
X ¼ x. We write the most general mean function as
mðY jX ¼ xÞ, the mean of Y when X ¼ x. The mean function
for the heights data would be a smooth curve, with mðY jX ¼ xÞ
increasing as x increases. Other characteristics of the con-
ditional distributions, such as conditional variances
varðY jX ¼ xÞ may well be constant across the range of
values for mother’s height, but in general the variance or
indeed any other moment or percentile function can depend
on X.

Most regression models are parametric, so the mean
function mðY jX ¼ xÞ depends only on a few unknown para-
meters collected into a vector b. We write mðY jX ¼
xÞ ¼ gðx;bÞ, where g is completely known apart from the
unknown value of b.

In the heights data described above, data are generated
obtaining a sample of units, here mother–daughter pairs,
and measuring the values of height for each of the pairs.
Study of the conditional distribution of daughter’s height
given the mother’s height makes more sense than the study
of the mother’s height given the daughter’s height because
the mother precedes the daughter, but in principle either
conditional distribution could be studied via regression. In
other problems, the values of the predictor or the predictors
may be set by an experimenter. For example, in a laboratory
setting, samples of homogeneous material could be
assigned to get different levels of stress, and then a
response variable is measured with the goal of determining
the effect of stress on the outcome. This latter scenario will
usually include random assignment of units to levels of
predictors and can lead to more meaningful inferences.
Considerations for allocating levels of treatments to experi-
mental units are part of the design of experiments; see
Ref. 3. Both cases of predictors determined by the experi-
menter and predictors measured on a sample of units can
often be analyzed using regression analysis.

SIMPLE LINEAR REGRESSION

Model

Linear regression is the most familiar and widely used
method for regression analysis; see, for example, Ref. 4
for book-length treatment of simple and multiple regres-
sion. This method concentrates almost exclusively on the
mean function. Data consist of n independent pairs
ðx1; y1Þ; . . . ; ðxn; ynÞ as with the heights data in Fig. 1. The
independence assumption might be violated if, for example,
a mother were included several times in the data, each with
a different daughter, or if the mothers formed several
groups of sisters.

The simple linear regression model requires the follow-
ing mean and variance functions:

mðY jX ¼ xÞ ¼ gðx;bÞ ¼ b0 þ b1x

VarðY jX ¼ xÞ ¼ s2
(1)

so for this model b ¼ ðb0;b1Þ0. b1 is slope, which is the
expected change in Y when X is increased by one unit.
The intercept b0 is the mean value of Y when X ¼ 0,
although that interpretation may not make sense if X
cannot equal zero. The line shown on Fig. 1 is an estimate
of the simple regression mean function, computed using
least squares, to be described below. For the heights data,
the simple regression mean function seems plausible, as it
matches the data in the graph.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



The simple regression model also assumes a constant
variance function, with s2 > 0 generally unknown. This
assumption is not a prerequisite for all regression models,
but it is a feature of the simple regression model.

Estimation

We can obtain estimates of the unknown parameters, and
thus of the mean and the variance functions, without any
further assumptions. The most common method of estima-
tion is via least squares, which chooses the estimates b ¼
ðb0; b1Þ0 of b ¼ ðb0;b1Þ0 via a minimization problem:

b ¼ arg min
b�

Xn

i¼1

fyi � gðx; b�Þg2 (2)

A generic notation is used in Equation (2) because this same
objective function can be used for other parametric mean
functions.

The solution to this minimization problem is easily
found by differentiating Equation (2) with respect to
each element of b� and setting the resulting equations to
zero, and solving. If we write mx and my as the sample
means of the xi and the yi respectively, SDx and SDy as
the sample standard deviations, and rxy as the sample
correlation, then

b1 ¼ rxy
SDy

SDx
b0 ¼ my � b1mx (3)

These are linear estimators because both my and rxy are
linear combinations of the yi. They are also unbiased,
Eðb0Þ ¼ b0 and Eðb1Þ ¼ b1. According to the Gauss-Markov
theorem, the least-squares estimates have minimum var-
iance among all possible linear unbiased estimates. Details
are given in Refs. 4 and 5, the latter reference at a higher
mathematical level.

As s2 is the mean-squared difference between each data
point and its mean, it should be no surprise that the
estimate of s2 is similar to the average of the squared fitting
errors. Let d be the degrees of freedom for error, which in
linear regression is the number of observations minus the
number of parameters in the mean function, or n� 2 in
simple regression. Then

s2 ¼ 1

d

Xn

i¼1

ðy� gðxi; bÞÞ2 (4)

The quantity
P
ðyi � gðxi; bÞÞ2 is called the residual sum of

squares. We divide by d rather than the more intuitive
sample size n because this results in an unbiased estimate,
Eðs2Þ ¼ s2. Many computing formulas for the residuals sum
of squares depend only on summary statistics. One that is
particularly revealing is

Xn

i¼1

ðy� gðxi; bÞÞ2 ¼ ðn� 1ÞSD2
yð1� R2Þ (5)

In both simple and multiple linear regression, the quantity
R2 is the square of the sample correlation between the
observed response, the yi, and the fitted values gðxi; bÞ. In
simple regression R2 ¼ r2

xy.

Distribution of Estimates

The estimates ðb0; b1Þ are random variables with variances

Varðb0Þ ¼ s2 1

n
þ m2

x

ðn� 1ÞSD2
x

 !
;

Varðb1Þ ¼ s2 1

ðn� 1ÞSD2
x

(6)

The estimates are correlated, with covariance
Covðb0; b1Þ ¼ �s2mx=fðn� 1ÞSD2

xg. The estimates are
uncorrelated if the predictor is rescaled to have sample
mean mx ¼ 0; that is, replace X by a new predictor
X� ¼ X �mx. This will also change the meaning of the
intercept parameter from the value of EðY jX ¼ 0Þ to the
value of EðY jX ¼ mxÞ. Estimates of the variances and cov-
ariances are obtained by substituting s2 for s2. For exam-
ple, the square root of the estimated variance of b1 is called
its standard error, and is given by

seðb1Þ ¼ s
1

fðn� 1ÞSD2
xg

1=2
(7)

Tests and confidence statements concerning the para-
meters require the sampling distribution of the statistic
ðb0; b1Þ. This information can come about in three
ways. First, we might assume normality for the conditional
distributions, FðY jX ¼ xÞ ¼ Nðgðx;bÞ;s2Þ. Since the least
squares estimates are linear functions of the yi, this leads
to normal sampling distributions for b0 and b1. Alterna-
tively, by the central limit theorem b0 and b1 will be approxi-
mately normal regardless of the true F, assuming only mild

Figure 1. Heights of a sample of n ¼ 1375 mothers and daughters
as reported by Ref. 2. The line shown on the plot is the ordinary
least-squares regression line, assuming a simple linear regression
model. The darker points display all pairs with mother’s height
that would round to 58, 61, or 65 inches.

2 REGRESSION ANALYSIS



regularity conditions and a large enough sample. A third
approach uses the data itself to estimate the sampling
distribution of b, and thereby get approximate inference.
This last method is generally called the bootstrap, and is
discussed briefly in Ref. 4 and more completely in Ref. 6.

Regardless of distributional assumptions, the estimate
s2 has a distribution that is independent of b. If we add the
normality assumption, then ds2�s2x2ðdÞ, a chi-squared
distribution with d df. The ratio ðb1 � b1Þ=seðb1Þ has a
t-distribution with d df, written tðdÞ. Most tests in linear
regression models under normality or in large samples
are based either on t-distributions or on the related
F-distributions.

Suppose we write tgðdÞ to be the quantile of the
t-distribution with d df that cuts off probability g in its
upper tail. Based on normal theory, either a normality
assumption or large samples, a test of b1 ¼ b�1 versus the
alternative b1 6¼b�1 is rejected at level a if t ¼ ðb1 �
b�1Þ=seðb1Þ exceeds t1�a=2ðdÞ, where d is the number of df
used to estimate s2. Similarly, a ð1� aÞ � 100% confidence
interval for b1 is given by the set

fb1 2 ðb1 � t1�a=2ðdÞseðb1Þ; b1 þ t1�a=2ðdÞseðb1ÞÞg

Computer Output from Heights Data

Typical computer output from a packaged regression pro-
gram is shown in Table 1 for the heights data. The usual
output includes the estimates (3) and their standard errors
(7). The fitted mean function is gðx; bÞ ¼ 29:9174þ 0:5417x;
this function is the straight line drawn on Fig. 1. The
column marked ‘‘t-value’’ displays the ratio of each estimate
to its standard error, which is an appropriate statistic for
testing the hypotheses that each corresponding coefficient
is equal to zero against either a one-tailed or two-tailed
alternative. The column marked ‘‘Prð> jtjÞ’’ is the signifi-
cance level of this test assuming a two-sided alternative,
based on the tðn� 2Þ distribution. In this example the p-
values are zero to four decimals, and strong evidence is
present that the intercept is nonzero given the slope, and
that the slope is nonzero given the intercept. The estimated
slope of about 0.54 suggests that each inch increase on
mother’s height corresponds to an increase in daughter’s
height of only about 0.54 inches, which indicates that tall
mothers have tall daughters but not as tall as themselves.
This could have been anticipated from (3): Assuming that
heights of daughters and mothers are equally variable, we
will have SDx� SDy and so b1� rxy, the correlation. As the
scale-free correlation coefficient is always in ½�1; 1�, the
slope must also be in the range. This observation of regres-
sion toward the mean is the origin of the term regression for
the study of conditional distributions.

Also included in Table 1 are the estimate s of s, the
degrees of freedom associated with s2, and R2 ¼ r2

xy. This

latter value is usually interpreted as a summary of the
comparison of the fit of model (1) with the fit of the ‘‘null’’
mean function

m0ðY jX ¼ xÞ ¼ b0 (8)

Mean function (8) asserts that the mean of Y jX is the same
for all values of X. Under this mean function the least
squares estimate of b0 is just the sample mean my and
the residual sum of squares is ðn� 1ÞSD2

y . Under mean
function (1), the simple linear regression mean function,
the residual sum of squares is given by Equation (5). The
proportion of variability unexplained by regression on X is
just the ratio of these two residual sums of squares:

Unexplained variability ¼
ðn� 1ÞSD2

yð1� R2Þ
ðn� 1ÞSD2

y

¼ 1� R2

and so R2 is the proportion of variability in Y that is
explained by the linear regression on X. This same inter-
pretation also applies to multiple linear regression.

An important use of regression is the prediction of future
values. Consider predicting the height of a daughter whose
mother’s height is X ¼ 61. Whether data collected on
English mother–daughter pairs over 100 years ago is rele-
vant to contemporary mother–daughter pairs is question-
able, but if it were, the point prediction would be the
estimated mean, gð61; bÞ ¼ 29:9174þ 0:5417� 61� 63
inches. From Fig. 1, even if we knew the mean function
exactly, we would not expect the prediction to be prefect
because mothers of height 61 inches have daughters of a
variety of heights. We therefore expect predictions to have
two sources of error: a prediction error of magnitude s due
to the new observation, and an error from estimating the
mean function,

VarðPredictionjX ¼ x�Þ ¼ s2 þ Varðgðx; bÞÞ

For simple regression Varðgðx; bÞÞ ¼ Varðb0 þ b1xÞ ¼
Varðb0Þ þ x2Varðb1Þ þ xCovðb0; b1Þ. Simplifying and repla-
cing s2 by s2 and taking square roots, we get

seðPredictionjX ¼ x�Þ ¼ s 1þ 1

n
þ ðx

� �mxÞ2

ðn� 1ÞSD2
x

 !1=2

where the sample size n, sample mean mx, and sample
standard deviation SDx are all from the data used to esti-
mate b. For the heights data, this standard error at x� ¼ 61
is about 2.3 inches. A 95% prediction interval, based on the
tðn� 2Þ distribution, is from 58.5 to 67.4 inches.

MULTIPLE LINEAR REGRESSION

The multiple linear regression model is an elaboration of
the simple linear regression model. We now have a pre-
dictor X with p� 1 components, X ¼ ð1;X1; . . . ;XpÞ. Also,
let x ¼ ð1; x1; . . . ; x pÞ be a vector of possible observed values

Table 1. Typical simple regression computer output, for
the heights data

Estimate Std. Error t-value Prð> jtjÞ

b0 29.9174 1.6225 18.44 0.0000
b1 0.5417 0.0260 20.87 0.0000

s ¼ 2:27, 1373 df, R2 ¼ 0:241.

REGRESSION ANALYSIS 3



for X; the ‘‘1’’ is appended to the left of these quantities to
allow for an intercept. Then the mean function in
Equation (1) is replaced by

mðY jX ¼ xÞ ¼ gðx;bÞ
¼ b0 þ b1x1 þ � � � þ b px p

¼ b0x

VarðY jX ¼ xÞ ¼ s2

(9)

The parameter vector b ¼ ðb0; . . . ;b pÞ0 now has pþ 1
components. Equation (9) describes a plane in pþ 1-dimen-
sional space. Each b j for j> 0 is called a partial slope, and
gives the expected change in Y when X j is increased by one
unit, assuming all other Xk, k 6¼ j, are fixed. This interpre-
tation can be problematical if changing X j would require
that one or more of the other Xk be changed as well. For
example, if X j was tax rate and Xk was savings rate,
changing X j may necessarily change Xk as well.

Linear models are not really restricted to fitting straight
lines and planes because we are free to define X as we wish.
For example, if the elements of X are different powers or
other functions of the same base variables, then when
viewed as a function of the base variables the mean function
will be curved. Similarly, by including dummy variables,
which have values of zero and one only, denoting two
possible categories, we can fit separate mean functions to
subpopulations in the data (see Ref. 4., Chapter 6).

Estimation

Given data ðyi; xi1; . . . ; xi pÞ for i ¼ 1; . . . ;n, we assume that
each case in the data is independent of each other case. This
may exclude, for example, time-ordered observations on the
same case, or other sampling plans with correlated cases.
The least-squares estimates minimize Equation 2, but with
gðx; b�Þ from Equation 9 substituting for the simple regres-
sion mean function. The estimate s2 of s2 is obtained from
Equation 4 but with d ¼ n� p� 1 df rather than the
n� 2 for simple regression. Numerical methods for least-
squares computations are discussed in Ref. 7. High-quality
subroutines for least squares are provided by Ref. 8. As with
simple regression, the standard least-squares calculations
are performed by virtually all statistical computing
packages.

For the multiple linear regression model, there is a
closed-form solution for b available in compact form in
matrix notation. Suppose we write Y to be the n� 1 vector
of the response variable and X to be the n� ðpþ 1Þmatrix
of the predictors, including a column of ones. The order of
rows of Y and X must be the same. Then

b ¼ ðX0XÞ�1X0Y (10)

provided that the inverse exists. If the inverse does not
exist, then there is not a unique least-squares estimator. If
the matrixX is of rank r 	 p, then most statistical comput-
ing packages resolve the indeterminacy by finding r line-
arly independent columns of X , resulting in a matrix X1,
and then computing the estimator (10) withX1 replacingX .
This will change interpretation of parameters but not

change predictions: All least-squares estimates produce
the same predictions.

Equation 10 should never be used in computations, and
methods based on decompositions such as the QR decom-
position are more numerically stable; see ‘‘Linear systems
of equation’’ and Ref. 8.

Distribution

If the FðY jXÞ are normal distributions, or if the sample size
is large enough, then we will have, assumingX of full rank,

b�Nðb;s2ðX0XÞ�1Þ (11)

The standard error of any of the estimates is given by s
times the square root of the corresponding diagonal ele-
ment of ðX0XÞ�1. Similarly, if a0b is any linear combination
of the elements of b, then

a0b�Nða0b;s2a0ðX0XÞ�1aÞ

In particular, the fitted value at X ¼ x� is given by x�0b, and
its variance is s2x�0ðX0XÞ�1x�. A prediction of a future value
at X ¼ x� is also given by x�0b, and its variance is given by
s2 þ s2x�0ðX0XÞ�1x�. Both of these variances are estimated
by replacing s2 by s2.

Prescription Drug Cost

As an example, we will use data collected on 29 health plans
with pharmacies managed by the same insurance company
in the United States in the mid-1990s. The response vari-
able is Cost, the average cost to the health plan for one
prescription for one day, in dollars. Three aspects of the
drug plan under the control of the health plan are GS, the
usage of generic substitute drugs by the plan, an index
between 0, for no substitution and 100, for complete sub-
stitution, RI, a restrictiveness index, also between 0 and
100, describing the extent to which the plan requires phy-
sicians to prescribe drugs from a limited formulary, and
Copay, the cost to the patient per prescription. Other
characteristics of the plan that might influence costs are
the average Age of patients in the plan, and RXPM, the
number of prescriptions per year per patient, as a proxy
measure of the overall health of the members in the plan.
Although primary interest is in the first three predictors,
the last two are included to adjust for demographic differ-
ences in the plans. The data are from Ref. (4).

Figure 2 is a scatterplot matrix. Except for the diagonal,
a scatterplot matrix is a two-dimensional array of scatter-
plots. The variable names on the diagonal label the axes. In
Fig. 2, the variable Age appears on the horizontal axis of all
plots in the fifth column from the left and on the vertical
axis of all plots in the fifth row from the top. Each plot in a
scatterplot matrix is relevant to a particular one-predictor
regression of the variable on the vertical axis given the
variable on the horizontal axis. For example, the plot of Cost
versus GS in the first plot in the second column of the
scatterplot matrix is relevant for the regression of Cost on
GS ignoring the other variables. From the first row of plots,
the mean of Cost generally decreases as predictors increase,

4 REGRESSION ANALYSIS



except perhaps RXPM where there is not any obvious
dependence. This summary is clouded, however, by a few
unusual points, in particular one health plan with a very
low value for GS and three plans with large values of RI
that have relatively high costs. The scatterplot matrix can
be very effective in helping the analyst focus on possibly
unusual data early in an analysis.

The pairwise relationships between the predictors are
displayed in most other frames of this plot. Predictors that
have nonlinear joint distributions, or outlying or separated
points, may complicate a regression problem; Refs. 4 and 9
present methodology for using the scatterplot matrix to
choose transformations of predictors for which a linear
regression model is more likely to provide a good approx-
imation.

Table 2 gives standard computer output for the fit of a
multiple linear regression model with five predictors. As in
simple regression, the value of R2 gives the proportion of

variability in the response explained by the predictors;
about half the variability in Cost is explained by this
regression. The estimated coefficient for GS is about
�0:012, which suggests that, if all other variables could
be held fixed, increasing GI by 10 units is expected to
change Cost by 10��:012 ¼ $�0:12, which is a relatively
large change. The t-test for the coefficient for GS equal to
zero has a very small p-value, which suggests that this
coefficient may indeed by nonzero. The coefficient for Age
also has a small p-value and plans with older members
have lower cost per prescription per day. Adjusted for the
other predictors, RI appears to be unimportant, whereas
the coefficient for Copay appears to be of the wrong sign.

Model Comparison. In some regression problems, we
may wish to test the null hypothesis NH that a subset of
the b j are simultaneously zero versus the alternative AH
that at least one in the subset is nonzero. The usual
procedure is to do a likelihood ratio test: (1) Fit both the
NH and the AH models and save the residual sum of
squares and the residual df; (2) compute the statistic

F ¼ RSSNH � RSSAH=ðdfNH � dfAHÞ
RSSAH=dfAH

Under the normality assumption, the numerator and
denominator are independent multiples of x2 random vari-

Figure 2. Scatterplot matrix for the drug cost example.

Table 2. Regression output for the drug cost data.

Estimate Std. Error t-value Prð> jtjÞ

(Intercept) 2.6829 0.4010 6.69 0.0000
GS �0.0117 0.0028 �4.23 0.0003
RI 0.0004 0.0021 0.19 0.8483
Copay 0.0154 0.0187 0.82 0.4193
Age �0.0420 0.0141 �2.98 0.0068
RXPM 0.0223 0.0110 2.03 0.0543

s ¼ 0:0828, df ¼ 23, R2 ¼ 0:535.

REGRESSION ANALYSIS 5



ables, and F has an FðdfNH � dfAH dfAHÞ distribution, which
can be used to get significance levels. For example, consider
testing the null hypothesis that the mean function is given
by Equation 8, which asserts that the mean function does
not vary with the predictors versus the alternative given by
Equation 9. For the drug data, F ¼ 5:29 with ð5; 23Þ df,
p ¼ 0:002, which suggests that at least one of the b j; j� 1 is
nonzero.

Model Selection/Variable Selection. Although some
regression models are dictated by a theory that specifies
which predictors are needed and how they should be used in
the problem, many problems are not so well specified. In the
drug cost example, Cost may depend on the predictors as
given, on some subset of them, or on some other functional
form other than a linear combination. Many regression
problems will therefore include a model selection phase
in which several competing specifications for the mean
function are to be considered. In the drug cost example,
we might consider all 25 ¼ 32 possible mean functions
obtained using subsets of the five base predictors, although
this is clearly only a small fraction of all possible sensible
models. Comparing models two at a time is at best ineffi-
cient and at worst impossible because the likelihood ratio
tests can only be used to compare models if the null model is
a special case of the alternative model.

One important method for comparing models is based on
estimating a criterion function that depends on both lack of
fit and complexity of the model (see also ‘‘Information
theory.’’) The most commonly used method is the Akaike
information criterion, or AIC, given for linear regression by

AIC ¼ n logðResidual sum of squaresÞ þ 2ðpþ 1Þ

where pþ 1 is the number of estimated coefficients in the
mean function. The model that minimizes AIC is selected,
even if the difference in AIC between two models is trivially
small; see Ref. 10. For the drug cost data, the mean function
with all five predictors has AIC ¼ �139:21. The mean
function with minimum AIC excludes only RI, with
AIC ¼ �141:16. The fitted mean function for this mean
function is mðY jX ¼ xÞ ¼ 2:6572� 0:0117 GSþ 0:0181
Copay� 0:0417Ageþ 0:0229 RXPM. Assuming the multi-
ple linear regression model is appropriate for these data,
this suggests that the restrictiveness of the formulary is not
related to cost after adjusting for the other variables, plans
with more GS are associated with lower costs. Both Copay
and Age seem to have the wrong sign.

An alternative approach to model selection is model
aggregation, in which a probability or weight is estimated
for each candidate model, and the ‘‘final’’ model is a
weighted combination of the individual models; see
Ref. 11 for a Bayesian approach and Ref. 12 for a
frequentist approach.

Parameter Interpretation. If the results in Table 2 or the
fitted model after selection were a reasonable summary of
the conditional mean of Cost given the predictors, how can
we interpret the parameters? For example, can we infer
than increasing GS would decrease Cost? Or, should we be
more cautious and only infer that plans with higher GS are

associated with lower values of Cost? The answer to this
question depends on the way that the data were generated.
If GS were assigned to medical plans using a random
mechanism, and then we observed Cost after the random
assignment, then inference of causation could be justified.
The lack of randomization in these data could explain the
wrong sign for Copay, as it is quite plausible that plans raise
the copayment in response to higher costs. For observa-
tional studies like this one, causal inference based on
regression coefficients is problematical, but a substantial
literature exists on methods for making causal inference
from observational data; see Ref. 13.

Diagnostics. Fitting regression models is predicated
upon several assumptions about FðY jXÞ. Should any of
these assumptions fail, then a fitted regression model
may not provide a useful summary of the regression pro-
blem. For example, if the true mean function were
EðY jX ¼ xÞ ¼ b0 þ b1xþ b2x2, then the fit of the simple
linear regression model (1) could provide a misleading
summary if b2 were substantially different from zero.
Similarly, if the assumed mean function were correct but
the variance function was not constant, then estimates
would no longer be efficient, and tests and confidence
intervals could be badly in error.

Regression diagnostics are a collection of graphical and
numerical methods for checking assumptions concerning
the mean function and the variance function. In addition,
these methods can be used to detect outliers, a small frac-
tion of the cases for which the assumed model is incorrect,
and influential cases (14), which are cases that if deleted
would substantially change the estimates and inferences.
Diagnostics can also be used to suggest remedial action like
transforming predictors or the response, or adding inter-
actions to a mean function, that could improve the match of
the model to the data. Much of the theory for diagnostics is
laid out in Ref. 15 see also Refs. 4 and 9.

Many diagnostic methods are based on examining the
residuals, which for linear models are simply the differ-
ences ri ¼ yi � gðxi; bÞ; i ¼ 1; . . . ;n. The key idea is that, if a
fitted model is correct, then the residuals should be unre-
lated to the fitted values, to any function of the predictors,
or indeed to any function of data that was not used in the
modeling. This suggests examining plots of the residuals
versus functions of the predictors, such as the predictors
themselves and also versus fitted values. If these graphs
show any pattern, such as a curved mean function or
nonconstant variance, we have evidence that the model
used does not match the data. Lack of patterns in all plots is
consistent with an acceptable model, but not definitive.

Figure 3 shows six plots, the residuals versus each of the
predictors, and also the residuals versus the fitted values
based on the model with all predictors. Diagnostic analysis
should generally be done before any model selection based
on the largest sensible mean function. In each plot, the
dashed line is a reference horizontal line at zero. The dotted
line is the fitted least-squares regression line for a quad-
ratic regression with the response given by the residuals
and the predictor given by the horizontal axis. The t-test
that the coefficient for the quadratic term when added to
the original mean function is zero is a numeric diagnostic

6 REGRESSION ANALYSIS



that can help interpret the plot. In the case of the plot
versus fitted value, this test is called Tukey’s test for non-
additivity, and p-values are obtained by comparing with a
normal distribution rather than a t-distribution that is used
for all other plots.

In this example, the residual plots display patterns that
indicate that the linear model that was fit does not match
the data well. The plot for GS suggests that the case with a
very small value of GS might be quite different than the
others; the p-value for the lack-of-fit test is about 0.02.
Similarly, curvature is evident for RI due to the three plans
with very high values of RI but very high costs. No other
plot is particularly troubling, particularly in view of the
small sample size. For example, the p-value for Tukey’s test
corresponding to the plot versus fitted values is about
p ¼ 0:10. The seemingly contradictory result that the
mean function matches acceptably overall but not with
regard to GS or RI is plausible because the overall test
will necessarily be less powerful than a test for a more
specific type of model failure.

This analysis suggests that the four plans, one with
very low GS and the other three with very high RI,
may be cases that should be treated separately from the
remaining cases. If we refit without these cases, the result-
ing residual plots do not exhibit any particular problems.
After using AIC to select a subset, we end up with the fitted
model gðx; bÞ ¼ 2:394� 0:014 GS� 0:004 RI � 0:024 Ageþ
0:020 RXPM. In this fitted model, Copay is deleted. The
coefficient estimate for GS is somewhat larger, and the

remaining estimates are of the appropriate sign. This
seems to provide a useful summary for the data. We would
call the four points that were omitted influential observa-
tions, (14) because their exclusion markedly changes con-
clusions in the analysis.

In this example, as in many examples, we end up with a
fitted model that depends on choices made about the data.
The estimated model ignores 4 of 29 data points, so we are
admitting that the mean function is not appropriate for all
data.

OTHER REGRESSION MODELS

The linear model given by Equation 9 has surprising gen-
erality, given that so few assumptions are required. For
some problems, these methods will certainly not be useful,
for example if the response is not continuous, if the variance
depends on the mean, or if additional information about the
conditional distributions is available. For these cases,
methods are available to take advantage of the additional
information.

Logistic Regression

Suppose that the response variable Y can only take on two
values, say 1, corresponding perhaps to ‘‘success,’’ or 0,
corresponding to ‘‘failure.’’ For example, in a manufactur-
ing plant where all output is inspected, Y could indicate
items that either pass (Y ¼ 1) or fail (Y ¼ 1) inspection. We
may want to study how the probability of passing depends
on characteristics such as operator, time of day, quality of
input materials, and so on.

We build the logistic regression model in pieces. First, as
each Y can only equal 0 or 1, each Y has a Bernoulli
distribution, and

mðY jX ¼ xÞ ¼ ProbðY ¼ 1jX ¼ xÞ
¼ gðx;bÞ

VarðY jX ¼ xÞ ¼ gðx;bÞð1� gðx;bÞÞ
(12)

Each observation can have its own probability of success
gðx;bÞ and its own variance.

Next, assume that Y depends on X ¼ x only through a
linear combination hðxÞ ¼ b0 þ b1x1 þ . . .þ b px p ¼ b0x.
The quantity hðxÞ is called a linear predictor. For the
multiple linear regression model, we have gðx;bÞ ¼ hðxÞ,
but for a binary response, this does not make any sense
because a probability is bounded between zero and one. We
can make a connection between gðx;bÞ and hðxÞ by assum-
ing that

gðx;bÞ ¼ 1

1þ expð�hðxÞÞ (13)

This is called logistic regression because the right side of
Equation 13 is the logistic function. Other choices for g are
possible, using any function that maps from ð�1;1Þ to (0,
1), but the logistic is adequate for many applications.

To make the analogy with linear regression clearer,
Equation 13 is often inverted to have just the linear

Figure 3. Residual plots for the drug cost data. The ‘‘+’’ symbol
indicates the plan with very small GS, ‘‘x’’ indicates plans with very
high RI, and all other plans are indicated with a ‘‘o.’’

REGRESSION ANALYSIS 7



predictor on the right side of the equation,

logð gðx;bÞ
1� gðx;bÞÞ ¼ hðxÞ ¼ b0x (14)

In this context, the logit function, logðgðx;bÞ=ð1� gðx;bÞÞÞ,
is called a link function that links the parameter of the
Bernoulli distribution, gðx;bÞ, to the linear predictor hðxÞ.

Estimation. If we have data ðyi; xiÞ, i ¼ 1; . . . ;n that are
mutually independent, then we can write the log-likelihood
function as

LðbÞ ¼ log P
n

i¼1
ðgðxi;bÞÞyið1� gðxi;bÞÞ1�yi

� �

¼ log P
n

i¼1

gðxi;bÞ
ð1� gðxi;bÞ

� �yi

ð1� gðxi;bÞÞ
� �

¼
Xn

i¼1

yiðx0ibÞ þ log 1� 1

ð1þ expð�x0ibÞÞ

 !( )

Maximum likelihood estimates are obtained to be the
values of b that maximize this last equation. Computations
are generally done using Newton–Raphson iteration
or using a variant called Fisher scoring; see Ref. 16;
for book-length treatments of this topic, see Refs. 17
and 18.

Poisson Regression

When the response is the count of the number of indepen-
dent events in a fixed time period, Poisson regression
models are often used. The development is similar to the
Bernoulli case. We first assume that Y jX ¼ x is distributed
as a Poisson random variable with mean mðY jX ¼ xÞ ¼
gðx;bÞ,

ProbðY ¼ yjX ¼ xÞ ¼ gðx;bÞy

y!
expð�gðx;bÞÞ

For the Poisson, 0<mðY jX ¼ xÞ ¼ VarðY jX ¼ xÞ ¼ gðx;bÞ.
The connection between Y and X is assumed to be through
the linear predictor hðxÞ, and for a log-linear model, we
assume that

gðx;bÞ ¼ expðhðxÞÞ

giving the exponential mean function, or inverting we get
the log-link,

hðxÞ ¼ logðgðx;bÞÞ

Assuming independence, the log-likelihood function can be
shown to be equal to

LðbÞ ¼
Xn

i¼1

fyiðxi0bÞ � expðx0ibÞg

Log-linear Poisson models are discussed in Ref. 19.
There are obvious connections between the logistic and

the Poisson models briefly described here. Both of these

models as well as the multiple linear regression model
assuming normal errors, are examples of generalized linear
models, described in Ref. 16.

Nonlinear Regression

Nonlinear regression refers in general to any regression
problem for which the linear regression model does not
hold. Thus, for example, the logistic and log-linear Poisson
models are nonlinear models; indeed nearly all regression
problems are nonlinear.

However, it is traditional to use a narrower definition for
nonlinear regression that matches the multiple linear
regression model except that the mean function mðY jX ¼
xÞ ¼ gðx;bÞ is a nonlinear function of the parameters b. For
example, the mean relationship between X ¼ age of a fish
and Y ¼ length of the fish is commonly described using the
von Bertalanffy function,

EðY jX ¼ xÞ ¼ L1ð1� expð�Kðx� x0ÞÞÞ

The parameters b ¼ ðL1;K; x0Þ0 to be estimated are the
maximum length L1 for very old fish; the growth rate K,
and x0 < 0, which allows fish to have positive length at
birth.

As with the linear model, a normality assumption for
Y jX is not required to obtain estimates. An estimator b of b
can be obtained by minimizing Equation (2), and the esti-
mate of s2 assuming constant variance from Equation (4).
Computations for a nonlinear mean function are much
more difficult; see ‘‘Least squares approximation’’. The
nonlinear regression problem generally requires an itera-
tive computational method for solution (7) and requires
reasonable starting values for the computations. In addi-
tion, the objective function (2) may be multimodal and
programs can converge to a local rather than a global
minimum. Although software is generally available in
statistical packages and in mathematical programming
languages, the quality of the routines available is more
variable and different packages may give different
answers. Additionally, even if normality is assumed, the
estimate of b is normally distributed only in large samples,
so inferences are approximate and particularly in small
samples may be in error. See Ref. 20 for book-length
treatment.

Nonparametric Regression

For the limited and important goal of learning about the
mean function, several newer approaches to regression
have been proposed in the last few years. These methods
either weaken assumptions or are designed to meet parti-
cular goals while sacrificing other goals.

The central idea behind nonparametric regression is to
estimate the mean function mðY jX ¼ xÞ without assuming
any particular parametric form for the mean function. In
the special case of one predictor, the Naradaya–Watson
kernel regression estimator is the fundamental method. It
estimates mðY jX ¼ xÞ at any particular x by a weighed
average of the yi with weights determined by jxi � xj, so
points close to x have higher weight than do points far away.
In particular, If HðuÞ is a symmetric unimodal function,

8 REGRESSION ANALYSIS



then the estimated mean function is

mðY jX ¼ xÞ ¼
Xn

i¼1

wiðhÞyi=
Xn

j¼1

w jðhÞ

wiðhÞ ¼
1

h
H

xi � x

h

� �

One choice for H is the standard normal density function,
but other choices can have somewhat better properties. The
bandwidth h is selected by the analyst; small values of h
weigh cases with jxi � xj small heavily while ignoring other
cases, giving a very rough estimate. Choosing h large
weighs all cases nearly equally, giving a very smooth,
but possibly biased, estimate, as shown in Fig. 4. The
bandwidth must be selected to balance bias and smooth-
ness. Other methods for nonparametric regression include
smoothing splines, local polynomial regression, and wave-
lets, among others; see Ref. 21.

Semiparametric Regression

A key feature of nonparametric regression is using nearby
observations to estimate the mean at a given point. If the
predictor is in many dimensions, then for most points x,
there may be either no points or at best just a few points that
are nearby. As a result, nonparametric regression does not
scale well because of this curse of dimensionality, Ref. 22.

This has led to the proposal of semiparametric regres-
sion models. For example, the additive regression model,
Refs. 23, 24, suggests modeling the mean function as

mðY jX ¼ xÞ ¼
Xp

j¼1

g jðx jÞ

where each g j is a function of just one predictor x j that can
be estimated nonparametrically. Estimates can be obtained
by an iterative procedure that sequentially estimates each

of the g j, continuing until convergence is obtained. This
type of model can also be used in the generalized linear
model framework, where it is called a generalized additive
model.

Robust Regression

Robust regression was developed to address the concern
that standard estimates such as least-squares or maximum
likelihood estimates may be highly unstable in the presence
of outliers or other very large errors. For example, the least-
squares criterion (2) may be replaced by

b ¼ arg min
b�

Xn

i¼1

rfjyi � gðx; b�Þjg

where r is symmetric about zero and may downweight
observations for which jyi � gðx; b�Þj is large. The metho-
dology is presented in Ref. 25, although these methods seem
to be rarely used in practice, perhaps because they give
protection against outliers but not necessarily against
model misspecifications, Ref. 26.

Regression Trees

With one predictor, a regression tree would seek to replace
the predictor by a discrete predictor, such that the predicted
value of Y would be the same for all X in the same discrete
category. With two predictors, each category created by
discretizing the first variable could be subdivided again
according to a discrete version of the second predictor,
which leads to a tree-like structure for the predictions.
Basic methods for regression trees are outlined in
Refs. 27 and 28. The exact methodology for implementing
regression trees is constantly changing and is an active
area of research; see ‘‘Machine learning.’’

Dimension Reduction

Virtually all regression methods described so far require
assumptions concerning some aspect of the conditional
distributions FðY jXÞ, either about the mean function on
some other characteristic. Dimension reduction regression
seeks to learn about FðY jXÞ but with minimal assumptions.
For example, suppose X is a p-dimensional predictor, now
not including a ‘‘1’’ for the intercept. Suppose we could find a
r� p matrix B of minimal rank r such that
FðY jXÞ ¼ FðY jBXÞ, which means that all dependence of
the response on the predictor is through r combinations
of the predictors. If r
 p, then the resulting regression
problem is of much lower dimensionality and can be much
easier to study. Methodology for finding B and r with no
assumptions about FðY jXÞ is a very active area of research;
see Ref. 29 for the foundations; and references to this work
for more recent results.

BIBLIOGRAPHY

1. S. M. Stigler, The History of Statistics: the Measurement of
Uncertainly before 1900. Cambridge MA: Harvard University
Press, 1986.

Figure 4. Three Naradaya–Watson kernel smoothing estimates
of the mean for the heights data, with h ¼ 1 for the solid line and
h ¼ 3 for the dashed line and h ¼ 9 for the dotted line.

REGRESSION ANALYSIS 9



2. K. Pearson and S. Lee, One the laws of inheritance in man.
Biometrika, 2: 357–463, 1903.

3. G. Oehlert, A First Course in Design and Analysis of Experi-
ments. New York: Freeman, 2000.

4. S. Weisberg, Applied Linear Regression, Third Edition.
New York: John Wiley & Sons, 2005.

5. R. Christensen, Plane Answers to Complex Questions: The
Theory of Linear Models. New York: Sparinger-Verlag Inc,
2002.

6. B. Efron and R. Tibshirani, An Introduction to the Bootstrap.
Boca Raton, FL: Chapman & Hall Ltd, 1993.

7. C. L. Lawson and R. J. Hanson, Solving Least Squares
Problems. SIAM [Society for Industrial and Applied Mathe-
matics], 1995.

8. LAPACK Linear Algebra PACKAGE. http://www.netlib.org/
lapack/. 1995.

9. R. Dennis Cook and S. Weisberg, Applied Regression Including
Computing and Graphics. New York: John Wiley & Sons, 1999.

10. C.-L Tsai and Allan D. R. McQuarrie. Regression and Time
Series Model Selection. Singapore: World Scientific, 1998.

11. J. A. Hoeting, D. Madigan, A. E. Reftery, and C. T. Volinsky,
Bayesian model averaging: A tutorial. Statistical Science,
14(4): 382–401, 1999.

12. Z. Yuan and Y. Yang, Combining linear regression
models: When and how? Journal of the Amerian Statistical
Association, 100(472): 1202–1214, 2005.

13. P. R. Rosenbaum, Observational Studies. New York: Springer-
Verlag Inc, 2002.

14. R. D. Cook, Detection of influential observation in linear
regression. Technometrics, 19: 15–18, 1977.

15. R. D. Cook and S. Weisberg, Residuals and Influence in Regres-
sion. Boca Raton, FL: Chapman & Hall Ltd, available online at
www.stat.umn.edu/rir, 1982.

16. P. McCullagh and J. A. Nelder, Generalized Linear Models,
Second Edition. Boca Raton, FL: Chapman & Hall Ltd, 1989.

17. D. W. Hosmer and S. Lemeshow, Applied Logistic Regression,
Second Edition. New York: John Wiley & Sons, 2000.

18. D. Collett, Modelling Binary Data, Second Edition.
Boca Raton, FL: Chapman & Hall Ltd, 2003.

19. A. Agresti, Categorical Data Analysis, Second Edition.
New York: John Wiley & Sons, 2002.

20. D. M. Bates and D. G. Watts, Nonlinear Regression Analysis
and Its Applications. New York: John Wiley & Sons, 1988.

21. J. S. Simonoff, Smoothing Methods in Statistics. New York:
Springer-Verlag Inc., 1996.

22. R. E. Bellman, Adaptive Control Processes. Princeton NJ:
Princeton University Press, 1961.

23. T. Hastie and R. Tibshirani, Generalized Additive Models. Boca
Raton, FL: Chapman & Hall Ltd, 1999.

24. P. J. Green and B. W. Silverman, Nonparametric Regression
and Generalized Linear Models: A Roughness Penalty
Approach. Boca Raton, FL: Chapman & Hall Ltd, 1994.

25. R. G. Staudte and S. J. Sheather, Robust Estimation and
Testing. New York: John Wiley & Sons, 1990.

26. R. D. Cook, D. M. Hawkins, and S. Weisberg, Comparison of
model misspecification diagnostics using residuals from least
mean of squares and least median of squares fits, Journal of the
American Statistical Association, 87: 419–424, 1992.

27. D. M. Hawkins, FIRM: Formal inference-based recursive mod-
eling, The American Statistician, 45: 155, 1991.

28. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees. Boca Raton, FL: Wads-
worth Adv. Book Prog., 1984.

29. R. Dennis Cook, Regression Graphics: Ideas for Studying
Regressions through Graphics. New York: John Wiley &
Sons, 1998.

SANFORD WEISBERG

University of Minnesota,
School of Statistics

Minneapolis, Minnesota

10 REGRESSION ANALYSIS



R

ROUNDING ERRORS

INTRODUCTION

Human beings are in constant need of making bigger and
faster computations. Over the past four centuries, many
machines were created for this purpose, and 50 years ago,
actual electronic computers were developed specifically
to perform scientific computations. The first mechanical
calculating machines were Schikard’s machine (1623,
Germany), the Pascaline (1642, France), followed by
Leibniz’s machine (1694, Germany). Babbage’s analytical
machine (1833, England) was the first attempt at a
mechanical computer, and the first mainframe computer
was the Z4 computer of K. Zuse (1938, Germany).

Until the beginning of the twentieth century, computa-
tions were only done on integer numbers. To perform
efficient real numbers computations, it was necessary to
wait until the birth of the famous BIT (BInary digiT), which
was introduced by C. Shannon (1937, USA) in his PhD
thesis. Shannon’s work imposed electronics for the building
of computers and, then, the base 2 for coding integer or real
numbers, although other bases have been tried. It has now
been established that the base 2 is the most efficient base on
computers for numerical computations, although the base
10 may still be used on pocket calculators.

For coding real numbers, one also has to determine the
kind of coding they want to use. The decimal fixed-point
notation was introduced at the end of the sixteenth cen-
tury consecutively by S. Stévin (1582, France), J. Bürgi
(1592, Switzerland), and G. Magini (1592, Italy). It
remains the notation used worldwide today. Although it
is the most natural notation for mental calculations, it is
not very efficient for automatic computations. In fact,
on this subject, one can say that nothing has changed
since J. Napier’s logarithm (1614, Scotland) and W. Ough-
tred’s slide rule (1622, England). Logarithms were intro-
duced by J. Napier to make multiplication easier (using
logarithm, multiplication becomes addition). Three cen-
turies later, the same idea was kept for the coding of real
numbers on computers and led to the floating-point repre-
sentation (see the next section).

But whatever the representation is on computer, it is a
finite representation, like for computations by hand. So, at
each operation, because the result needs to be truncated
(but is in general), an error may appear that is called the
rounding error. Scientists have been well aware of this for
four centuries. In the nineteenth century, when numerical
computations were presented in an article, they were
systematically followed by errors computations to justify
the validity of the results. In 1950, in his famous article
on eigenvalue computation with his new algorithm,
C. Lanczos devoted 30% of his paper to error computation.
Unfortunately, this use has completely disappeared since
the beginning of the 1960s because of the improvement of
computers. When eight billion floating-point operations

are performed in one second on a processor, it seems
impossible to quantify the rounding error even though
neglecting rounding errors may lead to catastrophic con-
sequences.

For instance, for real-time applications, the discretiza-
tion step may be h ¼ 10�1 second. One can compute the
absolute time by performing tabs ¼ tabs þ h at each step or
performing icount ¼ icount þ 1; tabs ¼ h � icount, where
icount is correctly initialized at the beginning of the pro-
cess. Because the real-number representation is finite on
computers, only a finite number of them can be exactly
coded. They are called floating-point numbers. The others
are approximated by a floating-point number. Unfortu-
nately, h ¼ 10�1 is not a floating-point number. Therefore,
each operation tabs¼ tabsþ h generates a small but nonzero
error. One hundred hours later, this error has grown to
about 0.34 second. It really happened during the first Gulf
war (1991) in the control programs of Patriot missiles,
which were to intercept Scud missiles (1). At 1600 km/h,
0.34 second corresponds to approximatively 500 meters, the
interception failed and 28 people were killed. With the
second formulation, whatever the absolute time is, if no
overflow occurs for icount, then the relative rounding error
remains below 10�15 using the IEEE double precision
arithmetic. A good knowledge of the floating-point arith-
metic should be required of all computer scientists (2).

The second section is devoted to the description of
the computer arithmetic. The third section presents
approaches to study: to bound or to estimate rounding
errors. The last section describes methods to improve the
accuracy of computed results. A goal of this paper is to
answer the question in numerical computing, ‘‘What is the
computing error due to floating-point arithmetic on the
results produced by a program?’’

COMPUTER ARITHMETIC

Representation of Numbers

In a numeral system, numbers are represented by a
sequence of symbols. The number of distinct symbols that
can be used is called the radix (or the base). For instance, in
the decimal system, where the radix is 10, the 10 symbols
used are the digits 0,1, . . . ,9. In the binary system, which is
used on most computers, the radix is 2; hence, numbers are
represented with sequences of 0s and 1s.

Several formats exist to represent numbers on a com-
puter. The representation of integer numbers differs from
the one of real numbers. Using a radix b, if unsigned
integers are encoded on n digits, they can range from 0
to bn� 1. Hence, an unsigned integer X is represented by a
sequence an�1an�2 . . . a1a0 with

X ¼
Xn�1

i¼0

aib
i and ai 2f0; . . . ; b� 1g:

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



With a radix 2 representation, signed integers are
usually represented using two’s complement. With this
rule, signed integers range from �bn�1 to bn�1�1 and
the sequence an�1an�2 . . . a1a0 with ai 2f0; . . . ; b� 1g
represents the number

X ¼ �an�1bn�1 þ
Xn�2

i¼0

aib
i:

The opposite of a number in two’s complement format
can be obtained by inverting each bit and adding 1.

In numerical computations, most real numbers are not
exactly represented because only a finite number of digits
can be saved in memory. Two representations exist for real
numbers:

� the fixed-point format, available on most embedded
systems

� the floating-point format, available on classical com-
puters

In fixed-point arithmetic, a number is represented with
a fixed number of digits before and after the radix point.
Using a radix b, a number X that is encoded on m digits for
its magnitude (e.g., its integer part) and f digits for its
fractional part is represented by am�1 . . . a0 � a�1 . . . a� f ,
with

X ¼
Xm�1

i¼� f

aib
i and ai 2f0; . . . ; b� 1g:

If b ¼ 2, then unsigned values range from 0 to 2m � 2�f

and signed values, which are usually represented with the
two’s complement format, range from�2m�1 to 2m�1� 2�f.

In a floating-point arithmetic using the radix b, a num-
ber X is represented by:

� its sign eX which is encoded on one digit that equals 0 if
eX ¼ 1 and 1 if eX ¼ �1,

� its exponent EX, a k digit integer,

� its mantissa MX, encoded on p digits.

Therefore, X ¼ eXMXbEX with

MX ¼
Xp�1

i¼0

aib
�i and ai 2f0; . . . ; b� 1g:

The mantissa MX can be written as MX ¼ a0 : a1 . . . ap�1.
Floating-point numbers are usually normalized. In this
case, a0 6¼ 0, MX 2 [1, b) and the number zero has a special
representation. Normalization presents several advan-
tages, such as the uniqueness of the representation (there
is exactly one way to write a number in such a form) and the

easiness of comparisons (the signs, exponents, and man-
tissas of two normalized numbers can be tested separately).

The IEEE 754 Standard

The poor definition of the floating-point arithmetic on
most computers created the need for a unified standard
in floating-point numbers. Indeed, the bad quality of
arithmetic operators could heavily affect some results.
Furthermore, simulation programs could provide differ-
ent results from one computer to another, because of
different floating-point representations. Different values
could be used for the radix, the length of the exponent,
the length of the mantissa, and so on. So, in 1985, the IEEE
754 standard (3) was elaborated to define floating-point
formats and rounding modes. It specifies two basic for-
mats, both using the radix 2.

� With the single precision format, numbers are stored
on 32 bits: 1 for the sign, 8 for the exponent, and 23 for
the mantissa.

� With the double precision format, numbers are stored
on 64 bits: 1 for the sign, 11 for the exponent, and 52 for
the mantissa.

Extended floating-point formats also exist; the standard
does not specify their exact size but gives a minimum
number of bits for their storage.

Because of the normalization, the first bit in the man-
tissa must be 1. As this implicit bit is not stored, the
precision of the mantissa is actually 24 bits in single pre-
cision and 53 bits in double precision.

The exponent E is a k digit signed integer. Let us denote
its bounds by Emin and Emax. The exponent that is actually
stored is a biased exponent ED such that ED¼EþD,D being
the bias. Table 1 specifies how the exponent is encoded.

The number zero is encoded by setting to 0 all the bits of
the (biased) exponent and all the bits of the mantissa. Two
representations actually exist for zero:þ0 if the sign bit is 0,
and�0 if the sign bit is 1. This distinction is consistent with
the existence of two infinities. Indeed 1/(þ0) ¼ þ1 and
l/(�0)¼�1. These two infinities are encoded by setting to 1
all the bits of the (biased) exponent and to 0 all the bits from
the mantissa. The corresponding nonbiased exponent is
therefore Emax þ 1.

NaN (Not a Number) is a special value that represents
the result of an invalid operation such as 0/0,

ffiffiffiffiffiffiffi
�1
p

, or 0�1.
NaN is encoded by setting all the bits of the (biased)
exponent to 1 and the fractional part of the mantissa to
any nonzero value.

Denormalized numbers (also called subnormal num-
bers) represent values close to zero. Without them, as
the integer part of the mantissa is implicitly set to 1, there
would be no representable number between 0 and 2Emin but

Table 1. Exponent Coding in Single and Double Precision

precision length k bias D

nonbiased biased

Emin Emax EminþD EmaxþD

single 8 127 �126 127 1 254
double 11 1023 �1022 1023 1 2046

2 ROUNDING ERRORS



2 p�1 representable numbers between 2Emin and 2E
minþ1 .

Denormalized numbers have a biased exponent set to 0.
The corresponding values are:

X ¼ eXMX2Emin with eX ¼ �1;

MX ¼
Xp�1

i¼1

ai2
�i

and

ai 2f0; 1g:

The mantissa MX can be written as MX ¼ 0:a1 . . . ap�1.
Therefore, the lowest positive denormalized num-
ber is u ¼ 2Eminþ1�p. Moreover, denormalized numbers
and gradual underflow imply the nice equivalence
a ¼ b,a� b ¼ 0.

Let us denote by F the set of all floating-point numbers,
(i.e., the set of all machine representable numbers). This
set, which depends on the chosen precision, is bounded and
discrete. Let us denote its bounds by Xmin and Xmax. Let x be
a real number that is not machine representable. If
x2 ðXmin;XmaxÞ, then fX�; Xþg� F2 exists such as
X�< x<Xþ and ðX�; XþÞ\ F ¼ ;. A rounding mode is a
rule that, from x, provides X� or Xþ. This rounding occurs at
each assignment and at each arithmetic operation. The
IEEE 754 standard imposes a correct rounding for all
arithmetic operations (þ, �, �, /) and also for the square
root. The result must be the same as the one obtained with
infinite precision and then rounded. The IEEE 754 stan-
dard defines four rounding modes:

� rounding towardþ1 (or upward rounding), x is repre-
sented by Xþ,

� rounding toward �1 (or downward rounding), x is
represented by X�,

� rounding toward 0, if x is negative, then it is repre-
sented by Xþ, if x is positive, then it is represented by
X�,

� rounding to the nearest, x is represented by its nearest
machine number. If x is at the same distance of X� and
Xþ, then it is represented by the machine number that
has a mantissa ending with a zero. With this rule,
rounding is said to be tie to even.

Let us denote by X the number obtained by applying one
of these rounding modes to x. By definition, an overflow
occurs if jXj>maxfjY j : Y 2 Fg and an underflow occurs if
0< jXj<minfjY j : 0 6¼Y 2 Fg. Gradual underflow denotes
the situation in which a number is not representable as
a normalized number, but still as a denormalized one.

Rounding Error Formalization

Notion of Exact Significant Digits. To quantify the accu-
racy of a computed result correctly, the notion of exact
significant digits must be formalized. Let R be a computed

result and r the corresponding exact result. The number
CR,r of exact significant decimal digits of R is defined as the
number of significant digits that are in common with r:

CR;r ¼ log10
Rþ r

2ðR� rÞ

����
���� ð1Þ

This mathematical definition is in accordance with the
intuitive idea of decimal significant digits in common
between two numbers. Indeed Equation (1) is equivalent to

jR� rj ¼ Rþ r

2

����
����10�CR;r ð2Þ

If CR,r ¼ 3, then the relative error between R and r is of
the order of 10�3. R and r have therefore three common
decimal digits.

However, the value of CR,r may seem surprising if one
considers the decimal notations of R and r. For example, if
R ¼ 2.4599976 and r ¼ 2.4600012, then CR,r � 5.8. The
difference caused by the sequences of ‘‘0’’ or ‘‘9’’ is illusive.
The significant decimal digits of R and r are really different
from the sixth position.

Rounding Error that Occurs at Each Operation. A forma-
lization of rounding errors generated by assignments and
arithmetic operations is proposed below. Let X be the
representation of a real number x in a floating-point arith-
metic respecting the IEEE 754 standard. This floating-
point representation of X may be written as X ¼ fl(x).
Adopting the same notations as in Equation (1)

X ¼ eXMX2EX ð3Þ
and

X ¼ x� eX2EX�paX ð4Þ

where aX represents the normalized rounding error.

� with rounding to the nearest, aX 2 ½�0:5; 0:5Þ
� with rounding toward zero, aX 2 ½0; 1Þ
� with rounding toward þ1 or �1, aX 2 ½�1; 1Þ

Equivalent models for X are given below. The machine
epsilon is the distance e from 1.0 to the next larger floating-
point number. Clearly, e21�p, p being the length of the
mantissa that includes the implicit bit. The relative error
on X is no larger than the unit round-off u:

X ¼ xð1þ dÞwith jdj 	 u ð5Þ

where u ¼ e/2 with rounding to the nearest and u ¼ e with
the other rounding modes. The model associated with
Equation (5) ignores the possibility of underflow. To take
underflow into account, one must modify it to

X ¼ xð1þ dÞ þ Zwith jdj 	 u ð6Þ

ROUNDING ERRORS 3



and jZj 	 u=2 with rounding to the nearest and jZj 	 u with
the other rounding modes, u being the lowest positive
denormalized number.

Let X1 (respectively X2) be the floating-point represen-
tation of a real number x1 (respectively x2)

Xi ¼ xi � ei2
Ei�pai for i ¼ 1; 2 ð7Þ

The errors caused by arithmetic operations that have X1

and X2 as operands are given below. For each operation, let
us denote by E3 and e3 the exponent and the sign of the
computed result. a3 represents the rounding error per-
formed on the result. Let us denote by 
, �, �, � the
arithmetic operators on a computer.

X1 
 X2 ¼ x1 þ x2 � e12E1�pa1 � e22E2�pa2

� e32E3�pa3 ð8Þ

Similarly

X1 � X2 ¼ x1 � x2 � e12E1�pa1 þ e22E2�pa2

� e32E3�pa3 ð9Þ

X1 � X2 ¼ x1x2 � e12E1�pa1x2 � e22E2�pa2x1

þ e1e22E1þE2�2 pa1a2 � e32E3�pa3 ð10Þ

By neglecting the fourth term, which is of the second order
in 2�p, one obtains

X1 � X2 ¼ x1x2 � e12E1�pa1x2 � e22E2�pa2x1

� e32E3�pa3 ð11Þ

By neglecting terms of an order greater than or equal to
2�2p, one obtains

X1 � X2 ¼
x1

x2
� e12E1�p a1

x2
þ e22E2�pa2

x1

x2
2

� e32E3�pa3 ð12Þ

In the case of an addition with operands of the same sign,

E3 ¼ maxðE1;E2Þ þ dwith d ¼ 0 or d ¼ 1

The order of magnitude of the two terms that result from
the rounding errors on X1 and X2 is at most 2E3�p: The
relative error on X1 
 X2 remains of the order of 2�p. This
operation is therefore relatively stable: It does not induce
any brutal loss of accuracy.

The same conclusions are valid in the case of a multi-
plication, because

E3 ¼ E1 þ E2 þ d; with d ¼ 0 or d ¼ �1

and in the case of a division, because

E3 ¼ E1 � E2 þ d; with d ¼ 0 or d ¼ 1

In the case of a subtraction with operands of the same
sign, E3¼max (E1, E2)� k. If X1 and X2 are very close, then
k may be large. The order of magnitude of the absolute error
remains 2maxðE1;E2Þ� p, but the order of magnitude of the
relative error is 2maxðE1;E2Þ� p�E3 ¼ 2�pþk. In one operation,
k exact significant bits have been lost: It is the so-called
catastrophic cancellation.

Rounding Error Propagation. A numerical program is a
sequence of arithmetic operations. The result R provided by
a program after n operations or assignments can be mod-
eled to the first order in 2�p as:

R� rþ
Xn

i¼1

giðdÞ2�pai ð13Þ

where r is the exact result, p is the number of bits in the
mantissa, ai are independent uniformly distributed ran-
dom variables on [�1, 1] and gi(d) are coefficients depend-
ing exclusively on the data and on the code. For instance, in

Equation (12), gi(d) are 1
x2

and x1

x2
2

.

The number CR,r of exact significant bits of the computed
result R is

CR;r ¼ log2
Rþ r

2ðR� rÞ

����
���� ð14Þ

CR;r� � log2
R� r

r
¼ p� log2

Xn

i¼1

giðdÞ
ai

x

�����
�����

�����
����� ð15Þ

The last term in Equation (15) represents the loss of
accuracy in the computation of R. This term is independent
of p. Therefore, assuming that the model at the first order
established in Equation (13) is valid, the loss of accuracy in
a computation is independent of the precision used.

Impact of Rounding Errors on Numerical Programs

With floating-point arithmetic, rounding errors occur in
numerical programs and lead to a loss of accuracy, which is
difficult to estimate. Another consequence of floating-point
arithmetic is the loss of algebraic properties. The floating-
point addition and the floating-point multiplication are
commutative, but not associative. Therefore the same for-
mula may generate different results depending on the order
in which arithmetic operations are executed. For instance,
in IEEE single precision arithmetic with rounding to the
nearest,

ð�1020 
 1020Þ 
 1 ¼ 1 ð16Þ

but

�1020 
 ð1020 
 1Þ ¼ 0 ð17Þ

Equation (17) causes a so-called absorption. Indeed, an
absorption may occur during the addition of numbers with
very different orders of magnitude: The smallest number
may be lost.

4 ROUNDING ERRORS



Furthermore, with floating-point arithmetic, the multi-
plication is not distributive with respect to the addition. Let
A, B, and C be floating-point numbers, A� (B
 C) may not
be equal to (A � B) 
 (A � C). For instance, in IEEE single
precision arithmetic with rounding to the nearest, if A, B
and C are respectively assigned to 3.3333333, 12345679
and 1.2345678, for A � (B 
 C) and (A � B) 
 (A � C), one
obtains 41152264 and 41152268, respectively.

Impact on Direct Methods. The particularity of a direct
method is to provide the solution to a problem in a finite
number of steps. In infinite precision arithmetic, a direct
method would compute the exact result. In finite precision
arithmetic, rounding error propagation induces a loss of
accuracy and may cause problems in branching statements.
The general form of a branching statement in a program is

IF condition THEN sequence 1 ELSE sequence 2.
If the condition is satisfied, then a sequence of instruc-

tions is executed, otherwise another sequence is performed.
Such a condition can be for instance A  B. In the case
when A and B are intermediate results already affected by
rounding errors, the difference between A and B may have
no exact significant digit. The choice of the sequence that is
executed may depend on rounding error propagation. The
sequence chosen may be the wrong one: It may be different
from the one that would have been chosen in exact arith-
metic.

For instance, depending on the value of the discrimi-
nant, a second degree polynomial has one (double) real root,
two real roots, or two conjugate complex roots. The dis-
criminant and the roots of the polynomial 0:3x2 � 2:1xþ
3:675 obtained using IEEE single precision arithmetic with
rounding to the nearest are D ¼ �5.185604E-07, x ¼
3.4999998�1.2001855E03 i. Two conjugate complex roots
are computed. But the exact values are D ¼ 0, x ¼ 3.5.
The polynomial actually has one double real root. In
floating-point arithmetic, rounding errors occur because
of both assignments and arithmetic operations. Indeed
the coefficients of the polynomial are not floating-point
numbers. Therefore, the computed discriminant has no
exact significant digit, and the wrong sequence of instruc-
tions is executed.

Impact on Iterative Methods. The result of an iterative
method is defined as the limit L of a first-order recurrent
sequence:

L ¼ Lim
n!1

Un with Unþ1 ¼ FðUnÞ Rm!F Rm ð18Þ

Because of rounding error propagation, the same pro-
blems as in a direct method may occur. But another diffi-
culty is caused by the loss of the notion of limit on a
computer. Computations are performed until a stopping
criterion is satisfied. Such a stopping criterion may involve
the absolute error:

kUn �Un�1k 	 e ð19Þ

or the relative error:

kUn �Un�1k 	 e kUn�1k ð20Þ

It may be difficult to choose a suitable value for e. If e is
too high, then computations stop too early and the result is
very approximative. If e is too low, useless iterations are
performed without improving the accuracy of the result,
because of rounding errors. In this case, the stopping
criterion may never be satisfied because the chosen accu-
racy is illusive. The impact of e on the quality of the result is
shown in the numerical experiment described below.

Newton’s method is used to compute a root of

f ðxÞ ¼ x4 � 1002x3 þ 252001x2 � 501000xþ 250000 ð21Þ

The following sequence is computed:

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

with x0 ¼ 1100 ð22Þ

The exact limit is L ¼ 500, which is a double root of f. The
stopping criterion is jxn � xn�1j 	 ejxn�1j, and the maximum
number of iterations is set to 1000. Table 2 shows for several
values of e the last value of n and the error jxn � Lj computed
using IEEE double precision arithmetic with rounding to
the nearest.

It is noticeable that the optimal order of magnitude for e
is 10�11. The stopping criterion can not be satisfied if
e 	 10�12: The maximum number of iterations is reached.
Furthermore, the error is slightly higher than for e¼ 10�11.

Impact on Approximation Methods. These methods pro-
vide an approximation of a limit L ¼ limh!0LðhÞ. This
approximation is affected by a global error Eg(h), which
consists in a truncation error Et(h), inherent to the method,
and a rounding error Er(h). If the step h decreases, then the
truncation error Et(h) also decreases, but the rounding
error Er(h) usually increases, as shown in Fig. 1. It may
therefore seem difficult to choose the optimal step hopt. The
rounding error should be evaluated, because the global
error is minimal if the truncation error and the rounding
error have the same order of magnitude.

The numerical experiment described below (4) shows the
impact of the step h on the quality of the approximation.
The second derivative at x ¼ 1 of the following function

f ðxÞ ¼ 4970x� 4923

4970x2 � 9799xþ 4830
ð23Þ

Table 2. Number of Iterations and Error Obtained Using
Newton’s Method in Double Precision

e n jxn � Lj

10�7 26 3.368976E-05
10�8 29 4.211986E-06
10�9 33 2.525668E-07
10�10 35 1.405326E-07
10�11 127 1.273870E-07
10�12 1000 1.573727E-07
10�13 1000 1.573727E-07

ROUNDING ERRORS 5



is approximated by

LðhÞ ¼ f ðx� hÞ � 2 f ðxÞ þ f ðxþ hÞ
h2

ð24Þ

The exact result is f 0 0(1) = 94. Table 3 shows for several
steps h the result L(h), and the absolute error jLðhÞ � Lj
computed using IEEE double precision arithmetic with
rounding to the nearest.

It is noticeable that the optimal order of magnitude for h
is 10�6. If h is too low, then the rounding error prevails and
invalidates the computed result.

METHODS FOR ROUNDING ERROR ANALYSIS

In this section, different methods of analyzing rounding
errors are reviewed.

Forward/Backward Analysis

This subsection is heavily inspired from Refs. 5 and 6. Other
good references are Refs. 7–9.

Let X be an approximation to a real number x. The two
common measures of the accuracy of X are its absolute error

EaðXÞ ¼ jx� Xj ð25Þ

and its relative error

ErðXÞ ¼
jx� Xj
jxj ð26Þ

(which is undefined if x¼ 0). When x and X are vectors, the
relative error is usually defined with a norm as kx� Xk=kxk.
This is a normwise relative error. A more widely used
relative error is the componentwise relative error defined by

maxi
jxi � Xij
jxij

:

It makes it possible to put the individual relative errors
on an equal footing.

Well-Posed Problems. Let us consider the following
mathematical problem (P)

ðPÞ : given y; find x such that FðxÞ ¼ y

where F is a continuous mapping between two linear
spaces (in general Rn or Cn). One will say that the problem
(P) is well posed in the sense of Hadamard if the solution
x ¼ F�1ðyÞ exists, is unique and F�1 is continuous in the
neighborhood of y. If it is not the case, then one says that
the problem is ill posed. An example of ill-posed problem is
the solution of a linear system Ax¼b, where A is singular. It
is difficult to deal numerically with ill-posed problems (this
is generally done via regularization techniques). That is
why we will focus only on well-posed problems in the sequel.

Conditioning. Given a well-posed problem (P), one wants
now to know how to measure the difficulty of solving this
problem. This measurement will be done via the notion of
condition number. Roughly speaking, the condition num-
ber measures the sensitivity of the solution to perturbation
in the data. Because the problem (P) is well posed, one can
write it as x ¼ G(y) with G ¼ F�l.

The input space (data) and the output space (result) are
denoted byD andR, respectively the norms on these spaces
will be denoted k � kD and k � kR. Given e> 0 and let PðeÞ�D
be a set of perturbation Dy of the data y that satisfies
kDykD 	 e, the perturbed problem associated with problem
(P) is defined by

Find Dx2R such that Fðxþ DxÞ ¼ yþ Dy for a given Dy2PðeÞ

x and y are assumed to be nonzero. The condition number of
the problem (P) in the data y is defined by

condðP; yÞ :¼ lim
e!0

sup
Dy2PðeÞ;Dy 6¼ 0

kDxkR
kDykD

� �
ð27Þ

Example 3.1. (summation). Let us consider the problem
of computing the sum

x ¼
Xn

i¼1

yi

E

E

hh opt0

E r

t

g

(h)

(h)

(h)

Figure 1. Evolution of the rounding error Er(h), the truncation
error Et(h) and the global error Eg(h) with respect to the step h.

Table 3. Second Order Approximation of f 0 0(1) ¼ 94
Computed in Double Precision

h L(h) jLðhÞ � Lj

10�3 �2.250198Eþ03 2.344198Eþ03
10�4 7.078819Eþ01 2.321181Eþ01
10�5 9.376629Eþ01 2.337145E�01
4.10�6 9.397453Eþ01 2.546980E�02
3.10�6 9.397742Eþ01 2.257732E�02
10�6 9.418052Eþ01 1.805210E�01
10�7 7.607526Eþ01 1.792474Eþ01
10�8 1.720360Eþ03 1.626360Eþ03
10�9 �1.700411Eþ05 1.701351Eþ05
10�10 4.111295Eþ05 4.110355Eþ05

6 ROUNDING ERRORS



assuming that yi 6¼0 for all i. One will take into account the
perturbation of the input data that are the coefficients yi. Let
Dy ¼ ðDy1; . . . ;DynÞ be the perturbation on y ¼ ðy1; . . . ; ynÞ.
It follows that Dx ¼

Pn
i¼1 Dyi. Let us endowD ¼ Rn with the

relative norm kDykD ¼ maxi¼1;...;njDyij=jyij and R ¼ R with
the relative norm kDxkR ¼ jDxj=jxj. Because

jDxj ¼ j
Xn

i¼1

Dyij 	 kDykD
Xn

i¼1

jyij;

one has1

kDxkR
kDykD

	
Pn

i¼1 jyij
j
Pn

i¼1 yij
ð28Þ

This bound is reached for the perturbation Dy such that
Dyi=yi ¼ signðyiÞkDykD where sign is the sign of a real
number. As a consequence,

cond
Xn

i¼1

yi

 !
¼
Pn

i¼1 jyij
j
Pn

i¼1 yij
ð29Þ

Now one has to interpret this condition number. A
problem is considered as ill conditioned if it has a large
condition number. Otherwise, it is well conditioned. It is
difficult to give a precise frontier between well conditioned
and ill-conditioned problems. This statement will be clar-
ified in a later section thanks to the rule of thumb. The
larger the condition number is, the more a small perturba-
tion on the data can imply a greater error on the result.
Nevertheless, the condition number measures the worst
case implied by a small perturbation. As a consequence, it is
possible for an ill-conditioned problem that a small pertur-
bation on the data also implies a small perturbation on the
result. Sometimes, such a behavior is even typical.

Remark 1. It is important to note that the condition
number is independent of the algorithm used to solve the
problem. It is only a characteristic of the problem.

Stability of an Algorithm. Problems are generally solved
using an algorithm, which is a set of operations and tests
that one can consider as the function G defined above
given the solution of our problem. Because of the rounding
errors, the algorithm is not the function G but rather
a function Ĝ. Therefore, the algorithm does not compute
x ¼ G(y) but x̂ ¼ ĜðyÞ.

The forward analysis tries to study the execution of the
algorithm Ĝ on the data y. Following the propagation of the
rounding errors in each intermediate variables, the for-
ward analysis tries to estimate or to bound the difference
between x and x̂. This difference between the exact solution
x and the computed solution x̂ is called the forward error.

It is easy to recognize that it is pretty difficult to follow
the propagation of all the intermediate rounding errors.
The backward analysis makes it possible to avoid this
problem by working with the function G itself. The idea
is to seek for a problem that is actually solved and to check if
this problem is ‘‘close to’’ the initial one. Basically, one tries
to put the error on the result as an error on the data. More
theoretically, one seeks forDy such that x̂ ¼ Gðyþ DyÞ.Dy is
said to be the backward error associated with x̂. A backward
error measures the distance between the problem that is
solved and the initial problem. As x̂ and G are known, it is
often possible to obtain a good upper bound for Dy (gen-
erally, it is easier than for the forward error). Figure 2 sums
up the principle of the forward and backward analysis.

Sometimes, it is not possible to have x̂ ¼ Gðyþ DyÞ for
some Dy but it is often possible to get Dx and Dy such that
x̂þ Dx ¼ Gðyþ DyÞ. Such a relation is called a mixed
forward-backward error.

The stability of an algorithm describes the influence of
the computation in finite precision on the quality of the
result. The backward error associated with x̂ ¼ ĜðyÞ is the
scalar Zðx̂Þ defined by, when it exists,

Zðx̂Þ ¼ min
Dy2D

fkDykD : x̂ ¼ Gðyþ DyÞg ð30Þ

If it does not exist, then Zðx̂Þ is set to þ1. An algorithm is
said to be backward-stable for the problem (P) if the com-
puted solution x̂ has a ‘‘small’’ backward error Zðx̂Þ. In
general, in finite precision, ‘‘small’’ means of the order of
the rounding unit u.

Example 3.2. (summation). The addition is supposed to
satisfy the following property:

ẑ ¼ zð1þ dÞ ¼ ðaþ bÞð1þ dÞ with jdj 	 u ð31Þ

It should be noticed that this assumption is satisfied by the
IEEE arithmetic. The following algorithm to compute the
sum

P
yi will be used.

Algorithm 3.1. Computation of the sum of floating-point
numbers

function res ¼ Sum(y)
s1 ¼ y1

for i ¼ 2 : n
si ¼ si�1 
 yi

res ¼ sn

Thanks to Equation (31), one can write

si ¼ ðsi�1 þ yiÞð1þ diÞ with jdij 	 u ð32Þ

x̂ = G(y)

x = G(y)

y + ∆y

y

G

G

Ĝ

Input space Output space R

Backward error
Forward error

ˆ

D

Figure 2. Forward and backward error for the computation of
x ¼ G(y).

1The Cauchy-Schwarz inequality j
Xn

i¼1

xiyij 	 max
i¼1;...;n

jxij �
Xn

i¼1

jyij is
used.

ROUNDING ERRORS 7



For convenience, 1þ y j ¼
Q j

i¼1ð1þ eiÞ is written, for jeij 	
u and j2N. Iterating the previous equation yields

res ¼ y1ð1þ yn�1Þ þ y2ð1þ yn�1Þ þ y3ð1þ yn�2Þ

þ � � � þ yn�1ð1þ y2Þ þ ynð1þ y1Þ ð33Þ

One can interpret the computed sum as the exact sum of the
vector z with zi ¼ yið1þ ynþ1�iÞ for i ¼ 2 : n and
z1 ¼ y1ð1þ yn�1Þ.

As jeij 	 u for all i and assuming nu< 1, it can be proved
that jyij 	 iu=ð1� iuÞ for all i. Consequently, one can con-
clude that the backward error satisfies

Zðx̂Þ ¼ jyn�1j9nu ð34Þ

Because the backward error is of the order of u, one con-
cludes that the classic summation algorithm is backward-
stable.

Accuracy of the Solution. How is the accuracy of the
computed solution estimated? The accuracy of the com-
puted solution actually depends on the condition number
of the problem and on the stability of the algorithm used.
The condition number measures the effect of the perturba-
tion of the data on the result. The backward error simulates
the errors introduced by the algorithm as errors on the
data. As a consequence, at the first order, one has the
following rule of thumb:

forward error 9 condition number � backward error ð35Þ

If the algorithm is backward-stable (that is to say the
backward error is of the order of the rounding unit u),
then the rule of thumb can be written as follows

forward error 9 condition number � u ð36Þ

In general, the condition number is hard to compute (as
hard as the problem itself). As a consequence, some esti-
mators make it possible to compute an approximation of the
condition number with a reasonable complexity.

The rule of thumb makes it possible to be more precise
about what were called ill-conditioned and well-conditioned
problems. A problem will be said to be ill conditioned if
the condition number is greater than 1/u. It means that the
relative forward error is greater than 1 just saying that one
has no accuracy at all for the computed solution.

In fact, in some cases, the rule of thumb can be proved.
For the summation, if one denotes by ŝ the computed sum of
the vector yi, 1 	 i 	 n and

s ¼
Xn

i¼1

yi

the real sum, then Equation (33) implies

jŝ� sj
jsj 	 gn�1 cond

Xn

i¼1

yi

 !
ð37Þ

with gn defined by

gn:¼ nu

1� nu
for n2N ð38Þ

Because gn�1�ðn� 1Þu, it is almost the rule of thumb with
just a small factor n�1 before u.

The LAPACK Library. The LAPACK library (10) is a
collection of subroutines in Fortran 77 designed to solve
major problems in linear algebra: linear systems, least
square systems, eigenvalues, and singular values problems.

One of the most important advantages of LAPACK is
that it provides error bounds for all the computed quan-
tities. These error bounds are not rigorous but are mostly
reliable. To do this, LAPACK uses the principles of back-
ward analysis. In general, LAPACK provides both compo-
nentwise and normwise relative error bounds using the
rule of thumb established in Equation (35).

In fact, the major part of the algorithms implemented in
LAPACK are backward stable, which means that the rule of
thumb [Equation (36)] is satisfied. As the condition number
is generally very hard to compute, LAPACK uses estima-
tors. It may happen that the estimator is far from the right
condition number. In fact, the estimation can arbitrarily be
far from the true condition number. The error bounds in
LAPACK are only qualitative markers of the accuracy of
the computed results.

Linear algebra problems are central in current scientific
computing. Getting some good error bounds is therefore
very important and is still a challenge.

Interval Arithmetic

Interval arithmetic (11, 12) is not defined on real numbers
but on closed bounded intervals. The result of an arithmetic
operation between two intervals, X ¼ ½x; x� and Y ¼ ½y; y�,
contains all values that can be obtained by performing this
operation on elements from each interval. The arithmetic
operations are defined below.

X þ Y ¼ ½xþ y; xþ y� ð39Þ

X � Y ¼ ½x� y; x� y� ð40Þ

X � Y ¼ ½minðx� y; x� y; x� y; x� yÞ
maxðx� y; x� y; x� y; x� yÞ� ð41Þ

X2 ¼ ½minðx2; x2Þ;maxðx2; x2Þ� if 0 =2 ½x; x�
½0;maxðx2; x2Þ� otherwise

ð42Þ

1=Y ¼ ½minð1=y; 1=yÞ;maxð1=y; 1=yÞ� if 0 =2 ½y; y�
ð43Þ

X=Y ¼ ½x; x� � ð1=½y; y�Þ if 0 =2 ½y; y� ð44Þ

Arithmetic operations can also be applied to interval
vectors and interval matrices by performing scalar interval
operations componentwise.

8 ROUNDING ERRORS



An interval extension of a function f must provide all
values that can be obtained by applying the function to any
element of the interval argument X:

8 x2X; f ðxÞ 2 f ðXÞ ð45Þ

For instance, exp½x; x� ¼ ½exp x; exp x� and sin½p=6; 2p=3� ¼
½1=2; 1�.

The interval obtained may depend on the formula cho-
sen for mathematically equivalent expressions. For
instance, let f1ðxÞ ¼ x2 � xþ 1. f1ð½�2; 1�Þ ¼ ½�2; 7�. Let
f2ðxÞ ¼ ðx� 1=2Þ2 þ 3=4. The function f2 is mathematically
equivalent to f1, but f2ð½�2; 1�Þ ¼ ½3=4 ; 7� 6¼ f1ð½�2; 1�Þ. One
can notice that f2ð½�2; 1�Þ � f1ð½�2; 1�Þ. Indeed a power set
evaluation is always contained in the intervals that result
from other mathematically equivalent formulas.

Interval arithmetic enables one to control rounding
errors automatically. On a computer, a real value that
is not machine representable can be approximated to a
floating-point number. It can also be enclosed by two
floating-point numbers. Real numbers can therefore
be replaced by intervals with machine-representable
bounds. An interval operation can be performed using
directed rounding modes, in such a way that the rounding
error is taken into account and the exact result is neces-
sarily contained in the computed interval. For instance,
the computed results, with guaranteed bounds, of the
addition and the subtraction between two intervals X ¼
½x; x� and Y ¼ ½y; y� are

X þ Y ¼ ½rðxþ yÞ;Dðxþ yÞ� � fxþ yjx2X; y2Yg
ð46Þ

X � Y ¼ ½rðx� yÞ;Dðx� yÞ� � fx� yjx2X; y2Yg
ð47Þ

where r (respectively D) denotes the downward (respec-
tively upward) rounding mode.

Interval arithmetic has been implemented in several
libraries or softwares. For instance, a Cþþ class library,
C-XSC,2andaMatlabtoolbox,INTLAB,3arefreelyavailable.

The main advantage of interval arithmetic is its relia-
bility. But the intervals obtained may be too large. The
intervals width regularly increases with respect to the
intervals that would have been obtained in exact arith-
metic. With interval arithmetic, rounding error compensa-
tion is not taken into account.

The overestimation of the error can be caused by the loss
of variable dependency. In interval arithmetic, several
occurrences of the same variable are considered as different

variables. For instance, let X ¼ [1,2],

8 x2X; x� x ¼ 0 ð48Þ
but

X � X ¼ ½�1; 1� ð49Þ

Another source of overestimation is the ‘‘wrapping
effect’’ because of the enclosure of a noninterval shape
range into an interval. For instance, the image of the square
½0;

ffiffiffi
2
p
� � ½0;

ffiffiffi
2
p
� by the function

f ðx; yÞ ¼
ffiffiffi
2
p

2
ðxþ y; y� xÞ ð50Þ

is the rotated square S1 with corners (0, 0), (1, �1), (2, 0),
(1, 1). The square S2 provided by interval arithmetic opera-
tions is: f ð½0;

ffiffiffi
2
p
�; ½0;

ffiffiffi
2
p
�Þ ¼ ð½0; 2�; ½�1; 1�Þ. The area

obtained with interval arithmetic is twice the one of the
rotated square S1.

As the classic numerical algorithms can lead to over-
pessimistic results in interval arithmetic, specific algo-
rithms, suited for interval arithmetic, have been proposed.
Table 4 presents the results obtained for the determinant of
Hilbert matrix H of dimension 8 defined by

Hi j ¼
1

iþ j� 1
for i ¼ 1; . . . ; 8 and j ¼ 1; . . . 8 ð51Þ

computed:

� using the Gaussian elimination in IEEE double pre-
cision arithmetic with rounding to the nearest

� using the Gaussian elimination in interval arithmetic

� using a specific interval algorithm for the inclusion
of the determinant of a matrix, which is described in
Ref. 8, p. 214.

Results obtained in interval arithmetic have been com-
puted using the INTLAB toolbox.

The exact value of the determinant is

detðHÞ ¼
Y7

k¼0

ðk!Þ3

ð8þ kÞ! ð52Þ

Its 15 first exact significant digits are:

detðHÞ ¼ 2:73705011379151E� 33 ð53Þ

The number of exact significant decimal digits of each
computed result has been reported in Table 4.

One can verify the main feature of interval arithmetic:
The exact value of the determinant is enclosed in the com-
puted intervals. Table 4 points out the overestimation of the

Table 4. Determinant of the Hilbert Matrix H of Dimension 8

det(H) #exact digits

IEEE double precision 2.73705030017821E-33 7.17
interval Gaussian elimination [2.717163073713011E-33, 2.756937028322111E-33] 1.84
interval specific algorithm [2.737038183754026E-33, 2.737061910503125E-33] 5.06

2http://www.xsc.de.
3http://www.ti3.tu-harburg.de/rump/intlab.

ROUNDING ERRORS 9



error with naive implementations of classic numerical algo-
rithms in interval arithmetic. The algorithm for the inclu-
sion of a determinant that is specific to interval arithmetic
leads to a much thinner interval. Such interval algorithms
exist in most areas of numerical analysis. Interval analysis
can be used not only for reliable numerical simulations but
also for computer assisted proofs (cf., for example, Ref. 8).

Probabilistic Approach

Here, a method for estimating rounding errors is presented
without taking into account the model errors or the dis-
cretization errors.

Let us go back to the question ‘‘What is the computing
error due to floating-point arithmetic on the results pro-
duced by a program?’’ From the physical point of view, in
large numerical simulations, the final rounding error is the
result of billions and billions of elementary rounding errors.
In the general case, it is impossible to describe each ele-
mentary error carefully and, then to compute the right
value of the final rounding error. It is usual, in physics,
when a deterministic approach is not possible, to apply a
probabilistic model. Of course, one loses the exact descrip-
tion of the phenomena, but one may hope to get some global
information like order of magnitude, frequency, and so on.
It is exactly what is hoped for when using a probabilistic
model of rounding errors.

For the mathematical model, remember the formula at
the first order [Equation (13)]. Concretely, the rounding
mode of the computer is replaced by a random rounding
mode (i.e., at each elementary operation, the result is
rounded toward �1 or þ1 with the probability 0.5.) The
main interest of this new rounding mode is to run a same
binary code with different rounding error propagations
because one generates for different runs different random
draws. If rounding errors affect the result, even slightly,
then one obtains for N different runs, N different results on
which a statistical test may be applied. This strategy is the
basic idea of the CESTAC method (Contrôle et Estimation
STochastique des Arrondis de Calcul). Briefly, the part of
the N mantissas that is common to the N results is assumed
to be not affected by rounding errors, contrary to the part of
the N mantissas that is different from one result to another.

The implementation of the CESTAC method in a code
providing a result R consists in:

� executing N times this code with the random rounding
mode, which is obtained by using randomly the round-
ing mode toward�1 orþ1; then, an N-sample (Ri) of
R is obtained,

� choosing as the computed result the mean value R of
Ri, i ¼ 1, . . ., N,

� estimating the number of exact decimal significant
digits of R with

C
R
¼ log10

ffiffiffiffiffi
N
p
jRj

stb

 !
ð54Þ

where

R ¼ 1

N

XN
i¼1

Ri and s2 ¼ 1

N � 1

XN
i¼1

ðRi � RÞ2 ð55Þ

tb is the value of Student’s distribution for N�1 degrees
of freedom and a probability level 1�b.

From Equation (13), if the first order approximation is
valid, one may deduce that:

1. The mean value of the random variable R is the exact
result r,

2. Under some assumptions, the distribution of R is a
quasi-Gaussian distribution.

It has been shown that N ¼ 3 is the optimal value. The
estimation with N¼ 3 is more reliable than with N¼ 2 and
increasing the size of the sample does not improve the
quality of the estimation. The complete theory can
be found in Refs. 13 and 14. The approximation at the
first order in Equation (13) is essential for the validation of
the CESTAC method. It has been shown that this approx-
imation may be wrong only if multiplications or divisions
involve nonsignificant values. A nonsignificant value is a
computed result for which all the significant digits are
affected by rounding errors. Therefore, one needs a dyna-
mical control of multiplication and division during the
execution of the code. This step leads to the synchronous
implementation of the method (i.e., to the parallel
computation of the N results Ri.) In this approach, a
classic floating-point number is replaced by a 3-sample
X¼ (X1, X2, X3), and an elementary operation V2 {þ,�,�, /}
is defined by XVY ¼ ðX1oY1; X2oY2; X3oY3Þ, where o
represents the corresponding floating-point operation fol-
lowed by a random rounding. A new important concept has
also been introduced: the computational zero.

Definition 3.1. During the run of a code using the
CESTAC method, an intermediate or a final result R is
a computational zero, denoted by @.0, if one of the two
following conditions holds:

� 8i, Ri ¼ 0,

� C
R
	 0.

Any computed result R is a computational zero if either
R ¼ 0, R being significant, or R is nonsignificant. In other
words, a computational zero is a value that cannot be
differentiated from the mathematical zero because of its
rounding error. From this new concept of zero, one can
deduce new order relationships that take into account the
accuracy of intermediate results. For instance,

Definition 3.2. X is stochastically strictly greater than Y
if and only if:

X>Y and X � Y 6¼@:0

or

Definition 3.3. X is stochastically greater than or equal
to Y if and only if:

XY or X � Y ¼ @:0

10 ROUNDING ERRORS



The joint use of the CESTAC method and these new
definitions is called Discrete Stochastic Arithmetic (DSA).
DSA enables to estimate the impact of rounding errors on
any result of a scientific code and also to check that no
anomaly occurred during the run, especially in branching
statements. DSA is implemented in the Control of Accuracy
and Debugging for Numerical Applications (CADNA)
library.4 The CADNA library allows, during the execution
of any code:

� the estimation of the error caused by rounding error
propagation,

� the detection of numerical instabilities,

� the checking of the sequencing of the program (tests
and branchings),

� the estimation of the accuracy of all intermediate
computations.

METHODS FOR ACCURATE COMPUTATIONS

In this section, different methods to increase the accuracy of
the computed result of an algorithm are presented. Far
from being exhaustive, two classes of methods will be
presented. The first class is the class of compensated meth-
ods. These methods consist in estimating the rounding
error and then adding it to the computed result. The second
class are algorithms that use multiprecision arithmetic.

Compensated Methods

Throughout this subsection, one assumes that the floating-
point arithmetic adhers to IEEE 754 floating-point stan-
dard in rounding to the nearest. One also assume that no
overflow nor underflow occurs. The material presented in
this section heavily relies on Ref. (15).

Error-Free Transformations (EFT). One can notice that a �
b2R and a } b2 F, but in general a � b2 F does not hold. It is
known that for the basic operationsþ,�,�,

ffip
the approx-

imation error of a floating-point operation is still a floating-
point number:

x ¼ a 
 b ) aþ b ¼ xþ y with y2 F;
x ¼ a � b ) a� b ¼ xþ y with y2 F;
x ¼ a � b ) a� b ¼ xþ y with y2 F;
x ¼ a � b ) a ¼ x� bþ y with y2 F;
x ¼ �@ ðaÞ ) a ¼ x2 þ y with y2 F

ð56Þ

These example are error-free transformations of the pair
(a, b) into the pair (x, y). The floating-point number x is
the result of the floating-point operation and y is the
rounding term. Fortunately, the quantities x and y in
Equation (56) can be computed exactly in floating-point
arithmetic. For the algorithms, Matlab-like notations are
used. For addition, one can use the following algorithm
by Knuth.

Algorithm 4.1. (16). Error-free transformation of the
sum of two floating-point numbers

function [x, y] ¼ TwoSum(a, b)
x ¼ a 
 b
z ¼ x � a
y ¼ (a � (x � z)) 
 (b � z)

Another algorithm to compute an error-free transforma-
tion is the following algorithm from Dekker (17). The draw-
back of this algorithm is that x þ y ¼ a þ b provided that
jaj  jbj. Generally, on modern computers, a comparison
followed by a branching and three operations costs more
than six operations. As a consequence, TwoSum is generally
more efficient than FastTwoSum plus a branching.

Algorithm 4.2. (17). Error-free transformation of the
sum of two floating-point numbers.

function [x, y] ¼ FastTwoSum(a, b)
x ¼ a 
 b
y ¼ (a � x) 
 b

For the error-free transformation of a product, one first
needs to split the input argument into two parts. Let p be
given by u¼ 2�p, and let us define s¼ dp/2e. For example, if
the working precision is IEEE 754 double precision, then p
¼ 53 and s ¼ 27. The following algorithm by Dekker (17)
splits a floating-point number a2 F into two parts x and y
such that

a ¼ xþ y with jyj 	 jxj ð57Þ

Both parts x and y have at most s � 1 non-zero bits.

Algorithm 4.3. (17) Error-free split of a floating-point
number into two parts

function [x, y] ¼ Split(a)
factor ¼ 2s 
 1
c ¼ factor � a
x ¼ c � (c � a)
y ¼ a � x

The main point of Split is that both parts can be
multiplied in the same precision without error. With this
function, an algorithm attributed to Veltkamp by Dekker
enables to compute an error-free transformation for the
product of two floating-point numbers. This algorithm
returns two floating-point numbers x and y such that

a� b ¼ xþ y with x ¼ a� b ð58Þ

Algorithm 4.4. (17). Error-free transformation of the
product of two floating-point numbers

function [x, y] ¼ TwoProduct(a, b)
x ¼ a � b
[a1, a2] ¼ Split(a)
[b1, b2] ¼ Split(b)
y ¼ a2 � b2�(((x � a1 � b1) � a2 � b1) � a1 � b2)

The performance of the algorithms is interpreted in
terms of floating-point operations (flops). The following4http://www.lip6.fr/cadna/.

ROUNDING ERRORS 11



theorem summarizes the properties of algorithms TwoSum
and TwoProduct.

Theorem 4.1. Let a, b2 F and let x, y2 F such that [x, y]¼
TwoSum(a, b) (Algorithm 4.1). Then,

aþ b ¼ xþ y; x ¼ a
 b; jyj 	 ujxj; jyj 	 ujaþ bj:
ð59Þ

The algorithm TwoSum requires 6 flops.
Let a, b 2 F and let x, y 2 F such that [x, y] ¼ TwoPro-

duct(a, b) (Algorithm 4.4). Then,

a� b ¼ xþ y; x ¼ a� b; jyj 	 ujxj; jyj 	 uja� bj :
ð60Þ

The algorithm TwoProduct requires 17 flops.

A Compensated Summation Algorithm. Hereafter, a com-
pensated scheme to evaluate the sum of floating-point
numbers is presented, (i.e., the error of individual summa-
tion is somehow corrected).

Indeed, with Algorithm 4.1 (TwoSum), one can compute
the rounding error. This algorithm can be cascaded and
sum up the errors to the ordinary computed summation.
For a summary, see Fig. 3 and Algorithm 4.5.

Algorithm 4.5. Compensated summation algorithm
function res ¼ CompSum(p)
p1 ¼ p1; s1 = 0;

for i ¼ 2 : n
[pi, qi] ¼ TwoSum(pi�1, pi)
si ¼ si�1 
 qi

res ¼ pn 
 sn

The following proposition gives a bound on the accuracy
of the result. The notation gn defined by Equation (38) will
be used. When using gn;nu 	 1 is implicitly assumed.

Proposition 4.2. (15). Suppose Algorithm CompSum is
applied to floating-point number pi 2 F; 1 	 i 	 n. Let s:¼P

pi;S:¼
P
jpij and nu < 1. Then, one has

jres� sj 	 ujsj þ g2
n�1S ð61Þ

In fact, the assertions of Proposition 4.2 are also valid in
the presence of underflow.

One can interpret Equation (61) in terms of the condition
number for the summation (29). Because

cond
X

pi

� �
¼
P
jpij

j
P

pij
¼ S

jsj ð62Þ

inserting this in Equation (61) yields

jres� sj
jsj 	 uþ g2

n�1cond
X

pi

� �
ð63Þ

Basically, the bound for the relative error of the result is
essentially (nu)2 times the condition number plus the
rounding u because of the working precision. The second
term on the right-hand side reflects the computation in
twice the working precision (u2) thanks to the rule of thumb.
The first term reflects the rounding back in the working
precision.

The compensated summation on ill-conditioned sum
was tested; the condition number varied from 104 to 1040.

Figure 4 shows the relative accuracy |res � s|/|s| of
the computed value by the two algorithms 3.1 and 4.5. The a
priori error estimations Equations (37) and (63) are also
plotted.

As one can see in Fig. 4, the compensated summation
algorithm exhibits the expected behavior, that is to say, the
compensated rule of thumb Equation (63). As long as the
condition number is less than u�1, the compensated sum-
mation algorithm produces results with full precision (for-
ward relative error of the order of u). For condition numbers
greater than u�1, the accuracy decreases and there is no
accuracy at all for condition numbers greater than u�2.

Figure 3. Compensated summation algo-
rithm.

TwoSumTwoSum TwoSum TwoSum· · ·

p1 p2 pn − 1 pn

q2 q3 qn − 1 qn

2 n − 1 nn − 23p1

+ +· · ·

+

+ +

p p p p p

105 1010 1015 1020 1025 1030 1035

10−10

10−12

10−14

10−16

10−18

10−8

10−6

10−4

10–2

100

Condition number

R
el

at
iv

e 
fo

rw
ar

d 
er

ro
r

Condition number and relative forward error

γn−1 cond u+γ
2n

2 cond

classic summation
compensated summation

Figure 4. Compensated summation algorithm.

12 ROUNDING ERRORS



Multiple Precision Arithmetic

Compensated methods are a possible way to improve accu-
racy.Anotherpossibility istoincreasetheworkingprecision.
For this purpose, some multiprecision libraries have been
developed. One can divide the libraries into three categories.

� Arbitrary precision libraries using a multiple-digit
format in which a number is expressed as a sequence
of digits coupled with a single exponent. Examples of
this format are Bailey’s MPFUN/ARPREC,5 Brent’s
MP,6 or MPFR.7

� Arbitrary precision libraries using a multiple-compo-
nent format where a number is expressed as uneval-
uated sums of ordinary floating-point words. Examples
using this format are Priest’s8 and Shewchuk’s9

libraries. Such a format is also introduced in Ref. 18.

� Extended fixed-precision libraries using the multiple-
component format but with a limited number of com-
ponents. Examples of this format are Bailey’s double-
double5 (double-double numbers are represented as an
unevaluated sum of a leading double and a trailing
double) and quad-double.5

The double-double library will be now presented. For our
purpose, it suffices to know that a double-double number a
is the pair (ah, al) of IEEE-754 floating-point numbers with
a¼ ahþ al and |al|	 u|ah|. In the sequel, algorithms for

� the addition of a double number to a double-double
number;

� the product of a double-double number by a double
number;

� the addition of a double-double number to a double-
double number

will only be presented. Of course, it is also possible to imple-
ment the product of a double-double by a double-double as
well as the division of a double-double by a double, and so on.

Algorithm 4.6. Addition of the double number b to the
double-double number (ah, al)

function [ch, cl] ¼ add_dd_d(ah, al, b)
[th, tl] ¼ TwoSum(ah, b)
[ch, cl] ¼ FastTwoSum(th, (tl 
 al))

Algorithm 4.7. Product of the double-double number
(ah,al) by the double number b

function [ch, cl] ¼ prod_dd_d(ah, al, b)
[sh, sl] ¼ TwoProduct(ah, b)
[th, tl] ¼ FastTwoSum(sh, (al � b))
[ch, cl] ¼ FastTwoSum(th, (tl 
 sl))

Algorithm 4.8. Addition of the double-double number
(ah, al) to the double-double number (bh, bl)

function [ch, cl] ¼ add_dd_dd (ah, al, bh, bl)
[sh, sl] ¼ TwoSum(ah, bh)
[th, tl] ¼ TwoSum(al, bl)
[th, sl] ¼ FastTwoSum(sh, (sl 
 th))
[ch, cl] ¼ FastTwoSum(th, (tl 
 sl))

Algorithms 4.6 to 4.8 use error-free transformations and
are very similar to compensated algorithms. The difference
lies in the step of renormalization. This step is the last one
in each algorithm and makes it possible to ensure that
jclj 	 ujchj.

Several implementations can be used for the double-
double library. The difference is that the lower-order terms
are treated in a different way. If a, b are double-double
numbers and } 2 {þ, �}, then one can show (19) that

flða } bÞ ¼ ð1þ dÞða } bÞ

with jdj 	 4 � 2�106.
One might also note that when keeping ½pn; sn� as a pair

the first summand u disappears in [Equation (63)] (see
Ref. 15), so it is an example for a double-double result.

Let us now briefly describe the MPFR library. This
library is written in C language based on the GNU MP
library (GMP for short). The internal representation of a
floating-point number x by MPFR is

� a mantissa m;

� a sign s;

� a signed exponent e.

If the precision of x is p, then the mantissa m has p
significant bits. The mantissa m is represented by an array
of GMP unsigned machine-integer type and is interpreted
as 1/2 	 m < 1. As a consequence, MPFR does not allow
denormalized numbers.

MPFR provides the four IEEE rounding modes as well as
some elementary functions (e.g., exp, log, cos, sin), all
correctly rounded. The semantic in MPFR is as follows:
For each instruction a¼bþ c or a¼ f(b, c) the variables may
have different precisions. In MPFR, the data b and c are
considered with their full precision and a correct rounding
to the full precision of a is computed.

Unlike compensated methods that need to modify the
algorithms, multiprecision libraries are convenient ways to
increase the precision without too many efforts.

ACKNOWLEDGMENT

The authors sincerely wish to thank the reviewers for their
careful reading and their constructive comments.

BIBLIOGRAPHY

1. report of the General Accounting office, GAO/IMTEC-92-26.

2. D. Goldberg, What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surve., 23(1): 5–48,
1991.

5http://crd.lbl.gov/~dhbailey/mpdist/.
6http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/
pub043.html.
7http://www.mpfr.org/.
8ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z.
9http://www.cs.cmu.edu/~quake/robust.html.

ROUNDING ERRORS 13



3. IEEE Computer Society, IEEE Standard for Binary Floating-
Point Arithmetic, ANSI/IEEE Standard 754-1985, 1985. Rep-
rinted in SIGPLAN Notices, 22(2): 9–25, 1987.

4. S. M. Rump, How reliable are results of computers? Jahrbuch
Überblicke Mathematik, pp. 163–168, 1983.

5. N. J. Higham, Accuracy and stability of numerical algorithms,
Philadelphia, PA: Society for Industrial and Applied Mathe-
matics (SIAM), 2nd ed. 2002.

6. P. Langlois, Analyse d’erreur en precision finie. In A. Barraud
(ed.), Outils d’Analyse Numérique pour l’Automatique, Traité
IC2, Cachan, France: Hermes Science, 2002, pp. 19–52.

7. F. Chaitin-Chatelin and V. Frayssé, Lectures on Finite Preci-
sion Computations. Philadelphia, PA: Society for Industrial
and Applied Mathematics (SIAM), 1996.

8. S. M. Rump, Computer-assisted proofs and self-validating
methods. In B. Einarsson (ed.), Accuracy and Reliability in
Scientific Computing, Software-Environments-Tools, Phila-
delphia, PA: SIAM, 2005, pp. 195–240.

9. J. H. Wilkinson, Rounding errors in algebraic processes. (32),
1963. Also published by Englewood Cliffs, NJ: Prentice-Hall,
and New York: Dover, 1994.

10. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J.
Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A.
McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed.
Philadelphia, PA: Society for Industrial and Applied Mathe-
matics, 1999.

11. G. Alefeld and J. Herzberger, Introduction to Interval Analysis.
New York: Academic Press, 1983.

12. U. W. Kulisch, Advanced Arithmetic for the Digital Computer.
Wien: Springer-Verlag, 2002.

13. J.-M. Chesneaux. L’Arithmétique Stochastique et le Logiciel
CADNA. Paris: Habilitation à diriger des recherches, Univer-
sité Pierre et Marie Curie, 1995.

14. J. Vignes, A stochastic arithmetic for reliable scientific compu-
tation. Math. Comput. Simulation, 35: 233–261, 1993.

15. T. Ogita, S. M. Rump, and S. Oishi, Accurate sum and dot
product. SIAM J. Sci. Comput., 26(6): 1955–1988, 2005.

16. D. E. Knuth, The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-
Wesley, 1998.

17. T. J. Dekker, A floating-point technique for extending the
available precision. Numer. Math., 18: 224–242, 1971.

18. S. M. Rump, T. Ogita, and S. Oishi, Accurate Floating-point
Summation II: Sign, K-fold Faithful and Rounding to Nearest.
Technical Report 07.2, Faculty for Information and Commu-
nicationSciences, Hamburg, Germany: Hamburg University of
Technology, 2007.

19. X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida,
J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin,
B. J. Thompson, T. Tung, and D. J. Yoo, Design, implementa-
tion and testing of extended and mixed precision BLAS. ACM
Trans. Math. Softw., 28(2): 152–205, 2002.

JEAN-MARIE CHESNEAUX

STEF GRAILLAT

FABIENNE JÉZÉQUEL

Laboratoire d’Informatique de
Paris, France

14 ROUNDING ERRORS



A

ADDRESSING: DIRECT AND INDIRECT

This article focuses on addressing modes—a mechanism
machine instructions use to specify operands. Addressing
modes are an important aspect of instruction set architec-
ture (ISA). ISA refers to a portion of the computer that is
visible to a compiler writer or an assembly language pro-
grammer, and it encompasses components such as (1) class
of ISA, (2) memory, (3) addressing modes, (4) types and
sizes of operands, (5) data processing and control flow
operations supported by machine instructions, and (6)
instruction encoding. As it is difficult to separate addres-
sing modes from other components of instruction set archi-
tecture, we will first give a brief overview of basic ISA
components. For a detailed treatment of the remaining
ISA components, readers are directed to the article dedi-
cated to instruction set architectures.

Class of ISA. Virtually all recent instruction set archi-
tectures have a set of general-purpose registers visible to
programmers. These architectures are known as general-
purpose register architectures. Machine instructions in
these architectures specify all operands in memory or
general-purpose registers explicitly. In older architectures,
machine instructions specified one or more operands impli-
citly on the stack—so-called stack architectures—or in the
accumulator—so-called accumulator architectures. There
are many reasons why general-purpose register architec-
tures dominate in today’s computers. Allocating frequently
used variables, pointers, and intermediate results of calcu-
lations in registers reduces memory traffic; improves pro-
cessor performance since registers are much faster than
memory; and reduces code size since naming registers
requires fewer bits than naming memory locations directly.
A general trend in recent architectures is to increase the
number of general-purpose registers.

General-purpose register architectures can be classified
into register-memory and load-store architectures, depend-
ing on the location of operands used in typical arithmetic
and logical instructions. In register-memory architectures,
arithmetic and logical machine instructions can have one or
more operands in memory. In load-store architectures, only
load and store instructions can access memory, and common
arithmetic and logical instructions are performed on oper-
ands in registers. Depending on the number of operands
that can be specified by an instruction, ISAs can be classified
into 2-operand or 3-operand architectures. With 2-operand
architectures, typical arithmetic and logical instructions
specify one operand that is both a source and a destination
for the operation result, and another operand isa source.For
example, the arithmetic instruction ADD R1, R2 adds the
operands from the registers R1 and R2 and writes the result
back to the register R2. With 3-operand architectures,
instructions can specify two source operands and the result
operand. For example, the arithmetic instruction ADD R1,
R2, R3 adds the operands from the registers R1 and R2 and

writes the result to the register R3. In this text, we consider
general-purpose register architectures that can be either
register-memory or load-store.

Memory. Program instructions and data are stored in
memory during program execution. Programmers see
memory as a linear array of addressable locations as shown
in Fig. 1. In nearly all memory systems, the smallest
addressable location in memory is a single byte (8 bits).
The range of memory that can be addressed by the proces-
sor is called an address space. For example, any program
running on a 32-bit processor can address up to 4 GB (232

bytes) of the address space. Although the smallest addres-
sable object is a byte, bytes are generally grouped into
multibyte objects. For example, in a 32-bit architecture,
we refer to 2-byte objects as half-words, 4-byte objects
as words, and 8-byte objects as double words. Machine
instructions can directly reference and operate on words,
half-words, or bytes. When referencing a multibyte object in
memory, its given address is the address of its first byte. For
example, a half-word located in memory at the address 8
will occupy two byte addresses 8 and 9.

Many instruction set architectures require multibyte
objects to be aligned to their natural boundaries. For
example, if we assume a 4-byte wide memory (Fig. 1),
half-words must begin at even addresses, whereas words
and double words must begin at addresses divisible by 4.
This kind of alignment requirement is often referred to as
hard alignment. It should be noted that hard alignment is
not an architectural requirement; rather it makes hard-
ware implementation more practical. Even architectures
that do not require hard alignment may benefit from having
multibyte objects aligned. Access to unaligned objects may
require multiple accesses to memory, resulting in perfor-
mance penalty. Another important issue related to memory
is ordering the bytes within a larger object. There are two
different conventions for byte ordering: little-endian and
big-endian (Fig. 2). With little-endian byte ordering, the
least significant byte in a word is located at the lowest byte
address, and with big-endian, the most significant byte in a
word is located at the lowest byte address. For example, let
us consider a 32-bit integer variable with a hexadecimal
value of 0x1234ABCD stored in memory at word address 8.
For both big-endian and little-endian byte ordering, the
most significant byte of the variable is 0x12 and the least
significant byte is 0xCD. However, with the big-
endian scheme, the most significant byte is at address 8,
whereas with the little-endian scheme, the most significant
byte is at address 11 (Fig. 2).

Types and Sizes of Operands. Machine instructions oper-
ate on operands of certain types. Common types supported
by ISAs include character (e.g., 8-bit ASCII or 16-bit
Unicode), signed and unsigned integers, and single- and
double-precision floating-point numbers. ISAs typically
support several sizes for integer numbers. For example,

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



a 32-bit architecture may include arithmetic instructions
that operate on 8-bit integers, 16-bit integers (short inte-
gers), and 32-bit integers. Signed integers are represented
using two’s complement binary representation, whereas
floating-point numbers rely on IEEE Standard 754. Some
ISAs support less frequently used data types, such as
character strings and packed decimal or binary-coded dec-
imal numbers (a decimal digit requires 4 bits, and two
decimal digits are packed into a byte).

Instructions. Machine instructions can be broadly clas-
sified into data processing and control-flow instructions.
Data processing instructions manipulate operands in
registers and memory locations. Common data proces-
sing instructions support integer arithmetic operations
(e.g., add, subtract, compare, multiply, and divide), logic
operations (e.g., bitwise and, or, xor, nor, and not); shift
operations (e.g., shift to the right or left, and rotate), and
data transfer operations (load that moves a specified
operand from memory to a register, store that moves a
specified operand from register to a memory location,
and move that transfers data between registers). If a
computer is intended for applications that extensively use
floating-point numbers, the ISA may support floating-point

arithmetic (e.g., floating-point add, subtract, compare,
multiply, and divide). Several older ISAs support instruc-
tions that manipulate decimal operands and character
string operands. In media and signal processing architec-
tures, we may encounter instructions that operate on
more complex data types (e.g., pixels).

Machine instructions are fetched from memory and
executed sequentially. Control-flow or branch instructions
allow us to make decisions and to change the execution flow
to an instruction other than the next one in sequence. These
instructions can be classified into conditional (often
referred to as branches) and unconditional (often referred
to as jumps), procedure calls, and procedure returns. A
conditional branch instruction is defined by its outcome
that determines whether the branch is taken or not taken;
and by its target address that specifies the address of the
following instruction in sequence to be executed, if the
branch is taken. A jump instruction is defined by its target
address only. Branch target addresses can be known at
compile time (direct branches) or be determined during
program execution (indirect branches).

Binary Encoding of Instructions. Instruction encoding
defines the binary representation of machine instructions.

R0
R1

R15
…

R2

GPRs

Processor

Memory

7  … 015 … 823…1631…24

32 bits

31       … 0

0x0

0x4

0x8

0xC

0x10

0xFFFF_FFFC

0xFFFF_FFF8

0xFFFF_FFF4

0xFFFF_FFF0

.

.

.

Bit  0Bit  31

byte

Code

Static Data

Heap

Unused

Stack

Figure 1. Programming model: general-purpose registers (GPRs) and memory. (This figure is available in full color at http://www.
interscience.wiley.com/reference/ecse.)

0123

4567

3412 CDAB
891011

3210
0x0

0x4

0x8

7654

3412 CDAB
111098

32 bits

Byte
address

Bit  0Bit  31

Byte
address

32 bits
Bit  0Bit  31

Little-endian Big-endian

0x0

0x4

0x8

Figure 2. Little-endian and big-endian byte ordering. (This figure is available in full color at http://www. interscience.wiley.com/reference/
ecse.)

2 ADDRESSING: DIRECT AND INDIRECT



Exact encoding depends on many parameters, such as
architecture type, the number of operands, the number
and type of instructions, the number of general-purpose
registers, operand types, and the size of address space. This
representation affects not only the size of the program, but
also the processor implementation. The operation and pos-
sibly the number of operands are typically specified by one
instruction field called the opcode. For each operand, the
machine instruction includes an addressing mode speci-
fier—a field that tells what addressing mode is used to
access the operand, and one or more address fields that
specify the operand address. Figure 3 shows a generalized
instruction format for a 2-operand instruction. This app-
roach to instruction encoding is often referred to as variable
length — each operation can work with virtually all addres-
sing modes that are supported by the ISA. An alternative
approach is fixed-length instruction encoding where the
opcode is combined with addressing mode specifiers. Typi-
cally a single size is used for all instructions and this
approach is used when there are a few addressing modes
and operations. A third approach called hybrid is some-
where in between. It reduces variability in instruction
encoding but allows multiple instruction lengths. In load/
store architectures, all instructions except loads and stores
find their operands in general-purpose registers; hence, the
addressing mode specifiers are not needed. Here we will
assume that information about the number of operands and
the corresponding addressing mode specifiers are all
merged with the opcode field. Fixed-length instruction
formats require less complex decoding logic, resulting in
faster decoding, but they tend to increase the number of bits
needed to encode an instruction, resulting in poor code
density. Code density is an important characteristic of an
instruction set, and it can be measured by the size of a
program needed to complete a particular task.

Addressing Modes. A machine instruction can find its
operand in one of three places: (1) as a part of the instruc-
tion, (2) in a general-purpose register, and (3) in memory.
Operands in registers and memory can be specified directly
or indirectly. Consequently, addressing modes can be
broadly classified into (1) direct— the address field specifies
the operand address—and (2) indirect—the address field
specifies a location that contains the operand address. A
wide variety of addressing modes is used in instruction set
architectures, such as immediate, register direct, register
indirect, register indirect with displacement, memory
direct, and memory indirect, to name just a few. Table 1
gives a list of the most common addressing modes with
examples and usage. Each addressing mode is illustrated
by a LOAD instruction that moves the specified operand

into a general-purpose register. Figure 4 gives a graphical
illustration of these addressing modes.

BASIC ADDRESSING MODES

Three basic addressing modes are (1) immediate or literal
where the operand is a part of the instruction; (2) register
direct where the operand is in a general-purpose register;
and (3) memory direct where the operand is in memory at a
location specified directly by the instruction.

Immediate or literal addressing means that the operand
is located in the instruction itself (Fig. 4a). Immediately
upon instruction decoding, the operand is extracted from
the instruction and possibly zero-or sign-extended before it
is used in the instruction execution. This addressing mode
specifies a data or an address constant, and it is often used
in arithmetic operations, in initializing registers and mem-
ory locations, and in comparisons. The number of bits used
to encode an immediate operand affects the instruction
length. Data constants in programs tend to be small and
can be encoded by a relatively small number of bits, improv-
ing code density. Unlike data constants, address constants
tend to be large and require all address bits. An analysis of
integer and floating-point programs from the SPEC bench-
mark suite shows that a 16-bit field captures over 80%
of all immediate operands and an 8-bit field captures over
50% of all immediate operands (1). To exploit this char-
acteristic of programs, many architectures support so-
called short constants that require just a few bits to encode
the most frequently used constants, such as 0, �1, �2,
and �4.

Register direct or just register addressing means that the
operand is located in a general-purpose register and the
instruction specifies the register by its name (Fig. 4b). For
example, only a 4-bit address field is needed to specify a
register in a processor with 16 general-purpose registers
(0001 encodes R1 and 0011 encodes R3). This addressing
mode is preferred for keeping frequently used operands
because it is compact—only a register identifier is stored in
the instruction, and access to a register is much faster than
access to a memory location. In load/store architectures,
this mode is used for all instructions except when an
operand is moved from memory into a register or from a
register to memory. Many compiler optimizations are
employed to determine which variables are the most fre-
quently accessed and to put them in general-purpose reg-
isters.

Memory direct addressing (often referred to as absolute)
means that the operand is located in memory and the
address field contains the actual address of the operand
(Fig. 4c). This address is specified at the compile-time and
cannot be modified by the processor during program execu-
tion. Hence, this addressing mode is used to access global
variables whose addresses are known at compile time. The
number of bits needed to encode a full memory address is
directly proportional to the size of address space, and it
tends to be large. Several architectures support so-called
short absolute addressing—only a portion of the address
space is directly accessible by this addressing mode (2).
For example, a short direct address has only 16 bits and

AMS.1 AF.1 AS.2 AF.2Opcode AMS.1 AF.1 AS.2 AF.2Opcode

Operand.1 Operand.2

Figure 3. A generalized 2-operand instruction format (AMS—
Address Mode Specifier, AF—Address Field). (This figure is avail-
able in full color at http://www. interscience.wiley.com/reference/
ecse.)

ADDRESSING: DIRECT AND INDIRECT 3



allows access to the first 64-KB of address space, instead of
the full 4 GB.

INDIRECT ADDRESSING

An important class of addressing modes is indirect addres-
sing, namely, register indirect and memory indirect. These
modes are called indirect because they do not specify an
operand directly. Rather, machine instructions specify the
operand indirectly by providing information from which the
effective address (EA) of the operand can be determined.

Register Indirect and Relative Addressing

Instruction set architectures often support several varia-
tions of register indirect addressing, such as register indir-
ect, register indirect with postincrement (often referred to as
autoincrement), register indirect with predecrement (auto-
decrement), register indirect with displacement, register
indirect with (scaled) index, and register indirect with
(scaled) index and displacement.

With register indirect addressing, the instruction spe-
cifies a general-purpose register (referred to as an address
or a pointer register) that contains the effective address of
the memory location where the operand is located (the
register R1 in Fig. 4d). If we assume that the content of
the register R1 is 0x0000CA00, the operand is fetched from
a memory location at address 0x0000CA00. An advantage
of this addressing mode is that the instruction can reference
an operand in memory without specifying a full memory
address. Rather, just several bits are used to specify a
general-purpose register. Several ISAs have separate
address and data registers. For example, the Motorola
68000’s ISA has 8 address registers and 8 data registers
(2). This approach may further improve code density
because only three bits are needed to specify an address
or data register. However, this may require a more complex
decoding logic.

Register indirect with index addressing means that the
instruction specifies two registers used for computation of
the effective address of an operand residing in memory. One
register typically acts as a base register pointing to the

Table 1. Data Addressing Modes, Example Instructions, Description, and Typical Use

Addressing Mode Example Instruction RTL Description Typical Use

Immediate LOAD #3, R3 [R3] 0�00000003 For constants
Register-direct LOAD R1, R3 [R3] [R1] When a value is

in a register
Memory direct or
Absolute

LOAD $8000, R3 EA $00008000
[R3] [Mem(EA)]

Access to static
variables in memory

Register indirect LOAD (R1), R3 EA [R1]
[R3] [Mem(EA)]

Access to variables in
memory using a pointer

Register indirect with
index

LOAD (R1+R2), R3 EA [R1]+ [R2]
[R3] [Mem(EA)]

Access to elements in an
array of complex data
structures (R1 points to
the base, R2 is stride)

Register indirect with
scaled index

LOAD (R1+R2�4),R3 EA [R1]+ [R2] �4
[R3] [Mem(EA)]

Access to elements in
an array of complex data
structures (R3 points to
the base, R2 is index)

Autoincrement LOAD (R1)+, R3 EA [R1]; [R1] [R1] + 4
[R3] [Mem(EA)]

Access to elements of an
array in a loop; Access to
stack (push/pop)

Autodecrement LOAD �(R1), R3 [R1] [R1] � 4; EA  [R1]
[R3] [Mem(EA)]

Access to elements of an
array in a loop; Access to
stack (push/pop)

Register indirect with
displacement

LOAD 0�100(R1), R3 EA [R1]+ 0�0100
[R3] [Mem(EA)]

Access to local variables

Register indirect with
scaled index and
displacement

LOAD 0�100(R1+R2�4), R3 EA 0�0100 + [R1]+[R2]�4
[R3] [Mem(EA)]

Access to arrays allocated on
the stack

PC relative LOAD 0�100(PC), R3 EA 0�0100 + [PC]
[R3] [Mem(EA)]

Branches; Jumps; Procedure
calls; Static data

PC relative with index LOAD (PC+R2),R3 EA [PC]+ [R2]
[R3] [Mem(EA)]

Branches; Jumps; Procedure
calls; Static data

PC relative with scaled
index and displacement

LOAD 0�100(PC+R2�4), R3 EA 0�0100 + [PC]+ [R2]�4
[R3] [Mem(EA)]

Branches; Jumps; Procedure
calls; Static data

Register transfer language (RTL) is used to describe data transfers and operations. Square brackets [ ] indicate content of registers and memory locations, and

backward arrows indicate data transfers from the source specified on the right-hand side of the expression to the destination specified on the left-hand side of the

expression.

4 ADDRESSING: DIRECT AND INDIRECT



beginning of an array, and the other register, named an
index register, provides an offset from the beginning of the
array to the current element (Fig. 4e). For example, let us
assume that we want to increment elements of an integer
array located in memory at the addresses A, Aþ 4, Aþ 8, . . .
up to the last element in the array. The starting address of
the array is placed in the base register, and the index
register is initialized to 0. A program loop traverses ele-
ments of the integer array, and a separate instruction
increments the index register by the size of a single element
in each loop iteration (by 4 in this example).

Often the value of the index register is equal to the array
index no matter what is the size of one element. The index
register is simply incremented or decremented by 1 and can
also serve as a loop iteration counter. Hence, in address
computations, the content of the index register has to be
implicitly multiplied by a scale factor whose value is 1, 2, 4,
or 8. The scale factor is inferred from the opcode and

depends on the size of the operand. This variant is often
referred to as register indirect with scaled index addressing
or scaled index or just scaled.

Incrementing or decrementing of the index register is
such a common operation that it is desirable to be done
automatically using so-called autoindexing (autoincre-
ment and autodecrement) addressing modes. With auto-
increment addressing, the effective address of an operand
is generated in the same way as in register indirect—the
effective address is the content of the specified address
register. An additional step is carried out—the content of
the specified address register is incremented by the size of
the operand (by 1 for byte size operands, by 2 for half-word
size operands, by 4 for word size operands, and by 8 for
double word size operands). With autodecerement addres-
sing, the content of the address register is decremented by
the size of the operand. Generally, this incrementing/
decrementing step can be done before (preincrement or

#Imm R3OpCode +AMSs

Zero/Sign
Extend

Instruction: LOAD #Imm, R3

Registers

R0

R1

R2

R3

…

R15

R0

R1

R2

R3

…

R15

etaidemmI)a(

R1 R3OpCode +AMSs

Instruction:  MOVE R1, R3

Registers

R0

R1

R2

R3

…

R15

R0

R1

R2

R3

…

R15

R0

R1

R2

R3

…

R15

Address R3OpCode +AMSs

Operand

Registers
MemoryEA

Instruction:  LOAD Address, R3

(b) Register Direct (c) Memory Direct

R0

R1

R2

R3

…

R15

R1 R3OpCode +AMSs

Operand

Registers Memory

EA

Instruction:  LOAD (R1), R3

R0

R1

R2

R3

…

R15

R1 R2OpCode +AMSs

Operand

Registers Memory

EA

R3

+

Instruction:  LOAD (R1+R2), R3

xednIhtiwtceridnIretsigeR)e(tceridnIretsigeR)d(

Figure 4. Illustration of addressing modes. (This figure is available in full color at http://www.interscience.wiley.com/reference/ecse.)

ADDRESSING: DIRECT AND INDIRECT 5



predecrement) or after (postincrement or postdecrement)
the effective address computation. Instruction set archi-
tectures may support some or all of the four combinations
pre/post auto-(increment/decrement). The most frequen-
tly used are post-autoincrement (Fig. 4f) and pre-auto-
decrement (Fig. 4g). These addressing modes are a very
useful tool in accessing elements in regular arrays. The
advantages of using autoindexing addressing modes com-
pared with register indirect with index are as follows:
(1) The machine instruction needs only one address field
(the base register) leading to shorter instructions, (2) the
program loops are shorter because we do not need an
instruction to increment or decrement the index register,
and (3) we use only one address register instead of two
allowing more variables and pointers to be kept in general-
purpose registers.

One of the most powerful addressing modes is register
indirect addressing with displacement, also known as base

plus offset addressing. It combines the capabilities of mem-
ory direct with register indirect addressing. The instruc-
tion specifies two address fields for the operand residing in
memory, a register field and a displacement field (Fig. 4h).
The effective address of the operand is calculated by adding
the content of the specified address register (or base) to the
content of the displacement field. The displacement field is
typically shorter than the full address length; hence, the
displacement field is zero- or sign-extended to the number
of address bits before adding it to the content of the base
register. This addressing mode is commonly used for acces-
sing local variables allocated on the program stack. The
base register is pointing to the beginning of the stack frame
(also known as frame pointer), and the instruction specifies a
displacement (or an offset) from this location to the location
where the operand is located. Several architectures support
a variant of this mode where the base register is defined
implicitly, so instructions specify only the displacement

R0

R1

R2

R3

…

R15

R1 R3OpCode +AMSs

Operand

Registers Memory

EA

Instruction:  LOAD (R1)+, R3

+4

R0

R1

R2

R3

…

R15

R1 R3OpCode +AMSs

Operand

Registers Memory

EA

Instruction:  LOAD -(R1), R3

−

4

 tnemercedotuA )g( tnemercniotuA )f(

R0

R1

R2

R3

…

R15

R1OpCode +AMSs

Operand

Registers Memory

EA

disp

+

Instruction:  LOAD disp(R1), R3

R3

R0

R1

R2

R3

…

R15

R1 R2OpCode +AMSs

Operand

Registers Memory

EA

disp

+

Instruction:  LOAD disp(R1,R2), R3

R3

(h) Register Indirect with Displacement (i) Register Indirect with Index and Displacement 

R0

R1

R2

R3

…

R15

OpCode +AMSs

Operand

Registers
Memory

EA

disp

+

Instruction:  LOAD disp(PC), R3

R3 Program Counter

R0

R1

R2

R3

…

R15

R1 R3OpCode +AMsd

Address

Operand

Registers
Memory

EA

Instruction:  LOAD ([R1]), R3

 retsigeR htiw tceridnI yromeM )k( evitaleR CP )j(

Figure 4. (Continued)

6 ADDRESSING: DIRECT AND INDIRECT



field, thus reducing the number of bits needed to encode an
instruction.

A natural extension of the previous addressing modes
is register indirect with index and displacement addressing
(Fig. 4i). An instruction using this mode includes three
address fields for the memory operand: the base register,
the index register, and the displacement field. The effective
address is calculated as a sum of the contents in the base
register, the index register, and the zero- or sign-extended
displacement field. This addressing mode is a convenient
tool in managing access to multidimensional data struc-
tures and for accessing local arrays on the stack. If the index
register can be scaled, the addressing mode is register
indirect with scaled index and displacement.

Another important class of addressing modes is so-called
relative addressing. This class is similar to the register
indirect addressing and its derivatives, except that the
address of an operand is determined with respect to the
content of the program counter (PC), rather than with
respect to the content of the explicitly specified address
register (Fig. 4j). For PC relative addressing, the instruc-
tion specifies only the displacement field, and the effective
address is calculated as a sum of the contents of the
program counter and the zero- or sign-extended displace-
ment field.

Similarly, with PC relative with index addressing, the
instruction word specifies an index register, and the effec-
tive address is calculated as a sum of the program counter
and the content of the index register. Finally, for PC relative
with index and displacement addressing, the instruction
specifies the index register and the displacement, and the
effective address is equal to the sum of the contents of the
program counter, the index register, and the zero- or sign-
extended displacement field.

An important question related to all addressing modes
with displacement is what should be the size of the dis-

placement field in the instruction. The size of this field
directly influences the instruction length; hence, it is desir-
able to have a short displacement field. However, a shorter
displacement field may limit its usefulness. An experimen-
tal evaluation of displacement length finds that a 16-bit
displacement field is suitable for 32-bit processors (1).
Several instruction set architectures with variable instruc-
tions lengths support both short and long displacements
(d8—8-bit displacement, d16—16-bit displacement, and
d32—32-bit displacement) (3).

Memory Indirect Addressing

With memory indirect addressing, both the operand and its
address are in memory. The instruction specifies the loca-
tion in memory where the operand address (pointer) is
located. First the operand address is read from memory,
and then an additional memory read or write is performed
to access the operand. There are many variants of memory
indirect addressing depending on how we calculate the
address of the pointer and how that pointer is used in
determining the address of the operand.

The memory indirect with register mode means that the
instruction specifies a general-purpose register pointing to
a location in memory that keeps the pointer to the operand.
For example, let us consider the following instruction from
Table 2: LOAD ([R1]), R3. The effective address of the
operand is in memory at the address determined by
the content of the register R1 (Fig. 4k). Once the effective
address is fetched from memory, another read from mem-
ory is employed to fetch the operand. The memory indirect
absolute means that the instruction contains the direct
address of the pointer location in memory.

The Motorola 68020 instruction set architecture sup-
ports a range of memory indirect addressing modes known
as preindexed and postindexed memory indirect and PC

Table 2. Memory Indirect Data Addressing Modes, Example Instructions, Description, and Typical Use

Addressing Mode Example Instruction RTL Description Typical Use

Memory indirect with
register

LOAD ([R1]), R3 EA Mem([R1])
[R3] [Mem(EA)]

Jump tables; Linked lists

Memory indirect
absolute

LOAD ([$8000]), R3 EA Mem($8000)
[R3] [Mem(EA)]

Access to structures through
a pointer

Memory indirect,
postindexed

LOAD ([$100, R1], R2�4, $200), R3 Temp Mem($100 + R1)
EA Temp + R4�4 + $200
[R3] [Mem(EA)]

Jump tables; Linked lists;
Access to complex data
structures through array of
pointers

Memory indirect,
preindexed

LOAD ([$100, R1, R2�4], $200), R3 Temp Mem($100 + R1 + R2�4)
EA Temp + $200
[R3] [Mem(EA)]

Jump tables; Linked lists;
Access to complex data
structures through array of
pointers

PC memory indirect,
postindexed

LOAD ([$100, PC], R2�4, $200), R3 Temp Mem($100 + PC)
EA Temp + R2�4 + $200
[R3] [Mem(EA)]

Jump tables; Linked lists;
Access to complex data
structures through array of
pointers

PC memory indirect,
preindexed

LOAD ([$100, PC, R2�4], $200), R3 Temp Mem($100 + PC + R2�4)
EA Temp + $200
[R3] [Mem(EA)]

Jump tables; Linked lists;
Access to complex data
structures through array of
pointers

ADDRESSING: DIRECT AND INDIRECT 7



memory indirect addressing as shown in Table 2. The
memory indirect postindexed addressing can be specified
as follows: ([bd, Rx], Ry�sc, od). The instruction has
4 address fields for the operand in memory, and they specify
a base register Rx, an index register Ry, a base displace-
ment bd, and an outer displacement od. The scale factor sc
depends on the operand size and can be 1, 2, 4, or 8. The
processor calculates an intermediate memory address
using the base address register and the base displacement
(Rx þ bd) and reads the pointer from this location. The
address read from memory is added to the index portion
(Ry�sc) and the outer displacement to create the effective
address of the operand as follows: EA ¼ Mem [Rx þ bd] þ
Ry�scþ od. The displacements and the index register
contents are sign-extended to 32 bits. In the syntax for
this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified
values are optional and can be suppressed. Both the base
and outer displacements may be null, 16-bit, or 32-bit long.
When suppressing a displacement or a register, its value is
zero in the effective address calculation. A large number of
addressing options can be created using suppressing.
For example, by suppressing bd, Ry, and od, the resulting
addressing mode is equivalent to the memory indirect with
register addressing. By suppressing all but the 32-bit outer
displacement od, the resulting addressing mode is equiva-
lent to the memory indirect absolute addressing.

The memory indirect preindexed mode is described with
the following specification: ([bd, Rx, Ry�sc], od). The inter-
mediate indirect address is the sum of the base displace-
ment, the base address register, and the scaled index
register. The address fetched from memory at this location
is added to the outer displacement to create the effective
address of the operand: EA ¼Mem[Rx þ bd þ Ry�sc] þ od.
The PC indirect memory preindexed and postindexed
modes are equivalent to the memory indirect preindexed
and postindexed modes, except that the program counter is
used instead of the base address register Rx.

ADDRESSING MODES FOR CONTROL FLOW
INSTRUCTIONS

Addressing modes are important not only for instructions
dealing with data, but also for instructions that change the
program control flow. The most frequently used addressing
mode for branch instructions is PC relative with displace-
ment and its derivatives, such as PC relative with index,
and PC relative with index and displacement. The branch
instruction specifies an offset or displacement relative to
the current program counter. The PC-relative addressing is
preferred because the target address is often near the
current instruction, and hence, an offset field with just a
few bits would suffice. The PC-relative addressing also
allows position independence of the code, meaning that
the code can run independently of where it is loaded in
memory. This property is useful because it reduces the
number of tasks for linkers and makes dynamically linked
programs easier to implement.

Other addressing modes are also applicable to indirect
branches and jumps. The target address is equal to the

effective address specified by the instruction. For example,
let us consider an unconditional indirect branch instruction
JMP (R3) that specifies the register indirect addressing
mode. The branch target address is the content of the
register R3 and, hence, determined at runtime. It should
be noted that branch instructions operate on addresses
rather than data, and hence, we do not fetch the data
from memory location pointed to by the register R3. These
branches are useful in implementing high-level language
constructs such as switch statements, virtual functions and
methods, and dynamically shared libraries.

One important design decision made by ISA designers is
the size of the offset field for PC-relative addressing. The
distributions of branch offsets can be measured on a set of
representative benchmarks in order to determine the opti-
mal size of the offset field. One such measurement indicates
that shorter offsets that can be encoded using up to 8 bits
dominate (1).

A CASE STUDY

Instruction set architectures support only a subset of all
addressing modes discussed so far. Which addressing modes
are supported depends on many parameters. In selecting
addressing modes, computer architects would like to be able
to address a large number of locations in memory with
maximum flexibility. Flexibility means that each machine
instruction can be combined with any addressing mode,
allowing compilers to produce more optimized code with
maximal code density. These requirements favor a rich set
of addressing modes and variable instruction lengths. On
the other hand, it is desirable to have fixed and uniform
instruction encodings that reduce the complexity of decod-
ing and address calculations as well as latencies for these
steps. These often conflicting requirements are carefully
evaluated during the design process.

Today almost all programming is done in high-level
languages and instructions executed are the output of
compilers. Hence, compilers play a critical role and should
not be omitted when deciding about the ISA design and
addressing modes. Having sophisticated instruction sets
including a wide range of powerful addressing modes does
not guarantee efficient code if compilers are not able to use
them effectively. What memory addressing modes are most
frequently used in compiler-generated code? A study based
on a few programs indicates that three most frequently
used modes account for 88% of all memory accesses: the
register indirect with displacement accounts on average for
42%, immediate accounts for 33%, and register indirect
accounts for 13% (1). Current technology trends favor
Reduced Instruction Set Computers (RISC) with load/store
architectures, fixed instruction lengths, a rich set of gen-
eral-purpose registers, and a relatively small set of most
frequently used addressing modes. In embedded computers
where code density is of utmost importance, hybrid instruc-
tion encodings are used with a somewhat richer set of
addressing modes.

In this subsection, we give a short overview of addres-
sing modes found in three different instruction set
architectures: Intel’s IA32 (3), Motorola’s 68000 (2), and

8 ADDRESSING: DIRECT AND INDIRECT



ARM (4). IA32 and Motorola 68000 are representative
examples of Complex Instruction Set Computer (CISC)
instruction sets, with variable instruction encoding,
register-memory architectures, a small set of general-
purpose registers, 2-operand instructions, and a rich set
of addressing modes. The ARM is a RISC processor with
load/store architecture, fixed instruction encodings, 16
general-purpose registers, 3-operand instructions, and
yet with a very sophisticated addressing. Table 3 gives
a summary of addressing modes for data processing and
control-flow instructions supported by these three
instruction set architectures. Figure 5 shows code pro-
duced by the GCC compiler for these ISAs for a simple
code snippet that summarizes elements of an integer
array. This example demonstrates superior code density

achieved by CISC ISAs: Motorola 68000 requires 6 bytes,
IA32 13 bytes, and ARM 20 bytes of code.

The text below discusses the instruction encoding for
the ARM data transfer instructions and how it achieves
many addressing options derived from a single mode, the
register indirect with displacement addressing (Table 4).
Figure 6 shows the binary encoding for single-word (B¼0)
and unsigned byte (B¼1) data transfer instructions,
namely for loads (L¼1) or stores (L¼0). When the program
counter is specified as the base register, this addressing
mode corresponds to the traditional PC relative addres-
sing and its derivatives. The effective address for a mem-
ory operand is calculated by adding or subtracting an
offset to the content of a base register. The offset is
either (1) an unsigned immediate directly encoded in

Table 3. Summary of Addressing Modes Supported by Intel’s IA32, Motorola 68000, and ARM ISA for Data and Control-Flow
Instruction

Addressing modes IA32 M68000 ARM

Data Control Data Control Data Control
Immediate X – X – X –
Register direct X – X – X –
Absolute (Direct addressing in IA32) X X X X – –
Register indirect X X X X X –
Autoincrement X – X – X –
Autodecrement X – X – X –
Register indirect with displacement (Register relative in IA32) X – X X X –
Register indirect with (scaled) index (Base plus index/(Scaled) in IA32) X – X X X –
Register indirect with (scaled) index and displacement (Base relative plus
index in IA32)

X – X X X –

PC relative – X X X X X
PC relative with index – – X X X –
PC relative with index and displacement – – X X X –
Memory indirect – X X X – –
PC memory indirect – – X X – –

for (i=0; i<100; i++) { 
  sum += a[i]; 
 } 

IA32:
Address Binary encoding Label Assembly code 

:9L.
0024 03948568 FEFFFF  addl    -408(%ebp,%eax,4), %edx
002b 40  incl    %eax
002c 83F863  cmpl    $99, %eax
002f 7EF3  jle     .L9

M68000: 
Address Binary encoding Label Assembly code 

:9L.

002a D498  add.l (%a0)+,%d2
002c 5380  subq.l #1,%d0
002e 6AFA  jbpl .L9

ARM:
Address Binary encoding Label Assembly code 

:62L.

002c 023190E7  ldr     r3, [r0, r2, asl #2]
0030 012082E2  add     r2, r2, #1
0034 630052E3  cmp     r2, #99
0038 031081E0  add     r1, r1, r3
003c 090000DA  ble     .L26

Figure 5. IA32, M68000, and ARM code produced by the GCC compiler for the program loop on the top.

ADDRESSING: DIRECT AND INDIRECT 9



the instruction, (2) the content of a register, or (3) a scaled
value of a register. Bit 25 of the instruction word deter-
mines the interpretation of the 12 least significant bits
(Fig. 6). When bit 25 is a ‘‘0’’, the effective address of the
operand is computed as follows: The 12-bit immediate field
is added to (U¼1) or subtracted from (U¼0) the content of
the base register Rn. When bit 25 is a ‘‘1’’, the effective
address is computed as follows: The content of the scaled
index register Rm is added to or subtracted from the
content of the base register Rn. Scaling type is defined
by the 2-bit Sh field, and the shifting magnitude is defined
by a 5-bit Shift field. A pre-indexed (P¼1) addressing uses
the computed address for the load or store operation. If a
write-back is requested (W¼1), the base register is
updated to the computed value. A post-indexed (P¼0)
addressing uses the unmodified base register for the
effective address calculation, and then it updates the
base register independently of the W field.

Several addressing modes can be inferred from this
encoding. For example, the post-indexed or pre-indexed
register indirect with the immediate field equal to zero
corresponds to the classic register indirect addressing
mode. When the immediate value is nonzero, this mode
corresponds to the post- or pre-indexed autoincrement or
autodecrement addressing modes. It should be noted that a
base register could be incremented or decremented by any
value that can be encoded in the 12-bit immediate value,
providing an increased flexibility compared with the classic
implementations of the autoindexing modes. If the offset
address comes from an index register, the addressing mode
corresponds to the register indirect with index mode. When
the value in the index register is scaled, this addressing
mode becomes equivalent to the register indirect with
scaled index mode, but with increased flexibility in select-
ing a scale factor. Thus, thanks to very clever encodings, a
rich set of addressing modes is supported.

Table 4. ARM Addressing Modes. Note: PC Relative Addressing Modes are Inferred From the Preindexed with the PC Serving
as the Base Register

Addressing modes Example RTL Description

Immediate offset
Preindexed LD r0, [r1, #�offset12] EA  [r1] � offset

[r0] [Mem(EA)]

Preindexed with writeback LD r0, [r1, #�offset12]! EA  r1 � offset
[r0] [Mem(EA)]
[r1] [r1] � offset

Postindexed LD r0, [r1], #�offset12 EA  [r1];
[r0] [Mem(EA)]
[r1] [r1] � offset

(Scaled) register offset
Preindexed LD r0, [r1, �r2, Sh, #Shift] EA  [r1]�([r2] Sh #Shift)

[r0] [Mem(EA)]

Preindexed with writeback LD r0, [r1, �r2, Sh, #Shift]! EA  [r1]�([r2] Sh #Shift)
[r0] [Mem(EA)]
[r1] [r1]�([r2] Sh #Shift)

Post-indexed LD r0, [r1], �r2, Sh, #Shift EA  [r1]
[r0] [Mem(EA)]
[r1] [r1]�([r2] Sh #Shift)

cond P#10 LWBU

011121516192021222324252831

0

Rd Offset

12-bit immediate

1 Shift Rm0Sh

011

011 34567

2627

Rn

Figure 6. Binary encoding of word-size and unsigned byte-szie data transfer instructions. Legend: Rn - base register, Rd - source/
destination register, L-load or store, W - write-back (autoindex), B-unsigned byte or word, U - up/down, P - pre or post index, cond - condition
field enabling conditional execution.

10 ADDRESSING: DIRECT AND INDIRECT



BIBLIOGRAPHY

1. J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, 4th ed., San Maleo, CA: Morgan
Kaufmann, 2007.

2. A. Clements, Microprocessor Systems Design: 68000 Hard-
ware, Software, and Interfacing, 3rd ed., New York: PWS
Publishing Company, 1997.

3. Intel(1) 64 and IA-32 Architectures Software Developer’s Man-
ual Volume 1: Basic Architecture, Available: http://www.intel.-
com/products/processor/manuals/index.htm.

4. S. Furber, ARM Systems-on-Chip Architecture Reading, MA:
Addison-Wesley, 2000.

READING LIST

J. L. Hennessy, VLSI processor architecture, IEEE Trans. Com-
put., 33 (12): 1221–1246, 1984.

D. Patterson, Reduced instruction set computers, Commun. ACM,
28 (1): 8–21, 1985.

ALEKSANDAR MILENKOVIC

University of Alabama, Huntsville
Huntsville, Alabama

ADDRESSING: DIRECT AND INDIRECT 11



A

ANALOG-TO-DIGITAL CONVERSION
IN THE EARLY TWENTY-FIRST CENTURY

Analog-to-digital converters (ADCs) continue to be impor-
tant components of signal-processing systems, such as those
for mobile communications, software radio, radar, satellite
communications, and others. This article revisits the state-
of-the-art of ADCs and includes recent data on experimental
converters and commercially available parts. Converter
performances have improved significantly since previous
surveys were published (1999–2005). Specifically, aperture
uncertainty (jitter) and power dissipation have both
decreased substantially during the early 2000s. The lowest
jitter value has fallen from approximately 1 picosecond in
1999 to <100 femtoseconds for the very best of current
ADCs. In addition, the lowest values for the IEEE Figure
of Merit (which is proportional to the product of jitter and
power dissipation) have also decreased by an order of mag-
nitude.For converters that operate at multi-GSPS rates, the
speed of the fastest ADC IC device technologies (e.g., InP,
GaAs) is the main limitation to performance; as measured
by device transit-time frequency, fT, has roughly tripled
since 1999. ADC architectures used in high-performance
broadband circuits include pipelined (successive approxi-
mation, multistage flash) and parallel (time-interleaved,
filter-bank) with the former leading to lower power opera-
tion and the latter being applied to high-sample rate con-
verters. Bandpass ADCs based on delta-sigma modulation
are being applied to narrow band applications with ever
increasing center frequencies. CMOS has become a main-
stream ADC IC technology because (1) it enables designs
with low power dissipation and (2) it allows for significant
amounts of digital-signal processing to be included on-chip.
DSP enables correction of conversion errors, improved
channel matching in parallel structures, and provides
filtering required for delta-sigma converters. Finally, a
performance projection based on a trend in aperture jitter
predicts 25 fs in approximately 10 years, which would imply
performance of 12 ENOB at nearly 1-GHz bandwidth.

INTRODUCTION

During the past three decades, especially the past 7–10
years, the increasingly rapid evolution of digital inte-
grated circuit technologies, as predicted by Moore’s
Law, has led to ever more sophisticated signal-processing
systems. These systems operate on a wide variety of con-
tinuous-time signals, which include speech, medical ima-
ging, sonar, radar, electronic warfare, instrumentation,
consumer electronics, telecommunications (terrestrial
and satellite), and mobile telecommunications (cell
phones and associated networks).

Analog-to-digital converters (ADCs) are the circuits
that convert these and other continuous-time signals to
discrete-time, binary-coded form, that is, from human-
recognizable form to computer-recognizable form. Such a

conversion can be thought of as a two-step process. First,
the input signal is sampled in time, usually at regularly
spaced intervals; fsamp ¼ 1/T, where T ¼ sampling interval
(e.g., for fsamp ¼ 1 gigasample per second, T ¼ 1 ns). The
second step is to quantize (or digitize) the samples (usually
a voltage) in amplitude. The maximum signal range (full-
scale input voltage) is divided into 2N subranges, where
N¼ the ADC’s resolution (number of output leads), (e.g., for
N ¼ 12 bits, a 1-Volt full-scale range is divided into 2N ¼
4096 levels). The least-significant bit (LSB) is 1 V / 2N¼ 244
mV. Two potential purposes for these conversions are (1) to
enable computer analysis of the signal and (2) to enable
digital transmission of the signal.

The limitations of ADCs in terms of both resolution and
sampling rate are determined by the capability of the
integrated circuit (IC) process, as well as chip design tech-
niques, used to manufacture them, and, were perceived as a
limiting factor (1) to system performances as recently as
1999. However, more recent developments have demon-
strated that significant progress has occurred with respect
to converter performances, especially for sampling rates in
the 100 megasamples/s (MSPS) range as well as in the
neighborhood of 1 gigasample/s. The purpose of this article
is to provide an update to previous ADC surveys (1–3) and
to analyze the new results.

The next section of this article summarizes the charac-
terization and limitations of ADCs, and the section on ADC
performance update discusses how ADC performances
have changed (improved) during the past 8 years. The
next section covers Figures of Merit, and the section on
high-performance ADC architectures discusses architec-
tures that are presently in use along with the advantages
conferred by increased ADC IC complexity. Then, perfor-
mance trends and projections are discussed, and finally, the
last section gives a summary and provides conclusions.
Appendix 1 contains a list of the more than 175 ADCs
covered in this work.

PERFORMANCE CHARACTERIZATION AND LIMITATIONS

One of the key parameters describing ADC performances is
signal-to-noise plus distortion ratio, (SNDR), which is
defined as the ratio of the root mean square signal ampli-
tude to the square root of the integral of the noise power
spectrum (including spurious tones) over the frequency
band of interest [e.g., for a Nyquist converter, the pertinent
band extends from 0 to one-half the sampling rate (fsamp/2)].
Another way of expressing this ratio is in terms of the
effective number of bits (ENOB) which is obtained from
SNDR(dB)¼ 20�log10(SNDR) by Ref. 4.

ENOB ¼ SNDRðdBÞ � 1:76

6:02
ð1Þ

This expression includes the effects of all losses asso-
ciated with the subject ADC, which include equivalent

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



input-referred thermal noise, ENOBthermal, aperture
uncertainty (jitter) noise, ENOBaperture, and comparator
ambiguity, ENOBambig, (1), as well as distortion induced
by spurious tones. If we were dealing with a loss-free,
distortion-free ADC, then the value of ENOB obtained
from Equation (1) would equal the number of output leads
N, and it would correspond to the (intrinsic) quantization
noise case. Expressions for ENOB for thermal noise, jitter,
and comparator ambiguity losses (each acting separately)
are given below:

ENOBthermal ¼ log2ð
V2

pp

12kTReff fsig
Þ1=2 � 1 ð2Þ

ENOBaperture ¼ log2ð
1

2p fsigta
Þ � 1 ð3Þ

ENOBambiguity ¼
p fT

13:9fsig
� 1:1 ð4Þ

Here, Vpp is the maximum peak-to-peak input voltage
presented to the ADC, k is Boltzmann’s constant, T is
the semiconductor substrate temperature in kelvins, Reff

is the effective input resistance, fsig is the analog input
frequency, ta is the rms aperture jitter, and fT is the transit-
time frequency associated with the transistors used in the
given ADC IC process technology.

It is noted that for Nyquist ADCs, fsig in Equations (2)–(4)
can be replaced by fsamp/2, and the resulting expressions
would correspond closely, apart from one small numerical
difference in Equation (3), to those presented in Ref. 1 with
ENOBx replacing Bx, where x is thermal or aperture or
ambiguity.However,fornon-Nyquistoperation,(e.g.,under-
sampling),Equations (2)–(4) shouldbeusedaswrittenabove
because fsig can be different (greater) than fsamp/2. Hence,
these expressions are more general than those in Ref. 1.

Another important ADC characteristic is spurious-free
dynamic range (SFDR), which when expressed in dBc, is
the difference of the input signal magnitude and the largest
spurious tone in the frequency-band of interest. The quan-
tity SFDR bits is analogous to ENOB and is defined by

SFDR bits ¼ SFDRðdBcÞ=6:02 ð5Þ

A complete characterization of an ADC includes measuring
the values of SNDR and SFDR as a function of input signal
frequency fsig with fsamp as a parameter. For a baseband
ADC, at low values of fsig, the SNDR is constant with respect
to fsig and then decreases as fsig increases. The value of fsig at
which the SNDR decreases to 3 dB below the low-frequency
value is the effective resolution bandwidth (ERBW). This
important characteristic implies the range of frequencies
over which the converter may be used. If ERBW � fsamp/2,
then the ADC is a Nyquist converter, which is the design
goal of many ADCs. Not all published reports on alleged
Nyquist ADCs satisfy the conditions for Nyquist conver-
sion. However, some still achieve noteworthy sampling
speed, SNDR or SFDR. To include these examples, the
values for fsig, fsamp, as well as associated SNDR and
SFDR are stated clearly herein.

Some converters have ERBW values well beyond fsamp/2,
and,asnotedabove,implytheycanbeusedinundersampling
mode. Because this type of operation involves sampling
upper Nyquist zones, an antialiasing filter (AAF) must be
placed in the signal path and in front of the converter to
prevent contamination by unwanted out-of-zone signals.
This Process results in using the ADC as a bandpass con-
verter in which the passband of the AAF defines the band of
interest, and, through the natural mixing property of the
sampling process, the passband is shifted to baseband. The
appropriate value of ENOB for the bandpass case is the
midband value. An example would be sampling at 100
MSPS while using an AAF that covers the band 100 MHz
þdto150MHz-d (thirdzone),whered isdeterminedfromthe
AAF skirts and is largeenough to keep out unwanted signals
and/or tones.

In addition, delta-sigma (DS) converters (modulator
followed by digital decimation filter) are coming more into
use for bandpass [intermediate frequency (IF) and radio
frequency (RF) sampling] conversion as well as (well-
established) lowpass (baseband sampling). These ADCs
are each characterized, in this study, as having an effective
sampling rate ¼ 2 � DS passband (determined by the
modulator 3-dB bandwidth), and an ERBW¼ DS passband.
Continuous time DS ADCs do not usually require AAFs (it is
built-into the DS architecture) whereas discrete-time DS

ADCs do. Again, the midband value of ENOB applies here.
Two-tone intermodulation distortion (IMD) of ADCs is

particularly relevant for receiver applications. One excites
an ADC with two sinusoids of equal amplitude but with
different frequencies, f1 and f2, and observes spurious tones
in the FFT spectrum of the ADC output. The strongest such
tone is usually second- (� f1 � f2) or third-order (� f1 � 2f2,
or � 2f1 � f2). Unfortunately, whereas IMD data are
reported in the literature, no standard set of conditions
are available for IMD evaluation, which makes compari-
sons between ADCs somewhat difficult. Hence, IMDs must
be evaluated by the prospective user for the intended appli-
cation.

ADC PERFORMANCE UPDATE

Figure 1 shows ENOB as a function of analog input
frequency (Fig. 1a) and of sampling rate (Fig. 1b) for
state-of-the-art ADCs (as of late 2007). The use of fsig

rather than fsamp as abscissa in Figs. 1a and 2, and as
independent variable in Equations (2)–(4), reflects the fact
that many modern converters can sample in upper
Nyquist zones. As discussed above, this finding means
that the analog input bandwidth for such ADCs extends
beyond fsamp/2 and is indicative of the attainment of lower
aperture uncertainty values, and hence higher ENOB via
Equation (3). The downward sloping lines, with slopes
equal to�3.33 ENOB/decade (�20 dB/decade) and labeled
1999 (jitter ¼ 1 ps) and 2007 (jitter ¼ 100 fs) in the figure,
represent the state-of-the-art for those years. It is evident
that typical best values for ENOB (Fig. 1a) have increased
by more than 3 effective bits, which corresponds to an
order of magnitude improvement in resolution. In fact, as
will be shown in the next section, most of this advance has

2 ANALOG-TO-DIGITAL CONVERSION IN THE EARLY TWENTY-FIRST CENTURY



occurred within the past 4 years. In Fig. 1b, the two jitter
lines are repeated using the correspondance fsig¼ fsamp/ 2.
Here, the overall improvement seems to be only a little
more than 2 ENOB rather than 3 ENOB, because the true
performance of converters that operate in undersampling
mode is not evident when fsamp is used as abscissa. One
might interpret this comparison as indicating two thirds
of the SNDR increase is caused by improved sampling and
one third is caused by an improved capability to under-
sample.

The thermal noise limitation is indicated by the more
gently sloping lines (�10 dB/decade) in Fig. 1a and 1b. At
values of fsig � 3 MHz, the effective input-referred resis-
tance for most ADCs in this range is on the order of a few
thousand ohms (lower line is for 2000 ohms) and seems to
limit the attained ENOB. For systems that operate at
higher input frequencies, the input-referred resistance
shifts toward 50 ohms (upper line is for 50 ohms) and is
less of a limitation compared with aperture uncertainty. At
very high values of fsig, (i.e., a few GHz), ADC performance
is limited abruptly by comparator ambiguity (IC technology
presently at fT � 150 GHz). However, this limitation has
been pushed out by about a factor of three since 1999 (1). It
is noted that the ultimate limit on ADC performance is
suggested by the Heisenberg Uncertainty Principle, [e.g.,
16 ENOB at 30 GHz (jitter � 0.1 fs)].

The SFDR for the converters covered in this article is
shown in Fig. 2. Here, an improvement of 3 SFDR bits has
occurred (essentially the same change as in Fig. 1a).
Finally, it is pointed out that the recent improvements in
the state-of-the-art have occurred in the frequency range of
�50 MHz to �300 MHz; it is felt that this change was
caused by an emphasis on communications applications.
Over 175 converters (Appendix 1), which include experi-
mental ADCs and commercially available parts, are repre-
sented in Figs. 1 and 2.

It is worthwhile to compare ENOB and SFDR bits with
the stated number of bits (number of output pins) because
confusion often occurs over the interpretation of these
quantities. These comparisons are shown in Fig. 3 in
which the differences (stated bits–ENOB) and (stated
bits – SFDR bits) are shown as functions of fsig. As can
be observed from the graphs in Fig. 3, the differences are
not too dissimilar to those reported in 1999 (1), whereas
the spreads in the data remain rather broad (stated bits�
ENOB ¼ 1.53 � 1.5 bits; stated bits – SFDR bits ¼ 0.05 �
3.1 bits). The reasons for such diversity are complex, but
most likely include (1) the variety of design objectives

0

2

4

6

8

10

12

14

16

18

20

1.E+071.E+061.E+051.E+04 1.E+111.E+101.E+091.E+08

Analog Input Frequency (Hz)

E
N

O
B

ENOB

thermal (50 ohms)

thermal (2000 ohms)

aperture (1.0 ps)

aperture (100 fs)

ambig (150 GHz)

ambig (500 GHz)

Heisenberg (0.092 fs)

1999

2007

0

2

4

6

8

10

12

14

16

18

20

1.E+111.E+101.E+091.E+081.E+071.E+061.E+051.E+04

Sample Rate (SPS)

E
N

O
B

ENOB

thermal (50 ohms)

thermal (2000 ohms)

aperture (1.0 ps)

aperture (100 fs)

ambig (150 GHz)

ambig (500 GHz)

Heisenberg (0.092 fs)

1999

2007

Figure 1. (a) Updated survey of state-of-the-art analog-to-digital
converters. The graph shows the effective number of bits (ENOB)
as a function of analog input frequency for each converter. The
downward sloping lines labeled 1999 and 2007 represent the state-
of-the-art for those years, and these values correspond to aperture
jitter values of 1 ps and 100 fs, respectively. The data indicate an
improvement of more than 3 ENOB during the past 8 years. The
other curves represent the limitations caused by input-referred
noise (thermal), comparator ambiguity (ambig), and ultimately the
Heisenberg Uncertainty Principle. (b) In this graph, the effective
number of bits (ENOB) is shown as a function of sample rate for
each converter. The downward sloping lines labeled 1999 and 2007
are repeated from Fig. 1a and represent the jitter state-of-the-art
for those years. Here, the apparent improvement is approximately
2 ENOB instead of three, which occures because the converters
that operate in undersampling mode are not as apparent in this
graph.

0

2

4

6

8

10

12

14

16

18

20

22

1E+111E+101E+91E+81E+71E+61E+51E+4

Analog Input Frequency (Hz)

S
F

D
R

 b
it

s

ADC data

S-O-T-A 2007

S-O-T-A 1999

2007
1999

Figure 2. Spur-free dynamic range expressed as SFDR bits
plotted against input frequency for each converter. The downward
sloping lines labeled 1999 and 2007 represent the state-of-the-art
for those years. These data indicate an improvement of approxi-
mately 3 SFDR bits during the past 8 years.

ANALOG-TO-DIGITAL CONVERSION IN THE EARLY TWENTY-FIRST CENTURY 3



(high SNDR, or high SFDR, and/or low power dissipation,
etc.) and (2) the variety of IC technologies (many flavors of
CMOS, Si bipolar, SiGe, InP, GaAs, hybrids, etc.) applied
to the realization of these circuits.

FIGURES OF MERIT

Figures of Merit are useful for assessing the performance of
ADCs. Four examples are presented below, one for perfor-
mance regardless of power and three that account for it.

The expression for aperture uncertainty,

ta ¼
1

4 � p � fsig � 2ENOB
ðsecondsÞ ð6Þ

can be used as a performance measure because it contains
the product of the quantities fsig and 2ENOB (similar to a
gain-bandwidth product), and it is indicative of ADC state-
of-the-art (e.g., ta ¼ 1 ps and 100 fs in Fig. 1a).

When it is desired to include power dissipation, Pdiss, an
‘‘old’’ figure of merit (1) could be used,

F ¼ 2ENOB � fsamp

pdiss

ðeffective LSBs per JouleÞ ð7Þ

This expression does not account for the possibility that fsig

can be greater than fsamp/2(i.e., undersampling mode). A
‘‘new(er)’’ figure of merit, which does include this case, is
obtained from

Fa ¼
1

2 � p � ta � Pdiss
¼ 2 � fsig � 2ENOB

Pdiss
ðeffective LSBs per JouleÞ

ð8Þ

Note that for a Nyquist ADC, Fa reduces to F. Taking this
equation a step further, Fa is inverted and then becomes a

more general form of the IEEE Figure of Merit,

FOMa ¼
1

Fa
¼ Pdiss

2 � fsig � 2ENOB
ðJoules per effective LSBÞ ð9Þ

Another way of looking at equation (8) is as the product,

Fa � ta ¼
1

2 � p � Pdiss
ð10Þ

which is a function only of power dissipation. Figure 4
shows Fa versus ta for the ADC population. A wide varia-
tion in Pdiss is evident nearly six orders of magnitude.

HIGH-PERFORMANCE ADC ARCHITECTURES

The highest-performing ADCs are listed in Table 1(5–13).
They are sorted primarily by aperture uncertainty and
secondarily by the IEEE Figure of Merit, FOMa. The list

Figure 4. The relationship of Fa and ta for the ADCs studied
herein. Nearly six orders of magnitude in ADC power dissipation
are evident.

-4

-3

-2

-1

0

1

2

3

4

1E+101E+81E+61E+4

Analog Input Frequency (Hz)

S
ta

te
d

 B
it

s 
- 

E
N

O
B

ideal

average difference = 1.57 bits

-5

-4

-3

-2

-1

0

1

2

3

4

5

1E+101E+81E+61E+4

Analog Input Frequency (Hz)

S
ta

te
d

 B
it

s 
- 

S
F

D
R

 B
it

s

average difference = 0.09 bits

ideal

Figure 3. The differences between stated bits (number of outputs) and ENOB and SFDR bits for the ADC population considered in this
study are shown here. For ENOB, the average difference is about 1.5 bits, whereas for SFDR bits it is nearly zero. However, a wide range
exists in the data: > � 1.5 bits for ENOB and > � 3 bits for SFDR.

4 ANALOG-TO-DIGITAL CONVERSION IN THE EARLY TWENTY-FIRST CENTURY



5

T
a

b
le

1
.

A
li

st
o

f
h

ig
h

-p
e
r
fo

r
m

a
n

c
e

A
D

C
s

so
r
te

d
fi

r
st

b
y

a
p

e
r
tu

r
e

u
n

c
e
r
ta

in
ty

,
t a

,
a

n
d

se
c
o

n
d

a
r
il

y
b

y
IE

E
E

F
ig

u
r
e

o
f

M
e
r
it

,
F

O
M

a
,
C

o
lu

m
n

1
in

d
e
x

e
s

th
e

c
o

n
v

e
r
te

r
s

In
d

ex
In

st
it

u
ti

on
A

u
th

or
/

P
a
rt

N
o.

Y
ea

r
te

ch
n

ol
og

y
a
rc

h
it

fs
a
m

p
H

z
fs

ig
H

z
b
it

s
S

N
D

R
E

N
O

B
ta

S
F

D
R

S
F

D
R

b
it

s
V

in
B

W
in

H
z

P
d

is
W

F
F

a
F

O
M

a

1
L

in
ea

r

T
ec

h
n

ol
og

y

L
T

C
2
2
0
8

2
0
0
6

C
M

O
S

p
ip

el
in

ed
+

d
ig

er
ro

r
co

rr

1
.3

0
E

+
0
8

2
.5

0
E

+
0
8

1
6

7
3
.6

1
1
.9

8
.1

4
E

-1
4

7
8
.0

1
3
.0

2
.2

5
7
.0

0
E

+
0
8

1
.2

5
0

4
.0

7
E

+
1
1

1
.5

6
E

+
1
2

6
.3

9
E

2
A

n
a
lo

g

D
ev

ic
es

A
D

9
4
6
0

2
0
0
6

C
M

O
S

p
ip

el
in

ed
1
.0

5
E

+
0
8

1
.7

0
E

+
0
8

1
6

7
6
.6

1
2
.4

8
.4

7
E

-1
4

8
3
.0

1
3
.8

3
.4

0
8
.0

0
E

+
0
8

1
.6

0
0

3
.6

3
E

+
1
1

1
.1

7
E

+
1
2

8
.5

2
E

3
A

n
a
lo

g

D
ev

ic
es

A
D

9
4
4
6

2
0
0
5

C
M

O
S

p
ip

el
in

ed
1
.0

0
E

+
0
8

1
.2

5
E

+
0
8

1
6

7
7
.5

1
2
.6

1
.0

4
E

-1
3

8
2
.0

1
3
.7

3
.2

0
2
.2

5
E

+
0
8

2
.3

0
0

2
.6

6
E

+
1
1

5
.4

6
E

+
0
8

1
.5

0
E

4
L

in
ea

r

T
ec

h
n

ol
og

y

L
T

C
2
2
0
8

2
0
0
6

C
M

O
S

p
ip

el
in

ed
+

d
ig

er
ro

r
co

rr

1
.3

0
E

+
0
8

1
.4

0
E

+
0
8

1
6

7
6
.4

1
2
.4

1
.0

5
E

-1
3

8
5
.0

1
4
.2

2
.2

5
7
.0

0
E

+
0
8

1
.2

5
0

5
.6

2
E

+
1
1

1
.2

1
E

+
1
2

8
.2

7
E

5
A

n
a
lo

g

D
ev

ic
es

A
D

6
6
4
5

2
0
0
4

C
b
ip

ol
a
r

3
-s

ta
g
e.

d
ig

er
ro

r
co

rr
:

1
.0

5
E

+
0
8

2
.0

0
E

+
0
8

1
4

7
2
.0

1
1
.7

1
.2

2
E

-1
3

6
3
.0

1
0
.5

2
.2

0
2
.7

0
E

+
0
8

1
.5

0
0

2
.2

8
E

+
1
1

8
.6

8
E

+
1
1

1
.1

5
E

6
T

ex
a
s

In
st

ru
m

en
ts

A
D

S
5
5
4
6

2
0
0
6

C
M

O
S

p
ip

el
in

e
1
B

/

st
a
g
e

S
H

A
D

S
P

1
.9

0
E

+
0
8

3
.0

0
E

+
0
8

1
4

6
7
.4

1
0
.9

1
.3

8
E

-1
3

7
2
.0

1
2
.0

2
.0

0
5
.0

0
E

+
0
8

1
.1

3
0

3
.2

2
E

+
1
1

1
.0

2
E

+
1
2

9
.8

3
E

7
A

n
a
lo

g

D
ev

ic
es

A
D

9
6
4
0

2
0
0
6

C
M

O
S

d
u

a
l

S
H

A
+

p
ip

el
in

ed
+

D
S

P

1
.5

0
E

+
0
8

1
.7

0
E

+
0
8

1
4

6
9
.8

1
1
.3

1
.8

5
E

-1
3

8
0
.0

1
3
.3

1
.0

0
6
.5

0
E

+
0
8

0
.7

8
0

4
.8

6
E

+
1
1

1
.1

0
E

+
1
2

9
.0

8
E

8
T

ex
a
s

In
st

ru
m

en
ts

A
D

S
5
5
4
6

2
0
0
6

C
M

O
S

p
ip

el
in

e
1
B

/

st
a
g
e

S
H

A
.

D
S

P

1
.9

0
E

+
0
8

1
.5

0
E

+
0
8

1
4

7
0
.8

1
1
.5

1
.8

7
E

-1
3

8
0
.0

1
3
.3

2
.0

0
5
.0

0
E

+
0
8

1
.1

3
0

4
.7

6
E

+
1
1

7
.5

2
E

+
1
1

1
.3

3
E

9
L

in
ea

r

T
ec

h
n

ol
og

y

L
T

C
2
2
0
8

2
0
0
6

C
M

O
S

p
ip

el
in

ed
+

D
S

P

1
.3

0
E

+
0
8

7
.0

0
E

+
0
7

1
6

7
7
.4

1
2
.6

1
.8

8
E

-1
3

9
0
.0

1
5
.0

2
.2

5
7
.0

0
E

+
0
8

1
.2

5
0

6
.3

0
E

+
1
1

6
.7

9
E

+
1
1

1
.4

7
E

1
0

A
tm

el
A

T
8
4
A

S
0
0
8

2
0
0
5

n
p

n

B
ip

ol
a
r

fl
a
sh

,

d
ig

er
ro

r
co

rr

2
.2

0
E

+
0
9

2
.0

0
E

+
0
9

1
0

4
8
.0

7
.7

1
.9

4
E

-1
3

5
5
.0

9
.2

0
.5

0
3
.3

0
E

+
0
9

4
.2

0
0

1
.0

7
E

+
1
1

1
.9

5
E

+
1
1

5
.1

2
E

1
1

L
in

ea
r

T
ec

h
n

ol
og

y

L
T

C
2
2
9
4

2
0
0
5

C
M

O
S

p
ip

el
in

ed
8
.0

0
E

+
0
7

1
.4

0
E

+
0
8

1
2

7
0
.0

1
1
.3

2
.2

0
E

-1
3

8
5
.0

1
4
.2

2
.0

0
5
.7

5
E

+
0
8

0
.2

1
1

9
.8

0
E

+
1
1

3
.4

3
E

+
1
2

2
.9

2
E

1
2

T
ex

a
s

In
st

ru
m

en
ts

A
D

S
5
4
6
3

2
0
0
6

B
iC

M
O

S
p

ip
el

in
ed

5
.0

0
E

+
0
8

2
.3

0
E

+
0
8

1
2

6
4
.7

1
0
.5

2
.4

6
E

-1
3

7
8
.0

1
3
.0

2
.2

0
1
.3

0
E

+
0
9

2
.2

0
0

3
.1

9
E

+
1
1

2
.9

4
E

+
1
1

3
.4

1
E

1
3

A
tm

el
A

T
8
4
A

S
0
0
4

2
0
0
5

n
p

n

B
ip

ol
a
r

fl
a
sh

,

d
ig

er
ro

r
co

rr

2
.0

0
E

+
0
9

1
.0

0
E

+
0
9

1
0

5
1
.0

8
.2

2
.7

5
E

-1
3

5
5
.0

9
.2

0
.5

0
3
.0

0
E

+
0
9

6
.5

0
0

8
.9

2
E

+
1
0

8
.9

2
E

+
1
0

1
.1

2
E

1
4

A
tm

el
A

T
8
4
A

S
0
0
8

2
0
0
5

n
p

n

B
ip

ol
a
r

fl
a
sh

,

d
ig

er
ro

r
co

rr

1
.7

0
E

+
0
9

8
.5

0
E

+
0
8

1
0

5
2
.0

8
.3

2
.8

8
E

-1
3

5
6
.0

9
.3

0
.5

0
3
.3

0
E

+
0
9

4
.2

0
0

1
.3

2
E

+
1
1

1
.3

2
E

+
1
1

7
.6

0
E

1
5

A
n

a
lo

g

D
ev

ic
es

A
D

9
4
4
5

2
0
0
5

C
M

O
S

p
ip

el
in

ed
1
.2

5
E

+
0
8

7
.0

0
E

+
0
7

1
4

7
3
.5

1
1
.9

2
.9

4
E

-1
3

8
5
.0

1
4
.2

3
.2

0
3
.0

0
E

+
0
9

2
.3

0
0

2
.1

0
E

+
1
1

2
.3

5
E

+
1
1

4
.2

5
E

1
6

A
tm

el
A

T
8
4
A

S
0
0
1

2
0
0
6

n
p

n

B
ip

ol
a
r

S
H

A
+

p
ip

el
in

e

5
.0

0
E

+
0
8

2
.5

0
E

+
0
8

1
2

6
2
.0

1
0
.0

3
.0

9
E

-1
3

7
2
.0

1
2
.0

1
.1

0
1
.5

0
E

+
0
9

2
.3

0
0

2
.2

4
E

+
1
1

2
.2

4
E

+
1
1

4
.4

7
E

1
7

R
oc

k
w

el
l

S
ci

en
ti

fi
c

R
A

D
0
0
8

2
0
0
6

G
a
A

s

H
B

T

fo
ld

in
g
,

in
te

rp
ol

a
ti

n
g

3
.0

0
E

+
0
9

1
.5

0
E

+
0
9

8
4
6
.0

7
.3

3
.2

5
E

-1
3

5
5
.0

9
.2

2
.0

0
1
.0

0
E

+
1
0

5
.5

0
0

8
.8

9
E

+
1
0

8
.8

9
E

+
1
0

1
.1

2
E

1
8

T
ex

a
s

In
st

ru
m

en
ts

A
D

S
5
5
4
6

2
0
0
6

C
M

O
S

p
ip

el
in

ed
1
B

/

st
a
te

S
H

A
D

S
P

1
.9

0
E

+
0
8

7
.0

0
E

+
0
7

1
4

7
2
.5

1
1
.8

3
.3

0
E

-1
3

8
4
.0

1
4
.0

2
.0

0
5
.0

0
E

+
0
8

1
.1

3
0

5
.7

9
E

+
1
1

4
.2

7
E

+
1
1

2
.3

4
E

1
9

T
er

a
n

et
ic

s
S

.
G

u
p

ta

et
a
l.

(5
)

2
0
0
6

0
.1

3
u

m

C
M

O
S

ti
m

e-
in

te
rl

ea
v
ed

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

1
1

5
5
.0

8
.8

3
.4

6
E

-1
3

5
3
.1

8
.9

5
.0

0
E

+
0
8

0
.2

5
0

1
.8

4
E

+
1
2

1
.8

4
E

+
1
2

5
.4

4
E

2
0

R
oc

k
w

el
l

S
ci

en
ti

fi
c

R
A

D
0
1
0

2
0
0
6

G
a
A

s

H
B

T

2
-s

ta
g
e

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

1
0

5
5
.0

8
.8

3
.4

6
E

-1
3

6
0
.0

1
0
.0

1
.0

0
6
.0

0
E

+
0
9

5
.0

0
0

9
.1

9
E

+
1
0

9
.1

9
E

+
1
0

1
.0

9
E

2
1

A
n

a
lo

g

D
ev

ic
es

A
D

6
6
4
5

2
0
0
4

C
b
ip

ol
a
r

3
-s

ta
g
e

1
.0

5
E

+
0
8

5
.2

5
E

+
0
7

1
4

7
4
.5

1
2
.1

3
.4

9
E

-1
3

9
3
.0

1
5
.5

2
.2

0
2
.7

0
E

+
0
8

1
.5

0
0

3
.0

4
E

+
1
1

3
.0

4
E

+
1
1

3
.2

9
E

2
2

A
n

a
lo

g

D
ev

ic
es

A
D

9
4
3
0

2
0
0
5

B
iC

M
O

S
p

ip
el

in
ed

2
.1

0
E

+
0
8

2
.4

0
E

+
0
8

1
2

6
0
.0

9
.8

3
.7

2
E

-1
3

6
3
.0

1
0
.5

1
.5

0
7
.0

0
E

+
0
8

1
.3

0
0

1
.4

4
E

+
1
1

3
.2

9
E

+
1
1

3
.0

4
E

2
3

A
n

a
lo

g

D
ev

ic
es

A
D

9
4
6
0

2
0
0
6

C
M

O
S

p
ip

el
in

ed
1
.0

5
E

+
0
8

3
.0

0
E

+
0
7

1
6

7
8
.3

1
2
.7

3
.9

5
E

-1
3

9
0
.0

1
5
.0

3
.4

0
8
.0

0
E

+
0
8

1
.6

0
0

4
.4

1
E

+
1
1

2
.5

2
E

+
1
1

3
.9

7
E

2
4

H
ew

le
tt

P
a
ck

a
rd

S
ch

il
le

r

a
n

d
B

y
rn

e

(6
)

1
9
9
1

B
ip

ol
a
r

h
y
b
ri

d

ti
m

e
in

te
rl

ea
v
ed

4
.0

0
E

+
0
9

2
.0

0
E

+
0
9

8
4
1
.5

6
.6

4
.1

0
E

-1
3

3
9
.0

0
0

9
.9

6
E

+
0
9

9
.9

6
E

+
0
9

1
.0

0
E

2
5

A
n

a
lo

g

D
ev

ic
es

A
D

9
6
4
0

2
0
0
6

C
M

O
S

d
u

a
l,

S
H

A
+

p
ip

el
in

ed
+

D
S

P

1
.5

0
E

+
0
8

7
.0

0
E

+
0
7

1
4

7
0
.6

1
1
.4

4
.1

1
E

-1
3

8
5
.0

1
4
.2

1
.0

0
6
.5

0
E

+
0
8

0
.7

8
0

5
.3

3
E

+
1
1

4
.9

7
E

+
1
1

2
.0

1
E

2
6

A
n

a
lo

g

D
ev

ic
es

A
D

1
2
4
0
1

2
0
0
5

H
y
b
ir

d
p

a
ra

ll
el

,

V
-C

or
p

,
D

S
P

4
.0

0
E

+
0
8

1
.2

8
E

+
0
8

1
2

6
4
.4

1
0
.4

4
.5

8
E

-1
3

7
5
.0

1
2
.5

3
.2

0
1
.8

0
E

+
0
8

8
.5

0
0

6
.3

8
E

+
1
0

4
.0

8
E

+
1
0

2
.4

5
E

2
7

A
g
il

en
t

L
a
b
s

P
ou

lt
on

et
a
l.

(7
)

2
0
0
3

0
.1

8
u

m

C
M

O
S

ti
m

e-
in

te
rl

ea
v
ed

2
.0

0
E

+
1
0

6
.0

0
E

+
0
9

8
2
9
.5

4
.6

5
.4

7
E

-1
3

0
.2

5
6
.6

0
E

+
0
9

9
.0

0
0

5
.3

9
E

+
1
0

3
.2

3
E

+
1
0

3
.0

9
E

2
8

A
n

a
lo

g

D
ev

ic
es

A
D

9
4
3
0

2
0
0
5

B
iC

M
O

S
p

ip
el

in
ed

2
.1

0
E

+
0
8

1
.0

0
E

+
0
8

1
2

6
4
.5

1
0
.5

5
.5

0
E

-1
3

7
7
.0

1
2
.8

1
.5

0
7
.0

0
E

+
0
8

1
.3

0
0

2
.3

4
E

+
1
1

2
.2

3
E

+
1
1

4
.4

9
E



T
a

b
le

1
.

(c
on

ti
n

u
ed

)

In
d

ex
In

st
it

u
ti

on
A

u
th

or
/

P
a
rt

N
o.

Y
ea

r
te

ch
n

ol
og

y
a
rc

h
it

fs
a
m

p
H

z
fs

ig
H

z
b
it

s
S

N
D

R
E

N
O

B
ta

S
F

D
R

S
F

D
R

b
it

s
V

in
B

W
in

H
z

P
d

is
W

F
F

a
F

O
M

a

2
9

A
tm

el
T

S
8
3
1
0
2

2
0
0
4

n
p

n

B
ip

ol
a
r

fl
a
sh

,

d
ig

er
ro

r
co

rr

1
.4

0
E

+
0
9

7
.0

0
E

+
0
8

1
0

4
7
.5

7
.6

5
.8

7
E

-1
3

5
9
.0

9
.8

0
.5

0
3
.3

0
E

+
0
9

4
.6

0
0

5
.9

0
E

+
1
0

5
.9

0
E

+
1
0

1
.7

0
E

3
0

M
a
x
im

In
te

g
ra

te
d

P
ro

d
.

M
a
x

1
0
8

2
0
0
4

B
ip

ol
a
r

fl
a
sh

1
.5

0
E

+
0
9

7
.5

0
E

+
0
8

8
4
6
.9

7
.5

5
.8

7
E

-1
3

5
4
.1

9
.0

0
.5

0
2
.2

0
E

+
0
9

5
.2

5
0

5
.1

7
E

+
1
0

5
.1

7
E

+
1
0

1
.9

4
E

3
1

N
a
ti

on
a
l

A
D

C
0
8
D

1
5
0
0

2
0
0
5

C
M

O
S

fo
ld

in
g
,

in
te

rp
ol

a
ti

n
g

1
.5

0
E

+
0
9

7
.5

0
E

+
0
8

8
4
6
.3

7
.4

6
.2

9
E

-1
3

5
3
.0

8
.8

0
.8

7
1
.7

0
E

+
0
9

0
.9

5
0

2
.6

6
E

+
1
1

2
.6

6
E

+
1
1

3
.7

5
E

3
2

R
oc

k
w

el
l

S
ci

en
ti

fi
c

R
A

D
0
0
6

2
0
0
6

G
a
A

s

H
B

T

fo
ld

in
g
,

in
te

rp
ol

a
ti

n
g

6
.0

0
E

+
0
9

3
.0

0
E

+
0
8

6
3
4
.0

5
.4

6
.4

8
E

-1
3

4
0
.0

6
.7

2
.0

0
1
.0

0
E

+
1
0

6
.0

0
0

4
.0

9
E

+
1
0

4
.0

9
E

+
1
0

2
.4

4
E

3
3

A
n

a
lo

g

D
ev

ic
es

A
D

9
2
3
0

2
0
0
6

C
M

O
S

p
ip

el
in

e,

S
H

A
.

D
S

P

2
.5

0
E

+
0
8

1
.0

0
E

+
0
8

1
2

6
3
.5

1
0
.3

6
.5

1
E

-1
3

7
7
.0

1
2
.8

1
.2

5
9
.0

0
E

+
0
8

0
.4

2
5

7
.1

9
E

+
1
1

5
.7

5
E

+
1
1

1
.7

4
E

3
4

A
n

a
lo

g

D
ev

ic
es

A
D

6
6
4
4

2
0
0
4

C
b
ip

ol
a
r

3
-s

ta
g
e,

d
ig

er
ro

r
co

rr

6
.5

0
E

+
0
7

3
.0

5
E

+
0
8

1
4

7
3
.0

1
1
.8

7
.1

5
E

-1
3

9
0
.0

1
5
.0

2
.2

0
2
.5

0
E

+
0
7

1
.3

0
0

1
.8

3
E

+
1
1

1
.7

1
E

+
1
1

5
.8

E

3
5

R
oc

k
w

el
l

N
a
ry

et
a
l.

(8
)

1
9
9
5

G
a
A

s

H
B

T

fo
ld

ed
fl

a
sh

2
.0

0
E

+
0
9

1
.0

0
E

+
0
8

8
4
1
.4

6
.6

8
.2

9
E

-1
3

4
8
.0

8
.0

0
.6

4
3
.0

0
E

+
0
9

5
.3

0
0

3
.6

2
E

+
1
0

3
.6

2
E

+
1
0

2
.7

6
E

3
6

T
el

A
si

c
T

C
1
2
0
0

2
0
0
2

S
iG

e
fo

ld
ed

fl
a
sh

1
.0

0
E

+
0
9

4
.0

0
E

+
0
8

1
0

4
9
.3

7
.9

8
.3

5
E

-1
3

4
.0

0
E

+
0
8

5
.5

0
0

4
.3

3
E

+
1
0

3
.4

7
E

+
1
0

2
.8

8
E

3
7

M
a
x
im

In
te

g
ra

te
d

P
ro

d
.

M
a
x

1
0
4

1
9
9
9

B
ip

ol
a
r

fl
a
sh

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

8
4
7
.2

7
.5

8
.5

0
E

-1
3

5
2
.3

8
.7

0
.5

0
2
.2

0
E

+
0
9

5
.2

5
0

3
.5

7
E

+
1
0

3
.5

7
E

+
1
0

2
.8

1
E

3
8

L
in

ea
r

T
ec

h
n

ol
og

y

L
T

C
2
2
9
4

2
0
0
5

C
M

O
S

p
ip

el
in

ed
8
.0

0
E

+
0
7

4
.0

0
E

+
0
8

1
2

6
8
.7

1
1
.1

8
.9

4
E

-1
3

9
0
.0

1
5
.0

2
.0

0
5
.7

5
E

+
0
8

0
.2

1
1

8
.4

4
E

+
1
1

8
.4

4
E

+
1
1

1
.1

9
E

3
9

X
ig

n
a
l

T
ec

h
n

M
it

te
re

g
g
er

et
a
l.

(9
)

2
0
0
6

0
.1

8
u

m

C
M

O
S

d
el

ta
-s

ig
m

a

3
rd

or
d

er
C

T
B

P
,

4
8

Q
fc

4
.0

0
E

+
0
7

2
.0

0
E

+
0
8

1
4

7
4
.0

1
2
.0

9
.7

1
E

-1
3

7
8
.0

1
3
.0

1
.0

0
2
.0

0
E

+
0
7

0
.0

6
9

2
.3

7
E

+
1
2

2
.3

7
E

+
1
2

4
.2

1
E

4
0

N
or

te
l

P
S

ch
v
a
n

et
a
l.

(1
0
)

2
0
0
6

0
.1

3
u

m

S
iG

e

B
iC

M
O

S

fl
a
sh

2
.2

0
E

+
1
0

7
.0

0
E

+
0
8

5
2
2
.8

3
.5

1
.0

0
E

-1
2

2
9
.0

4
.8

0
.6

4
3
.0

0
0

8
.3

0
E

+
1
0

5
.2

8
E

+
1
0

1
.8

9
E

4
1

H
P

&

R
oc

k
w

el
l

P
ou

lt
on

(H
P

),
(1

4
)

W
a
n

g
(R

)

1
9
9
4

G
a
A

s

H
B

T

fl
a
sh

4
.0

0
E

+
0
9

2
.0

0
E

+
0
8

6
3
3
.1

5
.2

1
.0

8
E

-1
2

3
3
.7

5
.6

1
.8

0
E

+
0
9

5
.7

0
0

2
.5

9
E

+
1
0

2
.5

9
E

+
1
0

3
.8

6
E

4
2

P
h

il
ip

s,

N
et

h
er

l

v
a
n

V
a
lb

u
rg

,

et
a
l.

(1
1
)

1
9
9
2

B
ip

ol
a
r

fo
ld

in
g
,

in
te

rp
ol

a
ti

n
g

6
.5

0
E

+
0
8

3
.2

5
E

+
0
8

8
4
8
.8

7
.8

1
.0

9
E

-1
2

5
1
.0

8
.5

2
.0

0
1
.5

0
E

+
0
8

0
.8

1
0

1
.8

1
E

+
1
1

1
.8

1
E

+
1
1

5
.5

4
E

4
3

In
fi

n
eo

n
P

B
og

n
er

et
a
l.

(1
2
)

2
0
0
6

0
.1

3
u

m

B
ip

ol
a
r

p
ip

el
in

ed
m

u
lt

ib
it

p
er

st
a
g
e

w
i

D
S

P
ca

l

1
.0

0
E

+
0
8

4
.0

0
E

+
0
8

1
4

6
6
.5

1
0
.8

1
.1

5
E

-1
2

6
9
.0

1
1
.5

1
.5

0
4
.0

0
E

+
0
7
8

0
.2

2
4

7
.7

1
E

+
1
1

6
.1

7
E

+
1
1

1
.6

2
E

4
4

L
u

ce
n

t

T
ec

h
n

ol
og

ie
s

C
S

P
1
1
5
2
A

1
9
9
8

C
M

O
S

d
it

h
er

ed
6
.5

0
E

+
0
7

3
.2

5
E

+
0
8

1
4

6
8
.0

1
1
.0

1
.1

9
E

-1
2

8
5
.0

1
4
.2

1
.6

0
1
.0

0
E

+
0
9

0
.7

5
0

1
.7

8
E

+
1
1

1
.7

8
E

+
1
1

5
.6

2
E

4
5

H
ew

le
tt

P
a
ck

a
rd

J
ew

et
t

et
a
l.

(1
3
)

1
9
9
7

n
p

n

B
ip

ol
a
r

2
-s

ta
g
e,

fo
ld

in
g

1
.2

8
E

+
0
8

6
.4

0
E

+
0
8

1
2

6
1
.5

9
.9

1
.2

8
E

-1
2

7
0
.0

1
1
.7

0
.5

0
2
.5

0
E

+
0
8

5
.7

0
0

2
.1

8
E

+
1
0

2
.1

8
E

+
1
0

4
.5

9
E

4
6

A
n

a
lo

g

D
ev

ic
es

A
D

6
6
4
0

1
9
9
7

C
b
ip

ol
a
r

2
-s

ta
g
e,

d
ig

er
ro

r
co

rr

6
.5

0
E

+
0
7

3
.2

5
E

+
0
8

1
2

6
7
.0

1
0
.8

1
.3

4
E

-1
2

8
0
.0

1
3
.3

2
.0

0
2
.5

0
E

+
0
7

0
.7

1
0

1
.6

7
E

+
1
1

1
.6

7
E

+
1
1

5
.9

7
E

4
7

R
oc

k
w

el
l

R
S

C
-A

D
C

0
8
0
S

1
9
9
8

G
a
A

s
H

B
T

fo
ld

ed
fl

a
sh

2
.0

0
E

+
0
9

1
.0

0
E

+
0
8

8
3
7
.0

5
.9

1
.3

8
E

-1
2

4
3
.0

7
.2

0
.8

0
5
.0

0
E

+
0
8

5
.0

0
0

2
.3

1
E

+
1
0

2
.3

1
E

+
1
0

4
.3

2
E

6



is dominated by pipelined and multistage flash architec-
tures. Also, time-interleaved, folded flash, and flash ADCs
are presented. The two converters at the top of the list,
LTC2208 and AD9460, are pipelined and have jitter values
of�80–85 fs, which is an order of magnitude below the best
of 1999.

There are eight multiple entries: LTC2208 (#1, #4, #9),
AD9460 (#2, #23), AD6645 (#5, #21), ADS5546 (#6, #8, #18),
AD9640 (#7, #25), AT84AS008 (#10, #14), LTC2294 (#11,
#38), AD9430 (#22, #28). Each of these ADCs has one entry
for Nyquist operation and one or more for undersampling
mode. Thirty-seven separate converters are represented in
the table.

Of the ADC architectures listed in Table 1, flash [# 10,
13, 14, 29, 30, 37, 40 (10), 41, (14), (15)], a parallel technique,
is the fastest. It uses 2N�1 comparators, where N is the
stated resolution, but, often includes one or two additional
comparators to measure overflow conditions. All compara-
tors sample the analog input voltage simultaneously;
hence, it is inherently fast.

The parallelism of the flash architecture has drawbacks
for high-resolution applications as the number of compara-
tors grows exponentially with N. In addition, the separa-
tion of adjacent reference voltages grows smaller
exponentially. Consequently, for large N, this architecture
would require very large, power-hungry ICs, and it is
difficult to match components in the parallel comparator
channels. Finally, increasingly large input capacitance
reduces analog input bandwidth. Most flash converters
available today have N � 8. These problems are overcome
by using variations on the flash architecture that use
relatively few comparators yet retain good speed albeit
at the expense of increased latency. They are the pipe-
lined/multistage flash [# 1–9, 11, 12, 15, 16, 20, 21, 22,
28, 33, 34, 43(12), 46], and folded-flash [# 17, 31, 32, 35, 36,
42, 45(13), 47] architectures.

Parallel configurations such as time-interleaved and
filter bank offer other ways to attain high-speed conversion.
The parallel ADCs listed in Table 1 [# 19(5), 24(6), 26,

27(7)], achieve < 1.5 ps aperture jitter, but some require
substantial power, as much as an order of magnitude larger
than single-chip converters [e.g., # 24(6)].

Sixteen of the ADCs in Table 1 (#1, 5, 6, 7, 8, 10, 12, 13,
14, 18, 25, 26, 29, 33, 34, 43 and 46) employ some type of
on-chip digital signal processing (DSP). All but one of these
were introduced after 2003, which implies that increased
IC complexity (Moore’s Law) is at least partially respon-
sible for the addition of DSP for error correction.

An architecture that trades speed for resolution is delta-
sigma (DS) modulation (17); when combined with digital
decimation filtering, it forms a complete ADC. For band-
pass RF applications, a small geometry Si process [# 39(9)]
is beneficial. This example is another instance of the impact
of Moore’s Law on ADC design and fabrication. On the other
hand, III-V technologies (15,18,19) that are intrinsically
high bandwidth are still competitors for at least the DS loop
portion of these converters. When IC technologies mature,
which include heterogeneous integration (20–22), a single-
chip DS ADC that employs InP and CMOS may eventually
be realized.1 Such techniques may also be applicable to
other ADC architectures as well.

PERFORMANCE TRENDS AND PROJECTIONS

Distributions of ADCs as functions of jitter (Fig. 5) and of
FOMa (Fig. 6) show how converter performance and effi-
ciency have progressed over the past 7 years. In Fig. 5, only
three ADCs that were announced prior to 2000 (compared
to 31 after 2000) had ta< 1 ps (6,8), (Table 1 #35). Similarly,
in Fig. 6, only two of the ADCs demonstrated prior to 2000
(compared with 32 after 2000) had FOMa values < 2.5 pJ/

1Many heterogeneous integration efforts are aimed at adding
photonic capabilities to Si-based circuits, but there is no reason
why the addition of very high-speed electronic circuits (e.g., InP)
could not be used with high-density Si circuitry as well.

Figure 5. Histogram for aperture jitter. The relatively large number of ADCs situated to the left of the arrow (smallest jitter values)
represents the post-1999 activity in the development of high-performance converters.

ANALOG-TO-DIGITAL CONVERSION IN THE EARLY TWENTY-FIRST CENTURY 7



ELSB (23,24). The upsurge in quality of demonstrated
converter designs is self-evident.

Another way of probing the data2 in Figs. 5 and 6 is to
examine the performance Figure of Merit (aperture jitter),
ta, for ADCs over the past three decades (especially the past
4 years). This is done in Fig. 7 where the log10 of the best
(lowest) value on an annual basis is graphed. The overall
trend over the past 30 years is an improvement of 1.8 ENOB
per decade. However, the progress over the past 4 years
would correspond to an astounding 9.2 ENOB per decade.
Like the similar jump in the early 1990s, this increase is
most likely not a sustainable trend. However, at face value
it shows an order of magnitude improvement in less than 4
years (not including design and development time). A more-
or-less simultaneous occurrence of factors has contributed

to this relatively sudden improvement: (1) designs that
focus on lowering aperture jitter and increasing analog
input bandwidth; (2) progress in ADC IC technology which
includes the addition of on-chip DSP; and (3) improved
quality of ADC testing.

If the lower trend line in Fig. 7 is used, then a somewhat
conservative projection indicates that a jitter value of 25 fs
may be reached in the year 2015 or so. This estimation is
equivalent to achieving, say, 12 ENOB at an 800 MHz input
frequency or 10 ENOB at an input frequency of 3 GHz. The
aperture jitter line labeled 2015 in Fig. 8 indicates the
possibilities for 25 fs jitter, whereas the comparator ambi-
guity curve labeled 2015 indicates the limitations imposed
by fT ¼ 500 GHz. At lower frequencies (10–100 MHz),
thermal noise will limit converter performance, whereas
at 10–12 GHz, comparator ambiguity is a limiting factor.
Given that fT, which scales comparator ambiguity, has
increased by a factor of three in roughly 7 years for the
fastest IC technologies, it is reasonable to assume that

2A complete listing of the ADCs discussed in this article is given in
the Appendix 1.

trendline yields 1.8 ENOBs
per decade improvement

Least squares fit of log(τa)

Lower bound (–1 std dev) of log(τa)

lo
g

(t
_a

p
er

tu
re

)

recent data indicates 9.2 ENOBs
per decade improvement

τa= 80 fs

τa = 25 fs

–11.00

–11.50

–12.50

–13.50

–14.50
1970 1980 1990 2000 2010

year

2020 2030 2040

–12.00

–13.00

–14.00

Figure 7. Derived aperture jitter [Equation (3)] for the best ADC performances as a function of the year of introduction. Converter
performances are improving, gradually although actual progress is sporadic.

Figure 6. Histogram for IEEE Figure of Merit. The relatively large number of ADCs situated to the left of the arrow (smallest FOMa values)
represents the post-1999 activity in the development of high-efficiency converters.

8 ANALOG-TO-DIGITAL CONVERSION IN THE EARLY TWENTY-FIRST CENTURY



another factor of about three will come about by the year
2015. Hence in 9–10 years, the state-of-the-art may be
defined by the boundaries of the 25 fs jitter line and the
500 GHz ambiguity curve. The intersection of these two
curves implies 8 ENOB at 10 GHz.

The data points in Fig. 8 are the same as in Fig. 1a; here,
they are sorted by power dissipation. Converters presented
at two conferences held in 2006 (ISSCC, VLSI Circuits
Symposium) are also delineated.

An examination of how converter performance has
progressed with respect to achieving low-power dissipa-
tion is shown in Fig. 9. The trend seems to be at the rate of
about �1 decade per decade, and the most efficient ADCs
have achieved just above 100 fs per conversion step.
Using the lower trend line (�1 standard deviation),
one might anticipate 10 fs per conversion step by the
year 2015. However, the simultaneous achievement of
very low ta and FOMa is not necessarily imminent, as

implied in Fig. 10. As an example, a design target of 8
ENOB at 3 GHz input frequency (current performance
capability) with a dissipation of 0.5 W corresponds to ta

�100 fs and FOMa � 0.3 pJ per conversion step. This is
beyond the current state-of-the-art.

To improve the present state-of-the-art in ADC per-
formance, significant technical challenges must be met.
Specifically, (1) a reduction in aperture uncertainty to
well below 100 fs, (2) an increase in the comparator
ambiguity limit to beyond 15 GHz (fT > 500 GHz), and
(3) accomplishing both (1) and (2) while maintaining low
power consumption (e.g., < 0.5 W). The attainment of
these characteristics may involve employment of such
technologies as heterogeneous integration (20), photonic
clock generation, and distribution (25), and perhaps
superconducting circuitry (26) where appropriate. The
continued advance of electronic ADC IC techologies is
also anticipated.

0

2

4

6

8

10

12

14

16

18

20

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11
Analog Input Frequency (Hz)

E
N

O
B < 0.1 W

0.1 W < 0.5W
0.5 W < 1 W
1 W < 2 W
2 W < 5 W
> 5 W
ISSCC 2006
VLSI Ckts 2006
thermal (50 ohms)
thermal (2000 ohms)
aperture (1.0 ps)
aperture (100 fs)
aperture (25fs)
ambig (150 GHz)
ambig (500 GHz)
Heisenberg (0.092 fs)

1999

2007

2015

2015

2007

Figure 8. ENOB versus analog input frequency (same data as in Fig. 1a). Here, the ADCs are differentiated according to power dissipation.
In addition, converters presented at two conferences (ISSCC, VLSI Circuits Symposium) held in 2006 are indicated. The intersection of the
jitter and ambiguity curves, each labeled 2007, indicates 8 ENOB at 3 GHz, close to the current state-of-the-art. The 2015 intersection implies
8 ENOB at 10 GHz.

1.E-08

1.E-09

1.E-10

1.E-11

1.E-12

1.E-13

1.E-14

Year

F
O

M
a 

- 
E

n
er

g
y 

p
er

 C
o

nv
er

si
o

n
 S

te
p

 (
J 

/ E
L

S
B

)

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

trend is approximately -1 decade per decade

–1 standard deviation

Figure 9. The evolution of the IEEE Figure of Merit for the ADCs
studied herein. The rate of decline is approximately�1 decade per
decade. If the current trend continues, then converters that operate
at 10 fs per conversion step may be realized by the year 2015.

300 fJ

100 fs

1.E-08

1.E-09

1.E-10

1.E-11

1.E-12

F
O

M
a 

- 
E

n
er

g
y 

p
er

 C
o

nv
er

si
o

n
 S

te
p

 (
J 

/ E
L

S
B

)

1.E-13 
1.E-14 1.E-13 1.E-12 1.E-11 

τa - Aperture Uncertainty (s)

1.E-10 1.E-09 1.E-08 

Figure 10. FOMa versus ta for the ADCs studied in this work. The
simultaneous achievement of very low ta (< 100 fs) and very low
FOMa (< 300 fs per conversion step) seems to be on the horizon, but
it has not yet occurred.

ANALOG-TO-DIGITAL CONVERSION IN THE EARLY TWENTY-FIRST CENTURY 9



10

A
p

p
e
n

d
ix

1
.

T
a

b
le

o
f

A
D

C
s

c
o

v
e
re

d
in

th
is

w
o

r
k

In
st

it
u

ti
on

A
u

th
or

/P
a
rt

N
o.

Y
ea

r
a
rc

h
it

fs
a
m

p
H

z
fs

ig
H

z
b
it

s
S

N
D

R
E

N
O

B
ta

S
F

D
R

S
F

D
R

b
it

s
V

in
B

W
in

H
z

P
d

is
W

F
F

a
F

O
M

a

M
IT

V
en

n
a

et
a
l.

2
0
0
6

S
A

1
.0

0
E

+
0
5

5
.0

0
E

+
0
4

1
2

6
5
.0

1
0
.5

0
1
.1

0
E

-0
9

7
1
.0

1
1
.8

3
2
.5

0
E

+
0
5

5
.8

1
E

+
1
2

5
.8

1
E

+
1
2

1
.7

2
E

-1
3

U
n

iv
N

ov
a

d
e

L
is

b
oa

J
G

oe
s

et
a
l.

2
0
0
6

d
el

ta
-s

ig
m

a

2
n

d
or

d
er

2
.0

0
E

+
0
4

1
.0

0
E

+
0
4

8
0
.0

1
0
.0

0
9
.7

4
E

-1
0

8
3
.0

1
3
.8

3
1
.0

0
E

+
0
4

2
.0

0
E

+
0
4

8
.1

7
E

+
1
1

8
.1

7
E

+
1
1

1
.2

2
E

-1
2

C
h

in
es

e
U

n
iv

er
si

ty

of
H

on
g

K
on

g

K
-P

P
u

n
2
0
0
6

d
el

ta
-s

ig
m

a
3
rd

or
d

er
C

T
,

1
B

Q

5
.0

0
E

+
0
4

2
.5

0
E

+
0
4

7
4
.0

1
2
.0

0
7
.7

7
E

-1
0

0
.5

2
.5

0
E

+
0
4

3
.7

0
E

+
0
4

5
.5

4
E

+
1
1

5
.5

4
E

+
1
1

1
.6

1
E

-1
2

M
IT

T
S

ep
k

e
et

a
l.

2
0
0
6

p
ip

el
in

ed
1

5
b
/s

ta
g
e

8
.0

0
E

+
0
6

4
.0

0
E

+
0
6

1
0

-0
.2

9
4
.0

0
E

+
0
6

2
.5

0
E

+
0
3

IM
E

C
L

eu
v
en

G
.

V
a
n

d
er

P
la

n
et

a
l.

2
0
0
6

fl
a
sh

1
.2

5
E

+
0
9

8
.2

5
E

+
0
8

4
2
3
.8

3
.6

5
1
.0

1
E

-1
1

0
.2

3
.3

0
E

+
0
9

2
.5

0
E

+
0
3

8
.3

3
E

+
1
2

8
.3

3
E

+
1
2

1
.5

8
E

-1
3

U
C

B
S

-W
C

h
en

et
a
l.

2
0
0
6

ti
m

e-
in

te
rl

ea
v
ed

S
A

R
6
.0

0
E

+
0
8

3
.0

0
E

+
0
8

6
3
2
.0

5
.0

2
8
.1

6
E

-1
2

4
.0

0
E

+
0
9

5
.3

0
E

+
0
3

3
.6

8
E

+
1
2

3
.6

8
E

+
1
2

2
.7

2
E

-1
3

U
n

v
er

si
ty

of
T

ex
a
s

K
-S

L
ee

et
a
l.

2
0
0
6

d
el

ta
-s

ig
m

a
2
n

d
or

d
er

,

2
-c

h
a
n

n
el

,
ti

m
e

in
te

rl
ea

v
ed

2
.2

0
E

+
0
6

1
.1

0
E

+
0
6

8
0
.0

1
3
.0

0
8
.8

5
E

-1
2

8
5
.0

1
4
.1

7
1
.6

1
.1

0
E

+
0
6

5
.4

0
E

+
0
3

3
.3

3
E

+
1
2

3
.3

3
E

+
1
2

3
.0

0
E

-1
3

T
ex

a
s

In
st

ru
m

en
ts

(B
u

rr
-B

ro
w

n
)

A
D

S
B

3
.2

6
2
0
0
7

su
cc

a
ss

iv
e

a
p

p
ro

x
im

a
ti

on

re
g
is

te
r

2
.5

0
E

+
0
5

1
.0

0
E

+
0
4

1
6

8
8
.0

1
4
.3

3
3
.8

8
E

-1
0

9
5
.0

1
5
.8

3
5

5
.0

0
E

+
0
5

1
.0

0
E

+
0
2

5
.1

3
E

+
1
1

4
.1

1
E

+
1
0

2
.4

4
E

-1
1

S
w

is
s

F
ed

er
a
l

In
st

it
u

te
H

a
m

m
er

sc
h

m
ie

d
,

H
u

a
n

g

1
9
9
7

S
A

2
.0

0
E

+
0
5

1
.0

0
E

+
0
6

1
0

5
6
.5

9
.0

9
1
.4

6
E

-0
9

7
9
.0

1
3
.1

7
1
.2

0
E

+
0
2

9
.1

0
E

+
0
9

9
.1

0
E

+
0
9

1
.1

0
E

-1
0

U
n

iv
er

si
ty

of
T

ex
a
s

K
w

on
et

a
l.

2
0
0
6

d
el

ta
-s

ig
m

a
2
n

d
or

d
er

,
4
B

Q
8
.7

3
E

+
0
6

4
.3

6
E

+
0
6

8
2
.0

1
3
.3

3
1
.7

7
E

-1
2

8
6
.0

1
4
.3

3
2
.2

0
E

+
0
6

1
.4

0
E

+
0
2

6
.4

1
E

+
1
2

6
.4

1
E

+
1
2

1
.5

6
E

-1
3

U
C

B
er

k
el

ey
S

u
te

rj
a
,

et
a
l.

1
9
8
8

p
ip

el
in

ed
2
.5

0
E

+
0
5

1
.2

5
E

+
0
5

1
3

7
2
.0

1
1
.6

7
1
.9

6
E

-1
0

8
0
.0

1
3
.3

3
1
.5

0
E

+
0
2

5
.4

2
E

+
1
0

5
.4

2
E

+
1
0

1
.8

4
E

-1
1

S
a
m

su
n

g
H

-C
C

h
ol

et
a
l.

2
0
0
6

p
ip

el
in

ed
5
.0

0
E

+
0
7

2
.5

0
E

+
0
7

1
0

5
7
.2

9
.2

1
5
.3

8
E

-1
2

7
2
.9

1
2
.1

5
2

2
.5

0
E

+
0
7

1
.5

0
E

+
0
2

1
.9

2
E

+
1
2

1
.9

7
E

+
1
2

5
.0

7
E

-1
3

L
in

ea
r

T
ec

h
n

ol
og

y
2
3
5
1
-1

4
2
0
0
7

p
a
ra

ll
el

-M
U

M
-s

er
ia

l
ou

t
2
.5

0
E

+
0
5

3
.0

0
E

+
0
5

1
4

7
5
.0

1
2
.1

7
5
.7

7
E

-1
1

9
0
.0

1
6
.0

0
2
.5

5
.0

0
E

+
0
7

1
.6

5
E

+
0
2

6
.9

6
E

+
1
0

1
.6

2
E

+
1
1

5
.9

8
E

-1
2

L
in

ea
r

T
ec

h
n

ol
og

y
2
3
5
6
-1

4
2
0
0
7

se
ri

a
l

ou
t

3
.5

0
E

+
0
6

1
.4

0
E

+
0
6

1
4

7
2
.3

1
1
.7

2
1
.6

9
E

-1
1

8
2
.0

1
3
.6

7
2
.5

5
.0

0
E

+
0
7

1
.8

0
E

+
0
2

6
.5

5
E

+
1
1

5
.2

4
E

+
1
1

1
.9

1
E

-1
2

U
C

S
D

S
-T

R
y
u

2
0
0
6

p
ip

el
in

ed
5
.0

0
E

+
0
7

2
.0

0
E

+
0
7

1
0

5
4
.7

8
.8

0
8
.9

3
E

-1
2

6
9
.0

1
1
.5

0
2
.0

0
E

+
0
7

1
.8

0
E

+
0
2

1
.2

4
E

+
1
2

9
.9

0
E

+
1
1

1
.0

1
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
7
6
9
0

2
0
0
6

S
A

T
H

4
.0

0
E

+
0
5

2
.0

0
E

+
0
5

1
8

1
0
2
.0

1
6
.6

5
3
.8

7
E

-1
2

1
0
8
.0

1
8
.0

0
2
.0

0
E

+
0
5

2
.0

0
E

+
0
2

2
.0

6
E

+
1
2

2
.0

6
E

+
1
2

4
.8

6
E

-1
3

S
H

A
R

P
,

J
a
p

a
n

Y
F

u
ji

m
ot

o
et

a
l.

2
0
0
6

d
el

ta
-s

ig
m

a
4
th

or
d

er
C

S
4
B

O
tc

=

6
.4

0
E

+
0
6

3
.2

0
E

+
0
6

7
6
.3

1
2
.3

8
4
.6

6
E

-1
2

7
8
.5

1
3
.0

8
3
.2

0
E

+
0
6

2
.3

8
E

+
0
2

1
.4

4
E

+
1
2

1
.4

4
E

+
1
2

6
.9

6
E

-1
3

M
et

a
u

sh
it

a
K

u
su

m
ot

a
,

et
a
l.

1
9
9
3

p
ip

el
in

ed
,

in
te

rp
ol

a
ti

n
g

1
.5

0
E

+
0
7

7
.5

0
E

+
0
8

1
0

6
5
.0

8
.8

4
2
.8

1
E

-1
1

3
.0

0
E

+
0
6

3
.0

0
E

+
0
2

2
.3

0
E

+
1
1

2
.3

0
E

+
1
1

4
.3

5
E

-1
2

S
on

y
Y

S
h

ir
m

zy
2
0
0
6

2
-s

ta
g
e

fl
a
sh

4
.0

0
E

+
0
7

2
.0

0
E

+
0
7

1
2

6
8
.0

1
1
.0

0
1
.9

4
E

-1
2

7
2
.5

1
2
.1

2
2
.0

0
E

+
0
7

3
.0

0
E

+
0
2

2
.7

3
E

+
1
2

2
.7

3
E

+
1
2

3
.6

5
E

-1
3

P
h

il
ip

s
E

in
d

h
ov

en
G

G
ee

la
n

et
a
l.

2
0
0
6

p
ip

el
in

ed
1
.0

0
E

+
0
8

5
.0

0
E

+
0
7

1
0

5
7
.7

9
.3

0
2
.5

2
E

-1
2

6
5
.0

1
0
.8

3
1
.0

0
E

+
0
8

3
.1

3
E

+
0
2

2
.0

2
E

+
1
2

2
.0

2
E

+
1
2

4
.9

6
E

-1
3

U
n

iv
of

C
a
l.

B
er

k
.

C
h

o
&

G
ra

y
1
9
9
8

p
ip

el
in

e
2
.0

0
E

+
0
7

1
.0

0
E

+
0
7

1
0

5
9
.1

9
.5

2
1
.0

8
E

-1
1

2
3
.5

0
E

+
0
2

4
.2

1
E

+
1
1

4
.2

1
E

+
1
1

2
.0

8
E

-1
2

C
h

ip
id

ea
,

P
or

tu
g
a
l

P
F

rg
u

ei
re

d
e

et
a
l.

2
0
0
6

2
-s

ta
g
e

fl
a
sh

1
.0

0
E

+
0
9

5
.0

2
E

+
0
8

6
3
0
.0

5
.3

2
3
.9

6
E

-1
2

4
2
.0

7
.0

0
5
.0

0
E

+
0
8

5
.5

0
E

+
0
2

7
.2

7
E

+
1
1

7
.3

0
E

+
1
1

1
.3

7
E

-1
2

U
n

iv
of

Il
li

n
a
is

,
H

a
rr

is
K

w
a
k

et
a
l.

1
9
9
7

4
-s

ta
g
e

ca
l

5
.0

0
E

+
0
6

2
.5

0
E

+
0
6

1
5

8
4
.9

1
3
.8

1
2
.2

2
E

-1
2

9
3
.0

1
5
.5

0
6
.0

0
E

+
0
2

1
.2

0
E

+
1
2

1
.2

0
E

+
1
2

8
.3

5
E

-1
3

X
ig

n
a
l

T
ec

h
n

o
M

it
te

re
g
g
er

et
a
l.

2
0
0
8

d
el

ta
-s

ig
m

a
3
rd

or
d

er
C

T

B
P

4
B

Q
,

tc
=

6
4
0

M
H

z

4
.0

0
E

+
0
7

2
.0

0
E

+
0
7

1
4

7
4
.0

1
2
.0

0
9
.7

1
E

-1
3

7
8
.0

1
0
.0

0
1

2
.0

0
E

+
0
7

6
.9

0
E

+
0
2

2
.3

7
E

+
1
2

2
.3

7
E

+
1
2

4
.2

1
E

-1
3

X
ig

n
a
l

T
ec

h
n

X
T

1
1
4
0
1

2
0
0
6

d
el

ta
-s

ig
m

a
3
rd

or
d

er
C

T

B
P

4
B

Q
,

tc
=

6
4
0

M
H

z

2
.0

0
E

+
0
7

4
.0

0
E

+
0
6

1
4

7
4
.0

1
2
.0

0
4
.0

8
E

-1
2

7
6
.0

1
2
.6

7
4

2
.0

0
E

+
0
7

7
.5

0
E

+
0
2

1
.0

9
E

+
1
2

4
.3

7
E

+
1
1

2
.2

0
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
2
0
0

1
9
9
7

4
-s

ta
g
e

fl
a
sh

,
d

ig
it

a
l

co
rr

2
.0

0
E

+
0
7

1
.0

0
E

+
0
7

1
0

5
8
.0

9
.0

1
1
.5

4
E

-1
1

6
2
.0

1
0
.3

3
2

9
.0

0
E

+
0
7

8
.0

0
E

+
0
2

1
.2

9
E

+
1
1

1
.2

9
E

+
1
1

7
.7

6
E

-1
2

N
or

d
ic

S
em

ic
on

d
u

ct
or

n
A

D
1
2
1
1
0
-1

8
a

2
0
0
5

p
ip

el
in

e
m

u
lt

i-
st

a
g
e

w
i

er
ro

r
co

rr

8
.0

0
E

+
0
7

3
.0

0
E

+
0
7

1
2

6
3
.0

1
0
.1

7
2
.3

0
E

-1
2

6
8
.0

1
1
.0

0
1
.5

8
.0

0
E

+
0
8

9
.9

0
E

+
0
2

9
.3

3
E

+
1
1

7
.0

0
E

+
1
1

1
.4

3
E

-1
2

N
or

d
ic

S
em

ic
on

d
u

ct
or

n
A

D
1
2
1
1
0
-1

8
a

2
0
0
5

p
ip

el
in

e
m

u
lt

i-
st

a
g
e

w
i

er
ro

r
co

rr

8
.0

0
E

+
0
7

5
.0

0
E

+
0
7

1
2

6
0
.0

9
.6

7
1
.9

5
E

-1
2

6
4
.0

1
0
.6

7
1
.5

6
.0

0
E

+
0
8

9
.9

0
E

+
0
2

6
.6

0
E

+
1
1

8
.2

5
E

+
1
1

1
.2

1
E

-1
2

U
C

B
er

k
el

ey
C

li
n

e
&

G
ra

y
1
9
9
6

p
ip

el
in

ed
se

lf
-c

a
l

5
.0

0
E

+
0
6

2
.5

0
E

+
0
6

1
3

7
0
.7

1
1
.4

5
1
.1

4
E

-1
1

7
3
.0

1
2
.1

7
6
.6

5
.0

0
E

+
0
7

1
.6

6
E

+
0
1

8
.4

4
E

+
1
0

8
.4

4
E

+
1
0

1
.1

9
E

-1
1

A
n

a
lo

g
D

ev
ic

es
A

D
9
0
5
7
-8

0
1
9
9
7

fl
a
sh

8
.0

0
E

+
0
7

4
.0

0
E

+
0
7

8
4
6
.0

7
.3

5
1
.2

2
E

-1
1

5
5
.0

9
.1

7
2
.5

1
.2

0
E

+
0
8

1
.7

5
E

+
0
1

7
.4

5
E

+
1
0

7
.4

5
E

+
1
0

1
.3

4
E

-1
1

B
u

rr
-B

ro
w

n
P

C
M

1
7
5
0

1
9
9
2

S
A

2
.0

0
E

+
0
5

1
.0

0
E

+
0
5

1
8

9
0
.0

1
4
.6

6
3
.0

8
E

-1
1

9
0
.0

1
5
.0

0
5
.5

5
.0

0
E

+
0
5

2
.1

0
E

+
0
1

2
.4

6
E

+
1
0

2
.4

6
E

+
1
0

4
.0

6
E

-1
1

D
el

ft
U

n
iv

er
si

ty
S

il
v
a

et
a
l.

2
0
0
6

d
el

ta
-s

ig
m

a
5
th

or
d

er

C
T

B
P

,
1
B

Q

4
.0

0
E

+
0
5

2
.0

0
E

+
0
5

9
0
.0

1
4
.6

6
1
.5

4
E

-1
1

9
8
.0

1
6
.3

3
0
.5

2
.0

0
E

+
0
5

2
.1

0
E

+
0
1

4
.9

2
E

+
1
0

4
.9

2
E

+
1
0

2
.0

3
E

-1
1

N
a
ti

on
a
l

A
D

C
0
8
2
0
0

2
0
0
5

2
-s

ta
g
e

+
D

S
P

2
.0

0
E

+
0
8

1
.0

0
E

+
0
8

8
4
4
.0

7
.0

2
6
.1

5
E

-1
2

5
4
.0

9
.0

0
1
.6

5
.0

0
E

+
0
8

2
.1

0
E

+
0
1

1
.2

3
E

+
1
1

1
.2

3
E

+
1
1

8
.1

1
E

-1
2

L
in

ea
r

T
ec

h
n

ol
og

y
L

T
C

-2
2
9
4

2
0
0
5

p
ip

el
in

ed
8
.0

0
E

+
0
7

4
.0

0
E

+
0
7

1
2

6
8
.7

1
1
.1

2
8
.9

4
E

-1
3

9
0
.0

1
5
.0

0
2

5
.7

5
E

+
0
8

2
.1

1
E

+
0
1

8
.4

4
E

+
1
1

8
.4

4
E

+
1
1

1
.1

9
E

-1
2

L
in

ea
r

T
ec

h
n

ol
og

y
L

T
C

-2
2
9
4

2
0
0
5

p
ip

el
in

ed
8
.0

0
E

+
0
7

1
.4

0
E

+
0
8

1
2

7
8
.0

1
1
.3

4
2
.2

0
E

-1
3

8
5
.0

1
4
.1

7
2

5
.7

5
E

+
0
8

2
.1

1
E

+
0
1

9
.8

0
E

+
1
1

3
.4

3
E

+
1
2

2
.9

2
E

-1
3

In
fi

n
eo

n
P

B
og

n
er

et
a
l.

2
0
0
6

p
ip

el
in

ed
m

u
lt

ib
it

p
er

st
a
g
e

w
i

D
S

P
ca

l

1
.0

0
E

+
0
8

4
.0

0
E

+
0
7

1
4

6
6
.5

1
0
.7

5
1
.1

5
E

-1
2

6
9
.0

1
1
.5

0
1
.5

4
.0

0
E

+
0
7

2
.2

4
E

+
0
1

7
.7

1
E

+
1
1

6
.1

7
E

+
1
1

1
.6

2
E

-1
2

A
n

a
lo

g
D

ev
ic

es
M

eh
r

&
D

a
it

on
1
9
9
9

fl
a
sh

4
.0

0
E

+
0
8

2
.0

0
E

+
0
8

6
3
3
.3

5
.2

4
1
.0

5
E

-1
1

3
8
.0

6
.3

3
1

2
.0

0
E

+
0
8

2
.2

5
E

+
0
1

6
.7

1
E

+
1
0

6
.7

1
E

+
1
0

1
.4

9
E

-1
1

A
n

a
lo

g
D

ev
ic

es
A

D
1
8
7
6

ch
.

re
d

is
1
.0

0
E

+
0
5

5
.0

0
E

+
0
4

1
6

9
0
.0

1
4
.6

6
6
.1

6
E

-1
1

9
9
.0

1
6
.5

0
1
0

1
.0

0
E

+
0
6

2
.3

5
E

+
0
1

1
.1

0
E

+
1
0

1
.1

0
E

+
1
0

9
.0

9
E

-1
1

B
ro

a
d

co
m

C
or

p
,

U
C

L
A

B
u

lt
,

et
a
l.

1
9
9
7

a
v
er

a
g
in

g
,

fo
ld

in
g

4
.8

0
E

+
0
7

2
.4

0
E

+
0
7

1
0

5
4
.0

8
.6

8
8
.1

0
E

-1
2

2
3
.2

0
E

+
0
7

2
.4

0
E

+
0
1

8
.1

9
E

+
1
0

8
.1

9
E

+
1
0

1
.2

2
E

-1
1

A
n

a
lo

g
D

ev
ic

es
A

D
7
8
8
6

3
-s

ta
g
e

8
.0

0
E

+
0
5

4
.0

0
E

+
0
5

1
2

6
7
.0

1
0
.8

4
1
.0

9
E

-1
0

7
7
.0

1
2
.8

3
5

1
.0

0
E

+
0
6

2
.5

0
E

+
0
1

5
.8

5
E

+
0
9

5
.8

5
E

+
0
9

1
.7

1
E

-1
0

A
n

a
lo

g
D

ev
ic

es
A

D
9
2
2
0

1
9
9
7

4
-s

ta
g
e

fl
a
sh

,
d

ig
it

a
l

co
rr

1
.0

0
E

+
0
7

5
.0

0
E

+
0
6

1
2

7
1
.0

1
1
.5

0
5
.4

9
E

-1
2

8
8
.0

1
4
.6

7
6
.0

0
E

+
0
7

2
.5

0
E

+
0
1

1
.1

6
E

+
1
1

1
.1

6
E

+
1
1

6
.6

2
E

-1
2



T
er

a
n

et
ic

s
S

G
u

p
ta

et
a
l.

2
0
0
6

ti
m

e-
in

te
rl

ea
v
ed

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

1
1

5
5
.0

8
.8

4
3
.4

6
E

-1
3

5
3
.1

8
.8

5
5
.0

0
E

+
0
8

2
.5

0
E

+
0
1

1
.8

4
E

+
1
2

1
.8

4
E

+
1
2

5
.4

4
E

-1
3

U
C

S
D

S
.

R
a
y

et
a
l.

2
0
0
6

p
ip

el
in

ed
4
.3

0
E

+
0
7

1
.4

0
E

+
0
7

1
3

6
7
.0

1
0
.8

4
3
.1

1
E

-1
2

7
3
.0

1
2
.1

7
1
.6

1
.4

0
E

+
0
7

2
.6

8
E

+
0
1

2
.9

4
E

+
1
1

1
.9

1
E

+
1
1

5
.2

3
E

-1
2

K
en

et
K

A
D

2
2
0
8
L

2
0
0
7

p
ip

el
in

ed
2
.7

5
E

+
0
8

1
.4

0
E

+
0
8

8
4
8
.7

7
.8

0
2
.5

6
E

-1
2

6
8
.0

1
1
.3

3
1
.5

6
.0

0
E

+
0
8

2
.7

5
E

+
0
1

2
.2

2
E

+
1
1

2
.2

6
E

+
1
1

4
.4

2
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
2
2
0

1
9
9
6

3
-s

ta
g
e

1
.0

0
E

+
0
7

5
.0

0
E

+
0
6

1
2

7
0
.0

1
1
.3

4
6
.1

6
E

-1
2

7
7
.5

1
2
.9

2
3
.5

0
E

+
0
7

2
.8

0
E

+
0
1

9
.2

3
E

+
1
0

9
.2

3
E

+
1
0

1
.0

8
E

-1
1

A
n

a
lo

g
D

ev
ic

es
A

D
9
2
4
0

1
9
9
7

4
-s

ta
g
e

fl
a
sh

,
d

ig
it

a
l

co
rr

1
.0

0
E

+
0
7

5
.0

0
E

+
0
6

1
4

7
7
.5

1
2
.5

8
2
.6

0
E

-1
2

9
0
.0

1
5
.0

0
7
.0

0
E

+
0
7

2
.8

5
E

+
0
1

2
.1

5
E

+
1
1

2
.1

5
E

+
1
1

4
.6

5
E

-1
2

M
ot

or
ol

a
D

S
P

5
6
A

D
C

1
6

1
9
9
2

d
el

ta
-s

ig
m

a
,

O
S

R
6
4
,

D
S

P
1
.0

0
E

+
0
5

5
.0

0
E

+
0
4

1
6

9
0
.0

1
4
.6

6
6
.1

6
E

-1
1

8
8
.0

1
4
.6

7
3
.5

5
.0

0
E

+
0
4

3
.0

0
E

+
0
1

8
.6

2
E

+
0
9

8
.6

2
E

+
0
9

1
.1

6
E

-1
0

A
n

a
lo

g
D

ev
ic

es
A

D
9
2
2
5

1
9
9
7

4
-s

ta
g
e

fl
a
sh

,
d

ig
it

a
l

co
rr

2
.5

0
E

+
0
7

1
.2

5
E

+
0
7

1
2

7
0
.0

1
1
.3

4
2
.4

6
E

-1
2

8
6
.0

1
4
.3

3
2
.0

0
E

+
0
8

3
.0

0
E

+
0
1

2
.1

5
E

+
1
1

2
.1

5
E

+
1
1

4
.6

4
E

-1
2

P
h

il
ip

s
C

om
p

on
en

ts
,

F
R

V
or

en
k

a
m

p
,

R
oo

v
er

s
1
9
9
7

fo
ld

in
g

in
te

rp
5
.0

0
E

+
0
7

2
.5

0
E

+
0
7

1
2

6
4
.0

1
0
.3

4
2
.4

6
E

-1
2

7
1
.0

1
1
.8

3
2
.6

0
E

+
0
5

3
.0

0
E

+
0
1

2
.1

6
E

+
1
1

2
.1

6
E

+
1
1

4
.6

3
E

-1
2

P
h

il
ip

s
S

em
ic

on
d

u
ct

or
s

G
G

ee
la

n
2
0
0
1

fl
a
sh

/i
n

te
rp

ol
a
ti

n
g
/a

v
er

a
g
in

g
9
.0

0
E

+
0
8

4
.5

0
E

+
0
8

6
3
4
.3

5
.4

1
4
.1

7
E

-1
2

1
.5

4
.5

0
E

+
0
8

3
.0

0
E

+
0
1

1
.2

7
E

+
1
1

1
.2

7
E

+
1
1

7
.8

7
E

-1
2

U
n

iv
.

of
Il

li
n

oi
s

S
h

u
et

a
l.

1
9
9
5

p
ip

el
in

ed
,

d
s

co
rr

1
.0

0
E

+
0
7

5
.0

0
E

+
0
6

1
3

6
8
.0

1
1
.0

0
7
.7

5
E

-1
2

3
.6

0
E

+
0
1

5
.7

0
E

+
1
0

5
.7

0
E

+
1
0

1
.7

5
E

-1
1

A
n

a
lo

g
D

ev
ic

es
S

ch
re

ie
r

et
a
l.

2
0
0
6

d
el

ta
-s

ig
m

a
4
th

or
d

er
C

T

B
P

,
4
8

Q
fc

=
4
4

M
H

z

1
.7

0
E

+
0
7

8
.5

0
E

+
0
6

7
6
.0

1
2
.3

3
1
.8

2
E

-1
2

9
0
.0

1
5
0
0

8
.5

0
E

+
0
6

3
.7

5
E

+
0
1

2
.3

4
E

+
1
1

2
.3

4
E

+
1
1

4
.2

8
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
0
5
8

2
0
0
3

7
b

fl
a
sh

w
it

h
8
th

b
it

in
te

rp
ol

a
te

d

4
.0

0
E

+
0
7

1
.0

0
E

+
0
7

8
4
6
.0

7
.3

5
4
.8

8
E

-1
1

5
8
.0

9
.6

7
2

1
.7

5
E

+
0
8

3
.8

5
E

+
0
1

1
.6

9
E

+
1
0

8
.4

7
E

+
0
9

1
.1

0
E

-1
0

H
u

g
h

es
A

C
T

C
1
9
8
4

1
.0

0
E

+
0
7

5
.0

0
E

+
0
6

8
4
9
.0

7
.8

5
6
.9

1
E

-1
1

6
1
.0

1
0
.1

7
4
.0

0
E

+
0
1

5
.7

6
E

+
0
9

5
.7

6
E

+
0
9

1
.7

4
E

-1
0

A
n

a
lo

g
D

ev
ic

es
A

D
9
2
3
0

2
0
0
6

p
ip

el
in

e,
S

H
A

D
S

P
2
.5

0
E

+
0
8

1
.0

0
E

+
0
8

1
2

6
3
.5

1
0
.2

6
6
.5

1
E

-1
3

7
7
.0

1
2
.8

3
1
.2

5
9
.0

0
E

+
0
8

4
.2

5
E

+
0
1

7
.1

9
E

+
1
1

5
.7

5
E

+
1
1

1
.7

4
E

-1
2

A
n

a
lo

g
D

ev
ic

es
F

er
n

a
n

d
es

,
et

a
l.

1
9
8
8

p
ip

el
in

e
1
.0

0
E

+
0
5

5
.0

0
E

+
0
4

1
4

8
0
.8

1
3
.1

3
1
.7

8
E

-1
0

9
0
.0

1
5
.0

0
1
0

6
.0

0
E

+
0
5

4
.8

0
E

+
0
1

1
.8

7
E

+
0
9

1
.8

7
E

+
0
9

5
.3

6
E

-1
0

A
n

a
lo

g
D

ev
ic

es
A

D
3
0
5
4
-2

0
0

1
9
8
7

fl
a
sh

2
.0

0
E

+
0
9

1
.0

0
E

+
0
8

8
4
9
.0

7
.8

5
3
.4

8
E

-1
2

3
.8

0
E

+
0
8

6
.0

0
E

+
0
1

3
.2

1
E

+
1
0

8
.2

1
E

+
1
0

1
.0

9
E

-1
1

U
C

L
A

E
E

D
ep

t
C

h
oi

&
A

b
id

i
2
0
0
1

fl
a
sh

a
rr

a
y

a
v
er

a
g
in

n
g
,

T
/H

1
.0

0
E

+
0
9

6
.3

0
E

+
0
8

6
3
5
.0

5
.5

2
2
.7

5
E

-1
2

4
4
.0

7
.3

3
1
.6

0
6
.3

0
E

+
0
8

5
.0

0
E

+
0
1

9
.1

9
E

+
1
0

1
.1

6
E

+
1
1

8
.6

4
E

-1
2

U
C

L
A

E
E

D
ep

t
C

h
oi

&
A

b
id

i
2
0
0
1

fl
a
sh

a
rr

a
y

a
v
er

a
g
in

g
,

T
/H

1
.3

0
E

+
0
9

6
.5

0
E

+
0
8

6
3
2
.0

5
.0

2
3
.7

6
E

-1
2

4
4
.0

7
.3

3
1
.6

0
6
.5

0
E

+
0
8

5
.0

0
E

+
0
1

8
.4

6
E

+
1
0

8
.4

6
E

+
1
0

1
.1

8
E

-1
1

T
I/

B
u

rr
-B

ro
w

n
A

D
S

1
2
7
4
/A

D
S

1
2
7
3

2
0
0
7

d
el

ta
-s

ig
m

a
1
.2

8
E

+
0
5

6
.2

0
E

+
0
4

2
4

1
1
1
.0

1
8
.1

5
4
.4

2
E

-1
2

1
0
9
.0

1
8
.1

7
5
.0

0
6
.2

0
E

+
0
4

6
.0

0
E

+
0
1

7
.0

1
E

+
1
0

8
.7

9
E

+
1
0

1
.4

7
E

-1
1

A
n

a
lo

g
D

ev
ic

es
B

ro
ok

s,
et

a
l.

1
9
9
7

d
el

ta
-s

ig
m

a

O
S

R
&

D
S

P

2
.5

0
E

+
0
6

1
.2

5
E

+
0
6

1
6

8
9
.0

1
4
.4

9
2
.7

6
E

-1
2

9
7
.1

1
8
.1

8
5
.5

0
E

+
0
1

1
.0

5
E

+
1
1

1
.0

5
E

+
1
1

9
.5

6
E

-1
2

A
n

a
lo

g
D

ev
ic

es
M

u
rd

en
&

G
ea

se
r

1
9
9
6

2
-s

ta
g
e

5
.0

0
E

+
0
7

2
.6

0
E

+
0
7

1
2

6
8
.0

1
1
.0

0
1
.6

5
E

-1
2

8
0
.0

1
3
.3

3
1
.0

0
2
.0

0
E

+
0
8

6
.7

5
E

+
0
1

1
.7

8
E

+
1
1

1
.7

8
E

+
1
1

6
.6

0
E

-1
2

S
on

y
C

X
A

1
3
8
6
P

fl
a
sh

7
.5

0
E

+
0
7

3
.7

5
E

+
0
7

8
4
4
.0

7
.0

2
1
.6

4
E

-1
1

1
.5

0
E

+
0
8

5
.8

0
E

+
0
1

1
.6

7
E

+
1
0

1
.6

7
E

+
1
0

5
.9

2
E

-1
1

A
n

a
lo

g
D

ev
ic

es
A

D
9
0
4
2

1
9
9
6

2
-s

ta
g
e

4
.1

0
E

+
0
7

2
.0

5
E

+
0
7

1
2

6
9
.0

1
1
.1

7
1
.6

9
E

-1
2

8
0
.0

1
3
.3

3
1
.4

0
E

+
0
9

5
.9

5
E

+
0
1

1
.5

0
E

+
1
1

1
.5

9
E

+
1
1

6
.9

0
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
2
6
0

1
9
9
7

d
el

ta
-s

ig
m

a
O

S
R

8
,

D
S

P
2
.5

0
E

+
0
6

1
.2

5
E

+
0
6

1
6

8
9
.5

1
4
.5

7
2
.6

1
E

-1
2

1
0
0
.0

1
6
.6

7
1
.2

5
E

+
0
8

6
.0

0
E

+
0
1

1
.0

2
E

+
1
1

1
.0

2
E

+
1
1

9
.8

0
E

-1
2

U
n

iv
er

si
ty

of
M

ic
h

ig
a
n

,
In

te
l

S
P

a
rl

et
a
l.

2
0
0
6

fl
a
sh

4
.0

0
E

+
0
9

8
.0

0
E

+
0
8

4
2
2
.6

3
.4

7
8
.9

8
E

-1
2

0
.4

6
8
.0

0
E

+
0
8

6
.1

9
E

+
0
1

7
.1

6
E

+
1
0

2
.8

6
E

+
1
0

3
.4

9
E

-1
1

H
u

g
h

es
A

C
T

C
1
9
9
8

n
-s

ta
g
e

2
.0

0
E

+
0
7

1
.0

0
E

+
0
7

7
4
2
.2

6
.7

2
7
.6

6
E

-1
1

6
.4

0
E

+
0
1

3
.2

0
E

+
0
9

3
.2

9
E

+
0
9

3
.0

4
E

-1
0

M
ic

ro
N

et
w

or
k

s
M

N
6
5
0
0

1
9
9
2

S
A

1
.0

0
E

+
0
5

5
.0

0
E

+
0
4

1
6

6
8
.0

1
4
.3

3
7
.7

5
E

-1
1

3
6
.0

1
6
.0

0
1
0
.0

0
5
.0

0
E

+
0
4

6
.0

5
E

+
0
1

3
.0

0
E

+
0
9

3
.0

0
E

+
0
9

3
.3

4
E

-1
0

A
n

a
lo

g
D

ev
ic

es
A

D
3
0
7
0

1
9
9
7

2
-s

ta
g
e

fl
a
sh

1
.0

0
E

+
0
8

6
.0

0
E

+
0
7

1
0

5
7
.0

9
.1

8
2
.7

5
E

-1
2

2
.3

0
E

+
0
8

7
.0

0
E

+
0
1

8
.2

6
E

+
1
0

8
.2

6
E

+
1
0

1
.2

1
E

-1
1

A
n

a
lo

g
D

ev
ic

es
A

D
6
6
4
0

1
9
9
7

2
-s

ta
g
e

5
.5

0
E

+
0
7

9
.2

5
E

+
0
7

1
2

6
7
.0

1
0
.8

4
1
.3

4
E

-1
2

8
0
.0

1
3
.3

3
2
.0

0
2
.5

0
E

+
0
7

7
.1

0
E

+
0
1

1
.6

7
E

+
1
1

1
.6

7
E

+
1
1

5
.9

7
E

-1
2

N
a
ti

on
a
l

A
D

C
1
2
C

1
7
0

2
0
0
7

p
ip

el
in

ed
,

D
S

P
1
.7

0
E

+
0
8

7
.0

0
E

+
0
7

1
2

6
7
.2

1
0
.8

7
6
.0

7
E

-1
3

8
5
.4

1
4
.2

3
2
.0

0
1
.1

0
E

+
0
9

7
.1

5
E

+
0
1

4
.4

6
E

+
1
1

3
.6

7
E

+
1
1

2
.7

3
E

-1
2

L
in

ea
r

T
ec

h
n

ol
og

y
L

T
C

2
2
4
2
-1

2
2
0
0
6

5
-s

ta
g
e

fl
a
sh

d
ig

it
a
l

co
rr

2
5
0
E

+
0
8

7
.0

0
E

+
0
7

1
2

6
5
.1

1
0
.5

2
7
.2

3
E

-1
3

7
5
.0

1
2
.5

0
1
.2

5
1
.2

0
E

+
0
3

7
.4

0
E

+
0
1

4
.5

7
E

+
1
1

2
.7

8
E

+
1
1

3
.6

0
E

-1
2

L
u

ce
n

t
T

ec
h

n
ol

og
ie

s
C

S
P

1
1
5
2
A

1
9
9
8

d
it

h
er

ed
6
.5

0
E

+
0
7

3
.2

5
E

+
0
7

1
4

6
8
.0

1
1
.0

0
1
.1

0
E

-1
2

8
5
.0

1
4
.1

7
1
.8

0
1
.0

0
E

+
0
9

7
.5

0
E

+
0
1

1
.7

8
E

+
1
1

1
.7

8
E

+
1
1

5
.6

2
E

-1
2

L
eu

n
g

et
a
l.

C
ry

st
a
l

S
er

v
ic

1
9
9
7

d
el

ta
si

g
m

a
O

S
R

6
4
,

7
th

or
d

er
,

3
-b

it
9
.5

0
E

+
0
4

4
.8

0
E

+
0
4

2
0

1
0
8
.0

1
7
.6

5
8
.0

7
E

-1
2

1
1
2
.0

1
8
.6

7
4
.0

0
2
.2

0
E

+
0
4

7
.5

0
E

+
0
1

2
.5

9
E

+
1
0

2
.6

9
E

+
1
0

3
.8

5
E

-1
1

U
C

L
A

C
ol

lu
to

n
&

A
b
u

d
i

1
9
9
3

p
ip

el
in

ed
fo

ld
in

g
7
.5

0
E

+
0
7

3
.7

5
E

+
0
7

1
0

5
9
.8

9
.5

1
2
.9

1
E

-1
2

7
7
.0

1
2
.8

3
5
.0

0
E

+
0
7

8
.0

0
E

+
0
1

6
.8

3
E

+
1
0

6
.8

3
E

+
1
0

4
.4

6
E

-1
1

P
h

il
li

p
s,

N
et

h
er

i
v
a
n

V
a
lb

u
rg

et
a
l.

1
9
9
2

fo
ld

in
g

8
.5

0
E

+
0
8

3
.2

5
E

+
0
8

6
4
8
.8

7
.8

1
1
.0

9
E

-1
2

5
1
.0

6
.5

0
2
.0

0
1
.5

0
E

+
0
8

8
.1

0
E

+
0
1

1
.8

1
E

+
1
1

1
.8

1
E

+
1
1

5
.5

4
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
6
4
0

2
0
0
7

d
u

a
l

S
H

A
-p

ip
el

in
ed

+
D

S
P

1
.5

0
E

+
0
8

7
.0

0
E

+
0
7

1
4

7
1
.0

1
1
.5

0
3
.9

2
E

-1
3

8
4
.0

1
4
.0

0
1
.0

0
6
.5

0
E

+
0
8

8
.2

0
E

+
0
1

5
.3

0
E

+
1
1

4
.9

5
E

+
1
1

2
.0

2
E

-1
2

A
D

9
6
4
0

2
0
0
7

d
u

a
l;

S
H

A
-p

ip
el

in
ed

-D
S

P
1
.5

0
E

+
0
8

2
.0

0
E

+
0
8

1
4

6
9
.9

1
1
.3

2
1
.5

6
E

-1
3

7
7
.0

1
2
.8

3
1
.0

0
6
.5

0
E

+
0
8

8
.2

0
E

+
0
1

4
.6

7
E

+
1
1

1
.2

5
E

+
1
2

8
.0

2
E

-1
3

A
n

a
lo

g
D

ev
ic

es
A

D
1
8
7
9

d
el

ta
-s

ig
m

a
,

O
S

R
5
4

5
.0

0
E

+
0
4

2
.5

0
E

+
0
4

1
8

9
8
.0

1
5
.9

9
4
.9

0
E

-1
1

1
0
3
.0

1
7
.1

7
6
.0

0
2
.2

0
E

+
0
4

8
.0

0
E

+
0
1

3
.6

1
E

+
0
9

3
.6

1
E

+
0
9

2
.7

7
E

-1
0

A
n

a
lo

g
D

ev
ic

es
S

on
e,

et
a
l

1
9
9
3

p
ip

el
in

ed
,

a
u

x
r

1
.0

0
E

+
0
8

5
.0

0
E

+
0
7

1
0

5
7
.0

9
.1

8
2
.7

5
E

-1
2

6
1
.0

1
0
.1

7
1
.5

0
E

+
0
7

9
.5

0
E

+
0
1

6
.0

9
E

+
1
0

6
.0

9
E

+
1
0

1
.6

4
E

-1
1

N
E

C
A

D
C

0
8
D

1
5
0
0

2
0
0
5

fo
ld

in
g
,

in
te

rp
ol

a
ti

n
g

1
.5

0
E

+
0
9

7
.5

0
E

+
0
8

8
4
6
.3

7
.4

0
6
.2

9
E

-1
3

5
3
.0

8
.8

3
0
.8

7
1
.7

0
E

+
0
9

9
.5

0
E

+
0
1

2
.6

6
E

+
1
1

2
.6

6
E

+
1
1

3
.7

5
E

-1
2

N
a
ti

on
a
l

M
a
x
1
2
1
5

2
0
0
5

p
ip

el
in

ed
D

S
F

2
.5

0
E

+
0
8

1
.0

0
E

+
0
8

1
2

6
4
.3

1
0
.3

9
5
.9

4
E

-1
3

7
0
.7

1
1
.7

3
1
.4

5
7
.0

0
E

+
0
8

9
.7

5
E

+
0
1

3
.4

4
E

+
1
1

2
.7

5
E

+
1
1

3
.6

4
E

-1
2

M
a
x
im

in
te

g
ra

te
d

P
ro

d
.

M
a
x
1
2
1
5

2
0
0
6

p
ip

el
in

ed
D

S
P

2
.5

0
E

+
0
8

2
.5

0
E

+
0
8

1
2

6
4
.2

1
0
.3

7
2
.4

0
E

-1
3

7
2
.4

1
2
.0

7
1
.4

5
7
.0

0
E

+
0
8

9
.7

5
E

+
0
1

3
.4

0
E

+
1
1

6
.0

0
E

+
1
1

1
.4

7
E

-1
2

A
tm

el
A

T
7
6

S
A

-2
1
.0

0
E

+
0
5

5
.0

0
E

+
0
4

1
8

9
0
.0

1
4
.6

6
6
.1

6
E

-1
1

1
.0

0
1
.0

0
E

+
0
0

2
.5

8
E

+
0
9

2
.5

8
E

+
0
9

3
.8

7
E

-1
0

A
n

a
lo

g
D

ev
ic

es
R

ea
l

et
a
l.

1
9
9
1

p
ip

el
in

e
2
.0

0
E

+
0
7

1
.0

0
E

+
0
7

1
0

5
4
.0

8
.6

8
1
.9

4
E

-1
1

6
2
.0

1
0
.3

3
1
.5

0
E

+
0
8

1
.0

0
E

+
0
0

8
.1

9
E

+
0
9

6
.1

9
E

+
0
9

1
.2

2
E

-1
0

H
u

g
h

es
J
en

se
n

et
a
l.

1
9
9
5

d
el

ta
-s

ig
m

a
,

O
S

R
3
2

1
.0

0
E

+
0
8

5
.0

0
E

+
0
7

1
2

5
6
.0

8
.8

4
3
.4

6
E

-1
2

7
1
.0

1
1
.8

3
1
.0

0
E

+
0
0

4
.5

9
E

+
1
0

4
.5

9
E

+
1
0

2
.1

8
E

-1
1

L
ob

d
’E

le
ct

r
&

d
e

P
h

y
s

A
p

p
l

D
u

C
ou

ra
n

t
et

a
l.

1
9
8
9

fl
a
sh

2
.2

0
E

+
0
9

1
.1

0
E

+
0
8

5
2
8
.7

4
.4

8
3
.2

5
E

-1
2

4
.0

0
E

+
0
8

1
.0

5
E

+
0
0

4
.6

6
E

+
1
0

4
.6

8
E

+
1
0

2
.1

5
E

-1
1

T
ex

a
s

In
st

ru
m

en
ts

A
D

S
5
5
4
6

2
0
0
6

p
ip

el
in

e
1
8
/s

ta
g
e

S
H

A
D

S
P

1
.9

0
E

+
0
8

7
.0

0
E

+
0
7

1
4

7
2
.5

1
1
.7

5
3
.3

0
E

-1
3

8
4
.0

1
4
.0

0
2
.0

0
5
.0

0
E

+
0
8

1
.1

3
E

+
0
0

5
.7

9
E

+
1
1

4
.2

7
E

+
1
1

2
.3

4
E

-1
2

T
ex

a
s

In
st

ru
m

en
ts

A
D

S
5
5
4
6

2
0
0
6

p
ip

el
in

e
1
8
/s

ta
g
e

S
H

A
D

S
P

1
.9

0
E

+
0
8

1
.5

0
E

+
0
8

1
4

7
0
.8

1
1
.4

7
1
.8

7
E

-1
3

8
0
.0

1
3
.3

3
2
.0

0
5
.0

0
E

+
0
8

1
.1

3
E

+
0
0

4
.7

6
E

+
1
1

7
.6

2
E

+
1
1

1
.3

3
E

-1
2

T
ex

a
s

In
st

ru
m

en
ts

A
D

S
5
5
4
6

2
0
0
6

p
ip

el
in

e
1
8
/s

ta
g
e

S
H

A
D

S
P

1
.9

0
E

+
0
8

3
.0

0
E

+
0
8

1
4

5
7
.4

1
0
.8

0
1
.3

8
E

-1
3

7
2
.0

1
2
.0

0
2
.0

0
5
.0

0
E

+
0
8

1
.1

3
E

+
0
0

3
.2

2
E

+
1
1

1
.0

2
E

+
1
2

9
.8

3
E

-1
3

A
n

a
lo

g
D

ev
ic

es
A

D
7
7
3

1
.9

0
E

+
0
7

9
.0

0
E

+
0
6

1
0

5
3
.0

8
.5

1
2
.4

2
E

-1
1

6
7
.0

1
1
.1

7
1
.0

0
1
.0

0
E

+
0
8

1
2
0
E

+
0
0

5
.4

7
E

+
0
9

5
.4

7
E

+
0
9

1
.8

3
E

-1
0

A
D

S
5
5
4
7

2
0
0
7

p
ip

el
in

ed
+

D
S

P
2
.1

0
E

+
0
8

7
.0

0
E

+
0
7

1
4

7
2
.6

1
1
.7

7
3
.2

6
E

-1
3

8
5
.0

1
4
.1

7
2
.0

0
8
.0

0
E

+
0
8

1
.2

3
E

+
0
0

5
.5

9
E

+
1
1

3
.8

7
E

+
1
1

2
.5

2
E

-1
2

11



A
D

S
5
5
4
7

2
0
0
7

p
ip

el
in

ed
+

D
S

P
2
.1

0
E

+
0
8

1
.7

0
E

+
0
8

1
4

7
0
.7

1
1
.4

5
1
.6

7
E

-1
3

7
9
.0

1
3
.1

7
2
.0

0
8
.0

0
E

+
0
8

1
.2

3
E

+
0
0

4
.7

8
E

+
1
1

7
.7

4
E

+
1
1

1
.2

8
E

-1
2

L
u

n
ea

r
T

ec
h

n
ol

og
y

L
T

C
2
2
0
6

2
0
0
6

p
ip

el
in

ed
+

D
S

P
1
.3

0
E

+
0
8

7
.0

0
E

+
0
7

1
6

7
7
.4

1
2
.5

6
1
.6

8
E

-1
0

9
0
.0

1
5
.0

0
2
.2

5
7
.0

0
E

+
0
8

1
.2

5
E

+
0
0

6
.3

0
E

+
1
1

6
.7

9
E

+
1
1

1
.4

7
E

-1
2

L
in

ea
r

T
ec

h
n

ol
og

y
L

T
C

2
2
0
8

2
0
0
6

p
ip

el
in

ed
+

D
S

P
1
.3

0
E

+
0
8

1
.4

0
E

+
0
8

1
6

7
6
.4

1
2
.4

0
1
.0

6
E

-1
3

8
5
.0

1
4
.1

7
2
.2

5
7
.0

0
E

+
0
8

1
.2

5
E

+
0
0

5
.6

2
E

+
1
1

1
.2

1
E

+
1
2

8
.2

7
E

-1
3

L
in

ea
r

T
ec

h
n

ol
og

y
L

T
C

2
2
0
8

2
0
0
6

p
ip

el
in

ed
+

D
S

P
1
.3

0
E

+
0
8

2
.5

0
E

+
0
8

1
6

7
3
.8

1
1
.3

3
8
.1

4
E

-1
4

7
8
.0

1
3
.0

0
2
.2

5
7
.0

0
E

+
0
8

1
.2

5
E

+
0
0

4
.0

7
E

+
1
1

1
.5

8
E

+
1
2

6
.3

8
E

-1
3

D
a
te

l
A

D
S

1
1
2

2
-s

ta
g
e

fl
a
sh

S
H

,
D

S
P

1
.0

0
E

+
0
6

5
.0

0
E

+
0
5

1
2

7
0
.0

1
1
.3

4
6
.1

6
E

-1
1

7
5
.0

1
2
.5

0
1
0
.0

0
1
.0

0
E

+
0
7

1
.3

0
E

+
0
0

1
.9

9
E

+
0
9

1
.9

9
E

+
0
9

5
.0

3
E

-1
0

A
n

a
lo

g
D

ev
ic

es
A

D
6
6
4
4

2
0
0
4

3
-s

ta
g
e

6
.5

0
E

+
0
7

3
.0

5
E

+
0
7

1
4

7
3
.0

1
1
.8

3
7
.1

5
E

-1
3

9
0
.0

1
5
.0

0
2
.2

0
2
.5

0
E

+
0
7

1
.3

0
E

+
0
0

8
.8

3
E

+
1
1

1
.7

1
E

+
1
1

5
.8

4
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
4
3
0

2
0
0
5

p
ip

el
in

ed
2
.1

0
E

+
0
8

1
.0

0
E

+
0
8

1
2

8
4
.5

1
0
.4

2
5
.8

0
E

-1
3

7
7
.0

1
2
.8

3
1
.5

0
7
.0

0
E

+
0
8

1
.3

0
E

+
0
0

2
.2

2
E

+
1
1

2
.1

1
E

+
1
1

4
.7

4
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
4
3
0

2
0
0
5

p
ip

el
in

ed
2
.1

0
E

+
0
8

2
.4

0
E

+
0
8

1
2

6
0
.0

9
.6

7
4
.0

5
E

-1
3

6
3
.0

1
0
.5

0
1
.5

0
7
.0

0
E

+
0
8

1
.3

0
E

+
0
0

1
.3

2
E

+
1
1

3
.2

0
E

+
1
1

3
.3

1
E

-1
2

S
on

y
C

X
A

1
1
7
6
K

fl
a
sh

2
.5

0
E

+
0
8

1
.2

5
E

+
0
8

8
3
9
.0

6
.1

9
8
.7

4
E

-1
2

2
.5

0
E

+
0
8

1
.4

0
E

+
0
0

1
.3

0
E

+
1
0

1
.3

0
E

+
1
1

7
.6

9
E

-1
1

A
n

a
lo

g
D

ev
ic

es
A

D
9
0
2
6

1
9
9
4

3
.1

0
E

+
0
7

1
.5

5
E

+
0
7

1
2

6
5
.0

1
0
.5

0
3
.5

3
E

-1
2

2
.0

0
1
.4

6
E

+
0
0

3
.0

9
E

+
1
0

3
.0

9
E

+
1
0

3
.2

4
E

-1
1

A
n

a
lo

g
D

ev
ic

es
A

D
6
6
4
5

2
0
0
4

3
-s

ta
g
e

1
.0

5
E

+
0
8

5
.2

5
E

+
0
7

1
4

7
4
.5

1
2
.0

8
3
.4

9
E

-1
3

9
3
.0

1
5
.5

0
2
.2

0
2
.7

0
E

+
0
8

1
.5

0
E

+
0
0

3
.0

4
E

+
1
1

3
.0

4
E

+
1
1

3
.2

9
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
6
6
4
5

2
0
0
4

3
-s

ta
g
e

1
.0

5
E

+
0
8

2
.0

0
E

+
0
8

1
4

7
2
.0

1
1
.6

7
1
.2

2
E

-1
3

6
3
.0

1
0
.5

0
2
.2

0
2
.7

0
E

+
0
8

1
.5

0
E

+
0
0

2
.2

8
E

+
1
1

6
.6

8
E

+
1
1

1
.1

5
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
4
6
0

2
0
0
6

P
ip

el
in

e
1
.0

5
E

+
0
8

3
.0

0
E

+
0
7

1
5

7
6
.3

1
2
.7

1
3
.9

5
E

-1
3

9
0
.0

1
5
.0

0
3
.4

0
8
.0

0
E

+
0
8

1
.6

0
E

+
0
0

4
.4

1
E

+
1
1

2
.5

2
E

+
1
1

3
.9

7
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
4
6
0

2
0
0
6

P
ip

el
in

e
1
.0

5
E

+
0
8

1
.7

0
E

+
0
8

1
5

7
6
.6

1
2
.4

3
8
.4

7
E

-1
4

8
3
.0

1
3
.8

3
3
.4

0
8
.0

0
E

+
0
8

1
.6

0
E

+
0
0

3
.6

3
E

+
1
1

1
.1

7
E

+
1
2

8
.5

2
E

-1
3

S
ig

P
ro

c
T

ec
h

S
P

T
7
3
1
2

1
9
9
1

p
ip

el
in

e
2
0
0
E

+
0
7

1
.0

0
E

+
0
7

1
2

5
8
.0

9
.3

4
1
.2

3
E

-1
1

7
0
.0

1
1
.6

7
2
.0

0
1
.2

0
E

+
0
8

1
.6

0
E

+
0
0

7
.2

1
E

+
0
9

7
.2

1
E

+
0
9

1
.3

9
E

-1
0

S
ig

P
ro

c
T

ec
h

S
P

T
7
6
2
4

1
9
9
1

p
ip

el
in

e
4
0
0
E

+
0
7

2
.0

0
E

+
0
7

1
0

5
0
.0

8
.0

1
1
.5

4
E

-1
1

7
0
.0

1
1
.6

7
1
.8

0
1
.2

0
E

+
0
8

1
.6

0
E

+
0
0

5
.7

4
E

+
0
9

5
.7

4
E

+
0
9

1
.7

4
E

-1
0

D
a
te

l
A

D
S

9
3
2

1
9
9
6

2
-s

ta
g
e

2
0
0
E

+
0
6

1
.0

0
E

+
0
6

1
6

8
1
.0

1
3
.1

6
8
.5

8
E

-1
2

8
4
.0

1
4
.0

0
5
.5

0
4
.0

0
E

+
0
8

1
.8

5
E

+
0
0

9
.9

1
E

+
0
9

9
.9

1
E

+
0
9

1
.0

1
E

-1
0

D
a
te

l
A

D
S

1
1
0

2
-s

ta
g
e

5
.0

0
E

+
0
6

2
.5

0
E

+
0
6

1
2

6
8
.0

1
0
.6

7
1
.9

5
E

-1
1

6
5
.0

1
0
.8

3
2
.0

0
6
.5

0
E

+
0
7

1
.9

0
E

+
0
0

4
.2

9
E

+
0
9

4
.2

9
E

+
0
9

2
.3

3
E

-1
0

T
ex

a
s

in
st

ru
m

en
ts

A
D

S
5
4
2
4

2
0
0
5

3
-s

ta
g
e+

D
S

P
1
.0

5
E

+
0
8

5
.0

0
E

+
0
7

1
4

7
4
.0

1
2
.0

0
3
.8

9
E

-1
3

9
3
.0

1
5
.5

0
2
.2

0
5
.7

0
E

+
0
8

1
.9

0
E

+
0
0

2
.2

6
E

+
1
1

2
.1

6
E

+
1
1

4
.6

4
E

-1
2

T
ex

a
s

in
st

ru
m

en
ts

A
D

S
5
4
2
4

2
0
0
5

3
-s

ta
g
e+

D
S

P
1
.0

5
E

+
0
8

1
.7

0
E

+
0
8

1
4

6
9
.1

1
1
.1

9
2
.0

1
E

-1
3

7
3
.0

1
2
.1

7
2
.2

0
5
.7

0
E

+
0
8

1
.9

0
E

+
0
0

1
.2

9
E

+
1
1

4
.1

7
E

+
1
1

2
.4

0
E

-1
2

C
om

li
n

ea
r

C
L

C
9
5
0

1
9
9
4

2
-s

ta
g
e

2
.5

6
E

+
0
7

1
.2

8
E

+
0
7

1
2

6
7
.0

1
0
.8

4
3
.4

0
E

-1
2

7
5
.0

1
2
.5

0
2
.0

0
1
.7

5
E

+
0
8

2
.0

0
E

+
0
0

2
.3

4
E

+
1
0

2
.3

4
E

+
1
0

4
.2

7
E

-1
1

A
n

a
lo

g
D

ev
ic

es
M

a
n

g
a
ls

d
or

i
1
9
9
0

fl
a
sh

2
.0

0
E

+
0
8

1
.0

0
E

+
0
8

6
4
7
.0

7
.5

1
4
.3

5
E

-1
2

4
.0

0
E

+
0
8

2
.0

0
E

+
0
0

1
.8

3
E

+
1
0

1
.8

3
E

+
1
0

5
.4

7
E

-1
1

A
n

a
lo

g
D

ev
ic

es
A

D
9
0
0
6

fl
a
sh

5
.0

0
E

+
0
8

2
.5

0
E

+
0
8

6
2
9
.0

4
.5

2
1
.3

8
E

-1
1

2
.0

0
5
.5

0
E

+
0
8

2
.0

0
E

+
0
0

5
.7

6
E

+
0
9

5
.7

6
E

+
0
9

1
.7

4
E

-1
0

N
T

T
L

S
I

L
a
b

W
a
k

im
ot

o
et

a
l.

1
9
8
8

fl
a
sh

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

6
3
6
.7

5
.8

0
2
.8

5
E

-1
2

5
0
.0

8
.3

3
2
.0

0
1
.7

0
E

+
0
9

2
.0

0
E

+
0
0

2
.7

9
E

+
1
0

2
.7

9
E

+
1
0

3
.5

8
E

-1
1

E
d

g
e

T
ec

h
n

ol
og

y
E

T
1
4
6
3

1
9
9
2

3
.0

0
E

+
0
6

1
.5

0
E

+
0
6

1
4

7
8
.0

1
2
.6

6
8
.1

7
E

-1
2

2
.0

0
2
.1

7
E

+
0
0

8
.9

8
E

+
0
9

8
.9

8
E

+
0
9

1
.1

1
E

-1
0

E
d

g
e

T
ec

h
n

ol
og

y
E

T
1
4
6
5

1
9
9
2

5
.0

0
E

+
0
6

2
.5

0
E

+
0
6

1
4

7
8
.0

1
2
.6

6
4
.9

0
E

-1
2

2
.0

0
2
.1

7
E

+
0
0

1
.5

0
E

+
1
0

1
.5

0
E

+
1
0

6
.6

9
E

-1
1

A
n

a
lo

g
ic

A
D

C
4
3
5
7

3
-s

ta
g
e

2
.0

0
E

+
0
5

1
.0

0
E

+
0
5

1
6

9
0
.0

1
4
.6

6
3
.0

8
E

-1
1

9
0
.0

1
5
.0

0
1
0
.0

0
2
.2

0
E

+
0
0

2
.3

5
E

+
0
9

2
.3

5
E

+
0
9

4
.2

6
E

-1
0

A
n

a
lo

g
D

ev
ic

es
A

D
9
0
2
8

fl
a
sh

3
.0

0
E

+
0
8

1
.5

0
E

+
0
8

8
3
6
.0

5
.6

9
1
.0

3
E

-1
1

2
.0

0
2
.5

0
E

+
0
8

2
.2

0
E

+
0
0

7
.0

3
E

+
0
9

7
.0

3
E

+
0
9

1
.4

2
E

-1
0

T
ex

a
s

In
st

ru
m

en
ts

A
D

S
5
4
6
3

2
0
0
6

p
ip

el
in

ed
5
.0

0
E

+
0
8

2
.3

0
E

+
0
8

1
2

6
4
.7

1
0
.4

6
2
.4

6
E

-1
3

7
8
.0

1
3
.0

0
2
.2

0
1
.3

0
E

+
0
9

2
.2

0
E

+
0
0

3
.1

9
E

+
1
1

2
.9

4
E

+
1
1

3
.4

1
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
4
4
5

2
0
0
5

p
ip

el
in

ed
1
.2

5
E

+
0
8

7
.0

0
E

+
0
7

1
4

7
3
.5

1
1
.9

2
2
.9

4
E

-1
3

8
5
.0

1
4
.1

7
3
.2

0
3
.0

0
E

+
0
8

2
.3

0
E

+
0
0

2
.1

0
E

+
1
1

2
.3

5
E

+
1
1

4
.2

5
E

-1
2

A
n

a
lo

g
D

ev
ic

es
A

D
9
4
4
6

2
0
0
5

p
ip

el
in

ed
1
.0

0
E

+
0
8

1
.2

5
E

+
0
8

1
6

7
7
.5

1
2
.5

8
1
.0

4
E

-1
3

8
2
.0

1
3
.6

7
3
.2

0
2
.2

5
E

+
0
8

2
.3

0
E

+
0
0

2
.6

6
E

+
1
1

6
.6

6
E

+
1
1

1
.5

0
E

-1
2

A
tm

el
A

T
8
4
A

S
0
0
1

2
0
0
6

S
H

A
+

p
ip

el
in

e
5
.0

0
E

+
0
8

2
.5

0
E

+
0
8

1
2

6
2
.0

1
0
.0

1
3
.0

9
E

-1
3

7
2
.0

1
2
.0

0
1
.1

0
1
.5

0
E

+
0
9

2
.3

0
E

+
0
0

2
.2

4
E

+
1
1

2
.2

4
E

+
1
1

4
.4

7
E

-1
2

A
n

a
lo

g
ic

A
D

C
5
1
2
0

3
-s

ta
g
e

5
.0

0
E

+
0
4

2
.5

0
E

+
0
4

2
0

1
0
3
.0

1
6
.8

2
2
.7

6
E

-1
1

1
0
4
.0

1
7
.3

3
1
0
.0

0
1
.4

0
E

+
0
5

2
.3

8
E

+
0
0

2
.4

3
E

+
0
9

2
.4

3
E

+
0
9

4
.1

2
E

-1
0

In
st

.
fu

r
E

le
ct

r.
R

u
h

r
U

n
iv

.
D

a
n

ie
l

et
a
l.

1
9
8
8

st
a
ck

ed
fl

a
sh

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

4
2
5
.0

3
.8

6
1
.1

0
E

-1
1

3
6
.0

6
.0

0
1
.2

8
8
.0

0
E

+
0
8

2
.4

0
E

+
0
0

6
.0

5
E

+
0
9

6
.0

5
E

+
0
9

1
.6

5
E

-1
0

S
ig

P
ro

c
T

ec
h

H
A

D
C

7
7
1
0
0

fl
a
sh

1
.5

0
E

+
0
8

7
.5

0
E

+
0
7

8
3
8
.0

6
.0

2
1
.6

4
E

-1
1

2
.0

0
1
.7

5
R

+
0
8

2
.6

0
E

+
0
0

3
.7

4
E

+
0
9

3
.7

4
E

+
0
9

2
.6

7
E

-1
0

H
u

g
h

es
A

C
T

C
1
9
8
6

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

6
3
5
.0

5
.5

2
3
.4

6
E

-1
2

3
7
.1

6
.1

8
5
.0

0
E

+
0
8

2
.6

0
E

+
0
0

1
.7

7
E

+
1
0

1
.7

7
E

+
1
0

5
.6

6
E

-1
1

A
n

a
lo

g
D

ev
ic

es
A

D
1
3
6
2

3
-s

ta
g
e

5
.0

0
E

+
0
5

2
.5

0
E

+
0
5

1
6

9
1
.0

1
4
.8

2
1
.1

0
E

-1
1

8
5
.0

1
4
.1

7
1
0
.0

0
2
.0

0
E

+
0
5

2
.8

0
E

+
0
0

5
.1

8
E

+
0
9

5
.1

8
E

+
0
9

1
.9

3
E

-1
0

D
a
te

l
A

D
S

9
4
1

2
-s

ta
g
e

1
.0

0
E

+
0
6

5
.0

0
E

+
0
5

1
4

7
6
.0

1
2
.3

3
3
.0

9
E

-1
1

8
7
.0

1
4
.5

0
1
0
.0

0
6
.0

0
E

+
0
6

2
.8

0
E

+
0
0

1
.8

4
E

+
0
9

1
.8

4
E

+
0
9

5
.4

3
E

-1
0

A
n

a
lo

g
D

ev
ic

es
A

D
9
0
6
0

fl
a
sh

7
.5

0
E

+
0
7

3
.7

5
E

+
0
7

1
0

4
8
.0

7
.6

8
1
.0

3
E

-1
1

4
.0

0
1
.7

5
E

+
0
8

2
.8

0
E

+
0
0

5
.5

0
E

+
0
9

5
.5

0
E

+
0
9

1
.8

2
E

-1
0

D
a
te

l
A

D
S

9
4
2

2
-s

ta
g
e

2
.0

0
E

+
0
6

1
.0

0
E

+
0
6

1
4

7
6
.0

1
2
.3

3
1
.5

4
E

-1
1

8
0
.0

1
3
.3

3
1
0
.0

0
6
.0

0
E

+
0
6

2
.9

0
E

+
0
0

3
.5

6
E

+
0
9

3
.5

6
E

+
0
9

2
.8

1
E

-1
0

N
or

te
l

P
S

ch
v
a
n

et
a
l.

2
0
0
6

fl
a
sh

2
.2

0
E

+
1
0

7
.0

0
E

+
0
9

5
2
2
.8

3
.5

0
1
.0

0
E

-1
2

2
9
.0

4
.8

3
0
.5

4
3
.0

0
E

+
0
0

8
.3

0
E

+
1
0

5
.2

8
E

+
1
0

1
.8

9
E

-1
1

S
on

y
C

X
A

1
2
7
6
K

fl
a
sh

4
.0

0
E

+
0
8

2
.0

0
E

+
0
8

8
4
0
.0

6
.3

5
4
.8

7
E

-1
2

2
.5

0
E

+
0
8

3
.1

0
E

+
0
0

1
.0

5
E

+
1
0

1
.0

5
E

+
1
0

9
.4

9
E

-1
1

D
a
te

l
A

D
S

9
4
4

1
9
9
4

2
-s

ta
g
e

fl
a
sh

,
S

H
,

D
S

P
5
.0

0
E

+
0
6

2
.5

0
E

+
0
6

1
4

7
1
.0

1
1
.5

0
1
.1

0
E

-1
1

2
.5

0
3
.3

7
E

+
0
0

4
.3

0
E

+
0
9

4
.3

0
E

+
0
9

2
.3

2
E

-1
0

D
a
te

l
A

D
S

9
3
0

2
-s

ta
g
e

5
.0

0
E

+
0
5

2
.5

0
E

+
0
5

1
6

8
0
.0

1
3
.0

0
3
.8

9
E

-1
1

8
5
.0

1
4
.3

3
1
0
.0

0
2
.0

0
E

+
0
6

3
.4

0
E

+
0
0

1
.2

0
E

+
0
9

1
.2

0
E

+
0
9

8
.3

2
E

-1
0

A
n

a
lo

g
ic

A
D

C
4
3
4
4

2
-s

ta
g
e

1
.0

0
E

+
0
6

5
.0

0
E

+
0
5

1
6

8
2
.0

1
3
.3

3
1
.5

5
E

-1
1

9
1
.0

1
5
.1

7
5
.0

0
4
.0

0
E

+
0
6

3
.4

0
E

+
0
0

3
.3

0
E

+
0
9

3
.0

3
E

+
0
9

8
.3

0
E

-1
0

F
ra

u
n

h
of

er
&

T
n

Q
u

in
t

H
a
g
ei

a
u

er
et

a
l.

1
9
9
2

fl
a
sh

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

5
3
0
.7

4
.8

1
5
.6

8
E

-1
2

3
3
.7

5
.6

2
1
.8

0
5
.0

0
E

+
0
8

3
.4

0
E

+
0
0

8
.2

4
E

+
0
9

8
.2

4
E

+
0
9

1
.2

1
E

-1
0

H
P

J
ew

et
t

et
a
l.

1
9
9
2

ri
p

p
le

ch
2
.0

0
E

+
0
7

1
.0

0
E

+
0
7

1
2

6
5
.0

1
0
.5

0
5
.4

8
E

-1
2

7
2
.0

1
2
.0

0
9
.5

0
E

+
0
7

3
.5

0
E

+
0
0

8
.3

0
E

+
0
9

8
.3

0
E

+
0
9

1
.2

0
E

-1
0

H
u

g
h

es
B

a
ri

n
g
er

,
et

a
l.

1
9
9
6

fl
a
sh

8
.0

0
E

+
0
9

4
.0

0
E

+
0
9

3
1
8
.2

2
.7

3
3
.0

0
E

-1
2

2
7
.0

4
.5

0
0
.6

0
1
.2

0
E

+
1
0

3
.5

0
E

+
0
0

1
.5

2
E

+
1
0

1
.5

2
E

+
1
0

8
.5

9
E

-1
1

N
T

T
P

h
ot

on
ic

s
L

a
b
s

N
os

a
k

a
et

a
l.

2
0
0
4

fl
a
sh

2
.0

0
E

+
1
0

1
.0

0
E

+
1
0

3
1
5
.6

2
.3

0
1
.6

2
E

-1
2

2
3
.3

3
.8

8
0
.5

0
2
.0

0
E

+
1
0

3
.8

4
E

+
0
0

2
.5

6
E

+
1
0

2
.5

6
E

+
1
0

3
.9

0
E

-1
1

D
a
te

l
A

D
S

1
3
0

2
-s

ta
g
e

1
.0

0
E

+
0
7

5
.0

0
E

+
0
6

1
2

6
5
.0

1
0
.5

0
1
.1

0
E

-1
1

6
7
.0

1
1
.1

7
2
.5

0
6
.5

0
E

+
0
7

3
.8

5
E

+
0
0

3
.7

7
E

+
0
9

3
.7

7
E

+
0
9

2
.6

5
E

-1
0

A
n

a
lo

g
ic

A
D

C
3
1
1
0

2
-s

ta
g
e

2
.0

0
E

+
0
6

1
.0

0
E

+
0
6

1
4

8
4
.0

1
3
.6

6
6
.1

4
E

-1
2

7
6
.0

1
2
.6

7
1
0
.0

0
2
.0

0
E

+
0
7

4
.1

0
E

+
0
0

6
.3

2
E

+
0
9

6
.3

2
E

+
0
9

1
.5

8
E

-1
0

D
a
te

l
A

D
S

9
4
5

1
9
9
4

2
-s

ta
g
e

1
.0

0
E

+
0
7

5
.0

0
E

+
0
8

1
4

7
4
.0

1
2
.0

0
3
.8

9
E

-1
2

7
9
.0

1
3
.1

7
2
.5

0
5
.0

0
E

+
0
7

4
.2

0
E

+
0
0

9
.7

5
E

+
0
9

9
.7

5
E

+
0
9

1
.0

3
E

-1
0

A
tm

el
A

T
8
4
A

S
0
0
8

2
0
0
5

fl
a
sh

,
er

r
co

rr
1
.7

0
E

+
0
9

8
.5

0
E

+
0
8

1
0

5
2
.0

8
.3

5
2
.8

8
E

-1
3

5
6
.0

9
.3

3
0
.5

0
3
.3

0
E

+
0
9

4
.2

0
E

+
0
0

1
.3

2
E

+
1
1

1
.3

2
E

+
1
1

7
.6

0
E

-1
2

A
tm

el
A

T
8
4
A

S
0
0
8

2
0
0
5

fl
a
sh

,
er

r
co

rr
2
.2

0
E

+
0
9

2
.0

0
E

+
0
9

1
0

4
8
.0

7
.6

8
1
9
4
E

-1
3

5
5
.0

9
.1

7
0
.5

0
3
.3

0
E

+
0
9

4
.2

0
E

+
0
0

1
.0

7
E

+
1
1

1
.9

5
E

+
1
1

5
.1

2
E

-1
2

T
R

W
T

H
C

1
2
0
2

p
ip

el
in

e
1
.0

0
E

+
0
7

5
.0

0
E

+
0
6

1
2

6
7
.0

1
0
.8

4
8
.7

0
E

-1
2

6
7
.0

1
1
.1

7
2
.0

0
7
.0

0
E

+
0
7

4
.5

0
E

+
0
0

4
.0

7
E

+
0
9

4
.0

7
E

+
0
9

2
.4

6
E

-1
0

A
tm

el
T

S
8
3
1
0
2

2
0
0
4

fl
a
sh

er
r

co
rr

1
.4

0
E

+
0
9

7
.0

0
E

+
0
8

1
0

4
7
.5

7
.6

0
5
.8

7
E

-1
3

5
9
.0

9
.8

3
0
.5

0
3
.3

0
E

+
0
9

4
.6

0
E

+
0
0

5
.9

0
E

+
1
0

5
.9

0
E

+
1
0

1
.7

0
E

-1
1

C
om

li
n

ea
r

C
L

C
9
3
5
B

1
9
9
4

2
-s

ta
g
e

1
.5

0
E

+
0
7

7
.5

0
E

+
0
6

1
2

6
5
.6

1
0
.6

0
6
.8

1
E

-1
2

8
2
.3

1
3
.7

2
2
.0

0
8
.0

0
E

+
0
7

4
.7

5
E

+
0
0

4
.9

2
E

+
0
9

4
.9

2
E

+
0
9

2
.0

3
E

-1
0

12



A
n

a
lo

g
D

ev
ic

es
A

D
9
0
3
2

1
9
9
2

2
-s

ta
g
e

2
.5

0
E

+
0
7

1
.2

5
E

+
0
7

1
2

6
6
.0

1
0
.6

7
3
.9

0
E

-1
2

7
2
.0

1
2
.0

0
2
.0

0
1
.0

0
E

+
0
7

5
.0

0
E

+
0
0

6
.1

5
E

+
0
9

8
.1

5
E

+
0
9

1
.2

3
E

-1
0

R
oc

k
w

el
l

S
ci

en
ti

fi
c

R
A

D
0
1
0

2
0
0
6

2
-s

ta
g
e

fl
a
sh

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

1
0

5
5
.0

8
.8

4
3
.4

6
E

-1
3

6
0
.0

1
0
.0

0
1
.0

0
6
.0

0
E

+
0
9

5
.0

0
E

+
0
0

9
.1

9
E

+
1
0

9
.1

9
E

+
1
0

1
.0

9
E

-1
1

R
oc

k
w

el
l

R
S

C
-A

D
C

0
8
0
S

1
9
9
8

fo
ld

ed
fl

a
sh

2
.0

0
E

+
0
9

1
.0

0
E

+
0
9

8
3
7
.0

5
.8

5
1
.3

8
E

-1
2

4
3
.0

7
.1

7
0
.8

0
5
.0

0
E

+
0
8

5
.0

0
E

+
0
0

2
.3

1
E

+
1
0

2
.3

1
E

+
1
0

4
.3

2
E

-1
1

M
a
x
im

In
te

g
ra

te
d

P
ro

d
.

M
a
x
1
0
4

1
9
9
9

fl
a
sh

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

8
4
7
.2

7
.5

5
8
.5

0
E

-1
3

5
2
.3

8
.7

2
0
.5

0
2
.2

0
E

+
0
9

5
.2

5
E

+
0
0

3
.5

7
E

+
1
0

3
.5

7
E

+
1
0

2
.8

1
E

-1
1

M
a
x
im

In
te

g
ra

te
d

P
ro

d
.

M
a
x
1
0
8

2
0
0
4

fl
a
sh

1
.5

0
E

+
0
9

7
.5

0
E

+
0
8

8
4
6
.9

7
.5

0
5
.8

7
E

-1
3

5
4
.1

9
.0

2
0
.5

0
2
.2

0
E

+
0
9

5
.2

5
E

+
0
0

5
.1

7
E

+
1
0

5
.1

7
E

+
1
0

1
.9

4
E

-1
1

C
om

li
n

ea
r

C
L

C
9
3
6
C

1
9
9
4

2
-s

ta
g
e

2
.0

0
E

+
0
7

1
.0

0
E

+
0
7

1
2

6
5
.0

1
0
.5

0
5
.4

8
E

-1
2

7
5
.6

1
2
.6

0
2
.0

0
9
.0

0
E

+
0
7

5
.2

8
E

+
0
0

5
.5

0
E

+
0
9

5
.5

0
E

+
0
9

1
.8

2
E

-1
0

R
oc

k
w

el
l

N
a
ry

et
a
l.

1
9
9
5

fo
ld

ed
fl

a
sh

2
.0

0
E

+
0
9

1
.0

0
E

+
0
9

8
4
1
.4

6
.5

8
8
.2

9
E

-1
3

4
8
.0

8
.0

0
0
.6

4
3
.0

0
E

+
0
9

5
.3

0
E

+
0
0

3
.6

2
E

+
1
0

3
.6

2
E

+
1
0

2
.7

6
E

-1
1

E
d

g
e

T
ec

h
n

ol
og

y
E

T
1
6
6
1

1
9
9
2

1
.0

0
E

+
0
6

5
.0

0
E

+
0
5

1
6

9
0
.0

1
4
.6

6
6
.1

6
E

-1
2

1
0
.0

0
5
.5

0
E

+
0
0

4
.7

0
E

+
0
9

4
.7

0
E

+
0
9

2
.1

3
E

-1
0

E
d

g
e

T
ec

h
n

ol
og

y
E

T
1
6
6
2

1
9
9
2

2
.0

0
E

+
0
6

1
.0

0
E

+
0
6

1
6

9
0
.0

1
4
.6

6
3
.0

8
E

-1
2

1
0
.0

0
5
.5

0
E

+
0
0

9
.4

0
E

+
0
9

9
.4

0
E

+
0
9

1
.0

6
E

-1
0

E
d

g
e

T
ec

h
n

ol
og

y
E

T
1
6
6
3

1
9
9
2

3
.0

0
E

+
0
6

1
.5

0
E

+
0
6

1
6

9
0
.0

1
4
.6

6
2
.0

5
E

-1
2

1
0
.0

0
5
.5

0
E

+
0
0

1
.4

1
E

+
1
0

1
.4

1
E

+
1
0

7
.0

9
E

-1
1

T
el

A
si

c
T

C
1
2
0
0

2
0
0
2

fo
ld

ed
fl

a
sh

1
.0

0
E

+
0
9

4
.0

0
E

+
0
8

1
0

4
9
.3

7
.9

0
8
.3

5
E

-1
3

4
.0

0
E

+
0
8

5
.5

0
E

+
0
0

4
.3

3
E

+
1
0

3
.4

7
E

+
1
0

2
.8

8
E

-1
1

S
ig

n
a
l

P
ro

ce
ss

in
g

T
ec

h
S

P
T

7
7
6
0
A

1
9
9
5

fl
a
sh

1
.0

0
E

+
0
9

5
.0

0
E

+
0
8

8
4
2
.0

6
.6

8
1
.5

5
E

-1
2

4
7
.0

7
.8

3
2
.0

0
9
.0

0
E

+
0
8

5
.5

0
E

+
0
0

1
.8

7
E

+
1
0

1
.8

7
E

+
1
0

5
.3

5
E

-1
1

R
oc

k
w

el
l

S
ci

en
ti

fi
c

R
A

D
0
0
8

2
0
0
6

fo
ld

in
g

in
te

rp
ol

a
ti

n
g

3
.0

0
E

+
0
9

1
.5

0
E

+
0
9

8
4
6
.0

7
.3

5
3
.2

5
E

-1
3

5
5
.0

9
.1

7
2
.0

0
1
.0

0
E

+
1
0

5
.5

0
E

+
0
0

8
.8

9
E

+
1
0

8
.8

9
E

+
1
0

1
.1

2
E

-1
1

E
d

g
e

T
ec

h
n

ol
og

y
E

T
1
4
7
1

1
9
9
2

1
.0

0
E

+
0
7

5
.0

0
E

+
0
6

1
4

7
8
.0

1
2
.6

6
2
.4

5
E

-1
2

2
.0

0
5
.7

0
E

+
0
0

1
.1

4
E

+
1
0

1
.1

4
E

+
1
0

8
.7

8
E

-1
1

H
ew

le
tt

P
a
ck

a
rd

J
ew

et
t

et
a
l

1
9
9
7

2
-s

ta
g
e

fo
ld

in
g

1
.2

8
E

+
0
8

6
.4

0
E

+
0
7

1
2

6
1
.5

9
.9

2
1
.2

8
E

-1
2

7
0
.0

1
1
.6

7
0
.5

0
1
.8

0
E

+
0
9

5
.7

0
E

+
0
0

2
.1

8
E

+
1
0

2
.1

8
E

+
1
0

4
.5

9
E

-1
1

H
P

&
R

oc
k

w
el

l
P

ou
lt

on
(H

P
),

W
a
n

g
(R

)
1
9
9
4

fl
a
sh

4
.0

0
E

+
0
9

2
.0

0
E

+
0
9

6
3
3
.1

5
.2

1
1
.0

8
E

-1
2

3
3
.7

5
.6

2
1
.0

0
E

+
1
0

5
.7

0
E

+
0
0

2
.5

9
E

+
1
0

2
.5

9
E

+
1
0

3
.8

6
E

-1
1

R
oc

k
w

el
l

S
ci

en
ti

fi
c

R
A

D
0
0
6

2
0
0
6

fo
ld

in
g

in
te

rp
ol

a
ti

n
g

6
.0

0
E

+
0
9

3
.0

0
E

+
0
9

6
3
4
.0

5
.3

6
6
.4

8
E

-1
3

4
0
.0

6
.6

7
2
.0

0
3
.0

0
E

+
0
7

6
.0

0
E

+
0
0

4
.0

9
E

+
1
0

4
.0

9
E

+
1
0

2
.4

4
E

-1
1

B
u

rr
B

ro
w

n
A

D
C

6
1
4

1
9
9
4

2
-s

ta
g
e

5
.0

0
E

+
0
6

2
.5

0
E

+
0
6

1
4

7
8
.0

1
2
.6

6
4
.9

0
E

-1
2

8
8
.0

1
4
.6

7
2
.5

0
4
.0

0
E

+
0
7

6
.1

0
E

+
0
0

5
.3

2
E

+
0
9

5
.3

2
E

+
0
9

1
.8

8
E

-1
0

B
u

rr
B

ro
w

n
A

D
C

6
0
3

1
9
9
2

2
-s

ta
g
e

1
.0

0
E

+
0
7

5
.0

0
E

+
0
6

1
2

6
5
.0

1
0
.5

0
1
.1

0
E

-1
1

7
2
.0

1
2
.0

0
2
.5

0
6
.1

0
E

+
0
0

2
.3

8
E

+
0
9

2
.3

8
E

+
0
9

4
.2

0
E

-1
0

M
ic

ro
N

et
w

or
k

s
M

N
5
4
2
0

1
9
9
1

a
u

to
ra

n
g
in

g
3
.2

0
E

+
0
5

1
.6

0
E

+
0
5

1
2

6
0
.0

9
.6

7
6
.0

9
E

-1
0

1
2
0
.0

2
0
.0

0
9
.0

0
E

+
0
6

6
.5

0
E

+
0
0

4
.0

2
E

+
0
7

4
.0

2
E

+
0
7

2
.4

9
E

-0
8

A
n

a
lo

g
D

ev
ic

es
A

D
1
3
8
8

1
9
9
2

2
.0

0
E

+
0
6

1
.0

0
E

+
0
6

1
6

8
2
.0

1
3
.3

3
7
.7

3
E

-1
2

1
0
.0

0
3
.0

0
E

+
0
9

6
.5

0
E

+
0
0

3
.1

7
E

+
0
9

3
.1

7
E

+
0
9

3
.1

6
E

-1
0

A
tm

el
A

T
8
4
A

S
0
0
4

2
0
0
5

fl
a
sh

er
r

co
rr

2
.0

0
E

+
0
9

1
.0

0
E

+
0
9

1
0

5
1
.0

8
.1

8
2
.7

5
E

-1
3

5
5
.0

9
.1

7
0
.5

0
1
.0

0
E

+
0
8

6
.5

0
E

+
0
0

8
.9

2
E

+
1
0

8
.9

2
E

+
1
0

1
.1

2
E

-1
1

C
om

li
n

ea
r

C
L

C
9
3
8
C

1
9
9
4

2
-s

ta
g
e

3
.0

7
E

+
0
7

1
.5

4
E

+
0
7

1
2

6
4
.6

1
0
.4

4
3
.7

3
E

-1
2

7
2
.2

1
2
.0

3
2
.0

0
2
.8

0
E

+
0
9

6
.5

7
E

+
0
0

6
.4

9
E

+
0
9

6
.4

9
E

+
0
9

1
.5

4
E

-1
0

M
a
x
im

In
te

g
ra

te
d

P
ro

d
.

M
a
x

1
0
9

2
0
0
7

fl
a
sh

T
/H

2
.2

0
E

+
0
9

1
.0

0
E

+
0
9

8
4
3
.1

6
.8

7
6
.8

2
E

-1
3

5
1
.1

8
.5

2
0
.4

0
1
.0

0
E

+
0
8

6
.8

0
E

+
0
0

3
.7

8
E

+
1
0

3
.4

3
E

+
1
0

2
.9

1
E

-1
1

C
om

li
n

ea
r

C
L

C
9
3
7
B

1
9
9
4

2
-s

ta
g
e

2
.5

6
E

+
0
7

1
.2

8
E

+
0
7

1
2

6
4
.8

1
0
.4

7
4
.3

8
E

-1
2

7
3
.3

1
2
.2

2
2
.0

0
1
.2

0
E

+
0
9

7
.3

5
E

+
0
0

4
.9

5
E

+
0
9

4
.9

5
E

+
0
9

2
.0

2
E

-1
0

M
ic

ro
N

et
w

or
k

s
M

N
6
9
0
0

1
9
9
1

fl
a
sh

5
.0

0
E

+
0
8

2
.5

0
E

+
0
8

8
4
8
.0

7
.6

8
1
.5

5
E

-1
2

6
1
.8

1
0
.3

0
0
.5

4
6
.0

0
E

+
0
7

7
.5

0
E

+
0
0

1
.3

7
E

+
1
0

1
.3

7
E

+
1
0

7
.3

1
E

-1
1

T
R

W
T

A
C

1
0
2
5

fl
a
sh

2
.5

0
E

+
0
7

1
.2

5
E

+
0
7

1
0

4
9
.0

7
.8

5
2
.7

6
E

-1
1

5
3
.0

8
.8

3
1
.0

0
1
.8

0
E

+
0
8

7
.8

0
E

+
0
0

7
.3

8
E

+
0
8

7
.3

8
E

+
0
8

1
.3

5
E

-0
9

A
n

a
lo

g
D

ev
ic

es
A

D
1
2
4
0
1

2
0
0
5

p
a
ra

ll
el

V
-C

or
p

4
.0

0
E

+
0
8

1
.2

8
E

+
0
8

1
2

6
4
.4

1
0
.4

1
4
.5

8
E

-1
3

7
5
.0

1
2
.5

0
3
.2

0
6
.6

0
E

+
0
9

8
.5

0
E

+
0
0

6
.3

8
E

+
1
0

4
.0

8
E

+
1
0

2
.4

5
E

-1
1

A
g
il

en
t

L
a
b
s

P
ou

lt
on

et
a
l.

2
0
0
3

ti
m

e
in

te
rl

ea
v
ed

2
.0

0
E

+
1
0

6
.0

0
E

+
0
9

8
2
9
.5

4
.6

0
5
.4

7
E

-1
3

0
.2

5
2
.5

0
E

+
0
8

9
.0

0
E

+
0
0

5
.3

9
E

+
1
0

3
.2

3
E

+
1
0

3
.0

9
E

-1
1

H
u

g
h

es
A

C
T

C
1
9
8
8

fl
a
sh

5
.0

0
E

+
0
8

2
.5

0
E

+
0
8

8
4
0
.0

6
.3

5
3
.9

0
E

-1
2

6
.0

0
E

+
0
7

1
.1

0
E

+
0
1

3
.7

1
E

+
0
9

3
.7

1
E

+
0
9

2
.6

9
E

-1
0

A
n

a
lo

g
D

ev
ic

es
A

D
9
0
1
4

1
9
9
2

2
-s

ta
g
e

1
.0

0
E

+
0
7

5
.0

0
E

+
0
6

1
4

7
5
.0

1
2
.1

7
3
.4

6
E

-1
2

8
8
.0

1
4
.6

7
2
.0

0
1
.2

8
E

+
0
1

3
.5

9
E

+
0
9

3
.5

9
E

+
0
9

2
.7

9
E

-1
0

H
u

g
h

es
B

oy
k

o,
G

S
G

1
9
9
0

p
ip

el
in

e
6
.0

0
E

+
0
6

3
.0

0
E

+
0
6

1
5

7
5
.0

1
2
.1

7
5
.7

7
E

-1
2

9
0
.0

1
5
.0

0
3
.0

0
E

+
0
7

2
.2

0
E

+
0
1

1
.2

5
E

+
0
9

1
.2

5
E

+
0
9

7
.9

8
E

-1
0

H
u

g
h

es
A

C
T

C
1
9
7
8

n
-s

ta
g
e

6
.0

0
E

+
0
7

3
.0

0
E

+
0
7

1
3

6
2
.0

1
0
.0

1
2
.5

8
E

-1
2

7
0
.0

1
1
.6

7
4
.0

0
E

+
0
9

2
.5

0
E

+
0
1

2
.4

7
E

+
0
9

2
.4

7
E

+
0
9

4
.0

5
E

-1
0

H
P

P
ou

lt
on

et
a
l.

1
9
9
7

ti
m

e
in

te
rl

ea
v
ed

8
.0

0
E

+
0
9

4
.0

0
E

+
0
9

8
2
4
.2

3
.7

3
1
.5

0
E

-1
2

2
.7

0
E

+
0
1

3
.9

2
E

+
0
9

3
.9

2
E

+
0
9

2
.5

5
E

-1
0

H
u

g
h

es
A

C
T

C
1
9
9
1

n
-s

ta
g
e

2
.5

0
E

+
0
7

1
.2

5
E

+
0
7

1
4

7
3
.0

1
1
.8

3
1
.7

4
E

-1
2

8
4
.0

1
4
.0

0
3
.0

0
E

+
0
1

3
.0

4
E

+
0
9

3
.0

4
E

+
0
9

3
.2

9
E

-1
0

H
ew

le
tt

P
a
ck

a
rd

S
ch

il
le

r
&

B
y
rn

e
1
9
9
1

ti
m

e
in

te
rl

ea
v
ed

4
.0

0
E

+
0
9

2
.0

0
E

+
0
9

8
4
1
.5

6
.6

0
4
.1

0
E

-1
3

3
.9

0
E

+
0
1

9
.9

6
E

+
0
9

9
.9

6
E

+
0
9

1
.0

0
E

-1
0

*
T

h
e

en
tr

ie
s

in
th

is
ta

b
le

a
re

co
lo

r-
co

d
ed

in
th

e
sa

m
e

m
a
n

n
er

a
s

th
e

p
oi

n
ts

in
F

ig
.

8
,

i.
e.

,
a
cc

or
d

in
g

to
p

ow
er

d
is

si
p

a
ti

on
.

13



SUMMARY

The current state-of-the-art for ADCs has been reviewed
and analyzed. Data for SNDR and SFDR as functions of fsig

and fsamp have been discussed. The SNDR data show that
converter performance is limited by input-referred noise,
aperture uncertainty, and comparator ambiguity. The best
performances have been achieved for pipelined flash (suc-
cessive approximation, multistage flash) folded flash, and
time-interleaved architectures. Many of these converters
employ DSP for error correction and channel matching. The
best ADCs can operate in undersampling mode.

With respect to aperture uncertainty, about 3 bits of
overall improvement has been achieved over the last
4 years in both SNDR and SFDR. The best converters
were two pipelined ADCs, which achieved ta �81–85 fs
(Table 1 #1, 2). In addition, the best power-efficient con-
verters, as measured by FOMa, have reached down to
nearly 100 fs per conversion step.

It is clear from the data presented above that significant
improvements in converter performances have been
achieved during the early twenty-first century and that
the performance picture is dramatically better than it was
in 1999 (1). In addition, ADC power dissipation has also
been reduced and is largely caused by the continuing
advances in IC technology (Moore’s Law).

Although continued progress in ADC IC design and
technology will no doubt continue, advancements in con-
verter performance may also be aided by heterogeneous
integration, photonic sampling, and/or by superconducting
implementations.

ACKNOWLEDGMENT

This work was supported by The Aerospace Corporation’s
Independent Research and Development Program.

The author gratefully acknowledges G.C. Valley for his
encouragement and helpful comments, especially regard-
ing photonic ADCs, and thanks S.C. Moss for his support
and helpful suggestions, especially regarding the applica-
tion of heterogeneous integration to ADCs.

APPENDIX 1 TABLE OF ADCS COVERED IN THIS WORK

The entries in this table are color-coded in the same manner
as the points in Figure 8, i.e., according to power dissipation.

BIBLIOGRAPHY

1. R. H. Walden, Analog-to-digital converter survey and analysis,
IEEE J. Sel. Areas Communica. 17(4): 539–550, 1999.

2. K. G. Merkel II and A. L. Wilson, A survey of high performance
analog-to-digital converters for defense space applications,
IEEE Proc. Aerospace Conf., vol. 5, paper 1344, 2003, pp.
5-2415–5-2427.

3. B. Le et al., Analog-to-digital converters, IEEE Signal Proc.
Mag., 2005, pp. 69–77.

4. See for example, Atmel data sheet for AT84AS004, Nov. 2005,
p. 40.

5. S. Gupta et al., A 1GS/s 11b time-interleaved ADC in 0.13mm
CMOS, Internat. Solid-State Circuits Conf. Digest of Tech.
Papers, paper 31.6, 2006.

6. C. Schiller and P. Byrne, A 4-GHz 8-b ADC system, IEEE J.
Solid-State Circuits, 26(12): 1781–1789, 1991.

7. K. Poulton et al., A 20 GS/s 8-b ADC with a 1MB memory in
0.18um CMOS, Internat. Solid-State Circuits Conf. Digest of
Tech. Papers, vol. 496, 2003, pp. 318–319.

8. K.Nary etal., An 8-bit, 2 gigasample per secondanalog to digital
converter, GaAs IC Symp. Tech. Digest, 17: 303–246, 1995.

9. Mitteregger et al., A 14b 20mW 640MHz CMOS CT SD ADC
with 20MHz signal bandwidth and 12b ENOB, Internat. Solid-
State Circuits Conf. Digest of Tech. Papers, paper 03.1, 2006.

10. P. Schvan et al., A 22GS/s 5b ADC in 0.13um SiGe BiCMOS,
Internat. Solid-State Circuits Conf. Digest of Tech. Papers,
paper 31.4, 2006.

11. J. van Valberg and R. J. van de Plassche, An 8-bit 650 MHz
folding ADC, IEEE J. Solid-State Circuits, 27(12): 1662–1666,
1992.

12. P. Bogner et al., A 14b 100MS/s digitally self-calibrated pipe-
lined ADC in 0.13mm CMOS, Internat. Solid-State Circuits
Conf. Digest of Tech. Papers, paper 12.6, 2006.

13. R. Jewett et al., A 12b 128 MSanples/s ADC with 0.05LSB DNL,
Internat. Solid-State Circuits Conf. Digest of Tech. Papers, vol.
443, 1997, pp. 439–443.

14. K. Poulton et al., A 6-bit, 4 Gsa/s ADC fabricated in a GaAs HBT
process, GaAs IC Symp. Tech. Digest, 16: 240–243, 1994.

15. H. Nosaka et al., A 24-Gsps 3-bit Nyquist ADC using InP HBTs
for electronic dispersion compensation, IEEE MTT-S Digest,
2004, pp. 101–104.

16. K. Poulton et al., An 8-GSa/s 8-bit ADC system, Tech. Digest of
VLSI Circuits Symp., 1997, pp. 23–24.

17. J. C. Candy and G. C. Temes, eds., Oversampling Delta-Sigma
Converters. New York: IEEE Press, 1992.

18. L. Pellon, Military applications of high-speed ADCs, IEEE
MTT Workshop, WMA: Application and Technology of High-
Speed Analog-to-Digital Converters, 2005.

19. L. Luh et al., A 4GHz 4th order passive LC bandpass delta-
sigma modulator with IF at 1.4 GHz, Symp. VLSI Circuits
Digest of Technical Papers, 2006, pp. 208–209.

20. A. W. Fang et al., Electrically pumped hybrid AlGaInAs-silicon
evanescent laser, Optics Expr., 14(20): 9203–9210, 2006.

21. M. Paniccia et al., A hybrid silicon laser: silicon photonics
technology for future tera-scale computing, Technology@Intel
Magazine, 2006, pp. 44–50.

22. Y. Liu, Heterogeneous integration of OE arrays with Si elec-
tronics and microoptics, IEEE Trans. Adv. Packag. 25(1):
43–49, 2002.

23. T. B. Cho and P. R. Gray, A 10b, 20 Msample/s, 35 mW pipeline
A/D converter, IEEE J. Solid-State Circuits, 30(3): 166–172,
1995.

24. S-U. Kwak, B-S. Song and K. Bacrania, A 15b 5Msample/s low-
spurious CMOS ADC, IEEE ISSCC Digest Tech. Papers, vol.
40, 1997, pp. 146–147.

25. G. C. Valley, Photonic analog-to-digital converters, Optics
Express, 15(15): 1955–1982, 2007.

26. D. Gupta et al., Analog-to-digital converter and SiGe output
amplifier, IEEE Trans. Appl. Superconduct., 13(2): 477–483,
2003.

R. H. WALDEN

The Aerospace Corporation
Electronics & Photonics

Laboratory
Los Angeles, California

14 ANALOG-TO-DIGITAL CONVERSION IN THE EARLY TWENTY-FIRST CENTURY



A

AUTOMATIC TEST GENERATION

INTRODUCTION

This article describes the topic of automatic test generation
(ATG) for digital circuitsjmd systems. Considered within
the scope of ATG are methods and processes that support
computer-generated tests and supporting methodologies.
Fundamental concepts necessary to understand defect
modeling and testing are presented to support later dis-
cussions on ATG techniques. In addition, several closely
related topics are also presented that affect the ATG pro-
cess, such as design for test (DFT) methodologies and
technologies.

One can test digital systems to achieve one of several
goals. First, testing can be used to verify that a system
meets its functional specifications. In functional testing,
algorithms, capabilities, and functions are verified to
ensure correct design and implementation. Once a system
has been verified to be correct, it can be manufactured in
quantity. Second, one wishes to know whether each man-
ufactured system is defect free. Third, testing can be used to
determine whether a system is defect free. Functional tests
can provide the basis for defect tests but are ineffective in
providing acceptable defect tests. Defect tests can be devel-
oped by creating tests in an ad hoc fashion followed by
evaluation using a fault simulator. In complex systems, this
process can be challenging and time consuming for the test
engineer. As a result, many effective techniques have been
developed to perform ATG as well as to make ATG more
effective.

Technologic trends have continued to offer impressive
increases in capability and performance in computing func-
tion and capacity, Moore’s law noted the annual doubling of
circuit complexities in 1966 that continued through 1976
(1).1 Although the rate of complexity doubling slowed, such
increases are both nontrivial and continuous with the
increases in complexity comes the added burden of testing
these increasingly complex systems.

Supporting the technologic improvements are comple-
mentary advances in the many supporting technologies
including design tools, design practices, simulation, man-
ufacturing, and testing. Focusing on testing, the technolo-
gic advances have impacted testing in several ways. First,
the increase in the number of pins for an integrated circuit
has not increased at the same rate as the number of devices
on the integrated circuit. In the context of testing, the
increasing relative scarcity of pins creates a testing bottle-
neck because more testing stimulus and results must be
communicated through relatively fewer pins. Second,
design methodologies have changed to reflect the trends
in the introduction of increasingly more complex systems.
So-called systems on chip (SoC) approaches enable

designers to assemble systems using intellectual property
(IP) cores purchased from vendors. SoCs present their own
challenges in testing. SoC testing is complicated even more
by observing that vendors are, understandably, reluctant
to provide sufficient detail on the inner workings of their
cores to enable the development of a suitable defect test.
Indeed, vendors may be unwilling to provide test vectors
that can provide hints on the inner workings. As a result,
the idea of embedded test has grown out of these challenges.
Third, the sheer complexity of the systems can make it
prohibitively expensive to develop effective tests manually.
As a result, reliance on tools that can generate tests auto-
matically can reduce manufacturing costs. Furthermore,
effective testing schemes also rely on the integration of
testing structures to improve the coverage, reduce the
number of tests required, and complement the ATG pro-
cess. Fourth, ATG serves as an enabling technology for
other testing techniques. For example, synthesis tools
remove the burden of implementing systems down to the
gate level. At the same time, gate level detail, necessary for
assembling a testing regimen, may be hidden from the
designer. ATG fills this gap by generating tests for synth-
esis without requiring the designer to develop test synth-
esis tools as well.

FUNDAMENTALS OF TESTING

In this section, fundamental concepts from testing are
introduced. First, fault modeling is presented todefinelhe
target for testing techniques. Second, testing measures are
presented to provide a metric for assessing the efficacy of a
given testing regimen. Finally, fault simulation is usedto
quantify the testing measures. We will use the three uni-
verse mode (2) to differentiate the defect from the mani-
festation of the fault and also the system malfunction. A
fault is the modelof the defect that is present physically in
the circuit. An error is the manifestation of the fault where
a signal will have a value that differs from the desired
value. A failure is the malfunction of the system that results
from errors.

Fault Modeling

Circuits can fail in many ways. The failures can result from
manufacturing defects, infant mortality, random failures,
age, or external disturbances (2). The defects qan be loca-
lized, which affect function of one circuit element, or dis-
tributed, which affect many of all circuit elements. The
failures can result in temporary or permanent circuit fail-
ure. The fault model provides an analytical target for
testing methodologies and strategies. Thus, the fidelity of
the fault models, in the context of the implementation
technology, can impact the efficacy of the testing (3). For
example, the stuck fault model is considered to be an
ineffective model for many faults that occur in CMOS

1Moore actually stated his trend in terms of ‘‘the number of
components per integrated circuit for minimum cost’’ (1)

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



circuits. In addition, the fault model may influence the
overall test strategy.

The fault models selected depend on the technology,
used to implement the circuits. Manufacturing defects exist
as a consequence of manufacturing the circuit. The intro-
duction and study of manufacturing defects is a heavily
studied topic because of its impact on the profitability of the
device. Dust or other aerosols in the air can affect the defect
statistics of a particular manufacturing run. In addition,
mask misalignment and defects in the mask can also
increase the defect densities. Other fault models can
account for additional failure processes such as transient
faults, wear out, and external disturbances. Figure 1 gives
some example faults that are discussed in more detail in the
following sections.

Stuck-at Fault Models. Stuck-at fault models are the
simplest and most widely used fault models. Furthermore,
the stuck-at fault model also models a common failure mode
in digital circuits. The stuck-at fault model requires the
adoption of several fundamental assumptions. First, a
stuck-at fault manifests itself as a node being stuck at
either of the allowable logic levels, zero or one, regardless
of the inputs that are applied to the gate that drive the node.
Second, the stuck-at fault model assumes that the faults are
permanent. Third, the stuck-at fault model assumes a
value for the fault, but otherwise preserves the gate func-
tion. The circuit shown in Fig. 1 is used to illustrate the
fault model. The output of gate G1 can be stuck-at 1 (SA-1)
as a result of a defect. When the fault is present, the
corresponding input to G4 will always be one. To express
the error, a discrepancy with respect to fault-free operation
must occur in the circuit as a consequence of the fault. To
force the discrepancy, the circuit inputs are manipulated so
that A ¼ B ¼ 1, and a discrepancy is observed at the output
of G1. A second example circuit is shown in Fig. 2, which
consists of an OR gate (G1) that drives one input in each of
three AND gates (G2, G3, and G4). Consider the presence of
an SA-1 fault on any input to G1 fault results in the output
being 1 as a consequence of the fault. In G1 input and output
SA-1 faults are indistinguishable and for modeling pur-
poses can be ‘‘collapsed’’ into a single fault. A somewhat
higher fidelity model can also include gate input stuck
faults. For example, in the event gate input I2 has a
stuck-at 1 fault, the situation is somewhat different. In

this case, O1 ¼ I3 ¼ I4 with G3 and G4 not affected directly
by the fault.

Delay Fault Models. A delay fault is a fault in which a
part of the circuit operates slowly compared with a correctly
operating circuit. Because normal manufacturing varia-
tions result in delay differences, the operation must result
in a sufficient delay discrepancy to produce a circuit mal-
function. For example, if a delay fault delays a change to a
flip-flop excitation input after the expected clock edge, then
a fault is manifest. Indeed, when a delay fault is present,
the circuit may operate correctly at slower clock rates, but
not at speed. Delay faults can be modeled at several levels
(4). Gate delay fault models are represented as excessive
propagation delay. The transition fault model is slow to
transition either a from 0 to 1 or from 1 to 0. A path delay
fault is present when the propagation delay through a
series of gates is longer than some tolerable worst case
delay. Indeed, a current industry practice is to perform
statistical timing analysis of parts. The manufacturer can
determine that the parts can be run at a higher speed with a
certain probability so that higher levels of performance can
be delivered to customers. However, this relies on the
statistical likelihood that delays will not be worst case
(4). By running the device at a higher clock rate indicated
by statistical grading, devices and structures that satisfy
worst-case timing along the critical path may not meet the
timing at the new, higher clock rate. Hence, a delay fault
cas seem to be a consequence of the manufacturing deci-
sions. Assuming the indicated delay fault in Fig. 1, Fig. 3
gives a timing diagram that shows the manifestation of the
fault. In this circuit, the delay fault causes the flip-flop
input, J, to change later, which results in a clock period
delay in the flip-flop state change. Because of the nature of
delay faults, circuits must be tested at speed to detect the
delay fault. As posed here, the delay fault is dynamic,
requiring two or more test vectors to detect the fault.

D Q

Bridging Fault

Delay

Memory

SA−1A
B

C
D

E
F

G2

G3

G1 G

H G4
J

K

I

Figure 1. An illustration of fault models.

1

I2

I3

I4

O
3

G

G

G2

4

1
G

Figure 2. Illustration of input stuck-at faults.

2 AUTOMATIC TEST GENERATION



Bridging Faults. Bridging faults exist when an undesir-
able electrical connection occurs between two nodes result-
ing in circuit performance degradation or malfunction.
Bridging faults between a circuit node and power supply
or ground may be manifest as stuck faults. Furthermore,
bridging faults may result in behavioral changes such as
wired-and, wired-or, and even sequential characteristics
when the bridging fault creates a feedback connection (5).
Bridging faults require physical proximity between the
circuit structures afflicted by the bridging faults.
Figure 1 gives an example of a bridging fault that changes
the combinational circuit into a sequential circuit.

CMOS Fault Models. CMOS technology has several fault
modes that are unique to the technology (5). Furthermore,
as a consequence of the properties of the technology, alter-
native methods for detecting faults in CMOS circuits are
necessary. CMOS gates consist of complementary networks
of PMOS and NMOS transistors structured such that sig-
nificant currents are drawn only when signal changes
occur. In fault-free operation, when no signal changes
occur, the circuit draws very low leakage currents. Under-
standing the different fault models requires deeper

exploration into CMOS circuit structures. CMOS circuits
are constructed from complementary pull-up networks of
PMOS transistors and pull-down networks of NMOS tran-
sistors. In addition, MOS transistors switch based on vol-
tage levels relative to the other transistor terminals. The
switching input, or gate, is the input and draws no current
other than very low leakage currents. The gate does, how-
ever, have significant parasitic capacitance that must be
charged and discharged to switch the transistor. Thus,
significant currents are drawn when transistors are
switched.

In addition to the stuck faults, CMOS circuits have an
interesting failure mode where an ordinary gate can be
transformed into a dynamic sequential circuit for certain
types of faults. The fault is a consequence of a transistor
failure, low quiescent currents, and capacitive gate inputs.
In Fig. 4, if transistor Q1 is stuck open and if A = 0, the past
value on node C is isolatedelectrically and will act as a
storage element through the capacitance on the inverter
input. Table 1 summarizes the sequence of inputs neces-
sary to detect the transistor Q1 stuck open fault. To detect
this fault, node C must first be set by assigning A = B = 0
followed by setting B = 1 to store the value at the input of
G2. Each of the four transistors in the NAND gate will
require a similar test.

The CMOS circuit’s current draw can be used as a
diagnostic for detecting faults. For example, because the
CMOS circuit should only draw significant currents when
the circuit is switching, any significant deviation from a
known current profile suggests faults. Indeed, the CMOS

Q

Clock

∆

∆

delay
fault

J

J

Q

Figure 3. Illustration of a delay faults.

21

1

G G

stuck−open

Input

Capacitive
B

A

C D

Q

Figure 4. An illustration of a CMOS memory fault.

Table 1. Input sequence to detect transistor Q1-stuck-open

A B Note

0 0 Set C to 1
0 1 C remains 1 for fault, 0 for no fault

AUTOMATIC TEST GENERATION 3



logic gates may function correctly, but when faults are
present, the circuit may draw abnormally large power
supply currents. Testing for faults based on this observa-
tion is called IDDQ testing. Bridging faults are common in
CMOS circuits (6) and are detected effectively with IDDQ

testing (7). IDDQ faults can have a significant impact on
portable designs where the low current drawn by CMOS
circuits is required. Increased IDDQ currents can result
from transistors that are degraded because of manufactur-
ing defects such that measurable leakage currents are
drawn. In addition, bridging faults can also show increased
IDDQ currents.

Memory Faults. Semiconductor memories have struc-
tures that are very regular and very dense. As a result,
memories can exhibit faults that are not observed ordina-
rily in other circuits that can complicate the testing process.
The faults can affect the memory behavior in unusual ways
(8). First, a fault can link two memory cells such that when a
value is written into one cell, the value the linked cell
toggles. Second, the memory cell can only be written to 0
or 1 but cannot be written the opposite value. Third, the
behavior of a memory cell may be sensitive to the contents of
neighboring cells. For example, a particular pattern of
values stored in surrounding cells may prevent writing
into the affected cell. Fourth, the particular pattern of
values stored in the cells can result in a change in the
value in the affected cell. The nature of these faults make
detection challenging because the test must take into
account the physical locality of memory cells.

Crosspoint Faults. Crosspoint faults (9) are a type of
defect that can occur in programmable logic arrays
(PLAs). PLAs consist of AND arrays and OR arrays with
functional terms contributing through programming tran-
sistors to either include or exclude a term. In field program-
mable devices, a transistor is programmed to be on or off,
respectively, to represent the presence or absence of a
connection. A crosspoint fault is the undesired presence
or absence of a connection in the PLA. Clearly, because the
crosspoint fault can result in a change in the logic function,
the stuck fault model cannot model crosspoint defects
effectively. A crosspoint fault with a missing connection
in the AND array results in a product term of fewer vari-
ables, whereas an extra connection results in more vari-
ables in the product term. For example, consider function
f(A, B, C, D) = AB + CD implemented on a PLA. The exis-
tence of a crosspoint fault can change the function to fcpf(A,
B, C, D) = ABC + CD. Figure 5 diagrams the structure of
the PLA and the functional effect of the crosspoint fault.

IDDQ Defects. An ideal CMOS circuit draws current only
when logic values change. In practice, because transistors
are not ideal, a small leakage current is drawn when no
circuit changes occur. Many circuit defects result in anom-
alous significant current that are one type of fault mani-
festation. Furthermore, many circuits can have a
characteristic IDDQ current when switching. Again, this
characteristic current can change in response to defects.
Detectable IDDQ defects have no relation to the expected
correct circuit outputs, which require that testing for IDDQ

detectable defects be supplemented with other testing
approaches. Furthermore, an integrated circuit is gener-
ally integrated with other circuit technologies that draw
significant quiescent currents, for example, IC pads, bipo-
lar, and analog circuits. Thus, testing for IDDQ defects
requires that the supply for IDDQ testable circuits be iso-
lated from the supply for other parts of the circuit.

Deep Sub-Micron (DSM). Deep sub-micron (DSM) tech-
nologies offer the promise of increased circuit densities and
speeds. For several reasons, the defect manifestations
change with decreasing feature size (3) First, supply vol-
tages are reduced along with an associated reduction in
noise margins, which makes circuits more suscepitible to
malfunctions caused by noise. Second, higher operating
frequencies affect defect manifestations in many ways.
Capacitive coupling increases with increasing operating
frequency, which increases the likelihood of crosstalk.
Furthermore, other errors may be sensitive to operating
frequency and may not be detected if testing is conducted at
slower frequencies. Third, leakage currents increase with
decreasing feature size, which increases the difficulty of
using tests to detect current anomalies. Fourth, increasing
circuit density has resulted in an increase in the number of
interconnect levels, which increases the likelihood of inter-
connect related defects. Although the classic stuck-at fault
model was not conceived with these faults in mind, the
stuck-at fault model does focus testing goals on controlling
and observing circuits nodes, thereby detecting many inter-
connect faults that do not conform to the stuck-at fault
model.

Measures of Testing. To gauge the success of a test meth-
odology, some metric for assessing the test regimen and any
associated overhead is needed. In this section, the mea-
sures of test set fault coverage, test set size, hardware
overhead, performance impacts, testability, and computa-
tional complexity are presented.

Fault Coverage. Fault coverage, sometimes termed test
coverage, is the percentage of targeted faults that have
been covered by the test regimen. Ideally, 100% fault cover-

Cross Point Fault

C

B

A

D

Figure 5. An illustration of a crosspoint fault.

4 AUTOMATIC TEST GENERATION



age is desired; however, this statistic can be misleading
when the fault model does not reflect the types of faults
accurately that can be expected to occur (10). As noted
earlier, the stuck-at fault model is a simple and popular
fault model that works well in many situations. CMOS
circuits, however, have several failure modes that are
beyond the scope of the simple stuck-at fault model. Fault
coverage is determined through fault simulation of the
respective circuit. To assess the performance of a test, a
fault simulator should model accurately the targeted fault
to get a realistic measure of fault coverage.

Size of Test Set. The size of the test set is an indirect
measure of the complexity of the test set. Larger test sets
increase the testing time, which have a direct a direct
impact on the final cost if expensive circuit testers are
employed. In addition, the test set size is related to the
effort in personnel required computationally to develop the
test. The size of the test set depends on many factors
including the ease with which the design can be tested
as well as integrating DFT methodologies. Use of scan path
approaches with flip-flops interconnected as shift registers
gives excellent fault coverages, yet the process of scanning
into and from the shift register may result in large test sets.

Hardware Overhead. The addition of circuity to improve
testability through the integration of built-in test and built-
in self test (BIST) capabilities increases the size of a system
and can have a significant impact on circuit costs. The ratio
of the circuit size with test circuitry to the circuit without
test circuitry is a straightforward measure of the hardware
overhead. If improved testability is a requirement, then
increased hardware overhead can be used as a criterion for
evaluating different designs. The additional hardware can
simplify the test development process and enable testing
for cases that are otherwise impractical, System failure
rates are a function of the size and the complexity of the
implementation, where ordinarily larger circuits have
higher failure rates. As a result, the additional circuitry
for test can increase the likelihood of system failure.

Impact on Performance. Likewise, the addition of test
circuitry can impact system performance. The impact can
be measured in terms of reduced clock rate, higher power
requirements, and/or increased cost. For example, scan
design methods add circuitry to flip-flops that can switch
between normal and test modes and typically with have
longer delays compared with circuits not so equipped. For
devices with fixed die sizes and PLAs, the addition of test

circuitry may displace circuitry that contributes to the
functional performance.

Testability. Testability is an analysis and a metric that
describes how easily a system may be tested for defects. In
circuit defect testing, the goal is to supply inputs to the
circuit so that it behaves correctly when no defects are
present, but it malfunctions if a single defect is present. In
other words, the only way to detect the defect is to force the
circuit to malfunction. In general, testability is measured in
terms of the specific and the collective observability and
controllability of nodes within a design. For example, a
circuit that provides the test engineer direct access (setting
and reading) to flip-flop contents is estable more easily than
one that does not, which gives a corresponding better
testability measure. In the test community, testability
often is described in the context of controllability and to
observability. Controllability of a circuit node is the ability
to set the node to a particular value. Observability of a
circuit node is the ability to observe the value of the node
(either complemented or uncomplemented) at the circuit
outputs. Estimating the difficulty to control and to observe
circuit nodes forms the basis for testability measures.
Figure 6 presents a simple illustration of the problem
and the process. The node S is susceptible to many types
of faults. The general procedure for testing the correct
operation of node S is to control the node to a value com-
plementary to the fault value. Next, the observed value of
the signal is propagated to system outputs for observation.
Detecting faults in systems that have redundancy of any
sort requires special consideration to detect all possible
faults. For example, fault-tolerant systems that employ
triple modular redundancy will not show any output dis-
crepancies when one masked fault is present (2). To make
the modules testable, individual modules must be isolated
so that the redundancy does not mask the presence of
faults. In addition, redundant gates necessary to remove
hazards from combinational circuits result in a circuit
where certain faults are untestable. Improved testability
can be achieved by making certain internal nodes obser-
vable through the addition of test points. The Sandia con-
trollability/observability analysis program is an example
application that evaluates the testability of a circuit or
system (11).

2For example, an exponential time algorithm may double the
required resources when the problem size is increased by this
result is much like what happens when you double the number
of pennies on each successive the square of a chess board.

Rest of Circuit

Primary

S

Outputs

Primary
Inputs

Figure 6. Representative circuit with fault.

AUTOMATIC TEST GENERATION 5



Computational Complexity. The computational complex-
ity measures both the number of computations and the
storage requirements necessary to achieve a particular
algorithmic goal. From these measures, bound estimates
of the actual amount of time required can be determined. In
testing applications, the worst-case computational com-
plexity for many algorithms used to find tests unfortu-
nately is bad. Many algorithms fall in the class of NP-
Complete algorithms for which no polynomial time (i.e,
good) algorithm exists. Instead, the best known algorithms
to solve NP-Complete problems require exponential time.2

Although devising a perfect test is highly desirable, in
practice, 100% coverage generally is not achieved. In
most cases, tests are found more quickly than the worst
case, and cases taking too long are stopped, which results in
a test not being found. Some have noted that most tests are
generated in a reasonable amount of time and provide an
empirical rationale to support this assertion (12).

Fault Simulation

Fault simulation is a simulation capable of determining
whether a set of tests can detect the presence of faults
within the circuit. In practice, a fault simulator simulates
the fault-free system concurrently with the faulty system.
In the event that faults produce circuit responses that differ
from the fault-free cases, the fault simulator records the
detection of the fault.

To validate a testing approach, fault simulation is
employed to determine the efficacy of the test. Fault simu-
lation can be used to validate the success of a test regimen
and to give a quantitative measure of fault coverage
achieved in the test. In addition, test engineers can use
fault simulationfor assessing functional test patterns. By
examining the faults covered, the test engineer can identify
circuit structures that have not received adequate coverage
and can target these structures formore intensive tests.

To assess different fault models, the fault simulator
should both model the effect of the faults and also report
the faults detected. In the test for bridging faults detectable
by IDDQ testing, traditional logic and fault simulators are
incapable of detecting such faults because these.faults may
not produce a fault value that can differentiate faulty from
fault-free instances. In Ref. 13, a fault simulator capable of
detecting IDDQ faults is described.

BASIC COMBINATIONAL ATG TECHNIQUES

In ATG, a circuit specification is used to generate a set of
tests. In this section, several basic techniques for ATG are
presented. The stuck-at fault model described previously
provides the test objective for many ATG approaches. The
single stuck fault is a fault on a node within the circuit that
is either SA-0 or SA-l. Furthermore, only one fault is
assumed to be in the circuit at any given time. Presented
in detail here are algebraic approaches for ATG, Boolean
satisfiability ATG, the D-Algorithm, one of the first ATG
algorithms, and PODEM. Subsequent developments in
ATG are compared largely with the D-Algorithm and other
derived works.

ALGEBRAIC APPROACHES FOR ATG

Algebraic-techniques may be a used to derive tests for
faults and can be used in ATG. The Boolean difference
(2,14,15) is an algebraic method for finding a test should one
exist. Given a Boolean function FðÞ the Boolean difference is
defined as

dFðXÞ
dxi

¼ Fðx1; x2; ; xi1; 0; xiþ1; ; xnÞ�F

�ðx1; x2; ; xi1; 1; xiþ1; ; xnÞ ð1Þ

where dFðXÞ
dxi

is the Boolean difference of the Boolean func-
tion Fð�Þ, xi is an input, and � is the exclusive-or. One

interpretation of the quantity
dFðXÞ

dxi
is to show the depen-

dence of F(X) on input xi. If
dFðXÞ

dxi
¼ 0, the function is

independent of xi, which indicates that it is impossible to

find a test for a fault on xi. On the other hand, if
dFðXÞ

dxi
¼ 1,

then the output depends on xi, and a test for a fault on xi can
be found.

The Boolean difference can be used to determine a test
because it can be used in an expression that encapsulates
both controllability and observability into a Boolean tau-
tology that when satisfied, results in a test for the fault

xi
dFðXÞ

dxi
¼ 1 ð2Þ

for Xi—SA — faults and

�xi
dFðXÞ

dxi
¼ 1 ð3Þ

for Xi—SA — 1 faults. Note that the Boolean difference
represents the observability of input xi, and the assertion
associated with xi represents its controllability. Equations
(2) and (3) can be reduced to SOP or POS forms. A suitable
assignment of inputs that satisfies the tautology is the test
pattern. Finding a suitable test pattern is intractable com-
putationally if product and sum terms have more than two
terms (16).

Boolean Satisfiability ATPG

Boolean satisfiability SAT-ATPG (17) is related to the
Boolean difference method for determining test patterns.
As in the Boolean difference method, SAT-ATPG constructs
the Boolean difference between the fault free and the faulty
circuits. Rather than deriving the formula to derive a test,
SAT-ATPG creates a satisfiability problem such that the
variable assignments to achieve satisfiability are a test for
the fault. The satisfiability problem is derived from the
combinational circuit by mapping the circuit structure into
a directed acyclic graph (DAG). From the DAG, a formula in
conjunctive normal form (CNF) is derived that when satis-
fied, produces a test for a fault in the circuit. Although the
SAT problem is NP-Complete (16), the structure of the

6 AUTOMATIC TEST GENERATION



resulting formula has specific features that tend to reduce
the computational effort compared with the general SAT
problem. Indeed, the resulting CNF formula is character-
ized by having a majority of the factors being two terms.
Note that satisfiability of a CNF formula with two terms
(2SAT) is solvable in linear time. Reference 17 notes that as
many as 90% of the factors are two elements. This structure
suggests strongly that satisfiability for expressions that
results from this construction are solvable in a reasonable
amount of time, but the are not guaranteed in polynomial
time. The basic SAT-ATPG is described in more detail in the
following paragraphs.

As an example, consider the circuit example used to
illustrate the D-Algorithm in Fig. 7. The DAG derived is
given in Fig. 8. The mapping of the circuit to the DAG is
straightforward with each logic gate, input, output, and
fanout point mapping to a node in the DAG. Assuming
inputs X, Y, and output Z, the conjunctive normal forms for
the NAND and OR gates are (17).

ðZþ XÞðZþ YÞðZþ �X þ �YÞNAND

ðZþ �XÞðZþ �YÞð �Zþ X þ YÞOR
ð4Þ

CNF formulas for other gates and the procedure for
handling gates with three or more inputs are also summar-
ized in Ref. 17. The CFN for the fault-free and faulty circuits
are derived from the DAG. The exclusive-or of the outputs of

fault-free and faulty circuits must be (1) to distinguish
between the two expressed as

Ffaulty�Ffault - free ¼ 1 ð5Þ

where satisfication of the tautology results in a test for the
desired fault. Starting with the output, the conjunction of
all nodes is formed following the edges of the DAG. The
fault-free CNF for the circuit is the conjunction of the
following conjunctive normal forms for the various circuit
structures

ðF þ �f ÞðF þ �iÞð �F þ f þ iÞ G5

ð f þ X1Þð f þ b1Þð f þ �X1 þ �b1Þ G1

ðiþ gÞðiþ hÞðiþ �gþ �hÞ G4

ðgþ b2Þðgþ X3Þðgþ �b2 þ �X3Þ G2

ð �X2 þ b1ÞðX2 þ �b1Þ Top fan - out at b

ð �X2 þ b2ÞðX2 þ �b2Þ Bottom fan - out at b

ðhþ X4Þðhþ X5Þðhþ �X4 þ �X5Þ G3

ð6Þ

The CNF for the i-SA-0 fault requires a modification to
the circuit DAG to represent the presence of the fault. From
the DAG structure derived from the circuit and the target
fault, a CNF formula is derived. A CNF that represents the
fault test is formed by taking the exclusive-or of the fault
free circuit with a CNF form that represents the circuit with
the fault. The CNF for the faulted circuit is derived by
modifying the DAG by breaking the connection at the point
of the fault and adding a new variable to represent the fault.
The variable �i

0
is used to representthe fault i-SA-0. Note

that in the faulty circuit, the combinational circuit deter-
mining i in the fault-free circuit is redundant, and the CNF
formula for the faulted circuit is

ðF0 þ �f ÞðF0 þ i0Þð �F
0 þ f þ �i

0Þ G5
�i
0

The fault

ð f þ X1Þð f þ b1Þð f þ �X1 þ b
�

1Þ G1

ð �X2 þ b1ÞðX2 þ �b1Þ Top fan - out at b

ð7Þ

Combining Equations (6) and (7), the exclusive-or of the
faulty and fault-free formulas, and eliminating redundant
terms gives the following formula whose satisfaction is a
test for the fault

ðF þ �f ÞðF þ �iÞð �F þ f þ iÞ
ð f þ X1Þð f þ b1Þð f þ �X1 þ �b1Þ
ðiþ gÞðiþ hÞðiþ �gþ �hÞ
ðgþ b2Þðgþ X3Þðgþ �b2 þ �X3Þ
ð �X2 þ b1ÞðX2 þ �b1Þ
ð �X2 þ b2ÞðX2 þ �b2Þ
ðhþ X4Þðhþ X5Þðhþ �X4 þ �X5Þ
�i
0

ð �F þ F0 þ BDÞðF þ �F
0 þ BDÞð �X þ �X

0 þ �B �DðX þ X 0 þ �B �DÞÞ
ð8Þ

Note that the last line of Equation (8) represents the
exclusive-or for the faulty and the fault-free circuits, and
the variable BD is the output that represents the exclusive-

2

1

X1

X3

X

b

X4

X5

F
f

i
g

h

b2

&

+

&

&

&

Figure 7. Example combinational circuit.

1

X2

X3

X4

X5

X

 F
j

i

f

g

h

a

b

c

d

e

G4
G5

G1

G2

G3

Figure 8. DAG for circuit from Fig. . Logic gate nodes labeled to
show original circuit functions.

AUTOMATIC TEST GENERATION 7



or of the two. Significantly, most terms in Equation (8) have
two or fewer terms.

The next step is to determine an assignment that satis-
fies Equation (8). The problem is broken into two parts
where one part represents the satisfaction of the trinary
terms and the second the satisfaction of binary terms
(solvable in polynomial time) that are consistent with the
trinary terms. Efforts that followed (17) concentrated on
identifying heuristics that improved the efficiency of find-
ing assignments.

D-Algorithm

The D-Algorithm (18) is an ATG for combinational logic
circuits. Furthermore, the D-Algorithm was the first com-
binational ATG algorithm to guarantee the ability to find a
test for a SA-0/1 fault should a test exist. In addition, the D-
Algorithm provides a formalism for composing tests for
combinational circuits constructed modularly or hierarchi-
cally. The D-Algorithm relies on a five-valued Boolean
algebra to generate tests, which is summarized in
Table 2. Note that the values D and �D represent a discre-
pancy between the fault free and faulty signal values where
these values can be either the seminal error of the fault or
the discrepancy attributable to the fault that has been
propagated through several layers of combinational logic.
The D-AIgorithm also requires two additional assump-
tions. First, exactly one stuck-at fault may be present at
any given time. Second, other than the faulted node, circuit
structures are assumed to operate fault free (i.e., normaly).

To begin the algorithm, the discrepancy that represents
the direct manifestation of the fault is assigned to the
output of a primitive component. For this component, the
input/output combination that forces the manifestation of
the fault is called the primitive D cube of failure (PDCF).
The PDCF provides a representation of the inputs neces-
sary to result in discrepancies for the faults of interest. The
effect of the fault is propagated through logic circuits using
the PDC for each circuit. The application of PDCs continues
with primitive elements until the discrepancy is propa-
gated to one or more primary outputs. Next, the inputs
are justified through a backward propagation step using
the singular cover for each component in the backward
path. The singular cover is a compressed truth table for the
fault-free circuit. Singular covers, PDCFs, and PDCs for
several basic gates are shown in Table 3. Note that the
PDCFs and PDCs follow straightforwardly from the logic
functions and the five valued Boolean logic summarized in
Table 2. Theoretic derivation of these terms are presented
in Ref. 18.

The D-Algorithm consists principally of two phases. The
first phase is the D-drive phase, where the fault is set

through the selection of an appropriate PDCF and then
propagated to a primary output. Once the D-drive is com-
plete, justification is performed. Justification is the process
of determining signal values for internal node and primary
inputs consistent with node assignments made during D-
drive and intermediate justification steps. In the event a
conflict occurs, where at some point a node must be both 0
and 1 to satisfy the algorithm, backtracking occurs to the
various points in the algorithm where choices for assign-
ments were possible and an alternate choice is made. An
input combination that propagates the fault to the circuit
outputs and can be justified at the inputs is a test pattern
for the fault. To generate a test for a combinational logic
circuit, the D-Algorithm is applied for all faults for which
tests are desired.

The D-Algorithm is applied to the circuit given in Fig. 8.
For an example demonstration, consider the fault i-SA-0.
Figure 9 gives a summary of the algorithmic steps that
results in the determination of the test pattern. The result-
ing test pattern for the example in Fig. 9 is
X1X2X3X4X5 ¼ 111XX, where X is as defined in Table 2.
Either fault simulation can be used to identify other faults
detected by this test, or the ‘‘don’t cares’’ can be used to
combine tests for two or more different faults.

Path-Oriented Decision Making (PODEM)

The D-Algorithm was pioneering in that it provided a
complete algorithmic solution to the problem of test pattern
generation for combinational circuits. In the years after it
was introduced, researchers and practitioners noticed that
the D-Algorithm had certain undesirable asymptotic prop-
erties and in the general case was found to be NP-Complete
(10). This term means the worst case performance is an
exponential number of steps in the number of circuit nodes.
Despite this finding for many types of problems, the D-
Algorithm can find tests in a reasonable amount of time. In
Ref. 17, it was noted that the D-Algorithm was particularly
inefficient in determining tests for circuit structures typi-
cally used in error correcting circuits (ECC). Typically, ECC
circuits have a tree of exclusive-OR gates with reconver-
gent fanout through two separate exclusive-OR trees. The
path-oriented decision making (PODEM) test pattern gen-
eration algorithm (20) was proposed to speed the search for
tests for circuits similar to and used in ECC. In fact, the
researchers learned that their approach was in general as
effective and more efficient computationally compared with
the D-Algorithm.

PODEM is fundamentally different from the D-Algo-
rithm in that test searches are conducted on primary
inputs. As a result, the amount of backtracking that might
occur is less than the D-Algorithm because fewer places
exist where backtracking can occur. Furthermore, the

Table 2. Boolean values

Value Meaning

1 Logic one
0 Logic zero
D Discrepancy: expected one, but is zero due to fault
D
�

Discrepancy: expected zero, but is one due to fault
X Don’t care, could be either 0 or 1

Table 3. Singular covers, PDCFs, and PDCs for several
basic gates

Gate Singu9lar cover PDCF PDC

8 AUTOMATIC TEST GENERATION



backtracking is simpler computationally. PODEM works
by selecting a fault for evaluation and then choosing the
inputs one at a time to determine whether the input com-
bination serves as a test pattern. The evaluation process is
based on the same five valued logic family used in the D-
Algorithm. The algorithm searches for a discrepancy
between the good and the faulty circuits. An example
decision tree is shown in Fig. 10. The decision tree shows
a record of the process for finding a test to detect the i-SA-0
fault. The number of possible nodes in the decision tree are
2N+1 � 1 where each node identifies a possible test. In the
worst case, the PODEM algorithm will visit each node in
the search tree. A simple search process is employed in this
example where each input is assigned trial values in a
sequence. The search proceeds for successive inputs from
each trial assignment resulting in either the acceptance of
this assignment in a test for the desired fault or a rejection
because the trial assignment cannot result in a test. The
first trial value assigned to an input is 0, and in the event a
test is not possible, the trial input is 1. Given this simple
structure, the test X1X2X3X4X5 ¼ 11011 results. Heuristics
can be employed to improve the search by taking into
account the structure of the circuit (20). For example, if
the trial input for X3 ¼ 1, the test X1X2X3X4X5 ¼ 111XX
results after only three iterations of the search.

SEQUENTIAL ATG TECHNIQUES

Because most interesting digital systems are sequential,
sequential ATG is an important aspect of the test genera-
tion process. For the purposes of this section, we will
assume clocked sequential circuits that conform the struc-
ture shown in Fig. 11. The combinational logic in the state
machine determines the next state and the output function.
A very significant difference between combinational cir-
cuits and sequential machines is that the latter have mem-
ory elements isolating circuit nodes to be neither directly
controllable at the inputs nor observable at the outputs. As
a result, the ATG process must be more sophisticated
compared with those used in combinational circuits.

A synchronous counter is an example of a simple sequen-
tial circuit that also demonstrates some complexities in
devejqping defect tests for sequential circuits. Consider a
synchronous counter that can be loaded synchronously
with an initial count and has one output that is asserted
when the counter is at its terminal count. One testing

approach is to load the smallest initial count and then clock
until the count rolls over after 2N counts. For long counters,
this exhaustive testing of the count function is complete but
excessively time consuming. Ad hoc techniques can be
employed to devise a test. For example, loading initial
counts at selected values that focus on exercising the carry
chain within the logic of the counter are very effective
because of the regular structure present in most counters.
Understanding the intimate structure and the function of
the sequential machine produces an effective test. Less-
structured sequential circuits are more problematic
because tests for specific cases may require more intricate
initialization and propagation sequences.

Introduction to Deterministic ATPG for Synchronous
Sequential Machines

In this subsection, we will make several observations about
ATG in sequential circuits. Clearly, faults will result in
incorrect and undesirable behaviors, but the effect of the
faulted node may not be observable immediately. In other
words, an error is latent for some period of time before it can
be detected. Likewise, a faulted node may not be control-
lable immediately. Consider the simple five state counter,
shown in Fig. 12 with an enable input and a terminal count
as the output.

After reset, all flip-flop states are set to zero. When
enabled, the fault-free counter will cycle through the five

Node

TC a b c d e f g h i j Note

1 0 X D PDCF

2 0 0 X D D D-Drive

3 1 1 0 0 X D D Justify

4 1 1 1 0 0 X D D Justify

5 1 1 1 X X 0 0 X D D Justify

Figure 9. The D-algorithm, step by step. Values in boxes show work for a specific step.

11011

1

X2

X3

X4

X5

1o

1o

1o

1o

1o

X

Figure 10. A PODEM decision tree for circuit from Fig. 8.

AUTOMATIC TEST GENERATION 9



count states. Consider what happens when Da SA-1. With
each state update, the fault may cause incorrect operation
because discrepancies caused by the fault can be stored in
the state. In addition, in subsequent clocks, additional
discrepancies can be introduced whereas prior stored dis-
crepancies can be recycled. Indeed, under certain circum-
stances, faulty behavior may disappear momentarily. As a
result of the fault, the state machine operation changes and
can be viewed as a change in the state machine operation as
shown in Fig. 13.

Using the discrepancy notation from the D Algorithm,
the state machine passes through the following states in
successive clocks as shown in Fig. 14. Inspecting the state
sequencing, CBA¼f000; 001; 01 �D; �DD1;D �D �D; �D0 �D; 0 �D1;
�D �D �D; 011, 10 �D; 0 �D �D; �D01; 01 �Dg we see that the pattern

repeats every eight clocks compared with the expected four
clocks. Furthermore, the effect of the fault can be latent
because discrepancies are stored in the state and not
observable immediately. Because multiple discrepancies
can be present simultaneously, the circuit may occasion-
ally show correct operation, for example at T8, despite the

occurrence of several discrepancies in prior times. In this
example, if the state is observable, the fault can be detected
at T2. Suppose that only the inputs and the clock can be
controlled and only the output, Z, can be observed. In this
case, the detection of the fault is delayed for two clock
cycles, until T4.

Synchronous ATG is challenging, but it can be under-
stood and in some cases solved using concepts from combi-
national ATG methods. Indeed, this leads to one of three
approaches. First, tests can be created in an ad hoc fashion.
Then, using a technique called fault simulation similar to
that presented in Fig. 14, detected faults can be tabulated
and reported. Second, the circuit can be transformed in
specific ways so that combinational ATG can be applied
directly. Such approaches are presented in the following
subsections. Third, the circuit operation can be modeled so
that the circuit operation gives the illusion of a combina-
tional circuit, and it allows combinational ATG to be used.
Indeed, any of these three techniques can be used together
as testing needs dictate.

Iterative Array Models for Deterministic ATPG

Clearly, ATG for sequential circuits is more challenging
compared with combinational circuits. Many sequential
ATG techniques rely on the ability to model a sequential
machine in a combina-tional fashion, which makes possible
the use of combinational ATG in sequential circuits. Ana-
lytical strategies for determining test patterns use iterative
array models (19). The iterative array models provide a
theoretic framework for making sequential machines seem
combinational from the perspective of the ATG process.
Iterative arrays follow from unrolling the operation of the

Clock

Next
State
Excitation

S
tate

CLX Z

y
Present

State

E

Figure 11. General model of sequential circuit.

E=1

0

1

00

1

1

0

1

E=0

0/0

1/0

2/03/0

4/1

Enable

Clock

 Z

Da

Reset*

B

C

A
D Q

CLR

D Q

CLR

D Q

CLR

(a) State Diagram (b) Implementation

Figure 12. Five state counter.

10 AUTOMATIC TEST GENERATION



state machine where each unrolling exposes another time
frame or clock edge that can update the state of the state
machine. The unrolling process replicates the excitation
functions in each time frame, applying the inputs consis-
tent with that particular state. Memory elements are mod-
eled using structures that make them seem combinational.
Furthermore, output functions are replicated as well. Each
input and output is now represented as a vector of values
where each element gives the value within a specific time
frame. With this model, combinational ATG methods can be
used to determine circuits for specific times.

Iterative array methods complicate the application of
sequential ATG methods in our major ways: (1) the size of
the ‘‘combinational circuit’’ is not known, (2) the state
contribution is a constrained input, (3) multiple iterations
express faults multiple times, and (4) integration level
issues complicate when and how inputs are controlled
and outputs are observed. For test pattern generation,
the concatenation of the inputs from the different time
frames, � � �Xt1XtXtþ1 � � � , serve as the inputs for the com-
binational ATG algorithms, where for the actual circuit, the
superscript specifies the time frame when that input is set
to the required value.. The combinational ATG algorithm
outputs are the concatenation of the frame outputs,
� � �Zt1ZtZtþ1 � � � , where again, the superscript identifies
when an output should be observed to detect a particular
fault (Fig. 15).

The size of the circuit is determined by the initial state
and the number of array iterations necessary to control and
to observe a particular fault. In all iterations, the iterative
model replicates combinational circuitry and all inputs and
outputs for that time step. The ATG generation process
will, by necessity, be required to instantiate, on demand,
combinational logic iterations because the required num-
ber of iterations necessary to test for a specific fault is not
known. For some initial states, it is impossible to determine
a test for specific faults because multiple expressions of a
fault may mask its presence. Different algorithms will
assume either an arbitrary initial state or a fixed state.

From the timing diagram in Fig. 13, the iterative circuit
model for the counter example with a Da-SA-1 fault is given
in Fig. 16. A discrepancy occurs after the fourth clock cycle,
where the test pattern required to detect the fault is
Dc0Db0Da0E0E1E2E3Z0Z1Z2Z3 ¼ ð00000000001Þ, where
the input pattern is the concatenation of initial state
Dc0Db0Da0, the inputs at each time frame E0E1E2E3,
and the outputs at each time frame are Z0Z1Z2Z3. Because
circuit in Fig. 16 is combinational, algorithms such as the D-
Algorithm and PODEM can be employed to determine test
patterns. Both algorithms would require modification to
handle both variable iterations and multiple faults.

From the iterative array model, two general approaches
can be pursued to produce a test for a fault. The first
approach identifies a propagation path from the point of
the fault and the output. From the selected output, reverse
time processing is employed to sensitize a path through the
frame iterations to the point of the fault. In the event a path
is not found, backtracking and other heuristics are
employed. After the propagation path for the fault is estab-
lished, reverse time processing is used to justify the inputs
required to express the fault and to maintain consistency
with previous assignments. The second approach employs
forward processing from the point of the fault to propagate
to the primary outputs and then reverse time processing to
justify the conditions to express the fault and consistency
(21,22). Additional heuristics are employed to improve the
success and the performance of the test pattern generation
process, including using hints from fault simulation (22).
Several approaches can be applied for determining test
patterns.

Genetic Algorithm-Based ATPG

Because of the challenges of devising tests for sequential
circuits, many approaches have been studied. Genetic algo-
rithms (GAs) operate by generating and evaluating popu-

1

1

1

0

E=0

E=1

0

1

0

1

0

1

0

1 E=0

5/0

0/0

1/0

3/0 2/0

4/1

Figure 13. Effect of faults on state diagram.

D

X

X

X

X D

T1

S=01DS=D01S=0DDS=10DS=011S=DDDS=D0DS=DDDS=DD0 S=0D1S=01DS=001

B

Z

Clock

Reset*

T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

C

A D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

Figure 14. Fault simulation of counter with Da-SA-1.

AUTOMATIC TEST GENERATION 11



lations of organisms for fitness to a particular purpose and
then using the fitness to identify organisms from which the
next generation is created (23). Organism structure and
capabilities are defined by a genetic code represented as a
string of values that set the configuration of the organism.
The organism constructed from the genetic code is then
evaluated for fitness. Organisms in the next generation are
generated from fit organisms in the current generation
using simulated variations of crossover and mutation.

In the context of a DUT, the string of test patterns can
serve as the genome for the organism and the fitness can be
a function of whether and how well a particular fault is
detected from the sequence. The work of Hsiao et al. (24)
used GAs to assemble test sequences for faults from pro-
mising pieces. In their work, the GA operates in two phases,
the first targets controlling the fault and the second targets
propagating the faulted node to the primary outputs.
Sequences from which a test is assembled are from one
of three categories: (1) distinguishing sequences, (2) set/
clear sequences, and (3) pseudoregister justification
sequences. Distinguishing sequences propagate flip-flop
fault effects to the primary outputs. Set/clear sequences
justify (i.e., force flip-flop) to specific states. Finally, pseu-
doregister justification sequences put sets of flip-flops into
specific states. These sequences form the basis from which
tests are generated for a particular fault. The process is

initialized in some random fashion with a set of strings that
represent the initial GA generation of test sequences. The
likelihood that any given string can detect the fault
depends on the complexity and the size of the circuit.
Assuming the circuit is sufficiently complex that no organ-
ism can detect the fault, the fitness function must include
the ability to identify organisms that have good qualities
(i.e., have sequencing similar to what one might expect of
the actual test sequence). Two fitness functions were
formed in Ref. 24 for the justification and the propagation
phases. Each was the weighted sum of six components that
include the ability to detect the fault, measures of controll-
ability, distinguishing measures, circuit activity measures,
and flip-flop justification measures. The GA test generation
operates in three stages where the GA is run in each stage
until the fault coverage plateaus. In addition, test lengths
are allowed to grow in subsequent stages, on the assump-
tion that faults not detectable with shorter sequences may
be detected with longer sequences.

DESIGN FOR TESTABILITY

Many ATG techniques provide capabilities that are prac-
tical in a variety of situations. DFT is the process and the
discipline for designing digital systems to make them easier
to test. Furthermore, constructing circuits that facilitate

Function

Frame t−1 Frame t Frame t+1

CL CL CL

Xt−1

yt−1

Zt−1

Et−1 Excitation
Flip−Flop

Function

Xt

yt Et

Zt Xt+1

yt+1 Et+1 Excitation
Flip−Flop

Function

Zt+1

yt+2Excitation
Flip−Flop

Figure 15. Excerpt from iterative array sequential circuit model.

 SA−0

 1Db 0

Db 2
Db 3 Db 4

Dc 4

Da 4Da 3

Dc 3Dc 2

Da 2

Dc 1

Da 1

Dc 0

Da 0

Enable 0 Enable 1

Z 2

Enable 2

Z 3

Enable

Z

 3

 4Z 1

 0

 1

 SA−1

Db

Figure 16. Iterative array model for example circuit for Da-SA-1.

12 AUTOMATIC TEST GENERATION



testing also simplifies ATG. In this capacity, DFT can affect
the entire testing process, from ATG to testing. DFT tech-
niques apply other concepts and design paradigms includ-
ing circuit fault models and techniques for detecting faults.
Modifying designs themselves to improve and to simplify
the testing process can offer many benefits. First, time
devoted to test development is reduced with a higher like-
lihood of guaranteed results. Second, DFT reduces the test
set size because individual tests are generally more effec-
tive. Third, DFT can reduce the time necessary to test a
system. DFT approaches fall into one of two categories.
Starting with a traditional design, the first category is
exemplified by adding circuit structures to facilitate the
testing process. The second category attacks the testing
process from basic design principals resulting in systems
that are inherently easy to test. In this section, DFT
approaches that support ATG are presented.

Circuit Augmentation to Facilitate ATG

Digital systems designed in an ad hoc fashion may be
difficult to test. Several basic techniques are available to
improve the testability of a given system. These techniques
include test point insertion, scan design methods, and
boundary scan techniques. These approaches preserve
the overall structure of the system.

Test Point Insertion. Test point insertion is a simple and
straightforward approach for providing direct controllabil-
ity and observability of problem circuit nodes. In test point
insertion, additional inputs and outputs are provided to
serve as inputs and outputs for testing purposes. These
additional test point inputs and outputs do not provide any
additional functional capabilities. The identification of
these points can follow from a testability analysis of the
entire system by identifying difficult-to-test internal nodes.
Circuit nodes are selected as test points to facilitate testing
of difficult-to-test nodes or modules. As test points are
identified, the testability analysis can be repeated to deter-
mine how well the additional test points improve testability
and to determine whether additional test points are neces-
sary. Indeed, the test points enhance clearly the efficacy of
ATG (25). Furthermore, test point insertion can provide the
basis for structured design for testability approaches. The
principal disadvantage of adding test points is the
increased expense and reduced performance that results
from the addition of test points. One study showed (26) that
adding 1% additional test points increases circuit over-
heads by only 0.5% but can impact system performance
by as much as 5%. In the study, test points were internal
and inserted by state of the art test point insertion software.

Scan Design Methods. The success of test point insertion
relies on the selection of good test points to ease the testing
burden. Determining these optimal points for.test point
insertion can be difficult. As a result, structured
approaches can be integrated to guarantee ATG success.
One particularly successful structured design approach is
scan design. Scan design methods improve testability by
making the internal system state both easily controllable
and observable by configuring, in test mode, selected flip-

flops as a shift register (27–30), effectively making each flip-
flop a test point. Taken to the logical extreme, all flip-flops
are part of the shift register and are therefore also test
points. The power of this configuration is that the storage
elements can be decoupled from the combinational logic
enabling the application of combinational ATG to generate
fault tests. The shift register organization has the addi-
tional benefit that it can be controlled by relatively few
inputs and outputs. Because a single shift register might be
excessively long, the shift register may be broken into
several smaller shift registers.

Historically, scan path approaches follow from techni-
ques incorporated into the IBM System/360 where shift
registers were employed to improve testability of the sys-
tem (27). A typical application of a scan design is given in
Fig. 17. Note the switching of the multiplexer at the flip-flop
inputs controls whether the circuit is in test or normal
operation. Differences between different scan design meth-
ods occur in the flip-flop characteristics or in clocking.

Scan Path Design. Relevant aspects of the design include
the integration of race free D flip-flops to make the flip-flops
fully testabl (29). Level sensitive scan design (28) is for-
mulated similarly. One fundamental difference is the
machine state is implemented using special master slave
flip-flops clocked with non overlapping clocks to enable
testing of all stuck faults in flop-flops.

Boundary Scan Techniques. In many design approaches,
the option of applying design for testability to some
components is impossible. For example, standard parts
that might be used in printed circuit boards that are not
typically designed with a full system scandesign in mind.
As another example, more and more ASIC designs are
integrated from cores, which are subsystems designed by
third-party vendors. The core subsystems are typically
processors, memories, and other devices that until
recently were individual integrated circuits themselves.
To enable testing in these situations, boundary scan
methods were developed. Boundary scan techniques
employ shift registers to achieve controllability and
observability for the inputs/outputs to circuit boards,
chips, and cores. An important application of boundary
scan approaches is to test the interconnect between chips
and circuit boards that employ boundary scan techni-
ques. In addition, the boundary scan techniques provide
a minimal capability to perform defect testing of the
components at the boundary. The interface to the bound-
ary scan is a test access port (TAP) that enables setting
and reading of the values at the boundary. In addition,
the TAP may also allow internal testing of the compo-
nents delimited by the boundary scan. Applications of
boundary scan approaches include BIST applications
(31), test of cores (32), and hierarchical circuits (33).
The IEEE (Piscatouoaes NJ) has created and approved
the IEEE Std 1149.1 boundary scan standard (34). This
standard encourages designers to employ boundary scan
techniques by making possible testable designs con-
structed with subsystems from different companies
that conform to the standard.

AUTOMATIC TEST GENERATION 13



ATG and Built-In Test

Background. Requiring built-in tests affects test genera-
tion process in two ways. First, the mechanism for gener-
ating test patterns must be self-contained within the
circuitry itself. Although in theory, circuitry can be
designed to produce any desired test pattern sequence, in
reality, most are impractical. As a result, simpler circuitry
must be employed to generate test patterns. ATG and built-
in tests require the circuits to have the ability to generate
test sequences and also to determine that the circuits
operate correctly after being presented with the test
sequence.

Three classes of circuits are typically employed because
the patterns have good properties and also have the ability
to produce any sequence of test patterns. The first type of
circuit is a simple N-bit counter, which can generate all
possible assignments to N bits. Counter solutions may be
impractical because test sequences are long for circuits
with a relatively few inputs and also may be ineffective
in producing sequences to test for delay or CMOS faults.
Researchers have investigated optimizing count sequences
to achieve more reasonable test lengths (35). The second
type of circuit generates pseudorandom sequences using
linear feedback shift registers (LFSRs). For combinational
circuits, as the number of random test patterns applied to
the circuit increases, fault coverage increases asymptoti-
cally to 100%. Much research has been conducted in the
development of efficient pseudorandom sequence genera-
tors. An excellent source on many aspects of pseudorandom

techniques is Ref. 36. A third type of circuit is constructed to
generate specific test patterns efficiently for specific types
of circuit structures. In this case, the desired sequence of
test patterns is examined and a machine is synthesized to
recreate the sequenc. Memory tests have shown some
success in using specialized test pattern generator circuits
(37).

To determine whether a fault is present, the outputs of
the circuit must be monitored and compared with expected
fault-free outputs. Test pattern generation equipment
solves this by storing the expected circuit outputs for a
given sequence of inputs applied by the tester. As noted
above, it may be impractical to store or to recreate the exact
circuit responses. Alternate approaches employ duplication
approaches (several are summarized in Ref. 2) where a
duplicate subsystem guarantees the ability to generate
correct circuit outputs, assuming a single fault model. A
discrepancy between the outputs of the duplicated modules
infers the presence of a fault. Although duplication often is
used in systems that require tault tolerance or safety,
duplication may be an undesirable approach in many situa-
tions. An alternative approach, signature analysis, com-
presses the circuit output responses into a single code word,
a signature, which is used to detect the presence of faults.
Good circuit responses are taken either from a known good
circuit or more frequently from circuit simulations. A fault
in a circuit would result in a signature that differs from the
expected good signature with high probability.

Signature Analysis. The cost of testing is a function of
many influences that include design costs, testing time, and

Clock

Y

S

d1
d0

Y

S
d0
d1

Y

S
d0
d1

Combinational
Logic

D Q

QD

D Q

Test

Figure 17. One scan path approach.

14 AUTOMATIC TEST GENERATION



test equipment costs. Thus, reducing the test set size and
the ease of determining whether a fault is present has a
great influence on the success of the system. In signature
analysis, the test set is reduced effectively to one repre-
sentative value, which is termed a signature. The signature
comparison can be performed internally, using the same
technology as the system proper. In signature analysis, the
signature register is implemented as a LFSR as shown in
Fig. 18. The LFSR consists of a shift register of length N,
and linear connections fed back to stages nearer the begin-
ning of the shift register. With successive clocks, the LFSR
combines its current state with the updated test point
values. Figure 19 shows two different LFSR configurations:
(1) a single input shift register (SISR) compresses the
results of a single test point into a signature and (2) a
multiple input shift register (MISR) compresses several
test point results. After the test sequence is complete, the
contents of the LFSR is compared with the known good
signature to determine whether faults are present. A single
fault may result in the LFSR contents differing from the
good signature, but generally will not provide sufficient
information to identify the specific fault. Furthermore, a
single fault may result in a final LFSR state that is identical
to the good signature, which is termed allasing. This out-
come is acceptable if aliasing occurs with low probability. In
Ref. 36, the aliasing probability upper bounds were derived
for signatures computed with SISRs. In addition in Ref. 30,
methods for developing MISRs with no aliasing for single
faults were developed. The circuitry necessary to store the
signature, to generate a vector to compre with the signa-
ture, and to compare the signature is modular and simple
enough to be intergrated with circuit functions of reason-
able sizes, which makes signature analysis an important
BIST technique. LFSRs can be used in signature analysis in
several ways.

BILBO. The built-in logic block observer (BILBO)
approach has gained a fairly wide usage as a result of its
modularity and flexibility (40). The BILBO approach can be
used in both scan path and signature analysis test applica-
tions by encapsulating several important functions. BILBO
registers operate in one of four modes. The first mode is
used to hold the state for the circuitry as D flip-flops. In the
second mode, the BILBO register can be configured as a
shift register that can be used to scan values into the
register. In the third mode, the register operates as a
multiple input signature register (MISR). In the fourth
mode, the register operates as a parallel random pattern
generator. These four modes make possible several test
capabilities. A four-bit BILBO register is shown in Fig. 20.
One example application of BILBO registers is shown in
Fig. 21. In test mode, two BILBO registers are configured to
isolate one combinational logic block. The BILBO register
at the input, R1, is configured as a PRPG, whereas the
register at the output, R2, is configured as a MISR. In test
mode operation, for each random pattern generated, one
output is taken and used to compute the next intermediate
signature in the MISR. When all tests have been per-
formed, the signature is read and compared with the known
good signature. Any deviation indicates the presence of
faults in the combinational circuit. To test the other com-
binational logic block, the functions of R1 and R2 only need
to be swapped. Configuration of the data path to support
test using BILBO registers is best achtevedby performing
register allocation and data path design with testability in
mind (41).

Memory BIST

Semiconductor memories are designed to achieve the high
storage densities in specific technologies. High storage
densities are achieved by developing manufacturing pro-
cesses that result in the replication, organization, and
optimization of a basic storage element. Although in prin-
ciple the memories can be tested as other sequential storage
elements, in reality the overhead associated with using
scan path and similar test approaches would impact
severely the storage capacity of the devices. Furthermore,
the basic function of a memory typically allows straightfor-
ward observability and controllability of stored informa-
tion. On the other hand, the regularity, of the memory’s
physical structure and the requisite optimizations result in
fault manifestations as a linkage between adjacent memory
cells. From a testing perspective, the manifestation of the
fault is a function of the state of a memory cell and its

TP

Clock

D QD QD Q QD

Figure 18. Linear feedback shift register.

Signature

Test Input LFSR

Test Input

Signature

LFSR

(a) SISR (b) MISR

Figure 19. Different signature register configurations.

AUTOMATIC TEST GENERATION 15



physically adjacent memory cells. Among the test design
considerations of memories is the number of tests as a
function of the memory capacity. For example, a test meth-
odology was developed (37) for creating test patterns. These
test patterns could be computed using a state machine that
is relatively simple and straightforward. The resulting
state machine was shown to be implementable in random
logic and as a microcode driven sequencer.

Programmable Devices

With seyeral vendors currently (2004) marketing FPGA
devices capable of providing in excess of one million usable
gates, testing of the programmed FPGA becomes a serious
design consideration. Indeed, the capacity and perfor-
mance of FPGAs makes this class of technology viable in
many applications. Furthermore, FPGA devices are an
integration of simpler programmable device architectures,
each requiring its own testing approach. FPGAs include the
ability to integrate memories and programmable logic
arrays, which requires ATG approaches most suitable for

that component. Summarized previously, PLAs exhibit
fault models not observed in other implerneniation tech-
nologies. One approach for testing to apply BIST
approaches described previously (42). PLA test can be
viewed from two perspectives. First, the blank device can
be tested and deemed suitable for use in an application.
Second, once a device is programmed, the resulting digital
system can be tested according to the jpejhods already
described. One early and notable ATG methods applied
to PLAs is PLATYPUS (43). The method balances random
TPG with deterministic TPG to devise tests for both tradi-
tional stuck-at faults as well as cross-point faults. Modern
FPGAs support standard test interfaces such as JTAG/
IEEE 1149 standards. In this context, ATG techniques
can be applied in the context of boundary scan for the
programmed device.

Minimizing the Size of the Test Vector Set

In the combinational ATG algorithms presented, specific
faults are targeted in the test generation process. To

Y

QD

Q

QD

Q

QD

Q

QD

Q
S

Shift in

C0

C1

d1
d0

Figure 20. BILBO register.

R1 (BILBO)

Logic
Combinational

Combinational
Logic

PRPG

MISR R2 (BILBO)

Figure 21. Application of BILBO to testing.

16 AUTOMATIC TEST GENERATION



develop a comprehensive test for a combinational circuit,
one may develop a test for each faultlndividually. In most
cases, however, the number of tests that results is much
larger than necessary to achieve the same fault coverage.
Indeed, the techniques of fault collapsing, test compaction,
and fault simulation can produce a significant reduction in
the test set size.

Fault Collapsing. Distinct faults in a circuit may produce
the identical effect when observed at circuit outputs. As a
result, the faults cannot be differentiated by any test. For
example, if any AND gate input is SA-0, the input fault
cannot be differentiated frogi thexiutout SA-0 fault. In this
case, the faults can be collapsed into one, output SA-0,
which requires a test only for the collapsed fault.

Test Compaction. The D-Algorithm and PODEM can
generate test vectors with incompletely specified inputs,
providing an opportunity to merge different tests through
test compaction. For example, consider a combinational
circuit whose tests are given in Table 4. Examining the
first two faults in the table, aand b, shows the test 0010 will
test for both faults. Test compaction can be either static or
dynamic. In static test compaction, all tests are generated
by the desired ATG and then analyzed to determine those
tests that can be combined, off-line, thereby creating tests
to detect several faults and specifying undetermined input
values. In dynamic tests, after each new test is generated,
the test is compacted with the cumulative compacted list.
For the tests in Table 4, static compaction results in two
tests that tests for all faults, 0000, and 0011 for faults {a,c}
and {b,d} respectively. Dynamic compaction produces a
different result, as summarized in Table 5. Note that the
number of tests that result from dynamic compaction is
more compared with static compaction. From a practical
perspective, optimal compaction is computationally expen-
sive and heuristics are often employed (1). Reference 9 also
notes that in cases where heuristics are used in static
compaction, dynamic compaction generally produces
superior results while consuming fewer computational
resources. Furthermore, dynamic compaction processes
vectors as they come, but more advanced dynamic compac-
tion heuristics may choose to not compact immediately but
rather wait until a more opportune time.

Compaction Using Fault Simulation. A test that has been
found for one fault may also test for several other faults.
Those additional tests can be determined experimentally
by performing a fault simulation for the test and identifying
the additional faults that are also detected. The process is
outlined as follows:

1. Initialize fault set

2. Select a fault from the fault set

3. Generate a test pattern for the selected fault

4. Run fault simulation

5. Remove additional detected faults form fault set

6. If fault set empty or fault coverage threshold met then
exit, otherwise go to step 2

Test Vector Compression. Test vector compression takes
on two forms, lossless and lossy. Lossless compression is
necessary in circumstances where the precise input and
output values must be known as what might be necessary
on an integrated circuit tester. Under certain limited cir-
cumstances, lossless compression might make it possible to
store test-compressed vectors in the system itself. In lossy
compression, the original test vectors cannot be reconsti-
tuted. Lossy compression is used in such applications as
pseudorandom number generation and signature registers,
where input and output vectors are compressed through
the inherent structure of the linear feedback shift registers
as described previously. Lossy compression is suitable
when the probability of not detecting an existing fault is
much smaller than the proportion of uncovered faults in the
circuit.

ATG CHALLENGES AND RELATED AREAS

As circuit complexity and capabilities evolve, so does the art
and science of ATG. Technologic innovations have resulted
in the ability to implement increasingly complex and inno-
vative designs. The technologic innovations also drive the
evolution of testing. One trend, for example, is that newer
CMOS circuits have increased quiescent currents, which
impacts the ability to apply IDDQ testing technologies.

ATG in Embedded Systems

The natural evolution of technology advances and design
has resulted in systems composed from IP obtained from
many sources. Clearly, the use of IP provides developers
faster development cycles and quicker entry to market. The
use of IP presents several ATG challenges. First, the testing
embedded IP components can be difficult. Second, because
the internals of the IP components are often not known, the
success of ATG techniques that require full knowledge of
the circuit structure will be limited. Third, IP developers
may be hesitant to provide fault tests for fear that it would
give undesired insights into the IP implementation.

Functional ATG

Design tools and rapid prototyping paradigms result in the
designer specifying hardware systems in an increasingly

Table 4. Test pattern compaction

Fault Test

a 00X0
b 001X
c X00X
d X011

Table 5. Simple dynamic test compaction

Sequence New test Compacted tests

1 00X0 {00X0}
2 001X {0010}
3 X00X {0010,X00X}
4 X011 {0010,X00X,X011}

AUTOMATIC TEST GENERATION 17



abstract fashion. As a result, the modern digital system
designer may not get the opportunity develop tests based on
gate level implementations. Employing ATG technologies
relieves the designer of this task provided the design tools
can define and analyze a gate level implementation.

SUMMARY

In this article, many aspects of ATG have been reviewed.
ATG is the process of generating tests for a digital system in
an automated fashion. The ATG algorithms are grounded
in fault models that provide the objective for the test gen-
eration process. Building on fault models, ATG for combi-
national circuits have been shown to be effective.
Sequential circuits are more difficult to test as they require
the circuits to be unrolled in a symbolic fashion or be the
object of specialized test pattern search algorithms.
Because of the difficulties encountered in testing sequential
circuits, the circuits themselves are occasionally modified
to simplify the process of finding test patterns and to
improve the overal test fault coverage. The inexorable
technology progression provides many challenges in test
testing process. As technology advances, new models and
techniques must continue to be developed to keep pace.

BIBLIOGRAPHY

1. G. E. Moore, Cramming more components onto integrated
circuits, Electronics, 38 (8): 1965.

2. B. W. Johnson, Design and Analysis of Fault-Tolerant Digital
Systems, Reading, MA: Addison-Wesley Publishing Company,
1989.

3. R. C. Aitken, Nanometer technology effects on fault models for
IC testing, Computer, 32 (11): 47–52, 1999.

4. M. Sivaraman and A. J. Strojwas, A Unified Approach for
Timing Verification and Delay Fault Testing, Boston: Kluwer
Academic Publishers, 1998.

5. N. K. Jha and S. Kindu, Testing and Reliable Design of CMOS
Circuits, Boston: Kluwer, 1992.

6. J. Gailay, Y. Crouzet, and M. Vergniault, Physical versus
logical fault models in MOS LSI circuits: Impact on their
testability, IEEE Trans. Computers, 29(6): 286–1293, l980.

7. C. F. Hawkins, J. M. Soden, R. R. Fritzmeier, and L. K.
Horning, Quiescent power supply current measurement for
CMOS IC defect detection, IEEE Trans. Industrial Electron.,
36(2): 211–218, 1989.

8. R. Dekker, F. Beenker, and L. Thijssen, A realistic fault model
and test., algorithms for static random access memories, IEEE
Trans. Comp.-Aided Des., 9(6): 567–572, 1996.

9. M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital
Systems Testing and Testable Design, Ascataway, NJ: IEEE
Press, revised printing edition, 1990.

10. N. K. Jha and S. Kindu, Assessing Fault Model and Test
Quality, Boston: Kluwer, 1992.

11. L. H. Goldstein and E. L. Thigpen, SCOAP: Sandia controll-
ability/observability analysis program, Proceedings of the 17th
Conference on Design Automation, Minneapolis, MN: 1980, pp.
190–196.

12. V. D. Agrawal, C. R. Kime, and K. K. Saluja, A tutorial on built-
in-self-test part 2: Applications, IEEE Design and Test of
Computers, 69–77, 1993.

13. S. Chakravarty and P. J. Thadikaran, Simulation and genera-
tion of IDDQ tests for bridging faults in combinational circuits,
IEEE Trans. Comp., 45(10): 1131–1140, 1996.

14. A. D. Friedman and P. R. Menin, Fault Detection in Digital
Circuits. Englewood Cliffs, NJ: Prentice-Hall, 1971.

15. Z. Kohavi, Switching and Finite Automata Theory, 2nd ed.New
York: McGraw-Hill, 1978.

16. M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, San Francisco, CA:
W.H. Freeman and Company, 1979.

17. T. Larrabee, Test pattern generation using Boolean satisfia-
bility, IEEE Trans. Comp. Aided Des., 5(1): 4–15, 1992.

18. J. Paul Roth, Diagnosis of automata failures: A calculus and a
method, IBM J. Res. Devel., 10: 277–291, 1966.

19. O. H. Ibarra and S. K. Sahni, Polynomially complete fault
detection problems, IEEE Trans. Computers, C-24(3): 242–
249, 1975.

20. P. Goel, An implicit enumeration algorithm to generate tests
for combinational logic circuits, IEEE Trans. Comp., C-30(3):
2l5–222, 1981.

21. I. Hamzaoglu and J. H. Patel, Deterministic test pattern gen-
eration techniques for sequential circuits, DAC, 2000, pp. 538–
543.

22. T. M. Niermann and J. H. Patel, HITEC: A test generation
package for sequential circuits, Proceedings European Design
Automation Conference, 1990, pp. 214–218.

23. D. E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning. Reading, MA: Addison Wesley, 1989.

24. M. S. Hsiao, E. M. Rudnick, and J. H. Patel, Application of
genetically engineered finite-state-machine sequences to
sequential circuit TPGA, IEEE Trans. Comp.-Aided Design
of Integrated Circuits Sys., 17(3): 239–254, 1998.

25. M. J. Geuzebroek, J. Th. van derLinden, and A. J. van deGoor,
Test point insertion that facilitates ATPG in reducing test time
and data volume, Proceedings of the 2002 International Test
Conference (ITC’2002), 2002, pp. 138–147.

26. H. Vranken, F. S. Sapei, and H. Wunderlich, Impact of test
point insertion on silicon area and timing during layout, Pro-
ceedings of the Design, Automatin and test in Europe Confer-
ence and Exhibition (DATE’04), 2004.

27. W. C. Carter, H. C. Montgomery, R. J. Preiss, and J. J. Rein-
heimer, Design of serviceability features for the IBM system/
360, IBM J. Res. & Devel., 115–126, 1964.

28. E. B. Eichelberger and T. W. Williams, A logic design structure
for LSI testability, Proceedings of the Fourteenth Design Auto-
mation Conference, New Orleans, LA: 1977, pp. 462–468.

29. S. Funatsu, N. Wakatsuki, and T. Arima, Test generation
systems in Japan, Proceedings of the Twelfth Design Automa-
tion Conference, 1975, pp. 114–122.

30. M. J. Y. Williams and J. B. Angel, Enhancing testability of
large-scale integrated circuits via test points and additional
logic, IEEE Trans. Computers, C-22(l): 46–60, 1973.

31. A. S. M. Hassan, V. K. Agarwal, B. Nadeau-Dostie, and J.
Rajski, BIST of PCB interconnects using boundary-scan archi-
tecture, IEEE Trans. Comp., 41(10): 1278–1288, 1992.

32. N. A. Touba and B. Pouya, Using partial isolation rings to test
core-based designs, IEEE Design and Test of Computers, 1997,
pp. 52–57.

33. Y. Zorian, A structured testability approach for multi-chip
modules based on BIST and boundary-scan, IEEE Trans.
Compon., Packag. Manufactu. Technol. Part B, 17(3): 283–
290, 1994.

18 AUTOMATIC TEST GENERATION



34. IEEEIEEE Standard Test Access Port and Boundary-Scan
Architecture, Piscataway, NJ: IEEE, 1990.

35. D. Kagaris, S. Tragoudas, and A. Majumdar, On the use of
counters for reproducing deterministic test sets, IEEE Trans.
Comp., 45(12): 1405–1419, 1996.

36. P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for
VLSI: Pseudorandom Techniques, New York: John Wiley &
Sons, l987.

37. M. Franklin, K. K. Saluja, and K. Kinoshita, A built-in self-test
algorithm for row/column pattern sensitive faults in RAMs,
IEEE J. Solid-State Circuits, 25(2): 514–524, 1990.

38. S. Feng, T. Fujiwara, T. Kasami, and K. Iwasaki, On the
maximum value of aliasing probabilities for single input sig-
nature registers, IEEE Trans. Comp., 44(11): 1265–1274, 1995.

39. M. Lempel and S. K. Gupta, Zero aliasing for modeled faults,
IEEE Trans. Computers, 44(11): 1283–1295, 1995.

40. B. Koenemann, B. J. Mucha, and G. Zwiehoff, Built-in test for
complex digital integrated circuits, IEEE J. Solid State Phys.,
SC-15(3): 315–318, 1980.

41. M. Tien-Chien Lee, High-Level Tests Synthesis of Digital VLSI
Circuits, Boston: Artech House, Inc, 1997.

42. M. R. Prasad, P. Chong, and K. Keutzer, Why is ATPG easy?
Design Automation Conference, 1999.

43. R. Wei and A. Sangiovanni-Vincentelli, PLATYPUS: A PLA
test pattern generation tool, 22nd Design Automation Confer-
ence, 1985, pp. 197–203.

LEE A. BELFORE II
Old Dominion University,
Norfolk, Virginia

AUTOMATIC TEST GENERATION 19



C

CARRY LOGIC

Addition is the fundamental operation for performing digi-
tal arithmetic; subtraction, multiplication, and division
rely on it. How computers store numbers and perform
arithmetic should be understood by the designers of digital
computers. For a given weighted number system, a single
digit could represent a maximum value of up to 1 less than
the base or radix of the number system. A plurality of
number systems exist (1). In the binary system, for
instance, the maximum that each digit or bit could repre-
sent is 1. Numbers in real applications of computers are
multibit and are stored as large collections of 16, 32, 64, or
128 bits. If the addition of multibit numbers in such a
number system is considered, the addition of two legal
bits could result in the production of a result that cannot
fit within one bit. In such cases, a carry is said to have been
generated. The generated carry needs to be added to the
sum of the next two bits. This process, called carry propa-
gation, continues from the least-significant bit (LSB) or
digit, the one that has the least weight and is the rightmost,
to the most-significant bit (MSB) or digit, the one with the
most weight and is the leftmost. This operation is analogous
to the usual manual computation with decimal numbers,
where pairs of digits are added with carries being propa-
gated toward the high-order (left) digits. Carry propagation
serializes the otherwise parallel process of addition, thus
slowing it down.

As a carry can be determined only after the addition of a
particular set of bits is complete, it serializes the process of
multibit addition. If it takes a finite amount of time, say
(Dg), to calculate a carry, it will take 64 (Dg) to calculate the
carries for a 64-bit adder. Several algorithms to reduce the
carry propagation overhead have been devised to speed up
arithmetic addition. These algorithms are implemented
using digital logic gates (2) in computers and are termed
carry logic. However, the gains in speed afforded by these
algorithms come with an additional cost, which is measured
in terms of the number of logic gates required to implement
them.

In addition to the choice of number systems for repre-
senting numbers, they can further be represented as fixed
or floating point (3). These representations use different
algorithms to calculate a sum, although the carry propaga-
tion mechanism remains the same. Hence, throughout this
article, carry propagation with respect to fixed-point binary
addition will be discussed. As a multitude of 2-input logic
gates could be used to implement any algorithm, all mea-
surements are made in terms of the number of 2-input
NAND gates throughout this study.

THE MECHANISM OF ADDITION

Currently, most digital computers use the binary number
system to represent data. The legal digits, or bits as they are
called in the binary number system, are 0 and 1. During

addition, a sum Si and a carryout Ci are produced by adding
a set of bits at the ith position. The carryout Ci produced
during the process serves as the carry-in Ci�1 for the
succeeding set of bits. Table 1 shows the underlying rules
for adding two bits, Ai and Bi, with a carry-in Ci and
producing a sum Si and carry-out, Ci.

FULL ADDER

The logic equations that represent Si and Ci of Table 1 are
shown in Equations (1) and (2). A block of logic that imple-
ments these is called full adder, and it is shown in the inset
of Fig. 1. The serial path for data through a full adder, hence
its delay, is 2 gates, as shown in Fig. 1. A full adder can be
implemented using eight gates (2) by sharing terms from
Equations (1) and (2):

Si ¼ AiBiCi�1 þ AiBiCi�1 þ AiBiCi�1 þ AiBiCi�1 ð1Þ

Ci ¼ AiBi þ Ci�1ðAi þ BiÞ ð2Þ

RIPPLE CARRY ADDER

The obvious implementation of an adder that adds two
n-bit numbers A and B, where A is AnAn�1An�2 . . . A1A0

and B is BnBn�1Bn�2 . . . B1B0, is a ripple carry adder (RCA).
By serially connecting n full adders and connecting the
carryout C1 from each full adder as the Ci�1 of the succeed-
ing full adder, it is possible to propagate the carry from the
LSB to the MSB. Figure 1 shows the cascading of n full
adder blocks. It is clear that there is no special carry
propagation mechanism in the RCA except the serial con-
nection between the adders. Thus, the carry logic has a
minimal overhead for the RCA. The number of gates
required is 8n, as each full adder is constructed with eight
gates, and there are n such adders. Table 2 shows the
typical gate count and speed for RCAs with varying number
of bits.

CARRY PROPAGATION MECHANISMS

In a scenario where all carries are available right at the
beginning, addition is a parallel process. Each set of inputs
Ai, Bi, and Ci�1 could be added in parallel, and the sum for
2 n-bit numbers could be computed with the delay of a full
adder.

The input combinations of Table 1 show that if Ai and
Bi are both 0s, then Ci is always 0, irrespective of the
value of Ci�1. Such a combination is called a carry kill
term. For combinations where Ai and Bi are both 1s, Ci

is always 1. Such a combination is called a carry generate
term. In cases where Ai and Bi are not equal, Ci is equal to
Ci�1. These are called the propagate terms. Carry pro-
pagation originates at a generate term, propagates through

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



any successive propagate terms, and gets terminated at a
carry kill or a new carry generate term. A carry chain is a
succession of propagate terms that occur for any given
input combination of Ai and Bi. For the addition of two
n-bit numbers, multiple generates, kills, and propagates
could exist. Thus, many carry chains exist. Addition
between carry chains can proceed in parallel, as there is
no carry propagation necessary over carry generate or kill
terms.

Based on the concept of carry generates, propagates, and
kills, logic could be designed to predict the carries for each

bit of the adder. This mechanism is static in nature. It can
be readily seen that different carry chains exist for different
sets of inputs. This introduces a dynamic dimension to the
process of addition. The dynamic nature of the inputs could
also be used and a sum computed after the carry propaga-
tion through the longest carry chain is completed. This
leads to a classification into static and dynamic carry logic.

An adder that employs static carry propagation always
produces a sum after a fixed amount of time, whereas the
time taken to compute the sum in a dynamic adder is
dependent on the inputs. In general, it is easier to design
a digital system with a static adder, as digital systems are
predominantly synchronous in nature; i.e., they work in
lock step based on a clock that initiates each operation and
uses the results after completion of a clock cycle (4).

STATIC CARRY LOGIC

From Equation (1), if Ai and Bi are both true, then Ci is true.
If Ai or Bi is true, then Ci depends on Ci�1. Thus, the term
AiBi in Equation (1) is the generate term or gi, and Ai þ Bi is
the propagate term or pi. Equation (1) can be rewritten as
in Equation (3):

Ci ¼ gi þ piCi�1 (3)

where gi ¼ AiBi and pi ¼ Ai þ Bi. Substituting numbers
for i in Equation (3) results in Equations (4) and (5):

C1 ¼ g1 þ p1C0 ð4Þ

C2 ¼ g2 þ p2C1 ð5Þ

Substituting the value of C1 from Equation (4) in Equation
(5) yields Equation (6):

C2 ¼ g2 þ p2g1 þ p2 p1C0 (6)

Generalizing Equation (6) to any carry bit i yields Equation
(7):

Ci ¼ gi þ pigi�1 þ pi pi�1gi�2 þ � � � þ pi pi�1 � � � p1g1

þ pi pi�1 pi�2 � � � piC0 (7)

By implementing logic for the appropriate value of i in
Equation (7), the carry for any set of input bits can be
predicted.

Table 1. Addition of Bits Ai and Bi with a Carry-in Ci�1 to
Produce Sum Si and Carry-out Ci

Ai Bi Ci�1 Si Ci

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 2. List of Gate Counts and Delay of Various Adders

Gate Count/Delay

Adder Type 16-Bit 32-Bit 64-Bit

RCA 144/36 288/68 576/132
CLA 200/10 401/14 808/14
CSA 284/14 597/14 1228/14
CKA 170/17 350/19 695/23

Figure 1. A Ripple Carry Adder ripples the carry from stage to
stage using cascaded Full Adders.

2 CARRY LOGIC



Carry Look-Ahead Adder

An adder that uses Equation (7) to generate carries for the
various bits, as soon as A and B are available, is called a
carry look-ahead adder (CLA). From Equation (7), the carry
calculation time for such an adder is two gate delays, and a
further two gate delays are required to calculate the sum
with bits Ai, Bi, and the generated carry. In general, for a
large number of bits n, it is impractical to generate the
carries for every bit, as the complexity of Equation (7)
increases tremendously. It is commonly practice in such
cases to split the addition process into groups of k-bit CLA
blocks that are interconnected. A group CLA is shown in
Fig. 2. The groups now provide two new output functions
G* and P*, which are the group generate and propagate
terms. Equations (8) and (9) provide examples of how these
terms are generated for 4-bit blocks. Equation (10) shows
the generation of C4 using G�1 and P�1:

G�1 ¼ g4 þ p4g3 þ p4 p3g2 þ p4 p3 p2g1 ð8Þ

P�1 ¼ p4 p3 p2 p1 ð9Þ

C4 ¼ G�1 þ P�1C0 ð10Þ

In typical implementations, a CLA computes the sum in
log2n time and uses gates to the order of nlogn. Table 2
lists the gate count and delay of various CLAs. Thus, with
some additional gate investment, considerable speed-up is
possible using the CLA carry logic algorithm.

Based on the CLA algorithm, several methods have been
devised to speed up carry propagation even further. Three
such adders that employ circuit-level optimizations to
achieve faster carry propagation are the Manchester Carry
Adder (4), Ling Adder (5), and the Modified Ling Adder (6).
However, these are specific implementations of the CLA
and do not modify carry propagation algorithms.

Carry Select Adder

The discussion in the previous section shows that the
hardware investment on CLA logic is severe. Another
mechanism to extract parallelism in the addition process
is to calculate two sums for each bit, one assuming a carry
input of 0 and another assuming a carry input of 1, and
choosing one sum based on the real carry generated. The
idea is that the selection of one sum is faster than actually

propagating carries through all bits of the adder. An adder
that employs this mechanism is called a carry select adder
(CSA) and is shown in Fig. 3. A CSA works on groups of k-
bits, and each group works like an independent RCA. The
real carry-in is always known as the LSB, and it is used as
C0. In Fig. 3, Ck is used to select one sum, like S1

3k�2kþ1 or
S0

3k�2kþ1 from the next group, gp2. In general, the selection
and the addition time per bit are approximately equal.
Thus, for a group that is k bits wide, it approximately takes
2k units of time to compute the sums and a further two units
of time to select the right sum, based on the actual carry.
Thus, the total time for a valid carry to propagate from one
group to another is 2(kþ 1) time units. Thus, for an optimal
implementation, the groups in the CSA should be unequal
in size, with each succeeding group being 1 bit wider than
the preceding group. The gate count and speed of various
CSAs is listed in Table 2.

Carry Skip Logic

If an adder is split into groups, gp 0, gp 1, and so on of RCAs
of equal width k, and if a carry-in of 0 is forced into each
group, then the carry out from each group is its generate
term. The propagate term is simple to compute and can be
computed by using Equation (9). As the group generate
terms and propagate terms are thus available, the real
carry-in at each group could be predicted and used to
calculate the sum. An adder employing this mechanism
for carry propagation is called a carry skip adder (CKA) and
is shown in Fig. 3. The logic gates outside of the groups in
Fig. 3 implement Equation (11), which is a generalization
of Equation (10) for the carry at any position i. Thus, the
process of carry propagation takes place at the group level,
and it is possible to skip cary propagation over groups of
bits:

Ci ¼ G�i=k þ P�i=kCki (11)

It takes 2k time units to calculate the carry from any group
of size k. Carry propagation across groups takes an addi-
tional n/k� 2 time units, and it takes another 2k time units
to calculate the final sum. Thus, the total time is 4k þ n/
k� 2 time units. By making the inner blocks larger in size,
it is possible to calculate the sum faster, as it is then possible
to skip carry propagation over bigger groups. Table 2 lists
the gate count and performance of various CKAs.

Figure 2. A group Carry Look
Ahead Scheme with n/k groups
each of size k.

CARRY LOGIC 3



Prefix Computation

Binary addition can be viewed as a parallel computation.
By introducing an associative operator �, carry propagation
and carry generation can be defined recursively. If Ci ¼ Gi

in Equation (3), then Equation (12) with � as the concatena-
tion operator holds. Pi is the propagate term, and Gi is the
generate term at bit position i at the boundary of a group of
size k:

ðGi;PiÞ ¼ ðgi; piÞ if
i ¼ 1 and ðgi; piÞ�ðGi�1;Pi�1Þ if n� i> 1

(12)

where ðgt; ptÞ�ðgs; psÞ ¼ ðgt þ ptgs; pt psÞ by modifying
Equation (3). Note that � is NOT commutative. All Ci can
be computed in parallel. As � is associative, the recursive
Equation (12) can be broken in arbitrary ways. The logic
to compute carries can be constructed recursively too.
Figure 4 shows an example of carry computation using
the prefix computation strategy described in Equation (12),
with block size k ¼ 4 and how a combination of two 4-bit
carry-logic blocks can perform 8-bit carry computation.

The CLA, CKA, CSA, and Prefix computation have been
discussed in detail by Swartzlander (7), Henessey (8), and
Koren (9).

DYNAMIC CARRY LOGIC

Dynamic carry propagation mechanisms exploit the nature
of the input bit patterns to speed up carry propagation and
rely on the fact that the carry propagation on an average is
of the order of log2n. Due to the dynamic nature of this
mechanism, valid results from addition are available at
different times for different input patterns. Thus, adders
that employ this technique have completion signals that
flag valid results.

Carry Completion Sensing Adder

The carry-completing sensing adder (CCA) works on the
principle of creating two carry vectors, C and D, the pri-
mary and secondary carry vectors, respectively. The 1s in C
are the generate terms shifted once to the left and are
determined by detecting 1s in a pair of Ai and Bi bits, which
represent the ith position of the addend and augend, A and
B, respectively. The 1s in D are generated by checking the
carries triggered by the primary carry vector C, and these
are the propagate terms. Figure 5 shows an example for
such a carry computation process. The sum can be obtained
by adding A, B, C, and D without propagating carries. A
n-bit CCA has an approximate gate count of 17n� 1 and a

Figure 3. The CSA and CKA propagate
carries over groups of k-bits.

4 CARRY LOGIC



speed of nþ 4. Hwang (10) discusses the carry-completion
sensing adder in detail. Sklansky (11) provides an evalua-
tion of several two-summand binary adders.

Carry Elimination Adder

Ignoring carry propagation, Equation (1) describes a half-
adder, which can be implemented by a single XOR gate. In
principle, it is possible to determine the sum of 2 n-bit
numbers by performing Half Addition on the input oper-
ands at all bit positions in parallel and by iteratively
adjusting the result to account for carry propagation.
This mechanism is similar to the CCA. However, the dif-
ference is that the CCA uses primary and secondary carry
vectors to account for carry propagation, whereas the carry
elimination adder (CEA) iterates. The CEA algorithm for
adding two numbers A and B is formalized by the following
steps:

1. Load A and B into two n-bit storage elements called
SUM and CARRY.

2. Bit-wise XOR and AND SUM and CARRY simulta-
neously.

3. Route the XORed result back to SUM and left shift the
ANDed result and route it back to the CARRY.

4. Repeat the operations until the CARRY register
becomes zero. At this point, the result is available
in SUM.

The implementation of the algorithm and detailed com-
parisons with other carry-propagation mechanisms have
been discussed by Ramachandran (12).

Figure 5 shows an example of adding two numbers using
the CEA algorithm. Note that the Primary carry vector C in
the CCA is the same as the CARRY register value after the
first iteration. The number of iterations that the CEA per-
forms before converging to a sum is equal to the maximum
length of the carry chain for the given inputs A and B. On
average, the length of a carry chain for n-bit random
patterns is log2n. The gate count of the CEA is about
8nþ 22 gates. It approaches the CLA in terms of speed
and the CRA in terms of gate count.

MATHEMATICAL ESTIMATION OF THE CARRY-CHAIN
LENGTH

For a given carry chain of length j, the probability of being
in the propagate state is k/k2 = 1/k. Define Pn(j) as the
probability of the addition of two uniformly random n-bit
numbers having a maximal length carry chain of length� j:

Pnð jÞ ¼ 0 if n< j; and PnðnÞ ¼ ð1=kÞn (13)

Pnð jÞ can be computed using dynamic programming if all
outcomes contributing to probability Pnð jÞ are split into
suitable disjoint classes of events, which include each con-
tributing outcome exactly once. All outcomes contributing
to Pnð jÞ can be split into two disjoint classes of events:

Figure 4. Performing4-bit prefix computation and extending it to
8-bit numbers.

Figure 5. The CCA and CEA use dynamic carry propagation.

CARRY LOGIC 5



Class 1: A maximal carry chain of length � j does not
start at the first position. The events of this class
consist precisely of outcomes with initial prefixes
having 0 up to ( j� 1) propagate positions followed
by one nonpropagate position and then followed with
the probability that a maximal carry chain of length
� j exists in the remainder of the positions. A prob-
ability expression for this class of events is shown in
Equation (14):

Xj�1

t¼0

1

k

� �t

� ðk� 1Þ
k

� Pn�t�1ðtÞ (14)

In Equation (14), each term represents the condition
that the first (tþ 1) positions are not a part of a
maximal carry chain. If a position k < t in some
term was instead listed as nonpropagating, it would
duplicate the outcomes counted by the earlier case t¼
k� 1. Thus, all outcomes with a maximal carry chain
beginning after the initial carry chains of length less
than j are counted, and none is counted twice. None of
the events contributing to Pnð jÞ in class 1 is contained
by any case of class 2 below.

Class 2: A maximal carry chain of length�j does begin in
the first position. What occurs after the end of each
possible maximal carry chain beginning in the first
position is of no concern. In particular, it is incorrect
to rule out other maximal carry chains in the space
following the initial maximal carry chain. Thus,
initial carry chains of lengths j through n are con-
sidered. Carry chains of length less than n are fol-
lowed immediately by a nonpropagate position.
Equation (15) represents this condition:

1

k

� �m

þ
Xm�1

t¼ j

1

k

� �t

� ðk� 1Þ
k

(15)

The term PmðmÞ ¼ ð1=kÞm handles the case of a carry
chain of full length m, and the summand handles the
individual cases of maximal length carry chains of
length j, jþ 1, jþ 2,. . ., m� 1. Any outcome with a
maximal carry chain with length� j not belonging to
class 2 belongs to 1. In summary, any outcome with a
maximal carry chain of length� j, which contributes
to Pnð jÞ, is included once and only once in the disjoint
collections of classes 1 and 2.

Adding the probabilities for collections 1 and 2 leads to
the dynamic programming solution to Pnð jÞ provided
below, where Pnð jÞ ¼ pnð jÞ þ pnð jþ 1Þ þ � � � þ pnðn�
1Þþ pnðnÞ;, where PnðiÞ is the probability of the occurrence
of a maximal length carry chain of precisely length i.
Thus, the expected value of the carry length [being the
sum from i ¼ 1 to n of i�PnðiÞ] becomes simply the sum of
the Pnð jÞ from j ¼ 1 to n. Results of dynamic programming
indicate that the average carry length in the 2-ary number
system for 8 bits is 2.511718750000; for 16 bits it is

3.425308227539; for 32 bits, 4.379535542335; for 64 bits,
5.356384595083; and for 128 bits, 8.335725789691.

APPROXIMATION ADDITION

To generate the correct final result, the calculation must
consider all input bits to obtain the final carry out. How-
ever, carry chains are usually much shorter, a design that
considers only the previous k inputs instead of all previous
input bits for the current carry bit can approximate the
result (13). Given that the delay cost of calculating the full
carry chain length of N bits is proportional to log (N), if k
equals to the square root of N, the new approximation adder
will perform twice as fast as the fully correct adder. With
random inputs, the probability of having a correct result
considering only k previous inputs is:

PðN; kÞ ¼
�

1� 1

2kþ2

�N�k�1

This is derived with the following steps. First consider
why the prediction is incorrect. If we only consider k pre-
vious bits to generate the carry, the result will be wrong
only if the carry propagation chain is greater than kþ 1.
Moreover, the previous bit must be in the carry generate
condition. This can only happen with a probability of 1=2kþ2

if we consider a k-segment. Thus, the probability of being
correct is one minus the probability of being wrong. Second,
there are a total of N � ðkþ 1Þ segments in an N-bit addi-
tion. To produce the final correct result, the segment should
not have an error condition. We multiply all probabilities to
produce the final product. This equation could determine
the risk taken by selecting the value of k. For example,
assuming random input data, a 64-bit approximation adder
with 8-bit look-ahead (k ¼ 8) produces a correct result 95%
of the time.

Figure 6 shows a sample approximation adder design
with k ¼ 4. The top and bottom rows are the usual carry,
propagate, and generate circuits. The figure also shows the
sum circuits used in other parallel adders. However, the
design implements the carry chain with 29, 4-bit carry
blocks and three boundary cells. These boundary cells
are similar but smaller in size. A Manchester carry chain
could implement 4-bit carry blocks. Thus, the critical path
delay is asymptotically proportional to constant with this
design, and the cost complexity approaches N. In compar-
ison with Kogge Stone or Han Carlson adders, this design is
faster and smaller.

It is worthwhile to note that an error indication circuit
could be and probably should be implemented because we
know exactly what causes a result to be incorrect. When-
ever a carry propagation chain is longer than k bits,
the result given by the approximation adder circuit will
be incorrect. That is, for the ith carry bit, if the logic
function - (ai-1 XOR bi-1) AND (ai-2 XOR bi-2) AND. . .
AND (ai-k XOR bi-k) AND (ai-k-1 AND bi-k-1) is true, the
prediction will be wrong. We could implement this logic
function for each carry bit and perform the logical OR of all

6 CARRY LOGIC



these n-4 outputs to signal us if the approximation is
incorrect.

HIGH PERFORMANCE IMPLEMENTAION

The most recently reported adder implemented with the
state-of-art CMOS technology is (14). The adder style used
in that implementation is a variation of the prefix adder
previously mentioned. Consideration was given not only to
gate delay but also to fan-in, fan-out as well as to wiring
delay in the design. Careful tuning was done to make sure
the design is balanced, and the critical path is minimized.

BIBLIOGRAPHY

1. H. L. Garner, Number systems and arithmetic, in F. Alt and M.
Rubinoff (eds.) Advances in Computers. New York: Academic
Press, 1965, pp. 131–194.

2. E. J. McCluskey, Logic Design Principles. Englewood Cliffs,
NJ: Prentice-Hall, 1986.

3. S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital
System Designers. New York: Holt, Reinhart and Winston,
1982.

4. N. H. E. Weste and K. Eshragian, Principles of CMOS VLSI
Design—A Systems Perspective, 2nd ed. Reading, MA: Addison-
Wesley, 1993, chaps. 5–8.

5. H. Ling, High speed binary parallel adder, IEEE Trans. Com-
put., 799–802, 1966.

6. Milos D. Ercegovac and Tomas Lang, Digital Arithmetic. San
Mateo, CA: Morgan Kaufmann, 2003.

7. E. E. Swartzlander Jr., Computer Arithmetic. Washington,
D.C.: IEEE Computer Society Press, 1990, chaps. 5–8.

8. J. L. Henessey and D. A. Patterson, Computer Architecture: A
Quantitative Approach, 2nd ed.San Mateo, CA: Morgan Kauff-
man, 1996, pp. A-38–A-46.

9. I. Koren, Computer Arithmetic Algorithms, 2nd ed. A. K. Peters
Ltd., 2001.

10. K. Hwang, Computer Arithmetic. New York: Wiley, 1979,
chap. 3.

11. J. Sklansky, An evaluation of several two-summand binary
adders, IRE Trans. EC-9 (2): 213–226, 1960.

12. R. Ramachandran, Efficient arithmetic using self-timing,
Master’s Thesis, Corvallis, OR: Oregon State University, 1994.

13. S.-L. Lu, Speeding up processing with approximation circuits,
IEEE Comput. 37 (3): 67–73, 2004.

14. S. Mathew et al., A 4-GHz 130-nm address generation unit
with 32-bit sparse-tree adder core, IEEE J. Solid-State Circuits
38 (5): 689–695, 2003.

SHIH-LIEN LU

Intel Corporation
Santa Clara, California

RAVICHANDRAN RAMACHANDRAN

National Semiconductor
Corporation

Santa Clara, California

Figure 6. An example 32-bit approximation adder.

CARRY LOGIC 7



C

CD-ROMs AND COMPUTER SYSTEMS

HISTORY OF DEVELOPMENT: CD-ROM AND DVD

To distribute massive amounts of digital audio data, at
reasonable cost and high quality, industry giants, such as
Philips (Amsterdam, the Netherlands) and Sony (Tokyo,
Japan), developed CD-ROM optical storage technology in
the early 1980s, when digital ‘‘fever’’ was taking over the
analog stereo music industry.

The obvious attractive features of the audio CD versus
the vinyl LP are the relatively low cost of production,
duplication, and distribution, as well as the robustness of
the media and the significantly clearer and better (a feature
that is still disputed by some ‘‘artistically bent’’ ears) sound
quality that the digital technology offers over that of the
analog.

It might be interesting to note that, as with many new,
revolutionary technologies, even in the United States,
where society accepts technological change at a faster
rate than in most other countries, it took approximately
5 years for the audio CD to take over the vinyl phonograph
record industry. (Based on this experience, one wonders
how long it will take to replace the current combustion
automobile engine for clean electric or other type of
power. . . .)

For the computer industry, the compact disc digital
audio (CD-DA) became an exciting media for storing any
data (i.e., not just audio), including computer-controlled
interactive multimedia, one of the most interesting tech-
nological innovations of the twentieth century. The
approximately $1.00 cost of duplicating 650 Mb of data
and then selling it as a recorded product for approximately
$200.00 (in those days) created a new revolution that
became the multimedia CD-ROM as we know it today.

Although there are not just read-only, but read/write
CD-ROMs too (see CD-RW below), typically a CD-ROM is
an optical read-only media, capable of storing approxi-
mately 650 Mb of uncompressed digital data (as an example
a Sony CD-ROM stores 656.10 Mb in 335925 blocks, uncom-
pressed), meaning any mixcture of text, digital video, voice,
images, and others.

It is important to note that, with the advancement of
real-time compression and decompression methods and
technologies, CD recording software packages can put on
a CD-ROM over 1.3 Gb of data, instead of the usual 650 Mb.

It is expected that, with increasing computer processor
speeds and better integration [see what Apple’s (Cupertino,
CA) backside cache can do to the overall speed of the
machine], real-time compression and decompression will
be an excellent solution for many applications that need
more than 650 Mb on one CD. Obviously this depends on the
cost of the competing DVD technology too! This solution
makes the CD-ROM and the emerging even higher capacity
DVD technology essential to the digitalization and compu-
terization of photography, the animation and the video

industry, and the mass archivation and document storage
and retrieval business.

To illustrate the breath and the depth of the opportu-
nities of electronic image capture, manipulation, storage,
and retrieval, consider Fig. 1(a) and 1(b), a solid model
animation sequence of a short battle created by Richard G.
Ranky, illustrating 200 high-resolution frame-by-frame
rendered complex images, integrated into an Apple Quick-
Time digital, interactive movie and stored on CD-ROM, and
Fig. 2(a)–(d), by Mick. F. Ranky, an interactively naviga-
table, panable, Apple QuickTime VR virtual reality movie
of Budapest by night, allowing user-controlled zoom-in/out
and other hot-spot controlled interactivity. (Note that some
of these images and sequences are available in full color at
www.cimwareukandusa.com and that more interactive
demonstrations are available in the electronic version of
this encyclopedia.) Note the difference in terms of the
approach and methods used between the two figures.
The first set was created entirely by computer modeling
and imaging, and it illustrates a totally artificial world,
whereas the second was first photographed of real, physical
objects and then digitized and ‘‘pasted’’ and integrated into
an interactive QTVR (see below) movie (1–11).

CD-ROM TECHNOLOGY, MEDIUM, AND THE STORAGE
DENSITY OF DATA

The most important differences between the magnetic
(hard disk) versus the optical (compact disc) technology
include the storage density of data as well as the way data
are coded and stored. This difference is because CD-ROMs
(and DVDs) use coherent light waves, or laser beams,
versus magnetic fields that are spread much wider than
laser beams to encode information.

The other major advantage is that the laser beam does
not need to be that close to the surface of the media as is the
case with the magnetic hard disk read/write heads. Mag-
netic read/write heads can be as close as 16 mm, or
0.0016 mm, to the surface, increasing the opportunity of
the jet-fighter-shaped, literally flying read/write head to
crash into the magnetic surface, in most cases, meaning
catastrophic data loss to the user.

The principle of the optical technology is that binary
data can be encoded by creating a pattern of black-and-
white splotches, just as ON/OFF electrical signals do or as the
well-known bar code appears in the supermarket. Reading
patterns of light and dark requires a photo detector, which
changes its resistance depending on the brightness levels it
senses through a reflected laser beam.

In terms of manufacturing, i.e., printing/ duplicating the
compact disc, the major breakthrough came when engi-
neers found that, by altering the texture of a surface
mechanically, its reflectivity could be changed too, which
means that the dark pit does not reflect light as well as a
bright mirror. Thus, the CD-ROM should be a reflective
mirror that should be dotted with dark pits to encode data,

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



by means of a laser beam traveling along a long spiral, just
as with the vinyl audio LPs, that blasts pits accurately onto
the disc.

The CD is a 80-mm-(i.e., the ‘‘minidisc’’) or a 120-mm-
diameter (i.e., the ‘‘standard’’) disc, which is 1.2 mm thick
and is spinning, enabling direct data access, just as with the
vinyl audio LP, when the needle was dropped to any of the
songs in any order. (Note that the more obvious 100 mm
diameter would have been too small to provide the approxi-
mately 150-Mb-per-square-inch storage density of the opti-
cal technology of that of the 1980s, preferred by the classical
music industry.) This meant solving the data access pro-

blem on a piece of coated plastic disk, in comparison with
the magnetic hard disk, mechanically in a much simpler
way.

To maximize the data storage capacity of the disc, the
linear velocity recording of the compact disc is a constant
1.2 m per second. To achieve this rate both at the inside as
well as the outside tracks of the disc, the spin varies
between 400 rpm (revolutions per minute) and 200 rpm
(at the outside edge). This way the same length of tracks
appears to the read/write head in every second.

Furthermore, because of the access time the drive is
capable of performing, it is important to note that the track
pitch of the CD is 1.6 mm. This is the distance the head
moves from the center toward the outside of the disc as it
reads/writes data, and that the data bits are at least
0.83 mm long. (In other words, a CD-ROM and its drive are
precision electro-mechanical and software instruments.)

It should be noted that, due to such small distances
between the tracks, it is extremely important to properly
cool CD writers as they cut master CD-ROMs in a profes-
sional studio, or inside or outside a PC or Mac on the
desktop. Usually fan cooling is adequate; nevertheless,
on a warm summer day, air-conditioning even in a desktop
environment is advisable! Furthermore, such equipment
should not be operated at all in case the inside cooling fan
breaks down!

In terms of mass duplication, a master CD (often
referred to as the ‘‘gold CD’’) is recorded first, then this
master is duplicated by means of a stamping equipment—
in principle, it is very similar to the vinyl audio LP produc-
tion or the photocopying process. A crucial aspect of this
process is that the data pits are sealed within layers of the
disc and are never reached mechanically, only optically by
the laser beam. Therefore, theoretically, quality mass-pro-
duced (‘‘silver’’) CDs never wear out, only when abusing
them harshly leaves scratches on the surface of the disc or
when exposing them to extreme temperatures (12–17).

CD-ROM BLOCKS AND SECTORS

The recordable part of the compact disc consists of at least
three blocks. These are as follows:

� Lead-in-block, holding the directory information,
located on the innermost 4 mm of the disc’s recording
surface.

� Program block, holding the data or audio tracks and
fills the next 33 mm of the disc.

� Lead-out-block, which marks the end of the CD at the
external 1 mm.

The compact disc is divided into sectors. The actual size
that is available is 2352 bytes for each sector. It should be
noted that different CD formats use this 2352 bytes in
different ways. As an example, an audio CD uses all
2352 bytes for audio data, whereas computer-oriented
multimedia data formats need several bytes for error detec-
tion and correction.

Figure 1. (a) and (b) Example of a 3-D animation scene. Solid
model animation sequence of a short battle created by Richard G.
Ranky, illustrating 200 high-resolution frame-by-frame rendered
complex images, integrated into a QuickTime digital, interactive
movie and stored on CD-ROM. (For full-color images, please look
up the website: http://www.cimwareukandusa.com.)

2 CD-ROMs AND COMPUTERS SYSTEMS



Figure 2. (a)–(d ) An interactively navigatable, 360-degree panable, QuickTime VR virtual reality movie of Budapest by night by Mick F.
Ranky, allowing user-controlled zoom-in/out and other hot-spot controlled interactivity. (For full-color images, please look up the website:
http://www.cimwareukandusa.com.)

CD-ROMs AND COMPUTERS SYSTEMS 3



Each sector is then divided further into logical blocks of
512, 1024, or 2048 bytes. These block sizes are part of the
definition for each standardized compact disc format.

CD-ROM STANDARDS

As is the case with any successful technology, everyone
wants to use CD-ROMs, but in their own way, depending on
the applications; therefore, standardization of both the
hardware as well as the software has brought at least
some order to this ‘‘chaos.’’

Compact disc standards include the following:

� Red Book: This is the original compact disc application
standardized by the International Standards Organiza-
tion (ISO 10149) for digital audio data storage that
defines digitization and sampling data rates, data
transfer rates, and the pulse code modulation used.

As prescribed by the Red Book, the ISRC-Code holds
the serial number for each track in a standardized
format.

Q-Codes contain extra information about sectors
such as the ISRC-Code, the Media Catalog Number,
and the indices. The Media Catalog Number is a
unique identification number (UPC-EAN bar code,
Universal Product Code) for the compact disc.

If required, the ISRC and Q-Codes can be set in
specialized CD writing/mastering software, such as in
Adaptec’s Jam (see the discussion below on CD-ROM
software packages).

� Yellow Book: Introduced in 1984, it was the first to
enable multimedia and it describes the data format
standards for CD-ROMs and includes CD-XA, which
adds compressed audio data to other CD-ROM data.
From a computing, interactive multimedia perspec-
tive, this format is the most important.

The Yellow Book [ISO 10149: 1989(E)] divides the
compact disc into two modes, as follows:

Mode 1, for ordinary computer data.

Mode 2, for compressed audio and digital video data.

Because Yellow Book CD-ROMs have mixed audio,
video, and ordinary computer data, they are often referred
to as mixed-mode CDs. (See the discussion on CD-ROM
formats below.)

� The Green Book is the elaborate extension of the
Yellow Book and is a standard for Philips’’ CD-i, Com-
pact Disc Interactive. It brings together text, video,
and sound on a single disc in an interleaved mode as
well as extends the amount of digital, stereo audio data
that can be put onto a single CD to up to 120 minutes
(versus 74 minutes).

� The Orange Book, developed jointly by Philips and
Sony, defines the hardware as well as the software
aspects of the recordable CDs, often referred to as CD-
R (Compact Disc Recordable—see below in more
detail). Introduced in 1992, the Orange Book enabled
multisession technology.

A session is a collection of one or more tracks. Each
recording procedure on a CD-R generates a session
that contains all tracks recorded within the same time
period, hence the terminology, ‘‘session.’’

A compact disc recorded in multiple recording ses-
sions is referred to as a multisession CD. In this case,
each session has its own lead-in track and table of
contents, used by the software. The number of sessions
should be minimized, for efficient interactive multi-
media playback as well as for saving 13 Mb overhead
per session.

Furthermore, the Orange Book defines the Program
Area, which holds the actual data on the disc; a Pro-
gram Memory Area, which records the track informa-
tion for the entire disc; including all sessions it
contains; the Lead-in Area, which holds the directory
information; the Lead-out Area, which marks the end
of the CD; and the Power Calibration Area, which is
used to calibrate the power of the recording laser beam.

� The Blue Book standard was first published in 1995.
It introduced stamped multisession compact discs in
which the first track is a Red Book audio track. This
resolved the ‘‘track one compatibility problem.’’
(Formerly this standard was known as CD-Extra.
Microsoft calls it CD-Plus.) The Blue Book standard
enables compact disc authors to put interactive multi-
media data into the unused capacity of music CDs.

� The White Book comprises the standards for video
CDs. This format is based on CD-i (see the discussion
above on the Green Book standard). These CD pro-
ducts are meant to be played on CD-i players.

PROPRIETARY CD-ROM STANDARDS

It should be mentioned that there are other proprietary
compact disc standards too, most importantly the following:

� The KODAK Photo CD Sydney, Australia, readable on
Macs, PCs, SIGs (computers made by Silicon Graphics
Inc.,), and other machines, is a standard for storing
high-quality photographic images developed by the
Eastman Kodak Company (Rochester, NY).

� MMCD, a multimedia standard for handheld CD
players by the Sony Corporation.

CD-ROM TRANSFER RATE

The transfer rate of a compact disc system is a direct
function of the revolutions per minute (rpm) at which the
disc spins in the player.

Because of the different sizes of blocks and the error
correction methods used by different formats, the exact
transfer rate at a given spin rate varies from one type of CD
to the other.

As an example, in audio mode, the block size of 2362
bytes is transferred using a 1� drive at 176 Kb per second,
and in Mode 1, where the block size is 2048 bytes, the
1�drive pushes through 153.6 Kb per second.

4 CD-ROMs AND COMPUTERS SYSTEMS



As with a CD-ROM drive, at 32� speed, in Mode 1,
where the block size is 2048 bytes, the 32�drive pushes
through 32� 153.6¼ 4915.2 Kb per second, a value close to
a ‘‘reasonable’’ hard disk drive’s transfer rate.

CD-ROM ACCESS TIME

In comparison with the magnetic hard disk drives, the
CD-ROM’s access time is significantly higher, due to the
bulkiness of the optical read head, versus the elegant
flyweight mechanism of the hard disk. The optical assem-
bly, which moves on a track, carries more mass that trans-
lates to longer times for the head to settle into place.

Besides the mass of the optical head, the constant linear
velocity recording system of the CD slows further the access
of a desired data. With music, for which the CD was
originally designed for, this is not a problem, because it
is (usually) played back sequentially. As with computer
data access, the CD must act as a random access storage
device, when the speed (access time, plus read, or write
time) becomes crucial.

The typical access time for a modern CD drive is approxi-
mately 100 to 200 ms, about ten times longer, than that of a
modern magnetic hard disk’s access time.

CD-ROM FORMATS

The Yellow Book standard enables multimedia, because it
describes the data format standards for CD-ROM discs and
includes CD-XA, which adds compressed audio data to
other CD-ROM data. However, the Yellow Book does not
define how to organize the data into files on the disc.
Therefore, the High Sierra Format (HSF) and later the
ISO9660 format was developed and standardized.

The only difference between the HFS and the ISO9660
formats is that some CD drives will read HFS CDs only (on
old Macs), but the good news is that all recent drives on all
platforms (i.e., MacOS, Windows/NT, Unix) should be able
to read both.

Note that ISO9660 strictly maintains the 8/3 DOS nam-
ing conventions, whereas the HFS format, used on Macs
from the very early days, allowed full-length Mac file
names. (Long file names are beneficial in particular
when a large number of multimedia objects/files has to
be named and coded in a meaningful way.)

To fix this problem, for Windows 95, Microsoft (Redmond,
WA) has introduced a setof extensions to ISO9660, called the
Joliet CD-ROM Recording Specification. These extensions
support 128-character-long filenames (not the maximum
255) with a broad character set. Unfortunately, DOS sys-
tems before Windows 95 still read according to the 8/3 file
naming convention; thus,even some of the latestmultimedia
CDs are still forced to use the short 8/3 filenames (e.g., for a
video clip: 12345678.mov, instead of a more meaningful:
JaguarTestDrive_1.mov), to maintain compatibility.

CD-R (CD-RECORDABLE)

The fact that the compact disc is a sequentially recorded,
but randomly playable, system (versus the magnetic disk,
which is randomly recordable as well as playable) makes
writing a CD-R a more complex operation than copying files
over to a (magnetic) hard disk.

As CD recorders want to write data (i.e., ‘‘burn the CD-
R’’) in a continuous stream, the data files to be recorded onto
the CD must be put first into a defragmented magnetic disk
folder, often referred to as ‘‘writing a virtual image’’ file. To
assure continuous space on a hard drive, the best practice is
to reformat the drive or its partition before moving any files
into it. This will prevent any interruptions during CD
recording (i.e., mastering) that will most likely result in
an error in recording. In a normal case, the folder created on
the magnetic disk will be copied over/recorded exactly ‘‘as
is’’ onto the CD-ROM.

Furthermore, the number of sessions should be mini-
mized too, for efficient interactive multimedia playback (in
particular, in the case of several large video files) as well as
for saving space (i.e., 13 Mb per session).

For the laser beam to code data onto the CD-R, the CD-R
media needs an extra layer of dye. To guide the process even
better, in particular in a desktop case, all CD-Rs have a
formatting spiral permanently stamped into each disc.

Analyzing the cross section of a CD-R, the outside layer
is a Silkscreened Label; then as we move further inside,
there is a Protective Layer, and then the Reflective Gold
Coating, with the photoreactive Green Layer embedded
into a clear polycarbonate base.

As in the case with all CDs, the CD-R has a bottom
protective layer, which gives its robustness. On the poly-
carbonate a thin reflective layer is plated to deflect the CD
beam back so that it can be read by the compact disc drive.
The dye layer, special to the CD-R, can be found between
this reflective layer and the standard protective lacquer
layer of the disc. It is photoreactive and therefore changes
its reflectivity in response to the laser beam of the CD writer
enabling data coding.

CD-RW, CD-ERASABLE, OR CD-E

Ricoh Co. Ltd. (Tokyo, Japan) pioneered the MP6200S
CD-ReWritable drive in May 1996. (Note that CD-Erasable
or CD-E was the original, confusing terminology.) At that
time that was the only solution to a compact disk drive that
could read as well as write data onto a CD! Users today
enjoy a vastly expanded range of choices, both in terms of
manufacturers as of well as of the variety of software
bundles and interface options.

CD-RW employ phase-change laser technology to code
and decode data. From a user point of view, in operation,
CD-RW is similar to that of the magnetic hard disk. The
drive can update the disc table of contents any time; thus,
files and tracks can be added without additional session

CD-ROMs AND COMPUTERS SYSTEMS 5



overheads. (Note that in the case of the CD-Rs, a session
overhead is 13 Mb.)

Where CD-R drives in the past were limited to internal
and external small computer system interface (SCSI),
today’s range of CD-RW/CD-R multifunction drives come
with parallel and IDE connections, in addition to SCSI.

Other important aspects of CD-RWs include the
following:

� In comparison with the IDE, or parallel-connected
drives, SCSI drives can be considerably faster, espe-
cially when using a PCI bus-mastering card.

� Most modern PC motherboards support four IDE
devices. If two hard drives and two CD-ROM drives
are already installed, there is no room for additional
IDE devices; thus, something has to be removed to
install the CD-RW/CD-R drive.

� At the time of writing, the maximum read-speed of
CD-RW drives is 6�; therefore, a faster 12� to
32�CD-ROM drive should be installed, in addition
to the rewritable drive for fast multimedia playback.

Last, but not least, as with anything as complex as a
CD-R, or CD-RW, it is strongly advisable to determine the
importance of toll-free technical support, technical support
hours of accessibility and availability, and the cost of soft-
ware, driver, and flash BIOS upgrades.

CD-ROM CARE AND STABILITY

In general, inside the optical disc, there is a data layer on a
substrate, which is read by a laser. In the case of CD-ROM,
the data layer consists of a reflective layer of aluminum
with ‘‘pits and plateaus’’ that selectively reflect and scatter
the incident laser beam.

Optical discs are generally constructed from polymers
and metallics. The polymers are subject to deformation and
degradation. Metallic films are subject to corrosion, dela-
mination, and cracking. Metallic alloys are subject to de-
alloying.

Optical discs consist of a data layer (pits, bumps, or
regions of differing physical or magnetic properties) sup-
ported on a much thicker polycarbonate or glass substrate.
A reflective layer is also required for CD-ROMs. The data
layer/reflective layer is protected with an overcoat.

In optical media, there is a data ‘‘pit’’ that is responsible
for reflecting/dispersing of an incident laser beam. Any-
thing that changes the reflectivity or other optical proper-
ties for the data ‘‘bits’’ can result in a misread. According to
the National Technology Alliance (USA), the optical clarity
of the substrate is important in those systems where the
laser must pass through this layer. Anything that inter-
feres with the transmission of the beam, such as a scratch,
or reduced optical clarity of the substrate, can result in a
data error.

CD-ROM technology relies on the difference in reflec-
tivity of ‘‘pits’’ stamped into a polycarbonate substrate
and vapor coated with a reflective metallic layer, which
is typically aluminum, hence the terminology for the mass-
produced CDs, ‘‘silver’’ CDs.

According to the National Technology Alliance (USA), a
common cause of CD-ROM failure is a change in the reflec-
tivity of the aluminum coating as a result of oxidation,
corrosion, or delamination. Deterioration of the protective
overcoat (acrylic or nitrocellulose lacquer) can make the
aluminum layer more susceptible to oxidation and corro-
sion. Some manufacturers use a silver reflecting layer that
is subject to tarnishing by sulfur compounds in the envir-
onment and CD-ROM packaging.

CD-ROMs can also fail because of deterioration of the
polycarbonate substrate. Polycarbonate is subject to craz-
ing, which locally reduces the optical clarity of the
substrate. Oils in fingerprints and organic vapors in the
environment can contribute to crazing. Scratches in the
substrate as a result of mishandling can also cause disk
failures.

The relative effectiveness of CD-Recordable media is an
issue often bandied about in industry and business circles,
where the technology is used and increasingly relied on.
Much controversy surrounds finding some useful way of
evaluating the blank discs of various brands and types used
in CD recorders today.

Several criteria go into evaluating disc usefulness: read-
ability, compatibility with recorders and players, and
expected life span. According to the National Technology
Alliance (USA), results compiled in a series of tests per-
formed by One-Off CD Shops International between early
1993 and mid-1995 on a variety of disc brands and types
shed a great deal of light on the topic, even though the tests
were done only to evaluate the readability of recorded discs,
and not media longevity or suitability of specific brands or
types for use on every system. But the methodological rigor
of the narrow focus afforded yielded considerable data that
bodes well for the effectiveness of current disc-evaluating
mechanisms.

Not every question has been answered by any means,
but one finding, according to the National Technology
Alliance (USA), is clear: ‘‘worry about the quality of
CD-R media seems largely unfounded’’ (18–21). Note
that, in reality, the bigger worry is not the disk, but the
entire system, in terms of computers, software, as well as
CD/DVD readers and writers becoming obsolete within
technology periods of approximately 3–5 years, and then
after 10–15 years, one might not find a machine (i.e., a
system) that can read an ‘‘old’’ CD-ROM or DVD-ROM, even
if the data on the media is in good shape. . . .

CD-RECORDABLE VERSUS MASS-REPLICATED (‘‘SILVER’’)
COMPACT DISCS [AN ANALYSIS BY THE NATIONAL
TECHNOLOGY ALLIANCE (USA)]

Mass-replicated (i.e., ‘‘silver’’) discs have their data encoded
during injection molding, with pits and lands pressed
directly into the substrate. The data side of the transparent
disc is metalized, usually with aluminum sputtered onto
the bumpy surface, which is spincoated with lacquer to
protect the metal from corrosion, and then it is usually
labeled in some fashion, generally with a silkscreened or
offset printed design.

6 CD-ROMs AND COMPUTERS SYSTEMS



One source of confusion and concern about CD-R discs is
their notable physical differences (i.e., ‘‘gold/green shine’’)
from normal (i.e., ‘‘silver’’ shine), pressed compact discs.

Each CD-R blank is designed to meet standards regard-
ing function, but the way each achieves the function of
storing digital information in a manner that can be read by
standard CD players and drives is distinct. In terms of the
top side and bottom side, replicated discs are similar to that
of the CD-Rs; it is what comes between the polycarbonate
substrate and the top’s lacquer coating that makes the
difference.

CD-Rs are polycarbonate underneath, too, but the sub-
strate is molded with a spiral guide groove, not with data
pits and lands. This side is then coated with an organic dye,
and gold or silver (instead of aluminum as in the case of
mass-replicated discs) is layered on the top of the dye as the
reflective surface, which in turn is lacquered and some-
times labeled just as replicated discs are.

The dye forms the data layer when the disc is recorded,
having a binary information image encoded by a laser
controlled from a microcomputer using a pre-mastering
and recording program. Where the recording laser hits
the dye, the equivalent of a molded ‘‘pit’’ is formed by the
laser beam reacting with the photosensitive dye, causing it
to become refractive rather than clear or translucent. When
read by a CD player or CD-ROM drive, the affected area
diffuses the reading laser’s beam, causing it to not reflect
back onto the reader’s light-sensor. The alternations
between the pickup laser’s reflected light and the refracted
light make up the binary signal transmitted to the player’s
firmware for unencoding, error detection, and correction,
and further transmission to the computer’s processor or the
audio player’s digital/analog converter.

According to the National Technology Alliance (USA),
the feature that really distinguishes recordable media from
replicated discs is the dye layer. The polymer dye formulas
used by manufacturers are proprietary or licensed and are
one of the distinguishing characteristics between brands.

Two types of dye formulas are in use at the time of
writing, cyanine (and metal-stabilized cyanine) and phtha-
locyanine. One (cyanine) is green, and the other appears
gold because the gold metalized reflective layer is seen
through the clear dye.

TENETS OF READABILITY TESTING OF CD-ROMS
AND CD-RS

At least in theory, however, these differences should have
little or no impact on readability, becouse CD-R and CD-
ROM media share the ‘‘Red Book’’ standard for CD-DA
(Digital Audio). The Red Book specifies several testable
measurements that collectively are supposed to determine
whether a disc should be readable as an audio CD media.
The Yellow Book, or multimedia CD-ROM standard,
requires some additional tests.

As CD-Recordable discs, described in the Orange Book,
are supposed to be functionally identical to mass-replicated
‘‘silver’’ CD-ROMs, it is logical to assume that the same test
equipment and standards should be applied to them as to
Yellow Book discs, so no new readability criteria were

specified in the Orange Book. According to the National
Technology Alliance (USA), several companies have built
machines that are used for testing discs during and after
the manufacturing process using these criteria, and only
recently have new testing devices made specifically for CD-
Recordable become available.

ACCELERATED TEST METHODOLOGY BY THE NATIONAL
TECHNOLOGY ALLIANCE (USA)

Changes in a physical property involving chemical degra-
dation can usually be modeled by an appropriate Arrhenius
model. Error rates can be fit to an appropriate failure time
distribution model. Once an appropriate model has been
determined and fit to the experimental data, it can be used
to estimate media properties or error rates at a future time
at a given condition.

In performing accelerated tests, there is a tradeoff
between the accuracy and the timeliness of the results. It
is impractical to age data storage media at ‘‘use’’ conditions
becouse it would take several years to evaluate the product,
by which time it would be obsolete. To obtain results in a
timely manner, ‘‘use’’ temperatures and humidities are
typically exceeded to accelerate the rates of material
decomposition.

Severe temperature/humidity aging may allow for a
relatively rapid assessment of media stability, but results
may not be representative of actual use conditions.
Furthermore, samples treated in a laboratory environment
may not be in a configuration representative of typical use
conditions.

To perform accelerated testing, several media samples
are placed in several different temperature/humidity/pol-
lutant environments. The media are removed at periodic
intervals, and a key property is measured.

This key property could be a physical characteristic,
such as magnetic remanence, or it could be data error
rates, if the materials were prerecorded. After a sufficient
number of key property versus time data has been collected
at each condition, the data can be fit to a predictive model
(19,22–31).

ALTERNATIVE, INTERNET/INTRANET-BASED
TECHNOLOGIES

With the rapid advancement of the Internet and local,
typically much faster and more secure versions of it, often
referred to as intranets, mass storage, document archiving,
interactive multimedia distribution, and other services,
mostly online, will become a reality and to some extent
an alternative for data stored and distributed on CD-ROMs
and DVDs.

The issue, nevertheless is always the same: online acces-
sible data over a very fast network, under the ‘‘network’s
control,’’ or at the desk on a CD-ROM, or DVD disc, under
‘‘the user’s/creator’s control.’’ No doubt there are reasons for
both technologies to be viable for a long time, not forgetting
the point, that even if it comes online over the fast network,
at some point in the system the servers will most likely read

CD-ROMs AND COMPUTERS SYSTEMS 7



the data from a CD-ROM or DVD jukebox, or even large-
capacity magnetic hard disks.

To understand the importance of the online, networked
solution and the areas in which they could, and most likely
will, compete with the CD-ROM/ DVD technologies, refer to
Table 1. It must be noted that these rates in Table 1 are
theoretical maximum data rates, and in practice, unless a
direct hired line is used, the actual transfer rates will most
likely depend on the actual traffic.

Analyzing Table 1, it is obvious that 128-Kbps ISDN
(Integrated Services Digital Network) lines, and upward,
such as the T1 lines, representing the bandwidth of 24 voice
channel telephone lines combined, provide viable online
multimedia solutions. As with anything else, though,
simultaneously competing, supporting, and conflicting
issues such as speed, ease of use, security, privacy of
data, and reliability/robustness will ensure that both the
online as well as the, in this sense, offline, CD-ROM, CD-R,
and DVD technologies will be used for a very long time.

CD-ROM/DVD-ROM APPLICATIONS

The CD-ROM and DVD-ROM technology is applied in
several different areas, but most importantly as audio
CDs (note that some rock stars have sold over 100 million
CDs), for data and document archiving, for linear and
nonlinear (i.e., interactive) video storage and playback,
for image compression and storage, for interactive multi-
media-based education, marketing, entertainment, and
many other fields of interest, where mass storage of data
is important.

Since besides the MPEG video standards, Apple’s
multiplatform as well as Internet-friendly QuickTime
and QTVR digital interactive video and virtual reality
software tools became the de facto interactive multimedia
standards (delivered on CD-ROMs and DVDs as well as
usually streamed at lower quality due to the transfer rate
and bandwidth over the Internet and intranets), as exam-
ples of applications, we introduce these technologies as
they are embedded into engineering educational, market-
ing, or game-oriented CD-ROM and DVD programs. In
these examples, one should recognize the importance of
accessing a large amount of data (e.g., 5–25-Mb digital,
compressed video files), interactively, in a meaningful way,
at the time and place the information is needed. (Further-
more, note that many of these interactive examples

can be found electronically at the website: http://www.
cimwareukandusa.com.)

As the video-game industry is the prime source for
computing and related CD-ROM R&D funding, we felt
that we should demonstrate such new developments by
showing Fig. 3(a) and (b). These screenshots illustrate two
frames of a longer animated space flight (by Gregory N.
Ranky) as part of a video-game project on CD-ROM. The
individual frames have been computer generated, and then
rendered and integrated into an interactive QT movie.

As Apple Computer Inc. defines, QuickTime(QT) is not
an application, it is an enabling technology. QuickTime

Table 1. Maximum Data Rates of Digital
Telecommunications Standards

Standard Connection type Downstream rate Upstream rate

V.34 Analog 33.6 Kbps 33.6 Kbps
SDS 56 Digital 56 Kbps 56 Kbps
ISDN Digital 128 Kbps 128 Kbps
SDSL Digital 1.544 Mbps 1.544 Mbps
T1 Digital 1.544 Mbps 1.544 Mbps
E1 Digital 2.048 Mbps 2.048 Mbps
ADSL Digital 9 Mbps 640 Kbps
VDSL Digital 52 Mbps 2 Mbps

Figure 3. (a) and (b) These screenshots illustrate two frames of an
animated space flight (by Gregory N. Ranky) as part of a video-
game project on CD-ROM. The individual frames have been com-
puter generated and then rendered and integrated into an inter-
active QT movie.

8 CD-ROMs AND COMPUTERS SYSTEMS



comprises of pieces of software that extend the ability of a
Mac’s or PC’s operating system to handle dynamic media.

Applications then use this technology and turn it into
other applications. As an example, many educational titles,
games, and reference titles have incorporated QuickTime
into their development, including Myst by Broderbund;
Microsoft Encarta by Microsoft; DOOM II by Id Software;
and Flexible Automation and Manufacturing, Concurrent
Engineering, and Total Quality Management by CIMware
and others.

QuickTime as a technology became the basis for many of
the multimedia/computing industry’s most respected digi-
tal media tools. QuickTime is much more than just video
and sound. It is a true multimedia architecture that allows
the integration of text, still graphics, video, animation, 3-D,
VR, and sound into a cohesive platform. QuickTime, deli-
vered either on CD-ROMs, DVDs, or in a somewhat less
interactive mode over the Internet/intranet makes it easy
to bring all of these media types together.

In February 1988, ISO has adopted the QuickTime File
Format as a starting point for developing the key compo-
nent of the MPEG-4 digital video specification, as the next-
generation standard. This format is supported by Apple
Computer Inc., IBM, Netscape Corp., Oracle Corp., Silicon
Graphics Inc., and Sun Microsystems Inc.

‘‘MPEG’s decision to utilize the QuickTime file format
for the MPEG-4 specification has huge benefits for users
and the industry,’’ said Ralph Rogers, Principal Analyst for
Multimedia at Dataquest, San Jose, CA. ‘‘This strategy will
leverage the broad adoption of QuickTime in the profes-
sional media space, speed the creation of MPEG-4 tools and
content while providing a common target for industry
adoption.’’

At a broader level, interactive multimedia, stored on CD-
ROMs, DVDs, and the forthcoming fast Internet and intra-
nets urges the development of anthropocentric systems in
which humans and machines work in harmony, each play-
ing the appropriate and affordable (i.e., the best possible)
role for the purpose of creating intellectual as well as fiscal
wealth. This means creating better educated engineers,
managers, and workforce, at all levels, by building on
existing skills, ingenuity, and expertise, using new science
and technology-based methods and tools, such as interac-
tive multimedia.

Today, and in the forthcoming decade of our information
technology revolution, and eventually the Knowledge Age,
engineering, science, and technology in combination can
create an intellectually exciting environment that molds
human creativity, enthusiasm, excitement, and the under-
lying curiosity and hunger to explore, create, and learn. It is
obvious that economic development is not a unidimensional
process that can be measured by a narrow view of conven-
tional accounting.

Consequently there is a need to develop new creative and
stimulative multimedia-based infrastructures, educa-
tional tools, as well as products and means of production
that have the embedded intelligence to teach their users
about ‘‘themselves’’ and that can meet challenges now faced
by many companies and even countries as natural
resources become more scarce, the environment becomes

more polluted, and major demographic changes and move-
ments of people are taking place.

The fundamental change that has to be recognized is
that most existing hi-tech systems were designed with the
human operator playing a passive role, and a machine
being the ‘‘clever’’ component in the system. This is because
accountant-driven management considers the workforce to
be a major cost item instead of a major asset!

Anthropocentric technologies, such as flexible, interac-
tive multimedia, make the best use of science and technol-
ogy, driven by the user at his or her pace and time, enabling
the learner to explore and implement concepts further than
that of the accountants order-bound fiscal view.

Consequently, interactive multimedia is not war, but a
new opportunity to put back humans into harmony with
nature and ‘‘able’’ machines, by being better informed,
educated, and happier contributors, rather than efficient
long-term waste creators and destroyers of nature and the
society (32–40).

WHAT IS INTERACTIVE MULTIMEDIA?

Interactive multimedia combines and integrates text, gra-
phics, animation, video, and sound. It enables learners to
extend and enhance their skills and knowledge working at
a time, pace, and place to suit them as individuals and/or
teams and should have a range of choices about the way
they might be supported and assessed.

In other words:

� The user has a choice and the freedom to learn.

� He or she is supported by the multimedia-based learn-
ing materials and technology.

� The tutors are creating an effective, enjoyable learning
environment and infrastructure.

� The learners are simultaneously learners as well as
authors.

Figure 4 represents a screen of over 300 interactive
screens of an industrial educational program on Servo
Pneumatic Positioning, by Flaherty et al. (40) on CD-
ROM. The 650 Mb of data includes several hundred color
photos and over 45 minutes of interactive digital videos
explaining the various aspects of servo pneumatic compo-
nents, systems, positioning, control, programming, and
applications.

Figure 5 is a screen of over 720 interactive screens of an
educational multimedia program on Total Quality Control
and Management and the ISO 9001 Quality Standard, by
Ranky (41) on CD-ROM. The 650 Mb of data includes
several hundred color photos and over 45 minutes of inter-
active digital videos explaining the various aspects of total
quality and the international quality standard as applied to
design, manufacturing, and assembly in a variety of dif-
ferent industries.

Note the many opportunities we have programmed into
these screens to continuously motivate the learners to be
responsive and be actively involved in the learning process.
To maintain the continuous interactivity not just within the

CD-ROMs AND COMPUTERS SYSTEMS 9



CD-ROM, but also ‘‘outside’’ the CD, Internet and e-mail
support is offered to learners. This enables them to interact
with the author(s) and/or the subject area specialists of the
particular CD-ROM via e-mail as well as visit the desig-
nated WWW domain site for further technical as well as
educational support (42).

(Please note that some of these interactive multimedia
examples are available in electronic format as executable
demo code when this encyclopedia is published electroni-
cally. Also note that some of the images and demos illu-
strated here can be seen in full color at the website: http://
www.cimwareukandusa.com.)

WHAT IS QUICKTIME VR?

As Apple describes, virtual reality describes a range of
experiences that enables a person to interact with and
explore a spatial environment through a computer. These
environments are typically artistic renderings of simple or
complex computer models. Until recently, most VR appli-
cations required specialized hardware or accessories, such
as high-end graphics workstations, stereo displays, or 3-D
goggles or gloves. QuickTime VR now does this in software,

with real photographic images, versus rendered artificial
models.

Apple’s QuickTime VR is now an integral part of Quick-
Time; it allows Macintosh and Windows users to experience
these kinds of spatial interactions using only a personal
computer. Furthermore, through an innovative use of 360
panoramic photography, QuickTime VR enables these
interactions using real-world representations as well as
computer simulations.

To illustrate the power of this technology, when applied
to interactive knowledge propagation on CD-ROMs,
DVD-ROMs, and to some extent on the Internet, refer to
Fig. 6(a)–(c), illustrating a few frames of an interactively
controllable (Chevy) automobile image, including opening
and closing its doors, under user control; Fig. 7(a)–(d),
showing a few frames of an interactively navigatable inter-
ior of a Mercedes automobile; and Fig. 8(a)–(b), showing a
traditional job-shop, again with all those great opportu-
nities of interactive navigation, zoom/in and out, and hot-
spot controlled exploration of these hyperlinked images.

As can be recognized, the opportunities for interactivity,
for learning by exploring under user (versus teacher con-
trol) is wasted, not just in education, but also in marketing
and general culture, in terms of showing and illustrating

Figure 4. A sample screen of over 300 interactive screens of a 3-D eBook multimedia program for medical education. As can be seen, the
screen includes text, images, video clips, and even 3-D objects. The novel feature of this approach is that the human characters are all based on
real, living people and illustrated on the screen using photo-accurate, interactive 3-D methods developed by Paul G Ranky and Mick F.
Ranky. (For full-color images and 3-D models, please look up the website: http://www.cimwareukandusa.com.)

10 CD-ROMs AND COMPUTERS SYSTEMS



scenes, people, cultures, lifestyles, business practices,
manufacturing, design and maintenance processes, and
products even remotely, which have never been explored
like this before.

(Please note that some of these interactive multimedia
examples are available in electronic format as executable
demo code when this encyclopedia is published electroni-
cally. Also note that some of the images and demos illu-
strated here can be seen in full color at the website: http://
www.cimwareukandusa.com.)

SMART DART: A SMART DIAGNOSTIC AND REPAIR TOOL
IMPLEMENTED IN A VOICE I/O CONTROLLED,
INTERACTIVE MULTIMEDIA, MOBILE -WEARABLE
COMPUTER-BASED DEVICE FOR THE AUTOMOBILE (AND
OTHER) INDUSTRIES

Smart DART is a novel, computer-based prototype mentor-
ing system originally developed at the New Jersey Institute

of Technology (NJIT) with industry-partners in 1998 with
serious industrial applications in mind, implemented in a
voice I/O controlled, interactive multimedia, mobile-
wearable device for use by the automobile (and other)
industries (see Fig. 9). The Co-Principal Investigators of
this R&D project at NJIT were Professor Paul G. Ranky and
Professor S. Tricamo and project partners in an R&D
Consortium included General Motors, Raytheon, the U.S.
National Guard, and Interactive Solutions, Inc.

The system consists of the following components:

� Integrated to the computer diagnostic port of the auto-
mobile, or offline, interacting with the technician, can
diagnose a variety of problems and can communicate
the results at the appropriate level, format, and mode,
using various multimedia tools and solutions.

� Can self-tune, in terms of adjusting to the actual user
needs and levels in an ‘‘intelligent way.’’

� Has a highly interactive and user-friendly multimedia
interface.

Figure 5. An illustration of a screen of over 720 interactive screens of an educational multimedia program on Alternative Energy Sources.
The program is stored on CD-ROM (as well as the Web) and includes hundreds of images, video clips, 3-D objects, and 3-D panoramas; all
interactive for the users to explore. (For full-color images and samples, please look up the website: http://www.cimwareukandusa.com.)

CD-ROMs AND COMPUTERS SYSTEMS 11



Figure 7. (a)–(d) The figure shows a few frames of the interactively navigatable 3-D interior of a Mercedes automobile in QTVR on CD-ROM.
(For full-color images, please look up the website: http://www.cimwareukandusa.com.)

Figure 6. (a)–(c) The figure illustrates a few frames of an interactively controllable (GM Chevy) automobile image, including opening and
closing its doors, under user control in QTVR on CD-ROM. (For full-color images, please look up the website: http://www.cimwareukandu-
sa.com.)

12 CD-ROMs AND COMPUTERS SYSTEMS



� Can update itself (based on either the learned knowl-
edge and/or by means of networked or plugged-in
technical fact data).

� Is a highly parallel, distributed, and networked device.

� Has command-based voice recognition.

� Has a ‘‘hands-free’’ user interface.

� Can work in hazardous environments.

� Can automatically generate diagnostic and mainte-
nance reports and can communicate these reports
via its networked communications system to any
receiving site or compatible computer.

� To help to improve the next generation of products, the
automated mentoring system can feed data as well as
learned knowledge in a format and language that is
appropriate and understandable to the design, man-
ufacturing, quality control, and so on engineering
community and their computer support and design
systems (CAD/CAM).

� Smart DART can diagnose itself and report its own
problems (and possible solutions) as they occur; there-
fore, it can help to improve the maintenance process as
well as the design and the overall quality of the auto-
mobile (or other complex product it is trained for).

About the System Architecture

To achieve the above listed and other functions, Smart
DART is implemented as a small, ruggedized, networked
mobile-wearable, or desktop networked computer-based
device, which runs on a set of core processes, such as:

� The Process Manager.

� The Information Manager.

� The Interface Manager.

� The Team Coordinator.

Figure 8. (a) and (b) The figure shows a traditional job-shop, again with all those great opportunities of interactive 3-D navigation, zoom/in
and out, and hot-spot controlled exploration of these hyperlinked images in QTVR on CD-ROM. (For full-color images, please look up the
website: http://www.cimwareukandusa.com.)

Figure 9. Smart DART is a novel, computer-based prototype
mentoring system, originally developed in 1998, with serious
industrial applications in mind, implemented in a voice I/O con-
trolled, interactive multimedia, mobile-wearable device for use by
the automobile (and other) industries. The R&D Consortium
included NJIT, General Motors, Raytheon, the U.S. National
Guard, and Interactive Solutions, Inc. (For full color-images,
please look up the website: http://www.cimwareukandusa.com.)

CD-ROMs AND COMPUTERS SYSTEMS 13



Smart DART has a set of core modules linked to a fast
knowledge-bus, through which various smart cards, or
modules, it can execute various processes. These smart
cards have embedded various domain expertise and have
been integrated following the object-linking methodology.

Smart Dart has an open systems architecture, meaning
that as the need arises new smart cards can be developed
and plugged-in, in a way enhancing its ‘‘field expertise.’’
Due to the well-integrated, object-linked design architec-
ture, these new modules, or smart cards, will automatically
integrate with the rest of the system, as well as follow the
standard multimedia user-interface design, cutting the
learning curve of using a new smart card to minimum.

The Typical Application Scope of Smart DART

To explain the application scope of our system, let us list
some broad application areas, with that of the view of the
maintenance technician, or engineer, whose job is to diag-
nose or fix a problem. In general, Smart DART will answer
the following questions and resolve the following problems:

� How does the particular system under test work? This is
explained using highly interactive, multimedia tools
and interfaces to a newcomer, or to anybody that
wishes to learn about the particular system. Note
that a ‘‘system’’ in this sense can be an automobile, a
tank, or some other machine, such as a VCR or a
medical instrument.

� What are the subsystems, how do they work, and how do
they interact?

Furthermore, Smart DART can

� Diagnose the problem.

� Offer Go/No-go reporting.

� Provide end-to-end versus fault isolation.

� Rehearse the repair/fix scenarios and procedures by
means of highly interactive, and if required by the
user, individualized interactive multimedia tools
and techniques.

� Be used as an ‘‘expert’’ tutor, supporting learners at
various levels, following different educational scenar-
ios and techniques, best suited to the variety of differ-
ent users (i.e., maintenance technicians, design,
manufacturing and quality engineers, students, man-
agers, and others).

DVD-ROM (DIGITAL VERSATILITY DISC)

The DVD-ROM, or DVD technology, was created by mer-
ging two competing proposals, one by the CD-ROM inven-
tors Philips and Sony and the other one by Toshiba (Tokyo,
Japan). The purpose of the DVD is to create up-front a
universal, digital storage and playback system, not just for
audio, but for video, multimedia, archiving, and general
digital mass data storage.

DVDs are capable of storing significantly more data than
CD-ROMs and come in different sizes and standards.

DVD is short for digital video (or versatility) disc and is
the successor of the CD or compact disc. Because of its
greater storage capacity (approximately seven times that of
a CD), a DVD can hold 8 hours of music or 133 minutes of
high-resolution video per side. This storage capacity varies
depending on whether single-or double-layer discs are used
and can range between 4.7 Gb and 8.5 Gb for single-sided
discs or 17 Gb for double-sided dual-layer discs (see Fig. 10).
The capacity does not directly double when a second layer is
added because the pits on each layer are made longer to
avoid interference. Otherwise they have the same dimen-
sions as a CD, 12 cm in diameter and 1.2 mm in thickness.

The DVD medium resembles that of the CD-ROM tech-
nology. Even the size is the same, 120 mm diameter and 1.2
mm thick.

A DVD or CD is created by injection molding several
layers of plastic into a circular shape, which creates a
continuous stream of bumps arranged in a spiral pattern
around the disc. Next, a layer of reflective material, alu-
minum for the inner layers, gold for the outermost, is
spread to cover the indents. Finally, each layer is covered
with lacquer and then compressed and cured under infra-
red light. Because of its composition, it is far more resistant
to water absorption than its predecessor, the laser disc, and
do not suffer from ‘‘laser rot.’’ Each of these layers could act
as fully functional disks on both sides. Individual layers are
distinguished (i.e., addressed) by the system by focusing the
laser beam. The result is a sandwich that has two layers per
side, or in other words four different recording surfaces,
hence, the significant data capacity increase.

Because the spiral data track begins in the center of the
disc, a single-layer DVD can actually be smaller than 12 cm.

Figure 10. Examples of the structure and storage capacity of
different DVD formats; single-sided single and double layer, and
double-sided, double layer.

14 CD-ROMs AND COMPUTERS SYSTEMS



This is the case for the UMD discs used by the Sony PSP
Handheld Console. Each successive spiral is separated by
740 nm (10�9m) of space (see Figs. 11 and 12), with each
bump 120 nm in height, 400 nm long, and 320 nm wide; if
unrolled, the entire line would be nearly 12 km (12000 m!)
long.

These are usually called pits due to their appearance
on the aluminum coating, although they are bumps when
read by a laser. Because data are stored gradually outward,
the speed of the drive is usually 50–70% of the maximum
speed. By comparison, the spiral tracks of a CD are sepa-
rated by 1.6 mm (10�6m), with each bump 100 nm deep,
500 nm wide, and up to 850 nm long. This, combined with a
780 nm wavelength red laser, allows for much less data
capacity than a DVD, approximately 700 Mb.

The data are actually stored directly under the label and
are read from beneath by the laser. Therefore, if the top
surface is scratched, the data can be damaged. If the under-
side is scratched or smudged, the data will remain, but the
laser will have difficulty reading through the distortion.

VIDEO FORMATS

The usual form of data compression for (standard definition
or SD) digital video is MPEG-2; the acronym comes from the
Moving Picture Experts Group, which establishes video
standards. The usual rate is 24 frames per second for video
footage, but the display frame depends on the television
format. The NTSC format displays footage in 60 fields,

whereas PAL displays 50 fields but at a higher resolution.
These differences in resolution also entail Pal or NTSC
formatting for DVDs. Audio is usually in Dolby Digital
formats, although NTSC discs may use PCM as well.
Region codes also exist depending on the geographic loca-
tion, from 1 to 8, with 0 used for universal playability.

There are several types of recordable DVD discs; of
these, DVD-R for Authoring, DVD-R for General use,
DVDþR, and DVD-R are used to record data once like
CD-R. The remaining three, DVDþRW, DVD-RW, and
DVD-RAM, can all be rewritten multiple times.

As an example, DVD-5 with one side and one layer offers
4.7-Gb storage capacity and 133 minutes of playing time.
DVD-9 can store 8.5 Gb on two layers, DVD-10 can store 9.4
Gb, and DVD-18 can store a massive 17.5 Gb and 480
minutes of equivalent playing time. These DVDs will be
most likely used in interactive multimedia and digital video
applications.

As optical technology has improved significantly since
the 1980s when the CD-ROM was created, DVDs (standar-
dized in December 1995) employ more closely spaced tracks
and a better focused and high wavelength laser beam (635
to 650 nm, medium red).

The DVD constant linear velocity is 3.49 m per second,
and the disc spins between 600 rpm and 1200 rpm, at the
inner edge, much faster than the conventional CD-ROM.

DVD raw data transfer rates are high too, 11.08 Mb per
second raw and approximately 9.8 Mb per second actual,
approximately 7� or 8� in CD-ROM terms, enabling full
motion, full-screen video playback.

Besides the computing industry’s need to store massive
amounts of data, the real commercial driver behind the
DVD technology is the mereging, new high-definition (or
HD) video industry, because DVDs could replace the old-
fashioned, slow, linear, and relatively poor-quality VHS
and S-VHS videotape technology.

For videos, DVD uses MPEG-2 encoding that allows a
relatively high-quality display with 480 lines of 720 pixels
(SD DVD quality), each to fit into a 4-Mb/s datastream.
(Note that with MPEG, the actual data rate depends on the
complexity of the image, analyzed frame-by-frame at com-
pression stage. Also note that HD DVD video offers
1920� 1080 or better resolution, meaning approximately
2 megapixels per frame, which is very good quality for most
home and even professional users.)

DVD-Audio is excellent too, allowing a 44.1-KHz sam-
pling rate and supporting 24-bit audio as well as several
compressed multichannel formats, allowing switchable,
multiple-language full-length videos to be stored and
played back with additional audio and interactive features.

BLU-RAY

Blu-ray discs are named for the laser wavelength of 405 nm
used to encode their data. Their sponsors include Apple
Computer Corp., Dell, HP, Panasonic, Walt Disney, and
Sun Microsystems.

As DVDs use a longer wavelength red laser, Blu-ray
discs have a higher storage capacity. By using a shorter
wavelength, as well as using higher quality lenses and a

Figure 11. An illustration of the dimensions and spacing of the
pits in successive tracks on a DVD.

Figure 12. A simplified illustration of the spiraling layout of the
DVD pits.

CD-ROMs AND COMPUTERS SYSTEMS 15



higher numerical aperture, the laser beam can be more
tightly focused and therefore used to store more data.

A standard 12-cm Blu-ray disc has a single-layer storage
capacity of 23.3, 25, or 27 Gb, equal to approximately 4
hours of high-definition video. They have a dual-layer
capacity of 46.6 to 54 GB. Blu-ray discs were initially
more vulnerable due to their data being closer to the sur-
face, but with the introduction of a clear polymer coating,
they can be cleaned with a tissue or supposedly resist
damage by a screwdriver. This makes them more durable
than current DVDs, with even fingerprints removable.

Blu-ray DVDs require a much lower rotation speed than
HD DVDs to reach a 36 Mbps transfer rate. This results in a
12�BD for a Blu-ray disc but only 9�BD for an HD disc, as
the current upper limit for optical drives is 10 rpm.

Unlike the eight DVD region codes, Blu-ray discs have
three; region 1 covers the Americas, Japan, and East Asia
excluding China; region 2 is for Europe and Africa; and
region 3 is for China, Russia, India, and all other countries.

The Blu-ray Disc Association has also added digital
watermarking to prevent unofficial distribution, or
through HDTVs without an HDCP-enabled interface. Pos-
sible codecs used by Blu-ray discs include MPEG-2, H.264,
and VC-1 for video and PCM and Dolby Digital for audio.

HD DVD

HD DVD discs, like Blu-ray, use a blue-violet 405-nm laser
to encode data. Their promoters include Sanyo, Toshiba,
Intel, Microsoft, Paramount Pictures, and Warner Bros.

HD DVDs have storage capacities of 15 Gb and 30 Gb for
single-and dual-layer discs, respectively. This allows for
approximately 8 hours of high-definition video storage for
the 30-Gb model. Unlike Blu-ray, HD DVDs are backward
compatible with DVDs, requiring no change in DVD players
for the new format. HD DVD discs have a thicker protective
coating (0.6 mm compared with 0.1 mm for Blu-ray), which
allows greater resistance to damage, but also lower storage
capacity, as the laser has more covering to penetrate.

Because HD DVDs use similar manufacturing processes
to current DVDs, it is less expensive than having to change
facilities to newer systems. A new system by Memory Tech
can be adapted to create HD DVDs in 5 minutes. These
converted lines will also be able to produce higher quality
conventional DVDs, because HD-DVDs require a higher
level of manufacturing precision.

CD-ROM/DVD DRIVE MANUFACTURERS AND CURRENT
DRIVES

Although companies manufacturing CD-ROM and DVD
hardware and software change, this list could be used as
a reliable source for searching information and products.

DVS (Synchrome Technology)

Maestro CDR 4x12E,4X/12X, Windows 95, Windows NT,
200ms, SCSI.

Maestro CDR 4x12E,4X/12X, Macintosh, 200ms, SCSI.

Maestro CDR 4x121,4X/12X, Windows 95, Windows NT,
200ms, SCSI.

Japan Computer & Communication

JCD-64RW, 4X/2X/6X, Windows 95, Windows NT,
250ms, E-IDE.

MicroBoards Technology

Playwrite 4000RW, 4X2X/6X, Windows 95, Windows
NT, Windows 3.1, UNIX, Macintosh, 250ms, SCSI-2.

Playwrite 400IRW, 4X/2X/6X, Windows 95, Windows
NT, Windows 3.1, 250ms, E-IDE.

MicroNet Technology

MCDPLUS4X12, 4X/12X, Macintosh, 165ms, SCSI.

MCDPLUS4X12ADD, 4X/!2X, Windows 95, Windows
NT, Windows 3.1, DOS, 165ms, SCSI.

MCDPLUS4X12PC, 4X/12X, Windows 95, Windows NT,
Windows 3.1, DOS, 165ms, SCSI.

MCDPLUS4X121, 4X/12X, Windows 95, Windows NT,
Windows 3.1, DOS, 165ms, SCSI.

MCDPLUS4X121PC, 4X/12X, Windows 95, Windows
NT, Windows 3.1, DOS, 165ms, SCSI.

Microsynergy

CD-R4121, 4X/12X, Windows 95, Windows NT, Win-
dows 3.1 Macintosh, 165ms, SCSI-2.

CD-R412E, 4X/12X, Windows 95, Windows NT, Win-
dows 3.1 Macintosh, 165ms, SCSI-2.

CD-RW4261, 4X/2X/6X, Windows 95, Windows NT,
Windows 3.1 Macintosh, 250ms, SCSI-2.

CD-RW426E, 4X/2X/6X, Windows 95, Windows NT,
Windows 3.1 Macintosh, 250ms, SCSI-2.

Optima Technology Corp

CDWriter, 4X/2X/6X, Windows 95, Windows NT, 250ms,
SCSI-2.

Panasonic

CW-7502-B, 4X/8X, Windows 95, Windows NT, Win-
dows 3.1, Macintosh, 175ms, SCSI-2.

Pinnacle Micro

RCD-4x12e, 4X/12X, Windows 95, Windows NT, Macin-
tosh, 165ms, SCSI-2.

RCD-4x12i, 4X/12X, Windows 95, Windows NT, Macin-
tosh, 165ms, SCSI-2.

Plexor

PX-R412Ce, 4X/12X, Windows 95, Windows NT, Macin-
tosh, 190ms, SCSI.

16 CD-ROMs AND COMPUTERS SYSTEMS



PX-R412Ci, 4X/12X, Windows 95, Windows NT, Macin-
tosh, 190ms, SCSI.

Smart and Friendly

CD-R 4006 Delux Ext (SAF781), 4X/6X, Windows 95,
Windows NT, Macintosh, 250ms, SCSI-2.

CD-R 4006 Delux Int (SAF780), 4X/6X, Windows 95,
Windows NT, Macintosh, 250ms, SCSI-2.

CD Speed/Writer Delux Ext (SAF785), 4X/6X, Windows
95, Windows NT, Macintosh, 165ms, SCSI-2.

CD Speed/Writer Int (SAF783), 4X/6X, Windows 95,
Windows NT, 165ms, SCSI-2.

CD-RW 426 Delux Ext (SAF782), 4X/2X/6X, Windows
95, Windows NT, Macintosh, 250ms, SCSI-2.

CD-RW 426 Delux Int (SAF779), 4X/2X/6X, Windows 95,
Windows NT, 250ms, E-IDE.

TEAC

CD-R555,4X/12X, Windows 95, Windows NT, Windows
3.1, 165ms, SCSI.

CD-RE555,4X/12X, Windows 95, Windows NT, Win-
dows 3.1, 165ms.SCSI.

Yamaha

CDR400t, 4X/6X, Windows 95, Windows NT, Windows
3.1, UNIX, Macintosh, 250ms, SCSI-2.

CDR400tx, 4X/6X, Windows 95, Windows NT, Windows
3.1, UNIX, Macintosh, 250ms, SCSI-2.

CDRW4260t, 4X/2X/6X, Windows 95, Windows NT,
Windows 3.1, UNIX, Macintosh, 250ms, SCSI-2.

CDRW4260tx, 4X/2X/6X, Windows 95, Windows NT,
Windows 3.1, UNIX, Macintosh, 250ms, SCSI-2.

CD-ROM/DVD SOFTWARE WRITERS/VENDORS
AND CD-RECORDING SOFTWARE

Although companies manufacturing CD-ROM and DVD
software as well as software version numbers change,
this list could be used as a reliable source for searching
information and products.

Company Software

Apple MacOS
Adaptec Jam 2.1
Adaptec Toast 3.54
Adaptec DirectCD 1.01
Astarte CD-Copy 2.01
CeQuadrat Vulkan 1.43
CharisMac Engineering Backup Mastery 1.00
CharisMac Engineering Discribe 2.13
Dantz Retrospect 4.0
Dataware Technologies CD Record 2.12
Digidesign Masterlist CD 1.4
Electroson Gear 3.34
JVC Personal Archiver

Plus 4.10a
Kodac Build-It 1.5
Microboards VideoCD Maker1.2.5E
OMI/Microtest Audiotracer 1.0
OMI/Microtest Disc-to-disk 1.8
OMI/Microtest Quick TOPiX2.20
Optima Technology CD-R Access Pro 3.0
Pinnacle Micro CD Burner 2.21
Pinnacle Micro RCD 1.58
Ricoh CD Print 2.3.1

IBM OS/2
Citrus Technology Unite CD-Maker 3.0
Electroson GEAR 3.3
Young Minds Makedisc/CD

Studio 1.20

Sun SunOS
Creative Digital Research CD Publisher

�HyCD 4.6.5.
Dataware Technologies CD Record 2.2
Eletroson GEAR 3.50
JVC Personal RomMaker

Plus UNIX 3.6
Young Minds Makedisc/CD Studio 1.2

Sun Solaris
Creative Digital Research CDR Publisher

HyCD 4.6.5
Dataware Technologies CD Record 2.2
Electroson GEAR 3.50
JVC Personal RomMaker

Plus UNI 3.6
Kodak Built-It 1.2
Luminex Fire Series 1.9
Smart Storage SmartCD for integrated

recording & access 2.00
Young Minds Makedisc/CD Studio 1.2

HP HP/UX
Electroson Gear 3.50
Smart Storage SmartCD for integrated

recording & access 2.00
Young Minds Makedisc/CD Studio 1.20
JVC Personal RomMaker

Plus UNIX 1.0
Luminex Fire Series 1.9

SGI IRIX
Creative Digital Research CDR Publisher HyCD 4.6.5
Electroson GEAR 3.50
JVC Personal RomMaker

Plus UNIX 1.0
Luminex Fire Series 1.9
Young Minds Makedisc/CD Studio 1.20

DEC OSF
Electroson GEAR 3.50
Young Minds Makedisc/CD Sturdio 1.20

IBM AIX
Electroson GEAR 3.50
Luminex Fire Series 1.9
Smart Storage SmartCD for integrated recording

& access 2.00
Young Minds Makedisc/CD Studio1.20

SCO SVR/ODT
Young Minds Makedisc/CD Studio 1.20

CD-ROMs AND COMPUTERS SYSTEMS 17



Novell NetWare
Celerity systems Virtual CD Writer 2.1
Smart Storage SmartCD for recording 3.78
Smart Storage Smart CD for integrated recording

& access 3.78

Amiga
Asimware Innovations MasterISO 2.0

ACKNOWLEDGMENTS

We hereby would like to express our thanks to NSF (USA),
NJIT (in particular co-PIs in major research grants, Pro-
fessors Steven Tricamo, Don Sebastian, and Richard
Hatch, and the students), Professor T. Pato at ISBE, Swit-
zerland (co-PI in our European research grants), the stu-
dents, and faculty who have helped us a lot with their
comments in the United Kingdom, the United States,
Switzerland, Sweden, Germany, Hungary, Austria, Hong
Kong, China, and Japan. We also thank DARPA in the
United States, The U.S. Department of Commerce, The
National Council for Educational Technology (NCET, Uni-
ted Kingdom), The University of East London, the Enter-
prise Project team, the Ford Motor Company, General
Motors, Hitachi Seiki (United Kingdom) Ltd, FESTO (Uni-
ted Kingdom and United States), Denford Machine Tools,
Rolls-Royce Motor Cars, HP (United Kingdom) Ltd.,
Siemens Plessey, Marconi Instruments, and Apple Com-
puters Inc. for their continuous support in our research,
industrial, and educational multimedia (and other) pro-
jects. Furthermore, we would like to express our thanks to
our families for their unconditional support and encour-
agement, including our sons, Gregory, Mick Jr. and
Richard, for being our first test engineers and for their
valuable contributions to our interactive multimedia
projects.

FURTHER READING

A. Kleijhorst, E. T. Van der Velde, M. H. Baljon, M. J. G. M.
Gerritsen and H. Oon, Secure and cost-effective exchange of
cardiac images over the electronic highway in the Netherlands,
computers in cardiology, Proc. 1997 24th Annual Meeting on
Computers in Cardiology, Lund, Sweden, Sept. 7–10, 1997,
pp. 191–194.

P. Laguna, R. G. Mark, A. Goldberg and G. B. Moody, Database
for evaluation of algorithms for measurement of qt and other
waveform intervals in the ecg, Proc. 1997 24th Annual Meeting
on Computers in Cardiology, Lund, Sweden, Sept. 7–10, 1997,
pp. 673–676.

B. J. Dutson, Outlook for interactivity via digital satellite, IEE
Conference Publication, Proc. 1997 International Broadcasting
Convention, Amsterdam, the Netherlands, Sept. 12–16, 1997,
pp. 1–5.

Physical properties of polymers handbook, CD-ROM, J. Am.
Chemi. Soc., 119(46): 1997.

J. Phillips, Roamable imaging gets professional: Putting immer-
sive images to work, Adv. Imag., 12(10): 47–50, 1997.

H. Yamauchi, H. Miyamoto, T. Sakamoto, T. Watanabe, H. Tsuda
and R. Yamamura, 24&Times;-speed circ decoder for a Cd-Dsp/CD-

ROM decoder LSI Sanyo Electric Co, Ltd, Digest of Technical
Papers—IEEE International Conference on Consumer Electronics
Proc. 1997 16th International Conference on Consumer Electronics,
Rosemont IL, 11–13, 1997, pp. 122–123.

K. Holtz and E. Holtz, Carom: A solid-state replacement for the CD-
ROM, Record Proc. 1997 WESCON Conference, San Jose, CA, Nov.
4–6, 1997, pp. 478–483.

Anonymous, Trenchless technology research in the UK water
industry, Tunnelling Underground Space Technol., 11(Suppl 2):
61–66, 1996.

J. Larish, IMAGEGATE: Making web image marketing work for
the individual photographer, Adv. Imag., 13(1): 73–75, 1998.

B. C. Lamartine, R. A. Stutz and J. B. Alexander, Long, long-term
storage, IEEE Potentials, 16(5): 17–19, 1998.

A. D. Stuart and A. W. Mayers, Two examples of asynchronous
learning programs for professional development, Conference Proc.
1997 27th Annual Conference on Frontiers in Education. Part 1
(of 3), Nov. 5–8, Pittsburgh, PA, 1997, pp. 256–260.

P. Jacso, CD-ROM databases with full-page images, Comput.
Libraries, 18(2): 1998.

J. Hohle, Computer-assisted teaching and learning in photogram-
metry, ISPRS J. Photogrammetry Remote Sensing, 52(6): 266–276,
1997.

Y. Zhao, Q. Zhao, C. Zhu and W. Huang, Laser-induced tempera-
ture field distribution in multi-layers of cds and its effect on the
stability of the organic record-layer, Chinese J. Lasers, 24(6): 546–
550, 1997.

K. Sakamoto and H. Urabe, Standard high precision picture-
s:SHIPP, Proc. 1997 5th Color Imaging Conference: Color Science,
Systems, and Applications, Scottsdale, AZ, Nov. 17–20, 1997,
pp. 240–244.

S. M. Zhu, F. H. Choo, K. S. Low, C. W. Chan, P. H. Kong and M.
Suraj, Servo system control in digital video disc, Proc. 1997 IEEE
International Symposium on Consumer Electronics, ISCE’97
Singapore, Dec. 2–4, 1997, pp. 114–117.

Robert T. Parkhurst, Pollution prevention in the laboratory, Proc.
Air & Waste Management Association’s Annual Meeting & Exhibi-
tion Proceedings, Toronto, Canada, June 8–13, 1997.

V. W. Sparrow and V. S. Williams, CD-ROM development for a
certificate program in acoustics, Engineering Proc. 1997 National
Conference on Noise Control Engineering, June 15–17, 1997,
pp. 369–374.

W. H. Abbott, Corrosion of electrical contacts: Review of flowing
mixed gas test developments, Br. Corros. J., 24(2): 153, 1989.

M. Parker, et al., Magnetic and magneto-photoellipsometric eva-
luation of corrosion in metal-particle media, IEEE Trans. Mag-
netics, 28(5): 2368, 1992.

P. C. Searson and K. Sieradzki, Corrosion chemistry of magneto-
optic data storage media, Proc. SPIE, 1663: 397, 1992.

Y. Gorodetsky, Y. Haibin and R. Heming, Effective use of multi-
media for presentations, Proc. 1997 IEEE International Conference
on Systems, Man, and Cybernetics, Orlando, FL, Oct. 12–15, 1997,
pp. 2375–2379.

J. Lamont, Latest federal information on CD-ROMs, Comput.
Libraries, 17: 1997.

M. F. Iskander, A. Rodriguez-Balcells, O. de losSantos, R. M.
Jameson and A. Nielsen, Interactive multimedia CD-ROM for
engineering electromagnetics, Proc. 1997 IEEE Antennas and
Propagation Society International Symposium, Montreal, Quebec,
Canada, July 13–18, 1997, pp. 2486–2489.

M. Elphick, Rapid progress seen in chips for optical drives, Comput.
Design, 36(9): 46, 48–50, 1997.

18 CD-ROMs AND COMPUTERS SYSTEMS



H. Iwamoto, H. Kawabe, and N. Mutoh, Telephone directory
retrieval technology for CD-ROM, Telecommun. Res. Lab Source,
46(7): 639–646, 1997.

J. Deponte, H. Mueller, G. Pietrek, S. Schlosser and B. Stoltefuss,
Design and implementation of a system for multimedial distrib-
uted teaching and scientific conferences, Proc. 1997 3rd Annual
Conference on Virtual Systems and Multimedia, Geneva, Switzer-
land, Sept. 10–12, 1997, pp. 156–165.

B. K. Das and A. C. Rastogi, Thin films for secondary data storage
IETE, J. Res., 43(2–3): 221–232, 1997.

D. E. Speliotis et al., Corrosion study of metal particle, metal film,
and ba-ferrite tape, IEEE Trans. Magnetics, 27(6): 1991.

J. VanBogart et al., Understanding the Battelle Lab accelerated
tests, NML Bits, 2(4): 2, 1992.

P. G. Ranky, An Introduction to Concurrent Engineering, an
Interactive Multimedia CD-ROM with off-line and on-line Internet
support, over 700 interactive screens following an Interactive
Multimedia Talking Book format, Design & Programming by
P. G. Ranky and M. F. Ranky, CIMware 1996, 97. Available:
http://www.cimwareukandusa.com.

P. G. Ranky, An Introduction to Computer Networks, an Inter-
active Multimedia CD-ROM with off-line and on-line Internet
support, over 700 interactive screens following an Interactive
Multimedia Talking Book format, Design & Programming by
P. G. Ranky and M. F. Ranky, CIMware 1998. Available: http://
www.cimwareukandusa.com.

Nice, Karim, Available: http://electronics.howstuffworks.com/
dvd1. htm, 2005.

Available: http://en.wikipedia.org/wiki/Blu-Ray, 2006.

Available: http://en.wikipedia.org/wiki/Dvd, Feb. 2006.

Available: http://en.wikipedia.org/wiki/HD_DVD, Feb. 2006.

R. Silva, Available: http://hometheater.about.com/od/dvdrecor-
derfaqs/f/ dvdrecgfaq5. htm, 2006.

Herbert, Available: http://www.cdfreaks.com/article/186/1, Mar.
2005.

J. Taylor, Available: http://www.dvddemystified.com/dvdfaq.html,
Feb. 10, 2005.

B. Greenway, Available: http://www.hometheaterblog.com/home-
theater/blu-ray_hd-dvd/, Feb. 14, 2006.

L. Magid, Available: http://www.pcanswer.com/articles/synd_dvds.
htm, Oct. 2 2003.

BIBLIOGRAPHY

1. C. F. Quist, L. Lindegren and S. Soderhjelm, Synthesis ima-
ging, Eur. Space Agency, SP-402: 257–262, 1997.

2. H. Schrijver, Hipparcos/Tycho ASCII CD-ROM and access
software, Eur. Space Agency, SP-402: 69–72, 1997.

3. J. Zedler, and M. Ramadan, I-Media: An integrated media
server and media database as a basic component of a cross
media publishing system, Comput. Graph., 21(6): 693–702,
1997.

4. V. Madisetti, A. Gadient, J. Stinson, J. Aylor, R. Klenke, H.
Carter, T. Egolf, M. Salinas and T. Taylor, Darpa’s digital
system design curriculum and peer-reviewed educational
infrastructure, Proc. 1997 ASEE Annual Conference, Milwau-
kee, WI, 1997.

5. T. F. Hess, R. F. Rynk, S. Chen, L. G. King and A. L. Kenimer,
Natural systems for wastewater treatment: Course material
and CD-ROM development, ASEE Annual Conference Proc.,
Milwaukee, WI, 1997.

6. R. Guensler, P. Chinowsky and C. Conklin, Development of a
Web-based environmental, impact, monitoring and assment
course, Proc. 1997 ASEE Annual Conference, Milwaukee, WI,
1997.

7. M. G. J. M. Gerritsen, F. M. VanRappard, M. H. Baljon, N. V.
Putten, W. R. M. Dassen, W. A. Dijk, DICOM CD-R, your
guarantee to interchangeability?Proc. 1997 24th Annual
Meeting on Computers in Cardiology, Lund, Sweden, 1997,
pp. 175–178.

8. T. Yoshida, N. Yanagihara, Y. Mii, M. Soma, H. Yamada,
Robust control of CD-ROM drives using multirate disturbance
observer, Trans. Jpn. Soc. Mech. Eng. (Part C), 63(615):
pp. 3919–3925, 1997.

9. J. Glanville and I. Smith, Evaluating the options for developing
databases to support research-based medicine at the NHS
Centre for Reviews and Dissemination, Int. J. Med. Infor-
matics, 47(1–2): pp. 83–86, 1997.

10. J.-L. Malleron and A. Juin, with R.-P. Rorer, Database of
palladium chemistry: Reactions, catalytic cycles and chemical
parameters on CD-ROM Version 1.0 J. Amer. Chem. Soc.,
120(6): p. 1347, 1998.

11. M. S. Park, Y. Chait, M. Steinbuch, Inversion-free design
algorithms for multivariable quantitative feedback theory:
An application to robust control of a CD-ROM park, Automa-
tica, 33(5): pp. 915–920, 1997.

12. J.-H. Zhang and L. Cai, Profilometry using an optical stylus
with interferometric readout, Proc. IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics,
Tokyo, Japan, p. 62, 1997.

13. E. W. Williams and T. Kubo, Cross-substitutional alloys of insb.
for write-once read-many optical media, Jpn. J. Appl. Phys.
(Part 2), 37(2A): pp. L127–L128, 1998.

14. P. Nicholls, Apocalypse now or orderly withdrawal for CD-
ROM? Comput. Libraries, 18(4): p. 57, 1998.

15. N. Honda, T. Ishiwaka, T. Takagi, M. Ishikawa, T. Nakajima,
Information services for greater driving enjoyment, SAE Spe-
cial Publications on ITS Advanced Controls and Vehicle Navi-
gation Systems, Proc. 1998 SAE International Congress &
Exposition, Detroit, MI, 1998, pp. 51–69.

16. J. K. Whitesell, Merck Index, 12th Edition, CD-ROM (Macin-
tosh): An encyclopedia of chemicals, drugs & biologicals, J.
Amer. Chem. Soc., 120(9): 1998.

17. C. Van Nimwegen, C. Zeelenberg, W. Cavens, Medical devices
database on CD, Proc. 1996 18th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology
Society (Part 5), Amsterdam, 1996, pp. 1973–1974.

18. S. G. Stan, H. Van Kempen, G. Leenknegt, T. H. M. Akker-
mans, Look-ahead seek correction in high-performance CD-
ROM drives, IEEE Transactions on Consumer Electronics,
44(1): 178–186, 1998.

19. W. P. Murray, CD-ROM archivability, NML Bits, 2(2): p. 4,
1992.

20. W. P. Murray, Archival life expectancy of 3M magneto-optic
media, J. Magnetic Soci. Japan, 17(S1): 309, 1993.

21. F. L. Podio, Research on methods for determining optical disc
media life expectancy estimates, Proc. SPIE, 1663: 447, 1992.

22. On CD-ROMs that set a new standard, Technol. Rev., 101(2):
1998.

23. National Geographic publishes 108 years on CD-ROM, Ima-
ging Mag., 7(3): 1998.

24. Shareware Boosts CD-ROM performance, tells time, EDN,
43(4): 1998.

CD-ROMs AND COMPUTERS SYSTEMS 19



25. Ford standardizes training with CD-ROMs, Industrial Paint
Powder, 74(2): 1998.

26. O. Widell and E. Egis, Geophysical information services, Eur.
Space Agency, SP-397: 1997.

27. J. Tillinghast, G. Beretta, Structure and navigation for elec-
tronic publishing, HP Laboratories Technical Report, 97–162,
Hewlett Packard Lab Technical Publ Dept, Palo Alto, CA, Dec.
1997.

28. J. Fry, A cornerstone of tomorrow’s entertainment eco-
nomy, Proc. 1997 WESCON Conference, San Jose, CA, 1997,
pp. 65–73.

29. M. Kageyama, A. Ohba, T. Matsushita, T. Suzuki, H. Tanabe,
Y. Kumagai, H. Yoshigi and T. Kinoshita, Free time-shift DVD
video recorder, IEEE Trans. Consumer Electron., 43(3): 469–
474, 1997.

30. S. P. Schreiner, M. Gaughan, T. Myint and R. Walentowicz,
Exposure models of library and integrated model evaluation
system: A modeling information system on a CD-ROM with
World-Wide Web links, Proc. 1997 4th IAWQ International
Symposium on Systems Analysis and Computing in Water
Quality Management, Quebec, Canada, June 17–20, 1997,
pp. 243–249.

31. Anonymous, software review, Contr. Eng., 44(15): 1997.

32. M. William, Using multimedia and cooperative learning in
and out of class, Proc. 1997 27th Annual Conference on
Frontiers in Education. Part 1 (of 3), Pittsburgh, PA, Nov.
5–8,1997 pp. 48–52.

33. P. G. Ranky, A methodology for supporting the product innova-
tion process, Proc. USA/Japan International IEEE Conference
on Factory Automation, Kobe, Japan, 1994, pp. 234–239.

34. P. Ashton and P. G. Ranky, The development and application of
an advanced concurrent engineering research tool set at Rolls-
Royce Motor Cars Limited, UK, Proc. USA/Japan Interna-
tional IEEE Conference on Factory Automation, Kobe, Japan,
1994, pp. 186–190.

35. K. L. Ho and P. G. Ranky, The design and operation control of a
reconfigurable flexible material handling system, Proc. USA/
Japan International IEEE Conference on Factory Automation,
Kobe, Japan, 1994, pp. 324–328.

36. P. G. Ranky, The principles, application and research of inter-
active multimedia and open/distance learning in advanced

manufacturing technology, Invited Keynote Presentation,
The Fourth International Conference on Modern Industrial
Training, Xi’lan, China, 1994, pp. 16–28.

37. D. A. Norman and J. C. Spohner, Learner-centered education,
Commun. ACM, 39(4): 24–27, 1996.

38. R. C. Schank and A. Kass, A goal-based scenario for high school
students, Commun. ACM, 39(4): 28–29, 1996.

39. B. Woolf, Intelligent multimedia tutoring systems, Commun.
ACM, 39(4): 30–31, 1996.

40. M. Flaherty, M. F. Ranky, P. G. Ranky, S. Sands and S.
Stratful, FESTO: Servo Pneumatic Positioning, an Interactive
Multimedia CD-ROM with off-line and on-line Internet sup-
port, Over 330 interactive screens, CIMware & FESTO Auto-
mation joint development 1995,96, Design & Programming by
P.G. Ranky and M. F. Ranky. Available: http://www.cimwar-
eukandusa.com.

41. P. G. Ranky, An Introduction to Total Quality (including
ISO9000x), an Interactive Multimedia CD-ROM with off-line
and on-line Internet support, over 700 interactive screens
following an Interactive Multimedia Talking Book format,
Design & Programming by P. G. Ranky and M. F. Ranky,
CIMware 1997. Available: http://www.cimwareukandusa.com.

42. P. G. Ranky, An Introduction to Flexible Manufacturing, Auto-
mation & Assembly, an Interactive Multimedia CD-ROM with
off-line and on-line Internet support, over 700 interactive
screens following an Interactive Multimedia Talking Book
format, Design & Programming by P. G. Ranky and M. F.
Ranky, CIMware 1997. Available: http://www.cimwareukan-
dusa.com.

PAUL G. RANKY

New Jersey Institute of
Technology

Newark, New Jersey

GREGORY N. RANKY

MICK F. RANKY

Ridgewood, New Jersey

20 CD-ROMs AND COMPUTERS SYSTEMS



C

COMMUNICATION PROCESSORS
FOR WIRELESS SYSTEMS

INTRODUCTION

In this article, we define the term communication processor
as a device in a wired or wireless communication system
that carries out operations on data in terms of either
modifying the data, processing the data, or transporting
the data to other parts of the system. A communication
processor has certain optimizations built inside its hard-
ware and/or software that enables it to perform its task in
an efficient manner. Depending on the application, com-
munication processors may also have additional con-
straints on area, real-time processing, and power, while
providing the software flexibility close to general purpose
microprocessors or microcontrollers. Although general pur-
pose microprocessors and microcontrollers are designed to
support high processing requirements or low power, the
need to process data in real-time is an important distinction
for communication processors.

The processing in a communication system is performed
in multiple layers, according to the open systems inter-
connection (OSI) model. (For details on the OSI model,
please see Ref. 1). When the communication is via a net-
work of intermediate systems, only the lower three layers of
the OSI protocols are used in the intermediate systems. In
this chapter, we will focus on these lower, three layers of the
OSI model, shown in Fig. 1.

The bottom-most layer is called the physical layer (or
layer 1 in the OSI model). This layer serializes the data to be
transferred into bits and sends it across a communication
circuit to the destination. The form of communication can
be wired using a cable or can be wireless using a radio
device. In a wireless system, the physical layer is composed
of two parts: the radio frequency layer (RF) and the base-
band frequency layer. Both layers describe the frequency at
which the communication circuits are working to process
the transmitted wireless data. The RF layer processes
signals at the analog level, whereas the baseband opera-
tions are mostly performed after the signal has been down-
converted from the radio frequency to the baseband fre-
quency and converted to a digital form for processing using
a analog-to-digital converter. All signal processing needed
to capture the transmitted signal and error correction is
performed in this layer.

Above the physical layer is the data link layer, which
is known more commonly as the medium access control
(MAC) layer. The MAC layer is one of the two sub-layers in
the data link layer of the OSI model. The MAC layer
manages and maintains communication between multiple
communication devices by coordinating access to a shared
medium and by using protocols that enhance communica-
tion over that medium.

The third layer in the OSI model is the network layer.
The network layer knows the address of the neighboring

nodes in the network, packages output with the correct
network address information, selects routes and quality of
service (QOS), and recognizes and forwards to the transport
layer incoming messages for local host domain.

Communication processors primarily have optimiza-
tions for the lower three layers of the OSI model. Depending
on which layer has the most optimizations, communication
processors are classified further into physical layer space
(or baseband) processors, medium access control proces-
sors, or network processors.

The desire to support higher data rates in wireless
communication systems implies meeting cost, area, power,
and real-time processing requirements in communication
processors. These constraints have the greatest impact on
the physical layer design of the communication processor.
Hence, although we mention the processing requirements
of multiple layers, we focus this article on challenges in
designing the physical layer of communication processors.

Evolution of Wireless Communication Systems

Over the past several years, communication systems have
evolved from low data-rate systems for voice and data (with
data rates of several Kbps, such as dial-up modems, cellular
systems, and 802.11b local area networks) to high data-rate
systems that support multimedia and video applications
with data rates of several Mbps and going toward Gbps,
such as DSL, cable modems, 802.11n local area networks
(LANs), and ultra-widebandpersonal area networks (PANs)
(2). The first generation systems (1G) came in the 1980s
mostly for cellular analog voice using AMPS (advanced
mobile phone service). This standard evolved into the sec-
ond generation standard (2G) in the 1990s to support digital
voice and low bit rate data services. An example of such a
cellular system is IS-54 (2). At the same time, wireless local
area networks began service starting at 1 Mbps for 802.11b
standards and extending to 11 Mbps close to the year 2000.
In the current generation of the standards (3G), cellular
services have progressed to higher data rates in terms of
hundreds of Kbps to support voice, data, and multimedia,
and wireless LANs have evolved to 802.11a and 802.11g to,
support data rates around 100 Mbps. In the future, for the
fourth generation systems (4G), the data rates are expected
to continue to increase and will provide IP-based services
along with QoS (3). Table 1 presents the evolution of wire-
less communicationsystems as they have evolved from 1Gto
4G systems. A range of data rates is shown in the table to
account for both cellular and W-LAN data rates in commu-
nication systems.

CHALLENGES FOR COMMUNICATION PROCESSORS

This evolution of communication systems has involved
radical changes in processor designs for these systems for
multiple reasons. First, the increase in data rates has come
at the cost of increased complexity in the system design.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.
Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Second, the performance of communication systems have
been increasing consistently as communication system
designers develop sophisticated signal processing algo-
rithms that enhance the performance of the system at the
expense of increased computational complexity. Flexibility
is also an important emerging characteristic in communica-
tion processors because of the need to support multiple
protocols and environments. Also, newer applications
have become more complex and they need to be backward-
compatible with existing systems. As the number of stan-
dards and protocols increase, the demand increases for new
standards to be spectrum-efficient, to avoid interference to
other systems, and also to mitigate interference from other
systems. The flexibility needed in the baseband and radio
and regulatory requirements of spectrum and transmit
power also add challenges in testing the design of these
processors. The interaction and integration between differ-
ent layers of the communication system also presents inter-
esting challenges. The physical layer is signal processing-
based, involving complex, mathematical computations,
whereas the MAC layer is data processing-based, involving
data movement, scheduling, and control of the physical
layer. Finally, the range of consumer applications for com-
munication systems has increased from small low-cost
devices, such as RFID tags, to cellular phones, PDAs, lap-
tops, personal computers, and high-end network servers.
Processors for different applications have different optimi-

zatio constraints such as the workload characteristics, cost,
power, area, and data rate and require significant trade-off
analysis. The above changes puts additional constraints on
the processor design for communication systems.

Increasing Data Rates

Figure 2 shows the increase in data rates provided by
communication systems over time. The figure shows that
over the past decade, communication systems have had a
1000� increase in data rate requirements. Systems such as
wireless LANs and PANs have evolved from 1 Mbps sys-
tems such as 802.11a and Bluetooth to 100þMbps 802.11b
LANs to now Gbps systems being proposed for ultra-
wideband personal area networks. The same has been
true even for wired communication systems, going from
10 Mbps ethernet cards to now Gbps ethernet systems. The
increase in processor clock frequencies across generations
cannot keep up with the increase in raw data rate require-
ments. During the same period, the processor clock fre-
quencies have only gone up by one order of magnitude. Also,
applications (such as multimedia) are demanding more
compute resources and more memory than previous pro-
cessors. This demand implies that silicon process technol-
ogy advances are insufficient to meet the increase in raw
data rate requirements and additional architecture inno-
vations such as exploiting parallelism, pipelining, and
algorithm complexity reduction are needed to meet the
data rate requirements. We discuss this in more detail in
the section on area, time, and power tradeoffs.

L1 : Physical layer

L2 : Data link layer

L3 : Network layer

L4 : Transport layer

L5 : Session layer

L6 : Presentation layer

L7 : Application layer

Application
Programs

Interface for other
communication

devices

Communications
Processor

Figure 1. Layers in a OSI model. The communication processors
defined in this chapter are processors that have specific optimiza-
tions for the lower three layers.

Table 1. Evolution of communication systems

Generation Year Function Data rates

1G 1980–1990 Analog voice Kbps
2G 1990–2000 Voice þ low-rate data 10 Kbps–10 Mbps
3G 2000–2010 Voice þ data þ multimedia 100 Kbps–100 Mbps
4G 2010–2020 Voice þ data þ multimedia þ QoS þ IP 10 Mbps–Gbps

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
10−3

10−2

10−1

100

101

102

103

104

Year

D
at

a 
ra

te
s 

(in
 M

bp
s)

, C
lo

ck
 fr

eq
ue

nc
y 

(in
 M

H
z)

Clock frequency (MHz)
W−LAN data rate (Mbps)
Cellular data rate (Mbps)

Figure 2. Increase in data rates for communication systems. The
data rates in communication systems are increasing at a much
greater rate than typical processor clock frequencies, necessitating
new processor designs for communication system.

2 COMMUNICATION PROCESSORS FOR WIRELESS SYSTEMS



Increasing Algorithm Complexity

Although the data rate requirements of communication
processors are increasing, the processor design difficulty
is exacerbated by the introduction of more sophisticated
algorithms that give significant performance improve-
ments for communication systems. Figure 3 shows the
increase in computational complexity as standards have
progressed from first generation to second and third gen-
erations (4). The figure shows that even if the data rates
are assumed constant, the increase in algorithmic complex-
ity cannot be met solely with advances in silicon process
technology.

As an example, we consider decoding of error-control
codes at the receiver of a communication processor. Figure 4
shows the benefits of coding in a communication system by
reducing the bit error rate at a given signal-to-noise ratio.
We can see that advanced coding schemes such as low
density parity check codes (LDPC) (5) and turbo codes (6)
which are iterative decoders that can give 4-dB benefits over
conventional convolutional decoders. A 4-dB gain translates
into roughly a 60% improvement in communication range of
a wireless system. Such advanced coding schemes are pro-
posed and implemented in standards such as HSDPA,
VDSL, gigabit ethernet, digital video broadcast, and Wi-
Fi. However, this improvement comes at a significant
increase in computational complexity. Figure 5 shows
the increased complexity of some advanced coding schemes
(7). It can be observed that the iterative decoders have 3–5
orders of magnitude increase in computational complexity
over convolutional decoders. Thus, to order to implement
these algorithms, reduced complexity versions of these algo-
rithms should be investigated for communication processors
that allow simpler hardware designs with significant par-
allelism without significant loss in performance. An exam-
ple of such a design is presented in Ref. 8.

Flexibility

As communication systems evolve over time, a greater
need exists for communication processors to be increasingly
flexible. Communication systems are designed to support
several parameters such as variable coding rates, variable
modulation modes, and variable frequency band. This flex-
ibility allows the communication system to adapt itself
better to the environment to maximize data rates over
the channel and/or to minimize power. For example,
Fig. 6 shows base-station computational requirements

1980 1985 1990 1995 2000 2005 2010 2015 2020
101

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Year

C
om

pl
ex

ity

Processor Performance
Algorithm complexity

1G

2G

3G

4G

Figure 3. Algorithm complexity increasing faster than silicon
process technology advances. (Reprinted with permission from
Ref. 4.)

0 1 2 3 4 5 6

BER vs. SNR

0 1 2 3 4 5 6

10–4

10–3

10–2

10–1

100

SNR (dB)

B
E

R Iterative

Code

ML decoding
Conv. code

Uncoded

Capacity

Bound

4 dB

Figure 4. Decoder performance with advanced coding schemes.
(Reprinted with permission from Ref. 7.)

0 2 4 6 8 10 12
100

101

102

103

104

105

SNR (dB)

R
el

at
iv

e 
C

om
pl

ex
ity

8/9 Conv. nu = 3, N = 4k
2/3 Conv, nu = 4, N = 64k
1/2 Conv, nu = 4, N = 64k
8/9 LDPC, N = 4k, 5,3,1 iterations
8/9 Turbo, nu = 4, N = 4k
2/3 Turbo, nu = 4, N = 4k, 3,2,1 iterations
1/2 Turbo, nu = 4, N = 4k, 3,2,1 iterations

1/2 LDPC, N = 107, 1100 iterations

Figure 5. Decoder complexity for various types of coding
schemes. (Reprinted with permission from Ref. 7.)

COMMUNICATION PROCESSORS FOR WIRELESS SYSTEMS 3



and the flexibility needed to support several users at vari-
able constraint lengths (9). The figure also shows an exam-
ple of a 2G station at 16 Kbps/user supporting only voice
and a 3G base-station at 128 Kbps/user supporting voice,
data, and multimedia. A 3G base-station processor now
must be backward-compatible to a 2G base-station proces-
sor and hence, must support both the standards as well as
adapt its compute resources to save power when the pro-
cessing requirements are lower. The amount of flexibility
provided in communication processors can make the design
for test for these systems extremely challenging because of
the large number of parameters, algorithms, and radio
interfaces that must be tested.

Along with the support for variable standards and pro-
tocols, researchers are also investigating the design of a
single communication processor that can switch seamlessly
between different standards, depending on the availability
and cost of that standard. The RENE (Rice Everywhere
NEtwork) project (10) demonstrates the design of a multi-
tier network interface card with a communication proces-
sor that supports outdoor cellular (CDMA) and indoor
wireless (LAN) and changes over the network seamlessly
when the user moves from an office environment with
wireless LAN into an outdoor environment using cellular
services. Figure 7 shows the design of the wireless multitier
network interface card concept at Rice University. Thus,

flexibility to support various standards is becoming an
increasingly desired feature in communication processors.

Spectrum Issues

The wireless spectrum is a scarce resource and is regulated
by multiple agencies worldwide. As new standards evolve,
they have to coexist with spectrums that are allocated
already for existing standards. The regulatory bodies,
such as Federal Communications Commission (see
www.fcc.gov), demand that new standards meet certain
limitations on transmit power and interference avoidance
to make sure that the existing services are not degraded by
the new standard. Also, because of a plethora of wireless
standards in the 1–5 GHz wireless spectrum, new standards
are forced to look at much higher RF frequencies, which
make the design of radies more challenging as well as
increase the need for transmit power because of larger
attendation at higher frequencies. Newer standards also
need to have interference detection and mitigation
techniques to coexist with existing standards. This involves
challenges at the radio level, such as to transmit at different
frequencies to avoid interference and to develop the need for
software-defined radios (11) Spectrum regulations have
variations across countries worldwide and devices need to
have the flexibility to support different programming to
meet regulatory specifications.

Area, Time, and Power Tradeoffs

The design of communication processors is complicated
even more by the nature of optimizations needed for the
application and for the market segment. A mobile market
segment may place greater emphasis on cost (area) and
power, whereas a high-data rate market segment may place
a greater focus on performance. Thus, even after new
algorithms are designed and computationally efficient ver-
sions of the algorithms have been developed, tradeoffs
between area-time and power consumptions occur for the
implementation of the algorithm on the communication
processor. Also, other parameters exist that need to be
traded off such as the silicon process technology ( 0.18-
vs. 0.13-vs. 0.09-mm CMOS process) and voltage and clock
frequencies. For example, the area-time tradeoffs for
Viterbi decoding are shown in Fig. 8(12). The curve shows
that the area needed for the Viterbi decoder can be traded
off at the cost of increasing the execution time for the
Viterbi decoder.

In programmable processors, the number of functional
units and the clock frequency can be adjusted to meet

0

5

10

15

20

25
O

pe
ra

tio
n 

co
un

t (
in

 G
O

P
s)

(32,9)(32,7)(16,9)(16,7)(8,9)(8,7)(4,9)(4,7)

2G base−station (16 Kbps/user)
3G base−station (128 Kbps/user)

Figure 6. Flexibility needed to support various users, rates (for
example), and backward -compatibility to standards. (Reprinted
with permission from Ref. 9.)

RF

Interface

Baseband

communications
processor

Indoor
W-LAN

Outdoor

 WCDMA

Mobile
Host

(MAC,
Network

layers)

mNIC

Figure 7. Multi-tier network interface card concept. (Reprinted with permission from Ref. 10.)

4 COMMUNICATION PROCESSORS FOR WIRELESS SYSTEMS



real-time requirements for an application. An example of
this application is shown in Fig. 9 (13). The figure shows
that as the number of adders and multipliers in a pro-
grammable processor are increased, the clock frequency
needed to meet real-time for an application decreases
until a certain point, at which no more operations can
be scheduled on the additional adders and multipliers in
the processor. The numbers on the graph indicate the
functional unit use of the adders and multipliers in the
processor.

Interaction Between Multiple Layers

The interaction between the different layers in a commu-
nications system also presents challenges to the processor

design. As will be shown in the following sections, the
characteristics of the physical layer in a communication
system are completely different than the characteristics of
the MAC or network layer. The physical layer of a commu-
nication system consists of signal processing algorithms
that work on estimation of the channel, detection of the
received bits, and decoding of the data, and it requires
computational resources. The MAC and network layers
are more data flow-oriented and have more control and
data-grouping operations. The combination of these two
divers requirements make the task of design of a single
integrated communication processor (which does both
the PHY as well as the MAC) difficult. Hence, these layers
are implemented typically as separate processors, although
they may be present on the same chip.

For example, it is very common in communication pro-
cessor design to have a coprocessor-based approach for the
physical layer that performs sophisticated mathematical
operations in real-time, while having a microcontroller that
handles the control and data management.

PHYSICAL LAYER OR BASEBAND PROCESSORS

The physical layer of wireless communication systems
presents more challenges to the communication processor
design than wired communication systems. The nature of
the wireless channel implies the need for sophisticated
algorithms on the receiver to receive and decode the
data. Challenges exist in both the analog/RF radio and
the digital baseband of the physical layer in emerging
communication processors. The analog and RF radio
design challenge is dominated by the need to support
multiple communication protocols with varying require-
ments on the components in the transmitter and receiver
chain of the radio. This need has emerged into a stream of
research called software defined radios (11). We focus on
the challenges in meeting the computational, real-time
processing requirements and the flexibility requirements
of the physical layer in the communication processor.

Characteristics of Baseband Communication Algorithms

Algorithms for communication systems in the physical
layer process signals for transmission and reception of
analog signals over the wireless (or the even wired) link.
Hence, most algorithms implemented on communication
processors are signal-processing algorithms and show cer-
tain characteristics that can be exploited in the design of
communication processors.

1. Communication processors have stringent real-time
requirements that imply the need to process data at a
certain throughput rate while also meeting certain
latency requirements.

2. Signal processing algorithms are typically compute-
bound, which implies that the bottle neck in the
processing are the computations (as opposed to mem-
ory) and the architectures require a significant num-
ber of adders and multipliers.

0 2 4 6 8 10 12 14
0

5

10

15

20

25

Area (A) in mm2

S
ym

bo
l T

im
e 

(n
s)

AT = constant
implementations

Figure 8. Normalized area-time efficiency for viterbi decoding.
(Reprinted with permission from Ref. 12.)

1

2

3

4

5 1

1.5

2

2.5

3

400

600

800

1000

1200

(32,28)

#Multipliers

(38,28)

(33,34)

(50,31)

(42,37)

(36,53)

(64,31)

(51,42)

Auto−exploration of adders and multipliers for Workload

(43,56)

(78,18)

(65,46)

(55,62)

#Adders

(78,27)

(67,62)

(78,45)

R
ea

l−
T

im
e 

F
re

qu
en

cy
 (

in
 M

H
z)

 w
ith

 F
U

 u
til

iz
at

io
n(

+
,*

)

Figure 9. Number of adders and multipliers to meet real-time
requirements in a programmable processor. (Reprinted with per-
mission from Ref. 13.)

COMMUNICATION PROCESSORS FOR WIRELESS SYSTEMS 5



3. Communication processors require very low fixed-
point precision in computations. At the transmitter,
the inputs are sent typically as bits. At the receiver,
the ADCs reduce the dynamic range of the input
signal by quantizing the signal. Quantization in com-
munication processors is acceptable because the
quantization errors are typically small compared
with the noise added through the wireless channel.
This finding is very useful to design low power and
high speed arithmetic and to keep the size of memory
requirements small in communication processors.

4. Communication algorithms exhibit significant amou-
nts of data parallelism and show regular patterns in
computationthatcanbeexploitedforhardwaredesign.

5. Communication algorithms have a streaming data-
flow in a producer-consumer fashion between blocks
with very little data reuse. This dataflow can be
exploited to avoid storage of intermediate values

and to eliminate hardware in processors such as
caches that try to exploit temporal reuse.

Figure 10 shows a typical transmitter in a communica-
tion processor. The transmitter, in the physical layer of a
communication system is typically much simpler compared
with the receiver. The transmitter operations typically
consist of taking the data from the MAC layer and then
scrambling it to make it look sufficiently random, encoding
it for error protection, modulating it on certain frequencies,
and then precompensating it for any RF impairments or
distortions.

Figure 11 shows a typical receiver in a communications
processor. The receiver estimates the channel to compen-
sate for it, and then it demodulates the transmitted data
and decodes the data to correct for any errors during
transmission. Although not shown in the figure, many
other impairments in the channel and the radio, such as
fading, interference, I/Q imbalance, frequency offsets, and

MCPA

DAC

DUC
Filtering +

Pre Distortion

Chip Level
Modulation and

Spreading

Symbol
Encoding

Packet/
Circuit Switch

Control

BSC/RNC
Interface

Power Supply
and Control

Unit

Power Measurement and Gain
Control (AGC)

RF Baseband Processing Network Interface

E1/T1
or

Packet
Network

RF TX

ADC

Figure 10. Typical operations at a transmitter of a baseband processor. (Reprinted with permission from Texas Instruments.)

LNA

ADC

DDC

Frequency
Offset

Compensation

Channel
Estimation

Chip Level
Demodulation
Despreading

Symbol
Detection

Symbol
Decoding

Packet/
Circuit Switch

Control

BSC/RNC
Interface

Power and Control
Unit

Power Measurement and
Control

RF Baseband Processing Network Interface

E1/T1
or

Packet
Network

RF RX

Figure 11. Typical operations at the receiver of a baseband processor (Reprinted with permission from Texas Instruments.)

6 COMMUNICATION PROCESSORS FOR WIRELESS SYSTEMS



phase offsets are also corrected at the receiver. The algo-
rithms used at the receiver involve sophisticated signal
processing and in general, have increased in complexity
over time while providing more reliable and stable com-
munication systems.

Architecture Designs

A wide range of architectures can be used to design a
communication processor. Figure 12 shows the desired
characteristics in communication processors and shows
how different architectures meet the characteristics in
terms of performance and flexibility. The efficiency metric
on the x-axis is characterized as MOPs/mW (millions of
operations performed per mW of power). The architectures
shown in the figure trade flexibility with performance/
power and are suited for different applications. A custom
ASIC has the best efficiency in terms of data rate at unit
power consumption at the same time it has the least
amount of flexibility (14). On the other hand, a fully pro-
grammable processor is extremely flexible but is not area/
power/throughput efficient. We discuss the tradeoffs
among the different types of architectures to use them as
communication processors.

Custom ASICs. Custom ASICs are the solution for com-
munication processors that provide the highest efficiency
and the lowest cost in terms of chip area and price. This,
however, comes at the expense of a fairly large design and
test time and lack of flexibility and scalability with
changes in standards and protocols. Another issue with
custom ASICs is that fabrication of these ASICs are extre-
mely expensive (millions of dollars), which implies that
extreme care needs to be taken in the functional design to
ensure first pass success. Also, the volume of shipment for
these custom chips must be high to amortize the develop-
ment cost. A partial amount of flexibility can be provided
as register settings for setting transmission or reception
parameters or for tuning the chip that can then controlled
by the MAC or higher layers in firmware (software). For
example, the data rate to be used for transmission can be
programmed into a register in the custom ASIC from the

MAC and that can be used to set the appropriate controls
in the processor.

Reconfigurable Processors. Reconfigurable processors
are a relatively new addition to the area of communication
processors. Typically, reconfigurable processors consist of a
CISC type instruction set processor with a reconfigurable
fabric attached to the processor core. This reconfigurable
fabric is used to run complex signal processing algorithms
that have sufficient parallelism and need a large number of
adders and multipliers. The benefits of the reconfigurable
fabric compared with FPGAs is that the reconfiguration can
be done dynamically during run-time. Figure 13 shows an
example of the Chameleon reconfigurable communication
processor (15).

The reconfigurable fabric and the instruction set com-
puting seek to provide the flexibility needed for commu-
nication processor while providing the dedicated logic in the
reconfiguration fabric for efficient computing that can be
reprogrammed dynamically. One of the major disadvan-
tages of reconfigurable processors is that the software tools
and compilers have not progressed to a state where per-
formance/power benefits are easily visible along with the
ease of programming the processor. The Chameleon recon-
figurable processor is no longer an active product. However,
several researchers in academia, such as GARP at Berkeley
(16), RAW at MIT (17). Stallion at Virginia Tech (18), and in
industry such as PACT (19) are still pursuing this promis-
ing architecture for communication processors.

Application-Specific Instruction Processors. Application-
specific instruction processors (ASIPs) are processors with
an instruction set for programmability and with custo-
mized hardware tailored for a given application (20). The
programmability of these processors followed by the cus-
tomization for a particular application to meet data rate
and power requirements make ASIPs a viable candidate for
communication processors.

A DSP is an example of such an application-specific
instruction processor with specific optimizations to support
signal processing operations. Because standards are typi-

Communication Processors

Efficiency (MOPS/mW)

F
le

xi
bi

lit
y

General-Purpose
Processor

Application-
Specific

Instruction
Processors

Reconfigurable
Processors

Custom
ASICs

Figure 12. Desired characteristics of communication processors.

32-bit reconfigurable
processing fabric

160-pin programmable I/O

128-bit RoadRunner bus

DMAConfiguration
subsystem

PCI
controller

ARC
processor

Memory
controller

Data
Stream

Data
Stream

Embedded
Processor
System

Figure 13. Reconfigurable communication processors. (Rep-
rinted with permission from Ref. 15.)

COMMUNICATION PROCESSORS FOR WIRELESS SYSTEMS 7



cally driven by what is possible from an ASIC implementa-
tion feasibility for cost, performance, and power, it is diffi-
cult for a programmable architecture to compete with a
fully custom, based ASIC design for wireless communica-
tions. DSPs fail to meet real-time requirements for imple-
menting sophisticated algorithms because of the lack of
sufficient functional units. However, it is not simple to
increase the number of adders and multipliers in a DSP.
Traditional single processor DSP architectures such as the
C64x DSP by Texas Instruments (Dallas, TX) (21) employ
VLIW architectures and exploit instruction level paralle-
lism (ILP) and subword parallelism. Such single-processor
DSPs can only have limited arithmetic units (less than 10)
and cannot extend directly their architectures to 100s of

arithmetic units. This limitation is because as the number
of arithmetic units increases in an architecture, the size of
the register files increases and the port interconnections
start dominating the chip area (21,22). This growth is
shown as a cartoon in Fig. 14 (28). Although the use of
distributed register files may alleviate the register file
explosion at the cost of increased pepalty in register alloca-
tion (21), an associated cost exists in exploiting ILP because
of the limited size of register files, dependencies in the
computations, and the register and functional unit alloca-
tion and use efficiency of the compiler. It has been shown
that even with extremely good techniques, it is very difficult
to exploit ILP beyond 5 (24). The large number of arithmetic
and logic units (ALUs) also make the task of compiling and
scheduling algorithms on the ALUs and keeping all the
ALUs busy difficult.

Another popular approach to designing communication
processors is to use a DSP with coprocessors (25–27). The
coprocessors are still needed to perform more sophisticated
operations that cannot be done real-time on the DSP
because of the lack of sufficient adders and multipliers.
Coprocessor support in a DSP can be both tightly coupled
and loosely coupled (27). In a tightly coupled coprocessor
(TCC) approach, the coprocessor interfaces directly to the
DSP core and has access for specific registers in the DSP
core. The TCC approach is used for algorithms that work
with small datasets and require only a few instruction
cycles to complete. The DSP processor freezes when the
coprocessor is used because the DSP will have to interrupt
the coprocessor immediately in the next few cycles. In time,
the TCC is integrated into the DSP core with a specific
instruction or is replaced with code in a faster or lower-
power DSP. An example of such a TCC approach would be
the implementation of a Galois field bit manipulation that
may not be part of the DSP instruction set (27). The loosely
coupled coprocessor approach (LCC) is used for algorithms
that work with large datasets and require a significant
amount of cycles to complete without interruption from the
DSP. The LCC approach allows the DSP and coprocessor to
execute in parallel. The coprocessors are loaded with the
parameters and data and are initiated through application-
specific instructions. The coprocessors sit on an external
bus and do not interface directly to the DSP core, which
allows the DSP core to execute in parallel. Figure 15 shows
an example of the TMS320C6416 processor from Texas
Instruments which has Viterbi and Turbo coprocessors
for decoding (28) using the LCC approach. The DSP provides
the flexibility needed for applications and the coprocessors
provide the compute resources for more sophisticated com-
putations that are unable to be met on the DSP.

Programmable Processors. To be precise with definitions,
in this subsection, we consider programmable processors as
processors that do not have an application-specific optimi-
zation or instruction set. For example, DSPs without copro-
cessors are considered in this subsection as programmable
processors.

Stream processors are programmable processors that
have optimizations for media and signal processing. They
are able provide hundreds of ALUs in a processor by

32

Register

File

1 ALU

RF 4 16

32

Register

File

4 16

Figure 14. Register file expansion with increasing number of
functional units in a processor. (Reprinted with permision from
Ref. 23.)

Coprocessors for Viterbi and
Turbo Decoding

C64xTM DSP Core

L1 cache

L1D cache

L2
cache

EDMA
controller

TCP

VCP

I/O
interfaces
(PCI,HPI,

GPIO)

Memory
interfaces

(EMIF,
McBSP)

Figure 15. DSP with coprocessors for decoding, (Reprinted with
permission from Ref. 28.)

8 COMMUNICATION PROCESSORS FOR WIRELESS SYSTEMS



arranging the ALUs into groups of clusters and by exploit-
ing data parallelism across clusters. Stream processors are
able to support giga-operations per second of computation
in the processor. Figure 16 shows the distinction between
DSPs and stream processors. Although typical DSPs
exploit ILP and sub-word parallelism (SubP), stream pro-
cessors also exploit data-parallelism across clusters to pro-
vide the needed computational horsepower.

Streams are stored in a stream register file, which can
transfer data efficiently to and from a set of local register
files between major computations. Local register files, colo-
cated with the arithmetic units inside the clusters, feed
those units directly with their operands. Truly global data,
data that is persistent throughout the application, is stored

off-chip only when necessary. These three explicit levels of
storage form an efficient communication structure to keep
hundreds of arithmetic units efficiently fed with data. The
Imagine stream processor developed at Stanford is the first
implementation of such a stream processor (29). Figure 17
shows the architecture of a stream processor with C þ 1
arithmetic clusters. Operations in a stream processor all
consume and/or produce streams that are stored in the
centrally located stream register file (SRF). The two major
stream instructions are memory transfers and kernel
operations. A stream memory transfer either loads an
entire stream into the SRF from external memory or stores
an entire stream from the SRF to external memory. Multiple
stream memory transfers can occur simultaneously, as
hardware resources allow. A kernel operation performs a
computation on a set of input streams to produce a set of
output streams. Kernel operations are performed within a
data parallel array of arithmetic clusters. Each cluster
performs the same sequence of operations on independent
stream elements. The stream buffers (SBs) allow the single
port into the SRF array (limited for area/power/delay rea-
sons) to be time-multiplexed among all the interfaces to the
SRF, making it seen that many logical ports exist the array.
The SBs also act as prefetch buffers and prefetch the data for
kernel operations. Both the SRF and the stream buffers are
banked to match the number of clusters. Hence, kernels that
need to access data in other SRF banks must use the inter-
cluster communication network for communicating data
between the clusters.

The similarity between stream computations and com-
munication processing in the physical layer makes stream-
based processors an attractive architecture candidate for
communication processors (9).

Internal
Memory

+
+
+
x
x
x

+
+
+
x
x
x

+
+
+
x
x
x

+
+
+
x
x
x

ILP
SubP

...

CDP
(a) Traditional

embedded
processor

(DSP)
(b) Data-parallel embedded

stream processor

ILP
SubP

Internal Memory
(banked to the number of clusters)

Figure 16. DSP and stream processors. (Reprinted with permis-
sion from Ref. 13.)

C
lu

ster C

C
lu

ster 0

C
lu

ster 1

External Memory (DRAM)

Stream Register File
(SRF)

SRFC

Inter-cluster
communication

network

SRF1SRF0

SB SB SB SB

SB SB SB SB

Stream Buffers
(SB)

Clusters
of

Arithmetic
 Units

M
icro

-C
o

n
tro

ller

Figure 17. Stream processor architecture. (Reprinted with permission from Ref. 25.)

COMMUNICATION PROCESSORS FOR WIRELESS SYSTEMS 9



MAC AND NETWORK PROCESSORS

Although the focus of this article is on the physical layer of
the communication processor, the MAC and network layers
have a strong interaction with the physical layer especially
in wireless networks. In this section, we briefly discuss the
challenges and the functionality needed in processors for
MAC and network layers (30).

MACs for wireless networks involve greater challenges
than MACs for wired networks. The wireless channel
necessitates the need for retransmissions when the
received data is not decoded correctly in the physical layer.
Wireless MACs also need to send out beacons to notify the
access point that an active device is present on the network.

Typical functions of a wireless MAC include:

1. Transmissions of beacons in regular intervals to
indicate the presence of the device on the network.

2. Buffering frames of data that are received from the
physical layer and sending requests for re-transmis-
sions for lost frames.

3. Monitoring radio channels for signals, noise and
interference.

4. Monitoring presence of other devices on the network.

5. Encryption of data using AES/DES to provide secur-
ity over the wireless channel.

6. Rate control of the physical layer to decide what data
rates should be used for transmission of the data.

From the above, it can be seen that the MAC layer
typically involves significant data management and pro-
cessing. Typically, MACs are implemented as a combina-
tion of a RISC core that provides the control to different
parts or the processor and dedicated logic for parts such as
encryption for security and host interfaces.

Some functions of the network layer can be implemen-
ted on the MAC layer and vice-versa, depending on the
actual protocol and application used. Typical functions at
the network layer include:

1. Pattern matching and lookup. This involves match-
ing the IP address and TCP port.

2. Computation of checksum to see if the frame is valid
and any additional encryption and decryption.

3. Data manipulation that involves extracting and
insertion of fields in the IP header and also, fragmen-
tation and reassembly of packets.

4. Queue management for low priority and high priority
traffic for QoS.

5. Control processing for updating routing tables and
timers to check for retransmissions and backoff and
so on.

CONCLUSIONS

Communication processor designs are evolving rapidly as
silicon process technology advances have proven unable to

keep up with increasing data rates and algorithm com-
plexity. The need for greater flexibility to support multiple
protocols and be backward compatible exacerbates the
design problem because of the need to design program-
mable solutions that can provide high throughput and
meet real-time requirements while being area and power
efficient. The stringent regulatory requirements on spec-
trum, transmit power, and interference mitigation makes
the design of the radio difficult while the complexity,
diverse processing characteristics, and interaction
between the physical layers and the higher layers com-
plicates the design of the digital part of the communication
processor Various tradeoffs can be made in communica-
tion processors to optimize throughputs versus area ver-
sus power versus cost, and the decisions depend the actual
application under consideration. We present a detailed
look at the challenges involved in designing these proces-
sors and present sample communication processor archi-
tectures that are considered for communication
processors in the future.

ACKNOWLEDGMENTS

Sridhar Rajagopal and Joseph Cavallaro were supported in
part by Nokia Corporation, Texas Instruments, Inc., and by
NSF under grants EIA-0224458, and EIA-0321266.

BIBLIOGRAPHY

1. H. Zimmermann, OSI reference model – The ISO model of
architecture for open systems interconnection, IEEE Trans.
Communicat., 28: 425–432, 1980.

2. T. Ojanpera and R. Prasad, ed., Wideband CDMA for Third
Generation Mobile Communications, Norwood, MA: Artech
House Publishers, 1998.

3. H. Honkasalo, K. Pehkonen, M. T. Niemi, and A. T. Leino,
WCDMA and WLAN for 3G and beyond, IEEE Wireless Com-
municat., 9(2): 14–18, 2002.

4. J. M. Rabaey, Low-power silicon architectures for wireless
communications, Design Automation Conference ASP-DAC
2000, Asia and South Pacific Meeting, Yokohama, Japan, pp.
377–380, 2000.

5. T. Richardson and R. Urbanke, The renaissance of Gallager’s
low-densityparity-checkcodes, IEEE Communicat. Mag., 126–
131, 2003.

6. B. Vucetic and J. Yuan, Turbo Codes: Principles and Applica-
tions, 1st ed., Dordrecht: Kluwer Academic Publishers, 2000.

7. E. Yeo, Shannon’s bound: at what costs? Architectures and
implementations of high throughput iterative decoders, Ber-
keley Wireless Research Center Winter Retreat, 2003.

8. S. Rajagopal, S. Bhashyam, J. R. Cavallaro, and B. Aazhang,
Real-time algorithms and architectures for multiuser channel
estimation and detection in wireless base-station receivers,
IEEE Trans. Wireless Commmunicat., 1(3): 468–479, 2002.

9. S. Rajagopal, S. Rixner, and J. R. Cavallaro, Improving power
efficiency in stream processors through dynamic cluster recon-
figuration, Workshop on Media and Streaming Processors,
Portland, OR, 2004.

10 COMMUNICATION PROCESSORS FOR WIRELESS SYSTEMS



10. B. Aazhang and J. R. Cavallaro, Multi-tier wireless commu-
nications, Wireless Personal Communications, Special Issue on
Future Strategy for the New Millennium Wireless World,
Kluwer, 17: 323–330, 2001.

11. J. H. Reed, ed., Software Radio: A Modern Approach to Radio
Engineering, Englewood Cliffs, NJ: Prentice Hall, 2002.

12. T. Gemmeke, M. Gansen, and T. G. Noll, Implementation of
scalable and area efficient high throughput viterbi decoders,
IEEE J. Solid-State Circuits, 37(7): 941–948, 2002.

13. S. Rajagopal, S. Rixner, and J. R. Cavallaro, Design-space
exploration for real-time embedded stream processors, IEEE
Micro 24(4): 54–66, 2004.

14. N. Zhang, A. Poon, D. Tse, R. Brodersen, and S. Verdú, Trade-
offs of performance and single chip implementation of indoor
wireless multi-access receivers, IEEE Wireless Communica-
tions and Networking Conference (WCNC), vol. 1, New Orleans,
LA, September 1999, pp. 226–230.

15. B. Salefski and L. Caglar, Re-configurable computing in wire-
less, Design Automation Conference, Las Vegas, NV, 2001,
pp. 178–183.

16. T. C. Callahan, J. R. Huser, and J. Wawrzynek, The GARP
architecture and C compiler, IEEE Computer, 62–69, 2000.

17. A. Agarwal, RAW computation, Scientific American, 28l(2):
60–63, 1999.

18. S. Srikanteswara, R. C. Palat, J. H. Reed, and P. Athanas, An
overview of configurable computing machines for software
radio handsets, IEEE Communicat. Mag., 2003, pp. 134–
141.

19. PACT: eXtreme Processing Platform (XPP) white paper. Avail-
able: http://www.pactcorp.com.

20. K. Keutzer, S. Malik, and A. R. Newton, From ASIC to ASIP:
The next design discontinuity, IEEE International Conference
on Computer Design, 2002, pp. 84–90.

21. S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-
Lagunas, P. R. Mattson, and J. D. Owens, A bandwidth-
efficient architecture for media processing, 31st Annual
ACM/IEEE International Symposium on Microarchitecture
(Micro-31), Dallas, TX, 1998, pp. 3–13.

22. H. Corporaal. Microprocessor Architectures - from VLIW to
TTA, 1st ed., Wiley International, 1998.

23. S. Rixner, Stream Processor Architecture, Dordrecht: Kluwer
Academic Publishers, 2002.

24. D. W. Wall, Limits of Instruction-Level Parallelism, 4th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), Santa
Clara, CA, 199l, pp. 176–188.

25. C-K. Chen, P-C. Tseng, Y-C. Chang, and L-G. Chen, A digital
signal processor with programmable correlator architecture
for third generation wireless communication system, IEEE
Trans. Circuits Systems-II: Analog Digital Signal Proc.,
48(12): 1110–1120, 2001.

26. A. Gatherer and E. Auslander, eds., The Application of Pro-
grammable DSPs in Mobile Communications, New York: John
Wiley and Sons, 2002.

27. A. Gatherer, T. Stetzler, M. McMahan, and E. Auslander, DSP-
based architectures for mobile communications: past, present
and future, IEEE Communicat. Mag., 38(1): 84–90, 2000.

28. S. Agarwala, et al., A 600 MHz VLIW DSP, IEEE J. Solid-State
Circuits, 37(11): 1532–1544, 2002.

29. U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P.
Mattson, and J. D. Owens, Programmable stream processors,
IEEE Computer, 36(8): 54–62, 2003.

30. P. Crowley, M. A. Franklin, H. Hadimioglu, and P.Z. Onufryk,
Network Processor Design: Issues and Practices, vol. l, San
Francisco, CA: Morgan Kaufmann Publishers, 2002.

SRIDHAR RAJAGOPAL

WiQuest Communications, Inc.
Allen, Texas

JOSEPH R. CAVALLARO

Rice University
Houston, Texas

COMMUNICATION PROCESSORS FOR WIRELESS SYSTEMS 11



C

COMPUTER ARCHITECTURE

The term computer architecture was coined in the 1960s
by the designers of the IBM System/360 to mean the
structure of a computer that a machine language program-
mer must understand to write a correct program for a
machine (1).

The task of a computer architect is to understand the
state-of-the-art technologies at each design level and the
changing design tradeoffs for their specific applications.
The tradeoff of cost, performance, and power consumption
is fundamental to a computer system design. Different
designs result from the selection of different points on
the cost-performance-power continuum, and each applica-
tion will require a different optimum design point. For high-
performance server applications, chip and system costs are
less important than performance. Computer speedup can
be accomplished by constructing more capable processor
units or by integrating many processors units on a die. For
cost-sensitive embedded applications, the goal is to mini-
mize processor die size and system power consumption.

Technology Considerations

Modern computer implementations are based on silicon
technology. The two driving parameters of this technology
are die size and feature size. Die size largely determines
cost. Feature size is dependent on the lithography used in
wafer processing and is defined as the length of the smallest
realizable device. Feature size determines circuit density,
circuit delay, and power consumption. Current feature
sizes range from 90 nm to 250 nm. Feature sizes below
100 nm are called deep submicron. Deep submicron tech-
nology allows microprocessors to be increasingly more
complicated. According to the Semiconductor Industry
Association (2), the number of transistors (Fig. 1) for
high-performance microprocessors will continue to grow
exponentially in the next 10 years. However, there are
physical and program behavioral constraints that limit
the usefulness of this complexity. Physical constraints
include interconnect and device limits as well as practical
limits on power and cost. Program behavior constraints
result from program control and data dependencies and
unpredictable events during execution (3).

Much of the improvement in microprocessor performance
has been a result of technology scaling that allows increased
circuit densities at higher clock frequencies. As feature sizes
shrink, device area shrinks roughly as the square of the
scaling factor, whereas device speed (under constant field
assumptions) improves linearly with feature size.

On the other hand, there are a number of major tech-
nical challenges in the deep submicron era, the most impor-
tant of which is that interconnect delay (especially global
interconnect delay) does not scale with the feature size. If
all three dimensions of an interconnect wire are scaled

down by the same scaling factor, the interconnect delay
remains roughly unchanged, because the fringing field
component of wire capacitance does not vary with feature
size. Consequently, interconnect delay becomes a limiting
factor in the deep submicron era.

Another very important technical challenge is the
difficulty faced trying to dissipate heat from processor
chip packages as chip complexity and clock frequency
increases.

Indeed, special cooling techniques are needed for pro-
cessors that consume more than 100W of power. These
cooling techniques are expensive and economically infea-
sible for most applications (e.g., PC). There are also a
number of other technical challenges for high-performance
processors. Custom circuit designs are necessary to enable
GHz signals to travel in and out of chips. These challenges
require that designers provide whole-system solutions
rather than treating logic design, circuit design, and
packaging as independent phases of the design process.

Performance Considerations

Microprocessor performance has improved by approxi-
mately 50% per year for the last 20 years, which can be
attributed to higher clock frequencies, deeper pipelines,
and improved exploitation of instruction-level parallelism.
However, the cycle time at a given technology cannot be
too small, or we will sacrifice overall performance by incur-
ring too much clock overhead and suffering long pipeline
breaks. Similarly, the instruction-level parallelism is
usually limited by the application, which is further dimin-
ished by code generation inefficiencies, processor resource
limitations, and execution disturbances. The overall sys-
tem performance may deteriorate if the hardware to exploit
the parallelism becomes too complicated.

High-performance server applications, in which chip and
system costs are less important than total performance, en-
compass a wide range of requirements, from computation-
intensive to memory-intensive to I/O-intensive. The need
to customize implementation to specific applications may
even alter manufacturing. Although expensive, high-
performance servers may require fabrication micropro-
duction runs to maximize performance.

Power Considerations

Power consumption has received increasingly more atten-
tion because both high-performance processors and pro-
cessors for portable applications are limited by power
consumption. For CMOS design, the total power dissipa-
tion has three major components as follows:

1. switching loss,

2. leakage current loss, and

3. short circuit current loss.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Among these three factors, switching loss is usually the
most dominant factor. Switching loss is proportional to
operating frequency and is also proportional to the square
of supply voltage. Thus, lowering supply voltage can effec-
tively reduce switching loss. In general, operating
frequency is roughly proportional to supply voltage. If
supply voltage is reduced by 50%, operating frequency is
also reduced by 50%, and total power consumption
becomes one-eighth of the original power. On the other
hand, leakage power loss is a function of CMOS threshold
voltage. As supply voltage decreases, threshold voltage has
to be reduced, which results in an exponential increase in
leakage power loss. When feature size goes below 90 nm,
leakage power loss can be as high as switching power loss.

For many DSP applications, the acceptable performance
can be achieved at a low operating frequency by exploiting
the available program parallelism using suitable parallel
forms of processor configurations. Improving the battery
technology, obviously, can allow processors to run for an
extended period of time. Conventional nickel-cadmium
battery technology has been replaced by high-energy den-
sity batteries such as the NiMH battery. Nevertheless, the
energy density of a battery is unlikely to improve drasti-
cally for safety reasons. When the energy density is too
high, a battery becomes virtually an explosive.

Cost Considerations

Another design tradeoff is to determine the optimum die
size. In the high-performance server market, the processor
cost may be relatively small compared with the overall
system cost. Increasing the processor cost by 10 times
may not significantly affect the overall system cost. On
the other hand, system-on-chip implementations tend to be
very cost sensitive. For these applications, the optimum use
of die size is extremely important.

The area available to a designer is largely a function of
the manufacturing processing technology, which includes
the purity of the silicon crystals, the absence of dust and
other impurities, and the overall control of the diffusion and
process technology. Improved manufacturing technology
allows larger die with higher yields, and thus lower man-
ufacturing costs.

At a given technology, die cost is affected by chip size in
two ways. First, as die area increases, fewer die can be
realized from a wafer. Second, as the chip size increases, the
yield decreases, generally following a Poisson distribution
of defects. For certain die sizes, doubling the area can
increase the die cost by 10 times.

Other Considerations

As VLSI technology continues to improve, there are new
design considerations for computer architects. The simple
traditional measures of processor performance—cycle time
and cache size—are becoming less relevant in evaluating
application performance. Some of the new considerations
include:

1. Creating high-performance processors with enabling
compiler technology.

2. Designing power-sensitive system-on-chip proces-
sors in a very short turnaround time.

3. Improving features that ensure the integrity and
reliability of the computer.

4. Increasing the adaptability of processor structures,
such as cache and signal processors.

Performance-Cost-Power Tradeoffs

In the era of deep-submicron technology, two classes of
microprocessors are evolving: (1) high-performance server
processors and (2) embedded client processors. The major-
ity of implementations are commodity system-on-chip
processors devoted to end-user applications. These highly
cost-sensitive client processors are used extensively in
consumer electronics. Individual application may have
specific requirements; for example, portable and wireless
applications require very low power consumption. The
other class consists of high-end server processors, which
are performance-driven. Here, other parts of the system
dominate cost and power issues.

At a fixed feature size, area can be traded off for perfor-
mance (expressed in term of execution time, T). VLSI
complexity theorists have shown that an A � Tn bound
exists for microprocessor designs (1), where n usually falls
between 1 and 2. By varying the supply voltage, it is also
possible to tradeoff time T for power P with a P � T3 bound.

Figure 1. Number of transistors per chip.
(Source: National Technology Roadmap for Semiconduc-
tors)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

90 65 32 18

2004 2007 2013 2018

Technology (nm) / Year of First Introduction

N
o

. o
f 

tr
an

si
st

o
rs

 (
m

ill
io

n
s)

2 COMPUTER ARCHITECTURE



Figure 2 shows the possible tradeoff involving area, time,
and power in a processor design (3). Embedded and high-
end processors operate in different design regions of this
three-dimensional space. The power and area axes are
typically optimized for embedded processors, whereas the
time axis is typically optimized for high-end processors.

Alternatives in Computer Architecture

In computer architecture, the designer must understand
the technology and the user requirements as well as the
available alternatives in configuring a processor. The
designer must apply what is known of user program beha-
vior and other requirements to the task of realizing an
area-time-power optimized processor. User programs offer
differing types and forms of parallelism that can be
matched by one or more processor configurations. A pri-
mary design goal is to identify the most suitable processor
configuration and then scale the concurrency available
within that configuration to match cost constraints.

The next section describes the principle functional ele-
ments of a processor. Then the various types of parallel and
concurrent processor configuration are discussed. Finally,
some recent architectures are compared and some conclud-
ing remarks are presented.

PROCESSOR ARCHITECTURE

The processor architecture consists of the instruction
set, the memory that it operates on, and the control and
functional units that implement and interpret the instruc-
tions. Although the instruction set implies many imple-
mentation details, the resulting implementation is a great
deal more than the instruction set. It is the synthesis of the
physical device limitations with area-time-power tradeoffs
to optimize cost-performance for specified user require-
ments. As shown in Fig. 3, the processor architecture
may be divided into a high-level programming model and
a low-level microarchitecture.

Instruction Set

Computers deal with many different kinds of data and
data representations. The operations available to perform
the requisite data manipulations are determined by the
data types and the uses of such data. Processor design
issues are closely bound to the instruction set. Instruction
set behavior data affects many of these design issues

The instruction set for most modern machines is based
on a register set to hold operands and addresses. The
register set size varies from 8 to 64 words, each word
consisting of 32 to 64 bits. An additional set of floating-
point registers (16 to 64 bits) is usually also available. A

Power (P)

Cost- and power- 
sensitive client 
processor design

A · Tn= constant

P · T3 = constant

High-performance
server processor
design

Area (A)

Time (T) Figure 2. Design tradeoffs for high-end and low-end proces-
sors.

Figure 3. Processor architecture block
diagram.

COMPUTER ARCHITECTURE 3



typical instruction set specifies a program status word,
which consists of various types of control status informa-
tion, including condition codes set by the instruction.
Common instruction sets can be classified by format differ-
ences into three types as follows:

1. the L/S, or Load-Store architecture;

2. the R/M, or Register-Memory architecture; and

3. the RþM, or Register-plus-Memory architecture.

The L/S or Load-Store instruction set describes many of
the RISC (reduced instruction set computer) microproces-
sors (5). All values must be loaded into registers before an
execution can take place. An ALU ADD instruction must
have both operands with the result specified as registers
(three addresses). The purpose of the RISC architecture is
to establish regularity of execution and ease of decoding
in an effort to improve overall performance. RISC archi-
tects have tried to reduce the amount of complexity in
the instruction set itself and regularize the instruction
format so as to simplify decoding of the instruction. A
simpler instruction set with straightforward timing is
more readily implemented. For these reasons, it was
assumed that implementations based on the L/S instruc-
tion set would always be faster (higher clock rates and
performance) than other classes, other parameters being
generally the same.

The R/M or Register-Memory architectures include
instruction that can operate both on registers and with
one of the operands residing in memory. Thus, for the R/M
architecture, an ADD instruction might be defined as the
sum of a register value and a value contained in memory,
with the result going to a register. The R/M instruction sets
generally trace their evolution to the IBM System/360
introduced in 1963. The mainframe computers follow the
R/M style (IBM, Amdahl, Hitachi, Fujitsu, etc., which all
use the IBM instruction set), as well as the basic Intel x86
series.

The RþM or Register-plus-Memory architectures allow
formats to include operands that are either in memory or
in registers. Thus, for example, an ADD may have all of
its operands in registers or all of its operands in memory,
or any combination thereof. The RþM architecture gene-
ralizes the formats of R/M. The classic example of the RþM
architecture was Digital Equipment’s VAX series of
machines. VAX also generalized the use of the register
set through the use of register modes. The use of an
extended set of formats and register modes allows a power-
ful and varied specification of operands and operation type
within a single instruction. Unfortunately, format and
mode variability complicates the decoding process so that
the process of interpretation of instructions can be slow (but
RþM architectures make excellent use of memory/bus
bandwidth).

Fromthe architect’s point of view, the tradeoff in instruc-
tion sets is an area-time compromise. The register-memory
(R/M and RþM) architectures offer a more concise program
representation using fewer instructions of variable size
compared with L/S. Programs occupy less space in memory
and smaller instruction caches can be used effectively. The

variable instruction size makes decoding more difficult.
The decoding of multiple instructions requires predicting
the starting point of each. The register-memory processors
require more circuitry (and area) to be devoted to instruc-
tion fetch and decode. Generally, the success of Intel-type
x86 implementations in achieving high clock rates and
performance has shown that the limitations of a register-
memory instruction set can be overcome.

Memory

The memory system comprises the physical storage ele-
ments in the memory hierarchy. These elements include
those specified by the instruction set (registers, main mem-
ory, and disk sectors) as well as those elements that are
largely transparent to the user’s program (buffer registers,
cache, and page-mapped virtual memory). Registers have
the fastest access and, although limited in capacity (32 to
128 bits), in program execution, is the most often referenced
type of memory. A processor cycle time is usually defined
by the time it takes to access one or more registers, operate
their contents, and return the result to a register.

Main memory is the type of storage usually associated
with the simple term memory. Most implementations are
based on DRAM (e.g., DDR and DDR-2 SDRAM), although
SRAM and Flash technologies have also been used. DRAM
memory is accessible in order of 10s of cycles (typically
20 to 30) and usually processors have between 128 MB and
4 GB of such storage. The disk contains all the programs
and data available to the processor. Its addressable unit
(sector) is accessible in 1 to 10 ms, with a typical single-unit
disk capacity of 10 to 300 GB. Large server systems may
have 100s or more such disk units. As the levels of the
memory system have such widely differing access times,
additional levels of storage (buffer registers, cache, and
paged memory) are added that serve as a buffer between
levels attempting to hide the access time differences.

Memory Hierarchy. There are basically three para-
meters that define the effectiveness of the memory system:
latency, bandwidth, and the capacity of each level of the
system. Latency is the time for a particular access request
to be completed. Bandwidth refers to the number of
requests supplied per unit time. To provide large memory
spaces with desirable access time latency and bandwidths,
modern memory systems use a multiple-level memory
hierarchy.

Smaller, faster levels have greater cost per bit than
larger, slower levels. The multiple levels in the storage
hierarchy can be ordered by their size and access time from
the smallest, fastest level to the largest, slowest level. The
goal of a good memory system design is to provide the
processor with an effective memory capacity of the largest
level with an access time close to the fastest. How well this
goal is achieved depends on a number of factors—the
characteristics of the device used in each level as well as
the behavioral properties of the programs being executed.

Suppose we have a memory system hierarchy consisting
of a cache, a main memory, and a disk or backing storage.
The disk contains the contents of the entire virtual memory
space. Typical size (S) and access time ratios (t) are as

4 COMPUTER ARCHITECTURE



follows:

Size: memory/cache � 1000
Access time: memory/cache � 30
Size: disk/memory � 100–1000þ
Access time: disk/memory � 100,000

Associated with both the cache and a paged main memory
are corresponding tables that define the localities that are
currently available at that level. The page table contains
the working set of the disk—those disk localities that have
been recently referenced by the program, and are contained
in main memory. The cache table is completely managed by
the hardware and contains those localities (called lines) of
memory that have been recently referenced by the pro-
gram.

The memory system operates by responding to a virtual
effective address generated by a user program, which is
translated into a real address in main memory. This real
address accesses the cache table to find the entry in the
cache for the desired value.

Paging and caching are the mechanisms to support the
efficient management of the memory space. Paging is
the mechanism by which the operating system brings
fixed-size blocks (or pages)—a typical size is 4 to 64 KB—
into main memory. Pages are fetched from backing store
(usually disk) on demand (or as required) by the processor.
When a referenced page is not present, the operating
system is called and makes a request for the page, then
transfers control to another process, allowing the processor
resources to be used while waiting for the return of the
requested information. The real address is used to access
the cache and main memory. The low-order (least signi-
ficant) bits address a particular location in a page. The
upper bits of a virtual address access a page table (in
memory) that:

1. determines whether this particular partial page lies
in memory, and

2. translates the upper address bits if the page is pre-
sent, producing the real address.

Usually, the tables performing address translation are in
memory, and a mechanism for the translation called the
translation lookaside buffer (TLB) must be used to speed up
this translation. The TLB is a simple register system
usually consisting of between 64 and 256 entries that
save recent address translations for reuse.

Control and Execution

Instruction Execution Sequence. The semantics of the
instruction determines that a sequence of actions must
be performed to produce the specified result (Fig. 4). These
actions can be overlapped (as discussed in the pipelined
processor section) but the result must appear in the speci-
fied serial order. These actions include the following:

1. fetching the instruction into the instruction register
(IF),

2. decoding the op code of the instruction (ID),

3. generating the address in memory of any data item
residing there (AG),

4. fetching data operand(s) into executable registers
(DF),

5. executing the specified operation (EX), and

6. returning the result to the specified register (WB).

Decode: Hardwired and Microcode. The decoder pro-
duces the control signals that enable the functional units
to execute the actions that produce the result specified
by the instruction. Each cycle, the decoder produces a
new set of control values that connect various registers
and functional units. The decoder takes as an initial input
the op code of the instruction. Using this op code, it gene-
rates the sequence of actions, one per cycle, which com-
pletes the execution process. The last step of the current
instruction’s execution is the fetching of the next instruc-
tion into the instruction register so that it may be decoded.
The implementation of the decoder may be based on
Boolean equations that directly implement the specified
actions for each instruction. When these equations are
implemented with logic gates, the resultant decoder is
called a hardwired decoder.

For extended instruction sets or complex instructions,
another implementation is sometimes used, which is based
on the use of a fast storage (or microprogram store). A
particular word in the storage (called a microcode) contains
the control information for a single action or cycle. A
sequence of microinstructions implements the instruction
execution.

Data Paths: Busses and Functional Units. The data paths
of the processor include all the functional units needed
to implement the vocabulary (or op codes) of the instruc-
tion set. Typical functional units are the ALU (arithmetic
logic unit) and the floating-point unit. Busses and other
structured interconnections between the registers and
the functional units complete the data paths.

PROGRAM PARALLELISM AND PARALLEL ARCHITECTURE

Exploiting program parallelism is one of the most impor-
tant elements in computer architecture design. Programs
written in imperative languages encompass the following
four levels of parallelism:

1. parallelism at the instruction level (fine-grained),

2. parallelism at the loop level (middle-grained),

Time 

WBIF DF EXID AG

Figure 4. Instruction execution sequence.

COMPUTER ARCHITECTURE 5



3. parallelism at the procedure level (middle-grained),
and

4. parallelism at the program level (coarse-grained).

Instruction-level parallelism (ILP) means that multiple
operations can be executed in parallel within a program.
ILP may be achieved with hardware, compiler, or operating
system techniques. At the loop level, consecutive loop itera-
tions are ideal candidates for parallel execution provided
that there is no data dependency between subsequent loop
iterations. Next, there is parallelism available at the pro-
cedure level, which depends largely on the algorithms used
in the program. Finally, multiple independent programs
can obviously execute in parallel.

Different computer architectures have been built to
exploit this inherent parallelism. In general, a computer
architecture consists of one or more interconnected proces-
sor elements that operate concurrently, solving a single
overall problem. The various architectures can be conve-
niently described using the stream concept. A stream is
simply a sequence of objects or actions. There are both
instruction streams and data streams, and there are four
simple combinations that describe the most familiar par-
allel architectures (6):

1. SISD – single instruction, single data stream; The
traditional uniprocessor (Fig. 5).

2. SIMD – single instruction, multiple data stream,
which includes array processors and vector proces-
sors (Fig. 6).

3. MISD – multiple instruction, single data stream,
which are typically systolic arrays (Fig. 7).

4. MIMD – multiple instruction, multiple data stream,
which includes traditional multiprocessors as well as
the newer work of networks of workstations (Fig. 8).

The stream description of computer architectures
serves as a programmer’s view of the machine. If the pro-
cessor architecture allows for parallel processing of one
sort or another, then this information is also visible to
the programmer. As a result, there are limitations to the
stream categorization. Although it serves as useful short-
hand, it ignores many subtleties of an architecture or an
implementation. Even an SISD processor can be highly
parallel in its execution of operations. This parallelism is
typically not visible to the programmer even at the assem-

bly language level, but becomes visible at execution time
with improved performance.

There are many factors that determine the overall effec-
tiveness of a parallel processor organization. Interconnec-
tion network, for instance, can affect the overall speedup.
The characterizations of both processors and networks are
complementary to the stream model and, when coupled
with the stream model, enhance the qualitative under-
standing of a given processor configuration.

SISD – Single Instruction, Single Data Stream

The SISD class of processor architecture includes most
commonly available computers. These processors are
known as uniprocessors and can be found in millions of
embedded processors in video games and home appliances
as well as stand-alone processors in home computers, engi-
neering workstations, and mainframe computers. Although

Figure 7. MISD – multiple instruction, single data stream.

Figure 5. SISD – single instruction, single data stream.

Figure 6. SIMD – single instruction, multiple data stream.

Figure 8. MIMD – multiple instruction, multiple data stream.

6 COMPUTER ARCHITECTURE



a programmer may not realize the inherent parallelism
within these processors, a good deal of concurrency can be
present. Pipelining is a powerful technique that is used in
almost all current processor implementations. Other tech-
niques aggressively exploit parallelism in executing code
whether it is declared statically or determined dynamically
from an analysis of the code stream.

During execution, a SISD processor executes one or
more operations per clock cycle from the instruction
stream. An instruction is a container that represents the
smallest execution packet managed explicitly by the pro-
cessor. One or more operations are contained within an
instruction. The distinction between instructions and
operations is crucial to distinguish between processor beha-
viors. Scalar and superscalar processors consume one or
more instructions per cycle where each instruction contains
a single operation. VLIW processors, on the other hand,
consume a single instruction per cycle where this instruc-
tion contains multiple operations.

A SISD processor has four primary characteristics.
The first characteristic is whether the processor is capable
of executing multiple operations concurrently. The second
characteristic is the mechanisms by which operations
are scheduled for execution—statically at compile time,
dynamically at execution, or possibly both. The third char-
acteristic is the order that operations are issued and retired
relative to the original program order—these operations
can be in order or out of order. The fourth characteristic is
the manner in which exceptions are handled by the pro-
cessor—precise, imprecise, or a combination. This last
condition is not of immediate concern to the applications
programmer, although it is certainly important to the
compiler writer or operating system programmer who
must be able to properly handle exception conditions.
Most processors implement precise exceptions, although
a few high-performance architectures allow imprecise
floating-point exceptions.

Tables 1, 2, and 3 describe some representative scalar,
processors, superscalar processors, and VLIW processors.

Scalar Processor. Scalar processors process a maximum
of one instruction per cycle and execute a maximum of one
operation per cycle. The simplest scalar processors, sequen-
tial processors, process instructions atomically one after
another. This sequential execution behavior describes the
sequential execution model that requires each instruction

executed to completion in sequence. In the sequential
execution model, execution is instruction-precise if the
following conditions are met:

1. All instructions (or operations) preceding the current
instruction (or operation) have been executed and all
results have been committed.

2. All instructions (or operations) after the current
instruction (or operation) are unexecuted and no
results have been committed.

3. The current instruction (or operation) is in an arbi-
trary state of execution and may or may not have
completed or had its results committed.

For scalar and superscalar processors with only a single
operation per instruction, instruction-precise and operation-
precise executions are equivalent. The traditional defini-
tion of sequential execution requires instruction-precise
execution behavior at all times, mimicking the execution
of a nonpipelined sequential processor.

Sequential Processor. Sequential processors directly
implement the sequential execution model. These proces-
sors process instructions sequentially from the instruction
stream. The next instruction is not processed until all
execution for the current instruction is complete and its
results have been committed.

Although conceptually simple, executing each instruc-
tion sequentially has significant performance drawbacks—
a considerable amount of time is spent in overhead and not
in actual execution. Thus, the simplicity of directly imple-
menting the sequential execution model has significant
performance costs.

Pipelined Processor. Pipelining is a straightforward
approach to exploiting parallelism that is based on concur-
rently performing different phases (instruction fetch,
decode, execution, etc.) of processing an instruction. Pipe-
lining assumes that these phases are independent between
different operations and can be overlapped; when this
condition does not hold, the processor stalls the down-
stream phases to enforce the dependency. Thus, multiple
operations can be processed simultaneously with each
operation at a different phase of its processing. Figure 9
illustrates the instruction timing in a pipelined processors,
assuming that the instructions are independent. The

Table 1. Typical Scalar Processors (SISD)

Processor
Year of

introduction
Number of

function unit
Issue
width Scheduling

Number of
transistors

Intel 8086 1978 1 1 Dynamic 29K
Intel 80286 1982 1 1 Dynamic 134K
Intel 80486 1989 2 1 Dynamic 1.2M
HP PA-RISC 7000 1991 1 1 Dynamic 580K
Sun SPARC 1992 1 1 Dynamic 1.8M
MIPS R4000 1992 2 1 Dynamic 1.1M
ARM 610 1993 1 1 Dynamic 360K
ARM SA-1100 1997 1 1 Dynamic 2.5M

COMPUTER ARCHITECTURE 7



meaning of each pipeline stage is described in the Instruc-
tion Execution Sequence system.

For a simple pipelined machine, only one operation
occurs in each phase at any given time. Thus, one operation
is being fetched, one operation is being decoded, one opera-
tion is accessing operands, one operation is in execution,
and one operation is storing results. The most rigid form of a
pipeline, sometimes called the static pipeline, requires the
processor to go through all stages or phases of the pipeline
whether required by a particular instruction or not.
Dynamic pipeline allows the bypassing of one or more of
the stages of the pipeline depending on the requirements of
the instruction. There are at least three levels of sophisti-
cation within the category of dynamic pipeline processors
as follows:

� Type 1: Dynamic pipelines that require instructions to
be decoded in sequence and results to be executed and
written back in sequence. For these types of simpler
dynamic pipeline processors, the advantage over a
static pipeline is relatively modest. In-order execution
requires the actual change of state to occur in order
specified in the instruction sequence.

� Type 1-Extended: A popular extension of the Type 1
pipeline is to require the decode to be in order, but
the execution stage of ALU operations need not be in
order. In these organizations, the address generation
stage of the load and store instructions must be
completed before any subsequent ALU instruction
does a writeback. The reason is that the address gen-
eration may cause a page execution and affect the

Table 3. Typical VLIW Processors (SISD)

Processor
Year of

introduction
Number of

function unit
Issue
width Scheduling

Issue/complete
order

Multiflow Trace 7/200 1987 7 7 Static In-order/in-order
Multiflow Trace 14/200 1987 14 14 Static In-order/in-order
Multiflow Trace 28/200 1987 28 28 Static In-order/in-order
Cydrome Cydra 5 1987 7 7 Static In-order/in-order
Philips TM-1 1996 27 5 Static In-order/in-order
TI TMS320/C62x 1997 8 8 Static In-order/in-order
Intel Itanium 2001 9 6 Static In-order/in-order
Intel Itanium 2 2003 11 6 Static In-order/in-order

Table 2. Typical Superscalar Processors (SISD)

Processor
Year of

introduction
Number of

function unit
Issue
width Scheduling

Number of
transistors

HP PA-RISC 7100 1992 2 2 Dynamic 850K
Motorola PowerPC 601 1993 4 3 Dynamic 2.8M
MIPS R8000 1994 6 4 Dynamic 3.4M
DEC Alpha 21164 1994 4 4 Dynamic 9.3M
Motorola PowerPC 620 1995 4 2 Dynamic 7M
MIPS R10000 1995 5 4 Dynamic 6.8M
HP PA-RISC 7200 1995 3 2 Dynamic 1.3M
Intel Pentium Pro 1995 5 3/6y Dynamic 5.5M
DEC Alpha 21064 1992 4 2 Dynamic 1.7M
Sun Ultra I 1995 9 4 Dynamic 5.2M
Sun Ultra II 1996 9 4 Dynamic 5.4M
AMD K5 1996 6 4/46y Dynamic 4.3M
Intel Pentium II 1997 5 3/66y Dynamic 7.5M
AMD K6 1997 7 2/66y Dynamic 8.8M
Motorola PowerPC 740 1997 6 3 Dynamic 6.4M
DEC Alpha 21264 1998 6 4 Dynamic 15.2M
HP PA-RISC 8500 1998 10 4 Dynamic 140M
Motorola PowerPC 7400 1999 10 3 Dynamic 6.5M
AMD K7 1999 9 3/66y Dynamic 22M
Intel Pentium III 1999 5 3/66y Dynamic 28M
Sun Ultra III 2000 6 4 Dynamic 29M
DEC Alpha 21364 2000 6 4 Dynamic 100M
AMD Athlon 64 FX51 2003 9 3/66y Dynamic 105M
Intel Pentium 4 Prescott 2003 5 3/66y Dynamic 125M

1For some Intel�86 family processors, each instruction is broken into a number of microoperation codes in the decoding stage. In this article,
two different issue widths are given for these processors: The first one is the maximum number of instructions issued per cycle, and the second
one is the maximum number of microoperation codes issued per cycle.

8 COMPUTER ARCHITECTURE



processor state. As a result of these restrictions and the
overall frequency of load and store instructions, the
Type 1-Extended pipeline behaves much as the basic
Type-1 pipeline.

� Type 2: Dynamic pipelined machines that can be con-
figured to allow out-of order execution yet retain in-
order instruction decode. For this type of pipelined
processor, the execution and writeback of all instruc-
tions is a function only of dependencies on prior
instruction. If a particular instruction is independent
of all preceding instructions, its execution can be com-
pleted independently of the successful completion of
prior instructions.

� Type 3: The third type of dynamic pipeline allows
instructions to be issued as well as completed out of
order. A group of instruction is analyzed together, and
the first instruction that is found to be independent of
prior instructions is decoded.

Instruction-level Parallelism. Although pipelining does
not necessarily lead to executing multiple instructions at
exactly the same time, there are other techniques that do.
These techniques may use some combination of static sche-
duling and dynamic analysis to perform concurrently the
actual evaluation phase of several different operations,
potentially yielding an execution rate of greater than one
operation every cycle. This kind of parallelism exploits
concurrency at the computation level. As historically
most instructions consist of only a single operation, this
kind of parallelism has been named instruction-level par-
allelism (ILP).

Two architectures that exploit ILP are superscalar
and VLIW, which use radically different techniques to
achieve greater than one operation per cycle. A superscalar
processor dynamically examines the instruction stream to
determine which operations are independent and can be
executed. A VLIW processor depends on the compiler to
analyze the available operations (OP) and to schedule
independent operations into wide instruction words, which
then executes these operations in parallel with no further
analysis.

Figure 10 shows the instruction timing of a pipelined
superscalar or VLIW processor executing two instructions

per cycle. In this case, all the instructions are independent
so that they can be executed in parallel.

Superscalar Processor. Dynamic out-of-order pipelined
processors reach the limits of performance for a scalar
processor by allowing out-of-order operation execution.
Unfortunately, these processors remain limited to execut-
ing a single operation per cycle by virtue of their scalar
nature. This limitation can be avoided with the addition
of multiple functional units and a dynamic scheduler to
process more than one instruction per cycle. These result-
ing superscalar processors can achieve execution rates of
more than one instruction per cycle. The most significant
advantage of a superscalar processor is that processing
multiple instructions per cycle is done transparently to
the user, and that it can provide binary compatibility while
achieving better performance.

Compared with an out-of-order pipelined processor, a
superscalar processor adds a scheduling instruction win-
dow that dynamically analyzes multiple instructions from
the instruction stream. Although processed in parallel,
these instructions are treated in the same manner as in
an out-of-order pipelined processor. Before an instruction is
issued for execution, dependencies between the instruction
and its prior instructions must be checked by hardware.

As a result of the complexity of the dynamic scheduling
logic, high-performance superscalar processors are limited
to processing four to six instructions per cycle (refer to the
Examples of Recent Architecture section). Although super-
scalar processors can take advantage of dynamic execution
behavior and exploit instruction-level parallelism from
the dynamic instruction stream, exploiting high degrees
of instruction requires a different approach. An alter-
native approach is to rely on the compiler to perform the
dependency analyses and to eliminate the need for complex
analyses performed in hardware.

VLIW Processor. In contrast to dynamic analyses in
hardware to determine which operations can be executed
in parallel, VLIW processors rely on static analyses in the
compiler. VLIW processors are, thus, less complex than
superscalar processor and have the potential for higher
performance. A VLIW processor executes operations from
statically scheduled instructions that contain multiple

Time 

WB 

WB EX DF AG 

Instruction #1 

ID IF 

EX DF AG 

Instruction #2 

ID IF 

DF AG 

Instruction #4

ID IF 

EX DF AG 

Instruction #3

ID IF 

Figure 9. Instruction timing in a pipelined processor.

COMPUTER ARCHITECTURE 9



independent operations. Although it is not required that
static processors exploit instruction-level parallelism, most
statically scheduled processors use wide instruction
words. As the complexity of a VLIW processor is not sig-
nificantly greater than that of a scalar processor, the
improved performance comes without the complexity
penalties.

On the other hand, VLIW processors rely on the static
analyses performed by the compiler and are unable to take
advantage of any dynamic execution characteristics. As
issue widths become wider and wider, the avoidance of
complex hardware logic will rapidly erode the benefits of
out-of-order execution. This benefit becomes more signifi-
cant as memory latencies increase and the benefits from
out-of-order execution become a less significant portion of
the total execution time. For applications that can be
statically scheduled to use the processor resources effec-
tively, a simple VLIW implementation results in high
performance.

Unfortunately, not all applications can be effectively
scheduled for VLIW processors. In real systems, execution
rarely proceeds exactly along the path defined by the code
scheduler in the compiler. These are two classes of execu-
tion variations that can develop and affect the scheduled
execution behavior:

1. Delayed results from operations whose latency differs
from the assumed latency scheduled by the compiler.

2. Interruptions from exceptions or interrupts, which
change the execution path to a completely different
and unanticipated code schedule.

Although stalling the processor can control delayed
results, this solution can result in significant performance
penalties from having to distribute the stall signal across
the processor. Delays occur from many causes including
mismatches between the architecture and an implementa-
tion as well as from special-case conditions that require

additional cycles to complete an operation. The most com-
mon execution delay is a data cache miss; another example
is a floating-point operation that requires an additional
normalization cycle. For processors without hardware
resource management, delayed results can cause resource
conflicts and incorrect execution behavior. VLIW proces-
sors typically avoid all situations that can result in a delay
by not using data caches and by assuming worst-case
latencies for operations. However, when there is insuffi-
cient parallelism to hide the exposed worst-case operation
latency, the instruction schedule will have many incom-
pletely filled or empty instructions that can result in poor
performance.

Interruptions are usually more difficult to control than
delayed results. Managing interruptions is a significant
problem because of their disruptive behavior and because
the origins of interruptions are often completely beyond a
program’s control. Interruptions develop from execution-
related internal sources (exceptions) as well as arbitrary
external sources (interrupts). The most common interrup-
tion is an operation exception resulting from either an error
condition during execution or a special-case condition that
requires additional corrective action to complete operation
execution. Whatever the source, all interruptions require
the execution of an appropriate service routine to resolve
the problem and to restore normal execution at the point of
the interruption.

SIMD – Single Instruction, Multiple Data Stream

The SIMD class of processor architecture includes both
array and vector processors. The SIMD processor is a
natural response to the use of certain regular data struc-
tures, such as vectors and matrices. From the reference
point of an assembly-level programmer, programming
SIMD architecture appears to be very similar to pro-
gramming a simple SISD processor except that some opera-
tions perform computations on aggregate data. As these

Figure 10. Instruction timing of a pipelined ILP
processor.

Instruction #1 

Instruction #6

Instruction #4 

WB 

Instruction #2 

WB 

Time 

Instruction #3 

WB 

Instruction #5

WB 

EX DF AG ID IF 

EX DF AG ID IF 

EX DF AG ID IF 

EX DF AG ID IF 

EX DF AG ID IF 

EX DF AG ID IF 

10 COMPUTER ARCHITECTURE



regular structures are widely used in scientific program-
ming, the SIMD processor has been very successful in these
environments.

The two popular types of SIMD processor are the array
processor and the vector processor. They differ both in
their implementations and in their data organizations.
An array processor consists of many interconnected pro-
cessor elements that each have their own local memory
space. A vector processor consists of a single processor that
references a single global memory space and has special
function units that operate specifically on vectors. Tables 4
and 5 describe some representative vector processors and
array processors.

Array Processors. The array processor is a set of parallel
processor elements connected via one or more networks,
possibly including local and global interelement commu-
nications and control communications. Processor elements
operate in lockstep in response to a single broadcast
instruction from a control processor. Each processor ele-
ment has its own private memory and data is distributed
across the elements in a regular fashion that is dependent
on both the actual structure of the data and also on the
computations to be performed on the data. Direct access
to global memory or another processor element’s local
memory is expensive, so intermediate values are pro-
pagated through the array through local interprocessor
connections, which requires that the data be distributed
carefully so that the routing required to propagate these
values is simple and regular. It is sometimes easier to
duplicate data values and computations than it is to affect
a complex or irregular routing of data between processor
elements.

As instructions are broadcast, there is no means local
to a processor element of altering the flow of the instruction
stream; however, individual processor elements can con-
ditionally disable instructions based on local status
information—these processor elements are idle when
this condition occurs. The actual instruction stream con-
sists of more than a fixed stream of operations; an array
processor is typically coupled to a general-purpose control
processor that provides both scalar operations as well as
array operations that are broadcast to all processor ele-
ments in the array. The control processor performs the
scalar sections of the application, interfaces with the out-
side world, and controls the flow of execution; the array
processor performs the array sections of the application as
directed by the control processor.

A suitable application for use on an array processor
has several key characteristics: a significant amount of
data that has a regular structure; computations on the
data that are uniformly applied to many or all elements
of the dataset; and simple and regular patterns relating
the computations and the data. An example of an appli-
cation that has these characteristics is the solution of the
Naviér– Stokes equations, although any application that
has significant matrix computations is likely to benefit from
the concurrent capabilities of an array processor.

The programmer’s reference point for an array processor
is typically the high-level language level; the programmer
is concerned with describing the relationships between the
data and the computations but is not directly concerned
with the details of scalar and array instruction scheduling
or the details of the interprocessor distribution of data
within the processor. In fact, in many cases, the program-
mer is not even concerned with size of the array processor.
In general, the programmer specifies the size and any

Table 4. Typical Vector Computers (SIMD)

Processor
Year of

introduction
Memory- or

register-based
Number of

processor units
Maximum vector

length

Cray 1 1976 Register 1 64
CDC Cyber 205 1981 Memory 1 65535
Cray X-MP 1982 Register 1–4 64
Cray 2 1985 Register 5 64
Fujitsu VP-100/200 1985 Register 3 32–1024
ETA ETA 1987 Memory 2–8 65535
Cray Y-MP/832 1989 Register 1–8 64
Cray Y-MP/C90 1991 Register 16 64
Convex C3 1991 Register 1–8 128
Cray T90 1995 Register 1–32 128
NEC SX-5 1998 Register 1–512 256

Table 5. Typical Array Processors (SIMD)

Processor
Year of

introduction
Memory
model

Processor
element

Number of
processors

Burroughs BSP 1979 Shared General purpose 16
Thinking Machine CM-1 1985 Distributed Bit-serial Up to 65,536
Thinking Machine CM-2 1987 Distributed Bit-serial 4,096–65,536
MasPar MP-1 1990 Distributed Bit-serial 1,024–16,384

COMPUTER ARCHITECTURE 11



specific distribution information for the data and the
compiler maps the implied virtual processor array onto
the physical processor elements that are available and
generates code to perform the required computations.
Thus, although the size of the processor is an important
factor in determining the performance that the array
processor can achieve, it is not a fundamental characteristic
of an array processor.

The primary characteristic of a SIMD processor is
whether the memory model is shared or distributed. In
this section, only processors using a distributed memory
model are described as this configuration is used by SIMD
processors today and the cost of scaling a shared-memory
SIMD processor to a large number of processor elements
would be prohibitive. Processor elements and network
characteristics are also important in characterizing a
SIMD processor.

Vector Processors. A vector processor is a single proces-
sor that resembles a traditional SISD processor except
that some of the function units (and registers) operate
on vectors—sequences of data values that are seemingly
operated on as a single entity. These function units are
deeply pipelined and have a high clock rate; although the
vector pipelines have as long or longer latency than a
normal scalar function unit, their high clock rate and the
rapid delivery of the input vector data elements results in a
significant throughput that cannot be matched by scalar
function units.

Early vector processors processed vectors directly from
memory. The primary advantage of this approach was
that the vectors could be of arbitrary lengths and were
not limited by processor resources; however, the high start-
up cost, limited memory system bandwidth, and memory
system contention proved to be significant limitations.
Modern vector processors require that vectors be explicitly
loaded into special vector registers and stored back into
memory, the same course that modern scalar processors
have taken for similar reasons. However, as vector regis-
ters can rapidly produce values for or collect results from
the vector function units and have low startup costs, mod-
ern register-based vector processors achieve significantly
higher performance than the earlier memory-based vector
processors for the same implementation technology.

Modern processors have several features that enable
them to achieve high performance. One feature is the ability
to concurrently load and store values between the vector
register file and main memory while performing computa-
tions on values in the vector register file. This feature is
important because the limited length of vector registers
requires that vectors that are longer be processed in
segments—a technique called strip-mining. Not being
able to overlap memory accesses and computations would
pose a significant performance bottleneck.

Just like SISD processors, vector processors support a
form of result bypassing—in this case called chaining—
that allows a follow-on computation to commence as soon
as the first value is available from the preceding compu-
tation. Thus, instead of waiting for the entire vector to be
processed, the follow-on computation can be significantly
overlapped with the preceding computation that it is

dependent on. Sequential computations can be efficiently
compounded and behave as if they were a single opera-
tion with a total latency equal to the latency of the first
operation with the pipeline and chaining latencies of the
remaining operations but none of the startup overhead
that would be incurred without chaining. For example,
division could be synthesized by chaining a reciprocal
with a multiply operation. Chaining typically works for
the results of load operations as well as normal computa-
tions. Most vector processors implement some form of
chaining.

A typical vector processor configuration consists of a
vector register file, one vector addition unit, one vector
multiplication unit, and one vector reciprocal unit (used
in conjunction with the vector multiplication unit to per-
form division); the vector register file contains multiple
vector registers. In addition to the vector registers, there
are also a number of auxiliary and control registers, the
most important of which is the vector length register.
The vector length register contains the length of the vector
(or the loaded subvector if the full vector length is longer
than the vector register itself) and is used to control the
number of elements processed by vector operations. There
is no reason to perform computations on non-data that
is useless or could cause an exception.

As with the array processor, the programmer’s reference
point for a vector machine is the high-level language. In
most cases, the programmer sees a traditional SISD
machine; however, as vector machines excel on vectorizable
loops, the programmer can often improve the performance
of the application by carefully coding the application, in
some cases explicitly writing the code to perform strip-
mining, and by providing hints to the compiler that help
to locate the vectorizable sections of the code. This situation
is purely an artifact of the fact that the programming
languages are scalar oriented and do not support the treat-
ment of vectors as an aggregate data type but only as a
collection of individual values. As languages are defined
(such as Fortran 90 or High-Performance Fortran) that
make vectors a fundamental data-type, then the program-
mer is exposed less to the details of the machine and to its
SIMD nature.

The vector processor has one primary characteristic.
This characteristic is the location of the vectors; vectors
can be memory-or register-based. There are many fea-
tures that vector processors have that are not included
here because of their number and many variations. These
features include variations on chaining, masked vector
operations based on a boolean mask vector, indirectly
addressed vector operations (scatter/gather), compressed/
expanded vector operations, reconfigurable register files,
multiprocessor support, and soon. Vector processors have
developed dramatically from simple memory-based vector
processors to modern multiple-processor vector processors
that exploit both SIMD vector and MIMD style processing.

MISD – Multiple Instruction, Single Data Stream

Although it is easy to both envision and design MISD
processors, there has been little interest in this type of
parallel architecture. The reason, so far anyway, is that

12 COMPUTER ARCHITECTURE



there are no ready programming constructs that easily map
programs into the MISD organization.

Conceptually, MISD architecture can be represented as
multiple independently executing function units operating
on a single stream of data, forwarding results from one
function unit to the next, which, on the microarchitecture
level, is exactly what the vector processor does. However, in
the vector pipeline, the operations are simply fragments of
an assembly-level operation, as distinct from being a com-
plete operation. Surprisingly, some of the earliest attempts
at computers in the 1940s could be seen as the MISD
concept. They used plug boards for programs, where data
in the form of a punched card was introduced into the first
stage of a multistage processor. A sequential series of
actions was taken where the intermediate results were
forwarded from stage to stage until, at the final stage, a
result would be punched into a new card.

There are, however, more interesting uses of the MISD
organization. Nakamura has pointed out the value of an
MISD machine called the SHIFT machine. In the SHIFT
machine, all data memory is decomposed into shift regis-
ters. Various function units are associated with each shift
column. Data is initially introduced into the first column
and is shifted across the shift register memory. In the
SHIFT machine concept, data is regularly shifted from
memory region to memory region (column to column) for
processing by various function units. The purpose behind
the SHIFT machine is to reduce memory latency. In a
traditional organization, any function unit can access
any region of memory and the worst-case delay path for
accessing memory must be taken into account. In the
SHIFT machine, we must only allow for access time to
the worst element in a data column. The memory latency
in modern machines is becoming a major problem – the
SHIFT machine has a natural appeal for its ability to
tolerate this latency.

MIMD – Multiple Instruction, Multiple Data Stream

The MIMD class of parallel architecture brings together
multiple processors with some form of interconnection. In
this configuration, each processor executes completely
independently, although most applications require some
form of synchronization during execution to pass informa-
tion and data between processors. Although no require-
ment exists that all processor elements be identical, most
MIMD configurations are homogeneous with all processor
elements identical. There have been heterogeneous MIMD
configurations that use different kinds of processor
elements to perform different kinds of tasks, but these
configurations have not yielded to general-purpose appli-
cations. We limit ourselves to homogeneous MIMD orga-
nizations in the remainder of this section.

MIMD Programming and Implementation Considerations.
Up to this point, the MIMD processor with its multiple
processor elements interconnected by a network appears
to be very similar to a SIMD array processor. This simi-
larity is deceptive because there is a significant difference
between these two configurations of processor elements—
in the array processor, the instruction stream delivered to

each processor element is the same, whereas in the MIMD
processor, the instruction stream delivered to each proces-
sor element is independent and specific to each processor
element. Recall that in the array processor, the control
processor generates the instruction stream for each pro-
cessor element and that the processor elements operate
in lock step. In the MIMD processor, the instruction stream
for each processor element is generated independently by
that processor element as it executes its program. Although
it is often the case that each processor element is running
pieces the same program, there is no reason that differ-
ent processor elements should not run different programs.

The interconnection network in both the array proces-
sor and the MIMD processor passes data between processor
elements; however, in the MIMD processor, it is also used
to synchronize the independent execution streams between
processor elements. When the memory of the processor is
distributed across all processors and only the local proces-
sor element has access to it, all data sharing is performed
explicitly using messages and all synchronization is
handled within the message system. When the memory
of the processor is shared across all processor elements,
synchronization is more of a problem—certainly messages
can be used through the memory system to pass data
and information between processor elements, but it is
not necessarily the most effective use of the system.

When communications between processor elements is
performed through a shared-memory address space, either
global or distributed between processor elements (called
distributed shared memory to distinguish it from distri-
buted memory), there are two significant problems that
develop. The first is maintaining memory consistency; the
programmer-visible ordering effects of memory references
both within a processor element and between different
processor elements. The second is cache coherency; the
programmer-invisible mechanism ensures that all proces-
sor elements see the same value for a given memory loca-
tion. Neither of these problems is significant in SISD or
SIMD array processors. In a SISD processor, there is only
one instruction stream and the amount of reordering is
limited so the hardware can easily guarantee the effects of
perfect memory reference ordering and thus there is no
consistency problem; because a SISD processor has only
one processor element, cache coherency is not applicable. In
a SIMD array processor (assuming distributed memory),
there is still only one instruction stream and typically no
instruction reordering; because all interprocessor element
communications is via message, there is neither a consis-
tency problem nor a coherency problem.

The memory consistency problem is usually solved
through a combination of hardware and software techni-
ques. At the processor element level, the appearance of
perfect memory consistency is usually guaranteed for local
memory references only, which is usually a feature of the
processor element itself. At the MIMD processor level,
memory consistency is often only guaranteed through
explicit synchronization between processors. In this case,
all nonlocal references are only ordered relative to these
synchronization points. Although the programmer must be
aware of the limitations imposed by the ordering scheme,

COMPUTER ARCHITECTURE 13



the added performance achieved using nonsequential
ordering can be significant.

The cache coherency problem is usually solved exclu-
sively through hardware techniques. This problem is sig-
nificant because of the possibility that multiple processor
elements will have copies of data in their local caches, each
copy of which can have different values. There are two
primary techniques to maintain cache coherency. The first
is to ensure that all processor elements are informed of any
change to the shared-memory state—these changes are
broadcast throughout the MIMD processor and each pro-
cessor element monitors these changes (commonly referred
to as snooping). The second is to keep track of all users of a
memory address or block in a directory structure and to
specifically inform each user when there is a change made
to the shared-memory state. In either case, the result of a
change can be one of two things, either the new value is
provided and the local value is updated or all other copies of
the value are invalidated.

As the number of processor elements in a system
increases, a directory-based system becomes significantly
better as the amount of communications required to main-
tain coherency is limited to only those processors holding
copies of the data. Snooping is frequently used within a
small cluster of processor elements to track local changes –
here the local interconnection can support the extra
traffic used to maintain coherency because each cluster
has only a few processor elements in it.

The primary characteristic of a MIMD processor is the
nature of the memory address space; it is either separate or
shared for all processor elements. The interconnection
network is also important in characterizing a MIMD pro-
cessor and is described in the next section. With a separate
address space (distributed memory), the only means of
communications between processor elements is through
messages and thus these processors force the programmer
to use a message-passing paradigm. With a shared address
space (shared memory), communications between proces-
sor elements is through the memory system—depending on
the application needs or programmer preference, either a
shared memory or message passing paradigm can be used.

The implementation of a distributed-memory machine is
far easier than the implementation of a shared-memory
machine when memory consistency and cache coherency is
taken into account. However, programming a distributed
memory processor can be much more difficult because the
applications must be written to exploit and not be limited by
the use of message passing as the only form of communica-
tions between processor elements. On the other hand,
despite the problems associated with maintaining consis-
tency and coherency, programming a shared-memory pro-
cessor can take advantage of whatever communications
paradigm is appropriate for a given communications
requirement and can be much easier to program. Both
distributed-and shared-memory processors can be extre-
mely scalable and neither approach is significantly more
difficult to scale than the other.

MIMD Rationale. MIMD processors usually are
designed for at least one of two reasons: fault tolerance

or program speedup. Ideally, if we have n identical pro-
cessors, the failure of one processor should not affect the
ability of the multiprocessor to continue program execu-
tion. However, this case is not always true. If the operating
system is designated to run on a particular processor and
that processor fails, the system fails. On the other hand,
some multiprocessor ensembles have been built with the
sole purpose of high-integrity, fault-tolerant computation.
Generally, these systems may not provide any program
speedup over a single processor. Systems that duplicate
computations or that triplicate and vote on results are
examples of designing for fault tolerance.

MIMD Speedup: Partitioning and Scheduling. As multi-
processors simply consist of multiple computing elements,
each computing element is subject to the same basic
design issues. These elements are slowed down by branch
delays, cache misses, and so on. The multiprocessor con-
figuration, however, introduces speedup potential as well
as additional sources of delay and performance degrada-
tion. The sources of performance bottlenecks in multipro-
cessors generally relate to the way the program was
decomposed to allow concurrent execution on multiple
processors. The speedup (Sp) of an MIMD processor ensem-
ble is defined as:

S p ¼ Tð1Þ=TðnÞ

or the execution time of a single processor (T(1)) divided by
the execution time for n processors executing the same
application (T(n)). The achievable MIMD speedup depends
on the amount of parallelism available in the program
(partitioning) and how well the partitioned tasks are sched-
uled.

Partitioning is the process of dividing a program into
tasks, each of which can be assigned to an individual pro-
cessor for execution at run time. These tasks can be repre-
sented as nodes in a control graph. The arcs in the graph
specify the order in which execution of the subtasks must
occur. The partitioning process occurs at compile time, well
before program execution. The goal of the partitioning
process is to uncover the maximum amount of parallelism
possible without going beyond certain obvious machine
limitations.

The program partitioning is usually performed with
some a priori notion of program overhead. Program over-
head (o) is the added time a task takes to be loaded into a
processor before beginning execution. The larger the size of
the minimum task defined by the partitioning program,
the smaller the effect of program overhead. Table 6 gives
an instruction count for some various program grain sizes.

The essential difference between multiprocessor concur-
rency and instruction-level parallelism is the amount of
overhead expected to be associated with each task. Over-
head affects speedup. If uniprocessor program P1 does
operation W1, then the parallel version of P1 does opera-
tions Wp, where Wp�W1.

For each task Ti, there is an associated number of over-
head operations oi, so that if Ti takes Wi operations without

14 COMPUTER ARCHITECTURE



overhead, then

WP ¼ SðWi þ oiÞ�W1

where Wp is the total work done by Pp, including overhead.
To achieve speedup over a uniprocessor, a multiprocessor
system must achieve the maximum degree of parallelism
among executing subtasks or control nodes. On the other
hand, if we increase the amount of parallelism by using
finer- and finer-grain task sizes, we necessarily increase
the amount of overhead. Moreover, the overhead depends
on the following factors.

� Overhead time is configuration-dependent. Different
shared-memory multiprocessors may have signifi-
cantly different task overheads associated with
them, depending on cache size, organization, and
the way caches are shared.

� Overhead may be significantly different depending on
how tasks are actually assigned (scheduled) at run
time. A task returning to a processor whose cache
already contains significant pieces of the task code
or dataset will have a significantly lower overhead
than the same task assigned to an unrelated processor.

Increased parallelism usually corresponds to finer task
granularity and larger overhead. Clustering is the group-
ing together of subtasks into a single assignable task.
Clustering is usually performed both at partitioning time
and during scheduling run time. The reasons for clustering
during partition time might include when

� The available parallelism exceeds the known number
of processors that the program is being compiled for.

� The placement of several shorter tasks that share the
same instruction or data working set into a single task
provides lower overhead.

Scheduling can be performed statically at compile time
or dynamically at run time. Static scheduling information
can be derived on the basis of the probable critical paths,
which alone is insufficient to ensure optimum speedup or
even fault tolerance. Suppose, for example, one of the
processors scheduled statically was unavailable at run
time, having suffered a failure. If only static scheduling
had been done, the program would be unable to execute if
assignment to all n processors had been made. It is also

oftentimes the case that program initiation does not begin
with n designated idle processors. Rather, it begins with a
smaller number as previously executing tasks complete
their work. Thus, the processor availability is difficult to
predict and may vary from run to run. Although run-time
scheduling has obvious advantages, handling changing
systems environments, as well as highly variable program
structures, it also has some disadvantages, primarily its
run-time overhead.

Run-time scheduling can be performed in a number
of different ways. The scheduler itself may run on a parti-
cular processor or it may run on any processor. It can
be centralized or distributed. It is desirable that the
scheduling not be designated to a particular processor,
but rather any processor, and then the scheduling process
itself can be distributed across all available processors.

Types of MIMD processors. Although all MIMD archi-
tectures share the same general programming model, there
are many differences in programming detail, hardware
configuration, and speedup potential. Most differences
develop from the variety of shared hardware, especially
the way the processors share memory. For example,
processors may share at one of several levels:

� Shared internal logic (floating point, decoders, etc.),
shared data cache, and shared memory.

� Shared data cache—shared memory.

� Separate data cache but shared bus—shared memory.

� Separate data cache with separate busses leading to a
shared memory.

� Separate processors and separate memory modules
interconnected with a multistage interconnection net-
work.

� Separate processor-memory systems cooperatively
executing applications via a network.

The basic tradeoff in selecting a type of multiprocessor
architecture is between resource limitations and syn-
chronization delay. Simple architectures are generally
resource-limited and have rather low synchronization
communications delay overhead. More robust processor-
memory configurations may offer adequate resources for
extensive communications among various processors in
memory, but these configurations are limited by

� delay through the communications network and

� multiple accesses of a single synchronization variable.

The simpler and more limited the multiprocessor con-
figuration, the easier it is to provide synchronization com-
munications and memory coherency. Each of these
functions requires an access to memory. As long as memory
bandwidth is adequate, these functions can be readily
handled. As processor speed and the number of processors
increase, eventually shared data caches and busses run out
of bandwidth and become the bottleneck in the multipro-
cessor system. Replicating caches or busses to provide
additional bandwidth requires management of not only

Table 6. Grain Size

Grain
Description Program Construct

Typical number
of instructions

Fine grain Basic block
‘‘Instruction-level parallelism’’

5 to 10

Medium
grain

Loop/Procedure
‘‘Loop-level parallelism’’
‘‘Procedure-level parallelism’’

100 to 100,000

Coarse
grain

Large task
‘‘Program-level parallelism’’

100,000 or more

COMPUTER ARCHITECTURE 15



the original traffic, but the coherency traffic also. From the
system’s point of view, one would expect to find an optimum
level of sharing for each of the shared resources—data
cache, bus, memory, and so on—fostering a hierarchical
view of shared-memory multiprocessing systems.

Multithreaded or shared resource multiprocessing. The
simplest and most primitive type of multiprocessor system
is what is sometimes called multithreaded or what we call
here shared-resource multiprocessing (SRMP). In SRMP,
each of the processors consists of basically only a register
set, which includes a program counter, general registers,
instruction counter, and so on. The driving principle behind
SRMP is to make the best use of processor silicon area.
The functional units and busses are time-shared. The
objective is to eliminate context-switching overhead and
to reduce the realized effect of branch and cache miss
penalties. Each ‘‘processor’’ executes without significant
instruction-level concurrency, so it executes more slowly
than a more typical SISD, which reduces per instruction
effect of processing delays; but the MIMD ensemble can
achieve excellent speedup because of the reduced overhead.
Note that this speedup is relative to a much slower single
processor.

Shared-memory multiprocessing. In the simplest of these
configurations, several processors share a common memory
via a common bus. They may even share a common data
cache or level-2 cache. As bus bandwidth is limited, the
number of processors that can be usefully configured in
this way is quite limited. Several processors sharing a bus
are sometimes referred to as a ‘‘cluster.’’

Interconnected multiprocessors. Realizing multiproces-
sor configurations beyond the cluster requires an inter-
connection network capable of connecting any one of n
processor memory clusters to any other cluster. The inter-
connection network provides n switched paths, thereby
increasing the intercluster bandwidth at the expense of
the switch latency in the network and the overall (consider-
able) cost of the network. Programming such systems may
be done either as a shared-memory or message-passing
paradigm. The shared-memory approach requires signi-
ficant additional hardware support to ensure the con-
sistency of data in the memory. Message passing has

simpler hardware but is a more complex programming
model.

Cooperative computing: networked multiprocessors.
Simple processor-memory systems with LAN of even Inter-
net connection can, for particular problems, be quite effec-
tive multiprocessors. Such configurations are sometimes
called network of workstations (NOW).

Table 7 illustrates some of the tradeoffs possible in
configuring multiprocessor systems. Note that the applica-
tion determines the effectiveness of the system. As archi-
tects consider various ways of facilitating interprocessor
communication in a shared-memory multiprocessor, they
must be constantly aware of the cost required to improve
interprocessor communications. In a typical shared-mem-
ory multiprocessor, the cost does not scale linearly; each
additional processor requires additional network services
and facilities. Depending on the type of interconnection, the
cost for an additional processor may increase at a greater
than linear rate.

For those applications that require rapid communica-
tions and have a great deal of interprocessor communica-
tions traffic, this added cost is quite acceptable. It is readily
justified on a cost-performance basis. However, many other
applications, including many naturally parallel applica-
tions, may have limited interprocessor communications.
In many simulation applications, the various cases to be
simulated can be broken down and treated as independent
tasks to be run on separate processors with minimum
interprocessor communication. For these applications, sim-
ple networked systems of workstations provide perfectly
adequate communications services. For applications whose
program execution time greatly exceeds its interprocessor
communication time, it is a quite acceptable message
passing time.

The problem for the multiprocessor systems architect is
to create a system that can generally satisfy a broad spec-
trum of applications, which requires a system whose costs
scale linearly with the number of processors and whose
overall cost effectively competes with the NOW—the sim-
ple network of workstations—on the one hand, and satisfies
the more aggressive communications requirement for
those applications that demand it on the other. As with
any systems design, it is impossible to satisfy the require-
ments of all applications. The designer simply must choose

Table 7. Various Multiprocessor Configurations

Type Physical sharing
Programmer’s
model

Remote data
access latency Comments

Multi-threaded ALU, data cache, memory Shared memory No delay Eliminates context switch overhead
but limited possible Sp.

Clustered Bus and memory Shared memory Small delay due
to bus congestion

Limited Sp due to bus bandwidth limits.

Interconnection
network (1)

Interconnection network
and memory

Shared memory Order of 100 cycles. Typically 16–64 processors; requires
memory consistency support.

Interconnection
network (2)

Interconnection network Message passing Order of 100 cycles
plus message decode
overhead

Scalable by application; needs
programmer’s support.

Cooperative
multiprocessors

Only LAN or similar
network

Message passing More than 0.1 ms. Limited to applications that require
minimum communications.

16 COMPUTER ARCHITECTURE



a broad enough set of applications and design a system
robust enough to satisfy those applications. Table 8 shows
some representative MIMD computer systems from 1990 to
2000.

COMPARISONS AND CONCLUSIONS

Examples of Recent Architectures

This section describes some recent microprocessors and
computer systems, and it illustrates how computer archi-
tecture has evolved over time. In the last section, scalar
processors are described as the simplest kind of SISD
processor, capable of executing only one instruction at a
time. Table 1 depicts some commercial scalar processors
(7,8).

Intel 8086, which was released in 1978, consists of
only 29,000 transistors. In contrast, Pentium III (from
the same x86 family) contains more than 28,000,000 tran-
sistors. The huge increase in the transistor count is made
possible by the phenomenal advancement in VLSI technol-
ogy. These transistors allow simple scalar processors to
emerge to a more complicated architecture and achieve
better performance. Many processor families, such as Intel
x86, HP PA-RISC, Sun SPARC and MIPS, have evolved
from scalar processors to superscalar processors, exploiting
a higher level of instruction-level parallelism. In most
cases, the migration is transparent to the programmers,
as the binary codes running on the scalar processors can
continue to run on the superscalar processors. At the same
time, simple scalar processors (such as MIPS R4000 and
ARM processors) still remain very popular in embedded
systems because performance is less important than cost,
power consumption, and reliability for most embedded
applications.

Table 2 shows some representative superscalar pro-
cessors from 1992 to 2004 (7,8). In this period of time,
the number of transistors in a superscalar processor has
escalated from 1,000,000 to more than 100,000,000. Inter-
estingly, most transistors are not used to improve the
instruction-level parallelism in the superscalar architec-
tures. Actually, the instruction issue width remains
roughly the same (between 2 to 6) because the overhead

(such as cycle time penalty) to build a wider machine, in
turn, can adversely affect the overall processor perfor-
mance. In most cases, many of these transistors are used
in the on-chip cache to reduce the memory access time. For
instance, most of the 140, 000,000 transistors in HP PA-
8500 are used in the 1.5MB on-chip cache (512 KB instruc-
tion cache and 1MB data cache).

Table 3 presents some representative VLIW processors
(7,9). There have been very few commercial VLIW proces-
sors in the past, mainly due to poor compiler technology.
Recently, there has been major advancement in VLIW
compiler technology. In 1997, TI TMS320/C62x became
the first DSP chip using VLIW architecture. The simple
architecture allows TMS320/C62x to run at a clock fre-
quency (200MHz) much higher than traditional DSPs.
After the demise of Multiflow and Cydrome, HP acquired
their VLIW technology and co-developed the IA-64 archi-
tecture (the first commercial general-purpose VLIW pro-
cessor) with Intel.

Although SISD processors and computer systems are
commonly used for most consumer and business applica-
tions, SIMD and MIMD computers are used extensively for
scientific and high-end business applications. As described
in the previous section, vector processors and array pro-
cessors are the two different types of SIMD architecture. In
the last 25 years, vector processors have developed from a
single processor unit (Cray 1) to 512 processor units (NEC
SX-5), taking advantage of both SIMD and MIMD proces-
sing. Table 4 shows some representative vector processors.
On the other hand, there have not been a significant
number of array processors due to a limited application
base and market requirement. Table 5 shows several repre-
sentative array processors.

For MIMD computer systems, the primary considera-
tions are the characterization of the memory address space
and the interconnection network among the processing
elements. The comparison of shared-memory and mes-
sage-passing programming paradigms was discussed in
the last section. At this time, shared-memory programming
paradigm is more popular, mainly because of its flexibility
and ease of use. As shown in Table 8, the latest Cray
supercomputer (Cray T3E-1350), which consists of up to
2176 DEC Alpha 21164 processors with distributed

Table 8. Typical MIMD Systems

System
Year of
Interconnection

Processor
element

Number of
processors

Memory
distribution

Programming
paradigm

introduction
typez

Alliant FX/2800 1990 Intel i860 4–28 Central Shared memory Bus þ crossbar
Stanford DASH 1992 MIPS R3000 4–64 Distributed Shared memory Bus þ mesh
Cray T3D 1993 DEC 21064 128–2048 Distributed Shared memory 3D torus
MIT Alewife 1994 Sparcle 1–512 Distributed Message passing Mesh
Convex C4/XA 1994 Custom 1–4 Global Shared memory Crossbar
Thinking Machines

CM-500
1995 SuperSPARC 16–2048 Distributed Message passing Fat tree

Tera Computers MTA 1995 Custom 16–256 Distributed Shared memory 3D torus
SGI Power Challenge XL 1995 MIPS R8000 2–18 Global Shared memory Bus
Convex SPP1200/XA 1995 PA-RISC 7200 8–128 Global Shared memory Crossbar þ ring
Cray T3E-1350 2000 DEC 21164 40–2176 Distributed Shared memory 3D torus

zAn indepth discussion of various interconnection networks may be found in Parallel Computer Architecture: A Hardware/Software Approach by David Culler

and J.P. Singh with Anoop Gupta.

COMPUTER ARCHITECTURE 17



memory modules, adopts the shared-memory program-
ming paradigm.

Concluding Remarks

Computer architecture has evolved greatly over the past
decades. It is now much more than the programmer’s view
of the processor. The process of computer design starts
with the implementation technology. As the semicon-
ductor technology changes, so to does the way it is used
in a system. At some point in time, cost may be largely
determined by transistor count; later as feature sizes
shrink, wire density and interconnection may dominate
cost. Similarly, the performance of a processor is dependent
on delay, but the delay that determines performance
changes as the technology changes. Memory access
time is only slightly reduced by improvements in feature
size because memory implementations stress size and the
access delay is largely determined by the wire length
across the memory array. As feature sizes shrink, the array
simply gets larger.

The computer architect must understand technology,
not only today’s technology, but the projection of that
technology into the future. A design begun today may
not be broadly marketable for several years. It is the
technology that is actually used in manufacturing, not
today’s technology that determines the effectiveness of a
design.

The foresight of the designer in anticipating changes in
user applications is another determinant in design effec-
tiveness. The designer should not be blinded by simple test
programs or benchmarks that fail to project the dynamic
nature of the future marketplace.

The computer architect must bring together the tech-
nology and the application behavior into a system config-
uration that optimizes the available process concurrency,
which must be done in a context of constraints on cost,
power, reliability, and usability. Although formidable in
objective, a successful design is a design that provides a
lasting value to the user community.

FURTHER READING

W. Stallings, Computer Organization and Architecture, 5th ed.En-
glewood Cliffs, NJ: Prentice-Hall, 2000.

K. Hwang, Advanced Computer Architecture, New York: McGraw
Hill, 1993.

J. Hennessy and D. Patterson, Computer Architecture: A Quanti-
tative Approach, San Francisco, CA: Morgan Kaufman Publishers,
1996.

A. J. Smith, Cache memories, Comput. Surv., 14 (3): 473–530, 1982.

D. Culler and J. P. Singh with A. Gupta, Parallel Computer
Architecture: A Hardware/Software Approach, San Francisco,
CA: Morgan Kaufmann Publishers, 1988.

D. Sima, T. Fountain, and P. Kacsuk, Advanced Computer Archi-
tectures: A Design Space Approach, Essex, UK: Addison-Wesley,
1997.

K. W. Rudd, VLIW Processors: Efficiently Exploiting Instruction
Level Parallelism, Ph.D Thesis, Stanford University, 1999.

M. J. Flynn, Computer Architecture: Pipelined and Parallel Pro-
cessor Design, Sudbury, MA: Jones and Bartlett Publishers, 1995.

P. M. Kogge, The Architecture of Pipelined Computers, New York:
McGraw-Hill, 1981.

S. Kunkel and J. Smith, Optimal pipelining in supercomputers,
Proc. 13th Annual Symposium on Computer Architecture, 1986,
404–411.

W. M. Johnson, Superscalar Microprocessor Design, Englewood
Cliffs, NJ: Prentice-Hall, 1991.

BIBLIOGRAPHY

1. G. M. Amdahl, G. H. Blaauw, and F. P. Brooks, Architecture of
the IBM System/360. IBM J. Res. Develop., 8 (2): 87–101, 1964.

2. Semiconductor Industry Association, The National Technology
Roadmap for Semiconductors, San Jose, CA: Semiconductor
Industry Association, 1997.

3. M. J. Flynn, P. Hung, and K. W. Rudd, Deep-submicron micro-
processor design issues, IEEE Micro Maga., July-August, 11–
22, 1999.

4. J. D. Ullman, Computational Aspects of VLSI, Rockville, MD:
Computer Science Press, 1984.

5. W. Stallings, Reduced Instruction Set Computers, Tutorial,
2nd ed.New York: IEEE Comp. Soc. Press, 1989.

6. M. J. Flynn, Very high speed computing systems, Proc. IEEE,
54:1901–1909, 1966.

7. MicroDesign Resources, Microprocessor Report, various
issues, Sebastopol, CA, 1992–2001.

8. T. Burd, General Processor Information, CPU Info Center,
University of California, Berkeley, 2001. Available: http://
bwrc.eecs.berkeley.edu/CIC/summary/.

9. M. J. Flynn and K. W. Rudd, Parallel architectues. ACM
Comput. Surv., 28 (1): 67–70, 1996.

MICHAEL FLYNN

PATRICK HUNG

Stanford University
Stanford, California

18 COMPUTER ARCHITECTURE



D

DATAFLOW COMPUTERS: THEIR HISTORY AND
FUTURE

INTRODUCTION AND MOTIVATION

As we approach the technological limitations, concurrency
will become the major path to increase the computational
speed of computers. Conventional parallel/concurrent sys-
tems are based mainly on the control-flow paradigm, where
a primitive set of operations are performed sequentially on
data stored in some storage device. Concurrency in con-
ventional systems is based on instruction level parallelism
(ILP), data level parallelism (DLP), and/or thread level
parallelism (TLP). These parallelisms are achieved using
techniques such as deep pipelining, out-of-order execution,
speculative execution, and multithreaded execution of
instructions with considerable hardware and software
resources.

The dataflow model of computation offers an attractive
alternative to control flow in extracting parallelism from
programs. The execution of a dataflow instruction is based
on the availability of its operand(s); hence, the synchroni-
zation of parallel activities is implicit in the dataflow model.
Instructions in the dataflow model do not impose any
constraints on sequencing except for the data dependencies
in the program. The potential for elegant representation of
concurrency led to considerable interest in dataflow model
over the past three decades. These efforts have led to
successively more elaborate architectural implementations
of the model. However, studies from past projects have
revealed a number of inefficiencies in dataflow computing:
thedataflow model incurs moreoverhead duringan instruc-
tion cycle compared with its control-flow counterpart, the
detection of enabled instructions and the construction of
result tokens generally will result in poor performance for
applications with low degrees of parallelism, and the
execution of an instruction involves consuming tokens on
the input arcs and generating result token(s) at the output
arc(s), which involves communication of tokens among
instructions. Recent advances that may address these
deficiencies have generated a renewed interest in dataflow.
In this article we will survey the various issues and the
developments in dataflow computing.

This chapter is organized as follows: the Dataflow Prin-
ciples section reviews the basic principles of the dataflow
model. The discussion includes languages supporting data-
flow model. The Dataflow Architectures section provides a
general description of the dataflow architecture. The dis-
cussion includes a comparison of the architectural charac-
teristics and the evolutionary improvements in dataflow
computing, including pioneering pure dataflow architec-
tures, hybrid architectures attempting to overcome the
shortcoming of pure dataflow systems, and recent attempts

to improve the hybrid systems. The next section outlines
research issues in handling data structures, program allo-
cation,andapplicationof cachememories.Severalproposed
methodologies will be presented and analyzed. Finally, the
last section concludes the article.

DATAFLOW PRINCIPLES

The dataflow model of computation deviates from the con-
ventional control-flow method in two fundamental ways:
asynchrony and functionality. Dataflow instructions are
enabled for execution when all the required operands
are available, in contrast to control-flow instructions, which
are executed sequentially under the control of a program
counter. In dataflow, any two enabled instructions do not
interfere with each other and thus can be executed in any
order, or even concurrently. In a dataflow environment,
conventional concepts such as ‘‘variables’’ and ‘‘memory
updating’’ are nonexistent. Instead, objects (data struc-
tures or scalar values) are consumed by an actor (instruc-
tion) that yields a result object that is passed to the next
actor(s). It should be noted that some dataflow languages
and architectures, however, use variables and memory
locations for the purposes of convenience and of efficiency.

Dataflow Graphs

Dataflow graphs can be viewed as the machine language for
dataflow computers. A dataflow graph is a directed graph,
G(N, A), where nodes (or actors) in N represent instructions
and arcs in A represent data dependencies among the
nodes. The operands are conveyed from one node to another
in data packets called tokens. The basic primitives of the
dataflow graph are shown in Fig. 1. A data value is produced
by an operator as a result of some operation f. A true or false
control value is generated by a decider (a predicate),
depending on its input tokens. Data values are directed
by means of either a switch or a merge actor. A switch actor
directs an input data token to one of its outputs, depending
on the control input. A Merge actor passes one of its input
tokens to the output based on the value of the control token.
Finally, a copy is an identity operator which duplicates
input tokens. Figure 2 depicts the dataflow graph of the
following expression:

sum ¼
XN

i¼1

f ðiÞ

Note the elegance and flexibility of the dataflow graph to
describe parallel computation. In this example, the implicit
parallelism within an iteration is exposed. Furthermore,

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



because of the functional properties of operations, the
function f can be invoked simultaneously for all values of
i. Thus, given sufficient amount of resources, N iterations of
function f can be executed concurrently.

Dataflow Languages

Any dataflow language should permit the specification of
programs that observe dataflow principles. In terms of
programming language semantics, these principles trans-
late into freedom from side-effects (prohibit modification of
variables either directly or indirectly), single assignment
(values associated with variables cannot be modified), and
locality of effect (instructions do not have unnecessary far-
reaching data dependencies). In this section we introduce
three dataflow languages that received considerable atten-
tion in the literature.

VAL: A Value-oriented Algorithmic Language. VAL is a
high level programming language developed at MIT (1),
and can be viewed as a textual representation of dataflow
graphs. VAL relies on pure functional language semantics
to exploit implicit concurrency. Since dataflow languages
use single assignment semantics, the implementation and
the use of arrays present unique challenges (see Research

Issues). In VAL, array bounds are not part of the type
declarations. Operations are provided to find the range of
indices for the declared array. Array construction in VAL is
also unusual to improve concurrency in handling arrays. It
should be noted that because we must maintain single
assignment feature of functional languages, traditional
language syntax to accumulate values (for example, the
sum in Fig. 2) need some changes. To express such con-
currencies, VAL provides parallel expressions in the form of
forall. Consider the following examples:

1. forall i in [array_liml(a), array_limh(a)]

a½i� :¼ fðiÞ;

2. forall i in [array_liml(a), array_limh(a)]

eval plus a½i�;

If one applies imperative semantics, both examples
proceed sequentially. In the first case, the elements of
the array a are constructed sequentially by calling the
function f with different values of the index i. In the second
example, we compute a single value that represents the
sum of the elements of the array a, which represents
sequential accumulation of the result. In VAL, the con-
struction of the array elements in example 1 can proceed in
parallel because all functions in VAL are side-effect free.
Likewise, the accumulation in example 2 also exploits some
concurrency because VAL translates such accumulations
into a binary tree evaluation.

In addition to loops, VAL provides sequencing opera-
tions, if-then-else and tagcase expressions. When dealing
with one of data type, tagcase provides a means of inter-
rogating values with the discriminating unions.

VAL did not provide good support for input/output
operation nor for recursion. These limitations allowed for
a straightforward translation of programs to dataflow
architectures, particularly static dataflow machines (see
the earlier Dataflow Architectures section). The dynamic
features of VAL can be translated easily if the machine
supported dynamic graphs, such as the dynamic dataflow
architectures.

f

An Operator 

P

A Decider 

T    F

A Switch Actor 

T         F

A Merge Actor A Copy Actor 

Figure 1. Basic primitives of the dataflow graph.

T F T F

T F T F

+1
+

≤N

i = 1 Sum = 0 

..

..

Final sum

Initially FalseInitially False

f (i)

Figure 2. A dataflow graph representation of sum ¼
XN

i¼1

f ðiÞ.

2 DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE



Id: Irvine Dataflow language. Id is a dataflow language
that originated at the University of California-Irvine (2),
and was designed to permit high-level programming lan-
guage for the dynamic dataflow architecture proposed by
Arvind (see the Earlier Dataflow Architectures section). Id
is a block-structured, expression-oriented, single assign-
ment language. An interpreter was designed to execute Id
programs on dynamic dataflow architectures. Data types in
Id are associated with values, and variables are typed
implicitly by the values they carry. Structures include
both arrays and (record) structures; and elements can be
accessed using either integer indices or string values that
define the name of the element (for example, t[‘‘height’’]).
Structures are defined with two operators: select and
append. Select is used to get the value of an element,
whereas append is used to define a new structure by copy-
ing the elements of the original structure and adding new
values defined by the append operation.

Id programs consist of side-effect free expressions and
expressions (or subexpressions) can be executed in any
order or concurrently based on the availability of input
data. Loops in Id can be understood easily from the follow-

ing example, which computes
XN
i¼1

f ðiÞ

(initial i  1; sum  0;

while i � N do new i  i+1;

new sum  sum + f(i);

return sum)

Id uses the concept of ‘‘new’’ to define a new value
associated with an expression. It should be noted that a
variable is not assigned a new value (like in conventional
languages), but a new value is generated – variables are
used only for the convenience of writing programs. It is also
convenient to remember that the expressions in a loop can
form recurrence expressions.

Procedures and functions in Id are pure functions and
represent value(s) returned by the application of the function
on the input values. Recursive procedures can be defined by
associating names with proceduredeclarations. For example:

y procedure fðnÞðif n ¼ 0 then 1else n�fðn-1ÞÞ

defines factorial recursively, and we can invoke the proce-
dure, for example as y(3).

Because no translators to convert Id programs to con-
ventional (control-flow) architectures were developed, Id
was used mostly by those with access to dynamic dataflow
processors and to Id interpreters.

SISAL: Streams and Iterations in a Single Assignment
Language. Sisal is thebest-knowndataflow language,mostly
because of the support provided by the designers. Sisal recei-
ved a fairly wide acceptance during the 1990s, because Sisal
compilersgeneratedoptimizedCastheirintermediaterepre-
sentations and thus could be run on any platform with a C
compiler. Although it is not as widely known now, Sisal
translator and run-time support software are still available
for Unix based systems and can be obtained from the web
at http://sisal.sourceforge.net/. Sisal 2.0 provided multi-

tasking (or multithreading) to support dataflow-style paral-
lelism on conventional shared memory multiprocessors (4).

Sisal programs consist of one or more separately compil-
able units, which include a simple program, modules, and
interfaces. A module is similar to a program but is not a
starting point of execution. It pairs with an interface to export
some of its types and function names. Like Id, Sisal supports
scalar data types and structures (records, union, arrays, and
streams). A stream is a sequence of values produced in order
by one expression (thus it consists of homogeneous typed
values), and is consumed in the same order by one or more
other expressions. Sisal permits the creation of new values
(and associates them with the same name).

for i :¼ 1;

while ( i <5) do

new i :¼ i+2;

j :¼ i + new i;

returns product (i+j)

end for

This program constructs implicitly a stream of values
inside the loop and returns the product of the elements of
the stream. The values of the stream are the values of (i + j):
7, 13. Thus 91 is returned by the loop.

Sisal expressions can loop over the elements of an array
(called array scattering) or over the elements of a stream
(stream scattering) (5). As with VAL, Sisal can perform
reduction operations concurrently using binary tree eva-
luations. Sisal has predefined reduction operations to eval-
uate sum, product, min, and max of a set of values. Catenate
is a reduction that returns the concatenation of a sequence
of one-dimensional array or a stream. Consider:

for i in [1..N] do

return sum f(i);

which uses sum as a reduction operation to produce
XN
i¼1

fðiÞ.

Additional reduction functions can be defined by the
programmer. Consider the following example to build
histograms.

reduction histo(v, N: integer returns array of integer)

initial

hacc :¼ array[0..N+1:0];

in

idx :¼ if(v <1) then 0

elseif (v > N) then n+1

else v

end if;

new hacc :¼ hacc[idx: hacc[idx]+1]

returns hacc

end reduction

Sisal’s popularity also is caused by the concept of
modules and interfaces: The interface shows the function
templates that are visible publicly and the module defines
the implementations of the functions. Sisal implementa-
tions also permit foreign code (written in a different
language), by associating an interface with the foreign

DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE 3



code. Consider for example to import MathLib functions to
Sisal programs:

interface MathLib in FORTRAN

function sin (x: real returns real);

function tan (x: real returns real);

end interface

DATAFLOW ARCHITECTURES

Architectural implementations of dataflow traditionally
have been classified as either static or dynamic. The static
approach allows at most one instance of a node to be enabled
for firing, i.e., a dataflow actor can be executed only when all
of its input tokens are available and no tokens exist on any
of its output arcs. On the other hand, the dynamic approach
permits simultaneous activation of several instances of a
node during the run-time by viewing arcs as buffers con-
taining multiple data items. To distinguish between differ-
ent instances of a node (and routing data for different
instantiations of the node), a tag is associated with each
token that identifies the context in which a particular token
was generated. An actor is considered executable when all
of its input tokens with identical tags are available.

The static dataflow model has a simplified inherent
mechanism to detect enabled nodes, but the model limits
the performance because iterations are executed one at a
time. The dynamic dataflow allows greater exploitation of
parallelism; however, this advantage comes at the expense
of the overhead in terms of the generation of tags, larger
data tokens, and complexity of the matching tokens. A more
subtle problem with the token matching is the complexity
involved in allocation of resources (i.e., memory cells). A
failure to find a match implicitly allocates memory within
the matching hardware. If the matching unit becomes
overcommitted, the program may deadlock.

Dataflow architectures have also been classified as pure
dataflow architectures, macro dataflow architectures, and

hybrid dataflow architectures. Detailed discussion about
this classification is beyond the scope of this article and
interested reader is referred to Ref. 6.

Earlier Dataflow Architectures

This section discusses three classic dataflow machines:
the static dataflow machine, the (dynamic) manchester
machine, and the explicit token store. These projects repre-
sent the pioneering work in the area of dataflow. The
foundation they provide has inspired many other dataflow
projects.

Static Model. The general organization of the original
(static) dataflow machine is depicted in Fig. 3 (Table 1) (7).
The memory section is a collection of memory cells, each cell
composed of three memory words that represent an instruc-
tion template. The first word of each instruction cell con-
tains op-code and destination address(es), and the next two
words represent the operands. The design has envisioned
six types of templates that represent binary and unary
operators, binary and unary deciders (predicates), and
binary and unary Boolean operators. The processing sec-
tion is composed of five pipelined functional units, which
perform the operations, form the result packet(s), and send
the result token(s) to the memory section. The arbitration
network is intended to establish a smooth flow of enabled
instructions (i.e., instruction packet) from the memory
section to the processing section. An instruction packet
contains the corresponding op-code, operand value(s),
and destination address(es). The distribution network is
intended to transfer the result packets from the processing
section to the memory section. Finally, the control network
in designed to reduce the load on the distribution network
by transferring the Boolean tokens and the acknowledge-
ment signals from the processing section to the memory
section.

Figure 4 shows the dataflow graph and the contents of
the memory section for the YðtÞ ¼ A�XðtÞ þ B�Yðt-1Þ

Figure 3. The basic organization of the static dataflow
model.

Processing 
Section

Processing  
Unit

Processing  
Unit

•
•
•

Control 
Network

Control Tokens

Instruction 
Cell 

Instruction 
Cell 

•
•
•

Distribution 
Network 

Arbitration 
Network 

•
•
•

•
•
•

•
•
•

•
•
•

Memory Section

Data
Tokens

Operation 

Packets

• • •

4 DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE



þC�Yðt-2Þ. For the sake of simplicity, representation details
in the memory are omitted. Note that each memory cell is
numbered to correspond to the node number in the dataflow
graph.

Manchester Dynamic Model. Figure 5 shows the block
diagram of the dynamic dataflow system prototyped at the
Manchester University (Table 1). It is designed as a back-
end, composed of five units organized as a pipeline ring: The
switch unit establishes communication between the front-
end and back-end processor, and routes the result tokens
back to the pipeline ring. The token queue is a First-
in-first-out buffer that stores temporarily tokens traver-
sing on the data-flow graph arcs. The basic operation of the
matching unit is to bring together tokens with identical
tags by pairing associatively tokens with the same destina-
tion node address and context. The dataflow program that
represents the code for an operation is stored in the node
store. The processing unit, a micro-programmed, 2-stage
pipeline unit, executes the dataflow operations. The first
stage handles the generation of result tokens and the
association of tags with tokens. The second pipeline stage

consists of 15 functional units to perform the necessary
operations.

Explicit Token Store. Despite the potential parallelism
promised by the dynamic dataflow model, early experiences
have identified the following shortcomings in implement-
ing the model:

� Overhead involved in matching tokens (and the need
for associative matching),

� Complex resource allocation,

� The inefficiency of the dataflow instruction cycle
(token driven models require multiple cycles through
the pipeline to complete execution), and

� Nontrivial mechanisms to handle data structures (see
the Research Issues section).

Performance of the dynamic dataflow architecture is
related directly to the rate at which the matching unit
operates. To facilitate this process while considering the
cost, Arvind proposed a pseudo-associative matching
mechanism that requires typically several memory
accesses (9). A failure in finding a match implicitly allocates

I out
y (-1)

* +

B

7 8

3

6

*
+

4

5

C

A

*

2
x (0)

in

1

y (-2)

Cell 615 add 19 23

16 (   )

17 (   )

Cell 718 ident 10 07

19 y(-1)

20 -
Cell 821 output - -

22 Channel 2

23 (   )

Cell 100 input 04 -

01 Channel 1

02 -

Cell 203 mult 13 -

04 x(0)

05 A

Cell 306 mult 16 -

07 (  )

08 B

Cell 409 mult 14 -

10 Y(-2)

11 C

Cell 512 add 17 -

13 (   )

14 (   )

Figure 4. A dataflow graph and its representa-
tion (MIT Static Model).

Table 1. Earlier Dataflow Architectures

Name Country Type

MIT Static Dataflow (1975) (7) USA Static
Manchester Dataflow (1977) (8) England Dynamic
MIT Tagged Token (1978) (9) USA Dynamic
CSIRAC II (1978) (9) Australia Dynamic
DDM1 Utah Data Driven (1978) (10) USA Static
LAU System (1979) (9) France Static
TI Distributed Data Processor (1979) (11) USA Static
NEC Image Pipelined Processor (1980) (12) Japan Static
NTT Dataflow Processor Array (1983) (13) Japan Dynamic
Distributed Data Driven Processor (1983) (14) Japan Dynamic
Stateless Dataflow Architecture (1983) (15) England Dynamic
SIGMA-1 (1984) (16) Japan Dynamic
Parallel Inference Machine (1984) (17) Japan Dynamic

DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE 5



memory within the matching unit — mapping a code-block
to a processor places an unspecified commitment on the
processor’s matching unit. This can result in a deadlock if
this resource becomes overcommitted. Another problem
with dataflow processing is caused by the duration of the
instruction cycle relative to its control-flow counterpart.

To overcome the inefficient matching of dynamic data-
flow model, explicit token store (ETS) proposed a direct
matching (9). Storage (called activation frames) is allocated
dynamically for all the tokens that can be generated by a
code block (a code block represents a function or a loop
iteration). The usage of memory locations within the acti-
vation frame is determined at compile time; however the
allocation of storage is determined at run time. A computa-
tion is described completely by an instruction pointer (IP)
and an activation frame pointer (FP) and the pair<FP. IP>
called a continuation. A typical instruction specifies an op-
code, an offset in the activation frame where a match for its
inputs will take place, and one or more displacements that
define the destination instructions that will receive the
result token(s). Each displacement is also accompanied
by an input port (left/right) indicator that specifies the
appropriate input arc for a destination actor. Figure 6
shows an example of the ETS code block invocation and
its corresponding instruction and frame memory. When a
token arrives at an actor (for example, Add), the IP part of
the continuation points to the instruction that contains an
offset r as well as displacements for the destination instruc-
tions. The system achieves the actual matching process by

checking the disposition of the slot in the frame memory
pointed to by FP + r. If the slot is empty, the system writes
the token’s value in the slot and sets its presence bit to
indicate that the slot is full. If the slot is already full, the
system extracts the value, leaving the slot empty, executes
the corresponding instruction, and communicates the
result tokens to the destination instructions by updating
the IP according to the destinations encoded in the instruc-
tion.

Table 1 lists early dataflow architectures that have been
advanced in the literature. Because of the space con-
straints, additional discussion about these architectures
are beyond the scope of this article and the interested
reader is referred to the cited references.

Dataflow Architectures of the 1980s and the 1990s

Relying on the lessons learned from early designs, several
dataflow prototypes were designed during the 1980s and
the 1990s. These include Monsoon, Epsilon-2, EM-4,
P-RISC, and TAM. Table 2 summarizes the architectural
characteristics of these designs (18–23).

These prototypes use the dynamic dataflow paradigm,
primarily because of the success of direct matching of
tokens proposed in ETS. The concept of a code-block in
ETS permitted localization and efficient management of
tokens. Activation frames can be allocated for different
iterations of a loop, thus permitting the ‘‘unfolding’’ of loops.

Another major architectural change was the integration
of the control-flow sequencing with the dataflow model.
Dataflow architectures that are based on the pure dataflow
model, such as the Manchester dataflow machine, provide
well-integrated synchronization at the instruction level.
However, this process is very inefficient when compared
with the synchronization used in control-flow systems. It
has been shown that it is more efficient to assign some of
these responsibilities to the compiler and to use a simpler
control-flow sequencing at run-time. The overhead of con-
structing and communicating result tokens can be reduced
by using processor registers to hold intermediate results
(similar to control-flow processors). The hybrid of dataflow
flow with control-flow sequencing and usage of registers
can be found in EM-4, and the Epsilon-2.

In contrast to these hybrid systems, the threaded
abstract machine (TAM) provided a conceptually different
perspective on the implementation of the dataflow model of
computation. In TAM, the execution model for fine-grain
parallelism is supported by an appropriate compilation
strategy and program representation rather than by ela-
borate hardware. By assigning the synchronization, the
scheduling, and the storage management tasks to the
compiler, the use of processor resources can be optimized
for the expected case, rather than for the worst case. In
addition, because the scheduling of threads is visible to the
compiler, TAM allowed for a more flexible use of registers
across thread boundaries.

Recent Dataflow Projects

Since the mid 1980s, computer architecture has expended a
considerable effort in exploitation of ILP as a means to
improve performance. These efforts manifested in the

ADD

SUBNEG

<FP.IP ,2 .3 1 >R<FP.IP ,1 .2 4 >L

IP ADD 2

NEG

SUB

+1,+2L

- +6

3 +1

FP

FP+2

4.24

Presence Bits

opcode r dests

Instruction Memory

Frame Memory

Code-Block Activation

Figure 6. Explicit-token-store representation of a dataflow
program.

Switch Unit
Tokens Tokens

From Front-end To Front-end

Token
Queue

Tokens

Matching UnitTokenpair
NodeStore

Inst. packets

ProcessingUnit

Figure 5. The Manchester Dynamic dataflow Machine.

6 DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE



Table 2. Dataflow architectures of 80’s and 90’s.

Architecture Key features

Monsoon (18)

� Joint venture between MIT and Motorola was an outgrowth of the MIT Tagged-Token Dataflow Architecture.

� A collection of processing elements communicating with each other and a set of interleaved I-structure memory

modules through a multistage packet switching network.

� Direct matching of tokens based on the Explicit Token Store concept.

EM-4 (19)

� A highly parallel dataflow multiprocessor based on the SIGMA-1 project. It was an attempt to simplify the architecture

by a RISC-based single-chip design, a direct matching scheme, and use of strongly connected arc model.

� Use of registers to reduce the instruction cycle time and the communication overhead of transferring tokens.

� Integration of a token-based circular pipeline and a register-based advanced control pipeline.

� The prototyped processing element consists of a memory module and a single chip processor called EMC-R.

Epsilon-2 (20)

� Epsilon-2 is a multiprocessor dynamic dataflow model evolved from the Epsilon-1 project. It is composed of a set of

processing modules contented via a global interconnection network.

� Direct matching of tokens.

� Repeat fan-out mechanism to reduce the overhead in copying tokens.

� Control-flow type of sequencing and use of registers. Register contents are not necessarily preserved across grain boundaries.

� Load balancing (adaptive routing).

P-RISC (21)

� P-RISC is a multiprocessor architecture strongly influenced by Iannucci’s dataflow/von Neumann hybrid architecture.

It utilizes a RISC-like Instruction set and its generalization for parallel-RISC. Can use both conventional and dataflow

compiling technologies.

� Application of multithread using a token queue and circulating thread descriptors.

� Introduction of Fork and Join instructions to spawn and synchronize multiple threads.

� Synchronization of memory accesses by using I-structure semantics.

TAM (22)

� Placing all synchronization, scheduling, and storage management responsibility for execution of fine-grain parallelism

explicit and under compiler control to relieve hardware complexity. This allows execution of dataflow languages

on conventional control-flow processors.

� Providing a basis for scheduling a number of threads within an activation as a quantum while carrying values

in registers across threads.

� Once an activation is made resident, all enabled threads within the activation execute to completion.

� Having the compiler produce specialized message handlers as inlets to each code-block.

� A prototype TAM instruction set, TL0 (Threaded Language Version 0), has been developed at the

University of California at Berkeley.

�T (23)

� Tokens do not carry data, only continuations.

� Provides limited token matching.

� Overhead is reduced by off-loading the burden of message handling and synchronization to separate coprocessors.

DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE 7



design and the implementation of the so called superscalar,
Very Long Instruction Word, super-speculative, and super-
pipelined organizations. In these organizations, ILP is
exploited through deep pipelining and out-of-order
execution of instructions. Aggressive exploitation of ILP
is made possible by wide dispatch and issue of instruction,
by a large issue buffers, by a large number of physical
registers for register renaming, by a large number of func-
tional units, and by a speculative execution of branches.
Whether the instruction placement and issue are done
statically as in VLIW architecture, or dynamically as in
superscalar paradigm, the hardware complexity of these
architectures, combined with the diminishing performance
gains, renewed an interest in dataflow processing. This
interest has resulted in several dataflow based architec-
tures, such as the scheduled dataflow (SDF) (24), the EDGE
(Explicit Data Graph Execution) (25), the WaveScalar (26),
and the D2NOW (Data-Driven Network of Workstations)
(27).

Scheduled Dataflow (SDF). Unlike instruction level data-
flow systems, SDF (24) uses dataflow-like synchronization
at the thread-level, and control-flow semantics within a
thread. A thread is allocated as an activation frame for
receiving its inputs, similar to Cilk (28). A thread is enabled
for execution when it has received all its inputs, and
completes execution without interruption (viz., non-block-
ing threads). This approach minimizes instruction level
communication, and because SDF threads are very fine-
grained (typically a basic block), the amount of parallelism
lost because of the sequential execution of instructions
within a thread is minimal. Additionally, SDF decouples
completely all memory accesses from execution pipelines,
resulting in overlapped execution of threads. When a
thread is enabled, SDF allocates a register set for the
thread. Data is pre-loaded into the register set context
prior to its scheduling on the execution pipeline. After a
thread completes execution, the results are post-stored
from its registers into memory. All memory accesses are
performed by synchronization processors (SPs). The execu-
tion engines (EPs) rely on in-order execution of instructions
within a thread. This architecture exploits two levels of
parallelism: Multiple threads can be active simultaneously,
permitting thread level parallelism, and the three phases of
a thread execution (pre-load, execute, and post-store) can
be overlapped with those of other threads. It is also possible
to select appropriate number of SPs and EPs to meet
application needs. Thread level speculation to improve
performance of imperative programs is simplified in SDF
system. Similar to the WaveScalar design, epoch numbers
are associated with threads along with extended cache
coherency protocols to commit (post-store) the results of
a speculative thread in program order.

Explicit Data Graph Execution (EDGE). EDGE (25) is a
static placement dynamic issue instruction model. It is
designed to allow direct instruction communication: hard-
ware delivers a producer’s output directly as an input to a
consumer instruction, (i.e., fine grained instruction sche-
duling). The TRIP architecture is an instantiation of an
EDGE design. The TRIP prototype is a collection of 16

execution units that communicate with each other via a
thin operand routing network. Each processing element
includes an integer unit, a floating point unit, an operand
router, and an instruction buffer of depth 128 (to hold
multiple instructions and their operands). The scheduler
determines which instructions to be assigned in each pro-
cessor buffer (viz., Static placement). However, the avail-
ability of operands determines the order of the execution
(viz., Dynamic issue).

WaveScalar. Similar to EDGE, WaveScalar (26) is a tiled
architecture. It is a tagged-token dynamic dataflow
machine composed of processing elements. Instructions
are bound dynamically to processing elements during the
execution phase. It should be noted that once an instruction
is bound to a processing element, it can remain there for
many dynamic executions. A processing element is com-
posed of an interface to receive data tokens: a storage
medium to store data tokens awaiting their matching
partner. Upon the execution of an instruction, the output
tokens are routed to the consumer processing element(s).
To reduce the communication costs, the processing ele-
ments are connected through a hierarchical interconnec-
tion infrastructure—pairs of processing elements are
coupled into pods sharing ALU results via a common bypass
network. Four pods are grouped into domains that com-
municate over a set of pipelined busses. Four domains form
a cluster supported by conventional memory hierarchy. To
build larger machines, multiple clusters can be connected
with each other by a grid-based, on-chip network.

Data-Driven Network of Workstations. D2NOW (27) is a
collection of off-the-shelf Pantium microprocessors inter-
connected through a fine-grained interconnection network
that supports the thread level synchronization. The design
is based on an earlier Decoupled Data Driven model
of execution and in principal similar to the SDF model
(24). To tolerate the communication latency, D2NOW
employs three mechanisms: fine-grained communication,
medium-grained communication, and coarse-grained com-
munication. The fine-grained communication is used for
consumer identification and for data-token transfer. The
medium-grained communication is for the medium size
messages that identify a code block. The coarse-grained
communication is through the Ethernet to support large
data block transfers.

SOME RESEARCH ISSUES

Handling Data Structures

In pure dataflow model, no concept of a variable exists and
data is exchanged in the form of tokens flowing between
instructions (or if memory is used to store data, then
variables can only be assigned a value once – the single
assignment principle). To apply this property to arrays and
structures, the entire structure must be carried as tokens
(or new arrays and structures must be allocated, by copying
unchanged items and by assigning new values to the ele-
ments that have been modified). In practical dataflow
systems, a more efficient treatment of structures and of

8 DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE



arrays is needed. The proposed solutions can be classified as
either direct access or indirect access methods.

Direct Access Method. The direct access scheme treats
each array elements as individual (scalar) data tokens —
which eliminates the concept of an array (or structure).
The token relabeling scheme proposed by Gaudiot is an
example of direct access method (29). In this approach,
tokens are identified by tags, associating the values with
specific array elements. Although this method is simple, it
requires entire data structures be passed from one node to
the next or to be duplicated among different nodes. More-
over, in many applications, the notion of array as a single
entity cannot be done away with completely, and thus the
direct access method is inappropriate for such applications.

Indirect Access Method. In an indirect access scheme,
arrays are stored in special (separate) memory units and
their elements are accessed through explicit ‘‘read’’ and
‘‘write’’ operations. For example, in MIT, static dataflow
machine arrays are represented as a heap forming a tree
(30). VAL (see section on Dataflow Languages) provides
constructs to generate and to access arrays. Arrays can be
appended with new values, and arrays (and elements of
arrays) are accessed using pointers. Modified elements can
be made inaccessible by using reference counts with poin-
ters (when the count becomes zero the element becomes
inaccessible). The disadvantages of this method are:
O(log n) time to access successive elements of an array
and sequential nature of the append operations (only one
element of an array can be modified at a time), which limits
the performance of the system. It also becomes necessary to
perform garbage collection of inaccessible elements.

I-structure. I-structures are asynchronous array-like
structures that include a ‘‘presence’’ bit with each element
of the structure, thus preventing access to undefined array
elements and enforcing single assignment property (31).

University of Manchester Approach. This approach com-
bines the concept of streams (i.e., a sequence of values
communicated between two portions of a code) with con-
ventional arrays (32). However, in contrast to streams, the
size of the array structure must be known at the time it is
created. Thus, a finite component is defined as a collection
of elements, a ‘‘unit,’’ on which the basic storage opera-
tions are performed. This scheme implies that the mod-
ification of any element(s) in an array requires copying the
entire array. Sisal language (see the Dataflow Languages
section) provides constructs to create and access arrays, as
well as streams. An enhanced version permitted ‘‘in-place’’
updates to alleviate the need to copy unaffected elements.

Hybrid Scheme. The basic idea behind the hybrid
scheme is to associate a template, called the structure
template, with each conceptual array (33). For selective
updates, this minimizes copying by allowing only the mod-
ified elements to be appended to the new array. Each array
is represented by a hybrid structure that consists of a
structure template and a vector of array elements. A struc-
ture template is subdivided into three fields:

� The reference count field; an integer indicating the
number of references to the array,

� The location field; a string of 1’s and 0’s where the
length of the string equals the total number of ele-
ments in the array. Each location bit determines
whether the desired array element resides in the
vector indicated by either the left (‘‘0’’) or the right
(‘‘1’’) pointer, and

� The status bit (S); when an array is initially created,
the status bit (S) is initialized to ‘‘0,’’ which indicates
that the vector contains the original array. Whenever a
modification is made to an array with more than one
reference, a new hybrid structure is created (the status
bit set to ‘‘1’’) where all the modified elements can be
accessed from the vector pointed by the right pointer.
The sharing of array elements between the original
and the modified array is achieved by linking the left
pointer of the modified hybrid structure back to the
original hybrid structure.

Program Allocation

To achieve maximum parallelism, programs must be parti-
tioned and assigned to available resources. The goal is to
maximize the parallelism (partition program into indepen-
dent executable units) while minimizing communication
among the executable units (by assigning dependent units
to the same processing element). It has been shown that
obtaining an optimal allocation of a graph with precedence
requirements is an NP-complete problem. Two main (heur-
istic) approaches exist to allocate subtasks of a dataflow
graph: static and dynamic. In static allocation, the tasks are
allocated at compile-time using global information about
the program and system resources. A dynamic allocation
uses run-time information on processing loads and on
program behavior to distribute tasks.

A number of heuristic algorithms have been developed
for the allocation problem based on critical path list sche-
dules. The basic idea behind these approaches is to assign a
weight to each node of a directed graph that equals the
maximum execution time from that node to an exit node
(i.e., critical path). An ordered list of nodes is constructed
according to their weights, which is then used to assign
dynamically nodes with highest weights to processors as
they become available. One major problem with critical
path list schedules is the communication among the nodes.
Enforcing only critical path scheduling, without consider-
ing the communication overhead, will not necessarily mini-
mize the overall execution time.

In response, Ravi et. al. (34) proposed a variation of the
critical path list scheduling which takes into account inter
processor communication. In this method, rather than
simply choosing the topmost node on the list, several top
candidates whose critical paths fall within a certain range
are considered for allocation. From this set of candidates, a
node is selected which maximizes savings in communica-
tion time. To determine the compromise between computa-
tion and communication costs, the vertically layered
(VL) allocation scheme was proposed in Ref. (35). The VL
allocation scheme consists of two phases: separation and

DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE 9



optimization. The basic idea behind the separation phase is
to partition a dataflow graph into vertical layers such that
each vertical layer represents a set of data dependent nodes
that are executed in sequence (i.e., a thread). A density
factor is used to distribute the directed paths among the
processors. The optimization phase attempts to minimize
the inter-processor communication costs by considering
whether the inter-processor communication overhead off-
sets the advantage gained by overlapping the execution of
two subsets of nodes on separate processors (collapsing the
vertical layers assigned to different processors). The VL
allocation scheme succeeds in balancing the load among the
processors, however, by its very nature, it may not always
reduce the total execution time.

A more general approach to program allocation was
proposed by Sarkar and Hennessy (36). In contrast to the
VL allocation scheme, this approach uses a greedy approx-
imation algorithm. The algorithm begins with the trivial
partition that places each node in a separate block. A table
that represents the decrease in the critical path length
obtained from merging a pair of blocks is maintained. It
then merges iteratively blocks that result in the largest
decrease in the critical path length. The algorithm is ter-
minated when no remaining merger could possibly reduce
the critical path length.

Despite the effectiveness of the aforementioned alloca-
tion schemes, one major problem still remains unresolved —
the issue of handling dynamic parallelism. For example, a
dynamic architecture unfolds a loop at run-time by gener-
ating multiple instances of the loop body and attempts
to execute the instances concurrently. However, a single
processor does not allow two simultaneous executions of a
node, consequently, mapping the source dataflow graphs to
processors,withoutspecialprovisions todetectdynamic loop
unfolding, results in the inability toexploit parallelism fully.

One solution is to provide a code-copying facility, where
an instruction within a code block is duplicated among the
available resources. Arvind has proposed a mapping
scheme in which the instructions within a code block (called
the logical domain) are mapped onto available procesors
(called the physical domain) based on a hashing scheme
(37). For example, if a physical domain consists of n pro-
cessors, then the destination processor number can be
processorbase + i mod n, where i is the iteration number.
This will distribute the code uniformly over the physical
domain. Because each of the n processors has a copy of the
code, n iterations may be executed simultaneously. How-
ever, because not all program constructs can be unfolded in
this manner, the question still remains as to how dynamic
parallelism can be detected at compile-time effectively.

Cache in Dataflow

Multithreading can address memory latencies by context-
switching to other thread while awaiting a memory access.
In pure dataflow, each instruction can be viewed as a
thread, causing excessive overheads. ETS based models
and hybrid systems (see the Dataflow Architectures of the
1980s and the 1990s section) have created coarser grained
threads using code blocks. Within the context of dataflow,
threads are nonblocking: A thread is enabled for execution

when it receives all inputs, and executes to completion
without interruption or context switch. The nonblocking
makes it difficult to overcome memory latencies because a
thread cannot be context switched during its execution.
Cache memories provide a solution, but in pure dataflow,
because instruction execution is based on the availability of
data, localities of instructions and data cannot be deter-
mined easily, making the inclusion of cache memories
wasteful. Several innovative proposals for synthesizing
localities in the context of dataflow exist. In Ref. (38), the
concept of simultaneity of execution is used to define local-
ities with code. A weight that represents the distance from
the root is assigned to each dataflow node. The nodes with
the same weight are then clustered on the same (cache)
page. This strategy partitions the dataflow graph into K
horizontal layers, such that the nodes in layer Ki are data
independent from each other (hence they can likely be
executed in parallel) and are data dependent on nodes in
layer Ki�1 (1 < i � K).

Other approaches to improve localities and cache in
dataflow can be found in Ref. (39). Partitioning dataflow
programs into threads will have a direct impact on local-
ities. Allocation of threads to processing resources should
use ‘‘cache affinities’’ to minimize cache misses and con-
flicts. An important issue in multithreading is the parti-
tioning of programs into multiple sequential threads (see
the Program Allocation section). The costs associated with
creating threads and synchronization among threads will
impact the granularity of threads and placement of
threads. Schauser et al. (40) proposed a partitioning
scheme using dual graphs. A dual graph is a directed graph
with data, control, and dependence arcs: A data arc repre-
sents the data dependence between producer and consumer
nodes. A control arc represents the scheduling order
between two nodes, and a dependence arc specifies long
latency operation caused by the message handlers (i.e.,
inlets and outlets) sending/receiving messages across
code-block boundaries. The actual partitioning is per-
formed using only the control and the dependence edges
by first grouping the nodes based on dependence sets. The
dependence sets are used to create safe partitions with no
cyclic dependencies. A safe partition has the following
characteristics: (1) no output of the partition needs to be
produced before all inputs to the partition are available, (2)
when the inputs to the partition are available, all the nodes
in the partition can be executed, and (3) no arc connects a
node in the partition to an input node of the same partition.
A number of optimization techniques are performed on
initial partitions to reduce synchronization costs. The out-
put of the partitioner is a set of threads where the nodes in
each thread are executed sequentially and the synchroni-
zation requirement determined statically only occurs at the
beginning of a thread. SDF and TAM (see the Dataflow
Architectures section) use similar ideas for thread genera-
tion.

In the static dataflow architecture, localities can be
exploited by concentrating on the static order of the data-
flow program. The dynamic approach permits the activa-
tion of several instances of a node during run-time. To
exploit the temporal and the spatial localities in dataflow
programs that run on dynamic dataflow models, it is

10 DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE



necessary to separate instruction memory from the oper-
and memory. However, asynchrony of the dataflow instruc-
tions means frequent context switching, and in general,
lack of temporal and spatial localities in accessing instruc-
tion and operand memories (41). To cope with these pro-
blems, one needs to adopt proper mechanisms to partition
the dataflow graphs into subgraphs, to allocate subgraphs
among processors, and to control the number of instances of
a subgraph in a processor. It should be noted that because of
the functional and asynchronous nature of the dataflow
instructions, the addresses of the nodes in a dataflow graph
can be set as desired without affecting the result of the
execution. This property should be the basis of establishing
localities in dataflow programs. Moreover, in support of the
cache organization, one should study the effectiveness of
the traditional statistical replacement algorithms (e.g.,
LRU) for instruction and operand memories. Therefore,
in a processor with the load control mechanism, a sophis-
ticated deterministic algorithm to replace dataflow blocks
needs to be developed. Finally, the operand memory plays a
dominant role to achieve satisfactory performance in a
dataflow machine, and hence the operand cache must be
managed effectively. In a dataflow machine, it is not only
necessary to maintain spatial locality for the input argu-
ments of a code-block (frame), but also is necessary to
maintain spatial locality for the result tokens of the
code-block. In the other words, the cache management
must keep track of several active frames to avoid cache
misses in accessing arguments while storing the results.
These design principles motivated the organizations of
operand and instruction caches in the literature (41).

CONCLUSION

As modern architects find it difficult to design highly par-
allel architectures that can exploit high degrees of instruc-
tion level parallelism, it may be time to look back to
dataflow model of computation. The dataflow model was
investigated in 1970s and 1980s but no commercially viable
systems were implemented. Nevertheless, several features
of the dataflow principle and dataflow computation have
found their place in modern processor architectures and
compiler technology. Most modern processors use complex
hardware techniques to detect data hazards, control
hazards, and dynamic parallelism — to bring the execution
engine closer to an idealized dataflow engine. Some
researchers have proposed hybrid designs in which the
dataflow scheduling is applied only at thread level (i.e.,
macro-dataflow), whereas each thread is comprosed of
conventional control-flow instructions.

The advances from the development of dataflow projects
indicate potential high performance computation based on
the dataflow principles. However, before a successful
implementation of dataflow machines is possible, the var-
ious issues discussed in this article must be resolved.

It is our contention that a more careful mix of dataflow
principles with recent technological advances will pave the
way to future tera and peta instructions per second
performance. Current multicore and multithreaded sys-
tems do not scale well. Instruction level dataflow implemen-

tations potentially can scale with processing resources, but
they require excessive hardware support for synchroniza-
tion, distribution, and communication among the instruc-
tions. A combination of static (compile time) and dynamic
techniques for the creation and distribution of threads (or a
unit of concurrent activity) may provide a balance between
performance and hardware complexity.

The implementation of imperative memory systems
within the context of a dataflow model is yet another issue
that is not addressed satisfactorily. In addition to the
management of structures, techniques for the management
of pointers, dealing with aliasing, and dynamic memory
management are needed. Ordering of memory updates (a
critical concept in shared memory concurrency) is an alien
concept to pure dataflow. However, to be commercially
viable, it is essential to provide shared memory based
synchronization among concurrent activities. Some ideas
such as those presented in Wavescalar and SDF hold some
promise in this connection.

We believe that several factors are motivating a renewed
interest in the design and implementation of scalable data-
flow processors. These include the recent technological
advances in increased chip density; the complex intercon-
nections among multiple processing elements on a single
chip (Network-on-a-chip); the hardware complexity of the
superscalar, super pipeline, and VLIW architectures and
the diminishing performance gains of these systems with
additional hardware; the large and multi-level caches;
the compliers that perform extensive global and inter-
procedural analyses to extract as much parallelism as
possible, and finally, the success of the recent dataflow
projects (Recent Dataflow Projects section). At the same
time, if dataflow architecture is to address the challenges of
future processing architectures containing hundreds, if not
thousands, of processing elements, it is necessary to eval-
uate carefully different forms of dataflow organizations for
their suitability for implementation.

BIBLIOGRAPHY

1. W. B. Ackerman, Dataflow languages, IEEE Computer, 15 (2):
15–23, 1982.

2. R. S. Nikhil, Id World Reference Manual, MIT Laboratory for
Computer Science, Cambridge, MA, 1985.

3. J. Feo, D.Cann, and R.Oldehoeft, A report on the Sisal language
project, J. Parallel Distribut. Comput., 10: 249–365, 1990.

4. R. Oldehoeft and D. Cann, Applicative parallelism on a shared-
memory multiprocessor, IEEE Software, 5 (1): 62–70, 1988.

5. Sisal Lives, Available: http://sisal.sourceforge.net/

6. B. Lee and A. R. Hurson, Dataflow architectures and multi-
threading, IEEE Computers, 27 (8): 27–38, 1994.

7. J. B. Dennis and D. P. Misunas, A preliminary architecture for
a basic dataflow processor, Proc. Symposium on Computer
Architecture, 1975, pp. 126–132.

8. J. R. Gurd, C. C. Kirkham, and I. Watson, The manchester
prototype data-flow computer, Comm. ACM, 28 (1): 34–52,
1985.

9. Arvind and D. E. Culler, Dataflow Architectures, Ann. Rev.
Comp. Sci., 1: 225–253, 1986.

DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE 11



10. A. L. Davis, The architecture and system Method of DDM1: A
recursively structured data driven machine, Proc. Symposium
on Computer Architecture, 1978, pp. 210–215.

11. M. Cornish, The TI dataflow architecture: The power of
concurrency for avionics, Proceedings of Third Conference on
Digital Avionics Systems, 1979, pp. 19–25.

12. Y. M. Chong, Dataflow chip optimizes image processing,
Computer Design, 97–103, 1984.

13. N. Takahashi and M. Amamiya, A dataflow processor array
system: Design and analysis, Proc. Symposium on Computer
Architecture, 1983, pp. 243–250.

14. M. Kishi, H. Yasuhara, and Y. Kawamura, DDDP: A distrib-
uted data driven processor, Proc. Symposium on Computer
Architecture, 1983, pp. 236–242.

15. D. F. Snelling, The design and analysis of a Stateless Data-
Flow Architecture, Tech. Report UMCS-93-7-2, University of
Manchester, 1993.

16. T. Shimada et al., Evaluation of a prototype data flow processor
of the SIGMA-1 for scientific computations, Proc. Int. Sympo-
sium on Computer Architecture, 1986, pp. 226–234.

17. N. Ito, M. Kishi, E. Kuno, and K. Rokusawa, The data-flow
based parallel inference machine to support two basic lan-
guages in KL1, Proc. IFIP TC-10 Working Conf. Fifth Genera-
tion Comp. Arch., 1985, pp. 123–145.

18. D. E. Culler and G. M. Papadopoulos, The explicit token store,
J. Parall. Distribut. Comput., 10: 289–308, 1990.

19. M. Sato et al., Thread-based programming for EM-4 hybrid
dataflow machine, Proc. Symposium on Computer Architec-
ture, 1992, pp. 146–155.

20. V. G. Grafe and J. E. Hoch, The epsilon-2 multiprocessor
system, J. Paral. & Distribut. Comput., 10: 309–318, 1990.

21. R. S. Nikhil and Arvind , Can Dataflow Subsume von Neumann
Computing?Proc. Int. Symposium on Computer Architecture,
1989, pp. 262–272.

22. D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. Eicken,
TAM — A compiler-controlled threaded abstract machine, J.
Paral. Distribut. Comput., 18: 347–370, 1993.

23. R. S. Nikhil, G. M. Papadopoulos, and Arvind , �T: A Multi-
threaded Massively Parallel Architecture, Proc. Int. Sympo-
sium on Computer Architecture, 1992, pp. 156–167.

24. K. M. Kavi, R. Giorgi, and J. Arul, Scheduled dataflow: execu-
tion paradigm, architecture, and performance evaluation,
IEEE Trans. Comp., 50 (8): 834–846, 2001.

25. D. Burger et al., Scaling to the end of silicon with EDGE
architectures, IEEE Computer, 37 (7): 44–55, 2004.

26. S. Swanson et al., Area-performance trade-offs in tiled dataflow
architectures, IEEE, 34 (2): 314–326.

27. C. Kyriacou, P. Evipidou, and P. Trancoso, Data-driven multi-
threading using conventional microprocessors, IEEE Trans.
Parallel Distribut. Sys., 17 (10): 1176–1188, 2006.

28. R. D. Blumofe et al., Cilk: An Efficient Multithreaded Run-time
System, ACM Symposium on Principles and Practice of
Parallel Programming (PPoP), 1995.

29. J.-L. Gaudiot and Y. H. Wei, Token relabeling in a tagged token
data-flow architecture, IEEE Trans. Comp., 38 (9):1225–1239,
1989.

30. W. B. Ackerman, A structure processing facility for dataflow
computers, Proc. of the International Conference on Parallel
Processing, 1978, 166–172.

31. Arvind, R. S. Nikhil, and K. K. Pingali, I-structures: Data
structures for parallel computing, Proc. of the Workshop on
Graph Reduction, Los Alamos, NM, 1986.

32. L. M. Patnaik, R. Govindarajan, and N. S. Ramadoss, Design
and performance evaluation of EXMAN: an extended manche-
ster dataflow computer, IEEE Trans. Comp., 35 (3): 229–243,
1986.

33. B. Lee, A. R. Hurson, and B. Shirazi, A hybrid scheme for
processing data structures in a dataflow environment, IEEE
Trans. Parallel Distribut. Sys., 3 (1): 83–96, 1992.

34. T. M. Ravi, M. D. Ercegovac, T. Lang, and R. R. Muntz, Static
allocation for a dataflow multiprocessor system, 2nd Int. Con-
ference on Supercomputing, 1987.

35. B. Lee, A. R. Hurson, and T. Y. Feng, A vertically layered
allocation scheme for dataflow computers, J. Parallel Distri-
but. Comput., 11: 175–187, 1991.

36. V. Sarkar and J. Hennessy, Compile-time partitioning and
scheduling of parallel programs, Proc. SIGPLAN Symposium
on Compiler Construction, 1986, pp. 17–26.

37. Arvind , Decomposing a program for multiprocessor system,
Proc. of the International Conference on Parallel Processing,
1980, pp. 7–14.

38. J. T. Lim, A. R. Hurson, and L. D. Pritchett, searching for
locality in program graphs, Paral. Comput. Technol., LNCS
2763: 276–290, 2003.

39. A. R. Hurson, K. Kavi, B. Lee, and B. Shirazi, Cache memories
in dataflow architectures: a survey, IEEE Parall. Distribut.
Technol., 4 (4): 50–64, 1996.

40. K. E. Schauseret al., Compiler-controlled multithreading for
lenient parallel languages, Proc. of the ACM Conference on
Functional Programming Languages and Computer Architec-
ture, 1991, pp. 50–72.

41. M. Takesau, Cache memories for dataflow machines, IEEE
Trans. Comput., 41 (6): 677–687, 1992.

FURTHER READING

G. M. Papadopoulos, Implementation of a General-Purpose
Dataflow Multiprocessor, Cambridge, MA: MIT Press, 1991.

K. Kavi, A. R. Hurson, P. Patadia, E. Abraham, and P. Shanmu-
gam, Design of cache memories for multithreaded dataflow
architecture, Proc. of Symposium on Computer Architecture,
1995, 253–264.

ALI R. HURSON

University of Missouri-Rolla
Rolla, Missouri

KRISHNA M. KAVI

The University of North Texas
Denton, Texas

12 DATAFLOW COMPUTERS: THEIR HISTORY AND FUTURE



D

DATA STORAGE ON MAGNETIC DISKS

INTRODUCTION

Data storage can be performed with several devices, such as
hard disk drives (HDDs), tape drives, semiconductor mem-
ories, optical disks, and magneto-optical disks. However,
the primary choice of data recording in computer systems
has been based on HDDs. The reasons for this choice
include the faster access times at relatively cheaper costs
compared with other candidates. Although the semicon-
ductor memories may be faster, they are relatively more
expensive than the HDDs. On the other hand, storage on
optical disks used to be cheaper than the hard disk storage,
but they are slower. In the recent past, HDD technology has
grown at such a rapid pace that it is faster than the optical
disks but costs almost the same in terms of cost per bit.

HDDs have grown at an average rate of 60% during the
last decade. This growth has led to enhanced capacity. The
increase in the capacity of hard disks, while maintaining
the same manufacturing costs, leads to a lower cost per GB
(gigabytes ¼ 1� 109 bytes). At the time of writing (August
2007), HDDs with a capacity of about 1 TB (terabytes ¼ 1�
1012 bytes) have been released. At the same time, the size of
the bits in HDDs has reduced significantly, which has led to
an increase of areal density (bits per unit area, usually
expressed as Gb/in2, gigabits per square inch). The increase
of areal density has enabled HDDs to be used in portable
devices as well as in digital cameras, digital video cameras,
and MP3 players.

To fuel this tremendous improvement in technology,
significant inventions need to be made in the components
as well as in the processes and technologies associated with
HDDs. This article will provide a brief background of the
magnetic disks that store the information in HDDs. Several
articles on the Web are targeted at the novice (1–3). Also,
several articles in the research journals, are targeted at the
advanced reader (4–7). This article will try to strike a
balance between basic and advanced information about
the HDDs.

DATA STORAGE PRINCIPLES

Any data storage device needs to satisfy certain criteria. It
needs to have a storage medium (or media) to store the data,
ways to write the data, ways to read the data, and ways to
interpret the data. Let us take the example of a book. In a
printed book, paper is the storage medium. Writing infor-
mation (printing) is done using ink, and reading is carried
out with the user’s eyes. Interpretation of the data is carried
out using the user’s brain. Components with similar func-
tions exist in an HDD too.

Figure 1(a) shows the components of a typical HDD, used
in desktop PCs. Some key components that make up an
HDD are marked. A disk, a head, a spindle motor, an
actuator, and several other components are included.

The disk is the recording medium that stores the informa-
tion, which is similar to the paper of a book. The head
performs two functions (similar to pen and eye in our
example), which are writing and reading information.
The spindle motor helps to spin the disk so that the actuator
(that moves along the radial direction) can carry the head to
any part of the disk and read/write information. The
printed circuit board [Fig. 1(b)] is the brain of the HDD,
which helps to control the HDD and pass meaningful
information to the computer or whatever device that
uses the HDD. Before we learn about these components
in detail, let us understand the principles of magnetic
recording, which is the basis for storage of information in
HDDs.

Magnetic recording was demonstrated successfully as a
voice signal recorder by Vladimir Poulsen about 100 years
ago. Later, it was exploited for storing all kinds of informa-
tion. In simple terms, magnetic recording relies on two
basic principles: (1) Magnets have north and south poles.
The field from these poles can be sensed by a magnetic field
sensor, which is a way of reading information. (2) The
polarity of the magnets can be changed by applying exter-
nal magnetic fields, which is a way of writing information.
Although earlier systems of magnetic recording such as
audio tapes and video tapes are analog devices, HDDs are
digital devices, which make use of a string of 1 s and 0 s to
store information. In the next few sections, the key tech-
nologies that aid in advancing the storage density of HDDs
will be discussed briefly. The main focus of the article is,
however, on the magnetic disks that store the information.

HEADS

The head is a tiny device [as shown in Fig. 1(a)] that per-
forms the read–write operation in an HDD. The heads have
undergone tremendous changes over the years. In the past,
both reading and writing operations were carried out using
an inductive head. Inductive heads are a kind of transducer
that makes use of current-carrying coils wound on a ferro-
magnetic material to produce magnetic fields (see Fig. 2).
The direction of the magnetic field produced by the poles of
the ferromagnetic material can be changed by changing the
direction of the electric current. This field can be used to
change the magnetic polarities of the recording media
(writing information).

Inductive heads can also be used for reading informa-
tion, based on Faraday’s law, which states that a voltage
will be generated in a coil, if a time-varying flux (magnetic
field lines) is in its vicinity. When the magnetic disk (in
which information is written) rotates, the field that ema-
nates from the recording media bits will produce a time-
varying flux, which will lead to a voltage in the inductive
head. This voltage can be used to represent ‘‘1’’s or ‘‘0’’s. The
inductive head technology was prevalent until the early
1990s. However, to increase the bit density, the bit size had
to be decreased, which led to a decrease in the magnetic flux

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



from the bits. The inductive heads were not sensitive
enough to the magnetic field from the smaller bits as the
technology progressed. Therefore, more advanced read
sensors found their way into the head design. Modern
HDDs have two elements in a head: One is a sensor for
reading information (analogy: eye), and the other is an

inductive writer for writing information (analogy: pen).
Such components where the sensor and writer are inte-
grated are called integrated heads or simply heads.

Figure 2 shows the schematic diagram of an integrated
head, which consists of a writer and a reader. The inductive
head on the right side of the image is the writer that
produces the magnetic field to change the magnetic state
of the region of the magnetic disk to be in one way or the
other. Figure 2 also shows a read-sensor (or reader), sand-
wiched between two shields. The shield 2, as shown in the
figure, is usually substituted with one side of the core of the
inductive head. The shields are ferromagnetic materials
that would shunt away any field from bits that are away
from the region of interest, in a similar way as the blinders
prevent a horse from seeing on either side. Because of the
shields, only the magnetic field from the bit (that is being
read) is sensed by the reader.

The HDDs used magneto-resistive (MR) heads for some
time (early to late 1990s) before switching to prevalent
giant magneto-resistive (GMR) sensors. Unlike inductive
heads, MR and GMR heads work on the basis of change in
the resistance in the presence of a magnetic field. The GMR
sensor, which is shown in multicolor, is in fact made of
several magnetic and nonmagnetic layers. GMR devices
make use of the spin-dependent scattering of electrons.
Electrons have ‘‘up’’ and ‘‘down’’ spins. When an electric
current is passed through a magnetic material, the mag-
netic orientation of the magnetic material will favor the
movement of electrons with a particular spin— ‘‘up’’ or
‘‘down’’. In GMR devices, the magnetic layers can be
designed in such a way that the device is ‘‘more resistive’’
or ‘‘less resistive’’ to the flow of electrons depending on the
direction of the field sensed by the sensors. Such a change in
the resistance can be used to define ‘‘1’’ and ‘‘0’’ needed for
digital recording.

RECORDING MEDIA

As mentioned, this article will discuss the recording
media—the magnetic disks that store the information—in

Figure 1. Typical components of an HDD: (a) view of inside parts
of the HDD and (b) view of the printed-circuit-board side.

Figure 2. Schematic diagram of a head in an HDD showing the
writer (inductive head), reader, and media below.

2 DATA STORAGE ON MAGNETIC DISKS



more detail. Historically, the first recording media for HDD
was made by spraying a magnetic paint on 24’’ aluminium
disks. These types of recording media, where fine magnetic
particles are embedded in a polymer-based solvent, are
called particulate media. However, they became obsolete
in the late 1980s. Thin film technology took the place of the
old technology to coat the recording media.

Fabrication of Magnetic Disks

In thin film technology, the recording media consists of
several layers of thin films deposited by a process called
sputtering. Figure 3 shows a typical schematic cross section
of the layers that may constitute a perpendicular recording
medium, which is an emerging technology at the time of
writing. Sputtering, simply said, is a process of playing
billiards with atoms to create thin film layers. The sputter-
ing process is carried out in vacuum chambers and is
described here briefly. The sputtering chamber, where
the thin film deposition would take place, is pumped
down to a low pressure at first. The objective of achieving
this low pressure, called the base pressure, is to minimize
the water vapor or other contaminating elements in the
deposition chamber. After the base pressure is achieved,
whose value depends on the application, argon (Ar) or some
other inert gas is passed into the chamber. When a high
negative voltage is applied between the target (the material
that needs to be ejected) and the sputtering chamber
(ground), the Ar ions that were created by the discharge
in the sputtering chamber and accelerated because of
the high-voltage knock on the target and release atoms.
These atoms are scattered in different directions, and if the
sputtering system was optimized well, most of them would
arrive at the substrate (the disk that has to be coated).

Several modifications can be made to the process
described above to improve the quality of the films that
are obtained. In modern sputtering machines used in the
hard disk industry, magnetron sputtering, where magnets
are arranged below the targets and can even be rotated, is
used to deposit thin film at faster deposition rates with good
uniformity over the entire substrate. Moreover, since the
recording media have several layers, the modern machines
also have several sputtering chambers in a single sputter-
ing machine, so that all layers can be deposited subse-
quently without exposing the layers to the ambient
conditions. Figure 4 illustrates the sputtering process.
Figure 5 shows the configuration of chambers in a sputter-
ing system from Oerlikon (8). In the media fabrication
process, the disk goes through all the chambers to coat
the various layers depicted in Fig. 3.

Magnetic Recording Schemes

Figure 6 shows the way the data are organized on magnetic
disks (also called platters). Several platters may be stacked
in an HDD to multiply capacity. In almost all HDDs, the
information is stored on both sides of the disks. Read/write
heads exist on both surfaces, which perform reading and
writing of information. For the sake of simplicity, only one
side of the disk surface is shown here. As can be shown, the
information is stored in circular tracks. Within the tracks,
addressed sectors exist, in which the information can be
written or read. The randomness in access/storage of infor-
mation from/in an address provided by the CPU comes from
the ability to move the head to the desired sector. In the
state-of-the-art hard-disk media, about 150,000 tracks
exist running from the inner diameter (ID) of the disk to
the outer diameter (OD). The tracks are packed at such a
high density that it is equivalent to squeezing about 600
tracks in the width of a typical human hair (considering the
average diameter of the human hair to be around 100 mm).
In each track, the bits are packed at a density of 1 million
bits in an inch (about 4000 bits in the width of a human
hair). If a nano-robot has to run on all the tracks to have a
look at the bits of a contemporary hard disk, it would have
almost completed a marathon race. That is how dense
are the bits and tracks in an HDD. This trend of squeezing
the tracks and bits in a smaller area will continue. Figure 7

Figure 3. Typical cross-sectional view of a recording medium that
shows different layers.

Figure 4. Illustration of the sputtering process inside a sputter-
ing chamber.

DATA STORAGE ON MAGNETIC DISKS 3



shows the trend of increase in the areal density (number of
bits in a square-inch) as a function of time. It can be noticed
that the areal density has increased by about 100 million
times in the past five decades.

Figure 8 illustrates the recording process in the long-
itudinal recording technology. In this technology, the pola-
rities of the magnets are parallel to the surface of the hard
disk. When two identical poles (S–S or N–N) are next to
each other, a strong magnetic field will emerge from the
recording medium, whereas no field will emerge when
opposite poles (S–N) are next to each other. Therefore,
when a magnetic field sensor (GMR sensor, for example)
moves across this surface, a voltage will be produced only
when the GMR sensor goes over the transitions (regions
where like poles meet). This voltage pulse can be synchro-
nized with a clock pulse. If during the clock window,
the GMR sensor produces a voltage, it represents 1. If
no voltage is produced during the clock window, it repre-
sents 0. This simple illustration shows how ‘‘1’’s and ‘‘0’’s
are stored in hard disk media.

In our previous discussion, groups of bar magnets were
used to illustrate the way bits are organized. However, in
real hard disk media, the bits are stored in a collection of
nano-magnets called grains for several reasons. Grains
(tiny crystallites) are regions of a material within which
atoms are in arrangement of a crystal. The grains of current
hard disk media have an average size of about 7 nm.
Figure 9 shows a close-up view of the bits in a recording
medium (bit-boundary is shown by the dark lines). It can be
noticed that the bits are not perfectly rectangular. The bit
boundaries are not perfectly straight lines, but they are
mostly determined by the grain boundaries in modern-day
magnetic disks. Also, several grains are between the bit
boundaries. In current technology, about 60 grains are
included in a bit.

The reasons for using several grains to store information
derive mainly from the fabrication process. The traditional
deposition methods of making the magnetic disks (such as
sputtering) lead to a polycrystalline thin film. If the grains
of the polycrystalline material are magnetic, their easy

Figure 6. Organization of data in HDDs.

Figure 5. Picture of a sputtering system
with different chambers for manufacturing
hard disk media. The direction of move-
ment of the disk is marked by arrows.

4 DATA STORAGE ON MAGNETIC DISKS



axes (the direction in which north and south poles will
naturally align themselves) will be in random directions.
Moreover, the grains are also arranged in random positions
within the magnetic media so that relying on one grain to
store one bit is not possible. In addition, relying on several
grains to store information provides us with the conveni-
ence of storing information in any part of the recording
media.

It can be noticed from Fig. 10 that the easy axes are
pointing in different directions. The magnetic field, which
produces the signal in the read-sensor, depends on the
component of magnetization parallel to the track. If more
grains have their magnetization orientated parallel to the
track, then the recording media will exhibit a high signal
and a low noise. When designing a recording medium, it is
important to achieve a high signal-to-noise ratio (SNR) at
high densities, as a high SNR will enable the bits to be read
reliably. Hard disk media makes use of a mechanical-
texturing technology to maximize the number of grains
whose easy axes are parallel to the track. However, even by
improving this technology, not all grains can be arranged
when their easy axis direction is parallel to the track.
Because of these reasons, several grains of a magnetic
disk are used to store one bit.

Design of a Magnetic Recording Medium

In the previous section, it was highlighted that several
grains (tiny crystals) are used for storing information.
The SNR, which determines how reliably the bits can be

read, depends on the number of grains in a bit. When the
areal density needs to be increased in an HDD, the bit size
needs to be shrunk. Therefore, to maintain an acceptable
SNR, the grain size also needs to be shrunk, so that the
number of grains per bit remains more or less the same.
Therefore, reduction of grain size is one of the areas,
where the attention of researchers is always focused
(9,10). Figure 11 shows the reduction of grain size in
recording media over several generations. As the technol-
ogy progressed, the grain size decreased. However, signifi-
cant improvements in other parts of HDDs can also relax
the requirement on grain size. Although the hard disk
media of a decade ago had about 600 grains per bit, current
media have only about 60 grains per bit. This decrease
shows that, along with improvements in recording media
technologies, the other components (such as head) or tech-
nologies (such as signal processing) have also progressed
significantly enough to read a bit reliably from just 60
grains.

It is also essential to achieve sharper bit boundaries to
pack bits closer together. The sharpness of the bit bound-
aries deteriorates in the case of longitudinal recording
because identical magnetic poles facing at a bit boundary
do not favor a sharp magnetic change at the boundary. On
the other hand, in the case of perpendicular recording,
which will be described in detail later, where the magne-
tization is formed in the perpendicular direction to the disk
plane, opposite magnetic poles facing at a bit boundary help
to from a sharp magnetic change. Therefore, the sharpness

Figure 9. Close-up view of bits in a
recording medium.

Areal Density Growth

1.E+04

1.E+02

1.E+00

1.E+02

1.E+04

1.E+06

1956 1975 1989
Year

1996 2001

A
re

al
 d

en
si

ty
 (

G
b/

in
2 )

Figure 7. Trend in the increase of areal density of HDDs. Figure 8. Recording principle of longitudinal recording.

DATA STORAGE ON MAGNETIC DISKS 5



of the bit boundaries is determined by the nature of grains
in the recording medium.

If the grains are isolated from each other, each grain will
act as magnet by itself. In this case, the bit boundaries
will be sharper. On the other hand, if the grains are not well
isolated, a few grains could switch together. In this case, the
bit boundaries will be broader. It is essential to achieve a
good inter-grain separation, when the recording medium is
designed. In the emerging perpendicular recording, the
hard disk media are an alloy of CoCrPt:SiO2. Significant
presence of Co makes this alloy magnetic, and Pt helps to
improve the magneto-crystalline anisotropy energy. If this
energy is greater, the reversal of magnetic direction
becomes difficult, leading to a long-term storage without
self-erasure or erasure from small external fields. The
addition of Cr and SiO2 are responsible for improving
inter-grain separation. When the magnetic layer is formed
from CoCrPt:SiO2, oxides of Cr and Si are formed in the
grain boundary. Because these oxides are nonmagnetic, the
magnetic grains are isolated from each other, and this helps
to obtain a narrower bit-boundary.

It is also important to achieve a desired crystallographic
orientation when a recording medium is designed. The
cobalt crystal, which is the most commonly used hard
disk media layer, has a hexagonal close-packed structure.
In a cobalt crystal, the north and south poles prefer to lie
along the C-axis (center of the hexagon). Therefore, when a

recording medium is made, it is necessary to orient the C-
axis in a desired way. For example, it is necessary to orient
the C-axis perpendicular to the disk in the emerging per-
pendicular recording technology (and parallel to the disk in
longitudinal recording technology). If the recording med-
ium is deposited directly on the substrate, it may not be
possible to achieve the desired orientation. Therefore,
usually several layers are deposited below the recording
layer (see Fig. 3) to improve the desired orientation. In
recording media design, the choice of materials and the
process conditions for the layers play a critical role.

In addition, several requirements such as corrosion-
resistance and a smooth surface must be met when design-
ing recording media. The designed media must not corrode
at least for a period of 10 years. The protection layers that
have to prevent corrosion cannot be thicker than 4 nm (as of
the year 2007). In the future, the protection layers need to
be thinned down closer to 1 nm (1/100000th thickness of a
human hair). The surface of the media should be very
smooth with a roughness of only about 0.2 nm to enable
smooth flying of the head over the media surface without
crashing. All requirements must be met while maintaining
the cost of the hard disk media below about US$5.

OTHER COMPONENTS

The HDD involves several other advanced technologies in
its components and mechanisms. For example, the slider
that carries the read/write head has to fly at a height of
about 7 nm (or lower in future). This flying condition is
achieved when the disk below rotates at a linear velocity of
36 kmph. If a comparison is made between the slider and a
B747 jet, flying the slider at a height of 7 nm is like flying the
jumbo jet at a height of 7 mm above the ground. In some
modern HDDs, the flying height of the slider can be lowered
by about 2 nm when information needs to be read or
written. This decrease will allow the head to fly at safer
heights during the idle state and fly closer when needed.

Several challenges are associated with almost all com-
ponents of an HDD. Because the head needs to fly at a very
low height over the media surface, the hard disk needs to be
in a very clean environment. Therefore, HDDs are sealed
with a rubber gasket and protected from the outside envir-
onment. The components inside the HDD (including the
screws) should not emit any contaminant particle or gas, as
that will contaminate the environment leading to a crash
between the head and the media. The motor of the HDDs
should provide sufficient torque for the heavy platters to
rotate. Yet the motor should be quiet, stable in speed, and
free from vibrations. In addition, it should be thin enough to
fit into smaller HDDs and consume less power.

OTHER TECHNOLOGIES

HDDs also use several advanced technologies to achieve an
ever increasing demand of higher capacity and lower cost
per gigabyte. For an Olympic sprinter who is sprinting at a
speed of 10 m/s, staying in his track with a width of about
1.25 m is not a serious problem. However, in HDDs, the
head that moves at similar speeds has to stay in its track,

Figure 10. Magnetic orientations of grains in a recorded bit.

25

20

15

10

5

0

25

20

15

10

5

0
1                       10                     100                    1000 

Areal Density (Gb/in2)

G
ra

in
 D

ia
m

et
er

 (
nm

)

Figure 11. Average size of grains in recording media of different
generations.

6 DATA STORAGE ON MAGNETIC DISKS



which is only about 160 nm wide (about 8 million times
narrower than the Olympic track). Following the track gets
more complicated in the presence of airflow. The airflow
inside the HDD causes vibrations in the actuator and the
suspension that move and carry the head. Therefore, it is
necessary to study the air-flow mechanism and take the
necessary steps to minimize the vibrations and stay in the
track. These issues will be more challenging in the future,
as the tracks will be packed at even higher densities than
before. It was also mentioned that the HDDs use fewer
grains per bit now than in the recent past, which leads to a
reduction in the SNR and makes signal processing more
complicated. Therefore, it is very clear that the HDD
involves creation of new technologies that should go
hand-in-hand. HDD technology is one of the few technol-
ogies that needs multidisciplinary research.

RECENT DEVELOPMENTS

In magnetic recording, as mentioned, small grains help to
store the information. The energy that helps to make the
information stable depends on the volume of the grain.
When the grains become smaller (as technology pro-
gresses), this energy becomes smaller, which leads to a
problem called superparamagnetism. In superparamag-
netism, the north and south poles of a magnet fluctuate
from thermal agitation, without the application of any
external field. Even if 5% of the grains of a bit are super-
paramagnetic, data will be lost. It was once reported that
the areal density of 35 Gb/in2 would be the limit of magnetic
recording (11). However, HDD technology has surpassed
this limit, and the current areal density of the products is at
least four times larger. Several techniques are employed to
overcome the limit of 35 Gb/in2, but describing those tech-
niques is beyond the scope of this article. One technology,
which can carry forward the recording densities to higher

values, at least as high as 500 Gb/in2 (which is roughly three
times the areal density in the products of 2006), is called
perpendicular recording technology.

Although perpendicular recording technology was pro-
posed in the mid-1970s, successful implementation of per-
pendicular recording technology has been offered only since
2006. In this technology, the north and south poles of the
magnetic grains that store the information lie perpendicu-
lar to the plane of the disk (12). In addition, this technology
has two main differences in the head and media design.
First, the media design includes the presence of a soft
magnetic underlayer (a material whose magnetic polarity
can be changed with a small field)— marked in Fig. 3 as
SUL1 and SUL2. Second, the head has a different archi-
tecture in that it produces a strong perpendicular magnetic
field that goes through the recording layer and returns
back through another pole with a weaker field via the SUL
(see Fig. 12). The field becomes weaker at the return pole
because of the difference in the geometry of the two poles.
This configuration achieves a higher writing field than
what is possible with the prevalent longitudinal recording
technology. When higher writing fields are possible, it is
possible to make use of smaller grains (whose magnetic
polarities are more stable) to store information. When
smaller grains are used, the bit sizes can be smaller leading
to higher areal densities. This increase in the writability is
one reason that gives the edge to perpendicular recording
technology.

Perpendicular recording technology offers larger Mr.t
(which is the product of remanent moment Mr and
thickness t or the magnetic moment per unit area) values
for the media without degrading the recording resolution.
The resolution and the noise are governed by the size of the
magnetic clusters (or the grain size in the extreme case). It
also offers increased thermal stability at high linear den-
sities. All these characters come from the difference in the
demagnetizing effect at the magnetic transitions.

Figure 12. Illustration of perpendicular
recording technology.

DATA STORAGE ON MAGNETIC DISKS 7



FUTURE STORAGE: WHAT IS IN STORE?

The recently introduced perpendicular recording technol-
ogy is expected to continue for the next four to five years
without significant hurdles. However, some new technolo-
gies would be needed after five years or so, to keep increas-
ing the areal density of the HDDs. One such technology that
is investigated intensively is heat-assisted magnetic
recording (HAMR). In this technology, a fine spot (about
30 nm) of the recording medium is heated to enable the
writing operation. Without heating, writing/erasure can-
not be achieved. Once the writing is carried out, the media
are cooled to room temperature, at which the data are
thermally stable.

Several challenges are associated with this technology,
which are being investigated. Another technology that is
considered as a competitor to HAMR is bit-patterned media
recording. In bit-patterned media recording technology, the
media are (lithographically or otherwise) defined to have
regions of magnetic and nonmagnetic material. Although
the magnetic material will store the information, the non-
magnetic material will define the boundary and help to
reduce the inter-bit magnetic interactions and, hence,
noise. Since the magnetic material in this technology is
larger than that of a single grain in perpendicular record-
ing technology, the information is more stable with bit-
patterned media technology. However, to be competitive,
feature sizes of about 10 nm need to be achieved lithogra-
phically without significantly increasing costs. Although a
10-nm feature size over larger areas at a cheaper costs is a
challenge that cannot be tackled so soon, challenges also
come from other components to meet the requirement of
bit-patterned media recording technology. At this point, it
is not clear which technology will take the lead. But, it is
foreseen widely that far-future HDDs may combine both
technologies. Therefore, research has been going on for
both of these technologies.

When the new technologies described above enter into
HDDs, in about six to seven years from now, the areal
density will be about 1000 Gb/in2. With this kind of areal
densities, a desktop HDD could store about 5 TB or higher.
You could carry your laptop with an HDD that stores 1 TB.
It is almost certain that all of these high-capacity devices
would be available at the same price of a 400-GB desktop
drive available now.

SUMMARY

The working principle of an HDD is introduced, with
detailed attention given to the magnetic disks that store
the information. In an HDD, the head that has a sensor and
a writer are used for reading and writing information. The
information is stored in magnetic disks. To achieve high
densities, it is necessary to reduce the size of the grains
(tiny-magnets) that store the information. Recently, per-
pendicular recording technology has been introduced in the
market to continue the growth of HDD technology.
Although perpendicular recording technology may last
for five to eight more years, alternative technologies are
being sought. Heat-assisted magnetic recording and bit-
patterned media recording are a few candidates for future.

BIBLIOGRAPHY

1. Available: http://www.phptr.com/content/images/0130130559/
samplechapter/0130130559.pdf.

2. Available: http://en.wikipedia.org/wiki/Hard_disk_drive.

3. Available: http: / / computer . howstuffworks . com / hard-disk1.
htm.

4. A. Moser, K. Takano, D.T. Margulies, M. Albrecht, Y. Sonobe,
Y. Ikeda, S. Sun and E.E. Fullerton, J. Phys. D: Appl. Phys. 35.
R157–R167, 2002.

5. D. Weller and M.F. Doerner, Annu. Rev. Mater. Sci. 30: 611–
644, 2000.

6. S.N. Piramanayagam, J. Appl. Phys., 102: 011301, 2007.

7. R. Sbiaa and S.N. Piramanayagam, Recent patents on nano-
technology 1: 29–40, 2007.

8. Available http://www.oerlikon.com.

9. S.N. Piramanayagam, et al., Appl. Phys. Lett. 89: 162504, 2006.

10. M. Zheng, et al., IEEE Trans. Magn. 40 (4): 2498–2500, 2004.

11. S.H. Charap, P.L. Lu, and Y.J. He, IEEE Trans. Magn., 978: 33,
978, 1997.

12. S. Iwasaki, IEEE Trans. Magn., 20: 657, 1984.

S. N. PIRAMANAYAGAM

Data Storage Institute
Singapore

8 DATA STORAGE ON MAGNETIC DISKS



E

ELECTRONIC CALCULATORS

People have used calculating devices of one type or another
throughout history. The abacus, which uses beads to keep
track of numbers, was invented over 2000 years ago and is
still used today. Blaise Pascal invented a ‘‘numerical wheel
calculator,’’ a brass box with dials for performing addition,
in the seventeenth century. (1) Gottfried Wilhelm von
Leibniz soon created a version that could also multiply,
but mechanical calculators were not widely used until the
early nineteenth century, when Charles Xavier Thomas de
Colmar invented a machine that could perform the four
basic functions of addition, subtraction, multiplication, and
division. Charles Babbage proposed a steam-powered
calculating machine around 1822, which included many
of the basic concepts of modern computers, but it was never
built. A mechanical device that used punched cards to
store data was invented in 1889 by Herman Hollerith
and then used to mechanically compile the results of the
U.S. Census in only 6 weeks instead of 10 years. A bulky
mechanical calculator, with gears and shafts, was devel-
oped by Vannevar Bush in 1931 for solving differential
equations (2).

The first electronic computers used technology based
on vacuum tubes, resistors, and soldered joints, and thus
they were much too large for use in portable devices. The
invention of the transistor (replacing vacuum tubes) fol-
lowed by the invention of the integrated circuit by Jack
Kilby in 1958 led to the shrinking of electronic machinery to
the point where it became possible to put simple electronic
computer functionality into a package small enough to fit
into a hand or a pocket.

Logarithms, developed by John Napier around 1600, can
be used to solve multiplication and division problems with
the simpler operations of addition and subtraction. Slide
rules are mechanical, analog devices that are based on the
idea of logarithms and use calibrated sticks or disks to
perform multiplication and division to three or four sig-
nificant figures. Slide rules were an indispensable tool for
engineers until they were replaced by handheld scientific
calculators starting in the early 1970s (3).

CALCULATOR TYPES AND USES

Electronic calculators come in a variety of types: four-
function (addition, subtraction, multiplication, and divi-
sion), desktop, printing, and scientific. Figure 1 shows
various calculators with prices ranging from $5 to $150.
Scientific calculators can calculate square roots, logarithms
and exponents, and trigonometric functions. The scientific
category includes business calculators, which have time-
value-of-money, amortization, and other money manage-
ment functions. Graphing calculators are a type of scientific
calculator with a display that can show function plots.
Advanced scientific and graphing calculators also have
user programming capability that allows the user to enter

and store programs. These programs can record and auto-
mate calculation steps, be used to customize the calculator,
or perform complicated or tedious algorithms. Some hand-
held calculators are solar powered, but most advanced
scientific calculators are powered by batteries that last
for many months without needing replacement.

Scientific Calculators

Scientific calculators can perform trigonometric functions
and inverse trigonometric functions (sin x, cos x, tan x,
arcsin x, arccos x, arctan x) as well as hyperbolic and inverse
hyperbolic functions (sinh x, cosh x, tanh x, arcsinh x,
arccosh x, arctanh x). They can also find natural and
common logarithms (ln x, log x), exponential functions
(ex; yx; y1=x), factorials (n!), and reciprocals (1=x). Scientific
calculators contain a representation for the constant p, and
they can convert angles between degrees and radians. Most
scientific calculators accept numbers with 10 to 12 digits
and exponents ranging from�99 to 99, although some allow
exponents from �499 to 499.

Graphing Calculators

Graphing calculators were first developed in the late
1980s as larger liquid-crystal displays (LCDs) became
available at lower cost. The pixels in an LCD display can
be darkened individually and so can be used to plot function
graphs. The user keys in a real-valued function of the form
y = f(x) and makes some choices about the scale to use for
the plot and the set of values for x. Then the calculator
evaluates f(x) for each x value specified and displays the
resulting (x,f(x)) pairs as a function graph. Graphing cal-
culators can also plot polar and parametric functions,
three-dimensional (3-D) wireframe plots, differential equa-
tions, and statistics graphs such as scatter plots, histo-
grams, and box-and-whisker plots. (See Fig. 2.) Once a
graph has been displayed, the user can move a small cursor
or crosshairs around the display by pressing the arrow or
cursor keys and then obtain information about the graph,
such as the coordinates of points, the x-intercepts, or the
slope of the graph at a certain point. The user can also select
an area of interest to zoom in on, and the calculator will
replot the graph using a different scale (4).

Programmable Calculators

If a series of steps is to be repeated using various different
inputs, it is convenient to be able to record those steps and
replay them automatically. Simple programmable calcula-
tors allow the user to store a sequence of keystrokes as a
program. More complicated programmable calculators pro-
vide programming languages with many of the components
of high-level computer languages, such as branching and
subroutines.

Given all these types and uses of calculators, what is it
that defines a calculator? The basic paradigm of a calculator
is key per function. For example, one key is dedicated to the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



square root function on most scientific calculators. All the
user has to do is input a number and then press one key, and
the calculator performs a complicated series of steps to
obtain an answer that a person could not easily calculate

on their own. Another way to say this is that there is an
asymmetry of information flow: Given a small amount of
input, the calculator does something nontrivial and gives
you back results that you could not have easily found in
your head or with pencil and paper.

CALCULATOR HARDWARE COMPONENTS

Today’s advanced scientific and graphing calculators
have many similarities to computers. The block diagram
in Fig. 3 shows the system architecture of an advanced
scientific graphing calculator (5). The two main compo-
nents of a calculator are hardware and software. The hard-
ware includes plastic and metal packaging, display,
keypad, optional additional input/output devices (such as
infrared, serial ports, card slots, and beeper parts to pro-
duce sound), power supply circuit, and an electronic sub-
system. The electronic subsystem consists of a printed
circuit board with attached electronic components and
integrated circuits, including a central processing unit
(CPU), display controllers, random access memory
(RAM), and the read-only memory (ROM) where software
programs are stored permanently.

The mechanical design of a calculator consists of
subassemblies such as a top case with display and keypad,
a bottom case, and a printed circuit or logic assembly.
Figure 4 shows the subassemblies of a graphing calculator.
A metal chassis in the top case supports the keypad, pro-
tects and frames the glass display, and provides a negative
battery contact. The metal chassis is also part of the shield-
ing, which protects the electronic circuitry from electro-
static discharge (ESD). The bottom case may contain
additional metal shielding, a piezoelectric beeper part,
and circuitry for battery power. The subassemblies are
connected electrically with flexible circuits (6).

Display

Early calculators used light-emitting diode (LED) displays,
but liquid crystal displays (LCDs) are used in most modern

Figure 1.

Figure 2.

2 ELECTRONIC CALCULATORS



calculators because they have low voltage requirements,
good visibility in high ambient light conditions, and they
can produce a variety of character shapes and sizes (7). An
LCD consists of two pieces of glass with a layer of liquid
crystal in between which will darken in specific areas when
a voltage signal is applied. These areas can either be
relatively large segments that are combined a few at a
time to represent a number or character, or they can be
a grid of very small rectangles (also called picture elements
or pixels) that can be darkened selectively to produce
characters, numbers, and more detailed graphics. Basic
calculators have one line displays that show one row of
numbers at a time, whereas today’s more advanced calcu-
lators can display up to eight or more rows of characters
with 22 or more characters per row, using a display with as
many as 100 rows and 160 columns of pixels.

Keypad

Calculator keypads are made up of the keys that the user
presses, an underlying mechanism that allows the keys
to be depressed and then to return to their initial state,

and circuit traces that allow the system to detect a key
press. When a key is pressed, an input register line and an
output register line make contact, which causes an inter-
rupt to be generated. This interrupt is a signal to the
software to scan the keyboard to see which key is pressed.
Keypads have different tactile feel, depending on how they
are designed and of what materials they are made. Hinged
plastic keys and dome-shaped underlying pads are used to
provide feedback to the user with a snap when keys are
pressed. An elastomer membrane separating the keys from
the underlying contacts helps to protect the electronic
system from dust (8).

The keypad is an input device, because it is a way for the
user to provide information to the calculator. The display is
an output device, because it allows the calculator to convey
information to the user. Early calculators, and today’s
simple calculators, make do with only these input and
output devices. But as more and more memory has been
added to calculators, allowing for more data storage and for
more extensive programs to be stored in calculator memory,
the keypad and display have become bottlenecks. Different
ways to store and input data and programs have been
developed to alleviate these input bottlenecks. Infrared
and serial cable ports allow some calculators to commu-
nicate with computers and other calculators to quickly and
easily transfer data and programs.

Circuits

The electronic components of a calculator form a circuit that
includes small connecting wires, which allow electric cur-
rent to flow to all parts of the system. The system is made up
of diodes; transistors; passive components such as resistors,
capacitors, and inductors; as well as conventional circuits
and integrated circuits that are designed to perform certain
tasks. One of these specialized circuits is an oscillator that
serves as a clock and is used to control the movement of bits
of information through the system. Another type of specia-
lized circuit is a logic circuit, or processor, which stores data
in registers and performs manipulations on data such as
addition.

Printed Circuit Assembly

A printed circuit board (PCB) forms the backbone of a
calculator’s electronic circuit system, allowing various

Liquid-Crystal Display

Display
Driver

RAM ROM

CPU

Input
Register

Output
Register

Keypad

To other I/O devices:
IR port, serial port,

card ports

Bus

Figure 3.

Figure 4.

ELECTRONIC CALCULATORS 3



components to be attached and connected to each other (9).
Figure 5 shows a calculator printed circuit assembly with
many electronic components labeled. Wires that transmit
data and instructions among the logic circuits, the memory
circuits, and the other components are called buses.
Various integrated circuits may be used in a calculator,
including a central processing unit (CPU), RAM, ROM, and
Flash ROM memory circuits, memory controllers that allow
the CPU to access the memory circuits, a controller for the
display, quartz-crystal-controlled clocks, and controllers
for optional additional input/output devices such as serial
cable connectors and infrared transmitters and receivers.
Depending on the design of the calculator and the choice of
components, some of these pieces may be incorporated in a
single integrated circuit called an application-specific inte-
grated circuit (ASIC).

Central Processing Unit

The central processing unit (CPU) of a calculator or com-
puter is a complicated integrated circuit consisting of three
parts: the arithmetic-logic unit, the control unit, and the
main storage unit. The arithmetic-logic unit (ALU) carries
out the arithmetic operations of addition, subtraction,
multiplication, and division and makes logical comparisons
of numbers. The control unit receives program instructions,
then sends control signals to different parts of the system,
and can jump to a different part of a program under special
circumstances such as an arithmetic overflow. The main

storage unit stores data and instructions that are being
used by the ALU or control unit.

Many calculators use custom microprocessors because
commercially available microprocessors that have been
designed for larger computers do not take into account
the requirements of a small, handheld device. Calculator
microprocessors must operate well under low power con-
ditions, should not require too many support chips, and
generally must work with a smaller system bus. This is
because wider buses use more power and require additional
integrated circuit pins, which increases part costs. Com-
plementary metal-oxide semiconductor or CMOS technol-
ogy is used for many calculator integrated circuits because
it is well suited to very low power systems (10). CMOS has
very low power dissipation and can retain data even with
drastically reduced operating voltage. CMOS is also highly
reliable and has good latch up and ESD protection.

Memory

RAM integrated circuits are made up of capacitors, which
represent bits of information. Each bit may be in one of two
possible states, depending on whether the capacitor is
holding an electric charge. Any bit of information in
RAM can easily be changed, but the information is only
retained as long as power is supplied to the integrated
circuit. In continuous memory calculators, the information
in RAM is retained even when the calculator is turned
OFF, because a small amount of power is still being supplied
by the system. The RAM circuits used in calculators have
very low standby current requirements and can retain their
information for short periods of time without power, such as
when batteries are being replaced.

ROM circuits contain information that cannot be
changed once it is encoded. Calculator software is stored
in ROM because it costs less and has lower power require-
ments than RAM. As software is encoded on ROM by the
manufacturer and cannot be changed, the built-in software
in calculators is often called firmware. When calculator
firmware is operating, it must make use of some amount of
RAM whenever values need to be recorded in memory. The
RAM serves as a scratch pad for keeping track of inputs
from the user, results of intermediate calculations, and
final results. The firmware in most advanced scientific
calculators consists of an operating system (which is a
control center for coordinating the low-level input and
output, memory access, and other system functions),
user interface code, and the mathematical functions and
other applications in which the user is directly interested.

Some calculators use Flash ROM instead of ROM to
store the programs provided by the calculator manufac-
turer. This type of memory is more expensive than ROM,
but it can be erased and reprogrammed, allowing the
calculator software to be updated after the calculator has
been shipped to the customer. Flash ROM does not serve as
a replacement for RAM, because Flash ROM can only be
reprogrammed a limited number of times (approximately
tens of thousands of times), whereas RAM can accommo-
date an effectively unlimited number of changes in the

Figure 5.

4 ELECTRONIC CALCULATORS



value of a variable that may occur while a program is
running.

OPERATING SYSTEM

The operation of a calculator can be broken down into three
basic steps of input, processing, and output. For example, to
find the square root of a number, the user first uses the
keypad to enter a number and choose the function to be
computed. This input generates electronic signals that
are processed by the calculator’s electronic circuits to pro-
duce a result. The result is then communicated back to the
user via the display. The processing step involves storing
data using memory circuits and making changes to that
data using logic circuits, as well as the general operation of
the system, which is accomplished using control circuits.

A calculator performs many tasks at the system level, of
which the user is not normally aware. These tasks include
those that go along with turning the calculator ON or OFF,
keeping track of how memory is being used, managing the
power system, and all the overhead associated with getting
input from the keypad, performing calculations, and dis-
playing results. A calculator’s operations are controlled by
an operating system, which is a software program that
provides access to the hardware computing resources
and allows various application software programs to be
run on the computer (or calculator).

The operating system deals with memory organization,
data structures, and resource allocation. The resources
that it is controlling include CPU time, memory space,
and input/output devices such as the keypad and the dis-
play. When an application program is executed, the oper-
ating system is responsible for running the program by
scheduling slices of CPU time that can be used for executing
the program steps, and for overseeing handling of any
interrupts that may occur while the program is executing.
Interrupts are triggered by events that need to be dealt with
in a timely fashion, such as key presses, requests from a
program for a system-level service such as refreshing the
display, or program errors. Some types of errors that may
occur when a program is running are low power conditions,
low memory conditions, arithmetic overflow, and illegal
memory references. These conditions should be handled
gracefully, with appropriate information given to the user.
Operating systems provide convenience and efficiency:
they make it convenient to execute application programs,
and they manage system resources to get efficient perfor-
mance from the computer or calculator (11).

USER INTERFACE

The user interface for one-line-display calculators is very
simple, consisting of a single number shown in the display.
The user may have some choice about the format of that
number, such as how many digits to display to the right of
the decimal point, or whether the number should be shown
using scientific notation. Error messages can be shown by
spelling out short words in the display. For more compli-
cated calculators than the simple four-function calculators,
the number of keys on the keypad may not be enough to use

one per operation that the calculator can perform. Then it
becomes necessary to provide a more extensive user inter-
face than just a simple keypad. One way to increase the
number of operations that the keypad can control is to add
shifted keys. For example, one key may have the square-
root symbol on the key and the symbol x2 printed just
above the key, usually in a second color. If the user presses
the square-root key, the square-root function is performed.
But if the user first presses the shift key and then presses
the square-root key, the x-squared function will be per-
formed instead.

Advanced scientific and graphing calculators provide
systems of menus that let the user select operations. These
menus may appear as lists of items in the display that the
user can scroll through using arrow or cursor keys and then
select by pressing the Enter key. Changeable labels in the
bottom portion of the display, which correspond to the top
row of keys, can also be used to display menu choices. These
are called soft keys, and they are much like the function
keys on a computer. Methods for the user to enter informa-
tion into the calculator depend on the type of calculator. On
simple, one-line-display calculators, the user presses num-
ber keys and can see the corresponding number in the
display. Graphing calculators, with their larger displays,
can prompt the user for input and then display the input
using dialog boxes like the ones used on computers (12).
Figure 6 shows a graphing calculator dialog box used to
specify the plot scale.

NUMBERS AND ARITHMETIC

The most basic level of functionality that is apparent to the
calculator user is the arithmetic functions: addition, sub-
traction, multiplication, and division. All calculators per-
form these functions, and some calculators are limited to
these four functions. Calculators perform arithmetic using
the same types of circuits that computers use. Special
circuits based on Boolean logic are used to combine num-
bers, deal with carries and overdrafts, and find sums and
differences. Various methods have been developed to per-
form efficient multiplication and division with electronic
circuits (13).

Binary Numbers

Circuits can be used to represent zeros or ones because they
can take on two different states (such as ON or OFF). Calcu-
lator (and computer memory) at any given time can be

Figure 6.

ELECTRONIC CALCULATORS 5



thought of as simply a large collection of zeros and ones.
Zeros and ones also make up the binary or base-2 number
system. For example, the (base-10) numbers 1, 2, 3, 4 are
written in base-2 as 1, 10, 11, 100, respectively. Each
memory circuit that can be used to represent a zero or
one is called a binary digit or bit. A collection of eight bits is
called a byte (or a word). Some calculator systems deal with
four bits at a time, called nibbles. If simple binary numbers
were used to represent all numbers that could possibly
be entered into a calculator, many bits of memory would
be needed to represent large numbers. For example, the
decimal number 2n is represented by the binary number
consisting of a 1 followed by n zeros, and so requires n þ 1
bits of memory storage. To be able to represent very large
numbers with a fixed number of bits, and to optimize arith-
metic operations for the design of the calculator, floating-
point numbers are used in calculators and computers.

Floating-Point Numbers

Floating-point numbers are numbers in which the location
of the decimal point may move so that only a limited number
of digits are required to represent large or small numbers,
which eliminates leading or trailing zeros, but its main
advantage for calculators and computers is that it greatly
increases the range of numbers that can be represented
using a fixed number of bits. For example, a number x may
be represented as x ¼ ð�1Þs � F � bE, where s is the sign, F
is the significand or fraction, b is the base used in the
floating-point hardware, and E is a signed exponent. A
fixed number of bits are then used to represent each num-
ber inside the calculator. The registers in a CPU, which is
designed for efficient floating-point operations, have three
fields that correspond to the sign, significand, and expo-
nent, and can be manipulated separately.

Two types of errors can appear when a calculator returns
an answer. One type is avoidable and is caused by inade-
quate algorithms. The other type is unavoidable and is the
result of using finite approximations for infinite objects. For
example, the infinitely repeating decimal representation
for 2/3 is displayed as .6666666667 on a 10-decimal-place
calculator. A system called binary-coded decimal (or BCD)
is used on some calculators and computers as a way to deal
with rounding. Each decimal digit, 0, 1, 2, 3, . . .,9, is
represented by its four-bit binary equivalent: 0000, 0001,
0010, 0011,. . .,1001. So rather than convert each base-10
number into the equivalent base-2 number, the individual
digits of the base-10 number are each represented with
zeros and ones. When arithmetic is performed using BCD
numbers, the methods for carrying and rounding follow
base-10 conventions.

One way to improve results that are subject to rounding
errors is to use extra digits for keeping track of intermedi-
ate results, and then do one rounding before the result is
returned using the smaller number of digits that the user
sees. For example, some advanced scientific calculators
allow the user to input numbers using up to 12 decimal

places, and return results in this same format, but 15-digit
numbers are actually used during calculation.

Reverse Polish Notation and Algebraic Logic System

The Polish logician Jan Lukasiewicz demonstrated a
way of writing mathematical expressions unambiguously
without using parentheses in 1951. For example, given the
expression ð2þ 3Þ � ð7� 1Þ, each operator can be written
before the corresponding operands: � þ 2 3 � 7 1. Or each
operator can be written after its operands: 2 3þ7 1��. The
latter method has come to be known as reverse polish
notation (RPN) (14). Arithmetic expressions are converted
to RPN before they are processed by computers because
RPN simplifies the evaluation of expressions. In a non-RPN
expression containing parentheses, some operators cannot
be applied until after parenthesized subexpressions are
first evaluated. Reading from left to right in an RPN
expression, every time an operator is encountered it can
be applied immediately, which means there is less memory
and bookkeeping required to evaluate RPN expressions.
Some calculators allow users to input expressions using
RPN. This saves the calculator the step of converting the
expression to RPN before processing it. It also means less
keystrokes for the user bacause parentheses are never
needed with RPN. Algebraic logic system (ALS) calculators
require numbers and operators to be entered in the order
they would appear in an algebraic expression. Parentheses
are used to delimit subexpressions in ALS.

User Memory

On many calculators, the user can store numbers in special
memory locations or storage register and then perform
arithmetic operations on the stored values. This process
is called register arithmetic. On RPN calculators, memory
locations are arranged in a structure called a stack. For
each operation that is performed, the operands are taken
from the stack and then the result is returned to the
stack. Each time a new number is placed on the stack,
the previous items that were on the stack are each
advanced one level to make room for the new item.
Whenever an item is removed from the stack, the remain-
ing items shift back. A stack is a data structure that is
similar to a stack of cafeteria trays, where clean trays are
added to the top, and as trays are needed, they are removed
from the top of the stack. This scheme for placing and
removing items is called last-in–first-out or LIFO.

ALGORITHMS

An algorithm is a precise, finite set of steps that describes a
method for a computer (or calculator) to solve a particular
problem. Many computer algorithms are designed with
knowledge of the underlying hardware resources in
mind, so that they can optimize the performance of the
computer. Numerical algorithms for calculators take into

6 ELECTRONIC CALCULATORS



account the way that numbers are represented in the
calculator.

Square-Root Algorithm

A simple approximation method is used by calculators to
find square roots. The basic steps to finding y ¼ x1=2 are
to first guess the value of y, calculate y2, and then find
r¼ x� y2. Then if the magnitude of r is small enough return
y as the answer. Otherwise, increase or decrease y (depend-
ing on whether r is positive or negative, respectively) and
repeat the process. The number of intermediate calcula-
tions required can be reduced by avoiding finding y2 and
x�y2 for each value of y. This can be done by first finding the
value of the largest place digit of y, then the next largest
place digit, and so on. For example, if calculating 547561/2,
first find 200, then 30, and then 4 to construct the answer
y ¼ 234. This method is similar to a method once taught in
schools for finding square roots by hand(15).

Trigonometric Function Algorithms

The algorithms for computing trigonometric functions
depend on using trigonometric identities and relationships
to reduce arbitrarily difficult problems to more manageable
problems. First, the input angle u is converted to an angle
in radians, which is between 0 and 2p (or in some calcula-
tors, between 0 and p/4). Next y is expressed as a sum of
smaller angles. These smaller angles are chosen to be
angles whose tangents are powers of 10: tan�1(1) = 458,
tan�1(0.1), tan�1(0.01), etc. A process called pseudodivision
is used to express y in this way: First tan�1(1) is repeatedly
subtracted from y until an overdraft (or carry) occurs, then
the angle being subtracted from is restored to the value it
had right before the overdraft occurred, then the process
is repeated by subtracting tan�1(0.1) until an overdraft
occurs, and so forth, until we are left with a remaining
angle r, which is small enough for the required level of
accuracy of the calculator. Then y can be expressed as

y ¼ q0 tan�1ð1Þ þ q1tan�1ð0:1Þ þ � � � þ r (1)

Vector geometry is the basis for the formulas used to
compute the tangent of y once it has been broken up into
the sum of smaller angles. Starting with a vector with
angle y1 and then rotating it counter-clockwise by an
additional angle of y2, Fig. 7 illustrates the following rela-
tionships:

X2 ¼ X1 cos y2 � Y1 sin y2

Y2 ¼ Y1 cos y2 þ X1 sin y2

Dividing both sides of these equations by cos y2 we
obtain:

X2=cos y2 ¼ X1 � Y1 tan y2 ¼ X 02 ð2Þ

Y2=cos y2 ¼ Y1 þ X1 tan y2 ¼ Y 02 ð3Þ

As Y2=X2 ¼ tan ðy1 þ y2Þ, then by Equations 2 and 3, we
can see that Y 02=X

0
2 ¼ tanðy1 þ y2Þ. Equations 2 and 3 can be

used repeatedly to construct the tangent of y, because y has
been broken down into a series of smaller angles, shown in
Equation (1). The initial X1 and Y1 correspond to the small
residual angle r. As r is a very small angle (in radians),
sin(r) is close to r and cos(r) is close to 1, so if these values are
close enough for our overall accuracy requirements, we can
let Y1 be r and X1 be 1. Note Equations 2 and 3 involve
finding tangents, but because we expressed y as a sum of
angles of the form tan�1 (10�k), tan (tan�1(10�k))¼ 10�k, so
each evaluation of Equations 2 or 3 will simply involve
addition, subtraction, and multiplication by powers of 10.
As the only multiplication involved is by powers of 10, the
calculations can be accomplished more quickly and simply
using a process called pseudomultiplication, which involves
only addition and the shifting of contents of registers to
simulate decimal point shifts that correspond to multipli-
cation by powers of 10. The iterative process of using
Equations 2 and 3 generates an X and Y, which are pro-
portional to the sine and cosine of the original angle y.
Then elementary operations can be used to find the values
of the various trigonometric functions for y (16).

Logarithm Algorithms

Logarithms are found using a process similar to the
approximation process used to compute trigonometric
functions (17). It is a basic property of logarithms that
lnða1 � a2 � . . .� anÞ ¼ lnða1Þ þ lnða2Þ þ . . .þ lnðanÞ. To
find the logarithm of a number x, x is first expressed as
product of factors whose logarithms are known. The num-
ber x will be stored in the calculator using scientific notation
x ¼M � 10k, where M is called the mantissa and M is
greater than or equal to 1 and less than 10. As
ln ¼ ðM � 10kÞ ¼ lnðMÞ þ k� lnð10Þ, the problem of finding
ln(x) is reduced to the problem of finding ln(M). Let aj be
numbers whose natural logarithms are known. Let P ¼
1/M. Then �lnðPÞ ¼ lnðMÞ. Then express P as P ¼ Pn=r,
where Pn ¼ ak0

0 � ak1
1 � . . .� ak j

j and r is a number close

y

x
X1

Y1

Y2

X2

Figure 7.

ELECTRONIC CALCULATORS 7



to 1. Note that lnðPÞ ¼ lnðPnÞ � lnðrÞ, so now lnðMÞ ¼ lnðrÞ�
lnðPnÞ and for r close to 1, ln(r) is close to 0. Also note that
M ¼ 1=P ¼ r=Pn implies that M�Pn ¼ r. So to find ln(M),
we can first find Pn such that M�Pn is close to 1, where Pn is
a product of specially chosen numbers aj whose logarithms
are known. To optimize this routine for a calculator’s
specialized microprocessor, values that give good results
are aj ¼ ð1þ 10� jÞ. Thus, for example, a0, a1, a2, a3, and
a4 would be 2, 1.1, 1.01, 1.001, and 1.0001. It turns out
that M must first be divided by 10 to use these aj choices.
This choice of the aj terms allows intermediate multi-
plications by each aj to be accomplished by an efficient,
simple shift of the digits in a register, similar to the pseu-
domultiplication used in the trigonometric algorithm.

CALCULATOR DESIGN CHOICES AND CHALLENGES

The requirements for a handheld calculator to be small,
portable, inexpensive, and dedicated to performing compu-
tational tasks have driven many design choices. Custom
integrted circuits and the CMOS process have been used
because of low power requirements. Calculator software
has been designed to use mostly ROM and very little RAM
because of part cost and power constraints. Specialized
algorithms have been developed and refined to be optimized
for calculator CPUs. As calculators become more compli-
cated, ease-of-use becomes an important design challenge.
As memory becomes less expensive and calculators have
more storage space, the keypad and display become bottle-
necks when it comes to transferring large amounts of data.
Improved input/output devices such as pen input, better
displays, and character and voice recognition could all help
to alleviate bottlenecks and make calculators easier to use.

A desktop PC does not fit the needs of personal port-
ability. Desktop or laptop PCs are not very convenient to
use as a calculator for quick calculations. Also, a PC is a
generic platform rather than a dedicated appliance. The
user must take the time to start up an application to per-
form calculations on a PC so a PC does not have the back-of-
the-envelope type of immediacy of a calculator. Handheld
PCs and palmtop PCs also tend to be generic platforms, only
in smaller packages. So they are as portable as calculators,
but they still do not have dedicated calculating function-
ality. The user must go out of their way to select and run a
calculator application on a handheld PC. The keypad of a
handheld PC has a QWERTY keyboard layout, and so it
does not have keys dedicated to calculator functions like
sine, cosine, and logarithms. Handheld organizers and
personal digital assistants (PDAs) are closer to the calcu-
lator model, because they are personal, portable, battery-
operated electronic devices that are dedicated to particular
functionality, but they currently emphasize organizer func-
tionality rather than mathematics functionality.

COMMUNICATION CAPABILITY

Some calculators have already had communication cap-
ability for many years, using infrared as well as serial cable

and other types of cable ports. These have allowed calcu-
lators to communicate with other calculators, computers,
printers, and overhead display devices that allow an image
of the calculator screen to be enlarged and projected for a
roomful of people, data collection devices, bar code readers,
external memory storage, and other peripheral devices.
Protocols are standard formats for the exchange of electro-
nic data that allow different types of devices to commu-
nicate with each other. For example, Kermit is a file
transfer protocol developed at Columbia University. By
coding this protocol into a calculator, the calculator can
communicate with any of a number of different types of
computers by running a Kermit program on the computer.
By programming appropriate protocols into calculators,
they could work with modems and gain access to the
Internet. Calculations could then be performed remotely
on more powerful computers, and answers could be
sent back to the calculator. Or calculators could be used
for the delivery of curriculum material and lessons over
the Internet.

TECHNOLOGY IN EDUCATION

Curriculum materials have changed with the increased use
of graphing calculators in mathematics and science class-
rooms. Many precalculus and calculus textbooks and
science workbooks now contain exercises that incorporate
the use of calculators, which allows the exercise to be more
complicated than the types of problems that could be easily
solved with pencil and paper in a few minutes. With the
use of calculators, more realistic and thus more interesting
and extensive problems can be used to teach mathematics
and science concepts. Calculators are becoming a require-
ment in many mathematics classes and on some standar-
dized tests, such as the Scholastic Aptitude Test taken by
most U.S. high-school seniors who plan to attend college.
Educational policy has, in turn, influenced the design of
graphing calculators. In the United States, the National
Council of Teachers of Mathematics promoted the use of the
symbolic, graphic, and numeric views for teaching mathe-
matics. These views are reflected in the design of graphing
calculators, which have keys dedicated to entering a sym-
bolic expression, graphing it, and showing a table of func-
tion values. Figure 8 shows a graphing calculator display of
the symbolic, graphic, and numeric views of sin(x) (18).

Figure 8.

8 ELECTRONIC CALCULATORS



FUTURE NEED FOR CALCULATORS

Technical students and professionals will always need to
do some back-of-the-envelope-type calculations quickly
and conveniently. The key-per-function model of a calcu-
lator fits in nicely with this need. So does a device that is
dedicated, personal, portable, low cost, and has long battery
life. Users’ expectations will be influenced by improve-
ments in computer speed and memory size. Also, video
game users have higher expectations for interactivity,
better controls, color, animation, quick responses, good
graphic design, and visual quality. For the future, calcu-
lators can take advantage of advances in computer tech-
nology and the decreasing cost of electronic components to
move to modern platforms that have the benefits of
increased speed, more memory, better displays, color dis-
plays, more versatile input devices (such as pen and voice),
and more extensive communication capability (such as
wireless communication).

BIBLIOGRAPHY

1. A. Ralston and E. D. Reilly, Jr.,. (eds.), Encyclopedia of Com-
puter Science and Engineering, 2nd ed. New York: Van Nos-
trand Reinhold, 1983.

2. Jones Telecommunications and Multimedia Encyclopedia,
Jones Digital Century. Available: http://www.digitalcentury.-
com.

3. G. C. Beakley and R. E. Lovell, Computation, Calculators, and
Computers. New York: Macmillan, 1983.

4. T. W. Beers, D. K. Byrne, G. L. Eisenstein, R. W. Jones, and P. J.
Megowan,HP 48SX interfaces and applications, Hewlett-
Packard J, 42(3): 13–21, 1991.

5. P. D. Brown, G. J. May, and M. Shyam, Electronic design of an
advanced technical handheld calculator, Hewlett-Packard J.,
38(8): 34–39, 1987.

6. M. A. Smith, L. S. Moore, P. D. Brown, J. P. Dickie, D. L. Smith,
T. B. Lindberg, and M. J. Muranami, Hardware design of the
HP 48SX scientific expandable calculator, Hewlett-Packard J.,
42(3): 25–34, 1991.

7. C. Maze, The first HP liquid crystal display, Hewlett-Packard
J., 31(3): 22–24, 1980.

8. T. Lindberg, Packaging the HP-71B handheld computer,
Hewlett-Packard J., 35(7): 17–20, 1984.

9. B. R. Hauge, R. E. Dunlap, C. D. Hoekstra, C. N. Kwee, and P.
R. Van Loan, A multichip hybrid printed circuit board for
advanced handheld calculators, Hewlett-Packard J., 38(8):
25–30, 1987.

10. D. E. Hackleman, N. L. Johnson, C. S. Lage, J. J. Vietor, and R.
L. Tillman,CMOSC: Low-power technology for personal com-
puters, Hewlett-Packard J., 34(1): 23–28, 1983.

11. J. L. Peterson, and A. Silberschatz, Operating System Con-
cepts, 2nd ed. Reading: Addison-Wesley, 1985.

12. D. K. Byrne, C. M. Patton, D. Arnett, T. W. Beers, and P. J.
McClellan, An advanced scientific graphing calculator,
Hewlett-Packard J., 45(4): 6–22, 1994.

13. N. R. Scott, Computer Number Systems and Arithmetic. Engle-
wood Cliffs, NJ: Prentice-Hall, 1985.

14. T. M. Whitney, F. Rode, and C. C. Tung, The ‘‘powerful pock-
etful’’: An electronic calculator challenges the slide rule, Hew-
lett-Packard J., 23(10): 2–9, 1972.

15. W. E. Egbert, Personal calculator algorithms I: Square roots,
Hewlett-Packard J., 28(9): 22–23, 1977.

16. W. E. Egbert, Personal calculator algorithms II: Trigonometric
functions, Hewlett-Packard J., 28(10): 17–20, 1977.

17. W. E. Egbert, Personal calculator algorithms IV: logarithmic
functions, Hewlett-Packard J., 29(8): 29–32, 1978.

18. T. W. Beers, D. K. Byrne, J. A. Donnelly, R. W. Jones, and F.
Yuan, A graphing calculator for mathematics and science
classes, Hewlett-Packard J., 47(3): 1996.

DIANA K. BYRNE

Corvallis, Oregon

ELECTRONIC CALCULATORS 9



F

FAULT-TOLERANT COMPUTING

INTRODUCTION

Fault-tolerant computing can be defined as the process by
which a computing system continues to perform its speci-
fied tasks correctly in the presence of faults. These faults
could be transient, permanent, or intermittent faults. A
fault is said to be transient if it occurs for a very short
duration of time. Permanent faults are the faults that
continue to exist in the system, and intermittent faults
repeatedly appear for a period of time. They could be either
hardware or software faults caused by errors in specifica-
tion, design, or implementation, or faults caused by man-
ufacturing defects. They also could be caused by external
disturbances or simply from the aging of the components.

The goal of fault-tolerant computing is to improve the
dependability of a system where dependability can be
defined as the ability of a system to deliver service at an
acceptable level of confidence. Among all the attributes of
dependability, reliability, availability, fault coverage, and
safety commonly are used to measure the dependability of a
system. Reliability of a system is defined as the probability
that the system performs its tasks correctly throughout a
given time interval. Availability of a system is the prob-
ability that the system is available to perform its tasks
correctly at time t. Fault coverage, in general, implies the
ability of the system to recover from faults and to continue
to operate correctly given that it still contains a sufficient
complex of functional hardware and software. Finally, the
safety of a system is the probability that the system either
will operate correctly or switch to a safe mode if it operates
incorrectly in the event of a fault.

The concept of improving dependability of computing
systems by incorporating strategies to tolerate faults is not
new. Earlier computers, such as the Bell Relay Computer
built in 1944, used ad hoc techniques to improve reliability.
The first systematic approach for fault-tolerant design to
improve system reliability was published by von Neumann
in 1956. Earlier designers improved the computer system
reliability by using fault-tolerance techniques to compen-
sate for the unreliable components that included vacuum
tubes and electromechanical relays that had high propen-
sity to fail. With the advent of more reliable transistor
technology, the focus shifted from improving reliability
to improving performance. Although component reliability
has drastically improved over the past 40 years, increases
in device densities have led to the realization of complex
computer systems that are more prone to failures. Further-
more, these systems are becoming more pervasive in all
areas of daily life, from medical life support systems where
the effect of a fault could be catastrophic to applications
where the computer systems are exposed to harsh environ-
ments, thereby increasing their failure rates. Researchers
in industry and academe have proposed techniques to
reduce the number of faults. However, it has been recog-

nized that such an approach is not sufficient and that a shift
in design paradigm to incorporate strategies to tolerate
faults is necessary to improve dependability. Moreover,
advances in technologies, such as very large-scale integra-
tion (VLSI), have led to manufacturing processes that are
not only complex but also sensitive, which results in lower
yields. Thus, it is prudent to develop novel fault-tolerance
techniques for yield enhancement.

Research in this area in the last 50 years has resulted in
numerous highly dependable systems that span a wide
range of applications from commercial transactions sys-
tems and process control to medical systems and space
applications. However, the ever increasing complexity of
computer systems and the ever increasing need for error-
free computation results, together with advances in
technologies, continue to create interesting opportunities
and unique challenges in fault-tolerant computing.

PRINCIPLES OF FAULT-TOLERANT COMPUTER SYSTEMS

Although the goal of fault-tolerant computer design is to
improve the dependability of the system, it should be noted
that a fault-tolerant system does not necessarily imply a
highly dependable system and that a highly dependable
system does not necessarily imply a fault-tolerant system.

Any fault-tolerance technique requires the use of some
form of redundancy, which increases both the cost and the
development time. Furthermore, redundancy also can
impact the performance, power consumption, weight,
and size of the system. Thus, a good fault-tolerant design
is a trade-off between the level of dependency provided and
the amount of redundancy used. The redundancy could be
in the form of hardware, software, information, or temporal
redundancy.

One of the most challenging tasks in the design of a
fault-tolerant system is to evaluate the design for the
dependability requirements. All the evaluation methods
can be divided into two main groups, namely the qualita-
tive and the quantitative methods. Qualitative techni-
ques, which typically are subjective, are used when
certain parameters that are used in the design process
cannot be quantified. For example, a typical user should
not be expected to know about fault-tolerance techniques
used in the system to use the system effectively. Thus, the
level of transparency of the fault-tolerance characteristics
of the system to the user could determine the effectiveness
of the system.

As the name implies, in the quantitative methods, num-
bers are derived for a certain dependability attribute of the
system and different systems can be compared with respect
to this attribute by comparing the numerical values. This
method requires the development of models. Several prob-
abilistic models have been developed based on combinator-
ial techniques and Markov and semi-Markov stochastic
processes. Some disadvantages of the combinatorial models
are that it is very difficult to model complex systems and

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



difficult to model systems where repairing a faulty module
is feasible.

Fundamental to all these models is the failure rate,
defined as the expected number of failures per a time
interval. Failure rates of most electronic devices follow a
bathtub curve, shown in Fig. 1. Usually, the useful life
phase is the most important phase in the life of a system,
and during this time, the failure rate is assumed to be
constant and denoted typically by l. During this phase,
reliability of a system and the failure rate are related by the
following equation, which is known as the exponential
failure law.

RðtÞ ¼ e�lt

Figure 2 shows the reliability function with the constant
failure rate. It should be noted that the failure rate l is
related to the mean time to failure (MTTF) as MTTF ¼ 1/l
where MTTF is defined as the expected time until the
occurrence of the first failure of the system.

Researchers have developed computer-aided design
(CAD) tools based on quantitative methods, such as
CARE III (the NASA Langley Research Center), SHARPE
(Duke University), DEPEND (University of Illinois at
Urbana-Champaign), and HIMAP (Iowa State University).

In the last several years, a considerable interest has
developed in the experimental analysis of computer system
dependability. In the design phase, CAD tools are used to
evaluate the design by extensive simulations that include
simulated fault injection; during the prototyping phase, the
system is allowed to run under a controlled environment.
During this time, physical fault injection is used for the
evaluation purposes. Several CAD tools are available,
including FTAPE developed at the University of Illinois
at Urbana Champaign and Ballista developed at the CAR-

NEGIE-MELLON University. In the following subsections,
several common redundancy strategies for fault-tolerance
will be described briefly.

Hardware Redundancy

Hardware redundancy is one of the most common forms of
redundancy in which a computer system is partitioned into
different subsystems or modules, and these are replicated
so that a faulty module can be replaced by a fault-free
module. Because each subsystem acts as a fault-contain-
ment region, the size of the fault-containment region
dependes on the partitioning strategy.

Three basic types of hardware redundancy are used,
namely, passive, active, and hybrid. In the passive techni-
ques, also known as static techniques, the faults are masked
or hidden by preventing them from producing errors. Fault
masking is accomplished by voting mechanisms, typically
majority voting, and the technique does not require any
fault detection or system reconfiguration. The most common
form of this type of redundancy is triple modular redun-
dancy (TMR). As shown in Fig. 3, three identical modules
are used, and majority voting is done to determine the
output. Such a system can tolerate one fault. However,
the voter is the single point of failure; that is, the failure
of the voter leads to the compete failure of the system.

A generalization of the TMR technique is the N-modular
redundancy (NMR), where N modules are used and N
typically is an odd number. Such a system can mask up

to b N � 1

2
c faulty modules.

In general, the NMR system is a special case of an M-of-N
system that consists of N modules, out of which at least M of
them should work correctly in order for the system to
operate correctly. Thus, system reliability of an M-of-N

Failure
Rate 

Infant mortality 
phase 

Useful life phase 

Wear-out phase 

Time

Figure 1. Bathtub curve.

Figure 2. Reliability function with constant failure rate. Figure 3. Basic triple modular redundancy.

2 FAULT-TOLERANT COMPUTING



system is given by

RðtÞ ¼
XN
i¼M

N
i

� �
RiðtÞ

�
1� RðtÞ

�N�i

For a TMR system, N ¼ 3 and M ¼ 2 and if an nonideal
voter is assumed (Rvoter<1), then the system reliability is
given by

RðtÞ ¼
X3

i¼2

3
i

� �
RiðtÞ½1� RðtÞ�3�i

¼ RvoterðtÞ 3R2ðtÞ � 2R3ðtÞ
� �

Figure 4 shows reliability plots of simplex, TMR, and NMR
when N ¼ 5 and 7. It can be seen that higher redundancy
leads to higher reliability in the beginning. However, the
system reliability sharply falls at the end for higher redun-
dancies.

In the active hardware redundancy, also known as
dynamic hardware redundancy, some form of a reconfi-
guration process is performed to isolate the fault after it
is detected and located. This process typically is followed by
a recovery process to undo the effects of erroneous results.
Unlike passive redundancy, faults can produce errors that
are used to detect faults in dynamic redundancy. Thus, this
technique is used for applications where consequences of
erroneous results are not disastrous as long as the system
begins to operate correctly within an acceptable time
period. In general, active redundancy requires less redun-
dancy than passive techniques. Thus, this approach is
attractive for environments where the resources are lim-
ited, such as limited power and space. One major disad-
vantage of this approach is the introduction of considerable
delays during the fault location, reconfiguration, and recov-
ery processes. Some active hardware redundancy schemes
include duplication with comparison, pair-and-a-spare
technique, and standby sparing.

The hybrid hardware redundancy approach incorpo-
rates the desirable features of both the passive and active

strategies. Fault masking is used to prevent the generation
of erroneous results, and dynamic techniques are used
when fault masking fails to prevent the production of
erroneous results. Hybrid approaches usually are most
expensive in terms of hardware. Examples of hybrid hard-
ware redundancy schemes include self-purging redun-
dancy, N-modular redundancy with spares, triple-duplex,
sift-out modular redundancy, and the triple-triplex archi-
tecture used in the Boeing 777 primary flight computer.

Figure 5 shows a TMR system with a hot spare. The first
fault is masked, and if this faulty module is replaced by the
spare module, then the second fault also can be masked.
Note that for a static system, masking two faults requires
five modules. Reliability of the TMR system with a hot spare
can be determined based on the Markov model shown in
Fig. 6. Such models assume that (1) the system starts in the
perfect state, (2) a single mode of failure exists, that is, only
a single failure occurs at a time, and (3) each module follows
the exponential failure law with a constant failure rate l.
A transition probability is associated with each state tran-
sition. It can be shown that if the module was operational
at time t, then the probability that the module has failed at

1.0

0.5

0

R
el

ia
b

ili
ty

N=1

N=3

N=5
N=7

Time

Figure 4. Reliability plots of NMR system with different values of
N. Note that N ¼ 1 implies a simplex system.

Figure 5. TMR system with hot spare.

3M
S

OK
F

3M
S

OK
OK

2

2M
1M
S

2M
1M
S

1M
2M
S

1 1M
2M
S

OK
F
F

OK
F
OK

OK
F
F

OK
F
OK

4

F

3

1

3λ∆t

2λ∆t

1-2λ∆t

3λC∆t+λ∆t

2λ
C

∆t
+λ

∆t

3λ(1−C)∆t

2λ(1−C)∆t

1-4λ∆t

1-3λ∆t

Figure 6. The Markov model of the TMR system with a hot spare.

FAULT-TOLERANT COMPUTING 3



time tþ Dt is

1� e�lDt

For lDt< 1,

1� e�lDt� lDt

The equations of the Markov model of the TMR system with
a hot spare can be written in the matrix form as

The above discrete-time equations can be written in a
compact form as

Pðtþ DtÞ ¼ APðtÞ

and the solution as

PðnDtÞ ¼ AnPð0Þ

where

Pð0Þj ¼

1
0
0
0
0

2
66664

3
77775

It can be seen that the system reliability R(t) is given by

RðtÞ ¼ 1� PFðtÞ ¼
X4

i¼1

PiðtÞ

where PFðtÞ is the probability that the system has failed.
The continuous-time equations can be derived from the
above equations by letting Dt approach zero; that is

P01ðtÞ ¼ limDt!0
P1ðtþ DtÞ � P1ðtÞ

Dt

P01ðtÞ ¼ limDt!0
P1ðtþ DtÞ � P1ðtÞ

Dt
¼ �4lP1ðtÞ

Similarly,

P02ðtÞ ¼ ð3Cþ 1ÞlP1ðtÞ � 3lP2ðtÞ

P03ðtÞ ¼ ð1� CÞ3lP1ðtÞ � 3lP3ðtÞ

P04ðtÞ ¼ 3lP2ðtÞ � 2lP4ðtÞ þ ð2Clþ lÞP3ðtÞ

P0FðtÞ ¼ ð2l� 2lCÞP3ðtÞ þ 2lP4ðtÞ

Using Laplace transforms

sP1ðsÞ � P1ð0Þ ¼ �4lP1ðsÞ

P1ðsÞ ¼
1

sþ 4l
)P1ðtÞ ¼ e�4lt

sP2ðsÞ � P2ð0Þ ¼ P1ðsÞð3Cþ 1Þl� 3lP2ðsÞ

P2ðsÞ ¼
ð3Cþ 1Þl

ðsþ 3lÞðsþ 4lÞ ¼ ð3Cþ 1Þ 1

sþ 3l
� 1

sþ 4l

� �

P2ðtÞ ¼ ð3Cþ 1Þðe�3lt � e�4ltÞ

In the similar way,

P3ðtÞ ¼ 3ð1� CÞðe�3lt � e�4ltÞ

P4ðtÞ ¼ �3ðC2 � 2C� 1Þðe�4lt þ e�2lt � 2e�3ltÞ

RðtÞ ¼ 1� PFðtÞ ¼
X4

i¼1

PiðtÞ

It can be seen that when the failure rate, l, is 0.1 failures/
hour and the fault coverage is perfect (C ¼ 1) then the
reliability of the TMR system with a hot spare is greater
than the static TMR system after one hour. Moreover, it can

P1ðtþ DtÞ
P2ðtþ DtÞ
P3ðtþ DtÞ
P4ðtþ DtÞ
PFðtþ DtÞ

2
66664

3
77775 ¼

1� 4lDt 0 0 0 0
3lCDtþ lDt 1� 3lD 0 0 0
3lð1� CÞDt 0 1� 3lD 0 0
0 3lDt 2lCDtþ lDt 1� 2lDt 0
0 0 2lð1� CÞDt 2lDt 1

2
66664

3
77775

P1ðtÞ
P2ðtÞ
P3ðtÞ
P4ðtÞ
P5ðtÞ

2
66664

3
77775

4 FAULT-TOLERANT COMPUTING



be noted that the system reliability can be improved by
modifying the system so that it switches to simplex mode
after the second failure.

Software Redundancy

Unlike hardware faults, software faults are caused by mis-
takes in software design and implementation. Thus, a soft-
ware fault in two identical modules cannot be detected by
usual comparison. Many software fault-tolerance techni-
ques have used approaches similar to that of the hardware
redundancy. Most of these schemes assume fault indepen-
dence and full fault coverage and fall under the software
replication techniques, including N-version programming,
recovery blocks, and N self-checking programming.

The basic idea of N-version programming is to design
and code N different software modules; the voting is per-
formed, typically majority voting, on the results produced
by these modules. Each module is designed and implemen-
ted by a separate group of software engineers, based on the
same specifications. Because the design and implementa-
tion of each module is done by an independent group, it is
expected that a mistake made by a group will not be
repeated by another group. This scheme complements N-
modular hardware redundancy. A TMR system where all
three processors are running the same copy of the software
module will be rendered useless if a software fault will
affect all the processors in the same way. N-version pro-
gramming can avoid the occurrence of such a situation.
This scheme is prone to faults from specification mistakes.
Thus, a proven methodology should be employed to verify
the correctness of the specifications.

In an ultra- reliable system, each version should be made
as diverse as possible. Differences may include software
developers, specifications, algorithms, programming lan-
guages, and verification and validation processes. Usually
it is assumed that such a strategy would make different
versions fail independently. However, studies have shown
that although generally this is true, instances have been
reported where the failures were correlated. For example,
certain types of inputs, such as division by zero, that need
special handling and potentially are overlooked easily by
different developers could lead to correlated failures.

In the recovery block schemes, one version of the pro-
gram is considered to be the primary version and the
remaining N-1 versions are designated as the secondary
versions or spares. The primary version normally is used if
it passes the acceptance tests. Failure to pass the accep-
tance tests prompts the use of the first secondary version.
This process is continued until one version is found that
passes the acceptance tests. Failure of the acceptance tests
by all the versions indicates failure of the system. This
approach is analogous to the cold standby sparing approach
of the hardware redundancy, and it can tolerate up to N-1
faults.

In N self-checking programming, N different versions of
the software, together with their acceptance tests, are
written. The output of each program, together with its
acceptance tests results, are input to a selection logic
that selects the output of the program that has passed
the acceptance tests.

Information Redundancy

Hardware redundancy is very effective but expensive. In
information redundancy, redundant, information is added
to enable fault detection, and sometimes fault tolerance, by
correcting the affected information. For certain systems,
such as memory and bus, error-correcting codes are cost
effective and efficient. Information redundancy includes all
error-detecting codes, such as various parity codes, m-of-n
codes, duplication codes, checksums, cyclic codes, arith-
metic codes, Berger codes, and Hamming error-correcting
codes.

Time Redundancy

All the previous redundancy methods require a substantial
amount of extra hardware, which tends to increase size,
weight, cost, and power consumption of the system. Time
redundancy attempts to reduce the hardware overhead by
using extra time. The basic concept is to repeat execution of
a software module to detect faults. The computation is
repeated more than once, and the results are compared.
An existence of discrepancy suggests a fault, and the com-
putations are repeated once more to determine if the dis-
crepancy still exists. Earlier, this scheme was used for
transient fault detection. However, with a bit of extra
hardware, permanent faults also can be detected. In one
of the schemes, the computation or transmission of data is
done in the usual way. In the second round of computation
or transmission, the data are encoded and the results are
decoded before comparing them with the previous results.
The encoding scheme should be such that it enables the
detection of the faults. Such schemes may include comple-
mentation and arithmetic shifts.

Coverage

The coverage probability C used in the earlier reliability-
modeling example was assumed to be a constant. In reality,
of course, it may well vary, depending on the circumstances.
In that example (TMR with a spare), the coverage prob-
ability is basically the probability that the voting and
switching mechanism is functional and operates in a timely
manner. This probability in actuality may be dependent on
the nature of the fault, the time that it occurs, and whether
it is the first or the second fault.

In systems in which the failure rate is dominated by the
reliability of the hardware modules being protected
through redundancy, the coverage probability may be of
relatively minor importance and treating it as a constant
may be adequate. If extremely high reliability is the goal,
however, it is easy to provide sufficient redundancy to
guarantee that a system failure from the exhaustion of
all hardware modules is arbitrarily small. In this case,
failures from imperfect coverage begin to dominate and
more sophisticated models are needed to account for this
fact.

It is useful to think of fault coverage as consisting of
three components: the probability that the fault is detected,
the probability that it is isolated to the defective module,
and the probability that normal operation can be resumed
successfully on the remaining healthy modules. These

FAULT-TOLERANT COMPUTING 5



probabilities often are time dependent, particularly in
cases in which uninterrupted operation is required or in
which loss of data or program continuity cannot be toler-
ated. If too much time elapses before a fault is detected, for
example, erroneous data may be released with potentially
unacceptable consequences. Similarly, if a database is cor-
rupted before the fault is isolated, it may be impossible to
resume normal operation.

Markov models of the sort previously described can be
extended to account for coverage effects by inserting addi-
tional states. After a fault, the system transitions to a state
in which a fault has occurred but has not yet been detected,
from there to a state in which it has been detected but not
yet isolated, from there to a state in which it has been
isolated but normal operation has not yet resumed success-
fully, and finally to a successful recovery state. Transitions
out of each of those states can be either to the next state in
the chain or to a failed state, with the probability of each
of these transitions most likely dependent on the time spent
in the state in question. State transition models in which
the transition rates are dependent on the state dwelling-
time are called semi-Markov processes. These models can
be analyzed using techniques similar to those illustrated in
the earlier Markov analysis, but the analysis is complicated
by the fact that differences between the transition rates
that pertain to hardware or software faults and those that
are associated with coverage faults can be vastly different.
The mean time between hardware module failures, for
example, typically is on the order of thousands of hours,
whereas the time between the occurrence of a fault and its
detection may well be on the order of microseconds. The
resulting state-transition matrix is called ‘‘stiff ’’, and any
attempt to solve it numerically may not converge. For this
reason, some of the aforementioned reliability models use a
technique referred to as behavioral decomposition. Speci-
fically, the model is broken down into its component parts,
one subset of models used to account for coverage failures
and the second incorporating the outputs of those models
into one accounting for hardware and software faults.

FAULT TOLERANT COMPUTER APPLICATIONS

Incorporation of fault tolerance in computers has tremen-
dous impact on the design philosophy. A good design is a
trade-off between the cost of incorporating fault tolerance
and the cost of errors, including losses from downtime and
the cost of erroneous results.

Over the past 50 years, numerous fault-tolerant compu-
ters have been developed. Historically, the applications of
the fault-tolerant computers were confined to military,
communications, industrial, and aerospace applications
where the failure of a computer could result in substantial
financial loses and possibly loss of life. Most of the fault-
tolerant computers developed can be classified into five
general categories.

General-Purpose Computing

General-purpose computers include workstations and per-
sonal computers. These computers require a minimum
level of fault tolerance because errors that disrupt the

processing for a short period of time are acceptable, pro-
vided the system recovers from these errors. The goal is to
reduce the frequency of such outages and to increase relia-
bility, availability, and maintainability of the system.

Because the attributes of each of the main components,
namely the processor, memory, and input/output, are
unique, the fault-tolerant strategies employed for these
components are different, in general. For example, the
main memory may use a double-error detecting code on
data and on address and control information, whereas
cache may use parity on both data and address information.
Similarly, the processor may use parity on data paths and
control store and duplication and comparison of control
logic, whereas input/output could use parity on data and
control information.

Moreover, it is well known that as feature sizes decrease,
the systems are more prone to transient failures than other
failures and it is desirable to facilitate rapid recovery. One
of the most effective approaches for rapid error recovery for
transient faults is instruction retry, in which the appro-
priate instruction is retried once the error is detected. The
instruction retry concept has been extended to a wide
variety of other systems, including TMR systems and
Very Large Instruction Word (VLIW) architectures.

Long-Life Applications

Applications in which manual intervention is impractical
or impossible, such as unmanned space missions, demand
systems that have a high probability of surviving unat-
tended for long periods of time. Typical specifications
require a 95% or better probability that the system is still
functional at the end of a five- or ten-year mission. Com-
puters in these environments are expected to use the hard-
ware in an efficient way because of limited power
availability and constraint on weight and size. Long-life
systems sometimes can allow extended outages, provided
the system becomes operational again. The first initiative
for the development of such computers was taken by NASA
for the Orbiting Astronomical Observatory, in which basic
fault masking at the transistor level was used. Classic
examples of systems for long-life applications include the
Self-Testing And Repairing (STAR) computer, the Fault-
Tolerant Space-borne Computer (FTSC), the JPL Voyager
computers, and the Fault-Tolerant Building Block Compu-
ter (FTBBC).

The STAR computer was the first computer that used
dynamic recovery strategies that used extensive instru-
mentation for fault detection and signal errors. Galileo
Jupiter system is a distributed system based on 19 micro-
processors with 320 kilobytes of ROM. Block redundancy is
used for all the subsystems, and they operate as standby
pairs, except the command and data subsystem that oper-
ate as an active pair. Although special fault protection
software is used to minimize the effects of faults, fault
identification and isolation are by ground intervention.

Critical-Computation Applications

In these applications, errors in computations can be cata-
strophic, affecting such things as human safety. Applica-
tions include a certain type of industrial controllers,

6 FAULT-TOLERANT COMPUTING



aircraft flight control systems, and military applications. A
typical requirement for such a system is to have reliability
of 0.9999999 at the end of 3-hour time period.

An obvious example of a critical-computation applica-
tion is the space shuttle. Its computational core employs
software voting in a five-computer system. The system is
responsible for guidance, navigation, and preflight check-
outs. Four computers are used as a redundant set during
mission-critical phases, and the fifth computer performs
noncritical tasks and also act as a backup for the primary
four-computer system. The outputs of the four computers
are voted at actuators while each computer compares its
output with the outputs of the other three computers. A
disagreement is voted by the redundancy-management
circuitry of each computer, and it will isolate its computer
if the vote is positive. Up to two computer failures can be
tolerated in the voting mode operation. A second failure will
force the system to function as a duplex system, that uses
comparison and self-tests, and it can tolerate one more
failure in this mode. The fifth computer contains the flight
software package developed by another vendor to avoid
common software error.

Another interesting system that was developed recently
is the flight control computer system of Boeing 777. In
avionics, system design diversity is an important design
criterion to tolerate common-mode failures, such as design
flaws. One of the specifications includes mean time between
maintenance actions to be 25,000 hours. The system can
tolerate certain Byzantine faults, such as disagreement
between the replicated units, power and component fail-
ures, and electromagnetic interference. The system uses

triple-triplex redundancy, in which design diversity is
incorporated by using three dissimilar processors in each
triplex node. Each triplex node is isolated physically and
electrically from the other two nodes. However, recent
studies suggest that a single-point of failure exists in the
software system. Instead of using different teams to gen-
erate different versions of the source code in Ada Boeing
decided to use the same source code but three different Ada
compilers to generate the object code.

High-Availability Applications

The applications under this category include time-shared
systems, such as banking and reservation systems, where
providing prompt services to the users is critical. In these
applications, although system-wide outages are unaccep-
table, occasional loss of service to individual users is
acceptable provided the service is restored quickly so
that the downtime is minimized. In fact sometimes the
downtime needed to update software and upgrade hard-
ware may not be acceptable, and so well-coordinated
approaches are used to minimize the impact on the users.
Some examples of early highly available commercial sys-
tems include the NonStop Cyclone, Himalaya K10000,
and Integrity S2, all products of Tandem Computers
now part of Hewlett Packard; the Series 300 and Series
400 systems manufactured by Sequoia Systems, now
owned by Radisys Corporation; and the Stratus XA/R
Series 300 systems of the Stratus family.

Figure 7 shows the basic Tandem NonStop Cyclone
system. It is a loosely coupled, shared-bus multiprocessor

CYCLONE

I/O I/O

CYCLONE

I/O I/O

CYCLONE

I/O I/O

CYCLONE

I/O I/O

DYNABUS

Figure 7. Tandem nonstop Cyclone system.

FAULT-TOLERANT COMPUTING 7



system that was designed to prevent a single hardware or
software failure from disabling the entire system. The
processors are independent and use Tandem’s GURADIAN
90 fault-tolerant operating system with load balancing
capabilities. The NonStop Cyclone system employs both
hardware and software fault-tolerant strategies. By exten-
sively using hardware redundancy in all the subsystems—
multiple processors, mirrored disks, multiple power sup-
plies, redundant buses, and redundant input/output con-
trollers—a single component failure will not disable the
system. Error propagation is minimized by making sure
that fault detection, location, and isolation is done quickly.
Furthermore, Tandem has incorporated other features that
also improve the dependability of the system. For example,
the system supports on-site replaceable, hot-pluggable
cards known as field replaceable units (FRUs) to minimize
any downtime.

In the newer S-series, NonStop Himalaya servers
(Figure 8), the processor and I/O buses are replaced by
proprietary network architecture called the ServerNet that
incorporates numerous data integrity schemes. Further-
more, redundant power and cooling fans are provided to
ensure continuity in service. A recent survey suggests that
more than half of the credit card and automated teller
machine transactions are processed by NonStop Himalaya
computers.

Stratus Technologies, Inc. has introduced fault-tolerant
servers with the goal of providing high availability at lower
complexity and cost. For example, its V series server sys-
tems that are designed for high-volume applications use

TMR hardware scheme to provide at least 99.999% prob-
ability of surviving all hardware faults. These systems use
Intel Xeon Processors and run on a Stratus VOS operating
system that provides a highly secured environment.
A single copy manages a module that consists of tightly
coupled processors.

The Sequoia computers were designed to provide a high
level of resilience to both hardware and software faults and
to do so with a minimum of additional hardware. To this
end, extensive use was made of efficient error detection and
correction mechanisms to detect and isolate faults com-
bined with the automatic generation of periodic system-
level checkpoints to enable rapid recovery without loss of
data or program continuity. Checkpoints are established
typically every 40 milliseconds, and fault recovery is accom-
plished in well under a second, making the occurrence of a
fault effectively invisible to most users.

Recently Marathon Technologies Corporation has
released software solutions, everRun FT and everRun
HA, that enable any two standard Windows servers to
operate as a single, fully redundant Windows environment,
protecting applications from costly downtime due to fail-
ures within the hardware, network, and data.

Maintenance Postponement Applications

Applications where maintenance of computers is either
costly or difficult or perhaps impossible to perform, such
as some space applications, fall under this category. Usually
the breakdown maintenance costs are extremely high for
the systems that are located in remote areas. A maintenance
crew can visit these sites at a frequency that is cost-effective.
fault-tolerance techniques are used between these visits to
ensure that the system is working correctly. Applications
where the systems may be remotely located include tele-
phone switching systems, certain renewable energy genera-
tion sites, and remote sensing and communication systems.
One of the most popular systems in the literature in this
group is AT&T’s Electronic Switching System (ESS). Each
subsystem is duplicated. While one set of these subsystems
perform all the functions, the other set acts as a backup.

PRINCIPLES OF FAULT-TOLERANT MULTIPROCESSORS
AND DISTRIBUTED SYSTEMS

Although the common perception is that the parallel sys-
tems are inherently fault-tolerant, they suffer from high
failure rates. Most of the massively parallel systems are
built based on performance requirements. However, their
dependability has become a serious issue; numerous tech-
niques have been proposed in the literature, and several
vendors have incorporated innovative fault-tolerance
schemes to address the issue. Most of these schemes are
hierarchical in nature incorporating both hardware and
software techniques. Fault-tolerance techniques are
designed for each of the following levels such that the faults
that are not detected at lower levels should be handled at
higher levels.

At the technology andcircuit levels, decisions are made to
select the appropriate technology and circuit design tech-
niques that will lead to increased dependability of the

memory

ServerNet
transfer
engines

ServerNet
transfer
engines

memory

ServerNet
2

ServerNet
2

SCSI SCSI

SCSI

SCSI SCSI

SCSI

modular
ServerNet
expansion

board

modular
ServerNet
expansion

board

communications
or external I/O

communications
or external I/O

C
P

U

C
P

U

Figure 8. Tandem S-series NonStop server architecture.

8 FAULT-TOLERANT COMPUTING



modules. At the node level, architecture involves design of
VLSI chips that implement the processor, whereas at the
internode architecture level, considerations are given to
how the nodes are connected and effective reconfiguration
in the presence of faulty processors, switches, and links. At
the operating system level, recovery of the system is
addressed, which may involve checkpointing and rollback
after a certain part of the system has been identified faulty
and allocating tasks of the faulty processor to the remaining
operating processor. Finally, at the application level, the
user uses mechanisms to check the results.

A couple of most popular approaches to fault tolerance in
multiprocessor systems are static or masking redundancy
and dynamic or standby redundancy

Static Redundancy

Static redundancy is used in multiprocessor system for
reliability and availability, safety, and to tolerate nonclas-
sic faults. Although redundancy for reliability and avail-
ability uses the usual NMR scheme, redundancy for safety
usually requires a trade-off between reliability and safety.
For example, one can use a k-out-of-n system where a voter
produces the output y only if at least k modules agree on the
output y. Otherwise the voter asserts the unsafe flag. The
reliability refers to the probability that the system produces
correct output, and safety refers to the probability that the
system either produces the correct output or the error is
detectable. Thus, high reliability implies high safety. How-
ever, the reverse is not true.

Voting of the NMR system becomes complicated when
nonclassic faults are present. In systems requiring ultra-
high reliability, a voting mechanism should be able to
handle arbitrary failures, including the malicious faults
where more than one faulty processor may collaborate to
disable the system. The Byzantine failure model was pro-
posed to handle such faults.

Dynamic Redundancy

Unlike static redundancy, dynamic redundancy in multi-
processor systems includes built-in fault detection capabil-
ity. Dynamic redundancy typically follows three basic steps:
(1) fault detection and location, (2) error recovery, and (3)
reconfiguration of the system. When a fault is detected and a
diagnosis procedure locates the fault, the system is usually
reconfigured by activating a spare module; if the spare
module is not available, then the reconfigured system
may have to operate under a degraded mode with respect
to the resources available. Finally, error recovery is per-
formed in which the spare unit takes over the functionality
of the faulty unit from where it left off. Although various
approaches have been proposed for these steps, some of
them have been successfully implemented on the real sys-
tems. For example, among the recovery strategies, the most
widely adopted strategy is the rollback recovery using
checkpoints. The straightforward recovery strategy is to
terminate execution of the program and to re-execute the
complete program from the beginning on all the processors,
which is known as the global restart. However, this leads to
severe performance degradation. Thus, the goal of all the
recovery strategies is to perform effective recovery from the

faults with minimum overheads. The rollback recovery
using checkpoints involves storing on adequate amount of
processor state information at discrete points during the
execution of the program so that the program can be rolled
back to these points and restarted from there in the event of
a failure. The challenge is when and how these checkpoints
are created. For interacting processes, inadequate check-
pointing may lead to a domino effect where the system is
forced to go to a global restart state. Over the years,
researchers have proposed strategies that effectively
address this issue.

Although rollback recovery schemes are effective in most
systems, they all suffer from substantial inherent latency
that may not be acceptable for real-time systems. For such
systems, forward recovery schemes are typically used. The
basic concept common to all the forward recovery schemes is
that when a failure is detected, the system discards the
current erroneous state and determines the correct state
without any loss of computation. These schemes are either
based on hardware or software redundancy. The hardware
based schemes can be classified further as static or dynamic
redundancy. Several schemes based on dynamic redun-
dancy and checkpointing that avoid rollback have been
proposed in the literature. Like rollback schemes, when a
failure is detected, the roll-forward checkpointing schemes
(RFCS) attempt to determine the faulty module and the
correct state of the system is restored once the fault diag-
nosis is done, although the diagnostic methods may differ.
For example, in one RFCS, the faulty processing module is
identified by retrying the computation on a spare processing
module. During this retry, the duplex modules continue to
operate normally. Figure 9 shows execution of two copies, A
and B of a task. Assume that B fails in the checkpointing
interval i. The checkpoints of A and B will not match at the
end of the checkpointing interval i at time ti. This mismatch
will trigger concurrent retry of the checkpoint interval i on a
spare module, while A and B continue to execute into the
checkpointing interval i+1. The previous checkpoint taken

i i +1

ti ti+1ti--1

A

B

1
S

1: Copy state and executable code to spare
2: Compare states A and S and B and S
3: Copy state from A to B
X: A fault

2

3

time

Figure 9. A RFCS scheme.

FAULT-TOLERANT COMPUTING 9



at ti�1 together with the executable code is loaded into the
spare, and the checkpoint interval i in which the fault
occurred is retired on the spare module. When the spare
module completes the execution at time tiþ1 the state of the
spare module is compared with the states of A and B at time
ti and B is identified faulty. State of A copied to B. A rollback
is required when both A and B have failed. In this scheme,
one fault is tolerated without paying the penalty of the
rollback scheme. Several version of this scheme have
been proposed in the literature.

FAULT-TOLERANCE IN VLSI CIRCUITS

The advent of VLSI circuits has made it possible to incor-
porate fault-tolerant techniques that were too expensive to
implement earlier. For example, it has enabled schemes to
provide redundant processors and fault detection and loca-
tion capabilities within the chip. This is mainly from
increasing packaging densities and decreasing cost and
power consumption. However, VLSI also has several dis-
advantages. Some of these disadvantages include a higher
percentage of internal faults compared with previous
small-scale integration (SSI) and large-scale integration
(LSI) during the manufacturing phase leading to low yield;
increased complexity of the system has led to considerable
increase in design mistakes, and imperfections can lead to
multiple faults from smaller feature sizes. Furthermore,
VLSI circuits are more prone to common-mode failures, and
decreased feature sizes and lower operating voltages have
made the circuits more susceptible to external distur-
bances, such as a particles and variations in the supply
voltages, respectively, which lead to an increase in tran-
sient faults. Thus, the main motivations for incorporating
fault-tolerance in VLSI circuits is yield enhancement and to
enable real-time and compile-time reconfiguration with the
goal of isolating a faulty functional unit, such as a processor
or memory cells, during field operation.

Strategies for manufacture-time and compile-time
reconfigurations are similar since they do not affect the
normal operation of the system and no real-time con-
straints are imposed on reconfiguration time. Real-timer
reconfiguration schemes are difficult to design since the
reconfiguration has to be performed without affecting the
operation of the system. If erroneous results are not accep-
table at all, then static or hybrid techniques are typically
used; otherwise, cheaper dynamic techniques would suf-
fice. The effectiveness of any reconfiguration scheme is
measured by the probability that a redundant unit can
replace a faulty unit and the amount of reconfiguration
overhead involved.

Numerous schemes have been proposed for all three
types of reconfiguration in the literature. One of the first
schemes that was proposed for an array of processing
elements allowed each processing element to be converted
into a connecting element for signal passing so that a failed
processor resulted in converting other processors in the
corresponding row and column to connecting elements and
they ceased to perform any computation. This simple
scheme is not practical for multiple faults since an entire
row and column must be disabled for each fault. This

problem has been addressed by several reconfiguration
schemes that either use spare columns and rows or redun-
dant processing elements are dispersed throughout the
chip, such as the interstitial redundancy scheme.

Advances in nanometer-scale geometries have made
devices prone to new types of defects that greatly limit
the yields. Furthermore, the existing external infrastruc-
ture, such as automatic test equipment (ATE), are not
capable of dealing with the new defect levels that nan-
ometer-scale technologies create in terms of fault diagnosis,
test time, and handling & the amount of test data gener-
ated. In addition, continual development of ATE facilities
that can deal with the new manufacture issues is not
realistic. This has considerably slowed down the design
of various system-on-a-chip efforts. For example, although
the embedded memory typically occupies half of the IC
area, their defect densities tend to be twice that of logic.
Thus, to achieve and maintain cost advantages requires
improving memory yields. As described, one commonly
used strategy to increase yield is to incorporate redundant
elements that can replace the faulty elements during the
repair phase. The exiting external infrastructure cannot
perform these tasks in a cost-effective way. Thus, a critical
need exists for an on-chip (internal) infrastructure to
resolve these issues effectively. The semiconductor indus-
try has attempted to address this problem by introducing
embedded intellectual property blocks called the infra-
structure intellectual property (IPP). For embedded mem-
ory, the IPP may consist of various types of test and repair
capabilities.

TRENDS AND FUTURE

In the last few years, several developments have occurred
that would define the future activities in the fault-tolerance
area in general.

Conventional fault-tolerance techniques do not render
themselves well in the area of mobile computing. For
example, most schemes for checkpointing coordination
and message logging schemes are usually complex and
difficult to control because of the mobility of the hosts.
Similarly, in the area of reconfigurable computing, includ-
ing field programmable gate arrays (FPGAs), new fault-
tolerance strategies are being developed based on the
specific architectures.

Recent advances in nanoscience and nanometer-scale
devices, such as carbon nanotubes and single electron
transistors, will drastically increase device density and
at the same time reduce power needs, weight, and size.
However, these nanosystems are expected to suffer from
high failure rates, both transient and permanent faults,
because of the probabilistic behavior of the devices and lack
of maturity in the manufacturing processes that will reduce
the process yield. In fact, it is expected that the fault
densities will be orders of magnitude greater than the
current technology. This new circuit design paradigm is
needed to address these issues. However, this will be an
evolving area as the device fabrication processes are being
scaled-up from the laboratory to the manufacturing level.

10 FAULT-TOLERANT COMPUTING



A good viable alternative approach for fault-tolerance
would be to mimic biological systems. There is some activity
in this area, but it is still in its infancy. For example, an
approach to design complex computing systems with inher-
ent fault-tolerance capabilities based on the embryonics
was recently proposed. Similarly, a fault detection/location
and reconfiguration strategy was proposed last year that
was based on cell signaling, membrane trafficking, and
cytokinesis.

Furthermore, there is an industry trend in space and
aerospace applications to use commercial off-the-shelf
(COTS) components for affordability. Many COTS have
dependability issues, and they are known to fail when
operated near their physical limits, especially in military
applications. Thus, innovative fault-tolerance techniques
are needed that can strike an acceptable balance between
dependability and cost.

Moreover, although the hardware and software costs
have been dropping, the cost of computer downtime has
been increasing because of the increased complexity of the
systems. Studies suggest that the state-of-the-art fault-
tolerant techniques are not adequate to address this pro-
blem. Thus, a shift in the design paradigm may be needed.
This paradigm shift is driven in large part by the recogni-
tion that hardware is becoming increasingly reliable for
any given level of complexity, because, based on empirical
evidence, the failure rate of an integrated circuit increases
roughly as the 0.6th power of the number of its equivalent
gates. Thus, for a given level of complexity, the system fault
rate decreases as the level of integration increases. If, say,
the average number of gates per device in a system is
increased by a factor of 1000, the fault rate for that system
decreases by a factor of roughly 16. In contrast, the rapid
increase in the complexity of software over the years,
because of the enormous increase in the number and vari-
ety of applications implemented on computers, has not been
accompanied by a corresponding reduction in software
bugs. Significant improvements have indeed been made
in software development, but these are largely offset by the
increase in software complexity and in the increasing
opportunity for software modules to interact in unforeseen
ways as the number of applications escalate. As a result, it
is expected that the emphasis in future fault-tolerant com-
puter design will shift from techniques for circumventing
hardware faults to mechanisms for surviving software
bugs.

FURTHER READING

G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri,
Detecting and locating faults in VLSI implementations of the
advanced encryption standard, Proc. 2003 IEEE Internat. Sympo-
sium on Defect and Fault Tolerance in VLSI Systems, 2003, pp.
105–113.

N. Bowen and D. K. Pradhan, Issues in fault tolerant memory
management, IEEE Trans. Computers, 860–880, 1996.

N. S. Bowen, and D. K. Pradhan, Processor and memory-based
checkpoint and rollback recovery, IEEE Computer, 26 (2): 22–31,
1993.

M. Chatterjee, and D. K. Pradhan, A GLFSR-based pattern gen-
erator for near-perfect fault coverage in BIST, IEEE Trans. Com-
puters, 1535–1542, 2003.

C. Chen,andA. K.Somani, Fault containment in cache memories for
TMR redundant processor systems, IEEE Trans. Computers, 48 (4):
386–397, 1999.

R. Chillarege, and R. K. Iyer, Measurement-based analysis of error
latency, IEEE Trans. Computers, 529–537, 1987.

K. Datta, R. Karanam, A. Mukherjee, B. Joshi, and A. Ravindran, A
bio-inspired self-repairable distributed fault-tolerant design
methodology with efficient redundancy insertion technique,
Proc. 16th IEEE NATW, 2006.

R. J. Hayne, and B. W. Johnson, Behavioral fault modeling in a
VHDL synthesis environment, Proc. IEEE VLSI Test Symposium,
Dana Point, California, 1999, pp. 333–340.

B. W. Johnson, Design and analysis of fault tolerant digital
systems. Reading, MA: Addison-Wesley, 1989.

B. Joshi, and S. Hosseini, Diagnosis algorithms for multiprocessor
systems, IEEE Workshop on Embedded Fault-Tolerant Systems,
Boston, MA, 1998.

L. M., Kaufman, S. Bhide, and B. W. Johnson, Modeling of
common-mode failures in digital embedded systems’’, Proc. 2000
IEEE Annual Reliability and Maintainability Symposium, Los
Angeles, California, 2000, pp. 350–357.

I. Koren, and C. Mani Krishna, Fault-Tolerant Systems. San
Francisco, CA: Morgan Kauffman, 2007.

S. Krishnaswamy, I. L. Markov, and J. P. Hayes, Logic circuit
testing for transient faults, Proc. European Test Symposium
(ETS’05), 2005.

P. Lala, Self-Checking and Fault Tolerant Digital Design. San
Francisco, CA: Morgan Kaufmann, 2000.

L. Lamport, S. Shostak, and M. Pease, The Byzantine Generals
Problem, ACM Trans. Programming Languages and System, 1982,
pp. 382–401.

M. R. Lyu, ed., Software Reliability Engineering, New York:
McGraw Hill, 1996.

M. Li, D. Goldberg, W. Tao, and Y. Tamir, Fault-tolerant cluster
management for reliable high-performance computing, 13th Inter-
national Conference on Parallel and Distributed Computing and
Systems, Anaheim, California, 2001, pp. 480–485.

C. Liu, and D. K. Pradhan, EBIST: A novel test generator with
built-in-fault detection capability, IEEE Trans. CAD. In press.

A. Maheshwari, I. Koren, and W. Burleson, Techniques for tran-
sient fault sensitivity analysis and reduction in VLSI circuits,
Defect and Fault Tolerance in VLSI Systems, 2003.

A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. Lie, D.
Mannaru, A. Riska, and D. Milojicic, Susceptibility of commodity
systems and software to memory soft errors, IEEE Trans. Com-
puters, Vol. 53(12): 1557–1568, 2004.

N. Oh, P. P. Shirvani, and E. J. McCluskey, Error detection by
duplicated instructions in superscalar processors, IEEE Trans
Reliability, 51: 63–75.

R. A. Omari, A. K. Somani, and G. Manimaran, An adaptive scheme
for fault-tolerant scheduling of soft real-time tasks in multipro-
cessor systems, J. Parallel and Distributed Computing, 65(5):
595–608, 2005.

E. Papadopoulou, Critical Area Computation for Missing material
Defects in VLSI Circuits, IEEE Trans. CAD, 20: 503–528, 2001.

D. K. Pradhan,(ed.), Fault-Tolerant Computer System Design.
Englowood Cliffs, NJ: Prentice Hall, 1996.

FAULT-TOLERANT COMPUTING 11



D. K. Pradhan, and N. K. Vaidya, Roll-forward checkpointing
scheme: A novel fault-tolerant architecture, IEEE Trans. Compu-
ters, 43 (10), 1994.

A. V. Ramesh, D. W. Twigg, U. R. Sandadi, T. C. Sharma, K. S.
Trivedi, and A. K. Somani, Integrated Reliability Modeling Envir-
onment, Reliability Engineering and System Safety, Elsevier
Science Limited; UK, Volume 65, Issue 1, March 1999, pp. 65–75.

G. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S.
S. Mukherjee, Software-controlled fault tolerance, ACM Trans.
Architecture and Code Optimization, 1–28, 2005.

A. Schmid, and Y. Leblebici, A highly fault tolerant PLA archi-
tecture for failure-prone nanometer CMOS and novel quantum
device technologies, Defect and Fault Tolerance in VLSI Systems,
2004.

A. J. Schwab, B. W. Johnson, and J. Bechta-Dugan, Analysis
techniques for real-time, fault-tolerant, VLSI processing arrays,
Proc. 1995 IEEE Annual Reliability and Maintainability Sympo-
sium,Washington, D.C; 1995, pp. 137–143.

D. Sharma, and D. K. Pradhan, An efficient coordinated check-
pointing scheme for multicomputers, Fault-Tolerant Parallel and
Distributed Systems. IEEE Computer Society Press, 1995.

P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
Modeling the effect of technology trends on the soft error rate of
combinational logic, Proc. 2002 Internat. Conference on Depend-
able Systems and Networks, 2002, pp. 389–399.

M. L. Shooman, Reliability of computer systems and networks,
Hoboken, NJ: Wiley Inter-Science, 2002.

D. Siewiorek, and R. Swartz, The Theory and Practice of Reliable
System Design. Wellesley, MA: A. K. Peters, 1999.

D. P. Siewiorek, (ed.), Fault Tolerant Computing Highlights
from 25 Years, Special volume of the 25th International
Symposium on Fault-Tolerant Computing FTCS-25, Pasadena,
Califoria.

A. K. Somani, and N. H. Vaidya, Understanding fault tolerance and
reliability, IEEE Computer, April 1997, pp. 45–50.

Tandem Computers Incorporated, NonStop Cyclone/R, Tandem
Product report, 1993.

N. H. Vaidya, and D. K. Pradhan, Fault-tolerant design strategies
for high reliability and safety, IEEE Trans. Computers, 42 (10),
1993.

J. von Neumann, Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components, Automata Studies,
Annals of Mathematical Studies, Princeton University Press,
No. 34, 1956, pp. 43–98.

Y. Yeh, Design considerations in Boeing 777 fly-by-wire computers,
Proc. Third IEEE International High-Assurance Systems Engi-
neering Symposium, 1998, pp. 64–72.

S. R. Welke, B. W. Johnson, and J. H. Aylor, Reliability modeling
of hardware-software systems, IEEE Trans. Reliability, 44 (3),
413–418, 1995.

Y. Zhang, and K. Chakrabarty, Fault recovery based on check-
pointing for hard real-time embedded systems, Proc. 18th IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT003), 2003.

Y. Zorian, and M. Chandramouli, Manufacturability
with Embedded Infrastructure IPs. Available: http://www.
evaluationengineering.com/archive/articles/0504/0504embedde-
d_IP.asp.

BHARAT JOSHI

University of
North Carolina-Charlotte
Charlotte, North Carolina

DHIRAJ PRADHAN

University of Bristol
Bristol, United Kingdom

JACK STIFFLER

Reliable Technologies, Inc.
Weston, Massachusetts

12 FAULT-TOLERANT COMPUTING



F

FIBER-OPTIC COMMUNICATION NETWORKS

INTRODUCTION

The continuing growth of traffic and demand for bandwidth
has changed dramatically the telecommunication market
and industry, and has created new opportunities and chal-
lenges. The proliferation of DSL and cable modems for
residential homes and Ethernet links for businesses have
spurred the need to upgrade network backbones with
newer and faster technologies. It is estimated that Internet
traffic doubles every 12 months driven by the popularity of
Web services and the leveraged business model for data
centers and centralized processing. The Telecom Deregula-
tion Act of 1996 brought competition to the marketplace
and altered the traditional traffic profile. Competition
brought about technological advances that reduced the
cost of bandwidth and allowed the deployment of data
services and applications that in turn fueled higher
demand for bandwidth. Coupled with the fact that most
networks were optimized for carrying voice traffic, the
telecommunication providers have had to change their
business models and the way they build networks. As a
result, voice and data traffic are now carried over separate
networks, which doubles the cost and renders service
delivery and network operation and management ineffi-
cient.

Optical networking seems to be the fix for all problems
and limitations despite the downturn in the telecommuni-
cations industry in general and optical networking in par-
ticular, because all-optical or photonic switching is the only
core networking technology that is capable of supporting
the increasing amount of traffic and the demands for higher
bandwidth, brought about by emerging applications such
as grid computing and tele-immersion. Needless to say that
optical fibers offer far more bandwidth than copper cables
and are less susceptible to electromagnetic interference.
Several fibers are bundled easily into a fiber cable and
support transmissions with ultra-low bit error rates. As
a result, optical fibers are currently used to alleviate the
bandwidth bottleneck in the network core, whereas tradi-
tional copper cables are limited to the last mile. Advances in
wavelength-division multiplexing (WDM) have provided
abundant capacity in effect dividing the optical fiber into
several channels (or wavelengths) where each wavelength
can support upwards of 10 Gbps. In the first generation of
optical networks, deployed primarily to support SONET/
SDH, these wavelengths are provisioned manually and
comprise static connections between source and destina-
tion nodes. However, as the wavelength data rate
increases, the intermediate electronic processing at every
node becomes problematic and limits the available band-
width. The second generation of optical networks inte-
grates intelligent switching and routing at the optical
layer to achieve very high data throughput. All optical
transparent connections, or lightpaths, are dynamically

provisioned and routed where wavelength conversion
and fiber delay lines can be used to provide spatial and
temporal reuse of channels. These networks are referred to
as wavelength-routed networks (WRNs) where several opti-
cal switching technologies exist to leverage the available
wavelengths among various traffic flows while using a
common signaling and control interface such as generalized
multi-protocol label switching (GMPLS).

The rest of this article first discusses the SONET trans-
port, which is used heavily in the core networks and pre-
sents some of the proposed enhancements for reducing
SONET’s inefficiencies when supporting Ethernet traffic.
The WRNs are introduced, and the concepts of lightpath,
traffic grooming, and waveband switching are discussed
later in this article. Several switching technologies are then
presented highlighting their advantages and disadvan-
tages as well as their technical feasibility. Finally, the
various control and signaling architectures in optical net-
works are discussed, emphasizing the interaction between
the IP and optical layers as well as path protection and
restoration schemes.

CURRENT TRANSPORTS

A Synchronous Optical Network (SONET) (1) has been the
predominant transport technology used in today’s wide
area networks, and forms the underlying infrastructure
for most voice and data services. SONET was designed to
provide carrier-class service (99.999%) reliability, physical
layer connectivity, and self-healing. Time-division multi-
plexing (TDM) standards are used to multiplex different
signals that are transported optically and switched electro-
nically using timeslots to identify destinations. SONET is
deployed generally in ring networks to provide dedicated
point-to-point connections between any two source and
destination node pairs. Two common ring architectures
with varying degrees of protection exist: unidirectional
path switched rings (UPSRs) and bi-directional line
switched rings (BLSRs). These rings are often built using
add/drop multiplexers (ADMs) to terminate connections
and multiplex/demultiplex client signals onto/from the
SONET frames, which implies that the optical signal
undergoes optical–electro–optical (O–E–O) conversions
at every intermediate hop.

The fundamental frame in traditional and optical
SONET is the Synchronous Transport Signal level-1
(STS-1), which consists of 810 bytes often depicted as a
90-column by 9-row structure. With a frame length of
125 ms (or 8000 frames per second), STS-1 has a bit rate of
51.84 Mbps. The STS-1 frame can be divided into two
main areas: the transport overhead and the synchronous
payload envelope (SPE). A SONET connection is provi-
sioned by the contiguous concatenation (CC) of STS-1
frames to achieve the desired rate. SONET framing has
proven inefficient for transporting bursty data traffic,
because additional protocols, such as asynchronous

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



transfer mode (ATM), are required to adapt the various
traffic flows, such as constant bit rate (voice) and unspe-
cified bit rate (data) connections, to the SPE containers.
The layering of ATM on SONET has worked adequately
but proved to be inefficient when carrying data traffic; the
ATM layering incurs about 15% overhead. In addition,
because of the SPE fixed-size, SONET connections are
provisioned to support the peak data rates, which often
leads to over-allocation especially when the traffic load is
low.

A more recent approach is the next-generation SONET
(NG-SONET) specification (2), which provides carriers
with the capabilities of optimizing the bandwidth allocation
and using any unused and fragmented capacity across the
ring network, to better match the client data rate as shown
in Table 1.

The new protocols required in NG-SONET are the gen-
eric framing procedure (GFP), virtual concatenation (VC),
and link capacity adjustment scheme (LCAS). GFP is an
encapsulation mechanism used to adapt different services
to the SONET frames. The GFP specification provides for
single-and multi-bit header error correction capabilities
and channel identifiers for multiplexing client signals
and data packets onto the same SONET SPE. VC is the
main component of NG-SONET. It is used to distribute
traffic into several smaller containers, which are not neces-
sarily contiguous, but can be concatenated into virtual
groups (VCGs) to form the desired rate. The benefits of
VC include:

1. Better network utilization: Low-order data connec-
tions can be provisioned in increments of 1.5-Mbps
virtual tributary (VT-1.5) instead of STS-1 frames.

2. Noncontiguous frame allocation: This facilitates the
provisioning of circuits and improves the network
utilization as available, but fragmented capacity
can be allocated rather than wasted.

3. Load balancing and service resiliency: Through the
use of diverse paths, the source can balance the traffic
load among different paths, which provides some
degree of resiliency; a fiber cut will only affect some
VCs, thereby degrading the service without complete
interruption.

LCAS is a two-way handshake protocol that allows for
dynamic provisioning and reconfiguration of VCGs to
enlarge or shrink incrementally the size of a SONET con-
nection. The basic approach is to have the Network Man-
agement System instruct the source node to resize an
existing connection. The source and destination nodes
coordinate the addition, deletion, and sequencing of the
new or existing VC by using the H4 control bytes in the
frame headers.

WAVELENGTH-ROUTED NETWORKS

Wavelength-division multiplexing offers an efficient way to
exploit the enormous bandwidth of an optical fiber; WDM
allows the transmission of multiple optical signals simul-
taneously on a single fiber by dividing the fiber transmis-
sion spectrum into several nonoverlapping wavelengths (or
channels), with each wavelength capable of supporting a
single communication channel operating at peak electronic
processing speed. With the rapid advance and use of dense
WDM (DWDM) technology, 100 or more wavelength chan-
nels can be multiplexed onto a single fiber, each operating
at 10 to 100 Gbps, leading to Tbps aggregate bandwidth.

WDM optical network topologies can be divided into
three basic classes based on their architecture: (1) point-
to-point, (2) broadcast-and-select star, and (3) Wavelength-
routed. In point-to-point and broadcast-and-select net-
works, no routing function is provided, and as such, they
are simple but inflexible and only suitable for small net-
works. (WRNs), on the other hand, support true routing
functionality and hence are highly efficient, scalable, and
more appropriate for wide area networks (3). A wavelength-
routed optical network is shown in Fig. 1. The network can
be built using switching nodes, wavelength routers, optical
cross-connects (OXCs), or optical add–drop multiplexers
(OADMs) connected by fiber links to form an arbitrary
physical topology. Some routing nodes are attached to
access stations where data from several end users (e.g.,
IP, and ATM users) can be multiplexed or groomed on to a
single optical channel. The access station also provides
optical-to-electronic conversion and vice versa to interface
the optical network with the conventional electronic net-
work using transceivers.

Lightpath

In a WRN, end users communicate with one another via
optical channels, which are referred to as lightpaths. A
lightpath is an optical path (data channel) established
between the source node and the destination node by using

Table 1. Wasted Bandwidth

Application Data rate NG-SONET SONET

Ethernet 10 Mbps 12% 80%
Fast Ethernet 100 Mbps 1% 33%
Gigabit Ethernet 1 Gbps 5% 58%

Access Station:

Wavelength Router:

Lightpaths: l1

l2

1
2

3

8
9

7

6
5

4

D

C

B

E
F

G

A

Figure 1. Structure of WRNs.

2 FIBER-OPTIC COMMUNICATION NETWORKS



a dedicated wavelength along multiple intermediate links.
Because of the limited number of wavelength channels,
wavelength reuse is necessary when the network has to
support a large number of users. Wavelength reuse allows
the same wavelength to be reused in spatially disjoint parts
of the network. In particular, any two lightpaths can use
the same wavelength as long as they do not share any
common links. For example, Fig. 1 shows the lightpaths
A->1->7->G and D->4->3->C, which can use the same
wavelength l1. However, two or more lightpaths traversing
the same fiber link must be on different wavelengths so that
they do not interfere with one another. Hence, the light-
paths A->1->7->G and B->2->1->7->G cannot use the
same wavelength simultaneously because they have com-
mon links.

Without wavelength conversion, a lightpath is required
to be on the same wavelength channel throughout its path
in the network. This is known as the wavelength-continuity
constraint. Another important constraint is the wave-
length-capacity constraint, which is caused by the limited
number of wavelength channels and transmitters/receivers
in a network. Given these two constraints, a challenging
and critical problem in WRNs is to determine the route that
the lightpath should traverse and which wavelength
should be assigned. This is commonly referred to as the
routing and wavelength assignment (RWA) problem, which
has been shown to be NP-complete for static traffic
demands.

Optical Cross-Connects

A key node in WRNs is the OXC, which allows dynamic
setup and tear down of lightpaths as needed (i.e., without
having to be provisioned statically). The OXCs can connect
(i.e., switch) any input wavelength channel from an input
fiber port to any one of the output fiber ports in optical
form. An OXC consists of optical switches preceded by
wavelength demultiplexers and followed by wavelength
multiplexers. Thus, in an OXC, incoming fibers are demul-
tiplexed into individual wavelengths, which are switched to
corresponding output ports and are then multiplexed onto
outgoing fibers. By appropriately configuring the OXCs
along the physical path, lightpaths can be established
between any pair of nodes (4).

Wavelength Conversion

The function of a wavelength converter is to convert signals
from an input wavelength to a different output wavelength.
Wavelength conversion is proven to be able to improve the
channel utilization in WRNs because the wavelength-
continuity constraint can be relaxed if the OXCs are
equipped with wavelength converters. For example,
in Fig. 1, if node 4 has wavelength converters, lightpath
E->5->4->3->C can be established using a different wave-
length on link 5->4 and 4->3 (e.g., using wavelength l1 on
links E->5->4, and a different wavelength, say l2, on links
4->3->C).

Wavelength conversion can be implemented by (1)
(O–E–O) wavelength conversion and (2) all-optical wave-
length conversion. When using O–E–O wavelength conver-
sion, the optical signal is first converted into the electronic

domain. The electronic signal is then used to drive the input
of a tunable laser, which is tuned to the desired output
wavelength. This method can only provide opaque data
transmission (i.e., data bit rate and data format dependent),
which is very complex while consuming a huge amount of
power. On the other hand, no optical-to-electronic conver-
sion is involved in the all-optical wavelength conversion
techniques and the optical signal remains in the optical
domain throughout the conversion process. Hence, all-
optical wavelength conversion using techniques such as
wave-mixing and cross-modulation are more attractive.
However, all-optical technologies for wavelength conversion
are still not mature, and all-optical wavelength converters
are likely to remainvery costly in the near future. Therefore,
a lot of attention has been focused on compromising schemes
such as limited number, limited range, and sparse wave-
length conversion to achieve high network performance
(5,6).

Traffic Grooming

Although WDM transmission equipment and OXCs enable
the establishment of lightpaths operating at a high rate
(currently at 10 Gb/s, or OC-192, expected to grow to 40
Gb/s, or OC-768), only a fraction of end users are expected to
have a need for such high bandwidth that uses a full
wavelength. Most users typically generate lower speed
traffic, such as OC-12 (622 Mbps), OC-3 (155 Mbps), and
OC-1 (51.84 Mbps), using SONET framing. Hence, the
effective packing of these sub-wavelength tributaries
onto high-bandwidth full-wavelength channels (i.e., by
appropriate routing or wavelength and time-slot assign-
ment) is a very important problem and is known as the
traffic grooming problem. For example, 64 OC-3 circuits can
be groomed onto a single OC-192 wavelength.

Traffic grooming has received considerable attention
recently (7,8). In WDM SONET, an ADM is used to multi-
plex (combine) low-speed SONET streams into a higher
speed traffic stream before transmission. Similarly, an
ADM receives a wavelength from the ring and demulti-
plexes it into several low-speed streams. Usually, an ADM
for a wavelength is required at a particular node only when
the wavelength must be added or dropped at that particular
node. However, the cost of ADMs often makes up a sig-
nificant portion of the total cost, and as such, an objective of
traffic grooming is to achieve efficient utilization of network
resources while minimizing the network cost and the num-
ber of ADMs required. Similarly, in mesh network topolo-
gies, the number of electronic ADMs and the network cost
can be reduced by carefully grooming the low-speed con-
nections and using OXCs for bypass traffic.

Waveband Switching

The rapid advance in dense WDM technology and world-
wide fiber deployment have brought about a tremendous
increase in the size (i.e., number of ports) of OXCs, as well as
the cost and difficulty associated with controlling such
large OXCs. In fact, despite the remarkable technological
advances in building photonic cross-connect systems and
associated switch fabrics, the high cost (both capital and
operating expenditures) and unproven reliability of large

FIBER-OPTIC COMMUNICATION NETWORKS 3



switches (e.g., with 1000 ports or more) have not
justified their deployment. Recently, waveband switching
(WBS) in conjunction with new multigranular optical
cross-connects (MG-OXCs) have been proposed to reduce
this cost and complexity (9–11). The main idea of WBS is to
group several wavelengths together as a band, switch the
band using a single port whenever possible (e.g., as long as
it carries only bypass or express traffic), and demultiplex
the band to switch the individual wavelengths only when
some traffic needs to be added or dropped. A complementary
hardware is an MG-OXC that not only can switch traffic at
multiple levels such as fiber, waveband, and individual
wavelength (or even sub wavelength), but also it can add
and drop traffic at multiple levels, as well as multiplex and
demultiplex traffic from one level to another. By using WBS
in conjunction with MG-OXCs, the total number of ports
required in such a network to support a given amount of
traffic is much lower than that in a traditional WRN that
uses ordinary OXCs (that switch traffic only at the
wavelength level). The reason is that 60% to 80% of traffic
simply bypasses the nodes in the backbone, and hence,
the wavelengths carrying such transit traffic do not need
to be individually switched in WBS networks (as opposed to
WRNs wherein every such wavelength still has to be
switched using a single port). In addition to reducing

the port count, which is a major factor contributing to
the overall cost of switching fabrics, the use of bands can
reduce complexity, simplify network management, and
provide better scalability.

WBS is different from wavelength routing and tradi-
tional traffic grooming in many ways. For example, tech-
niques developed for traffic grooming in WRNs, which are
useful mainly for reducing the electronic processing and/or
the number of wavelengths required, cannot be applied
directly to effectively grouping wavelengths into wave-
bands. This restriction is because in WRNs, one can multi-
plex just about any set of lower bit rate (i.e., subwavelength)
traffic such as OC-1s into a wavelength, which is subject
only to the wavelength-capacity constraint. However, in
WBS networks, at least one more constraint exists: Only
the traffic carried by a fixed set of wavelengths (typically
consecutive) can be grouped into a band.

SWITCHING

Similar to the situation in electronic network, three under-
lying switching technologies for optical networks exist:
optical circuit switching (usually referred to as wavelength
routing in the literature), optical packet switching, and
optical burst switching as shown in Fig. 2.

Ingress router Egress Route
Intermediate node

4

1

2

3

Lightpath
request

Lightpath
ACK

packets

wavelengths

(a)

Ingress router Egress RouterIntermediate optical node

Electronic layer

headerpayload

Header processing,
routing lookup

Control Unit

E-O conversionO-E conversion

Payload is
delayed

Optical layer

Input
interface

Output
interface

Switch
fabric

(b)

Ingress router Egress RouterIntermediate optical node

control
packetburst

1

2

3

Traffic
Source

Burst
Assembler

packets
Traffic
Dest

Burst
De-assembler

(c)

Figure 2. Optical switching: (a) OCS, (b) OPS, and (c) OBS.

4 FIBER-OPTIC COMMUNICATION NETWORKS



Optical Circuit Switching

Optical circuit switching (OCS) takes a similar approach as
in the circuit-switched telecommunication networks. To
transport traffic, lightpaths are set up among client nodes
(such as IP routers or ATM switches) across the optical
network, with each lightpath occupying one dedicated
wavelength on every traversed fiber link. The lightpaths
are treated as logical links by client nodes, and the user
data are then transported over these lightpaths. Figure 2(a)
illustrates the lightpath setup procedure and the data
packet’s transport.

The major advantage of OCS is that data traffic is
transported purely in the optical domain, and the inter-
mediate hop-by-hop electronic processing is eliminated, in
addition to other benefits such as protocol transparency,
quality of service (QoS) support, and traffic engineering. In
addition, OCS is only suitable for large, smooth, and long
duration traffic flows but not for bursty data traffic. How-
ever, OCS does not scale well; to connect N client nodes,
O(N2) lightpaths are needed. Moreover, the total number of
lightpaths that can be set up over an optical network is
limited, because of the limited number of wavelengths per
fiber and dedicated use of wavelengths by lightpaths. These
issues have driven the research community to study alter-
native switching technologies.

Optical Packet Switching

To address the poor scalability and inefficiency of trans-
porting bursty data traffic using OCS, optical packet
switching (OPS) has been introduced and well studied
with a long history in the literature. OPS has been moti-
vated by the (electronic) packet switching used in IP net-
works where data packets are statistically multiplexed
onto the transmission medium without establishing a dedi-
cated connection. The major difficulty of OPS is that the
optical layer is a dumb layer, which is different from the
intelligent electronic layer. Specifically, the data packet
cannot be processed in the optical layer, but it has to be
processed in the electronic layer to perform routing and
forwarding functionality. To reduce processing overhead
and delay, only the packet header is converted from the
optical layer to the electronic layer for processing (12).

As illustrated in Fig. 2(b), the OPS node typically has a
control unit, input and output interfaces, and a switch
fabric. The input interface receives incoming packets
from input ports (wavelengths) and performs wavelength
division multiplexing in addition to many other function-
alities, such as 3R (reamplification, reshaping, and retim-
ing) regeneration to restore incoming signal quality, packet
delineation to identify the beginning/end of the header and
payload of a packet, and optical–to–electronic (O–E) con-
version of the packet header. The control unit processes the
packet header, looks up the routing/forwarding table to
determine the next hop, and configures the switch fabric to
switch the payload, which has been delayed in fiber delay
lines (FDLs) while the header is being processed. The
updated packet header is then converted back to the optical
layer and combined with the payload at the output inter-
face, which performs wavelength-division multiplexing, 3R

regeneration, and power equalization before transmitting
the packet on an output port wavelength to the next hop.

Packet loss and contention may occur in the control unit
when multiple packets arrive simultaneously. In this case,
the packet headers are buffered generally and processed
one-by-one. Furthermore, the contention may also happen
on the payloads when multiple packets from different input
ports need to be switched to the same output wavelength.
Note that a payload contention results in a packet header
contention but not vice versa. The payload contentions can
be resolved in the optical layer using FDLs, wavelength
conversion, or deflection routing. FDLs delay a payload for
deterministic periods of time, and thus, multiple payloads
going to the same output port simultaneously can be
delayed with different periods of time to resolve the con-
tention. Wavelength conversion can switch multiple pay-
loads to different output wavelengths. Deflection routing
deflects a contending payload to an alternative route at a
different output port. Note that deflection routing should be
attempted last because it may cause contentions on the
alternative paths and may lead to unordered packet
reception (13).

OPS may take a synchronous or asynchronous approach.
The former approach is more feasible technically (most
research efforts have focused on this approach), where
packets are of fixed length (like ATM cells) and the
input/output interfaces perform packet synchronization
in addition to other functions. In the asynchronous
approach, the packets are of variable length and the packet
processing in the input/output interface is asynchronous as
well. This task is highly demanding with existing technol-
ogies and is expected to be viable in the very long term. A
recent development of OPS is the optical label switching,
which is a direct application of multi-protocol label switch-
ing (MPLS) technology. MPLS associates a label to a for-
warding equivalence class (FEC), which as far as the optical
network is concerned, can be considered informally as a
pair of ingress/egress routers. The packet header contains a
label instead of the source/destination address, and the
data forwarding is performed based on the label, instead
of the destination address. A major benefit of label switch-
ing is the speedup for the routing/forwarding table lookup,
because the label is of fixed length and is easier to handle
than the variable length destination address prefix.

Optical Burst Switching

Although OPS may be beneficial in the long run, it
is difficult to build a cost-effective OPS nodes using the
current technologies, primarily caused by the lack of
‘‘optical’’ random access memory and the strict synchroni-
zation requirement (the asynchronous OPS is even more
difficult). Optical burst switching (OBS) has been proposed
as a novel alternative to combine the benefit of OPS and
OCS while eliminating their disadvantages (14–16).
Through statistical multiplexing of bursts, OBS signifi-
cantly improves bandwidth efficiency and scalability over
OCS. In addition, when compared with OPS, the ‘‘optical’’
random access memory and/or fiber delay lines are not
required in OBS (although having them would result in
a better performance), and the synchronization is less

FIBER-OPTIC COMMUNICATION NETWORKS 5



strict. Instead of processing, routing, and forwarding each
packet, OBS assembles multiple packets into a burst at the
ingress router and the burst is switched in the network core
as one unit. In other words, multiple packets are bundled
with only one control packet (or header) to be processed,
resulting in much less control overhead. The burst assem-
bly at the ingress router may employ some simple scheme,
for example, assembling packets (going to the same egress
router) that have arrived during a fixed period into one
burst or simply assembling packets into one burst until a
certain burst length is reached, or uses more sophisticated
schemes, for example, capturing an higher layer protocol
data unit (PDU), for example, a TCP segment, into a burst.

Different OBS approaches primarily fall into three cate-
gories: reserve-a-fixed-duration (RFD), tell-and-go (TAG), or
in-band-terminator (IBT). Figure. 2(c) illustrates a RFD-
based protocol, called just enough time (JET), where each
ingress router assembles incoming data packets that are
destined to the same egress router into a burst, according to
some burst assembly scheme (14). For each burst, a control
packet is first sent out on a control wavelength toward the
egress router and the burst follows the control packet (on a
separate data wavelength) after an offset time. This offset
timecan bemade no less than the total processingdelay tobe
encountered by the control packet, to reduce the need for
fiber delay lines, and at the same time much less than the
round-trip propagation delay between the ingress and the
egress routers. The control packet, which goes through
optical-electronic-optical conversion at every intermediate
node, just as the packet header in OPS does, attempts to
reserve a data wavelength for just enough time (specifically,
between the time that the burst arrives and departs), to
accommodate the succeeding burst. If the reservation suc-
ceeds, theswitchfabric isconfiguredtoswitchthedataburst.
However, if the reservation fails, because no wavelength is
available at the timeof the burstarrivalontheoutgoing link,
the burst will be dropped (retransmissions are handled by
higher layers such as TCP). When a burst arrives at the
egress router, it is disassembled into data packets that are
then forwarded toward their respective destinations.

In the IBT-based OBS, the burst contains an IBT (e.g.,
silence of a voice circuit) and the control packet may be sent
in-band preceding the burst or out-of-band over a control
wavelength (before the burst). At an intermediate node, the
bandwidth (wavelength) is reserved as soon as the control
packet is received and released when the IBT of the burst is
detected. Hence, a key issue in the IBT-based OBS is to
detect optically the IBT. The TAG-based OBS is similar to
circuit switching; a setup control packet is first sent over a
control wavelength to reserve bandwidth for the burst. The
burst is then transmitted without waiting for the acknowl-
edgment that the bandwidth has been reserved success-

fully at intermediate nodes. A release control packet can be
sent afterward to release the bandwidth, or alternatively
the intermediate nodes automatically release the band-
width after a timeout interval if they have not received a
refresh control packet from the ingress router.

Similar to OPS, the contentions may happen in OBS
when multiple bursts need to go to the same output port, or
when multiple control packets from different fibers arrive
simultaneously. The contention resolution techniques in
OPS can be employed for OBS. Nevertheless, compared
with OPS, the contention in OBS (particularly in terms of
control packets) is expected to be much lighter because of
the packet bundling. As far as the performance is con-
cerned, the RFD-based OBS (e.g., using JET) can achieve
higher bandwidth utilization and lower burst dropping
than the IBT and TAG-based OBS, because it reserves
the bandwidth for just enough time to switch the burst,
and can reserve the bandwidth well in advance to reduce
burst dropping.

Comparison of Optical Switching Technologies

A qualitative comparison of OCS, OPS, and OBS is pre-
sented in Table 2 where it is evident that OBS combines the
benefits of OCS and OPS while eliminating their short-
comings. However, today’s optical networks primarily
employ OCS because of its implementation feasibility using
existing technologies. OBS will be the next progression in
the evolution of optical networks, whereas OPS is expected
to be the long-term goal.

CONTROL AND SIGNALING

Optical networks using WDM technology provide an enor-
mous network capacity to satisfy and sustain the exponen-
tial growth in Internet traffic. However, all end-user
communication today uses the IP protocol, and hence, it
has become clear that the IP protocol is the common con-
vergence layer in telecommunication networks. It is there-
fore important to integrate the IP layer with WDM to
transport end-user traffic over optical networks efficiently.

Control Architecture

General consensus exists that the optical network control
plane should use IP-based protocols for dynamic provision-
ing and restoration of lightpaths within and across optical
networks. As a result, it has been proposed to reuse or adapt
the signaling and routing mechanisms developed for IP
traffic engineering in optical networks, to create a common
control plane capable of managing IP routers as well as
optical switches.

Table 2. Comparison of OCS, OPS, and OBS

Technology
Bandwidth
utilization

Setup
latency

Implementation
difficulty Overhead

Adaptivity to
bursty traffic
and fault Scalability

OCS Low High Low Low Low Poor
OPS High Low High High High Good
OBS High Low Medium Low High Good

6 FIBER-OPTIC COMMUNICATION NETWORKS



Two general models have been proposed to operate an IP
over an optical network. under the domain services model,
the optical network primarily offers high bandwidth con-
nectivity in the form of lightpaths. Standardized signaling
across the user network interface (UNI) is used to invoke the
services of the optical network for lightpath creation, dele-
tion, modification, and status query, whereas the network-
to-network interface (NNI) provides a method of commu-
nication and signaling among subnetworks within the
optical network. Thus, the domain service model is essen-
tially a client (i.e., IP layer)–server (i.e., optical layer) net-
work architecture, wherein the different layers of the
network remain isolated from each other (17). This is
also known as the overlay model and is well suited for an
environment that consists of multiple administrative
domains, which is prevalent in most carrier networks
today. On the other hand, in the Unified Services model,
the IP and optical networks are treated as a single inte-
grated network from a control plane view. The optical
switches are treated just like any other router, and in
principle, no distinction exists between UNIs and NNIs
for routing and signaling purposes. This model is also
known as the peer-to-peer model, wherein the services of
the optical network are obtained in a more seamless man-
ner as compared with the overlay model. It allows a net-
work operator to create a single network domain composed
of different network elements, thereby allowing them
greater flexibility than in the overlay model. The peer
model does, however, present a scalability problem because
of the amount of information to be handled by any network
element within an administrative domain. In addition,
nonoptical devices must know the features of optical
devices and vice versa, which can present significant diffi-
culties in network operation. A third augmented model has
also been proposed (18), wherein separate routing
instances in the IP and optical domains exist but informa-
tion from one routing instance is passed through the other
routing instance. This model is also known as the hybrid
model representing a middle ground between the overlay
and the peer models; the hybrid model supports multiple
administrative domains as in the overlay model, and sup-
ports heterogeneous technologies within a single domain as
in the peer model.

Signaling

The Generalized Multi-Protocol Label Switching (GMPLS)
framework (19) has been proposed as the control plane for
the various architectures. Similar to traditional MPLS,
GMPLS extends the IP layer routing and signaling infor-
mation to the optical layer for dynamic path setup. In
its simplest form, labels are assigned to wavelengths to
provide mappings between the IP layer addresses and the
optical wavelengths. Several extensions have been added
for time slots and sets of contiguous wavelengths to support
subwavelength and multiwavelength bandwidth granula-
rities.

GMPLS signaling such as resource reservation (RSVP)
and constraint route label distribution (CR-LDP) protocols
map the IP routing information into preconfigured labeled
switched paths (LSPs) in the optical layer. These LSPs are

generally set up on a hop-by-hop basis or specified explicitly
when traffic engineering is required. GMPLS labels can be
stacked to provide a hierarchy of LSP bundling and explicit
routing. Despite their similar functionalities, RSVP and
CR-LDP operate differently. RSVP uses PATH and RESV
messages to signal LSP setup and activation. PATH
messages travel from source to destination nodes and
communicate classification information. RESV messages
travel from destination to source nodes to reserve the
appropriate resources. RSVP uses UDP/IP packets to dis-
tribute labels, and as such, it can survive hardware or
software failures caused by IP rerouting. CR-LDP on the
other hand assumes that the network is reliable and uses
TCP/IP packets instead. It has much lower overhead than
RSVP, but it cannot survive network failures quickly. The
advantages and disadvantages of RSVP and CR-LDP have
long been discussed and compared in the literature without
a clear winner. It seems, however, that RSVP is the indus-
try’s preferred protocol because it is coupled more tightly
with IP-based signaling protocols.

Protection and restoration in GMPLS involve the com-
putation of primary and backup LSPs and fault detection
and localization. Primary and backup LSP computations
consider traffic engineering requirements and network
constraints. LSP protection includes dedicated and shared
mechanisms with varying degrees of restoration speeds. In
dedicated protection (1þ1), data are transmitted on the
primary and backup LSPs simultaneously, and as a result,
1þ1 protection offers fast restoration and recovery from
failures. In shared protection (m:n), m backup LSPs are
preconfigured to provide protection for n primary LSPs.
Data traffic is switched onto the backup LSPs at the source
only after a failure has been detected. As a result, m:n
schemes are slower than dedicated protection but use con-
siderably less bandwidth. Fault detection and management
are handled by the link management protocol (LMP), which
is also used to manage the control channels and to verify the
physical connectivity.

SUMMARY

Optical networks can sustain a much higher throughput
than what can be achieved by pure electronic switching/
routing techniques despite the impressive progress made in
electronics and electronic switching. As such, optical net-
working holds the key to a future of unimagined commu-
nication services where true broadband connectivity and
converged multimedia can be realized. Other anticipated
services such as grid computing, video on demand, and
high-speed Internet connections will require large amounts
of bandwidth over wide-scale deployments that will perme-
ate optical networking undoubtedly well into the last mile.
However, exploiting the phenomenal data capacity of opti-
cal networks is anything but trivial. Both traditional archi-
tectures, such as SONET, and emerging paradigms, such as
WRNs, require complex architectures and protocols while
providing various degrees of statistical multiplexing.
Although SONET is well entrenched and understood, it
is very expensive and its static nature limits its scalability
and, therefore, its reach into the last mile. WRNs, on the

FIBER-OPTIC COMMUNICATION NETWORKS 7



other hand, provide far more efficient and dynamic topol-
ogies that support a significantly larger number of all-
optical connections.

Clearly, WRNs present several technological chal-
lenges, the most pressing of which is how to exploit this
vast optical bandwidth efficiently while supporting bursty
data traffic. Techniques such as waveband switching and
traffic grooming help the realization of WRNs by reducing
the overall cost. Switching technologies such as OBS and
OPS provide statistical multiplexing and enhance the elas-
ticity of WRNs in support of varying traffic volumes and
requirements. Common and standardized signaling inter-
faces such as GMPLS allow for dynamic provisioning and
ease of operation and maintenance. As a result, optical
networks are more scalable and flexible than their electro-
nic counterparts and can support general-purpose and
special-purpose networks while providing a high degree
of protection and restoration against failures.

Given today’s available technologies, optical networks
are realized using OCS techniques that are less scalable and
efficient than OBS and OPS when supporting data traffic.
However, as optical technologies mature, the next genera-
tion of optical networks will employ OBS and OPS techni-
ques that are far more efficient at leveraging network
resources. As such, much of the current research is focused
on developing switching techniques that are fast and reli-
able, routing protocols that are scalable and have fast con-
vergence, and signaling protocols that exploit network-wide
resources efficiently while integrating the optical and data
layers seamlessly.

BIBLIOGRAPHY

1. S. Gorshe, ANSI T1X1.5, 2001–062 SONET base standard,
2001. Available:http://www.t1.org.

2. T. Hills, Next-Gen SONET, Lightreading report, 2002. Avail-
able: http://www.lightreading.com/document.asp?doc id¼
14781.

3. B. Mukherjee, Optical Communication Networks, New York:
McGraw-Hill, 1997.

4. B. Mukherjee, WDM optical communication networks: Pro-
gress and challenges, IEEE J. Selected Areas Commun.,
18: 1810–1824, 2000.

5. K. C. Lee and V. O. K. Li, A wavelength-convertible optical
network, IEEE/OSA J. of Lightwave Technology, 11:
962–970,1993.

6. M. Kovacevic and A. Acampora, Benefits of wavelength trans-
lation in all optical clear-channel networks, IEEE J. on
Selected Areas in Communications, 14(5): 868–880, 1996.

7. X. Zhang and C. Qiao, An effective and comprehensive
approach for traffic grooming and wavelength assignment in
SONET/WDM rings, IEEE/ACM Trans. Networking, 8(5):
608–617¤, 2000.

8. E. Modiano, Traffic grooming in WDM networks, IEEE Com-
mun. Mag., 38(7): 124–129, 2001.

9. X. Cao, V. Anand, and C. Qiao, Waveband switching in optical
networks, IEEE Commun. Mag., 41(4): 105–112, 2003.

10. Pin-Han Ho and H. T. Mouftah, Routing and wavelength
assignment with multigranularity traffic in optical networks,
IEEE/OSA J. of Lightwave Technology,(8): 2002.

11. X. Cao, V. Anand, Y. Xiong, and C. Qiao, A study of waveband
switching with multi-layer multi-granular optical cross-
connects, IEEE J. Selected Areas Commun., 21(7): 1081–
1095, 2003.

12. D. K. Hunter et al., WASPNET: a wavelength switched packet
network, IEEE Commun. Magazine, 120–129, 1999.

13. M. Mahony, D. Simeonidou, D. Hunter, and A. Tzanakaki, The
application of optical packet switching in future communica-
tion networks, IEEE Commun. Mag., 39(3): 128–135, 2001.

14. C. Qiao and M. Yoo, Optical Burst Switching (OBS) - A new
paradigm for an optical Internet, J. High Speed Networks,
8(1): 69–84, 1999.

15. M. Yoo and C. Qiao, Just-Enough-Time (JET): a high speed
protocol for bursty traffic in optical networks, IEEE Annual
Meeting on Lasers and Electro-Optics Society LEOS 1997,
Technologies for a Global Information Infrastructure, 1997,
pp. 26–27.

16. J. Turner, Terabit burst switching, J. High Speed Networks,
8(1): 3–16, 1999.

17. A. Khalil, A. Hadjiantonis, G. Ellinas, and M. Ali, A novel IP-
over-optical network interconnection model for the next gen-
eration optical Internet, Global Telecommunications Confer-
ence, GLOBECOM’03, 7: 1–5, 2003.

18. C. Assi, A. Shami, M. Ali, R. Kurtz, and D. Guo, Optical
networking and real-time provisioning: an integrated vision
for the next-generation Internet, IEEE Network, 15(4): 36–45,
2001.

19. A. Banerjee, L. Drake, L. Lang, B. Turner, D. Awduche, L.
Berger, K. Kompella, and Y. Rekhter, Generalized multipro-
tocol label switching: an overview of signaling enhancements
and recovery techniques, IEEE Commun. Mag., 39(7):144–151,
2001.

VISHAL ANAND

The College at Brockport—
State University of
New York

Brockport, New York

XIAOJUN CAO

Georgia State University
Atlanta, Georgia

SAMI SHEESHIA

American University of Science
and Technology

Beirut, Lebanon

CHUNSHENG XIN

Norfolk State University
Norfolk, North Carolina

CHUNMING QIAO

SUNY Buffalo
Buffalo, New York

8 FIBER-OPTIC COMMUNICATION NETWORKS



H

HIGH-LEVEL SYNTHESIS

INTRODUCTION

Over the years, digital electronic systems have progressed
from vacuum-tube to complex integrated circuits, some of
which contain millions of transistors. Electronic circuits
can be separated into two groups, digital and analog cir-
cuits. Analog circuits operate on analog quantities that are
continuous in value and in time, whereas digital circuits
operate on digital quantities that are discrete in value and
time (1). Examples of analog and digital systems are shown
in Fig. 1.

Digital electronic systems (technically referred to as
digital logic systems) represent information in digits.
The digits used in digital systems are the 0 and 1 that
belong to the binary mathematical number system. In logic,
the 0 and 1 values could be interpreted as True and False. In
circuits, the True and False could be thought of as High
voltage and Low voltage. These correspondences set the
relations among logic (True and False), binary mathe-
matics (0 and 1), and circuits (High and Low).

Logic, in its basic shape, deals with reasoning that
checks the validity of a certain proposition—a proposition
could be either True or False. The relation among logic,
binary mathematics, and circuits enables a smooth tran-
sition of processes expressed in propositional logic to
binary mathematical functions and equations (Boolean
algebra), and to digital circuits. A great scientific wealth of
information exists that strongly supports the relations
among the three different branches of science that lead to
the foundation of modern digital hardware and logic
design.

Boolean algebra uses three basic logic operations: AND,
OR, and NOT. Truth tables and symbols of the logic opera-
tors AND, OR, and NOT are shown in Fig. 2. Digital circuits
implement the logic operations AND, OR, and NOT as
hardware elements called ‘‘gates’’ that perform logic opera-
tions on binary inputs. The AND-gate performs an AND
operation, an OR-gate performs an OR operation, and an
Inverter performs the negation operation NOT. The actual
internal circuitry of gates is built with transistors; two
different circuit implementations of inverters are shown
in Fig. 3. Examples of AND, OR, and NOT gates of inte-
grated circuits (ICs—also known as chips) are shown in
Fig. 4. Besides the three essential logic operations, four
other important operations exist: the NOR (NOT-OR),
NAND (NOT-AND), Exclusive-OR (XOR), and Exclusive-
NOR (XNOR).

A logic circuit is usually created by combining gates
together to implement a certain logic function. A logic
function could be a combination of logic variables (such
as A, B, and C) with logic operations; logic variables can
take only the values 0 or 1. The created circuit could be
implemented using a suitable gate structure. The design

process usually starts from a specification of the intended
circuit; for example, consider the design and implementa-
tion of a three-variable majority function. The function F(A,
B, C) will return a 1 (High or True) whenever the number of
1s in the inputs is greater than or equal to the number of 0s.
The truthtable of F is shown in Fig. 5(a). The terms that
make the function F return a 1 are F(0, 1, 1), F(1, 0, 1), F(1,
1, 0), or F(1, 1, 1). This could be alternatively formulated as
in the following equation:

F ¼ A0BCþ AB0Cþ ABC0 þ ABC

In Figure 5(b), the implementations using a standard
AND–OR–Inverter gate structure are shown. Some other
specifications might require functions with more number
of inputs and accordingly a more complicated design pro-
cess.

The complexity of the digital logic circuit that corre-
sponds to a Boolean function is directly related to the
complexity of the base algebraic function. Boolean func-
tions may be simplified by several means. The simplifica-
tion step is usually called optimization or minimization as
it has direct effects on the cost of the implemented circuit
and its performance. The optimization techniques range
from simple (manual) to complex (automated using a
computer).

The basic hardware design steps can be summarized in
the following list:

1. Specification of the required circuit.

2. Formulation of the specification to derive algebraic
equations.

3. Optimization of the obtained equations

4. Implementation of the optimized equations using
suitable hardware (IC) technology.

The above steps are usually joined with an essential
verification procedure that ensures the correctness and
completeness of each design step.

Basically, three types of IC technologies can be used to
implement logic functions on Ref. 2 these are full-custom,
semi-custom, and programmable logic devices (PLDs). In
full-custom implementations, the designer cares about the
realization of the desired logic function to the deepest
details, including the gate-level and the transistor-level
optimizations to produce a high-performance implementa-
tion. In semi-custom implementations, the designer uses
some ready logic-circuit blocks and completes the wiring to
achieve an acceptable performance implementation in a
shorter time than full-custom procedures. In PLDs, the
logic blocks and the wiring are ready. In implementing a
function on a PLD, the designer will only decide of which
wires and blocks to use; this step is usually referred to as
programming the device.

The task of manually designing hardware tends to be
extremely tedious, and sometimes impossible, with the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Analog Amplifier Speaker
Microphone          

A Simple Analog System

Personal Digital Assistant and a Mobile Phone

Speaker

Microphone

A Digital System

Figure 1. A simple analog system and a digital system; the analog signal amplifies the input signal using analog electronic
components. The digital system can still include analog components like a speaker and a microphone; the internal processing is digital.

Input X Input Y
Output: 
X AND Y

Input X Input Y
Output: 
X OR Y

Input X
Output: 
NOT X

False False False False False False False True 
False True False False True True  True False
True False False True False True    
True True True  True True True    

(a) 

Input X Input Y
Output: 
X AND Y

Input X Input Y
Output: 
X OR Y

Input X
Output: 
NOT X

0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1    
1 1 1 1 1 1    

(b)

(c)

AND Gate OR Gate Inverter

0

1

0

0

0

0

0

1

0

1

1

1

0

1

1

1

0

0

0 1 0

01 1

0

1 1

1

Figure 2. (a) Truth tables for AND, OR, and Inverter. (b) Truth tables for AND, OR, and Inverter in binary numbers. (c) Symbols for AND,
OR, and Inverter with their operation.

OutputInput

+VDD 130 Ω1.6 kΩ4 kΩ

1 kΩ

+VCC

Output

Input

TTL InverterCMOS Inverter

Figure 3. Complementary metal-oxide semiconductor (CMOS) and transistor-transistor logic (TTL) inverters.

2 HIGH-LEVEL SYNTHESIS



increasing complexity of modern digital circuits. Fortu-
nately, the demand on large digital systems has been
accompanied with a fast advancement in IC technolo-
gies. Indeed, IC technology has been growing faster than
the ability of designers to produce hardware designs.
Hence, a growing interest has occurred in developing
techniques and tools that facilitate the process of hard-
ware design.

The task of making hardware design simpler has been
inspired largely by the success story in facilitating the pro-
gramming of traditional computers done by software
designers. This success has motivated eager hardware
designerstofollowcloselythefootstepsofsoftwaredesigners,
which leads to a synergy between these two disciplines that
creates what is called hardware/software codesign.

SOFTWARE DESIGN

A computer is composed basically from a computational
unit made out of logic components whose main task is to
perform arithmetic and logic operations; this is usually
called the arithmetic and logic unit (ALU). The computa-
tions performed by the ALU are usually controlled by a
neighboring unit called the control unit (CU). The ALU and
the CU construct the central processing unit (CPU) that is
usually attached to a storage unit, memory unit, and input
and output units to build a typical digital computer. A
simplified digital computer is shown in Fig. 6.

To perform an operation using the ALU, the computer
should provide a sequence of bits (machine instruction) that
include signals to enable the appropriate operation, the
inputs, and the destination of the output. To run a whole
program (sequence of instruction), the computations are
provided sequentially to the computer. As the program
sizes grow, dealing with 0s and 1s becomes difficult. Efforts
to facilitate dealing with computer programs concentrated
on the creation of translators that hides the complexity of
dealing with programming using 0s and 1s. An early pro-
posed translator produced the binary sequence of bits
(machine instructions) from easy-to-handle instructions
written using letters and numbers called assembly
language instructions. The translator performing the
above job is called an assembler (see Fig. 7).

Before long, the limitations of assembly instructions
became apparent for programs consisting of thousands of

GND

Vcc

GND

Vcc

GND

Vcc

Figure 4. The 74LS21 (AND), 74LS32 (OR), and 74LS04 (Inverter) TTL ICs.

A

B
C

F(A, B, C)
A

B
C

A

B
C

A

B
C

Input A Input B Input C Output F 

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

(a) 

(b) 

Figure 5. (a) Truth table. (b) Standard implementation of the
majority function.

 

CPU

CU

ALU
I/O

MEM

Storage

Figure 6. A typical organization of a digital computer.

HIGH-LEVEL SYNTHESIS 3



instructions. The solution came in favor of translation
again; this time the translator is called a compiler. Com-
pilers automatically translate sequential programs,
written in a high-level language like C and Pascal, into
equivalent assembly instructions (see Fig. 7). Transla-
tors like assemblers and compilers helped software
designers ascend to higher levels of abstraction. With
compilers, a software designer can code with a fewer
number of lines that are easy to understand. Then, the
compiler will do the whole remaining job of translation to
hide all the low-level complex details from a software
designer.

TOWARD AUTOMATED HARDWARE DESIGN

Translation from higher levels of abstraction for software
has motivated the creation of automated hardware design
(synthesis) tools. The idea of hardware synthesis sounds
very similar to that for software compilation. A designer
can produce hardware circuits by automatically synthe-
sizing an easy-to-understand description of the required
circuit, to provide a list of performance-related require-
ments.

Several advantages exist to automating part or all of the
hardware design process and to moving automation to
higher levels of abstraction. First, automation assures a

much shorter design cycle and time to market for the
produced hardware. Second, automation allows for more
exploration of different design styles because different
designs can be synthesized and evaluated within a short
time. Finally, with well-developed design automation tools,
they may outperform human designers in generating high-
quality designs.

HARDWARE DESIGN APPROACHES

Two different approaches emerged from the debate over
ways to automate hardware design. On the one hand, the
capture-and-simulate proponents believe that human
designers have good design experience that cannot be
automated. They also believe that a designer can build a
design in a bottom-up style from elementary components
such as transistors and gates. Because the designer is
concerned with the deepest details of the design, optimized
and cheap designs could be produced. On the other hand,
the describe-and-synthesis advocates believe that synthe-
sizing algorithms can outperform human designers. They
also believe that a top-down fashion would be better suited
for designing complex systems. In describe-and-synthesize
methodology, the designers first describe the design. Then,
computer aided design (CAD) tools can generate the
physical and electrical structure. This approach describes
the intended designs using special languages called hard-
ware description languages (HDLs). Some HDLs are very
similar to traditional programming languages like C and
Pascal (3).

Both design approaches may be correct and useful at
some point. For instance, circuits made from replicated
small cells (like memory) are to perform efficiently if the
cell is captured, simulated, and optimized to the deepest-
level components (such as transistors). Another compli-
cated heterogeneous design that will be developed and
mapped onto a ready prefabricated device, like a PLD
where no optimizations are possible on the electronics level,
can be described and synthesized automatically. However,
modern synthesis tools are well equipped with powerful
automatic optimization tools.

HIGH-LEVEL HARDWARE SYNTHESIS

Hardware synthesis is a general term used to refer to the
processes involved in automatically generating a hardware
design from its specification. High-level synthesis (HLS)
could be defined as the translation from a behavioral
description of the intended hardware circuit into a struc-
tural description similar to the compilation of program-
ming languages (such as C and Pascal) into assembly
language. The behavioral description represents an algo-
rithm, equation, and so on, Whereas a structural descrip-
tion represents the hardware components that implement
the behavioral description. Despite the general similarity
between hardware and software compilations, hardware
synthesis is a multilevel and complicated task. In software
compilation, you translate from a high-level language to a
low-level language, Whereas in hardware synthesis, you
step through a series of levels.

void swap ( int &a, int &b)
{
    int temp;

    temp = a;
    a = b;
    b = temp;
}

High-level 
C-language 

code

Intel Assembly 
Language code

Binary
Machine Code

 a, bSwap MACRO 
AX, aMOV
BX, bMOV 
a, BXMOV
b, AXMOV

RET
ENDM

0110111010110011001010010010101
1110111010110011001010000010101

1111111010110011001010000010101

0111111010110011000000010010101

0100001010110010000111011010101

0110111010110011111010010010101

0111000101100110010000000010101

Assembler

Compiler

Figure 7. The translation process of high-level programs.

4 HIGH-LEVEL SYNTHESIS



To explain more on behavior, structure, and their cor-
respondences, Fig. 8 shows Gajski’s Y-chart. In this chart,
each axis represents a type of description (behavioral,
structural, and physical). On the behavioral side, the
main concern is for algorithms, equations, and functions
but not for implementations. On the structural side, imple-
mentation constructs are shown; the behavior is implemen-
ted by connecting components with known behavior. On the
physical side, circuit size, component placements, and wire
routes on the developed chip (or board) are the main focus.

The chained synthesis tasks at each level of the design
process include system synthesis, register-transfer synth-
esis, logic synthesis, and circuit synthesis. System synth-
esis starts with a set of processes communicating though
either shared variables or message passing. It generates a
structure of processors, memories, controllers, and inter-
face adapters from a set of system components. Each com-
ponent can be described using a register-transfer language
(RTL). RTL descriptions model a hardware design as circuit
blocks and interconnecting wires. Each of these circuit
blocks could be described using Boolean expressions. Logic
synthesis translates Boolean expressions into a list of logic
gates and their interconnections (netlist). The used gates
could be components from a given library such as NAND or
NOR. In many cases, a structural description using one
library must be converted into one using another library
(usually referred to as technology mapping). Based on the
produced netlist, circuit synthesis generates a transistor
schematic from a set of input–output current, voltage and
frequency characteristics, or equations. The synthesized
transistor schematic contains transistor types, para-
meters, and sizes.

Early contributions to HLS were made in the 1960s. The
ALERT (4) system was developed at IBM (Armonk NY)
ALERT automatically translates behavioral specifications
written in APL (5) into logic-level implementations. The
MIMOLA system (1976) generated a CPU from a high-level
input specification (6). HLS has witnessed & considerable

growth since the early 1980s, and currently, it plays a key
role in modern hardware design.

HIGH-LEVEL SYNTHESIS TOOLS

A typical modern hardware synthesis tool includes HLS
logic synthesis, placement, and routing steps as shown in
Fig. 9. In terms of Gajski’s Y-chart vocabulary, these mod-
ern tools synthesize a behavioral description into a

Circuit synthesis

Logic synthesis

Register-transfer synthesis

System synthesis

Transistor layouts

Cell

Chips

Boards, multichip modules

Transistor functions
Boolean expressions

Register transfers
Flowcharts, algorithms

Transistors
Gates, flip-flops

Registers, ALUs, MUXs

Processors, memories, buses

STRUCTURAL
DOMAIN

BEHAVIORAL
DOMAIN

PHYSICAL
DOMAIN

Figure 8. Gajski’s Y-chart.

Behavioral Description

High-level Synthesis
Allocation
Binding

Scheduling

Register-Transfer Level

Logic Synthesis
Combination and Sequential Logic 

Optimization
Technology Mapping

Netlist

Hardware Implementation

Placement and Routing

Figure 9. The process of describe-and-synthesize for hardware
development.

HIGH-LEVEL SYNTHESIS 5



structural network of components. The structural network
is then synthesized even more, optimized, placed physically
in a certain layout, and then routed through. The HLS step
includes, first, allocating necessary resources for the com-
putations needed in the provided behavioral description
(the allocation stage). Second, the allocated resources are
bound to the corresponding operations (the binding stage).
Third, the operations order of execution is scheduled (the
scheduling stage). The output of the high-level synthesizer
is an RT-level description. The RT-level description is then
synthesized logically to produce an optimized netlist. Gate
netlists are then converted into circuit modules by placing
cells of physical elements (transistors) into several rows
and connecting input/output (I/O) pins through routing in
the channels between the cells. The following example
illustrates the HLS stages (allocation, binding, and sche-
duling).

Consider a behavioral specification that contains the
statement, s ¼ a2 þ b2 þ 4b. The variables a and b are
predefined. Assume that the designer has allocated two
multipliers (m1 and m2) and one adder (ad) for s. However,
to compute s, a total of three multipliers and two adders
could be used as shown in the dataflow graph in Fig. 10.

A possible binding and schedule for the computations
of s are shown in Fig. 11. In the first step, the multiplier

m1 is bound with the computation of a2, and the multiplier
m2 is bound with the computation of b2. In the second
step, m1 is reused to compute (4b); also the adder (ad) is
used to perform (a2 þ b2). In the third and last step, the
adder is reused to add (4b) to (a2þ b2). Different bindings
and schedules are possible. Bindings and schedules could
be carried out to satisfy a certain optimization, for exam-
ple, to minimize the number of computational steps,
routing, or maybe multiplexing.

HARDWARE DESCRIPTION LANGUAGES

HDLs, like traditional programming languages, are often
categorized according to their level of abstraction. Beha-
vioral HDLs focus on algorithmic specifications and sup-
port constructs commonly found in high-level imperative
programming languages, such as assignment, and condi-
tionals.

Verilog (7) and VHDL (Very High Speed Integrated
Circuit Hardware Description Language) (8) are by far
the most commonly used HDLs in the industry. Both of
these HDLs support different styles for describing hard-
ware, for example, behavioral style, and structural gate-
level style, VHDL became IEEE Standard 1076 in 1987.
Verilog became IEEE Standard 1364 in December 1995.

a

x x x

+

+

a b b b 4

s = a2 + b2 + 4 b

a2 + b2 4b

Step 1

Step 2

Step 3

m1 m2 m3

ad1

ad2

Figure 10. A possible allocation, binding, and scheduling of s ¼ a2 þ b2 þ 4b.

a

x x

x+

+

a b b

b 4

s = a 2 + b 2 + 4b

a2 + b 2 4b

Step 1

Step 2

Step 3

m1 m 2

m 1ad

a

Figure 11. Another possible allocation, binding, and scheduling of s ¼ a2 þ b2 þ 4b.

6 HIGH-LEVEL SYNTHESIS



The Verilog language uses the module construct to
declare logic blocks (with several inputs and outputs). In
Fig. 12, a Verilog description of a half-adder circuit is
shown.

In VHDL, each structural block consists of an inter-
face description and architecture. VHDL enables beha-
vioral descriptions in dataflow and algorithmic styles.
The half-adder circuit of Fig. 12 has a dataflow behavioral
VHDL description as shown in Fig. 13; a structural
description is shown in Fig. 14.

Efforts for creating tools with higher levels of abstrac-
tion lead to the production of many powerful modern hard-
ware design tools. Ian Page and Wayne Luk (9) developed a
compiler that transformed a subset of Occam into a netlist.
Nearly 10 years later, we have witnessed the development

of Handel-C (9), the first commercially available high-level
language for targeting programmable logic devices (such as
field-programmable gate arrays—FPGAs).

Handel-C is a parallel programming language based on
the theories of communicating sequential processes (CSPs)
and Occam with a C-like syntax familiar to most program-
mers. This language is used for describing computations
that are to be compiled into hardware. A Handel-C program
is not compiled into machine code but into a description of
gates and flip-flops, which is then used as an input to FPGA
design software. Investments for research into rapid devel-
opment of reconfigurable circuits using Handel-C have
been largely made at Celoxica (oxfordshire, united king-
dom)(10). The Handel-C compiler comes packaged with the
Celoxica DK Design Suite.

Almost all ANSI-C types are supported in Handel-C.
Also, Handel-C supports all ANSI-C storage class specifiers
and type qualifiers except volatile and register, which have
no meaning in hardware. Handel-C offers additional types
for creating hardware components, such as memory, ports,
buses, and wires. Handel-C variables can only be initialized
if they are global or if they are declared as static or constant.
Figure 15 shows C and Handel-C types and objects in
addition to the design flow of Handel-C. Types are not
limited to width in Handel-C because, when targeting
hardware, no need exists to be tied to a certain width.
Variables can be of different widths, thus minimizing the
hardware usage. For instance, if we have a variable a that
can hold a value between 1 and 5, then it is enough to use 3
bits only (declared as int 3 a).

The notion of time in Handel-C is fundamental. Each
assignment happens in exactly one clock cycle; everything

Module Half_Adder (a, b, c, s); 
input a, b; 
output c, s; //Output sum and carry.

and Gate1 (c, a, b); //an AND gate with two inputs a and b
//and one output c

xor Gate2 (s, a, b) //a XOR gate with two inputs a and b
//and one output s

endmodule

Figure 12. A Verilog description of a half-adder circuit.

entity Half_Adder is 
port ( 

a: in STD_LOGIC; 
b: in STD_LOGIC; 
c: out STD_LOGIC; 
s: out STD_LOGIC); 

end Half_Adder 

architecture behavioral of Half_Adder is 
begin

s <= (a xor b) after 5 ns; 
c <= (a and b) after 5 ns; 

end behavioral; 

Figure 13. A behavioral VHDL description of a Half_Adder.

entity Half_Adder is 
port ( 

a, b: in bit; 
c, s: out bit;); 

end Half_Adder 

architecture structural of Half_Adder is 
port (x, y: in bit; o: out bit); component AND2 
port (x, y: in bit; o: out bit); component EXOR2 

begin

Gate1 : AND2 port map (a, b, c); 
Gate2 : EXOR2 port map (a, b, s); 

end structural; 

Figure 14. A structural VHDL description of a Half_Adder.

HIGH-LEVEL SYNTHESIS 7



else is ‘‘free.’’ An essential feature in Handel-C is the par
construct, which executes instructions in parallel.
Figure 16 provides an example showing the effect of using
par.

Building on the work carried out in Oxford’s Hardware
Compilation Group by Page and Luk, Saul at Oxford’s
Programming Research Group (12) introduced a different
codesign compiler, Dash FPGA-Based Systems. This com-
piler provides a cosynthesis and cosimulation environment
for mixed FPGA and processor architectures. It compiles a
C-like description to a solution containing both processors
and custom hardware.

Luk and McKeever (13) introduced Pebble, a simple
language designed to improve the productivity and effec-
tiveness of hardware design. This language improves pro-
ductivity by adopting reusable word-level and bit-level
descriptions that can be customized by different parameter
values, such as design size and the number of pipeline

stages.Suchdescriptionscan be compiledwithoutflattening
into various VHDL dialects. Pebble improves design effec-
tiveness by supporting optional constraint descriptions,
such as placement attributes, at various levels of abstrac-
tion; it also supports runtime reconfigurable designs.

Todman and Luk (14) proposed a method that combines
declarative and imperative hardware descriptions. They
investigated the use of Cobble language, which allows
abstractions to be performed in an imperative setting.
Designs created in Cobble benefit from efficient bit-level
implementations developed in Pebble. Transformations are
suggested to allow the declarative Pebble blocks to be used
in cobble’s imperative programs.

Weinhardt (15) proposes a high-level language program-
ming approach for reconfigurable computers. This
approach automatically partitions the design between
hardware and software and synthesizes pipelined circuits
from parallel for loops.

C Legacy Code

Data Refinement

Data Parallelism

Code Optimization

Handel-C Compiler

Netlist

(a)

Implementation 

Refinement

Conventional C Only  
double 
float 
union

Architectural Types

Compound Types

Special Types

(b)

In Both
int 

unsigned 
char
long 
short 
enum 

register
struct 
static
extern 
volatile 

void 
const 
auto 

signed 
typedef

Handel-C Only
chan
ram 
rom
wom 
signal
chanin

chanout
mpram
typeof

undefined
<>

inline
interface

sema

Figure 15. C and Handel-C types and objects. Handel-C types can be classified into common logic types, architectural types, compound
types, and special types.

8 HIGH-LEVEL SYNTHESIS



Najjar et al. (16) presented a high-level, algorithmic
language and optimizing compiler for the development of
image-processing applications on RC-systems. SA-C, a sin-
gle assignment variant of the C programming language,
was designed for this purpose.

A prototype HDL called Lava was developed by Satnam
Singh at Xilinx, Inc. (San Jose, CA) and Mary Sheeran and
Koen Claessen at Chalmers University in Sweden (17).
Lava allows circuit tiles to be composed using powerful
higher order combinators. This language is embedded in
the Haskell lazy functional programming language.
Xilinx’s implementation of Lava is designed to support
the rapid representation, implementation, and analysis
of high-performance FPGA circuits.

Besides the above advances in the area of high-level
hardware synthesis, the current market has other tools
employed to aid programmable hardware implementa-
tions. These tools include the Forge compiler from Xilinx,
the SystemC language, the Nimble compiler for Agileware
architecture from Nimble Technology (now Actuate Cor-
poration, San Mateo, CA) and Superlog.

Forge is a tool for developing reconfigurable hardware,
mainly FPGAs. Forge uses Java with no changes to syntax.
It also requires no hardware design skills. The Forge design
suite compiles into Verilog, which is suitable for integration
with standard HLS and simulation tools.

SystemC is based on a methodology that can be used
effectively to create a cycle-accurate model of a system
consisting of software, hardware, and their interfaces in
Cþþ. SystemC is easy to learn for people who already use C/
Cþþ. SystemC produces an executable specification, while
inconsistencies and errors are avoided. The executable
specification helps to validate the system functionality
before it is implemented. The momentum in building the
SystemC language and modeling platform is to find a
proper solution for representing functionality, communica-
tion, and software and hardware implementations at var-
ious levels of abstraction.

The Nimble compiler is an ANSI-C-based compiler for a
particular type of architecture called Agileware. The Agile-
ware architecture consists of a general-purpose CPU and a
dynamically configurable data path coprocessor with a
memory hierarchy. It can parallelize and compile the
code into hardware and software without user interven-

tion. Nimble can extract computationally intensive loops,
turn them into data flow graphs, and then compile them
into a reconfigurable data path.

Superlog is an advanced version of Verilog. It adds more
abstract features to the language to allow designers to
handle large and complex chip designs without getting
too much into the details. In addition, Superlog adds
many object-oriented features as well as advanced pro-
gramming construct to Verilog.

Other famous HLS and hardware design tools include
Altera’s Quartus (San Jose, CA), Xilinx’s ISE,and Mentor
Graphics’s HDL Designer, Leonardo Spectrum, Precision
Synthesis, and ModelSim (Wilsonville, OR).

HIGHER LEVEL HARDWARE DESIGN METHODOLOGIES

The area for deriving hardware implementations from
high-level specifications has been witnessing a continuous
growth. The aims always have been to reach higher levels of
abstraction through correct, well-defined refinement steps.
Many frameworks for developing correct hardware have
been brought out in the literature (18–20).

Hoare and colleagues (20) in the Provably Correct
Systems project (ProCoS) suggested a mathematical basis
for the development of embedded and real-time computer
systems. They used FPGAs as back-end hardware for
realizing their developed designs. The framework
included novel specification languages and verification
techniques for four levels of development:

� Requirements definition and design.

� Program specifications and their transformation to
parallel programs.

� Compilation of programs to hardware.

� Compilation of real-time programs to conventional
processors.

Aiming for a short and precise specification of require-
ments, ProCoS has investigated a real-time logic to forma-
lize dynamic systems properties. This logic provides a
calculus to verify a specification of a control strategy based
on finite state machines (FSMS). The specification lan-

b = 2;

c = 5;

Code Segment with 
three sequential 

assignments

Code Segment with 
three parallel 

assignments using 
‘par’

a = 3; par { a = 3;  b = 2; c = 5; }

The computation 
finishes in 3 time 

steps

The computation 
finishes in a single 

time step

Step 1

Step 2

Step 3

Figure 16. Parallel execution using a par statement.

HIGH-LEVEL SYNTHESIS 9



guage SL is used to specify program components and to
support transformation to an Occam-like programming
language PL. These programs are then transformed into
hardware or machine code. A prototype compiler in SML
has been produced, which converts a PL-like language to a
netlist suitable for placement and routing for FPGAs from
Xilinx.

Abdallah (19), at London South Bank University, cre-
ated a step-wise refinement approach to the development of
correct hardware circuits from formal specifications. A
functional programming notation is used for specifying
algorithms and for reasoning about them. The specifica-
tions are realized through the use of a combination of
function decomposition strategies, data refinement techni-
ques, and off-the-shelf refinements basedupon higher order
functions. The off-the-shelf refinements are inspired by the
operators of CSP and map easily to programs in Handel-C.
The Handel-C descriptions are then compiled directly into
hardware.

The development of hardware solutions for complex
applications is no more a complicated task with the emer-
gence of various HLS tools. Many areas of application have
benefited from the modern advances in hardware design,
such as automotive and aerospace industries, computer
graphics, signal and image processing, security, complex
simulations like molecular modeling, and DNA matching.

The field of HLS is continuing its rapid growth to facil-
itate the creation of hardware and to blur more and more
the border separating the processes of designing hardware
and software.

CROSS-REFERENCES

Programmable Logic Devices, see Programmable Logic Arrays.

BIBLIOGRAPHY

1. T. Floyd, Digital Fundamentals with PLD Programming, Eng-
lewood Cliffs, NJ: Prentice Hall, 2006.

2. F. Vahid et al., Embedded system design: A Unified Hardware/
Software Introduction, New York: John Wiley & Sons, 2002.

3. S. Hachtel, Logic Synthesis and Verification Algorithms,
Norwell: Kluwer, 1996.

4. T. Friedman and S. Yang, Methods used in an automatic logic
design generator(ALERT), IEEE Trans. in Comp., C-18: 593–
614, 1969.

5. S. Pommier, An Introduction to APL, Cambridge: Cambridge
University Press, 1983.

6. P. Marwedel, A new synthesis algorithm for the mimola soft-
ware system, Proc. Design Automation Conference, 1986,
pp. 271–277.

7. IEEE, Verilog HDL language reference manual, IEEE Stan-
dard 1364, 1995.

8. IEEE, Standard VHDL reference manual, IEEE Standard
1076, 1993.

9. I. Page and W. Luk, Compiling Occam into field-programmable
gate arrays, Proc. Workshop on Field Programmable Logic and
Applications, 1991, pp. 271–283.

10. I. Page, Logarithmic Greatest Common Divisor Example in
Handel-C, Embedded Solutions, 1998.

11. Celoxica. Available: www.celoxica.com.

12. J. Saul. Hardware/software codesign for FPGA-based systems,
Proc. Hawaii Int’l Conf. on Sys. Sciences, 3, 1999, p. 3040.

13. W. Luk and S. McKeever, Pebble: a language for parameterized
and reconfigurable hardware design, Proc. of Field Program-
mable Logic and Apps., 1482, 1998, p. 9–18.

14. T. Todman and W. Luk, Combining imperative and declarative
hardware descriptions, Proc. Hawaii Int’l Conf. on Sys.
Sciences, 2003, p. 280.

15. M. Weinhardt, Portable pipeline synthesis for FCCMs, Field
Programmable Logic: Smart Apps., New paradigms and com-
pilers, 1996, p. 1–13,

16. W. Najjar, B. Draper, W.Bohm, and R. Beveridge, The Cameron
project: high-level programming of image processing applica-
tions on reconfigurable computing machines, Workshop on
Reconfigurable Computing, 1998.

17. K. Claessen, Embedded Languages for Describing and Verify-
ing Hardware. PhD Thesis, Göteborg, Sweden: Chalmers
University of Technology and Göteborg University, 2001.

18. J. Bowen, M. Fränzle, E. Olderog, and A. Ravn, Developing
correct systems, Proc. Euromicro Workshop on RT Systems,
1993, pp. 176–187.

19. A. E. Abdallah. Derivation of parallel algorithms: From func-
tional specifications to CSP processes. In B. Moller (ed),
Proceedings of Mathematics of Program Construction, Vol.
947 of Lecture Notes in Computer Science, Springer-Verlag,
1994, pp. 67–96.

20. J. Bowen, C. A. R. Hoare, H. Langmaack, E. Olderog, and A.
Ravn, A ProCoS II project final report: ESPRIT basic research
project 7071, Bull. European Assoc. Theoret. Comp. Sc., 59,
76–99, 1996.

FURTHER READING

T. Floyd, Digital Fundamentals with PLD Programming,
Englewood Cliffs, NJ: Prentice Hall, 2006.

M. Mano et al., Logic and Computer Design Fundamentals,
Englewood Cliffs, NJ: Prentice Hall, 2004.

F. Vahid et al., Embedded System Design: A Unified Hardware/
Software Introduction, New York: John Wiley & Sons, 2002.

S. Hachtel, Logic Synthesis and Verification Algorithms, Norwell:
Kluwer, 1996.

ISSAM W. DAMAJ

Dhofar University
Sultanate of Oman

10 HIGH-LEVEL SYNTHESIS



I

INSTRUCTION SETS

A computer system’s instruction set reflects the most
primitive set of commands directly accessible to the pro-
grammer or compiler. Instructions in the instruction set
manipulate components defined in the computer’s instruc-
tion set architecture (ISA), which encompasses chara-
cteristics of the central processing unit (CPU), register
set, memory access structure, and exception handling
mechanisms.

In addition to defining the set of commands that a
computer can execute, an instruction set specifies the for-
mat of each instruction. An instruction is divided into
various fields that indicate the basic command (opcode)
and the operands to the command. Instructions should be
chosen and encoded so that frequently used instructions
or instruction sequences execute quickly. Often there is
more than one implementation of an instruction set archi-
tecture, which enables computer system designers to
exploit faster technology and components while maintain-
ing object code compatibility with previous versions of the
computer system.

INSTRUCTION SET BASICS

Instructions contain an opcode—the basic command to
execute, including the data type of the operands—and
some number of operands, depending on hardware re-
quirements. Historically, some or all of the following
operands have been included: one or two data values to
be used by the operation (source operands), the location
where the result of the operation should be stored (destina-
tion operand), and the location of the next instruction to be
executed. Depending on the number of operands, these are
identified as one-, two-, three-, and four-address instruc-
tions. The early introduction of the special hardware
register, the program counter, quickly eliminated the
need for the fourth operand.

Types of Instructions

There is a minimum set of instructions that encompasses
the capability of any computer:

� Add and subtract (arithmetic operations).

� Load and store (data movement operations).

� Read and write (input/output operations).

� An unconditional branch or jump instruction.

� A minimum of two conditional branch or jump instruc-
tions [e.g., BEQ (branch if equal zero) and BLT (branch
if less than zero) are sufficient].

� A halt instruction.

Early computers could do little more than this basic
instruction set. As machines evolved and changed, greater

hardware capability was added, e.g., the addition of multi-
plication and division units, floating point units, multiple
registers, and complex instruction decoders. Instruction
sets expanded to reflect the additional hardware capability
by combining frequently occurring instruction sequences
into a single instruction. The expanding CISCs continued
well into the 1980s until the introduction of RISC machines
changed this pattern.

Classes of Instruction Set Architectures

Instruction sets are often classified according to the method
used to access operands. ISAs that support memory-to-
memory operations are sometimes called SS architectures
(for Storage–Storage), whereas ISAs that support basic
arithmetic operations only in registers are called RR
(Register–Register) architectures.

Consider an addition, A ¼ Bþ C, where the values of
A, B, and C have been assigned memory locations 100, 200,
and 300, respectively. If an instruction set supports
three-address memory-to-memory instructions, a single
instruction,

Add A; B; C

would perform the required operation. This instruction
would cause the contents of memory locations 200 and
300 to be moved into registers in the arithmetic logic
unit (ALU), the add performed in the ALU, and then the
result stored into location 100.

However, it is unlikely that an instruction set would
provide this three-address instruction. One reason is that
the instruction requires many bytes of storage for all
operand information and, therefore, is slow to load and
interpret. Another reason is that later operations might
need the result of the operation (for example, if Bþ C were a
subexpression of a later, more complex expression), so it is
advantageous to retain the result for subsequent instruc-
tions to use.

A two-address register-to-memory alternative might be
as follows:

Load R1; B ; R1 :¼ B
Add R1; C ; R1 :¼ R1þ C
Store A; R1 ; A :¼ R1

whereas a one-address alternative would be similar, with
the references to Rl (register 1) removed. In the latter
scheme, there would be only one hardware register avail-
able for use and, therefore, no need to specify it in each
instruction. (Example hardwares are the IBM 1620 and
7094.)

Most modern ISAs belong to the RR category and use
general-purpose registers (organized either independently
or as stacks) as operands. Arithmetic instructions require
that at least one operand is in a register while ‘‘load’’ and
‘‘store’’ instructions (or ‘‘push’’ and ‘‘pop’’ for stack-based

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



machines) copy data between registers and memory. ISAs
for RISC machines require both operands to be in registers
for arithmetic instructions. If the ISA defines a register file
of some number of registers, the instruction set will have
commands that access, compute with, and modify all of
those registers. If certain registers have special uses, such
as a stack pointer, instructions associated with those regis-
ters will define the special uses.

The various alternatives that ISAs make available,
such as

� both operands in memory,

� one operand in a register and one in memory,

� both operands in registers,

� implicit register operands such as an accumulator, and

� indexed effective address calculation, for A[i] sorts of
references,

are called the addressing modes of an instruction set.
Addressing modes are illustrated below with examples of
addressing modes supported by specific machines.

Issues in Instruction Set Design

There are many tradeoffs in designing an efficient instruc-
tion set. The code density, based on the number of bytes per
instruction and number of instructions required to do a
task, has a direct influence on the machine’s performance.
The architect must decide what and how many operations
the ISA will provide. A small set is sufficient, but it leads to
large programs. A large set requires a more complex
instruction decoder. The number of operands affects the
size of the instruction. A typical, modern instruction set
supports 32-bit words, with 32-bit address widths, 32-bit
operands, and dyadic operations, with an increasing num-
ber of ISAs using 64-bit operands. Byte, half-word, and
double-word access are also desirable. If supported in an
instruction set, additional fields must be allocated in the
instruction word to distinguish the operand size.

The number of instructions that can be supported is
directly affected by the size of the opcode field. In theory,
2n � 1 (a 0 opcode is never used), where n is the number of
bits allocated for the opcode, is the total number of instruc-
tions that can be supported. In practice, however, a clever
architect can extend that number by using the fact that
some instructions, needing only one operand, have avail-
able space that can be used as an ‘‘extended’’ opcode. See the
representative instruction sets in below for examples of this
practice.

Instructions can either be fixed size or variable size.
Fixed-size instructions are easier to decode and execute but
either severely limit the instruction set or require a very
large instruction size, i.e., wasted space. Variable-size
instructions are more difficult to decode and execute but
permit rich instruction sets. The actual machine word size
influences the design of the instruction set. Small machine
word size (see below for an example machine) requires the
use of multiple words per instruction. Larger machine word
sizes make single word instructions feasible. Very large

machine word sizes permit multiple instructions per word
(see below).

GENERAL PURPOSE ISAs

In this section, we discuss the most common categories of an
instruction set. These categories include complex encoding,
simplified encoding (often called load/store or reduced
instruction sets), and wide instruction word formats. In
the 1980s, CISC architectures were favored as best repre-
senting the functionality of high-level languages; however,
later architecture designers favored RISC designs for the
higher performance attained by using compiler analysis to
detect instruction level parallelism. Another architectural
style, VLIW, also attempts to exploit instruction level
parallelism by providing multiple function units.

CISC

The CISC instruction set architecture is characterized by
complicated instructions, many of which require multiple
clock cycles to complete. CISC instructions typically have
two-operand instructions in which one source also serves
as a destination. CISC operations often involve a memory
word as one operand, and they have multiple addressing
modes to access memory, including indexed modes.
Because the complexity of the instructions vary, instruc-
tions may have different lengths and vary in the number of
clock cycles required to complete them. This characteristic
makes it difficult to pipeline the instruction sequence or to
execute multiple instructions in parallel.

RISC

RISC architectures were developed in response to the
prevailing CISC architecture philosophy of introducing
more and more complex instructions to supply more sup-
port for high-level languages and operating systems. The
RISC philosophy is to use simple, fixed-size instructions
that complete in a single cycle to yield the greatest possible
performance (throughput and efficiency) for the RISC
processor.

RISC designs may achieve instruction execution rates of
more than one instruction per machine cycle. This result is
accomplished by using techniques such as:

� Instruction pipelines

� Multiple function units

� Load/store architecture

� Delayed load instructions

� Delayed branch instructions

On any machine, a series of steps is required to execute
an instruction. For example, these steps may be fetch
instruction, decode instruction, fetch operand(s), perform
operation, and store result. In a RISC architecture, these
steps are pipelined to speed up overall execution time.

If all instructions require the same number of cycles for
execution, a full pipeline will generate an instruction per

2 INSTRUCTION SETS



cycle. If instructions require different numbers of cycles for
execution, the pipeline will necessarily delay cycles while
waiting for resources. To minimize these delays, RISC
instruction sets include prefetch instructions to help ensure
the availability of resources at the necessary point in time.
The combination of pipelined execution with multiple inter-
nal function units allows a RISC processor sometimes to
achieve multiple instruction execution per clock cycle.

Memory accesses require additional cycles to calculate
operand address(es), fetch the operand(s), and store
result(s) back to memory. RISC machines reduce the
impact of these instructions by requiring that all operations
be performed only on operands held in registers. Memory is
then accessed only with load and store operations.

Load instructions fetch operands from memory to reg-
isters, to be used in subsequent instructions. As memory
bandwidth is generally slower than processor cycle times,
an operator is not immediately available to be used. The
ideal solution is to perform one or more instructions,
depending on the delay required for the load, which are
not dependent on the data being loaded. This method
effectively uses the pipeline, eliminating wasted cycles.
The burden of generating effective instruction sequences
is generally placed on a compiler, and of course, it is not
always possible to eliminate all delays.

Lastly, branch instructions cause delays because the
branch destination must be calculated and then that
instruction must be fetched. As with load instructions,
RISC designs typically use a delay on the branch ins-
truction so they do not take effect until the one or two
instructions (depending on the RISC design) immediately
following the branch instruction have been executed.
Again, the burden falls on the compiler to identify and
move instructions to fill the one (or two) delay slots caused
by this design. If no instruction(s) can be identified, a NOP
(no op) has to be generated that reduces performance.

VLIW Instruction Sets

VLIW architectures are formed by using many parallel,
pipelined functional units but with only a single execution
thread controlling them all. The functional units are con-
nected to a large memory and register banks using cross-
bars and/or busses. These elements are controlled by a
single instruction stream. Each instruction has fields
that control the operation of each functional unit, which
enables the VLIW processor to exploit fine-grained instruc-
tion level parallelism (ILP).

Figure 1 shows a ‘‘generic’’ VLIW computer, and Fig. 2
shows an instruction word for such a machine.

To optimize code for a VLIW machine, a compiler may
perform trace or hyperblock scheduling to identify the
parallelism needed to fill the function units. Indirect mem-
ory references, generated by array indexing and pointer
dereferencing can cause difficulties in the trace. These
memory references must be disambiguated wherever pos-
sible to generate the most parallelism.

SPECIALIZED INSTRUCTION SETS

The discussion so far has focused on instruction sets for
most general-purpose machines. Often the basic instruc-
tion set is augmented for efficient execution of special
functions.

Vector Instruction Sets

Vector architectures, such as the original Cray computers,
supplement the conventional scalar instruction set with a
vector instruction set. By using vector instructions, opera-
tions that would normally be executed in a loop are
expressed in the ISA as single instructions. In addition
to the normal fetch–decode–execute pipeline of a scalar
processor, a vector instruction uses additional vector pipe-
lines to execute the vector instructions. In a vector ins-
truction, the vector register’s set of data is pipelined
through the appropriate function unit.

Categories of vector instructions include:

� Vector–vector instructions, where all operands of the
instruction are vectors. An example is an add with
vector registers as operands and a vector register as
result.

� Vector–scalar instructions, where the content of a
scalar register is combined with each element of the
vector register. For example, a scalar value might be

Figure 2. A VLIW instruction word.

Figure 1. A generic VLIW machine.

INSTRUCTION SETS 3



multiplied by each element of a vector register and the
result stored into another vector register.

� Vector–memory instructions, where a vector is loaded
from memory or stored to memory.

� Vector reduction instructions, in which a function is
computed on a vector register to yield a single result.
Examples include finding the minimum, maximum, or
sum of values in a vector register.

� Scatter–gather instructions, in which the values of one
vector register are used to control vector load from
memory or vector store to memory. Scatter uses an
indirect addressing vector register and a base scalar
register to form an effective address. Values in a data
vector register corresponding to the indirect addres-
sing vector register are stored to the calculated effec-
tive memory addresses. Similarly, a gather uses the
indirect address register combined with a scalar base
register to form a set of effective addresses. Data from
those addresses are loaded into a vector data register.

SIMD Instruction Sets

Single instruction multiple data (SIMD) machines were
popular in the late 1980s as a means of realizing massively
parallel operations with relatively simple control.

Instruction sets for SIMD machines built in the 1980s
such as the CM-2, DAP, and MasPar MP series are con-
ceptually similar to vector instruction sets. SIMD instruc-
tions also operate on aggregate data. However, rather than
processing multiple pairs of operands through a functional
pipeline, the SIMD machine had a single instruction con-
troller directing many identical processors, each operating
in lockstep through the instruction stream. The instruc-
tions could be SS, as in the CM-2, or RR, as in the MasPar
machines. As there was just one instruction stream, only
the instruction controller could execute branch instruc-
tions. Conditional operation on the array of processors
was accomplished through contextualization, meaning
each processor had its own unique ‘‘context’’ that deter-
mined whether it executed the current instruction.

Instructions exist in a SIMD instruction set to evaluate
an expression and set the context to the result of the
expression evaluation. Thus, processors that evaluate
the expression to true will execute subsequent instructions,
whereas those that evaluate the expression to false will not.
Naturally, some instructions execute regardless of the
context value, so that ‘‘context’’ can be set and reset during
computation. SIMD instruction sets usually include reduce
instructions, as described above for vector machines. In
addition, some SIMD machines had scan instructions,
which set up variable-length vectors across the processor
array on which reduced operations could be performed.

Digital Signal Processor (DSP) Instruction Sets

The architecture of a DSP is optimized for pipelined data
flow. Many DSPs for embedded applications support only
fixed point arithmetic; others have both fixed and floating
point units; still others offer multiple fixed point units in

conjunction with the floating point processor. All of these
variations, of course, affect the instruction set of the DSP,
determining whether bits in the instruction word are
needed to specify the data type of the operands. Other
distinguishing characteristics of DSP instruction sets
include:

� A multiple-accumulate instruction (MAC), used for
inner product calculations

� Fast basic math functions, combined with a memory
access architecture optimized for matrix operations

� Low overhead loop instructions

� Addressing modes that facilitate (Fast Fourier
Transform)-like memory access

� Addressing modes that facilitate table look-up.

Configurable Instruction Sets

Research into future generations of processors generalizes
the notion of support for specialized operations. New
designs call for configurable hardware to be available so
new instructions can be synthesized, loaded into the con-
figurable logic, and thus dynamically extend the processor’s
instruction set. The Xilinx Virtex2 Pro illustrates this
concept. In conjunction with a PowerPC RISC processor,
the Virtex2 Pro Integrated Circuit contains an embedded
field programmable gate array (FPGA). By designing cir-
cuits for the FPGA portion of the device, a programmer can
augment the instruction set of the RISC processor with
arbitrary functionality. Control signals to activate the
custom instructions are generated by memory-mapped
writes to a communications bus that connects the RISC
processor with the FPGA. Such architectures provide
virtually unlimited, application-dependent extensibility
to an ISA.

REPRESENTATIVE INSTRUCTION SETS

In this section, we describe six representative instruction
sets in greater detail. These are the IBM System 360, the
PDP-11 mini-computer, the Pentium (Intel Architecture—
IA-32), the PowerPC, the IA-64 Itanium, and the Cray X1
supercomputer.

The IBM System 360

The IBM System 360, introduced in April 1964 with first
delivery in April 1965, was the first of the third-generation
(integrated circuit) computers. The general acceptance of a
32-bit word and 8-bit byte comes from this machine. The
system 360 consisted of a series of models, with models 30,
40, 50, 65, and 75 being the best known. The model 20,
introduced in November 1964, had a slightly different
architecture from the others.

The 360 (any of the models) was a conventional main-
frame computer, incorporating a rich, complex instruction
set. The machine had 16 general-purpose registers (8 on the
smaller models) and 4 floating-point registers. Instructions

4 INSTRUCTION SETS



mainly had two addresses, but 0, 1, and 3 were also per-
mitted in some cases.

There are five addressing modes, using 2-, 4-, and 6-byte
instructions. Table 1 shows these five modes. The notation
in the table is (1) R1, R2, and X are general-purpose
registers selected from the available set of 16; (2) R1 is
either a data source (DS) and destination (DD) (in RR
instructions) or, DS or DD, depending on the opcodes (other
modes); (3) X is an index added to the specified storage
reference; (4) a storage reference is a standard 360 memory
reference consisting of a 4-bit base address and a 12-bit
displacement value; (5) immed(iate) data are the second
instruction data value and is the actual data value to be
used, i.e., not a register or memory reference; and (6) op1 len
and op2 len are the lengths of the of the instruction result
destination and data source, respectively (op2 len is only
needed for packed-decimal data).

Table 2 contains a list of 360 op codes along with the type
(RR, RX, RS, SI, SS) of each operation.

DEC PDP-11

The DEC PDP-11 was a third-generation computer, intro-
duced around 1970. It was a successor to the highly
successful (also) third-generation PDP-8, introduced in
1968, which was a successor to second-generation PDP
machines.

The PDP-11, and the entire PDP line, were minicompu-
ters, where minicomputer is loosely defined as a machine
with a smaller word size and memory address space, and a
slower clock rate, than cogenerational mainframe compu-
ters. The PDP-11 was a 16-bit word machine, with 8 gen-
eral-purpose registers (R0–R7), although R6 and R7 were
‘‘reserved’’ for use as the stack pointer (SP) and program
counter (PC), respectively.

Instructions required one word (16 bits) immediately
followed by one or two words used for some addressing
modes. Instructions could be single operand instructions
with a 10-bit opcode specifying the operation to be per-
formed and a 6-bit destination of the result of the operation;
or double operand instructions with a 4-bit opcode specify-
ing the operation to be performed and two 6-bit data
references for the data source and destination, respectively.

Each data reference consists of a 3-bit register subfield and
a 3-bit addressing mode subfield.

Instruction operands could be either a single byte or a
word (or words using indirection and indexing). When the
operand was a byte, the leading bit in the op code field was 1;
otherwise, that bit was 0.

There are eight addressing modes, as in Table 3. The
PDP-11 instruction set is given in Table 4.

Pentium Processor

The Intel Pentium series processor became the most pre-
valent microprocessor in the 1990s. The Pentium follows
the ISA of the 80x86 (starting with 8086). It uses advanced
techniques such as speculative and out-of-order execution,
once used only in supercomputers, to accelerate the inter-
pretation of the x86 instruction stream.

The original 8086 was a 16-bit CISC architecture, with
16-bit internal registers. Registers had fixed functions.
Segment registers were used to create an address larger
than 16 bits, so the address space was broken into 64K byte
chunks. Later members of the x86 family (starting with
the 386) were true 32-bit machines, with 32-bit registers
and a 32-bit address space. Additional instructions in the
later x86 instruction set made the register set more general
purpose.

The general format of an ‘‘Intel Architecture’’ (IA-32)
instruction is shown in Fig. 3. The instructions are a vari-
able number of bytes with optional prefixes, an opcode, an
addressing-form specifier consisting of the ModR/M and
Scale/Index/Base fields (if required), address displacement
of 0 – 4 bytes, and an immediate data field of 0 to 4 bytes.
The instruction prefixes can be used to override default
registers, operand size, and address size or to specify
certain actions on string instructions. The opcode is either
one or two bytes, although occasionally a third byte is
encoded in the next field. The ModR/M and SIB fields
have a complex encoding. In general, their purpose is to
specify registers (general purpose, base, or index), addres-
sing modes, scale factor, or additional opcode information.

Table 1. IBM System 360 Addressing Modes

addr mode byte 1 byte 2 bytes 3–4 bytes 5–6 Notes

RR opcode Rl R2 unused Rl changes
DS & DD DS unused R2 is unchanged

unused
RX opcode Rl X storage ref unused memory is base + disp. + X

DS or DD unused
unused

RS opcode Rl R2 storage ref unused Rl & R2 specify
a register rangeDS or DD DS or DD unused

unused
SI opcode immed. data storage ref unused

unused
SS opcode op1 op2 storage ref1 storage ref2

len len DD DS

Figure 3. Intel architecture instruction format.

INSTRUCTION SETS 5



Table 2. IBM System 360 Instruction Set

Command Mnemonic Type Command Mnemonic Type

Add Register AR RR Load Multiple LM RS
Add A RX Load Negative Register LNR RR
Add Halfword AH RX Load Negative Register (Long) LNDR RR
Add Logical Register ALR RR Load Negative Register (Short) LNER RR
Add Logical AL RX Load Positive Register LPR RR
Add Normalized (Long) ADR RR Load Positive Register (Long) LPDR RR
Add Normalized (Long) AD RX Load Positive Register (Short) LPER RR
Add Normalized (Short) AER RR Load PSW LPSW SI
Add Normalized (Short) AE RX Load Register (Short) LER RR
Add Packed AP SS Load (Short) LE RX
Add Unnormalized Register (Long) AWR RR Move Immediate MVI SI
Add Unnormalized (Long) AW RX Move Character MVC SS
Add Unnormalized Register (Short) AUR RR Move Numerics MVN SS
Add Unnormalized (Short) AU RX Move with Offset MVO SS
AND Register NR RR Move Zones MVZ SS
AND N RX Multiply Register MR RR
AND Immediate NI SI Multiply M RX
AND Character NO SS Multiply Halfword MH RX
Branch and Link Register BALR RR Multiply Register (Long) MDR RR
Branch and Link BAL RX Multiply (Long) MD RX
Jzirancn on Condition rtegister BCR RR Multiply Packed MP SS
Branch on Condition BC RX Multiply Register (Short) MER RR
Branch on Count Register BCTR RR Multiply (Short) ME RX
Branch on Count BCT RX OR Register OR RR
Branch on Index High BXH RS OR O RX
Branch on Index Low or Equal BXLE RS OR Immediate OI SI
Compare Register CR RR OR Character OC SS
Compare C RX Pack PACK SS
Compare Halfword CH RX Read Direct RDD SI
Compare Logical Register CLR RR Set Program Mask SPM RR
Compare Logical CL RX Set Storage Key SSK RR
Compare Logical Immediate CLI SI Set System Mask SSM SI
Compare Logical Character CLC SS Shift Left Double SLDA RS
Compare Register (Long) CDR RR Shift Left Double Logical SLDL RS
Compare (Long) CD RX Shift Left Single SLA RS
Compare Packed CP SS Shift Left Single Logical SLL RS
Compare Register (Short) CER RR Shift Right Double SRDA RS
Compare (Short) CE RX Shift Right Double Logical SRDL RS
Convert to Binary CVB RX Shift Right Single SRA RS
Convert to Decimal CVD RX Shift Right Single Logical SRL RS
Divide Register DR RR Start I/O SIO SI
Divide D RX Store ST RX
Divide Register (Long) DDR RR Store Character STC RX
Divide (Long) DD RX Store Halfword STH RX
Divide Packed DP SS Store (Long) STD RX
Divide Register (Short) DER RR Store Multiple STM RS
Divide (Short) DER RX Store (Short) STE RX
Edit ED SS Subtract Register SR RR
Edit and Mark EDMK SS Subtract S RX
Exclusive OR Register XR RR Subtract Halfword SH RX
Exclusive OR X RX Subtract Logical Register SLR RR
Exclusive OR Immediate XI SI Subtract Logical SL RX
Exclusive OR Character XC SS Subtract Normalized Register (Long) SDR RR
Execute EX RX Subtract Normalized (Long) SD RX
Halt I/O HIO SI Subtract Normalized Register (Short) SER RR
Halve Register (Long) HDR RR Subtract Normalized (Short) SE RX
Halve Register (Short) HER RR Subtract Packed SP SS
Insert Character IC RX Subtract Unnormalized Register (Long) SWR RR
Insert Storage Key ISK RR Souotract Unnormalized (Long) SW RX
Load Register LR RR Subtract Unnormalized Register (Short) SUR RR
Load L RX Subtract Unnormalized (Short) SU RX
Load Address LA RX Supervisor Call SVC RR
Load and Test LTR RR Test and Set TS SI
Load and Test (Long) LTDR RR Test Channel TCH SI

6 INSTRUCTION SETS



The register specifiers may select MMX registers. The
displacement is an address displacement. If the instruction
requires immediate data, it is found in the final byte(s) of
the instruction.

A summary of the Intel Architecture instruction
set is given in Table 5. The arithmetic instructions are
two-operand, where the operands can be two registers,
register and memory, immediate and register, or immedi-
ate and memory. The Jump instructions have several forms
depending on whether the target is in the same segment or
a different segment.

MMX Instructions. The Pentium augments the �86
instruction set with several multimedia instructions to
operate on aggregate small integers. The MMX multimedia
extensions have many SIMD-like characteristics. An
MMX instruction operates on data types ranging from 8
to 64 bits. With 8-bit operands, each instruction is similar
to a SIMD instruction in that during a single clock cycle,
multiple instances of the instruction are being executed on
different instances of data. The arithmetic instructions
PADD/PSUB and PMULLW/PMULHW operate in parallel
on either 8 bytes, four 16-bit words, or two 32-bit double
words.

The MMX instruction set includes a DSP-like MAC
instruction, PMADDWD, which does a multiply-add of four
signed 16-bit words and adds adjacent pairs of 32-bit

results. The PUNPCKL and PUNKCKH instructions
help with interleaving words, which is useful for interpola-
tion. The arithmetic instructions in the MMX instruction
set allow for saturation to avoid overflow or underflow
during calculations.

The MMX instructions use the Pentium floating
point register set, thus requiring the FP registers to be
saved and restored when multimedia instruction sequences
occur in conjunction with floating point operations.

PowerPC RISC Processor

The PowerPC (PPC) family of 32- and 64-bit processors,
jointly developed by IBM, Motorola, and Apple, follows
the RISC architecture and instruction set philosophy. In
common with other RISC processors, the PPC uses register
operands for all arithmetic and logical instructions, along
with a suite of load/store instructions to explicitly access
data from memory. A complex instruction pipeline with
multiple internal function units is used to achieve execu-
tion of more than one instruction per clock cycle.

The PPC CPU contains 32, 32-bit or 64-bit general-
purpose registers; 32, 64-bit floating point registers; a
32-bit condition register; a 32- or 64-bit link register; and
a 32- or 64-bit count register. The condition register can be
set by arithmetic/logical instructions and is used by branch
instructions. The link register is used to form an effective

Table 2. (Continued)

Command Mnemonic Type Command Mnemonic Type

Load and Test (Short) LTER RR Test I/O TIO SI
Load Complement Register LCR RR Test Under Mask TM SI
Load Complement (Long) LCDR RR Translate TR SS
Load Complement (Short) LCER RR Translate and Test TRT SS
Load Halfword LH RX Unpack UNPK SS
Load Register (Long) LDR RR Write Direct WRD SI
Load (Long) LD RX Zero and Add Packed ZAP SS

Table 3. Addressing Modes of the PDP-11

address mode Name Form Meaning

0 register Rn operand is in register n
1 indirect registera (Rn) address of operand is in register n
2 autoincrement (Rn)þ address of operand is in register n

n (Rn):¼(Rn)þ2 after operand is fetchedb

3 indirect autoincrement @(Rn)þ register n contains the address of the address
of the operand: (Rn):¼(Rn)þ2 after operand is fetched

4 autodecrement �(Rn) (Rn):¼(Rn)�2 before operand is fetchedc address
of operand is in register n

5 indirect autodecrement @�(Rn) (Rn):¼(Rn)�2 before operand is fetched register
n contains the address of the address of the Operand

6 index X(Rn) address of operand is in Xþ(Rn); address of X is in the
PC; (PC):¼(PC)þ2 after X is fetched

7 indirect index @X(Rn) Xþ(Rn) is the address of the address of the operand;
address if X is in the PC; (PC):¼(PC)þ2 after X is fetched

a‘‘Indirect’’ is also called ‘‘deferred.’’
bIf the instruction is a byte instruction and the register is not the SP or PC, (Rn):¼(Rn)+l.
cIf the instruction is a byte instruction and the register is not the SP or PC, (Rn):¼(Rn)�l.

INSTRUCTION SETS 7



address for memory access. The count register is used for
fixed iteration loops and can be automatically decremented
by checking its value within a branch instruction.

Each instruction fits into a 32-bit word. The 32-bit
instruction contains a 6-bit opcode (for register-to-register
mode), three 5-bit register operand specifiers, and 11
remaining opcode-specific modifier bits. In register-
immediate mode, only one source operand is in a register,
and the 5 bits for the second source register are concate-
nated with the 11-bit modifier field to yield a 16-bit con-
stant. Other instruction formats use a more complex
encoding, as shown below:

Reg - Reg opcode6 rd5 rs15 rs25 opex111

Reg - Imm opcode6 rd5 rs15 const16

Branch opcode6 opex16 rs15 const14 opex22

Jump opcode6 const24 opex2

Reg-reg is the register–register format used for the arith-
metic and logical instructions. Reg-Imm is the register–
immediate format in which the second operand is a 16-bit
constant. The branch format specifies a relative branch
distance in a 14-bit constant, and the Jump format uses a
24-bit constant to hold the jump or call target. ‘‘rd’’ is the
register number of the destination, ‘‘rs1’’ is the first source
operand, ‘‘rs2’’ is the second source operand register,
‘‘const’’ is a constant, and ‘‘opex1’’ and ‘‘opex2’’ are exten-
sions of the opcode. The subscript shows the number of bits
for each field.

The core PPC instruction set contains three categories of
instructions: arithmetic/logical for both fixed and floating
point, load/store for both fixed and floating point, and
branch instructions. In addition, there are specialized
instructions to control caches and synchronize memory
accesses. Arithmetic and logical operations must use either
both source operands in registers or one operand in a
register and one operand as a 16-bit constant value.
Load/store instructions access memory and can occur in
one of three addressing modes:

� Register indirect with index, where the effective
address from which to load or store is calculated by
adding rsl to rs2.

Table 4. PDP-11 instruction set contains a list of PDP-11 op codes

Command Mnemonic No. Operands Command Mnemonic No. Operands

Add ADD 2 Clear Z (¼ 0 condition) CLZ 0
Add Carry ADC 1 Clear N (> or < 0 condition) CLN 0
Add Carry Byte ADCB 1 Clear C, V, Z, and N CCC 0
Arithmetic Shift Right ASR 1 Compare CMP 2
Arithmetic Shift Right Byte ASRB 1 Compare Byte CMPB 2
Arthmetic Shift Left ASL 1 Complement COM 1
Arthmetic Shift Left Byte ASLB 1 Complement Byte COMB 1
Bi Test BIT 2 Decrement DEC 1
Bi Test Byte BITB 2 Decrement Byte DECB 1
Bi Clear BIC 2 Halt HALT 0
Bi Clear Byte BICB 2 Increment INC 1
Bi Set BIS 2 Increment Byte INCB 1
Bi Set Byte BISB 2 Jump JMP 1
Branch Not Equal Zero BNE 1 Move MOV 2
Branch Equal Zero BEQ 1 Move Byte MOVB 2
Branch if Plus BPL 1 Negate NEG 1
Branch if Minus BMI 1 Negate Byte NEGB 1
Branch on Overflow Clear BVC 1 Rotate Right ROR 1
Branch on Overflow Set BVS 1 Rotate Right Byte RORB 1
Branch on Carry Clear BCC 1 Rotate Left ROL 1
Branch on Carry Set BCS 1 Rotate Left Byte ROLB 1
Branch if Gtr than or Eq 0 BGE 1 Set C (carry condition) SEC 0
Branch if Less than 0 BLT 1 Set V (overflow condition) SEV 0
Branch if Greater than 0 BGT 1 Set Z (¼ 0 condition) SEZ 0
Branch if Less than or Eq 0 BLE 1 Set N (> or < 0 condition) SEN 0
Branch Higher BHI 1 Set C, V, Z, and N sec 0
Branch Lower or Same BLOS 1 Subtract SUB 2
Branch Higher or Same BHIS 1 Subtract Carry SBC 1
Branch Lower BLO 1 Subtract Carry Byte SBCB 1
Clear CLR 1 Swap Bytes SWAB 1
Clear Byte CLRB 1 Test TST 1
Clear C (carry condition) CLC 0 Test Byte TSTB 1
Clear V (overflow condition) CLV 0 Unconditional Branch BR 1

8 INSTRUCTION SETS



Table 5. Intel architecture instruction set summary

Command Opcode Command Opcode

ASCII Adjust after Addition AAA Load Global Descriptor Table Register LGDT
ASCII Adjust AX before Division AAD Load Pointer to GS LGS
ASCII Adjust AX after Multiply AAM Load Interrupt Descriptor Table Register LIDT
ASCII Adjust AL after Subtraction AAS Load Local Descriptor Table Register LLDT
ADD with Carry ADC Load Machine Status LMSW
Add ADD Assert LOCK Num. Signal Prefix LOCK
Logical AND AND Load String Operand LOD�

Adjust RPL Field of Selector ARPL Loop Count (with condition) LOOP�

Check Array Against Bounds BOUND Load Segment Limit LSL
Bit Scan Forward BSF Load Task Register LTR
Bit Scan Reverse BSR Move Data, Registers MOV�

Byte Swap BSWAO Unsigned Multiply MUL
Bit Test BT Two’s Complement Negation NEG
Bit Test and Complement BTC No Operation NOP
Bit Test and Reset BTR One’s Complement Negation NOT
Bit Test and Set BTS Logical Inclusive OR OR
Call Procedure (m same segment) CALL Output to Port OUT�

Call Procedure (in different segment) CALL Pop Word/Register(s) from Stack POP
Convert Byte to Word CWB Push Word/Register(s) onto Stack PUSH
Convert Doubleword to Qword CDQ Rotate thru Carry Left RCL
Clear Carry Flag CLC Rotate thru Carry Right RCR
Clear Direction Flag CLD Read from Model Specific Register RDMSR
Clear Interrupt Flag CLI Read Performance Monitormg Counters RDPMC
Clear Task-Switched Flag in CRO CLTS Read Time-Stamp Counter RDTSC
Complement Carry Flag CMC Input String REP INS
Conditional Move CMOVcc Load String REP LODS
Compare to Operands CMP Move String REP MOVS
Compare String Operands CMP[S[W/D]] Output String REP OUTS
Compare/Exchange CMPXCHG Store String [REP] STOS
Compare/Exchange 8 Bytes CMPXCHG8B Compare String REP[N][E] CMPS
CPU Identification CPUID Scan String [REP] [N][E] SCANS
Convert Word to Doubleword CWD Return from Procedure RET
Convert Word to Doubleword CWDE Rotate Left ROL
Decimal Adjust AL after Addition DAA Rotate Right ROR
Decimal Adjust AL after Subtraction DAS Resume from System Management Mode RSM
Decrement by 1 DEC Store AH into Flags SAHF
Unsigned Divide DIV Shift Arithmetic Left SAL
Make Stack Frame for Proc. ENTER Shift Arithmetic Right SAR
Halt HLT Subtract with Borrow SBB
Signed Divide IDIV Jziyte oet on Condition SETcc
Signed Multiply IMUL Store Global Descriptor Tabel Register SGTD
Input From Port IN Shift Left [Double] SHL[D]
Increment by 1 INC Shift Right [Double] SHR[D]
Input from DX Port INS Store Interrupt Descriptor Table Register SIDT
Interrupt Type n INT n Store Local Descriptor Table SLDT
Single-Step Interrupt 3 INT Store Machine Status Word SMSW
Interrupt 4 on Overflow INTO Set Carry Flag STC
Invalidate Cache INVD Set Direction Flag SDC
Invalidate TLB Entry INVLPG Set Interrupt Flag STI
Interrupt Return IRET/IRETD Store Task Register STR
Jump if Condition is Met Jcc Integer Subtract SUB
Jump on CX/ECX Zero JCXZ/JECXZ Logical Compare TEST
Unconditional Jump (same segment) JMP Undefined Instruction UD2
Load Flags into AH Register LAHF Verify a Segment for Reading VERR
Load Access Rights Byte LAR Wait WAIT
Load Pointer to DS LDS Writeback and Invalidate Data Cache WVINVD
Load Effective Address LEA Write to Model-Specific Register WRMSR
High Level Procedure Exit LEAVE Exchange and Add XCHG
Load Pointer to ES LES Table Look-up Translation XLAT[B]
Load Pointer to FS LFS Logical Exclusive OR XOR

INSTRUCTION SETS 9



� Register indirect with immediate index, in which the
effective address is calculated by adding rs1 to the
constant.

� Register indirect, in which the effective address is in
rs1.

Branch instructions also have three categories of
addressing modes:

� Immediate. The 16-bit constant is used to compute a
relative or absolute effective address.

� Link register indirect. The branch address is in the
link register.

� Count register indirect. The branch address is in the
count register.

Like the Pentium, some PowerPC models offer a SIMD-
like extended instruction set for aggregate operation on
byte (or larger) data. The extensions are variously referred
to as Altivec (Motorola) or VMX (IBM). There are 162
specialized SIMD instructions that operate on a set of 32,
128-bit registers. Each register can be used as either 16, 8-
bit registers; 8, 16-bit registers; or 4 single precision float-
ing-point registers. Unlike the Pentium, the SIMD instruc-
tion set operates on a completely different set of registers
than the normal instruction set, and thus, the general-
purpose registers do not need to be saved or restored when
SIMD instructions are executed.

IA-64 Itanium Processor

As discussed, modern microprocessors achieve perfor-
mance by executing multiple instructions in parallel. In
most cases, the parallelism is hidden from the instruction
set architecture view of the microprocessor. In contrast, the
Intel and HP Itanium processor is a 64-bit architecture
(Intel Architecture IA-64) that follows an explicitly parallel
instruction computing (EPIC) model. The EPIC model
exposes opportunities for ILP in the instruction set, allow-
ing the compiler and the underlying microarchitecture to
communicate about potentially parallel operations. This
architecture incorporates ideas from CISC, RISC, and
VLIW.

The IA-64 architecture provides a very large set of 64-bit
registers, including 128 general registers: 128, 82-bit float-
ing-point registers; and 128 application registers. In addi-
tion, there are 64, 1-bit predicate registers (called condition
registers in other architectures) and 8, 64-bit branch reg-
isters. The 1-bit registers NaT (not-a-thing) and NatVal
(not-a-thing-value) are used to signal potential exception
conditions. There is a NaT register for each general register
and a NatVal for each floating-point register. Other mis-
cellaneous registers are used for memory mapping, system
control, performance counters, and communicating with
the operating system.

The 128-bit instruction word is called a ‘‘bundle’’ and
contains three 41-bit instructions plus a 5-bit ‘‘template’’
that is used to help decode and route instructions within
the instruction pipeline. The template bits also can sig-

nal the end of a group of instructions that can be executed
in parallel. This instruction format is an outgrowth of the
VLIW architectures described above.

The 128 general registers are divided into two groups.
A set of 32 static registers is used similarly to RISC pro-
cessors. The remaining 96 registers are called ‘‘stacked’’
registers and implement a register stack that is used to
store parameters and results of procedure calls. Registers
from the stacked set are allocated with an explicit ‘‘alloc’’
instruction.

IA-64 provides instructions to rename registers, which
makes the registers appear to rotate. This mechanism is
provided for the general registers, floating-point registers,
and the predicate registers. The RRB (register rotation
base) is used to specify a register number offset. Rotate
instructions are used by the compiler to support ‘‘software
pipelining,’’ a technique whereby multiple loop iterations
execute concurrently. By rotating a set of registers, a set of
active loop iterations all refer to different registers and can
execute in parallel. The general registers 32–127, floating
point registers 32–127, and predicate registers 16–63 can
be rotated. The RRB register is used to specify an offset to
the subset of rotating registers. A reference to any register
in the range of the rotating registers is offset by the value of
the RRB. Thus, if the RRB has a current value of 15, a
reference to GR[40] would actually refer to GR[55]. The
effective register number is computed using modulo arith-
metic, so that the register values appear to rotate.

The compiler creates ‘‘instruction groups’’ of instruc-
tions that can be executed in parallel. The size of the group
is variable, with a stop bit in the template indicating the end
of a group. Often, the amount of parallelism is limited by
conditional execution (‘‘if’’ statements or ‘‘if’’ expressions in
most programming languages). The IA-64 architecture
supports parallelism through conditional execution by
using predicate bits in the instruction word: The instruc-
tion is executed only if the specified predicate bit is true.
This feature is remniscent of SIMD-style processors, with a
‘‘context’’ bit determining whether a processor executes the
instruction. Conditional branching is also provided in the
instruction set by allowing each instruction to branch based
on a different predicate register.

The IA-64 has unique instructions that allow operations
such as loads and stores to memory to be executed spec-
ulatively. A speculative operation is executed before it
would normally be executed in the sequential instruction
stream. For example, consider the instruction sequence

1. Branch conditional to 3.

2. Load from memory.

3. Other instruction.

Speculative execution of the load instruction means
that the load (instruction 2) is executed before the branch
(instruction 1) completes. A set of speculation check
instructions then determine whether the speculative load
(or store) is kept or discarded.

Similarly, suppose the instruction sequence includes a
store followed later in the instruction stream by a load. The

10 INSTRUCTION SETS



load may be executed speculatively before the store even
if the compiler cannot guarantee that the load and store
refer to different addresses. A check instruction follows
the store to determine whether the store and load refer
to the same or different addresses. If they refer to the
same address (called ‘‘aliasing’’), the speculatively loaded
value is discarded, and the most recently stored value is
used. If they refer to distinct locations, the loaded value is
immediately available in the register for use by other
instructions.

Speculative operations cause the CPU to perform addi-
tional work. However, if they enable the CPU to not wait
when values are needed, they improve execution rates. In
some cases, however, speculative operations may cause
exception conditions that, under normal sequential opera-
tion, would not have occurred. For example, if a load were
performed speculatively before a branch, and the address to
be loaded were illegal, then a true exception should not be
raised because the load may never be executed. The NaT
and NatVal registers record exceptions that occur during
speculative execution. If the speculative operation is
retained, an exception is raised; otherwise, the speculative
operation is aborted.

Another unique aspect of the IA-64 architecture is the
ability to emulate other instruction sets. There are special
instructions in the instruction set to direct the IA-64 to
operate in IA-32 mode, and an IA-32 instruction to return to
IA-64 mode. The application register set is used to facilitate
emulation of other instruction set architectures.

Although it is not feasible to include the entire IA-64
instruction set in a summary article, the core set of IA-64
instructions1 are as follows:

� Load/store, memory operations.

� Logical, compare, shift, arithmetic operations.

� Aggregate operations on small integers, similar to the
MMX (see above or Altivec).

� Floating-point operations, both simple and aggregate.

� Branch operations, including multiway branches and
loop control branches.

� Cache management operations.

Cray X1 Computer

The Cray X1 was announced in November 2002, although
five early production systems had already been shipped.
The X1 combines vector processing (from the Cray C90, T90,
and SV1) and massively parallel processing (MPP, from the
Cray T3D and T3E) into a single unified architecture.

A single stream processor (SSP) is a RISC processor,
consisting of a superscalar processing unit and a two-pipe
vector processing unit, which is the basic component of the
system. Four SSPs are combined to form a multistream
processor (MSP). Four MSPs form a node. Cache memory is
fully shared by the four SSPs in an MSP; memory is fully
shared by the four MSPs of a node.

A maximum of 1024 nodes can be joined in a X1 system. A
hypercube network combines nodes into groups of 128. A
three-dimensional-torus network connects the hypercubes
to form a global shared nonuniform memory access
(NUMA) machine.

The X1 has two execution modes. In SSP mode, each SSP
runs independently of the others, executing its instruction
stream. In MSP mode, the MSP automatically distributes
parallel parts of multistreaming applications to its SSPs.
SSPs support vectorization; MMPs support multistream-
ing. The entire system support both the distributed (MPI,
shmem) and the shared memory (UPC, coarray FORTRAN)
parallel paradigms.

Table 6 shows the register types for the Cray X1
processors.

Although both the address and the scalar registers are
general purpose and can be used for memory reference
instructions, immediate loads, integer functions, and con-
ditional branches, they each have specific uses as well. The
address registers must be used for memory base addresses,

Table 6. Cray X1 Register Types

register type designator number size in bits comment

address a 64 64-bits general purpose
scalar s 64 64-bits general purpose
vector V 31 32- or 64-bits max. 64 elements in each
vector length vl 1 max. elements a vector

register can hold
mask m 8 varies control vector ops on per-element basis;

only first four used in instuctions
vector carry vc 1 varies used w/64-bit vector add w/carry and

subtract w/borrow inst.
bit matrix mult. bmm 1 64 x 64-bit loaded from a vector register
control c 64 mostly kernel mode; only

cO–c4, c28–c31 are user accessible
program counter pc 1 64-bit byte addr. of next instruction to fetch;

invisible to user but content referenced in
some instruction descriptions

performance ctrs 32 64-bits accessible via c31

1Most of these instructions can be predicated.

INSTRUCTION SETS 11



indirect jump addresses and returns, vector element index-
ing, vector length computations for the vector length reg-
ister, reading and writing the vector length register and
control registers, receiving results of mask analysis
instructions [first(), last(), pop()], supplying the span for
vector span() and cidx(), and 8- and 16-bit accesses. The
scalar registers must be used for scalar bit matrix multi-
plications, floating-point operations, and scalar operands to
vector operations.

The Cray X1 has fixed 32-bit instructions. All instruc-
tions (other than branch instructions) have six fields,
although all fields may not be used by all instructions.
The instruction format is shown in Fig. 4.

The g-field opcode is more of a general class such as ‘‘a-
register integer instructions,’’ ‘‘a-register halfword instruc-
tions,’’ and ‘‘s-register logical instructions’’. The f-field
opcode, when used, specifies the specific instruction in
the general class such as ‘‘a-register integer add’’ and ‘‘a-
register integer subtract’’. The source and destination
fields, i, j, and k, can be any of the address, scalar, or vector
registers or, when appropriate, a mask register. Addition-
ally, the source may also be an ‘‘immediate’’ value. Immedi-
ates can be 6 bits, 8 bits (using the t-field), or 16 bits (using
the t- and f-fields plus 2 bits from the j-field). The t-field is
used for various flags; for example, ‘‘11’’ is used in register
logical oprations to indicate that the second source operand
is a register (rather than ‘‘immediate’’) and ‘‘01’’ and ‘‘00’’
are used to flag ‘‘64-bit’’ and ‘‘32-bit’’, respectively, in reg-
ister move and conversion operations.

Branch instructions use only three fields: g, i, and k. The
g-field contains the opcode, the i-field contains the location
of the value to be tested for the condition, and the k-field is
an immediate of 20 bits, which when combined with the
program counter, yields the branch address.

The Cray X1 has a rich ISA for scalar and vector instruc-
tions. An overview of the vector instructions is given here.

The vector instruction set is too rich to be included here..
The vector instruction set is organized into five

categories:

� Elemental vector operations

� Vector memory references

� Elemental vector functions

� Mask operations

� Other vector instructions

The elemental vector operations are vector versions of
most scalar integer and floating-point functions and mem-
ory references. These operations process each vector ele-
ment independently, under control of a mask register and
the vector length register. The semantics of these operations
is similar toa loop stepping througheachelement of a vector.

Vector registers are loaded and stored from a sequence of
properly aligned byte addresses. The address sequence is

computed from a base address register and either a scalar
stride value or a vector of 64-bit offset values. The five vector
memory reference instructions are strided load, strided
store, gather, and two scatters, one with distinct offsets
and one with arbitrary offsets.

The elemental vector functions include arithmetic
operations, bitwise operations (and, or, etc.), logical
left shift, logical right shift, and arithmetic right
shift, several floating point to integer convert instruc-
tions, compare instructions ([not] equal, [not] less than,
[not] greater than), merge, square root, leading zero
count, population count, bit matrix multiply, and
arithment absolute value. Most of these operations
permit a scalar register, in place of a vector register, for
one data source.

Mask operations operate directly on mask registers to
set values and otherwise manipulate these registers.
Instructions include bitwise operations (and, xor, etc.),
set leading n bits, clear remainder, find lowest/high-
est set bit index, and count number of bits set, among
others. Any mask register can be used in the mask opera-
tion instructions, but only the first four, m0–m3, can be
used in vector instructions.

The other vector operations category contains those
instructions that do not fit easily into the other four cate-
gories. These are set vector length, retrieve vector
length, read vector element, write vector element,
load bit matrix, and declare vector state dead. This
last instruction undefines all vector registers, the vector
carry register vc, and the mask registers. Mask register m0
remains defined if it has all of its bits set; otherwise, it too
becomes undefined.

FURTHER READING

N. Chapin, 360 Programming in Assembly Language, New York:
McGraw-Hill, 1968.

Cray XI System Overview, S-2346-22.

Cray Assembly Language (CAL) for the Cray XI Systems Reference
Manual, S-2314-50.

J.R. Ellis, Bulldog: A Compiler for VLIW Architectures, Cambridge,
MA: The MIT Press, 1986.

A. Gill, Machine and Assembly Language Programming of the
PDP-11, Englewood Cliffs, NJ: Prentice-Hall, 1978.

J. Huck, Introducing the IA-64 Architecture, IEEE Micro, 20(5):
12–23, 2000.

K. Hwang, Advanced Computer Architecture, New York: McGraw
Hill, 1993.

David Patterson and John Hennessy, Computer Organization and
Design (2nd ed.). The Hardware/Software Interface. San Mateo,
CA: Morgan Kaufmann, 1997.

MAYA B. GOKHALE

Lawrence Livermore National
Laboratory

Livermore, California

JUDITH D. SCHLESINGER

IDA Center for Computing
Science

Bowie, Maryland

Figure 4. Cray XI instruction format.

12 INSTRUCTION SETS



I

INTERCONNECTION NETWORKS
FOR PARALLEL COMPUTERS

The interconnection network is responsible for fast and
reliable communication among the processing nodes in any
parallel computer. The demands on the network depend on
the parallel computer architecture in which the network is
used. Two main parallel computer architectures exist (1).
In the physically shared-memory parallel computer, N
processors access M memory modules over an interconnec-
tion network as depicted in Fig. 1(a). In the physically
distributed-memory parallel computer, a processor and a
memory module form a processor–memory pair that is
called processing element (PE). All N PEs are intercon-
nected via an interconnection network as depicted in Fig.
1(b). In a message-passing system, PEs communicate by
sending and receiving single messages (2), while in a dis-
tributed-shared-memory system, the distributed PE mem-
ory modules act as a single shared address space in which a
processor can access any memory cell (3). This cell will
either be in the memory module local to the processor, or be
in a different PE that has to be accessed over the inter-
connection network.

Parallel computers can be further divided into SIMD
and MIMD machines. In single-instruction-stream multi-
ple-data-stream (SIMD) parallel computers (4), each pro-
cessor executes the same instruction stream, which is
distributed to all processors from a single control unit.
All processors operate synchronously and will also generate
messages to be transferred over the network synchro-
nously. Thus, the network in SIMD machines has to sup-
port synchronous data transfers. In a multiple-instruction-
stream multiple-data-stream (MIMD) parallel computer
(5), all processors operate asynchronously on their own
instruction streams. The network in MIMD machines
therefore has to support asynchronous data transfers.

The interconnection network is an essential part of any
parallel computer. Only if fast and reliable communication
over the network is guaranteed will the parallel system
exhibit high performance. Many different interconnection
networks for parallel computers have been proposed (6).

One characteristic of a network is its topology. In this
article we consider only point-to-point (non-bus-based) net-
works in which each network link is connected to only two
devices. These networks can be divided into two classes:
direct and indirect networks. In direct networks, each
switch has a direct link to a processing node or is simply
incorporated directly into the processing node. In indirect
networks, this one-to-one correspondence between swit-
ches and nodes need not exist, and many switches in the
network may be attached only to other switches. Direct and
indirect network topologies are discussed in the following
section.

The mechanism to transfer a message through a net-
work is called switching. A section below is devoted to
switching techniques. Switching does not take into con-
sideration the actual route that a message will take
through a network. This mechanism is termed routing,
and will be discussed in turn. In indirect networks, active
switch boxes are used to transfer messages. Switch box
architectures are discussed in a final section.

NETWORK TOPOLOGIES

Direct Networks

Direct networks consist of physical interconnection links
that connect the nodes (typically PEs) in a parallel compu-
ter. Each node is connected to one or more of those inter-
connection links. Because the network consists of links
only, routing decisions have to be made in the nodes. In
many systems, dedicated router (switch) hardware is used
in each node to select one of the interconnection links to
send a message to its destination. Because a node is nor-
mally not directly connected to all other nodes in the
parallel computer, a message transfer from a source to a
destination node may require several steps through inter-
mediate nodes to reach its destination node. These steps are
called hops.

Two topology parameters that characterize direct net-
works are the degree and the network diameter. The degree
G of a node is defined as the number of interconnection links
to which a node is connected. Herein, we generally assume
that direct network links are bidirectional, although this
need not always be the case. Networks in which all nodes
have the same degree n are called n-regular networks. The
network diameter F is the maximum distance between two
nodes in a network. This is equal to the maximum number
of hops that a message needs to be transferred from any
source to any destination node. The degree relates the
network topology to its hardware requirements (number
of links per node), while the diameter is related to the
transfer delay of a message (number of hops through the
network). The two parameters depend on each other. In
most direct network, a higher degree implies a smaller
diameter because with increasing degree, a node is con-
nected to more other nodes, so that the maximum distance
between two nodes will decrease.

Many different direct network topologies have been
proposed. In the following, only the basic topologies are
studied. Further discussion of other topologies can be found
in Refs. 7–9.

In a ring network connecting N nodes, each node is
connected to only two neighbors (G¼2), with PE i connected
to PEs i� 1 mod N and iþ 1 mod N. However, the network
has a large diameter of F ¼ bN/2c (assuming bidirectional
links). Thus, global communication performance in a ring
network will decrease with increasing number of nodes.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



A direct network quite commonly used in parallel com-
puters is the mesh network. In a two-dimensional mesh, the
nodes are configured in an MX�MY grid (with MX nodes in
the X direction and MY nodes in the Y direction), and an
internal node is connected to its nearest neighbors in the
north, south, east, and west directions. Each border node is
connected to its nearest neighbors only. A 4 � 4 two-
dimensional mesh connecting 16 nodes is depicted in Fig.
2(a). Because of the mesh edges, nodes have different
degrees. In Fig. 2(a), the internal nodes have degree G ¼
4, while edge nodes have degree G ¼ 3 and G ¼ 2 (for the
corner nodes). Because the edge nodes have a lower degree
than internal nodes, the (relatively large) diameter of a two-
dimensional mesh is F ¼ (MX � 1) þ (MY � 1).

To decrease the network diameter, the degree of the edge
nodes can be increased to G ¼ 4 by adding edge links. The
topology of a two-dimensional torus network is created by
connecting the edge nodes in columns and rows, as depicted
in Fig. 2(b). All nodes of this two-dimensional torus network
have degree G¼4, and the network diameter is reduced to F

¼ bMX/2c þ bMY/2c.
The disadvantage of two-dimensional mesh networks is

their large diameter, which results in message transfers
over many hops during global communication, especially in
larger networks. To further reduce the diameter, higher-
dimensional meshes can be used. Figure 3(a) depicts a
three-dimensional mesh with open edge connections con-
necting 27 nodes. Internal nodes have degree G ¼ 6, while
edge nodes have degree of G ¼ 5, G¼ 4, or G¼ 3, depending
on their position. The network diameter is equal to F ¼
(MX � 1) þ (MY � 1) þ (MZ � 1), with Mi equal to the
number of nodes in the i direction. This diameter can be
further reduced if edge connections are added.

In a hypercube network that connects N nodes, each node
has degree G ¼ n ¼ log2N, where n is called the hypercube
dimension (8). Each link corresponds to a cube function
(10). The cubek function on an address (node number)
complements the kth bit of that address. To describe the
hypercube topology, the Hamming distance H can be used.
The Hamming distance H between two binary numbers is
defined in Ref. 11 as the number of bits in which the two
numbers differ. Thus, two nodes are directly connected in a
hypercube if their Hamming distance is H ¼ 1 (the node
numbers differ in exactly one bit). The number of hops that
a message will take through the network is therefore equal
to the Hamming distance between its source and destina-
tion addresses. In Fig. 3(b), a four-dimensional hypercube
that connects 16 nodes is depicted. The diameter of a
hypercube network is F ¼ n, because in the worst case, a
source and a destination address of a message can differ in
all n bits, so that all n cube functions have to be executed in
order to transfer that message.

One disadvantage of a hypercube network concerns
scalability. To increase the number of nodes a hypercube
can interconnect, the degree of each node has to be incre-
mented by at least one. Thus, to obtain the next larger
hypercube, the number of nodes has to be doubled. To
alleviate this scalability problem, incomplete hypercubes

Figure 1. (a) Physically shared-memory and (b) distributed-
memory parallel computer architecture.

Figure 2. (a) Two-dimensional mesh network connecting 16 nodes, (b) torus network connecting 16 nodes. Because of the edge connections,
the torus network has a uniform degree of four, while nodes in the mesh network have different degrees, depending on their location.

2 INTERCONNECTION NETWORKS FOR PARALLEL COMPUTERS



were introduced, in which any number of nodes can be
interconnected (12).

To relate the different direct network topologies, the
k-ary n-cube classification was introduced (13). A k-aryn-
cube network connects N¼ kn nodes, where n is equal to the
number of different dimensions the network consists of,
while k is the network radix, which is equal to the number of
nodes in each dimension. For example, a k-ary 1-cube is
equivalent to a k-node ring network, a k-ary 2-cube is
equivalent to a k2-node torus network, and a 2-ary
n-cube is equivalent to a 2n-node n-dimensional hypercube.
Figure 3(a) depicts a 3-ary 3-cube (assuming appropriate
edge connections not shown in the figure), and Fig. 3(b) a
2-ary 4-cube. The diameter (F ) is n � bk/2c.

Indirect Networks

In indirect networks, each processing node is connected to a
network of switches over one or more (often bidirectional)

links. Typically, this network consists of one or more stages
of switch boxes; a network stage is connected to its succes-
sor and predecessor stage via a set of interconnection links.
Depending on the number of stages, the number of switch
boxes per stage, and the interstage interconnection topol-
ogy, indirect networks provide exactly one path (single-
path networks) or multiple paths (multipath networks)
from each source to each destination.

Many different indirect network topologies have been
proposed. This section is a brief introduction to multistage
cube and fat-tree networks. Further discussion of these and
other topologies can be found in Refs. 14–17.

One important indirect single-path network topology is
the generalized-cube network topology (10), based on the
cube interconnection function. A generalized-cube network
that connects N ¼ 2n sources with N destinations consists
of s ¼ logB N stages of B � B switch boxes. The stages are
numbered from s � 1 (stage next to the sources) to 0 (stage
next to the destination). Each stage consists of N/B switch
boxes; two consecutive stages are connected via N inter-
connection links. In Fig. 4(a), an 8 � 8 generalized-cube
network comprising 2 � 2 switch boxes is shown, while
Fig. 4(b) depicts a 16 � 16 generalized-cube network with
4 � 4 switches.

Consider the link labeling depicted in Fig. 4(a). The
labels at the input (and output) side of each switch box
differ in exactly one bit, which is bit k in stage k. Thus, if a
message is routed straight through a switch box, its link
number is not changed. If a message goes from the upper
input to the lower output (or from the lower input to the
upper output) at stage k, it moves to an output link that
differs in bit k (the cubek operation transforms the link
number). Each stage corresponds to a specific cube func-
tion, and all n cube-functions can be applied to a message on
its way through the network.

A simple distributed routing algorithm can be used to
transfer messages through the network. As routing infor-
mation, each message header contains its destination
address (destination-tag routing). If a message enters a
switch box in stage k, this switch box will examine the kth
bit of the message destination address. This bit determines
the switch box output port to which the message is destined.
If the bit is 0, the message is destined to the upper output
port; if it is 1 to the lower output port. This scheme can be
easily extended to B�B switch boxes, using the kth digit of
the radix B representation of the destination address to
select one of the B switch output links.

In shared memory parallel computers, many messages
are requests for memory data, which results in reply mes-
sages that send data back to the original source. Thus, a
read request sent through the network to the memory has
to include the destination address (memory address) and
also the source address (the node number to with the data is
to be sent back). Thus, when destination-tag routing is
used, the source address has to be added to the message
header. This overhead can be avoided by using the XOR-
routing algorithm. During XOR routing, an n-bit routing
tag T that is formed by XOR-ing the source and the destina-
tion address (T ¼ S � D) is added to each message as a
message header. If a message enters a switch box in stage k,
this switch box will examine the kth bit of the message

Figure 3. (a) Three-dimensional mesh connecting 27 nodes, (b)
four-dimensional hypercube network connecting 16 nodes. In
hypercube networks, the nodes that are directly connected have
a Hamming distance of H ¼ 1.

INTERCONNECTION NETWORKS FOR PARALLEL COMPUTERS 3



routing tag T. If this bit is 0 (the corresponding source
address bit is equal to the destination address bit), the
message will be routed straight through that switch box
(e.g., if it arrived at the upper input, it will be routed to the
upper output). If the routing bit is 1, the switch will be set to
exchange (e.g., if the message arrived at the upper input, it
will be routed to the lower output). Once a message has
arrived at its destination, the destination can determine
the message’s source address by XORing its own address
with the message’s routing tag T. XOR routing works in

networks comprising 2 � 2 switch boxes only. A similar
scheme can be used in hypercube networks.

Many different single-path multistage networks have
been proposed in the literature, among them the SW-ban-
yan, omega, indirect binary n-cube, delta, baseline, butter-
fly, and multistage shuffle-exchange networks. In Ref. 10 it
was shown (by reordering switches and/or renumbering
links) that instances of these networks are typically equiva-
lent to the generalized-cube network topology.

A generalized topology of a multipath indirect network is
the three-stage network. This network consists of three
stages of switches. Each switch box in the first and third
network stages is connected to all switches in the network
middle stage. A 16�16 multipath network comprising 4�4
switches is depicted in Fig. 5. The number of switches in the
middle stage determines the number of distinct paths from
each source to each destination (in Fig. 5, there are four
distinct paths between any source and destination).

Another multipath indirect network topology that is
used in parallel computers is the fat-tree network (18).
The binary fat-tree network has the topology of a binary
tree in which the leaves are connected to the processing
elements and the root and intermediate tree nodes are
switch boxes. All interconnection links are bidirectional.
Unlike in an ordinary tree, the number of links between
internal tree nodes is increasing when ascending the tree
from the leaves to its root. Figure 6(a) depicts a binary fat-
tree network that interconnects eight nodes. A cluster of
processors is connected to the same switch box in the lowest
switch level of the network (the switch level closest to the
processors). This network provides only a single path that
connects processors within a cluster. For all other connec-
tions, there exist multiple paths. To route a message
between two nodes, the message first ascends in the net-
work, rising to the lowest common ancestor of the source
and destination, and then descends to the destination. This
indirect topology thus rewards local communication by
providing shorter paths between nearer nodes.

A different network topology that is similar to a fat tree
is shown in Fig. 6(b). As in the binary fat-tree network, only
a single path connects two processors within a cluster.
However, each switch box on the lower switch level is
connected to all switches on the next higher level. Thus,
the number of switches in the higher switch level deter-
mines the number of different paths between two proces-
sors in different processor clusters. More switch levels can
be added to the network, which will increase the number of
distinct paths among processors in different clusters. How-
ever, with each switch level, the message transfer delay will
increase, because more switches have to be traversed by a
message if the message is routed through higher switch
levels.

SWITCHING TECHNIQUES

The mechanism to transfer a message through a network is
called switching. Switching does not take into considera-
tion the actual route that a message will take through a
network (this mechanism is termed routing and will be
discussed in the next section). The four fundamental and

Figure 4. (a) 8 � 8 generalized-cube network comprising 2 � 2
switch boxes, (b) 16� 16 generalized-cube network comprising 4�
4 switch boxes. The link labels at the input (and output) side of each
switch box in (a) differ in exactly one bit (bit k in stage k).

4 INTERCONNECTION NETWORKS FOR PARALLEL COMPUTERS



most-used switching techniques in interconnection net-
works are circuit switching, packet switching, wormhole
routing, and virtual cut-through.

In a circuit-switched network, a complete connection
through the network (from the source to the destination)
is established before any data are sent. Network resources
such as network links and switch ports are exclusively
reserved for this connection. Once the connection is estab-
lished, data are sent over the reserved network links and
ports. After all data are sent, the established connection is
disconnected to free the reserved resources for new con-
nections. The connection establishment and disconnection
can either be controlled centrally through a central net-
work controller, or decentralized through messages that
are sent through the network during connection establish-
ment and disconnection. If a connection cannot be estab-
lished because needed network resources are unavailable,
the connection is refused (data cannot be transmitted) and
the source has to try to establish the connection again.

In a packet-switched network, a message is divided into
one or more data packets and routing information is added
to each packet. These packets are sent through the network

without the establishment of an overall connection between
the source and destination. Network resources are reserved
only when needed by a packet. Thus, network resources
forming the path of a given packet that are not occupied by
the given packet can be used to transfer other packets while
the given packet is still in the network. This is impossible
under circuit switching. The packet-switching technique is
also called store-and-forward packet-switching, because a
packet will be forwarded to the next node only if it was
completely received by the current node. Therefore, nodes
need enough space to buffer at least one complete packet. If
a network resource such as a node’s output port that a
packet needs to use is unavailable (used by another mes-
sage), the packet waits in its buffer within the node until the
resource becomes available.

Wormhole routing is a switching technique similar to
packet switching and is currently most often used in direct
networks. In a wormhole-routed network, a message is
divided into several flow-control digits (flits) (19). The first
flit of a message (header flit) contains the message’s routing
information, and the last flit (tail flit) indicates its end. A
message will be sent, flit by flit, in a pipelined fashion

Figure 5. 16 � 16 three-stage multipath indirect network comprising 4 � 4 switch boxes. This network provides four link-disjoint paths
from any source to any destination.

Figure 6. (a) Binary fat-tree network and (b) generalized fat-tree network connecting eight processors. This topology results in fast local
communication, while the performance of global communication depends on the network size.

INTERCONNECTION NETWORKS FOR PARALLEL COMPUTERS 5



through the network. The header flit will reserve network
resources exclusively for its message, and the tail flit will
release each resource after it has passed it. Thus, the
message will traverse a network like a worm through a
hole. Depending on the message length (number of flits)
and the length of the path the message takes through the
network (number of intermediate nodes), the tail flit will be
submitted to the network either while the head is still in the
network, or when part of the message is already received by
the destination.

If a header flit cannot acquire a network resource (e.g.,
an output port of an intermediate node), it has to be
temporarily buffered in that node (normally at the input
port of that node). This will stop the worm from advancing
through the network. To minimize the network hardware,
normally each input port of a node has the capability of
buffering one or two flits only. Therefore, once a worm has
stopped advancing through the network, each flit of the
worm will wait in the node it currently resides in, without
releasing any network resources. Thus, while a worm is
blocked in a network, it will block the corresponding net-
work resources from being used by other messages. This
can result in deadlocks within the network, and the routing
algorithm used in the network has to handle those situa-
tions (see the next section).

The virtual-cut-through (VCT) switching technique
combines characteristics of store-and-forward packet
switching and wormhole routing. Each data packet is
divided into flits again and sent through the network, as
is done during wormhole routing. However, each node has
the capability to buffer a whole packet. If a flit reaches an
empty node buffer and is not blocked, it will either be
directly routed through the node or be buffered in that
buffer for one flit cycle and then routed through the node
(depending on the implementation). If a message is blocked
and cannot be forwarded to the next node, all the flits of that
message will be received one by one and buffered in that
blocked node. Thus, under a light network load, VCT
behaves similarly to wormhole routing. Under heavier
loads, when blocking occurs more frequently, the message

worm will be completely buffered in the blocked node,
similarly to store-and-forward packet switching. This
way, the message does not block resources of several nodes
and will therefore block fewer messages in the network.

In Fig. 7, the data transport from a source to a destina-
tion through an intermediate node over time is shown for a
circuit-switching, a store-and-forward packet-switching,
and a wormhole-routing network (in the circuit-switching
example, line propagation delays are neglected). It can be
seen that circuit-switching and wormhole-routing net-
works behave similarly over time, while the packet trans-
mission in a store-and-forward packet-switching network
takes longer. As long as the header and tail parts of a
message are much shorter than the message itself, the
transmission time for a message in a wormhole-routing
and circuit-switching network is virtually independent of
the length of the path the message has to take through the
network. Pipelining of the message bits or flits on the
network interconnection links can further reduce the
transmission time. On the contrary, in a store-and-forward
packet-switching network, the transmission time of a mes-
sage is proportional to the length of the path through the
network. This has to be weighted against the fact that
blocked messages will normally block fewer other messages
in a store-and-forward packet-switching network than in a
wormhole-routing network, while in a circuit-switching
network, connections might be refused due to internal
blocking. As noted earlier, the behavior of virtual cut-
through depends on the network load.

The main disadvantage of wormhole-routing networks
is that a blocked message may spread over several nodes in
the network and will then block several network links,
which become unavailable for other messages. As an
example, consider Fig. 8(a). Two interconnected wormhole
switches are shown that have a flit buffer at each input port.
Assume that a message is currently routed through switch
2 from port D to port E. This message blocks another
message that enters switch 1 at port A, which is destined
to port E as well. The head flit will wait in the flit buffer at
input port C. However, this message blocks a third message

Figure 7. Data transport through an intermediate node in (a) a circuit-switching network, (b) a store-and-forward packet-switching
network, and (c) a wormhole- routing network. Circuit switching and wormhole routing result in a shorter message transmission time, while
packet-switching networks tend to have fewer message blockings.

6 INTERCONNECTION NETWORKS FOR PARALLEL COMPUTERS



entering switch 1 at port B that is destined to port F. In this
example, two messages are blocked because port E is cur-
rently unavailable.

To alleviate this problem, virtual channels were intro-
duced (20). As depicted in Fig. 8(b) each switch now has two
parallel flit buffers per input port, resulting in two virtual
channels that are multiplexed over one physical intercon-
nection link. In this case, the message entering switch 1 at
input port A is still blocked at input port C because it is
destined to the busy output port E. However, the third
message is able to use the second virtual channel at input
port C, so that it can proceed to the idle output port F.

The concept of virtual channels enhances the perfor-
mance of wormhole-routing networks substantially, espe-
cially when the data traffic consists of a mixture of short and
long messages. Without virtual channels, long messages
can block short messages for quite some time. However,
short messages often result from time-critical operations
such as synchronization, so that a short latency is crucial
for those messages. Because message latency also includes
blocking time, virtual channels result in a decreased
latency because there is less message blocking in the net-
work.

ROUTING TECHNIQUES FOR DIRECT NETWORKS

The network mechanism that selects certain network
resources (e.g., a specific output port of a switch) in order
to transfer a message from a source to a destination is
termed routing. Routing can either be done through a
centralized network controller, or, as it is most often the
case, decentralized in the individual network switches.

Routing algorithms can be either deterministic or adap-
tive. During deterministic routing, the path to be taken
through the network is determined by the source and
destination addresses only. The network load and the
availability of network resources do not influence the rout-
ing of a message. Adaptive routing protocols take the
availability of network links into account as well. To sup-
port adaptive routing, multiple paths between a source and
a destination have to be present in the network.

Routing deadlock occurs when a set of messages has a
cyclic dependency on resources (buffers or links). Because
of the problem of deadlocks in direct networks, most routing
algorithms have been proposed for direct networks to avoid

deadlock situations. This section therefore focuses on rout-
ing algorithms for direct networks, and only a few basic
algorithms are outlined here. Basic routing algorithms for
indirect networks are covered in the subsection ‘‘Indirect
Networks’’ of the section on ‘‘Network Topologies’’ above.

Deterministic Routing

The most common deterministic routing strategy used in
direct networks is dimension-order routing in which a
message traverses the network by successively traveling
over an ordered set of dimensions of path. Two examples of
dimension-ordered routine are XY routing and e-cube
routing.

The XY routing algorithm used for mesh networks
routes a message always in the X direction first. Once it
has reached its destination column, the message will be
routed in the Y direction (of course, this method also works
if messages are routed in the Y direction first and then in
the X direction). This routing strategy results in deadlock-
free message delivery because cyclic dependences cannot
occur (21). Consider the mesh network in Fig. 9(a), and
assume XY routing (X dimension first, then Y dimension). A
message from source 2 destined to node 7 will be routed
through the intermediate nodes 1 and 4 as shown in the
figure. If one of the network links on that path is blocked
(e.g., the link between nodes 4 and 7), the message is
blocked as well. An alternative path of the same length
exists through nodes 5 and 8, but this path cannot be taken
because of the XY routing algorithm. Thus, on the one
hand, XY routing restricts the number of paths a message
can take (and therefore increases the possibility of message

Figure 9. (a) XY routing in a mesh with N¼9, (b) e-cube routing in
a hypercube with N ¼ 8. Messages are routed in a dimension-
ordered fashion.

Figure 8. (a) Conventional wormhole-routing network, (b) wormhole-routing network with virtual channels. The virtual channels enhance
the network performance substantially because fewer messages are blocked.

INTERCONNECTION NETWORKS FOR PARALLEL COMPUTERS 7



blocking), but, on the other hand, guarantees deadlock
freedom in the network (for a detailed explanation, see
Ref. 19).

Similarly to the XY routing strategy in mesh networks, a
message in a hypercube network under the e-cube algo-
rithm will always traverse the dimensions of the network in
the same order (e.g., cube0, then cube1, then cube2, . . .). In
Fig. 9(b), the transfer of a message from source node 1 to
destination node 6 (over intermediate nodes 0 and 2) is
shown in a hypercube with N ¼ 8 using the e-cube algo-
rithm. If a network resource on this path is blocked, the
message has to wait, even though alternative paths exist
(e.g., over intermediate nodes 5 and 7). However, cyclic
dependences cannot occur when the e-cube algorithm is
used, so that deadlocks are avoided [for a detailed explana-
tion, see (21)].

The e-cube algorithm, initially proposed for hypercube
networks, can be generalized for k-ary n-cubes (21). The
original e-cube algorithm cannot guarantee deadlock free-
dom in these networks because of inherent cycles due to the
wrap-around edge connections (see the subsection ‘‘Direct
Networks’’ under ‘‘Network Topologies’’ above). Thus, in
order to avoid deadlocks, the routing algorithm is not
allowed to used certain edge connections. This results in
some message paths that are longer than in the network
with unrestricted routing, but deadlock freedom is guar-
anteed.

Adaptive Routing

Adaptive routing protocols can be characterized by three
independent criteria: progressive versus backtracking,
profitable versus misrouting, and complete versus partial
adaptation (22).

Once a routing decision is made in a progressive protocol,
it cannot be reversed. The path has to be taken even if the
message might end up being blocked. In a backtracking
protocol, routing decisions can be reversed if they lead to
the blocking of a message. Thus, if a message reaches a
blocked network resource (e.g., a temporarily unavailable
network link), the message will track back its path taken so
far to try to find an alternative route that is not blocked.
This method is mainly used in circuit-switching or packet-
switching direct networks with bidirectional links between
nodes that enable the backtracking. Backtracking protocols
are not well suited for wormhole-routing networks, because
a message can be spread over several nodes, which makes it
difficult to backtrack the worm.

A profitable protocol (also called minimal routing pro-
tocol) will always choose a network resource (e.g., a node
output) that guides the message closer to its destination. If
a message encounters a blocked link, it can only use other
links that result in the same path length through the
network. If those links are blocked as well, the message
has to wait. This results in a minimal length of the path a
message will take through a network. This routing restric-
tion is omitted in misrouting protocols (also called nonmi-
nimal routing protocols) so that a misroute is preferred over
message blocking. Thus, the length of the path a message
will take can be longer than the minimum path from the
source to its destination.

The two above-mentioned criteria define classes of paths
that the routing algorithm can choose from. Completely
adaptive routing protocols can use any path out of a class,
while partially adaptive ones can only use a subset of those
paths (to avoid deadlock situations). Examples of a pro-
gressive and a backtracking completely adaptive routing
protocol are now given.

A very simple adaptive progressive routing protocol with
a profitable path choice is the idle algorithm. It is based on a
deterministic routing scheme (e.g., XY or e-cube routing). If
the deterministic routing scheme encounters a blocked
node output port, the adaptive protocol will choose a dif-
ferent output port that will bring the message closer to its
destination. This way, a message either reaches its desti-
nation or is blocked when no other output port is available
that would bring the message closer to its destination. The
resulting path will always be of minimal length, and the
network performance will be increased over the determi-
nistic routing scheme because a message is allowed to take
alternative paths. However, this routing protocol is not
deadlock-free. Thus, if a deadlock occurs, it has to be
detected by the routing algorithm (e.g., through timeouts)
and dissolved. Each occurring deadlock will decrease the
network performance, though, so that it is more efficient to
use an adaptive routing protocol that is inherently dead-
lock-free.

A backtracking routing algorithm allows a message to
reverse routing steps to avoid the blocking of the message.
Deadlocks cannot occur, because messages will rather
backtrack than wait. To avoid a livelock situation (i.e.,
when a message is routed indefinitely through the network
without ever reaching its destination), information about
path segments already taken has to be added to the mes-
sage or stored in the network nodes in a distributed fashion.

A simple backtracking algorithms is the exhaustive
profitable backtracking protocol. This protocol performs a
depth-first search of the network, considering profitable
network links only. If a shortest path that is not blocked
exists between a source and a destination, this routing
algorithm will find it. The k-family routing protocol speeds
up the path search through a two-phase algorithm. As long
as the distance of a message from its destination is larger
then the parameter k, a profitable search heuristic is used
that considers a subset of all available shortest paths only.
If the distance is lower than k, then the exhaustive profit-
able search is used, which considers all available shortest
paths (22).

Both routing protocols forbid misrouting, so that a non-
blocked path through the network cannot always be found.
Exhaustive misrouting backtracking protocols will always
find an existing nonblocked path in a network, because
messages can be misrouted. However, the search itself can
degrade the network performance, especially when a non-
blocked path does not exist. In this case, the routing algo-
rithm will search the whole network before it recognizes
that a path does not exist. Thus, a message may stay inside
the network for quite a while and will use network
resources during the search that are then unavailable for
other messages.

To alleviate this search problem, the two-phase misrout-
ing backtracking protocol can be used. This protocol divides

8 INTERCONNECTION NETWORKS FOR PARALLEL COMPUTERS



the search into two phases, similarly to the k-family routing
protocol. Each phase is determined by the current distance
between the message and its destination. If the distance is
larger than a parameter d, then the protocol will use an
exhaustive profitable search. If the message is closer to its
destination than d, then the protocol switches to an exhaus-
tive misrouting search. Because the second phase can route
the message further away from its destination again, the
search may switch between the two phases multiple times.

SWITCH BOX ARCHITECTURES

The architecture of the switch boxes depends on the under-
lying switching mechanism (see the section ‘‘Switching
Techniques’’ above) and has a large effect on network
performance. This section discusses architectural issues
with respect to switch boxes and their effect on network
performance.

When a connection is established in a circuit-switching
network, each switch box is set in a specific switching state.
For example, in the 2 � 2 switch boxes that are sometimes
used to construct multistage indirect networks, there are
four distinct settings for each switch: straight, exchange,
upper broadcast, and lower broadcast. The straight setting
connects the upper input port with the upper output port,
and the lower input port with the lower output port. In the
exchange setting, the upper input port is connected to the
lower output port, while the lower input port is connected to
the upper output port. Finally, in the broadcast setting, one
of the input ports is connected to both switch output ports
(in the lower broadcast the lower input port is chosen; in the
upper broadcast, the upper input port). If during the con-
nection establishment for a message transmission a switch
box within the network already uses a setting that is
different from the requested one, the connection cannot
be established and will be refused. One way to implement
2 � 2 and larger switches is the crossbar [see Fig. 10(a)]. A
B � B crossbar consists of B inputs, B outputs, and B2

crosspoints that can connect the horizontal line with the
corresponding vertical one.

In packet-switching (and wormhole-routing) networks,
packets (or flits) can be blocked within the network and
have to be temporarily buffered inside a switch box. The
placement of these buffers within a switch box has a major
effect on the network performance and on the buffer
requirements. The method that results in the lowest hard-
ware requirement is input buffering, where a first-in-first-
out (FIFO) buffer for storing multiple packets is placed at
each input port of a switch box [see Fig. 10(b)]. During each
network cycle, each buffer must be able to store up to one
packet and dequeue up to one packet. A packet reaching a
switch box input port that cannot be transferred to an
output port because that port is currently busy will be
stored in that input buffer. Although these buffers are
easy to implement, they have the major disadvantage of
head-of-line (HOL) blocking because of their FIFO disci-
pline. If the packet at the head of an input buffer is blocked,
it will block all other packets in that buffer, although some
of those packets might be destined to an idle switch box
output port. This blocking reduces the switch box through-
put significantly, especially in larger switches.

To eliminate the HOL-blocking effect, output buffering
can be employed, where FIFO buffers reside at each switch
box output port [see Fig. 10(c)]. Because, during each net-
work cycle, up to B packets can be destined to one specific
output port in a B�B switch box (one from each switch box
input), an output buffer must be able to store up to B
packets and dequeue up to one packet during each network
cycle. Because in an output buffer only packets are stored
that are destined to the same output port of that switch box,
HOL blocking cannot occur. If buffers with an infinite
length are assumed, a maximum switch throughput of
100% can be achieved.

To achieve high performance with output bufferedswitch
boxes, considerable buffer space is needed. To reduce this
buffer requirement, a central memory can be used. In
central-memory-buffered switch boxes, there are no dedi-
cated buffers at either the switch input or the output ports.

Figure 10. 2 � 2 (a) crossbar, (b) input-buffered, (c) output-buffered, and (d) central-memory-buffered switch box architectures. The
placement of the buffers within a switch box has a major effect on the network performance and on the buffer requirements.

INTERCONNECTION NETWORKS FOR PARALLEL COMPUTERS 9



Packets arriving at a switch box input port are buffered in a
central memory that is shared among all switch inputs [see
Fig. 10(d)]. The central memory is divided into virtual FIFO
queues of variable length (one for each output port) in which
the packets are stored corresponding to their destination.
The bandwidth requirement for the central memory is even
higher than that for a buffer in an output buffered switch
box, because during each network cycle, up to B packets
have to be stored in the memory and up to B packets have to
be read out of a B�B switch box. Because the length of each
virtual queue isvariable, virtual queues that are only lightly
utilized require less memory and heavily utilized virtual
queues can have more space (23). Thus, the buffer space can
be very efficiently utilized, so that a smaller overall buffer
space is needed as than for switch boxes with dedicated
output buffers at each output port.

CONCLUSIONS

This article is a brief introduction to some of the concepts
involved in the design of interconnection networks for
parallel machines. See the references cited for more details.
A reading list provides further sources of information.

BIBLIOGRAPHY

1. R. Duncan, A survey of parallel computer architectures, IEEE
Comput., 23 (2): 5–16, 1990.

2. W. C. Athas, C. L. Seitz, Multicomputers: Message-passing
concurrent computers, IEEE Comput., 21 (8): 9–24, 1988.

3. B. Nitzberg and V. Lo, Distributed shared memory: A survey of
issues and algorithms, IEEE Comput., 24 (8): 52–60, 1991.

4. M. Jurczyk and T. Schwederski, SIMD processing: Concepts
and systems, in Y. Zomaya (ed.), Handbook of Parallel and
Distributed Computing, New York: McGraw-Hill, 1996,
pp. 649–679.

5. R. Duncan, MIMD architectures: Shared and distributed mem-
ory designs, in Y. Zomaya (ed.), Handbook of Parallel and
Distributed Computing, New York: McGraw-Hill, 1996, pp.
680–698.

6. H. J. Siegel and C. B. Stunkel, Inside parallel computers:
Trends in interconnection networks, IEEE Comput. Sci.
Eng., 3 (3): 69–71, 1996.

7. V. Cantoni, M. Ferretti, and L. Lombardi, A comparison of
homogeneous hierarchical interconnection structures, Proc.
IEEE, 79: 416–428, 1991.

8. F. T. Leighton, Introduction to Parallel Algorithms and Archi-
tectures: Arrays, Trees, Hypercubes, San Mateo, CA: Morgan
Kaufmann, 1992.

9. I. Stojmenovic, Direct interconnection networks, in Y. Zomaya
(ed.), Handbook of Parallel and Distributed Computing, New
York: McGraw-Hill, 1996, pp. 537–567.

10. H. J. Siegel, Interconnection Networks for Large-Scale Parallel
Processing: Theory and Case Studies, 2nd ed., New York:
McGraw-Hill, 1990.

11. W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes,
Cambridge, MA: MIT Press, 1972.

12. H. P. Katseff, Incomplete hypercubes, IEEE Trans. Comput.,
C-37: 604–608, 1988.

13. W. J. Dally, Performance analysis of k-ary n-cube interconnec-
tion networks, IEEE Trans. Comput., C-39: 775–785, 1990.

14. D. P. Agrawal, Graph theoretical analysis and design of multi-
stage interconnection networks, IEEE Trans. Comput., C-32:
637–648, 1983.

15. H. Ahmadi and W. E. Denzel, A survey of modern high-per-
formance switching techniques, IEEE J. Sel. Areas Commun.,
7: 1091–1103, 1989.

16. K. Y. Lee and D. Lee, On the augmented data manipulator
network in SIMD environments, IEEE Trans. Comput., 37:
574–584, 1988.

17. H. J. Siegelet al., Using the multistage cube network topology
in parallel supercomputers, Proc. IEEE, 77: 1932–1953, 1989.

18. C. E. Leiserson, Fat-trees: Universal networks for hardware-
efficient supercomputing, IEEE Trans. Comput., C-34: 892–
901, 1985.

19. L. M. Ni and P. K. McKinley, A survey of wormhole routing
techniques in direct networks, IEEE Comput., 26 (2): 62–76,
1993.

20. W. J. Dally, Virtual-channel flow control, IEEE Trans. Parallel
Distrib. Syst., 3: 194–205, 1992.

21. W. J. Dally and C.L. Seitz, Deadlock-free message routing in
multiprocessor interconnection networks, IEEE Trans. Com-
put., C-36: 547–553, 1987.

22. P. T. Gaughan and S. Yalamanchili, Adaptive routing protocols
for hypercube interconnection networks, IEEE Comput., 26 (5):
12–23, 1993.

23. M. Jurczyket al., Strategies for the implementation of inter-
connection network simulators on parallel computers, Int. J.
Comput. Syst. Sci. Eng., 13 (1): 5–16, 1998.

READING LIST

Books That Cover Interconnection Networks

J. Duato, S. Yalamanchili and L. Ni, Interconnection Networks: An
Engineering Approach, Los Alamitos, CA: IEEE Computer Society
Press, 1997.

F. T. Leighton, Introduction to Parallel Algorithms and Architec-
tures: Arrays, Trees, Hypercubes, San Mateo, CA: Morgan Kauf-
mann, 1992.

I. D. Scherson and A. S. Youssef (eds.), Interconnection Networks
for High-Performance Parallel Computers, Los Alamitos, CA:
IEEE Computer Society Press, 1994.

T. Schwederski and M. Jurczyk, Interconnection Networks: Struc-
tures and Properties(in German), Stuttgart: Teubner, 1996.

H. J. Siegel, Interconnection Networks for Large-Scale Parallel
Processing: Theory and Case Studies, 2nd ed., New York: McGraw-
Hill, 1990.

K. J. Thurber (ed.), Tutorial: Distributed Processor Communica-
tion Architecture, New York: IEEE Press, 1979.

A. Varma and C. S. Raghavendra (eds.), Interconnection Networks
for Multiprocessors and Multicomputers: Theory and Practice, Los
Alamitos, CA: IEEE Computer Society Press, 1994.

C.-L. Wu, T. Y. Feng (eds.), Tutorial: Interconnection Networks for
Parallel and Distributed Computing, Los Alamitos, CA: IEEE
Computer Society Press, 1984.

10 INTERCONNECTION NETWORKS FOR PARALLEL COMPUTERS



Books and Articles That Cover Interconnection Networks in Com-
mercial Parallel Processing Systems

J. Beecroft, M. Homewood, and M. McLaren, Meiko CS-2 inter-
connect, Elan-Elite design, Parallel Comput., 20: 1626–1638, 1994.

T. Blank, The MasPar MP-1 architecture, IEEE Int. Comput. Conf.
CompCon, 1990, pp. 20–24.

R. Esser and R. Knecht, Intel Paragon XP/S—architecture and
software environment, in H. W. Meurer (ed.), Supercomputer ’93,
Berlin: Springer-Verlag, 1993.

K. Hwang, Advanced Computer Architecture, New York: McGraw-
Hill, 1993.

K. Hwang and F. A. Briggs, Computer Architecture and Parallel
Processing, New York: McGraw-Hill, 1984.

R. E. Kessler and J. L. Schwarzmeier, Cray T3D: A new dimension
for Cray Research, IEEE Int. Comput. Conf. CompCon, 1993 pp.
176–182.

N. Koike, NEC Cenju-3: A microprocessor-based parallel computer
multistage network, 8th Int. Parallel Process. Symp., 1994 pp. 393–
401.

C. B. Stunkel et al., The SP2 high-performance switch, IBM Syst.
J., 34 (2): 185–202, 1995.

L. W. Tucker and G. G. Robertson, Architecture and applications of
the Connection Machine, IEEE Comput., 21 (8): 26–38, 1988.

Papers That Cover Network Fault Tolerance

G. B. Adams II and H. J. Siegel, The extra stage cube: A fault-
tolerant interconnection network for supersystems, IEEE Trans.
Comput., C-31: 443–454, 1982.

G. B. Adams III, D. P. Agrawal, and H. J. Siegel, A survey and
comparison of fault-tolerant multistage interconnection networks,
IEEE Comput., 20 (6): 14–27, 1987.

G.-M. Chiu and S.-P. Wu, A fault-tolerant routing strategy in
hypercube multicomputers, IEEE Trans. Comput., C-45: 143–
154, 1996.

M. Jeng and H. J. Siegel, Design and analysis of dynamic redun-
dancy networks, IEEE Trans. Comput., C-37: 1019–1029, 1988.

V. P. Kumar and S. M. Reddy, Augmented shuffle-exchange multi-
stage interconnection, IEEE Comput., 20 (6): 30–40, 1987.

R. J. McMillen and H. J. Siegel, Routing schemes for the augmen-
ted data manipulator network in an MIMD system, IEEE Trans.
Comput., C-31: 1202–1214, 1982.

K. Padmanabhan and D. H. Lawrie, A class of redundant path
multistage interconnection networks, IEEE Trans. Comput., C-32:
1099–1108, 1983.

Papers About Comparing Interconnection Networks

K. J. Liszka and J. K. Antonio, H. J. Siegel, Problems with compar-
ing interconnection networks: Is an alligator better than an arma-
dillo? IEEE Concurrency, 5 (4): 18–28, 1997.

Papers About Trends in Interconnection Networks

H. J. Siegel and C. B. Stunkel, Inside parallel computers: Trends in
interconnection networks, IEEE Comput. Sci. Eng., 3 (3): 69–71,
1996.

MICHAEL JURCZYK

University of Missouri–Columbia
Columbia, Missouri

HOWARD JAY SIEGEL

Purdue University
West Lafayette, Indiana

CRAIG STUNKEL

IBM T. J. Watson
Research Center

Yorktown Heights, New York

INTERCONNECTION NETWORKS FOR PARALLEL COMPUTERS 11



L

LCD DESIGN TECHNIQUES

Liquid crystal displays (LCDs) play a crucial role in almost
all technology scenarios based on human interfaces as
being the preferred device for visual information rendering
in a wide variety of application domains. With respect to a
few popular examples, LCDs are extensively used for video
output in personal computers, portable phones, photo and
video cameras, as well as diverse home entertainment
multimedia appliances. The impact of LCD performance
on an important share of the worldwide consumer electro-
nics market justifies the effort devoted to clever design of
LCD-based equipment. Broadly, LCD designers have to
cope with two classes of realization issues, concerning
both the choice of the LCD technology and the implementa-
tion of the LCD driving electronics. The technology selec-
tion is in many ways independent of the targeted display,
being either a high-end PC monitor or a cellular phone
display panel. Conversely, several display driving meth-
odologies are available at a given display technology, each
one posing tradeoffs among ease of implementation, reali-
zation cost, and overall optical performance. In general, the
term driving scheme encompasses all features cooperating
with the generation of the electrical signals applied to the
display panel in order to build up the desired image. The
generated picture commonly acts as an individual video
frame out of an arbitrarily complex frame sequence: Hence,
all mechanisms used for producing a ‘‘static’’ picture (i.e.,
refreshed continuously and invariably over the display) can
be extended straightforwardly to video streaming (where
the frame information varies over subsequent frames).
Usually, a display driver can be programmed to sort the
best matching display between driving scheme and display
application. The definition of a driving scheme includes the
panel scanning pattern as a major component. However, a
driving scheme is also made of a combination of measures
put into action in order to mitigate the effects of perceptible
visual artifacts. An outstanding example of such techni-
ques is the driving polarity inversion, which will be exten-
sivley referred to in the following parts in conjunction with
the presentation of the most dangerous optical artifacts.

Panel technology and driving mode directly affect the
design of the driver electronics, which motivates the inter-
est in LCD-specialized design flows. LCD engineers are
provided with customized evaluation tools that can be used
to assess the impact of vital design choices as early as
possible throughout the product lifecycle. Joint LCD-driver
simulation environments, for instance, are highly recom-
mended to achieve the optimal driving-scheme/display
match.

THE LCD ARENA

To date, the market of LCDs puts forward a huge amount of
typologies, including monochromatic, color, passive-

matrix, active-matrix, and organic-material-based panels.
Nonetheless, all LCDs are built on liquid crystals, i.e.,
materials capable of modifying their microscopic spatial
orientation under the effect of comparatively small electric
fields (1). The observation that a light beam directed toward
the liquid crystal cell is differently diverted depending on
the particular orientation of the crystals themselves trig-
gered off the pervasive development of LCD technologies
over the past few decades. LC cells are not, by themselves,
spontaneous light sources, but their operation depends on
the reflection or absorption of light originating from some
sort of external source. The way the display interacts with
such source, as well as the techniques deployed for pixel
addressing and image generation over the panel, allow
LCDs to be classified and several well-known families to
be distinguished. Figure 1 represents a broad classification
of those families, as discussed in the next subsection.

The Twisted Nematic Technology

The working principle of displays based on the twisted
nematic (TN) technologies (2,3) is depicted in Fig. 2, where
the structure of a single LCD cell is shown. The indium tin
oxide (ITO) layers are those used to realize the cell driving
electrodes. Basically, the light beam reaching the cell is
allowed to pass through the output polarizer provided that
it is properly twisted by the spatial orientation of the liquid
crystal in the nematic layer inside the cell. Applying a
proper voltage at the boundaries of the cell can alter
such orientation, so that the cell would in turn shield the
nontwisted light beam. The cell organization is replicated
to construct matrix-like panels where each cell represents a
pixel. Pixel ON/OFF states, corresponding to dark/bright
pixel in black-and-white displays, can be selectively driven
by applying specific voltage patterns at any pixel location.
The voltage control is realized via an array of connection
electrodes accessible by the driving circuits external to the
display. The TN technology has been used first in passive-
matrix LCDs, although a significant evolution in the LCD
design philosophy must be ascribed to the introduction of
active-matrix driving modes. Passive-matrix and active-
matrix LCDs essentially differ in the nature of their elec-
trodes and in the way individual pixels are addressed.

Super Twisted Nematic Technology. In practice, pure TN
technology has been replaced by super twisted nematic
(STN) technology. By doping the nematic layer with an
optically active material, the STN technology is character-
ized by a greater twist-angle impressed to the light beam by
the LC layer, which achieves higher optical contrast,
increases the chromatic yield, and produces faster-
responding displays. The introduction of STN technology
has played a particularly important role for passive-matrix-
addressed displays, where under some fixed optical condi-
tions, the multiplex ratio, i.e., the number of lines to be
addressed in the pixel matrix for image generation, can be
only increased if the response of the liquid crystal is faster.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Color Super Twisted Nematic Displays. For color genera-
tion, each LC cell is physically replicated three times per
pixel. Light passing through individual cells that belong to
the same pixel (the so-called subpixels) is then selectively
filtered through red, green, and blue channels, respec-
tively. It is important to stress the absolute independence
of subpixels from the voltage generation point of view, so
the resulting color display can be simply thought of as an
extended pixel-matrix with respect to its pure gray-scale
counterpart. It is the spatial integration capability of the
human eye over adjacent subpixel locations to ensure that
individual channels out of the same pixels are concretely
perceived as a single color by the observer.

Transmission-Voltage Curves

The light-transmitting capability of liquid crystals is
usually characterized by plotting the LC cell transmission
as a function of the applied voltage to form the electro-
optical characteristic of the liquid crystal (Fig. 3). In the LC
jargon, the expressions threshold and saturation voltage
are used also to define the voltage below which the cell light
transmission is none, and that above which the light
transmission cannot be increased further (no matter the

magnitude of the applied voltage), equaling 100%, respec-
tively. Figure 3 also explains a major difference between TN
and STN technologies: STN liquid transmission-voltage
curves are generally steeper than the corresponding TN
curves, so ON/OFF state transitions are appreciably faster.

Transmissive and Reflective LCDs

A first, coarse classification of LCDs distinguishes between
transmissive panels, where the light source is positioned
beyond the display with respect to the observer and the
light beam is filtered depending on the orientation of the
liquid crystal at a particular point in time, and reflective
panels, where the external environmental light is reflected
by a mirror located behind the display LC panel and after-
ward filtered by the crystals. Reflective displays obviously
promote low-power operation since a built-in light source is
not required; yet their optical performance tends to degrade
when they are used in dim areas. For that reason, they are
commonly avoided for indoor applications. Transflective
LCDs offer a tradeoff between the performance of both
types; they are increasingly penetrating into the market
of displays for mobile appliances, offering guarantees of
good performance under almost all illumination conditions.

Frame Rate Control (FRC)

Frame Length Control (FLC)

Pulse Width Modulation (PWM)

COLOR
GENERATION

ADDRESSING
MODES Thin Film Transistor

Row-Interlaced Scanning

(TFT)

LT P-Si TFT

HT P-Si TFT

A-Si TFT

Im
p

lem
entation

Technolog
ies

Passive Matrix LCD

(PMLCD)

Active Matrix LCD

(AMLCD)

Transmissive

Reflective

Transflective

Twisted Nematic

Super Twisted Nematic

Color Super Twisted Nematic

Multiple Line

Addressing (MLA)

TYPES

TECHNOLOGY

Figure 1. Overview of the most relevant liquid crystal display technologies and implementation techniques.

2 LCD DESIGN TECHNIQUES



unpolarized backlightunpolarized backlight

polarizer

polarizer

polymer

glass

glass

ITO

ITO

polymer

liquid crystal V

no light passes through

Figure 2. Building principle of a liquid crystal cell for display realization: light transmission and shielding depending on the applied voltage
is also shown.

Average voltage
for on pixel

Average voltage
for off pixel

Twisted nematic
response 
Super twisted
nematic response

twisted
∆T for ∆T for super

nematic twisted nematic

Voltage

100

50

0

%
 L

ig
ht

 T
ra

ns
m

is
si

on

Figure 3. Exemplar transmission-voltage curves for TN and STN LCDs. The increased steepness of the STN characteristic is apparent.

LCD DESIGN TECHNIQUES 3



LCD Addressing Modes

Passive-Matrix Displays. In passive-matrix LCDs
(PMLCD), the electrodes are implemented by thin metal-
oxide stripes layered over the surfaces of the LC panel. In
particular, the mash of electrode stripes laid on one side of
the panel is orthogonal to those placed on the other side. LC
cells (i.e., individual pixels of the display) correspond to
crossing points between electrodes belonging to different
sides. On the whole, the display can be viewed as a pixel
matrix, with each pixel being equivalent to a capacitor
connected between electrode stripes from different plates
(Fig. 4). Constructing a proper voltage between the electro-
des that address that particular cell drives the pixel states
ON or OFF. During each frame scan, i.e., over the time needed
by the driving electronics to address all other rows and
columns in the display, the ON/OFF states of the pixels must
be maintained. The effectiveness of the approach rests on
the inherent persistency of the human visual system, which
ensures correctness of optical perception as long as the
display scan period and the time each pixel’s state is
held are properly synchronized. Flickering would other-
wise affect the perceived image: This is generally avoided
by taking special measures at the driving scheme level.
Inter-electrode crosstalk is another common but undesir-
able side effect of passive-matrix addressing, which man-
ifests as halos around the displayed picture.

Active-Matrix Displays. The development of active-
matrix addressing decreased most image quality flaws by
associating a dedicated transistor switch at each pixel in
the display. The switch allows the pixel to be driven ON/OFF

without being affected by the electrical activities of the
other pixels in the row. In other words, the pixel control is
no longer committed to a combined row/column electrical
driving performed on a frame basis: The pixel state can be
held independently of the frame refresh period or the
persistency interval, just as long as the switching transistor

state is maintained. From the technological perspective,
the increased complexity of active-matrix LCDs (AMLCDs)
is abundantly compensated by the tremendous gain in the
optical quality as much as by important savings in the
display power consumption. In a fact, AMLCDs currently
represent the mainstream solution in the market of dis-
plays, especially when wide-area panels are regarded.

Thin-film transistor (TFT) displays embody a popular
implementation of the active-matrix addressing principle.
In TFT displays, the switching transistors are integrated
within thin plastic layers deposited over the internal sur-
faces of the glass panels, and they directly delimit the liquid
crystal core. TFT displays can be diversely realized. The low
temperature polysilicon TFT is a new technology allowing
large-size panels with easy integration of the driver cir-
cuits. Integration of the driving circuits is also possible with
the high temperature polysilicon TFT, which is a MOS-IC-
like process applicable to small-size panels. Finally, large-
area panels are based on the amorphous silicon TFT tech-
nology, which is the most mature and most popular tech-
nology.

Thanks to the constructive procedure of AMLCDs, para-
sitic capacitive effects are minimized with respect to
PMLCDs. Furthermore, TFT displays are much brighter
than PMLCDs, their viewing angle reaches up to 45 degrees
with respect to the display axis, and their response time is
one order of magnitude shorter than that of PMLCDs. On
the other hand, constructive data for TFT displays demon-
strate in what sense complexity is a major point: For
instance, even a small 132 � 176-pixel color display
requires up to 70,000 transistors for active-matrix
addressing!

Advanced Technologies

Over the past few years, the poor performance exhibited by
PMLCDs in appliances featuring video streaming facilities
motivated display manufacturers to massively migrate

Column
electrode

Row
electrode

LC Pixel

Row N

Electrodes
on the one plate

Electrodes
on the other plate

Column
M

Column
M+1

Column
M+2

Row N+1

Row N+2

Figure 4. Pixel model and display matrix for PMLCDs.

4 LCD DESIGN TECHNIQUES



toward active-matrix TFT panels. Currently, not only do
AMLCDs represent the favorite solution for large display
realization, but they are pervasively exploited in portable
devices as well, such as last-generation high-end video
cellular phones. Alternative technologies with respect to
liquid crystals are also starting to creep into the market of
displays. A particular class of devices based on organic
light-emitting diodes (OLEDs) currently yields competitive
performance, especially when flexibility (OLED displays
can be significantly small and thin) and low power opera-
tion turn out to be important factors. In OLEDs, a layer of
specific organic polymers placed between the driving elec-
trodes is responsible for the light emission without external
sources. For the time being, the use of OLEDs in portable
battery-operated displays is only hindered by the compara-
tively short lifecycle of the embedded organic materials.

PASSIVE-MATRIX LCDS

Scanning Modes

The driving voltage applied to a PMLCD’s pixel to modify
the crystals orientation is something more than a mere
constant voltage through the LC cell. In fact, PMLCDs are
operatively sensitive to the root-mean-square value (rms) of
some properly arranged steering voltage waveforms (4).
The rms is the physical quantity actually responsible for
the light transmission as readable from a transmission-
voltage curve. Therefore, the driving-scheme designer
chiefly focuses on alternative ways of constructing the
desired rms value over the available driving time slots.
The maximum allowable time length of such a driving
window is an important constraint, as it is directly related
to the avoidance of undesired visual artifacts that affect
correct image displaying. Most driving schemes imply tra-
deoffs between performance and design factors, such as
output image contrast, color gamut, visual artifact occur-
rence, driver hardware complexity, and power dissipation.
In particular, hardware parameters, such as the number
and type of the driving voltages to be built up or the
complexity of the digital switching logic used for waveform
generation, are directly involved.

The basic scanning mode is the Alt&Pleshko approach,
which is essentially a simple one-row-at-a-time addressing
scheme: Proper voltage pulses are sequentially sent over
the row electrodes to select individual rows until the whole
display has been scanned over a frame. During each row
pulse, the column electrodes are driven according to the
pixel data in order to construct the desired rms value at
every location. Currently, the importance of the Alt&-
Pleshko technique has nothing to do with implementation,
but is only limited to providing a better understanding of
more sophisticated solutions derived from it. However, it is
worth citing the so-called improved Alt&Pleshko techni-
que, where non-negative column voltages and lower supply
voltages are exploited to reduce power consumption and
driver circuit area.

Significant progress in LCD driving rests on multiple-
line-addressing (or multiple-row-addressing) methods
(equally referred to as MLA or MRA techniques). With
MLA, p rows are concurrently driven through sets of

p orthogonal digital row functions (scan signals) Fi(t). As
a result, the total frame scanning period is automatically
reduced. In typical settings, the scan signals are piecewise
constant analog voltage waveforms; i.e., their repetition
period is slotted into predefined equal-length intervals
during which they take constants values Fi. The number
of the time slots over a scan signal repetition period is
usually fixed to be equal to p, although different choices
are viable. Orthogonality requires that:

Fi � F j ¼
1

T
�
ZT

o

Fi � F j � dt ¼ F2; i ¼ j

Fi � F j ¼ 0; i 6¼ j

8>><
>>:

ð1Þ

The column functions (data signals) are constructed by
combining the scan signals properly. Their value at a given
time depends on the ON/OFF states of the pixels they are
meant to activate, as follows:

G jðtÞ ¼
1ffiffiffiffiffi
N
p

Xp

1

aijFiðtÞ i; j ¼ 1; . . . ; p ð2Þ

Orthogonality of the scan signals ensures that individual
pixels remain unaffected by the state of the others along the
same column. The advantages of MLA include the power
savings achievable because of the moderate supply voltages
required by the technique and the possibility of reducing
the frame frequency without fearing ‘‘frame response.’’ In
the LC jargon, frame response is referred to as the relaxa-
tion of the liquid crystal directors over a frame time, which
leads to contrast lowering and image flickering. By means
of MLA, the LC is pushed several times within a frame so
that virtually no relaxation occurs: The image contrast can
be preserved, the flicker restrained, and the artifacts like
smearing on moving objects (e.g., while scrolling) are sup-
pressed by eventually adopting faster responding LC mate-
rial. On the downside, all of this technology comes at the
expense of an increase in the number of driving voltages to
be generated (three row voltages and p þ 1 column voltages
are needed) and of more complex driver realizations.

Alternative MLA Schemes

The sets of the orthogonal scan signals used in MLA are
assigned through matrices. Each signal is described along
the rows, whereas each column shows the constant normal-
ized value (þ1,�1, or 0) assumed by the resulting waveform
at the corresponding time slot. Theoretically, the matrices
can be rectangular, where the number of rows indicates the
number of concurrently addressed display rows (p), and the
number of columns indicates the number of MLA scans
needed to cover the whole panel (being in turn equal to the
number of time slots composing each orthogonal signal).
Different types of matrices that meet the orthogonality
constraints are available and used diversely in practical
implementations of MLA schemes (5). A first class is the set
of Walsh functions, coming up as 2s orthogonal functions
derived from Hadamard matrices. The class of the so-called
‘‘Walking –1’’ functions is also used extensively: They are

LCD DESIGN TECHNIQUES 5



built up of p�1 positive pulses (þ1) and 1 negative pulse
(�1) shifting right or left from one function to the other.
Hadamard and Walking –1 matrices, like many other
standardized patterns, only contain 1 and �1 entries.
However, since the number of nonzero entries in the matrix
columns plus one corresponds to the number of column
voltage levels used for waveform generation, it is desirable
to introduce zeroes in the matrices. In this respect, con-
ference matrices with one zero per row represent a smart
solution.

Once the matrix structure has been chosen, the value of
p must be also set, i.e., the number of rows addressed in
parallel. The choice is dictated by optical performance
considerations: It is widely agreed that for p up to 8, frame
response is effectively suppressed, so that p is usually set to
2, 3, or 4 in commercial mobile display drivers (for ease of
reference, 2-MLA, 3-MLA, or 4-MLA, respectively). For
2-MLA and 4-MLA, either Walsh or Walking –1 functions
can be taken, whereas 3-MLA works with 4 � 4 conference
matrices (the 0 entry corresponding to one nonselected row
out of 4). Also, a particularly interesting solution exists,
sometimes referred to as virtual-3-MLA, which is brought
in as a modification of the 4-MLA scheme. In fact, virtual-3-
MLA is identical to 4-MLA when the driver operation is
regarded, but the fourth rowdriver output out of every set of
four rows is not connected to the display but is just left open.
On the display side, row number 4 is connected to the fifth
driver row output, and so on for the remaining ones. It can
be calculated that with virtual-3-MLA, only two voltage
levels are required to construct the data signals, which
represents significant improvement, making the driver less
complex and reducing the power dissipation.

The rationale of MLA does not entail any built-in mea-
sure to guarantee optical uniformity in the’ brightness of
the pixels. Extended features are commonly then added up
on top of the basic MLA scheme. The drive pattern switch-
ing is a popular example consisting of the periodical inter-
change of the set of used orthogonal functions; the change
usually is scheduled to occur before every p-row addressing
sequence.

ACTIVE-MATRIX LCDS

Addressing Concept

In AMLCDs, each pixel within the display matrix can be
accessed only when the corresponding switch is closed.
Pixel driving is realized by means of three separate
electrodes, as shown in Fig. 5, where a circuit model of
the pixel has been worked out. The concept of AMLCD
driving is theoretically simple with respect to PMLCD:
Adjacent rows are addressed sequentially by applying a
positive pulse to the row electrodes. The row electrodes are
connected directly to the switches gates and then are used
to switch ON/OFF at the same time for all pixels along a given
row. In turn, the column electrodes are used to build up the
voltage throughout the LC cell according to the pixel data.
In practical scenarios, row-interlaced patterns are used in
place of the rudimentary row-sequential addressing, with
beneficial effects with respect to the driver overall power
consumption. Even if the addressing principle is straight-
forward, various dedicated countermeasures usually are
exploited to target AMLCD-specific drawbacks, which com-
plicate the realization of the driving schemes.

Effects of NonIdealities in Active-Matrix Addressing

Parasitic gate-source and gate-drain capacitances of the
switching transistors have been explicitly drawn in Fig. 5.
They are responsible for several undesired consequences
that affect the display dynamic operation. The gate-drain
capacitance, for instance, brings in an appreciable over-
shoot that distorts the driving voltage throughout the pixel
cell at the switching point of the row driving pulses. The
mechanism is shown in Fig. 6 for a typical voltage wave-
form: The effect is known as ‘‘kickback effect’’ and is prac-
tically caused by some extra charge loaded into the pixel
capacitance. The overshoot, unless mitigated purposely,
results in some sort of visible display flickering. A common
technique used to fight the kickback effect is described as
‘‘common electrode modulation’’: In essence, the common
electrode is driven so as to compensate for the additional

Row 
electrode Common

electrode

Column
electrode

IC

CGS

CGD

Row waveforms

Row N–1

Row N

Row N+1

Column
M–1

Column
M

Column
M+1

Common
electrode

Pixel data 

Figure 5. Pixel model and display matrix addressing for AMLCDs.

6 LCD DESIGN TECHNIQUES



spurious charge injection affecting the pixel capacitance at
critical time points within the frame.

The kickback phenomenon is not the sole effect of the
active-matrix nonidealities. The quality of the display is
also influenced by the sensitivity of the LC capacitance to
the applied voltage and by different forms of leakage cur-
rents, generally depending on either the liquid crystal itself
or the technology of the active devices. The LC capacitance
variability often nullify the advantages of common elec-
trode modulation. On the other hand, leakage determines a
loss in contrast and compromises the visual uniformity of
the displayed pictures, as well as inducing vertical cross-
talk among pixels. Both LC capacitance variations and
leakage can be controlled by using a storage capacitor.
The storage capacitor is connected between the switch
drain and the row electrode of the previous or next display
row (or to a separate electrode), so as to work in parallel
with the pixel’s real capacitance. Kickback correction is
then made more effective, as the increase in the overall
capacitance makes the cell less sensitive to any parasitic
current. Another specific measure against leakage currents
in the active device is the driving voltage polarity inversion,
which is a technique that belongs to a broad class of polarity
inversion methods used extensively to mitigate different
forms of optical artifacts.

GRAY TONES AND COLOR GENERATION TECHNIQUES

The concept of ON/OFF pixel driving is suitable for mere
black- and- white displays. Extending this principle to
gray-scale panels requires that different gray-levels be
constructed throughout a sequence of black/white states
driven over consecutive frames. Frame rate control (FRC)
serves this purpose: Sequences of N frames (N-FRC) are
grouped together to compose a superframe. Over each
superframe, the sequence of black- and- white states cre-
ated consecutively at each pixel are perceived as homoge-
neous gray tones thanks to the persistency of the human
visual system (3). Proper operation only requires that the

superframe frequency, forced to equal the frame frequency
divided by N, be above a minimum admissible value: Over a
50-Hz superframe frequency usually is agreed on for
flicker-free image visualization. A refinement of the FRC
method is frame length control, where different gray tones
are generated over a superframe by varying the time–
length ratio between adjacent frames in the superframe
(and thereof the duration of individual black/white phases).

FRC is a very basic gray shading solution, so that
cooperating schemes usually are combined in industrial
drivers to enhance the color gamut: A common design
choice is to modulate the data signal pulses to enrich the
color resolution (pulse width modulation, PWM). As for the
hardware, joint PWM-FRC is costly in terms of extra chip
complexity, but it successfully cuts off the power consump-
tion. The programmable gray shades are defined by means
of a gray-scale table (GST), which specifies the sequence of
ON/OFF state scheduled to produce a given tone. An impor-
tant concern in designing the color generation mechanism
is the smart configuration of such table: For instance, when
applying a mixed FRC-PWM approach, pure-FRC color
tones (i.e., gray tones obtained without in-frame shade
modulation) should be avoided strictly in the GST to pre-
vent awkward perceptible artifacts.

Generalization of the gray shading techniques to color
displays is straightforward, as color channels are created
by diverse color filtering at each subpixel, without any extra
complexity on the driver side.

OPTICAL PERFROMANCE IN LCD DRIVING

Frequency Dependence of the Electro-Optical Characteristic

When thinking of optical performance, the main aspect to
be considered is the non-negligible dependence of the LCD
electro-optical transmission curve on the frequency of the
applied signals, which can be modeled in different ways
based on the particular view one may want to stress. At the
physical level, the frequency dependence of the LC

Frame 1

Kickback effect

+ Vsat

– Vsat

+ Vth

– Vth

0

Frame 2

Colum

Common
electrode

Pixel data
Row N

Figure 6. Driving waveforms affected by the ‘‘kickback effect’’ in AMLCDs panels.

LCD DESIGN TECHNIQUES 7



characteristic can be ascribed to frequency drifts of the
threshold voltage. More deeply, threshold frequency varia-
tions can be traced back to frequency shifts of the liquid
crystal dielectric constant, which will most likely show
discrepancies between the programmed rms voltage across
LC cells and the actual driving level. Extensive data are
categorized by LCD manufacturers, which helps in select-
ing the most suitable LC technology. In a fact, the dynamic
operation of an LCD is jointly determined by the cross-
correlation among several constructive and material-
dependent parameters (6,7). Not only must LC-specific
factors be regarded, but also information about the display
module arrangement is equally important. As an example,
desired versus actual voltage mismatching may also arise
from the capacitive coupling between row and column
electrodes, for both individual pixels and between adjacent
pixels.

For design purposes, all frequency dependencies can be
translated into an input–output frequency-selective rela-
tionship between the LCD applied driving waveforms and
the effective voltage signals controlling the LC cells. This
approach is the most common, which also suits the elec-
trical modeling of the LC cell as a simplified passive RC
network. By studying the display response, several design
rules can be worked out to serve as a reference when
designing the driver architecture. First and foremost, it
is desirable that the frequency band of the drive signals be
narrow to prevent uneven frequency filtering and optical
distortion. MLA guarantees band collimation since most of
the spectrum becomes concentrated around p times the
frame frequency. However, experimental results show that
when other schemes (such as PWM) are mounted on top of
MLA, frequency multiplication may turn out to reinforce
more than to suppress artifacts. Polarity inversion is
another established methodology for bandwidth reduction,
which entails that the signs of both the row and the column
signals be periodically inverted, with an inversion period
set on a superframe, frame, or block-of-N-lines basis. Dot
inversion also is possible in AMLCDs, where the inversion
takes place from one pixel location to the adjacent one.
Whatever inversion is used, the lowest frequency of the
spectrum is upshifted, and the DC offset in the driving
signals is suppressed. The latter is another important
result, since the DC component is a primary cause of LC
degeneration and of panel lifetime reduction.

Keeping the waveform frequency spectrum under con-
trol also is vital with respect to energy awareness. Curbing
the chip power consumption is possible when frame/super-
frame frequencies are low enough: In fact, the superframe
frequency can be made even lower than 50 Hz if phase
mixing is supported.

Phase Mixing. Phase mixing exploits the spatial low-
pass filtering capability of the human eye to construct
the same gray level in adjacent pixels (blocks of pixels)
by driving the same number of ON/OFF states (phases) but
throughout different sequences over the superframe. If
individual ON/OFF states out of the GST are referred to as
phases for each gray tone, phase mixing implies scheduling
different phases during the same frame for each pixel out of
a region of adjacent ones. Phase mixing better distributes

the voltage switching activities over the columns and pro-
duces a lowering of global frequency. To yield the best
optical performance, phase mixing is typically applied on
an RGB-subpixel basis (subpixel blocks instead of pixel
blocks) and the phase pattern (which phases are driven
at which position) is switched from one pixel (respectively,
subpixel) block to another. The designer wanting to imple-
ment phase mixing arranges a phase mixing table holding
the basic phase sequencing for pixel blocks within the
display matrix together with the related phase switching
rule (which phase follows a given one at any location). The
setting of the phase switching table has a strong impact on
the chip functionalities, so that it must be granted parti-
cular care.

Flicker

The meaning of flicker in the scope of LCD artifacts is
familiar; however, the reasons why flicker affects display
visualization and the countermeasures needed to remove it
might be less clear. Flicker generally stems from an incor-
rect distribution of the driving waveforms frequency spec-
trum: As it is, time-uneven or amplitude-unbalanced
contributions to the rms value over a frame are likely to
bring about flicker. Hence, common solutions to suppress
flicker are part of those general measures used to regulate
the frequency spectrum of the voltage waveforms: Low-
ering the frame frequency, using MLA-based driving (for
flicker caused by uneven rms contribution over a frame),
and embedding some smart phase-mixing scheme (for
flicker caused by uneven rms contributions over a super-
frame) currently are deployed in industrial PMLCD mod-
ules. As for AMLCDs, flicker always represents a crucial
concern because of the kickback effect unless dedicated
measures are taken, like the common electrode modulation
technique or the use of an additional storage capacitor as
described above.

Crosstalk

By crosstalk we define all pattern-dependent effects of
mutual interference among the gray-scale values of pixels
(3,8). Those effects tend to grow worse with increasing
display size, higher resolution, and faster responding LC,
all of which unfortunately are features that the display
market’s evolution is more and more heading toward.
Diverse mechanisms are responsible for crosstalk,
although they can be connected generally to the
frequency-selectiveness of the LC response.

Static Crosstalk Artefacts. It is commonly agreed that
static crosstalk is defined as all sorts of crosstalk-related
visual artifacts affecting the displaying of single (in this
sense, static) pictures. Therefore, frame switching over time
such as in video streaming is not considered. Static crosstalk
appears as differences in the brightness of theoretically
equal gray-scale pixels and manifests in multiple manners.
Simply stated, at least three types can be distinguished:
vertical crosstalk, horizontal crosstalk, and block shadow-
ing. Vertical crosstalk usually hinges on different frequency
contents of different column waveforms. It is growing more
and more important with the increasing steepness of the LC

8 LCD DESIGN TECHNIQUES



transmission-voltage curve as required for acceptable con-
trast in visualization. Horizontal crosstalk occurs when
differences in the LC dielectric constant for black- and-
white pixels induce spatially asymmetrical capacitive cou-
pling between rows and columns. The amount of perceptible
artifacts depends on the width of dark/bright horizontal
blocks along a row. Finally, when current spikes result
from symmetrically and simultaneously changing column
waveforms in areas where sizable blocks of darker pixels
determine different coupling between rows and columns,
vertical block shadowing is likely.

Dynamic Crosstalk Artefacts. In conjunction with static
artifacts, LCD modules supporting video streaming may be
affected by dynamic crosstalk. The exact characterization
of dynamic crosstalk often turns out to be difficult, since
many cooperative causes contribute to it. Loosely speaking,
dynamic crosstalk—also called ‘‘splicing’’—can be asso-
ciated with uneven voltage contributions to the perceived
rms value on switching from one frame to another. This
view of the problem generally allows for quantifying the
impact of improper driving schemes and for putting into
action concrete measures to oppose splicing.

Crosstalk Minimization. The problem of reducing cross-
talk has been attacked diversely. Apart from technological
advances in the display manufacturing, either dedicated
and more sophisticated hardware in the driver integrated
circuits (such as built-in voltage-correction facilities) or
specialization of the addressing schemes have been
devised. Beyond the particular features of the huge amount
of available alternatives, it is, however, possible to outline
some basic design guidelines that help to identify the very
essential concepts underneath crosstalk suppression.

Uniformity of the rms contributions over time, for
instance, can be pursued through smart selection of the
MLA driving mode (e.g., virtual-3-MLA) or the adoption of
specific schemes such as the so-called self-calibrating driv-
ing method (SCDM), described in the literature. Both such
approaches actually eliminate static crosstalk and signifi-
cantly reduce, although do not entirely suppress, dynamic
crosstalk. In particular, virtual-3-MLA also makes the
overall optical performance insensitive to asymmetries or
inaccuracies in the column voltage levels and contempora-
rily allows for reducing the number of such levels, which is
unquestionably beneficial with respect to static artifacts.
Similar results can be attained by using rectangular
instead of square phase mixing tables and by enabling
drive pattern switching. However, joint application of those
methods should be supported by extensive back-end per-
formance evaluation activities to diagnose potential side
effects that may stem from their reciprocal interaction at
particular image patterns. High-accuracy simulations
usually serve this goal.

The above-mentioned polarity inversion modes com-
monly are also employed as good measures to alleviate
static crosstalk artifacts along with all other shortcomings
of the nonlinear response of LC cells. However, an impor-
tant point must be made in selecting the most appropriate
inversion strategies. For instance, although separate row
or column inversion effectively reduces the impact of

horizontal and vertical crosstalk, respectively, vertical or
horizontal crosstalk is likely to manifest if either is used
independently of each other, with limited advantages in
terms of power consumption. Simultaneous suppression of
both vertical and horizontal crosstalk is possible with dot
inversion in AMLCDs at the cost of extra driving energy.
Finally, frame inversion promotes low power operation, but
its efficiency in crosstalk reduction is minimal.

The selection of unconventional FRC and PWM
schemes, at particular choices of the number of frames in
the superframe and of the signal modulation pulses in the
scan signals, frequently leads to some controllable reshap-
ing of the frequency spectrum with favorable effects on
static crosstalk. It must be noted, however, that all spectral
manipulations are only effective when they match concre-
tely the frequency characteristic of the particular liquid:
Early assessment of possible drawbacks is mandatory, and
customized top-level simulators are valuable in this
respect.

Useful suggestions can be also drawn when looking into
the technology side of the matter. Interactions between
display module parameters and static crosstalk can be
tracked down easily: It is well established that static cross-
talk is hampered when the resistivity of the ITO tracks is
lowered, when a less frequency-dependent liquid is used, or
when the deviations in the LC cell capacitances are
restrained (the cell capacitance basically depends on the
inter-cell gap).

As a final remark, from a theoretical perspective, the
phenomenology behind static crosstalk is more easily kept
under control when compared with dynamic effects.
Experimental verification or system-level simulations are
often the sole viable approaches to work into the issues of
dynamic artifacts.

Gray-Tone Visualization Artifacts. When GSTs are too
simplistic, artifacts altering the visualization of particular
color patterns may develop. For instance, with patterns
characterized by (although not limited to) the incremental
distribution over the pixels of the full gray-tone gamut itself
from one side of the display to the other, spurious vertical
dim lines may occur. Popular solutions rest essentially on
some clever redefinition of the GST, e.g., by the elimination
of FRC-only gray tones, the usage of redundancies in the
PWM scheme for generating identical gray levels, or the
shift of every gray tone one level up with respect to the
default GST. A key factor is that the color alteration only
affects some particular and well-known gray tones, so that
the problem usually can be confined. Because problematic
gray tones commonly cause static crosstalk artifacts, their
removal yields an added value with respect to crosstalk
suppression.

LCD DRIVER DESIGN OVERVIEW

Architectural Concept

In a display module, the driver electronics is responsible for
the generation of the proper panel driving waveforms
depending on the pixel RGB levels within the image to
be displayed. Therefore, optimal driver design is

LCD DESIGN TECHNIQUES 9



imperative for the realization of high-quality display-based
appliances. Display drivers generally are developed as
application-specific integrated circuits (ASICs). When con-
sidering the hardware architecture, drivers targeting
PMLCDs and AMLCDs can be treated jointly in that
they share the same building units.

At the architecture level, analog subsystems play a
central role in generating the high level voltages required
for driving the rows and the columns, and they usually
occupy most of the electronics on-chip area. On the other
hand, digital blocks do not commonly require any massive
area effort: Yet, a deal of vital functions takes place in
digital logic. The digital part accommodates all units
involved in instruction decoding (the driver is usually fed
with commands from an on-board microcontroller) and
interface-data handling as well as with display specific
functionalities responsible for orthogonal function and
scan signal generation, timing, and switching scheduling.
Finally, many display drivers also are equipped and
shipped with some sort of built-in video memory for local
pixel data storage; this facilitates the independence of
operation from the host system.

LCD Driver Design Flow

A typical industrial LCD driver design flow includes all
those steps needed for mixed analog–digital, very-large-
scale-of-integration ASIC design, usually structured
throughout the following milestones:

1. Project proposal: analysis of system level require-
ments based on the application needs.

2. Feasibility study: architecture definition based on
system level requirements, preliminary evaluation
based on a dedicated LCD module simulator, and
project planning.

3. Project start approval.

4. Architecture implementation: block level design of
both analog and digital parts (design front-end). Ana-
log circuit design and digital register-transfer-level
description and coding are included. Top-level simu-
lation can be also performed at this stage, usually by
means of behavioral modeling for the analog parts.

5. Analog and digital place & route and timing verifica-
tion (design back-end). Cosimulation of functional
testbenches with hardware description, including
back-annotated timing information, is frequently
employed at this stage. Top-level verification and
checks follow.

6. Prototype-based on-chip evaluation.

All the steps outlined above describe some very general
design phases that are common to the implementations of
both active-matrix and passive-matrix addressing display
drivers.

Front-End Driving Scheme Selection and Performance
Evaluation: Simulation Tools

When regarding the structure of a typical LCD design flow,
entailing the availability of testable prototypes at the very

end of the design chain, the interest in tools devoted to early
stage evaluation of the driver-display module performance
should become plain. As a matter of fact, although the
hardware development environments comprise mostly
standard analog and digital ASIC design tools (those for
circuit design, register-transfer-level description and
synthesis, technology mapping, cell place & route, and
chip verification), specialized tools should be featured to
simulate all functional interactions between the front-end
driver and the back-end panel. Indeed, merely relying on
the chip prototype evaluation phase for performance
assessment is often impractical because of the severe costs
associated with hardware redesigns on late detection of
operational faults. Proprietary simulation tools are likely
to be embedded into advanced industrial LCD design flows,
and they usually allow for:

1. Functional simulation of the hardware-embedded or
software-programmable driving schemes.

2. Functional simulation of all targeted color generation
modes.

3. Functional simulations of all embedded measures to
prevent visual artifact generation (for testing and
evaluation purposes).

4. Highly reconfigurable input modes (such as single-
picture display mode, or multiframe driving mode for
video streaming evaluation).

5. Sophisticated LCD-modeling engine (including the
frequency model of the LC cell response).

6. Reconfigurability with respect to all significant phy-
sical display parameters (such as material conduc-
tivity, material resistivity, LC cell geometry, and
electrode track lengths).

7. Multiple and flexible output formats and perfor-
mance figures.

The availability of an LCD circuit model is a particularly
important aspect, as it opens the possibility of performing
reliable evaluation of the module dynamic operation within
different frequency ranges.

Display Modeling for LCD Design. Any simulation engine
used for driver-display joint modeling cannot function with-
out some form of electrical characterization of an LC cell to
work as the electrical load of the driving circuits. A satis-
factorily accurate model of the frequency behavior of the LC
cell broadly used in practice (9) treats the cell as a simplified
RC network whose resistances and capacitances can be
calculated as functions of some very basic process and
material parameters for the liquid crystal, the polyimide
layers, and the connection tracks (e.g., LC conductivity and
ITO sheet resistivity). The resulting typical frequency
response of the LC cell turns out to be that of a 2-pole,
1-zero network. Consequently, apart from the claim that
the driving signals bandwidth be narrow for crosstalk
minimization, their lowest frequency bound must be also
high enough to prevent distortion induced by the first pole’s
attenuation.

10 LCD DESIGN TECHNIQUES



BIBLIOGRAPHY

1. P. Yeh, and C. Gu, Optics of Liquid Crystal Displays, 1st ed.,
John Wiley & Sons, 1999.

2. E. Lueder, Liquid Crystal Displays: Addressing Schemes and
Elecrto-Optical Effects, John Wiley & Sons, 2001.

3. T. J. Scheffer, and J. Nehring, Supertwisted nematic LCDs,
SID Int. Sym. Dig. Tech. Papers, M-12, 2000.

4. T. N. Ruckmongathan, Addressing techniques for RMS
responding LCDs - A review, Proc. 12th Int. Display Res.
Conf. Japan Display ‘92, 77–80, 1992.

5. M. Kitamura, A. Nakazawa, K. Kawaguchi, H. Motegi, Y.
Hirai, T. Kuwata, H. Koh, M. Itoh, and H. Araki, Recent
developments in multi-line addressing of STN-LCDs, SID
Int. Sym. Dig. Tech. Papers, 355–358, 1996.

6. H. Seiberle, and M. Schadt, LC-conductivity and cell para-
meters; their influence on twisted nematic and supertwisted
nematic liquid crystal displays, Mol. Cryst, Liq. Cryst., 239,
229–244, 1994.

7. K. Tarumi, H. Numata, H. Prücher, and B. Schuler, On the
relationship between the material parameters and the switch-
ing dynamics on twisted nematic liquid crystals, Proc. 12th Int.
Display Res. Conf. Japan Display ‘92, 587–590, 1992.

8. L. MacDonald, and A. C. Lowe, Display Systems: Design and
Applications, John Wiley & Sons, 1997.

9. H. Seiberle, and M. Schadt, Influence of charge carriers and
display parameters on the performance of passively and
actively addressed, SID Int. Sym. Dig. Tech. Papers, 25–28,
1992.

FURTHER READING

J. A. Castellano, Liquid Gold: The Story Of Liquid Crystal Displays
and the Creation of an Industry, World Scientific Publishing
Company, 2005.

P. A. Keller, Electronic Display Measurement: Concepts, Techn-
iques, and Instrumentation, 1st ed., Wiley-Interscience, 1997.

M. A. Karim, Electro-Optical Displays, CRC, 1992.

P. M. Alt, and P. Pleshko, Scanning limitations of liquid crystal
displays, IEEE Trans. El. Dev., ED-21(2), 146–155, 1974.

K. E. Kuijk, Minimum-voltage driving of STN LCDs by optimized
multiple-row addressing, J. Soc. Inf. Display, 8(2), 147–153, 2000.

M. Watanabe, High resolution, large diagonal color STN for desk-
top monitor application, SID Int. Sym. Dig. Tech. Papers, 34, M-
81–87, 1997.

S. Nishitani, H. Mano, and Y. Kudo, New drive method to eliminate
crosstalk in STN-LCDs, SID Int. Sym. Dig. Tech. Papers, 97–100,
1993.

SIMONE SMORFA

MAURO OLIVIERI

‘‘La Sapienza,’’ University
of Rome

Rome, Italy

ROBERTO MANCUSO

Philips Semiconductors
Zurich, Switzerland

LCD DESIGN TECHNIQUES 11



L

LOGIC DESIGN

INTRODUCTION

Over the years, digital electronic systems have progressed
from vacuum tube to complex integrated circuits, some of
which contain millions of transistors. Electronic circuits
can be separated into two groups, digital and analog cir-
cuits. Analog circuits operate on analog quantities that are
continuous in value and in time, whereas digital circuits
operate on digital quantities that are discrete in value and
time (1).

Analog signals are continuous in time besides being
continuous in value. Most measurable quantities in nature
are in analog form, for example, temperature. Measuring
around the hour temperature changes is continuous in
value and time, where the temperature can take any value
at any instance of time with no limit on precision but on the
capability of the measurement tool. Fixing the measure-
ment of temperature to one reading per an interval of time
and rounding the value recorded to the nearest integer will
graph discrete values at discrete intervals of time that
easily could be coded into digital quantities. From the given
example, it is clear that an analog-by-nature quantity could
be converted to digital by taking discrete-valued samples at
discrete intervals of time and then coding each sample. The
process of conversion is usually known as analog-to-digital
conversion (A/D). The opposite scenario of conversion is also
valid and known as digital-to-analog conversion (D/A). The
representation of information in a digital form has many
advantages over analog representation in electronic sys-
tems. Digital data that are discrete in value, discrete in
time, and limited in precision could be efficiently stored,
processed, and transmitted. Digital systems are said prac-
tically to be more noise immune as compared with analog
electronic systems because of the physical nature of analog
signals. Accordingly, digital systems are more reliable than
their analog counterpart. Examples of analog and digital
systems are shown in Fig. 1.

A BRIDGE BETWEEN LOGIC AND CIRCUITS

Digital electronic systems represent information in digits.
The digits used in digital systems are the 0 and 1 that
belong to the binary mathematical number system. In logic,
the 1 and 0 values correspond to True and False. In circuits,
the True and False could be thought of as High voltage and
Low voltage. These correspondences set the relationships
among logic (True and False), binary mathematics (0 and 1),
and circuits (High and Low).

Logic, in its basic shape, deals with reasoning that
checks the validity of a certain proposition—a proposition
could be either True or False. The relationship among logic,
binary mathematics, and circuits enables a smooth transi-
tion of processes expressed in propositional logic to binary
mathematical functions and equations (Boolean algebra)

and to digital circuits. A great scientific wealth exists that
strongly supports the relationships among the three dif-
ferent branches of science that lead to the foundation of
modern digital hardware and logic design.

Boolean algebra uses three basic logic operations AND,
OR, and NOT. The NOT operation if joined with a proposi-
tion P works by negating it; for instance, if P is True, then
NOT P is False and vice versa. The operations AND and OR
should be used with two propositions, for example, P and Q.
The logic operation AND, if applied on P and Q, would mean
that P AND Q is True only when both P and Q are True.
Similarly, the logic operation OR, if applied on P and Q,
would mean that P OR Q is False only when P and Q are
False. Truth tables of the logic operators AND, OR, and
NOT are shown in Fig. 2(a). Fig. 2(b) shows an alternative
representation of the truth tables of AND, OR, and NOT in
terms of 0s and 1s.

COMBINATIONAL LOGIC CIRCUITS

Digital circuits implement the logic operations AND, OR,
and NOT as hardware elements called ‘‘gates’’ that perform
logic operations on binary inputs. The AND-gate performs
an AND operation, an OR-gate performs an OR operation,
and an Inverter performs the negation operation NOT.
Figure 2(c) shows the standard logic symbols for the three
basic operations. With analogy from electric circuits, the
functionality of the AND and OR gates are captured as
shown in Fig. 3. The actual internal circuitry of gates is
built using transistors; two different circuit implementa-
tions of inverters are shown in Fig. 4. Examples of AND,
OR, NOT gates integrated circuits (ICs) are shown in Fig. 5.
Besides the three essential logic operations, four other
important operations exist—the NOR (NOT-OR), NAND
(NOT-AND), Exclusive-OR (XOR), and Exclusive-NOR
(XNOR).

A combinational logic circuit is usually created by com-
bining gates together to implement a certain logic function.
A combinational circuit produces its result upon applica-
tion of its input(s). A logic function could be a combination of
logic variables, such as A, B, C, and so on. Logic variables
can take only the values 0 or 1. The created circuit could be
implemented using AND-OR-Inverter gate-structure or
using other types of gates. Figure 6(a) shows an example
combinational implementation of the following logic func-
tion F(A, B, C):

FðA;B;CÞ ¼ ABCþ A0BCþ AB0C0

F(A, B, C) in this case could be described as a standard
sum-of-products (SOP) function according to the analogy
that exists between OR and addition (+), and between
AND and product (.); the NOT operation is indicated by an
apostrophe ‘‘ ’ ’’ following the variable name. Usually,
standard representations are also referred to as canonical
representations.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



In an alternative formulation, consider the following
function E(A,B,C) in a product-of-sums (POS) form:

EðA;B;CÞ ¼ ðAþ B0 þ CÞ:ðA0 þ Bþ CÞðAþ Bþ C0Þ

The canonical POS implementation is shown in Fig. 6(b).
Some other specifications might require functions with
more inputs and accordingly with a more complicated
design process.

The complexity of a digital logic circuit that corresponds
to a Boolean function is directly related to the complexity of
the base algebraic function. Boolean functions may be
simplified by several means. The simplification process
that produces an expression with the least number of terms
with the least number of variables is usually called mini-
mization. The minimization has direct effects on reducing
the cost of the implemented circuit and sometimes on
enhancing its performance. The minimization (optimiza-
tion) techniques range from simple (manual) to complex
(automated). An example of manual optimization methods
is the Karnough map (K-map).

K-MAPS

A K-map is similar to a truth table as it presents all the
possible values of input variables and their corresponding
output. The main difference between K-maps and truth
tables is in the cells arrangement. In a K-map, cells are
arranged in a way so that simplification of a given algebraic
expression is simply a matter of properly grouping the cells.

Analog Amplifier Speaker

Microphone          

A Simple Analog System

Personal Digital Assistant and a Mobile Phone

Speaker

Microphone

A Digital System

Figure 1. A simple analog system and a digital system; the analog signal amplifies the input signal using analog electronic components.
The digital system can still include analog components like a speaker and a microphone; the internal processing is digital.

Input P Input Q
Output: 
P AND Q

Input P Input Q
Output: 
P OR Q

Input X
Output: 
NOT P

False False False False False False False True 
False True False False True True  True False
True False False True False True    
True True True  True True True    

(a) 

Input P 

AND Gate 

0 
0 

0 

0 

0 

0 

0 

0 
0 

0 
0 

0 

1 

1 
1 

1 
1 

1 

1 
1 1 

1 1 
1 

1 0 

OR Gate Inverter 

Input Q
Output: 
P AND Q

Input P Input Q
Output: 
P OR Q

Input X
Output: 
NOT P

0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1    
1 1 1 1 1 1    

(b)

1

0

(c)

Figure 2. (a) Truth tables for AND, OR, and Inverter. (b) Truth tables for AND, OR, and Inverter in binary numbers. (c) Symbols for AND,
OR, and Inverter with their operation.

X

X XY

Y

X AND  Y

X AND  Y X OR  Y

X OR  Y

Y

X

Y

Figure 3. A suggested analogy between ANDand OR gates and
electric circuits.

2 LOGIC DESIGN



K-maps can be used for expressions with different numbers
of input variables: three, four, or five. In the following
examples, maps with only three and four variables are

shown to stress the principle. Methods for optimizing
expressions with more than five variables can be found in
the literature. The Quine–McClusky method is an example
that can accommodate several variables larger than five (2).

A three-variable K-map is an array of 8 (or 23) cells.
Figure 7(a) depicts the correspondence between a three-
input (A, B, and C) truth table and a K-map. The value of a
given cell represents the output at certain binary values of
A, B, and C. In a similar way, a four-variable K-map is
arranged as shown in Fig. 7(b). K-maps could be used for
expressions in either POS or SOP forms. Cells in a K-map
are arranged so that they satisfy the Adjacency property,
where only a single variable changes its value between
adjacent cells. For instance, the cell 000, that is the binary
value of the term A0B0C0, is adjacent to cell 001 that corre-
sponds to the term A0B0C. The cell 0011 (A0B0CD) is adjacent
to the cell 0010 (A0B0C0D).

MINIMIZING SOP EXPRESSIONS

The minimization of an algebraic Boolean function f has the
following four key steps:

1. Evaluation

2. Placement

3. Grouping

4. Derivation

OutputInput

+VDD 1.6 kΩ 130Ω

1 kΩ

4 kΩ

+VCC

Output

Input

TTL InverterCMOS Inverter

Figure 4. Complementary metal-oxide semiconductor (CMOS) and transistor-transistor logic (TTL) inverters.

Vcc

GND

Vcc

GND

Vcc

GND

Figure 5. The 74LS21 (AND), 74LS32 (OR), and 74LS04 (Inverter) TTL ICs.

(a) 

(b)

A

A

B
C

B
C

B
C

A

B
C

A

F(A, B, C)

E(A, B, C)
B
C

A

B
C

A

Figure 6. AND–OR–Inverter implementation of the function
(a) SOP: F(A, B, C) ¼ ABC þ A0BC þ AB0C0. (b) POS: E(A, B,
C) ¼ (A þ B0 þ C).(A0 þ B þ C)( A þ B þ C0).

LOGIC DESIGN 3



The minimization starts by evaluating each term in the
function f and then by placing a 1 in the corresponding cell
on the K-map. A term ABC in a function f (A, B, C) is
evaluated to 111, and another term AB 0CD in a function
g(A, B, C, D) is evaluated to 1011. An example of evaluating
and placing the following function f is shown in Fig. 8(a):

f ðA;B;CÞ ¼ A0B0C0 þ A0B0Cþ ABC0 þ AB0C0

After placing the 1s on a K-map, grouping filled-with-1s
cells is done according to the following rules [see Fig. 8(b)]:

� A group of adjacent filled-with-1s cells must contain
several cells that belong to the set of powers of two (1, 2,
4, 8, or 16).

� A group should include the largest possible number of
filled-with-1s cells.

� Each 1 on the K-map must be included in at least one
group.

� Cells contained in a group could be shared within
another group as long as overlapping groups included
noncommon 1s.

After the grouping step, the derivation of minimized
terms is done according to the following rules:

� Each group containing 1s creates one product term.

� The created product term includes all variables that
appear in only one form (completed or uncomplemen-
ted) across all cells in a group.

After deriving terms, the minimized function is
composed of their sum. An example derivation is shown
in Fig. 8(b). Figure 9 presents the minimization of the
following function:

gðA;B;C;DÞ ¼ AB0C0D0 þ A0B0C0D0 þ A0B0C0D0 þ A0B0CD

þ AB0CDþ A0B0CD0 þ A0BCDþ ABCD

þ AB0CD0

COMBINATIONAL LOGIC DESIGN

The basic combinational logic design steps could be sum-
marized as follows:

1. Specification of the required circuit.

2. Formulation of the specification to derive algebraic
equations.

3. Optimization (minimization) of the obtained equa-
tions.

4. Implementation of the optimized equations using a
suitable hardware (IC) technology.

BC
A 00 01 11 10

0 0 0 1 0 

1 0 1 1 1 

Input A Input B Input C Output F 
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

A

C

B

(a) 

CD
AB 00 01 11 10

00

01

11

10

(b)

Figure 7. (a) The correspondence between a
three-input (A, B, and C) truth table and a K-
map. (b) An empty four-variable K-map.

Figure 8. (a) Terms evaluation of the function f(A, B,
C) ¼ A0B0C0 þ A0B0C þ ABC0 þ AB0C0.(b)Groupingandderivation.

4 LOGIC DESIGN



The above steps are usually joined with an essential
verification procedure that ensures the correctness and
completeness of each design step.

As an example, consider the design and implementation
of a three-variable majority function. The function F(A, B,
C) will return a 1 (High or True) whenever the number of 1s
in the inputs is greater than or equal to the number of 0s.

The above specification could be reduced into a truth
table as shown in Fig. 7(a). The terms that make the
function F return a 1 are the terms F(0, 1, 1), F(1, 0, 1),
F(1, 1, 0), or F(1, 1, 1). This truth table could be alterna-
tively formulated as in the following equation:

F ¼ A0BCþ AB0Cþ ABC0 þ ABC

Following the specification and the formulation, a K-map is
used to obtain the minimized version of F (called Fmin).
Figure 10(a) depicts the minimization process. Figure 10(b)
shows the implementation of Fmin using standard AND-
OR-NOT gates.

COMBINATIONAL LOGIC CIRCUITS

Famous combinational circuits that are widely adopted in
digital systems include encoders, decoders, multiplexers,
adders, some programmable logic devices (PLDs), and so
on. The basic operation of multiplexers, half-adders, and
simple PLDs (SPLDs) is described in the following lines.

A multiplexer (MUX) selects one of n input lines and
provides it on a single output. The select lines, denoted S,
identify or address one of the several inputs. Figure 11(a)
shows the block diagram of a 2-to-1 multiplexer. The two
inputs can be selected by one select line, S. If the selector
S = 0, input line d0 will be the output O, otherwise, d1 will
be produced at the output. An MUX implementation of the
majority function F(A, B, C) is shown in Fig. 11(b).

A half-adder inputs two binary digits to be added and
produces two binary digits representing the sum and carry.
The equations, implementation, and symbol of a half-adder
are shown in Fig. 12.

Simple PLDs (SPLDs) are usually built from combina-
tional logic blocks with prerouted wiring. In implementing
a function on a PLD, the designer will only decide of which
wires and blocks to use; this step is usually referred to as
programming the device. Programmable logic array (PLA)
and the programmable array logic (PAL) are commonly
used SPLDs. A PLA has a set of programmable AND gates,
which link to a set of programmable OR gates to produce an
output [see Fig. 13(a)]. A PAL has a set of programmable
AND gates, which link to a set of fixed OR gates to produce
an output [see Fig. 13(b)]. The AND-OR layout of a PLA/
PAL allows for implementing logic functions that are in an
SOP form. A PLA implementation of the majority function
f(A, B, C) is shown in Fig. 13(c).

CD 
AB 00 01 11 10

00 1 1 1 1 

01   1  

11   1  

10 1  1 1 

gmin = A’B’ + CD + B’D’

Figure 9. Minimization steps of the following function: g(A, B, C,
D) ¼AB0C0D0 þ A0B0C0D0 þ A0B0C0D0 þ A0B0CD þ AB0CD þ A0B0-
B0CD0 þ A0BCD þ ABCD þ AB0CD0.

BC
A 00 01 11 10

0 0 0 1 0 

1 0 1 1 1 

(a) 

A 

Fmin (A, B, C) 

C 
B 
C 
A 
B 

(b)

A

B

C

Fmin = AC + BC + AB

Figure 10. (a) Minimization of a three-variable majority func-
tion. (b) Implementation of a minimized three-variable majority
function.

Figure 11. (a) Minimization of a three-variable majority func-
tion. (b) Implementation of a minimized three-variable majority
function.

LOGIC DESIGN 5



SEQUENTIAL LOGIC

In practice, most digital systems contain combinational
circuits along with memory; these systems are known as
sequential circuits. In sequential circuits, the present out-
puts depend on the present inputs and the previous states
stored in the memory elements. Sequential circuits are of
two types: synchronous and asynchronous. In a synchro-

nous sequential circuit, a clock signal is used at discrete
instants of time to synchronize desired operations. A clock
is a device that generates a train of pulses as shown in
Fig. 14. Asynchronous sequential circuits do not require
synchronizing clock pulses; however, the completion of an
operation signals the start of the next operation in
sequence.

In synchronous sequential circuits, the memory ele-
ments are called flip-flops and are capable of storing only
one bit. Arrays of flip-flops are usually used to accommodate
for bit-width requirements of binary data. A typical syn-
chronous sequential circuit contains a combinational part,
sequential elements, and feedback signals coming from the
output of the sequential elements.

FLIP-FLOPS

Flip-flops are volatile elements, where the stored bit is
stored as long as power is available. Flip-flops are designed
using basic storage circuits called latches. The most com-
mon latch is the SR (Set to 1 - Reset to 0) latch. An SR latch

A0

B0

Half Adder

S = A0 ⊕ B0

C = A0 . B0

Figure 12. The equations, implementation, and symbol of a half-
adder. The used symbol for a XOR operation is ‘‘�’’.

Figure 13. (a) A three-input, two-output PLA with its AND arrays and OR arrays. An AND array is equivalent to a standard multiple-input
AND gate, and an OR array is equivalent to a standard multiple-input OR gate. (b) A three-input, two-output PAL. (c) A PLA implementation
of the majority function F(A, B, C).

6 LOGIC DESIGN



could be formed with two cross-coupled NAND gates as
shown in Fig. 15. The responses to various inputs to the SR
latch are setting Q to 1 for an SR input of 01 (S is active low;
i.e., S is active when it is equal to 0), resetting Q to 0 for an
SR input of 10 (R here is also active low), and memorizing
the current state for an SR input of 11. The SR input of 00 is
considered invalid.

A flip-flop is a latch with a clock input. A flip-flop that
changes state either at the positive (rising) edge or at the
negative (falling) edge of the clock is called an edge-trig-
gered flip-flop (see Fig. 14). The three famous edge-trig-
gered flip-flops are the RS, JK, and D flip-flops.

An RS flip-flop is a clocked SR latch with two more
NAND gates [see Fig. 15(b)]. The symbol and the basic
operation of an RS flip-flop are illustrated in Fig. 16(a). The
operation of an RS flip-flop is different from that of an SR
latch and responds differently to different values of S and R.
The JK and D flip-flops are derived from the SR flip-flop.

However, the JK and D flip-flops are more widely used (2).
The JK flip-flop is identical to the SR flip-flop with a single
difference, where it has no invalid state [see Fig. 16(b)]. The
D flip-flop has only one input formed with an SR flip-flop
and an inverter [see Fig. 16(c)]; thus, it only could set or
reset. The D flip-flop is also known as a transparent flip-
flop, where output will have the same value of the input
after one clock cycle.

SEQUENTIAL LOGIC DESIGN

The basic sequential logic design steps are generally iden-
tical to those for combinational circuits; these are Specifica-
tion, Formulation, Optimization, and the Implementation of
the optimized equations using a suitable hardware (IC)
technology. The differences between sequential and combi-
national design steps appear in the details of each step.

The specification step in sequential logic design usually
describes the different states through which the sequential
circuit goes. A typical example for a sequential circuit is a
counter that undergoes eight different states, for instance,
zero, one, two, three up to seven. A classic way to describe
the state transitions of sequential circuits is a state dia-
gram. In a state diagram, a circle represents a state and an
arrow represents a transition. The proposed example
assumes no inputs to control the transitions among states.
Figure 17(a) shows the state diagram of the specified
counter. The number of states determines the minimum
number of flip-flops to be used in the circuit. In the case of
the 8-states counter, the number of flip-flops should be 3; in
accordance with the formula, 8 equals 23. At this stage, the
states could be coded in binary. For instance, the stage
representing count 0 is coded to binary 000; the stage of
count 1 is coded to binary 001, and so on.

The state diagram is next to be described in a truth
table style, usually known as a state table, from which the
formulation step could be carried forward. For each flip-
flop, an input equation is derived [see Fig. 17(b)]. The
equations are then minimized using K-maps [see Fig.
17(c)]. The minimized input equations are then implemen-
ted using a suitable hardware (IC) technology. The mini-
mized equations are then to be implemented [see
Fig. 17(d)].

MODERN LOGIC DESIGN

The task of manually designing hardware tends to be
extremely tedious, and sometimes impossible, with the
increasing complexity of modern digital circuits. Fortu-
nately, the demand on large digital systems has been
accompanied with a fast advancement in IC technologies.
Indeed, IC technology has been growing faster than the
ability of designers to produce hardware designs. Hence,
there has been a growing interest in developing techniques
and tools that facilitate the process of logic design.

Two different approaches emerged from the debate
over ways to automate hardware logic design. On one
hand, the capture-and-simulate proponents believe that
human designers have good design experience that cannot
be automated. They also believe that a designer can build

Figure 14. Clock pulses.

Figure 15. (a) An SR latch. (b) An RS flip-flop.

Figure 16. (a) The symbol and the basic operation of (a) RS flip-
flop, (b) JK flip-flop, and (c) D flip-flop.

LOGIC DESIGN 7



a design in a bottom-up style from elementary components
such as transistors and gates. As the designer is concerned
with the deepest details of the design, optimized and
cheap designs could be produced. On the other hand,
the describe-and-synthesize advocates believe that
synthesizing algorithms can out-perform human
designers. They also believe that a top-down fashion
would be better suited for designing complex systems.
In describe-and-synthesize methodology, the designers
first describe the design. Then, computer-aided design
(CAD) tools can generate the physical and electrical struc-
ture. This approach describes the intended designs using
special languages called hardware description languages
(HDLs). Some HDLs are very similar to traditional pro-
gramming languages like C, Pascal, and so on. (3). Ver-
ilog(4) and VHDL (Very High Speed Integrated Circuit
Hardware Description Language) (5) are by far the most
commonly used HDLs in industry.

Hardware synthesis is a general term used to refer to the
processes involved in automatically generating a hardware
design from its specification. High-level synthesis (HLS)
could be defined as the translation from a behavioral
description of the intended hardware circuit into a struc-
tural description. The behavioral description represents an
algorithm, equation, and so on, whereas a structural
description represents the hardware components that
implement the behavioral description.

The chained synthesis tasks at each level of the design
process include system synthesis, register-transfer synth-
esis, logic synthesis, and circuit synthesis. System synth-
esis starts with a set of processes communicating though
either shared variables or message passing. Each compo-
nent can be described using a register-transfer language
(RTL). RTL descriptions model a hardware design as cir-
cuit blocks and interconnecting wires. Each of these circuit
blocks could be described using Boolean expressions. Logic
synthesis translates Boolean expressions into a list of logic

Figure 17. (a) The state diagram of the specified counter. (b) The
state table. (c) Minimization of input equations. (d) Impliementa-
tion of the counter.

Figure 17. (Continued)

8 LOGIC DESIGN



gates and their interconnections (netlist). Based on the
produced netlist, circuit synthesis generates a transistor
schematic from a set of input–output current, voltage and
frequency characteristics, or equations.

The logic synthesis step automatically converts a logic-
level behavior, consisting of logic equations and/or finite
state machines (FSMs), into a structural implementation
(3). Finding an optimal solution for complex logic mini-
mization problems is very hard. As a consequence, most
logic synthesis tools use heuristics. A heuristic is a tech-
nique whose result can hopefully come close to the optimal
solution. The impact of complexity and of the use of
heuristics on logic synthesis is significant. Logic synthesis
tools differ tremendously according to the heuristics they
use. Some computationally intensive heuristics require
long run times and thus powerful workstations producing
high-quality solutions. However, other logic synthesis
tools use fast heuristics that are typically found on perso-
nal computers producing solutions with less quality. Tools
with expensive heuristics usually allow a user to control
the level of optimization to be applied.

Continuous efforts have been made, paving the way for
modern logic design. These efforts included the develop-
ment of many new techniques and tools. An approach to
logic minimization using a new sum operation called multi-
ple valued EXOR is proposed in Ref. 6 based on neural
computing.

In Ref. 7, Tomita et al. discuss the problem of locating
logic design errors and propose an algorithm to solve it.
Based on the results of logic verification, the authors intro-
duce an input pattern for locating design errors. An algo-
rithm for locating single design errors with the input
patterns has been developed.

Efforts for creating tools with higher levels of abstrac-
tion in design lead to the production of many powerful
modern hardware design tools. Ian Page and Wayne
Luk(8) developed a compiler that transformed a subset of
Occam into a netlist. Nearly ten years later we have seen
the development of Handel-C, the first commercially avail-
able high-level language for targeting programmable logic
devices (such as field programmable gate arrays (9).

A prototype HDL called Lava was developed by Satnam
Singh at Xilinx and by Mary Sheeran and Koen Claessen at
Chalmers University in Sweden (10). Lava allows circuit
tiles to be composed using powerful high-order combina-
tors. This language is embedded in the Haskell lazy func-
tional programming language. Xilinx implementation of
Lava is designed to support the rapid representation,
implementation, and analysis of high-performance FPGA
circuits.

Logic design has an essential impact on the development
of modern digital systems. In addition, logic design tech-
niques are a primary key in various modern areas, such as

embedded systems design, reconfigurable systems (11),
hardware/software co-design, and so on.

CROSS-REFERENCES

Programmable Logic Devices, see Programmable Logic
Arrays
Synthesis, see High-Level Synthesis
Synthesis, see Logic Synthesis

BIBLIOGRAPHY

1. F. Vahid et al., Embedded System Design: A Unified
Hardware/Software Introduction. New York: Wiley, 2002.

2. T. Floyd, Digital Fundamentals with PLD Programming.
Englewood Cliffs, NJ: Prentice Hall, 2006.

3. S. Hachtel, Logic Synthesis and Verification Algorithms.
Norwell: Kluwer, 1996.

4. IEEE Standard 1364, Verilog HDL language reference
manual, 1995.

5. IEEE Standard 1076, Standard VHDL reference manual, 1993.

6. A. Hozumi, N. Kamiura, Y. Hata, and K. Yamato, Multiple-
valued logic design using multiple-valued EXOR, Proc.
Multiple-Valued Logic, 1995, pp. 290–294.

7. M. Tomita, H. Jiang, T. Yamamoto, and Y. Hayashi, An
algorithm for locating logic design errors, Proc. Computer-
Aided Design, 1990, pp. 468–471.

8. I. Page and W. Luk, Compiling Occam into field-programmable
gate arrays, Proc. Workshop on Field Programmable Logic and
Applications, 1991, pp. 271–283.

9. S. Brown and J. Rose, Architecture of FPGAs and CPLDs: A
tutorial, IEEE Design Test Comput., 2: 42–57, 1996.

10. K. Claessen, Embedded languages for describing and verifying
hardware, PhD Thesis, Chalmers University of Technology
and Göteborg University, 2001.

11. E. Mirsky and A. DeHon, MATRIX: A reconfigurable comput-
ing architecture with configurable instruction distribution and
deployable resources, Proc. IEEE Workshop on FPGAs for
Custom Computing Machines, 1996, pp. 157–166.

FURTHER READING

T. Floyd, Digital Fundamentals with PLD Programming.
Englewood Cliffs, NJ: Prentice Hall, 2006.

M. Mano et al., Logic and Computer Design Fundamentals.
Englewood Cliffs, NJ: Prentice Hall, 2004.

ISSAM W. DAMAJ

Dhofar University
Salalah, Oman

LOGIC DESIGN 9



L

LOGIC SYNTHESIS

The design process for an electronics system begins when an
idea is transformed into a set of specifications to be verified
by the future system. These specifications become the basis
for a series of steps or design tasks that eventually will
produce a circuit that represents the physical expression of
the original idea. The process of generating a final circuit
from the initial specifications is known as circuit synthesis.

The design flow for a digital system is composed of a
series of stages in which system models are established in
accordance with different criteria. Each stage corresponds
to a level of abstraction.

To illustrate how these levels of abstraction may be
classified, we might, for example, consider three levels:
the system level, the RT (register transfer) level, and the
logic level. In the system level, the architecture and algo-
rithms necessary to verify the required performance are
specified. The RT level represents the system specification
as an RT model, in this case establishing an architecture for
data flow between registers subject to functional transfor-
mations. Finally, the logic level determines the system‘s
functionality using logic equations and descriptions of
finite state machines (FSMs). The data handled is logic
data with values such as 0, 1, X, Z, etc.

Design tasks in each of the levels usually are supported
by different computer aided design (CAD) tools. In each
level, the design process basically involves two stages: (1)
description of the system at the corresponding level and (2)
verification of the description’s behavior via simulation.
The synthesis process consists of obtaining the system
structure from a description of the behavior. Depending
on the level of abstraction in which the work is being carried
out, the synthesis will be high level synthesis, logic synth-
esis, etc. This article addresses logic synthesis, which
involves the generation of a circuit at the logic level based
on an RT level design specification. The automation of the
synthesis process has allowed the development of several
tools that facilitate the tasks involved. Automatic synthesis
tools offer several advantages when implementing an elec-
tronic circuit. First, automation allows the design flow to be
completed in less time, which is relevant particularly today
because of the high competitiveness and the requirements
to solve demands in a short period of time. Second, auto-
matic synthesis also makes the exploration of design space
more viable because it enables different requirements, such
as cost, speed, and power, to be analyzed. Third, a funda-
mental aspect of the whole design process is its robustness,
that is, its certainty that the product is free from any errors
attributable to the designer. In this regard, the use of
automatic synthesis tools guarantees the ‘‘correct construc-
tion’’ of the system being designed.

The following section of this article deals with aspects
associated with logic design such as data types, system
components, and modes of operation. Next, the hardware
description languages will be presented as tools to specify

digital systems. Two standard languages (VHDL and
Verilog) will be examined in detail, and the use of VHDL
for synthesis will be explained to illustrate specific aspects
of logic synthesis descriptions. The article ends with an
illustrative example of the principal concepts discussed.

LOGIC DESIGN ORGANIZATION: DATAPATH AND
CONTROL UNIT

The RT level is the level of abstraction immediately above
the logic level (1,2). In contrast with the logic level, gen-
erally concerned with bitstreams, the RT level handles
‘‘data.’’ Data is a binary word of n bits. Data are processed
through arithmetic or logic operations that normally affect
one or two data: A + B, NOT(A), and so on.

Data are stored in ‘‘registers,’’ which constitute the
electronic component for storing n bits. Source data must
be ‘‘read’’ from its registers and the result of the operation is
then ‘‘written’’ in another register to be stored there. The
data operation is performed in a ‘‘functional unit’’ (for
example, an arithmetic-logic unit). The writing operation
is sequential and, in a synchronous system, for example, is
therefore executed while the clock is active. The operations
of the functional unit and the reading of the register are
combinational functions.

Data is transmitted from the source registers toward the
functional unit and from there to the target register via
‘‘buses,’’ which are basically ‘‘n’’ cables with an associated
protocol to allow their use.

The core operation is data transfer between registers—
hence the name given to this level. It includes both reading
and writing operations. Description techniques suitable at
the logic level (FSMs and switching theory) are not suffi-
cient at the RT level. One of the simplest ways to describe
these operations is as follows:

writing : Rtarget < ¼ DataA �DataB

reading : DataOut ¼ ½Rsource�

where ‘‘�’’ is the operation between DataA and DataB.
Because a digital system is very complex at the RT level,

it is advisable to split up its tasks into actions that affect the
data (storage, transport, calculation, etc.) and control
actions (sequencing, decision taking, etc.). Digital system
structures at the RT level, therefore, have two units: the
data path unit and the control unit.

The data path encompasses all of the functional units
that store and process data and the buses that interconnect
them. For example, Fig. 1 shows an n-bit serial adder with a
start signal (Start) and an end-of-operation signal (End), in
which both input data enter consecutively via the parallel
bus Din. The data path unit contains the three n-bit reg-
isters where A and B data and the result of the addition
(SUM) are stored. It also has an n-module counter (CNT) to
count the number of bits, a full-adder and a 1-bit register

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



(i.e., bistable) to carry out the series addition. These com-
ponents have specific operation selection inputs, which, in
this case, are as follows: clear (CL, CLD), shift right (SRA,
SRB, SRS), count up (UP), and parallel write (WA, WB, W).

The set of register transfers that can be executed in one
single clock cycle is called the micro-operation (mop), and is
the basic operation performed by a digital system. How-
ever, from a broader perspective, a digital system executes
essentially an instruction or a specific macro-operation
belonging to a set of instructions of the digital system.
For an instruction to be executed, several clock cycles—
or several mops—usually are required. Therefore, a
sequence of mops must be obtained for each instruction
so that, when the sequence is executed, the instruction can

be delivered. The set of mops sequences for all instructions
constitutes the digital system‘s control microprogram.

Evidently, the data path design should allow execution
of all the mop of the control microprogram. The purpose of
the control unit is to execute the control microprogram, and
therefore it has the following functions: (1) to control which
mop must be performed in each clock cycle, (2) to generate
the system control outputs (i.e., End in Fig. 1) and the data
path operation selection signals that execute the mop (i.e.,
in the example in Fig. 1, it will activate SRA to shift the DA
register, it will activate UP to make CNT count, etc.), and
(3) to evaluate the compliance of the control conditions: in
Fig. 1, Start and Cy.

xrWA
SRA 0DA[n]

Pin

ai bi
CiCi+1 FA

si

xrWB
SRB 0DB[n]

Pin

xr
SRS SUM[n]

in
q

CNT mod. nCL
UP

Cy

Din [n]

NOP

Start
N

Y

S0

S1Din → DA; 0 → CNT; 0 → D
WA, CL, CLD

S2

CLD

W

D

Din → DB
WB

CNT+1 → CNT; Ci+1 → D;
SHR(DA); SHR(DB); SHR(SUM) 

S3

UP, W, SRA, SRB, SRS

Cy
N

Y

End
S4

µ next opactionsconditionops µ

S0-Start=0S0
S1-Start=1

WTRUES1 A S2, CL, CLD

WTRUES2 B S3

CyS3 UP, W, SRA, SRB, SRS S3
UP, W, SRCy A, SRB, SRS S4

S0EndTRUES4

(c)(b)

(a)

Control Unit

Data Path

EndStart

Cy WA WB CL SRA SRB UP CLDW SRS

Figure 1. Binary Serial Adder: (a) data path, and control unit; (b) ASM chart; and (c) FSMD microprogram.

2 LOGIC SYNTHESIS



The control microprogram might be seen as a sequence of
actions from two perspectives: first, as a data flow
expressed by the RT operations of each mop and, second,
as a control signal activation sequence, whether those
signals are digital system outputs (for example, End) or
signals from the registers (for example, SRA). The two
perspectives should be coherent. To describe the control
microprogram, graphic techniques are employed, such as
ASM (algorithmic state machine) charts or techniques
associated with the computer languages generically known
as hardware description languages (HDL), of which a great
number have been developed (ABEL, AHPL, DDL, Verilog,
VHDL, etc.). The most relevant of these languages will be
addressed in more detail in the article.

The ASM chart is a very intuitive, useful, and simple
technique to describe control microprograms, especially for
synchronous digital systems. Each rectangular box identi-
fies a mop—a state of the program or, in other words, the
actions executed within the corresponding clock cycle,
whether they affect data (RT operations) or control (acti-
vating control signals). Figure 1(b) shows the ASM chart
that describes both the data flow and the control instruc-
tions for our example. In this case, the actions to be exe-
cuted in the S2 state are DB< = Din (data view) and WB = 1
(control view). An alternative description of the control
microprogram, now using a very simplified HDL, which
corresponds to what is known as the finite state machine
with data path(FSMD) (3) is shown in Fig. 1(c).

The data path in Fig. 1 is very simple and its design is
specific. Designing more complex systems is far more diffi-
cult. In general, for the best chance of success, the data path
should specify the following aspects in as much detail as
possible: the functional blocks available (for both registers
and processing), the data flow sequencing structures (par-
allel/pipeline level), and the interconnection architecture
(one, two, three, or more buses). The better these elements
are specified, the easier and more efficient it will be to
synthesize the data path from the description at the
most abstract level.

The control unit design can be obtained with the tech-
niques employed habitually in FSM design, and the control
unit therefore can be implemented with random logic, using
bistables and gates. However, because of implementation
restrictions, it is preferable to synthesize the control unit
from the RT level. Automatic synthesis from the ASM
control microprogram description is easier if it is used
one bistable per state in the design of the control unit:

� every Yes state leads to a D-type bistable,

� every decision (i.e., if Cy then S4 else S3, in S3 on
Fig. 1(b)) requires a 1:2 demultiplexer with Cy as the
selection signal,

� and OR gates join signals that are activated (with 1) in
different parts, for example, bistable input D3 is ORing
between the q2 output of bistable 2 and the 0 (NOT Cy)
output of the demultiplexer controlled by Cy.

Because the ROM-register or PLA-register structures
are general FSM design structures, they facilitate control
unit synthesis from the RT description. In this case, the

microprogram is ‘‘written’’ in ROM (or PLA). In this tech-
nique, known as microprogrammed control, the register is a
pointer to the mop that is executed and transmitted
(together with other control inputs) to ROM/PLA, whereas
the ROM/PLA content produces the code for the following
mop via a subset of outputs and the values for the control
unit output signals via the remaining ROM/PLA outputs.
The control microprogram, written in ROM/PLA, constitu-
tes the firmware. Firmware engineering studies ways to
optimize the size and the performance of the ROM/PLA-
register solution by limiting the data path operation.

HARDWARE DESCRIPTION LANGUAGES

Most automatic synthesis tools divide the synthesis process
up into hierarchically organized stages that transfer a
specific system description to another description with a
greater level of detail. The initial system description
usually is expressed in a high level programming language
(Pascal, C, etc.) or a an HDL (VHDL, Verilog, etc.).

Hardware specifications can be represented in different
ways. Tables and graphs produce representations of
greater visual clarity, but do not handle large sizes effi-
ciently. In these cases, language-based descriptions are
more versatile than tables and are more machine-readable
than graphs.

Specific hardware description languages should be used
because high level programming languages (such as C,
C++, etc.), although feasible, are not efficient. Their ineffi-
ciency stems from the fact that, because they do not possess
elements suitable to describe hardware (for example, inte-
grated procedural and nonprocedural paradigms), they
require more code lines than specific HDL to describe the
same function. As a result, the descriptions they generate
are more difficult to understand. Furthermore, in lan-
guages designed to describe software, the compiler or
translator adapts the descriptions to the machine that
will execute the program (resources, architecture, etc.),
whereas in HDLs the specification represents the machine
that is executing the algorithm, its resources, and so an.

VHDL was created in the early 1980s as part of a U.S.
Department of Defence project called VHSIC (Very High
Speed Integrated Circuits). The project required a lan-
guage that could be used to describe the systems being
designed and would perform two specific functions: first,
allow the designs to be self-documenting and, second, serve
as a means of simulating the circuits being studied. In 1985,
the DATC (Design Automation Technical Committee) of the
IEEE (Institute of Electrical and Electronics Engineers)
expressed an interest in VHDL as a result of its need to
describe circuits via a language that was independent of the
design tools and that could cover the different levels of
abstraction in the design process. VHDL provided a solu-
tion to the problem of compatibility between designs and
the different CAD platforms. Considering that, at that
time, VHDL was a language that met all the DATC‘s
requirements, the VASG (VHDL Analysis and Standardi-
zation Group) was created to begin the process of standar-
dization. Subsequently, in December 1987, the standard
designated IEEE 1076-1987 officially appeared for the first

LOGIC SYNTHESIS 3



time (4). The language has been revised to ensure its
development over time. VHDL was created specifically to
describe digital systems (5–7), but today a new language
called VHDL-AMS (VHDL-Analog Mixed Signal) is avail-
able to describe analog and mixed signal circuits.

The VHDL standardization process coincided with that
of Verilog, a logic simulation language for the Verilog-XL
simulator owned by Cadence Design Systems. Verilog was
freed in 1990, allowing the creation of the OVI (Open
Verilog International) organism and marking the begin-
ning of the language‘s standardization process. The first
standard version appeared in 1995 and was designated
IEEE 1364-1995 (8). Later, the Accellera organism (9)
was created when OVI and VI (VHDL International)
merged to promote new standards and to develop those
already in existence. VHDL and Verilog, like most high
level programming languages, are imperative languages.
These languages are based on a declarative syntax in which
the desired problem is expressed through a set of instruc-
tions that does not detail the method of solution: That is to
say, the sequence of instructions is not relevant. But VHDL
and Verilog also allow a procedural syntax (where the
desired action is described via a sequence of steps in which
the order of execution is important) to be applied for certain
specific instructions such as function, procedure, and pro-
cess.

A VHDL description is composed of a series of design
units that allow the different elements that define a circuit
to be specified. The basic design unit is called an entity. The
entity allows the circuit‘s interfaces (for example, input and
output ports) to be defined. Through this unit, the circuit
communicates with its surroundings. The entity represents
the system as a black box interface accessible only via the
ports. Inside that black box, another design unit—called
architecture—is described. Architecture enables the beha-
vior of a circuit or its structure to be specified. Because any
system can be described in several ways, a circuit can be
modeled by several architectures, but for any specific
design, only one entity exists.

Architecture specification has two areas: a declarative
area and the architecture body. In the former, those ele-
ments to be used in the description are declared, including
the components that describe the circuit diagram, internal
signals, functions and procedures, the data types to be used,
and so on. But it is in the architecture body that the system
is described. The instructions included in the architecture
body are concurrent: That is, the instructions are executed
simultaneously. These instructions serve to instance and
interconnect components, execute procedures, assign
values to signals via conditional or unconditional assigna-
tion instructions, and so on.

This type of description can be used to specify the circuit
both structurally (schematically) and functionally (describ-
ing the system‘s equations). Procedural syntax is required to
specify an algorithm, which, in VHDL, is possible through
processes, functions, and procedures. A process is a concur-
rent instruction (because it is used within the body of an
architecture) that contains sequential instructions that are
executed one after another according to the established
programming flow. These instructions are typical of any
procedural programming language, such as loop

instructions, ‘‘if . . . then . . . else’’ instructions, variable assig-
nation instructions, and jumps and subroutine returns.
Functions and procedures also have a procedural syntax;
the difference between the two is that functions can return
one value but procedures can return more than one value.

In VHDL, the user is responsible to define data types,
operators, attributes, and functions. Specific instructions
exist to create new data types or even to use previously
defined types to create new ones. In this respect, the over-
load capacity of the operators and the functions is very
useful: Different operators or functions can be created with
the same name, distinguishable only by their parameters.

In the standard Verilog language, the basic design unit
is the module. A module contains the definition of all the
elements that constitute the system. It is headed by a list of
input/output gates equivalent to the entity in VHDL. Inside
the module internal signals (wire), inputs (input) and out-
puts (output) are defined. The module also describes the
functions/structure of the system.

Certain similarities exist between the VHDL and Ver-
ilog languages: They both have a set of concurrent instruc-
tions as the basis for their descriptions. The instructions
within the Verilog module are concurrent instructions and
are executed when events occur at the inputs. For algo-
rithmic descriptions, a sequentially executed program flow
must be represented, and therefore a set of sequential
instructions exists, composed of always, initial instructions
(equivalent to processes in VHDL), procedures (task), and
functions. Always and initial instructions are concurrent
instructions (specified within a module) that contain
sequential instructions. The difference between always
and initial is that the latter only is executed once during
the simulation whereas the former is executed each time an
event occurs at input signals.

Perhaps the most important difference to be found
between the VHDL and Verilog languages is their respec-
tive philosophies. Verilog is a language that originated in
logic level descriptions (it was created as a logic simulator
language), which makes it very suitable to generate
descriptions at this level, because it contains elements
that facilitate specifications (data types, primitives, speci-
fication of timing parameters, etc.). In this language, the
user employs the facilities available but is not able to define
new elements. In contrast, in VHDL, the user defines the
elements to be used (data types, operators, etc.).

All these characteristics of the VHDL and Verilog lan-
guages make them easily adaptable to system modeling
involving different description techniques (structural,
functional, algorithmic). Therefore, languages are very
powerful as logic synthesis languages because they cover
different levels of abstraction for digital systems. These are
alive languages and have update mechanisms to adapt to
new requirements. Indeed, although originally designed
for documentation and for simulation, today the use of
these two languages is extended to other areas of applica-
tion, such as high level synthesis, electrical level circuit
modeling, and performance analysis.

For other applications, more suitable languages are
emerging. For example, in the late 1990s the Vera language
for system verification was developed. This language is
oriented toward verification tasks (hardware verification

4 LOGIC SYNTHESIS



language, HVL). Its features include constructions that
facilitate functional verification, such as testbench crea-
tion, simulation, and formal verification. Vera has had
great influence in the development of new languages
such as SystemVerilog (standard IEEE 1800-2005). Sys-
temVerilog is an extension of Verilog that includes C con-
structions, interfaces, and other descriptive elements. The
aim of the language is to cover description levels with a
greater degree of abstraction to include synthesis and,
above all, verification applications; therefore, it is known
as a system level design/verification language (hardware
design and verification language).

To describe system specifications at a higher level, lan-
guages are required that allow those specifications to be
defined without undertaking a priori decision with regard
to their implementation. To meet this challenge, the Sys-
temC language was created. It was approved as a standard
language in December 2005 under the designation IEEE
1666-2005. Basically, it is composed of a C++ library aimed
to facilitate hardware description from C++. The level of
abstraction addressed by this language is required to spe-
cify systems that contain a global description: That is, both
hardware-related aspects and those aspects associated
with the software to be executed on the hardware are
described. Therefore, it is a very suitable language to gen-
erate specifications in the field of hardware–software code-
sign environments. In such environments, the baseline is to
produce system descriptions that do not pre-establish the
nature of the system‘s eventual implementation (either in
hardware or software). It is the codesign tools that will
decide which functions will be implemented in hardware
and which in software. Languages employed in this type
of system are usually object-oriented programming
languages.

VHDL FOR SYNTHESIS

One of the new applications for HDLs is circuit synthesis
(1,2,10–12). When VHDL or Verilog are used for synthesis,
certain restrictions must be imposed on the language.
Basically, two factors are involved. First, the way the
language handles time is decisive. Because both languages
were designed for simulation, time is well defined. Simula-
tion is controlled by events; the simulator clock runs in
accordance with the status of the queued events. But
synthesis tools are not controlled by events. The tool deter-
mines the timing of the tasks. In other words, it is not
possible to predict when the operations will be executed
because the synthesis tool schedules the tasks. The differ-
ences that exist between simulation modeling and synth-
esis modeling should also be taken into account. In
simulation modeling, the designer can specify delays in
signal assignments and in the execution of processes. In
synthesis modeling, the designer can establish no absolute
conditions on time whatsoever, because it depends on how
the circuit has been implemented, on the technology
employed, and on the objectives and restrictions that
have been established. These factors will determine delays.
Restrictions must be imposed on the language to limit
signal assignments, beginnings, and ends of processes.

Descriptions tend to be generated with syntax that is
more declarative than procedural. The second decisive
factor to restrict HDLs when they are used for synthesis
is that certain instructions only make sense when they form
part of a simulation. For example, with VHDL, file type and
file object are only significant from a computing point of
view, but these terms are meaningless in terms of circuits.

Moreover, the way hardware codes should be written is
different from the way they should be written for program-
ming or simulation. It would be possible to have codes that,
although complying with synthesis restrictions, produce
inefficient or even functionally incorrect designs. The spe-
cific rules depend on each individual synthesis tool. In most
of these tools, the restrictions imposed are very similar.

This section examines, from a practical point of view, a
series of guidelines that should be followed to obtain a
VHDL code that is suitable not only for synthesis but
also is efficient in terms of results.

Prohibited or Nonrecommendable Sentences

Some VHDL data types are not useful, or not supported for
synthesis. These data types include physical types (such as
time, voltage, etc.), real number types, and floating point
types. Arithmetical operations that are supported by synth-
esis include add, subtract, and product operations. As a
rule, synthesis tools do not support division or more com-
plicated operations. For supported operations, synthesis
tools implement predesigned structures that vary with the
restrictions imposed on the design. The use of other struc-
tures generates a detailed description.

Another restrictive condition is the use of time. Usually,
synthesis tools prohibit expressly the use of delayed signal
assignations. Others simply ignore them. But the synthesis
tool evidently will attempt to implement a circuit‘s func-
tionality, and the explicit declaration of these delays makes
no sense, which explains why multiple assignations to a
signal are not allowed within a single sentence. Neither is it
allowed, within a process, to have several assignations for
the same signal all of which must be executed at the same
moment. Similarly, ‘‘WAIT for XX ns’’ sentences are not
allowed because it would be very difficult to implement such
sentences (with reasonable accuracy) in hardware, which
would also be a nonrecommendable design practice. The
use of WAIT is very much restricted and, as will be shown, it
can only be used to synchronize a process with a clock edge.

The initialization of signals or variables in the declara-
tion sentence is not taken into account by the synthesis tool,
but no error is produced. Therefore, these sentences should
be used with great care, because they may cause different
behavior in simulations before and after synthesis.

Design Issues

As mentioned, the way the code is written can be used to
obtain designs with the same functionality but that differ
greatly in terms of complexity and performance. The fol-
lowing is a list of recommendations to build the code to
obtain efficient results:

� Hierarchical design. Hierarchy facilitates the reuse,
debugging, and readability of the design, but certain

LOGIC SYNTHESIS 5



guidelines should still be followed. To facilitate reusa-
bility, blocks should be built as standardized as possi-
ble (registers, FIFO‘s, etc.). To facilitate readability,
the interblock data flow must be appropriate, with
minimal routing between blocks. To facilitate docu-
mentation, both the different components used and the
different elements inside preferably should be tagged
and comments should be added.

� Use of parametrizable blocks. The main synthesis tools
support construction of a generic unit that can be
assigned the values of certain parameters at the
moment of instantiation. The value assignment is
done by including ‘‘generic’’ sentences in the entity,
which makes it possible to have a library of intellectual
property (IP) components that can be used and adapted
for different designs.

� Avoid embedded IF instructions. Usually, tools do not
synthesize efficiently several embedded conditions. It
is advisable to use more ELSIF clauses or to separate
the IF-THEN sentences. In some cases, it may be
better to use CASE sentences because synthesis tools
have a model based on multiplexers that is generally
better than the description of the same using IFs.

� Use the style most appropriate for the state machines.
Many digital problems can be solved simply by means
of a state machine. VHDL has many different styles to
describe state machines, but the synthesis tool may not
identify them and may not produce the optimum end
circuit. Usually, synthesis tool manuals contain exam-
ples of how to produce such descriptions in such a
manner that they will be understood as state
machines.

� Types of binary data. For binary signals, it is advisable
to use ‘‘std_logic’’ types for 1-bit signals and ‘‘std_lo-
gic_vector’’ for buses. These types contain not only the
‘0’ and ‘1’ values but also contain additional values
such as ‘X’, and ‘Z‘, which allow the functional simula-
tion to imitate reality more effectively by incorporating
unknown values into the data.

� Buses with binary numbers. For those buses that
contain binary data to be used for synthesizable arith-
metical operations (add, subtract, and product), it is
advisable to use the ‘‘signed’’ and ‘‘unsigned’’ types for
signed and unsigned numbers, respectively. The latest
versions of functions packages do not have definitions
of arithmetical operators for the ‘‘std_logic_vector’’
type.

� Use of integers. Integers may be used in synthesis, but
should be limited in range to ensure the minimum
number of bits is employed when implemented by the
synthesis tool. Integer values are capped at the
moment of declaration:

signal number1: integer range 0 to 15;

Inference of Combinational Circuits

Synthesis tools do not involve elements of memory unless
the elements are necessary. In VHDL, combinational logic

can be described via concurrent signal assignation or via
processes. A set of concurrent signal assignations describes
combinational logic whenever the assigned signal does not
form part of the assignation and the set of concurrent
assignations has no combinational links that loop assigna-
tions.

Combinational logic can also be described through pro-
cesses. A process describes combinational logic whenever
its sensitivity list includes all of the signals involved in the
assignations and all of the output signals are specified
completely, which usually applies to conditional instruc-
tions. The presence of a condition for which the signal is not
assigned—that is, it remains unchanged—implies a latch.

Inference of Sequential Circuits

The synthesis of sequential circuits via VHDL descriptions
is more effective for synchronous processes than for asyn-
chronous implementations. Synchronous circuits work bet-
ter because events are propagated on the clock edges, that
is, at well-defined intervals. Logic stage outputs also have
the whole clock cycle to pass on to the next stage, and skew
between data arrival times is tolerated within the same
clock period. The description of asynchronous circuits in
VHDL employed for synthesis is more difficult.

A clock signal exists in synchronous circuits, for which
both event and clock edge must be identified. In VHDL, the
most usual form of specification is:

clk‘event and clk = ‘1‘

In this case, a rising edge has been specified. Clock signals
should be used in accordance with a series of basic
principles:

� Only one edge detection should be allowed per process:
That is, processes may only have one clock signal.

� When a clock edge is identified in an IF, it should not be
followed by an ELSE.

� The clock, when specified with an edge, should not be
used as an operand. The instruction

IF NOT (clk‘event and clk = ‘1‘)
THEN . . . is incorrect.

These language restrictions are imposed with hardware
implementation results in mind. Other alternatives either
do not make sense or are not synthesizable. One conse-
quence of these restrictions is that signals can only change
with one single edge of one single clock.

In accordance with these restrictions, two basic struc-
tures exist to describe synchronous circuits, one with asyn-
chronous reset and the other without asynchronous reset.
These two structures are shown in Fig. 2. For processes
with asynchronous reset, the process sensitivity list should
include only the clock signal and the asynchronous reset.

FSM Descriptions

Generally an FSM is used to describe a system‘s control
unit. In this case such a machine generates the values of the
control signals that act on the data path or that act as

6 LOGIC SYNTHESIS



system output control signals. State machines can be
defined in VHDL using different description styles, but
the results obtained may vary with the style used. Some
are recognized directly by the synthesis tools and can
therefore take full advantage of the optimizations offered
by such tools. Although a distinction generally is drawn
between descriptions for Moore machines and descriptions
for Mealy machines, the codes are very similar; the only
difference is that the codes for Mealy machine outputs are
dependent on both the current state and the input taking
place at that moment.

A typical style describes a state machine using two
processes. One of them is totally combinational and
describes the next state function and the output assigna-
tions. The second is sequential, triggered by a clock signal,
and controls assignations on the state register. The corre-
sponding code scheme is as follows:

entity FSM is
port (clock, reset: in std_logic; -- clock and
reset signals

x1, . . ., xn: in std_logic; -- input signals
z1, . . ., zm: out std_logic); -- output
signals

end FSM;
architecture BEHAVIOR1 of FSM is
type STATE_TYPE is (S0, S1, . . ., Sp);
signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

begin
-- Process to hold combinational logic
COMBIN: process(CURRENT_STATE, x1, . . ., xn)
begin
NEXT_STATE <= CURRENT_STATE;
case CURRENT_STATE is

when S0 => -- state s0 assignations
-- next state assignation
-- output assignations

when S1 =>
-- state s1 assignations
-- next state assignation
-- output assignations

. . .
when Sp => -- state Sp assignations

-- next state assignation
-- output assignations

end case;
end process;
-- Process to hold synchronous elements (ip-ops)

SYNCH: process
begin
wait until CLOCK event and CLOCK = 1;
CURRENT_STATE <= NEXT_STATE;

end process;
end BEHAVIOR;

The sequential process may also include a synchronous
reset signal:

SYNCH: process
begin
wait until CLOCK event and CLOCK = 1;
if (reset = ‘1‘) then

CURRENT_STATE <= S_reset;
else

CURRENT_STATE <= NEXT_STATE;
end if;

end process;

This form of description is the one recommended, for exam-
ple, for the commercial synthesis tool Design Compiler by
Synopsys, Inc. (13).

Application Example

In the state machine example below, the control unit (see
Fig. 3) for the sequential adder described in Fig. 1 is imple-
mented. The corresponding VHDL code architecture is:

architecture fsm of control_unit is
type STATE_TYPE is (S0, S1, S2, S3, S4);
signal CURRENT_STATE, NEXT_STATE:
STATE_TYPE;

begin

COMBIN: process(CURRENT_STATE)
begin
-- NEXT_STATE <= CURRENT_STATE;
case CURRENT_STATE is

when S0 =>
wa <= ‘0‘; wb <= ‘0‘; cl <= ‘0‘;
sr_a <= ‘0‘; srb <= ‘0‘;

up <= ‘0‘; cd <= ‘0‘; w <= ‘0‘;
srs <= ‘0‘; s_end <= ‘0‘;

if start = ‘0‘ then
NEXT_STATE <= S0;

else

Figure 2. Synchronous processes, (a) edge triggered flip-flop, (b) edge triggered flip-flop with asynchronous reset.

LOGIC SYNTHESIS 7



NEXT_STATE <= S1;
end if;

when S1 =>
wa <= ‘1‘; wb <= ‘0‘; cl <= ‘1‘;
sr_a <= ‘0‘; srb <= ‘0‘;

up <= ‘0‘; cd <= ‘1‘; w <= ‘0‘;
srs <= ‘0‘; s_end <= ‘0‘;

NEXT_STATE <= S2;
when S2 =>

wa <= ‘0‘; wb <= ‘1‘; cl <= ‘0‘;
sr_a <= ‘0‘; srb <= ‘0‘;

up <= ‘0‘; cd <= ‘0‘; w <= ‘0‘;
srs <= ‘0‘; s_end <= ‘0‘;

NEXT_STATE <= S2;
when S3 =>

wa <= ‘0‘; wb <= ‘0‘; cl <= ‘0‘;
sr_a <= ‘1‘; srb <= ‘1‘;

up <= ‘1‘; cd <= ‘0‘; w <= ‘1‘;
srs <= ‘1‘; s_end <= ‘0‘;

if cy = ‘0‘ then
NEXT_STATE <= S3;

else
NEXT_STATE <= S4;

end if;
when S4 =>

wa <= ‘0‘; wb <= ‘0‘; cl <= ‘0‘;
sr_a <= ‘0‘; srb <= ‘0‘;

up <= ‘0‘; cd <= ‘0‘; w <= ‘0‘;
srs <= ‘0‘; s_end <= ‘1‘;

NEXT_STATE <= S2;
end case;

end process;

-- Process to hold synchronous elements (ip-ops)
SYNCH: process
begin

wait on clk until clk = ‘1‘;
CURRENT_STATE <= NEXT_STATE;

end process;
end fsm;

The corresponding FSMD includes the operation of the
datapath instead of the control signals assignations (14).
Each state defines the operations that execute the proces-
sing unit in a single clock cycle. The code of the above
example is shown as follows:

architecture fsmd of example is
type STATE_TYPE is (S0, S1, S2, S3, S4);
signal CURRENT_STATE, NEXT_STATE:
STATE_TYPE;

begin

SUM(N-1) <= DA(0) + DB(0);

COMBIN: process(CURRENT_STATE)
begin
-- NEXT_STATE <= CURRENT_STATE;
case CURRENT_STATE is

when S0 =>
if start = ‘0‘ then

NEXT_STATE <= S0;
else

NEXT_STATE <= S1;
end if;

when S1 =>
DA <= Din; CNT <= (others=>‘0‘);
D <= (others=>‘0‘);

NEXT_STATE <= S2;
when S2 =>

DB <= Din;
NEXT_STATE <= S2;

when S3 =>
CNT <= CNT+1; D <= C;
DA <= shr(DA); DB <= shr(DB);
SUM <= shr(DB);

if cy = ‘0‘ then
NEXT_STATE <= S3;

else
NEXT_STATE <= S4;

end if;
when S4 =>
s_end <= ‘1‘;
NEXT_STATE <= S2;

end case;
end process;

-- Process to hold synchronous elements (ip-ops)
SYNCH: process
begin

wait on clk until clk = ‘1‘;
CURRENT_STATE <= NEXT_STATE;

end process;
end fsmd;

Figure 3. Control unit schematic.

8 LOGIC SYNTHESIS



BIBLIOGRAPHY

1. H. Bhatnagar, Advanced ASIC Chip Synthesis, Norwell, MA:
Kluwer Academic, 2002.

2. M. Zwolinski, DigitalSystem Design with VHDL, Englewood
Cliffs, NJ: Pearson Prentice Hall, 2004.

3. D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis.
Introduction to Chip and System Design, Norwell, MA: Kluwer
Academic, 1992.

4. IEEE Standard VHDL Language Reference Manual, 1987,
1993

5. R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hardware
Description and Design, Norwell, MA: Kluwer Academic,
1990.

6. J. M. Berge, A. Fonkoua, S. Maginot, and J. Rouillard,
VHDL Designer‘s Reference, Norwell, MA: Kluwer Academic,
1992.

7. P. J. Ashenden, The Designer‘s Guide to VHDL, San Francisco,
CA: Morgan Kaufmann, 2002.

8. IEEE Standard Verilog Language Reference Manual, 1995.

9. Accellera Organization, Inc., Available: http://www.accellera.
org/

10. D . Naylor and S. Jones, VHDL: A Logic Synthesis Approach,
London: Chapman & Hall, 1997.

11. A. Rushton, VHDL for Logic Synthesis, New York: John Wiley
& Sons, 1998.

12. K. C. Chang, Digital Systems Design with VHDL and Synth-
esis: An Integrated Approach, New York: Wiley-IEEE Compu-
ter Society Pr, 1999.

13. HDL Compiler (Presto VHDL) Reference Manual, Synopsys,
Inc.

14. P. P. Chu, RTL Hardware Design Using VHDL, New York:
Wiley-Interscience, 2006.

FURTHER READING

C. R. Clare, Designing Logisc Systems Using State Machines, New
York: McGraw-Hill, 1973.

F. P. Prosser and D. E. Winkel, The Art of Digital Design. An
Introduction to Top-Down Design, Englewood Cliffs, NJ: Prentice-
Hall, 1987.

J. Ganssle, The Firmware Handbook(Embedded Technolgies),
New York: Elsevier, 2004.

S. Palnitkar, Verilog HDL. A Guide to Digital Design and Synth-
esis, Englewood Cliffs, NJ: SunSoft Press, A Prentice-Hall Title,
1996.

P. Michel, U. Lauther, and P. Duzy, The Synthesis Approach to
Digital System Design, Norwell, MA: Kluwer Academic, 1992.

G. DeMicheli, Synthesis and Optimization of Digital Circuits, New
York: McGraw Hill, 1994.

M. A. Bayoumi, (ed.), VLSI Design Methodologies for Digital Signal
Processing Architectures, Norwell, MA: Kluwer Academic, 1994.

J. Rozenblit and K. Buchenrieder, (eds.), Codesign. Computer-
Aided Software/Hardware Engineering, Piscataway, NJ: IEEE
Press, 1994.

R. Merker and W. Schwarz, System Design Automation: Funda-
mentals, Principles, Methods, Examples, Norwell, MA: Kluwer
Academic, 2001.

J. P. Mermet, Electronic Chips & Systems Design Languages,
Norwell, MA: Kluwer Academic, 2001.

ANGEL BARRIGA

CARLOS J. JIMENEZ

MANUEL VALENCIA

University of Seville-Institute of
Microelectronics of Seville
(CNM-CSIC)

Seville, Spain

LOGIC SYNTHESIS 9



M

MICROPROGRAMMING

INTRODUCTION

At the heart of any synchronous digital system is one or
more state machines that, on each clock edge, examines
inputs received from the system and generates control
outputs. The traditional method of implementing such
state machines has been combinational logic followed by
flip-flops that hold the machine state. Design of the combi-
national logic for such state machines now can be auto-
mated by describing the state transitions in a hardware
descrip tion language like VHDL or Verilog.

Microprogramming was introduced by Wilkes (1) in
the early 1950s as an alternative to the traditional
approach for implementing complex state machines
like those found in computer control units (2–5) In
this application, many inputs need to be examined,
such as status register bits (carry, overflow, sign, etc.),
and bus data ready. Many outputs also are needed, such
as arithmetic-logic-unit function select, register load
enables, memory access control bits, and so on. In the
1980s, standalone microsequencers became popular for
other complex state machine tasks like network and
direct memory access controllers (6,7). One reason for
the early popularity of microprogramming was that,
before the advent of hardware description languages,
it translated the hardware design problem into a pro-
gramming problem, which made it tractable to a wider
range of designers. Control information is stored in the
microprogram memory, and a new microinstruction is
fetched from memory every clock cycle. In this way,
microprogramming is similar to assembly language pro-
gramming and typically supports subroutines, loops, and
other structured programming concepts. Because pro-
gram changes only require a change in memory contents,
the rate at which the controller can be clocked does not
change, no matter how significant the program change.
This approach is in contrast to the traditional approach
where design changes dramatically can impact the logic
equations, amount of combinational logic, and clock
frequency. This impact is true even if a hardware
description language is used to automate the traditional
design process. Complex state machines that fit and
meet timing requirements before a design change may
either not fit, not meet timing constraints, or both,
following even simple modifications. On the other
hand, once a microprogrammed design meets clock
rate and logic resource requirements, state machines
of any size within the microprogram memory capacity
can be implemented and modified without changing
this maximum clock frequency or the logic resources
required.

A BASIC MICROPROGRAM SEQUENCER

The block diagram of a typical microprogram control unit is
shown in Fig. 1(5). To simplify labeling the diagram, it is
assumed that the microprogram memory has N address
lines (2N microinstruction locations) and that each location
is N þ L þ 4 bits wide, where L is the number of control
output lines. In this example it also is assumed that seven
(or fewer) condition inputs are to be examined. The two
registers are standard clocked D registers, and the incre-
menter outputs a value equal to the input plus one. Multi-
plexer MUX1 is eight-input multiplexer used to select
either logic 0 or one of the seven condition inputs, and
multiplexer MUX2 represents N two-input multiplexers
used to select the source of the microprogram memory
address.

The microprogram memory address can be forced to
location zero to fetch the first microinstruction by taking
the Reset line low to force the MUX2 outputs to zero. In its
simplest form, all that is required of the sequencer is to
fetch and output the contents of successive microprogram
memory locations. Such instructions are referred to as
continue instructions and are implemented by setting
the polarity bit to logic 0 with the select bits picking the
Logic-0 input of MUXl. In this way, the MUX2 select input
is always 0 and the incrementer and microprogram counter
register form a counter. For the microprogram control unit
to be able to select other than the next sequential address, it
is necessary that it be able to load a branch address. Such
unconditional branch instructions are implemented by
setting the polarity bit to 1 with the select bits picking
the logic-0 input of MUXl, which forces the next address to
come from the branch address lines. Notice that in this case,
the incrementer output becomes the branch address plus
one so that the microprogram counter register is loaded
with the correct value following the branch. The controller
gains decision-making capability whenever the select
inputs choose one of the condition inputs. In this case,
assuming the polarity input is 0, the next sequential
address is taken if the condition is 0 and the branch address
is taken if the condition is 1. Such an instruction is referred
to as a conditional branch if 1. Polarity of the branch can be
reversed by setting the polarity bit that inverts the exclu-
sive–or gate output.

Example 1 shows the state diagram of a very simple
sequence detector, along with an equivalent micropro-
gram for the control unit of Fig. 1 The detector input is
shown on the transition arrows, and the detector output
in a given state is shown within the state circle. In the
state diagram and in the microprogram, X represents a
‘‘don’t care.’’ It is assumed that the sequence detector
input is applied to MUX1 input 1 so that it is selected by
condition select 001. Unconditional continue and branch
are obtained by selecting MUX1 input 0, which is
always 0.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



SUBROUTINES AND LOOPS

Figure 2 is a block diagram of an enhanced microprogram
control unit that permits microprogram subroutines and
microprogram loops. This microsequencer has a novel
architecture that takes advantage of the enhancements
that exist in coarse-grained FPGAs to implement efficiently
four basic functions: registers, multiplexers, adders, and
counters. Subroutine capability has been added to the basic
design of Fig. 1 by including a subroutine last-in first-out
(LIFO) stack for storing return addresses. Subroutine calls
simply are branches for which what would have been the
next sequential address is stored into the stack from the

microprogram counter register. Microcode subroutines
return to the calling program by selecting input C on the
next address select logic and popping the stack.

Looping capability has been included with an N-bit down
counter that can be loaded, via MUX2, either from another
LIFO stack or from the branch address field. Counter load
instructions are special continue instructions for which the
branch address bit field is selected in MUX2 and loaded into
the counter. Then it is possible to define a loop instruction
that decrements the counter and selects either the branch
address (top of loop) or, the next sequential address, based
on the value of the counter. When the counter is zero at the
time of the decrement, the counter holds at zero and the loop

Clock

Microprogram Counter
Register

Incrementer

ResetSelect

Condition
Inputs

Microprogram Memory

Pipeline Register

Polarity
Select

Branch Address

Outputs

M
U
X
1

MUX2
I0I1

N

N

NN

N

M=N+L+4

N
0

7

3

3 L

N

N

Figure 1. Basic microprogram control unit.

Reset

Memory
Location

State Instruction
Branch
Address

Condition
Select

Polarity Output

0

1

2

3

4

S0

S1

S2

S3

S4

X

1

2

1

1

0 0 0

0 0 1

0 0 1

0 0 1

0 0 0

0

1

0

1

1

0

0

0

0

1

Continue

Branch if 0

Branch if 1

Branch if 0

Branch

S0/0 S1/0 S2/0

S4/1 S3/0

X

X

0

0
0

1

1

1

Example 1. Example Microprogram.

2 MICROPROGRAMMING



is exited. Thus, loading the counter with zero causes a loop
to execute once, and loading it with K causes the loop to
execute K þ l times. The LIFO stack is used to store the
counter value, if desired, whenever a new counter value is
loaded, so loops can be nested. A load counter and pop
counter stack instruction would be used to load the counter
from the stack and pop the stack.

An alternate use of the down counter is in two-way
branching. By loading the counter with an instruction
address rather than a count, it is possible to use a condition
input to select either the counter address (next address
select logic input A) or the branch address (input B). In
this way, one of two non sequential addresses can be
selected.

select 1

N

A

2

2

B C D

I0

I0

I1

I1

I2 I3 I0 I1 I2 I3

N N

N N

Reset

MUX1 MUX2

MUX3

N

Y

N N N N N

select 2

select 3

CC

Figure 3. Multiplexer-based next address select logic.

N

Loop Count
Stack

MUX2

Down Counter

Count=0

I1I0

I0

NN

N

N

CC
Next Address
Select Logic Reset

Microprogram Memory

Pipeline Register

Branch Address

Outputs

M

4

3

7

M
U
X
1

Condition
Inputs

17−I1

N

A B C D

N N N

N

N

Incrementer

Microprogram Counter
Register

Subroutine
Stack

N

N
N

N

NL534
Select

Sequencer Control
Figure 2. Enhanced microprogram control unit.

MICROPROGRAMMING 3



Figure 3 shows an implementation of the next address
select logic based on multiplexers. This approach has an
advantage in field programmable gate array (FPGA) imple-
mentations because FPGAs are designed to be capable of
efficiently implementing multiplexers (8). Notice that the
four bits from the pipeline register form two separate
multiplexer-select fields, selectl and select2, for multiplex-
ers MUX1 and MUX2. The condition input, CC, serves as
the select for MUX3. If both selectl and select2 are set to the
same input, then that becomes the output regardless of the
condition input. However, different values for selectl and
select2 allow conditional selection of one of two inputs.
Reversing selectl and select2 swaps the polarity of this
conditional selection. Because MUX3 is composed of simple
2-input multiplexers, the Reset input is brought into this
multiplexer. In this way, each bit of each multiplexer can be
implemented in a single look-up table block on most FPGAs.
Something to observe about this implementation is that the
delay through MUX1 and MUX2 in Fig. 3 occurs in parallel
with the delay through the condition code selection multi-
plexer (MUX1 of Fig. 2). This balancing of delays is impor-
tant for achieving high-speed operation because the
maximum clock rate of the sequencer usually is limited
by the path from the pipeline register through the select
inputs of MUX1 to the next address select logic.

MICROINSTRUCTION DEFINITION

The microsequencer of Fig. 2 and Fig. 3 can be used to define
and implement many different microinstructions. Table 1
lists one possible set of instructions that would be sufficient
for most applications, and Table 2 shows how they are
encoded. Referring to Fig. 2, these instructions are defined
by 12 bits from the pipeline register. Three of these bits
select the condition input via MUX1 and will be referred to
as the CC select bits. This field would increase if a larger
MUX1 were used to look at more than seven condition
inputs. Four more of the instruction bits are the four bits
from the pipeline register to the next address select logic
that form the select 1 and select2 fields on Fig. 3. These bits
will be referred to as multiplexer control bits. Finally, the 5
bits are shown as sequencer control bits on Fig. 2. These
consist of an enable line for each stack, a push/pop line
common to both stacks, and an enable and count/ load lines

for the down counter. Referring to Table 2, the Xs represent
bits that are ‘‘don’t cares.’’ For example, push/pop is a ‘‘don’t
care’’ if neither stack is enabled. Because the instruction
bits will be stored in the microprogram memory, no advan-
tage exists to considering them as ‘‘don’t cares’’ and they
simply can be set to 0. The value of C ranges from 1 to 7
depending on the condition input selected, and its binary
value appears as C C C in the table. The encoding of select2
and selectl reflects the binary value of the input number
shown on Fig. 3.

Figure 4 demonstrates how the microcode can be repre-
sented in a microassembly language format. The first field
contains address labels for reference when performing
branches and subroutine calls. The values in square brack-
ets in the second field are the desired control outputs. The
third field contains the instruction mnemonic, and the last
field contains branch and subroutine addresses and loop
counts. This example shows how to set up a nested loop and
perform a conditional branch, a two-way branch, and a
subroutine call. The nested loop will cause the innermost
statements to execute 2500 times. The reader familiar with
representing state machines in VHDL or Verilog will note
that this microassembly language representation is more
compact. However, it does have the disadvantage of requir-
ing familiarity with a custom language. Conversion of
microassembly language to microprogram memory con-
tents is a simple matter of converting the instruction
mnemonic to a bit pattern using Table 2 and entering
the proper value for the branch address lines. A standard
meta assembler with proper definition files can be used to
accomplish this conversion with automatic determination
of the correct address information from the label field.

PIPELINING

The maximum clock frequency of a microprogrammed
control unit usually can be improved by modifying the
sequencer, as shown in Fig. 5 to pipeline the microprogram
memory address (8). Observe that the microprogram coun-
ter register has been moved to the output of the
next address generation logic. In this way, the delay
through the memory takes place in parallel with the delay
through the next address logic. However, now a one clock
cycle delay exists between when an address is generated

Table 1. Instruction set

Instruction Mnemonic Function

CONT Continue to the next sequential instruction.
LDCT Load counter and continue.
PSHLDCT Push counter value onto the stack; load counter and continue.
POPCT Load counter from the stack and pop the stack;
LOOP Decrement the counter. If the counter was not zero prior to the decrement,

take the branch address. Otherwise, take the next sequential address.
BR Unconditional branch.
CBF(C) Conditional branch if condition input C is false (next sequential address if C is true).
CBT(C) Conditional branch if C is true.
TWB(C) Two-way branch. Take the counter value if C

is false and the branch address if C is true.
CALL Unconditional subroutine call.
RET Unconditional return from subroutine.

4 MICROPROGRAMMING



and when the corresponding microinstruction appears at
the output of the pipeline register. Therefore, when a
branch instruction of any type takes place, the change in
program flow is delayed a clock cycle. This delay means that
whenever a branch appears in microcode, one additional
instruction will always exist following the branch that is
executed before the branch actually takes place. This delay
is true of both conditional and unconditional branches, as
well as loop instructions, subroutine calls, and subroutine
returns. Such delayed branching is common in pipelined
digital signal processors like the Texas Instruments
TMS320C3X family where as many as three instructions
may follow a branch (9). The use of pipelining is very

beneficial if high clock rates are needed and most instruc-
tions execute sequentially, or if a productive operation can
be placed in many microinstruction locations that follow
branches. However, if many branches exist and nothing
productive can be done in the microinstruction that follows
most of them, then pipelining may not be beneficial. It is
worth noting that in some FPGA architectures, the address
lines to embedded memory are registered within the
embedded memory block. In such cases, pipelining must
be used and it may be necessary to take the memory address
directly from the next address select logic to the embedded
memory, with duplicate microprogram counter registers in
the sequencer logic and in the embedded memory block.

Table 2. Instruction encoding

MICROPROGRAMMING 5



SUMMARY AND CONCLUSIONS

Microprogramming should be considered as a control tech-
nique for complex finite state machines where flexibility

with fixed timing characteristics is important. Examples
include computer control units, digital filters, hardware to
compute fast Fourier transforms, disk controllers, and
so forth. The key advantage to the microprogrammed

N

N N

N
N

NN

N

N

N

M

CC
M
U
X
1

NNN

N
Count=0

Condition
Inputs

3

4
17−I1 7

N

I1I0

I0

Loop Count
Stack

MUX2

Down Counter

Subroutine
Stack

Incrementer

Reset

A B
Next Address
Select Logic

Microprogram Counter
Register

Microprogram Memory

Select
Sequencer Control Outputs

Branch Address4 3 5 L N

Pipeline Register

C D

Figure 5. Pipelined microprogram control unit.

begin

loop1
loop2

cpass

subrtn1

address1

address2

[100101]
[111100]
[100010]
[111111]
[001010]
[101110]
[010010]
[101011]
[101111]
[111100]
[110011]

{111101}

ORG
CONT
LDCT
PSHLDCT
CBF(3)
CONT
LOOP
POPCT
LOOP
CALL
LDCT
TWB(5)
.
.
.
.
.

RET
.
.
.
.
.
.

END

O

99
24
cpass

loop2

loop1
subrtn1
address1
address2

:Start at address 0

:Set up 100-pass loop
:Set up 25-pass loop
:Skip next if 3 is false

:Inner loop
:Restore outer loop count
:Outer loop
:Expample subroutine call
:Set up two-may branch
:Two-way branch based on 5

:Subroutine entry point

:Subroutine exit

Figure 4. Microassembly code listing.

6 MICROPROGRAMMING



approach is that the state machine can adapt to changing
algorithms by changing a bit pattern in memory that has no
impact on logic resources or timing. An added benefit of
the microprogrammed approach can be a more structured
organization of the controller.

Although the microprogrammed approach has advan-
tages over a traditional state machine described in a
hardware description language, it has the disadvantage
of requiring a custom microassembly language. However,
this disadvantage may be offset for large state machines by
the ability to do nested loops and subroutines, to take
advantage of embedded memory blocks in FPGAs, and by
the faster and more efficient design that can result.
As FPGAs get larger and implement entire computing
circuits for tasks like digital signal processing, the control
requirement becomes correspondingly complex. In such
applications, the microprogrammed approach provides
an attractive solution.

BIBLIOGRAPHY

1. M. Wilkes, and C. Stringer, Micro-programming and the design
of control circuits in an electronic digital computer, Proc.
Camb. Phil Soc, Vol. 49, 1953, pp. 230–238.

2. J. W. Carter, Microprocessor Architecture and Microprogram-
ming: A State-Machine Approach. Englewood Cliffs, NJ: Pre-
ntice Hall, 1995.

3. E. L. Johnson, and M. A. Karim, Digital Design, Boston, MA:
PWS-Kent, 1987, pp. 445–449.

4. B. Wilkinson, Digital System Design. Englewood Cliffs, NJ:
Prentice Hall, 1987, pp. 413–423.

5. Advanced Micro Devices, Inc., in Chapter II - Micropro-
grammed Design Build a Microcomputer. Sunnyvale, CA:
AMD Pub. AM-PUB073, 1978.

6. Advanced Micro Devices, Inc., Am29PL141 Fuse Programma-
ble Controller Handbook. Sunnyvale, CA: AMD Pub. 06591A,
1986.

7. Altera, Inc., Stand Alone Microsequencers: EPS444/EPS448.
Santa Clara, CA: Altera Pub. 118711 DFGG, 1987.

8. Bruce W. Bomar, Implementation of microprogrammed control
in FPGAs, IEEE Transactions on Industrial Electronics, 42,
(2): pp. 415–421, 2002.

9. Texas Instruments, Inc., TMS320C3X User’s Guide. Dallas,
TX: Texas Instruments Pub. SPRU031E, 1997.

BRUCE W. BOMAR

The University of Tennessee
Space Institute

Tullahoma, Tennessee

MICROPROGRAMMING 7



P

PEN-BASED COMPUTING

INTRODUCTION

An Overview of Pen-Computing

Pen-based computing first came under the mainstream
spotlight in the late 1980s when GO Computers developed
the first computer operating system (OS) customized for
pen/stylus input called PenPoint, which was used in the
early tablet PCs by companies such as Apple Computer
(cuperline CA) and IBM (Among NY). A pen-based com-
puter replaces the keyboard and the mouse with a pen,
with which the user writes, draws, and gestures on the
screen that effectively becomes digital paper. The value
proposition of pen-based computing is that it allows a user
to leverage familiarity and skills already developed for
using the pen and paper metaphor. Thus, pen-based
computing is open to a wider range of people (essentially
everybody that can read and write) than conventional
keyboard and mouse-based systems, and is inline with the
theme of Ubiquitous Computing, as such a computer is
perceived as an electronic workbook, and thus provides a
work environment resembling that which exists without
computers. pen-based computers exist primarily in two
forms, as mentioned above; tablet PCs, which often have a
clip board-like profile and personal digital assistants
(PDAs) that have a portable/handheld profile. Both forms
(particularly the PDA) lend themselves very well to appli-
cations such as on site data entry/manipulation where the
conventional approach is pen and paper-form based (1).

The Digitizing Tablet

The function of the digitizing tablet within a pen-based
computer is to detect and to measure the position of the
pen on the writing surface at its nominal sampling rate.
Typically, this sampling rate varies between 50–200 Hz
depending on the application, in which a higher sampling
rate causes a finer resolution of cursor movement, and the
computer can measure fast strokes accurately. The digitiz-
ing tablet is combined with the display to give the user the
same high level of interactivity and short cognitive feedback
time between their pen stroke/gesture and the correspond-
ing digital ink mark. The user perceives the digitizing tablet
and screen as one, which makes it a direct-manipulation
input device and gives the user a similar experience to that
of writing/drawing using the conventional pen and paper
method. To enable this high level of interactivity, the digi-
tizer must also operate with speed and precision. The dis-
play must be a flat panel display for the integrated unit to
provide the user with the optimum writing surface. The
display and digitizer can be combined in two ways. If the
digitizer is mounted on top of the display (as illustrated
below in Fig.1), the digitizing tablet must be transparent,
although it can never be so infinitely, and thus the display’s
contrast is reduced and the user sees a blurred image.

The other way to combine the two is to mount the display
on top of the digitizer; although it does not have to be
transparent, the accuracy of the digitizer is reduced
because of the greater distance between its surface and
the tip of the pen when it is in contact with the writing
surface.

The two types of digitizers are active and passive. Active
digitizers are the most common type used in pen-based
computers. These digitizers measure the position of the pen
using an electromagnetic/RF signal. This signal is either
transmitted by a two-dimensional grid of conducting wires
or coils within the digitizer or transmitted by the pen.

The digitizer transmits the signal in two ways: it is
either induced through a coil in the pen and conducted
through a tether to the computer, or as is more commonly
seen the pen, it reflects the signal back to the digitizer or
disturbs the magnetic-field generated by the set of coils in
the exact location of the pen tip. This reflection or distur-
bance is detected subsequently by the digitizer. Figure 2
depicts the latter configuration where a magnetic-field is
transmitted and received by a set of coils, and this is
disturbed by the inductance in the tip of a pen/stylus.

In this type of configuration, the horizontal and vertical
position is represented in the original signal/magnetic-field
transmitted by either signal strength, frequency, or timing,
where each wire or coil in the grid carries a higher value
than its neighboring counterpart. The position of the pen is
evaluated using the values reflected back or disturbed.

The configuration where the pen reflects or disturbs the
signal is found more commonly in modern day pen-based
computers, as it allows for a lighter pen that is not attached
to the computer, which provides the user with an experi-
ence closer to that of using conventional pen and paper.
This method also allows more advanced information about
the user’s pen strokes to be measured, which can be used to
provide more sophisticated and accurate handwriting
recognition. The pressure being exerted on the screen/
tablet can be measured using a capacitative probe within
the tip of the pen, where its capacitance changes as it closes
(as a result of being pressed against the screen/tablet),
which changes the strength of the signal being reflected
back. The angle of the pen can be measured using electronic
switches that change the frequency of the signal reflected
back, and these switches operate in a similar manner to tilt-
switches. However, these advanced features require the
pen to be powered by a battery or by the computer via a cord.

Typically, passive digitizers consist of two resistive
sheets separated by a grid of dielectric spacers, with a
voltage applied across one of the sheets in both the hor-
izontal and vertical directions. When the pen makes contact
with the screen/tablet, it connects the two sheets together
at the point of impact, which acts to change the resistance
(which is proportional to length of the resistive material)
across the sheet in the two directions. In turn, it changes
the two voltages across the sheet. essentially, these vol-
tages represent a coordinate-pair of the pen’s position.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Being sensitive to pressure, passive digitizers also can
receive input from the users fingers, and thus the computer
can provide the user with a more natural/familiar mechan-
ism for pressing on-screen (virtual) buttons. A disadvan-
tage of this pressure-based operation is an increase in
errors when using the pen, which are caused by the user
resting against or holding the screen/tablet. However, pas-
sive digitizers can also be configured to be sensitive only to
pen input by placing the dielectric spacers between the two
resistive sheets closer together, where the higher amount of
pressure needed to force the two sheets together can only be
exerted through the small area of the pen tip.

Handwriting Recognition

Handwriting recognition (HWX) gives the user the ability
to interface to a computer through the already familiar

activity of handwriting, where the user writes on a digitiz-
ing tablet and the computer then converts this to text. Most
users, especially those without prior knowledge of comput-
ing and the mainstream/conventional interface that is the
keyboard and mouse, initially see this as a very intuitive
and attractive human-computer interface as it allows them
to leverage a skill that has already been acquired and
developed. Although a major disadvantage of pen-based
computers is that current HWX methods are not completely
accurate. Characters can be recognized incorrectly and
these recognition errors must be corrected subsequently
by the user. Another aspect of current HWX technology that
impacts the user’s productivity and experience in a nega-
tive way is the fact that characters have to be entered one at
a time, as the technology required to support the recogni-
tion of cursive handwriting is still a long way off and
possibly requires a new programming paradigm (4). Hand-
writing of individuals varies immensely, and an indivi-
dual’s handwriting tends to change over time in both the
short-term and the long-term. This change is apparent in
how people tend to shape and draw the same letter differ-
ently depending on where it is written within a word what
the preceding and subsequent letters are, all of which
complicates the HWX process.

The two types of handwriting recognition are on line
(real-time) and Off line (performed on stored handwritten
data). When using conventional pen and paper, the user
sees the ink appear on the paper instantaneously; thus, on
line recognition is employed in pen-based computers for the
user to be presented with the text form of their handwriting
immediately. The most common method for implementing a
HWX engine (and recognition engines in general) is a
neural network, which excel in classifying input data
into one of saveral categories. Neural networks are also
ideal for HWX as they cope very well with noisy input data.
This quality is required as each user writes each letter
slightly different each time, and of course altogether dif-
ferently from other users as explained previously. Another
asset of neural networks useful in the HWX setting is their
ability to learn over time through back-propagation, where
each time the user rejects a result (letter) by correcting it,

Figure 1. A digitizing tablet shown in the configuration where
the digitizer is mounted on top of the screen (2) .

Figure 2. A digitizing tablet shown in the configuration
where a set of colls generated a magenetic-field which is
disturbed by the presence of the pen tip in that exact
location (3).

2 PEN-BASED COMPUTING



the neural network adjusts its weights such that the prob-
ability of the HWX engine making the same error again is
reduced. Although this methodology can be used to reduce
the probability of recognition errors for a particular use.
When met with another user, the probability of a recogni-
tion error for each letter may have increased compared to
what it would have been before the HWX engine was
trained for recognizing the handwriting of a specific user.
These problems are overcome to a good extent by using a
character set where all the letters consist of a single stroke
and their form is designed for ease of recognition (i.e., a
specific HWX engine has been pre trained for use with that
particular character set). One such character set is shown
in Fig 3.

As can be seen in Fig. 3, the characters are chosen to
resemble their alphabetic equivalents as much as possible.
The use of such a character set forces different users to
write largely the same way and to not form their own
writing style, which is the tendency when using more
than one stroke per letter.

The User Interface

The overall objective of a user interface that supports
handwriting recognition is to provide the user with vir-
tually the same experience as using conventional pen as
paper. Thus, most of its requirements can be derived from
the pen and paper interface. This means that ideally, no
constraints should as to where on the digitizing tablet/
screen (paper) the user writes, the size of their writing,
or even when they write and when online recognition can
take place. Obviously, conventional pen and paper does not
impose any restrictions on special characters with accents,
so ideally the user could write such characters and they
should be recognized and converted to text form. Although
even in pen-based computing, the standard character set
used is ASCII as opposed to Unicode, which is the standar-
dized character set that contains all characters of every
language throughout the world.

As the pen is the sole input device, it is used for all the
user’s interfacing action. As well as text entry, it is also used
for operations that a conventional mouse would be used for,
such as selecting menu options, clicking on icons, and so.
The action of moving the mouse cursor over a specific icon/
menu-option and clicking on it is replaced entirely with
simply tapping the pen on the item you would have clicked
on. A dragging operation is performed by tapping the pen on
the item to be dragged twice in quick succession (corre-
sponding to the double clicking associated with the mouse),
keeping the pen in contact with the tablet after the second
tap and then dragging the selected item, and finally lifting
the pen off the tablet to drop the item. A pen-based com-
puter has no function keys or control keys (such as return,
space-bar, etc.) like a keyboard does, and as such a pen-

based computer’s user interface must support something
called gesture recognition, where the functions and the
operations associated with these keyboard keys are acti-
vated by the user drawing a gesture corresponding to that
function/operation. Typical examples common among most
pen-based computing user interfaces are crossing a word
out to delete it, circling a word to select it for editing, and
drawing a horizontal line to insert a space within text.

The user will enter textual, as well as gesture and
graphic (drawing/sketching) input, and thus the user
interface is required to distinguish between these forms
of input. The user interface of some pen-based computing
OS, especially those that are extensions of conventional
OS, separate the different types of input by forcing the
user to set the appropriate mode, for example pressing an
on-screen button to enter the drawing/sketching mode.
This technique is uncomfortable for the user as it detracts
from the conventional pen and paper experience, and so
the preferred method is for the OS to use semantic context
information to separate the input. For example, if the user
is in the middle of writing a word and they write the
character ‘O’, the OS would consider the fact that they
were writing a word and so would not confuse the char-
acter ‘O’ with a circle or the number zero. This latter
method is typical of OS written specifically for pen-based
computing (Pen-centric OS).

The causes of recognition errors fall into two main
categories. One is where the errors are caused by indis-
tinguishable pairs of characters, (for example the inability
of the recognizer to distinguish between ‘2’ and ‘Z’). The
best solution in this case is for the OS to make use of
semantic context information. The other main source of
errors is when some of the user’s character forms are
unrecognizable. As explained previously, this situation
can be improved in two ways. One is for the user to adapt
their handwriting style, so that their characters are a
closer match to the recognizer’s pre-stored models; the
other way is to adapt the recognizer’s pre-stored models; to
be a closer match with the user’s character forms (trained
recognition) (5).

An Experiment Investigating the Dependencies of User
Satisfaction with HWX Performance

A joint experiment carried out by Hewlett Packard (palo
Alto, CA) and The University of Bristol Research. Labora-
tories (Bnstd, UK) in 1995 investigated the influence of
HWX performance on user satisfaction (5). Twenty-four
subjects with no prior knowledge of pen-based computing
carried out predetermined tasks using three test applica-
tions as well as text copying tasks, after being given a brief
tutorial on pen-based computing. The applications were
run on an IBM-compatible PC with Microsoft Windows for
Pen Software and using a Wacom digitizing tablet (which

Figure 3. The Graffiti character set developed by
palm computing. The dot on each character shows
its starting point.

PEN-BASED COMPUTING 3



did not present a direct-manipulation input device as it was
not integrated with the screen). The three applications
were Fax/Memo, Records, and Diary, and they were
devised to contrast with each other in the amount of
HWX required for task completion, tolerance to erroneous
HWX text, and the balance between use of the pen for text
entry and other functions performed normally using a
mouse. The mean recognition rate for lowercase letters
was found to be 90.9%, and 76.1% for upper case letters,
with the lower recognition rate for uppercase letters caused
mainly by identical upper and lower case forms with letters
such as ‘C’, ‘O’, ‘S’, ‘V’. Pen-based computing OS’ attempt to
deal with this problem by comparing the size of drawn
letters relative to each other or relative to comb-guides
when the user input is confined to certain fields/boxes.

As can be observed Fig. 4, the application that required
the least amount of text recognition (Records) was rated as
most appropriate for use with pen input, and the applica-
tion with the most amount of text recognition (Diary) was
rated as the least appropriate in this respect. Figure 4 also
shows that higher recognition accuracy is met with a higher
appropriateness rating by the user, and the more depen-
dent an application is on text recognition the stronger this
relationship is.

An indication of this last point can be observed from the
plots shown in Fig. 4, as the average gradient of an applica-
tion’s plot increases as it becomes more dependent on text
recognition. The results shown in fig. 4 also suggest that
the pen interface is most effective in performing the non
textual functions associated normally with the mouse.
Thus, improving recognition accuracy would increase the
diversity of applications in pen-based computing, as those
more dependent on text entry would be made more effective
and viable.

COGNITIVE MODELLING

Introduction to Cognitive Models

Cognitive models as applied to human–computer interac-
tion represent the mental processes that occur in the mind
of the user as they perform tasks by way of interacting
with a user interface. A range of cognitive models exits, and

each models a specific level within the user’s goal-hierarchy
from high-level goal and task analysis to low-level analysis
of motor-level (physical) activity. cognitive models fall into
two broad categories: those that address how a user
acquires or formulates a plan of activity and those that
address how a user executes that plan. Considering appli-
cations that support pen input, whether they are exten-
sions of conventional applications that support only
keyboard and mouse input or special pen-centric applica-
tions, the actual tasks and associated subtasks that need
to be performed are often the same as those in conventional
applications. Only the task execution differs because of the
different user interface. Thus, only cognitive models that
address the user’s execution of a plan once they have
acquired/formulated it shall be considered, as a means of
evaluating the pen interface.

Adaptation of the Keystroke-Level Model for Pen-based
Computers

The keystroke-level model (KLM) (6) is detailed in Table 1.
This model was developed and validated by Card, Newell,
and Moran, and is used to make detailed predictions about
user performance with a keyboard and mouse interface in
terms of execution times. It is aimed at simple command
sequences and low-level unit tasks within the interaction
hierarchy and is regarded widely as a standard in the field
of human-computer interaction.

KLM assumes a user first builds up a mental represen-
tation of a task in working out deciding exactly how they
will accomplish the task using the facilities and function-
ality offered by the system. This assumption means that no
high-level mental activity is considered during the second
phase of completing a task, which is the actual execution of
the plan acquired and is this execution phase that KLM
focuses on. KLM consists of seven operators, five physical
motor operators, a mental operator, and a system response
operator. The KLM model of the task execution by a user
consists of interleaved instances of the operators. Table 2
details the penstroke-level model (PLM), which represents
a corresponding set of operators for pen-based systems.

As stated previously, the actual tasks that need to be
performed to achieve specific goals are largely the same
with pen-based and keyboard and mouse-based systems,

10

9

8

7

6

5

4

3

2

1
80 - 83.9 84 - 87.9 88 - 91.9

% recognition accuracy

fax

records

diary

ap
pr

op
ria

te
ne

ss
 r

at
in

92 - 95.9

Figure 4. Plots of appropriateness rating against recognition
accuracy .

Table 1. A description of the KLM model’s seven operators

Operator Description

K Key stroking, actually striking keys,
including shifts and other modifier
keys

B Pressing a mouse button
P Pointing, moving the mouse

(or similar device) as a target
H Homing, switching the hand

between mouse and keyboard
D Drawing lines using the mouse
M Mentally preparing for physical

action
R System response which may be

ignored if the user does not have
to wait for it, as in copy typing

4 PEN-BASED COMPUTING



and I have thus adapted the KLM model into the PLM
model for application to pen-based systems.

From Table 2, it can be reserved that at worst, pen-
based systems have one less physical motor operator than
keyboard and mouse-based systems, and at best two of its
four physical motor operators have quicker execution
times compared with the corresponding operators of key-
board and mouse-based systems for each user. This abser-
vation suggests that pen-based systems are faster to use
than keyboard and mouse-based systems, and the pre-
vious discussion would suggest that this is especially true
for applications that contain many pointing and dragging
tasks.

Experiment to Compare the Performance of the Mouse, Stylus
and Tablet and Trackball in Pointing and Dragging Tasks

An experiment by Buxton, et al. in 1991 (7) compared the
performance of the mouse, stylus (and digitizing tablet),
and the trackball (which is essentially an upside-down
mouse, with a button by the ball) in elemental pointing
and dragging tasks. Performance was measured in terms
of mean execution times of identical elemental tasks.
However, the digitizing tablet was used in a form where
it was not integrated with the display and sat on the users
desktop, and thus it could not be considered a direct-
manipulation interface as is the case when it is integrated
with the screen. The participants of the experiment were
12 paid volunteers who were computer-literate college
students. During both the pointing and the dragging

task, two targets were on either side of the screen as
shown in Fig. 5.

In the experiment, an elemental pointing action was
considered to be moving the cursor over a target and then
clicking the mouse/trackball button or pressing the pen
down onto the tablet to close its tip-switch, (as opposed to
the tapping action with the modern stylus and digitizer
combinations which terminated an action and initiated the
next action. An elemental dragging action was considered
to be selecting an object within one target and holding down
the mouse/trackball button or maintaining the pressure
of the stylus on the tablet, dragging it to within the other
target and then releasing the mouse/trackball button or
pressure on the tablet to drop the object in that target,
which terminated an action and initiated the next action
where each time the new object would appear halfway
between the two targets. Fitts’ law provides a formula
[shown below in its most common form in Equation (1) to

Table 2. The PLM model, a set of operators for a pen-based user interface corresponding to those of the KLM model

Operator Description

K’ Striking a key or any combination of keys is replaced in pen-based systems with writing a single character or drawing
a single gesture. It is widely accepted in the field of HCI that a reasonably good typist can type faster than they can write.
Although holding down a combination of keys is effectively one individual key press for each key, as the position of
each key is stored as a one chunk in human memory. Some keys are not as familiar to a user as the character keys,
as they are used less frequently. Thus if the user has to look for a key (e.g. the shift key) then it is reasonable to assume
that the action of drawing a single gesture would be of a comparable speed.

B’ This operation is replaced in pen-based systems with tapping the pen once on the screen, which is essentially the same action
as marking a full-stop/period or doting an ‘i’ or ‘j’, and it is a better developed motor skill. No reason exists to believe or
evidence either way to suggest that B or B’ is faster than the other for a specific user.

P’ This operation is replaced in pen-based systems with the action of moving the pen over the screen, but the pen does not have
to be in continuous contact with the digitizing tablet. Thus, the cursor can be moved from one side of the screen to the other
simply by lifting it from one side and placing it on the other side. This action makes the pen interface more ergonomic than the
mouse in this type of situation as the user’s hand need no longer be in a state of tension while performing this action.
This action is a prime example of the benefits of a direct-manipulation interface.

H’ The homing operator is one for which no corresponding operator exists for pen-based systems, as the pen is the sole
input device. This decreases the overall execution time when using a pen interface compared with a keyboard and mouse.

D’ This operation is replaced in pen-based systems with the action of drawing with the pen, where again the benefits of
direct manipulation are observed, as it is just like drawing using pen and paper, which is a much better developed set
of motor-skills, especially when drawing curved lines/strokes that compose a sketch/drawing.

M’ Because the KLM model assumes the user has formulated a plan and worked out how to execute it, the mental preparation
modelled by the M and M’-operator is simply the time taken by the user to recall what to do next. Thus it is reasonable to
assume that the time taken up by an occurrence of an M or M’-operator is the same for pen-based systems as it is for
keyboard and mouse-based systems for each user. Although it is reasonable to assume that if one was the slower of the two
it would be M, because with keyboard and mouse-based systems, the user has to recall which input device (keyboard or
mouse) they need to use.

R’ Assuming the two systems were of a similar overall capability, it is reasonable to assume that the system response time for
a pen-based system and a keyboard and mouse-based system would be the same. However, the process of HWX is more
intensive computationally than reading keyboard input, so a pen-based system’s processor would need to be faster than
that of a keyboard and mouse-based system to be perceived by the user as being of comparable speed.

Figure 5. The on-screen user-interface used for dragging tasks.

PEN-BASED COMPUTING 5



calculate the time taken for a specific user to move the
cursor to an on-screen target.

Movement Time ¼ aþ blog2ðDistance=ðSizeþ 1ÞÞ (1)

As can be observed from Equation (1), according to Fitts’
law the time taken to move to the target depends on the
distance the cursor needs to be moved and the size of the
target. Constants a and b are determinable empirically for
each user. As Equation (1) shows, a greater distance is
moved in a greater time, and a smaller target is more
difficult to acquire and thus also increases movement
time. The distance between the targets shown in Fig. 5
was varied over the range of discrete values (A ¼ 8, 16, 32,
64 units) where a unit refers to eight pixels. The size
parameter of Equation (1) was represented by the width
of the targets, as the movement of the cursor would largely
be side-to-side, and this too was varied over the discrete
range (W ¼ 1, 2, 4, 8 units). All values of the distance
between targets A were fully crossed with all values of the
width of the targets W for both the pointing and the drag-
ging tasks, and each A-W combination was used for a block
of 10 elemental tasks (pointing or dragging), where the
user’s objective was to carry out the ten tasks in succession
as quickly and a accurately as possible. Sixteen blocks were
ordered randomly into a session, and five sessions were
completed for each device for each of the two types of tasks.
The results showed that subjects occasionally would drop
the object a long way from the target. This was not because
of normal motor variability but occurred because of the
difficulty in sustaining the tension in the hand required to
perform dragging. It was particularly evident with the
trackball, where the ball has to be rolled with the fingers
while holding the button down with the thumb. The results
were adjusted to remove these errors by eliminating ele-
mental task executions within each block that were termi-
nated (by a click or release) a horizontal distance from the
mean termination distance greater than three standard
deviations. This adjustment was made separately for each
subject, A-W combination, device, and task type. Elemental
task executions immediately after those that were termi-

nated erroneously (which the user was notified of via a
beep) were also eliminated, as many people who had inves-
tigated repetitive, self paced, and serial tasks concluded
that erroneous executions were disruptive to the user
and could cause an abnormally long response time
for the following trial, which would have skewed the aver-
age execution time. Analysis also showed a significant
reduction in execution times after the first session,
and thus the entire first session for each subject, for each
device task type combination was also eliminated. Figure 6
and Table 3 show the mean movement times (execution
times) over all blocks for each device and for the two task
types, after the adjustments mentioned above were made.

As can be seen in Fig. 6 and in Table 3, the pen and
digitizing tablet was fastest in both task types, although the
performance of the mouse was comparable in the pointing
task. The results show that the performance of each device
was better in the pointing task than in the dragging task.
This seems reasonable as when dragging the hand (and the
forearm in the case of the pen and digitizing tablet) is in a
state of greater tension compared with when pointing. The
big difference in performance between the mouse and
the pen and digitizing tablet was in the dragging task,
where the performance gap for the pointing task was the
greatest with the mouse. Error rates for each device-task
type were also evaluated and are shown in Fig. 7.

As with mean movement time, error rates were worse for
the dragging task than they were for pointing. The unad-
justed results were evaluated before making the modifica-
tions described above. The adjustment of eliminating errors
greater than three standard deviations from the mean

1400

1200

1000

800

600

Dragging

Pointing

Mouse Tablet

Device

M
ea

n
 M

T
 (

m
s)

Trackball

Figure 6. Graph showing execution times of three devices for
elemental pointing and dragging tasks.

Table 3. Tabulated form of the plots shown in Figure 6

Input device

Average MT: Average MT:
elemental elemental
pointing dragging

Stylus & Tablet 665 ms 802 ms
Mouse 674 ms 916 ms
Trackball 1101 ms 1284 ms

Dragging

20

10

0

Pointing

Mouse Tablet

Device

M
ea

n
 P

er
ce

n
ta

g
e 

E
rr

o
rs

Trackball

Unadjusted

Adjusted

Adjusted

Unadjusted

Figure 7. Graphs to show the mean error rates for three devices
during pointing and dragging tasks.

6 PEN-BASED COMPUTING



termination distance from the target (as described above)
was also applied to the pointing task, although dropping
errors could not have occurred during the pointing task.
The results shown in Fig. 7 show that the mouse had a lower
(but comparable) error rate compared with the pen and
digitizing tablet in the pointing task, and had a much lower
error rate than in the dragging task. The 12 participants
were computer literate, and because the mouse is the
standard interface device for pointing and dragging, this
finding suggests that on average they would have been
more familiar with the mouse than they were with the pen
and digitizing tablet (in the non–direct-manipulation form
that was employed in this experiment). Thus, they would
have had better developed motor skills for pointing and
dragging using a mouse. It is reasonable to assume that the
pen and digitizing tablet interface in its direct-manipula-
tion form would have yielded fewer errors all round, but
almost certainly in pointing as the user would no longer
have to track the position of the cursor between the targets.
The user could simply perform a dotting action on the
targets in an alternate fashion, which as well as eliminat-
ing errors would have boosted the speed of elemental
pointing tasks.

CONCLUSIONS

The results of the experiment conducted by Hewlett Pack-
ard and The University of Bristol research labs (5) dis-
cussed previously suggest that the pen interface is very
effective for pointing and dragging tasks. Although subject
feedback gave applications a lower appropriateness rating
(for use with pen input), its handwriting recognition func-
tionality was more significant and vital in task execution.
Overall, the results of the experiment conveyed the impres-
sion that the pen was comparable with the mouse for
pointing and dragging tasks, but not as good as the key-
board for text entry because of relatively high recognition
error rates.

In my attempt at a direct comparison of pen-based and
keyboard and mouse-based systems it was shown that pen-
based systems are the simpler of the two in a cognitive
sense, because the overhead associated with switching the
hand between the mouse and the keyboard is removed with
pen-based systems as the pen is the sole input device. The
other operators in the model most likely have quicker
execution times than their KLM equivalents for a specific
user as a result of the direct-manipulation input device that
is the integrated digitizer and screen and because of the
more advanced motor skills that most users will have for

using a pen than for using a mouse. The only exception to
this is the B or B’-operator (pressing a mouse button/
tapping the pen on the digitizing tablet), with which no
evidence suggests which is faster than the other, but
usually this operator is combined with the P or P’-operator
(pointing), and reasons exist to believe this method is faster
using pen-based systems than keyboard and mouse-based
systems.

The results of the experiment conducted by Buxton et al.
(7) discussed previously support these facts by showing the
pen to be faster than the mouse (and the trackball) for both
pointing and dragging tasks. Although the results showed
higher error rates during both pointing and dragging for
the pen than for the mouse. It is reasonable to assume that
this was because the experiment used the indirect-manip-
ulation form of the digitizing tablet (where it is not inte-
grated with the screen). With this configuration of the
digitizing tablet the user is confined to using a low inter-
activity-level input mechanism just as they are when using
a mouse, but with a less familiar input device as this
configuration of the digitizing tablet does not resemble
the conventional pen and paper metaphor like the direct-
manipulation configuration does.

BIBLIOGRAPHY

1. PDA vs. Laptop: a comparison of two versions of a nursing
documentation application. Center for Computer Research
Development, Puerto Rico University, Mayaguez, Puerto Rico.

2. N-trig http://www.n-trig.com.

3. http://msdn2.microsoft.com/en-us/library/ms811395.aspx.

4. Multimodal Integration for Advanced Multimedia Interfaces
ESPRIT III Basic Research Project 8579. Avalable: http://
hwr.nici.kun.nl/~miami/taxonomy/node1.html.

5. Recognition accuracy and user acceptance of pen interfaces.
University of Bristol Research Laboratories; Hewlett Packard
CHI ’95 Proceedings and Papers. Avalable: http://www.ac-
m.org/sigs/sigchi/chi95/Electronic/documnts/.

6. A. Dix, J. Finlay, G. Abowd, R. Beale‘‘Humancomputer Inter-
action 2nd ed.’’ Englewood.Cliffs, NJ: 1998.

7. A Comparison of Input Devices in Elemental Pointing and
Dragging Tasks. Avalable: http://www.billbuxton.com/fitts91.
html.

DR. SANDIP JASSAR

Cambridge, United Kingdom

PEN-BASED COMPUTING 7



P

PROGRAMMABLE LOGIC ARRAYS

INTRODUCTION

Programmable logic arrays (PLAs) are widely used tradi-
tional digital electronic devices. The term ‘‘digital’’ is
derived from the way digital systems process information;
that is by representing information in digits and operating
on them. Over the years, digital electronic systems have
progressed from vacuum-tube circuits to complex inte-
grated circuits, some of which contain millions of transis-
tors. Currently, digital systems are included in a wide
range of areas, such as communication systems, military
systems, medical systems, industrial control systems, and
consumer electronics.

Electronic circuits can be separated into two groups,
digital and analog. Analog circuits operate on analog quan-
tities that are continuous in value, where as digital circuits
operate on digital quantities that are discrete in value and
are limited in precision. Analog signals are continuous in
time and are continuous in value. Most measurable quan-
tities in nature are in analog form, for example, tempera-
ture. The measurements of temperature changes are
continuous in value and in time; the temperature can
take any value at any instance of time without a limit
on precision but with the capability of the measurement
tool. Fixing the measurement of temperature to one read-
ing per an interval of time and rounding the value recorded
to the nearest integer will graph discrete values at discrete
intervals of time that could be coded into digital quantities
easily. From the given example, it is clear that an analog-
by-nature quantity could be converted to digital by taking
discrete-valued samples at discrete intervals of time and
then coding each sample. The process of conversion usually
is known as analog-to-digital conversion (A/D). The oppo-
site scenario of conversion is also valid and known as
digital-to-analog conversion (D/A). The representation of
information in a digital form has many advantages over
analog representation in electronic systems. Digital data
that is discrete in value, discrete in time, and limited in
precision could be efficiently stored, processed, and trans-
mitted. Digital systems are more noise-immune than ana-
log electronic systems because of the physical nature of
analog signals. Accordingly, digital systems are more reli-
able than their analog counterpart. Examples of analog and
digital systems are shown in Fig. 1.

A BRIDGE BETWEEN LOGIC AND CIRCUITS

Digital electronic systems represent information in digits.
The digits used in digital systems are the 0 and 1 that
belong to the binary mathematical number system. In logic,
the 0 and 1 values correspond to true and false. In circuits,
the true and false correspond with high voltage and low
voltage. These correspondences set the relations among

logic (true and false), binary mathematics (0 and 1), and
circuits (high and low).

Logic, in its basic shape, checks the validity of a certain
proposition — a proposition could be either true or false.
The relation among logic, binary mathematics, and circuits
enables a smooth transition of processes expressed in pro-
positional logic to binary mathematical functions and equa-
tions (Boolean algebra) and to digital circuits. A great
scientific wealth exists to support strongly the relations
among the three different branches of science that led to the
foundation of modern digital hardware and logic design.

Boolean algebra uses three basic logic operations AND,
OR, and NOT. If joined with a proposition P, the NOT
operation works by negating it; for instance, if P is True
then NOT P is False and vice versa. The operations AND
and OR should be used with two propositions, for example,
P and Q. The logic operation AND, if applied on P and Q
would mean that P AND Q is True only when both P and Q
are True. Similarly, the logic operation OR, if applied on P
and Q would mean that P OR Q is True when either P or Q is
True. Truth tables of the logic operators AND, OR, and
NOT are shown in Fig. 2a. Figure 2b shows an alternative
representation of the truth tables of AND, OR, and NOT in
terms of 0s and 1s.

Digital circuits implement the logic operations AND,
OR, and NOT as hardware elements called ‘‘gates’’ that
perform logic operations on binary inputs. The AND-gate
performs an AND operation, an OR-gate performs an OR
operation, and an Inverter performs the negation operation
NOT. Figure 2c shows the standard logic symbols for the
three basic operations. With analogy from electric circuits,
the functionality of the AND and OR gates are captured as
shown in Fig. 3. The actual internal circuitry of gates
is built using transistors; two different circuit implementa-
tions of inverters are shown in Fig. 4. Examples of AND,
OR, NOT gates integrated circuits (ICs) are shown in Fig. 5.
Besides the three essential logic operations, four
other important operations exist—the NOR, NAND, exclu-
sive-OR (XOR), and Exclusive-NOR.

A logic circuit usually is created by combining gates
together to implement a certain logic function. A logic
function could be a combination of logic variables (such
as A, B, C, etc.) with logic operations; logic variables can
take only the values 0 or 1. The created circuit could be
implemented using AND-OR-Inverter gate-structure or
using other types of gates. Figure 6 shows an example
combinational implementation of the following logic func-
tion F(A, B, C):

FðA;B;CÞ ¼ ABCþ A0BCþ AB0C0

In this case, F(A, B, C) could be described as a sum-of-
products (SOP) function according to the analogy that
exists between OR and addition (+), and between AND

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Input X Input Y
Output: 
X AND Y

Input X Input Y
Output: 
X OR Y

Input X
Output: 
NOT X

False False False False False False False True 
False True False False True True  True False
True False False True False True    
True True True  True True True    

(a) 

Input X Input Y
Output: 
X AND Y

Input X Input Y
Output: 
X OR Y

Input X
Output: 
NOT X

0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1    
1 1 1 1 1 1    

(b)

(c)

AND Gate OR Gate Inverter

0

1

0
0
0

0

0

1

0
1

1

1

0
1

1

1

0

0

010

01 1

0

11

1

Figure 2. (a) Truthtables for AND, OR, and Inverter. (b) Truthtables for AND, OR, and Inverter in binary numbers, (c) Symbols for AND,
OR, and Inverter with their operation.

X Y

X AND Y

X

Y

X OR Y

X

Y

X

Y

X AND X Y OR Y

Figure 3. A suggested analogy between AND and OR gates and electric circuits.

Analog Amplifier Speaker

Microphone          

A Simple Analog System

Personal Digital Assistant and a Mobile Phone

Speaker

Microphone

A Digital System

Figure 1. A simple analog system and a digital system; the analog signal amplifies the input signal using analog electronic components. The
digital system can still include analog components like a speaker and a microphone, the internal processing is digital.

2 PROGRAMMABLE LOGIC ARRAYS



and product (.); the NOT operation is indicated by an
apostrophe ‘‘ ’ ’’ that follows the variable name.

PROGRAMMABLE LOGIC

Basically, three types of IC technologies exist that can be
used to implement logic functions on which Ref. 1, include,
full-custom, semi-custom, and programmable logic devices
(PLDs). In full-custom implementations, the designer is
concerned about the realization of the desired logic function

to the deepest details, which include the transistor-level
optimizations, to produce a high-performance implementa-
tion. In semi-custom implementations, the designer uses
ready logic-circuit blocks and completes the wiring to
achieve an acceptable performance implementation in a
shorter time than full-custom procedures. In PLDs, the
logic blocks and the wiring are ready. To implement a
function on a PLD, the designer will decide which wires
and blocks to use; this step usually is referred to as pro-
gramming the device.

OutputInput

+VDD      1.6 kW 130 W 4 kW 

1 kW 

+VCC

Output

Input

TTL InverterCMOS Inverter

Figure 4. Complementary Metal-oxide Semiconductor (CMOS) and Transistor-Transistor Logic (TTL) Inverters.

GND

Vcc

GND

Vcc

GND

Vcc

Figure 5. The 74LS21 (AND), 74LS32 (OR), 74LS04 (Inverter) TTL ICs.

A
B
C

F(A, B, C)
A
B
C
A
B
C

Figure 6. AND-OR-Inverter implementation of the function FðA;B;CÞ ¼ ABCþ A0BCþ AB0C0.

PROGRAMMABLE LOGIC ARRAYS 3



Obviously, the development time using a PLD is shorter
than the other full-custom and semi-custom implementa-
tion options. The performance of a PLD varies according to
its type and complexity; however a full-custom circuit
is optimized to achieve higher performance. The key
advantage of modern programmable devices is their
reconfiguration without rewiring or replacing components
(reprogrammability). Programming a modern PLD is as
easy as writing a software program in a high-level pro-
gramming language.

The first programmable device that achieved a wide-
spread use was the programmable read-only memory
(PROM) and its derivatives Mask-PROM, and Field-
PROM (the erasable or electrically erasable versions).
Another step forward led to the development of PLDs.
Programmable array logic, programmable logic array
(PLA), and generic array logic are commonly used PLDs
designed for small logic circuits and are referred to as
simple-PLDs (SPLDs). Other types, Such as the mask-
programmable gate arrays, were developed to handle lar-
ger logic circuits. Complex-PLDs (CPLDs) and field pro-
grammable gate arrays (FPGAs) are more complicated

devices that are fully programmable and instantaneously
customizable. Moreover, FPGAs and CPLDs have the abil-
ity to implement very complex computations with millions
of gates devices currently in production. A classification of
PLDs is shown in Fig. 7.

PLAs

A (PLA) is an (SPLD) that is used to implement combina-
tional logic circuits. A PLA has a set of programmable AND
gates, which link to a set of programmable OR gates to
produce an output (see Fig. 8). Implementing a certain
function using a PLA requires the determination of which
connections among wires to keep. The unwanted routes
could be eliminated by burning the switching device (pos-
sibly a fuse or an antifuse) that connects different routs.
The AND-OR layout of a PLA allows logic functions to be
implemented that are in an SOP form.

Technologies used to implement programmability in
PLAs include fuses or antifuses. A fuse is a low resistive
element that could be blown (programmed) to result in an
open circuit or high impedance. An antifuse is a high

PLDs 

SPLDs High-density 
PLDs

PLA PAL GAL CPLDs FPGAs

Figure 7. Typical PLD device classification.

Standard Multiple 
AND Gate Symbol

AND Array 
Symbol

Standard Multiple 
OR Gate Symbol

OR Array 
Symbol

CBA

Figure 8. A 3-input 2-output PLA with its AND Arrays and OR Arrays. An AND array is equivalent to a standard multiple-input AND gate,
and an OR array is equivalent to a standard multiple-input OR gate.

4 PROGRAMMABLE LOGIC ARRAYS



resistive element (initially high impedance) and is pro-
grammed to be low impedance.

Boolean expressions can be represented in either of two
standard forms, SOPs and the product-of-sums (POSs). For
example, the equations for F (an SOP) and G (a POS) are as
follows:

FðA;B;CÞ ¼ ABCþ A0BCþ AB0C0

GðA;B;CÞ ¼ ðAþ Bþ CÞ : ðA0 þ Bþ CÞ : ðAþ B0 þ C0Þ

A product term consists of the AND (Boolean
multiplication) of literals (A, B, C, etc.). When two or
more product terms are summed using an OR (Boolean
addition), the resulting expression is an SOP. A standard
SOP expression FðA;B;C; . . .Þ includes all variables in
each product term. Standardizing expressions makes eva-
luation, simplification, and implementation much easier
and systematic.

The implementation of any SOP expression using AND-
gates, OR-gates, and inverters, could be replaced easily
using the structure offered by a PLA. The algebraic rules of
hardware development using standard SOP forms are the
theoretical basis for designs targeting PLAs. The design
procedure simply starts by writing the desired function in
an SOP form, and then the implementation works by
choosing which fuses to burn in a fused-PLA.

In the following two examples, we demonstrate the
design and the implementation of logic functions using
PLA structures. In the first example, we consider the design
and the implementation of a three-variable majority func-
tion. The function F(A, B, C) will return a 1 (high or true)
when the number of 1s in the inputs is greater than or equal
to the number of 0s. The truth-table of F is shown in Fig. 9.
The terms that make the function F return a 1 are the terms
F(0, 1, 1), F(1, 0, 1), F(1, 1, 0), or F(1, 1, 1). which could be
formulated alternatively as in the following equation:

F ¼ A0BCþ AB0Cþ ABC0 þ ABC

In Fig. 10, the implementations using a standard AND-
OR-Inverter gate-structure and a PLA are shown.

Another function G(A, B, C, D) could have the following
equation:

G ¼ A0Bþ AB0CDþ AB0 þ ABDþ B0C0D0

The implementation of G using a PLA is shown in
Fig. 11.

EARLY PLAs

Near the beginning of 1970s, companies such as Philips,
Texas Instruments, National Semiconductor,Intersil,
IBM(2),and Signetics introduced early PLA and PLA-based
devices. Early PLAs had limited numbers of input/output
ports (around 20), array cells count (from hundreds to few
thousands), and speeds (with around 1 to 35 nanoseconds
delay). Later PLAs performed with greater speeds (with
around 2 to 5 nanoseconds delay), with array sizes of
thousands of cells, and input/output ports number of
around 100 (3). Currently, some PLA-structures are parts
of high-density, high-performance, and CPLDs.

Currently,PLAs are available in the market in different
types. PLAs could be stand-alone chips, or parts of bigger
processing systems. Stand-alone PLAs are available as
mask programmable (MPLAs) and field programmable
(FPLAs ) devices. MPLAs are programmed at the time of
manufacture, whereas FPLAs can be programmed by the
user with a computer-aided design tool.

PLAs IN MODERN COMPLEX SYSTEMS AND AREAS
OF APPLICATION

PLAs have largely motivated the development of many
modern programmable systems. usually, PLAs are used
as a part of a more complicated processing system. PLAs
have also inspired the creation of complex PLA-based

Input A Input B Input C Output F 

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Figure 9. Truthtable of the majority function.

CBA

xxx

xxx

xxx

xxx

x

x

x

x

x Fuse not blown, the literal is 
included in the term

A’BC

AB’C

ABC’

ABC

Figure 10. PLA implementation of F(A, B, C).

PROGRAMMABLE LOGIC ARRAYS 5



systems with PLA-like structure. The available variety of
PLAs and PLA-based systems paved the way for their
employment in many areas of application.

The CoolRunner II CPLD from Xilinx uses a PLA-type
structure. This device has multiple function blocks (FBs).
Each FB contains 16 macrocells and the FBs are intercon-
nected by an advanced interconnect matrix. A basic archi-
tectural block diagram for the CoolRunner II with a greatly
simplified diagram of an FB is shown in Fig. 12.

The CoolRunner II series of CPLDs contains from 32
macrocells to 512 macrocells. The number of FBs range
from 2 to 32. The PLA structure contains a programmable

AND array with 56 AND-gates, and a programmable OR
array with 16 OR-gates. With the PLA structure, any
product term can be connected to any OR-gate to create
an SOP output. Each FB can produce up to 16 SOP outputs
each with 56 product terms.

The main additions to the traditional PLA structure in a
device such as CoolRunner II are the complex macrocells. A
macrocell can be configured for combinational logic or
sequential logic (with availability of flip-flops). The macro-
cell in a CoolRunner II also contains an XOR-gate to enable
complementing the SOP output (coming from the PLA OR-
gate) to produce a POS form. A 1 on the input of the XOR-
gate complements the OR output (a POS form is produced)
and a 0 keeps the output uncomplemented (in an SOP
form). Choices between SOP forms and POS forms, various
clock inputs, flip-flop include or bypass, are completed
using different multiplexers.

Another famous device with a PLA-like structure is the
ICT programmable electrically erasable logic (PEEL) array
(4). PEEL arrays are large PLAs that include macrocells
with flip-flops. The PEEL array structure is shown in
Fig. 13 with its PLA-like planes; the outputs of the
OR-plane are divided into groups of four, and each group
can be input to any of the logic cells. The logic cells, depicted
in Fig. 14, provide registers for the sum terms and can
feed back the sum terms to the AND-plane. The logic cells
can also connect the sum terms to the input–output pins.
The multiplexers each produce an output of the logic cell
and can provide either a registered or a combinational
output. Because of their PLA-like planes, the PEEL arrays
are well-suited to applications that require SOP terms.

The multiple ALU architecture with reconfigurable
interconnect experiment system (MATRIX) is another mod-
ern architecture that benefits from the PLA architecture
(5). The MATRIX architecture is unique because it aims to
unify resources for instruction storage and computation.
The basic unit (BFU) can serve either as a memory or a
computation unit. The 8 BFUs are organized in an array,
and each BFU has a 256-word memory, an ALU-multiply
unit, and a reduction control logic. The interconnection
network has a hierarchy of three levels; it can deliver up

.

.

.

I/O

Macrocell 1

.

.

.

Macrocell 2

Macrocell 3

Macrocell 16

..
.

1

. . . 1256

1
40

...

16

AIM

FB

FB - I/O

FB - I/O

.

.

.

FB - I/O

.

.

.

FB - I/O

FB - I/O

Figure 12. Architectural block diagram for the CoolRunner II.

DCB

G

xx

xxx

xx

xxx

x

x

x

x

x Fuse not blown, the literal is 
included in the term

A’B

AB’CD

BC’

B’C’D’

A

x

Figure 11. PLA implementation of G(A, B, C, D).

6 PROGRAMMABLE LOGIC ARRAYS



to 10 GOPS with 100 BFUs when operating at 100 MHz.
The MATRIX controller is composed of a pattern matcher to
generate local control from the ALU output, a reduction
network to generate local control, and a 20-input, 8-output
NOR block that serves as half of a PLA.

One famous application of PLAs is to implement the
control over a datapath in a processor. A datapath con-
troller usually follows predefined sequences of states. In
each control state, the PLA part of the controller will
determine what datapath control signals to produce and
the next state of the controller. The design of the controller
usually starts by formulating different states and transi-
tions using a state diagram. The state diagram is then
formulated in a truth-table form (state transition table),
where SOP equations could be produced. Then, the derived
SOP equations are mapped onto the PLA. A design example
of a datapath controller is shown in Figs. 16, 17, and 18.
Figure 16 shows a typical controller state diagram.
Figure 17 depicts the block diagram of the datapath con-
troller. Figure 18 suggests a PLA implementation of the
controller.

Many areas of application have benefited from PLAs and
PLA-based devices, such as cryptography (6), signal pro-

cessing (7), computer graphics (8), image processing (9),
data mining (9), and networking (10).

PROGRAMMING PLAs

Traditional PLAs usually are programmed using a PLA
device programmer (such as traditional PROMs
and EPROM-based logic devices). Some more complex
PLA-based devices, such as CPLDs, can be programmed
using device programmers; modern CPLDs are in-circuit
programmable. In other words, the circuit required to per-
form device programming is provided within the CPLD
chip. In-circuit programmability makes it possible to
erase and reprogram the device without an external device
programmer.

Modern CPLDs, which include the internal PLA-like
structures, benefit from the latest advances in the area
of hardware/software codesign. Descriptions of the desired
hardware structure and behavior are written in a high-
level context using hardware description languages such as
Verilog. Then, the description code is compiled and down-
loaded in the programmable device before execution. Sche-
matic captures are an option for design entry. Schematic
captures have become less popular especially with complex
designs. The process of hardware describe-and-synthesize
development for programmable logic devices is shown in
Fig. 15.

Hardware compilation consists of several steps. Hard-
ware synthesis is the first major step of compilation, where
an intermediate representation of the hardware design
(called a netlist) is produced. A netlist usually is stored
in a standard format called the electronic design inter-
change format and it is independent of the targeted device
details. The second step of compilation is called place and
route, where the logical structures described in the netlist
are mapped onto the actual macrocells, interconnections,
and input and output pins of the targeted device. The result
of the place and route process is a called a bitstream. The
bitstream is the binary data that must be loaded into the

Logic Cells

I/O
Pins

Input
Pins

Figure 13. Main components in the architecture of ICT PEEL
Arrays.

J

Q

Q

K

SET

CLR

D, T, J

Global Preset

Global Reset

To AND 
Array

To I/O 
Pins

System 
Clock

From 4 
Sum 

Terms

Figure 14. Structure of PEEL Array Logic Cell.

System Description

Synthesis

Place, Route, and Timing Analysis

Downloading the generated bitstream 
to the programmable device

HDL 
Representation

Netlist

Bitstream file and the 
expected propagation 

delay

Figure 15. The process of hardware describe-and-synthesize
development for programmable logic devices.

PROGRAMMABLE LOGIC ARRAYS 7



PLD to program it to implement a particular hardware
design.

THE RENEWABLE USEFULNESS OF PLAs

PLAs and their design basis have witnessed a renewable
importance and have been the choice of designers for many
systems as well as the target of different design methodol-
ogies. The renewable usefulness of PLAs is clear from the
number of investigations carried out relying on the basis of
PLAs.

A subthreshold circuit design approach based on asyn-
chronous micropipelining of a levelized network of PLAs is
investigated in Ref.11. The main purpose of the presented
approach is to reduce the speed gap between subthreshold
and traditional designs. Energy saving is noted when using
the proposed approach in a factor of four as compared with a
traditional designed networks of PLAs.

In Ref. 12, the authors propose a maximum crosstalk
minimization algorithm that takes logic synthesis into
consideration for PLA structures. To minimize the cross-
talk, technique of permuting wires is used. The PLA pro-
duct terms lines are partitioned into long set and short set,
then product lines in the long set and the short set are

State 0

Instruction 
Fetch

State 1

Instruction 
Decode

State 2
Calculate
 Memory 
Address

Load/Store

State 3

Memory 
Read

Load

State 4

Memory 
Write

Store

State 5

Execute

ALU Operation

State 6

Writeback

State 7

Branch

Figure 16. A design example of a datapath controller; the State
Diagram.

CPU Control Element
Implemented on a PLA

Current 
State

Next
 State

Input 
Instruction
Opcode 

Output
Control
Signals

Figure 17. A design example of a datapath controller; Control
Element block diagram,

Figure 18. A design example of a datapath controller; PLA internal implementation.

8 PROGRAMMABLE LOGIC ARRAYS



interleaved. The interleaved wires are checked for the
maximum coupling capacitance to reduce the maximum
crosstalk effect of the PLA.

A logic synthesis method for an AND-XOR-OR type
sense-amplifying PLA is proposed in Ref.13. Latch sense-
amplifiers and a charge sharing scheme are used to achieve
lowpower dissipation in the suggested PLA.

Testable design to detect stuck-at and bridging faults in
PLAs is suggested in Ref. 14. The testable design is based on
double fixed-polarity reed-muller expressions. An XOR
part is proposed in the design implemented in a tree struc-
ture to reduce circuit delay.

A VLSI approach that addresses the cross-talk problem
in deep sub-micron IC design is investigated in Ref.15.
Logic netlists are implemented in the form of a network
of medium-sized PLAs. Two regular layout ‘‘fabrics’’ are
used in this methodology, one for areas where PLA logic is
implemented, and another to route regions between logic
blocks.

In Ref. 16, a PLA-based performance optimization
design procedure for standardcells is proposed. The opti-
mization is completed by implementing circuits’ critical
paths using PLAs. PLAs are proven to be good for such a
replacement approach because they exhibit a gradual
increase in delay as additional items are added. The final
optimized hybrid design contains standard cells and a
PLA.

A performance-driven mapping algorithm for CPLDs
with a large number of PLA-style logic cells is proposed
in Ref .17 .The primary goal of the mapping algorithm is to
minimize the depth of the mapped circuit. The algorithm
included applying several heuristic techniques for area
reduction, threshold control of PLA fan-outs and product
terms, slack-time relaxation, and PLA-packing.

The attractions of PLAs for mainstream engineers
include their simplicity, relatively small circuit area, pre-
dictable propagation delay, and ease of development. The
powerful but simple nature of PLAs brought them to rapid
prototyping, synthesis, design optimization techniques,
embedded systems, traditional computer systems, hybrid
high-performance computing systems, and so on. Indeed,
there has been renewable interests in working with the
simple AND-to-OR PLAs.

BIBLIOGRAPHY

1. F. Vahid, T. Givargis, Embedded System Design: A Unified
Hardware/Software Introduction, New York: John Wiley &
Sons, 2002.

2. R. A. Wood, High-speed dynamic programmable logic array
chip. IBM J. Res. Develop. 379–383, 1975.

3. Z. E. Skokan, Symmetrical Programmable Logic Array, U.S.
Patent 4,431,928.

4. S. Brown and J. Rose, Architecture of FPGAs and CPLDs: A
Tutorial IEEE Design Test Comp. 2: 42–57, 1996.

5. E. Mirsky and A. DeHon, MATRIX: A reconfigurable comput-
ing architecture with configurable instruction distribution and

deployable resources, Proc. IEEE Workshop on FPGAs for
Custom Computing Machines, 1996, pp. 157–166.

6. R. W. Ward and T. C. A. Molteno, A CPLD coprocessor for
embedded cryptography, Proc. Electronics New Zealand Conf,
2003.

7. S. Pirog, M. Baszynski, J. Czekonski, S. Gasiorek, A. Mondzik,
A. Penczek, and R. Stala, Multicell DC/DC converter with DSP/
CPLD control, Power Electronics and Motion Control Conf,
2006, pp. 677–682.

8. J. Hamblen, Using large CPLDs and FPGAs for prototyping
and VGA video display generation in computer Architecture
design laboratories, IEEE Computer Society Technical Com-
mittee on Computer Architecture Newsletter, 1999, pp. 12–15.

9. A. Esteves, and A. Proença, A hardware/software partition
methodology targeted to an FPGA/CPLD architecture, Proc.
Jornadas sobre Sistemas Reconfiguráveis, 2005.

10. Z. Diao, D. Shen, and V. O. K. Li, CPLD-PGPS scheduling
algorithm in wireless OFDM systems ,Proc. IEEE Global
Telecom. Conf 6: /bookTitle>, 2004, pp. 3732–3736.

11. N. Jayakumar, R. Garg, B. Gamache, and S. P. Khatri, A PLA
based asynchronous micropipelining approach for subthres-
hold circuit design, Proc. Annu. Conf. on Design Automation,
2006, pp. 419–424.

12. Y. Liu, K. Wang, and T. Hwang, Crosstalk minimization in logic
synthesis for PLA, Proc. Conf. on Design, Automation and Test
in Europe, 2:, 2004, pp. 16–20.

13. H. Yoshida, H. Yamaoka, M. Ikeda, and K. Asada, Logic
synthesis for AND-XOR-OR type sense-amplifying PLA,
Proc. Conf. on Asia South Pacific Design automation/VLSI
Design, 2002, pp. 166.

14. H. Rahaman, and D. K. Das, Bridging fault detection in Double
Fixed-Polarity Reed-Muller (DFPRM) PLA, Proc. Conf. on Asia
South Pacific Design Automation, 2005, pp. 172–177.

15. S. P. Khatri, R. K. Brayton, and A. Sangiovanni-Vincentelli,
Cross-talk immune VLSI design using a network of PLAs
embedded in a regular layout fabric, Proc. IEEE/ACM Conf.
on Computer-Aided Design, 2000, pp. 412–419.

16. R. Garg, M. Sanchez, K. Gulati, N. Jayakumar, A. Gupta, and
S. P. Khatri, A design flow to optimize circuit delay by using
standard cells and PLAs, Proc. ACM Great Lakes Symposium
on VLSI, 2006, pp. 217–222.

17. D. Chen, J. Cong, M. D. Ercegovac, and Z. Huang, Perfor-
mance-driven mapping for CPLD architectures, Proc. ACM/
SIGDA Symposium on Field Programmable Gate Arrays, 2001,
pp. 39–47.

FURTHER READING

T. Floyd, Digital Fundamentals with PLD Programming,
Englewood Cliffs, NJ: Prentice Hall, 2006.

M. Mano et al., Logic and Computer Design Fundamentals,
Englewood Cliffs, NJ: Prentice Hall, 2004.

ISSAM W. DAMAJ

Dhofar University
Sultanate of Oman

PROGRAMMABLE LOGIC ARRAYS 9



RP

REDUCED INSTRUCTION SET COMPUTING

ARCHITECTURE

The term computer architecture was first defined in the
article by Amdahl, Blaauw, and Brooks of International
Business Machines (IBM) Corporation announcing the
IBM System/360 computer family on April 7, 1964 (1,2).
On that day, IBM Corporation introduced, in the words of
an IBM spokesperson, ‘‘the most important product
announcement that this corporation has made in its
history.’’

Computer architecture was defined as the attributes of a
computer seen by the machine language programmer as
described in the Principles of Operation. IBM referred to
the Principles of Operation as a definition of the machine
that enables the machine language programmer to write
functionally correct, time-independent programs that
would run across a number of implementations of that
particular architecture.

The architecture specification covers all functions of
the machine that are observable by the program (3). On
the other hand, Principles of Operation are used to define
the functions that the implementation should provide. In
order to be functionally correct, it is necessary that the
implementation conforms to the Principles of Operation.

The Principles of Operation document defines computer
architecture, which includes:

� Instruction set

� Instruction format

� Operation codes

� Addressing modes

� All registers and memory locations that may be
directly manipulated or tested by a machine language
program

� Formats for data representation

Machine Implementation was defined as the actual sys-
tem organization and hardware structure encompassing
the major functional units, data paths, and control.

Machine Realization includes issues such as logic tech-
nology, packaging, and interconnections.

Separation of the machine architecture from implemen-
tation enabled several embodiments of the same architec-
ture to be built. Operational evidence proved that archi-
tecture and implementation could be separated and that
one need not imply the other. This separation made it
possible to transfer programs routinely from one model
to another and expect them to produce the same result
which defined the notion of architectural compatibility.
Implementation of the whole line of computers according
to a common architecture requires unusual attention to
details and some new procedures which are described in the
Architecture Control Procedure. The design and control of

system architecture is an ongoing process whose objective
is to remove ambiguities in the definition of the architecture
and, in some cases, adjust the functions provided (1,3,4).

RISC Architecture

A special place in computer architecture is given to RISC.
RISC architecture has been developed as a result of the
801 project which started in 1975 at the IBM Thomas J.
Watson Research Center and was completed by the early
1980s (5). This project was not widely known to the world
outside of IBM, and two other projects with similar
objectives started in the early 1980s at the University
of California Berkeley and Stanford University (6,7). The
term RISC (reduced instruction set computing), used for
the Berkeley research project, is the term under which
this architecture became widely known and recognized
today.

Development of RISC architecture started as a rather
‘‘fresh look at existing ideas’’ (5,8,9) after revealing evi-
dence that surfaced as a result of examination of how the
instructions are actually used in the real programs. This
evidence came from the analysis of the trace tapes, a
collection of millions of the instructions that were executed
in the machine running a collection of representative pro-
grams (10). It showed that for 90% of the time only about 10
instructions from the instruction repertoire were actually
used. Then the obvious question was asked: ‘‘why not favor
implementation of those selected instructions so that they
execute in a short cycle and emulate the rest of the instruc-
tions?’’ The following reasoning was used: ‘‘If the presence
of a more complex set adds just one logic level to a 10 level
basic machine cycle, the CPU has been slowed down by
10%. The frequency and performance improvement of the
complex functions must first overcome this 10% degrada-
tion and then justify the additional cost’’ (5). Therefore,
RISC architecture starts with a small set of the most
frequently used instructions which determines the pipeline
structure of the machine enabling fast execution of those
instructions in one cycle. If addition of a new complex
instruction increases the ‘‘critical path’’ (typically 12 to
18 gate levels) for one gate level, then the new instruction
should contribute at least 6% to 8% to the overall perfor-
mance of the machine.

One cycle per instruction is achieved by exploitation of
parallelism through the use of pipelining. It is parallelism
through pipelining that is the single most important char-
acteristic of RISC architecture from which all the remain-
ing features of the RISC architecture are derived. Basically
we can characterize RISC as a performance-oriented archi-
tecture based on exploitation of parallelism through pipe-
lining.

RISC architecture has proven itself, and several main-
stream architectures today are of the RISC type. Those
include SPARC (used by Sun Microsystems workstations,
an outgrowth of Berkeley RISC), MIPS (an outgrowth of

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Stanford MIPS project, used by Silicon Graphics), and a
superscalar implementation of RISC architecture, IBM RS/
6000 (also known as PowerPC architecture).

RISC Performance

Since the beginning, the quest for higher performance has
been present in the development of every computer model
and architecture. This has been the driving force behind the
introduction of every new architecture or system organiza-
tion. There are several ways to achieve performance: tech-
nology advances, better machine organization, better
architecture, and also the optimization and improvements
in compiler technology. By technology, machine perfor-
mance can be enhanced only in proportion to the amount
of technology improvements; this is, more or less, available
to everyone. It is in the machine organization and the
machine architecture where the skills and experience of
computer design are shown. RISC deals with these two
levels—more precisely their interaction and trade-offs.

The work that each instruction of the RISC machine
performs is simple and straightforward. Thus, the time
required to execute each instruction can be shortened and
the number of cycles reduced. Typically the instruction
execution time is divided into five stages, namely, machine
cycles; and as soon as processing of one stage is finished, the
machine proceeds with executing the second stage. How-
ever, when the stage becomes free it is used to execute the
same operation that belongs to the next instruction. The
operation of the instructions is performed in a pipeline
fashion, similar to the assembly line in the factory process.
Typically, those five pipeline stages are as follows:

IF: Instruction Fetch

ID: Instruction Decode

EX: Execute

MA: Memory Access

WB: Write Back

By overlapping the execution of several instructions in a
pipeline fashion (as shown in Fig. 1), RISC achieves its
inherent execution parallelism which is responsible for the
performance advantage over the complex instruction set
architectures (CISC).

The goal of RISC is to achieve an execution rate of one
cycle per instruction (CPI ¼ 1.0), which would be the case
when no interruptions in the pipeline occurs. However, this
is not the case.

The instructions and the addressing modes in RISC
architecture are carefully selected and tailored upon the
most frequently used instructions, in a way that will result
in a most efficient execution of the RISC pipeline.

The simplicity of the RISC instruction set is traded for
more parallelism in execution. On average, a code written
for RISC will consist of more instructions than the one
written for CISC. The typical trade-off that exists between
RISC and CISC can be expressed in the total time required
to execute a certain task:

where
I¼ number of instructions/task

C ¼ number of cycles/instruction
P ¼ number of clock periods/cycle (usually P¼1)
T0¼ clock period (ns)

While CISC instruction will typically have less instruc-
tions for the same task, the execution of its complex opera-
tions will require more cycles and more clock ticks within
the cycle as compared to RISC (11). On the other hand,
RISC requires more instructions for the same task. How-
ever, RISC executes its instructions at the rate of one
instruction per cycle, and its machine cycle requires only
one clock tick (typically). In addition, given the simplicity of
the instruction set, as reflected in simpler machine imple-
mentation, the clock period T0 in RISC can be shorter,
allowing the RISC machine to run at the higher speed as

Figure 1. Typical five-stage RISC
pipeline.

2 REDUCED INSTRUCTION SET COMPUTING



compared to CISC. Typically, as of today, RISC machines
have been running at the frequency reaching 1 GHz, while
CISC is hardly at the 500 MHz clock rate.

The trade-off between RISC and CISC can be summar-
ized as follows:

1. CISC achieves its performance advantage by denser
program consisting of a fewer number of powerful
instructions.

2. RISC achieves its performance advantage by having
simpler instructions resulting in simpler and there-
fore faster implementation allowing more parallelism
and running at higher speed.

RISC MACHINE IMPLEMENTATION

The main feature of RISC is the architectural support for
the exploitation of parallelism on the instruction level.
Therefore all distinguished features of RISC architecture
should be considered in light of their support for the RISC
pipeline. In addition to that, RISC takes advantage of the
principle of locality: spatial and temporal. What that means
is that the data that was used recently is more likely to be
used again. This justifies the implementation of a relatively
large general-purpose register file found in RISC machines
as opposed to CISC. Spatial locality means that the data
most likely to be referenced is in the neighborhood of a
location that has been referenced. It is not explicitly stated,
but that implies the use of caches in RISC.

Load/Store Architecture

Often, RISC is referred to as Load/Store architecture.
Alternatively the operations in its instruction set are
defined as Register-to-Register operations. The reason is
that all the RISC machine operations are between the
operands that reside in the General Purpose Register
File (GPR). The result of the operation is also written
back to GPR. When restricting the locations of the operands
to the GPR only, we allow for determinism in the RISC
operation. In the other words, a potentially multicycle and
unpredictable access to memory has been separated from
the operation. Once the operands are available in the GPR,
the operation can proceed in a deterministic fashion. It is
almost certain that once commenced, the operation will be
completed in the number of cycled determined by the pipe-
line depth and the result will be written back into the GPR.
Of course, there are possible conflicts for the operands
which can, nevertheless, be easily handled in hardware.
The execution flow in the pipeline for a Register-to-Register
operation is shown in Fig. 2.

Memory Access is accomplished through Load and Store
instructions only; thus the term Load/Store Architecture is
often used when referring to RISC. The RISC pipeline is
specified in a way in which it must accommodate both
operation and memory access with equal efficiency. The
various pipeline stages of the Load and Store operations in
RISC are shown in Fig. 3.

Carefully Selected Set of Instructions

The principle of locality is applied throughout RISC. The
fact that only a small set of instructions is most frequently

Figure 2. Pipeline flow of a Register-to-Register operation.

REDUCED INSTRUCTION SET COMPUTING 3



used, was used in determining the most efficient pipeline
organization with a goal of exploiting instruction level
parallelism in the most efficient way. The pipeline is ‘‘tai-
lored’’ for the most frequently used instructions. Such
derived pipelines must serve efficiently the three main
instruction classes:

� Access to Cache: Load/Store

� Operation: Arithmetic/Logical

� Branch

Given the simplicity of the pipeline, the control part of
RISC is implemented in hardware—unlike its CISC coun-
terpart, which relies heavily on the use of microcoding.

However, this is the most misunderstood part of RISC
architecture which has even resulted in the inappropriate
name: RISC. Reduced instruction set computing implies
that the number of instructions in RISC is small. This has
created a widespread misunderstanding that the main
feature characterizing RISC is a small instruction set.
This is not true. The number of instructions in the instruc-
tion set of RISC can be substantial. This number of RISC
instructions can grow until the complexity of the control
logic begins to impose an increase in the clock period. In
practice, this point is far beyond the number of instructions
commonly used. Therefore we have reached a possibly
paradoxical situation, namely, that several of representa-
tive RISC machines known today have an instruction set
larger than that of CISC.

For example: IBM PC-RT Instruction architecture con-
tains 118 instructions, while IBM RS/6000 (PowerPC) con-
tains 184 instructions. This should be contrasted to the IBM

System/360 containing 143 instructions and to the IBM
System/370 containing 208. The first two are representa-
tives of RISC architecture, while the latter two are not.

Fixed Format Instructions

What really matters for RISC is that the instructions have a
fixed and predetermined format which facilitates decoding
in one cycle and simplifies the control hardware. Usually
the size of RISC instructions is also fixed to the size of the
word (32 bits); however, there are cases where RISC can
contain two sizes of instructions, namely, 32 bits and 16
bits. Next is the case of the IBM ROMP processor used in
the first commercial RISC IBM PC/RT. The fixed format
feature is very important because RISC must decode its
instruction in one cycle. It is also very valuable for super-
scalar implementations (12). Fixed size instructions allow
the Instruction Fetch Unit to be efficiently pipelined (by
being able to determine the next instruction address with-
out decoding the current one). This guarantees only single
I-TLB access per instruction.

One-cycle decode is especially important so that the
outcome of the Branch instruction can be determined in
one cycle in which the new target instruction address will
be issued as well. The operation associated with detecting
and processing a Branch instruction during the Decode
cycle is illustrated in Fig. 4. In order to minimize the
number of lost cycles, Branch instructions need to be
resolved, as well, during the Decode stage. This requires
a separate address adder as well as comparator, both of
which are used in the Instruction Decode Unit. In the best
case, one cycle must be lost when Branch instruction is
encountered.

Figure 3. The operation of Load/Store pipeline.

4 REDUCED INSTRUCTION SET COMPUTING



Simple Addressing Modes

Simple Addressing Modes are the requirements of the
pipeline. That is, in order to be able to perform the address
calculation in the same predetermined number of pipeline
cycles in the pipeline, the address computation needs to
conform to the other modes of computation. It is a fortunate
fact that in real programs the requirements for the address
computations favors three relatively simple addressing
modes:

1. Immediate

2. BaseþDisplacement

3. BaseþIndex

Those three addressing modes take approximately over
80% of all the addressing modes according to Ref. (3): (1)
30% to 40%, (2) 40% to 50%, and (3) 10% to 20%. The process
of calculating the operand address associated with Load
and Store instructions is shown in Fig. 3.

Separate Instruction and Data Caches

One of the often overlooked but essential characteristics of
RISC machines is the existence of cache memory. The
second most important characteristic of RISC (after pipe-
lining) is its use of the locality principle. The locality
principle is established on the observation that, on average,
the program spends 90% of the time in the 10% of the code.
The instruction selection criteria in RISC is also based on
that very same observation that 10% of the instructions are
responsible for 90% of the code. Often the principle of the
locality is referred to as a 90–10 rule (13).

In case of the cache, this locality can be spatial and
temporal. Spatial locality means that the most likely loca-
tion in the memory to be referenced next will be the location
in the neighborhood of the location that was just referenced
previously. On the other hand, temporal locality means
that the most likely location to be referenced next will be
from the set of memory locations that were referenced just
recently. The cache operates on this principle.

Figure 4. Branch instruction.

REDUCED INSTRUCTION SET COMPUTING 5



The RISC machines are based on the exploitation of that
principle as well. The first level in the memory hierarchy is
the general-purpose register file GPR, where we expect to
find the operands most of the time. Otherwise the Register-
to-Register operation feature would not be very effective.
However, if the operands are not to be found in the GPR, the
time to fetch the operands should not be excessive. This
requires the existence of a fast memory next to the CPU—
the Cache. The cache access should also be fast so that the
time allocated for Memory Access in the pipeline is not
exceeded. One-cycle cache is a requirement for RISC
machine, and the performance is seriously degraded if
the cache access requires two or more CPU cycles. In order
to maintain the required one-cycle cache bandwidth the
data and instruction access should not collide. It is from
there that the separation of instruction and data caches, the
so-called Harvard architecture, is a must feature for RISC.

Branch and Execute Instruction

Branch and Execute or Delayed Branch instruction is a new
feature of the instruction architecture that was introduced
and fully exploited in RISC. When a Branch instruction is
encountered in the pipeline, one cycle will be inevitably lost.
This is illustrated in Fig. 5.

RISC architecture solves the lost cycle problem by intro-
ducing Branch and Execute instruction (5,9) (also known as
Delayed Branch instruction), which consists of an instruc-
tion pair: Branch and the Branch Subject instruction which
is always executed. It is the task of the compiler to find an
instruction which can be placed in that otherwise wasted
pipeline cycle.

The subject instruction can be found in the instruction
stream preceding the Branch instruction, in the target
instruction stream, or in the fall-through instruction
stream. It is the task of the compiler to find such an
instruction and to fill-in this execution cycle (14).

Given the frequency of the Branch instructions, which
varies from 1 out of 5 to 1 out of 15 (depending on the nature
of the code), the number of those otherwise lost cycles can be
substantial. Fortunately a good compiler can fill-in 70% of
those cycles which amounts to an up to 15% performance
improvement (13). This is the single most performance
contributing instruction from the RISC instruction archi-
tecture.

However, in the later generations of superscalar RISC
machines (which execute more than one instruction in the
pipeline cycle), the Branch and Execute instructions have
been abandoned in favor of Brand Prediction(12,15).

The Load instruction can also exhibit this lost pipeline
cycle as shown in Fig. 6.

The same principle of scheduling an independent
instruction in the otherwise lost cycle, which was applied
for in Branch and Execute, can be applied to the Load
instruction. This is also known as delayed load.

An example of what the compiler can do to schedule
instructions and utilize those otherwise lost cycles is shown
in Fig. 7 (13,14).

Optimizing Compiler

A close coupling of the compiler and the architecture is one
of the key and essential features in RISC that was used in
order to maximally exploit the parallelism introduced by
pipelining. The original intent of the RISC architecture was
to create a machine that is only visible through the compi-
ler(5,9). All the programming was to be done in High-Level
Language and only a minimal portion in Assembler. The
notion of the ‘‘Optimizing Compiler’’ was introduced in
RISC (5,9,14). This compiler was capable of producing
a code that was as good as the code written in assembler
(the hand-code). Though there was strict attention given to
the architecture principle (1,3), adhering to the absence of
the implementation details from the principle of the opera-
tion, this is perhaps the only place where this principle was
violated. Namely, the optimizing compiler needs to ‘‘know’’

Figure 5. Pipeline flow of the Branch instruction.

Figure 6. Lost cycle during the execution of the load instruction.

Figure 7. An example of instruction scheduling by compiler.

6 REDUCED INSTRUCTION SET COMPUTING



the details of the implementation, the pipeline in particu-
lar, in order to be able to efficiently schedule the instruc-
tions. The work of the optimizing compiler is illustrated in
Fig. 7.

One Instruction per Cycle

The objective of one instructionper cycle (CPI ¼ 1)execution
was the ultimate goal of RISC machines. This goal can be
theoretically achieved in the presence of infinite size caches
and thus no pipeline conflicts, which is not attainable in
practice. Given the frequent branches in the program and
their interruption to the pipeline, Loads and Stores that
cannot be scheduled, and finally the effect of finite size
caches, the number of ‘‘lost’’ cycles adds up, bringing the
CPI further away from 1. In the real implementations
the CPI varies and a CPI¼1.3 is considered quite good,
while CPI between 1.4 to 1.5 is more common in single-
instruction issue implementations of the RISC architecture.

However, once the CPI was brought close to 1, the next
goal in implementing RISC machines was to bring CPI
below 1 in order for the architecture to deliver more per-
formance. This goal requires an implementation that can
execute more than one instruction in the pipeline cycle, a so
called superscalar implementation (12,16). A substantial
effort has been made on the part of the leading RISC
machine designers to build such machines. However,
machines that execute up to four instructions in one cycle
are common today, and a machine that executes up to six
instructions in one cycle was introduced in 1997.

Pipelining

Finally, the single most important feature of RISC is pipe-
lining. The degree of parallelism in the RISC machine is
determined by the depth of the pipeline. It could be stated
that all the features of RISC (that were listed in this article)
could easily be derived from the requirements for pipelining
and maintaining an efficient execution model. The sole
purpose of many of those features is to support an efficient
execution of RISC pipeline. It is clear that without pipelin-
ing, the goal of CPI ¼ 1 is not possible. An example of the
instruction execution in the absence of pipelining is shown
in Fig. 8.

We may be led to think that by increasing the number of
pipeline stages (the pipeline depth), thus introducing more
parallelism, we may increase the RISC machine perfor-
mance further. However, this idea does not lead to a simple
and straightforward realization. The increase in the num-
ber of pipeline stages introduces not only an overhead in
hardware (needed to implement the additional pipeline
registers), but also the overhead in time due to the delay
of the latches used to implement the pipeline stages as well

as the cycle time lost due to the clock skews and clock jitter.
This could very soon bring us to the point of diminishing
returns where further increase in the pipeline depth would
result in less performance. An additional side effect of
deeply pipelined systems is hardware complexity necessary
to resolve all the possible conflicts that can occur between
the increased number of instructions residing in the pipe-
line at one time. The number of the pipeline stages is mainly
determined by the type of the instruction core (the most
frequent instructions) and the operations required by those
instructions. The pipeline depth depends, as well, on the
technology used. If the machine is implemented in a very
high speed technology characterized by the very small
number of gate levels (such as GaAs or ECL), and a very
good control of the clock skews, it makes sense to pipeline
the machine deeper. The RISC machines that achieve
performance through the use of many pipeline stages are
known as superpipelined machines.

Today the most common number of pipeline stages
encountered is five (as in the examples given in this
text). However, 12 or more pipeline stages are encountered
in some machine implementations.

The features of RISC architecture that support pipelin-
ing are listed in Table 1.

Figure 8. Instruction execution in the absence of pipelining.

REDUCED INSTRUCTION SET COMPUTING 7



HISTORICAL PERSPECTIVE

The architecture of RISC did not come about as a planed or a
sudden development. It was rather a long and evolutionary
process in the history of computer development in which we
learned how to build better and more efficient computer
systems. From the first definition of the architecture in
1964 (1), there are the three main branches of the computer
architecture that evolved during the years. They are shown
in Fig. 9.

The CISC development was characterized by (1) the
PDP-11 and VAX-11 machine architecture that was devel-
oped by Digital Equipment Corporation (DEC) and (2) all
the other architectures that were derived from that devel-
opment. The middle branch is the IBM 360/370 line of
computers, which is characterized by a balanced mix of
CISC and RISC features. The RISC line evolved from the

development line characterized by Control Data Corpora-
tion CDC 6600, Cyber, and ultimately the CRAY-I super-
computer. All of the computers belonging to this branch
were originally designated as supercomputers at the time of
their introduction. The ultimate quest for performance and
excellent engineering was a characteristic of that branch.
Almost all of the computers in the line preceding RISC carry
the signature of one man: Seymour Cray, who is by many
given the credit for the invention of RISC.

History of RISC

The RISC project started in 1975 at the IBM Thomas
J. Watson Research Center under the name of the 801.
801 is the number used to designate the building in which
the project started (similar to the 360 building). The origi-
nal intent of the 801 project was to develop an emulator for
System/360 code (5). The IBM 801 was built in ECL tech-
nology and was completed by the early 1980s (5,8). This
project was not known to the world outside of IBM until the
early 1980s, and the results of that work are mainly unpub-
lished. The idea of a simpler computer, especially the one
that can be implemented on the single chip in the university
environment, was appealing; two other projects with simi-
lar objectives started in the early 1980s at the University of
California Berkeley and Stanford University (6,7). These
two academic projects had much more influence on the
industry than the IBM 801 project. Sun Microsystems
developed its own architecture currently known as SPARC
as a result of the University of California Berkeley work.
Similarly, the Stanford University work was directly trans-
ferred to MIPS (17).

The chronology illustrating RISC development is illu-
strated in Fig. 10.

The features of some contemporary RISC processors are
shown in Table 2.

Figure 9. Main branches in development of computer architec-
ture.

Figure 10. History of RISC development.

8 REDUCED INSTRUCTION SET COMPUTING



BIBLIOGRAPHY

1. G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Architecture of
the IBM System/360, IBM J. Res. Develop., 8: 87–101, 1964.

2. D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Struc-
tures: Principles and Examples, Advanced Computer Science
Series, New York: McGraw-Hill, 1982.

3. G. A. Blaauw and F. P. Brooks, The structure of System/360,
IBM Syst. J., 3: 119–135, 1964.

4. R. P. Case and A. Padegs, Architecture of the IBM System/370,
Commun. ACM, 21: 73–96, 1978.

5. G. Radin, The 801 Minicomputer, IBM Thomas J. Watson
Research Center, Rep. RC 9125, 1981; also in SIGARCH Com-
put. Archit. News, 10 (2): 39–47, 1982.

6. D. A. Patterson and C. H. Sequin, A VLSI RISC, IEEE Comput.
Mag., 15 (9): 8–21, 1982.

7. J. L. Hennessy, VLSI processor architecture, IEEE Trans.
Comput., C-33: 1221–1246, 1984.

8. J. Cocke and V. Markstein, The evolution of RISC technology at
IBM, IBM J. Res. Develop., 34: 4–11, 1990.

9. M. E. Hopkins, A perspective on the 801/reduced instruction
set computer, IBM Syst. J., 26: 107–121, 1987.

10. L. J. Shustek, Analysis and performance of computer instruc-
tion sets, PhD thesis, Stanford Univ., 1978.

11. D. Bhandarkar and D. W. Clark, Performance from architec-
ture: Comparing a RISC and a CISC with similar hardware
organization, Proc. 4th Int. Conf. ASPLOS, Santa Clara, CA,
1991.

12. G. F. Grohosky, Machine organization of the IBM RISC
System/6000 processor, IBM J. Res. Develop., 34: 37, 1990.

13. J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, San Mateo, CA: Morgan Kaufman.

14. H. S. Warren, Jr., Instruction scheduling for the IBM RISC
System/6000 processor, IBM J. Res. Develop., 34: 37, 1990.

15. J. K. F. Lee and A. J. Smith, Branch prediction strategies and
branch target buffer design, Comput., 17 (1): 1984, 6–22.

16. J. Cocke, G. Grohosky, and V. Oklobdzija, Instruction control
mechanism for a computing system with register renaming,
MAP table and queues indicating available registers, U.S.
Patent No. 4,992,938, 1991.

17. G. Kane, MIPS RISC Architecture, Englewood Cliffs, NJ:
Prentice-Hall, 1988.

READING LIST

D. W. Anderson, F. J. Sparacio, R. M. Tomasulo, The IBM 360
Model 91: Machine philosophy and instruction handling, IBM J.
Res. Develop., 11: 8–24, 1967.

Digital RISC Architecture Technical Handbook, Digital Equip-
ment Corporation, 1991.

V. G. Oklobdzija, Issues in CPU—coprocessor communication and
synchronization, EUROMICRO ’88, 14th Symp. Microprocessing
Microprogramming, Zurich, Switzerland, 1988, p. 695.

R. M. Tomasulo, An efficient algorithm for exploring multiple
arithmetic units, IBM J. Res. Develop., 11: 25–33, 1967.

VOJIN G. OKLOBDZIJA

Integration Corporation
Berkeley, California

REDUCED INSTRUCTION SET COMPUTING 9



S

SPECULATION

Modern compilers and processors employ many different
kinds of speculation to improve parallel execution. Broadly
speaking, the speculation can be categorized into three
different groups.

1. Control speculation: Guess which instructions will be
executed.

2. Value speculation: Guess the output value computed
by an instruction.

3. Data access speculations: Guess what data will be
accessed by a program.

Several things must be taken into consideration when
deciding whether to speculate, such as the number of
situations that may benefit from the speculation, the poten-
tial gain of the speculation, the accuracy of the speculation,
and the penalty of misspeculation. If a particular form of
speculation provides only modest performance improve-
ment each time it is applied, it may be worthwhile if the
speculation is applicable often, the speculation accuracy is
sufficiently high, and the misspeculation penalty is small.
On the other hand, speculation that offers huge perfor-
mance gains may be inappropriate if the speculation accu-
racy is low or the misspeculation penalty is too high.

The remainder of this article will discuss various forms
of speculation employed in modern processors and compi-
lers. For each situation, the need for speculation will be
described, the speculation and recovery mechanisms will be
outlined, and the benefits of the speculation will be dis-
cussed.

CONTROL SPECULATION

In the von Neumann architecture, programs are expressed
as a sequence of instructions executed by the processor. The
processor retrieves each instruction from memory, per-
forms the computation indicated by the instruction, and
stores its result. The process then repeats for the instruc-
tion that lies in the adjacent memory location. Branch
instructions interrupt this sequential processing and
instruct the processor to begin executing from a new mem-
ory address (rather than the next sequential address). Most
modern processors, however, do not implement the von
Neumann architecture directly. Instead, several instruc-
tions execute in parallel (via pipelining, superscalar execu-
tion, very long instruction word execution). With multiple
instructions in flight simultaneously, processors normally
fetch later instructions from memory before prior instruc-
tions have completed. This action proceeds unhindered
during sequential execution, but branch instructions create
control hazards. To fetch from the correct location, a non-
speculative processor must wait for the result of a branch
instruction to know from where to fetch subsequent

instructions. Stalling for these control hazards reduces
the processor’s instruction throughput. These stalls lead
to many unused cycles and resources because control
instructions occur frequently (every 5 to 10 instructions)
in program streams (1).

Branch Prediction

To alleviate the performance degradation imposed by
branch instructions, processor microarchitectures employ
branch prediction, which is a form of control speculation.
When using branch prediction, rather than waiting for the
result of a branch instruction, the processor predicts what
the next instruction address will be and begins fetching and
executing instructions from this location speculatively.
When the branch instruction completes execution, the
actual target address of the branch is compared with the
predicted address. If the addresses match, then no recovery
action is taken and the processor can continue executing
normally. Otherwise, the processor must discard the
results of the speculative instructions (because they should
not have been executed) and begin executing instructions
from target of the branch.

Although it may seem that predicting an arbitrary 64-bit
(or even 32-bit) target address would be extremely difficult,
several factors in instruction set architecture (ISA) design
and programming paradigms make this task far less chal-
lenging (although the task is still nontrivial). Branch
instructions in most modern ISAs can be classified along
two orthogonal axes. First, branch instructions can be
unconditional or conditional. Unconditional branches
always transfer control to a new target. Conditional
branches, as the name suggests, may redirect control to a
new addressormay allowexecution to continuesequentially
depending on a condition that guards branch. Second,
branch instructions can be direct or indirect. Direct
branches encode the target of the control transfer directly
in the instruction. Indirect branches, on the other hand,
refer to a register or memory location that contains the
target of the branch. Consequently, the target foran indirect
branch can be computed by other instructions whereas the
target for a direct branch is known at program compile time.

The majority of branch instructions in a program are
unconditional or conditional direct branches. Conse-
quently, a branch predictor must only decide whether
the branch will be taken. Predicting this binary value is
more simple than speculating a target address. Many
schemes for predicting branches have been presented in
the literature and infact, this was a principle research focus
in computer architecture in the past decade. The simplest
scheme is to always predict a single direction for the branch
(2). For example, a processor could predict statically that all
branches will be taken. Such an approach works surpris-
ingly well because loop back-edge branches are taken more
often than not. More advanced techniques make predic-
tions based on the history of past branches. Empirical
observations show that if previous instances of a branch

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



in the program have gone in a particular direction, then
future instances are likely to go the same way. Conse-
quently, using branch history can improve prediction accu-
racy tremendously. Other techniques that leverage
correlations between different branches or hints provided
by compilers are also used frequently (3). Branch predictors
implemented in commercial processors, using the techni-
ques described here as well as more advanced techniques,
have been able to predict in excess of 95% of conditional
branches in many programs successfully.

Although the mechanisms just described allow predic-
tions to be made for direct jumps, they are inadequate for
indirect jumps. Many branch predictors include a structure
called a branch target buffer (BTB) to help predict indirect
jumps. The BTB stores the target for the last execution of a
particular branch in the program (2).When the branch is
encountered again, the target stored in the BTB is pre-
dicted. This target can be combined with traditional branch
prediction for conditional indirect jumps.

In the event of a branch misprediction, it is necessary for
the processor to discard the results of speculative instruc-
tions and restart execution at the correct point in the
program. Depending on the microarchitecture, the hard-
ware support necessary to roll back speculative instruc-
tions varies. In an in-order pipelined processor, the
predicted branch instruction is guaranteed to execute
before later instructions reach the pipeline stages where
results are stored to the register files or memory. Conse-
quently, when encountering a branch misprediction, the
microprocessor need only throw out all instructions that
were initiated after the branch and then begin re-executing
at the correct target. On machines that execute instructions
out of order, instructions that follow a speculated branch
can execute before the branch. To ensure that the effects of
these instructions can be undone, out-of-order processors
allow instructions to complete in an arbitrary order but
ensure that they commit in program order. Architectural
state is only updated when an instruction commits, not
when it completes. Consequently, if misspeculation occurs,
all instructions after the branch can be discarded safely
because none of them have yet committed. Various micro-
architectural structures are used to guarantee in-order
commit: a reorder buffer tracks instructions that have
not yet committed, a store buffer manages values that
need to be written to memory upon commit, physical reg-
ister files and register rename tables store the results of
uncommitted instructions. Despite the complexity of
branch prediction and misspeculation recovery, branch
prediction plays a vital role to provide performance on
modern processors.

Compiler Control Speculation

In addition to branch prediction performed at runtime by
the microprocessor, compilers also employ control spec-
ulation. During the scheduling phase of compilation, the
compiler may choose to move an instruction after a branch
to a position before the branch. The compiler must ensure
that the hoisted instruction will not interfere with the
program’s execution if, in the original program, the
instruction would not have executed. The code motion is

speculative because it may not improve performance. If, in
the original code, the instruction would not have been
executed frequently, then this extra computation may
hurt (or in the best case may not improve) performance.
However, if the instruction has long latency, this code
motion may separate a data definition and data use by
many cycles to prevent or reduce stalls later in the pro-
gram. Note however, that no recovery is needed here in the
case of misspeculation; the transformation is always legal,
it is just the performance benefit that is speculative.

Memory loads that miss in the processor’s cache have
particularly long latency. Unfortunately, hoisting a load
above a branch is not always safe because the address used
by the load may be invalid when the branch is not taken. In
certain architectures (like Intel’s Itanium architecture),
the ISA has a speculative load instruction. Rather than
throw an exception when given a bad address, the spec-
ulative load will fail by setting a bit on the destination
register. Code is placed after the branch in the load’s
original location to verify that the load occurred success-
fully (4). Compiler control speculation can be important on
architectures like Intel’s Itanium that execute instructions
in order. Because any stalled instruction prevents the
machine from making forward progress, it is particularly
important to prevent the stall conditions by hoisting long
latency instructions (such as loads) as early as possible.

VALUE SPECULATION

Branch prediction involved predicting the outcome of
branch instructions to prevent processor stalls while fetch-
ing instructions. The concept of predicting an instructions
outcome can be extended beyond branch instructions and
applied to other instructions. This type of speculation is
classified broadly as value speculation. In value specula-
tion, the goal is to break dependences between data produ-
cing instructions and definite or potential data consuming
instructions. By breaking the dependence, the producing
instruction (or chain of instructions) can be run in parallel
with the consumer or potential consumers to enhance the
amount of parallelism exploitable by the processor. Value
speculation is often employed in aggressive out-of-order
processors to allow load instructions to execute before prior
store instructions. Other types of value speculation are less
common but have been studied in the literature (5).

Data Dependence Speculation

Out-of-order processors attempt to execute instructions as
soon as the instructions’ operands have been computed.
Unfortunately, it is difficult for the instruction dependence
tracking hardware in out-of-order processors to know when
memory operands (for load instructions) have been com-
puted because any earlier (not-yet-executed) store instruc-
tion could potentially write to the location read by the load
instruction.

Because the address written to by store instructions is
computed dynamically by other instructions, the proces-
sor must wait until the store instruction executes to know
what location in memory it will alter. Rather than wait for
the store instructions to complete, many processors will

2 SPECULATION



speculate that no data dependence exists between the
unexecuted stores and the pending load instruction.
The load instruction then speculatively executes ahead
of the store instruction (6). When the address for the store
instruction is known, the speculation can be verified by
comparing the address of the load with the address of the
store. If the two addresses match, then the data depen-
dence speculation has failed and appropriate recovery
steps must be taken. Otherwise, the load instruction
has received the correct value from the memory subsystem
and the processor can continue executing instructions.
More recently, the research community has investigated
similar techniques to speculate data dependences across
program threads. Transactional memories ( 7) and thread-
level speculation (8,9) represent two significant thrusts in
this effort. Much like control misspeculations, when the a
data dependence misspeculation occurs, the processor
needs to undo the effects of the misspeculated instruc-
tions. The mechanism used for branch mispredictions can
be used for data dependence misspeculations as well.
When misspeculation is detected, the processor discards
all instructions after (and including) the misspeculated
load instruction and restarts execution at the load instruc-
tion. By this time, some of the stores that precede the load
have completed, so the load may reissue this time spec-
ulating fewer dependences. If all preceding stores have
completed, then the load is nonspeculative and will not
misspeculate again. To reduce the penalty associated with
misspeculation, the processor may decide not to execute
the load instruction speculatively a second time. That is to
say, once a misspeculation has been detected, the proces-
sor will wait until all previous store instructions have
completed before re-executing the load.

Various techniques have been proposed (10–13) to
improve the accuracy of speculation. Rather than always
assuming that a load does not alias with a not-yet-executed
store, these techniques use a history of previous aliases to
speculate more accurately. This improvement in accuracy
retains the benefit of correct speculation while mitigating
the penalty of misspeculation.

Compiler Data Speculation

The compiler can perform data dependence speculation
instead of, or in addition to, the hardware. This technique
was implemented in Intel’s Itanium architecture. While
performing scheduling, the compiler may not know
whether it is legal to move a load instruction above an
earlier store instruction. The compiler has two ways it can
hoist the load while ensuring the resulting code behaves
correctly. First, it can use static memory alias analysis
techniques to determine whether the load and store could
possibly access the same location, and if not hoist the load.
The alternative is to move the load above the store spec-
ulatively and then insert code to check whether the load
and store aliased. In the event that an alias did occur, the
program would have to branch to fixup code where the load,
and any already executed dependent instructions, are
re-executed with the correct data values. The fixup code
would then branch back to the normal code and resume
normal execution.

To facilitate an efficient check and fixup mechanism, the
Intel Itanium architecture provides two specialized
instructions and a dedicated hardware structure for data
speculation. The architecture provides an advanced load
instruction and a load check instruction. The processor
provides a table, known as the, advanced load address table
(ALAT), which records the addresses accessed by all
advanced loads. When the processor executes an advanced
load, a bit is set in the ALAT. Any subsequent store to the
same address clears the bit in the ALAT. The load check
instruction inspects the bit in the ALAT, and if it is set, the
instruction does nothing. On the other hand, if the bit is
unset, the load check instruction branches to recovery code
where any necessary fix up can occur. Note, that even in the
absence of an ALAT, it is possible for the compiler to insert
an instruction sequence to detect whether or not a store
aliased with a given load. The problem, however, is that
each store that is bypassed requires a small section of code
to check for a potential aliasing. Consequently, the over-
head of detecting misspeculation will probably outweigh
the benefits of correct speculation.

DATA ACCESS SPECULATION

The growing speed differential between microprocessors
and main memory has created a problem feeding data to a
microprocessor. In an attempt to make memory access
faster, most modern processors have several layers of cache
memories. The goal of these small, fast memories is to store
data that is likely to be accessed in the future, which
reduces the latency of accesses. Unlike the previous two
speculation techniques, cache memories do not try to
predict information to run instructions earlier. Rather,
the cache memories speculate on what data will be accessed
soon, which allows fast memory accesses. Caches operate
by storing data that has been accessed recently in the hope
that it will be accessed again (a phenomenon known as
temporal locality). Similarly, caches store data near
recently accessed data in the hope that it will be accessed
(a phenomenon known as spatial locality). A related spec-
ulation technique, prefetching, goes one step further by
bringing values into cache memories by using the
program’s past memory access patterns to predict future
accesses. This section will discuss both of these techniques
and their relation to speculation.

Caches

Caches are small, fast memories that store a subset of the
data that a program has stored into memory. Each time a
processor performs a load or store instruction, the cache
memory is consulted to see if the address being accessed is
stored in the cache. If so, a cache hit has occurred, and the
cache returns the data (or stores the new value in the case of
stores). If the data is absent, a cache miss has occurred, and
main memory (or a lower level of the cache hierarchy) is
accessed.

Caches are considered speculative because of how data
are added to the cache memory. Each time a cache miss
occurs, the cache must choose whether or not to take the
data returned by the remainder of the memory hierarchy

SPECULATION 3



and store it into the cache. Typically, all read misses will
result in a cache block (the basic unit of storage in a cache)
to be allocated to hold the resulting data. On cache writes,
however, two different policies can be employed: allocate on
write and no allocate on write. As the name implies, in one
policy a write miss will cause a cache block to be allocated,
whereas the other does not allocate a block. When an
allocate on write policy is employed, the data to fill the
cache block is fetched from the memory hierarchy, and then
the piece that is being written is stored into the cache.

Unfortunately, when allocating a cache block, other data
from the cache must be evicted. This eviction occurs
because the cache memory is full (a capacity miss has
occurred) or restrictions on where data can be placed
forces another piece of data out of the cache (a conflict
miss has occurred). Because it is possible that the data
being evicted will be the next data accessed, the decision to
store data in the cache may be detrimental. On the other
hand, if the data just read is accessed again, storing the
data in the cache will improve performance. Consequently,
the decision is speculative. Because programs typically
exhibit temporal locality, that is the same address is often
accessed more than once in a local window of time, storing
recently accessed data is typically a good guess when
speculating.

Programs also exhibit spatial locality. That is to say, if a
particular address is accessed, it is likely that adjacent
locations will also be accessed. Spatial locality is a result of
several programming paradigms. First, data structures are
typically larger than a word and are often accessed
together. Iteration across an array also creates significant
amounts of spatial locality. Even local variables stored on a
procedure’s stack create spatial locality since variables
within a single function are accessed together. Caches
exploit spatial locality by operating at the cache block
granularity rather than operating at the byte or word
granularity. Block sizes vary from tens of bytes to hundreds
of bytes. By placing an entire block into the cache memory,
the processor is speculating that adjacent memory locations
will be accessed.

Prefetching

Although most programs exhibit some amount spatial and
temporal locality, not all accesses result in cache hits.
However, patterns in the access streams often hint at which
addresses will soon be accessed. For example, the addresses
accessed by a processor pipeline’s instruction fetch stage
often form a linear sequence. Consequently, it is fairly
simple to predict which memory locations will be accessed
next. A technique known as prefetching attempts to exploit
this regularity in accesses to pull data preemptively into
caches. Once again, it is possible that prefetching will
displace useful data from the caches and consequently is
a speculative optimization.

The most basic prefetching algorithm is stride-based
prefetching. If addresses that form an arithmetic sequence
are observed, then the prefetch hardware predicts that the
sequence will continue and accesses lower levels of memory
to pull this data into the cache. The intent is that when the
program accesses the data, it will already be present in the

cache. Furthermore, prefetehers strive to avoid evicting
other useful data. Instruction prefetchers often use stride
prefetching because th access pattern forms a arithmetic
sequence. Stride prefetchers are also used for data caches to
improve the access speeds for array traversals. More com-
plex prefetchers have been suggested in the literature for
prefetching recursive data structures and other irregular
access patterns (14,15).

In addition to hardware-based prefetching, certain
architectures provide prefetch instructions. These instruc-
tions resemble load instructions in which the result of the
instruction is never used. The compiler can insert these
instructions if it has a prediction of what addresses will
soon be accessed. The compiler may be able to prefetch more
effectively than hardware because it is able to statically
analyze an entire program region and can predict accesses
that are not related directly to any previous accesses.

BIBLIOGRAPHY

1. S. Bird, A. Phansalkar, L. K. John, A. Mericas, and
R. Indukuru, Characterization of performance of SPEC CPU
benchmarks on Intel’s Core microarchitecture based processor,
2007 SPEC Benchmark Workshop, 2007.

2. J. Lee and A. J. Smith, Branch prediction strategies and branch
target buffer design, IEEE Computer, 6–22, 1984.

3. T. Y. Yeh and Y. N. Patt, A comparison of dynamic branch
predictors that use two levels of branch history, Proceedings
of the 20th Annual International Symposium on Computer
Architecture, 1993, pp. 257–266.

4. W. Y. Chen, S. A. Mahlke, and W.-M. W. Hwu, Tolerating first
level memory access latency in high-performance systems,
Proceedings of the 1992 International Conference on Parallel
Processing, (Boca Raton, FL): CRC Press, 1992, pp. 36–43.

5. M. H. Lipasti and J. P. Shen, Exceeding the dataflow limit via
value prediction, Proceedings of the 29th International
Symposium on Microarchitecture, 1996, pp. 226–237.

6. R. Kessler, The Alpha 21264 microprocessor, IEEE Micro,
19: 24–36, 1991.

7. M. Herlihy and J. E. B. Moss, Transactional memory: archi-
tectural support for lock-free data structures, Proceedings of
the 20th Annual International Symposium on Computer
Architecture, 1993, pp. 289–309.

8. G. S. Sohi, S. Breach, and T. N. Vijaykumar, Multiscalar
processor, Proceedings of the 22th International Symposium
on Computer Architecture, 1995.

9. J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry, The
STAMPede approach to thread-level speculation, ACM Trans-
actions on Computer Systems, 23 (3). 253–300, 2005.

10. J. Gonzalez and A. Gonzalez, Speculative execution via address
prediction and data prefetching, Proceedings of the 1997 Inter-
national Conference on Supercomputing, 1997, pp. 196–203.

11. A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi,
Dynamic speculation and synchronization of data depen-
dences, Proceedings of the 1997 International Symposium on
Computer Architecture, 1997.

12. A. Moshovos and G. S. Sohi, Streamlining inter-operation
memory communication via data dependence prediction,
Proceedings of the 30th Annual International Symposium on
Microarchitecture, 1997, pp. 235–245.

13. G. Z. Chrysos and J. S. Emer, Memory dependence prediction
using store sets, Proceedings of the 25th Annual International

4 SPECULATION



Symposium on Computer Architecture, IEEE Computer
Society, 1998, pp. 142–153.

14. A. Roth and G. S. Sohi, Effective jump-pointer prefetching for
linked data structures, Proceedings of the 26th International
Symposium on Computer Architecture, 1999.

15. O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, Runahead
execution: an alternative to very large instruction windows for
out-of-order processors, Proceedings of the 9th International

Symposium on High Performance Computer Architecture,
2003.

DAVID I. AUGUST

NEIL VACHHARAJANI

Princeton University
Princeton, New Jersey

SPECULATION 5





S

STORAGE AREA NETWORKS

With both the quantity and the quality of information
growing at unprecedented rates in recent years, data has
become an increasingly vital asset for organizations of all
sizes. This fact has fostered efforts to ensure that a suitable
infrastructure exists to support, manage, protect, and
reconfigure this data. Many organizations also require
nearly continuous availability of their mission-critical
data, which requires planning for business continuity
and disaster recovery, including data replication over
extended distances. All of these requirements are different
from the traditional mainframe or enterprise computing
environment, in which processing and storage resources
are centralized. Traditional computing models based on the
mainframe approach featured storage devices that were
connected directly to a host server, and managed by dedi-
cated information technology (IT) staff. Historically, the
earliest approaches to storage management included
server-attached storage, which tightly coupled storage
devices to a server to reduce overhead. With storage devices
dedicated to a single server, it was not necessary for any
intelligence to reside on the disk and tape storage devices.
Later devices incorporated storage control units, or storage
off-load servers, which can perform more advanced func-
tions such as cacheing of input/output (I/O) requests or dual
redundant data copying. The advent of client/server-based
computing created a new set of issues, as data was dis-
tributed among many servers and storage devices. With the
complexity that developed from multiple operating sys-
tems, access methods, load balancing requirements, and
disseminated management, this environment required a
different approach to manage stored information. The var-
ious efforts to improve connectivity between these isolated
storage resources and to manage distributed storage
resources has led to the concept of a storage area network
(SAN).

The terminology for different types of networks can be
somewhat ambiguous and may not be used consistently in
the technical literature. The term SAN is usually identified
with block I/O services, rather than file access services. It
can also refer to a storage system that consists of storage
elements and devices, computer systems, and/or appli-
ances, plus all of the associated control software, commu-
nicating over a network. Today, most SANs are based on
either Fibre Channel, FICON, SCSI, or Ethernet protocols,
although some other protocols such as ESCON or Infini-
Band can also be involved; the parallel SCSI interface can
also be run over Fibre Channel, where it is known as the
Fibre Channel Protocol (FCP). This definition is not stan-
dardized, however; for example, the Storage Network
Industry Association definition does not identify specifi-
cally the term SAN with Fibre Channel technology;
instead, this group encourages the use of a qualified phrase
such as ‘‘Fibre Channel SAN.’’ Furthermore, according to
the broadest definition, an Ethernet-based network whose

primary purpose is to provide access to storage elements
would be considered a SAN, although the term network
attached storage (NAS) can also be applied. SANs are
sometimes also used for system interconnection in comput-
ing clusters. For our purposes, the SAN constitutes any
type of high speed network that provides interconnections
between storage devices and servers, usually employing a
dedicated switch fabric, regardless of the underlying pro-
tocol. It is based on the classic three-tiered computing
model, which distinguishes among the presentation layer
(end users with desktop personal computers), the middle
tier (application servers), and the bottom tier (storage
devices that contain the actual data). A SAN can be shared
between multiple serves and storage devices. Although the
most common implementations reside in a single data
center, the SAN may be extended over large geographic
distances for disaster recovery applications using protocol-
specific channel extenders or wavelength division multi-
plexing (WDM). Although a WDM network is protocol
independent, care must be taken to accommodate the per-
formance and topology requirements of a SAN environ-
ment. For example, WDM equipment can be used to
construct a ring topology that is not compliant with the
Fibre Channel Arbitrated Loop (FC-AL) specifications.

In other publications, Ethernet and other IP or file-
based storage networks are also known as NAS, which
basically refers to a LAN-attached file server that uses a
network access protocol, such as network file system (NFS)
or CIFS. Thus, NAS is a generic term to refer to storage
elements that connect to a network and provide file access
services to computer systems. A NAS storage element
consists of a processing engine that implements the file
services (using access protocols such as NFS or CIFS), and
one or more devices on which data is stored. Although
Ethernet is the most common approach, NAS elements
may be attached to any type of network. NAS devices
can also coexist in a SAN environment, and various gate-
ways between NAS and SAN environments are available.
From a SAN perspective, a SAN-attached NAS engine is
treated just like any other server. NAS solutions have
evolved over time. Early NAS implementations used a
standard UNIX or NT server with NFS or CIFS software
to operate as a remote file server. Clients and other appli-
cation servers access the files stored on the remote file
server as though the files are located on their local disks.
The location of the file is transparent to the user. Several
hundred users could work on information stored on the file
server, each one unaware that the data is located on
another system. The file server has to manage I/O requests
accurately, queuing as necessary, fulfilling the request, and
returning the information to the correct client. As in many
SANs, the NAS server handles most aspects of security and
lock management.

Many different types of devices exist in a SAN besides
storage and switching equipment. Host bus adapters
(HBAs) are devices that connect to a server or storage

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



device and control the protocol for communications. These
adapter cards will contain optical transceivers that will
interface to channel extension or WDM equipment when
the SAN is extended over longer distances (native SAN
links based on Ethernet or Fibre Channel can accommodate
up to about 10 km without using repeaters or channel
extenders). A gateway (also referred to as a bridge or a
router) is a fabric device used to interconnect one or more
storage devices with different protocol support, such as
SCSI to FC or FC to SCSI devices. Typically, hubs are
used in a SAN to attach devices or servers that do not
support switched fabrics but only FC-AL. Switches are
useful to interconnect large numbers of devices, increase
bandwidth, reduce congestion, and provide high aggregate
throughput. The Fibre Channel protocol was designed
specifically by the computer industry to remove the barriers
of performance with legacy channels and networks. When a
Fibre Channel switch is implemented in a SAN, the net-
work is referred to as a fabric or switched fabric. Each
device connected to a port on the switch can access poten-
tially any other device connected to any other port on the
switch, which enables an on-demand connection to every
connected device. Various FC switch offerings support both
switched fabric and/or loop connections. As the number of
devices increases, multiple switches can be cascaded for
expanded access (known as fanout). Inter-switch links
(ISLs) can also be used to cascade multiple switches
together, which may be more cost effective than construct-
ing a single large switch. No industry standards for ISL
connections exist, however, and many will operate only
with the same vendor’s equipment attached to either end
of the link. Some ISLs also support trunking (the concate-
nation of multiple data channels using time division multi-
plexing techniques), which reduces the number of links in
the SAN. Trunking between remote locations for data
backup and disaster recovery can be done over WDM to
increase the supported distances; in this case, trunking also
reduces the number of inter-site links required. Directors
are SAN devices, similar in functionality to switches, but
because of the redundancy of many hardware components,
they can supply a higher level of reliability, availability,
and serviceability with a smaller footprint. Today, many
directors can be used to connect FICON or FC devices at the
same time. In the SAN environment, an extended distance
gateway component [for example, an optical extender or a
dense wave length division multiplexing (DWDM) device
can connect two different remote SANs with each other over
a wide area network (WAN).

SAN topologies may include point-to-point, arbitrated
loops, fabrics, and other configurations. In particular, one
topology specific to the SAN is the FC-AL, which is designed
such that for a node to transfer data, it must first arbitrate
to win control of the loop. Once the node has control, it is
now free to establish a point-to-point (virtual) connection
with another node on the loop. After this connection is
established, the two nodes consume all of the loop’s band-
width until the data transfer operation is complete. Once
the transfer is complete, any node on the loop can now
arbitrate to win control of the loop. Support of up to 126
devices is possible on a single loop, but the more devices that
are on a single loop, the more competition to win arbitra-

tion. A loop is self-discovering, and logic in the port allows a
failed node to be isolated from the loop without interfering
with other data transfers. A loop can be interconnected to
other loops essentially to form its own fabric. An arbitrated
loop supports communication between devices that do not
recognize fabrics (private devices), and the resulting arbi-
trated loops are sometimes called private loops. Some
unique implementations exist; for example, a Fibre Chan-
nel topology known as QuickLoop that combines arbitrated
loop and fabric topologies is implemented only on the IBM
2109 family of switches (except the IBM TotalStorage SAN
Switch M12), which allows a device with a private-loop
HBA to communicate with FC-AL storage devices through
IBM TotalStorage SAN switches. It is also possible to mix a
switched fabric with an arbitrated loop, provided that the
switches can detect and act on the correct protocols.

A SAN can be used to bypass traditional network bottle-
necks. It facilitates direct, high speed data transfers
between servers and storage devices and allows the same
storage device to be accessed serially or concurrently by
multiple servers. SANs also enable new network architec-
tures where multiple hosts access multiple storage devices
connected to the same network. A SAN may be used for high
speed, high volume communications between servers or
between storage devices. This outboard data movement
capability enables data to be moved with minimal or no
server intervention, thereby freeing up server processor
cycles for other activities like application processing.
Examples include a disk device backing up its data to a
tape device without server intervention, or remote device
mirroring across the SAN. When implemented properly,
the ability for storage to be accessible through multiple data
paths offers better reliability, application availability, and
serviceability. If storage processing is off-loaded from ser-
vers and moved onto a separate network, higher applica-
tion performance can result. SANs can centralize and
consolidate storage systems, which reduces management
overhead and improves scalability and flexibility of the
storage design. Finally, SANs extended over remote dis-
tances enable disaster recovery, business continuity, and
data vaulting applications.

The term data sharing describes the access of common
data for processing by multiple computer platforms or
servers. Data sharing can be between platforms that are
similar or different; this term is also referred to as homo-
geneous and heterogeneous data sharing. With storage
sharing, two or more homogeneous or heterogeneous ser-
vers share a single storage subsystem whose capacity has
been partitioned physically so that each attached server
can access only the units allocated to it. Multiple servers
can own the same partition but only with homogeneous
servers. Data-copy sharing allows different platforms to
access the same data by sending a copy of the data from one
platform to the other. In the ideal case, only one copy of the
data is accessed by multiple platforms, whether homoge-
neous or heterogeneous. Every platform attached has read
and write access to the single copy of data. This approach,
sometimes called ‘‘true’’ data sharing, exists in practice only
on homogeneous platforms. SANs enable multiple copy,
data vaulting, and data backup operations on servers to
be faster and independent of the primary network (LAN),

2 STORAGE AREA NETWORKS



which has led to the delivery of data movement applications
such as LAN-free backup and server-less backup (to be
discussed in more detail later).

Much attention is also being given to storage virtualiza-
tion or the pooling of physical storage from multiple net-
work storage devices into what seems to be a single storage
device that is managed from a central console. Storage
virtualization forms one of several layers of virtualization
in a storage network; generally, it refers to the abstraction
from physical volumes of data storage to a logical view of
data storage. Storage virtualization separates the repre-
sentation of storage to the operating system (and its users)
from the actual physical components. Storage virtualiza-
tion has been represented and taken for granted in the
mainframe environment for many years.

SAN MANAGEMENT

SAN fabric monitoring and management is an area where a
great deal of standards work is being focused. Two manage-
ment techniques are in use: in-band and out-of-band man-
agement.

Device communications to the network management
facility are most commonly done directly across the Fibre
Channel or other network transport. This process is known
as in-band management. It is simple to implement, requires
no LAN connections, and has inherent advantages, such as
the ability for a switch to initiate a SAN topology map by
means of queries to other fabric components. However, in
the event of a failure of the network transport itself, the
management information cannot be transmitted. There-
fore, access to devices is lost, as is the ability to detect,
isolate, and recover from network problems. This problem
can be minimized by a provision of redundant paths
between devices in the fabric. In-band management is
evolving rapidly. Proposals exist for low level interfaces
such as return node identification and return topology
identification to gather individual device and connection
information, and for a management server that derives
topology information. In-band management also allows
attribute inquiries on storage devices and configuration
changes for all elements of the SAN. Because in-band
management is performed over the SAN itself, adminis-
trators are not required to make additional TCP/IP con-
nections.

Out-of-band management means that device manage-
ment data are gathered over a TCP/IP connection such as
Ethernet, separate from the paths for the data traffic.
Commands and queries can be sent using Simple Network
Management Protocol (SNMP), Telnet (a text-only com-
mand line interface), or a Web browser Hyper Text Transfer
Protocol (HTTP). Telnet and HTTP implementations are
more suited to small networks. Out-of-band management
does not rely on the transport network. Its main advantage
is that management commands and messages can be sent
even if a loop or fabric link fails. Integrated SAN manage-
ment facilities are implemented more easily, especially by
using SNMP. However, unlike in-band management, it
cannot automatically provide SAN topology mapping.

A management information base (MIB) organizes the
statistics provided by the out-of-band management inter-
face. The MIB runs on an SNMP device and on the managed
device. The SNMP protocol is supported widely by LAN/
WAN routers, gateways, hubs, and switches, and it is the
predominant protocol used for multivendor networks.
Device status information (vendor, machine serial number,
port type and status, traffic, errors, and so on) can be
provided to an enterprise SNMP manager. Usually this
runs on a workstation attached to the network. A device can
generate an alert by SNMP, in the event of an error con-
dition. The device symbol, or icon, displayed on the SNMP
manager console, can be made to turn red or yellow, and
messages can be sent to the network operator. Element
management is concerned with providing a framework to
centralize and to automate the management of heteroge-
neous elements, and to align this management with appli-
cation or business policy. Several industry standard MIBs
have been defined for the LAN/WAN environment. Special
MIBs for SANs are being built by SNIA, which will enable
multivendor SANs to be managed by common commands
and queries. Two primary SNMP MIBs are being imple-
mented for SAN fabric elements that allow out-of-band
monitoring. The ANSI Fibre Channel Fabric Element
MIB provides significant operational and configuration
information on individual devices. The emerging Fibre
Channel Management MIB provides additional link table
and switch zoning information that can be used to derive
information about the physical and logical connections
between individual devices. Even with these two MIBs,
out-of-band monitoring is incomplete. Most storage devices
and some fabric devices do not support out-of-band mon-
itoring. In addition, many administrators simply do not
attach their SAN elements to the TCP/IP network.

A key aspect of SAN management is the ability to
virtualize storage resources, or to isolate selected resources
for security or performance reasons. This task can be done
through logical partitioning and zoning. Zoning allows for
finer segmentation of the switched fabric. Zoning can be
used to instigate a barrier between different environments.
Only members of the same zone can communicate within
that zone, and all other attempts from outside are rejected.
Zoning could also be used for test and maintenance pur-
poses. For example, not many enterprises will mix their test
and maintenance environments with their production
environment. Within a fabric, it is possible to separate
the test environment from the production bandwidth allo-
cation on the same fabric using zoning.

One approach to securing storage devices from hosts
wishing to take over already assigned resources is logical
unit number (LUN) masking. Every storage device offers
its resources to the hosts by means of LUNs. For example,
each partition in the storage server has its own LUN. If the
host (server) needs to access the storage, it needs to request
access to the LUN in the storage device. The purpose of
LUN masking is to control access to the LUNs. The storage
device itself accepts or rejects access requests from different
hosts. The user defines which hosts can access the LUN by
means of the storage device control program. Whenever the
host accesses a particular LUN, the storage device will

STORAGE AREA NETWORKS 3



check its access list for that LUN, and it will allow or
disallow access to the LUN.

MULTIPROTOCOL ROUTING

Multiprotocol routers provide the means to connect SAN
islands over multiple networks and across longer distances,
which includes a combination of services such as FCP
channel-to-channel routing, FCIP tunneling, iSCSI gate-
ways, or encapsulation of other data protocols in a digital
wrapper. These services can be supported on a switch or a
router with a centralized management function, and they
can be deployed on a per port basis. The primary advantage
of this approach is the ability to connect devices between
two or more fabrics without merging those fabrics, which
provides a more flexible storage networking environment.
Potential applications of this approach include connecting
SAN environments across multiple geographies, functions,
or departments (with centralized security and control),
enabling low-cost SCSI-based servers and IP networks to
support fabric-based business continuity and disaster
recovery solutions over longer distances, and improving
asset use through more efficient resource sharing. This
function makes it possible to interconnect devices without
having to redesign and reconfigure their entire environ-
ment, thereby eliminating the potential risks and costs of
downtime. Moreover, the need to ensure secure connectiv-
ity for selected resources—especially in heterogeneous
environments—additionally compounds the troubleshoot-
ing, fault isolation, and management challenges posed by
large SANs. FCP routing addresses these issues by
enabling organizations to connect devices in different
SANs without merging the fabrics. Using this capability,
organizations can share resources across multiple SANs
and scale beyond current SAN port count support con-
straints. The benefits of enhanced SAN connectivity
must be weighted against the potential increase in admin-
istrative workload, risk, and expense.

When devices on different fabrics are allowed to com-
municate through a multiprotocol router, the resulting
connectivity group may be known as a logical SAN
(LSAN). LSANs enable selective and secure resource shar-
ing across multiple SANs by leveraging current zoning
tools and methodologies. In addition to optimizing resource
use, this approach helps to improve scalability by minimiz-
ing the risk and the complexity of large fabrics, simplifying
management and fault isolation, and future-proofing cur-
rent technology investments (LSANs are a logical or virtual
construct, so they do not require changes to the existing
SAN switches or attached edge devices).

Tunneling FCP over an IP network, known as FCIP,
enables organizations to extend their Fibre Channel SANs
over longer distances that would be technically impractical
or prohibitively expensive with native Fibre Channel links,
or in situations where dark fiber links would be impractical
but in which IP WAN connectivity already exists. Further-
more, FCP routing enables two fabrics connected to an
FCIP link to remain separate rather than merging them
into a single fabric, which would permit any-to-any con-
nectivity between all devices. This level of SAN connectiv-

ity facilitates applications such as migration to new storage
(multiprotocol routers can be used to migrate data from
lower data rate to higher data rate storage systems), data
center consolidation, or data migration between test/
development SANs and production SANs (enabling data
movement between physically or logically separated envir-
onments).

As another example, iSCSI-to-Fibre Channel protocol
conversion provides a standards-based iSCSI integration
solution. The primary benefit is that low-cost servers can
access centrally managed Fibre Channel resources. This
approach leverages existing Ethernet infrastructure with
IT staff knowledge to simplify implementation and man-
agement. It also reduces costs by eliminating the need to
purchase HBAs in order for servers to access SAN
resources.

LONG-DISTANCE SAN EXTENSION

With the advent of industry compliance regulations that
govern the retention and the privacy of data, requirements
have emerged to store and recover data over longer dis-
tances as part of an overall business continuance solution.
One approach is the use of optical WANs equipped with
wavelength multiplexing technology; this technology is
capable of consolidating multiple fiber-optic connections
over a single network, while providing distance extension
using optical amplifiers. If a Fibre Channel protocol is being
used with guaranteed data packet delivery, then perfor-
mance at extended distances will be limited by credit-based
flow control at layer 2 and 4. This difficulty can be overcome
by using special adapters that provide large amounts of
buffer credits, or by pooling buffer credits from multiple
switch ports to serve a single extended distance port. Some
types of channel extension have implemented ‘‘spoofing,’’
which defeats true credit flow control in order to achieve
higher performance; however, recovery from lost packets or
link failures is problematic in such cases.

Sharing SAN resources and moving data over geogra-
phical boundaries introduces the complexity of merging
resources and overcoming the distance and performance
limitations caused by credit-based flow control on native
Fibre Channel networks. It is possible to use an FCIP
tunneling service to enable remote devices to connect to
SANs by leveraging the existing IP WAN infrastructure for
longer distance connectivity. As a result, organizations can
share SAN resources and can move data between geogra-
phies much more efficiently. Integrating an FCIP tunnel-
ing solution within the fabric simplifies overall
manageability by minimizing protocol conversion events.
This standards-based FCIP approach, in combination with
FC-to-FC routing, does not require connected fabrics to
merge or to reconfigure. As a result, organizations can
extend remote replication and backup functions over longer
distances through a single platform hosting fabric-based
applications. This approach increases resource use as well
as reduces management, training, and troubleshooting
requirements.

The advent of SANs enables data to be transferred
directly from disk storage to the backup server and then

4 STORAGE AREA NETWORKS



directly over the SAN to tape. This process is called LAN-
free backup. This process not only reduces LAN traffic but
also reduces traffic through the backup server. Generally,
this traffic is processor-intensive because of TCP/IP trans-
lations. With LAN-free backup, the backup server orches-
trates the data movement, manages the tape library and
drives, and tells the clients what data to move. The client is
connected to the SAN; its data can be on the SAN, or the
data can be on storage attached directly to the server. The
LAN still is used to pass metadata back and forth between
the backup server and the client. However, the actual
backup data is passed over the SAN. The metadata is the
data needed by the backup server to manage the entire
backup process and includes the file name, the file location,
the date and time of the data movement, and where the new
copy resides. The metadata is small compared with the
actual client data being moved. Server-less backup refers to
the ability to take a snapshot of the data to be backed up
with minimal or no disruption to productive work, then
move it intelligently between tape and disk without the
data going through a server.

REMOTE COPY SOLUTIONS

To improve availability, avoid outages, and minimize the
adverse effects on business critical applications when they
do occur, many businesses are using some form of remote
copy service to mirror their critical data to a backup loca-
tion. This service can be done over a WDM network to
reduce the required number of inter-site optical fibers
and to extend the native attached distance of many proto-
cols. It protects the data against both planned outages (for
maintenance, application software updates, or other rea-
sons) and unplanned outages of various types.

A good disaster recovery plan must establish a recovery
point objective (how much data can afford to be lost), a
recovery time objective (how long critical systems can be
unavailable), and a network recovery objective (how much
of the network must be restored for operations to continue).
Some research in this field has proposed a seven-tier reco-
verability model, based on the recovery method and recov-
ery time. The nature of these recovery objectives will
determine whether the remote backup solution needs to
be synchronous or asynchronous. Generally, synchronous
replication (also called synchronous mirroring) ensures
that an I/O write is committed at the remote site before
committing it to the primary site, and maintains data
integrity with the remote site. This approach is required
if no data loss can be tolerated, and immediate data restora-
tion is required (such as applications in stock trading or
airline reservation systems). Note that when using a syn-
chronous solution, the distance and latency can impact
performance because the writing application has to incur
a round-trip delay; as a rule of thumb, practical systems are
limited to about 50–100 km distances. Beyond this, asyn-
chronous data replication is used, in which the data is
copied to a remote site as expediently as possible, but not
in real time. This approach is suited for users who can
absorb some minimal data loss and cannot afford to have

application performance impacted by the network round-
trip delays.

One example of a remote copy solution is peer to peer
remote copying (PPRC), also known as Metro Mirror, devel-
oped by IBM. This solution is an example of hardware-
based synchronous replication that has been used for many
years in mainframe environments. Similar technologies
are available for other types of storage devices. It is used
primarily to protect an organization’s data against disk
subsystem loss or, in the worst case, complete site failure.
Metro Mirror is a synchronous protocol that allows real-
time mirroring of data from one LUN to another LUN.
Because the copying function occurs at the disk subsystem
level, Metro Mirror is application independent. The proto-
col guarantees that the secondary copy is up to date by
ensuring that the primary copy will be written only if the
primary receives acknowledgment that the secondary copy
has been written.

A related data copy solution is PPRC extended distance
(PPRC-XD), which is intended to replicate log copies or
static point-in-time copies of data. This solution maintains
a ‘‘fuzzy’’ copy of the data on a secondary, remote volume,
which can be synchronized with the source on demand.
Thus, it is not a disaster recovery solution on its own,
because the remote data is not in a state of integrity
with its local copy. Technically, it is not asynchronous
remote copy either, because that requires time stamp con-
sistency between multiple control units, which is not part of
PPRC-XD. Instead, this approach requires that the user
periodically quesces the application writes, builds consis-
tency between the local and remote copies, and then estab-
lishes application consistency over multiple storage
volumes. Although the remote data integrity cannot be
guaranteed at all times, PPRC-XD allows much greater
distances (theoretically unlimited) and has a much lower
impact on application performance because it does not
require processor resources.

Although PPRC/Metro Mirror was developed by IBM,
this technology has been licensed to other companies and is
also supported on their platforms. Other remote copy solu-
tions are available, for example, EMC Corporation offers a
hardware-based solution that runs on the firmware of their
Symmetrix disk storage array, called the Symmetrix
remote data facility (SRDF). It provides several modes of
operation, including synchronous copy, semisynchronous
(which eases the latency impact a bit by allowing for one
write behind), multihop (which uses a daisy chain of multi-
ple storage arrays to reduce latency), and adaptive copy
(which asynchronously updates the remote volumes with-
out regard for the local volume write sequence). SRDF
typically requires ESCON connectivity over channel exten-
ders or WDM, but it can also operate over IP or Fibre
Channel connections. Concurrent SRDF allows for simul-
taneous mirroring of data from one location to two different
target locations; however, having two synchronous mirrors
active at the same time may cause sensitivity to response
time. The multihop solution can also be used to generate
three or more copies of the data. As another example of
remote copy solutions, Hitachi Data Systems offers several
features including Hitachi remote copy (which is similar to
PPRC), Hitachi extended remote copy (similar to XRC), and

STORAGE AREA NETWORKS 5



Hitachi asynchronous remote copy, which timestamps all
data and offers host-independent XRC functions. There is
also a semisynchronous option similar to the EMC product.
Typically, all of these solutions reach extended distances
using a DWDM infrastructure.

Although the above solutions protect against hardware
failures or environmental disasters in a SAN, they do not
necessarily protect against user or application logical
errors. In such cases, a hot standby database would be in
the same inconsistent state as the live database. Split
mirror backup/recovery functions as a high availability
backup/recovery scenario, where the backup is taken on
a remote disk subsystem that is connected to an application
disk subsystem. Normally, the connection is suspended
(mirror split) and will only be resumed for the resynchro-
nization of the primary and the secondary volumes. In the
case of a user or application error, the primary database is
available for analysis, while a secondary database is recov-
ered to a consistent point in time.

FlashCopy, another mirroring technique originally
developed by IBM, provides an instant or point-in-time
copy of a logical volume. The point-in-time copy functions
provides an instantaneous copy of the original data at a
specific point-in-time, known as the T0 (time-zero) copy.
When a FlashCopy is invoked, the command returns to the
operating system as soon as the FlashCopy pair has been
established and the necessary control bitmaps have been
created. This process takes only a few seconds to complete.
Thereafter, the systems have access to a copy of the source
volume. As soon as the pair has been established, it is
possible to read and write to both the source and the target
volumes. The point-in-time copy created by FlashCopy
typically is used where a copy of production data needs
to be produced with minimal application downtime.

An alternative approach is extended distance remote
copy (XRC) also known as Global Mirror. It is an asynchro-
nous, software-centric remote copy implementation. A soft-
ware component called system data mover (SDM) will copy
writes issued to primary volumes by primary systems, to
the secondary devices. XRC uses the concept of a consis-
tency group that contains records that have their order of
update preserved across multiple logical partitions within a
storage control unit, across multiple control units, and
across other storage subsystems that participate in the
same XRC session. Maintaining the update sequence for
applications whose data is being copied in real time is a
critical requirement for applications that execute depen-
dent write I/Os. If data is copied out of sequence, serious
integrity exposures could render the recovery procedures
useless. XRC uses special algorithms to provide update
sequence consistency for all data. XRC connectivity is
provided by FICON or Fibre Channel links, and it is also
part of the FICON extended distance solution. Various
hybrid solutions are available that use components of
both synchronous and asynchronous technology, such as
a three-site solution in which two sites are close together
enough to enable synchronous copy, whereas the third is far
enough away that asynchronous copy is preferred for per-
formance reasons.

REMOTE TAPE VAULTING AND CONSOLIDATION

Many companies have deployed SANs for tape backup and
archiving using applications such as LAN-free backup and
server-less backup. These near-zero backup window envir-
onments have driven the need for backup and archiving at
remote and/or off-site locations; this process is called
remote tape vaulting. An extension of remote tape vaulting
is remote tape disaster tolerance, which involves a tape
library at each of the sites. Remote tape vaulting consists of
transmitting electronically and creating backup tapes at a
secure off-site facility, moving mission-critical data off-site
faster and with greater frequency than traditional data
backup processes. The traditional backup process involves
creating a tape in a locally attached tape library, ejecting it
from the library, and removing it to an off-site location.

Tape backup solutions can be done with a combination of
ESCON, FICON, or Fibre Channel links; the number of
links depends on the size of the database concerned (tera-
bytes or petabytes) and may be large. Many variations and
proprietary implementations are not discussed here, such
as IBM’s point-to-point virtual tape server. All of these
devices are suported by optical networking solutions, which
usually are qualified by the storage device provider; an
example is IBM’s Total Storage Proven program. The major
performance consideration with a long-distance solution is
calculating the correct number of links between sites. This
number can only be determined by performing a detailed
performance profile of the servers and storage that will be
remote. Overestimating the number of links will increase
costs dramatically, whereas under sizing the number of
links will affect the performance of the SAN dramatically. It
is vital that detailed performance data is available prior
to sizing the number of links required. Typically, latency
will increase over long distances; a good rule of thumb is
4.8 microseconds per kilometer. Performance is highly
application-dependent and requires careful configuration
planning; for example, a remote disk consolidation solution
might work well with a server-to-storage ratio of 6:1,
whereas a tape vaulting solution may be acceptable with
half this value.

Related concepts (which have no industry standard
definition) include tape library sharing and tape drive
pooling. A tape library consists of the physical robotics
that move cartridges, one or more tape drives, and slots
for tape storage. It must also have a mechanism to control
the robotics (a library controller), and may also have a
library manager, which maintains inventory and mediates
sharing. Tape library sharing has been practiced for some
time by partitioning a physical library into multiple logical
libraries. Alternatively, the library can seem to be shared
by multiple hosts when, in reality, one of the hosts (the
library manager) is issuing all the library commands both
for itself and for the other hosts (clients), but all of them
have direct access to the tape drives (tape pooling). Tape
pooling is the ability to allow two or more servers to logically
share tape drives within a tape library. In this case, the
servers need to be attached to the same SAN as the tape
drives. Partitioning is the ability to partition tape drives
and slots to create logical libraries within the same physical
library. The server attached to each logical library has no

6 STORAGE AREA NETWORKS



knowledge of any drives or slots outside the partition, and
the partitions are fixed.

Organizations can also use FC-to-FC routing functions
to consolidate their backup activities in a SAN environ-
ment, sometimes known as tape backup consolidation. By
centralizing the backup of multiple SANs in a single loca-
tion, it is possible to streamline the overall backup process
and help to ensure that both data and networks remain
highly available. Additional benefits include reduced tape
drive requirements, fewer idle resources, better overall use
of tape libraries, and the ability to leverage off-peak net-
work connectivity. A centralized backup architecture also
optimizes the value of backup devices and resources,
reduces management overhead, and increases asset utili-
zation. The ability to share a tape library fabric without
merging disk fabrics improves the overall flexibility and
quality of SAN management. In addition, this approach
saves money by eliminating the need to deploy separate
HBAs on every backup server on every SAN fabric.

An example of the highest level of availability in remote
copy systems is the Geographically Dispersed Parallel
Sysplex (GDPS) developed by IBM and recently licensed
to other vendors. It provides a combination of software and
hardware to switch all resources automatically from one
location to another. In 1994, IBM developed the Parallel
Sysplex architecture for the System/390 (S/390) mainframe
computing platform. This proprietary architecture uses
high speed, fiber optic data links to couple processors
together in parallel, thereby increasing reliability, perfor-
mance, server capacity, and scalability. Several possible
configurations exist for a Parallel Sysplex. First, the entire
sysplex may reside in a single physical location, within one
data center. Second, the sysplex can be extended over
multiple locations with remote fiber optic data links.
Finally, a multisite sysplex in which all data is remote
copied from one location to another is known as a GDPS.
This architecture provides the ability to manage remote
copy configurations, automates both planned and
unplanned system reconfigurations, and provides rapid
failure recovery from a single point of control. Different
configuration options exist for a GDPS. The single site
workload configuration is intended for those enterprises
that have production workload in one location (site 1) and
discretionary workload (system test platforms, application
development, etc.) in another location (site 2). In the event
of a system failure, unplanned site failure, or planned
workload shift, the discretionary workload in site 2 will
be terminated to provide processing resources for the pro-
duction work from site 1 (the resources are acquired from
site 2 to prepare this environment, and the critical work-
load is restarted). The multiple site workload configuration
is intended for those enterprises that have production and
discretionary workload in both site 1 and site 2. In this case,
discretionary workload from either site may be terminated
to provide processing resources for the production workload
from the other site in the event of a planned or unplanned
system disruption or site failure.

Four building blocks exist for a Parallel Sysplex, with
optical fiber links between them; the host processor (or
Parallel Enterprise Server), the coupling facility (CF),
the Sysplex Timer or Server Time Protocol source, and a

storage network based on ESCON, FICON, or Fibre Chan-
nel. Remote copy functions are implemented between the
storage at each physical location. Many different processors
may be interconnected through the CF, which allows them
to communicate with each other and with data stored
locally. The CF provides data caching, locking, and queuing
(message passing) services. By adding more processors to
the configuration, the overall processing capacity of the
sysplex will increase. Software allows the sysplex to break
down large database queries into smaller ones, which can
then be passed to the separate processors; the results are
combined to arrive at the final query response. The CF may
be implemented either as a separate piece of hardware or as
a logical partition of a larger system. Fiber optic coupling
links (also known as InterSystem Channel (or HiPerLinks)
are used to connect a processor with a CF. Because the
operation of a Parallel Sysplex depends on these links, it is
highly recommended that redundant links and CFs be used
for continuous availability. Coupling links are based on
(but not fully compliant with) the ANSI Fibre Channel
Standard. In synchronous applications, all servers must
be connected to a common time-of-day clock, provided by
either a Sysplex Timer or Server Time Protocol (STP)
connection. Connectivity between remote locations is pro-
vided by a protocol independent WDM solution.

Many other data replication solutions over WDM exist;
these include the High Availability Geographic Clustering
software (HAGEO) from IBM, which operates over IP net-
works at essentially unlimited distances. This software
provides options for either manual or automatic failover
between two locations. Data I/O rates can be a problem, and
HAGEO does not work well on high latency or low band-
width networks. A properly designed application can run
over thousands of kilometers. Another offering similar to
this that provides real-time data mirroring over IP net-
works of RS/6000 or pSeries class workstations is GeoRM.
Because the network is IP based, distances once again are
unlimited essentially and many-to-one mirroring of critical
data at remote location is possible; both synchronous and
asynchronous versions are available. Many other SAN
solutions exist that will not be discussed in detail here;
these include Tivoli Storage Manager, logical volume
mirroring with either sequential or parallel copy ordering
and optional mirror write consistency checks, Microsoft
MSCS for Fibre Channel SANs, Sun StorEdge Network
Data Replicator, DataCore SAN Symphony, Veritas
Volume Manager, and many others.

FUTURE DEVELOPMENTS

Looking beyond today’s SAN requirements, some research-
ers are working on a model for on-demand storage networks
that will adjust rapidly to spikes in usage, natural disas-
ters, electronic viruses, and other dynamic changes to
provide continuous access to data; this has been called e-
business on demand. This concept includes utility comput-
ing (or pay-as-you-go models), autonomic or self-healing
networks, server and storage capacity on demand, perva-
sive computing (computing elements embedded in distrib-
uted devices from laptops to cell phones), and other

STORAGE AREA NETWORKS 7



technologies beyond the scope of the optical network. All of
these factors will influence the type and amount of traffic
placed on future SANs.

FURTHER READING

Automated Remote Site Recovery Task Force report, SHARE 78,
session M028, Anaheim, California, 1992.

A. Benner, Fibre Channel for SANs. New York: The McGraw-Hill
Companies, 2001.

Brocade white paper, Extending SAN value with multiprotocol
routing services. Available: www.brocade.com (Jan. 2007).

T. Clark, Designing Storage Area Networks: A Practical Reference
for Implementing Fibre Channel SANs, Reading, MA: Addison-
Wesley Longman, Inc., 1999.

C. DeCusatis, Data processing systems for optoelectronics. In
Optoelectronics for Data Communicaztion, R. Lasky, U. Osterberg,
and D. Stigliani, (eds.) New York: Academic Press, 1995.

C. DeCusatis, Optical data communication: fundamentals and
future directions, Opt. Eng., 37(12): 3082–3099, 1998.

C. DeCusatis, Dense wavelength division multiplexing for storage
area networks, Proc. 2nd Online Symposium for Electrical Engi-
neers (OSEE), Available: http://www.techonline.com/community/
ed_resource/feature_article/14414.

C. DeCusatis, Storage area network applications, Invited talk,
Proc. OFC 2002, Anaheim, California, 2002, pp. 443–444.

C. DeCusatis, Security feature comparison for fibre channel sto-
rage area network switches, Proc. 5th annual IEEE Information
Assurance Workshop, U.S. Military Academy, West Point, New
York, 2004, pp. 203–209.

C. DeCusatis, Fiber optic cable infrastructure and dispersion
compensation for storage area networks, IEEE Comm Mag.,
43(3): 86–92, 2005.

C. DeCusatis, Developing a threat model for enterprise storage
area networks, Proc. 7th annual IEEE Workshop on Information
Assurance, U.S. Military Academy, West Point, New York, 2006.

C. DeCusatis, ed., Handbook of Fiber Optic Data Communication,
3rd ed., New York: Elsevier/Academic Press, 2008.

C. DeCusatis and P. Das, Subrate multiplexing using time and code
division multiple access in dense wavelength division multiplexing
networks, Proc. SPIE Workshop on Optical Networks, Dallas,
Texas, 2000, pp. 3–11.

C. DeCusatis, D. Petersen, E. Hall, F. Janniello, Geographically
distributed parallel sysplex architecture using optical wavelength
division multiplexing, Optical Engineer., 37(12): 3229–3236, 1998.

C. DeCusatis, D. Stigliani, W. Mostowy, M. Lewis, D. Petersen, and
N. Dhondy, Fiber optic interconnects for the IBM S/390 parallel
enterprise server, IBM J. Res. Devel., 43(5,6): 807–828, 1999.

M. Farley, Building Storage Networks, New York: The McGraw-
Hill Companies, 2000.

The Fibre Channel Association. 1994. Fibre Channel: Connection to
the Future, San Diego, CA: Elsevier Science and Technology Books.

Optical interface for multichannel systems with optical amplifiers,
Draft standard G.MCS, annex A4 of standard COM15-R-67-E.
Available from the International Telecommuncation Union, 1999.

C. Partridge, Gigabit Networking: Reading, MA: Addison- Wes-
ley, 1994.

M. Primmer, An introduction to Fibre Channel. Hewlett
Packard J.47: 94–98, 1996.

A. Tanenbaum, Computer Networks, Englewood Cliffs, NJ: Pre-
ntice-Hall, 1989.

Websites
Hardcopies of industry standards documents may be obtained from

Global Engineering Documents, An IHS Group Company, at
http://global.ihs.com/. Also, electronic versions of most of the
approved standards are also available from http://www.
ansi.org. Additional information on ANSI standards and on
both approved and draft international, regional and foreign
standards (ISO, IEC, BSI, JIS, etc.) can be obtained from the
ANSI Customer Service Department. References under devel-
opment can be obtained from NCITS (National Committee for
Information Technology Standards) at http://www.x3.org.

The following websites provide information on technology
related to Fibre Channel. SANs and storage networking:

� http://webstore.ansi.org—Web store of the American
National Standards Institute Softcopies of the Fibre
Channel Standards documents.

� http://www.fibrechannel.org—Fibre Channel Indus-
try Association. http://www.snia.org—Storage Net-
working Industry Association. http://www.storagep
erformance.org—Storage Performance Council.

Industry organizations related to various aspects of storage
networking:

� http://www.infinibandta.org—InfiniBand Trade Asso-
ciation—provides information on the objectives, his-
tory, and specification of InfiniBand network I/O
technology.

� http://www.iol.unh.edu—University of New Hamp-
shire InterOperability Laboratory Tutorials on many
different high-performance networking standards.

CASIMER DECUSATIS

IBM Corporation
Poughkeepsie, New York

8 STORAGE AREA NETWORKS



V

VIRTUAL MEMORY AND BUFFER STORAGE

CONCEPT

As applications become larger and more complex, and
numerous applications are loaded onto computer systems,
some processes may need memory larger than the physical
main memory whereas a combined number of applications/
processes may also overload the allowable physical main
memory. Also, to make the operating system (OS) user-
friendly, the OS has become complex using huge amounts of
memory to maintain the OS. As it is not cost effective to
have a huge physical memory, the virtual memory concept
is used in almost all of the computer systems today to
augment that lack of memory. The virtual memory is a
technique that combines the main memory and the slower
storage (usually hard disk) to provide the appearance of
having a larger memory than actually installed to the
computer system. This technique allows the execution of
processes that are larger than the physical main memory
and allows more processes to be in the physical memory
simultaneously. Using the virtual memory concept, it can
be assumed that the computer has near unlimited amount
of memory at its disposal for use in loading various applica-
tions and processes. Here ‘‘unlimited’’ means that the
programmer usually does not need to be concerned with
the memory size requirements of his/her application that
needs to be executed.

Consider the types of memory accesses that would be
required to execute a single machine instruction: The
instruction is fetched from memory, the data on which
the instruction will operate is read from memory, and after
the instruction completes, the results of the instruction are
written back to memory. The actual number of bytes neces-
sary for each memory access varies according to the CPU’s
architecture, the actual instruction, and the data type.
However, the memory requirement for several instructions
will be still a lot less than the memory necessary to load the
whole application. Using a method to keep track of an
application’s memory requirements as it executes, it would
be possible to keep that application running while using
less than its total memory space. The virtual memory
technique allows this, and only part of the application is
in main memory at any given time, whereas the rest of the
application remains on disks. This method might at first
seem to have a very large performance problem as disk
drives are so much slower than the main memory. Although
the problem is there, it is possible to take advantage of the
sequential and localized access behavior of applications and
eliminate most of the performance implications of using
disk space for virtual memory. This is done by structuring
the virtual memory system so that it attempts to ensure
that parts of the application that are currently needed, or
likely to be needed in the near future (using locality among
other information), are kept in the main memory only for as
long as they are needed. In many aspects this is similar to

the relationship between the cache and the main memory:
making a little fast storage and a lot of slow storage look like
a lot of fast storage. The main differences, in current
computer systems, are that replacement on cache misses
are primarily controlled by hardware, whereas virtual
memory replacement is primarily controlled by the operat-
ing system and the size of the processor address determines
the size of the virtual memory but not for caches.

For physical memory, there is physical address space
where the address is used to access the physical memory
(i.e., main memory). Whereas virtual address space is the
program’s address space, that is, the memory requirement
of an application or a program if it needed all the memory at
once. This is the total number of uniquely addressable
memory locations required by the application, and not
the amount of physical memory that must be dedicated
to the application at any given time. All of the memory
references within a process are virtual addresses that are
dynamically translated into physical addresses at run time,
and a process may be swapped in and out of the main
memory such that it occupies different regions of main
memory at different times during the course of its execu-
tion. The address translation is performed by the OS and/or
CPU. Therefore, programs that require memory larger
than the physical main memory can be executed without
the programmer’s manually overlaying and swapping
blocks of the large program.

PAGING

A process to be executed may be broken up into a several
pieces (pages or segments), and these pieces need not be
contiguously located in the main memory during execu-
tion. That is, it is not necessary for all parts of a process to
be in the main memory during execution. Naturally, if a
page or a segment is not available in the main memory
during execution, a mechanism is needed to bring the
piece from the disk, into the main memory. The mechan-
ism to transfer pages between main memory and an
auxiliary store, such as hard disk, is called paging. The
bringing of a required part of a process incurs some
performance penalty. This penalty may degrade the per-
formance severely, since we need to bring the required
page from a disk to a main memory, even to a cache.
Instead of a programmer concentrating on how much
memory an application needs to run and trying to manage
the physical memory usage of the application manually, a
virtual memory operating system continually attempts to
find the answer to the minimum amount of memory space
an application needs to execute. Because processes are
broken into parts and only some parts are sent to the main
memory, the amount of main memory required to execute
an application at any given time is less than the size of the
application/process, usually a lot less.

To apply paging, the physical memory is broken into
fixed-sized blocks called frames. Although the virtual

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



memory is broken into blocks of the same size called pages,
the virtual address generated by the CPU is divided into
two parts: a page number and a page offset. The page
number is the index in the page table. The page table
contains the frame number of the block in the main
memory, and the offset is used to then determine the
position of the memory that was needed. Virtual memory
systems initially load pages only as they are needed, and
other pages may be demanded as the loaded pages are used
and no longer needed. Pages that are never accessed are
never loaded into the physical main memory. There are
two common page fetch policies, and they are demand
paging and prepaging. For the demand paging scheme, a
page is brought to the main memory only when a reference
is made to a location on that page. The prepaging scheme
loads other pages including the page that is referenced
into the main memory. Assuming a spatial locality (pages
near the requested page in terms of space location may be
accessed very soon), a prepaging scheme may effectively
reduce the wait time when there is a page fault and a page
must be loaded into the main memory as the expected page
is already loaded. A page fault occurs when the requested
page is not available in the main memory.

PAGE TABLE

The primary job of the page table is to translate the
virtual memory addresses to physical memory addresses.
There are other uses for the page table. Because only a
subset of the total pages for a process is loaded to the main
memory, the page table needs to maintain the informa-
tion of which pages are present in the main memory.
Another usage is to indicate whether the page was altered
since it was last loaded into main memory. If a page was
altered, then that page needs to be written to the hard
disk when it comes time to replace the page in the main
memory. If the page was not altered, there is no action to
be done for the page.

In most computer systems, there is one page table per
process. This may become problematic as some process can
occupy huge amounts of virtual memory. If each process can
have up to 231 ¼ 2 Gbytes of virtual memory, using 212 ¼
4096 byte pages, this means that there can be as many as
219 page table entries per process. This is clearly unaccep-
table. To overcome this problem, only some portion of the
page table is stored in the physical memory. When a process
is executing, a part of the page table resides inside the main
memory that includes the page table entry of the pages
currently executing. Therefore, the page table is also sub-
ject to paging. The size of the page tables for different
processes is governed by the computer architecture and
amount of main memory available. Also, since the size of the
page table is large, we use multiple levels (a hierarchy) of
page tables for size reduction. In a typical computer, the
root page table (page directory) is an array of addresses and
each entry points to a page table. The index into the root
page table is determined by the highest order bits of the
virtual memory address. The next bits in the virtual
address are used to index the page table that is denoted
by the first index. Typically, the maximum length of a page

table is restricted to the size of one page and the Pentium
processor uses this approach.

MEMORY MANAGEMENT UNIT

To implement virtual memory and map the virtual address
to a physical address, a memory management module is
necessary for the translation of addresses. The address
translation hardware is often known as an MMU (Memory
Management Unit). In some cases, the size of a physical and
virtual memory space is the same, as in uClinux. In this
case, when the processor accesses the main memory, the
locations on the main memory never change. That is, an
example memory address 00001 is always the same phy-
sical location inside the main memory.

With an MMU, memory addresses go through a transla-
tion step prior to each memory access. An intuitive virtual
address to physical address is shown in Fig. 1, which means
that a virtual address 00001 might be directed to physical
address 24568 at one time, and to physical address 87006 at
another time. The overhead of individually tracking the
virtual address to physical address translations for billions
of bytes of memory would be too great and costly. Instead,
the MMU divides the main memory into pages or segments.
These are contiguous sections of memory of a fixed size or
variable size, respectively, which are handled by the MMU
as single entities. Keeping track of these sections and their
address translations is necessary in implementing virtual
memory. For example, if the processor had stored data to
the main memory in the past and wants to use that data
again, it would have to know where the data were stored on
the physical memory by performing the address transla-
tions from virtual to physical.

Similar to the cache, which stores recently accessed data
from the main memory for the CPU, the translation looka-
side buffer (TLB) is a cache/buffer that assists the virtual
memory page table scheme (Fig. 2). The TLB contains the
page table entries that were recently used. Given a virtual
address, the processor will first examine the TLB rather
than access the page table, which is typically larger than
the TLB and may lead to performance degradation. If the
desired page table entry is present in the TLB (called TLB
hit), then the frame number is retrieved and the physical
address is acquired. If the desired entry is not in the TLB
(called TLB miss), the processor or the OS then accesses the
page table.

PAGE SIZE

Several factors need to be considered when deciding on the
size of the pages. One is internal fragmentation. This
problem occurs when the page has unused portions.
Thus, if the page size is small, there will be less internal
fragmentation. Reducing the page size will, therefore, use
the main memory more efficiently. However, smaller page
sizes mean larger number of pages required for processes,
and larger number of pages means larger page tables.
Large page tables may mean that some part of the page
table that maintains pages that are in the main memory can
be in the virtual memory, and therefore, there can be a lot of

2 VIRTUAL MEMORY AND BUFFER STORAGE



page faults occurring even when accessing the page table.
The effect of page size on the page fault rate complicates the
problem even more. If the page size is small, then a rela-
tively large number of pages will be available for a process
in the main memory. Thus, the page fault rate should be
low. As the page size is increased, the individual pages will
contain addresses that are further apart, weakening the
principle of locality and the page fault rate begins to rise.
And as the page size becomes as large as the process itself,
the page fault rate decreases until the rate is 0 when the
page size is the size of the entire process. The number of
frames in the main memory allocated to a process also
affects the page fault rate. Finally, the size of the main
memory and the application or process size need to be
considered when determining the page size.

SEGMENTATION

Segmentation allows a programmer to view memory as
consisting of multiple address spaces or segments (1). This
scheme is different from paging in that although pages are
fixed in size, segments may vary in size, can be unequal,
and the size can be dynamically changed. The virtual
address for segmentation will consist of a segment number
and an offset similar to pages. The segment table, how-
ever, is different in that there is the segment base address
and a length associated with the segment. There are
several advantages to the programmer over a nonsegmen-
ted address space. Segmentation simplifies the handling
of dynamically changing data structures, sharing among
processes can be easily done, and the programmer can

Virtual Address

Translation
Lookaside Buffer

TLB Hit

PageTable

Load
Page

Secondary
MemoryMain Memory

Page Fault
Real Address

frame # offset

TLB Miss

Page # offset

Figure 2. An intuitive representation of how the translation lookaside buffer (TLB) is used when accessing a page.

virtual address
memory space

physical address
memory space

program 1

program n

not mapped yet
or mapped in disk

shared region

mapping relationship

Figure 1. An intuitive relationship between the physical memory space and the virtual memory space where the memory management unit
(MMU) determines the mapping relationship to translate the virtual memory addresses to physical memory addresses.

VIRTUAL MEMORY AND BUFFER STORAGE 3



assign access privileges that can effectively protect a
segment.

PLACEMENT

A placement policy determines where in the physical
memory a page or a segment is stored. In a segmentation
system, the placement policy is an important design issue
and policies such as best-fit and first-fit methods are used.
The best-fit scheme is a data placement scheme that places
fetched data in an area where it would be ‘‘best’’ fit with
smallest gaps between placements as possible. The first-fit
scheme is a simpler method where the fetched data are
placed in a large enough space that is discovered first. For
a paging system, placement is usually irrelevant because
the pages are usually of equal size; therefore, data can be
placed in any page. However, there can be issues on which
page to put data according to how the main memory is
scanned for data.

REPLACEMENT

When all of the frames in the main memory are occupied
and a page needs to be loaded into the memory to satisfy a
page fault, this new page must replace an existing page in
the main memory. The replacement policy determines
which page in the memory can be replaced with the new
page requested. There is one restriction on the replacement
policy, and it is the frames that must not be replaced. These
frames are used by the kernel of the operating system, I/O
buffers, and other critical operations. Frames can be locked
such that the replacement policy does not try to replace
those frames. This can be achieved by introducing a lock bit
or lock flag with each frame or include the frame into the
page tables to indicate that the frame is occupied (or being
executed) and must not be touched by the policy.

There are several basic algorithms for the replacement
policy. These are the optimal, least recently used (LRU),
first-in-first-out (FIFO), clock, and so on. The optimal policy
selects the page that has the longest time to the next
reference for replacement. Obviously, implementation of
this policy is impossible because this policy assumes that
the replacement module or the operating system has per-
fect knowledge of the future. The LRU strategy replaces the
page that has not been referenced in the longest time. This
scheme can be very costly to realize as each page needs a tag
that indicates the last time it was referenced. For the FIFO
policy, pages are replaced in a round-robin style. The clock
policy combines the LRU and the FIFO methods. When a
page is first loaded into a frame, in main memory, a use bit is
set to 1 for that frame. Whenever the frame is referenced
again, the bit is set to 1. When there is need to replace a
frame, it starts as a round-robin-type scheme where a
pointer goes around the frames to find the first frame
with the use bit being 0. As the pointer encounters frames
with use bit 1, it passes to the next frame but the use bit is
set to 0. Therefore, if all of the pages have the use bit 1, then
the very first frame that was checked for this use bit will be
the page that will be replaced.

IMPLEMENTATION DETAILS: CASE STUDY
OF AE32000C/LINUX

Here we introduce a case study of a virtual memory system
implementation describing the workings of the proce-
ssor and the operating system. Detailed implementation
depends on the architecture of an operating system and
MMU of a processor, because the design space is determined
by architecture parameters. To provide intuitive insights on
the implementation, the implementation section is based on
how a virtual memory system is implemented with the
Linux operating system on an embedded microprocessor,
AE32000C (2), where the MMU provides simple straightfor-
ward features. These features are as follows:

� Separated On-Chip Instruction/Data TLB, 4-Way Set
Associative, 32-Entries per TLB

� 4-KB page size

� Physically addressed Instruction/Data cache

� 8-bit ASN (Address-space number)

� Software page table walking

Linux supports up to a three-leveled page table in order
to reduce the amount of memory occupied by page table
entries anticipating virtual memory space lager than 4 GB
(3). However, AE32000C/Linux uses a two-leveled page
table as shown in Fig. 3. The first level is a page directory
table that contains 1K number of entries to reference the
second-level tables. The second level is the actual page table
that contains 1K entries to reference physical pages. There-
fore, the page table covers 4 GB of virtual address space; 1K
(first level table)�1K (second level table)�4 KB (page size)
¼ 4 GB. Since the second-level table is created only when
the corresponding page is to be accessed, we can efficiently
save memory occupied by the tables.

Figure 4 shows the structure of the page table entry. The
primary field is a physical page number that is used in
address translation. The others are used for access control
and access tracking of the page. For instance, Linux pro-
vides writing permission on a page by setting the writable
field. When the content of a page is modified or referenced,
each field is set or unset to be used when the time comes to
replace pages efficiently.

Usually the virtual address space is divided into user
spaces and a kernel space. Although the user spaces are
private address spaces for each process, the kernel space is
a shared space for all processes. Moreover, Linux maintains
the kernel space by dividing into two segments: an identity-
mapped kernel segment and a page-table-mapped kernel
segment (4). The identity-mapped segment is the space for
allowing a kernel to be easily addressed virtually or phy-
sically where a direct translation relationship exists
between virtual address and physical address. Most kernel
objects, including the page tables, reside in this segment
to avoid the overhead of a page table or to reduce imple-
mentation complexity such as handling nested TLB miss
from kernel space and page-table swapping out. The page-
table-mapped kernel segment is for dynamically allocated
kernel objects especially requiring continuous address
space such as kernel modules.

4 VIRTUAL MEMORY AND BUFFER STORAGE



In the case of AE32000C, the physical address of the
SDRAM starts from 0xC0000000, which is the most popu-
larly used start address of virtual kernel address space as
shown in Fig. 5. Therefore, AE32000C/Linux sets the vir-
tual address of the identity-mapped kernel segment the
same as the physical address. This approach simplifies the
kernel implementation and at the same time gets rid of any
address translation mechanism for the segment.

Figure 6 depicts how the MMU translates a virtual
address to a physical address. The MMU and the way of
TLB management by the OS are highly dependent on the
cache addressing scheme. Cache may be addressed by vir-
tual address as well. The MMU for the cache does address
translation only on a cache miss. The advantage of this
scheme is fast cache access time due to no address transla-
tion on the cache hit. But, the drawback is the need for
complicated cache coherence maintenance. For example, it
should anticipate an alias/synonym problem since cache
lines of several different virtual addresses, but of the
same physical-address, can exist at the same instance. To
alleviate this problem, the cache could contain tagsas part of
the physical address. But the cache size is restricted so that
the cache index bits shall be part of page offset bits. The
caches of AE32000C are physically addressed, and the
MMU does virtual-to-physical address translation prior to
every cache access. Although the drawback of this method is
slower access time because it requires a TLB lookup before
every cache access, the coherence maintenance is quite

Figure 4. Structure of the page table entry.

\

Figure 5. Structure of AE32000C/Linux address space.

Figure 3. AE32000C/Linux page table.

VIRTUAL MEMORY AND BUFFER STORAGE 5



simple. To find the corresponding TLB entry for a virtual
address, TLB entries are indexed by five bits of the address.
From the indexed four entries, the MMU associatively finds
out the right entry through matching tag field with the
address and address-space number (ASN) with the current
active address space. If the right entry is available, the
MMU checks the validness of the entry, access permission
for the corresponding page, and the presence of the page in
the physical memory. Finally the physical address is
obtained and then is used for accessing the cache memory,
when all conditions are satisfied. Otherwise, an exception is
generated in order to request the OS to handle it. As the
MMU does not provide page table walking, the OS is
responsible for the management of the TLB. Now, let’s
look at the OS implementation for TLB management.

Whenever no empty entries are available for a new
translation, the TLB miss handler of the OS evicts an
existing entry and inserts the new one with a carefully
chosen TLB replacement policy. Popularly used policies are
LRU (Least Recently Used) and NRU (Not Recently Used)
for expecting recently used entry to be accessed in the near
future in order to avoid frequent TLB misses. But, since it is
difficult to implement such policies in software without any
hardware help, AE32000C/Linux uses a round-robin/cyclic
replacement policy for implementation simplicity.

The OS must maintain coherence between the page table
and the TLB. In addition to the alias problem we discussed,
the OS should be facilitated for supporting multiple address
space. As an example, with the MMU that does not support
multiple address space at a time, we should flush all the
TLB entries whenever contexts are switched. To reduce the
overhead from TLB flushing at the context switching, many
processors, including AE32000C, provide address-space
number (ASN) to keep TLB entries of multiple address
space at a time (4). Each entry of TLB contains an 8-bit
ASN field, and a the MMU has an ASN register indicating

the address space of the current running process support-
ing up to 256 address spaces at a time. The ASN is extracted
from the context information, which is platform-dependent.
In the case of AE32000C/Linux, the context information is
composed of an 8-bit ASN and a 24-bit ASN generation
number. On every context switching, the validity of the
context information of the process to be activated is checked
by matching the ASN generation number with the current
generation. The ASN is given in round-robin fashion for the
context of old generation or a newly created context. When
all ASNs are distributed for the current generation, the
generation number increases and all TLB entries are
flushed for coherence.

As mentioned, an exception is generated if there is no
corresponding TLB entry for an access (TLB miss) or the
access is not permitted on the page (access violation). On
the exception from the MMU, the OS invokes an exception
handler. The rest of this section describes how the handler
works.

Figure 7 briefly illustrates an operation flow of the
handler. There are four kinds of actions that the handler
takes on an exception from the MMU. The first action is a
TLB entry insertion/update where the exception is caused
by a TLB miss, or when the page table entry is created or
changed by other actions. If (1) MMU did not generate the
exception due to access violation and the corresponding
page table entry is already present, the exception was
simply caused by absence of the corresponding TLB entry
(i.e., TLB miss). Therefore, the handler inserts the TLB
entry. Otherwise, (2) other actions may create a new page
table entry or change the properties of an existing entry.
In these cases, the handler inserts or updates the TLB
entry. The second action is a copy-on-write for write access
violation where the access is not illegal. All processes
are created (i.e., forked) by their parent while inheriting
memory space. The inheritance could be done by copying.

Figure 6. AE32000C MMU.

6 VIRTUAL MEMORY AND BUFFER STORAGE



But because child processes usually do not use or update all
of the inherited pages, Linux avoids page copying by just
sharing the pages unless there is a write access on them.
The copying is done only on a write from either a parent or
children. Hence, the access violation was caused by the
purpose of this copy-on-write mechanism. To distinguish
this violation from others, the handler checks (3) whether
the write access violation was performed in a valid region
and is actually permitted. The action, demanding page, is
for a read access violation to allocate a physical page where
there is no physical page corresponding to the virtual
address because Linux allocates physical pages dynami-
cally. A condition for triggering the demanding page is
similar to that of the copy-on-write. But (4) the correspond-
ing page table entry should not be present yet, because the
presence of a page table entry implies that a physical page
was already allocated. The last action is for accesses that (5)
violate the permission or (6) reference an invalid memory
region. If the access is from a user process (i.e., not kernel).
Linux sends a segment violation signal (SEGV) to the
process. If the kernel itself makes the violation, there is
a handler (fixup code) to correct the access. The kernel
sometimes accesses memory without checking its validness
to reduce the overhead of checking code, because it is
expected that the handler would be called if the access
is illegal. The other exceptions are due to kernel errors.
On the exception, Linux kills the current process and dis-
plays an error message. This is called Kernel Oops.

HISTORY

At the early stages of our computer era, the limited amount
of physical memory caused a programmer to concentrate on
a way to fit parts of a larger program or divide a large
program into blocks and schedule the moves between the
two levels of the memory hierarchy (i.e., between nonvola-
tile hard disks and main memory). The blocks are called

pages or segments, and the movement operations are called
swaps. The hard disks were slow; therefore, it was impor-
tant to try and keep most of the executing applications in
the fast main memory. A programmer’s dream would be to
have an unlimited amount of main memory, and thus, the
concept of virtual memory was born (5).

It was obvious to the operating system designers in the
early 1960s that automatic storage allocation could signif-
icantly unload the burden from the programmers. The first
operating system design group to accomplish this was the
Atlas team at the University of Manchester who, by 1959,
had produced the first working prototype of a virtual mem-
ory system. They called it a one-level storage system. Their
idea was to distinguish between ‘‘address’’ and ‘‘memory
location.’’ This distinction led them to three inventions: (1) a
hardware that automatically translated each address gen-
erated by the processor to its current memory location; (2)
demand paging, which is an interrupt mechanism trig-
gered by the address translator that moved a missing
page of data that is requested into the main memory;
and (3) a replacement algorithm, a procedure to detect
and move the least useful pages back to the secondary
memory (5). In 1961, Burroughs released the B5000, the
first commercial computer with virtual memory (6). It was
based on segmentation, not paging.

Before virtual memory could be implemented in the
mainstream operating systems, many models, experiments,
and theories had to be developed to overcome numerous
problems. Dynamic address translation required a specia-
lized, expensive, and difficult-to-build hardware, which in
early development made the access to the main memory
slightly slow. More than anything, the consistent and robust
address translation was a concern. By 1969, the debate over
virtual memory for commercial computers was over (5).
An IBM research team led by David Sayre showed that
the virtual memory overlay system consistently worked
better than the best manually controlled systems. Possibly
the first minicomputer to introduce virtual memory was the

page table entry 
is present

Insert/update
 an TLB entry

Copy On Write

page
is present

Demand Page

Send SEGV
/ Call Fixup code

/ Kernel Oops

access
is violated

NO

YES

NO

YES

NO

address is 
in a valid region

YES

YES

access
is write

YES

access
is permitted

NO

YES

access
is permitted

NO

NO

YES

ONON

1

2

3

4

56

Figure 7. Operation flow of the exception handler.

VIRTUAL MEMORY AND BUFFER STORAGE 7



Norwegian NORD-1 (7). In 1972, virtual memory was
announced for the IBM 370 series (8).

The difference between virtual memory implementa-
tions using pages or segments is not only about the fixed
versus variable size memory division, respectively. In some
systems, (e.g., Multics (9,10), the segmentation was actu-
ally visible to the user processes, as part of the semantics of
a memory model. This is different from using pages, where
the model is invisible to the process. In Multics, the seg-
mentation method was used to provide a single-level virtual
memory model, in which there was no differentiation
between process memory and the file system. The active
address space of a process consisted of only a list of variable
segments (files) that were mapped into its potential address
space, both code and data (9). This also worked when
different processes mapped the same file into different
places in their private address spaces (10). Today, most
computer systems use virtual memory except for a few
supercomputers and embedded CPUs and older personal
computers (8).

REFERENCES

1. W. Stallings, Operating Systems: Internals and Design Prin-
ciples, 5th ed., Englewood cliffs, NJ: Prentice Hall.

2. Advance Digital Chips Inc. Available: http://www.adc.co.kr

3. D. P. Bovet and M. Cesati, Understanding the LINUX
KERNEL, 2nd ed. O’Reilly.

4. S. Eranian, D. Mosberger, and B. Perens, The IA-64 Linux
Kernel: Design and Implementation. Englewood Cliffs, NJ:
Prentice Hall PTR.

5. P. Denning, Before memory was virtual, In the Beginning:
Recollections of Software Pioneers, 1997.

6. H. Cragon, Memory Systems and Pipelined Processors. Jones
and Bartlett Publishers, 1996, pp. 113.

7. Norsk Data Annual Report 1982, ND Publications, April 6,
1983.

8. J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. Morgan Kaufmann.

9. A. Bensoussan and C. T. Clingen, The multics virtual memory:
Concepts and design, Commun. ACM 15(5): 308–318, May
1972.

10. E. I. Organick, The Multics System: An Examination of Its
Structure. MIT Press, 1972.

FURTHER READING

A. Silberschatz, P. B. Galvin, and G. Gangne, Operating System
Principles, 7th ed. New York: Wiley.

M. Hailperin, Operating Systems and Middleware. Hailperin.

SEOK JOONG HWANG

SEON WOOK KIM

JONG-KOOK KIM

Korea University
Seoul, Korea

8 VIRTUAL MEMORY AND BUFFER STORAGE



V

VLSI CIRCUIT LAYOUT

INTRODUCTION

The significant achievement of integrated circuits (ICs) in
the past half a century has driven the current revolution of
computing and communication technologies. The applica-
tions of ICs have penetrated everywhere at work and at
home, such as computer networking, switching systems,
communication systems, vehicles, household appliances,
and so on. As the IC technology itself has been experiencing
rapid evolution with the number of transistors on a single
chip growing from a few to over hundreds of million, the
design and fabrication of very-large scale integration
(VLSI) chips have developed beyond the capabilities of
any number of humans without computer support. Thus,
the trend toward automation will accelerate as improved
circuit fabrication technologies permit higher levels of
integration and as more powerful computers allow more
sophisticated tools.

Integrated circuits consist of several electronic compo-
nents, built by layering several different materials in a
well-defined fashion on a silicon base called a wafer. The
VLSI design cycle starts with a formal specification of a
VLSI chip, follows a series of steps, and eventually produces
a packaged chip. A typical design flow is depicted in Fig. 1.
The first step is to lay down the design specification, i.e., a
high-level presentation of the system. The considered fac-
tors in this stage include functionality, performance, phy-
sical dimensions, design techniques, and fabrication
technology. As the second step, the architectural design
is to determine the basic architecture of the system. Its
output is a micro-architectural specification, by which per-
formance, power, and die size of the design can be predicted.
Then in the behavioral design step, the main functional
units of the system and the requirements of interconnects
between the units are identified. The system behavior is
specified in terms of input, output, and timing of each unit
without considering the internal structure. The output of
the behavioral design is usually a timing diagram or other
relationships between units. Then the design process comes
to logic design and circuit design. In logic design, the control
flow, word widths, register allocation, arithmetic opera-
tions, and logic operations are derived and verified by
means of a Hardware Description Language (HDL). The
purpose of the circuit design is to develop a circuit repre-
sentation based on the output of the logic design by taking
into account the speed and power requirements of the
system.

Physical design is a process of converting the behavioral
or structural representations from the previous phases into
a geometric description, called layout, which is used in the
fabrication of the system. A layout consists of a set of planar
geometric shapes in several layers. It is created by convert-
ing each logic component (blocks, cells, gates, and transis-
tors) into a geometric representation (specific shapes in

multiple layers), which performs the intended logic func-
tion. Interconnects between different components are also
expressed as geometric patterns in multiple layers. The
exact details of the layout also depend on design rules,
which are guidelines based on the limitations of the fabri-
cation process and the electrical properties of the fabrica-
tion materials. Physical design is a very complex process
and therefore usually broken down into various subpro-
cesses. After layout design and verification, the design is
ready for fabrication. Layout data are converted into photo-
lithographic masks, one for each layer. Masks identify
spaces on the wafer, where certain materials need to be
deposited, diffused, or even removed. Finally, the wafer is
fabricated and diced into individual chips in a fabrication
facility. Each chip is then packaged and tested to ensure
that it properly meets all the design specifications and
functions.

To meet the quick time-to-market and high-yield
requirements, restricted models and design styles are
applied to reduce the complexity of physical design. The
design styles can be classified to three categories: full-
custom, semi-custom, and universal. In a full-custom lay-
out, all circuitry and interconnect paths are designed. A
circuit is partitioned into a collection of blocks according to
certain criteria. The process is performed hierarchically,
and thus, the full-custom design has several levels of
hierarchy. Different blocks of any size can be placed at
any location on a chip as long as all the blocks are non-
overlapping. In a semi-custom layout such as standard cell
and gate array, a library of predesigned cells is available
and some parts of a circuit are predesigned/placed on a
specific location of a chip. Standard cell layout consists of
rectangular cells of the same height, whereas all the cells in
the gate array layout are identical gates or cells. In the
universal layout design style such as field programmable
gate array (FPGA), the design is somewhat fixed and the
designer programs the interconnections.

The choice of a layout style depends on many factors,
including type of chip, cost, and time-to-market. Full-cus-
tom layout is a preferred style for complex and mass-
produced chips, since the time required to produce a highly
optimized layout can be justified. On the other hand, to
design an application-specific IC (ASIC), a semi-custom
layout style is usually preferred. Further more, FPGA
can dramatically reduce manufacturing turn-around
time and cost for low-volume production. Table 1 sum-
marizes the differences of distinct layout design styles in
multiple categories.

Physical design is an extremely tedious and error-prone
process. VLSI physical design automation is essentially the
research, development, and productization of algorithms
and data structures related to the physical design process.
Its objective is to investigate optimal arrangements of
components on a plane (or in three dimensions) and effi-
cient interconnection schemes between components to
lower cost and improve yield without compromising

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



functionality and performance. In the following discussion,
general physical design methodology mainly for digital
VLSI systems is first discussed. Three major intermediate
stages (i.e., partitioning, floorplanning and placement, and
routing) in a typical physical design process are described
one after another. Then the physical design techniques/
features for the advanced technology and analog ICs are
outlined. Finally, some emerging topics regarding the mod-
ern VLSI layout are presented.

PHYSICAL DESIGN METHODOLOGY

Layout is a process of translating schematic symbols into
their physical representations (1). To design a large circuit,
it is necessary to understand the layout of simple gates,
which are the basic building blocks of any circuit. As an
example, the layout of a CMOS inverter is depicted in Fig. 2.
The inverter consists of two polysilicon (poly) regions over-
hanging a path in the diffusion layer that runs between
VDD and GND. This forms pMos (within the region covered
by the Nwell layer) and nMos, which act as pull-up and pull-
down transistors, respectively. The transistors are shown
by hatched regions in Fig. 2. The inverter input A is con-
nected to the poly that forms the gates of both transistors,

whereas the output B on the metal layer is connected to the
source/drain terminals of pMos and nMos transistors. VDD
and GND are laid out in a metal layer, and contacts are used
to connect metal and diffusion layers.

For the physical design process of a VLSI circuit, the
input is circuit netlist and the output is circuit layout as
depicted in Fig. 3. The physical design automation is typi-
cally solved in a hierarchical framework. Each stage should
be optimized, while making the problem manageable for
subsequent stages. Typically, the following subproblems
are considered:

1. Partitioning: The objective is to divide a circuit into
smaller parts so that the size of each part is within
prescribed ranges and the number of interconnec-
tions between parts is minimized.

2. Floorplanning and Placement: Floorplanning is the
determination of the approximate location of each
block in a rectangular chip area. The shape of each
block and the location of the pins on the boundary of
each block may also be determined in this phase.
When each block is fixed, i.e., fixed shape and fixed
pins, placement determines the best exact position for
each block.

3. Routing: The objective is to complete the interconnec-
tions between blocks according to the specified net-
list.

4. Compaction: As a postprocessing phase, compaction
is simply the task of compressing the layout in all
directions such that the total area is reduced.

5. Verification: It is the testing of a layout to determine
whether it satisfies design and layout rules. Design
rule checking (DRC) is a process that verifies that all
geometric patterns meet the design rules imposed by
the fabrication process.

Figure 3 shows the physical design flow with emphasis
on timing constraints for VLSI digital systems. The timing
performance is estimated after floorplanning and place-
ment and routing, and these steps are iterated if some
interconnections fail to meet the timing requirements.
After the layout is complete, parasitics can be extracted
and accurate timing can be calculated. If some intercon-
nections or components fail to meet their timing require-
ments, some or all phases of physical design need to be
repeated.

Idea

Design Specification

Chips

Packaging and Testng

Fabrication

Circuit Design

Behavioral Design

Architectural Design

Logic Design

Physical Design

Figure 1. A typical design flow of VLSI systems.

Table 1. Comparison of Distinct Layout Design Styles

Style

Full-custom Standard cell Gate array FPGA

Cell size variable fixed height fixed fixed
Cell type variable variable fixed programmable
Cell placement variable in row fixed fixed
Interconnection variable variable variable programmable
Cost high medium medium low
Area compact compact to moderate moderate large
Performance high high to moderate moderate low
Fabrication layers all all routing layers only none

2 VLSI CIRCUIT LAYOUT



PARTITIONING

In VLSI physical design, efficient handling of any complex
system necessitates decomposition of the system into a set
of smaller subsystems of manageable size. This process is
called partitioning. If a system is divided into k partitions,
the problem is called k-way partitioning. Two-way parti-
tioning is called bipartitioning. In particular, if the two
partitions have the same size, this bipartitioning problem is
called bisectioning. The partitioning can be conducted in a
hierarchical manner until each transformed subsystem is

tractable. At any level of partitioning, the input to the
partitioning algorithm is a set of components and a netlist.
The output is a set of subcircuits and the affiliated term-
inals for interconnections between subcircuits.

Problem Formulation

The partitioning problem can be modeled with the aid of
hypergraph. Let G ¼ ðV ;EÞ be a hypergraph, where V ¼
fv1; v2; . . . ; vng is a set of vertices and E ¼ fe1; e2; . . . ; emg is a
set of hyperedges. Each vertex represents a component. A
hyperedge joins the vertices whenever the components cor-
respondingtotheseverticesareconnected.Thus,eachhyper-
edge is a subset of the vertex set; i.e., ei�V ; i ¼ 1; 2; . . . ;m.
The area of each component is denoted as a (vi), 1� i�n.
Fig. 4 depicts a hypergraph, where vertices from a to f
represent circuit components, and three hyperedges (inter-
connecting a-b-c, c-d-e, and e-f, respectively) represent three
distinct nets. The partitioning problem is to decompose V to
V1;V2; . . . Vk, where

Vi \V j ¼ ? ð1 � i � n; 1 � j � n; i 6¼ jÞ
[ k

i¼1Vi ¼ V

Partition is also referred to as cut. The cost of partition
is called cut-size, which is the number of hyperedges
crossing the cut. Let cij be the cut-size between partitions
Vi and Vj. Minimization of the number of interconnections
between partitions is called the mincut problem, which is a
very important objective function for any level partitioning
algorithms. The number of interconnections between parti-
tions represents the dependence of partitions. The least
dependence of partitions is preferred so that the subsystem
of one partition can be implemented without much concern
of the other partitions. This strategy can also ease the
following physical design stages, especially for complex
systems. The objective function above can be stated as
follows:

Xk

i¼1

Xk

j¼1

ci j; ði 6¼ jÞ is minimized

Another objective function might be the minimization of the
maximum number of times a path crosses the partition
boundaries. The constraints for the partitioning problem
may include the following: area, terminal number, and
partition number. The objective functions and constraints
used in the partitioning problem vary depending on the

Figure 3. Complete physical design flow.

Figure 2. Layout of a CMOS inverter.

c d

f

e

b

a

Figure 4. A hypergraph for modeling the partitioning problem.

VLSI CIRCUIT LAYOUT 3



partitioning level, the applied design style, and the specific
problem.

Partitioning Algorithms

The partitioning problem is NP-complete. As a result, a
variety of heuristic algorithms have been developed. The
partitioning algorithms can be classified based on the
process used for partitioning, including group migration
algorithms, simulated annealing/evolution-based algo-
rithms, and other partitioning algorithms.

The group migration algorithms start with some parti-
tions, usually generated randomly, and then move compo-
nents between partitions to improve the partitioning. They
are deterministic algorithms, which can produce repeata-
ble or deterministic solutions. One such algorithm is an
iterative bipartition algorithm proposed by Kernighan and
Lin (2). Based on graph, this algorithm starts with a ran-
dom initial partition and then uses pairwise swapping of
vertices between partitions, until no improvement is pos-
sible. Among a series of variant algorithms, Fiduccia and
Mattheyses modified the Kernighan–Lin algorithm and
reduced the time complexity to O(t), where t is the number
of terminals (3). The group migration algorithms are gen-
erally simple and efficient. However, the number of parti-
tions, usually unknown when the partitioning process
starts, has to be specified. And an algorithm used to find
a minimum cut at one level may sacrifice the quality of cuts
at the following levels.

Simulated annealing/evolution algorithms are the tech-
niques used to solve general optimization problems, which
include the partitioning problems. These techniques are
especially useful when the solution space of the problem is
not well understood. Simulated annealing is the simulation
of crystal formation. The process starts with a random
initial partitioning. An altered partitioning is generated
by exchanging some elements between partitions. The
resulting change in the cost, dc, is calculated. If dc < 0
(representing lower energy), the move is accepted. If dc� 0,

the move is accepted with the probability of e
dc

kt, where k is
Boltzmann’s constant and t is temperature. Thus, the
probability of accepting an increased cost decreases with
the decrease of temperature t, which allows the simulated
annealing algorithm to climb out of local optimums in
search of a global minimum. On the other hand, the simu-
lated evolution algorithms simulate the biological process
of evolution. The algorithm starts with an initial set of
configurations, which is called a population. The simulated
evolution algorithm is iterative, and each iteration is called
a generation. The quality of generations is improved by
using operators that imitate the biological events in the
evolution process. For instance, the crossover operator is to
generate offspring by combining schemata of two indivi-
duals at a time, whereas the mutation operator is to pro-
duce new offspring by causing incremental random
changes. Simulated annealing/evolution algorithms allow
a designer to come close to the optimal solution statistically,
but the user needs to trade off quality and computation
time.

Besides the group migration and simulated annealing/
evolution methods, there are other partitioning algorithms

such as the maximum-flow min-cut algorithm and eigen-
vector decomposition algorithm (4). The maximum-flow
min-cut algorithm transforms the min-cut problem into
the maximum flow problem. To separate a pair of nodes
into two subsets, the minimum number of crossing edges is
equal to the maximum amount of flow from one node to the
other. Although this algorithm can find the optimal solu-
tion between any pair of vertices in a network, there is no
constraint on the sizes of resultant subsets. The eigenvector
decomposition algorithm finds an allocation by some
metrics other than the graph structure. It requires the
transformation of every multi-terminal net into several
two-terminal nets first. The connections are represented
in a matrix, and the eigenvectors of the matrix define the
locations of all components and thus derive partitioning
results.

FLOORPLANNING AND PLACEMENT

Once the partitioning phase is done, the next task is to
assign a specific shape to each block and arrange the blocks
on the wafer. This is done by floorplanning and placement
phases. The blocks, whose dimensions are known, are
called fixed blocks, whereas the blocks, whose dimension
are yet to be determined, are called flexible blocks. The
problem of assigning locations of any flexible blocks on a
layout surface is called floorplanning, where the details,
such as shapes of blocks, I/O pin positions, and so on., are
not fixed yet. If all of the blocks are fixed, the positioning
problem is called placement. Thus, the placement problem
is a restricted version of the floorplanning problem.

Floorplanning

The floorplanning problem is to plan the positions and
shapes of the blocks for optimizing the circuit performance.
Some objectives, such as chip area, total wirelength, delay
of critical path, routability, noise, heat dissipation, and so
on., are normally considered in the floorplanning phase.
Compared with the placement problem, floorplanning is
more difficult. In floorplanning, several layout alternatives
for each block are considered. Usually the blocks are
assumed to be rectangular and the lengths and the widths
of these blocks are determined besides their locations.

The input to the floorplanning problem is a set of blocks
ðB1;B2; . . . ;BnÞ, the area of each block ða1;a2; . . . ;anÞ, pos-
sible shapes of each block, the number of terminals for each
block, and the netlist. The aspect ratio of a block is the ratio
of its width to its height. Al

i and Au
i (l � z � n) define the

lower and upper bounds on the aspect ratio of each block.
The floorplanning algorithm has to determine the width wi

and height hi of each block Bi such that Al
i �

hi

wi
� Au

i .
Finally the floorplanning algorithm has to generate a valid
placement such that the area of the layout is minimized.

Floorplanning methods can be classified into two cate-
gories: slicing floorplanning and non-slicing floorplanning.
A slicing floorplan is a floorplan that can be obtained by
recursively partitioning a rectangle into two parts either by
a vertical or horizontal line. The cut tree obtained by min-
cut algorithm is known as slicing tree. A slicing tree is a
binary tree in which each leaf represents a partition and

4 VLSI CIRCUIT LAYOUT



each internal node represents a cut direction (or cut). A
slicing floorplan is depicted in Fig. 5(a), and its correspond-
ing slicing trees are shown in Fig. 5(b) and Fig. 5(c).
Figure 5(d) shows a non-slicing floorplan.

Wong and Liu proposed a simulated annealing algo-
rithm using a normalized Polish expression to tackle the
slicing floorplanning problem (5). A Polish expression [as
given in the blocks within Fig. 5(b) and Fig. 5(c)] is the
postorder traversal of a slicing tree. By restricting a slicing
tree [as depicted in Fig. 5(b) where one H node can have
another H node as its son node on the right side] to a skewed
slicing tree [i.e., no node and its son node on the right side in
the slicing tree are the same as shown in Fig. 5(c)], a
normalized Polish expression [i.e., no consecutive H’s or
V’s as shown in Fig. 5(c)] can be obtained. And it can be
proved that there is a 1–1 correspondence among slicing
floorplan, skewed slicing tree, and normalized Polish
expression. Thus, normalized Polish expressions can be
used to represent slicing floorplans. And the slicing
floorplan problem can be formulated as a state space
search problem by defining a number of neighborhood
structure move patterns within simulated-annealing
optimization.

Compared with the slicing floorplan, the non-slicing
floorplan is a more general form and thus much harder
to handle. A conventional method for solving non-slicing
floorplanning is mixed integer linear programming (6).
This problem is formulated by a mathematical program,
which includes a linear objective function and linear con-
straints. Each block is associated with four variables,
including X/Y coordinates of the lower left corner and width
and height. To keep blocks at non-overlap, linear inequal-
ities can be set up to represent the location relationship of
blocks. Finally the problem is solved with a linear program-
ming (LP) package. However, because of the time-consum-
ing feature of LP, practically this method can only solve
small size problems. To explore more efficient solutions to
the non-slicing floorplan, recently extensive research work
has been conducted on non-slicing representations. These
include sequence pair, bounded slicing grid, O-tree, B�-tree,
corner block list, transitive closure graph, and so on. (7).
Experimental results show that these non-slicing repre-
sentations can generate efficient floorplan results.

Placement

The placement phase is very crucial in the overall physical
design cycle. A problematic placed layout cannot be
improved by high-quality routing in terms of area and

performance. The placement problem can be formulated
as follows. Let B1;B2; . . . ;Bn be the blocks to be placed on a
chip. Each Bi1 � i � n, is associated with a height hi and a
width wi. Let N ¼ fN1;N2; . . . ;Nmg be the set of nets repre-
senting the interconnection between different blocks. Let
Q ¼ fQ1;Q2; . . . ;Qkg represent rectangular empty areas
allocated for routing between blocks. Let Li denote the
estimated length of net Nu1 � i � m.

The placement problem is to find rectangles for each of
these blocks on the plane denoted by R ¼ fR1;R2; . . . ;Rng
such that (1) each block can be placed in its corresponding
rectangle, that is, Ri has width wi and height hi; (2) no two

rectangles overlap, that is, Ri \R j ¼ ? ; 1 � i � j � n; (3)
placement is routable, that is,Qj, 1 � j �; k is sufficient to route

all the nets; (4) the total area of the rectangle bounding R and Q

is minimized; and (5) the total wirelength is minimized, that is,Xm
i¼1

Li is minimized. In the high-performance-circuits, the length

of the longest net (i.e., maxfLiji ¼ 1; . . . ;mg) has to be mini-

mized. A few popular methods for wirelength estimation exist,

such as half bounding box of the interconnection (also known as

half-perimeter method), complete graph, minimum spanning

tree, minimumSteiner tree, squared Euclidean distance (squares

of all pairwise terminal distances in a net using a quadratic cost

function), and so on (8).

The general placement problem is NP-complete. Thus,
the placement algorithms are generally heuristic in nat-
ure. Three types of the most popular techniques are used
in the state-of-the-art placers (9): the simulated-anneal-
ing-based approach, the partitioning-based approach, and
the analytical approach. Independent of the placement
techniques used, most modern placers consist of three
major steps: (1) global placement: determines the most
desired position for each cell/block, which might results in
cell/block overlaps; (2) cell legalization: removes the cell/
block overlaps; and (3) detailed placement: refines the
placement solution.

The simulated-annealing-based placement algorithm
normally consists of two stages. At Stage 1, blocks are
moved between different rows as well as within the same
row. Block overlaps are allowed at this stage, and they will
be removed at the second stage. When the temperature
falls below a certain value, Stage 2 begins. At Stage 2, any
overlaps are removed and only adjacent blocks are inter-
changed within the same row. The solution perturbations
are based on certain predefined move patterns. The draw-
back of the simulated-annealing-based placement algo-
rithm is the long running time.

1

4 5

2

2 2

6

6

7

74 5 54

3

31 1

H HH H

HH

V V

V

V VV

3

6 7

(d) non-slicing floorplan.(c) slicing tree (skewed). (b) slicing tree. (a) slicing floorplan. 

21H67V45V3HHV 21H67V45VH3HV

Figure 5. A floorplan with slicing trees and a non-slicing floorplan.

VLSI CIRCUIT LAYOUT 5



Partition-based algorithms are designed to group closely
connected blocks together. The idea is to repetitively divide
a circuit into subcircuits such that the cut value is mini-
mized. The placement region is partitioned by cutlines
accordingly. Each subcircuit is assigned to one partition
of the placement region. The partitioning methods nor-
mally apply the Fiduccia–Mattheyses algorithm or other
variants with the multilevel capability. Some typical aca-
demic placement tools include Capo, Feng-shui, NTUpla-
cer, and so on (9). The partition-based algorithms are
normally fast in terms of execution time, but they are
not stable.

Analytical placement algorithms represent the place-
ment problem as an analytical mathematical problem. One
example is quadratic placement algorithms (10). As sum of
squared wire length is quadratic in the cell coordinates, the
wirelength minimization problem can be formulated as a
quadratic program. It can be proved that the quadratic
program is convex; hence, a polynomial time solution can be
derived. The force-directed method is another typical form
of analytical placement algorithm (11). This method trans-
forms the placement problem into the classic mechanics
system of objects attached to springs. Circuit blocks are
analogous to objects, whereas circuit nets can be seen as
springs. If the net weights are treated as spring constants,
an optimal placement is actually an equilibrium configura-
tion of objects. To avoid overlapping of blocks, repulsive
forces inversely proportional to distance and connections to
the fixed I/O pins on the boundary of the placement region
can be added. Compared with blind search of simulated
annealing, the force directed methods use directions of
forces to guide the search. Thus, it is usually much faster
than simulated annealing. However, this method focuses
on connections, not on shapes of blocks. As it is only a
heuristic, an equilibrium configuration does not necessa-
rily stand for a good placement.

ROUTING

Introduction to Routing

After placement, components are arranged on a plane and
the task remains to insert the electrical interconnections
among the components to make them function. The process
of finding the geometric layout of all the nets is called
routing. The input to the general routing problem is as
follows: (1) netlist; (2) timing budget for nets, typically for
critical nets only; (3) placement information including loca-
tion of blocks, locations of pins on the block boundary, and
location of I/O pins on the chip boundary; and (4) RC delay
per unit length on each metal layer, as well as RC delay for
each type of via.

The objective of the routing problem is dependent on the
nature of the chip. For general-purpose chips, it is sufficient
to minimize the total wire length, while completing all the
interconnections. For high-performance chips, it is impor-
tant to route each net such that it meets its timing budget.
Usually routing involves special treatment of such nets as
clock, power, and ground nets.

One approach to the general routing problem is called
Area Routing, which is a single-phase routing technique. It

routes one net at a time considering all the routing regions.
However, because of the extremely large size of the modern
VLSI chips, this technique is computationally infeasible for
an entire chip and is typically used for specialized problems
or smaller routing regions. The conventional approach is to
divide the routing into two phases as represented in Fig. 6.
The first phase is called global routing, which generates a
loose route for each net. It assigns a list of routing regions to
each net without specifying the actual geometric layout of
wires. The second phase, which is called detailed routing,
finds the actual geometric layout of each net within the
assigned routing regions. Unlike global routing, which
considers the entire layout, the detailed routing considers
just one region at a time. The exact layout is produced for
each wire segment assigned to a region, and vias are
inserted to complete the layout. Both global routing and
detailed routing are NP-complete.

Global Routing

The global routing consists of three distinct phases: region
definition, region assignment, and pin assignment. The
region definition is to partition the entire routing space
into routing regions, which includes spaces between blocks
and above blocks (due to over-the-cell routing). Each rout-
ing region has a capacity, which is the maximum number of
nets that can pass through that region. The capacity of a
region is a function of the design rules and dimensions of
the routing regions and wires. As the second phase of global
routing, region assignment is to identify the sequence of
regions through which a net will be routed. This phase must
take into account the timing budget of each net and the
congestion of each routing region. After the region assign-
ment, each net is assigned a pin on region boundaries. This
phase is called pin assignment, which allows the regions to
be somewhat independent. After global routing is complete,
the output includes pin locations for each net on all the
region boundaries it crosses. Using this information, the
length of the net can be extracted and the corresponding
delay can be estimated. If any net fails to meet its timing
budget, it needs to be ripped-up or the global routing phase
needs to be repeated.

The global routing problem is typically studied as a
graph problem (12). As shown in Fig. 6, there are two kinds
of approaches to solving the global routing problem:
sequential and concurrent. In the sequential approach,
nets are routed one by one. However, once a net has
been routed, it may block other nets that are yet to be
routed. As a result, this approach is very sensitive to the
order in which the nets are considered for routing. Usually,
the nets are sequenced according to their criticality,
half perimeter of the bounding rectangle, and number of
terminals.

As an important two-terminal routing algorithm, maze
algorithms are used to find a path between a pair of points,
called the source and the target, respectively, in a planar
rectangular grid graph (13). The geometric regularity in the
standard cell and gate array design style allow one to model
the whole plane as a grid. The areas available for routing
are represented as unblocked vertices, whereas the obsta-
cles are represented as blocked vertices. The objective of a

6 VLSI CIRCUIT LAYOUT



maze routing algorithm is to find a path between the source
and the target vertex without using any blocked vertex. The
process of finding a path begins with the exploration phase,
in which several paths start at the source and are expanded
until one of them reaches the target. Once the target is
reached, the vertices need to be retraced to the source to
identify the path. The retrace phase can be easily imple-
mented as long as the information about the parentage of
each vertex is kept during the exploration phase.

The second global routing approach is concurrent
approach, which avoids the ordering problem by consider-
ing the routing of all the nets simultaneously. The concur-
rent approach is computationally hard and no efficient
polynomial algorithms are known even for two-terminal
nets. As a result, integer programming methods as shown
in Fig. 6 were proposed. The corresponding integer pro-
gram is usually too large to be employed efficiently. Hence,
hierarchical methods are employed to partition the problem
into smaller subproblems, which can be handled by integer
programming.

Detailed Routing

In a two-phase routing flow, detailed routing follows the
global routing phase. The detailed router places the actual
wire segments within the region indicated by the global
router, thus completing the required connections between
the terminals. The detailed routing has multiple forms,
including channel routing, switch-box routing (2-D-switch-
box and 3-D-switchbox), over-the-cell routing, and river
routing. A channel is a rectangular area bounded by two
opposite sides of blocks. A 2-D-switchbox is a rectangular
area bounded all by block sides, whereas a 3-D-switchbox is
a rectangular area with pins on all six sides. The detailed
routing problem is usually solved incrementally. The
ordering of the regions is determined by several factors,

including the criticality of routing certain nets and the total
number of nets passing through a region. Typically channel
and 2-D-switchboxes should be routed first, since channels
may expand. After channels and 2-D-switchboxes have
been routed, the pin locations for 3-D-switchboxes are fixed
and then their routing can be completed. After detailed
routing is completed, exact wire geometry can be extracted
and used to compute RC delays. The delay model not only
considers the geometry (length, width, layer assignment,
and vias) of a net, but also the relationship of this net with
other nets. If some nets fail to meet their timing constraints,
they need to be ripped-up or the detailed routing of the
specific routing region needs to be repeated.

Different detailed routing strategies have been devel-
oped with a variety of objectives. A primary objective
function of a detailed router is to meet the timing con-
straints for each net and to complete the routing of all the
nets. Various secondary objective functions can also be
considered, such as reducing total routing area, improving
manufacturability by minimizing the number of vias and
jogs, and improving performance by minimizing crosstalk
between nets and delay for critical nets. Other objective
functions may include minimization of the average or
total length of a net or minimization of the number of
vias per net.

The detailed routing algorithms can be classified in
many different ways. Besides the classification method
shown in Fig. 6, the algorithms can be categorized on the
basis of the routing models used. Some routing algorithms
use grid-based models, whereas others use the gridless
models (14). The gridless models are more flexible as all
the wires in a design need not have the same width. Another
possible scheme is to classify the algorithms based on the
strategy they use. Thus, we could have greedy routers,
hierarchical routers, and so on. The number of layers
used for routing can also be taken as a criterion to classify

routers

global

specialized

detailed

channel

over-the-cell

switchbox

river

left-edge

hierarchical

greedy

clock-tree

power & ground

concurrent 

approach

sequential 

approach

hierarchical integer 

programming

multi-terminal

two-terminal

steiner-tree based

line-search

maze

Soukup

Lee

Hadlock

integer programming

Figure 6. Classification of routing approaches.

VLSI CIRCUIT LAYOUT 7



the algorithms. Thus, single-layer, two-layer, three-layer,
and multilayer routing algorithms can be formed.

OTHER ISSUES IN VLSI PHYSICAL DESIGN

Design Techniques for the Advanced Technology

As the CMOS technology enters the deep submicron and
nano design era, the interconnect density combined with
the increase in wiring levels and the growth in chip size
make the interconnect design become the most challenging
area in the advanced technology. Wire delay and area tend
to be the primary contributors to IC performance, power,
and area. When using the conventional VLSI design, flow
depicted in Fig. 1, the inaccuracy of wire modeling in the
front-end design (including architectural design, beha-
vioral design, logic design and circuit design) and the initial
phases of the physical design often leads to long physical
and timing closure periods to achieve a placement that is
routable and meets timing requirements.

To overcome the inherent unpredictability of physical
design in the preceding design process, floorplan-based
design methodology, which takes into account the effect
of floorplanning in the front-end design or initial phases of
physical design, exhibits its promising applications espe-
cially in the advanced technology. For instance, chip floor-
planning is performed continuously throughout the front-
end process to discover physical design issues earlier and to
impact register-transfer level (RTL) design decisions.
Instead of relying on placement and routing results to
correlate with prelayout models, floorplanning is deployed
because of its relatively fast execution. Thus, an appropri-
ate level of accuracy derived by floorplanning can guide the
search in the front-end design process. This flow ensures
rapid closure by characterizing netlist quality continuously
during RTL implementation using iterative refinement of
prelayout wire models.

In deep submicron and nano technology, the metal width
tends to decrease with the length increase because of the
complex system integration into single silicon. Therefore,
the resistance along the power metal line increases. In
addition, because of the nonlinear scaling of threshold
voltage compared with power supply voltage in the
advanced technology, IR-drop and clock skew issues
become more crucial to the functionality of chip. As the
design complexity exceeds millions of transistors on chip, it
is reasonable to consider IR-drop and clock skew problems
earlier in the design cycle. A floorplan-based planning
methodology can be used for power network and clock
network planning (15). From a floorplan, the power net-
work size is determined at an early design stage based on
the estimated power consumption. And even without a
detailed gate-level netlist, clock interconnect sizing, the
number and strength of clock buffers can be planned for
balanced clock distribution. This early planning methodol-
ogy at the full-chip level enables designers to fix the global
interconnect issues by progressively refining the layout as
the design proceeds for both the power and the clock dis-
tribution.

VLSI Physical Design of Analog ICs

The physical design methodologies discussed in the pre-
vious sections are mainly targeted to digital VLSI systems.
Analog ICs have significantly different characteristics
from digital circuits. These impose noticeable challenges
on the physical design of analog circuits (16). In terms of
the optimized parameters, digital ICs mainly consider the
factors such as delay, area, power dissipation, and signal-
to-noise ratio. On the other hand, for the analog circuits,
there are numerous additional trade-offs among specifica-
tions, such as DC gain, bandwidth, offset voltage, 1/f noise,
power supply rejection ratio, common mode rejection ratio,
input swing, output swing, slew rate, and so on. Because of
the considerable conflicts among these parameters, the
optimization of analog ICs is a hard job requiring both
knowledge and experience. In particular, the performance
of analog circuits is strongly dependent on the detailed
layout geometry and style.

Since the signal-to-noise ratio of digital circuits is large,
over-the-cell routing is commonly used. However, this is not
desirable in the analog layout because of the sensitive
coupling effect of nets. Therefore, the structured custom
layout approaches, which have been successful in speeding
up the design of digital ICs, have difficulty in providing the
same productivity gains to analog and mixed-signal ICs. A
fixed library is unable to cover adequately the range of
functions needed to construct arbitrary analog systems.
Normally at least some fraction of an analog circuit on a
mixed-signal chip must be full-custom designed at the
considerable expense of time and skill.

In the view of layout, at least three distinctions exist
between digital and analog ICs. First of all, analog blocks
may have several alternative implementations, whereas
digital blocks have only limited implementations. The
transistors in digital circuits are always with the minimum
size, whereas the transistors in analog circuits differ
greatly in their width and length. Second, analog ICs are
relatively small, which always include a limited number of
blocks in all. In contrast, digital systems are very large (up
to millions of transistors). Finally, lots of constraints are
involved in the layout of analog circuits, such as parasitics,
device matching, symmetric requirements, piezoelectric
effects, and so on. For the layout of digital circuits, the
constraints are limited.

The well-developed digital design tools/algorithms can-
not be directly used for analog layout generation. In the
following disussion, some typical methods used in
the analog layout automation tools are described. Most of
the existing analog layout automation tools apply a top-
down design approach that takes the already optimized
circuit netlist as the input and subsequently generates the
layout (16). Meye zu Bexten et al. developed a rule-based
analog layout system called ALSYN. The quality of the
resulting layout greatly depends on the quality of the rule
set, which is formulated in a context-dependent manner.
The constructive technique proposed in Ref. 17 generates
analog layouts by mapping features and special design
constraints into an effective construction. A variety of
interacting quality measures in the analog layout make
this approach more suitable for layout generation at the

8 VLSI CIRCUIT LAYOUT



device level. Algorithm-based tools, such as KOAN-ANA-
GRAM II (18), LAYLA (19), and ALADIN (20), can incor-
porate the analog layout knowledge into the design flow.
These tools normally include complete placement and rout-
ing phases, which can handle special analog constraints.
Recently, template-based layout automation, which retar-
gets an existing analog layout to a different process or
updated specification, was proposed (21). This technique,
which is significant for supporting effective retargeting of
analog intellectual properties, can produce good quality
layouts in a reasonable amount of CPU time.

EMERGING TOPICS

The semiconductor industry has been driven by Moore’s
law for almost a half century. Device size miniaturization
has allowed dense packing of transistors, whereas the
improved transistor performance has led to significant
increase in frequency. The VLSI physical design, which
is closely related to performance requirements and high
yield of ICs, has always faced new challenges posed by
emerging technologies.

Among the grand challenges posted in the latest Inter-
national Technology Roadmap for Semiconductors (ITRS,
http://www.itrs.net/), layout design problems originating in
state-of-the-art mask lithography and manufacturability
take the lead. Of these, optical proximity correction of the
mask and phase shift masking for enhancing sharpness are
demanded. Dummy fill synthesis to achieve uniform den-
sity preferred for chemical-mechanical polishing needs to
be realized.

Some research topics in deep submicron and nano
regimes such as interconnect planning and synthesis,
which involve interconnect architecture design, delay esti-
mation, delay reduction by buffer insertion, and wire siz-
ing, are attracting an increasing amount of attention. The
resultant techniques are also pertinent to clock skew man-
agement in the clock-tree synthesis. Postplacement logic
rewiring techniques for additional optimization of delay,
power, and reliability are mandated.

Modern VLSI designers can integrate a whole system
with large-scale logic/functional blocks on a single chip.
This is called system-on-a-chip (SoC) design. The physical
design for such a system needs to consider the integration of
large-scale digital and analog (mixed-signal) circuit blocks,
the design of system interconnections/buses, and the opti-
mization of circuit performance, area, power consumption,
and signal and power integrity. In addition, the highly
competitive IC market requires faster design convergence,
faster incremental design turnaround, and better silicon
area utilization.

For modern VLSI circuits, more than half of the silicon
area, power dissipation and delays are consumed by inter-
connects rather than devices. To tackle this issue, the
3D-Stacked IC (3D-SIC) technology aims to enable direct
stacking of thinned ICs while realizing through-die area
array interconnects (i.e., 3D vias) between them with an
extremely high density. Thus, placing and wiring devices in
the third dimension can promise higher clock rates, less
power dissipation, and higher integration density. The

physical design challenges of 3D-SIC include area, power
and performance optimization, interconnect complexity,
thermal distribution, process variations, signal integrity,
and power/clock distribution.

Recently manufacturers of high-performance consumer
electronics are turning to System-in-a-Package (SiP)
design because it can provide a number of advantages
over SoC. The SiP technology encompasses the packages
with wire-bond die-stacks, or package-on-package 3D
stacks. In addition to reduced cost, lower power, and higher
performance, the SiP design offers the flexibility to mix RF
and high-speed digital circuitry in the same package. It
requires expert engineering talent in widely divergent
fields (e.g., chip-package codesign).

As 3D packaging technology continues to advance, an
emerging 3D system integration concept is to incorporate
ultrathin films at microscale to embed both active and
passive components (22). Besides the optimization of
area, power and performance, the physical design of such
a system needs to consider thermal distribution, mixed-
signal substrate coupling and electromagnetic interfer-
ence, power supply noise, and optical routing.

Furthermore, with the continued increase of on-chip
packing density and the continued shrinking of device
feature sizes due to the nanometer IC technologies, some
other issues such as reliability (antenna effect, electrostatic
discharge, electromigration, etc.), thermal, and yield
(redundant via, process variation, etc.) will soon become
first-order effects for VLSI physical design, as comparably
important as the traditional design metrics—timing,
power, signal/power integrity, and area. These effects
have imposed tremendous challenges and opened many
research opportunities to modern physical design.

BIBLIOGRAPHY

1. R. Baker, CMOS: Circuit design, layout, and simulation,
revised 2nd ed., Hoboken, NJ: Wiley, 2007.

2. W. Kernighan and S. Lin, An efficient heuristic procedure
for partitioning graphs, Bell Syst. Tech. J., 49: 291–307,
1970.

3. C. Alpert and A. Kahng, Recent directions in netlist partition-
ing: A survey, Integration: VLSI J., 19 (1,2): 1–81, 1995.

4. W. Mak and D. Wong, A fast hypergraph min-cut algorithm
for circuit partitioning, Integration: VLSI J., 30 (1): 1–11,
2000.

5. D. Wong and C. Liu, A new algorithm for floorplan design, Proc.
Design Automation Conference, 1986, pp. 101–107.

6. P. Chen and E. Kuh, Floorplan sizing by linear programming
approximation, Proc. Design Automation Conference, 2000, pp.
468–471.

7. T. Chen and Y. Chang, Packing floorplanning representations,
Physical Design Handbook. in C. Alpert, S. Sapatnekar,
D. Mehta, (eds.), Boca Raton, FL: CRC Press, 2007.

8. T. Yan and H. Murata, Fast wire length estimation by net
bundling for block placement, Proc. IEEE/ACM International
Conference on Computer-Aided Design, 2006, pp. 172–178.

9. S. Adya, M. Yildiz, I. Markov, P. Villarrubia, P. Parakh, and P.
Madden, Benchmarking for large-scale VLSI placement and
beyond, IEEE Trans. Comput.-Aided Design, 23 (4): 472–488,
2004.

VLSI CIRCUIT LAYOUT 9



10. B. Yao, H. Chen, C. Cheng, N. Chou, L. Liu, and P. Suaris,
Unified quadratic programming approach for mixed mode
placement, Proc. International Symposium on Physical
Design, 2005, 193–199.

11. T. Chan, J. Cong, and K. Sze, Multilevel generalized force-
directed method for circuit placement, Proc. International
Symposium on Physical Design, 2005, pp. and 185–192.

12. J. Hu, S. Sapatnekar, A survey on multi-net global routing for
integrated circuits, Integration: VLSI J., 31 (1): 1–49, 2001.

13. F. Mo, A. Tabbara, and R. Brayton, A force-directed maze
router, Proc. IEEE/ACM International Conference on Compu-
ter Aided Design, 2001, pp. 404–407.

14. J. Cong, J. Fang, and Y. Zhang, Multilevel approach to full-chip
gridless routing, Proc. IEEE/ACM International Conference
on Computer Aided Design, 2001, pp. 396–403.

15. C. Liu and Y. Chang, Power/ground network and floorplan
cosynthesis for fast design convergence, IEEE Trans. Comput.-
Aided Design, 26 (4): 693–704, 2007.

16. G. Gielen and R. Rutenbar, Computer-aided design of analog
and mixed-signal integrated circuits, Proc. IEEE, 88: 1825–
1852, 2000.

17. H. Mathias, J. Berger-Toussan, G. Jacquemod, F. Gaffiot, and
M. Helley, FLAG: A flexible layout generator for analog MOS
transistors, IEEE J. Solid-State Circuits, 33 (6): 896–903,
1998.

18. J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, Analog Device-
Level Layout Automation. Norwell, MA: Kluwer Academic
Publishers, 1994.

19. K. Lampaert, G. Gielen, and W. Sansen, Analog Layout Gen-
eration for Performance and Manufacturability. Norwll, MA:
Kluwer Academic Publishers, 1999.

20. L. Zhang, U. Kleine, and Y. Jiang, An automated design tool for
analog layouts, IEEE Trans. VLSI Syst., 14, 881–894, 2006.

21. L. Zhang, N. Jangkrajarng, S. Bhattacharya, and C. Shi,
Parasitic-aware optimization and retargeting of analog lay-
outs: A symbolic template approach, IEEE Trans. Computer-
Aided Design, 27 (5): 791–802, 2008.

22. S. Lim. Physical design for 3D system-on-package, IEEE Des.
Test Comput., 22 (6): 532–539, 2005.

FURTHER READING

N. Sherwani, Algorithms for VLSI Physical Design Automation,
3rd ed., Norwell, MA: Kluwer Academic Publishers, 1999.

A. Hastings, The Art of Analog Layout, 2nd ed., Englewood Cliffs,
NJ: Pearson Prentice Hall, 2006.

S. Sait and H. Youssef, VLSI Physical Design Automation: Theory
and Practice, Singapore: World Scientific, 1999.

M. Sarrafzadeh and C. Wong, An Introduction to VLSI Physical
Design, New York: McGraw-Hill, 1996.

LIHONG ZHANG

Memorial University of
Newfoundland

St. John’s, Newfoundland
Canada

10 VLSI CIRCUIT LAYOUT



C

COLLABORATIVE VIRTUAL ENVIRONMENT:
APPLICATIONS

INTRODUCTION

As the Internet evolves, people realize that a more natural
interaction and communication via local area network
(LAN), wide area network (WAN), or Internet can improve
the efficiency of their social activities and the productivity
of their daily work. Rapid advances in networking technol-
ogy in the past decade have offered the potential of achiev-
ing real-time collaborative applications via network
connection, in which people are able to interact with
each other and the virtual surrounding environment in a
way that they experience in real life. Collaboration is part of
basic communication form in human society. If a virtual
environment or a cyberspace is connected by computer
network to allow real-time sharing and exchanging of
information by multiple users, efficient remote collabora-
tion can be realized. Collaborative Virtual Environment
(CVE) has been developed for such purposes. With the
capability to support multiple geographically dispersed
human-to-human and human-to-machine communication
and interaction in a shared virtual environment, CVE
opens a door to a broader spectrum of potential applications
in various areas ranging from academic study to collabora-
tive engineering to military war-game simulation applica-
tions. There are many scenarios that can significantly
benefit from the solution presented by CVE over simply
noncollaborative virtual reality (VR) or 3-D workstation
computer graphics. An important pioneer application in
this area, the SIMNET networked tank simulators (1)
demonstrate the feasibility of a CVE system used for mili-
tary training in a distributed interactive simulation envir-
onment. Besides military applications, CVE has also been
applied in medical or industrial team training, collabora-
tive design and engineering, collaborative scientific visua-
lization, and social activity and entertainment-like multi-
user VR games. Recently, the game industry has also
adopted the findings in this field of research and developed
new types of games based on CVE technology. Examples of
these developments are the multiplayer games (2,3). These
games aim to support very large user bases with massive
multiplayer online role-playing interactions. This type of
game has proven to be quite popular and a way of generat-
ing revenue for application and content providers.

In the following sections of this article, we discuss the
CVE applications in the following four main categories:
military applications, social interaction and entertain-
ment, collaborative learning, and collaborative design
and group work.

MILITARY APPLICATIONS

A military force must rehearse its options if it is to be
prepared for a complex battlefield environment. However,

battle training with troops and equipment in the real world
is both expensive and dangerous. Thus, virtual military
training using a computer-generated synthetic environ-
ment has an important role to play. Training individual
soldiers with stand-alone equipment simulators using VR
technology has achieved great success for many years. As
modern warfare gets more complicated, it often requires
joint force of Army, Navy, Marine Corps, and Air Force to
accomplish a military task. Thus, individual stand-alone
virtual training is no longer sufficient. It requires colla-
borative efforts of different military services. It becomes the
natural need for CVE technology to construct a multi-user
shared battlefield that supports simulation of various mili-
tary weapons, realistic battlefield effects, and intelligent
agent-controlled virtual soldiers called a computer-gener-
ated force (CGF) (4). The SIMNET networked tank simu-
lator was the first such military application. It allows armor
companies and mechanized infantry companies to practice
fighting in cooperation against some foe in a LAN or WAN.
A trainee in a tank simulator can see and interact with the
avatar of a Bradley Fighting Vehicle located hundreds of
kilometers away in the SIMNET war simulation.

Karr et al. (4) categorized military training simulation by
the degree of human interaction as ‘‘live, virtual, and con-
structive.’’ In ‘‘live’’ simulation, data feeds from computers
replace sensor information from real equipment. The simu-
lated sensor readings are matched as closelyas possible with
physical cues such as 3-D imagery and realistic audio. Each
of the services has programs incorporating live simulation.
The Air Force has the Contingency Theater Automated
Planning System, sailors aboard ships train in a simulated
world using the Battle Force Tactical Training System, and
Army reservists can train in M-60 tanks using the Guardfist
Training System. In ‘‘virtual’’ simulation, the second cate-
gory, the work environment is also simulated. The real
trainee tank gunner, for example, is in a physical mockup
of the inside of a tank, and when he looks into the gun sight,
he sees a television screen displaying a computer-generated
image. In the Army, the crews for hundreds of tanks,
Bradley Fighting Vehicles, and helicopters are trained
each year in their vehicles. In live and virtual simulation,
the trainee is known as the man in-the-loop. In the third and
last category of simulation, ‘‘constructive,’’ the man departs
from the loop, and battles can be fought with no or minimal
human intervention. CGF systems belong in this category.
Entities in the virtual world—soldiers, ships, tanks, air-
craft, and the like—also can be ‘‘manually’’ controlled by
commanders undergoing training, just as scale models were
pushed around large map tables in the old days. (In practice,
the officer in training directs his commands to a specialist
operator, who implements them on workstations.)

Besides battlefield training, CVE has also been used for
militaryclinical therapytreatmentforpostwarpersonnelas
reported by Rizzo et al. (5). The virtual environment
of various war scenarios when combined with real-time
clinician input via the ‘‘Wizard of Oz’’ clinical interface is

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



envisioned to allow for the creation of a user experience that
is specifically customized to the needs of the patient parti-
cipating in treatment. It is designed such that clinical users
can be teleported to specific scenario settings based on a
determination as to which environment most closely
matches the patient’s needs, relevant to their individual
combat-related experiences. These settings include city
scenes, checkpoints, city building interiors, small rural
villages, desert bases, and desert roads as illustrated in
Figs. 1–3:

SOCIAL INTERACTION AND ENTERTAINMENT

CVE provides a virtual space to allow an electronic means of
information exchange through network connections. In a
CVE, a group of people can get together and communicate
with each other, and they can gather information while
freely moving about and engaging in a variety of activities.
It provides a new information communications environ-
ment for people to exchange information, develop mutual
understanding, interact freely with each other, and parti-

cipate in entertainment activities (e.g., online multiplayer
games, online digital community activities, etc.) in an
enjoyable and efficient manner. It is a multiparticipant
communication support platform that enables each parti-
cipant’s avatar to roam around freely in a 3-D virtual space.
It also allows each avatar to engage in conversation with
other avatars, with each avatar that may be mapped with
facial image or live facial video image of the corresponding
participant from a video camera mounted on his or her
personal computer. This Feature enhances the feeling
of presence in the shared social interaction and entertain-
ment environment. Live audio and text chat in a shared 3-D
environment engage online participants with easy commu-
nication and information exchange. For example, ‘‘There’’
see (http://www.there.com) (6) provides a persistent online
environment for social interaction, as shown in Fig. 4.
‘‘There’’ shares many of the features of other online virtual
environments and persistent role-playing games, such as
Ultima Online (7), Everquest (2), Asheron’s Call (8), World
of Warcraft (9), and so on. Yet There is marketed as a
‘‘virtual getaway’’ for social interaction and exploration.
Unlike online games, no overall goal exists to ‘‘There.’’ Its

Figure 3. Clinical CVE postwar therapy interface (5).Figure 1. Flocking patrol (5).

Figure 2. Desert road (5). Figure 4. Social interaction in ‘‘There’’ online environment (6).

2 COLLABORATIVE VIRTUAL ENVIRONMENT: APPLICATIONS



environment supports activities such as buggy races, paint-
ball, flying jetpacks, treasure hunts, and even playing with
virtual pets. Moreover, as with the real world, much atten-
tion is given to personal appearance, and one of the main
activities in ‘‘There’’ is designing virtual clothes and selling
them through in-game auctions. ‘‘There’s’’ virtual world is
augmented with support for instant messaging (both text
and audio), forums, tools for organizing virtual ‘‘events,’’
and forming groups. Specific attention has also been given
to supporting social interactions in ‘‘There’’. Avatars can
make emotional gestures, and chat is displayed in speech
bubbles, within the game world, word by word, rather than
in the complete lines of text displayed in instant messaging.
Considerable attention has also been given to how avatars
interact around objects. For example, unlike most games,
the most commonly used camera angle is above the head
and some distance back, which increases the field of view
allowing easier interaction with objects that are close to the
avatar. This view can also be turned with the mouse, an
operation that is visible to others by the avatar turning its
head.

Microsoft Research has also developed a Virtual Worlds
Platform (10), which can be used for various social activity
applications. The Electronic Mercantile Exchange, as
shown in Fig. 5, is a prototype environment built by
Acknowledge Systems using the Virtual Worlds Platform.
It is an online environment for the financial services indus-
try and a major futures exchange was consulted in the
creation of this prototype. Among the features of the envir-
onment are a collaborative research center and a simulated
trading floor that allows users to take part in a multi-user
mock trading session, complete with 3-D graphics and
audio. Used for marketing and education, the environment
allows visitors to see, hear, and participate in simulations of
these complex markets.

MusicWorld, as shown in Fig. 6, is another social inter-
action application built based on the Virtual World Plat-
form. It is a graphical collaborative musical performance
environment where avatars join together to explore a live,
online ‘‘album’’ of multiple songs. Within each soundscape,
avatars can mix sounds and compose their own musical
patterns that are shared in real-time. Although all of the
avatars can affect the music individually, all the changes
they made are instantly updated across the network, guar-
anteeing that the music is truly collaborative and heard the
same way for all participants. The space exemplifies the
capabilities of V-Worlds to host a dynamically changing
environment in which avatars could be expressive and
change their world in real-time.

The Virtual World Platform has also been used to create
a collaborative educational environment for exploring
ancient Egyptian civilization and the crafts of archaeology
and museum studies. It simulates the excavation of a new
kingdom royal tomb in Egypt’s Valley of the Kings. The
tomb features a wide range of objects and artifacts
representative of the late-eighteenth to early-nineteenth
dynasties in ancient Egypt. It is intended as an educational
simulation to be used by grade school students (age 9–12) in
the classroom environment, and it is being developed in
collaboration with teachers and museum educators. It
features multi-user interaction in a 3-D virtual environ-
ment with rich textures, as shown in Fig. 7.

Figure 5. Virtual Worlds Platform-based-electronic mercantile
exchange (10).

Figure 6. Virtual Worlds Platform-based MusicWorld (10).
Figure 7. ‘‘Explorers of the Ancient World: Egypt’’ based on
Virtual Worlds Platform (10).

COLLABORATIVE VIRTUAL ENVIRONMENT: APPLICATIONS 3



There are also many other CVE-based social interaction
applications, including Community Places (11) and Living
Worlds (12) by Sony Research Laboratories, Diamond Park
by Mitsubishi Electric Research Laboratories (13), Blaxxun
Community Platform by Blaxxun Technologies (14), Vir-
tual Playground by HITLab in Washington University (15),
and VELVET in University of Ottawa (16). It provides
facilities to allow users to create communities for various
social interactions. For example, Blaxxun Community Plat-
form allows users to set up homes, clubs, student dormi-
tories, company offices, or other distinct locales on the Web,
as shown in Fig. 8. These entities are divided into public and
private spaces. For example, a community may have places
like plazas, cafes, and offices where its members congre-
gate. The community might also have neighborhoods
devoted to members sharing special interests, like films,
into which they can easily ‘‘homestead.’’ Each member’s
home (complete with its own URL) can act as their personal
communication center on the Web within which they can
invite their friends, family, and other groups for scheduled
or impromptu meetings and chats. Many present commu-
nity members also attach this URL to their e-mail mes-
sages, which has the effect of promoting both the users’
private home as well as the community URL. Homeowners
receive all the tools required to maintain their places and
can set up special access privileges to protect their privacy.
The homes themselves can easily be built from one-click
templates or designed more elaborately with objects like
furniture, pets, and agent servants. Homes have all of the
communication functionality delivered by the community
manager.

MMORPG

Massively Multiplayer Online Role-Playing Games
(MMORPGs) is another CVE application area. Recent
developments on persistent MMORPGs, such as Everquest
(2), allow game players to play in a persistent shared game
world. It is a CVE type of game, which maintains a con-
sistent game world for the game players so that they are
given the feeling of playing in the same 3-D game scene

while playing different game roles in a collaborative man-
ner. In 2003, IBM and Butterfly launched a new network
gaming environment for Sony Computer Entertainment,
Inc.’s PlayStation2 that enables online video game provi-
ders to reliably deliver state-of-the-art games to millions of
concurrent users (17). Traditionally, online video games
have segmented players onto separate servers, limiting the
number that could interact and creating reliability and
support obstacles. In the first generation of online games,
when one server is down, overloaded, or patches are being
installed, game play comes to a halt. With Butterfly’s grid
technology, the server interaction is completely transpar-
ent and seamless to the user, delivering a resilient gaming
infrastructure in which servers can be added or replaced
without interrupting game play. In the Butterfly grid plat-
form, game players can log on to the Grid through either a
video game console, PC, set-top box, or mobile device run-
ning Butterfly Grid client software. During the course of a
game, the Butterfly Grid divides the world into a series of
mutually exclusive sectors known as ‘‘locales,’’ each of
which is assigned to a specific server. In the course of a
game, a player may encounter areas of excessive activity
within a locale—caused by factors internal to the game
(such as a battle triggered by artificial intelligence systems)
or simply large numbers of users—which increase the use of
that locale’s server. In such an instance, the Grid’s ‘‘heart-
beat monitoring’’ feature will flag the server as over-
utilized and move the high-activity locale to a less-utilized
server on the Grid. Similarly, in the event a server goes
down, game play is automatically and seamlessly routed to
the nearest optimal server in the Grid using the same
resource monitoring feature. Figure 9 shows a sample
game screen from the Butterfly Grid platform.

COLLABORATIVE LEARNING AND TRAINING

Visualization has been used to enhance human under-
standing of conceptual work, from describing earth mag-
netic field (e.g., intensity and direction), to evaluating
fighter jet design before prototyping, to aerodynamic study,

Figure 8. Blaxxun Shared Virtual Worlds (14). Figure 9. MMORPG in Butterfly Grid (18).

4 COLLABORATIVE VIRTUAL ENVIRONMENT: APPLICATIONS



to understanding of abstract fluid dynamic computation, to
visualizing complex molecular structure. 3-D images bring
better visualization of knowledge/information than any 2-D
image does, whereas interactivity provided by a 3-D virtual
environment makes the learning experience closer to real
life than any animation technique offers. There is no dis-
pute over the role of visualization in enhancing human
understanding of abstract and complex concepts.

However, learning is contextualized in a social setting
that may involve verbal interaction, collective decision
making, conflict resolutions, peer teaching, and other
group learning situations that are characteristic of a class-
room setting (19). An engaging learning environment
would stimulate learning interests and enhance students’
knowledge acquiring performance. With CVE, the learning
performance can be improved by providing intelligent and
interactive learning contents in an engaging environment
with multi-user participation and collaboration. A CVE-
based learning system supports active exploratory and
discovery learning (i.e., ‘‘learning by doing’’), which is
one of the most effective ways of learning. This method
encourages the students’ active thinking in every step of the
learning process. One of the most important advantages is
the computer supported collaborative learning that can
model learning activities and interactions close to the
traditional classroom, which is not possible in stand-alone
visualization-based learning methods.

The NICE garden, as shown in Fig. 10, is one such CVE-
based learning application. It was originally designed as an
environment for young children to learn about the effects of
sunlight and rainfall on plants, the growth of weeds, the
ability to recycle dead vegetation, and similar simple bio-
logical concepts that are a part of the lifecycle of a garden.
As these concepts can be experienced by most children in a
real garden, the NICE garden provides its users with tools
that allow its exploration from multiple different perspec-
tives. In addition to planting, growing, and picking vege-
tables and flowers, the children have the ability to shrink
down and walk beneath the surface of the soil to observe the
roots of their plants or to meet other underground dwellers.
They can also leap high up in the air, climb over objects,
factor time, and experience first hand the effects of sunlight
and rainfall by controlling the environmental variables
that cause them. NICE supports real-time distributed col-
laboration. Multiple children can interact with the garden
and each other from remote sites. Each remote user’s
presence in the virtual space is established using an avatar,
a graphical representation of the person’s body in the
virtual world. The avatars have a separate head, body,
and hand that correspond to the user’s actual tracked
head and hand motions, allowing the environment to record
and transmit sufficiently detailed gestures between the
participants, such as the nodding of their heads, the waving
of their hand, and the exchange of objects. Additionally,
voice communication is enabled by a real-time audio con-
nection.

We have also developed a CVE-based learning system
for collaborative learning. When the students work in
multi-user collaborative mode, their interactions with
3-D objects are synchronized among all users in the
same group. The student interface in multi-user mode

also provides chat interface for students/lecturers in the
group to communicate with each other in real-time. The
students can learn/work collaboratively. For example,
three students, Robert, Jane, and Lin, study collaboratively
to learn assembling a milling machine in a shared 3-D
virtual laboratory over the Internet, as shown in Fig. 11.
The students can discuss and communicate with each other
regarding the actions/tasks to be taken by each student to
assemble the milling machine. Only after the students
successfully assemble all components of the machine can
its power be switched on. Then, its cutter can be tested, and
so on. If it is needed, the course lecturer can also join the
students in the virtual laboratory through the Internet and
demonstrate to the students the correct procedures of
assembling the milling machine before they practice them-
selves. This technology is an example we have created to
illustrate the use of CVE in collaborative learning and
training.

Our system experiment shows that the prototype learn-
ing system can successfully support multi-user collabora-
tive learning in the CVE. It has the advantage of providing
the students with active engagement in the learning

Figure 10. NICE project (19).

Figure 11. CVE-based learning system for machine assembly
and maintenance.

COLLABORATIVE VIRTUAL ENVIRONMENT: APPLICATIONS 5



process. In particular, it promotes role-playing among stu-
dents, which is important in creating a stimulating learn-
ing environment. It also allows students and lecturers to
interact with each other in CVE where lecturers can
demonstrate the learning contents to the students or the
students can collaboratively study/work together to carry
out one learning task, which would be particularly useful
for those subjects that require multi-user collaboration.

Industrial Training

For similar motivation of using CVE in military training,
industrial training looks to CVE as a cost-effective solution.
Instead of working with physical equipment, they are
modeled as virtual objects with relevant interactive beha-
viors in a virtual environment accessible to many users.
The users, represented by avatars, can then manipulate
and interact with the objects as in the real world, gaining
valuable experience and training before using the real
equipment, which is particularly useful for expensive
and complex equipment. For example, Oliveira et al. (20)
developed a multi-user teletraining application, which
allows users, represented by avatars, to learn how to oper-
ate on a faulty asynchronous transfer mode (ATM) switch.
The avatars repair the switch in steps that precisely reflect
those necessary to perform the same actions in the real
world. The prototype consists of two general modules: the
user interface module and the network communication
module. The user interface itself consists of a graphical
interface (GUI), a 3-D interface (VR), and media interfaces
(speech recognition, voice streaming, head tracking), as
shown in Fig. 12. The upper-right area of the interface,
which takes the largest part, is the 3-D environment. On the
left and below the 3-D environment are the controls used by
the trainees to interact with objects and navigate in the
environment. At the top left is the head-tracking facility.
Below the head-tracking window is a utility panel that is
used for different purposes as discussed later. There is also
a chat space where users can exchange textual messages.
To avoid navigation problems with inexperienced users, it
is possible to view the world from a set of pre-defined
camera views.

A user is able to approach and verify the operation of the
switch and its cards, remove a faulty card and put it on
the repair table, and replace it by installing a new card into
the switch. Other parties will be able to watch that user’s
avatar taking such actions. All of the above actions can be
performed by directly navigating in the scene and manip-
ulating objects with the mouse or by selecting the action in a
menu. A user can also view video segments showing the
correct procedure for performing certain actions. The uti-
lity panel is used to display the video clips. If chosen by the
trainer, the video will be displayed in every participant’s
screen. Another use for the utility panel is the secondary
view feature, with which a user can simultaneously watch
the current actions from an alternative point of view. In
addition to the interfaces explained above, the prototype
offers voice recognition technology whereby the user simply
enters commands by talking into the computer’s micro-
phone. In this case, the user may simply speak pre-defined
commands such as ‘‘Go to the table’’ for the avatar to per-
form, or may change views by saying ‘‘Table Top View,’’ and
so on, which enhances the effectiveness of collaborative
training.

COLLABORATIVE DESIGN AND GROUP WORK

Randy Pausch at the University of Virginia suggested that
the most promising use of CVE would be for applications in
which people at different locations need to jointly discuss a
3-D object, such as radiologists using a VR representation of
a CAT scan (21), the virtual medicine project developed by
SRI International, a teleoperated laproscopic device uses
force reflection to provide haptic feedback to a distant
surgeon (22). And in the Microelectronics Center for North
Carolina (MCNC), a virtual library, Cyberlib, is designed to
allow patrons to venture into ‘‘the information space inde-
pendently’’ or go to a ‘‘virtual reference desk’’ from any-
where across the United States via the Internet (23).

From a product design point of view, the traditional
manner of collaboration is geographically limited. Collea-
gues are not easily able to collaborate and exchange their
ideas if they are situated in different locations. Virtual
collaboration is intended to solve this problem by incorpor-
ating CVE technology to facilitate the collaborative design
for small-to medium-sized teams as demonstrated in VRCE
(24). The collaborative design functions in VRCE multiview
include collaborative design support, multiple opinions via
collaborative, multilayer information exchange and experi-
menting with multiple designs. Daily et al. (25) also
reported a system for Distributed Design Review In Virtual
Environments (DDRIVE) by HRL Laboratories and Gen-
eral Motors Research & Development Center (GM R&D), as
shown in Fig. 13. One important component of the DDRIVE
system is the Human Integrating Virtual Environment
(HIVE) collaboration infrastructure and toolset developed
at HRL Laboratories to support research in multi-user,
geographically distributed, 2-D and 3-D shared applica-
tions. The HIVE provides virtual meeting tools and high-
fidelity multiway audio communication for heterogeneous
interface environments. The HIVE is designed to work
cooperatively with other applications to add collaboration

Figure 12. Training application’s interface (19).

6 COLLABORATIVE VIRTUAL ENVIRONMENT: APPLICATIONS



capabilities. Another component is the VisualEyes, which
provides a full-size immersive view of a shared model for
high-quality visualization. VisualEyes is an interaction
tool for visualizing data using mathematics and light.
GM uses this tool for testing car designs and collaborating
on projects in virtual environments. Imagine being able to
sit in the driver’s seat of a car before anything is built and
change the placing of a dashboard control by a simple
gesture because it is too difficult to reach. VisualEyes
enables this kind of interactive design via an easy-to-use
scripting language that allows control of the environment.
Virtual environments can be built much more quickly than
with other toolkits by merely bringing in models and apply-
ing simple rules.

Frederick et al. (26) also developed a collaborative vir-
tual sculpting system to support a team of geographically
separated designers/engineers connected by networks to

participate in 3-D virtual engineering sculptures through a
collaborative virtual sculpting framework, called VSculpt,
as shown in Fig. 14. It provides a real-time intuitive envir-
onment for collaborative design. In particular, it addresses
issues on efficient rendering and transmission of deform-
able objects, intuitive object deformation using the Cyber-
Glove, and concurrent object deformation by multiple
clients.

SUMMARY

In summary, CVE has vast potential for a wide spectrum of
applications. It not only provides an engaging environment
for social interaction and entertainment, but also offers
cost-effective solutions for military/industrial training and
collaborative group work in education, science, and engi-
neering. The performance of CVE applications relies on the
natural way of communication and interaction provided by
a CVE system. As CVE applications may run in different
devices such as desktop PCs, mobile devices like PDAs
and wearable computers, and large display systems like
CAVEs or HMDs, the advancement in computer processing
power, network bandwidth, input devices, tracking and
output of text, live voice/video, and so on will play important
role in determining the performance of a CVE. The popu-
larity of CVE applications will not only depend on the ease
of use of such applications but also will depend on the cost of
using them. As computer processors get faster, graphics
techniques get more advanced, and the network connection
gets faster and cheaper, we believe that CVE applications
will be used by ordinary users in everyday life. For ordinary
users, CVE applications will become a tool mostly for social
interaction/communication, entertainment, distance
learning, and working from home. At the same time, mili-
tary and industrial CVE applications will focus more on
visualization large-scale and complex data, decision-mak-
ing training, task solving, and manipulating objects for
training and collaborative work purposes.

In the future, the richness of CVE will be enhanced by
new technologies under development. For example, intel-
ligent recognition of faces, expressions, gestures, and
speech and automatic detecting, accurate tracking, and
localizing of human participants will allow CVE to be
intelligent and responsive in nature. Responsive interfaces
allow human actions and reactions to be sensed and inter-
preted by sensors embedded in an environment whereas a
collaborative environment allows users to interact with
each other through a network connection in a shared 3-D
virtual space. Thus, a collaborative and responsive envir-
onment will be able to respond to the actions by mixing
responses and interaction from other actors in a shared
environment. The human participants can manipulate and
interact with the environment for control and command as
well as be presented with auditory and visual responses
and displays in a mixed-reality environment with digital
citizens, virtual entertainment, and so on, which will make
the communication in CVE more intuitive and natural,
thus improving its performance.

To make responsive interface possible, we need the
technologies for sensing and interpreting human behavior

Figure 13. Components of the DDRIVE system (25).

Figure 14. Virtual sculpting of a human head model (26).

COLLABORATIVE VIRTUAL ENVIRONMENT: APPLICATIONS 7



and natural interaction through gesture, body language,
and voice communication. To make collaborative environ-
ments with live auditory and visual representation of
human participants possible, we need technologies for
large-scale collaborative mixed reality, which allows a large
number of users to interact with each naturally through the
responsive sensing interface. There is no HMD, no body
suit, not data glove, but pure human-to-machine and
human-to-human interaction naturally in a comfortable
and intelligent responsive room where users not only can
have fun, like playing multi-user games, visiting places of
interest, and meeting friends without any traveling, but
also can conduct serious collaborative work like military
warfare training, collaborative design and learning, and so
on. Although such intuitive and intelligent interfaces will
probably not be available and affordable in the near future,
they will be necessary to take full advantage of the potential
of CVEs.

BIBLIOGRAPHY

1. J. Calvin, A. Dickens, B. Gaines, P. Metzger, D. Miller, and D.
Owen, TheSIMNET virtual world architecture, Virtual Reality
Annual International Symposium, Seattle, WA, 1993,
pp. 450–455.

2. Sony Online Entertainment, EverQuest. Available: http://
everquest.station.sony.com/.

3. BigWorld Technology, BigWorld. Available: http://www.big-
worldgames.com/.

4. C. R. Karr, D. Reece, and R. Franceschini, Synthetic soldiers-
[military training simulators], IEEE, Spectrum, 34: 39–45,
1997.

5. A. Rizzo, J. F. Morie, J. Williams, J. Pair, and J. G. Buckwalter,
Human emotional state and its relevance for military VR
training, 11th International Conference on Human Computer
Interaction, Los Angeles, CA: New York, Erlbaum, 2005.

6. B. Brown, and M. Bell, Social interaction in ‘There’, CHI ‘04
Extended Abstracts on Human Factors in Computing Systems,
Vienna, Austria: ACM Press, 2004, pp. 1465–1468.

7. Electronic Arts, Inc., Ultima Online. Available: http://
www.uo.com/.

8. Turbine, Inc., Asheron’s Call. Available: http://ac.turbine.com/.

9. Blizzard Entertainment, World of Warcraft. Available: http://
www.worldofwarcraft.com/.

10. Microsoft Research, Virtual World Platform. Available: http://
research.microsoft.com/scg/vworlds/vworlds.htm.

11. R. Lea, Y. Honda, K. Matsuda, and S. Matsuda, Community
Place: Architecture and performance, Proc. Second Sympo-
sium on Virtual Reality Modeling Language. Monterey, CA,
ACM Press, 1997, pp. 41–50.

12. Sony Corporation, Living Worlds. Available: http://www.sony.
net/SonyInfo/News/Press_Archive/199802/980213/
index.html.

13. R. Waters, D. Anderson, J. Barrus, D. Brogan, M. Casey,
S. McKeown, T. Nitta, I. Sterns, and W. Yerazunis, Diamond

Park and Spline: A social virtual reality system with 3-D
animation, spoken interaction, and runtime modifiability,
Presence: Teleoperators and Virtual Environments, 6: 461–
481, 1997.

14. Blaxxun Technologies, Blaxxun Community Server. Available:
http://www.blaxxuntechnologies.com/en/products-blaxxun-
communication-server-applications-community.html.

15. P. Schwartz, L. Bricker, B. Campbell, T. Furness, K. Inkpen, L.
Matheson, N. Nakamura, L.-S. Shen, S. Tanney, and S. Yen,
Virtual playground: Architectures for a shared virtual world,
ACM Symposium on Virtual Reality Software and Technology,
New York, 1998, pp. 43–50.

16. J. C. de Oliveira and N. D. Georganas, VELVET: An adaptive
hybrid architecture for very large virtual environments,
Presence: Teleoperators and Virtual Environments, 12: 555–
580, 2003.

17. IBM Corporation, IBM and Butterfly to run Playstation Game
in Grid. Available: http://www-1.ibm.com/grid/announce_227.
shtml, 2003.

18. IBM Corporation, Butter Butterfly.net: Powering Next-Genera-
tion Gaming with On-Demand Computing, 2003. Available:
http://www.ibm.com/grid/pdf/bufferfly.pdf.

19. A. Johnson, M. Roussos, J. Leigh, C. Vasilakis, C. Barnes, and
T. Moher, The NICE project: Learning together in a virtual
world, Virtual Reality Annual International Symposium, Proc.
IEEE, Atlanta, GA, 1998, pp. 176–183.

20. J. C. Oliveira, X. Shen, and N. D. Georganas, Collaborative
virtual environment for industrial training and e-commerce,
Globecom’2000 Conference’s Workshop on Application of
Virtual Reality Technologies for Future Telecommunication
Systems, San Francisco, CA, 2000.

21. R. Pausch, Three views of virtual reality: An overview, Com-
puter, 26: 79–80, 1993.

22. G. Taubes, Surgery in cyberspace, Discover, 15: 85–94, 1994.

23. J. T. Johnson, NREN: Turning the clock ahead on tomorrow’s
networks, Data Communications Int., 21: 43–62, 1992.

24. H. Y. Kan, V. G. Duffy, and C.-J. Su, An Internet virtual reality
collaborative environment for effective product design, Com-
puters in Industry, 45: 197–213, 2001.

25. M. Daily, M. Howard, J. Jerald, C. Lee, K. Martin, D. McInnes,
and P. Tinker, Distributed design review in virtual environ-
ments, Proc. Third International Conference on Collaborative
Virtual Environments, San Francisco, CA, ACM Press, 2000,
pp. 57–63.

26. F. W. B. Li, R. W. H. Lau, and F. F. C. Ng, VSculpt : A
distributed virtual sculpting environment for collaborative
design, IEEE Trans. Multimedia, 5: 570–580, 2003.

QINGPING LIN

LIANG ZHANG

Nanyang Technological
University

Singapore

8 COLLABORATIVE VIRTUAL ENVIRONMENT: APPLICATIONS



CAI

COLLABORATIVE VIRTUAL ENVIRONMENT:
SYSTEM ARCHITECTURES

INTRODUCTION

A collaborative virtual environment (CVE) is a shared
synthetic space that provides users a shared sense of pre-
sence (or the feeling of ‘‘being there without physically
going there’’) in a common context with natural interaction
and communication. A CVE allows geographically dis-
persed users to interact with each other and virtual entities
in a common synthetic environment via network connec-
tions. CVEs are normally associated with three-
dimensional (3-D) graphical environments although it
may be in the form of two-dimensional (2-D) graphics or
may even be text-based. In a CVE, users, which are repre-
sented in the form of graphical embodiments called avatars,
can navigate through the virtual space, meeting each other,
interacting with virtual entities, and communicating with
each other using audio, video, text, gesture, and graphics.
For example, in a collaborative 3-D digital living commu-
nity, every digital citizen with a unique digital identifica-
tion number can create his/her own virtual house. People
residing in the digital city can interact and communicate
with each other naturally. Furthermore, each digital citi-
zen may create and maintain communities such as a pet
community for pet owners, a sports community for sports
fans, an online gaming community, a music community,
and so on. All real-life activities or pure imaginary activities
like space travel or fiction games may be constructed in a
collaborative digital living space where users can meet
their friends and fans through a network connection
from the comfort of their homes/offices. The human parti-
cipants in a CVE can manipulate and interact with the
environment for control and command as well as be pre-
sented with auditory and visual responses. Imagine you are
flying in space with all the galaxies and clouds as you
descend nearer over virtual London. You utter, ‘‘I like to
see London,’’ and there you are on the busy streets of
London. You stroll along the streets and roam about the
places with all the familiar sight and sound of London. You
make a turn round a corner of a street, and there you are
walking along Oxford Street with seas of virtual shoppers
(or avatars representing the activities of other users in the
collaborative virtual community) dashing around you. Or
you can join your friends for a soccer game in the virtual
sport community without traveling and physically meeting
them. Yes, you can experience all these while you are
immersed in your room at home with a network connection
to the collaborative virtual community.

In a CVE, the behavior of an avatar acts as a visual
description of a human player’s movement or action or
response to an event in the virtual world. The term ‘‘virtual
entity’’ is used in CVE to describe any static or interactive
virtual object in the form of text, 2-D/3-D graphics, audio/
video streams, an agent, computer-controlled avatar, and

those objects that may be invisible (graphically transpar-
ent) but will affect user interactions in CVE, for example,
wind or transparent barriers. Static objects refer to those
virtual entities whose states will not change as the
CVE contents evolve. Background objects are often
static. Whereas interactive objects refer to the virtual
entities whose states will change based on a user’s inter-
action with them; for instance, virtual doors are interactive
objects as they can be opened or closed by users. Each
interactive object may have several behaviors or anima-
tions associated with it. The behaviors may be triggered
by the users when they interact with the object. Any
changes to the states/behaviors of an interactive object
triggered by one user are propagated via network connec-
tion to all other users in the same CVE to achieve the sense
of sharing the same virtual environment by all users. The
virtual entities, description files, sound files, texture
images files, user state/interaction information data, and
so on are usually stored in a database. The 3-D virtual
entities may be stored in different formats, for example wrl,
3ds, obj, and nff. Users may interact with a CVE application
through a user interface that could be in various forms
ranging from a desktop with keyboard and mouse, to a
game console with joystick or other game-playing devices,
to mobile and wearable devices, to an immersive virtual
reality head-mounted display with data glove and body
suite depending on CVE application areas and their
requirements.

SYSTEM ARCHITECTURES

One of the challenging tasks for the CVE creator is to
determine where the data of the virtual world should be
stored and how the data changes (e.g., interaction with an
object by a user) should be propagated to all the users who
share the same virtual world. When a user navigates in a
virtual world, the movement of the avatar representing the
user as well as his/her interaction with virtual entities
should be perceived by other users in the same CVE. These
require data communication among CVE users over the
network. The design of system architecture centers around
the choice of data communication models, database distri-
bution models, and world consistency maintenance meth-
ods, which will have a direct impact on the CVE system
performance. It is the core of a CVE design.

Client-Server System Architecture

The client-server architecture (also known as the centra-
lized architecture), as illustrated in Fig. 1, has a server at
the center of all communications. In this architecture, the
server keeps a persistent copy of the virtual world database.
To allow a user to interact with a CVE remotely through
network connection, the user’s computer (‘‘Client’’) nor-
mally runs a client application program that can commu-
nicate with the CVE host computer (‘‘Server’’) that runs a

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



server program. The initial virtual environment data are
first transmitted to the client computer and rendered into
3-D graphics using a client program. The user can then
interact with the virtual environment through an input
device, e.g., keyboard, joystick, 3-D space ball, or data glove.
The user’s interaction/navigation commands are captured
by the client program. The user’s commands may be pro-
cessed locally by the client software or sent to the server
program over the network depending on the computing
power requirement. The virtual environment will then
change according to the user’s commands. The client pro-
gram will also be responsible for updating CVE states
changed by other users sharing the same virtual world.
All clients pass their update messages to the server, which
in turn distributes these messages to every other client. A
database storing the current states of the VE is also kept in
the server. When a new client joins a CVE, the server sends
its world data to the new client program, which will update
all virtual entities to their latest states. For example, RING
(1) and Community Place (2) are typical client-server-based
CVE systems.

Most small-scale CVEs are realized as client-server
architectures because this is a conceptually and practically
simple approach and are provided possibilities for account-
ing and security management. The scene database is cen-
tralized in one location: the server. Clients request CVE
scene data from the server and update any relevant
changes originated from each client end to the server.
Because there is only one copy of the CVE scene data
held at the server, then the issue of updating the data in
a consistent manner is simple. Inconsistencies in the vir-
tual world description can occur if the clients hold local
caches of the world. If any changes to the cache should be
necessary, the server has to invalidate the cached data and
replace it by an up-to-date master copy.

The client–server architecture has the advantage of easy
consistency control among all clients in the CVE. In addi-
tion, the server can tailor its communication to match the
network and machine capabilities of each client. Empirical
evidence suggests the scalability of sophisticated client/
server systems to several hundred users. Many commercial
CVEs use the client–server model, not only for technical but

also for administrative and financial reasons: Clients are
free, whereas servers and services are sold (4).

However, the problem with this model is the server will
soon become the bottleneck when the number of user con-
nections increases. The latency of the system also prolongs
because the server basically does data storing and forward-
ing tasks. The two tasks will make the delay at least twice
the time of sending data directly peer to peer.

Peer-to-Peer System Architecture

Peer-to-peer system architecture, as illustrated in Fig. 2, is
a common CVE system architecture No server exists in
peer-to-peer architecture. Thus, it requires the initializa-
tion of every peer host computer (also called the peer node)
participating in the CVE with a homogeneous virtual world
database containing information about the terrain, model
geometry, textures, and behavior of all objects in the virtual
environment. Since this architecture requires each peer
node to establish a link to every other node in the system,
there will be n( n � 1)/2 full duplex connections in the
system for n participants. For each update, each node would
have to send one packet for n� 1 times, while receiving and
processing another n� 1 packets. This may be alleviated by
the use of multicast. However, it is difficult to maintain the
consistency of the data and conflicts between user interac-
tions. Each peer host has to take part in this activity.
Processes must run on each peer side to communicate
with other peer processes and frequently exchange their
latest updates to the VE database. Thus, a lot of computa-
tion has to be performed on the peer host computer.
Furthermore, some peer hosts have to play the referee
role to resolve the conflicts and inconsistency of the data
replicated among all the participants. The peer nodes,
however, may not be powerful enough to cope with the
heavy traffic and computation load. This is especially true
for Internet-based CVE. The slower peer nodes may soon
become bottlenecks because the other peers have to reduce

Client

Server

Figure 1. Client–server system architecture.

P1

P2
P5

P3 P4

Figure 2. Peer-to-peer unicast architecture (P1 to P5 are indica-
tive peers).

2 COLLABORATIVE VIRTUAL ENVIRONMENT: SYSTEM ARCHITECTURES



their speed to accommodate their slow peers. If any of the
referee peer hosts crashes, it takes a long period before the
CVE world state consistency is fully synchronized. Several
existing CVE systems use peer-to-peer system architec-
ture, e.g., NPSNET (5), MASSIVE (6), and DIVE (7). The
peer-to-peer system architecture can be further classified
into peer-to-peer unicast, peer-to-peer multicast, and dis-
tributed database with peer-to-peer communication based
on data communication and database distribution models.

Peer-to-Peer Unicast. In peer-to-peer unicast architec-
ture, each peer program sends information directly to other
peer programs. Every peer has to establish a point-to-point
connection of all other peers in a CVE This leads to the burst
of the network traffic and to the burden on a single peer’s
processor (8). Typically, this is the most bandwidth-
intensive of the three peer-to-peer approaches, but it avoids
placing additional load on particular server computers and
introduces lower network delays. This was used for com-
munication in MASSIVE-1 (6). It is also commonly used to
provide initial world state information to new participants.

Peer-to-Peer Multicast. Peer-to-peer multicast architec-
ture, as illustrated in Fig. 3, is similar to peer-to-peer
unicast except that the same information is not sent simul-
taneously and directly to many other peer hosts. It nor-
mally uses a bandwidth-efficient IP multicast network
mechanism. This approach is used exclusively in NPSNET,
and it is used for all updates in DIVE and MASSIVE-2.
When an application subscribes to a multicast group, it can
exchange messages with all applications subscribing to the
same multicast group. It is also used for audio in many
systems, e.g., SPLINE (9), even when a client/server
approach is used for graphical data. However, multicast
is not currently available on all networks, and wide-area
availability is particularly limited. Consequently, some
systems now include application-specific multicast
bridging and proxy servers, which simplify use over
wide-area and non-multicast networks.

Distributed Database with Peer-to-Peer Communication.
Distributed database with peer-to-peer communication
architecture, as illustrated in Fig. 4. It is similar to peer-
to-peer unicast/multicast architecture except that not all
data of a virtual world are replicated on every CVE parti-
cipating node. It attempts to segregate a large virtual world
into smaller connected scenes so that a group of peer hosts
who are close to each other will only update a database that
is related to their area of interest. That database is repli-
cated among this group of users.

The disadvantage with this approach is its high commu-
nication costs associated with maintaining reliability and
consistent data across wide area networks. For example, if a
client happens to belong to more than one interest group, it
has to maintain multiple databases. Or if he goes across a
boundary of groups, the computations and communications
involved in reconstructing two areas will impose a signifi-
cant burden on other peers and the network.

Hybrid Architecture

Hybrid system architecture, as illustrated in Fig. 5,
attempts to take advantage of both client–server and
peer-to-peer architectures. It merges client–server and
peer-to-peer architectures. One approach is to replicate
and update the world database on several servers while
providing client–server service. The server is replicated or
distributed. And server-to-server adopts the peer-to-peer
communication model. By replicating the servers, this
system can avoid the critical drawback of the client–server
model in performance bottleneck and single point of failure
due to the single server through which all communication
goes. Many CVE systems adopt the hybrid architecture,
such as BrickNet (10), RING (1), NetEffect (11), Space-
Fusion (12), and CyberWalk (13). However, since every
message still has to pass through the servers, certain
servers are still possible to become a bottleneck and the
breakdown of any server will cause services to the related
clients to be shut down. In addition, since the packet pass
through the servers, it will cause more delays for the
packet.

Another approach is to use a variant form of the client–
server model in which the database is partitioned among
clients and communication is mediated by a central server.

Multicast

P1

P2
P5

P3 P4

Figure 3. Peer-to-peer multicast architecture (P1 to P5 are indi-
cative peers).

Peer
Group 1

Peer
Group n

Figure 4. Distributed peer-to-peer architecture.

COLLABORATIVE VIRTUAL ENVIRONMENT: SYSTEM ARCHITECTURES 3



As an entity moves through the virtual environment, its
database is updated by one of the servers, which maintain
that part of the virtual world.

In hybrid architecture, the CVE system generally main-
tains client–server connections to provide the clients with a
database of the initial virtual world. The clients will
directly communicate with its peers when point-to-point
communication appears to be more efficient. The advantage
of this model is that it reduces the workload of a server
computer. However, the effectiveness of this approach
depends on a detailed design of the inter-server and
client–server communication model, e.g., the role of ser-
vers, the types of data transmitted between client and
server, and world consistency maintenance methods.

Mobile Agent-Based System Architecture

The mobile agent-based system architecture (14) models a
CVE as a group of collaborative agents. Each agent is a
software component to assume an independent task to
provide a certain service for the system. Agents collaborate
with each other to maintain the entire CVE system. To
improve the system scalability, it allows all agents to be
mobile without bonding with any fixed host. As the system
scales up, agents will be able to clone or migrate to any
suitable participating host (including trusted user nodes) to
provide more CVE services, e.g., consistency maintenance,
persistency maintenance, or scene data delivery. The
mutual independence of services and hosts provides large
flexibility to utilize the computing and network resources of
the system efficiently.

The system architecture is divided into three layers: the
resource layer for system resource management, content
layer for VE content management, and gateway layer for
VE directory management as illustrated in Figure 6. Each

layer is composed of multiple collaborative mobile agents to
achieve the management tasks.

The resource layer manages the distribution of system
resources. In this architecture, mobile agents, system com-
puting nodes, and the data storage space are defined as
system agent resource, system computing resource, and
system database resource, respectively. Accordingly, the
resource layer is further subdivided into three parts: agent
resource management (ARM), computing resource man-
agement (CRM), and database resource management
(DRM). This layer is independent with a different CVE
application and scenario. It provides resource management
services for the high layers and hides the complexity of the
resource distribution. System scalability is further
improved by adaptive data communication. The data com-
munication in different parts of a CVE (e.g., region or cell)
may adopt client–server, distributed multicast, peer-to-
peer, or hybrid architecture depending on run-time activ-
ities and consistency requirements in each part of a CVE;
for example, when a strict consistency is required for one
activity (e.g., group work), then the cell consistent agent
will enforce consistent data communication for the activity
using client–server architecture (in which the cell consis-
tent agent will act as the server); whereas in another
activity that has less consistency requirements (e.g., indi-
vidual animal hunting power gathering in a game), the cell
consistent agent will activate multicast for such activity; or
the system may adopt hybrid architecture for different data
streams in one activity (e.g., peer-to-peer for audio/video
data stream while using client–server for 3-D object inter-
action).

STANDARDS

Networked/distributed simulations are the ancestors
of networked virtual reality/CVE. Thus the standards for
networked/distributed simulations can be used as basic
architecture for CVE. These standards include distributed
interactive simulation and high-level architecture.

Distributed Interactive Simulation

Distributed interactive simulation (DIS) is an IEEE stan-
dard protocol for interoperability of distributed simulation.
The heart of the DIS paradigm lies in establishing connec-

C2

C3

C7

C1

C5

C8

C6

C4

S1

S2

S3

Figure 5. Hybrid system architecture (C1 to C8 are clients and S1
to S3 are servers, the number of clients and servers only serve an
indicative purpose).

Figure 6. Mobile agent-based CVE architecture.

4 COLLABORATIVE VIRTUAL ENVIRONMENT: SYSTEM ARCHITECTURES



tivity between independent computational nodes to create a
consistent, time and space-coherent synthetic world envi-
ronment with respect to human perception and behavior
(15). This connectivity is achieved through a combination of
network communication services, data exchange protocols,
and algorithms and databases common to each. Local dead-
reckoning is used to improve the DIS function as a standard
to extend the SIMNET (16) underlying principle to hetero-
geneous simulation across local and wide area networks.

An advantage of the DIS-standard is that all DIS-
compliant simulations, including CVE, can operate within
one virtual environment. However, DIS’s underlying data
transport mechanism causes problems (17). First, messages
may get lost or arrive in the wrong order due to the use of the
UDP/IP protocol. Second, the messages sent are part of
standardized, fixed-sized protocol data units (PDUs),
although generic PDUs exist to communicate any type of
data. Finally, because of the broadcast mechanism, the scal-
ability is limited. In the case of CVE, reliable data transfer is
crucial. Thus DIS using the UDP/IP protocol is suitable for
CVE in a reliable and stable network environment like the
local area network (LAN), but it may not be suitable for CVE
in heterogeneous network like WANs and Internet.

High-Level Architecture

High-level architecture (HLA) (18) is a general architecture
for simulation reuse and interoperability developed by the
U.S. Department of Defense. The HLA architecture is an
IEEE standard for distributed simulations. It provides a
common architecture for reducing the cost and time
required to create a synthetic environment for a new pur-
pose. Two basic concepts have been proposed in the HLA:
federate and federation. Federate is a software application
participating in a federation, which may be a simulation
model, data collector, simulator, autonomous agents, or
passive viewer. Federation is a named set of federate
applications that are used as a whole to achieve some
specific objective. All federates incorporate specified cap-
abilities to communicate through the runtime infrastruc-
ture (RTI), which is an implementation of a distributed
operating system for the federation. The HLA runtime
interface specification provides a standard way for feder-
ates to communicate with each other by interacting with
the RTI. Routing spaces, which are a formal definition of a
multidimensional coordinate space, is another important
concept offered by HLA to standardize multicast schemes
through the RTI. It uses federates’ expressions of interest to
establish the network connectivity needed to distribute all
relevant data and minimal irrelevant data from producers
to consumers. The HLA has the desirable features suitable
for a basic CVE architecture (17).

CONSISTENCY MAINTENANCE IN CVE WORLD

To support massive interactions among the virtual entities
in a CVE and maintain the consistent status of the inter-
actions among the users, appropriate event detection and
propagation mechanisms have to be provided to a CVE
system. The task of detecting and propagating interactions
is of order n-squared, where n is the number of entities in

the VE. When the system is scaled up, this task may become
too heavy to be handled. To improve the efficiency of world
state consistency maintenance in CVE, various approaches
have been developed by researchers in the field, including
the broadcast method, distance-based method, acuity-
based method, region/cell-based method, receiver interest
method, peer/group-based method, sight view and spatial
aura method, as well as behavior-based method.

Broadcast Method

The conventional approach maintaining the status consis-
tency of a shared virtual world for distributed users is to
update the status changes through central server broad-
cast, e.g., earlier version of aggregate level simulation
protocol (ALSP)-based systems (19). In a client/server-
based CVE system, when a user joins a virtual world
maintained by a group of servers, the user’s interaction
with the virtual world will be captured and sent to the
central servers. The servers then broadcast the interaction
messages to all other users who share the same virtual
world. The advantage of the broadcast method is that it has
no computational cost for resolving the destinations for
propagating the interaction messages. However, as the
concurrent user number and VE size grows, the servers
soon become a bottleneck. At the same time, the users are
overwhelmed with the interaction messages that are not of
interest, or even not relevant, to them. It results in unne-
cessary consumption of system network resource and pro-
cessing power, and thus poor system scalability and
performance.

Distance-Based Method

With the distance-based method, the distance between a
user and the entities around him is used to decide the user’s
ability to know (see, hear, etc.) the entities. Only the states
from the entities that are close enough to the user are
actually sent to the particular user’s host.

There are two ways of applying this method. The first
one uses spatial distance to enable the interaction. Differ-
ent mediums can have their corresponding spatial distance.
For example, someone’s voice could be heard before he is
observed by others. Another form of the distance-based
method is to enable interaction through the horizon count
method. The horizon count indicates the maximum number
of entities from which the user is prepared to receive
updates. The system typically sorts the entities by distance
from the virtual embodiment—the avatar—of the user, and
only the closest ones can send their updates to the user. This
is the approach of the interaction management used in
Blaxxun’s CyberHub (21). The distance-based method
also uses spatial distance to calculate the level of detail
(LOD) of the interaction information (22, 23). When the
interaction is enabled, the distance between the two
interaction entities will be used as the parameter to
calculate the LOD of the interaction information sent
between them.

The advantage of the distance-based method is that it
considers the spatial distance as the dependent condition
for enabling the interaction. That is very natural for some
interactions occurring in a CVE. Another strength of this

COLLABORATIVE VIRTUAL ENVIRONMENT: SYSTEM ARCHITECTURES 5



method is its simple logic for implementation. But it ignores
the dependent conditions of the interaction entities to
attract others’ attentions other than the spatial distance.
And it also has a high CPU requirement for the calculation
of the distance among the interactive entities.

Acuity-Based Method

The distance-based approach works, but it can fail in some
cases. A large object that is far away may be more relevant
than a small object nearby. For example, a user in the VE
may be able to see a tall building far away but not an insect
nearby even though the insect is closer. To better reflect
this scenario, the acuity-based method (24) is introduced.
Acuity is a measure of the ratio between size and distance.
In this model, every user has an acuity setting, which
indicates the minimum size-over-distance ratio required
in order for an entity to be known (seen, heard, etc.) to
him. If the entity’s acuity value is less than the acuity
setting for the user, then the entity is too small or too
far away for the user to see. In such a case, no updates
from the entity are sent to the user. The acuity setting of
the user is different for each type of medium. In this
method, the ability of the entity to attract others is also
considered.

The acuity-based method considers the size and the
spatial distance of the interaction entities as the dependent
condition to attract others’ attentions. It also has a simple
logic to implement. But it requires high CPU time for the
calculation of the acuity among the interactive entities. The
user’s interest/intention is not taken into consideration,
either.

Region/Cell-Based Method

In the region/cell-based method, the virtual world is parti-
tioned into smaller pieces known as ‘‘regions’’ or ‘‘cells.’’
The partition may be static (1) or adaptive (25). The system
will decide which pieces are applicable to each particular
user. Only the updating information from these pieces is
transmitted to the corresponding user. The partition of the
regions/cells is transparent to the users. Users can move
among the regions/cells. When this kind of migration
occurs, the LOD of the information between the user and
other entities is dynamically changed accordingly. Bound-
ing boxes and binary space partitioning (BSP) trees are
used to define the region/cell partition in the VE.

The region/cell partition is widely used in CVE systems,
such as the locale in Spline (3), and the hexagonal cell in
NPSNET (5). It also appears as a third-party object in
MASSIVE II (26). The advantage of this method is that it
has a light computational load on CPU as multicast groups
can be organized according to region or cell. It also reduces
the interaction message propagation scope to a particular
region or cell. However, this approach only provides a rough
interaction message filtering for consistency maintenance of
a CVE; more information may be received and processed
than is needed. Another difficulty is that a VE can suffer
from what is known as crowding or clumping. If many
entities crowd, or clump, into one region, some entities
that subscribe to the region may be overwhelmed by other
entities not of interest to them.

Receiver Interest-Based Method

In the receiver interest-based method, the interaction mes-
sages are propagated to the interested users only. The
interest management is accomplished by expressing the
user’s interest in a particular object to a server. The server
in turn sends the updated state information of the objects
whenever it is needed. Or the client application is required
to subscribe to certain interest groups, i.e., to express the
user’s interests, before it can receive the status changes
among the entities in those groups. Systems based on such a
type of consistency maintenance method include the Mini-
mal Reality (MR) Toolkit (27), Joint Precision Strike
Demonstration (JPSD) (28), BrickNet (10), Close Combat
Tactical Trainer (CCTT) (29), and Proximity Detection (30).

The advantage of the receiver interest-based method is
that remote clients receive only messages of interest, and
they never need to throw away information. But the sending
entity, or the Interest Manager, needs to have knowledge of,
as well as evaluate, the interests of all other entities in the
virtual world. Thus, it has high CPU computation cost and
increased latency and bandwidth requirement for a CVE
system that supports a large number of concurrent users.

Peer/Group-Based Method

If a user does not wish to receive information from some
entities, he could choose to ‘‘ignore’’ those entities. A variant
on this ‘‘ignore’’ selection is the use of peers. By designating
an entity as a peer, certain data streams are sent only to
that peer. This provides a form of private communication,
like whispering.

Grouping is another variation of this idea. By designat-
ing certain entities as part of a group, private conversation
could be set up among the group members. The users out of
the group will not receive the updating information of the
entities in the group. Different from the region partition
model, which divides the VE spatially, this approach parti-
tions entities that could be involved in the interactions. The
CyberSockets used in CyberHub (21), for example, supports
the concepts of peers and groups.

Another example that uses the group-based method is
the NPSNET (31). It partitions VE into associating spatial
(hexagonal cell region division), temporal, and functionally
related entity class to form network multicast groups. The
Area of Interest Manager (AOIM) is used to identify
the multicast groups that are potentially of interest to
the users, and to restrict network traffic to these groups.

The main advantage of the peer/group-based consis-
tency maintenance method is that it can reduce the net-
work bandwidth consumption through the use of grouping
methods. But virtual entity grouping computation in a
large CVE requires high CPU processing power.

Spatial Aura Method

The distance-based method and the region-based
method only propagate interaction information among the
interaction entities according to the spatial distance among
the entities, or the spatial position of the entities. However,
more precise information filtering is needed when the sys-
tem requires a more realistic spatial-based effect on the

6 COLLABORATIVE VIRTUAL ENVIRONMENT: SYSTEM ARCHITECTURES



consistency maintenance. The spatial aura method is devel-
oped for this purpose in MASSIVE (6). The spatial interac-
tion model is used to maintain users’ awareness in the VE.
Other systems, including DIVE (7) and the Community
Place (2), also use the spatial aura interaction model.

The key concepts of the spatial model used in MASSIVE
include medium, aura, awareness, focus, nimbus, and
adapters. When a user’s aura overlaps a virtual entity’s
aura, then interaction becomes possible. After the interac-
tion is enabled by the aura collision, awareness is nego-
tiated through combining the observer’s focus and the
observed entity’s nimbus. A third-party object (26) is
extended into the spatial model to allow for richer
context-sensitive patterns of interaction.

The advantage of the spatial aura method is that it has a
natural awareness model. It can support peripheral aware-
ness. But it uses a passive view to the interaction. The
intentions of the users are ignored. It has a high CPU
requirement for the calculation of the Aura collision. To
implement it, a server must perform an O(N2) collision
detection between each entity within the virtual world.

Behavior-Based Method

The behavior-based method (32) incorporates a two-
tiered architecture, which includes the high-level role of
behavior-based interaction management and low-level
message routing. In the high level, the interaction manage-
ment is achieved by enabling the natural interactions based
on the collaborative behavior definitions provided by CVE
application developers. Thus, it extends the developer’s
management ability of the collaborations in the CVE appli-
cation. In the low level, the message routing controls the
propagation scope of the interaction messages according to
the runtime status of the interactive entities, and hence
reduces the network bandwidth consumption. The beha-
vior-based interaction management supports routing of the
interaction message via controlling the destination of
the message and the LOD of the message. As illustrated
in Fig. 7, the high-level interaction management serves as
the first layer of interaction message filtering through
identifying the virtual entities (human users, robot type
intelligent agents, interactive objects, etc) involved in an
interaction event, which is represented by a message
received by the message router, based on role behavior
definitions. The low-level message routing serves as
the second layer of interaction message filtering based
on the output from the first layer. This significantly reduces
the number of virtual entities need to be evaluated for
computing the low-level message routing. Accordingly, it

greatly reduces the server computation time required to
resolve the message routing destinations and LOD in the
low-level message routing models, which are commonly
used by existing interaction management approaches.

DESIGN ISSUES IN LARGE-SCALE CVE

CVE has drawn significant research interests in recent
years. As CVE scales up in terms of the number of con-
current users and the complexity of a CVE virtual world,
the greatest challenge for a large-scale CVE (LCVE) system
design is not how to simulate the objects on individual client
machine, but how to transfer the state changes of virtual
entities (e.g., users or virtual objects) over the heteroge-
neous network like the Internet effectively, despite poten-
tially vast variation in client machine computing powers. In
constructing an LCVE, many issues need to be considered
such as extensibility, scalability, consistency, and persis-
tency issues. Extensibility refers to the ability to extend and
evolve, in the sense that it can accommodate a dynamic
number of users, dynamic number of 3-D virtual entities, as
well as dynamic scope of the virtual world itself. Scalability
is the capability to maintain the LCVE performance in the
extended environment with a large number of virtual
entities and concurrent users. To achieve scalability, the
system has to make sure that the resources are not limited
to certain scope and that the states of the virtual world are
maintained persistent at all times. All LCVE participants
also need to perceive the same state of virtual world at any
point of time. In addition, fault tolerance, easy deployment,
and configuration are also necessary.

Each of the issues mentioned above has its own chal-
lenge. The scalability of a system is limited by the available
network bandwidth and processing power of participating
computer hosts. To achieve scalability and maintain per-
formance quality, the network load has to be divided care-
fully between machines. However, this will cause a
challenge to the consistency and persistency issue because
the need to synchronize every activity by the machines
becomes higher.

Two general models are based on which LCVE can be
built, a centralized system and distributed system. To build
a scalable and extensible LCVE while maintaining the
performance quality, a centralized system should not be
used. A centralized system has a single controller that
controls every data transmission and maintains the system
database. Although this system will allow simple world
consistency maintenance because of the single database
that is only accessible by the central controller, the con-

Figure 7. Message routing in behavior based method for CVE consistency maintenance.

COLLABORATIVE VIRTUAL ENVIRONMENT: SYSTEM ARCHITECTURES 7



troller itself will become a bottleneck to the system. Thus,
another option is the distributed or hybrid system. A dis-
tributed system does not have a central controller, and the
network entities synchronize themselves by communicat-
ing with each other. Although good world consistency
maintenance is crucial to a distributed system, this will
provide a better load balancing to the system compared
with the centralized system. However, because of the lim-
itations of the distributed or hybrid approach discussed in
previous section, to further enable the construction of a
scalable and extensible LCVE, a mobile agents-based
approach may be a good alternative.

A mobile agent is an autonomous network entity that
can migrate between heterogeneous machines. Mobile
agents can work independently to perform some tasks
assigned to them. They can also work together with another
entity, which requires them to have the capability to com-
municate using a definite communication protocol. Mobile
agents can make runtime intelligent decision such that
when overloaded, they can clone new agents to share their
workload. They can also migrate to other machines or to
terminate autonomously when their services are not
needed. In short, mobile agent can have dynamic existence
and provide a good load balancing, fault tolerance, and
service deployment. Therefore, it can be observed how
mobile agent mechanism can further contribute to the
scalability and extensibility of LCVE.

BIBLIOGRAPHY

1. T. A. Funkhouser, RING: A client-server system for multi-user
virtual environments, Proceedings of the 1995 Symposium on
Interactive 3D Graphics, Monterey, California, 1995.

2. R. Lea, Y. Honda, K. Matsuda, and S. Matsuda, Community
place: Architecture and performance, Proc. of the Second Sym-
posium on Virtual Reality Modeling Language, Monterey,
California, ACM Press, 1997, pp. 41–50.

3. S. Benford, C. Greenhalgh, T. Rodden, and J. Pycock, Colla-
borative virtual environments, Comm. ACM, 44: 79–85, 2001.

4. J. W. Barrus, R. C. Waters, and D. B. Anderson, Locales:
Supporting large multiuser virtual environments, Computer
Graphics and Applications, IEEE, 16: 50–57, 1996.

5. M. R. Macedomia, M. J. Zyda, D. R. Pratt, D. P. Brutzman, and
P. T. Barham, Exploiting reality with multicast groups: a
network architecture for large-scale virtual environments,
Proc. of Virtual Reality Annual International Symposium,
IEEE Computer Society, Washington, DC, 1995.

6. C. Greenhalgh and S. Benford, MASSIVE: a distributed virtual
reality system incorporating spatial trading, Proceedings of
15th International Conference on Distributed Computing Sys-
tems, Vancouver, BC, Canada, 1995.

7. E. Frecon and M. Stenius, DIVE: A scaleable network archi-
tecture for distributed virtual elements, Distrib. Sys. Engi-
neer., 5: 91–100, 1998.

8. M. R. Macedonia and M. J. Zyda, A taxonomy for networked
virtual environments, IEEE MultiMedia, 4: 48–56, 1997

9. R. Waters, D. Anderson, J. Barrus, D. Brogan, M. Casey, S.
McKeown, T. Nitta, I. Sterns, and W. Yerazunis, Diamond park
and spline: A social virtual reality system with 3D animation,
spoken interaction, and runtime modifiability, Presence: Tele-
operat. Virt. Environ., 6: 461–481, 1997.

10. G. Singh, L. Serra, W. Pang, and H. Ng, BrickNet: A software
toolkit for networks-based virtual worlds, Presence: Teleoperat.
Virt. Environ., 3: 19–34, 1994.

11. T. K. Das, G. Singh, A. Mitchell, P. S. Kumar, and K. McGee,
NetEffect: A network architecture for large-scale multi-user
virtual worlds, Proc. of the ACM Symposium on Virtual
Reality Software and Technology,Lausanne,Switzerland,1997.

12. H. Sugano, K. Otami, H. Ueda, S. Hiraiwa, S. Endo, and Y.
Kohda, SpaceFusion: A multi-server architecture for shared
virtual environments, Proc. of 2nd Annual Symposium on the
Virtual Reality Modelling Language, Monterey, CA, 1997.

13. J. Chim, R. W. H. Lau, V. Leong, and A. Si, CyberWalk: A web-
based distributed virtual walkthrough environment, IEEE
Trans. Multimedia, 5: 503–515, 2003.

14. L. Zhang and Q. Lin, MACVE: a mobile agent based framework
for large-scale collabortive virtual environments, Presence:
Teleoperat. Virt. Environ., 16(3): 279–292, 2007.

15. R. C. Hofer and M. L. Loper, DIS today [Distributed interactive
simulation], Proc. of the IEEE, 83: 1124–1137, 1995.

16. D. C. Miller and J. A. Thorpe, SIMNET: The advent of simu-
lator networking, Proc. of the IEEE, 83: 1114–1123, 1995.

17. EPFL, Geneva, IIS, Nottingham, Thomson, TNO, Review of
DIS and HLA techniques for COVEN, ACTS Project N. AC040,
1997.

18. J. S. Dahmann, High Level Architecture for Simulation, Proc.
of the 1st International Workshop on Distributed Interactive
Simulation and Real-Time Applications, 1997, pp. 9–15 .

19. K. L. Morse, L. Bic, and M. Dillencourt, Interest management
in large-scale virtual environments, Presence: Teleoper. Virt.
Environ., 9: 52–68, 2000.

20. C. Greenhalgh, An experimental implementation of the spatial
model, Proc. of 6th ERCIM Workshops, Stockhom, 1994.

21. B. Roehl, J. Couch, C. Reed-Ballreich, T. Rohaly, and G. Brown,
Late Night VRML 2.0 with Java, 1997.

22. R. Kazman, Load balancing, latency management and separa-
tion concerns in a distributed virtual world, Parallel Comput. -
Parad. Applicat., 1995, pp. 480–497.

23. S. Pettifer, J. Cook, J. Marsh, and A. West, DEVA3: Architec-
ture for a large scale virtual reality system, Proc. of ACM
Symposium in Virtual Reality Software and Technology, Seoul,
Korea, ACM Press, 2000, pp. 33–39.

24. M. Reddy, B. Watson, N. Walker, and L. F. Hodges, Managing
level of detail in virtual environments - A perceptual frame-
work, Presence: Teleoperat. Virt. Environ., 6: 658–666, 1997.

25. R. W. H. Lau, B. Ng, A. Si, and F. Li, Adaptive partitioning for
multi-server distributed virtual environments, Proc. of the
Tenth ACM International Conference on Multimedia Juan-
les-Pins, France, ACM Press, 2002, pp. 271–274.

26. C. Greenhalgh, Large scale collaborative virtual environ-
ments, Ph.D Dissertation, Nottingham, UK Department of
Computer Science, University of Nottingham, 1997.

27. C. Shaw and M. Green, MR toolkit peers package and experi-
ment, IEEE Symposium on Research Frontiers in Virtual
Reality, San Jose, CA, 1993, pp. 463-469.

28. E. T. Powell, L. Mellon, J. F. Watson and G. H. Tarbox, Joint
precision strike demonstration (JPSD) simulation architec-
ture, 14th Workshop on Standards for the Interoperability of
Distributed Simulations, Orlando, FL, 1996, pp. 807–810.

29. T. W. Mastaglio and R. Callahan, A large-scale complex virtual
environment for team training, IEEE Computer, 28(7): 49–56,
1995.

8 COLLABORATIVE VIRTUAL ENVIRONMENT: SYSTEM ARCHITECTURES



30. J. S. Steinman and F. Wieland, Parallel proximity detection
and The Distribution List algorithm, Proc. of 8th Workshop on
Parallel and Distributed Simulation, Edinburgh, UK, 1994.

31. M. Macedonia, D. Pratt, and M. Zyda, NPSNET: A network
software architecture for large-scale virtual environments,
Presence: Teleoperat. and Virt. Environ., 3: 265–287, 1994.

32. Q. Lin, W. Wang, L. Zhang, J. M. Ng, and C. P. Low, Behavior-
based multiplayer collaborative interaction management, J.
Comp. Animat. Virt. Worlds, 16: 1–19, 2005.

QINGPING LIN

LIANG ZHANG

Nanyang Technological
University

Singapore

COLLABORATIVE VIRTUAL ENVIRONMENT: SYSTEM ARCHITECTURES 9



C

COLLABORATIVE VIRTUAL ENVIRONMENT:
WEB-BASED ISSUES

INTRODUCTION

With the Internet’s exponential growth in the past decade,
it has evolved from a repository of information to an inter-
active digital social world. Interactive multimedia contents
can be embedded into Web pages to enrich the information
presented in the cyberspace for enhanced social and busi-
ness applications. Collaborative virtual environments
(CVEs) function as a new type of interface that attempts
to model the Internet into a real social world using the
power of Internet communication and virtual reality.
VRML/X3D has been developed as an International
Standard Organization (ISO) standard to deliver three-
dimensional (3D) interactive multimedia contents over
the Internet as a 3-D extension to the World Wide Web
(WWW). Java3D has also been developed to construct 3-D
graphical applications for visualization and interaction
over the Web. With VRML/X3D/Java3D, a Web-based
CVE can be created using standard http protocol. However,
due to heterogeneous nature of the Internet, special cares
must be taken to address the Internet-related issues for
CVE. In this article, we discuss the existing standards,
methods for constructing Web-based CVE, and popular
solutions to the Web-based CVE issues.

STANDARDS

Traditional CVEs are often application-based; i.e., the
client or peer program communicates with each other or
with the server directly for content delivery and virtual
world states maintenance. Whereas a Web-based CVE
requires the 3-D virtual world contents to be rendered
and embedded in a Web page using a Web browser. The
existing standards that can be used for such purposes
include VRML, X3D, and Java3D.

VRML

Virtual Reality Modeling Language (VRML) (1) is an indus-
trial standard file format for representing 3-D interactive
vector graphics. The 3-D scene described by a VRML file is
known as virtual world and can be distributed over the
WWW and presented in special VRML browsers, most of
which are plug-ins for the Web browsers. A reference to a
VRML file can be embedded in a Hyper Text Markup
Language (HTML) page, and hyperlinks to other media
such as text, sounds, movies, and images can also embedded
in VRML files. Thus, VRML can be seen as a 3-D visual
extension of the WWW (2).

VRML originated in 1994 and the first official VRML 1.0
specification was released in 1995. The VRML 1.0 was a
good start as an Internet-based 3-D graphics format, but it
was a static scene description language, which cannot

support user interactions. In 1996, VRML 2.0 was released
that supports dynamic, interactive 3-D scenes. In 1997,
VRML 2.0 was accepted by the ISO as ISO/IEC 14772
standard, also known as VRML97. It has the following
main features.

Hierarchical Scene Graph. In VRML97, the basic ele-
ment is the node that describes 3-D shape and geometry,
appearance properties to be applied to the shape’s geome-
try, light sources, viewpoint, and so on. Each node is typed
and has a set of fields that parameterize the node. The 3-D
scene consists of a set of nodes arranged in a hierarchical
fashion. The hierarchy is built up by using a parent–child
relationship in which a parent may have any number of
children, some of whom may, in turn, be parents them-
selves. Scene graph refers to the entire ordered collection of
these scene hierarchy.

Event Routing Mechanism. VRML97 provide an event
routing mechanism to support a dynamic and interactive
3-D scene. Some nodes can generate events in response to
environmental changes or user interaction, and other nodes
can receive events to change the state of the node, generate
additional events, or change the structure of the scene
graph. These nodes may be connected together by ROUTE
to achieve real-time animations, including entity behaviors,
user–entity interaction, and inter-entity coordination.

Prototyping Mechanism. Prototyping provides a way to
extend the build-in node types. It defined a new type of
nodes, known as a prototype node, to parameterize the scene
graph. Once defined, prototyped node types may be instan-
tiated in the scene graph exactly like the built-in node types.

External Authoring Interface. External Authoring Inter-
face (EAI) is an interface specification that allows an
external program to manipulate the VRML scene graph
while not directly being part of the scene graph. The
implementation of EAI in Java is a set of classes with
methods that can be called to control the VRML world to
support dynamic scene changes.

However, VRML does not address any of the issues hav-
ing to do with networking these worlds to enable multiple
participants to interact with each other or distribute the
workload associated with the simulation. Thus, developing
Web-based CVEs using VRML requires network data
communication support in order to allow multiple users to
have collaborative interaction in a shared virtual world.

X3D

Extensible 3-D (X3D) (3) is an open standards Extensible
Markup Language (XML)-enabled 3-D file format to enable
real-time communication of 3-D data across all applications
and network applications. It has a rich set of features for
use in engineering and scientific visualization, CAD and

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



architecture, medical visualization, training and simula-
tion, multimedia, entertainment, education, and more.

The X3D specification expressing the geometry and
behavior capabilities of VRML using the Web-compatible
tag sets of the XML. Scene graph, nodes, and fields, respec-
tively, correspond to document, elements, and attributes in
XML parlance. X3D is a more mature and refined standard
than its VRML97 predecessor, so authors can achieve the
behaviors they expect. X3D also provides compatibility
with VRML97. In X3D, there is still a ‘‘Classic VRML’’
encoding that can play most nonscripted VRML97 worlds
with only minor changes. None of the technology has
been lost. It instead has evolved into X3D. Many features
requested for VRML have been provided in X3D in a
manner that is completely integrated into the standard.
Thus, you can think of X3D as ‘‘VRML3’’(4).

However, in contrast to the monolithic nature of
VRML97, which requires the adoption of the entire feature
set for compliance, X3D allows developers to support sub-
sets of the specification (‘‘Profiles’’), composed of modular
blocks of functionality (‘‘Components’’) (3). A component-
based architecture supports creation of different ‘‘profiles’’
that can be individually supported. Components can be
individually extended or modified through adding new
‘‘levels,’’ or new components can be added to introduce
new features, such as streaming. Through this mechanism,
advancements of the specification can move quickly
because development in one area doesn’t slow the
specification as a whole. Importantly, the conformance
requirements for a particular piece of content are unam-
biguously defined by indicating the profiles, components,
and levels required by that content.

Java3D

Java3D (5) is an API released by Sun Microsystem, now a
community source project developed on java.net. It pro-
vides methods for 3-D graphics application development. It
is a standard extension to the Java 2 SDK. This would mean
that Java3D removes the unreliability of communicating
through an external program. Similar to all Java programs,
Java3D is portable, robust, and platform independent.

Contrary to popular belief that it will replace VRML,
Java3D and VRML are actually complimentary technolo-
gies. In terms of 3-D user interface support, VRML is
Java3D’s closest predecessor. VRML provides a standard
3-D interchange format that allows applications to save,
transmit, and restore 3-D images and behaviors that
are independent of application, hardware, platform, or
programming language. Java3D provides a Java class
library that lets an application developer to create, mani-
pulate, and render 3-D geometry and portable 3-D applica-
tions and applets. In fact, Java3D provides support for
runtime loaders that can load 3-D files of different formats
such as VRML (.wrl), 3D Studio (.3ds), Lightwave (.lwo),
and Wavefront (.obj).

Java3D provides a high-level, object-oriented view of
3-D graphics using a scene graph-based 3-D graphics
model. It is designed to help programmers without much
graphics or multimedia programming experience use 3-D
in their applications. However, Jav3D is a high-level API

and hides the rendering pipeline details from developers.
This makes it unsuitable for several problems where such
details are important. In addition, most Java3D compo-
nents are heavyweight. They use native non-Java code to
implement the actual rendering. This can complicate the
Graphical User Interface development if a program uses
Java Swing and its all-Java, or lightweight, components. In
general, lightweight and heavyweight components do not
mix well in the same container objects and windows.

CONSTRUCTING WEB-BASED CVEs

To embed CVEs in a Web page, which can be delivered via
http protocol, and support collaborative interaction in a
Web-based CVE, a 3-D modeling language is required to
provide an interface that can capture local user’s interac-
tions with virtual entities and propagate the interactions to
others through the network. At the same time, the interface
should also be able to update the states of shared objects,
which are changed by other users in the CVE, in the local
virtual environment. To achieve this, EVENTS, ROUTES,
and Sensors nodes in VRML (or X3D) can be used in combi-
nation to access a 3-D scene in the runtime, collect data from
the scene, and change VRML nodes, properties of the scene.

Events. When one node needs to pass some information
to another node, it creates an event. An event contains two
pieces of information: the data and the timestamp. A time-
stamp is when the event was originally generated, not
when it arrives at the destination. In VRML syntax, the
behavior of events are defined by fields; three kinds of
fields can be accessed: (1) eventIn, which is write-only
and used to set value of a node; (2) eventOut, which is
read-only and used to output data when there’s an event;
and (3) exposedField, which is both readable and writable.

Route. Route is used to pass information between nodes
in the scene. It can be used to create an explicit connection
between events. It can link an eventOut of a node to an
eventIn of another node; for example, a statement ‘‘ROUTE
node1.eventOutField TO node2.eventInField’’ results in the
node1’sevenOutFieldvaluetobesenttonode2’seventInField.

Sensors. In normal cases, an eventOut field cannot gen-
erate events. VRML use sensors to get users’ input and
detect users’ behavior/interaction or get time information.
When the user interacts with a virtual entity in a CVE, a
corresponding event will be generated. Table 1 defines the
sensors in VRML and their functions.

CVE Scene Access

Besidesgenerating interactive behaviors andcapturing user
interaction with VRML world, communication between the
virtual environment and the network is further required to
allow multiuser collaborative interaction. VRML’s External
Authoring Interface (EAI) (6) has been designed for such a
purpose to allow communication between the VRML-based
3-D virtual world and its external environment. (Note: X3D
uses Scene Access Interface (SAI) to achieve similar func-
tionalities as VRML EAI.). It defines a set of functions on

2 COLLABORATIVE VIRTUAL ENVIRONMENT: WEB-BASED ISSUES



the VRML browser that the external environment can
perform to affect the VRML world. The external environ-
ment may take the form of a container application that
holds a VRML browser, or a client/server style environment
where the VRML browser forms the client and the applica-
tion is a server program located on a remote computer.
VRML EAI allows the developers to easily extend the
functionality of the VRML 2.0 browser and thereby build
the dynamic content of a 3-D application. In essence, EAI
provides a set of methods for developing customized appli-
cations to interact with and dynamically update a 3-D scene
so that the applications can ‘‘talk’’ to the VRML scene in real
time. The EAI specifies the binding of its functions to Java,
and hence, it can be considered a Java application program-
ming interface. It defines a set of Java package and class for
bridging Java applications to the VRML world. As a result,
Java’s strong ability in networking and multithreading can
be used to establish the network connection and then
achieve real-time collaboration among the users.

As illustrated in Fig. 1, by using VRML’s EAI, together
with Java Applet and Java networking capability, a VRML-
based multi-user collaborative virtual environment can be
built over the Internet. The VRML browser window gen-
erates and renders the 3-D geometry, whereas Java Applet
delivers the control of the behavior and the logic of VRML
scene graphical objects. EAI provides a two-way interface
that lets VRML models and Java applets interact. It offers a
set of functions of the VRML browser that the external

program can call to control the content in the VRML scene.
VRML EAI allows an external environment to access nodes
in a VRML scene by using the existing VRML event model.
In this model, an eventOut of a given node can be routed to
an eventIn of another node. When the eventOut of a node
generates an event, the eventIn (i.e., the receiver of the
event generated by the eventOut node) is notified and its
node processes that event.

Additionally, if a script in a Script node has a reference to
a given node, it can send events directly to any eventIn of
that node and it can read the last value sent from any of its
eventOuts.

The Java implementation of the External Authoring
Interface is specified in three Java packages: vrml.external,
vrml.external.field, and vrml.external.exception. All mem-
bers of package vrml.external.exception are classes derived
from java.lang.RuntimeException; the rest of the members
of the packages are specified as interfaces (with the excep-
tion of vrml.external.field.FieldTypes, which merely
defines an integer constant for each EventIn/EventOut
type). This allows the compiled Java applet to be used
with any VRML browser’s EAI implementation.

The EAI provides four types of accesses to a VRML scene:

1) Accessing the Browser

2) EventIn processing

3) EventOut processing

4) Getting notification from VRML scene

Accessing the Browser. The application communicates
with a VRML world by first obtaining a reference to a
browser object. This allows the application to uniquely
identify a particular VRML scene in a computer where
multiple scenes are active. To get a browser in Java applet,
the following lines should be included in the applet program:

import vrml.external.Browser
Browser browser ¼ Browser.getBrowser(this);

Once the Browser object is created, the Java applet can
access scene nodes in the VRML Browser.

Java Applet

getEventOut ( )getEventIn ( )

Java Networking

Network

VRML Browser
Plug-in

 EAI

WWWBrowser

Figure 1. Communication between VRML world and the net-
work through EAI.

Table 1. Sensors defined in VRML97

Name Description

CylinderSensor Translates user input into a cylindrical
rotation. The CylinderSensor node maps
pointer motion (e.g., a mouse or wand) into
a rotation on an invisible cylinder that is
aligned with the Y-axis of the local
coordinate system.

PlaneSensor Translate user input into a motion
along the X–Y plane of the local
coordinate system.

SphereSensor Translates user input into a spherical
rotation. It maps pointing device motion
into spherical rotation about the origin of
the local coordinate system.

ProximitySensor Generates events when the viewer enters,
exits, and moves within a region in space
(defined by a box).

TimeSensor Generates events as time passes. It can be
used for driving continuous simulations and
animations, controlling periodic activities
(e.g., one per minute), and initiating single
occurrence events such as an alarm clock.

TouchSensor Detects when the user touches a given
object. A TouchSensor node tracks the
location and state of the pointing device
and detects when the user points at
geometry contained by the TouchSensor
node’s parent group.

VisibilitySensor Detects if an object is currently visible to
the user. The VisibilitySensor node
detects visibility changes of a rectangular
box as the user navigates the world.

COLLABORATIVE VIRTUAL ENVIRONMENT: WEB-BASED ISSUES 3



To gain access to a node (e.g., ‘‘ROOT’’ node), the Java
applet needs to include the following codes:

import vrml.external.Node
Node rootnode= browser.getNode(‘‘ROOT’’);

Then, any or all events or leaf nodes of the Node can be
observed and/or modified.

EventIn Processing. Once a node reference is obtained, all
its eventIns are accessible using the getEventIn() method.
This method is passed in with the name of the eventIn and
returns a reference to an EventIn instance if an matching
eventIn name is found. ExposedFields can also be accessed,
either by giving a string for the exposedField itself (such as
‘‘translation’’) or by giving the name of the corresponding
eventIn (such as ‘‘set_translation’’).

After an instance of the desired EventIn is obtained, an
event can be sent to it. But EventIn has no methods for
sending events. It must first be cast into the appropriate
eventIn subclass, which contains methods for sending
events of a given type.

Here is an example of sending an eventIn to a VRML
scene containing a ‘‘House’’ node as follows:

DEF House Transform {. . .}

The Java codes for sending an event to change the
translation field of the ‘‘House’’ node are as shown in
Code Listing 1. (assume browser is the instance of a Brow-
ser class created from a previous call):

Node house ¼ browser.getNode(‘‘House’’);

EventIn SFVec3f translation ¼

(EventIn SFVec3f)house.getEventIn(‘‘set_translation’’);

float value[3] ¼ new float[3];

value[0] ¼ 7;

value[1] ¼ 8;

value[2] ¼ 9;

translation.setValue(value);

Code Listing 1. EventIn processing.

In the above example, the translation value (7, 8, 9) is sent
to the translation field of the Transform node of the ‘‘House.’’

EventOut Processing. EventOut processing is similar to
the EventIn processing. Once a node reference is obtained,
all eventOuts of the node are accessible using the getEvent-
Out() method. This method is passed in with the name of the
eventOut and returns a reference to an EventOut instance if
a matching eventOut name is found. ExposedFields can also
be accessed, either by giving a string for the exposedField
itself (such as ‘‘translation’’) or by giving the name of the
corresponding eventOut (such as ‘‘translation_changed’’).

After an instance of a desired EventOut is obtained, two
operations can be performed. The current value of the
eventOut can be retrieved, and a callback can be setup to
be invoked whenever the eventOut is generated. EventOut
does not have any methods for getting the current value, so
it must be cast into the appropriate eventOut subclass type,
which contains appropriate access methods.

Similar to the eventIn example above, the current out-
put value of the translation field can be read as follows:

float current[] ¼ ((EventOut SFVec3f)
(house.getEventOut(‘‘translation_changed’’))).getValue();

The array current now contains three floats with the x, y,
and z components of the current translation value.

Getting Notification from VRML Scene. To receive notifi-
cation when an eventOut is generated from the scene, the
applet must first subclass the EventOutObserver class and
implement the callback() method. Next the advise() method
of EventOut is passed into the EventOutObserver. Then
whenever an event is generated for that eventOut, the
callback() method is executed and is passed the value and
timestamp of the event. The advise() method is also passed a
user-defined object. This value is passed to the callback()
method when an event is generated. It can be used by the
application author to pass user-defined data to the callback.
It allows a single EventOutObserver subclass to handle
events from multiple sources. It is a subclass of the standard
java Object class; thus, it can be used to hold any data.

Using the above example again, the applet will be noti-
fied when the translation field of the Transform is changed,
as shown in Code Listing 2.

public class MyObserver implements EventOutObserver {

public void callback(EventOut value,

double timeStamp,

Object data)

{

//cast value into an EventOut SFVec3f and use it
for intended operations

}

}

. . .

MyObserver observer ¼ new MyObserver;

house.getEventOut(‘‘translation_changed’’).advise-
(observer, null);

Code Listing 2. Getting notification from the VRML scene.

4 COLLABORATIVE VIRTUAL ENVIRONMENT: WEB-BASED ISSUES



When the eventOut from the translation exposedField
occurs, observer.callback() is invoked.

The EventOut class also has an unadvise() method that
is used to terminate notification for that eventOut. The
original EventOutObserver instance is supplied to distin-
guish which observer should be terminated if a single
eventOut has multiple observers.

CVE Scene Construction

With the VRML EAI mechanism, we can construct a
VRML-based CVE with avatars’ representing users and
shared objects with which users can interact.

Constructing Avatar. Avatar is a special shared object in
a CVE virtual environment to represents the user’s spatial
location and interaction. It walks through the virtual space
by following the user’s navigation step, and it contains
features to control the interaction between the user and
the CVE, for example, mapping the user’s viewpoint to the
virtual world.

VRML’s node mechanism can be used to support the
concept of avatar. A VRML node is used to define an avatar,
which includes the definition for the avatar’s height,
radius, and a 3-D model. A node is added into the CVE
when the new user joins in the virtual environment.
The two ways of node-creation methods provided by EAI:
createVrmlFromString and createVrmlFromURL can be
combined to embed the user’s avatar into the virtual world.
An avatar handler is created through a String, whereas the
avatar’s model is created through a URL and embedded
into the avatar handler.

After creating avatar, its location and orientation in
the virtual environment should be updated at run time
to reflect the user’s movement and interaction. EAI’s
VRML scene access mechanism can be used to update a
user’s avatar, i.e., by sending events to the eventIns of
nodes inside a scene. From the process of creating an
avatar node, the instance of the desired eventIn for sett-
ing avatar’s location and rotation can be obtained. Once
the instance of eventIn is created, an event can be sent to it.

To get an avatar’s location and orientation, it requires a
sensor to track the movement of a user’s navigation in a
CVE. As VRML ProximitySensor can output the changes of
a viewer’s position and orientation when the viewer is
within the range covered by the ProximitySensor, a
ProximitySensor node, with its size parameter to cover
the whole CVE scene, can be used as the observer for the
user’s navigation. An EventOut Observer for the Proximity-
Sensor and its callback function are used to get the notifica-
tion when an eventOut is generated from the scene. Once a
user moves, rotates, or enters/exits a defined region in the
multi-user VRML world, two fields of the ProximitySensor
node, one for location and the other for rotation, will reflect
such movement by sending out the relative events.

But using only the ProximitySensor is not enough to
define an avatar. NavigationInfo node should be used to
define an avatar size, navigate speed, and type. We further
use a Collision node to detect and to prevent two avatars
from colliding. In the VRML file for the CVE, Code Listing 3
is added for the multi-user application.

NavigationInfo {

avatarSize [0.25, 1.75, 0.75]

headlight TRUE

speed 2.0

}

Collision {

collide TRUE

children[

DEF AvatarRoot Group{

children[

]

}

]

}

DEF LocalAvatarSensor ProximitySensor{

center 0 0 0

size 1000 1000 1000

}

Code Listing 3. Creating avatar nodes in VRML-based CVEs.

Whenanewuser joins in, itsavatar nodewill beadded asa
child to the AvatarRoot, which is a child of the collision node.

Creating Shared and Interactive Objects. In VRML, the
fields of many nodes can be changed dynamically. These
changes are made by routing events to the nodes. An event
is a message sent to the node informing it that one of its
fields should be changed. The process of the interactions on
the 3-D interactive objects is illustrated in Fig. 2.

The VRML sensors provide a new level of user involve-
ment with the virtual world. To interact with the virtual
world, the sensor nodes are defined to monitor the inputs
from the users. After the desired inputs were given, the
sensor’s eventOut will be routed to another sensor/script/
interpolator’s eventIn. Finally, the event will be routed to
the animated object and the computed value will be set to
the animated field. The VRML scene will be redrawn and
show the animation of the objects to the user. In this

COLLABORATIVE VIRTUAL ENVIRONMENT: WEB-BASED ISSUES 5



process, the routing requires that the eventOut and the
eventIn have the same type.

For a multi-user collaborative virtual world, it is not
enough to just allow an individual user to interact with the
virtual objects or to allow the users to see each other’s
embodiment avatar. The CVEs also contain some shared
interactive objects to make it more realistic and improve
users’ ability to interact with others as well as with the
shared virtual world. For example, one user turns on a light
and the other users should see the light in the virtual scene
turned on. The states of these interactive objects are shared
and can be changed by any user. It will be displayed locally,
and the changes of the states will be propagated to other
users through the network. Other more complex interac-
tive objects are also required.

As discussed, the mechanism in EAI can be used to
observe certain fields of a VRML node. As in the avatar
node, it is also used to set parameters’ values to the inter-
active objects. Once the value of the specified/affected field
of the interactive object’s VRML node is changed (an Event-
Out is sent from that field), the callback function will be
called with the new value of that field. Hence, the system is
notified when any changes happen and the operation to be
carried out is implemented by the callback() function.

Although the basic idea is similar with creating avatar,
implementing the interactive object is a little different.
Because the interactive object and its behaviors have to
be defined, the desired node can be obtained directly from
the VRML scene. The node is designed in such a way that
only one eventOut field is needed to be observed and only
one eventIn field can trigger the status change of an inter-
active behavior. This will help to minimize the complexity
of an EAI-aware Java applet because it only needs to
observe one eventOut and set one eventIn.

To initialize the Event Observer in the client-side Java
applet, information of the interactive objects has to be sent
to the applet. The information includes the name of the
Sensor node that will trigger the interaction, the name of
the Script node that will carry out the operations for the

interaction after it has been triggered, and the names of the
fields in the Sensor and the Script that should be observed.
A special Anchor node in the VRML file for the CVE can be
defined for such a purpose as shown in Code Listing 4.

DEF InteractiveObjectsInfo Anchor{

description

‘‘2/light/LightTS/isActive/lightScript/lightIsActive/

door/DoorTS/isActive/DoorScript/doorIsActive/’’

}

Code Listing 4. Creating sample shared interactive object infor-
mation nodes in VRML-based CVEs.

The required information about the interactive objects in
the CVE is provided by the description field of the node. In
the above example, this Anchor node defines two shared
interactive objects. One is the light, and another one is the
door. With the techniques for creating avatar and synchro-
nizing and maintaining a consistent virtual world among
multiple users, 3-D VRML-based CVEs can be constructed.
We have developed various Web-based CVEs using VRML
to allow multi-user collaborative interaction, as shown in
Figs. 3 and 4.

WEB-BASED CVE ISSUES

As discussed in the previous sections, a Web-based CVE can
be constructed using VRML/X3D/Java3D. However, due to
the heterogeneous nature of the Internet, system scalabil-
ity, virtual world database delivery, and consistent world
states maintenance across all participants in a Web-based
CVE become more challenging issues than with its non-
Web-based counterpart. This is particularly true if a Web-
based CVE may have potentially a very large number of
users at a time, which can easily overload a fast network.
Real-time interactions require powerful networking cap-
abilities to support large numbers of concurrent users. The
underlying network support provided by Hyper Text
Transfer Protocol (http) is insufficient for Web-based
large-scale CVE. It is inadequate for supporting light-
weight interactions and real-time streaming. To maintain
collaboration, dynamic scene changes will need to be simu-
lated by a variable combination of message passing, user
commands, or entity behavior protocols. So Web-based
CVEs will demand significant real-time data communica-
tion in addition to http-based client–server interactions.

As computing resources are limited, obvious problems
will arise once the number of users in a Web-based CVE
rises beyond a certain limit. One may expect a Web-based
CVE to produce undesirable effects such as choppy render-
ing, loss of interactivity, and alike, due to lack of processing
power to handle the ever-increasing load. If such a case

User Input

ROUTE

ROUTE

ROUTE

eventOuts
Sensors
Nodes

Scripts/
Interpolators/

Sensors

Animated
Nodes

eventIns

eventIns

eventOuts

Figure 2. The process of interactions in VRML objects.

6 COLLABORATIVE VIRTUAL ENVIRONMENT: WEB-BASED ISSUES



occurs, the collaboration will be lost. Thus, it requires a
protocol designed for a Web-based CVE in addition to http.
Virtual Reality Transfer Protocol (VRTP) (7) is designed for
such a purpose. It is an application-level protocol that
provides network capabilities for a large-scale interlinked
VRML world. It provides additional capabilities, for many-
to-many peer-to-peer communications plus network mon-
itoring need to be combined with the client–server capabil-
ities of http. To accomplish this task, VRTP is designed to
support VRML worlds in the same manner as http was
designed to support interlinked HTML pages.

VRTP define four basic components: client components,
server components, peer-to-peer components, and monitor-
ing components. By calling the services of these compo-
nents, the CVE application can have the capability to act as

a client to request 3-D world data from other application;
act as a server to share its 3-D world data with others; act as
peers to attend group communication; and act as a monitor
to diagnose and correct the network problems. However, it
should be noted that VRTP needs multicast-enabled net-
work backbone services.

Besides providing an efficient protocol for Web-based
CVEs, it is important that appropriate virtual world data-
base delivery methods are used in combination to improve
the system scalability. It is not practical to download and
store an entire virtual world in the user’s local machine
each time and render the whole scene, because it will often
lead to a long start-up time to wait for the whole database to
be completely downloaded, and it could be unacceptably
long due to Internet latency. This scenario is particularly

Figure 4. Web-based 3-D VRML virtual commu-
nity CVE with live audio and video avatar face.
(Note: Live audio and video data are transmitted in
peer-to-peer.)

Figure 3. Web-based VRML virtual shop CVE.

COLLABORATIVE VIRTUAL ENVIRONMENT: WEB-BASED ISSUES 7



true for a large-scale CVE. Furthermore, all participants
must maintain up-to-date object status, but updates for
objects that they are not interested in waste processing
power and network bandwidth (8). A popular solution to
this issue is to partition the CVE into regions or cells. The
virtual world partition may be static (9) or adaptive at run
time (10). Once CVE is partitioned, each server may be
assigned to provide service to a particular region. For
example, in Spline (11), a region server maintains a record
of all object models and states, as well as of interaction
among all users in a given region. When a user enters a new
region, the corresponding region server delivers object
model data and initial information about the state of objects
in the region to the user process. After this initial download,
the user process obtains further object states’ updates via
group multicast communication. Algorithms may be intro-
duced to achieve balanced workload for each server.

The virtual world database delivery may also be
improved by an on-demand transmission approach as pro-
posed in CyberWalk (12). It achieves the necessary perfor-
mance with a multiresolution caching mechanism. First, it
reduces the model transmission and rendering times by
employing a progressive multiresolution modeling techni-
que. Second, it reduces the Internet response time by
providing a caching and prefetching mechanism. Third,
it allows a client to continue to operate, at least partially,
when the Internet is disconnected. The caching mechanism
of CyberWalk tries to maintain at least a minimum resolu-
tion of the object models to provide at least a coarse view of
the objects to the viewer.

Demand-driven geometry transmission (13) is another
possible solution for improving content delivery perfor-
mance. The proposed solution for content delivery includes
area of interest (AOI) for delivering only part area of
content; level of details (LOD) for delivering only given
detailed data for an object; pre-fetching for hiding content
delivery delay; and client memory cache management for
improving client performance.

The virtual world content delivery and caching perfor-
mance may further be improved by Pervasive Virtual
Environment Scene Data Caching as proposed in MACVE
(14). In traditional CVE systems, when a user navigates
through a cell or region, it downloads the VE scene data of
the cell/region and caches them for the possible future
reloading. Whereas in MACVE, the cached virtual world
data are used as an additional content delivery point if the
caching user machine satisfies the Trusted User Node
condition. Once a Trusted User Node caches virtual world
data, it will be able to provide content delivery service to
other users who are geographically located closer to the
Trusted User. This process will be faster than downloading
the same data from the server. Furthermore, it can reduce
the workload and network bandwidth consumption on the
server. MACVE achieves the Pervasive Virtual Environ-
ment Scene Data Caching by cloning Cell Agent and
migrating it to the corresponding Trusted User Nodes. A
Cell Agent may have multiple cloned ones running at
different Trusted User Nodes. When a new user node needs
to fetch the CVE scene data, it will be directed to the
‘‘nearest’’ Cell Agent.

To provide low latency interaction, world states
synchronization methods should be carefully designed to
incorporate with the corresponding world data delivery
methods. For example, in Spline (11), world states changes
are updated only to a small group of users in the region that
are actually interested in it, rather than to all other con-
current users in the CVE via group multicast. Further-
more, Spline uses the ‘‘approximate database replication’’
idea on which DIS is founded (15). Spline world states are
only approximately equal in the sense that different users
observe events occurring at slightly different times. The
time it takes to update a world model running locally in
one user process with respect to changes made by a remote
process depends on the network traveling time between the
two user processes. The time difference is usually less than
a couple of hundred milliseconds, which is still within the
tolerance level for collaborative interactions. Further
improvement may be achieved by fine-tuning the data
communication approach based on the data type in the
virtual world model. For example, state updates for small
objects can be sent using multicast or unicast UDP or TCP
packets, whereas graphic models, recorded sounds, and
behaviors are identified by URLs and communicated using
standard http protocols. And real-time streaming data,
such as live audio/video, should be communicated using
peer-to-peer direct transmission approach.

Another possible method that can be used to reduce user
interaction (or world states changes) traffic is to use motion
prediction (8) or dead reckoning (16). This method reduces
network latency effects and improves the smoothness of
collaborative interactions by extrapolating a virtual
entity’s next movement based on its history motion vector,
thus reducing the number of states update packets required
for synchronizing CVE states. However, it should be noted
that this method does not work well with predicting user’s
movement in a CVE as users often have abrupt change in
their motion.

To achieve good interactivity, data generated for scene
consistency should be transferred as soon as possible to
maintain the synchronization among remote users. This
kind of data should have higher priority when communi-
cating. Whereas persistent data are transparent to clients,
it can tolerate a certain level of delay so long as the
correctness of final virtual world states can be ensured.
So, they can be queued and scheduled for processing at a
lower priority. Thus, more bandwidth can be allocated for
high-priority data.

SUMMARY

Similar to all other Internet applications, bandwidth is an
important factor to be taken into consideration in Web-
based CVEs. Because of limited bandwidth and appreciable
network latency, Web applications have to be carefully
constructed to avoid high bandwidth interaction between
the client application on the user’s machine and the server
process on the other side of the Internet. For Web-based 3-D
interactive CVEs, due to the heterogeneous nature of the
Internet, the most challenging issues of system scalability,
virtual world database delivery, and consistent world

8 COLLABORATIVE VIRTUAL ENVIRONMENT: WEB-BASED ISSUES



states maintenance across all participants should be
addressed with efficient protocol and data communication
architecture incorporated with appropriate virtual world
partition, content delivery, and world states synchroniza-
tion methods if it is intended for use by a large number of
concurrent users over the Internet.

The WWW today is no longer just text and image dis-
played on the two-dimensional computer screen. The evo-
lution of technology—higher computer processing speed
and higher bandwidth—has enabled more interactivity,
more content, and more realism on the Internet. Through
the personal computers with network connections, Internet
users can now ‘‘live’’ in three-dimensional worlds, where
they can meet and interact with other users. They can now
show their emotions and behavior through the representa-
tion of an avatar and communicate with each other using
live audio and video streaming. With web3D, the future of
the Internet will be an unlimited collaborative cyberspace
where people can gain access to a shared 3-D interactive
multimedia environment.

REFERENCES

1. Web3D Consortium, The Virtual Reality Modeling Language.
Available: http://www.web3d.org/x3d/specifications/vrml/ISO-
IEC-14772-VRML97/. 21 May 2006.

2. R. Lea, K. Matsuda, and K. Miyashita, Java for 3D and VRML
worlds, Indianapolis IN: New Riders Publishing, 1996.

3. Web3D Consortium, X3D Overview. Available: http://
www.web3d.org/x3d/overview.html. 21 May 2006.

4. Web3D Consortium, Why use X3D over VRML 2.0? Here are 10
compelling reasons. Available: http://www.web3d.org/x3d/
x3d_vs_vrml.html. 21 May 2006.

5. Sun Microsystem, Java3D API. Available: http://java.
sun.com/products/java-media/3D/reference/api/index.html.
21 May 2006.

6. B. Roehl, J. Couch, C. Reed-Ballreich, T. Rohaly, and G. Brown,
Late Night VRML 2.0 with Java, Emeryville, CA: Ziff Davis
Press, 1997.

7. D. P. Brutzman, M. Zyda, K. Watsen, and M. R. Macedonia,
Virtual reality transfer protocol (VRTP) design rationale, Proc.

of the 6th Workshop on Enabling Technologies on Infrastruc-
ture for Collaborative Enterprises, Massachusetts Institute of
Technology, Cambridge, MA, IEEE Computer Society, 1997,
pp. 179–186.

8. R. W. H. Lau, F. Li, T. L. Kunii, B. Guo, B. Zhang, N. Magnenat-
Thalmann, S. Kshirsagar, D. Thalmann, and M. Gutierrez,
Emerging Web graphics standards and technologies, Computer
Graphics and Applications, IEEE, 23: 66–75, 2003.

9. T. A. Funkhouser, RING: A client-server system for multi-user
virtual environments, Proc. of the 1995 symposium on Inter-
active 3D graphics. Monterey, CA, ACM Press, 1995, pp. 85–92.

10. R. W. H. Lau, B. Ng, A. Si, and F. Li, Adaptive partitioning
for multi-server distributed virtual environments, Proc. of
the tenth ACM international conference on Multimedia,
Juan-les-Pins, France, ACM Press, 2002, 271–274.

11. R. Waters, D. Anderson, J. Barrus, D. Brogan, M. Casey, S.
McKeown, T. Nitta, I. Sterns, and W. Yerazunis, Diamond park
and spline: A social virtual reality system with 3d animation,
spoken interaction, and runtime modifiability, Presence: Tele-
operators and Virtual Environments, 6: 461–481, 1997.

12. J. Chim, R. W. H. Lau, V. Leong, and A. Si, CyberWalk: A Web-
Based Distributed Virtual Walkthrough Environment, IEEE
Transactions on Multimedia, 5: 503–515, 2003.

13. D. Schmalstieg and M. Gervautz, Demand-driven geometry
transmission for distributed virtual environments, European
Association for Computer Graphics 17th Annual Conference
and Exhibition, Poitier, France, 1996, pp. 421–432.

14. L. Zhang and Q. Lin, MACVE: A mobile agent based framework
for large-scale collabortive virtual environments, Presence:
Teleoperators and Virtual Environments, 2006, In Press.

15. R. C. Waters and J. W. Barrus, The rise of shared virtual
environments, Spectrum, IEEE, 34: 20–25, 1997.

16. R. C. Hofer and M. L. Loper, DIS today [Distributed interactive
simulation], Proc. of the IEEE, 83: 1124–1137, 1995.

QINGPING LIN

LIANG ZHANG

Nanyang Technological
University

Singapore

COLLABORATIVE VIRTUAL ENVIRONMENT: WEB-BASED ISSUES 9



C

COMPUTER GAMES

INTRODUCTION

Computer (and video) games have gained significant
interest in recent years, particularly the United States,
where in total game sales for 2005 were over 10.5 billion
US dollars, which repersented a 6% improvement over the
game sales in 2004. Demographically, 69% of American
heads of households play computer and video games. In
the United Kingdom, which owns the world’s third largest
computer game market, 82% of 9- to 19-year-old young-
sters own a game console. In this article, we discuss the
existing technologies and the design issues of computer
games. As computer and video games are closely related
and technologically comparable, without loss of general-
ity, our discussion will use the term computer game to also
include video games.

GAME HISTORY

Computer game has a long history, in which we can trace
back its root from 1947, when Thomas T. Goldsmith, Jr. and
Estle Ray Mann designed the first game for playing on a
cathode ray tube in the United States. Here, we are not
intended to elaborate the full computer game history.
Instead, we focus on the technological evolution of compu-
ter games and technical issues occuring throught the
change. During the 1960s and 1970s, games developed
were simple, primitive, and mainly in two dimensions.
Many games of different types were developed. Two of
the most unforgettable examples are Space Invaders and
Pac-Man. In addition, handheld game devices were also
developed, most of which were hard coded to run only a
single game. For game playing, game players used simple
button controllers, keyboards, or joysticks to control their
game characters. The main forms of feedback were offered
through screen displays with limited color and resolution as
well as simple sound outputs. In the 1980s, there was a
major growth in computer game technologies. For hard-
ware, a variety of personal computers and game consoles
were developed. For software, 3-D games and network
games were first developed. In addition, different forms
of input and output devices were developed, which included
color monitors, sound cards, and various types of game-
pads. They offer game players better game feedback and
greater flexibility in controlling game characters. In the
1990s, games developed planted the seeds of today’s game
development. Many classic game types, including first-
person shooters (FPS), real-time strategy (RTS), daily
life simulators, and graphical multiplayer games, were
developed during this period. Also, there was a trend for
developing 3-D games. Nowadays, many new games are
developed based on these classic games. The major differ-
ence of the new games from the classic ones is that the new
games are mainly in three dimensions. Hence, hardware

graphics accelerators were urged into development to sup-
port real-time rendering of 3-D game content. To take the
advantage that human visual sense has a dominant influ-
ence of a game player to determine whether a game is good,
game companies put their very first priority in enhancing
the graphics output for their games. They put advanced
graphics content, such as high detailed 3-D models, texture
images, and various special effects, into the games. Multi-
media elements, such as videos and songs, are also used to
enrich the game content. However, such arrangements
increase the complexity of the hardware requirement for
running computer games. It also demands the development
of efficient algorithms to manage such a variety of game
content. To optimize both the manpower and time spent in
game development, game developers begin to make use of
ready-made game engines (please refer to the Game Engine
section), which comprise many useful tools to support gen-
eral game functions, to build their games.

When we go through the history of computer games, we
note that, during the early stage, games were mainly
simple and small. They could be generally handled by
simple computation and graphics processing power. Hence,
there were not really any stringent requirements put on the
development of these games. Later, when game developers
turned their focus to 3-D games, working out both hard-
ware solutions and software solutions in supporting real-
time rendering of 3-D graphics has subsequently become a
critical part of game development. Besides, game physics
and game artificial intelligence (AI) also played an impor-
tant part of the games. Whereas game physics provides
support to collision detection and motion control of game
characters, game AI offers autonomy to the nonperson-
controlled game characters to govern how these characters
behave in the game environment. Recently, as multiplayer
online games begin to dominate the game market, issues
suchas network latency, systemscalability, andsecurityare
turned out consequently. Eventually, these issues make the
game development face various technological design issues
from different disciplines in computer sciences.

TYPES OF GAMES

2-D and 3-D Games

Technologically, computer games can be broadly categor-
ized into 2-D and 3-D games. 2-D games generally manage
the game environment into a logical 2-D space, where the
game objects can be moving around and interacting. Prac-
tically. a majority of 2-D games, such as Pac-Man, Load-
Runner, and Mario, can be implemented using a simple tile-
based concept (1), which partitions the game environment
into cells that are hosted in a 2-D array. Then different
states can be assigned to an individual array element to
logically represent different game objects and game scene
elements in the game environment. When some objects are
moving around in the game environment, the correspond-

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



ing elements of the 2-D array are then updated to reflect the
change. To render game objects or game scene elements, it
can be done as easy as using simple graphics primitives,
such as line, point, and polygon, or alternatively using
picture images to present the game objects or game scene
elements in a more impressive and realistic way.

As the successor of 2-D games, 3-D games offer greater
attractions to game players in terms of game interaction
and visual effect. The game environment of such games is
hosted in a 3-D space. As one more dimension is provided,
game players have been offered a greater degree-of-free-
dom (DOF) in controlling their game characters and inter-
acting with other game objects. They can also navigate and
interact in the game environments with a variety of camera
views. In addition, the 3-D setting of these games also gives
a variety of advanced computer graphics effects a sufficient
environment for implementation, which can then be visua-
lized by the game players. Examples of the graphics effects
range from some low level graphics techniques, such as
lighting and shadowing, to some high level graphics tech-
niques, which cover a wide variety of natural phenomenon
simulations (2). In addition, computer animation techni-
ques (3) can also be employed to make the game objects
move in a realistic way. Unlike 2-D games, which can
natively be displayed by most of the 2-D display controllers,
3-D games need a rendering process to convey 3-D game
content to present on 2-D display devices. In light of sup-
porting interactive game playing, the rendering process
must be carried out with a frame rate of 25–60 frames per
second, which means 25–60 pictures should be produced
every second for the relevant portion of the game content for
display purposes. To support such a performance, the
rendering process is often needed to carry out by hardware
graphics accelerators.

Multiplayer Online Games

Multiplayer online games have been developed as early as
the late 1980s. The uniqueness of this game type is that it
connects people from geographically dispersed locations to
a common game environment for game playing. One of
the early developed online games was the Modem Wars,
which was a simple 2-D game designed for the personal
computer—Commodore 64. The game connected two game
players using modems into a shared game environment.
During game playing, game players can interactively move
the game items around the game environment to attack any
enemy items located within a certain predefined range.
Despite the game design being simple, it set a good founda-
tion for the multiplayer online game development.

Nowadays, multiplayer online games have become one
of the most popular game types. Unlike the old days,
instead of running such games on peer computers and
connecting the game machines through modems, the new
online games are generally hosted in some server machines
running on the Internet, which are referred as game ser-
vers. Game players from different geographical locations
can connect to the games through some broadband network
connections using their preferred game platforms,
which can be a computer or a game console. Such game
platforms are referred as game clients. The first commercial

multiplayer online game of this type was, Meridian 59,
published in 1996 by 3DO (4). Thereafter, some major game
types, including FPS, RTS, and RPG, have dominated the
market of multiplayer online games. Technically, the main
responsibility of a game server is to keep track of the actions
issued by the game clients and to propagate these actions
and the state updates of the game environment to the
relevant game clients. The game server also needs to build
up a profile for each game player to store the game state and
the possessions of the player, such that the players can keep
on playing the game in future based on the saved profile.
Today, most of the game developers focus on two major
issues when developing multiplayer online games. First,
they try to seek good game server architectures for hosting
games to allow a larger number of game players to join and
play their games. Second, to attract more people to play
their games, the game developers take advantage of the
advancement in computer graphics technologies to make
their game have very impressive 3-D graphics presenta-
tions and visual effects.

Handheld Games

In contrast to computer-based or game console-based
games, handheld games are run on machines with a small
machine size. It allows people to carry it along anywhere
and play around with it at any time when they are free.
Generally, such machines can be referred to as dedicated
handheld game consoles, personal digital assistants
(PDAs), or mobile phones. Due to the hardware limitation,
such game devices often suffer from small screen size and
limited processing power and storage space, as well as the
problem of short battery life. These problems do not only
impose difficulties to handheld game development, they
also make some people reluctant to play handheld games.
Fortunately, these shortcomings have been addressed or
have been worked around during recent years.

The first handheld game console is Tic Tac Toe, which
was made in 1972. Similar to most of the early handheld
game consoles, it came with one hard-coded game only. This
limitation lasted until 1979, when the first handheld game
console with changeable cartridges, Microvision, was
developed. In general, as handheld game consoles at that
period suffered from the small screen size and limited
battery life problems, handheld games had not received
great success. With the release of Game Boy (5) in 1989,
which came with a monochrome display with improved
resolution, used rechargeable batteries, and had a long
list of game cartridges for game players to pick and play,
handheld games began to attract a significant amount of
game players. More importantly, Game Boy virtually set
the ‘‘design standard’’ for today’s game consoles. In addi-
tion, in 1998, the color display version of Game Boy was
released to further improve the attractiveness of handheld
game consoles. Nevertheless, up until the release of Game
Boy and its color display version, as the processing power of
the handheld game consoles was still quite limited, most of
the games developed for the handheld game consoles were
still essentially 2-D games.

Starting in 2000, there was a dramatic development in
handheld game consoles, particularly in terms of computa-

2 COMPUTER GAMES



tion and graphics processing power. In light of this
improvement, 3-D games had been engaged to these
devices, an example of which was in Game Boy Advance
(5). On the other hand, useful accessories such as network
connections, external memory storage and new types of
input devices were added to the game consoles. Regarding
the network capability, examples could be found in Nokia
N-Gage (6) and Nintendo DS (5), which made multiplayer
online games possible to be supported. Sony made use of
UMD disks and Memory Stick Duo as a media to extend the
amount of storage of its newest handheld game console,
Sony PSP (7). For input device, Nintendo DS adopted a
touch screen approach, where game players could use a
stylus or even the player’s finger as an input method to
control the games objects.

On the other hand, similar to dedicated handheld game
consoles, PDAs and mobile phones are also featured with
high mobility, which makes such devices become alternate
platforms for handheld games. More importantly, from the
business point of view, putting games on essential devices,
such as PDAs or mobile phones, is favorable as this frees
people from investing or carrying addition game devices for
entertainment. In addition, mobile phones and modern
PDAs also natively come with network capability to provide
a critical support for running online games. However,
before PDAs and mobile phones become substantial hand-
held game devices, the technical problems of these devices,
such as small screen size and limited storage space, which
could also be found in dedicated handheld game consoles,
must be solved.

GAME DEVELOPMENT PROCESS

Nowadays, making a game no longer focuses only on work-
ing out the game logic or game features and the graphical
display for the game. Depending on the resource availabil-
ity and the business strategy of a game company, a variety
of associated tasks may also involve in the modern game
development process. These tasks include game hardware
and software development, media construction, localiza-
tion, and even the handling of the cultural and social issues:

� Game Hardware: Gave hardware refers to the devel-
opment of game consoles and game input/output
devices. Such development may usually introduce
new attractions to game players. It also offers game
companies niches in developing proprietary hardware-
specific games or obtaining license fees from develo-
pers who develop games on such game hardware.
However, as developing game hardware usually
requires quite a significant amount of investment in
terms of manpower, time, and money, only large game
companies can afford such development. More techni-
cal design issues on game hardware will be discussed
in the Modern Game Design Issues Section.

� Game Software: Game software refers to the techni-
cal part of the game development process. It involves
the development of various game software compo-
nents, which may include some hard core game func-
tionality, such as game content management and

rendering, game animation, game AI, and game phy-
sics. In addition, it may also involve the development of
game networking and game security, which depends
on the type of the game for development. More details
on this topic will be discussed in the next two sections.

� Media Construction: Media construction refers to
the artistic part of the game development process. It
involves the development of game content by using
different types of media, which may include image,
2-D/3-D graphics model, audio, video, and motion cap-
ture information (8). As media offers the presentation
of game content, which determines how game players
perceive a game, media construction becomes an inevi-
table part of the game development process. Nowa-
days, many game companies have been investing a
significant amount of resources in the media construc-
tion process.

� Localization: Localization is the process of turning
a computer game into a country-specfic or a target-
market-specific version, which helps a computer game
broaden its market share and helps introduce country-
or market-specific attractions to the game players. The
localization process can be done as simple as by con-
veying the language of the user interface and the
textual content of a game. In a more complicated
way, we may further change the game characters or
other game media content to country- or market-spe-
cific ones. Furthermore, we may even consider altering
the storyline of a computer game to suit the culture or
custom of the country-specific or target-market-speci-
fic game players.

� Cultural and Social Issues: During recent years,
there has been a rising concern of the cultural and
social effects of computer games on humans, especially
on the youngsters. On the one hand, more and more
people are getting addicted to computer game playing,
particularly after the release of multiplayer online
games, which likely has a bad effect to the academic
performance of addicted student game players. It may
also significantly reduce the amount of time for people
to participate in social activities. On the other hand,
the release of game titles with violent and sexual game
content imposes negative ethical effect to the young
people. Although there is not a consensus on the hand-
ling of the cultural and social issues of computer
games, the game companies should try their best to
maintain a good attitude in addressing these issues
during the game development process.

GAME ENGINE

Making computer games is a complicated task. From the
hardware perspective, when constructing a game, game
developers may need to deal with a wide range of hardware
and software platforms as well as work hard on a number of
game components. More specifically, a computer game may
need to be designed to run on different game platforms,
including computers and game consoles, which are usually
controlled by different operating systems. Even under the

COMPUTER GAMES 3



same hardware platform, the game may need to be ren-
dered by different graphics accelerators and relied on dif-
ferent graphics application programming interfaces (APIs)
to drive the graphics accelerators.

From the software perspective, when developing a com-
puter game, game developers typically need to work on a
number of game components, in which the most essential
ones include game content management and rendering,
game animation, game AI, and game physics. Working out
these components generally involves much effort and is
very time-consuming.

To minimize the complexity of game development by
hiding the differences in various game platforms and to
help game developers put their focus on developing high
level game logics and game features, a game engine has
been developed; it comprises a set of basic game building
blocks and provides a high level and unified abstraction for
both low level graphics APIs and hardware game platforms.
With the help of a game engine, the investment of game
development, in terms of time, manpower, and cost, can
significantly be reduced. Reputable examples of game
engines include Unreal Engine 3 (9) and RenderWare
(10). In practice, there are not any standards or rules to
govern the exact game components to be included in a game
engine. Game engine developers have a great flexibility to
select the appropriate set of components to make their own
engines. However, there are some major game components
that are essential to most of the games and, hence, should be
included in the development of a game engine:

� Game Content Management and Rendering:
Game content management and rendering is one of
the most core parts of a computer game. It comprises
techniques to manage game content in a way to sup-
port efficient content retrieval and processes for mak-
ing the game content to be displayable on the output
device of the game. For game content management,
most of the game engines adopt a scene graph approach
(11), where the game objects and the graphics primi-
tives are hierarchically maintained with a tree struc-
ture. As such, tree structure implicitly links up the
game objects according to their spatial relationship, it
provides sufficient information for a game to pick out
closely located game objects to support game rendering
and game object interaction evaluation. On the other
hand, for game content rendering, particularly when
dealing with 3-D game content, there will be a signifi-
cant amount of processes as well as a variety of options
to go through for converting game content from the 3-D
representation into the 2-D one for display. These
processes and major options are shown as follows:

1. Standard graphics rendering processes(12), such as
perspective transformation, clipping, hidden sur-
face, and back face removal, are fundamental to
render 3-D game content into 2-D images for dis-
play. As these processes are usually natively come
with the hardware graphics accelerators, game
engine developers need not develop their own algo-
rithm to support these processes. Instead, consider
that the standard graphics rendering processes

typically run on various hardware graphics accel-
erators, which are controlled by different low level
graphics APIs, such as OpenGL (13) and DirectX
(14), game engine developers may better work out
high level unified abstraction on these graphics
APIs and hardware to help reduce the effort of
game developers to construct games for a variety
of game platforms.

2. Shading and texturing are the major processes to fix
the appearance of individual game object. The shad-
ing process takes in the lighting and the object
material information to evaluate the appearance
of a game object by applying certain empirical light-
ing models. Common options of shading include flat
shading, Gouraud shading, and Phong shading.
They offer a different degree of realism to the ren-
dered game objects. On the other hand, texture
mapping adds or modifies detail on the game object
surface. Basic options of texture mapping include
basic texture mapping, multitexturing, and mip-
mapping, which arranges captured or artificial
images to add on the surface of a game object.
Advanced options of texture mapping include bump-
ing mapping and displacement mapping. They
make use of certain specially designed ‘‘texture
maps,’’ which comprise geometry modifiers rather
than generic images, to modify the appearance of
the geometric details over the surface of a game
object.

3. Advanced rendering options can be taken to further
enhance the realism of the overall game environ-
ment. They include, but are not limited to, reflec-
tion, motion blur, and shadowing. Adopting these
options definitely helps attract game players’ inter-
ests as they make the rendered game environment
look more realistic by adding details of some natural
phenomenon to the game scene. However, as such
rendering options generally require time-consum-
ing add-on procedures to be executed on top of the
standard graphics rendering processes, taking such
options would likely degrade the rendering perfor-
mance of a computer game significantly. Therefore,
game developers should put these options as
optional choices for game players to take rather
than set them as mandatory game features.

� Game AI: Game AI (15) is a way to give ‘‘lives’’ to the
nonperson-controlled game characters (NPCs) of the
game environment, it directs the way of the NPC to
interact with the game environment or other game
objects. Putting different game AI to an NPC can
assign different behaviors to the NPC. In fact, one of
the major reasons for computer games to be so attrac-
tive is that game players can find different challenges
and fun when they play against the NPCs inside the
game environment. To implement game AI, two major
options are available:

1. Reactive techniques are widely adopted in many
computer games, as they are fully deterministic.
Examples of these techniques include scripts,

4 COMPUTER GAMES



rule-based systems, and finite-state machines. Such
techniques take in some given game parameters or
game states, which are then evaluated through
predefined rules to produce deterministic results.
Practically, reactive techniques are good for imple-
menting high level tactical decisions.

2. Planning techniques, in contrast, are nondetermi-
nistic. From a given situation, multiple actions can
be taken depending on the current goal or some
selected factors. A planning algorithm can scan
through the possible options and find the sequence
of actions that matches the goal or the selected
factors. For instance, A� is the most reputable exam-
ple of planning techniques. Practically, planning
techniques are good at helping to search the best
possible path for a game object to navigate in the
game environment.

� Game Physics: Game physics (16) is developed based
on the laws of physics to govern how each individual
game object reacts with the game environment or other
game objects. It also offers a way to support the simu-
lation of some natural phenomenon. Typically, the
reaction of a game object can be determined using
mass, velocity, friction, gravity, or some other selected
physical properties. In practice, game physics can be
natively applied to help generate a realistic response
for the collision or interaction of the game objects.
Alternatively, game physics can be applied to drive
the motion of a large amount of tiny particles for
simulating some natural phenomenon, such as the
flow of smoke and water, fire blaze, snow, and cloud.

� Animation: Animation (3) is a technique to drive the
motion of the body of the game characters. Typically,
there are several ways to produce animation in com-
puter games. They are shown as follows:

1. Key-framing(17) requires animators to define and
draw key-frames of a motion sequence of the game
character to be animated. However, manipulating
and coordinating the limbs of a game character via
key-framing is a complicated and tedious task. In
addition, it is also difficult to produce realistic and
natural looking motions with key-framing.

2. Inverse kinematics(18) computes the pose of a game
character from a set of analytically constrained
equations of motion. It can generally produce phy-
sically realistic motions.

3. Motion capture(8) acquires movement information
from live objects. The captured position and orien-
tation information from motion capture can then be
applied to game characters to drive their motions.
This approach has been widely accepted as it helps
produce realistic and natural looking character
animations.

MODERN GAME DESIGN ISSUES

Since the release of the first computer game, computer
games have become one of our major entertainments.

During the years, as game hardware becomes much
more powerful, the game players’ expectation on both the
visual quality and the performance of computer games has
then been increased significantly. Such expectation has
partially been tackled by the release of new computer
graphics algorithms and hardware. However, due to the
advancement in computer network technologies and the
popularity in multiplayer online games, game design issues
are no longer restricted to computer graphics or input/
output devices. Instead, the game design issues have
become multidisciplined and are much more challenging
than ever. The following shows the modern technical design
issues that game developers should need to pay attention on
when developing their new games:

� Advancement in Hardware Graphics Accelera-
tor: Owning to the increase in the demand for high
visual quality and high realism of the graphics output
of computer games, a brand new type of hardware
graphics accelerator—Graphics Processing Unit
(GPU) (19) has been developing, which offers a dra-
matic improvement in the rendering performance at
the game clients. Such improvement is due to the fact
that GPU allows the major rendering tasks, including
the standard and the advanced game rendering tasks
as well as game physics, to be executed in parallel
rather than carrying them out in a sequential manner
as in the traditional hardware graphics accelerator. To
take advantage of such advancement in hardware
graphics accelerators, game engine developers should
seek ways to parallelize the algorithms used for imple-
menting the game engine components.

� Game Controller (Input): Game controller (20) is
the primary input device for game players to issue
commands or actions to drive game characters or
interact in a computer game. Common game control-
lers include keyboard, joystick, and mouse. To use
these controllers, game players need to convey their
actions by getting in to their minds with controller-
dependent operations. However, such operations may
not always match well with the activities or interac-
tions of one’s game playing, especially for the games
about human’s real-life activities, such as driving,
dancing, musical instrument playing, and shooting.
Recently, game developers began to realize that the
design of the game controllers could be one of the
critical determinants for the success of a computer
game. Hence, they have been working out many dif-
ferent game controllers to attract game players’ inter-
ests and offer a better game playing experience. On the
one hand, game-specific game controllers have been
developed; examples include the steering wheel for
driving or racing games, the dance platform for dan-
cing games, and light guns for shooting games.
Through these controllers, game players can act natu-
rally as performing real-life activities during their
game playing. On the other hand, game developers
actively create new types of game controllers.
Examples include the EyeToy of Playstations (21)
and the wireless controller, Wii Remote by Wii (22).

COMPUTER GAMES 5



Particularly, EyeToy makes use of a webcam to
capture human motion, which virtually forms a
game controller for a game player to control and inter-
act with the game. Wii Remote is a wireless game
controller with high degrees-of-freedom to let a
game player generate a large variety of free motions
or perform human’s real-life actions for game playing.
These game controllers also lead to the development of
new game types.

� Game Feedback (Output): Game feedback is the
way for a computer game to give game players
responses to their actions. It is the one of the most
direct ways for a game player to feel and to be
impressed as to how good a computer game is. The
primary ways for offering game feedback is to put
different graphics effects on the screen and to generate
sound effects for responding to game players’ actions.
However, as more game devices are released, a greater
variety of game feedback is made available for game
developers to consider putting in their games. Broadly
speaking, we may have three methods of game feed-
backs, includies tactile, audio, and visual feedbacks.
For tactile feedback, the most common form can be
found in most of the game pads of modern game con-
soles. It is typically done by generating vibrations to
certain game events or game players’ interaction.
Another form is the resisting force used in the steering
wheel for the car games. For audio feedback, as new
sound compression and speaker technologies are emer-
ging, multichannel sound feedback is now made avail-
able to provide higher sound quality and to support 3-D
sound rendering. In particular, 3-D sound offers a new
type of spatial feedback for objects or interactions in a
game environment, which originally can be a provided
by the visual feedback only. For visual feedback, a
conventional approach focuses on rendering 3-D gra-
phics and visual effects to display on a 2-D screen. But
as stereo display technologies mature and become
widely available, a 3-D display is made possible as
an alternative option for visual feedback.

� Scalability: Multiplayer online games are the fastest
growing game type in recent years. They allow a large
amount of remote game players to get connected for
playing in a shared game environment. Existing multi-
player online games have been implemented with dis-
tributed game servers. However, some of the games,
such as Quake III Arena (23) and Diablo II (24),
maintain an individual game state for each game
server, which is not shared among the servers and is
essentially a set of separated client–server systems
running the same game and may not be considered as a
real multiserver system. EverQuest (25), in contrast,
divides the entire game environment into distinct
zones and maintains these zones by individual game
servers. EverQuest allows a client to travel from one
zone (game server) to another freely. Ultima Online
(26) and Asheron’s Call (27) adopted an approach
simlar to EverQuest, but they divided the entire
game environment into visually continuous zones.
The boundary of each zone is mirrored at a neighboring

server to reduce the lag problem and to improve inter-
activity when a user crosses from one zone to another.
In addition, Asheron’s Call is technically more
advanced in that it may dynamically transfer a portion
of the zone controlled by a given game server to any
other lightly loaded server. Unfortunately, game
object coherency is not considered.

� Network Latency: A unique characteristic of multi-
player online games is that game updates are required
to send to remote game players over the network
throughout the game playing sessions to renew the
states of the local copies of shared game objects at the
game players. More than that, as multiplayer online
games involve time-dependent game data and contin-
uous user interaction, the state update events are
therefore continuous(28) in nature. However, due to
the existence of network latency, such updates are
likely arrived at the remote game players after some
delay, which leads to state discrepancy of the shared
game objects among the game players. This fact
opposes the sufficient condition for supporting game
player interaction, in which the state updates need to
be presented to remote game players either without
any delay or at least within a very short period of time.

To cope with the latency problem, adaptations could
be performed at either the user side or the system side.
For user-side adaptation, Final Fantasy XI (29), which
is one of the popular online games currently available
in the market, imposes restrictions to game player. In
this game, a player usually receives position updates of
other game players with almost a second delay. To
reduce the effect of such delay, first, players can only
attack enemy objects, but not each other. Second, the
enemy objects are designed to move very little while
they are under attack by a player. Such game rules
significantly limit the game features and the type of
games that can be developed. For system-side adapta-
tion, a popular approach is to use dead reckoning (30).
With this approach, the controlling game player of a
game object runs a motion predictor for the object.
Other game players accessing the object also run the
same motion predictor to drive the motion of the local
copies of the object. The controlling game player is
required to keep track of the error between the actual
and predicted motions of the object, and sends the
updated motion information to the other game players
when the error is higher than a given threshold.
Although this approach is very simple, it does not
guarantee that the state of a shared object could be
synchronized among all game players.

Recently, a trajectory preserving synchronization
method (31) has been developed to tackle the problem.
The method runs a reference simulator for each object
on the game server. Each of the game players interested
in the object, including those that access the objects as
well as the owner of the object, will execute a gradual
synchronization process on the local copy of the object to
align its motion to that of the reference simulator
running at the server. The method effectively reduces
the discrepancy suffered by remote game players.

6 COMPUTER GAMES



� Game Cheating: Game cheating generally refers to
the activities that modify the game experience to give a
game player an unfair advantage over the other
players. Common ways of game cheating can be
done in terms of user settings, exploits, and using
external software. To cheat using user settings, one
can change game data, game models, game environ-
ment, or game devices to make one to play a game in an
easier way. Exploits, on the other hand, refer to the use
of existing bugs of a game, or game features or tricks
that are reserved for developers for testing purposes
and are unintended to release to game players, to gain
certain advantages for game playing. Other than the
above, people may develop external software to help
modify the normal behavior of a game to let a game
player perform game cheating. To cheat in online
games, packet tampering is common. It is performed
by altering the game data sent between the game
server and game clients. To prevent game cheating,
game companies should take appropriate measures.
Typical solutions may include the use of anticheating
software and banning suspected cheaters from playing
a game.

FUTURE TREND AND CONCLUSIONS

Based on the development in computer games, we enumer-
ate and elaborate below a number of emerging issues on the
future development of computer games, much of which
serves the purpose of highlighting the direction for future
research and development. In addition, it is anticipated
that many new games will emerge in time as the technol-
ogies evolve. What we have pointed out here are only some
important emerging issues and technologies, and we are
leaving the readers to comment and decide which ones are
the most important.

� On-Demand Transmission: Nowadays, multiplayer
online games are usually set out with a large scale
scene environment together with high quality game
objects to attract more game players. A standard way
to distribute such a large game content is to put it on
CDROMs/DVDs for game players to purchase and
subsequently install at their local machines. This sce-
nario works fine if players’ local machines have suffi-
cient storage to hold the complete set of game content.
Clearly, due to limited storage, it is difficult for hand-
held devices or portable game consoles to access multi-
player online games in this way. To loosen this
limitation, a game-on-demand approach (32) can be
adopted, which uses a prioritized content delivery
scheme to help identify and deliver relevant game
content in suitable quality to support users’ game
playing. In addition, the game-on-demand approach
also serves games with very large scale game scenes
and highly detailed game objects to be accessible to
machines with any kind of network connection speeds.
On the other hand, nowadays, game companies typi-
cally continue to develop new game scenes and game
objects after they have released their games. It is not

only because game companies want to gain revenue
before they have finished developing their games, they
also need to add new attractions to keep motivating
people to play their games. With the game-on-demand
approach, this process can be done totally transpar-
ently to the game players without requiring them to
install patches as they do now, as new content can also
be streamed progressively during game playing.

� Web-Based Client Technologies: Recently, there
has been a dramatic development in client technolo-
gies for Web-based applications. Such technologies are
emerging as important development tools and are
critical for the future development of Web-based com-
puter games. Typical examples include Flash, Java,
and ActiveX. They help improve the user interface
control of Web-based applications by getting through
the problem of limited interaction control and web
page reload when a user performs an action. More
than that, client technology, like Flash, serves users
with an interactive user interface as well as the multi-
media support. The only requirement for adopting
these client technologies is the preinstallation of appli-
cation interpreters and plug-ins. In addition, a more
advanced option, Asynchronous JavaScript and XML
(AJAX) (33), has been made available since 2005 to
provide more interaction control, such as context-
sensitive menus and window interface, for developers
to construct more serious Web-based application.
AJAX also relaxes the need of preinstallation or main-
tenance of add-on plug-ins, and requires only a mini-
mal amount of data transmission for application
download, as they are driven by light-weighted Java-
Script and XML codes. Finally, during run-time, AJAX
can collect information from Web servers to update
only a required part of the application content without
the reloading web page.

� Security Challenges: Security control in existing
computer games is partially addressed. However, as
there is a trend that more and more computer games
will be hosted on the Internet, the risk of these games
being accessed by unauthorized people and being
cracked for cheating will be increased as well. To
address this problem, secure socket layer (SSL) could
offer a good choice. It provides endpoint authentication
and communications privacy over the Internet using
cryptography. In particular, once a user has logged
into a computer game, such data protection processes
would be done transparently to the user.

� Computer Games on Grid: Grid Computing (34) is
considered as a hot research area in recent years. Grid
connects computers, storages, sensors, and services
via fixed-line or wireless Internet (and other) net-
works. The goals of grid computing include resource
sharing, coordinated problem solving, enabling
dynamic virtual organizations/world, and thus ser-
vice-oriented architecture is considered as a promising
direction. Advantages of grid include data and perfor-
mance reliability (avoid single point of failure), per-
formance (avoid network and computation bottleneck),
and resilience (guarantee existence of data and its

COMPUTER GAMES 7



backup). In line with the change of new grid concepts,
computer games can be considered as one important
service to this emerging grid virtual world.

BIBLIOGRAPHY

1. Tile Based Game, Available: http://www.tonypa.pri.ee/tbw/
index.html.

2. O. Deusen et al., The elements of nature: interactive and
realistic techniques, ACM SIGGRAPH 2004 Course Notes,
2004.

3. R. Parent and R. Parent, Computer Animation: Algorithms and
Techniques, New York: Elsevier Science, 2001.

4. The 3DO Company. Available: http://en.wikipedia.org/wiki/
The_3D0_Company.

5. Nintendo, Available: http://www.nintendo.com/.

6. Nokia, Available: http://www.nokia.com/.

7. Sony, Available: http://www.sony.com/.

8. K. Meyer, H. Applewhite, and F. Biocca, A survey of position
trackers, Presence: Teleoperators and Virtual Environ., 1 (2):
173–200, 1992.

9. Unreal Engine 3, Available: http://www.unrealtechnology.
com/html/technology/ue30.shtml.

10. RenderWare, Available: http://www.csl.com/.

11. Computer Graphics - Programmer’s Hierarchical Interactive
Graphics System (PHIGS), ISO/IEC 9592–1:1989, New York:
American National Standards Institute, 1989.

12. D. Hearn and M. Baker, Computer Graphics with OpenGL, 3rd
ed. Upper Saddle River, NJ: Prentice Hall, 2004.

13. OpenGL, Available: http://www.opengl.org/.

14. DirectX, Available: http://www.microsoft.com/directx/.

15. I. Millington, Artificial Intelligence for Games, San Francisco,
CA: Morgan Kaufman, 2005.

16. D. Eberly, Games Physics, San Francisco, CA: Morgan
Kaufman, 2003.

17. N. Burtnyk and M. Wein, Interactive skeleton techniques for
enhancing motion dynamics in key frame animation, Commun.
ACM, 19 (10): 564–569, 1976.

18. T. Wang and C. Chen, A Combined optimization method for
solving the inverse kinematics problems of mechanical manip-

ulators, IEEE Trans. on Robotics and Automation, 7 (4): 489–
499, 1991.

19. M. Pharr and R. Fernando, GPU Gems 2: Programming Tech-
niques for High-Performance Graphics and General-Purpose
Computation, Reading, MA: Addison-Wesley Professional,
2005.

20. Game Controller. Available: http://en.wikipedia.org/wiki/
Game controller.

21. EyeToy, Available: http://www.eyetoy.com/.

22. Wii, Available: http://wii.nintendo.com/.

23. Quake, Available: http://www.idsoftware.com/.

24. Diablo II, Starcraft, Available: http://www.blizzard.com/.

25. EverQuest, Available: http://everquest.station.sony.com/.

26. Ultima Online, Available: http://www.uo.com/.

27. Asheron’s Call, Available: http://www.microsoft.com/games/
zone/asheronscall/.

28. M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg, Local-lag and
timewarp: Providing consistency for replicated continuous
applications, IEEE Trans. on Multimed., 6 (1): 47–57, 2004.

29. Final Fantasy XI, Available: http://www.playonline.com/ff1 1/
home/.

30. DIS Steering Committee, IEEE Standard for Distributed Inter-
active Simulation - Application Protocols, IEEE Standard
1278, 1998.

31. L. Li, F. Li, and R. Lau, A Trajectory preserving synchroniza-
tion method for collaborative visualization, IEEE Trans.
Visualizat. Comp. Graph.12 (5): 989–996, 2006.

32. F. Li, R. Lau, and D. Kilis, GameOD: An Internet Based Game-
On-Demand Framework, Proc. of ACM VRST, 2004, pp. 129–
136.

33. J. Eichorn, Understanding AJAX, Upper Saddle-River, NJ:
Prentice Hall, 2006.

34. I. Foster and C. Kesselman, The Grid 2, San Francisco, CA:
Morgan Kaufman, 2003.

FREDERICK W. B. LI

University of Durham,
Durham, United Kingdom

8 COMPUTER GAMES



C

CROWD SIMULATION

Crowds are part of our everyday experience; nevertheless,
in virtual worlds, they are still relatively rare. Despite
achieving impressive levels of visual quality with nearly
photorealistic look, virtual environments in many cases
resemble ‘‘ghost towns,’’ with a small number of virtual
inhabitants in most cases only directly related to their
scenarios. Computer graphics-generated crowds are rare
in interactive virtual environments such as computer
games or virtual reality educational and training systems.

The first generation of real-time virtual crowd simula-
tions had to sacrifice both visual and behavioral details in
order to increase the number of handled characters.
Researchers, now, aim to go beyond earlier results to
achieve high-fidelity believable groups and crowds inte-
grated into complex virtual worlds, giving the user a pos-
sibility to interact with virtual characters. To achieve this
goal, several topics have to be explored, including render-
ing, behavior computation, procedurally generated locomo-
tion animation, interaction with objects, and scene
management. New approaches taking into account require-
ments specific for crowd simulations, such as ability to
produce variety and scalability, are needed. It is essential
to investigate heterogeneous simulations where a smaller
number of complex agents would coexist and interact with a
less detailed larger crowd within the same virtual world. To
optimize the amount of the computation needed for real-
time crowd applications, levels-of-details techniques have
to be explored taking into account the human perception in
conjunction with an efficient scene management.

RELATED WORKS

Although collective behavior has been studied since as
early as the end of the nineteenth century (1), attempts
to simulate it by computer models are quite recent, with
most of the work done only in the mid-and late-1990s.
Recently, researchers from a broad range of fields such
as architecture (2–4), computer graphics (5–8), physics (9),
robotics (10), safety science (11, 12), training systems
(13–15), and sociology (16) have been creating simulations
involving collections of individuals.

We can distinguish two broader areas of crowd simula-
tions. The first one is focusing on realism of behavioral
aspects with usually simple two-dimensional (2D) visuali-
zations like evacuation simulators, sociological crowd mod-
els, or crowd dynamics models. In this area, a simulated
behavior is usually from a very narrow, controlled range
(for example, people just flying to exit or people forming
ring crowd structures) with efforts to quantitatively vali-
date correspondence of results to real-world observations of
particular situations (11). Ideally, simulation results would
then be consistent with datasets collected from field obser-

vations or video footage of real crowds either by human
observers (17) or by some automated image processing
method (18). Visualization is used to help to understand
simulation results, but it is not crucial. In most cases, a
schematic representation, with crowd members repre-
sented by colored dots, or sticky figures, is enough, some-
times even preferable as it allows for highlighting
important information.

In the second area, a main goal is high-quality visualiza-
tion (for example, in movie productions and computer
games), but usually the realism of the behavior model is
not the priority. What is important is a convincing visual
result, which is achieved partly by behavior models and
partly by human intervention in the production process. A
virtual crowd should both look well and be animated in a
believable manner, the emphasis of the research being
mostly on rendering and animation methods. Crowd mem-
bers are visualized as fully animated three-dimensional
figures that are textured and lit to fit into the environment
(19). Here, behavior models do not necessarily aim to match
quantitatively the real world; their purpose is more in
alleviating the work of human animators, and to be able
to respond to inputs in case of interactive applications.

SCALABILITY OF SIMULATION

Achieving high-fidelity crowds is a challenging task. All
involved components such as behaviors, rendering, or ani-
mation should be able to run with a high level of detail.
However, as there are always performance limits, only a
smaller subset of the virtual population can be higher
quality. Computational resources have to be distributed
between a simulation of different parts of the population
and a simulation of the environment.

Apart from high-level behavior, there are low-level con-
sistency issues—for example, what should happen to parts
of the scene that are not visible to the user? A common
approach is to just ignore these parts of the scene; however,
this causes inconsistent situations when the user’s atten-
tion returns. As no simulation was done for this part, the
system has to generate a new situation from scratch, which
usually does not correspond to what the user remembers
from his previous visit (e.g, a table was moved; however,
when the user returns, the table is back in the original
position and not where it was left before).

Of course, it is not desirable and often unfeasible to run a
full simulation of the whole environment at all times.
However, some minimal simulation has to be done to be
able to maintain the consistency of the virtual world. This
leads to the notion of levels of detail for simulation:

1) Full simulation for the parts of the scene, which are
observed and being interacted with by the user(s).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



2) Simplified simulation for the parts that are farther
away and not well visible (some animations can be
simplified, locomotion is less accurate, collision detec-
tion is less accurate, etc.).

3) Minimal simulation for the parts of the world that
are not visible and not being interacted with. The
entities should still keep their internal state, and
movements have to be computed; however, there is
no need to properly animate them.

The following sections will detail how rendering, anima-
tion, navigation, and behavior should be improved to allow
for real-time, better, more realistic, and less costly crowd
simulations.

HIGH-FIDELITY VISUALIZATION

We want to be able to have a full close-up zoom of a human
with the highest possible level of detail in geometry, skin
details, shadows, and facial animations, while still keeping
a large crowd of humans.

All current crowd rendering methods use precomputa-
tion to speed up the rendering (8,20,21). The problem is how
to balance the time used for each human to render it and
how much will be stored in memory in the form of pre-
computed animations and behaviors. If all humans are
computed and displayed dynamically on-the-fly, we can
reach around 1000 humans with real-time performance
(25 frames per second). On the other hand, if all animations
are precomputed, we can render 10,000 humans with the
same performance. With the precomputed approach, fewer
animations can be stored because memory starts to become
a concern when the number of possible animations grows.
Dynamically created animation allows much wider variety
of motions, especially for interactive applications where
motions can depend on actions of the user. The animations
can be then generated, for example, by using inverse kine-
matics, rag doll physics, or motion capture.

Other issues that need to be addressed are shadows cast
by the humans, such as very detailed shadows when we
have a close view and less detailed ones or no shadows when
the user sees the crowd at a distance. High detail shadows,
for example, are those in the face and those cast on the
ground and onto other objects in the environment.

Rendering

Tecchia et al. (8) used billboards or impostors for crowd
rendering. The main advantage is that impostors are very
lightweight to render once they are in the memory of the
graphics card. The method requires building of all anima-
tions from all possible camera angles and storing these
pictures in a texture. One such texture can hold one frame
of animation in very low-resolution billboards, where every
individual subframe is about 16 pixels tall and wide. This
process can give good visuals because it is basically an
image-based rendering approach, so even pictures of real
humans could be incorporated. However, zooming on these
billboards will produce aliasing artifacts, because the
images on the billboards have to be small to fit in the

graphics card’s texture memory. As a result, billboarded
humans serve as a good approach for far-away humans that
do not need detailed views. More sophisticated impostors
have been also proposed by Aubel et al. (22).

Another approach that unifies image-based and poly-
gonal rendering is found in Ref. 20. They create view-
dependent octree representations of every keyframe of
animation, where nodes store information about whether
it is a polygon or a point. These representations are also able
to interpolate linearly from one tree to another so that in-
between frames can be calculated. When the viewer is at a
long distance, the human is rendered using point render-
ing; when zoomed in, using polygonal techniques; and when
in between, a mixture of the two. It does take large amounts
of data per keyframe and needs long preprocessing times
because of its precise nature, but also it gives near-perfect
interpolation between detail levels without ‘‘popping’’ arti-
facts that otherwise occur if one uses discrete detail levels.

The third alternative is to use vertex shaders to deform
a conventional mesh using a skeleton. The disadvantage
is that the pipeline would be constrained to shaders, and
every interaction such as lighting, shadows, and other
standard effects would then have to be programmed with
shaders.

In the last few years, rendering of virtual humans has
been drastically improved. This improvement is due, for
example, to variety in clothes and skin, which has been
achieved through vertex and fragment shaders; many dif-
ferent levels of detail have been created and used; and
computationally efficient fake soft shadows have been
developed for the highest levels of fidelity.

Variety

Variety in rendering is defined as having different forms or
types and is necessary to create believable and reliable
crowds in opposition to uniform crowds. For a human
crowd, variation can come from the following aspects:
gender, age, morphology, head, kind of clothes, color of
clothes, and behaviors. We create as many color variations
as possible from a single texture.

One approach (23,24) to variety in rendering is an
extension to Ref. 8 to create color variety from a single
texture to dynamically animated three-dimensional (3-D)
virtual humans. We obtain a wide variety of colors and
appearances by combining our texture and color variety.
Each mesh has a set of interchangeable textures, and the
alpha-channel of each texture is segmented in several
zones: one for each body part. This segmentation is done
using a desktop publishing software. Using this alpha map
to vary body part colors could be done with a fixed function
pipeline approach, i.e., all the computation on the CPU.
However, to improve the execution speed, it is possible to
explore the performance of high-end consumer graphics
cards, allowing for shader programming. This way, each
character can have up to 256 different alpha key areas,
corresponding to a certain body part. Using the fixed func-
tion pipeline approach, this is completely unreasonable, as
it would require 256 passes.

In the process of designing human color variety, we have
to deal with localized constraints: Some body parts need

2 CROWD SIMULATION



very specific colors. One cannot simply randomly choose
any color for any body part. This would result in green skin,
yellow lips, and other frightening results. With a graphics
user interface, the designer can set intuitive color ranges in
which a randomly chosen value will not produce unrealistic
results. For instance, the color variety for the skin of a
virtual human is defined in a range of unsaturated shades
with red and yellow dominance, almost deprived of blue
and green.

Levels of Detail

For the rendering part of crowds, levels of details are
essential to lower the computational cost and allow for
highly detailed virtual humans at the forefront of the scene.
For example, we can consider three main levels of detail as
introduced in Ref. 23:

� The highest level of detail of a virtual human is repre-
sented by a deformable mesh that can be deformed in
real time to perform a skeleton-based animation. This
deformable mesh can be divided into several different
levels of fidelity; for example, we may consider the
highest is composed of about 5000 vertices, and the
next two have a smaller number of vertices, i.e., about
1000 and 200 vertices, respectively.

� The second level of detail of a virtual human could be a
rigid mesh: a mesh whose deformation for a specific
animation has been precomputed. The precomputed
deformations allow substantial gains in speed; how-
ever, they require memory space to store the results
and thus constrain the animation variety.

� The final rendering level of detail is the billboard
model, which represents a virtual human as a textured
rectangle that always faces the camera. To create these
models, images are sampled around the waist level of
the character at 20 different angles, for each keyframe
composing an animation. Rendering such billboards is
very fast; unfortunately, the memory requirements for
each animation to sample are also very high.

Figure 1 shows an example with the three levels.
Through these different levels of detail, we pass from a
computationally expensive process to a very fast but mem-
ory requiring approach. One could ask if it is then worth-
while to use all these levels of details. The answer is yes,
because the costly approaches in terms of memory are used
for virtual humans that are far away from the viewer. For
these models, only a few animations need to be sampled,
because a varying speed or walk style is unnoticeable from
afar. In terms of performances, with the three-level
approach, it is possible to have a real-time crowd with about
40,000 individuals.

ANIMATION

While designing an animation engine usable in crowd
simulations, several criteria have to be taken into account:

Animation computation should be efficient and scalable, it
should also allow for variability, and it should be compa-
tible with level-of-detail. To create flexible virtual humans
with individualities, there are mainly two approaches:

� Motion capture and retargeting.

� Creation of computational models.

Motion Capture and Retargeting

The first approach consists in recording the motion using
motion capture systems (magnetic or optical), and then
trying to alternate such a motion to create this individual-
ity. This process is tedious, and there is no universal
method at this stage. Even if it is fairly easy to correct
one posture by modifying its angular parameters (with an
inverse kinematics engine, for instance), it becomes a diffi-
cult task to perform this over the whole motion sequence
while ensuring that some spatial constraints are respected
over a certain time range, and that no discontinuities arise.
When one tries to adapt a captured motion to a different
character, the constraints are usually violated, leading to
problems such as the feet going into the ground or a hand
unable to reach an object that the character should grab.
The problem of adaptation and adjustment is usually
referred to as the Motion Retargeting Problem.

Witkin and Popovic (25) proposed a technique for
editing motions, by modifying the motion curves through
warping functions, and produced some of the first interest-
ing results. In a more recent paper (26), they extended their
method to handle physical elements, such as mass and
gravity, and described how to use characters with different
numbers of degrees of freedom. Their algorithm is based on
the reduction of the character to an abstract character,
which is much simpler and only contains the degrees of
freedom that are useful for a particular animation. The
edition and modification are then computed on this simpli-

Figure 1. The three different rendering levels of detail: deformed
meshes, rigid meshes, and billboards.

CROWD SIMULATION 3



fied character and mapped again onto the end-user skele-
ton. Bruderlin and Williams (27) have described some basic
facilities to change the animation, by modifying the motion
parameter curves. They also introduced the notion of
motion displacement map, which is an offset added to
each motion curve. The Motion Retargeting Problem
term was brought up by Michael Gleicher (28). He designed
a space-time constraints solver, into which every constraint
is added, leading to a big optimization problem. Bindiga-
navale and Badler (29) also addressed the motion retarget-
ing problem, introducing new elements: using the zero-
crossing of the second derivative to detect significant
changes in the motion, visual attention tracking, and
applying inverse kinematics to enforce constraints, by
defining six subchains (the two arms and legs, the spine,
and the neck). Finally, Lee and Shin (30) used in their
system a coarse-to-fine hierarchy of B splines to interpolate
the solutions computed by their inverse kinematics solver.
They also reduced the complexity of the IK problem by
analytically handling the degrees of freedom for the four
human limbs.

Creation of Computational Models

The second approach consists in creating computational
models that are controlled by a few parameters. One major
problem is to find such models and to compose them to
create complex motion.

The most important animation scheme used in crowd
simulation, as well as games (31), is the locomotion, which
is basically composed of walking and running motions.

The first idea is to generate different locomotion cycles
online for each individual. Unfortunately, even though the
engine could be very fast, we could not allow for spending
precious computation time for such a task. Moreover,
depending on the rendering levels of detail, e.g., billboards
or rigid meshes, it is impossible to create an animation
online.

A second approach is to use an animation database. At
the beginning of a simulation, a virtual human walks at a
certain speed. To find the corresponding animation, the
framework formulates a request to the database. The data-
base returns an animation at the closest speed. To create
this database, we generate offline many different locomo-
tion cycles, with varying parameters. A few representative
locomotion cycles are selected to create the corresponding
rigid mesh animations. An even smaller number of cycles
are also selected to create billboard animations.

More recently, Glardon et al. (32) have proposed an
approach to generate new generic human walking patterns
using motion-captured data, leading to a real-time engine
intended for virtual human animation. The method applies
the principal component analysis (PCA) technique on
motion data acquired by an optical system to yield a reduced
dimension space where not only interpolation but also
extrapolation are possible, controlled by quantitative speed
parameter values. Moreover, with proper normalization
and time warping methods, the generic presented engine
can produce walking motions with continuously varying
human height and speed with real-time reactivity.

This engine allows generating locomotion cycles, para-
meterized by a few user-defined values:

� Speed: the speed at which the human moves.

� Style: a value between 0 and 1, 0 being a walk motion, 1
being a run motion.

� Personification: a weight to blend among the five dif-
ferent locomotion styles of five different motions cap-
tured people.

Now when such a engine is fully integrated into a crowd
framework, it is possible to generate many different loco-
motion cycles by simply varying the above parameters,
thus, making each individual unique. This engine has
been extended to curved walking (33) and dynamic obstacle
avoidance (34).

NAVIGATION

The main goal is to simulate a large number of people
navigating in a believable manner for entertainment appli-
cations. For this purpose, environments containing static
obstacles are analyzed and preprocessed to identify colli-
sion-free areas (35,36). Collisions with dynamic obstacles,
such as other pedestrians, are then avoided using local
reactive methods based on a cell decomposition (37,38) or
repulsive forces (9). Other approaches solve both naviga-
tion and pedestrian inter-collision problems simulta-
neously, using prioritized motion planning techniques
(39, 40). In such approaches, navigation is planned succes-
sively for each entity, which then becomes a moving obsta-
cle for the following ones—the growing complexity limits
the number of people composing the crowd. The probabil-
istic roadmap (PRM) approach (41) can be adapted to plan
individual locomotion (42,43). Recently, approaches tend
to decompose environments in walkable corridors, whose
width allows group navigation (44). None of these appro-
aches automatically handle both uneven and multilayered
environments, which are commonly encountered in virtual
worlds. PRM-based approaches suit high-dimensional pro-
blems well. However, they are not the most efficient ones for
navigation planning when the problem is reduced to three
dimensions. Pettré et al. (23) propose a novel approach
capable of decomposing such environments into sets of
interconnected cylindrical navigable areas. Terrain analy-
sis is inspired by Voronoı̈ diagrams and by methods using
graphics hardware to compute them (45). The resulting
structure captures the environment topology and can be
used for solving crowd navigation queries efficiently. To
exploit the locomotion animations of the virtual humans, a
navigation graph and path planner have been developed.
The navigation graph supports both path planning and
simulation by capturing the environment topology and
by identifying navigable areas. These navigable areas
(graph vertices) are modeled as cylindrical spaces with a
variable radius. If two of these cylinders overlap, it is
possible to pass from one to the other. A vertical gate (graph
edge) is used to model each cylinder intersection as a
connection. Figure 2 shows examples.

4 CROWD SIMULATION



HIGH-FIDELITY BEHAVIORS

To increase the number of simulated entities, the crowd
simulation should be scalable. This function can be
achieved, for example, by using behavior level-of-detail,
where there are different computational demands for
agents, depending on their relative position to the observer.
The behavior model should then allow working with dif-
ferent fidelities, for example, by using iterative algorithms,
or also heterogeneous crowds could be employed.

Behavior of animated characters has to obey some order.
Humans have intentions and beliefs about their environ-
ment, and they almost never behave in a truly random
manner. Most people plan their actions in advance with
regard to the goal they are pursuing.

There are several possible approaches on how to simu-
late such behavior:

� Scripting: Scripting allows a very detailed level of
control, but it is very inflexible. The virtual characters
will not be able to react to the changes in their envir-
onment unless the scripts are extremely complex.

� Reactive agents: Virtual characters are not scripted,
but they react to the changing environment according
to the sets of rules (e.g., described by Badler in Ref. 46).
There are few other popular techniques, e.g., BDI logic
introduced by Bratman (47), cognitive modeling by
Funge (48), or just simple finite state machines.

� Planning: Usually centralized, it tends to be inflexible
in handling unexpected situations. To mitigate this to
some extent, hierarchical planning is often used (49).

With the use of these three approaches, several difficul-
ties arise: Scripting is problematic in the case of contin-
gencies (e.g., unexpected obstacles in the path, objects
being in unexpected places, etc.) and centralized planning
tends to be complex, because it has to produce detailed
plans for every character in the system and does not cope
well with unexpected events. Reactive techniques perform
usually well for single characters, but the lack of a global
system state awareness hinders meaningful coordination if
desired (e.g., a police squad).

These problems (contingencies, flexibility, and good
level of control) can be addressed by a multilayered design,
where:

� The low-level animation problems are handled by
using state-of-the-art technology.

� The virtual characters have ‘‘brains,’’ which handle the
decision-making process by using classic planners.
Planning on this level would allow for building goal-
driven behaviors sensitive to the current situation.

� The virtual characters can communicate with each
other by means of high-level communication primi-
tives. The communication allows the virtual character
to ask for help or for information. It also enables high-
level communication with the user.

For example, in the ViCrowd system (50), crowds were
modeled with various degrees of autonomy using a hier-
archy of groups and individuals. Depending on the com-
plexity of the simulation, a range of behaviors, from simple
to complex rule-driven, were used to control the crowd
motion with different degrees of autonomy (see Fig. 3).
The crowd behavior is controlled in three different ways:

1) Using innate and scripted behaviors.

2) Defining behavioral rules, using events and reac-
tions.

3) Providing an external control to guide crowd beha-
viors in real time.

To achieve the groups’ and individuals’ low-level beha-
vior, three categories of information are used: knowledge
that is used to represent the virtual environment’s infor-
mation; beliefs that are used to describe the internal

Figure 2. Two examples of large crowds.

CROWD SIMULATION 5



status of groups and individuals; and intentions that
represent the goal of a crowd or group.

Intelligence, memory, intention, and perception are
focalized in the group structure. Also, each group can obtain
one leader. This leader can be chosen randomly by the
crowd system, defined by the user, or can emerge from
the sociological rules. The crowd aims at providing auton-
omous, guided, and programmed crowds. Varying degrees
of autonomy can be applied depending on the complexity of
the problem. Externally controlled groups or guided groups
no longer obey their scripted behavior, but they act accord-
ing to the external specification. At a lower level, the
individuals have a repertoire of basic behaviors that we
call innate behaviors. An innate behavior is defined as an
‘‘inborn’’ way to behave. Examples of individual innate
behaviors are goal-seeking behavior, the ability to follow
scripted or guided events/reactions, and the way trajec-
tories are processed and collision avoided. Although the
innate behaviors are included in the model, the specifica-
tion of scripted behaviors is done by means of a script
language.

Perception

One key aspect in behavioral modeling is the perception of
the virtual world by the virtual characters. For example, a
decision should be based on the evaluation of the visual
aspect of the scene as perceived by the virtual character. In
a more general context, it is tempting to simulate percep-
tion by directly retrieving the location of each perceived
object straight from the environment. This is of course the
fastest solution (and has been extensively used in video
games until the mid-1990s), but no one can ever pretend
that it is realistic at all (although it can be useful, as we will
see later on). Consequently, various ways of simulating
visual perception have been proposed, depending on
whether geometric or semantic information (or both) are
considered. Conde and Thalmann (51) tried to integrate all
multisensorial information from the virtual sensors of the
virtual character.

Renault et al. (52) introduced first the concept of render-
ing-based vision, and then it was extended by several
authors (53–57). In Ref. 52, it is achieved by rendering
off-screen the scene as viewed by the virtual character.

During the process, each individual object in the scene is
assigned a different color, so that once the 2-D image has
been computed, objects can still be identified: It is then easy
to know which object is in sight by maintaining a table of
correspondences between colors and objects’ IDs. Further-
more, highly detailed depth information is retrieved from
the view z-buffer, giving a precise location for each object.
Rendering-based vision is the most elegant method,
because it is the more realistic simulation of vision and
addresses correctly vision issues such as occlusion, for
instance. However, rendering the whole scene for each
agent is very costly, and for real-time applications, one
tends to favor geometric vision.

Bordeux et al. (58) have proposed a geometric vision
consisting in a perception pipeline architecture into which
filters can be combined to extract the required information.
The perception filter represents the basic entity of the
perception mechanism. Such a filter receives a perceptible
entity from the scene as input, extracts specific information
about it, and finally decides whether to let it pass through.
However, the major problem with geometric vision is to find
the proper formulas when intersecting volumes (for
instance, intersecting the view frustum of the agent with
a volume in the scene). One can use bounding boxes to
reduce the computation time, but it will always be less
accurate than rendering-based vision. Nevertheless, it can
be sufficient for many applications, and as opposed to
rendering-based vision, the computation time can be
adjusted precisely by refining the bounding volumes of
objects.

The most primitive approach is the database access.
Data access makes maximum use of the scene data avail-
able in the application, which can be distributed in several
modules. For instance, the object’s position, dimensions,
and shape are maintained by the rendering engine,
whereas semantic data about objects can be maintained
by a completely separate part of the application. Due to
scalability constraints as well as plausibility considera-
tions, the agents generally restrain their perception to a
local area around them instead of the whole scene. This
method is generally chosen when the number of agents is
high, like in Reynolds’ (7) flocks of birds or in Musse and
Thalmanns (50) crowd simulation; human agents directly
know the position of their neighbors and compute coherent
collision avoidance trajectory.

AUTHORING

When increasing the number of involved individuals, it is
becoming more difficult to create unique and varied content
of scenarios with large numbers of entities. If we want to
create or modify features of every individual one by one, it
will soon become too laborious. If, on the other hand, we
apply a set of features (either uniform or patterned) to many
individuals at once, it could create unwanted artifacts on a
larger scale, resulting in an ‘‘army-like’’ appearance with
too uniform or periodic distributions of individuals or char-
acteristics. Use of random distributions can alleviate such
problems; however, it can be very difficult to capture the
desired constraints into a set of mathematical equations,

Figure 3. Crowd generated using the ViCrowd system.

6 CROWD SIMULATION



especially considering integration into common art produc-
tion pipelines.

Bottom-up approaches, such as local rule-based flocking
(7), can create such complexity; however, they are difficult
to control if we want to achieve particular end configura-
tions (how to set local rules to get a global result). In the
recent work, Anderson et al. (59) achieved interesting
results for a particular case of constrained flocking anima-
tion. Nevertheless, the algorithm can get very costly when
increasing the number of entities and simulation time.

Ulicny et al. (60) propose an approach that gives full
creative power to designers using metaphors of artistic
tools, operating on a 2-D canvas familiar from image mani-
pulation programs working in WYSIWYG (What You See
Is What You Get) mode, with a real-time view of the
authored scene. The user controls the application using a
mouse and a keyboard. These tools then affect the corre-
sponding objects in a three-dimensional world space (see
Fig. 4). Different tools have different visualizations and
perform different effects on the scene, including creation
and deletion of crowd members, changing of their appear-
ances, triggering of various animations, setting of higher
level behavioral parameters, setting waypoints for displa-
cement of the crowd, or sending of events to a behavior
subsystem. The mouse moves the visual representation of
the brush tool (we used an icon of a spray can) on the screen,
with the mouse buttons triggering different actions either
on rendering or behavior subsystems. The keyboard selects
different brushes and sets their parameters and switches
between ‘‘navigate’’ and ‘‘paint’’ modes. In the ‘‘navigate’’
mode, the mouse controls position and orientation of the
camera. In the ‘‘paint’’ mode, the camera control is sus-
pended and the different areas on the screen are selected
depending on the pressed mouse button. The selection
areas can be, in principle, any arbitrary 2-D shape. This
area is then further processed by the brush according to its
particular configuration and a specific operator. For exam-
ple, a stroke of the creation brush with the random operator
would create a random mixture of entities or a stroke of the
uniform color brush would set colors of affected individuals
to the same value.

CONCLUSION

For many years, this was a challenge to produce realistic
virtual crowds for special effects in movies. Now, there is a
new challenge: the production of real-time truly autono-
mous virtual crowds. Real-time crowds are necessary for
games, VR systems are necessary for training and simula-
tion, and crowds are necessary in augmented reality appli-
cations. Autonomy is the only way to create believable
crowds reacting to events in real time.

ACKNOWLEDGMENTS

The authors is grateful to people who have helped in the
writing of this article, in particular, Pablo De Heras
Ciechomski, Branislav Ulicny, Soraia Raupp Musse, Julien
Pettré, Barbara Yersin, Jonathan Maim, and Pascal
Glardon.

BIBLIOGRAPHY

1. G. LeBon, Psychologie des Foules, Paris, France: Alcan, 1895.

2. T. Schelhorn, D. O’Sullivan, M. Haklay, and M. Thurstain-
Goodwin, STREETS: An agent-based pedestrian model, Proc.
Computers in Urban Planning and Urban Management,
Venice, Italy, 1999.

3. A. Penn and A. Turner, space syntax based agent simulation,
In: M. Schreckenberg and S.D. Sharma (eds.), Pedestrian and
Evacuation Dynamics, Berlin, Germany: Springer-Verlag,
2001.

4. A. Turner and A. Penn, encoding natural movement as an
agent-based system: An investigation into human pedestrian
behavior in the built environment, Environ. Planning B: Plan-
ning Design, 29: 473–490, 2002.

5. E. Bouvier, P. Guilloteau, crowd simulation in immersive space
management, Proc. Eurographics Workshop on Virtual Envir-
onments and Scientific Visualization, Berlin, Germany:
Springer-Verlag, 1996, 104–110.

6. D. Brogan and J. Hodgins, Group behaviors for systems with
significant dynamics, Auto. Robots, 4: 137–153, 1997.

7. C.W. Reynolds, Flocks, herds, and schools: A distributed beha-
vioral model, Proc. SIGGRAPH, 1987, pp. 25–34.

8. F. Tecchia, C. Loscos, and Y. Chrysanthou, Image-based crowd
rendering, IEEE Comp. Graphics Applicat., 22(2): 36–43, 2002.

9. D. Helbing and P. Molnar, Social force model for pedestrian
dynamics, Phys. Rev. E, 51: 4282–4286, 1995.

10. P. Molnar and J. Starke, Control of distributed autonomous
robotic systems using principles of pattern formation in nature
and pedestrian behavior, IEEE Trans. Syst. Man Cyb. B, 31:
433–436, 2001.

11. P. A. Thompson and E. W. Marchant, A Computer-model for the
evacuation of large building population, Fire Safety J., 24: 131–
148, 1995.

12. G. K. Still, Crowd Dynamics, PhD Thesis, Coventry, UK:
Warwick University, 2000.

13. L. Bottaci, A direct manipulation interface for a user enhance-
able crowd simulator, J. Intell. Sys., 5: 249–272, 1995.

14. D. Varner, D. R. Scott, J. Micheletti, and G. Aicella, UMSC
small unit leader non-lethal trainer, Proc. ITEC ’98, 1998.

Figure 4. Crowdbrush application: The spray can is used to
modify the class of Roman individuals.

CROWD SIMULATION 7



15. J. R. Williams, A Simulation Environment to Support Training
for Large Scale Command and Control Tasks, PhD Thesis,
Leeds, UK: University of Leeds, 1995.

16. C. W. Tucker, D. Schweingruber, and C. McPhail, Simulating
arcs and rings in temporary gatherings, Internat. J. Human-
Computer Sys., 50: 581–588, 1999.

17. D. Schweingruber and C. McPhail, A method for systematically
observing and recording collective action, Sociological Meth.
Res., 27(4): 451–498, 1999.

18. A. N. Marana, S. A. Velastin, L. F. Costa and R. A. LotufoAuto-
matic estimation of crowd density using texture, Safety Sci., 28
(3): 165–175, 1998.

19. F. Tecchia, C. Loscos, and Y. Chrysanthou, visualizing crowds
in real-time, Comput. Graphics Forum, 21(4): 735–765, 2002.

20. M. Wand and W. Strasser, multi-resolution rendering of com-
plex animated scenes, Comput. Graphics Forum, 21(3): 483–
491, 2002.

21. B. Ulicny, P. deHeras, and D. Thalmann, CrowdBrush: Inter-
active authoring of real-time crowd scenes, Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
Grenoble, France, 2004.

22. A. Aubel, R. Boulic, and D. Thalmann, Real-time display of
virtual humans: Level of details and impostors, IEEE Trans.
Circuits Syst. Video Technol., Special Issue on 3D Video Tech-
nology, 2000.

23. J. Pettre, P. deHears, J. Maim, B. Yersin, J. P. Laumaond, and
D. Thalmann, Real-time navigating crowds: Scalable simula-
tion and rendering, Comp. Animation Virtual Worlds, 16,
(3–4): 445–456, 2006.

24. B. Yersin, J. Maı̈m, P. de HerasCiechomski, S. Schertenleib,
and D. Thalmann, Steering a virtual crowd based on a seman-
tically augmented navigation graph, VCROWDS, 2005
pp. 169–178.

25. A. Witkin and Z. Popovic. Motion warping. Proc. SIGGRAPH
95, 1995, pp. 105–108.

26. Z. Popovic and A. Witkin, Physically based motion transforma-
tion. Proc. SIGGRAPH 99, 1999, pp. 11–20.

27. A. Bruderlin and L. Williams, Motion signal processing, Proc.
SIGGRAPH 95, 1995 pp. 97–104

28. M. Gleicher, Retargeting motion to new characters, Proc.
SIGGRAPH 98, 1998, pp. 33–42.

29. R. Bindiganavale, N. I. Badler, Motion abstraction and map-
ping with spatial constraints. In: N. Magnenat-Thalmann and
D. Thalmann, (eds.), Modeling and Motion Capture Techniques
for Virtual Environments, Lecture Notes in Artificial Intelli-
gence, New York: Springer, 1998, pp. 70–82.

30. L. Jehee, S.Y. Shin, A hierarchical approach to interactive
motion editing for human-like figures, Proc. SIGGRAPH 99,
1999, pp. 39–48.

31. R. Boulic, B. Ulicny, and D. Thalmann, Versatile Walk Engine,
J. Game Development, 1 (1): 29–50, 2004.

32. P. Glardon, R. Boulic, and D. Thalmann, PCA-based walking
engine using motion capture data, Proc. Computer Graphics
International, 2004, pp. 292–298.

33. P. Glardon, R. Boulic, and D. Thalmann, Robust on-line adap-
tive footplant detection and enforcement for locomotion, Visual
Comput., 22 (3): 194–209, 2006.

34. P. Glardon, R. Boulic, and D. Thalmann, Dynamic obstacle
clearing for real-time character animation, Visual Comput., 22
(6): 399–414, 2006.

35. W. Shao and D. Terzopoulos, Autonomous pedestrians,
SCA’05: Proc. ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, 2005, pp. 19–28.

36. F. Lamarche and S. Donikian, Crowds of virtual humans: A
new approach for real time navigation in complex and struc-
tured environments, Comput. Graphics Forum, 23 (3): 509–
518, 2004.

37. P.G. Gipps and B. Marksjo, Micro-simulation model for pedes-
trian flows, Math. and Comput. Simulation, 27: 95–105, 1985.

38. H. Klüpfel, T. Meyer-König, J. Wahle, and M. Schreckenberg,
Microscopic simulation of evacuation processes on passenger
ships. Proc. Fourth Int. Conf. on Cellular Automata for
Research and Industry, 2000, 63–71.

39. M. Lau and J. Kuffner, Behavior planning for character ani-
mation, Proc. ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 2005, 271–280.

40. M. Sung, L. Kovar, and M. Gleicher, Fast and accurate goal-
directed motion synthesis for crowds, Proc. ACM SIGGRAPH/
Eurographics Symposium on Computer Animation, 2005, Los
Angeles, CA, pp. 291–300.

41. L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars,
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces, Proc. IEEE Transactions on Robotics and
Automation, 1996, pp. 566–580.

42. M. G. Choi, J. Lee, and S.Y. Shin, Planning biped locomotion
using motion capture data and probabilistic roadmaps, Proc.
SIGGRAPH’03: ACM Transactions on Graphics, 22 (2): 182–
203, 2003.

43. J. Pettré, J. P. Laumond, and T. Siméon, A 2-stages locomotion
planner for digital actors. SCA’03: Proc. ACM SIGGRAPH/
Eurographics Symposium on Computer Animation, 2003,
pp. 258–264.

44. A. Kamphuis and M.H. Overmars, Finding paths for coherent
groups using clearance, SCA’04: Proc. ACM SIGGRAPH/
Eurographics Symposium on Computer Animation, 2004,
pp. 10–28.

45. K. Hoff, J. Keyser, M. Lin, D. Manocha, and T. Culver, Fast
computation of generalized voronoi diagrams using graphics
hardware, Proc. SIGGRAPH’99, 1999, pp. 277–286.

46. N. Badler, LiveActor: A virtual training environment with
reactive embodied agents, Proc. Workshop on Intelligent
Human Augmentation and Virtual Environments, 2002.

47. M. E. Bratman, Intention, Plans, and Practical Reason. Cam-
bridge, MA: Harvard University Press, 1987.

48. J. Funge, X. Tu, and D. Terzopoulos, Cognitive Modeling:
Knowledge, Reasoning and Planning for Intelligent Charac-
ters, Proc. SIGGRAPH’99, 1999.

49. J. Baxter and R. Hepplewhite, A hierarchical distributed plan-
ning framework for simulated battlefield entities, Proc. PLAN-
SIG’00, 2000.

50. S. Raupp Musse, D. Thalmann, A behavioral model for real
time simulation of virtual human crowds, IEEE Trans. Visua-
lization Comput. Graphics, l7 (2): 152–164, 2001.

51. T. Conde and D. Thalmann, An integrated perception for
autonomous virtual agents: Active and predictive perception,
Comput. Animation and Virtual Worlds, 16 (3–4): 457–468,
2006.

52. O. Renault, N. Magnenat-Thalmann, and D. Thalmann, A
vision-based approach to behavioral animation, J. Visualiza-
tion Comp. Animation, 1 (1): 18–21, 1990.

53. H. Noser, O. Renault, D. Thalmann, and N. Magnenat Thal-
mann, Navigation for digital actors based on synthetic vision,
memory and learning, Comput. Graphics, 19 (1): 7–19, 1995.

54. X. Tu and D. Terzopoulos, Artificial fishes, physics, locomotion,
perception, behavior, Proc. SIGGRAPH ’94, 1994, pp. 43–50.

8 CROWD SIMULATION



55. J. Kuffner, J. C. Latombe, Fast synthetic vision, memory, and
learning models for virtual humans, Proc. Computer Anima-
tion’ 99, 1999, pp. 118–127.

56. B. M. Blumberg, T. A. Galyean, Multi-level direction of auton-
omous creatures for real-time virtual environments, Proc.
SIGGRAPH 95, 1995, pp. 47–54.

57. C. Peters and C. O’Sullivan, A memory model for autonomous
virtual humans, Proc. Third Irish Eurographics Workshop on
Computer Graphics, Dublin, Ireland, 2001, pp. 21–26.

58. C. Bordeux, R. Boulic, and D. Thalmann, An efficient and
flexible perception pipeline for autonomous agents, Proc. Euro-
graphics ’99, 1999, pp. 23–30.

59. M. Anderson, E. McDaniel, and S. Chenney, Constrained
animation of flocks, Proc. ACM SIGGRAPH /Eurographics
Symposium on Computer Animation, 2003, pp. 286–297.

60. B. Ulicny, P. deHeras, and D. Thalmann, Crowdbrush: Inter-
active authoring of real-time crowd scenes, Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation
’04, 2004, pp. 243–252.

DANIEL THALMANN

Swiss Federal Institute
of Technology

Lausanne, Switzerland

CROWD SIMULATION 9



H

HIGH-QUALITY TEXTURE MAPPING
AND RENDERING OF POINT MODELS

POINT-BASED RENDERING

For over a decade since their introduction, points have been
explored as alternatives to triangle meshes for geometry
modeling and rendering (1). They have recently received
increasing attention from the computer graphics commu-
nity and gained a lot of popularity because of the wider
availability of three-dimensional (3-D) acquisition devices.
Based on their fundamental simplicity, points have been
shown to be flexible and efficient in representing highly
detailed features on complex objects. Directly working on
point-based geometries greatly simplifies content creation,
surface reconstruction, and rendering, as no connectivity or
topological constraints exist.

Many point-based rendering algorithms focus on effi-
ciency using hardware acceleration. Emphasis has also
been placed on high-quality rendering. The surface splat-
ting technique (2) and differential points (3) techniques
have been proposed for high-quality surface rendering.
Alexa et al. (4) control the fidelity of the representation by
dynamically adjusting the density of the points. Zwicker
et al. (5) introduce the elliptical weighted average (EWA)
filter to increase the rendering quality for point-based
rendering. Recently Botsch et al. (6) proposed Phong
splatting to generate superior image quality, which bases
the lighting of a splat on an associated linearly varying
normal field. Schaufler and Jensen introduced ray tracing
of point-based geometry (7). Their approach renders high-
quality ray-traced images with global illumination using
unstructured point-sampled data, thus avoiding the time-
consuming process of reconstructing the underlying sur-
face or any topological information. Intersections with the
point-sampled geometry are detected by tracing a ray
through the scene until the local density of points is above
a predefined threshold. They then use all points within a
fixed distance of the ray to interpolate the position, normal
and any other attributes of the intersection. A deferred
shading technique (8) has been proposed for high-quality
point-based rendering, providing per-pixel Phong shading
for dynamically changing geometries and high-quality
anti-aliasing.

As in triangle-based rendering, texture mapping can be
an effective technique to enrich visual reality in renderings
of point models. Textures can be directly generated by a
3-D painting and editing system (9). In 3-D scanning, high-
resolution photos are often acquired when lower resolution
scans are conducted. Existing approaches couple geometry
and texture information at each point; a point has both
geometry coordinates and a color. In Surfels (2), Pfister
et al. store prefiltered texture colors of the Surfel mipmap
in the layered depth cube (LDC) tree and perform linear
interpolation during rendering. As existing methods

assign one color to each point, photos (textures) are
downsampled to match the resolution of the point set. In
this process, high-frequency texture information is perma-
nently lost.

Ren et al. (10) propose the use of textured polygons when
textures are mapped to each point splat and are blended
through splatting. The proposed object space EWA splat-
ting uses a two-pass rendering algorithm. In the first
rendering pass, visibility splatting is performed by shifting
opaque surfel polygons backward along the viewing rays,
whereas in the second rendering pass, surface polygons are
texture mapped, deformed, and rendered through view-
dependent EWA prefiltering.

MOTIVATION OF HIGH-QUALITY TEXTURE MAPPING
ON POINT-BASED MODELS

Texture mapping enhances the visual richness of raster-
ized images with a relatively small additional computation
cost. It has been one of the most successful techniques
developed in computer graphics for high-quality image
synthesis since its birth in 1970s.

Textures were originally developed for mesh or polygo-
nal models. In its basic form, a texture (an image) is mapped
to a simple geometry shape, which allows arbitrarily com-
plicated color details of the surface to be rendered without
additional mesh resolutions. One typical example is map-
ping a brick texture to a simple rectangle to resemble the
details of a wall.

Besides color, other values can be mapped such as
specular reflection, normal vector perturbation (bump
mapping), and surface displacement. For additional read-
ing on texture mapping topic, readers can refer to Heck-
bert’s survey paper and Wolberg’s book in the reading list.

With the recent rapid advancement of laser range scan-
ning techniques, acquisition of real objects (both geometry
and appearance) is becoming common, leading to an increas-
ing number of point-based models. When scanning small-to
middle-size objects, it is practical to scan a large number of
points to densely sample the object details. In this case, the
point density of scans can match up with the pixel resolution
of photographs that represent the details of the objects.
When scans and photographs are registered together, color
information is assigned to each point. However, for large
outdoor environment scanning, because of the limitations of
the scanning device and the constraints of the scanning
process, the acquired point resolution is usually far below
the typical resolution of a digital photograph. For example,
the resolution of a photo can be more than ten times higher
thanthatofa laserscan. Inthesecases, it ismoredesirable to
perform authentic texture mapping on point models, i.e.,
assigning texture coordinates to each point so that texture
colors in between points can be looked up, instead of directly
assigning a color to each point.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



INTERPOLATION VS. COMPUTATION ORDER

In computer graphics, interpolation is an important
operation across the entire rendering pipeline. Interpola-
tion can be performed either before or after a function
evaluation (or table lookup), corresponding to either
preinterpolation or postinterpolation, respectively. In
the following discussion, we review several important
graphical operations or visualization procedures that
have featured alternative methods depending on when
the interpolation is conducted. Within this framework,
our TSplatting performs interpolation on texture coordi-
nates before color lookup, which is an alternative to
directly interpolating colors, as is performed in conven-
tional point splatting.

Preshaded vs. Postshaded Volume Rendering

Volume datasets consist of sample points defined at 3-D
grids. In volume rendering, volumes are resampled and
each sample’s color is computed and contributed to the
final image through compositing. Volume rendering algo-
rithms can be classified as preshaded and postshaded
according to where the volume resampling (interpolation)
takes place. In preshaded algorithms (11), original volume
samples at grids are first classified (through transfer
function lookup) and shaded before they are resampled.
Instead, postshaded volume rendering algorithms (12,13)
first resample (interpolate) raw volume samples and then
perform transfer function lookup and shading using the
resampled values. Thus, postshaded methods conduct
preinterpolation, whereas preshaded methods conduct
postinterpolation. Because both transfer function lookup
and shading are nonlinear functions, the resulting images
from the two approaches are different. Although consen-
sus still does not exist on which method is superior, in
general, images generated from the preshaded methods
result in blurry images and loss of fine geometry details,
whereas the postshaded methods produce sharper fea-
tures in generated images. On the other hand, preshaded
methods can be more efficient when super-sampling of
volumes is performed for generating higher resolution
images because less effort is spent on transfer function
lookup and shading.

Gouraud vs. Phong Shading

When rendering polygon meshes, Gouraud shading (14)
and Phong shading (15) are two major shading algorithms
for local illumination. Gouraud shading performs a lighting
calculation at each vertex and then interpolates among
vertices to obtain pixel colors within the projection of
each polygon. Instead, Phong shading first interpolates
normals across the polygon facet and then a lighting cal-
culation is performed based on the interpolated normal to
obtain pixel color. Here, Phong shading does preinterpola-
tion, whereas Gouraud shading does postinterpolation.
Because of the normal interpolation before the lighting
evaluation, Phong shading produces specular highlights
that are much less dependent on the underlying polygons
than Gouraud shading does. On the other hand, Phong
shading is more expensive than Gouraud shading.

Surfels vs. Phong Splatting for Point-Based Rendering

Similar to polygon-based rendering, point-based rendering
can also be classified as preinterpolation versus postinter-
polation methods. In Surfels (2), each point is treated as a
flat disk with a single normal direction. Points are first flat-
shaded before composition. Alternatively, Phong splatting
(6) generates superior image quality by first interpolating
normals among points using point splatting and then
deferred shading by evaluating lighting at each pixel using
the interpolated normals. In this case, Phong splatting is a
preinterpolation method, whereas Surfels is a postinterpo-
lation method. An in-between method is rendering using
differential points (16), in which normals in the vicinity of a
point are extrapolated based on the local differential geo-
metry of the point and are then used to calculate the
lighting of the point disk; these shaded point disks are
finally blended together as done in Surfels.

Color Splatting versus Texture Splatting for Texture
Mapping Points

The operation of mapping textures on points can be
achieved in alternative approaches falling in the preinter-
polation and postinterpolation framework. In conventional
methods of texture mapping points, the color of each point is
first looked up using its predefined texture coordinates and
is then splatted and composited with adjacent point splats
similarly computed. This method is referred to as color
splatting by us. In our texture splatting (TSplatting), tex-
ture coordinates, instead of color, are splatted and compos-
ited followed by a deferred texture lookup of each screen
pixel to obtain pixel colors. Based on the interpolation
order, TSplatting belongs to preinterpolation while color
splatting belongs to postinterpolation. We will see that
TSplatting produces superior image quality than that of
color splatting.

We summarize the afore-mentioned methods in Table 1.
In general, postinterpolation methods are computationally
less expensive but generate lower image quality than do
preinterpolation methods. Next, we provide additional dis-
cussion on our TSplatting algorithm, which is a preinter-
polation method.

TSPLATTING—A POINT-BASED HIGH-QUALITY TEXTURE
MAPPING FRAMEWORK

Motivated by the above requirements, a novel framework of
high-quality texture mapping of point-based models,
TSplatting, is developed (17). The general two-pass
point-based rendering pipeline is modified into a three-
pass pipeline. The first two steps are very similar to a
conventional point-based rendering pipeline except that
the color of each point is replaced with its texture coordi-
nates. The texture lookup operation is deferred to a third
pass through a per-pixel texture lookup for all screen pixels.
In addition, advanced techniques like bump mapping and
texture-based lighting can be implemented. This method is
capable of rendering point models with much higher tex-
ture resolution than that of the point model itself without
resorting to meshing or triangulation. As a result, a

2 HIGH-QUALITY TEXTURE MAPPING AND RENDERING OF POINT MODELS



significant improvement in rendering quality occurs. This
decoupling of geometry and texture facilitates perceptually
guided point simplification by leveraging texture masking
effects in achieving uncompromised final image quality
(18). These texture mapping results can be potentially
achieved in Botsch et al. ’s deferred shading framework
(8) by encoding texture coordinate information in the attri-
bute pass and performing a texture lookup in the shading
pass. Here we describe the explicit design and implementa-
tion of this framework. We then point out several important
issues raised in this seemingly straightforward process and
describe solutions to them.

FRAMEWORK OVERVIEW

The TSplatting framework maps high-resolution textures
onto point models of lower spatial resolution. The pipeline
of the framework is illustrated in Fig. 1.

As mentioned, point-based models are rendered in two
passes. In the first pass, points are rendered as opaque
disks to obtain a visibility mask. The points that pass the
visibility test are then rendered using splatting techniques
in the second pass (2,10). Adjacent splats are overlapped to
ensure no holes are on the rendered surface. The color of
each splat is blended with that of its neighbors based on the
opacity values modulated with a low-pass Gaussian
filter.

In TSplatting framework, a three-pass rendering is
employed to texture map point-based models. Instead of
splatting colors for each point, texture coordinates are used
in the second pass and one additional pass for texture
lookup is added. The texture coordinate interpolation in
the second pass is the key for mapping high-resolution

textures onto sparse points. The three rendering passes are
illustrated in Fig. 1 and are explained below.

Pass 1: Visibility Computation
In the first pass, a visibility mask is generated by ren-

dering point splats as opaque disks. To ensure hole-free
surfaces, the projection size of each point is suitably
calculated.

Pass 2: Texture Coordinate Splatting
In this pass, each point is splatted by replacing color with

texture coordinates. Texture coordinates between points
are blended and automatically interpolated by graphics
hardware.

Pass 3: Per-pixel Texture Look-up
In this pass, texture coordinates encoded in each screen

pixel are used to look up the high-resolution texture image.
Lighting can also be incorporated by modulating the texel
color with the lighting coefficients.

TEXTURE COORDINATES SPLATTING

One of the main contributions of the TSplatting framework
is the use of deferred shading for splatting in the second
rendering pass and the subsequent texture lookup. In the
following discussion, we provide an analysis and justifica-
tion of using texture coordinates splatting in achieving high
texture mapping quality.

In point splatting (5,10), objects are represented by a set
of points fPkg in object space. Each point is associated with
a radially symmetric basis function rk and color coefficient
wk. With texture mapping, each point also has a texture
coordinate coefficient vk. Elliptical Gaussians are normally
chosen as basis function rk, and the prefilter is h. The

Table 1. Comparison of Algorithms with Order Switch of Computation and Interpolation in Different Operations

Operation Variable Function Postinterpolation Preinterpolation

Volume rendering Volume density Classification Preshaded Postshaded
Polygon shading Normal Lighting Gauraud shading Phong shading
Point shading Normal Lighting Surfels Differential points

Phong splatting
Point-based texture mapping Texture Coordinate Texture Lookup Color splatting TSplatting

Figure 1. TSplatting. During rendering, texture coordinates between points are interpolated by
graphics hardware. In the final step, a per-pixel texture look-up is performed to fetch colors from
high-resolution textures.

HIGH-QUALITY TEXTURE MAPPING AND RENDERING OF POINT MODELS 3



splatting output gc(x) at screen position x can be expressed
as a weighted sum of resampling filters rk(x):

gcðxÞ ¼
X
k�N

wkrkðxÞ (1Þ

rk(x) is a convolution of the basis function rk and prefilter h.
The detailed definition of rk(x) can be found in Ref. 10. Color
wk is precomputed by texture prefiltering (5). According to
the Nyquist theorem, the prefiltering results in a loss of
texture details with frequency higher than the point model
sampling rate.

Although the texture coordinate coefficient vk normally
varies gradually over the points, their corresponding tex-
tures may contain high-frequency details. In TSplatting, a
reconstruction of texture coordinates gt(x) is first computed
in the screen space (pass 2):

gtðxÞ ¼
X
k�N

vkrkðxÞ (2Þ

As the local parameterization is normally smooth, the
loss of gt(x) during the splatting reconstruction is minimal.

In the subsequent stage (pass 3), each screen pixel obtains
its color information through a resampling of the texture, in
contrastwithcolorsplattingwhereeachpixelcolorisobtained
by a direct interpolation among colors of an adjacent point.

In the second rendering pass, texture coordinates are
rendered as color attributes for each point. As the point size
increases, texture splats overlap and smooth interpolation
between splat centers is performed by assigning a Gaussian
kernel (representing opacity) to each splat and the adjacent
splats are composited together. Smoothly interpolated
texture coordinates ensure a faithful mapping of the
high-resolution texture. Note that, along boundaries,
textures are deformed because of a lack of neighboring
points for blending. A solution to this issue will be discussed
later in this article.

Various experiments show that the TSplatting method
(TS) provides much higher quality texture mapping than
the normal color splatting methods (CS). In Fig. 2, a texture
is mapped to point-based vase models with various resolu-
tions. Figure 2(a) and (b) are vase models, with 10K and
35K points, respectively, rendered by the TS method. Fig-
ure 2(c)–(e) are rendered by traditional CS, with model
sizes ranging from 10K to 560K. The rendering quality of
the point model with only 35K points using the TS method
[Fig. 2 (a)] is comparable with that of the 560K point model
rendered with CS [Fig. 2 (e)]. Images in the second row are
the close-ups (128�128) of the corresponding first row
images. The last row shows the individual points of each
model. Only when the point resolution is close to the image
pixel resolution does the rendering quality of CS start to
match up with the quality of the TS.

Figure 3 demonstrates the TS results by applying var-
ious high-resolution textures to a torus model. This torus
model has 22,321 points. The texture resolutions are
around 1024�1024. Per-pixel lighting is applied in the
rendering. Figure 4 shows applying bump mapping with
TS. The bump map shown in the upright corner is created
using the NVIDIA Normal Map Filter.

ADVANCED RENDERING ISSUES

We discuss solutions to several issues to achieve high-
quality texture mapping on points at different viewing
resolutions and texture/object boundaries.

Anti-aliasing—Mipmapping

Similar to mesh rendering, aliasing occurs when texels are
minimized(i.e.,onetexelprojectstolessthanonepixelsizeon
screen) during texture mapping. The rendering must be
appropriately anti-aliased to achieve high-quality results.

In the TS framework, conventional anti-aliasing meth-
ods can be naturally integrated. The mipmapping function
(19) supported by OpenGL is used to achieve anti-alaising.
To this end, an image pyramid is created for each input
texture using the OpenGL command gluBuild2DMipmaps
without explicit computation in the shader. In the last
rendering pass, for each fragment, the appropriate level

Figure 2. Comparison of TSplatting with traditional color splat-
ting on points. Images (a) and (b) depict models rendered by the TS
method and have 10K and 35K points, respectively. Images (c)–(e)
are rendered by traditional CS. The image quality resulting from
color splatting increaseswhen the number of points increases (from
10K to 560K). Images in the second row are the corresponding
close-ups of the rendered images in the first rows. The last row
shows individual points in each model.

Figure 3. Various textures are applied to a torus model with
the TSplatting method.

4 HIGH-QUALITY TEXTURE MAPPING AND RENDERING OF POINT MODELS



of textures will be computed automatically by hardware
and used for look-up. Effectively, no extra coding is needed
for the anti-alisasing except changing the OpenGL status
and building the texture pyramid.

Boundary Issues

When directly applying texture coordinate interpolation to
a point model at the object boundaries, artifacts may appear
in two situations: along the model boundaries because of
lack of texture blending and at the locations where the
texture coordinates change discontinuously [Fig. 5(b),
marked by a yellow rounded rectangle]. Texture coordi-
nates may be inappropriately interpolated along the dis-
continuity (boundary) of texture coordinates. Direct
interpolation between the splats on the opposite sides of
the texture coordinate discontinuity will result in a blur of
the whole spectrum of the texture coordinates along the
boundary.

To remove such rendering artifacts, it is necessary to
limit the footprint of the boundary splats. We adapt the
techniques to render sharp features by explicitly represent-
ing boundaries or discontinuity features as clip lines (20).

The mathematical setup of a clipping scheme is illu-
strated in Fig. 5(a). For each point, at most two clipping
lines in each point’s local texture coordinate are specified in
the form of

Aixþ Biyþ Ci ¼ 0 (3Þ

Ai, Bi, and Ci (i = 1,2) are line parameters. The local
texture coordinate is defined by the two-texture parameter
vector du and dv. The point’s center is the origin. Each line
divides a plane containing the point splat into two parts.
The region where

Aixþ Biyþ Ci < 0 (4Þ

is defined to be clipped. Line parameters are passed to
hardware together with other attributes of each point.
During rendering, each fragment is checked with its value
according to Equation (4). Figure 5(a) shows an example
with two types of boundaries. The first is the point model
boundary. The second is the texture coordinate disconti-
nuity. Without clipping [Fig. 5 (b)], texture coordinates are
blended across the boundary and artifacts are introduced.
With clipping [Fig. 5 (c)], points along boundaries are
represented as clipped points and are free from artifacts.
With the solution for boundary problems, TS framework
can also accommodate texture atlases.

CONCLUDING REMARKS

TS provides a novel framework for high-quality texture
mapping on point-based models without connectivity infor-
mation. It is capable of mapping a low-resolution point-
based model with high-resolution textures. The texture
coordinates of neighboring splats are interpolated, and
the resulting smooth texture coordinate field in the screen
space is used to look up the pixel colors. In this way, point

Figure 4. Bump mapping by TSplatting. (a) Rendered image.
(b) Bump map texture.

Figure 5. Clipping for points along boundaries. (a) For each point splat, up to two optional clipping
lines are specified. Artifacts are marked by dotted yellow rectangles. (b) Clipping disabled.
(c) Clipping enabled.

HIGH-QUALITY TEXTURE MAPPING AND RENDERING OF POINT MODELS 5



models with much higher texture resolution than that of
the point model can be rendered.

BIBLIOGRAPHY

1. M. Levoy and T. Whitted, The use of points as display primi-
tives. Technical Report TR 85-022, The University of North
Carolina at Chapel Hill, 1985.

2. H. Pfister, M. Zwicker, J. van Baar, and M. Gross, Surfels:
Surface elements as rendering primitives. Proc. SIGGRAPH
’00. Reading, MA: ACM Press/Addison-Wesley, 2000, pp. 335–
342.

3. A. Kalaiah and A. Varshney, Modeling and rendering of points
with local geometry. IEEE Trans. Visualization Comput. Gra-
phics, 9 (1): 30–42, 2003.

4. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. T. Silva, Point set surfaces, VIS ’01: Proc. Conference on
Visualization ’01, Washington, DC, 2001, pp. 21–28.

5. M. Zwicker, H. Pfister, J. van Baar, and M. Gross, Surface
splatting. Proc. SIGGRAPH ’01, 2001, pp. 371–378.

6. M. Botsch, M. Spernat, and L. Kobbelt, Phong splatting. Proc.
Eurographics Symposium on Point-Based Graphics, 2004,
pp. 25–32.

7. G. Schaufler and H. Wann Jensen, Ray tracing point sampled
geometry. Proc. Rendering Techniques 2000: 11th Euro-
graphics Workshop on Rendering, 2000, pp. 319–328.

8. M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt, High-
quality surface splatting on today’s GPUs. Proc. Eurographics
Symposium on Point-Based Graphics, 2005, pp. 17–24.

9. M. Zwicker, M. Pauly, O. Knoll, and M. Gross, Pointshop 3D:
An interactive system for point-based surface editing. ACM
Trans. Graph., 21 (3): 322–329, 2002.

10. L. Ren, H. Pfister, and M. Zwicker, Object space EWA surface
splatting: A hardware accelerated approach to high quality
point rendering. Proc. Computer Graphics Forum (Euro-
graphics 2002), 2002, pp. 461–470.

11. M. Levoy, Efficient ray tracing of volume data. ACM Trans.
Graph., 9 (3): 245–261, 1990.

12. U. Tiede, K. H. Hoehne, M. Bomans, A. Pommert, M. Riemer,
and G. Wiebecke, Investigation of medical 3D-rendering algo-
rithms. CGA, 10 (2): 41–53, 1990.

13. R. Avila, T. He, L. Hong, A. Kaufman, H. Pfister, C. Silva, L.
Sobierajski, and S. Wang, Volvis: A diversified volume visua-
lization system. Proc. Visualization ’94, 1994, pp. 31–38.

14. H. Gouraud, Continuous shading of curved surfaces. IEEE
Trans. Comput., C-20 (6): 623–629, 1971.

15. B. Tuong Phong, Illumination for computer-generated images,
Ph.D. Dissertation, Department of Computer Science, Univer-
sity of Utah, Salt Lake City, July 1973.

16. A. Kalaiah and A. Varshney, Differential point rendering. Proc.
12th Eurographics Workshop on Rendering Techniques,
London, UK, 2001, pp. 130–150.

17. X. Yuan, M. X. Nguyen, L. Qu, B. Chen, and G. W. Meyer,
TSplatting:Mapping high quality textures on sparse point sets.
IEEE Trans. Visualization Comput. Graphics. In press.

18. L. Qu, X. Yuan, M. X. Nguyen, G. Meyer, B. Chen, and
J. Windsheimer, Perceptually guided rendering of textured
point-based models. Proc. Eurographics Symposium on
Point-Based Graphics, 2006, pp. 95–102.

19. L. Williams, Pyramidal parametrics. SIGGRAPH ’83: Proc.
10th Annual Conference on Computer Graphics and Interactive
Techniques, New York, 1983, pp. 1–11.

20. M. Zwicker, J. Räsänen, M. Botsch, C. Dachsbacher, and
M. Pauly, Perspective accurate splatting. GI ’04: Proc. 2004
Conference on Graphics Interface, 2004, pp. 247–254.

FURTHER READING

G. Wolberg, Digital Image Warping. IEEE Computer Society
Press, Los Alamitos, CA:, 1994.

P. S. Heckbert, Survey of texture mapping, IEEE Comput. Graph.
Applicat., 6 (11): 56–67, 1986.

XIAORU YUAN

MINH X. NGUYEN

BAOQUAN CHEN

University of Minnesota at Twin
Cities

Minneapolis, Minnesota

6 HIGH-QUALITY TEXTURE MAPPING AND RENDERING OF POINT MODELS



L

LIGHTING

All we see around us is due to light. If we want to generate
synthetic images that look like reality with a computer, we
need to simulate how light behaves: How it leaves its
sources, how it is reflected on objects, and how it is atte-
nuated in the fog before it finally enters the eye and lands on
the retina or enters the camera lens and excites the film. We
need to perform lighting simulation. Studying the interac-
tion of light with objects for the purpose of image generation
has a long history in art and has been experiencing a huge
revival in the last 40 years in the field of computer graphics.
The more realistic and more quickly generated the syn-
thetic images are, the more applications they find. Compu-
ter graphics is being used in instruction and training,
industrial and artistic design, architectural walkthroughs,
video games, the film industry, and scientific visualization.

The goal of lighting simulation is to generate images
that look like reality. To achieve this effect, one needs to
start with a faithful description of the environment being
simulated, which is the stage of modeling, in which one has
to specify the geometry of all objects in the scene (objects’
shapes, positions, and sizes), optical properties of their
surfaces (reflection, transmission, etc.), positions and emis-
sion properties of light sources, and, finally, the position
and properties of the virtual camera. After the modeling
stage, the virtual scene is ready for simulation of light
transport (i.e., for simulation of the way light propagates
in the scene). After simulation is done, we can take the
scene’s synthetic snapshots, which is also called image
rendering. Often, the rendering stage and light transport
simulation steps are combined into a single stage. In this
case, the light simulation is restricted to finding how much
light from the visible scene is ultimately reaching the
sensors in a virtual camera.

The distribution of light in space, generated by various
light sources, may vary significantly. Sun gives very
intense rays of light originating from a single point. Such
light will cause very definite shadows with hard edges. An
overcast sky emits a very different light field—the light
rays originate from all the positions over the sky dome and
is distributed more or less uniformly in space. If such light
generates any perceptible shadows at all, they will not
manifest themselves as more than a dark and blurry
smudge on the ground around an object.

Light goes through many interactions with scene objects
before it reaches our eyes. Depending on the object shapes
and their reflectance properties, light propagation creates
various patterns and phenomena so well known from our
everyday life. A matt wall reflects light diffusely, which
means that it scatters light in all possible directions. Dif-
fuse reflections often lead to the phenomenon called color
bleeding (Fig. 1a, see the reddish tinge on the left part of the
dragon’s body), when a diffuse object lends its color tone to
another diffuse object. Caustics are another well-known

phenomenon, most often seen on a table under an inter-
estingly shaped glass (Fig. 1b). It is formed by a light
reflected by a shiny (specularly reflecting) object or refracted
by a transparent object and focused on a diffuse receiver.

The goal of lighting is to simulate the light propagation
in the scene to be able to reconstruct all the aforementioned
phenomena such as hard and soft shadows, mirror reflec-
tions, refractions, color bleeding, and caustics. Today a
large variety of lighting algorithms is available in computer
graphics, differing by the degree to which they can faith-
fully simulate those phenomena. This article will give a
short overview of those algorithms. Nowadays, there is a
strong trend toward using physically plausible (or at least
physically motivated) algorithms for lighting simulation.
Therefore, before we delve into the workings of those algo-
rithms, we will have to be more formal and define some
physical quantities related to light propagation.

Lighting simulation is one of the tools used in a subfield
of computer graphics called image synthesis or rendering.
There are rendering techniques that do not use lighting
simulation at all. Those techniques try to render objects in
an expressive, artistic way, artificially stressing some of the
objects’ features. They are usually referred to as non-photo-
realistic rendering (NPR) techniques. Computer software
for image synthesis is called a renderer.

A thorough treatment of lighting simulation with the
focus on the underlying physics is given in Ref. 1. A more
easily accessible, implementation-oriented description of
lighting simulation is given in Refs. 2 and 3.

RADIOMETRY

Light is a form of energy. The amount of light energy in unit
time is described by radiant flux F measured in Joules per
second or Watts (W). To better localize the radiant flux in

space, we use irradiance EðPÞ ¼ dFðPÞ
dA

, which describes

flux per unit area arriving at an infinitesimal surface area
around point P from all possible directions. Irradiance is
measured in Watts per square meter [W�m�2]. Radiant
exitance (or radiosity) B is the same as irradiance but
describes the light leaving an infinitesimal surface area.

To be able to localize the flux not only in space but also in
directions, we need to define solid angle and differential
solid angle. Similar to its counterpart in plane, solid angle
measure the span of a set of directions in space. Formally,
the solid angle subtended by an object from a point P is the
area of the projection of the object onto the unit sphere
centered at P. Differential solid angle dv is an infinitesi-
mally thin cone of directions around a considered direction.
Radiant flux density in directions is given by radiant

intensity, IðvÞ ¼ dFðvÞ
dv

. Intensity, flux per unit solid angle,

is mostly used to describe light leaving a point light source.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



The physical quantity used to describe light energy
distribution in space and in directions is radiance

(Fig. 2), defined as LðP;vÞ ¼ dFðP;vÞ
dA cos udv

, that is radiant

flux per unit projected area perpendicular to the considered
direction, per unit solid angle. u is the angle between the
surface normal of the surface and the given direction. The
term cos u in the denominator of the radiance equation
converts the differential area to the projected differential
area and makes a unit amount of radiance represent the
same amount of light power reaching a surface independent
of the surface’s orientation.

Radiance is the most important quantity for lighting
simulation for two reasons. First, it is the value of radiance
and not any other radiometric quantity, which directly
determines the intensity of light perceived by human obser-
ver or recorded on a photographic film.

The ultimate goal of lighting simulation is to determine the
value of outgoing radiance in the direction of the virtual camera
for all visible points in the scene.

Second, radiance is constant along rays in space (see
Fig. 3).

The value of incoming radiance arriving at a point P from the
direction v is the same as the value of outgoing radiance leaving
point Q (directly visible from P along v) in the opposite direction
–v.

For these reasons, radiance is the most suitable quantity
for computing energy transfer between surfaces in terms of
straight rays transferring the light energy, which corre-
sponds to the treatment of light propagation in geometric
optics adopted by the vast majority of lighting simulation

Figure 1. Complex light phenomena. Color bleeding (a) is due to
diffusely reflected light landing on another diffuse surface. Here,
the red book reflects light onto the dragon, effectively ‘‘transfer-
ring’’ the red color from the book to the back side of the dragon.
Caustics (b) are patterns of light focused by reflections or refrac-
tions on a specular surface, landing on a diffuse object. Here, the
green glass focuses the light onto the wooden table.

Figure 2. Radiance is radiant flux per unit projected area per-
pendicular to the considered direction per unit solid angle.

Figure 3. Radiance is constant along rays in space. The value of
incoming radiance arriving at a point P from the direction v is the
same as the value of outgoing radiance leaving point Q (directly
visible from P along v) in the opposite direction �v.

2 LIGHTING



algorithms: Light propagates along straight lines until it
hits an object and gets reflected.

COLOR TREATMENT

Radiometric quantities are, in general, functions of light
wavelength l—they are spectral quantities. A spectrum of
visible light is perceived as a color. The tri-chromatic
nature of the human visual system (HVS) allows us to
reproduce this color by a linear combination of three spec-
trally independent primary colors that are termed red,
green, and blue (RGB) color (see the article on Color). In
a lighting simulation software, the value of a radiometric
quantity is thus represented by a 3-D vector corresponding
to the three primary colors. This description of the spectral
distribution of light energy is sufficient for simulating most
of the perceivable lighting phenomena. However, some
phenomena, such as dispersion, require performing the
lighting simulation with the full spectrum representation
and converting to RGB at the end of the simulation before
the image display.

LIGHT SOURCES

Several different light source models are used for lighting
simulation, some are completely abstract, others corre-
spond to physical light emitters (see Fig. 4). Point light,
a commonly used light source, emits all the light energy
from a single point. The emitted light is expressed by
radiant intensity I, which is the flux per unit solid angle
in a given direction. The emission of a point light source is
fully described by the goniometric diagram, a diagram of
radiant intensity as the function of direction. An omnidir-
ectional point light emits light equally in all directions (the
goniometric diagram is constant). Spot light is a special
type of point light source that emits only in a cone of
directions around an axis. Even though point light sources
do not exist in reality, they are very popular in lighting
simulation, because they are very simple to handle and
hence make the lighting simulation efficient. Another
abstract light source type is directional light, which emits
the light in parallel rays. It can be considered a special case
of point light source where the point is at infinity. Point and
directional light sources cast very sharp shadows.

Area light source refers to a 3-D object emitting light, a
model that directly corresponds to physical luminaires.
Emission of an area light source is described by the emission

distribution function (EDF), which describes the outgoing
radiance as a function of position on the light source and
outgoing direction. Most common area light sources are
rectangular or spherical lights with constant radiance
over the surface position and direction. Area lights provide
softer shadows than point light sources but are computa-
tionally more demanding.

Light probe image or environment map is a record of real
world illumination at a point from all directions that can be
used as a light source. Acquisition and illumination by light
probe images is called image-based lighting and is
described in a separate paragraph below.

LIGHT REFLECTION, BRDF, SHADERS

Light rays travel in straight lines in space until they hit the
surface of an object, when the light gets either absorbed
(changes into heat) or reflected. The way an object’s surface
reflects light defines the object’s appearance: apparent
color, glossiness, roughness, and so on. The color is a result
of the spectral composition of the reflected light—some
wavelengths get reflected more than others. Glossiness,
roughness, specularity, and so on depend on the angular
characteristics of the reflected light. Some materials reflect
light in preferred directions (e.g., a mirror reflects only
according to the Law of Reflection), others scatter the light
in all directions (e.g., matte paints). The reflection behavior
of a surface is described by the bidirectional reflectance
distribution function (BRDF), which, for a given incoming
direction vin and an outgoing direction vout, is the ratio of
the differential irradiance due to the light incident from vin

and the radiance reflected to vout, (Fig. 5a). Formally

frðP;vin;voutÞ ¼
dLoutðP;voutÞ

LinðP;vinÞcos uindvin

In general, the BRDF is different for each point on a surface;
it is a function of position: frðP;vin;voutÞ. The position
dependence of the BRDF creates the surface’s character-
istic visual texture.

BRDF defines the surface appearance and, therefore, it
is at the heart of all rendering algorithms. It has to be
evaluated for each visible point in the scene because it
converts the light arriving at that point from the light
sources (direction vin) into the light directed toward the
eye (direction vout). Renderers make use of a small routine,
called a shader, which uses the BRDF to compute the

Figure 4. Various light source models are used for lighting simulation. (a) Omnidirectional point light, (b) spot light, (c) directional light, (d)
area light, and (e) environment map.

LIGHTING 3



amount of light reflected along an outgoing direction due to
the light incident from one or more directions. Each object
in the scene has a shader assigned to it depending on the
desired reflectance properties.

BRDF Properties

A physically plausible BRDF must satisfy three fundamen-
tal properties. First, BRDF is a non-negative function.
Second, BRDF is reciprocal, that is to say the BRDF value
does not change if the incoming and outgoing directions
are interchanged [i.e., frðvin;voutÞ ¼ frðvout;vinÞ]. Third,
BRDF is energy conserving (i.e., a surface cannot reflect
more than the amount of incident light).

BRDF Types

The BRDF functions are as wildly varying as are the
appearances of objects in the real world. A diffuse (Lam-
bertian) BRDF describes matte objects that reflect light
uniformly in all directions. No matter where the light comes
from, it is reflected uniformly along all directions in the
hemisphere above the surface point. Diffuse BRDF is

constant, f diffuse
r ðvin;voutÞ ¼

kd

p
, where 0 � kd � 1.

Specular BRDF describes a mirror surface, which only
reflects light according to the Law of Reflection (angle of
reflection is equal to the angle of incidence) and the
reflected radiance is a constant fraction of the outgoing
radiance. Apart from those two special cases, there is a wide
range of glossy or directional diffuse BRDFs that can have
completely arbitrary properties. Most commonly, the light
is directed around the direction of perfect specular reflec-
tion, but it can also be reflected back toward the direction of
incidence (retro-reflective materials). Real BRDFs are
usually modeled by a sum of diffuse, specular, and glossy
components (Fig. 5b).

BRDF Models

For the purpose of lighting simulation, general BRDFs are
usually described by a mathematical model, parameterized
by a small number of user settable parameters. The most
common is the Phong model, whose physically plausible
form is f phong

r ðvin;voutÞ ¼ kd þ kscosna, where a is the angle
between the mirror reflection direction vr of vin and out-
going direction vout. The user sets kd (diffuse reflectivity—
determines the surface color), ks (specular reflectivity—
determines the intensity of specular highlights), and n

(specular exponent, or shininess—determines the sharp-
ness of specular highlights). Many other BRDF models
exist, see Refs. 1 or 3 for some examples.

BRDF Extensions

BRDF describes the reflection of light at one point. The
model assumes that all light energy incident at a point is
reflected from the same point, which is not true in the case
of subsurface scattering, where the light energy enters the
surface at one point, is scattered multiple times inside the
material and leaves surface at a different point. This reflec-
tion behavior is exhibited by human skin (think of the
frightening red color in one’s face if he or she positions a
flashlight under his or her chin), marble, milk, plant tis-
sues, and so on. Reflection behavior of those materials is
described by the bidirectional surface scattering (reflec-
tance) distribution function (BSSDF).

DIRECT ILLUMINATION

Once the emission, geometry, and reflection functions of
scene objects are specified, the light transport in the scene
can be simulated. Real-time graphics (e.g., in video games)
use the lighting simulation that disregards most of the
interactions of light with scene objects. It only takes into
account the so-called direct illumination. For each visible
surface point in the scene, only the light energy coming
directly from the light source is reflected toward the view
point. The direct lighting simulation algorithm proceeds as
follows.

For each image pixel, the scene point visible through
that pixel is determined by a hidden surface removal algo-
rithm [most commonly z-buffer algorithm (4)]. For a visible
surface point P, the outgoing radiance LoutðP;voutÞ in the
direction of the virtual camera is computed by summing the
incoming radiance contributions from the scene light
sources, multiplied by the BRDF at P:

LoutðP;voutÞ ¼
X#lights

i¼1

LðQi!PÞ � frðP;Qi!P;voutÞ � cos uin

ð1Þ

In this equation, Qi is the position of the ith light source,
Qi!P denotes the direction from the ith light source
toward the illuminated point P, and LðQi!PÞ is the

Figure 5. (a) The geometry of light reflection at a surface. (b) A general BRDF is a sum of diffuse, specular, and glossy components.

4 LIGHTING



radiance due to the ith light source, arriving at P. The
equation assumes point light sources. Area light source can
be approximated by a number of point lights with positions
randomly picked from the surface of the area light source.

In the specific example of physically plausible Phong
BRDF, the direct illumination would be computed using a
formula similar to the following:

LoutðP;voutÞ ¼
X#lights

i¼1

Ii � Ai � ½kd þ kscosna� � cos uin

Here, Ii denotes the intensity of the light source. Ai is the
light attenuation term, which should amount to the squared
distance between the light source position and the illumi-
nated point. In practical rendering, the attenuation might
be only linear with distance or there might be no attenuation
at all. The cosine term, cos uin, is computed as the dot
product between the surface normal and direction vin

(i.e., a unit vector in the direction of the light source).

In the basic form of the algorithm, all the light sources
are assumed to illuminate all scene points, regardless of the
possible occlusion between the illuminated point and the
light source. It means that the determination of the out-
going radiance at a point is a local computation, as only the
local BRDF is taken into account. Therefore, the algorithm
is said to compute local illumination. All surfaces are
illuminated exclusively by the light coming directly from
the light sources, thus direct illumination. Direct illumina-
tion is very fast; using today’s graphics hardware, it is
possible to generate hundreds of images per second of
directly illuminated reasonably complex scenes.

To include shadow generation in a direct illumination
algorithm, the occlusion between the light source and the
illuminated point has to be determined. To detect possible
occluders, one can test all the scene objects for intersection
with the ray between the illuminated point and the light
source. However, this process is slow even with a specia-
lized spatial indexing data structure. For real-time lighting
simulation, shadows are generated using shadow maps or
shadow volume (4).

GLOBAL ILLUMINATION

The simplistic direct illumination algorithm is generally
not capable of simulating the interesting lighting effects
mentioned in the introduction, such as specular reflections,
color bleeding or caustics. The two main reasons are as
follows. First, those effects are due to light reflected multi-
ple times on its way from the source to the camera. In direct
illumination, however, only a single reflection of light is
taken into account (the reflection at the visible point P).
Second, the point P under consideration is not only illumi-
nated by light sources but also by the light reflected from all
other surfaces visible from P. The light arriving at a point
from other scene surfaces is called indirect illumination as
opposed to direct illumination, which arrives directly from
the light sources.

The total amount of light reflected by a surface at a point
P in the direction vout is given by the following hemisphe-

rical integral referred to as the Reflectance Equation or
Illumination Integral.

LoutðP;voutÞ ¼
Z
Vin

LinðP;vinÞ � frðP;vin;voutÞ � cos uin dvin

Note the similarity between this equation and the direct
illumination sum in Equation (1). The direct illumination
sum only takes into account only those directions leading to
the point light sources, whereas the Reflectance Equation
takes into account all direction in the hemisphere, thereby
translating the sum into an integral.

To compute the outgoing radiance Lout at the point P
using the Reflectance Equation, one has to determine the
incoming radiance Lin from every incoming direction vin in
the hemisphere above P, multiply Lin by the BRDF and
integrate over the whole hemisphere. The incoming radi-
ance Lin from the direction vin is equal to the radiance
leaving point Q (visible from P in direction vin) in the
direction �vin. That is to say, the incoming radiance at
the point P from a single direction is given by the outgoing
radiance at a completely different point Q in the scene.

The outgoing radianceat the Q is computed byevaluating
the Reflectance Equation at Q, which involves evaluating
the outgoing radiance at many other surface points Ri for
which the Reflectance Equation has to be evaluated again.
This behavior corresponds to the aforementioned multiple
reflections of the light in the scene. The light transport is
global in the sense that illumination of one point is given by
the illumination of all other points in the scene.

By substituting the incoming radiance LinðP;vinÞ at P by
the outgoing radiance Lout at the point directly visible from
P in the direction vin, we get the Rendering Equation
describing the global light transport in a scene:

LðP;voutÞ ¼ LeðP;voutÞþZ
Vin

LðCðP;vinÞ;�vinÞ � frðP;vin;voutÞ � cos uin dvin

The self-emitted radiance Le is nonzero only for light
sources and is given by the Emission Distribution Function.
CðP;vinÞ is the ray casting function that represents the
surface point visible from P in the direction vin. As all
radiances in the Rendering Equation are outgoing, the
subscript ‘‘out’’ was dropped. Global illumination algo-
rithms compute an approximate solution of the Rendering
Equation for points in the scene.

RAY TRACING

The simplest algorithm that computes some of the global
illumination effects, namely perfect specular reflections
and refractions, is ray tracing (5). The elementary opera-
tion in ray tracing is the evaluation of the ray casting
function CðP;vÞ (also called ray shooting): Given a ray
defined by its origin P and direction v, find the closest
intersection of the ray with the scene objects. With an
acceleration space indexing data structure, the query can

LIGHTING 5



be evaluated in Oðlog NÞ time, where N is the number of
scene objects.

Ray tracing generates images as follows. For a given
pixel, a primary ray from the camera through that pixel is
cast into the scene and the intersection point P is found. At
the intersection point, shadow rays are sent toward the
light sources to check whether they are occluded. Incoming
radiance contributions due to each unoccluded light source
are multiplied by the BRDF at P and summed to determine
direct illumination. So far we only have direct illumination
as described above. The bonus with ray tracing is the
treatment of reflection on specular surfaces.

If the surface is specular, a secondary ray is cast in the
direction of the perfect specular reflection (equal angle of
incidence and reflection). The secondary ray intersects the
scene at a different point Q, where the outgoing radiance in
the direction v ¼ P�Q is evaluated and returned to the
point P, where it is multiplied by the BRDF and added to the
pixel color. The procedure to compute the outgoing radiance
at Q is exactly the same as at P. Another secondary ray may
be initiated at Q that intersects the surface at point R and so
on. The whole procedure is recursive and is able to simulate
multiple specular reflections. Refractions are handled simi-
larly, but the secondary ray is cast through the object
surface according to the index of refraction. This algorithm
is also referred to as classical of Whitted ray tracing.

Ray tracing is a typical example of a view-dependent
lighting computation algorithm—light, to be precise, the
outgoing radiance, is computed only for the scene point
visible from the current viewpoint of the virtual camera. In
this way, ray tracing effectively combines image generation
with lighting simulation.

MONTE CARLO

Ray tracing as described in the previous section handles
indirect lighting on perfectly specular or transmitting sur-
faces, but still is not able to compute indirect lighting on
diffuse or glossy ones. On those surfaces, one really has to
evaluate the Reflectance Equation at each point. The pro-
blem on those surfaces is how to numerically evaluate the
involved hemispherical integral. One possibility is to use

Monte Carlo (MC) quadrature. Consider MC for evaluating

the integral I ¼
Z1

0

f ðxÞdx. It involves taking a number of

uniformly distributed random numbers ji from the interval
h0; 1i, evaluating the function f at each of those points, and
taking the arithmetic average to get an unbiased estimator

of the value of integral hIi ¼ 1

N

X
i

f ðjiÞ. The unbiased

nature of the estimator means that the expected value of
the estimator is equal to the value of the integral. The larger
the number of samples f ðjiÞ, the more accurate the esti-
mate is, but the expected error only decreases with the
square root of the number of samples.

MONTE CARLO RAY TRACING

To apply MC to evaluating the hemispherical integral in
the Reflectance Equation, one generates a number of ran-
dom, uniformly distributed directions over the hemisphere.
For each random direction, a secondary ray is cast in that
direction exactly in the same way as in classic ray tracing.
The secondary ray hits a surface at a point Q, the outgoing
radiance in the direction of the secondary ray is computed
(recursively using exactly the same procedure) and
returned back. The contributions from all secondary rays
are summed together and give the estimate of the indirect
lighting. MC is only used to compute indirect illumination
(the light energy coming from other surfaces in the scene).
Direct illumination is computed using the shadow rays in
the same way as in classic ray tracing. Figure 6 shows an
image rendered with MC ray tracing.

Simply put, MC ray tracing casts the secondary rays in
randomized directions, as opposed to classic ray tracing,
which only casts them in the perfect specular reflection
direction. By sending multiple randomized rays for each
pixel and averaging the computed radiances, an approx-
imation to the correct global illumination solution is
achieved. A big disadvantage of MC ray tracing is the
omnipresent noise, whose level only decreases with the
square root of the number of samples.

Figure 6. Global illumination (a) is composed of the direct illumination (b) and indirect illumination (c). The indirect illumination is
computed with MC quadrature, which may leave visible noise in images. Overall, 100 samples per pixel were used to compute the indirect
illumination.

6 LIGHTING



Classic ray tracing was able to compute indirect lighting
only on specular surfaces. By applying MC to evaluating
the Reflectance Equation, MC ray tracing can compute
indirect lighting on surfaces with arbitrary BRDFs.

IMPORTANCE SAMPLING

Consider again evaluating the integral I ¼
Z1

0

f ðxÞdx, but

imagine this time that function f is near zero in most of the
interval and only has a narrow peak around 0.5. If MC
quadrature is run as described above by choosing the
samples uniformly from the interval h0; 1i, many of the
samples will not contribute to the integral estimate because
they will miss the narrow peak, and the computational
power put in them will be wasted. If no information is
available about the behavior of f, if is probably the best
one can do. However, if some information on the behavior of
the integrand f is known, concentrating the samples around
the peak will improve the estimate accuracy without hav-
ing to generate excessive samples. Importance sampling is
a variant of MC quadrature that generates more samples in
the areas where the integrand is known to have larger
values and reduces the variance of the estimate signifi-
cantly. If the samples are generated with the probability

density p(x), the unbiased estimator is hIi ¼ 1

N

X
i

f ðjiÞ
pðjiÞ

,

where ji’s are the generated random numbers. Importance
sampling significantly reduces the estimator variance if the
probability density p(x) follows the behavior of the inte-
grand f(x). Going back to evaluating the Reflectance Equa-
tion, the integrand is frðvin;voutÞLinðvinÞcos ui. Incoming
radiance LinðvinÞ is completely unknown (we are sending
the secondary rays to sample it), but the BRDF is known.
The direction vout is fixed (the integration is over the
incoming directions), so we can use the known function
f vout
r ðvinÞcos ui as the probability density for generating the

samples. For highly directional (glossy) BRDFs, the noise
reduction is substantial, as shown in Fig.7.

PHOTON MAPS

Although importance sampling reduces the image noise a
great deal, MC ray tracing still takes too long to converge to
a noise-free image. Photon mapping (6) is a two-pass prob-
abilistic lighting simulation method that performs signifi-
cantly better.

In the first (photon tracing) pass, light sources emit
photons in randomized directions. Brighter lights emit
more photons, whereas dimmer ones emit less. Each
time an emitted photon hits a surface, the information
about the hit (hit position, photon energy, and incoming
direction) is stored in the photon map, which is a spatial
data structure specifically designed for fast nearest-neigh-
bor queries. After storing the photon in the map, the tracing
continues by reflecting the photon off the surface in a
probabilistic manner (mostly using importance sampling
according to the surface BRDF). The result of the photon
tracing pass is a filled photon map, which roughly repre-
sents the distribution of indirect illumination in the scene.

In the second pass, lighting reconstruction and image
formation are both done together. For each pixel, a primary
ray is sent to the scene. At its intersection with a scene
surface, the direct illumination is computed by sending the
shadow rays as described above. Indirect illumination is
reconstructed from the photon map. The map is queried for
k nearest photons ðk ¼ 50�200Þ, and the indirect illumina-
tion is computed from the energy and density of those
photons with a procedure called radiance estimate. In
this maner, the incoming radiance LinðvinÞ in the reflection
equation is determined from the photon map without ever
having to send any secondary rays.

Unlike ray tracing, photon mapping separates the light-
ing simulation stage from image generation. The first,
photon tracing, pass is an example of a view-independent

Figure 7. Importance can substantially reduce the noise level in the image. Both the left and right images were computed with MC ray
tracing using 100 samples per pixel. Uniform hemisphere sampling was used for the image on the left; importance sampling was used for the
image on the right.

LIGHTING 7



lighting computation algorithm. The photons are traced
and stored independently from the position of the camera.
The image generation itself is performed in the second pass.

FINAL GATHERING, IRRADIANCE CACHING

As the photon map holds a very rough representation of
illumination, the images generated with the reconstruction
pass as described above do not usually have good quality
because the indirect illumination randomly fluctuates over
surfaces. Final gathering inserts one level of MC ray tra-
cing into the lighting reconstruction pass of photon map-
ping and achieves high-quality images. For each primary
ray hitting a surface, many secondary rays are sent
(500–6000) to sample the indirect incoming radiance. At
the points where the secondary rays hit a scene surface, the
radiance estimate from the photon maps is used to deter-
mine indirect illumination. Because as many rough radi-
ance estimates as there are secondary rays are averaged for
each pixel, the image quality is good (the uneven indirect
radiance is averaged out).

Final gathering is still very costly, because many sec-
ondary rays have to be sent for each pixel. However, on
diffuse surfaces, the surface shading due to indirect illu-
mination tends to change very slowly as we move over the
surface, which is exploited in the irradiance caching(7)
algorithm, where the costly final gathering is computed
only at a few spots in the scene and interpolated for points in
a neighborhood. Photon mapping with a form of final
gathering is currently the most commonly used method
for computing global illumination in production rendering
software.

PARTICIPATING MEDIA—FOG, CLOUDS, AND SMOKE

All methods in the previous sections were built on one
fundamental assumption—the value of radiance along a
straight ray does not change until the ray hits a surface.
However, if the space between the scene surfaces is filled
with a volumetric medium like fog, cloud, or smoke,
radiance can be altered by the interaction with the
medium.

At each point of the medium the value of radiance along a
straight line can be modified by a number of events. Absorp-
tion decreases the radiance due to conversion of the light
energy into heat and is described by the volume absorption
coefficient sa½m�1�. Scattering, described by the volume
scattering coefficient ss½m�1�, is a process where a part of
light energy is absorbed and then re-emitted in various
directions. The angular distribution of the scattered light is
described by the phase function. Scattering in a volume
element is similar to reflection on a surface and the phase
function corresponds to a surface BRDF. The total radiance
loss due to absorption and scattering is described by the
Beer’s exponential extinction law: Radiance decreases
exponentially with the optical depth of the medium. The
optical depth is the line integral of sa þ ss along the ray.
The value of radiance in a volume element does not only
decrease, it can be increased due to emission and in-
scattering. In-scattering is the radiance gain caused by

the energy scattered into the ray direction from the neigh-
boring volume elements. By integrating all the differential
radiance changes along the ray, we get the integral form of
the Volume Light Transfer Equation (see Ref. 3).

The light transfer in volumes is much more complicated
than on surfaces and takes longer to compute. Fortunately,
humans are not very skillful observers of illuminated
volumes and large errors can be tolerated in the solution,
which is often exploited by simplifying the transport—the
most common simplification is the single scattering approx-
imation, where only one scattering event is assumed on the
way between the light source and the eye. It corresponds to
direct illumination in surface lighting.

RADIOSITY METHOD

Radiosity (8) is a very different approach to computing
global illumination on surfaces than MC ray tracing. It is
based on the theory of radiative heat transfer and the
solution is found with a finite element method. In the basic
radiosity method, the scene surfaces are discretized into
small surface elements (patches) of constant radiosity.
Only diffuse BRDFs are considered. The energy exchange
in the scene is described by the radiosity equation

Bi ¼ Be
i þ ri

XN
j¼1

Fi; jB j

where Bi is the total radiosity of the ith patch, Be
i is the

radiosity due to self emission (non zero only for light
sources), ri is the surface reflectance, and Fi; j is the form
(or configuration) factor. The form factor Fi; j is the propor-
tion of the total power leaving the ith patch that is received
by the jth patch. The whole radiosity equation means that
the radiosity leaving the ith patch is the sum of the patch’s
self emitted radiosity and the reflection of the radiosities
emitted by all other surface patches toward the ith patch.
The radiosity emitted by a surface patch j toward the patch i
is form factor Fi; j times its total radiosity Bj. Knowing the
form factors, the radiosity equations corresponding to all
the patches of the scene can be cast in a system of linear
equations with unknown patch radiosities and solved by
standard linear algebra techniques. The details of the
algorithm are given in a separate article.

In spite of a great deal of research that has gone into
radiosity, the method did not prove to be practical. The most
important disadvantage is that the method works correctly
only with ‘‘clean’’ models (no overlapping triangles, no
inconsistent normal, etc.), which is rarely the case in prac-
tice. Among computational disadvantages are large mem-
ory complexity due to the surface discretization, difficulty of
computing form factors, and inability to handle general
BRDFs.

Similar to the first pass of the photon mapping algo-
rithm, radiosity gives a view-independent solution. It com-
putes radiosity values for all surface patches regardless of
the position of the camera. To generate the final image from
a radiosity solution, final gathering is used because it masks
the artifacts due to discretizing surfaces into patches.

8 LIGHTING



IMAGE-BASED LIGHTING, HIGH DYNAMIC RANGE
IMAGES

In spite of the success of modeling and rendering techni-
ques to produce many realistic looking images of synthetic
scenes, it is still not possible to model and render every
naturally occurring object or scene. A compromise to this
problem is to capture the real-world images and combine
them with computer-rendered images of synthetic objects.
This approach is commonly used for special effects in
movies, in high-quality games, and in contents created
for simulation and training. To achieve a seamless and
convincing fusion of the virtual object with the images of the
real world, it is essential that the virtual object be illumi-
nated by the same light that illuminates other objects in the
real scene. Thus, the illumination has to be measured from
the real environment and applied during the lighting
simulation on the synthetic object.

Image-based lighting (9) is the process of illuminating
objects with images of light from the real world. It involves
two steps. First, real-world illumination at a point is cap-
tured and stored as a light probe image (also called an
environment map) (Fig. 8), an omnidirectional image in
which each pixel corresponds to a discrete direction around
the point. The image spans the whole range of intensities of
the incoming light—it is a high dynamic range (HDR)
image. An omnidirectional image can be taken by photo-
graphing a metallic sphere reflecting the environment or
with a specialized omnidirectional camera. Multi-exposure

photography is used to capture the high dynamic range.
Each exposure captures one zone of intensities, which are
then merged to produce the full dynamic range.

Once the light probe image is captured, it can be used to
illuminate the object. To this end, the light probe might be
replaced by a number (300–1000) of directional lights cor-
responding to the brightest pixels of the probe image.

IMAGE DISPLAY, TONE MAPPING

Once the physical radiance values are computed for a
rectangular array of pixels, they have to be mapped to
image intensity values (between 0 and 1) for display.
One of the main problems that must be handled in this
mapping process is that the emitting ranges of display pixel
are limited and fixed, whereas the computed radiance
values can vary by orders of magnitude. Another problem
is that the displayed images are normally observed in
illumination conditions that may be very different from
the computed scene. Tone reproduction or tone mapping
algorithms attempt to solve these problems. Reference 10
describes a number of such algorithms.

DISCUSSION

Lighting computation is an important branch of computer
graphics. More than 30 years have been devoted to the
research in lighting computation. Lighting engineers are

Figure 8. Example light probe images from the Light Probe Gallery at http://www.debevec.org/Probes. (Images courtesy of Paul Debevec.)

LIGHTING 9



regularly using lighting computation to accurately predict
the lighting distribution in architectural models. The
entertainment industry is using lighting computation for
producing convincing computer-generated images of vir-
tual scenes.

Unfortunately, the computation time for global illumi-
nation simulation is still very high, prohibiting its full use
in the entertainment industry, where thousands of images
must be rendered within tight deadlines. Still, the industry
is able to create images of stunning quality, mostly thanks
to artists who know how light behaves and use their knowl-
edge to ‘‘fake’’ the global illumination. As the indirect light-
ing would be missing in a direct illumination-only solution,
lighting artists substitute indirect lighting by a number of
fill lights to achieve a natural look of the object without
having to resort to computationally expensive global illu-
mination techniques. However, it takes a great deal of
expertise to achieve a natural looking ‘‘global illuminated’’
scene using direct illumination-only techniques, and some-
times it is not possible at all. It is, therefore, desirable to
make the global illumination available to all computer
graphics artists. To that end, most of the current lighting
research is being devoted to developing approximate but
very fast global illumination algorithms, accurate enough
to be imperceptible from the correct global illumination
solution.

In the research community, MC techniques have been
established as the method of choice for computing global
illumination. Still, there are some important topics for
future work. Efficient handling of light transport on glossy
surfaces, adaptive sampling techniques exploiting a priori
knowledge such as illumination smoothness are some
examples. Finally, the computer-generated images will
continue to look ‘‘computer generated’’ unless we start
using reflection models that closely match reality. For
this reason, more accessible and precise acquisition of
BRDFs of real-world objects will be a topic of intensive
research in future.

BIBLIOGRAPHY

1. A. S. Glassner, Principles of Digital Image Synthesis, San
Francisco, CA: Morgan Kaufmann, 1995.

2. P. Dutré, P. Bekaert, and K. Bala, Advanced Global Illumina-
tion, Natick, MA: A. K. Peters Ltd., 2003.

3. M. Pharr and G. Humphreys, Physically Based Rendering:
From Theory to Implementation, San Francisco, CA: Morgan
Kaufmann, 2004.

4. T. Akenine-Möller and E. Haines, Real-time Rendering, 2nd
ed.Natick, MA: A. K. Peters Ltd., 2002.

5. P. Shirley and R. K. Morley, Realistic Ray Tracing, 2nd ed.
Natick, MA: A. K. Peters Ltd., 2003.

6. H. W. Jensen, Realistic Image Synthesis Using Photon Map-
ping, Natick, MA: A. K. Peters Ltd., 2001.

7. G. J. Ward and P. Heckbert, Irradiance gradients, Proc. Euro-
graphics Workshop on Rendering, 85–98, 1992.

8. M. F. Cohen and J. R. Wallace, Radiosity and Realistic Image
Synthesis, San Francisco, CA: Morgan Kaufmann, 1993.

9. P. Debevec, A tutorial on image-based lighting, IEEE Comp.
Graph. Appl., Jan/Feb: 2002.

10. E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High
Dynamic Range Imaging, San Francisco, CA: Morgan
Kaufman, 2005.

JAROSLAV KŘIVÁNEK

Czech Technical University
in Prague

Prague, Czech Republic

SUMANTA PATTANAIK

University of Central Florida
Orlando, Florida

10 LIGHTING



P

PARAMETRIC SURFACE RENDERING

INTRODUCTION

Parametric surface (1) is a surface defined by a tensor-
product of parametric curves, which are represented by
parametric equations. As such a surface comes with a well-
defined mathematical definition, it becomes one of the most
common geometric tools for computer-aided geometric
design and for the object modeling aids of many computer
graphics applications. Typical examples of such a surface
include Bézier surfaces (1) and non-uniform rational B-
Spline (NURBS) surfaces (2). Unfortunately, because most
existing graphics hardware only handle polygons, extra
procedures must be carried out to convert a parametric
surface into a polygon representation for rendering. This
process introduces a significant bottleneck to graphics
applications, which involve parametric surfaces, to assure
interactiveness in terms of rendering performance.

ABOUT PARAMETRIC SURFACES

In the past, many different parametric surfaces have been
developed. They include Bézier surfaces and NURBS sur-
faces, Bézier triangle, and multivariate objects. Such sur-
faces are mainly used to model smooth and curved objects,
and particularly, to provide a good support for modeling
deformable objects. For instance, Bézier surfaces and
NURBS surfaces are typically used in computer-aided
geometric design, whereas multivariate objects are mainly
used in scientific visualization and in free-form deforma-
tion (3). A unique feature of the parametric surface is that
its shape can be changed by modifying the position of its
control points.

A parametric surface is modeled by taking a tensor-
product on some parametric curves, which are formulated
by parametric equations. In a parametric equation, each
three-dimensional coordinate of a parametric curve is
represented separately as an explicit function of an inde-
pendent parameter u:

CðuÞ ¼ ðxðuÞ; yðuÞ; zðuÞÞ (1)

where C(u) is a vector-valued function of the independent
parameter u in which a � u � b. The boundary of the
parametric equation is defined explicitly by the parametric
intervals [a, b].

Bézier Surface

The Bézier surface (1) was developed by a French engineer
named Pierre Bézier and was used to design Renault auto-
mobile bodies. The Bézier surface possesses several useful
properties, such as endpoints interpolation, convex hull
property, and global modification. Such properties make
the Bézier surface highly useful and convenient to design

curved and smooth objects. Hence, this surface is adopted
widely in various CAD/CAM and in animation applications,
and in general graphics programming packages, such as
OpenGL and Performer. A Bézier surface is defined as

SBezðu; vÞ ¼
Xn

i¼0

Xm
j¼0

Bn
i ðuÞBm

j ðvÞPi j for 0 � u; v � 1 (2)

where n and m are the degrees of the Bézier surface along u
and v parametric directions, respectively. Pij forms the
control net. Bn

i ðuÞ and Bm
j ðvÞ are the basis functions, in

which each is defined by a Bernstein polynomial:

Bn
i ðuÞ ¼

n!

i!ðn� iÞ! uið1� uÞn�1 (3)

To evaluate a Bézier surface, we can apply the de Casteljau
subdivision algorithm (4) to its Bernstein polynomials in
both u and v parametric directions. For instance, in the u
direction, we have

Pr
i ðuÞ ¼ ð1� uÞPr�1

i ðuÞ þ uPr�1
iþ1 ðuÞ (4)

for r ¼ 1; . . . ;n; i ¼ 0; . . . ;n� r where n is the degree of the
surface. Bernstein polynomials of the other parametric
direction also are evaluated through a similar recursion
process.

Although the Bézier surface provides a powerful tool in
shape design, it has some limitations. Particularly, when
modeling an object with complex shape, one may either
choose to use a Bézier surface with prohibitively high
degrees or a composition of pieces of low-degree Bézier
surface patches by imposing an extra continuity constraint
between the surface patches.

B-Spline Surface

The B-Spline surface (2) is formed by taking a tensor-
product on B-Spline curves in two parametric directions,
in which each of the B-Spline curves is a combination of
several piecewise polynomials. The connecting points of the
polynomial segments of a B-Spline curve are maintained
automatically with Cp�1 continuity, where p is the degree of
the B-Spline curve. In addition, a B-Spline curve is com-
posed of several spans. In the parametric domain, these
spans are defined by a knot vector, which is a sequence of
knots, or parameter values ui, along the domain. A B-Spline
polynomial is specified by a scaled sum of a set of basis
functions. A B-Spline surface is defined as follows:

SBs pðu; vÞ ¼
Xn

i¼0

Xm
j¼0

N p
i ðuÞN

q
j ðvÞPi j (5)

where n and m are the numbers of control points, and p and
q are the degrees of surface in the u and v parametric

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



directions, respectively. Pij forms the control net. N p
i ðvÞand

Nq
j ðvÞ (v) are the basis functions. A basis function is defined

by

N p
i ðuÞ ¼

�
1
0

for ðuk � u � ukþ1Þ
otherwise

for p ¼ 1 (6)

N p
i ðuÞ ¼

u� ui

uiþp � ui
N p�1

i ðuÞ þ
uiþpþ1 � u

uiþpþ1 � ui
N p�1

iþ1 ðuÞ for p> 1

(7)

The knot vectors of the B-Spline surface are defined as
follows:

U ¼ f0; . . . ; 0;|fflfflfflfflffl{zfflfflfflfflffl}
pþ1

u pþ1; . . . ;ur�p�1; f1; . . . ; 1; g|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþ1

for r ¼ nþ pþ 1

(8)

V ¼ f 0; . . . ; 0;|fflfflfflfflffl{zfflfflfflfflffl}
qþ1

uqþ1; . . . ;us�q�1; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}g
qþ1

for s ¼ mþ qþ 1

(9)

where U and V are the knot vectors along the u and v
parametric directions, respectively. U has r knots, and V
has s knots. The de Boor algorithm (5) was proposed to
evaluate a B-Spline surface in parameter space with a
recurrence formula of B-Spline basis functions. Other meth-
ods are proposed to accelerate the evaluation process, such
as Shantz’s adaptive forward differencing algorithm (6) and
Silbermann’s high-speed implementation for B-Splines (7).

Generally speaking, the B-Spline surface has similar
properties to the Bézier surface. In addition, both surfaces
are tightly related. For instance, a B-Spline surface can be
reduced to a Bézier surface if it has both knot vectors in the
following format:

f0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
pþ1

; 1; . . . ; 1g|fflfflfflfflffl{zfflfflfflfflffl}
pþ1

for p ¼ degree of B-Spline
(10)

In addition, a B-Spline surface can be converted into sev-
eral of Bézier surface patches through knot insertion (8).

NURBS Surface

A NURBS surface (2) is a rational generalization of the
tensor product nonrational B-Spline surfaces. They are
defined by applying the B-Spline surface Equation 5 to
homogeneous coordinates rather than to the normal 3-D
coordinates. The equation of a NURBS surface is defined as
follows:

SNrbðu; vÞ ¼
Pn

i¼0

Pm
j¼0wi; jPi; jRi; jðu; vÞPn

i¼0

Pm
j¼0wi; jRi; jðu; vÞ

(12)

where wi, j are the weights, Pi, j form a control net, and
Ri, j(u,v) are the basis functions. NURBS surface not only

shares all properties of nonrational B-Spline surface, but in
addition, they possesses the following two useful features:

� They produce correct results under projective trans-
formations, whereas nonrational B-Spline surfaces
only produce a correct result under affine transforma-
tions.

� They can be used to represent lines, conics, planes,
quadrics, and tori.

Similar to the Bézier surface, the NURBS surface is used
widely in various CAD/CAM and animation applications,
and in common graphics programming packages, such as
OpenGL (9) and Performer (10), because such a surface can
represent both analytic shapes and free-form surfaces with
a common mathematical form. In addition, it comes with
many useful geometric modeling toolkits, which include
knot insertion, knot refinement, knot removal, degree ele-
vation and degree reduction. Moreover, one can use a much
smaller number of NURBS surface patches to construct
objects with complex shapes in comparison with using a
Bézier surface of the same degree, which helps to reduce
effectively the effort in maintaining the visual continuity
between surface patches.

Multivariate Objects

Bézier and B-Spline surfaces are used commonly in existing
modeling and animation applications, because they are
simple in geometric definition and possess a regular shape.
In addition, their evaluation cost is low. However, such
surfaces are difficult to use in modeling higher dimensional
volumes or objects with very complicated shapes. There-
fore, research has been conducted to explore higher dimen-
sional multivariate objects (3,11,12), such as parametric
volumes and hypersurfaces in Rn, n>3. The multivariate
objects can be categorized mathematically into two major
types. They are the multivariate objects formed by the
multidimensional tensor-product of univariate Bernstein
polynomials (SA) and the generalized Bernstein polyno-
mials over the barycentric coordinates (SB). The defining
equations of these two kinds of multivariate objects are
shown as follows:

SAðu; v;w; . . .Þ ¼
Xl

i¼0

Xm
j¼0

Xn

k¼0

. . . Bl
iðuÞBm

j ðvÞBn
kðwÞ . . . Pi jk...

(13)

SBðu; v;w; . . .Þ ¼
X

iþ jþk...¼n

Bn
i jk...ðu; v;w; . . .ÞPi jk... (14)

where Bl
iðuÞBm

j ðvÞBn
kðwÞ . . . and Bn

i jk...ðu; v;w; . . .Þ are the
basis functions. Pijk. . . form the control net. Note that the
Bézier surface can be treated as a special case of the multi-
dimensional tensor-product of univariate Bernstein poly-
nomials, whereas the B-Spline surface or the NURBS
surface can be represented in terms of the tensor-product
of univariate Bernstein polynomials after applying appro-
priate knot insertion operations.

2 PARAMETRIC SURFACE RENDERING



To evaluate a multivariate object defined by the multi-
dimensional tensor-product of univariate Bernstein poly-
nomials, we may subdivide it into a polygon model by
applying the de Casteljau subdivision formula to all Ber-
stein polynomials of different parametric directions. For
example, in the u direction, we have

Pr jk...
i jk... ðuÞ ¼ ð1� uÞPr�1; j;k;...

i jk... ðuÞ þ uPr�1; j;k;...
iþ1; j;k;... ðuÞ (15)

for r ¼ 1; . . . ; l; i ¼ 0; . . . ; l� r and all j,k,. . ...., where (l, m,
n,. . .) is the degree of the surface. The other parametric
directions have similar recursions. On the one hand, a
multivariate object defined by the generalized Bernstein
polynomials can be evaluated by applying the generalized
de Casteljau subdivision formula. The generalized polyno-
mials of degree n in generalized de Casteljau form are

Pr
I ðmÞ ¼ uPr�1

Iþe1ðmÞ þ vPr�1
Iþe2ðmÞ þwPr�1

Iþe3ðmÞ þ . . . (16)

for r ¼ 1,. . .,n and jIj ¼ n� r, where e1 ¼ (1,0,0,. . .), e2 ¼
(0,1,0,. . .), e3 ¼ (0,0,1,. . .), and m ¼ (u,v,w,. . .).

On the other hand, multivariate objects may offer sup-
port to edit shapes of objects with arbitrary geometric
representation. As a result, free-form deformation (FFD)
(3) should be applied. It embeds an object to edit shapes in a
regularly subdivided parallelepipedical 3-D parametric
solid lattice, which is defined by a trivariate Bézier volume
(a kind of multivariate object formed by the multidimen-
sional tensor-product of univariate Bernstein polyno-
mials). The solid lattice is referred to as the FFD lattice.
Each sample point of the embedded object should be
mapped to a parametric coordinate set of the FFD lattice.
Shape editing of the embedded object can then be performed
by moving the control points of the FFD lattice, in which the
change in shape of the lattice would then be passed auto-
matically to the embedded object. Based on FFD, extended
free-form deformation (13) was proposed to relax the shape
of the FFD lattice to arbitrary ones rather than sticking to
the parallelepipedical one.

Properties of Parametric Surfaces

To examine the major properties of parametric surfaces
that affect significantly the object modeling process, we
broadly divide the parametric surfaces into two high-level
classes by considering whether one is formulated by taking
the tensor-product of just one polynomial or a several
piecewise polynomials in each parametric direction. If
just one polynomial is used in each parametric direction,
the surfaces defined fal into the class of Bézier surfaces;
otherwise, they belong to the class of B-Spline surfaces. The
properties of these surfaces are depicted and compared as
follows:

Local Modification Property. Local modification is pro-
prietary to surfaces defined under the class of B-Spline,
because any basis function Ni,p(u) of a one-dimensional B-
Spline would be evaluated as zero if we consider a para-
metric range outside the interval ½ui;uiþpþ1Þ. Effectively,
this approach implies a local control of each control point Pi

of B-Spline surfaces. In other words, moving the control
point Pk would only change a one-dimensional B-Spline
within the parametric interval ½ui;uiþpþ1Þ. For instance, in
the case of a B-Spline surface, the control point Pi, j affects
only the shape of the surface within the parameter region
½ui;uiþpþ1Þ � ½v j; v jþqþ1Þ, where p and q are the degrees of
the surface along u and v parameter directions, respec-
tively.

Dependency between the Surface Degree and the Number
of Control Points. Such dependency exists only on the sur-
faces defined under the class of Bézier surfaces, where the
number of control points of a degree p Bézier curve is equal
to p + 1. Essentially, when conducting object modeling
using Bézier surfaces, if more control points are needed
to model complex shapes, the degrees of such Bézier sur-
faces should then be increased accordingly. By doing this,
the complexity in evaluating or in tessellating the Bézier
surfaces would be increased significantly, which eventually
leads to an undesired poor rendering performance. In con-
trast, surfaces defined under the class of B-Spline do not
have such restriction. Effectively, the number of control
points n depends on both the number of knots r and the
degree p of a B-Spline, which equals

r ¼ nþ pþ 1 (11)

whereas the degree of a B-Spline is fixed, one is allowed to
choose any number of knots to define the B-Spline, which
implies that the number of control points of a B-Spline is
governed primarily by the number of knots. As the complex-
ity in evaluating a B-Spline surface is mainly caused by the
increase in the degree of the surface rather than in the
increment in the number of knots, this property relaxes a B-
Spline from experiencing very poor evaluation performance
even if a lot of control points are added to the B-Spline to
facilitate the modeling of complex shapes.

Continuity. Continuity (1,14) is a common property of
both surfaces defined under the class of Bézier and B-Spline
surfaces. It describes the smoothness at the junction of
composite surface patches. Two types of continuity descrip-
tors exist, namely parametric continuity Cn and geometric
continuity Gn, where n typically indicates the level of con-
tinuity. Parametric continuity requires all derivatives of
order 0 to n�1 at the junction of composite surface patches
to be agreed, whereas geometric continuity imposes such
agreement by considering the derivatives evaluated with
respect to the arc-length around the junction, rather than to
the parameterization at the junction. Parametric continu-
ity suffers from the problem that it may not be held if the
parameterization of the composite surface patches is chan-
ged, despite that the smoothness of the surface patches still
is kept unchanged. In contrast, geometric continuity is
appropriate for dealing with shape modeling as it allows
one to modify the parameterization of a surface without
affecting the smoothness of the surface. with regard to both
classes of parametric surfaces, a B-Spline surface with
degree ( p,q) automatically maintains Cp�1 and Cq�1 con-
tinuity between polynomial patch segments in u and v
directions, respectively. Comparing this with the composite

PARAMETRIC SURFACE RENDERING 3



Bézier surface patches where an additional intersurface
continuity constraint is required to be imposed, the B-
Spline surface is thus preferred over the Bézier surface
in the applications involving piecewise composite surface
patches.

Degree Elevation and Reduction. Degree elevation and
reduction (2) are tools used to adjust the degree of the
parametric surfaces. They are applicable for both classes
of Bézier and B-Spline surfaces. By altering the degree of a
surface, the number of control points is increased or
decreased. Hence, the degree of freedom for shape manip-
ulation of the surface is adjusted as well. The most impor-
tant feature of degree elevation and reduction is that both
operations will not alter the shape of a surface, which
provides the sufficient condition for one to freely change
the degrees of parametric surfaces in an application, which
is very useful. For instance, one may apply these tools to
make all parametric surfaces in a modeling environment
have the same degree. These surfaces can be stitched
together to form a complex object, and the continuity con-
dition of the object can be maintained.

GENERIC RENDERING METHODS

Pixel-Based Rendering

During the last two decades, various rendering methods
have been developed for parametric surfaces. In the earlier
stage, researchers focused on generating accurate images
of parametric surfaces. Most methods developed were per-
formed generally too slowly to support rendering para-
metric surface in real time. Catmull (15) presented a
pixel-level subdivision method to render parametric sur-
face by recursively subdividing a surface into smaller sub-
patches not bigger than a single screen pixel. Although
Catmull derived an efficient subdivision algorithm for
bicubic patches, the performance still is too slow to support
an interactive display of surfaces because of the depth of
subdivision. A more efficient method called scan-line dis-
play was developed and improved by several researchers
(16–18). This method processes the screen pixels in the
scan-line order. For each scan-line, the intersection of the
scan plane with the surface forms a span. In practice, most
scan-line based methods take advantage of spatial coher-
ence to speed up the span computation. However, because
of the inherent complexity of calculating scan-line inter-
sections, these methods still do not perform fast enough for
real-time display of large models. Whitted in Ref. 16 pre-
sented a method to render photo-realistic images of bicubic
surfaces using ray tracing. The method subdivides repeat-
edly a surface intersected by a ray using Catmull’s scheme
(15) until the subpatch is small enough to approximate the
point of intersection. This method was speed up by Kay-
jiya’s numerical solution (19), where the calculation of ray
patch intersection is reduced. Moreover, the performance
can be additionally enhanced by Nishita et al.’s Bézier
clipping algorithm (20), where the portion of a surface
that does not intersect a ray is eliminated. However, the

expensive ray intersection operations still make the inter-
active display of parametric surface difficult.

Polygon-Based Rendering

To speed up the rendering of parametric surface, many
polygon-based rendering methods (5–8,21) have been
developed. These methods subdivide a surface recursively
into smaller patches until each patch is flat enough to be
approximated by a polygon. Once the approximating poly-
gons are computed, they can then be passed to and rendered
by the hardware graphics accelerators. In contrast to the
pixel-based methods, these methods use the polygon ren-
dering capability available in existing graphics systems
and hence may approach real-time rendering. The
polygon-based rendering methods can be categorized into
the polynomial evaluation method, subdivision method,
and frame-to-frame coherence method, which are shown
as follows:

� Polynomial Evaluation Method: A direct way to
tessellate a parametric surface into polygons for ren-
dering is performed by evaluating the surface equation
for a succession of parametric pairs (u, v). The points
obtained then form a set of polygons to approximate
the parametric surface. The set of polygons is then
passed to and processed by the hardware graphics
accelerator. For example, the de Boor algorithm (5)
was proposed to evaluate NURBS surfaces in the
parameter space by using a recurrence formula of
B-Spline basis functions. It is very useful for computer
implementation, as one can implement this directly
using a simple recursive function. An alternative
approach to evaluate parametric surfaces is the
Horner’s algorithm (1). Instead of evaluating the
surface equation along the (u, v) pairs in succession,
it evaluates the surface polynomials in the form of
a nested multiplication of monomials, which is
generally faster. However, this method is numerically
unstable because of the monomial form. Other
methods are proposed to accelerate the evaluation
process, such as Shantz’s adaptive forward differen-
cing algorithm (6) and Silbermann’s high-speed
implementation of NURBS (7). They propose alterna-
tive solutions to simplify the evaluation process of the
parametric surface.

� Subdivision Method: Subdivision can be performed
adaptively or uniformly. Adaptive subdivision subdi-
vides recursively a parametric surface into surface
patches until each patch is sufficiently flat or small
enough to meet the screen-space projection threshold
to assure a good display quality to the rendered sur-
face. The surface patches created are held in a tree
structure to ease the maintenance and tracing of the
surface patches during the subdivision process. This
approach can produce an optimized number of poly-
gons for parametric surfaces with highly varying cur-
vatures. Methods of this approach include those
proposed by Clark (22), Barsky et al. (23) and Forsey
et al. (21). However, extra care must be taken when
using adaptive subdivision methods, as cracks may

4 PARAMETRIC SURFACE RENDERING



appear in the generated polygon model. This problem
occurs because resulting neighboring polygons may
not be at the same resolution level. Hence, an addi-
tional crack prevention process is required to fix the
cracks in the generated polygon model to ensure its
visual continuity.

Uniform subdivision computes a constant step size
along each parametric direction of a surface to gener-
ate a regular grid of polygons to represent a surface.
Unlike adaptive subdivision, the polygon model cre-
ated by uniform subdivision can be stored in an array
instead of a tree structure, and the subdivision there-
fore is nonrecursive. On the other hand, although
uniform subdivision can tessellate surfaces more effi-
ciently than adaptive subdivision, usually it produces
more polygons than necessary. Rockwood et al. (25)
and Abi-Ezzi et al. (21,26) propose methods on uniform
subdivision. In particular, Rockwood et al.’s method
(25) subdivides a surface into a set of simple surface
segments and tessellates these segments into a regular
grid of polygons. A Coving and tiling process will then
be conducted to handle the tessellation of the bound-
aries between the surface segments and that of the
trimming regions of the surface. In practice, a variant
of Rockwood et al.’s method (25) has been implemented
in SGI GL and OpenGL libraries. Abi-Ezzi et al. (21,26)
enhances this method by improving the computation of
step size of polygonization and separating the com-
pute-intensive and algorithm-intensive procedures.

� Frame-to-Frame Coherence Method: Kumar et al.
(27) proposed a method to keep track of the user’s
viewpoint on a surface and to tessellate the surface
according to the change of this viewpoint between
successive frames. Similar to Rockwood et al.’s method,
which subdivides a surface into a set of simple surface
segments to facilitate additional processing, this
method is based on the visibility of each surface
segment in every next frame during run time and per-
forms incremental tessellation on a surface segment or
deletes one accordingly. Because there is usually only a
small change in the viewpoint between two consecutive
frames, this method minimizes the number of polygons
generated within a given time frame.

Issues in Polygon-Based Rendering

The issues for applying the polygonal approximation meth-
ods to render parametric surfaces are summarized as fol-
lows:

� Trimmed Surfaces: If we restrict the domain of a
parametric surface to a subset of its parametric space,
the resultant surface is called a trimmed surface. We
can trim a surface by enclosing a subset of area of the
surface by a set of closed loops of directed curves called
trimming curves. The enclosed area is called a trim-
ming region. For rendering, a special triangulation
procedure should be carried out around the boundary
of the trimming region. Existing works for tackling
this issue include Ref. 25 and 27.

� Efficiency: The method used to tessellate a para-
metric surface must be capable of calculating effi-
ciently both the surface points and their
corresponding normal vectors. The surface points
form the vertices of the polygon model approximating
the parametric surface. The normal vectors are used to
shade and to support surface culling.

� Display Quality: The display quality is a very impor-
tant criterion in surface rendering. To increase the
display quality, one may generate a lot of polygons to
represent the surface, although this is traded for the
rendering performance. Nevertheless, generating a lot
of polygons may not be necessary to correspond to a
good visual quality for displaying a surface. Hence, to
guarantee the display quality of a parametric surface,
one needs to determine an optimal number of polygons
based on some viewing criteria, such as the screen-
space projection (25), to obtain a smooth image of the
surface according to the current user’s view point.

� Sampling Distribution: In addition to determining
the number of polygons to represent a parametric
surface, the method also should determine the distri-
bution of these polygons. Two ways to handle this issue
are uniform tessellation and adaptive tessellation. Uni-
form tessellation subdivides a surface evenly with a
predetermined sampling size. Adaptive tessellation
subdivides a surface with nonuniform resolution
according to the local geometry, such as the curvature,
to optimize the total number of polygons generated. In
general, uniform tessellation produces more polygons
for rendering than adaptive tessellation. However,
extra computational time is needed for adaptive tes-
sellation to determine the distribution of the polygons.

� Crack Prevention: When the adaptive tessellation is
used, cracks may appear from the different sizes of
neighboring polygons as shown in Fig. 1. Additional
procedures must be performed to ensure the visual
continuity of the image by removing the cracks (28).

� Frame-to-Frame Coherence: To accelerate the ren-
dering of a parametric surface, the frame-to-frame
coherence could reduce significantly the number poly-
gons that are generated between successive frames.
This coherence is helpful to accelerate the rendering
performance when the viewing parameter to the sur-
face is changing continuously.

RENDERING OF DEFORMABLE SURFACES

In real life, many objects are deformable, in which their
shapes could be changed. Examples include human or
animal characters, facial expressions, and soft objects
such as clothes. The incorporation of such objects in com-
puter graphics applications is particularly attractive as it is
useful to enhance the realism of such applications. How-
ever, the rendering process of such objects generally is
expensive. When an object deforms, a rendering process
for the object is needed to re-run repeatedly from frame to
frame to produce appropriate pixels or polygons for

PARAMETRIC SURFACE RENDERING 5



graphics hardware to display the object. This process poses
a significant computation burden on the graphics applica-
tions, which makes the real-time rendering of deformable
objects difficult. Hence, deformable objects are seldom
incorporated in interactive types of graphics applications.

To address this problem, an incremental surface render-
ing method (28,29) has been proposed, which is based on
two fundamental techniques, incremental polygon updat-
ing and resolution refinement. The basic idea of incremental
polygon model updating is to maintain two data structures
of a deformable surface, the surface model and a polygon
model representing the surface model. As the surface
deforms, the polygon model is not regenerated through
polygonization. Instead, it is updated incrementally to
represent the deforming surface. This updating accelerates
the rendering process of deformable surfaces by concerning
the incremental evolution of such surfaces in successive
frames. More specifically, we consider whenever a control

point Pijk. . . of a surface is moved to Pi jk... with a displace-

ment vector V
!
¼ Pi jk � Pi jk..., the incremental difference

between two polygonal representations for a parametric
surface before and after the control point movement can be
represented as follows. For the multidimensional tensor-
product of univariate Bernstein polynomials:

SAðu; v;w; . . .Þ � SAðu; v;w; . . .Þ

¼ BðBl
iðuÞBm

j ðvÞBn
kðwÞ . . .ÞðPi jk... � Pi jkÞ ¼ ai jk... V

!
(17)

where ai jk... ¼ Bl
iðuÞBm

j ðvÞBn
kðwÞ . . .. For the generalized

Bernstein polynomials over the barycentric coordinates:

SBðu; v;w; . . .Þ � SBðu; v;w; . . .Þ

¼ ðBn
i jk...ðu; v;w; . . .ÞÞðPi jk... � Pi jk...Þ ¼ bi jk... V

!
(18)

where bi jk... ¼ Bn
i jk...ðu; v;w; . . .Þ It is obvious that the two

deformation coefficients aijk. . . and bijk. . . are constants for
each particular set of (u,v,w,. . .) parameter values. Hence, if
the resolution of the polygon model representing the sur-
face remains unchanged before and after deformation, one
may precompute the deformation coefficients and update
the polygon model incrementally by the deformation coeffi-
cients and the displacement vector of the moving control
point. In the implementation, the incremental polygon
model updating is carried out in two stages: the preproces-
sing stage and the run-time stage. In the preprocessing
stage, a surface is tessellated to obtain a polygon model and
a set of deformation coefficients aijk. . . or bijk. . . for each
control point is evaluated. As the surface deforms during
run time, the polygon model is updated incrementally with
the set of deformation coefficients and the displacement
vector of the moving control point. Figure 2(a) shows a
surface deformation by moving a control point with dis-
placement V

!
. Figure 2(b) shows the incremental updating

of the affected polygon vertices. With the incremental
polygon model updating technique, a surface point on the
deformed surface si jk... can be calculated by

si jk... ¼ si jk... þ ai jk... V
!

(19)

where si jk... and si jk... are the surface points before and after

deformation, respectively. V
!

is the displacement vector of
the current moving control point, and ai jk... is the deforma-
tion coefficient associating with the surface point s and the
current moving control point. This technique is efficient.
First, only one vector addition and one scalar-vector multi-
plication are found on each affected vertex of the polygon
modeltoproducethedeformedone.Second,theprecomputed
deformation coefficients are constant, and hence, no recom-
putation is needed. Second, since a surface point on the
deformed surface is calculated by Equation (19) regardless

cracks

Figure 1. Cracks from adaptive tessellation.

V

αijk... V

(a) (b)

Figure 2. Incremental polygon model updating.

6 PARAMETRIC SURFACE RENDERING



of the type of deforming surfaces to handle, the computa-
tional complexity is therefore independent of the complex-
ity of the defining equation of the deforming surface. In
other words, this technique has a constant and low compu-
tational complexity for all types of deformable parametric
surfaces.

On the other hand, when a surface deforms, its curva-
ture also is changed. If the curvature is increased or
decreased by a large amount during the deformation pro-
cess, the resolution of the corresponding polygon model
may become too coarse or too high to represent the
deformed surface, respectively. To overcome this problem,
a resolution refinement technique has been proposed to
refine incrementally the resolution of the polygon model
and to generate the corresponding deformation coefficients
according to the change in the local curvature of the surface
and some animation parameters, such as the viewer-object
distance or the screen projection size of the object. More
specifically, resolution refinement considers the fact that
either a surface is modeled by the multidimensional tensor-
product of univariate Bernstein polynomials or the general-
ized Bernstein polynomials over the barycentric coordi-
nates, and it can be subdivided through de Casteljau
formula as shown in Equations (15) and (16), respectively.
By subtracting a subdivided deformed surface generated by
the de Casteljau formula with its nondeformed counter-
part, one can easily deduce that deformation coefficients
incrementally can also be generated through de Casteljau
formula. As a result, the de Casteljau formula provides a
means to refine incrementally the polygon model represent-
ing the deformable surface and to generate corresponding
deformation coefficients for newly added polygon vertices to
support incremental polygon model updating.

All in all, the incremental surface rendering method
(28,29) provides a unique solution to allow deformable
parametric surfaces to be rendered interactively. Render-
ing deformable parametric surfaces with this method can
be roughly 3 to 15 times faster than applying generic
rendering methods. In addition, an extended version of
this method has been published in Ref. 30 to cover trimmed
parametric surfaces.

CONCLUSION

In conclusion, a parametric surface offers several advan-
tages for object modeling. First, it has a well-defined math-
ematical definition, which provides a concise and
systematic way to represent objects. Second, a parametric
surface produces scalable geometry; i.e., all fine detailed
features of the modeled object could be reserved without
any loss even if the object is undergoing arbitrary zooming.
Third, the control points provide a native aid to support
object–shape modification. Despite the advantages, the
rendering process of parametric surfaces is typically time
consuming, as such a process is not natively supported by
existing hardware graphics accelerators. Another major
obstruction to providing native hardware support in ren-
dering parametric surface is that several different kinds of
parametric surfaces exist, each of them should be evaluated
differently. To date, a unified way for surface evaluation

still is not yet available. Another factor that hinders the
rendering performance of parametric surface is that if a
parametric surface is deforming, a generic rendering pro-
cess must be re-run for every time frame to generate the
updated pixel- or polygon-based representation to render
the shape changed surface.

To improve the rendering performance, incremental
update always is an effective approach, which helps to
minimize the computational overhead for surface render-
ing. For instance, one can refine or prune only certain
subregions of a parametric surface. More specifically, the
subregions should be those experiencing visibility changes
or undergoing deformation. On the other hand, incremen-
tal polygon updating, as in Refs. 28 and 29, accelerates the
rendering of a deformable parametric surface by maintain-
ing a set of deformation coefficients and uses the coefficients
to update incrementally the polygonal representation of the
surface. In the future, a major effort will be focused on the
development of new surface rendering methods by taking
advantage of the parallel processing power of the graphics
processing unit to accelerate significantly the surface ren-
dering process. Developing such methods, however, is not
straightforward. In particular, the irregularity of trimming
curves/regions makes parallelizing the rendering method
for trimmed parametric surfaces difficult. A preliminary
attempt to address this issue can be found in Ref. 31. On the
other hand, the methods developed also should take care of
the handling of object deformation. To this end, when
supporting object deformation, one should minimize the
memory usage and the amount of data transfer to and from
the texture memory or to other kinds of memory storages.

BIBLIOGRAPHY

1. G. Farin, Curves and Surfaces for CAGD (5th ed.): A Practical
Guide, London: Academic Press, 2002.

2. L. Piegl and W. Tiller, The NURBS Book (2nd ed.), New York:
Springer-Verlag, 1997.

3. T. Sederberg and S. Parry, Free-form deformation of solid
geometric models, Proc. of ACM SIGGRAPH, 1986 pp. 151–
160.

4. P. de Casteljau, Shape Mathematics and CAD, London: Kogan
Page, 1986.

5. C. deBoor, On calculating with B-splines, J. Approx. Theory, 6:
50–62, 1972.

6. M. Shantz and S. L. Chang, Rendering trimmed NURBS with
adaptive forward differencing, Proc. of ACM SIGGRAPH,
1988, pp. 189–198.

7. M. Silbermann, High speed implementation of nonuniform
rational B-splines (NURBS), SPIE Vol. 1251 Curves and Sur-
faces in Computer Vision and Graphics, 1990, pp. 338–345.

8. W. Boehm, Inserting new knots into B-spline curves, Computer
-Aided Design, 12 (4): 199–201, 1980.

9. OpenGL. Available http://www.opengl.org/.

10. SGI Performer. Available http://www.sgi.com/products/
software/performer/.

11. P. Alfeld, Scattered data interpolation in three or more
variables, in T. Lyche and L. L. Schumaker, Mathematical
Methods in Computer Aided Geometric Design, San Diego, CA:
Academic Press, 1989, pp. 1–34.

PARAMETRIC SURFACE RENDERING 7



12. J. Hoschek, and D. Lasser, Fundamentals of Computer Aided
Geometric Design, Natick, MA: A. K. Peters Ltd., 1993.

13. S. Coquillart, Extended free-form deformation: a sculpturing
tool for 3D geometric modeling, Proc. of ACM SIGGRAPH,
1990, pp. 187–193.

14. B. Barsky and T. DeRose, Geometric Continuity of Parametric
Curves, Tech. Rep. UCB/CSD 84/205, Dept. of Computer
Science, University of California Berkeley, 1984.

15. E. Catmull, A Subdivision Algorithm for Computer Display
of Curved Surfaces, PhD Thesis, Salt Lake City, UT: University
of Utah, 1974.

16. J. Whitted, A scan line algorithm for computer display of
curved surfaces, Proc. of ACM SIGGRAPH, 12 (3): 8–13, 1978.

17. J. Blinn, Computer Display of Curved Surfaces, PhD Thesis,
Salt Lake City, UT: University of Utah, 1978.

18. J. Lane, L. Carpenter, J. Whitted and J. Blinn, Scan line
methods for displaying parametrically defined surfaces, com-
mun. ACM, 23 (1): 1980, pp. 23–34,

19. J. Kajiya, Ray tracing parametric patches, Proc. of ACM
SIGGRAPH, 1982, pp. 245–254.

20. T. Nishita, T. Sederberg and M. Kakimoto, Ray tracing
trimmed rational surface patches, Proc. of ACM SIGGRAPH,
1990, pp. 337–345.

21. S. Abi-Ezzi and L. Shirman, Tessellation of curved surfaces
under highly varying transformations Proc. of Eurographics,
1991, pp. 385–397.

22. J. Clark, A fast algorithm for rendering parametric surfaces,
Proc. of SIGGRAPH, 1979, pp. 289–99.

23. B. Barsky, A. D. DeRose and M. Dippé, An Adaptive Subdivi-
sion Method with Crack Prevention for Rendering Beta-spline

Objects, Tech. Rep. UCB/CSD 87/348, Dept. of Computer
Science, University of California Berkeley, 1987.

24. D. Forsey and R. Klassen, An adaptive subdivision algorithm
for crack prevention in the display of parametric surfaces, Proc.
of Graphics Interface, 1990, pp. 1–8.

25. A. Rockwood, K. Heaton and T. Davis, Real-time rendering
of trimmed surfaces, Proc. of ACM SIGGRAPH, 1989,
pp. 107–117.

26. S. Abi-Ezzi and S. Subramaniam, Fast dynamic tessellation of
trimmed NURBS surfaces, Proc. of Eurographics, 1994, pp.
107–126.

27. S. Kumar and D. Manocha, Efficient rendering of trimmed
NURBS surfaces, Comp. Aided Design, 27 (7): 509–521, 1995.

28. F. Li, R. Lau and M. Green, Interactive rendering of deforming
NURBS surfaces, Proc. of Eurograph., 1997, 47–56.

29. F. Li and R. Lau, Real-time rendering of deformable parametric
free-form surfaces, Proc. of ACM VRST, 1999, pp. 131–138.

30. G. Cheung, R. Lau and F. Li, Incremental rendering of deform-
able trimmed NURBS surfaces, Proc. of ACM VRST, 2003,
pp. 48–55.

31. M. Guthe, Á. Balázs, and R. Klein, GPU-based trimming and
tessellation of nurbs and T-spline surfaces, ACM SIGGRAPH
2005 Sketches, 2005, pp. 1016–1023.

FREDERICK W. B. LI

University of Durham
Durham, United Kingdom

8 PARAMETRIC SURFACE RENDERING



R

RADIOSITY

INTRODUCTION

Radiosity, a radiometric quantity, is the amount of
light flux leaving unit surface area.1 The unit of this
quantity is watts/m2. In the computer graphics field, the
radiosity is mostly used to describe an object-space method
for computing accurate radiosities on the object surfaces in
a synthetic environment. In the rest of the article, we will
describe this radiosity method.

Radiosity method is the very first physically based global
illumination computation method. It was introduced into
the computer graphics field by the researchers from Cornell
University in 1984 (1). The basic idea is to first discretize
the scene into patches, then set up a linear system for
unknown radiosities of the patches, and finally solve the
linear system to compute these radiosity values. The linear
system describes the radiosity propagation between
patches in equilibrium. Once the computation is done, it
is possible to render the scene from any viewing point using
any of the standard rendering techniques with radiosity2 as
the color of the patch. Radiosity is widely used in realistic
rendering and real-time visualization of synthetic scenes.

Radiosity method is mostly used to compute global
illumination solution in scenes containing diffusely reflect-
ing surfaces and illuminated by diffuse light sources. It
successfully simulates multiple inter-reflections. Such
inter-reflection between diffuse surfaces is very difficult
to simulate using other methods, like ray tracing. Radiosity
method provides a solution for every surface patch in the
scene, and the solution is independent of the viewer posi-
tion, thus called a view-independent object-space technique.

To get a general idea about radiosity, it is helpful to
observe how light propagates in a simple scene. Figure 1
shows an intuitive scenario of light propagation in a very
simple scene made up of three patches. Light propagates
between every pair of patches. In Fig. 1, patch 1 illuminates
patch 2 and patch 3; patch 2 illuminates patch 1 and
patch 3; patch 3 illuminates patch 1 and patch 2. Concave
patches will also illuminate themselves. One can see from
Fig. 2 that, during this light propagation process, only a
fraction of light flux leaving patch i reaches another patch j.
For diffuse surfaces, this fraction depends only on the form
(size, orientation, and distance) of the pair of patches and
hence is known as form factor. Form factor is denoted by
Fi!j, where subscript i!j represents light reaching patch j
from patch i. A total of nine form factors are needed to
describe the light propagation in the scene in Fig. 1. They
are shown in Fig. 3. When the light propagation between
the patches in Fig. 1 reaches equilibrium (i.e., light flux
leaving or reaching each patch remains unchanged), the

light flux leaving a patch can be expressed as the light flux
emitted from the patch plus the reflected part of the light
flux incident on the patch. The incident flux is the sum of
the flux arriving from all other patches in the scene. Thus,
we can write an expression for the equilibrium flux leaving
a patch in terms of the light flux leaving all other patches of
the scene. In Equation (1), we give the expressions for the
three patches of the scene shown in Fig. 1.

F1 ¼ Fe;1 þ r1F1F1! 1 þ r1F2F2!1 þ r1F3F3!1

F2 ¼ Fe;2 þ r2F1F1! 2 þ r2F2F2!2 þ r2F3F3!2

F3 ¼ Fe;3 þ r3F1F1! 3 þ r3F2F2!3 þ r3F3F3!3

(1)

Each of these equations is linear, and together they form
a linear system. A general form of the light flux equation in
an arbitrary scene is given in Equation (2).

Fi ¼ Fe;i þ ri

Xn

j¼1

F jF j! i for i ¼ 1 . . . n (2)

where Fi, Fe;i, and ri are the equilibrium light flux, the
emitted light flux, and the diffuse reflectance of the surface
patch i, respectively; Fj!i is the form factor between patch j
and patch i; and n is the total number of patches in the
scene.

Equation (2) is known as the light flux transport equa-
tion. Fe;i and ri in the equation are the surface properties
and are known quantities. Fj!i depends only on the geo-
metry of surface patches i and j, and hence can be computed
independent of the lighting condition. Given the values of
Fe;i, ri, and Fj!i, the unknown Fis can be computed by
solving the linear system formed from Equation (2).

FORM FACTOR

The form factor Fi!j is defined as the fraction of light flux
leaving patch i and reaching patch j. Equation (3) provides a
mathematical expression of the form factor between two
diffuse surfaces with uniform light flux over their area.

Fi! j ¼
1

Ai

ð
Aj

dAy

ð
Ai

dAx
cosfxcosfy

pr2
xy

Vðx; yÞ (3)

where fx and fy are the angles between the normal’s of
differential patches dAx and dAy, respectively with the line
connecting the two differential patches; rxy is the distance
between dAx and dAy; and Ai and Aj are areas of patches i
and j. Figure 4 illustrates these parameters. V(x,y) is the
visibility between the two differential patches and is

1Refer to the article on ‘‘Lighting’’ for the definition of various
radiometric quantities.

2For a Lambertian surface, color is a constant times its radiosity.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



expressed in Equation (4).

Vðx; yÞ ¼ 0; if there is occlusion between dAx and dAy

1; otherwise

�
(4)

If we change the relationship between the patches i and j
and wish to write an expression for Fj!i, then it will be as
follows:

F j! i ¼
1

A j

ð
Aj

dAy

ð
Ai

dAx
cosfx cosfy

pr2
xy

Vðx; yÞ (5)

From these two form factor equations we can derive a useful
property of form factor:

AiFi! j ¼ A jF j! i or
Fi! j

F j! i
¼

A j

Ai

In other words, the ratio of the two form factors between
any two patches is inversely proportional to the ratio
between the areas of the two patches.

From the definition of the form factors itself, we get
another property: The sum of all form factors from any
patch is no greater than 1 (i.e.,

P
j Fi! j � 1).

RADIOSITY EQUATION

In the beginning of this article, we defined radiosity as the
flux per unit area. If we use symbol B to denote radiosity
and assume that the light is distributed uniformly over the
area of the patch, then we have Bi ¼ Fi

Ai
. Using this definition

of radiosity and the property of form factor, we derive the
radiosity transport equation (or radiosity equation for
short) in Equation (6) from the flux transport equation
given in Equation (2).

Fi

Ai
¼

Fe;i

Ai
þri

Xn

j¼1

F j
F j! i

Ai
¼

Fe;i

Ai
þri

Xn

j¼1

F j

A j

A jF j! i

Ai

¼
Fe;i

Ai
þri

Xn

j¼1

F j

A j
Fi! jBi ¼ Ei þ ri

Xn

j¼1

BjFi! j (6)

The derivation of Equation (6) uses the inverse area form
factor relationship

AjFj! i

Ai
¼ Fi! j described in the previous

section.
Figure 5 summarizes the various steps for the radiosity

computation algorithm. The process begins by inputting
the model, followed by computing form factors and solving a
linear system, and finally by displaying the scene from any
arbitrary viewpoint. The input geometry is often discre-
tized into smaller patches in the first step. The last step is
often a hardware walk-through in the scene. Note that in
this walk-through step, the change in view direction does
not require the re-evaluation of any other step of the algo-
rithm. Change in the surface property (diffuse reflectance
and emissivity), however, does require repetition of the
linear system solution step. But, form factors are not

1 2 3

1

2

3

1
2

3

Figure 1. Light interaction.

i

j

Figure 2. Light propagation.

1 2 3

1

2

3

1
2

3

11→F 21→F 31→F

12→F 22→F 32→F

13→F 23→F 33→F

Figure 3. Form factors.

i

jy

x

x
f

xyr

y
f

Figure 4. Form factor parameters.

2 RADIOSITY



affected by this change and hence they do not have to be
recomputed.

SOLVING RADIOSITY EQUATION

By rearranging Equation (6), we can get the following
matrix form of the radiosity system:

ðI �MÞB ¼ E (7)

where; I is the identity matrix, M =

r1F1!1 r1F1!2 � � � r1F1!n

r2F2!1 r2F2!2 � � � r2F2!n

..

. ..
.

} ..
.

rnFn!1 rnFn!2 � � � rnFn!n

2
6664

3
7775, B =

B1

B2

..

.

Bn

2
6664

3
7775, and

E =

E1

E2

..

.

En

2
6664

3
7775.

For convenience, we may denote (I–M) in Equation (7)
with K, a square matrix with coefficients kij.

K� I �M ¼ ðki jÞn�n (8)

where

ki j ¼
1� riFii; for i ¼ j
�riFi j; for i 6¼ j

�

With this change, the radiosity system is now represented
by Equation (9), as follows:

KB ¼ E (9)

Given this matrix formulation, the radiosity system can be
solved by inverting K and computing B = K�1E. However,
the size of the linear system of the radiosity equations for

any nontrivial scene makes inverting the matrix K imprac-
tical. A common environment could have tens of thousands
or millions of patches.

From the law of conservation of energy, ri � 1, and the
property of the form factor mentioned in the earlier section,
we get the relation

Pn
j¼1riFi j � 1, or in other wordsPn

j¼1; j 6¼ iriFi j � 1� riFii. Thus, each row of the matrix K
satisfies the property

Pn
j¼1; j 6¼ ijki jj � jkiij, which makes K a

diagonally dominant matrix, and hence guarantees that
the radiosity equation has a unique solution, which also
guarantees that an iterative method will finally converge to
this unique solution. Hence, iterative methods or relaxa-
tion methods are commonly used for the radiosity solution.
We describe two popular solution methods in the next
section.

Two different classes of iterative methods have been
used to solve the radiosity system [Equation (9)]. They
include: gathering methods and shooting methods. These
methods start from an initial estimation for the unknowns,
and then they are iteratively updated based on the previous
estimation until the linear system reaches convergence. To
describe these methods, we go back to the original radiosity
equation given in Equation (6).

Gathering Methods

A basic gathering method for solving the radiosity system is
the iterative refinement of the radiosity values of the
patches from the values computed at the previous iteration.
The iteration scheme is shown in Equation (10). It is a
reformulated version of Equation (6).

Bkþ1
i ¼ Ei þ ri

Xn

j¼1

Fi jB
k
j (10)

where B0
j ¼ E j and Bk

j is the result after evaluating Equa-
tion (10) for k iterative steps.

This iterative method is the same as the well-known
Jacobi iteration method forsolvinga linear system. A simple
extension of this method is to always compute Bkþ1

i using the
latest values of B, as shown in Equation (11).

Bkþ1
i ¼ Ei þ ri

Xi�1

j¼1

Fi jB
kþ1
j þ ri

Xn

j¼iþ1

Fi jB
k
j (11)

This method is well known as the Gauss–Seidel method.
It converges faster than the Jacobi method. An addi-
tional advantage of this method is that it is no longer
required to maintain the previous and current sets of B
values.

Both the Jacobi and Gauss–Seidel methods seem to be
gathering radiosity values from all the patches of the scene
to compute the radiosity of a single patch, which is why
these methods are known as gathering methods.

Shooting Methods

This class of methods is based on another iterative refor-
mulation of Equation (6). The reformulation is given in
Equation (12). In this reformulation, the radiosity of a

Input Model

Compute Form Factor

Solve Linear System

Display

 
Figure 5. Radiosity algorithm.

RADIOSITY 3



patch j is distributed or shot to all other patches i of the
scene to update their radiosity values.

Bkþ1
i ¼ Bk

i þ DRad

DBkþ1
i ¼ DBk

i þ DRad
(12)

where DRad ¼ riDBk
jFi j ¼ riDBk

j

A j

Ai
F ji and is the unshot

radiosity.
This method starts with B0

i ¼ DB0
i ¼ Ei. A patch j with

maximum unshot flux (i.e., DBk
jA j ¼ max

1�m�n
fDBk

mAmg) is

chosen to shoot the radiosity to all other patches. After
the shooting is done, the patch’s unshot radiosity DBk

j is set
to zero. This process of choosing the patch and shooting its
unshot radiosity is repeated until converged.

The total number of iterative steps required using itera-
tive shooting methods is not any less than that required for
the gathering method. However, in the shooting method, the
radiosity values of the patches approach faster to the equili-
brium value. Both the iterative methods are rarely run to
achieve the full convergence of the solution. They are only
computed for a fixed number of iterations in practice. Thus,
the shooting method often creates a solution closer to the
equilibrium solution, hence the rendering created from the
partial radiosity solution obtained using a reasonably small
number of iterations is visually preferable. Cohen et al. (2)
first proposed this method for solving the radiosity system
and called it the progressive refinement method. They com-
puted a display radiosity value Bdisplay

i from the partial
iterative solution, as shown by the equation

B
display
i ¼ Bk

i þ Bk
ambient (13)

where Bk
ambient is the ambient radiosity approximated by

multiple bounces of average radiosity DB
k

with average
diffuse reflectance r̄, and their expressions are shown below.

Bk
ambient ¼

X1
j¼0

r
� j

DB̄
k ¼ 1

1� r̄
DB̄

k
(14)

where

DB̄
k ¼

Xn

j¼1

DBk
jA j

�Xn

j¼1

A j andr ¼
Xn

j¼1

r jA j

�Xn

j¼1

A j

FORM FACTOR COMPUTATION

Form factor must be computed before solving the radiosity
system. Form factor computation is the most complex step
of the radiosity method. In general, it takes 60–80% of the
computation time in total. There are two classes of methods
to compute form factors: analytical methods and numerical
methods.

Analytical Methods

The analytical methods are useful only in the absence of
the occlusion between two patches. The most often used

analytical method is from Nishita and Nakamae (3). It
formulates the form factor between a differential patch
dSi of the patch Si to patch Sj as a line integral. The
formulation is given in Equation (15). This method does
not consider occlusion between dSi and Sj.

FdSi!Sj
¼ 1

2

Xm
k¼1

bkcos ak (15)

where cos bk ¼
QVkþ1

jQVkþ1j
� QVk

jQVkj
; cos ak ¼

Ni

jNij
� QVk �QVkþ1

jQVk �QVkþ1j
,

and Vk-s are the vertices of patch Sj and Q is the center of the
differential patch dSi (see Fig. 6 for illustration).

Numerical Methods

Numerical methods are often used in the form factor com-
putation. Hemicube method (4) is one of the first proposed
and most popular numerical methods. This method also
computes form factor FdSi!Sj

between a differential patch
dSi to all the patches Sj in the scene. In this method, a
virtual unit hemicube is set up around dSi. The faces of the
hemi-cube are discretized into a number of rectangular
pixels (See Fig. 7 for illustration). The form factors DFq

of pixel q from dSi to the pixel q on the virtual hemicube is
precomputed analytically. All the patches of the scene are
scan converted with visibility resolution onto the five faces
of the hemicube. FdSi!Sj

is finally computed by summing
up the DFq-s of all the pixels on the hemicube that are
occupied by the patch Sj.

This method can take advantage of hardware Z-buffer
rendering to speed up the form factor computation. Z-
buffering allows for handling the visibility of patches.

The patch-to-patch form factor Fi! j is either approxi-
mated to be equal to FdSi! j computed from the center of the
patch Si or approximated as an average of the FdSi! j-s at
the vertices of the patch Si.

DFq-s are precomputed analytically using the equations
given below.

For a pixel q on the top face of the hemicube, the
following is the equation for DFq:

DFq ¼
cosficosf j

pr2
i j

DAtop ¼
1

pð1þ x2 þ y2Þ2
DAtop (16)

V1

V

N
5

1

V2

SJ

V4

V3

5b

4b
3b2b1b

5a

Figure 6. dSi and Sj.

4 RADIOSITY



In this equation, DAtop is the area of the pixel. Given the
local coordinate system setup as shown in Fig. 8, the
coordinate of the center of the pixel is (x,y,1), and we also
have cosfi ¼ cosf j ¼ 1=ri j and ri j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 þ y2

p
.

For a pixel on the left side face of the hemicube, its DFq is
computed as follows:

DFq ¼
1

pð1þ y2 þ z2Þ2
DAside (17)

where (�1, y, z) is the coordinate of the center of the pixel
and DAside is the area of the pixel. Equations for the pixels
on the other side faces are similar to Equation (17), except
for the denominator, which depends on the coordinate of the
pixel.

EXTENSIONS TO CLASSIC RADIOSITY

Classic radiosity methods assume that the radiosity is
uniform over the area of the surface. This condition is rarely

true over larger surfaces of the scene. So the very first step
of the radiosity method is scene discretization. Regular
discretization of scene surface causes light and shadow
leakage at discontinuities due to shadow boundaries and
touching objects. A discontinuity meshing technique (5) has
been proposed to address this issue. This technique iden-
tifies discontinuities and splits the surfaces along the dis-
continuities first. The split surfaces are further discretized
to smaller patches.

The radiosity computed for patches of a surface gives
discrete approximation of a smooth radiosity function over
the surface. Direct rendering of such a function gives a
faceted appearance to the surface. Hence, a smooth recon-
struction of the radiosity function over the surface is desir-
able before it is used for display. A commonly used
reconstruction method is to first compute the weighted
average radiosity on vertices of the scene using radiosity
of adjacent patches. Weights are the relative areas of the
patches. The radiosity on any point on a patch is then
interpolated from the vertices of the patch giving a smooth
appearance to the scene surfaces.

The assumptions imposed in radiosity formulation often
limit the application of the classic radiosity method. The
assumptions are: Lambertian surface, uniform light dis-
tribution over the patch, planar patches, nonparticipating
medium, and so on. There has been much research aimed at
overcoming the limitations. Wavelet (6) and finite element
methods (7) have been proposed to remove the uniform light
distribution assumption and thus to reduce the amount of
discretization. The hierarchical radiosity method (8,9) has
been proposed to accelerate the computation by reducing
the number of form factor computations with very little loss
of accuracy. Extensions to support nondiffuse surfaces (10),
textured surfaces (11), curved surfaces (12), nondiffuse
light sources (13), participating media (14), furry surfaces
(15) and fractals (16) have also been proposed.

The radiosity method will remain the primary physically
based method for computing realistic lighting in synthetic
scenes. More than 15 years of research has been devoted to
solving problems related to this method. Findings of this
research are being used regularly in many rendering soft-
ware solutions developed for commercial and noncommer-
cial use. Despite so many years of research efforts, the scene
discretization and the extension to nondiffuse environ-
ments remain hard problems.

BIBLIOGRAPHY

1. C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile,
Modeling the interaction of light between diffuse surfaces,
Comput. Grap., 18 (3): 212–222, 1984.

2. M. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg, A
progressive refinement approach to fast radiosity image gen-
eration, Comput. Graph., 22 (4): 75–84, 1988.

3. T. Nishita and E. Nakamae, Continuous tone representation of
three-dimensional objects taking account of shadows and inter-
reflections, Comput. Graph., 19 (3): 23–30, 1985.

4. M. Cohen and D. P. Greenberg, The hemi-cube: A radiosity
solution for complex environments, Comput. Graph., 19 (3):
31–40, 1985.

Sj

dSi

 

Figure 7. Hemicube.

z

x

y

dS
i

rij

(1,1,1)

(1,1,0)

(1,-1,0)(-1,-1,0)

(-1,-1,1) (1,-1,1)

(-1,1,1)

(-1,1,0)

sideA∆

topA∆

Figure 8. Coordinate system of DFq.

RADIOSITY 5



5. D. Lischinski, F. Tampieri, and D. P. Greenberg, Combining
hierarchical radiosity and discontinuity meshing, ACM SIG-
GRAPH ’93 Proc., 1993, pp. 199–208.

6. F. Cuny, L. Alonso, and N. Holzschuch, A novel approach
makes higher order wavelet really efficient for radiosity,
Comput. Graph.Forum (Proc. of Eurographics 2000), 19 (3):
99–108, 2000.

7. R. Troutman and N. L. Max, Radiosity algorithm using higher
order finite element methods, ACM SIGGRAPH 1993 Proc.,
1993, pp. 209–212.

8. M. Cohen, D. P. Greenberg, D. S. Immel, and P. J. Brock, An
efficient radiosity approach for realistic image synthesis, IEEE
Comput. Graph. Appl., 6 (3): 26–35, 1986.

9. P. Hanrahan, D. Salzman, and L. Upperle, A rapid hierarchical
radiosity algorithm, Comput. Graph., 25 (4): 197–206, 1991.

10. J. R. Wallace, M. F. Cohen, and D. P. Greenberg, A two-pass
solution to the rendering equation: A synthesis of ray tracing
and radiosity methods, Comput. Graph., 21 (4): 311–320, 1987.

11. H. Chen and E. H. Wu, An efficient radiosity solution for bump
texture generation, Comput. Graph., 24 (4): 125–134, 1990.

12. H. Bao and Q. Peng, A progressive radiosity algorithm for
scenes containing curved surfaces, Comput. Graph.Forum
(Eurographics ’93), 12 (3): C399–C408, 1993.

13. E. Languenou and P. Tellier, Including physical light sources
and daylight in global illumination, Third Eurographics Work-
shop on Rendering, pp. 217–225, 1992.

14. H. E. Rushmeier and K. E. Torrance, The zonal method for
calculating light intensities in the presence of a participating
medium, Comput. Graph., 21 (4): 293–302, 1987.

15. H. Chen and E. Wu, Radiosity for furry surfaces, Proc. of
EUROGRAPHICS’91, in F. H. Post and W. Barth, (eds.)
North-Holland: Elsevier Science Publishers B. V. 1991, pp.
447–457.

16. E. Wu, A radiosity solution for illumination of random fractal
surfaces, J. Visualization Comput. Animation, 6 (4): 219–229,
1995.

FURTHER READING

I. Ashdown, Radiosity: A Programmer’s Perspective, New York:
John Wiley & Sons, Inc., 1994.

M. F. Cohen and J. R. Wallace, Radiosity and Realistic Image
Synthesis, Boston, MA: Academic Press Professional, 1993.

F. X. Sillion, Radiosity and Global Illumination, San Francisco,
CA: Morgan Kaufmann Publishers, 1994.

RUIFENG XU

SUMANTA N. PATTANAIK

University of Central Florida
Orlando, Florida

6 RADIOSITY



R

RENDERING

INTRODUCTION

In the real world, light sources emit photons that normally
travel in straight lines until they interact with a surface or a
volume. When a photon encounters a surface, it may either
be absorbed, reflected, or transmitted. Some of these
photons may hit the retina of an observer where they are
converted into a signal that is then processed by the brain,
thus forming an image. Similarly, photons may be caught
by the sensor of a camera. In either case, the image is a 2-D
representation of the environment.

The formation of an image as a result of photons inter-
acting with a 3-D environment may be simulated on the
computer. The environment is then replaced by a 3-D
geometric model and the interaction of light with this model
is simulated with one of a large number of algorithms. The
process of image synthesis by simulating light behavior is
called rendering.

As long as the environment is not altered, the interaction
of light and surfaces gives rise to a distribution of light in a
scene that is in equilibrium (i.e., the environment does not
get lighter or darker).

As all rendering algorithms model the same process, it is
possible to summarize most rendering algorithms by a
single equation, which is known as the rendering equation.
The underlying principle is that each point x on a surface
receives light from the environment. The light that falls on
a point on a surface may be coming directly from a light
source, or it may have been reflected one or more times by
other surfaces.

Considering a point x on some surface that receives light
from all directions, the material of the surface determines
how much of this light is reflected, and in which directions.
The reflective properties of a surface are also dependent on
wavelength, which gives each surface its distinctive color. A
material may therefore be modeled using a function that
describes how much light incident on a point on a surface is
reflected for each incoming and each outgoing direction.
Such functions are generally known as bidirectional reflec-
tance distribution functions (BRDFs), and are denoted here
as frðx;Qi;QoÞ. This function is dependent on the position
on the surface x, as well as the angle of incidence Qi and the
outgoing direction Qo.

To determine how much light a surface reflects into a
particular direction, we can multiply the BRDF for each
angle of incidence with the amount of incident light Liðx;QiÞ
and integrate these pairwise multiplications, which yields
a quantity for one specific outgoing direction.

A point on a surface may also emit light, which is denoted
with a non-zero term Leðx;QoÞ. This term is dependent on
position on the surface (e.g., a television screen emits light
that is spatially varying in intensity), and may also be
directionally varying (e.g., spot lights emit more light in
some directions than in others).

Thus, the amount of light that leaves a point x on a
surface in a particular direction Qo may be modeled as
follows:

Loðx;QoÞ ¼ Leðx;QoÞ þ
Z
Vi

gðx;Qi;QoÞdvi ð1Þ

gðx;Qi;QoÞ ¼ frðx;Qi;QoÞLiðx;QiÞcos Qi ð2Þ

This equation is known as the rendering equation. To
compute how much light is reflected into a particular
direction, we need to integrate over all incident directions
(a hemisphere of directions Vi if we assume that the surface
is not transparent). Thus, the above equation will have to be
recursively evaluated for each point in the environment
that is visible from x.

To compute an image by simulating light in the above
manner, we would have to evaluate the rendering equation
for each pixel separately (multiple times if we were to apply
antialiasing in the process). It should be clear that the
number of computations required to evaluate this equation
even once is astronomical. For practical problems, the
computational cost of evaluating the rendering equation
directly is too high. However, there are many ways to
simplify this equation, for example, by removing parts of
the computation that do not contribute significantly to the
final solution.

It is, for instance, possible to only account for the direct
contribution of light sources, and ignore all reflected light.
Such algorithms fall in the class of local illumination
algorithms. If indirect illumination (i.e., illumination after
one or more reflections or transmissions) is accounted for,
then we speak of global illumination algorithms.

Finally, the rendering equation is known as a Fredholm
equation of the second kind, which implies that no analy-
tical solutions are known. We, therefore, have to resort to
numerical approximations to evaluate the rendering equa-
tion. In particular, this equation is routinely discretized,
turning its evaluation into a sampling problem.

In summary, rendering involves the creation of images
by simulating the behavior of light in artificial scenes. Such
scenes consist of descriptions of surfaces and light sources
(the geometry). In addition to having a position in space and
a particular shape, surfaces are characterized by the man-
ner in which they interact with light (material properties).
In the following sections, geometry and materials are dis-
cussed in greater detail, followed by a brief explanation of
the more prominent local and global illumination algo-
rithms.

GEOMETRY

The shape of an object can be modeled with a collection
of simple primitives, including polygon and triangle
meshes, spline surfaces, and point-based representations.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Geometric representations can either be modeled by hand
using modeling software, such as Alias Wavefront, or
objects can be scanned with a laser scanner.

A frequently used representation is a mesh (Fig. 1). A
mesh is made up of one or more simple polygonal shapes, for
example, triangles. Some polygons share boundaries with
other polygons in the mesh and together produce the
structure of the object. Of course, polygons will only approx-
imate the shape of the actual object. The larger the number
of polygons used (and therefore the smaller their size), the
closer the approximation will be to the actual shape of the
object. The number of polygons also determines the time it
takes to render the object, thereby affording a trade-off
between quality and computation time.

For efficiency purposes, large meshes may be reduced in
size. One technique to reduce the number of polygons
representing an object’s surface is displacement mapping.
In this technique, the surface of the object is represented by
fewer, larger polygons, and the small-scale features are
captured in a depth map. Points on the surface, which is
represented by polygons, are then displaced according to
the displacement map. In this way, the object shape retains
fine features, but the number of polygons used to represent
the object is smaller.

Another way of reducing rendering time is to use level of
detail algorithms. These algorithms ensure that the object
is represented by as many primitives as necessary, depen-
dent on distance to the viewer. If the object is far from the
viewpoint, most of the fine details will not be visible, and
thus the object’s shape may be represented by fewer poly-
gons. If the viewpoint approaches the object, the object
needs to be represented by a larger number of polygons
so that the fine-scale features, which are now visible, are
adequately visualized.

The shape of an object may also be described by para-
metric equations such as Bézier curves and B-splines. The

parametric surface has certain advantages over the simpler
polygonal model. First, the representation is much more
concise. If an object has fine features, the mesh will require
many polygons to represent the object. However, patches of
the same surface, when represented paramet-rically, will
be fewer, which is because each patch can represent a
curved surface segment, whereas triangles and polygons
are flat.

Scanners can be used to determine the shape of existing
objects. The output from a scanner is a dense set of points.
Typically-these points define the vertices of a triangle
mesh. Relatively recently, algorithms have been developed
to render point clouds directly, obviating the need for
triangulation. This approach also lends itself to a simpler
level of detail algorithms because altering the number of
points is more straightforward than altering the number,
size, and shape of polygons or patches representing the
object shape.

MATERIALS

The micro-structure of the object determines the way light
interacts with it, and hence it determines the appearance of
the object. This micro-structure is represented by a mate-
rial description, such as the BRDF fr introduced in the
Introduction.

If a surface scatters light equally in all directions, we call
the material diffuse or Lambertian, leading to a BRDF that
is a constant function (i.e., fr ¼ r=p) where r is a measure of
how much light is reflected. Other materials may reflect
light more in some directions than others, which is a func-
tion of the direction of incidence. For instance, a mirror
reflects almost all light in the reflected direction. In
between lie glossy materials that scatter light into a cone
centered around the direction of mirror reflection.

The angles Qi and Qo can each be decomposed into an
elevation angle f and an azimuthal angle y in the plane of
the surface, for instance, Qi ¼ ðfi; yiÞ. If the material’s
reflective properties depend only on fi;fo, and yi � yo,
then reflections are invariant to rotation around the surface
normal, and the material is called isotropic. On the other
hand, if fr depends on yi; yo;fi, and fo independently, then
rotation around the surface normal will alter the reflection,
and the material is called anisotropic (brushed aluminium
is an example).

Real materials can be measured, or BRDFs may be
modeled empirically. In the latter case, reciprocity and
conservation of energy are considered important features
of any plausible BRDF. Reciprocity refers to the fact that fr
should return the same result if Qi and Qo are reversed.
Conservation of energy means that light is either reflected
or absorbed, but not lost in any other way.

Extensions to basic BRDFs include models for transpar-
ency (e.g., glass), translucency, and spatial variance.
Translucency stems from light scatter inside a surface,
as shown in Fig. 2. Wax, skin, fruit, and milk all display
some degree of translucency. An example of a spatially
varying material is woodgrain, which is normally modeled
using texture mapping. A texture map can be created by
taking a photograph of the desired material, and then

Figure 1. Mesh representation of a model of a bunny. Image
courtesy of Hugues Hoppe (1).

2 RENDERING



mapping it onto the surface of the object. Texture maps and
BRDFs may be combined to yield spatially variant BRDFs,
or bidirectional texture functions (BTFs).

LOCAL ILLUMINATION

Images may be rendered by projecting all the geometry onto
a plane that represents the screen in 3-D space, thus
implementing a local illumination model. For each pixel,
the nearest object may be tracked using a z-buffer. This
buffer stores for each pixel the distance between the view
point and the currently nearest object. When a new object is
projected, its distance is tested against the distances stored
in the z-buffer. If the new object is closer, it is drawn and the
z-buffer is updated. The color assigned to the pixel is then
derived from the object’s color using a simple shading
algorithm.

The simplicity of projective algorithms makes them
amenable to hardware implementation. As a result, most
graphics cards implement a graphics pipeline based on z-
buffering. To maximize performance, geometry is typically
limited to simple shapes such as triangle and polygonal
meshes. Only simple materials are supported.

However, modern graphics cards incorporate two pro-
grammable stages that allow vertices and pixels to be
manipulated respectively, providing flexibility in an other-
wise rigid hardware environment. Programming these two
stages is achieved through APIs such as OpenGL or
DirectX. The (limited) ability to program graphics cards
has given rise to many extensions to the basic z-buffer
algorithm, such as shadow maps, which compute shadows.

RAY TRACING AND RAY CASTING

One of the basic operations in rendering is to compute
which (part of an) object is visible from a given point in
space and a given direction. Such sampling of the scene is
often accomplished with a technique called ray casting. A
ray is a half-line starting at a specified point in space (its
origin) and aimed at a particular direction. There may be

many objects located along the line of sight of such a ray,
and to compute which object is closest to the ray origin, the
ray is intersected with each object. The point on the surface
of the nearest object where the ray intersects, is called the
intersection point. Functions for ray intersection calcula-
tions are available for a wide variety of geometric primi-
tives, including triangles, polygons, implicit surfaces, and
splines—a distinct advantage of any ray casting-based
algorithm.

An image of a scene may be created by specifying a
camera position, and casting (primary) rays starting at
this position into different directions associated with the
pixels that make up the image. This process computes for
each pixel the nearest object. The color of the nearest object
is then assigned to its corresponding pixel. Such a ray
caster may be extended to a full ray tracer by also shooting
secondary rays. These rays start at the intersection points
of the primary rays and are aimed into specific directions
based on which type of lighting effect is desired.

For instance, rays may be traced from an intersection
point toward the light sources. Such shadow rays are useful
for computing shadows, because the shading of the inter-
section point can be adjusted based on whether it was in
shadow or not.

If an intersection point belongs to an object with a
specular material, an additional ray may be shot into the
reflected direction. This direction is computed by mirroring
the incident ray into the surface normal, a vector that
specifies the surface orientation at the intersection point.
The reflected ray is then recursively traced and its returned
color is assigned to the intersection point, which is in turn
used to color a pixel. The same procedure is followed for
transmitted rays in the case of transparent objects. A
typical ray tracing example is shown in Fig. 3.

Figure 2. An example of an object rendered with a translucent
material. Image courtesy of Rui Wang, university of Massachu-
setts, Amherst.

Figure 3. A typical ray traced image, consisting of reflective
spheres and sharp shadows. Image courtesy of Eric Haines. The
model is part of the Standard Procedural Database, as set of models
for testing rendering algorithms; see http://www.acm.org/tog/
resources/SPD/.

RENDERING 3



Thus, ray tracing is a recursive algorithm based on
casting rays. Starting from the view point, it is called eye
ray tracing. It is a relatively straightforward way to eval-
uate a simplified version of the rendering equation [Equa-
tion (1)], known as the ray tracing equation:

Loðx;QoÞ ¼ Leðx;QoÞ

þ
X

L

Z
xi 2L

vðx; xiÞ fr;dðxÞLeðxi;QiÞcos Qidvi

þ
Z

Qs 2Vs

fr;sðx;Qs;QoÞLðxs;QsÞcos Qsdvs

þ rdðxÞLaðxÞ

The four terms on the right-hand side are the emission term,
followed by a summation of samples shot toward the light
sources. The visibility term vðx; xiÞ is 1 if position xi on the
light source is visible from point x and 0 otherwise. The
integration in the second term is over all possible positions
on each light source. The third term accounts for specular
reflections, and the fourth term is the ambient term, which is
added to account for everything that is not sampled directly.

Thus, in ray tracing, only the most important directions
are sampled, namely the contributions of the light sources
and mirror reflections, which represents a vast reduction in
computational complexity over a full evaluation of the
rendering equation, albeit at the cost of a modest loss of
visual quality. Finally, ray tracing algorithms can now run
at interactive rates and, under limited circumstances, even
in real-time.

RADIOSITY

Both ray tracing and the local illumination models dis-
cussed earlier are view-point-dependent techniques.
Thus, for each frame, all illumination will be recomputed,
which is desirable for view-point-dependent effects, such as
specular reflection. However, diffuse reflection does not
visibly alter if a different viewpoint is chosen. It is therefore
possible to preprocess the environment to compute the light

interaction between diffuse surfaces, which may be
achieved by employing a radiosity algorithm (Fig. 4). The
result can then be used to create an image, for instance, by
ray tracing or with a projective algorithm.

The surfaces in the environment are first subdivided
into small patches. For computational efficiency, it is nor-
mally assumed that the light distribution over each patch is
constant. For small enough patches, this assumption is fair.
Each patch can receive light from other patches and then
diffusely reflect it. A common way to implement radiosity is
to select the patch with the most energy and distribute this
energy over all other patches, which then gain some energy.
This process is repeated until convergence is reached. As all
patches are assumed to be diffuse reflectors, the rendering
equation [Equation (1)] can be simplified to not include the
dependence on outgoing direction Qo:

LðxÞ ¼ LeðxÞ þ rdðxÞ
Z
x

Lðx0Þ cos Qicos Q0o
pkx0 � xk2

vðx; x0ÞdA0

where vðx; x0Þ is the visibility term, as before. This equation
models light interaction between pairs of points in the
environment. As radiosity operates on uniform patches
rather than points, this equation can be rewritten to
include a form factorF ij, which approximates the fraction
of energy leaving one patch and reaching another patch:

Li ¼ Li
e þ ri

d

X
j

L jFi j

Fi j ¼ 1

Ai

Z
Ai

Z
Aj

cos Qicos Q j

pr2
di jdA jdAi

where the visibility term v between points is replaced with
di j, which denotes the visibility between patches i and j.
The form factor depends on the distance between the two
patches, as well as their spatial orientation with respect to
one another (Fig. 5). In practice, the computation of form
factors is achieved by ray casting.

The radiosity algorithm can be used to model diffuse
inter-reflection, which accounts for visual effects such as

Figure 4. An early example of a scene preprocessed by a radiosity
algorithm. Image courtesy of Michael Cohen (2). Figure 5. Geometric relationship between two patches.

4 RENDERING



color bleeding (the colored glow that a surface takes on when
near a bright surface of a different color, as shown in Fig. 6).

MONTE CARLO SAMPLING

The integral in the rendering equation [Equation (1)] may be
evaluated numerically. However, as both the domain Vi and
the integrand [Equation (1)] are complex functions, a very
large number of samples would be required to obtain an
accurate estimate. To make this sampling process more
efficient, a stochastic process called Monte Carlo sampling
may be employed. The environment is then sampled ran-
domly according toa probabilitydensity function (pdf) pðviÞ:

Z
Vi

gðvi;Qi;QoÞdvi�
1

N

XN
i¼1

gðvi;Qi;QoÞ
pðviÞ

The number of sample points N can be set to trade speed
for accuracy. Typically, to evaluate each gðvi;Qi;QoÞ, a ray
is traced into the environment. For efficiency, the pdf
should be chosen to follow the general shape of the inte-
grand gðvi;Qi;QoÞ. There are many ways to choose the pdf,
a process known as importance sampling.

In addition, it is possible to split the integral into dis-
junct parts for which a simpler pdf may be known. This
process is called stratified sampling. One could view ray
tracing as a form of stratified sampling, because instead of
sampling a full hemisphere around each intersection point,
rays are only directed at the light sources and the reflected
and transmitted directions. Both importance sampling and
stratified sampling will help reduce the number of samples
N required for an accurate evaluation of the rendering
equation [Equation (1)].

PHOTON MAPPING

Certain complex types of illumination such as the caustic
patterns created by light refracted through transparent

Figure 6. Example of color bleeding. In particular, the gray object
on the right has a tinge of yellow and blue, caused by light that was
first reflected off the yellow and blue surfaces. Image courtesy of
Henrik Wann Jensen.

Figure 7. Light refracted through the transparent glass creates a
caustic on the table. Image courtesy of Henrik Wann Jensen.

objects are not efficiently sampled by Monte Carlo sampling
alone. Rendering algorithms, such as ray tracing, radiosity,
as well as local illumination models, expressly omit the
sampling that would be required to capture caustics.

To enable the rendering of caustics, as shown in Fig. 7, as
well as make rendering of other light interactions such as
diffuse inter-reflection more efficient, photons may be
tracked starting at the light source (known as photon ray
tracing), rather than tracing photons backwards starting at
the viewpoint (as in eye ray tracing). They can then be
deposited on diffuse surfaces after having undergone one or
more refractions through dielectric (transparent) objects.
Thus, photons are stored in a data structure called a photon
map, which represents the distribution of light over the
surfaces in an environment.

An image may then be created using conventional ray
tracing. Whenever an intersection with a diffuse surface is
detected, the photon map is used to determine how much
light is present at the intersection point. The photon map
may therefore be seen as a data-structure to connect the
initial light pass with the subsequent rendering pass.

Regarding efficiency, photon maps need to be created
only once as long as the scene is static. The rendering pass
can be repeated for any desired viewpoint.

IMAGE-BASED RENDERING

To avoid the expense of modeling a complicated scene, it is
sometimes more convenient to photograph a scene from
different viewpoints. To create images for novel viewpoints
that were not photographed, an interpolation scheme may
be applied. Rendering using images as a modeling primitive
is called image-based rendering. Such techniques attempt
to compute a continuous representation of the plenoptic
function, given some discrete representation of it. The
plenoptic function is defined as the intensity of light rays
passing through the camera center at every camera loca-
tion ðVx;Vy;VzÞ, orientation ðy;fÞ, and for every wave-
length (l) and time (t), that is:

P7 ¼ PðVx;Vy;Vz; y;f; l; tÞ ð3Þ

RENDERING 5



Thus, the plenoptic function may be considered a repre-
sentation of the scene, such that, when input parameters
like camera location and orientation are altered, the scene
represented by the function changes accordingly. Simpli-
fied versions of the plenoptic function exist. For instance, if
we assume that the environment is constant, we may
remove the parameter t. The simplest plenoptic function
is a 2-D panoramic view of the scene with a fixed viewpoint.
u and f are the only two input parameters in this case.

If instead of a full panoramic view, we captured several
images that are a part of this panoramic view, then these
images would be a discrete representation of the plenoptic
function. Image-based rendering techniques take these
discrete representations as input and provide a continuous
representation, for example, the complete panoramic view
in the above case. A technique might take two images with
different viewpoints as input and produce a set of images
that have viewpoints that lie in between the two original
viewpoints.

There are many image-based rendering techniques, and
they may be broadly classified into three groups. The first
group requires complete information of scene geometry, for
example, in the form of a depth map of the scene. This
information along with one or more images is sufficient to
render scenes from a viewpoint close to the viewpoint of the
given image(s). 3-D warping techniques belong to this
category.

The second group of image-based rendering techniques
uses only input images of the scene to render another image
of the same scene from a different viewpoint. There is no
reliance on any given information of the scene geometry.
Examples include light field rendering and lumigraph
systems.

The third group lies somewhere in between the previous
groups. This group requires several input images as well as
further geometric information in the form of correspon-
dence features in the two images (for example, points).
Given this correspondence, the scene may be rendered
from all viewpoints between the two viewpoints of the
original input images. View morphing (Fig. 8) and inter-
polation techniques fall under this category.

Images may also be used to represent the lighting of the
scene alone, whereas geometry and materials are repre-
sented directly. This process is called image-based lighting
(IBL, see Fig. 9). Here, the first step is to create the image
that will represent the lighting of the scene. An image of a
mirrored ball placed in the scene may be used to represent
this lighting. Images typically have a limited range of pixel
values (0 to 255), which cannot represent the lighting of an
arbitrary scene. High dynamic range (HDR) images are
used instead as their pixel values are not limited to 256
values and are proportional to the actual illumination of the
scene. The captured image is then mapped to a sphere and
the object is placed within it before rendering.

FURTHER READING

Rendering is an important part of the field of computer
graphics. There are many excellent books, as well as a vast
number of papers. Examples of general graphics books are

in Refs. (5–9). References (10–13) are books specifically for
ray tracing. Global illumination is covered in Ref. 14. Radio-
sity is explained in detail in Refs. 15–17. Photon mapping is
described in Ref. 18. For local illumination models as well as
using the OpenGL API, see Ref. 19. Image-based lighting is
a relatively new rendering technique, described in Ref. 20.
For real-time rendering, see Ref. 21. Parallel rendering is
covered in Ref. 22. The notation used for the equations in
this article are based on Arjan Kok’s thesis (23).

Figure 8. Two images are used to produce a third using image-
based rendering. Image courtesy of Steven Seitz (3).

Figure 9. Scene rendering without image based lighting (top),
and with image-based lighting (bottom). Image courtesy of Paul
Debevec (4).

6 RENDERING



The latest research on rendering is published in a vari-
ety of forums. The most relevant conferences are ACM
SIGGRAPH, the Eurographics Symposium on Rendering,
and the Eurographics main conference. In addition, several
journals publish rendering papers, such as ACM Transac-
tions on Graphics, IEEE Transactions on Visualization and
Computer Graphics, Eurographics Forum, and the Journal
of Graphics Tools.

ACKNOWLEDGMENTS

We thank Hugues Hoppe, Rui Wang, Eric Haines, Michael
Cohen, Henrick Wann Jersen, Steven Seitz, and Paul
Debevec for kindly allowing us to reproduce some of their
images.

BIBLIOGRAPHY

1. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery,
and W. Stuetzle, Multiresolution analysis of arbitrary meshes.
In SIGGRAPH ’95,1995,173–182.

2. M. F. Cohen, S. Chen, J. R. Wallace, and D. P. Greenberg, A
progressive refinement approach to fast radiosity image gen-
eration. In SIGGRAPH ’88, 1988, 74–84.

3. S. M. Seitz and C.R. Dyer, View morphing. In SIGGRAPH ’96,
1996, 21–30.

4. P. Debevec, E. Reinhard, G. Ward, and S. Pattanaik, High
dynamic range imaging. In SIGGRAPH ’04: ACM SIGGRAPH
2004 Course Notes, 2004.

5. P. Shirley, M. Ashikhmin, S. R. Marschner, E. Reinhard, K.
Sung, W. B. Thompson, and P. Willemsen, Fundamentals of
Computer Graphics, 2nd ed. Natick, MA: A.K. Peters, 2005.

6. M. Pharr and G. Humphreys, Physically Based Rendering, San
Fransisco, CA: Morgan Kaufmann, 2004.

7. A. S. Glassner, Principles of Digital Image Synthesis, San
Fransisco, CA: Morgan Kaufmann, 1995.

8. J. Foley, A. Van Dam, S. Feiner, and J. Hughes, Computer
Graphics, Principles and Practice, 2nd ed. Reading Addison-
Wesley, 1990.

9. A. Watt and M. Watt, Advanced Animation and Rendering
Techniques, Theory and Practice, Wokingham, UK: Addison-
Wesley, 1992.

10. A. S. Glassner, ed. An Introduction to Ray Tracing, San Diego,
CA: Academic Press, 1989.

11. G. Ward Larson and R. A. Shakespeare, Rendering with Radi-
ance, San Francisco, CA: Morgan Kaufmann, 1998.

12. P. Shirley and R. K. Morley, Realistic Ray Tracing, 2nd ed.Na-
tick, MA: A.K. Peters, 2003.

13. K. Suffern, Ray Tracing from the Ground Up, Natick, MA: A.K.
Peters, 2007.

14. P. Dutré, P. Bekaert, and K. Bala, Advanced Global Illumina-
tion, Natick, MA: A.K. Peters, 2003.

15. M. F. Cohen and J. R. Wallace, Radiosity and Realistic Image
Synthesis, Cambridge, MA: Academic Press, 1993.

16. F. X. Sillion and C. Puech, Radiosity and Global Illumination,
San Francisco, CA: Morgan Kaufmann, 1994.

17. I. Ashdown, Radiosity: A Programmer’s Perspective, New York:
John Wiley & Sons, 1994.

18. H. W. Jensen, Realistic Image Synthesis using Photon Map-
ping, Natick, MA: A.K. Peters, 2001.

19. D. Hearn and M. P. Baker, Computer Graphics with OpenGL,
3rd ed.Upper Sadle River, NJ: Pearson Prentice Hall, 2004.

20. E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High
Dynamic Range Imaging: Acquisition, Display and Image-
Based Lighting, San Francisco, CA: Morgan Kaufmann, 2005.

21. T. Akenine-Möller and E. Haines, Real-time Rendering, 2nd ed.
Natick, MA: A.K. Peters, 2002.

22. A. Chalmers, T. Davis, and E. Reinhard, eds. Practical Parallel
Rendering. Natick, MA: A.K. Peters, 2002.

23. A. J. F. Kok, Ray Tracing and Radiosity Algorithms for Photo-
realistic Image Synthesis, PhD thesis, Delft University of
Technology, The Netherlands. Delft University Press, ISBN
90-6275-981-5.

ERIK REINHARD

University of Bristol
Bristol, United Kingdom

ERUM KHAN

AHMET OĞUZ AKYÜZ

University of Central Florida
Orlando, Florida

RENDERING 7



S

SOLID MODELING

Solid modeling is the technique for representing and mani-
pulating a complete description of physical objects. A com-
plete description of a solid object is a representation of the
object that is sufficient for answering geometric queries
algorithmically. This requires a mathematical formulation
that defines rigorously the characteristics of a solid object.
Based on this mathematical formulation, different schemes
for representing physical objects are developed.

MATHEMATICAL FORMULATION

A solid is described using the concept of point-set topology,
whereas the boundary of a solid is characterized by using
the concept of algebraic topology as discussed below. A solid
is a closed point set in the three-dimensional Euclidean
space E3. For example, a unit cube is denoted as S ¼ fp :
p ¼ ðx; y; zÞ; such that x2 ½0; 1�; y2 ½0; 1�; z2 ½0; 1�g. A point
set in E3 denoting a solid is rigid and regular (1). A point
set is rigid, which implies that it remains the same when
being moved from one location to another. A point set is
regular, which implies that the point set does not contain
isolated points, edges, or faces with no material around
them. To ensure a point set is regular, a regularization
process is applied to a point set as defined below.

Definition 1. Regularization of a Point Set. Given a point
set S, the regularization of S is defined as rðSÞ ¼ cðiðSÞÞ,
where c(S) and i(S) are, respectively, the closure and inter-
ior of S

The regularization process discards isolated parts of a
point set, which is then enclosed with a tight boundary
resulting in a regular point set. A point set S is regular if
r(S) = S, and a regular set S is usually referred to as an r-set.

BOOLEAN OPERATIONS ON POINT SETS

Boolean operations on r-sets may result in a nonregular
point set. For example, if A ¼ fp : p ¼ ðx; y; zÞ; such that x2
½0; 1�; y2 ½0; 1�; z2 ½0; 1�g and B ¼ fp : p ¼ ðx; y; zÞ; such that

x2 ½1; 2�; y2 ½1; 2�; z2 ½1; 2�g, then,

A\B ¼ fp : p ¼ ðx; y; zÞ; such that x2 ½0; 1� \ ½1; 2�; y2 ½0; 1� \
½1; 2�; z2 ½0; 1� \ ½1; 2�g

or,

A\B ¼ fp : p ¼ ðx; y; zÞ; such that x ¼ 1; y ¼ 1; z ¼ 1g;

A\B is thus a single point and is not regular. To ensure the
result of Boolean operations on point sets are regular point
sets, the concept of regularized Boolean operation is
adopted. In the above example, A\B ¼ ð1; 1; 1Þ, the interior
of A\B is empty; i.e., iðA\BÞ ¼ f. As the closure of iðfÞ is

empty, applying a regularization on A\B gives rðA\BÞ ¼
cðiðA\BÞÞ ¼ f. Based on the concept of regularization on
point sets, regularized Boolean operation is defined as
follows.

Definition 2. Regularized Boolean Operations. Denote
[ �, \ �, and -* as the regularized union, intersect, and
difference operations, respectively. They are defined as
follows:

A[ �B ¼ cðiðA[BÞ ð1aÞ

A\ �B ¼ cðiðA\BÞ ð1bÞ

A��B ¼ cðiðA� BÞ ð1cÞ

A point set describing a solid must be finite and well
defined. The surfaces of a solid are thus restricted to be
algebraic or analytic surfaces.

THE BOUNDARY OF A SOLID

The boundary of a solid is a collection of faces connected to
form a closed skin of the solid. The concept of algebraic
topology (2) is usually adopted for characterizing the
boundary of a solid.

The surface composing the boundary of a solid is a
2-manifold in the two-dimensional space E2. A 2-manifold
is a topological space in which the neighborhood of a point
on the surface is topologically equivalent to an open disk of
E2. However, there are cases when the boundary of a solid
is not a 2-manifold as shown in Fig. 1. In addition, some
2-manifolds do not constitute a valid object in E3 (e.g., the
Klein bottle). To ensure the boundary of an object encloses
a valid solid, the faces of the boundary must be orientable
with no self-intersection. An object is invalid (or is a
nonmanifold object) if its boundary does not satisfy the
Euler–Poincare characteristic as described below.

THE EULER–POINCARE CHARACTERISTIC

The Euler–Poincare characteristic states that an object is
a nonmanifold object if its boundary does not satisfy the
equation

v� eþ f ¼ 2ðs� hÞ þ r

where v-number of vertices, e-number of edges, f-number
of faces, s-number of shells, h-number of through holes, and
r-number of rings.

The Euler–Poincare formula is a necessary but not a
sufficient condition for a valid solid. An object with a
boundary that does not satisfy the Euler–Poincare formula
is an invalid solid. On the contrary, an object satisfying the
Euler–Poincare formula may not be a valid solid. Figure 2

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



illustrates an invalid solid satisfying the Euler–Poincare
formula.

REPRESENTATION SCHEMES

Denote M as the modeling space of solids. That is, a solid
X is an element of M. A solid representation (1) of an object
is a collection of symbols specifying the solid object. There
are various representation schemes for modeling solids
defined as point sets in E3. In general, the properties of a
solid representation scheme can be described as follows:

Geometric coverage — the objects that can be described
using the representation scheme.

Validity — a representation scheme must designate a
valid solid (Fig. 3)

Completeness — a representation must provide enough
data for any geometric computation. For example,
given a point p, an algorithm must exist for deciding if
p is in, on, or out of the solid.

Uniqueness — a representation scheme is unique if
there is only one representation for a given solid
object.

Unambiguous — a representation scheme is unambig-
uous if a representation designates exactly one solid
object.

Conciseness — the space (computer storage) required for
a valid representation.

Closure of operation — whether operations on solids
preserve the validity of the representation.

Computational requirement and applicability — the
algorithms that can be applied to the representation
scheme and the complexity of these algorithms.

Among the various solid representation schemes, the
constructive solid geometry and the boundary represen-
tation are the most popular schemes as discussed in the
following.

CONSTRUCTIVE SOLID GEOMETRY (CSG)

Constructive solid models consider solids as point sets of
E3. The basic elements of CSG model are simple point
sets that can be represented as simple half-spaces. Given
a mapping f : E3!R that maps the Euclidean space to the
real axis, the function f(p), where p is a point in E3, divides
the three-dimensional space into two halves. They are the
space f(p) > 0 and its complement f(p) � 0. More complex
objects are obtained by combining half-spaces with Boolean
operations. Figure 4 shows a cylinder constructed with
three half-spaces. An object modeled with constructive
solid geometry can be represented with a CSG tree. A
CSG tree is a binary tree structure with half-spaces or
primitive solids at the leaf nodes. Figure 5 shows a set of
solid primitives commonly used in a CSG modeler. All
internal nodes are Boolean operations or transformations.
An example is shown in Figure 6, where an L-shaped block
is constructed with a CSG modeler. Figure 7 gives an
example for modeling a more complicated object using a
CSG modeler.

POINT MEMBERSHIP CLASSIFICATION
AND BOOLEAN OPERATIONS

A basic characteristic of a solid representation scheme is to
be capable of providing sufficient information for deciding

Figure 1. Nonmanifold object.

H1

H2

H3

z

x

0: ≤−+ r2y2x2H1

0: ≥zH2

0: ≤− hzH3

: H3H2H1C ∩∩
y

Figure 4. A cylinder constructed with three half-spaces.

v = 10 
e = 15 
f = 7 

Figure 2. An invalid solid statisfies Euler characteristic.

Figure 3. An invalid solid.

2 SOLID MODELING



if a given point p is in, on, or out of a solid using a suitable
point membership classification (PMC) (3,4) algorithm.
Using a CSG representation scheme, point membership
classification is performed with a divide-and-conquer
approach. Starting from the root node of the CSG tree,
the point p is passed down the tree. Whenever a Boolean
operation node is encountered, p is passed to both the left
and right subnodes of the current node. If a transformation
node is encountered, an inverse transformation is applied
to p and the result is passed to the left subnode. Whenever a

leaf node is encountered, the point (possibly transformed)
is classified against the half-space or primitive solid of the
node. The result is propagated upward to the parent node.
In this upward propagation, the results of the left and right
subtree of a Boolean operation node are combined. The
upward propagation ends at the root node where the result
obtained will be the result of classifying p against the whole
object.

Combining the PMC results at a Boolean operation node
requires special consideration. Assume RL and RR as the
PMC results of the left and right subtrees, respectively. If
RL 6¼ on or RR 6¼ on, then the result of RL .op. RR (where
o p2f[ ; \ ;�g) can be easily obtained according to Table 1.
In all three cases, if a point is on both A and B, the classi-
fication result is undetermined. For instance, in Fig. 8, the
point p is on both A and B. However, p may be in or on A[B
depending on the relative position of A and B. To obtain an
accurate classification result, information regarding the
local geometry of the solids in the vicinity of the point is
required for the classification.

NEIGHBORHOOD

The Neighborhood N(p, S) of a point p ¼ ðx; y; zÞ with
respect to a solid S is the intersection of an open ball
with S, where the open ball is a sphere with an infinitesimal

Figure 7. Object modeling with constructive solid geometry.

Figure 6. The CSG tree of an L-shaped block.

Figure 5. Commonly used solid primitives.

Table 1. Classifications in Boolean operations

B B B

A[B in on out

in in in in
A on in ? in

out in on out

A\B in on out

in in on out
A on on ? out

out out out out

A–B in on out

in out on in
A on out ? on

out out out out

SOLID MODELING 3



radius e centered at p; i.e.,

Nðp;SÞ ¼ S\fðx0; y0; z0Þjðx0 � xÞ2 þ ðy0 � yÞ2

þ ðz0 � zÞ2 < e2g
(2)

Using the notion of neighborhood, the following three cases
can be established (Fig. 9):

1. A point p is in S iff N(p, S) is a full ball.

2. A point p is out of S iff N(p, S) is empty.

3. A point p is on S iff N(p, S) is not full and not empty.

If p lies in the interior of a face, its neighborhood can
be represented by the equation of the surface and is
oriented such that the face normal points to the exterior
of S (Fig. 10a). If p lies in the interior of an edge, the
neighborhood is represented by a set of sectors in a plane
containing p that is perpendicular to the edge at p
(Fig. 10b). A vertex neighborhood is inferred from the set

of face normals of the faces incident at p (Fig. 10c). In a
Boolean operation between two objects A and B, the neigh-
borhoods of a point p relative to A and B are combined.
Whether the combined neighborhood is full, empty, or not
full nor empty determines whether p is in, out, or on the
combined solid. In addition, by interpreting whether the
neighborhood is a face neighborhood, edge neighborhood, or
vertex neighborhood, the point p can be classified to be
lying on a face, an edge, or is a vertex. For example, in a
union node, if the neighborhood NL, NR of p relative to both
the left and the right subtrees are face neighborhoods with
face normals nL and nR, respectively, then the union N of
NL and NR is an edge neighborhood when jnL�nRj 6¼ 1. If
nL�nR ¼ 1, then N is a face neighborhood. If nL�nR ¼ �1, N
is full (Fig. 11). If NL and NR are edge neighborhoods,
the union of NL and NR may be a vertex neighborhood,
an edge neighborhood, a face neighborhood, or it is full
(Fig. 12).

nL
nR 1≠•nRnL

1=•nRnL1−=•nRnL

Figure 11. Combining face neighborhoods at a union node.

A

B

A

B

p

p

Figure 8. A point lying on both A and B may be on or in A[B.

p

ε  

p in S p out of S p on S

Figure 9. Three possible cases of the neighborhood at a point.

Figure 10. Representation of a neighborhood.

Figure 12. The union of edge neighborhoods.

4 SOLID MODELING



BOUNDARY EVALUATION

CSG representation provides a concise description of a
solid. However, there is no explicit information for display
purposes. To obtain this explicit information, a boundary
evaluation process is required. This requires classifying all
edges and faces of all primitive solids (or half-spaces)
against the CSG representation of the solid. These are
performed with the edge-solid classification and the face-
solid classified algorithms.

In the edge-solid classification process, an edge L is
partitioned into segments by intersecting L with all
primitives of the solid. These segments are then classified
against the given solid. A simple approach for classifying
segments is to apply a point membership classification at
the midpoint of each segment. Segments that are classi-
fied as lying on the solid are combined to give edges of the
solid (Fig. 13).

In the face-solid classification process, a face is inter-
sected with all primitives of the solid. The intersection
edges and the boundary edges of the face are then classified

against the given solid using the edge-solid classification
algorithm. Edges lying on the solid are then connected to
form boundaries of the face (Fig. 14).

PROPERTIES OF CSG MODELS

The geometric coverage of a CSG modeler depends on the
type of primitive solids and half-spaces used. Provided all
primitives are r-sets, and regularized set operations are
adopted for the construction of more complex solids, CSG
models are always valid solids. CSG models are unambi-
guous but not unique. A CSG model can be described
precisely using a binary tree. CSG representations are
thus relatively concise. Algorithms for manipulating
CSG models (e.g., boundary evaluation) may be computa-
tionally expensive. With suitable algorithms, CSG models
can be converted to other types of solid representations.

BOUNDARY REPRESENTATION

A boundary representation (B-Rep) of a solid describes a
solid by its boundary information. Boundary information in
a B-rep includes the geometric information and the topo-
logical relationship between entities of the boundary. Geo-
metric information refers to the vertices, positions,
surfaces, and curves equations of the bounding faces and
edges. Topological relationship refers to the relationship
among the faces, edges, and vertices so that they conform
to a closed volume. For instance, the boundary of an object
can be modeled as a collection of faces that forms the
complete skin of the object. Each face is bounded by a set
of edge loops, and each edge is, in general, bounded by two
vertices. The boundary of an object can thus be described as
a hierarchy of faces and edges as depicted in Fig. 15.

B-REP DATA STRUCTURE

Among the various data structures for implementing
B-Rep, the most popular one is the winged-edge structure
(5), which describes a manifold object with three tables of
vertices, faces, and edges. In the winged-edge structure,
each face is bounded by a set of disjoint edge loops or cycles.
Each vertex is shared by a circularly ordered set of edges.
For each edge, there are two vertices bounding the edge,
which also defines the direction of the edge. There are two

S = A ∩* B 
A

BL

   LoutA LinA LonA LoutA

LoutB LinB LoutB

LonA ∩* LinB  

LoutA∪* LoutB

LoutS LonS LoutS

Figure 13. Edge-solid classification.

Intersection
edges

Intersecting
face

Face
boundary

Segment
in solid Segment

on solid 

Figure 14. Face-solid classification.

Face

Edge loop 

Vertex

(a)

(b)

Figure 15. Boundary data: (a) A cube and (b) boundary data of a
cube.

SOLID MODELING 5



faces, the left and the right adjacent faces, sharing an edge.
There are two edge cycles sharing an edge. One edge cycle is
referred to as in the clockwise direction, and the other is in
the counterclockwise direction. The edge cycle on a face is
always arranged in a clockwise direction as viewed from
outside of the solid. In each direction, there is a preceding
and a succeeding edge associated with the given edge.
Figure 16 illustrates the relations among vertices, edges,
and faces in a winged-edge structure. Table 2 gives an
example of a winged-edge representation of the tetrahe-
dron shown in Fig. 17.

VALIDITY OF B-REP SOLID AND EULER OPERATORS

Given a boundary representation specifying a valid solid,
the set of faces of a boundary model forms the complete skin
of the solid with no missing parts. Faces of the model do not
intersect each other except at common vertices or edges.
Face boundaries are simple polygons or closed contours
that do not intersect themselves. To avoid the construction
of invalid B-Rep solid, Euler operators (4,5) are usually
employed in the object construction process. Euler opera-
tors keep track of the number of different topological enti-
ties in a model such that it satisfies the Euler–Poincare
characteristic. Euler operators are functions defined as
strings of symbols in the character set {M, K , S, J, V, E,
F, S, H, R}. Each of the symbols M, K, S, and J denotes an
operation on the topological entities V, E, F, S, H, and R.
Descriptions of these symbols are listed below:

M—make, K—kill, S—split, J—join,

V—vertex, E—edge, F—face, S—solid, H—hole, R—ring.

For example, an operator MEF denotes a function to
‘‘Make Edge and Face.’’ As shown in Fig. 18, inserting an
edge in the model also creates another face at the same
time. In Fig. 19, the operator KEMR removes an edge while
creating a ring in the object. The use of Euler operators
always produces topologically valid boundary data. How-
ever, an object with a topologically valid boundary may be
geometrically invalid. As shown in Fig. 20, moving the
vertex p of a valid solid upward causes the interior of the
object to be exposed and thus becomes an invalid object.

Figure 19. The KEMR operator.

cw-predcw-succ

ccw-pred

cw-face

ccw-face

ccw-succ

Figure 16. The winged-edge data structure.

Table 2. Winged-edge data.

Edge

Vertices Faces CW CCW

Start End CW CCW Pred Succ Pred Succ

e1 v1 v2 f1 f2 e3 e2 e4 e5

e2 v2 v3 f1 f4 e1 e3 e6 e4

e3 v3 v1 f1 f3 e2 e1 e5 e6

e4 v1 v4 f2 f3 e5 e1 e2 e6

e5 v4 v2 f2 f4 e1 e4 e6 e3

e6 v4 v3 f4 f3 e3 e5 e4 e2

Figure 17. A tetrahedron.

Figure 18. The MEF operator.

6 SOLID MODELING



PROPERTIES OF B-REP

The geometric coverage of the boundary representation is
determined by the types of surfaces being used. Early works
in boundary representation are mainly confined to the
manipulation of polyhedral solid models (6). Contemporary
B-Rep modelers adopt trimmed NURBS surfaces for
describing the geometry of an object boundary. This allows
freeform solids to be modeled. B-Rep is unique but ambig-
uous; that is, one representation always refers to one solid.
However, there may be more than one representation for
one object. For example, a cube can be represented by
6 squares, or it can be represented by 12 triangles. As
vertices, edges, and faces information are readily available,
fast interactive display of B-Rep solid can be achieved.
However, a complex data structure is required for main-
taining a B-Rep. Nevertheless, B-Rep is attractive as it
allows local modifications of objects. Local modification
refers to a change in the geometry of an object. For instance,
a change in the position of a vertex of a cube causes a plane
of the cube to become a bilinear surface (Fig. 21).

HYBRID REPRESENTATION

As there is no single representation scheme that is superior,
hybrid representation is usually adopted. In most popular
hybrid representation schemes, objects are represented
basically in B-Rep. Boolean operations are allowed for
constructing solids. In some cases, sweep operations (7)
are also adopted for constructing solids. A history of ope-
rations is recorded that is an extension of a CSG represen-

tation. The history of operations allows the modeled object
to be modified by adjusting the location or shape para-
meters of the primitive solids. It also serves as the basis
for implementing the ‘‘Undo’’ operation. As a B-Rep exists
for each object, local modifications can be performed on the
solid, whereas set operations may also be applied on objects.
This provides a basis for the parametric or constraint-based
modelers (8), which are widely adopted in commercial CAD
systems.

OTHER REPRESENTATION SCHEMES

Besides the most popular CSG and B-Rep representation
schemes, other representation schemes help to widen the
geometric coverage or the scope of applications of solid
modelers. Schemes that widen the geometric coverage of
CSG modeler include the Sweep-CSG (7) and the Construc-
tive Shell Representation (9). Sweep-CSG technique allows
objects created with sweep operations to be used as primi-
tives in a CSG modeler. An example is shown in Fig. 22
where a bevel gear is created by sweeping a planar contour
as shown in Fig. 22a. The sweep operation is an extrusion of
the contour, whereas the contour is being rotated and
scaled. The Constructive Shell Representation adopts trun-
cated tetrahedrons (Trunctet) as basic primitives. A trunc-
tet is a tetrahedron truncated by a quadric surface. By
maintaining continuity between trunctets, free-form solids
can be modeled with CSG representation (Fig. 23).

Figure 21. Local modification of a cube.

Figure 20. A topologically valid solid becomes geometrically
invalid.

Figure 22. A bevel gear created with a sweep operation: (a) The
gear contour, the extrusion, and rotation axis for the sweep.
(b) Union of the swept solid, a cylinder, and a block.

Figure 23. Trunctet and the Constructive Shell Representation:
(a) A trunctet and (b) an object constructed with four smoothly
connected trunctets.

SOLID MODELING 7



Applications such as various stress and heat analysis
using the finite element method requires an object to be
represented as a collection of connected solid elements. This
solid representation scheme is usually referred to as Cell
Decomposition (10). Spatial Enumeration and Octree (10)
are solid representation schemes widely used in applica-
tions where only a coarse representation of an object is
required (e.g., collision detection). Although the most pop-
ular B-Rep and CSG schemes may not be suitable for these
applications, algorithms exist for converting B-Rep and
CSG models into other representation schemes, and hence,
they remain a primary representation in existing solid
modeling systems.

REMARKS

Solid modeling is a technique particularly suitable for
modeling physical objects and is widely adopted in most
commercial CAD systems. A product model built on top of a
solid model provides the necessary information for the
design analysis and production of the model. For instance,
the rapid prototyping process requires an object to have a
closed boundary for its processing. Manufacturing process
planning of a product requires identifying the manu-
facturing features of the object. This can be obtained
from the CSG tree of the object or the topological relation-
ship between the entities in a B-Rep model. The bills of
materials for a product require volumetric information
of the product, which is readily available in the solid model
of the product. A major limitation of solid modeling is its
complexity in terms of storage and the algorithms required
for its processing.

BIBLIOGRAPHY

1. A. G., Requicha Representations of solid objects—theory,
methods, and systems, ACM Comput. Surv., 12(4): 437–464,
1980.

2. J., Mayer Algebraic Topology, Englewood Cliffs, NJ: Prentice-
Hall, 1972.

3. B. R., Tilove Set membership classification: A unified
approach to geometric intersection problems, IEEE Trans.
Comput., 29(10): 874–883, 1980.

4. C. M., Hoffmann Geometric and Solid Modeling: An Introduc-
tion, San Francisco, CA: Morgan Kaufmann, 1989.

5. B., Baumgart A Polyhedron Representation for Computer
Vision, Proc. National Computer Conference, 1975, 589–596.

6. I. C., Braid The synthesis of solids bounded by many faces,
Commun. ACM, 18(4): 209–216, 1975.

7. K. C., Hui S. T., Tan Display techniques and boundary evalua-
tion of a sweep-CSG modeller, Visual Comp. 8(1): 18–34, 1991.

8. J. J., Shah M., Mantyla Parametric and Feature Based CAD/
CAM, New York: John Wiley & Sons, Inc., 1995.

9. J., Menon Guo Baining, Free-form modeling in bilateral brep
and CSG representation schemes, Internat. J. Computat.
Geom. Appl. 8(5–6): 537–575, 1998.

10. M., Mantyla An Introduction to Solid Modeling, Rockville,
MD: Computer Science Press, 1988.

K. C. HUI

The Chinese University
of Hong Kong

Shatin, Hong Kong

8 SOLID MODELING



SOLID MODELING 9



S

SURFACE DEFORMATION

Surface deformation is a fundamental tool for the cons-
truction and animation of three-dimensional (3-D) models.
Deforming a surface is to adjust the shape of surface, which
requires adjusting the parameters in the representation of
a surface. As the defining parameters of different types of
surfaces are different, different shape control techniques
are available for different surface types. Alternatively,
general deformation tools can be used for deforming sur-
faces. However, the deformation effect depends on how
these tools are applied to the surfaces. In general, deforma-
tion tools can be classified into the geometric- and physics-
based approaches. The geometry-based approach refers to
the deformation of surfaces by adjusting geometric handles
such as lattices and curves. The physics-based approach
associates material properties with a surface such that the
surface can be deformed in accordance with physical laws.
They are discussed in detail in the following sections.

REPRESENTATION AND DEFORMATION OF SURFACE

The early work on the deformation technique developed by
Alan Barr (1) uses a set of hierarchical transformations
(stretching, bending, twisting, and tapering) for deforming
an object. This technique determines the surface normal of
a deformed object by applying a transformation to the sur-
face normal vector of the undeformed surface. It requires a
representation of the surface of which the Jacobian matrix
can be determined. In fact the representation of a surface
determines how a surface can be deformed. For surfaces
that are represented in terms of geometric entities such as
points and curves, deformation of the surface can be easily
achieved through adjusting the locations of the points or
modifying the shape of the curves. However, for surfaces
where there is no direct geometric interpretation for
the defining parameters, special techniques have to be
employed to associate geometric entities with its represen-
tation. In order not to restrict the pattern of deformation on
a surface, free-form surfaces or surfaces that can be used to
model arbitrary object shapes are usually considered for
surface deformation.

Deforming Algebraic Surfaces

An algebraic surfaces f is a function of the mapping f: E3!
R, such that all points p in E3 satisfying f(p) = k lie on the
surface, where k is a constant. Deforming an algebraic
surface is to modify the function f such that a different
set of points satisfies the modified function. As the defining
parameters of an algebraic surface are the coefficients of
the function f, they do not provide intuitive control over the
shape of the surface. Alternative means are adopted for
deforming algebraic surfaces. One approach to provide
intuitive shape control on algebraic surface is to express
an algebraic surface with a set of control points (2–4).

Consider a tetrahedron T with vertices v1, v2, v3, v4; a
point p lying within T can be expressed as

p ¼ sv1 þ tv2 þ uv3 þ vv4; sþ tþ uþ v ¼ 1 (1)

where (s, t, u, v) is the barycentric coordinate of p relative
to the vertices v1, v2, v3, v4. The barycentric coordinates of
v1, v2, v3, v4 are thus (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and
(0, 0, 0, 1), respectively. Using Gua’s approach (3), a quadric
algebraic patch interpolating three vertices of T is given by

abðs; t;u; vÞ ¼ w2000s2 þw0200t2 þw0020u2 þw0002v2

þ 2w1100stþ 2w1001svþ 2w0011uvþ 2w0110tu

þ 2w1010suþ 2w0101tv

¼ 0 ð2Þ

where wijk are the weights associated with the control
points on the tetrahedron as shown in Fig. 1. Assuming the
surface passes through the vertices v1, v2, v3, the weights
w2000, w0200, w0020 are zero. Normalizing Equation 2, or
setting w0002 to 1, gives

abðs; t;u; vÞ ¼ v2 þ 2w1100stþ 2w1001svþ 2w0011uv

þ 2w0110tuþ 2w1010suþ 2w0101tv

¼ 0 ð3Þ

The shape of a surface �patch is thus defined by the
weights w1100, w0110, w1010, w1001, w0101, w0011, which
are determined by the surface normals ni of the surface
at the base vertices of the tetrahedron as given by the
equations (3).

w1100 ¼
1

2
ðv2 � v1Þ�n1; w0110 ¼

1

2
ðv3 � v2Þ�n2;

w1010 ¼
1

2
ðv1 � v3Þ�n3;

w1001 ¼
1

2
ðv4 � v1Þ�n1; w0101 ¼

1

2
ðv4 � v2Þ�n2;

w0011 ¼
1

2
ðv4 � v3Þ�n3; ð4Þ

The shape of an algebraic surface can thus be changed
by adjusting the locations of the control points on the
tetrahedron.

Deforming Tensor Product Surfaces

Parametric surfaces are usually represented with a set of
geometric entities. Consider a tensor product surface s(u, v)
expressed in terms of a set of control polygon vertices (e.g.,
Bezier surface and NURBS surfaces) (5)

sðu; vÞ ¼
Xn

i¼0

Xm
j¼0

ai;kðuÞb j;lðvÞbi; j (5)

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



where ai,k(u), bj,l(v) are blending functions or basis func-
tions associated with each control polygon vertices of the
surface and k and l are orders of the basis functions in the u
and v directions, respectively. The shape of the surface
s(u, v) can be easily modified by adjusting the location of
the control polygon vertices bi,j. For tensor product sur-
faces, s(u, v) approximates the control points except at the
corners where s(u, v) interpolates the corner vertices. By
subdividing s(u, v) into a set of Ck�1, and Cl�1 continuous
surface patches si(u, v) along the u and v directions, defor-
mation of s(u, v) can be controlled by adjusting the corner
vertices of si(u, v). This allows points on the surface to be
used as handles for the deformation. However, special
consideration has to be taken to maintain the continuity
of the surface at these corner vertices (5). This is also true
for surfaces that are defined by its corner vertices and
tangents, e.g., parametric cubic surfaces; deformation of
the surface can be achieved through adjusting the corner
vertices and tangents.

Trimming Tensor Product Surfaces

In general, adjusting the control polygon vertices or surface
points of a surface modifies the curvature of a surface.
Although the boundary of a surface can be adjusted by
modifying the control vertices on the boundary of a surface,
this may also affect the curvature of a surface. To adjust the
boundary of a surface without affecting the surface curva-
ture, the concept of trimmed surface is usually adopted.

A trimmed surface is a surface with irregular bound-
aries. Consider a region of a surface defined by a series of
trimming curves on a surface s(u,v) as shown in Fig. 2. A
popular approach for representing trimming curves of a
surface is to specify the curves on the parametric space of
s(u, v). For example, in a trimmed NURBS surface, a
trimming curve is expressed as

cðtÞ ¼ ðuðtÞ; vðtÞÞ ¼
Xn

i¼0

Ri;kðtÞbi (6)

where bi = (ui, vi) are points on the parametric space of
s(u, v),

Ri;kðtÞ ¼
wiNi;kðtÞXn

j¼0

w jN j;kðtÞ

Ni;kðtÞ ¼
ðt� tiÞNi;k�1ðtÞ

tiþk�1 � ti
þ
ðtiþk � tÞNiþ1;k�1ðtÞ

tiþk � tiþ1
;

Ni;1ðtÞ ¼
1 if ti � t � tiþ1

0 otherwise

(

and wi are the weights associated with bi. The trimmed
curve in 3D space is thus s(u(t), v(t)). Trimming curves
are closed loops in the parametric space of s(u, v). To
identify the valid region of the trimmed surface, a popular
approach is to use the direction of the trimming curve loop
to indicate the region of the surface to be retained (6).
For instance, a counter-clockwise loop denotes the outer
boundary of the surface, whereas a clockwise loop indicates
a hole of the surface.

Figure 1. An algebraic surface patch.

Figure 2. A trimmed surface and its trim-
ming curves in the parametric space.

2 SURFACE DEFORMATION



Deforming Subdivision and Mesh Surfaces

Subdivision surfaces and simple polygon meshes are also
popular choices for deformable surfaces as they are defined
by a set of points bi,j constituting the base mesh or polygon
mesh of the surface. Deformation can thus be achieved
through adjusting the locations of bi,j. However, manipu-
lating individual vertices of a polygon mesh is a tedious
process especially for surfaces with a high mesh density.
Deformation tools are thus usually adopted for this purpose
as discussed below.

GEOMETRY-BASED DEFORMATION TOOL

Popular tools for geometry-based deformation include the
lattice-based deformation, the curve-based deformation,
and the constraints-based deformation.

Free-Form Deformation (FFD)

The free-form deformation technique introduced by Thomas
W. Sederberg and Scott R. Parry (7) deforms an object by
embedding the object in a parallelepiped region. Defining a
local coordinate system at a point p0 in the parallelepiped
region as shown in Fig. 3, a point p of the object can be
expressed as

p ¼ p0 þ slþ tmþ un (7a)

where l, m, n are the coordinate axes at p0 and their
corresponding coordinates are

s ¼ ðp� p0Þ� l
jlj2

; t ¼ ðp� p0Þ�m
jmj2

; u ¼ ðp� p0Þ�n
jnj2

(7b)

so that 0 � s � 1, 0 � t � 1, and 0 � u � 1 for p lying
in the parallelepiped. By imposing a grid of control points
qijk on parallelepiped, where

qi jk ¼ po þ
i

l
lþ j

m
mþ k

n
n; (8)

and l, m, n are the dimensions of the grid in the l, m, n
direction respectively, the point p can be expressed as

p ¼
Xl

i¼0

Xm
j¼0

Xn

k¼0

l

i

� �
m

j

� �
n

k

� �
ð1� sÞl�i

� sið1� tÞm� jt jð1� uÞn�kukqi jk ð9Þ

A change in the location of the control points qijk thus
causes the point p and hence the object to be deformed.
Denote F1 as a mapping F1: E3!R3, such that p 2E3, pL 2
R3, and pL = (s, t, u), so that pL = F1(p) is the function in
Equation 7b. Define F2 as the mapping F2: R3! E3, where
F2 is the function in Equation 9. A free-form deformation is
a mapping F ¼ F1�F2, where F : E3! E3 transforms every
point of an object S to that of the deformed object F(S). As F
is independent of the representation of S, the deformation
can be applied to an object irrespective of its representation.
However, applying the deformation to surface points or the
control points of the surface may result in different surfaces
as shown in Fig. 4. An example illustrating the application
of FFD on the algebraic surface (8) discussed in Section 2.1
is shown in Fig. 5.

Extended Free-Form Deformation

The control lattice as constructed with Equation 8 is par-
allelepiped. This contrained the shape and size of the region
to be deformed by FFD. Coquillart (9) proposed an
Extended FFD that allows the use of a non-parallelepiped
or non-prismatic control lattice. Predefined lattices in
EFFD include the parallelepipedical and cylindrical lat-
tices (Fig. 6). These lattices can be edited and combined to
give more complex lattices. An EFFD lattice thus consists of
a set of standard FFD lattices that may include degener-
ated vertices. A surface or a region of a surface is associated
with the EFFD lattice. Given a point p in the region of a
surface to be deformed, the corresponding FFD lattice

pijk

T

S

U

Figure 3. An FFD lattice.

Figure 4. Deformation of a sphere using FFD. (a) Applying the
deformation to the polyhedral model of a sphere. (b) Applying the
deforming to the control polygon of a NURBS sphere.

SURFACE DEFORMATION 3



containing p is located. The lattice coordinate (s, t, u) of p
relative to the corresponding FFD lattice is then deter-
mined using Newton approximation. Whenever there is
a change in the locations of the lattice vertices, the position
of p in E3 can be computed using Equation 9. This allows
the shape of the surface covered by the lattice to be modified
by adjusting the EFFD lattice control points.

Direct Free-Form Deformation

Free-form deformation allows an object to be deformed
by adjusting the lattice control points. A more intuitive
approach for controlling the deformation is to allow object
points to be adjusted directly. The corresponding positions
of the lattice control vertices are then determined (10).
This in turn is used to determine the deformation of the
other object points. According to Equation 8, a deformed
object point p can be expressed as p = BQ, where Q is the
column matrix of the lattice control points and B is a
function of s, t, u. Assuming a deformation of the lattice
control points DQ causes a deformation of the object point

by Dp, then

Dp ¼ BDQ (10)

Given Dp, the deformation of the lattice control points
DQ is to determined by solving Equation 10. As there
are (mþ1)(nþ1)(lþ1) control points in the FFD lattice,
DQ is thus a (mþ1)(nþ1)(lþ1) by 3 matrix and B is a row
matrix with (mþ1)(nþ1)(lþ1) elements. As B cannot be
inverted, the pseudoinverse B+ of B can be used to obtain
DQ, i.e.

DQ ¼ BþDp (11)

where Bþ ¼ ðBTBÞ�1BT.
Using the pseudoinverse for solving Equation 10 gives

the best solution, in a least-squares sense, for the required
deformation.

Other Free-Form Deformation Techniques

There are several other variations of FFD, including the
use of non-uniform rational B-splines for the control lattice,
which provides more control on the deformation (11). The
use of lattice with arbitrary topology constructed with
subdivision surfaces (12) or triangles (13) allows irregu-
larly shaped lattice to be used for the deformation. Free-
form deformation is also applied for animation (14). A more
recent study on geometric wraps and deformation can
found in Ref. 15.

Axial Deformation

Axial deformation (16) deforms an object by associating a
curve with an object. Deformation of the object can be
achieved by manipulating the curve. Axial deformation is
a mapping a: E3 ! E3, and a ¼ f� g, where g : E3 ! R4,
and f: R4 ! E3, where the function g converts an object
point p in E3 to the axial curve space defined by a given
curve c(t). The function f maps a point in axial space to E3.
Converting a point in E3 to the axial space of a curve is to

Figure 5. Applying FFD on an algebraic surface.

Figure 6. A cylindrical lattice.

4 SURFACE DEFORMATION



specify the given point relative to a local coordinate frame
on c(t). The local coordinate frame of a curve is a set of
normalized orthogonal vectors u(t), v(t), and w(t) defined at
the point c(t). A popular approach is to specify the local
coordinate frame using the Frenet Frame, which is
expressed as

w ¼ c0ðtÞ
jc0ðtÞj ð12aÞ

u ¼ c0ðtÞ � c00ðtÞ
jc0ðtÞ � c00ðtÞj ð12bÞ

v ¼ w� u

jw� uj ð12cÞ

The Frenet Frame of a curve is defined by the tangent,
normal, and binormal of c(t). The local coordinate frame is
thus completely defined by the curve c(t), and there is no
user control on the orientation of the frame, which may not
be desirable. In addition, c’’(t) may vanish so that the
normal and hence the coordinate frame is not defined.
An alternative is to use the rotation minimizing frame (17).

w ¼ c0ðtÞ
jc0ðtÞj ð13aÞ

u0ðtÞ ¼ � ðc
00ðtÞ�uðtÞc0ðtÞÞ
jc0ðtÞj2

ð13bÞ

v0ðtÞ ¼ ðc
00ðtÞ�vðtÞÞc0ðtÞ
jc0ðtÞj2

ð13cÞ

Given an initial coordinate frame, the set of differential
equations (13a–13c) can be solved to obtain a rotation
minimized frame along the curve c(t). As only one local
coordinate frame is specified, this technique cannot be used
for obtaining a smooth transition between user-defined
local coordinate frames. That is, the twist of a curve and
hence the twist of the object cannot be fully controlled.

The use of a curve-pair (18) for specifying the local
coordinate frame provides complete control over the twist
of a curve. A primary curve specifies the location of the local
coordinate frame, and an orientation curve is used to define
the rotation of the frame relative to the curve (Fig. 7). In this

case, a special technique is required for synchronizing the
change in shape of both the primary and the orientation
curve. With a well-defined local coordinate frame on an
axial curve c(t), and a given point p on an object, p can be
expressed relative to the curve c(t) as

p ¼ cðt pÞ þ luðt pÞ þ bvðt pÞ þ gwðt pÞ (14)

where

l ¼ ðp� cðt pÞÞ�uðt pÞ ð15aÞ

b ¼ ðp� cðt pÞÞ�vðt pÞ ð15bÞ

g ¼ ðp� cðt pÞÞ�wðt pÞ ð15cÞ

and c(tp) is the point on c(t) corresponding to p. Usually,
c(tp) is the point on c(t) closest to p. A point in the axial
space of c(t) corresponding to p is thus (tp, l; b; g). By
specifying object points in the axial space of c(t), the shape
of the oe deformed by adjusting c(t). Figure 8 shows an
example of applying an axial deformation to an object.
Figure 9 shows the bending and twisting of an object using
the curve-pair approach. A zone of influence can be asso-
ciated with the axial curve to constraint the region of
influence of the axial curve. The zone of influence is defined
as the region between two general cylinders around the
axial curve. Denote rmin and rmax as the radii of the zone of
influence; an object point p will only be deformed if
rmin � jp� cðtpÞj � rmax. This allows an object to be

p

u(tp)

w(tp) v(tp)

Figure 7. Axial curve pair.

Figure 8. Axial deformation. (a) Object with an undeformed axial
curve. (b) Object with the deformed axial curve.

Figure 9. Curve-pair based axial deformation. (a) Object with an
undeformed axial curve-pair. (b) Effect of bending an axial curve-
pair. (c) Effect of twisting an axial curve-pair.

SURFACE DEFORMATION 5



deformed locally as all object points lying outside of the zone
of influence are not deformed.

The curve-based deformation technique also includes
the ‘‘Wire’’ deformation technique (19) in which a defor-
mation is defined with a tuple (W, R, s, r,f), where W is the
wire curve, R is a reference curve, r specifies the zone of
influence (the distance from the curve), and s is the scale
factor. By adjusting the wire curve W, the shape of W
relative to the reference curve R determines the deforma-
tion on the associated object.

Constraint-Based Deformation

The constraints-based approach (20) deforms a surface by
defining a set of point displacement constraints. Defor-
mations satisfying these constraints are determined by
solving a system of equations satisfying the constraints.
Given a point u ¼ ½u1;u2; . . . ;un�T, and its displacement
dðuÞ ¼ ½d1ðuÞ;d2ðuÞ; . . . ;dnðuÞ�T, the deformation at a point
can be expressed as

dðuÞ ¼M f ðuÞ (16)

where f is a function of the mapping f : Rn!Rm, m� n, and
M is the matrix of a linear transformation T : Rm ! Rn.
Assume there are nc constraint points, then dðuiÞ ¼
½d1ðuiÞ;d2ðuiÞ; . . . ;dnðuiÞ�T; j ¼ 1; . . . ;nc.With a given func-
tion f, the matrix M is obtained by solving the system of
n � nc equations

½dðu1Þ . . . dðunc
Þ�T ¼M½ f ðu1Þ . . . f ðunc

Þ�T (17)

In general, n may not be the same as nc, and M is
obtained using pseudoinverse. Once M is obtained, the
displacement of any point of the object can be computed
using Equation 16. Based on the same concept, the Simple
Constrained Deformation (21) associates a desired displa-
cement and radius of influence for each constraint point. A
local B-spline basis function centered at the constraint
point is determined that falls to zero for points beyond
the radius of influence. The displacement of an object point
is obtained by a linear combination of the basis functions
such that all constraints are satisfied.

Physics-Based Deformation

Physics-based deformation techniques are deformation
methods based on continuum mechanics, which accounts
for the effects of materials properties, external forces, and
environmental constraints on the deformation of objects.

Mass-Spring Model

The mass-spring model is one of the most widely used
techniques for physics-based surface deformation (22). A
surface is modeled as a mesh of point masses connected
by springs as shown in Fig. 10. The springs are usually
assumed to be linearly elastic, although in some cases,
nonlinear springs are used to model inelastic behavior.
In general, a mass point at the position xi in a mass spring

system is governed by the Newton’s Second Law of motion

mi€x
i
¼ �gi _x

i
þ
Xng

j¼0

gi j þ f i (18)

where mi is the mass of the mass point, gix
:
i is the velocity-

dependent damping force, gij are the spring forces acting at
mi, and fi is the external force at mi. Assuming there are n
mass points in the system, applying Equation 18 at each of
the mass points gives

M€xþ C _xþKx ¼ f (19)

where M, C, and K are the 3n � 3n mass, damping, and
stiffness matrices, respectively, and f is a 3n � 1 column
vector denoting the total external forces on the mass point.
Equation 19 describes the dynamics of a mass-spring
system and is thus commonly used for modeling surfaces
that are deformed dynamically. Given the initial position
x and velocity v of the mass points, and expressing
Equation 19 as

v ¼M�1ð�Cv�Kxþ fÞ ð20aÞ

_x ¼ v ð20bÞ

the velocity v of the mass point at subsequent time
instances can be obtained. The corresponding location of
the mass point can be obtained with various numerical
integration techniques. Mass-spring systems are easy to
construct and can be animated at interactive speed. How-
ever, it is a significant simplification of the physics in a
continuous body. A more accurate physical model for sur-
face deformation is to use the finite/boundary element
method.

Figure 10. A surface modeled with a mass-spring system.

6 SURFACE DEFORMATION



Deformation using Finite/Boundary Element Method

Using the finite element method (FEM), an object is
approximated with a set of discrete elements such as tri-
angles, quadrilaterals, tetrahedrons, and cuboids. Solid
elements (e.g., tetrahedrons and cubes) are used for closed
surfaces, whereas plate or shell elements are used for
nonclosed surfaces. As an object is in equilibrium when
its total potential energy is at a minimum, an equilibrium
equation is established by considering the total strain
energy of a system and the work due to external forces.
The boundary element method (BEM) approximates the
closed surface of a volume with a set of elements such as
triangles and quadrilaterals. No solid element is thus
required for BEM. Assuming the deforming object is line-
arly elastic, both FEM and BEM result in a simple matrix
equation

F ¼ KU (21)

where F denotes the external forces acting on element
nodes of the object, U is the displacement at the element
nodes, and K is the stiffness matrix. Detailed discussion on
the derivation of Equation 21 can be found in Refs. 22 and
23 and in standard texts on FEM/BEM. Given the material
properties of an object, the variables at an element node are
the external force acting on the node and the corresponding
displacement. In general, one of the variables is known,
whereas the other one is unknown. By partitioning F and U
into known and unknown elements, Equation 21 can be
rewritten as

Fk

Fu

� �
¼ K00 K01

K10 K11

� �
Uk

Uu

� �
(22)

where Fk, Fu denotes the known and unknown nodal forces
and Uk, Uu denotes the known and unknown nodal dis-
placements.

Hence,

Fk ¼ K00Uk þK01Uu ð23aÞ

Fu ¼ K10Uk þK11Uu ð23bÞ

In general, for graphics applications, the diplacement at
certain nodes is specified or constrained, and the forces at
the free or unconstrained nodes are zero (i.e., Fk = 0).
Assume there are n nodes in the object with known dis-
placement at k of the nodes. The free boundary will be
composed of n� k nodes. The dimensions of K00 and K01 are
thus (n � k) � k, and (n � k) � (n � k). Equation 23a gives

Uu ¼ �K�1
01 K00Uk (24)

Given the deformation at certain nodes of a surface, the
deformation of the other nodes can be obtained using
Equation 24.

In general, FEM and BEM technique can only be applied
for solid objects or closed surfaces. Standard plate or shell
elements can be used for open surfaces by assuming a
constant thickness for the surface. By considering the

potential energy in the stretching and bending of a surface,
an energy functional can be established for a surface
(24,25). Minimizing the energy functional gives an equa-
tion in the form of Equation 21. Standard FEM techniques
can then be used for deforming the surface. A mass and a
damping term can also be incorporated into Equation 21
to allow for the simulation of dynamic effects.

REMARKS

Geometry-based deformation tools are usually employed
for deforming surfaces in the object construction process in
which the deformation does not need to obey the laws of
physics. For the purposes of animation, the use of geometry-
based deformation for generating realistic motions relies
very much on the skill and experience of the animator in
using the deformation tool. On the contrary, physics-based
deformation is capable of generating an animated surface
deformation with little user interactions and thus plays an
important role in animation.

BIBLIOGRAPHY

1. A. H. Barr, Global and local deformations of solid primitives,
ACM Comput. Graphics, 18(3): 21–30, 1984.

2. T. W. Sedergerg, Piecewise algebraic surface patches, Com-
put.-Aided Geometric Design, 2: 53–59, 1985.

3. B. Guo, Representation of arbitrary shapes using implicit
quadrics, Visual Comput., 9(5): 267–277, 1993.

4. C. L. Bajaj, Free-form modeling with implicit surface patches,
In: J. Bloomenthal and B. Wyvill (eds.), Implicit Surfaces, San
Francisco, CA: Morgan Kaufman Publishers, 1996.

5. G. Farin, Curves and Surfaces for CAGD, a Practical Guide,
4th ed.San Diego, CA: Academic Press, 1997.

6. OpenGL Architecture Review Board, D. Shreiner, M. Woo, and
J. Neider, OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Version 2 (5th Edition), 2005.

7. T. W. Sederberg, and S. R. Parry, Free-form deformation of
solid geometric models, ACM Computer Graphics, 20(4): 151–
160, 1986.

8. K. C. Hui, Free-form deformation of constructive solid model,
Comput.-Aided Design, 35(13): 1221–1224, 2003.

9. S. Coquillart, Extended free-form deformation: A sculpturing
tool for 3D geometric modeling, ACM Comput. Graphics, 24(4):
187–196, 1990.

10. W. M. Hsu, J. F. Hughes, H. Kaufmann, Direct manipulation of
free-form deformations, ACM Comput. Graphics, 26(2): 177–
184, 1992.

11. H. L. Lamousin, W. N. Waggenspack, NURBS-based free-form
deformations, IEEE Comput. Graphics Applicat., 14(6): 59–65,
1994.

12. R. MacCracken, and K. I. Joy, Free-form deformations
with lattices of arbitrary topology, Proc. SIGGRAPH, 1996,
pp. 181–188.

13. K. G. Kobayashi, and K. Ootsubo, t-FFD: Free-form deforma-
tion by using triangular mesh, Proc. 8th ACM Symposium on
Solid Modeling and Applications, 2003, pp. 226–234.

14. S. Coquillart, and P. Jancene, Animated free-form deforma-
tion: An interactive animation technique, ACM Comput.
Graphics, 25(4): 23–26, 1991.

SURFACE DEFORMATION 7



15. T. Milliron, R. J. Jensen, R. Barzel, and A. Finkelstein, A
framework for geometric warps and deformations, ACM Trans.
Graphics, 21(1): 20–51, 2002.

16. F. Lazarus, S. Coquillart, and Jancene P. , Axial deformations:
An intuitive deformation technique, Comput.-Aided Design,
26(8): 607–613, 1994.

17. F. Klok, Two moving coordinate frames for sweeping along a 3D
trajectory, Comput.-Aided Geometric Design, 3: 217–229, 1986.

18. K. C. Hui, Free-form design using axial curve-pairs, Comput.-
Aided Design, 34(8): 583–595, 2002.

19. K. Singh, and E. Fiume, Wires: A geometric deformation
technique, Proc. SIGGRAPH, 1998, pp. 405–414.

20. P. Borrel, and D. Bechmann, Deformation of N-dimensional
objects, Internat. J. Computat. Geomet. Applicat., 1(4): 427–
453, 1991.

21. P. Borrel, and A. Rapporort, Simple constrained deformations
for geometric modeling and interactive design, ACM Trans.
Graphics, 13(2): 137–155, 1994.

22. S. F. F. Gibson, and B. Mirtich, A survey of deformable model-
ing in computer graphics, TR-97-19, MERL-A Mitsubishi Elec-
tric Research Laboratory, Available: http://www.merl.com.

23. D. L. James and D. K. Pai, ARTDEFO: Accurate Real Time
Deformable Objects, Proc. SIGGRAPH, 1999, pp. 65–72.

24. G. Celniker, and D. Gossard, Deformable curve and surface
finite-elements for free-form shape design, ACM Comput. Gra-
phics, 25(4): 257–266, 1991.

25. D. Terzopoulos, H. Qin, Dynamic NURBS with geometric con-
straints for interactive sculpting, ACM Trans. Graphics, 13(2):
103–136, 1994.

K. C. HUI

The Chinese University of
Hong Kong

Shatin, Hong Kong

8 SURFACE DEFORMATION



S

SURFACE MODELING

INTRODUCTION

Surface is a fundamental element in describing the shape of
an object. The Classic method for specifying a surface is to
use a set of orthogonal planar projection curves to describe
the surface. With the advance of computer graphics and
computer-aided design technologies, the wire frame
models has evolved and is now capable of describing
three-dimensional (3-D) objects with lines and curves in
3-D space. However, the wire frame model is ambiguous
and does not provide a complete 3-D description of a sur-
face. P. Bezier and P. de Casteljau independently developed
the Bezier curves and surfaces in the late 1960s, which
revolutionized the methods for describing surfaces. In
general, surface modeling is the technique for describing
a 3-D surface. There are three popular ways for specifying a
surface, namely, implicit, parametric, and subdivision.
They are described in the following sections.

IMPLICIT SURFACE

An implicit surface is a set of points p = (x, y, z) in space such
that f(p) = k, where k is constant. In general, an implicit
surface is a function of the mapping f : E3!R, where E3 is
the 3-D Euclidean space and R is the real axis. Popular
implicit surfaces include the quadric surfaces and toruses.
Implicit surfaces are unbounded. Extra constraints are
required to specify a valid range for the surface. Direct
display of an implicit surface can be performed with a ray
tracing process. This process requires performing a ray/
surface intersection, which is a time-consuming process. An
alternative is to approximate the surface with a polygon
mesh, which requires performing a polygonization process
on f(p). Adjusting the shape of an implicit surface requires
modifying the function f, which is not intuitive for general
users. However, implicit surfaces are useful for modeling
objects that can be described with implicit or algebraic
functions, e.g., blends between objects. The following dis-
cussion focuses on parametric surfaces that are more com-
monly used in existing geometric modeling systems.

PARAMETRIC SURFACES

A parametric surface is a mapping f : E2!E3 that maps a
point (u, v) in the parametric space to the 3-D Euclidean
space, (Fig. 1):

sðu; vÞ ¼ f ðu; vÞ ¼ b fxðu; vÞ fyðu; vÞ fzðu; vÞ c ð1Þ

Keeping u (or v) constant, and varying v (or u), an isopara-
metric curve is obtained. The tangents along the u and v

directions are defined as

suðu; vÞ ¼
@sðu; vÞ
@u

¼ @fxðu; vÞ
@u

@fyðu; vÞ
@u

@fzðu; vÞ
@u

� �
ð2Þ

svðu; vÞ ¼
@sðu; vÞ
@v

¼ @fxðu; vÞ
@v

@fyðu; vÞ
@v

@fzðu; vÞ
@v

� �
ð3Þ

These two tangent vectors define a tangent plane at
s(u, v) and the normal to the parametric surface is the
normal to the tangent plane and is expressed as

nðu; vÞ ¼ suðu; vÞ � svðu; vÞ
jsuðu; vÞ � svðu; vÞj

ð4Þ

The twist vector of a surface @2sðu;vÞ
@u@v measures the rate of

change of a u-tangent (v-tangent) in the v-direction
(u-direction).

Commonly used parametric surfaces include the sweep
surfaces, ruled surfaces, Coon’s surfaces, Bezier surfaces,
B-spline surfaces, and NURBS surfaces as described below.

SWEEP SURFACE

A sweep surface is a surface obtained by transforming a
curve in space. Given a curve p(u) defined in its local
coordinate frame, a 3 � 3 transformation matrix M(v),
and a translation vector T(v), a sweep surface is defined as

sðu; vÞ ¼ pðuÞMðvÞ þ TðvÞ ð5Þ

The curve p(u) is sometime referred to as the sweep
contour. Surfaces such as the surfaces of revolution, tabu-
lated cylinders, or extrusion surface are particular cases of
sweep surfaces. In a surface of revolution, M(v) is a rotation.
In an extrusion surface, M(v) is an identity or a scaling
transformation if a tapered extrusion is performed. To
allow the construction of more general sweep transforma-
tion, M(v) can be defined with a rail curve c(v), 0 � v � 1,
such that M(v) is a rotation about an axis ċð0Þ � ċðvÞ
through an angle y ¼ cos�1ð ċð0Þ�ċðvÞ

jċð0ÞjjċðvÞjÞ. An example is shown

in Fig. 2. If the curve p is allowed to change in the sweep, or
p is also a function of v, i.e., p ¼ p(u, v), a more complex
surface form can be obtained. This is often specified with
two sweep contours p0(u) and p1(u), where p0(u) denotes
the sweep contour at v ¼ 0 and p1(u) denotes the sweep
contour at v ¼ 1. The sweep contour along the sweep is
determined by blending p0(u) and p1(u), i.e.,

pðu; vÞ ¼ aðvÞp0ðuÞ þ bðvÞp1ðuÞ ð6Þ

where a(v) and b(v) are blending functions of p0(u), and
p1(u), respectively, such that a(v)þ b(v)¼ 11. A popular set

1a(v) + b(v) ¼ 1 confines p(u,v) to lie between p0(u) and p1(u).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



of blending functions are a(v) ¼ 1 � v, and b(v) ¼ v. To
provide a more flexible sweep operation, the sweep trans-
formation can be defined with two rail curves c1(v), c2(v);
0� v� 1 as shown in Fig. 3. The vectors d(0)¼ c2 (0)� c1 (0)
and d(v) ¼ c2 (v) � c1 (v) define the orientation, location,
and the size of p(u,v). The transformation M(v) is a rota-
tion about an axis d(0) � d(v) through an angle y ¼
cos�1ð dð0Þ�dðvÞ

jdð0ÞjjdðvÞjÞ. Using the rail curves to define the sweep
transform, the sweep contour is expressed as

pðu; vÞ ¼ kðvÞ½aðvÞðp0ðuÞ � c1ð0ÞÞ þ bðvÞðp1ðuÞ � c1ð0ÞÞ� ð7Þ

where kðvÞ ¼ jc2ðvÞ�c1ðvÞj
jc2ð0Þ�c1ð0Þj. The sweep surface is thus obtained

with the expression

sðu; vÞ ¼ pðu; vÞMðvÞ þ TðvÞ ð8Þ

where T(v) = c1(v).

RULED SURFACE

A ruled surface is the surface obtained by linearly inter-
polating between two given curves. Assuming the curves
are p(u) and q(u), where 0 � u � 1, a linear interpolation
between p(u) and q(u) gives

sðu; vÞ ¼ ð1� vÞpðuÞ þ vqðuÞ ð9Þ

An example of a ruled surface is shown in Fig. 4. If p(u),
q(u) are straight lines, so that p(u) ¼ (1 � u)p0 þ up1 and
q(u) ¼ (1 � u)q0 þ uq1, then

sðu; vÞ ¼ ð1� uÞð1� vÞp0 þ uð1� vÞp1 þ vð1� uÞq0

þ uvq1 ð10Þ

The surface define with Equation (10) is specified with
four points and is usually referred to as a bilinear surface
(Fig. 5).

n

Tangent
plane

Iso-u curveIso-v curve

uv

∂u

∂s(u,v)

∂v

∂s(u,v)

Figure 1. A parametric surface.

Sweep
contour

Rail curve

Figure 2. A sweep surface.

p1(u)

p0(u)c2(v)

c1(v)
v

Figure 3. A sweep surface with two rail curves.

Figure 4. A ruled surface.

Figure 5. A bilinear surface.

2 SURFACE MODELING



LOFTED SURFACE

A lofted surface is a surface interpolating a series of sec-
tional curves as shown in Fig. 6. Given a set of curves
pi(u), 0 � u � 1, a surface si(u, v) interpolating pi(u) and
piþ1(u) can be expressed as

siðu; vÞ ¼ aðvÞpiðuÞ þ bðvÞpiþ1ðuÞ ð11Þ

where 0 � u � 1 and a(v), b(v) are blending functions of
pi(u) and piþ1(u), respectively, such that a(v) þ b(v) ¼ 12.
To maintain the continuity of the lofted surface, continuity
across the boundaries of consecutive si(u, v) has to be
maintained. This can be easily achieved by using a cubic
blending functions (1), a(v)¼ 3v2� 2v3, and b(v)¼ 1� 3v2þ
2v3.

COON’S BILINEAR SURFACE

A Coon’s bilinear surface defines a surface with four con-
tiguous boundary curves. Given four curves p0(u), p1(u),
q0(w), q1(w), 0 � u � 1, 0 � v � 1, such that p0(0) ¼ q0(0),
q0(1) ¼ p1(0), p1(1) ¼ q1(1), q1(0) ¼ p0(1) as shown in
Fig. 7(a), a Coon’s bilinear surface interpolates all bound-
ary curves and corner points and is expressed as

sðu; vÞ ¼ ð1� vÞp0ðuÞ þ vp1ðuÞ þ ð1� uÞq0ðvÞ þ uq1ðvÞ
�ð1� uÞð1� vÞp0ð0Þ � uð1� vÞp0ð1Þ � vð1� uÞp1ð0Þ � uvp1ð1Þ

ð12Þ

Expressing Equation (12) in matrix form gives

sðu; vÞ ¼ ½ 1� u u 1 �
�p0ð0Þ �p1ð0Þ q0ðvÞ
�p0ð1Þ �p1ð1Þ q1ðvÞ
p0ðuÞ p1ðuÞ 0

2
64

3
75

1� v

v

1

2
64

3
75

ð13Þ

A Coon’s bilinear surface is usually interpreted as the
result of subtracting a bilinear surface defined by the corner
points p0(0), p0(1), p1(0), p1(1) from the sum of two ruled
surfaces defined by p0(u), p1(u) and q0(v), q1(v).

BICUBIC SURFACE

A bicubic surface is a surface in which the isoparametric
curves are cubic curves and is given by the expression

sðu; vÞ ¼ FðuÞGFTðvÞ; ð14Þ

where

FðuÞ ¼ ½F1ðuÞ F2ðuÞ F3ðuÞ F4ðuÞ�
FTðvÞ ¼ ½F1ðvÞ F2ðvÞ F3ðvÞ F4ðvÞ�T

G ¼

sð0; 0Þ sð0; 1Þ swð0; 0Þ swð0; 1Þ
sð1; 0Þ sð1; 1Þ swð1; 0Þ swð1; 1Þ
suð0; 0Þ suð0; 1Þ suwð0; 0Þ suwð0; 1Þ
suð1; 0Þ suð1; 1Þ suwð1; 0Þ suwð1; 1Þ

2
6664

3
7775

and

F1ðuÞ ¼ 1� 3u2 þ 2u3;F2ðuÞ ¼ 3u2 � 2u3

F3ðuÞ ¼ u� 2u2 þ u3;F4ðuÞ ¼ �u2 þ u3

F1ðvÞ ¼ 1� 3v2 þ 2v3;F2ðvÞ ¼ 3v2 � 2v3

F3ðvÞ ¼ v� 2v2 þ v3;F4ðvÞ ¼ �v2 þ v3

Equation (14) can be rewritten as

scðu; vÞ ¼ UNcGNc
TV ð15Þ

where

U ¼ ½u3 u2 u 1 �; V ¼ ½ v3 v2 v 1 �;

Nc ¼

2 �2 1 1

�3 3 �2 �1

0 0 1 0

1 0 0 0

2
6664

3
7775

The matrix G can be partitioned into four 2 � 2 matrices

G ¼ G1;1 G1;2

G2;1 G2;2

� �

Sectional curve

Figure 6. A lofted surface.

p1(0

p1(u)
q0(v)

p1(1)

q1(v)p0(0)
p0(u)

(a) p0(1)
(b)

Figure 7. A Coon’s bilinear surface: (a) corner vertices and
boundary curves and (b) the Coon’s bilinear surface.

2a(v) þ b(v) ¼ 1 confines s(u,v) to lie between pi(u) and piþ1(u).

SURFACE MODELING 3



where

G1;1 ¼
sð0; 0Þ sð0; 1Þ

sð1; 0Þ sð1; 1Þ

" #
; G1;2 ¼

svð0; 0Þ svð0; 1Þ

svð1; 0Þ svð1; 1Þ

" #

G2;1 ¼
suð0; 0Þ suð0; 1Þ

suð1; 0Þ suð1; 1Þ

" #
; G2;2 ¼

suvð0; 0Þ suvð0; 1Þ

suvð1; 0Þ suvð1; 1Þ

" #

These submatrices G1,1, G1,2, G2,1, and G2,2 specifies the
positions, the v-tangents, the u-tangents, and the twist
vectors at the corner vertices of the surface. These para-
meters at the corner vertices of the surface determine the
shape of the bicubic surface (Fig. 8). A change in these
parameters except the twist vectors will affect the bound-
ary of the surface, whereas a change in the twist vector will
only affect the interior of the surface as shown in Fig. 9.

GENERAL PROPERTIES OF TENSOR PRODUCT SURFACES

Bezier surfaces, B-spline surfaces, and NURBS surfaces
are usually referred to as tensor product surfaces. These
surfaces are in general represented as the weighted sum of
a set of points pi,j in E3, i.e.,

sðu; vÞ ¼
Xn

i¼0

Xm
j¼0

aiðuÞb jðvÞpi; j ð16Þ

where
Pn

i¼0aiðuÞ ¼ 1,
Pm

j¼0biðuÞ ¼ 1, and hence,Pn
i¼0

Pm
j¼0aiðuÞb jðvÞ ¼ 1. The surface s(u,v) is thus a bary-

centric combination of pi,j and is invariant under affine
transformation, i.e., applying an affine transformation to
s(u,v) is the same as applying the transformation to pi,j.
The surface s(u,v) is also a convex combination of pi,j, or
s(u,v) always lies in the convex hull defined by the points
pi,j. A detailed description of the mathematical properties
of parametric surfaces can be found in Ref. 2.

BEZIER SURFACE

A Bezier surface is defined with a polygon mesh of control
vertices bi j; i ¼ 0; . . . ;n; j ¼ 0; . . . ;m shown in Fig.10.
Using the de Casteljau algorithm (2), a point on the surface
defined by bi,j is obtained by applying a series of linear
interpolations on the control points iteratively. P. Bezier (3)
adopted a different approach and expressed the surface
explicitly as

sðu;wÞ ¼
Xn

i¼0

Xm
j¼0

bi; jJn;iðuÞKm; jðvÞ ð17Þ

where 0 � u � 1; 0 � v � 1; and Jn,i(u), Km,j(v) are Bernstein
basis functions

Jn;iðuÞ ¼
n

i

 !
uið1� uÞn�i;

n

i

 !
¼ n!

i!ðn� iÞ!

Km; jðvÞ ¼
m

j

 !
v jð1� vÞm� j;

m

j

 !
¼ m!

j!ðn� jÞ!

sv(0,1)

sv(1,0)

suv(1,0)

sv(1,1)su(0,0)suv(0,0)

s(0,0)

sv(0,0)

su(0,1)

su(1,0)

su(1,1)

suv(0,1)
s(0,1)

suv(1,1)

s(1,1)

s(1,0)

Figure 8. Parameters defining a Bi-cubic surface.

Twist magnitude = 0 

Twist magnitude = 1000 

Twist magnitude = 100 

Figure 9. Effect of the twist vector at a vertex on a Bicubic sur-
face.

(a) (b)

Figure 10. A Bezier surface and its control polygon mesh: (a)
control polygon mesh and (b) the Bezier surface.

4 SURFACE MODELING



As Jn,i(u), Km,j(v) are Bernstein basis functions
Pn

i¼0

Jn;iðuÞ� 1; and
Pm

j¼0Km; jðvÞ� 1; hence,
Pn

i¼0

Pm
j¼0Jn;iðuÞ

Km; jðvÞ� 1. A Bezier surface is thus a barycentric combi-
nation of its control polygon vertices bi,j and is determined
by the basic properties of a tensor product surface as
discussed in the previous section.

The degree of the surface in each parametric direction is
determined by the number of control polygon vertices in
that direction. The degree of the surface in the u direction is
n, and the degree of the surface in the v direction is m. The
continuity of the surface is thus Cn�1 and Cm�1 in the u and
v directions, respectively. A Bezier surface passes through
the corner points of the defining polygon mesh, and its
shape generally follows the shape of the defining polygon
mesh.

Consider a Bezier surface sb(u, w) constructed with
a 4� 4 polygon mesh; i.e., sbðu; vÞ ¼

P4
i¼0

P4
j¼0bi; jJ4;iðuÞ

K4; jðvÞ: Expending and converting into matrix form gives

sbðu;wÞ ¼ UNbBNb
TV ð18Þ

where

U ¼ u3 u2 u 1
� �

; V ¼ v3 v2 v 1
� �T

Nb ¼

�1 3 �3 1

3 �6 3 0

�3 3 0 0

1 0 0 0

2
664

3
775; B ¼

b0;0 b0;1 b0;2 b0;3

b1;0 b1;1 b1;2 b1;3

b2;0 b2;1 b2;2 b2;3

b3;0 b3;1 b3;2 b3;3

2
6664

3
7775

If this 4 � 4 Bezier surface is the same as a bicubic
surface, then from Equation (15)

UNcGNc
TV ¼ UNbBNb

TV

and hence,

G ¼ N�1
c NbBNT

b ½N
T
c �
�1

This gives

G ¼
b0;0 b0;3 3ðb0;1 � b0;0Þ 3ðb0;3 � b0;2Þ
b3;0 b3;3 3ðb3;1 � b3;0Þ 3ðb3;3 � b3;2Þ
3ðb1;0 � b0;0Þ 3ðb1;3 � b0;3Þ 9ðb0;0 � b1;0 � b0;1 þ b1;1Þ 9ðb0;0 � b1;0 � b0;1 þ b1;1Þ
3ðb3;0 � b2;0Þ 3ðb3;3 � b2;3Þ 9ðb2;0 � b3;0 � b2;1 þ b3;1Þ 9ðb2;2 � b3;2 � b2;3 þ b3;3Þ

2
6664

3
7775

The control polygon vertices on the boundary thus specify
the positions and tangent vectors at the corner of the sur-
face, whereas the interior polygon vertices control the twist
at the corner of the surface.

B-SPLINE SURFACE

A B-spline surface is defined with a mesh of control polygon
vertices bi; j; i ¼ 0; . . . ;n; j ¼ 0; . . . ;m:

sðu; vÞ ¼
Xn

i¼0

Xm
j¼0

bi; jNi;kðuÞN j;lðvÞ ð19Þ

where k and l are the orders of the surface in the u
and v directions, respectively; u and v lie in the range
defined by the knot sequences fu0;u1; . . . ;unþkþ1g and
fv0; v1; . . . ; vmþlþ1g, respectively, such that ui � uiþ1;
v j � v jþ1, and

Ni;kðuÞ ¼
ðu� uiÞNi;k�1ðuÞ

uiþk�1 � ui
þ
ðuiþk � uÞNiþ1;k�1ðuÞ

uiþk � uiþ1
;

Ni;kðuÞ ¼
� 1 if ui � u � uiþ1

0 otherwise

N j;lðvÞ ¼
ðv� v jÞN j;l�1ðvÞ

v jþl�1 � v j
þ
ðv jþl � vÞN jþ1;l�1ðvÞ

v jþl � v jþ1
;

N j;lðvÞ ¼
� 1 if vj � v � v jþ1

0 otherwise

The basis functions are partition of unity; i.e.,
Pn

i¼0
Ni;kðuÞ� 1;

Pl
j¼0N j;lðuÞ� 1; and hence,

Pn
i¼0

Pl
j¼0Ni;k

ðuÞN j;lðvÞ� 1 . It follows that a B-spline surface is a bary-
centric combination of its control polygon vertices bi,j and
thus possesses the basic properties of a free-form surface.

In general, three types of knot sequences affect the
shape of the surface. These knot sequences are the periodic,
open uniform, and open nonuniform sequence. Consider
the knot sequence in the u direction. The knot sequence is
Periodic, if Du ¼ uiþ1 � ui is a constant. In an open uniform
knot sequence, assuming Du is a constant,

ui ¼ u0; 1 � i � k
ui ¼ ui�1 þ Du; kþ 1 � i � nþ 2
ui ¼ unþ2; nþ 3 � i � nþ kþ 1

For an open nonuniform knot sequence,

ui ¼ u0; 1 � i � k
ui � uiþ1; kþ 1 � i � nþ 2
ui ¼ unþ2; nþ 3 � i � nþ kþ 1

The use of a periodic knot sequence results in a surface
that does not pass through the corner vertices. Figure 11(b)
shows an example in which a B-spline surface is con-
structed with a periodic knot sequence in both directions.
Figure 11(a) shows the B-spline surface using a periodic
knot sequence in one direction, and an open uniform knot
sequence in the other direction. Figure 11(c) illustrates a

SURFACE MODELING 5



B-spline surface using an open uniform knot sequence in
both directions.

The maximum order of a B-spline surface in each para-
metric direction is the number of control polygon vertices
in that direction. Given a B-spline surface s(u, v) of order k
in the u -direction and order l in the v direction, the
maximum continuity of s(u, v) is Ck�2 in the u direction,
and Cl�2 in the v direction. A B-spline surface constructed
with open uniform knot sequences in both u and v directions
reduces to a Bezier surface when the orders of the surface in
the u and v directions are the same as the number of control
polygon vertices in the corresponding directions.

RATIONAL B-SPLINE SURFACE

A rational B-spline surface (4) is an extension of a B-spline
surface and is thus defined over a mesh of control polygon
vertices. A rational B-spline surface constructed with non-
uniform knot sequences is commonly referred to as a non-
uniform rational B-spline surface (NURBS). Using the
same notations as in the description of B-spline surface,
a rational B-spline surface is expressed as

sðu; vÞ ¼

Pn
i¼0

Pm
j¼0

wi; jNi;kðuÞN j;lðvÞbi; j

Pn
i¼0

Pm
j¼0

wi; jNi;kðuÞN j;lðvÞ
ð20Þ

where wi,j is a weight associated with a control polygon
vertex bi,j. By setting all wi,j the same, a rational B-spline
surface reduces to a B-spline surface. The use of a weight for
each polygon vertex provides extra control over the shape of
the surface. With suitable weight adjustment and knot
sequence, a rational quadric B-spline surface can be
reduced to a quadric surface. Figure 12 shows a rational
B-spline surface constructed with a 3� 3 control polygon
mesh. A third-order open uniform basis function is assumed
for both parametric directions of the surface. The weights
associated with all control vertices except those indicated in
Fig. 12(a) are set to one. By adjusting the weights w
associated with the vertices as indicated, various quadric
surfaces can be obtained as shown in Fig. 12(b)–(d). In
general, increasing the weight of a vertex pulls the surface
toward the vertex.

The shape of a Bezier, B-spline, or rational B-spline
surface can be easily adjusted by modifying the order of
the basis function and the knot sequence and by relocating
the control polygon vertices. Given a surface of order k� l, a
sharp edge exists on the surface if the multiplicity of the
vertices on a row of the mesh is k� 1, or the multiplicity of
the vertices on a column of the mesh is l� 1 (Fig.13).

Figure 11. A B-spline surface: (a) using periodic knot sequence in
one direction, (b) using periodic knot sequence in both directions,
and (c) using open uniform knot sequences in both directions.

Figure 12. Constructing Quadric surfaces with NURBS: (a) sec-
tor of a cone, w ¼ 0,(b) sector of a paraboloid, w ¼ 1,(c) sector of a
sphere, w ¼ 0.7071, and (d) sector of hyperboloid, w ¼ 10.

Figure 13. A fourth-order B-spline surface with multiple coincident net lines.

6 SURFACE MODELING



Multiplicity of a vertex refers to the number of repeated
occurrence of the vertex at the same location.

COMPOSITE PATCHES AND CONTINUITY

Objects with a complex shape are usually constructed with
a composite of surfaces. This process often requires main-
taining the continuity between adjacent surface patches.
There are two different types of continuity, namely, the
parametric continuity and the geometric continuity. Para-
metric continuity refers to the continuity of derivatives
across the common surface boundaries. Given two surfaces
g(u, v), 0 � u � 1; 0 � v � 1, and h(s, t), 0 � s � 1,
0 � t � 1, such that g ¼ ð1; vÞ ¼ hð0; tÞ, and denotes
fn

uðu; vÞ as the n-th derivative of fðu; vÞ relative to u, then
s and r are Cn continuous if gn

uð1; vÞ ¼ hn
s ð0; tÞ and

gn
v ð1; vÞ ¼ hn

t ð0; tÞ. That is, two surfaces are Cn continuous
if the n-th derivates of their ccorresponding isoparametric
lines are the same at the common boundary point.

In general, C1 or C2 is sufficient for most applications. In
cases in which only the visual or geomentic continuity is
considered, only the directions of the derivatives are con-
sidered. For instance, G1 continuity between g and h
requires continuity of the surface normal along the common
boundaries, which can be expressed as

guð1; vÞ � gvð1; vÞ ¼ lhsð0; tÞ � htð0; tÞ ð21Þ

where l is an arbitrary constant. A singularity arises when
degenerated vertices exist in a control polygon mesh. For
instance, in Fig. 14, the surface normal is not well defined at
the degenerated vertex. In this case, a unique surface
normal can only be guaranteed if all polygons sharing
the degenerated vertex are coplanar.

SUBDIVISION SURFACE

Tensor product surfaces are in general restricted to model
surfaces with a rectangular topology. To model objects with
irregular topology, control polygons with degenerated ver-
tices are usually required. Because of the singularity of the
surface at the degenerated vertices, this is often undesir-
able. The subdivision surface, which was introduced in the
late 1970s, is capable of modeling surfaces with irregular
topology.

Classic subdivision schemes include the Catmull–Clark
scheme (5) that generates bicubic B-spline surfaces and the
Doo–Sabin scheme (6) for producing quadric B-spline sur-
faces. Other popular subdivision schemes include the Loop
scheme (7) that works on triangular meshes and the inter-
polative Butterfly scheme (8). A description of the Catmull–
Clark scheme is given below. Details on the other schemes
can be found in Ref. 9.

Consider the subdivision of a mesh as shown in Fig. 15
using the Catmull–Clark scheme. Assume there are four
edges incident to a vertex v0. The mesh sharing v0 is
subdivided by generating a set of face points, edge points,
and vertex points. New face points are placed at the center
of each face as expressed below:

f1 ¼
1

4
ðv0 þ v1 þ v2 þ v3Þ; f2 ¼

1

4
ðv0 þ v3 þ v4 þ v5Þ

f3 ¼
1

4
ðv0 þ v5 þ v6 þ v7Þ; f3 ¼

1

4
ðv0 þ v7 þ v8 þ v1Þ

ð22Þ

New edge points are inserted at

e1 ¼
1

2

ðv0 þ v1Þ
2

þðf4 þ f1Þ
2

� �
; e2 ¼

1

2

ðv0 þ v3Þ
2

þðf1 þ f2Þ
2

� �

e3 ¼
1

2

ðv0 þ v5Þ
2

þðf2 þ f3Þ
2

� �
; e4 ¼

1

2

ðv0 þ v7Þ
2

þðf3 þ f4Þ
2

� �

ð23Þ

and new vertex points are inserted at

v00 ¼
Q

4
þ R

2
þ v0

4
ð24Þ

where

Q ¼ 1

4
ðf1 þ f2 þ f3 þ f4Þ

and

R ¼ 1

4

v0 þ v1

2
þ v0 þ v3

2
þ v0 þ v5

2
þ v0 þ v7

2

� �

v5v6

v4

v0

v8
v1

v2

v7
v3

v0

f4
f1

e2

f3

e1

e4 v0
,

e3

f2

Figure 15. A Catmull–Clark subdivision surface.

b0,0 = b0,1 = b0,2 = b0,3

Figure 14. A surface with a degenerated vertex.

SURFACE MODELING 7



In general, for meshes with irregular mesh topology, a
new face point is the average of all old points defining the
face. A new edge points is the average of the midpoints of
the old edge and the average of the two new face vertices of
the faces sharing the edge. A new vertex point is obtained
with the expression

Q

n
þ 2R

n
þ Sðn� 3Þ

n
ð25Þ

where n is the number of edges sharing the vertex, S is
the old vertex point, Q is the average of the new face points
of all faces sharing the old vertex point, and R is the aver-
age of the midpoints of all old edges incident to the old
vertex point.

An edge can be tagged as creased such that it is not
smoothed in the subdivision process. In this case, a new face
point remains the average of the vertices bounding the face.
A new edge point is the midpoint of the edge. Assuming
there are n creased edges incident to a vertex v0, the new
vertex point of v0 is generated according to the following
rules:

1. If n � 1, the new vertex point is computed with
Equation (25).

2. If n ¼ 2, and the vertices of the creased edges are
ðv0; vaÞ; ðv0; vbÞ; the new vertex point is given by
v00 ¼ 1

8 va þ 3
4 v0 þ 1

8 vb.

3. if n>2, then v00 ¼ v0.

The subdivision rule for a subdivision scheme is often
described using the mask notation.Figure 16 gives the
mask notation for the Catmull–Clark subdivision rules.
The new position of the highlighted vertex is given by

the sum of the products of the mask weights and the
corresponding vertices.

The number of edges incident to a vertex is usually
referred to as the valency of a vertex. In a regular Catmull–
Clark subdivision mesh, the valency is four. Vertices with
valency other than four are called extraordinary vertices.
By applying one subdivision to a base mesh, the mesh will
be composed of all quadrilateral faces. The total number of
extraordinary vertices is hence fixed after one subdivision.
Figure 17 shows an example of a Catmull–Clark subdivi-
sion surface at different subdivision levels.

4
1

4
1

4
1 4

1

16
1

16
1

16
1

16
1

8
3

8
3

8
1

8
1

4
3

Crease and 

boundary
Face vertex 

Edge vertex 

64
1

64
1

64
1 64

1

32
3

32
3

32
3

32
3

n
β

n
β

n
β

n
β

n
γ

n
γ

n
γ

γβ −−1

4n
1

,
2n
3 == γβ

New vertex 

Extraordinary vertex 

16
9

Figure 16. Masks for Catmull–Clark subdivision.

Figure 17. A head model constructed with the Catmull–Clark
subdivision scheme: (a) base mesh, (b) subdivision level¼ 1, and (c)
subdivision level ¼ 2.

8 SURFACE MODELING



REMARKS

Surface modeling is an essential technique for the con-
struction of 3-D objects. A wide variety of different surface
construction techniques have been developed. The des-
cription given above in no way covers all different surfaces
types. It only attempts to describe those popularly used
surfaces and their characteristics. For other surfaces, e.g.,
Bezier triangles (2) and Gregory patch (10), details can
be found in the corresponding references.

REFERENCE

1. I. D. Faux and M. J. Pratt, Computational Geometry for Design
and Manufacture. Chichester, U.K.: Ellis Horwood, 1980.

2. G. Farin, Curves and Surfaces for CAGD, a Practical Guide,
4th ed. New York: Academic Press, 1997.

3. P. Bezier, Numerical Control: Mathematics and Applications.
New York: Wiley, 1972.

4. L. Piegl and W. Tiller, The NURBS Books, 2nd ed. New York:
Springer, 1997.

5. E. Catmull and J. Clark, Recursively generated B-spline sur-
faces on arbitrary topological meshes, Comput.-Aided Design,
9, (6): 350–355, 1978.

6. D. Doo and M. Sabin, Behaviour of recursive subdivision
surfaces near extraordinary points, Comput-Aided Design, 9,
(6): 356–360, 1978.

7. C. Loop, Smooth subdivision surfaces based on triangles,
Master’s Thesis, Saltlake city: University of Utah, Department
of Mathematics, 1987.

8. N. Dyn, D. Levin, and J. A. Gregory, A butterfly subdivision
scheme for surface interpolation with tension control, ACM
Trans. Graphics, 9 (2) 160–169, 1990.

9. D. Zorin and P. Schroder, Subdivision for modeling and anima-
tion, SIGGRAPH, 2000 Course Notes.

10. P. Charrot and J. Gregory, A pentagonal surface patch for
computer aided geometric design, Comput. Aided Geometric
Design, 1 (1): 87–94, 1984.

K.C. HUI

The Chinese University of
Hong Kong

Shatin, Hong Kong

SURFACE MODELING 9



V

VIRTUAL CLOTHING

INTRODUCTION

Virtual garment simulation is the result of a large combi-
nation of techniques that have dramatically evolved during
the last decade. Unlike the mechanical models used for
existing mechanical engineering for simulating deformable
structures, several new challenges are associated with the
highly versatile nature of cloth. The central pillar of gar-
ment simulation is the development of efficient mechanical
simulation models that can reproduce accurately the spe-
cific mechanical properties of cloth. However, cloth is by
nature highly deformable and specific simulation problems
exist from this fact. First, the mechanical representation
should be accurate enough to deal with the nonlinearities
and large deformations occurring at any place in the cloth,
such as folds and wrinkles. Moreover, the garment cloth
interacts strongly with the body that wears it, as well as
with the other garments of the apparel. This strong inter-
action requires advanced methods to detect efficiently the
geometrical contacts constraining the behavior of the cloth,
and to integrate them in the mechanical model (collision
detection and response). All of these methods require
advanced and complex computational methods where the
most important issues are computation speed and effi-
ciency. For real-time applications, however, only specific
approximation and simplification methods allow the com-
putation of garment animation, giving up some of the
mechanical accuracy toward a more realistic.

Garment simulation, which started in the late 1980s
with very simple models such as Weil’s approach (1), has
benefited from the increase in performance of computer
hardware and tools as well as from the development of
specific simulation technologies that have led to impressive
applications not only in the field of simulation of virtual
worlds but also in the fashion garment industry. In Fig. 1,
we can see complex clothes models done from sketches of
famous designers of the sixties.

EARLY DEVELOPMENTS IN VIRTUAL GARMENT
SIMULATION

In the field of computer graphics, the first applications for
mechanical cloth simulation appeared in 1987 with the
work of Terzopoulos et al. (2,3) in the form of a simulation
system that relies on the Lagrange equations of motion and
elastic surface energy. Solutions were obtained through
finite difference schemes on regular grids, which allowed
simple scenes involving cloth to be simulated, such as the
accurate simulation of a flag or the draping of a rectangular
cloth. However, the first applications that simulated gar-
ments realistically started in 1990 (Fig. 2) with the con-

siderations of many other technologies complementing
cloth simulation (4,5), such as body modeling, body anima-
tion, and collision detection and response (6). These appli-
cations innovated the fashion industry by providing the
first virtual system allowing virtual garment patterns to be
sewed together around a character.

Since then, most developments were aimed toward opti-
mizing the accuracy and efficiency of the methods for
simulating cloth accurately and efficiently, along with
the developments of actual applications and commercial
products.

MECHANICAL MODELS

Two major stages are to be considered in the design of an
accurate mechanical simulation system:

1. The characterization and measurement of the
mechanical properties of the material to be simu-
lated, which includes the identification of the main
factors that characterize the material and their quan-
titative measurement through a set of mechanical
parameters, or behavior curves, possibly with their
analytical modelization.

2. The reproduction of these mechanical properties in a
numerical resolution system that uses state-of-the-
art numerical methods and algorithms to reproduce
accurately the resulting static or the dynamic beha-
vior.

MECHANICAL CHARACTERIZATION OF CLOTH

The mechanical properties of deformable surfaces can be
grouped into four main families:

1. Elasticity: the internal stress resulting from a given
geometrical strain.

2. Viscosity: the internal stress resulting from a given
strain rate.

3. Plasticity: how the properties evolve according to the
deformation history.

4. Resilience: the limits at which the structure will
break.

Elastic properties are the main contributor of mechan-
ical effects in the usual contexts where cloth objects are
used. Deformations are often small and slow enough to
make the effects of viscosity, plasticity, and resilience
insignificant. One major hypothesis is that quasistatic
models in the domain of elastic deformations will suffice
for models intended to simulate the rest position of the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Figure 1. From the award-winning film ‘‘High Fashion
in Equations,’’ MIRALab–University of Geneva.

2 VIRTUAL CLOTHING



garment on an immobile mannequin (draping). However,
when a realistic animation is needed, the parameters relat-
ing energy dissipation through the evolution of the defor-
mation are also needed, and complete dynamic models,
including viscosity and plasticity, should be used.

Depending on the amplitude of the mechanical phenom-
ena under study, the curves expressing mechanical proper-
ties exhibit shapes of varying complexity. If the amplitude
is small enough, these shapes may be approximated by
straight lines. This linearity hypothesis is a common way to
simplify the characterization and modeling of mechanical
phenomena. However, in general, the nonlinear properties
of cloth are captured through strain–stress curves. More
complex models also consider more complex phenomena,

such as the plasticity behavior, appearing as hysteresis in
the strain–stress curves.

It is common in elasticity theory to consider that the
orientation of the material has no effect on its mechanical
properties (isotropy). This, however, is inappropriate for
cloth, as its properties depend considerably on their orien-
tation relative to the fabric thread.

Elastic effects can be divided into two main contribu-
tions:

1. Metric elasticity: deformations along the surface
plane.

2. Bending elasticity: deformations orthogonally to the
surface plane.

Figure 1. (Continued)

Figure 2. ‘‘FlashBack’’: Early virtual garments used
context-dependent simulation of simplified cloth models
(image courtesy of MIRALab–University of Geneva).

VIRTUAL CLOTHING 3



The garment industry needs the measurement of major
fabric mechanical properties through normalized proce-
dures to guarantee consistent information exchange
between garment industry and cloth manufacturers. The
Kawabata evaluation system for fabric (KES) is a reference
methodology for the experimental observation of the elastic
properties of the fabric material. Using five experiments, 15
curves are obtained, which determine 21 parameters for the
fabric.

Four standard tests are part of KES to determine the
mechanical properties of cloth, using normalized measure-
ment equipment (Fig. 3). The tensile test measures the
force/deformation curve of extension for a piece of fabric
of normalized size along weft and warp directions and
allows the measurement of tensile elongation strain–stress
behavior along with other parameters assessing nonlinear-
ity and hysteresis. The shearing test is the same experiment
using shear deformations, which allows the measurement
of tensile shear strain–stress behavior. The bending test
measures the curves for bending deformation in a similar
way and measures the bending strain–stress behavior.
Finally the compression test and the friction test measure
parameters related to the compressibility and the friction
coefficients. Allthough the KES measurements determine
parameters assessing the nonlinearity of the behavior
curves and some evaluation of the plasticity, other meth-
odologies, such as the FAST method, use simpler proce-
dures to determine the linear parameters only.

Whereas KES measurements and similar systems sum-
marize the basic mechanical behaviors of fabric material,
the visual deformations of cloth, such as buckling and
wrinkling, are a complex combination of these parameters
with other subtle behaviors that cannot be characterized
and measured directly.

To take these effects into account, other tests focus on
more complex deformations. Among them, the draping test
considers a cloth disk of a given diameter draped onto a
smaller horizontal disk surface. The edge of the cloth will
fall around the support and produce wrinkling. The wrinkle
pattern can be measured (number and depth of the wrin-
kles) and used as a validation test for simulation models.

Tests have also been devised to measure other complex
deformation of fabric material, mostly related to bending,
creasing, and wrinkling.

Methods for Mechanical Cloth Simulation

Continuum Mechanics Models. Well known in mechan-
ical engineering, the finite element method measures the
cloth surface as discretized in interpolation patches for a
given order (bilinear, trilinear, quadrilinear) and measures
an associated set of parameters (degrees of freedom) that
give the actual shape to the interpolation surface over the
element. From the mechanical properties of the material,
the mechanical energy is computed from the deformation of
the surface for given values of the interpolation para-
meters. An equation system based on the energy variation
is then constructed with these degrees of freedom. Surface
continuity between adjacent elements imposes additional
constraint relationships. A large, sparse linear system is

Figure 3. Examples of elongation, shear and bending strain–
stress curves measured during KES evaluation of a fabric sample.

4 VIRTUAL CLOTHING



built by assembling successively the contributions of all
elements of the surface and then it is solved using optimized
iterative techniques, such as the conjugate gradient
method.

In the beginning, finite elements had only a marginal
role in cloth simulation. The main attempts are described in
Refs. (7-9). Most implementations focus on the accurate
reproduction of mechanical properties of fabrics, but they
restrict the application field to the simulation of simple
garment samples under elementary mechanical contexts,
mostly because of the huge computational requirements of
these models. Furthermore, accurate modeling of highly
variable constraints (large nonlinear deformations, highly
variable collisions) is difficult to integrate into the formal-
ism of finite elements, and this sharply reduces the ability
of the model to cope with the very complicated geometrical
contexts that develop in real-world garment simulation on
virtual characters.

Some recent developments have attempted to speed up
the computation times required for finite elements. These
developments have been used particularly in the context of
interactive simulation for virtual surgery systems (10,11).
For instance, preinverting the resolution matrix (as done in
Ref. 12 for particle systems) may speed up the computation
(13), but it restricts the application field to linear models
and to very small mechanical systems (14). The ‘‘explicit
finite elements’’ described in Ref. 15 come close to a good
computational charge compromised by locally approximat-
ing the resolution of each element (16). These models also
rely on simple linear formulations of the strain tensor that
are inappropriate for the large deformations or displace-
ments encountered in cloth simulation. Alleviating this
problem through the use of a linearized form of the Green
Lagrange strain tensor has led recently to more accurate
models (10,17). A coordinate rotation is used to ensure
accuracy of the linearized form in the context of large
deformations (18-20). However, none of these methods
has been implemented in the context of general nonlinear
strain–stress mechanical behaviors.

Particle Systems. An easier and more pragmatic way to
perform cloth simulation is to use of particle systems.
Particle systems consider the cloth to be represented
only by the set of vertices that constitute the polygonal
mesh of the surface. These particles are moved through the
action of forces that represent the mechanical behavior of
the cloth, which are computed from the geometric relation-
ships between the particles that measure the deformation
of the virtual cloth. Among the different variations of
particle systems, the spring-mass scheme is the simplest
and most widely used. It considers the distance between
neighboring particle pairs as the only deformation mea-
surement and interaction source representing the internal
elasticity of the cloth.

The simplest approach is to construct the springs along
the edges of a triangular mesh describing the surface. This
approach, however, leads to a model that cannot accurately
display the anisotropic strain–stress behavior or the bend-
ing behavior of the cloth material. More accurate models
are constructed on regular square particle grids describing
the surface. Whereas elongation stiffness is modeled by
springs along the edges of the grid, shear stiffness is
modeled by diagonal springs, and bending stiffness is mod-
eled by leapfrog springs along the edges. This model still is
inaccurate because of the unavoidable cross-dependencies
between the various deformation modes relative to the
corresponding springs. Also, it is inappropriate for non-
linear elastic models and large deformations. More accu-
rate variations of the model consider angular springs
rather than straight springs to represent shear and bend-
ing stiffness, but the simplicity of the original spring-mass
scheme is then lost (Fig. 4).

Particle systems are among the simplest and most effi-
cient ways to define rough models that compute highly
deformable mechanical systems, such as cloth, with com-
putation times small enough to integrate them into systems
to simulate complete garments on virtual bodies. Among
the main contributions on particle system models, early
works considered simple viscoelastic models on regular
grids with applications for draping problems with simple

Elongation
Springs

Elongation
Springs

Elongation
Springs

Bending
Springs

Bending
Springs

Tensile Weft-Warp Stiffness Tensile Shear Stiffness Bending Stiffness

Figure 4. Various structures of spring-mass systems used in cloth simulation.

VIRTUAL CLOTHING 5



numerical integration schemes (21). Accurate models
started with Breen et al. (22) modeling the microstructure
of cloth using parameters derived from KES behavior
curves and integration based on energy minimization.
However, such accurate models required a lot of computa-
tion for solving problems that were restricted to draping.
On the other hand, more recent models trade accuracy for
speed, such as the grid model detailed by Provot (23), which
includes geometric constraints for limiting large deforma-
tion of cloth. Additional contributions from Eberhardt et al.
(24) include the simulation of KES parameters and the
comparison of the efficiency between several integration
methods. Advanced surface representations were used in
Ref. 25, where the simulation model and collision detection
takes advantage of the hierarchical structure of subdivision
surfaces. Modeling animated garments on virtual charac-
ters is the specific aim of the work described by Volino et al.
(26,27), which investigates improved spring-mass repre-
sentations for better accuracy of surface elasticity modeling
on irregular meshes. Finally, advanced particle systems
that describe accurately the deformable behavior of elastic
materials (17) also can describe accurately the anisotropic
and nonlinear behavior of cloth materials (28). Such models
can represent surface properties as accurately as first-
order finite elements, offering a very good compromise
between accuracy and computation speed (Fig. 5).

Simulating Bending Stiffness. Tensile stiffness only
involves computing deformations and forces within mesh
elements. On the other hand, the simulation of bending
stiffness necessitates the action of out-of-plane forces
between several adjacent mesh elements.

Several solutions have been proposed in the literature,
representing two main approaches (Fig. 6). The first solu-
tion is to use crossover springs that extend the surface,
opposing transversal bending (23,24). The second is to
evaluate precisely the angle between adjacent mesh ele-
ments and to create between them normal forces that
oppose this angle through opposite bending momentum
(26,29–31). This approach can reach similar accuracy as
grid continuum-mechanics (2) and grid particle system
derivatives (32), which are complex to evaluate. Another
solution proposed in Ref. (33) is to evaluate bending as a
second-order discrete derivative vector computed linearly
from the vertex positions, and to compute bending forces
directly from it. It offers the advantage of a completely
linear formulation that can efficiently be integrated by
numerical algorithms.

Numerical Integration Methods. Although various mod-
els can be used to compute the force applied on each particle
given their position and velocity, these forces must be
integrated along time to obtain the position and velocity
of the particle for the following time-steps using methods
related to the integration of ordinary differential equation
systems. Most recent contributions focus on improvements
of the numerical integration methods in order to improve
the efficiency of the simulation.

Explicit integration methods are the simplest methods
available to solve first-order ordinary differential systems.
They predict the future system state directly from the value
of the derivatives. The best known techniques are the
Runge–Kutta methods. Among them, the fast but unstable
and inaccurate first-order Euler method, used in many

Figure 5. Accurate representation of tensile elasticity
using particle systems: A triangle of cloth element
defined on the 2-D cloth surface (left) is deformed in
3-D space (right), and its deformation state is computed
from the deformation of its weft-warpcoordinate system.

Figure 6. Three ways for creating bending stiffness in
a triangle mesh: Using tensile crossover springs over
mesh edges (top), using forces along triangle normals
(bottom), and using forces linearly evaluated from a
weighted sum of vertex positions (right).

6 VIRTUAL CLOTHING



early implementations, extrapolates directly the future
state from the current state and from the derivative. Higher
order and more accurate methods also exist, such as the
second-order Midpoint method, used for instance in early
models by Volino et al.(26), and the very accurate fourth-
order Runge–Kutta method, used for instance by Eber-
hardt et al. (24).

In addition to considerations for accuracy, stability and
robustness are other key factors to consider. For most
situations encountered in cloth simulation, the numerical
stiffness of the equations (stiff elastic forces, small surface
elements) require the simulation time-steps to be small
enough to ensure the stability of the system, and this limits
the computation speed much more than accuracy consid-
erations. Adequate time-step control is therefore essential
for an optimal simulation. A common solution is to use the
fifth-order Runge–Kutta algorithm detailed in Ref. (34)
which embeds integration error evaluation used for tuning
the time-step adaptively (29).

To circumvent the problem of instability, implicit
numerical methods are used. For cloth simulation, this
was outlined first by Baraff et al. (32). The most basic
implementation of the implicit method is the Euler step,
which finds the future state for which ‘‘backward’’ Euler
computation would return the initial state. It performs the
computation using not the derivative at the current time-
step but the predicted derivative for the next time-step.
Besides the inverse Euler method other, more accurate,
higher order implicit methods exist, such as the inverse
Midpoint method, which quite simple but exhibits some
instability. A simple solution is to interpolate between the
equations of the Euler and the Midpoint methods, as pro-
posed by Volino et al. (40). Higher order methods, such as
the Rosenbrook method, do not exhibit convincing efficien-
cies in the field of cloth simulation. Multistep methods,
which perform a single-step iteration using a linear com-
bination of several previous states, are good candidates for
a accuracy–stability compromise. Among them, the second-
order backward differential formula has shown some inter-
esting performances, as used by Eberhardt,(35) Hauth et
al. (36) and Choi et al. (37).

Whatever variation chosen, the major difficulty with
implicit integration methods is that they involve the reso-
lution of a large and sparse linear equation system for each
iteration, constructed from the Jacobian matrix of the
particle forces against their position and velocity. A com-
monly used simplification involves linearization of the
mechanical model so as to obtain a linear approximation
of the matrix that does not evolve along time, and on which
initial construction and preprocessing allows an efficient
resolution method to be used, as for example in Kang et al.
(38), or even the matrix inverse to be precomputed as done
by Desbrun et al. (12). Another simplification is to suppress
completely the need for computing the matrix using an
adapted approximation embedded directly in an explicit
iteration. A big drawback of all these methods results from
the approximation of the matrix that cannot take into
account the nonlinearities of the model (mostly those
resulting from the change in orientation of the surface
elements during the simulation). Although this change is
acceptable draping applications, animations usually

behave poorly because of excessive numerical damping,
which also increases as the time-step becomes large.

The best numerical method to resolve the linear system
seems to be the conjugate gradient method, as suggested by
Baraff et al. (32), with many variations and preconditioning
schemes depending on how the mechanical model is for-
mulated and on how the geometrical constraints of the cloth
are integrated.

Most models that use implicit integration schemes
restrict themselves to using spring-mass systems as their
simple formulation to ease the process of defining the linear
system to be resolved. However, implicit integration meth-
ods also can be used to integrate accurate surface-based
particle systems as the one described above, from deriva-
tion of the particle force expressions relative to the particle
positions and velocities (39). This approach is integrated
simply into the implicit formulations described by Volino et
al. (40) and is extended toward other advanced methods as
by Hauth et al. (36). These formulations blur the line
between particle systems and finite element methods, as
the described particle system is indeed a first-order finite
element method where the implicit resolution scheme cor-
responds to the energy minimization scheme of finite ele-
ments and the build of the linear system matrix
corresponds to the assembly process of elements into the
global system to be resolved. This key idea to design a new
system combines the accuracy of finite elements with the
efficiency of the techniques used for creating a particle
system.

Collision Processing. Collision detection is one of the
most time-consuming tasks when it comes to simulating
virtual characters wearing complete garments (41). The
usual complexity of collision detection processes result from
the large number of primitives that describe these surfaces.
Most of the collision detection applications need to compute
which polygons of large meshes do actually collide. In most
of the cases, these meshes are animated (through user
interaction or simulation processes) and collision detection
must be involved at each step of the animation process to
ensure immediate and continuous feedback to the anima-
tion control.

Most of the efficient collision detection algorithms take
advantage of a hierarchical decomposition of the complex
scheme, which allows for avoiding the quadratic time of
testing extensively collisions between all possible couples of
primitives. Two major ways of constructing such hierar-
chies are as follows:

1. Space subdivision schemes: the space is divided in to a
hierarchical structure, typically octree methods.
Using such structure, a reduced number of geogra-
phical neighbors of a given primitive are found in
log(n) time (the depth of a hierarchy separating geo-
graphically n primitives) and tested for collisions
against it.

2. Object subdivision schemes: the primitives of the
objectare grouped in toa hierarchical structure. These
methods are based on bounding volume hierarchies.
Using such structure, large bunches of primitives may

VIRTUAL CLOTHING 7



be discarded in log(n) time (the depth of a well-
constructed hierarchy tree of n primitives) through
simple techniques such as bounding-volume evalua-
tions.

In the context of cloth simulation, object subdivision
schemes are the most appropriate, as they take advantage
of the constant topology of the mesh, which defines a near-
constant, local geometric proximity relationship between
mesh elements. This task is performed through an adapted
bounding-volume hierarchy algorithm, which can use a
constant discrete-orientation-polytope hierarchy con-
structed on the mesh and an optimization for self-collision
detection using curvature evaluation on the surface hier-
archy (29,42). This algorithm is fast enough to detect full
collision and self-collision between all objects of the scene
with acceptable impact on the processing time) (Fig. 7).

Thus, body and cloth meshes are handled symmetrically by
the collision detection process, ensuring perfect versatility
of the collision handling between the body and the several
layers of garments.

Collision response may either be force-based, using
strong nonlinear penalty forces that simulate contact
forces, or impulse-based, using a geometrical scheme based
on correction of the mesh position, velocity, and accelera-
tion. Allthough force-based models ensure good integration
with the mechanical simulation process, the high nonli-
nearity of the forces degrades the performance of the
numerical resolution. Impulse-based methods are more
difficult to integrate into the mechanical model, but they
offer a more controllable geometric constraint enforcement
that does not affect the numerical resolution too much
(27,40) (Fig. 8).

Figure 7. Collision detection using bounding-volume
hierarchies: Only colliding regions are subdivided for
detecting colliding mesh elements.

8 VIRTUAL CLOTHING



GARMENT DESIGN AND SIMULATION

Since the first developments of simulated garments on
virtual characters (4,5), cloth simulation and garment
animation has made its way not only into computer
research (27), but also into commercial products aimed
both for 3-D computer design and the garment industry.

A System for Pattern-Based Garment Design

Allthough essential, computational techniques alone are
not sufficient to produce a powerful tool to allow accurate
and convenient creation and prototyping of complex gar-
ments. All state-of-the-art techniques have to be integrated

into a garment design and simulation tool aimed at
prototyping and virtual visualization, to allow fashion
designers to experiment virtually on new collections with
high-quality preview animations, as well as to allow pat-
tern makers to adjust precisely the shape and measure-
ments of the patterns to fit the body optimally for best
comfort (Fig. 9).

The most intuitive and natural approach for building
garments takes its inspiration from the traditional gar-
ment industry, where garments are created from two-
dimensional patterns and then seamed together
(Fig. 10). Working with 2-D patterns is the simplest way
to keep an accurate, precise, and measurable description
and representation for a cloth surface. In the traditional

Figure 8. Advanced collision methods are required for
solving such challenging situations in cloth simulation.

Figure 9. From the award-winning film ‘‘High Fashion in Equations,’’ MIRALab–University of Geneva.

VIRTUAL CLOTHING 9



garment and fashion design approach, garments usually
are described as a collection of cloth surfaces, tailored in
fabric material, along with the description of how these
patterns should be seamed together to obtain the final
garment. Many computer tools already are available in
the garment industry for this purpose. A powerful virtual
garment design system reproduces this approach by pro-
viding a framework to design the patterns accurately with
the information necessary for their correct seaming and
assembly. Subsequently, these patterns are placed on the 3-
D virtual bodies and animated along with the virtual actor’s
motion.

Garment Prototyping

Combined with the accuracy and the speed of state-of-the-
art mechanical simulation techniques, tasks such as com-
fortability evaluations are open to the garment designer,
through the addition of several visualization tools, such as:

� Preview of fabric deformations and tensions along any
weave orientation.

� Preview of pressure forces of the garment on the body
skin.

� Immediate update of these evaluations according to
pattern reshaping and sizing, fabric material change,
and body measurements and posture change.

These tools allow the pattern designer to virtually test
and adjust the measurements of complex garment patterns
to the body size and postures of numerous different ‘‘virtual
mannequins,’’ assessing the strain and stress of the cloth,
as well as the pressure exerted on the skin, assessing how
the garment feels and slides on the body as it moves, and
detecting eventual gesture limitations resulting from par-
ticular garment features (Fig. 11).

Commercial Products

Two kinds of virtual garment design products currently are
available: those created for general cloth simulation and
animation, and those specialized for draping and fitting
garment models on virtual mannequins. The first category
offers tools to simulate any kind of deformable surface

Figure 10. Between real and virtual: A garment
design system should offer high-quality garment simu-
lation, along with highly interactive pattern 2-D–3-D
design and preview tools allowing complex garment
models to be designed efficiently with many features
such as seams, buttons, pockets, and belts.

Figure 11. Virtual prototyping: Displaying weft constraints on an animated body (from standing to sitting).

10 VIRTUAL CLOTHING



mechanically. These products usually offer a simple
mechanical model containing only the basic mechanical
parameters of cloth (stiffness, viscosity, bending, and grav-
ity) modeled as a spring-mass particle system and simu-
lated using state-of-the-art integration techniques. They
allow the computation of realistic cloth animation, but they
do not provide any tool for designing garments. Also these
products offer general collision detection schemes for inter-
action with any other objects. These tools are usually
integrated as plug-ins into 3-D design and animation fra-
meworks.

The second category focuses on garment draping on
virtual mannequins for visualization (virtual fashion,
web applications) and prototyping purposes (garment
design applications). The CAD applications specialize in
the simulation of pattern assembly and of garment draping
using accurate mechanical models of fabrics, whereas the
visualization application takes advantage of geometric
techniques for quickly generating realisticsally dressed
mannequins out of design choices. Both applications use
pattern models imported from professional pattern design
tools. These tools also provide a stand-alone environment
for setting up the simulation and for visualizing the results
(Fig. 12).

BIBLIOGRAPHY

1. J. Weil, The synthesis of cloth objects, Computer Graphics,
SIGGRAPH 86 Conference Proceedings, 20: 49–54, 1986.

2. D. Terzopoulos, J.C. Platt, and H. Barr, Elastically deformable
models, Computer Graphics (SIGGRAPH’97 Proceedings),
1987, pp. 205–214.

3. D. Terzopoulos and K. Fleischer, Modeling inelastic deforma-
tion: viscoelasticity, plasticity, fracture, Computer Graphics
(SIGGRAPH’88 proceedings), 1988, pp. 269–278.

4. B. Lafleur, N. Magnenat-Thalmann, and D. Thalmann, Cloth
animationwithself-collisiondetection, IFIP Conference on Mod-
eling in Computer Graphics proceedings, 1991, pp. 179–197.

5. M. Carignan, Y. Yang, N. Magnenat-Thalmann, and D. Thal-
mann, Dressing animated synthetic actors with complex
deformable clothes, Computer Graphics (SIGGRAPH’92 Pro-
ceedings), 26(2): 99–104, 1992.

6. Y. Yang and N. Magnenat-Thalmann, An improved algorithm
for collision detection in cloth animation with human body,

First Pacific Cont. on Computer Graphics and Applica-
tions1993, pp. 237–251.

7. J.R. Collier, B.J. Collier, G. O’toole, and S.M. Sargand, Drape
prediction by means of finite-element analysis, J. Textile Insti-
tute, 82 (1): 96–107, 1991.

8. L. Gan, N.G. Ly, and G.P. Steven, A study of fabric deformation
using non-linear finite elements, Textile Res. J., 65 (11):
660–668, 1995.

9. J.W. Eischen, S. Deng, and T.G. Clapp, Finite-element model-
ing and control of flexible fabric parts, IEEE Computer Graph.
Applicat., 16 (5): 71–80, 1996.

10. G. Desbrunne, M. Desbrun, M.P. Cani, and A.H. Barr,
Dynamic real-time deformations using space & time adaptive
sampling, Computer Graphics (SIGGRAPH’01 proceedings),
2001, pp. 31–36.

11. M. Hauth, J. Gross, and W. Strasser, Interactive physically-
based solid dynamics, Eurographics Symposium on Computer
Animation, 2003, pp. 17–27.

12. M. Desbrun, P. Schröder, and A. Barr, Interactive animation of
structured deformable objects, Proceedings of Graphics Inter-
face, 1999.

13. M. Bro-Nielsen and S. Cotin, Real-time volumetric deformable
models for surgery simulation using finite elements and
condensation, Eurographics 1996 proceedings, 1996,
pp. 21–30.

14. D. James and D. Pai, Accurate real-time deformable objects,
SIGGRAPH 99 Conference Proceedings, Annual Conference
Series, 1999, pp. 65–72.

15. J. O’Brien and J. Hodgins, Graphical modeling and animation
of brittle fracture, Computer Graphics (SIGGRAPH’99 Pro-
ceedings), ACM Press, 1999, pp. 137–146.

16. S. Cotin, H. Delingette, and N. Ayache, Real-time elastic
deformations of soft tissues for surgery simulation, IEEE
Trans. Visualizat. Comp. Graph., 5(1): 62–73, 1999.

17. O. Etzmuss, J. Gross, and W. Strasser, Deriving a particle
system from continuum mechanics for the animation of
deformable objects, IEEE Trans. on Visualizat. and Comp.
Graph., 9 (4): 538–550, 2003.

18. M. Muller and M. Gross, Interactive virtual materials,
Proceedings of Graphics Interface, Canadian Human-
Computer Communications Society, 2000, pp. 239–246.

19. M. Muller, J. Dorsey, L. Mcmillan, R. Jagnow, and B.
Cutler, Stable real-time deformations, Proceedings of the
Eurographics Symposium on Computer Animation, 2002, pp.
49–54.

Figure 12. An animation sequence from the film ‘‘High Fashion in Equations.’’

VIRTUAL CLOTHING 11



20. O. Etzmuss, M. Keckeisen, and W. Strasser, A fast finite-
element solution for cloth modeling, Proceedings of the 11th
Pacific Conference on -Computer Graphics and Applications,
2003, pp. 244–251.

21. Y. Sakagushi, M. Minoh, and K. Ikeda, A dynamically deform-
able model of dress, Trans. Society of Electron., Informat.
Commun., 1991, pp. 25–32.

22. D.E. Breen, D.H. House, and M.J. Wozny, Predicting the drape
of woven cloth using interacting particles, Computer Graphics
Proceedings, 1994, pp. 365–372.

23. X. Provot, Deformation constraints in a mass-spring model to
describe rigide cloth behavior, Graphics Interface’95 proceed-
ings, 1995, pp. 147–154.

24. B. Eberhardt, A. Weber, and W. Strasser, A fast, flexible,
particle-system model for cloth draping, IEEE Computer Gra-
phics and Applications, 16 (5): 52–59, 1996.

25. T. Derose, M. Kass, and T. Truong, Subdivision surfaces in
character animation, Computer Graphics (SIGGRAPH’98 Pro-
ceedings), 1998, pp. 148–157.

26. P. Volino, M. Courchesne, and N. Magnenat-Thalmann, Ver-
satile and efficient techniques for simulating cloth and other
deformable objects, Computer Graphics (SIGGRAPH’95 pro-
ceedings), 1995, pp. 137–144.

27. P. Volino and N. Magnenat-Thalmann, Developing simulation
techniques for an interactive clothing system, Virtual Systems
and Multimedia (VSMM’97 proceedings), Geneva, Switzer-
land, 1997, pp. 109–118.

28. P. Volino and N. Magnenat-Thalmann, Accurate garment
prototyping and simulation, Computer-Aided Design Appl., 2
(5): 645–654, 2005.

29. E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder, Discrete
shells, ACM Symposium on Computer Animation, 2003.

30. R. Bridson, S. Marino, and R. Fedkiw, Simulation of clothing
with folds and wrinkles, Eurographics-SIGGRAPH Sympo-
sium on Computer Animation, 2003, pp. 28–36.

31. B. Thomaszewski and M. Wacker, Bending models for thin
flexible objects, WSCG Short Commun. Proceedings, 9 (1),
2006.

32. D. Baraff and A. Witkin, Large steps in cloth simulation,
Computer Graphics Proceedings, 32: 106–117, 1998.

33. P. Volino and N. Magnenat-Thalmann, Simple linear bending
stiffness in particle systems, SIGGRAPH-Eurographics
Symposium on Computer Animation, 2006.

34. W.H. Press, W.T. Vetterling, S.A. Teukolsky, and B.P.
Flannery, Numerical recipes in C, 2nd ed., Cambridge, UK:
Cambridge University Press, 1992.

35. B. Eberhardt, O. Etzmuss, and M. Hauth, Implicit-explicit
schemes for fast animation with particles systems, Proceedings
of the Eurographics Workshop on Computer Animation and
Simulation, 2000, pp. 137–151.

36. M. Hauth and O. Etzmuss, A high performance solver for the
animation of deformable objects using advanced numerical
metds, Eurographics 2001 proceedings, 2001.

37. K.J. Choi, H.S. Ko, Stable but responsive cloth, Computer
Graphics (SIGGRAPH’02 Proceedings), 2002.

38. Y.M. Kang, J.H. Choi, H.G. Cho, D.H. Lee, and C.J. Park, Real-
time animation technique for flexible and thin objects,
WSCG’2000 proceedings, 2000, pp. 322–329.

39. P. Volino and N. Magnenat-Thalmann, Implicit midpoint inte-
gration and adaptive damping for efficient cloth simulation,
Computer Animation and Virtual Worlds, 16 (3–4): 163–175,
2005.

40. P. Volino and N. Magnenat-Thalmann, Implementing fast
cloth simulation with collision response, Computer Graphics
International Proceedings, 2000, pp. 257–266.

41. J. Metzger, S. Kimmerle, and O. Etzmuss, Hierarchical
techniques in collision detection for cloth animation, J.
WSCG, 11 (2): 2003, 322–329.

42. P. Volino and N. Magnenat-Thalmann, Efficient self-collision
detection on smoothly discretised surface animation using
geometrical shape regularity, Computer Graphics Forum
(Eurographics’94 proceedings), 13 (3): 155–166, 1994.

FURTHER READING

T. Agui, Y. Nagao, and M. Nakajma, An expression method of
cylindrical cloth objects-an expression of folds of a sleeve using
computer graphics, Trans. of Soc. Electron., Informat. and
Communicat., J73-D-II: 1095–1097, 1990.

D. Baraff, A. Witkin, and M. Kass, Untangling cloth, Computer
Graphics Proceedings, Addison-Wesley, 2003.

G. Bergen, Efficient collision detection of complex deformable
models using AABB trees, J. Graphics Tools, 2 (4): 1–14, 1997.

R. Bridson, R. Fedkiv, and J. Anderson, Robust treatment of
collisions, contact, and friction for cloth animation, Computer
Graphics Proceedings, 2002.

U. Cugini and C. Rizzi, 3D design and simulation of men garments,
WSCG Workshop Proceedings, 2002.

F. Cordier and N. Magnenat-Thalmann, Real-time animation of
dressed virtual humans, Eurographics 2002 Proceedings, 2002.

F. Cordier, H. Seo, and N. Magnenat-Thalmann, Made-to-measure
technologies for online clothing store, IEEE Computer Graphics
Appl.23: 38–48, 2003.

G. Debunne, M. Desbrun, M.P. Cani, and A. Barr, Adaptive simu-
lation of soft bodies in real-time, Computer Animation, Annual
Conference Series, IEEE Press, 2000.

S.A. Ehmann, M.C. Lin, Accurate and fast proximity queries
between polyhedra using convex surface decomposition, Computer
Graphics Forum, 2001, pp. 500–510.

A. Fuhrmann, C. Gross, and V. Luckas, Interactive animation of
cloth including self-collision detection, Journal of WSCG, 11 (1):
141–148, 2003.

A. Fuhrmann, C. Gross, V. Luckas, and A. Weber, Interaction-free
dressing of virtual humans, Computer & Graphics, 27 (1): 71–82,
2003.

B.K. Hind and J. Mccartney, Interactive garment design, Visual
Computer, 6: 53–61, 1990.

P. Hubbard, Approximating polyhedra with spheres for time-cri-
tical collision detection, ACM Trans. Graphics, 15 (3): 179–210,
1996.

S. Gottschalk, M.C. Lin, and D. Manosha, OOBTree: a hierarchical
structure for rapid interference detection, SIGGRAPH 96 Confer-
ence Proceedings, 1996, pp. 171–180.

S. Hadap, E. Bangarter, P. Volino, and N. Magnenat-Thalmann,
Animating wrinkles on clothes, IEEE Visualization ’99. San Fran-
cisco, CA, 1999, pp. 175–182.

Y. M. Kang, J. H. Choi, H. G. Cho, and D. H. Lee, An efficient
animation of wrinkled cloth with approximate implicit integration,
Visual Comp. J., 17 (3): 147–157, 2001.

Y.M. Kang and H.G. Cho, Bilayered approximate integration
for rapid and plausible animation of virtual cloth with realistic
wrinkles, Computer Animation 2000 proceedings, 2002, pp. 203–
211.

12 VIRTUAL CLOTHING



J.T. Klosowski, M. Held, and J.S.B. Mitchell, Efficient collision
detection using bounding volume hierarchies of k-dops, IEEE
Trans. on Visualizat. Comp. Graph., 4 (1): 21–36, 1998.

T. Larsson, T. Akinine-Möller, Collision detection for continuously
deformable bodies, Proceedings of Eurographics, Short Presenta-
tions, 2001, pp. 325–333.

M. Meyer, G. Debunne, M. Desbrun, and A. H. Barr, Interactive
animation of cloth-like objects in virtual reality, J. Visualizat.
Comp. Animat., 12 (1): 1–12, 2001.

H. Ng and R.L. Grimsdale, GEOFF-A geometrical editor for fold
formation, Lecture Notes in Computer Science Vol. 1024: Image
Analysis Applications and Computer Graphic, New York:
Springer-Verlag, 1995, pp. 124–131.

M. Oshita and A. Makinouchi, Real-time cloth simulation with
sparse particles and curved faces, Proceedings of Computer Ani-
mation, Seoul, Korea, 2001.

T. Vassilev and B. Spanlang, Fast cloth animation on walking
avatars, Eurographics Proceedings, 2001.

P. Volino and N. Magnenat-Thalmann, Fast geometrical wrinkles
on animated surfaces, WSCG’99 Proceedings, 1999.

P. Volino and N. Magnenat-Thalmann, Comparing efficiency of
integration methods for cloth simulation, Computer Graphics
International Proceedings, 2001.

G. Zachmann, Minimal hierarchical collision detection, Proc. ACM
Symposium on Virtual Reality, 2002, pp. 121–128.

C. Luible, P. Volino, and N. Magnenat-Thalmann, ‘‘High Fashion
in Equations,’’ International Conference on Computer Graphics
and Interactive Techniques, ACM Siggraph 2007, sketches,
San Diego, session: Vogue, Article No. 36 and Film Selected at
the electronic Theater, SIGGRAPH’ 2007.

PASCAL VOLINO

CHRISTIANE LUIBLE

NADIA MAGNENAT-THALMANN

University of Geneva
Geneva, Switzerland

VIRTUAL CLOTHING 13



V

VOLUME GRAPHICS AND VOLUME
VISUALIZATION

Volume graphics is concerned with graphics scenes, where
models are defined using volume representations instead
of, or in addition to, traditional surface representations. It
is a study of the input, storage, construction, manipulation,
display, and animation of volume models in a true three-
dimensional (3-D) form. Its primary aim is to create realis-
tic and artistic computer-generated imagery from graphics
scenes comprising volume objects (see Figs. 1 and 2), and to
facilitate the interaction with these objects in graphical
virtual environments. A generalized specification of a
volume model is a set of scalar fields, F1(p), F2(p), . . .,
Fk(p), which define the geometrical and physical attributes
of every point p in 3-D space. Scalar fields related to a
specific attribute are usually grouped together to form a
vector or tensor field. Unlike a surface model or a surface-
bounded solid model, a volume model does not normally
have an explicit geometric boundary and its physical attri-
butes are not defined homogeneously within its bounding
volume. As true 3-D representations of graphical models,
volume representations possess more descriptive power
than surface representation. They provide an effective
means for modeling objects with complex internal struc-
tures (such as human bodies) as well as objects without
well-defined geometry (such as fires and smoke). Many
modern data acquisition technologies are capable of captur-
ing volumetric attributes of such objects in volume repre-
sentations, facilitating physically faithful modeling of the
real world.

Volume visualization is also concerned with volume data
representations that are used to store measured physical
attributes of real-world objects and phenomena, or to repre-
sent computer-generated models and their attributes in
volumetric forms. Although it is typical and conventional
for volume datasets (such as in computed tomography) to
correspond spatially to the 3-D physical world, it is also
common in many visualization applications to use volume
datasets to store nonspatial physical data as well as
abstract information. As a volume representation gives a
full 3-D description of everywhere in a 3-D volume, it is
usually difficult to comprehend a volume dataset visually
when it is projected directly onto a two-dimensional (2-D)
display. We can appreciate such difficulties by imagining
viewing a photograph (i.e., a 2-D dataset) horizontally at
the eye level (i.e., a one-dimensional (1-D) projection).
Therefore, the primary aim of volume visualization is to
extract important information from volume data and
convey such information visually to reviewers. This
aim justifies deflection from creation of realistic imagery,
which is the primary aim of volume graphics, and
allows simplifications and embellishments, if they
improve the desired understanding. Otherwise, in many
ways, the subject of volume visualization encompasses
most aspects of volume graphics. Nevertheless, the devel-

opment of the subject has been heavily influenced by many
applications, including medical imaging and scientific
computation.

Since the emergence of computer graphics in the 1960s,
visual realism and real-time interaction have been the two
main driving forces behind its development. As for many
objects in the real world we observe normally only their
surfaces, in general, it is computationally more economic to
deal with geometric specifications in surface representa-
tions by assuming empty or homogeneous object interiors.
Hence, in traditional computer graphics, most existing
modeling and rendering methods deal with graphics mod-
els specified as surfaces or surface-bounded solids, and this
focus has led to the dominance of triangular meshes in the
state-of-the-art graphics hardware and software. This col-
lection of methods is often referred to as surface graphics
techniques. The primary deficiencies of surface graphics
include its inability to encapsulate the internal description
of a model and the difficulties in modeling and rendering
amorphous phenomena.

Various volumetric techniques, including hypertextures
and clouds modeling, have been proposed to address the
shortcomings of surface graphics. Driven by several appli-
cations, there have also been significant advances in volume
visualization, yielding numerous methods for processing
and rendering volume datasets, many of which can be
performed interactively. Coupled with the rapid increase
in the processing power and storage capacity of computers
over the past few decades, volume visualization now pro-
vides an indispensable means in science, engineering, and
medicine, assisting in the observation, measurement, mod-
eling, experimentation, abstraction, and analysis of the
physical world. In the meantime, volume graphics is offering
some striking visual realism in commercial animation pro-
duction, for instance, in the modeling and rendering of
animal fur. These developments have led to beliefs that
volume-based techniques have the potential to match and
overtake surface-based techniques in computer graphics. In
1993, Kaufman, et al. (1) first outlined the framework of
volume graphics as a subfield of computer graphics. Since
then, considerable progress has been made in the field.

VOLUME MODELS AND DATA REPRESENTATIONS

A volume model represents a graphical object by defining
its geometrical and physical attributes at every point p in
3-D Euclidean space E or a volumetric subdomain DðD� EÞ.
With scalar fields as its underlying concept, it provides a
consistent means for specifying the geometry and physical
properties of a spatial entity intrinsically in a true 3-D
manner. In particular, volume modeling represents con-
ceptually an important extension to surface-based model-
ing by allowing the specification of the internal structures
of objects and amorphous phenomena. All volume render-
ing integrals assume that optical properties of a volume
model are not homogeneously defined in D. Most volume

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



rendering algorithms are designed to handle volume mod-
els only.

Similar to surface representations, a volume model can
be specified procedurally or using sampled datasets. Pro-
cedurally defined models typically allow more accurate
computation of various geometric properties of the models,
but they may not be suitable for representing complex real-
world objects. Volume models that are defined upon
sampled data have been the main focus of volume graphics
and visualization, largely because several digitization tech-
nologies (see ADVANCED TOPICS) exist for acquiring
various physical attributes in volume data representations.
A collection of such data for representing a volume model is
referred as a volume dataset. A scheme that defines the data
types of data primitives and governs the inter-relationship
between different types of data primitives is referred to as a
data representation.

Spatially Sampled Data Representations

The basic notion of a spatially sampled volume dataset is a
set of samples V ¼ fðpi; viÞji ¼ 1; 2; . . . ; ng, where vi is a
scalar value that represents some property (such as lumi-
nance intensity) at each sampling location pi in 3-D Eucli-
dean space E. In most applications, we are only interested
in a subdomain of E that encloses the set of sample
points piði ¼ 1; 2; . . . ; nÞ specified in V. We denote such
a subdomain as DðD� EÞ, and D in effect defines an object
domain, that is, the valid spatial domain of a volume object.
As the underlying model of the dataset V is a continuous
scalar field F(p) defined in D, it is necessary to define a
scalar value for every point in D, especially for those points
that are not specified in V. Here we consider only a single
scalar field, and the concept can easily be generalized to
multiple scalar fields. The typical methods for obtaining a
specification of F(p) from a volume dataset depend mainly
on the following three aspects:

1. The interpolation function that derives a value v at
an arbitrary point p in D from several known point-
value pairs. Hence it is necessary for such an
interpolation function to have the knowledge of a
subset of point-value pairs in V, which should have
influence on the value of any given point p in D.
A large number of interpolation functions
require the subdomain D to be further divided
into elementary volumes such that all sample points
piði ¼ 1; 2; . . . ; nÞ are only located at the boundary
of these elementary volumes. This restricts the
influence of each known point-value pair (pi, vi) to
those elementary volumes, to which pi is connected.
Normally elementary volumes do not overlap with
each other except along the shared boundaries. For
some interpolation functions that do not require a
nonoverlapping partition of D, it is common to deter-
mine a subset of known point-value pairs in V for a
given p in D based on proximity, or by simply includ-
ing all point-value pairs in V. Usually, a volume
dataset is not fixed with a specific interpolation
function, and an appropriate interpolation is nor-
mally selected at the rendering or resampling stage

according to various application needs such as
accuracy and performance.

2. The geometrical positioning of the set of sample
points piði ¼ 1; 2; . . . ; nÞ in V. Such information
may be defined explicitly or implicitly in a volume
dataset. In those data representations with an impli-
cit geometry specification, all sampling points are
organized with regular and recurring elementary
structures, such as a 3-D regular grid with cubic cells;
and sampling locations can thereby be derived from
some mathematical formulas.

3. The topological relationship or connectivity between
the known sample points in V. Such information may
be defined explicitly or implicitly in a volume dataset.
As mentioned, it is common to use an interpolation
function in conjunction with a nonoverlapping spatial
partition of D. In an explicit connectivity specifica-
tion, additional elementary structures, such as edges
and cells, are included in a dataset, and they are
normally defined by connecting known sample points
in V to form an elementary structure. In an implicit
specification, the elementary volumes are presup-
posed to have a regular and recurring structure in
relation to the geometrical locations of the sample
points in V. In some cases, the connectivity informa-
tion is neither explicitly nor implicitly defined for a
dataset but requires to be derived dynamically from
the geometrical information in V.

Many volume data representations feature different types
of specifications for geometrical positioning, topological
connectivity, and interpolation function. Some of the
most commonly used volume data representations are
listed below.

3-D Regular Grid. This data representation is the most
popular, where samples are taken at regularly spaced inter-
vals along three orthogonal axes (e.g., the clouds in Fig. 1,
the chess pieces in Fig. 2, the CT head in Fig. 3, and the four
objects in Fig. 4). The sample points are commonly referred
to as voxels (volume elements), as the 3-D analog of pixels.
The straight lines, which link consecutive voxels in the three
axial directions, collectively form a regular grid. Such a grid
with a constant spacing in all three directions is said to be
isotropic and, otherwise, anisotropic. The grid inherently
subdivides its rectangular object domain D into many ele-
mentary cells in the form of cubes (in an isotropic grid) or
cuboids (in an anisotropic grid). The value at any point
inside such a cell is typically obtained using tri-linear
interpolation of the values of the eight neighboring voxels.
As the values at sample points can be stored by using a 3-D
array (commonly called a 3-D raster or a volume buffer) with
implicit geometrical and topological specifications, this data
representation is economic to store and efficient to process.

Note that the original definition of voxels, for instance,
in spatial occupancy enumeration (see VOLUME AND
SURFACE), implies that each voxel occupies a small cubic
domain. Nevertheless, it is common nowadays to consider
that a voxel is simply a discrete sample in a continuous
volumetric domain.

2 VOLUME GRAPHICS AND VOLUME VISUALIZATION



Tetrahedral Mesh. Data representations that require
explicit geometrical and topological information are collec-
tively referred to as irregular grids. One such data repre-
sentations is a tetrahedral mesh that typically comprises a
list of point-value pairs (as in the general notion) and a list
of elementary cells in the form of tetrahedra. The convex
hull of all sample points defines the valid spatial domain D

of the dataset. Each tetrahedral cell is specified by four
sampling points as its vertices, and the value of any point p
inside the cell is typically determined by using the bary-
centric coordinates of p with respect to the four vertices.

Sometimes a volume dataset contains only a list of
scattered samples without an explicit specification of topo-
logical connectivity. We can construct a tetrahedral mesh
using a tetrahedralization algorithm that subdivides the
convex hall of the given sample points into a set of tetra-
hedral cells with sample points as vertices. One such algo-
rithm is the 3-D Delaunary triangulation that ensures that
no sample point falls inside the circumsphere of any tetra-
hedral cell.

Radial Basis Functions. Some volume data representa-
tions do not demand the partitioning of the object domain D.
One approach is to associate each point-value pair (pi, vi)
with a spherical radial basis function (RBF) that defines
the influence of (pi, vi) upon any arbitrary point p in E, which
is normally in inverse proportion to the distance between p

and pi. Let vðp; pi; riÞ be a radial basis function, where
ri 2 ½0; 1� is called the radius of influence that defines a
sphere such that for any point p that falls outside of the
sphere,vðp; pi; riÞ ¼ 0. In many cases, a constant radius of
influence is applied to all sample points; whereas in the
others, each sample point is associated with an individual
ri that typically reflects the confidence or accuracy of
the sampling process. A scalar field F(p) can therefore be -
obtained as the sum of all vðp; pi; riÞ � vi ði ¼ 1; 2; . . . ; nÞ
(e.g., the Lucy and Bunny models in Fig. 2). Many proposed
radial basis functions can be used in conjunction with a
volume data representation, including the Gaussian func-
tion that assumes an infinite radius of influence for every
sample point, and several polynomial functions that
approximate the Gaussian while facilitating the control
of the radius of influence.

In general, it is not essential for a radial basis function to
define the influence of pi solely based on distance. Other
considerations can be featured in vðp; pi; riÞ. For example,
when the set of voxels V is known to represent samples on a
surface, one may use an ellipsoidal function to reduce the
influence along the normal at pi. We call a vðp; pi; riÞ, with
which the influence of pi falls away from pi at different rates
in different directions, as an anisotropic or nonuniform
radial basis function.

Nonspatial Data Representations

The 3-D Fourier transformation has been used to represent
volume data in the frequency domain, which offers sensi-
tive detection of spatial frequency components of the inten-
sity variations along each axis. In the Fourier domain, an
object with a given intensity texture will contribute the
same Fourier frequency components independent of its
position in the volume, thus enabling a unique shape
description. It is also useful in constructing high-pass
filters for boundary enhancement and low-pass filters for
noise reduction. In addition to the qualities of Fourier
transformation, 3-D wavelet transformation also facilitates
a multiresolution decomposition and scale-invariant inter-
pretation of volume data in the wavelet domain. The 3-D
wavelets have successfully been used in several applica-
tions of volume visualization.

As a 3-D representation of spatial information, volume
datasets may demand substantial storage space and are
slow to navigate. Several compressed data representations
have been proposed to overcome these difficulties.

VOLUME AND SURFACE

The most intrinsic representation of a volume model is a
scalar field F(p) in 3-D Euclidean space E. Conceptually we
can consider E being the valid spatial domain of the volume
model. The most intrinsic representation of a surface
model, in a form related to the scalar field, is F(p) ¼ t
such that its valid spatial domain D contains only those
points where F(p) is equal to a specific scalar value t, that is,
D ¼ fpjp2 E; FðpÞ ¼ tg. At least notionally, F(p) contains
more information than F(p) ¼ t, whereas F(p) ¼ t is an
abstraction of F(p), hence potentially a more compact
representation.

Figure 1. This is a volumetric scene, where the clouds (from the
Universität Erlangen-Nürnberg) are represented by a 3D regular
grid, and the Lucy and Bunny models (both from Stanford Uni-
versity) are point-based volume objects specified with radial basis
functions. The image was produced by M. Chen (for details, see D.
Chisnall, M. Chen and C. Hansen, ‘‘Ray-driven dynamic working
set Rendering,’’ The Visual Computer, 23(3):167–179, 2007).

VOLUME GRAPHICS AND VOLUME VISUALIZATION 3



In traditional computer graphics, most existing model-
ing and rendering methods deal with graphics models
specified as surfaces. Most graphics rendering pipelines
are designed to support the display of surfaces. Surface
representations, especially triangular meshes, are often
the only acceptable form of input to many traditional
graphics pipelines. Against this background, much of the
early effort in volume visualization has been made to
approximate a volume model by a surface model that can
then be rendered using a surface-based graphics system.
Such a rendering process is usually referred to as indirect
volume rendering. There has also been effort for converting
surface models to volume models in order to take advantage
of the extensive collections of surface models available in
the public domain, and to render such surface models using
direct volume rendering (see VOLUME RENDERING).

Surface Extraction

Surface extraction is a process of generating a surface
representation S from a volume representation V, where
the underlying specification of V is a scalar field F(p), and
that of S is F(p) = t, which defines the set of all points in a
scalar field with a specific scalar value t. The scalar value t

is referred to as an iso-value, and F(p) = t an iso-surface
(also called a level surface or a a level-set). Often the
extraction process is also referred to as iso-surfacing, sur-
face reconstruction, surface tiling, and surface tracking,
some of which were used only in the context of a specific
group of algorithms.

Notionally,derivingF(p)=t fromF(p) seemstobeatrivial
process. In fact, both volume and surface representations, V
andS,arenormallydefinedindifferentformsofdiscretedata
representations, and not all points on the iso-surface can
easily be identified in V or stored in S. This gives rise to
several groups of surface extraction algorithms.

Marching Cubes. Consider a common requirement for
extracting an iso-surface in the form of a triangular mesh
from a volume model in the form of a 3-D regular grid,
where the tri-linear interpolation function is used to define
the underlying scalar field. The most popular method for
addressing this requirement is the marching cubes algo-
rithm (2). Given a regular grid of nx � ny � nz voxels, and an
iso-value t, there are ðnx � 1Þ � ðny � 1Þ � ðnz � 1Þ cubic
cells, each bounded by eight neighboring voxels. The algo-
rithm examines these cubic cells one by one. For each cell, it
first determines whether the iso-surface intersects with the
cell. If there is an intersection, it creates a triangle or a few
triangles to represent the part of the iso-surface within the
cell. These triangles can then be organized into a triangular
mesh (or a few disjoint meshes) to be displayed by a surface-
based graphics system. As the iso-surface within such a cell
is usually a curved surface because of the tri-linear inter-
polation, the triangular representation is mostly only an
approximation.

The core of the marching cubes algorithm is to determine
the number of triangles in each cell and their topological
arrangement in relation to the cell boundary and to each
other. There are 256 possible cases (including two cases of
non-intersection), if we classify each cell by considering each

of its eight voxels as either ‘‘� t’’ or ‘‘< t’’. Through three
types of symmetrical transformations (i.e., complementary,
rotational, and reflectional transformations), or a combina-
tion of a series of them, the 256 cases can be reduced to 14
basic topological cases, only 1 of which indicates that there is
no intersection between the cell and the iso-surface.

However, what complicates the marching cubes algo-
rithm is the fact that many basic cases are ambiguous; that
is, the binary classification of the eight voxels alone does not
always uniquely determine a topological structure for the
triangular representation within the cell. Some ambiguous
cases may have up to 7 possible variants and some may
involve a less desirable structure called tunnels. In fact a
similar but much simpler ambiguity problem exists in a
class of 2-D contouring algorithms that extract contour
lines from 2-D regular grids. The 2-D ambiguity can be
resolved by a method called asymptotic decider, which
analyzes the asymptotes of the hyperbola representing
the bilinear interpolation of a square cell. One observation
is that all ambiguous cubic cells involve one or more faces
that are considered to be ambiguous in 2-D contouring. By
applying the asymptotic decider to all ambiguous faces on a
cube, one can determine the external edges of the triangles
to be constructed. In some cases, these edges can ade-
quately define the topology of these triangles, whereas in
others, additional computation of some internal properties
of the cell is necessary for further discriminatory analysis.

Extracting other Geometry Descriptions. In addition to
surfaces, several algorithms have been developed for
extracting a set of points on a medial surface and on a
line-like skeleton representing the central axis of a volume
model. Algorithms have also been proposed for extracting
multiple iso-surfaces from volumetric datasets and, in par-
ticular, for constructing a tetrahedral mesh representing an
interval volume, t1 � FðpÞ � t2, which is a collection of all
iso-surfaces defined by iso-values in the range ½t1; t2�. Such a
representation is particularly useful in describing real-life
surface structures that do not have the properties of perfect
mathematical surfaces (e.g., zero or uniform thickness). It is
also a fundamental data type used in rapid prototyping and,
in particular, the layered manufacturing process.

Voxelization

Voxelization is a process for converting from a surface
model (or a surface-bounded solid model) to a discrete
volume data representation. The target volume data repre-
sentation is usually in the form of a 3-D regular grid, and
thus, the process is also sometimes referred to as 3-D
rasterization and 3-D scan-conversion. If we draw an ana-
logy between a surface specification F(p)=0 and a con-
tinuous 3-D signal, voxelization is essentially a process
of digitization, which takes samples in a spatial domain,
measures the relationship between each sampling position
and the surface specification concerned, and records the
measurement in a volume data representation.

Spatial-Occupancy Enumeration. This is one of the early
schemes for object decomposition in computer graphics,
and it is nowadays referred to as binary voxelization in

4 VOLUME GRAPHICS AND VOLUME VISUALIZATION



volume graphics and visualization. Given a surface or a
surface-bounded solid model, a binary voxelization algo-
rithm generates a cellular representation that best approx-
imates the spatial occupancy. The cellular primitives are
normally organized as an array of cubes in a 3-D regular
grid, resulting in the most basic discrete representation of a
volume model. The term ‘‘voxel’’ (volume element) is
believed to be coined in association with spatial-occupancy
enumeration, where it refers to such a cellular primitive.
Algorithms have been developed for obtaining binary voxel
representations for a range of objects, including lines,
circles, curves, polygons, polyhedra, quadric objects, impli-
cit solids, and constructive solid geometry.

A critical consideration in binary voxelization is to
ensure that the geometrical connectivity between voxels
in the voxelized model reflects with the continuity of the
original surface model, and the two models feature the
same topology. The geometrical and topological properties
of such voxelized models are part of the studies of discrete
geometry and topology, which are often referred to as
digital geometry and topology in the context of computer
graphics and image processing.

Multivalued Voxelization. With the limited resolution of
a volume buffer, binary voxelization often results in dis-
crete volume objects that exhibit noticeable object space
aliasing. Similar to anti-aliasing in image processing, one
effective approach for combating the object space aliasing is
to increase the depth of voxel values from the binary
domain to the integer or real domain. However, unlike
anti-aliasing in the image space that focuses largely on
an optical illusion of a smooth object boundary, the main
objective of anti-aliasing in the object space is to obtain a
better approximation of a continuous object, and to facil-
itate more accurate sampling during volume rendering.
One approach is to use the value at each voxel to encode
the intersected area (or volume) between the corresponding
cellular primitive and the original surface model (or sur-
face-bounded solid model). Another approach is to apply
smoothing convolution filters to a binary volume represen-
tation by treating the value at each voxel represents the
signal level at a point in space. The most popular
multivalued volume representation for approximating a
surface model is the distance field model.

Distance Field. A distance field(3) DX(p) is a scalar field
that defines the closest distance from every point p in 3-D
Euclidean space E to a given point set X. Typically X is
specified as a set of all points on a continuous surface, or
inside a surface-bounded solid, although conceptually X can
also be a discontinuous point set. For a closed surface S that
separates E to two disjoint subdomains, X and E–X, where X

contains all points inside or on S, a signed distance field
DS(p) for S associates a sign to the distance at each point p to
indicate whether p belongs to X, conventionally positive for
p =2X, and negative for p2X. Hence, the process of render-
ing S in surface graphics is transformed to that of rendering
the iso-surface DS(p)¼ 0 in volume graphics.

Like other volume models, a distance field can be repre-
sented by a spatially sampled volume dataset, mostly in the
form of an isotropic regular grid. Such a dataset is custo-

marily referred to as a distance volume (e.g., the chess
pieces in Fig. 2) . Although a distance volume dataset
may be obtained by sampling every voxel pi within a
bounding volume DðX�D� EÞ against the specification
of S, this approach can often be computationally costly,
when it is not straightforward to identify the closest point
x2X for an arbitrarily given voxel pi 2D. A number of
methods have been proposed for accelerating the identifi-
cation of the closest point or a small region that contain the
closest point, typically by spatially partitioning D based on
the primitives of S (e.g., triangles in a triangular mesh) or in
relation to the parameter space of S (e.g., in the case of
many parametric surfaces). These methods facilitate an
efficient search for the closest point by exploiting the pre-
computed correlation between the subdivisions of D and the
components or parameters of S, as well as the spatial
coherence within the subdivisions of D.

An alternative approach to the direct sampling of every
voxel in D is to approximate the distance computation for
most voxels using distance transform. For many types of
surface models, it is relatively easy to determine their
spatial occupancy in D, for instance, using a binary vox-
elization method. Hence a distance volume can be initia-
lized as 0 for occupied voxels and1 for unoccupied voxels. It
is often desirable to improve this initial distance volume to
further classify the occupied voxels, and sometimes addi-
tional voxels in their close neighborhood, with more accu-
rate distance calculation. The finite distances calculated
are then propagated to the entire volume by systematically
evaluating all voxels with an initial distance of1. For each
of such voxels, pi, its distance to S is estimated based on
the known distances of the neighboring voxels. Distance

Figure 2. This scene contains over 30 volume objects. The wine
glass is a volume object constructed by applying a rotational
sweeping to an image (for details, see A. S. Winter and M. Chen,
‘‘Image-swept volumes,’’ Computer Graphics Forum, 21(3):441–
456, 460, 2002). The chess pieces are distance field models vox-
elized by M. W. Jones (for details, see M. W. Jones, ‘‘The production
of volume data from triangular meshes using voxelisation,’’ Com-
puter Graphics Forum, 15(5), 311–318, 1996). The scene was
constructed and rendered by A. S. Winter.

VOLUME GRAPHICS AND VOLUME VISUALIZATION 5



transform is normally an iterative process, where a voxel
may be evaluated more than once, and the distance volume
records only the smallest distance estimated at each voxel.

VOLUME RENDERING

Volume rendering is a computational process for synthesiz-
ing 2-D images from volume models. Nowadays the term
‘‘volume rendering’’ usually implies direct volume render-
ing, in which the rendering algorithm processes a volume
model directly without the need for extracting an inter-
mediate surface model. As mentioned, a generalized spe-
cification of a volume model is a set of scalar fields,
F1ðpÞ; F2ðpÞ; . . . ; FkðpÞ; which define the geometrical
and physical attributes of every point p in 3-D space. An
ideal volume model would assemble all such attributes for
specifying how the model, at each point p in its spatial
domain D, would interact with lights coming from all
directions. An ultimate volume rendering process would
combine all lights that arrive at each pixel to be rendered,
taking into account their traversal paths through, and
interaction with, the volume model. However, this is com-
putationally intractable, and often, for example in volume
visualization, not necessary. In practice, a volume render-
ing algorithm is confined to evaluating only a specific set of
attributes of a volume model, a limited number of light
paths, and certain types of interaction between the lights
and the volume model.

In volume visualization, a volume data representation
often does not contain the geometrical and physical attri-
butes required by a volume rendering algorithm. It is
therefore necessary to map the values of the known scalar
fields in the data representations to the required attributes.
Such a mapping function is referred to as a transfer func-
tion. Here we assume that all necessary attributes are
available to a volume rendering algorithm. Algorithms
for direct volume rendering fall into two main categories,
namely image-order methods and object-order (or volume-
order) methods, which indicate whether a rendering process
is executed according to the order of elements of an image or
those of a volume representation.

Volume Rendering Integrals

Given a path U along which a light ray passes through a
volumetric medium, the light transport between the two
endpoints of this path involves a Riemann integral of a
function J over the position variable u2 ½a; b� on the path.
This function J defines the interaction between light and
material. Such an integral is called a volume rendering
integral (4,5). For computationally efficiency, many com-
monly used volume rendering algorithms are confined to

evaluate only those paths in a straight line, although it is
not necessary for a light ray to follow a straight line. Some of
the most commonly used volume rendering integrals are
given below.

Emission-Only Integral. This is perhaps the simplest
volume rendering integral, which presupposes that the
volume model concerned is fully transparent and every
point in the object domain D may potentially emit some
light uniformly in all directions. Hence the volume model
can be represented by a scalar field Eðp; lÞ, which specifies
the radiative power emitted at every point p2D in the form
of a spectral power distribution (SPD), where l is the
wavelength within the radiation band concerned. It is
common to limit this range to the visible spectrum
l2 ½380 nm; 770 nm�, or often a narrower range,
l2 ½400 nm; 700 nm�, to which human eyes are more sensi-
tive. We can also approximate the light using other color
representations, such as the RGB color representation,
yielding a volume model with three scalar fields, R(p),
G(p), and B(p). To maintain the generality, we do not
draw explicit distinction between different color represen-
tations in the following discussions. For example, we use
E(p) as an abstraction for both the spectral and the RGB
representations of emitted light.

Because of the assumption of a fully transparent volu-
metric medium, the light emitted by every point along the
light ray will reach the end of the ray. This results in an
accumulated light intensity I, which can be expressed by a
simple volume rendering integral as shown in Table 1. This
integral offers a reasonably accurate approximation of a
class of volumetric display hardware, namely emissive dis-
plays, although the absence of absorption specification
restricts its deployment in volume graphics and visualiza-
tion.

Absorption-Only Integral. This integral is concerned
with a translucent volumetric medium with no internal
light emitting source. The volume model features essen-
tially only an absorptivity field A(p). In physics, the absorp-
tivity of a homogeneous or infinitesimal volume is normally
specified in a spectral representation. However, in volume
graphics and visualization, it is commonly approximated by
a single scalar value that defines a uniform absorptivity
across the visible color spectrum. For a light ray passing
through a homogeneous volume with a constant absorptiv-
ity a, the light intensity of the ray decreases exponentially
with the path length Du. Let L and I be the intensity of the
light entering and leaving the volume, respectively. We
have I ¼ L � e�a�Du, where a�Du is also referred to as internal
optical density. This is known as Lambert’s or Bouguer’s
law. For a volume model with inhomogeneous absorptivity

Table 1. Summary of Commonly Used Volume Rendering Integrals

Name Attribute Field Volume Rendering Integral

Emission-only Emissive Intensity E(p) I ¼
R b

a EðuÞdu

Absorption-only Absorptivity A(p) I ¼ L � e�
R b

a
AðuÞdu

or ln L� ln I ¼
R b

a AðuÞdu

Absorption and emission Emissive Intensity E(p), Absorptivity A(p) I ¼
R b

a EðuÞ � e�
R b

u
AðtÞdt

du

6 VOLUME GRAPHICS AND VOLUME VISUALIZATION



defined by a scalar field A(p), the relationship between L
and I involves the second volume rendering integral in
Table 1. The approximation results from the assumption
that the volume model has a constant refractive index,
allowing the omission of the partial backreflection in the
integral.

Involumevisualization,thisparticularintegralisusually
used in conjunction with a directional light source placed at
thebackofavolumemodel.Thelight,ofaninitial intensityL,
transmits through the volume model, registering the
remainingintensityonthesynthesizedimage,whichusually
bears a strong resemblance to an inversed x-ray image.

Absorption and Emission Integral. This inevitably leads to
the consideration of a volume model with both emission and
absorption attributes. Considering an infinitesimal path
length du, the emission at each point u along the path of the
light is attenuated by the absorption taken place between u
and the end of the path. This results in the third volume
integral in Table 1. This integral can be used to simulate
some imaging devices, such as in nuclear medicine imaging.
However, most objects in the real world do not emit light,
and uniform emission in all directions cannot convey the
shape of an object effectively. This leads to the introduction
of the following popular volume rendering integral.

Approximating Volume Rendering Integrals

The above-mentioned volume rendering integrals are
usually approximated by a Riemann sum for the corre-
sponding function J and a partition defined by a series
of samples fu1; u2; . . . ; ung along a path U. In volume
visualization, it is also common to introduce simplifications
(e.g., in maximum intensity evaluation) and embellish-
ments (e.g., replacing emissive intensity with rendered
color), in order to facilitate the desired system performance
and user understanding.

Opacity and Color Integral. This volume rendering inte-
gral is based on the absorption and emission integral, but it
replaces the emission specification E(p) with a computed
reflection specification C(p). The computation of C(p)
usually involves one or more external point light sources
and considers both the light reflection from and transmis-
sion through a volume medium. It makes a number of
computationally useful, but conceptually crude, assump-
tions. For instance, it normally assumes that an external
light can reach any point inside the object domain D with-
out considering the absorption along the light path (i.e., the
soft shadow effect). It does not take any secondary lighting
into account. It can accommodate refractive transmission,
but it usually confines to only specular transmission.
Despite its relatively crude assumptions, the introduction
of reflection enables more effective depiction of the shape of
level-surfaces within a volume model, especially through
some familiar visual effects such as the combination of
diffuse and specular reflection.

The absorption calculation within the light ray toward
the viewer is also simplified by first approximating the
inner integral with a corresponding Riemann sum and
by sampling discretely between u and b with an interval

Dt, resulting in
Qtm¼b

t1¼uþDt e�Aðt jÞDt. We then substitute each
exponential function in the product with the first two
terms of its Maclaurin’s expansion, resulting inQtm¼b

t1¼uþDtð1� Aðt jÞDtÞ, where Aðt jÞDt and 1� Aðt jÞDt are
commonly referred to as the opacity and transparency.
Finally, we approximate the whole integral with a Riemann
sum of a partition with a series of samples fu1; u2; . . . ; ung
along U. This gives an approximated piecewise integral as

I	
X

n
i¼1CðuiÞ �

Y
n
j¼iþ1ð1� Aðu jÞ � DuÞ � Du

Here we consider an uncomplicated case, where U is a
straight line and Dt ¼ Du ¼ ui � ui�1 is a constant. We
also explicitly make

Qk
kð1� AðukÞDuÞ ¼ 1 because Du is 0

in this case.
This volume rendering integral is normally used in

conjunction with a volume model that features an opacity
field aðpÞ and an object color field c(p). The former is a
colloquial reference to the specification of absorptivity and
is usually used to attenuate c(p) by assuming that all
absorbed energy is transformed to out-scattering energy
without change in wavelength. Thus, aðpÞ�c(p) corre-
sponds to the reflectance of a material independent of
any light source, and the result of the product is colloquially
referred to as an opacity-weighted color. At an arbitrary
point p2D, we determines the reflection of a level-surface
at p in relation to the external light sources using an
illumination model, such as the Phong and Blinn–Phong
models. The computed reflection intensity gives the speci-
fication of C(p), which is colloquially referred to as the
rendered color at p.

Maximum Intensity Evaluation. Given a scalar field B(p)
specifying the brightness at every point p2D, often a
volume rendering algorithm is only interested in the
maximum brightness value along a light path U. B(p)
can be computed from other color specifications, such as
emission E(p) and reflected color C(p). More often it
relates directly to the grayscale intensity specification
of a captured volume dataset, for instance, in medical
imaging. To obtain this maximum value, one has to invoke
a search, instead of an integration, along U. Although
strictly this is not an integral and has little basis in
physics, it offers a simpler and faster alternative to the
above-mentioned volume rendering integrals. We thereby
include this concept here as a ‘‘pseudo-integral’’ because it
is applicable to all volume rendering algorithms discussed
hereinafter. A volume rendering algorithm based on max-
imum intensity evaluation is customarily referred to as
maximum intensity projection (MIP), although it does not
necessarily imply the use of an object-order algorithm
based on voxel projection.

Transfer Functions

In volume visualization, the physical attributes required by
a volume rendering integral, such as absorption and emis-
sion, are often not present in a volume model, where
the given scalar fields, F1ðpÞ; F2ðpÞ; . . . ; FkðpÞ, usually
represent some captured properties (e.g., sonic reflection,

VOLUME GRAPHICS AND VOLUME VISUALIZATION 7



temperature) that are not relevant to the integral. Hence it
is necessary to create the required scalar fields, such as A(p)
and E(p) in the case of the absorption and emission integral,
by mapping from the given scalar fields, F1ðpÞ; F2ðpÞ; . . . ;
FkðpÞ. Such a mapping function is referred to as a transfer
function. Simple transfer functions typically define a map-
ping from every possible value in an input scalar field to an
appropriate value that is meaningful to the output scalar
field. For example, for visualizing a computed tomography
dataset, one can create scalar fields for color and opacity
from a given scalar field for x-ray attenuation, where
different attenuation levels encode different materials
(e.g., bones and soft tissues). It is also common to implement
such a transfer function using a look-up table.

However, designing an effective transfer function is
usually not a trivial task. In some more sophisticated
methods, regional properties (e.g., gradient vectors) are
used in the design of a transfer function to highlight specific
visual features (e.g., material boundary) in the synthesized
imagery. Many recent developments in this area have been
focused on automatic and semi-automatic construction of
transfer functions guided by high-level information, such
as a histogram or a contour tree, about a given dataset.

Ray Casting

Ray casting is the principal algorithm for direct volume
rendering (6), and it realizes a volume rendering integral by

approximating it with a corresponding Riemann sum. It is a
nonrecursive variant of the ray tracing method commonly
used in computer graphics and is a typical example of
image-order methods. The algorithm can be used in con-
junction with continuous volume models and sampled
volume representations as well as some high-level repre-
sentations such as volume scene graphs. In principle, it can
easily be extended to realize recursive ray tracing and
photon ray tracing. Here we consider only a simple case
of casting a single eye-ray to realize a volume rendering
integral (as illustrated in Fig. 3).

To synthesize an image, the algorithm casts an imagin-
ary ray from a viewing position (i.e., center of projection),
through each pixel in the image (i.e., image plane), into the
scene containing volume models. Let U be a section of a light
path passing through a volume model. The algorithm takes
samples of the relevant scalar fields at a series of discrete
locations, fu1; u2; . . . ; ung, along U. As an example, we use
the popular opacity and color integral in the form of
I	

Pn
i¼1 CðuiÞ �

Q j¼i
1 ð1� aðujÞ � DuÞ � Du for computing

the light intensity at u1. Note the changes of upper and
lower limits of both the summation and the product. This is
because we take samples in the reverse direction of the light
from a viewing position. One implementation of this algo-
rithm for a single ray is described by the iterative pseudo-
code in Table 2. This is normally referred to as front-to-back
ray casting. It facilitates so-called early ray termination,
allowing the ray casting to complete whenever the ray has
accumulated a sufficient amount of opacity.

An alternative implementation, referred to as back-to-
front ray casting, is to accumulate the intensity from un to
u1, in the same way as the light travels. As shown in Table 2,
this provides relatively simpler operations in the iteration
without the need for accumulating the opacity, but it loses
the advantage of early ray termination. When C(ui) is
derived from aðuiÞ � cðuiÞ, the main operation for computing
the compositing color in each iteration is essentially the so-
called alpha blending operation frequently used for com-
bining multiple layers of images. As the alpha blending
operation is widely supported by graphics hardware pri-
marily for texture mapping, the back-to-front approach
provides the basis for a particular class of accelerated
volume rendering algorithms, namely texture-based
volume rendering.

Voxel Projection

This class of algorithms is designed to render volume
models in spatially sampled data representations. In con-
trast with the image-order methods that synthesize an

Table 2. Two Alternative Implementations of Ray Casting with the Opacity and Color Integral

Step Accumulated Intensity Accumulated Opacity

front-to-back ray casting
1. Initialization I0 ¼ null O0 ¼ 0
2. Iteration, i ¼ 1; 2; . . . ; n Ii ¼ Ii�1 þ CðuiÞ � ð1�Oi�1Þ � Du Oi ¼ Oi�1 þ aðuiÞ � ð1�Oi�1Þ � Du
3. Early ray termination if Oi�ð1� eÞ then In ¼ Ii, On ¼ Oi, the ray casting completes else continue from step 2
4. Background compositing I ¼ In þ Ibackground � ð1�OnÞ

back-to-front ray casting

1. Initialization Inþ1 ¼ Ibackground

2. Iteration, i ¼ n; . . . ; 2; 1 Ii ¼ Iiþ1 � ð1� aðuiÞ � DuÞ þ CðuiÞ � Du

Figure 3. This is an illustration of the ray casting method for
direct volume rendering. The scene is comprised of several volume
objects, including a CT head dataset (University of North Carolina,
Chapel Hill), and a pre-rendered image (a 2D regular grid) contain-
ing a visualization of the CT head. Both the scene and the visua-
lization image were themselves rendered using ray casting with
different transfer functions. The scene was constructed and ren-
dered by M. Chen.

8 VOLUME GRAPHICS AND VOLUME VISUALIZATION



image pixel by pixel, object-order methods process a volu-
metric dataset voxel by voxel and project those displayable
voxels onto one or more pixels in the image plane. The
voxels in a volume are normally traversed in either a back-
to-front or a front-to-back manner in relation to the dis-
tances from voxels to the image plane.

Primitive Projection. Most of the early work in this cate-
gory involves the projection of an opaque 2-D primitive
approximating the projected image of a voxel or parts of its
cellular representation, such as a point or a quadrilateral,
onto the image plane. Coloring or shading can be applied to
each primitive. When several voxels are projected onto the
same pixel, the back-to-front approach enables the pixel
value of a later voxel (i.e., a voxel in the front) to overwrite
that of an earlier voxel (i.e., a voxel at the back). The front-
to-back approach often facilitates less drawing operations
but requires the support of a z-buffer.

Splatting. As each displayable voxel does not contribute
equally to all pixels within its projection on the image plane,
visualization generated by projecting opaque primitives
often lacks in accuracy and realism. The most effective
solution to this problem is the splatting algorithm (7).
For each voxel, the algorithm evaluates a 3-D function
that defines the potential contribution of the voxel to every
point in E. Hence, if represents a reconstruction of the
original signal available to the data acquisition process.
Given a voxel at pi, the general form of this 3-D function is a
radial basis function v, which is referred to as a volume
reconstruction kernel or interpolation kernel. Note that the
influence of pi often does not have a uniform distribution
solely based on the distance to pi. Several factors that
commonly affect the specification of v.

In perspective projection, for example, we may moderate
the influence of pi in the directions perpendicular to the
viewing direction according to the distance from pi to the
view plane, facilitating sharp definition for close-by voxels,
and anti-aliasing for distant voxels. With some data repre-
sentations, such as an anisotropic 3-D grid, the voxel posi-
tions that are fed into a volume rendering pipeline are
usually specified in the grid coordinates, representing a
deformed 3-D Euclidean space. It is thereby necessary to
use a nonuniform radial basis function to correct the dis-
tortion (see also VOLUME MODELS AND DATA
REPRESENTATIONS).

Given a voxel pi and its reconstruction kernel v, we can
synthesize an image ofv that represents the total amount of
contribution, which will be projected from pi onto the image
plane. For each pixel h in this image, the light ray Uh, which
passes through v and arrives at h, records the contribution
of pi as VðhÞ ¼

R ub

ua
vðu; piÞdu, where ua and ub are the two

endpoints of the intersection between Uh and the bounding
volume of v. This image of v is called a footprint, and a
reconstruction kernel with a finite radius of influence has a
finite footprint. Let pi be associated with an intensity value
vi. The projection of this voxel on the image plane is thereby
a ‘‘splat’’ that can be computed from the footprint as
vi �VðhÞ, for all h in the footprint. One of the central tech-
nical issues of the splatting algorithm is the pre-computa-
tion of a footprint table, independent from any particular

voxels, in order to reduce the cost of computing integration
during the rendering. Another is the combination of differ-
ent splats in the image plane. For an order-independent
integral, such as the emission-only or absorption-only inte-
gral, it is not necessary to process the voxels in any parti-
cular order. However, for an order-dependent integral, such
as the combined absorption and emission integral or the
opacity and color integral, we need to process the
projected splats in an order that is consistent within the
ordering of the corresponding voxels. The compositing of
consecutive splats in relation to a particular pixel is similar
to the compositing of consecutive samples along a ray in ray
casting.

Illumination

For the opacity and color integral, a commonly adopted
approach is to involve one or more light sources in the
computation of C(p). In theory, the illumination at p
depends on not only the optical properties sampled at p
and the intensity of each light source, but also indirect light
reflected toward p from another part of the medium (i.e.,
scattering) as well as the absorptivity of the medium that
determines how much light can eventually arrive at p (i.e.,
shadows).Suchanilluminationmodel isreferredtoasglobal
illumination. To avoid costly computation with a global
illumination model, it is common to adopt a local illumina-
tion model where C(p) is estimated based only on the optical
properties sampled at p and the intensity of each light
source. In many applications, a local illumination model is
normally adequate for rendering a single iso-surface within
a volume. When handling multiple iso-surfaces, or amor-
phousregions, one needs tobeawareof the limitationof such
a model and the potential perceptual discrepancy due to the
omission of shadows and indirect lighting.

Note that in traditional computer graphics, the terms
‘‘global’’ and ‘‘local’’ can sometimes lead to ambiguous inter-
pretation in volume graphics. Some commonly used volume
rendering integrals can produce some typical effects
usually associated with global illumination only. For exam-
ple, the absorption-only integral is in effect a shadow algo-
rithm for back-lit objects. The opacity and color integral, in
conjunction with back-to-front ray casting, takes into
account indirect light reflected toward a sample from all
previously sampled points on the ray. Frequently, the two
terms are considered to be the two extremes of a scale, and
all illumination models fall somewhere on the scale in a
subjective manner. For consistency, in volume graphics, we
use the term ‘‘global illumination’’ to imply an illumination
model that requires the rendering algorithm to gather
indirect light dynamically during rendering at each point
to be illuminated, and ‘‘local illumination’’ for one that does
not require the gathering of indirect light dynamically, but
can use pre-stored luminance at each point due to indirect
light. Hence, a model that involves a precomputed shadow
volume is a local illumination model (or more precisely
with precomputed global illumination data), whereas a
model that computes soft shadows by tracing a ray through
volumetric medium toward a light source during rendering
is a global illumination model. Hence, the challenge is to
use a local illumination model to produce as much global

VOLUME GRAPHICS AND VOLUME VISUALIZATION 9



illumination effects as possible, with a practicable space
requirement and sufficient scene dynamics.

Classic Illumination Models. Given a light source L, one
can estimate the reflection at a sampling point locally by
using one of the empirical or physically based illumination
models designed for surface geometry, such as the Phong,
Phong–Blinn, and Cook–Torrance models. When such a
model is used in volume rendering, it is assumed that
each sampling position, p, is associated with a level-surface
or microfacet. This assumption allows us to compute the
surface normal at p, which is required by almost all surface-
based illumination models. In volume models, surface geo-
metry is normally not explicitly defined, and in many situa-
tions, models do not even assume the existence of a surface.
Hence, the computation of surface normals is usually sub-
stituted by that of gradient vectors. Although for some
parametric or procedurally defined volume models, it is
possible to derive gradient vectors analytically, in most
applications, especially where discrete volumetric models
are used, gradient vectors are estimated, for example, using
the finite differences method for rectangular grids, and 4-D
linear regression for both regular and irregular grids. The
commonly used central differences method is a reduced form
of finite differences based on the first two terms of the Taylor
series. For a given point p ¼ ðx; y; zÞ, and a small volume
domain defined by ½�dx; dx� � ½�dy; dy�� ½�dz; dz�, the gra-
dient at p can be obtained from a scalar field F as

�
Fðxþ dx; y; zÞ � Fðx� dx; y; zÞ

2dx
;

Fðx; yþ dy; zÞ � Fðx; y� dy; zÞ
2dy

;

Fðx; y; zþ dzÞ � Fðx; y; z� dzÞ
2dz

�

Many other gradient estimation methods exist, includ-
ing schemes that involve more or less neighboring samples
and schemes where the discrete volume models are first
convolved using a high-order interpolation function. Gra-
dients are computed as the first derivative of the interpola-
tion function.

Measured and Precomputed BRDFs. The light reflected
from a point on a surface can be described by a bidirectional
reflection distribution function (BRDF). Hence, it is feasible
to obtain a BRDF in sampled form by either measurement or
computer simulation(8). The measurements of a BRDF are
usually made using a goniophotometer in a large number of
directions, in terms of polar and azimuth angles, uniformly
distributed on a hemisphere about a source. In computer
graphics, it is also common to precompute discrete samples
of a BRDF on a hemisphere surrounding a surface element.
Given n sampling points on a hemisphere, and n possible
incident directions of light, a BRDF can be represented byan
n� n matrix. Given an arbitrary incident light vector, and
an arbitrary viewing vector, one can determine the
local luminance along the viewing vector by performing
two look-up operations and interpolating up to 16 samples.

One major advantage of using measured or precomputed
BRDFs is that the rendering algorithm does not require a
complex illumination model. One can use measured data to
compensate for the lack of an appropriate illumination
model that accounts for a range of physical attributes or
use precomputed data for a complicated and computation-
ally intensive illumination model. Similar to a BRDF, the
light transmitted at a point on a surface can be described
by a bidirectional transmittance distribution function
(BTDF). The combination of BRDF and BTDF provides a
discrete specification of a phase function.

Phase Functions. A phase function, Pðp; c; fÞ, defines a
probability distribution of scattering at point p in direction
c with respect to the direction f of the incident light. The
fundamental difference between such an illumination
model and those mentioned above is that it is entirely
volumetric and does not assume the existence of a surface
or microfacet at every visible point in space. Although
phase functions are largely used in the context of global
illumination, they can be used for local illumination in a
perhaps rather simplified manner. Despite the omission of
the multiple scattering in local illumination, phase func-
tions allow a volumetric point to be lit by light from any
direction. On the contrary, classic illumination models and
BRDFs consider only light in front of the assumed surface
or microfacet defined at the point concerned.

Multiple Scattering. The most referenced global illumi-
nation model is Kajiya’s rendering equation, which defines
the light transport from point p to point q as Iðq; pÞ ¼
vðq; pÞ � ðEðq; pÞ þ

R
x2SS

Rðq; p; xÞIðp; xÞdxÞ, where v
defines the visibility between p and q, E specifies the light
emitted from p in the direction toward q, and R is a
bidirectional reflectivity function defining a probability
distribution of scattering in the direction from p to q for
energy arriving at p from x. The integral is over SS, which is
the set of all points on all surfaces in the scene, which
specifies the indirect light reflected from p toward q.

We can modify this rendering equation for global illu-
mination in volume graphics. Since any volume rendering
integral featuring absorption would intrinsically take care
of the visibility calculation betweenp p and q, we can
remove v. We also need to replace SS with a set of all
volumetric points in the scene. Since we can cast a ray
from p in every direction f and use an appropriate volume
rendering integral to gather all indirect light from direction
c, we can in fact substitute SS with the set of all directions F
from a unit sphere towards its center p. This results in
Max’s rendering equation (5) as

Cðp; CÞ ¼ Eðp; CÞ þ
Z

f2F
bðpÞPðp; C; fÞIðp;fÞdf

where C is the light transport from p toward direction C, E
is a volumetric emission function that specifies the light
emitted from p in direction C,bdefines the probability light
being scattered instead of being absorbed (which is called
albedo) at p, P is a phase function as mentioned above, and I
is the light transport arriving at p from direction f. As we
consider every point in space can potentially emit light, we

10 VOLUME GRAPHICS AND VOLUME VISUALIZATION



can use the absorption and emission integral to compute I.
For each ray from p in direction �f, we have Iðp; fÞ ¼R1

0 Cðp� ufÞ � e�
R 0

I
Aðp�tfÞdtdu. Let q be a pixel on the

image plane. We can thus compute its intensity as
I ¼

R
c2C Iðq; cÞdc, where C is the set of all directions

from a unit hemisphere in front of the image plane toward
its center q.

Max’s rendering equation represents a complete solu-
tion for global illumination in volume graphics and visua-
lization. However, solving this equation is not a trivial task.
Much effort has been made to approximate the equation
with various assumptions and simplifications.

One-Dimensional Rediosity

An optical model proposed by Kubelka and Munk considers
both absorption and scattering but only in the directions of
an incident flux and a reflected flux. It assumes that a
volumetric colorant layer can be divided into a large num-
ber of homogeneous elementary layers. The optical proper-
ties of the volume thus depend on one direction. The two
fluxes Ii and Ir flow in opposite directions. Given a volume
model with two scalar fields, K(p) and S(p), representing
the absorptivity and scattering coefficients, respectively,
we can derive the reflectance R and transmittance T of a
thin layer around p as

R ¼ sinhðb � SðpÞ � DuÞ
a � sinhðb � SðpÞ � DuÞ þ b � coshðb � SðpÞ � DuÞ ;

T ¼ b

a � sinhðb � SðpÞ � DuÞ þ b � coshðb � SðpÞ � DuÞ

where Du is the thickness of the layer, a ¼ 1þ KðpÞ=SðpÞ,
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p

. Given the reflectance and transmittance
of a series of consecutive layers, (R1, T1), (R2, T2), . . ., the
infinite process of interaction among these layers can be
realized using a front-to-back ray casting algorithm (9),
as shown in Table 3. Such as infinite process of interaction
can be considered as one-dimensional radiosity within
the two fluxes, which is a typical effect of global illumina-
tion. As the rendering algorithm shown in Table 3 does
not require gathering indirect light in addition to the
computation of the volume rendering integral for reflec-
tance and transmittance accumulation, it can be classi-
fied as a local illumination model based on the previous
definition.

ADVANCED TOPICS

Research in volume visualization and volume graphics
started in the late 1970s and early 1980s. Since then,
significant advances have been made in the following areas.

Volume Modeling

Volume modeling is a process for constructing models of 3-D
objects and phenomena using volume data representations,
which can be specified procedurally or using sampled data-
sets. The ultimate aim is to provide users with efficient and
effective tools for building complex scenes with such volu-
metric models. Technical advances in this area include
constructive modeling of complex objects and scenes; inter-
active software systems for sculpting volume objects
(see Figs. 1 and 2); data structures for space partitioning,
multiresolution representation and data compression; and
algorithms for antialiasing in object space.

Volumetric techniques are essential to the modeling and
synthesizing of atmospheric and gaseous effects, such as
clouds, smoke, and fire. Volumetric textures, including solid
textures and hyper-textures, have provided vital support to
achieve photo-realism in traditional surface graphics. In
recent years, volumetric textures also played a central role
in modeling and animating realistic hair.

High Performance Hardware and Software Systems

Parallel and distributed computation provided volume gra-
phics and visualization with an indispensable means to
achieve real-time performance until recently. Nowadays
most volume rendering algorithms can be implemented on
consumer PC hardware (10). However, with the increasing
size of volume datasets, infrastructure-based computation
will continue to play an important role in many applications
of volume graphics and visualization. The technical issues
to be considered in infrastructure-based volume rendering
include data partitioning and distribution, external mem-
ory management, task assignment and load balancing,
image composition, collaborative visualization, and auto-
nomic infrastructure management.

Volume Manipulation, Deformation and Animation

Volume manipulation refers to the application of elemen-
tary processing operations to volume models usually in the
form of sampled datasets. Any manipulation of a volume
model will likely lead to changes of sampled values in the

Table 3. The Implementation of Ray Casting Based on the Kubelka and Munk Theory.

Step Accumulated Reflectance Accumulated Transmittance

1. Initialization R0 ¼ null T0 ¼ full

2. Iteration, i ¼ 1; 2; . . . ; n Ri ¼ Ri�1 þ
T2

i�1 �Ri

1� Ri�1 �Ri
Ti ¼

Ti�1 � Ti

1� Ri�1 �Ri

3. Early ray termination if energyðTiÞ � e then R ¼ Ri; T ¼ Ti the ray casting completes
else continue from step 2

4. Add opaque background or no background Rwith�bg ¼ R þ T2 � Rbackground

1� R �Rbackground
No background

5. Post-illumination I ¼ L front�light � Rwith�bg I ¼ L front�light � R þ Lback�light � T

VOLUME GRAPHICS AND VOLUME VISUALIZATION 11



datasets and may thereby result in alterations to geome-
trical, topological, and semantic attributes of the object(s)
defined by the model. In general, techniques for manipulat-
ing volume models have reached a relatively mature status,
with many well-studied technical problems and solutions,
including surface extraction, skeletonization, filtering,
volume morphing, segmentation, and registration (11).

Volume deformation refers to the intended change of
geometric shape of a volume object under the control of
some external influence such as a force. Applications of
deformation techniques include computer animation,
object modeling, computer-aided illustration (see Fig. 4),
and surgical simulation. Techniques for volume deforma-
tion fall into two main categories, empirical deformable
models and physically based deformation models. Recent
advances in this area include hardware-assisted real-time
deformation and mesh-free deformation techniques.

Volume animation refers to the simulation of motion and
deformation of digital characters represented by volume
models. Although the overall effort made in this area is so
far limited, there are several major breakthroughs. Two
types of control techniques, namely block-based and skele-
ton-based, have been used in volume animation.

Volume Data Capture and Reconstruction

Digitization is a family of technologies for acquiring volu-
metric models of real-life objects or phenomena. These tech-
nologiesarebasedonmeasuringvariousphysicalproperties,
resulting in a wide range of modalities, including computed
tomography, magnetic resonance imaging, 3-D ultrasono-
graphy, and positron emission tomography in medical ima-
ging; seismic measurements in geosciences; confocal
microscopy in biology; and electron microscopy in chemistry.

Although some modalities involve a volumetric sampling
process, which takes a collection of samples at discrete 3-D
positions within an object domain, many can only take
samples outside the object domain, hence require a recon-
struction process to build volumetric models from the cap-
tured external samples. For example, in computed
tomography, techniques have been developed for recon-
structing an ‘‘intensity’’ volume from a set of x-ray images.
Theseincludefilteredback-projection fortransmissiontomo-
graphy and algebraic reconstruction technique and maxi-
mum-likelihood expectation maximization for emission
tomography.

BIBLIOGRAPHY

1. A. Kaufman, D. Cohen, and R. Yagel, Volume graphics, IEEE
Comput., 26(7): 51–64, 1993.

2. W. E. Lorensen and H. E. Cline, Marching cubes: a high
resolution 3-D surface construction algorithm, ACM SIG-
GRAPH Comput. Graph., 21(4): 163–169, 1987.

3. M. W. Jones, J. A. Bækrentzen, and Milos Sramek, 3-D distance
fields: a survey of techniques and applications, IEEE Trans.
Visualization Comput. Graph., 12(4): 581–599, 2006.

4. J. T. Kajiya and B. P. von Herzen, Ray tracing volumedensities,
ACM SIGGRAPH Comput. Graph., 18(3), 165–174, 1984.

5. N. Max, Optical models for direct volume rendering. IEEE
Trans. Vis. Comput. Graph., 1(2): 99–108, 1995.

6. M. Levoy, Volume rendering: display of surfaces from
volume data, IEEE Comput. Graph. Applicat., 8(3): 29–37,
1988.

7. L. Westover, Footprint evaluation for volume rendering, ACM
SIGGRAPH Comput. Graph., 24(4): 367–376, 1990.

8. X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg.
A comprehensive physical model for light reflection, ACM
SIGGRAPH Comput. Graph., 25(4): 175–186, 1991.

9. A. Abdul-Rahman and M. Chen, Spectral volume rendering
based on the Kubelka-Munk theory, Comput. Graph. Forum,
24(3): 2005.

10. K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and
D. Weiskopf, Real-time Volume Graphics, Wellesley, MA:
A K Peters, 2006.

11. M. Chen, C. Correa, S. Islam, M. W. Jones, P.-Y. Shen, D.
Silver, S. J. Walton, and P. J. Willis. Manipulating, deforming
and animating sampled object representations. Comput.
Graph. Forum. 27(4): 824–852, 2007.

FURTHER READING

M. Chen, A. E. Kaufman, and R. Yagel (eds.), Volume Graphics.
New York: Springer, 2000.

K. Mueller and A. Kaufman (eds.), Proc. Volume Graphics.
New York: Springer, 2001.

I. Fujishiro, K. Mueller, and A. Kaufman (eds.), Proc. Volume
Graphics. Eurographics, 2003.

E. Gröller, I. Fujishiro, K. Mueller, and T. Ertl (eds.), Proc. Volume
Graphics. Eurographics, 2005.

T. Möller, R. Machiraju, M. Chen, and T. Ertl (eds.), Proc. Volume
Graphics. Eurographics, 2006.

Figure 4. Different deformation operations, such as opening, peeling, and slicing, can be performed on volume models in real time using
GPU-assisted techniques. These images were produced by C. Correa (for details, see C. Correa, D. Silver and M. Chen, ‘‘Feature aligned
volume manipulation for illustration and visualization,’’ IEEE Transactions on Visualization and Computer Graphics, 12(5):1069–1076,
2006). The volume objects are from Lawrence Berkeley Laboratory and University of Erlangen.

12 VOLUME GRAPHICS AND VOLUME VISUALIZATION



B. G. Blundell and A. J. Schwarz, The classification of volumetric
display systems: characteristics and predictability of the image
space, IEEE Trans. Vis. Comput. Graph., 12 (4): 581–599, 2006.

J. Blinn, Light reflection functions for simulationof clouds and dusty
surfaces, ACM SIGGRAPH Comput. Graph., 16 (3): 21–29, 1982.

M. Chen and J. V. Tucker, Constructive volume geometry, Comput.
Graph. Forum, 19 (5): 281–293, 2000.

J. T. Kajiya, The rendering equation, ACM SIGGRAPH Comput.
Graph., 20 (4), 143–150, 1984.

Appropriate articles published in various conferences and jour-
nals, including: Proceedings of ACM SIGGRAPH, 1976–present.

Proceedings of IEEE Visualization, 1990–present.

Proceedings of Eurographics/IEEE VGTC Data Visualization,
1998–present.

IEEE Transactions on Visualization and Computer Graphics.

ACM Transactions on Graphics.

Eurographics Computer Graphics Forum.

MIN CHEN

Swansea University
Swansea, Wales,

United Kingdom

VOLUME GRAPHICS AND VOLUME VISUALIZATION 13



W

WARPING AND MORPHING

OVERVIEW

Warping and morphing are the techniques of synthesizing a
novel graphical object by deforming given objects. Whereas
warping is a purely geometric transformation, morphing
(or metamorphosis) interpolates two or more graphical
objects. Given two images of different persons as shown
on the left and right in Fig. 1, an image morphing technique
generates the intermediate images between them, so that
the shape and appearance of the faces are transformed as if
one person evolves into the other. In this article, the state-
of-the-art techniques of morphing are introduced, and
warping techniques are discussed in the context of the
morphing techniques.

Consider the situation where an animator is given two
images Isrc and Idst, and must make the morphing anima-
tion between them. The first step of generating a morphing
sequence is determines feature correspondences between
the images. The correspondences are specified by geometric
primitives such as points, line segments, and/or mesh
nodes.

The sparse correspondences between images are then
converted into a mapping, which is referred to as a warping
function, that spatially relates all pixels in the images. The
warping function defines the smooth deformation of given
images in a common coordinate system. The warped images
are finally interpolated by a blending function into in-
between images. The feature specification typically
involves user interaction, but the rest of the process can
be automated.

Techniques of warping and morphing have been used in
both industry and academia. The application includes
visual effects in television and film production, fluid and
nonrigid body simulation, and visualization of time-series
data. The range of application has been extended into
various types of media formats used in computer graphics.
In the next section, the morphing techniques for two-
dimensional (2-D) images are first reviewed. The applica-
tions to volumes, three-dimensional (3-D) surface models,
and light fields are introduced in the final section.

WARPING AND MORPHING OF IMAGES

Smooth transition between given images can be achieved
through simple cross dissolving. The result is, visually poor,
however, due to double-imaging effects apparent in misa-
ligned regions. Morphing techniques generate a smooth
transformation from one image to another by using a warp-
ing process followed by a cross-dissolving process. In this
section, we explain several morphing algorithms, including
those based on mesh warping, field morphing, scattered
data interpolation, energy minimization, and free-form
deformations. Some techniques toward automatic morph-
ing are also reviewed. Readers should refer to the survey by

Wolberg (1) for the comprehensive review of morphing
techniques.

Mesh Warping

The technique of image warping was first developed by the
film industry (2). Figure 2 illustrates the two-pass mesh
warping algorithm. The top and bottom row are the warp-
ing processes of two different images, Isrc and Idst. In mesh
warping, we define a 2-D mesh structure in each of the
image coordinate systems. The mesh has the same topology
and defines the warping function between the images.
Image warping is then performed by deforming the grids
between the two. The degree of warping can be controlled by
a warping parameter t 2 [0,1] shown on a horizontal axis in
Fig. 2. A sequence of morphing images is generated by using
a linear blending function of two warped images with t as a
blending parameter.

The algorithm of mesh warping can be summarized into
three-step image processing in Algorithm 1. Some attempts
to extend this algorithm to nonlinear interpolation exist.
For instance, the Catmull–Rom spline interpolation for
mesh warping is demonstrated by Wolberg (1).

Field Morphing

One drawback to mesh warping is that a user has to specify
the feature points between images by a grid. Defining a grid
structure for given images is not a trivial task, and the result
of warping is affected by the mesh structure. Beier and Neely
(3) propose a field morphing technique that allows a user to
specify the correspondence between images by a sparse set of
line segments. A globally smooth warping function is gener-
ated according to the distance to each segment. Points and
curved lines can also be used for the primitives to define the
correspondence. The final warping function is a weighted
sum of the warping generated by all primitives. Figure 3
shows an example of field morphing.

Algorithm 1. Mesh Warping

for all t 2 [0, 1] do
Warp Isrc into Wsrc using t as a warping parameter
Warp Idst into Wdst using 1 – t as a warping parameter
Blend Wsrc and Wdst into Imorph using t as a blending parameter

end for

Scattered Data Interpolation

The most generic primitive for feature correspondence is a
point, because lines and curves can be point sampled. The
generic algorithm of image blending is then considered as
the interpolation between two 3-D points, (xsrc, ysrc, tsrc) and
(xdst, ydst, tdst), where a point (xsrc, ysrc) in an image Isrc is
warped with a warping parameter tsrc and a point (xdst, ydst)
in another image Idst is warped with tdst.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



This formulation is investigated by Ruprecht and Miller
(4). A framework using thin plate splines is developed by
Lee et al. (5). Hassanien and Nakajima (6) propose a
method of facial image metamorphosis that uses Navier
splines. Arad et al. (7) use radial basis functions for the
same application. Figure 4 shows the warping by radial
basis functions. The techniques based on scattered data
interpolation can generate a globally smooth warping from
a coarse set of point correspondences. The computational
cost is low, and the algorithm is generally more stable than
field morphing.

Bijective Warping

Field morphing and scattered data interpolation do not
guarantee one-to-one correspondences between two images
and, therefore, do not have any physical meaning in the
deformation. Lee et al. (8) proposed an energy minimization
method for deriving one-to-one warp functions. They
further extended their method and developed a more effec-
tive method (9) by combining an energy minimization
approach with a free-form deformation (FFD) method pro-
posed by Sederberg and Parry (10) in a multiresolution
structure (see Fig. 5). This method is inspired by the non-
rigid deformation in physics simulation, which enables
natural-looking deformation in a morphing sequence.

Automated Morphing

The most time-consuming part in a morphing process is
specifying correspondence between images. Suppose two
images are sufficiently similar; then the techniques of
image registration methods (11) can be used to generate
the correspondences. When the images are different views
of an object, the reconstruction of camera geometry gives us
geometrically valid correspondences (12). For nonrigid
objects, optical flow methods (13) and feature trackers
(14) can be used.

The methods mentioned above assume that two images
are captured under similar conditions and, therefore, that
only small displacements must be recovered. This assump-
tion, however, does not hold in general morphing applica-
tions where two images can be vastly different. Shinagawa
and Kunii (15) propose a method of finding correspondences
between images without using any constraints except
image intensity. Yamazaki et al. (16) propose a linear filter
bank to exploit the multilevel image structure.

Although automatic morphing can drastically reduce the
work for a user, user interaction is essential for defining
semantic correspondence or for remedying artifacts caused
by erroneous correspondences. Gao and Sederberg (17)
propose a hybrid system that allows a user to improve the
correspondences generated by image-matching algorithms.

Figure 1. Image morphing: Given two
images of objects, Isrc and Idst, an animation
sequence between them is generated in the
way that Isrc deforms gradually into Idst.

Figure 2. Mesh warping.

2 WARPING AND MORPHING



The user can specify some feature points as constraints on
the warping between images, and the system then can
determine the best image matching by solving a constrained
optimization.

APPLICATIONS TO OTHER GRAPHICAL OBJECTS

Following the success of image morphing techniques shown
in the previous section, many researchers have developed
the techniques of morphing 3-D objects (18). Generally, a
morphing of 3-D models includes the interpolation of their
shapes as well as an interpolation of their attributes such as
color, texture, or appearance of the surface. The challenge
in these techniques is how to define an intrinsic morphing
sequence between any two objects in arbitrary structure.

Volumetric Representation of 3-D Shape

Implicit surface (19), level set (20), and voxelized objects are
commonly used representations of 3-D solids and 2-D closed
surfaces. The shape of an object is defined by a set of points p
such that f(p)¼ c for some function f and shape attribute c.
It is then a straightforward task to extend and generalize
the techniques of 2-D image morphing to 3-D shapes or
higher dimension.

Pasko and Savchenko (21) developed a warping algo-
rithm for 3-D shapes represented in the scalar functions.

This method, however, often suffers from unnecessary
distortion or change in topology such as creation of many
connected components. Cohen-Or et al. (22) solve this
problem by combining a straightforward interpolation
with a signed distance transformation that allows the
algorithm to deform the whole space continuously.
Figure 6 shows the morphing of 3-D shapes that have
different topology. The signed distance representation of
3-D shapes is a mathematical abstraction of geometric
properties, such as continuity or genus, and therefore, it
allows continuous transition between different geometry
without concerning the explicit properties in the sequence
of morphing animation.

A specific user interface for designing a morphing
sequence of two volumes is proposed by Lerios et al. (23)
Their system provides users a graphical interface to specify
feature correspondences by using simple geometric primi-
tives such as points, lines, and boxes in the volumes in the
same spirit as the Beier and Neely method (3). Figure 7
shows an example of the graphics user interface where 37
geometric primitives are used for feature correspondences.

Figure 5. Free-form deformation from ‘‘F’’ to ‘‘T’’ characters. The
top row shows results obtained by field morphing. The bottom row
is the results by multilevel free-form deformation [images by Lee et
al. (9)].

Figure 3. Field morphing: Two sides of an ‘‘F’’ character are
specified by line segments. The weighted sum of linear transforma-
tion defined by each line segment gives us a globally smooth
warping function [images by Beier and Neely (3)].

Figure 4. Warping by scattered data
interpolation: Image warping by radial
basis functions. (a) Source image and
feature points. (b) Destination image and
corresponding feature points. (c) Source
image warped by thin plate spline radial
basis [images by Arad et al. (7)].

WARPING AND MORPHING 3



Boundary Representation of 3-D Shape

Boundary representations of 3-D shape are very popular in
the computer graphics community. A large number of
models and data structures have been proposed to repre-
sent objects by their boundaries. The polygonal surfaces
and the parameterized surfaces are the two main models.

The use of boundary representations has several advan-
tages: efficient data structure, capability of texture map-
ping, and intuitive representation. As a counterpart, this
representation is implicitly constrained both geometrically
and topologically. The algorithm of morphing of 3-D shapes
in boundary representation has to consider these con-
straints during the entire process of morphing.

Specifying corresponding points between two surface
models is essential to constructing a single mesh with
two geometric instantiations: one for each source and des-
tination object. This single mesh can be obtained by mer-
ging the meshes (24) or by creating a new common mesh
(25). The existence of a common mesh for two different
models implies that they have the same topology.

DeCarlo and Gallier (26) propose a method of dealing
with degenerated geometric instantiations of the common
mesh where an edge or a face can be embedded onto a single
point or edge (see Fig. 8). They use a sparse control mesh on
each surface in order to define a mapping between the input
objects. This method applies to general (triangulated) poly-
hedral surfaces.

Light Field

The light field (27, 28) is the representation of the appear-
ance of 3-D objects without explicit geometry. The dataset is
typically composed of a large number of images captured
from various viewpoints. Each pixel in the images is
regarded as a sample of rays passing in the 3-D space.
Given a viewpoint at rendering, a corresponding view is
synthesized by interpolating the sampled rays.

Zhang et al. (29) applied a feature-based morphing
approach to the light field that is similar to the Beier
and Neely system (3). Given two light field data, a user
selects representative viewpoints for each light field and
then specifies the correspondence that defines a common
mesh structure on 2-D images of rendered light fields. The
system then propagates the correspondence to other view-
points that are not selected by the user, taking into account
the occlusion.

In addition to the change of viewpoints, the variable
light source is also modeled in surface light field rendering
(30). This method assumes that the 3-D shape of an object of
interest is given and that the variation of the appearance of
all points of the surface is represented efficiently. Jeong et
al. (31) applied the feature-based morphing technique to
the surface light field. Because the surface appearance
changes drastically, they propose a dynamic change of
mesh structure defined by a user so that the highlights
are not blurred by interpolation.

Figure 6. 3-D shape morphing between objects with different
topology [images by Cohen-Or et al. (22)].

Figure 7. Feature-based volume morphing between a dart and an
X-29 space ship [images by Lerios et al. (23)].

4 WARPING AND MORPHING



SUMMARY

In this article, some representative work for warping and
morphing of images and 3-D object models are presented.
The warping is an underlying process of morphing algo-
rithms, although the warping techniques themselves have
a wide range of applications in the context of image regis-
tration (11). The morphing can be used not only for visua-
lization purposes but also for data compression (32). The
biggest issue in warping and morphing processes is how to
efficiently build correspondences between data. Several
intuitive user interfaces that enable a user to specify com-
plicated feature correspondences have been proposed, as
well as a few algorithms that attempt to find correspon-
dences automatically. Designing easy-to-use and powerful
systems for general morphing purposes is still an open
problem.

BIBLIOGRAPHY

1. G. Wolberg, Image morphing: A survey, The Visual Computer,
14(8): 360–372, 1998.

2. D. B. Smythe, A two-pass mesh warping algorithm for object
transformation and image interpolation, Technical Report
1030, Industrial Lights and Magics, 1990.

3. T. Beir and S. Neely, Feature-based image metamorphosis,
Proc. SIGGRAPH 092, ACM, June 1992, p. 35.

4. D. Ruprecht and H. Müller, Deformed cross-dissolves for image
interpolation in scientific visualization, J. Visualization and
Computer Animation, 5(3): 167–181, 1994.

5. S.-Y. Lee, K.-Y. Chwa, J. Hahn, and S. Y. Shin, Image morph-
ing using deformable surfaces, Proc. Computer Animation,
1994, pp. 31–39.

6. A. E. Hassanien and M. Nakajima, Image morphing of facial
images transformation based on navier elastic body splines,
Proc. the Computer Animation, 1998, pp. 119–125.

7. N. Arad, N. Dyn, D. Reisfeld and Y. Yeshurun, Image warping
by radial basis functions: applications to facial expressions,
CVGIP: Graphical Models and Image Processing, 56(2):
161–172, 1994.

8. S.-Y. Lee, K.-Y. Chwa, and S. Y. Shin, Image metamorphosis
using snakes and free-form deformations, Computer Graphics,
29: 439–448, 1995.

9. S.-Y. Lee, K.-Y. Chwa, J. Hahn, and S. Y. Shin, Image morph-
ing using deformation techniques, J. Visualization and Com-
puter Animation, 7(1): 3–24, 1996.

10. T. W. Sederberg and S. R. Parry, Free-form deformation of solid
geometric models, Proc. SIGGRAPH 086, 1986, pp. 151–160.

11. B. Zitova and J. Flusser, Image registration methods: A survey,
Image and Vision Computing, 24: 977–1000, 2003.

12. R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, 2nd ed.Cambridge, U.K.: Cambridge Univer-
sity Press, 2004.

13. B. K. P. Horn and B. G. Schunk, Determining optical flow,
Artificial Intell, 17: 185–203, 1981.

14. B. D. Lucas and T. Kanade, An iterative image registration
technique with an application to stereo vision, in P. J. Hayes,
(ed.), Proc. 7th International Joint Conference on Artificial
Intelligence (IJCAI 081). William Kaufmann, August 1991,
pp. 674–679.

15. Y. Shinagawa and T. L. Kunii, Unconstrained automatic image
matching using multiresolutional critical-point filters, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
20(9): 994–1010, 1998.

Figure 8. Topological evolution of 3-D
surfaces [images by DeCarlo and Gallier (26)].

Figure 9. Feature based light field morphing [images by Zhang
et al. (31)].

WARPING AND MORPHING 5



16. S. Yamazaki, K. Ikeuchi, and Y. Shingawa, Determining plau-
sible mapping between images without a priori knowledge,
Proc. Asian Conference on Computer Vision 2004, 2004, pp.
408–413.

17. P. Gao and T. W. Sederberg, A work minimization approach to
image morphing, The Visual Computer, 14(8-9): 390–400,
1998.

18. F. Lazarus and A. Verroust, 3D metamorphosis: A survey, The
Visual Computer, 8-9(14): 373–389, 1998.

19. J. Bloomenthal, Introduction to Implicit Surfaces, San Fran-
cisco, CA Morgan Kaufmann, 1997.

20. J. Sethian, Level set methods and fast marching methods.
Cambridge, U.K.: Cambridge University Press, 1996.

21. A. A. Pasko and V. V. Savchenko, Constructing functionally
defined surfaces, Proc. First International Workshop on Impli-
cit Surfaces, Grenoble, 1995, pp. 97–106.

22. D. Cohen-Or, A. Solomovic and D. Levin, Three-dimensional
distance field metamorphosis, ACM Transactions on Graphics,
17(2): 116–141, 1998.

23. A. Lerios, C. D. Garfinkle, and M. Levoy, Feature-based volume
metamorphosis, Proc. SIGGRAPH 095, 1995, pp. 449–456.

24. E. W. Bethel and S. P. Uselton, Shape distortion in computer-
assisted keyframe animation, Proc. Computer Animation 089,
1989, pp. 215–224.

25. F. Lazarus and A. Verroust, Metamorphosis of cylinder-like
objects, J. Visualization and Computer Animation, 8(3): 131–
146, 1997.

26. D. DeCarlo and J. Gallier, Topological evolution of surfaces,
Proc. Graphics Interface 096, 1996, pp. 194–203.

27. M. Levoy and P. Hanrahan, Light field rendering, Proc. SIG-
GRAPH 096, 1996, pp. 31–42.

28. S. Gortler, R. Grzeszczuk, R. Szeliski and M. Cohen, The
lumigraph, Proc. SIGGRAPH 096, 1996, pp. 43–54.

29. Z. Zhang, L. Wang, B. Guo, and H.-Y. Shum, Feature-based
light field morphing, ACM Transactions on Graphics, 21(3):
457–464, 2002.

30. D. Wood, D. Azuma, W. Aldinger, B. Curless, T. Duchamp, D.
Salesin and W. Steutzle, Surface light fields for 3D photo-
graphy, Proc. SIGGRAPH 2000, 2000, pp. 287–296.

31. E. Jeong, M. Yoon, Y. Lee, M. Ahn, S. Lee, and B. Guo, Feature-
based surface light field morphing, Proc. Pacific Graphics 2003,
2003, pp. 215–223.

32. F. Galpin, R. Balter, L. Morin and K. Deguchi, 3D models
coding and morphing for efficient video compression, Proc.
Computer Vision and Pattern Recognition 2004, Vol. 1, 2004,
pp. 331–334.

SHUNTARO YAMAZAKI

National Institute of
Advanced Industrial
Science and Technology

Tokyo, Japan

6 WARPING AND MORPHING



A

ARTIFICIAL INTELLIGENCE LANGUAGES

The process of programming a solution to a problem is
inherently difficult. This has been recognized by con-
ventional programmers for many years and has been one
of the motivating forces behind both structured and
object-oriented programming techniques. The problem
seems to be that the human brain does not have the capa-
city to handle the complexity of the programming task for
nontrivial problems. The solution has been to first use
structured and then object-oriented techniques that break
the problem into manageable ‘‘chunks.’’ However, this
‘‘divide et impera’’ technique did not solve the problem of
the imperative (procedural, commanding) description of
the solution, i.e., of the explicit ordering of the actions
leading to the solution. Moreover, the sequence of state-
ments in imperative language also implies the need to have
explicit commands to alter the sequence, for example, con-
trol structures such as ‘‘while. . .do,’’ ‘‘repeat. . .until,’’ or
even ‘‘goto.’’ Many errors in imperative languages are
introduced because the specified sequencing is not correct.
On the other hand, in declarative languages used mainly
for AI programming, we describe the problem rather than
the explicit way to solve it, or the order in which things
must be done. The explicit ordering has been replaced by
the implicit ordering, conditioned by the relationships
between the objects. The lack of explicit sequence of control
relieves the user of the burden of specifying the control flow
in the program.

Declarative programming is the umbrella term that
covers both functional programming and relational pro-
gramming. Although the two approaches do have many
superficial similarities—both classes of languages are
nonprocedural and, in their pure forms, involve program-
ming without side-effects—they do have different mathe-
matical foundations. In writing functional programs, the
programmer is concerned with specifying the solution to a
problem as a collection of many-to-one transformations,
which corresponds closely to the mathematical definition of
a function. On the other hand, a relational program spe-
cifies a collection of many-to-many transformations. Thus,
in relational programming languages, there is a set of
solutions to a particular application rather than the single
solution that is produced from a function application.
Although the execution mechanisms that have been pro-
posed for relational programming languages are radically
different from the approaches for a functional program-
ming language, both approaches have been widely used in
artificial intelligence programming.

To provide AI-related comparison, we have included two
equally popular AI-language alternatives, a functional
language Lisp and relational language Prolog. From the
beginning, Lisp was the language of choice for American AI
researchers. The reasons are many, but primarily they
result from the strong mathematical roots of the language,

symbolic rather than numeric processing, and its ability to
treat its own code as data. Researchers have exploited this
capability of the Lisp program to modify themselves at
runtime for research in machine learning, natural-
language understanding, and other aspects of AI. More-
over, artificial intelligence programming requires the flex-
ibility, extensibility, modularity, and underlying data
structures and data abstraction facilities that Lisp pro-
vides. Although Lisp is one of the older programming
languages in use, it has remained the most widely used
language in AI programming.

The logic programming language Prolog has been grow-
ing in popularity since it was originally introduced in
Europe in the early 1970s. Prolog is most easily matched
to tasks involving logic and proof-like activities. A Prolog
program is essentially a description of objects and rela-
tions between them. A subset of formal logic (called Horn
clause logic) is used to specify the desired conditions.
Prolog’s adherent believes that it is easier to learn and
use than Lisp. They say that it uses less memory and is
more easily moved from one computer to another.

Although both Lisp and Prolog have been supported
with almost religious intensity by passionate advocates,
the dilemma of Prolog versus Lisp has softened over the
years, and many now believe in a combination of ideas
from both worlds. New AI languages can be roughly divided
into Lisp-like languages, Prolog-like languages, hybrid
languages, object-oriented languages, agent-oriented lan-
guages, semantic Web languages, and specialized AI pro-
gramming languages.

Before we discuss specific AI programming paradigms
and languages, it would be useful to underline the specific
features that facilitate the production of AI programs as
distinct from a language for writing other types of appli-
cations. Apart from the features that are now needed for
building almost any kind of complex systems, like posses-
sing a variety of data types, a flexible control structure,
and the ability to produce efficient code, the features that
are particularly important in building AI systems are as
follows (1–4):

� Good symbol manipulation facilities, because AI is con-
cerned with symbolic rather than numeric processing.

� Good list manipulating facilities, because lists are the
most frequently used data structures in AI programs.

� Late binding times for the object type or the data
structure size, because in many AI systems, it is not
possible to define such things in advance.

� Pattern matching facilities, both to identify data in
the large knowledge base and to determine control
for the execution of production systems.

� Facilities for performing some kind of automatic
deduction and for storing a database of assertions
that provide the basis for deduction.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



� Facilities for building complex knowledge structures,
such as frames, so that related pieces of information
can be grouped together and assessed as a unit.

� Mechanisms by which the programmer can provide
additional knowledge (meta-knowledge) that can be
used to focus the attention of the system where it is
likely to be the most profitable.

� Control structures that facilitate both goal-directed
behavior (top-down processing or backward-chaining)
and data-directed (or bottom-up processing or forward
chaining).

� The ability to intermix procedural and declarative
knowledge in whatever way best suits a particular
task.

� Good programming environment, because AI pro-
grams are among the largest and most complex com-
puter systems ever developed and present formidable
design and implementation problems.

No existing language provides all of these features.
Some languages do well at one at the expense of others,
and some hybrid languages combine multiple program-
ming paradigms trying to satisfy as many of these needs
as possible. However, the main differentiator between
various AI programming languages is their ability to repre-
sent knowledge clearly and concisely.

LOGIC PROGRAMMING

Logic programming began in the early 1970s as a direct
outgrowth of earlier work in automatic theorem proving
and artificial intelligence. It can be defined as the use of
symbolic logic for the explicit representation of problems,
together with the use of controlled logical inference for the
effective solution of those problems.

The credit for the introduction of logic programming
goes mainly to Kowalski (5), (6) and Colmerauer et al.
(7), although Green (8) and Hayes (9) should also be men-
tioned in this regard. In 1972, Kowalski and Colmerauer
were led to the fundamental idea that logic can be used as a
programming language. The acronym PROLOG [PRO-
gramming in LOGic) was conceived, and the first PROLOG
interpreter was implemented in the language ALGOL-W
by Roussel in 1972.

The idea that first-order logic, or at least substantial
subsets of it, can be used as a programming language was
revolutionary, because until 1972, logic had only ever been
used as a specification language in computer science.
However, it has been shown that logic has a procedural
interpretation, which makes it very effective as a program-
ming language. Briefly, a program clause A< ¼ B1; . . . ;Bn

is regarded as a procedure definition. If < ¼ C1; . . . ;Ck is a
goal clause, then each Cj is regarded as a procedure call.
A program is run by giving it an initial goal. If the cur-
rent goal is <¼ C1; . . . ;Ck, a step in the computation
involves unifying some Cj with the head A of a program
clause A <¼ B1; . . . ;Bn and thus reducing the current goal
to the goal < ¼ ðC1; . . . ;Cj�1B1; . . . ;Bn;Cjþ1; . . . ;CkÞu, where
u is the unifying substitution. Unification thus becomes a

uniform mechanism for parameter passing, data selection,
and data construction. The computation terminates when
the empty goal is produced.

One of the main ideas of logic programming, which is
due to Kowalski, is that an algorithm consists of two dis-
joint components, the logic and the control. The logic is
the statement of what the problem is that has to be solved.
The control is the statement of how it is to be solved. The
ideal of logic programming is that the programmer should
only have to specify the logic component of an algorithm.
The logic should be exercised solely by the logic program-
ming system. Unfortunately, this ideal has not yet been
achieved with current logic programming system because
of two broad problems. The first of these is a control
problem. Currently, programmers need to provide a lot of
control information, partly by the ordering of clauses and
atoms in clauses and partly by extra-logical control fea-
tures, such as cut. The second problem is the negation
problem. The Horn clause subset of logic does not have
sufficient expressive power, and hence the Prolog system
allows negative literals in the bodies of clauses.

Logic has two other interpretations. The first of these is
the database interpretation. Here a logic program is
regarded as a database. We thus obtain a very natural
and powerful generalization of relational databases, which
correspond to logic programs consisting solely of ground
unit clauses. The concept of logic as a uniform language for
data, programs, queries, views, and integrity constraints
has great theoretical and practical potential.

The third interpretation of logic is the process interpre-
tation. In this interpretation, a goal < ¼ B�1; . . . Bn is
regarded as a system of concurrent processes. A step in
the computation is the reduction of a process to a system of
processes. Shared variables act as communication channels
between processes. Now several Prologs are based on the
process interpretation. This interpretation allows logic to
be used for operating system applications and object-
oriented programming.

It is clear that logic provides a single formalism for
apparently diverse parts of computer science. Logic pro-
vides us with a general-purpose, problem-solving language,
a concurrent language suitable for operating systems and a
foundation for database systems. This range of applications
together with the simplicity, elegance, and unifying effect
of logic programming assures it of an important and influ-
ential future.

One of the most important practical outcomes of the
research in logic programming has been the language
Prolog, based on a Horn clause subset of logic. Most of
logic programming systems available today are either
Prolog interpreters or compilers. Most use the simple
computation rule, which always selects the leftmost atom
in a goal. However, logic programming is by no means
limited to a Prolog. It is essential not only to find more
appropriate computation rules, but also to find ways to
program in a larger subset of logic, not just in a clausal
subset. In this entry we will also briefly cover a database
query language based on logic programming, Datalog, and
several hybrid languages supporting the logic program-
ming paradigm (together with some other paradigms, func-
tional, for instance).

2 ARTIFICIAL INTELLIGENCE LANGUAGES



Prolog

Prolog stands for programming in logic—an idea that
emerged in the early 1970s to use logic as a programming
language. The early developers of this idea included
Robert Kowalski at Edinburgh (on the theoretical side),
Maarten van Emden at Edinburgh (experimental demon-
stration), and Alain Colmerauer at Marseilles (implemen-
tation). The curent popularity of Prolog is largely due to
David Warren’s efficient implementation at Edinburgh in
the mid-1970s.

Prolog has rapidly gained popularity in Europe as a
practical programming tool. The language received
impetus from its selection in 1981 as the basis for the
Japanese Fifth Generation Computers project. On the
other hand, in the United States its acceptance began
with some delay, due to several factors. One was the reac-
tion of the ‘‘orthodox school’’ of logic programming, which
insisted on the use of pure logic that should not be marred
by adding practical facilities not related to logic. Another
factor was a previous American experience with the Micro-
planner language, also akin to the idea of logic program-
ming, but inefficiently implemented. And the third factor
that delayed the acceptance of Prolog was that for a long
time Lisp had no serious competition among languages for
AI. In research centers with strong Lisp tradition, there
was therefore a natural resistance to Prolog.

The language’s smooth handling of extremely complex
AI problems and ability to effect rapid prototyping has been
a big factor in its success, even in the United States.
Whereas conventional languages are procedurally
oriented, Prolog introduces the descriptive or declarative
view, although it also supports the procedural view. The
declarative meaning is concerned only with the relations
defined by the program. This greatly alters the way of
thinking about problem and makes learning to program
in Prolog an exciting intellectual challenge. The declarative
view is advantageous from the programming point of view.
Nevertheless, the procedural details often have to be con-
sidered by the programmer as well.

Apart from this dual procedural/declarative semantics,
the key features of Prolog are as follows (10–12):

� Prolog programming consists of defining relations and
querying about relations.

� A program consists of clauses. These are of three types:
facts, rules, and questions.

� A relation can be specified by facts, simply stating the
n-tuples of objects that satisfy the relation, or by stat-
ing rules about the relation.

� A procedure is a set of clauses about the same relation.

� Querying about relations, by means of questions,
resembles querying a database. Prolog’s answer to a
question consists of a set of objects that satisfy the
question.

� In Prolog, to establish whether an object satisfies a
query is often a complicated process that involves
logical inference, exploring among alternatives and
possibly backtracking. All this is done automatically

by the Prolog system and is, in principle, hidden from
the user.

Different programming languages use different ways of
representing knowledge. They are designed so that the
kind of information you can represent, the kinds of state-
ments you can make, and the kinds of operations the
language can handle easily all reflect the requirements
of the classes of problems for which the language is parti-
cularly suitable. The key features of Prolog that give it its
individuality as a programming language are as follows:

� Representation of knowledge as relationships between
objects; the core representation method consists of
relationships expressed in terms of a predicate that
signifies a relationship and arguments or objects that
are related by this predicate.

� The use of logical rules for deriving implicit knowledge
from the information explicitly represented, where
both the logical rules and the explicit knowledge are
put in the knowledge base of information available to
the Prolog.

� The use of lists as a versatile form of structuring data,
although not the only form of structuring data that is
used in Prolog.

� The use of recursion as a powerful programming
technique.

� Variables acquire values by a process of pattern match-
ing in which they are instantiated or bound to various
values.

The simplest use of Prolog is to use it as a convenient
system for retrieving the knowledge explicitly represented,
i.e., for interrogating or queering the knowledge base. The
process of asking a question is also referred to as ‘‘setting
a GOAL for the system to satisfy.’’ You type the question,
and the system searches the knowledge base to determine
whether the information you are looking for is there.

The next use of Prolog is to supply the system with part
of the information you are looking for and to ask the sys-
tem to find a missing part.

In both cases above Prolog works fundamentally by
pattern matching. It tries to match the pattern of our
question to the various pieces of information in the knowl-
edge base.

The third case has a distinguishing feature. If your
question contains variables (a word beginning with an
uppercase letter), Prolog also has to find what are the
particular objects (in place of variables) for which the
goal are satisfied. The particular instantiation of variables
to these objects are shown to the user.

One advantage of using Prolog is that Prolog interpreter
is in essence a built-in inference engine that draws logical
conclusions using the knowledge supplied by the facts and
rules.

To program in Prolog, one specifies some facts and rules
about objects and relationships and then asks questions
about objects and relationships. For instance, if one entered
the following facts:

ARTIFICIAL INTELLIGENCE LANGUAGES 3



likes(peter, mary)
likes (paul, mary)
likes (mary, john)

and then asked

?-likes (peter, mary)

Prolog would respond by printing

yes.

In this trivial example, the word likes is the predicate
that indicates that such a relationship exists between one
object, peter, and a second object, mary. In this case
Prolog says that it can establish the truth of the assertion
that ‘‘Peter likes Mary’’ based on the three facts it has been
given. In a sense, computation in Prolog is simply controlled
logical deduction. One simply states the facts that one
knows, and Prolog can tell whether any specific conclusion
could be deduced from those facts. In knowledge engineer-
ing terms, Prolog’s control structure is logical inference.

Prolog is the best current implementation of logic pro-
gramming, although a programming language cannot be
strictly logical, because input and output operations neces-
sarily entail some extralogical procedures. Thus, Prolog
incorporates some basic code that controls the procedural
aspects of its operations. However, this aspect is kept at a
minimum, and it is possible to conceptualize Prolog strictly
as a logical system.

Indeed, there are two Prolog programming styles: a
declarative style and a procedural style. In declarative
programming, one focuses on telling the system what it
should know and relies on the system to handle the proce-
dures. In procedural programming, one considers the spe-
cific problem-solving behavior the computer will exhibit.
For instance, knowledge engineers who are building new
expert system concerns themselves with procedural
aspects of Prolog. Users, however, need not to worry about
procedural details and are free simply to assert facts and
ask questions.

One of the basic demands that AI language should
satisfy is a good list processing. A list is virtually the
only complex data structure that Prolog has to offer. Lists
is said to have a head and a tail. The head is the first list
item. The tail is the list composed of all remaining lists. The
atom on the left of vertical bar is the list head, and the part
to the right is the list tail.

The following example illustrates the way the list
appending operation is performed in Prolog:

append ([], L,L).
append ([X|L1],L2, [X|L3])

:- append (L1,L2,L3).

This simple Prolog program consists of two relations.
The first says that the result of appending the empty list
( [ ] ) to any list L is simply L. The second relation describes
an inference rule that can be used to reduce the problem of
computing the result of an append operation involving a
shorter list. Using this rule, eventually the problem will be
reduced to appending the empty list, and the value is given
directly in the first relation. The notation [X|L1] means the
list whose first element is X, and the rest of which is L1. So

the second relation says that the result of appending
[X|L1] to L2 is [X|L3] provided that it can be shown
that the result of appending L1 to L2 is L3.

FUNCTIONAL PROGRAMMING

Historically, the most popular AI language, Lisp (13–15),
has been classified as a functional programming language
in which simple functions are defined and then combined to
form more complex functions. A function takes some num-
ber of arguments, binds those arguments to some variables,
and then evaluates some forms in the context of those
bindings.

Functional languages became popular within the AI
community because they are much more problem-oriented
than conventional languages. Moreover, the jump from
formal specification to a functional program is much
shorter and easier, so the research in the AI field was
much more comfortable.

Functional programming is a style of programming
that emphasizes the evaluation of expressions, rather
than the execution of commands. The expressions in this
language are formed by using functions to combine basic
values. A functional language is a language that supports
and encourages programming in a functional style.

For example, consider the task of calculating the sum of
the integers from 1 to 10. In an imperative language such as
C, this might be expressed using a simple loop, repeatedly
updating the values held in an accumulator variabletotal
and a counter variable i:

total = 0;
for (i=1; i<=10; ++i)
total += i;

In a functional language, the same program would be
expressed without any variable updates. For example, in
Haskell, a non-strict functional programming language,
the result can be calculated by evaluating the expression:

sum [1..10]

Here [1..10] is an expression that represents the list
of integers from 1 to 10, whereas sum is a function that can
be used to calculate the sum of an arbitrary list of values.

The same idea could be used in strict functional lan-
guages such as SML or Scheme, but it is more common to
find such programs with an explicit loop, often expressed
recursively. Nevertheless, there is still no need to update
the values of the variables involved as follows.

SML:

let fun sum i tot = if i=0 then tot else sum (i-1)
(tot+i)

in sum 10 0
end

Scheme:

(define sum
(lambda (from total)
(if (= 0 from)

4 ARTIFICIAL INTELLIGENCE LANGUAGES



total
(sum (- from 1) (+ total from)))))

(sum 10 0)

It is often possible to write functional-style programs in
an imperative language, and vice-versa. It is then a matter
of opinion whether a particular language can be described
as functional. It is widely agreed that languages like Has-
kell and Miranda are ‘‘purely functional,’’ whereas SML
and Scheme are not. However, there are some small differ-
ences of opinion about the precise technical motivation for
this distinction. One definition that has been suggested
says that ‘‘purely functional’’ languages perform all their
computations via function application. This is in contrast to
languages, such as Scheme and SML, that are predomi-
nantly functional but also allow computational effects
caused by expression evaluation that persist after the
evaluation is completed. Sometimes, the term ‘‘purely func-
tional’’ is also used in a broader sense to mean languages
that might incorporate computational effects, but without
altering the notion of ‘‘function’’ (as evidenced by the fact
that the essential properties of functions are preserved).
Typically, the evaluation of an expression can yield a
‘‘task,’’ which is then executed separately to cause compu-
tational effects. The evaluation and execution phases are
separated in such a way that the evaluation phase does not
compromise the standard properties of expressions and
functions. The input/output mechanism of Haskell, for
example, is of this kind.

There is also much debate in the functional program-
ming community about the distinction and the relative
merits of strict and non-strict functional programming
languages. In a strict language, the arguments to a function
are always evaluated before it is invoked, whereas in a non-
strict language, the arguments to a function are not eval-
uated until their values are actually required. It is possible,
however, to support a mixture of these two approaches like
in some versions of the functional language Hope.

It is not possible to discuss the mathematical founda-
tion of functional programming without a formal notation
for function definition and application. The usual notation
that is used in applicative functional languages is so-called
l–(lambda) calculus. It is a simple notation and yet
powerful enough to model all of the more esoteric features
of functional languages. The basic symbols in the
l–calculus are the variable names, l, dot (�), and open
and closed brackets. The general form for a function
definition is

lx.M

which denotes the function F such that for any value of x, F(x)
= M, and the value of F can be computed on an argument N
by substituting N into defining equation. A valid -expression,

described in BNF notation, is as follows:

Expression :: = Variablename |
Expression Expression |
l Variable name list. Expression |
( Expression )

The primary relevance of the l–calculus to artificial
intelligence is through the medium of Lisp. Lisp’s creator
McCarthy used l–calculus as the bases of Lisp’s notation for
procedures. Since that time, other programming languages
used the l–calculus in a more pervasive way. However,
from the point of view of artificial intelligence, the most
important among functional languages is definitely Lisp,
which will be given more attention in the following
paragraphs.

Lisp

Lisp (List processing) is a family of languages with a long
history. Early key ideas in Lisp were developed by John
McCarthy during the Darthmouth Summer Research
Project on Artificial Intelligence in 1956. Of the major
programming languages still in use, only FORTRAN is
older then Lisp. Since then it has grown to be the most
commonly used language for Artificial Intelligence and
Expert Systems programming, McCarthy’s motivation
was to develop an algebraic list processing language for
artificial intelligence work.

John McCarthy, the language creator, describes the key
ideas in Lisp as follows (13):

� Computing with symbolic expressions rather than
numbers; that is, bit patterns in a computer’s memory
and registers can stand for arbitrary symbols, not just
those of arithmetic.

� List processing, that is, representing data as linked-
list structures in the machine and as multilevel lists on
paper.

� Control structure based on the composition of func-
tions to form more complex functions.

� Recursion as a way to describe processes and problems.

� Representation of LISP programs internally as linked
lists and externally as multilevel lists, that is, in the
same form as all data are represented.

� The function EVAL, written in LISP itself, serves as an
interpreter for LISP and as a formal definition of
language.

One major differences between Lisp and conventional
programming languages (such as FORTRAN, Pascal, Ada,
and C) is that Lisp is a language for symbolic rather than for
numeric processing. Although it can manipulate numbers
as well, its strength lies in being able to manipulate symbols
that represent arbitrary objects from the domain of inter-
est. Processing pointers to objects and altering data struc-
tures comprising other such pointers is the essence of
symbolic processing. Symbols, also called atoms because
of the analogy to the smallest indivisible units, are the most
important data types in Lisp. Their main use is as a way of
describing programs and data for programs. Symbol is a
Lisp object. It has a name associated with them and several
aspects or uses. First, it has a value, which can be accessed
or altered using exactly the same forms that access or alter
the value of a lexical variable. In fact, the methods of
naming symbols are the same as those used for naming a
lexical variable. In addition to a value, a symbol can have

ARTIFICIAL INTELLIGENCE LANGUAGES 5



a property list, a package, a print name, and possibly a
function definition associated with it. A property list is
simply a list of indicators and values used to store proper-
ties associated with some objects that the symbol is defined
by the programmer to represent. A print name is usually
the string of characters that constitutes the identifier. A
package is a structure that establishes a mapping between
an identifier and a symbol. It is usually a hash table
containing symbols. A function is normally associated
with a lexical variable or a symbol. The symbol printed
representation is as a sequence of alphabetic, numeric,
pseudo-alphabetic, and special characters.

Other typical data types are lists, trees, vectors, arrays,
streams, structures, and so on. Out of these data structures
can be built representations for formulas, real-world
objects, natural-language sentences, visual scenes, medical
concepts, geographical concepts, and other symbolic data
(even other Lisp programs). It is important to note that in
Lisp it is data objects that are typed, not variables. Any
variable can have any Lisp object as its value.

Historically, list processing was the conceptual core of
Lisp (the name was taken from List processing). Lists in
Lisp are reprinted in two basic forms. The external, visible,
form of list is composed of an opening parenthesis followed
by any number of symbolic expressions followed by a closing
parenthesis. A symbolic expression can be a symbol or
another list. Internally, a list is represented as a chain of
CONS cells. The CONS cell is the original basic building
block for Lisp data structures. Each CONS cell is composed
of a CAR (the upper half, the ‘‘data’’ part) and CDR (the
lower half, the ‘‘link’’ part). Lists are represented inter-
nally by linking CONS cells into chains by using the CDR
of each cell to point to the CAR of the next cell. CONS
cells can be linked together to form data structures of any
desired size or complexity. NILL is the Lisp symbol for an
‘‘empty list,’’ and it is used to represent the Boolean value
‘‘false.’’

The list appending function in Lisp would be as follows:

(DE APPEND (L1 L2)
(COND (( NULL L1) L2)
(( ATOM L1) (CONS L1 L2)
( TRUE (CONS (CAR L1) (APPEND (CDR L1) L2)0000

The Lisp function returns a list that is the result of
appending L1 to L2. It uses the Lisp function CONS to
attach one element to the front of a list. It calls itself
recursively until all elements of L1 have been attached.
The Lisp function CAR returns the first element of the list it
is given and the function CDR returns the list it is given
minus the first element. ATOM is true if its argument is a
single object rather than a list.

Lisp relies on dynamic allocation of space for data sto-
rage. Memory management in Lisp is completely auto-
matic, and the application programmer does not need to
worry about assigning storage space. It manages storage
space very efficiently and frees the programmer to create
complex and flexible programs.

Lisp is a very good choice for an artificial intelligence
project programming for several reasons. Most AI projects
involve manipulation of symbolic rather than of numeric
data, and Lisp provides primitives for manipulating sym-

bols and collections of symbols. Lisp also provides auto-
matic memory-management facilities so you do not need to
write and debug routines to allocate and reclaim data
structures. Lisp is extensible and contains a powerful
macro facility that allows layers of abstraction.

Lisp’s lists can be of any size and contain objects of any
data types (including other lists), so that programmers
can create very complex data structures for representing
abstract concepts such as object hierarchies, natural-lan-
guage parse trees, and expert-systems rules. A collection of
facts about an individual object can easily be represented
in the property list that is associated with the symbol
representing the concept. The property list is simply a
list of attribute-value pairs. The fact that both data and
procedures are represented as lists makes it possible to
integrate declarative and procedural knowledge into a
single data structure such as a property list.

Although symbols and lists are central to many artificial
intelligence programs, other data structures such as arrays
and strings are also often necessary.

The most natural Lisp control structure is recursion,
which often represents the most appropriate control strat-
egy for many problem-solving tasks.

Moreover, Lisp has the ability to treat its code as data.
Researchers have exploited this capability of the Lisp
program to modify themselves at runtime for research in
machine learning, natural-language understanding, and
other aspects of AI. Lisp implementation also encourages
an interactive style of development ideally suited to
exploring solutions for difficult or poorly specified pro-
blems. This is of crucial importance in an AI application
area where the problems are too hard to be solved without
human intervention.

Perhaps the most successful artificial intelligence appli-
cation in the business world is expert system technology.
Lisp is tailored to expert system creation because the
language is rich, with its flexible list data type and excellent
support for recursion, because it is extensible, and has
facilities for rapid prototyping, which lets the implementer
experiment with design and customize the expert system.
Programmers can use the built-in list data type for easy
creation of the data structures necessary to represent
parameters, rules, premise clauses, conclusion actions,
and other objects that constitute the knowledge base.
Even the expert systems that could process a wealth of
expertise about such esoteric disciplines as chemistry,
biology, and avionics and handle a complex and rapidly
changing process in real time have been built into Lisp. A
Lisp-based expert system shell G2, manufactured by Gen-
sym of Cambridge, MA, has been used all around the world
for building real-time expert systems. Even the most com-
plex applications like space-shuttle fault-diagnosis or
launch-operation support have been Lisp-based (15).

It is important to remember that Lisp can be an explora-
tive language rather than a product producing one. Lisp is
a marvelous research language that gives a programmer
the ability to create and experiment without paying atten-
tion to the data types of variables or the way memory is
allocated.

Lisp has strengths and weaknesses. It has had some real
successes but also some real problems that still have to be

6 ARTIFICIAL INTELLIGENCE LANGUAGES



solved (14). Nevertheless, it should be part of the toolkit of
any professional AI programmer, particularly of those
who routinely construct a very large and complex expert
system.

NEW AI LANGUAGES

AI languages that emerged after Lisp and Prolog can be
roughly classified into several categories, with no strict
boundaries between them (i.e., the same language can
belong to more than one group):

� Lisp-like languages

� Prolog-like languages

� Hybrid languages

� Object-oriented languages

� Agent-oriented languages

� Semantic Web languages

� Specialized programming languages

Being the first AI programming language and one of the
first programming languages at all, Lisp became an ances-
tor of numerous incarnations of this popular language
[Allegro CL (16), ECoLisp (17), Kali Scheme (18), RScheme
(19), Screamer (20), etc.]. Allegro CL powered by Common
Lisp is an object-oriented development system used for
dynamic servers, Web services, knowledge management,
data mining, smart data integration, and manufacture
control. ECoLisp (Embeddable Common Lisp) is an imple-
mentation of Common Lisp designed for embedding into C-
based applications. Kali Scheme is a distributed implemen-
tation of Scheme dialect of Lisp that permits efficient
transmission of higher order objects such as closures and
continuations. The integration of distributed communica-
tion facilities within a higher order programming language
engenders several new abstractions and paradigms for
distributed computing. RScheme is another object-
oriented, extended version of the Scheme language that
can be translated to C easily, and then compiled with a
standard C compiler to generate machine code. Screamer is
an extension of Common Lisp augmented with practically
all of the functionality of both Prolog and constraint logic
programming languages.

Prolog has also been extended and augmented numer-
ous times [Ciao Prolog (21), GNU Prolog (22), Amzi! Prolog
(23), etc.]. Ciao Prolog is a complete Prolog system with a
novel modular design that allows both restricting and
extending of the language. Ciao Prolog extensions cur-
rently include feature terms (records), higher order func-
tions, constraints, objects, persistent predicates, a good
base for distributed execution (agents), and concurrency.
Libraries support Web programming, sockets, and external
interfaces (C, Java, TCL/Tk, relational databases, etc.).
GNU Prolog offers various extensions useful in practice
(global variables, OS interface, sockets, etc.). In particular,
it contains an efficient constraint solver over finite domains
(FDs). This facilitates constraint logic programming, com-
bining the power of constraint programming with the
declarative nature of logic programming. The key feature

of the GNU Prolog solver is the use of a single (low-level)
primitive to define all (high-level) FD constraints. Amzi!
Prolog offers a variety of rule-based components (con-
figuration and pricing rules for products and services,
government regulations for industry, legal and tax rules
for forms filing, workflow rules for optimal customer ser-
vice, diagnostic rules for problem-solving, integrity-check-
ing rules with databases, parsing rules for documents,
tuning rules with performance-sensitive applications, advi-
sory rules with help systems, business rules with any
commercial application) that can be easily embedded into
Web applications.

Although Prolog is the first and most popular logic
programming language, some other languages also fall
into this category [e.g. Gödel (24), Mercury (25), etc.]. Gödel
is a declarative, general-purpose programming language
belonging to the family of logic programming languages.
It is a strongly typed language, where the type system is
based on many-sorted logic with parametric polymor-
phism. Gödel supports infinite precision integers, infinite
precision rational numbers, and floating-point numbers.
It can solve constraints over finite domains of integers and
linear rational constraints, and it supports processing of
finite sets. It also has a flexible computation rule and a
pruning operator that generalizes the commit of the con-
current logic programming languages. Mercury is a new
logic programming language, which is purely declarative.
Like Prolog and many other logic programming languages,
it is a high-level language that allows programmers to
concentrate on the problem rather than on the low-level
details such as memory management. Unlike Prolog, which
is oriented toward exploratory programming, Mercury is
designed for the construction of large, reliable, efficient
software systems by teams of programmers.

A few hybrid AI programming languages combine dif-
ferent programming paradigms, such as JEOPS (26), Kiev
(37), CLIPS (28), and Jess (29). JEOPS, The Java
Embedded Object Production System, is a programming
language intended to give Java the power of production
systems. JEOPS extends Java by adding forward chaining,
first-order production rules through a set of classes
designed to provide this language with some kind of
declarative programming. These features enable the devel-
opment of intelligent applications, such as software agents
or expert systems. The Kiev programming language is a
backward-compatible extension of Java that includes sup-
port for lambda-calculus closures (i.e., functional program-
ming) and Prolog-like logic programming. CLIPS is an
expert system tool that provides a complete environment
for the construction of rule-and/or object-based expert sys-
tems. It provides a cohesive tool for handling a wide variety
of knowledge with support for three different programming
paradigms: rule-based, object-oriented, and procedural.
Jess is a rule engine and scripting environment written
entirely in Java, originally inspired by CLIPS. It extends
CLIPS by including backward chaining, working memory
queries, and the ability to manipulate and reason upon
Java objects.

Object-oriented programming languages [Eiffel, Cþþ,
Java, Python (30), Jython (31), etc.] are based on abstract
data structures called classes. A class is used to represent

ARTIFICIAL INTELLIGENCE LANGUAGES 7



data but also a behavior of that class, defined by its main
operations often called methods. One of the most important
characteristics of object-oriented programming languages
is the ability to build hierarchies of classes and subclasses,
where subclasses can inherit properties of their super-
classes, which supports modularity and reusability. Among
object-oriented languages, Java has recently become very
popular in some areas of AI, especially for agent-based
application, Internet search engines (and Internet appli-
cations in general), and data mining. Java supports auto-
matic garbage collection and a multithreading mechanism,
which makes it interesting from an AI perspective. Other
popular object-oriented languages are Python and its Java
version, Jython. These languages have been used in nat-
ural language processing, machine learning, constraint
satisfaction, genetic algorithms, and expert systems.
They are portable, interpretable, object-oriented lan-
guages. They use modules, classes, exceptions, very high-
level dynamic data types, and dynamic typing. New built-in
modules written in C, Cþþ, or Java can be easily added.

During the last decade, Web applications and Web pro-
gramming have been constantly gaining in popularity, and
the AI community did not stay away from this trend. New
fields such as intelligent agents and semantic Web emerged
with the corresponding supporting programming lan-
guages. In the field of intelligent agents there are several
programming languages such as APRIL (32) and Mozart
(33). APRIL is a symbolic programming language, which is
designed for writing mobile, distributed, and agent-based
systems especially in a Web environment. It has the follow-
ing advanced features such as a macro sublanguage, asyn-
chronous message sending and receiving, code mobility,
pattern matching, higher order functions, and strong typ-
ing. The Mozart Programming System is an advanced
development platform for intelligent, distributed applica-
tions, which provides support in two areas: open distributed
computing and constraint-based inference. Mozart is based
on Oz language, which supports declarative programming,
object-oriented programming, constraint programming,
and concurrency as a part of a coherent whole, suitable
for developing multiagent systems. Mozart is used for both
general-purpose distributed applications as well as for hard
problems requiring sophisticated optimization and infer-
ence abilities. It can be used to develop applications in
different domains such as scheduling and time-tabling,
placement and configuration, natural language and knowl-
edge representation, multiagent systems, and sophisti-
cated collaborative tools.

In the area of semantic Web several new ontology and
schema languages such as XOL (34), SHOE (35), OML (36),
RDFS (37), DAMLþOIL (38), and OWL (39) have appeared.
XOL is an XML-based ontology-exchange language, which
was initially designed for exchange of bioinformatics ontol-
ogies, but it can also be used for ontologies in any domain.
XOL is a language with the semantics of object-oriented
knowledge representation systems but with XML syntax.
SHOE (Simple HTML Ontology Extensions) is a small
extension to HTML, which allows Web page authors to
annotate their Web documents with machine-readable
knowledge. OML (Ontology Markup Language) is based
on description logics and conceptual graphs and allows

representing concepts, organized in taxonomies, relations,
and axioms in first-order logic. RDFS (RDF Schemas) is an
extension of the RDF (Resource Description Framework). It
is a declarative representation language influenced by
ideas from knowledge representation (e.g., semantic
nets, frames, and predicate logic) as well as database
schema specification languages and graph data models.
DAMLþOIL is a semantic markup language for Web
resources. It was built on earlier W3C standards such as
RDF and RDF Schema, and it extends these languages with
richer modeling primitives. DAML+OIL provides modeling
primitives commonly found in frame-based languages. The
Web Ontology Language (OWL) is a semantic markup
language for publishing and sharing ontologies on the
Web. OWL is developed as a vocabulary extension of
RDF and is derived from the DAMLþOIL.

The OWL, Web Ontology Language, is intended to be
used when the information contained in documents needs
to be processed by applications, as opposed to situations
where the content only needs to be presented to humans.
OWL can be used to explicitly represent the meaning of
terms in vocabularies and the relationships between those
terms. This representation of terms and their interrelation-
ships is called an ontology. OWL has more facilities for
expressing semantics than XML, RDF, and RDF Schema
(RDF-S), and thus OWL goes beyond these languages in its
ability to represent machine-interpretable content on the
Web. OWL is a revision of the DAMLþOIL Web ontology
language incorporating lessons learned from the design
and application of DAMLþOIL.

OWL is part of the growing stack of W3C recommenda-
tions related to the semantic Web:

� XML provides a surface syntax for structured docu-
ments but imposes no semantic constraints on the
meaning of these documents.

� XML Schema is a language for restricting the struc-
ture of XML documents and also extends XML with
data types.

� RDF is a data model for objects (‘‘resources’’) and
relations between them, provides a simple semantics
for this data model, and these data models can be
represented in an XML syntax.

� RDF Schema is a vocabulary for describing properties
and classes of RDF resources, with a semantics for
generalization-hierarchies of such properties and
classes.

� OWL adds more vocabulary for describing properties
and classes: among others, relations amang classes
(e.g., disjointedness), cardinality (e.g., ‘‘exactly one’’),
equality, richer typing of properties, characteristics of
properties (e.g., symmetry), and enumerated classes.

OWL provides three increasingly expressive sublan-
guages designed for use by specific communities of imple-
menters and users.

� OWL Lite supports those users primarily needing a
classification hierarchy and simple constraints.

8 ARTIFICIAL INTELLIGENCE LANGUAGES



� OWL DL supports those users who want the maximum
expressiveness while retaining computational comple-
teness (all conclusions are guaranteed to be computa-
ble) and decidability (all computations will finish in
finite time).

� OWL Full is meant for users who want maximum
expressiveness and the syntactic freedom of RDF
with no computational guarantees.

Each of these sublanguages is an extension of its simp-
ler predecessor, both in what can be legally expressed and
in what can be validly concluded. Ontology developers
adopting OWL should consider which sublanguage best
suits their needs. The choice between OWL Lite and
OWL DL depends on the extent to which users require
the more expressive constructs provided by OWL DL. The
choice between OWL DL and OWL Full mainly depends on
the extent to which users require the meta-modeling facil-
ities of RDF Schema (e.g., defining classes of classes or
attaching properties to classes). When using OWL Full as
compared with OWL DL, reasoning support is less predict-
able because complete OWL Full implementations do not
currently exist. OWL Full can be viewed as an extension of
RDF, whereas OWL Lite and OWL DL can be viewed as
extensions of a restricted view of RDF. Every OWL (Lite,
DL, Full) document is an RDF document, and every RDF
document is an OWL Full document, but only some RDF
documents will be a legal OWL Lite or OWL DL document.

Specialized programming languages, such as DHARMI
(40), ECLiPSe (41), Esterel (42), and Shift (43), are used to
solve specific problems in different AI domains. DHARMI is
a high-level spatial language whose components are trans-
parently administered by a background process called the
Habitat. The language was designed to make modeling
prototypes and handle living data. Programs can be modi-
fied while running, which is accomplished by blurring
the distinction among source code, program, and data.
ECLiPSe is a programming language for the cost-effective
development and deployment of constraint programming
applications, e.g., in the areas of planning, scheduling,
resource allocation, timetabling, and transport. It contains
several constraint problem-solver-libraries, a high-level
modeling and control language, interfaces to third-party
solvers, an integrated development environment, and
interfaces for embedding into host environments. Esterel
is a synchronous programming language dedicated to con-
trol-dominated reactive systems, such as control circuits,
embedded systems, human–machine interface, or commu-
nication protocols. Shift is a programming language aimed
at describing dynamic networks of hybrid automata. Such
systems consist of components that can be created, inter-
connected, and destroyed as the system evolves. Compo-
nents exhibit hybrid behavior, consisting of continuous-
time phases separated by discrete-event transitions. Com-
ponents may evolve independently, or they may interact
through their inputs outputs, and exported events. The
interaction network may also evolve.

Many of the recently emerged AI languages could not be
covered here because of the imposed constraints on the
length of the contribution.

BIBLIOGRAPHY

1. A. Barr, P. Cohen and E. Feigenbaum (eds.), The Handbook of
Artificial Intelligence. Reading, MA: Addison Wesley, 1990.

2. E. Rich, Artificial Intelligence. New York: McGraw-Hill, 1990.

3. S. J. Russel, P. Norvig, Artificial Intelligence: A Modern
Approach, Englewood Cliffs, NJ: Prentice Hall, 2002

4. P. Norvig, Paradigms of Artificial Intelligence Programming:
Case Studies in Common Lisp. Philadelphia, PA: Morgan
Kaufmann, 1991.

5. R. A. Kowalski and D. Kuehner, Linear Resolution with Selec-
tion Function. Artif. Intell., 2: 227–260, 1971.

6. R. A. Kowalski, Logic for Problem Solving. New York: Elsevier
North Holland, 1979.

7. A. Colmerauer, H. Kanoui, P. Russel, and R. Passero, Un
Systeme de Communication Homme-Machine en Francais.
Marseille, Francec: Groupe de Recherche en Intelligence Arti-
ficielle, Universite d’Aix-Marseille, 1973

8. C. Green, Applications of Theorem Proving to Problem
Solving, Proc. IJCAI ‘69 Conference, 1969, pp. 219–239.

9. P. J. Hayes, Computation and Deduction, Proc. MFCS Con-
ference, 1973.

10. W. F. Clocksin and C. S. Mellish, Programming in Prolog.
New York: Springer-Verlag, 1984.

11. L. Sterling and E. Shapiro, The Art of Prolog, Second Edition:
Advanced Programming Techniques (Logic Programming).
Combridge, MA: MIT Press, 1994.

12. I. Bratko, Prolog Programming for Artificial Intelligence.
Reading, MA: Addison-Wesley, 1986.

13. J. McCarthy, History of Lisp, in D. Wexelblat (ed.), History of
Programming Languages. New York: Academic Press, 1978.

14. R. Gabriel, LISP: good news, bad news, how to win big, AI
Expert, 6 (6): 31–40, 1991.

15. J. Keyes, LISP: The great contender, AI Expert, 7 (1): 24–28,
1992.

16. Franz Inc., Allegro CL. Available: http://www.franz.com.

17. ECoLisp. Available: http://www.di.unipi.it/�attardi/software.
html.

18. H. Cejtin, S. Jagannathan, and R. Kelsey Higher-order dis-
tributed objects, ACM Trans. Programming Languages Syst.,
1995.

19. RScheme Development Group, RScheme. Available: http://
www.rscheme.org.

20. Screamer.Available:http://www.cis.upenn.edu/�screamer-tools/
home.htm.

21. D. Cabeza and M. Hermenegildo, Distributed WWW pro-
gramming using (Ciao-)Prolog and the PiLLoW Library, The-
ory Practice Logic Programming, 1(3): 251–282, 2001.

22. Daniel Diaz, GNU Prolog. Available: http://gnu-prolog.inria.fr.

23. Amzi, Amzi! Prolog. Available: http://www.amzi.com/products/
prolog_products.htm.

24. P. M. Hill and J. W. Lloyd, The Gödel Programming Language
Combridge, MA: MIT Press, 1994

25. D. Overton, Z. Somogyi, and P. Stuckey, Constraint-based
mode analysis of Mercury, Proc. of the Fourth International
Conference on Principles and Practice of Declarative Program-
ming, Pittsburgh, PA, Oct 2002, pp. 109–120.

26. C. S. da Figueira Filho and G. L. Ramalho, ‘JEOPS — The Java
Embedded Object Production System’, in Lecture Notes in
Artificial Intelligence, vol. 1952. New York: Springer Verlag
2000, pp. 52–61.

ARTIFICIAL INTELLIGENCE LANGUAGES 9



27. Kiev compiler joined Open Source community, Kiev. Available:
http://kiev.forestro.com/index.html.

28. J. Giarratano and G. Riley, Expert Systems: Principles and
Programming 3rd ed Boston, MA: PWS Publishing, 1998.

29. E. Friedman-Hill, Jess in Action. Manning Publications, 2003.

30. A. Gauld, Learn to Program Using Python, Reading, MA:
Addison-Wesley, 2001.

31. R. Hightower, Python Programming with the Java Class
Libraries, Reading, MA: Addison-Wesley, 2002.

32. SourceForge.net, APRIL. Available: http://sourceforge.net/
projects/networkagent/.

33. P. Van Roy, ‘General overview of Mozart/Oz’, Proc.
Second International Mozart/Oz Conference, Charleroi,
Belgium, 2004.

34. R. Karp et al., XOL: An XML Based Ontology Exchange Lan-
guage (version 0.4). Available: www.ai.sri.com/�pkart/xol.

35. J. Heflin et al., SHOE: A Knowledge Representation Language
for Internet Applications, Technical Report, CS-TR-4078
(UMIACS TR-99-71), Dept. of Computer Science, University
of Maryland, 1999.

36. R. Kent, Conceptual Knowledge Markup Language (version.
0.2). Available: www.ontologies.org/CKML/CKML%200.2html.

37. D. Brickley and R. V. Guha, Resource Description Framework
(RDF) Schema Specification, W2C Proposed Recommendation.
Available: www.w3.org/TR/PR-rdf-schema .

38. Reference description of the DAMLþOIL ontology markup
language. Available: http://www.daml.org/2001/03/reference.

39. W3C, OWL Web Ontology Language Reference. Available:
http://www.w3.org/TR/owl-ref/.

40. E. Wolf, DHARMI. Available: http://megazone.bigpanda.com/
�wolf/DHARMI.

41. J. Schimpf and C. Gervet, ECLiPSe Release 5.7, ALP Newsl.,
17(2), 2004.

42. G. Berry, The foundations of esterel, in G. Plotkin, C. Stirling,
and M. Tofte (eds.), Proof, Language and Interaction: Essays in
Honour of Robin Milner, Combridge, MA: MIT Press, 2000.

43. California PATH UC. Berkeley, Shift. Available: http://
path.berkeley.edu/SHIFT.

SANJA VRANES

The Mihailo Pupin Institute
Belgrade, Serbia and

Montenegro

10 ARTIFICIAL INTELLIGENCE LANGUAGES



A

AUTONOMY-ORIENTED COMPUTING (AOC)

INTRODUCTION

Programming Paradigms

In computer science, several major programming para-
digms exist, including imperative, functional, logic, and
object-oriented paradigms. The imperative paradigm embo-
dies computation in terms of a program state and state-
ments for updating the program state. An imperative
program specifies a sequence of commands for a computer
to perform. In contrast to the imperative paradigm, the
functional paradigm handles computation by means of
evaluating a series of functional expressions rather than
the execution of commands. Both the imperative and the
functional paradigms emphasize the mapping between
inputs and outputs. On the other hand, the logic paradigm
represents a set of rules and facts and then finds a solution
based on automated theorem proving. The object-oriented
paradigm may be regarded as an extension of the impera-
tive paradigm by encapsulating variables and their opera-
tions into classes. In the field of multiagent systems.
Shoham proposed an agent-oriented programming para-
digm(1) where the basic unit is an agent characterized by a
set of mental attributes, such as beliefs, commitments, and
choices.

Autonomy-Oriented Computing (AOC): A New Paradigm

This article describes a new programming paradigm called
autonomy-oriented computing (AOC), which focuses on the
construct of synthetic autonomy in locally interacting enti-
ties, and uses the aggregated effects of entity interactions to
generate desired global solutions or systems dynamics. The
fundamental working mechanism of self-organization that
underlies the AOC paradigm offers the advantages of nat-
ural formulation as well as scalable performance to char-
acterize complex systems or to handle computationally
hard problems that are distributed and large scale in
nature.

AOC versus OOP and AOP. Table 1 presents a brief
comparison among object-oriented programming (OOP),
agent-oriented programming (AOP), and AOC. We elabo-
rate their essential differences as follows.

1. Components: Unlike OOP and AOP, AOC builds on
the basic units of autonomous entities and the envir-
onment in which they reside. Autonomous entities
are characterized by their internal state and goals,
and are equipped with an evaluation function, self-
organizing behavior, and behavioral rules. Here,
autonomous means that an entity behaves and makes
decisions to change its internal state without control
from other entities or an external commander. The

autonomous entities in AOC are not as complex, i.e.,
having mental attributes, as agents in AOP.

2. Computation Philosophy: In both OOP and AOP, the
computation is embodied as a process of message
passing and responses among objects or agents. Par-
ticularly, in AOP, the computation involves some
techniques of artificial intelligence, such as knowl-
edge representation, inference, and reasoning
mechanisms. AOP is suitable for modeling distribu-
ted systems (e.g., workflow management) and for
solving distributed problems (e.g., transport schedul-
ing) (2).

The computation in AOC, on the other hand, relies
on the self-organization of autonomous entities. Enti-
ties directly or indirectly interact with each other or
with their environment to achieve their respective
goals. As entities simultaneously behave and inter-
act, the results of entity interactions will be aggre-
gated nonlinearly. The aim of an AOC system is to
find a solution through the nonlinear aggregation of
local interactions. For instance, in the case of compu-
tational problem solving, the emergent AOC system
states may correspond to the solutions of a problem at
hand. Generally speaking, AOC works in a bottom-up
manner, somewhat like the working mechanism of
nature. It is one of the reasons why AOC is well suited
to characterize the behavior of complex systems and
to solve computationally difficult problems.

MOTIVATIONS AND GOALS OF AUTONOMY-ORIENTED
COMPUTING

Nature is full of complex systems that exhibit interesting
behavior (3,4). Scientists and researchers are interested in
modeling complex systems primarily for two reasons: (1) to
discover and to understand the underlying working
mechanism of a complex system concerned, and (2) to
simulate and to use the observed complex behavior to
formulate problem-solving strategies such as global opti-
mization. In general, one wants to be able to explain,
predict, reconstruct, and deploy a complex system. Compu-
ter scientists and mathematicians have, in the past, devel-
oped various nature-inspired algorithms to solve their
problems at hand.

Common techniques for complex systems modeling can
be divided broadly into top-down and bottom-up
approaches. Top-down approaches start from the high-level
system and use various techniques such as ordinary and
partial differential equations (5–7). These approaches gen-
erally simplify the behavior of individuals in a complex
system and tend to model the average case well, where local
variations in the behavior are minimal and can be ignored
(8). However, such approaches are not always applicable.
For instance, the distribution of antibodies in the human

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



immune system tends to be heterogeneous. Therefore, the
use of differential equations cannot accurately describe the
emergent behavior and dynamics in such a biologic system
(9). On the other hand, bottom-up approaches (10–13) start
from the smallest element of a complex system and take
into consideration the following characteristics of entities
in the system:

� Autonomous: Entities are individuals with bounded
rationality that will act independently. No central
controller exists to direct and coordinate individual
entities.

� Distributed: Autonomous entities with localized reac-
tive or decision-making capabilities are distributed in
a heterogeneous environment, and interact locally
among themselves to exchange their state information
or to affect the states of others.

� Emergent: Distributed autonomous entities collec-
tively exhibit complex (purposeful) behavior that is
not present nor predefined in the behavior of entities in
a system.

� Adaptive: Entities often change their behavior in
response to changes in the environment in which
they are situated.

� Self-organized: Through entity interactions, the sys-
tem self-aggregates and amplifies certain outcomes of
entity behavior. In other words, autonomous entities
can self-organize to evolve some system-level emer-
gent behavior.

AOC is a bottom-up approach to characterize the beha-
vior of complex systems and to solve computationally diffi-
cult problems. Specifically, AOC has three goals: The first
goal is to reproduce life-like behavior in computation. With
detailed knowledge of the underlying mechanism, simpli-

fied life-like behavior can be used as the model for general-
purpose problem-solving techniques. The second goal is to
study the underlying mecnanism of a real-world complex
system by hypothesizing and repeated experimentation.
The end product of these simulations is a better under-
standing of, or explanations to, the real working mechan-
ism of the modeled system. The third goal concerns the
emergence of a problem solver in the absence of human
intervention. In other words, self-adaptive, self-discovery
algorithms are desired.

THREE GENERAL APPROACHES TO
AUTONOMY-ORIENTED COMPUTING

To build an AOC-based model, we need to carry out the
following steps:

1. Observe the macroscopic behavior of a natural
system.

2. Design entities with desired synthetic behavior as
well as an environment where entities reside.

3. Observe the macroscopic behavior of the artificial
system.

4. Validate the behavior of the artificial system against
the natural counterpart.

5. Modify (2) in view of (4).

6. Repeat (3)–(5) until the result is satisfactory.

7. Find out a model/origin of (1) in terms of (2) or apply
the derived model to solve problems.

AOC is intended to reconstruct, to explain, and to predict
the behavior of complex systems, which is hard to model or
compute using top-down approaches. Local interactions
between autonomous entities are the primary driving force

Table 1. A Comparison Among OOP, AOP [Shoham (1)], and AOC

OOP AOP AOC

Basic unit object agent autonomous entity and environment

Attributes of
basic unit

member variables and
member functions

beliefs, decisions, capabilities,
and obligations

states, evaluation function, goals,
self-organizing behavior, and
behavioral rules

Computation message passing and
response methods

message passing and
response methods

(i) self-organization of
autonomous entities and

(ii) self-aggregation of entities
behavior and interaction

Interaction inheritance and messages
among objects

messages among agents,
including inform, request,
offer, promise, decline, etc.

(i) interaction between entities and
their environment and

(ii) direct/indirect interaction
among entities

Constraints on methods none honesty, consistency, etc. behavioral rules

Suitability modeling and decomposition (i) modeling distributed systems and
(ii) solving distributed problems (2)

(i) characterizing the behavior of
complex systems and

(ii) solving computationally
difficult problems

2 AUTONOMY-ORIENTED COMPUTING (AOC)



of AOC. Formulation of an autonomy-oriented computa-
tional system involves an appropriate analogy, which nor-
mally comes from nature. Employing such an analogy,
therefore, requires identification, abstraction, and repro-
duction of a certain natural phenomenon. The process of
abstraction inevitably involves certain simplification of the
natural counterpart. An abstracted version of some natural
phenomena is the starting point of AOC, such that the
problem at hand can be recasted. In the following subsec-
tions, we present three main approaches of AOC in detail.

AOC-By-Fabrication

AOC-by-fabrication is intended to replicate certain self-
organizing behavior observable in the real world to form
a general-purpose problem solver. The operating mechan-
ism is more or less known and may be simplified during the
modeling process. Research in artificial life (Alife) (10) is
related to this AOC approach up to the behavior replication
stage. Nature-inspired techniques such as ant systems (14)
and evolutionary algorithms (15,16) are typical examples of
such an extension.

Building on the experience of complex systems modeling,
AOC algorithms are used to solve computationally hard
problems. For example, in the commonly used version of
genetic algorithms (16) that belong to the family of evolu-
tionary algorithms, the process of sexual evolution is sim-
plified to selection, recombination, and mutation, without
the explicit identification, of male and female in the gene
pool. Evolutionary programming (15)and evolutionstrategy
(17), on the other hand, are closer to asexual reproduction
with the addition of constraints on mutation and the intro-
duction of mutation operator evolution, respectively.
Despite these simplifications and modifications, evolution-
ary algorithms still capture the essence of natural evolution
and are proven global optimization techniques.

As a demonstration of the AOC-by-fabrication approach,
Liu et al. have developed an autonomy-oriented algorithm
for image segmentation which identifies homogeneous
regions within an image (18,19). Autonomous entities are
deployed to a 2-D grid representation of an image. Each
entity is equipped with the ability to assess the homoge-
neity of the region within a predefined locality. When a
nonhomogeneous region is found, the autonomous entity
will diffuse to another pixel in a certain direction within the
local region. In contrast, when an entity locates a homo-
geneous region within the range of the pixel it currently
resides, it replicates (breeds) itself to give rise to a certain
number of offspring entities, and delivers them to its local
region in a certain direction. The breeding behavior enables
the newly created offspring to be distributed near the pixels
where the region is found to be homogeneous, so that it is
more likely to find the extension to the current homoge-
neous region. Apart from breeding, the entity will also label
the pixel found to be homogeneous. If an autonomous entity
fails to find a homogeneous region during its lifespan (a
predefined number of steps) or wanders off the search space
during diffusion, it will be marked inactive. In essence, the
stimuli from the pixels will direct the autonomous entities
to two different behavioral tracts: breeding and pixel label-
ing, or diffusion and decay. The directions of breeding and

diffusion are determined by their respective behavioral
vectors, which contain weights (between 0 and 1) of all
possible directions. The weights are updated by considering
the number of successful siblings in the respective direc-
tions. An entity is considered to be successful if it has found
one or more pixels that are within a homogeneous region
during its lifetime. A similar technique also has been
applied to a feature extraction task such as border tracing
and edge detection (20).

In general, the AOC-by-fabrication approach focuses on
building a mapping between a real problem and a natural
phenomenon/system, theworking mechanismbehind which
is usually more or less known (see Fig. 1). In the mapping,
the synthetic entities and their parameters (e.g., states or
behavior) correspond, respectively, to the natural life-forms
and their properties. Ideally, some special states of the
natural phenomenon/system correspond to the solutions
of the real problem. In particular, the AOC-by-fabrication
approach has the following common characteristics:

1. There is a population of individuals, each of which
is mainly characterized by its state, goals, self-
organizing behavior, and behavioral rules. Indivi-
duals may be homogeneous or heterogeneous. Even
in the homogeneous case, individuals may differ in
certain detailed parameters.

2. The composition of the population may change over
time, by the process analogous to birth (amplification
of the desired behavior) and death (elimination of the
undesired behavior). But, in some applications, the
population has the fixed number of entities.

3. Tne interactions between individuals are local;
neither global information nor central executive to
control behavior or interactions is needed.

Figure 1. A schematic diagram of the AOC-by-fabrication
approach, which is intended to build a mapping between a real
problem and a natural phenomenon/system (21). In the figure,
entities are characterized by a set of attributes (e.g., G, B, S, F,
and R).

AUTONOMY-ORIENTED COMPUTING (AOC) 3



4. The environment acts as the center of information
relating to the current status of the problem and as a
place holder for information sharing between indivi-
duals.

5. The local goals of individuals drive the selection of
local behavior at each step.

6. The global goal of the whole system is implicitly
represented by the combination of all individuals’
local goals or a universal fitness function, which
measures the progress of the computation.

AOC-by-Prototyping

AOC-by-prototyping is a common AOC approach to under-
stand the operating mechanism underlying a complex sys-
tem. It models the system by simulating certain observed
behavior, through characterizing the construct of synthetic
autonomy in entities. Usually, AOC-by-prototyping
involves a trial-and-error process to eliminate the differ-
ence between a prototype and its natural counterpart.
Examples of this approach include the study of Internet
ecology, traffic jams, and web log analysis. This AOC
approach relates to multiagent approaches to complex
systems in the field of distributed artificial intelligence.

With the help of a blueprint, we can build a model of a
system in an orderly fashion. With insufficient knowledge
about the mechanism of how the system works, it is diffi-
cult, if not impossible, to build such a model. Assumptions
about the unknown workings have to be made to get the
process started. We can verify the model by comparing its
behavior with some observed behavior of the desired sys-
tem. This process will have to be repeated several times
before a good, probably not perfect, prototype is found.
Apart from obtaining a working model of the desired sys-
tem, an important by-product of the process is the discovery
of the mechanisms that are unknown when the design
process first started. This view is shared by researchers
developing and testing theories about human cognition and
social phenomena.

Liu et al. (22) and (23) have illustrated the AOC-by-
prototyping approach to characterize the regularities of
web surfing. They propose a web surfing model, which
takes into account the characteristics of users, such as
interest profiles, motivations, and navigation strategies.
They view users as information foraging entities inhabiting
the web space. The web space is a collection of websites
connected by hyperlinks. Each website contains certain
information contents, and each hyperlink between two
websites signifies certain content similarity between
them. The contents contained in a website are character-
ized by using a multidimensional consent vector where each
component corresponds to the relative information weight
on a certain topic. The web space is generated by assigning
topics to each web page according to a certain statistical
distribution. The variance of the distribution controls the
similarity of the pages.

Liu and Zhang (23) have simulated users in the system
by associating with them an interest vector, again gener-
ated randomly based on a statistical distribution with
certain variance. Therefore, a parameter controls the

degree of overlap in interest between users. When an
information foraging entity finds certain websites in which
the content is close to its interested topic(s), it will get more
motivated to surf deeper. On the other hand, when the
entity does not find any interesting information after some
foraging steps or it has found enough contents to satisfy its
interests, it will stop foraging and leave the web space. To
model such a motivation-driven foraging behavior, they
introduce a support function, which serves as the driving
force for an entity to forage further. When the entity has
found some useful information, it will get rewarded, and
thus the support value will be increased. As the support
value exceeds a certain threshold, which implies that the
entity has obtained a sufficient amount of useful informa-
tion, the entity will stop foraging. On the contrary, if the
support value is too low, the entity will lose its motivation to
forage further and thus leave the web space.

In summary, AOC-by-prototyping is used to uncover the
working mechanism behind a natural phenomenon/
system. In doing so, at the beginning, a preliminary proto-
type will be built to characterize or to simulate the natural
counterpart. Then, by observing the difference between the
natural phenomenon/system and the synthetic prototype, a
trial-and-error process will be involved to fine-tune the
prototype, especially the related parameters, to adjust the
behavior of the synthetic entities. Figure 2 presents a sche-
matic diagram of the process of AOC-by-prototyping.

In a sense, AOC-by-prototyping can be observed as an
iterated application of AOC-by-fabrication with the addi-
tion of parameter tuning at each iteration. The difference
between the desired behavior and the actual behavior of a
prototype is the guideline to parameter adjustment. The
process can be summarized, with reference to the summary
of AOC-by-fabrication, as follows:

Figure 2. A schematic diagram of the process of AOC-by-proto-
typing, where the trial-and-error process, i.e., repeated fine-tune
and compare steps, will be manually operated (as symbolized in the
figure) (21).

4 AUTONOMY-ORIENTED COMPUTING (AOC)



1. The state, evaluation function, goals, self-organizing
behavior, and behavioral rules of an entity can be
changed from one prototype to the next.

2. The definition of the environment can also be changed
from one version to the next.

3. There is an additional step to compare the synthetic
model with the natural counterpart.

4. A new prototype is built by adopting (1) and (2) above,
and by repeating the whole process.

AOC-by-Self-Discovery
AOC-by-self-discovery emphasizes the ability of an AOC-
based computational system to find its own way to achieve
what AOC-by-prototyping can do. The ultimate goal is to
have a fully automated algorithm that can adjust its own
parameters for different application domains. In other
words, the AOC becomes autonomous. Some evolutionary
algorithms that exhibit a self-adaptive capability are exam-
ples of this approach.

As inspired by diffusion in nature, Tsui and Liu (24,25)
have developed an AOC-based method, called evolutionary
diffusionoptimization (EDO), to tacklea global optimization
task. A population of entities is used to represent candidate
solutions to the optimization problem at hand. The goal is to
build a collective view of the landscape of the search space by
sharing information among entities. Specifically, each
entity performs a search in its local proximity, and captures
the ‘‘direction’’ information of the landscape in a probability
matrix—the likelihood estimate of success with respect to
the direction of search in each object variable.

EDO defines three types of local behavior for each entity,
namely diffuse, reproduce, and aging. Free-ranging enti-
ties that are searching for a position better than their
birthplaces are called active entities. Those entities that
already have become parents are called inactive entities.

Entities in EDO explore uncharted locations in the
solution space by diffusion. Rational move refers to the
kind of diffusion where an entity modifies its object vector
by drawing a random number for each dimension of the
object vector. Each random number is then used to choose
between the set of fixed steps according to the probability
matrix. An adjustment is then made by adding the product
of the number of steps and the size of a step to the entry in
question in the object vector. This process is repeated until
all dimensions of the object vector are covered. The updated
object vector then becomes the new position of the entity in
the solution space. As an entity becomes older, it becomes
more eager to find a better position. Therefore, it will decide
probabilistically to act wild and to take a random walk. An
entity will first choose randomly a direction of diffusion for
each dimension, i.e., either no change, toward the upper
bound, or toward the lower bound. In case a move is to be
made, a new value between the chosen bound and the
current value is then picked randomly. The process ends
when all dimensions of the object vector are updated.

At the end of an iteration, the fitness of all active entities
are compared with that of their parents, which have (tem-
porarily) become inactive. All entities with higher fitness
will reproduce via asexual reproduction—a reproducing

entity replicates itself a number of times and sends the
new entities off to new locations by rational moves. Parents
and their offspring share the same probability matrix. Only
when an entity becomes a parent then a new probability
matrix will be created for it, which is an exact copy of the
parent’s updated one. Sharing the probability matrix
between parents and siblings enables entities from the
same family to learn from each other’s successes as well
as failures.

Aging is the process by which consistently unsuccessful
entities are eliminated from the system. It is controlled by a
lifespan parameter. Exceptions are granted to those enti-
ties whose ages have reached the set limit but that have the
above-average fitness. On the other hand, entities whose
fitness is at the lower 25% of the population will be elimi-
nated before their lifespan expires.

Search algorithms need a scheme to implement the
strategy that says ‘‘good’’ moves need to be rewarded while
‘‘bad’’ moves should be discouraged. All entities in EDO
maintain a close link between parents and offspring via
sharing the probability matrix. Therefore, it is very easy for
EDO to implement the above strategy, and EDO has two
feedback mechanisms for updating the probability matrix
of the parent. Positive feedback increases the value of the
entry in the probability matrix that corresponds to
the ‘‘good’’ move. In contrast, negative feedback reduces
the relevant probabilities that relate to the ‘‘bad’’ move.
Although negative feedback is exercised after each diffu-
sion, positive feedback can take place only after an entity
has become a parent. Note also that all probabilities are
normalized using their respective sum after updating.

EDO also adapts the step-size parameter, which deter-
mines the amount of change during diffusion, over time
based on the performance measurement of the population.
Step-size is reduced if the population has not improved
over a period of time. Conversely, if the population has
been improving continuously for some time, step-size is
increased. The rationale is that the entities in the neigh-
borhood of a minimum value need to make finer steps for
careful exploitation, whereas using a large step-size during
a period of continuous improvement attempts to speed up
the search.

AOC-by-self-discovery can be used not only to build a
mapping between a real problem and a certain natural
phenomenon/system, but also to reveal the operating
mechanism behind a natural phenomenon/system. In
general, it combines the uses of AOC-by-fabrication and
AOC-by-prototyping. In its implementation, AOC-by-self-
discovery is the same as AOC-by-prototyping except that
the process of trial-and-error in AOC-by-self-discovery is
automated (see Fig. 3). The full automation of the proto-
typing process is achieved by having an autonomous entity
to control another level of autonomous entities. The exam-
ple described above shows that AOC-by-self-discovery is
indeed a viable proposition. The steps for engineering this
kind of AOC algorithm is the same as those stated, with the
addition of one rule:

� System parameters are self-adapted according to some
performance measurements.

AUTONOMY-ORIENTED COMPUTING (AOC) 5



IMPORTANT CONCEPTS REVISITED

In this section, we will summarize the article by highlight-
ing some of the key modeling concepts that we have intro-
duced in the preceding descriptions of AOC approaches.

The Environment

As one of the main components in an AOC system, the
environment usually plays three roles. First, the environ-
ment serves as the domain in which autonomous entities
roam. This is a static view of the environment. Second, the
environment acts as the noticeboard where the autono-
mous entities can read and/or post local information. In
this sense, the environment can also be regarded as an
indirect communication medium among entities. This is the
dynamic view of the environment. Third, the environment
also keeps the central clock that helps synchronize the
behavior of all autonomous entities, if necessary.

Autonomous Entities

An autonomous entity possesses a way to find out what is
going on with other entities as well as with the environ-
ment. As a result, it will modify its own state, exert changes
to the environment, and/or affect other entities. Central to
an autonomous entity is its local behavior and behavioral
rules that govern how it should act or react to the informa-
tion collected from the environment and its neighbors. The
local behavior and behavioral rules determine to which
state the entity will transit.

In different AOC systems, the neighbors of an entity can
be fixed or dynamically changed.

At each moment, an entity is in a certain state. It,
according to its behavioral rules, selects and performs its
behavior to achieve certain goals with respect to its state. In
doing so, it needs to interact with its neighbors and/or its
environment to get the necessary information.

Interactions in an AOC System

The emergent behavior of an AOC system originates from
its internal interactions. Generally speaking, there are
two types of interactions, namely, interactions between
entities and their environment and interactions among
entities.

The interactions between an entity and its environment
are implemented through state transitions as caused by the
entity’s self-organizing behavior.

Different AOC systems may have different ways of
interactions among their entities. Those interactions can
be categorized further into two categories: direct and indir-
ect interactions. Direct interactions are implemented
through direct state information exchanges among entities.
In an AOC system with direct interactions, each entity can
interact with its neighbors. Indirect interactions are imple-
mented through the communication medium role of the
environment. They can be carried out in two stages: (1)
through the interactions between an entity and its envir-
onment, the entity will ‘‘transfer’’ its information to the
environment, and (2) other entities will consider the infor-
mation that has been ‘‘transfered’’ to the environment by
the previous entity.

For further readings on AOC, e.g., more comprehensive
surveys of related work, formal descriptions of the AOC
approaches and formulations, and detailed discussions of
examples as mentioned in this article, please refer to Refs.
(21) and (26).

BIBLIOGRAPHY

1. Y. Shoham, Agent-oriented programming, Artif. Intell., 60(1):
51–92, 1993.

2. R. Kuhnel, Agent oriented programming with Java, I. Plander,
editor, Proceedings of the Seventh International Conference on
Artificial Intelligence and Information - Control Systems of
Robots (AIICSR’97), Singapore: World Scientific Publishing,
1997.

3. S. Kauffman, At Home in the Universe: the Search for Laws of
Complexity, Oxford UK: Oxford University Press, 1996.

4. S. Rihani, Complex Systems Theory and Development Practice:
Understanding Non-linear Realities, London: Zed Books, 2002.

5. K. Vajravelu, ed., Differential Equations and Nonlinear
Mechanics, Dordrecht, the Netherlands: Kluwer Academic
Publishers, 2001.

6. A. M. Blokhin, Differential Equations and Mathematical Mod-
elling, Nova Science Publishers, 2002.

7. J. H. Vandermeer and D. E. Goldberg, Population Ecology:
First Principles, Princeton, NJ: Princeton University Press,
2003.

8. J. Casti, World Be Worlds: How Simulation is Changing the
Frontiers of Science, New York: John Wiley & Sons, 1997.

9. Y. Louzoun, S. Solomon, H. Atlan, and I. R. Cohen. The
emergence of spatial complexity in the immune system. Los

Figure 3. A schematic diagram of the process of AOC-by-self-
discovery (21). As compared with AOC-by-prototyping (see Fig. 2),
here the trial-and-error process, i.e., repeated fine-tune and com-
pare steps, is automatically implemented by the system (as sym-
bolized in the figure).

6 AUTONOMY-ORIENTED COMPUTING (AOC)



Alamos Physics Archive, 2000. Available: (http://xxx.lanl.gov/
html/cond-mat/0008133).

10. C. G. Langton, Artificial life, in C. G. Langton, ed., Artificial
Life, Volume VI of SFI Studies in the Sciences of Complexity,
Redwood City, CA: Addison-Wesley, 1989.

11. M. Resnick, Turtles, Termites and Traffic Jams: Explorations
in Massively Parallel Microworlds, Cambridge, MA: MIT
Press, 1994.

12. J. Doran and N. Gilbert, Simulating societies: An introduction,
in N. Gilbert, and J. Doran, ed., Simulating Societies: The
Computer Simulation of Social Phenomena, London: UCL
Press, 1994, pp. 1–18.

13. E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelli-
gence: From Natural to Artificial Systems, Oxford UK: Oxford
University Press, 1999.

14. M. Dorigo, V. Maniezzo, and A. Colorni, The ant system:
Optimization by a colony of cooperative agents. IEEE Trans.
Syst. Man, and Cybernetics-Part B, 26(1): 1–13, 1996.

15. L. Fogel, A. J. Owens, and M. Walsh, Artificial Intelligence
Through Simulated Evolution, New York: John Wiley & Sons,
1966.

16. J. H. Holland, Adaptation in Natural and Artificial Systems,
Cambridge, MA: MIT Press, 1992.

17. H. P. Schwefel, Numerical Optimization of Computer Models,
New York: John Wiley & Sons, 1981.

18. J. Liu, Autonomous Agents and Multi-Agent Systems: Explora-
tions in Learning, Self-Organization, and Adaptive Computa-
tion, Singapore: World Scientific Publishing, 2001.

19. J. Liu, Y. Y. Tang, and Y. C. Cao, An evolutionary autonomous
agents approach to image feature extraction. IEEE Trans. on
Evolut. Comput., 1(2): 141–158, 1997.

20. J. Liu and Y. Y. Tang, Adaptive image segmentation with
distributed behavior-based agents. IEEE Trans. on Pattern
Anal. and Machine Intell., 21(6): 544–551, 1999.

21. J. Liu, X. Jin, and K. C. Tsui, Autonomy Oriented Computing:
From ProblemSolving to Complex Systems Modeling, Pordrect,
the Netherland: Kluwer Academic Publishers/Springer, 2004.

22. J. Liu, S. Zhang, and J. Yang, Characterizing Web usage
regulartities with information foraging agents. IEEE Trans.
on Knowledge and Data Engineering, 16(6): 566–584, 2004.

23. J. Liu and S. Zhang, Unveiling the origin of Web surfing
regularities, in Proceedings of iNET 2001, 2001.

24. K. C. Tsui and J. Liu, Evolutionary diffusion optimization, Part
I: Description of the algorithm, in X. Yao, ed., Proceedings of
the Congress on Evolutionary, Computation (CEC 2002), 2002,
pp. 169–174.

25. K. C. Tsui and J. Liu, Evolutionary diffusion optimization, Part
II: Performance assessment, in X. Yao, ed., Proceedings of the
Congress on Evolutionary Computation (CEC 2002), 2002, pp.
1284–1290.

26. J. Liu, X. Jin, and K. C. Tsui, Autonomy oriented computing
(AOC): Formulating computatinal systems with autonomous
components. IEEE Trans. Sys. Man, and Cybernetics, Part A,
35(6): 879–902, 2005.

JIMING LIU

XIAOLONG JIN

KWOK CHING TSUI

Hong Kong Baptist University
Hong Kong

AUTONOMY-ORIENTED COMPUTING (AOC) 7



B

BIOINFORMATICS

INTRODUCTION

Almost all genetic information is stored in genome
sequences. Genome sequences have been determined for
many species, including humans, and thus huge amounts of
sequence data have been obtained. Furthermore, a large
amount of related data such as three-dimensional protein
structures and gene expression patterns have also been
produced. To analyze these data, we need new computa-
tional methods and tools. One major goal of bioinformatics
is to develop such methods and tools, whereas another
major goal of bioinformatics is to discover new biological
knowledge using such kinds of tools. Computational biology
is regarded as almost synonymous with bioinformatics.
Although the difference between these two terms is very
unclear, it seems that computational biology focuses on
computational methods and on the actual process of ana-
lyzing and interpreting data.

Here, we overview important topics in bioinformatics:
comparison of sequences, motif discovery, hidden Markov
models (HMMs), protein structure prediction, kernel meth-
ods for bioinformatics, and analysis of gene expression
patterns. Readers interested in more details may refer to
the following textbooks (1–3) and handbook (4).

COMPARISON OF SEQUENCES

Comparison of two or multiple sequences is a fundamental
and important problem in bioinformatics (1–3) because if
two sequences of DNA or protein are similar to each other, it
is expected that these DNAs or proteins have similar
functions. Although there are many variants, we define
here a basic version (global multiple alignment under the
Sum-of-Pairs scoring scheme with linear gap costs) of
the problem formally. Let s1, s2,. . ., sk be sequences (i.e.,
strings) over a fixed alphabet S, where k>1. S is usually
either the set of bases {A, C, G, T} or the set of amino acids
(i.e., |S| ¼ 20). An alignment for s1, s2,. . ., sk is obtained by
inserting gap symbols (denoted by ‘‘– ’’) into or at either end
of si such that the resulting sequences s01; s

0
2; . . . ; s0k are of the

same length l. Introduction of gaps is important because
gaps correspond to insertions and deletions of bases (in
DNA) or residues (in protein) that occur in the process of
evolution. For example, consider three sequences
CGCCAGTG, CGAGAGG, and GCCGTGG. Then examples
of alignments are as follows:

M1 M2 M3
CGCCAGTG- CGCCAGT-G CGCCAGT-G-
CG--AGAGG CG--AGAGG -CGA-G-AGG
-GCC-GTGG -GCC-GTGG -GCC-GT-GG

In an alignment, letters in the same column correspond
to each other: Bases or residues in the same column are
regarded to have the same origin.

Let f(x, y) be a function from S
0 � S

0 to R that satisfies
f(x, y) ¼ f(y, x) and f(x,�) ¼ f(�, y) ¼ �d for all x, y 2 S and
f(�, �) ¼ 0, where R denotes the set of real numbers and
S
0 ¼ S[f�g. The score for an alignmentM is defined by

scoreðMÞ ¼
X

1�p< q�k

Xl

i¼l

f ðs0p½i�; s0q½i�Þ

where s0p½ j� denotes the jth letter of s0p. Then we define an
optimal alignment to be an alignment with the maximum
score. Ifwe define f(x, x) ¼ 1 and f(x,�) ¼ f(�, x) ¼ �1 forx2
S, f(x, y) ¼ �1 for x6¼y, and f(�,�) ¼ 0, the scores ofM1 and
M2 are both 3, and the score ofM3 is�5. In this case, both
M1 and M2 are optimal alignments. The alignment pro-
blem is to find an optimal alignment. It is called the pairwise
alignment problem if k ¼ 2, and otherwise, it is called the
multiple alignment (multiple sequence alignment) problem.

An optimal alignment for two sequences can be com-
puted in O(n2) time using a simple dynamic programming
algorithm (1), where n is the larger length of the two input
sequences. The following procedure gives the core part of
the algorithm:

D½i�½0� ¼ �i � d; D½0�½ j� ¼ � j � d
D½i�½ j� ¼ maxðD½i� 1�½ j� � d; D½i�½ j� 1� � d;

D½i� 1�½ j� 1� þ f ðs1½i�; s2½ j�ÞÞ

where D[i][j] corresponds to the optimal score between
s1½1� . . . s1½i� and s2½1� . . . s2½ j�. An optimal alignment can
also be obtained from this matrix by using the traceback
technique (1). Many variants are proposed for pairwise align-
ment, among which local alignment (the Smith–Waterman
algorithm) with affine gap costs is most widely used (1,3).

This algorithm is fast enough to compare two sequences.
However, in the case of a homology search (search for
homologous genes or proteins), it is required to find
sequences in a database that are similar to a given sequence.
For example, suppose that one determines a new DNA
sequence of some gene in some organism and wants to
know the function of the gene. He or she tries to find similar
sequences in other organisms using a database (such as
GenBank 5), which stores all known DNA sequences. If a
similar sequence whose function is known is found, then he
or she can infer that the new gene has a similar function.
Thus, in a homology search, pairwise alignment between a
query sequence and all sequences in a database should be
performed. Since more than several hundreds of thousands
of sequences are usually stored in a database, simple appli-
cation of pairwise alignment would take a lot of time. There-
fore, several heuristic methods have been proposed to speed
up a database search, among which FASTA and BLAST are
widely used (3). Most heuristic methods employ the follow-
ing strategy: Candidate sequences having fragments (short
length substrings) that are the same as (or very similar to) a
fragment of the query sequence are first searched, and then

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



pairwise alignments are computed using these fragments as
anchors. Using these methods, a homology search against
several hundreds or thousands of sequences can be done in
around a few minutes.

The dynamic programming algorithm above can be
extended for cases of k > 2, but it is not practical because
it takes (O(nk) time or more. Indeed, multiple alignment is
known to be NP-hard if k is a part of the input (i.e., k is not
fixed) (6). Thus, a variety of heuristic methods have been
appliedtomultiplealignmentthatincludesimulatedanneal-
ing, evolutionary computation, iterative improvement,
branch-and-bound search, and stochastic methods (1,7).

The most widely used method employs the progressive
strategy(1,8). In this strategy, we need an alignment
between two profiles, where a profile corresponds to the
result of an alignment. Alignment between profiles can be
computed in a similar way to pairwise alignment: Each
column is treated as if it were a letter in pairwise alignment.
An outline of the progressive strategy used in CLUSTAL-W
(8) is as follows (see also Fig. 1):

(i) Construct a distance matrix for all pairs of sequences
by pairwise sequence alignment, followed by conver-
sion of alignment scores into distances using an appro-
priate method.

(ii) Construct a rooted tree whose leaves correspond to
input sequences, using a method for phylogenetic tree
construction.

(iii) Progressively perform sequence–sequence, sequence–
profile, and profile–profile alignment at nodes in order
of decreasing similarity.

Although we have assumed that score functions were
given, derivation or optimization of score functions is also
important. Score functions are usually derived by taking
log-ratios of frequencies (9). Since score functions obtained
in this manner are not necessarily optimal, some methods
have been proposed for optimizing score functions (10).

MOTIF DISCOVERY

It is very common that sequences of genes or proteins with a
common biological function have a common pattern of

sequences. For example, promoter regions of many genes
in Eukaryotes have ‘‘TATAA’’ as a subsequence. Such a
pattern is called a motif (more precisely, a sequence motif )
(11,12). Motif discovery from sequences is important for
inference of functions of proteins and for finding biologi-
cally meaningful regions (such as transcription factor bind-
ing sites) in DNA sequences. Although there are various
ways of defining motif patterns, these can be broadly
divided into deterministic patterns and probabilistic pat-
terns(11).

Deterministic patterns are usually described using syn-
tax similar to regular expressions. For example, ‘‘[AG]-
x(2,5)-C’’ is a pattern matching any sequence containing
a substring starting with A or G, followed by between two
and five arbitrary symbols, followed by C. Deterministic
patterns are usually discovered from positive examples
(sequences having a common function) and negative exam-
ples (sequences not having the function). Although discov-
ery of deterministic patterns is computationally hard (NP-
hard) in general, various machine learning techniques
have been applied (11).

Probabilistic patterns are considered to be more flexible
than deterministic patterns, although deterministic pat-
terns are easier to interpret. Probabilistic patterns are
represented using statistical models. For example, profiles
(also known as weight matrices or position-specific score
matrices) and hidden Markov models are widely used (1).
Here, we introduce profiles. A profile is a function w(x, j)
from S� ½1 . . . L� to R, where L denotes the length of sub-
sequences corresponding to a motif, and [1. . .L] denotes the
set of integers between 1 and L. It should be noted in this
case that the lengths of motif regions (i.e., subsequences
corresponding to a motif ) must be the same and that gaps
are not allowed in the motif regions. A profile can be
represented by a two-dimensional matrix of size L � jSj. A
subsequence s[i]. . .s[i + L�1] of s is regarded as a motif if
S j¼1;...;Lwðs½iþ j� 1�; jÞ is greater than a threshold u.

Various methods have been proposed in order to derive a
profile from sequences s1; s2; . . . ; sk having a common func-
tion. One common approach is to select a subsequence ti

from each sequence si such that the relative entropy score
(the average information content) is maximized (see Fig. 2).
The relative entropy score is defined by

1

L

XL

j¼1

X
a2S

f jðaÞlog2

f jðaÞ
pðaÞ

where fj(a) is the frequency of appearances of symbol a at
the jth position in the subsequences (i.e., f jðaÞ ¼ jfijtij½ j� ¼
agj=k) and pa is the background probability of symbol a. In a

simplest case, we may use pðaÞ ¼ 1

jSj.

G C
C

G A
G C G A

T-
-

C C A G A T
C G A A T-

-
-

-
-

G C C G AG C G A T C C A G A T C G A A T

C C A G A T
C G A A T-

G C
C

G A
G C G A

T-
-

u v

w

Figure 1. Progressive alignment. Pairwise sequence alignment
is performed at nodes u and v, whereas profile alignment is
performed at node w.

C G A T A A T C G A C T C

T T C A T T C G G G C G T

s3

s1

s2

A C C G A A T G G T A GT T

Figure 2. Motif discovery basedon relative entropy score. Shaded
regions correspond to t1,t2 and t3 (L = 5).

2 BIOINFORMATICS



Maximization of this relative entropy score is known to
be NP-hard (13). On the other hand, several heuristic
algorithms have been proposed based on statistical algo-
rithms such as the expectation maximization (EM) method
(14) and Gibbs sampling (12).

HIDDEN MARKOV MODELS

HMMs were originally developed in the areas of statistics
and speech recognition. In the early 1990s, HMMs were
applied to multiple sequence alignment (15) and protein
secondary structure prediction (16). After that, the HMM
and its variants were applied to solve various problems in
bioinformatics. For example, HMMs have been applied to
gene finding (identification of subsequences in DNA that
encode genes), motif finding, and recognition of protein
domains (1). One advantage of HMMs is that they can
provide more detailed generative models for biological
sequences than sequence alignment, although HMMs
usually require longer CPU time than sequence alignment,
and HMMs often need to be trained. Here, we briefly review
the HMM and its application to bioinformatics. Readers
interested in the details may refer to Ref. 1.

An HMM is defined by quadruplet (S, Q, A, E), where S is
an alphabet (a set of symbols), Q ¼ {q0,. . ., qm} is a set of
states, A ¼ (akl) is an (m + 1) � (m + 1) matrix of state
transition probabilities, and E ¼ (ek(b)) is an
(m + 1) � |S| matrix of emission probabilities. To be
more precise, akl denotes the transition probability from
state qk to ql, and ek(b) denotes the probability that a symbol
b is emitted at state qk. Q denotes the collection of para-
meters of an HMM [i.e., Q ¼ (A, E)], where we assume that
S and Q are fixed based on the nature of the problem.

A pathp ¼ p½1� . . . p½n� is a sequence of (indices of )
states. The probability that both p and a sequence s ¼
s½1� . . . s½n� over S are generated under Q is defined by

Pðs;pjQÞ ¼
Yn
i¼1

ap½i�1�p½i�ep½i�ðs½i�Þ;

where p[0] ¼ 0 is introduced as a fictitious state, a0k

denotes the probability that the initial state is qk, and
ak0 ¼ 0 for all k.

There are three important algorithms for using HMMs:
the Viterbi algorithm, the forward algorithms, and the
Baum–Welch algorithm. The Viterbi algorithm computes
the most plausible path for a given sequence. Precisely, it
computes p�ðsÞ defined by

p�ðsÞ ¼ arg max
p

Pðs;pjQÞ

when sequence s is given. The forward algorithm computes
the probability that a given sequence is generated. It
computes

PðsjQÞ ¼ S
p

Pðs;pjQÞ

when sequence s is given. Both the Viterbi and forward
algorithms are based on the dynamic programming tech-

nique. Each of these algorithms works in O(nm2) time for
fixed S.

Figure 3 shows an example of an HMM. Suppose that
akl ¼ 0.5 for all k, l (l 6¼ 0). Then, for sequence s ¼ ATCGCT,
we have p�ðsÞ-0221112 and Pðs;p�jQÞ ¼ 0:56 � 0:44 � 0:32.

We assumed in both algorithms that Q was fixed. How-
ever, it is often required to train HMMs from sample data.
The Baum–Welch algorithm is used to estimate Q when a
set of sequences is given. Suppose that a set of k sequences
fs1; . . . ; skg is given. The likelihood of observing these k
sequences is defined to be

Qk
j¼1 Pðs jjQÞ for each Q. Based on

the maximum likelihood method, we want to estimate Q,
which maximizes this product (likelihood). That is, the goal
is to find an optimal set of parameters Q� defined by

Q� ¼ arg max
Q

Yk
j¼1

Pðs jjQÞ

However, it is computationally difficult to find an optimal
set of parameters. Therefore, various heuristic methods
have been proposed for finding a locally optimal set of
parameters. Among them, the Baum–Welch algorithm is
most widely used. It is a kind of EM algorithm, and it
computes a locally optimal set of parameters using an
iterative improvement strategy. How to determine the
architecture of the HMM is also an important problem.
Although several approaches were proposed to automati-
callydetermine the architectures from data (see Sections 3.4
and 6.5 of Ref. 1), the architectures are usually determined
manually based on knowledge about the target problem.

HMMs are applied to bioinformatics in various ways.
One common way is the use of profile HMMs. Recall that a
profile is a function w(x, j) from S � [1. . .L] to R, where L
denotes the length of a motif region. Given a sequence s, the
score for s was defined by S j¼1;...;Lwðs½ j�; jÞ. Although pro-
files are useful for detecting short motifs, they are not so
useful for detecting long motifs or remote homologs
(sequences having weak similarities) because insertions
or deletions are not allowed. A profile HMM is considered
to be an extension of a profile in which insertions and
deletions are allowed.

A profile HMM has a special architecture as shown in
Fig. 4. The states are classified into three types: match
states (M), insertion states (I), and deletion states (D).
A match state corresponds to one position in a profile.
A symbol b is emitted from a match state qj with probability

q
0

q
2

q
1

a01

a02

a12
a21

a11

a22

e
1(A)=0.1

e
1(C)=0.4

e
1(G)=0.3

e
1(T)=0.2

e
2(A)=0.3

e
2(C)=0.2

e
2(G)=0.1

e
2(T)=0.4

Figure 3. Example of an HMM.

BIOINFORMATICS 3



ej(b). A symbol b is also emitted from any insertion state qi

with probability p(b), where p(b) is the background fre-
quency of occurrence of the symbol b. No symbol is emitted
from any deletion state. Using a profile HMM, we can also
obtain multiple alignment of sequences by combining p�ðs jÞ
for all input sequences sj. Although alignments obtained
by profile HMMs are not necessarily optimal, they are
meaningful from a biological viewpoint (1).

Many variants and extensions of HHMs have also been
developed and applied in bioinformatics. For example,
stochastic context-free grammar was applied to prediction
of RNA secondary structures (1).

PROTEIN STRUCTURE PREDICTION

Protein structure prediction is the problem of a given pro-
tein sequence (target sequence), inferring its three-dimen-
sional structure (17,18). This problem is important since
determination of the three-dimensional structure of a pro-
tein is much harder than determination of its sequence, and
the structure provides useful information on the function
and interactions of the protein, which cannot be observed
directly from the sequence. Various kinds of approaches
exist for protein structure prediction (18), where the major
approaches (to be explained below) include ab initio, homol-
ogy modeling, secondary structure prediction, and protein
threading.

Since many methods have been proposed, a type of
contest or meeting called CASP (community-wide experi-
ment on the critical assessment of techniques for protein
structure prediction) has been held every two years since
1994 (18). CASP has been playing an important role in the
progress of protein structure prediction technologies.

Ab Initio

This approach tries to predict protein structures based
on basic principles of physics. For example, energy
minimization and molecular dynamics have been
applied. However, this approach is currently limited
to prediction of small protein structures because it
requires enormous computational power. A combination

of an ab initio approach and a statistical approach has
also been studied (19).

Homology Modeling

Two proteins tend to have similar structures if their
sequences are similar enough (although there are excep-
tional cases). Based on this fact, we have an outline of the
structure (backbone structure) from the result of a
sequence alignment between the target sequence and the
template sequence whose structure is known and that is
similar enough to the target sequence. After obtaining a
backbone structure, methods such as energy minimization
or molecular dynamics are applied to predicting a detailed
structure.

Secondary Structure Prediction

In secondary structure prediction, each amino acid of a
protein structure is predicted to be one of three classes: a-
helix, b-strand, or other, depending on its local shape. Since
it is a simple classification problem, many methods in
artificial intelligence have been applied. It is easy to see
that random prediction (randomly output one of three
classes) will achieve 33.3% accuracy. The best existing
methods achieve 70�80% accuracy, some of which are
based on artificial neural networks (20).

Protein Threading

It is useful in protein structure prediction to measure the
compatibility between an input protein sequence and a
known protein structure. For that purpose, we usually
compute an alignment between a sequence and a structure
(see Fig. 5). This problem is called protein threading. Many
algorithms have been proposed for protein threading
(3,18,21). Based on score functions, these can be grouped
into two classes: threading with profiles and threading with
pair score functions.

Threading with Profiles

The score function for this type of threading does not
explicitly include the pairwise interaction preferences so
that score functions are treated as profiles. A simple
dynamic programming algorithm can be used to compute
an optimal threading as in the case of pairwise sequence

M

I

D D

M

I

D

BEGIN ENDM

II

alignment

HMM

A G Cs1

M M I Mstate
A A Cs3

A G CTs2

(    )s 3π∗

(    )s 2π∗

(    )s 1π∗

Figure 4. Computation of multiple alignment using a profile
HMM.

protein
sequence

protein
structure

D C R V F G L G G V F L S R

Figure 5. In protein threading, an alignment between a query
sequence and a template structure is computed. Shaded parts
correspond to gaps.

4 BIOINFORMATICS



alignment. However, this method is not so useful unless
there is a structure whose sequence has some similarity
with an input sequence.

Threading with Pair Score Functions

The score function for this type of threading includes the
pairwise interaction preferences. Since protein threading is
proven to be NP-hard (22), various methods have been
proposed based on heuristics, which include double
dynamic programming, frozen approximation, Monte-
Carlo sampling, and evolutionary computation (21).
Although these methods are not guaranteed to find optimal
solutions, several other methods have been proposed in
which optimal solutions are guaranteed to be found under
some assumptions (e.g., gaps are not allowed in a-helices or
b-strands). The first practical algorithm with guaranteed
optimal solutions was proposed by employing an elaborated
branch-and-bound procedure (23). However, it could not be
applied to large protein structures. In 2003, a protein
threading method (with pairwise interaction preferences)
formulated as a large-scale integer programming (IP) was
proposed (21). The IP formulation is then relaxed to a linear
programming (LP) problem. Finally, an optimal solution is
obtained from the LP by using a branch-and-bound method.
Surprisingly, the relaxed LP programs generated integral
solutions (i.e., optimal solutions) directly in most cases.

From Generative to Discriminative Models

Most methods described in the previous sections are gen-
erative: Such objects as alignments and predicted struc-
tures are generated. On the other hand, many problems
require discriminative approaches: It is required for pre-
dicting to which class a given object belongs. For that
purpose, various techniques in pattern recognition, statis-
tics, and artificial intelligence have been applied, including
but not limited to, neural networks and decision trees.
Among these techniques, support vector machines
(SVMs) and kernel methods (24,25) are beginning to be
recognized as one of the most powerful approaches to dis-
criminative problems in bioinformatics (25,26), since the
prediction accuracies are in many cases better than other
methods and it is easy to apply SVMs; once a suitable kernel
function is designed, efficient software tools for SVMs are
available. Thus, in this section, we focus on SVMs and
kernel methods (see also Fig. 6).

SVMs are basically used for binary discrimination. Let
POS and NEG be the sets of positive examples and negative
examples in a training set, where each example is repre-
sented as a point in d-dimensional Euclidean space. Then
an SVM tries to find an optimal hyperplane h such that the
distance between h and the closest point to h is the max-
imum (i.e., the margin is maximized) under the condition
that all points in POS lie above h and all points in NEG lie
below h. Once such h is obtained, a new test data point is
predicted as positive (respectively negative) if it lies above h
(respectively below h). If h does not exist, which completely
separates POS from NEG, it is required to optimize the soft
margin, which is a combination of the margin and the
classification error. In order to apply an SVM effectively,
it is important to design a kernel function suitable for an

application problem, where a kernel takes two objects (e.g.,
two sequences) as inputs and provides a measure of simi-
larity between these objects. Kernel functions can also be
used in principal component analysis (PCA) and canonical
correlation analysis (CCA) (25–27). In the rest of this sec-
tion, we briefly review the kernel functions developed for
biological sequence analysis.

We consider a spaceX of objects. For example,X can be a
set of DNA or protein sequences. We also consider a feature
map f from X to Rd, where d 2 {1,2,3,. . .} (we can even
consider infinite-dimensional space (Hilbert space) instead
of Rd). We define a kernel K from X � X to R by

Kðx; yÞ ¼ fðxÞ � fðyÞ

where fðxÞ � fðyÞ is the inner product between vectors f(x)
and f(y). It is known that if a function K fromX � X toR is
symmetric [i.e., K(x, y) ¼ K(y, x)] and positive definite (i.e.,
S

n
i¼1S

n
j¼1aia jKðxi; x jÞ� 0 holds for any n> 0, for any

ða1; . . . ;anÞ 2R, and for any ðx1; . . . ; xnÞ 2XnÞ, K is a valid
kernel (i.e., some f(x) exists such that Kðx; yÞ ¼ fðxÞ � fðyÞ).

In bioinformatics, it is important to develop kernel
functions for sequence data. One of the simplest kernel
functions for sequences is the spectrum kernel (28). Let k be
a positive integer. We define a feature map fk(x) from a set
of sequences over S to RjS

kj by

fkðxÞ ¼ ðoccðs; xÞÞ
s2S

k

where occ(s, x) denotes the number of occurrences of sub-
string s in string x. The k-spectrum kernel is then defined as
K(x, y) ¼ fk(x)�fk(y). Although the number of dimensions of
RjS

kj is large, we can compute (K(x, y) efficiently (in (O(kn)
time) using a data structure named suffix trees without
computing fk(x) (28). Here, we consider the example case of
k ¼ 2 and S ¼ {A, C}. Then we have f2(x) ¼ (occ(AA, x),
occ(AC, x), occ(CA, x), occ(CC, x)). Thus, for example, we
have K(ACCAC, CCAAAC) ¼ 4 since f2(ACCAC) =
(0,2,1,1) and f2(CCAAAC) ¼ (2,1,1,1). The spectrum ker-
nel was extended to allow small mismatches (mismatch
kernel) (29) and to use motifs in place of substrings
(motif kernel) (30).

h
AAGCTAAT

AAGGTAATT
AAGCTGAT

AAGCTAATT

CAGCTGTA

GGTCTTGGA

GGTTGGAGG

GGCTTCTAA

GGCTTATG

Φ

Φ

RX d

Φ

Figure 6. Kernel function and support vector machine. In the
right figure, circles denote positive examples and crosses denote
negative examples.

BIOINFORMATICS 5



Several methods have been proposed that combine
HMMs with SVMs. The SVM-Fisher kernel is one such
kernel (31). To use the SVM-Fisher kernel, we first train a
profile HMM with positive training data using the Baum–
Welch algorithm. Then we compute a feature vector for
each input sequence s as follows. Let m be the number of
match states in the profile HMM. Ei(a) denotes the expected
number of times that a2S is observed in the ith match state
for s, ei(a) denotes the emission probability of a 2 S, and ual

is the coordinate corresponding to a of the lth (l 2 {1,. . .,9})
Dirichlet distribution (1). It is known that Ei(a) can be
computed using the forward and backward algorithms
(1,3). Then the feature vector fF(s) is defined by

fFðsÞ ¼
X
a2S

EiðaÞ½
ual

eiðaÞ
� 1�

 !

ðl;qiÞ 2 f1;...;9g�QMATCH

which is finally combined with the radial basis function
kernel. As another approach to combining HMMs and
SVMs, the local alignment kernel was developed based
on the pair HMM model (a variant of the HMM) (32).

Kernels for other objects have also been proposed. The
marginalized kernel was developed based on the expecta-
tion with respect to hidden variables (33). The marginalized
kernel is defined in a very general way, and thus, it can be
applied to nonsequence objects. For example, the margin-
alized graph kernel was developed and applied to classifi-
cation of chemical compounds (34).

ANALYSIS OF GENE EXPRESSION PATTERNS

Genetic information stored in genes is used to synthesize
proteins. Each gene usually encodes one or a few kinds of
proteins. Genes are said to be expressed if a certain amount
of corresponding proteins are synthesized. DNA microar-
ray and DNA chip technologies enabled observation of
expression levels of several thousands of genes simulta-
neously. Precisely, the amount of mRNA (messenger RNA)
corresponding to each gene is estimated by observing the
amount of cDNA that is obtained from mRNA via reverse
transcription. Since proteins are synthesized from mRNA,
the amount of mRNA estimated via DNA microarray or
DNA chip is considered to approximately indicate the
expression level of the gene. Analysis of gene expression
patterns and time-series data of gene expression patterns
has recently become an important topic in bioinformatics.
Although various problems have been considered, this
section focuses on the three important problems of cluster-
ing of gene expression patterns, classification of tumor types
using gene expression patterns, and inference of genetic
regulatory networks.

Clustering of Gene Expression Patterns

This problem is important for classification and prediction
of functions of genes because it is expected that genes with
similar functions have similar gene expression patterns
(35,36). Suppose that we have a vector of gene expression
levels ðgið1Þ; gið2Þ; . . . ; giðtÞÞ for each gene, where gi(j)
denotes the gene expression level (real number) of the

ith gene under the jth environmental constraint or at the
jth time step. We would like to divide a set of several
thousands genes into several or several tens of clusters
according to similarities of vectors of gene expression levels
(see Fig. 7). Clustering of real vectors is a well-studied topic
in artificial intelligence and statistics, and many methods
have been proposed. Various clustering methods have been
applied to clustering of gene expression patterns, which
include hierarchical clustering, self-organizing maps,
k-means clustering, and EM-clustering (35–37).

Classification of Tumor Types

This problem may be the most important because it has
many potential applications in medical and pharmaceutical
sciences. Suppose that we have expression patterns for
samples of tumor cells from patients and we would like
to classify samples into more detailed tumor classes. Golub
et al. considered two problems: class discovery and class
prediction (38). Class discovery defines previously unrec-
ognized tumor subtypes, whereas class prediction assigns
particular tumor samples to predefined classes.

Golub et al. applied the self-organizing map (a kind of
clustering method) to class discovery. In this case, they
considered a vector g j ¼ ðg

j
1; g

j
2; . . . ; g j

mÞ for each patient,
where g j

i denotes the gene expression level of the ith gene of
the sample obtained from the jth patient. They classified
the set of samples into a few classes based on similarities of
vectors. They also employed weighted voting for class pre-
dictions, where the weight for each gene was learned from
training samples and each test sample was classified
according to the sum of the weights.

In their experiments, not all genes were used for
weighted votes, but only several tens of genes relevant to
class distinction were selected and used. Use of selected
genes seems better for several reasons. For example, cost
for measurement of gene expression levels will be much
lower if only selected genes are used. Golub et al. called
these selected genes informative genes. Although they used
a simple method to select genes, many methods have been
proposed for selecting informative genes. Using terminol-
ogies in artificial intelligence, class discovery, class predic-
tion, and selection of informative genes correspond to
clustering, learning of discrimination rules, and feature
selection, respectively. Many methods have been developed
for these three problems in artificial intelligence
(37,39–41).

ge
ne

 e
xp

re
ss

io
n

time

gene A

gene D

gene C

gene B

Figure 7. Clustering of gene expression patterns. In this case,
genes are clustered into two groups: {A,D} and {B,C}.

6 BIOINFORMATICS



Although it is still unclear which method is the best for
tumor classification, the SVMs explained here have been
effectively applied to class prediction (40,41). For example,
consider the case of predicting whether a given sample
belongs to a particular tumor class. We regard gene expres-
sion profile gj corresponding to the jth sample as an exam-
ple (i.e., a point in m-dimensional Euclidean space), where
gj is regarded as a positive example if the sample belongs to
the tumor class, and as a negative example otherwise. Then
we can simply apply an SVM to this problem, where many
variants and extensions, which include multiple tumor
class prediction, have been proposed (40,41). SVMs can
also be applied to selection of informative genes in combi-
nation with recursive feature elimination(39,42). In this
method, genes are ranked based on the weight (effect on
classification) of each gene, and the gene with the smallest
rank is recursively removed, where SVM-learning is exe-
cuted at each recursive step.

Inference of Genetic Regulatory Networks

In order to understand the detailed mechanism of organ-
isms, it is important to know which genes are expressed,
when they are expressed, and to what extent. Expressions
of genes are regulated through genetic regulatory systems
structured by networks of interactions among DNA, RNA,
proteins, and chemical compounds. Gene expression data
are expected to be useful for revealing these genetic reg-
ulatory networks. Therefore, many studies have been done
in order to infer the architectures of genetic regulatory
networks from gene expression data. Usually, mathema-
tical models of networks are required to infer genetic
regulatory networks. Extensive studies have been done
using such models as Boolean networks, Bayesian net-
works, and differential equations (4,43–46).

Here we briefly describe the Boolean network model and
its relation with the Bayesian network model. The Boolean
network is a very simple model (47). Each gene corresponds
to a node in a network. Each node takes either 0 (inactive) or
1 (active), and the states of nodes change synchronously
according to regulation rules given as Boolean functions. In
a Boolean network, the state of node vi at time t is denoted
by vi(t), where vi(t) takes either 0 or 1. A node vi has ki

incoming nodes vi1; . . . ; viki
, and the state of vi at time t þ 1

is determined by

viðtþ 1Þ ¼ fiðvi1
ðtÞ; . . . ; viki

ðtÞÞ

where fi is a Boolean function with ki input variables. This
rule means that gene vi is controlled by genes vi1

; vi2
; . . . ; vik

.
For example, consider a very simple network in which

there three nodes exist (i.e., genes) v1; v2; v3, and the reg-
ulation rules are given as follows:

v1ðtþ 1Þ ¼ v2ðtÞ;
v2ðtþ 1Þ ¼ v1ðtÞ ^ v3ðtÞ;
v3ðtþ 1Þ ¼ v1ðtÞ;

where x^ y means the conjunction (logical AND) of x
and y, and x̄ means the negation (logical NOT) of x.
Suppose that the states of genes at time 0 are

ðv1ð0Þ; v2ð0Þ; v3ð0ÞÞ ¼ ð1; 1; 1Þ. Then the states of genes
change as follows:

ð1;1;1Þ)ð1;1;0Þ)ð1;0;0Þ)ð0;0;0Þ)ð0;0;1Þ)ð0;0;1Þ) ���

This sequence of state transitions corresponds to time-
series data of gene expression patterns.

Under this model, inference of a gene regulatory net-
work is defined as a problem of inferring regulation rules
(i.e., input genes and Boolean functions) for all genes from a
set of state transition sequences (43). Although gene reg-
ulation rules are deterministic in Boolean networks, the
Boolean network model was extended to the probabilistic
Boolean network model (48), in which multiple Boolean
functions can be assigned to one gene and one Boolean
function is randomly selected for each gene at each time
step according to some probability distribution. Probabil-
istic Boolean networks are almost equivalent to dynamic
Bayesian networks with a binary domain (49). In practice,
Bayesian networks have been more widely applied to infer-
ence of genetic networks than Boolean networks since
Bayesian networks are considered to be more flexible.
Furthermore, many variants of Bayesian networks and
their inference algorithms have been proposed for modeling
and inference of genetic networks (43–46).

BIBLIOGRAPHY

1. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological
Sequence Analysis. Probabilistic Models of Proteins and
Nucleic Acids, Cambridge, UK: Cambridge University Press,
1998.

2. N. C. Jones and P. A. Pevzner, An Introduction to Bioinfor-
matics Algorithms, Cambridge, MA: The MIT Press, 2004.

3. D. W. Mount, Bioinformatics: Sequence and Genome Analysis,
Cdd Spring Harbor, NY: Cold Spring Harbor Laboratory Press,
2001.

4. Aluru, S. (ed.), Handbook of Computational Molecular Biology,
Boca Raton, FL: CRC Press, 2006.

5. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and
D. L. Wheeler, GenBank, Nucleic Acids Res., 34: D16–D20,
2006.

6. L. Wang and T. Jiang, On the complexity of multiple sequence
alignment, J. Computat. Biol., 1: 337–348, 1994.

7. C. Notredame, Recent progresses in multiple sequence align-
ment: A survey, Pharmacogenomics, 3: 131–144, 2002.

8. J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: Improv-
ing the sensitivity of progressive multiple sequence alignment
through sequence weighting position-specific gap penalties
and weight matrix choice, Nucl. Acids Res., 22: 4673–4390,
1994.

9. A. Henikoff and J. G. Henikoff, Amino acid substitution
matrices from protein blocks, Proc. Natl. Acad. Sci. USA, 89:
10915–10919, 1992.

10. M. Kann, B. Qian, and R. A. Goldstein, Optimization of a new
score function for the detection of remote homologs, Proteins:
Struc. Funct. Genetics, 41: 498–503, 2000.

11. A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert,
Approaches to the automatic discovery of patterns in biose-
quences, J. Computat. Biol., 5: 279–305, 1998.

BIOINFORMATICS 7



12. C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F.
Neuwald, and J. C. Wootton, Detecting subtle sequence sig-
nals: a Gibbs sampling strategy for multiple alignment,
Science, 262: 208–214, 1993.

13. T. Akutsu, H. Arimura, and S. Shimozono, On approximation
algorithms for local multiple alignment, Proc. 4th Int. Conf.
Comput. Molec. Biol., 1–7, 2000.

14. T. L. Bailey and C. Elkan, Fitting a mixture model by expecta-
tion maximization to discover motifs in biopolymers, Proc.
Second International Conf. on Intelligent Systems for Molecu-
lar Biology, 28–36, 1994.

15. A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and D. Haussler,
Hidden Markov models in computational biology. Applications
to protein modeling, J. Molec. Biol., 235: 1501–1531, 1994.

16. K. Asai, S. Hayamizu, and K. Handa, Prediction of protein
secondary structure by the hidden Markov model, Compu.
Applicat. Biosci., 9: 141–146, 1993.

17. M. Levitt, M. Gernstein, E. Huang, S. Subbiah, and J. Tsai,
Protein folding: The endgame, Ann. Rev. Biochem., 66: 549–
579, 1997.

18. J. Moult, K. Fidelis, B. Rost, T. Hubbard, and A. Tramontano,
Critical assessment of methods of protein structure prediction
(CASP) - Round 6, Proteins: Struc. Funct. Genet., 61(S7): 3–7,
2005.

19. P. Bradley, S. Chivian, J. Meiler, K. M. Misuras, A. Rohl, and
W. R. Schief, et al., Rosetta predictions in CASP5: Successes,
failures, and prospects for complete automation, Proteins:
Struc. Funct. Genet., 53: 457–468, 2003.

20. G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, Improving the
prediction of protein secondary structure in three and eight
classes using recurrent neural networks and profiles, Proteins:
Struct. Funct. Genet., 47: 228–235, 2002.

21. J. Xu, M. Li, D. Kim, and Y. Xu, RUPTOR: Optimal protein
threading by linear programming, Journal of Bioinformatics
and Computational Biology, 1: 95–117, 2003.

22. R. H. Lathrop, The protein threading problem with sequence
amino acid interaction preferences is NP-complete, Protein
Engin., 7: 1059–1068, 1994.

23. R. H. Lathrop and T. F. Smith, Global optimum protein thread-
ing with gapped alignment and empirical pair score functions,
J. Molec. Biol., 255: 641–665, 1996.

24. C. Cortes and V. Vapnik, Support vector networks, Mach.
Learning, 20: 273–297, 1995.

25. J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis, Cambridge, UK: Cambridge Univ. Press, 2004.

26. B. Schölkopf, K. Tsuda, and J.-P. Vert, (eds.), Kernel Methods in
Computational Biology, Cambridge, MA: The MIT Press, 2004.

27. Y. Yamanishi, J.-P. Vert, A. Nakaya, and M. Kanehisa, Extrac-
tion of correlated gene clusters from multiple genomic data by
generalized kernel canonical correlation analysis, Bioinfor-
matics, 19: i323–i330, 2003.

28. C. Leslie, E. Eskin, and W. E. Noble, The spectrum kernel: A
string kernel for svm protein classification, Proc. Pacific Symp.
Biocomput. 2002, 7: 564–575, 2002.

29. C. Leslie, E. Eskin, J. Wetson, and W. E. Noble, Mismatch
string kernels for svm protein classification, Advances in
Neural Information Processing Systems 15. Cambridge, MA:
The MIT Press, 2003.

30. A. Ben-Hur and D. Brutlag, Remote homology detection: A
motif based approach, Bioinformatics, 19: i26–i33, 2003.

31. T. Jaakola, M. Diekhans, and D. Haussler, A discriminative
framework for detecting remote protein homologies, J. Com-
putat. Biol., 7: 95–114, 2000.

32. H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu, Protein homology
detection using string alignment kernels, Bioinformatics, 20:
1682–1689, 2004.

33. K. Tsuda, T. Kin, and K. Asai, Marginalized kernels for biolo-
gical sequences, Bioinformatics, 18: S268–S275, 2002.

34. H. Kashima, K. Tsuda, and A. Inokuchi, Marginalized kernels
between labeled graphs, Proc. 20th Int. Conf. Machine Learn-
ing, Menlo Park, CA: AAAI Press, 2003, pp. 321–328.

35. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein,
Cluster analysis and display of genome-wide expression pat-
terns, Proc. Natl. Acad. Sci. USA, 95: 14863–14868, 1998.

36. K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L.
Ruzzo, Model-based clustering and data transformations for
gene expression data, Bioinformatics, 17: 977–987, 2001.

37. A. Thalamuthu, I. Mukhopadhyay, X. Zheng, and G. C. Tseng,
Evaluation and comparison of gene clustering methods in
microarray analysis Bioinformatics, 19: 2405–2412, 2006.

38. T. R. Golub, S. K. Slonim, P. Tamayo, C. Huard, M. Gaasen-
beck, and J. P. Mesirov, et al., Molecular classification of
cancer: Class discovery and class prediction by gene expression
monitoring, Science, 286: 531–537. 1999.

39. F. Li and Y. Yang, Analysis of recursive gene selection
approaches from microarray data, Bioinformatics, 21: 3741–
3747, 2005.

40. G. Natsoulis, et al., Classificationof a large microarray data set:
Algorithm comparison and analysis of drug signatures, Gen-
ome Res., 15: 724–736, 2005.

41. A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S.
Levy, A comprehensive evaluation of multicategory classifica-
tion methods for microarray gene expression cancer diagnosis,
Bioinformatics, 21: 631–643, 2005.

42. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection
for cancer classification using support vector machines, Mach.
Learning, 46: 389–422, 2002.

43. T. Akutsu, S. Miyano, and S. Kuhara, Inferring qualitative
relations in genetic networks and metabolic pathways, Bioin-
formatics, 16: 727–734, 2000.

44. H. deJong, Modeling and simulation of genetic regulatory
systems: a literature review, J. Computat. Biol., 9: 67–103,
2002.

45. N. Friedman, M. Linial, I. Nachman, and D. Pe’er, Using
Bayesian networks to analyze expression data, J. Computat.
Biol., 7: 601–620, 2000.

46. S. Kim, S. Imoto, and S. Miyano, Inferring gene networks from
time series microarray data using dynamic Bayesian networks,
Brief. Bioinformat., 4: 228–235, 2003.

47. S. A. Kauffman, The Origins of Order: Self-organization and
Selection in Evolution, Oxford, UK: Oxford Univ. Press,
1993.

48. I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang, Prob-
abilistic Boolean networks: a rule-based uncertainty model
for gene regulatory networks, Bioinformatics, 18: 261–274,
2002.

49. H. Lähdesmäki, S. Hautaniemi, I. Shmulevich, and O. Yli-
Harja, Relationships between Probabilistic Boolean networks
and dynamic Bayesian networks as models of gene regulatory
networks, Signal Process., 86: 814–834, 2006.

TATSUYA AKUTSU

Kyoto University
Kyoto, Japan

8 BIOINFORMATICS



B

BIOLOGICALLY INSPIRED NEURAL
COMPUTATION

THE BIOLOGICAL NEURON

In order to fully understand the relationship of artificial
neural network components to their biological analogues,
an overview of the biological neuron and its function within
networks of interconnected neurons is presented here. In
particular, the electrical behavior of the neuron membrane,
the influence of synaptic junctions, and the computational
aspects of simple neural networks are presented.

It should be emphasized that there is no mathematical
model that exactly describes the behavior of the biological
neuron. Instead, there is a plethora of models and algo-
rithms, some of which are closer to the true biological
behavior than others, as verified by experimentation. More-
over, as a general rule, those models that are more true to
neuron physiology, henceforth called biological, have more
computationally demanding solutions than those that are
less physiologically accurate. Hence, the more simplified
models, including the perceptron and its derivative models,
will henceforth be called computational.

Neurons

Nerve cells (or neurons) are fundamental components of
the human nervous system. They relay and process infor-
mation that governs our movement and perception. More-
over, the number of neurons in the human brain itself is
estimated to be on the order of 1011(1). Recently, glial cells,
which provide physical support to neurons in the brain and
outnumber the neurons by a ratio of 10:1, have also been
reported to perform some computational tasks through
chemical signaling (2). However, their influence shall be
omitted here for practical purposes.

The physical dimensions of neurons vary significantly
depending on the location and function of the particular
neuron [see Fig. 1(3)]. However, all neurons are encapsu-
lated by a thin membrane, in the order of 50 nm in thickness
separating an inner axoplasm from the outer environment.
Also, all neurons can be thought of as being comprised of
three components: the soma, or cell body of the neuron,
typically spheroidal in shape; the dendrites, or thin exten-
sions of the cell body that receive input stimuli; and the
axon, a larger and longer extension of the cell body that
transports information to other neurons in the form of
electrical pulses. Moreover, typical neurons in the human
brain have a soma from 4 mm to 100 mm in diameter and
an axon from several millimeters to over a meter in length,
as in the case of some motor neurons that extend down
the spine.

The excitable nerve cells differ from other cells in that
they communicate with each other through a distinct use of
electrical and chemical signaling. That is, local changes in
electric potential and current density of the cell membrane
propagate along the neuronal cell conveying information

in an intracellular manner, whereas chemicals called neu-
rotransmitters are emitted from one cell and affect the
electrical behavior of adjacent cells, thus conveying infor-
mation in an intercellular manner.

Given the unique electrical and chemical behavior of
neurons, it is possible to envision how groups of neurons are
capable of executing computational tasks. In fact, it is well
established that neurons are responsible for the detection
and interpretation of exogenous stimuli (through sensa-
tion), as well as the regulation of muscle contractions (or
movement). For example, in the human retina, sensory
stimuli (light waves) are converted to electrical impulses
by photo-receptor cells. Then, networks of neurons process
the exogenous information through nonlinear methods
such as lateral inhibition (4). Also, impulses originating
from motor neurons in the basal ganglia can activate
muscle cell contractions, thus governing movement in
humans and nonhuman primates (4).

Electrical Behavior

The electrical behavior of neurons is due to the concen-
tration gradient and movement of specific ions across
the cell membrane. In particular, the electric potential
across the membrane (or transmembrane potential Vm)
changes in proportion to the presence of positive ions
within the cell. Also, as ions are transported across the
membrane, they effectively establish a transmembrane
current Im. Moreover, at equilibrium conditions, Vm�
�70 mV and Im� 0.

The forces that transport the ions across the cell mem-
brane are due to diffusion, permeability, and a biological
mechanism of active transport. In particular, a biological
‘‘ion pump’’ actively transports ions across the membrane in
order to maintain a particular concentration gradient for
each ion. Also, when the permeability of the membrane to a
particular ion changes, the diffusion forces establish a
transmembrane current for that ion. Moreover, when Vm

is below some threshold Vth, the relation between Vm and Im

is practically linear with constant permeability, whereas
when Vm approaches Vth, ion permeability begins to change
with respect to time, thus defining a time-varying and
nonlinear relationship between Vm and Im that lasts for
a finite duration.

The nonlinear behavior of the neuron consists of a chain
reaction of shifts in permeability that governs the influx
and exit of charged ions across the cell membrane over time.
That is, first the sodium (Na+) permeability increases for a
brief instant (roughly 1 ms in duration) causing Na+ ions to
diffuse into the cell from the higher concentration of Na+

outside the cell, thus raising Vm. Next, the potassium (K+)
permeability immediately increases followed by a mass exit
of K+ ions from the higher K+ concentration inside the cell,
which, in turn, pulls Vm down to a hyperpolarized state Vhyp

until the K+ permeability returns to equilibrium. At the
same time, the ion pump mechanism is constantly restoring
the concentrations of Na+ and K+ to the original levels.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Figure 2 illustrates the behavior of the cell membrane when
a Na+ channel is open while a K+ channel is closed. Also,
relative concentrations of Na+ and K+ are shown.

The course that Vm follows throughout the duration of
the nonlinear behavior is characterized by three phases.
Namely, these phases are the depolarization, repolarization,
and hyperpolarization. In particular, during depolarization,
Vm suddenly increases from its equilibrium to roughly
20 mV due to the influx of Na+. Then, the membrane
immediately enters the repolarization phase, where Vm

suddenly decreases due to the exit of K+, which is then
followed by hyperpolarization, where Vm swings below
�70 mV to roughly �80 mV. Together, the three phases
comprise an ‘‘action potential’’ waveform or ‘‘spike’’ illu-
strated in Fig. 3. Moreover, the action potential duration
is roughly 2 ms for the depolarization and repolarization
phases, whereas the hyperpolarization phase lasts some-
what longer. Furthermore, due to the closed Na+ channels
immediately after depolarization, it is virtually impossible
to elicit a new action potential event in the neuron. This
effect is called inactivation and its duration is the absolute
refractory period. However, during the period of hyper-
polarization, it is possible, although somewhat difficult, to
achieve threshold as compared with rest conditions. This
process is called de-inactivation and the duration is the
relative refractory period (1).

It is believed that the action potential is generated at the
point where the axon meets the neuron soma, a region
dubbed ‘‘axon hillock.’’ Subsequently, ion currents entering

the cell force adjacent locations of the cell membrane to
depolarize, thus propagating the action potential across the
cell axon at roughly 1 m/s (10 m/s in myelinated cells),
depending on the dimensions of the cell.

For a more rigorous mathematical description of the
nerve cell dynamics, the interested reader may study the
‘‘core conductor’’ model, which pairs the Hodgkin–Huxley
equations with the ‘‘transmission line’’ or ‘‘cable equations’’
(4,5).

Synaptic Transmission

The synaptic junction is the computational link between
adjacent neurons. It regulates communication between
adjacent neurons through short-term and long-term pro-
cesses. The long-term processes are believed to regulate
learning ability, whereas short-term processes are involved
in the transmission and processing of real-time informa-
tion.

In the short-term, communication at the synapse is
achieved through the release of neurotransmitters by
one neuron, and the effect on ion permeability that those
neurotransmitters have in the membrane of adjacent
neurons. In particular, when the action potential wave-
form travels along the length of the axon, then branches
into a dendritic branch, it finally terminates at a synaptic
junction where biochemical processes not yet well under-
stood cause the release or exocytosis of neurotrans-
mitters into a space between the presynaptic neuron
and postsynaptic neuron. Next, as the neurotransmitters
come into contact with the postsynaptic membrane, they
alter the ionic permeability of that membrane and cause
an inflow or outflow of current, depending on the type of
neurotransmitter and the particular ion channels affected
on the postsynaptic neuron. Moreover, depending on
whether the resulting net membrane current is inward
or outward, the synaptic connection is said to be excitatory
or inhibitory.

From a systems perspective, the synapse acts as an
integrator because of the first-order response of induced
local postsynaptic current upon arrival of a presynaptic
action potential. Moreover, this result is likely because
of the slowly decaying amount of neurotransmitter
released in response to the arrival of the action potential.
In particular, the impulse response of the system can be

Figure 1. Graphic illustration of a neuron (A). Image of a
pyramidal neuron from the cerebral cortex (B) from Ref. 3.

Figure 2. Ion permeability in a neuron membrane.

5 10 15 20 25 30 35
time(ms)

Trans-membrane Potential During a Spike Event 
20
10

–10
–20

–30

–40

–50
–60

–70

–80

0

Vm (mV) 

Figure 3. A typical action potential waveform.

2 BIOLOGICALLY INSPIRED NEURAL COMPUTATION



modeled as

ImðtÞ ¼
J

ts
e�ðt�tkÞ=ts uðt� tkÞ (1)

where Im(t) represents the local current induced by the
synapse over time, J represents the strength or efficacy
of the synapse, ts represents the decay constant, tk is the
time of the incident spike, and u(t) represents the unit step
function (6). Furthermore, notice how Equation (1) omits
the effect of action potential intensity and instead focuses
only on the time of incidence tk of the incoming spike.

Random processes within the presynaptic membrane
cause spontaneous release of neurotransmitter even in
the absence of an incident spike. Moreover, Fatt and
Katz have shown that neurotransmitter is actually
released in bundles where the number of bundles follows
a Poisson process. Thus, the cumulative effect of this
release over many synapses is to cause occasional random
spike generation in the postsynaptic membrane.

FROM BIOLOGY TO COMPUTER SCIENCE

Simplifications of the biological model of the neuron
can produce the early ‘‘perceptron’’ models and threshold
units that influenced the vast proliferation of artificial
neural networks in the latter part of the twentieth cen-
tury. In particular, a linear relationship can be estab-
lished between the summation of synaptic activity in a
neuron and the frequency of presynaptic spike trains.
Also, a distinct nonlinear function can be established
between the resulting spike frequency of a particular
neuron and the summation of its synaptic contributions.

From Synapse to Summation

As shown previously, synapses integrate the spikes and
collectively cause an aggregation of positive charge in the
cell body of the neuron. This temporal and spatial integra-
tion is known as ‘‘summation’’ in neuroscience literature.
There are also inhibitory synapses that retain the temporal
integration, but elicit an exit of positive charge from the
postsynaptic membrane, thus contributing a negative com-
ponent to the overall summation.

The temporal integration is described by Equation (1)
above. Moreover, solving Equation (1) with respect to local
postsynaptic transmembrane current Il for some synapse
l during the arrival of a presynaptic spike train of fre-
quency f shows a near-linear relationship between Il and
f. In particular, assuming the decay rate ts of Equation (1)
is large compared with the duration of an action potential,
the response of Il with respect to the presynaptic trans-
membrane potential is just an impulse response

hðtÞ ¼
J

ts
e�

t
ts for t� 0

0 otherwise

8<
:

9=
; (2)

Next, assuming there is an arrival of a spike train of
frequency f, or an interarrival time of Dt ¼ 1= f , also

assuming the spike train has a long duration (ignoring
transients), the input can be represented as

sðtÞ ¼
X1

n¼�1
dðt� nDtÞ (3)

Thus, in a linear system sense, the local postsynaptic
current that will result is given by the convolution equation

IlðtÞ ¼
Z þ1
�1

hðT � tÞsðTÞdT (4)

Furthermore, solving for Il(t) yields

IlðtÞ ¼
J

ts

e
1
ts
ðt�d t

Dt eDtÞ

1� e�
Dt
ts

(5)

As can be gleaned from Equation (5), the dependence of
Il on time t is constrained within limits that depend on ts.
In particular, the range of Il can be described as

J

ts eþ
Dt
ts � 1

� � < Il <
J

ts 1� e�
Dt
ts

� � (6)

Furthermore, taking the limit as ts!1 yields the remark-
able result that

Il ¼
J

Dt
¼ Jf (7)

Which can be thought of as a neural rate-coding theorem
in that it shows a linear relationship between the incident
spike frequency at a synapse and the resulting induced
local current in the postsynaptic neuron membrane.
Moreover, it is noteworthy that the synaptic efficacy J
retains the same value and meaning in the transition
from the biological model in Ref. 6 to the computational
realm of the perceptron. Also, it is evident that as ts

becomes larger, the dependency of Il on f becomes
stronger than its dependency on t. Thus, the temporal
variations of the incident spike train become less signi-
ficant with larger ts as Fig. 4 illustrates.

In turn, the ‘‘spatial’’ integration that is achieved by a
neuron is simply the aggregate effect of all the synapses
connected to the neuron. In mathematical terms, using
the linear relation shown in Equation (7), the total trans-
membrane current due to synaptic connections can be
described as

Is ¼
XL
l¼1

Jl fl (8)

where Jl and fl represent the efficacy and incident spike
frequency of a particular synapse l.

The results of this section suggest that the mechanism of
summation used in popular models of artificial neural net-
works is closely related to the more biological model of the
synapse, as has been alluded to often in the scientific
literature. That is, the overall effect of synaptic connections

BIOLOGICALLY INSPIRED NEURAL COMPUTATION 3



on a neuron can be described by a linear relationship—the
weighted sum of the incident spiking frequencies, where
each weight represents the efficacy of a particular synapse.
Also, the decay rate of a synapse affects the accuracy or
fuzziness of the relationship in that relatively larger decay
rates constrain the time-varying aspects of the effect. More-
over, practical ranges for ts that were used in this study
were 5 ms, 10 ms, and 50 ms, similar to the synaptic types
found in Ref. 6.

From Voltage-Gated Channels to Activation Functions

As described previously, the voltage-gated behavior of the
neuron membrane establishes a threshold between the
linear and nonlinear modes of operation. In particular,
when the transmembrane voltage Vm is sufficiently less
than the threshold Vth, the relationship between Vm and the
transmembrane current Im is practically a linear one.
However, when Vm reaches Vth, a nonlinear event known
as the action potential is generated.

The biological model describes the dynamics of the neu-
ron behavior with respect to time. However, what is the
relationship between the biological model and the computa-
tional model of the perceptron? In other words, how can the
perceptron model be derived from the biological analogue?

The analysis can begin by describing the subthreshold
dynamics of the neuron membrane. In particular, given
nominal membrane resistance Rm and capacitance Cm, the
linear model relating Vm to the total transmembrane
current Im is

RmCm
dVm

dt
þ Vm � RmIm ¼ 0 (9)

For the case when Im consists of a step function with
amplitude Im, and Vrest is Vm at t ¼ 0, Equation (9) can be
solved for Vm yielding the result

VmðtÞ ¼ Vrest þ ImRm 1� e�
t

RmCm

� �
(10)

At this point, a change of variables can make
the derivations simpler. In particular, introducing the
relative transmembrane voltage DVm ¼ Vm � Vrest into

Equation (1) yields

DVm ¼ ImRm 1� e�
t

RmCm

� �
(11)

Now, introducing the relative threshold DVth ¼
Vth� Vrest, and replacing t with Dt, the time required to
reach threshold is

Dt ¼ �RmCmln 1� DVth

ImRm

� �
(12)

It is apparent that Dt will be finite for only certain values
of Im. In particular, the minimum value of Im required to
achieve threshold (called the rheobase current) (5) is

Irh ¼
DVth

Rm
(13)

The implications for the spike frequency f ¼ Dt�1 are
that f remains essentially zero until Is (the summation
current) surpasses the rheobase current. Furthermore,
this implication confirms the older perceptron models
with the ‘‘hard-limiting’’ function, or the activation function
with a discontinuity. However, what are the exact values of
f as Is extends past the rheobase current?

To answer this question, Equation (12) may seem
like the likely candidate. However, this equation predicts
that f will grow unboundedly with Is, a relation that is not,
in fact, practical. In contrast, a more realistic scenario
includes the refractory period tref of the neuron. The
reason is that tref plays a significant role in bounding
the upper limits of spike frequency f that are attainable
by a neuron.

As stated previously, tref is caused by the inactivation of
ion channels in the cell membrane and the prolonged open-
ing of the K+ channels. Specifically, when Vm swings to Vhyp

during hyperpolarization, any activating current has to be
strong enough to drive Vm from Vhyp to Vth, which is a
greater leap than driving Vm from Vrest to Vth(1).

For all practical purposes, this activity would mean that
DVth is nearly infinite during the inactivation phase of the
sodium channels, and then decays exponentially from

Figure 4. The shaded regions show the possible range of local current at a given frequency of an incident spike train for ts ¼ 5 ms (A),
ts ¼ 10 ms (B), ts ¼ 50 ms (C). Moreover, the values of current are normalized with respect to J. As can be seen, the relationship
between postsynaptic local current I l and incident spike frequency f is approximately linear with an uncertainty that grows inversely
proportional to the synaptic decay rate ts.

4 BIOLOGICALLY INSPIRED NEURAL COMPUTATION



DVhyp to its nominal value as the potassium channels close.
Moreover, this kind of description is closely in keeping with
the models of threshold voltage mentioned in Ref. 4. In
particular, assuming the inactivation phase of the sodium
channels ends at time Tabs, a very steep function of Dt could
model DVth when t<Tabs. Then, for t>Tabs, the relation
could be a decaying exponential. Thus, if vQ is DVth at rest
and A isa constant chosen tokeep the curve continuous, then

DVthðDtÞ ¼
vQ þ

A

Dt10
; 0 � Dt<Tabs

vQ þ ðv0 � vQÞe�aDt; Tabs <Dt
vQ; otherwise

8>><
>>:

9>>=
>>;

(14)

Figure 5 shows a graphic representation of Equation (14) for
appropriate values of vQ, Tabs, and a.

Substituting Equation (14) into Equation (12) yields a
relation that cannot easily be solved for Dt. However,
numerical methods can be used to obtain a consistent
answer. Thus, using the ALOPEX algorithm (15), the
end result is a series of points describing the relation of
Dt to Is. Furthermore, inverting this result yields a relation
of f to Is (shown in Fig. 6) that is in keeping with the
‘‘activation function’’ of the perceptron.

The activation function is a central theme of the percep-
tron and most of the derivative artificial neuron models in
that it limits the possible output levels of a neuron. In this
sense, it is the defining factor that places artificial neurons
and neural networks into the category of nonlinear adap-
tive systems (8).

A popular approximation to the activation function of
a neuron is the sigmoidal function. For example, using
the sigmoidal function, the output of a neuron given the
summation Is is

FðIsÞ ¼
2

1þ e�bIs
� �� 1 (15)

Figure 6 shows the results of a numerical solution with a
sigmoidal function optimized to fit the numerical solution.

Rate-Coding in Neurons and Networks

The synapse can be thought of as a decoder of spike trains
into levels of activity, whereas the neuron itself is viewed
as a modulator or encoder of aggregate synaptic activity
into a spike train. This aspect of neuron function has
been called rate-coding because the information trans-
mitted by a particular neuron is thought to be carried by
the firing rate itself. Also, pulse frequency modulation
(PFM) has been used to characterize this model (4).
Accordingly, Fig. 7 shows the decoding, summation,
and spike generation aspects of a neuron where He(S)
and Hi(S) are transfer functions of excitatory and inhibi-
tory synapses, respectively, and the component labeled
‘‘H-H’’ denotes a Hodgkin–Huxley-type spike generation
mechanism.

From Synaptic Plasticity to Learning Algorithms

The cornerstone of the theory on synaptic plasticity is the
‘‘Neurophysiological Postulate,’’ made by Donald Hebb in
1949 (9,10), which states

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic changes take place in one or both cells such
that A’s efficiency as one of the cells firing B, is increased.

A simple mathematical description of this postulate is
suggested by Haykin et al. (11). In particular, given the

60

55

50

45

40

35

30
0 2 4 6 8 10 12 14 16 18 20

∆t [ms]

∆Vth [mV]

Figure 5. The relative threshold �Vth as a function of the time
elapsed �t since depolarization for a ¼ 575:6, v� ¼ 35 mV,
Vo ¼ 66:6 mV, Tabs ¼ 1 ms, and A ¼ 3:2� 10�16.

0
0

1 2 3 4 5 6 7 8 9 10

1000

900

800

700

600

500

400

300

200

100

Activation [nA]

S
pi

ke
 F

re
qu

en
cy

 [H
z]

Figure 6. Activation function (solid) and sigmoid (--). Sigmoid
parameter was � ¼ 0:99� 109. Subthreshold neuron parameters
were Rm ¼ 414 M� and Cm ¼ 78:5 pF for a neuron of diameter
50 mm.

Figure 7. A neuron as a pulse frequency modulator.

BIOLOGICALLY INSPIRED NEURAL COMPUTATION 5



activity in two adjacent neurons is xa(t) and xb(t) and a
‘‘learning rate’’ parameter is Z, then the change in synaptic
efficacy would be

DyabðtÞ ¼ xaðtÞxbðtÞ (16)

However, the value representing synaptic efficacy yi

can potentially grow without bound. Thus, to curb this
behavior, Oja introduced a learning rule that will guar-
antee that the norm of yis will have unity magnitude (12).
In particular, given the output of a neuron is V and the
input to synapse i is xi, then

Dyi ¼ ZVðxi � VyiÞ (17)

Both the Hebbian and Oja rules are considered to be in
the category of ‘‘unsupervised’’ learning in that a network of
such neurons adjusts itself to encode or interpret the data at
the input. However, when the synaptic weights of a net-
work are modified to minimize some external cost function,
the learning rules are in the category of ‘‘supervised’’
learning (13).

One such learning rule is the ‘‘perceptron learning rule,’’
introduced by Rosenblatt (14). In this case, given the
desired output zk of neuron k and some threshold N, the
weight of synapse i is updated as

Dyk;i ¼ ZU N � zk

X
j

yk; jxk; j

0
@

1
Azkxk;i (18)

where U is the unit step function.
A similar innovation on this theme of supervised learn-

ing is the ALOPEX algorithm that introduces stochastic
components in the updating of synaptic weights in order to
minimize a global cost function (15). In particular, given
global error En at iteration n, zero-mean random variable
ri,n, and rate parameters g and s, the algorithm can be
described in the following steps

DEn ¼ En � En�1 (19)

Dyi;nþ1 ¼ gDEnDyi;n þ sri;n (20)

THE PERCEPTRON AND OTHER NEURAL NETWORKS

The derivations of synaptic summation and the neuron
activation function outlined above show how the percep-
tron model, introduced by Rosenblatt (14), is very similar to
the more biological descriptions of the neuron and its
synapses. In particular, using the standard notation for
perceptrons, the output of some neuron i with synaptic
weights given by wik, inputs xk, and thresholdmi, is given by

Oi ¼ g
X

k

wikxk � mi

 !
(21)

Here, the activation function gð�Þ can be thought of as the
activation function derived from Equations (12) and (14),

whereas the argument of gð�Þ is the summation mentioned
in Equation (8). Also, the threshold can be thought of as the
rheobase current mentioned in Equation 13.

For a ‘‘hard-limiting’’ activation function, the summa-
tion can be thought of as being sufficiently large so that the
transition of gð�Þ from zero to peak (�1000 Hz) is negligible.
In this case, the model resembles the McCulloch–Pitts (16)
unit, so that, for some neuron unit i at iteration n and
threshold mi, the next output is given as

Oiðnþ 1Þ ¼ U
X

j

wi jO jðnÞ � mi

0
@

1
A (22)

where Uð�Þ is the unit step function.
In 1982, Hopfield (17) popularized another neuron

model that was originally developed by Cragg and Temper-
ley in 1954 and later modified by Caianiello in 1961. More-
over, it is similar to the McCulloch–Pitts model except that
the step function is replaced by the signum function and the
threshold is dropped from the equation. In this manner, the
dynamics of a network of such neurons are described by
equations that are familiar in statistical mechanics. In
particular, the output of a single neuron i is

Si ¼ sgn
X

j

wi jS j

0
@

1
A (23)

Networks composed of Hopfield units are known as
‘‘associative memories’’ because of their ability to associate
an unknown input to some stored information. Also, the
stored patterns are known as ‘‘attractors’’ because of the
trajectory that an unknown input will follow until it
reaches the correct association (12).

Three-Dimensional Neural Networks

A three-dimensional, time-dependent (though synchro-
nized) artificial neural network (ANN) is presented with
the purpose to better simulate a complex biological sys-
tem and thereby be useful in the understanding of how
memories are stored and recollected. In emulating the
biological model, this ANN also functions to aid in visua-
lizing how neural damage of various kinds affects mental
activity.

The ANN is three-dimensional and time-dependent (yet
synchronized). It differs from the classic pattern recogni-
tion system in four ways:

1. It is a three-dimensional network (3D-NN), rather
than a one-dimensional neural network. In this
sense, it consists of two-dimensional planes of neu-
rons stacked atop one another in the third dimension.
The connectivity of a network is determined by this
3D configuration, with neurons that are closer to one
another having a greater chance of being connected to
one another.

2. The network is dependent on time. It takes one unit
of testing time for neurotransmitters to jump across
any synapse. The exception to this role is the

6 BIOLOGICALLY INSPIRED NEURAL COMPUTATION



connections going from the external stimuli to the
receptor neurons, which transmit signals instanta-
neously; these connections do not represent a syn-
aptic gap, but rather the detection of external stimuli.

3. The connections can act in lateral and feedback man-
ners, as well as a feed-forward manner (which is the
type presented most often in the classic ANN). Lat-
eral and feedback connections are present within the
biological system, and these here help to make the
network more flexible and closer to the biological
model (See Fig. 1).

4. The classic ANN has the purpose of pattern recogni-
tion. The 3D-NN can be trained in an unsupervised
manner, however, via a version of Hebb’s rule, where
external stimuli may or may not be present, and the
network generates particular sets of weights in
response. Without the introduction of known tem-
plates, it tries to simulate learning templates for the
first time, as a child does in real life. This creation of
memories is then used in conjunction with a pattern
recognition system when recollection of these mem-
ories is desired.

Damage of the network can be assessed by destroying
neurons or connections within specific areas and then
visualizing how the activity of the entire network is
affected. Various conditions can be simulated. For example,
a stroke or concussion is modeled by destroying neurons
within a finite area on a certain layer. Parkinson’s disease is
simulated by destroying connections between specific
layers (such as the destruction of inhibition in this condi-
tion that can lead to tremors). Dementia is simulated by
damaging connection strengths with random noise.

This type of neural network allows analysis of these
conditions through visualization of the activity of the net-
work at various times and places. Through such visualiza-
tion, the ANN attempts to aid in greater understanding of
its biological counterpart. An example of such a network is
given in Fig. 8, where we show the concept of the ANN,
where predefined areas of the first layer (in physiological
terms these areas are the so-called Receptive Fields), are
connected to neurons in the second layer after their output
has undergone some filtering. The outputs of the second-
layer neurons connect to the third layer and so on. This
network, however, differs from the classic perceptron net-
work in two main points: each neuron can send an output to
any neuron in the previous layers or the next layers and, in
addition, it can make connections laterally (i.e., with neu-
rons on the same plane); and information is transferred in
quanta of time from one layer to the next.

Figure 9 shows this propagation of signals from layer to
layer and for six consecutive times. The columns correspond
to time intervals (1 through 6) (Fig. 9 a, b, c) and rows
correspond to neuronal layers (1 though 3). The X, Y coor-
dinates specify the position of a neuron on the plane,
whereas the Z coordinate indicates the activity of the neu-
ron.

The reader should notice that at t ¼ 1 (Fig. 9a), only the
first layer has activity, because this layer is where the
stimulus is originating. The second and third layers do

not have any activity. At t ¼ 2 (Fig. 9a), the activity has
also reached the second layer, whereas at t ¼ 3 (Fig. 9a), all
three layers show some activity. Because of the feedback
connectivity as well as the lateral connections, the distri-
bution of activity on each plane is not changing in a linear
manner (Fig. 9 b, c).

The network, as in the classic ANNs, consists of an input
(stimulus) layer, layers of neurons, and connections. The
stimulus layer can contain as many different stimuli as
desired. Each stimulus consists of a specified number of
nodes, each of which shall have a specified activation. The
neural layers all contain the same number of neurons, but
the spatial locations of neurons on each plane are random
and unique to that plane. The neurons themselves can have
activation functions (AFs) of four different types. The linear
AF takes the form yj ¼ t

P
i xiwij, where yj is the output of

neuron j, xi is the output of neuron i at the beginning of
a connection that terminates at neuron j, wij is the con-
nection strength between these two neurons, and t is
the slope of the AF. The sigmoid is expressed as

yj ¼ 2

1þexp �

P
i xiwij

� �
t

� ��1; the multiplier of 2 and

subtraction of 1 function to give the sigmoid bounds of
�1 and 1, with an input of 0 giving 0 output; without these
two factors, the bounds are 0 and 1, which is a reasonable
scenario, but an input of 0 creates an output of 1/2, which
then propagates through the network, creating output even
though there is no initial stimulus, which is unacceptable.
The biological neuron uses a threshold-type activation
function, which the sigmoid mimics, except for the addition
of a continuous first derivative. The linear AF is useful in
making a network simple, as it is then easier to trace what
one knows an output should be. In trying to simulate the
biological system, however, the sigmoid is more accurate.
Unfortunately, the exponential in the sigmoid can only

INPUT IMAGE

SPATIAL MEXICAN-HAT
FILTERS

AREA OF CONNECTION
FOR EACH CELL

SELF-ORGANIZING
SETS OF NEURONS

Figure 8. Schematic representation of a 3D-neural network.
Stimulus is applied on the first layer. Neurons can connect to any
other neuron on any level, with specified connection strengths,
gains, and timing characteristics such as delays.

BIOLOGICALLY INSPIRED NEURAL COMPUTATION 7



handle arguments up to a finite size, and too great an input
will cause the network to fail; luckily, however, this pro-
blem usually only occurs when the stimuli are given activa-
tion that exceeds normal values, and it is easily controlled;
because neural outputs are limited to a maximum of 1
(apart from the activation of input layer nodes), this over-
flow is only a problem when a neuron has too large a
receptive field (greater than 1000 inputs, maybe), which
then inundates this neuron with a greater input than the
exponential function can handle. A problem with the linear
AF manifests itself when feedback and lateral connections
are introduced into a network; in this case, a signal, via
these non-feed-forward connections, can grow indefinitely,
and the output of a neuron possibly can, over time,
approach infinity. A linear AF, however, can be given
bounds of minimum and maximum activation. Bounding
the linear AF is effective in preventing the unwanted
blowup of activation seen in unbounded linear nets with
feedback. A fourth type of AF is the step function, with
which a neuron will fire with an output of 1 if the input

exceeds a certain threshold, and it will remain inactive
(output of 0) if the input is less than this threshold. The
step function emulates the biological system in the closest
fashion, but it does not give as much flexibility in neural
outputs as the linear and sigmoid functions do, because
the step function lacks the intermediate values otherwise
possible.

Connections can stem from the input layer to any num-
ber of other layers, and also among all other layers. The only
limitation on connections is that, with respect to the sti-
mulus layer, only feed-forward connections may exist,
which is biologically reasonable. Among all other layers,
feed-forward, feedback, and lateral connections are viable.
Connections are created on the basis of a connective neigh-
borhood. The radius of this neighborhood may represent
one of two things, either it is the boundary of the circle
within which all neurons are connected to (by the neuron of
origination) or it is the standard deviation of a Gaussian
probability curve, with closer neurons having a greater
probability of being connected. The initial weights of these
connections are random, except for the synapses between
the inputs and the first neural layer, which can either be
initially random (and thereafter trained along with the
other synapses) or initially (and thereafter) a constant 1.

Testing the network simply consists of exposing it to
specified stimuli and allowing the network to run through a
specified number of time units. The external stimuli can be
either constant in value (with a delay for activation, if
desired) or dynamic. The dynamic input is a sine curve,
which varies the intensity of the nodes in a stimulus
sinusoidally as a function of time. Testing the ANN will
generate activation of neural layers.

Training the ANN can be done in one of two ways:
unsupervised or supervised. The former uses predeter-
mined stimuli, but it does not match these stimuli with
known memories of any sort. A set of stimuli are presented
to the network, and the outputs of all neurons are calcu-
lated. Then, the weights are updated according to a speci-
fied training rule. With the new synaptic strengths, the
network is then run through again while being presented
with the desired stimulus. The weights are again changed.
This process continues iteratively for the desired number of
iterations. It is seen that one iteration of training here is
equal to one unit of network running time (as opposed to the
case of supervised training, below, where one iteration of
training usually consists of many time units of running
through the network).

During unsupervised training, as during testing, the
input layer can be either static or dynamic. Static inputs
can be either homogeneous (each node in a stimulus taking
the same value) or heterogeneous. Dynamic inputs can be
sinusoidal (as in the testing case) or prespecified. Many
training rules are available for the purpose of updating
weights without supervision.

Supervised training requires stimuli-output pairs to be
known, where the stimuli are the features of a specific
template, and the ANN matches these features with the
output neural layer corresponding to this same template.
This layer must take a known form, after a specified
amount of running time, for specific stimuli. The ALOPEX
training algorithm then proceeds to iteratively alter the

Figure 9. Progress of the workings of the 3D spatiotemporal
neural network. Columns correspond to time slots. Rows indicate
layers of neurons in a planar form, with given X, Y coordinates for
neuronal positions on the plane. The Z axis represents the activity
of neurons at that time. Notice that at t ¼ 1, layers 2 and 3 have not
received any inputs yet and therefore have no activity, At t ¼ 2,
layer 2 has some activity but layer 3 does not.

8 BIOLOGICALLY INSPIRED NEURAL COMPUTATION



connection strengths of the network until the introduction
of a certain set of stimuli creates the correct scenario of
activation for the output layer. The activation of the output
layer (to correspond to a specific set of features) can be set in
one of two ways. One is to specify areas of output neurons to
be active (positive) when a certain template is introduced,
with other output neurons having negative activation. The
other way for the output layer to be set is by creating data
files of the activation of this layer via the testing of the
network. In this latter case, a network can be trained in
an unsupervised manner, and this trained network is
then tested with the same stimuli used to train it, thus
creating a data file containing the activation of the output
neural layer after a preset amount of time. This data file
can then be used as the desired activation of the output
layer in a supervised network, and ALOPEX will try to
force an identical network to attain this activation when
the same stimuli are introduced.

Supervised training can try to take many different sti-
muli-output pairs and match them up in the same network,
which may be used to simulate the recollection of stored
memories when situations encountered are similar to those
that brought about such a memory in the first place. As in
most pattern recognition ANNs, however, convergence pro-
blems limit the applicability of this ANN in its desired task.

Damage to a network is a concern that may be visualized
in like manner. A network can be damaged by deactivation
of a group of connections between specified layers. Taking
all connections away from a particular layer in effect kills
all neurons on that layer. Another option is to destroy
connections only within specified areas on two layers, or
to simply add a Gaussian noise to all weights.

A network damaged as described earlier is easily visua-
lized or retrained in the same manner as before and, by
doing so, the effects of damage on neural activity become
apparent.

These ANNs, although they are three-dimensional and
time-dependent, behave in a synchronized manner, as do
their classic counterparts. It may be of use, for future
development, to construct nets that transmit signals in a
manner where the time it takes a signal to propagate from
one neuron to the next is proportional to the distance
between these two neurons. Hardware ANNs do so natu-
rally, but a digital one can be constructed in a manner
where it is also possible. A synchronized ANN is still viable
for this application if the time increments are very small
and a signal takes a number of time units proportional to
this distance to travel across the synapse. Would this
method better simulate the biological system? Might it
also better simulate the biological model if a frequency-
modulated signal is simulated? These have been questions
for future research that can prove their validity.

Biologically Inspired Modular Neural Networks

The idea of building modular networks comes from the
analogy with biological systems, in which a brain (as a
common example) consists of a series of interconnected
substructures, like auditory, vestibular, and visual sys-
tems, which, in turn, are further structured on more func-
tionally independent groups of neurons. Each level of signal

processing performs its unique and independent purpose,
such that the complexity of the output of each subsystem
depends on the hierarchical level of that subsystem within
the whole system. For instance, in the striate cortex
(area 17), simple cells provide increased activity when a
bar or slit of light stimulates a precise area of the visual field
at a precise orientation. Their output is further processed
by complex neurons, which respond best to straight lines
moving through the receptive field in a particular direction
with a specific orientation. The dot-like information from
ganglion and Lateral Geniculate (LG) cells is, therefore,
transformed in the occipital lobe into information about
edges and their position, length, orientation, and move-
ment. Although this information represents a high degree
of abstraction, the visual association areas of the occipital
lobe serve as only an early stage in the integration of visual
information.

The usage of modular neural networks is most beneficial
when there are cases of missing pieces of data. As each
module takes its input from several others, a missing
connection between modules would not significantly alter
that module’s output.

The anticipation is that the greater the number of
features per input module, the more advantageous is the
usage of modular neural networks in case of missing fea-
tures. One possible application of this approach can be used
in face recognition, when certain parts of a face image (like
nose or eyes) are not available for some images (20).

For further improvement of the algorithm, different
schemes can be used to compute the local or global error
factor in the ALOPEX optimization (see Appendix 1), as
well as a more reliable way for adjusting the noise with
respect to the global error.

As stated earlier, one type of modular neural network is
a multilayer perceptron that is not fully connected. How-
ever, just deleting random connections does not make a
modular neural network. Haykin (21) defines a modular
neural network as follows:

A neural network is said to be modular if the computation
performed by the network can be decomposed into two or
more modules (subsystems) that operate on distinct inputs
without communicating with each other. The outputs of the
modules are mediated by an integrating unit that is not per-
mitted to feed information back to the modules. In particular,
the integrating unit both (1) decides how the outputs of the
modules should be combined to form the final output of the
system, and (2) decides which modules should learn which
training patterns.

The idea of modular neural networks is analogous to
biological systems (22). Our brain has many different sub-
systems that process sensory inputs and then feed these
results to other central processing neurons in the brain. For
instance, consider a person who meets someone they have
not seen in a long time. To remember the identity of this
person, multiple sensory inputs may be processed. Fore-
most perhaps is the sense of sight whereby one processes
what the person looks like. That may not be enough to
recognize the person, as the person may have changed over
the course of a number of years. However, their looks

BIOLOGICALLY INSPIRED NEURAL COMPUTATION 9



coupled with the person’s voice, the sensory input from
the ears may be enough to provide an identity. If those two
are not enough, perhaps the person wears a distinctive
cologne or perfume that the olfactory senses will process
and add an input to the central processing. In addition, the
sense of touch may also provide more information if the
person has a firm handshake or soft hands. In this way, our
biological system makes many different observations each
processed first by some module and then the results sent to
be further processed at a central location. Indeed, there
may be several layers of processing before a final result is
achieved.

In addition to different modules processing the input,
the same sensor may process the input in two different
ways. For example, the ears process the sound of a person’s
voice. The pitch, tonality, volume, and speed of a person’s
voice are all taken into account when one is identifying
someone. However, perhaps more important is what that
person says. For instance, they may tell you their name—a
piece of data that is highly critical to identification. These
data would be passed to the central processing to be used to
match that name with the database of peoples’ names that
one has previously met. It is easy to postulate that what
someone says is processed differently, and perhaps feeds to
a different module in the next layer, than how they say it,
even though the same raw data are used.

Although the concept of a modular neural network is
based on biological phenomena, it also makes sense from a
purely practical viewpoint. Many real-world problems have
a large amount of data points. Using this large number of
points as input to a fully connected multilayer perceptron
results in a very large number of weights. Just blindly
trying to train a network with this approach most often
results in poor performance of the network, not to mention
long training times because of slow convergence (23). Some-
times there are feature extraction methods, which will
reduce the number of data points. However, as was the
case in this project, there are times when even then
the amount of data is large. As it is desirable to have the
minimum number of weights that will yield good perfor-
mance, a modular neural network may be a good solution.
Each module is effectively able to compress its data and
extract subfeatures, which then are used as input to a fully
connected neural network. Without this modularity, the
number of weights in the network would be far greater.

SUMMARY

Biologically inspired neural networks in computational
intelligence have been proven to be more efficient in
pattern recognition tasks (24). Several examples exist
that prove the notion of ‘‘every neuron connected to every
neuron in the network’’ might not be the best approach.
The feed-forward approach with a huge number of inputs
and many layers of neurons does not seem to be the best
and most efficient way of doing computations, simply
because the number of weights that have to be optimized
is prohibitively large.

We presented new types of architectures that have the
ability of overcoming the above-mentioned shortcomings.

In addition, mathematical models of certain biological
events and processes were also presented.

BIBLIOGRAPHY

1. M. F. Bear, B. W. Connors, and M. A. Pardiso, Neuroscience:
Exploring the Brain, Philadelphia, PA: Lippincott Williams &
Wilkins, 2001.

2. B. Kast, Best supporting actors, Nature, 412 (6848): 674, 2001.

3. Chudler, E.H., Available: http://faculty.washington.edu/chu-
dler/cellpyr.html

4. S. Deutsch, and E. Micheli-Tzanakou, Neuroelectric Systems,
New York: New York University Press, 1987.

5. J. Malmivuo, and R. Plonsey, Bioelectromagnetism, Principles
and Applications of Bioelectric and Biomagnetic Fields,
Oxford, U.K.: Oxford University Press, 1994.

6. R. Moreno-Bote and N. Parga, Role of synaptic filtering on the
firing response of simple model neurons, Phys. Rev. Lett. 92 (2):
281021–281024, 2004.

7. S. Leondopulos, E. Micheli-Tzanakou, A polynomial approxi-
mation to the neuronal action potential as governed by the
Hodgkin-Huxley equations, Proc. of the 30th IEEE Northeast
Bioengineering Conference, 30: 75–76, 2004.

8. S. Haykin, Adaptive Filter Theory, Englewood Cliffs, NJ.:
Prentice Hall 2002.

9. T.J. Sejnowski, The book of Hebb, Neuron 24: 773–776, 1999.

10. G. Bi and M. Poo, Synaptic modification by correlated activity:
Hebb’s postulate revisited, Annual Rev. in Neurosci., 24: 139–
66, 2001.

11. S. Haykin, Z. Chen., S. Becker, Stochastic Correlative Learn-
ing Algorithms, IEEE Trans. on Signal Process., 52 (8): 2004.

12. J. Hertz, A. Krogh, R.G. Palmer, Introduction to the theory of
neural computation, Boston, MA: Addison-Wesley, 1991.

13. E. Micheli-Tzanakou, Supervised and Unsupervised Pattern
Recognition Feature Extraction and Computational Intelli-
gence, Bocat Raton, F.L.: CRC Press, 2000.

14. F. Rosenblatt, Principles of Neurodynamics, New York:
Spartan, 1962.

15. E. Harth and E. Tzanakou, ALOPEX: A stochastic method for
determining visual receptive fields, Vision Research, 14: 1475–
1482, 1974.

16. W. S. McCulloch, and W. H. Pitts, A logical calculus of the ideas
immanent in nervous activity, Bulletin of Math. Biophys., 5:
115–133, 1943.

17. J.J. Hopfield, Neural Networks and Physical Systems with
Emergent Collective Computational Abilities, Proc. of the
National Academy of Sciences, USA, 79: 2554–2558, 1982.

18. A. L. Hodgkin and A. F. Huxle, A quantitative description of
membrane current and its application to conduction and exci-
tation in nerve, J. of Physiol., 117: 500–544, 1952.

19. D. O. Hebb, Organization of Behavior: A Neurophysiological
Theory, New York: Wiley, 1949.

20. E. Micheli-Tzanakou, E. Uyeda, R. Ray, A. Sharma, R. Rama-
nujan, and J. Doug, Comparison of Neural Network Algorithms
for Face Recognition, Simulation, 64 (1): 15–27, 1995.

21. S. Haykin, Neural Networks: A Comprehensive Foundation,
New York: Macmillan College Publishing Company, 1994.

22. T. Hrycej, Modular Learning in Neural Networks, New York:
Wiley, 1992.

23. C. Rodriguez, S. Rementeria, J. Martin, A. Lafuente, J.
Muguerza, and J. Perez, A Modular Neural Network Approach

10 BIOLOGICALLY INSPIRED NEURAL COMPUTATION



to Fault Diagnosis, IEEE Trans. on Neural Net., 7 (2): 326–340,
1996.

24. J. Webster (ed.), Wiley encyclopedia of Electrical and Elec-
tronics Engineering. New York: Wiley. Available: http://www.
wiley.com.

FURTHER READING

P. Fatt, and B. Katz, Spontaneous subthreshold activity at motor
nerve endings, J. of Physiol., 117: 109, 1952.

W. Bialek, and A. Zee, Coding and computation with neural spike
trains, J. of Stat. Phy., 59: 103–115, 1990.

D. M. MacKay, and W. S. McCulloch, The limiting information
capacity of a neuronal link, Bull. of Math. Biophys., 14: 127–135,
1952.

F. C. Hoppensteadt, E. M. Izhikevich, Thalamo-cortical interac-
tions modeled by weakly connected oscillators: Could brain use FM
radio principles?, Biosystems, 48: 85–94, 1998.

G. S. Berns, T. J. Sejnowski, A computational model of how the
basal ganglia produce sequences, J. of Cog. Neurosci., 10 (1): 108–
121, 1998.

D. Noble, A modification of the Hodgkin-Huxley equations applic-
able to Purkinje fibre action and pacemaker potentials, J. of Phys.,
160: 317–352, 1962.

R. FitzHugh, Impulses and physiological states in theoretical
models of nerve membrane, Biophys. J., 1: 1961.

F. B. Hanson and H. C. Tuckwell, Diffusion Approximation for
Neuronal Activity Including Reversal Potentials, J. of Theoret.
Neurobiol., 2: 127–153, 1983.

J. L. Hindmarsh, R. M. Rose, A model of neuronal bursting using
three coupled first order differential equations, Proc. of the Royal
Soc. of London B: Biol. Sci., 221 (1222): 87–102, 1984.

S. Wolpert, E. Micheli-Tzanakou, A neuromime in VLSI, IEEE
Trans. on Neural Networks, 7 (2): 1996.

S. Shinomoto, and Y. Kuramoto, Phase transitions in active rotator
systems, Prog. in Theoret. Phys., 75: 1105–1110, 1986.

A. D. Coop, and G. N. Reeke Jr., The composite neuron: A realistic
one-compartment Purkinje cell model suitable for large-scale neu-
ronal network simulations, J. of Computat. Neurosci., 10 (2): 173–
186, 2001.

J. Feng, Is the integrate-and-fire model good enough?-A review,
Neural Networks, 14: 955–975, 2001.

J. Feng, and P. Zhang, Behavior of integrate-and-fire and Hodgkin-
Huxley models with correlated inputs, Phys. Rev. E, 63: 051902.

E. M. Izhikevich, Weakly pulse-coupled oscillators, FM interac-
tions, synchronization, and oscillatory associative memory, IEEE
Trans. on Neural Net., 10 (3): 1999.

E. M. Izhikevich, Which Model to Use for Cortical Spiking Neu-
rons? IEEE Trans. on Neural Net., 15: 1063–1070, 2004.

E. Oja, A simplified neuron model as a principal component ana-
lyzer, J. Math. Biol., 15: 267–273, 1982.

B. G. Cragg, and H. N. V. Temperley, The organization of neurones:
A cooperative analogy, EEG and Clinical Neurophys., 6: 85–92,
1954.

E. R. Caianiello, Outline of a theory of thought-processes and
thinking machines, J. of Theoretical Biol., 1: 204–235, 1961.

STATHIS LEONDOPULOS

EVANGELIA MICHELI-
TZANAKOU

Rutgers University
Piscataway, New Jersey

BIOLOGICALLY INSPIRED NEURAL COMPUTATION 11



C

COGNITIVE SYSTEMS AND COGNITIVE
ARCHITECTURES

INTRODUCTION

Cognitive systems refer to computational models and sys-
tems that are in some way inspired by human (or animal)
cognition as we understand it, which is a broad class of
systems, not always well defined or clearly delineated.
There is a variety of forms of cognitive systems. They
have been developed for a variety of different purposes
and in a variety of different ways. We will describe two
broad categories below.

In general, computational cognitive modeling explores
the essence of cognition through developing computational
models of mechanisms (including representations) and
processes of cognition, thereby producing realistic cognitive
systems. In this enterprise, a cognitive architecture is a
domain-generic and comprehensive computational cogni-
tive model that may be used for a wide range of analysis of
behavior. It embodies generic descriptions of cognition in
computer algorithms and programs. Its function is to pro-
vide a general framework to facilitate more detailed compu-
tatonal modeling and understanding of various compo-
nents and processes of the mind. Cognitive architectures
occupy a particularly important place among all kinds of
cognitive systems, as they aim to capture all basic struc-
tures and processes of the mind, and therefore are essential
for broad, multiple-level, multiple-domain analyses of
behavior. Developing cognitive architectures has been a
difficult task. In this article, the importance of developing
cognitive architectures, among other cognitive systems,
will be discussed, and examples of cognitive architectures
will be given.

Another common approach toward developing cognitive
systems is the logic-based approach. From the logical
point of view, a cognitive system is first and foremost a
system that, through time, adopts and manages certain
attitudes toward propositions, and reasons over these pro-
positions, to perform the actions that will secure certain
desired ends. The most important propositional attitudes
are believes that and knows that. (Our focus herein will be
on the latter. Other propositional attitudes include wants
that and hopes that.) A propositional attitude is simply a
relationship holding between an agent (or system) and one
or more propositions, where propositions are declarative
statements.

We can think of a cognitive system’s life as being a
cycle of sensing, reasoning, acting; sensing, reasoning,
acting; . . ., and so on. In a cognitive system, this cycle
repeats ad infinitum, presumably with goal after goal
achieved along the way. In a logic-based cognitive system,
the knowledge at the heart of this cycle is represented as
formulas in one or more logics, and the reasoning in
question is also regimented by these logics.

The eventual objective of cognitive systems research is to
construct physically instantiated cognitive systems that
can perceive, understand, and interact with their environ-
ment, and evolve and learn to achieve human-like perfor-
mance in complex activities (often requiring context-
specific knowledge). The readers may look into Refs. 1–4
for further information.

COGNITIVE ARCHITECTURES

In this section, we describe cognitive architectures. First,
the question of what a cognitive architecture is is answered.
Next, the importance of cognitive architectures is
addressed. Then an example cognitive architecture is pre-
sented.

What is a Cognitive Architecture?

As mentioned earlier, a cognitive architecture is a compre-
hensive computational cognitive model, which is aimed to
capture the essential structure and process of the mind, and
can be used for a broad, multiple-level, multiple-domain
analysis of behavior (5,6).

Let us explore this notion of architecture with an ana-
logy. The architecture for a building consists of its overall
framework and its overall design, as well as roofs, founda-
tions, walls, windows, floors, and so on. Furniture and
appliances can be easily rearranged and/or replaced and
therefore they are not part of the architecture. By the same
token, a cognitive architecture includes overall structures,
essential divisions of modules, essential relations between
modules, basic representations and algorithms within mod-
ules, and a variety of other aspects (2,7). In general, an
architecture includes those aspects of a system that are
relatively invariant across time, domains, and individuals.
It deals with componential processes of cognition in a
structurally and mechanistically well-defined way.

In relation to understanding the human mind (i.e., in
relation to cognitive science), a cognitive architecture pro-
vides a concrete framework for more detailed computa-
tional modeling of cognitive phenomena. Research in
computational cognitive modeling explores the essence of
cognition and various cognitive functionalities through
developing detailed, process-based understanding by spe-
cifying corresponding computational models of mechan-
isms and processes. It embodies descriptions of cognition
in concrete computer algorithms and programs. Therefore,
it produces runnable computational models of cognitive
processes. Detailed simulations are then conducted based
on the computational models. In this enterprise, a cognitive
architecture may be used for broad, multiple-level,
multiple-domain analyses of cognition.

In relation to building intelligent systems, a cognitive
architecture specifies the underlying infrastructure for
intelligent systems, which includes a variety of capabilities,
modules, and subsystems. On that basis, application

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



systems may be more easily developed. A cognitive archi-
tecture also carries with it theories of cognition and under-
standing of intelligence gained from studying human
cognition. Therefore, the development of intelligent sys-
tems can be more cognitively grounded, which may be
advantageous in many circumstances (1,2).

Existing cognitive architectures include Soar (8), ACT-R
(9), CLARION (6), and many others.

For further (generic) information about cognitive archi-
tectures, the readers may turn to the following websites:

http://www.cogsci.rpi.edu/~rsun/arch.html

http://books.nap.edu/openbook.php?isbn=0309060966
as well as the following websites for specific individual

cognitive architectures (Soar, ACT-R, and CLARION):

http://www.cogsci.rpi.edu/~rsun/clarion.html

http://act-r.psy.cmu.edu/

http://sitemaker.umich.edu/soar/home

Why Are Cognitive Architectures Important?

For cognitive science, the importance of cognitive architec-
tures lies in the fact that they are beneficial to understand-
ing the human mind. In understanding cognitive
phenomena, the use of computational simulation on the
basis of cognitive architectures forces one to think in terms
of process and in terms of detail. Instead of using vague,
purely conceptual theories, cognitive architectures force
theoreticians to think clearly. They are, therefore, critical
tools in the study of the mind. Researchers who use cogni-
tive architectures must specify a cognitive mechanism in
sufficient detail to allow the resulting models to be imple-
mented on computers and run as simulations. This
approach requires that important elements of the models
be spelled out explicitly, thus aiding in developing better,
conceptually clearer theories. It is certainly true that more
specialized, narrowly scoped models may also serve this
purpose, but they are not as generic and as comprehensive
and thus they are not as useful (1).

An architecture serves as an initial set of assumptions to
be used for further computational modeling of cognition.
These assumptions, in reality, may be based on either
available scientific data (for example, psychological or bio-
logical data), philosophical thoughts and arguments, or ad
hoc working hypotheses (including computationally
inspired such hypotheses). An architecture is useful and
important precisely because it provides a comprehensive
initial framework for further modeling in a variety of task
domains. Different cognitive architectures, such as Soar,
ACT-R, or CLARION, embody different sets of assumptions
(see an example later).

Cognitive architectures also provide a deeper level of
explanation. Instead of a model specifically designed for a
specific task (often in an ad hoc way), using a cognitive
architecture forces modelers to think in terms of the
mechanisms and processes available within a generic cog-
nitive architecture that are not specifically designed for a
particular task, and thereby to generate explanations of the
task that are not centered on superficial, high level features

of a task (as often happens with specialized, narrowly
scoped models), that is, to generate explanations of a deeper
kind. To describe a task in terms of available mechanisms
and processes of a cognitive architecture is to generate
explanations centered on primitives of cognition as
envisioned in the cognitive architecture (e.g., ACT-R or
CLARION), and therefore such explanations are deeper
explanations. Because of the nature of such deeper expla-
nations, this style of theorizing is also more likely to lead to
unified explanations for a large variety of data and/or
phenomena, because potentially a large variety of tasks,
data, and phenomena can be explained on the basis of the
same set of primitives provided by the same cognitive
architecture. Therefore, using cognitive architectures
leads to comprehensive theories of the mind (5,6,9), unlike
using more specialized, narrowly scoped models.

Although the importance of being able to reproduce the
nuances of empirical data from specific psychological
experiments is evident, broad functionality in cognitive
architectures is also important (9), as the human mind
needs to deal with the full cycle that includes all of the
following: transducing signals, processing them, storing
them, representing them, manipulating them, and gener-
ating motor actions based on them. There is clearly a need
to develop generic models of cognition that are capable of a
wide range of functionalities to avoid the myopia often
resulting from narrowly-scoped research (in psychology
in particular).

In all, cognitive architectures are believed to be essential
in advancing the understanding of the mind (5,6,9). There-
fore, developing cognitive architectures is an important
enterprise in cognitive science.

On the other hand, for the fields of artificial intelligence
and computational intelligence (AI/CI), the importance of
cognitive architectures lies in the fact that they support the
central goal of AI/CI—building artificial systems that are as
capable as human beings. Cognitive architectures help us
to reverse engineer the best existing intelligent system—
the human mind. They constitute a solid basis for building
intelligent systems, because they are well motivated by,
and properly grounded in, existing cognitive research. The
use of cognitive architectures in building intelligent sys-
tems may also facilitate the interaction between humans
and artificially intelligent systems because of the similarity
between humans and cognitively based intelligent systems.

It is also worth noting that cognitive architectures are
the antithesis of ‘‘expert systems’’: Instead of focusing on
capturing performance in narrow domains, they are aimed
to provide broad coverage of a wide variety of domains (2).
Business and industrial applications of intelligent systems
increasingly require broad systems that are capable of a
wide range of intelligent behaviors, not just isolated sys-
tems of narrow functionalities. For example, one applica-
tion may require the inclusion of capabilities for raw image
processing, pattern recognition, categorization, reasoning,
decision making, and natural language communications. It
may even require planning, control of robotic devices, and
interactions with other systems and devices. Such require-
ments accentuate the importance of research on broadly
scoped cognitive architectures that perform a wide range of

2 COGNITIVE SYSTEMS AND COGNITIVE ARCHITECTURES



cognitive functionalities across a variety of task domains
(as opposed to more specialized systems).

An Example of a Cognitive Architecture

An Overview. As an example, we will describe a cognitive
architecture: CLARION. It has been described extensively
in a series of previous papers, including Refs. 6,10–12. The
reader is referred to these publications for further details.

Those who wish to know more about other cognitive
architectures in existence (such as ACT-R or Soar) may
want to see Refs. 8 and 9.

CLARION is an integrative architecture, consisting of a
number of distinct subsystems, with a dual representa-
tional structure in each subsystem (i.e., implicit versus
explicit representations; more later). Its subsystems
include the action-centered subsystem (the ACS), the
nonaction-centered subsystem (the NACS), the motiva-
tional subsystem (the MS), and the meta-cognitive subsys-
tem (the MCS). The role of the action-centered subsystem is
to control actions, regardless of whether the actions are for
external physical movements or for internal mental opera-
tions. The role of the nonaction-centered subsystem is to
maintain general knowledge (either implicit or explicit).
The role of the motivational subsystem is to provide under-
lying motivations for actions in terms of providing impetus
and feedback (e.g., indicating whether outcomes are satis-
factory). The role of the meta-cognitive subsystem is to
monitor, direct, and modify the operations of the action-
centered subsystem dynamically as well as the operations
of all the other subsystems.

Each of these interacting subsystems consists of two
‘‘levels’’ of representation (i.e., a dual representational
structure): Generally, in each subsystem, the top level
encodes explicit knowledge and the bottom level encodes
implicit knowledge. The distinction of implicit and explicit

knowledge has been amply argued for before (6,13–15). The
two levels interact, for example, by cooperating in actions,
through a combination of the action recommendations from
the two levels respectively, as well as by cooperating in
learning through a bottom-up and a top-down process (to be
discussed below). See Fig. 1.

It has been intended that this cognitive architecture
satisfy some basic requirements as follows. It should be
able to learn with or without a priori domain-specific knowl-
edge to begin with (unlike most other existing cognitive
architectures) (11,13). It also has to learn continuously
from ongoing experience in the world (as indicated by
Refs. 16 and 17, and others, human learning is often
gradual and ongoing). As suggested by Refs. 13 and 14,
and others, there are clearly different types of knowledge
involved in human learning. Moreover, different types of
learning processes are involved in acquiring different types
of knowledge (9,11,18). Furthermore, it should include both
situated actions/reactions and cognitive deliberations (6). It
should be able to handle complex situations that are not
amenable to simple rules. Finally, unlike other existing
cognitive architectures, it should more fully incorporate
motivational processes as well as meta-cognitive processes.
Based on the above considerations, CLARION was devel-
oped.

Some Details. The Action-Centered Subsystem. First,
let us look into the action-centered subsystem (the ACS) of
CLARION. The overall operation of the action-centered
subsystem may be described as follows:

1. Observe the current state x.

2. Compute in the bottom level the Q-values of x asso-
ciated with each of all the possible actions ai’s: Q(x,
a1), Q(x, a2), . . . . . . , Q(x, an).

Figure 1. The CLARION architecture.

COGNITIVE SYSTEMS AND COGNITIVE ARCHITECTURES 3



3. Find out all the possible actions (b1, b2, . . . . , bm) at the
top level, based on the input x (sent up from the
bottom level) and the rules in place.

4. Compare or combine the values of the selected ais
with those of bjs (sent down from the top level), and
choose an appropriate action b.

5. Perform the action b, and observe the next state y and
(possibly) the reinforcement r.

6. Update Q-values at the bottom level in accordance
with the Q-Learning-Backpropagation algorithm.

7. Update the rule network at the top level using the
Rule-Extraction-Refinement algorithm.

8. Go back to Step 1.

In the bottom level of the action-centered subsystem,
implicit reactive routines are learned: A Q-value is an
evaluation of the ‘‘quality’’ of an action in a given state:
Q(x, a) indicates how desirable action a is in state x (which
consists of some sensory input). An action may be chosen in
any state based on Q-values in that state. To acquire the Q-
values, the Q-learning algorithm (19) may be used, which is
a reinforcement learning algorithm (see the articles on
learning algorithms in this encyclopedia). It basically com-
pares the values of successive actions and adjusts an eva-
luation function on that basis. It thereby develops reactive
sequential behaviors or reactive routines [such as navigat-
ing through a body of water or handling daily activities, in a
reactive way (6,12)]. Reinforcement learning is implemen-
ted in modular (multiple) neural networks. Due to such
networks, CLARION is able to handle very complex situa-
tions that are not amenable to simple rules.

In the top level of the action-centered subsystem, explicit
symbolic conceptual knowledge is captured in the form of
explicit symbolic rules; see Ref. 12 for details. There are
many ways in which explicit knowledge may be learned,
including independent hypothesis-testing learning and
‘‘bottom-up learning’’ as discussed below.

Humans are generally able to learn implicit knowledge
through trial and error, without necessarily using a priori
knowledge. On top of that, explicit knowledge can be
acquired also from ongoing experience in the world, possi-
bly through the mediation of implicit knowledge (i.e.,
bottom-up learning; see Refs. 6,18, and 20). The basic
process of bottom-up learning (which is generally missing
from other existing cognitive architectures and distin-
guishes CLARION from others) is as follows: If an action
implicitly decided by the bottom level is successful, then the
agent extracts an explicit rule that corresponds to the
action selected by the bottom level and adds the rule to
the top level. Then, in subsequent interaction with the
world, the agent verifies the extracted rule by considering
the outcome of applying the rule: If the outcome is not
successful, then the rule should be made more specific and
exclusive of the current case; if the outcome is successful,
the agent may try to generalize the rule to make it more
universal (21).1 After explicit rules have been learned, a

variety of explicit reasoning methods may be used. Learn-
ing explicit conceptual representation at the top level can
also be useful in enhancing learning of implicit reactive
routines at the bottom level (11).

Although CLARION can learn even when no a priori or
externally provided explicit knowledge is available, it can
make use of it when such knowledge is available (9,22). To
deal with instructed learning, externally provided knowl-
edge, in the forms of explicit conceptual structures such as
rules, plans, categories, and so on, can 1) be combined with
existent conceptual structures at the top level, and 2) be
assimilated into implicit reactive routines at the bottom
level. This process is known as top-down learning (12).

The Non-action-Centered Subsystem. The nonaction-cen-
tered subsystem (NACS) may be used for representing
general knowledge about the world (23), for performing
various kinds of memory retrievals and inferences. The
nonaction-centered subsystem is under the control of the
action-centered subsystem (through its actions).

At the bottom level, ‘‘associative memory’’ networks
encode nonaction-centered implicit knowledge. Associa-
tions are formed by mapping an input to an output (such
as mapping ‘‘2 þ 3’’ to ‘‘5’’). For example, the regular back-
propagation learning algorithm can be used to establish
such associations between pairs of inputs and outputs (24).

On the other hand, at the top level of the nonaction-
centered subsystem, a general knowledge store encodes
explicitnonaction-centered knowledge (25). In thisnetwork,
chunks are specified through dimensional values
(features).2 A node is set up in the top level to represent a
chunk. The chunk node connects to its corresponding fea-
tures (represented as individual nodes) in the bottom level of
the nonaction-centered subsystem (25). Additionally, links
between chunks encode explicit associations between pairs
of chunks, known as associative rules. Explicit associative
rules may be formed (i.e., learned) in a variety of ways (12).

Different from most other existing cognitive architec-
tures, during reasoning, in addition to applying associative
rules, similarity-based reasoning may be employed in the
nonaction-centered subsystem. During reasoning, a known
(given or inferred) chunk may be automatically compared
with another chunk. If the similarity between them is
sufficiently high, then the latter chunk is inferred (12,25).

As in the action-centered subsystem, top-down or
bottom-up learning may take place in the nonaction-cen-
tered subsystem, either to extract explicit knowledge in the
top level from the implicit knowledge in the bottom level or
to assimilate explicit knowledge of the top level into implicit
knowledge in the bottom level.

The Motivational and the Meta-Cognitive Subsystem. The
motivational subsystem (the MS) is concerned with why an

2 The basic form of a chunk is as follows: chunk-idi: (dimi1
,

vali1
)(dimi2

, vali1
) . . . . . . (dimin

, valin
), where dim denotes a

particular state/output dimension and val specifies its
corresponding value. For example, table-1: (size, large)
(color, white) (number-of-legs, four) specifies a large,
four-legged, white table.

1
The detail of the bottom-up learning algorithm can be

found in Ref. 10.

4 COGNITIVE SYSTEMS AND COGNITIVE ARCHITECTURES



agent does what it does. Simply saying that an agent
chooses actions to maximizes gains, rewards, reinforce-
ments, or payoffs leaves open the question of what deter-
mines these things. The relevance of the motivational
subsystem to the action-centered subsystem lies primarily
in the fact that it provides the context in which the goal and
the reinforcement of the action-centered subsystem are set.
It thereby influences the working of the action-centered
subsystem, and by extension, the working of the nonaction-
centered subsystem.

A dual motivational representation is in place in
CLARION. The explicit goals (such as ‘‘finding food’’) of
an agent (which is tied to the working of the action-centered
subsystem) may be generated based on internal drive states
(for example, ‘‘being hungry’’; see Ref. 12 for details).

Beyondlowleveldrives(concerningphysiologicalneeds),3

there are also higher level drives. Some of them are primary,
inthesenseofbeing ‘‘hard-wired’’.4 Althoughprimarydrives
are built-in and relatively unalterable, there are also
‘‘derived’’ drives, which are secondary, changeable, and
acquired mostly in the process of satisfying primary drives.

The meta-cognitive subsystem (the MCS) is closely tied
to the motivational subsystem. The meta-cognitive subsys-
tem monitors, controls, and regulates action-centered and
nonaction-centered processes for the sake of improving
performance (26,27). Control and regulation may be in
the forms of setting goals for the action-centered subsys-
tem, setting essential parameters of the action-centered
subsystem and the nonaction-centered subsystem, inter-
rupting and changing ongoing processes in the action-
centered subsystem and the nonaction-centered subsys-
tem, and so on. Control and regulation can also be carried
out through setting reinforcement functions for the action-
centered subsystem. All of the above can be done on the
basis of drive states and/or goals in the motivational sub-
system. The meta-cognitive subsystem is also made up of
two levels: the top level (explicit) and the bottom level
(implicit).

Accounting for Cognitive Data. Like some other cognitive
architectures (ACT-R in particular), CLARION has been
successful in accounting for and explaining a variety of
psychological data. For example, a number of well-known
psychological tasks have been simulated using CLARION
that span the spectrum ranging from simple reactive skills
to complex cognitive skills. The simulated tasks include
serial reaction time tasks, artificial grammar learning
tasks, process control tasks, categorical inference tasks,
alphabetic arithmetic tasks, and the Tower of Hanoi task
(6). Among them, serial reaction time and process control
tasks are typical implicit learning tasks (mainly involving
implicit reactive routines), whereas Tower of Hanoi and
alphabetic arithmetic are high level cognitive skill acquisi-
tion tasks (with a significant presence of explicit processes).

3 Low level drives include, for example, need for food, need
for water, need to avoid danger, and so on (12).
4 A few high level drives include: desire for domination,
desire for social approval, desire for following social norms,
desire for reciprocation, desire for imitation (of certain
other people), and so on (12).

In addition, extensive work has been done on a complex
minefield navigation task, which involves complex sequen-
tial decision making (10,11). Work has also been done on an
organizational decision task (28), and other social simula-
tion tasks, as well as meta-cognitive tasks. While account-
ing for various psychological data, CLARION provides
explanations that shed new light on cognitive phenomena.

In all of these cases of simulations, the use of the
CLARION cognitive architecture forces one to think in
terms of process, and in terms of details, as envisaged in
CLARION. The use of CLARION also provides a deeper
level of explanations. It is deeper because the explanations
were centered on lower level mechanisms and processes
(1,6). Due to the nature of such deeper explanations, this
approach is also likely to lead to unified explanations,
unifying a large variety of data and/or phenomena. For
example, all the afore-mentioned tasks have been
explained computationally in a unified way in CLARION.

LOGIC-BASED COGNITIVE SYSTEMS

We now give an account of logic-based cognitive systems,
mentioned in broad strokes earlier.

Logic-Based Cognitive Systems in General

At any time t during its existence, the cognitive state of a
cognitive system S consists in what the system knows at that
time, denoted by Ft

S. (To ease exposition, we leave aside the
distinction between what S knows versus what it merely
believes.) We assume that as S moves through time, what
it knows at any moment is determined, in general, by two
sources: information coming directly from the external envir-
onment in which S lives, through the transducers in S’s
sensors that turn raw sense data into propositional content,
and from reasoning carried out by S over its knowledge.

For example, suppose you learn that Alvin loves Bill, and
that everyone loves anyone who loves someone. Your goal is
to determine whether or not everyone loves Bill, and
whether or not Katherine loves Dave. The reasoning needs
to be provided in the form of an explicit series of inferences
(which serves to guarantee that the reasoning in question is
‘‘surveyable’’).

Your knowledge (or knowledge base) now includes that
Alvin loves Bill. (It also includes ‘Everyone loves anyone
who loves someone’.) You know this because information
impinging upon your sensors has been transduced into
propositional content added to your knowledge base. We
can summarize the situation at this point is as follows:

F
tnþ1

S ¼ F
tn

S [fLovesðalvin;billÞg

Generalizing, we can define a ternary function env from
timepoint-indexed knowledge bases, and formulas generated
by trans applied to raw information hitting sensors, to a new,
augmentedknowledgebaseat thenext timepoint.Sowehave:

F
tnþ1

S ¼ envðFtn

S ; transðrawÞÞ

where trans(raw) ¼ Loves(alvin,bill).

COGNITIVE SYSTEMS AND COGNITIVE ARCHITECTURES 5



Now consider the second source of new knowledge, viz.,
reasoning. On the basis of reasoning over the proposition
that Alvin loves Bill, we know that someone loves Bill, that
someone loves someone, that someone whose name starts
with ‘A’ loves Bill, and so on. These additional propositions
can be directly deduced from the single one about Alvin and
Bill; each of them can be safely added to your knowledge
base.

LetR½F� denote an augmentation of F via some mode of
reasoning R. Then your knowledge at the next timepoint,
tnþ2, is given by

F
tnþ2

S ¼ R½envðFtn

S ; transðrawÞÞ�

As time flows on, the environment’s updating, followed by
reasoning, followed by changes the cognitive system makes
to the environment (the system’s actions), define the cog-
nitive life of S.

But what isR, and what is the structure of propositions
returned by trans? This point is where logic enters the
stage. In a logic-based cognitive system, propositions are
represented by formulas in a logic, and a logic provides
precise machinery for carrying out reasoning.

Knowledge Representation in Elementary Logic

In general, when it comes to any logic-based system, three
main components are required: one is syntactic, one is
semantic, and one is metatheoretical in nature.

The syntactic component includes specification of the
alphabet of a given logical system, the grammar for build-
ing well-formed formulas (wffs) from this alphabet, and,
more importantly, a proof theory that precisely describes
how and when one formula can be inferred from a set of
formulas. The semantic component includes a precise
account of the conditions under which a formula in a given
system is true or false. The metatheoretical component
includes theorems, conjectures, and hypotheses concerning
the syntactic component, the semantic component, and
connections between them.

The simplest logics to build logic-based cognitive sys-
tems are the propositional calculus and the predicate cal-
culus (or first-order logic, or just FOL).

The alphabet for propositional logic is an infinite list

p1; p2; . . . ; pn; pnþ1; . . .

of propositional variables and the five familiar truth-func-
tional connectives : ; ! ; $ ; ^ ; _ . (The connectives can at
least provisionally be read, respectively, as ‘not,’ ‘implies’
(or ‘if then’), ‘if and only if,’ ‘and,’ and ‘or.’) To say that ‘if
Alvin loves Bill, then Bill loves Alvin, and so does Kather-
ine,’ we could write

al!ðb1 ^ klÞ

where bl and kl are the propositional variables.
We move up to first-order logic when we allow the

quantifiers 9 x (‘there exists at least one thing x such
that . . .’) and 8 x (‘for all x . . .’); the first is known as the

existential quantifier, and the second is known as the
universal. We also allow a supply of variables, constants,
relations, and function symbols. Using this representation,
the proposition that ‘Everyone loves anyone who loves
someone’ is represented as

8 x8 yð 9 zLovesðy; zÞ!Lovesðx; yÞÞ

Deductive Reasoning

The hallmark of deductive reasoning is that if the premises
are true, then that which is deduced from them must be true
as well. In logic, deduction is formalized in a proof theory.
Such theories (versions of which were first invented and
presented by Aristotle) are often designed not to model the
reasoning of logically untrained humans, but rather to
express ideal, normatively correct human deductive rea-
soning targeted by the logically trained. To canvass other
proof theories explicitly designed to model the deductive
reasoning of logically untrained humans, interested
readers may consult Ref. 29.

A number of proof theories are possible (for either of the
propositional or predicate calculi). When the goal is to
imitate human reasoning and to be understood by humans,
the proof theory of choice is natural deduction rather than
resolution. The latter approach to reasoning (whose one and
only rule of inference, in the end, is that from w_c and :w

one can infer c), while used by a number of automated
theorem provers (e.g., Otter, which, along with resolution,
is presented in Ref. 30), is generally impenetrable to
humans.

On the other hand, suppositional reasoning is at the
heart of natural deduction. For example, one such common
suppositional technique is to assume the opposite of what
one wishes to establish, to show that from this assumption
some contradiction (i.e., an absurdity) follows, and to then
conclude that the assumption must be false. The technique
in question is known as reductio ad absurdum, or indirect
proof, or proof by contradiction. Another natural rule is that
to establish that some conditional of the form w!c (where
w and c are any formulas in a logic L), it suffices to suppose w

and derive c based on this supposition. With this derivation
accomplished, the supposition can be discharged, and the
conditional w!c established. The needed conclusion from
the previous example (i.e., whether or not everyone loves
Bill, and whether or not Katherine loves Dave) follows
readily from such reasoning. (For an introduction to nat-
ural deduction, replete with proof-construction and proof-
checking software, see Ref. 31.)

Nonmonotonic Reasoning

Deductive reasoning is monotonic. That is, if w can be
deduced from some knowledge base F of formulas (written
F‘ Df), then for any formula c =2F, it remains true that
F[fcg ‘ Df In other words, whenR is deductive in nature,
new knowledge never invalidates prior reasoning.

This process is not how human cognition works in real
life. For example, at present, I know that my house is
standing. But if, later in the day, while away from my
home and working at RPI, I learn that a vicious tornado

6 COGNITIVE SYSTEMS AND COGNITIVE ARCHITECTURES



passed over RPI, and touched down in the town of Bruns-
wick where my house is located, I have new information
that probably leads me to at least suspend judgment as to
whether or not my house still stands. Or to take the much-
used example from AI, if I know that Tweety is a bird, I will
probably deduce that Tweety can fly, on the strength of a
general principle saying that birds can fly. But if I learn
that Tweety is a penguin, the situation must be revised:
that Tweety can fly should now not be in my knowledge
base. Nonmonotonic reasoning is the form of reasoning
designed to model, formally, this kind of defeasible infer-
ence.

There are many different logic-based approaches that
have been designed to model defeasible reasoning—default
logic, circumscription, argument-based defeasible reason-
ing, and so on. (The locus classicus of a survey can be found
in Ref. 32.) In the limited space available in the present
chapter, we can only briefly explain one of these
approaches—argument-based defeasible reasoning,
because it seems to accord best with what humans do as
they adjust their knowledge through time.

Returning to the tornado example, what is the argument
that supports the belief that the house stands (while one
sits within it)? Here is Argument 1:

(1) I perceive that my house is still standing.

(2) If I perceive f, f holds.

[(3) My house is still standing.

Later on, we learned that the tornado had touched down
in Brunswick, and devastating damage to some homes has
come to pass. At this point (t2), if one was pressed to
articulate the current position on (3), one might offer some-
thing like this (Argument 2):

(4) A tornado has just (i.e., at some time between t1 and t2)
touched down in Brunswick, and destroyed some
houses there.

(5) My house is located in Brunswick.

(6) I have no evidence that my house was not struck to
smithereens by a tornado that recently passed
through the town in which my house is located.

(7) If a tornado has just destroyed some houses in town T,
and house h is located in T, and one has no evidence
that h is not among the houses destroyed by the
tornado, then one ought not to believe that h was
not destroyed.

[(8) I ought not to believe that my house is still standing
(i.e., I ought not to believe (3).

The challenge is to devise formalisms and mechanisms
that model this kind of mental activity through time. The
argument-based approach to nonmonotonic reasoning does
this. Although the details of the approach must be left to
outside reading (33), it should be easy enough to see that the
main point is to allow one argument to shoot down another
(and one argument to shoot down an argument that shoots
down an argument, which revives the original, etc.), and to
keep a running tab on which propositions should be
believed at any particular time.

Argument 2 above rather obviously shoots down Argu-
ment 1. Should one then learn that only two houses in
Brunswick were leveled, and that they are both located on
the other side of the town, Argument 2 would be defeated by
a third argument, because this third argument would over-
throw (6). With Argument 2 defeated, (3) would be rein-
stated, and back in my knowledge base. Notice that this ebb
and flow in argument-versus-argument activity is far more
than just straight deductive reasoning. (Logic can be used
to model nondeductive reasoning that is not only nonmo-
notonic, but also inductive, abductive, probabilistic, model-
based, and analogical, but coverage of these modes of
inference is beyond the scope of the present entry). For
coverage of the inductive and probabilistic modes of reason-
ing, see Ref. 34. For coverage of model-based reasoning,
which is not based solely on purely linguistic formulas, but
rather on models, which are analogous to states of affairs or
situations on which linguistic formulas are true or false (or
probable, indeterminate, etc.), see Ref. 35.

Modal Logics

Logics can be used to represent knowledge, but advanced
logics can also be used to represent knowledge about knowl-
edge, and reasoning about knowledge about knowledge.
Modeling such knowledge and reasoning is important for
capturing human cognition, and in light of the fact that
heretofore the emphasis in psychology of reasoning has
been on modeling simpler reasoning that does not involve
modals, the level of importance only grows. Consider the
Wise Man Puzzle below as an illustration of modal reason-
ing to be captured:

Suppose there are three wise men who are told by their king
that at least one of them has a white spot on his forehead;
actually, all three have white spots on their foreheads. We
assume that each wise man can see the others’ foreheads but
not his own, and thus each knows whether the others have
white spots. Suppose we are told that the first wise man says, ‘‘I
do not know whether I have a white spot,’’ and that the second
wise man then says, ‘‘I also do not know whether I have a white
spot.’’ Now we would like to ask you to attempt to answer the
following questions:

1. Does the third wise man now know whether or not he
has a white spot?

2. If so, what does he know, that he has one or doesn’t
have one?

3. And, if so, that is, if the third wise man does know one
way or the other, provide a detailed account (showing
all work, all notes, etc.; use scrap paper as necessary)
of the reasoning that produces his knowledge.

The logic able to answer these questions is a modal proposi-
tional epistemic logic; we refer to it simply asLKT. This logic
is produced by adding to the propositional calculus the
modal operators & (traditionally interpreted as ‘‘necessa-
rily’’) and ^ (traditionally interpreted as ‘‘possibly’’), with
subscripts on these operators to refer to cognitive systems.
Because we are here concerned with what cognitive sys-
tems believe and know, we will focus on the box, and will

COGNITIVE SYSTEMS AND COGNITIVE ARCHITECTURES 7



rewrite &a as Ka [i.e., cognitive system a knows (some-
thing)]. So, to represent that ‘Wise man A knows he doesn’t
have a white spot on his forehead,’ we can write KA

(:White(A)). Here’s the grammar for LKT.

1. All wffs in the propositional calculus are wffs.

2. If f is a closed wff, and a is a constant, then &af is a
wff. Since we are here concerned with doxastic mat-
ters, that is, matters involving believing and know-
ing, we say that Baf is a wff, or, if we are concerned
with ‘knows’ rather than ‘believes,’ that Kaf is a wff.

3. If f and c are wffs, then so are any strings that can be
constructed from f and c by the usual propositional
connectives (e.g.,!,L,. . .).

Next, here are some key axioms and rules of inference:

K &(f ! c)! (&f! &c)

T &f ! f

LO (‘‘logical omniscience’’) Where F ¼ ff1;f2; . . . ;fng,
from F‘ Dc and Kaf1, Kaf2,. . . infer Kac

The first rule says that if one knows a conditional, then if
one knows the antecedent of the conditional, one knows the
consequent. The second says that if one knows some pro-
position, that proposition is true. The inference rule LO
says that the agent a knows that which can be deduced from
what she knows. This rule of inference, without restrictions
placed on it, implies that if a knows, say, the axioms of set
theory (which are known to be sufficient for deductively
deriving all of classical mathematics from them), a knows
all of classical mathematics, which is not cognitively plau-
sible. Fortunately, LO allows for the introduction of para-
meters that more closely match the human case. For
example LOn would be the rule of inference according to
which a knows the consequences of what she knows, as long
as the length of the derivations (in some fixed proof theory)
of the consequences does not exceed n steps.

To ease exposition, we restrict the solution to the two-
wise man version. In this version, the key information
consists in these three facts:

1. A knows that if A does not have a white spot, B will
know that A does not have a white spot.

2. A knows that B knows that either A or B has a white
spot.

3. A knows that B does not know whether or not B has a
white spot.

Here is a proof in LKT that solves this problem:

1. KA(:White(A) ! KB(:White(A))) (first fact)

2. KA(KB(:White(A) ! White(B))) (second fact)

3. KA(:KB(White(B))) (third fact)

4. :White(A) ! KB(:White(A)) 1, T

5. KB(:White(A) ! White(B)) 2, T

6. KB(:White(A)) ! KB(White(B)) 5, K

7. :White(A) ! KB(White(B)) 4, 6

8. :KB(White(B)) ! White(A) 7

9. KA(:KB(White(B)) ! White(A)) 4–8, 1, LO

10. KA(:KB(White(B))) ! KA(White(A)) 9, K

11. KA(White(A)) 3, 10

The foregoing solution closely follows that provided by
Ref. 32; this solution lacks a formal semantics for the
inference rules in question. For a fuller version of a solution
to the arbitrarily iterated n-wise man version of the pro-
blem, replete with a formal semantics for the proof theory
used, and a real-life implementation that produces a logic-
based cognitive system, running in real time, that solves
this problem; see Ref. 36.

Examples of Logic-Based Cognitive Systems

There are many logic-based cognitive systems that have
been engineered. It is important to know that they can be
physically embodied, have to deal with rapid-fire interac-
tion with the physical environment, and still run efficiently.

For example, Amir and Maynard-Reid (37) built a logic-
based robot able to carry out clerical functions in an office
environment; similar engineering has been carried out in
Ref. (38). For a set of recent examples of readily understood,
small-scale logic-based cognitive systems doing various
things that humans do; see Ref. 39.

There is insufficient space to put on display an actual
logic-based cognitive system of a realistic size here. So see
the afore-mentioned references for further details.

CONCLUDING REMARKS

In recent decades, the research on cognitive systems has
progressed to the extent that we can start to build compu-
tational systems that mimic the human mind to some
degree, although there is a long way to go before we can
fully understand the architecture of the human mind and
thereby develop computational cognitive systems that
replicate its full capabilities.

Some example cognitive systems have been presented
here. Yet, it is still necessary to explore more fully the space
of possible cognitive systems (40,41), to further advance the
state of the art in cognitive systems, in cognitive modeling,
and in cognitive science in general. It will also be necessary
to enhance the functionalities of cognitive systems so that
they can be capable of the full range of intelligent behaviors.
Many challenges and issues need to be addressed (1,2). We
can expect that the field of cognitive systems will have a
significant and meaningful impact on cognitive science and
on computer science both in terms of understanding cogni-
tion and in terms of developing artificially intelligent sys-
tems. The goal of constructing embodied systems that can
perceive, understand, and interact with their environment
to achieve human-like performance in various activities
drives this field forward.

BIBLIOGRAPHY

1. R. Sun, The importance of cognitive architectures: An analysis
based on CLARION, J. Experimen. Theoret. Artif. Intell., 19 (2):
159–193, 2007.

8 COGNITIVE SYSTEMS AND COGNITIVE ARCHITECTURES



2. P. Langley, J. Laird, and S. Rogers, Cognitive architectures:
Research issues and challenges, Cog. Sys. Res., In press.

3. R. W. Pew and A. S. Mavor (eds), Modeling Human and
Organizational Behavior: Application to Military Simulations.
Washington, D.C.: National Academy Press, 1998.

4. F. Ritter, N. Shadbolt, D. Elliman, R. Young, F. Gobet, and
G. Baxter, Techniques for Modeling Human Performance in
Synthetic Environments: A Supplementary Review. Dayton,
OH: Human Systems Information Analysis Center, Wright-
Patterson Air Force Base, 2003.

5. A. Newell, Unified Theories of Cognition, Cambridge, MA:
Harvard University Press, 1990.

6. R. Sun, Duality of the Mind, Mahwah, N.J.: Lawrence Erlbaum
Associates, 2002.

7. R. Sun, Desiderata for cognitive architectures, Philosoph.
Psych., 17 (3): 341–373, 2004.

8. P. Rosenbloom, J. Laird, and A. Newell, The SOAR Papers:
Research on Integrated Intelligence. Cambridge, MA: MIT
Press, 1993.

9. J. Anderson and C. Lebiere, The Atomic Components of
Thought. Mahwah, NJ: Lawrence Erlbaum Associates, 1998.

10. R. Sun and T. Peterson, Autonomous learning of sequential
tasks: experiments and analyses, IEEE Trans. Neural Net-
works, 9 (6): 1217–1234, 1998.

11. R. Sun, E. Merrill, and T. Peterson, From implicit skills to
explicit knowledge: A bottom-up model of skill learning, Cog.
Sci., 25 (2): 203–244, 2001.

12. R. Sun, A Tutorial on CLARION. Technical report, Cognitive
Science Department, Rens-selaer Polytechnic Institute.
Available: http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf.

13. A. Reber, Implicit learning and tacit knowledge, J. Experimen.
Psych.: General, 118 (3): 219–235, 1989.

14. C. Seger, Implicit learning, Psycholog. Bull., 115 (2): 163–196,
1994.

15. A. Cleeremans, A. Destrebecqz and M. Boyer, Implicit learn-
ing: News from the front. Trends in Cog. Sci., 2 (10): 406–416,
1998.

16. D. Medin, W. Wattenmaker, and R. Michalski, Constraints and
preferences in inductive learning: An experimental study of
human and machine performance, Cog. Sci., 11: 299–339,
1987.

17. R. Nosofsky, T. Palmeri, and S. McKinley, Rule-plus-exception
model of classification learning, Psycholo. Rev., 101 (1): 53–79,
1994.

18. A. Karmiloff-Smith, From meta-processes to conscious access:
Evidence from children’s metalinguistic and repair data, Cog-
nition, 23: 95–147, 1986.

19. C. Watkins, Learning with Delayed Rewards. Ph.D Thesis,
Cambridge, UK: Cambridge University, 1989.

20. W. Stanley, R. Mathews, R. Buss, and S. Kotler-Cope, Insight
without awareness: On the interaction of verbalization,
instruction and practice in a simulated process control task,
Quart. J. Experimen. Psych., 41A (3): 553–577, 1989.

21. R. Michalski, A theory and methodology of inductive learning,
Artif. Intell., 20: 111–161, 1983.

22. W. Schneider and W. Oliver, An instructable connectionist/
control architecture, in K. VanLehn (ed.), Architectures for
Intelligence, Hillsdale, NJ: Erlbaum, 1991.

23. M. R. Quillian, Semantic memory, in M. Minsky (ed.), Semantic
Information Processing. Cambridge, MA: MIT Press, 1968, pp.
227–270.

24. D. Rumelhart, J. McClelland and the PDP Research Group,
Parallel Distributed Processing: Explorations in the Micro
structures of Cognition. Cambridge, MA: MIT Press, 1986.

25. R. Sun, Robust reasoning: Integrating rule-based and
similarity-based reasoning. Artif. Intell., 75 (2): 241–296, 1995.

26. T. Nelson, (ed.) Metacognition: Core Readings. Allyn and
Bacon, 1993.

27. J. D. Smith, W. E. Shields, and D. A. Washburn, The compara-
tive psychology of uncertainty monitoring and metacognition,
Behav. Brain Sci., 26 (3): 317–339, 2003.

28. R. Sun and I. Naveh, Simulating organizational decision mak-
ing with a cognitive architecture CLARION, J. Artif. Soc.
Social Simulat., 7 (3): 2004. http://jasss.soc.surrey.ac.uk/7/
3/5.html

29. L. Rips, The Psychology of Proof. Cambridge, MA: MIT Press,
1994.

30. L. Wos, R. Overbeek, E. Lusk, and J. Boyle, Automated Reason-
ing: Introduction and Applications. New York: McGraw Hill,
1992.

31. J. Barwise and J. Etchemendy, Language, Proof and Logic,
New York: Seven Bridges, 1999.

32. M. Genesereth and N. Nilsson, Logical Foundations of Artifi-
cial Intelligence. Los Altos, CA: Morgan Kaufmann, 1987.

33. J. L. Pollock, How to reason defeasibly, Artif. Intell., 57 (1): 1–
42, 1992.

34. B. Skyrms, Choice and Chance: An Introduction to Inductive
Logic. Belmont, CA: Wadsworth, 1999.

35. P. Johnson-Laird, Mental Models. Harvard, MA: Harvard
University Press, 1983.

36. K. Arkoudas and S. Bringsjord, Metareasoning for multi-agent
epistemic logics. Fifth International Conference on Computa-
tional Logic In Multi-Agent Systems (CLIMA 2004), Lecture
Notes in Artificial Intelligence (LNAI), 3487: 111–125, 2005.

37. E. Amir and P. Maynard-Reid, LiSA: A robot driven by logical
subsumption, Proc. of the Fifth Symposium on the Logical
Formalization of Commonsense Reasoning, AAAI Press, 2001.

38. S. Bringsjord, S. Khemlani, K. Arkoudas, C. McEvoy, M.
Destefano, and M. Daigle, Advanced Synthetic Characters,
Evil, and E, in M. Al-Akaidi and A. El Rhalibi (eds.), Game-
On 2005, 6th International Conference on Intelligent Games
and Simulation, Ghent-Zwijnaarde, Belgium: European
Simulation Society, 2005, pp 31–39.

39. E. Mueller, Commonsense Reasoning. San Francisco, CA:
Morgan Kaufmann, 2006.

40. A. Sloman and R. Chrisley, More things than are dreamt of in
your biology: Information processing in biologically-inspired
robots. Cog. Sys. Res., 6 (2): 145–174, 2005.

41. R. Sun and C. Ling, Computational cognitive modeling, the
source of power and other related issues. AI Magazine, 19 (2):
113–120, 1998.

FURTHER READING

A. Newell, Unified Theories of Cognition. Cambridge, MA:
Harvard University Press, 1990.

A. Newell and H. Simon, Computer science as empirical inquiry:
Symbols and search. Commun. of ACM, 19: 113–126, 1976.

D. Rumelhart, J. McClelland, and the PDP Research Group,
Parallel Distributed Processing: Explorations in the Microstruc-
tures of Cognition. Cambridge, MA: MIT Press, 1986.

COGNITIVE SYSTEMS AND COGNITIVE ARCHITECTURES 9



R. Sun, Duality of the Mind. Mahwah, N.J.: Lawrence Erlbaum
Associates, 2002.

R. Sun, P. Slusarz, and C. Terry, The interactionof the explicit and
the implicit in skill learning: A dual-process approach, Psycholog.
Rev., 112 (1): 159–192, 2005.

R. Sun, Integrating Rules and Connectionism for Robust Com-
monsense Reasoning. New York: John Wiley & Sons, 1994.

RON SUN

SELMER BRINGSJORD

Rensselaer Polytechnic
Institute

Troy, New York

10 COGNITIVE SYSTEMS AND COGNITIVE ARCHITECTURES



D

DIMENSIONALITY REDUCTION

INTRODUCTION

A dimension refers to a measurement of a certain aspect of
an object. Dimensionality reduction is the study of methods
for reducing the number of dimensions describing the
object. Its general objectives are to remove irrelevant
and redundant data to reduce the computational cost
and avoid data over-fitting (1) and to improve the quality
of data for efficient data-intensive processing tasks such as
pattern recognition and data mining. Dimensionality
reduction is an effective solution to the problem of ‘‘curse
of dimensionality.’’ When the number of dimensions
increases linearly, experiments have shown that the
required number of examples for learning increases expo-
nentially (2). Figure 1 shows an example of the curse of
dimensionality.

In practice, researchers and practitioners interchange-
ably use dimension, feature, variable, and attribute. Simi-
larly, we will interchangeably use object, example, vector,
and instance. Consider an application in which a system
processes data (speech signal, images, or patterns in gen-
eral) in the form of a collection of vectors. For a particular
application, it is more often than not that a subset of
features is relevant, and in some cases, a large number
of features are irrelevant. This problem can be caused by
factors such as (i) many dimensions will have variation
smaller than the measurement noise and thus will be
irrelevant, and (ii) many dimensions will be correlated
(through linear combinations or functional dependence)
to others and thus will be redundant. Therefore, in many
situations, it is recommended to remove the irrelevant and
redundant dimensions, producing a more economical repre-
sentation of the data (6).

Dimensionality reduction is a research area at the inter-
section of several disciplines, including statistics, data-
bases, data mining, text mining, pattern recognition,
machine learning, artificial intelligence, visualization,
and optimization. Each of these areas has a way of looking
at the problem. For example, in pattern recognition the
problem of dimensionality reduction is to extract a small set
of features that recovers most of the variability of the data.
In text mining, however, the problem is defined as selecting
a small subset of words or terms (not new features that are
combination of words or terms). Use of this important
technique also varies with the application domain. Exam-
ples of applications of dimensionality reduction techniques
include mining of text documents, gene structure discov-
ery, image processing, statistical learning, and exploratory
data analysis. Different applications need to be treated
with different techniques. Depending on the application,
new features may be extracted as in the case of exploratory
analysis, or a small subset of original features are selected
as in the case of gene structure discovery.

Dimensionality reduction has been a subject of much
research currently and over the past several decades [some
good overviews are available (7–10)]. In particular, the
pioneering work of Sammon (11) has given inspiration to
today’s information processing systems. Sammon, in the
late 1970s, combined dimensionality reduction with issues
such as classification and interactive visual data analysis.
Recently, there is a renewed interest in this topic due to
massive data of large dimensionality created in data
mining, data warehousing, and knowledge discovery appli-
cations. Other applications such as genome project, text
mining, and web mining also require efficient dimension-
ality reduction methods.

Dimensionality reduction methods can be grouped in
various ways: (i) feature selection or feature extraction, (ii)
linear or nonlinear, (iii) supervised or unsupervised, and
(iv) local or global. Dimensionality reduction methods are
often classified into feature selection or feature extraction.
In feature selection, a subset of original features are
selected in the end. In feature extraction, new features
are extracted using some mapping (linear or nonlinear)
from the original set of features. Linear methods such as
principal components analysis (PCA) use a linear mapping
to extract new features from original features (9). Similarly,
nonlinear methods such as Sammon’s mapping (7), locally
linear embedding (12), and ISOMAP (13) use a nonlinear
mapping to extract new features. Supervised methods can
take advantage of any class information present in the
data, whereas unsupervised methods do not use this class
information. One limitation of the supervised methods is
that characteristic variables that describe examples of
infrequent classes tend to be easily removed as a result
of dimensionality reduction making use of the class dis-
tribution. Typically, supervised dimensionality reduction
methods can be further divided into local or global methods.
In a local method, features are selected for each category of
the class feature; in the case of a global method, features are
selected for all categories. Among these different ways of
categorizing dimensionality reduction methods, we will
mainly describe various methods of dimensionality reduc-
tion methods in terms of feature extraction or feature
selection.

In the following two sections, we introduce the basic
concepts and key techniques of feature extraction and
selection, respectively. We then discuss some dimension-
ality reduction methods in practice.

FEATURE EXTRACTION

Feature extraction can be defined as follows: Given a set of
features S ¼ fv1; v2; . . . ; vDg, find a new set of features S0

derived from a linear or nonlinear mapping of S. The
cardinality of jS0j ¼ d and JðS0Þ �JðTÞ for all derived set
of features T with jTj ¼ d, where J is the evaluation func-
tion. Here d or some other parameter that can determine d

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



(e.g., a threshold eigen value) is usually specified by the
user.

When all existing features are recombined to yield new
features, then we are dealing with feature extraction.
Hence a mapping is defined that transforms any original
D dimensional feature vector into a new d-dimensional
feature vector. Ideally the mapping conserves or even
enhances the discriminatory information while reducing
the dimensionality of the feature vector. Mapping can be

linear or nonlinear. Figure 2 depicts this pictorially. The
following descriptions of a sample of classic feature extrac-
tion methods will bring out the methodical difference
between feature transformation and selection (Fig. 3).

Principal Components Analysis (PCA)

It is the most widely used linear feature extraction method
(14). It is also called the Karhunen–Loeve transform in
signal processing literature. The class information is not
taken into consideration in this method. The objective of
this method is to find a set of d orthogonal basis vectors that
maximally captures the relationship between the original
dimensions. It can be shown that the jth principal compo-
nent direction is along an eigenvector direction of the global
covariance matrix C ¼ 1

N�1

PN
j¼1½ðx j � mÞTðx j � mÞ� of the

feature vector x and its global mean m. The first d eigen-
vectors ej then define a D � d matrix M with the eigenvec-
tors as columns that transforms the original sample x to the
extracted sample y ¼MTxT.

The eigenanalysis can be done using standard mathe-
matical software, e.g., Ref. 15. PCA is an information con-
serving transform. Using all d0 (d � d0 � D) nonzero
eigenvectors conserves the information contained in the

1.0

0.0

Dimension

MSE

Figure 1. An example of curse of dimensionality: MSE is the
mean-squared error of a 1-nearest neighbor rule (3, 4). Each
dimension is generated uniformly on [�1, 1]. As the dimensionality
increases, the MSE increases very sharply until it levels off at 1.0.
This happens as early as dimensionality¼ 10. See Ref. 5 for further
details.

Extract New Features by
Linear/Nonlinear Mapping

D  original features d  extracted features

Figure 2. Feature extraction process.

Figure 3. Procedures for PCA,
LDA, and Sammon mapping.

Calculate
covariance
matrix M

Calculate
eigenvectors

of M

Select d eigen-
vectors with the
highest eigen-

values 

d extracted
features

d extracted
features

d extracted
features

PCA

LDA

Separate
into c

classes

Calculate
between-

scatter
matrix SB

Calculate
within-scatter

matrix Sw

Calculate
eigen-

vectors of

S W
-1SB

Select d eigen-
vectors with the
highest eigen-

values

Sammon Mapping

Calculate inter-

point distances

in higher

dimensional

space

Randomly

generate points

in lower

dimensional

space

Calculate
mapping
error  E

Calculate

gradient

showing

direction that

minimizes error

Move the points

in the lower

dimensional

space

accordingly

E<
Limit

Yes

No

D original
features

D original
features

D original
features

2 DIMENSIONALITY REDUCTION



orthogonal features. The new features are orthogonal to
each other, and there is no covariance (and correlation)
between any two features. The variance of the new feature
yj is the eigenvalue lj. The original feature vector can be
reconstructed as x ¼MyT. The truncation of those eigen-
vectors, which are associated with the smallest eigenva-
lues, does not incur a large information loss (approximate
loss: e ¼

Pd0

j¼dþ1 l j). PCA can therefore be used as an
information-conserving, correlation-eliminating, and
dimensionality reduction feature extraction method.

The process of determining most influential features
having maximum eigenvalues is called singular value
decomposition (SVD). Another method similar to PCA is
called latent semantic indexing (LSI). LSI has been suc-
cessfully used in information retrieval for clustering docu-
ments. Below we give brief descriptions of some
applications using PCA and LSI.

Linear Discriminative Analysis (LDA)

Unlike PCA, LDA considers the class information. The only
difference between PCA and LDA is the matrix that is
considered. LDA uses a within-scatter matrix of all c
classes: SW ¼

Pc
i¼1

PNi

j¼1½ðx j � miÞ
Tðx j � miÞ�, and a

between-scatter matrix: SB ¼
Pc

i¼1½ðmi � mÞTðmi � mÞ�,
where Ni is the number of objects within class i, mi is the
common mean of class i, and m is the mixture mean of all
classes. Then at most d ¼ c � 1 nonzero eigenvectors,
associated with the largest eigenvalues of the matrix
S�1

W SB, define the D � d feature extraction matrix M.
This transformation maximizes the between-class scatter
while minimizing the within-class scatter (i.e., maximize
detðSBÞ
detðSW Þ), where det(.) denotes determinant of a square
matrix. Such a transformation should retain class separ-
ability while reducing the variation due to other sources.
The objective of LDA is to perform dimensionality reduction
while preserving as much of the class discriminatory infor-
mation as possible. It seeks to find directions along which
the classes are best separated. LDA works well if the data
have a multivariate normal distribution.

Sammon Map

Sammon map is an example of a nonlinear feature extrac-
tion method, whereas the above methods are all linear [7].
It is mainly used for two-dimensional (2-D) visualization of
high-dimensional data. The nonlinear mapping can be
performed for any dimensionality d < D. Sammon’s algo-

rithm uses the gradient descent technique to minimize an
error function in order to map from D to d dimensions. The
error function is given as

E ¼ 1

XN�1

j¼1

XN
k¼ jþ1

d jk

XN�1

j¼1

XN
k¼ jþ1

d jk � d2
jk

d jk

where djk is the distance between two points in the
extracted d-dimensional space and djk is the distance
between two points in the original D-dimensional space.
The mapping attempts to fit N points in the lower space,
such that their inter-point distances approximate the cor-
responding distances in the higher space. In Ref. 16, the
linear feature extraction method PCA is compared with
nonlinear methods such as Sammon’s mapping, multidi-
mensional scaling (17), and self-organizing mapping (18)
using texture data. Results clearly show that classification
performance improves, particularly for small values of d, by
using nonlinear methods compared with that of linear
methods such as PCA. The reason being, performing non-
linear feature extraction provides a better characterization
of the data in a smaller number of features.

FEATURE SELECTION

Feature selection can be defined as follows: Given a set of
features S ¼ fv1; v2; . . . ; vDg, find a subset S0 of S with jS0j ¼
d such that J(S0)� J(T) for all T�S; jTj ¼ d, where J is the
evaluation function. Here d is usually specified by the user.

A feature selection algorithm requires the following
ingredients: a generation or search strategy, an evaluation
method, a stopping criterion, and/or a validation method
(19–22). See Fig. 4 for a block diagram showing relation-
ships between these components. The search or generation
strategy decides the way in which combinations of features
are tested for a certain goodness. As exhaustive search is
usually prohibitive, alternative strategies must be
employed. The evaluation or selection function assesses
the goodness of a set of features and provides a ranking
possibility for the selection process. The stopping criterion
is of less importance. Usually a predefined number of
features to be selected decides the stopping of search pro-
cedures. Validation is not part of the selection process, but it
is nonetheless carried out to check the validity of the

Generation
of candidate

subsets

Evaluation
Function

Validation
of selected

subset

Stopping
criterion

D  original
features

d  selected
features

YesNo

Candidate
Subset

Goodness of
Candidate

Subset

Figure 4. Feature selection process.

DIMENSIONALITY REDUCTION 3



selected features. In the following we briefly discuss the
most important search strategies and evaluation criteria.

Generation/Search Procedure

With a total of D features, there are 2D candidate feature
subsets to be searched. This is number huge even for
moderate D. In the literature, there are different
approaches for solving this problem, namely, complete,
heuristic, and random.

Complete Search. Schlimmer (23) argues that just
because the search must be complete does not mean that
it must be exhaustive. Different heuristic functions are
used to reduce the search space without jeopardizing the
chances of finding the optimal subset. The branch-and-
bound method (24) is one such method that guarantees
optimality if the features obey monotonocity. Unfortu-
nately many often-used evaluation criteria such as classi-
fier error rate are not monotonic.

Heuristic Search. In each iteration of this method, all
remaining features yet to be selected are considered for
selection. This is called sequential forward selection. When
the search is backward, it is called sequential backward
selection. There are also combinations of these two
approaches such as beam search (25).

Random Search. It searches randomly and usually stops
after a maximum number of iterations. This has advan-
tages over the heuristic method in that, unlike the heuristic
methods, it is less likely to be trapped in local optima (26).

Evaluation Functions

An evaluation function or selection criterion J() aims at
finding the best set of features in the reduced dimension-
ality d from the set of all features. Hence the best set S0

maximizes the criterion function over all other possible
combinations of d features. Some important evaluation
functions are briefly described here.

Distance Measure. It is also known as a separability,
divergence, or discrimination measure. For a two-class
problem, a feature fi is preferred to another feature fj if fi

induces a greater difference between the two-class condi-
tional probabilities than fj (27).

Information Measure. These measures typically deter-
mine the information gain from a feature that is the dif-
ference between the prior uncertainty and the expected
posterior uncertainty using the feature. The feature giving
higher information gain is selected (28).

Dependence Measures. It quantifies the ability of a fea-
ture to predict the value of the class variable. An example is
the correlation coefficient. If feature fi has a higher correla-

tion with the class variable than feature fj, then feature fi is
preferred (29).

Consistency Measures. These measures prefer a consis-
tent hypothesis definable over as few features as possible.
A feature set is consistent if for the same set of values for the
feature set the class variable does not change (26).

Classifier Error Rate Measure. The above four types of
criteria are typically known as filter type, whereas the
classifier error rate is known as wrapper type. The classifier
that will be used after feature selection is also used to select
the features. The feature set giving the minimum classifier
error rate is selected. More details on wrapper methods are
given in Ref. 30.

Feature Selection for Unsupervised Learning

The above discussion is mostly for supervised learning
where class information is available. Lately, feature selec-
tion has been attempted for unsupervised learning, and
among different unsupervised learning, it has been mostly
applied to clustering and visualization.

In the last several years, several methods for feature
selection for clustering are proposed, most of which are
wrapper in approach. Here a clustering algorithm is used to
evaluate the candidate feature subsets. Wrapper methods
can be categorized based on whether they select features for
the whole data (global type) or for each cluster separately
(local type). The global type assumes a subset of features to
be more important than others for the whole data, whereas
the local type assumes each cluster to have a subset of
important features. In the case of global type, a feature
selection method is run over the whole data, whereas for
local type, first clustering is done over the data using all
features and then important features are selected for each
cluster separately using a feature selection method.

Selecting a set of features for unsupervised learning
such as clustering is arguably more difficult than selecting
for supervised learning such as classification because of the
absence of any class information in the former. This is also
the reason for extensive research being conducted for fea-
ture selection for classification compared with that for
clustering. The difficult part is to evaluate the candidate
subsets and compare against each other to select the opti-
mal subset of features. First of all, quantifying the quality of
clustering is far less straightforward and less accurate than
classification. On top of it, one must compare the quality of
clustering across varying dimensionality to select the opti-
mal subset of features. So, one requires evaluation methods
that are invariant to varying dimensionality. Examples of
such methods used in various research work are trace
measure (31,32), visualization (32,33), ranking of features
and user selects several of the most important features
(31,32,34–37), Bayesian statistical estimation framework
(38), and entropy (31,39). These methods are of the global
type. Examples of local methods are Manhattan distance
(40) and dense regions (41).

4 DIMENSIONALITY REDUCTION



DIMENSIONALITY REDUCTION IN PRACTICE

In this section we discuss some applications of feature
extraction and selection methods.

Uses of Feature Extraction Methods

Uses of PCA in Regression Analysis. PCA can be used in
regression analysis in several ways (9). If the independent
variables are highly correlated, then they can be trans-
formed to principal components (PCs) and the PCs can be
used as the independent variables. If we do not want to
transform the independent variables, then the PCs can be
used indirectly to improve the precision of the regression
parameter estimates associated with the independent vari-
ables. PCA can also be used as a diagnostic tool to detect
multicolinearities among the independent variables. Mul-
ticolinearity means that one or more independent variables
are essentially linear combinations of other independent
variables.

Using PCs to detect Outlying and Influential Observations.
A major advantage of PCA is that if the first two PCs
account for a substantial portion of the total variation,
then we can approximate the distribution of the observa-
tions in the variable space by plotting the PCs (9). This 2-D
representation of the D-dimensional observations can be
used in several ways. The plot can be examined for outlying
observations or for influential observations, or it can be
used to see whether the observations can be visually clus-
tered. Outlying observations are observations that lie at a
considerable distance from the bulk of the observations or
do not conform to the general pattern the observations
exhibit. Outlying observations are called influential obser-
vations if their deletion from a particular analysis leads to
different results.

Use of PCs in Cluster Analysis. If the first two or three PCs
account for a substantial proportion of the total variation,
then we can also use the plots to visually identify clusters
(9). A cluster is a group of observations that are ‘‘closer’’ to
each other than they are to observations in other clusters or
groups. Many clustering algorithms are used to cluster
data (42). No significant advantage exists in transforming
the original observations to principal components before
the clustering because the same information is contained in
the original and in the transformed data. That is, for any
distance function, the distances among examples computed
from principal components are equal to the corresponding
distances computed from the original variables using an

equivalent but different distance function. The only advan-
tage of employing PCs in cluster analysis is to be able to plot
the components and visually search for clusters of observa-
tions. PCs can also be used to verify the clusters determined
on the basis of another clustering algorithm. We can see
whether the defined clusters are homogeneous, distinct,
and aesthetically appealing to the eye. Clustering algo-
rithms will define clusters even if none exist, i.e., even if
the observations are evenly spread throughout the variable
space. For this reason, a plot of the data on the first two PCs
can be informative if they account for a large portion of the
total variance.

Application to Computer Vision. PCA is used in computer
vision to find patterns and to compress the images (43).

PCA for Finding Patterns. An example of its application to
face recognition is as follows (Fig. 5). Say we have 20
images. Each image is H pixels high by W pixels wide.
For each image we can create an image vector of H � W
dimensions. We can then put all images together in one big
image-matrix as follows:

ImageV ec1
ImageV ec2

:
:

ImageV ec20

0
BBBB@

1
CCCCA

which gives us a starting point for the PCA analysis. Once
PCA is performed, we have original data in terms of the
eigenvectors found from the covariance matrix. Why is this
useful? Say we want to do facial recognition, and so our
original images were of peoples faces. Then, the problem is,
given a new image, whose face from the original set is it?
The way this is done in computer vision is to measure the
difference between the new image and the original images,
not along the original axes, but along the new axes derived
from the PCA analysis. It turns out that these new axes
work much better for recognizing faces, because the PCA
analysis has extracted these new axes based on their ability
to capture the variability among the images. In a way, the
PCA analysis can identify the statistical patterns in the
data. As all vectors have H�W dimensions, we will get H�
W eigenvectors. In practice, one can leave out most of the
less significant eigenvectors and the recognition still per-
forms well.

PCA for Image Compression. Using PCA for image com-
pression is also known as the Hotelling or Karhunen–Loeve
(KL) transform. If there are 20 images, each with H � W

Convert each
image to a
vector of

length H × W

Input images
of size H × W Apply PCA. Select

 d eigen-vectors
with the highest

eigen values

Determine similarity of
a new image with

existing images using
the d  extracted features

Output most
similar image

Figure 5. Procedure for face recognition.

DIMENSIONALITY REDUCTION 5



pixels, one can form H � W vectors, each with 20 dimen-
sions. Each vector consists of all intensity values from the
same pixel from each picture. Notice that this factor is
different from the previous example. By performing PCA
on this, one gets 20 eigenvectors because each vector is 20-
D. To compress the data, one then chooses to transform the
data only using, say five eigenvectors. This gives a final
dataset with only five dimensions, which has saved three
quarters of the space. However, when the original data are
reproduced, the images have lost some information. This
compression technique is said to be lossy because the
decompressed image is not exactly the same as the original.

Applications of PCA to Microarray Gene Expression
Data. Each data point produced by a DNA microarray
hybridization experiment represents the ratio of expres-
sion levels of a particular gene under two different experi-
mental conditions. The result, from an experiment with n
genes on a single chip, is a series of n expression-level
ratios. Typically, the numerator of each ratio is the expres-
sion level of the gene in the varying condition of interest,
whereas the denominator is the expression level of the gene
in some reference condition. The data from a series of m
such experiments may be represented as a gene expression
matrix, in which each of the n rows consists of an m-element
expression vector for a single gene. The expression mea-
surement is positive if the gene is induced (turned up) with
respect to the reference state and negative if it is repressed
(turned down).

A PCA analysis of DNA microarray data can consider
the genes as variables or the experiments as variables or
both. When genes are variables, the analysis creates a set of
‘‘principal gene components’’ that indicate the features of
genes that best explain the experimental responses they
produce. When experiments are the variables, the analysis
creates a set of ‘‘principal experiment components’’ that
indicate the features of the experimental conditions that
best explain the gene behaviors they elicit. When both
experiments and genes are analyzed together, there is a
combination of these affects. In Ref. 44, the authors con-
sidered the experiments as variables. They applied PCA to
the publicly released yeast sporulation dataset (45). They
found that most variance (>90%) in the sporulation dataset
is contained in the first two principal components, which
allows most information to be visualized in two dimensions.

Application of SVD to Document Indexing. Regular key-
word searches approach a document collection with a kind
of accountant mentality: A document contains a given word
or it does not, with no middle ground. We create a result set
by looking through each document in turn for certain key-
words and phrases, tossing aside any document that does
not contain them, and ordering the rest based on some
ranking system.

LSI adds an important step to the document indexing
process (46). In addition to recording which keywords a
document contains, the method examines the document
collection as a whole, to see which other documents contain
some of those same words. LSI considers documents that
have many words in common to be semantically close, and
ones with few words in common to be semantically distant.

This simple method correlates surprisingly well with how a
human being, looking at content, might classify a document
collection. When one searches an LSI-indexed database,
the search engine looks at similarity values it has calcu-
lated for every content word and returns the documents
that it thinks best fit the query. Because two documents
may be semantically very close even if they do not share a
particular keyword, LSI does not require an exact match to
return useful results. Where a plain keyword search will
fail if there is no exact match, LSI will often return relevant
documents that do not contain the keyword at all. For
example, searching for ‘‘Saddam Hussain’’ can return docu-
ments on Iraq which has no mention of ‘‘Saddam Hussain’’
in it.

The first step in doing LSI is culling all those extra-
neous words from a document, leaving only content words
likely to have semantic meaning. Using this list of content
words and documents, we can now generate a term-docu-
ment matrix. This is a very large grid, with documents
listed along the horizontal axis, and content words along
the vertical axis. For each content word in our list, we go
across the appropriate row and put an ‘‘X’’ in the column
for any document where that word appears. If the word
does not appear, we leave that column blank. The key step
in LSI is decomposing this matrix using SVD. LSI works
by projecting this large, multidimensional space down
into a smaller number of dimensions. A typical term space
might have tens of thousands of dimensions and be pro-
jected down into fewer than 150. In this reduction, infor-
mation is lost, and content words are superimposed on one
another. What we are losing is noise from our original
term-document matrix, revealing similarities that were
latent in the document collection. Similar things become
more similar, whereas dissimilar things remain distinct.
This reductive mapping is what gives LSI its seemingly
intelligent behavior of being able to correlate semantically
related terms. We are really exploiting a property of
natural language, namely that words with similar mean-
ing tend to occur together.

Uses of Feature Selection Methods

Image Retrieval. Feature selection is applied in Ref. 47 to
content-based image retrieval. Recent years have seen a
rapid increase of the size and amount of image collections
from both civilian and military equipment. However, we
cannot access or make use of the information unless it is
organized so as to allow efficient browsing, searching, and
retrieval. Content-based image retrieval (48) is proposed
to efficiently handle large-scale image collections. Instead
of being manually annotated by text-based keywords,
images would be indexed by their own visual contents
(features), such as color, texture, and shape. One of the
biggest problems to make content-based image retrieval
truly scalable to large-sized image collections is still the
curse of dimensionality (5). As suggested in Ref. 48, the
dimensionality of the feature space is normally of the order
of 102. Dimensionality reduction is a promising approach to
solve this problem. The image retrieval system proposed in
Ref. 47 performs feature selection, and these features are
then used to index images for efficient retrieval.

6 DIMENSIONALITY REDUCTION



Customer Relationship Management (CRM). A case of
feature selection is presented in Ref. 49 for customer rela-
tionship management. In this context, each customer
means a big revenue and the loss of one will likely trigger
a significant segment to defect; it is imperative to have a
team of highly experienced experts monitor each custo-
mer’s intention and movement based on massively collected
data. A set of key indicators, proven useful in predicting
potential defectors, is used by the CRM team. The problem
is that it is difficult to find new indicators describing the
dynamically changing business environment among many
possible features. The machine-recorded data are simply
too enormous for any human expert to browse and obtain
any insight from. Feature selection is employed to search
for possible new indicators. They are later presented to
experts for scrutiny. This approach considerably improves
the team’s efficiency in finding new changing indicators.

Intrusion Detection. As network-based computer sys-
tems play increasingly vital roles in modern society, they
have become the targets of our enemies and criminals. The
security of a computer system is compromised when an
intrusion takes place. Intrusion detection is often used as
one way to protect computer systems. In Ref. 50, Lee et al.
proposed a systematic data mining framework for analyz-
ing audit data and constructing intrusion detection models.
Under this framework, a large amount of audit data is first
analyzed using data mining algorithms to obtain the fre-
quent activity patterns. These patterns are then used to
guide the selection of system features as well as for the
construction of additional temporal and statistical features
for another phase of automated learning. Classifiers based
on these selected features are then inductively learned
using the appropriately formatted audit data. These clas-
sifiers can be used as intrusion detection models because
they can classify whether an observed system activity is
‘‘legitimate’’ or ‘‘intrusive.’’ Feature selection plays an
important role in building such classification models for
intrusion detection.

Genomic Analysis. Structural and functional data from
analysis of the human genome has increased many fold in
recent years, presenting enormous opportunities and chal-
lenges for data mining. In particular, gene expression
microarray is a rapidly maturing technology that provides
the opportunity to assay the expression levels of thousands
or tens of thousands of genes in a single experiment. These
assays provide the input to a wide variety of data mining
tasks, including classification and clustering. However, the
number of instances in these experiments is often severely
limited. In Ref. 51, for example, Xing et al. used a case
involving only 38 training data points in a 7130-
dimensional space to exemplify the above situation, which
is becoming increasingly common in molecular biology
applications. In this extreme case of very few observations
on a large number of features, Xing et al. investigated the
possible use of feature selection on a microarray classifica-
tion problem. All classifiers tested in the experiments
performed significantly better in the reduced feature space
than in the full feature space.

Text Categorization. Text categorization is the problem
of automatically assigning predefined categories to free text
documents (52,53). This problem is of great practical impor-
tance given the massive volume of online text available
through the World Wide Web, e-mails, and digital libraries.
A major characteristic, or difficulty of text categorization
problems, is the high dimensionality of the feature space.
This dimensionality is prohibitively high for many mining
algorithms. Therefore, it is highly desirable to reduce the
original feature space without sacrificing categorization
accuracy. In Ref. 54, different feature selection methods
are evaluated and compared with reduced high-
dimensional space in text categorization problems. It is
reported that the methods under evaluation can effectively
remove 50–90% of the terms while maintaining the cate-
gorization accuracy.

CONCLUSIONS AND FUTURE DIRECTIONS

As computers become increasingly powerful, many applica-
tions can produce massive data of high dimensionality.
Dimensionality reduction is an efficient way of dealing
data with high dimensionality. The purpose is to reduce
the data so that computational load decreases and patterns
of better quality can be extracted by pattern recognition and
data mining algorithms. In this article, we described the
concepts of feature extraction and feature selection and
briefly introduced some representative methods. We then
presented in brief some cases of dimensionality reduction to
illustrate itsapplicationtomanyproblemdomains.Theneed
for dimensionality reduction techniques presents new chal-
lenges, and novel methods are expected to be developed.

Some research directions in dimensionality reduction
are as follows:

1. Feature extraction.

a. Study how to sparsify the resulting matrix after
transformation so that the connection between the
extracted features and original features can
become evident.

b. Investigate how to make use of both labeled and
unlabeld data in feature extraction.

2. Feature selection.

a. Unsupervised feature selection remains a challen-
ging task.

b. Study efficient methods to detect interacting fea-
tures (may still be slower than sequential forward
heuristic methods but faster than exhaustive
methods). and

3. Investigate how to maximally take advantage of both
feature extraction and selection methods.

FURTHER READING

M. Dash and H. Liu, Feature selection for classification, Int. J.
Intell. Data Analysis, 1(3): 131–156, 1997.

H. Liu and H. Motoda, Feature Selection for Knowledge Discovery
and Data Mining. Boston, MA: Kluwer Academic, 1998.

DIMENSIONALITY REDUCTION 7



BIBLIOGRAPHY

1. A. Y. Ng, Preventing overfitting of crossvalidation data, in
Proc. of Fourteenth International Conference on Machine
Learning, 1997, pp. 245–253.

2. R. Bellman, Adaptive Control Processes: A Guided Tour.
Princeton: Princeton University Press, 1961.

3. J. H. Friedman, On Bias, Variance, 0/1 - Loss, and the Curse-of-
Dimensionality. Technical Report. Stanford, CA: Stanford Uni-
versity, 1996.

4. G.J. McLachlan, Discriminant Analysis and Statistical Pat-
tern Recognition. New York: John Wiley and Sons, 1992.

5. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning. New York: Springer, 2001.

6. U. M. Fayyad and R. Uthurusamy, Evolving data mining into
solutions for insights, Commun. Assoc. Comput. Mach., 45(8):
28–31, 2002.

7. J. W. Sammon, A non-linear mapping for data structure ana-
lysis, IEEE Trans. Comput., C-18(5): 401–409, 1969.

8. J. Kittler, Feature Selection and Extraction. Orlando, FL:
Academic Press, 1986, pp. 59–83.

9. G. H. Dunteman, Principal Components Analysis. Thousand
Oaks, CA: Sage, 1989.

10. G. H. John, R. Kohavi, and K. Pfleger, Irrelevant feature and
the subset selection problem, in W. W. Cohen and H. Hirsh
(eds.), Machine Learning: Proc. of the Eleventh International
Conference. New Brunswick, NJ: Rutgers University, 1994,
pp. 121–129.

11. D. Foley and J. W. Sammon, An optimal set of discriminant
vectors, IEEE Trans. Comput., 24(5): 281–289, 1975.

12. S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduc-
tion by locally linear embedding, Science, 290: 2323–2326,
2000.

13. J. B. Tenenbaum, V. deSilva, and J. C. Langford, A global
geometric framework for nonlinear dimensionality reduction,
Science, 290: 2319–2323, 2000.

14. I. T. Joliffe, Principal Component Analysis. New York:
Springer-Verlag, 1986.

15. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes in C. Cambridge, MA:
Cambridge University Press, 1988.

16. S De Backer, A. Naud, and P. Scheunders, Non-linear dimen-
sionality reduction techniques for unsupervised featureextrac-
tion, Pattern Recogn. Lett., 19: 711–720, 1998.

17. J. B. Kruskal and M. Wish, Multidimensional Scaling. Beverly
Hills, CA: Sage, 1978.

18. T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen, Som
pak: The self-organizing map program package, 1996.

19. M. Dash and H. Liu, Feature selection for classification, Int. J.
Intell. Data Analysis, 1(3): 131–156, 1997.

20. H. Liu and H. Motoda, eds, Feature Extraction, Construction
and Selection: A Data Mining Perspective. Boston, MA: Kluwer
Academic, 1998.

21. H. Liu and H. Motoda, Feature Selection for Knowledge Dis-
covery and Data Mining. Boston, MA: Kluwer Academic, 1998.

22. L. Yu and H. Liu, Efficient feature selection via analysis of
relevance and redundancy, J. Machine Learning Res., 5: 1205–
1224, 2004.

23. J. C. Schlimmer, Efficiently inducing determinations: A com-
plete and systematic search algorithm that uses optimal prun-
ing, Proc. of the Tenth International Conference on Machine
Learning, 1993, pp. 284–290.

24. P. M. Narendra and K. Fukunaga, A branch and bound algo-
rithm for feature subset selecting, IEEE Trans. Comput., C-
26(9): 917–922, 1977.

25. J. Doak, An Evaluation of Feature Selection Methods and Their
Application to Computer Security. Technical Report Davis,
CA: University of California, Department of Computer Science,
1992.

26. H. Liu and R. Setiono, A probabilistic approach to feature
selection—a filter solution, in L. Saitta, (ed.), Proceedings of
International Conference on Machine Learning (ICML-96),
July 3–6, 1996. San Francisco, CA: Morgan Kaufmann,
1996, pp. 319–327.

27. I. Kononenko, Estimating attributes: Analysis and extension of
RELIEF, in Proc. of European Conference on Machine Learning
(ECML), 1994. pp. 171–182.

28. J. R. Quinlan, C4.5: Programs for Machine Learning. San
Mateo, CA: Morgan Kaufmann, 1993.

29. A. N. Mucciardi and E. E. Gose, A comparison of seven tech-
niques for choosing subsets of pattern recognition, IEEE Trans.
Comput., C-20: 1023–1031, 1971.

30. A. L. Blum and P. Langley, Selection of relevant features
and examples in machine learning, Artif. Intell., 97: 245–
271, 1997.

31. M. Dash and H. Liu, Feature selection for clustering, Proc. of
Fourth Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), 2000.

32. J. G. Dy and C. E. Brodley, Visualization and interactive
feature selection for unsupervised data, Proc. of the Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD), 2000, pp. 360–364.

33. J. G. Dy and C. E. Brodley, Feature selection for unsupervised
learning, J. Machine Learning Res., 5: 845–889, 2004.

34. M. Devaney and A. Ram, Efficient feature selection in con-
ceptual clustering, Proc. of the International Conference on
Machine Learning (ICML), 1997, pp. 92–97.

35. D. H. Fisher, Knowledge acquisition via incremental concep-
tual clustering, Machine Learning, 2: 139–172, 1987.

36. L. Talavera, Feature selection as a preprocessing step for
hierarchical clustering, in Proc. of International Conference
on Machine Learning (ICML), 1999.

37. L. Talavera, Feature selection and incremental learning of
probabilistic concept hierarchies, in Proc. of International
Conference on Machine Learning (ICML), 2000.

38. S. Vaithyanathan and B. Dom, Model selection in unsupervised
learning with applications to document clustering, in Proc. of
the International Conference on Machine Learning (ICML),
1999, pp. 433–443.

39. M. Dash, K. Choi, P. Scheuermann, and H. Liu, Feature
selection for clustering—A filter solution, Proc. of IEEE Inter-
national Conference on Data Mining (ICDM), 2002.

40. C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park,
Fast algorithms for projected clustering. Proc. of ACM SIG-
MOD Conference on Management of Data, 1999, pp. 61–72.

41. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Auto-
matic subspace clustering of high dimensional data for data
mining applications, Proc. of ACM SIGMOD Conference on
Management of Data, 1998.

42. A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: A
review, ACM Comput. Surveys, 31(3): 264–323, 1999.

43. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification.
New York: Wiley Interscience, 2001.

44. S. Raychaudhuri, J. M. Stuart, and R. B. Altman, Principal
components analysis to summarize microarray experiments:

8 DIMENSIONALITY REDUCTION



Application to sporulation time series, Proc. of Pacific Sympo-
sium on Biocomputing, 2000, pp. 455–466.

45. S. Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P. O.
Brown, and I. Herskowitz, The transcriptional program of
sporulation in budding yeast, Science, 282: 699–705, 1998.

46. C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala,
Latent semantic indexing: A probabilistic analysis, Proc. of the
ACM Conference on Principles of Database Systems (PODS),
1998.

47. D. L. Swets and J. J. Weng, Efficient content-based image
retrieval using automatic feature selection, in Proc. IEEE Inter-
national Symposium on Computer Vision, 1995, pp. 85–90.

48. Y. Rui, T. S. Huang, and S. Chang, Image retrieval: Current
techniques, promising directions and open issues, J. Visual
Commun. Image Represent., 10(4): 39–62, 1999.

49. K. S. Ng and H. Liu, Customer retention via data mining, AI
Rev., 14(6): 569–590, 2000.

50. W. Lee, S. J. Stolfo, and K. W. Mok, Adaptive intrusion detec-
tion: A data mining approach, AI Rev., 14(6): 533–567, 2000.

51. E. Xing, M. Jordan, and R. Karp, Feature selection for
high-dimensional genomic microarray data, in Proc. of the

Eighteenth International Conference on Machine Learning,
2001.

52. E. Leopold and J. Kindermann, Text categorization with sup-
port vector machines. How to represent texts in input space?
Machine Learning, 46: 423–444, 2002.

53. K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell, Text
classification from labeled and unlabeled documents using EM,
Machine Learning, 39: 103–134, 2000.

54. Y Yang and J. O. Pederson, A comparative study on feature
selection in text categorization, in Proc. of Fourteenth Inter-
national Conference on Machine Learning, 1997, pp. 412–420.

MANORANJAN DASH

Nanyang Technological
University

Singapore

HUAN LIU

Arizona State University
Tempe, Arizona

DIMENSIONALITY REDUCTION 9



E

EVOLUTIONARY LEARNING

INTRODUCTION

Over the last three decades, evolutionary computation has
become popular in various applications such as optimiza-
tion and machine learning. Examples include scheduling
problems, routing problems, game playing, and robot navi-
gation. Here, several different ways are described in which
evolutionary algorithms can be applied to machine learning
tasks, which are related to the disciplines of engineering
and computer science.

Four main types of evolutionary algorithms (EAs) exist,
although in recent years a more unified approach has been
attempted (1):

� Genetic algorithms

� Genetic programming (described in the section
entitled ‘‘Genetic Programming’’)

� Evolutionary programming

� Evolution strategies

The above algorithms are based on the principles of a
Darwinian natural selection system, which includes the
following characteristics:

� A population of individuals, i.e. candidate solutions to
the underlying problem.

� Genetic operators (e.g., crossover, mutation) that mod-
ify the population of solutions dynamically when
applied to them.

� A fitness function that is used to measure how good or
bad an individual is. Fitter solutions have a higher
probability to survive and to contribute to children who
inherit some characteristics. Populations evolve and
their average fitness (goodness of solutions or effec-
tiveness) is improved over time.

Genetic algorithms (GAs) adopt a string representation
of individuals. Frequently, this takes the form of binary
strings. Populations of such strings evolve by applying
mutation (random modification of a gene within the string)
and crossover (exchange the successive genes of two parent
individuals, to maximize the fitness of two created off-
springs) (2). GAs are general-purpose algorithms because,
in theory at least, they can be applied to any domain.

Evolutionary programming (EP) employs mutation only
as the means to derive a new N-membered population from
an existing population of N members (3). Individuals (pos-
sibly mutated) are selected probabilistically to contribute to
the next generation. Traditionally, EP was used to evolve
finite state machines, but more recently it has been applied
to other structures and domains.

An evolution strategy (ES) concentrates on numerical
optimization problems. Individuals are encoded as real

number vectors. Initially, (1 þ l)-ES models were used.
One parent produces l children using mutation, and the
fittest of the (1 þ l) parent-offspring individuals is selected
to be the parent in the next generation. ES uses an adaptive
mutation operator. According to this technique, each gene i
is mutated using a Gaussian (normal) distributed perturba-
tion G(0, si) with a mean of zero and a standard deviation of
si that evolves over time. Every individual that requires
N genes by the problem definition is encoded with a total of
2N genes. The additional N genes represent the variances si

of the original genes required by the problem. ES can also be
used with a ðmþ lÞmodel, in which m parents are selected to
produce l children and the fittest m individuals from the
ðmþ lÞ parents/children are selected in a deterministic
fashion to participate in the new generation. More recent
ES approaches use recombination (crossover) operators as
well.

More details about the various aspects of EAs can be
found in this encyclopedia.

The following sections describe some common ap-
proaches for the application of EAs to machine learning
problems.

EVOLVING NEURAL NETWORKS

EAs can be used to train neural networks in the following
ways:

� Adapt the weights of a network.

� Find the right topology of a network, in terms of how
many hidden units per layer, the number of hidden
layers, connectivity of the net (which nodes connect to
which others).

� Derive a learning algorithm.

Artificial neural networks are biologically inspired struc-
tures that can learn from experience and generalize from
trained examples to unseen ones. Artificial neural networks
have been applied in many diverse fields.

One of the most popular neural network architectures is
the multilayer perceptron (see also the encyclopedia’s arti-
cles on Perceptrons and Feedforward Neural Nets). Such a
network is shown in Fig. 1. A number of nodes (neurons) are
arranged in layers, which include one input layer and one
output layer with one or more hidden layers in between.
Nodes are connected via links called weights. The output o j

of each node j in the network is given by Equation (1), or a
similar ’’sigmoidal‘‘ function, where its input net is given
by (2):

f ðnetÞ ¼ 1

1þ e�net
ð1Þ

net j ¼
X

i

wi joi ð2Þ

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



The above network is a example of supervised learning,
in which several training data exist in the form of inputs
and corresponding correct outputs. The multilayer percep-
tron should learn (i.e., find appropriate values for the
weights) the input–output behavior described by the train-
ing data, and also should generalize well in unseen data
(i.e., data not inside the training set).

A learning algorithm is responsible to adapt the learning
parameters (weights) of a neural network. One of the most
widely used learning algorithms for the multilayer percep-
tron is the backpropagation algorithm. In its basic form,
backpropagation is based on gradient descent optimization,
although more advanced optimization algorithms such as
conjugate gradient can be applied as well (4). The aim of
backpropagation is to minimize the training error, which is
defined as:

E ¼ 1

2

X
p

X
k

ðt pk � o pkÞ2 ð3Þ

where k, p belong to the sets of output nodes and training
patterns, respectively. The values opk and tpk are the actual
network outputs and the training set target outputs,
respectively, of the node k in the output layer for the
training pattern p.

Gradient descent algorithms suffer from the local
minima problem, which is something that can be avoided
if EAs are used to learn the network weights instead.

A typical way to evolve the weights of a neural network is
to use GA individuals. These individuals encode all weights
of the network in the form of a string that contains real
numbers. Thus, a chromosome a1a2 . . . an represents a net-
work that has n weights, for which the first weight has the
value a1 the second weight has the value a2, and the n-th
weight is equal to an.

The initial population of the GA could initialize weights
randomly with values from a selected range, for example,
between�1 and 1. Mutation can be performed by selecting
a hidden or an output node and adding random values (e.g.,
in the range �1 to 1) to its incoming weights (5). The
crossover operator can be defined as the probabilistic selec-
tion of two parents who produce a single offspring by copy-
ing the incoming weights of a randomly selected non input
parent node to the corresponding node of the child. This
operation is repeated for all hidden and output nodes of the
offspring.

For example, in Fig. 2, the offspring inherits the incom-
ing weights for nodes 4 and 5 from Parent 2, whereas the
incoming weights for node 3 are coming from Parent 1.

The network that will be used in an application is chosen
as the network that performs best (based on the training
and the generalization error) in the last generation of the
GA.

The topology of a feedforward neural network (number
of hidden nodes or layers and the connectivity) can also be
determined using a GA. For example, a matrix such as the
one shown in Fig. 3 describes the connectivity of a neural
network (6). One (1) specifies that a connection is present
between two nodes and zero (0) stands for no connection.
Notice that the matrix is not symmetric because the net-
work is feedforward and no recurrent connections exist, for
example, node 1 propagates a signal (value) to node 3, but
node 3 does not send a signal to node 1.

To apply a GA for connectivity evolution, the connec-
tivity matrix must be translated to a linear chromosome.
This translation can be done by placing all the rows of

Output Pattern

Input Pattern

wij

j

i

HIDDEN LAYER

OUTPUT LAYER

INPUT LAYER

Figure 1. An example of a multilayer feedforward neural net-
work.

5

43

21

5

43

21

5

43

21

Parent 2Parent 1

Offspring

0.1 −0.10.2

0.50.7

0.3−0.1 0.40.6
0.8

0.6−0.4

0.6−0.4

0.1
0.30.6

0.8

Figure 2. The crossover operator for the evolution of the weights
of a multilayer perceptron. For each hidden and output node of the
offspring, its incoming weights are coming from a randomly
selected parent (all the weights of a single node are inherited
from the same parent).

2 EVOLUTIONARY LEARNING



the matrix next to each other within a string. Thus, the
matrix in Fig. 3 corresponds to the chromosome
0000000000110001100000110.

The initial population of the GA is created using ran-
domly selected chromosomes that correspond to networks
with different connectivity. Then, the backpropagation
algorithm is applied to each net, and the fitness of each
trained network is measured according to the error in the
training set given by Equation (3) and the error of a test
set. The next generation of the GA is evolved by applying
mutation and crossover genetic operations. The mutation
can be defined as the flipping of bits in an individual. The
crossover operator selects a row index k and exchanges the
rows between 1 and k in two parents to create two children.
The neural network that performs best in the last gen-
eration is designated as the best overall solution.

Similar approaches can determine the number of hidden
nodes and layers in a network. In such cases, the GA
chromosome could be a binary string, that when decoded
gives the number of hidden nodes per layer.

Finally, GAs can be used to evolve the learning algo-
rithm, which is the rule that determines the updates of
weights after the presentation of training data to the net.
One simple approach (see Ref. 6 for a detailed description) is
to try to evolve a learning rule whose inputs are the
activation function ai of node i the training signal tj (correct
output of node j), the current output oj of node j, and the
current weight wi j between nodes i, j. The output of
the learning rule is the weight update, which, in this simple
case, consists of the weighted sum of all the inputs and the
pairwise products of the inputs:

Dwi j ¼ hðk1wi j þ k2a1 þ k3o j þ k4t j þ k5wi jai

þ k6wi jo j þ k7wi jt j þ k8aio j þ k9ait j

þ k10o jt jÞ ð4Þ

where h (the learning rate) and the coefficients km;m ¼
1; 2; . . . 10 are evolved using a GA.

Note that in all the approaches described in this section,
the chosen network is the network that performs best in the
last generation (or across all generations). However, this
does not mean that the generalization ability of such a
network is the best possible. A different approach is
described in Ref. 7, where all (or the top n) individuals

(networks) of the last population (generation) are used to
determine the final output. For example, in a classification
task where each network predicts the class that the input (s)
belongs to, all the networks of the last population are con-
sidered to be voting toward a class, and the majority of
votes is treated as the final prediction. Another possibility
for combining the outputs of the individuals in the final
generation is to form a weighted sum of their outputs.

A detailed review of various techniques to evolve arti-
ficial neural networks can be found in Ref. 8.

REINFORCEMENT LEARNING

In many problems, supervised learning is not possible
because no explicit teacher exists [i.e., no pairs of data exist
to describe the input(s) and the corresponding correct out-
put(s)] For example, a robot that navigates in an environ-
ment is trying to achieve certain goals such as locating
targets and avoiding obstacles. The problem can be com-
plicated more by assuming that the environment is
unknown or that changes over time.

Although in these situations no information exists about
the perfect action that the robot (agent) should take while
being in a specific state, the agent can estimate its own
performance, as it receives reward or penalty feedback
signals by the environment from time to time. The agent
should learn to take appropriate actions based on the feed-
back. Rewards and penalties are referred to geherally as
rewards, because a penalty can be seen as a negative
reward.

This type of problem is known as reinforcement learning.
The reinforcement learning problem is the learning of
behavior by trial and error without an explicit teacher
(9) (see Fig. 4). Some reinforcement learning architectures
not only use trial and error for the learning agent, but also
use a learned model of the environment (world). Note that
some people refer to the learning agent as the animat.

Reinforcement learning can be seen commonly as a
control task, because at every step the agent must take
an appropriate control action so as to maximize the received
rewards in the long term (10). Rewards in reinforcement
learning are numeric scalar values, and although, this

5

3 4

1 2

0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 1 1 0

              4
              5

              2
              3

from node: 1 2 3 4 5
to node:  1

Figure 3. The connectivity of the network on the right is
described using the matrix on the left. The matrix can be encoded
as the chromosome 0000000000110001100000110.

Agent
(Animat)

actionstate
reward

Environment

Figure 4. The reinforcement learning problem. The goal is to
maximize the total reward in the long term.

EVOLUTIONARY LEARNING 3



seems limiting, a large number of applications exist for
which the goals include numeric scalar rewards. For
example (9):

� Foraging: rewards are positive for finding food, and
negative for energetic motion.

� Classic control problems, such as pole-balancing.

� Recycling robot: rewards are positive for dropping
soda cans in the recycling bin, negative for colliding
with objects, and are more negative for bumping hard
into objects.

� Game playing, such as chess.

When considering the above example applications, it
becomes apparent that in many cases the rewards are
not continuous; a reward might not be received at every
single step, but only from time to time, or in the very end. In
games such as chess, the only reward (win or lose) is
received in the very end of the match, and the agent does
not receive ’’explicit‘‘ indicative signals of how well or bad it
functions during the match. In this case, the agent’s goal is
to learn a policy p: S! A that maps states to actions. The
optimal policy p� is defined as the policy that achieves the
maximum cumulative reward.

To solve the reinforcement learning problem, algorithms
operate in either the value or the policy space. Thus,
reinforcement learning algorithms search the value or
the policy space. Examples of such algorithms include value
iteration, policy iteration, Q-learning, and TD(l) (11).

Value function methods attempt to approximate the
value function Vp� (s), which gives the expected cumulative
reward for the optimal policy from any state s. The value
function for a policy p (not necessarily the optimal policy) is
defined as:

VpðstÞ ¼
Xh

i¼0

rtþi ð5Þ

where ri is the reward received at time step t and assumes
that h is a finite value that describes the total number of
steps [if h ¼ 1, a discount rate should be included in the
above formula as well (11)]. Then the optimal policy is
calculated as:

p� ¼ arg max
p

VpðsÞ; 8s ð6Þ

Policy-space methods search directly for the optimal
policy. EAs can be used to search for the optimal policy
in the policy space. An individual in the population repre-
sents a policy explicitly.

To illustrate how an EA can be applied to reinforcement
learning problems, consider the following task (12):

1. An agent in the grid shown in Fig. 5 moves from state
to state by selecting either of the two actions: move
right (R) or move down (D).

2. The initial position (state) of the agent is a1 and it
receives the reward indicated when visiting each
state.

3. The agent keeps moving until it moves off the grid
world.

4. The goal is to learn a policy that returns the highest
cumulative reward. For example, a policy that moves
the agent in the sequences R, D, R, D, D, R, R, D is an
optimal policy (not a unique one in this case) because
it achieves the optimal score of 17.

A direct way to apply a GA to the above problem would be
to choose a chromosome representation that contains n = 25
genes that correspond to each state of the grid. A gene
contains a value that corresponds to the action that the
chromosome (policy) should take from that state. For exam-
ple, the chromosome shown in Fig. 6 represents a policy
that takes the actions R at state a1, D at state a2, R at state
a3, and so on. The initial population of the GA can be
created randomly and the standard mutation and crossover
genetic operators can be applied to the described represen-
tation of a policy to evolve several generations according to
a defined fitness.

The fitness of an individual in this problem could be
defined naturally as the total reward received when the
sequence of actions described by the individual (policy) is
applied until the agent moves off the grid. In more complex
problems, in which a generalization capability of the agent

1

0

1

3

1

1

2

1

−5

−2

1 2

4

4

2

1 −1 1

0 2

13

1

1

2

start position
a b c d e

1

2

3

4

5

Figure 5. A simple grid-world reinforcement learning problem.
The dotted line indicates one of the optimum paths.

Policy i:
a3a2a1

RRDR

e5a4
D

25 states

25 actions corresponding to the 25 states

Figure 6. Genetic algorithm policy representation for the problem
of Fig. 5.

4 EVOLUTIONARY LEARNING



would be desired (i.e., the agent should be able to receive the
maximum reward even when starting from different posi-
tions, or placed in a new grid), the fitness should include a
number of different test cases, which measure the total
efficiency of the individual.

For problems where the state space is very large, the
above representation is be feasible. In these situations,
the chromosome representation could be modified so each
gene represents a ‘‘region’’ of similar states and the gene
value corresponds to a common action associated with
these states. An extension of that would be to have a
condition–action rule in each gene, so that the condition
expresses a predicate that matches a set of states (12). The
set of states that trigger an action must be defined accord-
ing to a ‘‘similarity’’ function of states.

COEVOLUTION

Traditional EAs involve individuals in a population that
try to adapt in a fixed environment (or a number of static
environments). The performance of an individual is mea-
sured using an absolute fitness function, and the evolu-
tionary process derives highly fit solutions based on the
defined fitness function after a number of generations.

However, many problems exist for which a fitness func-
tion is difficult or impossible to define, for example, the task
of evolving a game player such as in chess. One could
attempt to define the fitness function as the number of
wins/losses when the computerized solution plays against a
human player. This approach is difficult because a human
player might not be available, or, in the case where one is
the evolved individuals will learn to play well only with the
available human opponent(s), and they will not be able to
play well (generalize) against other opponents (unless the
human players improve through time) (1).

A second case in which a fitness function cannot be
defined is when different individuals perform different
subtasks and several individuals must cooperate to solve
the whole problem.

A third case involves situations in which it is infeasible
to evaluate an individual because of an extremely large
number of test cases (1). For example, an individual that
represents some software cannot be evaluated against all
possible inputs.

The above problem of being unable to define (easily or
not at all) a fitness function can be addressed by considering
the coevolution process found in nature. Natural predators
and preys evolve simultaneously, and they adapt to the
characteristics of each other. Preys (e.g., organisms) evolve
their characteristics to defend against predators (e.g., para-
sites). Then, predators evolve to circumvent the new
defenses of the preys (organisms) and so on.

EAs apply coevolution using populations that compete
with each other. For example, let us consider the case of
two populations. Initially, both populations are likely to be
unfit. Then, individuals of the first population try to
adapt to the environment that consists of the second
population. To do so, all the individuals of the first popula-
tion are evaluated against all the individuals of the second

population, and a new generation of the first population is
created. Then, all the individuals of the second population
are evaluated against those of the first one, and a new
generation for the second population evolves.

According to this process, for two competing popula-
tions A, B, the efficiency of an individual in A is assessed
with a relative fitness function that is defined as its
performance when measured against the individuals of
the B, and vice versa. The fitness is relative, not absolute,
because the individuals of the other population continue to
change.

In the case of chess, two populations of computerized
chess players could be coevolved. Because the fitness of
both populations increases, the coevolutionary system
will continue to evolve players with higher performance
over time.

Another example of coevolution are robots that are able
to navigate in different environments (therefore general-
ize well in unknown environments). One of the popula-
tions could consist of the actual robots and the second
population could consist of the different environments.
Both the robots and the environments evolve over time. To
make sure that robots do not ‘‘forget’’ how to behave in
older population environments, the fitness of the robot
should also take into account its past performance. A
limited version of this approach (only one environment
with different starting positions) is demonstrated in
Ref. 13.

As a special case, some coevolutionary systems could
involve a single population. Individuals compete with other
individuals within the same population.

CLASSIFIER SYSTEMS

Often, EAs are used in machine learning tasks in the form
of classifier systems. Broadly speaking, a classifier system is
a system whose interaction with the environment creates a
chain of ‘‘internal’’ events (classifiers) of the form

if condition then activate ð7Þ

that triggers a chain of external events implicitly.

010
100
011

0*1 : 111

11* : 001

0*0 : 101

classifiers

message list0

Sensors

ex
te

rn
al

 in
fo

rm
at

io
n

actions
effectors

1

1

Figure 7. A simple classifier system.

EVOLUTIONARY LEARNING 5



Figure 7 shows a typical simple classifier system. A set of
sensors detects information flowing into the system from
the external environment. This information depends on the
previous outputs of the classifier system. The sensors are
able to decode the input to one or more messages, which are
posted to the message list.

The messages in the message list can activate the classi-
fiers thathave the fromof a string rule. If a message matches
the first part of a classifier (i.e., the part before the colon : in
Fig. 7), the classifier is activated and posts a new message in
the message list. For example, given the classifiers in Fig. 7,
if a message 011 arrives in the message list, it will activate
the classifier 0�1: 111, which will post the new message 111
in the message list. Certain messages can trigger an effector
in the effector system (Fig. 7), which will cause an external
action to be directed toward the enviroment.

Note that at any instant, more than one classifier can be
activated (as a message can be matched by any number of
them). In this case, the classifiers compete against each
other to designate a winner. The algorithm behind this is
known as the bucket brigade algorithm (14).

From time to time, new rules (classifiers) must be derived
(learned) and this is done by means of a GA. More details
about classifier systems can be found in Ref. 2.

GENETIC PROGRAMMING

Genetic programming (GP) (15) aims at the automatic
discovery of computer programs. GP is based on a more
powerful representation than GAs because every indivi-
dual in the population is a computer program. The char-
acteristics of computer programs (such as conditionals,
loops, assignments, variables, functions) are present in
each individual in the population.

GP is an effective evolutionary tool in machine learning
applications because it creates computer programs auto-
matically that solve tasks encoded by the fitness function.

The representation of a GP computer program is done
through the use of trees. For example, in Fig. 8, the tree
shown represents the single program statement

if x> y then a :¼ 10 ð8Þ

Only when the evaluation of the first subtree (i.e., x > y)
is true is the second subtree of the root node executed (i.e.,
a:¼ 10). This tree representation is equivalent to the parse
trees that compilers construct internally to represent a
given program.

The application of GP follows the same steps as GAs. The
genetic operators used commonly are reproduction, cross-
over, and mutation.

Reproduction selects an individual from the current
generation based on its fitness and copies it to the next
generation. Crossover is performed by choosing two points
randomly in the probabilistically selected parents and
swapping the parent subtrees that are defined by these
points (Fig. 9). Note that, unlike GAs, the GP crossover
contributes more to different shapes and sizes of the trees
(programs) in the population. Thus, sufficient diversity
exists in the population and the phenomenon of premature
convergence (2) is unlikely to occur. Mutation is performed
by choosing a node randomly in the chosen individual and
by replacing the subtree that starts at this node with a
randomly generated tree.

A tree in the population is composed of functions and
terminals chosen from the function set F and the terminal
set T, respectively. The function set may include arithmetic
or Boolean operations, conditional operators (such as if-
then-else), iteration functions (e.g., while), operators that
create statements similar to those found in programming
languages, and any functions that are associated closely
with the problem domain. The terminal set consists of state
variables and inputs and possibly constants (numbers,
boolean constants or the random generator R that returns
a random value in a prespecifled range).

The function and terminal sets should satisfy the closure
and sufficiency properties. The closure property requires
that any function in the function set accepts as an argument
any terminal from the terminal set and any value returned

if  x>y  then  a := 10;

>

if

:=

x y a 10

Figure 8. In genetic programming, the representation of a com-
puter program is a tree.

A

D

FE

K

L M

C

B

FC

D

E

A

OFFSPRING 1

G

I

J

OFFSPRING 2

I

M

K

L

J

H

G PARENT 2PARENT 1

H

B

Figure 9. The crossover operator in genetic programming.

6 EVOLUTIONARY LEARNING



by any other function. Thus, each function should be closed
for any combination of arguments that it may receive. For
example, the normal division arithmetic operator always
returns a number, unless it is dividing by zero. To be
consistent with the closure property, the division function
must be redefined to return an ‘‘acceptable’’ value when the
denominator is zero. The sufficiency property requires that
the sets of functions and terminals that are provided to GP
can express a solution to the problem under consideration.
A solution cannot be expected to be found if the functions or
terminals provided are ‘‘incomplete’’.

An important issue in the application of GP is the crea-
tion of the initial population. Usually, creation is done
randomly, after setting a maximum initial depth of each
individual (tree). The depth is defined as the length of the
longest nonbacktracking path from the root to a leaf. The
practical application of GP indicates that the initial popu-
lation generative method of ramped half-and-hcdf gives
satisfactory results as it creates enough diversity in the
initial population. According to this method, an equal
number of individuals for each depth (up to the maximum)
is created. Half of the individuals are full trees (trees for
which the length of every nonbacktraddng path between
the root and any leaf is equal to the prespecified maximum
depth) and half are of variable shape (15).

To obtain a solution to a problem, one might need to run
GP multiple times, (with different initial conditions, i.e.,
initial population), because the starting point in a search
can lead to different results. This procedure is also appro-
priate for the application of other EAs.

GP has been applied successfully in a variety of ‘‘lear
ing’’ tasks, which include control, game playing, and
electrical circuit design.

HYBRID SYSTEMS

EAs can be combined with other techniques to form hybrid
systems that can be applied to machine learning tasks. It is
common to create hybrid systems of evolutionary techni-
ques and other ‘‘soft-computing’’ approaches such as neural
networks and fuzzy logic. Such hybrid systems have dis-
crete operational modules, one of which is using EAs while
the other module(s) are based on different nonevolutionary
approaches (e.g., neural networks).

Consider the general control problem in which an agent
(e.g., a robot) must make decisions and take actions while
operating in a completely unknown environment. Assum-
ing that the environment does not change frequently (or it
changes slowly enough), the neurogenetic architecture
which is an example of a hybrid solution, could be applied
to this problem (10).

The neurogenetic architecture consists of two separate
steps:

1. Learn a model of the unknown environment using a
neural network. This task could be done offline (the
agent is not using the model for decisions until the
model’s training is complete) or online (depending on
the complexity of the environment and the learning
rate of the neural network algorithm applied).

2. The model learned is used by a GA, to help the agent
in making optimum decisions according to its targets.

At each time step, the agent is using the model of the
world to predict the next state of the system given specific
candidate input actions. The agent does not actually
attempt these actions, but it considers the possible state
that it will encounter if it takes several different actions. A
GA is used as an optimizer, which ’’tells‘‘ the agent which of
the candidate actions is optimum. It is only then that the
agent applies the optimum action to the real world, and the
next step of the agent must be considered.

The application of such an approach can use a single step
model prediction (’’myopic‘‘ optimization) or multistep pre-
diction of the state of the model at some point in the future.
As seen in the section entitled, ‘‘Reinforcement Learning’’,
in the general rainforcement learning problem, the long
term behavior should be optimized. However, in certain
dynamic systems, even the ’’myopic‘‘ approach can result in
long-term optimization.

BIBLIOGRAPHY

1. K. A. De Jong, Evolutionary Computation: A Unified App-
roach, Cambridge MA: MIT Press, 2006.

2. D. E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning, Reading, MA: Addison Wesley, 1989.

3. L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence
through Simulated Evolution, New York: John Wiley, 1966.

4. J. E. Dennis, and R. B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations,
Englewood Cliffs, NJ: Prentice Hall, 1983.

5. D. J. Montana, and L. D. Davies, Training feedforward net-
works using genetic algorithms, in Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, San Mateo,
CA: Morgan Kaufmann, 1989.

6. M. Mitchell, An Introduction to Genetic Algorithms, Cam-
bridge MA: MIT Press, l996.

7. X. Yao, Y. Liu, and P. Darwen, How to make best use
of evolutionary learning, in R. Stocker, H. Jenilek, and B.
Durnota, (eds.), Complex Systems From Local Interactions to
Global Phenomena, Amsterdam: IOS Press, 1996.

8. X. Yao, Evolving artificial neural networks. Proceedings of the
IEEE, 87(9): 1423–1447, l999.

9. R. Sutton, Reinforcement learning architectures for animats,
Proceedings of the International Workshop on the Simulation of
Adaptive Behavior: From Animals to Animats, Cambridge,
MA: MIT Press, 1991, pp. 288–296.

10. D. C. Dracopoulos, Evolutionary Learning Algorithms for
Neural Adaptive Control, Berlin: Springer Verlag, 1997.

11. R. S. Sutton, and A. G. Barto, Reinforcement Learning: An
Introduction, Cambridge, MA: MIT Press/Bradford Books,
1998.

12. D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, Evolu-
tionary algorithms for reinforcement learning, Journal of
Artificial Intelligence Research, 11: 199–229, 1999.

13. K. Sakamoto, and Q. Zhao, Co-evolving robot controllers that
generalize well, Proceedings of the IEEE International Con-
ference on Systems, Man and Cybernetics, 2005, pp. 2311–2316.

14. J. H. Holland, Adaptation in Natural and Artificial Systems,
Ann Arbor: The University of Michigan Press, 1975.

EVOLUTIONARY LEARNING 7



15. J. R. Koza, Genetic Programming, Cambridge, MA: MIT Press,
1982.

FURTHER READING

D. B. Fogel, Evolutionary Computation: Toward a New Philosophy
of Machine Intelligence, Piscataway, NJ: IEEE Press, 1995.

Z. Michalewicz, Genetic AlgorithmsþData Structures¼Evolution
Programs, Berlin: Springer Verlag, 1996.

DIMITRIS C. DRACOPOULOS

University of Westminster
London, United Kingdom

8 EVOLUTIONARY LEARNING



E

EXPERT SYSTEMS

INTRODUCTION

In the early 1970s, substantial interest existed in studying
decisions by experts that did not use statistical or other
mathematical tools and in determining whether and how
such decisions could be modeled in a computer. In parti-
cular, researchers were interested in investigating concep-
tual and symbolic methods appropriate for modeling
physician and other expert decision making [e.g., Shortliffe
(1)]. From this environment, the notion of an expert system
evolved.

The concept of expert systems is almost magical:
Simply capture human expertise and put it into a com-
puter program. Rather than worry about a person, a
computer program that includes all relevant and appro-
priate knowledge could be developed and shipped around
the world. For example, Rose (2) reported that Southern
California Edison (SCE) had an expert whose trouble-
shooting had helped keep a dam safe. However, SCE was
afraid their expert would retire or quit, and they worried
that he might ‘‘get hit by a bus.’’ As a result, SCE planned
on using an expert system to try to ‘‘clone’’ one of their
engineers, in a computer program that captured his
expertise.

With such hype, it is probably not surprising that,
unfortunately, expert systems never lived up to their
hype. Bobrow et al. (3) noted that the term ‘‘expert’’
may have created unrealistic expectations about what
a computer program could do. Unfortunately, as noted by
Business Week (4) ‘‘. . . grandiose promises of problem
solving ‘expert in a box’ proved illusory.’’ However,
the term ‘‘expert’’ also generated ‘‘commercial’’ hopes
for a discipline that had been academically based [e.g.,
Shortliffe (1)].

As a result, that same Business Week article also noted
that expert systems had proliferated rapidly throughout
finance in business applications, which was being used
for a range of activities such as market analysis to credit
evaluation. From the early to mid 1970s to the mid 1980s,
expert systems application base seemed almost universal.
Since then, expert systems have been applied to just about
every conceivable discipline, ranging from chemistry to
medicine to business.

The term expert system apparently began to be replaced
by the term ‘‘knowledge-based system’’ in the mid 1980s to
mid 1990s [e.g., Hayes-Roth (5) and Davis (6)]. The shift
began to remove the need for labeling a system with
‘‘expert,’’ and reduce the hype, but still would require
that the system be ‘‘knowledge based.’’ This name shift
put less direct pressure on developers to build systems
that were equivalent to experts, but it also was sign of a
commercial and research shift away from expert systems
and an evolution to other forms of problem solving
approaches.

Purpose and Scope

The purpose of this article is to review key concepts in
expert systems across the lifecycle of expert system
development. As a result, we will analyze the choice of
the application area for system development, gathering
knowledge through so-called knowledge acquisition,
choosing a knowledge representation, building in expla-
nation, and verifying and validating the system.

Although it would be easy to focus only on the technical
issues, a key finding in the expert systems literature was
noted as businesses actually began to implement expert
systems [e.g., Barker and O’Connor (7)]: ‘‘. . . To successfully
develop and provide ongoing support for expert systems and
to integrate them into the fabric of one’s business, . . . one
must attend to the needs of the business and to human
resource and organizational issues as well as to technical
issues.’’ One of the first developers of expert systems,
E. Feigenbaum, was quoted as saying [Lyons (8)], ‘‘I’m not
interested in theoretical concepts. I like to see my work used
in the real world.’’ Accordingly, we will not only consider
technical issues, but also some nontechnical organizational
and people issues, along with the applications.

Expert systems were a key part of pioneering artificial
intelligenceeffortstomodelhumanbehavior.Expertsystems
have led to substantial additional and emerging research.
Accordingly, this article briefly investigates some additional
and emerging issues.

Finally, in an article of this type it is inevitable that some
key works and important researchers are omitted. As space
is limited, some topics that might be addressed are not. The
author apologizes in advance for any such omissions.

Outline of this Article

This article proceeds in the following manner. This first
section has provided an introduction and statement of
purpose and scope. The second section investigates expert
systems and human reasoning, while the third section
analyzes the structural nature of an ‘‘expert system.’’
The fourth section provides some definitions of an expert
system. The following two sections analyze some charac-
teristics of expert system applications and investigate some
expert system applications. Then, the following five sec-
tions trace expert systems through the lifecycle of choosing
an application that is likely to work, knowledge acquisition,
knowledge representation, explanation, and verification
and validation of the system. The final three sections
investigate, respectively, expert system strengths and lim-
itations, extensions, and emerging issues, followed by a
brief conclusion.

EXPERT SYSTEMS AND HUMAN REASONING

Initially, computer scientists were interested in capturing
nonquantitative decision-making models in a computer,
and they used expert systems to generate those models

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



[e.g., Shortliffe (1)]. What were some basic assumptions
about human reasoning that drove expert systems? Per-
haps the initial primary assumptions were:

� Experts know more than nonexperts.

� People use information and knowledge based on their
past experience.

� People use heuristics.

� People use specific, a priori rules to solve problems.

� People use focused knowledge to solve problems.

Experts Know More Than Nonexperts

Expert systems assume that experts know more or at least
something different than nonexperts in a field. Accordingly,
expert systems assume that experts are differentiated from
nonexperts by what knowledge they have. As a result,
capturing that expert knowledge can potentially change
the knowledge of nonexperts.

People use Past Experience

People use their past experience (actions, education, etc.)
as the basis of how to solve problems. As a result, system
developers interested in building systems to solve pro-
blems can consult with people to try to capture that past
experience, and they use it to solve problems where that
experience could be used.

People use Heuristics

Heuristics are so-called ‘‘rules of thumb.’’ Often, past
experience is captured and summarized in heuristics.
Rather than optimize every decision, people [e.g., Simon
(9)] use heuristics that they have found from past experi-
ence to drive them toward good, feasible solutions. To solve
complex problems, expert systems assume that it is possible
to capture those heuristics in a computer program and
assemble them for reuse.

People use Rules

Much everyday and business problem solving seems based
on rules. For example, when choosing a wine for dinner,
simple rules such as ‘‘if the dinner includes a red meat then
the wine should be red,’’ help guide dinners to the choice of a
wine. People use rules to solve problems. As noted by
Clancey (10), rules were recognized as a simple and uniform
approach to capture heuristic information. Heuristics and
other knowledge are captured and kept in a rule-based
form. If people use rules, then computer programs could use
those same rules to solve problems.

Problem Solving Requires Focused Knowledge

Expert systems researchers [e.g., Feigenbaum (8)] note
that one view of human intelligence is that it requires
knowledge about particular problems and how to solve
those particular problems. Accordingly, one approach to
mimicking human intelligence is to generate systems that
solve only particular problems.

STRUCTURAL NATURE OF EXPERT SYSTEMS

Because it was assumed that human problem solvers used
rules and knowledge could be captured as rules, rule bases
and their processing were the critical component of expert
systems. Accordingly, the structure of a classic expert
system was designed to meet those needs. Ultimately,
expert systems were composed of five components: data/
database, user interface, user, knowledge base/rule base,
and an inference engine to facilitate analysis of that knowl-
edge base.

Data

The data used by the system could include computer-gen-
erated data, data gathered from a database, and data
gathered from the user. For example, computer-generated
data might derive from an analysis of financial statement
data as part of a program to analyze the financial position of
a company. Additional data might be gathered selectively
straight from an integrated database. Furthermore, the
user might be required to generate some assessment
or provide some required data. Typically, initial expert
systems required that the user provide key inputs to the
system.

User Interface

Because the user typically interacted with the system and
provided it with data, the user interface was critical. How-
ever, an expert system user interface could take many
forms. Typically, the system would display a question,
and the user would select one or more answers from a
list, as in a multiple choice test. Then, the system would
go to another question and ultimately provide a recom-
mended solution. In some cases, the user would need to
analyze a picture or a movie clip to answer the questions.

User

In any case, in a classic expert system, the user is a key
component to the system, because it is the user who ulti-
mately provides environmental assessments, generates
inputs for the system, and as a result, disambiguates the
questions provided by the system to gather data from the
user. Research has found that different user groups (e.g.,
novice or expert) given the same interrogation by the
system would provide different answers. As a result, gen-
erating that user interface and building the system for a
particular type of user are critical.

Knowledge Base/Rule Base

The knowledge base typically consisted of a static set of ‘‘if
. . . then . . .’’ rules that was used to solve the problem. Rules
periodically could be added or removed. However, the
knowledge needed for solving the particular problem could
be summarized and isolated. In addition, the very knowl-
edge that was used to solve an inquiry also could be used to
help explain why a particular decision was made. (Some
researchers include explanation facility as its own compo-
nent.) Accordingly, gathering, explaining, and verifying

2 EXPERT SYSTEMS



and validating that knowledge is the focus of the rest of this
discussion.

Inference Engines

Inference engines facilitate use of the rule base. Given the
necessary information as to the existing conditions pro-
vided by the user, inference engines allow processing of a
set of rules to arrive at a conclusion by reasoning through
the rule base. For example with the system ‘‘if a then b,’’ and
‘‘if b then c’’ would allow us to ‘‘reason’’ that a led to b and
then to c. As rule-based systems became the norm, the
inference engine saved each developer from doing the
same thing, and allowed developers to focus on generation
of the knowledge base. Developers became referred to as
knowledge engineers. Ultimately, data was gathered, com-
bined, and processed with the appropriate knowledge to
infer the matching solution.

Expert System Software

Because the expert system components were distinct, soft-
ware could be designed to allow developers to focus on
problem solution rather than building the components
themselves. As a result, a wide range of so-called ‘‘expert
system shells’’ were generated, for example [e.g., Richter
(11)], EMYCIN [from MYCIN, Buchanan and Shortliffe
(12)], ART (Automated Reasoning Tool by Inference Cor-
poration),M.4 [http://www.teknowledge.com/, (13)] orExsys
(http://www.exsys.com/).

WHAT IS AN EXPERT SYSTEM?

The term expert system has been applied broadly to several
systems apparently for many different reasons. At various
points in time, the term ‘‘expert system’’ has implied a type
of knowledge representation, a system to perform a parti-
cular task, the level of performance of the system.

Rule-Based Knowledge Representation

As noted above, people seemed to use rules to reason to
conclusions, and experts were recognized as supplying
rules that would be used to guide others through task
solution. As a result, most so-called ‘‘expert systems’’ prob-
ably were ‘‘rule-based systems.’’ Researchers had observed
that this type of reasoning apparently was used by people to
solve problems. So-called experts seemed to reason this
way, so the systems were ‘‘expert.’’

Activity/Task of the System

Another rationale for labeling a system an ‘‘expert system,’’
was because the system performed a specific task that
human experts did. Experts seem to structured reasoning
approaches that could be modeled to help solve various
problems (e.g., choosing a wine to go with dinner).

Level of Performance of the System

One perspective was that a system was an ‘‘expert system’’
if it performed a task at the level of a ‘‘human expert.’’ For
example, Buchanan and Feigenbaum (14) argue that the

DENDRAL system functioned at the same level as a human
expert.

System Dependence

However, although the system was expert, it was generally
still dependent on people for environmental assessments of
conditions and corresponding data input. Expert systems
were dependent on the user for a range of activities and
thus dependent on the user. For example, as noted in Hart
et al. (15, p. 590) ‘‘. . . facts recorded in databases often
require interpretation.’’ As a result, most self proclaimed
expert systems typically provided an interactive consulta-
tion that meant the system was still dependent on people.

Definitions

Accordingly, over the years, the term expert systems has
been defined several ways, including the following:

� A program that uses available information, heuristics,
and inference to suggest solutions to problems in a
particular discipline. (answers.com)

� ‘‘The term expert systems refer to computer programs
that apply substantial knowledge of specific areas of
expertise to the problem solving process.’’ [Bobrow
et al. (3, p. 880)]

� ‘‘. . . the term expert system originally implied a com-
puter-based consultation system using AI techniques
to emulate the decision-making behavior of an expert
in a specialized, knowledge-intensive field.’’ [Shortliffe
(1, p. 831)]

As a result, we will call a system an expert system when
it has the following characteristics:

� a rule-based approach is used to model decision mak-
ing knowledge, and those rules may include some kind
of factor, to capture uncertainty

� interacts with a user from whom it gathers environ-
mental assessments, through an interactive consulta-
tion (not always present)

� designed to help facilitate solution of a particular task,
typically narrow in scope

� generally performs at the level of an informed analyst

CHARACTERISTICS OF EXPERT SYSTEM APPLICATIONS

Because expert systems related to the ability of a computer
program to mimic an expert, expert systems were necessa-
rily about applications and about comparing human
experts and systems. Often, the initial goal of expert sys-
tems at some level was to show that the system could
perform at the same level as a person. But as they put
these systems in environments with people, we began to
realize several key factors. First, typically, for a rule-base to
solve the problem, the problem will need to be structurable.
Second, systems may support or replace humans. Third,
one of the key reasons that a system might replace a human

EXPERT SYSTEMS 3



is the amount of available time to solve the problem, not just
knowledge.

Structured versus Unstructured Tasks

Expert systems and their rule-based approaches rely on
being able to structure a problem in a formal manner. Rules
provided a unifying and simple formalism that could be
used to structure a task. Thus, although the problem may
not have had sufficient data to be analyzed statistically, or
could not be optimized, information still facilitated struc-
turing the problem and knowledge about the problem in a
formal manner.

Support versus Replace

Expert systems were often recognized as a vehicle to
replace human experts [e.g., Rose (2)]. Many systems
apparently were designed initially to replace people. How-
ever, in many decision-making situations, the focus was on
providing a decision maker with support. For example, as
noted by Kneale (16) in a discussion of an accounting
system ExperTAX, the expert system is not designed to
replace accountants, but instead to enhance and support
advice for people.

Available Time

Another important issue in the support versus replace
question was how much time was available to make the
decision. If a problem needed to be solved in real time, then
perhaps support was out the question, particularly if many
decisions must be made. Furthermore, even if the system
was to support an expert, perhaps it could provide insights
and knowledge so the expert did not need to search for
information elsewhere.

APPLICATIONS

Because of its focus on modeling and mimicking expertise,
ultimately, the field of expert systems has been application
oriented. Many applications of expert systems exist in a
wide range of areas, including chemical applications, med-
ical diagnosis, mineral exploration, computer configura-
tion, financial applications and taxation applications.
Applications have played an important role in expert sys-
tem technology development. As expert system technolo-
gies and approaches were applied to help solve real world
problems, new theoretical developments were generated,
some of which are discussed below.

Chemical Applications

Some early applications of expert systems took place in this
arena [e.g., Buchanan and Feigenbaum (14)]. DENDRAL
and Meta-DENDRAL are programs that assist chemists
with interpreting data. The DENDRAL programs use a
substantial amount of knowledge about mass spectrometry
to help with the inference as to what a compound may be.
The output from the program is a detailed list with as much
detail as the program can provide. Ultimately, Buchanan

and Feigenbaum (14) argued that the program had a level of
performance equal to a human expert.

Medical Diagnosis Expert Systems

Medicine was one of the first applications of expert systems.
By 1984, Clancey and Shortliffe (17) presented a collection
of papers that covered the first decade of applications in this
domain. Shortliffe (1) briefly summarized some contribu-
tions of medical expert systems to medicine. MYCIN was a
success at diagnosing infectious diseases. Present illness
program (PIP) generated hypotheses about disease in
patients with renal disease. INTERNIST-1 was a system
designed to assist diagnosis of general internal medicine
problems. Since that time, substantial research has
occurred in medical expert systems. One of the critical
developments associated with medical expert system was
using uncertainty on rules [e.g., (18)], which is discussed
additionally below.

Geology Advisor

In geology, an expert system was developed to assist in the
analysis of drilling site soil samples for oil exploration.
PROSPECTOR I and II [(McCammon (19)] were built
with over 2,000 rules capturing information about the geo-
logic setting and kinds of rocks and minerals, to help geol-
ogists find hidden mineral deposits. PROSPECTOR I [Duda
et al. (20) and Hart et al. (15)] was developed along with an
alternative representation of uncertainty on rules that gar-
nered substantial attention and is discussed further below.

Computer Configuration

Configuration was one of the first major industrial applica-
tions of expert systems. Perhaps the best known configura-
tion expert system was XCON, also known as R1 [e.g.,
Barker and O’Connor (7)]. XCON was touted as the first
expert system in daily production use in an industry set-
ting. At one point in time, XCON was only one of many
expert systems in use in at the former computer manufac-
turer ‘‘Digital’’ to configure hardware and software. As an
expert system, XCON was used to validate the customer
orders for technical correctness (configurability) and to
guide order assembly. Barker and O’Connor (7) also
describe many other expert systems that were in use at
Digital Equipment Corporation (DEC) during the same
time as XCON, including

� XSEL, which was used interactively to assist in the
choice of saleable parts for a customer order

� XFL, which was used to diagram a computer room floor
layout for the configuration under consideration

� XNET, which was used to design local area networks to
select appropriate components

Not surprisingly, these industrial applications had very
large knowledge bases. For example, as of September 1988,
XCON had over 10,000 rules; XSEL had over 3500 rules;
XFL had over 1800 rules; and XNET, a prototype, had
roughly 1700 rules.

4 EXPERT SYSTEMS



Taxation Applications at the IRS

Beckman (21) reviewed and summarized the taxation
applications expert systems literature, and he provided a
focus on applications at the Internal Revenue Service (IRS).
Throughout the IRS’s involvement in artificial intelligence
starting in 1983, the IRS focused on the ability of the
technology to help solve real-world problems. As reported
by Beckman (21), many expert system projects were devel-
oped and tested, including the following. A ‘‘tax return issue
identification’’ expert system was designed to help identify
individual tax returns with ‘‘good audit potential.’’ A ‘‘rea-
sonable cause determination’’ expert system was developed
because it was found that the error rate by people was too
high. As a result, the system was designed to improve the
consistency and quality of so-called ‘‘reasonable cause
determinations.’’ An ‘‘automated under-reporter’’ expert
system that was designed to help tax examiners assess
whether individual taxpayers properly reported income.

Auditing and Accounting

The fields of auditing and accounting have generated a
substantial literature of applications. The notion behind
the development of many such systems was inviting: Audi-
tors and accountants used rules to solve many problems
they faced. Expert systems were used to model judgment
decisions made by the participants. Brown et al. (22) pro-
vide a recent survey of the field.

CHOOSING AN APPLICATION

Two basic perspectives exist on choosing an application to
build an expert system. Prerau (23), Bobrow et al. (3), and
others have analyzed what characteristics in the domain
were important in the selection of a problem around whichto
build an expert system. Their perspective was one of how
well the needsof the domain met the needs of the technology:
choose the right problem so that the expert system technol-
ogy can blossom. Alternatively, Myers et al. (24) and others
have viewed it from the business perspective, stressing the
need for making sure that the system was in an area that
was consistent with the way the company was going to run
their business: Make sure the expert system application
meets the objectives of the company developing it. In any
case, many issues were suggested as conditions that needed
to be considered when the domain and expert system appli-
cation were aligned, including the following issues.

Art and Science

Hart et al. (15, p. 590) note that ‘‘Mineral exploration is
perhaps as much an art as science, and the state of this art
does not admit the construction of models as rigorous and
complete, as, say, those of Newtonian mechanics.’’ If a
scientific model exists, then a rule-based approach is not
needed; the scientific model can be used.

Expertise Issues

Because expert systems are dependent on human experts
as a source of their knowledge, experts must work on the

project. For example, Prerau (23) notes the importance of
having access to an expert from which expertise can be
gathered, and the expert must have sufficient time to spend
on the project development. Other concerns such as will-
ingness to work on the project also must be considered.

Benefit

In addition, the task should be one that provides enough
returnstomakeitworthwhile.Thereisnosenseinbuildinga
system if the value to the builders does not exceed the costs.

Testability

Because the system is to be categorized as an expert system,
the system must perform appropriately. This task requires
that the results are testable.

KNOWLEDGE ACQUISITION

Early expert systems research was not so much concerned
with knowledge acquisition or any other issues, per se.
Insteadtheconcernwasmostlyabouttheabilityofthesystem
to mimic human experts. However, over time as more sys-
tems demonstrated the feasibility of capturing expertise,
greater attention was paid to knowledge acquisition.

In general, expert system expertise was solicited initially
in a team environment, in which programmers and the
expertworkedhand-in-handtogeneratethesystem.Faculty
from multiple disciplines were often coauthors on research
describing the resulting systems. However, as the base of
applications broadened, it became apparent that interviews
with experts, which were designed to try and elicit the
appropriate knowledge, was generally the most frequently
used approach. Prerau (25) notes the importance of getting
step-by-step detail, and that using some form of ‘‘quasi-
English if-then rules’’ to document the findings. However,
many other creative approaches exist for gathering knowl-
edge from experts, including the following applications.

ExperTAX

One particularly innovative approach was used by Coopers
and Lybrand in the development of their expert system
‘‘ExperTAX’’ [e.g., Shpilberg et al. (26) and Kneale (16)] The
goal of the project was to try and understand how partners
in a professional services firm analyzed tax planning pro-
blems. Ultimately, to gather the knowledge necessary to
solve a particular tax problem, they had a team of three
expert partners behind a curtain. On the other side of the
curtain was a beginner, with many documents. While
videotaping the process, the partners guided the beginner
toward a solution. The camera captured what questions
were asked, what documents were needed, and what infor-
mation was used. Ultimately, each partner spent a total of
over 50 hours working on the system.

Problems with Gathering Knowledge from Experts

Various problems have been reported associated with gath-
ering knowledge from experts. First, knowledge is power.
As a result, unfortunately, experts do not always have

EXPERT SYSTEMS 5



incentives to cooperate. For example, one consultant noted
in Orlikowski (27, p. 246) as to why expert consultants at
one company were not interested in participating in knowl-
edge acquisition,

‘‘Power in this firm is your client base and technical ability . . . It
is definitely a function of consulting firms. Now if you put all of
this in a . . . database, you will lose power. There will be nothing
that’s privy to you, so you will lose power. It’s important that I
am selling something that no one else has. When I hear people
talk about the importance of sharing expertise in the firm, I say,
‘Reality is a nice construct.’ ’’

As a result, it has been suggested that experts may
withhold secrets [e.g., (2)].

Second, as noted in Rose (2), experts often do not con-
sciously understand what they do. As a result, any attempt
to interview them will not result in the quality or quantity
of knowledge that is necessary for a system to work. In an
example discussed in Rose (2), SCE had their programmers
study dam safety and construction engineering before the
knowledge acquisition. Then the programmers met one-on-
one with the expert in a windowless conference room. Their
first meeting lasted seven hours. They captured all inter-
action using a tape recorder. Unfortunately, the attempts to
build the system ran into difficulties. Early versions of the
program indicated problems. Virtually every scenario
ended with the recommendation to pack the problem wet
area with gravel and keep it under observation. They
narrowed the focus to a single dam in an effort to generate
sufficient detail and insights. However, even after
months of work, the knowledge base had only 20 different
rules.

KNOWLEDGE REPRESENTATION

Several forms of knowledge representation exist in artifi-
cial intelligence. However, expert systems typically refer to
so-called rule-based systems. However, some extensions to
deterministic rules have been developed to account for
uncertainty and ambiguity.

‘‘If . . .then . . .’’ Rules

‘‘If . . . then . . .’’ rules are the primary type of knowledge used
in classic expert systems. As noted above those rules are
used to capture heuristic reasoning that experts apparently
often employ. However, over time researchers began to
develop and integrate alternative forms of knowledge
representation, such as frame-based or case-based reason-
ing, into their systems. Systems that included multiple
types of knowledge sometimes were referred to as hybrid
systems or labeled after a particular type of knowledge
representation (e.g., case-based).

Uncertain Knowledge

Unfortunately, not all statements of knowledge are with
complete certainty. One approach to capturing uncertainty
of knowledge was to use some form of probability on each of
the rules. As expert systems were developed, many differ-
ent approaches were generated, which often depended on

the particular application. For example, Buchanan and
Shortliffe (12, p. 248) for rules of the sort ‘‘if e then h,’’
generated certainty factors (CF) for a medical expert sys-
tem. MYCIN attributes a ‘‘meaning’’ to different certainty
factors [Buchanan and Shortliffe (12, p. 91)]. The larger the
weight, the greater the belief in the specific rule. If CF¼1.0,
then the hypothesis is ‘‘known to be correct.’’ If CF ¼ �1.0
then that means that the hypothesis ‘‘. . . has been effec-
tively disproven.’’ ‘‘When CF ¼ 0 then there is either no
evidence regarding the hypothesis or the supporting evi-
dence is equally balanced by evidence suggesting that the
hypothesis is not true.’’

Duda et al. (20) and Hart et al. (15) developed a different
approach for Prospector, which is an expert system
designed to aid geological exploration. They used the spe-
cification of ‘‘if E then H (to degree S,N).’’ S and N are
numeric values that represent the strength of association
between E and H. S is called a sufficiency factor, because a
large S means that a high probability for E is sufficient to
produce a high probability of H; N is called a necessity
factor, because a small value of N means that a high
probability for E is necessary to produce a high probability
of H, where S¼P(E|H)/P(E|H0) and N¼P(E0|H)/P(E0|H0).
S and N are likelihood ratios. This approach was extended
to include the reliability of the evidence [e.g., (28)].

In addition to probability-based approaches, additional
approaches emerged and found their way into expert sys-
tems. For example, fuzzy sets [Zadeh (29)] and Dempster-
Shafer belief functions [Shafer (30)] were used to provide
alternative approaches.

Interaction of Knowledge Acquisition and Representation

Unfortunately, it does not seem that knowledge acquisition
and representation are independent of each other. For
example, recent research (31) illustrates that the two are
tightly intertwined. An empirical analysis of logically
equivalent but different knowledge representations can
result in different knowledge being gathered. That is,
soliciting knowledge in one knowledge representation
can generate knowledge perceived as different than a
logically equivalent one. As a result, if the developer wants
‘‘if . . . then . . .’’ rules, then they should use those rules as the
form of knowledge in the acquisition process and through-
out system development.

EXPLANATION

Researchers developed techniques so that given complex
rule bases or other structured forms of knowledge repre-
sentation systems could analyze the knowledge to find a
solution. However, a human user of the system might look
at the systems and not understand ‘‘why’’ that particular
solution was chosen. As a result, it became important for
systems to provide an explanation as to why they chose a
particular solution.

Importance of Explanation Facilities

Arnold et al. (32) did an empirical analysis of the use of an
explanation facility. They found that novice and expert

6 EXPERT SYSTEMS



users employed the explanation capabilities differently. In
addition, they found that users were more likely to follow a
recommendation if an explanation was given. As a result,
explanation is an important strand of expert system
research, which includes the following approaches.

Trace Through the Rules

Perhaps the first approach toward generating a system that
could provide an explanation for the choice was to generate a
traceoftherules.Thetracewassimplyalistingofwhichrules
were executed in generating the solution. Much research
on explanation leveraged knowledge and context from the
specific application area. Although primitive, this approach
still provided more insight into why a decision was made, as
compared with probability or optimization approaches.

Model-Based Reasoning

In general, explanation is facilitated by the existence of a
model that can be used to illustrate why a question is being
asked or why a conclusion was drawn. One model-based
domain that has gathered a lot of attention is the financial
model of a company that depends on several accounting
relationships. This financial model has been investigated
by many researchers as a basis of explaining decisions [e.g.,
(33)].

Dialog-Based Systems

Quilici (34) had an interesting approach to explanation,
suggesting that in the long-run expert systems must par-
ticipate in dialogs with their users. Quilici suggested that
providing a trace was not likely to be enough, but instead
the system needed to know when and how to convince a
user. This task would require that the system understand
why its advice was not being accepted.

Explanation as to what Decisions were Made
in Building the Program

Swartout (35) argued that as part of explanation, a system
needs to explain what its developers did and why. Accord-
ingly, he built XPLAIN to provide the user with insights
about decisions made during creation of the program to get
insight into the knowledge and facilitate explanation.

VERIFICATION AND VALIDATION

As noted above, one factor that makes a system an expert
system, is the level of performance of a system. As a result,
perhapsmorethananyother typeof system, verificationand
validation that some system functions at a particular level of
expertise is important in establishing the basic nature of the
system. Accordingly, an important set of issues is ensuring
that the system developed works appropriately and that the
knowledge contained in the system is correct. Assuring
those conditions is done using verification and validation.

Verification

Verification is more concerned with the syntactical issues.
As noted by O’Keefe et al. (36), verification refers to building

the system right. Verification refers to making sure that the
technology has been implemented correctly. Accordingly,
verification is concerned that the structural nature of the
‘‘if. . . then . . .’’ rules is appropriate. For example, verifica-
tion is concerned that no loops existed in the rule base (‘‘if a
then b’’ and ‘‘if b then a’’) or that no rules conflict (e.g., ‘‘if
a then b,’’ ‘‘if a then c’’). Preece and Shinghal (37) examine
these structural issues in greater detail. Verification also is
concerned that any weights on rules have been performed
correctly. For example, O’Leary (38) provides many
approaches to help determine whether expert system
weights on the rules have been put together appropriately
or whether any anomalies should be investigated.

Validation

Validation is concerned more with the semantic issues. As
noted by O’Keefe et al. (36) validation refers to building the
right system. O’Leary (39) lays out some critical issues
regarding validation of expert systems and ties his approach
to a structure based on research methods. O’Leary (39)
suggests that some of the key functions of validation, all
consistent with the nature of expert systems, are

� ascertaining what the system knows, does not know or
knows incorrectly

� ascertaining the level of decision making expertise of
the system

� analyzes the reliability of the system.

Although O’Leary (39) is concerned with the theory and
basic guidelines, he provides (40) several practical methods
for expert system validation.

EXPERT SYSTEM STRENGTHS AND LIMITATIONS

Unfortunately, the mere term ‘‘expert’’ has put much pres-
sure that the system performs at an appropriate level. This
label is both a strength and a weakness. This section lists
some other strengths and limitations of expert systems.

Strengths

Expert systems have provided the ability to solve real
problems using the manipulation of syntactic and semantic
information, rather than quantified information, providing
a major change in the view as to what computer could do. In
particular, if the problem being posed to the system is one
for which rule based knowledge is effective, then the system
is likely to provide a recommended solution.

Furthermore, expert systems can be integrated with
other computer-based capabilities. As a result, they can
do substantial ‘‘pre-analysis’’ of the data. For example, in
the case of financial systems, financial ratios can be com-
puted and analyzed, saving much time and effort.

Limitations

However, some limitations are associated with expert
systems. One of the biggest ‘‘complaints’’ against expert
systemshasbeentheextenttowhichtheyarelimitedinscope

EXPERT SYSTEMS 7



and that the systems do not know their limitations. Classic
expert systems have rules that focus only on the problems
that it is designed to solve, which results in their limited
scope.Generallyexpertsystemsdonotknowwhenaproblem
being posed by the user is outside of scope of the system.

Furthermore, as noted by Business Week (4), from a
practical perspective, expert systems ‘‘. . . require complex
and subtle interactions between machines and humans,
each teaching and learning from other.’’ Rather than being
static, systems and people need to learn and change to
accommodate each other.

In addition, Clancey (10) was an early investigator who
noted that people, other than the authors of the rules, may
have difficulty modifying the rule set. Clancey (10) also had
concerns with the basic rule formalism for capturing knowl-
edge. For example, Clancey noted ‘‘. . . the view that expert
knowledge can be encoded as a uniform . . . set of if/then
associations is found to be wanting.’’

Getting and keeping up-to-date knowledge is another
potential limitation. For example, in the area of U.S. taxa-
tion, the tax rules change every year. Some rules are new
and some rules are no longer valid. Such rule-base changes
are not unusual in any setting where technology is involved
that must change often more than once a year. For example,
imagine developing a system to help someone choose the
right mobile phone.

Finally, a primary limitation to expert systems is
illustrated by comment from Mike Ditka, a hall of fame
American Football player. On a radio interview on Los
AngelesArearadio(September18,2007),whiletalkingabout
evaluating football players, he noted ‘‘. . . the intangibles are
more important than the tangibles.’’ Viewed from the per-
spective ofexpert systems, thisquote suggests thatalthough
we can capture (tangible) knowledge, that other (intangible)
knowledge is available, but not captured, and in many cases
that additional knowledge may be the most important.

EXTENSIONS TO EXPERT SYSTEMS AND EMERGING
RESEARCH ISSUES

The basic model of the expert system presented to this point
is one where knowledge is gathered from a single expert
and that knowledge is categorized as ‘‘if . . . then . . .’’ rules,
as a basis for mapping expertise into a computer program.
However, some extensions have occurred to that basic
model, including the following ideas.

Multiple Experts or Knowledge Bases

Ng and Abramson (41) discussed a medical system named
‘‘Pathfinder’’ that was designed around multiple experts.
Rather than having the system designers try to merge
knowledge gathered from multiple experts into a single
knowledge base, the design concept was to allow the system
to put together knowledge from the multiple experts when
it needed it.

Knowledge from Data

Gathering knowledge from experts ultimately became
known as a ‘‘bottle neck.’’ In some cases data was available,

so rather than capturing what people said they did, an
analysis of the data found what they actually did. Some
researchers began to try to get knowledge from data, rather
than going through classic interview processes. Ultimately,
the focus on generating knowledge from data ended up
creating the notion and field of knowledge discovery.

Neural nets also provided a vehicle to capture knowl-
edge about data. Ultimately, neural nets have been used to
create rules that are used in expert systems and expert
systems have been built to try to explain rules generated
from neural networks.

Alternative Forms of Knowledge Representation

As researchers studied reasoning and built systems they
found that rules apparently were not the only way that
people thought, or the ways that the researchers could
represent knowledge. For example, one line of reasoning
suggested that people used cases or examples on which to
base their reasoning. As another example, researchers
built frame-based reasoning systems. Frames allow
researchers to capture patterns, that allow heuristic
matching, for example, as was done with GRUNDY
[Rich (42)]. As a result, case-based reasoning and other
forms of knowledge representation helped push research-
ers to forms of knowledge representation beyond rules in an
attempt to match the way that people use knowledge
[Hayes (43)].

Alternative Problem Solving Approaches

Knowledge representation not only changed, but also other
types of problem solving approaches were used. For exam-
ple, as noted by Shortliffe (1, p. 831), ‘‘The term (expert
systems) has subsequently been broadened as the field has
been popularized, so that an expert system’s roots in arti-
ficial intelligence research can no longer be presumed . . .
any decision support system (is) an expert system if it is
designed to give expert level problem specific advice . . .’’

Expertise

Because expert systems were intent on capturing human
expertise in a computer program, a need existed to better
understand expertiseandwhat itmeant tobe anexpert. Asa
result, since the introduction of expert systems, substantial
additional research is needed in the concept of expertise, not
just how expertise can be mapped into a computer program.

Uncertainty Representation

Generating expert systems for different domains ended up
facilitating the development of several approaches for
representing uncertainty. However, additional research
has focused on moving toward Bayes’ Nets and influence
diagrams [e.g., Pearl (44)] and moving away from the
MYCIN certainty factors and the Prospector likelihood
ratios.

The Internet and Connecting Systems

Generally, the expert system wave came before the Internet.
As a result, the focus was on systems for a specific computer

8 EXPERT SYSTEMS



and not networked computers. As a result, limited research
was available on networks of expert systems. However,
since the advent of the Internet, expert system concepts
were extended to knowledge servers (e.g., Reference 45) and
multiple intelligent agents. Inaddition, technologiessuch as
extensible markup language (XML) are now used to capture
information containing rules and data and to communicate
it around the world (e.g., xpertrule.com).

Ontologies

Furthermore, developers found that as expert systems
grew or were connected and integrated with other systems
that more formal variable definition was necessary. Large
variable sets needed to be controlled and managed care-
fully, particularly in multilingual environments. As a
result, extending those expert system capabilities led to
some work on ontologies.

Embedded Intelligence versus Stand-Alone Systems

Increasingly, rather than highly visible stand alone appli-
cations, rule-based intelligence was built into other produc-
tion applications. Because the systems were not stand alone
expert systems, users did not even ‘‘see’’ the embedded
expertise: People don’t go check on what the expert system
has to say—programs now are just more intelligent. For
example, fixing spelling errors and grammar errors in
Microsoft Word requires a certain amount of intelligence.

Business Rules

As another form of evolution, businesses are interested in
so-called ‘‘business rules.’’ As might be anticipated, busi-
ness rules assume that businesses use rules in their inter-
action with other businesses. Rather than wait for people to
make decisions, business rules capture those decision mak-
ing capabilities. Business rules have virtually all of the
same concerns as we saw in expert system rules in terms of
knowledge acquisition, knowledge representation, verifica-
tion and validation, and so on.

CONCLUSION

Expert systems have provided an important starting point
for understanding and mimicking human expertise. How-
ever, they were only a start. Expert systems focused on
heuristic decision making and rules, which are generally
manifested in ‘‘if-then’’ rules, possibly employing weights
on the rules to capture uncertainty or ambiguity. Expert
system provided the foundations on which many other
developments have been made.

BIBLIOGRAPHY

1. E. Shortliffe, Medical expert systems, knowledge tools for
physicians, West. J. Med., 145(6): 830–839, 1986.

2. F. Rose, An ‘electronic’ clone of a skilled engineer is very hard to
create, Wall Street J., August 12: 1988.

3. D. Bobrow, S. Mittal, and M. Stefik, Expert systems: perils and
promise, Commun. ACM, 29(9): 880–894, 1986.

4. Business Week, The new rocket science, Business Week,
November 1992.

5. F. Hayes-Roth, The knowledge-based expert system, IEEE
Comp., 11–28, 1984.

6. R. Davis, Knowledge-based systems, Science, 231: 4741, 1986.

7. V. Barker and D. O’Connor, Expert systems for configuration at
digital: XCON and Beyond, Commun. ACM, March 1989, 32(3):
98–318, 1989.

8. D. Lyons, Artificial intelligence gets real, Forbes, November 30:
1998.

9. H. A. Simon, Administrative Behavior, 2nd ed., New York: The
Free Press, 1965.

10. W. J. Clancey, The Epistemology of a Rule-based Expert Sys-
tem, Stanford CS-81-896, 1981.

11. M. Richter, AI Tools and Techniques, Norwood, NJ: Ablex
Publishing, 1989.

12. B. Buchanan and E. Shortliffe, Rule Based Expert Systems: The
Mycin Experiments of the Stanford Heuristic Programming
Project, Reading, MA: Addison-Wesley, 1984.

13. Cimflex Teknowledge, M4 User’s Guide, Palo Alto, CA: Cimflex
Teknowledge, 1991.

14. B. Buchanan and E. Feigenbaum, Dentral and Meta-Dentral:
Their Applications Dimension, Heuristic Programming Project
Memo, 78–1, February 1978.

15. P. Hart, R. Duda, and M. Einaudi, PROSPECTOR-A computer-
based consultation system for mineral exploration, Mathemat.
Geol., 10(5): 1978.

16. D. Kneale, How Coopers & Lybrand put expertise into its
computers, Wall Street J., November 14: 1986.

17. W. J. Clancey and E. H. Shortliffe (eds.), Readings in Medical
Artificial Intelligence: The First Decade, Reading, MA:
Addison-Wesley, 1984

18. P. Szolovits, Uncertainty and decisions in medical informatics,
Methods Informat. Med., 34: 111–134, 1995.

19. R. McCammon, Prospector II: towards a knowledge base for
mineral deposits, Mathemat. Geol., 26(8): 917–937, 1994.

20. R. Duda, J. Gaschnig, and P. Hart, Model design in the pro-
spector consultant system for mineral exploration, in D.
Mitchie (ed.), Expert Systems for the Micro Electronic Age,
Edinburgh: Edinburgh University Press, 1979, pp. 153–167.

21. T. J. Beckman, AI in the IRS, Proc. of the AI Systems in
Government Conference, 1989.

22. C. Brown, A. A. Baldwin, and A. Sangster, Accounting and
auditing, in V. Liebowitz (ed.), The Handbook of Applied Expert
Systems, Boca Raton, FL: CRC Press, pp. 27-1–27-12, 1998.

23. D. Prerau, Selection of an appropriate domain for an expert
system, AI Mag., 6(2): 26–30, 1985.

24. M. Meyer, A. Detore, S. Siegel, and K. Curley, The strategic use
of expert systems for risk management in the insurance indus-
try, Proc. of the 1990 ACM conf. on Trends and Directions in
Expert Systems, 1990.

25. D. Prerau, Knowledge acquisition in the development of a large
expert system, AI Mag., 8(2): 43–51, 1987.

26. D. Shpilberg, L. Graham, and H. Schatz, Expertax: an expert
system for corporate tax accrual and planning, Expert Systems,
3(3): 1986.

27. W. Orlikowski, Learning from notes, Informat. Soc., 9: 237–
250, 1993.

28. D. O’Leary, On the representation and impact of reliability of
expert system weights, Internat. J. Man-Machine Stud., 29:
637–646, 1988.

29. L. Zadeh, Fuzzy sets, Informat. Control, 8: 338–353, 1965.

EXPERT SYSTEMS 9



30. G. Shafer, A Mathematical Theory of Evidence, Princeton,
Princeton University Press, NJ: 1976.

31. D. O’Leary, Knowledge representation of rules, Intelli. Syst.
Account. Fin. Manage., 15(1-2): 73–84, 2007.

32. V. Arnold, N. Clark, P. Collier, S. Leech, and S. Sutton, The
differential use and effect of knowledge based system explana-
tions in novice and expert judgment decisions, MIS Quarte., 30:
79–97, 2006.

33. W. Hamscher, Explaining financial results, Internat. J. Intell.
Syst. Account., Fin. Managem., 3: 1–20, 1994.

34. A. Quilici, Recognizing and revising unconvincing explana-
tions, Internat. J. Intell. Sys. Account., Fin. Managem., 3:
21–34, 1994.

35. W. Swartout, XPLAIN: a system for creating and explaining
expert consulting programs, Artifi. Intelli., 40: 353–385, 1989.

36. R. O’Keefe, O. Balci, and E. Smith, Validating expert system
performance, IEEE Expert, 2(4): 81–90, 1987.

37. A. Preece and R. Shinghal, Foundation and application of
knowledge base verification, Internat. J. Intell. Sys., 9: 683–
702, 1994.

38. D. O’Leary, Verification of uncertain knowledge-based sys-
tems, Managem. Sci., 42: 1663–1675, 1996.

39. D. O’Leary, Validation of expert systems, Decision Sci., 18(3):
468–486, 1987.

40. D. O’Leary, Methods of validating expert systems, Interfaces
18(6): 72–79, 1988.

41. K. Ng and B. Abramson, Probabilistic multi-knowledge base
systems, J. Appl. Intell., 4(2): 219–236, 1994.

42. E. Rich, User modeling via stereotypes, Cogni. Sci. 3: 329–354,
1989.

43. P. Hayes, The logic of frames, In D. Metzing (ed.), Frame
Conceptions and Text Understanding, New York: de Gruyter,
1979, pp. 45–61.

44. J. Pearl, Probabilistic Reasoning in Intelligent Systems, San
Mateo, CA: Morgan Kaufman, 1989.

45. N. Abernethy, J. Wu, M. Hewitt, and R. Altman, Sophia: a
flexible web-based knowledge server, IEEE Intell. Syst., 14:
79–85, 1999.

FURTHER READING

B. Buchanan and E. Shortliffe, Rule Based Expert Systems: The
Mycin Experiments of the Stanford Heuristic Programming
Project, Reading, MA: Addison-Wesley, 1984.

F. Hayes-Roth, D. Waterman, and D. Lenat, Building Expert
Systems, Reading MA: Addison-Wesley, 1983.

J. Liebowitz, The Handbook of Applied Expert Systems, Boca
Raton, FL: CRC Press, 1997.

S. -H. Liao, Expert system methodologies and applications-a
decade review from 1995 to 2004, Expert Sys. Applicat., 28(1):
93–103, 2005.

DANIEL E. O’ LEARY

University of Southern California
Los Angeles, California

10 EXPERT SYSTEMS



F

FUZZY MODELING FUNDAMENTALS

This article introduces the basic concepts, notation, and
basic operations for fuzzy sets that are needed in fuzzy
modeling. Because research on fuzzy set theory has been
underway for over 30 years now, it is practically impos-
sible to cover all aspects of current developments in this
area. Therefore, the main goal of this article is to provide
an introduction to and a summary of the basic concepts
and operations that are relevant to the study of fuzzy sets.
We introduce in this article the definition of linguistic
variables and linguistic values and explain how to use
them in fuzzy rules, which are an efficient tool for quanti-
tative modeling of words or sentences in a natural or
artificial language. By interpreting fuzzy rules as fuzzy
relations, we describe different schemes of fuzzy reason-
ing, in which inference procedures based on the concept of
the compositional rule of inference are used to derive
conclusions from a set of fuzzy rules and known facts.
Fuzzy rules and fuzzy reasoning are the basic components
of fuzzy inference systems, which are the most important
modeling tool, based on fuzzy set theory.

The ‘‘fuzzy inference system’’ is a popular computing
framework based on the concepts of fuzzy set theory, fuzzy
if-then rules, and fuzzy reasoning (1). It has found success-
ful applications in a wide variety of fields, such as automatic
control, data classification, decision analysis, expert sys-
tems, time series prediction, robotics, and pattern recogni-
tion (2). Because of its multidisciplinary nature, the fuzzy
inference system is known by numerous other names, such
as ‘‘fuzzy expert system’’ (3), ‘‘fuzzy model’’ (4), ‘‘fuzzy
associative memory’’ (5), and simply ‘‘fuzzy system.’’

The basic structure of a fuzzy inference system consists
of three conceptual components: a ‘‘rule base,’’ which con-
tains a selection of fuzzy rules; a ‘‘data base’’ (or ‘‘diction-
ary’’), which defines the membership functions used in the
fuzzy rules; and a ‘‘reasoning mechanism,’’ which performs
the inference procedure on the rules and given facts to
derive a reasonable output or conclusion. In general, we can
say that a fuzzy inference system implements a nonlinear
mapping from its input space to output space. This mapping
is accomplished by several fuzzy if-then rules, each of which
describes the local behavior of the mapping. In particular,
the antecedent of a rule defines a fuzzy region in the input
space, whereas the consequent specifies the output in the
fuzzy region.

In what follows, we shall first introduce the basic con-
cepts of fuzzy sets and fuzzy reasoning. Then, we will
introduce and compare the three types of fuzzy inference
systems that have been employed in various applications.
Finally, we will address briefly the features and problems of
fuzzy modeling, which is concerned with the construction of
fuzzy inference systems for modeling a given target system.
In this article, we will assume that all fuzzy sets, fuzzy
rules, and operations are of type-1 category, unless other-
wise specified.

FUZZY SET THEORY

Let X be a space of objects and x be a generic element of X. A
classic set A, A�X, is defined by a collection of elements or
objects x 2 X, such that each x can either belong or not
belong to the set A. By defining a ‘‘characteristic function’’
for each element x 2X, we can represent a classic set A by a
set of order pairs (x,0) or (x,1), which indicates x =2A or x2A,
respectively.

Unlike the aforementioned conventional set, a fuzzy set
(6) expresses the degree to which an element belong to a set.
Hence, the characteristic function of a fuzzy set is allowed
to have values between 0 and 1, which denotes the degree of
membership of an element in a given set.

Definition 1. Fuzzy sets and membership functions. If X is
a collection of objects denoted generically by x, then a ‘‘fuzzy
set’’ A in X is defined as a set of ordered pairs:

A ¼ fðx;mAðxÞÞ j x2Xg ð1Þ

where mA(x) is called ‘‘membership function’’ (MF) for the
fuzzy set A. The MF maps each element of X to a member-
ship grade (or membership value) between 0 and 1.

Obviously, the definition of a fuzzy set is a simple
extension of the definition of a classic set in which the
characteristic function is permitted to have any values
between 0 and 1. If the values of the membership func-
tion mA(x) is restricted to either 0 or 1, then A is reduced
to a classic set and mA(x) is the characteristic function of
A. This function can be observed with the following
example.

Example 1. Fuzzy set with a discrete universe of discourse
X. Let X ¼ {Tijuana, Acapulco, Cancun} be the set of cities
one may choose to organize a conference in. The fuzzy set
A ¼ ‘‘desirable city to organize a conference in’’ may be
described as follows:

A ¼ fðTijuana; 0:5Þ; ðAcapulco; 0:7Þ; ðCancun; 0:9Þg

In this case, the universe of discourse X is discrete—in
this example, three cities in Mexico. Of course, the member-
ship grades listed above are quite subjective; anyone can
come up with three different values according to his or her
preference.

Corresponding to the ordinary set operations of union,
intersection and complement, fuzzy sets have similar
operations, which were initially defined in Zadeh’s seminal
paper (6). Before introducing these three fuzzy set opera-
tions, first we shall define the notion of containment, which
plays a central role in both ordinary and fuzzy sets. This
definition of containment is a natural extension of the case
for ordinary sets.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Definition 2. Containment. The fuzzy set A is ‘‘contained’’
in fuzzy set B (or, equivalently, A is a ‘‘subset’’ of B) if and
only if mA(x) �mB(x) for all x. Mathematically,

A�B,mAðxÞ � mBðxÞ ð2Þ

Definition 3. Union. The ‘‘union’’ of two fuzzy sets A and
B is a fuzzy set C, written as C ¼ A[B or C ¼ A OR B, whose
MF is related to those of A and B by

mCðxÞ ¼ maxðmAðxÞ; mBðxÞÞ ¼ mAðxÞ _mBðxÞ ð3Þ

Definition 4. Intersection. The ‘‘intersection’’ of two fuzzy
sets A and B is a fuzzy set C, written as C ¼ A\B or C ¼ A
AND B, whose MF is related to those of A and B by

mCðxÞ ¼ minðmAðxÞ; mBðxÞÞ ¼ mAðxÞ ^mBðxÞ ð4Þ

Definition 5. Complement or Negation. The ‘‘comple-
ment’’ of a fuzzy set A, denoted by A (eA, NOT A), is

mAðxÞ ¼ 1� mAðxÞ ð5Þ

As mentioned earlier, a fuzzy set is completely charac-
terized by its MF. Because most fuzzy sets in use have a
universe of discourse X consisting of the real line R, it would
be impractical to list all the pairs defining a membership
function. A more convenient and concise way to define a MF
is to express it as a mathematical formula. First we define
several classes of parameterized MFs of one dimension.

Definition 6. Triangular MFs. A ‘‘triangular MF’’ is spe-
cified by three parameters {a, b, c} as follows:

y ¼ triangleðx; a; b; cÞ ¼

0; x � a

ðx� aÞ=ðb� aÞ; a � x � b

ðc� xÞ=ðc� bÞ; b � x � c

0; c � x

ð6Þ

8>><
>>:

The parameters {a,b,c} (with a < b < c ) determine the x
coordinates of the three corners of the underlying triangu-
lar MF. Figure 1 (b) illustrates a triangular MF defined by
triangle(x; 10, 20, 40).

Definition 7. Trapezoidal MFs. A ‘‘trapezoidal MF’’ is
specified by four parameters {a, b, c, d} as follows:

traezoidðx; a; b; c; dÞ ¼

0; x � a

ðx� aÞ=ðb� aÞ; a � x � b

1; b � x � c

ðd� xÞ=ðd� cÞ; c � x � d

0; d � x

ð7Þ

8>>>><
>>>>:

The parameters {a, b, c, d} (with a< b� c< d) determine
the x coordinates of the four corners of the underlying
trapezoidal MF. Figure 1 (b) illustrates a trapezoidal MF
defined by trapezoid(x; 10, 20, 40, 75).

Because of their simple formulas and computational
efficiency, both triangular MFs and trapezoidal MFs
have been used extensively, especially in real-time imple-
mentations. However, because the MFs are composed of
straight line segments, they are not smooth at the corner
points specified by the parameters. In the following, we
introduce other types of MFs defined by smooth and non-
linear functions.

Definition 8. Gaussian MFs. A ‘‘Gaussian MF’’ is specified
by two parameters {c, s}:

�1
ðx� cÞ2

s
gaussianðx; c;sÞ ¼ e2

ð8Þ

A ‘‘Gaussian’’ MF is determined completely by c and s; c
represents the MFs center and s determines the MFs
width. Figure 2 (a) plots a Gaussian MF defined by gaussian
(x; 50, 20).

Definition 9. Generalized bell MFs. A ‘‘generalized bell
MF’’ is specified by three parameters {a, b, c}:

bellðx; a; b; cÞ ¼ 1

1þ jðx� cÞ=aj2b
ð9Þ

where the parameter b is usually positive. We can note that
this MF is a direct generalization of the Cauchy distribution
used in probability theory, so it is also referred to as the
‘‘Cauchy MF.’’ Figure 2 (b) illustrates a generalized bell MF
defined by bell (x; 20, 4, 50).

Although the Gaussian MFs and bell MFs achieve
smoothness, they cannot specify asymmetric MFs, which
are important in certain applications. Next we define the
sigmoidal MF, which is either open left or right.

 

0 20 40 60
trim  f [10,20,40]

M
em

be
rs

hi
p 

G
ra

de
s

0 20 40 60 80 100
0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

trapm  f [10 20 40 75]

M
em

be
rs

hi
p 

G
ra

de
s

 
(b) Trapezoidal MF 

(b) Trapezoidal MF (a) Triangular MF 

(a) Triangular MF 

Figure 1. Examples of two types of parameterized MFs.

2 FUZZY MODELING FUNDAMENTALS



Definition 10. Sigmoidal MFs. A ‘‘Sigmoidal MF’’ is
defined by the following equation:

sigðx; a; cÞ ¼ 1

1þ exp½�aðx� cÞ� ð10Þ

where a controls the slope at the crossover point x ¼ c.
Depending on the sign of the parameter ‘‘a,’’ a sigmoidal

MF is inherently open right or left and thus is appropriate
for representing concepts such as ‘‘very large’’ or ‘‘very
negative.’’ Figure 3 shows two sigmoidal functions
y1 ¼ sig(x; 1, �5) and y2 ¼ sig(x; �2, 5).

FUZZY RULES AND FUZZY REASONING

In this section, we introduce the concepts of the extension
principle and fuzzy relations, which extend the notions of
fuzzy sets introduced previously. Then we give the defini-
tion of linguistic variables and linguistic values and show
how to use them in fuzzy rules. By interpreting fuzzy
rules as fuzzy relations, we describe different schemes of
fuzzy reasoning. Fuzzy rules and fuzzy reasoning are the

backbone of fuzzy inference systems, which are the most
important modeling tool based on fuzzy set theory.

Fuzzy Relations

The ‘‘extension principle’’ is a basic concept of fuzzy set
theory that provides a general procedure for extending
crisp domains of mathematical expressions to fuzzy
domains. This procedure generalizes a common one-to-
one mapping of a function f to a mapping between fuzzy
sets. More specifically, lets assume that f is a function from
X to Y and A is a fuzzy set on X defined as

A ¼ mAðx1Þ=x1 þ mAðx2Þ=x2 þ � � � þ mAðxnÞ=xn

Then the extension principle states that the image of
fuzzy set A under the mapping f can be expressed as a fuzzy
set B,

B ¼ fðAÞ ¼ mAðx1Þ=y1 þ mAðx2Þ=y2 þ � � � þ mAðxnÞ=yn

where yi ¼ f(xi), i ¼ 1, . . ., n. In other words, the fuzzy set
B can be defined through the values of f in x1, x2, . . ., xn. If

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gaussmf, [20 50]

M
em

be
rs

hi
p 

G
ra

de
s

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gbellmf, [20 4 50]

M
em

be
rs

hi
p 

G
ra

de
s

(b) Generalized Bell MF (a) Gaussian MF 

(b) Generalized Bell MF (a) Gaussian MF 

Figure 2. Examples of two classes of parameterized continuous MFs.

.

- 1 0 - 5 0 5 1 0
0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

Sigm  f, [1 -5]

M
em

be
rs

hi
p 

G
ra

de
s

- 1 0 - 5 0 5 1 0
0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

Sigm  f, [-2 5]

M
em

be
rs

hi
p 

G
ra

de
sy1 y2 

(a) y1 = sig(x; 1, –5) (b) y2 = sig(x; –2, 5) 

(a) y1 = sig(x; 1, –5) (b) y2 = sig(x; –2, 5) 

Figure 3. Two sigmoidal functions y1 and y2.

FUZZY MODELING FUNDAMENTALS 3



f is a many-to-one mapping, then x1, x2 2 X, x1 6¼ x2 exists,
such that f(x1) ¼ f(x2) ¼ y�, y� 2 Y. In this case, the mem-
bership grade of B at y ¼ y� is the maximum of the
membership grades of A at x ¼ x1 and x ¼ x2, because
f(x) ¼ y�may result from x ¼ x1 or x ¼ x2. More generally
speaking, we have

mBðyÞ ¼ max mAðxÞ
x ¼ f1ðyÞ

A simple example of this concept is shown below.

Example 2. Application of the extension principle to fuzzy
sets. Lets suppose we have the following fuzzy set with
discrete universe

A ¼ 0:2=�2þ 0:5=�1þ 0:7=0þ 0:9=1þ 0:4=2

and lets suppose that we have the following mapping

y ¼ x2 þ 1

After applying the extension principle, we have the
following result

B ¼ 0:2=5þ 0:5=2þ 0:7=1þ 0:9=2þ 0:4=5
B ¼ 0:7=1þ ð0:2_ 0:4Þ=5þ ð0:5_ 0:9Þ=2
B ¼ 0:7=1þ 0:4=5þ 0:9=2

where _ represents ‘‘max.’’
Binary fuzzy relations are fuzzy sets in X�Y which map

each element in X�Y to a membership grade between 0 and
1. In particular, unary fuzzy relations are fuzzy sets with
one-dimensional MFs; binary fuzzy relations are fuzzy sets
with two-dimensional MFs, and so on. Here we will restrict
our attention to binary fuzzy relations. A generalization to
n-ary fuzzy relations is not so difficult.

Definition 11. Binary fuzzy relation. Let X and Y be two
universes of discourse. Then

R ¼ fððx; yÞ;mRðx; yÞÞjðx; yÞ 2X� Y ð11Þ

is a binary fuzzy relation in X � Y.

Example 3. Binary fuzzy relations. Let X ¼ {1, 2, 3} and
Y ¼ {1, 2, 3, 4, 5} andR ¼ ‘‘y is slightly greater than x.’’ The
MF of the fuzzy relation R can be defined (subjectively) as

mRðx; yÞ ¼
ðy� xÞ=ðyþ xÞ; if y> x

0; if y � x
ð12Þ

�

This fuzzy relation R can be expressed as a relation
matrix in the following form:

R ¼
0 0:333 0:500 0:600 0:666
0 0 0:200 0:333 0:428
0 0 0 0:142 0:250

0
@

1
A

where the element at row i and column j is equal to the
membership grade between the ith element of X and jth
element of Y.

Other common examples of binary fuzzy relations are
the following:

� x is similar to y (x and y are objects)

� x depends on y (x and y are events)

� If x is big, then y is small (x is an observed reading and y
is the corresponding action)

The last example, ‘‘If x is A, then y is B,’’ is used
repeatedly in fuzzy systems. We will explore fuzzy relations
of this type in the following section.

Fuzzy relations in different product spaces can be com-
bined through a composition operation. Different composi-
tion operations have been proposed for fuzzy relations; the
best known is the max-min composition proposed by Zadeh
in 1965 (6).

Definition 12. Max-min composition. Let R1 and R2 be
two fuzzy relations defined on X�Y and Y�Z, respectively.
The ‘‘max-min composition’’ of R1 and R2 is a fuzzy set
defined by

R1	R2 ¼ f½ðx; zÞ; max;minðmR1
ðx; yÞ;

mR2
ðy; zÞÞ�jx2X; y2Y ; z2Zgy

ð13Þ

WhenR1 andR2 are expressed as relation matrices, the
calculation of the composition R1	R2 is almost the same as
matrix multiplication, except that � and + are replaced by
the ‘‘min’’ and ‘‘max’’ operations, respectively. For this
reason, the max-min composition is called the ‘‘max-min
product.’’

Fuzzy Rules

As was pointed out by Zadeh in his work on this area (7),
conventional techniques for system analysis are intrinsi-
cally unsuited for dealing with humanistic systems,
whose behavior is strongly influenced by human judg-
ment, perception, and emotions. This finding is a mani-
festation of what might be called the ‘‘principle of
incompatibility’’: ‘‘As the complexity of a system
increases, our ability to make precise and yet significant
statements about its behavior diminishes until a thresh-
old is reached beyond which precision and significance
become almost mutually exclusive characteristics’’ (7). It
was because of this belief that Zadeh proposed the concept
of linguistic variables (8,9) as an alternative approach to
modeling human thinking.

Definition 13. Linguistic variables. A ‘‘Linguistic vari-
able’’ is characterized by a quintuple (x, T(x), X, G, M) in
which x is the name of the variable; T(x) is the ‘‘term set’’ of
x-that is, the set of its ‘‘linguistic values’’ or ‘‘linguistic
terms’’; X is the universe of discourse, G is a ‘‘syntactic
rule’’ which generates the terms in T(x); and M is a ‘‘seman-
tic rule’’ which associates with each linguistic value A its
meaning M(A), where M(A) denotes a fuzzy set in X.

4 FUZZY MODELING FUNDAMENTALS



Definition 14. Concentration and dilation of linguistic
values. Let A be a linguistic value characterized by a fuzzy
set membership function mA(.). Then, Ak is interpreted as a
modified version of the original linguistic value expressed
as

Ak ¼
ð

X

½mAðxÞ�k=x ð14Þ

In particular, the operation of ‘‘concentration’’ is defined
as

CONðAÞ ¼ A2 ð15Þ

whereas that of ‘‘dilation’’ is expressed by

DILðAÞ ¼ A0:5 ð16Þ

Conventionally, we take CON(A) and DIL(A) to be the
results of applying the hedges ‘‘very’’ and ‘‘more or less,’’
respectively, to the linguistic term A. However, other con-
sistent definitions for these linguistic hedges are possible
and well justified for various applications.

Following the definitions given before, we can interpret
the negation operator NOT and the connectives AND and
OR as

NOTðAÞ ¼ eA ¼
ð

X

½1� mAðxÞ�=x

A AND B ¼ A\B ¼
ð

X

½mAðxÞ ^mBðxÞ�=x

A OR B ¼ A[B ¼
ð

X

½mAðxÞ _mBðxÞ�=x

ð17Þ

respectively, where A and B are two linguistic values whose
meanings are defined by mA(.) and mB(.).

Definition 15. Fuzzy If-Then Rules. A ‘‘fuzzy if-then rule’’
(also known as ‘‘fuzzy rule,’’ ‘‘fuzzy implication,’’ or ‘‘fuzzy
conditional statement’’) assumes the form

if x is A then y is B ð18Þ

where A and B are linguistic values defined by fuzzy sets on
universes of discourse X and Y, respectively. Often ‘‘x is A’’
is called ‘‘antecedent’’ or ‘‘premise,’’ while ‘‘y is B’’ is called
the ‘‘consequence’’ or ‘‘conclusion.’’

Examples of fuzzy if-then rules are widespread in our
daily linguistic expressions, such as the following:

� If pressure is high, then volume is small.

� If the road is slippery, then driving is dangerous.

� If the speed is high, then apply the brake a little.

Before we can employ fuzzy if-then rules to model and
analyze a system, first we have to formalize what is meant
by the expression ‘‘if x is A then y is B,’’ which is sometimes
abbreviated as A! B. In essence, the expression describes
a relation between two variables x and y; this suggests that
a fuzzy if-then rule is defined as a binary fuzzy relation R on

the product space X x Y. Generally speaking, there are two
ways to interpret the fuzzy rule A!B. If we interpret A!B
as A ‘‘coupled with’’ B then

R ¼ A!B ¼ A� B ¼
ð

x x y

mAðxÞ � mBðyÞ=ðx; yÞ

where � is an operator for intersection (10). On the other
hand, if A!B is interpreted as A ‘‘entails’’ B, then it can be
written as one of two different formulas:

� Material implication:

R ¼ A!B ¼ eA[B ð19Þ

� Propositional Calculus:

R ¼ A!B ¼ eA[ ðA\BÞ ð20Þ

Although these two formulas are different in appear-
ance, they both reduce to the familiar identity
A!B
 eA[B when A and B are propositions in the sense
of two-valued logic.

Fuzzy reasoning, also known as approximate reasoning,
is an inference procedure that derives conclusions from a
set of fuzzy if-then rules and known facts. The basic rule of
inference in traditional two-valued logic is ‘‘modus ponens,’’
according to which we can infer the truth of a proposition B
from the truth of A and the implication A!B. This concept
is illustrated as follows:

premise 1 (fact): x is A,
premise 2 (rule): if x is A then y is B,

consequence (conclusion): y is B.

However, in much of human reasoning, modus ponens is
employed in an approximate manner. This concept is writ-
ten as:

premise 1 (fact): x is A0

premise 2 (rule): if x is A then y is B,

consequence (conclusion): y is B0

where A0 is close to A and B0 is close to B. When A, B, A0

and B0 are fuzzy sets of appropriate universes, the foregoing
inference procedure is called ‘‘approximate reasoning’’ or
‘‘fuzzy reasoning’’; it is also called ‘‘generalized modus
ponens’’ (GMP), because it has modus ponens as a special
case.

Definition 16. Fuzzy reasoning. Let A, A0, and B be fuzzy
sets of X, X, and Y, respectively. Assume that the fuzzy
implication A!B is expressed as a fuzzy relation R on X x Y.
Then the fuzzy set B induced by ‘‘x is A0’’ and the fuzzy rule
‘‘if x is A then y is B’’ is defined by

mB0 ðyÞ ¼ maxXmin½mA0 ðxÞ;mRðx; yÞ�
¼ VX½mA0 ðxÞ ^mRðx; yÞ�

ð21Þ

Now we can use the inference procedure of fuzzy
reasoning to derive conclusions provided that the fuzzy

FUZZY MODELING FUNDAMENTALS 5



implication A!B is defined as an appropriate binary fuzzy
relation.

Single Rule with Single Antecedent. This rule is the sim-
plest case, and the formula is available in Equation (21).
Another simplification of the equation yields

mB0 ðyÞ ¼ ½VXðmA0 ðxÞ ^mAðxÞÞ� ^mBðyÞ
¼ v^mBðyÞ

In other words, first we find the degree of match v as the
maximum of mA0 ðxÞ ^mAðxÞ, then the MF of the resulting B0

is equal to the MF of B clipped by v. Intuitively, v repre-
sents a measure of degree of belief for the antecedent part of
a rule; this measure gets propagated by the if-then rules
and the resulting degree of belief or MF for the consequent
part should be no greater than v.

Multiple Rules with Multiple Antecedents. The process of
fuzzy reasoning or approximate reasoning for the general
case can be divided into four steps:

1. Degrees of compatibility: Compare the known facts
with the antecedents of fuzzy rules to find the degrees
of compatibility with respect to each antecedent MF.

2. Firing strength: Combine degrees of compatibility
with respect to antecedent MFs in a rule using fuzzy
AND or OR operators to form a firing strength that
indicates the degree to which the antecedent part of
the rule is satisfied.

3. Qualified (induced) consequent MFs: Apply the firing
strength to the consequent MF of a rule to generate a
qualified consequent MF.

4. Overall output MF: Aggregate all the qualified
consequent MFs to obtain an overall output MF.

FUZZY INFERENCE SYSTEMS

In this section, we describe the three types of fuzzy infer-
ence systems that have been widely used in the applica-
tions. The differences between these three fuzzy inference
systems lie in the consequents of their fuzzy rules, and thus
their aggregation and defuzzification procedures differ
accordingly.

The ‘‘Mamdani fuzzy inference system’’ (10) was pro-
posed as the first attempt to control a steam engine and
boiler combination by a set of linguistic control rules
obtained from experienced human operators. Figure 4 is
an illustration of how a two-rule Mamdani fuzzy inference
system derives the overall output z when subjected to two
numeric inputs x and y.

In Mamdani’s application, two fuzzy inference systems
were used as two controllers to generate the heat input to
the boiler and throttle opening of the engine cylinder,
respectively, to regulate the steam pressure in the boiler
and the speed of the engine. Because the engine and boiler
take only numeric values as inputs, a defuzzifier was used
to convert a fuzzy set to a numeric value.

Defuzzification

Defuzzification refers to the way a numeric value is
extracted from a fuzzy set as a representative value. In
general, five methods exist for defuzzifying a fuzzy set A of a
universe of discourse Z, as shown in Fig. 5 (Here the fuzzy
set A is usually represented by an aggregated output MF,
such as C0 in Fig. 4). A brief explanation of each defuzzifica-
tion strategy follows.

� Centroid of area zCOA:

zCOA ¼
R

z mAðzÞzdzR
z mAðzÞdz

ð22Þ

µ  µ Min µ
A1 B1

C1
C’ 1

µ  µ  µ  
A2 B2 C2

   C’2

Max 
µ 

C’ 

z 
zCOA

x y z

x

x

y

y

z

Figure 4. The Mamdani fuzzy inference system using the min and max operators.

6 FUZZY MODELING FUNDAMENTALS



where mA(z) is the aggregated output MF. This example
is the most widely adopted defuzzification strategy,
which is reminiscent of the calculation of expected
values of probability distributions.

� Bisector of area zBOA: zBOA satisfies

Z ZBOA

a

mAðzÞdz ¼
Z b

zBOA

mAðzÞdz ð23Þ

where a ¼ minfzjz2Zg and b ¼ maxfzjz2Zg.
� Mean of maximum zMOM: zMOM is the average of the

maximizing z at which the MF reach a maximum m�.
Mathematically,

zMOM ¼
R

z0 zdzR
z0 dz

ð24Þ

where z0 ¼ fzjmAðzÞ ¼ m�g. In particular, if mA(z) has a
single maximum at z ¼ z�, then zMOM ¼ z�. Moreover, if
mA(z) reaches its maximum whenever z2 ½zleft; zright� then
zMOM ¼ ðzleft þ zrightÞ=2.

� Smallest of maximum zSOM: zSOM is the minimum (in
terms of magnitude) of the maximizing z.

� Largest of maximum zLOM: zLOM is the maximum (in
terms of magnitude) of the maximizing z. Because of
their obvious bias, zSOM and zLOM are not used as often
as the other three defuzzification methods.

The calculation needed to carry out any of these five
defuzzification operations is time consuming unless special
hardware support is available. Furthermore, these defuz-
zification operations are not easily subject to rigorous
mathematical analysis, so most studies are based on experi-
mental results. This result leads to the propositions of other
types of fuzzy inference systems that do not need defuzzi-
fication at all; two systems will be described in the follow-
ing. Other more flexible defuzzification methods can be
found in several more recent papers (11,12).

We will give a simple example to illustrate the use of the
Mamdani fuzzy inference system. We will consider the case
of determining the quality of a image produce by a Televi-

sion as a result of controlling the electrical tuning process
based on the input variables: voltage, current, and time
(13). Automating the electrical tuning process during the
manufacturing of televisions results in increased produc-
tivity and reduction of production costs, as well as increas-
ing the quality of the imaging system of the television. The
fuzzy model will consist of a set of rules relating these
variables, which represent expert knowledge in the elec-
trical tuning process of televisions. In Fig. 6 we show the
architecture of the fuzzy system relating the input vari-
ables (voltage, current, and time) with the output variable
(quality of the image), which was implemented by using the
MATLAB Fuzzy Logic Toolbox. We show in Fig. 7 the fuzzy
rule base, which was implemented by using the ‘‘rule

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

centroid
bisector

mom
sommlo

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

centroid
bisector

mom
lomsom

Figure 5. Various defuzzification methods for obtaining a
numeric ouput.

Voltage (3)

Current (3)

Time (2)

System tv-tuning: 3 inputs, 1 outputs, 13 rules

Image-Quality (5)

tv-tuning

(mamdani)

13 rules

System Architecture 

Figure 6. Architecture of the fuzzy system for quality evalution.

Figure 7. Fuzzy rule base for quality evaluation.

FUZZY MODELING FUNDAMENTALS 7



editor’’ of the same toolbox. In Fig. 8 we can appreciate the
membership functions for the image-quality variable. We
show in Fig. 9 the membership functions for the voltage
variable. We also show in Fig. 10 the use of the ‘‘rule viewer’’
of MATLAB to calculate specific values. Finally, in Fig. 11
we show the nonlinear surface for the Mamdani model.

Sugeno Fuzzy Models

The ‘‘Sugeno fuzzy model’’ (also known as the ‘‘TSK fuzzy
model’’) was proposed by Takagi, Sugeno, and Kang in an
effort to develop a systematic approach to generating fuzzy
rules from a given input-output data set (4,14). A typical
fuzzy rule in a Sugeno fuzzy model has the form:

if x is A and y is B then z ¼ fðx; yÞ

where A and B are fuzzy sets in the antecedent, whereas
z ¼ f(x,y) is a traditional function in the consequent.
Usually f(x,y) is a polynomial in the input variables x
and y, but it can be any function as long as it can appro-
priately describe the output of the model within the fuzzy
region specified by the antecedent of the rule. When f(x,y) is
a first-order polynomial, the resulting fuzzy inference sys-
tem is called a ‘‘first-order Sugeno fuzzy model.’’ When f is
constant, we then have a ‘‘zero-order Sugeno fuzzy model,’’
which can be viewed either as a special case of the Mamdani
inference system, in which each rule’s consequent is spe-
cified by a fuzzy singleton; or a special case of the Tsuka-
moto fuzzy model (to be introduced next), in which each
rule’s consequent is specified by a MF of a step function
center at the constant.

Figure 12 shows the fuzzy reasoning procedure for a
first-order Sugeno model. Because each rule has a numeric
output, the overall output is obtained via ‘‘weighted aver-
age,’’ thus avoiding the time-consuming process of defuzzi-
fication required in a Mamdani model. In practice, the
weighted average operator is sometimes replaced with
the ‘‘weighted sum’’ operator (that is, w1z1 þ w2z2 in
Fig. 12) to reduce computation further specially, in the
training of a fuzzy inference system. However, this simpli-
fication could lead to the loss of MF linguistic meanings
unless the sum of firing strengths (that is, Swi) is close to
unity.

Unlike the Mamdani fuzzy model, the Sugeno fuzzy
model cannot follow the compositional rule of inference
strictly in its fuzzy reasoning mechanism. This result poses
some difficulties when the inputs to a Sugeno fuzzy model
are fuzzy. Specifically, we can still employ the matching of
fuzzy sets to find the firing strength of each rule. However,
the resulting overall output via either weighted average or
weighted sum is always crisp; this finding is counterintui-
tive because a fuzzy model should propagate the fuzziness
from inputs to outputs in an appropriate manner. Without
the use of the time-consuming defuzzification procedure,

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Image-Quality

D
eg

re
e 

of
 m

em
be

rs
hi

p
Output Variable Image Quality

excellentvery-goodgoodregularbad

Figure 8. Gaussian membership functions for the output linguis-
tic variable.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Voltage

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

highadequatelow

Input variable Voltage

 

Figure 9. Gaussian membership functions for the voltage lin-
guistic variable.

Figure 10. Use of the fuzzy rule base with specific values.

8 FUZZY MODELING FUNDAMENTALS



the Sugeno fuzzy model is by far the most popular candidate
for sample-data-based modeling.

We will give a simple example to illustrate the use of the
Sugeno fuzzy inference system. We will consider again the
television example (i.e., determining the quality of the
images produced by the television depending on the voltage
and current of the electrical tuning process). In Fig. 13 we
show the architecture of the Sugeno model for this example.
We show in Fig. 14 the fuzzy rule base of the Sugeno model.
We also show in Fig. 15 the membership functions for the
current input variable. In Fig. 16 we show the nonlinear
surface of the Sugeno model.

Finally, we show in Fig. 17 the use of the ‘‘rule viewer’’ of
the Fuzzy Logic Toolbox of MATLAB. The rule viewer is
used when we want to evaluate the output of a fuzzy system
using specific values for the input variables. In Fig. 17, for

example, we give a voltage of 5 volts, a current intensity of 5
Amperes, and a time of production of 5 seconds, and obtain
as a result a quality of 92.2%, which is excellent. Of course,
this example only illustratives the potential use of fuzzy
logic in this type of application.

Tsukamoto Fuzzy Models. In the ‘‘Tsukamoto fuzzy mod-
els’’ (15), the consequent of each fuzzy if-then rule is repre-
sented by a fuzzy set with a monotonical MF, as shown in

Figure 11. Nonlinear surface of the Mamdani fuzzy model.

μ     μ Min 
A1 B1

z1 = p1x + q1y + r1 

z2 = p2x + q2y + r2

w1
x            y

x            y

x     y

μ      μ
A2 B2

weighted average 
z = w1z1 + w2 z2

w1 + w2

w2

Figure 12. The Sugeno fuzzy model.

Voltage (3)

Current (3)

Time (2)
System tv-tun-sugeno: 3 inputs, 1 outputs, 13 rules

f(u)

Image-Quality (5)

tv-tun-sugeno

(sugeno)

13 rules

System Architecture for Sugeno Type 

Figure 13. Architecture of the Sugeno fuzzy model for quality
evaluation.

FUZZY MODELING FUNDAMENTALS 9



Fig. 18. As a result, the inferred output of each rule is
defined as a numeric value induced by the rule firing
strength. The overall output is taken as the weighted
average of each rule’s output. Figure 18 illustrates the
reasoning procedure for a two-input–two-rule system.

Because each rule infers a numeric output, the Tsuka-
moto fuzzy model aggregates each rule’s output by the
method of weighted average and thus avoids the time-
consuming process of defuzzification. However, the Tsuka-
moto fuzzy model is not used often because it is not as
transparent as either the Mamdani or Sugeno fuzzy mod-
els. Because the reasoning method of the Tsukamoto fuzzy
model does not follow strictly the compositional rule of
inference, the output is always crisp even when the inputs
are fuzzy.

Certain common issues surround all the three fuzzy
inference systems introduced previously, such as how to
partition an input space and how to construct a fuzzy
inference system for a particular application. We will
examine these issues in more detail in the following Sec-
tion.

Input Space Partitioning

Now it should be clear that the main idea of fuzzy inference
systems resembles that of ‘‘divide and conquer’’— the ante-
cedent of a fuzzy rule defines a local fuzzy region, whereas
the consequent describes the behavior within the region via
various constituents. The consequent constituent can be a

Figure 14. Fuzzy rule base for quality evaluation using the ‘‘rule
editor.’’

Figure 15. Membership functions for the current linguistic
variable.

Figure 16. Nonlinear surface for the Sugeno fuzzy model for
quality evaluation.

Figure 17. Application of the rule viewer of MATLAB with spe-
cific values.

10 FUZZY MODELING FUNDAMENTALS



consequent MF (Mamdani and Tsukamoto fuzzy models), a
constant value (zero-order Sugeno model), a linear equa-
tion (first-order Sugeno model), or a nonlinear equation
(higher-order Sugeno models). Different consequent con-
stituents result in different fuzzy inference systems, but
their antecedents are always the same. Therefore, the
following discussion of methods of partitioning input spaces
to form the antecedents of fuzzy rules is applicable to all
three types of fuzzy inference systems.

� Grid partition: This partition method is often chosen in
designing a fuzzy controller, which usually involves
only several state variables as the inputs to the con-
troller. This partition strategy needs only a small
number of MFs for each input. However, it encounters
problems when we have many inputs. For instance, a
fuzzy model with 12 inputs and 2 MFs on each input
would result in 212 ¼ 4096 fuzzy if-then rules, which is
prohibitively large. This problem, which is usually
referred to as the ‘‘curse of dimensionality,’’ can be
alleviated by other partition strategies.

� Tree partition: In this method, each region can be
uniquely specified along a corresponding decision
tree. The tree partition relieves the problem of an
exponential increase in the number of rules. However,
more MFs for each input are needed to define these
fuzzy regions, and these MFs do not usually bear clear
linguistic meanings. In other words, orthogonality
holds roughly in X � Y, but not in either X or Y
alone.

� Scatter partition: By covering a subset of the whole
input space that characterizes a region of possible
occurrence of the input vectors, the scatter partition
can also limit the number of rules to a reasonable
amount. However, the scatter partition is usually
dictated by desired input-output data pairs and
thus, in general, orthogonality does not hold in X, Y,
or X � Y. This result makes it hard to estimate the
overall mapping directly from the consequent of each
rule’s output.

FUZZY MODELING

In general, we design a fuzzy inference system based on
the past known behavior of a target system. The fuzzy
system is then expected to reproduce the behavior of the
target system. For example, if the target system is a
human operator in charge of a electrochemical reaction
process, then the fuzzy inference system becomes a fuzzy
logic controller that can regulate and control the process
(Castillo and Melin, 2001) (16). Another example could the
human recognition using fuzzy logic (17).

Let us now consider how we might construct a fuzzy
inference system for a specific application. Generally speak-
ing, the standard method for constructing a fuzzy inference
system, which is a process usually called ‘‘fuzzy modeling,’’
has the following features:

� The rule structure of a fuzzy inference system makes it
easy to incorporate human expertise about the target
system directly into the modeling process. Namely,
fuzzy modeling takes advantage of ‘‘domain knowl-
edge’’ that might not be employed easily or directly
in other modeling approaches.

� When the input–output data of a target system is
available, conventional system identification techni-
ques can be used for fuzzy modeling. In other words,
the use of ‘‘numerical data’’ also plays an important
role in ‘‘fuzzy modeling,’’ just as in other mathematical
modeling methods.

Conceptually, fuzzy modeling can be pursued in two
stages, which are not totally disjoint. The first stage is
the identification of the ‘‘surface structure,’’ which includes
the following tasks:

1. Select relevant input and output variables.

2. Choose a specific type of fuzzy inference system.

3. Determine the number of linguistic terms associated
with each input and output variables.

4. Design a collection of fuzzy if-then rules.

Note that to accomplish the preceding tasks, we rely on
our own knowledge (common sense, simple physical laws,
and so on) of the target system, information provided by
human experts who are familiar with the target system, or
simply trial and error.

After the first stage of fuzzy modeling, we obtain a rule
base that can more or less describe the behavior of the
target system by means of linguistic terms. The meaning of
these linguistic terms is determined in the second stage, the
identification of ‘‘deep structure,’’ which determines the
MFs of each linguistic term (and the coefficients of each
rule’s output in the case that a Sugeno model is used).
Specifically, the identification of deep structure includes
the following tasks:

1. Choose an appropriate family of parameterized MFs.

2. Interview human experts familiar with the target
systems to determine the parameters of the MFs
used in the rule base.

µ      µ          Min     µ
B1

C2

C1

x            y               z 

x            y                

z
1

µ µ µ
A2 B2

z
2

x       y

weighted average 
z = w1 z1 + w2 z2

w1 + w2

A1

z

Figure 18. The Tsukamoto fuzzy model.

FUZZY MODELING FUNDAMENTALS 11



3. Refine the parameters of the MFs using regression
and optimization techniques.

Tasks 1 and 2 assume the availability of human experts,
while task 3 assumes the availability of a desired input–
output data set. When a fuzzy inference system is used as a
controller for a given plant, then the objective in task 3
should be changed to that of searching for parameters that
will generate the best performance of the plant.

SUMMARY

In this article, we have presented the main ideas under-
lying fuzzy logic and we have only started to point out the
many possible applications of this powerful computational
theory. We have discussed in some detail fuzzy set theory,
fuzzy reasoning and fuzzy inference systems. At the end, we
also gave some remarks about fuzzy modeling. In the
following chapters, we will show how fuzzy logic techniques
(in some cases, in conjunction with other methodologies)
can be applied to solve real world complex problems.

BIBLIOGRAPHY

1. J.-S. R. Jang, C.-T. Sun, and E. Mizutani , Neurofuzzy and Soft
Computing: A Computational Approach to Learning and
Machine Intelligence, Englewood Cliffs, NJ: Prentice-Hall,
1997.

2. M. Jamshidi, Large-Scale Systems: Modelling, Control and
Fuzzy Logic, Englewood Cliffs, NJ: Prentice-Hall, 1997.

3. A. Kandel , Fuzzy Expert Systems, Boca Raton FL: CRC Press
Inc., 1992.

4. M. Sugeno, and G. T. Kang, Structure identification of fuzzy
model, J. Fuzzy Sets Sys., 28: 15–33, 1988.

5. B. Kosko, Fuzzy Engineering, Englewood Cliffs, NJ: Prentice-
Hall, 1997.

6. L. A. Zadeh, Fuzzy sets, J. Information and Control, 8: 338–
353, 1965.

7. L. A. Zadeh, Outline of a new approach to the analysis of
complex systems and decision processes, IEEE Trans. Systems,
Man and Cybernetics, 3: 28–44, 1973.

8. L. A. Zadeh, Similarity relations and fuzzy ordering, J.
Informat. Sci., 3: 177–206, 1971a.

9. L. A. Zadeh, Quantitative fuzzy semantics, J. Informat. Sci.,
3: 159–176, 1971b.

10. E. H. Mamdani, and S. Assilian, An Experiment in Linguistic
Synthesis with a Fuzzy Logic Controller, Internat J. Man-
Mach. Studies, 7: 1–13, 1975.

11. R. R. Yager, and D. P. Filev, SLIDE: A Simple Adaptive
Defuzzification Method, IEEE Trans. Fuzzy Sys., 1: 69–78,
1993.

12. T. A. Runkler, and M. Glesner, Defuzzification and ranking in
the context of membership value semantics, rule modality,
and measurement theory, Proc. of European Congress on Fuzzy
and Intelligent Technologies, 1994.

13. O. Castillo, and P. Melin, Soft Computing and Fractal Theory
for Intelligent Manufacturing, New York: Springer-Verlag,
2003.

14. T. Takagi, and M. Sugeno, Fuzzy Identification of systems
and its applications to modeling and control, IEEE Trans. on
Systems, Man and Cybernet. 15: 116–132, 1985.

15. Y. Tsukamoto, An approach to fuzzy reasoning method, in M.
M.Gupta, R. K. Ragade, and R. R. Yager, (eds.), Advanced in
Fuzzy Set Theory and Applications, Amsterdam, the Nehter-
lands: North-Holland, 1979, pp. 137–149.

16. O. Castillo, and P. Melin, Soft Computing for Control of Non-
Linear Dynamical Systems, New York: Springer-Verlag, 2001.

17. P. Melin, and O. Castillo, Hybrid Intelligent Systems for
Pattern Recognition, New York: Springer-Verlag, 2005.

FURTHER READING

L. A. Zadeh, The concept of a linguistic variable and its application
to approximate reasoning–1, J. Informat. Sci., 8: 199–249,
1975.

PATRICIA MELIN

OSCAR CASTILLO

Tijuana Institute of Technology
Tijuana, Mexico

12 FUZZY MODELING FUNDAMENTALS



G

GENETIC ALGORITHMS

FOUNDATIONS OF GENETIC ALGORITHM

The original form of genetic algorithms (GAs) was described
by Goldberg (1). GAs are stochastic search techniques
based on the mechanism of natural selection and natural
genetics. The central theme of research on GA is to keep a
balance between exploitation and exploration in its search
to the optimal solution for survival in many different
environments. Features for self-repair, self-guidance,
and reproduction are the rules in biologic systems, whereas
they barely exist in the most sophisticated artificial sys-
tems. GA has been theoretically and empirically proved to
provide a robust search in complex search spaces. Many
research papers and dissertations have established the
validity of GA approach in function optimization problems
and application problems (2–4).

GAs, differing from conventional search techniques,
start with an initial set of random solutions called popu-
lation. Each individual in the population is called a
chromosome, representing a solution to the problem at
hand. A chromosome is a string of symbols, usually but
not necessarily, a binary bit string. The chromosomes
evolve through successive iterations, called generations.
During each generation, the chromosomes are evaluated,
using some measures of fitness. To create the next gen-
eration, new chromosomes, called offspring, are gener-
ated by either merging two chromosomes from the
current generation using a crossover operator and/or
modifying a chromosome using a mutation operator. A
new generation is formed by selecting some parents,
according to the fitness values, and offspring, and reject-
ing others so as to keep the population size constant.
Fitter chromosomes have higher probabilities of being
selected. After several generations, the algorithms con-
verge to the best chromosome, which hopefully represents
the optimum or suboptimal solution to the problem. In
general, GAs have five basic components, as summarized
by Michalewicz (5):

1. A genetic representation of potential solutions to the
problem.

2. A way to create a population (an initial set of potential
solutions).

3. An evaluation function rating solutions in terms of
their fitness.

4. Genetic operators that alter the genetic composition
of offspring (crossover, mutation, selection, etc.).

5. Parameter values that genetic algorithms use (popu-
lation size, probabilities of applying genetic opera-
tors, etc.).

Figure 1 shows a general structure of GA. Let P(t) and C(t)
be parents and offspring in the current generation t, and the

general implementation structure of GA is described as
follows:

Implementation of Genetic Algorithm

For implementing GA, several GA components should be
considered. First, genetic representation of a solution is
decided. Second, the fitness evaluation of the solution using
the objective functions subjected to constraints is used.
Last, genetic operators such as crossover operator, muta-
tion operator, and selection methods are applied to the
population of GA. These implementation processes are
repeated until the predefined generation number is satis-
fied or the optimal solution is reached. The detailed imple-
mentation logics and procedures of GA are suggested in the
following subsections.

Genetic Representation. How to encode a solution of the
problem into a chromosome is a key issue for GAs. The issue
has been investigated from many aspects, such as mapping
characters from genotype space to phenotype space when
individuals are decoded into solutions and the metamor-
phosis properties when individuals are manipulated by
genetic operators.

Classification of Encodings. In Holland’s work, encoding
is carried out by using binary strings (6). The binary
encoding for function optimization problems is known to
have severe drawbacks because of the existence of Ham-
ming cliffs; i.e., pairs of encodings have a large Hamming
distance while belonging to points of minimal distance in
phenotype space. For example, the pair of 01111111111
and 10000000000 belongs to neighboring points in pheno-
type space (points of minimal Euclidean distance) but has
maximum Hamming distance in genotype space. To cross
the Hamming cliff, all bits have to be changed at once. The
probability that crossover and mutation will occur to cross
it can be very small. In this sense, the binary code does not
preserve locality of points in the phenotype space.

For many problems from the computer science and
engineering world, it is nearly impossible to represent their
solutions with the binary encoding. During the last ten
years, various encoding methods have been created for
particular problems to have an effective implementation
of GAs. According to the symbols used as the alleles of a
gene, the encoding methods can be classified as binary
encoding, real number encoding, integer/literal permuta-
tion encoding, and a general data structure encoding;
According to the structure of encodings, the encoding meth-
ods also can be classified into the following two types: one-
dimensional encoding and multidimensional encoding;
According to what kinds of contents are encoded into the
encodings, the encoding methods can also be divided as
solution only and solution þ parameters.

Properties of Encodings. When a new encoding method is
given, usually it is necessary to examine whether we can

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



build an effective genetic search with the encoding. Several
principles have been proposed to evaluate an encoding
(7,8):

1. Space: Chromosomes should not require extravagant
amounts of memory.

2. Time: The time complexities of evaluating, recombin-
ing, and mutating chromosomes should be small.

3. Feasibility: All chromosomes, particularly those gen-
erated by simple crossover (i.e., one-cut point cross-
over) and mutation, should represent feasible
solutions.

4. Uniqueness: The mapping from chromosomes to solu-
tions (decoding) may belong to one of the following
three cases: 1-to-1 mapping, n-to-1 mapping, and
1-to-n mapping. The 1-to-1 mapping is the best one
among three cases, and 1-to-n mapping is the most
undesired one.

5. Heritability: Offspring of simple crossover (i.e., one-
cut point crossover) should represent solutions that
combine substructures of their parental solutions.

6. Locality: A mutated chromosome should usually
represent a solution similar to that of its parent.

Initialization. In general, two ways exist to generate the
initial population, heuristic initialization and random initi-
alization, by using an encoding procedure satisfying system
constraints and/or a boundary condition. Although the
mean fitness of the heuristic initialization is already
high so that it may help GAs to find solutions faster.
Unfortunately, in most large-scale problems, for example,
network design problems, it may just explore a small part of
the solution space, and it is difficult to find global optimal
solutions because of the lack of diversity in the population.

Fitness Evaluation. Fitness evaluation is to check the
solution value of the objective function subjected to con-
straints by using a decoding procedure. In general, the
objective function provides the mechanism evaluating
each individual. However, its range of values varies from
problem to problem. To maintain uniformity over various
problem domains, we may use the fitness function to nor-
malize the objective function to a range of 0 to 1. The
normalized value of the objective function is the fitness
of the individual, and the selection mechanism uses it to
evaluate the individuals of the population.

When GAs are used to search, the population undergoes
evolution with fitness and forms a new population. At that
time, in each generation, relatively good solutions are
reproduced and relatively bad solutions are killed so that
the offspring composed of the good solutions are repro-
duced. To distinguish between the solutions, an evaluation
function (also called fitness function) plays an important
role in the environment, and scaling mechanisms are also
necessary to be applied in objective function for being
fitness function.

Genetic Operators. When GAs are used, both the search
direction to optimal solution and the search speed should be
considered as an important factor, in order to keep a
balance between exploration and exploitation in search
space. In general, the exploitation of the accumulated
information resulting from a GA search is done by the
selection mechanism, whereas the exploration to new
regions of the search space is accounted for by genetic
operators.

The genetic operators mimic the process of heredity of
genes to create new offspring at each generation. The
operators are used to alter the genetic composition of
individuals during representation. In essence, the opera-
tors perform a random search and cannot guarantee to yield
an improved offspring. Three common genetic operators
exist: crossover, mutation, and selection.

Crossover. Crossover is the main genetic operator. It
operates on two chromosomes at a time and generates
offspring by combining both chromosomes’ features. A
simple way to achieve crossover would be to choose a
random cut-point and to generate the offspring by combin-
ing the segment of one parent to the left of the cut-point
with the segment of the other parent to the right of the cut-
point (e.g., one-cut point, two-cut point, multi-cut-point, or
uniform crossover). This method works well with the bit
string representation. The performance of GAs depends to a
great extend on the performance of the crossover operator
used (e.g., partial-mapped crossover, order crossover, or
position-based crossover) (2).

Mutation. Mutation is a background operator that pro-
duces spontaneous random changes in various chromo-
somes. A simple way to achieve mutation would be to
alter one or more genes. In GAs, mutation serves the crucial
role of either 1) replacing the genes lost from the population
during the selection process so that they can be tried in a
new context or 2) providing the genes that were not
present in the initial population. Many different mutation

Initial
solutions

.

.

.

1100110001

0011011001

1011101110

1100101010

t←0

encoding

1011101110

1100101010

1011101010

1100101110

0011011001

0011001001

Offspring C(t )Population P (t )

Solutions candidates

decoding

fitness computation

evaluation

crossover

mutation

decoding

CC(t )

CM(t )

P(t) + C(t )

roulette wheel

selection

termination 
condition?Y

N

New Population

best solution

start

stop

t←t +1

chromosomechromosome

Figure 1. The general structure of genetic algorithms.

2 GENETIC ALGORITHMS



operators are available for different genetic representa-
tions. Such as replacement mutation works well with the
bit string representation, the uniform mutation, boundary
mutation, dynamic mutation, and so on work well with the
real number representation; several mutation operators
work well for integer and string representations (e.g.,
inversion mutation, insertion mutation, displacement
mutation, and swap mutation).

Selection. A selection (reproduction) operator is
intended to improve the average quality of the population
by giving the high-quality chromosomes a better chance to
get copied into the next generation. Selection provides the
driving force in a GA. With too much force, a genetic search
will terminate prematurely, whereas with too little force,
evolutionary progress will be slower than necessary. Typi-
cally, a lower selection pressure is indicated at the start of
the genetic search in favor of a wide exploration of the
search space, whereas a higher selection pressure is recom-
mended at the end in order to narrow the search space. The
selection directs the genetic search toward promising
regions in the search space. During the past two decades,
many selection methods have been proposed, examined,
and compared. One of the common proportional selections
is the so-called Roulette wheel selection, and other selection
types like Tournament selection, Elitist selection, (m,l)
selection, and (m þ l) selection are deterministic proce-
dures that select the best chromosomes from parents and
offspring.

Major Advantages of Genetic Algorithm

GA has received considerable attention regarding their
potential as a novel optimization technique. Three major
advantages exist when applying GA to optimization pro-
blems:

Adaptability. GA does not have much mathematical
requirements about the optimization problems. Because
of the evolutionary nature, GA will search for solutions
without regard to the specific inner workings of the pro-
blem. GA can handle any kind of objective functions and
any kind of constraints, i.e., linear or nonlinear, defined on
discrete, continuous, or mixed search spaces.

Robustness. The use of evolution operators makes GA
very effective in performing global search (in probability),
whereas most of conventional heuristics usually perform
local search. It has been proved by many studies that GA is
more efficient and more robust in locating an optimal
solution and reducing a computational effort than other
conventional heuristics.

Flexibility. GA provides us with a great flexibility to
hybridize with domain-dependent heuristics to make an
efficient implementation for a specific problem.

ADAPTATION OF GENETIC ALGORITHMS

Since GAs are inspired from the idea of evolution, it is
natural to expect that the adaptation is used not only for

finding solutions to a given problem but also for tuning GAs
to the particular problem. During the past few years, many
adaptation techniques have been suggested and tested to
obtain an effective implementation of GAs to real-world
problems. In general, two kinds of adaptations exist:
1) adaptation to problems and 2) adaptation to evolutionary
processes.

The difference between these two adaptations is that the
first one advocates modifying some components of GAs,
such as representation, crossover, mutation, and selection
to choose an appropriate form of the algorithm to meet the
nature of a given problem. The second one suggests a way to
tune the parameters of the changing configurations of GAs
while solving the problem. According to Herrera and
Lozano, the later type of adoption can be divided even
more into the following classes (9): adaptive parameter
settings, adaptive genetic operators, adaptive selection,
adaptive representation, and adaptive fitness function.

Among these classes, the parameter adaptation has
been studied extensively in the past ten years because
the strategy parameters such as mutation probability,
crossover probability, and population size are key factors
in the determination of the exploitation versus exploration
tradeoff.

Structure Adaptation

The structure adaptation technique aims at adapting the
GA’s structure or problem’s structure to obtain an effective
implementation of GAs to the problems. GAs were first
created as a kind of generic and weak method featuring
binary encoding and binary genetic operators. This
approach requires a modification of an original problem
into an appropriate form suitable for GAs. The approach
includes a mapping between potential solutions and binary
representation, taking care of decoding or repair proce-
dures. For complex problems, such an approach usually
fails to provide successful applications.

To overcome such problems, various nonstandard imple-
mentations of GAs have been created for particular pro-
blems. This approach leaves the problem unchanged and
adapts GAs by modifying a chromosome representation of a
potential solution and by applying appropriate genetic
operators.

But in general, it is not a good choice to use the whole
original solution of a given problem as the chromosome
because many real problems are too complex to have a
suitable implementation of GAs with the whole solution
representation. Generally, the encoding methods can
be either direct or indirect. In the direct encoding method,
the whole solution for a given problem is used as a chromo-
some. For a complex problem, however, such a method will
make almost all conventional genetic operators unusable
because many offspring will be infeasible or illegal. On the
contrary, in the indirect encoding method, just the neces-
sary part of a solution is used as a chromosome. Solutions
then can be generated by a decoder. A decoder is a problem-
specific and determining procedure to generate a solution
according to the permutation and/or the combination of the
items producedbyGAs. With thismethod, the GAs will focus
their search solely on the interesting part of solution space.

GENETIC ALGORITHMS 3



A third approach is to adapt both GAs and the given
problem. A common feature of combinatorial optimization
problems is to find a permutation and/or a combination of
some items associated with side constraints. If the permu-
tation and/or combination can be determined, a solution
then can be derived with a problem-specific procedure.
With this third approach, GAs are used to evolve an appro-
priate permutation and/or combination of some items
under consideration, and a heuristic method is subse-
quently used to construct a solution according to the per-
mutation and combination.

Parameter Adaptation

The behaviors of GAs are characterized by the balance
between exploitation and exploration in the search space.
The balance is affected strongly by the strategy parameters
such as population size, maximum generation, crossover
probability, and mutation probability. How to choose a
value to each parameter and how to find the values effi-
ciently are very important and promising areas of research
of GAs. A recent survey on adaptation techniques is given
by Herrera and Lozano (9) and by Hinterding, et al. (10).

Usually, fixed parameters are used in most applications
of GAs. The values for the parameters are determined with
a set-and-test approach. Because a GA is an intrinsically
dynamic and adaptive process, the use of constant para-
meters is thus in contrast to the general evolutionary spirit.
Therefore, it is a natural idea to try to modify the values of
strategy parameters during the run of the algorithm. It is
possible to do this in various ways: 1) by using some rule;
2) by taking feedback information from the current state of
search; or 3) by employing some self-adaptive mechanism.
Gen and Cheng surveyed various adaptive methods using
fuzzy logic controlled (FLC) (3). Subbu, et al. suggested
a fuzzy logic controlled GA (FLC-GA), and the FLC-GA
uses a fuzzy knowledge-base developed (11). This scheme
can adaptively adjust the rates of crossover and mutation
operators. Song, et al. used two FLCs (12): one for the
crossover rate and the other for the mutation rate. These
parameters are considered as the input variables of GAs
and are also taken as the output variables of the FLC. Yun
and Gen proposed an extended FLC-GA method based on
the basic concept of Song, et al.’s method (13). A detailed
survey is introduced in Ref. 14.

MULTIOBJECTIVE GENETIC ALGORITHM

Optimization deals with the problems of seeking solutions
over a set of possible choices to optimize certain criteria.
If only one criterion can be taken into consideration, it
becomes a single objective optimization problem, which
have been studied extensively for the past 50 years. If
more than one criterion must be treated simultaneously,
we have multiple objective optimization problems (15,16).
Multiple objective problems develop in the design, model-
ing, and planning of many complex real systems in the
areas of industrial production, urban transportation,
capital budgeting, forest management, reservoir manage-
ment, layout and landscaping of new cities, energy dis-
tribution, and so on. It is easy to find that almost every

important real-world decision problem involves multiple
and conflicting objectives that need to be tackled while
respecting various constraints, leading to overwhelming
problem complexity. The multiple objective optimization
problems have been receiving growing interest from
researchers with various background since early 1960
(17). Several scholars have made significant contributions
to the problem. Among them, Pareto is perhaps one of the
most recognized pioneers in the field (18). Recently, GAs
have received considerable attention as a novel approach
to multiobjective optimization problems, resulting in a
fresh body of research and applications known as evolu-
tionary multiobjective optimization (EMO).

Basic Concepts of Multiobjective Optimizations

A single objective optimization problem is usually given in
the following form:

max z ¼ f ðxÞ ð1Þ

s:t: giðxÞ � 0; i ¼ 1; 2; . . . ;m ð2Þ

where x2Rn is a vector of n decision variables, f(x) is the
objective function, and gi(x) are inequality constraint m
functions, which form the area of feasible solutions. We
usually denote the feasible area in decision space with the
set S as follows:

S ¼ fx2RnjgiðxÞ � 0; i ¼ 1; 2; . . . ;m; x� 0g ð3Þ

Without loss of generality, a multiple objective optimiza-
tion problem can be formally represented as follows:

max fz1 ¼ f1ðxÞ; z2 ¼ f2ðxÞ; � � � ; zq ¼ fqðxÞg ð4Þ

s:t: giðxÞ � 0; i ¼ 1; 2; . . . ;m ð5Þ

Sometimes, we graph the multiple objective problem in
both decision space and criterion space. S is used to denote
the feasible region in the decision space, and Z is used to
denote the feasible region in the criterion space.

Z ¼ fz2Rqjz1 ¼ f1ðxÞ; z2 ¼ f2ðxÞ; � � � ; zq

¼ fqðxÞ; x2Sg
ð6Þ

where x2S is a vector of values of q objective functions. In
the other words, Z is the set of images of all points in S.
Although S is confined to the nonnegative region of Rn, Z is
not confined necessarily to the nonnegative region of Rq.

Nondominated Solutions

In principle, multiple objective optimization problems are
very different from single objective optimization problems.
For the single objective case, one attempts to obtain the best
solution, which is absolutely superior to all other alterna-
tives. In the case of multiple objectives, there does not exist
necessarily such a solution that is the best with respect to
all objectives because of incommensurability and conflict
among objectives. Therefore, a set of solutions usually
exists for the multiple objective cases that cannot be simply

4 GENETIC ALGORITHMS



compared with each other. Such kind of solutions are called
nondominated solutions or Pareto optimal solutions, for
which no improvement in any objective function is possible
without sacrificing on at least one of the other objective
functions. For a given nondominated point in the criterion
space Z, its image point in the decision space S is called
efficient or noninferior. A point in S is efficient if and only if
its image in Z is nondominated.

Definition 1. For a given point z02Z, it is nondominated
if and only if another point z2Z does not exist such that for
the maximization case,

zk > z0
k; for some k2f1; 2; . . . ; qg ð7Þ

zl > z0
l ; for all l 6¼ k ð8Þ

where z0 is a dominated point in the criterion space Z with q
objective functions.

Definition 2. For a given point x0 2S, it is efficient if and
only if another point x2S does not exist such that for the
maximization case,

fkðxÞ> fkðx0Þ; for some k2f1; 2; . . . ; qg ð9Þ
f1ðxÞ� f1ðx0Þ; for all l 6¼ k ð10Þ

where x0 is an inefficient in the decision space S with q
objective functions.

Features of Genetic Search. The inherent characteristics
of GAs demonstrate why genetic search is possibly well
suited to the multiple objective optimization problems. The
basic feature of GAs is the multiple directional and global
search by maintaining a population of potential solutions
from generation to generation. The population-to-popula-
tion approach is hopeful to explore all Pareto solutions.

GAs do not have much mathematical requirements
about the problems and can handle any kind of objective
functions and constraints. Because of their evolutionary
nature, the GAs can search for solutions without regard to
the specific inner workings of the problem. Therefore, it is
more hope for solving much complex problems than the
conventional methods.

Because GAs, as a kind of meta-heuristics, provide us a
great flexibility to hybridize with conventional methods
into their main framework, we can take both advantages
of the GAs and the conventional methods to make much
more efficient implementations for the problems. The
ingrowing research on applying GAs to the multiple objec-
tive optimization problems present a formidable theoretical
and practical challenge to the mathematical community (3).

Fitness Assignment Mechanism

GAs are essentially a kind of meta-strategy methods.
When applying the GAs to solve a given problem, it is
necessary to refine on each major component of GAs, such
as encoding methods, recombination operators, fitness

assignment, selection operators, constraints handling,
and so on, in order to obtain a best solution to the given
problem. Because the multiobjective optimization pro-
blems are the natural extensions of constrained and com-
binatorial optimization problems, so many useful methods
based on GAs developed during the past two decades. One
of special issues in the multiobjective optimization pro-
blems is fitness assignment mechanism. Since the 1980s,
several fitness assignment mechanisms have been pro-
posed and applied in multiobjective optimization pro-
blems (3,19). Although most fitness assignment
mechanisms are just a different approach and suitable
to different cases of multiobjective optimization problems,
to understanding the development of multiobjective GAs,
we classify algorithms according to proposed years of
different approaches:

Type 1: Vector Evaluation Approach. Vector evaluated
genetic algorithm (veGA) (20) is the first notable work to
solve multiobjective problems in which it uses a vector
fitness measure to create the next generation (20). The
selection step in each generation becomes a loop. Each
time through the loop the appropriate fraction of the
next generation, or subpopulation, is selected on the basis
of each objective. The entire population is shuffled thor-
oughly to apply crossover and mutation operators, which is
performed to achieve the mating of individuals of different
subpopulations.

Type 2: Pareto Ranking þ Diversity. Multiobjective
Genetic Algorithm (21). Fonseca and Fleming proposed a
multiobjective genetic algorithm (moGA) in which the rank
of a certain individual corresponds to the number of indi-
viduals in the current population by which it is dominated.
Based on this scheme, all the nondominated individuals are
assigned rank 1, whereas dominated ones are penalized
according to the population density of the corresponding
region of the tradeoff surface.

Nondominated Sorting Genetic Algorithm (22). Srinivas
and Deb also developed a Pareto ranking-based fitness
assignment and called it the nondominated sorting genetic
algorithm (nsGA). In each method, the nondominated solu-
tions constituting a nondominated front are assigned the
same dummy fitness value. These solutions are shared with
their dummy fitness values (phenotypic sharing on the
decision vectors) and are ignored in the other classification
process. Finally, the dummy fitness is set to a value less
than the smallest shared fitness value in the current non-
dominated front. Then the next front is extracted. This
procedure is repeated until all individuals in the population
are classified.

Type 3: Weighted Sum þ Elitist Preserve. Random-
Weight Genetic Algorithm (23). Ishibuchi and Murata pro-
posed a weighted-sum based fitness assignment method,
called a random-weight genetic algorithm (rwGA), to
obtain a variable search direction toward the Pareto fron-
tier. The weighted-sum approach can be viewed as an
extension of methods used in the multiobjective optimiza-
tions to GAs. It assigns weights to each objective function

GENETIC ALGORITHMS 5



and combines the weighted objectives into a single objective
function. In rwGA, each objective fkðxÞ is assigned a weight
wk ¼ rk=

Pq
j¼1 r j, where rj is a non-negative random num-

ber between [0, 1] with q objective functions. And the scalar
fitness value is calculated by summing up the weighted
objective value wk�fk(x). To search for multiple solutions in
parallel, the weights are not fixed and can move uniformly
the sample area toward the whole frontier.

Strength Pareto Evolutionary Algorithm II(24). Zitzler and
Thiele proposed a strength Pareto evolutionary algorithm
(spEA) (25) and an extended version spEA II (24) that
combines several features of previous (moGAs) in a unique
manner. The fitness assignment procedure is a two-stage
process. First, the individuals in the external nondomi-
nated set P

0
are ranked. Each solution i2P, is assigned a

real value si 2 ½0; 1Þ, called strength; si is proportional to the
number of population members j2P for which i> j. Let n
denote the number of individuals in P that are covered by i,
and assume N is the size of P. Then si is defined as
si ¼ n=ðN þ 1Þ. The fitness fi of objective i is equal to its
strength: fi = si. Afterward, the individuals in the popula-
tion P are evaluated. The fitness of an individual j2P is
calculated by summing the strengths of all external non-
dominated solutions i2P, that cover j. The fitness is
f j ¼ 1þ

P
i2 ði> jÞ si, where f j 2 ½1;NÞ.

Adaptive-Weight Genetic Algorithm (3). Gen and Cheng
proposed another weight sum-based fitness assignment
method, called the adaptive-weight genetic algorithm
(awGA), which uses some useful information from the cur-
rent population to readjust weights to obtain a search
pressure toward the Pareto frontier. When considering
the maximization problem with q objectives, we define
two extreme points: the maximum extreme point zþ ¼
fzmax

1 ; zmax
2 ; . . . ; zmax

q g and the minimum extreme point z� ¼
fzmin

1 ; zmin
2 ; . . . ; zmin

q g in each generation. Each objective k is
assigned a weight wk ¼ 1=ðzmax

k � zmin
k Þ. And the scalar fit-

ness value is calculated by
Pq

k¼1ð fkðxÞ � zmin
k Þ=ðzmax

k � zmin
k Þ.

As show in Fig. 2, the hyperplane divides the criteria
space Z into two half spaces: One half space contains the
positive ideal point, denoted as Zþ, and the other half
space contains the negative ideal point, denoted as Z�. All

examined Pareto solutions lie in the space Zþ, and all
points lie in the Zþ have larger fitness values than the
points in the space Z�. As the maximum extreme point
approximates to the positive ideal point along with the
evolutionary progress, the hyperplane will gradually
approach to the positive ideal point. Therefore, awGA
can readjust its weights according to the current popula-
tion to obtain a search pressure toward to the positive
ideal point.

Nondominated Sorting Genetic Algorithm II (26). Deb
et al. suggested a nondominated sorting-based approach,
called a nondominated sorting genetic algorithm II (nsGA
II) (19,27), which alleviates the three difficulties: computa-
tional complexity, nonelitism approach, and the need for
specifying a sharing parameter. The nsGA II was advanced
from its origin, nsGA. In nsGA II, a nondominated sorting
approach is used for each individual to create Pareto rank,
and a crowding distance assignment method is applied to
implement density estimation. In a fitness assignment
between two individuals, nsGA II prefers the point with
a lower rank value, or the point located in a region with
fewer numbers of points if both points belong to the same
front. Therefore, by combining a fast nondominated sorting
approach, an elitism scheme and a parameterless sharing
method with the original nsGA, nsGA II claims to produce a
better spread of solutions in some testing problems.

Interactive Adaptive-Weight Genetic Algorithm (28). Lin
and Gen proposed an interactive adaptive-weight genetic
algorithm (i-awGA), which is an improved adaptive-weight
fitness assignment approach with the consideration of
the disadvantages of weighted-sum approach and Pareto
ranking-based approach. They combined a penalty term to
the fitness value for all of dominated solutions. First,
calculate the adaptive weight wi ¼ 1=ðzmax

i � zmin
i Þ for each

objective i ¼ 1, 2,. . ., q by using awGA. Afterward, calculate
the penalty term pðvkÞ ¼ 0, if vk is a nondominated solution
in the nondominated set P. Otherwise p(vk’) ¼ 1 for a domi-
nated solution vk’. Last, calculate the fitness value of each
chromosome by combining the method as follows and
they adopted roulette wheel selection as supplementary

Figure 2. Adaptive-weights and adaptive hyperplane.

6 GENETIC ALGORITHMS



to the i-awGA.

evalðvkÞ ¼
Xq

i¼1

wiðzk
i � zmin

i Þ þ pðvkÞ; 8 k2 popSize ð11Þ

Performance Measures

Let Sj be a solution set (j ¼ 1, 2,. . ., J). To evaluate the
efficiency of the different fitness assignment approaches,
we have to define explicitly measures evaluating closeness
of Sj from a known set of the Pareto-optimal set S�. For
example, the following common three measures are con-
sidered that are used already in different moGA studies.
They provide a good estimate of convergence if a ref-
erence set for S� (i.e., the Pareto optimal solution set or a
near-Pareto optimal solution set) is chosen.

Number of Obtained Solutions jS j j. Evaluate each solu-
tion set depend on the number of obtained solutions.

Ratio of Nondominated Solutions RNDSðS jÞ. This measure
simply counts the number of solutions that are members of
the Pareto optimal set S�. The RNDSðSjÞ measure can be
written as follows:

RNDSðS jÞ ¼
jS j � fx2S jj 9 r2S� : r < xgj

jS jj
ð12Þ

where r< x means that the solution x is dominated by the
solution r. The RNDSðS jÞ ¼ 1 means all solutions are mem-
bers of the Pareto-optimal set S�, and RNDSðS jÞ ¼ 0 means
no solution is a member of the S�. It is an important measure
that although the number of obtained solutions jS jj is large,
if that the ratio of nondominated solutions RNDSðS jÞ is 0, it
may be the worst result. The difficulty with the above
measures is that although a member of Sj is Pareto-optimal,
if that solution does not exist in S�, it may not be counted in
RNDSðS jÞ as a non-Pareto-optimal solution. Thus, it is

essential that a large set for S� is necessary in the above
equations.

Average Distance D1RðS jÞ. Instead of finding whether a
solution of Sj belongs to the set S

�
, this measure finds an

average distance of the solutions of Sj from S
�
, as follows:

D1RðS jÞ ¼
1

jS�j
X
r2 s�

min fdrxjx2S jg ð13Þ

where drx is the distance between a current solution x and a
reference solution r in the two-dimensional normalized
objective space. fi means the objective function for each
objective i ¼ 1, 2,. . ., q.

drx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

i¼1

ð fiðrÞ � fiðxÞÞ2
vuut ð14Þ

The smaller the value of D1R(Sj) is, the better the solution
set Sj is. This measure explicitly computes a measure of the
closeness of a solution set Sj from the set S

�
.

Reference Set S�. For making a large number of solutions
in the reference set S

�
, the first step calculates the solution

sets with special GA parameter settings and a much longer
computation time by each approach that is used in compar-
ison experiments, and the second step combine these solu-
tion sets to calculate the reference set S�. In the future, a
combination of small but reasonable GA parameter settings
for comparison experiments will be conducted, and thus
ensure the effectiveness of the reference set S�.

OVERALL PROCEDURE OF GENETIC ALGORITHM

The P(t) and C(t) are parents and offspring, respectively, in
current generation t; the implementation structure of GA
with combining the adaptive method and the multiobjective
fitness assignment method is described as follows:

procedure: adaptive multiobjective GA
input: problem data, GA parameters
output: Pareto optimal solutions E
begin

t 0; // t: generation number
initialize P(t) by encoding routine; // P(t): population of individuals
calculate objectives zi(P), i=1,. . .,q by decoding routine;
create Pareto E(P);
evaluate eval(P) by fitness assignment routine;
while (not terminating condition) do

create C(t) from P(t) by crossover routine; // C(t): offspring
create C(t)from P(t) by mutation routine;
calculate objectives zi(C), i=1,. . .,q by decoding routine;
update Pareto E(P,C);
evaluate eval(P,C) by fitness assignment routine;
auto-tuning GA parameters by parameter adaptive routine;
select P(t+1) from P(t) and C(t) by selection routine;
t t + 1;

end
output Pareto optimal solutions E(P, C)

end

GENETIC ALGORITHMS 7



GA-Based Applications

GAs are powerful and broadly applicable stochastic search
and optimization techniques. The major reason is that the
advantages (adaptability, robustness, and flexibility) of
GAs are very useful for applying the GAs to many complex
problems that are very difficult to solve by conventional
techniques. However, most problems of computer science
and engineering are optimization problems subject to com-
plex constraints. Simple GAs usually do not produce suc-
cessful applications for these thorny optimization
problems. Therefore, a method to tailor GAs to meet the
nature of these problems is one of the major focuses of
research into computer science and engineering-oriented
genetic algorithms.

Combinatorial Optimizations

Combinatorial optimization studies problems that are
characterized by a finite number of feasible solutions. An
important and widespread area of applications concerns
the efficient use of scarce resources to increase productiv-
ity. Typical problems include knapsack, set-covering, bin-
packing, quadratic assignment, minimum spanning tree,
machine scheduling, sequencing and balancing, cellular
manufacturing design, vehicle routing, facility location
and layout, traveling salesman problem, and so on (2).

Minimum Spanning Tree Models. The minimum span-
ning tree (MST) problem is one of the best-known network
optimization problems used for designing backbone net-
works. Let G be a weighted, connected, undirected graph
with node set V and edges E. A spanning tree on G is a
maximal, acyclic subgraph of G; that is, it connects all of G’s
nodes and contains no cycles. A spanning tree’s cost is the
sum of the costs of its edges; a spanning tree with the
smallest possible cost is a MST on G. Recently, researchers
have described GAs for several kinds of constrained MST-
related problems: capacitated MST (29), degree-con-
strained MST (30), stochastic MST (31), quadratic MST
(32), probabilistic MST (33), multicriteria MST (34), and
leaf-constrained MST (35) etc.

Genetic Representations. Lin and Gen (36) summarized
the several kinds of classification of encoding methods as:
(1) Characteristic vectors-based encoding [binary-based
encoding (37,38), random key-based encoding (39,40)], (2)
edge-based encoding (41,42), and (3) node-based Encoding
[Prüfer number-based encoding (43), predecessor-based
encoding (44)]. Furthermore, Lin and Gen propose a
node-based encoding method, PrimPred-based encoding,
that adopted Prim’s algorithm in chromosome generating
procedure (36).

Knapsack Models. Suppose that we want to fill up a
knapsack by selecting some objects among various objects
(generally called items). n different items are available, and
each item j has a weight of wj and a profit of pj. The
knapsack can hold a weight of at most W. The problem is
to find an optimal subset of items so as to maximize the total
profits subject to the knapsack’s weight capacity. The prof-

its, weights, and capacity are positive integers. The other
extended knapsack models (multiple-choice knapsack
model, multiconstraints knapsack model, etc.) are intro-
duced in Ref. 45.

Binary-Based Encoding. A binary string isa natural repre-
sentation of knapsack problem, where one means the inclu-
sion and zero means the exclusion of one item from the
knapsack. For example, a solution for the ten-item problem
can be represented as vk ¼ [0 1 0 1 0 0 0 0 1 0]. It means that
items 2, 4, and 9 are selected to be filled in the knapsack.

Order-Based Encoding. For a ten item problem, the kth
chromosome vk ¼ [2, 4, 9, 1, 3, 5, 7, 8, 6, 10] is an order of
item for it to be filled into the knapsack. The same result
(items 2, 4, and 9 are selected) can be decoded.

Set-Covering Model. The problem is a classic question in
computer science and complexity theory. As input you are
given several sets. They may have some elements in com-
mon. The problem is to select a minimum number of
these sets so that the sets you have picked contain all
the elements that are contained in any of the sets in the
input. The sets can be formulated as an m-row/n-column
zero–one matrix, and the objective is cover rows of the
matrix by a subset of columns at minimal cost. Considering
a vector x such that xj ¼ 1 if column j (with a cost cj > 0 ) is
in the solution and xj ¼ 0 otherwise (j ¼ 1, 2,. . ., n). The
objective is to cover A ¼ [aij], i ¼ 1,2,. . .,m, j ¼ 1,2,. . .,n, a
zero–one matrix by a subset of columns at minimal cost.

Column-Based Encoding. Column-based encoding is an
n-bit binary string that is used for an n column problem. A
value of 1 for the ith bit implies that column i is in the
solution. For a six-column problem, the vector x1, x3, and x5

are selected by chromosome vk ¼ [1 0 1 0 1 0].

Row-Based Encoding. The length of chromosome is equal
to the number of rows for a given problem. The location of
each gene corresponds to a row, and the encoded value of
each gene is a column that covers that row.

Bin-Packing Model. The bin-packing problem consists of
placing n objects into several bins (at most n bins). Each
object has a weight (wi > 0) and each bin has a limited bin
capacity (ci > 0). The objective is to find a best assignment
of objects to bins such that the total weight of the objects in
each bin does not exceed its capacity and the number of bins
used is minimized.

Bin-Based Encoding. The position of a gene is used to
represent an object, and the value of the gene is used to
represent a bin in which the corresponding object is put it.
For instance, the chromosome vk ¼ [1 4 2 3 5 2] would
encode a solution where the first object is in bin 1, the
second is in bin 4, the third is in bin 2, the fourth is in bin 3,
the fifth is in bin 5, and the sixth is in bin 2.

Object-Based Encoding. Encode the permutations of
objects and then apply a decoder to retrieve the correspond-
ing solution.

8 GENETIC ALGORITHMS



Group-Based Encoding. Chromosomes are item oriented,
instead of being group oriented.

Traveling Salesman Model. The traveling salesman pro-
blem (TSP) is one of the most widely studied combinatorial
optimization problems. Its statement is deceptively simple:
A salesman seeks the shortest tour through n cities.

Permutation-Based Encoding. This direct representation
is perhaps the most natural representation of a TSP, where
cities are listed in the order in which they are visited. For
example, a tour of a nine-city TSP: 3 – 2 – 5 – 4 – 7 – 1 – 6 – 9 –
8 is represented simply as follows: vk = [3 2 5 4 7 1 6 9 8].
This representation is also called as path-based encoding or
order-based encoding.

Random Key-Based Encoding. This indirect representa-
tion encodes a solution with random numbers from (0,1).
These values are used as sort keys to decode the solution.
For example, a chromosome to a nine-city problem may be
vk ¼ [0.23 0.82 0.45 0.74 0.87 0.11 0.56 0.69 0.78], where
position i in the list represents city i, and the random
number in position i determines the visiting order of city
i in a TSP tour. We sort the random keys in ascending order
to get the following tour: 6 – 1 – 3 – 7 – 8 – 4 – 9 – 2 – 5.

Genetic Operators. For permutation encoding, such as
partial-mapped crossover, order crossover, or position-
based crossover and inversion mutation, insertion muta-
tion, or displacement mutation can be adopted. The detail
description is introduced in Ref. 2.

Network Design Optimization

Network models are a fundamental issue in many disci-
plines, including applied mathematics, computer science,
engineering, management, and operations research.
Furthermore, because any system or structure may be
considered abstractly as a set of elements, certain pairs of
which are related in a special way, it has a representation as
a network. Networks provide a useful way to modeling real-
world problems, which are used extensively in many differ-
ent types of systems, such as communications, mechanical,
electronic, manufacturing, and logistics (46).

Shortest Path Model. The shortest path problem (SPP) is
the heart of network optimization problems. Let G ¼ (N, A)
be a directed network, which consists of a finite set of nodes
N ¼ {1, 2,. . ., n} and a set of directed arcs A ¼ {(i, j), (k, l),. . .,
(s, t)} connecting m pairs of nodes in N. Arc (i, j) is said to be
incident with nodes i and j, and it is directed from node i to
node j. Suppose that each arc (i, j) has been assigned to a
nonnegative value cij, the cost of (i, j). The SPP is to find the
minimum cost z from a specified source node 1 to another
specified sink node n.

Variable-Length Encoding. Munemoto et al. proposed a
variable-length encoding to construct the shortest path
(47). Its element represents nodes included in a path
between a designated pair of source and destination nodes.
Ahn and Ramakrishna developed this variable-length

encoding. A new crossover operator exchanges partial chro-
mosomes (partial-routes), and the mutation introduces new
partial chromosomes (partial-routes) (48).

Fixed-Length Encoding. Inagaki et al. proposed a fixed
(deterministic) length chromosome (49). The chromosomes
in the algorithm are sequences of integers, and each gene
represents a node ID that is selected randomly from the set
of nodes connected with the node corresponding to its locus
number. All the chromosomes have the same (fixed) length.
In the crossover phase, one gene (from two-parent chromo-
somes) is selected at the locus of the starting node ID and
put in the same locus of an offspring. One gene is then
selected randomly at the locus of the previously chosen
gene’s number. This process is continued until the destina-
tion node is reached.

Priority-Based Encoding. Gen et al. proposed a priority-
based encoding method (50). As all know, a gene in a
chromosome is characterized by two factors: locus, i.e.,
the position of gene located within the structure of chromo-
some, and allele, i.e., the value the gene takes. In this
encoding method, the position of a gene is used to represent
node ID and its value represents the priority of the node
among the candidates to construct a path. A path can be
determined uniquely by the encoding.

Random Key-Based Encoding. Gen and Lin proposed an
extended version of priority-based encoding (51) in a real
number string, i.e., random key-based encoding. It not only
can be decoded a path by same decoding procedure with
priority-based encoding, but also most crossover and muta-
tion operators can be adopted, because the chromosome is
represented by real number code.

Maximum Flow Model. In a capacitated network, the
maximum flow problem (MXF) is to send as much flow as
possible between two special nodes, a source node s and a
sink node t, without exceeding the capacity of any arc. The
MXF model and the shortest path model are complemen-
tary. The two problems differ because they capture differ-
ent aspects: the shortest path problem model arc costs but
not arc capacities and maximum flow problem model capa-
cities but not costs. Taken together, the shortest path
problem and the maximum flow problem combine all the
basic ingredients of network models. As such, they have
become the nuclei of network optimization.

Priority-Based Encoding. One specific difficulty of the
MXF is the solution presented by various numbers of
paths. Until now, for presenting a solution of MXF with
various paths, the general idea of chromosome design is to
add several shortest paths-based encoding to one chromo-
some. The length of these representations is variable
depending on various paths, and most offspring is infea-
sible after crossover and mutation operations. Gen and
Lin adopt the priority-based encoding that is an effective
representation to present a solution with various paths
(52). For decoding process, after a path is calculated by a
given priority-based chromosome, we update the flow
capacity for each arc on the network. Then we can obtain

GENETIC ALGORITHMS 9



another new path by the same chromosome depending on
the new network structure. By repeating this way, we can
obtain a solution with various numbers of paths for MXF
problem.

Bicriteria MXF/MCF Model. The MXF finds a solution
that sends the maximum flow from a source node s to a sink
node t. The minimum cost flow problem (MCF) determines a
least cost shipment of a commodity through a network to
satisfy demands at certain nodes from available supplies at
other nodes. The bicriteria MXF/MCF model is an extended
version considering the flow costs, flow capacities, and
multiobjective optimization problems. This model provides
a useful way for modeling real-world problems. For exam-
ple, in a communication network, we want to find a set of
links that consider the connecting cost (or delay) and the
high throughput (or reliability) for increasing the network
performance; in a manufacturing system, the two criteria
under consideration are minimizing manufacturing cost
and maximizing quality.

Priority-Based Encoding. Gen and Lin proposed an
extended priority-based encoding for this bicriteria MXF/
MCF model (28,53). They proposed a new crossover opera-
tor, called weight mapping crossover (WMX) and adopt
insertion mutation, immigration operator, and interactive
adaptive-weight fitness assignment to accelerate the evo-
lutionary process.

Advanced Planning and Scheduling

The planning and scheduling of manufacturing systems
always require resource capacity constraints, disjunctive
constraints, and precedence constraints, because of the
tight due dates, multiple customer-specific orders, and
flexible process strategies. In this subsection, some hot
topics in advanced planning and scheduling (APS) are
introduced. These models mainly support the integrated,
constraint-based, and planning of the manufacturing sys-
tem to reduce lead times, lower inventories, increase
throughput, and so on.

Job-Shop Scheduling Model. In the job-shop scheduling
problem (JSP), we are given a set of jobs and a set of
machines. Each machine can handle at most one job at a
time. Each job consists of a chain of operations, each of
which needs to be processed during an uninterrupted time
period of a given length on a given machine. The objective is
to find a schedule; that is, an allocation of the operations to
time intervals on the machines that has a minimum dura-
tion required to complete all jobs (54).

Genetic Representations. Gen and Cheng gave the nine
different representations for JSP in Ref. 2: operation-based
encoding, job-based encoding, preference-list-based encod-
ing, job-pair-relation-based encoding, priority-based
encoding, disjunctive-graph-based encoding, completion-
time-based encoding, machine-based encoding, and
random key-based encoding. These representations can
be classified into two basic encoding approaches: direct
approach and indirect approach.

Flexible Job-Shop Scheduling Model. Flexible job shop is a
generalization of the job shop and the parallel machine
environment (55), which provides a closer approximation to
a wide range of real manufacturing systems. In particular,
a set of parallel machines exists with possibly different
efficiency. The flexible job shop scheduling problem (fJSP)
is to assign each operation to an available machine and to
sequence the operations assigned on each machine to mini-
mize the makespan, that is, the time required to complete
all jobs.

Parallel Machine-Based Encoding. The chromosome is a
list of machines placed in parallel. For each machine, we
associate operations to execute. Each operation is coded by
three elements: operation k, job i, and starting time tS

ikj of
operation oik on the machine j.

Parallel Job-Based Encoding. The chromosome is repre-
sented by a list of jobs. Information of each job is shown in
the corresponding row where each case is constituted of two
terms: machine j, which executes the operation and corre-
sponding starting time tikj

S.

Operations Machine-Based Encoding. Kacem et al. pro-
posed an operations machine-based approach (56), which is
based on a traditional representation called schemata the-
orem representation; it was first introduced in GAs by
Holland (5).

Multistage Operation-Based Encoding. Gen and Zhang
proposed a multistage operation-based encoding for fJSP
(57,58). In the encoding process,all operations are defined as
a multistage network denoting each operation as one stage.
At each stage, available machines of each operation are
defined as states. The length of chromosome is the number
of operations. An integer number in the kth gene represents
a machine number to which the operation k is assigned.

Resource-Constrained Project Scheduling Model. The
objective of the resource-constrained project scheduling
problem (rcPSP) is to schedule the activities such that
precedence and resource constraints are obeyed and the
makespan of the project is to be minimized. The resource
constraints refer to limited renewable resources such as
manpower, material, and machines that are necessary for
carrying out the project activities (59).

Priority-Based Encoding. Gen and Cheng adopted prior-
ity-based encoding for this rcPSP (2). To improve the effec-
tiveness of priority-based GA approach for large-scale
rcPSP problems and extended resource-constrained multi-
ple project scheduling problem, Kim et al. combined prior-
ity dispatching rules in priority-based encoding process
(60,61).

Recently, some researchers have studied various algo-
rithms for solving an rcPSP problem on a large scale.
Their works have dealt with a variety of situations in
which one or both of these types of constraints are relaxed,
or at least simplified. And comparisons of eight different
priority dispatching rules (minimum job slack, resource
scheduling method, minimum late finish time, greatest

10 GENETIC ALGORITHMS



resource demand, greatest resource utilization, shortest
imminent operation, most jobs possible, and select jobs
randomly) for an rc-PSP problem have been reported in
previous studies

Assembly Line Balancing Model. Assembly line balancing
problems (ALB) consist of distributing work required to
assemble a product in mass or series production on an
assembly line among a set of work stations. Several con-
straints and different objectives may be considered. The
simple assembly line balancing problem consists of assign-
ing tasks to workstations such that precedence relations
between tasks and zoning or other constraints are met. The
objective is to make the work content at each station most
balanced. Two versions of the problem exist. The Type I
simple assembly line balancing (sALB-I) problem, as
described by Scholl, consists in finding an assignment of
tasks to workstations such that the required number of
workstations is minimized given a cycle time, i.e., the
maximum work time of any workstation. The Type II
simple assembly line balancing (sALB-II) problem consists
in allocating tasks to a given number of workstations to
minimize the cycle time.

Genetic Representations. GAs have been applied to solve
various assembly line balancing problems (62–64). The
genetic representations can be summarized as follows:
1) Standard encoding (65), the chromosome is defined as
a vector containing the indexes of the stations to which the
tasks are assigned; 2) Order-based encoding (66), the chro-
mosomes are defined as a task sequence in feasible order;
3) Priority-based encoding (3), the chromosome represents
the solution in an indirect manner: coding priority values of
tasks and coding a sequence of priority rules and corre-
sponding construction schemes; and 4) Group encoding
(67), the encoding of each solution consists of two parts:
The task part is identical to the standard encoding, and the
group part contains a gene for each station.

Recently, Gao et al. proposed an innovative GA hybri-
dized with local search for a robotic-based ALB problem
(68). Based on different neighborhood structures, five local
search procedures are developed to enhance the search-
ability of GA. The coordination between the local search
procedures are well considered to escape from local optima
and to reduce computation time.

Advanced Planning and Scheduling Model. The advanced
planning and scheduling (APS) model includes a range of
capabilities from finite capacity planning at the plant floor
level through constraint-based planning to the latest appli-
cations of advanced logic for supply chain planning and
collaboration (69). The objective of APS problem is usually
to determine an optimal schedule with operation sequences
for all the orders (jobs). That is, the problem we are treating
can be defined as follows: A set of K orders are to be
processed on N machines with alternative operations
sequences and alternative machines for operations in the
environment of the multiplant chain; we want to find an
operations sequence for each job and a schedule in which
jobs pass between machines and a schedule in which opera-
tions on the same jobs are processed such that it satisfies

the precedence constraints and it is optimal with respect to
the makespan minimization.

Moon–Kim–Gen’s Approach. Several related works by
Moon et al. (70) and Moon and Seo (71) have reported a
GA approach especially for solving such kinds of APS
problems. However, to derive a feasible complete schedule,
they only considered the optimal operation sequence,
but they selected the resources in terms of minimum pro-
cessing time. That means, for machines assignment, they
consider that the minimum processing time assignment is
the optimal choosing strategy for the solution. However the
transition time between plants and setup time between
operations are ignored.

Multistage Operation-Based Encoding. Zhang and Gen
proposed a multistage operation-based encoding for solving
the APS problem (72,73). This encoding method considers
both operation sequence and machine selection so that it is
easy to present a solution of the problem. The chromosome
presentation of multistage operation-based encoding con-
sists of two parts: 1) priority-based encoding for operation
sequence and 2) machine permutation encoding for
machine selection.

AGV Dispatching Model in Manufacturing System. Auto-
mated guided vehicle (AGV) is a mobile robot used highly in
industrial applications to move materials from point to
point. AGV help to reduce costs of manufacturing and
increase efficiency in a manufacturing system. For exam-
ple, a flexible manufacturing system (FMS) is composed of
various cells, also called working stations (or machine),
each with a specific operation such as milling, washing, or
assembly. Each cell is connected to the guide path network
by a pickup/delivery (P/D) point where pallets are trans-
ferred from/to the AGVs. The objectives of AGV system are
as follows: Minimize time required to complete all jobs (i.e.,
makespan), minimize vehicle travel times (empty or/and
loaded), evenly distribute workload over AGVs, minimize
total costs of movement, and minimize the time of labor that
is handled after its due time (i.e., tardiness), minimize
expected waiting times of loads, minimize the number of
AGVs, and so on.

Priority-Based Encoding. Lin et al. adopted priority-
based encoding for solving the AGV dispatching problem
in FMS (74). In this encoding method, the position of a gene
is used to represent task (AGV’s transport) ID and its value
is used to represent the priority of the task for constructing
a sequence among candidates. A feasible sequence can be
determined uniquely from this encoding by considering a
task precedence constraint. After a generated task
sequence, separate tasks occur to several groups for assign-
ing different AGVs.

Logistics Network Optimization

It is said that logistics is the ‘‘last frontier for cost reduction’’
and the ‘‘third profit source’’ of enterprises, by Peter Der-
uke, an American management specialist (75). The interest
in developing effective logistics system design models and

GENETIC ALGORITHMS 11



efficient optimization methods has been stimulated by high
costs of logistics and is potentially capable of securing
considerable savings.

Transportation Models. The transportation problem (TP)
was proposed originally by Hitchcock in 1941 (76). Since
then the research on the problem has received a great deal
of attention, and various variants of the basic transporta-
tion problem have been investigated. According to what
kind of objective is used, the problem can be characterized
as follows: 1) linear problem or nonlinear problem and
2) single objective problem or multiple objective problem.
According to what kind of constraints is under considera-
tion, the problem can be classified even more into 1) planar
problem or solid problem and 2) balanced problem or unba-
lanced problem.

Matrix-Based Encoding. A matrix is perhaps the most
natural representation of a solution for a transportation
problem. The allocation matrix of a transportation problem
can be written as follows:

Xk ¼

x11 x12 � � � x1n

x21 x22 � � � x2n

� � � � � � � � � � � �
xm1 xm2 � � � xmn

2
664

3
775 ð15Þ

where Xk denotes the kth chromosome (solution) and the
element of it, xij is the corresponding decision variable (5).

Prüfer Number-Based Encoding. The Prüfer number-
based encoding incorporating this data structure of TP
was proposed by Gen and Li (77). This GA uses the Prüfer
number encoding based on a spanning tree, which is cap-
able of representing all possible trees. Using the Prüfer
number representation, the memory only requires
m þ n � 2 for a chromosome implementation. A transpor-
tation model has separable sets of nodes for plants and
customers. From this point, Gen and Li designed a criterion
for checking the feasibility of the chromosome.

Location Allocation Models. As an extension of TP, a
location–allocation decision is a very important factor in
logistics network design problems. It can be classified as
1) location problems, involve determining the location of
one or more new DCs in one or more of several potential
sites; 2) allocation problems, assume that the number and
location of DCs are known as a priori and attempt to
determine how each customer is to be served; and 3) loca-
tion–allocation problems, involve determining not only how
much each customer is to receive from each DC but also the
number of DCs along with their locations and capacities.

Genetic Representation. In continuous location problems,
a binary representation may result in locating two DCs that
are very close to each other. Taniguchi et al. used a real
number representation (78) where a chromosome consists of
m(x, y) pairs representing the sites of DCs to be located and p
is the number of DCs. For instance, this is represented as
v ¼ ½ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxi; yiÞ; . . . ; ðxm; ymÞ�, where the

coordinate (xi, yi) denotes the location of the ith DC,
i = 1,. . ., m.

Multistage Logistics Network Models. For some real-
world applications of logistics, it is often that the transpor-
tation problem is extended to satisfy several other addi-
tional constraints or is performed in several stages. A two-
stage transportation problem (tsTP) model is proposed by
Gen et al. (79), which minimize the total logistic system
cost, including the opening cost of DCs and the shipping
cost from plants to DCs, and from DCs to customers under
the capacity constraints of plants and DCs. And some
extended models of multistage logistics network are intro-
duced in Refs. 80 and 81.

Priority-Based Encoding. Gen et al. proposed a new
encoding method based on priority-based encoding (79).
For each stage of transportation, a chromosome consists
of priorities of sources and depots to obtain a transportation
tree and its length is equal to total number of sources (m)
and depots (n); i.e., m þ n. The transportation tree corre-
sponding with a given chromosome is generated by sequen-
tial arc appending between sources and depots. At each
step, only one arc is added to the tree selecting a source
(depot) with the highest priority and connecting it to a depot
(source) considering minimum cost.

Flexible Logistics Network Models. Recently, with the
constant demand to reduce transportation costs and
improve customer service quality, design and optimization
of logistics face more challenging issues, which is the
improvement of the flexibility of logistics system; i.e., we
want to change the traditional structure of the logistics:
Plant-DC-Retailer-Customer, the use of direct shipment
(Plant-Customer) as much as possible, or direct delivery
(Plant-Retailer or DC-Customer). Lin et al. formulate a
flexible multistage logistics network model by considering
the direct shipment and direct delivery of logistics and
inventory (82).

Genetic Representation. Lin et al. hybridized the prior-
ity-based encoding with random number-based encoding by
dividing a chromosome into two segments (82). The first
segment is encoded by using a priority-based encoding
method that can escape the repairing mechanisms in the
searching process of GA. The second segment of a chromo-
some consists of two parts: The first part with K loci contain-
ing the guide information about how to assign retailers in
the network, and the other with length L including that
information of customers. Each locus is assigned an integer
in the range from 0 to 2.

Advanced Applications

Communication Network Models. The use of communi-
cation networks has increased significantly in the last
decade because of the dramatic growth in the use of
Internet for business and personal use. As the society
trans-forms itself into an information society the network
becomes the primary source for information creation,

12 GENETIC ALGORITHMS



storage, distribution, and retrieval. The design and devel-
opment of a reliable network to support the primary
resource of an information society becomes a very critical
activity. The reliability and service quality requirements
of communication networks and the large investments in
communication infrastructure have made it critical to
design optimized networks that meet performance para-
meters. These factors have encouraged researchers to
develop new models and methodologies for network
design. GA and other evolutionary algorithms have
been applied successfully to large and complex optimiza-
tion problems in communication networks over the past
decade, covering a variety of problem areas. Kampstra
et al. gave an extensive literature survey, listing over 350
references on the use of GA and other evolutionary algo-
rithms for solving communication network design pro-
blems (83).

Real-Time Tasks Scheduling Models. Real-time tasks can
be classified into many kinds. Some real-time tasks are
invoked repetitively. For example, one may wish to monitor
the speed, altitude, and attitude of an aircraft every 100 ms.
This sensor information will be used by periodic tasks that
control the surfaces of the aircraft to maintain stability and
other desired characteristics. In contrast, many other tasks
are aperiodic, which occur only occasionally. Aperiodic
tasks with a bounded interarrival time are called spora-
dic tasks. Critical (or hard real-time) tasks are those whose
timely execution is critical. If the deadline is missed, cat-
astrophes occur. Noncritical (or soft real-time) tasks are, as
the name implies, not critical to the application. Gen and
Yoo detailed survey GA-based approaches for various real-
time tasks scheduling problems (84), such as a continuous
soft real-time task scheduling problem on multiprocessor
systems, real-time task scheduling in homogeneous multi-
processor systems, and real-time task scheduling in hetero-
geneous multiprocessor systems.

Reliability Optimization Models. In the broadest sense,
reliability is a measure of performance of systems. As
systems have grown more complex, the consequences of
their unreliable behavior have become severe in terms of
cost, effort, lives, and so on and the interest in assessing
system reliability and the need for improving the reliability
of products and systems have become very important.
Reliability optimization problems concentrate on optimal
allocation of redundancy components and optimal selection
of alternative designs to meet a system requirement. Gen
and Yun reported a survey GA-based approach for various
reliability optimization problems (85), such as reliability
optimization of redundant system, reliability optimization
with alternative design, reliability optimization with time-
dependent reliability, reliability optimization with interval
coefficients, bicriteria reliability optimization, and relia-
bility optimization with fuzzy goals.

BIBLIOGRAPHY

1. D. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Reading, MA: Addison-Wesley, 1989.

2. M. Gen and R. Cheng, Genetic Algorithms and Engineering
Design, New York: John Wiley & Sons, 1997.

3. M. Gen and R. Cheng, Genetic Algorithms and Engineering
Optimization, New York: John Wiley & Sons, 2000.

4. M. Gen, Genetic algorithms and their applications, Springer
Handbook of Engineering Statistics, H. Pham (ed.), New York:
Springer-Verlag, 2006, pp. 749–773.

5. Z. Michalewicz, Genetic Algorithm þ Data Structures ¼ Evolu-
Evolution Programs, New York: Springer-Verlag, 1994.

6. J. Holland, Adaptation in Natural and Artificial Systems, Ann
Arbor, MI: University of Michigan Press, 1975.

7. I. Rechenberg, Optimieriung technischer Systeme nach Prin-
zipien der biologischen Evolution, Stuttgart: Frommann-
Holzboog, 1973.

8. H. Schwefel, Evolution and Optimum Seeking, New York: John
Wiley & Sons, 1995.

9. F. Herrera and M. Lozano, Adaptation of genetic algorithm
parameters based on fuzzy logic controllers, in F. Herrera and
J. Verdegay, (eds.), Genetic Algorithms and Soft Computing,
Physica-Verlag, 1996, pp. 95–125.

10. R. Hinterding, Z. Michalewicz, and A. Eiben, Adaptation in
evolutionary computation: a survey, Proc. of IEEE Inter. Conf.
on Evolutionary Computation, Piscataway, NJ, 1997, pp. 65–69.

11. R. Subbu, A. Sanderson, and P. Bonissone, Fuzzy logic con-
trolled genetic algorithms versus tuned genetic algorithms: an
agile manufacturing application, Proc. of the 1999 IEEE Inter.
Symp. on Intelligent Control (ISIC), 1998, pp. 434–440.

12. Y. H. Song, G. S. Wang, P. T. Wang, and A. T. Johns, Environ-
mental/economic dispatch using fuzzy logic controlled genetic
algorithms, IEEE Proc. on Generation, Transmission and Dis-
tribution, 144(4): 377–382, 1997.

13. Y. Yun and M. Gen, Performance analysis of adaptive genetic
algorithms with fuzzy logic and heuristics, Fuzzy Optimiz.
Decision Making, 2(2): 161–175, 2003.

14. Y. Yun, Study on adaptive hybrid genetic algorithm and its
applications to engineering design problems, PhD dissertation,
Tokyo, Japan: Waseda University, 2005.

15. K. Dev, Optimization for Engineering Design: Algorithms and
Examples, New Delhi: Prentice-Hall, 1995.

16. R. E. Steuer, Multiple Criteria Optimization: Theory, Compu-
tation, and Application, New York: John Wiley & Sons, 1986.

17. C. Hwang and K. Yoon, Multiple Attribute Decision Making:
Methods and Applications, Berlin: Springer-Verlag, 1981.

18. V. Pareto, Manuale di Economica Polittica, Societa Editrice
Libraia, Milan, Italy, 1906; translated into English by A. S.
Schwier, as Manual of Political Economy, New York: Macmil-
lan, 1971.

19. K. Deb, Genetic algorithms in multimodal function optimiza-
tion, M.S. dissertation, Tuscaloosa: University of Alabama,
1989.

20. J. D. Schaffer, Multiple objective optimization with vector
evaluated genetic algorithms, Proc. 1st Inter. Conf. on GAs,
1985. pp. 93–100.

21. C. Fonseca and P. Fleming, An overview of evolutionary algo-
rithms in multiobjective optimization, Evolutionary Computa-
tion, 3(1): 1–16, 1995.

22. N. Srinivas and K. Deb, Multiobjective function optimization
using nondominated sorting genetic algorithms, Evolutionary
Computation, 3: 221–248, 1995.

23. H. Ishibuchi and T. Murata, A multiobjective genetic local
search algorithm and its application to flowshop scheduling,
IEEE Trans. on Systems., Man, & Cyber., 28(3): 392–403, 1998.

GENETIC ALGORITHMS 13



24. E. Zitzler and L. Thiele, SPEA2: improving the strength pareto
evolutionary algorithm, Technical Report 103, Computer Engi-
neering and Communication Networks Lab (TIK), 2001.

25. E. Zitzler and L. Thiele, Multiobjective evolutionary algo-
rithms: a comparative case study and the strength Pareto
approach, IEEE Trans. on Evolutionary Computation, 3(4):
257–271, 1999.

26. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and
elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans.
Evolutionary Computation, 6(2): 182–197, 2002.

27. K. Deb, Multiobjective Optimization Using Evolutionary Algo-
rithms. Chichester, UK: Wiley, 2001.

28. L. Lin and M. Gen, Bicriteria network design problem using
interactive adaptive-weight GA and priority-based encoding
method, IEEE Trans. Evolut. Computat. In press.

29. A. Kershenbaum, Computing capacitated minimal spanning
trees efficiently, Networks, 4: 299–310, 1974.

30. S. Narula and C. Ho, Degree-constrained minimum spanning
tree, Computers Operat. Research, 7: 239–249, 1980.

31. H. Ishii, H. Shiode, and T. Nishida, Stochastic spanning tree
problem, Discrete Applied Mathematics, 3: 263–273, 1981.

32. W. Xu, Quadratic minimum spanning tree problems and
related topics, Ph. D. dissertation, College Park: University
of Maryland, 1984.

33. D. Bertismas, The probabilistic minimum spanning tree pro-
blem, Networks 20: 245–275, 1990.

34. G. Zhou and M. Gen, Genetic algorithm approach on multi-
criteria minimum spanning tree problem, European J. Operat.
Res., 114: 141–151, 1999.

35. L. M. Fernandes and L. Gouveia, Minimal spanning trees with
a constraint on the number of leaves, European J. Operat. Res.,
104: 250–261, 1998.

36. L. Lin and M. Gen, Node-based genetic algorithm for commu-
nication spanning tree problem, IEICE Trans. Communica-
tions, E89-B(4): 1091–1098, 2006.

37. L. Davis, D. Orvosh, A. Cox, and Y. Qiu, A genetic algorithm for
survivable network design, Proc. 5th Int. Conf. Genetic Algo-
rithms, 1993, pp. 408–415.

38. P. Piggott and F. Suraweera, Encoding graphs for genetic
algorithms: an investigation using the minimum spanning
tree problem, in Progress in Evolutionary Computation, vol.
956, X. Yao, (ed.), New York: Springer, 1995, pp. 305–314.

39. B. Schindler, F. Rothlauf, and H. Pesch, Evolution strategies,
network random keys, and the one-max tree problem, Proc.
Applic. of Evol. Computing on EvoWorkshops, 2002, pp.
143–152.

40. F. Rothlauf., J. Gerstacker, and A. Heinzl, On the optimal
communication spanning tree problem, IlliGAL Technical
Report, Univ. of Illinois, 2003.

41. J. Knowles and D. Corne, A new evolutionary approach to the
degree-constrained minimum spanning tree problem, IEEE
Trans. Evolutionary Comput., 4(2): 125–134, 2000.

42. G. Raidl and B. Julstrom, Edge sets: an effective evolutionary
coding of spanning trees, IEEE Trans. Evolut. Comput., 7(3):
225–239, 2003.

43. G. Zhou and M. Gen, Approach to degree-constrained mini-
mum spanning tree problem using genetic algorithm, Engi-
neering Design Automation, 3(2): 157–165, 1997.

44. H. Chou, G. Premkumar, and C. Chu, Genetic algorithms for
communications network design – an empirical study of the
factors that influence performance, IEEE Trans. Evolut. Com-
put., 5(3): 236–249, 2001.

45. S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations, Chichester: John Wiley & Sons,
1990.

46. M. Gen, R. Cheng and L. Lin, Network Model and Optimiza-
tion: Multiobjective Genetic Algorithm Approach, Springer,
2008.

47. M. Munetomo, Y. Takai, and Y. Sato, An adaptive network
routing algorithm employing path genetic operators, Proc. 7th
Int. Conf. on Genetic Algorithms, 1997, pp. 643–649.

48. C. W. Ahn and R. S. Ramakrishna, A genetic algorithm for
shortest path routing problem and the sizing of populations,
IEEE Trans. Evolut. Computat., 6(6): 566–579, 2000.

49. J. Inagaki, M. Haseyama, and H. Kitajima, A genetic algorithm
for determining multiple routes and its applications, Proc.
IEEE Inter. Symp. on Circuits and Systems, 1999, pp. 137–140.

50. M. Gen, R. Cheng, and D. Wang, Genetic algorithms for solving
shortest path problems, Proc. IEEE Inter. Conf. on Evolution-
ary Computation, 1997, pp. 401–406.

51. M. Gen and L. Lin, A new approach for shortest path routing
problem by random key-based GA, Proc. of Genetic and Evolu-
tionary Computation Conference, 2006, pp. 1411–1412.

52. M. Gen, L. Lin, and R. Cheng, Bicriteria network optimization
problem using priority-based genetic algorithm, IEEE Trans.
Electron., Informat. Systems, 124(10): 1972–1978, 2004.

53. M. Gen and L. Lin, Multi-objective hybrid genetic algorithm for
bicriteria network design problem, Complexity Internat., 11:
73–83, 2005.

54. C. Cheng, V. Vempati, and N. Aljaber, An application of genetic
algorithms for flow shop problems, Euro. J. Operat. Res., 80:
389–396, 1995.

55. M. Pinedo, Scheduling Theory, Algorithms and Systems. Eng-
lewood Cliffs, NJ: Prentice-Hall, 2002.

56. I. Kacem, S. Hammadi, and P. Borne, Approach by localization
and multiobjective evolutionary optimization for flexible job-
shop scheduling problems, IEEE Trans. Systems, Man Cyber-
net., Part C, 32(1): 408–419, 2002.

57. H. Zhang and M. Gen, Multistage-based genetic algorithm for
flexible job-shop scheduling problem, J. Complexity Internat.,
11: 223–232, 2005.

58. M. Gen and H. Zhang, Effective designing chromosome for
optimizing advanced planning and scheduling, Intelligent
Engineering Systems Through Artificial Neural Networks,
vol. 16, C. H. Dali et al. ASME Press, 2006, pp. 61–66.

59. M. Gen, K. W. Kim, and G. Yamazaki, Project scheduling
using hybrid genetic algorithm with fuzzy logic controller in
SCM Environment, J. Tsinghua Sci. Technol., 8(1):19–29,
2003.

60. K. W. Kim, M. Gen, and G. Yamazaki, Hybrid genetic algorithm
with fuzzy logic for resource-constrained project scheduling,
Applied Soft Comp., 2(3): 174–188, 2003.

61. K. W. Kim, Y. S. Yun, J. M. Yoon, M. Gen, and G. Yamazaki,
Hybrid genetic algorithm with adaptive abilities for resource-
constrained multiple project scheduling, Computers In Indus-
try, 56(2): 143–160, 2005.

62. Y. Tsujimura, M. Gen, and E. Kubota, Solving fuzzy assembly-
line balancing problem with genetic algorithms, Computers &
Industrial Engineering, 29(1/4): 543–547, 1995.

63. M. Gen, Y. Tsujimura, and Y. Li, Fuzzy assembly line balan-
cing using genetic algorithms, Comput. Industrial Engineer.,
31(3/4): 631–634, 1996.

64. J. Rubinovitz and G. Levitin, Genetic algorithm for line bal-
ancing, Internat. J. Production Econ., 41: 343–354, 1995.

14 GENETIC ALGORITHMS



65. E. J. Anderson and M. C. Ferris, Genetic algorithms for com-
binatorial optimization: the assembly line balancing problem,
ORSA J. Computing, 6: 161–173, 1994.

66. Y. Y. Leu, L. A. Matheson, and L. P. Rees, Assembly line
balancing using genetic algorithms with heuristic-generated
initial populations and multiple evaluation criteria, Decision
Sciences, 25: 581–606, 1994.

67. E. Falkenauer, A hybrid grouping algorithm for bin packing, J.
Heuristics, 2: 5–30, 1996.

68. J. Gao, G. Chen, L. Sun, and M. Gen, An efficient approach for
type II robotic assembly line balancing problems, Comp.
Industr. Engineer., In press.

69. D. Turbide, Advanced planning and scheduling (APS) systems,
Midrange ERP Magazine, 1: 1998.

70. C. Moon, J. S. Kim, and M. Gen, Advanced planning and
scheduling based on precedence and resource constraints for
e-plant chains, Internat. J. Product. Res., 42(15): 2941–2955,
2004.

71. C. Moon and Y. Seo, Evolutionary algorithm for advanced
process planning and scheduling in a multi-plant, Comp.
Indust. Engineer., 48(2): 311–325, 2005.

72. H. Zhang, M. Gen, and Y. Seo, An effective coding approach for
multiobjective integrated resource selection and operation
sequences problem, J. Intelli. Manufact., 17(4): 385–397, 2006.

73. H. Zhang, Study on evolutionary scheduling problems in inte-
grated manufacturing system, Ph.D. dissertation, Tokyo,
Japan: Waseda University, 2006.

74. L. Lin, S. W. Shinn, M. Gen, and H. Hwang, Network model and
effective evolutionary approach for AGV dispatching in man-
ufacturing system, J. Intelli. Manufact., 17(4): 465–477, 2006.

75. J. Guo, Third-party logistics - key to rail freight development in
China, Japan Railway Transp. Rev., 29: 32–37, 2001.

76. F. Hitchcock, The distribution of a product from several sources
to numerous locations, J. of Math. Physics, 20: 224–230, 1941.

77. M. Gen and Y. Z. Li, Solving multi-objective transportation
problem by spanning tree-base genetic algorithm, Adaptive
Comput. Design Manufactu., 98–108, 1998.

78. J. Taniguchi, X. Wang, M. Gen and T. Yokota, Hybrid genetic
algorithm with fuzzy logic controller for obstacle location-allo-
cation problem, IEEE Trans. Electron., Informat. Syst.,
124(10): 2027–2033, 2004.

79. M. Gen, F. Altiparamk, and L. Lin, A genetic algorithm for two-
stage transportation problem using priority-based encoding,
OR Spectrum, 28(3): 337–354, 2006.

80. F. Altiparmak, M. Gen, L. Lin, and T. Paksoy, A genetic
algorithm approach for multi-objective optimization of supply
chain networks, Comp. Industr. Engineer., 51(1): 197–216,
2006.

81. F. Altiparmak, M. Gen, L. Lin, and I. Karaoglan, A steady-state
genetic algorithm for multi-product supply chain network
design, Computers Industr. Engineer., In press.

82. L. Lin, M. Gen, and X. Wang, Integrated multistage logistics
network design by using hybrid evolutionary algorithm, Com-
put. Indust. Engineer., In press.

83. P. Kampstra, R. D. Mei, and A. E. Eiben, Evolutionary comput-
ing in telecommunication network design: a survey, 2006.

Available: http://www.math.vu.nl/�mei/articles/2006/kamp-
stra/art.pdf.

84. M. Gen and M. Yoo, Real time tasks scheduling using hybrid
genetic algorithm, in Computational Intelligence in Multime-
dia Processing, Ella-Aboul Hassanien (ed.), Berlin: Springer
Verlag, 2007.

85. M. Gen and Y. S. Yun, Soft computing approach for reliability
optimization: state-of-the-art survey, Reliabil. Engineer. Syst.
Safety, 91(9): 1008–1026, 2006.

FURTHER READING

L. Fogel, A. Owens, and M. Walsh, Artificial Intelligence through
Simulated Evolution, New York: John Wiley & Sons, 1966.

J. R. Koza, Genetic Programming, Cambridge, MA: MIT Press,
1992.

J. R. Koza, Genetic Programming II, Cambridge, MA: MIT Press,
1994.

S. Kobayashi, Foundations of genetic algorithms and its applica-
tions, Communications of ORSJ, 45: 256–261, 1993.

B. Sendhoff, M. Kreuts, and W. Seelen, A condition for the genotype
phenotype mapping: casualty, Proc. 7th Inter. Conf. on GAs, San
Francisco, CA, 1997, pp. 354–361.

L. Davis, ed., Handbook of Genetic Algorithms, New York: Van
Nostrand Reinhold, 1991.

B. Julstrom, What have you done for me lately? Adapting operator
probabilities in a steady-state genetic algorithm, Proc. 6th Inter.
Conf. on Genetic Algorithms, San Francisco, CA, 1995, pp. 81–87.

J. Horn, N. Nafpliotis, and D. Goldberg, A niched pareto genetic
algorithm for multiobjective optimization, Proc. 1st IEEE Conf. on
Evolutionary Computation, 1994, pp. 82–87.

T. Murata, H. Ishibuchi, and H. Tanaka, Multiobjective genetic
algorithm and its application to flowshop scheduling, Comput.
Industr. Engineering, 30(4): 957–968, 1996.

D. Goldberg and J. Richardson, Genetic algorithms with sharing
for multimodal function optimization, Proc. 2nd Inter. Conf. on
Genetic Algorithms, 1987, pp. 41–49.

C. Fonseca and P. Fleming, Genetic algorithms for multiobjective
optimization: formulation, discussion and generalization, Proc. 5th
Inter. Conf. on Genetic Algorithms, 1993, pp. 416–423.

N. Srinivas and K. Deb, Multiobjective function optimization
using nondominated sorting genetic algorithms, Evolutionary
Computation, 3: 221–248, 1995.
M. Gen, K. W. Kim, and G. Yamazaki, Project scheduling using
hybrid genetic algorithm with fuzzy logic controller in SCM
Environment, J. Tsinghua Sci. Technol., 8(1): 19–29, 2003.

MITSUO GEN

LIN LIN

Waseda University
Kitakyushu, Japan

GENETIC ALGORITHMS 15



G

GRANULAR COMPUTING

INTRODUCTION

Granular computing (GrC) is a term coined in 1997 as the
name of an emerging and fast-growing research area in
computer science and related fields (1,2). In its short history
of 10 years, we have already witnessed a rapid development
and extensive results (1,3–15).

A granule, the basic notion of granular computing, may
be interpreted as one of the numerous small particles
forming a larger unit. Collectively, they provide a repre-
sentation of the unit with respect to a particular level of
granularity. The central idea of the new paradigm of gran-
ular computing is the conceptualization and problem sol-
ving at different levels of granularity (12). On the one hand,
one focuses on the suitable level of relevant conceptualiza-
tions without considering irrelevant lower level details. On
the other hand, one changes granularity at different stages
of problem solving.

The ideas of granular computing (i.e., problem solving
under different granularity) have been explored in many
fields, such as artificial intelligence, interval analysis,
quantization, rough set theory, Dempster–Shafer theory
of belief functions, divide and conquer, cluster analysis,
machine learning, programming, databases, and many
others (13,14). Although the subject matters and detailed
formulations are different, the philosophy and the funda-
mental principles remain the same. The main objectives of
granular computing are therefore to extract the common-
ality from a diversity of fields and to study systematically
and formally such domain-independent principles (15,16).
In particular, three perspectives of granular computing
have been identified and studied (16). From the philoso-
phical perspective, granular computing is a way of struc-
tured thinking (17). From the methodological perspective,
granular computing is a general method of structured
problem solving (15,16,18). From the computational per-
spective, granular computing is a new paradigm of struc-
tured information processing (3,4).

Granular computing is used as an umbrella term to
cover theories, methodologies, techniques, and tools that
make use of granules in problem solving (19). However, it
should not be viewed as a simple collection of isolated,
independent, or loosely connected pieces, nor as a simple
restatement of existing results. One needs to re-examine,
re-evaluate, reformulate, summarize, synthesize, combine,
and extend results from existing studies in a unified frame-
work. The introduction of granular computing provides
such a broader context in which one can examine the
inherent connections between concrete models and extract
the abstract ideas and fundamental principles. Granular
computing aims at a wider holistic view of problem solving,
in contrast to narrow and fragmented views.

Bohm and Peat argued that science must go beyond
a fragmented view of nature (20). Their argument is

applicable to the study of granular computing. Therefore,
we introduce and formulate granular computing as a way of
thinking and a general method of problem solving that
embraces a variety of concrete theories and methods.

EXEMPLAR MODELS OF GRANULAR COMPUTING

Historically speaking, the explicit consideration of granu-
lar computing is from the studies of the theories of fuzzy
sets and rough sets (1,3,21–23). The concept of granular
computing is developed based on the notion of information
granulation first discussed by Zadeh in 1979 (24). Unfortu-
nately, not much attention has been paid to information
granulation until the publication of a seminal paper in 1997
(14). The attention to granular computing is also generated,
to a large extent, by studies of rough set theory (25,26). It is
through the study of this concrete model that one gains
appreciation for the potential usefulness of granular com-
puting in general (1,23).

Granular Computing in Fuzzy Set Theory

In his 1997 paper, Zadeh discussed a general framework of
granular computing within the fuzzy set theory (14). Gran-
ules are constructed and defined based on the concept of
generalized constraints. Relationships between granules
are represented in terms of fuzzy graphs or fuzzy if-then
rules. The associated computation method is known as
computing with words (27).

Let X be a variable taking values in a universe U. A
generalized constraint on the values of X can be expressed
as X isr R, where R is a constraining relation, isr is a
variable copula, and r is a discrete variable whose value
defines the way in which R constrains X. Examples of
constraints are equality, possibilistic, probabilistic, fuzzy,
and veristic constraints. For example, an equality con-
straint, r = e, is given by X ise R, which means X = R. A
possibilistic constraint, r = blank, is given by X is R, where R
is a possibility distribution of X. With the introduction of
generalized constraints, a granule is defined by a fuzzy set:

G ¼ fXjX isr Rg (1)

Depending on the types of constraints, various classes of
granules can be obtained. From simple granules, one may
obtain Cartesian granules by considering combinations of
constraints (14).

One may label granules by natural language words,
which establishes a basis for computing with words. As
one of the core components of fuzzy logic, computing with
words deals with fuzzy if-then rules of the form:

if X isr1 A then Y isr2 B (2)

where r1 and r2 may represent different types of con-
straints, although the same type is commonly used. A set

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



of fuzzy if-then rules can be interpreted in terms of a fuzzy
graph. Inference can be carried out using fuzzy if-then rules
or fuzzy graphs (14,27).

More results on granular computing using fuzzy sets can
be found in, for example, references (1–3,6,8,,9,11,21,28).

Granular Computing in Rough Set Theory

Rough set theory is another generalization of classic sets
based on the notion of indiscernibility (25,26). Granulation
is a consequence of indiscernibility of objects. The loss of
information through granulation implies that some subsets
of the universe can only be approximately described.

Let E�U �U denote an equivalence relation on the
universe U. The pair apr ¼ ðU;EÞ is called an approxima-
tion space. The equivalence relation E partitions the set U
into disjoint subsets known as the quotient set U=E. Each
equivalence class may be viewed as a granule consisting of
indistinguishable elements. It is also referred to as an
equivalence granule. A particular semantic interpretation
of equivalence relations is provided based on the notion of
information tables. Two objects are equivalent if they have
exactly the same value with respect to a set of attributes.
Thus, an equivalence granule is characterized by the equal-
ity constraint (29).

An arbitrary set X�U may not necessarily be a union of
some equivalence classes, which implies that one may not
be able to describe X precisely using the equivalence classes
of E. In this case, one may characterize X by a pair of lower
and upper approximations:

aprðXÞ ¼
[

½x�E �X

½x�E;

aprðXÞ ¼
[

½x�E \X 6¼?

½x�E
(3)

where ½x�E ¼ fyjxEyg is the equivalence class containing x.
The lower approximation aprðXÞ is the union of all the
equivalence granules that are subsets of X. The upper
approximation aprðXÞ is the union of all the equivalence
granules that have a nonempty intersection with X.

Based on the approximations of sets, one may perform
data analysis and data mining tasks in information tables,
such as attribute reduction, dependency analysis, and
learning of decision rules (23). Many proposals have been
made regarding granular computing within rough set the-
ory. More results can be found in Refs. 1,5,13,23,29–33.

Granular Computing in a Wider Context

Granular computing using the theories of fuzzy and rough
sets is restricted to a set-theoretic setting, where a granule
is a crisp or fuzzy subset of a universe. Another set-theoretic
model of granular computing is neighborhood systems, in
which an element is associated with a family of neighbor-
hoods (21,22,30,34,35). Although rough set theory consid-
ers partitions consisting of nonoverlapping granules,
neighborhood systems can deal with both nonoverlapping
and overlapping granules.

There is a need to study granular computing in broader
contexts by moving beyond the set-theoretic setting

(13,15–17). One may treat a granule as an abstract notion
to be concretized in a particular domain. A granule is a
small particle of a whole unit. Different sized granules lead
to different levels of details, which, in turn, enables us to
represent the whole using multiple levels, multiple resolu-
tions, or hierarchies. Granular computing is, therefore,
viewed as a way of thinking using multilevel granularity.

Depending on particular problems, one may consider
granulated theories, granulated maps, granulated solu-
tions, granulated plans, and so on. By considering granular
computing in a wider context, one can extract the basic
principles from a diversity of fields, including concept for-
mation, clustering, abstraction, machine learning, data
mining, programming, theorem proving, and many more
(13,15,16). It is within this wider context that one can
appreciate the power, effectiveness, flexibility, and general
applicability of granular computing as a way of thinking
and as a general method of problem solving.

GRANULAR COMPUTING AS A WAY OF THINKING

Problem solving in general is an extremely complex process
and involves many different techniques. It might be diffi-
cult to give a universally effective method or to design a set
of precise instructions for problem solving. Nevertheless,
the basic processes and the systematic ways of thinking are
common elements of problem solving, regardless of any
particular problem to be solved. From the philosophical
and conceptual points of view, granular computing con-
cerns a way of thinking that underlies human problem
solving. It is based on our perception of the world in multi-
ple levels of granularity and our ability to solve a problem
with differing granularity.

Granular Computing Models Human Problem Solving

Zadeh identified three basic and closely related concepts
that underlie human cognition, namely, granulation, orga-
nization, and causation (14). Granulation decomposes the
whole unit into parts (granules), organization integrates
parts into the whole unit, and causation involves associa-
tion of causes and effects. Yager and Filev argued that
humans have developed a granular view of the world and
objects that we perceive, measure, conceptualize, and rea-
son are granular (28). It is evident that granulation plays a
central role in human perception and problem solving.

Granular computing, therefore, reflects naturally the
ways in which humans granulate information and reason
with it. In fact, models of granular computing are the
formalization of ideas and principles of human problem
solving. The effectiveness, flexibility, and adaptivity of
human problem solving suggest that such a formulation
is rational and may lead to useful problem-solving theories
and tools.

The basic ideas and principles of granular computing
have been investigated under different names such as
abstraction and granularity in artificial intelligence. Hobbs
proposed a theory of granularity (12). The theory is moti-
vated by the fact that humans view the world under various
grain sizes and abstract only those things relevant to the
present interests (12). Human intelligence and flexibility,

2 GRANULAR COMPUTING



to a large degree, depend on the ability to conceptualize the
world at different granularity and to switch granularity.
With the theory of granularity, we can map the complex-
ities of the real world around us into simpler theories that
are computationally tractable to reason in. Based on simi-
lar motivations, Giunchigalia and Walsh proposed a theory
of abstraction (36). Abstraction can be thought of as the
process that allows us to consider relevant materials and to
forget irrelevant details that would get in the way of what
we are trying to do. The theory of abstraction may be viewed
as a model of granular computing that subsumes many
existing studies.

Granular Computing is Motivated by Practical Needs

Human problem-solving skills may be considered as the
result of a long time adaptation to the environments. The
practical reasons that motivate human adaptation also
motivate the study of granular computing.

In many situations, when a problem involves incom-
plete, uncertain, or vague information, it may be difficult to
differentiate distinct elements and one is forced to consider
granules (23,25,26). Both theories of fuzzy and rough sets
can be interpreted based on the similarity of objects. They
are motivated by the practical needs to describe physically
existing and ill-defined granules.

In some situations, although detailed information may
be available, it may be sufficient to use granules to have an
efficient and practical solution. In fact, very precise solu-
tions may not be required at all for many practical pro-
blems. It may also happen that the acquisition of precise
information is too costly, and coarse-grained information
reduces cost (14). These observations suggest a basic guid-
ing principle of fuzzy logic: ‘‘Exploit the tolerance for impre-
cision, uncertainty, and partial truth to achieve tractability,
robustness, low solution cost, and better rapport with rea-
lity’’ (14). This principle offers a more practical philosophy
for real-world problem solving. Instead of searching for the
optimal solution, one may search for good approximate
solutions. One only needs to examine the problem at a finer
granulation level with more detailed information when
there is a need or benefit for doing so (19).

Through granulation and abstraction, irrelevant details
are filtered out, which may enable us to observe high-level
structures and organizations that may not be easily seen
otherwise. Granulation leads to a high-level organization,
which provides a remedy for our inability to grasp every
detailed aspect of a large problem. For example, the gran-
ulation of ideas in a scientific paper produces an organiza-
tion in terms of title, keywords, abstract, section headings,
and subsection headings, which greatly improves the read-
ability as well as our understanding of the paper (37).

The necessity of information granulation, as well as the
simplicity and efficiency derived from information granu-
lation, may account for the popularity of granular comput-
ing.

Granular Computing is Consistent with the Organization of
Knowledge

Every concept is understood as a unit of thought consisting
of two parts, the intension and the extension of the concept

(38–40). The intension of a concept consists of all properties
or attributes that are valid for all those objects to which the
concept applies. The extension of a concept is the set of
objects or entities that are instances of the concept. All
objects in the extension have the same properties that
characterize the concept. In other words, the intension of
a concept is an abstract description of common features or
properties shared by elements in the extension, whereas
the extension consists of concrete examples of the concept.
A concept is thus described jointly by its intension and
extension. This formulation enables us to study concepts in
a logic setting in terms of intensions and also in a set-
theoretic setting in terms of extensions. The descriptions of
granules characterize concepts from the intension point of
view, whereas granules themselves characterize concepts
from the extension point of view. Through the connections
between extensions of concepts, one may establish relation-
ships between concepts (41,42).

In characterizing human knowledge, one needs to con-
sider two topics, namely, context and hierarchy (43).
Knowledge is contextual and hierarchical. A context in
which concepts are formed provides meaningful interpre-
tation of the concepts. Knowledge is organized in a tower or
a partial ordering. The base-level, or first-level, concepts
are the most fundamental concepts, and higher level con-
cepts depend on lower level concepts. To some extent,
granulation and inherent hierarchical granulation struc-
tures reflect naturally the way in which human knowledge
is organized. The construction, interpretation, and descrip-
tion of granules and granulations are of fundamental
importance in the understanding, representation, organi-
zation, and synthesis of data, information, and knowledge.

GRANULAR COMPUTING AS A GENERAL METHOD OF
PROBLEM SOLVING

The underlying ideas of granular computing have been
used either explicitly or implicitly for solving a wide diver-
sity of problems. To illustrate its effectiveness and flex-
ibility as a general method of problem solving, a few
examples are discussed.

One-Dimensional Granulation

In problem solving, it is common to represent a certain
physical property based on a quantitative measure. A
quantitative measure may be viewed as a homomorphism
from a set of objects to the set of real numbers (44). The set of
real numbers is a linear order under the relation �. Gran-
ular computing based on the granulation of a linear order is
therefore useful in many applications.

Suppose ðL;�Þ is linearly ordered set with a linear order
�. A useful granulation of L is given by considering inter-
vals of L. Given two elements a; b2L, a closed interval of L
is defined by:

½a; b� ¼ fx2Lja� x� bg (4)

which is a subset of L. One can lift operations on L to
operations on intervals of L based on the concept of power
algebras (19,45). Let 0 be a unary operation and � a binary

GRANULAR COMPUTING 3



operation on L. The lifted operations on intervals of L, also
denoted by 0 and �, are defined by:

½a; b�0 ¼ fx0jx2 ½a; b�g;
½a; b� � ½c;d� ¼ fx � yjx2 ½a; b�; y2 ½c;d�g (5)

for intervals ½a; b�and ½c;d�. In general, the lifted operations
on intervals may not be closed. That is, they may not
produce intervals of L. Based on the relation �, we can
define four relations on intervals:

½a; b�� � �½c;d�, 8 x2 ½a; b� 8 y2 ½c;d�x� y;
½a; b�� � �½c;d�, 8 x2 ½a; b� 9 y2 ½c;d�x� y;
½a; b�� � �½c;d�, 9 x2 ½a; b� 8 y2 ½c;d�x� y;
½a; b�� � �½c;d�, 9 x2 ½a; b� 9 y2 ½c;d�x� y

(6)

for intervals ½a; b� and ½c;d�. Additional relations can be
defined on intervals by considering ½a; b� and ½c;d� as two
subsets of L. For example, we say that the two intervals
overlap if ½a; b� \ ½c;d� 6¼? and disjoin otherwise. Similarly,
½a; b� is a subinterval of ½c;d� if ½a; b� � ½c;d�.

Concrete models of granular computing based on 1-D
granulation are interval analysis (46), temporal granula-
tion, and reasoning (47–51).

1-D granulations can be easily extended into partially
ordered sets, such as Boolean algebras and lattices.
Interval set algebra is an example of such an extension
(52).

High-Dimensional Granulation

1-D granulations can be extended to 2-D granulations by
considering a pair of linear orders ðL1;�1Þ and ðL2;�1Þ. In
this case, we have the Cartesian product L1 � L2. Corre-
sponding to an interval, we define a granule as a rectangle
in the 2-D space. If the 2-D space is an Euclidean space, we
can define a distance function between two points. A gran-
ule can also be a circle with a particular radius.

Spatial granulation and reasoning is an example of 2-D
granulation (48,53). Another example of 2-D granulation is
the hierarchical coding and progressive transmission of
images (55).

The idea of extending a 1-D granulation to a 2-D gran-
ulation can be applied to study high-dimensional granula-
tions.

Top-Down Programming

The top-down programming is an effective technique to deal
with the complex problem of programming, which is based
on the notions of structured programming and stepwise
refinement (55). The principles and characteristics of the
top-down design and stepwise refinement, as discussed by
Ledgard, etal. (55), providea convincing demonstration that
granular computing is a general method of problem solving.

According to Ledgard et al. (55), the top-down program-
ming approach has the following characteristics:

Design in Levels. A level consists of a set of modules. At
higher levels, only a brief description of a module is given.
The details of a module are to be refined, divided into
smaller modules, and developed in lower levels.

Initial Language Independence. The initial levels focus on
expressions that are relevant to the problem solution, with-
out explicit reference to machine- and language-dependent
features.

Postponement of Details to Lower Levels. The higher
levels concern critical and broad issues and the structure
of the problem solution. The details such as the choice of
specific algorithms and data structures are postponed to
lower levels.

Formalization of Each Level. Before proceeding to a lower
level, one needs to obtain a formal and precise description of
the current level, which ensures a full understanding
regarding the structure of the current sketched solution.

Verification of Each Level. The sketched solution at each
level must be verified so that errors pertinent to the current
level will be detected.

Successive Refinements. Top-down programming is a
successive refinement process. Starting from the top level,
each level is redefined, formalized, and verified until one
obtains a complete program.

In terms of granular computing, program modules cor-
respond to granules, and levels of the top-down program-
ming correspond to different levels of granularity. One can
immediately see that those characteristics also hold for
granular computing in general.

Top-down programming offers a general top-down
problem-solving method, which may be considered as the
core of granular computing. The hierarchical organization
of human knowledge makes the top-down approach an
effective way of problem solving.

By observing the systematic way of top-down program-
ming, some authors suggest that the similar approach can
be used in developing, teaching, and communicating math-
ematical proofs (56,57). Leron proposed a structured
method for presenting mathematical proofs (57). The
main objective is to increase the comprehensibility of math-
ematical presentations and at the same time retain their
rigor. The traditional linear fashion presents a proof step-
by-step from hypotheses to conclusion. In contrast, the
structured method arranges the proof in levels and pro-
ceeds in a top-down manner. Like the top-down, stepwise
refinement programming approach, a level consists of short
autonomous modules, each embodying one major idea of the
proof to be further concretized in the subsequent levels. The
top level is a very general description of the main line of the
proof. The second level elaborates on the generalities of the
top level by supplying proofs of unsubstantiated state-
ments, details of general descriptions, and so on. For
some more complicated tasks, the second level only gives
a brief description and the details are postponed to the
lower levels. The process continues by supplying more
details of the higher levels until a complete proof is reached.

TWO BASIC ISSUES OF GRANULAR COMPUTING

The two related basic issues of granular computing are
granulation and computing with granules (13,19). The

4 GRANULAR COMPUTING



former deals with the formation, representation, and inter-
pretation of granules, whereas the latter deals with the use
of granules in problem solving. They can be studied from
the semantic and algorithmic aspects, respectively (4,19).

Semantic Studies versus Algorithmic Studies

The interpretation of granules focuses on the semantic side
of granule constructions. It addresses the question of why
two objects are put into the same granule. Typically, ele-
ments in a granule are drawn together by indistinguish-
ability, similarity, proximity, or functionality (14).
Furthermore, information granulation depends on the
available knowledge. In the construction of granules, it is
necessary to study criteria for deciding whether two ele-
ments should be put into the same granule based on avail-
able information. In other words, one must provide
necessary semantic interpretations for notions such as
indistinguishability, similarity, and proximity. It is also
necessary to study granulation structures derivable from
various granulations of the universe (13). The formation
and representation of granules deal with algorithmic issues
of granule construction. They address the problem of how to
put two objects into the same granule. Algorithms need to
be developed for constructing granules efficiently.

Computation with granules can be similarly studied
from both the semantic and algorithmic aspects. On the
one hand, one needs to interpret various relationships
between granules such as closeness, dependency, and asso-
ciation, and to define and interpret operations on granules.
On the other hand, one needs to design methodologies and
tools for computing with granules such as approximation,
reasoning, and inference.

Both the semantic and algorithmic aspects of granular
computing are important. However, many existing meth-
ods of granular computing do not pay enough attention to
the semantic aspect. It is equally, if not more, important to
investigate semantic issues involved in granular comput-
ing. The results may provide not only interpretations and
justifications for a particular granular computing model,
but also guidelines that prevent possible misuses of the
model. The results from algorithmic study may lead to
efficient and effective granular computing methods and
tools.

Granulation

The notion of granulation can be studied in many different
contexts. A family of granules collectively is referred to as a
granulation of a problem. The granulation of a problem,
particularly the semantics of granulation, is domain- and
application-dependent. Nevertheless, one can still identify
some domain-independent issues (13).

Granulation Criteria. A granulation criterion deals with
the semantic interpretation of granules and addresses the
question of why two objects are put into the same granule.

Granulation Structures. It is necessary to study granula-
tion structures derivable from various granulations of the
universe. Two structures can be observed: the structure
of individual granules and structure of a granulation.

Multilevel granulations produce a natural hierarchical
structure (53,58–60).

Granulation Methods. A granulation method addresses
the problem of how to put two objects into the same granule.
The construction process can be modeled as either top-down
or bottom-up. A top-down process divides large granules,
whereas a bottom-up process combines smaller granules.
Both processes lead naturally to a hierarchical organiza-
tion of granules and granulations (33,58).

Representation/Description of Granules. Another sema-
ntics-related issue is the interpretation of the results of a
granulation method. Once constructed, it is necessary to
describe, name, and label granules using certain lan-
guages.

Quantitative Characteristics of Granules and Granulations.
One can associate quantitative measures to granules and
granulations to capture their features.

These issues can be understood by examining a concrete
example of granulation known as the cluster analysis (61),
which can be done by simply changing granulation into
clustering and granules into clusters. Clustering structures
may be hierarchical or nonhierarchical, exclusive or over-
lapping. Typically, a similarity or distance function is used
to define the relationships between objects. Clustering
criteria may be defined based on the similarity or distance
function and the required cluster structures. For example,
one would expect strong similarities between objects in the
same cluster and weak similarities between objects in
different clusters. Many clustering methods have been
proposed and studied, including the families of hierarchical
agglomerative, hierarchical divisive, iterative partitioning,
density search, factor analytic, clumping, and graph theo-
retic methods (62). Cluster analysis can be used as an
exploratory tool to interpret data and find regularities
from data (61). This process requires the active participa-
tion of experts to interpret the results of clustering methods
and judge their significance. A good representation of clus-
ters and their quantitative characterizations may make the
task of exploration much easier.

Computing and Reasoning with Granules

A granulated view summarizes available information and
knowledge about a problem. As a basic task of granular
computing, one can examine and explore further relation-
ships between granules at a lower level and relationships
between granulations at a higher level (13).

Mappings Between Different Level of Granulations. In a
granulation hierarchy, the connections between different
levels of granulations can be described by mappings.
Giunchglia and Walsh considered an abstraction as a
mapping between a pair of formal systems in the devel-
opment of a theory of abstraction (36). A mapping links
different representations of the same problem at different
levels of detail. One can classify and study different
types of granulations by focusing on the properties of
the mappings (36).

GRANULAR COMPUTING 5



Granularity Conversion. A basic task of granular com-
puting is to change views with respect to different levels of
granularity. As we move from one level of detail to another,
we need to convert the representation of a problem accord-
ingly (36,49). A move to a more detailed view may reveal
information that otherwise cannot be seen, whereas a move
to a simpler view can improve the high-level understanding
by omitting irrelevant details of the problem
(12,14,36,49,60).

Property Preservation. Granulation allows different
representations of the same problem in different levels of
detail. It is naturally expected that the same problem must
be consistently represented (49). A granulation and its
related computing methods are meaningful only if they
preserve certain desired properties (36,60).

Operators. The relationship between granules at differ-
ent levels and conversion of granularity can be precisely
defined by operators (49,59). They serve as the basic build-
ing blocks of granular computing. There are at least two
types of operators that can be defined. One type deals with
the shift from a fine granularity to a coarse granularity. A
characteristic of such an operator is that it will discard
certain details, which makes distinct objects no longer
differentiable. Depending on the context, many interpreta-
tions and definitions are available, such as abstraction,
simplification, generalization, coarsening, zooming-out,
and so on (12,36,51,59,60,63,64). The other type deals
with the change from a coarse granularity to a fine gran-
ularity. A characteristic of such an operator is that it will
provide more details so that a group of objects can be further
classified. They can be defined and interpreted differently,
such as articulation, specification, expanding, refining,
zooming-in, and so on (2,36,51,59,60,63,64). Other types
of operators may also be defined. For example, with the
granulation, one may not be able to exactly characterize an
arbitrary subset of a fine-grained universe in a coarse-
grained universe, which leads to the introduction of approx-
imation operators in rough set theory (26,52).

Granular computing methods describe our ability to
switch granularity in problem solving. Detailed and
domain-specific methods can be developed by elaborating
these issues with explicit reference to an application.

CONCLUSION

Granular computing is introduced from two perspectives:
as a way of thinking and as a general method of problem
solving. The former perspective concerns the philosophical
investigation and conceptual formulation. The results sug-
gest that a general method for problem solving can be
described based on granular computing.

The introduction of granular computing provides a uni-
fied and general framework to integrate a number of frag-
mentary studies that either explicitly or implicitly adopt
similar or the same ideas and principles. The fields that
have strong influences on granular computing are the
theories of fuzzy and rough sets, cognitive science, and
artificial intelligence.

Thesubjectofgranularcomputingcanbestudiedbyusing
its own principles, namely, formulation and investigation at
different levels of granularity. We focus on a high-level
examination of granular computing, although some details
are discussed. The significance of granular computing lies in
its basic principles that are common to problem solving.

BIBLIOGRAPHY

1. T. Y. Lin, Y. Y. Yao, and L. A. Zadeh (eds.), Rough Sets,
Granular Computing and Data Mining, Heidelberg: Physica-
Verlag, 2002.

2. L. A. Zadeh, Some reflections on soft computing, granular
computing and their roles in the conception, design and utili-
zation of information/intelligent systems, Soft Computing, 2:
23–25, 1998.

3. A. Bargiela, and W. Pedrycz, Granular Computing: An Intro-
duction, Boston, MA: Kluwer Academic Publishers, 2002.

4. A. Bargiela, and W. Pedrycz, The roots of granular computing,
Proc. 2006 IEEE International Conference on Granular Com-
puting, Atlanta, 2006, pp. 806–809.

5. X. H. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, and B.
Zhang, (eds.), Proc. 2005 IEEE International Conference on
Granular Computing, Beijing, 2005.

6. M. Inuiguchi, S. Hirano, and S. Tsumoto, (eds.), Rough Set
Theory and Granular Computing, Berlin: Springer, 2003.

7. Journal of Nanchang Institute of Technology, special issue of
The Proceedings of the International Forum on Theory of GrC
from Rough Set Perspective, 2006.

8. W. Pedrycz, (ed.), Granular Computing: An Emerging Para-
digm, Berlin: Springer-Verlag, 2001.

9. G. Wang, Q. Liu, Y. Y. Yao, and A. Skowron, (eds.), Rough Sets,
Fuzzy Sets, Data Mining, and Granular Computing, LNAI
2639, Berlin: Springer, 2003.

10. Y. Q. Zhang, and T. Y. Lin, (eds.), Proc. of the 2006 IEEE
International Conference on Granular Computing, Atlanta,
2006.

11. N. Zhong, A. Skowron, and S. Ohsuga (eds.), New Directions in
Rough Sets, Data Mining, and Granular-Soft Computing,
LNAI 1574, Berlin: Springer, 1999.

12. J. R. Hobbs, Granularity, Proc. Ninth Internation Joint Confer-
ence on Artificial Intelligence, Los Angeles, 1985, pp. 432–435.

13. Y. Y. Yao, A partition model of granular computing, LNCS
Trans. Rough Sets, 1: 232–253, 2004.

14. L. A. Zadeh, Towards a theory of fuzzy information granulation
and its centrality in human reasoning and fuzzy logic, Fuzzy
Sets and Systems, 19: 111–127, 1997.

15. Y. Y. Yao, Perspectives of granular computing, Proc. 2005
IEEE International Conference on Granular Computing, Vol.
1, Beijing, 2005, pp. 85–90.

16. Y. Y. Yao, Three perspectives of granular computing, J.
Nanchang Instit. Technol., 25: 16–21, 2006.

17. Y. Y. Yao, Granular computing, Comp. Sci. (Ji Suan Ji Ke Xue),
31: 1–5, 2004.

18. Y. Y. Yao, The art of Granular computing, Rough Sets and
Intelligent System Paradigms, LNAI, Berlin: Springer, 2007,
101–112.

19. Y. Y. Yao, Granular computing: basic issues and possible
solutions, Proc. 5th Joint Conference on Information Sciences,
Atlantic City. NJ, 2000, pp. 186–189.

20. D.Bohm, and F. D. Peat, Science, Order, and Creativity, 2nd ed.,
London: Routledge, 2000.

6 GRANULAR COMPUTING



21. T. Y. Lin, From rough sets and neighborhood systems to
information granulation and computing in words, Proc. Eur-
opean Congress on Intelligent Techniques and Soft Computing,
Aachen, Germany, 1997, pp. 1602–1606.

22. T. Y. Lin, and C. J. Liau, Granular computing and rough sets, in
O. Maimon, and L. Rokach (eds.), The Data Mining and Knowl-
edge Discovery Handbook, Berlin: Springer, 2005, pp. 535–561.

23. Z. Pawlak, Granularity of knowledge, indiscernibility and
rough sets, Proc. 98 IEEE International Conference on Fuzzy
Systems, Anchorage, AK, 1998, pp. 106–110.

24. L. A. Zadeh, Fuzzy sets and information granularity, in N. Gupta,
R. Ragade, and R. Yager, (eds.), Advances in Fuzzy Set Theory
and Applications, Amsterdam: North-Holland, 1979, pp. 3–18.

25. Z. Pawlak, Rough sets, Int. J. Comp. Inform. Sci., 11: 341–356, 1982.

26. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Data, Boston, MA: Kluwer Academic Publishers, 1991.

27. L. A. Zadeh, Fuzzy logic = computing with words, IEEE Trans-
actions on Fuzzy Systems, 4: 103–111, 1996.

28. R. R. Yager, and D. Filev, Operations for granular computing:
mixing words with numbers, Proc. 1998 IEEE International
Conference on Fuzzy Systems, Anchorage, AK, 1998, pp. 123–128.

29. Y. Y. Yao, and N. Zhong, Granular computing using informa-
tion tables, in T. Y. Lin, Y. Y. Yao, and L. A. Zadeh, (eds.), Data
Mining, Rough Sets and Granular Computing , Heidelberg:
Physica-Verlag, 2002, pp. 102–124.

30. T. Y. Lin, Granular computing on binary relations I: data
mining and neighborhood systems, II: rough set representa-
tions and belief functions, in A. Skowron, and L. Polkowski,
(eds.), Rough Sets in Knowledge Discovery 1, Heidelberg:
Physica-Verlag, 1998, pp. 107–140.

31. L. Polkowski, and A. Skowron, Towards adaptive calculus of
granules, Proc. 1998 IEEE International Conference on Fuzzy
Systems, Anchorage, AK, 1998, pp. 111–116.

32. A. Skowron, and J. Stepaniuk, Information granules: Towards
foundations of granular computing, Int. J. Intell. Sys., 16:
57–85, 2001.

33. Y. Y. Yao, Information granulation and rough set approxima-
tion, Int. J. Intell. Sys., 16: 87–104, 2001.

34. T. Y. Lin, Granular computing: structures, representations,
applications and future directions, Rough Sets, Fuzzy Sets,
Data Mining, and Granular Computing, LNAI 2639, Berlin:
Springer, 2003, 16–24.

35. Y. Y. Yao, Granular computing using neighborhood systems, in
R. Roy, T. Furuhashi, and P. K. Chawdhry, (eds.), Advances in
Soft Computing: Engineering Design and Manufacturing,
London: Springer-Verlag, 1999, pp. 539–553.

36. F. Giunchglia, and T. Walsh, A theory of abstraction, Artif.
Intell., 56: 323–390, 1992.

37. Y. Y. Yao, Granular computing for the design of information
retrieval support systems, in W. Wu, H. Xiong, and S. Shekhar,
(eds.), Information Retrieval and Clustering, Dordrecht, The
Netherlands: Kluwer Academic Publishers, 2004, pp. 299–329.

38. J. F. Sowa, Conceptual Structures, Information Processing in
Mind and Machine, Reading, MA: Addison-Wesley, 1984.

39. I. van Mechelen, J. Hampton, R. S. Michalski, and P. Theuns,
(eds.), Categories and Concepts, Theoretical Views and Induc-
tive Data Analysis, New York: Academic Press, 1993.

40. R. Wille, Concept lattices and conceptual knowledge systems,
Comput. Mathemat. Appl., 23: 493–515, 1992.

41. Y. Y. Yao, Modeling data mining with granular computing,
Proc. 25th Annual International Computer Software and
Applications Conference, Chicago, 2001, pp. 638–643.

42. Y. Y. Yao, A step towards the foundations of data mining, in B.
V. Dasarathy, (ed.), Data Mining and Knowledge Discovery:

Theory, Tools, and Technology V, The International Society for
Optical Engineering, 2003, pp. 254–263.

43. L. Peikoff, Objectivism: the Philosophy of Ayn Rand, New York:
Dutton, 1991.

44. F. S. Roberts, Measurement Theory, Reading, MA: Addison-
Wesley, 1979.

45. C. Brink, Power structures, Algebra Universalis, 30: 177–216, 1993.

46. R. E. Moore, Interval Analysis, Englewood NJ: Prentice-Hall,
Cliffs, 1966.

47. J. F. Allen, Maintaining knowledge about temporal intervals,
Comm. ACM, 26: 832–843, 1983.

48. C. Bettini, and A. Montanari, (eds.), Spatial and Temporal
Granularity: Papers from the AAAI Workshop, Technical
Report WS-00–08, Menlo Park, CA: The AAAI Press, 2000.

49. L. Zhang, and B. Zhang, The quotient space theory of problem
solving, Fundamenta Informatcae, 59: 287–298, 2004.

50. J. Euzenat, Granularity in relational formalisms - with appli-
cation to time and space representation, Computat. Intell., 17:
703–737, 2001.

51. K. Hornsby, Temporal zooming, Trans. GIS, 5: 255–272, 2001.

52. Y. Y. Yao, Two views of the theory of rough sets in finite
universes, Int. J. Approximat. Reas., 15: 291–317, 1996.

53. J. G. Stell, and M. F. Worboys, Stratified map spaces: a formal
basis for multi-resolution spatial databases, Proc. 8th Interna-
tional Symposium on Spatial Data Handling, Vancouver,
1998, pp. 180–189.

54. A. Lippman, and W. Butera, Coding image sequences for
interactive retrieval, Comm. ACM, 32: 852–860, 1989.

55. H. F. Ledgard, J. F. Gueras, and P. A. Nagin, PASCAL with
Style: Programming Proverbs, Rechelle Park, NJ: Hayden
Book Company, Inc., 1979.

56. M. Friske, Teaching proofs: A lesson from software engineer-
ing, Amer. Mathemat. Monthly, 92: 142–144, 1995.

57. U. Leron, Structuring mathematical proofs, Amer. Mathemat.
Monthly, 90: 174–185, 1983.

58. N. Jardine, and R. Sibson, Mathematical Taxonomy, NewYork:
Wiley, 1971.

59. G. McCalla, J. Greer, J. Barrie, and P. Pospisil, Granularity
hierarchies, Comp. Mathemat. Appl., 23: 363–375, 1992.

60. B. Zhang, and L. Zhang, Theory and Applications of Problem
Solving, Amsterdam: North-Holland, 1992.

61. M. R. Anderberg, Cluster Analysis for Applications, New York:
Academic Press, 1973.

62. M. S. Aldenderfer and R. K. Blashfield, Cluster Analysis,
London: Sage Publications, The International Professional
Publishers, 1984.

63. G. Shafer, A Mathematical Theory of Evidence, Princeton, NJ:
Princeton University Press, 1976.

64. Y. Y. Yao, C.-J. Liau, and N. Zhong, Granular computing based
on rough sets, quotient space theory, and belief functions, Foun-
dations of Intelligent Systems, LNAI 2871, Berlin: Springer,
2003, 152–159.

YIYU YAO

University of Regina
Regina, Saskatchewan,

Canada

NING ZHONG

Maebashi Institute of
Technology

Maebashi-City, Japan

GRANULAR COMPUTING 7



H

HOPFIELD NEURAL NETWORKS

The development of artificial neural networks has been
motivated by the desire to find improved methods of solving
problems that are difficult for traditional computing soft-
ware or hardware. The success of early neural networks led
to the claim that they could solve virtually any type of
problem. Although this claim was quickly shown to be
overly optimistic, research continued during the 1970s
into the use of neural networks, especially for pattern
association problems. The early 1980s marked the begin-
ning of renewed widespread interest in neural networks. A
key player in the increased visibility of, and respect for,
neural networks is physicist John Hopfield of the California
Institute of Technology. Together with David Tank of
AT&T, Hopfield developed a group of recurrent networks
that are known as Hopfield neural networks (HNNs). The
first of these, the discrete Hopfield neural network
(DHNN), was designed as content addressable memory
(CAM). The continuous Hopfield neural network (CHNN)
can also serve as a CAM, but it is most widely used for
combinatorial optimization problems.

One reason that Hopfield’s work caught the attention
of the scientific community, and the public, was the
close connection between the models and the successful
development of neural network chips by researchers at
AT&T and by Carver Mead and his coworkers. Hopfield’s
emphasis on practical implications made the engineering
connection very strong. By making explicit the relation-
ship between the HNN and electrical circuits, Hopfield
opened the field of neural networks to an influx of physical
theory. Although many concepts incorporated in the
HNN had antecedents in earlier neural network research,
Hopfield and Tank brought them together with both clear
mathematical analysis and strong emphasis on practical
applications (1).

ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) approach to pro-
blem solving is inspired by certain aspects of biological
nervous systems. An ANN is composed of a large number
of very simple processing elements (neurons). The neu-
rons are interconnected by weighted pathways. The
pattern of connection among the neurons is called the
network architecture. At any time, a neuron has a level
of activity, which it communicates to other neurons by
sending it as a signal over these pathways. As the weights
on the pathways contain much of the important informa-
tion in the network, the information is distributed, rather
than localized, as in traditional computers.

Architectures

One of the most basic distinctions between different types of
neural networks is based on whether the network archi-
tecture allows for feedback among the neurons. A fully
interconnected recurrent network is shown in Fig. 1.

Weights

In addition to the design of the ANN architecture, a major
consideration in developing a neural network is the deter-
mination of the connection weights. For many networks,
this is done by means of a training phase, in which known
examples of the desired input–output patterns are pre-
sented to the network and the weights are adjusted accord-
ing to a specified training algorithm. This is especially
typical of feed-forward networks. In the standard Hopfield
networks, the weights are fixed when the network is
designed.

Network Operation

To use a neural network, after the weights are set, an input
pattern is presented and the output signal of each neuron is
adjusted according to the standard process for the specific
ANN model. In general, each neuron sends its output signal
to the other neurons to which it is connected; the signal is
multiplied by the weight on the connection pathway; each
neuron sums its incoming signals. Each neuron’s output
signal is a nonlinear function of its summed input. In a feed-
forward network, these computations are performed one
layer at a time, starting with the input units, and progres-
sing through the network to the output units. For a recur-
rent network, such as an HNN, the updating of each
neuron’s activity level continues until the state of the net
(the pattern of activations) converges. The process differs
for the discrete and continuous forms of HNN; before dis-
cussing the details, we summarize the primary types of
applications for which HNNs are used.

APPLICATIONS OF HOPFIELD NEURAL NETWORKS

Memory in biological systems is fundamentally different
than in a traditional digital computer, in which information
is stored by assigning an address, corresponding to a phy-
sical location, where the data are written. On the other
hand, your memory of an event is a combination of many
sights, sounds, smells, and so on. The idea of associative
memory came from psychology rather than from engineer-
ing, but during the 1970s, much of the neural network
research (especially work by James A. Anderson at Brown
University and Teuvo Kohonon at the University of
Helsinki) focused on the development of mathematical
models of associative (or content addressable) memory.
The use of an energy function analysis facilitates the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



understanding of associative memories that can be con-
structed as electronic ‘‘collective-decision circuits’’ (2).

The process used by biological systems to solve optimi-
zation problems also differs from that used in traditional
computing techniques. Although no claim is made that
neural network approaches to optimization problems
directly model the methods used by biological systems,
ANNs do have some potential advantages over traditional
techniques for certain types of optimization problems.
ANNs can find near-optimal solutions quickly for large
problems. They can also handle situations in which some
conditions are desirable but not absolutely required.
Neural network solutions (and, in particular, HNN) have
been investigated for many applications because of their
potential for parallel computation and computational
advantage when they are implemented with analog very
large-scale integration (VLSI) techniques.

Many other forms of recurrent neural networks have
also been developed. Networks with specific recurrent
structure are used for problems in which the signal varies
with time. Neural networks for the study of learning,
perception, development, cognition, and motor control
also use recurrent structures.

Associative Memory

One important use of an HNN is as an autoassociative
memory, which can store (or memorize) a certain number
of patterns. When a modified form of one of the stored
patterns is presented as input, the HNN can recall the
original pattern after a few iterations.

Before the weights of an associative memory neural net
are determined, the patterns to be stored must be converted
to an appropriate representation for computation. Usually
each pattern is represented as a vector with components
that are either 0 or 1 (binary form) or�1 (bipolar form); the

bipolar form is often computationally preferable for asso-
ciative memory applications. The same representation is
also used for patterns that are presented to the network for
recognition.

Optimization

The second primary area of application for HNNs is com-
binatorial optimization problems. The use of a continuous
HNN for solving optimization problems was first illustrated
for the traveling salesman problem (TSP), a well-known but
difficult optimization problem (3) and a task assignment
problem (2). Since then, HNNs have been applied to opti-
mization problems from many areas, including game the-
ory, computer science, graph theory, molecular biology,
VLSI computer-aided design, reliability, and management
science. Many examples are included in Ref. 4.

The HNN approach is based on the idea that the network
weights and other parameters can be found from an energy
function; the network configuration (pattern of neuron
activations) that produces a minimum of the energy func-
tion corresponds to the desired solution of the optimization
problem. The appropriate choice of energy function for a
particular problem has been the subject of much research.

DISCRETE HOPFIELD NETWORKS

The iterative autoassociative network developed by
Hopfield (5,6) is a fully interconnected neural network,
with symmetric weights and no self-connections, i.e.,
wij ¼ wji and wii ¼ 0. In a DHNN, only one unit updates
its activation at a time (this update is based on the sig-
nals it receives from the other units). The asynchronous
updating of the units allows an energy (or Lyapunov)
function to be found for the network. The existence of
such a function forms the basis for a proof that the net
will converge to a stable set of activations.

Operation

The primary considerations in using a DHNN are deter-
mining the network weights and updating the activations.

Setting the Weights. The earliest version of the DHNN
used binary input vectors; later descriptions are often
based on bipolar inputs. The weight matrix to store a
pattern, represented as the column vector, p ¼ (p1,. . .,
pi,. . . pn)T is the matrix P PT � I. The matrix ppT is known
as the outer or matrix product of the vectors p and pT.
Subtracting the identity matrix has the effect of setting the
diagonal entries to0,which isnecessary toallowthe network
to reconstruct one of the stored patterns when a degraded or
noisy form of the pattern is presented as input. The weight
matrix W in which several patterns are stored is the sum of
the individual matrices generated for each pattern.

Updating the Activations. To use a DHNN to recall a
stored pattern, an input stimulus pattern x is presented
to the network (one component to each neuron). Typically,
the input is similar to one of the stored memories. Each
neuron transmits its signal to all of the other neurons. The

X8

X8

X2

X3

X4

X6

X6

X7

Figure 1. A fully interconnected network allows signals to flow
between neurons.

2 HOPFIELD NEURAL NETWORKS



signal received by the ith neuron is
P

j x j w ji; by the sym-
metry of the weights, this is also the ith row of the product
Wx. One neuron, chosen at random, updates its activation.
Its activation is 1 if the signal it received was non-negative,
i.e., if

P
j x j w ji� 0; the activation is�1 if

P
j x j w ji < 0. The

new pattern is again broadcast to all neurons, and another
neuron is chosen to update its activation. The process
continues until the network reaches a stable state, a con-
figuration of activations that does not change.

Example. To illustrate the use of a DHNN, consider the
following simple example, adapted from Ref. 7. Suppose we
wish to store the three bipolar patterns:

p1¼ ð 1 1 1 1 1ÞT
p2¼ ð 1 � 1 � 1 1 � 1ÞT
p3¼ ð�1 1 � 1 � 1 � 1ÞT

The weight matrix to store these three patterns is
W1 þW2 þW3 ¼W:

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

þ

0 �1 �1 1 �1
�1 0 1 �1 1
�1 1 0 �1 1

1 �1 �1 0 �1
�1 1 1 �1 0

þ

0 �1 1 1 1
�1 0 �1 �1 �1

1 �1 0 1 1
1 �1 1 0 1
1 �1 1 1 0

¼

0 �1 1 3 1
�1 0 1 �1 1

1 1 0 1 3
3 �1 1 0 1
1 1 3 1 0

We present as an input (or probe) vector x ¼ (1, �1, �1, 1,
1)T, which differs from the second stored pattern in only the
last component. To update the network, compute Wx ¼ (4,
�3, 4, 4, �2)T. If the third neuron is chosen, its activation
will change from �1 to 1, because it received a signal of 4.
Using the updated vector of activations, (1, �1, 1, 1, 1)T

gives Wx¼ (6, 0, 4, 6, 4)T. If neuron 1, 3, 4, or 5 is chosen, its
activity will not change, and eventually neuron 2 will be
chosen. As we are using the convention that a neuron’s
activity is set to 1 if it receives a non-negative signal, neuron
2 will change its activation and the updated vector of
activations becomes (1, 1, 1, 1, 1)T, which is the first stored
pattern, but not the stored pattern that is most similar to
the probe. If the fifth neuron had been chosen for the first
update (instead of the third neuron), the network would
have reached the second stored pattern immediately.

This example illustrates both the operation of a DHNN
for use as an associative memory and some of the issues that
must be considered. These include questions concerning
the circumstances under which convergence to a stable
state is guaranteed, the question as to whether that
stable state will be one of the stored patterns (and if so,
will it be the closest pattern to the input?), and the rela-
tionship between the number of stored memories and
the ability of the network to recall the patterns with little
or no error.

Issues

The primary issues concerning the use of a DHNN are
convergence and storage capacity.

Convergence. For any iterative process, it is important
to understand its convergence characteristics. It can be
shown that the general DHNN will converge to a stable
limit point (pattern of activation of the units) by considering
an energy function for the system. An energy function is a
function that is bounded below and is a nonincreasing
function of the state of the system. For a neural network,
the state of the system is the vector of activations of the
units. Thus, if an energy function can be found for an
iterative neural network, the ANN will converge to a stable
set of activations.

The general DHNN allows an external signal yi to be
maintained during processing, so that the total signal
received by neuron Xi is yi þ

P
j x j w ji. The threshold for

determining whether a neuron is ON or OFF may be set to
any desired constant ui; when chosen to update its acti-
vation, a unit will set its activation to ON if

yi þ
X

j

x j w ji� ui

a unit will set its activation to OFF if

yi þ
X

j

x j w ji < ui:

An energy function for the general DHNN described
here is given by

E ¼ �0:5
X
i 6¼ j

X
j

xix jwi j �
X

i

xiyi þ
X

i

uixi ð1Þ

If the activation of the net changes by an amount Dxi, the
energy changes by the corresponding amount

DE ¼ � yi þ
X
i 6¼ j

x j wi j � ui

2
4

3
5Dxi ð2Þ

To show that DE � 0, consider the two cases in which the
activation of neuron Xi will change.

1. If Xi is ON, it will turn OFF if yi þ
P

j x j w ji < ui. This
gives a negative change for xi. As the quantity

yi þ
P

i 6¼ j x j wi j � ui

h i
in the expression for DE is

also negative, we have DE < 0.

2. On the other hand, if Xi is OFF, it will turn ON if
yi þ

P
j x j w ji > ui. This gives a positive change for

xi. As yi þ
P

i 6¼ j x j wi j � ui

h i
is positive in this case,

the result is again that DE < 0.

Therefore, the energy cannot increase. As the energy
is bounded, the net must reach a stable equilibrium

HOPFIELD NEURAL NETWORKS 3



where the energy does not change with further iteration.
This proof uses the fact that the energy change only
depends on the change in activation of one unit, and
that the weight matrix is symmetric. Setting the diagonal
weights to 0 corresponds to the assumption that biological
neurons do not have self-connections. From a computa-
tional point of view, zeroing out the diagonal makes it
more likely that the network will converge to one of
the stored patterns, rather than simply reproducing the
input pattern.

Storage Capacity. In addition to knowing under what
circumstances a Hopfield network is guaranteed to con-
verge, it is also useful to understand how many patterns
may be stored in, and recalled from, such a network.
Although more patterns may be stored if the pattern vec-
tors are orthogonal, that structure cannot be assumed in
general. Therefore, most results are based on the assump-
tion that the patterns to be stored are random. Hopfield
found experimentally that P, the number of binary patterns
that can be stored and recalled with reasonable accuracy, is
given (approximately) by P¼ 0.15 n, where n is the number
of neurons. For a similar DHNN, using bipolar patterns,
it has been found (7) that P ¼ n

2 log2n.

CONTINUOUS HOPFIELD NETWORK

In contrast to the discrete form, the activations of the
neurons in a continuous Hopfield net can take on a con-
tinuous range of values (most often between 0 and 1). The
network dynamics are specified by differential equations
for the change in activations. These differential equations
are intimately connected to the underlying energy function
for the network.

For a CHNN, we denote the internal activity of a neuron
as ui; its output signal is vi ¼ gðuiÞ, where g is a mono-
tonically nondecreasing function of the input signal
received by unit Ui. Most commonly g is taken to be
the sigmoid function v ¼ 0.5 (1 + tanh(a u)), which has
range (0, 1). The parameter a controls the steepness of
the sigmoid. The differential equations governing the
change in the internal activity of each unit are closely
related to the energy function that will be minimized as
the network activations evolve. Either the evolution equa-
tion or the energy function may be specified and the other
relationship derived from it. A standard form for the
energy function is

E ¼ 0:5
Xn

i¼1

Xn

j¼1

wi j viv j þ
Xn

i¼1

ui vi ð3Þ

the corresponding evolution equation is

d

dt
ui ¼ �

@E

@vi
¼ �

Xn

j¼1

wi j v j � ui ð4Þ

CHNNs that are used to solve constrained optimization
problems have several standard characteristics. Each

unit represents a hypothesis; the unit is ON if the hypoth-
esis is true and OFF if the hypothesis is false. The weights
are fixed to represent both the constraints of the problem
and the function to be optimized. The solution of the
problem corresponds to the minimum of the energy func-
tion. Each unit’s activation evolves so that the energy
function decreases.

In the next sections, we illustrate the use of CHNN for
constraint satisfaction and constrained optimization, first
for a very simple example, and then for the well-known
N-queens and TSP problems.

Simple Example

To introduce the use of a CHNN, consider the network
shown in Fig. 2, in which it is desired to have exactly one
unit ON. The weights must be chosen so that the network
dynamics correspond to reducing the energy function.

To have a network that converges to a pattern of
activations that solves a specified problem, it is common
to design the energy function so that its minimum will be
achieved for a pattern of activations that solves the given
problem. For this example, the energy function might be
formulated as

E ¼ 1�
X

i

vi

" #2

so that its minimum value (0) is achieved when exactly
one of the units is ON and the other two units each have
activation of zero. Expanding the energy equation

E ¼ 1� 2 v1 � 2 v2 � 2 v3 þ v2
1 þ v1v2 þ v1 v3 þ v2 v1 þ v2

2

þ v2 v3 þ v1 v3 þ v2 v3 þ v2
3

and comparing it with the standard form given in
Equation 3, shows that ui ¼ �2, and wi j ¼ 1. (Note that
there is a self-connection on each unit; this does not
interfere with the convergence analysis for a CHNN.)
The energy function could also be scaled by a positive
constant factor, if desired.

w23 = w32

w12 = w21 w13 = w31

q 1

q 2 q 3

X1

X2
X3

Figure 2. A simple Hopfield network to illustrate the inter-
relationship between the weights and the energy function.

4 HOPFIELD NEURAL NETWORKS



The differential equations governing the change in the
internal activity ui for each neuron are given by

d

dt
ui ¼ �

@E

@vi
¼ 2½1� ðv1 þ v2 þ v3Þ�

The N-queens Problem

The problem of how to place 8 queens on an 8-by-8 chess-
board in mutually nonattacking positions was proposed in
1848, and it has been widely studied since then. It is used as
a benchmark for many methods of solving combinatorial
optimization problems. In a neural network approach, one
neuron is used for each square on the chessboard. The
activation of the neuron indicates whether a queen is
located on that square. As a queen commands vertically,
horizontally, and diagonally, only one queen should be
present on any row or column of the board. The arrange-
ment of the neurons for a smaller 5-queens problem is
shown in Fig. 3. For simplicity, connection pathways are
shown for only one unit. To implement the energy function
and evolution equations given below, the units in each row
and each column are fully interconnected; similarly the
units along each diagonal and each antidiagonal are also
fully interconnected (4).

One example of a valid solution to the 5-queens problem is
represented by the network configuration in which neurons
U15, U23, U31, U44, and U52 are ON, and all others are OFF.

The constraints are as follows:

(a) One and only one queen is placed in each row.

(b) One and only one queen is placed in each column.

(c) At most one queen is placed on each diagonal.

An energy function can be constructed for this problem,
as follows:

E ¼ C1

2

X
x

X
i

X
j 6¼ i

Vxi Vxj þ
C2

2

X
i

X
x

X
y 6¼ x

Vxi Vyi

þC3

2

X
x

X
i

Vxi � 1

" #2

þC4

2

X
i

X
x

Vxi � 1

" #2

þC5

2

X
x

X
i

X
1�xþk;iþk�N

ðVxi Vxþk;iþkÞ

þC6

2

X
x

X
i

X
1�xþk;i�k�N

ðVxi Vxþk;i�kÞ

ð5Þ

(The inner summation in the last two terms runs over
all values of k such that x + k and i + k are both between
1 and N.)

The first constraint is represented by the first and third
terms in the energy function; the second constraint is
represented by the second and fourth terms in the energy
function; and the third constraint is represented by the fifth
and sixth terms in the energy function (one term for the
diagonal and one for the anti-diagonal).

The corresponding motion equation for unit Uxi is

dUxi

dt
¼ �C1

X
j 6¼ i

Vx j � C2

X
y 6¼ x

Vyi � C3

X
i

Vxi � 1

" #

�C4

X
x

Vxi � 1

" #
� C5

X
x

X
1�xþk;iþk�N

Vxþk;iþk

�C6

X
1�xþk;i�k�N

V
xþk;i�k (6)

For further discussion of CHNN solutions to this problem,
see Refs. 4 and 8.

The Traveling Salesman Problem

The TSP is a well-known example of a class of computa-
tionally hard problems for which the amount of time
required to find an optimal solution increases exponentially
as the problem size increases. In the TSP, every city in a
given set of n cities is to be visited once and only once. A tour
may begin with any city, and it ends by returning to the
initial city. The goal is to find a tour that has the shortest
possible length.

With a Hopfield network, the TSP is represented by an
n-by-n matrix of neurons in which the rows of the matrix
represent cities and the columns represent the position
in the tour when the city is visited. For example, if unit
U24 is ON for the TSP, it indicates that the second city is
visited as the fourth stop on the tour. A valid solution is
achieved when the network reaches a state of a permuta-
tion matrix, i.e., exactly one unit on in each row and each
column. The arrangement of the neurons for a five-city
TSP is shown in Fig. 4, with connection pathways shown
only for unit U23. A widely used energy function for the

U11 U12 U13 U14 U15

U25

U35

U45

U55U54

U44

U34

U24U23

U33

U43

U53U52

U42

U32

U22U21

U31

U41

U51

Figure 3. The arrangement of neurons for a 5-queens problem.
Connection pathways are shown only for unit U23.

U11 U12 U13 U14 U15

U25

U35

U45

U55U54

U44

U34

U24U23

U33

U43

U53U52

U42

U32

U22U21

U31

U41

U51

Figure 4. The arrangement of neurons for a five-city traveling
salesman problem. Connection pathways are shown only for unit
U23.

HOPFIELD NEURAL NETWORKS 5



TSP is

E ¼ C1

2

X
x

X
i

X
j 6¼ i

VxiVx j þ
C2

2

X
i

X
x

X
y 6¼ x

VxiVyi

þC3

2

X
x

X
i

Vxi � 1

 !2

þ C4

2

X
i

X
x

Vxi�1

 !2

þC5

2

X
x

X
y 6¼ x

X
i

DxyVxiðVy;iþ1 þ Vy;i�1Þ

ð7Þ

The first four terms in the energy function represent the
validity constraints: The first term is minimized (zero)
if each city is visited at most once. Similarly, the second
term is zero if at most one city is visited at each stage in
the tour. The third and fourth terms encourage each row
and column in the network matrix to have one neuron
ON. The fifth term gives the value of the corresponding
tour length. This term represents the TSP objective func-
tion. It is desired to make its value as small as possible
while maintaining the validity of the tour.

To guarantee convergence of the network, the motion
dynamics are obtained from the energy function according
to the relationship

duxi=dt ¼ �@E=@Vxi

¼ �C1

X
j 6¼ i

Vx j � C2

X
y 6¼ x

Vyi � C3

X
j

Vx j � 1

0
@

1
A

�C4

X
y

Vyi � 1

 !
� C5

X
y 6¼ x

dxyðVy;iþ1 þ Vy;i�1Þ

ð8Þ

where the internal activation u and the output signal v
for any unit are related by the sigmoidal function v ¼ 0.5
(1 + tanh(a u)).

For simulations, each neuron is updated using Euler’s
first-order difference equation:

uxiðtþ DtÞ ¼ uxiðtÞ þ
duxi

dt

� �
Dt

The neurons’ activations are initialized with random
values, and the activations are allowed to evolve according
to the governing equations for the network dynamics.
The activations are updated iteratively until the network
converges; the final configuration of activations gives the
network’s solution to the TSP.

The choice of network parameters has a significant
effect on the quality of solutions obtained. The rela-
tive sizes of the coefficients in the energy equation influ-
ence the network to either emphasize valid tours (at the
expense of tour length) or to seek short tours (which may
not be valid). A very steep sigmoid function may force
the network to converge quickly (but not necessarily
to a good solution), whereas a shallow slope on the
sigmoid may result in the final activations not being
close to 0 or 1.

Simulation Results. The energy function in the original
presentation of a Hopfield network solution of the TSP
was given as

E¼ A

2

X
x

X
i

X
j 6¼i

vxi vxjþ
B

2

X
i

X
x

X
y 6¼x

vxi vyi

þC

2
N�

X
x

X
i

vxi

" #2

þD

2

X
x

X
y 6¼x

X
i

dxy vxiðvy;iþ1þvy;i�1Þ

ð9Þ

The third term in this form of the energy function
encourages N neurons to be on, but it does not try to
influence their location. The original differential equation
for the activity of unit Uxi was given by

d

dt
uxi¼�

uxi

t
�A
X
j 6¼i

Vxj�B
X
y 6¼x

vyiþC N�
X

x

X
i

vxi

" #

�D
X
y 6¼x

dxyðvy;iþ1þvy;i�1Þ:
ð10Þ

The first term on the right-hand side of this equation is a
decay term, which can be motivated by analogy to electrical
circuits, but it does not have a corresponding term in the
energy equation. The parameter values that Hopfield and
Tank used, namely,

A¼B¼500; C¼200;D¼500;N¼15;a¼50; and t¼1

give very little emphasis to the decay term, so the lack of
corresponding energy term has relatively little signifi-
cance. The parameter N must be taken to be larger than
the actual number of cities in the problem to counterba-
lance the continuing inhibitory effect of the distance term;
as the minimum of the distance component of the energy
function is positive, the corresponding term in Equation (10)
acts to try to turn a unit OFF even when there are no
constraint violations.

Although Hopfield and Tank (3) reported a very high
rate of success in finding valid tours (16/20 trials) with
about one half of the trials producing one of the two shortest
tours, other researchers have been unable to match these
results. The coordinates of the Hopfield and Tank 10-city
test problem were generated randomly; the same locations
have been used as a benchmark for other neural network
solutions. Many variations have been investigated, includ-
ing alternative energy functions, methods of choosing
parameter values, and procedures for setting the initial
activations.

Wilson and Pawley (9) provide a detailed statement of
the Hopfield–Tank algorithm, together with an analysis of
their experiments. Using the Hopfield–Tank parameters,
with Dt ¼ 10�5, they found 15 valid tours in 100 attempts;
(45 froze and 40 failed to converge in 1000 epochs).

Wilson and Pawley tried several variations of the
Hopfield and Tank algorithm, in attempting to obtain a
success rate for valid tours that would approach that
achieved by Hopfield and Tank. They experimented with
different parameter values, different initial activity con-

6 HOPFIELD NEURAL NETWORKS



figurations, and imposing a large distance penalty for
visiting the same city twice, none of which helped much.
Fixing the starting city helped on the Hopfield–Tank cities,
but not on other randomly generated sets of cities.

One variation that did improve the ability of the net to
generate valid tours was a modification of the initialization
procedure. The Willshaw initialization is based on the
rationale that cities on opposite sides of a square probably
should be on opposite sides of tour. The starting activity of
each unit is biased to reflect this fact. Cities far from the
center of the square received a stronger bias than those
near the middle. The formula, in terms of the ith city and
jth position, where the coordinates of the ith city are xi, yi:

biasði; jÞ ¼ cos atan
yi � 0:5

xi � 0:5

� �
þ 2pð j� 1Þ

n

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � 0:5Þ2 þ ðyi � 0:5Þ2

q

Although special analysis that relies on the geometry of the
problem can improve the solution to the actual TSP, it does
not generalize easily to other applications.

Issues

Proof of Convergence. For an energy function of the form
of Equation (3), the Hopfield net will converge if the activa-
tions change according to the differential equation given
in Equation (4), as the following simple calculations show.

If vi ¼ gðuiÞ is monotonic nondecreasing, then
dvi

dui
� 0. As

dE

dt
¼
X

i

dvi

dt

@E

@vi
¼ �

X
i

dvi

dt

dui

dt
¼ �

X
i

dvi

dui

dui

dt

dui

dt

the energy is nonincreasing, as required.
In the original presentation of the CHNN (6), the energy

function is

E ¼ �0:5
Xn

i¼1

Xn

j¼1

wi j vi v j �
Xn

i¼1

ui vi þ
1

t

Xn

i¼1

Zvi

0

g�1
i ðvÞdv

If the weight matrix is symmetric and the activity of each
neuron changes with time according to the differential
equation:

d

dt
ui ¼ �

ui

t
þ
Xn

j¼1

wi j v j þ ui ð11Þ

the net will converge. The argument is essentially the same
as above.

Notethat theweightsmustbesymmetric for theequations
given here to be valid. This symmetry follows from the
fact that connections in a standard Hopfield arebidirectional;
i.e., the connection from unit i to unit j, and the connection
from unit j to unit i are the same connection. Results for
asymmetrical Hopfield networks are discussed below.

Choice of Coefficients. The relative importance assigned
to each of the terms in the energy function plays a very
important role in determining the quality of the solutions
obtained. A variety of experimental investigations into the
appropriate coefficients have been reported. Theoretical
results have also been obtained; the choice of energy func-
tion coefficients is discussed further in the section on recent
developments.

Local Minima. One shortcoming of the CHNN, as with
any optimization procedure that always moves in the direc-
tion of improving the solution, is convergence to a local
optima that is not the global optimum. A Boltzmann
machine incorporates a simulated annealing process into
the updates, so that early in the iterations, each unit has a
fairly high probability of not updating its activation in the
manner dictated by the equations given for the DHNN. As
the iterations progress, the ‘‘temperature’’ of the network is
reduced, and at a lower temperature, the units become
more closely controlled by the updating equations (10,11).

RECENT DEVELOPMENTS

Hopfield neural networks are being used for applications in
many areas. Recent developments of both theoretical and
practical importance can be found in journals such as
Neural Information Processing—Letters and Reviews and
IEEE Transactions on Neural Networks, or in conference
proceedings, either for meetings that focus on neural net-
work applications or for gatherings of researchers in a
particular specialty. In the next sections, we consider
some directions in which the basic Hopfield neural network
model is being generalized. Methods of adapting the
weights in HNN, both for CAM and for optimization pro-
blems, are being developed. Investigation into HNN with
nonsymmetric weights is giving theoretical results for
conditions under which such a network are guaranteed
to converge. Research also continues into the determina-
tion of the storage capacity of the DHNN.

Adaptive Weights

Much of the neural network research has focused on net-
works in which either the activities of the neurons evolve or
the strengths of the synapses (weights) adapt, but not both.
However, a complete model of a biological process requires
dynamical equations for both to specify the behavior of the
system. On the other hand, applications of Hopfield net-
works to constrained optimization problems repeatedly
illustrate the importance and difficulty of determining
the proper weights to assure convergence to a good solution.
Progress is being made in both of these areas.

Learning Patterns. Dong (12) has developed an energy
function for a system in which both activations and weights
are adaptive and has applied it to the study of the devel-
opment of synaptic connection in the visual cortex. His
dynamical equations for the activity of the neurons are
essentially the same as given in Equation (11). The adapta-
tion of the weights follows a differential form of Hebbian

HOPFIELD NEURAL NETWORKS 7



learning, based on the ‘‘recent’’ correlation of the activities
of the neurons that are on either end of the weighted
pathway; this leads to Hebbian learning with a decay
term. The weights remain symmetric throughout the pro-
cess, so that the convergence analysis follows an energy
function approach as described previously.

As a simple example, consider two neurons and the
weight w on the connection path between them. Dong’s
dynamical equations for this illustrative special case are as
follows:

a
du1

dt
¼ �u1 þw v1

a
du2

dt
¼ �u2 þw v2

v ¼ f ðg uÞ

b
ds

dt
¼ �sþ v1v2

w ¼ f ðh sÞ

The function f is piecewise linear, with a range between
�1 and 1; i.e., f ðxÞ ¼ �1 if x � �1; f ðxÞ ¼ x if �1< x< 1;
f ðxÞ ¼ 1 if x� 1.

The energy function is

Eðv1; v2; wÞ ¼ �w v1 v2 þ
1

2g
v2

1 þ
1

2g
v2

2 þ
1

2h
w2

The origin (0, 0, 0) is a stable point, corresponding to
unlearned connections and no neuron activity. If the con-
stants g and h are greater than 1, the configurations (1, 1,
1), (�1,�1, 1), (1,�1,�1), and (�1, 1,�1) are stable points.
Each of these configurations has the property, which holds
in general for stable points, that the weight on the connec-
tion is sign(vivj). The training of the network is conducted
by presenting each pattern to be learned as the external
input signal for a brief period of time and cycling through
the patterns until the weights have converged. The beha-
vior of the system during learning depends on the strength
of the external input to the system relative to the size of the
weights between neurons. When the input signals domi-
nate, the network can learn several input patterns; for
weaker input signals, the network ultimately chooses
only one of the patterns to memorize. These ideas provide
the basis for a model of the first stage of cortical visual
processing in mammals.

Constrained Optimization. The appropriate choice of the
weights in a Hopfield net for constrained optimization has
been the subject of much experimental work. It is well
known that using larger values for the coefficients of the
constraint terms helps guide the network toward valid
solutions, but it may result in poor quality solutions. On
the other hand, increasing the value of the coefficient of the
objective term helps to improve the quality of a solution, but
it may result in an invalid solution because of a constraint
violation.

Recently, Park and Fausett (8) introduced a method for
determining the coefficients of the energy function (and
thereby the weights) adaptively as the network evolves. As

the network evolves in the direction of minimization of the
total energy, each term in the energy function competes
with the other terms to influence the path to be followed. To
find good coefficients for the energy function, the compo-
nents of the energy are monitored, and the coefficients are
adapted, depending on how far each component of the
energy function is to its goal (minimum value), until a
balanced relationship among the coefficients is reached.
Using a steepest ascent procedure with normalization, the
coefficients are updated after every epoch of iteration until
they reach a state of near equilibrium. Although this
approach may seem counter-intuitive at first, it has the
desired effect of increasing the coefficients of those terms
that are contributing the most to the value of the energy
function. It is those terms that most need to be reduced
during network iteration. The final coefficient values are
used to set the weight connections, and the network is run
again to solve the problem.

A sample of the coefficient evolution for the 10-city TSP
is illustrated in Fig. 5. In this example, the coefficient of the
objective term (representing tour length) in the energy
function is fixed as C5 ¼ 0.5; the other coefficients (on
the constraint terms) evolve subject to the restriction
that C1 + C2 + C3 + C4 ¼ 1. When the network was rerun
with the converged coefficients, 94% of the trials resulted in
valid tours; the length of the generated tours ranged from
2.69 to 3.84, with a mean length of 2.83. The efficacy of this
method is even more striking on larger problems. Although
the results vary depending on the choice of the fixed value
for the coefficient of the objective term, 20-city and 30-city
problems (generated in a manner similar to that used by
Hopfield and Tank for the 10-city problem) were success-
fully solved, with a high rate of valid solutions, for C5 in the
range of 0.2 to 0.5.

Storage Capacity

Another area of active research for Hopfield networks used
as CAM is the storage capacity of the network. Many
investigations are based on the assumption that the pat-
terns are random (independent, identically distributed
uniform random variables). The question is, how many
patterns (vectors with components of þ 1 or �1) can be

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

Epoch

C5

C4

C3

C2

C1

Figure 5. Evolution of coefficients on the constraint terms of the
TSP; coefficient C5 = 0.5.

8 HOPFIELD NEURAL NETWORKS



stored and retrieved (from a minor degradation of a stored
pattern); a small fraction of errors may be allowed in the
retrieved pattern. Hopfield suggested, based on numerical
simulations, that P, the number of patterns that can be
stored and retrieved, is given by P ¼ cn, with c ¼ 0.15.

More recently, martingale techniques have been applied
(13) to a different joint distribution of the spins (patterns),
extending the theoretical results to situations beyond those
investigated previously (7). Assuming that the patterns
have the same probability distribution, are orthogonal in
expectation, and are independent, Francois shows that
there are energy barriers (which depend on d, the accep-
table fraction of errors in the reconstructed pattern) sur-
rounding each memorized pattern. For almost perfect
recall (d ¼ 1/n), the storage capacity can be as large as
c ¼ [2(1 þ g) ln n]�1 with g > 2. Other researchers have
studied the effect of a noisy environment on the conver-
gence of the network (13).

Stability Results

Investigations into the stability of more general Hopfield-
type models have considered asynchronous updates for a
continuous-valued, discrete-time Hopfield model (14). In
general, stability arguments rely on sophisticated mathe-
matical theory and are not easily summarized in a brief
presentation.

One approach to the investigation of asynchronous
updates is based on the Takeda–Goodman synchronous
model:

xðkþ 1Þ ¼ T FðxðkÞÞ þ ðI � BÞ xðkÞ þ u

where T is the interconnection matrix of the neural net-
work (usually assumed symmetric), F is a diagonal non-
linear function (usually assumed monotonic, often
sigmoidal), and u is a vector of inputs (assumed constant).
With a few additional assumptions, the previous stability
results have been extended by considering a class of desyn-
chronizations (15).

Asymmetric Weights

The stability of asymmetric Hopfield networks is of prac-
tical interest, both for more general models (e.g., connec-
tionist expert systems) and for the implementation of
theoretically symmetric networks (because it is almost
impossible to preserve the symmetry of the connections
exactly in hardware).

Many results for nonsymmetric connections depend on
the absolute value of the weights; however, these may be
overly restrictive. For example, if wij ¼ � wji for all i, j,
the network is absolutely stable, but results relying on
absolute value considerations will not establish the fact.
It has also been shown that if the largest eigenvalue of
WþWT is less than 2, then the network is absolutely stable.
A more convenient corollary of this result is that if

X
i; j

ðwi j þw jiÞ2 < 4

then the network is absolutely stable (16).

To study computational models based on asymmetric
Hopfield-type networks, a classification theory for the
energy functions associated with Hopfield networks has
been introduced and convergence conditions deduced for
several different forms of asymmetric networks. For exam-
ple, two networks have been developed, using a triangular
structure, to solve the maximum independent set of a graph
problem. Although this problem can be solved with a stan-
dard Hopfield network, the triangular network is a more
simple and efficient procedure. See Ref. 17 for details.

SUMMARY AND CONCLUSIONS

Hopfield neural networks comprise a rich and varied realm
of the overall field of artificial neural networks. Applica-
tions can be found in many areas of engineering. Continu-
ing investigation into the theoretical and practical
considerations governing the convergence properties of
the networks provides a firm foundation for the use of
Hopfield models and their extension to more generalized
settings. Work continues on differences in performance
that may occur when the networks are implemented
with fully parallel (asynchronous) updating of the activa-
tions.

BIBLIOGRAPHY

1. J. A. Anderson and E. Rosenfeld, Neurocomputing: Founda-
tions of Research, Cambridge, MA: MIT Press, 1988.

2. D. W. Tank and J. J. Hopfield, Collective computation in
neuronlike circuits, Scientific American, 257: 104–114, 1987.

3. J. J. Hopfield and D. W. Tank, Computing with neural circuits:
a model, Science 8: 625–633, 1986.

4. Y. Takefuji, Neural Network Parallel Computing, Boston, MA:
Kluwer Academic Publishers, 1992.

5. J. J. Hopfield, Neural networks and physical systems with
emergent collective computational abilities, Proc. of the Nat.
Acad. of Sci.79: 2554–2558, 1982.

6. J. J. Hopfield, Neurons with graded response have collective
computational properties like those of two-state neurons, Proc.
of the Nat. Acad. of Sci. 81: 3088–3092, 1984.

7. R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venka-
tesh, The capacity of the Hopfield associative memory, IEEE
Trans. on Inf. Theory, IT-33, 461–482, 1987.

8. C. Y. Park and D. W. Fausett, Energy function analysis for
improved performance of Hopfield-type neural networks,
Intell. Engineering Sys. Through Artificial Neural Net., 5:
995–1000, 1995.

9. G. V. Wilson and G. S. Pawley, On the stability of the traveling
salesman problem algorithm of Hopfield and Tank, Biological
Cybernetics, 58: 63–70, 1988.

10. E. Aarts and J. Korst, Simulated Annealing and Boltzmann
Machines, Chichester, England, U.K.: Wiley, 1989.

11. L. V. Fausett, Fundamentals of Neural Networks, Englewood
Cliffs, NJ: Prentice Hall, 1994.

12. D. Dong, Dynamic Properties of Neural Networks, Ph.D. Dis-
sertation, Pasadena, CA: California Institute of Technology,
1991.

13. O. Francois, New rigorous results for the Hopfield’s neural
network model, Neural Networks, 9: 503–507, 1996.

HOPFIELD NEURAL NETWORKS 9



14. S. Hu, X. Liao, and X. Mao, Stochastic Hopfield neural net-
works, J. Physics A: Math. and Gen., 2235–2249, 2003.

15. A. Bhaya, E. Kaszkurewics, and V. S. Kozyakin, Existence and
stability of a unique equilibrium in continuous-valued discrete-
time asynchronous Hopfield neural networks, IEEE Trans. on
NN, 7: 620–628, 1996.

16. K. Matsuoka, Stability conditions for nonlinear continuous
neural networks with asymmetric connection weights, Neural
Networks, 5: 495–500, 1992.

17. Z-B. Xu, G-Q. Hu, and C-P. Kwong, Asymmetric Hopfield-type
networks: Theory and applications, Neural Networks, 9: 483–
501, 1996.

LAURENE V. FAUSETT

Georgia Southern University
Statesboro, Georgia

10 HOPFIELD NEURAL NETWORKS



I

INTELLIGENT AGENT

INTRODUCTION

‘‘Agent’’ has different meanings in different contexts. In
many dictionaries, there are about 10 items listed for
‘‘agent.’’ In computer science, an agent is referred to as a
program that acts on a user or other programs, which is akin
to its original meaning in dictionaries. If an agent can
demonstrate some special features like learning, reasoning,
and decision making, it may be called an intelligent agent.
This article tries to provide an insight into what intelligent
agent is for general readers in the context of computer
science in general and artificial intelligence in particular.

The concept of agent can be traced back to the 1980s in
the computer science and artificial intelligence commu-
nities. Agent systems are evolved from distributed artificial
intelligence and distributed problem solving as well as
parallel artificial intelligence (1). However, there is still
no universally accepted definition of the term ‘‘agent.’’ One
definition, which is adopted from Ref. 2, is attracting more
and more attention. This definition states that, an intelli-
gent agent is a computer system that is situated in some
environment, and that is capable of autonomous action in
this environment in order to meet its design objectives. This
definition implies that the agent possesses the following
minimal characteristics (30):

� Autonomy: Agents operate without the direct inter-
vention of humans or others and have some kinds of
control over their internal states.

� Social ability: Agents interact with other agents (and
possibly humans) via some kinds of agent communica-
tion languages.

� Reactivity: Agents perceive their environment and
respond in a timely fashion to changes that occur in it.

� Proactivity: Agents do not simply act in response to
their environment; they can exhibit goal-directed
behavior by taking the initiative.

Multiagent systems are systems composed of multiple
interacting agents. Agents (adaptive or intelligent agents
and multiagent systems) constitute one of the most promi-
nent and attractive technologies in computer science at the
beginning of this new century. Agent and multiagent sys-
tem technologies, methods, and theories are currently con-
tributing to many diverse domains. These domains include
information retrieval, user interface design, robotics, elec-
tronic commerce, computer-mediated collaboration, com-
puter games, education and training, smart environments,
ubiquitous computers, and social simulation.

This technology, is not only very promising but also
emerging as a new way of thinking, a conceptual paradigm
for analyzing problems and for designing systems, for deal-
ing with complexity, distribution, and interactivity, and
perhaps a new perspective on computing and intelligence.

Agent-based computing has been a source of technolo-
gies to several research areas, both theoretical and applied.
These areas include distributed planning and decision
making, automated auction mechanisms, and learning
mechanisms. Moreover, agent technologies have drawn
from, and contributed to, a diverse range of academic
disciplines, in the humanities, the sciences, and the social
sciences. The fundamental research issues in agent tech-
nologies include multiagent planning, agent communica-
tion languages, coordination mechanisms, matchmaking
architectures and algorithms, information agents and basic
ontologies, sophisticated auction mechanism design, nego-
tiation strategies, and learning.

Agent technologies are a natural extension of current
component-based approaches and have the potential to
greatly impact the lives and work of all of us. Accordingly,
this area is one of the most dynamic and exciting in com-
puter science today. Some application domains where
agent technologies will play a crucial role, including (4,5)
Ambient Intelligence, the seamless delivery of ubiquitous
computing, continuous communications, and intelligent
user interfaces to consumer and industrial devices; Grid
Computing, where multiagent system approaches will
enable efficient use of the resources of high-performance
computing infrastructure in science, engineering, medical,
and commercial applications; the Semantic Web, where
agents are needed both to provide services and to make
best use of the resources available, often in cooperation
with others; and Self-� and Autonomic Computing:
To configure and maintain complex computer systems,
including IT infrastructure, it is highly required that
those systems have self-awareness, self-organization,
self-configuration, self-management, self-diagnosis, self
correction, and self-repair capabilities. These self-� systems
can be viewed as autonomous entities and components with
interactions, which provides an application domain for
research and development of agent technologies. In addi-
tion to these areas agent technologies will also be used in
other fields like peer-to-peer computing, computational
biology and bioinformatics, web services, and so on.

There are many different views about intelligent agents
or multiagent systems. Two principal views are as follows:
(1) agents as a paradigm for software engineering; and
(2) agents as a tool for understanding human societies (6).

Software engineers have derived a progressively better
understanding of the characteristics of complexity in soft-
ware. It is now widely recognized that interaction is prob-
ably the most important characteristic of complex software.
It is believed that, in the future, computation will be under-
stood chiefly as a process of interaction. Just as we can
understand many systems as being composed of essentially
passive objects, which have a state and upon which we can
perform operations, so we can understand many others as
being made up of interacting, semiautonomous agents. This
recognition has led to the growth of interest in agents as a
new paradigm for software engineering.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



There are far too many variables and unknown quan-
tities in human societies. We can do little about it such as
predicting very broad but short-term trends, and even then
the process is full of many errors. However, multiagent
systems do provide an interesting and novel tool for simu-
lating societies, which may help shed some light on various
kinds of social processes.

There are a number of similarities between the object-
and agent-oriented views of system development. For
example, both emphasize the importance of interactions
between entities. However, there are also significant dif-
ferences between agents and objects (6–8).

� Agents embody a stronger notion of autonomy than
objects, and in particular, they decide for themselves
whether to perform an action on request from other
agents.

� Agents are capable of flexible (reactive, proactive,
social) behavior, and the standard object model has
nothing to say about such types of behavior.

� A multiagent system is inherently multithreaded, in
that each agent is assumed to have at least one thread
of control.

Expert systems were the most important artificial intel-
ligence technology of the 1980s. An expert system is one
that is capable of solving problems or giving advice in some
knowledge-rich domain. The main differences between
agents and expert systems are as follows (6):

� Classic expert systems are disembodied—they are not
coupled to any environment in which they act, but
rather act through a user as a ‘‘middleman.’’

� Expert systems are not generally capable of reactive,
proactive behavior.

� Expert systems are not generally equipped with social
ability, in the sense of cooperation, coordination, and
negotiation.

This article presents a tutorial overview of the field of
intelligent agents in brief. Related issues are discussed,
which include agent architecture, agent communication
languages, agent-oriented software engineering, agent
development tools, challenge issues in agent technologies,
and so on.

ARCHITECTURES OF INTELLIGENT AGENTS

A wide range of system architecture exists for intelligent
agents. This section introduces some representative archi-
tectures for intelligent agents, which include the BDI
architecture (for individual agents) and open agent archi-
tecture (for multiagent systems).

BDI Architecture

The architecture for individual agents can be classified into
three classes: deliberative, reactive, and hybrid agent
architecture.

Deliberative agents assume an explicit symbolic model
of the environment and the capability of logical reasoning
as a basis for intelligent actions, and so they maintain the
tradition of classic artificial intelligence. The modeling of
the environment is normally performed in advance and
forms the main component of the agent’s knowledge base.
Deliberative agents have as a second significant property,
in addition to their internal symbolic environment model,
their capability to make logical decisions. The agent, as part
of the decision-making process, uses the knowledge con-
tained in its model to modify its internal state. This internal
state is the mental state and is composed of three compo-
nents: belief, desire, and intention (BDI).

The procedural reasoning system (PRS) (9) was perhaps
the first agent architecture to explicitly embody the BDI
paradigm and has proved to be the most durable agent
architecture developed to date. The PRS is often referred to
as a BDI architecture, which is shown in Fig. 1.

Beliefs contain the fundamental views of an agent with
regard to its environment. An agent uses them, in parti-
cular, to express its expectations of the possible future
states. Desires are derived directly from beliefs. They con-
tain an agent’s judgments of future situations. Goals repre-
sent that a subset of an agent’s desires on whose fulfillment
it could act. In contrast to its desire, an agent’s goal must be
realistic and must not conflict with each other. Intentions
are a subset of the goals. If an agent decides to follow a
specific goal, this goal becomes an intention. Plans combine
an agent’s intentions into consistent units. There is a close
connection between intentions and plans: Intentions con-
stitute the subplans of an agent’s overall plan, and, con-
versely, the set of all plans reflects the agent’s intentions.
The BDI model comes from research done in the field of
artificial intelligence especially in common sense reasoning
and planning over the past 20 years and has proven to be
the most robust and flexible model for intelligent agent
systems.

Several logical theories of BDI systems have been devel-
oped. Closely related to this work on BDI architectures is
Shoham’s proposal for agent-oriented programming, which
is a multiagent programming model in which agents are
explicitly programmed in terms of mentalistic notions such
as belief and desire (10).

The best-known reactive agent architecture is the sub-
sumption architecture (11). There are two defining char-
acteristics of the subsumption architecture: (1) An agent’s

B
el

ie
fs

Pl
an

s

Intentions

Environment

action output

data input from sensors

Goals

Desires

Agent

Figure 1. BDI architecture.

2 INTELLIGENT AGENT



decision making is realized through a set of task-accom-
plishing behaviors, and (2) many behaviors can ‘‘fire’’ simul-
taneously.

For most problems, neither a purely deliberative archi-
tecture nor a purely reactive architecture is appropriate.
Hybrid architectures are required, which are typically
realized as a number of vertical or horizontal software
layers. A typical example of hybrid agent architectures is
InteRRaP (12).

Open Agent Architecture

Open agent architecture (OAA) developed by the SRI
(Stanford Research Institute) is a research framework
for constructing multiagent systems (13). This architecture
makes it possible for software services to be provided
through the cooperative efforts of distributed collections
of autonomous agents. Communication and cooperation
between agents are brokered by one or more facilitators,
which are responsible for matching requests, from users
and agents, with descriptions of the capabilities of other
agents. Thus, it is not generally required that a requester
(user or agent) know the identities, locations, or the number
of other agents involved in satisfying a request. Facilitators
are not viewed as centralized controllers, but rather as
coordinators, as they draw on knowledge and advice
from several different, potentially distributed, sources to
guide their delegation choices.

OAA is structured so as to minimize the effort involved
in creating new agents and ‘‘wrapping’’ legacy applications,
written in various languages and operating on various
platforms; to encourage the reuse of existing agents; and
to allow for dynamism and flexibility in the makeup of agent
communities. Distinct features of OAA as compared with
related work include extreme flexibility in using facilitator-
based delegation of complex goals, triggers, and data man-
agement requests; agent-based provision of multimodal
user interfaces; and built-in support for including the
user as a privileged member of the agent community.

COMMUNICATION LANGUAGES FOR INTELLIGENT
AGENTS

Typically, applications containing multiple agents make
use of an agent communication language (ACL); the idea is
similar to a human society using a common language such
as English. However, it is noted that agent-based applica-
tions can be (and have been) developed using traditional
third-generation languages like Lisp, C, or Prolog and
object-oriented languages such as Java, Cþþ, and Small-
talk. Next, agents working together need to share a certain
amount of foundational, ‘‘common’’ knowledge called
ontology (14), in just the same way that humans do. There
are also some current and emerging computing technolo-
gies such as client/server model and CORBA that lend
themselves to supporting agent-based applications.

The two agent communication languages with broadest
uptake are KQML (Knowledge Query and Manipulation
Language) (15) and FIPA ACL (16). The most important
difference between the two languages is in the collection of
performatives they provide.

KQML was developed in the early 1990s as part of the
U.S. government’s ARPA Knowledge Sharing Effort and is
a language and protocol for exchanging information and
knowledge, which has been used extensively. KQML was
conceived as both a message format and a message-hand-
ling protocol to support run-time knowledge sharing among
agents. The KQML language can be thought of as consist-
ing of three layers: the content layer, the message layer, and
the communication layer. The content layer bears the
actual content of message, in the program’s own represen-
tation language. The communication layer encodes a set of
message features that describes the lower level commu-
nication parameters, such as the identity of the sender and
recipient, and a unique identifier associated with the com-
munication. It is the message layer that is used to encode a
message that one application would like to transmit to
another. The message layer forms the core of the KQML
language and determines the kinds of interactions one can
have with a KQML-speaking agent. Each KQML message
has a performative and a number of parameters. Here is an
example of a KQML message:

(ask-one
:content (PRICE IBM ?price)
:receiver stock-server
:language LPROLOG
:ontology NYSE-TICKS

)

In 1995, the Foundation for Intelligent Physical Agent
(FIPA) began its work on developing standards of
agent systems. The centerpiece of this initiative was the
development of an ACL. This ACL incorporates many
aspects of KQML. It defines 20 performatives for defining
the intended interpretation of messages, and it does
not mandate any specific language for message content.
The concrete syntax for FIPA ACL messages closely resem-
bles that of KQML. Here is an example of a FIPA ACL
message:

(inform
:sender agent1
:receiver agent2
:content (price good2 150)
:language si
:ontology hpl-auction

)

If two agents are to communicate about certain domain,
then it is necessary for them to agree on the terminology
that they use to describe this domain. For example, in an
agent system for financial investment planning, one agent
advertises its capability to a middle agent as ‘‘pattern
watcher in the stock market,’’ whereas another agent
requests an agent that is a ‘‘pattern watcher in the share
market.’’ In such a situation, problems arise when the
middle agent tries to match them. How could the middle
agent know the ‘‘stock market’’ and the ‘‘share market’’ are
the same thing? The agents thus need to be able to agree on
what terms like share or stock mean. Thus a specification of
a set of terms, an ontology, is required. An ontology is a

INTELLIGENT AGENT 3



formal definition of a body of knowledge. The most typical
type of ontology used in building agents involves a struc-
tural component. Essentially a taxonomy of class and sub-
class relations coupled with definitions of the relationships
between these things.

METHODOLOGIES AND DEVELOPMENT TOOLS
FOR INTELLIGENT AGENTS

Existing software development techniques (for example,
object-oriented analysis and design) are inadequate
for analyzing and designing agent systems. There is a
fundamental mismatch between the concepts used by
other mainstream software engineering paradigms and
the agent-oriented perspective. In particular, extant
approaches fail to adequately capture an agent’s flexible,
autonomous problem-solving behavior, the richness
of an agent’s interactions, and the complexity of an agent
system’s organizational structure. This section provides an
overview of the state of the art in agent-oriented software
engineering and a summary of currently available agent
development tools.

A methodology is a codified set of procedures for some
phases of software engineering, such as analysis and
design. A system engineering methodology groups the
methods and principles used in a particular discipline. A
method is a systematic way of doing something or, alter-
natively, the techniques or arrangements of work for a
particular subject.

Software Engineering with Agents, Agent-Based Soft-
ware Engineering, Multiagent Systems Engineering
(MaSE), and Agent-Oriented Software Engineering
(AOSE) are semantically equivalent terms, but MaSE
refers to a particular methodology and AOSE seems to
be the most widely used term. In AOSE, there are some
preliminary methodologies for engineering multiagent
systems—these methodologies provide structured but
nonmathematical approaches to the analysis and design
of agent systems. These can be broadly divided into two
groups:

Those that take their inspiration from object-oriented
development, and either extending object-oriented
methodologies or adapt object-oriented methodologies
to the purposes of AOSE. Representatives of this cate-
gory include the AAII methodology (17) and the Gaia
methodology (18,19).

Those that adapt knowledge engineering or other tech-
niques. One representative in this category is the use of
Z for specifying agent systems (20).

The AAII methodology draws primarily on object-
oriented methodologies and enhances them with some
agent-based concepts. The methodology is aimed at the
construction of a set of models that, when fully elaborated,
define an agent system specification. The AAII methodol-
ogy provides both internal and external models. The exter-
nal model presents a system-level view: The main
components visible in this model are agents themselves.
The external model is thus primarily concerned with agents

and the relationships between them. In contrast, the inter-
nal model is entirely concerned with the internals of agents:
their beliefs, desires, and intentions.

The Gaia methodology is intended to allow an analyst to
go systematically from a statement of requirements to a
design that is sufficiently detailed that it can be implemen-
ted directly. In applying Gaia, the analyst moves from
abstract to increasingly concrete concepts. Figure 2
shows that agents interact with environments through
sensors and actuators, which is adopted from Ref. (21)
(page 33). Gaia methodology is well matched with this
view of agents. In Gaia, a set of new organizational abstrac-
tions that are necessary for designing and constructing
systems in complex and open environments are employed.
These organizational abstractions, which can be used in the
analysis and design phases, include the environment
in which a multiagent system is situated; the roles that
have to be played in the agent organization and of their
interactions, and the organizational rules and organiza-
tional structures. Based on Gaia, the emphasis of the
analysis and design is to identify the environment that
the agent system is situated, the key roles in the system
and document the various agent types that will be used in
the system.

In agents in Z, a four-tiered hierarchy of the entities that
can exist in an agent-based systems is defined. It starts with
entities, and then objects to be entities that have capabil-
ities are defined. Agents are then defined to be objects that
have goals and are thus in some sense active. Finally,
autonomous agents are defined to be agents with motiva-
tions. The formal definitions of agents and autonomous
agents rely on inheriting the properties of lower level
components. In the Z notation, this is achieved through
schema inclusion.

In addition to these representatives, there are also some
methodologies for modeling agent systems based on UML
notations as well as some formal methods for engineering
multiagent systems.

There are dozens of agent construction tools. The tools
are categorized as either commercially available products
or academic and research projects. The representatives are
listed in Table 1.

When building agent systems, certain techniques are
required to convert legacy programs into agents. Generally,
there are three principal approaches to be taken: imple-
menting a transducer, implementing a wrapper, and
rewriting the original programs (22).

E
nvironm

ent

Sensors

A
gent

?

Actuators

Percepts

Actions

Figure 2. Agents and environments.

4 INTELLIGENT AGENT



TYPICAL APPLICATIONS OF INTELLIGENT AGENTS

Agent technology is rapidly breaking out of universities and
research laboratories, and is used to solve real-world pro-
blems in a range of industrial and commercial applications.
Some of the key systems are outlined below (7).

� YAMS system. YAMS (Yet Another Manufacturing
System) applies the well-known Contract Net Protocol
to manufacturing control. YAMS adopts a multiagent
approach, where each factory and factory component is
represented as an agent. Each agent has a collection of
plans, representing its capabilities. The contract net
protocol allows tasks to be delegated to individual
factories, and from individual factories down to flexible
manufacturing systems, and then to individual work
cells.

� OASIS Air Traffic Control System. OASIS is a sophis-
ticated agent-realized air traffic control system, which
is undergoing field trials at Sydney airport in Austra-
lia. In this system, agents are used to represent both
aircraft and the various air-traffic control systems in
operation. The agent metaphor thus provides a useful
and natural way of modeling real-world autonomous
components. As an aircraft enters Sydney airspace, an
agent is allocated for it, and the agent is instantiated

with the information and goals corresponding to the
real-world aircraft. OASIS is implemented using the
typical BDI architecture.

� Maxims. Maxims is an electronic mail filtering agent
that ‘‘learns to prioritize, delete, forward, sort, and
archive mail messages on behalf of a user.’’ It works by
‘‘looking over the shoulder’’ of a user as he or she works
with their e-mail reading program and uses every
action the user performs as a lesson. Maxims con-
stantly makes internal predictions about what a
user will do with a message. If these predictions
turn out to be inaccurate, then Maxims keeps them
to itself. But when it finds it is having a useful degree of
success in its predictions, it starts to make suggestions
to the user about what to do.

� The WARREN financial portfolio management sys-
tem. WARREN is a multiagent system that integrates
information finding and filtering in the context of
supporting users to manage their financial portfolios.
The system consists of agents that coop eratively self-
organize to monitor and track stock quotes, financial
news, financial analysts reports, and company earn-
ings reports in order to appraise the portfolio owner of
the evolving financial picture. The agents not only
answer relevant queries but also continuously monitor
available information resources for the occurrence of

Table 1. Agent Construction Tools

Product

Company/
Research
Organization

Commercial/
Academic Language Description

AgentBuilder Reticular
Systems, Inc.

Commercial Java Integrated Agent
and Agency Development
Environment

Aglets IBM Japan Commercial Java Mobile Agents
JACK

Intelligent
Agents

Agent Oriented
Software P/Ltd

Commercial JACK
Agent
Language

Agent Development
Environment

Agent Tcl Dartmouth
University

Academic Tcl Mobile Agents

FIPA-OS Academic Java Component-based Toolkit
JADE TILAB Academic Java Multiagent Framework
JATLite Stanford

University
Academic Java Java Packages

for Multiagents
Java Agent

Framework (JAF)
University of

Massachusetts
Academic Java Agent

Framework
Multi-Agent

Modeling Language
(MAML)

Central
European
University

Academic MAML Programming
Language

Multiagent
Systems Tool
(MAST)

Technical
University
of Madrid

Academic Cþþ Multiple
Heterogeneous
Agents

Open Agent
Architecture
(OAA)

SRI
International

Academic C, Prolog
Cþþ, Perl
Lisp, Java

Agent Framework

RETSINA Carnegie-Mellon
University

Academic Communicating
Agents

Zeus British
Telecommunications
Labs

Academic Java Agent Building
Environment

INTELLIGENT AGENT 5



interesting events and alert the portfolio manager
agent or the user.

To date, the main areas in which agent-based applica-
tions have been reported include manufacturing, process
control, telecommunication systems, air traffic control,
traffic and transportation management, information filter-
ing and gathering, electronic commerce, business process
management, entertainment, and medical care. In addition
to these existing areas, there are a number of emerging
application domains for agent technologies and multiagent
systems (4,5). Several of these domains are presented here
to demonstrate their wide range and diversity. They indi-
cate the potential impact of agent-related technologies on
human life and society. More details can be found in Refs.
(4) and (5).

� Ambient Intelligence (23). Ambient intelligence repre-
sents a vision of the future where we shall be sur-
rounded by electronic environments that are sensitive
and responsive to people. Ambient intelligence tech-
nologies are expected to combine concepts of ubiqui-
tous computing and intelligent systems putting
humans in the centre of techno logical developments.
Ambient Intelligence emphasizes greater user-
friendliness, more efficient services support, user-
empowerment, and support for human interac tions.
It builds on three recent key technologies: ubiquitous
computing, ubiquitous communication, and intelligent
user interfaces; yet it offers perhaps the strongest
motivation for, and justification of, agent technologies.
The consensus is that auton omy, distribution, adapta-
tion, responsiveness, and so on, are the key character-
izing features of ambient intelligent artfacts, and in
this sense, they share the same char acteristics as
agent.

� Bioinformatics and Computational Biology (24). One
application of multiagent systems in the biological
sciences is for simulation modeling of biological sys-
tems, in a manner similar to their use for the simulation
of socioeconomic and public policy domains. Another
area of application in biology is in bioinformatics. The
genomic revolution that has spawned microarrays and
high throughout technologies has produced vast
amounts of complex biological data that require in
tegration and multidimensional analysis. Informa-
tion-gathering agents can help human researchers in
finding appropriate research literature or in conduct-
ing auto mated or semiautomated testing of data. Data
mining agents can be used to do the integration and
multidimensional analysis. A potential longer term
application of multiagent systems technologies is the
use of agents engaged in a reasoned argument to
achieve resolution about ambiguous or conflicting
experimental evidence, in a manner similar to the
way in which human scientists do currently.

� Grid Computing (25). Managing access to computing
and data resources is a com plex and time-consuming
task. As grid and cluster computing matures, deciding
which systems to use, where the data reside for a

particular application domain, how to migrate the
data to the point of computation (or vice versa), and
data rates required to maintain a particular applica-
tion ‘‘behavior’’ become significant. To support these
systems it is important to develop brokering
approaches based on intelligent techniques—to sup-
port service discovery, performance management, and
data selection. Intelligent agents provide a useful
means to achieve these objectives. An important and
emerging area within grid computing is the role of
service ontologies—especially domain-specific ontolo-
gies, which may be used to capture particular applica-
tion needs. Using these ontologies, scientists may be
able to share and disseminate their data and software
more effectively. This has been recognized as being
important, and current efforts toward establishing
‘‘semantic grids’’ is a useful first step in this direction.
The agent community on the other hand can find grid
environments useful testbeds to deploy agents on a
large scale. Often, within the multiagent community,
agents are restricted to a few 10 s of agents, and often
agents undertake identical tasks. To support grid
computing, agents can offer different roles, be orga-
nized into regional or national dynamic ‘‘groups,’’ and
be able to migrate between groups to support load
balancing. Therefore agents could play an important
role in grid computing, and grid computing can offer
useful testbeds for investigating agent services. The
grid is not only a low-level infrastructure for support-
ing computation, but it can also facilitate and enable
information and knowledge sharing at the higher
semantic levels, to support knowledge integration
and dissemination.

� Electronic Business (20). The continuing growth of
electronic business puts high demands on the under-
lying technology and infrastructure. Decentralization
and flexibility of the information and communication
systems are of concern. Agent technology—especially
the mobility, autonomy, and intelligence of agents—
offers a promising approach in these directions. Even
though the notion of ‘‘intelligent agent’’ has been
stressed over the last years and many questions like
security have remain unanswered, electronic com-
merce poses new challenges and opportunities for
agents. To date agents have been used in the first
stages of ecommerce, product and merchant discovery,
and brokering. The next step will involve moving into
real trading—negotiating deals and making pur-
chases. This stage will involve considerable research
and development, including generating new products
and services such as market-specific agent shells, pay-
ment and contracting methods, risk assessment and
coverage, quality and performance certification, secur-
ity, trust, and individual-ization.

In addition to these domains, agent-oriented perspec-
tives are well suited for constructing hybrid intelligent
systems (27). Solving complex problems in real-world con-
texts, such as financial investment planning or mining
large data collections, involves many different subtasks,

6 INTELLIGENT AGENT



each of which requires different techniques. To deal with
such problems, a great diversity of intelligent techniques
are available, including traditional techniques like expert
systems approaches and soft computing techniques like
fuzzy logic, neural networks, or genetic algorithms. These
techniques are complementary approaches to intelligent
information processing rather than competing ones, and
thus, better results in problem solving are achieved when
these techniques are combined in hybrid intelligent sys-
tems. Multiagent systems are ideally suited to model the
manifold interactions among the many different compo-
nents of hybrid intelligent systems.

TECHNOLOGICAL CHALLENGES

There are a number of broad technological challenges for
research and development over the next decade. These are
summarized as follows based on the descriptions in Refs. 4
and 5.

� Increase quality of agent software to industrial
standard. One of the most fundamental obstacles to
large-scale take-up of agent technology is the lack of
mature software development methodologies for agent-
based systems. Clearly, the basic principles of software
and knowledge engineering need to be applied to the
development and deployment of multiagent systems,
but they also need to be augmented to suit the differing
demands of this new paradigm. Technology examples
include agent- oriented design methodologies, tools and
development environments, and seamless integration
with current technologies.

� Provide effective agreed standards to allow
open systems development. In addition to standard
languages and interaction protocols, open agent socie-
ties will require the ability to collectively evolve lan-
guages and protocols specific to the application domain
and to the agents involved. Research in this area will
draw on linguistics, social anthropology, biology, the
philosophy of language, and information theory. Tech-
nology examples contain agent communication lan-
guage, interaction protocols, and multiagent
architectures.

� Provide semantic infrastructure for open agent
communities. To make information agents widely
available in real-world applications, a greater under-
stand ing of how agents, databases, and information
systems interact is required. This also demands new
Web standards that enable structural and semantic
description of information. The creation of common
ontologies, thesaurus, or knowledge bases play a cen-
tral role here.

� Develop reasoning capabilities for agents in
open environments. The next challenge for agent-
based computing is to develop appropriate representa-
tions of analogous computational concepts to the
norms, legislation, authorities, enforcement, and so
on, which can underpin the development and deploy-
ment of dynamic electronic institutions. The automa-
tion of coalition formation can save time and labor and

is more effective at finding better coalitions than
humans in complex settings. Related issues include
negotiation and argumentation and domain-specific
models of reasoning.

� Develop agent ability to understand user
requirements. At the architecture level, future ave-
nues for learning research include developing distrib-
uted models of profile management, as well as more
general distributed agent learning techniques rather
than just single agent learning in multiagent domains.
Developing approaches to personalization that can
operate in a standards-based, pervasive computing
en vironment presents many interesting research
challenges, including how to integrate machine learn-
ing techniques (for profile adaptation) with structured
XML-based profile representations. Another area
deserving of greater activity is that of dis tributed
profile management—a task for which the agent-based
paradigm should be well suited. The impact of the
emerging semantic Web on approaches for wrapper
induction and text-mining also requires careful study.

� Develop agent ability to adapt to changes in
environment. Learning tech nology is crucial for
open and scalable multiagent systems, but it is still
in early development. Many agent research areas have
been looking mainly at nonadaptive technology. How-
ever, with increasing maturity of these areas, learning
techniques will increasingly move toward the center
stage in these areas. Examples of areas where learning
will receive more attention in the future are commu-
nication, negoti ation, planning and coordination, and
information and knowledge management.

� Trust and reputation management. Collaboration
of any kind, especially in situations in which compu-
ters act on behalf of users or organizations, will only
succeed if there is trust. To ensure this trust requires a
variety of factors to be in place. First, a user must have
confidence that an agent or a group of agents that
represents them within an open system will act effec-
tively on their behalf. Second, agents must be secure
and tamperproof and must not reveal information
inappropriately. Finally, if users are to trust the out-
come of an open agent system, they must have con-
fidence that agents representing other parties or
organizations will behave within certain constraints.
Mechanisms to do this include reputation mechan-
isms; the use of norms (social rules) by all members
of an open system; and self- enforcing protocols, which
ensure that it is not in the interests of any party to
break them; and electronic contracts.

� Virtual organization formation and manage-
ment. Virtual organizations have been identified as
one of the key contributions of grid computing, but the
conditions under which a new virtual organization
should be formed, and the procedures for its formation,
operation, and dissolution are still not well defined. In
current grid applications, virtual organizations
are statically defined by the users of the workflows,
which mean that they are incapable of handling
dynamic situations and reconfiguring themselves in

INTELLIGENT AGENT 7



an automated manner. This automated formation and
ongoing management of virtual organizations in open
environments thus constitutes a major research chal-
lenge, a key objective of which is to ensure that they are
both agile (can adapt to changing circumstances) and
resilient (can achieve their aims in a dynamic and
uncertain environment).

CONCLUSIONS

This article is mainly focused on the technology view of
intelligent agents. Actually, intelligent agents are becom-
ing a computing paradigm. In Ref. 21, Russell and Norvig
define artificial intelligence as the study of agents that
perceive the environments and take actions. Systems con-
sisting of interacting intelligent agents is evolving a main
stream software engineering approach for developing
applications in complex domains (19). Intelligent agents
and multiagent systems as a computing paradigm are well
suited to modeling systems with very high complexity. On
the other hand, there are also some challenging issues like
complex emergent behavior, self-organized criticality, and
phase transition, which are related to multiagent systems.
In this respect, autonomy oriented computing (AOC) (28)
provides a means of modeling and characterizing complex
emergent behaviors in multiagent systems.

As Jennings et al. stated in Ref. 7, the field of intelligent
agents is a vibrant and rapidly expanding area of research
and development. It represents a melting pot of ideas
originating from such areas as distributed computing,
object-oriented systems, software engineering, artificial
intelligence, economics, sociology, and organizational
science. The basic conceptual framework of intelligent
agents has become common currency in a range of closely
related disciplines and offers a natural and powerful means
of analyzing, designing, and implementing a diverse range
of software solutions.

Agent-based approaches have been a source of technol-
ogies to several research areas, both theoretical and prac-
tical. These areas include distributed planning and
decision making, automated auction mechanisms, commu-
nication languages, coordination mechanisms, matchmak-
ing architectures and algorithms, ontologies and
information agents, negotiation, and learning mechan-
isms. Moreover, agent technologies have drawn from,
and contributed to, a diverse range of academic disciplines,
in the humanities, the natural sciences, and the social
sciences. Agents offer a new and often more appropriate
route to the development of complex systems, especially in
open and dynamic environments.

Wooldridge (6) is a good introductory text for agent and
multiagent systems. For a more comprehensive discussion
on these topics, refer to Ref. 8. Ferber (29) is an under-
graduate textbook, which focused on multiagent aspects
rather than on the theory and practice of individual agents.

For a road map of agent and multiagent system
research, refer to Refs. 4, 5, and 7. More resources on
intelligent agents can be found in the Proceedings of Inter-
national Joint Conference on Autonomous Agents and
Multi-Agent Systems, Autonomous Agents and Multi-Agent

Systems (journal), and AgentLink, the European Network of
Excellence for Agent Based Computing (www.agentlin-
k.org).

In a broader sense, objects and components in today’s
distributed and concurrent systems are starting to
approach the view of agents that was focused here. Active
objects or actors in object-oriented community are also
becoming closer to the view of agents described in this
article (30). In the computer network context, agents are
also used to refer to a piece of software such as mail user
agents, mail transfer agents, and mail delivery agents,
even though they are not as smart as what was described
here.

BIBLIOGRAPHY

1. A. Bond and L. Gasser (eds.), Readings in Distributed Artificial
Intelligence, San Mateo, CA: Morgan Kaufmann, 1988.

2. M. Wooldridge and N. R. Jennings, Intelligent agents: Theory
and practice, Knowledge Eng. Rev., 10(2): 115–152, 1995.

3. J. M. Bradshaw (ed.), Software Agents, Menlo Park, CA: AAAI
Press, 1997, Chapter 1.

4. M. Luck, P. McBurney, and C. Preist, Agent Technology:
Enabling Next Generation Computing—A Roadmap for Agent
Based Computing, Southampton, UK: AgentLink, 2003.

5. M. Luck, P. McBurney, O. Shehory, and S. Willmott, Agent
Technology Roadmap: A Roadmap for Agent Based Computing,
Southampton, UK: AgentLink III, 2005.

6. M. Wooldridge, An Introduction to Multiagent Systems, Chich-
ester: John Wiley & Sons, 2002.

7. N. R. Jennings, K. Sycara, and M. Wooldridge, A roadmap of
agent research and development, J. Auton. Agents Multi-Agent
Syst., 1: 7–38, 1998.

8. G. Weiss (ed.), Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, Cambridge, MA: MIT Press,
1999.

9. M. Georgeff and A. Lansky, Reactive reasoning and planning,
Proc. of the Sixth National Conference on Artificial Intelligence
(AAAI-87), Seattle, WA, 1987, pp. 677–682.

10. Y. Shoham, Agent-oriented programming, Artif. Intell., 60(1):
51–92, 1993.

11. R. A. Brooks, Intelligence without Representation, Artif.
Intell., 47: 139–159, 1991.

12. J. P. Müller, The Design of Intelligent Agents: A Layered
Approach, LNCS 1177, Berlin: Springer, 1996.

13. A. Cheyer and D. Martin, The Open Agent Architecture, J.
Auton. Agents Multi-Agent Syst., 4(1,2): 143–148, 2001; M. N.
Huhns and M. P. Singh (eds.), Readings in Agents, San
Francisco, CA: Morgan Kaufmann, 1998.

14. W. Swartout and A. Tate, Ontologies, IEEE Intel. Syst. Their
Applicat., 14(1): 18–19, 1999.

15. T. Finin, Y. Labrou, and J. Mayfield, KQML as an agent
communication language, in J. M. Bradshaw (ed.), Software
Agents, Menlo Park, CA: AAAI Press/ The MIT Press, 1997,
pp. 291–316.

16. FIPA, Agent Communication Language. Available: http://
www.fipa.org/spec/f8a22.zip.

17. D. Kinny, M. Georgeff, and A. Rao, A Methodology and
modeling technique for systems of BDI agents, Workshop on
Modeling Autonomous Agents in a Multi-Agent World, LNAI
1038, New York: Springer, 1996, pp. 56–71.

8 INTELLIGENT AGENT



18. M. Wooldridge, N. Jennings, and D. Kinny, The Gaia Metho-
dology for agent-oriented analysis and design, J. Auton. Agents
Multi-Agent Syst., 3(3): 285–312, 2000.

19. F. Zambonelli, N. Jennings, and M. Wooldridge, Developing
multiagent systems: the gaia methodology, ACM Trans. Softw.
Eng. Methodol., 12(3): 317–370, 2003.

20. M. d’Inverno and M. Luck, Understanding Agent Systems,
Berlin: Springer, 2001.

21. S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 2nd ed., Upper Saddle River, NJ: Prentice Hall,
2003.

22. M. R. Genesereth and S. P. Ketchpel, Software Agents, Com-
mun. ACM, 37(7): 48–53, 1998.

23. T. Basten, M. Geilen, and H. de Groot (eds.), Ambient Intelli-
gence: Impact on Embedded System Design, Boston, MA:
Kluwer Academic Publishers, 2003.

24. S. Krawetz and D. Womble (eds.), Introduction to Bioinfor-
matics: A Theoretical and Practical Approach, Totowa, NJ:
Humana Press, 2003.

25. ‘‘Agent Based Cluster and Grid Computing’’ Session, Proce. of
the 3rd International Symposium on Cluster Computing and
the Grid, Tokyo, Japan, IEEE Computer Society Press, 2003.

26. R. Guttman, A. Moukas, and P. Maes, Agents as mediators in
electronic commerce, in M. Klusch (ed.), Intelligent Informa-
tion Agents, Berlin: Springer, 1999.

27. Z. Zhang and C. Zhang, Agent-Based Hybrid Intelligent Sys-
tems: An Agent-Based Framework for Complex Problem Sol-
ving, LNAI 2938, Berlin: Springer, 2004.

28. J. Liu, X. Jin, and K. Tsui, Autonomy Oriented Computing:
From Problem Solving to Complex Systems Modeling,
New York: Kluwer Academic Publishers, 2005.

29. J. Ferber, Multi-Agent Systems: An Introduction to Distributed
Artificial Intelligence, Harlow, UK: Addison-Wesley, 1999.

30. Z. Guessoum and J.-P. Briot, From active objects to autono-
mous agents, IEEE Concurrency, 7(3): 68–76, 1999.

FURTHER READING

M. Wooldridge, Agent-based software engineering, IEE Proc.
Softw. Eng., 144(1): 26–37, 1997.

N. R. Jennings, On agent-based software engineering, Artif. Intell.,
117: 277–296, 2000.

S. Russell and P. Norvig, A Modern Approach to Artificial Intelli-
gence, 2nd ed., Upper Saddle River, NJ: Prentice-Hall, 2003.

N. R. Jennings and M. J. Wooldridge (eds.), Agent Technology:
Foundations, Applications, and Markets, Berlin: Springer, 1998.

V. Subrahmanian, P. Bonatti, J. Dix, et al., Heterogeneous Agent
Systems, Cambridge, MA: MIT Press, 2000.

M. Wooldridge and P. Ciancarini, Agent-oriented software engi-
neering: The state of the art, in P. Ciancarini and M. Wooldridge
(eds.), Agent-Oriented Software Engineering, LNAI 1957,
New York: Springer, 2001. Available online: http://www.csc.liv.
ac.uk/�mjw/pubs/.

CHENGQI ZHANG

University of Technology
Sydney, Australia

ZILI ZHANG

Deakin University
Geelong, Australia

INTELLIGENT AGENT 9



K

KNOWLEDGE ACQUISITION

Knowledge acquisition is the process by which problem-
solving expertise is obtained from some knowledge source,
usually a domain expert. This knowledge is then imple-
mented into an expert system program that can provide
expert assistance to nonexperts when and where a human
expert is not available.

Traditionally knowledge acquisition is accomplished
through a series of long and intensive interviews between
a knowledge engineer, who is a computer specialist, and a
domain expert, who has superior knowledge in the domain
of interest. This process is usually referred to as knowledge
elicitation to distinguish it from the more general knowl-
edge acquisition term.

Experience has shown that knowledge acquisition from
experts is the most difficult, time-consuming, and costly
part of developing an expert system (1). The difficulty of
knowledge acquisition has stimulated research in develop-
ing machines that autonomously acquire knowledge with-
out the assistance of humans. Although progress has been
made in the area of automated knowledge acquisition, in
the foreseeable future, most of the knowledge for practical
expert systems will be obtained through the interaction of
domain experts and knowledge engineers.

THE KNOWLEDGE ENGINEERING PROCESS

Knowledge acquisition is an activity of a larger process used
to develop expert systems, called knowledge engineering.
The knowledge engineering process consists of several
phases, each consisting of several tasks. Although knowl-
edge engineering phases and tasks are usually shown in
sequence, inpractice they are conducted iteratively. Figure1
depicts the phases of the knowledge engineering process.
The following is a summary of the activities conducted in
each phase:

Phase I: Problem assessment. This phase assesses the
applicability and feasibility of an expert system solu-
tion to a particular problem.

Phase II: Knowledge acquisition. This phase involves the
acquisition of knowledge from a domain expert and/or
other sources of knowledge. It also involves inter-
preting, analyzing, and documenting the acquired
knowledge.

Phase III: Knowledge representation. This phase involves
the selection of a knowledge representation scheme
and control strategy. Acquired knowledge is repre-
sented using the selected representation.

Phase IV: Knowledge coding. This phase involves coding
the knowledge using appropriate expert system
development software.

Phase V: Knowledge validation and verification. This
phase ensures that the developed system performs at

an acceptable level of expertise and that it correctly
implements its initial specification.

Phase VI: Maintenance. This is an ongoing phase that
corrects system errors and deficiencies. It also updates
the system knowledge as the requirements evolve.

An interesting aspect of the iterative nature of the knowl-
edge engineering process is its synergistic effect. Both
the system and the development team improve their
knowledge about the problem and how best to solve it as
the development progresses.

DIFFICULTIES IN KNOWLEDGE ACQUISITION

Experience has shown that knowledge acquisition is a diffi-
cult, expensive, and time-consuming process. The major
source of difficulty stems from a well-recognized fact in
the field of cognitive psychology that eliciting knowledge
from humans is an inherently difficult task (2). Humans are
usually unaware of their mental processes when solving a
problem (3). They may not be able to communicate their
knowledge, not because they cannot express it, but because
they are unaware of what knowledge they are using in their
problem-solving activities (4). Furthermore, humans will
provide an explanation of their performance that is different
from the way they actually perform their tasks (5).

As most expert system projects rely on elicitation of
knowledge between an expert and a knowledge engineer,
many of the problems identified by cognitive psychologists
are manifested. These problems are as follows:

� Experts may be unaware of knowledge used.

� Experts may be unable to articulate their knowledge.

� Experts may provide irrelevant, incomplete, incorrect,
or inconsistent knowledge.

Additional problems that add to the complexity of acquiring
knowledge include the following:

� Experts may not be available or may be unwilling to
cooperate.

� Lack of well-defined knowledge acquisition methods.

� The complexities of dealing with a large number of
participants with different backgrounds, different
skills and knowledge sets, and using different
terminology.

� The multiplicity of the sources of knowledge required
for the system.

� The exponential growth in the complexity and inter-
dependencies of knowledge with the size of the domain.

� The mismatch of the level of abstraction of knowledge
between experts and computers.

� Potential interpersonal communication problems
between the knowledge engineer and the expert.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



FUNDAMENTAL CONCEPTS OF KNOWLEDGE

Levels of Knowledge

Knowledge can be broadly classified into two levels: shallow
knowledge and deep knowledge.

Shallow knowledge refers to surface-level information
that can be used to solve problems in very specific
domains. Shallow knowledge is usually empirical and
represents knowledge accumulated through the
experience of solving past problems. Although shallow
knowledge can be easily represented by computers, it
is limited in representing and solving problems of a
knowledge domain; thus, it is usually insufficient in
describing complex situations.

Deep knowledge refers to the fundamental knowledge
about a problem represented by its internal struc-
ture, fundamental laws, functional relationships,
and so on. Deep knowledge can be applied to different

tasks and under different situations. Deep knowledge
is difficult to represent using computers, as it requires
a complete and thorough understanding of the basic
elements of knowledge and their complex interactions.

Types of Knowledge

In addition to the above two categories, knowledge can be
classified by various types as follows:

Declarative knowledge describes what is known about a
problem. It is a descriptive representation of knowl-
edge that includes simple statements that are either
true or false. The factual statement ‘‘The sky is blue’’
is an example of declarative knowledge. Facts, con-
cepts, and relations are typical examples of declara-
tive knowledge.

Procedural knowledge describes how a problem is
solved. It provides a step-by-step sequence of instruc-
tions on how to solve the problem. For example, ‘‘If the
temperature falls below 50, turn on the heater.’’
Rules, strategies, and procedures are examples of
procedural knowledge.

Heuristic knowledge is a special type of knowledge that
describes rules-of-thumb used to guide the reasoning
process to solve a problem. Heuristic knowledge is
acquired through extensive experience. Experts
usually compile deep knowledge into simple heuris-
tics to aid in problem solving.

Episodic knowledge is time-stamped knowledge orga-
nized as a case or episode. This knowledge can confer
the capability to perform protracted tasks or to
answer queries about temporal relationships and to
use temporal relationships.

Meta-knowledge describes knowledge about knowledge.
It is used to select other knowledge and to direct the
reasoning on how to best solve a problem.

It is important to identify the type of domain knowledge to
be acquired as different types of knowledge are best elicited
by different techniques. In many situations, the domain
knowledge consists of several types. In these situations, it is
usually preferred to employ more than one technique to
acquire the knowledge.

Sources of Knowledge

Knowledge may be obtained from a variety of sources. These
sources can be divided into two main types: documented
and undocumented. Documented sources include manuals,
books, articles, reports, standard procedures, regulations,
guidelines, pictures, maps, video, films, and computer data-
bases. Undocumented knowledge largely exists in human
minds. Sources of undocumented knowledge include
experts, end users, and observed behavior.

PROCESS OF KNOWLEDGE ACQUISITION

The process of knowledge acquisition is a cyclical one. It
begins with the collection and recording of knowledge,
followed by its interpretation, analysis, and organization.

Phase I
Problem

Assessment

Phase II
Knowledge
Acquisition

Phase III
Knowledge

Representation

Phase IV
Knowledge

Coding

Phase V
Knowledge

Verification &
Validation

Phase VI
Knowledge

Maintenance

Selected Project

System Knowledge

System Design

System Prototype

Production System

Reacquisition

Redesign

Refinements

Retesting

Figure 1. Phases of the knowledge engineering process.
Although the phases appear sequential, there is considerable
overlap and iteration in their execution.

2 KNOWLEDGE ACQUISITION



Finally methods are designed for clarifying and collecting
additionalknowledgebasedonacquiredknowledge.Figure2
illustrates the knowledge acquisition process.

Knowledge Collection. Knowledge collection is the task
of acquiring knowledge from a knowledge source. Usually,
this step requires significant interaction between an
expert and a knowledge engineer. At the initial stages
of knowledge collection, information obtained from the
expert represent a broad overview of the domain and
the general requirements of the expert system. Later
stages of knowledge collection are characterized by their
narrow focus, with emphasis on the details of how the
expert performs the various tasks. Knowledge acquisition
sessions are recorded and transcribed in preparation for
interpretation and analysis.

Knowledge Interpretation. This task involves reviewing
the collected information and the identification and classi-
fication of key pieces of knowledge, such as facts, concepts,
objects, rules, problem-solving strategies, and heuristics.
In early iterations of the cycle, the knowledge collected will
be of a general nature. During later stages, different and
deeper problem-solving knowledge will be uncovered.

Knowledge Analysis. This task takes the key pieces of
knowledge uncovered during the knowledge interpretation
phase and forms theory on the representation of knowledge
and problem-solving strategies used. It requires assembling
the acquired knowledge into related groups and storing
them in the knowledge dictionary. The output of this task
is a conceptual model of the domain knowledge that shows
the information an expert system will require, the reasoning
it will perform, and the sequence of steps it will take in order
to accomplish its task. A variety of graphical techniques

are typically used to develop the conceptual model. These
techniques include flowcharts, cognitive maps, inference
networks, decision tables, and decision trees.

Knowledge Design. After the completion of the collec-
tion, interpretation, and analysis tasks, some concepts and
problem-solving strategies emerge as requiring further
investigation and clarification. This task identifies this
information and designs an agenda that includes clarifying
old issues and discussing new ones with the expert during
the following iteration of the acquisition cycle.

Although theoretically the cycle could continue indefi-
nitely, in practice, the process is repeated until the result-
ing system meets some acceptable performance measures.

PARTICIPANTS IN KNOWLEDGE ACQUISITION

The main participants in knowledge acquisition are the
domain expert, the knowledge engineer, and the end user.
Each participant plays an important role in knowledge
acquisition and must possess certain qualifications to con-
tribute effectively to the knowledge acquisition process.

The Expert

The expert is usually the primary source of knowledge for
most expert system projects. The expert’s main task is to
communicate his/her domain expertise to the knowledge
engineer for encoding into an expert system. In addition to
possessing extensive knowledge and problem-solving skills
in a given domain, an expert should have the following
qualifications:

1. Ability to communicate the problem-solving knowl-
edge

2. Willingness and eagerness to participate in the
project

3. Ability to work well with others

4. Availability for the duration of the project

The Knowledge Engineer

The main responsibility of a knowledge engineer is
to acquire, analyze, interpret, design, and encode the
knowledge. Knowledge engineers must have the technical
skills for interpreting, analyzing, and coding the collected
knowledge. Additionally they should have the following
qualifications:

1. Good communications and interpersonal skills

2. Good knowledge elicitation and interviewing skills

3. Good project management skills

The End-user

End users are an important, yet often ignored, additional
source of knowledge. They provide a high-level understand-
ing of the problem. They are particularly useful in providing
a general perspective and insight early on during the knowl-

Knowledge
Collection

Knowledge
Analysis

Knowledge
Design

Knowledge
Interpretation

Acquired
Knowledge

Organized
 Knowledge

 Conceptual Model
of Knowledge

Additional Knowledge
Requirements

Figure 2. The knowledge acquisition process. The process is
cyclic; information obtained from each cycle is used to design new
ways to acquire knowledge.

KNOWLEDGE ACQUISITION 3



edge elicitation process. Some of the qualifications required
for end users to support knowledge acquisition include:

1. Availability and willingness to participate in the
project

2. Open-minded attitude toward change

METHODS OF KNOWLEDGE ACQUISITION

Knowledge acquisition methods are classified in different
ways and appear under different names in different litera-
ture. In this article, we follow a classification based on the
degree of automation in the acquisition process. The clas-
sification divides knowledge acquisition methods into three
categories: manual methods, combined manual and auto-
mated methods, and automated methods (6). This classifi-
cation is depicted in Fig. 3.

Manual methods are largely based on some kind of
interview between an expert and a knowledge engineer.
The knowledge engineer elicits knowledge from the expert
during interviewing sessions, refines it with the expert, and
then represents it in a knowledge base. The two manual
methods commonly used are interviews (structured,
unstructured, and questionnaire) and task-based methods
(protocol analysis, observation, and case analysis). In some
cases, an expert may play the role of a knowledge engineer
and self-elicit the knowledge without the help of a knowl-
edge engineer.

Combined manual and automated methods use techni-
ques and tools to support both experts and knowledge

engineers in the knowledge acquisition process. Methods
intended to support experts provide an environment for
constructing the knowledge base with little or no support
from a knowledge engineer. Methods intended to support
knowledge engineers provide an environment of acquiring
and representing knowledge with minimal support from
the experts.

Automated methods minimize or even eliminate the
roles of both experts and knowledge engineers. They are
based on machine learning methods and include learning
by induction, neural networks, genetic algorithms, and
analogical and case-based reasoning.

It is important to note that the categories of the above
classification are not mutually exclusive as some overlap
can exist between them.

MANUAL METHODS

Interviews

Interviews are the most common elicitation method used
for knowledge acquisition. It involves a two-way dialog
between the expert and the knowledge engineer. Infor-
mation is collected by various means and subsequently
transcribed, interpreted, analyzed, and coded. Two types
of interviews are used: unstructured and structured.
Although many techniques have been proposed for con-
ducting interviews, effective interviewing is still largely
an art.

Unstructured Interviews. Unstructured interviews are
conducted without prior planning or organization. They

Knowledge
Acquisition
Methods

Automated
Methods

Combined
Manual &

Automated
Methods

Manual Methods

Task-Based
Methods

Interviews Self-Elicitation

Protocol Analysis Observation Case Analysis

Structured Unstructured Questionnaires

Induction
Learning

Neural Networks
Genetic

Algorithms

Analogical and
Case-Based

Learning

Knowledge
Engineer Driven

Expert Driven

Repertory Grid
Analysis

Intelligent Editors

Figure 3. Knowledge acquisition methods. This classification is based on the degree of automation in the acquisition process.

4 KNOWLEDGE ACQUISITION



are an informal technique that helps the knowledge engi-
neer gain a general understanding of the problem, its most
important attributes, and general problem-solving meth-
ods. During unstructured interviews, the knowledge engi-
neer asks some opening questions and lets the expert talk
about the problem, its major objects, concepts, and problem-
solving strategies. The role of the knowledge engineer is
limited to asking clarifying questions or redirecting the
interview toward more interesting areas.

Unstructured interviews appear in several variations
(6). In the ‘‘talkthrough’’ interview, the expert talks
through the steps he follows to solve a specific problem.
In the ‘‘teachthrough’’ interview, the expert plays the role of
an instructor and explains ‘‘what’’ he does and ‘‘why’’ he
does it in order to solve a problem. In the ‘‘readthrough’’
interview, the expert instructs the knowledge engineer on
how to read and interpret the documents used for the task.

Unstructured interviews are useful in uncovering the
basic structure of the domain, the main attributes of the
problem, and the general problem-solving methods used by
the expert. They are appropriate during the early stages of
knowledge acquisition when the knowledge engineer is
exploring the domain.

However, unstructured interviews suffer from several
drawbacks (7). First, unstructured interviews lack the
organization for the effective transfer of knowledge. Sec-
ond, due to lack of structure, domain experts find it difficult
to express important elements of their knowledge. Third,
experts interpret the lack of structure as requiring little or
no preparation. Fourth, data collected from an unstruc-
tured interview are often unrelated. Fifth, very few knowl-
edge engineers can conduct an effective unstructured
interview. Finally, unstructured situations do not facilitate
the acquisition of specific information from experts.

Structured Interviews. Structured interviews maintain a
focus on one aspect of the problem at a time by eliciting
details on that aspect before moving to a different one. This
focus is maintained by structuring the interview based on a
prior identification of the problem’s key issues obtained
through earlier unstructured interviews or other sources.
The interview structure forces an organized exchange
between the expert and the knowledge engineer and
reduces the interpretation problems and the distortion
caused by the subjectivity of the expert.

Structured interviews require extensive preparation
from the part of the knowledge engineer. In addition,
conducting and managing the interview properly require
attention to several issues. Some of the basic issues relate to
items such as setting up the interview, scheduling the
session, choosing the interview location, and the conduct
of the first interview. Other issues include knowing how to
begin and end the interview and how to ask questions in a
way that will provide the desired information. Many guide-
lines exist in the literature on how to conduct effective
structured interviews. For example, see the guidelines
suggested in McGraw and Harbison-Briggs (7), Prerau
(8), and Scott et al. (9).

The main advantage of structured interviews is their
focus and the resulting detailed information obtained on a
given issue. They are usually easier to manage, and the

information collected is easier to analyze and interpret.
Structured interviews are particularly useful in identify-
ing the structure of the domain objects and their proper-
ties, concept relationships, and general-problem solving
strategies.

The main limitation of structured interviews is that
concepts unrelated to the interview focus may not be dis-
covered. This limitation will be particularly manifested
when the knowledge engineer is not fully aware of the
topics’ main issues. Additionally, structured interviews
provide little insight on procedural knowledge.

Questionnaires. Although questionnaires are not
strictly an interviewing method, they are used in knowl-
edge acquisition to complement interviews by asking the
expert to clarify already developed topics during advanced
stages of knowledge acquisition.

Task-Based Methods

Task-based methods refer to a set of techniques that pre-
sent the expert with a task and attempt to follow his or her
reasoning in solving the problem. Task-based methods can
help the knowledge engineer in identifying what informa-
tion is being used, why it is being used, and how it is being
used. The methods that can be grouped under this approach
include protocol analysis, observation, and case studies.

Protocol Analysis. In protocol analysis, the expert is
asked to perform a real task and to verbalize at the same
time his or her thought process while performing the task.
Usually a recording is made during this process, using a
tape or video recorder, which becomes later a record, or
protocol, that traces the behavior of the expert while solving
a problem. As with interviews, this recording is tran-
scribed, analyzed, reviewed, and coded by the knowledge
engineer.

The main difference between a protocol analysis and an
interview is that a protocol analysis is mainly a one-way
communication. The knowledge engineer task is limited to
selecting a task, preparing the scenario, and presenting
it to the expert. During the session, the expert does most
of the talking as the knowledge engineer listens and
records the process.

The main advantage of protocol analysis is that it pro-
vides immediate insight of problem-solving methods,
rather than retrospectively after the fact. It is particularly
useful for a non-procedural type of knowledge, where the
expert applies a great deal of mental and intellectual effort
to solve a problem.

However, several cognitive psychologists have argued
that asking experts to verbalize their problem-solving
knowledge while performing a task creates an unnatural
situation that influences task performance (10). In addi-
tion, some problems, such as ones that involve perceptual-
motor tasks, do not have a natural verbalization. Forcing an
expert to ‘‘think aloud’’ in these situations can lead to the
collection of misleading and inaccurate information.

Observation. Another useful knowledge acquisition
technique is observing the expert in the field while solving

KNOWLEDGE ACQUISITION 5



a problem. Observation is usually conducted at the place
where the expert makes the actual decisions. Experience
has shown that the realism of the expert problem-solving
approach is greatly influenced by the usual physical envi-
ronment of the problem.

The main advantage of this approach is that it allows the
knowledge engineer to observe the decision making of the
expert in a realistic environment. It provides an unbiased
and unobtrusive technique for collecting knowledge. It is
particularly useful for collecting information on procedural
knowledge.

Observations are usually expensive and time consum-
ing. A large amount of information is usually collected from
which only a small fraction is useful.

Case Analysis. A case is an actual problem that has been
solved together with its solution and the steps taken to solve
it. There are two primary ways a case analysis is used for
knowledge elicitation: the retrospective and observational
case analyses (11). In a retrospective case analysis, the
expert is asked to review a case and explain in retrospect
how it was solved. The expert begins by reviewing the given
recommendation and then works backward to identify the
problem concepts and knowledge components used to
support this recommendation. In an observational case
analysis, the expert is asked to solve the problem, whereas
the knowledge engineer observes the problem-solving
approach of the expert.

Several types of cases could be used in conjunction with
either the retrospective or observational case analyses.
The two common types used by knowledge engineers are
the typical case and the unusual case. The typical case
represents a situation that is well understood and known
by the expert. The results of a typical case usually reveal
the typical knowledge used by the expert to solve a pro-
blem. The unusual case represents an unusual or novel
situation that requires a deeper level of problem-solving
knowledge. Usually typical cases are used initially in the
project when a general understanding of the domain and
the problem-solving expertise is required. Unusual cases
are used later in the project when deeper knowledge is
needed to provide greater problem-solving expertise to
the system.

A main advantage of the case analysis method is that
information is obtained in the context of a realistic situa-
tion, thus providing more accurate insight into problem-
solving strategies. A case analysis usually reveals more
specific problem-solving knowledge than that obtained
from interviewing techniques. The retrospective case ana-
lysis has the further advantage of not interfering with the
problem-solving activity, because retrospection requires the
expert to recall from memory the information needed tosolve
the problem, rather than actually solving the problem.

A major disadvantage of the case analysis method,
particularly the retrospective type, is that it may provide
incomplete information and few details on the domain
under study. Another disadvantage is the expert’s bias
toward typical situations solved that could produce incon-
sistent results. Selecting an unusual but solvable case
could be challenging and presents yet another difficulty
for this approach.

Self-Elicitation. In some cases, the expert may have both
the technical interest and the needed training to play the
role of a knowledge engineer. In this case the expert may
acquire and represent the knowledge directly without the
intermediary of a knowledge engineer. This process can be
accomplished through self-administered questionnaires or
through self-reporting. Self-reporting can take the form of
an activity log, knowledge charts, introductory tutorials, or
other similar documents that report on the problem-solving
activities of the expert.

A main problem with self-elicitation methods is that
experts are usually not trained in knowledge engineering
methods and techniques. The resulting knowledge tends to
have a high degree of bias, ambiguity, new and untested
problem-solving strategies, as well as vagueness about the
nature of associations among events (11). In addition,
experts lose interest rapidly in the process, and conse-
quently, the quality of the acquired knowledge decreases
as the reporting progresses. Self-elicitation methods are
useful when experts are inaccessible and in the gathering of
preliminary knowledge of the domain.

COMBINED MANUAL AND AUTOMATED METHODS

Manual knowledge acquisition methods are usually time
consuming, expensive, and even unreliable. Combined
manual and automated methods use techniques and tools
designed to reduce or eliminate the problems associated
with manual methods. They are designed to support both
experts and knowledge engineers in the knowledge acqui-
sition process.

Methods to Support the Experts

Repertory Grid Analysis. Repertory grid analysis (RGA)
is one of several elicitation techniques that attempt to gain
insight into the expert’s mental model of the problem
domain. It is based on a technique, derived from psycho-
logy, called the classification interview. When applied to
knowledge acquisition, these techniques are usually aided
by a computer. RGA is based on Kelly’s model of human
thinking called Personal Construct Theory (12). According
to this theory, people classify and categorize knowledge and
perceptions about the world. Based on this classification,
they are able to anticipate and act on everyday decisions.

The RGA involves the following steps:

1. Construction of conclusion items. These items are the
options that will be recommended by the expert sys-
tem. For example, an investment portfolio advisor
conclusion items might include the following options:
100% investment in savings; a portfolio with 100%
stocks (portfolio 1); a portfolio with 60% stocks, 30%
bonds, and 10% savings (portfolio 2); and a portfolio
with 20% stocks, 40% bonds, and 40% savings (port-
folio 3).

2. Construction of traits. These traits are the important
attributes that the expert considers in making deci-
sions. For example, in the investment portfolio advi-
sor example, traits might include age, investment

6 KNOWLEDGE ACQUISITION



amount, and investment style. Traits are identified
by picking three conclusion items and identifying the
distinguishing characteristics of each from the two
others. Each trait is given values on a bipolar scale
(i.e., a pair of opposite values). In the investment
portfolio advisor example, the identified traits could
have the following values: young/old, small/large,
and conservative/aggressive.

3. Rating of conclusion items according to traits. The
expert rates each conclusion item on a scale of one to
five. Five is given to an item that satisfies the left-
hand pole of the trait and one to an item that satisfies
the right pole. The answers are recorded in a grid as
shown in Table 1.

4. Rule generation. Once the grid is completed, rules are
generated that provide decision items given a desired
trait importance.

Several knowledge acquisition tools have been developed
based on the RGA method. The best known tool of this
group is the Expertise Transfer System (ETS) (13). ETS is
used to build a knowledge system through several iterative
steps: (1) ETS interviews the experts to uncover conclusion
items, problem-solving traits, trait structure, trait weights,
etc.; (2) information acquired from the expert is built into
information bases; (3) information bases are analyzed
and built into knowledge bases (rules, frames, or networks);
(4) knowledge bases are incrementally refined using test
case histories; and (5) knowledge bases are implemented
into expert systems. Other representative tools in this
category include KRITON (15), and AQUINAS(16).

Intelligent Editors. An intelligent editor allows the
domain expert to capture the knowledge directly without
the intermediary of a knowledge engineer. The expert
conducts a dialog with the editor using a natural language
interface that includes a domain-specific vocabulary.
Through the intelligent editor, the expert can manipulate
the rules of the expert system without knowing the internal
structure of these rules.

The editor assists the expert in building, testing, and
refining a knowledge base by retrieving rules related to a
specific topic and by reviewing and modifying the rules if
necessary. The editor also provides an explanation facility.
The expert can query the system for conclusions given a set
of inputs. If the expert is unhappy with the results, he can
have the editor show all the rules used to arrive at that
conclusion.

Some editors have the ability to suggest reasonable
alternatives and to prompt the expert for clarifications
when required. Other editors have the ability to perform
syntax and semantic checks on the newly entered knowl-
edge and detect inconsistencies when they occur.

A classic example of intelligent editors is a program
called TEIRESIAS that was developed to assist experts
in the creation and revision of rules for a specific expert
system while working with the EMYCIN shell (1).

Methods to Support the Knowledge Engineer

Several types of tools have been developed to support
knowledge acquisition. They include knowledge-base edi-
tors, explanation facilities, and semantic checkers.

Knowledge-base editors facilitate the task of capturing
the knowledge and entering it into the knowledge base.
They provide syntax and semantic checks to minimize
errors and ensure validity and consistency. Several types
of editors exist. Rule editors simplify the task of defining,
modifying, and testing production rules. Graphical editors
support the development of structured graphic objects used
in developing the knowledge base (17).

Explanation facilities support the knowledge engineer
in acquiring and debugging the knowledge base by tracing
the steps followed in the reasoning process of the expert to
arrive at a conclusion.

Semantic checkers support the construction of, and
changes to, knowledge bases. They ensure no errors or
inconsistencies exist in the knowledge.

AUTOMATED METHODS

Automated methods refer to the autonomous acquisition of
knowledge through the use of machine learning approaches.
The objective of using machine learning is to reduce the
cost and time associated with manual methods, minimize or
eliminate the use of experts and knowledge engineers, and
improve the quality of acquired knowledge. In this section
we will discuss five of these approaches. They include induc-
tive learning, neural networks, genetic algorithms, and
case-based reasoning and analogical reasoning.

Inductive Learning

Inductive learning is the process of acquiring generalized
knowledge from example cases. This type of learning is
accomplished through the process of reasoning from a set of
facts to conclude general principles or rules.

Rule induction is a special type of inductive learning in
which rules are generated by a computer program from
example cases. A rule-induction system is given an example
set that contains the problem knowledge together with its
outcome. The example set can be obtained from the domain
expert or from a database that contains historical records.
The rule-induction-system uses an induction algorithm to
create rules that match the results given with the example
set. The generated rules can then be used to evaluate new
cases where the outcome is not known.

Consider the simple example set of Table 2 that is used
in approving or disapproving loans for applicants. Applica-

Table 1. A Repertory Grid for an Investment Portfolio
Advisor

Attribute Age Investment Amount Investment Style

Trait Young(5) Small(1) Conservative(1)

Opposite Old(1) Large(5) Agressive(5)

Savings 2 1 1
Portfolio 1 4 4 5
Portfolio 2 3 3 3
Portfolio 3 2 2 2

KNOWLEDGE ACQUISITION 7



tion for a loan includes information about the applicant’s
income, assets, and age. These are the decision factors used
to approve or disapprove a loan. The data in this table
show several example cases, each with its final decision.
From this simple example case, a rule-induction system
may infer the following rules:

1. If income is high, approve the loan.

2. If income is low and assets are high, approve the loan.

3. If income is medium, assets are medium, and age is
middle or higher, approve the loan.

The heart of any induction systems is the induction algo-
rithm, which is used to induce rules from examples. Induc-
tion algorithms vary from traditional statistical methods to
neural computing models.

A classic and widely used algorithm for inductive learn-
ing is ID3 (18). The ID3 algorithm first converts the
knowledge matrix into a decision tree. Irrelevant decision
factors are eliminated, and relevant factors are organized
efficiently.

Rule induction offers many advantages. First, it allows
knowledge to be acquired directly from example cases, thus
avoiding the problems associated with acquiring knowl-
edge from an expert through a knowledge engineer. Second,
induction systems can discover new knowledge from the set
of examples that may be unknown to the expert. Third,
induction can uncover critical decision factors and elimi-
nate irrelevant ones. In addition, an induction system can
uncover contradictory results in the example set and report
them to the expert.

Induction systems, however, suffer from several disad-
vantages. They do not select the decision factors of a
problem. An expert is still needed to select the important
factors for making a decision. They can generate rules that
are difficult to understand. They are only useful for rule-
based, classification problems. They may require a very
large set of examples to generate useful rules. In some
cases, the examples must be sanitized to remove exception
cases. Additionally, the computing power required to per-
form the induction grows exponentially with the number of
decision factors.

Neural Networks

Neural networks are a relatively new approach to building
intelligent systems. The neural network approach is based
on constructing computers with architectures and proces-
sing capabilities that attempt to mimic the architecture
and processing of the human brain. A neural network is a
large network of simple processing elements (PEs) that

process information dynamically in response to external
inputs. The processing elements are a simplified repre-
sentation of brain neurons. The basic structure of a neural
network consists of three layers: input, intermediate
(called the hidden layer), and output. Figure 4 depicts a
simple three-layer network.

Each processing element receives inputs, processes the
inputs, and generates a single output. Each input corre-
sponds to a decision factor. For example, for a loan approval
application, the decision factors may be the income level,
assets, or age. The output of the network is the solution to
the problem. In the loan approval application, a solution
may be simply a ‘‘yes’’ or ‘‘no.’’ A neural network, however,
uses numerical values only to represent inputs and outputs.

Each input xi is assigned a weight wi that describes the
relative strength of the input. Weights serve to increase or
decrease the effects of the corresponding xi input value. A
summation function multiplies each input value xi by its
weight wi and sums them together for a weighted sum y. As
Figure 5 illustrates, for j processing elements, the formula
for n input is

y j ¼
X

j

wijxi

Based on the value of the summation function, a processing
element may or may not produce an output. For example, if
the sum is larger than a threshold value T, the processing
element produces an output y. This value may then be
input to other nodes for a final response from the network.
If the total input is less than T, no output is produced. In
more sophisticated models, the output will depend on a
more complex activation function.

Learning in a Neural Network. The knowledge in a neural
network is distributed in the form of internode connections
and weighted links. These weights must be learned in some
way. The learning process can occur in one of two ways:
supervised and unsupervised learning.

In supervised learning, the neural network is repeatedly
presented with a set of inputs and a desired output

Table 2. ExampleDataset fromaLoanApplicationDatabase
Used for Rule Induction

Name
Annual
Income Assets Age

Loan
Decision

Applicant A High None Young Yes
Applicant B Medium Medium Middle Yes
Applicant C Low High Young Yes
Applicant D Low None Young No

Input Layer

Intermediate
Layer

Output Layer

= Processing Element

Figure 4. A three-layer neural network architecture. The layers
of the network are the input, intermediate (hidden), and output
layers.

8 KNOWLEDGE ACQUISITION



response. The weights are then adjusted until the differ-
ence between the actual and the desired response is zero. In
one variation of this approach, the difference between the
actual output and the desired output is used to calculate
new adjusted weights. In another variation, the system
simply acknowledges for each input set whether the output
is correct. The network adjusts weights in an attempt to
achieve correct results. One of the simpler supervised
learning algorithms uses the following formula to adjust
the weights wi:

wiðnewÞ ¼ wiðoldÞ þ a� d� xi

jxij2

where a is a parameter that determines the rate of learn-
ing, and d is the difference between actual and desired
outputs.

In unsupervised learning, the training set consists of
input stimuli only. No desired output response is available
to guide the system. The system must find the weights wij

without the knowledge of a desired output response.
Neural networks can automatically acquire knowledge

from historical data. In that respect they are similar to rule
induction. They do not, however, need an initial set of
decision factors or complete and unambiguous sets of
data. Neural networks are particularly useful in identify-
ing patterns and relationships that may be subsequently
developed into rules for expert systems. Neural networks
could also be used to supplement rules derived by other
techniques.

Genetic Algorithms

Genetic algorithms refer to a variety of problem-solving
techniques that are based on models of natural adaptation
and evolution. They are designed the way populations

adapt to and evolve in their environments. Members
that adapt well are selected for mating and reproduction.
The descendants of these members inherit genetic traits
from both parents. Members of this second generation
that also adapt well are selected for mating and reproduc-
tion, and the evolutionary cycle continues. After several
generations, members of the resultant population will
have adapted optimally or at least very well to the
environment.

Genetic algorithms start with a fixed population of data
structures that are candidate solutions to specific domain
tasks. After requiring these structures to execute the spe-
cified tasks several times, the structures are rated for their
effectiveness as a domain solution. On the basis of these
evaluations, a new generation of data structures is created
using specific ‘‘genetic operators’’ such as reproduction,
crossover, inversion, and mutation. Poor performing struc-
tures are discarded. This process is repeated until the
resultant population consists only of the highest perform-
ing structures.

Many genetic algorithms use eight-bit strings of binary
digits to represent solutions. Genetic algorithms use four
primary operations on these strings:

1. Reproduction is an operation that produces new gen-
erations of improved solutions by selecting parents
with higher performance rating.

2. Crossover is an operation that randomly selects a bit
position in the eight-bit string and concatenates the
head of one parent with the tail of the second parent to
produce a child. Consider two parents designated
xxxxxxxx and yyyyyyyy, respectively. Suppose the
second bit position has been selected as the crossover
point (i.e., xx: xxxxxx and yy: yyyyyy). After the cross-
over operation is performed, two children are gener-
ated, namely xxyyyyyy and yyxxxxxx.

3. Inversion is a unary operation that is applied to a
single string. It selects a bit position at random, and
thenconcatenates thetail of thestringtotheheadof the
same string. For example, if the second position was
selected for the following string (x1x2 : x3x4x5x6x7x8),
the inverted string would be x3x4x5x6x7x8x1x2.

4. Mutation is an operation ensures that the selection
process does not get caught in a local minimum. It
selects any bit position in a string at random and
changes it.

The power of genetic algorithms lies in that they provide
a set of efficient, domain-independent search heuristics
for a wide range of applications. With experience, the
ability of a genetic algorithm to learn increases, enabling
it to accumulate good solutions and reject inferior ones.

Analogical Reasoning and Case-Based Reasoning

Analogical reasoning is the process of adapting solutions
used to solve previous problems in solving new problems. It
is a very common human reasoning process in which new
concepts are learned through previous experience with
similar concepts. A past experience is used as a framework

x1

x2

x3

w11

w12

y1

y2

y3

w32

w22

w23

w33

y1 = x1w11

y2 = x1w12 + x2w22 + x3w32

y3 = x2w23 + x3w33

= Processing Element

Figure 5. Summation function for several neurons.

KNOWLEDGE ACQUISITION 9



for solving the new analogous experience. Analogical learn-
ing consists of the following five steps:

1. Recognizing that a new problem or situation is simi-
lar to a previously encountered problem or situation.

2. Retrieving cases that solved problems similar to the
current problem using the similarity of the new pro-
blem to the previous problem as an index for search-
ing the case database.

3. Adapting solutions to retrieved cases to conform with
the current problem.

4. Testing the new solutions.

5. Assigning indexes to the new problem and storing it
with its solution

Unlike induction learning, which requires a large number
of examples to train the system, analogical learning can be
accomplished using a single example or case that closely
matches the new problem at hand.

KNOWLEDGE ANALYSIS

After knowledge is collected, it must be interpreted and
analyzed. First a transcript of the knowledge acquisition
session is produced. This transcript is then reviewed and
analyzed to identify key pieces of knowledge and their
relationships. A variety of graphical techniques are used
to provide a perspective of the collected knowledge and its
organization (14).

Knowledge Transcription

After the knowledge collection phase, an exact and com-
plete transcript of the knowledge acquisition session is
usually made. This transcript is used as a basis for inter-
preting and analyzing the collected knowledge. Transcrip-
tion can also be partial. In case of a partial transcription,
notes taken during knowledge acquisition session can be
used to guide the selection of what should be transcribed.

Each transcript is indexed appropriately with such
information as the project title, session date and time,
session location, attendees, and the topic of the session.
A paragraph index number is assigned to cross-reference
the source of knowledge extracted from the transcript with
the knowledge documentation. This cross-referencing facil-
itates the effort of locating the source of knowledge if
additional information is needed.

Knowledge Interpretation

Knowledge interpretation begins by reviewing the tran-
script and identifying the key pieces of knowledge or
‘‘chunks’’ (19). Usually declarative knowledge is easy to
identify. Procedural knowledge is harder to recognize, as it
can be scattered across the transcript, making it harder to
relate. In addition to identifying key pieces of knowledge,
an important goal of reviewing the transcript is to identify
any issues that need further clarification by the expert.

Several techniques can be used in knowledge interpre-
tation. These include (1) using handwritten notes taken
during the knowledge acquisition session in knowledge

identification, (2) highlighting of key information in the
transcript using word processing software features or a
pen, and (3) labeling each piece of knowledge with the type
of knowledge it represents.

Knowledge Analysis and Organization

After identifying the different types of knowledge, they
need to be analyzed and classified. This effort includes
the following steps:

1. Recording each identified piece of knowledge with
other related pieces in the knowledge dictionary. A
knowledge dictionary is a repository that maintains,
in alphabetical order, a description of each type
of knowledge, for example, objects, rules, problem-
solving strategies, and heuristics.

2. Organizing, classifying, and relating the pieces of
knowledge collected with similar knowledge stored
in the knowledge dictionary. This is a complex itera-
tive step that requires the involvement of the expert
to confirm and help refine the structure of knowledge
developed.

3. Reviewing the collected knowledge to identify those
areas that need further clarification.

Graphical techniques that show how the different pieces of
knowledge are related are particularly useful. The next
section overviews some of the knowledge representation
methods that support both the knowledge engineer and the
expert in analyzing knowledge.

KNOWLEDGE REPRESENTATION

Knowledge acquired from experts and other sources must
be organized in such a way that it can be implemented and
accessed whenever needed to provide problem-solving
expertise. Knowledge representation methods can be clas-
sified into two broad types: those that support the analysis
of the acquired knowledge and the development of a con-
ceptual model of the expert system, and those that sup-
port the implementation formalism of the development
environment.

The first type of representation, called intermediate
representation, allows knowledge engineers to focus on
organizing, analyzing, and understanding the acquired
knowledge without concerning themselves with the repre-
sentation formalisms of the implementation environment.
The intermediate representation is continually refined and
updated through additional knowledge acquisition until
the knowledge engineers are satisfied they have a suffi-
ciently complete model to guide the implementation design.
Intermediate representation methods are usually pictorial
and include flowcharts, graphs, semantic networks, scripts,
fact tables, decision tables, and decision trees.

The second type of representation, called the implemen-
tation representation, is used to create an implementation
design for the chosen development environment. The con-
ceptual model is mapped directly into the representation
model of the development environment without the need to

10 KNOWLEDGE ACQUISITION



understand the function that the knowledge should serve.
Implementation representation often used includes frames
or production rules.

Each representation method emphasizes certain aspects
of the knowledge represented. The choice of a representa-
tion method will depend on how well the representation
schemes support the structure of the problem. We consider
in this article eight of the most common knowledge repre-
sentation techniques:

� Logic.

� Production rules.

� Frames.

� Semantic networks.

� Objects–attribute–value triplets.

� Scripts.

� Decision tables.

� Decision trees.

Logic

Logic is the oldest form of knowledge representation. It uses
symbols to represent knowledge. Operators are applied to
these symbols to produce logical reasoning. Logic is a
formal well-grounded approach to knowledge represen-
tation and inferencing. There are several types of logic
representation techniques. The two approaches used in
artificial intelligence and expert system development are
propositional logic and predicate calculus.

Propositional Logic. A proposition is a statement that is
either true or false. Symbols, such as letters, are used to
represent different propositions. For example, consider
propositions A and B used to derive conclusion C:

A ¼ Employees work only on weekdays

B ¼ Today is Saturday

C ¼ Employees are not working today

Propositional logic provides logical operators such as AND,
OR, NOT, IMPLIES, and EQUIVALENCE that allows
reasoning using various rule structures. Table 3 lists the
propositional logic operators and their common symbols.

The AND operator combines two propositions and
returns true if both propositions are true. The OR operator
combines two propositions and returns true if either one or
both propositions are true. The NOT operator is a unary
operator that returns false if proposition A is true; other-
wise it returns true if proposition A is false. The EQUIVA-
LENCE operator returns true when both propositions

have the same truth assignment. The IMPLIES operator
indicates that if proposition A is true, then proposition B is
also true.

A truth table is used to show all possible combinations of
an operator. Table 4 shows the truth table for the IMPLIES
operator.

Since propositional logic deals only with the truth of
complete statements, its ability to represent real-world
knowledge is limited.

Predicate Calculus. Predicate calculus is an extension of
propositional logic that provides finer presentation of
knowledge. It permits breaking down a statement into
the objects about which something is being asserted and
the assertion itself. For example, in the statement color
(sky, blue), the objects sky and blue are associated through a
color relationship.

Predicate calculus allows the use of variables and func-
tions of variables in a statement. It also uses the same
operators used in propositional logic in addition to two
other symbols, the universal quantifier 8 and the existen-
tial quantifier 9 , that can be used to define the range or
scope of variables in an expression. Inferencing capability
in predicate calculus is accomplished through the use of
these operators.

As predicate calculus permits breaking statements
down into component parts, it allows for a more powerful
representation model that is more applicable to practical
problems.

Production Rules

Production rules are a popular knowledge representation
scheme used for the development of expert systems. Knowl-
edge in production rules is presented as condition-action
pairs: IF a condition (also called antecedent or premise) is
satisfied, THEN an action (or consequence or conclusion)
occurs. For example:

IF the sky is clear

THEN it is not going to rain

A rule can have multiple conditions joined with AND
operators, OR operators, or a combination of both. The
conclusion can contain a single statement or several state-
ments joined with an AND. A certainty factor, usually a
value between�1 and 1, can also be associated with a rule
to capture the confidence of the expert with the results
of the rule (20).

Production rules represent the system’s knowledge
base. Each rule represents an independent portion of
knowledge that can be developed and modified indepen-

Table 3. Logical Operators and Their Symbols

Operator Symbol

AND ^ ; & ; \
OR _ ; [ ;þ
NOT : ; �
IMPLIES � ; !
EQUIVALANCE �

Table 4. Truth Table for IMPLIES Operator

A B A!B

T T T
T F F
F T T
F F T

KNOWLEDGE ACQUISITION 11



dently of other rules. An inference mechanism uses these
rules along with information contained in the working
memory to make recommendations. When the IF portion
of a rule is satisfied, the rule fires and the statements in the
THEN part of the rule are added to the working memory.
These statements can trigger other rules to fire. This
process continues until the system reaches a conclusion.

Production rules offer many advantages. They have
simple syntax, are easy to understand, and are highly
modular, and their results are easily inferred and
explained. Production rules are, however, not suitable for
representing many types of knowledge, particularly des-
criptive knowledge. They could also be difficult to search,
control, and maintain for large complex systems.

Semantic Networks

Semantic networks are graphical depictions of a domain’s
important objects and their relationships. It consists of
nodes and arcs that connect the nodes. The nodes represent
the objects and their properties. Objects can represent
tangible or intangible items such as concepts or events.
The arcs represent the relationships between the objects.
Some of the most common arc types are the IS-A and HAS-A
type. The IS-A relationship type is used to show class
membership; that is, an object belongs to a larger class of
objects. The HAS-A relationship type indicates the char-
acteristics of an object.

Figure 6 shows a simple example of a semantic network.
In this example, the ‘‘Pyramid’’ node is connected to a
property node, indicating that ‘‘a pyramid has faces.’’ It
is also connected to the ‘‘Structure’’ node via an IS-A link,
indicating that ‘‘a pyramid is a structure.’’ The ‘‘Structure’’
node is connected to a ‘‘Material’’ node via a MADE OF link,

and the ‘‘Stone,’’ ‘‘Wood,’’ and ‘‘Steel’’ nodes are connected to
the ‘‘Material’’ node via an IS-A link.

A very useful characteristic of semantic networks is the
concept of inheritance. Inheritance is the mechanism by
which nodes connected to other nodes through an IS-A
relationship inherit the characteristics of these nodes.
A main advantage of inheritance is that it simplifies
adding new knowledge to the network. When a new
node is added, it inherits a wealth of information through-
out the network via the IS-A links. Similarly, when a
general node is added (e.g., the ‘‘Structure’’ node), other
nodes inherit its properties.

Semantic networks have many advantages as a knowl-
edge representation scheme. They are easy to understand
and provide flexibility and economy of effort in adding new
objects and relationships. They provide a storage and pro-
cessing mechanism similar to that of humans, and the
inheritance mechanism provides an efficient way of infer-
encing. Semantic networks also have several limitations.
Exceptions offer potential difficulty to the mechanism of
inheritance, and because semantic networks do not repre-
sent sequence and time, procedural knowledge is difficult
to represent.

Frames

A frame is a data structure that includes both declarative
and procedural knowledge about a particular object. In that
respect, frames are similar to objects used in object-
oriented programming. A frame consists of a collection of
slots that may be of any size and type. Slots have a name and
any number of subslots called facets. Each facet has a name
and any number of values. Figure 7 depicts a simple frame
for ‘‘Cheops’’ pyramid.

Facets contain information such as attribute value
pairs, default values, conditions for filling a slot, pointers
to other related frames, functions, and procedures that are
activated under different conditions. The conditions that
can activate a procedure are specified in the IF-CHANGED
and IF-NEEDED facets. An IF-CHANGED facet contains a
procedural attachment, called a demon. This procedure is
invoked when a value of a slot is changed. An IF-NEEDED
facet is used when no slot value is given. It specifies a
procedure that is invoked to compute a value for the slot.

For example, the ‘‘Cheops’’ pyramid frame of Figure 7
has attribute value slots (A-KIND-OF, MATERIAL,
BASE-LENGTH, HEIGHT), slots that take default values
(NO.-OF-FACES and NO.-OF-SATTELITES), and slots

Pyramid Structure

Faces

Material

"Cheops"
Pyramid

IS-A IS-A

HAS

MADE OF

Stone Wood Steel

IS-A
IS-A

IS-A

Figure 6. Example of a simple semantic networks. Nodes
represent objects, and links represent the relationship between
the objects.

(“Cheops” Pyramid 
 (A-KIND-OF(VALUE pyramid)) 
 (MATERIAL(VALUE limestone granite)) 
 (BASE-LENGTH(VALUE 233m)) 
 (HEIGHT(VALUE 146m)) 
 (NO.-OF-FACES(DEFAULT fget)) 
 (ANGLE(VALUE if-needed)) 
 (BASE-AREA(VALUE if-needed)) 
 (VOLUME(VALUE if-needed)) 
 (NO.-OF-SATTELITES(DEFAULT fget)) 

Figure 7. Example of a frame for ‘‘Cheops’’ pyramid. This frame
illustrates different types of slots.

12 KNOWLEDGE ACQUISITION



with attached IF-NEEDED procedures (ANGLE, BASE-
AREA, VOLUME). The value fget in the default values
slots is a function call that retrieves a default value from
another frame such as the general pyramid frame for
which ‘‘Cheops’’ is a KIND-OF. When activated, the fget
function recursively looks for default values for the slot
from ancestor frames until one is found.

Frames are usually connected together to form a hier-
archical structure. This hierarchical arrangement of
frames allows inheritance. Each frame inherits the char-
acteristics and behavior of all related frames at higher
levels of the hierarchy. For example, the ‘‘Cheops’’ pyramid
frame is linked to a general pyramid frame that contains
information common to all pyramids. In this case, the
‘‘Cheops’’ pyramid frame inherits all the descriptive and
procedural information of the pyramid frame.

Inferencing in frames is based on the premise that
previous experiences with objects and events create certain
expectations about newly encountered objects and events.
First, knowledge about an object or situation is stored in
long-term memory as a frame. Then, when a similar object
or situation is encountered, an appropriate frame is
retrieved from memory and used for reasoning about the
new situation.

Frames have many advantages. They are a powerful
mechanism for representing knowledge, because both
declarative and procedural information are captured. In
addition, slots for new attributes and procedures are easy to
set up. Frames have, however, a complicated reasoning. As
a result, the implementation of their inferencing mechan-
ism is difficult.

Objects–Attribute–Value Triplets

An object, attribute, and value triplet, also known as the
O–A–V triplet, is another way of representing knowledge.
Objects can represent physical or abstract items. Attributes
are properties of the objects, and values are specific values
that an attribute has at a given time. An attribute can have
single or multiple values. These values can be static or
dynamic. Figure 8 illustrates a simple O–A–V triplet.

O–A–V triplets can be considered as a variation of either
the semantic networks or the frames. They are useful in
depicting a relationship between objects, such as inheri-
tance, part-of, and causal relationships.

Scripts

Scripts are frame-like structures used to represent stereo-
typical situations such as eating in a restaurant, shopping
in a supermarket, or visiting a doctor. Similar to a script
for a play, the script structure is described in terms of

roles, entry conditions, props, tracks, and scenes. Roles
refer to the people involved in the script. Entry conditions
describe the conditions that must be satisfied before the
events described in the script can occur. Props are the
items used in the events of the script. Track refers to
variations that might occur in a particular script. Finally,
scenes are the sequence of events that take place for the
script situation. Figure 9 depicts a typical script. It is
adapted from the well-known restaurant example used
to show how knowledge is represented in scripts.

Similar to frames, reasoning with scripts begins
with the creation of a partially filled script that describes
the current situation. A known script with similar proper-
ties is retrieved from memory using the script name,
preconditions, or any other keywords as index values
for the search. The slots of the current situation script
are then filled with inherited and default values from the
retrieved scripts.

Scripts offer many of the advantages of frames, par-
ticularly the expressive power. However, similar to
frames, they and their inference mechanisms are difficult
to implement.

Decision Tables

A decision table is a two-dimensional table that enumerates
all possible combinations of attribute values and the con-
clusions that can be made for each combination of these
values. An example of a decision table is shown in Fig. 10.
This example gives an expert’s recommendations for

Pyramid Four
No. of Faces

Object Attribute Value

Figure 8. Example of a simple O–A–V triplet.

Script Name : Restaurant 
Track :           Fast-food restaurant
Roles :           Customer

Server
Props :           Counter

Tray 
Food 
Money 
Napkins 
Salt/Pepper/Catsup/Straws 

Entry 
Conditions : Customer is hungry

Customer has money

Scene 1 : Customer parks car
Customer enters restaurant
Customer waits in line at counter
Customer reads the menu on the wall and makes
a decision about what to order

Scene 2 : Customer gives order to server 
Server fills order by putting food on tray
Customer pays server

Scene 3 : Customer gets napkins, straws, salt, etc.
Customer takes tray to an unoccupied table
Customer eats food quickly

Scene 4 : Customer cleans up table
Customer discards trash
Customer leaves restaurant
Customer drives away

Results : Customer is no longer hungry
Customer has less money

Figure 9. Example of a restaurant script.

KNOWLEDGE ACQUISITION 13



investment decisions based on age, amount of investment,
and investment style.

Decision tables are suitable for a small number of deci-
sion attributes, each with a small number of possible
values. If the number of attributes or possible values is
large, the decision table becomes quite complex. Decision
tables are suitable as an intermediate representation for
documenting and analyzing knowledge. It is not possible to
make inferences directly from the tables, except through
rule induction.

Decision Trees

Decision trees are a graphical representation of a problem
domain search space. A decision tree is composed of nodes
and branches. Initial and intermediate nodes represent
decision attributes, and leaf nodes represent conclusions.
A path from the root node to a leaf node corresponds to a
decision path that might be encountered in the problem
domain. Figure 11 shows the decision tree version of the
problem presented as a decision table in Fig. 10.

Decision trees are useful not only to show the problem-
solving steps, but also the order in which input data are
requested and the reasoning steps the expert system should
take in order to reach a conclusion. Decision trees are more
natural for experts to understand and use than formal
methods such as rules of frames. They are particularly
useful to represent the knowledge of identification systems
(diagnostics, troubleshooting, classification, etc.).

VALIDATION AND VERIFICATION OF KNOWLEDGE

An important activity of knowledge acquisition is the test-
ing and evaluation of the quality and correctness of the
acquired knowledge and its implementation. This activity
can be separated into two components: validation and
verification (21).

Validation refers to determining whether the ‘‘right’’
system was built, i.e., whether the system does what it was
meant to do at an acceptable level of accuracy. Validating
the knowledge involves confirming the acquired knowledge
is sufficient to perform the task at a sufficient level of
expertise.

Verification refers to determining whether the system
was built ‘‘right,’’ i.e., whether the system correctly imple-
ments its specifications. Verifying a system means that the
program accurately implements the acquired knowledge as
acquired and documented.

Validation and verification of knowledge are highly
interrelated. Errors in the knowledge implementation
are often discovered during validation when the acquired
knowledge is checked to see whether it performs the desired
task at a sufficient level of expertise.

Validation and Verification as Part of Knowledge Acquisition

Since expert systems are developed iteratively, they inher-
ently include repeated validation and verification testing as
part of the development process. Each time a version of the

Attributes
Age Y1 Y Y Y O2 O O O
Investment
Amount S3 S L4 L S S L L
Investment
Style C5 A6 C A C A C A

Conclusions
Savings X X X X
Portfolio 1 X
Portfolio 2 X X
Portfolio 3 X

1Y=Young 3S=Small 5C=Conservative
2O=Old 4L=Large 6A=Aggressive

Figure 10. Example of a decision table for an investment
portfolio advisor.

Figure 11. Example of a decision
tree for the investment portfolio
advisor of Fig. 10.

Age?

Investment
Amount?

Investment
Style?

Investment
Style?

Investment
Style?

Investment
Style?

Investment
Amount?

YoungOld

SmallLargeSmallLarge

SavingsSavingsSavingsSavings Portfolio 2Portfolio 1Portfolio 2 Portfolio 3

Agressive ConservativeAgressiveConservativeAgressiveConservativeAgressiveConservative

14 KNOWLEDGE ACQUISITION



expert system program is run to test the knowledge, the
correctness of the program is checked as well. Thus, in
addition to finding deficiencies in the acquired knowledge,
the knowledge acquisition cycle detects and corrects pro-
gramming errors. Validation and verification during
knowledge acquisition can occur before implementation
has begun using manual simulation or after initial imple-
mentation by testing the evolving prototype.

Validation Using Manual Simulation. Early in the expert
system development project and before implementation
has begun, knowledge acquisition follows a basic devel-
opment cycle: (1) eliciting knowledge; (2) interpreting,
analyzing, and organizing acquired knowledge; and (3)
testing knowledge. In this approach, a test case is analyzed
by the expert and manually using hand simulation of the
acquired knowledge. The results of the expert’s analysis are
compared with those of the hand simulation. If the results
differ, the appropriate area of knowledge is revised and
corrected. This process is repeated until no discrepancies
occur between the expert’s analysis and the results of the
simulation of the acquired knowledge.

Validation Using Evolving Prototype. When enough
knowledge is acquired to allow a prototype implementation,
the knowledge acquisition process follows a modified cycle
consisting of the following steps: (1) eliciting knowledge; (2)
interpreting, analyzing, and organizing acquired knowl-
edge; (3) implementing knowledge; and (4) testing knowl-
edge. During the testing phase, a test case is presented to
the expert and run using the evolving prototype. The
results of the expert’s analysis are compared against the
results of the prototype. If the results differ, the portion of
the knowledge that produced the discrepancy is identified
and is manually simulated to see whether it agrees with the
expert’s analysis. If manual simulation produces results
that agree with the expert, then an implementation error is
likely the source of the discrepancy. If manual simulation
does not agree with the expert’s analysis, acquired knowl-
edge is revised, modified, or expanded until it comes into
agreement with the expert analysis. This process is
repeated throughout the knowledge acquisition phase.

Validation testing during expert system development
could be conducted by the domain expert or by a group of
consulting experts. Using multiple experts has the advan-
tage of removing potential biases of single experts, and will
generally reveal and correct more errors in the expert
system’s knowledge and implementation. It also provides
the nontechnical benefit of adding credibility to the valida-
tion effort.

On the other hand, multiple experts might disagree and
provide contradicting opinions. In that case, one of several
approaches can be used to integrate the expert’s opinions
(22). These techniques include selecting the majority deci-
sion; blending different lines of reasoning through consen-
sus methods, such as Delphi; applying analytical models
used in multiple-criteria decision making; selecting a spe-
cific line of reasoning based on the situation; and using
blackboard systems that maximize the independence
among knowledge sources by appropriately dividing the
problem domain.

Validation of the Developed Expert System

In some domains, the correctness of the expert system
recommendation can be trivially determined without the
need for comparison against the human expert’s judgment.
In other domains, the correctness of the results needs to be
confirmed by experts who will generally agree on the
quality of the system’s recommendations.

Validation of the developed system is accomplished by
comparing the developed system’s operational results
against the judgment of the expert. A variation of this
approach is to run a number of test cases on the developed
system and compare the system’s recommendations
against the results obtained by the human experts.

If feasible, it is highly recommended to evaluate the
performance of the expert system in the field under actual
operating conditions. This approach provides the most
realistic validation of the system in addition to, if tests
are successful, convincing potential users of the value of the
system.

As in the case of validating an expert system during
development, validating a developed expert system can be
accomplished using a single expert or multiple experts.
These are usually the same experts that performed valida-
tion testing during the expert system development.

Verification of the Expert System Program

Verification ensures that the program accurately imple-
ments the acquired knowledge. The knowledge acquisition
process by its nature uncovers errors not only in the knowl-
edge but in the implementation as well. Implementation
errors are often identified during validation when the
knowledge of the system is checked for correctness.

In addition to ensuring that the coded knowledge reflects
the documented knowledge accurately, verification
requires checking the expert system program for internal
errors in the knowledge base and the control logic that
provides the inferencing mechanism. For example, a rule-
based system should not have redundant, conflicting,
inconsistent, superfluous, subsumed, or circular rules. In
frame-based systems, there should not be any slot with
illegal values, inheritance conflicts that are unresolved,
circular inheritance paths, and so on. Most rule-and
frame-based systems provide capabilities for checking
many of these potential problems. Other testing methods
should be employed for potential problems not checked
automatically. Software systems with better testing and
error detection capability enhance the verification phase of
the system. Verifying the control logic that performs infer-
encing can be minimized if the project is using a standard,
commercial off-the-shelf tool.

BIBLIOGRAPHY

1. F. Hayes-Roth, D. A. Waterman, and D. B. Lenat (eds.), Build-
ing Expert Systems, Reading, MA: Addison-Wesley, 1983.

2. R. E. Nisbett and T. D. Wilson, Telling more than we can know:
Verbal reports on mental processes, Psychological Review, 84:
231–259, 1977.

KNOWLEDGE ACQUISITION 15



3. N. Dixon, Preconscious Processing, Chichester: John Wiley &
Sons, 1981.

4. H. M. Collins, Changing Order: Replication and Induction in
Scientific Practice, London: Sage, 1985.

5. L. Bainbridge, Asking questions and accessing knowledge,
Future Computing Systems, 1: 143–149, 1986.

6. E. Turban, J. E. Aronson, and T-P. Liang, Decision Support
Systems and Intelligent Systems, Upper Saddle River, NJ:
Prentice Hall, 2005.

7. K. L. McGraw and K. Harbison-Briggs, Knowledge Acquisition:
Principals and Guidelines, Englewood Cliffs, NJ: Prentice-
Hall, 1989.

8. D. S. Prerau, Developing and Managing Expert Systems: Pro-
ven Techniques for Business and Industry, Reading, MA:
Addison-Wesley, 1990.

9. A. C. Scott, J. E. Clayton, and E. L. Gibson, A Practical Guide to
Knowledge Acquisition, Reading, MA: Addison-Wesley, 1991.

10. J. Evans, The knowledge elicitation problem: A psychological
perspective, Behavior and Information Technology, 7 (2): 111–
130, 1988.

11. J. Durkin, Expert Systems: Design and Development, New
York: McMillan, 1994.

12. D. D. Wolfgram, Expert System, New York: John Wiley &
Sons, 1987.

13. G. A. Kelly, The Psychology of Personal Constructs, New York:
Norton, 1955.

14. J. H. Boose, Expertise Transfer for Expert Systems Design, New
York: Elsevier, 1986.

15. A. J. Diederich, A. I. Ruhmann, and A. M. May, Kriton: A
knowledge acquisition tool for expert systems, International
Journal of Man-Machine Studies, 26 (1): 29–40, 1987.

16. J. H. Boose and J. M. Bradshaw, Expertise transfer and com-
plex problems: Using AQUINAS as a knowledge-acquisition
workbench for knowledge-based systems, International Jour-
nal of Man-Machine Studies, 26 (1): 3–28, 1987.

17. M. Freiling, J. Alexander, S. Messick, S. Rehfuss, and S. Shul-
man, Starting a knowledge engineering project: a step-by-step
approach, The AI Magazine, 150–164, 1985.

18. P. R. Cohen and E. A. Feigenbaum, The Handbook of Artificial
Intelligence, vol. 3, Reading, MA: Addison-Wesley, 1982.

19. J. Bell and R. J. Hardiman, The third role—the naturalistic
knowledge engineer, in D. Diaper (ed.), Knowledge Elicitation:
Principles, Techniques and Applications, New York: John
Wiley & Sons, 1989.

20. E. Shortliffe and B. G. Buchanan, A model of inexact reasoning
in medicine, mathematical biosciences, 23: 351–375, 1968.

21. R. M. O’Keefe, O. Balci, and E. P. Smith, Validating expert
system performance, IEEE Expert, 2 (4): 81–90, 1987.

22. S. M. Alexander and G. W. Evans, The integration of multiple
experts: a review of methodologies, in E. Turban and P.
Watkins (eds.), Applied Expert System, Amsterdam: North
Holland, 1988.

MAGDI N. KAMEL

Naval Postgraduate School
Monterey, California.

16 KNOWLEDGE ACQUISITION



K

KNOWLEDGE-BASED COMPUTATION

INTRODUCTION

The field of artificial intelligence (AI) studies the computa-
tional requirements for performing tasks such as percep-
tion, reasoning, and learning (1). Knowledge appears to
play a key role in achieving high-level performance on
many human tasks, as people draw on background knowl-
edge and pick strategies to apply that knowledge. The
knowledge-based computation approach to AI studies
how to develop intelligent systems that exploit explicitly
represented knowledge, and it sees knowledge as the cru-
cial determiner of system performance.

AI theories depend on specifying processes, domain
content, and representations for that content. Research
in knowledge-based computation addresses questions
such as how knowledge should be represented in computa-
tional systems for particular tasks, which knowledge must
be captured for a particular task and task domain, how
knowledge should be organized and accessed, and how
knowledge can be applied to the task itself. Applications
of knowledge-based computation have been fielded in a
wide range of areas, demonstrating the practical value of
knowledge-based approaches.

The phrase ‘‘knowledge-based systems’’ is often used to
describe rule-based expert systems, which replicate expert
performance with the ‘‘narrow but deep’’ knowledge
required for high-level performance in focused domains.
These systems provided early and visible successes, and
they continue to have great impact. However, knowledge-
based computation also includes additional knowledge-
based methods, such as model-based reasoning, which
exploits models of structure and behavior, and case-based
reasoning, which exploits stored records of specific pro-
blem-solving episodes. The tasks amenable to knowledge-
based techniques can go beyond problem solving to include
areas such as story understanding, planning, diagnosis,
explanation, and learning.

Knowledge-based methods contrast with conventional
programming, in which knowledge about the task domain
is often implicit in the design of the program and its specific
mechanisms, rather than reflected in an explicit form
accessible to system manipulation. They also contrast
with AI approaches in which knowledge is not explicitly
represented, such as neural network models that capture
knowledge in a distributed form. Using explicit representa-
tions can facilitate the addition of specific new pieces of
knowledge, can aid in explaining system behavior, and can
facilitate examination of the systems’ knowledge state.
Examination of the system’s knowledge state can be useful
for outside observers, increasing their confidence in the
system by enabling them to understand or confirm the
system’s decisions. It may also be useful for the system
to examine its own knowledge and to perform metareason-

ing—reasoning about its own reasoning process—to guide
or refine its own internal processes.

This article begins by summarizing some central
hypotheses proposed as theoretical foundations for knowl-
edge-based computing. Next, because a crucial question for
knowledge-based computation is how knowledge should be
represented, it discusses principles for knowledge repre-
sentation and illustrates some ways those principles are
realized. It then describes a sampling of major currents of
knowledge-based computing, highlighting their issues,
strengths, and challenges.

FUNDAMENTAL PRINCIPLES

Groundwork for knowledge-based computation was laid by
research in the symbolic computation paradigm articulated
by Newell and Simon in the early days of AI. Their Physical
Symbol Systems hypothesis proposed that ‘‘a physical sym-
bol system has the necessary and sufficient means for gen-
eral intelligent action’’ ((2): 116). They describe physical
symbol systems as machines existing within a larger world
of objects, which ‘‘[produce] through time an evolving collec-
tion of symbol structures,’’ whose symbols relate to objects
that they designate: Given the symbol, the system can either
affect the object, or can behave in ways that depend on the
object. Physical symbol systems can interpret expressions,
executing the process an expression designates.

Given the Physical Symbol Systems hypothesis, a key
question is how such systems accomplish intelligent action.
Newell and Simon’s Heuristic Search Hypothesis proposes
that they do so by search: ‘‘generating and progressively
modifying structures until [they produce] a solution struc-
ture’’ ((2): 120).

As the field of AI addressed new tasks, it became clear
that general reasoning methods have wide applicability,
but that their success is crucially bound to the specific
knowledge that they apply, which gave rise to the view
that ‘‘knowledge is power,’’ articulated by Lenat and Fei-
genbaum (3). On this view, a small set of general-purpose
reasoning methods is sufficient for achieving high-level
performance in a wide range of domains—provided the
reasoning system has the right knowledge. The knowledge
principle states:

A system exhibits intelligent understanding and action at a
high level of competence primarily because of the specific
knowledge that it can bring to bear: the concepts, facts, repre-
sentations, methods, models, metaphors, and heuristics about
its domain of endeavor (3).

Lenat and Feigenbaum proposed that a first important
part of problem solving is formulating a representation of
the problem. As knowledge is then added to the system, it
first reaches the Competence Threshold, and then—
through the addition of more rarely used knowledge—
the Total Expert Threshold, at which point the system’s
knowledge is sufficient to handle rare problems.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



KNOWLEDGE REPRESENTATION

Principles for Knowledge Representation Schemes

For programs to manipulate and exploit knowledge, their
knowledge must be represented in a suitable form within
the computer. Consequently, the development of knowl-
edge-based systems is inextricably tied to the development
of the knowledge representations they will use. Davis et al.
(4) propose five roles for knowledge representations:

1. A surrogate: Given a representation scheme, a sys-
tem may explore effects of actions by manipulating
the representations rather than the objects them-
selves.

2. A set of ontological commitments: The representa-
tion scheme determines which concepts and relation-
ships can exist for the system, determining which
features of the system’s domain will be preserved,
abstracted, or ignored.

3. A fragmentary theory of intelligent reasoning: The
representation scheme is associated to a theory of
reasoning with that scheme.

4. A medium for efficient computation: The representa-
tion scheme must support the types of reasoning
required for its intended uses.

5. A medium of human expression: The scheme must
support expression of the desired information and
must support human encoding and understanding
of represented knowledge.

Selection of the right knowledge representation scheme
can play a crucial role in the success of knowledge-based
systems and the types of questions that they can address.
For example, qualitative models use coarse-grained repre-
sentations to enable commonsense reasoning (5).

Logic and Knowledge Representation

The field of logic studies formal languages, truth condi-
tions, and rules for deriving conclusions (see Formal Logic).
The use of logic to represent knowledge long predates AI,
and with the advent of AI, logic was applied to AI knowledge
representation to provide a formal structure for knowledge
and reasoning, addressing the questions of what form a
representation should take and what inferences are sanc-
tioned.

The language of first-order logic includes predicates
denoting propositions, logic operators such as ^ (and), :
(not), and) (implies) (note that_ (or) can be derived from^
and:), functions, variables, and quantifiers 9 (there exists)
and 8 (for all) to form expressions. Values for the variables
are selected from an agreed on universe of discourse. For
example, an assertion that all animals covered with hair
are mammals could be expressed as:

8 xððanimalðxÞ ^has HairðxÞÞ) mammalðxÞÞ

given the predicates mammal, animal, and hasHair.

Inference rules license the formation of conclusions. For
example, modus ponens asserts that given two propositions
P and Q, and given the rule (P) Q) (which represents ‘‘P
implies Q’’), then if P is known to be true, Q is true as well. In
many real-world situations, general rules have exceptions;
in a medical domain, symptom X might suggest disease Y—
unless symptom Z has been observed as well. This process
motivates research on how to enable default reasoning in a
logical framework.

A long-standing current of knowledge representation
research focuses on the problem of formalizing common
sense knowledge. This challenge was highlighted in 1959
by McCarthy (6), and has been addressed in efforts such as
Hayes’ ontology for liquids (7). For a fuller discussion of the
logic-based perspective on knowledge representation and
reasoning, see Brachman and Levesque (8). Formalization
of common sense knowledge is examined by Davis (9) and
plays a key role in the Cyc project (10), which aims to
accumulate a knowledge base spanning human consensus
knowledge.

Semantic Networks

Semantic networks (11) represent knowledge as a net-
work of labeled nodes and arcs, facilitating graphical
visualization of knowledge for human inspection as well
as providing an indexing structure for retrieval of parti-
cular types of knowledge for automated reasoning.
Semantic networks can capture classification knowledge,
with nodes representing categories and arcs representing
subcategory relations in a hierarchical structure from the
most generic categories to specific instances. An illustra-
tion is a zoological taxonomy (e.g., a mammal is an animal
is a living thing). Specific graphical notations may be used
to represent aspects of first-order logic (12). A simple
example of a semantic network fragment, involving state-
ments about tigers, mammals, and carnivores, is shown in
Fig. 1.

Semantic networks may also be used for computation.
For example, networks may pass messages in the form of
tokens or markers from node to node, for tasks such as
identifying relationships or managing expectations during
parsing or language understanding, (13). Sowa’s concep-
tual graphs (14) illustrate the use of semantic networks to
model the semantics of natural language. A conceptual
graph represents a proposition as a set of labeled nodes
and unlabeled arcs. In the graphical form, rectangles repre-
sent concepts and ovals represent conceptual relations;
extensions support the use of boxes for nesting conceptual
graphs, to encode complex natural language propositions to
represent statements about propositions. For example,
‘‘Jim believes that tigers are mammals’’ includes both the
proposition that tigers are mammals and the proposition
that Jim believes the former proposition.

Conceptual Dependency Theory: Primitives of Meaning

Developing a knowledge representation scheme requires
selecting the basic units of meaning. Schank’s Conceptual
Dependency (CD) Theory (15) provides a concrete example
of how the requirements for a knowledge representation
are reflected in the primitives chosen to represent actions

2 KNOWLEDGE-BASED COMPUTATION



for a particular domain. CD theory is both a theory of the
requirements for designing sets of primitives and an exam-
ple of the application of the proposed theory to develop a
specific set of primitives.

CD theory aims to represent everyday actions to support
the task of story understanding—establishing the coher-
ence of stories by filling in their causal connections. CD
theory distills everyday actions into a small set of 12
‘‘primitive acts,’’ listed in Table 1. PTRANS stands for
Physical TRANSfer (of location), and underlies verbs
such as ‘‘to go,’’ ‘‘to walk,’’ ‘‘to run,’’ ‘‘to drive,’’ ‘‘to fly,’’
and so on. PROPEL describes the act of causing a force
to be applied to an object in a specified direction, and
underlies verbs such as ‘‘push,’’ ‘‘throw,’’ and ‘‘shoot.’’
ATRANS describes transfer of possession, underlying verbs
such as ‘‘buy,’’ ‘‘sell,’’ and ‘‘lend.’’ MTRANS describes men-
tal transfers (of information), underlying verbs such as
‘‘read,’’ ‘‘listen,’’ and ‘‘hear;’’ MBUILD describes formation
of conclusions. ATTEND describes focusing a sense organ
on a stimulus (as in ‘‘listen’’ or ‘‘look’’); SPEAK describes
production of sounds; INGEST, taking something into the
body (as in ‘‘eat,’’ ‘‘breathe,’’ and ‘‘inject’’); EXPEL, expelling
from the body; MOVE, moving a body part; and GRASP,
grasping an object. The names of the primitives are selected
both to suggest their meaning to humans and to avoid
ambiguities of natural language. A final primitive, DO, is
used to represent unspecified actions.

The CD acts can depend on other acts in two ways, by
causality (one causes another, enables another, motivates
another, and so on) or by instrumentality. For example,
walking somewhere can be represented as a PTRANS to
that location, with the instrumental action of MOVEing the
feet. Taking in textual information by reading visually is
represented by MTRANS with an instrumental ATTEND
of the eyes, whereas the representation for reading braille
includes an ATTEND of the hand.

Each primitive is associated with a structure of ‘‘slots’’ to
fill to describe an act, providing expectations. CD allowed a
highly limited set of slots, including the ACTOR of the act,
the OBJECT of the act, the direction (FROM and TO) and
the INSTRUMENTAL ACTION by which the act was
performed. Each primitive could be associated with infer-
ences (e.g., that at the end of a PTRANS, the OBJECT of the
PTRANS was at the location specified by the TO slot).

The structure of CD provides expectations that were
used to guide conceptual parsing of natural language text,
representation, and inferencing within a line of story
understanding systems (16). The small number of primi-
tives facilitated connecting events by inference chaining, by
limiting the set of inference procedures needed.

Frames, Frame Systems, and Scripts

Knowledge representation schemes may also collect infor-
mation into larger units. Minsky’s theory of frames, based
on the premise that units of knowledge should be large and
structured, proposed the use of large-scale structures for
representing stereotyped situations, such as being in a
living room or at a child’s birthday party. Frames can be
seen as networks of nodes and connections, linking together
associated information such as expectations, responses to
expectation failures, and viewpoints. The slots of frames
are associated with default information, recommending
standard inferences and enabling a frame system to
draw defeasible conclusions about information that may
not be confirmable deductively. For example, birthday
parties often include the presentation of gifts, but the
assumption that gifts were given may not hold in a parti-
cular case. Numerous frame systems have been developed
to support knowledge storage, retrieval, and inference,
providing general tools that may be used to manage the
knowledge for task-specific systems.

Figure 1. A sample semantic network about mammals.

KNOWLEDGE-BASED COMPUTATION 3



Schank and Abelson’s Script theory (17) illustrates the
use of large-scale knowledge structures for story under-
standing. During story understanding, many inferences
could be generated in principle; which ones are actually
appropriate is context-dependent. For example, it is rea-
sonable to infer that a person who wants food will ask for it,
when at a restaurant—but not when that person is looking
into a refrigerator at home. Scripts facilitate context-spe-
cific inferences by packaging the standard events that occur
in particular contexts, such as restaurant dining.

Script theory was based on a theory of stereotyped
knowledge structures, which were hypothesized to be built
up by people through repeated experience. Scripts capture
expectations, inferences, and knowledge that apply to com-
mon situations. For example, the restaurant script includes
the following standard events, with standard roles of res-
taurant, diner, food, and waiter, which are filled in for each
specific episode:

Diner enters the restaurant.

Diner sits at a table.

Diner orders food from waiter.

Waiter brings food.

Diner eats food.

Diner pays for food.

Diner leaves the restaurant.

Script-based expectations can aid disambiguation dur-
ing story understanding. For example, when the restaurant
script is active and ‘‘Mary asked for a hamburger’’ is pro-
cessed, ‘‘Mary’’ refers to the diner and ‘‘hamburger’’ pro-
vides the role-filler for food. When ‘‘She paid for it’’ is
encountered later, the script provides the expectation
that ‘‘she’’ is Mary and ‘‘it’’ is the hamburger. In addition,
scripts are useful for guiding summarization of text. Rou-
tine events, provided by the script, can be assumed; only the
role-fillers provide new information and need to be reported
in a summary.

Later research on Memory Organization Packages
(MOPs) (18) developed hierarchical episodic memory mod-
els with shared structure, enabling cross-contextual learn-
ing by permitting a component to be refined in one context
and reapplied in another. For example, something learned
about payment in the context of a restaurant (e.g., that
some restaurants refuse to accept credit cards to pay small
amounts), would also be available in other MOPs which
share the PAY scene, such as MOPs for grocery stores or
service stations.

RULE-BASED REASONING

Rule-based systems use knowledge encoded in the form of
rules to draw conclusions from chains of rule applications.

Rule-based reasoning has been studied both as a cognitive
model and as an AI method, and it was central to the
explosive growth of industrial expert systems applications
in the 1970s and 1980s.

Production Systems

Production systems contain three components, an infer-
ence engine, a rule base, and a working memory, as illu-
strated in Fig. 2. Prior to problem solving, the working
memory is initialized with a set of facts, which are updated
during processing by deleting existing facts and adding new
conclusions, or by adding information provided externally
(e.g., by sensors or from querying the user).

Production systems apply their knowledge through the
execution of production rules. Each production rule has two
parts, a conditional part and an action part (see Production
Rules). At each processing step, the inference engine iden-
tifies rules whose conditional parts match the facts in
working memory, to execute or ‘‘fire’’ the rules by perform-
ing their associated actions. This approach to flexible con-
trol differs from the prespecification of a solution path, and
from the mixture of knowledge and control, commonly
found in programs written in traditional programming
languages.

An early focus of research in production systems was to
model human problem-solving processes, as explored by
Newell and Simon in the 1970s (19). Production systems
continue to be studied as cognitive models. Soar, a cognitive
architecture that represents knowledge in the form of
productions (20), has been used in successive versions by
a large body of researchers since the 1980s. As the goal of
the Soar project is to support all capabilities required for a
general intelligent agent, the Soar project also investigates
capabilities such as interruptibility and the integration of
learning and problem solving.

Rule-Based Expert Systems

A classic example of a rule-based expert system is MYCIN,
a system for medical diagnosis (21). MYCIN is a goal-driven
abduction system that aims to capture physicians’ expert
knowledge and to model reasoning with missing or incom-
plete information.

MYCIN’s task domain is the diagnosis of infectious blood
diseases including meningitis and bacteremia, which
require rapid treatment. Although laboratory tests could
be used to identify the organism causing blood disease,
when MYCIN was developed, complete testing took 24–48
hours or more, too long for timely treatment. The time-

Table 1. The Conceptual Dependency Theory Primitive
Actions

PTRANS MTRANS SPEAK MOVE
PROPEL MBUILD INGEST GRASP
ATRANS ATTEND EXPEL DO

Expert 
System
Shell 

Inference 
Engine 

Working 
Memory

Rule
Base

User 

Figure 2. Production system architecture.

4 KNOWLEDGE-BASED COMPUTATION



critical nature of the task led doctors to acquire substantial
expertise in the domain, making it especially interesting for
studying diagnostic reasoning.

To capture expert knowledge, MYCIN uses production
rules associated with certainty factors. Each rule repre-
sents a conclusion that an expert would draw given some
evidence, and the certainty factor associated with each rule
captures how strongly the evidence supports the rule’s
conclusion. For example, one MYCIN production rule
states that ‘‘IF the infection is primary-bacteremia, and
the site of the culture is one of the sterile sites, and the
suspected portal of entry is the gastrointestinal tract,
THEN there is suggestive evidence (0.7) that infection is
bacterioid.’’ The rules were acquired in interviews with
doctors, conducted by knowledge engineers who elicited
the rules and encoded them in a machine-readable form.
MYCIN’s initial rule base contained 450 production rules.
In an evaluation of the system, MYCIN’s performance on
randomly selected case histories of meningitis was mea-
sured against that of members of Stanford Medical School,
with MYCIN’s performance comparable with—and in some
cases better than—the humans’ performance (22).

To enable MYCIN’s inference engine to apply to other
tasks, it was made into a stand-alone system, EMYCIN (for
‘‘empty MYCIN’’). More generally, rule-based system shells
became widely available, enabling developers of rule-based
systems to focus only on domain knowledge. The success of
such systems in many domains provided support for the
knowledge principle.

Control Strategies for Rule Execution

Rule-based systems may guide rule execution either with a
data-driven forward chaining strategy or with a goal-dri-
ven backward chaining strategy.

Forward Chaining. In a forward chaining system, the
inference engine checks the conditional part of a rule
against the facts stored in working memory to fire rules
whose antecedents are matched. If multiple rules match,
additional strategies determine which one to fire. For
example, rules can be associated with salience values spe-
cifying their priorities compared with a default, and the
most salient rule triggered. Other strategies include favor-
ing rules matching recently generated facts (to help to focus
on a single line of reasoning), favoring rules that have fired
less recently (to help avoid loops), or favoring more specific
rules (to exploit knowledge relevant to the specific situa-
tion), or using special-purpose reasoning based on metar-
ules. Execution may stop when predefined conditions are
met (e.g., when the system generates a desired conclusion),
or may continue indefinitely, (e.g., if the production system
is generating actions to control a robot’s behavior).

Table 2 illustrates production rules and forward chain-
ing with a sample rule base written in the syntax of JESS
(Java Expert System Shell) (23). The sample rule base
identifies mammals based on their characteristics of having
body hair or producing milk. Given the initial facts shown
in (B), the inference engine matches both the rules in the
rule base in (A) but executes the rule Hair!Mammal
before Milk!Mammal due to the higher salience value

of the first rule. The second rule is consistent with the first
rule and when both are executed, the modified working
memory shown in (C) contains an additional fact about the
animal being a mammal.

Rule-based system shells require efficient strategies to
determine which rules to fire to handle large-scale rule sets.
The Rete algorithm (24), used in a modified version by
JESS, provides a method for determining which rules to
fire without having to check every rule against working
memory in each step. Rete builds a network of nodes in
which each node, except for leaf and root nodes, corresponds
to a pattern in the conditional statement of the rule. Paths
from the root to a leaf node correspond to the conditional
statement of a rule. Nodes store the facts that satisfy their
pattern. As new facts are asserted or modified, the nodes in
the network are annotated with the facts. As the algorithm
annotates nodes with facts, it checks whether rules linked
to the annotated nodes need to be fired due to changes in the
conditional nodes. A rule can be fired if the nodes in its
conditional part are satisfied. Figure 3 illustrates the net-
work for the rule base of part A of Table 2, with the node
values resulting from processing the facts of part B.

Backward Chaining. Forward chaining systems start
from known information and generate possible conclusions.
In backward chaining systems, such as MYCIN, chaining is
focused by a hypothesized goal condition, which the system

Table 2. Sample JESS Rule Base for Classifying Mammals,
Initial Working Memory, and Working Memory After Rule
Application

(A) Rule Base

(defrule Hair->Mammal
(declare (salience 100))
(attribute (type hasHair) (value ‘‘yes’’)))
(assert (animal (type mammal) (value ‘‘yes’’))))

(defrule Milk->Mammal
(declare (salience 50))
(attribute (type producesMilk) (value ‘‘yes’’)))
(assert (animal (type mammal) (value ‘‘yes’’))))

(defrule Ruminant+Mammal->Ungulate
(attribute (type isRuminant) (value ‘‘yes’’))
(animal (type mammal) (value ‘‘yes’’)) )
(assert (animal (type ungulate) (value ‘‘yes’’))))

(B) Initial Working Memory

(attribute (type hasHair) (value ‘‘yes’’))
(attribute (type producesMilk) (value ‘‘yes’’))

(C) Modified Working Memory

(attribute (type hasHair) (value ‘‘yes’’))
(attribute (type producesMilk) (value ‘‘yes’’))
(animal (type mammal) (value ‘‘yes’’))

KNOWLEDGE-BASED COMPUTATION 5



attempts to establish by pursuing a chain of rules chosen to
confirm that hypothesis. For the MYCIN task, the goal is a
possible diagnosis: a candidate infecting organism. As
described previously, the system identifies rules and
inquires about facts in support of the selected goal.

In backward chaining, the system starts from the goal,
selects rules from which the goal could be concluded, and
determines whether the facts in working memory are suffi-
cient to trigger the selected rules. If not, it takes the
antecedents of the selected rules as new goals to establish,
forming a chain of rules and, if necessary, eventually asking
the user for information that it cannot establish. Different
strategies may control the order in which alternatives are
pursued.

As an example of the chaining process, if the goal is to
determine whether a particular animal is a mammal, the
first rule in Table 2 suggests checking whether the animal
has hair. In some contexts (such as medical systems, for
which test results may be available), the system may also
ask users questions to verify or reject the selected hypoth-
esis. At any given time, the system may be considering
multiple chains backward from a hypothesized goal, each of
which containing a sequence of rules that, when triggered,
leads to the selected goal. If the systems cannot construct
any chain that fires, the hypothesized goal is rejected.

For example, in the rule base in Table 3, to determine
whether an animal under consideration is a tiger, the
system first attempts to establish whether the animal
has black stripes, a tawny color, and is a mammal, and a
carnivore. If this information is not available internally, it
may ask the observer to provide the necessary information
to trigger the Tiger rule. If any of the required information
is missing (e.g., the user knows that the animal has the
right color, is a mammal, and has black stripes, but not
whether it is a carnivore), either of the rules to determine
whether an animal is a carnivore may be tried to find the
missing information.

When a rule-based system asks questions, how those
questions are managed is important to user acceptance of
the system. Consistent with the general practices of human
physicians, MYCIN first asks general background ques-
tions about the patient before focusing on specific questions
related to the hypothesized goal in the diagnosis of the
disease and, as facts are needed, tries to gather related

information at the same time to increase coherence of the
interaction and improve user confidence.

Managing Uncertainty and Vagueness

In practice, it may be difficult to assign appropriate cer-
tainty factors. One approach to address this problem is to
use machine learning to refine certainty factors. For exam-
ple, the RAPTURE system (25) maps the rules in a rule base
to a neural network architecture and then uses a modified
version of the backpropagation learning algorithm (see
Artificial Neural Networks) to revise the certainty factors
associated with the rules. This system has been success-
fully applied to revise the MYCIN rule base. An alternative
approach to handling uncertainty is to use methods based
on probability, as described in the probabilistic graphical
models section.

Table 3. JESS Rule Base for Classifying a Tiger

defrule Mammal+Carnivore+Tawny+Stripes->Tiger
(animal (type mammal) (value ‘‘yes’’))
(attribute (type carnivore) (value ‘‘yes’’))
(attribute (type tawnyColor) (value ‘‘yes’’))
(attribute (type blackStripes) (value ‘‘yes’’)))
(assert (animal (type tiger) (value ‘‘yes’’))))

(defrule Mammal+EatsMeat->Carnivore
(animal (type mammal) (value ‘‘yes’’))

(attribute (type eatsMeat) (value ‘‘yes’’)))
(assert (animal (type carnivore) (value yes’’))))

(defrule Mammal+PointedTeeth+
Claws+ForwardEyes->Carnivore

(animal (type mammal) (value ‘‘yes’’))
(attribute (type pointedTeeth) (value ‘‘yes’’))
(attribute (type claws) (value ‘‘yes’’))
(attribute (type fowardPointingEyes) (value ‘‘yes’’)))
(assert (attribute (type carnivore) (value ‘‘yes’’)))

Figure 3. The Rete node network for three sample
rules.

6 KNOWLEDGE-BASED COMPUTATION



In some domains, such as control and pattern recogni-
tion, production systems commonly use fuzzy logic (26) to
deal with imprecise measurements. In fuzzy rules, the
conditional and action part are described with fuzzy sets,
functions that specify a membership value between 0 and 1
for each element of the set. For example, a fuzzy rule whose
antecedent checked whether a patient has a high tempera-
ture might use a fuzzy set to describe a range of tempera-
ture values, and their corresponding membership values
would determine the extent to which a particular tempera-
ture value is considered ‘‘high’’ (see Fuzzy Logic and
Theory). The consequent of the rule could generate a fuzzy
set that is converted to a crisp value through a process
called ‘‘defuzzification.’’ Fuzzy rules enable vague knowl-
edge to be expressed in a language that is natural to
the experts.

Applications and Applications Issues

Rule-based expert systems have been applied to an exten-
sive range of problem-solving tasks such as diagnosis,
interpretation, planning, scheduling, and system config-
uration. Specific examples include expert systems for con-
figuring computer systems and to perform audit risk
analysis, to identify debit card fraud. Rule-based systems
are also embedded within other systems to support decision
making (e.g., to enforce software agent policies in open
network environments) (see Expert Systems).

One of the social and economic motivations for expert
systems is to make expertise, which is normally expensive
and available in limited supply, more widely available. For
example, medical expert systems could increase the acces-
sibility of medical knowledge. However, larger issues can
impede the transition from research system to technology.
A case in point is MYCIN, which for ethical and legal
reasons was never deployed, despite its successful evalua-
tions. For knowledge-based systems, both the inference
engine and the knowledge must be verified (see Knowledge
Verification). In addition, as described later in this article,
knowledge acquisition may be a difficult problem.

BLACKBOARD SYSTEMS

Blackboard systems coordinate independent processes for
cooperative problem solving. Blackboard systems reflect
the metaphor of experts working around a shared black-
board accessible to all, and each one able to consult, add, or
remove the entries. In blackboard systems, the shared
blackboard is hierarchically organized, representing infor-
mation at different levels of abstraction. A set of indepen-
dent programs, called knowledge sources, each reflect
different capabilities or perspectives on the overall task,
and individually monitor and update the blackboard during
processing, incrementally taking advantage of results gen-
erated by the ongoing processing of other knowledge
sources. For example, the HEARSAY-II system uses a
blackboard system architecture to process continuous
speech input, with knowledge sources performing functions
such as extracting acoustic parameters, classifying acous-
tic segments, recognizing words, parsing phrases, and

making predictions (27). Whenever the blackboard changes
(e.g., with an addition), each knowledge source determines
whether the change is relevant to its knowledge. Those
knowledge sources that are relevant become eligible to
be run by a scheduler, which controls knowledge source
execution.

PROBABILISTIC GRAPHICAL MODELS

In a purely deductive reasoning framework, each rule
describes a set of antecedents from which a conclusion
must necessarily follow. However, deterministic rules
may not be sufficient to characterize the connections in a
domain. For example, rules for drawing medical conclu-
sions must reflect the possibility of false positives. In com-
plex real-world domains, rules cannot exhaustively include
all potentially relevant factors, resulting on uncertainty in
whether the conclusions of a rule will hold for any given
instance. For effective reasoning, it is desirable to summar-
ize the level of uncertainty and take it into account when
drawing conclusions, which may be done by applying
approaches such as probability theory (see Probability
and Statistics) or alternative methods such as Demp-
ster–Schafer theory, which distinguishes between belief
and plausibility (28).

Probabilistic graphical models apply probability theory
to knowledge-based systems, using a graph structure to
represent information about dependence and indepen-
dence. For example, Bayesian Networks are directed acyc-
lic graphs in which nodes represent random variables and
links represent the variables’ dependence relationships. By
implicitly encoding independence assumptions in the net-
work structure, Bayesian Networks provide a concise
representation.

For Bayesian Networks, knowledge capture involves
developing the domain model encoded in the network, first
qualitatively, reflecting relevance through the choice of
connections, and then quantitatively, in terms of condi-
tional probabilities. The inference problem becomes the
problem of how to compute each node’s belief, given current
evidence; approximation techniques have been developed
to enable rapid computations. See Charniak (29) for an
overview and Pearl (30) for an extensive discussion.
Dynamic Probabilistic Networks can be used to model
dynamic systems, and stochastic simulation algorithms
can be used to rapidly approximate the results of these
networks. See Bayesian Belief Networks and Hidden Mar-
kov Models for related information.

MODEL-BASED REASONING

Device models provide another useful form of knowledge for
diagnosis and troubleshooting. Model-based reasoning
(MBR) exploits models of the structure and behavior of
devices—characterizations of internal function, rather
than simply descriptions of associations between observed
antecedents and conclusions—to support a process of pre-
diction and observation (31). The model-based trouble-
shooting process starts from observations of a device,
such as measurements of inputs and outputs, a model of

KNOWLEDGE-BASED COMPUTATION 7



device structure, such as components and their connec-
tions, and descriptions of each component’s behavior. To
diagnose component failures, the approach generates
hypotheses about the components causing the problem
and tests hypotheses against device behavior to find sui-
table candidates. It then discriminates between the hypoth-
eses consistent with the symptoms, by methods such as
probing, selecting new points to measure within the device.
Additional knowledge may be brought to bear in this pro-
cess, for example, to select the probes expected to be most
informative based both on their discriminating power and
on known failure probabilities.

CASE-BASED REASONING

Case-based reasoning (CBR) focuses on reasoning from
specific experiences, rather than from general rules or
models. A case-based reasoner addresses new situations
by retrieving prior cases and adapting their lessons to fit
new circumstances. Case-based reasoning can be seen as
combining a number of processes (32):

Case-based reasoning ¼ retrievalþ analogyþ adaptation

þ learning

Early investigations of CBR were inspired by studies of
human cognition, such as on the role and organization of
episodic memory in understanding and the role of cases in
human reasoning (see Ref. (33) for a survey of case-based
reasoning viewed as a cognitive model). As humans solve
problems, they may be reminded of similar problems in the
past, suggesting starting points for new problems or warn-
ing of possible pitfalls to avoid. For example, a doctor
responding to an adverse reaction to medication might
be reminded of a specific similar emergency and how it
was addressed, providing useful guidance that would not be
contained in general rules (e.g., that adrenaline kits in a
particular emergency room are kept on the top shelf).
Motivations for applying CBR include that CBR can
facilitate knowledge capture from experts, by enabling
direct storage of their ‘‘war stories,’’ rather than generation
of rules, and systems may be fielded with a small set of
‘‘seed cases’’ to be augmented by the system’s own experi-
ences. Likewise, CBR systems can reuse reasoning effort,
can adapt and apply prior solutions even when the reasons
for their successes are poorly understood, and can justify
their answers in terms of real examples rather than
generalizations, which users may find harder to accept
(32,34).

A fundamental difference between rule-based and case-
based reasoning is that rule-based systems model problem
solving as a process of generate and test, whereas case-based
systems rely on retrieve and adapt (35). Reuse may be
possible even when the underlying causal factors are
unknown (e.g., when adapting an externally provided solu-
tion). For example, a novice cook may be able to adapt a
vanilla cake recipe to chocolate, by adding cocoa power,
without understanding why the basic recipe produces its
results.

The CBR Cycle and Knowledge Sources

A case-based reasoning system’s processing can be seen as a
cycle, beginning with retrieval of a case to address a new
problem, and ending with a new case placed in memory for
future use, as illustrated in Fig. 4. Given a problem descrip-
tion, situation assessment generates a problem description
used as an index to retrieve a relevant prior case. The
system attempts to reuse the solution of the prior case,
revising it as needed for differences. The case is then
retained in memory for future use, possibly after filtering
for the expected benefit of retaining it.

As suggested by Fig. 4, CBR systems rely on multiple
knowledge sources, the CBR ‘‘knowledge containers’’ (37),
which include the cases themselves, knowledge implicit in
the choices of representational vocabulary, similarity cri-
teria, indexing knowledge to guide retrieval, and case
adaptation information. These knowledge containers over-
lap, in the sense that, for example, an extensive case library
may cover enough problems that the availability of cases
compensates for limited adaptation knowledge; rich
adaptation knowledge may enable successful performance
with few cases. The ability to select where to place system
knowledge facilitates the development of CBR systems
by enabling system developers to provide knowledge in
whichever container is most practical for a given task.

Methods and Issues in CBR

CBR systems often perform ‘‘nearest-neighbor’’ retrieval,
selecting cases that minimize the distance between the
current problem and the retrieved problem, based on a
distance function considering the distance for each attri-
bute. If problems are described by vectors of numeric or
symbolic feature values, with the new problem situation Q
¼ q1, q2,. . ., qn and a previously solved problem P ¼ p1, p2,
. . ., pn, and W = w1, w2,. . ., wn is a vector of non-negative
weights reflecting feature importance, then the distance
function is often defined by:

distanceðQ;PÞ ¼ ðSiwi � differenceðqi; piÞ2Þ
1
2

Retrieved
Case

Tested & 
Repaired 
Case 

Solved
Case

Problem

Learned 
Case 

New 
Case 

Prior 
Cases 

Knowledge 
Containers 

REUSE

SITUATION 
ASSESSMENT

REVISE
RETAIN 

RETRIEVE

Similarity knowledge,
Adaptation knowledge,
etc.

Figure 4. The case-based reasoning cycle (adapted with changes
from Ref. 36).

8 KNOWLEDGE-BASED COMPUTATION



for a given difference function. One simple approach is to
define difference ðqi; piÞ ¼ jqi � pij for numerical features,
and 1 for identical symbolic feature values, 0 otherwise.
However, more complex distance functions may be chosen
to make difference values more directly comparable and to
reflect other aspects of the task domain.

For classification or regression tasks, the risk of error
due to noise may be mitigated by retrieving the top k cases
and combining their solutions (e.g., by taking their majority
vote to assign a categorical value, or by averaging their
solution values for a numerical one).

For large case bases, cases may be organized into dis-
crimination trees for retrieval efficiency. In case-based
problem solving, cases may be indexed by the goals and
constraints they satisfy, with indices varying from
abstract, domain-independent features to highly concrete
features. For example, the CHEF planning system, which
plans in the domain of cooking, uses features ranging from
‘‘a plan step side-effect disabled a required condition for a
concurrent step’’ to ‘‘the dish uses chicken’’ (38)). Retrieval
based on concrete indices helps to retrieve cases with
specific matches, facilitating reapplication; indexing based
on abstract indices aids in cross-contextual retrievals,
enabling cases to be applied to novel situations. Indexing
vocabularies have been developed for a number of domains.

Case adaptation knowledge is often rule-based, but
other knowledge-based methods, such as model-based rea-
soning have also been applied. As it may be difficult to
generate needed knowledge in poorly understood
domains—where CBR may be a method of choice—case
adaptation remains a central challenge to CBR. Some
research has addressed this fact by applying case-based
methods to the adaptation process. Extensive index refor-
mulation or case adaptation may be necessary to apply a
prior lesson to a novel situation in a different domain,
potentially resulting in a creative reasoning process (e.g.,
Refs. 39 and 40).

Case-based reasoning is widely used in help desk appli-
cations, which guide case selection through a conversa-
tional process with the user, focusing on retrieval
support rather than case adaptation (41). The FormTool
system, developed for plastics color matching, illustrates a
high-impact application that includes case adaptation (42).
As the number of long-term applications of CBR increased,
how to control case-base growth while maintaining system
competence was recognized as an important area (43), and
interest grew in how to maintain CBR systems’ knowledge
(see Ref. 44 for an analysis and survey of CBR system
maintenance). An extensive discussion of research on
core CBR issues and methods is available in Ref. 45.

EXPLANATION IN KNOWLEDGE-BASED SYSTEMS

The explicit representation of knowledge makes reasoning
processes amenable to explanation. This explanation pro-
cess may be aimed for the system’s own internal use or for
the benefit of an external user.

Internal Explanation

Understanding programs that form connections by infer-
ence chaining can be seen as performing a basic form of

explanation, generating causal connections to account for
why events in a story are coherent. Script-based under-
standing systems also use their knowledge to explain, but
by fitting new information into existing knowledge struc-
tures: an event (e.g., handing money to someone) is
explained if it is expected by an active script (e.g., as the
payment in the restaurant script).

Script-based models explain routine events, but cannot
explain novel events. However, the attempt to apply scripts
can still be useful for focusing the explanation effort,
because the parts of a story that are useful to explain are
the expectation failures or anomalies. For example, what to
explain about a death would be quite different if the anom-
alous aspect were that it was premature (in which case the
focus might be the cause) or if it were the advanced age of
the deceased (in which case the focus might be explaining
the secrets of the longevity of the deceased). The SWALE
system (39) illustrates multiple roles of knowledge in
internal explanation with a case-based approach drawing
on knowledge sources including MOPs, explanation
cases, an indexing vocabulary for anomalies, and a collec-
tion of explanation requirements called explanation pur-
poses.

SWALE’s explanation cases, which are adapted to
explain new events, can be seen as providing flexible sche-
mas to handle novel events. An alternative approach for
generating new schemas is to perform explanation-based
learning, in which a domain theory is used to explain the
relevance of particular features, enabling correct general-
izations from a single example (46).

Explanation for an External User

Expert systems research recognized early on the impor-
tance of explaining system behavior to users to increase
their acceptance and confidence in system decisions (e.g.,
Ref. 21). A basic approach to the explanation process in a
chaining system is to display the rule chain leading to a
system decision. However, this detailed trace may be diffi-
cult for users to follow, and it may not include all informa-
tion end users need. To address this problem,
reconstructive explanation (47) treats the explanation pro-
cess itself as a problem-solving task, reorganizing and
augmenting explanations as needed.

One of the benefits of case-based reasoning is that the
cases used to generate solutions can also provide compel-
ling support to users, as shown by Ref. 48. However, the use
of cases is not a panacea; additional reasoning may be
needed to select the most effective cases to use for explana-
tion, and additional explanation may be required to account
for why the presented case was selected or how it was
adapted (see Ref. 49 for a sampling of this work).

KNOWLEDGE ACQUISITION ISSUES

A classic problem for knowledge-based systems is how to
secure the needed knowledge. Experts often have difficul-
ties expressing their knowledge in a rule-based form,
requiring the rule capture process to be mediated by knowl-
edge engineers, who interview experts, represent, and
refine the needed knowledge in a labor-intensive process,

KNOWLEDGE-BASED COMPUTATION 9



resulting in the ‘‘knowledge acquisition bottleneck’’ (50)
(see knowledge acquisition).

Despite methodologies developed to facilitate knowledge
capture, the process remains laborious. For example, a
project that captured the knowledge in a chemistry text-
book resulted in impressive system capabilities (at the level
expected for college-level advanced placement examina-
tions), but at an estimated knowledge acquisition cost of
$10,000 per page (51). Research is under way on methods
for supporting knowledge acquisition from humans, aiding
them in identifying and resolving differences in their con-
ceptualizations of a domain, and knowledge engineering, as
well as on automatically extracting knowledge from
sources such as the World Wide Web. User-centered knowl-
edge acquisition methodologies may help to eliminate the
need for knowledge engineers as mediators between the
system and domain expert, enabling domain experts to
enter their knowledge directly into a knowledge base.
Machine learning methods may be useful for rule genera-
tion and refinement (see Machine Learning).

Expert systems are normally designed with narrow and
deep knowledge of a specific domain, which can cause
brittleness, as systems are incapable of gracefully handling
situations outside their narrow domain. The Cyc project
(10) aims to address this and other problems by encoding an
immense knowledge base of carefully crafted representa-
tions of common sense knowledge. Another endeavor, Open
Mind Commonsense, takes a different tack, capturing
informal knowledge entered by volunteers. Although this
knowledge is less suited to machine reasoning, it has been
used to develop advisory applications in domains for which
it can provide a payoff and for which failure is noncritical
(52).

THE SEMANTIC WEB

The World Wide Web now contains vast amounts of infor-
mation on a large variety of topics. Although machines
provide, display, and even produce the content of web pages
dynamically, the information on the pages is designed
primarily for human use. Despite promising work on auto-
matically extracting such information (53), the problem
remains challenging.

One cause of the difficulty of machine processing for web
pages is that most web pages lack metadata tags describing
their content. The Semantic Web (54) is a vision of a future
World Wide Web that provides information to make Web
content meaningful for machines as well as people. Seman-
tic Web applications exploit web pages tagged with meta-
data defining the meaning of their content to enable
knowledge-based methods to improve existing services
such as Web search (e.g., by improving retrieval quality
and enabling search systems to return answers, rather
than pages). They also enable new services, such as soft-
ware agents that use the metadata to find, compare, and
respond to information from many sources, for tasks such
as automating situation awareness aids or facilitating
supply chain integration. A sampling of such applications
is provided by Ref. 55.

The Semantic Web defines rules, concepts, and state-
ments to annotate web pages with labels that define the
semantics of the information on the pages allowing
machines to make inferences about its content. The voca-
bulary used to define such labels is based on ontologies,
which capture a ‘‘specification of a shared conceptualization
of a domain’’ (56).

New languages, building on Web technologies such as
XML (eXtensible Markup Language) and RDF (Resource
Description Format) have emerged for the Semantic Web
and have been adopted by the World Wide-Web Consortium
(W3C) as standardized Semantic Web languages. A promi-
nent example is the Web Ontology Language (OWL)(57),
used for building ontologies that can be published on the
Web and used to annotate Web content or make inferences
about a subject. OWL builds on previous work on ontology
languages including the DARPA Markup Language
(DAML) and DAML+OIL (DAML Ontology Inference
Layer). It covers and extends the language constructs
and representational features offered by these languages
to provide a language that can meet the requirements for
representing knowledge in the Semantic Web. Both DAML
and DAML-OIL also build on RDF and RDF Schema
(RDFS).

RDF is an assertion language intended to express pro-
positions about resources on the Web. In general, a resource
is considered anything that can be assigned a Uniform
Resource Identifier (URI). RDF expresses propositions as
triples: a subject, a predicate, and an object. Each element
can be a resource with a unique URI, whereas an object can
also be a literal, which is a typed or untyped text string.
Resources may be divided into groups called classes and
members of a class are known as instances of the class. RDF
Schema is a semantic extension of RDF that provides basic
constructs for defining classes and properties and relation-
ships between classes such as a class being a subclass of
another class. DAML and DAML+OIL support constructs
to define more complex relationships such as cardinality
restrictions on properties.

OWL is a recent extension of existing ontology lan-
guages, providing a rich set of language features to enable
efficient representation of ontologies. The language is spe-
cifically engineered for the Web, supporting features that
make it easy to publish ontologies or to reuse existing
ontologies on the Web, to annotate Web content, or to
make inferences. OWL has three different sublanguages
with a different level of expressiveness to serve the needs of
the Semantic Web community. OWL Lite supports defining
classification hierarchies and simple constraints. OWL DL
(DL refers to description logic) is more expressive than
OWL Lite, adding additional language constructs from
OWL while retaining computational completeness (all con-
clusions are guaranteed to be computable) and decidability
(all computations will finish in finite time). OWL Full is the
complete OWL language providing maximum expressive-
ness without computational guarantees. Table 4 illustrates
a fragment from an OWL ontology on food. The ontology
includes a base class ConsumableThing, a class NonCon-
sumableThing that is complementary to Consumable-
Thing, a class EdibleThing that is a ConsumableThing,

10 KNOWLEDGE-BASED COMPUTATION



and a class PotableLiquid that is also a ConsumableThing
but different from EdibleThing.

The promise of the Semantic Web and the creation of
standard Semantic Web languages have prompted consid-
erable interest in developing inference systems and tools to
build and merge ontologies and to mark up web pages to
provide meaning to the content. For example, Protégé (59)
is an open-source framework, developed at Stanford Uni-
versity, for building editing tools that support the creation,
visualization, and manipulation of ontologies in various
representation formats; Protégé-OWL is a version for edit-
ing OWL ontologies. Other frameworks such as KAON
(Karlsruhe ontology management infrastructure) (60)
assist users in the creation, storage, and management of
ontologies and support scalable and efficient reasoning
with ontologies.

The Semantic Web of the future is likely to provide a set
of standardized ontologies, enabling users to rapidly build
their own ontologies by using existing and agreed on defini-
tions of concepts. However, when new ontologies need to be
constructed or existing ontologies modified, it will be crucial
to aid users in finding the right parts of those ontologies.
Consequently, research has focused on building tools to
support retrieval and reuse of ontologies. For example,
Swoogle (61) is a search engine for Semantic Web docu-
ments (online documents written in a Semantic Web lan-
guage) that facilitates search within the documents based
on keywords, focusing on matching class and property
definitions in the Semantic Web documents. Hendler pro-
poses that the Semantic Web is a step toward the large-
scale knowledge source needed to realize the full potential
of the knowledge principle (62).

HYBRID SYSTEMS

Each knowledge-based computation paradigm provides
particular strengths. Consequently, many knowledge-
based systems take a hybrid approach, combining multiple

strategies. To provide a few illustrations combining case-
based reasoning with other approaches, rule-based reason-
ing has been combined with CBR in domains such as legal
reasoning, with cases and rules being jointly applied for
legal arguments, and for generating pronunciations, with
cases handling exceptions. Model-based reasoning has
been combined with CBR for predicting forage consumption
for rangeland management, with CBR generating an initial
solution from a stored case, for refinement based on a
model. These and other integrations are surveyed in Ref.
63. Hybrid methods may also be used internally, for one
method to support the internal processing of another, for
example, with constraint-based reasoning used to support
case adaptation in CBR.

Hybrid approaches may also extend to combinations of
knowledge-based and nonknowledge-based methods. For
example, neural networks may be combined with knowl-
edge-based approaches for each to make some classes of
decisions, or symbolic knowledge may be inserted into
neural networks to enable its refinement using neural
network methods, for later extraction as refined symbolic
knowledge (64). Such methods may simplify the develop-
ment of intelligent systems and facilitate the application of
knowledge-based systems technologies.

CONCLUSION

Knowledge-based computation spans many AI approaches.
Each exploits explicit knowledge, but the forms of knowl-
edge and mechanisms to manipulate them vary widely, for
example, from formal to informal, from associations to
models, from rules to cases, and from deductive to abductive
inference. Knowledge-based computation has already been
applied spanning a wide range of task areas, and the
requirements of hard real-world problems have prompted
calls to increase the emphasis on knowledge in areas such
as AI planning, for which the use of knowledge can have
considerable effect (65).

Despite these successes, a continuing challenge since
the early days of knowledge-based computation has been
how to obtain the needed knowledge. New knowledge cap-
ture methods, large-scale knowledge sources, and the
advent of the Semantic Web promise to have significant
impact on both research and applications in the next gen-
eration of knowledge-based computation systems.

ACKNOWLEDGMENT

We would like to thank George Luger for very helpful
comments on a draft of this article.

BIBLIOGRAPHY

1. D. Leake, Artificial intelligence, in D. Considine, G. Considine,
(eds.), Van Nostrand’s Scientific Encyclopedia. New York
Wiley, 2002 pp. 239–245.

2. A. Newell, and H. Simon, Computer science as empirical
inquiry: Symbols and search. Commun. ACM 19:113–126,
1976.

3. D. B. Lenat, and E. A. Feigenbaum On the thresholds of
knowledge, in Proceedings of the Tenth International Joint

Table 4. Excerpt From an Ontology on Food, [Adapted from
Ref. 58].

<owl:Class rdf:ID=‘‘ConsumableThing’’/>

<owl:Class rdf:ID=‘‘NonConsumableThing’’>
<owl:complementOf rdf:resource=‘‘ConsumableThing’’/>
</owl:Class>

<owl:Classrdf:ID=‘‘EdibleThing’’>
<rdfs:subClassOf rdf:resource=‘‘ConsumableThing’’/>
</owl:Class>

<owl:Classrdf:ID=‘‘PotableLiquid’’>
<rdfs:subClassOf rdf:resource=‘‘ConsumableThing’’/>
<owl:disjointWith rdf:resource=‘‘EdibleThing’’/>
</owl:Class>

KNOWLEDGE-BASED COMPUTATION 11



Conference on Artificial Intelligence, San Francisco, CA:
Morgan Kaufmann, 1987.

4. R. Davis, H. Shrobe, and P. Szolovits, What is a knowledge
representation?, AI Magazine, 14(1): 17–33, 1993.

5. B. Bredeweg, and P. Struss, Current topics in qualitative
reasoning, AI Magazine, 24(4): 13–16, 2003.

6. J. McCarthy, Programs with common sense, in Proceedings of
the Teddington Conference on the Mechanization of Thought
Processes. London: Her Majesty’s Stationary Office, 1959,
pp. 75–91.

7. P. Hayes, Naive physics 1: Ontology for liquids, in J. Hobbs, R.
Moore, (eds.), Formal Theories of the Commonsense world.
Norwood, NJ: Ablex, 1985, pp. 71–107.

8. R. Brachman, and H. Levesque, Knowledge Representation
and Reasoning. San Francisco, CA: Morgan Kaufmann, 2004.

9. E. Davis, Representations of Commonsense Knowledge. San
Mateo, CA: Morgan Kaufmann, 1990.

10. D. Lenat, and R. Guha, Building Large Knowledge-Based
Systems: Representation and Inference in the Cyc Project. Read-
ing, MA: Addison-Wesley, 1990.

11. M. Quillian, Semantic memory, in M. Minsky, (ed.), Semantic
Information Processing. Cambridge, MA: MIT Press, 1968.

12. S. Shapiro, A net structure for semantic information storage,
deduction, and retrieval, in Proceedings of the Second Inter-
national Joint Conference on Artificial Intelligence, IJCAI,
London, 1971, pp. 512–523.

13. E. Charniak, Passing markers: A theory of contextual influence
in language comprehension, Cognitive Sc.7: 171–190, 1985.

14. J. Sowa, Knowledge Representation: Logical, Philosophical,
and Computational Foundations. Pacific Grove, CA: Brooks
Cole Publishing Co., 1999.

15. R. Schank, Conceptual dependency: A theory of natural lan-
guage understanding, Cog. Psych. 3(4): 552–631, 1972.

16. R. Schank, and C. Riesbeck, Inside Computer Understanding:
Five Programs with Miniatures. Hillsdale NJ: Lawrence
Erlbaum, 1981.

17. R. Schank, and R. Abelson, Scripts, Plans, Goals and Under-
standing. Hillsdale, NJ: Lawrence Erlbaum, 1977.

18. R. Schank, Dynamic Memory: A Theory of Learning in Com-
puters and People. Cambridge, England: Cambridge Univer-
sity Press, 1982.

19. A. Newell, and H. Simon, Human Problem Solving. Englewood
Cliffs, NJ: Prentice-Hall, 1972.

20. A. Newell, Unified Theories of Cognition. Cambridge, MA:
Harvard University Press, 1990.

21. B. Buchanan, and E. Shortliffe, Rule-Based Expert Systems:
The MYCIN Experiments of the Stanford Heuristic Program-
ming Project. Reading, MA: Addison-Wesley, 1984.

22. B. Buchanan, and E. Shortliffe, Rule-Based Expert Systems:
The MYCIN Experiments of the Stanford Heuristic Program-
ming Project. Reading, MA: Addison-Wesley, 1984.

23. E. Friedman-Hill, Jess in Action, Java Rule-based Systems.
Greenwich, CT: Manning Publications, 2003.

24. C. L. Forgy, Rete: A fast algorithm for the many pattern/
many object pattern match problem. Artificial Intell.19: 17–
37, 1982.

25. J. J. Mahooney, and R. J. Mooney, Combining connectionist
and symbolic learning to refine certainty-factor rule bases, in
Proceedings of the Eleventh International Conference of
Machine Learning, Los Altos, CA: Morgan Kaufmann, 1993,
pp. 173–180.

26. L. A. Zadeh, The role of fuzzy logic in the management of
uncertainty in expert systems. Fuzzy sets Sys., 11(3): 199–
227, 1983.

27. L. Erman, F. Hayes-Roth, V. Lesser, and D. Reddy, The hear-
say-ii speech-understanding system: Integrating knowledge to
resolve uncertainty. ACM Comp. Surv. (CSUR), 12(2): 213–
251, 1980.

28. G. Shafer, The Dempster-Shafer theory, in S. C. Shapiro (ed.),
Encyclopedia of Artificial Intelligence, 2nd ed. New York:
Wiley, 1992, pp. 330–331.

29. E. Charniak, Bayesian networks without tears. AI Mag., 12(4):
50–63, 1991.

30. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. San mateo, CA: Morgan Kauf-
mann, 1988.

31. R. Davis, Model-based reasoning: Troubleshooting, in H.
Shrobe (ed.), Exploring Artificial Intelligence: Survey Talks
from the National Conferences on Artificial Intelligence. Palo
Alto, CA: Morgan Kaufmann, 1988.

32. D. Leake, CBR in context: The present and future, in D. Leake
(ed.), Case-Based Reasoning: Experiences, Lessons, and Future
Directions. Menlo Park, CA: AAAI Press, 1996, pp. 3–30.
Available: http://www.cs.indiana.edu/~leake/papers/a-96-01.
html.

33. D. Leake, Cognition as case-based reasoning, in W. Bechtel, G.
Graham (eds.), A Companion to Cognitive Science. Oxford:
Blackwell, 1998, pp. 465–476.

34. J. Kolodner, Case-Based Reasoning. San Mateo, CA: Morgan
Kaufmann, 1993.

35. C. Riesbeck, What next? The future of CBR in postmodern AI,
in D. Leake (ed.), Case-Based Reasoning: Experiences, Lessons,
and Future Directions. Menlo Park, CA: AAAI Press, 1996, pp.
371–388.

36. A. Aamodt, and E. Plaza, Case-based reasoning: Foundational
issues, methodological variations, and system approaches. AI
Comm., 7(1): 39–52, 1994. Available: http://www.iiia.csic.es/
People/enric/AICom.pdf.

37. M. Richter, Introduction, in M. Lenz, B. Bartsch-Sporl, H. D.
Burkhard, S. Wess (eds.), CBR Technology: From Foundations
to Applications. Berlin: Springer, 1998, 1–15.

38. K. Hammond, Case-Based Planning: Viewing Planning as a
Memory Task. San Diego, Academic Press, 1989.

39. R. Schank, and D. Leake, Creativity and learning in a case-
based explainer. Artif. Intell. 40(1–3): 353–385, 1989. Also in
J. Carbonell, (ed.), Machine Learning: Paradigms and Meth-
ods, Cambridge, MA: MIT Press, 1990.

40. L. Wills, and J. Kolodner, Towards more creative case-based
design systems. in D. Leake (ed.), Case-Based Reasoning:
Experiences, Lessons, and Future Directions. Menlo Park,
CA: AAAI Press, 1996, pp. 81–92.

41. D. Aha, L. Breslow, H. Munoz-Avila, Conversational case-
based reasoning. Appl. Intell.14: 9–32, 2001.

42. W. Cheetham, Tenth anniversary of the plastics color formula-
tion tool. AI Magazine, 26(3): 51–62, 2005.

43. B. Smyth, and M. Keane, Remembering to forget: A compe-
tence-preserving case deletion policy for case-based reasoning
systems, in Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, San Mateo, CA: Morgan
Kaufmann, 1995, 377–382.

44. D. Wilson, and D. Leake, Maintaining case-based reasoners:
Dimensions and directions. Computat. Intell.17(2): 196–213,
2001.

12 KNOWLEDGE-BASED COMPUTATION



45. R. Mantaras, D. McSherry, D. Bridge, D. Leake, B. Smyth, S.
Craw, B. Faltings, M. Maher, M. Cox, K. Forbus, M. Keane, A.
Aamodt, and I. Watson, Retrieval, reuse, revise, and retention
in CBR. Knowledge Based Sys., 2006, In press.

46. G. DeJong, and R. Mooney, Explanation-based learning: An
alternative view. Mach. Learning, 1(1): 145–176, 1986.

47. M. R. Wick, W. B. Thompson, Reconstructive expert system
explanation. Artif. Intell. 54: 33–70, 1992.

48. P. Cunningham, D. Doyle, and J. Loughrey, An evaluation of
the usefulness of case-based explanation, in Case-Based Rea-
soning Research and Development: Proceedings of the Fifth
International Conference on Case-Based Reasoning, ICCBR-
03, Berlin: Springer-Verlag, 2003, pp. 122–130.

49. D. Leake, D. McSherry, Explanation in Case-Based Reasoning.
Artificial Intelligence Review, 24(2): 2005.

50. F. Hayes-Roth, D. Waterman, and D. E. Lenat, Building Expert
Systems. Reading, MA: Addison-Wesley, 1983.

51. N. Friedland, P. Allen, G. Matthews, M. Witbrock, D. Baxter, J.
Curtis, B. Shepard, P. Mi-raglia, J. Angele, S. Staab, E.
Moench, H. Oppermann, D. Wenke, D. Israel, V. Chaudhri,
B. Porter, K. Barker, J. Fan, S. Chaw, P. Yeh, D. Tecuci, and P.
Clark, Project Halo: Towards a digital Aristotle. AI Magazine,
25(4): 29–48, 2004.

52. H. Lieberman, H. Liu, P. Singh, and B. Barry, Beating common
sense into interactive applications, AI Magazine, 25(4): 63–76,
2004.

53. E. Etzioni, Proceedings of the aaai 2007 spring symposium on
machine reading. Technical report, AAAI, 2007.

54. T. Berners-Lee, J. Hendler, and O. Lassila, The semantic web,
Scienti. Amer., 284(5): 34–43, 2001.

55. Y. Gil, E. Motta, V. Benjamins, M. Musen, (eds.), The Semantic
Web - ISWC 2005. Berlin: Springer Verlag, 2005.

56. T. R. Gruber, A translation approach to portable ontologies,
Knowledge Acquis., 5(2): 199–220, 1993.

57. D. McGuinness, and F. Harmelen, Owl web ontology language
overview, W3C recommendation. World Wide Web Consor-
tium, 2004.

58. M. K. Smith, C. Welty, D. McGuinness, Owl web ontology
language guide, W3C recommendation. World Wide Web Con-
sortium, 2004.

59. N. Noy, M. Sintek, S. Decker, M. Crubzy, R. Fergerson, and M.
Musen, Creating semantic web contents with Protégé-2000.
IEEE Intell. Sys., 48(2): 60–71, 2001.

60. E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B.
Motik, D. Oberle, C. Schmitz, S. Staab, L. Stojanovic, N.
Stojanovic, R. Studer, G. Stumme, Y. Sure, J. Tane, R. Volz,
and V. Zacharias, Kaon - towards a large scale semantic web. in
K. Bauknecht, A. M. Tjoa, G. Quirchmayr, (eds.), E-Commerce
and Web Technologies, Third International Conference, EC-
Web 2002, Aix-en-Provence, France, 2002, pp. 304–313.

61. L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng, and P. Kolari,
Finding and ranking knowledge on the semantic web, in Pro-
ceedings of the 4th International Semantic Web Conference,
Springer Verlag, 2005, pp. 156–170.

62. J. Hendler, Knowledge is power: A view from the semantic web,
AI Magazine 26(4): 76–84, 2005.

63. C. Marling, M. Sqalli, E. Rissland, H. Munoz-Avila, and D. Aha,
Case-based reasoning integrations, AI Magazine, 23(1): 69–86,
2002.

64. J. Shavlik, A framework for combining symbolic and neural
learning, Machine Learning, 14(3): 321–331, 1994.

65. D. Wilkins, and M. desJardins, A call for knowledge-based
planning, AI Magazine, 22(1): 99–115, 2001.

DAVID LEAKE

THOMAS REICHHERZER

Indiana University
Bloomington, Indiana

KNOWLEDGE-BASED COMPUTATION 13



K

KNOWLEDGE MANAGEMENT APPLICATION

Information and communication technologies (ICT) that
support the handling of knowledge in organizations have
been discussed for a long time. From the 1950s to the 1980s,
systems that apply artificial intelligence (AI) technologies
had a powerful impact on the conceptualization of knowl-
edge, not only in the discipline computer science, but also in
fields such as management science, organization science, or
psychology. However, many business organizations that
attempt to implement these technologies were frustrated
by their comparably high complexity and the difficulties of
applying them to business challenges. Thus, AI technolo-
gies survived only in specific application fields. In the
1990s, after a period of high attention to the increase of
efficiency, organizations were faced with the transforma-
tion of the economy into a knowledge economy and its
challenges to increase significantly the speed of innovation
and to improve the way organizations handle (distributed)
knowledge. For those countries that do not have (anymore)
the possibility to exploit some form of natural resources, it
is knowledge that creates wealth. Organizations strive to
increase productivity of knowledge work. Knowledge work
is creative work, it solves ill-structured problems in com-
plex domains with high variety and many exceptions, and
thus it requires a high level of skills and expertise from
employees. The challenge is to design, implement, and
maintain an organizational and ICT environment condu-
cive for this type of work. The importance of knowledge
work can be underlined by a recent study that showed that
most jobs created in the United States between 1990 and
2000 in fact are jobs in the knowledge work sector (1).

Concepts of knowledge management (KM) have been
suggested to meet this challenge, starting with the highly
innovative work by authors such as in Refs. (2–5), just to
name a few. Many authors from a variety of disciplines
created, applied, and reflected several approaches, con-
cepts, methods, tools, and strategies for KM. These innova-
tions have led to several terms that are used differently,
approaches that are incommensurable, and a lack of applic-
ability in a business context. More recently, however, sev-
eral instruments have emerged as state-of-the-art of KM
practice. Examples are competence management, commu-
nity management, or semantic content management.

Backed by tremendous interest in KM in the academic
field and in business practice, vendors of information and
communication systems as well as researchers in the field
of computer science and management information sys-
tems showed prototypes, tools, and systems to support
KM called knowledge management systems (KMSs). The
term KMS has been a strong metaphor for the develop-
ment of a new breed of ICT systems. In this view, KMSs
combine, integrate, and extend several heterogeneous
ICT. Examples are AI technologies, communication sys-
tems, content and document management systems, group
support systems, Intranet technologies, learning envir-

onments, search engines, visualization technologies, and
workflow management systems. Given the complexity of
these technologies, it seems obvious that the develop-
ment of KMS is a complex undertaking. Recently, many
vendors have insisted that their products have ‘‘knowl-
edge management technology inside.’’ More recently,
however, it seems that many technologies provided by
the avant-garde systems have been woven into the enter-
prise infrastructure implemented in many organizations.
Whereas enterprise resource planning systems target the
informational representation of business transactions,
enterprise knowledge infrastructures create an ICT
environment for knowledge work throughout the organi-
zation.

The aim of this article is to give an overview of the
manifold recent developments in the field of KM in general
and with respect to KMS in particular. To achieve this goal,
first KM approaches are analyzed systematically as the
conceptual basis of ICT applications built to foster the
implementation of KM initiatives in businesses and in
organizations. The next sections review the ICT roots of
KMS, define the term, and obtain a set of characteristics
that differentiates KMS from its roots. The article then
outlines an ideal architecture before it discusses classes of
KMS and summarizes some empirical findings on the state-
of-practice. The last section gives an outlook on future
trends and concludes the article.

KNOWLEDGE MANAGEMENT

The field of KM has drawn insights, ideas, theories, meta-
phors, and approaches from diverse disciplines. The roots of
the term can be traced back to the late 1960s and early
1970s in the Anglo-American literature. However, it took
almost another 20 years until the term appeared again in
the mid-1980s in the context as it is still used today (e.g.,
Refs. 4 and 5). The underlying concepts have been around
for some time. Many fields and disciplines exist that deal
with the handling of knowledge, intelligence, innovation,
change, learning, or memory in organizations. Various
approaches have played a role in the development of the
theories of organizational learning, organizational mem-
ory, and, ultimately, of KM. These theories can be divided
into several categories: a psychologic and sociologic line of
development (e.g., organizational psychology and sociol-
ogy), the sociology of knowledge with concepts such as social
networks and foundations for approaches in organizational
learning, a business line of development (e.g., human
resource management, organization science, strategic
management) with the knowledge-based view of business
strategy and intellectual asset management, and an ICT
line of development (e.g., systems theory AI, or manage-
ment information systems).

In addition to this interdisciplinary perspective on KM,
another popular conceptualization compares it with data
management and information (resource) management. The

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



perspective on KM in these approaches can be character-
ized as primarily technology oriented. Many authors who
went to the trouble of making a clear distinction between
data, information, and knowledge within the IS discipline
seem to agree on some form of hierarchical relationship.
Each higher level is based on or extends the preceding
level. This conceptualization is used to postulate different
demands for management (i.e. goals, approach, organiza-
tional roles, methods, instruments) and different result-
ing systems (e.g., database systems, data warehouses,
information and communication systems, and knowledge
management systems) on each of these levels. After a
period with no special attention to data, in the 1970s
and the beginning of the 1980s, the focus was on data
management (see Fig. 1). First, the main goal was to
technically integrate previously isolated data storage
units. Step two consists of semantic or conceptual data
integration, data modeling, and data handling. Step three
creates a separate organizational responsibility for data
management composed of both technical and conceptual
tasks. On step four, information was understood as a
production factor that had to be managed like other pro-
duction factors (e.g., capital, labor). Thus, the scope of
information management was much broader compared
with data management. The most important aspects
were (1) the extension from the management of syntactic
and semantic to pragmatic aspects of information, (2) the
understanding of information as an instrument for pre-
paring decisions and actions, (3) information logistics, (4)
the contingency approach to information, i.e., the differ-
ent interpretation of data in different situations, and (5)
the perspective-based approach to information, i.e., dif-
ferent groups of users might interpret the same data
differently.

Whereas organizations have realized substantial bene-
fits from data and information management, knowledge
has proven to be difficult to manage. Knowledge work and

knowledge-intensive business processes have been difficult
to reengineer (7). An organization’s ability to learn or to
handle knowledge assets, processes, or services have been
considered new key success factors. It has required new
organizational design alternatives, implemented with the
help of KM instruments, and also new information and
communication systems to support the smooth flow of
knowledge, which consequently has been called KMS.
Already existing tasks on lower steps have been once again
extended. With the advent of advanced database and net-
work technologies, as well as with the availability of sophis-
ticated AI technologies for purposes such as text mining,
user profiling, behavior analysis, pattern analysis, and
semantic text analysis, KM extended the focus of informa-
tion management to handle new information and commu-
nication technologies as well as to enrich application
development with intelligent technologies.

Knowledge management is defined as (1) the manage-
ment function responsible for regular (2) selection, imple-
mentation and evaluation of knowledge strategies (3) that
aim at creating an environment to support work with
knowledge (4) internal and external to the organization
(5) to improve organizational performance. The implemen-
tation of knowledge strategies comproes all (6) knowledge
management instruments (7) suitable to improve the
organization-wide level of competencies, education, and
ability to learn.

In item (1), the term ‘‘management’’ is used here in a
functional sense (managerial functions approach) to
describe the processes and functions (such as planning,
organization, leadership, and control) in organizations as
opposed to the institutional sense (managerial roles
approach) that describes the persons or groups that are
responsible for management tasks and roles. In item (2),
the systematic interventions into an organization’s knowl-
edge base have to be tied to business strategy. Knowledge
strategies guide the implementation of a KM initiative and

Figure 1. Historical develop-
ment of information processing
with focus on data (Based on
Ref. 6. )

2 KNOWLEDGE MANAGEMENT APPLICATION



tie it to business strategy. According to traditional strategic
management, a strategic gap is the difference between
what an organization should do to compete and what it
is doing currently. Strategies try to close this gap by align-
ing what an organization can do considering its strengths
and weaknesses with what it must do to act on opportu-
nities and threats. A knowledge strategy addresses knowl-
edge gaps—differences between what an organization must
know to execute its strategy and what it actually knows (8).
In item (3), KM creates an organizational and technological
infrastructure to improve knowledge work. In item (4),
knowledge processes are not restricted to the organization’s
boundaries, but involve cooperation with partners, suppli-
ers, and customers. Examples for knowledge processes are
submission of knowledge elements to a knowledge base,
discovery of applicable knowledge, acquisition of knowl-
edge external to an organization, or moderating a commu-
nity of practice, interest, or purpose. In item (5), KM aims
primarily to improve organizational effectiveness. How-
ever, creating, maintaining, or distributing intellectual
capital results in a higher valuation of an organization.

In item (6), depending on the perspective on KM, objects
of the implementation of knowledge strategies can be
objectified knowledge resources, (documented knowledge,
people, organizational or social structures, knowledge-
related information, and communication technologies).
These resources are targeted by KM instruments such as
collections of organizational, human resources, and ICT
measures that are aligned, clearly defined, and can be
deployed purposefully to achieve knowledge-related goals.
In addition, ICT measures are independent of a particular
knowledge domain (examples include expert advice, perso-
nal knowledge routines, idea and proposal management,
competence management, technology-enhanced learning,
good/best practice management, case debriefings, lessons
learned, or semantic content management). In item (7), KM
is not exclusively about individual learning. Collective
learning is of differing types [single loop, double loop,
deutero learning (9)], occurs on various levels of the orga-
nization (e.g., work group, project, community or network,
organization, network of organizations, business ecosys-
tem), and occurs in various phases (e.g., identification or
creation, diffusion, integration, application, or feedback).
KM aims to improve the organizational competence base as
well as the ability to learn. No areas focus explicitly on
the contents [i.e., the actual subjects, topics or knowledge
area(s)] around which a KM initiative builds a supportive
environment. The reason for this is that the definition of
KM should support all kinds of knowledge areas.

Two groups of KM approaches exist: human-and
technology-oriented. Basically, these approaches reflect
their origin, either in a human/process-oriented orga-
nizational learning, organization science background, or
in a technological/structural MIS or computer science/AI
background. They even have found their way into KM
strategy, where a technical codification strategy is distin-
guished from a human-oriented personalization strategy
(10). It is agreed that more holistic KM conceptualizations
exist that encompass both directions. These approaches
can be distinguished with respect to the main focus
area of KM they concentrate on (12). KM measures and

tools are bundled as KM instruments to provide specific KM
services for one of four KM focus areas identified by Wiig
(11), as follows: people, intellectual capital, enterprise
effectiveness, and information technology/management.
The approaches also differ in their conceptualizations of
knowledge. Table 1 shows perspective, focus area, and
definitions of knowledge as well as characterization of
strategy, organizational design, KM instruments and sys-
tems that together make up a KM initiative bound tightly to
one central KM approach.

A technology-oriented codification strategy focuses on
externalized knowledge that is separable from people and
can be documented, retained, and reused in other applica-
tion areas or organizational units. Corresponding KM
instruments focus heavily on information and communi-
cation technologies with an economic model that develops
reusable knowledge assets and standardization of proce-
dures even in knowledge-intensive areas. A human-
oriented personalization strategy focuses on knowledge
that is inseparable from people and aims to create an
environment in which people can work together effi-
ciently. Corresponding KM instruments develop net-
works of people so that tacit knowledge can be shared.
As the focus is on people, a pivotal goal is to reduce time-to-
proficiency when a knowledge worker takes on a new role.
A process-oriented, on-demand strategy bridges the gap
between these two roles by designing services system-
atically for knowledge-intensive business processes and
for knowledge processes. Complex knowledge manage-
ment services are composed of basic services offered by
heterogeneous systems such as document, content, work-
flow management, communication, collaboration, and
personal information management systems. Viewing
KM instruments from a service perspective bound to
processes eases the integration into a general business
framework.

An implementation of ICT to support a strategically
relevant KM initiative must not only select a KM approach,
strategy, organizational design, and combination of KM
tools and systems, but also must integrate KM instruments
with the supporting technology. KM instruments and sys-
tems are discussed in the following sections.

ROOTS OF KNOWLEDGE MANAGEMENT SYSTEMS

A review of the literature on ICT to support KM reveals
several common terms, such as knowledge warehouse, KM
software, suite, (support) system, technology, as well as
learning management platform, portal, suite, system, or
organizational memory (information) system (12,13). In
addition to these terms that suggest a comprehensive plat-
form in support of KM, many authors provide more or less
extensive lists of individual tools or technologies that can be
used to support KM initiatives as a whole or for certain
processes, life cycle phases, or tasks thereof (14–17). The
latter can be described as roots of KMS that are combined
and integrated to build KMS.

Figure 2 uses the metaphor of a magnetic field produced
by a coil to show the technological roots and the influences
that impact the design and the implementation of KMS.

KNOWLEDGE MANAGEMENT APPLICATION 3



Table 1. Comparison of approaches to knowledge management

Dimensions Technology-oriented Human-oriented Process-oriented

(1) Approach
Perspective engineering, congnitive cultivation, community business, customer-orientation,

socio-technical
Focus area IT: maximize capture,

transformation, storage,
retrieval and development
of knowledge

people: maximize
effectiveness of
people-centric learning
organization

intellectual asset & enterprise
effectiveness: maximize building
and value reallocation of knowledge
assets, maximize operational
effectiveness

Knowledge documented, separable
from people

exclusively in the
heads of people

asset, skill, competence, embedded
in social networks and (knowledge)
processes

(2) Strategy
Knowledge Strategy codification; reuse

documented knowledge
personalization; foster
handling of knowledge
of persons/in groups

on-demand; situation-oriented
design of knowledge processes
for business processes

Goals improve documentation improve improve visibility of
and retention of knowledge,
acquire external knowledge,
turn implicit into explicit
knowledge

communication, train
newly recruited, improve
knowledge sharing,
improve personnel
development

knowledge, improve access to
and use of tacit and explicit
knowledge, improve innovation,
change culture

(3) Organization
Roles author, knowledge (base)

administrator, knowledge
broker

expert, mentor, network
chair, community manager,
moderator

knowledge partner and stakeholder,
boundary spanner, coordinator for KM,
subject matter specialist, owner and
manager of knowledge processes

Tasks storing, semantic release
and distribution, refinement,
deletion/archiving of
knowledge,acquisition
of external knowledge

establish, foster, and
moderate communities;
document competences
and expertise; organize
knowledge sharing
events

identify knowledge stances; design
knowledge maps, profiles, portals and
processes; personalize organizational
knowledge base; implement learning
paths

Culture technocratic socio-cultural socio-technical, management
(4) KM instruments
and systems
Instruments semantic document and

content management,
instruments for discovery,
publication, collaboration,
learning and adaptation

competence, idea, and
proposal management;
personal knowledge
routines; expert advice;
communities; knowledge
networks, self-managed ad-hoc
learning

management of patents and licenses,
KM scorecards, case debriefings,
lessons learned, good/best practices,
knowledge process reengineering,
technology-enhanced learning

Contents knowledge about organization,
processes, products; internal
studies, patents, online
journals

employee yellow pages,
skills directories, ideas,
proposals, knowledge
about business partners

cases, lessons learned, good/best
practices, learning objects, profiles,
valuations, comments, feedback to
knowledge elements

Architecture integrative KMS interactive KMS KMS bridging the gap
Type infrastructure for documented

knowledge
infrastructure for
communication,
management of
competences

process-oriented system offering
composed services for knowledge
and business processes

Functions publication, classification,
formalizing, organization,
search, presentation,
visualization of knowledge

asynchronous and
synchronous communication,
collaboration and cooperation,
community support

profiling, personalization,
contextualization, recommendation,
technology-enhanced learning,
navigation from knowledge elements
to people and processes

Tools/systems semantic document and
contentmanagement system, Wiki,
knowledge portal

skill management system,
computer-mediated
communication, social
software

process warehouse, integrated
case-based reasoning, lessons learned,
learning object and good/best practice
repository

4 KNOWLEDGE MANAGEMENT APPLICATION



The term KMS plays the role of the coil, the magnetic
center. Theoretical approaches that support the deploy-
ment of KMS are shown to the right of the magnetic center
(see section on ‘‘Knowledge management’’). The main char-
acteristics of KMS stress the differences to their ICT pre-
decessors (see section ‘‘Toward a definition of KMS’’) and
are shown on the left side. Together, both influences pro-
vide the energy to integrate, (re-)interpret, (re-)arrange,
and (re-) combine ICT technologies that are the roots of
KMS into a set of KMS-specific services (see section on
‘‘Architecture’’) that in turn are integrated into application
systems, tools, and platforms with a clear focus on the
support of KM concepts and instruments. Finally, KM
instruments represent the classes of KMS in a narrow
sense (see section on ‘‘Classification’’).

In the following sections, the most important ICT will be
reviewed that forms the technologic roots of KMS. Com-
prehensive KMS combine and integrate the functionality of
several of these predecessors.

Data Warehousing

A data warehouse is a subject-oriented, integrated,
nonvolatile, time-variant collection of data in support of
management decision processes (18). It is assumed impli-
citly that a data warehouse is separated physically from
operational systems. External databases are the sources
from where data are loaded regularly into the data ware-
house. Data are organized by how users refer to them.
Inconsistencies are removed and data are cleaned to
remove errors and misinterpretations, are converted
(e.g., concerning measures, currencies, and sometimes
summarized and denormalized) before they are inte-
grated into the data warehouse. Data in the data ware-
house usually are optimized for analysis with business

intelligence tools (e.g., star and snowflake data model,
multidimensional databases).

Document and Content Management

The term document management denotes the automated
control of electronic documents, both individual and
compound documents, throughout their entire lifecycle
within an organization (i.e., creation, storage, organiza-
tion, transmission, retrieval, manipulation, update, and
eventual disposition of documents). Document manage-
ment systems provide functions to support all tasks
related to the management of electronic documents,
such as to capture, structure, distribute, retrieve, output,
access, edit, and archive documents over their entire
lifecycle. Web content management systems are applied
to handle efficiently all electronic resources required to
design, run, and maintain a website and to support all
tasks related to authoring, acquiring, reviewing, trans-
forming, storing, publishing, and delivering contents in
Web formats. They are used to manage the entire web
publishing process; to offer mechanisms for releasing new
contents; to support HTML generation with the help of
templates, standard input, and output screens; and to
separate content and layout that provides a standardized
look and feel of the web pages. As a consequence, parti-
cipants who are not familiar with HTML can publish web
content that fits into an organization’s corporate (web)
identity.

Workflow Management

A workflow is the operative, technologic counterpart of a
business process and consists of activities related to one
another that are triggered by external events and are

social
networks

intellectual asset
management

guid
e

KM
S desig

n

knowledge
management

organizationalrelated theoretical concepts

kn
owled

ge-
re

lat
ed

 ap
plic

at
io

ns

su
pport 

KMS d
ep

lo
ym

en
t

te
ch

nolo
gica

l r
oots

characteristics of KMS

use KMS metaphor

provide available ICT basis

learning

knowledge-
based view

integrative
KMS

interactive
KMS

WBT authoring
/ learning

environments

communication
technologies

document 
and content
management

AI technologies

visualization

Groupware/
collaboration

search/
retrieval

workflow
management

data
warehousing

business
intelligence

KM suite

knowledge
management

system
KM instruments

knowledge
services

KM initiative

comprehensive
platform

integration
services

personalization
services

discovery
services

publication
services

collaboration
services

learning
services

access
services

classes of KMS according to KM instruments

knowledge
processes

specifics of
knowledge

social
software

enterprise
integration

group
support
systems

knowledge
directories

experience
management

lessons learned,
good & best practices

communities/
kowledge networks

semantic content
management

competence
management

process warehouse,
support system

Figure 2. Technologic roots and influences of knowl-
edge management systems.

KNOWLEDGE MANAGEMENT APPLICATION 5



carried out by persons using resources such as documents,
application software, and data. A workflow management
system ‘‘defines, creates and manages the execution of
workflows through the use of software, running on one
or more workflow engines, which is able to interpret the
process definition, interact with workflow participants and,
where required, invoke the use of IT tools and applications’’
(19). Most workflow management systems primarily sup-
port well-structured organizational processes. More
recently, some systems also support flexible workflows
and so-called ad-hoc workflows. An ad-hoc workflow is a
sequence of tasks that cannot be standardized, but they
must be designed spontaneously by participants. Workflow
functionality can be used in knowledge management to
support processes such as the publication or the distribu-
tion of knowledge elements. Several KMS contain flexible
functions for workflow management, such as Open Text
Livelink.

Communication Technologies

Communication systems are electronic systems that sup-
port asynchronous and synchronous communication
between individuals, such as point-to-point communication
systems, collectives, and multipoint communication sys-
tems. Examples of synchronous communication systems
include teleconferencing systems such as text conferencing
(chat), instant messaging, audio, and video conferencing
systems. Examples of asynchronous communication sys-
tems include email, listserver, and newsgroups.

Groupware/Collaboration

Groupware is a category of software to support workgroups
and teams. Usually, groupware is classified according to a
matrix of group interaction with the two dimensions time
and place: same time versus different time as well as same
place versus different place. Groupware tools can be clas-
sified even more into (1) communication systems such as
email, audio/video systems, and chat systems; (2) informa-
tion sharing systems such as message boards, tele-consul-
tation systems, co-browser; (3) cooperation systems such as
co-authoring, shared CAD, whiteboard, word processor,
spreadsheet, and group decision support systems; (4) coor-
dination systems such as group calendar, shared planning,
notification systems; and (5) social encounter systems such
as media spaces and virtual reality. A Groupware platform
provides general support for collecting, organizing, and
sharing information within (distributed) collectives of peo-
ple, such as work groups and project teams over corporate
networks as well as the Internet. Examples for Groupware
platforms are Lotus Notes, Microsoft Exchange, and BSCW
(which is available freely over the Internet). Groove, which
was developed by Groove Networks (now Microsoft) is a
recent example for a Groupware platform that uses the
peer-to-peer metaphor instead of the client-server para-
digm.

Business Intelligence

Business intelligence denotes the analytic process that
transforms fragmented, organizational, and competitive

data into goal-oriented ‘‘knowledge’’ about competencies,
positions, actions, and goals of internal and external actors
and processes. The analytic process requires an integrated
data basis usually provided by a data warehouse. Examples
of technologies that support this process are decision sup-
port system technologies; multidimensional analysis; online
analytical processing; data mining, text mining, and web
mining technologies; balanced scorecard; business simula-
tion techniques; and also artificial intelligence technologies,
such as case-based reasoning and issue management.

Visualization

Visualization is used in a multitude of tools and systems.
Most visualization systems are based on graph theory. In
addition to two-dimensional graphs that represent ele-
ments and relationships, several tools also provide three-
dimensional visualization techniques. Examples are tools
for data, function, organization, process or object-oriented
modeling, or tools that provide mapping techniques that
have a long tradition in psychology, sociology, and peda-
gogy, such as mind mapping.

Web-Based Training (WBT) Authoring and Learning
Environments

Learning environments are application systems that offer
specified learning content to the learner in an interactive
way, and thus they support the teaching and/or learning
process. Computer-based training has its historical roots in
programmed instruction or learning in the late 1950s,
which was based on the concept of operant conditioning
developed by Skinner. Psychologic and pedagogic, as well
as technologic advancements have led to a wide variety of
systems and learning environments that reflect the diver-
sity of learning. Examples are drill and practice systems,
(intelligent) tutoring systems, active assistance systems,
micro-worlds, simulation systems, experimental game
systems, hypertext-/hypermedia learning systems, as
well as WBT, multimedia learning environments, tele-
teaching, distance learning, tele-tutoring, and computer-
supported collaborative learning. Recently, these diverse
concepts have found their way into integrated learning
(content) management systems that overlap with KMS.

Group Support Systems (GSSs)

GSSs, also called group decision support systems, are
interactive systems that combine communication, compu-
ter, and decision technologies to support the formulation
and the solution of unstructured problems in group meet-
ings. GSSs integrate technologies to support communica-
tion in groups, structure of processes by which groups
interact (e.g., agenda setting, facilitation), and information
processing (e.g., aggregating, evaluating, or structuring
information). They can be classified according to the level
of support in (1) removing communication barriers, (2)
decision modeling and group decision techniques, and (3)
expert advice to select and to arrange rules in a meeting
that lead to machine-induced group communication pat-
terns (20).

6 KNOWLEDGE MANAGEMENT APPLICATION



Search

A search engine is a program that can be used to find
resources (e.g., documents or images) either in an organi-
zation’s Intranet or in the WWW. Search engines apply
programs that trace permanently the Web or an Intranet
for new web pages, so-called spiders or robots. A newfound
web page is scanned for keywords that are stored together
with the URL of the web page in the search engine’s
database. At the time when a user submits a search term
to the search engine, only this database is searched and
intelligent algorithms are applied to retrieve those web
pages that fit most to what the user has searched for. So-
called meta- or multi-search engines forward search strings
including boolean operators to various search services,
collect and filter the results for redundancies, and present
them accordingly. Both search engines and meta-search
engines can be distinguished even more with respect to the
search domain that they support, such as organization-
internal and/or organization-external systems.

Enterprise Integration

This bundle of technologies aims to provide the basis for
interactions between a variety of data and document
sources and between application components and sys-
tems. Integration in information processing can be clas-
sified according to the object into data, function, and
program integration. Enterprise integration is an inte-
gration infrastructure, sometimes called middleware,
that covers these classes and provides a basis for fully
automated, organization-wide integration, or even inte-
gration between organizations. Typical standard technol-
ogies for data integration are based on XML, XML
Schema, and XSLT that offer a metalanguage for annota-
tion, description of the structure, and transformation of
semi-structured data. Because of the importance of users
as participants accessing KMS, integration of user data
sometimes is discussed separately, called identity man-
agement. The semantic web stack, particularly RDF, RDF
Schema, and OWL, provide the basis for semantic inte-
gration as required in KMS. With respect to function
integration, the web service stack offers a standard way
for describing and discovering public interfaces of soft-
ware systems. With respect to process integration, many
initiatives exist for standardizing XML-based languages
to describe workflows that in turn invoke Web services,
such as the Business Process Execution Language (21).

Social Software

Social software is a recent concept, a subset of computer-
mediated communication that covers software and is used
to create and to maintain social networks or virtual com-
munities. Typically, this category of software allows easy-
to-use mechanisms to create and to maintain online profiles
(social identity), build relationships and reputation (social
capital), stay aware of a network’s activities (social pre-
sence), comment on and recommend to others (social feed-
back), interact with others (social interaction), organize
physical meetings (social planning), and share content
(social spaces) on the Internet. Social software focuses on

supporting individuals who enter networks or communities
voluntarily and therefore supports informal gatherings
rather than formal organizational groupings in teams or
workgroups, which typically are focused by Groupware,
project management, and collaboration software. Because
of this informal, self-directed nature of joining networks, it
could be described as employing a peer-to-peer, bottom-up
metaphor rather than a server-based, top-down metaphor
(22). It has the potential of building larger and more effec-
tive networks. Examples for software that can be used with
this goal in mind are easy-to-use content management
systems such as text, audio and video Blogs, Wikis, fora,
real-time communication (e.g., instant messaging or chat),
and software platforms for rich interactions between
its members that build on the friend-of-a-friend meta-
phor, such as the FOAF project, MSN Groups, Tribe.Net,
Meetup.com or, with a business connotation, LinkedIn or
Xing. Currently, many organizations adopt these technol-
ogies and attempt to profit from them. Social software
seems to be particularly promising to fill in the gap of
the less supported personalization and collaboration por-
tion of organizational KMS. However, it remains to be seen
whether and how the additional challenges in business or
organizational settings, particularly with respect to power
distribution, incentive systems, data privacy and concerns
about knowledge risks, can be overcome.

AI Technologies

Many specific technologies are discussed as supporting
KM. Most technologies have their roots in the field of AI.
Results from AI research play a crucial role in the devel-
opment of KMS and provide intelligent functions for KM.
Examples for AI-based tools for KM are as follows:

� Experience and know-how data base systems are
ordered collections of application solutions, such as
specialized data base systems that store experiences,
lessons learned, best practices, as well as technical
solutions. Experience data bases rely technologically
on conventional information retrieval and document
management technology, augmented with business
process models and ontologies about the application
domain as well as additional meta data categories for
describing knowledge documents. The term experi-
ence data base aims more at management, organiza-
tional, and technical experiences, such as customer
relations, business processes, projects, whereas the
term know-how database aims more at technical pro-
blems and solutions.

� Case-based reasoning systems provide an approach to
solve problems with the help of known solutions for
similar problems that has its roots in AI research. The
approach is composed of four steps: (1) retrieve cases
from the system’s case base which are similar to the
problem presented by the user, (2) reuse solved cases,
(3) revise the selected case and confirm the solution,
and (4) retain the learned case if it is an interesting
extension of the case base.

� Recommender systems extend systems that support
information retrieval and give recommendations

KNOWLEDGE MANAGEMENT APPLICATION 7



based on techniques such as test of context correspon-
dence, frequency analysis, and agent technologies.
Some authors also use the term collaborative filtering
to denote the social process of recommending. The
systems collect and aggregate recommendations of a
multitude of people and make good matches between
the recommenders and those who seek recommenda-
tions. To accomplish this task, recommender systems
have to model the users’ characteristics, interests, and/
or behavior. This action is called user modeling, profil-
ing, or personalization. Profiles are a requirement for
the application of many intelligent technologies, espe-
cially intelligent software agents. Systems that use
content-based filtering recommend items similar to
those a given user has liked in the past.

� Intelligent software agents are autonomous units of
software that execute actions for a user. Intelligent
software agents use their intelligence to perform parts
of their tasks autonomously and to interact with their
environment in a usefulmanner. Thus, software agents
differ from more traditional software programs with
respect to their autonomy, ability to communicate and
cooperate, mobility, reactive and proactive behavior,
reasoning, and adaptive behavior; some agents even
might show human characteristics. Roots of agent
technology can be traced back to (1) approaches of
distributed AI where agents deconstruct tasks into
sub-tasks, distribute them, and combine their results
and (2) developments in the area of networks and
communication systems. Intelligent or semi-intelligent
agents can be classified according to their main area of
application into information, cooperation, and transac-
tion agents and are applied in a multitude of settings.
Prominent examples for agents can be found in electro-
nic market processes. In KM, agents can be used to scan
emails, newsgroups, and chats; to group and update
automatically user-specific messages and information
items in the Internet (newswatchers); to analyze and
classify documents; to search, integrate, evaluate, and
visualize information from a multitude of sources; to
handle information subscriptions intelligently; to iden-
tify and network experts; to visualize knowledge net-
works; and to recommend participants, experts,
communities; and documents.

TOWARD A DEFINITION OF KNOWLEDGE
MANAGEMENT SYSTEMS

During the last couple of years, the term KMS has gained
acceptance in the literature and on the market, but the
term is often used ambiguously for specific KM tools, for KM
platforms, or for a combination of tools that are applied with
KM in mind. Investigations about the notion of KMS often
remain on the abstract level of what a KMS is used for, such
as ‘‘a class of information systems applied to managing
organizational knowledge’’ (13). Consequently, the term
KMS is used here, since numerous similar conceptualiza-
tions exist that complement the functionality and the

architectures of KMS. The following list summarizes the
most important characteristics of KMS as found in the
literature (see Fig. 2, left-hand side).

Specifics of Knowledge

KMSs are applied to manage knowledge that is described as
‘‘personalized information [...] related to facts, procedures,
concepts, interpretations, ideas, observations, and judg-
ments’’ (13). From the perspective of KMSs, knowledge is
information that is organized meaningfully, accumulated,
and embedded in a context of creation and application.
KMSs leverage primarily codified knowledge and also aid
communication or inference used to interpret situations
and to generate activities, behavior, and solutions. KMS
help to assimilate contextualized information, provide
access to sources of knowledge and, with the help of shared
context, increase the breadth of knowledge sharing
between persons rather than storing knowledge itself
(13). The internal context of knowledge describes the cir-
cumstances of its creation. The external context relates to
retrieval and application of knowledge. Contextualization
is a key characteristic of KMS that provides a semantic link
between explicit, codified knowledge and the persons that
hold or seek knowledge in certain subject areas. Therefore,
users play the roles of active, involved participants in the
knowledge network fostered by KMSs.

KM Initiative

The primary goal of KMS is to bring knowledge from the
past to bear on present activities, which results in
increased levels of organizational effectiveness (12).
Thus, KMSs are the technologic part of a KM initiative
that also comprises person-oriented and organizational
instruments targeted at improving productivity of knowl-
edge work (23). KM initiatives can be classified into tech-
nology-, human-, and process-oriented initiatives (see
section on ‘‘Knowledge management’’). The type of initia-
tive determines the type of KMS for its support. In effect,
KMSs aid knowledge work by supporting employees’
awareness, networking, exploration, and exploitation of
knowledge assets.

Knowledge Processes

KMSs are developed to support and to enhance knowledge-
intensive tasks, processes, or projects of knowledge crea-
tion, organization, storage, retrieval, transfer, refinement
and packaging, (re-)use, revision and feedback (also called
the knowledge life cycle) to support knowledge work ulti-
mately (2). In this view, KMSs provide a seamless pipeline
for the flow of knowledge through a refinement process (24).
Although the focus used to be on explicit knowledge with
most KMSs being built on some form of content or document
management system, with the advent of sophisticated col-
laboration technologies and so-called social software,
KMSs increasingly target both explicit and implicit knowl-
edge by helping to network people and to share and refine
implicit knowledge.

8 KNOWLEDGE MANAGEMENT APPLICATION



Comprehensive Platform

Whereas the foci on individual initiatives, processes, and
participants can be seen as a goal-, application-, and user-
centric approach, an IT-centric approach provides a base
system to capture and to distribute knowledge (25). This
platform is then used throughout the organization. In this
case, a KMS is not an application system targeted at a
single KM initiative, but it is a platform that can be used
either as-is to support knowledge processes or as the inte-
grating base system and repository on which KM applica-
tion systems are built. In this case, comprehensive indicates
that the platform offers functionality for user administra-
tion, messaging, conferencing, and sharing of documented
knowledge, such as publication, search, retrieval, and pre-
sentation.

Knowledge Services

KMSs are ICT platforms on which several integrated ser-
vices are built. The processes that have to be supported give
a first indication of the types of services that are needed.
Examples are rather basic services (collaboration, work-
flow management, document and content management,
visualization, search and retrieval) or more advanced
services (personalization, text analysis, clustering, and

categorization) to increase the relevance of retrieved and
pushed information, advanced graphical techniques for
navigation, awareness services, shared workspaces, (dis-
tributed) learning services, as well as integration of and
reasoning about various (document) sources on the basis of
a shared ontology (15).

KM Instruments

KMSs are applied in many application areas and support
KM instruments specifically, such as capture, creation, and
sharing of good or best practices; implementation of experi-
ence management systems; creation of corporate knowl-
edge directories, taxonomies, or ontologies; competency
management; collaborative filtering and handling of inter-
ests used to connect people; creation and fostering of com-
munities or knowledge networks; and facilitation of
knowledge process reengineering (13,26,27). Thus, KMSs
offer a targeted combination and integration of knowledge
services that together foster one or more KM instrument(s).

Consequently, a KMS is defined as a comprehensive ICT
platform for collaboration and knowledge sharing with
advanced knowledge services built on top that are contex-
tualized, integrated on the basis of a shared ontology, and
personalized for participants networked in communities.
KMSs foster the implementation of KM instruments to

participant

I –access services
authentication; translation and transformation for diverse applications and 

appliances (e.g., browser, PIM, file system, PDA, mobile phone)

V –infrastructure services
Intranet infrastructure services (e.g., messaging, teleconferencing, file server,  

imaging, asset management, security services); Groupware services;
extract, transformation, loading, inspection services

IV –integration services
taxonomy, knowledge structure, ontology; multi-dimensional meta-data (tagging);

directory services; synchronization services 

III –knowledge services

Intranet/Extranet:
messages, contents

of CMS,E-lear-
ning platforms

data from
RDBMS, 
TPS, data 

warehouses

content from
Internet, 
WWW,

newsgroups

DMS documents,
files from office

information
systems

data from
external 
online 

data bases

VI –data and knowledge sources

personal
information
manage-
ment data

…

II –personalization services
personalized knowledge portals; profiling; push-services;

process-, project-or role-oriented knowledge portals

publication
formats, structuring,
contextualization,
workflow,
co-authoring

discovery
search, mining, 
knowledge maps,
navigation, 
visualization

collaboration
skill/expertise mgmt.,
community spaces,
experience mgmt.,
awareness mgmt.

learning
authoring, course
mgmt., tutoring,
learning paths,
examinations

Figure 3. Architecture of knowledge management
system.

KNOWLEDGE MANAGEMENT APPLICATION 9



support knowledge processes targeted at increasing orga-
nizational effectiveness.

Actual implementations of ICT systems certainly fulfill
the characteristics of an ideal KMS only to a certain degree.
Thus, a continuum between traditional IS and advanced
KMSs might be imagined with minimal requirements that
provide some orientation (28).

ARCHITECTURE

Many KMS solutions that are implemented in organiza-
tions and offered on the market are client/server solutions.
Figure 3 shows an ideal layered architecture for KMS
that represents an amalgamation of theory-driven, mar-
ket-oriented, and several vendor-specific architectures
(24,29) such as Open Text Livelink, http://www.open-
text.com/. A thorough analysis of these architectures and
the process of amalgamation can be found in Ref. 23. The
ideal architecture is oriented toward the metaphor of a
central KM server that integrates all knowledge shared in
an organization and offers a variety of services to the
participant or to upward layers.

Data and knowledge sources include organization-
internal and organization-external sources as well
as sources of structured and semi-structured infor-
mation and knowledge.

Infrastructure services provide basic functionality for
synchronous and asynchronous communication,
sharing of data and documents, as well as manage-
ment of electronic assets. Extract, transformation,
and loading tools provide access to data and knowl-
edge sources. Inspection services (viewer) are
required for heterogeneous data and for document
formats.

Integration services help to organize and link knowledge
elements meaningfully from a variety of sources by
means of an ontology. They are used to analyze the
semantics of the organizational knowledge base and
to manage meta data about knowledge elements and
users. Synchronization services export and (re-)inte-
grate a portion of the knowledge workspace for work
offline.

Knowledge services provide intelligent functions for dis-
covery, such as search, retrieval, and presentation of
knowledge elements and experts; for publication,
such as structuring, contextualization, and release
of knowledge elements; for collaboration, such as the
joint creation, sharing, and application of knowledge;
and for learning, such as authoring tools and tools for
managing courses, tutoring, learning paths, and
examinations; as well as for reflecting on learning
and knowledge processes established in the organi-
zation.

Personalization services provide a more effective access
to the large amounts of knowledge elements. Subject
matter specialists or managers of knowledge pro-
cesses can organize a portion of the contents and
services for specific roles or can develop role-oriented

push services. The services can be personalized with
the help of (automated) interest profiles, personal
category nets, and personalizable portals.

Access services transform contents and communication
to and from KMS to fit heterogeneous applications
and appliances. KMS have to be protected against
eavesdropping and unauthorized use by tools for
authentication and for authorization.

Summing up, many functions exist to provide knowledge-
related services that have been combined into a KMS archi-
tecture. However, this architecture can be seen as ideal in
the sense that almost all actual tools and systems offered on
the market or implemented in organizations only offer a
certain portion of these services. The next section organizes
theabundantnumberof toolsand systems thatarediscussed
as being helpful for KM.

CLASSIFICATION

The field is still immature in the sense that no classes of
systems exist that the literature has agreed on. Several
proposals for classifications of systems exist which lack
mostly completeness and also exclusiveness in the sense
that one system fits into one and only one category. A
comprehensive overview of classifications of technologies,
tools, and systems that support KM can be found in Ref.
23. The classifications in the literature fall into two
categories. Market-oriented classifications try to cover
either technologies, tools, and systems that support KM
(wide view) potentially or they cover the functionality of
KMSs (narrow view). Theoretical classifications are
based on existing models that describe types of knowl-
edge (abstract view) or KM processes or tasks, respec-
tively (concrete view) that could be supported potentially
by ICT in general or KMSs in particular. Taken together,
KM tools and systems fall into one of the following four
categories:

� Technological roots This group is composed of more
traditional ICT that can be used to support KM initia-
tives. The most important roots have been described
above.

� Platforms Corporate Intranet infrastructures, enter-
prise document and content management systems, or
Groupware platforms can be designed ‘‘with KM in
mind.’’ These platforms turn infrastructures into com-
prehensive, integrated KMS solutions. A modern, inte-
grated Intranet platform can be considered as a KM
platform in the sense of a kind of ‘‘starter solution’’ for
knowledge sharing. This KM platform comprises at
least the levels Intranet infrastructure including
extract, transformation, and loading, as well as access
and security in the KMS architecture presented above.
Integrated KMS solutions combine a large set of tech-
nologies for knowledge sharing into a common plat-
form.

� Specialized tools Some KM tools have roots in the AI
field and perform specific functions necessary for KM.

10 KNOWLEDGE MANAGEMENT APPLICATION



Others are necessary to integrate several of these
functions or several of the more traditional ICT. These
tools are heterogeneous with each tool targeting a
specific challenge within individual steps of knowledge
processes or along the knowledge lifecycle.

� KMS in a narrow sense These systems provide func-
tionality that goes well beyond the functions in roots,
platforms, and specialized tools in that they represent
the ICT part of a KM instrument. In an empirical
study, large organizations have been surveyed for
their KMS implementations (23). Based on the find-
ings of this empirical study together with the findings
reported in the literature (13), KMSs (in a narrow
sense) can be classified according to the KM instru-
ments they support.

In the next sections, KMSs in a narrow sense are
described in detail for exemplary KM instruments (30).

Knowledge Directories

Different types of knowledge maps are suggested for all
categories of KM instruments. A central goal is to create
corporate knowledge directories that visualize existing
knowledge in organizations and support a more efficient
access to and handling of knowledge. The main objects of
mapping are experts, project teams, networks, white
papers or articles, patents, lessons learned, meeting pro-
tocols, or generally document stores. Knowledge source
maps visualize the location of knowledge, either people
(sometimes also called knowledge carrier maps, or informa-
tion systems) and their relation to knowledge domains or
topics. Knowledge asset maps visualize the amount and the
complexity of knowledge that a person or a system holds.
Knowledge development and application maps are combi-
nations of process models and knowledge carrier maps.
Knowledge development maps visualize processes or learn-
ing paths that can or must be performed by individuals or
teams to acquire certain skills. Knowledge application
maps describe what process steps have to be performed
in what situation at what step in a business process, such as
who should be contacted for a second opinion. Knowledge
structure maps show the types of relationships between
knowledge domains or topics. The formal definition of
knowledge structures results in ontologies and is an impor-
tant instrument for the integration of diverse knowledge
sources.

Competence Management

Competencies held by individuals in organizations are
analyzed, visualized, evaluated, improved, and applied
systematically. Competence management composes
expertise locators, yellow and blue pages, as well as skill
management systems, which are also called people-finder
systems. Skill management makes skill profiles accessi-
ble, and it defines learning paths for employees that have
to be updated together with skill profiles. A central skill
ontology has to be defined that provides context for all
existing, required, and wanted skills in the organization.
Training measures have to be offered. Skill management

systems often not only contain information about skills,
their holders, and their skill levels, but also contain infor-
mation about job positions, projects, and training mea-
sures in which employees learned, used, and improved
their skills. Yellow and blue pages are directories of
organization-internal and -external experts, respectively.
Profiles of the experts together with contact details are
listed according to several knowledge domains for which
they might be approached. Information about employees’
skill levels and degrees of expertise can be used to connect
people; to staff projects; to find training and education
measures for training into, on, along, near, off, and out of
the job (31); to filter; and to personalize KMS contents and
functions.

Experience Management

These systems ease documentation, sharing, and applica-
tion of personal experiences in organizations and have to
be integrated into the daily work practices of employees to
be accepted. Several approaches exist that support cap-
turing of experiences, such as information mapping,
learning histories, or micro-articles. The systematic man-
agement of personal experiences enables a company to
solve recurring problems more effectively. However, some
barriers exist that prevent the documentation of experi-
ences or the reuse of already documented experiences.
Foremost, time required for documenting experiences is a
critical factor because it imposes additional efforts on
employees. Simultaneously, sufficient context of the
experience has to be provided. ICT solutions help to
ease the effort of documenting experiences, to detect con-
text automatically, and to apply rights management to the
knowledge assets.

Communities/Knowledge Networks

Community management targets the creation and the
fostering of communities or knowledge networks. Commu-
nities differ from knowledge networks with respect to who
initiated their foundation. Communities are founded by
like-minded people (bottom-up) and can at most be fostered
by the organization. Knowledge networks are established
and legitimated by management (top-down). However,
organizational and ICT measures to foster communities
are the same as those used to support knowledge networks.
Communities per definition cannot be controlled or induced
externally. But organizations can provide employees with
time and space to share thoughts; to establish IT tools, such
as social software, community builder, and home spaces
that support exchange of thoughts; to create new roles like
community managers that help to keep discussions going;
and to look for important topics that should gain manage-
ment attention.

Process Warehouses and Support Systems

Knowledge process reengineering (KPR) aims to redesign
business processes from a knowledge perspective. The term
references the field of business process reengineering
(BPR) that aims at fundamental (process innovation) or
evolutionary (process redesign) changes of business

KNOWLEDGE MANAGEMENT APPLICATION 11



processes in organizations to increase organizational effec-
tiveness. In addition to traditional BPR instruments,
knowledge-intensive business processes are improved
partially by KPR. The focus is on designing knowledge
processes that connect business processes, defining coop-
eration scenarios, improving communication patterns
between employees, and ‘‘soft’’ skills, or on designing an
organizational culture supportive of knowledge sharing (2).
Business processes are modeled with the help of modeling
techniques. The models are stored in model bases. The
model base can be expanded so that it handles not only
knowledge about the process, but also knowledge created
and applied in the process. This process is termed process
warehouse, and it can be used as a foundation for systematic
KPR. Examples for contents in process warehouses are
exceptional cases, case-based experiences, reasons for deci-
sions, checklists, hints, frequently asked questions and
answers, potential cooperation partners, or suggestions
for improvements.

Lessons Learned, Good and Best Practices

Lessons learned are the essence of experiences made
jointly and documented systematically by members of
the organization in projects or learning experiments.
In a process of self-reflection, for example at the end of
a project milestone, also called after-action review or
project debriefing, project members review jointly and
document critical experiences made in this project. ICT
supports coding, linking, storing, and sharing lessons
learned. Templates support structured documentation
of experiences and help the team to include important
context information. Lessons learned target project
experiences and their reasons but ideally make no state-
ment about how processes should be adapted considering
these experiences. The sharing of good or best practices is
an approach to capture, create, and share experiences in
a process-oriented form as procedures or workflows that
have proven to be valuable or effective within one orga-
nizational unit and may be applied in other organiza-
tional units. As managers might argue about what
exactly is ‘‘best’’ practice, several organizations use dif-
ferent levels of best practice, such as a good (unproven)
idea, good practice, local best practice, company best
practice, industry best practice. Permanent best practice
teams provide guidelines and support identification,
transfer, implementation, evaluation, and improvement
of practices.

Semantic Content Management

‘‘Semantic’’ is used here to indicate that content is
embedded in context, and it is well described with the
help of meta data that assigns meaning and structure to
the content. These descriptions are machine-interpretable
and can be used for inferencing. Semantic content manage-
ment extends document management and enterprise con-
tent management. Certainly, the instrument is related
tightly to an IT solution, but rules must exist that guide
definition and use of semantics, monitor external knowl-
edge sources for interesting content that should be inte-
grated, develop an appropriate content structure, as well as

publish semantically enriched documents in the system.
Semantic content management also allows for ‘‘smart’’
searching and collaborative filtering, and it can be inte-
grated with competence management to handle interests
used to connect people with the help of the joint analysis of
semantic content and skills.

KMS can also be distinguished according to the main
organizational level on which they focus. The list contains a
wider set of KM-related tools and systems, as KMSs in a
narrow sense span the three levels, which are described as
follows:

1. Enterprise KMS Includes enterprise-wide broadcast-
ing systems, knowledge repositories, enterprise
knowledge portals, directory services, meta-search
systems, knowledge push systems with information
subscriptions, community support, knowledge visua-
lization systems, knowledge work process support,
learning management systems, social network ser-
vices and intelligent agents that support organiza-
tional information processing.

2. Group and community KMS Includes community
builders and workspaces; Wikis; theme, project, or
community Blogs; ad-hoc workflow management
systems; multipoint communication systems, such
as listserver, newsgroups, group video conferen-
cing, and collaboration systems; and intelligent
agents that support information processing in
groups.

3. Personal KMS Includes personal search systems,
such as desktop search, user profiling, search filters,
knowledge discovery and mapping; point-to-point
communication systems, such as email, point-to-
point video conferencing, or instant messaging; per-
sonal Blogs; and intelligent agents that support per-
sonal knowledge management for knowledge search,
sharing, integration, or visualization.

KMSs available on the market fall into at least one of
these categories. A classification of KMS can only be con-
sidered as preliminary because of the considerable
dynamics of the market for KMS. At this stage, the analysis
of KMS is a challenge.

STATE-OF-PRACTICE

In the following list, the state of practice of KMS is sum-
marized in the form of theses that describe activities that
concern KMSs in German-speaking countries as investi-
gated in an empirical study (23):

1. Almost all large organizations have an Intranet and/
or Groupware platform in place that offers a solid
foundation for KMSs. These platforms, together with
a multitude of extensions and add-on tools, provide
good, basic KM functionality, which includes the easy
sharing of documents and access to company infor-
mation.

2. Large organizations have already implemented KM-
specific functions. Many implemented functions are

12 KNOWLEDGE MANAGEMENT APPLICATION



not used intensively, in some cases because of tech-
nical problems, but mostly because they require sub-
stantial organizational changes and significant
administrative effort.

3. Most organizations rely on organization-specific
developments and combinations of tools and systems
rather than on standard KMS solutions. The market
for KMS solutions is confusing and dynamic, and
integration with existing systems is often difficult.
Organizations might also fear the loss of strategic
advantages if they exchange their home-grown KMS
solutions for standard software.

4. Explicit, documented knowledge is emphasized
strongly. This finding is not surprising because in
many cases, large amounts of documents have existed
already in electronic form and an improved handling
of documents and the redesign of corresponding busi-
ness processes can improve quickly organizational
effectiveness. A trend toward collaboration and learn-
ing functions exists, because technical requirements
for media-rich electronic communication can now be
met at reasonable costs.

5. Comprehensive KMS are highly complex ICT sys-
tems because of (1) the technical complexity of
advanced knowledge services and of large volumes
of data, documents, messages, links, as well as con-
textualization and personalization data, (2) the orga-
nizational complexity of a solution that affects
business and knowledge processes throughout the
organization; and (3) the human complexity because
of the substantial change in habits, roles, and respon-
sibilities that is required as KMS have to be inte-
grated into daily practices of knowledge work.

6. In many organizations, a multitude of partial systems
are developed without a common framework to inte-
grate them. Some organizations also build enterprise
knowledge portals that at least integrate access to
ICT systems relevant for the KM initiative. Only
recently, comprehensive and integrated KMS offer
functionality integrated within one system.

CONCLUSION

KM is a lively and dynamic field that composes technology-,
human-, and process-oriented approaches. A KM initiative
is one characteristic that distinguishes KMSs from more
traditional systems that represent the roots of KMS. The
most important services offered by KMS in the sense of
comprehensive platforms can be systematized with the
help of an architecture. In a narrow sense, KMSs can be
classified with the help of the KM instruments they sup-
port. The field of KM has changed considerably during the
last 20 years. Particularly, since KM has come back after
some years of declining interest after the dot-com bubble
burst, several new or extended facets have developed. Some
are described briefly in the following list as potential trends
for the future of KM:

Business. Whereas during the initial development of
the field the focus was mostly on the knowledge side of

KM, now the field concentrates increasingly on man-
agement with increasing activities to measure the
outcome of KM, business models, and the integration
of knowledge processes into the business process
landscape of organizations. KM instruments, parti-
cularly those that are supported by information and
communication technologies, are reframed and
recombined as services.

Collaboration. Generally, a shift in perspective of
KMS vendors has occurred, as well as organizations
that apply those systems from a focus on documents
that contain knowledge to relationships between
resources and people, a combination and integration
of functions for handling internal and external con-
text, locating experts, competency management, and
so on. Advanced services that support collaboration in
teams and communities, link knowledge providers
and seekers as well as e-learning functionality, have
been integrated into many KMSs. To be successful,
such KMSs should also consider diversity of knowl-
edge workers, which is another megatrend that will
likely have its impact on KM.

Mobility. KMSs are still developed with the knowledge
worker at the desktop in mind. However, mobile
devices will have sophisticated knowledge tools for
the knowledge worker no matter where he or she
might be. Also, substantial research and develop-
ment activities exist surrounding the ‘‘Internet of
things,’’ i.e., the ubiquitous availability of computing
power embedded into artifacts.

Knowledge Ecosystem. The success of easy-to-use
content management systems and social software
on the Internet increases the proportion of active
contributors of all Internet users greatly. Because
of network effects, the user bases show tremendous
growth rates, and phenomena develop that are some-
times described as collective intelligence. Breaking
the boundaries of the organization and having cus-
tomers, suppliers, or the entire business ecosystem
that surround an organization contribute to its
knowledge base might be a viable option for many
businesses and organizations. Thus, KMS would be
extended from an organizational knowledge base, an
organizational memory, toward a knowledge ecosys-
tem that is enhanced by more than just the organiza-
tion’s members.

Safety. Most KM instruments aim to increase trans-
parency, sharing, and reusing of knowledge. How-
ever, an important new strand in the field aims at
prioritizing knowledge assets and balancing chances
and risks of easing access to valuable and competi-
tively superior knowledge. A systematic manage-
ment of knowledge risks identifies, assesses,
governs, and evaluates knowledge risks with respect
to knowledge-intensive business processes.

These trends might continue as many organizations
strive to profit from the promised benefits of comprehensive
ICT platforms for increasing productivity of knowledge
work and, consequently, organizational effectiveness,

KNOWLEDGE MANAGEMENT APPLICATION 13



and for fostering an organizational environment conducive
to attract and to retain creative knowledge workers.

BIBLIOGRAPHY

1. E. N. Wolff, The growth of information workers, Communicat.
ACM, 48(10): 37–42, 2005.

2. T. H Davenport, S. L Jarvenpaa and M. C. Beers, Improving
knowledge work processes, Sloan Management Review, 37(4):
53–65, 1996.

3. I. Nonaka, The knowledge-creating company, Harvard Bus.
Rev., 69(11–12): 96–104, 1991.

4. K.-E. Sveiby and T. Lloyd, Managing Knowhow, London, 1987.

5. K. M. Wiig, Management of Knowledge: Perspectives of a New
Opportunity, in Bernold, T. (Ed.): User Interfaces: Gateway or
Bottleneck?, Proceedings of the Technology Assessment and
Management Conference of the Gottlieb Duttweiler Institute
Rüschlikon/Zurich (CH), 20–21 October 1986, Amsterdam
1988, 101–116.

6. E. Ortner, Informations management. Wie es entstand, was es
ist und wohin es sich entwickelt, Informatik-Spektrum,
14: 315–327, 1991.

7. T. H. Davenport, Business process reengineering: where it’s
been, where it’s going, in V. Grover, W. J. Kettinger (eds.),
Business Process Change: Reengineering Concepts, Methods
and Technologies, Harrisburg, (PA), 1995, pp. 1–13.

8. M. H. Zack, Developing a knowledge strategy, California
Manage. Rev., 41(3): 125–145, 1999.

9. C. Argyris, D. Schön, Organizational Learning: A Theory of
Action Perspective, Reading, MA: Addison-Wesley, 1978.

10. M. T. Hansen, N. Nohria and T. Tierney, What’s your strategy
for managing knowledge?Harvard Bus. Rev., 77(3–4): 106–
116, 1999.

11. K. M. Wiig, What future knowledge management users may
expect, J. Knowledge Managem., 3(2): 155–165, 1999.

12. E. Stein and V. Zwass, Actualizing organizational memory
with information systems, Informat. Sys. Res., 6(2): 85–117,
1995.

13. M. Alavi, D. E. Leidner, Review: knowledge management and
knowledge management systems: conceptual foundations and
research issues, MIS Quarterly, 25(1): 107–136, 2001.

14. D. Binney, The knowledge management spectrum - Under-
standing the KM landscape, J. Knowledge Manage., 5(1): 33–
42, 2001.

15. U. M. Borghoff and R. Pareschi, eds., Information Technology
for Knowledge Management, Berlin: Springer, 1998.

16. P. Meso and R. Smith, A resource-based view of organizational
knowledge management systems, J. Knowledge Managem.,
4(3): 224–234, 2000.

17. R. L. Ruggles, The state of the notion: knowledge management
in practice, California Manage. Rev., 40(3): 80–89, 1998.

18. W. H. Inmon, Building the Data Warehouse, New York, 1992.

19. WfMC – Workflow Management Coalition, ed. Terminology &
Glossary, Document no. WFMC-TC-1011, Issue 3.0, Hamp-
shire (UK)1999. Available: http://www.wfmc.org.

20. G. DeSanctis and R. B. Gallupe, A foundation for the study of
group decision support systems, Management Sci., 33(5): 589–
609, 1987.

21. G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web Services.
Concepts, Architectures and Applications, Berlin: Springer,
2004

22. S. Boyd, Are You Ready for Social Software?Darwin Online
Magazine, May 2003. Available: http://www.darwinmag.com/
read/050103/social.html.

23. R. Maier, Knowledge Management Systems: Information And
Communication Technologies for Knowledge Management, 3rd
ed. Berlin: Springer, 2007.

24. M. H Zack, Managing codified knowledge, Sloan Management
Rev., 40(4): 45–58, 1999.

25. M. Jennex and L. Olfman, Organizational memory, in C. W
Holsapple (ed.), Handbook on Knowledge Management, vol. 1.
Berlin: Springer, 2003, pp. 207–234.

26. R. McDermott, Why information technology inspired but can-
not deliver knowledge management, California Managem.
Rev., 41(4): 103–117, 1999.

27. E. Tsui, Tracking the role and evolution of commercial knowl-
edge management software, in C. W. Holsapple, ed., Handbook
on Knowledge Management. vol. 2. Berlin, 2003, pp. 5–27.

28. R. Maier and T. Hädrich, Centralized versus peer-to-peer
knowledge management systems, Knowledge Proc. Managem.
— T J. Corpor. Transform., 13(1): 47–61, 2006.

29. W. Applehans, A. Globe, G. Laugero, Managing Knowledge. A
Practical Web-Based Approach, Reading, MA: Addison-
Wesley, 1999.

30. R. Maier, T. Hädrich and R. Peinl, Enterprise Knowledge
Infrastructures, Berlin: Springer, 2005.

31. C. Scholz, Personal management, 5th ed., Munich: Vahlen,
2000.

FURTHER READING

T. H. Davenport, G. J. B. Probst, eds., Knowledge Management
Case Book, 2nd ed. Erlangen: Publicis, Wiley, 2002.

C. W. Holsapple, ed., Handbook on Knowledge Management,
Berlin: Springer, 2003.

R. Maier, Knowledge Management Systems: Information And
Communication Technologies for Knowledge Management, 3rd
ed. Berlin: Springer, 2007.

R. Maier, T. Hädrich,and R. Peinl, Enterprise Knowledge Infra-
structures, Berlin: Springer, 2005.

RONALD K. MAIER

University of Innsbruck
Innsbruck, Austria

14 KNOWLEDGE MANAGEMENT APPLICATION



M

MACHINE LEARNING

DEFINITION AND STATE

Learning, as defined in Webster’s dictionary, is the act to
gain knowledge or skill or a behavioral tendency by study,
instruction, or experience. As such, learning has found its
place in diverse fields ranging from philosophy to psychol-
ogy and pedagogy. This definition of learning is broad and
mostly refers to human or animal learning. Machine
learning, on the other hand, is more specific about its
domain of coverage and has been defined by several
authors in the fields of computer science and engineering.
For example,

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E.(1)

. . . the system can acquire new knowledge from external
sources, or the system can modify itself to exploit its current
knowledge more effectively.(2)

The goal of machine learning is to build computer systems that
can adapt and learn from their experience.(3)

Machine learning is programming computers to optimize a
performance criterion using example data or past experience.
We have a model defined up to some parameters, and learning is
the execution of a computer program to optimize the para-
meters of the model using the training data or past experience.
The model may be predictive to make predictions in the future,
or descriptive to gain knowledge from data, or both.(4)

Thus, machine learning is about programming a
computer to improve a performance measure through
experience in performing certain tasks. For this purpose,
a computer program is used that adapts to its environment
by gaining knowledge through experience. In this setting,
we also assume that the adaptability is positive, namely a
performance measure exists to assess the fitness of the
program in the environment and this measure should
improve as more examples are given to the program to
learn. The requirement of an improving performance
measure differentiates machine learning from learning in
psychology where behavioral change, not necessarily
improving some performance measure, can be considered
a form of learning.

Machine learning has a history of about 50 years. From
the early day of game-playing computers to the modern
practice of data mining, machine learning has developed
into a multidisciplinary field in academia. Currently,
advanced degrees (master and Ph.D. level) are being
offered in this field (Carnegie Mellon University), a central
repository of benchmark data has been established (5), and
annual conferences and meetings in this area are conducted
continually for academic researchers and industrial practi-
tioners. Also, several academic journals are devoted to the
communication of ideas and practices in machine learning.

THE LEARNING PROCESS

To achieve the goal of machine learning, we need to con-
sider several things in the process of machine learning.

Reasoning

Learning can sometimes be achieved by simply memorizing
patterns. A human learns by memorizing several key points
in a field. For a computer program, memory is implemented
by using efficient data structures and good database sys-
tems. For most cases, memory cannot store all patterns in a
learning process; thus, proper reasoning is needed. Two
types of reasoning exist: deductive and inductive. A deduc-
tive reasoning works with rules and facts to deduce more
facts, and an inductive reasoning distills useful hypotheses
from a bundle of data by using data summarization. Most
current machine learning algorithms involve inductive
reasoning. Different memory structures and reasoning
procedures may result in different combinations of knowl-
edge representations, features, and algorithms.

Model of Knowledge

The objective of machine learning is to produce a model of
knowledge. Such a model can be expressed in two forms: a
black-box form and a white-box form. The former focuses on
the utility of relationships between inputs and outputs
regardless of how such relationships are organized and
expressed; and the latter emphasizes the representation
of relationships between inputs and outputs in a readable
and understandable manner. Selecting suitable represen-
tation of models for a task often requires domain knowledge
in the area where machine learning is applied to improve a
performance measure. Machine learning has been used to
perform tasks of classification (e.g., written character
recognition), prediction (e.g., credit risk prediction), and
problem solving (e.g., robot control). Different tasks require
different means to represent the models of knowledge
efficiently. For example, robot control may be implemented
easily if the knowledge model is expressed in terms of rules,
and written character recognition may achieve a higher
performance level when the model is represented with
neural nets. Knowledge representation depends on not
only the nature of a task, but also on current technologies
in algorithms design. In addition to the rules and neural
nets representation, other popular forms of knowledge
representation include frames, maps, and decision trees.

Feature Representation

If knowledge refers to insights to be learned from experi-
ence, then features stand for the ways to represent
experience. Just like knowledge, features depend heavily
on the task and experience. What kinds of features are to be
collected? Do we and can we collect them at our will? How
are they represented, and how do we avoid noise in the
collected features? Many ways exist to represent features.

1



For example, tuples from a relational database and pre-
dicates from logical programming are popular forms for
feature representation. Several techniques in statistics can
be used to detect outliers and hence improve the quality of
collected data. Research is are being conducted to deal with
the issues related to features.

Learning Algorithms

As machine learning is about gaining knowledge from
experience, a learning algorithm that generates a satisfac-
tory model of knowledge plays an important role. This role
is usually accomplished by searching through the space of
all possible models. Frequently, this space of models is so
large that an exhaustive search is impossible; therefore, a
heuristic search processes must be considered. Some algo-
rithms may simply use a greedy search procedure (e.g.,
inductive decision tree) or a mathematical optimization by
taking advantage of the nature of a problem (e.g., a quad-
ratic optimization procedure in kernel-based algorithms).
Besides search procedures, the presentation order of
experience may also affect the final result significantly.
Learning algorithms can be categorized from different
perspectives and will be discussed later.

General Procedure of Machine Learning

Starting with the task of a machine learning job, we need to
decide what kinds of memory and reasoning are needed to
fulfill the task. Based on this analysis, we can choose the
best combination of knowledge representation, features,
and algorithms to achieve higher performance measure
when more experiences are available. A generic processing
procedure of machine learning can be illustrated like the
one shown in Fig. 1.

In this process, three phases exist, i.e., the training
phase, the testing phase, and the validation phase. First,
data describing the domain problems to be processed are
collected and represented in proper formats. Depending on

the types of domain problems, data can be labeled or
unlabeled by users. According to some selection criteria,
these data are divided into three, usually disjointed, sub-
sets, called training data, testing data, and validation data,
respectively. In the training phase, training data are fed
into learning algorithms to produce models of knowledge
for the domain problem. The correctness of the produced
models is evaluated against the testing data with respect to
specific error functions. At this moment, parameters of a
model are tuned accordingly for improving the quality of
learning. Such a produce-and-modify process iterates for
several times until the quality criteria are satisfactory.
Finally, one or more models may be obtained. Then, the
validation phase is invoked to test the validity of the models
learned, and the best model will survive for applications. As
the model is learned based on subsets of the domain pro-
blem, it can be considered a partial model of the underlying
domain problem. If the validation results are not satisfac-
tory, the learning process goes on again by selecting new
training data or by modifying the learning algorithm.
Otherwise, the learning algorithm is effective and the
model is accepted. Afterward, the final model learned
from this process is taken for practical applications.

Note that, depending on the design concepts of the
learning algorithms and application problems, some
learning systems invoke all three phases and some do
not. The learning process can be performed in a batch
style or in an incremental style. In a batch mode, all
training data are fed into the learning algorithm and
the testing data are used for verifying after the model is
produced and are modified according to all training data.
Conversely, an incremental learning process produces a
model for application based on some training data and
updates the model when new training patterns are
encountered. Additionally, the selection of data for
training, testing, and validation is critical and should
be considered seriously to learn an effective and complete
model for the final applications.

Learning Algorithm(s)
Data Selector

for Data/Examples/Experiences
Training, Testing, &Validation

Training Data

Error Evaluation

Learned Models

Application
Data

Training Phase

Testing Data
Testing Phase

Parameters 
Correction

Best Model

Validation Data

Validation Phase

Model 
Evaluation

Figure 1. A generic flow of machine learning.

2 MACHINE LEARNING



LEARNING METHODS

Many studies in machine learning are devoted to algorithm
designs. Computing methods in machine learning can be
categorized from different perspectives. For example, they
can be classified into supervised, unsupervised, and rein-
forcement leaning depending on the existence of a teacher
in the learning environment. Based on the feature repre-
sentations, some symbolic and numeric algorithms take
advantage of different representations of features. There
are lazy and rigor algorithms. A typical example of a lazy
learner is the nearest neighbor learning algorithm that
does not have a separate training phase. Most algorithms
belong to the category of rigor algorithms, in which a model
must be learned first before it can be used. Also, algorithm
independent procedures are used to combine different
learners. These procedures include bagging and boosting
meta-learners. Below, we discuss the most commonly used
algorithms in this field.

Supervised Learning

Supervised learning is a machine learning technique that
handles training data labeled with the desired output to
guide the progression of learning. The output can be a
discrete value (called classification) or a continuous value
(called regression). In the case of classification learning, all
output classes have a well-defined meaning to users of this
type of learning. For example, the output can be a benign or
malignant tumor in a medical examination. The input
variables should be important factors that affect the out-
put. The goal of supervised learning is to learn a model that
predicts an output given a new input case. The model can be
assessed based on different performance measures such as
accuracy, precision, and recall rates. The representative
algorithms of supervised learning include artificial neural
networks (ANNs), support vector machines (SVMs) (6), and
inductive decision tree (ID3).

Pattern recognition is the most common application of
supervised learning techniques, which has been applied
widely to image or speech recognition. For example, in
digital, handwritten character recognition, digitalized
handwritten characters are labeled by their real characters
and are collected as patterns of training data. Learning
algorithms of classification such as ANN and SVM are
employed to produce classification models for the given
training data. A performance measurement can be based
on the accuracy of successful identification of characters.
Until the classification model is rebuilt, application data of
new handwritten characters are classified by the learned
model. The most similar class label with the lowest error is
the recognized character for the new input data.

Unsupervised Learning

Unsupervised learning isdifferent fromsupervised learning
in that no teacher is involved in the learning process. In
other words, no desired output exists for reference. The goal
of the learner is to attempt to find the regularities or
patterns in the input data. Two classic examples of unsu-
pervised learning are clustering and dimensionality reduc-
tion. Clustering partitions a set of data points into clustersof

data so that intracluster homogeneity is high and inter-
cluster homogeneity is low. For many applications, cluster-
ing outputs can be used to extract key concepts from the data
set, and the extracted concepts become meaningful labels
used in a supervised learning. The judgment of a clustering
result can be very subjective in some applications. Lately,
objective clustering validation indices have been developed
to handle certain types of input data. The self-organizing
map (SOM) and expectation-maximization (EM) are two
well-known unsupervised learning algorithms.

Unsupervised learning of customer segmentation is use-
ful for business applications. Transactional and demo-
graphic data of customers are used to find clusters of
customers with similar consumption behavior. Special pro-
motionscanbedesignedforeachclusterofcustomerstoboost
thesalesofproductsorservices.Learningalgorithmssuchas
supportvectorclustering(SVC)andSOMcanbeusedforthis
purpose. Similar ideas have been used in text mining to find
meaningful concepts from texts expressed in natural lan-
guages or Web mining to find browsing patterns of users.

Reinforcement Learning

Reinforcement learning (RL) is an approach to machine
intelligence that combines the fields of dynamic program-
ming and supervised learning to yield powerful machine
learning systems. In RL, the learner (a decision-making
agent) is simply given a goal to achieve and then it learns
how to achieve that goal by performing enough trial-and-
error interactions with its environment. Three fundamen-
tal parts camprise a RL model: (1) a discrete set of environ-
ment states, (2) a discrete set of agent actions, and (3) a set
of scalar reinforcement signals. On the other hand, two
main strategies are used for solving RL problems. The first
strategy is to search in the space of behaviors to find one
that performs well in the environment. The second strategy
is to use statistical techniques and dynamic programming
methods to estimate the utility of taking actions in states of
the world (7). The Q-learning method and temporal differ-
ence approach are two popular and widely used reinforce-
ment learning algorithms.

Gameplaying,suchaschessorpoker, isoneof thepromis-
ing application areas of reinforcement learning. A game-
playing system normally faces a huge search space. Tradi-
tional approaches tackle this NP-complete problem by using
parallelordistributedalgorithmswithproblempartitioning.
Usingreinforcementlearning-basedmethods,tacticsorstra-
tegies for winning the games are learned from interactions
with human players or other programs. Patterns learned in
this case are game-playing sequences that win the games.

Genetic Programming

Genetic programming (GP) is an automated method to
generate a working computer program for solving hard
optimization problems (8). GP provides a general paradigm
to solve problems ranging from formula seeking (symbolic
regression) to automated circuit designs. Like its sibling
algorithm, the genetic algorithm (GA), GP is based on
Darwinian evolutionary theory to search heuristically in
a large solution space to find a near-optimal solution.
Unlike GA, GP can use more flxible data structures to

MACHINE LEARNING 3



represent a chromosome. A typical chromosome in GP is a
computer program like v1 þ sinðiifðv2>0; 1; 0ÞÞ that
usually is represented as a parsing tree. Leaf nodes in the
tree include problem-dependent variables and random con-
stants, which together are called the terminal set of a GP.
On the other hand, internal nodes formed by problem-
dependent operators constitute the function set of a GP.

Like other evolutionary algorithms, the fitness to the
problem of each parsing tree must be assessed, and this
usually is done with the setup of a test environment. Based
on fitness values, evolutionary operators (selection, cross-
over, and mutation) are applied repeatedly to a population
of parsing trees until a preset stopping criterion has been
met. The final solution is then extracted from the last
generation of individuals.

Instance-Based Learning

The most basic instance-based method is the k-nearest
neighbor (k-NN) algorithm. The procedure of k-NN runs
as follows: Given a new instance, the distance between the
instance and all samples in the training set is calculated.
The distance used in practically all nearest-neighbor clas-
sifiers is the Euclidean distance. With the distance calcu-
lated, the samples are ranked according to the distance.
Then the k samples that are nearest to the new instance are
used to assign a classification label or a regression value to
the case. As no separate phase of model learning exists,
k-NN is considered a lazy type of learning algorithm. Two
issues related to this algorithm are choosing the number of
neighbors (k) and the quick determination of nearest neigh-
bors. The former issue usually is solved by a trial-and-error
type of approach, whereas the latter issue is solved by using
well-designed data structures.

Bagging

Bootstrap aggregating (or bagging) is a meta-algorithm
that can be used to improve the performance of classifica-
tion and regression models (9). Bagging has its roots in
statistics, in which bootstrap technology is used to sample
training data with a replacement. Initially, a base super-
vised learning algorithm is called B such as a decision tree
or a neural net, and a training set T of size n. We generate m
data sets T1; . . . ;Tm, each with the size n by sampling with a
replacement from T. That is, for each data set Tj, a training
example is sampled from T with uniform distribution and is
returned to the population for next sampling. This proce-
dure is repeated until n examples have been collected for Tj.
Then, the algorithm B is applied to Tj to get a prediction
model Bj. If the prediction output is a class label, a simple
majority vote from outputs of Bj’s is used to determine the
final class label. On the other hand, if the output is a
regression value, then the average of outputs from Bj’s is
taken to be the output for the bagging predictor.

Bagging has the advantage of increased prediction accu-
racy and reduced instability of base models. By aggregating
different versions of a base model, sensitivity with respect
to training data in certain supervised learning algorithms
can be reduced. For example, it is known that the output
from a decision tree is very sensitive to the training set. If a

bagging predictor is constructed using decision tree as the
base learner, accuracy can be improved substantially.

Boosting

Boosting is another meta-algorithm that ensembles base
learners to perform supervised learning (10). Similar to
bagging, boosting trains different versions of a base learner
by using different samplings from the original training set.
Unlike bagging, each sampling of the training set in boost-
ing does have its own probability distribution for choosing
the data. Although training of a bagging predictor is par-
allel in nature because bootstrap samplings of training sets
can be conducted simultaneously, boosting is sequential
because the distribution function for sampling data is
determined in a sequential order.

The most popular boosting algorithm is called AdaBoost
(Adaptive Boosting). Freund and Schapire (10) have indi-
cated that AdaBoost can boost a weak learning algorithm—
one that performs slightly better than random guessing—
into a strong learning algorithm, which can generate a
predictor with arbitrarily low error rate provided that
sufficient data are available.

OTHER CONSIDERATIONS

Connections with Other Fields

As a multidisciplinary field, machine learning is related
closely to and has gained many great ideas from other
scientific fields. These fields include computer science,
artificial intelligence, cognitive science, and statistics,
among others. The discussion below is based on the histor-
ical development of machine learning and the close rela-
tionships among the fields.

� Computer Science: Because machine learning is about
an adaptive computer program, it benefits from
advancements and shares many problems in computer
science. An algorithmic breakthrough in computer
science may advance machine learning to the next
level of achievement. Likewise, tractability and com-
plexity theory in computer science constrains the
development of machine learning as well. However,
differences still exist between these two fields. As
computer science emphasizes correct programming,
machine learning requires writing programs that
can learn.

� Artificial Intelligence: Originated as a subfield of arti-
ficial intelligence (AI), machine learning has a close tie
to AI. History shows that AI has many other subfields
such as planning, pattern recognition, natural lan-
guage processing, and expert systems that may or
may not be related closely to machine learning. Tra-
ditionally, AI offers more domain-specific solutions via
machines, whereas machine learning provides more
general-purpose algorithms that can be used in many
different settings. Heuristic search algorithms in AI
have advanced the capability of machine learning in
finding appropriate models, and development and per-

4 MACHINE LEARNING



fection of machine learning algorithms have made AI
more practical in daily applications.

� Cognitive Science: Machine learning has been applied
successfully to areas that are hard to explain but can be
performed easily by human beings. These areas of
applications frequently involve human cognition or
perception. For example, it is easy for a person to
recognize written characters or spoken words, but it
is hard to explain the cognition process and code a
program directly to perform such tasks. Today, optical
character recognition and speech recognition software
based on machine learning algorithms that adapt to
different writing styles or speaking accents has pro-
vided the best performance in these areas of applica-
tions. Machine learning may gain additional
improvement by using discovery in cognitive science,
and cognitive science may understand human or ani-
mal cognition process better by using results from
machine learning. For example, reinforcement learn-
ing can be used to explain the dopaminergic neuron
activity in a brain (11).

� Statistics: Much of machine learning work uses induc-
tive reasoning to draw a reasonably good model from a
set of data. Statistics has long been known for its
ability to summarize results from experimental
data. Thus, machine learning and statistics share
many principles of data summarization. Learning
algorithms such as classification and regression tree
(CART) and clustering have their roots in statistics. On
the other hand, machine learning has helped statistics
to advance its capability in handling a large amount of
data by using computers.

Caveat

When we employ machine learning to solve scientific or
engineering problems, limitations and constraints asso-
ciated with it should be well considered. For example, the
output attribute predicated by the ID3 must be discrete
valued, and the attributes tested in the decision nodes of a
tree must also be discrete valued (1). Some delicate phenom-
ena worthy of additional consideration are listed in the
following.

� Concept drift: A difficult problem with machine learn-
ing in many real-world applications is that the target
concepts are not stable but may shift from time to time.
For example, today’s companies collect a large amount
of data like sales figures and customers’ preferences to
find patterns of customer behavior and to predict
future sales. As the customer behavior tends to change
over time, the model built on old data is inconsistent
with the new data and must be updated accordingly.
This problem generally is known as concept drift (12).

� Overfitting: Given a model space H, a model h2 H is
said to overfit the training data if some alternative
model h0 2 H, exists such that h has a smaller error
than h0 over the training examples, but h0 has a smaller
error than h over the entire distribution of instances (1).
Empirical error-(i.e., error based on the training data)-

based learning algorithms such as decision trees or
neural networks often have this type of unwanted
behaviors and must be treated carefully. Structural
error-based learning algorithms such as support vector
machines consider structural complexity in addition to
the empirical error when judging the goodness of a
model,andtheyusuallycanreducetheoverfittingeffect.

� Occam’s razor principle: Occam’s razor is a logical
principle attributed to the Fourteenth century logician
and Franciscan friar, William of Occam (or Ockham).
The principle states that ‘‘Entities should not be multi-
plied unnecessarily.’’ In other words, the principle
states that simpler explanations are more plausible
and any unnecessary complexity should be shaved off
(4). Sometimes, this principle is also called the ‘‘prin-
ciple of parsimony’’ or ‘‘principle of economy.’’ This
principle can be used to help avoid the overfitting
phenomenon.

� The minimum description length principle recom-
mends choosing the model that minimizes the descrip-
tion length of the model plus the description length of
the data given the model. Bayes’s theorem and basic
results from information theory can be used to provide
a rationale for this principle (1).

� Wolpert and Macready(13) proposed ‘‘no free lunch
theorems.’’ They show that all algorithms that search
for an extremum of a cost function perform exactly the
same, when averaged over all possible cost functions. In
particular, if algorithm A outperforms algorithm B on
some cost functions, then loosely speaking, as many
other functions where B outperforms A must exist
exactly.

� The ugly duckling theorem demonstrates that no such
thing as a class of similar objects exists in the world,
insofar as all predicates (of the same dimension) have
the same importance (14). In the absence of assump-
tions on features, any two patterns are ‘‘equally simi-
lar’’ regardless of the patterns involved. The
implication for machine learning is that no canonical
set of features exists for any given classification task.
Good feature representations of patterns must be pro-
blem dependent.

� The famous Garbage-In–Garbage-Out rule can be
found in many practices of machine learning. Because
machine learning is a compound process of selecting
data, generating and adjusting models of knowledge,
testing the validity of the model, and so on, each stage
in the process may produce defective outputs to the
next stage. This result could be from imperfect data
collected or the limitations of learning algorithms
adopted. Users need to pay attentions to each stage
when working with machine learning to gain the best
performance.

Future Outlook

The techniques of machine learning have been applied
successfully to various areas of applications. However,
with the growth of versatile data and extensive demands,

MACHINE LEARNING 5



research on machine learning also becomes a never-ending
story. Below are several issues worthy of additional study.

� Problem representation and data selection: Feature
collection and representation can play a central role
in a machine learning job. For the past few decades,
efforts on machine learning have focused mainly on
effective and efficient learning algorithms and have
assumed that data for training or testing are well
prepared. However, with the growth of the Internet,
data to be processed have become versatile and volu-
minous, probably containing lots of noises, redundan-
cies, or errors and being represented unstructuredly.
Also,data are not static anymore; they may be observed
in a snap shot and be described by features that are
changing with time. These features make the prepara-
tion of data for learning algorithms more difficult in
practical applications. Methods of proper representa-
tion of the underlying problems, selection of the most
significant data subset for complete learning, being
tolerable or robust of noises, or errors for scalable
applications are issues that need to be addressed.

� More adaptive and robust learning algorithms: Most
current learning algorithms are static in model learn-
ing and utilization. Retraining usually is necessary
when a lot of new data not learned in the training
phase are encountered. Future learning algorithms
are expected to be robust and adaptive no matter
how dynamically the data are fed and must even be
able to change the learning structures and strategies
used in the algorithm when necessary. Some of today’s
learning algorithms like GP can only fulfill these
requirements partially.

� Hybrid learning algorithms: Each learning algorithm
has its pros and cons. Hybridizing two or more hetero-
geneous learning algorithms that can produce comple-
mentary results is a trend in practical applications. Two
strategies are used most often. The first one is to make
the learning process an n-tier process in which each
stage employsone learning algorithm. The second one is
to integrate different learning algorithms in a task, for
example, GA-based adjustment of ANN structures.

� Semisupervised learning: During the last few years,
semisupervised learning (SSL) has received increas-
ing attention in the machine learning research com-
munity. The basic idea behind it is to learn not only
from the labeled training data but also to exploit the
structural information in additionally available unla-
beled data; that is, SSL combines labeled and unla-
beled data during training to improve performance.
SSL has been applied successfully to both classification
and clustering problems.

� Measurement criteria: The success of learning algo-
rithms is measured by performance measurements.
Most measurement criteria are defined objectively,
and their applicability and usefulness are case depen-
dent. Defining measurement criteria to reflect truly
insights of learning algorithms and models of knowl-
edge for the applications is a fundamental yet impor-
tant issue.

� Non-monotonic issues: As mentioned most learning
algorithms assume that input data are well prepared
and that training data are true. It is possible that data
originally considered true are proved to be inadequate
by new evidences. When models need to be revised
because of the arrival of new data, non-monotonic
reasoning and non-monotonic truth maintenance
that are important and hard issues in AI must be
handled properly.

BIBLIOGRAPHY

1. T. M. Mitchell, Machine Learning, New York: McGraw Hill,
1997.

2. J. W. Shavlik and T. G. Dietterich, Readings in Machine
Learning, San Francisco, CA: Morgan Kaufmann, 1990.

3. T. Dietterich, Machine learning, in R. A. Wilson and F. C. Keil
(Eds.), The MIT Encyclopedia of the Cognitive Sciences,
Cambridge, MA: MIT Press, 2001.

4. E. Alpaydin, Introduction to Machine Learning, Cambridge,
MA: MIT Press, 2004.

5. A. Asuncion and D. J. Newman, UCI Machine Learning
Repository, Irvine, CA: University of California, Department
of Information and Computer Science, 2007. Available:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

6. V. Vapnik, The Nature of Statistical Learning Theory,
New York: Springer, 1995.

7. L. P. Kaelbling and M. L. Littman, Reinforcement learning: a
survey, J. Artific. Intelli. Res., 4: 237–285, 1996.

8. J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and
G. Lanza., Genetic Programming IV: Routine Human-Compe-
titive Machine Intelligence, Boston, MA: Kluwer Academic
Publishers, 2003.

9. L. Breiman, Bagging predictors, Mach. Learning, 24(2):
123–140, 1996.

10. Y. Freund and R. E. Schapire, A short introduction to boosting,
J. Japanese Soc. Artif. Intelli., 14(5): 771–780, 1999.

11. S. Nieuwenhuis, C. B. Holroyd, N. Mol, and M. G. Coles,
Reinforcement-related brain potentials from medial frontal
cortex: origins and functional significance, Neurosci Biobehav.
Rev., 28(4): 441–448, 2004.

12. G. Widmer and M. Kubat, Learning in the presence of concept
drift and hidden contexts, Mach. Learning, 23(1): 69–101, 1996.

13. D. H. Wolpert and W. G. Macready, No free lunch theorems for
search, Technical Report SFI-TR-95-02-010, Santa Fe, NM:
Santa Fe Institute, 1995.

14. S. Watanable, Knowing and Guessing: A Quantitative Study of
Inference and Information, New York: Wiley, 1969.

CHIH-CHIN LAI

National University of Tainan
Tainan, Taiwan

SHING-HWANG DOONG

Shu-Te University
Kaohsiung, Taiwan

CHIH-HUNG WU

National University of
Kaohsiung

Kaohsiung, Taiwan

6 MACHINE LEARNING



N

NEURAL CONTROLLERS

INTRODUCTION

Modern control systems have steadily evolved into complex
devices that are characterized by their increased nonlinear-
ity, flexibility, intelligence, and enhanced capability to
handle uncertainty. Conventional control techniques
such as robust control and adaptive control, which largely
rely on a well-formulated model of the plant to be controlled,
fail to address these issues in situations where a precise
analytical model of the plant may be difficult to obtain due
to nonlinearity, uncertainty, or complexity. These and
similar issues have led to a desire for development of better
control techniques that are intelligent, adaptive, self-learning,
and capable of handling highly uncertain, nonlinear,
and complex systems whose dynamics may be time-
delayed, ill-defined, or simply unavailable. Moreover, the
solutions of such issues have also contributed to the devel-
opment of new concepts such as autonomous control with a
need for sensor fusion, decision making, planning, and
learning. The objective for meeting new challenges in the
field of control has led to a reappraisal of existing conven-
tional control techniques. Neural networks (1–3), because
of their ability to model nonlinearity and uncertainty and
their nondependence on mathematical model of plant, and
their learning ability, have been a natural choice as con-
trollers and system identifiers for the practitioners in the
controls community. Figure 1 shows a typical scheme in
which neural network controller and neural network plant
model can be used. In this figure, two neural networks are
illustrated. One neural network produces control action to
drive the plant, and the other one is the model of the plant.
The figure also shows the feedback scheme, which is used to
train the networks online, making them adaptive to
changes in plant behavior.

A neural network (NN) (4–6) is an information-
processing paradigm inspired by the manner in which
the heavily interconnected, parallel structure of the human
brain processes information. The human brain is the most
complex computing device in nature. An NN is a computer
model that attempts to match the functionality of the brain
in a very fundamental manner. The key feature of the NN
paradigm is the novel structure, which is composed of a
large number of highly interconnected processing elements
(called neurons) that are coupled together with weighted
connections (analogous to synapses). The information,
which is represented as a bundle of signals, is passed
between neurons via connection links that get multiplied
by connection weights and get transformed with the help of
activation functions at each neuron. In other words, NNs
are collections of mathematical models (representing math-
ematical operations in layered fashion) that emulate some
of the observed properties of biological nervous systems and
draw on the analogies of adaptive biological learning.
Similar to biological systems, learning in neural networks

typically occurs via training or exposure to an accurate set
of input/output data where the training algorithm itera-
tively adjusts the connection weights. These connection
weights store the knowledge necessary to solve specific
problems.

NNs have been implemented in several architecture. A
typical multilayer feed-forward NN is shown in Fig. 2. The
figure shows the inputs and the two layers (one hidden
layer and one output layer) of neurons. In general, several
hidden layers may exist in an NN. Each input node is
connected to all neurons (nodes) in the next layer (hidden
layer), and each node in the hidden layer is connected to all
neurons in the output layer. Each of these connections has a
weight associated with it, and a bias is associated with each
node. Each node also applies an activation function to the
sum total of its input. Another kind of network is a recur-
rent network, which contains feedback elements from the
output, with time delay. This type of network is very
effective for recognizing not only spatial patterns but
also temporal patterns. The Hopfield network (7,8) and
the Elman network (9) are examples of this kind of network.
Another type of network, called the radial basis function
network (RBFN) (10,11), was introduced as an alternative
to the feed-forward network for approximating continuous
functions. The RBFN has a feed-forward structure consist-
ing of a single hidden layer of locally tuned units that are
fully interconnected to an output layer. All hidden units
simultaneously receive the n-dimensional real-valued
input vector x. The hidden unit outputs are not calculated
using the weighted sum/sigmoidal activation mechanism.
Rather, each hidden unit output is obtained by calculating
the ‘‘closeness’’ of the input x to an n-dimensional para-
meter vector associated with the hidden unit.

Currently, NNs are being applied to several complex
real-world problems. They are very efficient and robust at
recognizing and classifying patterns, and they possess the
ability to make effective decisions in the presence of impre-
cise input data. They offer ideal solutions to a range of
problems such as speech, character, and signal recognition,
as well as functional approximation and prediction, and
system modeling where the dynamical processes are not
well formulated or are extremely complex. The primary
advantage of NNs lies in their robustness against uncer-
tainty in the input data and in their capability of learning.
They are often effective for solving complex problems that
do not have an analytical solution or for which an analytical
solution is too difficult to be found.

NEURAL CONTROLLER AND LEARNING

A control system is said to have learning capabilities if the
system acquires any information pertaining to the envir-
onment, which is unknown in the system’s internal model
of the environment and uses that information for updating
the model for future estimation, classification, identifica-
tion, or control such that overall performance of the system

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



is improved. If this process of learning is carried out while
the control system is in operation, the system is said to
possess adaptive learning capabilities. An adaptive learn-
ing control system has the ability to use information it
gained in the past to improve its performance in the future.
For the control system to be completely autonomous, it
should be able to handle any uncertainty that might arise
in the plant and in the environment. In addition, it should
be able to operate in a large range of operating conditions,
and it should be able to adjust itself to any change in
dynamics of the plant. In conventional control techniques,
learning occurs by tuning the parameters of the controller
(e.g., by tuning proportional gain (Kp), integral gain (Ki),
and derivative gain (Kd) of the PID controller by means of
the Zeigler–Nichols method). In the NN, learning occurs by
adjusting the weights of the connection between neurons.

The field of neural networks had its beginning in the
1940s, with the pioneering work of McCulloch and Pitts (12)
on the model of elementary computational neuron. The
next major development occurred with the introduction
of the Hebbian Learning Rule (13) in 1949, which reads
as follows: ‘‘When one cell repeatedly assists in firing
another, the axon of the first cell develops synaptic knob

(or enlarges them if they already exist) in contact with the
soma of the second cell.’’ In other words, during a learning
process in the brain, repeated activation by one neuron (cell)
to another increases the conductance of synapse between the
two neurons. This learning concept was used by Rosenblatt
(14) to develop the first artificial neuron (or perceptron, as
he called it) with the capability to learn. Widrow and Hoff
(15) in 1960, developed a model of a neuron called ADA-
LINE (ADAptive LInear NEuron), which could learn
quickly and accurately, based on a powerful learning
rule called the Widrow–Hoff Learning Rule. This learning
rule first introduced the concept of supervised learning
using a ‘‘teacher’’ that guides the learning process based
on a least-mean-square (LMS) algorithm. In 1962, Rosen-
blatt (16) introduced the perceptron learning rule and
proved that a perceptron could be trained to learn whatever
it represents. However, in 1969, the research in the field of
NNs received a major setback when Minsky and Papert, in
their book Perceptrons(17), proved that single-layer net-
works, which were in use then, were limited in their
abilities to process data and were theoretically incapable
of solving many problems, including the Exclusive-OR
logical function. These findings and similar ones led to a
stagnation in research on NNs for almost two decades until
1986, when Rumelhart et al., (18) introduced an error
backpropagation algorithm to train multilayer NNs and
overcame the limitations of the single-layer networks. This
development triggered off a renewed interest in NNs, and
since then, there has been a flurry of research activities in
this field leading to a well-developed science that has found
applications in several areas, such as the controls, space,
manufacturing, medical sciences, and process industries.

Learning is the most important part of NNs, and intense
research has been carried out in devising efficient learning
algorithms (19). The three most popular learning algorithms
are as follows: the supervised, the unsupervised, and the
reinforced learning methods. The supervised learning
attempts to reduce the error between the actual and the
desired outputs and needs a training dataset comprised of
inputs and desired outputs. The objective to minimize the
error, along with the presented input–output data, act as a
teacher. Backpropagation, based on the gradient descent
method, is one of the most popular methods that falls under
this category. Unsupervised learning does not involve a
teacher guiding the learning process. The data presented
to learn the network in this case do not include the input–
output pairs. Instead, the parameters of the network (the
connection weights and biases) are adjusted based on clus-
teringtechniquessuchas the self-organizing Kohonen’smap
(20) or competitive learning techniques (21) upon presenta-
tion of input patterns. Reinforcement learning is similar to
the reward and punishment method in psychological learn-
ing. The reinforcement learning technique (22) is based on
maximizing the reward or reinforcement signal as a conse-
quence of action taken by the controller. Reward or reinfor-
cement signal is obtained by means of a utility function that
calculates a sum of future rewards, which represents cor-
rectness of action in some form. This kind of learning tech-
nique has received increased interest because of its adaptive
feature and the autonomous manner in which the system
learns while interacting with the environment.

–

–

Neural Network
Controller

Figure 1. A typical neural network control scheme.

S

S

S
S

S

S

S

Input Hidden
Layer

Output
layer

OUT1

OUT2

OUTm

Biases
Biases

IN1

IN2

INn

f()

f()

f()

f()

f()

f()

f()

Figure 2. A multilayer feed-forward neural network.

2 NEURAL CONTROLLERS



NEURAL NETWORK APPROXIMATION
AND IDENTIFICATION: A CONTROLS PERSPECTIVE

Three-layered NNs (i.e., one input layer, one output layer,
and one hidden layer), with the hidden layer having suffi-
cient nodes and a sigmoid transfer function, and a linear
transfer function in the input and output layer are con-
sidered to be universal approximators (23,24). They can
approximate functions to an arbitrary accuracy. This abil-
ity of NNs to approximate large classes of nonlinear func-
tions accurately makes them a popular candidate for use in
obtaining a dynamic model of a nonlinear plant. The pro-
cess of obtaining a model of the plant that can approximate
the plant response (output) under stimuli (input) is called
identification and is an important part of control. The NN,
being an excellent function approximator, can identify
complex nonlinear governing equations of plant dynamics.
By making the weights of the connections and biases of
neurons adjustable, the NN can be extremely adaptive to
changes in system and environment parameters. Such NN
models can aid in the development of an efficient controller.
Figure 3 shows the scheme demonstrating how an NN can
be made to learn (via supervised learning) to emulate an
unknown function or plant dynamics.

The nonlinear dynamics of a plant can be described by
the following pair of difference equations expressed in
discrete time:

xðkþ 1Þ ¼ f ðxðkÞ;uðkÞÞ
yðkÞ ¼ hðxðkÞÞ ð1Þ

where x(k) is the state of the system at time step k, y(k) is
the output vector that can be measured, u(k) is the applied
input, and f and h are nonlinear operational functions.
Some issues that arise in neural modeling of dynamical
systems (such as uniformity of the approximation and
whether the model would be able to capture the underlying
(continuous time) differential equation) have been dealt
with by Zbikowski and Dzielinski (25). The usual analytical
way to model and control a plant governed by Equation (1)
has been to perform linearization about an operating point
to obtain equations of the form:

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ
yðkÞ ¼ CxðkÞ ð2Þ

The system represented by the above set of equations is
controllable and observable in the neighborhood of specified
operating point. Under some assumptions (26), it can be
shown via an implicit function algorithm and inverse map-
ping theorem (27) that the nonlinear system can be con-
trolled using nonlinear controllers in the neighborhood of
the operating point. Extensive computer simulations have
further shown that the range within which the system can
be controlled is substantially larger than the neighborhood
within which the linear model is valid.

The real problem of identification arises when the func-
tions f and h are unknown. In that case, it becomes neces-
sary to estimate those functions from input–output data.
Two neural networks N1 and N2, with sufficient number of
nodes, are used for approximating those functions. If the
state variables x(k) is accessible, then both networks N1 and
N2 can be easily trained because input and output data are
available. However, if state variables are not accessible,
then the error between the plant output and the NN output
ðyðkÞ � ŷðkÞÞ can be used to train the network via static and
dynamic backpropagation (28). The past values of input
and output can also be fed as input to the NN via tapped
delay line (TDL) to assist in better identification of the
plant. These NN models can be used further in arriving at
the linearized feedback control of the plant.

The system identification model, which is obtained from
the NN, can also be used to predict the plant outputs and
controlled variables over a specified time horizon. This
information can be extremely useful to optimize the con-
troller to minimize the tracking error. The multistep pre-
dictions of output variables (29) via NNs can be made by
either using multiple network outputs or recursively using
a single network output.

The use of feed-forward networks, recurrent networks,
and RBFNs for approximation and identification tasks has
been studied extensively, and it has been shown that these
networks can approximate arbitrary functions from one
finite-dimensional space to another with desired accuracy.
It is also true that the same properties are shared by
polynomials, trigonometric series, splines, and orthogonal
functions. Several research studies have revealed that NNs
are more robust to uncertainties and noise, more fault-
tolerant, easily implementable on hardware, and enjoy
numerous other practical advantages over conventional
methods.

NEURAL NETWORKS AS CONTROLLERS

The universal approximation capabilities of multilayer
neural networks have made them a very popular choice
for identifying nonlinear processes and implementing non-
linear controllers. Several ways (30) exist in which NNs can
be made to implement a controller. For example, an NN can
be made to mimic a human expert. In this approach, the
expert human knowledge, intuition, and experience about
the system and appropriate control actions for an ill-defined
system are captured in the form of NN mapping (31). The
resultant NN emulates the expert and may even perform
better than the expert because of its property of ignoring
the mistake outliers while being trained. Here, the

–

Unknown
Function or
Plant Dynamics

Input

Neural Network
Model

Learning /
Parameter
Identification

Figure 3. Neural network for identification/function approxima-
tion.

NEURAL CONTROLLERS 3



discretized perception of information and decision of control
action by the human operator expert is replaced by contin-
uous interpolations of the network. Similarly, an NN can
emulate a well-designed nonlinear controller. This emula-
tion isparticularlyhelpful when a given controller requires a
large amount of computational or tuning effort for each
process condition. The NN, in this case, approximates the
nonlinear controller and the control action eliminates the
extra computations and tuning needs. Several applications
have been reported in literature where NNs have been used
to emulate the controller. Typical examples include multi-
model optimal control (32), time optimal control (33), and
one-step inverse control (34). In another approach, the NN is
trained based on open-loop input/output data to identify an
inverse model of the plant. The controller then uses the
desired output values to calculate the appropriate control
action (input) and is also implementable in the feedback
model (35). However, this method faces a problem when no
unique inverse model of the plant exists or when the map-
ping is inadequate for the dynamic plant.

An extensive research effort has been undertaken in the
field of controls based on NNs (36–39), and several different
architectures (40), using NNs for identification and control
of nonlinear systems, have been proposed. This section will
provide a brief overview of some popular architectures.

Internal Model Control

A schematic of the structure of the neural internal model
control (NIMC) is shown in Fig. 4. Two NNs are included in
the control architecture. The first NN, which acts as con-
troller, is generally trained to represent the inverse model
of the plant. The second network is the NN model of the
plant. The error between the output of the NN plant model
and the output of the plant is used as a feedback signal. The
NN plant model and the NN controller can be trained
offline, and then it can be made to improve over time by
letting it learn online. Internal model control (IMC) using
conventional methods has been used in the process indus-
try for a long time. As the control strategy is based on a
model of the plant, its performance is greatly dependent on
the accuracy of the plant model. IMC based on conventional
methods tends to perform poorly in the presence of large
modeling uncertainty or external disturbances. However,
the use of NNs in IMC with online training of the networks
has shown significant improvement (41) in system perfor-
mance.

Model Predictive Control

The model predictive control (MPC) scheme minimizes the
future output deviation from the set point, while taking into
account the control action needed to achieve the prescribed
objective. Neural MPC, based on the receding horizon
control (RHC) technique (42), uses an NN plant model to
estimate/predict future plant responses to potential control
signals over a specified time horizon. An algorithm then
computes control actions that optimizes the performance or
minimizes the objective function:

JðN1;N2;NuÞ ¼
XN2

j¼N1

fyrðtþ jÞ � ymðtþ jÞg2

þ r
XNu

j¼1

fuðtþ j� 1Þ � u0ðtþ j� 2Þg2 ð3Þ

where N1 and N2 define the minimum and maximum out-
put prediction horizons and Nu is the control horizon. The
variable u0 is the tentative control signal, yr is the desired
response, and ym is the network model response. The
parameter r determines the contribution that the sum of
the squares of the control increments has on the perfor-
mance index. The predictive controllers penalize the exces-
sive control action by providing nonzero r. The prediction
horizons specify the range of future predicted outputs to be
considered, and the control horizon specifies the number of
control moves required to reach the desired goal. An MPC
architecture based on NN is shown in Fig. 5. As shown in
the figure, the NN plant model provides predictive esti-
mates of the states of the plant to the controller, which
computes the control action based on the optimization of the
objective function given by Equation (3). Predictive control
based on conventional methods has proven to be very
successful for linear systems. However, for nonlinear sys-
tems, the unavailability of accurate models limits the use of
MPC. The NNs, with their ability to model nonlinearities in
the system accurately, eliminate this problem, and their
use in MPC has resulted in robust controllers in a variety of
practical situations where the nature of the nonlinearity of
the system is not known. However, controllers based on the
MPC technique are computationally intensive because of
the technique’s requirement of carrying out the multistep
optimization process. An NN can be made to learn the

Disturbances

NN  Controller Plant
Plant Output, y

NN Plant
   Model –

–

Figure 4. Neural internal model control.

Optimization
   Algorithm Plant

Controller
Output, u Plant

Output, y

–
NN Plant Model

yr

ym u
,

Figure 5. Neural model predictive control.

4 NEURAL CONTROLLERS



optimization process and can replace the optimization
function after the network has been trained satisfactorily.

Feedback Linearization Control

Feedback linearization control (FLC) aims to transform
nonlinear system dynamics into linear dynamics by elim-
inating nonlinearities. The nonlinear autoregressive mov-
ing average (NARMA) model (43) under certain conditions,
provides an exact input–output representation of a non-
linear system. One popular NARMA model for identifying
nonlinear systems is the NARMA-L2 (44) model. This
model can be represented by the following equation:

ŷðkþ dÞ ¼ f ½yðkÞ; yðk� 1Þ; . . . ; yðk� nþ 1Þ;
uðkÞ;uðk� 1Þ; . . . ;uðk�mþ 1Þ� þ g½yðkÞ; yðk� 1Þ; . . . ;

yðk� nþ 1Þ;uðkÞ;uðk� 1Þ; . . . ;uðk�mþ 1Þ�uðkþ 1Þ
ð4Þ

where d� 2. This equation relates the past n plant outputs
and past m plant inputs (and one-step future input) to
estimate the d-step future output. This estimate of future
output can be made to track the desired reference output
yrðkþ dÞ. The controller can be defined as

uðkþ 1Þ ¼

yrðkþ dÞ � f ½yðkÞ; yðk� 1Þ; . . . ; yðk� nþ 1Þ;
uðkÞ;uðk� 1Þ; . . . ;uðk�mþ 1Þ�

g½yðkÞ; yðk� 1Þ; . . . ; yðk� nþ 1Þ;uðkÞ;
uðk� 1Þ; . . . ;uðk�mþ 1Þ�

ð5Þ

which can be realized for d� 2. Hence, the control scheme
begins first with the identification of the plant with the help
of an NN. The past plant inputs and past plant outputs can
be fed to the NN model via TDLs, and the network can be
trained offline and then made to be adaptive to all online
data. Figure 6 shows the architecture of neural adaptive
feedback linearization control based on the NARMA-L2
model. As shown in the figure, the controller consists of
two NN models of the nonlinear functions f and g. The
controller receives the past inputs via the TDLs, and imple-
ments the logic of Equation (5). The NN models of the
functions f and g receive feedback from the plant and get
trained online.

Neural Model Reference Control

The neural model reference control (45) (NMRC), as shown
in Fig. 7, uses two NNs: a controller network and a network
for plant model. The controller is trained to make the plant
respond to minimize the error between the plant output and
the output from reference model, which represents the
desired closed-loop dynamics of the plant. This goal is
achieved by adjusting the parameters of the controller
via the training mechanism that minimizes the error
between the reference model and the system. The plant
model of the network can be obtained offline or adjusted
online (if the parameters of the plant are expected to vary)
based on input/output data. This model network is then
used to predict the controller changes on plant output,
which facilitates the adaptive training of the controller.

NEURO-FUZZY CONTROLLERS

Fuzzy set theory (46,47) was specifically designed to math-
ematically represent uncertainty and vagueness and to
provide formalized tools for dealing with the imprecision
that is intrinsic to many real-world problems. Designing a
fuzzy inference system requires describing human
knowledge/experience linguistically. The inference system
captures these traits in the form of fuzzy sets, fuzzy logic
operation, and fuzzy rules. The ability of fuzzy logic to deal
with uncertainty and noise, and its simple understandable
linguistic structure, has motivated researchers to use it for
controlling complex systems for which precise analytical
models may not be available. However, the design of a fuzzy
logic controller suffers from certain problems regarding the
selection of membership function characteristics (e.g., type
and number of membership functions and their shape and
range and choosing appropriate fuzzy rules. Developing a
rule base is the most time-consuming part of designing a
fuzzy logic controller. Thus, a need exists for developing
efficient methods to tune membership functions, i.e., to
obtain their optimal shapes, range, and number.

Both NN and fuzzy logic (48–52) are model-free estima-
tors and share the common ability to deal with uncertain-
ties and noise. Both of them encode the information in a
parallel and distributed architecture in a numerical frame-
work. Hence, it is possible to convert a fuzzy logic archi-
tecture to an NN and vice versa. This capability makes it
possible to combine the advantages of both NNs and fuzzy

Controller

Plant

Controller
Output, u

NN
Model
for f

–

+

NN
Model
for g

TDL
TDL

Desired
Output. yrReference

Model

Plant
Output, y

–

Figure 6. Neural feedback linearization control.

Plant

Reference
Model

–

+

Controller
Output, u

Reference
Input, r

Desired
Output, yr

Plant
Output, yp

NN Controller 

Σ

NN Plant Model
Training

Algorithm

Figure 7. Neural model reference control.

NEURAL CONTROLLERS 5



logic. A network obtained in this manner could use excel-
lent training algorithms that NNs have at their disposal to
obtain the parameters that would not have been possible in
a fuzzy logic architecture alone. Moreover, the network
obtained this way would have the transparency of a rule-
based fuzzy system, because this network would have fuzzy
logic capabilities to interpret its actions in terms of linguis-
tic variables. This fusion of two powerful control mechan-
isms has led to the research and development of neuro-
fuzzy controllers (where fuzzy controllers are formulated
using the learning capabilities of NNs) and fuzzy neural
systems (where fuzzy techniques are applied to speed up
the learning or fuzzification of NN is carried out to process
fuzzy inputs).

Several algorithms have been developed that address the
problem of learning fuzzy rules and tuning the membership
functions in an NN architecture. The adaptive-network-
based fuzzy inference system (ANFIS) developed by Jang
(53) is one of the pioneering works in this field. ANFIS is a
fuzzy inference system developed within the framework of
an adaptive network (which is a superset of all kinds of feed-
forward NNs with supervised learning capabilities). The
learning rule proposed for this method is basically a hybrid
of the gradient descent method and the least-squares tech-
nique, which are implementable bothoffline (batch learning)
and online (pattern learning). This approach, based on the
gradient descent method, implements a Sugeno-like fuzzy
system, which uses differentiable functions. Subsequent to
the development of the ANFIS approach, several methods
were proposed for learning rules and for obtaining an opti-
mal set of rules. For example, Mascioli et al. (54) proposed to
merge the min–max and ANFIS models to obtain a neuro-
fuzzy network and to determine the optimal set of fuzzy
rules. Lin and Lee (55) proposed an NN based fuzzy logic
control system (NN-FLCS), which learns the structure and
parameter of the network to develop fuzzy logic rules and
finds the optimal input–output membership functions.A few
other neuro-fuzzy approaches developed in recent years
include GenFIS (56), NEFGEN (57), FDIMLP (58), and
NEFCON (59).

NEURAL CONTROL APPLICATIONS

Since their development, controllers based on an NN have
found application in several fields (60), including robotics
and automated manufacturing, machining (61), uncertain
systems (62,63), aerospace, communication systems, con-
sumer appliances, electric power systems, process engi-
neering, micro-electromechanical systems (MEMS), and
power electronics and motion control. NNs have played
an important role in machine intelligence by integrating
sensors, actuators, software, and computers to make
machines capable of acquiring information efficiently and
by responding safely and rapidly to both deterministic and
unexpected events. Intelligent machines (64) play a poten-
tially important role in a variety of areas, such as manu-
facturing, the service industry, space explorations, defense,
and nonmilitary operations. NNs, along with other soft
computing algorithms such as fuzzy logic and genetic algo-
rithm, have been used widely in several intelligent

machines and have been a popular choice for machine
learning. Typical examples of intelligent machines that
have been developed using the NNs include consumer
appliances such as washing machines (65), expert systems
for medical diagnosis (66,67), and intelligent system (68) for
agriculture in Japan.

NNs with their unique ability for pattern recognition in
data, classification, and nonlinear functional mapping have
been successfully used in areas of knowledge management
and data mining with applications in economics, finance,
accounting, and marketing. NNs have proved to be theore-
tically sound alternatives to traditional statistical
approaches, and many applications (69–71) in business
management and finance have been reported. NN-based
modeling and prediction tools have been used in forecasting
(72,73), credit card fraud detection (74), credit evaluation
(75), bankruptcy prediction (76), state revenue forecasting
(77), and prediction of regularities in foreign exchange
rates (78). In the areas of marketing and business manage-
ment, NNs have been used in mining useful information
and generating knowledge (79) from a large pool of data
that can suitably support marketing decisions and custo-
mer relationship management. The following description is
of two specific fields with case studies where neural con-
trollers have been successfully used.

Robotics

The field of robotics has provided tough challenges for the
controls community because of inherent system nonlinear-
ity, presence of backlash and nonlinear friction, existence of
uncertainty from neglected dynamics, and difficulty to
obtain precise analytical models of the system. In view of
these reasons, NNs have been a favorite choice for identi-
fication and control (80,81) of robotic systems. Since the late
1980s, in the field of robotics, NN controllers have been
found useful in applications such as manipulator control
(82), path planning (83), contact control and grasping (84),
multiple robot coordination (85,86), and mobile robot
autonomous navigation (87). A case study showing the
use of NNs in robot manipulator position control (88) is
described as follow.

The dynamics of a rigid n-link robot manipulator can be
expressed in Lagrange’s form:

t ¼MðqÞq̈þ Vmðq; _qÞ _qþGðqÞ þ Fð _qÞ þ td ð6Þ

where qðtÞ 2Rn is the vector containing joint angles, M(q) is
the inertia matrix, Vmðq; _qÞ is the matrix containing Cor-
iolis and centrifugal forces, G(q) is the vector containing
terms from gravity, Fð _qÞ is the friction, td is the bounded
unknown disturbances, and t(t) is the vector of input joint
torques. The robot is required to follow a desired trajectory
qdðtÞ 2Rn. The tracking error is given by

eðtÞ ¼ qdðtÞ � qðtÞ ð7Þ

and the filtered tracking error is defined by

r ¼ _eþ Le ð8Þ

6 NEURAL CONTROLLERS



where L is a positive semi-definite design parameter
matrix. Using Equations (6), (7), and (8), the robot
dynamics can be written as

M _r ¼ �Vmrþ f þ td ð9Þ

where f is a nonlinear function containing robot parameters
(such as link masses, lengths, and inertia), joint friction
coefficients, and payload information, and is given by

f ðxÞ ¼MðqÞðq̈d þ L _eÞ þ Vmðq; _qÞð _qd þ LeÞ þGðqÞ þ Fð _qÞ
ð10Þ

The vector x is defined as x ¼ eTe
_TqT

d q
_T

d qT¨

d

� �
.

The control law is given by

t ¼ f̂ þ Kvr� v ð11Þ

where f̂ is the estimate of function f(x) and Kv is the gain
matrix. The signal v(t) is the robustifying signal responsible
for compensation of unaccounted disturbances. Figure 8
shows the controller structure, which makes use of the NN
in the inner loop to approximate function f̂ . Several ways
(89) exist to tune NN parameters and signal v(t), and control
gain Kv. The NN controller, designed using this approach,
guarantees the tracking error to be bounded by

jrj � eNN þ bd þ kC

Kvmin

ð12Þ

where eNN is the NN functional reconstruction error bound,
bd is the robot disturbance term bound, and C represents
other constant terms. The denominator Kvmin

is the smallest
PD gain. By choosing a larger PD gain, it is possible to limit
the tracking error to an arbitrarily small value. As the NN
weights and biases are bounded, it can be shown that the
control input t is also bounded. Moreover, the tuning algo-
rithms guarantee that the closed-loop control system has a
strict passivity property that makes it robust to unmodeled
uncertainties and disturbances.

Industrial Applications

NNs have been used extensively in industrial environ-
ments. In particular NNs have found applications in the
aerospace industry (90), automated manufacturing (91),

electric power systems (92), steel industry (93), and process
industry (94).

Lu and Markward (95) have developed an NN-based
control system for coating weight control for a hot dip
coating line (HDCL), which has been successfully imple-
mented at the Burns Harbor Division of Betlehem Steel Co.,
Chesterton, IN. The major goals of the control system are to
minimize the error between the desired and the actual
coating weight, and to minimize the coating weight transi-
tion time that determines the sheet transitional footage.
The control system, as shown in Fig. 9, consists of two
multilayered feed-forward NNs and a neural adaptive con-
troller. These NNs perform coating weight real-time pre-
diction, feed-forward control (FFC), and adaptive feedback
control (FBC). Traditionally, these strategies are per-
formed by relevant analytical algorithms and identification
models based on the first principles. The NN prediction
model takes air pressure P, line speed S, and air knife gap D
as inputs and outputs the coating weight CW. The
dynamics of the coating process can be represented by
the following equation in the Z-domain:

CWðzÞ ¼ GpF pðzÞPðzÞ þGsFsðzÞSðzÞ þGdFdðzÞDðzÞ þ eðzÞ
ð13Þ

where Gp, Gs, and Gd are process gains from P, S, and D,
respectively. Fp, Fs, and Fd are Z-transfer functions from
inputs P, S, and D to the coating weight, respectively, and e
is the process noise. The measurement equation represent-
ing the average coating weight can be written as

CWMðtÞ ¼ CWðt� tÞ þ vðtÞ ð14Þ

where t is the time delay from the pot coating weight to the
gauge sensor and v is the measurement noise.

The neural prediction model is first trained offline via
supervised backpropagation, and then the weights are

qd 
, qd Tracking

Error
Filter– –

e r
Kn

n

Neural
Network

Robot

Robust
  Term

q
t

qd

f (x)

Figure 8. Neural control of a robotic manipulator.

Air
Pressure

FBC
HDCL
(Plant)

Adaptive
Learning

Data Processing / 
Creating Training 
Samples 

NN BP Training 
for Predictive 
Model and FFC 

Historical Data 

S(t)

CWp(t)

CWm

+

–

+

+

–

NN Predictive Model 

NN Feedforward 
Control
(FFC)

NN Adaptive 
Feedback Control

(FBC)

P(t)
Σ

Rcw(t)

D(t)

Σ

Figure 9. Schematic representation of the HDCL control system.

NEURAL CONTROLLERS 7



updated in an online training environment. The neural
network FFC is an open-loop control scheme that takes
S, D, and the desired coating weight Rcw to output the FFC
component of the air pressure. The training is performed to
minimize the desired and predicted coating weights. This
network, which is similar to the prediction model, is trained
both offline and then online. The NN adaptive FBC, is a
self-tuning controller with online learning capabilities
that makes use of the adaptive backpropagation learning
algorithm.

The NN-based control system designed above has been
tested and successfully implemented at the Burns Harbors
steel plant. A comparative study of the neural controller
with the control system based on the traditional regression
model used earlier shows that the NN-based control system
(i) provided better prediction results, (ii) had better servo-
tracking and robust behavior, (iii) indicated reduced error
between target coating weight and actual coating weight
(over 69% improvement in average mean), and (iv) showed
substantial improvement in ‘‘coating weight transitional
footage’’ (9.9% average mean improvement), which indi-
cates how fast the coating weight can reach its new target.
The control system could provide a quick response to reach
a new target and was robust enough to compensate for the
disturbance of line speed.

FUTURE TRENDS

For neural network controllers to be acceptable as a pre-
ferred control strategy in industries, the area of neuro-
control needs to establish a sound theoretical foundation.
Development of NN-based controllers typically focuses
more on algorithms and less on stability issues. Moreover,
the black-box nature of the NN leads to industrial appre-
hensions by control system manufacturers regarding
robustness and functioning of the controller. NN-based
control, which is a recently developed field, has to compete
with fully established and extensively researched conven-
tional control techniques such as PI, PID, optimal, and
robust control. Hence, for NNs to gain a wider application
in industry, research addressing the significant issues of
stability and rigorous analysis needs to be pursued.

NNs provide a perfect platform where numerous learn-
ing algorithms can be implemented very easily. This learn-
ing capability of NNs can be used to develop goal-driven
fully autonomous systems that learn from scratch (as well
as from previous examples, experiences, and human knowl-
edge whenever available) with interaction with the envir-
onment. Moreover, research needs to be done extensively to
fuse other methodologies of intelligent control such as fuzzy
logic, expert system, and genetic algorithm to obtain a
hybrid system that has the advantages of all component
strategies and weaknesses of none. Such hybrid systems
would derive their strength from the learning capabilities
of biological nerve cells; capabilities of human reasoning,
intuition, and experience; and capacity of biological evolu-
tionary mechanisms.

A truly intelligent system needs to acquire all the infor-
mation about the environment in which it operates. Sen-
sors, which are used in maintaining and updating an

intelligent machine’s internal description of an external
world, enable a system to interact with its environment by
providing diverse, redundant, complementary, and timely
information. Multiple sensor fusion, which is a systematic
method to combine data from a variety of sensory sources, is
increasingly becoming an area of active research. NNs,
with their learning ability and capacity to approximate
functions and recognize patterns, can play an important
role in sensor fusion.

SUMMARY

NN-based controllers have recently gained much popular-
ity because of their ability to handle ill-defined, uncertain,
and nonlinear problems; their dexterity to learn and adapt
to changing situations; and their potential to approximate
any function to an arbitrary degree of accuracy. Much
research has been carried out in the last two decades on
using NNs for controlling complex nonlinear systems, and
several architectures have been proposed to use the unique
capabilities of NNs to identify and control such systems.
Subsequently, neural controllers have found applications
in several fields such as the aerospace, communication
systems, automated manufacturing, robotics, medical diag-
nosis systems, electric power systems, and process indus-
tries. Research is underway to combine the abilities of the
NN with other soft computing methodologies such as fuzzy
logic and evolutionary computing to obtain a hybrid intel-
ligent system that derives its strength from human brain-
like learning abilities of the NN, intuitive and reasoning
capacity of fuzzy logic, and power of biological evolution
demonstrated by genetic algorithms. Such hybrid systems
would process multiple sensory information to learn and
adapt to independently survive and achieve their objectives
in an unknown and unstructured environment.

BIBLIOGRAPHY

1. D. E. Rumelhart and J. L. McClelland, Explorations in Parallel
Distributed Processing: A Handbook of Models, Programs, and
Exercises, Cambridge, MA: MIT Press, 1988.

2. S. S. Haykin, Neural Networks: A Comprehensive Foundation,
Englewood Cliffs, NJ: Prentice Hall Press, 1998.

3. J. E. Dayhoff, Neural Network Architectures: An Introduction,
New York: Van Nostrand Reinhold, 1990.

4. N. K. Bose and P. Liang, Neural Network Fundamentals with
Graphs, Algorithms and Applications, New York: McGraw
Hill, Inc., 1996.

5. B. Muller, J. Reinhardt, and M. Strickland, Neural Networks –
An Introduction, Heidelberg: Springer Verlag, 1995.

6. D. Garg, S. Ananthraman, and S. Prabhu, Neural network
applications, in John G. Webster, (ed.), Wiley Encyclopedia of
Electrical and Electronic Engineering, Vol. 41, New York: John
Wiley, 1999, pp. 255–265.

7. J. J. Hopfield, Neural networks and physical systems with
emergent collective computational abilities, Proc. Natl.
Acad. Sci. USA, 79, 2444–2558, 1982.

8. J. Li, A. N. Michel, and W. Porod, Analysis and synthesis of a
class of neural networks: Linear systems operating on a closed

8 NEURAL CONTROLLERS



hypercube, IEEE Trans. Circuits and Sys. 36(11): 1405–1422,
1989.

9. J. L. Elman, Finding structure in time, Cognitive Sci. 14: 179–
211, 1990.

10. D. S. Broomhead and D. Lowe, Multivariable functional inter-
polation and adaptive networks, Complex Systems, 2: 321–355,
1988.

11. S. Chen, C. F. N. Cowan, and P. M. Grant, Orthogonal least
squares learning algorithm for radial basis function networks,
IEEE Trans. on Neural Networks, 2(2): 302–309, 1991.

12. W. S. McCulloch and W. H. Pitts, A logical calculus of the ideas
imminent in nervous activity, Bull. Math. Biophy., 5: 115–133,
1943.

13. D. O. Hebb, The Organization of Behavior: A Neuropsycholo-
gical Theory, New York: John Wiley and Sons, 1949.

14. F. Rosenblatt, The perceptron: A probabilistic model for infor-
mation storage and organization in the brain, Psychol. Rev., 65:
386–408, 1958.

15. B. Widrow and M. E. Hoff, Adaptive switching circuits,
IREWESCON Convention Record, Institute of Radio
Engineers, New York, 4: 96–104, 1960.

16. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms, Washington, D.C.: Spartan
Books, 1962.

17. M. L. Minsky and S. A. Papert, Perceptrons, Cambridge MA:
MIT Press, 1969.

18. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
internal representations by error propagation, in David E.
Rumelhart, James L. McClelland, and The PDP Research
Group, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Cambridge, MA: MIT Press,
1986. pp. 318–362.

19. B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical
Systems Approach to Machine Intelligence, Englewood Cliffs,
NJ: Prentice Hall, 1992.

20. T. Kohonen, Self Organization and Associative Memory, 3rd
ed., New York: Springer-Verlag, 1989.

21. R. Hecht-Nielsen, Neurocomputing, Reading, MA: Addison-
Wesley, 1990.

22. R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, Cambridge, MA: MIT Press, 1998.

23. K. Hornik, M. Stinchombe, and H. White, Multilayer feedfor-
ward network are universal approximators, Neural Networks,
2: 359–366, 1989.

24. B. Irie, and S. Miyake, Capabilities of three–layered percep-
trons, Proc. of IEEE International Conference on Neural Net-
works, 1988, pp. 641–648.

25. R. Zbikowski and A. Dzielinski, Neural approximation: A con-
trol perspective, in K. J. Hunt, G. R. Irwin, and K. Warwick
(eds.), in Neural Network Engineering in Dynamic Control
Systems – Advances in Industrial Control, London: Springer-
Verlag, 1995.

26. K. S. Narendra and S. Mukhopadhyay, Neural networks in
control systems, IEEE Proc. Conference on Decision and Con-
trol, 1: 1–6, 1992.

27. E. D. Sontag, Mathematical Control Theory, New York:
Springer-Verlag, 1990.

28. K. S. Narendra, and K. Parthasarathy, Identification and
control of dynamical systems using neural networks, IEEE
Trans. Neural Networks, 1(1): 4–27, 1990.

29. J. Saint-Donat, N. Bhat, and T. J. McAvoy, Neural net based
model prediction control, Int. J. Control, 54(6): 1453–1468,
1991.

30. M. Agarwal, A systematic classification of neural-network-
based control, IEEE Control Systems Magazine, 17(2): 75–
93, 1997.

31. Y. M. Enab, Intelligent controller design for the ship steering
problem, IEE Proc. Control Theory Appl., 143(1): 17–24, 1996.

32. M. A. Al-Akhras, G. M. Aly, and R. J. Green, Neural network
learning approach of intelligent multimodel controller, IEE
Proc. Control Theory Appl., 143(4): 395–400, 1996.

33. C. J. Goh, N. J. Edwards, and A. Y. Zomaya, Feedback control of
minimum-time optimal control problems using neural net-
works, Optim. Control Appl. Methods, 14: 1–16, 1993.

34. J. E. Steck, K. Rokhsaz, and S.-P. Shue, Linear and neural
network feedback for flight control decoupling, IEEE Control
Systems Magazine, 16(4): 22–30, 1996.

35. M. Ishida and J. Zhan, A policy- and experience-driven neural
network and its application to nonlinear process control, Proc.
European Control Conf., pp. 471–474, 1993.

36. D. H. Nguyen, and B. Widrow, Neural networks for self-learning
control systems, IEEE Control Systems Magazine, 10(3): 18–
23, 1990.

37. P. J. Werbos, An overview of neural networks for control, IEEE
Control Systems Magazine, 11(1): 40–41, 1991.

38. B. Bavarian, Introduction to neural networks for intelligent
control, IEEE Control Systems Magazine, 8(2): 3–7, 1988.

39. A. Delgado, C. Kambhampati, and K. Warwick, Dynamic
recurrent neural network for system identification and control,
IEEE Proc. Control Theory and Applications, 142(4): 307–314,
1995.

40. M. T. Hagan and H. B. Demuth, Neural networks for control,
Proc. American Control Conference, 3: 1642–1656, 1999.

41. Q. A. Li, A. N. Poo, C. M. Lim, and M. H. Ang, Jr., Neuro-based
adaptive internal model control for robot manipulators, Proc.
IEEE Intern. Conf. Neural Networks, pp. 2353–2359, 1995.

42. D. Soloway and P. J. Haley, Neural generalized predictive
control, Proc. IEEE International Symposium on Intelligent
Control, pp. 277–281, 1996.

43. K. S. Narendra, Neural networks for control theory and prac-
tice, Proc. IEEE, 84(10): 1385–1406, 1996.

44. K. S. Narendra and S. Mukhopadhyay, Adaptive control using
neural networks and approximate models, IEEE Transactions
on Neural Networks, 8(3): 475–485, 1997.

45. S. Kuntanapreeda, R. W. Gundersen, and R. R. Fullmer,
Neural network model reference control of nonlinear systems,
Interna. Joint Conf. on Neural Networks, 2: 94–99, 1992.

46. L. A. Zadeh, Fuzzy sets, Information and Control, 8: 338–353,
1965.

47. R. R. Yager and L. A. Zadeh (eds.), An Introduction to Fuzzy
Logic Applications in Intelligent Systems, Dordpecht, The
Netherlands: Kluwer Academic Publishers, 1991.

48. R. R. Yager and L. A. Zadeh, Fuzzy Sets, Neural Networks, and
Soft Computing, New York: Van Nostrand Reinhold, 1994.

49. M. Kumar and D. P. Garg, Intelligent learning of fuzzy logic
controllers via neural network and genetic algorithm, Paper
Number UL_029, Proc. Japan USA Symposium on Flexible
Automation, Denver, CO, 2004.

50. M. Kumar, and D. Garg, Neural network based intelligent
learning and optimization of fuzzy logic controller parameters,
Paper Number IMECE 2004–59589, Proc. of the ASME

NEURAL CONTROLLERS 9



International Mechanical Engineering Congress and Exposi-
tion, Anaheim, CA, November 14–19, 2004.

51. M. Kumar, and D. Garg, Neuro-fuzzy controller applied to
multiple robot cooperative control, Industrial Robot: An Inter-
national Journal, 32(3): 234–239, 2005

52. S. Prabhu and D. Garg, Fuzzy logic based reinforcement learn-
ing of admittance control for automated robotic manufactur-
ing, Internat. J. Engineer. Applicat. Artificial Intell., 11: 7–23,
1998.

53. J.-S. R. Jang, ANFIS: Adaptive-network-based fuzzy inference
system, IEEE Trans. Syst. Man and Cybernetics, 23(3): 665–
685, 1993.

54. F. M. Mascioli, G. M. Varazi, and G. Martinelli, Constructive
algorithm for neuro-fuzzy networks, Proc. Sixth IEEE Inter-
national Conference on Fuzzy Systems, 1: 459–464, 1997.

55. C. T. Lin and C. S. G. Lee, Neural-network-based fuzzy logic
control and decision system, IEEE Trans. Computers, 40(12):
1320–1336, 1991.

56. A. Jana, P. H. Yang, D. M. Auslander, and R. N. Dave, Real time
neuro-fuzzy control of a nonlinear dynamic system, Biennial
Conference of the North American Fuzzy Information Proces-
sing Society, June 1996, pp. 210–214.

57. A. Rahmoun and S. Berrani, A genetic-based neuro-fuzzy
generator: NEFGEN, Proc. ACS/IEEE International Confer-
ence on Computer Systems and Applications, 2001, pp. 18–23.

58. G. Bologna, FDIMLP: A new neuro-fuzzy model, Proc. Inter-
national Joint Conference on Neural Networks, 2: 1328–1333,
2001.

59. A. Nürnberger, D. Nauck, and R. Kruse, Neuro-fuzzy control
based on the NEFCON-model: Recent developments, Soft
Computing 2, 4: 168–182, 1999.

60. Y. Dote, and S. J. Ovaska, Industrial applications of soft
computing: a review, Proc. IEEE, 89(9): 1243–1265, 2001.

61. R. E. Haber and J. R. Alique, Nonlinear internal model control
using neural networks: an application for machining processes,
Neural Comp. Applicat., 13(1): 47–55, 2004.

62. C. Y. Lee and J. J. Lee, Adaptive control for uncertain non-
linear systems based on multiple neural networks, IEEE
Trans. Syst. Man and Cybernetics, Part B, 34(1): 325–333,
2004.

63. S. S. Ge and C. Wang, Adaptive neural control of uncertain
MIMO nonlinear systems, IEEE Transactions on Neural Net-
works, 15(3): 674–692, 2004.

64. C. W. deSilva, Intelligent Machines: Myths and Realities, Boca
Raton, FL: CRC Press, 2000.

65. T. Nitta, Applications of neural networks to home appliances,
Proc. IEEE Int. Joint Conf. Neural Networks, 1993, pp. 1056–
1060.

66. P. Meesad, and G. G. Yen, Combined numerical and linguistic
knowledge representation and its application to medical diag-
nosis, IEEE Trans. Systems, Man and Cybernetics, Part A,
33(2): 206–222, 2003.

67. F. Schnorrenberg, N. Tsapatsoulis, C. S. Pattichis, C. N.
Schizas, S. Kollias, M. Vassiliou, A. Adamou, and K. Kyriacou,
Improved detection of breast cancer nuclei using modular
neural networks, IEEE Engineer. Med. Biol. Mag., 19(1):
48–63, 2000.

68. Y. Hashimoto, H. Murase, T. Morimoto, and T. Torii, Intelli-
gent systems for agriculture in Japan, IEEE Control Systems
Mag., 21(5): 71–85, 2001.

69. B. Widrow, D. E. Rumelhart, and M. A. Lehr, Neural networks:
Applications in industry, business and science, Communicat.
ACM, 37(3): 93–105, 1994.

70. A. Vellido, P. I. G. Lisboa, and J. Vaughan, Neural networks in
business: A survey of applications (1992–1998), Expert Syst.
Applicat., 17: 51–70, 1999.

71. A.-P. N. Refenes, A. N. Burgess, and Y. Bentz, Neural networks
in financial engineering: A study in methodology, IEEE Trans.
Neural Networks, 8(6): 1222–1267, 1997.

72. G. Zhang, B. E. Patuwo, and M. Y. Hu, Forecasting with
artificial neural networks: The state of the art, Internat. J.
Forecasting, 14: 35–62, 1998.

73. M. Adya and F. Collopy, How effective are neural networks at
forecasting and prediction? A review and evaluation, J. Fore-
casting, 17(5–6): 481–495, 1998.

74. J. R. Dorronsoro, F. Ginel, C. Sánchez, and C. S. Cruz, Neural
fraud detection in credit card operations, IEEE Trans. Neural
Networks, 8(4): 827–834, 1997.

75. L. C. Thomas, A survey of credit and behavioural scoring:
forecasting financial risk of lending to consumers, Internat.
J. Forecasting, 16: 149–172, 2000.

76. R. L. Wilson and R. Sharda, Bankruptcy prediction using
neural networks, Decision Support Sys., 11(5): 545–557, 1994.

77. J. V. Hansen and R. D. Nelson, Neural networks and tradi-
tional time series methods: a synergistic combination in state
economic forecasts, IEEE Trans. Neural Networks, 8(4): 863–
873, 1997.

78. H. White and J. Racine, Statistical inference, the bootstrap,
and neural-network modeling with application to foreign
exchange rates, IEEE Trans. Neural Networks, 12(4): 657–
673, 2001.

79. M. J. Shaw, C. Subramaniam, G. W. Tan, and M. E. Welge,
Knowledge management and data mining for marketing, Deci-
sion Support Systems, 31: 127–137, 2001.

80. S. Prabhu and D. Garg, Artificial neural network based robot
control: An overview, J. Intelli. Robotic Syst., 15(4): 333–365,
1996.

81. S. Ananthraman and D. Garg, Training backpropagation and
CMAC neural networks for control of a SCARA robot, Engi-
neering Applicat. Artificial Intelli., 6(2): 105–115, 1993.

82. Y. H. Kim, F. L. Lewis, and D. M. Dawson, Intelligent optimal
control of robotic manipulators using neural networks, Auto-
matica, 36(9): 1355–1364, 2000.

83. S. X. Yang and M. Q.-H. Meng, Real-time collision-free motion
planning of a mobile robot using a neural dynamics-based
approach, IEEE Trans. Neural Networks, 14(6): 1541–1552,
2003.

84. K. Kiguchi, K. Watanabe, K. Izumi, and T. Fukuda, A human-
like grasping force planner for object manipulation by robot
manipulators, Cybernetics and Syst., 34(8): 645–662, 2003.

85. S. Ananthraman and D. Garg, Neurocontrol of cooperative dual
robot manipulators, in Intelligent Control Systems, ASME
Special Publication, No. DSC- 48: 57–65, 1993.

86. S. S. Ge, L. Huang, and T. H. Lee, Model-based and neural-
network-based adaptive control of two robotic arms manipu-
lating an object with relative motion, Intern. J. Systems Sci.,
32(1): 9–23, 2001.

87. A. Howard and H. Seraji, An intelligent terrain-based naviga-
tion system for planetary rovers, IEEE Robotics and Automa-
tion Mag., 8(4): 9–17, 2002.

88. F. L. Lewis, Neural network control of robot manipulators,
IEEE Intell. Sys., 11(3): 64–75, 1996.

89. F. L. Lewis, A. Yesildirek, and K. Liu, Multilayer neural-net
robot controller with guaranteed tracking performance, IEEE
Trans. Neural Networks, 7(2): 1–12, 1996.

10 NEURAL CONTROLLERS



90. Z. Hu and S. N. Balakrishnan, Online identification and control
of aerospace vehicles using recurrent networks, Proc. IEEE
Conference on Control Applications, 1999, pp. 160–165.

91. M.-C. Chen and T. Yang, Design of manufacturing systems by a
hybrid approach with neural network metamodelling and sto-
chastic local search, Internat. J. Production Res., 40(1): 71–92,
2002.

92. R. A. Kramer, B. Hoffner, and R. A. Shoureshi, Feedforward
neural fuzzy control of electrical power systems containing
highly varying loads, Proc. American Control Conference, 4:
2677–2682, 2002.

93. G. Bloch, F. Sirou, V. Eustache, and P. Fatrez, Neural intel-
ligent control for a steel plant, IEEE Trans. Neural Networks,
8(4): 910–918, 1997.

94. M. H. R. FazlurRahman, R. Devanathan, and K. Zhu, Neural
network approach for linearizing control of nonlinear process
plants, IEEE Trans. Industrial Electronics, 47(2): 470–477,
2000.

95. Yong-Zai Lu and S. W. Markward, Development and applica-
tion of an integrated neural system for an HDCL, IEEE Trans.
Neural Networks, 8(6): 1328–1337, 1997.

DEVENDRA P. GARG

MANISH KUMAR

Duke University
Durham, North Carolina

NEURAL CONTROLLERS 11



N

NEURAL NETWORK ARCHITECTURES

INTRODUCTION

From the architectural and computational standpoints, a
neural network consists of a collection of simple, nonlinear
processing components (neurons) that are combined
together via a collection of adjustable numeric connections.
The development of a neural network is realized through
learning. Selecting an appropriate network’s structure (fol-
lowed by an efficient learning method) becomes essential to
its overall performance. In this article, we offer a compre-
hensive discussion on the architectures of neural networks.
We discuss a variety of neurons and topologies encountered
in the area and link the properties of the networks and their
functionality with the architecture of the constructs. The
article follows a bottom-up direction and reflects on histor-
ical developments of neurocomputing. We start with the
commonly encountered model of the neuron (being regarded
as a weighted sum of inputs followed by some nonlinear
transformation) and present the main topologies of the
networks.Next,weelaborateonmore functionallyadvanced
neurons and show how their functionality is exploited in the
resulting structures of the networks and their increased
heterogeneity (which is reflective of the use of a variety of
neurons in their architectures). Throughout the article, a
standard notation will be adhered to. Vectors will be denoted
by boldface letters. The distance is denoted by ||�||.

COMPUTATIONAL MODEL OF NEURONS

A commonly encountered model of an artificial neuron (neu-
ron, for short) (1–3) is realized in a form of an n-input single-
output nonlinear mapping, see Fig. 1, described as follows:

y ¼ f
Xn

i¼1

wixi

 !
ð1Þ

where x1, x2, . . ., xn are the inputs of the neuron, whereas w1,
w2, . . ., wn are the associated with the corresponding inputs
connections (weights). The nonlinear nondecreasing mapp-
ing ‘‘f’’ brings an important component of nonlinear proces-
sing to the functionality of the neuron. Positive values of the
weights correspond to excitatory synapses of the neuron,
whereas negative weights model inhibitory synapses. The
adjustable character of the connections makes the neuron
(and the entire neural network) highly elastic and facilitates
all parametric learning faculties (which in essence are con-
cerned with the adjustments of the values of the connec-
tions). Commonly, the neuron is equipped with a bias term
w0 that comes with the constant input equal to 1. Taking it
into consideration, Equation (1) is modified and reads as

y ¼ f
Xn

i¼1

wixi þ w0

 !

Geometrically, the bias means that the hyperplane

Xn

i¼1

wixi

is translated with respect to the origin. With the acceptance
of the vector notation, x ¼ [x1 x2 . . . xn 1]T and w ¼
[w1 w2 . . . wn w0]T, the output of the neuron is expressed
as y ¼ f(wTx)

The nonlinear activation function (f) may be realized in
different ways. Some commonly encountered examples
include the following:

1. Threshold function fðuÞ ¼ 1 if u� 0
0 if u< 0

�

2. Piecewise linear function fðuÞ ¼
1 if u� 1=2
u if�1=2< u< 1=2
0 if u ��1=2

8<
:

3. Sigmoid function fðuÞ ¼ 1

1þ expð�luÞ with lð>0Þ

being a positive slope of the function

4. Hyperbolic tangent function fðuÞ ¼ tanhðuÞ

In addition to the neuron governed by Equation (1), in
the literature we also encounter so-called product neurons
where the overall aggregation of the inputs is realized by
taking the product of the weighted inputs,

y ¼
Yn
i¼1

xwi

i ð2Þ

As before, wi serves as a connection of the neuron whose
values can be adjusted.

ARCHITECTURES OF NEURAL NETWORKS

Neurons are simple processing units. The processing cap-
abilities of neural networks stem from the use of many
neurons being organized in a certain topology (structure).
Individual neurons are connected and realize a certain flow
of computing. The most commonly present architecture of
neural networks consists of neurons organized in a series of
interconnected layers (3–5). Depending on the flow of pro-
cessing, in the general taxonomy of the architectures of
neural networks we distinguish between the two important
categories, that is feedforward networks and recurrent
(feedback) networks. In feedforward neural networks, the
neurons are arranged in a series of layers, and a flow of
processing is linear: It starts from the inputs of the network,
and the results of processing are carried through consecu-
tive layers finally showing at the output layer. Anexample of
a single layer network is illustrated in Fig. 2, whereas Fig. 3
shows a three-layer network. In general, we may envision
multilayer topologies, say, an L-layer neural network. In all
cases, the structures are regular, and the connectivity
occurs between the neurons positioned in successive layers.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



In feedforward networks, input signals (inputs) are pro-
cessed by the units of the first layer whose outputs becomes
inputs for the next layer, and so on, for the rest of the
network. Typically, the neurons of each layer have as their
inputs the outputs that come from the preceding layer only.
Feedforward neural networks produce static nonlinear
input-output mappings. The form of the nonlinear mapping
realized in this way depends on the number of layers, the
size of the layers, and the form of the individual neurons.
Intermediate layers between input nodes and output layer
are referred to as hidden layers (the name comes from the
fact that the neurons present there are not exposed directly
to the input signals). We say that the neural network is fully
connected if every node in each layer is connected to every
other node in the consecutive forward layer. If this does not
occur, then we refer to this network as partially connected.
Some clarifying note is worth making here. In the terminol-
ogy used in the literature, the input layer that distributes
the inputs to the neurons located at the next layer (however
does not realize any computing) is either included in the
countof the numberof layers ornot. In this sense, ifwe count
the layer that distributes the inputs, the network in Fig. 2
consists of 2 layers; likewise following this naming the
network in Fig. 3 comes with 3 layers.

Recurrent neural networks (6–8) distinguish them-
selves from feedforward networks by admitting feedback
loops, see Fig. 4. These networks may or may not have
hidden layers. Feedback can be of local nature if only self-
feedback loops exist, namely, if the outputs of neurons are
fed back to its own input. Feedback loops of a global nature
form if the loop engages different neurons located either in
the same layer or in different layers. Recurrent neural
networks can exhibit full or partial feedback, which
depends on how the feedback loops have been structured.

In contrast to feedforward neural networks, neural net-
works with feedback are of interest when modeling a non-
linear dynamic input-output behavior. The feedback
component is crucial to the realization of the dynamic
nature of the phenomena.

NEURAL NETWORKS AS UNIVERSAL APPROXIMATORS

Neural networks implicitly encode in its structure a func-
tion that maps inputs on outputs. The character of func-
tions that can be represented in this manner depends on the
structure of the network. Currently, no definite result
indicates which types of networks describe corresponding

∑

x1

xi

xn

wi

wn

w1

f

u

y

Figure 1. A topology of a neuron; note a two-phase processing of
linear aggregation of the its inputs followed by nonlinear map-
ping (f).

•

•

x1

xn

y1

ym

w11

wi1

wim

wnm

•
xi

yj

wij

Figure 2. Single-layer feedforward neural network.

•

•

x1

xn

y1

ym

w11

wi1

wim

wnp

•
xi

yk
wij

v11

vpm

vj1

vjk

vjm

Figure 3. Two-layer feedforward neural network.

•

•

x1

xn

y1

ym

w11

wi1

wim

wnp

•
xi

yk
wij

v11

vpm

vj1

vjk

vjm

r11

rpp

skk

Figure 4. Recurrent neural network.

2 NEURAL NETWORK ARCHITECTURES



classes of functions. However, some general findings have
been cited. The representation capabilities of neural net-
works are expressed in the form of a so-called theorem of
universal approximation. This theorem states that a feed-
forward network with a single hidden layer (where the
neurons in this layer are equipped with sigmoid type of
transfer function) and an output layer composed of linear
neurons (viz. with linear transfer functions) is a universal
approximator (9–16). In other words, a neural
network of such topology can approximate any given
bounded continuous function Rn!R to any arbitrarily
small approximation error.

In more detail, one formulation of the universal approx-
imation capabilities of neural networks can be articulated
as follows.

Given any continuous function ‘‘f ’’ defined in the
m-dimensional unit hypercube and any positive e> 0, an
integer ‘‘n’’ and real constants ai, bi, and wij exist such that
the function

FðxÞ ¼
Xn

i¼1

aiw

�Xm
j¼1

wijxj þ bi

�
ð3Þ

realizes an e-approximation of ‘‘f ’’ meaning that

jFðxÞ � fðxÞj< e ð4Þ

for any x in this hypercube. w is a nonconstant, bounded,
and monotonically increasing function (we note that the
sigmoid function satisfies such requirements).

The theorem of universal approximation of neural net-
works has to be put in a certain context. It is definitely an
important and fundamental finding because it assures us
about the representation capabilities of neural networks
(viz. if the function satisfies the continuity assumption, we
are confident that a neural network approximates it to any
desired accuracy). This finding comes in the form of a typical
existence theorem because it does not offer any constructive
clue on how such a neural network could be constructed. For
an interesting discussion of linkages between theoretical
results and resulting algorithms refer to the literature (16).

So far, we have presented the most generic version of
the neuron and discussed the underlying architectures of
the network whose capabilities emerge through a collective
processing realized by the neurons. Several generalizations
of neurons augment their processing capabilities.

FUNCTIONAL NEURONS

Functional neurons are generic processing units in which
we encounter some functional relationships fi(xi, ai) instead
of numeric values of the connections as schematically
portrayed in Fig. 5.

The functional links fi are equipped with some adjusta-
ble parameters ai whose values can be modified (learned)
during the learning process. Note that if we consider
fi(xi, ai) as constants, say ai, then this construct collapses
to the generic neurons discussed so far.

Polynomial neurons constitute an interesting class of
functional neurons where fi is a certain polynomial of the
input variable. Typically, the order of this polynomial is

kept low, say polynomials of the second order, that is,
fiðxi; aiÞ ¼ ai0 þ ai1xi þ ai2x2

i This type of polynomial neurons
yields polynomial neural networks, cf. Refs. 17–19. One can
think of a few first harmonic terms that could be included in
the functional link, say the terms such as sin(vxi1),
sin(vxi2),. . . and so on. It is worth noting that the processing
capabilities of this type of neuron are higher than the
generic neurons, and these neurons exhibit nonlinear char-
acteristics because of the processing realized at the level of
each connection.

LOGIC NEURONS

Neural networks are highly distributed topologies. The
individual neurons do not exhibit any underlying inter-
pretation. The category of fuzzy neurons (or fuzzy logic
neurons) addresses these burning issues of a lack of trans-
parency of neural networks. Our objective is to build a
network with the aid of conceptually simple and logically
appealing nodes (neurons) that complete generic and and
or logic operations. By equipping the neurons with a set of
connections, we furnish them with the badly required
adaptive properties; the values of the connections could
be adjusted easily by implementing some standard learning
schemes available in neurocomputing.

Main Categories of Fuzzy Neurons

The logic aspect of transparent neurocomputing requires
that the processing elements be endowed with the clearly
delineated logic structure. Wediscussseveral typesofaggre-
gative and referential neurons. Each neuron comes with a
clearly defined semantics of its underlying logic expression
and isequipped withsignificantparametricflexibilityneces-
sary to facilitate substantial learning abilities.

Aggregative Neurons. Formally, these neurons realize a
logic mapping from [0,1]n to [0,1]. Two main classes of the
processing units exist in this category (20–25).

The OR neuron realizes an and logic aggregation of
inputs x ¼ [x1 x2. . .xn] with the corresponding connections
(weights) w ¼ [w1 w2. . . wn] and then summarizes the
partial results in an or-wise manner (hence the name of

∑

x1

xi

xn

f(xi, ai)

y

f(x 1, a1)

f(x n, an)

Figure 5. A schematic illustration of functional neuron.

NEURAL NETWORK ARCHITECTURES 3



the neuron). In virtue of the logic flavor of processing, the
values of the inputs x and connections w are confined to
the unit hypercube [0,1]n. The concise notation captures the
logic character of computing, that is y ¼ OR(x; w), whereas
the realization of the logic operations yields the expression
as follows: (commonly referring to it as an s-t combination
or s-t aggregation)

y ¼ S
n

i¼1
ðxi twiÞ ð5Þ

Bearing in mind the interpretation of the logic connectives
(t-norms, t, and t-conorms, s), the OR neuron realizes the
following logic expression being viewed as an underlying
logic description of the processing of the input signals:

ðx1 and w1Þ or ðx2 and w2Þor . . . orðxn and wnÞ ð6Þ

Apparently, the inputs are logically ‘‘weighted’’ by the
values of the connections before producing the final result.
In other words, we can treat ‘‘y’’ as a truth value of the above
statement where the truth values of the inputs are affected
by the corresponding weights. Noticeably, lower values of
wi discount the impact of the corresponding inputs; higher
values of the connections (especially those being positioned
close to 1) do not affect the original truth values of the
inputs that result in the logic formula. In limit, if all
connections wi, i ¼ 1, 2,. . .,n are set to 1, then the neuron
produces a plain or-combination of the inputs, y ¼ x1 or x2

or . . . or xn. The values of the connections set to zero
eliminate the corresponding inputs. Computationally,
the OR neuron exhibits nonlinear characteristics (that is
inherently implied by the use of the t- and t-conorms that
are evidently nonlinear mappings). The plots of the char-
acteristics of the OR neuron shown in Fig. 6 shows this
effect (note that the characteristics are affected by the use of
some triangular norms). The connections of the neuron
contribute to its adaptive character; the changes in their
values form the crux of the parametric learning.

The neurons in the AND neuron category, which are
denoted by y ¼ AND(x; w) with x and w being defined as in
case of the OR neuron, are governed by the expression

y ¼ T
n

i¼1
ðxiswiÞ ð7Þ

Here, the or and and connectives are used in a reversed
order: First the inputs are combined with the use of the t-
conorm, and the partial results produced in this way are
aggregated and-wise. Higher values of the connections
reduce impact of the corresponding inputs. In limit, wi ¼ 1
eliminatestherelevanceofxi.Withallwisetto0,theoutputof
the AND neuron is just an and aggregation of the inputs

y ¼ x1 and x2 and . . . and xn ð8Þ

The characteristics of the AND neuronareshownin Fig.
7; note the influence of the connections and the specific
realization of the triangular norms on the mapping com-
pleted by the neuron.

Let us conclude that the neurons are highly nonlinear
processing units whose nonlinear mapping depends on the
specific realizations of the logic connectives. They also come

with potential plasticity whose usage becomes critical when
learning the networks including such neurons.

The architecture of the logic neurons could be augmen-
ted by discussing a way in which bias could be introduced
and how we can handle the inhibitory nature of some
inputs.

Incorporation of the Bias Term (Bias) in the Fuzzy Logic
Neurons. In analogy to the standard constructs of a generic
neuron as presented above, we could also consider a bias
term, denoted by w02 [0, 1], which enters the processing
formula of the fuzzy neuron in the following manner:

for the OR neuron

y ¼ S
n

i¼1
ðxitwiÞsw0 ð9Þ

for the AND neuron

y ¼ T
n

i¼1
ðxiswiÞtw0 ð10Þ

We can offer some useful interpretation of the bias by
treating it as some nonzero initial truth value associated

Figure 6. Characteristics of the OR neuron for selected pairs of
t- and t-conorms. In all cases, the corresponding connections are set
to 0.l and 0.7 with intent to visualize their effect on the input-
output characteristics of the neuron: (a) product and probabilistic
sum, (b) Lukasiewicz and and or connectives.

4 NEURAL NETWORK ARCHITECTURES



with the logic expression of the neuron. For the OR neuron,
it means that the output does not reach values lower than
the assumed threshold. For the AND neuron equipped with
some bias, we conclude that its output cannot exceed the
value assumed by the bias. The question whether the bias is
essential in the construct of the logic neurons cannot be
fully answered in advance. Instead, we may include it into
the structure of the neuron and carry out learning. Once its
value has been obtained, the relevance of the bias can be
established, considering the specific value it has been pro-
duced during the learning. It may be that the optimized
value of the bias is close to zero for the OR neuron or close to
one in the case of the AND neuron, which indicates that it
could be eliminated without exhibiting any substantial
impact on the performance of the neuron.

Dealing with Inhibitory Character of Input Information.
Because of the monotonicity of the t-norms and t-conorms,
the computing realized by the neurons exhibits an excita-
tory character. This finding means that higher values of the
inputs (xi) contribute to the increase in the values of the
output of the neuron. The inhibitory nature of computing
realized by ‘‘standard’’ neurons by using negative values of
the connections or the inputs is not available here as the
truth values (membership grades) in fuzzy sets are confined
to the unit interval. The inhibitory nature of processing can

be accomplished by considering the complement of the
original input, that is 1-xi. Hence, when the values of xi

increase, the associated values of the complement decrease;
subsequently in this configuration, we could effectively
treat such an input as having an inhibitory nature.

Referential (reference) Neurons. The essence of referen-
tial computing deals with processing logic predicates. The
two-argument (or generally multivariable) predicates such
as similar, included in, and dominates(21), are essential
components of any logic description of a system. In general,
the truth value of the predicate is a degree of satisfaction of
the expression P(x, a) where ‘‘a’’ is a certain reference value
(reference point). Depending on the meaning of the pre-
dicate (P), the expression P(x, a) reads as ‘‘x is similar to a,’’
‘‘x is included in a,’’ ‘‘x dominates a,’’ and so on. In case of
many variables, the compound predicate comes in the form
P(x1, x2, . . ., xn, a1, a2, . . ., an) or more concisely P(x; a) where
x and a are vectors in the n-dimensional unit hypercube.
We envision the following realization of P(x; a)

Pðx; aÞ ¼ Pðx1; a1Þand Pðx2; a2Þand . . . and Pðxn; anÞ ð11Þ

which means that the satisfaction of the multivariable
predicate relies on the satisfaction realized for each vari-
able separately. As the variables could come with different
level of relevance as to the overall satisfaction of the pre-
dicates, we represent this effect by some weights (connec-
tions) w1, w2, . . ., wn, so that Equation (11) can be expressed
in the following form

Pðx; a;wÞ ¼ ½Pðx1; a1Þor w1�and ½Pðx2; a2Þ or w2�and . . .

and ½Pðxn; anÞ or wn� ð12Þ

Taking another look at the above expression and using a
notation zi ¼ P(xi,ai), it corresponds to a certain AND
neuron y ¼ AND(z; w) with the vector of inputs z being
the result of the referential computations done for the logic
predicate. Then, the general notation to be used reads as
REF(x; w, a). In the notation below, we explicitly articulate
the role of the connections

y ¼ T
n

i¼1
ðREFðxi; aiÞswiÞ ð13Þ

In essence, as visualized in Fig. 8, we may conclude that
the reference neuron is a realized as a two-stage construct
where first we determine the truth values of the predicate
(with a being treated as a reference point) and then treat
these results as the inputs to the AND neuron.

So far, we have used the general term of predicate-based
computing not confining ourselves to any specific nature of
the predicate itself. Among several available possibilities of
such predicates, we discuss the three of them, which tend
to occupy an important place in logic processing. Those
examples are inclusion, dominance, and match (similarity)
predicates. As the names stipulate, the predicates return
truth values of satisfaction of the relationship of inclusion,
dominance, and similarity of a certain argument ‘‘x’’ with
respect to the given reference ‘‘a.’’ The essence of all these

Figure 7. Characteristics of AND neurons for selected pairs of
t- and t-conorms. In all cases, the connections are set to 0.l and 0.7
with intent to visualize their effect on the characteristics of the
neuron: (a) product and probabilistic sum, (b) Lukasiewicz logic
connectives.

NEURAL NETWORK ARCHITECTURES 5



calculations is in the determination of the given truth
values, which is done in the carefully developed logic frame-
work so that the operations retain their semantics and
interpretability. What makes our discussion coherent is
the fact that the proposed operations originate from trian-
gular norms. The inclusion operation, denoted by �, as
discussed earlier, is modeled by an implication ) that is
induced by a certain left continuous t-norm (26)

a) b ¼ supfc2 ½0; 1�jatc � bg; a; b2 ½0; 1� ð14Þ

For instance, for the product the inclusion takes on the form
a) b ¼ minð1; b=aÞ. The intuitive form of this predicate is
self-evident: The statement ‘‘x is included in a’’ and modeled
as INCL(x, a)¼ x) a comes with the truth value equal to 1
if x is less or equal to a (which in other words means that x is
included in a) and produces lower truth values once x starts
exceeding the truth values of ‘‘a.’’ Higher values of ‘‘x’’
(those above the values of the reference point ‘‘a’’) start
generating lower truth values of the predicate. The dom-
inance predicate acts in a dual manner when compared
with the predicate of inclusion. It returns 1 once ‘‘x’’ dom-
inates ‘‘a’’ (so that its values exceeds ‘‘a’’) and values below 1
for x lower than the given threshold. The formal model can
be realized as DOM(x, a) ¼ a ) x. With regard to the
reference neuron, the notation is equivalent to the one
being used in the previous case, that is DOM(x; w, a)
with the same meaning of a and w.

The similarity (match) operation is an aggregate of these
two, SIM(x,a) ¼ INCL(x,a) t DOM(x,a), which is appealing
from the intuitive standpoint: We say that x is similar to a if
x is included in a and x dominates a. Noticeably, if x ¼ a the
predicate returns 1; if x moves apart from ‘‘a,’’ then the
truth value of the predicate becomes reduced. The resulting
similarity neuron is denoted by SIM(x; w, a) and reads as
follows:

y ¼ T
n

i¼1
ðSIMðxi; aiÞswiÞ ð15Þ

It is worth noting that by moving the reference point to
the origin or the 1-vertex of the unit hypercube (with all
its coordinates being set up to 1), the referential neuron
starts to resemble the aggregative neuron. In particular, we
have

� for a ¼ 1 ¼ [ 1 1 1. . . 1] the inclusion neuron reduces to
the AND neuron

� for a ¼ 0 ¼ [0 0 0. . . 0] the dominance neuron reduces
to the AND neuron

One can draw a loose analogy between some types of the
referential neurons and the two categories of processing
units encountered in neurocomputing. The analogy is
based on the local versus global character of processing
realized therein. Perceptrons come with the global char-
acter of processing. Radial basis functions realize a local
character of processing as focused on receptive fields. In the
same vein, the inclusion and dominance neurons are after
the global nature of processing, whereas the similarity
neuron carries more confined and local processing.

An interesting taxonomy of referential neurons is
observed. We distinguish between two main categories of
these processing elements. The first group is formed by
homogeneous neurons viz. those in which encounter the
same type of logic predicate (P) used in the underlying
processing. Refer also to Equation (11). As shown above,
the underlying logic expression reads as follows:

y ¼ ðPðx1; r1Þ;w1Þ andðPðx2; r2Þ;w2Þ and . . . andðPðxn; rnÞ;wnÞ
ð16Þ

where ri and wi are the point of reference and the corre-
sponding weight associated with the ith variable. Thus, all
inputs are processed making use of the same predicate,
which could be inclusion, dominance, tolerance, similarity,
and so on.

In the second group of referential neurons, we admit a
higher level of diversity by allowing different predicates Pi

associated with the individual inputs. The general logic
expression comes in the following format:

y¼ ðP1ðx1; r1Þ;w1ÞandðP2ðx2; r2Þ;w2Þand . . .andðPnðxn; rnÞ;wnÞ
ð17Þ

Referential computing is reflective of processing logic
constraints conveyed by logic predicates when dealing with
existing domain knowledge and encapsulating it in the
structural format of the network or its part.

For instance, we can represent existing constraints for
the variables x1, x2, . . ., xn, which are spelled out as

x1 should not exceed g1 and x2 should not exceed g2 and . . .

xn should not exceed gn

ð18Þ

In the form of a single inclusion neuron, Fig. 9(a) demon-
strates where the weights are used to calibrate the rele-
vance (importance) of the corresponding constraint.
Note that both xi and gi standing in the above compound
predicate assume values in the unit interval. One might
capture a variety of constraints

x1 should not exceed g1 and x2 should be similar to g2 and . . .

xn should dominate gn ð19Þ

x1

xn

a1

an

AND 

REF

Figure 8. A schematic view of computing realized by a reference
neuron and involving two processing phases (referential comput-
ing and aggregation).

6 NEURAL NETWORK ARCHITECTURES



By considering various predicates; see Fig. 9(b). Inter-
estingly, one could consider a variety of logic constraints of
different dimensionality, that is, each referential neuron
might have different number of inputs depending on the
nature of locally identified constraints. For instance, given
three inputs x1, x2, and x3, we have

x1 should be similar to g1 and x3 should not exceed g3
or

x2 should dominate g2 and x3 should be similar to g4

ð20Þ

This logic description translates into the logic network
illustrated in Fig. 9(c).

One could stress that in several architectures of neuro-
fuzzy systems, the capabilities of neural networks are com-
bined with the technology of fuzzy sets, cf. Refs. 26 and 27.

GRANULAR NEURONS

Acertaininterestinggeneralizationofthegenerictopologyof
theneuroncomeswitharealizationofitsconnectionsassome

informationgranules.Insteadofasinglenumericvalueofthe
connection discussed so far, we admit that it can be repre-
sented as some information granule, in particular some
intervalora fuzzyset. As the namesuggests, by thegranular
neuron we mean a neuron with granular connection. More
precisely, we consider the transformation of many numeric
inputs u1, u2, . . ., uc (confined to the unit interval) of the form

Y ¼ Nðu1; u2; . . . ; uc;W1;W2; . . . ;WcÞ ¼
X
�
ðWi	 uiÞ ð21Þ

with W1, W2, . . . Wc denoting granular weights (connec-
tions), see Fig. 10. The symbols of generalized (granular)
addition and multiplication (that is �, 	) are used here to
emphasize a granular character of the arguments being
used in thisaggregation. When dealing with interval-valued
connections, Wi ¼ [wi�, wi+], the operations of their multi-
plication by some positive real input ui produce the results in
the form of the following interval

Wi	 ui ¼ ½wi�ui;wiþui� ð22Þ

g1
x1

g2
x2

gn
xn

AND INCL 

INCL 

INCL 

g1
x1

g2
x2

gn
xn

AND INCL 

SIM 

DOM 

(b) (a) 

g1
x1

g3
x3

AND SIM 

INCL 

g2
x2

g4
x3

AND DOM 

SIM 

OR 

(c)

Figure 9. Examples of logic expressions that involve predicates and their realization in the form of logic neurons and architectures of
logic-oriented networks.

NEURAL NETWORK ARCHITECTURES 7



When adding such intervals being produced at the level
of each input of the neuron, we arrive at the expression

Y ¼
�Xn

i¼1

wi�ui;
Xn

i¼1

wiþui

�
ð23Þ

For the connections represented as fuzzy sets, the result
of their multiplication by a positive scalar ui is realized
through the use of the extension principle

ðWi	 uiÞðyÞ ¼ supw:y¼wui
½WiðwÞ� ¼Wiðy=uiÞ ð24Þ

Next, the extension principle is used to complete addi-
tions of fuzzy numbers, which are the partial results of this
processing. Denote by Zi the fuzzy number Zi ¼ Wi	 ui. We
obtain

Y ¼ Z1�Z2� . . .�Zn ð25Þ

that is

YðyÞ ¼ supfminðZ1ðy1Þ; Z2ðy2Þ; . . . ;ZnðynÞÞg

s:t: y ¼ y1 þ y2 þ . . .þ yn ð26Þ

Depending on a specific realization, these connections
can be formalized as intervals, fuzzy sets, shadowed sets,
rough sets, and so on. One could note that despite potential
diversity of the formalisms of granular connections, the
output is always a granular construct, Fig. 10.

The granular neuron exhibits several interesting prop-
erties that generalize the characteristics of (numeric) neu-
rons. Adding a nonlinearity component (g) to the linear
aggregation does not change the essence of computing; in
case of monotonically increasing relationship (g(Y)), we end
up with a transformation of the original output interval or
fuzzy set (in this case we have to follow the calculations
using the well-known extension principle).

RADIAL BASIS FUNCTION NEURAL NETWORKS

Radial basis function (RBF) neural networks (NNs), are
examples of feedforward neural structures that combine a
weighted collection of receptive fields defined in the input

space for function approximation and classification. The
RBFs known as receptive fields are constructs that help the
network to focus on individual regions of the multidimen-
sional input space. In the sequel, the activation levels of the
RBFs implied by some input x are aggregated by a single
linear neuron located in the output layer of the network.
The general structure of the network is visualized in
Fig. 11.

From the functional standpoint, the activation levels of
the receptive fields (RBFs), zj ¼ R(x) are combined in a
linear form as

y ¼
Xc

i¼1

wjzj

where wj is the jth connection of the neuron. RBFs
can assume different forms. Commonly, they are
treated as Gaussian receptive fields where R(x) ¼
exp(�||x�vj||

2/sj
2) where vj denotes a center of the field,

and sj describes a spread of the jth RBF. As it becomes
visible from all these examples of the RBFs, they come with
a great deal of flexibility. In particular, they are distributed
in the input space by selecting their modal values (centers
of the receptive fields) and choosing the spread values. This
substantial level of flexibility is of interest when learning
the network. Instead of defining a certain class of the
receptive fields, there is an alternative way of their forma-
tion that directly links to experimental data and exploits
the techniques of fuzzy clustering. Let us recall that in
fuzzy clustering, data are organized in groups in such a way
that we allow data to share nonzero membership grades
between several clusters. The commonly used method of
Fuzzy C-Means (26) leads to the development of the pro-
totypes of the clusters. The prototypes serve as modal
values of the receptive fields, whereas the membership
functions are described in the following form:

RiðxÞ ¼
1

Pc
j¼1

jjx�vijj
jjx�vjjj

� �2=ðm�1Þ ð27Þ

u1

u2

uc

W1

Y

Wc

Figure 10. Computational model of a granular neuron; note a
granular character of the connections and the resulting output Y.

Information 
granules 

w1

x

Wc

Figure 11. A generic topology of RBF neural network.

8 NEURAL NETWORK ARCHITECTURES



Where m > 1 is a so-called fuzzification coefficient. Inter-
estingly, the location of the fields (as well as their spreads—
which do not explicitly show in the above) has been deter-
mined on a basis of the available learning data. In this
sense, these receptive fields are immediately reflective of
the experimental evidence available for training purposes.
It is worth stressing that the geometry of the receptive
fields obtained in this manner is affected by the values of
the fuzzification coefficient. Some illustrative examples are
shown in Fig. 12.

The optimal value of ‘‘m’’ can be determined through data
clustering. Note that even the neuron in the output layer
realizes a linear processing; overall the network is highly
nonlinear and the source of nonlinearity is associated with
the highly nonlinear character of the RBFs.

We can envision a certain generalization of RBF NNs in
which the linear neuron is replaced by a functional neuron
or a granular neuron. The topologies of such neural net-
works fall under the category of neurofuzzy systems
that combine some features of neural networks and fuzzy
sets.

For the functional neuron, the resulting network can be
interpreted as a collection of ‘‘if-then’’ rules

- if x is Ri then y is fiðx; aiÞ; i ¼ 1; 2; . . . ; c ð28Þ

where Ri is the ith receptive field that serves as some
information granule, say some fuzzy set.

In case of the granular neuron, the collection of rules
reads as follows

- if x is Ri then Y is Wi; i ¼ 1; 2; . . . ; c ð29Þ

where Wi is the granular connection of the neuron; note
that the output is an information granule as well.

The concept of receptive fields is highly appealing. As a
matter of fact, in the layer of receptive fields, one could
consider using wavelets, local expert networks as discussed
in Ref. 28, or kernels (29).

ARCHITECTURES OF LOGIC NETWORKS

The logic neurons (aggregative and referential) can serve as
building blocks of more comprehensive and functionally
appealing architectures. The diversity of the topologies one
can construct with the aid of the proposed neurons is
surprisingly high. This architectural multiplicity is impor-

tant from the application point of view as we can fully reflect
the nature of the problem in a flexible manner. It is essen-
tial to capture the problem in a logic format and then to
set up the logic skeleton also known as the conceptual
blueprint—by forming it and finally refining it parametri-
cally through a thorough optimization of the connections.
Throughout the entire development process, we are posi-
tioned comfortably by monitoring the optimization of the
network as well as interpreting its meaning.

The typical logic network that is at the center of logic
processing originates from the two-valued logic and comes
in the form of the famous Shannon theorem of decomposi-
tion of Boolean functions. Let us recall that any Boolean
function {0,1}n! {0,1} can be represented as a logic sum of
its corresponding miniterms or a logic product of maxterms.
By a minterm of ‘‘n’’ logic variables x1, x2, . . ., xn, we mean a
logic product that involves all these variables either in
direct or complemented form. Having ‘‘n’’ variables, we
end up with 2n minterms starting from the one that involves
all complemented variables and ending up at the logic
product with all direct variables. Likewise, by a maxterm
we mean a logic sum of all variables or their complements.
Now in virtue of the decomposition theorem, we note that
the first representation scheme involves a two-layer net-
work, in which the first layer consists of AND gates whose
outputs are combined in a single OR gate. The converse
topology occurs for the second decomposition mode: A
single layer of OR gates is followed by a single AND gate
aggregating or-wise all partial results.

The proposed network (referred here as a logic proces-
sor) generalizes this concept as shown in Fig. 13. The OR-
AND mode of the logic processor comes with the two types of
aggregative neurons being swapped between the layers.
Here, the first (hidden) layer is composed of the OR neuron
and is followed by the output realized by means of the AND
neuron.

The logic neurons generalize digital gates. The design of
the network (viz. any fuzzy function) is realized through
learning. If we confine ourselves to {0,1} values, then the
network’s learning becomes an alternative to a standard
digital design, especially a minimization of logic functions.
The logic processor translates into a compound logic state-
ment (we skip the connections of the neurons to underline
the underlying logic content of the statement)

- if ðinputl and . . . and inputjÞ orðinputd and . . . and inputfÞ
then out put

Figure 12. Examples of receptive fields formed by the FCM algorithm: (a) m ¼ 1.2, (b) m ¼ 2.0, (c) m ¼ 3.0.

NEURAL NETWORK ARCHITECTURES 9



The logic processor’s topology (and underlying interpre-
tation) is standard. Two LPs can vary in terms of the
number of AND neurons as well as their connections, but
the format of the resulting logic expression is uniform (as a
sum of generalized minterms).

As an illustrative example, let us consider a simple fuzzy
neural network in which the hidden layer includes two AND
neurons whose outputs are combined through a single OR
neuron located in the output layer. The connections of the
first AND neuron are equal to 0.3 and 0.7. For the second
AND neuron, we have the values of the connections equal to
0.8 and 0.2. The connections of the OR neuron are equal to
0.5 and 0.7, respectively. The input-output characteristics of
the network are illustrated in Fig. 14; to demonstrate the
flexibility of the architecture, we included several combina-
tions of the connections as well as used alternative realiza-
tions of the triangular norms and conorms.

The resulting networks exhibit a significant diversity in
terms of the resulting nonlinear dependencies. More impor-
tantly, we note that by choosing certain logic connectives
(triangular norms) and adjusting the values of the connec-
tions, we could substantially affect the behavior (input-
output characteristics) of the corresponding network. This
plasticity becomes an important feature that plays a para-
mount role in the overall learning process.

AND 

neurons 

OR

neuron 

Figure 13. A topology of the logic processor in its AND-OR mode.

Figure 14. Plots of the characteristics of the fuzzy neural network: output of the two AND neurons and the output of the network (from left
to right) for different realization of the logic operators: (a) min and max, (b) product and probabilistic sum, and (c) Lukasiewicz logic operators.

10 NEURAL NETWORK ARCHITECTURES



CONCLUDING COMMENTS

We have covered main issues of architectural developments
of neural networks and stressed their importance for the
resulting quality of the resulting networks. A significant
diversity of neurons is available, which come with different
levels of computational sophistication and characteristics
that could be taken advantage of when dealing with the
problem at hand. Although a ‘‘standard’’ neuron is still
dominant in neurocomputing, we witness interesting
trends of expanding its functionalities, which manifests
in granular, functional or logic-oriented neurons.

In the development of the architectures of neural net-
works and selecting specific neurons, one can take into
account some general guidelines:

1. The static or dynamic nature of the problem at hand:
This aspect determines whether we should consider
networks with feedback or whether a standard feed-
forward neural network is suitable.

2. The size of the network is expressed in terms of the
number of the neurons as well as an layout of the
network itself (which links to the number of its layers).
Large networks could lead to low values of the approx-
imation error on the training data and could even-
tually reduce it to values close to zero. The
performance of the network might suffer from that
when it comes to generalization capabilities of the
network (assessed on a basis of the testing data).
The learning time also could be excessively long.

3. The choice of the individual neurons. More advanced
neurons may lead to a more compact network (as the
underlying functionality of the processing elements is
more extended). They may, however, require more
advanced learning mechanisms whose complexity
and a level of sophistication could be high. The choice
associates with the available optimization tools.

4. When choosing the architecture of the network, one
has to have in mind what learning mechanisms will be
considered afterward so that we could take full advan-
tage of the functionality of the existing architecture.
In particular, a decision has to be made with regard to
supervised-unsupervised learning as well as struc-
tural or parametric optimization of the network.

5. If the interpretability of the network is a desired
feature, then the use of neurons whose semantics is
clear is advisable.

Despite current advances in the learning theory (1,2,6),
the applications of neural networks still require careful
experimentation and a prudent use of engineering judg-
ment to make their design effective. The development of the
networks is an iterative process and requires successive
architectural refinements.

BIBLIOGRAPHY

1. M. Anthony and P. L. Bartlet, Neural Network Learning:
Theoretical Foundations, Cambridge: Cambridge University
Press, 1999.

2. S. Ellacott and D. Bose, Neural Networks: Deterministic
Methods of Analysis, London: Thomson Computer Press,
1996.

3. S. Haykin, Neural Networks: A Comprehensive Foundation,
2nd ed., Upper Saddle River, NJ: Prentice Hall, 1998.

4. D. Hush and B. Horne, Progress in supervised neural
networks: What’s new after Lippmann?, IEEE Signal Proces-
sing Magazine, 10(1): 8–39, 1993.

5. R. Morejon and J. Principe, Advanced search algorithms for
information-theoretic learning with kernel-based estimators,
IEEE Trans. Neural Networks, 15(4): 874–884, 2004.

6. A. Atiya and A. Parlos, New results on recurrent network
training: unifying the algorithms and accelerating conver-
gence, IEEE Trans. Neural Networks, 11(3): 697–709,
2000.

7. L. Jin, M. Gupta, and P. Nikiforuk, Approximation capa-
bilities of feedforward and recurrent neural networks, in
M. Gupta and N. Sinha (eds.), Intelligent Control Systems:
Theory and Applications, Piscataway, NJ: IEEE Press, 1996,
pp. 234–264.

8. R. Williams and D. Zipser, A learning algorithm for continually
running fully recurrent neural networks, Neural Comput.,
1, 270–280, 1989.

9. P. Baldi, Computing with arrays of bell-shaped and sigmoid
functions, in R. Lippmann, J. Moody, D. Touretzky (eds.),
Neural Information Processing Systems, San Mateo, CA:
Morgan Kaufmann, 1991, pp. 735–742.

10. P. Courrieu, Function approximation in non-Euclidean spaces,
Neural Networks, 18: 91–102, 2005.

11. G. Cybenko, Approximation by superposition of a sigmoidal
function, Math. Control, Signals, and Systems, 2: 303–314,
1989.

12. M. Hassoun, Fundamentals of Artificial Neural Networks,
Cambridge, MA: MIT Press, 1995.

13. K. Hornik, M. Stinchcombe, and H. White, Multilayer feedfor-
ward networks are universal approximators, Neural Networks,
2: 359–366, 1989.

14. K. Hornik, Some new results on neural network approxima-
tion, Neural Networks, 6: 1069–1071, 1993.

15. M. Leshno, Y. Lin, A. Pinkus, and S. Schocken, Multilayer
feedforward networks with a nonpolynomial activation func-
tion can approximate any function, Neural Networks, 6: 861–
867, 1993.

16. F. Scarselli and A. Tsoi, Universal approximation using
feedforward neural networks: A survey of some existing
results and some new results, Neural Networks, 11: 15–37,
1998.

17. E. Gómez-Ramı́rez, K. Najim, and E. Ikonen, Forecasting time
series with a new architecture for polynomial artificial neural
network, Appl. Soft Comput., 7(4): 1209–1216, 2007.

18. S. K. Oh and W. Pedrycz, Multi-layer self-organizing polyno-
mial neural networks and their development with the use of
genetic algorithms, J. Franklin Inst., 343(2): 125–136, 2006.

19. H. S. Park, W. Pedrycz, and S. K. Oh, Evolutionary design of
hybrid self-organizing fuzzy polynomial neural networks with
the aid of information granulation Exp. Syst. Applicat., 33(4):
830–846, 2007.

20. W. Pedrycz, Processing in relational structures: Fuzzy rela-
tional equations, Fuzzy Sets Syst., 40: 77–106, 1991.

21. W. Pedrycz, Neurocomputations in relational systems, IEEE
Trans. Pattern Anal. Mach. Intell., 13: 289–297, 1991.

22. W. Pedrycz, Fuzzy neural networks and neurocomputations,
Fuzzy Sets Syst., 56: 1–28, 1993.

NEURAL NETWORK ARCHITECTURES 11



23. W. Pedrycz and A. Rocha, Knowledge-based neural networks,
IEEE Trans. Fuzzy Syst., 1: 254–266, 1993.

24. W. Pedrycz, Heterogeneous fuzzy logic networks: fundamen-
tals and development studies, IEEE Trans. Neural Networks,
15: 1466–1481, 2004.

25. W. Pedrycz and M. Reformat, Genetically optimized logic
models, Fuzzy Sets Syst., 150(2): 351–371, 2005.

26. W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets:
Analysis and Design, Cambridge, MA: MIT Press, 1998.

27. C. F. Juang and I.-F. Chung, Recurrent fuzzy network design
using hybrid evolutionary learning algorithms, Neurocomput-
ing, 70(16–18): 3001–3010, 2007.

28. E. D. Übeyli, Wavelet/mixture of experts network structure for
EEG signals classification, Expert Syst. Applicat., 34(3): 1954–
1962, 2008.

29. K. Müller, S. Mika, R. Rätsch, K. Tsuda, and B. Schölkopf, An
introduction to kernel-based learning algorithms, IEEE Trans.
Neural Networks, 12(2): 181–201, 2001.

WITOLD PEDRYCZ

University of Alberta
Edmonton, Alberta,

Canada

12 NEURAL NETWORK ARCHITECTURES



P

PATTERN RECOGNITION

Pattern recognition (PR) concerns the description or clas-
sification (recognition) of measurements. PR capability is
often a prerequisite for intelligent behavior. PR is not
one technique, but rather a broad body of often loosely
related knowledge and techniques. PR may be character-
ized as an information reduction, information mapping, or
information labeling process. Historically, the two major
approaches to pattern recognition are statistical (or deci-
sion theoretic), hereafter denoted StatPR, and syntactic (or
structural), hereafter denoted SyntPR. The technology of
artificial neural networks has provided another alter-
native, neural pattern recognition, hereafter denoted
NeurPR. NeurPR is especially well suited for ‘‘black box’’
implementation of PR algorithms. As no single technology
is always the optimal solution for a given PR problem, all
three are often considered in the quest for a solution.

The structure of a generic PR system is shown in Fig. 1
(1). Notice that it consists of a sensor or set of sensors, a
feature extraction mechanism (algorithm), and a classifica-
tion or description algorithm (depending on the approach).
In addition, usually some data that has already been clas-
sified or described is assumed available in order to train the
system (the so-called ‘‘training set’’).

PATTERNS AND FEATURES

PR, naturally, is based on patterns. A pattern can be as basic
as a set of measurements or observations, perhaps repre-
sented in vector notation. Features are any extracted mea-
surement used. Examples of low-level features are signal
intensities. Features may be symbolic, numeric, or both. An
example of a symbolic feature is color; an example of a
numerical feature is weight (measured in pounds). Fea-
tures may also result from applying a feature extraction
algorithm or operator to the input data. Additionally, fea-
tures may be higher-level entities, for example, geometric
descriptors of either an image region or a three-dimensional
(3-D) object appearing in the image. For example, in image
analysis applications (2), aspect ratio and Euler number are
higher-level geometric features extracted from image
regions. Recently, there has been a renewal of interest in
employing biometric features based on face, voice, finger-
print, or eye measurements.

Significant computational effort may be required in
feature extraction and the extracted features may contain
errors or ‘‘noise.’’ Features may be represented by contin-
uous, discrete, or discrete-binary variables. Binary features
may be used to represent the presence or absence of a
particular attribute. The inter-related problems of feature
selection and feature extraction must be addressed at the
outset of any PR system design.

Statistical PR is explored in depth in numerous books.
Good sources include Refs. 1, 3–10.

The Feature Vector and Feature Space

Feature vectors are typically used in StatPR and NeurPR.
It is often useful to develop a geometrical viewpoint
of features in these cases. Features are arranged in a
d-dimensional feature vector, denoted x, which yields a
multidimensional feature space. If each feature is an uncon-
strained real number, the feature space is Rd. In other
cases, for example, those involving artificial neural net-
works, it is convenient to restrict feature space to a sub-
space of Rd. Specifically, if individual neuron outputs and
network inputs are restricted to the range [0, 1], for a
d-dimensional feature vector, the feature space is a unit
volume hypercube in Rd.

Classification of feature vectors may be accomplished by
partitioning feature space into regions for each class. Large
feature vector dimensionality often occurs unless the data
is preprocessed. For example, in image processing applica-
tions, it is impractical to directly use all the pixel intensities
in an image as a feature vector because a 512 � 512-pixel
image yields a 262,144 � 1 feature vector.

Feature vectors are somewhat inadequate or at least
cumbersome when it is necessary to represent relations
between pattern components. Often, classification, recog-
nition, or description of a pattern is desired that is invariant
to some (known) pattern changes or deviation from the
‘‘ideal’’ case. These deviations may be because of a variety of
causes, including ‘‘noise.’’

In many cases, a set of patterns from the same class may
exhibit wide variations from a single exemplar of the class.
For example, humans are able to recognize (that is, classify)
printed or handwritten characters with widely varying font
sizes and orientations. Although the exact mechanism that
facilitates this capability is unknown, it appears that the
matching strongly involves structural analysis of each
character.

Feature Vector Overlap. As feature vectors obtained
from exemplars of two different classes may overlap in
feature space, classification errors occur. An example of
this overlap is shown in Fig. 2.

Example of Feature Extraction. Consider the design of a
system to identify two types of machine parts. One part,
which is denoted a ‘‘shim,’’ is typically dark and has no
surface intensity variation or ‘‘texture.’’ Another part,
denoted a ‘‘machine bolt,’’ is predominantly bright and
has considerable surface intensity variation. For illustra-
tion, only texture and brightness are used as features, thus
yielding a 2-D feature space and feature vector. We also
assume these features are extracted from suitable mea-
surements. Other possible features, such as shape, weight,
and so on, may be used. The problem, as formulated, is
challenging because these features are only typical of each
part type. There exist cases of shims that are bright and
textured and bolts that are dark and have little texture,
although they are atypical, that is, they donot occur often.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



More importantly, when features overlap, perfect classifi-
cation is not possible. Therefore, classification error, char-
acterized via the probability P(error), indicates the
likelihood an incorrect classification or decision. In this
example, element xi; i ¼ 1; 2 is a feature, where x1 is mea-
sured or computed brightness and x2 is measured or com-
puted texture. Furthermore, wi is a class, or a ‘‘state of
nature,’’ where w1 is taken to be shim and w2 is bolt.
Feature vector overlap may occur in this example. If the
underlying class is w1 (shims), we expect typical measure-
ments of x1 and x2 (brightness and texture, respectively) to
be small, whereas if the object under observation is from
class w2 (bolts), we expect the values of x1 and x2 to be, on the
average, large (or at least larger than those of w1). Of
particular importance is the region where values of the
features overlap. In this area, errors in classification are
likely. A more general cost or risk measure may be asso-
ciated with a classification strategy.

Pattern Classification

Classification is the assignment of input data into one or
more of c prespecified classes based on extraction of sig-
nificant features or attributes and the processing or ana-
lysis of these attributes. It is common to resort to
probabilistic or grammatical models in classification.

Recognition is the ability to classify. Often, we formulate
PR problems with a c þ 1st class, corresponding to the
‘‘unclassifiable,’’ ‘‘donot know,’’ or ‘‘cannot decide’’ class.

Description is an alternative to classification in which a
structural description of the input pattern is desired. It is
common to resort to linguistic or structural models in
description. A pattern class is a set of patterns (hopefully
sharing some common attributes) known to originate from
the same source. The key in many PR applications is to
identify suitable attributes (e.g., features) and form a good
measure of similarity and an associated matching process.

Preprocessing is the filtering or transforming of the raw
input data to aid computational feasibility and feature
extraction and minimize noise.

Noise is a concept originating in communications theory.
In PR, the concept is generalized to represent a number of
nonideal circumstances.

Pattern Matching

Much of StatPR, SyntPR, and NeurPR is based on the
concept of pattern similarity. For example, if a pattern, x,
is very similar to other patterns known to belong to class w1,
we would intuitively tend to classify x as belonging in w1.
Quantifying similarity by developing suitable similarity
measures is often quite difficult. Universally applicable
similarity measures that enable good classification are
both desirable and elusive.

Measures of similarity (or dissimilarity) using feature
vectors are commonly used. Distance is one measure of
vector similarity. The Euclidean distance between vectors x
and y is given by

dðx; yÞ ¼ kx� yk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞTðx� yÞ

q
¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

i¼1

ðxi � yiÞ2
vuut

Observed world
pattern data Pi

Sensor/
transducer

Preprocessing
and

enhancement

Measurement, mi

Feature/
primitive

extraction
algorithm

(Statistical)

Classification
algorithm

Description
algorithm

(Syntactic)

Description

Classification

Possible algorithm feedback or interaction

Figure 1. Generic PR system elements (Adapted from Ref. 1).

–6
–6

–4

–2

0

2

4

6

–4 –2 0 2 4 6

both classes

Figure 2. Example of feature vector overlap, leading to classi-
fication error.

2 PATTERN RECOGNITION



A related and more general metric is

d pðx; yÞ ¼
Xd

i¼1

jxi � yijp
 !1

p

Commonly, weighted distance measures are used. An
example is

d2
wðx; yÞ ¼ ðx� yÞTRðx� yÞ ¼ kx� yk2R

which implements on a weighted inner product or weighted
R-norm. The matrix R is often required to be positive
definite and symmetric. When x and y are binary, measures
such as the Hamming distance are useful.

Training

A set of ‘‘typical’’ patterns, in which typical attributes or the
class or structure of each is known, forms a database. This
database is called the training set and denoted H. In a
general sense, the training set provides significant infor-
mation on how to associate input data with output decisions
(i.e., classifications or structural descriptions). Training is
often associated (or loosely equated) with learning. The
training set is used to enable the system to ‘‘learn’’ relevant
information, such as statistical parameters, natural group-
ings, key features, or underlying structure. In SyntPR,
training samples are used to learn or infer grammars.

Supervised and Unsupervised Classification

Training uses representative (and usually labeled) samples
of types of patterns to be encountered in the actual applica-
tion. The training set is denoted H or Hi, in which the
subscript denotes a training set for a specific pattern class.
In some cases, the training set for class wi contains exam-
ples of patterns in wi (positive exemplars) as well as exam-
ples of patterns not in wi (negative exemplars).

In this context, supervised learning or training assumes
a labeled (with respect to pattern class) set, whereas in
unsupervised learning, the elements of H do not have class
labels and the system must determine ‘‘natural’’ partitions
of the sample data.

For example, consider the application of PR to image
segmentation (i.e., the classification of image pixels into
groupings that represent some higher entity or information
in the images). Unfortunately, it is rare to have either a
statistical model to aid in this grouping or a training set.
Therefore, so-called unsupervised learning techniques are
often applied.

Two unsupervised learning approaches that embody
more general measures of feature vector similarity and
do not require H are known as hierarchical clustering
and partitional clustering. A set of feature vectors is
sequentially partitioned (or merged) on the basis of dissim-
ilarity (or similarity). Thus, given only a similarity mea-
sure, we either aggregate feature vectors into a single class
or sequentially subdivide feature vector partitions. A
neural network-based example of unsupervised learning
is the Kohonen SOFM.

STATISTICAL PATTERN RECOGNITION (StatPR)

Statistical Analysis

StatPR is used to develop statistically based decision or
classification strategies, which form classifiers and
attempts to integrate all available problem information,
such as measurements and a priori probabilities. Decision
rules may be formulated in several inter-related ways. A
measure of expected classification error or ‘‘risk’’ may be
formulated, and a decision rule is then developed that
minimizes this measure. The Bayesian approach involves
converting an a priori class probability P(wi) into a mea-
surement-conditioned (‘‘a posteriori’) probability PðwijxÞ,
which leads to a partitioning of Rd, and may be implemen-
ted via discriminant functions.

Bayes Decision Theory

In the Bayesian approach, the extracted features x are
modeled as a realization of a (continuous) random vector
X. The case of discrete r.v.s is treated similarly, but with
probabilities, as opposed to density functions for character-
ization of x. Suppose the class-conditioned probability den-
sity functions for feature vector x (i.e., pðxjwiÞ where
i ¼ 1; c) are available, which may be the result of training
or learning. Assume that something is known about the a
priori (i.e., before measurement) likelihood of the occur-
rence of class w1 or w2, specifically assume the a priori
probabilities PðwiÞ; i ¼ 1; c are known. For example, in the
shim-bolt example above, if we know that on a given day we
inspect four times as many shims as bolts, then Pðw1Þ ¼ 0:8
and Pðw2Þ ¼ 0:2. In the absence of this information, an
often reasonable assumption is that PðwiÞ ¼ 1

c (i.e., the a
priori probabilities of the states of nature are equal).

Using Bayes Theorem. Bayes theorem is used to enable a
solution to the classification problem that uses available
feature and training data. The a priori estimate of the
probability of a certain class is converted to the a posteriori,
or measurement conditioned, probability of a state of nature
via:

pðwijxÞ ¼
½pðxjwiÞPðwiÞ�

pðxÞ

where

pðxÞ ¼
X

i

pðxjwiÞ

An intuitive classification strategy is that a given
realization or sample vector x is classified by choosing the
state of nature wi for which PðwijxÞ is largest. Notice the
quantity pðxÞ is common to all class-conditional
probabilities; therefore, it represents a scaling factor that
may be eliminated. Thus, in our shim-bolt example, the
decision or classification algorithm is

choose
w1 if pðxjw1ÞPðw1Þ> pðxjw2ÞPðw2Þ
w2 if pðxjw2ÞPðw2Þ> pðxjw1ÞPðw1Þ

�

PATTERN RECOGNITION 3



Note also that any monotonically nondecreasing function of
PðwijxÞ may be used for this test (see discriminant
functions, below). The significance of this approach is that
both a priori information (PðwiÞ) and measurement-related
information ( pðxjwiÞ) are combined in the decision
procedure. If Pðw1Þ 6¼Pðw2Þ, for example, this information
may be explicitly incorporated in the decision process.

Decision Regions and Discriminant Functions

A classifier partitions feature space into class-labeled deci-
sion regions. In order to use decision regions for a possible
and unique class assignment, these regions must cover Rd

and be disjoint (nonoverlapping). An exception to the last
constraint is the notion of fuzzy sets. The border of each
decision region is a decision boundary. With this viewpoint,
classification of feature vector x becomes quite simple: We
determine the decision region (in Rd) into which x falls
and assign x to this class. Although the classification strat-
egy is straightforward, the determination of decision
regions is a challenge. It is sometimes convenient, yet
not always necessary (or possible), to visualize decision
regions and boundaries. Moreover, computational and geo-
metric aspects of certain decision boundaries (e.g., linear
classifiers that generate hyperplanar decision boundaries)
are noteworthy.

A number of classifiers are based on discriminant func-
tions. In the c-class case, discriminant functions, denoted
giðxÞ; i ¼ 1; 2; . . . c, are used to partition Rd using the deci-
sion rule: Assign x to class wm (region Rm), where
gmðxÞ> giðxÞ 8 i ¼ 1; 2; . . . c and i 6¼m. The case in which
gkðxÞ ¼ glðxÞ defines a decision boundary.

Linear Separability (1,2). If a linear decision boundary
(hyperplanar decision boundary) exists that correctly
classifies all the training samples in H for a c ¼ 2 class
problem, the samples are said to be linearly separable. This
hyperplane, denoted Hij, is defined by parameters w and wo

in a linear constraint of the form

gðxÞ ¼ wTx�wo ¼ 0 (1)

gðxÞ separates Rd into positive and negative regions Rp and
Rn, where

gðxÞ ¼ wTx�wo ¼
> 0 if x2R p

0 if x2Hi j

< 0 if x2Rn

8<
: (2)

Problems that are not linearly separable are sometimes
referred to as nonlinearly separable or topologically
complex.

From a PR viewpoint, the computational advantages
(both in implementation and training) and ease of visuali-
zation of linear classifiers account for their popularity.
Seminal works include Refs. 11–13.

Using the Bayesian approach, one choice of discriminant
function is giðxÞ ¼ PðwijxÞ. In the case of equal a priori
probabilities and class-conditioned Gaussian density func-
tions, Equation (2) shows that the decision boundaries are
hyperplanes.

Training in StatPR. One of the problems not addressed in
the previous section is determination of the parameters for
the class-conditioned probability density functions. A
labeled set of training samples (i.e., sets of labeled feature
vectors with known class) are often used. This training set
is denoted H. In the case of Gaussian pdf models, it is only
necessary to estimate m

i
and

P
i for each class. Large-

dimension feature vectors, and consequently density func-
tions, lead to situations in which this approach is imprac-
tical. For example, in an image processing application, if we
use the gray-level measurements directly as features, an
image with 100 � 100 pixel spatial resolution yields a
1000 � 1 feature vector, and requires estimation of a
1000 � 1000 covariance matrix. This application is seldom
practical.

Nearest Neighbor Classification

An alternative, which is related to the minimum distance
classification approach, is the use of a nonparametric tech-
nique known as nearest neighbor classification. We illus-
trate the concept of a 1-nearest neighbor classification rule
(1-NNR) first. Given a feature vector x, we determine the
vector in H which is closest (in terms of some distance
measure) to x, and denote this vector x0. x is classified by
assigning it to the class corresponding to x0. A variation
is the k-NNR, where the k samples in H that are nearest
to x are determined, and the class of x is based on some
measure of the labels of these samples (e.g., a voting scheme
may be employed). This approach, although conceptually
and computationally straightforward, may be shown to
have a greater error rate than the minimum distance
classifier. However, the concept of classification based
on nearness, or similarity, of features is significant (see
Pattern Matching).

General Decision Rules. We formulate a loss function,
cost function, or risk function, denoted li j, as the cost or risk
of choosing class wi when class wj is the true class. For
example, in the c ¼ 2 (w1 or w2) case, there are four values of
li j (i.e., l11, l12, l21, l22). l11 and l22 are the costs (or
perhaps ‘‘rewards’’ for a correct decision), whereas l12

and l21 are the costs of a classification error. It is desirable
to measure or estimate overall classification risk. To mea-
sure this risk, the decision rule, cost functions, and the
observations x are used. A decision or classification to
choose class wi is denoted ai. A decision rule is a mapping
of the observed feature vector x into an ai through a decision
rule aðxÞ

aðxÞ!fa1;a2 . . . acg

As

Pðai \w jÞ ¼ Pðaijw jÞPðw jÞ

an overall risk measure for the c ¼ 2 case is

R ¼ l11Pða1jw1ÞPðw1Þ þ l21Pða2jw1ÞPðw1Þ
þl12Pða1jw2ÞPðw2Þ þ l22Pða2jw2ÞPðw2Þ

4 PATTERN RECOGNITION



Of course, the Pðaijw jÞ terms depend on the chosen mapping
aðxÞ!ai, which in turn depends on x. Thus, a measure of
conditional risk associated with a c ¼ 2 class decision rule is

RðaðxÞ!a1Þ ¼ Rða1jxÞ ¼ l11Pðw1jxÞ þ l12Pðw2jxÞ

for a1 and

RðaðxÞ!a2Þ ¼ Rða2jxÞ ¼ l21Pðw1jxÞ þ l22Pðw2jxÞ

for a2. For a c-class decision problem, the expected risk is
given by an application of the total probability theorem

RðaðxÞÞ ¼
Z

RðaðxÞjxÞpðxÞdx

Minimizing the conditional risk, RðaðxÞjxÞ thus minimizes
the expected risk. The lower bound on RðaðxÞÞ is often
referred to as the Bayes risk. In order to minimize
RðaðxÞÞ for c ¼ 2, because only two choices or classifications
(a1 or a2) are possible, the decision rule is formulated as

Rða1jxÞ
>
a2

<
a1

Rða2jxÞ

which may be expanded into

l11Pðw1jxÞ þ l12Pðw2jxÞ
>
a2

<
a1

l21Pðw1jxÞ þ l22Pðw2jxÞ

or

ðl11 � l21Þpðxjw1ÞPðw1Þ
>
a2

<
a1

ðl22 � l12Þpðxjw2ÞPðw2Þ

When l11 ¼ l22 ¼ 0 (there is no ‘‘cost’’ or ‘‘risk’’ in a correct
classification) and ðl11 � l21Þ< 0, the above may be rewrit-
ten as

pðxjw1Þ
pðxjw2Þ

>
a1

<
a2

ðl22 � l12ÞPðw2Þ
ðl11 � l21ÞPðw1Þ

This form yields a classifier based on a likelihood ratio test
(LRT).

For c classes, with the loss function

li j ¼
0 i ¼ j
1 i 6¼ j

�

all errors are equally costly. The conditional risk of decision
ai is

RðaðxÞ!aiÞ ¼
Xc

j¼1

li jPðwjjxÞ

¼
X
j 6¼ i

PðwjjxÞ ¼ 1� PðwijxÞ

To minimize the conditional risk, the decision rule is
therefore to choose the ai that maximizes PðwijxÞ (i.e.,
the wi for which PðwijxÞ is largest, which is intuitively
appealing. As PðwijxÞ is the a posteriori probability, this
results in the maximum a posteriori probability (MAP)
classifier, which may be formulated as

PðwijxÞ>
ai

Pðw jjxÞ 8 j 6¼ i

As before, Bayes rule is used to reformulate these tests in
terms of class-conditioned density functions and a priori
probabilities.

For general formulations of risk (through li j), the result-
ing decision rule is

RðaijxÞ<
ai

Rða jjxÞ 8 i 6¼ j

Clustering

In some cases, a training set, H, is not available for a PR
problem. Instead, an unlabeled set of typical features,
denoted Hu, is available (see unsupervised learning). For
each sample, x2Hu, the class origin or label is unknown.
Desirable attributes of Hu are that the cardinality of Hu is
large, all classes are represented in Hu, and subsets of Hu

may be formed into natural groupings or ‘‘clusters’’. Each
cluster most likely (or hopefully) corresponds to an under-
lying pattern class.

Clustering is a popular approach in unsupervised learn-
ing (14). Clustering applications in image analysis, for
example, include Refs. 15 and 16. Iterative algorithms
involving cluster splitting and merging in image analysis
are shown in Ref. 2.

Unsupervised learning approaches attempt to develop a
representation for the given sample data, after which a
classifier is designed. In this context, clustering may be
conceptualized as ‘‘how do I build my fences?’’ Thus, in
unsupervised learning, the objective is to define the classes.
A number of intuitive and practical approaches exist to this
problem. For example, a self-consistent procedure is

1. Convert a set of unlabeled samples Hu into a tentative
training set HT.

2. Using HT, apply a supervised training procedure and
develop corresponding discriminant functions/deci-
sion regions.

3. Use the results of 2 on Hu (i.e., reclassify Hu). If the
results are consistent with HT, stop, otherwise go to 1
and revise HT.

This approach ‘‘clusters’’ data by observing similarity.
There exist neural networks with this feature (see Self
Organizing Feature Maps). In many PR applications invol-
ving unsupervised learning, features naturally fall into
natural, easily observed groups. In others, the grouping
is unclear and very sensitive to the measure of similarity
used. The c-means algorithm [Equation (2)] and it’s deri-
vatives are one of the most popular approaches.

PATTERN RECOGNITION 5



The c-means Algorithm.

1. Choose the number of classes, c.

2. Choose class means or exemplars, denoted
m̂

i
; m̂

2
; . . . m̂

c
.

3. Classify each of the unlabeled samples xk in Hu.

4. Recompute the estimates for m̂
i
using the results of 3.

5. If the m̂
i
are consistent, stop, otherwise go to step 1, 2,

or 3.

Notice the essence of this approach is to achieve a self-
consistent partitioning of the data. Choice of initial para-
meters (c and m̂

i
ðoÞ) is a challenging issue, which has

spawned an area of study concerning cluster validity.

An Example of the c-means Algorithm. Figure 3 shows
examples of the c-means algorithm for the c ¼ 2 class case
on a set of unlabeled data (1). The trajectory of the m̂

i
as a

function of iteration is shown.

Iterative and Hierarchical Clustering. Clustering may be
achieved through a number of alternative strategies,
including iterative and hierarchical approaches. Hierarch-
ical strategies may further be subdivided into agglom-
erative (merging of clusters) or devisive (splitting of clus-
ters). Hierarchical strategies have the property that not all
partitions of the data are considered. However, when the
number of samples is large, hierarchical clustering may be
inappropriate. In an agglomerative procedure, two sam-
ples, once in the same class, remain in the same class
throughout subsequent cluster merging, which may lead
to resulting data partitions being suboptimal.

Clustering Criterion Functions. Developing appropriate
similarity measures dðxi; x jÞ is paramount in clustering.

For a given partition of Hu, denoted P, a measure of the
‘‘goodness’’ of the overall clustering is given by clustering
criterion function, J(P). If

JðP1Þ<JðP2Þ

P1 is a better partition than P2. Once a suitable J(P) is
defined, the objective is to find Pm such that

JðPmÞ ¼ P
min
ðJðPÞÞ

in a computationally efficient manner, which is a problem in
discrete optimization. One of the more popular clustering
metrics is the sum of squared error (SSE) criterion. Given ni

samples in Hi, with sample mean mi, where

mi ¼
1

ni

X
xj 2Hi

x j

the SSE criterion, JSSE is defined as

JSSEðPÞ ¼
Xc

i¼1

X
x j 2Hi

kx�mik2

JSSE thus indicates the total ‘‘variance’’ for a given parti-
tion. For example, cluster-swapping approaches are a var-
iant on the c-means iterative algorithm that implements a
‘‘good’’ cluster reorganization strategy, where ‘‘good’’ means

JSSEðPkþ1Þ � JSSEðPkÞ

For illustration, our reorganization strategy is restricted
to the movement of a single vector x j from Hi to Hj, deno-

ted H!
x j

H j. The revised clusters in Pkþ1 are denoted Hi

Figure 3. Example of the trajectories of
the class means in the c-means algorithm
(Adapted from Ref. 1).

–10.

–10.

–5.

–5.

5.

5.

10.

10.

x1

x2

m1(0) = m2(0)^ ^

6 PATTERN RECOGNITION



and Hj. It is possible to show Hi!
xk

H j decreases JSSE(Pk) if

n j

n j þ 1

� �
kx j �m jk2 <

ni

ni � 1

� �
kx j �mik2

Hierarchical Clustering. Consider a hierarchical clus-
tering procedure in which clusters are merged so as to
produce the smallest increase in the SSE at each step.
The ith cluster or partition, denoted Hi, contains ni samples
with sample mean mi. The smallest increase results from
merging the pair of clusters for which the measure Mij,
where

Mi j ¼
nin j

ni þ n j
kmi �m jk2

is minimum. Recall

Je ¼
Xc

j¼1

X
x2Hi

kx�mik2

(i.e., Je measures the total squared error incurred in repre-
senting the n samples x1; . . . xn by c cluster means
m1 . . . mc).

The change in the SSE after merging clusters i and j is

DJe ¼ �
X

x2Hi

kx�mik2 þ
X

x2Hj

kx�m jk2
0
@

1
A

þ
X

x2HiorHj

kx�mi jk2

where

mi ¼
1

ni

X
x2Hi

x m j ¼
1

n j

X
x2Hj

x

and

mi j ¼
1

ni þ n j

X
x2Hi or Hj

x

The objective is to merge clusters so that DJe is minimum.
It is possible to show

DJe ¼
nin j

ðni þ n jÞ
km j �mik2 ¼

nin j

ðni þ n jÞ
kmi �m jk2

and therefore use this measure in choosing clusters to
merge.

The popularity of clustering has spawned a sizable
and varied library of clustering algorithms and software
(17), one of the most popular being the ISODATA algorithm
(10–18).

SYNTACTIC (STRUCTURAL) PATTERN RECOGNITION

Many times the significant information in a pattern is
not merely in the presence or absence, or the numerical
values, of a set of features. Instead, the interrelationships
or interconnections of features yield important structural
information, which facilitates structural description or
classification, which is the basis of syntactic (or structural)
PR. Figure 4 shows the general strategy (1).

In using SyntPR approaches, it is necessary to quantify
and extract structural information and determine the
structural similarity of patterns. One syntactic approach
is to relate the structure of patterns with the syntax of a
formally defined language in order to capitalize on the vast
body of knowledge related to pattern (sentence) generation
and analysis (parsing). Syntactic PR approaches are
presented in Refs. 1, 19–23. A unified view of StatPR and
SyntPR is shown in Ref. 24. An extended example of the
use of SyntPR in an image interpretation application is
shown in Ref. 25.

Typically, SyntPR approaches formulate hierarchical
descriptions of complex patterns built up from simpler
subpatterns. At the lowest level, primitive elements or
‘‘building blocks’’ are extracted from the input data. One
distinguishing characteristic of SyntPR involves the choice
of primitives. Primitives must be subpatterns or building
blocks, whereas features (in StatPR) are any measurements.

Syntactic structure quantification is shown using two
approaches: formal grammars and relational descriptions
(attributed graphs). These tools allow structurally quanti-
tative pattern representation, which facilitate recognition,
classification, or description. A class of procedures for
syntactic recognition, including parsing (for formal gram-
mars) and relational graph matching (for attributed rela-
tional graphs) are then developed. Although it is not
mandatory, many SyntPR techniques are based on genera-
tion and analysis of complex patterns by a hierarchical
decomposition into simpler patterns.

Formal Grammars and Syntactic Recognition by Parsing

The syntax rules of formal grammars may be used
to generate patterns (possibly from other patterns)
with constrained structural relations. A grammar may
therefore serve to model a class-specific pattern-generating
source that generates all the patterns with a class-specific

“Library” of
classes,

categorized
by structure

Class 1
structure

Structural
analysis

(Structural)
Matcher*

Class 2
structure

Class c
structure

Input Relevant
match(es)

Figure 4. Generic syntactic (or structural) PR system (Adapted
from Ref. 1).

PATTERN RECOGNITION 7



structure. Furthermore, it is desirable to have each class-
specific grammar derivable from a set of sample patterns
(i.e., training must be considered, which raises the issue of
grammatical inference.

Useful introductions to formal grammars are available
in Refs. 26 and 27. References 19, 21–23 are devoted
entirely to SyntPR.

Grammars. A grammar consists of the following four
entities:

1. A set of terminal or primitive symbols (primitives),
denoted VT (or, alternately,

P
). In many applications,

the choice of the terminal set or primitives is difficult
and has a large component of ‘‘art’’ as opposed to
‘‘science.’’

2. A set of nonterminal symbols, or variables, which are
used as intermediate quantities in the generation of
an outcome consisting solely of terminal symbols.
This set is denoted as VN (or, alternately, N).

3. A set of productions, or production rules or rewriting
rules that allow the previous substitutions. It is this
set of productions, coupled with the terminal symbols,
which principally gives the grammar its ‘‘structure.’’
The set of productions is denoted P.

4. A starting (or root) symbol, denoted S. S2VN.

Note that VT and VN are disjoint sets (i.e., VT \VN ¼ f).
Thus, using the above definitions, we formally denote a

grammar G as the four-tuple:

G ¼ ðVT;VN ;P;SÞ

Constraining Productions. Given VT and VN, the produc-
tions P may be viewed as constraints on how class-specific
patterns may be described. Different types of grammars
place restrictions on these mappings. For example, it is
reasonable to constrain elements of P to the form

A!B

where

A2 ðVN [VTÞþ � VþT

and

B2 ðVN [VTÞ�

Thus, A must consist of at least one member of VN, (i.e., a
nonterminal), and B is allowed to consist of any arrange-
ment of terminals and nonterminals. This example is a
partial characterization of phrase structure grammar.

Grammar Application Modes. A grammar may be used in
one of two modes: Generative: The grammar is used to
create a string of terminal symbols using P; a sentence in
the language of the grammar is thus generated.

Analytic: Given a sentence (possibly in the language of
the grammar), together with specification of G, one seeks to
determine if the sentence was generated by G and, if so, the
structure (usually characterized as the sequence of produc-
tions used) of the sentence.

The following formal notation is used. Symbols
beginning with a capital letter (e.g., S1 or S) are elements
of VN. Symbols beginning with a lowercase letter (e.g., a
or b) are elements of VT. n denotes the length of string s,
for example,

n ¼ jsj

Greek letters (e.g., a and b) represent (possibly empty)
strings, typically comprised of terminals or nonterminals.

Constraints on the production or rewrite rules, P, in
string grammar G are explored by considering the ‘‘gen-
eral’’ production form

a1!b2

which means string a1 ‘‘is replaced by’’ stringb2. In general,
a1 and b2 may contain terminals or nonterminals.

In a context-free grammar, the production restrictions
are

a1 ¼ S1 2VN

that is, a1 must be a single nonterminal for every produc-
tion in P, and

jS1j � jb2j

An alternate characterization of a T2 grammar is that
every production must be of the form

S1!b2

where b2 2 ðVN [VTÞ� � f�g. Note the restriction in the
above productions to the replacement of S1 by string b2

independently of the context in which S1appears.
Context-free grammars can generate a string of term-

inals or nonterminals in a single production. Moreover,
because productions of the form A!aAb are allowed,
context-free grammars are self-embedding.

Context-free grammars are important because they are
the most descriptively versatile grammars for which effec-
tive (and efficient) parsers are available. The production
restrictions increase in going from context-sensitive to
context-free grammars.

Finite-state or regular grammars are extremely popu-
lar. The production restrictions in a finite-state or regular
grammar are those of a context-free grammar, plus the
additional restriction that at most one nonterminal symbol
is allowed on each side of the production. for example,

a1 ¼ S1 2VN

jS1j � jb2j

8 PATTERN RECOGNITION



and productions are restricted to

A1!a

or

A1!aA2

Finite-state grammars have many well-known character-
istics that explain their popularity, including simple gra-
phical representations and known tests for equivalence.
Finite-state grammars are useful when analysis (parsing)
is to be accomplished with finite-state machines (26).

Other Grammar Types Used for SyntPR. Grammars other
than string grammars exist and are usually distinguished
by their terminals and nonterminals (as opposed to
constraints on P), which are useful in 2-D and higher-
dimensional pattern representation applications in that
the structure of the productions involving terminals and
nonterminals is greater than one dimensional. Higher-
dimensional grammars also facilitate relational descrip-
tions. Productions in higher-dimensional grammars are
usually more complex, because rewriting rules embody
operations more complex than simple 1-D string rewriting.
For example, in 2-D cases, standard ‘‘attachment points’’
are defined. Two of the more popular are tree grammars and
web grammars(19). Not surprisingly, there is little correla-
tion between the dimension of the grammar used for pat-
tern generation and the dimensionality of the pattern
space. For example, a 1-D grammar may be used for 2-D
or 3-D patterns.

Example of Grammatical Pattern Description for
Chromosome Classification. Figure 5, excerpted from
Ref. 28, shows the conversion of a chromosome outline to
a string in a formal grammar, where the primitives and
productions are given. Using the primitives and produc-
tions of grammar, GM, given in part (a), the string x ¼
cbbbabbbbdbbbbabbbcbbbabbbbdbbbbabbb may be pro-
duced to describe the sample chromosome outline shown
in part (b).

Parsing
Chomsky Normal Form (CNF). A CFG is in Chomsky

Normal Form (CNF) if each element of P is in one of the
following forms:

A ! BC where A;B;C2VN

A ! a where 2VN ; a2VT

The Cocke–Younger–Kasami (CYK) Parsing Algorithm.
The CYK algorithm is a parsing approach that will parse
string x ina number of steps proportional to jxj3. The CYK
algorithm requires the CFG be in Chomsky Normal Form
(CNF). With this restriction, the derivation of any string
involves a series of binary decisions. First, the CYK table is
formed. Given string x ¼ x1; x2 . . . xn, where xi 2VT; jxj ¼ n,
and a grammar G, we form a triangular table with entries tij

indexed by i and j where 1 � i � n and 1 � j � ðn� iþ 1Þ.

The origin is at i ¼ j ¼ 1, and entry t11 is the lower left-hand
entry in the table. t1n is the uppermost entry in the table.
This structure is shown in Fig. 6.

To build the CYK table, a few simple rules are used.
Starting from location (1,1), if a substring ofx, beginning
withxi, and of lengthjcan be derived from a nonterminal,
this nonterminal is placed into cell (i,j). If cell (1,n) contains
S, the table contains a valid derivation of x in L(G). It is
convenient to list the xi, starting with i ¼ 1, under the
bottom row of the table.

Example: Sample Use of Grammars and the CYK Parsing
Algorithm for Recognition

Sample Grammar Productions. Sample grammar produc-
tions are shown below. With these constraints, notice there

t14

t13

t12

t11 t21 t31 t41

t22 t32

t23

1

1

2

3

4

j

2 3 4 i

(strings of length 4)

(strings of length 3)

(strings of length 2)

(strings of length 1)

Figure 6. Structure of CYK parse table (Adapted from Ref. 1).

GM = (VTM, VNM, PM, S)

VNM = {S, A, B, D, H, J, E, F}

VTM = {a, ; b, ; c, ; d, }

PM : S→AA

A→cB

B→FBE

B→HDJ

D→FDE

D→d

F→b

E→b

H→a

J→a

(a)

(b)

a

a

a

a

b
b b

b

b
b

b
b

b b

b b b b

b

b
b b b

b
b

b b b

bb
bb

d

d
c c

Figure 5. Conversion of a chromosome outline to a string in a
formal grammar (excerpted from Ref. 28). (a) Primitives and
productions in L(G). (b) Sample chromosome outline yielding
string x ¼ cbbbabbbbdbbbbabbbcbbbabbbbdbbbbabbb.

PATTERN RECOGNITION 9



are six forms for the derivation of the string x ¼ aabb.

S ! ABjBB

A ! CCjABja
B ! BBjCAjb
C ! BAjAAjb

Parse Table for String x ¼ aabb. Construction of an exam-
ple parse table is shown in Fig. 7. Recall cell entry (i,j)
corresponds to the possibility of production of a string of
length j, starting with symbol xi. The table is formed from
the bottom row ( j ¼ 1) upward. Entries for cells (1, 1), (2, 1),
(3, 1), and (4, 1) are relatively easy to determine because
they each correspond with production of a single terminal.
For the second ( j ¼ 2) row of the table, all nonterminals
that could yield derivations of substrings of length 2,
beginning with xii ¼ 1; 2; 3, must be considered. For exam-
ple, cell (1, 2) corresponds with production of two-terminal
long-string beginning with ‘‘a.’’ Alternately, it is only neces-
sary to consider nonterminals that produce AA, as shown
in the j ¼ 1 row of the table. From Fig. 7, only nontermi-
nal ‘‘C,’’ in the production C!BAjAAjb satisfies this
parameter.

Forming the third and fourth ( j ¼ 3 and j ¼ 4, respec-
tively) rows of the table is slightly more complicated. For
example, cell (1, 3) corresponds with strings of length 3,
beginning with terminal x1 (‘‘a’’) in this case, which requires
examination of cells (1, 1) and (2, 2), corresponding to
producing the desired string with 1 nonterminal followed
by 2 nonterminals, (denoted {1 þ 2} hereafter) as well as
cells (1, 2) and (3, 1) (denoted the {2 þ 1} derivation). For
the former, it is necessary to consider production of ‘‘AS,’’
and ‘‘AA,’’ and nonterminal ‘‘C’’ is applicable. For the latter,
the production of ‘‘CB’’ and ‘‘CC’’ is considered, yielding
‘‘A.’’ Thus, cell (1, 3) contains nonterminals ‘‘C’’ and ‘‘A.’’
Similarly, for cell (2, 3), cells (2, 1) and (3, 2) (the {1 þ 2}
derivation) as well as cells (2, 2) and (4, 1) (the {2 þ 1}
derivation) must be considered.

Finally, formation of cell (1, 4) is considered. Possible cell
pairings to consider are summarized below:

(1, 1) and (2, 3) f1þ 3g!AS;AC;AA : C

(1, 2) and (3, 2) f2þ 2g!CS;CB;CA : B

(1, 3) and (4, 1) f3þ 1g!CB;CC;AB;AC : A;S

Cell pairings that yield a possible nonterminal are shown
underlined. Thus, (1, 4) contains nonterminals C, B, A, S.
As this cell pairing includes the starting symbol, the parse
succeeds and ‘‘aabb’’ is a valid string in the language of this
grammar. Note that because the grammar is in CNF, it is
never necessary to consider more than two-cell pairings
(although as we increase j, the number of possible pairings
increases).

String Matching. A somewhat simpler approach to clas-
sification or recognition of entities using syntactic descrip-
tions is a matching procedure. Consider the c class case.
Class-specific grammars G1;G2; . . . Gc are developed. Given
an unknown description, x, to classify, it is necessary to
determine if x2LðGiÞ for i ¼ 1; 2; . . . c. Suppose the lan-
guage of each Gi could be generated and stored in a
class-specific library of patterns. By matching x against
each pattern in each library, the class membership of x
could be determined. String matching metrics yield classi-
fication strategies that are a variant of the 1-NNR rule for
feature vectors, in which a matching metric using strings
instead of vectors is employed.

There are several shortcomings to this procedure. First,
often jLðGiÞj ¼ 1, therefore the cataloging or library-based
procedure is impossible. Second, even if LðGiÞ for each i is
denumerable, it usually requires very large libraries. Con-
sequently, the computational effort in matching is exces-
sive. Third, it is an inefficient procedure. Alternatives that
employ efficient search algorithms, prescreening of the
data, the use of hierarchical matching, and prototypical
strings are often preferable. Note that in SyntPR, the
similarity measure(s) used must account for the similarity
of primitives as well as similarity of structure.

Graphical Approaches Using Attributed Relational Graphs

Digraphs and Attributed Relational Graphs (ARGs).
Directed graphs or digraphs are valuable tools for repre-
senting relational information. Here we represent graph G
as G ¼ fN;Rgwhere N is a set of nodes (or vertices) and R is
a subset of N �N, indicating arcs (or edges) in G.

In addition to representing pattern structure, the repre-
sentation may be extended to include numerical and per-
haps symbolic attributes of pattern primitives (i.e.,
relational graph nodes). An extended representation
includes features or properties as well as relations with
other entities. An attributed graph, as defined below,
results.

Attributed Graphs. An attributed graph, Gi, is a 3-tuple
and is defined as follows:

Gi ¼ fNi;Pi;Rig

C, B, A,
S,

C, A S, C, A

S, B, A

B, C B, C

or

C

A A

S, A

i = 1 i = 2 i = 3 i = 4

a a b b = x

Note: S is here∴x ∈L(G)(strings of length 4) j = 4

(strings of length 3) j = 3

(strings of length 2) j = 2

(strings of length 1) j = 1

Input string to parse

Figure 7. Construction of a sample parse table for the string x ¼
aabb (Adapted from Ref. 1).

10 PATTERN RECOGNITION



where Ni is a set of nodes, Pi is a set of properties of these
nodes, and Ri is a set of relations between nodes. (An
alternative viewpoint is that Ri indicates the labeled arcs
of Gi, where if an arc exists between nodes a and b, then Ri

contains element (a, b).)

ARG Example: Character Recognition. Figure 8 (courtesy
of R.D. Ferrell) shows an example of ARGs used to quantify
the structure of block characters ‘‘C’’ and ‘‘L.’’ Each line
segment of the character is an attributed node in the
corresponding graph, with a single attribute indicating
either horizontal or vertical spatial orientation. Node rela-
tions used indicate whether the segments meet at a 90-or
180-degree angle, as well as connectedness above or to the
left.

Comparing ARGs. One way to recognize structure using
graphs is to let each pattern (structural) class be repre-
sented by a prototypical relational graph. An unknown
input pattern is then converted into a structural represen-

tation in the form of a representational graph, and this
graph is then compared with the relational graphs for each
class. Notice that ‘‘compared’’ does not necessarily mean
matched verbatim.

ARG Matching Measures that Allow Structural Deforma-
tions. In order to allow structural deformations, numerous
match or ‘‘distance’’ measures have been proposed. These
measures include (29, 30)

1. Extraction of features from G1 and G2, thereby form-
ing feature vectors, x1 and x2, respectively, which is
followed by the use of StatPR techniques to compare
x1 and x2. Note the features are graph features as
opposed to direct pattern features.

2. Using as a matching metric the minimum number of
transformations necessary to transformG1 (the input)
intoG2 (the reference). Common transformations
include: node insertion, node deletion, node splitting,
node merging, vertex insertion, and vertex deletion.

Graph Transformation Approaches. Here we consider a
set of comparisons, transformations, and associated costs in
deriving a measure DðGi;GjÞ. Desirable attributes of
DðGi;GjÞ are

1. DðGi;GjÞ ¼ 0.

2. DðGi;GjÞ> 0 if i 6¼ j.

3. DðGi;GjÞ ¼ DðGj;GiÞ.
4. DðGi;GjÞ � DðGi;GkÞ þDðGk;GjÞ.

Property 4 is referred to as the triangle inequality.
Property 3 requires wni ¼ wnd and wei ¼ wed, where wni

is the cost of node insertion, wnd is the cost of node deletion,
wei is the cost of edge insertion, and wed is the cost of edge
deletion.

Node Matching Costs and Overall Cost in Matching ARGs.
As nodes possess attributes and, therefore, even without
considering relational constraints ‘‘all nodes are not
equal,’’ a similarity measure between node pi of Gi and
node qj of Gj is required. Denote this cost fnðpi; q jÞ. For
candidate match between G1 and G2, denoted x, with p
nodes, the total cost is

cnðxÞ ¼
X

fnðpi; q jÞ

where the summation is over all corresponding node pairs,
under node mapping x. For a candidate match configu-
ration (i.e., some pairing of nodes and subsequent trans-
formations), the overall cost for configuration x is

DSðxÞ ¼ wnicni þwndcnd þwbicbi þwbdcbd þwncnðxÞ

and the distance measure, D, is defined as

D ¼ x
minfDsðxÞg

a

b
b

c

a
above

ab
ov

e

above

abovec

90°

90°

90°

1_ο

1_ο

1_ο

x

y

z

180°

90°

180°

x

y

z

Relations: Attributes:

above

1_o

right angle

in line connection

connected above

connected to the left

vertical segment

horizontal segment

Figure 8. Example of ARGs used to quantify the structure of
block characters.

PATTERN RECOGNITION 11



NEURAL PATTERN RECOGNITION

Modern digital computers do not emulate the computa-
tional paradigm of biological systems. The alternative of
neural computing emerged from attempts to draw upon
knowledge of how biological neural systems store and
manipulate information, which leads to a class of artificial
neural systems termed neural networks and involves an
amalgamation of research in many diverse fields such as
psychology, neuroscience, cognitive science, and systems
theory. Neural networks are a relatively new computa-
tional paradigm, and it is probably safe to say that the
advantages, disadvantages, applications, and relation-
ships to traditional computing are not fully understood.
Neural networks are particularly well suited for some
pattern association applications.

Fundamental neural network architecture and applica-
tion information are available in Refs. 2, 31–34. Rosenblatt
(35) is generally credited with initial perceptron research.
The general feed-forward structure is also an extension of
the work of Minsky and Papert (36) and the early work of
Nilsson (37) on the transformations enabled by layered
machines, as well as the effort of Widrow and Hoff (38)
in adaptive systems. A comparison of standard and neural
classification approaches is found in Ref. (39).

ANN Components

Basically, three entities characterize an ANN

1. The network topology, or interconnection of neural
‘‘units;’’

2. The characteristics of individual units or artificial
neurons; and

3. The strategy for pattern learning or training.

As in the SyntPR and StatPR approaches to PR, the
success of the NeurPR approach is likely to be strongly
influenced by the quality of the training data and algo-
rithm. Furthermore, existence of a training set and a
training algorithm does not guarantee that a given network
will ‘‘train’’ or generalize correctly for a specific application.

Key Aspects of Neural Computing

The following are key aspects of neural computing. The
overall computational model consists of a variable inter-
connection of simple elements, or units. Modifying patterns
of inter-element connectivity as a function of training data
is the key learning approach. In other words, the system
knowledge, experience, or training is stored in the form of
network interconnections.

To be useful, neural systems must be capable of storing
information (‘‘trainable’’). Neural PR systems are trained
with the hope that they will subsequently display correct
‘‘generalized’’ behavior, when presented with new patterns
to recognize or classify. That is, the objective is for the
network (somehow) in the training process to develop an
internal structure that enables it to correctly identify or
classify new similar patterns.

Many open questions regarding neural computing and
its application to PR problems exist. Furthermore, the
mapping of a PR problem into the neural domain (i.e.,
the design of a problem-specific neural architecture) is a
challenge that requires considerable engineering judg-
ment. A fundamental problem is selection of the network
parameters, as well as the selection of critical and repre-
sentable problem features.

Neural Network Structures for PR. Several different ‘‘gen-
eric’’ neural network structures are useful for a class of PR
problems. Examples are:

The Pattern Associator (PA). This neural implementation
is exemplified by feed-forward networks (see Feed-forward
Networks). The most commonly used learning (or training)
mechanism for FF networks is the backpropagation
approach using the generalized delta rule.

The Content-Addressable or Associative Memory Model
(CAM or AM). This neural network structure is best exem-
plified by the recurrent network often referred to as the
Hopfield model. Typical usage includes recalling stored pat-
terns when presented with incomplete or corrupted initial
patterns. (see Hopfield (Recurrent) Networks for PR).

Self-Organizing Networks. These networks exemplify
neural implementations of unsupervised learning in the
sense that they typically cluster or self-organize input pat-
terns intoclasses or clustersbased on some form of similarity.

Perceptrons

Perceptron and ADALINE Unit Structure. The Perceptron
is a regular feed-forward network layer with adaptable
weights and hardlimiter activation function. Rosenblatt
(35) is generally credited with initial perceptron research.
The efforts of Widrow and Hoff in adaptive systems, spe-
cifically the Adaline and Madeline structures presented in
Refs. 40 and 41 are also relevant. For brevity, we will
consider them as one generic structure.

The units in the perceptron form a linear threshold unit,
linear because of the computation of the activation value
(inner product) and threshold to relate to the type of activa-
tion function (hardlimiter). Training of a perceptron is
possible with the perceptron learning rule. As shown in
Fig. 9, the basis for the perceptron/adaline element is a

+1

–1

x0

x1

xL

wL

w1

w0

Adaptive
Algorithm

Input
Signal
Vector

Error
Signal

–
+

Analog
Response Binary

output

d
Desired

Response

q = SGN(y)

ε

y∑

∑

Figure 9. Basic perceptron/adaline element (Adapted from
Ref. 41).

12 PATTERN RECOGNITION



single unit whose net activation is computed using

neti ¼
X

j

wi jx j ¼ wTx (3)

The unit output is computed by using a ‘‘hard limiter,’’
threshold-type nonlinearity, namely the signum function,
for example, for unit i with output oi

oi ¼
þ1 i f neti� 0
�1 i f neti < 0

�
(4)

The unit has a binary output; however, the formation of neti

(as well as weight adjustments in the training algorithm) is
based on the linear portion of the unit (i.e., the mapping
obtained before application of the nonlinear activation
function).

Combination of Perceptrons or Adaline Units to Achieve
More Complex Mappings. Layers of adaline units, often
referred to as multilayer perceptrons or MLPs may be
used to overcome the problems associated with nonlinearly
separable mappings. One of the biggest shortcomings of
MLPs, however, is the availability of suitable training
algorithms. This shortcoming often reduces the applicabil-
ity of the MLP to small, ‘‘hand-worked’’ solutions. As shown
in Fig. 10, combinations of adaline units yield the madaline
(modified adaline) or MLP structure, which may be used to
form more complex decision regions.

Feed-forward Networks

The feed-forward (FF) network is in some sense an exten-
sion of the madeline/perceptron structure composed of a
hierarchy of processing units, organized in a series of two or
more mutually exclusive sets of neurons or layers. The first,
or input layer, serves as a holding site for the values applied
to the network. The last, or output, layer is the point at

which the final state of the network is read. Between these
two extremes lie zero or more layers of hidden units; it is
here that the real mapping or computing takes place. Links,
or weights, connect each unit in one layer to only those in
the next higher layer. There is an implied directionality in
these connections, in that the output of a unit, scaled by the
value of a connecting weight, is fed forward to provide a
portion of the activation for the units in the next higher
layer. Figure 11 illustrates the typical feed-forward net-
work. The network as shown consists of a layer of d input
units (Li), a layer of c output units (Lo), and a variable
number (5 in this example) of internal or ‘‘hidden’’ layers
(Lhi

) of units. Observe the feed-forward structure in which
the inputs are directly connected to only units in Lo and the
outputs of layer Lk units are only connected to units in layer
Lkþ1 or are outputs if Lk ¼ Lo.

Training Feed-forward Networks. Once an appropriate
network structure is chosen, much of the effort in designing
a neural network for PR concerns the design of a reasonable
training strategy. Often, for example, while observing a
particular training experiment, the designer will notice the
weight adjustment strategy ‘‘favoring’’ particular S-R pat-
terns, becoming ‘‘painfully’’ slow (perhaps while stuck in a
local minimum), becoming unstable, or oscillating between
solutions, which necessitates engineering judgment in con-
sidering the following training parameters:

� train by pattern or epoch;

� use of momentum and corresponding weight;

� learning weight/weight changes over time;

� sequential versus random ordering of training vectors;

� whether the training algorithm is ‘‘stuck’’ at a local
energy minimum;

� ‘‘suitable’’ unit biases (if applicable); and

� appropriate initial conditions on biases, weights, and
so on.

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

Input
pattern

Hidden
layer

Hidden
layer

Output
layer

Output

ADALINE
Neurons

ADALINE
Neurons

ADALINE
Neurons

Figure 10. Using combinations of
adaline units yield the MLP (mada-
line) (Adapted from Ref. 41).

PATTERN RECOGNITION 13



Backpropagation - A Multistep Procedure for Training FF
Networks. Beginning with an initial (possibly random)
weight assignment for a three-layer feed-forward network,
proceed as follows:

Step 1: Present input x p, form outputs, oi, of all units in
network.

Step 2: Update wji for output layer.

Step 3: Update wji for hidden layer(s).

Step 4: Stop if updates are insignificant or error is below
a preselected threshold, otherwise proceed to Step 1.

This process leads to an adjustment scheme based on
backpropagation. A summary of the GDR equations is
given below in Table 1.

Hopfield (Recurrent) Networks for Pattern Recognition

Hopfield (42,43) characterized a neural computational
paradigm for using a neural net as an autoassociative
memory. The following variables are defined:

oi: the output state of the ith neuron

ai: the activation threshold of the ith neuron

wij: the interconnection weight (i.e., the strength of
the connection FROM the output of neuron j TO
neuron i).

Thus,
P

j wi jo j is the total input or activation (neti) to
neuron i. Typically, wi j 2R, although other possibilities
(e.g., binary interconnections) are possible. With the con-
straints developed below, for a d-unit network there are
dðd�1Þ

2 possibly nonzero and unique weights.
In the Hopfield network, every neuron is allowed to be

connected to all other neurons, although the value of wij

varies (it may also be zero to indicate no unit interconnec-
tion). To avoid false reinforcement of a neuron state, the
constraint wii ¼ 0 is also employed. The wij values, there-
fore, play a fundamental role in the structure of the net-
work. In general, a Hopfield network has significant
interconnection (i.e., practical networks seldom have
sparse W matrices, where W ¼ ½wi j�).

Network Dynamics, Unit Firing Characteristic, and State
Propagation. A simple form for Hopfield neuron firing char-
acteristics is the nonlinear threshold device

oi ¼
1 if

P
j; j 6¼ i wi jo j >ai

0 otherwise

�

Notice the neuron activation characteristic is nonlinear.
Commonly, the threshold ai ¼ 0. Viewing the state of a
d-neuron Hopfield network at time (or iteration) tk as an
d� 1 vector, oðtkÞ, the state of the system at time tkþ1

(or iteration kþ 1 in the discrete case) may be described
by the nonlinear state transformation

WoðtkÞ)* oðtkþ1Þ

Figure 11. The typical feed-forward net-
work, consisting of layers of simple units.
(Adapted from Ref. 1).

Table 1. Summary of the GDR Equations for Training
Using Backpropagation

(pattern) error measure: Ep ¼ 1

2

P
j t p

j � op
j

� �2

(pattern) weight
correction

D pwji ¼ �d p
j
~op

i

(output units)
(internal units)�

dp
j ¼ t p

j � op
j

� �
f 0j netp

j

� �

dp
j ¼ f 0jðnetp

j Þ
X

n

dp
n wn j

*where d p
n are from next layer ðLkþ1Þoutput derivative

(assumes sigmoidal
characteristic) f 0jðnetp

j Þ ¼ op
j ð1� op

j Þ

14 PATTERN RECOGNITION



where the )* operator indicates the element by element
state transition characteristic used to form oðtkþ1Þ. The
model may be generalized for each unit to accommodate an
additional vector of unit bias inputs.

The network state propagation suggests that the unit
transitions are synchronous, that is, each unit, in lockstep
fashion with all other units, computes its net activation
and subsequent output. Although this is achievable in
(serial) simulations, it is not necessary. Also empirical
results have shown that it is not even necessary to update
all units at each iteration. Surprisingly, network conver-
gence is relatively insensitive to the fraction of units
(15–100%) updated at each step.

Hopfield Energy Function and Storage Prescription. For
the case of ai ¼ 0, stable (stored) states correspond to
minima of the following energy function

E ¼ � 1

2

� �XX
i 6¼ j

wi joio j

which leads to the rule for determination of wij and a set of
desired stable states os; s ¼ 1; 2; . . . n, (i.e., the training set
(stored states) H ¼ fo1; o2; . . . ; ong) as

wi j ¼
Xn

s¼1

ð2os
i � 1Þð2os

j � 1Þ i 6¼ j

(with the previous constraint wii ¼ 0). The convergence of
the network to a stable state involves the Hamming dis-
tance between the initial state and the desired stable state.
Different stable states that are close in Hamming distance
are undesirable, because convergence to an incorrect stable
state may result. Reference 42 suggests that an n-neuron
network allows approximately 0.15n stable states; other
researchers have proposed more conservative bounds (44).

Hopfield PR Example: Character Recall. Figure 12 shows a
Hopfield network used as associative memory for recall of
character data. A 10 � 10 pixel array is used to represent
the character, yielding 100 pixels. Each pixel value is the
state of a single, totally interconnected unit in a Hopfield
network. Thus, the network consists of 100 units and

approximately 100 � 100 interconnection weights. The
network was trained using characters ‘‘A,’ ‘‘C,’ ‘‘E,’’ and
‘‘P.’ The top row of Fig. 12 shows initial states for the
network; these are distorted patterns corresponding to
the training patterns. Succeeding rows show the state
evolution of the network. Note that the network converged
to elements of H in at most two iterations in this example.

Kohonen Self-Organizing Feature Maps (SOFMs)

Kohonen (45) and Kangas et al. (46) have shown an alter-
native neural learning structure involving networks that
perform dimensionality reduction through conversion of
feature space to yield topologically ordered similarity
graphs or maps or clustering diagrams (with potential
statistical interpretations). In addition, a lateral unit inter-
action function is used to implement a form of local compe-
titive learning.

1-D and 2-D spatial configurations of units are used to
form feature or pattern dimensionality reducing maps. For
example, a 2-D topology yields a planar map, indexed by a
2-D coordinate system. Of course, 3-D and higher-dimen-
sional maps are possible. Notice each unit, regardless of the
topology, receives the input pattern x ¼ ðx1; x2 . . . xdÞT in
parallel. Considering the topological arrangement of the
chosen units, the d-dimensional feature space is mapped
into 1-D, 2-D, 3-D, and so on. The coordinate axes used to
index the unit topology, however, have no explicit meaning
or relation to feature space. They may, however, reflect a
similarity relationship between units in the reduced
dimensional space, where topological distance is propor-
tional to dissimilarity.

Choosing the dimension of the feature map involves
engineering judgment. Some PR applications naturally
lead to a certain dimension; for example, a 2-D map may
be developed for speech recognition applications, where 2-D
unit clusters represent phonemes (47). The dimensions
of the chosen topological map may also influence the train-
ing time of the network. Once a topological dimension is
chosen, the concept of a network neighborhood (or cell or
bubble) around each neuron may be introduced. The neigh-
borhood, denoted Nc, is centered at neuron uc, and the cell or
neighborhood size (characterized by its radius in 2-D, for
example) may vary with time (typically in the training
phase). For example, initially Nc may start as the entire
2-D network, and the radius of Nc shrinks as iteration
(described subsequently) proceeds. As a practical matter,
the discrete nature of the 2-D net allows the neighborhood
of a neuron to be defined in terms of nearest neighbors (e.g.,
with a square array the four nearest neighbors of uc are its
N, S, E, and W neighbors; the eight nearest neighbors would
include the ‘‘corners’’).

Training the SOFM. Each unit, ui, in the network has the
same number of weights as the dimension of the input
vector and receives the input pattern x ¼ ðx1; x2 . . . xdÞT
in parallel. The goal of the self-organizing network, given
a large, unlabeled training set, is to have individual neural
clusters self-organize to reflect input pattern similarity.
Defining a weight vector for neural unit ui as mi ¼
ðwi1;wi2; . . . widÞT, the overall structure may be viewed as

E:    –52.010:

E:    –76.010:  0 E:    –76.010:  0 E:    –96.010:  7 E:    –82.010:  2 E:    –144.010:  4

E:    –148.010: 1E:    –148.010: 4

E:    –36.010:   0 E:    –34.010:   0 E:    –58.010:   4 E:    –120.010:  2

Figure 12. Use of a Hopfield network for character assocaition/
completion/recognition (Adapted from Ref. 2).

PATTERN RECOGNITION 15



an array of matched filters, which competitively adjust unit
input weights on the basis of the current weights and good-
ness of match. A useful viewpoint is that each unit tries to
become a matched filter in competition with other units.

Assume the network is initialized with the weights of all
units chosen randomly. Thereafter, at each training itera-
tion, denoted k for an input pattern xðkÞ, a distance measure
dðx;miÞ between x and mi 8 i in the network is computed,
which may be an inner product measure (correlation),
Euclidean distance, or another suitable measure. For sim-
plicity, we proceed using the Euclidean distance. For pat-
tern xðkÞ, a matching phase is used to define a ‘‘winner’’ unit
uc, with weight vector mc, using

kxðkÞ �mcðkÞk ¼ i
min

fkxðkÞ �miðkÞkg

Thus, at iteration k, given x, c is the index of the best
matching unit, which affects all units in the currently
defined cell, bubble, or cluster surrounding uc, NcðkÞ
through the global network updating phase as follows

miðkþ 1Þ ¼
miðkÞ þ aðkÞ½xðkÞ �miðkÞ� i2Nc

miðkÞ i =2Nc

�

The updating strategy bears a strong similarity to the
c-means algorithm. dðx;miÞ is decreased for units inside
Nc by moving mi in the direction ðx� niÞ. Therefore, after
the adjustment, the weight vectors in Nc are closer to input
pattern x. Weight vectors for units outside Nc are left
uncharged. The competitive nature of the algorithm is
evident as after the training iteration units outside Nc

are relatively further from x. That is, there is an opportu-
nity cost of not being adjusted. Again, a is a possibly
iteration-dependent design parameter.

The resulting accuracy of the mapping depends on the
choices of Nc, aðkÞ and the number of iterations. Kohonen
cites the use of 10,000–100,000 iterations as typical.
Furthermore, aðkÞ should start with a value close to 1.0
and gradually decrease with k. Similarly, the neighborhood
size, NcðkÞ, deserves careful consideration in algorithm
design. Too small a choice of Ncð0Þ may lead to maps
without topological ordering. Therefore, it is reasonable
to let Ncð0Þ be fairly large (Kohonen suggests one half the
diameter of the map) shrinking NcðkÞ (perhaps linearly)
with k to the fine-adjustment phase, where Nc only consists
of the nearest neighbors of unit uc. Of course, a limiting case
is where NcðkÞ becomes one unit. Additional details of the

self-organizing algorithm are summarized in the cited
references.

Example: SOFM Application to Unsupervised Learning. -
Figure 13(48) shows sample results for a 5-D feature vector
case. Uppercase characters are presented as unlabeled
training data to a 2-D SOFM. Figure 13(a) shows the
unlabeled training set samples Hu; Fig. 13(b) shows the
self-organized map resulting from the algorithm. As evi-
denced by Fig. 13(b), 2-D clustering of the different dimen-
sionality-reduced input patterns occurs. As in other
learning examples, vectors were chosen randomly from
Hu at each iteration. aðkÞ decreased linearly with k from
0:5ð¼ aðoÞÞ to 0.04 for k � 10; 000. Similarly, for this simu-
lation, the 2-D map was chosen to be of hexagonal structure
with 7 � 10 units. For k � 1000, the radius of Nc decreased
from 6 (almost all of the network) to 1 (uc and its six nearest
neighbors).

Picture Processing- See Image Processing.

FURTHER READING

Work on various aspects of PR continues to cross-pollenate
journals. Useful sources include: Pattern Recognition Letters, Pat-
tern Recognition, IEEE Transactions on Pattern Analysis and
Machine Intelligence, IEEE Transactions on Systems, Man and
Cybernetics, IEEE Transactions on Geoscience and Remote Sen-
sing, IEEE Transactions on Neural Networks, and Image and
Vision Computing.

BIBLIOGRAPHY

1. R. J. Schalkoff, Pattern Recognition: Statistical, Syntactic and
Neural Approaches. New York: Wiley, 1992.

2. R. J. Schalkoff, Digital Image Processing. New York: Wiley,
1989.

3. R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis. New York: Wiley, 1973.

4. P. Devijver and J. Kittler, Pattern Recognition: A Statistical
Approach. Englewood Cliffs, NJ: Prentice-Hall, 1982.

5. K. Fukunaga, Introduction to Statistical Pattern Recognition.
New York: Academic Press, 1972.

6. S. T. Bow, Pattern Recognition. New York: Marcel Dekker,
1984.

7. S. Watanabe, Pattern Recognition: Human and Mechanical.
New York: Wiley, 1985.

8. Y. T. Chien, Interactive Pattern Recognition. New York: Marcel
Dekker, 1978.

Figure 13. Sample results using a
2-D Kohonen SOFM for a 5-D feature
case involving uppercase characters
(Adapted from 48). Part (a) showns
the extraced features for each char-
acter. Part (b) shows the resulting
map.

16 PATTERN RECOGNITION



9. E. A. Patrick, Fundamentals of Pattern Recognition.
Englewood Cliffs, NJ: Prentice-Hall, 1972.

10. C. W. Therrien, Decision Estimation and Classification: An
Introduction to Pattern Recognition and Related Topics.
New York: Wiley, 1989.

11. R. A. Fisher, The use of multiple measurements in taxonomic
problems, reprinted in Contributions to Mathematical Statis-
tics. New York: Wiley, 1950.

12. Y. C. Ho and R. L. Kayshap, An algorithm for linear inequal-
ities and its application, IEEE Trans. Elec. Comp., EC-14:
683–688, 1965.

13. K. Fukunaga and D. R. Olsen, Piecewise linear discriminant
functions and classification errors for multiclass problems,
IEEE Trans. Inform. Theory, IT-16: 99–100, 1970.

14. A. K. Jain and R. Dubes, Algorithms for Clustering Data.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

15. G. B. Coleman and H. C. Andrews, Image segmentation by
clustering, Proc. IEE, 67: 773–785, 1979.

16. J. Bryant, On the clustering of multidimensional pictorial data,
Pattern Recognition, 11: 115–125, 1979.

17. R. K. Blashfield, M. S. Aldenderfer, and L. C. Morey, Cluster
analysis software, in P. R. Krishniah and L. N. Kanal (eds.),
Handbook of Statistics, Vol. 2. Amsterdam, The Netherlands:
North Holland, 1982, pp. 245–266.

18. R. C. Dubes and A. K. Jain, Clustering techniques: The user’s
dilemma, Pattern Recognition. 8: 247–260, 1976.

19. K. S. Fu, Syntactic Pattern Recognition and Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1982.

20. J. Tou and R. C. Gonzalez, Pattern Recognition Principles.
Reading, MA: Addison Wesley, 1974.

21. R. C. Gonzalez and M. G. Thomason, Syntactic Pattern Recog-
nition. Reading, MA: Addison-Wesley, 1978.

22. L. Miclet, Structural Methods in Pattern Recognition.
New York: Springer-Verlag, 1986.

23. T. Pavlidis, Structural Pattern Recognition. New York:
Springer-Verlag, 1977.

24. K. S. Fu, A step towards unification of syntactic and statistical
pattern recognition, IEEE Trans. Pattern Anal. Machine
Intell., PAMI-8(3): 398–404, 1986.

25. H. S. Don and K. S. Fu, A syntactic method for image segmen-
tation and object recognition, Pattern Recognition, 18(1):
73–87, 1985.

26. J. E. Hopcroft and J. D. Ullman, Formal Languages and Their
Relation to Automata. Reading, MA: Addison-Wesley, 1969.

27. R. N. Moll, M. A. Arbib, and A. J. Kfoury (eds.), An Introduction
to Formal Language Theory. New York: Springer-Verlag, 1988.

28. H. C. Lee and K. S. Fu, A stochastic syntactic analysis proce-
dure and its appplication to pattern classification, IEEE Trans.
Comput., C-21(7): 660–666, 1972.

29. A. Sanfeliu and K. S. Fu, A distance measure between attrib-
uted relational graphs for pattern recognition, IEEE Trans.
SMC, SMC-13(3): 353–362, 1983.

30. L. G. Shapiro and R. M. Haralick, A metric for comparing
relational descriptions, IEEE T-PAMI-, 7: 90–94, 1985.

31. R. J. Schalkoff, Artificial Neural Networks. New York:
Mc-Graw Hill, 1997.

32. J. A. Anderson and E. Rosenfeld (eds.), Neurocomputing: Foun-
dations of Research. Cambridge, MA: MIT Press, 1988.

33. D. E. Rummelhart and J. L. McClelland, Parallel Distributed
Processing - Explorations in the Microstructure of Cognition,
Volume 1: Foundations. Cambridge, MA: MIT Press, 1986.

34. D. E. Rummelhart and J. L. McClelland, Parallel Distributed
Processing - Explorations in the Microstructure of Cognition,
Volume 2: Psychological and Biological Models. Cambridge,
MA: MIT Press, 1986.

35. R. Rosenblatt, Principles of Neurodynamics. New York:
Spartan Books, 1959.

36. M. Minsky and S. Papert, Perceptrons-An Introduction to
Computational Geometry. Cambridge, MA: MIT Press, 1969.

37. N. J. Nilsson, Learning Machines. New York: McGraw-Hill,
1965. (Revised as Mathematical Foundations of Learning
Machines. San Mateo, CA: Morgan-Kaufmann, 1989.)

38. B. Widrow and M. E. Hoff, Adaptive switching circuits, 1960
IRE WESCON Conv. Record, Part 4, Aug. 1960, pp. 96–104
(reprinted in Anderson and Rosenfeld 1988).

39. W. Y. Huang and R. P. Lippmann, Comparison between neural
net and conventional classifiers, Proc. IEEE Int. Conf. Neural
Networks, IV: 485–493, 1987.

40. B. Widrow and M. A. Lehr, 30 years of adaptive neural net-
works: perceptron, mada-line and backpropagation, Proc.
IEEE, 78(9): 1415–1442, 1990.

41. B. Widrow and R. G. Winter, Neural nets for adaptive filtering
and adaptive pattern recognition, IEEE Comp., 21: 25–39,
1988.

42. J. J. Hopfield, Neural networks and physical systems with
emergent collective computational abilities, Proc. Natl.
Acad. Sci., 79(Biophysics): 2554–2558, 1982.

43. J. J. Hopfield, Neurons with graded response have collective
computational properties like those of two-state neurons, Proc.
Natl. Acad. Sci., 81(Biophysics): 3088–3092, 1984.

44. Y. S. Abu-Mostafa and J. M. St. Jacques, Information capacity
of the hopfield model, IEEE Trans. Inform. Theory, IT-31(4):
461–464, 1985.

45. T. Kohonen, Self-Organization and Associative Memory.
Berlin: Springer-Verlag, 1984.

46. J. A. Kangas, T. Kohonen, and J. T. Laaksonen, Variants of self-
organizing maps, IEEE Trans. Neural Networks, 1(1): 93–99,
1990.

47. B. D. Shriver, artificial neural systems, IEEE Comp., 21: 3,
1988.

48. T. Kohonen, Self-organizing feature maps, tutorial course
notes from 1988 Conference on Neural Networks. San Diego,
CA, 1988. (Accompanying videotape available from the Insti-
tute of Electrical and Electronics Engineers, Inc., 345 E. 47th

St., New York 10017.)

ROBERT J. SCHALKOFF

Clemson University
Clemson, South Carolina

PATTERN RECOGNITION 17



R

REASON MAINTENANCE SYSTEMS: TOOLS FOR
FOUNDATIONS-BASED BELIEF REVISION

INTRODUCTION

The development of computational systems that can model
and solve problems in dynamic nonstructured environ-
ments, which are faced with unexpected changes and
incomplete knowledge, or in intrinsically distributed sce-
narios, where information from multiple disparate or even
conflicting sources needs to be merged, requires appropri-
ate knowledge representation and reasoning (KRR) sys-
tems. The KRR systems that can handle sets of dynamic
beliefs are sensitive to communicated and perceived
changes in the environment and may drop current beliefs
in face of new findings or disregard new data in conflict with
existing firm beliefs.

When knowledge is represented by beliefs, some classic
reasoning properties no longer hold. In a classic deductive
reasoningsystem,which isalsoknownasamonotonic reason-
ing system, what is deduced from an initial set of facts still is
deduced from an enlarged set of those facts (i.e., the set of
logic consequences will hold forever). In a nonmonotonic
reasoning system, what is inferred from an initial set of
beliefs is a new set of beliefs that may or may not be revised
in the future. Although belief revision and nonmonotonic
reasoning are different, both deal with beliefs and incom-
plete knowledge. Belief revision handles the dynamics of
belief change (i.e., how an agent changes its current belief
state in face of new information) and nonmonotonic reason-
ing draws conclusions from a set of beliefs.

As a KRR system gathers information to reason about, it
has to update its belief space (1). A rational agent, when
faced with new data, selects the resulting epistemic state
based on the preferences established between its belief
states. To establish the preferences between belief states,
an agent can rely on symbolic or numeric approaches. In
symbolic approaches, the revision is based on the logic
content of the propositions—the revision is performed
according to the epistemic relevance of the involved pro-
positions; in the numeric approaches, the logic content of
formulas is irrelevant—the propositions are ordered
according to their certainty (2), possibility (3), credibility
(4) or probability (5). The goal of any one of these
approaches is to establish the ‘‘relative’’ strength between
the represented beliefs and, thus, allow the agent to choose
the resulting preferred belief state.

Most belief revision models, symbolic or numeric, follow
some rationality principles (6): (1) consistency of the informa-
tion—the agent’s resulting belief state must be consistent,
(2) minimal changes—the changes between consecutive
belief states should be minimal, (3) preservation of the
information—the resulting belief state should preserve
as much information as possible from the previous belief
state, and (4) priority of the most recent information—the
resulting belief state should contain the information that

triggered the belief revision. Depending on the problem
domain features, different principles can be adopted.
Whereas in dynamic environments the preference goes to
the most recent information (i.e., existing beliefs are
dropped in face of new findings), in distributed scenarios,
where the merge of data from multiple sources is per-
formed, the preference is based on other principles, such
as the reliability of the sources (4), and so on.

Two main approaches to the modeling of epistemic
states (7) include the theory of belief revision based on
foundations (8) and the theory of belief revision based on
coherence (6). In the foundations approach, a belief holds as
long as the system finds a justification in its support. In the
coherence approach, a belief holds as long as it is coherent
with the remaining beliefs of the system. We will only
address the first—the theory of belief revision based on
foundations—because it is the theory behind the reason
maintenance systems (RMS), which are also known as
truth maintenance systems (TMS) or belief maintenance
systems (BMS).

REASON MAINTENANCE SYSTEMS

The foundations-based theory regards a belief as a tempor-
ary knowledge item, which is exclusively supported by valid
foundations. This theory distinguishes between core beliefs
or foundations—also called base beliefs or hypothesis (9)—
that have an independent standing and derived beliefs (1).
According to this theory, first, all beliefs without a valid
justification are abandoned, and then, the new beliefs
(either self-supported or derived beliefs) are added to the
system.

RMSs are computational units supported by the
foundations-based theory. According to this theory, a belief
is always a justified belief: It is either an assumption (a self-
supporting core belief) or a derived belief with at least one
valid justification. Typically, KRR systems that require
consistency maintenance have two main modules: the pro-
blem solver and the RMS. The problem-solver module
submits assumptions (core beliefs) as well as conclusions
(derived beliefs) together with their respective foundations
to the RMS; the RMS stores and associates with each belief
(core or derived belief) the corresponding set of supporting
foundations. The RMS maintains the consistency of the
overall reasoning by keeping, for each represented belief,
the supporting justifications. The relationship between the
problem solver and the RMS is Master/Slave.

Two main categories of TMS are as follows: single- and
multiple-context systems. According to Mason (10), these
two categories result from the different approaches each
type adopts to represent the dependencies between beliefs:
In the single context systems, each belief is associated to the
beliefs that directly generated it—it is the case of the
justification-based TMS (JTMS) (8) or the logic-based
TMS (LTMS) (11). In the multiple-context counterparts,

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



each belief is associated with the minimal set of assump-
tions from which it can be inferred—it is the case of the
assumption-based TMS (ATMS) (12) or the multiple belief
reasoner (MBR) (9).

Justification-Based TMS

In 1979, Jon Doyle presented the first reason maintenance
system—the JTMS (8)—which was designed as an inde-
pendent module for belief maintenance (13). It works with a
single context—the current set of beliefs. The JTMS records
nodes, which represent the existing beliefs, and justifica-
tions, which represent the dependencies between the repre-
sented beliefs, and, then, labels each node as in–believed—
or out–disbelieved—according to the node’s supporting
justification. The JTMS can (1) add nodes to represent
new beliefs, (2) add and retract justifications that represent
the reasons for holding a belief, and (3) identify and mark
every contradiction as a nogood node. By maintaining the
justifications of each belief, the JTMS can establish at all
times the current set of believed nodes.

In a JTMS, two sorts of nodes are as follows: ordinary
nodes and contradiction nodes. Contradiction nodes are ex-
plicitly labeled as such by the user or by the problem-solver
module.Ordinary nodeshave no special meaning to RMS. In
contrast, contradiction nodes have a crucial meaning to the
JTMS (14). They should be excluded from any belief context.

Although a node may have multiple justifications, the
labeling algorithm selects just one—the supporting justi-
fication. As a result, each node in has only one set of
supporting nodes, which are the nodes that the JTMS
uses to establish its belief state.

The foundations set of a node is made of all its ante-
cedents: The direct antecedent nodes, the antecedents of its
antecedents, and so forth (the transitive closure of the set of
antecedents). This set is also called the node’s well-founded
argument. A node’s set of consequents is obtained through
the transitive closure of its consequents. The system builds
a dependency network that includes all represented pro-
positions (nodes) and available justifications (directed arcs).

The addition of a new justification may have a profound
impact in a JTMS, because it triggers the labeling algo-
rithm: Contradiction nodes may become ordinary nodes
and vice-versa. The most generic type of justification in a
JTMS is the so-called nonmonotonic justification. A non-
monotonic justification of a proposition c is an ordered pair
composed of two sets of propositions AM and ANM such that
< ðAN ;ANMÞ! c> where c is the consequent, AM is the
monotonic set of antecedents ða1; . . . ;anÞ, or in-list of c and
ANM is the nonmonotonic set of antecedents ðanþ1; . . . ;amÞ
or out-list of c. Given such a nonmonotonic justification, the
JTMS labels proposition c as in if all propositions of AM are
in and all propositions of ANM are out. In other words, if the
system believes in the propositions of the first set andhas no
reasons to believe in the propositions of the second set, then
it has found a valid justification to believe in the consequent
proposition. A justification may support several types of
nodes: (1) premises, when both the monotonic set and
nonmonotonic set of antecedent propositions are empty;
(2) deductions, when the nonmonotonic set of antecedent
propositions is empty; (3) assumptions, when both the

monotonic set and nonmonotonic set of antecedent proposi-
tions are nonempty. A node has the following structure:
<Node—Id, Proposition, Justification, Label>, where
Node-Id is the node identifier, Proposition is the problem
solver proposition, Justification specifies the corresponding
in-list and out-list (<AM;ANM > ), Label holds the proposi-
tion belief state ({believed, disbelieved/unknown}).

When the JTMS uses such a type of justification to label
a node, the resulting state can either be in or out. If the node
is labeled in, then the set of supporting nodes is made of the
union of the elements of both AM and ANM; otherwise, when
the node is out, the set of supporting nodes is made of one
out node from AM or one in node from ANM.

Assumption-Based TMS

In 1986, Johan de Kleer (12) proposes a new type of reason
maintenance system—the ATMS. For de Kleer, assump-
tions are self-supported propositions that play the role of
foundational nodes, which are believed as long as the
system is not confronted with contradictory evidences
that play the role of foundational nodes. Each derived
proposition has for foundations the set(s) of assumptions
from which it was inferred. Each set of foundations/
assumptions is called an environment. The ATMS repre-
sents all propositions—assumptions, premises, and deri-
ved propositions—as nodes and keeps record of the
respective sets of foundations, which include the support-
ing sets of assumptions/hypothesis, in a structure called
label. For each proposition in the knowledge base, there is a
node in the ATMS, and for each justification the ATMS
records a dependency describing how the node was inferred
from other nodes. A node has the following structure:
<Proposition, Type, Label, State>, where Proposition is
the proposition identification, Type specifies the node type
({assumption node, inferred node, premise node}), Label
contains all sets of assumptions from which the proposition
was inferred, and State represents proposition belief state
({believed, disbelieved}).

In an ATMS, justifications are monotonic and define the
dependency between a set of antecedent propositions and
the consequent proposition. Formally, a justification is of
the type: a1; . . . ; an! c where a1; . . . ;an is the set of ante-
cedent nodes and c is the consequent node.

The goal of an ATMS is to keep track of all consistent
contexts through the (1) creation of assumption nodes
whenever the problem solver decides to adopt new assump-
tions/hypothesis; (2) creation of ordinary nodes when the
problem solver infers new propositions; and (3) addition of
new justifications to existing nodes when the problem
solver finds a new way of inferring the corresponding
propositions (15).

On reception of a new node justification, the ATMS
triggers the labeling update algorithm. First, it updates
the label of the consequent node by adding the new support-
ing set of assumptions composed of the union of the labels of
the antecedent nodes. The new supporting set of assump-
tions is the minimal set from which, using the provided
justification, it is possible to infer the node. Next, recur-
sively, it updates the dependency network by relabeling all
nodes that depend on this consequent node. Finally, the

2 REASON MAINTENANCE SYSTEMS: TOOLS FOR FOUNDATIONS-BASED BELIEF REVISION



ATMS sets the belief state according to the determined
foundations: (1) a node is believed when it has a non-empty
label, that is, the system identified a consistent set of
assumptions (foundations) from which it is possible to infer
the node; and (2) a node is disbelieved when its label is
empty, that is, the system was unable to find a reason to
believe in the proposition.

Logic-Based TMS

The LTMS is a reason-maintenance system proposed by
McAllester (11). This reason-maintenance system com-
putes truth values assignments (true, false, and unknown)
rather than belief statuses (believed or disbelieved) to all
represented nodes and does not use justifications to estab-
lish the dependencies between nodes; instead, it uses logic
clauses to specify the constraints between the nodes.

The LTMS approach is similar to JTMS except that in
the LTMS: (1) the nodes assume no relationships among
them except the ones explicitly stated in justifications and
(2) it is not possible to represent simultaneously a proposi-
tion and its negation because it throws a contradiction. If
the latter case happens, then the dependency network has
to be reconstructed.

Each node in a LTMS has two labels: Lt and Lf. The label
Lt can take values true or unknown, which indicates that the
system knows the node is true or that it does not know if the
node is true. Similarly, the label Lf can take values true or
unknown, which indicates that the system knows the
negated node is true or that it does not know whether the
negated node is true (16). As a result, there are four possi-
bilities: the node is true, the negated node is true, the node
has an unknown truth value or the node is a contradiction
(both the node and the negated node labels are set to true).

Two approaches are used to handle these labels. One is
identical to the current context approach applied in the
JTMS, where the label values are evaluated according to
the current assumption set. The other is similar to the
assumption-based approach, where the label on a literal
reflects all combinations of assumptions that make it true.
Contradiction handling relies in the dependency-directed
backtracking algorithm and in the maintenance of a
nogood database that contains all detected contradictions
(when both node and negated node labels are set to true in
one assumption set) (16).

BELIEF REVISION SYSTEMS

Belief revision systems (BRSs) are KRR systems that
assume, infer, represent, handle, and maintain beliefs.
BRSs can adopt a reason maintenance system as an exter-
nal tool to represent, handle, and maintain beliefs or,
alternatively, be designed to include the ability ‘‘to detect
contradictions, identify the culprits and readjust their
knowledge bases as to eliminate any contradiction (9)’’.

Belief Revision Supported by JTMS

The problem solver commands the JTMS operation
through the submission of new nodes and the addition
or removal of justifications. These operations trigger the

JTMS consistency maintenance process—labeling algo-
rithm—which starts with the premise and assumption
nodes and uses the justifications to find noncircu-
lar arguments in support of every node. These noncircu-
lar arguments are called well-founded belief-support
justifications.

When the JTMS receives a new justification for a repre-
sented node, the updating process depends on the node
belief status. If the node is already believed (in) and regard-
less of the validity of the justification, Then few changes
occur. However, if the node is disbelieved (out) and the new
justification is valid, then the labels of this node and all its
consequents need to be updated. The JTMS builds a new list
that contains the node and all its consequents and initi-
alizes/resets their labels to nil. Next, using only well-
founded nodes, it verifies whether the current node has
at least one valid justification. In case of success, it updates
the node’s label to in; otherwise, if no valid justification was
found in support of the node, the node is labeled out. Then,
sequentially, it applies the same procedure to the remain-
ing nodes in the list, to establish their well-founded sup-
port: either in or out. Sometimes, because of existing
circularities, some nodes remain unlabeled (nil). In these
cases, the JTMS applies a relaxation procedure with the
intent to label all nodes.

Finally, the JTMS looks for contradictions/inconsisten-
cies. If a contradiction is identified, then the system tries
immediately to find the culprit. The blame can be placed on
the decision that caused the contradiction or on the last
decision, leading to dependency-directed backtracking or
chronological backtracking, respectively. The JTMS per-
forms dependency-directed backtracking. When the JTMS
finds a believed node in contradiction, it creates a contra-
diction node and its justification, which contains the iden-
tified set of incompatible nodes. Then, it invokes the
dependency-directed backtracking algorithm to find and
remove the minimal set of assumptions that puts the con-
tradiction node out. This procedure consists of (1) exam-
ining the justification of the contradiction node, (2)
identifying the underlying set of assumption nodes, (3)
registering the resulting set of assumptions as inconsis-
tent, and (4) changing the label of one of these assumptions.
This operation changes the label of the contradiction node
to out. Finally, it reports back to the problem solver all the
changes regarding the beliefs involved in the process.

Belief revision occurs when the responsible node for the
contradiction is identified and its label is changed, that is,
when an assumption from the set of assumptions that
supports the contradiction node is selected for culprit.
This behavior is intrinsic to the JTMS.

Belief Revision Supported by ATMS

A belief revision system that relies on an ATMS typically
determines and keeps the full set of consequents that are
consistent with the represented assumptions/propositions—
multiple belief contexts. Because the set of represented pro-
positions is intrinsically dynamic, these systems usually
implement a forward-chaining inference mechanism as
well as specific knowledge representation (which include
bit sets and efficient pattern matching algorithms). The

REASON MAINTENANCE SYSTEMS: TOOLS FOR FOUNDATIONS-BASED BELIEF REVISION 3



inference rules are ordered according to their respective
level of dependency/depth. The deeper the rule is,
the greater is its dependency on other rules. A rule with
depth D should be executed only after all rules with depth
D�1, . . ., 1 have been executed, and rules with equal depth
should be executed according to the number of assumptions
its antecedent/precondition nodes depend on, starting with
those that depend on fewer assumptions.

The problem solver scrolls the depth-ordered rule list
and, for each rule, it queries the ATMS about the statuses of
the antecedent/precondition nodes. Whenever they are all
believed, the problem solver fires the rule and sends the
new justification of the consequent/conclusion node to the
ATMS. De Kleer (17) calls these instantiated rules consu-
mers because, once fired, they cease to exist and are con-
verted into justifications of the consequent/conclusion
node. The ordered set of rules ready to be fired is established
through an appropriate scheduling algorithm (17) that
intends to find efficiently the most generic context of
each node and the most specific version of a contradic-
tion/inconsistency. Simultaneously, the ATMS is con-
stantly checking the consistency between the already
represented and the newly received data.

The problem solver has specific knowledge to detect
contradictions/inconsistencies. This knowledge is repre-
sented as consistency maintenance rules (or inconsistency
detection rules). Whenever the problem solver explores a
new space/time search point, the consistency maintenance
mechanism is automatically triggered to ensure the con-
sistency of all contexts under evaluation. As soon as an
inconsistency is detected, it is immediately reported to the
ATMS. The ATMS registers the contradictory/inconsistent
set of assumptions or nogood and removes it from the labels
of all represented nodes.

The detection of a contradiction/inconsistency leads to
belief revision: (1) registration of the contradictory/incon-
sistent set of assumptions as a nogood, (2) removal of the
contradictory/inconsistent set of assumptions from the
labels of all represented nodes, (3) identification of the cul-
prits, and (4) removal of the culprits. Whereas the first two
stagesare intrinsic totheATMSoperation, the identification
of the culprit assumptions is external to the ATMS and
depends on the existence of specific knowledge on the pro-
blem solver side. The culprit assumptions are abandoned,
that is, they become disbelieved propositions.

Multiple Belief Reasoner

The MBR of (9) is a BRS system that handles multiple belief
contexts simultaneously. It was developed on top of a logic
system that keeps track of the dependencies among propo-
sitions and knows how to propagate them. The logic system
used is the SWM of Shapiro, Wand, and Martins, which is
based on relevance logic (18).

The SWM system associates each proposition with one or
more supporting triple. Each triple is of the form<OT, OS,
RS> where OT is the origin tag, OS represents the origin
set, and RS the restriction set. The OT identifies how the
proposition was created ({hypothesis, derived, extended});
OS holds the set of hypothesis that was actually used to
derive the proposition; RS contains all known sets that are

inconsistent with the OS. A proposition derived from multi-
ple inferences will have multiple supporting triples. Only
the RS field of a triple may change with time to accommo-
date new identified contradictions; the OT and OS fields,
once created, remain unchanged throughout the system’s
operation.

The propositions are added to the knowledge base
according to the inference rules of SWM together with its
supporting triples. MBR uses the notion of context or set of
hypotheses. Each context defines a belief space, which
holds the context’s set of hypotheses as well as the set of
all the propositions that are exclusively derived from this
context. At each moment, there is one active context, and
all knowledge base operations are defined over the belief
space of the current context.

When a contradiction is detected, the origin sets of the
contradictory propositions are inspected, and their union
becomes a known inconsistent set of hypothesis. All pro-
positions with origin sets that contain the recently identi-
fied inconsistent set of hypothesis must update their
restriction set as to include it. Finally, in the case of
MBR, belief revision is based on the preferences estab-
lished between the represented beliefs, that is, MBR selects
from the set of assumptions involved in the contradiction
the least-preferred assumptions and blames them for the
contradiction.

CONCLUSIONS

Beliefs, which are volatile by nature, require a rational
and justified endorsement. The foundations-based belief-
revision systems allow the representation of beliefs by
storing and maintaining the reasons behind their repre-
sentation. These reasons form a dependency network
between the represented beliefs, ensuring that, when-
ever a revision occurs, all repercussions will be correctly
propagated. According to Doyle (19), these systems allow
the representation and modification of beliefs, the storage
of the inference relations between beliefs as well as
restrict all changes to minimal changes. Reason main-
tenance systems, which are also known as truth main-
tenance systems, are external modules specialized in
these tasks.

The presented approaches are intended for scenarios
where the information is dynamic, distributed, incomplete,
or even eventually, incorrect. Their main goal is to main-
tain, in a rational and justified manner, a dynamic set of
beliefs according to perceived observations (belief update),
the identified contradictions (consistency maintenance),
and the specified belief preferences (belief revision). The
reason maintenance/truth maintenance capabilities can be
provided either by an external module—JTMS, LTMS, or
ATMS—or be internal to the system—MBR.

BIBLIOGRAPHY

1. F. L. Johnson and S. C. Shapiro, Dependency-directed recon-
sideration belief base optimization for truth maintenance sys-
tems, Proc. of the Twentieth National Conference on Artificial
Intelligence (AAAI-05), Menlo Park, CA, pp. 313–326, 2005.

4 REASON MAINTENANCE SYSTEMS: TOOLS FOR FOUNDATIONS-BASED BELIEF REVISION



2. G. Shafer, Belief Functions, Readings in Uncertain Reasoning.
G. Shafer and J. Pearl, (eds.), San Francisco, CA: Morgan
Kaufmann Publishers, 1990.

3. D. Dubois and H. Prade, Belief change and possibility theory,
in Belief Revision, P. Gärdenfors, (ed.), Cambridge, MA:
Cambridge University Press, pp. 142–182, 1992.

4. A. F. Dragoni and P. Giorgini, Belief revision through the belief
function formalism in a multi-agent environment, in Intelli-
gent Agents III—Agent Theories, Vol 1193, Architectures and
Languages. J. P. Müller, M. Wooldridge, and N. R. (eds.), New
York: Springer-Verlag, pp. 103–115, 1997.

5. J. Pearl, Probabalistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference, Morgan Kaufmann, 1988.

6. C. E. Alchourrón, P. Gärdenfors, and D. Makinson, On the logic
of theory change: Partial meet functions for contraction and
revision, J. Symbol. Logic, 50 (2): 510–530, 1985.

7. G. Harman, Change in View: Principles of Reasoning,
Cambridge, MA: The MIT Press, 1986.

8. J. Doyle, A truth maintenance system, Artifi. Intelli., 12 (3):
231–272, 1979.

9. J. P. Martins and S. C. Shapiro, A model for belief revision,
Artificial Intelligence, 35 (1): 25–79, 1988.

10. C. L. Mason, ROO: A distributed toolkit for belief based reason-
ing agents, Proc. of Second International Working Conference
on Cooperative Knowledge Based Systems 1994. University of
Keele, UK, 1994.

11. D. McAllester, An outlook on truth maintenance, Artificial
Intelligence Laboratory, AI Memo 551, Cambridge, MA: Mas-
sachusetts Institute of Technology, 1980.

12. J. de Kleer, Problem solving with the ATMS, Artifi. Intelli.,
28 (2): 197–224, 1986.

13. D. McAllester, Truth maintenance, Proc. of the Eighth
National Conference on Artificial Intelligence, Menlo Park,
CA, 1990.

14. J. Doyle, The ins and outs of reason maintenance, Proc. of
Eighth International Joint Conference on Artificial Intelli-
gence, Karlsruhe, West Germany, pp. 349–351, 1983.

15. B. Malheiro and E. Oliveira, Consistency and context manage-
ment in a multi-agent belief revision testbed, in Intelligent
Agents II—Agent Theories, Architectures and Languages. M.
Wooldridge, J. P. Müller, and M. Tambe, (eds.), New York:
Springer-Verlag, 361–375, 1996.

16. M. Stanojevic, S. Vranes and D. Velasevic, Using truth main-
tenance systems: A tutorial, IEEE Expert: Intell. Sys. Appl.,
9 (6): 46–56, 1994.

17. J.de Kleer, An assumption-based truth maintenance system,
Artifi. Intelli., 28 (2): 127–162, 1986.

18. S. Shapiro, and M. Wand, The relevance of relevance, Technical
Report N. 46, Computer Science Department, Indiana Univer-
sity, Bloomington, Indiana, 1976.

19. J. Doyle, Reason maintenance and belief revision: Founda-
tions versus coherence theories, in Belief Revision, P.
Gärdenfors (ed.), Cambridge, MA: Cambridge University
Press, 29–51, 1992.

BENEDITA MALHEIRO

Instituto Superior de Engenharia do Porto
Porto, Portugal

REASON MAINTENANCE SYSTEMS: TOOLS FOR FOUNDATIONS-BASED BELIEF REVISION 5



W

WEB INTELLIGENCE (WI)

INTRODUCTION

The study of Web intelligence (WI) was first introduced in
several papers and books [see Refs. (1–19)]. Broadly speak-
ing, WI is a new direction for scientific research and devel-
opment that explores the fundamental roles as well as
practical impacts of artificial intelligence (AI) in the context
of the Web,1 such as knowledge representation, planning,
knowledge discovery and data mining, intelligent agents,
and social network intelligence, as well as advanced infor-
mation technology (IT), such as wireless networks; ubiqui-
tous devices; social networks; and data/knowledge grids;
and the next generation of Web-empowered products, sys-
tems, services, and activities.

On one hand, WI applies results from existing disci-
plines to a totally new domain. On the other hand, WI
introduces new problems and challenges to the estab-
lished disciplines. WI may be considered as an enhance-
ment or an extension of AI and IT (4). The WI technologies
revolutionize the way in which information is gathered,
stored, processed, presented, shared, and used through
electoronization, virtualization, globalization, standardi-
zation, personalization, and portals.

The challenges of Internet computing research and
development in the next decade will be WI centric, focusing
on how we can intelligently make the best use of the widely
available Web connectivity. The new WI technologies will
be determined precisely by human needs in a post-indus-
trial era; namely (2):

� information empowerment,

� knowledge sharing,

� virtual social communities,

� service enrichment, and

� practical wisdom development.

We observed that one of the most promising paradigm
shifts in the Web will be driven by the notion of wisdom, and
developing the World Wide Wisdom Web (the Wisdom Web,
or W4) will become a tangible goal for WI research (1,3,7).
The new generation of the WWW will enable humans to
gain wisdom of living, working, and playing in addition to
information search and knowledge queries.

Great potential exits for WI to make useful contribu-
tions to e-business (including e-commerce and e-finance),
e-science, e-learning, e-government, e-community, and so
on. Many specific applications and systems have been
proposed and studied. In particular, the e-business activ-
ity that involves the end user is undergoing a significant
revolution (10). The ability to track users’ browsing beha-
vior down to individual mouse clicks has brought the

vendor and end customer closer than ever before. It is
now possible for a vendor to personalize his product mes-
sage for individual customers at a massive scale, which is
called targeted marketing (or direct marketing) (11–13).
Web mining and Web usage analysis play an important
role in e-business for customer relationship management
(CRM) and targeted marketing. Web mining is the use of
data mining techniques to discover automatically and
extract information from Web documents and services
(10,14,15). A challenge is to explore the connection
between Web mining and the related agent paradigm,
such as Web farming, that is the systematic refining of
information resources on the Web for business intelli-
gence (16).

This article investigates various ways to study WI and
potential applications. The next section describes what is
the Wisdom Web, which includes ten capabilities of the
Wisdom Web, and conceptual levels of WI for developing the
Wisdom Web. The section after that discusses how to
develop various Web-based portals, in particular, intelli-
gent enterprise portals for e-business intelligence, by using
WI technologies. Furthermore, based on the discussion, an
intelligent Web-based portals-centric schematic diagram of
WI-related topics is provided in this section. The section
entitled Advanced topics for studying WI describes various
ways for studying WI, which include the semantics in the
Web and the Web as social networks, as well as proposes
new approaches for developing semantic social networks.
Based on the above preparation, the section on WI-Based
Targeted Marketing shows how to offer advanced features
that enable e-business intelligence such as targeted mar-
keting, which is a new business model by an interactive one-
to-one communication between marketer and customer, as
well as deal with the scalability and complexity of the real
world, efficiently and effectively, by using the knowledge
grid middleware as a new infrastructure and platform. The
final section provides concluding remarks.

THE WORLD WIDE WISDOM WEB (W4)

What is the Wisdom Web?

In the movie Star Wars: Episode II, an interesting scene is
when Obi Wan Kenobi failed to locate any relevant infor-
mation about a mysterious planet (where later he discov-
ered the clone manufacturing ground), he turned to his
friend for advice. His friend, who apparently knew more
than the Jedi’s academy knowledge banks combined, gave
the following reply: Other people seek knowledge, but you
my friend know wisdom.

The reply in the above scene also provides an answer to
the question: What will be the next paradigm shift in the
Web and the Internet? The next paradigm shift lies in the
notion of wisdom. The goal of the new generation WI is
to enable users to gain new wisdom of living, working,

1Here, the term of AI includes classic AI, computational
intelligence, and soft computing.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



playing, and learning, in addition to information search
and knowledge queries. Here, the word of wisdom, accord-
ing to the Webster Dictionary (Page: 1658) (17), implies the
following meanings (emphasis added):

1. The quality of being wise; knowledge, and the capa-
city to make due use of it; knowledge of the best ends
and the best means; discernment and judgment; dis-
cretion; sagacity; skill; dexterity.

2. The results of wise judgments; scientific or practical
truth; acquired knowledge; erudition.

In the Web context, the manifestation of wisdom can best
be illustrated with a minimalist Wisdom Web example.

When the Web Offers Practical Wisdom

Imagine that you are taking your first trip to the city of
Montreal. You would like to find a really nice place to
spend your evening. So, you walk into a Cyber Cafe on
Sherbrook Street (the only street that you can recognize),
and decide to get some practical wisdom from a public
Wisdom Web outlet. You log in with a user name, ‘‘Spider-
man,’’ and ask:

What is the best night life in Montreal during this season of the
year?

The Wisdom Web thinks for about a second or two and
then responds:

Spiderman, the hockey games are on during this season of the
year. Would you like to go?

You reply:

Yes.
Then the Wisdom Web suggests:

As far as I know, there are still some tickets left and you may
purchase some at the Montreal Forum. It is easy to get there by
taking Metro to the Atwater station.

Now you decide that this could be an interesting evening for
you. . .

One hour later, you arrive at the ticket office by Metro,
but surprisingly find that the tickets left are all for the
day after tomorrow when you will be traveling in Quebec
City.

As you are a bit disappointed, you notice that there is a
free Wisdom Web Kiosk right beside the ticket office. Well,
that is convenient. So, without too much hesitation, you log
on to the Wisdom Web, again as ‘‘Spiderman.’’ The Wisdom
Web still remembers your conversations an hour ago. As
soon as it recognizes that you are ‘‘Spiderman,’’ it says to
you:

Hello Spiderman, you were in such a hurry last time that I
couldn’t have a chance to tell you that all tickets available here
are only for the day after tomorrow. They are quite expensive
too. . .

Ten Capabilities of the Wisdom Web

To make the above Wisdom Web scenario a reality, the
following 10 fundamental capabilities have to be incorpo-
rated and standardized (2):

1. Self-organizing servers. The Wisdom Web will regu-
late automatically the functions and cooperations of
related websites and application services available. A
Wisdom Web server self-nominates automatically to
other services its functional roles as well as corre-
sponding spatial or temporal constraints and opera-
tional settings.

2. Specialization. A Wisdom Web server is an agent by
itself, which is specialized in performing some roles in
a certain service. The association of its roles with any
service will be measured and updated dynamically,
for instance, the association may be forgotten if it is
not used for some time.

3. Growth. The population of Wisdom Agents will change
dynamically, as new agents are self-reproduced by
their parent agents to become more specialized or
as aged agents and are deactivated.

4. Autocatalysis. As various roles of wisdom agents are
created through specialization and are activated by
the Wisdom Search requests, their associations with
some services and among themselves must be aggre-
gated autocatalytically. In this respect, the autocata-
lysis of associations is similar to the pheromone laying
for positive feedback in an ant colony.

5. Problem Solver Markup Language (PSML). PSML is
necessary for wisdom agents to specify their roles and
settings as well as relationships with any other ser-
vices.

6. Semantics. The Wisdom Web needs to understand
what are meant by ‘‘Montreal,’’ ‘‘season,’’ ‘‘year,’’ and
‘‘night life,’’ and what is the right judgment of ‘‘best,’’
by understanding the granularities of their corre-
sponding subjects and the whereabouts of their ontol-
ogy definitions.

7. Metaknowledge. Besides semantic knowledge
extracted and manipulated in the Wisdom Search,
it is also essential for wisdom agents to incorporate a
dynamically created source of metaknowledge that
deals with the relationships between concepts and
the spatial or temporal constraint knowledge in plan-
ning and executing services. It allows agents to self-
resolve their conflict of interests.

8. Planning. In the above example, the goal is to find a
function or an event that may sound attractive to a
visitor. The constraint is that they must be happening
during this season. Two associated subgoals are
involved: To have an access to the recommended
function or event, one needs a ticket. Furthermore,
to go to get the ticket, one can travel by metro. In the
Wisdom Web, ontology alone will not be sufficient.

9. Personalization. The Wisdom Web remembers the
recent encounters and relates different episodes
together, according to (1) ‘‘Spiderman,’’ (2) time,

2 WEB INTELLIGENCE (WI)



and (3) attainability of (sub)goals. In addition, it
may identify other goals as well as courses of action
for this user as their conversation continues.

10. A sense of humor. Although the Wisdom Web does
not tell a funny story explicitly, it adds some punch
lines to the situation or anxiety that ‘‘Spiderman’’ is
presently in when he/she logs on for the second time,
which will make ‘‘Spiderman’’ feel absurd.

Levels of WI

To develop a Wisdom Web to benefit from the information
infrastructure that the Web has empowered, we have wit-
nessed the fast development as well as applications of many
WI techniques and technologies, which cover the following
four conceptual levels at least:

1. Internet-level communication, infrastructure, and
security protocols. The Web is regarded as a compu-
ter-network system. WI techniques for this level
include Web data prefetching systems built upon
Web surfing patterns to resolve the issue of Web
latency. The intelligence of the Web prefetching
comes from an adaptive learning process based on
the observation and characterization of user surfing
behavior (18,19).

2. Interface-level multimedia presentation standards.
The Web is regarded as an interface for human–
Internet interaction. WI techniques for this level
are used to develop intelligent Web interfaces in
which the capabilities of adaptive cross-language
processing, personalized multimedia representa-
tion, and multimodal data processing are required.

3. Knowledge-level information processing and man-
agement tools. The Web is regarded as a distributed
data/knowledge base. We need to develop semantic
markup languages to represent the semantic con-
tents of the Web available in machine-understand-
able formats for agent-based autonomic computing,
such as searching, aggregation, classification, fil-
tering, managing, mining, and discovery on the
Web (20).

4. Application-level ubiquitous computing and social
intelligence environments. The Web is regarded as
a basis for establishing social networks that contain
communities of people (or organizations or other social
entities) connected by social relationships, such as
friendship, coworking, or information exchange with
common interests. They are Web-supported social
networks or virtual communities. The study of WI
concerns the important issues central to social net-
work intelligence (social intelligence for short) (21).
Furthermore, the multimedia contents on the Web are
accessible not only from stationary platforms, but also
increasingly from mobile platforms (22). Ubiquitous
Web access and computing from various wireless
devices needs adaptive personalization for which WI
techniques are used to construct models of user inter-
ests by inferring implicitly from user behavior and
actions (23,24).

In particular, the social intelligence approach presents
excellent opportunities and challenges for the research and
development of WI, as well as a Web-supported social net-
work that needs to be supported by all levels of WI as
mentioned above. This approach is based on the observa-
tion that the Web is now becoming an integral part of our
society, and that scientists should be aware of it and take
much care about handling social issues (25). Study in this
area must receive as much attention as Web mining, Web
agents, ontologies, and related topics.

Wisdom-Oriented Computing

Wisdom-oriented computing is a new computing paradigm
aimed at providing not only a medium for seamless infor-
mation exchange and knowledge sharing (20) but also a
type of man-made resources for sustainable knowledge
creation, and scientific and social evolution(2,3). The Wis-
dom Web, i.e., the Web that empowers wisdom-oriented
computing, will reply on grid-like service agencies that self-
organize, learn, and evolve their courses of actions to
perform service tasks as well as their identities and inter-
relationships in Web communities. They will cooperate and
compete among themselves to optimize their’s as well as
others, resources and utilities.

Self-organizing learning agents are computational enti-
ties that are capable of self-improving their performance in
dynamically changing and unpredictable task environ-
ments. In Ref. (26), Liu has provided a comprehensive
overview of several studies in the field of autonomy oriented
computing, with in-depth discussions on self-organizing
and with adaptive techniques for developing various embo-
diments of agent based systems, such as autonomous
robots, collective vision and motion, autonomous anima-
tion, and search and segmentation agents. The core of those
techniques is the notion of synthetic or emergent autonomy
based on behavioral self-organization.

Developing the Wisdom Web will become a tangible goal
for WI researchers and practitioners. The Wisdom Web will
enable us to use the global connectivity optimally, as offered
by the Web infrastructure, and most importantly, to gain
the practical wisdoms of living, working, and playing, in
addition to information search and knowledge queries.

To develop the new generation WI systems effectively,
we need to define benchmark applications, i.e., a new Tur-
ing Test, that will capture and demonstrate the Wisdom
Web capabilities (2).

Take the wisdom-oriented computing benchmark as an
example. We can use a service task of compiling and gen-
erating a market report on an existing product or a poten-
tial market report on a new product. To get such service jobs
done, an information agent on the Wisdom Web will mine
and integrate available Web information, which will in turn
be passed onto a market analysis agent. Market analysis
will involve the quantitative simulations of customer beha-
vior in a marketplace, instantaneously handled by other
service agencies, involving a large number of semantic or
computational grid agents (e.g. Ref. 27). Because the num-
ber of variables concerned may be in the order of hundreds
or thousands, it can easily cost a single system years to
generate one predication.

WEB INTELLIGENCE (WI) 3



DEVELOPING INTELLIGENT PORTALS BY USING WI
TECHNOLOGIES

What is a Portal?

A portal enables a company, an organization, or a commu-
nity to create a virtual organization (or a virtual commu-
nity) on the Web where key production/information steps
are outsourced to partners and customers. In other words, a
portal is a single gateway to personalized information
needed to enable informed interdisciplinary research, ser-
vices, and/or business activities. Developing intelligent
portals is one of the most sophisticated applications on
the Web.

Although specific features of various portals need to be
considered, the common requirements of the portals for
e-business, e-science, e-government, e-learning, among
others, are such that

� they need a unique website (a single gateway) in
which all of the contents related to the virtual orga-
nization can be accessed although such organization
information is geographically distributed in multi-
site, multi data repositories, and multi-institution,
and

� they need to have easy access to expensive remote
facilities, computing resources, and share information
acquired from different subjects using different tech-
niques and stored in dedicated knowledge-data bases.

Many organizations are implementing a corporate por-
tal first and are then growing this solution into more of an
intelligent B2B portal. By using a portal to tie in back-end
enterprise systems, a company can manage the complex
interactions of the virtual enterprise partners through all
phases of the value and supply chain.

Here we would like to mention two typical types of
enterprises, as examples,

� transnational corporations that have operations, sub-
sidiaries, investments, or branches worldwide, and

� communities with many mid-sized/small-scale compa-
nies in a region,

that need such enterprise portals for supporting their e-
business and e-commerce activities.

The Virtual Industry Park: An Example of Enterprise Portals

As an example for developing enterprise portals by using
WI technologies, here we discuss how to construct an
intelligent virtual industry park (VIP) that has been devel-
oping in our group. The VIP portal is a website in which all
of the contents related to the small/medium-sized compa-
nies in Maebashi city, Japan can be accessed.

The construction process can be divided into three
phases. We first constructed a basic system including the
fundamental functions such as the interface for dynami-
cally registering/updating enterprise information, the
database for storing the enterprise information, automatic
generation and modification of enterprise homepages, and

the domain-specific, keyword-based search engine. When
designing the basic system, we also started by analyzing
customer performance: each customer what has bought,
over time, total volumes, trends, and so on.

Although the basic system can work as a whole one, we
now need to know not only past performance on the busi-
ness front, but also how the customer or prospect enters our
VIP portal to target products and to manage promotions
and marketing campaigns. To the already demanding
requirement to capture transaction data for additional
analysis, we now also need to use the Web usage mining
techniques to capture the clicks of the mouse that define
where the visitor has been on our website. What pages has
he or she visited? What is the semantic association between
the pages he or she visited? Is the visitor familiar with the
Web structure? Or is he or she a new user or a random one?
Is the visitor a Web robot or other users? In search for the
holy grail of ‘‘stickiness,’’ we know that a prime factor is
personalization for:

� making a dynamic recommendation to a Web user
based on the user profile and usage behavior.

� automatic modification of a website’s contents and
organization.

� combining Web usage data with marketing data to give
information about how visitors used a website for
marketers.

Hence, we need to extend the basic VIP system by adding
more advanced functions such as Web mining, an ontolo-
gies-based search engine, as well as automatic e-mail filter-
ing and management.

Finally, a portal for e-business-intelligence can be imple-
mented by adding e-business-related application functions
such as targeted marketing and CRM, electronic data
interchange, as well as security solution.

An Intelligent Enterprise Portal Centric Schematic Diagram of
WI Technologies

From the example stated in the above subsection, we can
see that developing an intelligent enterprise portal needs to
apply results from existing disciplines of AI and IT to a

Intelligent
Portals

Web Information
Retrieval/Supply

Multi-Model/
Human–Web

Interaction

Web Mining
 and Farming

Web Agents
and Services

Social Networks

Grid Computing

Ubiquitous Computing 

Semantics /
Knowledge Management

Figure 1. An intelligent enterprise portals centric schematic dia-
gram of WI technologies.

4 WEB INTELLIGENCE (WI)



totally new domain. On the other hand, the WI technologies
are also expected to introduce new problems and challenges
to the established disciplines on the new platform of the
Web and the Internet. That is, WI is an enhancement or an
extension of AI and IT.

To study advanced WI technologies systematically,
and to develop advanced Web-based intelligent enter-
prise portals and information systems, we provide a
schematic diagram of WI technologies from a Web-based,
intelligent enterprise portals centric perspective in Fig.
1. In Fig. 1, directed lines denote that the development of
intelligent enterprise portals needs to be supported by
various WI related techniques, and undirected lines
denote that the components of WI techniques are rele-
vant each other.

Web Mining and Farming

The enterprise portal-based e-business activity that
involves the end user is undergoing a significant revolu-
tion(10). The ability to track users’ browsing behavior down
to individual mouse clicks has brought the vendor and end
customer closer than ever before. It is now possible for a
vendor to personalize his product message for individual
customers at a massive scale, which is called targeted
marketing (or direct marketing) (11,13). Web mining and
Web usage analysis play an important role in e-business for
CRM and targeted marketing.

Web mining is the use of data mining techniques to
discover and to extract information automatically from
large Web data repositories such as Web documents and
services (10,12,14,28). Web mining research is at the cross-
roads of research from several research communities, such
as database, information retrieval, artificial intelligence,
and especially the subareas of machine learning and nat-
ural language processing. Web mining can be divided into
four classes of data available on the Web:

� Web content: the data that constitutes the Web pages
and conveys information to the users, i.e., html, gra-
phical, video, audio files of a Web page.

� Web structure: the data that formulates the hyper-link
structure of a website and the Web, i.e., various HTML
tags used to link one page to another and one website to
another website.

� Web usage: the data that reflects the usages of Web
resources, i.e., entries in Web browser’s history and
Internet temporary files, proxy server, and Web server
logs.

� Web user profile: the data that provides demographic
information about users of the website, i.e., users’
registration data and customers’ profile information.

Furthermore, Web content, structure, and usage infor-
mation, in many cases, are copresent in the same data
file. For instance, the file names appeared in the log
files and Web structure data contain useful content
information. One may safely assume that a file named
‘‘WebLogMining.html’’ must contain information about
web log mining. Similarly, the categories of web mining

cannot be considered exclusive or isolated from each other.
Web content mining sometimes must use Web structure
data to classify a web page. In the same way, Web usage
mining sometimes has to make use of Web content data
and of Web structure information.

A challenge is to explore the connection between Web
mining and the related agent paradigm such as Web farm-
ing that is the systematic refining of information resources
on the Web for business intelligence (16). Web farming
extends Web mining into an evolving breed of information
analysis in a whole process of Web-based information
management including seeding, breeding, gathering, har-
vesting, refining, and so on.

ADVANCED TOPICS FOR STUDYING WI

With respect to different levels of WI as mentioned in the
section entitled ‘‘Levels of WI,’’ the Web can be studied in
several ways.

Studying the Semantics in the Web

One of the fundamental WI issues is to study the semantics
in the Web, called the semantic Web, that is, modeling
semantics of Web information to

� allow more of the Web content (not just form) to become
machine readable and processible.

� allow for recognition of the semantic context in which
Web materials are used.

� allow for the reconciliation of terminological differ-
ences between diverse user communities.

Thus, information will be machine-processible in ways
that support intelligent network services such as informa-
tion brokers and search agents (20,29).

Main Components of the Semantic Web. The semantic Web is
a step toward intelligence of the Web. It is based on lan-
guages that make more semantic content of the page avail-
able in machine-readable formats for agent-based
computing. The main components of semantic Web tech-
niques include:

� a unifying data model such as RDF (Resource Descrip-
tion Framework).

� languages with defined semantics, built on RDF, such
as OWL.

� ontologies of standardized terminology to mark up
Web resources, used by semantically rich, service-level
descriptions (such as OWL-S, the OWL-based Web
Service Ontology), and to support tools that assist
the generation and processing of semantic markup.

Ontologies and agent technology can play a crucial role in
Web intelligence by enabling Web-based knowledge proces-
sing, sharing, and reuse between applications. Generally
defined as shared formal conceptualizations of particular
domains, ontologies provide a common understanding of

WEB INTELLIGENCE (WI) 5



topics that can be communicated between people and agent-
based systems.

An ontology is a formal, explicit specification of a shared
conceptualization (30). It provides a vocabulary of terms
and relations to model the domain and specifies how you
view the target world. An ontology can be very high-level,
consisting of concepts that organize the upper parts of a
knowledge base, or it can be domain-specific such as a
chemical ontology. We here suggest three categories of
ontologies: domain-specific, task, and universal.

A domain-specific ontology describes a well-defined
technical or business domain.

A task ontology might either be domain-specific, or
might be a set of ontologies with respect to several domains
(or their reconstruction for that task), in which relations
between ontologies are described for meeting the require-
ment of that task.

A universal ontology describes knowledge at higher
levels of generality. It is a more general-purpose ontology
(or called a common ontology) that is generated from sev-
eral domain-specific ontologies. It can serve as a bridge for
communication among several domains or tasks.

Roles of Ontologies. Generally speaking, a domain-specific
(or task) ontology forms the heart of any knowledge infor-
mation system for that domain (or task). Ontologies provide
a way of capturing a shared understanding of terms that
can be used by human and programs to aid in information
exchange. Ontologies have been gaining popularity as a
method of providing a specification of a controlled vocabu-
lary. Although simple knowledge representation such as
Yahoo’s taxonomy provides notions of generality and term
relations, classic ontologies attempt to capture precise
meanings of terms. To specify meanings, an ontology lan-
guage must be used.

Ontologies will play a major role in supporting informa-
tion exchange processes in various areas. The roles of
ontologies for WI include:

� communication between Web communities.

� agent communication based on semantics.

� knowledge-based Web retrieval.

� understanding Web contents in a semantic way.

� social network and Web community discovery.

More specifically, new requirements for any exchange
format on the Web are:

� Universal expressive power. A Web-based exchange
format must be able to express any form of data.

� Syntactic interoperability. Applications must be able to
read the data and get a representation that can be
exploited.

� Semantic interoperability. One important require-
ment for an exchange format is that data must be
understandable. It is about defining mappings
between terms within the data, which requires content
analysis.

The semantic Web requires interoperability standards
that address not only the syntactic form of documents, but
also the semantic content. Ontologies serve as metadata
schemes for the semantic Web, providing a controlled
vocabulary of concepts, each with explicitly defined and
machine-processible semantics.

A semantic Web also lets agents use all (meta) data on all
Web pages, allowing it to gain knowledge from one site and
apply it to logical mappings on other sites for ontology-
based Web retrieval and e-business intelligence. For
instance, ontologies can be used in e-commerce to enable
machine-based communication between buyers and sell-
ers, vertical integration of markets, and description reuse
between different marketplaces. Web-search agents use
ontologies to find pages with words that are different
syntactically but similar semantically.

Although ontology engineering has been studied over the
last decade, few (semi) automatic methods for comprehen-
sive ontology construction have been developed. Manual
ontology construction remains a tedious, cumbersome task
that can easily result in a bottleneck for WI. Learning and
construction of domain-specific ontology from Web contents
is an important task in both text mining and WI (31–34).

Studying the Web as Social Networks

The study of the Web as a network has resulted in a better
understanding of the sociology of Web content creation; it
has improved the search engines on the Web dramatically
and has created more effective algorithms for community
mining and for knowledge management.

We can view the Web as a directed network in which each
node is a static web page to another. Thus, the Web can be
studied as a graph that connects a set of people (or organiza-
tions or other social entities) connected by a set of social
relationships, such as friendship, coworking or information
exchange with common interests (21,35,36).

Social Network Analysis. In his keynote talk at WI ‘01,
Raghavan stated that the main questions about the Web
graph include:

� How big is the graph?

� Can we browse from any page to any other?

� Can we exploit the structure of the Web?

� What does the Web graph reveal about social
dynamics?

� How to discover and manage the Web communities?

Modern social network theory is built on the work of
Stanley Milgram (37). Milgram found so-called the small-
world phenomenon, that is, typical paths took only six hops
to arrive. Ravi Kumar et al. (35) observed there is a strong
structural similarity between the Web as a network and
social networks. The small-world phenomenon constitutes
a basic property of the Web, which is not only interesting,
but also useful.

In Ref. 21, it is suggested that the Web graph has several
billion nodes (pages of content) and an average degree
of about 7. A recurrent observation on the Web graph is

6 WEB INTELLIGENCE (WI)



the prevalence of power laws: The degree of nodes are
distributed according to inverse polynomial distribution
(18,19,38–40).

The Web captures automatically a rich interplay
between hundreds of millions of people and billions of pages
of content. In essence, these interactions embody a social
network involving people, the pages they create and view,
and even the Web pages themselves. These relationships
have a bearing on the way in which we create, share, and
manage knowledge and information. It is our hope that
exploiting these similarities will lead to progress in knowl-
edge management and business intelligence.

The broader social network is a self-organizing structure
of users, information, and communities of expertise (21,23).
Such social networks can play a crucial role in implement-
ing next-generation enterprise portals with functions such
as data mining and knowledge management for discovery,
analysis, and management of social network knowledge.

The social network is placed at the top of a four-level WI
infrastructure as described in the section on ‘‘levels of WI’’
and is supported by functions, provided in all Levels of WI,
including security, prefetching, adaptive cross-language
processing, personalized multimedia representation,
semantic searching, aggregation, classification, filtering,
managing, mining, and discovery.

Semantic Social Networks for Intelligent Portals. One of
the most sophisticated applications on the Web today is
enterprise information portals operating with state-of-the-
art markup languages to search, retrieve, and repackage
data. The enterprise portals are being developed into an
even more powerful center based on component-based appli-
cations called Web Services (21,23).

WI researchers must study both centralized and distrib-
uted information structures. Information on the Web can be
either globally distributed throughout the Web within mul-
tilayer over the infrastructure of Web protocols, or located
locally, centralized on an intelligent portal providing Web
services (i.e., the intelligent service provider) that is inte-
grated to its own cluster of specialized intelligent applica-
tions.However,each approach hasa seriousflaw.Aspointed
out by Alesso and Smith (23), the intelligent portal approach
limits uniformity and access, whereas the global semantic
Web approach faces combinatory complexity limitations.

A way to solve the above issue is to develop and use the
Problem Solver Markup Language (PSML), for collecting
globally distributed contents and knowledge from Web-
supported, semantic social networks and incorporating
them with locally operational knowledge/databases in an
enterprise or community for local centralized, adaptable
Web intelligent services.

The core of PSML is distributed inference engines that
can perform automatic reasoning on the Web by incorpor-
ating contents and meta-knowledge autonomically col-
lected and transformed from the semantic Web with
locally operational knowledge-data bases. A feasible way
as the first step to implement such a PSML is to use existing
Prolog-like logic language with agent technologies. In our
current experiments, KAUS is used for representation of
local information sources and for inference and reasoning.

KAUS is a knowledge management system developed in
our group that involves data/knowledge bases on the basis
of an extended first-order predicate logic and relational
data model (41,42). KAUS enables representation of knowl-
edge and data in the first-order logic with data structure in
multi-level and can be easily used for inference and reason-
ing as well as transforming and managing both knowledge
and data.

By using this information transformation approach, the
dynamic, global information sources on the Web can be
combined with the local information sources in an enter-
prise portal for decision making and e-business intelligence.

Soft Computing for WI

Another challenging problem in WI is how to deal with
uncertainty of information on the wired and wireless Web.
Adapting existing soft computing solutions, when appro-
priate for WI applications, must incorporate a robust notion
of learning that will scale to the Web, adapt to individual
user requirements, and personalize interfaces. Ongoing
efforts exist to integrate logic (including nonclassical logic),
artificial neural networks, probabilistic and statistical rea-
soning, fuzzy sets, rough sets, granular computing, genetic
algorithm, and other methodologies in the soft computing
paradigm, to construct a hybrid approach/system for Web
intelligence.

WI-BASED TARGETED MARKETING

An enterprise portal for business intelligence needs the
function of WI-based targeted marketing, which is inte-
grated with WI related capabilities such as Web mining, the
ontologies-based search engine, personalized recommenda-
tion, as well as automatic e-mail filtering and management
(8).

Targeted marketing aims at obtaining and maintaining
direct relationships between suppliers and buyers within
one or more product/market combinations. Targeted mar-
keting becomes more and more popular because of the
increased competition and the cost problem.

Furthermore, the scope of targeted marketing can be
expanded from considering only how products are distrib-
uted, to include enhancing the relationships between an
organization and its customers (43) because the strategic
importance of long-term relationships with customers. In
other words, once customers are acquired, customer reten-
tion becomes the target. Retention through customer satis-
faction and loyalty can be improved greatly by acquiring
and exploiting knowledge about these customers and their
needs. Such targeted marketing is called ‘‘targeted rela-
tionship marketing’’ or ‘‘CRM’’ (44).

The Market Value Function (MVF) Model

In addition to WI related capabilities, targeted marketing is
an important area of applications for data mining and for
data warehousing (4,45). Although standard data mining
methods may be applied for the purpose of targeted market-
ing, many specific algorithms need to be developed and
applied for direct marketer to make decisions effectively.

WEB INTELLIGENCE (WI) 7



Let us consider now a typical problem of targeted mar-
keting. Suppose a health club needs to expand its operation
by attracting more members. Assume that each existing
member is described by a finite set of attributes. It is
natural to examine existing members to identify their
common features. Information about the health club may
be sent to nonmembers who share the same features of
members or similar to members. Other examples include
promotion of special types of phone services and marketing
of different classes of credit cards. In this case, we explore
the relationships (similarities) between people (objects)
based on their attribute values. The underlying assumption
is that similar type of people tend to make similar decisions
and to choose similar services. Techniques for mining asso-
ciation rules may not be applicable directly to this type of
targeted marketing. One may produce too many or too few
rules. The selection of a good set of rules may not be an easy
task. Furthermore, the use of the derived rules may pro-
duce too many or too few potential new members.

To address this issue, we proposed a new model for
targeted marketing by focusing on the issues of knowledge
representation and computation of market values (4,12).
More specifically, we assume that each object is repre-
sented by its values on a finite set of attributes. Also, we
assume that market values of objects can be computed
using a linear market value function. Thus, we may con-
sider the proposed model to be a linear model, which is
related to, but is different from, the linear model for infor-
mation retrieval.

Let U be a finite universe of objects. Elements of U may
be customers or products we are interested in market
oriented decision making. The universe U is divided into
three pair-wise disjoint classes, i.e., U ¼ P[N [D. The
sets P, N, and D are called positive, negative, and don’t
know instances, respectively. Take the earlier health club
example, P is the set of current members, N is the set of
people who had refused to join the club previously, and D is
the set of the rest. The set N may be empty. A targeted
marketing problem may be defined as finding elements
from D, and possibly from N, that are similar to elements
in P, and possibly dissimilar to elements in N. In other
words, we want to identify elements from D and N that are
more likely to become new members of P. We are interested
in finding a market value function so that elements of D can
be ranked accordingly.

Information about objects in a finite universe is given by
an information table (46,47). The rows of the table corre-
spond to objects of the universe, the columns correspond to
attributes, and each cell is the value of an object with
respect to an attribute. Formally, an information table is
a quadruple:

S ¼ ðU;At; fVaja2Atg; fIaja2AtgÞ

where U is a finite nonemptyset of objects, At is a finite
nonempty set of attributes, Va is a nonempty set of values
for a2At, Ia : U!Va is an information function for a2At.
Each information function Ia is a total function that maps
an object of U to exactly one value in Va. An information
table represents all available information and knowledge.

Objects are only perceived, observed, or measured by using
a finite number of properties (46).

A market value function (MVF) is a real-valued function
from the universe to the set of real numbers, r : U!R. In
the context of information retrieval, the values of r repre-
sent the potential usefulness or relevance of documents
with respect to a query. According to the values of r,
documents are ranked. For the targeted marketing pro-
blem, a market value function ranks objects according to
their potential market values. For the health club example,
a market value function ranks people according to their
likelihood of becoming a member of the health club. The
likelihood may be estimated based on its similarity to a
typical member of P.

We studied the simplest form of market value functions,
i.e., the linear discriminant functions. Let ua : Va!< be a
utility function defined on Va for an attribute a2At. The
utility uað�Þmay be positive, negative, or zero. For v2Va, if
uaðvÞ> 0 and IaðxÞ ¼ v, i.e., uaðIaðxÞÞ> 0, then attribute a
has a positive contribution to the overall market value of x.
If uaðIaðxÞÞ< 0, then a has a negative contribution. If
uaðIaðxÞÞ ¼ 0, then a has no contribution. The pool of con-
tributions from all attributes is computed by a linear mar-
ket value function of the following form:

rðxÞ ¼
X

a2At

wauaðIaðxÞÞ (1)

where wa is the weight of attribute a. Similarly, the weight
wa may be positive, negative, or zero. Attributes with larger
weights (absolute value) are more important, and attributes
with weights close to zero are not important. The overall
market value of x is a weighted combination of utilities of all
attributes. By using a linear market value function, we have
implicitly assumed that contributions made by individual
attributes are independent. Such an assumption is known
as utility independence assumption commonly. Implica-
tions of utility independence assumption can be found in
literature of multi-criteria decision making (48).

The market value model proposes a linear model to solve
the target selection problem of targeted marketing by
drawing and extending result from information retrieval
(4,12). It is assumed that each object is represented by
values of a finite set of attributes. A market value function
is a linear combination of utility functions on attribute
values, which depends on two parts: utility function and
attribute weighting.

The market value function has some advantages. First,
it can rank individuals according to their market value
instead of classifying; second, the market value functions is
interpretable; and last, the system of the market value
function can perform without expertise.

Multi-Aspect Analysis in Multiple Data Sources

Generally speaking, customer data can be obtained from
multiple customer touchpoints. In response, multiple data
sources that are obtained from multiple customer touch-
points, including the Web, wireless, call centers, and brick-
and-mortar store data, need to be integrated into a dis-
tributed data warehouse that provides a multi faceted view

8 WEB INTELLIGENCE (WI)



of their customers, their preferences, interests, and expec-
tations for multi aspect analysis. Hence, a multi strategy
and multi agent data mining framework is required (6,49).

One of main reasons for developing a multi agent data
mining system is that we cannot expect to develop a single
data mining algorithm that can be used to solve all targeted
marketing problems because of the complexity of real-world
applications. Hence, various data mining agents need to be
used cooperatively in the multi step data mining process for
performing multi aspect analysis as well as multi level
conceptual abstraction and learning.

The other reason for developing a multi agent data
mining system is that when performing multi aspect ana-
lysis for complex targeted marketing problems, a data
mining task needs to be decomposed into subtasks. Thus,
these sub tasks can be solved by using one or more data
mining agents that are distributed over different compu-
ters and multi data repositories on the Internet. The decom-
position problem leads us to the problem of distributed
cooperative system design.

In the VIP stated in the section on the virtaul Industry
Park for instance, mainly three kinds of data sources are
considered, namely, customer database, products data-
base, and Web farming database. Furthermore, in addition
to the MVF based data mining method (12) mentioned in
the section on the MVF model, we have developed various
data mining methods, such as the GDT-RS inductive learn-
ing system for discovering classification rules (50), the LOI
(learning with ordered information) for discovering impor-
tant features (51,52), as well as the POM (peculiarity
oriented mining) for finding peculiarity data/rules (53),
to deal with each of such data sources, separately, for
various services oriented multi aspect data analysis.

However, when we try to integrate the three kinds of
data sources together into the advanced VIP system, we
must know how to interact with each of those sources to
extract the useful pieces of information, which then have to
be combined for building the expected answer to the initial
request. Hence, the core question is how to manage, repre-
sent, integrate, and use the information coming from huge,
distributed, multiple-data sources.

Here, we would like to emphasize that how to manage,
analyze, anduse the information intelligently from different
data sources is a problem that not exists only in the e-
business field, but also in e-science, e-learning, e-govern-
ment, as well as all WI systems and services (54,55). The
development of enterprise portals and e-business intelli-
gence is a good example for trying to solve such problem.

Building a Data Mining Grid

To implement an enterprise portal (e.g., the VIP discussed
previously) for Web-based targeted marketing and busi-
ness intelligence, a new infrastructure and platform as the
middleware is required to deal with large, distributed data
sources for multi aspect analysis. One methodology is to
create a grid-based, organized society of data mining
agents, called a Data Mining Grid on the grid computing
platform (e.g., the Globus toolkit) (27,55–59). A data mining
and must do the following:

� Develop various data mining agents, as mentioned in
the section on the MVP model, for various services,
oriented multiaspect data analysis;

� Organize the data mining agents into a multi layer
grid, such as a data-grid, mining-grid, or knowledge-
grid, under the Open Grid Services Architecture that
aligns firmly with service-oriented architecture and
Web services and understands the user’s questions,
transforms them to data mining issues, discovers the
resources and information about the issues, and
obtains a composite answer or solution.

� Use a conceptual model with three level workflows,
namely data flow, mining flow, and knowledge flow,
with respect to the data grid, the mining grid, and the
knowledge grid, respectively, for managing the grid of
data mining agents for multi aspect analysis in dis-
tributed, multiple-data sources and for organizing the
dynamic, status-based business processes.

That is, the data mining grid is made of many
smaller components that are called data mining
agents. Each agent by itself can only do one simple
thing. Yet when we join these agents in a grid, this
implements more complex targeted marketing and
business intelligence tasks.

Furthermore, ontologies are also used for descrip-
tion and for integration of multi data source and grid-
based data mining agents in data mining process
planning (6,7,28), which will provide the following:

� a formal, explicit specification for integrated use of
multiple data sources in a semantic way.

� a conceptual representation about the sorts and prop-
erties of data/knowledge and data mining agents, as
well as relations between data/knowledge and data
mining agents.

� a vocabulary of terms and relations to model the
domain, and specifying how to view the data sources
and how to use data mining agents.

� a common understanding of multiple data sources that
can be communicated between grid-based data mining
agents.

CONCLUDING REMARKS

WI has been recognized as one of the most important as well
as the fastest-growing IT research fields in the era of the
World Wide Web, knowledge Web, grid computing, intelli-
gent agent technology, and ubiquitous social computing.
WI technologies will continue to produce the new tools and
the infrastructure components necessary for creating intel-
ligent enterprise portals that can serve users wisely.

To meet the strong demands for participation and the
growing interests in WI, the Web Intelligence Consortium
(WIC) was formed in spring 2002. The WIC (http://wi-
consortium.org/) is an international non-profit organiza-
tion dedicated to advancing world-wide scientific research
and industrial development in the field of WI. It promotes
collaborations among world wide WI research centers and

WEB INTELLIGENCE (WI) 9



organizational members, technology showcases at WI
related conferences and workshops, WIC official book
and journal publications, WIC newsletters, and WIC offi-
cial releases of new industrial solutions and standards.

In addition to major WI related conferences/workshops,
such as IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology, and
numerous special issues in international journals/maga-
zines, such as IEEE Computer, a WI-focused scientific jour-
nal, Web Intelligence and Agent Systems: An International
Journal (refer to the WIC homepage), has been providing a
standard international forum for disseminating results of
advanced research and development in the field of WI.

The interest in WI is growing very fast. We would like to
invite everyone, who are interested in the WI related research
and development activities, to join the WI community. Your
input and participation will determine the future of WI.

ACKNOWLEDGMENTS

We are very grateful to people who have joined or supported
the WI community, members of the WIC advisory board,
WIC technical committee, and WIC research centers, as well
as keynote/invited speakers of WI-IAT conferences,
in particular, J. Bradshaw, W. Buntine, N. Cercone,
P. Doherty, B. B. Faltings, D. Fensel, E. A. Feigenbaum, I.
Foster, G. Gottlob, F. Harmelen, J. Hendler, N. Jennings,
W. L. Johnson, C. Kesselman, P. Langley, H. Lieberman,
V. Lesser, J. McCarthy, R. Mizhouchi, T. M. Mitchell,
T. Nishida, S. Ohsuga, P. Raghavan, Z. W. Ras, P. Schuster,
A. Skowron, K. Sycara, B. Wah, M. Wooldridge, X. Wu, P. S.
Yu,andL.A.Zadeh. Wethankthemfor their strongsupport.

REFERENCES

1. J. Liu, N. Zhong, Y. Y. Yao, Z. W. Ras, The wisdom web: new
challenges for web intelligence (WI), J. Intell. Inform. Sys.,
20(1): 5–9, 2003.

2. J. Liu, Web intelligence (WI): what makes wisdom web? Proc.
18th International Joint Conference on Artificial Intelligence
(IJCAI-03), 2003, pp. 1596–1601.

3. J. Liu, New challenges in the world wide wisdom web (W4)
research, in N. Zhong, et al. (eds.), Foundations of Intelligent
Systems, LNAI 2871, Springer, 2003, pp. 1–6.

4. Y. Y. Yao, N. Zhong, J. Liu, and S. Ohsuga, Web intelligence
(WI): research challenges and trends in the new information
age, in N. Zhong, et al. (eds.), Web Intelligence: Research and
Development, LNAI 2198, Springer, 2001, pp. 1–17.

5. N. Zhong, J. Liu, Y. Y. Yao, and S. Ohsuga, Web intelligence
(WI), Proc. 24th IEEE Computer Society International Com-
puter Software and Applications Conference (COMPSAC
2000), Piscataway, NJ: IEEE Computer Society Press, 2000,
pp. 469–470.

6. N. Zhong, Y. Y. Yao, J. Liu, and S. Ohsuga (eds.), Web Intelli-
gence: Research and Development, LNAI 2198, New York:
Springer, 2001.

7. N. Zhong, J. Liu, and Y. Y. Yao, In search of the wisdom web,.
IEEE Computer, 35(11): 27–31, 2002.

8. N. Zhong, J. Liu, and Y.Y. Yao, (eds.), Web Intelligence, New
York: Springer, 2003.

9. N. Zhong, J. Liu, and Y. Y. Yao, Envisioning intelligent infor-
mation technologies from the stand-point of Web intelligence,
Commun. ACM, 50(3): 89–94, 2007.

10. J. Srivastava, R. Cooley, M. Deshpande, P. Tan, Web usage
mining: discovery and applications of usage patterns from web
data, SIGKDD Explorations, Newsletter of SIGKDD, 1: 12–23,
2000.

11. A. R. Simon, S. L. Shaffer, Data Warehousing and Business
Intelligence for e-Commerce, San Francisco, CA: Morgan Kauf-
mann, 2001.

12. Y. Y. Yao, N. Zhong, J. Huang, C. Ou, and C. Liu, Using market
value functions for targeted marketing data mining, Interna.
J. Pattern Recogn. Artif. Intell., 16(8): 1117–1131, 2002.

13. N. Zhong, J. Liu, and Y. Y. Yao, Web intelligence (WI): a new
paradigm for developing the wisdom web and social network
intelligence, in N. Zhong, et al. (eds.), Web Intelligence, New
York: Springer, 2003, pp. 1–16.

14. R. Kosala and H. Blockeel, Web mining research: a survey,
ACM SIGKDD Explor. News., 2: 1–15, 2000.

15. Z. Lu, Y. Y. Yao, N. Zhong, Web log mining, in N. Zhong, et al.
(eds.), Web Intelligence, New York: Springer, 2003, pp. 172–
194.

16. R. D. Hackathorn, Web Farming for the Data Warehouse, San
Francisco, CA: Morgan Kaufmann, 2000.

17. N. Porter (ed.), Webster’s Revised Unabridged Dictionary,
G&C. Merriam Co, 1913.

18. J. Liu, S. Zhang, Y. Ye, Agent-based characterization of web
regularities, in N. Zhong, et al. (eds.), Web Intelligence, New
York: Springer, 2003, pp. 19–36.

19. J. Liu, S. Zhang, J. Yang, Characterizing web usage regula-
rities with information foraging agents, IEEE Trans. Know.
Data Engin. 16(4): 2004.

20. T. Berners-Lee, J. Hendler, O. Lassila, The semantic web,
Scientific Am. 284: 34–43, 2001.

21. P. Raghavan, Social networks: from the web to the enterprise,
IEEE Internet Computing, 6(1): 91–94, 2002.

22. M. Weiser, The future of ubiquitous computing on campus,
CACM, 41(1): 41–42, 1998.

23. H. P. Alesso, C. F. Smith, The Intelligent Wireless Web, Read-
ing, MA: Addison-Wesley, 2002.

24. D. Billsus, et al., Adaptive interfaces for ubiquitous web access,
Commun. ACM, 45: 34–38, 2002.

25. T. Nishida, Social intelligence design for the web, IEEE Com-
puter, 35(11): 37–41, 2002.

26. J. Liu, Autonomous Agents and Multi-Agent Systems: Explora-
tions in Learning, Self-Organization and Adaptive Computa-
tion, Singapore: World Scientific, 2001.

27. F. Berman, From teragrid to knowledge grid, Commun. ACM,
44: 27–28, 2001.

28. N. Zhong, Knowledge discovery and data mining, The Ency-
clopedia of Microcomputers, 27(suppl. 6): 235–285, 2001.

29. S. Decker, P. Mitra, and S. Melnik, Framework for the seman-
tic web: an RDF tutorial, IEEE Internet Comp., 4(6): 68–73,
2000.

30. D. Fensel, Ontologies: A Silver Bullet for Knowledge Manage-
ment and Electronic Commerce, New York: Springer, 2001.

31. Y. Li and N. Zhong, Mining Ontology for Automatically Acquir-
ing Web User Information Needs, IEEE Trans. Know. Data
Engineer., 18(4): 554–568, 2006.

32. A. Maedche and S. Staab, Ontology learning for the semantic
web, IEEE Intell. Sys., 16(2): 72–79, 2001.

10 WEB INTELLIGENCE (WI)



33. M. Missikoff, R. Navigli, P. Velardi, Integrated approachto web
ontology learning and engineering, IEEE Computer, 35(11):
60–63, 2002.

34. N. Zhong, Representation and construction of ontologies for
web intelligence, Internat. J. Foundations Comp. Sci., 13(4):
555–570, 2002.

35. R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, The web
and social networks, IEEE Computer, 35 (11): 32–36, 2002.

36. W. Li, N. Zhong, J. Liu, Y. Y. Yao, C. Liu, Perspective of
Applying the Global E-mail Network, Proc. 2006 IEEE/
WIC/ACM International Conference on Web Intelligence
(WI’06), IEEE Computer Society Press, pp. 117–120, 2006.

37. S. Wasserman and K. Faust, Social Network Analysis, Cam-
bridge, MA: Cambridge University Press, 1994.

38. R. Albert, H. Jeong, A. L. Barabasi, Diameter of the world-wide
web, Nature, 410: 130–131, 1999.

39. B. A. Huberman, P. L. T. Pirolli, J. E. Pitkow, R. M. Lukose,
Strong regularities in world wide web surfing, Science, 280: 96–
97, 1997.

40. B. A. Huberman, L. A. Adamic, Growth dynamics of the world-
wide web, Nature, 410: 131, 1999.

41. S. Ohsuga, Framework of knowledge based systems - multiple
meta-level architecture for representing problems and problem
solving processes, Knowledge Based Sys., 3(4): 204–214, 1990.

42. H. Yamauchi and S. Ohsuga, Loose coupling of KAUS with
existing RDBMSs, Data & Knowledge Engineering, 5(4): 227–
251, 1990.

43. W. Klosgen and J. M. Zytkow, Handbook of Data Mining and
Knowledge Discovery, Oxford: Oxford University Press, 2002.

44. R. Stone, Successful Direct Marketing Methods, 6th ed., Lin-
colnwood, IL: NTC Business Books , 1996.

45. P. Van Der Putten, Data mining in direct marketing databases,
in W. Baets (ed)., Complexity and Management: A Collection of
Essays, Singapore: World Scientific, 1999.

46. Z. Pawlak, Rough Sets, Theoretical Aspects of Reasoning about
Data, Dordrecht: Kluwer, 1991.

47. Y.Y. Yao and N. Zhong, Granular computing using Iinforma-
tion tables, in T. Y. Lin, Y. Y. Yao, and L. A. Zadeh (eds.), Data
Mining, Rough Sets and Granular Computing, Berlin: Phy-
sica-Verlag, 2002, pp. 102–124.

48. P. C. Fishburn, Seven independence concepts and continuous
multiattribute utility functions, J. Math. Psycho., 11: 294–327,
1974.

49. N. Zhong, C. Liu, and S. Ohsuga, Dynamically organizing KDD
process, Internat. J. Pattern Recog. Artif. Intell., 15(3): 451–
473, 2001.

50. N. Zhong, J. Z. Dong, C. Liu, and S. Ohsuga, A hybrid model for
rule discovery in data, Knowledge Based Sys. 14(7): 397–412,
2001.

51. Y. Sai, Y. Y. Yao, and N. Zhong, Data analysis and mining in
ordered information tables, Proc. 2001 IEEE International

Conference on Data Mining (ICDM’01), Piscataway, NJ:
IEEE Computer Society Press, 2001, pp. 497–504.

52. N. Zhong, Y. Y. Yao, J. Z. Dong, and S. Ohsuga, Gastric cancer
data mining with ordered information, in J. J. Alpigini, et al.
(eds.), Rough Sets and Current Trends in Computing, LNAI
2475, New York: Springer, 2002, pp. 467–478.

53. N. Zhong, Y. Y. Yao, and M. Ohshima, Peculiarity oriented
multi-database mining, IEEE Trans. Knowl. Data Engineer.,
15(4): 952–960, 2003.

54. J. Hu and N. Zhong, Organizing multiple data sources for
developing intelligent e-Business Portals, Data Mining
Know. Dis., 12 (2–3): 127–150, 2006.

55. M. Cannataro, and D. Talia, The knowledge grid, CACM, 46:
89–93, 2003.

56. N. Zhong, J. Hu, S. Motomura, J. L. Wu, and C. Liu, Building
a data mining grid for multiple human brain data analysis,
Computat. Intell., 21(2): 177–196, 2005.

57. I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, San Francisco, CA: Morgan Kauf-
mann, 1999.

58. I. Foster and C. Kesselman, The Grid 2: Blueprint for a New
Computing Infrastructure, San Francisco, CA: Morgan Kauf-
mann, 2004.

59. J. Nabrzyski, J. M. Schopf, J. Weglarz, Grid Resource Manage-
ment, Dordrecht: Kluwer, 2004.

FURTHER READING

A. Congiusta, A. Pugliese, D. Talia, and P. Trunfio, Designing Grid
Services for distributed knowledge discovery, Web Intell. Agent
Sys, 1(2): 91–104, 2003.

J. A. Hendler and E. A. Feigenbaum, Knowledge is power: the
semantic web vision, in N. Zhong, et al. (eds.), Web Intelligence:
Research and Development, LNAI 2198, Springer, 2001, 18–29.

N. Zhong and J. Liu (eds.), Intelligent Technologies for Information
Analysis, New York: Springer, 2004.

NING ZHONG

Maebashi Institute
of Technology

Maebashi City, Japan

JIMING LIU

Hong Kong Baptist
University

Hong Kong, China

YIYU YAO

University of Regina
Regina, Saskatchewan, Canada

WEB INTELLIGENCE (WI) 11



R

ROUGH SET THEORY

INTRODUCTION

Rough set theory is a new mathematical approach to
imperfect knowledge. The problem of imperfect knowledge
has been tackled for a long time by philosophers, logicians,
and mathematicians. Recently, it has also became a crucial
issue for computer scientists, particularly in the area of
artificial intelligence (AI). There are many approaches to
the problem of how to understand and manipulate imper-
fect knowledge. The most successful one is, no doubt, the
fuzzy set theory proposed by Zadeh (1).

Rough set theory (2) presents still another attempt to
this problem. This theory has attracted attention of many
researchers and practitioners all over the world, who have
contributed essentially to its development and applica-
tions. Rough set theory overlaps with many other theories,
despite which rough set theory may be considered as an
independent discipline in its own right. The rough set
approach seems to be of fundamental importance to AI
and cognitive sciences, especially in the areas of machine
learning, knowledge acquisition, decision analysis, knowl-
edge discovery from databases, expert systems, inductive
reasoning, and pattern recognition. The main advantage of
rough set theory in data analysis is that it does not need any
preliminary or additional information about data like prob-
ability distributions in statistics, basic probability assign-
ments in Dempster–Shafer theory, a grade of membership,
or the value of possibility in fuzzy set theory. One can
observe the following about the rough sets approach:

– introduction of efficient algorithms for finding hidden
patterns in data,

– determination of minimal sets of data (data reduction),

– evaluation of the significance of data,

– generation of sets of decision rules from data,

– easy-to-understand formulation,

– straightforward interpretation of obtained results, and

– suitability of many of its algorithms for parallel
processing.

One of the issues discussed in connection with the notion
of a set is vagueness. Mathematics requires that all mathe-
matical notions (including set) must be exact (Gottlob
Frege (3)). However, philosophers and, recently, computer
scientists have become interested in vague (imprecise)
concepts. For example, in contrast to odd numbers, the
notion of a beautiful painting is vague, because we are
unable to classify uniquely all paintings into two classes:
beautiful and not beautiful. Sometimes it is not possible
to decide whether some paintings are beautiful or not
and thus they remain in the doubtful area. Thus, beauty

is not a precise but a vague concept. Almost all concepts
we are using in natural language are vague. Therefore,
common-sense reasoning based on natural language must
be based on vague concepts and not on classic logic, which is
why vagueness is important for philosophers and recently
also for computer scientists. Vagueness is usually asso-
ciated with the boundary region approach (i.e., existence
of objects that cannot be uniquely classified to the set or its
complement), which was first formulated in 1893 by the
father of modern logic Gottlob Frege (3), who wrote:

‘‘Der Begriff muss scharf begrenzt sein. Einem unscharf
begrenzten Begriff würde ein Bezirk ensprechen, der nicht
überall ein scharfe Grentzlinie hätte, sondern stellenweise gantz
verschwimmend in die Umgebung übergine. Das wäre eigen-
tlich gar kein Bezirk; und so wird ein unscharf definirter Begriff
mit Unrecht Begriff gennant. Solche begriffsartige Bildungen
kann die Logik nicht als Begriffe anerkennen; es is unmäglich,
von ihnen genaue Gesetze auszustellen. Das Gesetz des ausges-
chlossenen Drititten ist ja eigentlich nur in anderer Form die
Forderung, dass der Begriff scharf begrentz sei. Ein beliebiger
Gegenstand x fällt entwerder unter der Begriff y, oder er fällt
nich unter ihn: tertium non datur.’’

Thus, according to Frege, the concept must have a sharp
boundary. To the concept without a sharp boundary, there
would correspond an area that would not have any sharp
boundary-line all around. It means that mathematics must
use crisp, not vague concepts, otherwise it would be impos-
sible to reason precisely.

Lotfi Zadeh (1) introduced a very successful approach to
vagueness. In this approach, sets are defined by partial
membership, in contrast to crisp membership used in the
classic definition of a set. Rough set theory (2) expresses
vagueness, not by means of membership, but by employing
the boundary region of the set. If the boundary region
of the set is empty, it means that the set is crisp, otherwise
the set is rough (inexact). The nonempty boundary region
of the set means that our knowledge about the set is not
sufficient to define the set precisely. Discussion on vague-
ness in the context of fuzzy sets and rough sets can be found
in Ref. 4. Basic ideas of rough set theory and its extensions,
as well as many interesting applications can be found in
books (see Refs. 2, 5–17), special issues of journals (see
Refs. 18–25), proceedings of international conferences
(see Refs. 26–36), and on the Internet (see, e.g.,www.
roughsets.org, logic.mimuw.edu.pl, rsds.wsiz.rzeszow.pl).

Recent years are witness to a rapid grow of interest in
rough set theory and its applications worldwide. Many
international workshops, conferences, and seminars have
included rough sets in their programs. A large number of
high-quality papers on various aspects of rough sets and
their applications have been published in recent years. In
this article, we present the basic concepts of rough set
theory and outline some research directions on rough sets.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



BASIC PHILOSOPHY

The rough set philosophy is founded on the assumption
that with every object of the universe of discourse we
associate some information (data, knowledge). For
example, if objects are patients suffering from a certain
disease, symptoms of the disease form information about
patients. Objects characterized by the same information
are indiscernible (similar) in view of the available infor-
mation about them. The indiscernibility relation generated
in this way is the mathematical basis of rough set theory.
This understanding of indiscernibility is based on the
idea of Gottfried Wilhelm Leibniz that objects are indis-
cernible if and only if all available functionals take on
identical values (Leibnizian indiscernibility). Any set of
all indiscernible (similar) objects is called an elementary
set, and forms a basic granule (atom) of knowledge about
the universe. Any union of some elementary sets is referr-
ed to as crisp (precise) set, otherwise the set is rough
(imprecise, vague).

Consequently, each rough set has boundary–line cases
(i.e. objects that cannot with certainty be classified either as
members of the set or of its complement). Obviously, crisp
sets have no boundary-line elements at all, which means
that boundary-line cases cannot be properly classified by
employing the available knowledge.

Thus, the assumption that objects can be ‘‘seen’’ only
through the information available about them leads to the
view that knowledge has granular structure. Due to the
granularity of knowledge, some objects of interest cannot
be discerned and appear the same (or similar). As a con-
sequence, vague concepts, in contrast to precise concepts,
cannot be characterized in terms of information about their
elements. Therefore, in the proposed approach, we assume
that any vague concept is replaced by a pair of precise
concepts—called the lower and the upper approximation
of the vague concept. The lower approximation consists of
all objects that surely belong to the concept and the upper
approximation contains all objects that possibly belong to
the concept. The difference between the upper and the
lower approximation constitutes the boundary region of
the vague concept. Approximations are two basic opera-
tions in rough set theory.

APPROXIMATIONS AND ROUGH SETS

As mentioned, the starting point of rough set theory is the
indiscernibility relation, generated by information about
objects of interest. The indiscernibility relation expresses
the fact that, because of the lack of knowledge, we are
unable to discern some objects employing available infor-
mation, which means that, in general, we are unable to deal
with each particular object but we have to consider gran-
ules (clusters) of indiscernible objects, as fundamental
concepts of our theory.

Now we present the basic concepts more formally.
Suppose we are given two finite, non-empty sets U and

A, where U is the universe of objects and A is a set of
attributes. The pair (U, A) is called an information table.
With every attribute a2A, we associate a set Va, of its

values, called the domain of a. Any subset B of A deter-
mines a binary relation I(B) on U, called an indiscernibility
relation, defined by

xIðBÞy if and only if aðxÞ ¼ aðyÞ for every a2 B (1)

where a(x) denotes the value of attribute a for object x.
Obviously, I(B) is an equivalence relation. The family

of all equivalence classes of I(B) (i.e., the partition deter-
mined by B,) will be denoted by U/I(B), or simply U/B;
an equivalence class of I(B) (i.e., the block of the partition
U/B) containing x will be denoted by B(x).

If ðx; yÞ 2 IðBÞ, we will say that x and y are B-indiscernible.
Equivalence classes of the relation I(B) (or blocks of the
partition U/B) are referred to as B-elementary sets. In
the rough set approach, the elementary sets are the
basic building blocks (concepts) of our knowledge about
reality. The unions of B-elementary sets are called
B-definable sets.

The indiscernibility relation will be further used to
define basic concepts of rough set theory. Let us define
now the following two operations on sets:

B�ðXÞ ¼ fx2U : BðxÞ�Xg ð2Þ

B�ðXÞ ¼ fx2U : BðxÞ \X 6¼ ;g ð3Þ

assigning to every subset X of the universe U two sets
B�ðXÞ and B�ðXÞ called the B-lower and the B-upper
approximation of X, respectively. The set

BNBðXÞ ¼ B�ðXÞ � B�ðXÞ (4)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set (i.e.,

BNBðXÞ ¼ ;Þ, then the set X is crisp (exact) with respect
to B; in the opposite case (i.e., if BNBðXÞ 6¼ ;), the set X is
referred to as rough (inexact) with respect to B.

A rough set can also be characterized numerically by the
following coefficient:

aBðXÞ ¼
jB�ðXÞj
jB�ðXÞj (5)

called the accuracy of approximation, where jXj denotes
the cardinality of X 6¼ ;. Obviously, 0 � aBðXÞ � 1. If
aBðXÞ ¼ 1; then X is crisp with respect to B (X is precise
with respect to B), and otherwise, if aBðXÞ< 1; then X is
rough with respect to B (X is vague with respect to B).

Several generalizations of the classic rough set approach
based on approximation spaces defined as pairs of the
form (U, R), where R is the equivalence relation (called
indiscernibility relation) on the set U, have been reported in
the literature. Let us mention two of them.

A generalized approximation space can be defined by a
tuple AS ¼ ðU; I; nÞ; where I is the uncertainty function
defined on U with values in the powerset P(U) of U(I(x)
is the neighboorhood of x) and n is the inclusion function
defined on the Cartesian product PðUÞ � PðUÞ with values
in the interval [0, 1] measuring the degree of inclusion
of sets. The lower AS� and upper AS� approximation

2 ROUGH SET THEORY



operations can be defined in AS by

AS�ðXÞ ¼ fx2U : nðIðxÞ;XÞ ¼ 1g ð6Þ

AS�ðXÞ ¼ fx2U : nðIðxÞ;XÞ> 0g ð7Þ

In the standard case, I(x) is equal to the equivalence class
B(x) of the indiscernibility relation I(B); in case of tole-
rance (similarity) relation t�U �U, we take IðxÞ ¼
fy2U : xtyg (i.e., I(x) is equal to the tolerance class of t
defined by x). The standard inclusion relation is defined for
X, Y �U by

nðX;YÞ ¼
jX \Y j
jXj if X is non-empty

1 otherwise

8<
: (8)

For applications, it is important to have some constructive
definitions of I and n.

One can consider another way to define I(x). Usually,
together with AS we consider some set F of formulas
describing sets of objects in the universe U of AS defined
by semantics k � kAS, i.e., kakAS�U for any a2F. Now, one
can take the set

NFðxÞ ¼ fa2F : x2kakASg (9)

and IðxÞ ¼ fkakAS : a2NFðxÞg. Hence, more general uncer-
tainty functions having values in P(P(U)) can be defined.
Usually, there are considered families of approximation
spaces with approximation spaces labeled by some para-
meters. By tuning such parameters according to chosen
criteria (e.g., minimal description length), one can search
for the optimal approximation space for concept description.

The approach based on inclusion functions has been gene-
ralized to the rough mereological approach (8,12,17,37).
The inclusion relation xmry with the intended meaning x
is a part of y to a degree at least r has been taken as the
basic notion of the rough mereology being a generalization
of the Leśniewski mereology (38,39). Research on rough
mereology has shown importance of another notion, namely
closeness of complex objects (e.g., concepts), which can be
defined by xclr;r0y if and only if xmry and ymr0x.

Rough mereology offers a methodology for synthesis and
analysis of objects in distributed environment of intelligent
agents, in particular, for synthesis of objects satisfying a
given specification to a satisfactory degree or for control in
such complex environments. Moreover, rough mereology
has been recently used for developing foundations of the
information granule calculi, aiming at formalization of the
Computing with Words paradigm, recently formulated by
Lotfi Zadeh (40). More complex information granules are
defined recursively using already defined information
granules and their measures of inclusion and closeness.
Information granules can have complex structures like
classifiers or approximation spaces. Computations on infor-
mation granules are performed to discover relevant infor-
mation granules (e.g., patterns or approximation spaces for
complex concept approximations).

ROUGH SETS AND MEMBERSHIP FUNCTIONS

Rough sets can be also introduced using a rough member-
ship function, defined by

mB
XðxÞ ¼

jX \ BðxÞj
jBðxÞj (10)

Obviously, 0 � mB
XðxÞ � 1. The membership function mXðxÞ

is a kind of conditional probability and its value can be
interpreted as a degree of certainty to which x belongs to X.

The rough membership function can be used to define
approximations and the boundary region of a set, as shown
below:

B�ðXÞ ¼ fx2U : mB
XðxÞ ¼ 1g ð11Þ

B�ðXÞ ¼ fx2U : mB
XðxÞ> 0g ð12Þ

BNBðXÞ ¼ fx2U : 0< mB
XðxÞ< 1g ð13Þ

One of the consequences of perceiving objects by inform-
ation about them is that for some objects one cannot decide
if they belong to a given set or not. However, one can
estimate the degree to which objects belong to sets, which
is a crucial observation in building foundations for approxi-
mate reasoning. Dealing with imperfect knowledge implies
that one can only characterize satisfiability of relations
between objects to a degree, not precisely. One of the funda-
mental relations on objects is a rough inclusion relation
describing that objects are parts of other objects to a degree.
Rough mereological approach (8,12,17,37) based on such
relation is an extension of the Leśniewski mereology (38).

DECISION TABLES AND DECISION RULES

Sometimes we distinguish in an information table (U, A)
a partition of A into two classes C, D�A of attributes,
called condition and decision (action) attributes, respec-
tively. The tuple A ¼ ðU;C;DÞ is called a decision table.

Let V ¼
S
fVaja2Cg [ Vd. Atomic formulas over

B�C[D and V are expressions a ¼ y called descriptors
(selectors) over B and V, where a2B and y2Va. The set
FðB;VÞ of formulas over B and V is the least set contain-
ing all atomic formulas over B and V and closed with res-
pect to the propositional connectives ^ (conjunction), _
(disjunction), and : (negation).

By kjkA, we denote the meaning of j2 FðB;VÞ in the
decision table A, which is the set of all objects in U with
the property j. These sets are defined by ka ¼ ykA ¼
fx2UjaðxÞ ¼ yg; kj^j0kA¼kjkA \ kj0kA; kj_j0kA¼kjkA
[ kj0kA; k:jkA ¼ U � kjkA. The formulas from FðC;VÞ,
FðD;VÞ are called condition formulas of A and decision
formulas of A, respectively.

Any object x2U belongs to a decision class k
V

a2D a ¼
aðxÞkA of A.

All decision classes of A create a partition of the uni-
verse U.

A decision rule for A is any expression of the form
j)c, where j2FðC;VÞ, c2FðD;VÞ, and kjkA 6¼ ;.

ROUGH SET THEORY 3



Formulas j and c are referred to as the predecessor and
the successor of decision rule j)c. Decision rules are
often called ‘‘IF . . . THEN . . . ’’ rules.

Decision rule j)c is true in A if and only if
kjkA �kckA. Otherwise, one can measure its truth degree
by introducing some inclusion measure of kjkA in kckA.
It is important to note that an inclusion measure express-
ed by the confidence, widely used in data mining (41), has
been considered by Lukasiewicz (42) a long time ago in
studies on assigning fractional truth values to logical
formulas. Given two unary predicate formulas aðxÞ, bðxÞ,
where x runs over a finite set U, Lukasiewicz proposes
to assign to aðxÞ the value jkaðxÞkjjUj , where kaðxÞk ¼ fx2U :
x satisfies ag. The fractional value assigned to the impli-
cation aðxÞ) bðxÞ is then jkaðxÞ ^ bðxÞkjjkaðxÞkj under the assumption
that kaðxÞk 6¼ ;.

Each object x of a decision table determines a decision
rule

V
a2Ca ¼ aðxÞ)

V
a2Da ¼ aðxÞ.

Decision rules corresponding to some objects can have
the same condition parts but different decision parts. Such
rules are called inconsistent (nondeterministic, conflicting,
possible); otherwise, the rules are referred to as consistent
(certain, sure, deterministic, nonconflicting) rules. Decision
tables containing inconsistent decision rules are called
inconsistent (nondeterministic, conflicting); otherwise,
the table is consistent (deterministic, nonconflicting).

Numerous methods have been developed for different
decision rule generation that the reader can find in the
literature on rough sets. Usually, one is searching for
decision rules (semi) optimal with respect to some optimi-
zation criteria describing quality of decision rules in con-
cept approximations.

In case of searching for concept approximation in an
extension of a given universe of objects (sample), typical
steps are the following. When a set of rules have been
induced from a decision table containing a set of training
examples, they can be inspected to see if they reveal any
novel relationships between attributes that are worth pur-
suing for further research. Furthermore, the rules can be
applied to a set of unseen cases in order to estimate their
classificatory power. For a systematic overview of rule
application methods, the reader is referred to literature.

DEPENDENCY OF ATTRIBUTES

Another important issue in data analysis is discovering
dependencies between attributes. Intuitively, a set of attri-
butes D depends totally on a set of attributes C, denoted
C)D, if the values of attributes from C uniquely deter-
mine the values of attributes from D. In other words, D
depends totally on C, if there exists a functional depen-
dency between values of C and D. Formally dependency
can be defined in the following way. Let D and C be subsets
of A.

We will say that D depends on C in a degree kð0 � k � 1Þ,
denoted C) k D, if

k ¼ gðC;DÞ ¼ jPOSCðDÞj
jUj (14)

where

POSCðDÞ ¼
[

X 2 U=D

C�ðXÞ (15)

called a positive region of the partition U/D with respect
to C, is the set of all elements of U that can be uniquely
classified to blocks of the partition U/D, by means of C.

If k ¼ 1, we say that D depends totally on C, and if
k < 1, we say that D depends partially (to degree k) on C.

The coefficient k expresses the ratio of all elements of
the universe, which can be properly classified to blocks
of the partition U/D, employing attributes C and will be
called the degree of the dependency.

It can be easily seen that if D depends totally on C, then
IðCÞ� IðDÞ,which means that the partition generated by
C is finer than the partition generated by D. Notice that
the concept of dependency discussed above corresponds to
that considered in relational databases.

In summation D is totally (partially) dependent on C
if all (some) elements of the universe U can be uniquely
classified to blocks of the partition U/D, employing C.

REDUCTION OF ATTRIBUTES

We often face a question whether we can remove some data
from a data table preserving its basic properties, that is,
whether a table contains some superfluous data.

Let us express this idea more precisely.
Let C, D�A be sets of condition and decision attributes,

respectively.
We will say that C0 �C is a D-reduct (reduct with respect

to D) of C if C0 is a minimal subset of C such that

gðC;DÞ ¼ gðC0;DÞ (16)

The intersection of all D-reducts is called a D-core (core
with respect to D). As the core is the intersection of all
reducts, it is included in every reduct (i.e., each element
of the core belongs to some reduct). Thus, in a sense, the
core is the most important subset of attributes, because
none of its elements can be removed without affecting
the classification power of attributes.

Many other kinds of reducts and their approximations
are discussed in the literature. It turns out that they can be
efficiently computed using heuristics based on Boolean
reasoning approach.

DISCERNIBILITY AND BOOLEAN REASONING

Tasks collected under labels of data mining, knowledge
discovery, decision support, pattern classification, and
approximate reasoning require tools aimed at discovering
in data of templates (patterns) and classifying them into
certain decision classes. Templates are, in many cases,
most frequent sequences of events, most probable events,
regular configurations of objects, the decision rules of high-
quality, standard reasoning schemes. Tools for discovering
and classifying of templates are based on reasoning

4 ROUGH SET THEORY



schemes rooted in various paradigms (43). Such patterns
can be extracted from data by means of methods based on
Boolean reasoning and discernibility.

The discernibility relation is closely related to indis-
cernibility and is one of the most important relations con-
sidered in rough set theory.

The ability to discern between perceived objects is
important for constructing many entities like reducts, deci-
sion rules, or decision algorithms. In the classic rough
set approach, the discernibility relation DISðBÞ�U �U
is defined by xDIS(B)y if and only if non(xI(B)y), which,
however, is in general not the case for the generalized
approximation spaces (one can define indiscernibility
by x2 IðyÞ and discernibility by IðxÞ \ IðyÞ ¼ ; for any
objects x, y).

The idea of Boolean reasoning is based on construction
for a given problem P of a corresponding Boolean function
fP with the following property: The solutions for the pro-
blem P can be decoded from prime implicants of the Boolean
function fP . Let us mention that to solve real-life problems,
it is necessary to deal with Boolean functions having large
number of variables.

A successful methodology based on the discernibility of
objects and Boolean reasoning has been developed for
computing of many important for applications entities
like reducts and their approximations, decision rules,
association rules, discretization of real value attributes,
symbolic value grouping, searching for new features
defined by oblique hyperplanes or higher-order surfaces,
pattern extraction from data, as well as conflict resolution
or negotiation.

Most of the problems related to generation of the above-
mentioned entities are NP-complete or NP-hard. However,
it was possible to develop efficient heuristics returning
suboptimal solutions of the problems. The results of experi-
ments on many datasets are very promising. They show
very good quality of solutions generated by the heuristics in
comparison with other methods reported in literature (e.g.,
with respect to the classification quality of unseen objects).
Moreover, they are very efficient from the point of view of
time necessary for computing of the solution. It is important
to note that the methodology makes it possible to construct
heuristics having a very important approximation prop-
erty, which can be formulated as follows: Expressions
generated by heuristics (i.e., implicants) close to prime
implicants define approximate solutions for the problem.

CONCEPT APPROXIMATION

In this section, we consider the problem of approximation of
concepts over a universe U1(concepts that are subsets of
U1). We assume that the concepts are perceived only
through some subsets of U1, called samples, which is a
typical situation in the machine learning, pattern recogni-
tion, or data mining approaches (41,44). In this section, we
explain the rough set approach to induction of concept
approximations using the generalized approximation
spaces of the form AS ¼ ðU; I; nÞ defined earlier.

Let U�U1 be a finite sample. By PU, we denote a
perception function from PðU1Þ into P(U) defined by

PUðCÞ ¼ C\U for any concept C�U1. Let AS ¼ ðU; I; nÞ
be an approximation space over the sample U.

The problem we consider is how to extend the approxi-
mations of PUðCÞ defined by AS to approximation of C
over U1. We show that the problem can be described as
searching for an extension ASC ¼ ðU1; IC; nCÞ of the
approximation space AS, relevant for approximation of
C, which requires to show how to extend the inclusion
function n from subsets of U to subsets of U1that are
relevant for the approximation of C. Observe that, for
the approximation of C, it is enough to induce the necessary
values of the inclusion function nC without knowing the
exact value of ICðxÞ�U1 for x2U1.

Let AS be a given approximation space for PUðCÞ and
let us consider a language L in which the neighborhood
IðxÞ�U is expressible by a formula pat(x), for any x2U.
It means that IðxÞ ¼ kpatðxÞkU �U, where kpatðxÞkU

denotes the meaning of pat(x) restricted to the sample U.
In case of rule-based classifiers, patterns of the form pat(x)
are defined by feature value vectors.

We assume that for any new object x2U1nU we can
obtain (e.g., as a result of sensor measurement) a pattern
patðxÞ 2L with semantics kpatðxÞkU1 �U1. However, the
relationships between information granules over U1 like-
sets kpatðxÞkU1 and kpatðyÞkU1 , for different x, y2U1,
are, in general, known only if they can be expressed by
relationships between the restrictions of these sets
to the sample U [ i.e., between sets PUðkpatðxÞkU1Þ and
PUðkpatðyÞkU1Þ�.

The set of patterns fpatðxÞ : x2Ug is usually not rele-
vant for approximation of the concept C�U1. Such pat-
terns are too specific or not enough general and can directly
be applied only to a very limited number of new objects.
However, by using some generalization strategies, one can
search, in a family of patterns definable from fpatðxÞ :
x2Ug in L, for such new patterns that are relevant for
approximation of concepts over U1. Let us consider a
subset PATTERNSðAS;L;CÞ�L chosen as a set of pattern
candidates for relevant approximation of a given concept C.
For example, in case of a rule-based classifier, one can
search for such candidate patterns among sets definable
by subsequences of feature value vectors corresponding to
objects from the sample U. The set PATTERNS(AS,L,C)
can be selected by using some quality measures checked on
meanings (semantics) of its elements restricted to the
sample U (like the number of examples from the concept
PUðCÞ and its complement that support a given pattern).
Then, on the basis of properties of sets definable by these
patterns over U, we induce approximate values of the
inclusion function nC on subsets of U1definable by any of
such pattern and the concept C.

Next, we induce the value of nC on pairs (X,Y), where
X�U1 is definable by a pattern from fpatðxÞ : x2U1gand
Y �U1 is definable by a pattern from PATTERNS
(AS,L,C).

Finally, for any object x2U1nU, we induce the approxi-
mation of the degree nCðkpatðxÞkU1 ;CÞ applying a conflict
resolution strategy Conflict_res (a voting strategy, in case

ROUGH SET THEORY 5



of rule-based classifiers) to two families of degrees:

fnCðkpatðxÞkU1 ; kpatkU1Þ :pat2PATTERNS ðAS;L;CÞg
(17)

fnCðkpatkU1 ;CÞ : pat2PATTERNS ðAS;L;CÞg (18)

Values of the inclusion function for the remaining subsets
of U1 can be chosen in any way—they do not have any
impact on the approximations of C. Moreover, observe
that, for the approximation of C, we do not need to know
the exact values of uncertainty function IC—it is enough to
induce the values of the inclusion function nC. Observe that
the defined extension nC of n to some subsets of U1 makes
it possible to define an approximation of the concept C in a
new approximation space ASC .

In this way, the rough set approach to induction of
concept approximations can be explained as a process of
inducing a relevant approximation space.

MEREOLOGY AND ROUGH MEREOLOGY

Exact and rough concepts can be characterized by a new
notion of an element, alien to naive set theory in which
this theory has been coded until now. For an information
system A ¼ ðU;AÞ and a set B of attributes, the mereolo-
gical element elA

B is defined by letting

xelABX if and only if BðxÞ�X (19)

Then, a concept X is B-exact if and only if either xelABX or
xelAB UnX for each x2U, and the concept X is B–rough if
and only if for some x2U neither xelABX or xelAB UnX.

Thus, the characterization of the dychotomy exact–
rough cannot be done by means of the element notion of
naive set theory, but it requires the notion of containment
(�)(i.e., a notion of mereological element).

The Leśniewski Mereology (theory of parts) is based on
the notion of a part (38,39). The relation p of part on the
collection U of objects satisfies,

1. if xpy then not ypx,

2. if xpy and ypz then xpz.

The notion of mereological element elp is introduced as,

xelpy if and only if xpy or x ¼ y (20)

In particular, the relation of proper inclusion � is a part
relation p on any non-empty collection of sets, with the
element relation elp ¼ � .

Formulas expressing rough membership, quality of
decision rule, quality of approximations, and so on can be
traced back to a common root (i.e., m(X,Y) defined by Equa-
tion (8). The value m(X,Y) defines the degree of partial
containment of X into Y and naturally refers to the
Leśniewski Mereology. An abstract formulation of this
idea in Ref. 37 connects the mereological notion of element
elp with this idea of partial inclusion in the idea of a rough

inclusion as a relation m�U �U � ½0; 1� on a collection
of pairs of objects in U endowed with part p relation, and
such that

1. m(x, y, 1) if and only if xelpy,

2. if m(x, y, 1) then (if m(z, x, r) then m(z, y, r)),

3. if m(z, x, r) and s < r then m(z, x, s).

Implementation of this idea in information systems can
be based on archimedean t–norms (37); each such norm
T is represented as Tðr; sÞ ¼ gð f ðrÞ þ f ðsÞÞ with f, g
pseudo–inverses to each other, continuous and decreasing
on [0, 1]. Letting for (U, A) and x; y2U,

DISðx; yÞ ¼ fa2A : aðxÞ 6¼aðyÞg (21)

and

mðx; y; rÞ if and only if g
jDISðx; yÞj
jAj

� �
	 r (22)

defines a rough inclusion that satisfies additionally the
transitivity rule

mðx; y; rÞ; mðy; z; sÞ
mðx; z;Tðr; sÞÞ (23)

Simple examples here are as follows: The Menger rough
inclusion in the case f ðrÞ ¼ �lnr; gðsÞ ¼ e�s yields m(x,y,r)

if and only if e�
jDIS ðx;yÞj
jAj 	 r and it satisfies the transitivity

rule

mðx; y; rÞ; mðy; z; sÞ
mðx; y; r � sÞ (24)

where the t–norm T is the Menger (product) t–norm r � s,
and the Lukasiewicz rough inclusion with f ðxÞ ¼ 1� x ¼
gðxÞ yielding m(x,y,r) if and only if 1� jDISðx;yÞj

jAj 	 r with
the transitivity rule

mðx; y; rÞ; mðy; z; sÞ
mðx; y;maxf0; rþ s� 1gÞ (25)

with the Lukasiewicz t–norm.
Rough inclusions (37) can be used in granulation of

knowledge (40). Granules of knowledge are constructed
as aggregates of indiscernibility classes close enough
with respect to a chosen measure of closeness. In a nutshell,
a granule gr(x) about x of radius r can be defined as the
aggregate of all y with m(y, x, r). The aggregating mecha-
nism can be based on class operator of mereology (like in
rough mereology (37)) or on set theoretic operations of
union.

Rough mereology (37) combines rough inclusions with
methods of mereology. It employs the operator of mereo-
logical class that makes collections of objects into objects.
The class operator Cls satisfies the requirements, with any
non–empty collection M of objects made into the object

6 ROUGH SET THEORY



Cls(M),

if x2M; then xelpClsðMÞ (26)

if xelp Cls ðMÞ; then there exist y; z such that yelpx; yelpz; z2M

(27)

In case of the part relation� on a collection of sets, the class
Cls(M) of a non–empty collection M is the union

S
M.

Granulation by means of the class operator Cls consists
in forming the granule gr(x) as the class Clsðy : mðy; x; rÞÞ.
One obtains a granule family with regular properties
(see Ref. 36).

RESEARCH DIRECTIONS IN ROUGH SET THEORY

In this section, we present a list of research directions on
the rough set foundations and the rough set-based meth-
ods. For more details, the reader is referred to the biblio-
graphy on rough sets.

List of research directions on rough sets

– Boolean reasoning and approximate Boolean reason-
ing strategies as the basis for efficient heuristics for
rough set methods.

– Tolerance (similarity)-based rough set approach.

– Rough set-based approach based on neighborhood
(uncertainty) functions and inclusion relation, in par-
ticular, variable precision rough set model.

– Rough sets in multi-criteria decision analysis and
preference modeling.

– Recurrent rough sets.

– Rough sets and nondeterministic information systems.

– Rough set-based clustering.

– Rough sets and incomplete information systems, in
particular, missing value problems.

– Rough sets and noisy data.

– Rough sets and relational databases.

– Rough sets and inductive reasoning.

– Rough sets in modeling of decision systems and ana-
lysis of complex systems, in particular, rough sets and
layered (hierarchical) learning.

– Rough sets as a tool for approximate reasoning in
distributed systems, by autonomous agents, and in
multiagent systems.

– Rough mereology foundations, in particular, rough
mereological approach to synthesis and analysis of
complex objects.

– Rough sets and rough mereology in granular comput-
ing. In particular:


 modeling of approximation spaces for granular com-
puting;


 calculi of information granules;


 approximate reasoning schemes and networks;


 complex concept approximation from experimental
data and domain knowledge;


 spatio-temporal reasoning;


 classification of complex objects and prediction;


 rough set and rough mereological approach to com-
puting with words and perception;


 rough-neural computing.

– Relationships of rough sets to other approaches of
reasoning under incomplete information like Demp-
ster–Shafer theory of evidence, fuzzy sets, mathema-
tical morphology, statistical inference, Bayesian
reasoning, rough sets, and Petri nets.

– Logical calculi based on rough sets like specific modal,
3-valued, or information logics.

– Relationships of rough sets with logic programming.

– Algebraic structures corresponding to calculi on rough
sets and logics on rough sets like quasi–Boolean alge-
bras, double Stone algebras, Nelson algebras, Heyting
algebras, and Wajsberg algebras.

– Relational calculi and rough sets.

– Topological aspects of rough sets.

– Philosophical aspects of rough sets.

– Hybridization of rough sets with soft computing appro-
aches, in particular, with fuzzy sets, neural networks,
genetic algorithms, and evolutionary computing.

– Rough sets in machine learning.

– Rough sets in pattern recognition.

– Rough sets in data mining and knowledge discovery.

– Rough sets and case-based reasoning.

– Rough sets and membrane computing and other mole-
cular biology– inspired calculi.

– Rough sets and formal concept analysis.

A CHALLENGE FOR RESEARCH ON ROUGH SETS

There are many real-life problems that are still hard to solve
using the existing methodologies and technologies. Among
such problems are, for examples, classification of medical
images, control of autonomous systems like unmanned
aerial vehicles or robots, or problems related to monitoring
or rescue tasks in multiagent systems. All these problems
are closely related to intelligent systems that are more and
more widely applied in different real-life projects.

One of the main challenges in developing of intelligent
systems are methods for approximate reasoning from mea-
surements to perception (i.e., from concepts close to sensor
measurements to concepts expressed in natural language
by human beings that are the perception results).

Today, new emerging computing paradigms are inves-
tigated attempting to make progress in solving problems
related to this challenge. Further progress depends on a
successful cooperation of specialists from different scienti-
fic disciplines such as mathematics, computer science,
artificial intelligence, biology, physics, chemistry, bioinfor-
matics, medicine, neuroscience, linguistics, psychology,
and sociology. In particular, different aspects of reasoning
from measurements to perception are investigated in psy-
chology (45,46), neuroscience (47), layered learning (48),

ROUGH SET THEORY 7



mathematics of learning (47), machine learning, pattern
recognition (44), data mining (41), and also by researchers
working on recently emerged computing paradigms, like
computing with words and perception (40), granular com-
puting (17), rough sets, rough-mereology, and rough-
neural computing (17).

One of the main problems investigated in machine
learning, pattern recognition (44), and data mining (41)
is concept approximation. It is necessary to induce approx-
imations of concepts (models of concepts) from available
experimental data. The data models developed so far in
such areas like statistical learning, machine learning, and
pattern recognition are not satisfactory for approximation
of complex concepts resulting in the perception process.
Researchers from the different areas have recognized the
necessity to work on new methods for concept approxima-
tion (see Refs. 49 and 50). The main reason is that these
complex concepts are, in a sense, too far from measure-
ments, which makes the searching for relevant (for their
approximation) features infeasible in a huge space. There
are several research directions aiming at overcoming this
difficulty, one of which is based on the interdisciplinary
research where the results concerning perception in psy-
chology or neuroscience are used to help to deal with
complex concepts (see Ref. 44). There is a great effort in
neuroscience toward understanding the hierarchical
structures of neural networks in living organisms
(47,51). Also, mathematicians are recognizing problems
of learning as the main problem of the current century (47).

The problems discussed so far are also closely related to
complex system modeling. In such systems, the problem of
concept approximation and reasoning about perceptions
using concept approximations is one of the main challenges.
One should take into account that modeling complex phe-
nomena entails the use of local models (captured by local
agents, if one would like to use the multiagent terminology
(52)) that next should be fused. This process involves the
negotiations between agents (52) to resolve contradictions
and conflicts in local modeling. This kind of modeling will
become more and more important in solving complex real-
life problems that we are unable to model using traditional
analytical approaches. The latter approaches lead to exact
models. However, the necessary assumptions used to
develop these models are causing the resulting solutions
to be too far from reality to be accepted. New methods or
even a new science should be developed for such modeling
(53). One of the possible solutions in searching for methods
for complex concept approximations is the layered learning
idea (48). Inducing concept approximation should be devel-
oped hierarchically starting from concepts close to sensor
measurements to complex target concepts related to per-
ception. This general idea can be realized using an addi-
tional domain knowledge represented in natural language.
For example, one can use principles of behavior on the
roads, expressed in natural language, trying to estimate,
from recordings (made, e.g., by camera and other sensors) of
situations on the road, whether the current situation on the
road is safe. To solve such a problem, one should develop
methods for concept approximations together with methods
aiming at approximation of reasoning schemes (over such
concepts) expressed in natural language. Foundations of

such approach are based on rough set theory (2) and its
extension rough mereology (8,12,17,37), both discovered in
Poland.

Objects we are dealing with are information granules.
Such granules are obtained as the result of information
granulation (40). Information granulation can be viewed as
a human way of achieving data compression, and it plays a
key role in implementation of the strategy of divide-and-
conquer in human problem solving.

Computing with Words and Perception ‘‘derives from
the fact that it opens the door to computation and reason-
ing with information which is perception-rather than
measurement-based. Perceptions play a key role in human
cognition, and underlie the remarkable human capability
to perform a wide variety of physical and mental tasks
without any measurements and any computations. Every-
day examples of such tasks are driving a car in city traffic,
playing tennis and summarizing a story’’ (40). The rough
mereological approach (8,12,17,37) is based on calculi of
information granules for constructing complex concept
approximations. Constructions of information granules
should be robust with respect to their input information
granule deviations. In this way, a granulation of infor-
mation granule constructions is considered. As a result,
we obtain the so-called AR schemes (AR networks)
(8,12,17,37). AR schemes can be interpreted as complex
patterns (41). Searching methods for such patterns rele-
vant for a given target concept have been developed (17).
Methods for deriving relevant AR schemes are of high
computational complexity. The complexity can be substan-
tially reduced by using domain knowledge. In such a case,
AR schemes are derived along reasoning schemes in nat-
ural language that are retrieved from domain knowledge.
Developing methods for deriving such AR schemes is one of
the main goals of our projects.

The outlined research directions create foundations
toward understanding the nature of reasoning from mea-
surements to perception is a challenge and crucial for
constructing intelligent systems for many real-life projects.

CONCLUSIONS

In this article, basic concepts of rough set theory are pre-
sented. It has turned out, however, that the ‘‘basic model’’ of
rough sets—presented here—has not been sufficient for
many applications and is in need of some extensions.
Besides, theoretical inquiry into the rough set concept
also has led to its various generalizations. Some of them
have been mentioned in the article.

A variety of methods for decision rules generation,
reducts computation, and continuous variable discretiza-
tion are very important issues not discussed here. We have
only emphasized the developed powerful methodology
based on discernibility and Boolean reasoning for efficient
computation of different entities including reducts and
decision rules. Also, the relationship of rough set theory
to many other theories has been extensively investigated.
In particular, its relationships to fuzzy set theory, the
theory of evidence, Boolean reasoning methods, statistical

8 ROUGH SET THEORY



methods, and decision theory have been clarified and seem
now to be thoroughly understood.

There are reports on many hybrid methods obtained by
combining the rough set approach with other approaches
such as fuzzy sets, neural networks, genetic algorithms,
principal component analysis, and singular value decom-
position.

Recently, it has been shown that the rough set approach
can be used for synthesis and analysis of concept approx-
imations in the distributed environment of intelligent
agents. We outlined the rough mereological approach
and its applications in information granules calculi for
synthesis of information granules satisfying a given speci-
fication to a satisfactory degree.

Readers interested in the above issues are advised to
consult the enclosed references.

Many important research topics in rough set theory such
as various logics related to rough sets and many advanced
algebraic properties of rough sets were only mentioned in
the article. The reader can find details in the cited books,
articles, and journals.

Finally, we have outlined a challenge for research on
rough sets related to approximate reasoning from measure-
ments to perception.

ACKNOWLEDGMENTS

The authors would like to thank Professor James Peters for
his valuable comments on a draft version of the article.

The research of Andrzej Skowron has been supported
by the Ministry of Scientific Research and Information
Technology of the Republic of Poland. Lech Polkowski
was supported by grants from Polish-Japanese Institute
of Information Technology and University of Warmia and
Mazury.

BIBLIOGRAPHY

1. L.A.: Zadeh, Fuzzy sets, Inform. Control, 8: 338–353. 1965.

2. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning
about Data. Volume 9 of System Theory, Knowledge Engineer-
ing and Problem Solving. Dordrecht, The Netherlands Kluwer
Academic Publishers, 1991.

3. G. Frege, Grundgesetzen der Arithmetik, 2. Jena, Germany:
Verlag von Hermann Pohle, 1903.

4. S. Read, Thinking about Logic: An Introduction to the Philo-
sophy of Logic, New York: Oxford University Press, 1994.

5. R. Słowiński, (ed.), Intelligent Decision Support – Handbook of
Applications and Advances of the Rough Sets Theory. Volume
11 of D: System Theory, Knowledge Engineering and Problem
Solving. Dordrecht, The Netherlands: Kluwer Academic Pub-
lishers, 1992.

6. T.Y. Lin, N. Cercone, (eds.), Rough Sets and Data Mining –
Analysis of Imperfect Data, Boston, MA: Kluwer Academic
Publishers, 1997.

7. E. Orłowska (ed.), Incomplete Information: Rough Set Analy-
sis. Volume 13 of Studies in Fuzziness and Soft Computing,
Heidelberg, Germany: Springer-Verlag/Physica-Verlag, 1997.

8. L. Polkowski, A. Skowron, (eds.), Rough Sets in Knowledge
Discovery 1: Methodology and Applications. Volume 18 of

Studies in Fuzziness and Soft Computing, Heidelberg,
Germany: Physica-Verlag, 1998.

9. L. Polkowski, A. Skowron, (eds.), Rough Sets in Knowledge
Discovery 2: Applications, Case Studies and Software Systems,
Volume 19 of Studies in Fuzziness and Soft Computing,
Heidelberg, Germany: Physica-Verlag, 1998.

10. S.K. Pal, A. Skowron, (eds.), Rough Fuzzy Hybridization: A
New Trend in Decision-Making, Singapore: Springer-Verlag,
1999.

11. I. Duentsch, G. Gediga, Rough set data analysis: A road to
noninvasive knowledge discovery, Bangor, UK: Methodos
Publishers, 2000.

12. L. Polkowski, T.Y. Lin, S. Tsumoto, (eds.), Rough Set Methods
and Applications: New Developments in Knowledge Discovery
in Information Systems. Volume 56 of Studies in Fuzziness and
Soft Computing, Heidelberg, Germany: Springer-Verlag/
Physica-Verlag, 2000.

13. T.Y. Lin, Y.Y. Yao, L.A. Zadeh, (eds.), Rough Sets, Granular
Computing and Data Mining. Studies in Fuzziness and Soft
Computing, Heidelberg, Germany: Physica-Verlag, 2001.

14. L. Polkowski, Rough Sets: Mathematical Foundations.
Advances in Soft Computing, Heidelberg, Germany: Physica-
Verlag, 2002.

15. S. Demri, E. Orłowska, (eds.), Incomplete Information: Struc-
ture, Inference, Complexity, Monographs in Theoretical Com-
puter Science, Heidelberg, Germany: Springer-Verlag, 2002.

16. M. Inuiguchi, S. Hirano, S. Tsumoto, (eds.), Rough Set Theory
and Granular Computing. Volume 125 of Studies in Fuzziness
and Soft Computing, Heidelberg, Germany: Springer-Verlag,
2003.

17. S.K. Pal, L. Polkowski, A. Skowron, (eds.), Rough-Neural
Computing: Techniques for Computing with Words, Cognitive
Technologies, Heidelberg, Germany: Springer-Verlag, 2003.

18. R. Słowínski, J. Stefanowski, (eds.), Proc. of the First Interna-
tional Workshop on Rough Sets: State of the Art and Perspec-
tives, Kiekrz, Poznán, Poland, 1992.

19. W. Ziarko, (ed.), Special issue, Intell. Int.J., 11 (2), 1995.

20. W. Ziarko,(ed.), Special issue, Fundamenta Informaticae, 27
2–3, 1996.

21. T.Y. Lin, (ed.), Special issue. J. of the Intell. Automation and
Soft Computing, 2 (2): 1996.

22. J.Peters, A.Skowron, (eds.), Special issue on a rough set
approach to reasoning about data, Internat. J. of Intell.
Syst., 16(1): 2001.

23. N. Cercone, A. Skowron, N. Zhong (eds.), Special issue, Com-
putat. Intell. 17 (3): 2001.

24. S.K.Pal, W. Pedrycz, A. Skowron, R. Swiniarski, (eds.), Special
volume: Rough-neuro computing, Neurocomputing 36: 2001.

25. A.Skowron, S.K.Pal,(eds.), Special volume: Rough sets, pattern
recognition and data mining, Pattern Recog. Lett. 24(6) 2003.

26. W. Ziarko, (ed.), Rough Sets, Fuzzy Sets and Knowledge Dis-
covery: Proc. of the Second International Workshop on Rough
Sets and Knowledge Discovery (RSKD’93), Banff, Alberta,
Canada, 1993.

27. T.Y. Lin, A.M. Wildberger, (eds.), Soft Computing: Rough Sets,
Fuzzy Logic, Neural Networks, Uncertainty Management,
Knowledge Discovery, San Diego,CA: Simulation Councils,
Inc., 1995.

28. S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, A.
Nakamura (eds.), Proc. of the The Fourth Internal Workshop
on Rough Sets, Fuzzy Sets and Machine Discovery, University
of Tokyo, Japan, 1996.

ROUGH SET THEORY 9



29. L. Polkowski, A. Skowron, (eds.), First International Confer-
ence on Rough Sets and Soft Computing RSCTC. Warsaw,
Poland, Springer-Verlag, 1998.

30. A. Skowron, S. Ohsuga, N. Zhong (eds.), Proc. of the 7-th Inter-
national Workshop on Rough Sets, Fuzzy Sets, Data Mining,
and Granular-Soft Computing (RSFDGrC’99), Yamaguchi,
Japan, 1999.

31. W. Ziarko, Y. Yao, (eds.), Proc. of the 2nd International Con-
ference on Rough Sets and Current Trends in Computing
(RSCTC’2000), Banff, Canada, 2000.

32. S. Hirano, M. Inuiguchi, S. Tsumoto, (eds.), Proc. of Interna-
tional Workshop on Rough Set Theory and Granular Comput-
ing (RSTGC-2001), Matsue, Shimane, Japan, 2001.

33. T. Terano, T. Nishida, A. Namatame, S. Tsumoto, Y. Ohsawa,
T. Washio, (eds.), New Frontiers in Artificial Intelligence, Joint
JSAI 2001 Workshop Post-Proceedings, 2001.

34. J.J. Alpigini, J.F. Peters, A. Skowron, N. Zhong, (eds.), Third
International Conference on Rough Sets and Current Trends in
Computing (RSCTC’02), Malvern, PA, 2002.

35. A. Skowron, M. Szczuka (eds.), Proc. of the Workshop on
Rough Sets in Knowledge Discovery and Soft Computing at
ETAPS, 2003.

36. G. Wang, Q. Liu, Y. Yao, A. Skowron, (eds.), Proc. of the 9th
International Conference on Rough Sets, Fuzzy Sets, Data
Mining, and Granular Computing (RSFDGrC’03), Chongqing,
China, 2003.

37. L. Polkowski, A. Skowron, Rough mereology: A new paradigm
for approximate reasoning. International Journal of Approxi-
mate Reasoning, 15: 333–365, 1996.

38. S. Leśniewski, Grungz̈uge eines neuen systems der grundlagen
der mathematik, Fundamenta Matematicae, 14: 1–81, 1929.

39. S. Leśniewski, On the foundations of mathematics, Topoi 2:
7–52, 1982.

40. L.A. Zadeh, A new direction in AI: Toward a computational
theory of perceptions, AI Magazine 22: 73–84, 2001.

41. W. Kloesgen, J. Zytkow, (eds.), Handbook of Knowledge Dis-
covery and Data Mining, Oxford: Oxford University Press,
2002.

42. J. Łukasiewicz, Die logischen grundlagen der wahrscheinilch-
keit srechnung, 1913, in L. Borkowski, (ed.), Jan Łukasiewicz –
Selected Works, Amstardam, London, North Holland Publish-
ing Company, Polish Scientific Publishers, 1970.

43. R. Duda, P. Hart, R. Stork, (eds.), Pattern Classification,
New York: Wiley, 2002.

44. J.H. Friedman, T. Hastie, R. Tibshirani, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction,
Heidelberg, Germany: Springer-Verlag, 2001.

45. L.W. Barsalou, Perceptual symbol systems, Behavioral and
Brain Sciences, 22: 577–660, 1999.

46. S. Harnad, Categorical Perception: The Groundwork of Cogni-
tion, New York: Cambridge University Press, 1987.

47. T. Poggio, S. Smale, The mathematics of learning: Dealing with
data, Notices of the AMS, 50: 537–544, 2003.

48. P. Stone, Layered Learning in Multi-Agent Systems: A
Winning Approach to Robotic Soccer, Cambridge, MA: The
MIT Press, 2000.

49. L. Breiman, Statistical modeling: The two cultures, Statistical
Science, 16: 199–231, 2001.

50. V. Vapnik, Statistical Learning Theory, New York: Wiley,
1998.

51. M. Fahle, T. Poggio, Perceptual Learning, Cambridge, MA:
MIT Press, 2002.

52. M. Huhns, M. Singh, Readings in Agents, San Mateo, CA:
Morgan Kaufmann, 1998.

53. M. Gell-Mann, The Quark and the Jaguar – Adventures in
the Simple and the Complex, London: Brown and Co., 1994.

ZDZISŁAW PAWLAK*
Institute of Theoretical and

Applied Informatics, Polish
Academy of Sciences, and
University of Information
Technology and Management

Warsaw, Poland

LECH POLKOWSKI

Polish–Japanese Institute of
Information Technology

Warsaw, Poland
University of Warmia and

Mazury
Olsztyn, Poland

ANDRZEJ SKOWRON

Institute of Mathematics,
Warsaw University

Warsaw, Poland

*Deceased

10 ROUGH SET THEORY



A

AD HOC AND SENSOR NETWORKS

INTRODUCTION

In a wireless ad hoc network, each node is equipped with
one or more wireless radio transceivers. A node can com-
municate with nodes in its radio range directly (called
single-hop wireless); otherwise, it relies on the intermedi-
ate nodes to relay its message to a non-neighbor node. The
latter mechanism is called multi-hop wireless communica-
tion. In contrast, infrastructure-based networks such as
wireless local area networks (WLANs) and cellular net-
works use only single-hop wireless communication. More-
over, a wireless ad hoc network usually does not have
special-purpose relay nodes similar to routers in conven-
tional networks — every node is a potential router (that can
relay the data of other nodes). Furthermore, the network
topology of a wireless ad hoc network is usually much more
dynamic than that of a conventional network, because of
node failures and/or node mobility.

A wireless ad hoc network has several benefits over
wired infrastructure-based networks, which make it a
compelling choice for networking in certain application
scenarios. We discuss some of these benefits here:

� Quick to Deploy: A wireless ad hoc network, by
definition, does not require an existing infrastructure,
such as wall power or wiring. This quality significantly
reduces the time to deploy a wireless ad hoc network
and have it up and running. Sometimes, the time to
deploy may be minutes or seconds as opposed to days or
weeks for an infrastructure-based network.

� Suitable for a Wider Range of Environment: A
wireless ad hoc network can be deployed easily in
remote places such as in forests, under water (e.g.,
rivers, oceans, etc.), on mountain tops, on moving
troops in a battlefield, in toxic areas, or on other
planets.

� More Resilient to Failures: Wireless ad hoc net-
works typically are more resilient to failures than
infrastructure-based networks. This resihence is
because communication among nodes can be over
multiple hops using intermediate nodes (each of which
can act as a router) and because the protocols devel-
oped do not assume any existence of infrastructure.
Most ad hoc network protocols are/can be designed to
reconfigure quickly upon failure; therefore, communi-
cation among surviving nodes is possible even if sev-
eral or the majority of nodes have failed (as in a
battlefield scenario).

� Offers Freedom of Mobility: Because no wiring
exists among nodes, the nodes in a wireless ad hoc
network can move freely and still maintain commu-
nication with other nodes in the network. The protocols
also are designed to adapt quickly to mobility (which
may cause frequent changes in the set of neighbors).

This characteristic makes ad hoc networks especially
useful in mobile applications such as among a group of
moving soldiers, a fleet of moving vehicles, and a fleet
of aircrafts flying together, as well as in disaster loca-
tions.

� Economical: Because of its low set-up overhead (e.g.,
no wiring and labor), deploying a wireless ad hoc
network is more economical compared with its wired
counterpart in several application scenarios.

Although wireless ad hoc networks have several advan-
tages over infrastructure-based networks, they have their
own limitations. For example, the nodes usually have
limited lifetime because they typically run on batteries.
Moreover, it is often more challenging to develop efficient
protocols for the wireless ad hoc networks, because of the
mobility and the limitations of the wireless communication
medium.

wireless ad hoc networks can be classified into several
categories. Below are three major categories of ad hoc
networks, each of which has become a fertile research
area in its own right:

1. Mobile Ad Hoc Network (MANET): A MANET is a
network of mobile computing devices, such as laptops
and PDAs. The purpose of forming a MANET is to
facilitate communication among mobile host devices
that make up this network.

2. Wireless Sensor Network (WSN): WSNs are com-
posed of small wireless sensors, such as motes (2) that
can monitor their surrounding physical environment
by using various on-board sensors. The purpose of a
WSN is to monitor the environment in which it is
embedded either to collect data of interest or to detect
events of interest, such as monitoring its surrounding
for illegal intrusion activity.

3. Wireless Mesh Networks: A wireless mesh
network consists of wireless devices mainly used as
routers to provide a wireless infrastructure to other
devices. A wireless mesh network can provide Inter-
net access to computational devices, such as laptops
and PDAs, without having to deploy a wired infra-
structure.

Each of the above categories can be classified addition-
ally based on the devices and communication technology it
employs. For example, the mobile devices in a MANET can
be laptops, PDAs, or even cell phones, and the communica-
tion technology used by these devices can be 802.11, Blue-
tooth, ZigBee, and so forth.

Our focus in this article is on the first two categories–
MANETs and WSNs (see Ref. (3) for a survey of wireless
mesh networks). MANETs and WSNs share several key
characteristics; both of them rely on the wireless medium
for communication and use multi-hop wireless routing.
However, they have important differences as well because

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



of the intrinsic differences in their potential applications.
For example, typical applications of MANETs include
communication on a battlefield and during disaster recov-
ery; therefore, research on MANETs has been focusing on
supporting human communication in the face of uncon-
strained mobility. Alternately, WSNs are used to monitor
the physical environment, such as natural habitats
and volcanoes, as well as to detect intrusions in a highly
secure area. The sensor nodes usually are stationary and
need to last months without human intervention, so
energy-efficiency is a critical issue for WSNs, whereas
ensuring connectivity despite user-induced (and hence
uncontrolled) mobility has not been a major focus of
WSN research.

In the remainder of this article, we first discuss the
common issues in MANETs and WSNs, all of which are
important for wireless mesh networks, as well. Then, we
describe differences between MANETs and WSNs. Finally,
we conclude the article.

COMMON ISSUES IN WIRELESS AD HOC NETWORKS

The Issue of Connectivity

A wireless ad hoc network, by its very definition, does not
have a preplanned network topology. At the same time, the
network needs to facilitate communication among different
nodes. For this to be possible, the network needs to have
some form of connectivity. Depending on the particular
network, we may want all the nodes in the network to
form a connected graph, most of the nodes to form a con-
nected graph, or the network to provide delay-tolerant
connectivity (4). Sometimes, for fault tolerance or to bal-
ance the routing load among nodes, k-connectivity in the
network may be desired such that k node-disjoint paths
exist between every pair of nodes.

Connectivity (or k-connectivity) can be made possible by
increasing the density of nodes, by adjusting the transmis-
sion range of individual nodes, or by moving (controlled or
uncontrolled) the nodes. If the nodes are mostly static and
their location distribution can be approximated by a Pois-
son process or a random uniform process, then a critical
relation exists between the transmission range and node
density (5,6). Given one of these two parameters, the other
can be derived. If the density is given, then the required
transmission is called critical, and vice versa. The term
critical (in say transmission range) intuitively means that if
the transmission range is less than the critical value, then
the network is disconnected with high probability. How-
ever, if the transmission range is higher than the critical
value, then the network is connected with high probability.
The connectivity of the network is said to have a phase
transition (from disconnected to connected) at this critical
value.

When nodes are mobile, similar results exist for the
critical relation between the transmission range and den-
sity (7). These results assume that node movements can be
approximated by certain mobility models.

Although critical density provides a guidance as to what
behavior can be expected from a randomly deployed net-
work in terms of connectivity, the results are not directly

usable by a practitioner who would like to have a guarantee
on connectivity for finite deployment regions. This situa-
tion is because the results derived for critical density are
asymptotic, by definition. Recently, a new technique has
been proposed to derive density estimates for random
deployments that are quite reliable for finite deployment
regions (8). Such work bridges the gap between theory and
practice in the area of connectivity because theoretical
results now can be readily used in practice.

Another area of research that has received consider-
able attention is called ‘‘Delay-tolerant connectivity.’’ It
means that the network may not be connected at every
instant in time, but movement of nodes may facilitate
occasional communication among pairs of disconnected
nodes. In the extreme case, data mules (9) may be deployed
whose sole purpose is to ferry data between source–desti-
nation pairs. In other scenarios, nodes that have data
packets destined to another node may wait till they
come in direct contact with each other or pass the message
to one of their current neighbors, who repeats the process
until the data reaches its destination or until its time to
live runs out, in which case it is dropped. Figuring out a
good approach for message delivery in a mobile network
that is not always connected currently is a highly active
area of research.

Distributed Medium Access Control

Because the wireless medium is broadcast in nature, colli-
sion can occur when two nodes within the transmission
range of each other send packets at the same time. In an
infrastructure-based wireless network, such as a cell phone
network, the access point (or base station) can allocate a
different frequency band or a different transmission slot to
each node in the same cell. However, in an ad hoc network,
no centralized controller exists. Therefore, the first issue
that needs to be addressed in any wireless ad hoc network
is how to coordinate the transmissions of different nodes
without using a centralized controller. The major objectives
are to avoid collision (that may lead to loss of all colliding
messages and hence loss of bandwidth) in a distributed
manner, make efficient use of scarce wireless bandwidth,
ensure fairness among the nodes, provide real-time guar-
antees to high-priority packets, and achieve all these tasks
with a mechanism that scales to large network sizes. A
protocol that achieves these objectives (or a subset of these)
in a distributed manner is called a Distributed Medium
Access Control (MAC) protocol. 1

Several distributed MAC protocols have been proposed.
Most of them can be classified in two categories:

� Competitive Protocols: These protocols subscribe to
the philosophy that each node should compete for
access to the common wireless channel by itself.
Each node makes a local decision on whether to trans-
mit its packets at a given time instant or not. These
decisions are based on rules that are expected to max-
imize the chances of a successful transmission. One

1Some infrastructure networks such as wireless LANs also may use
distributed MAC protocols to avoid collision.

2 AD HOC AND SENSOR NETWORKS



common technique is to sense the channel for idleness
before starting a new transmission, which is referred
to as Carrier Sense Multiple Access with Collision
Avoidance (CSMA-CA). The main advantage of these
protocols is simplicity and, hence, scalability. The
main disadvantage is inefficient use of the wireless
channel, especially when the number of nodes compet-
ing for the channel is high. Examples of such protocols
include Multiple Access Collision Avoidance for Wire-
less LANs (MACAW), Floor Acquisition Multiple
Access Protocol (FAMA), Busy Tone Multiple Access
(BTMA), Dual BTMA (DBTMA), Receiver Initiated
BTMA(RI-BTMA), Multiple Access Collision Avoid-
ance by Invitation (MACA-BI), and Media Access
with Reduced Handshake (MARCH).

� Cooperative Protocols: These protocols follow a
different approach; they are based on the philosophy
that nodes should cooperate on deciding a schedule, for
example, who has the right to use the channel at a
particular time. In most of these protocols, time is
divided in slots and nodes work together on deciding
which slots are assigned to which nodes. The main
advantage of these protocols is efficient use when
most nodes have continuous data to send. Another
advantage is the guarantee of an upper bound on
the delay that any node will experience in sending
its packets. The major disadvantage is its complexity,
which arises from its core philosophy of requiring
cooperation among nodes. Examples of such protocols
include Distributed Packet Reservation Multiple
Access (D-PRMA), Collision Avoidance Time Alloca-
tion (CATA), Hop Reservation Multiple Access
(HRMA), Soft Reservation Multiple Access with Prior-
ity Assignment (SRMA/PA), and Five Phase Reserva-
tion Protocol (FPRP).

Some protocols use a combination of the two philoso-
phies, for example, use reservation for real-time traffic that
needs a delay guarantee and use competitive access for
regular traffic. An example of such a protocol is MACA with
Piggy-Backed Reservation (MACA/PR).

We refer the reader to chapter 6 in Ref. 10 for a descrip-
tion of all the MAC protocols listed above. Some issues that
are unique to a MAC protocol in WSN are described in the
section ‘‘Energy Efficiency’’ below.

Neighbor Discovery and Multi-Hop Routing

Because nodes in a wireless ad hoc network depend on their
neighbors to relay packets for them, each node needs first to
discover its neighbors after initial deployment (‘‘neighbor
discovery’’) and needs to update this information as neigh-
boring nodes fail or move out of its transmission range.
Moreover, each node needs to figure out to which neighbor a
particular packet should be forwarded so that the packet
can reach its destination most efficiently. This task is
accomplished using a distributed ad hoc routing protocol,
which typically takes into consideration the unique char-
acteristics of wireless ad hoc networks, for example, fre-
quent topology changes, limited power source, and low
bandwidth resources.

Numerous ad hoc routing protocols have been proposed
to date (see Ref. 11 and chapter 7 in Ref. 10) 2. These
protocols perform either flat or hierarchical routing. In
flat routing, a node potentially can obtain a route to all
the other nodes in the network. In hierarchical routing, the
network usually is divided into many non overlapping
clusters. Each cluster has a clusterhead that handles inter
cluster routing, whereas other nodes only need to discover
routes to nodes within their own cluster. Hierarchical
routing protocols usually are more suitable for large net-
works. Below, we focus our discussion on flat routing pro-
tocols. Readers are referred to Ref. 11 for more discussion of
hierarchical routing protocols. Issues that are unique to a
routing protocol in WSN are described in the ‘‘Typical
Traffic Pattern’’ section below.

Flat routing protocols can be classified into one of the
following three categories, based on when the routes are
discovered:

� A proactive routing protocol always maintains a route
to every destination in a network, regardless of
whether such a route will be used. The routes usually
are computed using a distance vector algorithm or a
link state algorithm. The protocols in this category are
closest to traditional routing protocols, but they typi-
cally include optimizations that reduce bandwidth and
processing overhead. They also are able to detect obso-
lete routes faster, for example, by adding more infor-
mation in routing messages. Examples of proactive ad
hoc routing protocols include DSDV [Destination-
Sequenced Distance Vector (12)], OLSR [Optimized
Link State Routing Protocol (13)], TBRPF [Topology
Dissemination-based on Reverse-Path Forwarding
(14)], and WRP [Wireless Routing Protocol (15)].

� A reactive routing protocol performs route discovery
only when a node receives a packet to a particular
destination that has no associated route in the routing
table of the node. In other words, routing overhead will
not be incurred for destinations that have no traffic
destined to them. Therefore, reactive protocols usually
have a lower processing, storage, and bandwidth over-
head than proactive protocols. The reactive approach
is especially suitable for networks with highly dynamic
nodes, as the costs of maintaining routes to the
dynamic destinations are extremely high. However,
the overhead reduction also depends heavily on the
traffic pattern in the network. If traffic is evenly dis-
tributed among all the destinations, the overhead
saving may not be significant. Moreover, because route
discovery takes time to complete, networks using reac-
tive routing protocols may have a longer delay in
packet delivery. Examples of reactive ad hoc routing
protocols include AODV [Ad-hoc On-demand Distance
Vector (16)], DSR [Dynamic Source Routing (17)], and
DYMO [DYnamic Manet On-demand Routing (18)].

2Several of these protocols are being standardized by the Internet
Engineering Task Force (IETF) MANET working group (http://
www.ietf.org/html.charters/manet-charter.html).

AD HOC AND SENSOR NETWORKS 3



� A hybrid routing protocol maintains pre computed
routes to some destinations and performs on-demand
route discovery for the other destinations. This type of
protocol is designed for large networks, where a pure
proactive protocol may incur too much control traffic
and a pure reactive approach may have too high a
packet delay and/or too much control traffic. One
example of hybrid routing protocols is ZRP [Zone Rout-
ing Protocol (19)].

We now briefly describe DSR and ZRP as an illustration
of how ad hoc routing protocols work.

Dynamic Source Routing. Each node in Dynamic source
routing (DSR) (17) maintains a cache of discovered routes.
When a sender needs to communicate with a new destina-
tion, it broadcasts a Route Request (RREQ) message to its
neighbors. Each neighbor checks its cache to see if a route to
the destination has been discovered before. If not, the node
appends its address to the RREQ message and broadcasts
this message to its neighbors. This process continues until
at least one node identifies a route to the destination in its
cache. This node then sends a Route Reply (RREP) message
to the original sender of the RREQ message with the entire
path in the reply. If no intermediate nodes have a path to
the destination, the destination eventually will receive the
RREQ message and send a RREP to the sender.

DSR uses source routing in packet delivery, for example,
the sender of a packet specifies the entire path in the header
of each data packet. Source routing allows a node to use
multiple paths to reach the same destination while avoid-
ing packet loops. However, it incurs more message over-
head as each packet needs to carry the entire path in its
header. Another downside is that the source route may
become obsolete when a packet is still–route to its destina-
tion, especially when the nodes are highly mobile.

Zone Routing Protocol. In Zone Routing Protocol (ZRP)
(11), each node maintains routes proactively to all the nodes
within a certain number of hops. This set of nodes is called a
zone for the node, and the number of hops is called a zone
radius. If a node needs to deliver a packet to a destination
outside its zone, it just sends a route request message to the
nodes on the boundary of its zone. Those nodes, in turn,
forward the message to the nodes on their zone boundary
until a node can locate the destination in its own zone.
Because the zone radius determines the routing traffic both
within a zone and between zones, the main research issue is
how to determine the appropriate zone radius to minimize
the overall routing traffic.

Reliable Data Delivery

The wireless medium typically has a higher error and loss
rate than the wired medium because of path loss, multi path
fading, and interference. Path loss means that the signal
strength weakens after the wireless signal travels for some
distance. The remaining signal strength usually is a func-
tion of the distance. Multi path fading occurs when the
wireless signal propagates in different directions and
finally all the signals arrive at the same destination. These

different versions of the original signal may have different
phases and strength, so the combination of them may look
very different from the original signal. Interference is
caused by signals transmitted at frequencies close to
each other. It can be reduced to a certain extent by using
guard bands between frequency bands and minimizing the
transmission range of each node (as described in ‘‘The Issue
of Connectivity’’ section).

Given the higher error and loss rate of the wireless
medium, how to ensure the reliable data delivery without
negatively impacting end-to-end throughput becomes a key
issue in wireless ad hoc networks. First, unlike wired net-
works that can rely solely on end-to-end recovery, wireless
ad hoc networks also need hop-by-hop link-level error recov-
ery to minimize delay, improve throughput, and reduce
unnecessary retransmissions by end nodes. Second, the
transport layer needs to distinguish losses caused by errors
from those caused by congestion. The most popular reliable
transport layer protocol is Transmission Control Protocol
(TCP). It was designed for wired networks in which most of
the losses are caused by congestion, so a TCP sender reduces
its speed drastically whenever a loss is detected. This reac-
tion is considered inappropriate for error-triggered losses as
the sender should probably be as aggressive as before. As a
result, the TCP performance in a wireless network could be
problematic. Several extensions to TCP and alternative
protocols have been proposed to address these problems.
We refer the reader to Ref. 10 chapter 9 for details. A new
trend in this research area is for the lower layer to expose
more information to the transport layer so that the overall
system will be more efficient and effective. Such cross layer
optimization has been proposed for solving other problems
in wireless ad hoc networks as well.

Security

Securing wireless ad hoc networks is especially challenging
(20,21). First, privacy and integrity are more difficult to
ensure in a wireless network than in a wired network
because it is easy for an attacker to snoop on a wireless
channel and modify ongoing transmission. Second, because
of the infrastructureless nature of wireless ad hoc net-
works, authenticity is difficult to establish; no trusted
central authority exists. Third, because the wireless nodes
are more portable than computers in a traditional network,
they may be easier to lose and be used later by attackers to
inject false information. Furthermore, conventional secur-
ity mechanisms usually have high computational and sto-
rage demands that may make their implementation
difficult on wireless nodes.

WHAT SETS MANETS AND WSNS APART?

Although discussions of wireless ad hoc networks (which
mostly refers to MANETs) often include wireless sensor
networks (WSN) as a special case, these two areas each
have blossomed into exciting research areas in their own
right. The reason for this is because these two networks
possess several unique characteristics that set them apart.
Below we discuss some major characteristics that are
unique to each of these networks.

4 AD HOC AND SENSOR NETWORKS



Typical Usage

MANETs are used mostly for communication between
human-operated devices, such as laptops, PDAs, or cellular
phones, whereas wireless sensor networks are deployed
mostly for data collection and event monitoring. We now
discuss some representative applications of each network.

We first describe two applications of MANETs.

� Facilitating Communication Among a Troop of
Soldiers: Each soldier carries a computing device
with ad hoc networking ability. The devices hosted
on the soldiers form an ad hoc network as soon as they
are turned on. This network allows messages from
any node to reach any other node even though the
soldiers are allowed to move freely to achieve their
operational goals (their movements are not con-
strained to maintain a connected network). There-
fore, the network of devices needs to take care of
maintaining connectivity.

� Facilitating Communication in Remote Loca-
tions: Cellular phone towers do not cover remote
areas (such as mountains and forests). If mobile
phones are equipped with ad hoc networking capabil-
ity (as is being planned), then an ad hoc network
among the various mobile phones can be formed.
This ad hoc network will enable data and possibly
voice communication among users even if no cellular
phone towers are in the neighborhood to provide
regular coverage.

Now we describe two applications of WSNs.
� Detecting Illegal Crossing on an International

Border: Wireless sensor nodes are sprayed from an
aircraft on the international border. Once these
sensors land on ground, they form a multi-hop
wireless network. They start monitoring for people
or vehicles crossing the border. As soon as such an
event is detected by one or more sensors, a detection
message is dispatched to a manned station for possible
action. The message takes less than a couple of seconds
to reach a manned station that may be situated several
miles from the point of occurrence of the intrusion
event. This system has the potential to improve sig-
nificantly the border surveillance at a low cost. With
this system, the entire border can be monitored con-
tinuously instead of the spotty surveillance that is
done today.

� Monitoring a Fabrication Plant to Prevent
Downtime: Wireless sensors can be deployed in a
fabrication plant to monitor the vibration and acoustic
signatures of critical equipments. If the signature
matches some specific patterns that typically precede
failures, a message is immediately dispatched to a
manned station and preventive actions are taken to
ensure no downtime occurs. This system has the poten-
tial to save millions of dollars by preventing downtime
of critical equipment.

As illustrated by the above-mentioned applications, the
purpose of deploying a MANET is very distinct from that of

deploying a WSN. The implication is that new research
issues emerge in a WSN that had not been so critical in a
MANET, such as the issues of coverage (i.e., ensuring that a
WSN provides the desired quality of monitoring), tolerance
to new types of faults, focus on energy efficiency, and so
forth. Even those issues that are common to both networks,
such as the design of medium access control, routing, and
other protocols (discussed in the ‘‘Common Issues in wire-
less Ad Hoc Networks’’ section), need to be revisited for
WSNs. Below, we elaborate on these and other differences
between MANETs and WSNs.

Typical Traffic Pattern

Because the typical uses of the two networks are distinct,
their typical traffic patterns are quite distinct as well. In a
MANET, traffic pattern usually is point to point or point to
multipoint. In other words, traffic originating from one
node may be destined to one particular subset of nodes at
a given instant, whereas traffic originating from another
node or from the same node but at a different instant may be
destined to a different subset of nodes.

In a wireless sensor network, however, data traffic
either flows from sensor nodes to one or a set of base
stations, called source to sink, or from the base station(s)
to some or all nodes, called sink to source. Examples of
source-to-sink traffic are event detection messages from
sensors or sensor data about the environmental variations.
Examples of sink-to-source traffic are the dissemination of
a new program to all (or a subset of) sensors or the dis-
semination of a new value of some parameters to all (or a
subset of) sensors. Base stations sometimes are referred to
as sinks to emphasize this traffic pattern.

Because the traffic pattern in a WSN is so distinct from
that in a MANET, the routing protocol used in these two
networks is different as well. As mentioned in the pre-
vious paragraph, two types of traffic need to be supported
by a WSN, information from sensors to sink(s) and from
sink(s) to sensors. Traffic from sensors to sink(s) is
referred to as data gathering, and that from sink(s) to
sensors is referred to as data dissemination. The major
issues that need to be addressed in a routing protocol to
support each of these traffic patterns are very distinct,
and hence two different categories of routing protocols
have been developed to cater to these two traffic types.
MintRoute (22) is an example of a data gathering routing
protocol, and Deluge (23) is an example of a data disse-
mination routing protocol.

Attended Versus Unattended—Implications for
Fault-Tolerance

MANETs typically consist of human-operated devices and
therefore are attended mostly by a human being. Several
types of faults easily may be detected and repaired (by
resetting the device). Battery exhaustion also is not a major
concern as the human operator may recharge the device
when needed.

A wireless sensor network typically is deployed outdoors
and may remain unattended for long periods of time. This
unattended nature has several fault-tolerance implica-
tions. First, sensor nodes are subject to new types of faults

AD HOC AND SENSOR NETWORKS 5



that may come from outdoor environmental conditions such
as wind, rain, excessive heat or cold, physical tampering,
and so forth. Excessive heat or cold or excessive battery
depletion may cause other types of failures that qualify as
byzantine failures (24). Second, node failures are more
frequent in a wireless sensor network. Further, node fail-
ures may not be detected immediately and sometimes and
not be detected at all (for example, if message from a
healthy sensor node cannot reach the base station). Third,
physically repairing or replacing individual nodes may not
be feasible (e.g., if the sensors are deployed in inhospitable
terrain or in enemy territory), and, hence, only remote
repair of failures is feasible. Fourth, battery recharging
may not be feasible (especially if the nodes are not equipped
with energy scavenging mechanisms as in solar cells).

Consequently, the protocols developed for wireless sen-
sor network needs to be adaptive to these new types of
failures. These failure types are not prevalent in a MANET.

Resource Constraints

The computational capacity, memory size, buffer capacity,
and network bandwidth available to a sensor node is an
order of magnitude lower than that available to a node in a
typical MANET. See Table 1 for a comparison of the hard-
ware specification of a typical WSN device with that of a
typical MANET device. Observe that the processor is at
least 50 times slower in a WSN and that RAM size is at least
6,400 times lower. This implies that the protocols and
algorithms developed for a WSN need to be considerably
simpler than that developed for a typical MANET.

Energy Efficiency

Sensor nodes, being deployed outdoors and unattended,
run on batteries that may not be replaced. Hence, the issue
of energy efficiency and network longevity are high-priority
considerations, whereas this problem is less severe in
MANETs that mostly consist of personal digital devices
that can be recharged. As a result, every protocol or algo-
rithm developed for wireless sensor network should be
designed with a consideration of energy efficiency. For
example, the MAC protocols proposed for MANETs are
not very appropriate for use in a WSN because energy
efficiency is not as critical in a MANET. In a WSN, even
keeping the radio in listening mode for an extended period
of time can drain significant energy. Hence, the radio may
be completely turned off to save energy and turned on only
periodically or when needed to receive or transmit data. If
the radio is not always in the listening mode, communica-
tion (especially of real-time data like the detection of an

intruder) becomes nontrivial. Several MAC protocols to
ensure timely communication while ensuring energy-
efficiency have been proposed. An example of such a
protocol is B-MAC (25).

The issue of energy efficiency also is critical in the
process of deployment. If redundant sensors are deployed,
then the redundant sensor nodes are put to sleep, taking
turns, to maximize the lifetime of the sensors (as discussed
in ‘‘The Issue of Coverage’’ section).

Mobility

The nodes in a typical MANET are assumed to be fre-
quently mobile. The nodes in a WSN, however, are mostly
static, unless moved by wind or other external phenom-
enon. In the future, some sensor networks may consist of
mobile nodes, (26). In these cases, however, the motion of
sensors will be dictated by the network requirement [such
as to facilitate data collection from a sensor node discon-
nected from the base station (9) or to provide temporary
coverage in place of a failed sensor node (26)] as opposed to a
user-induced motion as in a typical ad hoc network. This
difference in the mobility pattern affects how the protocols
for the two networks are designed.

Security Threats

New types of security threats are possible in a sensor
network because of outdoor and unattended deployment,
such as physical capture and physical destruction. Because
sensor nodes have the ability to receive new program code
to replace the currently active program code via a wireless
channel, an adversary may inject malicious program onto
sensor nodes. False sensory data or bogus events also can be
injected in the network. Communication can be jammed by
accompanying a malicious target (that the network is
supposed to detect) with a jammer device. Because the
sensors have limited energy reserve, attacks can be played
to deplete sensors of their energy, such as by sending too
many messages (from a more powerful device) or by causing
too many event detections. Designing protocols to mitigate
these and other security threats in a WSN currently is an
active area of research.

The Issue of Coverage

Because the main purpose of a WSN is data collection and
event monitoring, the issue of coverage becomes a key issue
in the deployment and maintenance of sensor networks.
The issue of coverage is that of determining methods of
initial deployment and subsequent maintenance of the
network topology (over time) to ensure that a WSN provides
the desired quality of monitoring (27,28). This issue does
not arise in MANETs because their main purpose is not to
monitor events.

When a sensor network is to be deployed, several critical
deployment issues arise, such as how many sensors should
be deployed and in what pattern. Determining how many
sensors to deploy becomes more challenging when sensors
cannot be deployed at desired locations, as when spraying
them from an aircraft. Once sensors have been deployed,
mechanisms are needed to detect whether the network

Table 1. Comparison of the key hardware properties of a
typical WSN device (telosb mote), a pocket PC (HP iPAQ),
and a typical laptop

Property WSN Device Pocket PC Laptop

Processor speed 8 MHZ 400 MHZ 1.8 GHZ
RAM size 10 KB 64 MB 1 GB
Persistent storage 1 MB 64 MB 60 GB
Radio data rate 250 kbps 11 mbps 54 mbps

6 AD HOC AND SENSOR NETWORKS



continues to provide the desired quality of monitoring, as
some sensors may fail unexpectedly because of environ-
mental factors. In the event that the network can no longer
provide the desired quality of monitoring, additional sen-
sors may need to be deployed, or if the sensors have move-
ment ability, then some sensors may need to be repositioned
to repair the network. Designing efficient methods of rede-
ployment or reconfiguration continues to be an active area
of research.

To tolerate unanticipated sensor failures, some redun-
dant sensors may be deployed. In such a case, mechanisms
are needed to determine a sleeping schedule (29) for the
redundant sensors such that the batteries of the active
nodes get depleted at a slower rate, ensur which a longer
life for the network.

Localization

Because the main purpose of a wireless sensor network is
to monitor events or collect information about the envir-
onment, it often is critical to associate location informa-
tion with the data collected by a sensor node. For example,
if a sensor network is deployed to detect fire, then it is not
sufficient to learn that fire has erupted. Location of the fire
eruption is a critical part of the information. Additionally,
because installing GPS at every sensor node is prohibi-
tively expensive and energy consuming, the process of
localization needs to be performed in a sensor network
such that each sensor node knows its absolute location.
Either the process of localization is not so critical in a
typical MANET, or installing a GPS unit on each device is
within the budget.

Various mechanisms have been proposed to perform
localization. For example, a mobile unit with GPS mounted
on it can traverse through the network broadcasting its
location (30). Sensors can localize themselves using this
broadcast. Alternatively, some anchor nodes who know
their location (possibly using a GPS) can be placed in the
network. These nodes then help other nodes determine
their locations by using a localization algorithm. Some
mechanisms for localization use the time difference of
arrivals of radio or acoustic signals (31), whereas others
use radio interferometric techniques where radio signals
are transmitted to cause interference (and hence phase
difference) at the receivers (32). Localization in a WSN still
is an active area of research.

Time Synchronization

Because the main purpose of a WSN is to monitor events or
collect information about the environment, often it is cri-
tical to associate time information with the data collected
by a sensor node. For example, if a sensor network is
deployed to track the trajectory of a moving target, then
the time of detection of the target at a specific sensor is
necessary to chart the trajectory of the target movement.

Time synchronization also is useful in MANETs (espe-
cially for implementing some cooperative MAC protocols).
However, the clocks of MANET nodes usually are more
accurate than that of sensor networks. Also, in MANET
devices such as cell phones, time synchronization is pro-
vided by a centralized infrastructure. Consequently, the

problem of time synchronization is more critical in a WSN
than in a MANET and requires a nontrivial solution.

Several protocols exist for time synchronization in a
WSN. They can be classified in two categories: proactive
and reactive(33). In proactive protocols, a virtual global
reference time across the entire network is established and
maintained via the exchange of messages. Reference
Broadcast Synchronization (RBS) (34) and Flooding Time
Synchronization Protocol (FTSP) (35) are examples of
proactive protocols. In reactive protocols, time is not syn-
chronized at all. Packets are time-stamped using local
unsynchronized times. Synchronization is done after the
detection of events. An example of such a protocol is Rout-
ing Integrated Time Synchronization (RITS) protocol
(36,33).

CONCLUSION

Wireless ad hoc networks have revolutionized the world of
communication by enabling quick and infrastructureless
communication at the point of need, whether it is in a
battlefield, on a mountain, under water, or on a different
planet. Wireless sensor networks, alternately, are revolu-
tionizing many disciplines by providing the unprecedented
ability to observe our environment. By enabling the unob-
trusive collection and accessibility of real-time data from
the environment, new research capability now is available
in several scientific disciplines, such as biology, geology,
oceanology, medicine, and elderly care. Also, by enabling
real-time and continuous monitoring of the environment,
new capabilities in surveillance have become possible such
as efficient and comprehensive border surveillance. Both of
these disciplines, wireless ad hoc network and wireless
sensor network, are relatively young disciplines with
highly active research communities. As new applications
emerge and as the technologies mature, these two technol-
ogies potentially can have a greater impact on our lives
than personal computers and the Internet have.

BIBLIOGRAPHY

1. H. Karl and A. Willig, Protocols and Architectures for Wireless
Sensor Networks, John Wiley & Sons, 2005.

2. M. Horton, D. E. Culler, K. Pister, J. Hill, R. Szewczyk and A.
Woo, The commercialization of microsensor motes, Sensors
Magazine, 19(4): 40–48, 2002.

3. I. F. Akyildiz, X. Wang and W. Wang, Wireless mesh networks:
A survey, Computer Networks, 47(4): 445–487, 2005.

4. K. Fall, A delay-tolerant network architecture for challenged
internets, Proc. ACM SIGCOMM, Karlsruhe, Germany, 2003.

5. P. Gupta and P. R. Kumar, Critical power for asymptotic
connectivity in wireless networks, IEEE 37th Conference on
Decision and Control, Tampa, FL: 1998, pp. 1106–1110.

6. X. Y. Li, P. J. Wan, Y. Wang and C. Yi, Fault tolerant deploy-
ment and topology control in wireless networks, International
Symposium on Mobile Ad Hoc Networking and Computing
(ACM MobiHoc), Annapolis, MD: 2003, pp. 117–28.

7. P. Santi, The critical transmitting range for connectivity in
mobile ad hoc networks, IEEE Trans. in Mobile Computing,
4(3): 310–317, 2005.

AD HOC AND SENSOR NETWORKS 7



8. P. Balister, B. Bollobás, A. Sarkar and S. Kumar, Reliable
density estimates for achieving coverage and connectivity in
thin strips of finite length, International Conference on Mobile
Computing and Networking (ACM MobiCom), Montreal,
Canada, 2007.

9. S. Jain, R. C. Shah, W. Brunette, G. Borriello and S. Roy,
Exploiting mobility for energy efficient data collection in wire-
less sensor networks, J. Mobile Networks and Applications,
11(3): 327–339, 2006.

10. C. S. R. Murthy and B. S. Manoj, Ad Hoc Wireless Networks:
Architectures and Protocols. Prentice Hall, 2004.

11. E. M. Belding-Royer, Routing approaches in mobile ad hoc
networks, chapter 10, in Mobile Ad Hoc Networking. Wiley-
IEEE Press, 2004.

12. C. Perkins and P. Bhagwat, Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile compu-
ters, ACM SIGCOMM’94 Conference on Communications
Architectures, Protocols and Applications, 1994, pp. 234–244.

13. P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum
and L. Viennot, Optimized link state routing protocol for ad hoc
networks, Proc. 5th IEEE Multi Topic Conference (INMIC
2001), 2001.

14. R. Ogier, F. Templin and M. Lewis, Topology dissemination
based on reverse path forwarding (TBRPF), Feb. 2004.

15. S. Murthy and J. J. Garcia-Luna-Aceves, An efficient routing
protocol for wireless networks, Mobile Networks and Applica-
tions, 1(2): 183–197, 1996.

16. C. Perkins, E. Belding-Royer and S. Das, Ad hoc on-demand
distance vector (AODV) routing, July 2003.

17. D. B. Johnson and D. A. Maltz, Dynamic source routing in ad
hoc wireless networks, Mobile Computing, 353, 1996.

18. I. Chakeres and C. Perkins, Dynamic manet on-demand rout-
ing, Mar. 2006.

19. Z. J. Haas, A new routing protocol for the reconfigurable
wireless networks, Proc. of 6th IEEE International Conference
on Universal Personal Communications (IEEE ICUPC’97),
1997, Vol. 2, pp. 526–566.

20. Y.-C. Hu and A. Perrig, A survey of secure wireless ad hoc
routing, IEEE Security & Privacy, special issue on Making
Wireless Work, 2(3): 28–39, 2004.

21. A. Mishra and K. M. Nadkarni, Security in wireless ad hoc
networks, pp. 499–549, 2003.

22. A. Woo, T. Tong and D. Culler, Taming the underlying chal-
lenges of reliable multihop routing in sensor networks, ACM
Conference on Ebmedded Networked Sensor Systems (SenSys),
Los Angeles, CA, 2003.

23. J. W. Hui and D. Culler, The dynamic behavior of a data
dissemination protocol for network programming at scale,
ACM Conference on Ebmedded Networked Sensor Systems
(Sensys), 2004.

24. S. Bapat, V. Kulathumani and A. Arora, Analyzing the yield of
exscal, a large scale wireless sensor network experiment, IEEE

International Conference on Network Protocols (ICNP), Boston,
MA, 2005.

25. J. Polastre, J. Hill and D. Culler, Versatile low power media
access for wireless sensor networks, ACM Sensys, 2004.

26. J.-P. Sheu, P.-W. Cheng and K.-Y. Hsieh, Design and imple-
mentation of a smart mobile robot, IEEE International Con-
ference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Montreal, Canada, 2005, Vol. 3, pp.
422–429.

27. S. Kumar, T. H. Lai and J. Balogh, On k-coverage in a mostly
sleeping sensor network, International Conference on Mobile
Computing and Networking (ACM MobiCom), Philadelphia,
PA, 2004, pp. 144–158.

28. S. Kumar, T. H. Lai and A. Arora, Barrier coverage with
wireless sensors, International Conference on Mobile Comput-
ing and Networking (ACM MobiCom), Cologne, Germany,
2005, pp. 284–298.

29. S. Kumar, T. H. Lai, M. E. Posner and P. Sinha, Optimal sleep
wakeup algorithms for barriers of wireless sensors, IEEE
BROADNETS, Durham, NC, 2007.

30. A. Galstyan, B. Krishnamachari, K. Lerman and S. Pattem,
Distributed online localization in sensor networks using a
moving target, Third International Conference on Information
Processing in Sensor Networks (IPSN), Berkeley, CA, 2004.

31. L. Girod, M. Lukac, V. Trifa and D. Estrin, The design and
implementation of a self-calibrating distributed acoustic sen-
sing platform, The Fifth ACM Conference on Embedded Net-
worked Sensor Systems (ACM SenSys), Boulder, CO, 2006.

32. B. Kusy, A. Ledeczi and X. Koutsoukos, Tracking mobile nodes
using rf doppler shifts, The Fifth ACM Conference on
Embedded Networked Sensor Systems (ACM SenSys), Sydney,
Australia, 2007.

33. J. Sallai, B. Kusy, A. Ledeczi and P. Dutta, On the scalability of
routing integrated time synchronization protocol, European
Workshop on Wireless Sensor Networks (EWSN), Zurich, Swit-
zerland, 2006.

34. J. Elson, L. Girod and D. Estrin, Fine-grained network time
synchronization using reference broadcasts, Proc. Fifth Sym-
posium on Operating System Designand Implementation
(OSDI), Boston, MA, 2002, pp. 147–163.

35. M. Maroti, B. Kusi, G. Simon and A. Ledeczi, The flooding time
synchronization protocol, ACM Sensys, Baltimore, MD, 2004.

36. B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi and D. Culler,
Elapsed time on arrival: A simple and versatile primitive for
canonical time synchronization services, Int. J. Ad Hoc and
Ubiquitous Computing, 1(4): 239–251, 2006.

SANTOSH KUMAR

LAN WANG

The University of Memphis
Memphis, Tennessee

8 AD HOC AND SENSOR NETWORKS



C

COMMUNICATION-INDUCED
CHECKPOINTING PROTOCOLS AND
ROLLBACK-DEPENDENCY TRACKABILITY:
A SURVEY

INTRODUCTION

A checkpoint is a snapshot of the current state of a process,
saved on nonvolatile storage. A process periodically takes a
checkpoint so that it can reduce the amount of lost work
upon a failure. To survive a failure, the process reloads the
state recorded in the latest checkpoint into volatile memory
and restarts from that checkpoint. Such a procedure is
called rollback recovery.

A distributed computation is composed of multiple
processes connected by a communication network. Pro-
cesses communicate and synchronize only by exchanging
messages via the network. The execution of each process
produces a sequence of events, and all the events produced
by a distributed computation can be modeled as a partially
ordered set with the well-known Lamport’s happened-
before relation (1). In a distributed computation, the states
of all involved processes and those of the underlying com-
munication channels constitute the system state. Upon a
failure, lost process states may create orphan messages
that result in an inconsistent state, i.e., a state that is
impossible to reach via any failure-free distributed execu-
tion. A message is called orphan with regard to an ordered
pair of checkpoints if the receiving event of such a message
happens before the latter checkpoint in the pair but its
sending event occurs after the former one. Hence, an
ordered pair of checkpoints is consistent if there are no
orphan messages with respect to this pair. Furthermore, a
global checkpoint is a set of checkpoints, one from each
process. A global checkpoint is consistent if all pairs of its
component checkpoints are consistent (2). In particular, the
consistent global checkpoint that can minimize the total
rollback distance upon a failure is called the recovery line.
Computing a consistent global checkpoint, preferably the
recovery line, is fundamental to any rollback-recovery
protocol after inconsistencies happen due to failures.

If checkpoints are taken independently, it is possible that
cascading rollback propagation, which is required to elim-
inate all orphan messages, may occur during the course of
finding the recovery line. In the worst case, no consistent
global checkpoints can be found (except for the set of all
initial checkpoints), andthis is the well-known domino effect
problem (3). Many checkpointing protocols have been pro-
posed to selectively take checkpoints to avoid this problem.
For more details, see the survey paper (4). Among them,
coordinated checkpointing(2,5) avoids the domino effect
by synchronizing the checkpointing actions of all
processes through explicit control messages. In contrast,
communication-induced checkpointing (CIC)(6) accom-
plishes coordination by piggybacking control information
on application messages. Specifically, in addition to taking

application-specific basic checkpoints, each process can also
be directed by the protocol to take extra forced checkpoints
according to certain checkpoint-inducing conditions, to
ensure the progression of the recovery line. Such conditions
typically predicate on information piggybacked on messages
as well as on local control variables.

CIC protocols can also be used to achieve a stronger
property, called rollback-dependency trackability (RDT)
(7). Besides the inconsistencies resulting from causal
dependency, two checkpoints can have a noncausal, zigzag
dependency that makes it impossible for them to belong to
the same consistent global checkpoint (8). A CIC protocol
satisfies RDT if all such hidden dependencies are guaran-
teed to be online trackable through a simple transitive
dependency vector. The RDT property can both eliminate
the domino effect and ensure that any set of checkpoints
that are not causally related pairwise can be extended to
form a consistent global checkpoint. Moreover, it allows
efficient decentralized calculation of the recovery line (7).

PRELIMINARIES

In this section, we define terms that are essential for
understanding the CIC protocols. Associated with a dis-
tributed computation, the set of messages and the set of
local checkpoints constitute the checkpoint and communi-
cation pattern. In a pattern, Ci, x represents the xth check-
point of process Pi. The sequence of events occurring at Pi

between Ci, x�1 and Ci, x (x > 0) constitute a checkpoint
interval (or interval for short), which is denoted by Ii, x.

A Z-path is defined as a sequence of messages in which
the sending event of every message except for the first one
happens in the same or a later interval than the receiving
event of the preceding message (9). Furthermore, a Z-path
is from checkpoint Ci, x to Cj, y if its first message is sent after
Ci,x and its last message is received before Cj, y. A Z-path
denotes that its terminating checkpoint has a rollback
dependency on its starting one. More specifically, with a
Z-path from Ci, x to Cj, y, if process Pi rolls back to Ci, x upon a
failure, process Pj also needs to rollback to Cj, y�1 in order to
eliminate inconsistency. Hence, a Z-path from a checkpoint
Ci, x to itself, which is also called Z-cycle, is the cause of the
domino effect since it will induce recursive, cascading roll-
back propagation. The checkpoint Ci, x involved in this
Z-cycle is thus unable to belong to any consistent global
checkpoint (8) and considered useless in Ref. 10. Intuitively,
the ultimate goal of a CIC protocol is to eliminate all
Z-cycles from a checkpoint and communication pattern.
A protocol can take an additional forced checkpoint prior
to a condition representing a Z-cycle to remove this Z-cycle.
Such a forced checkpoint is also consistent with the
involved useless checkpoint. One major challenge is that
not all Z-cycles are on-the-fly detectable. Consequently,
CIC protocols employ various techniques to discover
suspect conditions that may result in a Z-cycle.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



A Z-path is causal if the receiving event of each message
aside from the last one precedes the sending event of the
next message in the sequence. A causal Z-path is sometimes
referred to as a causal path. A Z-path is noncausal if it is not
causal. A causal path means that the information in its
starting checkpoint can be online transmitted to its termi-
nating one through the piggybacking technique. In
addition, a noncausal Z-path sent in interval Ii, x and
arriving in Ij, y is causally doubled if a causal path exists
from Ii, x0 to Ij, y0 such that x � x0 and y0 � y(9). The idea of
causal doubling is that for this noncausal Z-path, the
information in its starting checkpoint can still be online
forwarded to its terminating one via the doubling causal
path. Hence, if all Z-paths in a checkpoint and communica-
tion pattern are either causal or causally doubled, all
rollback dependencies between checkpoints can be
on-the-fly trackable with a transitive dependency vector
and the pattern, by definition, satisfies RDT. Moreover,
because a Z-cycle can never be causally doubled, RDT
protocols suppress the formation of Z-cycles altogether (11).

The most extreme method to prevent the domino effect
by enforcing RDT is to direct a process to take a forced
checkpoint whenever a message is received. A better way to
this end is to force a checkpoint before every message-
receiving event with a preceding message-sending event
in the same interval (12). In doing so, the two protocols can
ensure that all message-receiving events precede all mes-
sage-sending events within every interval to prevent non-
causal Z-paths from being formed. In the next two sections,
we will introduce several more sophisticated CIC protocols
and RDT protocols, respectively.

CIC PROTOCOLS

CIC protocols can be divided into two distinct categories:
index-based and model-based(4). An index-based protocol
associates every checkpoint with a sequence number simi-
lar to the Lamport’s logical clock (1). In contrast, a model-
based protocol does not use a time-stamping mechanism;
rather, it prevents the formation of certain checkpoint and
communication patterns during the execution.

Index-based CIC protocols have been extensively
studied in the literature (10,13–17). A common technique
among them is to guarantee that sequence numbers of
checkpoints always increase along a Z-path (14,18). Doing
this technique can eliminate all Z-cycles since the sequence
number of a checkpoint cannot be larger than itself.
Furthermore, checkpoints with the same sequence number
from different processes are consistent because a Z-path
will never be formed from one checkpoint to another with
the same sequence number. Such a consistent global
checkpoint can thus be used for recovery upon a failure.
For example, the checkpoint-inducing condition of the pro-
tocol, introduced in Ref. 13, is expressed as ‘‘m.sn > sni’’,
where sni represents the current sequence number of a
process Pi and m.sn the sequence number carried on a
message m received by Pi. The intuition behind this con-
dition is that when a process Pi receives a message m with
m.sn > sni, it will take a forced checkpoint with the
sequence number set to m.sn prior to delivering m so

that Pi can contribute a checkpoint to the construction of
the new consistent global checkpoint with sequence
number m.sn.

Because forcing extra checkpoints incurs runtime over-
head, it is desirable to take as few forced checkpoints as
possible while avoiding the domino effect. To this end, one
fundamental principle of improved CIC protocols is to reuse
existing checkpoints as much as possible as part of a coming
consistent global checkpoint with a higher sequence num-
ber to avoid the requirement of some forced checkpoints.
For instance, a protocol proposed in Ref. 10 will direct a
process to force a checkpoint only when the ‘‘m.sn > sni’’
condition is encountered after at least one message-sending
event in the same interval. If there is not any message-
sending event between the last checkpoint of process Pi and
the receiving event of message m, it is impossible to have a
Z-path from the last checkpoint of Pi to a checkpoint of other
processes prior to delivering m. Therefore, despite receiv-
ing one message with a larger sequence number, Pi can still
employ its last checkpoint as part of the coming consistent
global checkpoint corresponding to m.sn. In addition, by
subtly collecting as much information as it can from the
causal past, another protocol in Ref. 10 achieved an even
more restrictive checkpoint-inducing condition, at the
expense of piggybacking much more control variables on
messages than just a single sequence number. In practice,
much of the causal information is too obsolete to be helpful
to checkpointing decisions. Accordingly, the protocol pre-
sented in Ref. 15 discarded some obsolete information from
the causal past to reduce the size of piggybacked informa-
tion to a small constant, while achieving nearly as good
performance as the previous protocol, especially on a tree-
shaped communication network (15).

Another way to reuse existing checkpoints is to adopt a
different indexing strategy from the classic one. The
sequence number of the underlying indexing strategy
used in Refs. 10, and 13–15 is maintained in the classic
way of Ref. 1 in that it is increased by one each time a basic
checkpoint is taken. Hence, if a process takes basic check-
points at a higher rate than other processes and conse-
quently has a larger sequence number, forced checkpoints
may be induced when other processes receive messages
from this process. To deal with this asymmetry, the lazy
indexing strategy is presented in Ref. 16. With such a
strategy, if one process Pi has only received messages
with sequence numbers smaller than its own in the current
interval, it is unnecessary for Pi to increase the sequence
number when the next basic checkpoint is taken. The
reason is that, in such a situation, the new checkpoint of
Pi can still be consistent with existing checkpoints of other
processes that are originally consistent with its preceding
one so that it does not need to belong to another consistent
global checkpoint with a higher sequence number. Further-
more, a more sophisticated lazy indexing strategy is
proposed in Ref. 17. This strategy precisely traces orphan
messages to allow the consistent global checkpoint
corresponding to the current sequence number to gradually
progress to succeeding checkpoints as best it can. Such an
improved strategy can increase the sequence number at a
lower speed than the previous lazy indexing scheme.

2 COMMUNICATION-INDUCED CHECKPOINTING PROTOCOLS AND ROLLBACK-DEPENDENCY TRACKABILITY



Next, model-based CIC protocols, like those introduced
in Refs. 19 and 20, are more complex protocols that track
the the checkpoint and communication pattern to prevent
particular patterns that can potentially result in a Z-cycle.
In general, a model-based protocol needs more control
information carried on a message than an index-based
protocol. Moreover, simulation experiments showed that
the former is more eager to remove a suspect Z-cycle than
the latter, which results in many more forced checkpoints
(21).

Finally, a common intuition about CIC protocols is if a
protocol forces a checkpoint only at a stronger condition,
then it must take at most as many forced checkpoints as a
protocol based on a weaker condition. It has been proved
that such an intuition is in fact false because any forced
checkpoint may affect subsequent condition testings (22).
This result implies that the usual approach of sharpening
the checkpoint-inducing condition by piggybacking more
information on each message may not always yield a more
efficient protocol. But interestingly, comparisons of some
existing protocols can indeed be based solely on comparing
their conditions (22). The analysis also led to an impossi-
bility result: An optimal online CIC protocol cannot exist
that always takes fewer forced checkpoints than any other
protocol (22).

RDT PROTOCOLS

Given a checkpoint and communication pattern, a CIC
protocol does not need to examine that every noncausal
Z-path is causally doubled to ensure the RDT property.
Causally doubling a certain subset of noncausal Z-paths is
sufficient. Such a subset is called an RDT characterization
in Ref. 11. Important RDT characterizations are all derived
from the notion of prime causal paths. A causal path from a
checkpoint Ci, x to a process Pj is prime if it arrives at Pj the
first among all causal paths from Ci, x to Pj. Intuitively, such
a causal path is the first causal path causing Pj to have a
dependency on Ci, x.

The first RDT characterization is the PCM-path, which
is a noncausal Z-path formed by concatenating a prime
causal path and a single message (11). A PCM-path is the
first Z-path that cannot transmit to its arriving process the
information about the rollback dependency on the starting
checkpoint, if it is not causally doubled. Hence, a safe
strategy to satisfy RDT is to break any non-causally
doubled PCM-path with a forced checkpoint prior to meet-
ing the involved prime causal path. Moreover, for an online
protocol, the information of being causally doubled must be
contained in the causal past of a process at the moment it
detects a PCM-path for the checkpointing decision. This
concept is called visible doubling(23). An online protocol
can achieve RDT if it breaks all PCM-paths that are not
visibly doubled. Several protocols based on the PCM-paths
are derived in Ref. 11, where each protocol breaks a certain
subset of PCM-paths, containing at least all non-visibly
doubled PCM-paths. Among them, a protocol with a stron-
ger condition generally needs more control information
carried on a message. A comprehensive comparison of their
performance can be found in Ref. 24.

A more constrained RDT characterization, called the
EPSCM-path, is proposed in Ref. 11 as well. An EPSCM-
path is a PCM-path such that the component prime path is
both elementary and simple. A causal path is elementary if it
merely traverses a process once, whereas a causal path is
simple if it does not include any checkpoints. This char-
acterization is the minimal subset of non causal Z-paths
that have to be causally doubled to satisfy the RDT prop-
erty. A few protocols based on EPSCM-paths are also pre-
sented in Ref. 11.

Recently, it was proved in Ref. 25 that visibly doubling
all PMM-paths in a pattern suffices to satisfy RDT, where a
PMM-path is a noncausal Z-path composed of just two
messages with the first being prime. So it is the minimal
noncausal Z-path allowed in the computation model.
Several RDT protocols can be derived from PMM-paths
as well. Interestingly, it has been demonstrated in Ref. 26
that for an RDT protocol, the last elementary and simple
part of every prime causal path it encounters online is still
prime and so is the last message. Thus, RDT protocols will
always encounter a PCM-path, an EPSCM-path, and a
PMM-path simultaneously. Moreover, several protocols
derived from these three kinds of Z-paths, respectively,
have the same behavior for all patterns (26).

The most important benefit of the RDT property is that it
allows us to find the recovery line in an efficient, distributed
manner because all checkpoint dependencies are online
trackable. But an RDT protocol typically needs more forced
checkpoints and requires more control information
piggybacked on a message. Such protocols can be classified
into the model-based category because it prohibits some
particular patterns from occurring. Finally, an impossibility
result was presented in Ref. 27, stating that it is not possible
to design a scalar, clock-based CIC protocol that carries only
one integer on a message, while satisfying RDT.

CONCLUSIONS

CIC protocols allow each process to take its basic check-
points autonomously. No special coordination messages are
exchanged to ensure consistency among all processes.
Furthermore, the calculation of a consistent global check-
point upon a failure can be accomplished in an efficient and
decentralized manner. But every application message
needs to carry extra control information. More importantly,
the behavior of taking forced checkpoints highly depends on
the number of processes and on the communication pattern.
Also, the number of checkpoints induced by a protocol may
be a considerable burden. Therefore, the main challenge for
CIC protocols is to control the unpredictable checkpointing
behavior and to reduce the number of forced checkpoints
while preserving the desirable properties.

BIBLIOGRAPHY

1. L. Lamport, Time, clocks and the ordering of events in a
distributed system, Commun. ACM, 21(7): 558–565, 1978.

2. K. M. Chandy and L. Lamport, Distributed snapshots: Deter-
mining global states of distributed systems, ACM Trans. Com-
put. Syst., 3(1): 63–75, 1985.

COMMUNICATION-INDUCED CHECKPOINTING PROTOCOLS AND ROLLBACK-DEPENDENCY TRACKABILITY 3



3. B. Randell, System structure for software fault-tolerant, IEEE
Trans. Soft. Eng., 1(2): 220–232, 1975.

4. E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, A
survey of rollback-recovery protocols in message-passing sys-
tems, ACM Comput. Surveys, 34(3): 375–408, 2002.

5. R. Koo and S. Toueg, Checkpointing and rollback-recovery for
distributed systems, IEEE Trans. Soft. Eng., 13(1): 23–31,
1987.

6. B. Janssens and W. K. Fuchs, Experimental evaluation of
multiprocessor cache-based error recovery, Proc. Int’l Conf.
Parallel Process., 1991, pp. 505–508.

7. Y. M. Wang, Consistent global checkpoints that contain a given
set of local checkpoints, IEEE Trans. Comp., 46(4): 456–468,
1997.

8. R. H. B. Netzer and J. Xu, Necessary and sufficient conditions
for consistent global snapshots, IEEE Trans. Parallel and
Distrib. Syst., 6(2): 165–169, 1995.

9. R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal,
A communication-induced checkpointing protocol that ensures
rollback-dependency trackability, Proc. Int’l Symp. Fault-
Tolerant Comput., 1997, pp. 68–77.

10. A. Mostefaoui, J. M. Helary, R. H. B. Netzer, and M. Raynal,
Communication-based prevention of useless checkpoints in
distributed computations, Distrib. Computing, 13(1): 29–43,
2000.

11. R. Baldoni, J. M. Helary, and M. Raynal, Rollback-dependency
trackability: A minimal characterization and its protocol,
Inform. and Comput., 165(2): 144–173, 2001.

12. D. L. Russell, State restoration in systems of communicating
processes, IEEE Trans. Soft. Eng., 6(2): 183–194, 1980.

13. D. Briatico, A. Ciufoletti, and L. Simoncini, A distributed
domino-effect free recovery algorithm, Proc. IEEE Symp.
Reliab. in Distrib. Soft. and Database Syst., 1984. pp. 207–215.

14. D. Manivannan and M. Singhal, A low overhead recovery
technique using quasi-synchronous checkpointing, Proc.
IEEE Int’l Conf. on Distrib. Comput. Syst., 1996, pp. 100–107.

15. J. Tsai, An efficient index-based checkpointing protocol with
constant-size control information on messages, IEEE Trans.
Dependable and Secure Comput., 2(4): 287–296, 2005.

16. G. M. D. Vieira, I. C. Garcia, and L. E. Buzato, Systematic
analysis of index-based checkpointing algorithms using
simulation, Proc. IX Brazilian Symp. Fault-Tolerant Comput.,
2001, 31–41.

17. R. Baldoni, F. Quaglia, and P. Fornara, An index-based check-
pointing algorithm for autonomous distributed systems, IEEE
Trans. Parallel and Distrib. Syst., 10(2): 181–192, 1999.

18. J. M. Helary, A. Mostefaoui, and M. Raynal, Virtual precedence
in asynchronous systems: Concept and applications, Int’l
Workshop Distrib. Algor., 1997, pp. 170–184.

19. I. C. Garcia and L. E. Buzato, Checkpointing using local knowl-
edge about recovery lines, Technical Report, TR-IC-99-22,
University of Campinas, Brazil, 1999.

20. F. Quaglia, R. Baldoni, and B. Ciciani, On the no-Z-cycle
property in distributed executions, J. Comput. and Syst.
Sciences, 61(3): 400–427, 2000.

21. L. Alvisi, E. Elnozahy, S. Rao, S. A. Husain, and A. DeMel, An
analysis of communication-induced checkpointing, Proc. Int’l
Symp. Fault-Tolerant Comput., 1999. pp. 242–249.

22. J. Tsai, Y. M. Wang and S. Y. Kuo, Evaluations of domino-free
communication-induced checkpointing protocols, Inform. Pro-
cess. Lett., 69: 31–37, 1999.

23. R. Baldoni, J. M. Helary, and M. Raynal, Rollback-dependency
trackability: Visible characterizations, Proc. 18th ACM Symp.
Principles of Distrib. Comput., 1999, pp. 33–42.

24. J. Tsai, S. Y. Kuo, and Y. M. Wang, Theoretical analysis
for communication-induced checkpointing protocols with
rollback-dependency trackability, IEEE Trans. Parallel and
Distrib. Syst., 9(10): 963–971, 1998.

25. I. C. Garcia and L. E. Buzato, On the minimal characterization
of the rollback-dependency trackability property, Proc. IEEE
Int’l Conf. Distrib. Comput. Syst., 2001, pp. 342–349.

26. J. Tsai, On properties of RDT communication-induced check-
pointing protocols, IEEE Trans. Parallel and Distrib. Syst.,
14(8): 755–764, 2003.

27. R. Baldoni, J. M. Helary, and M. Raynal, Impossibility of scalar
clock-based communication-induced checkpointing protocols
ensuring the RDT property, Information Processing Lett.,
80(2): 105–111, 2001.

JICHIANG TSAI

National Chung Hsing
University

Taichung, Taiwan

YI-MIN WANG

Microsoft Corporation
Redmond , Washington

4 COMMUNICATION-INDUCED CHECKPOINTING PROTOCOLS AND ROLLBACK-DEPENDENCY TRACKABILITY



C

COORDINATION AND SYNCHRONIZATION:
DESIGNING PRACTICAL DETECTORS FOR
LARGE-SCALE DISTRIBUTED SYSTEMS

INTRODUCTION

Large-scale distributed systems such as PlanetLab (1),
peer-to-peer systems (e.g., (2–4)) , Grid networks (5), and
so on, have exploded in popularity in the past few years. It is
well known that such systems are failure-prone, for exam-
ple, ‘‘nodes’’ (client machines or computer hosts) can join
and leave the system at will (a phenomenon called churn),
and messages can be dropped by the underlying network.

Several distributed applications have began to run atop
such clusters, for example, distributed computations, coop-
erative file sharing, multimedia and content streaming,
resource discovery, and application-level DNS. To enable
coordination and synchronization, in each of these distrib-
uted applications, the application must keep track of the
behavior of each node involved in the application. Intui-
tively, each node has individual ‘‘personalities’’ from the
viewpoint of its cooperativeness or willingness to contribute
to the overall good of the system. Thus, it is important to
keep track of the individual characteristics of these nodes in
a distributed fashion.

On the one hand, at the most basic level, simple node-
level failures must be detected. For instance, when a node
fails (or joins the system), some other nodes that are cur-
rently in the system need to be made aware of the change in
the membership. Similarly, some nodes may be modifying
messages maliciously or deviating from the core protocols
specified as a part of the system—it is important to detect
(and then perhaps punish) such nodes.

At the other extreme, several applications must detect
system-wide properties. We consider one interesting
class of detectors that fall at this end of the spec-
trum—one requires nodes to be aware of the approxi-
mate size of the system, that is, the number of non-faulty
nodes present in the system currently. In between these
two extremes, some applications track the individual
availability history of nodes, which includes, their up/
down characteristics. This availability of information
can then be used to place replicas (of files or services)
so as to maximize the availability of the service being
replicated, to ensure that the multicast reliability at
recipient nodes varies as a function of the node’s avail-
ability, and so on.

We broadly call the above problems of measuring node-
specific or aggregated, system-wide properties as the pro-
blem of detection. A variety of detectors for distributed sys-
tems exist, and it is possible that a book-length article could
be written to cover these various detectors! To maintain
brevity, this article focuses on a ‘‘sliver’’ of detectors from
across the spectrum of node-level to system-wide detectors.

Specifically, we will focus only on the failure-, Byzantine-
, and availability-related classes of detectors . We will

mention, at appropriate places, other detector classes
that are not covered here and that the reader may be
interested in researching. The reader should use this arti-
cle as a beginning step to understand more about the topic.

Notice that the latter extreme of detection is related to
‘‘statistics collection’’ and aggregation (6,7), but we are
interested only in the actual availability-related or beha-
vior-related characteristics of nodes, and not in collecting
statistics that are specific to a particular application. In
other words, most solutions to the detection problems we
will discuss can be used by a wide variety of distributed
applications. Furthermore, we hope this article will moti-
vate the reader to read existing literature on other pro-
blems such as termination, deadlock detection, snapshots,
and reputation mechanisms.

We focus on practical solutions with the two following
characteristics: (1) they have been implemented and vali-
dated in experimental evaluation or practice and (2) they
are based on novel ideas and on strong theory. Our goal here
is to enable and to enhance the understanding of such
viable and practical solutions for practitioners to use in
real systems.

Thus, this article considers four main classes of detec-
tion problems.

1. Crash Failure Detectors: When the given node in the
system crashes, other nodes that knew about it
should be informed that it crashed.

2. Byzantine Failure Detectors: When the given node
deviates from the specified application protocol beha-
vior, other nodes that are non-Byzantine must be
informed.

3. Availability Detectors: The system (or a small set of
nodes) maintains information about the availability
history of each node.

4. System Size Estimators: An initiator node (or all
nodes in the system) must know about the approx-
imate number of non-faulty nodes present as a part of
its distributed group. This group could be either a
one-shot or a continuous estimation problem.

Two points must be noted here. First, we are interested
primarily in fully distributed solutions to these problems.
That is, protocols that operate in a peer-to-peer fashion,
without requiring a central server, are of the most interest
to us. Second, we will discuss rarely the action taken by the
application when such a detection is triggered. In some of
the referenced papers, such reactive application behavior
may be discussed. However, our discussion in this article
presents detectors in a modular fashion so they can be used
in a plug-and-play manner with a variety of applications.

Although the main goal of this article is to make the
reader aware of practicalities of detection problems and
solutions, we do highlight relevant theoretical results that
form the context or indicate the difficulties of a problem.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



CRASH FAILURE DETECTORS

Here, we consider the failure detection of nodes under the
fail-stop failure model. Under this model, either a node is
non-faulty (or correct) or it has crashed. Any node can
crash, and once it has done so it never executes any more
instructions (i.e., it never recovers).

Crash failure detection is the core of all peer-to-peer
systems and distributed systems that attempt to operate in
a non-centralized manner.

Before solving any problem (such as that of crash failure
detection), it is important to discuss under what system
model (i.e., assumptions) the problem must to be solved.
Primarily, two types of system models exist for distributed
systems:

1. Synchronous System Model: Each non-faulty node
has a maximum known time bound on the time taken
to execute any instruction. Furthermore, a maximum
known time bound on the delay is faced by a message
sent by one non-faulty process to another non-faulty
process. An example of a system that follows this
model are multiprocessor systems such as supercom-
puters. Notice that nodes are still allowed to fail in
this model.

2. Asynchronous System Model: Unlike the above
model, the asynchronous model imposes no limits
on either the time taken by a non-faulty node to
execute any instruction nor the message delays. In
other words, messages can be delayed an arbitrarily
long time, and nodes can be arbitrarily slow without
being faulty. Most practical networks follow the asyn-
chronous system model, for example, Internet, wire-
less networks, and sensor networks.

Fail-Stop failure detectors are interested in two proper-
ties:

� Completeness: The percentage of failures that are
detected eventually by all concerned non-faulty nodes.

� Accuracy: The percentage of detections that corre-
spond to a failed node.

Notice that it is easy to guarantee trivially either 100%
completeness (each node always consider all other nodes as
crashed all the time) or 100% accuracy (each node never
considers any other node as crashed at any point of time).

Chandra and Toueg (8) showed that it is impossible to
guarantee both 100% completeness and 100% accuracy in
an asynchronous system model. In the synchronous system
model, however, implementing a complete and accurate
failure detector is straightforward—any one of the follow-
ing detectors for asynchronous systems can be used, along
with timeouts that are decided based on the message delay
and the instruction processing bounds.

In view of the above impossibility, most distributed
applications have come to expect 100% completeness
(and thus probabilistic accuracy) from the underlying
crash failure detector. Each crash of a node in a
distributed application must be followed by a repair or

recovery operation in that application—thus, it is impor-
tant to detect each failure, but it is alright to have mistaken
detections. All algorithms we discuss below guarantee
100% completeness.

Chandra and Toueg (8) were the first to present failure
detectors with a view for solving the problem of consensus
for a bit, in a process group. Specifically, they provide a
taxonomy of detectors in Ref. (8), which includes the weak-
est failure detector to solve consensus. Substantial work
has occurred in the theoretical community since then on
failure detectors for a variety of system models, e.g., see
Ref. (9). However, we preclude such papers (even though
classic) because either they do not scale to large distributed
systems with thousands of nodes or they have not been
validated in practice.

For asynchronous systems, practical failure detectors
for fail-stop failures tend to be of two types: (1) heartbeating
based, and (2) ping-based.

Heartbeating-Based Failure Detectors

Each node n sends an ‘‘I am alive’’ (heartbeat) message
periodically (once every hb seconds) to a subset of other
nodes in the system. Successive heartbeat messages are
numbered with monotonically increasing sequence num-
bers to be distinguishable. Each other node that is aware of
node n maintains the time since the last heartbeat was
received from node n. When this time crosses a timeout
threshold (timeout seconds), the node n is marked as failed.

First, this satisfies 100% completeness—once node n
fails, it will stop sending heartbeats, and because timeout
is finite, all previously sent heartbeats by n will be received
and the timeout will expire eventually (at any given reci-
pient node). In practice, the value of timeout is typically
much larger than message transmission delays; hence, the
actual detection time is timeout seconds.

However, this algorithm does not guarantee accuracy,
especially in an asynchronous network where heartbeat
messages can be delayed for an arbitrarily long time. This
delay can cause another message to timeout while waiting
for heartbeats from a (correct) node n, and consequently
mark n as crashed mistakenly. Notice that the larger the
value of timeout is compared with message delays, the more
is the accuracy of the protocol, that is, the smaller is the
false-positive rate. However, larger timeouts also entail
longer detection times; hence, the value of timeout will
trade off between detection time and accuracy.

Heartbeat transmission can be implemented in one of
two ways—explicit or implicit. Explicit heartbeat creates
separate messages for heartbeats, whereas implicit heart-
beat either piggybacks heartbeat messages, atop applica-
tion messages or, in some cases, uses application messages
themselves as heartbeat messages.1 For the rest of our
discussion, we will assume explicit heartbeating; however,
our discussion applies to the implicit variety too.

Several variants of heartbeat-based failure detectors
exist—the difference between these detectors is based on
which is the ‘‘subset’’ of nodes that receive the heartbeats

1We will ignore this last option mentioned because our goal in this
section is to focus on application-independent protocols.

2 COORDINATION AND SYNCHRONIZATION: DESIGNING PRACTICAL DETECTORS FOR LARGE-SCALE DISTRIBUTED SYSTEMS



from the given node n. This choice is decided based on the
overlay, or the membership graph (i.e., the graph defined by
a node’s neighbors). Below, we describe several different
types of such overlays, along with the associated heartbeat-
based protocol.

Simple Overlays. The classical approach was a ring-
based overlay, with nodes arranged in a virtual ring
(with no necessary correlation to their actual locations).
Each node merely sent heartbeats to its clockwise neighbor
(in addition, the anticlockwise neighbor was also used to
increase the fault-tolerance), and these neighbors would be
the only ones to detect failure of this node. In a system with
N nodes, the overhead of this scheme is O(N) since every
node sends heartbeats periodically. The drawback of this
scheme was that multiple simultaneous failures could
cause an unnecessarily long delay for detecting failures,
especially if a sequence of nodes in the ring failed in
succession. Because the likelihood of this occurrence
increases as the total number of nodes increased, the
ring-based algorithm was not scalable.

A different, simpler alternative is to send the heartbeat
to all other nodes in the system. Although this is clearly
more fault-tolerant than the ring, this scheme has a very
high overhead (O(N2) messages) and could have lower
accuracy. Any slow node could mark a very large set of
other nodes as faulty because it did not receive several
heartbeat messages in a timely manner.

Gossip-style Heartbeating. Van Renesse et al. (10)
made the above all-to-all heartbeating model more accurate
by not having each node send its heartbeats directly to
every other node, but instead gossip the latest heartbeat
counters for several other nodes. At any node n, gossiping
selecting entails periodically selecting a few other random
nodes and sending them the array of the latest heartbeat
counters (from other nodes) known at node n.

Van Renesse et al. (10) showed that if all heartbeats
could be included in each gossip message, and each node
gossiped with a constant other randomly selected gossip
targets every second (on average), it took O(log(N)) seconds
for any node’s updated heartbeat information to spread to
all other nodes with high probability. Here, N is the number
of nodes in the system. Thus, the timeouts could be set in
this range (if one knew an upper bound on the value of N).
Thus, the failure detection times are small—because log(N)
is a small number, and it grows very slowly, even for values
of N up to 232 (the number of possible IPv4 addresses), the
value of log2 (N) ¼ 32.

Distributed Hash Table-based Overlays (or Structured
Overlays). Distributed hash tables (DHTs), also known as
structured overlays,2 are overlays that follow a specific
structure. For instance, the Pastry p2p overlay follows a
hypercube-type structure, with nodes that maintain overlay

‘‘neighbors’’ based on prefix matches of id’s assigned to
nodes, these id’s are assigned by hashing the node’s IP
address (e.g., by using SHA-1 or MD-5), but that fact is
orthogonal to our discussion here. In turn, each node sent
heartbeats to its neighbors in this overlay.

Similarly, in other DHTs such as Chord, a heartbeat-
style strategy was used to detect failures. Information
about a node failure would propagate to its immediate
neighbors and might cause these nodes to select other,
‘‘better’’ neighbors that were non-faulty.

Random Partial Membership Graphs. Although DHTs
such as Pastry and Chord follow a specific pattern of
‘‘neighbor’’ selection of nodes, to make resource discovery
and file insertion operations very efficient, a separate class
of overlays have been designed for other applications that
do not use the resource-discovery functionality primarily.
For instance, publish-subscribe and multicast applications
often rely on the presence of a connected overlay graph
among the nodes. Yet, the protocol attempts to achieve this
by having each node maintain only a small random subset
of other nodes in the system as its neighbors.

Below, we discuss the core design of one such random
partial membership graph system briefly. The reader is
encouraged to research other algorithms in this class, such
as T-Man (11).

Scamp. Scamp (12, 13) attempts to maintain a uniform
random overlay graph among nodes, with each node main-
taining O(log(N)) neighbors in this graph. This is achieved
by the following mechanisms: (1) Each node n maintains a
list of neighbors in the overlay, denoted as Neighbor Set(n),
as well as the list of other nodes than point to them (the in-
neighbor list), (2) [Node Join] When a new node joins the
system, it obtains at least c contacts (c is a fixed parameter),
and forwards its subscription (joining) information to c of
these nodes. A node n that receives a new joining node’s
information will include it in with probability 1/(1þ|Neigh-
bor Set(n)|); otherwise, it forwards this subscription to one
of its neighbors, selected at random. (3) [Node Departure] A
voluntarily leaving node n asks the highest-id c neighbors of
itself to delete n from their neighbor lists. Every in-neighbor
of n is asked to point to another of the previous neighborsof n
(which excludes the c selected above)—duplicate selections
may be allowed.

Although the basic SCAMP assumes voluntary depar-
tures only, each node sends heartbeats periodically to all of
its neighbors. This avoids a node from being partitioned
(isolated) out from the network—when a node has not
received any heartbeats from any other node, it knows
that it is partitioned.3

The authors show in Ref. (12) that this protocol causes
each node to have an expected (cþ1)log(N) neighbors, and
that the distribution of neighbor selection is random (i.e.,
the probability distribution of the number of in-neighbors
at a node has a small standard deviation).

It is easy to see how SCAMP can be extended to handle
fail-stop failures—all neighbors of a given node would time

2To be more precise, a structured overlay is the actual underlying
overlay, whereas a DHT is layered atop this overlay and provides
get- and put-style functionalities to an application. However,
today, the two terms are often used as synonyms by several sections
of the distributed computing community, and hence we treat
‘‘DHT’’ and ‘‘structured overlays’’ as synonyms in this article.

3Note that this does not avoid a large subgraph from being parti-
tioned out of the overlay!

COORDINATION AND SYNCHRONIZATION: DESIGNING PRACTICAL DETECTORS FOR LARGE-SCALE DISTRIBUTED SYSTEMS 3



out waiting for a heartbeat and then execute actions similar
to the voluntary unsubscriptions described above. However,
it is not clear whether this would continue to maintain the
uniform randomness of the overlay. Furthermore, false
positives could occur—any node that misses a heartbeat
would propagate a failure notification, and a suspected node
would be forced to leave the group. This problem is
addressed in the SWIM systemdiscussed in the next section.

Ping-Based Failure Detectors

Unlike heartbeat-based failure detectors, ping-based fail-
ure detectors do not use any kind of heartbeat messages.
Instead, each node n is pinged periodically by a subset of
other nodes in the system. If the node is unresponsive, the
pinging nodes could retry the pinging. If several retries do
not lead to a response, the node n is marked as crashed.
Below, we describe two such ping-based failure detectors:
SWIM and CYCLON.

Swim. The SWIM system (14) by Das et al. has each
node periodically (once every T seconds) select one other
node (say n) uniformly at random from across the system
and ping this remote node. If the remote node is unre-
sponsive (T is assumed to be larger than the typical round-
trip time in the system), then the pinging node may ask up
to K (value fixed) other nodes to ping the node n indirectly
and return replies (if any). If either the direct or any one of
the the indirect pings results in a positive reply from n, the
pinging node takes no additional action. However, in the
absence of a response, the pinging node marks node n as
crashed.

Clearly, this protocol satisfies 100% completeness—a
crashed node will be picked eventually as a ping target
by some node in the system, and be detected as failed.
Furthermore, the authors showed that this protocol has
a constant failure detection time on expectation, for exam-
ples, for K ¼ 0, the expected time between failure of node n

and the first other node that detects this failure is
T

1� e�1

seconds. It is important to note that this time does not
depend on the size of the system, this is a desirable and
scalable property, especially in a really large distributed
system. Furthermore, the authors show how to tune the
value of K to obtain a tradeoff between the detection time,
the false positive rate (the inaccuracy rate), and the over-
head (messages per second per node). The reader is referred
to Ref. (14) for more details.

Cyclon. CYCLON (15) is another membership protocol
that attempts to maintain a uniform, random membership
graph while having each node maintain only a small num-
ber of neighbors. Briefly, each node maintains an age for
each of its neighbors, which denotes the time since that
neighbor entry was created at node n. Each node does the
following two actions periodically—eliminate the neighbor
with the maximum age and exchange neighbor lists with
this oldest aged neighbor. CYCLON then describes a spe-
cific way to update the neighbor lists to maintain the uni-
form randomness of the overlay graph. However, notice
that this selection of the oldest age neighbor is implicit

failure detection, but in the heartbeat style. If this oldest
neighbor does not respond, it is deleted. Thus, failed nodes
disappear eventually from neighbor lists. If the size of
neighbor lists is O(log(N)), then the failure detection
time is also O(log(N)), which is small!

BYZANTINE FAILURE DETECTORS

Unlike the fail-stop failure model discussed in the previous
section, the Byzantine failure model specifies that nodes
can behave in any arbitrary and perhaps malicious man-
ner, that is, a Byzantine-faulty node could deviate from the
protocol specified by the application in arbitrary ways. For
instance, it could execute instructions that are unauthor-
ized or do not result from the applying the specified protocol
on its received messages, it could send messages with
malicious intent or junk content, or claim to have received
messages that it never received. In short, the Byzantine
model is the most general of all models of failure. Clearly, it
encompasses the fail-stop failure model.

Yet, the Byzantine model is a very realistic model. Hosts
whose security has been compromised, by viruses, worms,
or human hackers, as well as a process based on buggy
program code, all follow the Byzantine model.

The traditional approach to handling Byzantine failures
has, until very recently, been to mask, rather than to detect,
these types of failures. Most protocols for Byzantine fault
tolerance are replicated state machines with a focus on
solving problems such as atomic commit and consensus (8,
16–19), that is, where all nodes must agree on the value of a
variable. These protocols assume that at most f faulty nodes
exist in the system, and at least 3f þ 1 total nodes exist in
the system (faulty or not). Several such protocols have been
specified in theory (20,21) and in practice (22,23). These
protocols are designed to allow the non-faulty nodes to solve
the agreement problem in the presence of up to f Byzantine
nodes among them. The reader would be interested to know
that it has been proved (24) that one cannot implement
Byzantine fault-tolerant consensus when more than one-
third of the nodes are faulty, hence these protocols have
‘‘optimal’’ tolerance.

Although these protocols [especially Castro and Liskov’s
(22)] are highly practical and perform well in real systems,
they are unable to tolerate more than f failures. If one used a
Byzantine failure detector instead, the following advan-
tages could be obtained (25):

� More than f failures could be detected (and tolerated, if
the application is equipped with mechanisms to
respond to detected failures). In fact, no upper bound
exists on the number of Byzantine nodes in the system.

� The common case (where all nodes are non-Byzantine)
becomes very efficient w.r.t. performance metrics such
as throughput, latency, and scalability. Simplicity of
design is preserved because typically detectors are
designed to fit in very modularly with the rest of the
application.

� Many applications do not need to solve the consensus
problem, and Byzantine failures are interested in
other problems that are not related to consensus.

4 COORDINATION AND SYNCHRONIZATION: DESIGNING PRACTICAL DETECTORS FOR LARGE-SCALE DISTRIBUTED SYSTEMS



For these problems, applications require information
about the nodes that might be faulty. We remind the
reader that one cannot implement Byzantine fault-
tolerant consensus when more than one-third the
nodes are faulty (24).

The same properties of completeness and accuracy apply
to Byzantine failure detectors (thus no failure detector can
achieve both properties with a 100% guarantee). Below, we
briefly describe two systems—LOCKSS and PeerReview—
that provide some semblance of Byzantine failure detec-
tors. Besides these two systems, other systems exist that
come close to providing a detector, but do not provide one
that is fully specified. Aiyer et al. (25) provide a mechanism
to monitor quorum systems so that an alarm is raised when
failure assumptions are about to be violated. Intrusion
detection systems work at the level of a single node. Repu-
tation systems (see, e.g., Ref. 27) monitor the behavior of
nodes in a p2p system but do not provide a notion of
detection of Byzantine failure.

Before we discuss these systems, we note an important
point—a Byzantine failure detector depends, to some
extent, on the application itself, for example, what is con-
sidered to be unacceptable behavior by a node. Yet, the
LOCKSS system is generic enough to be applicable to any
distributed storage solution, whereas PeerReview applies
modularly to any distributed application that allows audit-
ing actions on application logs.

LOCKSS (LOTS OF COPIES KEEPS STUFF SAFE). THE LOCKSS
SYSTEM BY MANIATIS ET AL. (28) PROVIDES A PROTOCOL TO MAINTAIN

A CONSISTENCY OF REPLICAS—LOCKSS IS IMPLEMENTED IN THE

CONTEXT OF A DIGITAL LIBRARY ARCHIVE, WHERE ARCHIVAL UNITS

(AUS) ARE THE BASIC BLOCKS THAT ARE REPLICATED ACROSS MULTI-

PLE NODES. THE CHALLENGE IS THAT EVEN THOUGH THE AUS ARE

IMMUTABLE, ATTACKS BY EITHER ADVERSARIES OR BIT-ROT MAY

CAUSE SOME OF THE REPLICAS OF THE AU TO BECOME CORRUPTED

AS TIME PROGRESSES. THE GOAL OF THE LOCKSS SYSTEM IS TO (1)
MAINTAIN THE CORRECTNESS AND CONSISTENCY OF THESE REPLICAS

AND (2) ENABLE DETECTION OF AN ONGOING ATTACK, ESPECIALLY

WHEN A LARGE NUMBER OF REPLICAS ARE IN DISAGREEMENT WITH

ONE ANOTHER.
LOCKSS meets the above challenges by (1) building a

continuously-changing (churned) overlay among nodes and
(2) using this overlay to execute periodic polling on the
replicas of the AU (to check for and correct their consis-
tency). We do not describe here the intricate details of the
protocol, viz., or the actual quotas on how much of the list is
churned for each of the above actions. The reader is encour-
aged to read Ref. (28) for all details and adversary attacks
on the protocol.

In brief, the protocol works in the following manner.
Each node n:

1. Maintains two types of neighbors—inner circle neigh-
bors (more trusted) and outer circle (less trusted)
neighbors. At any time, the inner circle consists of
a random subset of other nodes that have agreed with
the recent votes of this node n. In addition to these two
circles, node n maintains a list of friends—other
nodes on whom it places a very high level of trust.

2. Initiates a Voting procedure periodically. This proce-
dure is done by querying the inner circle neighbors,
each of which in turn nominates a few nodes for n’s
outer circle. Then n chooses a small random subset
from each nomination and asks these nodes to vote.
Each vote is classified as either ‘‘agreeing’’ or ‘‘dis-
agreeing’’ with n’s own vote. This calculation is based
on the hash of the replica of the AU in question, that
is, the entire contents of the AU replica are hashed to
generate a signature and this signature is matched.
(In addition, the LOCKSS protocol marks each vote as
either valid or invalid based on a proof of computa-
tional effort. For our purposes, an invalid vote will
result in the offending voter being ignored and
removed from the neighbors lists at n.) Finally, if V
total votes were requested and received, then three
cases may arise: (1) if the number of agreeing votes is
at least V�D, the poll was successful and n retains its
replica, (2) if the number of agreeing votes was no
more than D, the poll was a failure and n repairs its
replica (from a random disagreeing neighbor), and (3)
if the number of agreeing votes is between D and V�
D, n raises an alarm (the effects of an alarm are
described below). D is a configurable parameter.

3. Churns its neighbor lists. After each vote, the inner
circle neighbors who have disagreed or who have not
voted for awhile are eliminated. A random subset of
the remaining nodes is left in, a few random recently
agreeing nodes (no voting) from the outer circle are
brought in, and finally a few random friends are
brought in. The goal of this churning of neighbors
is to ensure that malicious nodes do not gain a foot-
hold on the neighbor list of a node n for too long.

The authors of the LOCKSS system show that under a
variety of adversary attacks, if most of the replicas of the
AU are good (resp. bad), then most polls will end success-
fully (resp., in failure). However, and most importantly, it
takes a very long time for an AU with predominantly good
replicas to transition to a state with predominantly bad
replicas. Hence, the alarm condition raised in the speci-
fication above will have enough time (and enough alarms)
to detect this shift. In the authors’ words—‘‘The rate at
which at an attack can make progress is limited by the
smaller of the adversary’s efforts and the efforts of the
victims.’’ Put another way, LOCKSS slows down the con-
version of good replicas into bad replicas (which occurs
because of the presence of malicious nodes) so much that
victims (i.e., good nodes) are able to fix the bad replicas.
Thus, even a delayed and slow human response to such an
alarm would restore the correctness of the system because
the adversaries are slowed down considerably by
LOCKSS.

Notice that even though the above protocol does not
detect Byzantine nodes explicitly in the system, but it is
able to detect disagreeing votes. In the case of alarms raised
for the AU, compromised nodes can be detected easily (via
their proposed hashes for the AU) and thus repaired.
Logs of the votes obtained can be used to detect faulty
nodes (albeit perhaps with human involvement), and if a

COORDINATION AND SYNCHRONIZATION: DESIGNING PRACTICAL DETECTORS FOR LARGE-SCALE DISTRIBUTED SYSTEMS 5



particular group of nodes is raising alarms, a local spoofing
alarm could be raised to audit local nodes.

PeerReview. The PeerReview system (25) shares some
common design characteristics with the LOCKSS system
designed above. However, unlike it, PeerReview provides
for explicit Byzantine failure detection with interesting
completeness and accuracy properties (see below). Specifi-
cally, PeerReview ensures that a correct node will never be
declared as being faulty (assuming that the node is indeed
responsive). This is a major difference from the fail-stop
failure detectors of Crash failure Detectors.

The PeerReview protocol has each node monitor appli-
cation protocol-compliance of all other nodes in the group. It
is potentially expensive and inefficient (it involves O(N2)
messages in the system), however it is a good first-cut at
this difficult problem. Among the several assumptions
made by PeerReview, the most important ones are: (1)
Messages sent by correct nodes are eventually received
by the recipient (if it is correct) and (2) the application
protocol for which compliance must be checked is a repli-
cated state machine (29).

First, each node n maintains a log of all its previous
protocol actions and uses this to sign messages. Top-level
hashes of the log are taken periodically and on-demand—
such authenticators are piggybacked on top of all messages
sent out by n. In other words the log is maintained as a hash
chain. All messages must be acknowledged (acknowledg-
ment messages also carry authenticators). Besides the
authenticator, each message sent by n also contains a short
proof that the latest message is the latest action in the local
log. Finally, node n periodically forwards to other nodes the
authenticators it knows for other nodes; this ensures even-
tual dissemination of any authenticator.

Second, each node n is audited periodically by other
nodes j. Node j can show that n is faulty if either (1) it
has an authenticator and a log both from n, both signed by
n, but disagreeing with each other or (2) a signed log
segment from n that fails a conformance check. During
the audit phase, node j can begin to suspect n if the latter is
either unresponsive or noncompliant. Otherwise, node j
performs a consistency check to see if the log matches the
recent authenticators it has for n (this is for rule (1) above).
Then, node j extracts all authenticators from the log seg-
ment and forwards them to all other nodes—this ensures
eventual dissemination of these authenticators to all other
correct nodes. Finally, j performs a conformance check for
step (2) above. This phase is perhaps the most computa-
tionally expensive operation in the protocol. node j instanti-
ates a local copy of the application state machine i.e.,
algorithm replays all inputs form the log, and checks
whether outputs match the ones in the log.

Notice that any deviation based on the above checks can
be forwarded to other interested nodes, who can then verify
for themselves whether node n is faulty, either by repeating
the checks for itself or by contacting node n directly to re-do
the checks.

This helps PeerReview to ensure a nice variant of the
Accuracy property—no non-faulty node will be suspected or
detected by another non-faulty node. The completeness
property is not guaranteed either, but an interesting var-

iant of it is guaranteed. Although it is possible that a faulty
node may in fact escape detection forever, it is true that if
many faulty nodes exist in the system, at least one node will
be detected eventually. Thus, a finite number of bad nodes
can affect the good nodes for only so long.

PeerReview has been implemented and found to perform
well in practice—readers are referred to Ref. (25) for more
details. However, at the time of writing this article, it
remains to be seen what alternative Byzantine failure
detectors can be designed. Furthermore, whether this
detector class can be made scalable at all remains a million
dollar question!

AVAILABILITY DETECTORS

After having discussed detectors for online individual node-
level characteristics (crash and Byzantine), we transition to
the problem of availability detection. The failure model
considered here is the crash-recovery model, where a
node can leave or fail away from the system and rejoin
the system later with the same node identifier.

The availability detection problem is to estimate the
short-term or long-term up/down characteristics of each
node n. The earlier detectors informed other nodes of the
immediately recent failure of a node n—that is not our goal
here; instead, tracking the up/down characteristics of n is
our goal.

Availability detection is an absolutely essential compo-
nent in the design of many peer to peer storage systems,
e.g., see Refs (30) and (31). In these systems, the availability
histories of nodes are used to select the best set of nodes to
hold replicas for a given object to increase the system-wide
availability of the object. In these systems, availability
detection is sometimes tied to an availability predictor,
which predicts the future availability of node n based on
its history.

Availability detection is also useful in trying to satisfy
reliability predicates, where the reliability of an application
protocol (e.g., multicast) at a recipient node is tied to the
availability of that node, e.g., see Ref. (32).

Below, we describe different types of availability detec-
tion schemes. Notice that detection schemes typically have
two subcomponents: who monitors node n, and how the
availability history of n is maintained at other monitoring
nodes. We discuss both these issues below. Furthermore, in
cases where availability prediction is possible, it is
described briefly, as well.

Group-Based Master Detectors

The Total Recall system (30) uses a master node in a group
(of replica-holding nodes) to detect the availability of the
nodes that hold replicas, and to maintain availability his-
tory, as well as to predict availability. It uses this to select
the best set of replicas. The master node is selected on a per-
object basis, and it is responsible to monitor (via pings or
heartbeats) the availability of two types of nodes: inode
storage nodes and data storage nodes. Higher-granularity
availability information is maintained for the former set
of nodes (and those lost replicas repaired eagerly by the
master), whereas the latter set has lower-granularity

6 COORDINATION AND SYNCHRONIZATION: DESIGNING PRACTICAL DETECTORS FOR LARGE-SCALE DISTRIBUTED SYSTEMS



availability detection (and those lost replicas are repaired
lazily).

Group-Based Distributed Detectors

Carbonite (31) and HBHC (33) each use more distributed
schemes than group-based master detectors, but once
again, these schemes work within small groups of nodes
(holding replicas of a given object).

Carbonite’s availability detection works by creating a
spanning tree [of height O(log(N))] rooted at each node in
the group, which contains other nodes at its leaves. The
spanning tree is created using the routing algorithm of the
underlying p2p DHT (distributed hash table). Each node
sends out heartbeat messages to its children periodically,
and the heartbeat is propagated down the tree to its
leaves. If a heartbeat is missed, the monitoring node
triggers a repair for every object stored on the node
detected as down. In a manner, this scheme is a crash-
recovery protocol, but we include it in this section because
it is used by Carbonite to measure the availability history
of individual nodes.

HBHC (33) is another system for replica maintenance.
The availability monitoring in HBHC is also fully distrib-
uted within the replica group. In brief, each node pings each
other node in the group periodically, that is, it is an all-to-all
pinging scheme. This information is also disseminated
periodically to all other nodes in the group using a gos-
sip-style (epidemic-style) dissemination (34).

System-Based Detectors

AVCast (32) is a system that links the multicast reliability
at recipient nodes to their availability. The availability
monitoring occurs on a system-wide basis, without assum-
ing replica groups. Thus, it is a general scheme. To start,
availability monitoring can be done either by having each
node report its own availability individually or by using
the overlay structure itself to decide which nodes monitor
the availability of a given node n. The former approach is
infeasible because nodes can lie about their own avail-
ability, whereas the latter scheme does not generalize
easily because in power-law overlays [e.g., Gnutella (2)],
higher-degree nodes would have a higher monitoring
overhead.

Instead, AVCast’s detector says that a node m will
monitor another node n if the condition Hash(m, n) < K/
N, where Hash is a consistent hashing function with range
[0,1], m and n are id’s of the nodes, K is a small fixed
constant, and N is the approximate system size (a fixed
quantity at all nodes). If the actual system size stays within
a constant factor of N, each node will have an expected O(K)
other random nodes that monitor its availability via ping
and reply messages. Besides ensuring load balance, this
scheme is verifiable; any third node can verify (using the
hash condition above) if two nodes m and n are in fact
related by a monitoring relationship. Thus, it is very diffi-
cult for a node n to cheat others either by reporting a higher
availability for itself or by colluding with other nodes.
Reference (32) describes additional optimizations in the
algorithm, where the value of K is changed adaptively—
the reader is encouraged to read the paper for details.

Types of Availability History

Although the detectors of the previous sections merely
maintained a straightforward history of the availability of
a given node n, and calculated its availability as the
average of all previous availability-test points (i.e., times
at which the availability of the node was explicitly mea-
sured), other approaches to maintaining history are pos-
sible. References (32) and (35) discuss some of these
approaches very well in the context of the goal of avail-
ability prediction, and we describe some below. Notice that
most of these history-maintenance schemes can be used
orthogonally along with the availability monitoring
schemes above. However, we do not discuss integration
issues here.

RightNow. This is just the current up/down status of the
node.

Aged. Reference (32) uses an aged detector, where the
last k availability tests on a node are weighed in an aged
manner, with more recent availability tests weighed expo-
nentially heavily compared with older tests. This aged
equation is used to estimate the availability probability
of node n. This aging rule is similar to the aging-based
prediction of run times of tasks in operating systems.

SatCount. In this scheme (35), the availability of a node
is marked as one of 4 values (using a 2-bit counter), based on
its history. These values are �2 (strongly offline), �1
(weakly offline), þ1 (weakly online), þ2 (strongly online).
This categorization is based on the results of the past k
availability-testing points for node n.

de Bruijn Graph-Based. For each node, the last k points of
availability testing are maintained, with the most recent
tests being in the lowest significant bits. A left-shift opera-
tion is done with each new test. Using this as a basis, a state
machine based on a de Bruijn graph can be set up among the
2k possible availability states for node n (for the k-bit
availability history). In a de Bruijn graph, each of the 2k

states leads into the two other states obtained by left-
shifting it. Reference (35) describes how to predict avail-
ability of a node n based on this—either by following the
most likely path from the current availability state, or by
following multiple paths, or by using a linear predictor (this
works best for short-term-stable availability behavior).
These techniques are based on digital signal processing
approaches. Finally, a hybrid detector combines all the
above using an adaptive tournament scheme. Readers
are encouraged to read Ref. (35) for more details. Using
availability traces collected from two different clusters, the
authors showed that in practice, the hybrid detector and
predictor work very well for home and office clusters and
moderately well for geographically distributed clusters like
PlanetLab.

SYSTEM SIZE ESTIMATORS

Finally, we discuss how to detect system-wide properties
related to failures. Specifically, we discuss different

COORDINATION AND SYNCHRONIZATION: DESIGNING PRACTICAL DETECTORS FOR LARGE-SCALE DISTRIBUTED SYSTEMS 7



approaches to solving the System Size Estimation problem
in large-scale distributed systems. Informally, the problem
involves finding the ‘‘current’’ (at initiation time) number of
non-faulty processes present in a distributed system, since
nodes can join and leave at any point of time. First, notice
that an accurate estimate is impossible to achieve—
messages have non-zero latencies, and departure or failure
of even a single node, immediately after its last message
with respect to the estimation protocol, will lead to an
inaccurate estimate (and this is very likely to occur in
large-scale distributed systems).

Such estimation protocols are extremely useful in many
distributed systems, which includes p2p overlays whose
design depends on the value of system size N(36,37),
nodeID assignment schemes (36), for estimating the
latency of lookups in some log(N)—p2p overlays (3,4).
Finally, estimated system sizes can be used to monitor
and to audit performance of distributed applications,
(e.g., on PlanetLab), as well as for dynamic partitioning
of Grid applications.

Like our prior detection protocols, we desire our estima-
tion protocols to be scalable, efficient, fault-tolerant, and
practical. In addition, increasing the (probabilistic) accu-
racy is an important goal. The estimation problem comes in
two flavors—one-shot detection involves a one-time estima-
tion of system size, whereas continuous detection involves
estimating the system size continuously. Accuracy can be
defined as either the root mean square of the error between
the estimated system size and the current system size or as
the standard deviation of these errors. The former metric
measures how close the estimate is to the actual size; the
latter metric measures how consistently the estimated size
shadows the actual size.

Protocols for system size estimation come in two vari-
eties—active protocols and passive protocols. Active pro-
tocols must be initiated by a single node and they involve
passing messages around inside the group until the initia-
tor receives enough responses or information to draw an
estimate. This style of protocol is a one-shot solution, but it
can be repeated for a continuous implementation.

Passive protocols, on the other hand, do not involve
exchanging any estimation messages actively. Instead,
these protocols attempt to snoop on messages sent by the
application or by a membership protocol (such as the ones
discussed in Crash Failure Detectors) to obtain an esti-
mate. By nature, they are continuous estimators.

Below, we discuss a small subset of active and passive
estimation protocols. Following the theme of this paper, we
choose only protocols that are the most practical, are
implemented easily and have the least assumptions to
hinder their transition into practice.

Active Estimation Protocols

Bawa et al. and Sample & Collide. Both Bawa et al. (39)
and Massoulie et al’s Sample and Collide scheme (40) use
the birthday paradox to estimate the system size. These
protocols initiate a random walk within the distributed
system—each node uses its neighbor information (provided

by any of the group membership protocols such as the ones
discussed in Crash Failure Detectors). If the number of
nodes in the system is N, it takes an expected number offfiffiffiffiffiffiffi

2N
p

steps to get back to a node that was already traversed
by the random walk. Based on this, the system size is
estimated.

Aggregation-Based Protocols. Several aggregation proto-
cols have been proposed for the distributed system. These
protocols calculate the sum, average, min, and max, of a set
of values provided by the nodes in the system. Jelasity et al.
(41) use one such aggregation protocol to derive an estima-
tion protocol. Basically, once the protocol is initiated, each
node keeps an estimate of the current size of the system. At
node n, this value is initialized to 1 when the initiating
message is received. Periodically, node n exchanges its
value with one neighbor chosen at random and replaces
its current estimate with the average of these two esti-
mates. The authors of Ref. (41) then show that the estimate
converges in time that is logarithmic in the group size.
Several other aggregation protocols such as those by
Kempe et al. (42) could also be used potentially to derive
a system size estimate similarly.

Hops Sampling. This scheme (43,44) involves dissemi-
nating a gossip message (also called epidemic message) into
the group and measuring the average latency of the receipt
times of this gossip. Because the dissemination latency of a
gossip varies logarithmically with the system size, an
estimate for the latter can be derived. The basic gossiping
model works as follows: when a gossip message is received
at node n, this node (once every T seconds) selects a fixed
constant number of gossip targets (nodes) periodically at
random and sends them copies of the gossip. In addition,
the Hops Sampling approach carries the hopcount variable
(initialized to 0 by the initiating node); when a node n first
receives the initiating message, it notes the hopcount,
increments it by 1, and then starts to gossip the initiating
message with the new hopcount piggybacked on top of it.
Finally, after O(log(N)) rounds, the initiating node queries
a small subset of nodes in the system to sample their
hopcounts, relates this to log(N), and obtains a system
size estimate. The latency of this protocol is also logarith-
mic in the system size.

Comparing the Above Three Approaches. Le Merrer et al.
have compared the above three active approaches quanti-
tatively via simulations (45). They found that using aggre-
gation (with estimates over last 50 rounds) provides the
best accuracy, whereas Hops Sampling (with the estimate
averaged over last 10 runs) provides lower accuracy com-
paratively. Admittedly, this particular comparison lacks a
common baseline across the algorithms (e.g., the number of
messages exchanged), but it is clear that Hops Sampling
uses significantly fewer messages than aggregation,
whereas Sample&Collide uses the least messages and
has somewhat middling accuracy. Overall, the comparison
does show that these different active protocols define an
overhead-accuracy trade-off. This opens the door for the
design of adaptive estimation protocols (e.g., try to achieve

8 COORDINATION AND SYNCHRONIZATION: DESIGNING PRACTICAL DETECTORS FOR LARGE-SCALE DISTRIBUTED SYSTEMS



a given level of accuracy while trying to stay within an
overhead budget).

Other Active Estimators. Awerbuch and Scheideler (46)
assign special id’s to nodes and organize them in a hier-
archy to enable estimation. Malkhi and Horowitz (47) use a
ring-based algorithm for estimation, however unlike the
above schemes this scheme could have a very high error.
Finally, several systems have been proposed to estimate the
size of p2p overlays [e.g., Stutzbach and Rejaie’s crawler-
based approach (48)].

Passive Estimation Protocols

Passive protocols for size estimation do not initiate one-
shot runs of the protocol. Instead, they snoop on applica-
tion or membership protocol messages to estimate the
system size. Furthermore, this class of protocols enables
each and every node in the system to have an estimate
without restricting this knowledge to a privileged initiat-
ing node.

The Interval Density Scheme (44) is one such passive
estimation protocol that works by snooping on the messages
passed along by a gossip-style membership protocol such as
the one by van Renesse et al. (10) (discussed in Crash
Failure Detectors). Basically, given a membership protocol
(such as Ref. (10)) that enables each node n in the system to
eventually (and perhaps quickly) learn information about
the id or IP address of each other node joining into, or failing
or departing from the system, the node n can estimate the
system size by only remembering a small fraction of these
node ids.

Each node uses a consistent hash function (e.g., one
based on SHA-1 or MD-5) to hash a heard-of node IP
address into the real interval [0,1]. In a nutshell, node
n is interested only in those other nodes whose IP
addresses hash into a sub-interval I of the interval
[0,1]. If I is of size O(K/N), where K is a constant, and N
is the (approximate) system size, then the memory use at
node n because of this estimation protocol is merely O(K).
Furthermore, using snooping on the gossip-style member-
ship protocol, it turns out that the time for a node join or
failure to reflect at the estimate at all other nodes is
O(log(N)). Finally, the inventors of this scheme showed
that it suffices for K to be O(log(N)) to derive an accuracy of
the protocol that goes to 1 as the actual system size
increases toward infinity.

Reference (44) describes several ways to adjust both the
size and the centerpoint of the interval I at node n so as to
obtain an accurate detection—the reader is encouraged to
read the referenced paper for more details.

Active vs. Passive Approach. The active Hops Sampling
approach was compared with the passive Interval Density
scheme in Ref. (43). Both these algorithms are available as
part of an open-source software called Peer-Counter(44).
Overall, if the group size is more or less static, the passive
approach yields a better accuracy. If the group size is highly
dynamic, the algorithms perform comparably when one
considers the root mean square error. However, the passive
scheme has better performance w.r.t. the standard devia-

tion of these errors (i.e., it is able to shadow the variation of
system size better).

SUMMARY

In this article, we have discussed online detectors for
several types of problems in large-scale distributed sys-
tems. We have seen (1) heartbeat- and ping-based detectors
for crash failures, (2) implicit and explicit Byzantine failure
detectors, (3) master-based, group-based and fully distrib-
uted availability monitors, and (4) active and passive sys-
tem size estimation schemes. Our focus was on approaches
that were practical yet novel at their core. This continues to
be a flourishing area of research, which implements ideas in
a variety of real systems.

REFERENCES

1. L. Peterson, T. Anderson, D. Culler, and T. Roscoe, A blueprint
for introducing disruptive technology into the internet, Proc.
HotNets-I, 2002.

2. The Gnutella protocol specification. Available: http://www9.li-
mewire.com/.

3. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balak-
rishnan, Chord: A scalable peer-to-peer lookup service for
internet applications, Proc. ACM SIGCOMM Conference,
2001, pp. 149–160.

4. A. Rowstron and P. Druschel, Pastry: scalable, distributed
object location and routing for large-scale peer-to-peer systems,
Proc. IFIP/ACM Middleware, 2001.

5. I. Foster, C. Kesselman, and S. Tuecke, The anatomy of the
Grid: Enabling scalable virtual organizations, Internat. J.
Supercomp. Appl., 2001.

6. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
TinyDB: An acqusitional query processing system for sensor
networks, ACM TODS, 2005.

7. R. vanRenesse, K. Birman, and W. Vogels, Astrolabe: A robust
and scalable technology for distributed system monitoring,
management, and data mining, ACM Trans. Comp. Sys., 21
(2): 164–206, 2003.

8. T. D. Chandra and S. Toueg, Unreliable failure detectors for
reliable distributed systems, J. ACM., 43 (2): 225–267, 1996.

9. W. Chen, S. Toueg and M. K. Aguilera, On the quality of
service of failure detectors, Proc. 30th International Confer-
ence on Dependable Systems and Networks (ICDSN/FTCS),
2000.

10. R. van Renesse, Y. Minsky, and M. Hayden, A gossip-style
failure detection service, Proc. Middleware 98, 1998, pp. 55–70.

11. M. Jelasity and O. Babaoglu, T-Man: Gossip-based overlay
toplogy management, Self-Organising Systems: ESOA,
LNCS 3910: 1–15, 2005.

12. A. Ganesh, A.-M. Kermarrec, and L. Massoulie, Peer-to-peer
membership management for gossip-based protocols, IEEE
Trans. Comp., 52 (2): 139–149, 2003.

13. A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie, SCAMP:
peer-to-peer lightweight membership service for large-scale
group communication, Proc. 3rd NGC, LNCS 2233, 2001,
pp. 44–55.

14. A. Das, I. Gupta, and A. Motivala, SWIM: Scalable Weakly-
consistent Infection-style process group Membership protocol,
Proc. IEEE DSN, 2002, pp. 303–312.

COORDINATION AND SYNCHRONIZATION: DESIGNING PRACTICAL DETECTORS FOR LARGE-SCALE DISTRIBUTED SYSTEMS 9



15. S. Voulgaris, D. Gavidia, and M. vanSteen, CYCLON:
Inexpensive membership management for unstructured P2P
overlays, J. Network Syst. Managem., 13 (2): 197–217, 2005.

16. B. Chor, M. Merritt, and D. B. Shmoys, Simple constant-time
consensus protocols in realistic failure model, Proc. 4th ACM
PODC, 1985, pp. 152–160.

17. A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper, Mute-
ness failure detectors: Specification and implementation,
EDCC, 1999, pp. 71–87.

18. M. J. Fischer, N. A. Lynch, and M. Patterson, Impossibility of
distributed consensus with one faulty process, J. ACM, 32 (2):
374–382, 1985.

19. K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, Byzan-
tine fault detectors for solving consensus, Comp. J., 46 (1):
16–35, 2003.

20. B. Chor and C. Dwork, Randomization in byzantine agreement,
Adv. Comp. Res., 5: 443–497, 1989.

21. M. O. Rabin, Randomized Byzantine generals, Proc. 24th IEEE
FOCS, 1983, pp. 403–409.

22. M. Castro and B. Liskov, Practical byzantine fault tolerance and
proactive recovery, ACM Trans. Comp. Sys., 20 (4): 398–461,
2002.

23. J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M.
Dahlin, Separating agreement from execution for byzantine
fault tolerant services, Proc. ACM SOSP, 2003, pp. 253–267.

24. L. Lamport, R. Shostak, and M. Pease, The Byzantine generals
problem, Proc. ACM TOPLAS, 4 (3): 382–401, 1982.

25. A. Haeberlen, P. Kouznetsov, and P. Druschel, The case for
byzantine fault detection, Proc. Usenix HotDep, 2006.

26. A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth, BAR fault tolerance for cooperative services, Proc.
ACM SOSP, 2005, pp. 45–58.

27. E. Damiani et al., A reputation-based approach for choosing
reliable resources in peer-to-peer networks, Proc. 9th ACM
CCS, 2002.

28. P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosenthal,
and M. Baker, The LOCKSS peer-to-peer digital preservation
system, ACM Trans. Comp. Sys., 23 (1): 2–50, 2005.

29. F. Schneider, The state machine approach: A tutorial, Tech-
nical Report TR 86–800, Cornell University, 1986.

30. R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M.
Voelker, Total Recall: System support for automated availabil-
ity management, Proc. Usenix NSDI, 2004.

31. B.-G. Chun, et al., Efficient replica maintenance for distributed
storage systems, Proc. Usenix NSDI, 2006, pp. 45–58.

32. T. Pongthawornkamol and I. Gupta, Avcast : New approaches
for implementing availability-dependent reliability for multi-
cast receivers, Proc. IEEE SRDS, 2006.

33. T. Schwarz, Q. Xin, and E. L. Miller, Availability in global peer-
to-peer storage systems, Proc. WDAS, 2004.

34. A. J. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson,
Epidemic algorithms for replicated database maintenance,
Proc. 6th ACM PODC, 1987, pp. 1–12.

35. J. W. Mickens and B. D. Noble, Exploiting availability pre-
diction in distributed systems, Proc. Usenix NSDI, 2006, pp.
73–86.

36. G. S. Manku, M. Bawa, and P. Raghavan, Symphony:distrib-
uted hashing in a small-world, Proc. 4th USITS, 2003, pp.
127–140.

37. P. B. Godfrey and I. Stoica, Heterogeneity and load balance in
distributed hash tables, Proc. IEEE Infocom, 2004.

38. G. S. Manku, Balanced binary trees for id management and
load balance in distributed hash tables, Proc. ACM PODC,
2004, pp. 197–205.

39. M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, Esti-
mating aggregates on a peer-to-peer network,Technical report,
Stanford University, 2003.

40. L. Massoulie, E. L. Merrer, A.-M. Kermarrec, and A. Ganesh,
Peer counting and sampling in overlay networks: random walk
methods, Proc. ACM PODC, 2006.

41. M. Jelasity and A. Montresor, Epidemic-style proactive aggre-
gation in large overlay networks, Proc. 24th ICDCS, 2004.

42. D. Kempe, A. Dobra, and J. Gehrke, Computing aggregate
information using gossip, Proc. 44th IEEE FOCS, 2003.

43. D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A.
Demers, Active and passive techniques for group size estima-
tion in large-scale and dynamic distributed systems, Manu-
script currently under preparation, 2006.

44. D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A.
Demers, Decentralized schemes for size estimation in large
and dynamic groups, IEEE NCA, 2005.

45. E. Le Merrer, A. M. Kermarrec, and L. Massoulie, Peer to peer
size estimation in large and dynamic networks: A comparative
study, Proc. 15th IEEE HPDC, 2006, pp. 7–17.

46. B. Awerbuch and C. Scheideler, Robust distributed name
service, Proc. 3rd IPTPS, 2004.

47. D. Malkhi and K. Horowitz, Estimating network size from local
information, ACM Inform. Process. Lett., 88 (5): 237–243,
2003.

48. D. Stutzbach and R. Rejaie, Characterizing unstructured over-
lay topologies in modern p2p file-sharing systems, Proc. IMC,
2005, pp. 49–62.

INDRANIL GUPTA

University of Illinois at Urbana-Champaign
Urbana, Illinois

10 COORDINATION AND SYNCHRONIZATION: DESIGNING PRACTICAL DETECTORS FOR LARGE-SCALE DISTRIBUTED SYSTEMS



D

DISTRIBUTED DATABASES

INTRODUCTION

The development of network and data communication tech-
nology has resulted in a trend of decentralized processing in
modern computer applications, which includes
distributed database management. Naturally, the decen-
tralized approach reflects the distributed organizational
structure, allows the improved availability and reliability
of data, and allows improved performance and easier system
expansion.

Wecandefineadistributeddatabase(1,2)asacollectionof
data that belong logically to a single database but are stored
physically in several databases over the sites of a network.
Two important aspects in the definition of a distributed
database exist. First, a distributed database is distributed
physicallywithinseveraldatabasescalled localdatabaseson
different sites of a network; this aspect distinguishes a
distributed database from a centralized database. Second,
a user may have an illusion that a distributed database is a
single database (i.e., a virtual database called a global data-
base); thisaspectdistinguishesadistributeddatabase froma
set of networked databases.

The fact that a distributed database is spread physically
over several local databases, yet it is viewed logically as a
whole brings challenging tasks for a distributed database
management system (DDBMS), a software that is used to
manage distributed databases. A distributed database sys-
tem (DDBS) consists of a DDBMS and the distributed
databases that it manages. The key issue of a DDBS is
the support of transparency. With transparency, users
may access and update a distributed database through a
single global schema by using an ordinary query language
such as SQL in the same way as they do to a centralized
database. Three fundamental tasks must be supported by a
DDBS: distributed database design, distributed query pro-
cessing, and distributed transaction management.

Apart from data distribution, heterogeneity and auton-
omy are two other aspects of a DDBS. In terms of hetero-
geneity, a DDBS may be classified as homogeneous or
heterogeneous. A homogeneous DDBS has identical local
DBMSs on all sites, whereas a heterogeneous DDBS allows
differences in their local DBMSs. Sometimes, local DBMSs
of a heterogeneous DDBMS may be of different types: rela-
tional, hierarchical, network, and object-oriented. In terms
of autonomy, a DDBMS with high autonomy of local DBMSs
is called a federated DBS (FDBS) or a mutidatabase system
(3).

Date (4) has listed twelve rules for a DDBMS. They are
as follows:

1. Local autonomy. The sites in a distributed system
should be autonomous. In this context, autonomy
indicates that local data is locally owned, local

operations remain purely local, and all operations
at a given site are controlled by that site.

2. No reliance on a central site. There should be no
single site without which the system cannot operate.

3. Continuous operation. Ideally, a need should never
exist for a planned system shutdown.

4. Location independence. The user should be able to
access all data from any site as if it were stored at the
user’s site, regardless of where it is stored physi-
cally.

5. Fragmentation independence. The user should be
able to access the data, regardless of how it is frag-
mented.

6. Replication independence. The user should be una-
ware that data has been replicated. Thus, the user
should not be able to access a particular copy of a data
item directly, nor should the user have to update all
copies of a data item.

7. Distributed query processing. The system should be
capable of processing queries that reference data at
more than one site.

8. Distributed transaction processing. The system
ensures that both transactions at local and global
levels conform to ACID properties (i.e., atomicity,
consistency, isolation, and durability).

9. Hardware independence. It should be possible
to run the DDBMS on a variety of hardware
platforms.

10. Operating system independence. It should be possible
to run the DDBMS on a variety of operating
systems.

11. Network independence. It should be possible to run
the DDBMS on a variety of disparate communication
networks.

12. Database independence. It should be possible to have
a DDBMS that consists of different local DBMSs.
In other words, the system should support hetero-
geneity.

Recently, we have observed the rapid development of
Internet technology and the use of XML as a standard for
data formatting and exchange on the Internet. The effec-
tive management and integration of huge amounts of XML
data resources on the Internet brings new topics for dis-
tributed database management.

The rest of this paper is organized as follows: Three
fundamental tasks of a DDBMS (i.e., distributed database
design, distributed query processing, and distributed
transaction management) are introduced in the first 3
Sections, respectively. In the next Section, we discuss
the problems in FDBSs. In the final Section, we discuss
distributed database related research topics on the Web
and XML.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



DISTRIBUTED DATABASE ARCHITECTURE AND DESIGN

The ANSI/SPARC three-level architecture provides a
reference architecture for a centralized database. This
architecture can be extended for a distributed database
as shown in Fig. 1(5). Given that the global virtual data-
base of a distributed database is used by end users,
whereas local databases of the distributed database are
actually used to store and to manage real data, the archi-
tecture only has global external schemas and local inter-
nal schemas. The task of distributed database design is to
map a global conceptual schema into a set of local con-
ceptual schema. Three steps can be followed, which result
in three schemas, fragmentation schema, allocation
schema, and local mapping schema. The fragmentation
schema describes how global relations are partitioned into
subrelations called fragments. The allocation schema
describes on which site(s) a fragment is placed, which
takes into account any replication. The local mapping
schema maps fragments of allocation schema into rela-
tions in local conceptual schema. The local conceptual
schema at each site defines the entire local database at
the site, and the local internal schema is a physical level
representation of a local database.

Fragmentation

Two types of fragmentation exist: horizontal and vertical.
A horizontal fragment is a subset of tuples, and a vertical

fragment is a subset of attributes of a global relation. Two
rules must be followed during fragmentation: complete-
ness—all the data of a global relation must be mapped into
the fragments and reconstruction—a global relation must
be able to construct from its fragments. For horizontal
fragmentation, an additional rule must be followed, which
is disjointness—no overlapping exits between any two
fragments. For vertical fragmentation, the disjointness
rule is allowed to be violated because a replicated attribute
is required to reconstruct the global relation. The follow-
ing is global schema with three global relations:

SALESPERSON(sid, name, commission, branch)
CUSTOMER(cid, name, address)
ORDER(oid, orddate, totamt, cid, sid)

A global relation can be fragmented horizontally into
fragments by using a selection operation s and be recon-
structed from its fragments by a union operation [. For
example, assume that every salesperson works in either
Sydney or Melbourne but not in both branches, then we
have the following:

SALESPERSONSYD ¼ sbranch=‘SYD’SALESPERSON
SALESPERSONMEL ¼ sbranch=‘MEL’SALESPERSON
SALESPERSON ¼ SALESPERSONSYD [ SALESPERSONMEL
SALESPERSONSYD \ SALESPERSONMEL ¼1

A global relation can also be fragmented horizonally into
fragments that depend on the horizontal fragmentation of

DBDB DB

Global External 
Schema

Global External 
Schema

Global External 
Schema

Global Conceptual 
Schema

Fragmentation 
Schema

Allocation
Schema

Local Mapping 
Schema

Local Mapping 
Schema

Local Mapping 
Schema

Local Conceptual 
Schema

Local Conceptual 
Schema

Local Conceptual 
Schema

Local Internal 
Schema

Local Internal 
Schema

Local Internal 
Schema

Figure 1. Distributed database architecture.

2 DISTRIBUTED DATABASES



another global relation (derived horizontal fragmentation)
by using a semi-join operation SJ. For example,

ORDERSYD ¼ ORDER SJ SALESPERSONSYD
ORDERMEL ¼ ORDER SJ SALESPERSONMEL
ORDER ¼ ORDERSYD [ ORDERMEL
ORDERSYD \ ORDERMEL ¼1

A global relation can be fragmented vertically into frag-
ments by using a projection operation p and be recon-
structed from its fragments by a natural join operation NJ.

SALESPERSONCOMM ¼ p sid, commision SALESPERSON
SALESPERSONDETAIL ¼ p sid, name, branch SALESPERSON
SALESPERSON ¼ SALESPERSONCOMM NJ
SALESPERSONDETAIL

Mixed horizontal and vertical fragmentations may be
used for a global relation. Sometimes, a global relation may
not need to be fragmented.

Allocation

After the fragmentation step, we have a set of fragments.
The problem of allocation is how to distribute this set of
fragments to the set of sites such that the distribution is
optimal to a predefined set of dominant applications, which
can be modeled as a set of retrieval and update references to
fragments. Two basic alternatives to allocate fragments
exist: nonredundant or redundant. The former places
each fragment into a single site, whereas the latter may
place a fragment into multiple sites. The general allocation
problem is NP-hard (6). Therefore, the proposed solutions
are based on heuristics.

Levels of Transparencies

From Fig. 1, a DDBMS may provide transparencies at
different levels, which depend on users’ requirement.
The highest level of transparency is the fragmentation
transparency. At this level, users do not need to know
that global relations are fragmented and where the frag-
ments are placed. Therefore, global schema is used for any
retrieval and update requests. The middle level of trans-
parency is the location transparency. At this level, users
must use fragments specified in the fragmentation schema
for any retrieval and update requests. However, users do
not need to know the locations of these fragments and how
many copies of these fragments exist. The local mapping
transparency is the lowest level of transparency. At this
level, users must use the allocation schema to specify not
only the fragment, but also which copy of the fragment on a
given site. The only thing users may not know is how the
fragment is represented in the local conceptual schema.

DISTRIBUTED QUERY PROCESSING AND OPTIMIZATION

In a distributed database, a global query is expressed as
references to global relations defined in the global schema.
A DDBMS must transform this global query into several
subqueries; each subquery executes on a local database
and then combines the results of subqueries to form the

result of the global query (7). The set of subqueries,
the queries for combining results of subqueries, and the
order for executing these queries constitute a distributed
query execution plan. For a global query, many such query
execution plans exist. The task of the distributed query
optimization is to find an optimal plan such that either
minimum total cost or minimum response time for execut-
ing a global query is achieved. Unfortunately, finding such
an optimal plan has been proved a NP-hard problem;
therefore, most of the proposed solutions are based on
heuristics.

Distributed query optimization is much more compli-
cated than its centralized counterpart. For centralized
systems, the primary factor for the cost of a particular
execution plan is the cost of local processing. In a distrib-
uted system, more factors must be considered.

1. The distribution of data. As global relations are frag-
mented and allocated, possibly with more than one
copy, to several sites as local relations. Much space
exists to choose which copy of a fragment to use for a
global query. This process is called materialization.

2. Communication cost. As data is spread over different
sites of a network, data transmission between sites is
inevitable. For wide area networks, the speed of data
transmission is much slower than that of disk access.
As such, communication cost becomes a dominant
factor toward the measurement of cost of a global
query.

3. Potential parallelism. As subqueries are executed by
local DBMSs, it ispossible toparallelize the processing
of these subqueries, provided they are not dependant
in the execution order. As such, performance gain can
be achieved by parallelism. Exploring parallelism is
especially important if minimum response time is
selected as the criterion of optimization.

In addition, accurate database profiles are important to
estimate the cost of operations and the size of intermediate
relations. A database profile contains statistic informa-
tion of the databases, such as the size of relations and
attributes, the data distribution information, the selec-
tivity of operations such as selection and join, and so on.

Several optimization strategies have been used for
distributed query optimization. These strategies include
transformation, semi-join based, and join based strategies.

Query Transformation

Rules are available that can be applied to a query (as a
expression of relational algebra) to rewrite it into an
equivalent expression, (1,8). Let U and B stand for unary
and binary algebraic operations, respectively. We may
have the following algebraic laws for some relational
algebraic operations where R, S, and T are relations.

�& Commutativity: U1 U2 R$ U2 U1 R, R B S$ S B R.

�& Associativity: R B (S B T) $ (R B S) B T.

�& Idempotence: U R $ U1 U2 R.

DISTRIBUTED DATABASES 3



�& Distributivity: U (R B S) ! U(R) B U(S).

�& Factorization: U(R) B U(S)! U(R B S).

A query can be represented as an operator tree where
the leaf nodes of the tree are relations and nonleaf nodes
are operators. Obviously, the operators closest to leaf
nodes will be executed first, and the root operator will
be executed the last. The objective of query optimization
based on equivalent transformation is to find an operator
tree with the minimum cost for execution. In centralized
databases, heuristics can be used for better performance
of queries (e.g., use idempotence of selection and projec-
tion to generate appropriate selections and projections for
each relation, push selections and projections down in the
tree as far as possible).

In distributed databases, a global relation may be
fragmented horizontally and/or vertically into fragments,
and real data is stored in local relations that represent
physical copies of those fragments. Therefore, a global
relation in a global query must be replaced as union
(horizontal fragmentation) and/or natural join (vertical
fragmentation) of fragments. It is always beneficial to
reduce the size of fragments before they are transmitted
to other sites. Sometimes, while pushing selection down
the tree to union of horizontal fragments, a contradictory
qualification may be achieved for some fragments, which
means no result will be obtained from those fragments.
Consequently, those fragments can be removed from the
query. Similarly, while pushing projection down the tree
to join of vertical fragments, those fragments that do not
contain the projected attributes can be removed from the
query. To distribute joins that appear in the global query,
unions that represent collections of fragments must be
pushed up beyond the joins that we want to distribute.
Although a join between two global relations with one
horizontally fragmented depends the other, only joins
between correspondent fragments are needed.

Semi-Join Strategy

A join operation is even more expensive in distributed
databases than in centralized ones when data transmission
cost is the dominant factor for query optimization. To
reduce the cost of a join across sites, it is ideal to reduce
the size of operand relations fully. A semi-join operator can
be a reducer in most cases. The theory of semi-joins is well
defined by Bernstein and Chiu (9).

Let R and S be two relations, in which A and B are the
join attributes that belong to R and S, respectively, and SJ
stand for semi-join, then R SJA¼B S is a subset of tuples of
R, constituted by those tuples that give a contribution to
the join of R with S. The benefit of this is that the tuples
that are not concerned with join will be filtered out before
the real join operation.

A semi-join program for a join between R and S can be
done by one of the following strategies:

1. R JNA¼B (S SJB¼A pA R).

2. S JNB¼A (R SJA¼B pB S).

3. (R SJA¼B pB S) JNA¼B (S SJB¼A pA R).

If R and S are from different sites and we take the first
strategy, then the following program can be used to imple-
ment R JNA¼B S.

1. Send pA R to the site of S.

2. Compute S’ ¼ S SJB¼A pA R at the site of S.

3. Send S’ to the site of R.

4. Compute R JNA¼B S’ at the site of R.

The cost of the above semi-join program is the cost of step
1 and step 3, whereas the cost of a join-based algorithm is
that of transferring relation S. The semi-join approach is
better if size(pA R) þ size(S SJB=A pA R) < size(S), i.e.,

sizeðpARÞ < sizeðSÞ � sizeðS SJB¼ApARÞ

Notice that the right side of the above inequity is the
reduced tuples of S. The semi-join approach is better if
the semi-join acts as a sufficient reducer (i.e., if a few tuples
of S participate in the join). The join approach is better if
most of the tuples of S participate in the join, because the
step 1 of semi-join requires additional cost.

The semi-join can be useful to reduce the size of the
operand relations involved in a multiple-join query. The
size of an operand relation may be reduced by more than
one semi-join. For example, R in a multiple join query of
operand relations R, S, and T can be reduced by R’ = R SJ (S
SJ T). Such a sequence of semi-joins is called a semi-join
program for R. For an operand relation, several potential
semi-join programs exist. One of these programs is opti-
mal and it is called the full reducer. Given that the number
of semi-join programs is exponential in the number of
operand relations, the cost of the full reducer program
is sometimes greater than the benefit. In the DDBMS
prototype SDD-1, a semi-join based algorithm has been
proposed (10) based on a hill-climbing algorithm for cen-
tralized query optimization.

Join-Based Strategy

In a DDBS in which data transmission cost is much more
expensive than local processing cost, the use of semi-joins
can improve the performance of a query significantly. If we
also consider the cost of local processing to evaluate alter-
native execution plans, then the direct use of joins as a
query processing tactic is often more convenient than the
use of semi-joins. For example, R� query optimization
algorithm (11) uses joins rather than semi-joins. It uses
a compilation approach in which an exhaustive search of
all alternative execution plans is performed to choose one
with the least cost. Both data transmission and local
processing costs are considered in Ref. 11.

DISTRIBUTED TRANSACTION MANAGEMENT

The objectives of distributed transaction management are
the same as those of centralized transaction management
[i.e., the guarantee of ACID properties (12–14)]:

4 DISTRIBUTED DATABASES



Atomicity requires that either all or none of the trans-
action’s operations be performed. In other words, if a
transaction fails to commit, its partial results cannot
remain in the database.

Consistency requires that a transaction to be correct. In
other words, if a transaction is executed alone, it
takes the database from one consistent state to
another. When more than one transaction is executed
concurrently, the database management system
must ensure the consistency of the database.

Isolation requires that an incomplete transaction cannot
reveal its results to other transactions before its
commitment. This function can avoid the problem
of cascading abort (i.e., the necessity to abort all the
transactions that observed the partial results of a
transaction that was later aborted).

Durability means that once a transaction has been
committed, all the changes made by this transaction
must not be lost even in the presence of system fail-
ures.

Two types of transactions we need to consider in a
distributed database system are local and global transac-
tions. A local transaction may access and update data in
only one local database, whereas a global transaction may
access and update data in several local databases. Thus, a
global transaction consists of a set of subtransactions, each
of which involves data residing on one site. A transaction
manager at each site ensures ACID properties of local
transactions as well as subtransactions at that site. For
global transactions, the task is much more complicated,
because several sites may be participating in execution.
The concurrent global transactions must be serializable
and recoverable in the distributed database system. In con-
sequence, each subtransaction of a global transaction must
be either performed in its entirety or not performed at all.

Serializability in a Distributed Database

It iswell understood that the maintenanceof the consistency
of each single database does not guarantee the consistency
of the entire distributed database. It follows, for example,
from the fact that serializability of executions of the sub-
transactions on each single site is only a necessary (but not
sufficient) condition for the serializability of the global
transactions. To ensure the serializability of distributed
transactions, a condition stronger than the serializability
of single schedule for individual sites is required.

In the case of distributed databases, it is relatively easy
to formulate a general requirement for correctness of global
transactions. The behavior of a distributed database sys-
tem is the same as a centralized system but with distributed
resources. The execution of the distributed transactions is
correct if their schedule is serializable in the whole system.
The equivalent conditions are as follows:

� Each local schedule is serializable.

� The subtransactions of a global transaction must have
a compatible serializable order at all participating
sites.

The last condition indicates that for any two global
transactions Gi and Gj, their subtransactions must be
scheduled in the same order at all the sites on which these
subtransactions have conflicting operations. Precisely, if
Gik and Gjk belong to Gi and Gj, respectively, and the local
serializable order is Gik precedes Gjk at site k, then all the
subtransactions of Gi must precede the subtransactions of
Gj at all sites where they are in conflict.

Various concurrency control algorithms such as two
phase locking (2PL) (15,16) and timestamp ordering
approaches (17,18) have been extended to distributed data-
base systems. Because the transaction management in a
distributed database system is implemented by several
identical local transaction managers, the local transaction
managers cooperate with each other for the synchroniza-
tion of global transactions. If the timestamp ordering tech-
nique is used, a global timestamp is assigned to each
subtransaction and the order of timestamps is used as
the serialization order of global transactions. If a 2PL
algorithm is used in the distributed database system, the
locks of a global transaction cannot be released at all local
sites until all the required locks are granted. In distributed
systems, the data item might be replicated. The updates to
replicas must be atomic (i.e., the replicas must be consistent
at different sites). The following rules may be used to lock
with n replicas:

� Writers need to lock all n replicas, readers need to lock
one replica.

� Writers need to lock all m replicas (m > n/2), readers
need to lock n � m þ 1 replicas.

� All updates directed first to a primary copy replica (one
copy has been selected as the primary copy for updates
first and then the updates will be propagated to other
copies).

Any one of the above rules will guarantee consistency
among the duplicates.

Atomicity of Distributed Transactions

In a centralized system, transactions can either be pro-
cessed successfully or be aborted with no effects left on the
database in the case of failures. Normally, the failures
cause loss of volatile or nonvolatile storage data. In a
distributed system, however, additional types of failure
may occur.

For example, network failures or communication fail-
ures may cause network partition, and the messages sent
from one site may not reach the destination site. If a partial
execution of a global transaction at a partitioned site
existed in a network; it would not be easy to implement
the atomicity of a distributed transaction. To achieve an
atomic commitment of a global transaction, it must be
ensured that all of its subtransactions at different sites
are capable and available to commit. Thus, an agreement
protocol must be used among the distributed sites. The
most popular atomic commitment protocol is the two phase
commitment (2PC) protocol.

DISTRIBUTED DATABASES 5



In the basic 2PC, the site where a global transaction is
issued serves as a coordinator. The participating sites that
execute the subtransactions must commit or abort
the transaction unanimously. The coordinator is responsi-
ble to make the final decision to terminate each subtran-
saction. The first phase of 2PC is to request from all
participants the information on the execution state of sub-
transactions. The participants report to the coordinator,
who collects the answers and makes the decision. In the
second phase, that decision is sent to all participants. In
detail, the 2PC protocol proceeds in two phases for a global
transaction Ti (1).

Phase 1. Obtaining a Decision.

1. Coordinator asks all participants to prepare to com-
mit transaction Ti:

a. add [prepare Ti] record to the log

b. send [prepare Ti] message to each participant

2. When a participant receives [prepare Ti] message it
determines if it can commit the transaction:

a. if Ti has failed locally, respond with [abort Ti]

b. if Ti can be committed, send [ready Ti] message to
the coordinator.

3. Coordinator collects responses:

a. all respond ready, decision is commit

b. at least one response is abort, decision is abort

c. at least one fails to respond within time-out period,
decision is abort.

Phase 2. Recording the Decision in the Database.

1. Coordinator adds a decision record ([abort Ti] or
[commit Ti]) in its log.

2. Coordinator sends a message to each participant
informing it of the decision (commit or abort).

3. Participant takes appropriate action locally and
replies done to the coordinator.

The first phase is that the coordinator initiates the
protocol by sending a prepare-to-commit request to all
participating sites. The prepare state is recorded in the
log and the coordinator is waiting for the answers. A
participant will reply with a ready-to-commit message
and record the ready state at the local site if it has finished
the operations of the subtransaction successfully. Other-
wise, an abort message will be sent to the coordinator and
the subtransaction will be rolled back accordingly.

The second phase is that the coordinator decides
whether to commit or abort the global transaction based
on the answers from the participants. If all sites answered
ready-to-commit, then the global transaction is to be com-
mitted. The final decision-to-commit is issued to all parti-
cipants. If any site replies with an abort message to the
coordinator, the global transaction must be aborted at all
the sites. The final decision-to-abort is sent to all the
participants who voted the ready message. The global
transaction information can be removed from the log

when the coordinator has received the completed message
from all the participants.

The basic idea of 2PC is to make an agreement among all
the participants with respect to committing or aborting all
the subtransactions. The atomic property of global transac-
tion is then preserved in a distributed environment.

The 2PC protocol is subject to the blocking problem in
the presence of site or communication failures. For exam-
ple, suppose that a failure occurs after a site has reported
ready-to-commit for a transaction, and a global commit-
ment message has not yet reached this site. This site would
not be able to decide whether the transaction should be
committed or aborted after the site is recovered from the
failure. Three phase commitment (3PC) protocol (19) has
later been introduced to avoid the blocking problem. But,
3PC is too expensive.

The 2PC protocol is used not only in distributed data-
bases, but also in parallel databases for transactions, which
contain subtransactions to be executed in different parti-
tions of a parallel database (20).

FEDERATED DATABASE SYSTEMS

A federated database system (FDBS) is a collection of
cooperating but autonomous database systems called
component DBSs that are integrated to various degrees
(3). The software that provides controlled and coordinated
manipulation of the component DBSs is called a federated
database management system (FDBMS). A component
DBS in an FDBS can participate in more than one federa-
tion. A multidatabase system (MDBS) differs from an
FDBS in that only a single federation schema is defined
for a multidatabase. The DBMS of a component DBS, or
component DBMS, can be a centralized or distributed
DBMS or another FDBMS. Several significant aspects
of an FDBS are as follows:

1. Local autonomy. Component DBSs are often under
separate and independent control. Those who control
a database are often willing to let others share the
data only if they retain control. A component DBS can
continue its local operations and can participate in a
federation at the same time. Normally, no difference
to a component DBS exists between a local applica-
tions or a global applications at federated levels.

2. Heterogeneity. Usually, component DBMSs are dif-
ferent; they can differ in such aspects as data models,
query languages, and transaction management
capabilities.

3. Pre-existing distribution. Usually, multiple compo-
nent DBSs are built before an FDBS is built.
Therefore, discrepancy in semantics and conflicts
may exist among those component databases.

Schema Architecture and Design

Figure 2 shows a five-level schema architecture of a FDBS
proposed by Sheth (3).

6 DISTRIBUTED DATABASES



�& Local Schema. A local schema is the conceptual
schema of a component DBS. A local schema is
expressed in the native data model of the component
DBMS; and hence, different local schemas may be
expressed in different data models.

�& Component Schema: A component schema is derived
by translating local schemas into a data model called
the canonical or common data model (CDM) of the
FDBS. Two reasons for defining component schemas
in a CDM are 1) they describe the divergent local
schemas using a single representation and 2) seman-
tics that are missing in a local schema can be added to
its component schema.

�& Export Schema. Not all data of a component DBS may
be available to the federation and its users. An export
schema represents a subset of a component schema
that is available to the FDBS. It may include access
control information regarding its use by specific fed-
eration users. The purpose of defining export schemas
is to facilitate control and management of association
autonomy.

�& Federated Schema. A federated schema is an integra-
tion of multiple export schemas. A federated schema
also includes the information on data distribution that
is generated when integrating export schemas. Some
systems use a separate schema called a distribution
schema or an allocation schema to contain this infor-
mation. Multiple federated schemas may exist in an
FDBS, one for each class of federation users. A class of
federation users is a group of users and/or applications
who perform a related set of activities.

�& External Schema. A subschema or a view defined over
a federated schema primarily for a pragmatic reason of
not having to define too many federated schemas or to

tailor a federated schema for smaller groups of federa-
tion users than that of a federated schema.

As component databases normally pre-exist in a FDBS,
we can take a bottom-up design approach for federated
databases. This approach is in contrast to the top-down
design approach discussed in a previous section. The major
tasks of the bottom-up design are schema translation and
schema integration.

Schema Translation. As local schemas of different compo-
nent databases may be defined in different data models, the
specification of a CDM for defining federated schemas is
required. Relational data model and object-oriented data
model are often chosen as a CDM. Mapping rules must be
studied between data models (e.g., relational model, DBTG
or network model, hierarchical model, object-oriented
model, and more recently XML data model).

Schema Integration. After schema translation, compo-
nent schemas are generated for component databases.
After that, export schemas are generated from component
schemas for integration to different federated schemas.
Four steps can be followed for schema integration.

�& Pre-Integration. Pre-integration is required to estab-
lish the rules of the integration process before actual
integration occurs. For example, candidate keys in
each schema must be identified; equivalent domains
of attributes must be described in terms of mappings
from one representation to another.

�& Comparison. During this phase, both the naming and
the structural conflicts are identified. Naming conflicts
include synonym (two identical entities or attributes
with different names) and homonym (two different
entities or attributes with the same name). Structural

Component
DBS

Component
DBS

External 
Schema

External 
Schema

External 
Schema

Federated 
Schema

Federated 
Schema

Export
Schema

Export
Schema

Export
Schema

Local
Schema

Local
Schema

Component
Schema

Component
Schema

Figure 2. Five-level schema architecture of an FDBS.

DISTRIBUTED DATABASES 7



conflicts include 1) type conflicts: the same object is
represented by an attribute in one schema and by an
entity in another, 2) dependency conflicts: different
relationship types are used to represent the same thing
in different schemas (1:m vs m:n), 3) key conflicts:
different candidate keys are available and different
primary keys are selected in different schemas, and
4) behavioral conflicts are implied by the modeling
mechanism (e.g., deletion of the last employee causes
the dissolution of the department).

� Conformation. Conformation is the resolution of the
conflicts that are determined at the comparison phase.

� Merging and Restructuring. All schemas must be
merged into a single database schema and then
restructured to create the best federated schema.

Global Query Processing and Optimization

In a loosely coupled FDBS, the FDBMS can support little or
no query optimization. In a tightly coupled FDBS, the
FDBMS can perform extensive query optimization. Query
processing involves converting a query against a federated
schema into several queries against the export schemas and
executing these queries. Query processing in an FDBMS is
similar to that in a distributed DBMS. In an FDBMS,
however, several additional complexities may be introduced
because of heterogeneity and autonomy. The cost of
performing an operation may be different in different com-
ponent DBSs. The component DBMSs may differ in their
abilities to perform local query optimizations. The system
and database operations provided by each of the component
DBMSs and the FDBMSs may be different. Landers and
Rosenberg (21) discuss optimization problems and solutions
adopted for some of the above issues in Multibase.

Global Transaction Management

Supporting global transaction management in an environ-
ment with multiple heterogeneous and autonomous com-
ponent DBSs is very difficult. The challenge is to permit
concurrently global updates to the underlying databases
without violating their autonomy. Two types of transac-
tions to be managed exist: global transactions submitted to
the FDBMS by federation users and local transactions
submitted directly to a component DBMS by local users.
The basic problem in supporting global concurrency control
is that the FDBMS does not know about local transactions
because a component DBMS is autonomous. That is, local
wait-for relationships are known only to the transaction
manager of the component DBMS. Without knowledge
about local as well as global transactions, it is highly
unlikely that efficient global concurrency control can be
provided. Because of the existence of local transactions, it is
very difficult to recognize when the execution order differs
from the serialization order at any site (22). Additional
complications occur when different component DBMSs and
the FDBMS support different concurrency control mechan-
isms (23). Georgakopoulos et al. (24) proposed to incorpo-
rate additional data manipulation operations on tickets in
the subtransactions of each global transaction and show

that if these operations create direct conflicts between
substransactions at each participating component DBS,
indirect conflicts can be resolved even if the FDBS is not
aware of their existence. However, all the published solu-
tions often make unrealistic and pessimistic assumptions,
or support a low level of concurrency or sacrifice autonomy
to obtain higher concurrency. It is unlikely that a theore-
tically elegant solution exists that provides conflict serial-
izability without sacrificing performance (i.e., concurrency
and/or response time) and availability.

Work on weaker consistency criteria (25) and advanced
transaction models (26) provide techniques to specify and to
execute transactions that provide ACID properties selec-
tively. A concept of S-Transactions (27) is proposed for
semantic transactions suited for a banking environment
that consists of a network of highly autonomous systems. It
may be desirable to devise solutions that do not meet the
conflict serializability criteria but that are practical and
meet a desired level of consistency. Du and Elmagarmid
(22) propose a weaker consistency criterion called Quasi
Serializability that works if no value dependencies (e.g.,
referential integrity constraints) exist across databases.
Garcia-Molina and Salem (28) propose a concept of Sagas
that provides semantic atomicity but does not serialize
execution of global transactions.

THE WEB AND DISTRIBUTED DATABASES

The last decade has seen the emergence of the Web as the
central forum for data storage and exchange. More
recently, XML has been proposed as a standard for data
exchange and storage. Compared with the relational data
model, the de facto standard for database systems and its
structural primitives for building trees of elements with
attributes offer much more flexibility in data organization
and format. The Web and XML provide many avenues for
database researchers. The Web bears a similarity to a
bottom-up designed federated database in terms of inter-
grating structured data sources from different websites;
however, the Web is much more loosely coupled. In the
following, we address two areas that are relevant to dis-
tributed databases.

Information Integration on the Web

Data integration is a pervasive challenge faced in applica-
tions that need to query across multiple autonomous and
heterogeneous data sources (29). Data integration is cru-
cial in large enterprises that own a multitude of data
sources. Integrating information from data resources
over the Internet requires creating some form of inte-
grated view to allow for distributed querying. The context
of the Internet raises several issues for information inte-
gration that are far more difficult than those of multi-
database systems (3). First, the number of data sources
may be very high, which makes view integration and
conflict resolution a problem. Second, the space of data
resources is very dynamic, so adding or dropping a data
source should be done with minimal impact on the inte-
grated view. Third, the data sources may have different
computing capabilities, which range from full-featured

8 DISTRIBUTED DATABASES



DBMS to simple files. This feature is unlike multidatabase
systems, which assume data sources with an SQL-like
interface. Finally, data sources may be unstructured or
semi-structured, which provides virtually no information
for view integration. To address these problems, the data-
base research community has revisited the multidatabase
architecture (i.e., the architecture of a FDBS with a single
federation schema) with data source wrappers and med-
iators. For each data source, a wrapper exports some
information about its source schema, data, and query
capabilities (30). For the whole integration system, a
mediator centralizes the information provided by the
wrappers in a unified global view of all available data,
decomposes global queries into subqueries executable by
wrappers on data sources, and gathers the partial results
and computes the answer to the global queries. This
wrapper–mediator architecture differs from a data ware-
house in that integrated global view is not materialized.

Two basic approaches exist in data integration, GAV and
LAV (31–33). These two approaches have also been used in
the context of data integration on the Web. GAV (Global As
View) defines a global schema as a view over a set of source
schemas, whereas LAV (Local As View) defines source
schemas as views over the global schema. GAV has been
used in FDBSs and multidatabase systems, in which the
quality depends on how well we have compiled the sources
into the global schema through mapping. Whenever a
source changes or a new source is added, the global schema
must be reconsidered. Query processing can be based on
some sort of rewriting. Each element in the user’s query
corresponds to a substitution rule just as each element in
the global schema corresponds to a query over the source.
Query processing is simply expanding the subgoals of the
user’s query according to the rule specified in the mediator,
and thus the resulting query is likely to be equivalent. LAV
has high modularity and reusability. Once the global
schema is well designed, changes on a source only affect
the definition of the source. The quality depends on how
well we have characterized the sources. In LAV systems,
queries undergo a more radical process of rewriting because
a mediator does not exist. The integration system must
execute a search over the space of possible queries to find
the best rewrite. The resulting rewrite may not be an
equivalent query but maximally contained, and the result-
ing tuples may be incomplete.

Recently, Semantic Web (34) has attracted great atten-
tions from both research communities and standard orga-
nizations. Semantic Web is supposed to be an extension of
the Web where the semantics of data is available to and
processable by machines. At the core of this new technology
are the languages that are used to describe the semantics of
XML documents and ontology, such as RDF, DAMLþOIL,
and OWL. Ontology can be used to define global schemas,
which makes information integration on the Web easy.

Publishing Relational Data on the Web

Although XML is emerging as the universal format to
publish and to exchange data on the Web, most business
data is still stored and maintained in relational database
systems. As a result, an increasing need exists to publish

relational data efficiently as XML documents for Internet-
based applications. One approach to publish relational
data is to create XML views of the underlying relational
data. Through the XML views, users may access the
relational databases as though they were accessing
XML documents. Once XML views are created over a
relational database, queries in an XML query language
like XML-QL or XQuery can be issued against these XML
views for the purpose of accessing relational databases.
SilkRoute (35) is one of the systems that takes this
approach. In SilkRoute, XML views of a relational data-
base are defined using a relational to XML transformation
language called RXL, and then XML-QL queries are
issued against these views. The queries and views are
combined together by a query composer and the combined
RXL queries are then translated into the 1corresponding
SQL queries. XPERANTO (36) takes a similar approach
which uses XQuery for user queries. DTD directed pub-
lishing is introduced in Ref. 37 where an attribute trans-
lation grammar (ATG) is designed to creating XML views
of relational databases. Another approach (38) to publish
relational data is to provide virtual XML documents for
relational data via an XML schema that is transformed
from the underlying relational database schema such that
users can access the relational database through the XML
schema. In this approach, the process of XML schema
generation preserves integrity constraints of the under-
lying relational schema, which makes a difference com-
pared with the view approach taken by SilkRoute.

BIBLIOGRAPHY

1. S. Ceri and G. Pelagatti, Distributed Databases - Principles
and Systems, New york: McGraw-Hill, 1984.

2. M. Ozsu and P. Valduriez, Principles of Distributed Database
Systems, 2nd ed., EngleWood Cliffs, NJ: Prentice-Hall, 1999.

3. A. Sheth and J. Larson, Federated database systems for mana-
ging distributed, heterogeneous, and autonomous databases,
ACM Computing Surveys, 22 (3): 183–236, 1990.

4. C. Date, An Introduction to Database Systems, Vol. 1, 4th ed.,
Reading, MA: Addison-Wesley, 1986.

5. T. Connolly and C. Begg, Database Systems—A Practical
Approach to Design, Implementation, and Management, 3rd
ed., Reading, MA: Addison Wesley, 2002.

6. C. T. Yu, et al., File allocation in distributed databases with
interaction between files, Proc. 9th Int. Conf. Very Large Data
Bases, 1983, pp. 248–259.

7. C. Yu and C. Chang, Distributed query processing, ACM
Computing Surveys, 16 (4): 399–433, 1984.

8. J. Ullman, Principles of Database Systems, 2nd ed., Rockville,
MD: Computer Science Press, 1982.

9. P. A. Bernstein and D. W. Chiu, Using semi-joins to solve
relational queries, J. A.C.M., 28 (1): 25–40, 1981.

10. P. A. Bernstein, et al., Query processing in a system for dis-
tributed databases (SDD-1), ACM Trans. Database Sys., 6 (4):
602–625, 1981.

11. P. G. Selinger and M. E. Adiba, Access path selection in
distributed database management systems, Proc. 1st Int.
Conf. Databases, 1980, pp. 204–215.

12. T. Härder and A. Reuter, Principles of transaction-oriented
database recovery, ACM Comput. Surv., 15 (4): 287–317, 1983.

DISTRIBUTED DATABASES 9



13. J. Gray, The transaction concept: virtues and limitations, Proc.
7th Int. Conf. Very Large Data Bases, 1981, pp. 144–154.

14. Y. Zhang and X. Jia, Transaction processing, In J. Webster
(ed.), Wiley’s Encyclopedia of Electrical and Electronics Engi-
neering, vol. 22, 1999, pp. 298–311.

15. K. P. Eswaran, et al., The notions of consistency and predicate
locks in a database system, Commun. ACM, 19 (11): 624–633,
1976.

16. J. Gray, Notes on data base operating systems, Lect. Notes
Comput. Sci., 6: 393–481, 1978.

17. P. A. Bernstein and N. Goodman, Timestamp-based algorithms
for concurrency control in distributed database systems, Proc.
7th Int. Conf. Very Large Data Bases, 1980, pp. 285–300.

18. L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Commun. ACM, 21 (7): 558–565, 1978.

19. C. Date, An Introduction to Database Systems, Vol. 2, 2nd ed.,
Reading, MA: Addison-Wesley, 1982.

20. C. Liu, et al., Capturing global transactions from multiple
recovery log files in a partitioned database system, Proc. 29th

Int. Conf. Very Large Data Bases, 2003, pp. 987–996.

21. T. Landers and R. Rosenberg, An overview of multibase, in
H.-J. Schneider (ed.), Distributed Databases. Amsterdam:
North-Holland, 1982, pp. 153–184.

22. W. Du and A. Elmagarmid, Quasi serializability: A correctness
criterion for global concurrency control in interbase, Proc. 15th

Int. Conf. Very Large Data Bases, 1989, pp. 347–355.

23. V. D. Gligor and R. Popescu-Zeletin, Transaction management
in distributed heterogeneous database management systems,
Inf. Syst., 11 (4): 287–297, 1986.

24. D. Georgakopoulos, M. Rusinliewicz, and A. Sheth, Using
tickets to enforce the serializability of multidatabase transac-
tions, TKDE, 6 (1): 166–180, 1994.

25. Y. Breitbart, H. Garcia-Molina, and A. Silberschatz, Over-
view of multidatabase transaction management, VLDB J., 2:
181–239, 1992.

26. A. Elmagarmid (ed.), Database Transaction Models For
Advanced Applications. San Mateo, CA: Morgan Kaufmann,
1992.

27. J. Veijalainen, F. Eliassen, and B. Holtkamp, The S-transac-
tion model, in A. Elmagarmid (ed.), Database Transaction

Models For Advanced Applications. San Mateo, CA: Morgan
Kaufmann, 1992, pp. 467–513.

28. H. Garcia-Molina and K. Salem, Sagas, Proc. 1987 ACM SIG-
MOD Int. Conf. Management of Data, 1987, pp. 249–259.

29. A. Halevy, A. Rajaraman, and J. Ordlille, Data integration: The
teenage years, Proc. 32nd Int. Conf. Very Large Data Bases,
2006, pp. 9–16.

30. S. Cluet, et al., Your mediators need data conversion, Proc.
1997 ACM SIGMOD Int. Conf. Management of Data, 1997,
pp. 177–188.

31. A. Halevy, Answering queries using views: A survey, VLDB J.,
10 (4): 270–294, 2001.

32. J. D. Ullman, Information integration using logical views,
Theor. Comput. Sci., 239 (2): 189–210, 2000.

33. M. Lenzerini, Data integration is harder than you thought,
Proc. CoopIS, 2001, pp. 22–26.

34. T. Berners-Lee, J. Hendler, and O. Lassila, The Semantic Web,
Scientific American, May: 2001.

35. M. Fernandez, W. Tan, and D. Suciu, SilkRoute: Trading
between relations and XML, Proc. WWW, 2000, pp. 723–725.

36. M. Carey, et al., XPERANTO: Middleware for publishing
object-relational data as XML Documents, Proc. 26th Int.
Conf. Very Large Data Bases, 2000, pp. 646–648.

37. M. Benedikt, et al., DTD-directed publishing with attribute
translation grammars, Proc. 28th Int. Conf. Very Large Data
Bases, 2002, pp. 838–849.

38. C. Liu, M. Vincent, and J. Liu, Constraint preserving trans-
formation from relational schema to XML schema, World Wide
Web J., 9 (1): 93–110, 2006.

CHENGFEI LIU

Swinburne University of
Technology

Melbourne, Australia

YANCHUN ZHANG

Victoria University
of Technology

Melbourne, Australia

10 DISTRIBUTED DATABASES



D

DISTRIBUTED FILE SYSTEMS

INTRODUCTION

A distributed file system, also known as a network file
system, is a means for to access data transparently across
a network. A user should not have to know whether a file
actually resides locally or on a remote server. In the typical
distributed file system architecture in Fig. 1(a), a client
uses the same standard file system calls that are trans-
lated into network requests at runtime. If the access to
remote data is not transparent, a client might have to
retrieve explicitly a file locally, make modifications, and
then move explicitly the file back to the server as in
Fig. 1(b).

Distributed file systems are a broad topic in computer
science. We have organized our discussion into four distinct
areas. We begin by focusing on high availability techniques
that improve uptime and provide support for mobile or
disconnected operation. Then, we closely examine closely
several protocol standards for compatibility and implemen-
tation-independent optimizations. The next section
describes several distributed file systems that are tuned
for high-performance computing (HPC) applications.
Finally, we discuss several distributed file systems that
have application-specific features.

HIGH AVAILABILITY

Users who need reliable and distributed access to files
across various networks (i.e., university campuses and
large companies) use ‘‘highly available’’ distributed file
systems. Distributed file systems with high availability
can be characterized generally by a fair degree of fault
tolerance: addressing client, network, and server failures.
Files must be accessible easily to users from multiple loca-
tions, and although concurrent, or near concurrent, writing
to shared files is rare, reading shared files is vital for
collaboration. Data availability is critical to virtually every
organization. Typical techniques include both replication
and logs. Industry demand for highly available distributed
file systems has resulted in a plethora of proprietary solu-
tions.

The serverless approach to highly available storage
bears a striking resemblance to peer-to-peer systems.
Although high availability may be the most high profile
goal, any production read-write file system must address
security.

The Network File System (NFS) and Common Internet
File System (CIFS) are described in the next section from a
design and protocol perspective. The file systems them-
selves do not address high availability explicitly. Availabil-
ity is left to proficient system administration and fault
tolerant storage techniques.

In this section, we focus on the Andrew file system (AFS),
Coda, and a few serverless file systems.

Andrew File System

The Andrew File System (AFS) (1,2) was started at Carne-
gie Mellon University as part of the Andrew distributed
computing environment. It has gone through three itera-
tions: AFS-1, AFS-2, and AFS-3. The primary focus of AFS
is scalability: namely across many client workstations in a
large institution. In AFS, a pool of trusted file servers are
known collectively as Vice. Clients, who each run a Venus
process, are untrusted and must have local disks. The
benefit of this security model is that administrators need
to worry about only a small percentage of the entire system.
Users are aware of only directory structure, and not of
physical location of files. This transparency is not only
important to interactive users, but to user applications
as well.

AFS-1 was a pilot vehicle for the basic AFS architecture,
and it was used for only about a year. Local caching is done
at the file granularity, and client-side cache coherence is
handled in a very simplistic but inefficient manner. Before
any locally cached version of a file can be used, the client
first verifies its validity with Vice. Although cached copies
of files can be read and written, updates to cached direc-
tories go to the servers directly.

AFS-2 is built on the lessons learned with the deploy-
ment of AFS-1 as well as additional performance evalua-
tions. Notable changes were made to cache management,
the global name space, and the server design.

Effectively, caching entire files is a prefetching techni-
que, and it is proved beneficial, if not vital, to performance.
AFS-2 introduced the callback, an explicit agreement made
between a client and server when a client first caches some
given data. A callback allows servers to notify actively the
appropriate clients when their cached data becomes inva-
lid. Until then, a client will assume that the particular
cached data is still safe. In AFS-2, callbacks reduce the
validation traffic significantly. Updated data is passed to
the servers on file close.

AFS-2 also adopted the notion of volumes. Volumes
consist of a set of files that form partial subtrees in Vice.
Collectively, all the volumes in Vice form the entire file
system name space. The typical division of volumes is about
one volume per user. Volumes can be archived easily and
migrated to different servers.

AFS-3 is focused on administrative improvements, but it
is worth noting that Venus was moved into kernel space,
which allows it to cache data 64KB at a time. Caching data
at a finer grain than entire files improves latency and
allows operation on very large files that do not otherwise
fit on the client disk. The task of administering AFS-3 is
decentralized using cells. Cells are composed of servers,
clients, system administrators, and users. Multiple cells
can coordinate to aid collaboration between sites.

AFS-3 was adopted for commercialization by Transarc,
and they were bought subsequently by IBM. IBM then
branched and opened the code as OpenAFS. The AFS-2
design became the starting point for the Coda file system.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Coda

Coda (3,4) is based on the AFS-2 design with several major
differences. This close relationship is clear in Table 1. AFS-2
was subject to debilitating failures if any server crashed.
Coda addresses server failure with server replication. Dis-
connected operation in Coda is treated as a temporary state,
but it can be tolerated for an extended period of time.

In Coda, a volume is replicated on multiple servers that
compose a volume storage group (VSG). Reads are done
from a single replica, and updates are performed on all
copies. The subset of servers in the VSG that is accessible
makes up the accessible VSG (AVSG). On a cache miss, all
the servers in the AVSG are contacted, and the most recent
data from one of the servers is cached. Any servers with
stale data are also notified.

Two contexts exist for disconnections: brief temporary
failures and extended disconnections. Because Coda
already caches entire files on the client, disconnected opera-
tions are relatively easy: One just needs to ensure that the
appropriate files are cached before they are remove from
the network. During disconnected operations, any cache
miss cannot be resolved. For brief, unintentional discon-
nections, the regular LRU cache policy may suffice and
cache misses may be avoided. Extended disconnections
may be the result of more severe failures in either the
network or the servers, or it may also be the result of a
mobile device that is disconnected intentionally. For longer
disconnections, the LRU policy will not likely be sufficient
to avoid cache misses. To this end, Coda provides the user
with a mechanism to prioritize files and directories for
caching.

Disconnected operation in a distributed system entails
implicitly some mechanism for reconnection. As soon as the
AVSG is available again, updates are pushed upstream. If
no conflicts exist because of modifications by other clients,
this process is completely transparent. Any files and direc-
tories without conflicts are simply updated, and Coda
provides tools for users to resolve and to update conflicts.

Intermezzo (5) later sought to replicate the benefits and
useful features of Coda with a simpler ground-up imple-
mentation.

Serverless File Systems

Serverless file systems make no distinction between client
and server nodes. Separate client and server processes may
exist, but no real technical restrictions exist on what
machines they might run on. Because of this, the security
and administrative models are different from those of AFS
and its derivatives. Some common trends in serverless file
systems are leveraging routing/storage systems as well as
using versioning or logs to store immutable file modifica-
tions. This basic design is illustrated in Fig. 2. The separate
routing and storage systems can be optimized indepen-
dently to exploit locality, load balancing, and other low-
level aspects involved with storage. Salient characteristics
of several serverless file systems are compiled in Table 2.

OceanStore (6,7) is an ambitious wide-area storage sys-
tem built on fundamentally untrusted servers. The Ocean-
Store prototype, Pond features ‘‘location-independent
routing, Byzantine update commitment, push-based
update of cached copies though an overlay multicast net-
work, and continuous archiving to erasure-coded form (8).’’
Nodes in OceanStore are not symmetric, but they are
tiered. The unit of storage in OceanStore is the data object;
this corresponds to a file in Pond. Data objects are versioned
completely, so data is never modified in-place or deleted.
The stream of versions for a particular object is called an
active global unique identifier and each version is called a
version global unique identifier (VGUID). Only the ‘‘delta
blocks,’’ or changes, of subsequent VGUIDs are stored.
Versioning allows atomic updates, simpler replication,
and easy rollback to earlier versions of data. The inner
ring, a small group of coordinated servers, manages
updates to data objects and has the final say on the primary
replica for an object. Although the inner ring need not be
trusted explicitly and it is designed to be fault tolerant to a

System Call

Cache Cache

Actual File

Server:Client:

Request protocol

(a)

Move file to client

Move file to server

Client:

(b)

Server:

New File

Old File

Local Copy

Figure 1. (a) Typical distributed file system access. (b) Explicit remote file access (for example, through FTP).

Table 1. A comparison of AFS-3 and Coda

Category AFS-3 Coda

Dedicated servers Yes Yes
Consistency semantics Session Transactional
Consistency enforcement Callbacks Callbacks
Caching Client disk chunked Client disk file-level
Fault tolerance Local disk cache Local disk cache /Hoarding
Replication Manual ROWA volume replication
Security Needham-Schroeder Needham-Schroeder

2 DISTRIBUTED FILE SYSTEMS



degree, it should be composed of fairly reliable, well-
connected servers. The underlying blocks are stored as
cryptographically-secure hashes. Object location and rout-
ing is handled by a scalable overlay network called Tapes-
try (9). Unlike distributed hash tables, Tapestry can store
data blocks anywhere because hosts publish the GUIDs of
their resources. With this flexibility, Tapestry can shuffle
data for better locality and lookup performance. Ocean-
Store uses replication primarily for performance purposes.
For archiving, OceanStore uses erasure codes to store
blocks. New blocks are erasure-coded and distributed
across OceanStore servers. Because reconstructing data
from erasure-coded blocks can be expensive, frequently
used whole-blocks are cached. User applications can access
secondary replicas of data, but updates are also sent
directly to the primary replica as well as a few random
secondary replicas. The secondary replicas then propagate
the updates amongst themselves epidemically. When the
inner ring commits the update, the commit signal is multi-
casted to the appropriate secondary replicas.

The Cooperative File System (CFS) (10) is a peer-based
read only file system built on the Chord (11) distributed
hash system and Self-certifying File System (SFS). File
blocks are distributed and balanced across clients using
Chord to maintain their locations. For increased availabil-
ity, CFS uses block-level replication across nodes.

Ivy (12) was designed subsequently with read and write
capabilities. Writes are log based, and each client updates

its own log records. The log records themselves are dis-
tributed using Chord. File modifications become visible at
least upon closing the file. Reads are done from all clients’
logs. To aid performance, clients cache recent copies of the
file system state. Essentially, the clients’ combined logs for
a particular file make up the file. A special view block
maintains the appropriate log-heads globally for each client
that is part of the entire file system. The view itself cannot
change once the participating nodes have been established
for an Ivy file system. To add or remove a node, the nodes
must coordinate explicitly to create a new Ivy file system. If
nodes become partitioned, operations continue without any
consistency guarantees. Ivy relies on the replication
mechanisms within Chord for availability. Upon reconnec-
tion, Ivy retains all updates because of its intrinsic log
design, but the user or application must use the provided
tools to detect and resolve any atomicity issues.

Like Ivy, Frangipani (13) is also built over a distributed
storage system, in this case, Petal (14). Also similar to Ivy,
Frangipani derives features such as scalability and fault
tolerance from Petal. Frangipani itself is intended to run
within a single administrative umbrella; consequently,
implicit trust exists between nodes. The Petal interface
provides a distributed virtual disk image that is actually
made up of some number of Petal servers, each of which
may contain multiple disks. Petal allows for easy addition
and removal/crashes of Petal servers, which makes these
events transparent to Frangipani. Petal servers need not be
dedicated machines, and they can be run on users’
machines. Although Petal provides a disk-like interface,
Frangipani hides Petal with a more user-friendly file sys-
tem interface. User programs access Frangipani files
through a virtual file system mechanism and a locally
running Frangipani file server module. Alternatively, a
Frangipani server process can be described as a local
daemon on the ‘‘client’’ machine that only provides services
to the local user. The ‘‘server,’’ in the sense that it is across
the network, is the Petal virtual disk. Frangipani accesses
file data directly on Petal, but each Frangipani server
maintains its own log of pending metadata changes also
on the Petal disk. If a Frangipani server crashes, its log can
be used by another Frangipani server to recover. Frangi-
pani itself, however, does not log file updates, only meta-
data updates. By design, Frangipani servers do not
communicate directly with each other, which makes addi-
tions, removals, and tolerance more simple.

Network

Remote File System

Storage Device

Distributed Storage System

File System Interface

User

Distributed
Lookup System

Figure 2. Typically, are serverless file systems composed of a file
system interface, a distributed storage system, and a distributed
lookup system.

Table 2. A comparison of serverless high-availability file systems

Category OceanStore Ivy Frangipani Pastis

Dedicated servers No No No No
Consistency

semantics
POSIX Close-to-open Metadata Close-to-open

Consistency
enforcement

Single primary replica/Inner
ring

Versioning Locking/leases Global timestamp

Caching Client disk (Shared)
block-level

Client memory
Block-level

Client memory Sector-aligned
chunks

Client disk file-level

Fault tolerance Erasure-coded versioning DHash - temporary
partitioning

Automatic recovery Pastry - node addition
& failure

Replication Two-level block DHash Petal option k copies
Security Cryptographically-secure hash Self-certifying Trusted hosts Smartcard

DISTRIBUTED FILE SYSTEMS 3



The Pastis (15) file system is layered very similarly to
Ivy. It is built on the PAST (16) peer-to-peer storage service,
which in turn uses Pastry (17), a fault tolerant and self-
organizing routing system based on a distributed
hash table. PAST itself ensures high availability through
replication. Pastis is structured internally similar to tradi-
tional file systems, and it uses its own inodes stored in
PAST. Like Frangipani, Pastis operates on a block abstrac-
tion. File updates in Pastis are also nondestructive because
PAST blocks are immutable.

PROTOCOL STANDARDS AND RELATED OPTIMIZATIONS

Several distributed file system protocols have been estab-
lished to ensure vendor and enterprise interoperability. A
partial list of distributed file system protocols includes the
Common Internet File System, the Apple Filing Protocol,
the NetWare Core Protocol (NCP), and the Network File
System (NFS). We direct our discussion towards the two
most pervasive protocols in use today: NFS and CIFS.

Network File System

NFS was developed by Sun Microsystems to provide trans-
parent file access in a networked, distributed environment.
Since 1989, NFS has been an internet engineering task
force standard protocol (18–22). The most popular revision
currently in use is NFS version 3. It is implemented on a
variety of operating systems and provides file sharing
among a collection of heterogeneous computers. To
improve performance in the broader Internet environ-
ment, a major revision of NFS, version 4, has been defined
to integrate several new or improved features, such as file
locking, security, operation coalescing, and file delegation
(23–25).

NFS consists of two components, namely client-side and
server-side systems. Figure 3 demonstrates how NFS com-
ponents interact. The client-side systems process local user
requests for files stored at a remote server. All client–server
communication is handled with remote procedure calls
(RPCs). RPCs allow programs on a local machine to initiate
procedures on remote machines. When a local process calls
a procedure on a remote machine, the calling process is
suspended, and instructions to run the procedure are sent
over the network to the remote machine where the proce-
dure is executed. The execution results are transported
back over the network to the caller process. The client-side
system uses RPCs to transmit user requests to remote NFS
servers. The server is responsible to carry out the requested

file operations and to send the results back to the client to
conclude the RPC call. NFS version 4 introduces compound
RPC procedures that enable the encapsulation of related
operations into a single RPC, which creates new opportu-
nities for better I/O (input-output) performance.

File System Model. In the NFS model, files and direc-
tories are organized as a hierarchical tree graph in which
internal nodes and leaves represent directories and files,
respectively. An NFS server makes a local directory avail-
able to clients by exporting that directory. Directories from
different locally mounted file systems can be exported. An
NFS client mounts the exported directories to its local file
system so that user processes on the client machine can
access the NFS mounted directories as if they are part of the
local file system. To access a file, a client must first look up
the filename and obtain the associated file handle from the
server. A file handle is unique to all file systems exported by
the same server. Each file contains the attributes fsid and
fileid to identify a file system uniquely on a server and the
file/directory within that file system. Other attributes
include permission modes, owner ID, group ID, file size,
last access time, and last modification time, last metadata
modification time.

Client Caching and File Locking. In NFS version 3, ser-
vers are not required to preserve any client file access state.
The stateless approach eliminates the need to recover client
state after a server crash. An NFS version 3 server does not
need to record which clients have open files. When a client
accesses a file, the RPC request provides all the necessary
information such as file ID and the current offset for the
server to function correctly. This stateless approach has
been abandoned in version 4 to adapt to the modern wide-
area network environment. In particular, the new client-
side caching and file locking protocols enable more effective
use of cached data and efficient cache consistency control.
Although client-side file caching is left out of the NFS
version 3 protocol, many implementations make extensive
use of caching to improve performance. Because version 3 is
stateless, caching is performed independently on the cli-
ents, and servers retain no clients’ caching state. Data
cached on clients can be stale without the server knowing.
Some implementations allow cached data to be stale for up
to 30 seconds. Cache coherence is left to application devel-
opers to enforce. The most common approach uses a sepa-
rate lock manager, such as the network lock manager
protocol (NLM), to provide advisory locks. Unlike manda-
tory locks, an advisory lock does not block other applica-

User applications

Operating System

NFS clinet

RPC

Network

point
mount

class dept

root

home

export
point

root

fs1 fs2

staff studentfaculty

Operating System

NFS server

RPC

Client Machine

system space

user space

Server Machine

Disks

Figure 3. An illustration of the general NFS components and their interaction.

4 DISTRIBUTED FILE SYSTEMS



tions forcibly from accessing a locked file region. Advisory
locks are only useful between cooperating processes.

NFS version 4 integrates a caching protocol and sup-
ports weak coherence. Because data can be cached in client
memory and/or a server’s local disk cache, the new cache
protocol requires that dirty data is flushed to the server
when the file is closed. The cached file data can remain in
the client’s memory after the close, but it must be revali-
dated if the file is opened again by any process on the
particular machine. This close-to-open consistency is suffi-
cient for many applications and users. A new open delega-
tion protocol is designed to address the common situation
where a file is accessed by a single client. Delegations allow
the server to shift responsibility for a file’s opens, closes,
and locking operations to a client. This action eliminates
the server validation costs for operations on a file from
different processes that reside on the same client. The
delegation state of a file is recorded on the server. When
a process on a different client machine requests access
rights to the same file, the server must either deny the
request or recall the delegation. The revocation is accom-
plished with an RPC callback to the client. Callbacks are
another difference between version 4 and version 3 in that
RPCs are only initiated by clients in version 3. The NFS
version 4 locking protocol is similar to NLM, but it intro-
duces leases for lock management. During a lease time
interval, the server denies the lock requests from other
applications. To prevent the removal of a granted lock, a
client must renew its lease before it expires.

Fault Tolerance. In NFS version 3, recovering from a
server crash is very simple because no state exists to
lose. A client is not aware of a server crash and will retry
its request until the server responds. In version 4, however,
it is essential to recover the state stored at the server after a
system reboot because clients rely on the stateful locking
protocol to access safely cached data locally. A grace period
equal in duration to the lease period is executed at the
server after reboot to allow clients to reclaim locks. During
the grace period, the server must reject read, write, and
nonreclaiming locking requests. Lock recovery from a client
crash is simpler. Because a lock is leased with a time
constraint, the server removes the lock when it is expired.
After reboot, a client needs to request the lock again.
Although important, lock recovery is different from data
recovery. If a file has been delegated to a client and that
client crashes with dirty data, the data is lost.

NFS version 4 handles RPC recovery from a network
partition by introducing a duplicate request cache at the
server. A client inserts a unique transaction ID in each RPC
request and the server caches the ID to identify duplicate
requests from a client during retry requests after a time
out. The results of a file operation are also stored in the
cache in case the server response was lost. Thus, the server
can retrieve the cached results for retransmission without
duplicating the requested actions.

Security. NFS version 3 only covers the user authentica-
tion and file access permission check. Because NFS is built
on top of the RPC protocol, authentication is established on
two RPC authentication parameters: a credential and a

verifier. If an NFS implementation chooses not to imple-
ment authentication, these two parameters are ignored.
The protocol defines three types of authentication, and a
server may support several different flavors of authentica-
tion at once. The first is UNIX-style authentication in which
a client passes the user ID, group ID, and groups to the
server and the server checks the permission rights for file
access. This method relies simply on the security at the
client machine, because it assumes all users have passed
the client security check. The second uses DES-encrypted
host names and session keys exchanged between clients
and servers via a public key scheme. The third also uses
the DES-encrypted method, but it functions instead with
Kerberos secret keys.

One of the NFS version 4 goals is to use a strong security
protocol for a wide-area network environment. It supports
not only authentication, but also message confidentiality
through cryptography. NFS version 4 employs the
RPCSEC_GSS security framework, which is based on the
Generic Security Service API. This framework allows for
the use of various security mechanisms at the RPC layer.
RPCSEC_GSS can perform integrity checksums and
encrypt the entire RPC request and response. NFS version
4 also requires RPCSEC_GSS to support Kerberos version 5
and LIPKEY public-key mechanisms.

Common Internet File Systems

Since the 1990s, use of the Internet and the World Wide
Web can be characterized primarily by read-only access.
The most popular examples are the web browsing in HTTP
and document transfer in FTP. As the Internet continues to
increase in bandwidth and in availability, the demand to
share files with both read/write permissions increases.
The Common Internet File System (CIFS) proposed by
Microsoft, defines a distributed file system protocol to
enable document sharing over a wide-area network (26).
Although CIFS is based on the file system developed for
Windows operating systems, the protocol is platform-inde-
pendent. CIFS is derived from the standard server message
block (SMB) protocol (27), an Open Group standard for
personal computers and UNIX interoperability since 1992.

CIFS uses TCP/IP for client–server communication and
the Internet domain name service (DNS) to resolve server
IP addresses. A uniform resource locator address is used to
identify a file at a remote server. Clients parse the URL
character string to separate the server host name and the
file location within that server. The SMB message format is
used to communicate between clients and servers. An SMB
message header contains the command code, error code,
directory ID, caller process ID, user ID, command para-
meters, and data buffer.

Security. The CIFS protocol requires server authentica-
tion for users before file accesses are allowed, and each
server authenticates its own users. A client system must
send authentication information to the server to gain access
to its resources. A CIFS server keeps an encrypted form of a
client’s password using DES encryption in block mode. Two
methods are defined and can be selected by the server for
security: share level and user level.

DISTRIBUTED FILE SYSTEMS 5



At the share level, an optional password may be required
to gain access to an available resource at the server. To
access the resource, a user must know the name of the
server, the location of the resource on that server, and the
password. Share level security servers may use different
passwords for different levels of access.

A user-level server requires clients to provide a user
name and a corresponding user password to gain access to
the resource. Hence, different levels of access for the same
resource can be set for different users. When a client’s
authentication is validated, the server will generate and
return an identifier to represent that authenticated
instance to the client in the user ID field of the response
SMB message. This user ID must be included in all addi-
tional requests made on behalf of the user from that client.
In contrast, a share level server does not set the user ID field
in the returning SMB message.

Client Caching and File Locking. A CIFS implementation
is expected to use client-side file caching to enhance net-
work performance. The protocol supports both read-ahead
and write-behind file caching. Three types of opportunistic
locks are defined for cache coherence control. An exclusive
lock allows a client to open a file for exclusive access, a batch
lock allows a client to keep a file open on the server even if
the local user on the client machine has closed the file; and a
level II lock indicates that there are multiple readers of a
file and no writers. When a client opens a file, it makes a
request to the server for a particular type of lock on the file.
The response from the server indicates the type of lock
granted to the client. The client uses the granted lock type
to adjust its caching policy.

An exclusive lock is intended for single client access to a
file. It provides optimized file access by allowing the client
to work on a local copy of the file. When a second client
requests to open the same file, the server will break the lock
granted to the first client. In breaking an exclusive lock, the
former lock possessor must flush its dirty data to the server
and purge read-ahead data.

Batch locks are useful particularly in a slow network
environment. For a sequence of commands that involve
repeated open and close operations to the same file, batch
locks allow the client to skip the extraneous open and close
requests. If the server receives either a rename or a delete
request for the file that has a batch lock, it must inform the
client who has possession of the lock that it will be broken.
The client can then switch to a mode where the file will be
opened and closed. When a batch lock is broken, the client
must flush its dirty data and synchronize with the server.
Most of the time, this process involves closing the file. Once

the file is closed, the open request from the initiating client
may be completed.

Level II locks are used to protect shared files for read-
only operations even though the files are opened in read-
write access mode. Multiple clients can be granted level II
locks to the same file if no client writes to the file. When a
client holds an exclusive lock on a file and another client
opens subsequently the same file, the exclusive lock held by
the first client is broken and downgraded to a level II lock.
After the first client synchronizes its cached data with the
server, a level II lock is granted to the second client. The
level II lock may be broken if any of the clients write to
the file. Once the level II lock is broken, all file requests
must be executed on the server across the network.

CIFS opportunistic locks are somewhat similar to the
NFS file delegation. NFS delegations differ from opportu-
nistic locks in that a delegation is initiated by the NFS
server and opportunistic locks are requested by the CIFS
clients. Table 3 summarizes the features of the two file
systems.

HIGH-PERFORMANCE COMPUTING

Large-scale scientific simulations, which include those in
astrophysics, computational chemistry, bioinformatics,
nuclear testing, energy and petroleum, finance, and
many others, dominate the field of high-performance com-
puting (HPC). The TOP500 list, maintained by Hans
Meuer, Erich Strohmaier, Horst Simon, and Jack
Dongarra, describes the top supercomputers in the world,
and they are classified architecturally as clusters,
massively parallel processing machines, and constellations.
Typically, applications in the HPC domain are optimized
heavily for performance and scalability.

Most of these applications use the message passing
interface (MPI) (28), the most commonly used portable,
parallel API in the HPC community. Its portability allows
scientists to run their applications on a variety of super-
computing platforms with minimal effort. In 1997, the
MPI-2 standard was created by the MPI Forum to address
parallel I/O (MPI-IO) as well as add other useful new
features for portable parallel computing. ROMIO (29) is
the reference MPI-IO implementation distributed with
Argonne National Laboratory’s MPICH library. Other
MPI distributions, such as OpenMPI and LAM, often use
ROMIO directly or as the basis for their own MPI-IO
implementations. Frequently, higher-level libraries (for
example, netCDF and HDF5) are built on top of MPI-IO
to leverage its portability across different I/O systems and

Table 3. A comparison of NFS and CIFS file systems

Category NFS v3 NFS v4 CIFS

Dedicated servers Yes Yes Yes
Consistency semantics Close-to-open Close-to-open POSIX
Consistency enforcement NLM Leased lock protocol Opportunistic lock protocol
Caching — Client memory Client memory
Fault tolerance Stateless servers Grace period at reboot Grace period at reboot
Replication — Alternative locations —
Security RPC authentication RPCSEC_GSS DES encryption

6 DISTRIBUTED FILE SYSTEMS



to provide features specific to particular user communities.
As the gap between processor and hard disk technologies
continues to widen, I/O becomes an increasingly severe
performance bottleneck. Parallel file systems, as shown
in Fig. 4, help to narrow that gap by scaling up the number
of hard disks to increase aggregate I/O bandwidth.

The HPC file system domain can be divided into produc-
tion file systems and research file systems. Typically, pro-
duction file systems are stable commercial products used in
production machines. Some examples of production file
systems include Lustre (30), Panasas (31), GPFS (32),
SGI’s CXFS, IBRIX FusionFS (33), and GFS (34). Research
file systems are used primarily for trying out new ideas that
may one day make it into production if appropriate. Several
research file systems exist, which include PVFS (35,36),
Clusterfile (37), Ceph (38), LWFS (39), Galley (40), Sorrento
(41), and many more. We have chosen to focus our discus-
sion on the three most used HPC production file systems:
(Table 4), Lustre, Panasas, and GPFS, in the following
three sections. We also describe three prominent HPC
research file systems (PVFS, LWFS, and Ceph) in the
sections that follow (Table 5).

Lustre

Lustre (30), from Cluster File Systems, gets its name from a
portmanteau of the terms ‘‘Linux’’ and ‘‘cluster.’’ As of the
June 2006 TOP500 list, over 70 of the 500 supercomputers
use Lustre technology, which includes the number one
computer (Lawrence Livermore National Laboratory’s
BlueGene/L machine). The Lustre architecture consists
of clients, metadata servers (MDSs), and object-storage
targets (OSTs). MDSs maintain a transactional record of
high-level file system changes, such as the location of
related objects and stripe sizes. They are protected from
failure through MDS replication and failover techniques.
OSTs are responsible for actual file data and locking.
Clients make requests to objects on the OSTs, in which

an object is simply a container of data that may have
attributes associated with it. In the future, object-based
disks (OBDs) may be able to offload the work necessary to
translate file system requests into physical storage
requests. Currently, Lustre uses OBD device drivers to
implement OBD functionality on top of ext3 or other Linux
file systems. Failure of an OST is handled by failover
techniques. If a failover OST is unavailable, clients will
get errors when trying to access the failed OST and new file
create operations will avoid the failed OST.

Lustre uses a distributed lock manager (DLM) to ensure
POSIX compliance. The DLM helps Lustre to maintain its
globally coherent collaborative cache. Although locks for an
arbitrary byte-range may be requested, OSTs round the
granted locks to file system block boundaries. Metadata
operations use ‘‘intent based’’ locks (lock requests combined
with data requests) for efficient atomic operations that do
not require lock revocations. Additionally, Lustre provides
snapshots, rollback, and copy-on-write semantics. Lustre
uses secure network attached disk features for authentica-
tion, authorization, and encryption. A preliminary Lustre
driver for the ROMIO MPI-IO implementation has not yet
been integrated into the ROMIO distribution.

Panasas

Panasas (31,42) is used on many TOP500 supercomputers
and was chosen to be deployed on the Los Alamos National
Laboratory’s new Roadrunner petascale supercomputer.
Many application domains, which include energy research,
high energy physics, atmospheric science and weather
prediction, seismic data analysis, automotive design and
simulation, as well as many others, have chosen Panasas
as their storage solution. Panasas’s main product is the
ActiveScale Storage cluster, which uses the Panasas
ActiveScale File System (PanFS). The core PanFS archi-
tecture is based on the decoupling of the datapath from the
control path and the object abstraction of file data, similar to

Clients:

Group:
Metadata Data

Group:

Network:

Figure 4. Typical parallel file system configuration. Clients have parallel access to components within the metadata and data groups.

Table 4. A comparison of HPC production file systems

Category Lustre Panasas GPFS

Dedicated servers Yes Yes Yes
Consistency semantics POSIX POSIX POSIX
Consistency enforcement DLM MDS DLM
Caching Client memory Block-level Client memory Block-level Client memory Block-level
Fault tolerance Fail-over servers OSD-level RAID Log-based & disk-level RAID
Replication MDS OSD-level RAID Two copies & RAID
Security Capability Capability OpenSSL

DISTRIBUTED FILE SYSTEMS 7



Lustre. The PanFS client module accepts POSIX file system
commands from the operating system and addresses and
stripes the objects across multiple OSDs. The OSD compo-
nent in PanFS manages data storage, handles storage-side
caching and prefetching, and contains the metadata asso-
ciated with its objects. Using OSDs instead of the typical
block-based storage interface shifts some of the burden of
fine-grain layout information to the OSDs. The PanFS
metadata server (MDS) coordinates the layout of a file
across OSDs, helps maintain RAID integrity, manages
file and directory access, and keeps client caches coherent
with file locks.

PanFS uses client-side data caching in the Linux buffer/
page caches to complement the caching done by the OSDs.
It aggregates writes on the client for more efficient I/O
operation and also supports prefetching. The MDS handles
client cache coherency with a single writer/shared readers
protocol with invalidation and flushing. PanFS allows files
to use different RAID levels individually across objects. To
limit incast behavior and too many senders overflowing the
network buffers, a two level striping layout is used to limit
simultaneous accesses to the number of OSDs in a parity
stripe. Therefore, files are striped across all the OSDs for
maximum bandwidth, and the OSDs are broken up into
RAID parity groups whenever appropriate (with a max-
imum of 13 objects per parity group). Panasas OSDs each
have two SATA disk drives, a processor, RAM, and a
Gigabit Ethernet network interface. An OSD battery-
backed RAM cache allows data to be committed even if a
power failure occurs.

General Parallel File System (GPFS)

IBM has designed many of the world’s top supercomputers,
which include the recent BlueGene/L architecture. Its flag-
ship file system, GPFS (32), is available for its AIX and
Linux clusters, and most recently on the BlueGene/L archi-
tecture as of December 2005. Although GPFS is designed
primarily for high-performance computing, it is also used in
industries such as media and entertainment, ISPs, finance,
telecommunications, electronics, and retail. GPFS uses a
shared-disk architecture, in which file system nodes have
access to all disks through the network fabric. The disks are
assumed to use the conventional block I/O interface (as
opposed to the object based interfaces used by Lustre and
Panasas). GPFS clients communicate directly with file
system nodes, which perform I/O on their behalf. GPFS
guarantees single-node equivalent POSIX semantics for
file system operations across all nodes through the use of
distributed locking. The only exception to POSIX compli-
ance is that access time updates are not visible on all nodes

immediately. The metanodes that handle metadata in
GPFS are allocated dynamically with the help of the global
lock manager.

The GPFS DLM is composed of a centralized global lock
manager and the local lock managers on each file system
node. Lock tokens are passed out by the global lock manager
to the local lock managers that grant locks. A lock token is
revoked only when another node requests conflicting lock
operations to the same object. As with Lustre and Panasas,
lock tokens play a large role to maintain cache consistency
between nodes. Locks are acquired with byte-range gran-
ularity in GPFS and are rounded to block boundaries. The
first node to write a file will receive a byte-range lock from
zero to infinity. When the second node begins to write to the
same file, the first node will relinquish part of its byte-range
lock token until the offset of the second node’s write. As
more nodes write to the file, the byte-range lock tokens are
further divided. In this way, GPFS attempts to keep locks
as large as possible to avoid the increasing overhead of a
plethora of locks.

Parallel Virtual File System (PVFS)

The first generation of PVFS (35) began at Clemson Uni-
versity to serve as a research-oriented open source parallel
file system for Linux clusters. Since its inception, it has
grown tremendously in popularity. A second generation
version of PVFS (36) was released initially in late 2003 and
has stabilized during the last couple years. This second
generation of PVFS is intended to serve as a production file
system as well as to quickly incorporate novel research
ideas because of its highly modular architecture. The
Argonne Leadership Computing Facility (ALCF) has
selected PVFS as its storage solution. In this section, we
describe the second generation PVFS storage system.

The PVFS architecture has clients and I/O servers. The
I/O servers may manage metadata, data, or both. Clients
communicate directly with I/O servers to access file meta-
data, file distribution information, and file data, similar to
other parallel file systems. Modularity has been intro-
duced in the networking subsystem through the buffered
messaging interface to abstract access to various under-
lying networking technologies. Similarly, the trove sto-
rage interface provides APIs for various storage
implementations. PVFS was redesigned, in part, to handle
noncontiguous data access efficiently through its request
system. PVFS requests understand and process derived
datatypes built on basic datatypes such as contigs, vec-
tors, and structs, similar to MPI derived datatypes. In
addition, PVFS has a highly optimized MPI-IO device
driver that can, in most cases, make a one-to-one mapping

Table 5. A comparison of HPC research file systems

Category PVFS LWFS Ceph

Dedicated servers Yes Yes Yes
Consistency semantics MPI-IO N/A POSIX
Consistency enforcement Servers Library OSD locks
Caching Server memory Block-level Library Client memory Block-level
Fault tolerance Fail-over servers Library RADOS
Replication Server RAID Library RADOS
Security In progress Capability Capability

8 DISTRIBUTED FILE SYSTEMS



between MPI-IO calls and PVFS system calls. To improve
fault-tolerance, PVFS has stateless clients and servers to
minimize the impact of failing components. Failover high-
availability solutions can be used by PVFS if multiple
machines have access to shared storage.

Light Weight File System (LWFS)

Catamount, a lightweight operating system for Red Storm
(currently number two in the TOP500 as of November 2006)
at Sandia National Laboratories (SNL), implements only
the required underlying services while avoiding function-
ality that could compromise application scalability. In the
same spirit, the LWFS (39) project is a joint collaboration
between SNL and the University of New Mexico to inves-
tigate the viability of a ‘‘lightweight’’ approach to I/O. The
LWFS core only implements a thin layer of software above
the hardware, which includes infrastructure to provide
controlled access to distributed data across multiple sto-
rage severs, to expose the parallelism of multiple storage
servers, and to allow the client implementation to create
additional functionality. Because many more compute
nodes exist than I/O nodes, LWFS servers determine
when to move data. LWFS clients make asynchronous
RPCs and servers either ‘‘pull’’ data for writes or ‘‘push’’
data for reads (43). All data movement is performed over the
Portals message passing interface that supports one-sided
operations.

In accordance with U.S. Department of Energy security
requirements, LWFS provide scalable mechanisms for
authentication, authorization, and ‘‘immediate’’ revocation
of access permissions when policies change. LWFS has
coarse-grain access control to containers of objects, in which
every object belongs to a single container. All objects in the
same container are subject to the same access control policy.
Higher-level libraries are responsible to organize objects in
containers as LWFS does not manage the relationship of
objects in a container. To enable scalable security, LWFS
uses fully transferable credentials and capabilities. To
support ‘‘immediate’’ revocation, LWFS invalidates cached
entries on each of the storage servers.

Ceph

Ceph (38) is a research-oriented file system from the Uni-
versity of California at Santa Cruz. It has three major
components: clients that export a near-POSIX file system
interface; a cluster of OSDs that collectively store all meta-
data and data; and a metadata cluster responsible to man-
age the namespace and coordinating security, consistency,
and coherence. As with the other object-based file systems,

Ceph separates file metadata management from data sto-
rage. Ceph uses its reliable autonomic distributed object
store (RADOS) to protect against OSD failures. Primary
OSDs forward updates to their replicas in an asynchronous
manner for better performance, and reads are only serviced
by the primary OSD to reduce synchronization costs.

In the metadata cluster, Ceph employs dynamic distrib-
uted metadata management that is based on dynamic
subtree partitioning. In essence, dynamic distributed meta-
data maps subtrees of the directory hierarchy to metadata
servers based on their workload. Individual directories are
hashed across multiple nodes only if they become hot spots.

For data distribution, Ceph uses the controlled replica-
tion under scalable hashing (CRUSH) algorithm (44).
CRUSH relies heavily on a suitably strong multi-input
integer hash function. Using the hash function, CRUSH
can locate any object with a placement group and an OSD
cluster map. Placement rules help CRUSH map the place-
ment groups onto OSDs based on the desired level of
replication as well as other constraints. CRUSH also helps
Ceph adapt to the addition and removal of storage devices
with low overhead.

APPLICATION-SPECIFIC

In distributed file systems, design decisions are made to
balance performance, scalability, reliability, usability, and
security. Ideally, all these aspects would be maximized, but
some desirable traits conflict inevitably with each other,
which leads to tradeoffs. For example, achieving a usability
characteristic like strong consistency typically hinders
performance and scalability, and the converse is also
true. Typically, general purpose distributed file systems
attempt to provide reasonable support for most of the above
features. A file system that has been designed for a specific
application, however, can relax certain restrictions (based
on the requirements of the application) to improve certain
behaviors. For example, search engines store very large
files that rarely are deleted or overwritten, as most of the
requests involve appending or reading files in bulk. In this
particular case, a relaxed consistency model is acceptable
for scalability and efficiency reasons.

We will discuss three such special purpose file system
areas. In the next section, we consider web application
optimizations on the Google file system that supports the
Google search engine. In the section after that, we examine
security optimizations for the self-certifying file system
(SFS). Last, we discuss how distributed file systems are
used for virtualized storage. The characteristics of all file
systems in this section are shown in Tables 6 and 7.

Table 6. A comparison of GFS and SFS file systems

Category Google FS SFS

Dedicated servers Yes Yes
Consistency semantics Application-specific N/A
Consistency enforcement MDS NLM
Caching Metadata caching at client N/A
Fault tolerance Shadow masters, logging, checksum Stateless servers
Replication Three copies (default) N/A
Security Capability Separate key management

DISTRIBUTED FILE SYSTEMS 9



Google File System

The Google file system (GFS) (45) is a scalable, distributed
file system designed for Linux platforms. GFS evolved out
of BigFiles (46), which was developed at Stanford in the
early days of the Google search engine. At that time,
BigFiles existed primarily to store multi-Gigabyte files
efficiently. Today, GFS runs on hundreds or thousands of
commodity Linux machines and is tailored for high-perfor-
mance data-intensive applications as well as storing a few
million very large files. Because multi-Gigabyte files are
common, the overall system should be optimized for large
files. Small file access is also supported, but not optimized.
The largest of the current GFS clusters is 1000 nodes with a
300 TB storage capacity. It is accessed concurrently by
hundreds of clients (45). These machines, both cheap and
unreliable, often fail. On average, at least one machine will
fail everyday at Google, so it can be assumed that not all of
them will be working at any given time (47). Some chal-
lenges for GFS are fault tolerance and fast recovery sup-
port. GFS runs a persistent monitoring mechanism that
helps make it fault tolerant and automatically recoverable.

Because GFS was designed to support a search engine,
architectural decisions are based on several domain-
specific characteristics: files are rarely deleted, overwrit-
ten, or shrunk; most of the workload involves large con-
tiguous writes when files are being appended; small writes
are supported but are not optimized to keep high efficiency
for large writes; high sustained bandwidth is preferable
when compared with low latency for individual reads
or writes; and autonomy with minimal synchronization

overhead is essential to allow multiple clients the ability
to append to the same file concurrently.

Architecture. The GFS architecture consists of a single
master, multiple chunkservers, and the client library, as
illustrated in Fig. 5. GFS employs commodity Linux
machines with user-level server processes that run on
each of them. Files are divided into fixed size (default
64 MB) chunks, each of which is identified using a unique
64-bit chunk handler. Chunks are stored on local disks as
Linux files. For fault tolerance and recovery, each chunk is
replicated on at least three chunkservers. The master
maintains the metadata for the entire file system: mostly
namespace and access control information, the mapping
from file to chunks, and the current locations of every
chunk. The master communicates with chunkservers
through HeartBeat messages to give instructions and to
collect states.

Because of the single master architecture, larger file
systems can be supported on the master at the cost of
adding extra memory to handle the additional metadata
load. The master does not keep a consistent record of which
chunkservers have replicas on a per-chunk granularity.
During startup, the chunkserver provides this information
to the master, and subsequently the master keeps itself
updated with HeartBeat messages. This protocol avoids
consistency issues when a chunkserver crashes. The GFS
client library is linked with each application and it reads
and it writes on behalf of the linked applications. A client
interacts with the master to acquire metadata, but all data

Application

GFS Client

Instructions to
Chunkservers

State
Chunkserver

Byte Range

Translating
Requests

Chunk Data

Single Master Shadow Masters

Chunk Handle,

Chunkservers:

Chunk Handle,
Chunk Location

Filename,
Chunk index

Figure 5. The Google File System architecture.

Table 7. A comparison of virtual machine distributed file systems

Category VMFS VxFS

Dedicated servers Optional Optional
Consistency semantics Guest OS Guest OS
Consistency enforcement On-disk locks I/O fencing
Caching OS-dependent OS-dependent
Fault tolerance Journal-based recovery VCS backup
Replication Unknown FlashSnap
Security SAN SAN

10 DISTRIBUTED FILE SYSTEMS



communication is handled strictly between a client and the
chunkservers. The client does not cache data because most
of the Google applications stream through huge files; how-
ever, they do cache metadata to avoid repeated access to the
master. Chunkservers cache frequently accessed data in
the Linux buffer cache because chunks are stored as local
files on Linux machines.

Record Append and Consistency. GFS has a relaxed,
simple, and efficient consistency model. Most of the target
applications for GFS involve large sequential writes and
large streaming reads. Small random reads or writes at
arbitrary positions are also supported, but need not be
highly efficient. A unique result of the GFS design is
that appending to a file is more efficient than overwriting
it. A write causes data to be written at an application
specified offset. A record append, on the other hand,
appends a record atomically at most once even in the
presence of concurrent mutations at an offset decided by
GFS. The client only specifies the data, and the offset
returned to the client is the beginning of the record
region. GFS may insert padding or record duplicates
between appended records. The reader may deal with
occasional padding and duplicates using checksums, or
can remove duplicates by using unique identifiers in
records.

Fault Tolerance. The master and the chunkservers are
designed to restore their state seconds after a failure. As
already mentioned, every chunk is replicated on at least
three different chunkservers. If a chunkserver goes down or
corrupted data is detected through checksum calculations,
then other replicas of this chunk are used to recover the
correct data. The master state is also replicated for relia-
bility. Operation logs and checkpoints are replicated on
multiple machines. A mutation is considered committed
only after its log record has been flushed to disk. The master
is in charge of all mutations as well as garbage collection. If
it fails, it must be restarted immediately. A new master can
be created by using replicas of the operation log. There are
also shadow masters that provide read-only access to the
file system while the actual master is unavailable (Fig. 5).
Shadow masters are not mirrors; they lag behind the
master by fractions of a second. GFS generates many
operation logs to record significant events. These files
can be deleted right away but are kept as long as space
exists. RPC logs contain requests and responses, but not
data. These logs can serve for load testing and for later
analysis.

Self-Certifying File System

In almost any system, file system or other, often a tradeoff
occurs between security and performance. In the case of
distributed file systems, an additional tradeoff is scalabil-
ity. To ensure secure and transparent transfers we need
remote file transfer protocols to operate securely between
physically dispersed workstation environments. These pro-
tocols should also be able to provide confidentiality, authen-
tication, and data integrity. Some applications of secure file
systems are financial transactions, multimedia streaming,

medical records, and devices that use digital rights man-
agement.

Replicas are used commonly in distributed file systems
for better locality as well as fault tolerance. Secure file
systems can either store unencrypted replicas on trusted
servers or encrypted replicas on untrusted servers. A built-
in key management system may be required to ensure
security.

Most file systems come with a key management system;
some examples include Kerberos (48) and SSL (49). Inter-
net file sharing deals with such wide diversity that mana-
ging encryption keys becomes very cumbersome, and
establishing a secure web server with SSL can take a
significant amount of time. The Self-certifying File System
(SFS) tries to solve the above mentioned problems of secur-
ity, key management, and extensibility.

Related Work. Before we discuss SFS, it is appropriate to
understand some of the security mechanisms present in
other distributed file systems. The Andrew File System
(AFS) (1,2,50) is one of the earliest and most successful
secure distributed file systems. It uses a message authen-
tication code to protect the integrity between client and
server. AFS uses password authentication to guarantee the
integrity of remote files. After logging into an AFS client
machine, a user is able to obtain a key shared by the file
server. If malicious users gain access to a session key, they
can pollute the client disk cache, buffer cache, and name
cache for parts of the file system that they supposedly
should not have permission. If multiple users log on the
same AFS client machine, they must either trust each other
or the operating system (OS) must maintain separate
secure caches for each user.

SFS Design. SFS claims to provide better security and
extensibility without key management. SFS (51) is a secure
distributed file system that removes key management from
the file system entirely. Like AFS, it also provides a shared
namespace, but it introduces self-certifying pathnames
(filenames) that effectively contain the appropriate remote
server’s public key. It makes sharing of files over the
Internet secure by allowing the local area network to
gain control of a remote file by using self-certifying path-
names. Because pathnames already specify the public key,
SFS doesn’t need a separate key management mechanism
to communicate with file servers. By moving the key man-
agement scheme out of the file system, many key manage-
ment policies can coexist in the same file system. This
makes SFS extensible while securely working over the
untrusted Internet.

The overall security of SFS can be divided in two parts:
file system security and key management. SFS provides
only file system security, so a malicious user can’t read or
change the file system without permission. SFS ensures
that an attacker can do no worse than delay the file system’s
operation, and any data that a client receives can be verified
as authentic. Clients and read-write servers always com-
municate over a secure channel that guarantees secrecy
and data integrity. Although self-certifying pathnames
solve the problem of authenticating file servers to a user,
SFS must also authenticate users to servers. When a user

DISTRIBUTED FILE SYSTEMS 11



first accesses an SFS file system, the client delays the access
and notifies its authentication agent of this event. The
agent can then authenticate the user to the remote server
before file access begins. A server-side authentication ser-
ver program performs user authentication. The agent and
authentication server pass messages to each other through
SFS using a protocol opaque to file system. Security, exten-
sibility and portability are achieved at a performance cost
attributed mostly to the underlying encryption overhead in
SFS.

SFS Read-Only. For a read-write secure file system,
expensive encryption/decryption becomes the critical
path and performance does not scale with the number of
processes. The SFS read-only file system (52) is a distrib-
uted file system that allows a high number of clients to
access public read-only data securely with acceptable per-
formance. The data of the file is stored in a database and is
signed off-line with the private key of a system stored in a
database to replicate on many untrusted machines. In
online certificate authorities, frequent disk accesses are
avoided by having copious amounts of memory. The SFS
read-only server performs better than the SFS read-write
server because no online cryptography operation exists.
Public key decryption is a performance bottleneck for a SFS
read-write server. The SFS read-only server pushes the
cost of cryptographic operations from the server to the
clients, which allows the server to support a large number
of clients.

Virtual Machine Distributed Storage

In the enterprise domain, virtualization has become an
important technology that aids high availability, server
consolidation, and reduced testing complexity. Typically,
the concept of virtualization revolves around the idea of a
virtual machine, or hardware virtualization, that is based
on adding a virtualization layer between the hardware and
the OS. This virtualization layer allows multiple virtual
machines to run concurrently on a single actual machine
that shares its physical resources among them. Some exam-
ple virtualization vendors include VMware, Xen, Qemu,
Parallels, and Innotek.

Virtualized storage refers to the abstraction of logical
storage from physical storage. Although an OS may believe
that it has a single, SATA-connected hard drive, in reality,
the physical storage device may be network-based, storage
device-based, or host-based (typically, distributed file sys-
tems). Several virtualization vendors use distributed file
systems to support virtual storage for their virtual
machines. A virtual disk may be as simple as a file on a
remote server that allows any client with connectivity to
the server to resume the virtual machine. Distributed file
systems that support virtualized storage efficiently include
VMware’s VMFS and Symantec’s VxFS. In 2003, Red Hat
purchased Sistina to use the global file system for its
upcoming virtualization platform; however, a product is
yet to be released. These distributed file systems are cor-
porate products, which makes it difficult to find detailed
information.

VMFS. VMware provides several virtualization pro-
ducts for both desktops and servers. Their storage virtua-
lization solution that is optimized for virtual machines is
the Virtual Machine File System (VMFS). VMFS was
designed to allow virtual machine state to be stored in a
centralized repository. VMFS-3 is the latest revision that
addresses manageability, availability, scalability, and per-
formance issues and can use a wide range of Fibre Channel
and iSCSI SAN equipment.

Several VMFS features improve manageability and
availability. Distributed journaling and journal-based
recovery allow for faster recovery during server failure.
An exhaustive file system check would take a long time
before the server could come back online. VMFS can hot add
virtual disks to running virtual machines to handle
increased application requirements or provide backup cap-
ability. Logical unit numbers are discovered automatically
and are mapped to VMFS volumes. VMFS-3 now supports
many files using techniques similar to other file systems
rather than the flat address space in VMFS-2. On-disk
locking ensures that operations are atomic across shared
virtual storage.

To support its performance and scalability goals, VMFS
has several optimizations. Block sizes are adaptive and can
adjust for both max file size limits and better backend
resource use. Because backend storage devices are disks,
increasing the access sizes has a lot of potential to improve
performance and to reduce network traffic. Caching is used
for nonvirtual disk-based files because guest OSs expect
syncing the disk to push data to the storage devices.
Changes in the on-disk locking protocol allow better scal-
ability with respect to the number of files open in a virtual
machine. Older versions of VMFS stored on-disk locks per
file in different (noncontiguous) sectors, on disk. VMFS-3
now stores all locks in a single sector that supports the same
number of open files as other VMware products.

VxFS. Recently, Symantec acquired Veritas in 2004 to
consolidate its enterprise operations. Instead of writing its
own core virtualization software, Symantec makes virtua-
lization products, such as the Veritas Cluster Server (VCS),
based on VMware and Xen technology. Symantec also
provides virtualized storage solutions based on its Veritas
Storage Foundation Cluster File System, which includes
the Veritas File System (VxFS) and the Veritas Volume
Manager (VxVM). VxVM volumes are used as boot disks for
guest OSs to enable easy cloning. VxFS is used in the guest
OS for better reliability and performance.

VCS improves administrator efficiency through reduced
management. The cluster nodes share a single set of con-
figuration and data files, which requires the administrator
to ‘‘manage’’ only a single node regardless of the number of
nodes in the cluster. VxFS also enables VCS backup/recov-
ery operations by means of shared access and FlashSnap, a
point-in-time copy of production information. If file systems
are checkpointed, the file system can be ‘‘rolled back’’ to a
consistent point in time. VxFS is an integral part of VCS’s
ability to handle both application and node failures. If a
node fails, the application will be migrated dynamically to
an available node in the cluster. Additionally, because

12 DISTRIBUTED FILE SYSTEMS



storage resources are consolidated and abstracted from the
virtual machines, maintenance costs are reduced.

From a performance point of view, VxFS provides
Dynamic Storage Tiering, a technology that moves unim-
portant or out-of-date files transparently to less expensive
storage hardware. The policies can be dynamically set, are
centrally managed, and work on heterogeneous server and
storage infrastructure. RAID support provides perfor-
mance and reliability as per user needs. To ensure data
integrity, VxFS uses I/O fencing through the SCSI-3 per-
sistent group reservation technology. VxFS can remove
access from ‘‘errant’’ nodes using I/O fencing. Automatic
performance tuning helps the system adjust to dynamically
changing workloads.

BIBLIOGRAPHY

1. J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M.
Satyanarayanan, R. N. Side-botham, and M. J. West, Scale and
performance in a distributed file systems, ACM Trans. Com-
put. Syst., 6(1): 1988

2. M. Satyanarayanan, Scalable, secure, and highly available
distributed file access, IEEE Computer, 23(5): 1990.

3. M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E.
H. Siegel, and D. C. Steere, Coda: a highly available file system
for a distributed workstation environment, IEEE Transactions
on Computers, 39(4): 447–459, 1990.

4. J. J. Kistler and M. Satyanarayanan, Disconnected operation
in the coda file system, in Thirteenth ACM Symposium on
Operating Systems Principles, volume 25, Asilomar Confer-
ence Center, Pacific Grove: ACM Press, 1991, pp. 213–225.

5. P. Braam, M. Callahan, and P. Schwan. The intermezzo file-
system, 1999.

6. D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, B. Zhao, and J. Kubia-
towicz. Oceanstore: An extremely wide-area storage system,
Technical Report, University of California, Berkeley, 2000.

7. J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weath-erspoon, W. Weimer, C. Wells,
and B. Zhao, Oceanstore: An architecture for global-scale
persistent storage, Proceedings of ACM ASPLOS. ACM, 2000.

8. S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J.
Kubiatowicz, Pond: the oceanstore prototype, in Proceedings of
the Conference on File and Storage Technologies. USENIX,
2003.

9. B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J.
Kubiatowicz, Tapestry: a resilient global-scale overlay for ser-
vice deployment, IEEE J. Selected Areas Commun.22(1):
41–53, 2004.

10. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
Wide-area cooperative storage with CFS, Proceedings of the
18th ACM Symposium on Operating Systems Principles
(SOSP’01), Chateau Lake Louise, Banff, Canada, 2001.

11. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balak-
rishnan, Chord: a scalable peer-to-peer lookup service for
internet applications, Proceedings of the 2001 ACM SIGCOMM
Conference, 2001, pp. 149–160.

12. A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, Ivy: a
read/write peer-to-peer file system, in Proceedings of 5th Sym-
posium on Operating Systems Design and Implementation,
2002.

13. C. A. Thekkath, T. Mann, and E. K. Lee, Frangipani: a scalable
distributed file system, Symposium on Operating Systems
Principles, 1997, pp. 224–237.

14. E. K. Lee and C. A. Thekkath, Petal: distributed virtual disks,
in Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, Cambridge, MA, 1996, pp. 84–92.

15. F. Picconi, J.-M. Busca, and P. Sens, Exploiting network local-
ity in a decentralized read-write peer-to-peer file system, in
Proceedings of International Conference on Parallel and Dis-
tributed Systems, 2004.

16. A. Rowstron and P. Druschel, Storage management and cach-
ing in PAST, a large-scale, persistent peer-to-peer storage
utility, SOSP, 188–201, 2001.

17. A. Rowstron and P. Druschel, Pastry: scalable, decentralized
object location, and routing for large-scale peer-to-peer sys-
tems, Lecture Notes in Computer Science, 2218: 329þ, 2001.

18. Sun Microsystems, Inc., NFS: network File System Protocol
Specification, Internet Engineering Task Force Network
Working Group, RFC 1094, 1989.

19. B. Callaghan, B. Pawlowski, and P. Staubach, NFS Version 3
Protocol Specification, Internet Engineering Task Force Net-
work Working Group, RFC 1813, 1995.

20. B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel,
and D. Hitz, NFS version 3: Design and implementation, in
USENIX Summer, 1994, pp. 137–152.

21. B. Callaghan, NFS Illustrated. Reading, MA: Addison-Wisley,
1999.

22. H. Stern, Managing NFS and NIS, Sebastopol, CA: O’Reilly &
Associates Inc., 1991.

23. S. Shepler, C. Beame, R. Callaghan, M. Eisler, D. Noveck, D.
Robinson, and R. Thurlow, Network File System (NFS) version
4 Protocol, Internet Engineering Task Force Network Working
Group, RFC 3530, 2003.

24. B. Pawlowski, S. Shepler,C. Beame, B. Callaghan, M. Eisler, D.
Noveck, D. Robinson, and R. Thurlow, The NFS version 4
protocol, Proceedings of the 2nd International System Admin-
istration and Networking Conference (SANE2000), 2000, p. 94.

25. A. Tanenbaum and M. vanSteen, Disributed Systems - Prin-
ciples and Paradigms. Englewood Cliffs, NJ: Prentice Hall,
2002.

26. P. Leach and D. Naik, Common Internet File System (CIFS)
Technical Reference Revision: 1.0, 2002.

27. T. O. Group, Protocols for X/Open PC Interworking: SMB,
Version 2, 1992.

28. Message passing interface forum. Available: http://www.mpi-
forum.org.

29. ROMIO: A high-performance, portable MPI-IO implementa-
tion. Available: http://www.mcs.anl.gov/ronio.

30. Lustre. Avaibable: http://www.lustre.org.

31. D. Nagle, D. Serenyi, and A. Matthews, The Panasas Active
Scale storage cluster - delivering scalable high bandwidth
storage, in Proceedings of the 2004 ACM/IEEE Supercomput-
ing Conferencence, 2004.

32. F. Schmuck and R. Haskin, GPFS: a shared-disk file system for
large computing clusters, in Proceedings of the Conference on
File and Storage Technologies, San Jose, CA, 2002.

33. IBRIX FusionFS. Available: http://www.ibrix.com/.

34. Global file system. Available: http://www.rodhat.com/software/
rha/gfs/.

35. P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, PVFS: A
parallel file system for Linux clusters, Proceedings of the 4th

DISTRIBUTED FILE SYSTEMS 13



Annual Limxx Showcase and Conference, Atlanta, GA, 2000,
pp. 317–327.

36. The parallel virtual file system 2 (PVFS2). Available: http://
www.pvfs.org/pvfs2/.

37. F. Isaila and W. Tichy, Clusterfile: A flexible physical layout
parallel file system, Proceedings of the IEEE International
Conference on Cluster Computing, Newport Beach, CA, 2001.

38. S. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.
Maltzahn, Ceph: A scalable, high-performance distributed
file system, Proceeding of the 7th Conference on Operating
Systems Design and Implementation (OSDI’ 06), 2006.

39. R. A. Oldfield, A. B. Maccabe, S. Arunagiri, T. Kordenbrock,
R. Riesen, L. Ward, and P. Widener, Lightweight i/o for scien-
tific applications, in Proc. 2006 IEEE Conference on Cluster
Computing, Barcelona, Spain, 2006.

40. N. Nieuwejaar and D. Kotz, The Galley parallel file system,
Technical Report PCS-TR96-286. Hanover, NH: Dept. of Com-
puter Science, Dartmouth College, 1996.

41. H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T. Yang, and L.
Chu, A self-organizing storage cluster for parallel data-inten-
sive applications, Proceedings of ACM Supercomputing Con-
ference, 2004.

42. Panasas. Available: http://www.panasas.com.

43. R. A. Oldfeld, P. Widener, A. B. Maccabe, L. Ward, and T.
Kordenbrock, Efficient data-movement for lightweight i/o,
2006 IEEE Internat. Conf. on Cluster Computing, 2006.

44. S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, Crush:
controlled, scalable, decentralized placement of replicated
data, SC ’06: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, New York, 2006, pp. 122.

45. S. Ghemawat, H. Gobioff, and S.-T. Leung, The google file
system, SOSP, 2003.

46. How google works. Available: http://www.baaelinemag.com.

47. Google’s secret of success? Dealing with failure. Available:
http://news.zdnet.com.

48. J. G. Steiner, B. C. Neuman, and J. I. Schiller, Kerberos: an
authentication service for open network systems, in USENIX
Winter, 1988.

49. T. Y1önen, Ssh - secure login connections over the internet,
USENIX Security Symposium, 1996.

50. M. Satyanarayanan, Integrating security in a large distributed
system, ACM Trans. Comput. Syst., 7(3): 1989.

51. D. Mazires, M. Kaminsky, M. F. Kaashoek, and E. Witchel,
Separating key management from file system security, in
SOSP, 1999.

52. K. Fu, M. F. Kaashoek, and D. Mazières, Fast and secure
distributed read-only file system, ACM Trans. Comput. Syst,
20(1): 2002.

AVERY CHING

KENIN COLOMA

ARIFA NISAR

WEI-KENG LIAO

ALOK CHOUDHARY

Northwestern University
Evanston, Illinois

14 DISTRIBUTED FILE SYSTEMS



E

ELECTRONIC DATA INTERCHANGE

INTRODUCTION

Electronic data interchange (EDI) is the process by which a
business organization exchanges business transactions
between application systems in electronically processable
forms. In this process, an automated business application
system originates the transaction, the value-added net-
work (VAN) transmits it to the receiver, and an automated
business application system at the receiver adequately
responds to the transaction. For example, at a store, the
bar code scanner at the cash register can update the inven-
tory of each item sold. If the inventory falls below some
predetermined number, the bar code scanner system trig-
gers an ordering system. The ordering system creates an
order and hands it over to the EDI system. The EDI
translator translates the purchase order into a standar-
dized transaction set according to ANSI ASC X12.850
standards and electronically sends the purchase over to
a vendor’s mailbox using an EDI VAN. Human inter-
vention is not needed in any step of the whole process. It
is clear from the above example that for EDI to be success-
ful, integration must exist among various business applica-
tion systems and the EDI software. The EDI system should
support the seamless location, transfer, and integration of
business information in a secure and reliable manner.

EDI uses computers to transmit business transactions
and, in the process, eliminates paperwork significantly.
With this paperless transfer of data, one does not have to
rekey the information at the receiving end. Therefore,
errors, time, and cost incurred in the rekeying of data
are saved. This automatic creation and transfer of business
transactions enables organizations to improve accuracy of
business data, better serve their customers, improve rela-
tionships with suppliers, and effectively compete in the
global market. For example, just-in-time (JIT) inventory
control practices that have significantly cut inventory costs
will be difficult to implement without EDI.

In addition to the above-mentioned direct benefits, EDI
provides many indirect benefits. EDI standardizes busi-
ness transactions for the whole industry, as participants in
EDI must agree in advance on what data are to be
exchanged, in what order, and what format needs to be
used. This standardization helps in streamlining the trans-
action process, as parties do not have to go back and forth
asking for clarifications or missing data. The federal gov-
ernment as well as major companies expect their suppliers
to use EDI. For example, the U.S. Department of Defense
will not transact business with a vendor any other way
except through EDI. So a vendor has no choice but to have
EDI capabilities. This article details EDI system compo-
nents and processes needed to implement EDI.

EDI SYSTEMS AND PROCESSES

To automate transactions processing among different busi-
ness partners, a successful EDI system has the integrated
components shown in Fig. 1 (1,2).

STANDARDS

Every industry has a set of transactions. Different terms
have specific meaning and usage in a specific industry.
Standards are needed so that transactions are formatted
in a structure that can be processed by the transaction
processing systems of the industry. Standards provide
the framework for formatting any specific transaction.
ANSI ASC X12 and EDIFACT are the two predominant
standards.

ANSI ASC X12

The American National Standards Institute (ANSI) is the
national body that coordinates the development of stan-
dards in all areas of business. ANSI created the Accredited
Standards Committee (ASC) X12 and gave it a charter to
develop a set of standards for electronic exchange of busi-
ness transactions. ANSI ASC X 12 standards define the
data structures and the rules for encoding business trans-
actions. Following; are the structures used in ANSI ASC
X12 standards:

Data Element

A data element is the very basic or elementary unit of
information, for example, item number, quantity, item
description, and so on. The characteristics of each data
element are defined. A group of simple data elements
that represents a single named item is known as a compo-
site data element. For example, if a piece of metal has to
undergo seven different machining processes, then 1c234de
represents those seven machining processes.

Data Segments

A data segment consists of a group of related data elements.
These logically related data elements are arranged in a
predefined sequence to generate a data segment. For exam-
ple, an address segment consists of a group of data seg-
ments, that is, company name, city, state, and zip code. A
segment contains some data elements that are essential,
whereas other data elements may be optional. Some of the
optional data elements may not be applicable for a business;
therefore, they are omitted in the transaction. When a data
element is omitted, the data element separator should

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



explicitly indicate such an omission. For example, a pur-
chase order can be sent as follows:

PO1��100�EA50.00��VC�P123
� Element separator
PO1 Purchase order1
100 Quantity
EA Each
�� Omitted data element
50.00 Price
VC Vendor catalog
P123 Part number P123

Quantity: 100

Unit: Each

Description: Part No 123

Unit Price: 50.00

Total: 5,000.00

Transaction Set

A transaction consists of a group of related data segments
that must be present to provide information for a viable
business transaction. For example, transaction set X12 840
is a request for quotation (RFQ). This transaction set X12
840 provides the information about different data segments
and data elements that are required to make RFQ a mean-
ingful transaction. Similarly, X12 850 is a purchase order
and X12 855 is a purchase order acknowledgement. To
create a format for a transaction, one has to define the
following:

� segments to be used,

� the structure of each segment,

� data elements to be used in each segment, and

� the characteristics of each data element.

Functional Group

A functional group consists of a group of similar transaction
sets. For example, if there are three RFQs for three differ-
ent items to be sent to the same trading partner, the EDI
software will create one interchange with one RFQ func-
tional group. This RFQ functional group will contain three
different transaction sets, one each for three different
items. Some EDI translators allow several different func-
tional groups to be included in one interchange. For exam-
ple, if two responses for RFQs and five purchase orders are
being sent to the same trading partner, the EDI translation
software will create one interchange that contains two
functional groups, that is, one RFQ response functional
group and one order functional group.

Envelope

An EDI envelope is a specialized segment that contains
(1) routing information; that is, it provides addresses of
both the sender and the receiver of the transmission. The
address segment marks the beginning of the transmission,
(2) the date and timings of the EDI interchange; (3) the
unique control number used for tracking the transaction;
(4) the authorization and security information; (5) the EDI
standards and version of the interchange; and (6) the
number of functional groups in the interchange. Figure 2
explains the structure of EDI envelope, arrangement of
functional groups, and transaction sets (1,2).

EDIFACT

For international trade, the United Nations rules for EDI
for administration, commerce, and transport (EDIFACT)
provide a set of standards, directories, and guidelines that

ANSI X12
Standards

Application
systems

Financial

TranslationSoftware

Data Mapping

Translator
software

Interpretation

Audit tracking

EDIFACT

Purchase

Send/Receive

     VAN 

     VAS 

Communications

Direct dedicated 
connection 

Workstations 

LAN 

Hardware
Mainframes/
servers

 

Routing devices 
gateways, 
bridges, routers, 
intranets 

    Internet 

Figure 1. EDI system and processes.

2 ELECTRONIC DATA INTERCHANGE



have been internationally agreed upon for electronic
exchange of structured business transactions. EDIFACT
is a global attempt to standardize such information
exchanges so all computers involved are speaking the
same language, which will create an open system that
anyone can join at any point. EDIFACT is designed to be
independent of software, hardware, or communication
media, thus accomplishing universal connectivity. The
International Organization for Standardization (ISO)
adopted the EDIFACT syntax in 1987.

To achieve global open EDI, one can use EDIFACT
document syntax rules, X.400 message handling systems,
and X.500 directory services. X.500 directory services can
be used to store product information so that purchase
managers can order electronically. These X.500 directory
services are a powerful tool that allows EDI to take place
between organizations without prior EDI agreements.

Both ANSI ASC X12 and EDIFACT standards perform
the same functions. ANSI ASC X12 is an older standard and
provides many more functions than EDIFACT. The EDI-
FACT organization is trying to develop additional func-
tions. The two standards have different syntax and
therefore it is difficult to convert transactions from one
system to the other. In January 1995, the ANSI ASC X12
development body decided to follow the syntax and stan-
dards of EDIFACT so that full compatibility is achieved.
EDIFACT can be used for both domestic and international
interchanges, whereas ANSI ASC X12 is mainly for domes-

tic interchanges. One can obtain a complete listing of both
these standards from the Data Interchange Standards
Association.

EDI SOFTWARE

An organization may have automated applications in the
area of finance, marketing, accounting, production and
operations, and human resources management. Data are
entered into these application systems and transactions are
generated that may have to be communicated to business
partners. These business information systems call on EDI
software to establish and maintain standards and hand-
shaking rules for communicating among business partners.
EDI software defines the methods, timing, and routines for
receiving, transmitting, storing, and updating transactions
among application systems (see Fig. 3). EDI software
makes the exchange transparent; that is, it hides the com-
plexity of the underlying communication protocols from the
end user. A good integrated EDI software package provides
the following functions:

� an application interface,

� translation, and

� data communication.

Application Interface Software

As the term indicates, the application interface software
is the software bridge that facilitates the interface between
the business application system and the EDI standards
translation software. This software enables transparent
flow of transactions between business partners. After the
required data have been entered in the application soft-
ware and the transaction is ready to be transmitted to the
receiver, this software retrieves transaction data from the
application database and places them into a flat file for
subsequent conversion into EDI-formatted data before to
transmission to trading partners. Flat files are used to pass
transaction data between an application system and the
EDI translation software. System interface software is
important for both outgoing and incoming transactions,
as it either reads or writes flat files of transaction data. For
incoming transactions, this software retrieves data from a
flat file and prepares them for acceptance by the application
system. Some transaction software packages may not use a
flat file because they exchange data directly with the appli-
cation system database, thereby eliminating the need for
interface software.

Standard Translation Software

A business organization transacts business with many
trading partners. Some degree of flexibility is needed to
support communication with the various trading partners
because a need may exist to modify a trading partner’s data
to ensure compliance with the standards or to facilitate
integration with the user’s application system. EDI trans-
lation software allows for both the semantic translation and
the syntax translation of the data element. A summary of

ISA
Transmission

GS

       ST 

                Transaction  Set 1              Functional Group 1 

      SE  

      ST  Transaction set 2 

     SE  

    ST  Transaction  

    SE                              set n 

    GE  

    GS                                                    Functional  

    GE                                                       group2    

    GS           Functional 

   GE                                                          group n 

IEA  
                         ISA- Beginning transmission 
                        GS –Group starting 
                         ST –Transaction start 
                         SE-Transaction end 
                        GE- Group end 
                       IEA- End of transmission 

Envelope

Figure 2. EDI envelope and group mapping.

ELECTRONIC DATA INTERCHANGE 3



the characteristics of the standard translation software
listed by the National Institute of Standards and Technol-
ogy is as follows:

Transaction Set Mapping. Translation software trans-
lates data retrieved from an application database into a
standard EDI format before it is transmitted to trading
partners. It also converts EDI-formatted data, for example,
in ANSI ASC X12 format, received from trading partners
into a file format that the application system recognizes.
Before the translator can translate data, it must know
the location of the data to be translated. Some translators
require some users to create a separate flat file formatted
as an ASCII text file. Such a flat file helps in the standar-
dization of data from various files and different formats.
Some translators have a utility called ‘‘transaction set
mapper.’’ The transaction set mapper cross-references
the contents of the flat file with an EDI standard set and
subsequently translates the flat-file information into the
desired transaction set. Mapping from/to the standards
to/from the application formats is one of the key functions
of translation software. The mapper reduces the amount of
programming for application system interface. Data mani-
pulators map internal data fields to applications according
to an ANSI ASC X12 transaction set, which enables differ-
ent trading partners to exchange transactions.

Character Set Convention. If business applications of the
trading partners use different character sets (ASCII and
EBCDIC), the need may exist to convert one to the other.
Sometimes EDI software may do the conversion or, if VAN
is used, it will do the required set conversion.

Code Conversion. Codes used in a vendor’s application
program might be different from the EDI codes. For exam-
ple, the X12 ID Qualifier for serial number is SN, whereas
the user application might use the code SRNUM to identify
a serial number. The EDI software converts the standard
codes to and from the user’s code to facilitate integration
between the user’s application and EDI software.

Automatic Compliance Correction. For both inbound and
outbound data, EDI software verifies the identity of trading
partners, the syntax of the data, and whether it complies
with the EDI standards and version being used. To accom-
plish this verification, EDI software references its tables of
EDI standards at the user’s trading partner profiles. Some
simple errors are automatically corrected by adjusting the
data to make them comply with the standards.

Manual Compliance Correction. Some compliance verifi-
cation errors may be so severe that EDI software cannot
automatically correct them. In such circumstances, the
software suspends the processing so that the end user
can review the transaction, correct the errors, and submit
the transaction for reprocessing.

Duplicated Number Detection. Some EDI software
tracks the use of business document numbers, such as
purchase order numbers. If a number is duplicated, the
software identifies the duplication and can take several
different actions. It can either display or log error messages
or it can suspend processing of the transactions until the
end user can correct the duplication.

Functional Acknowledgement. Senders of transactions
would like to know if the recipient received the information.
The ANSI ASC X12 997 transaction set is known as func-
tional acknowledgement. The recipient uses functional
acknowledgement to send the sender an acknowledgement
of the EDI transaction. It verifies the acceptance or rejec-
tion of a transaction set and reports any syntactical errors.
Generally, EDI translators are so configured as to auto-
matically return functional acknowledgement.

Document Type Sequencing. Control numbers are used
to identify functional groups in an exchange. There may be
several different kinds of document types within the multi-
ple functional groups. These document types are also iden-
tified using control numbers. Each trading partner may
have a set of functional group and document control num-
bers sequentially. It is easy to find a missing document from
transmission by viewing the lapses in document control
numbers.

Multiple Functional Groups. Some EDI translators per-
mit multiple functional groups in one interchange. For
example, if three invoices (ANSI ASC X12 810) and two
RFQ (ANSI ASC X12 840) responses are being sent to the
same trading partner, the EDI software creates one inter-
change containing two functional groups, that is, one func-
tional group for invoices and the other for RFQ responses. If
the software does not support multiple functional groups,
then two interchanges would be needed, one for each func-
tional group. The second interchange would cause
increased overhead in terms of double transmission costs
and greater storage requirements.

Figure 3. EDI process.

Trading partner                        Sends                          Receives                      Trading
partner 

 

  
 

Receives                         Sends

Van 

4 ELECTRONIC DATA INTERCHANGE



DATA COMMUNICATION SOFTWARE

The communication software establishes the communica-
tion link between the sender and the receiver. One can use a
general-purpose data communication software for modem
dialing and connecting to VANs. To complete this job, the
communication software has to perform several tasks.

Protocol(s) Support

Communications software must support the required pro-
tocol(s). Some EDI software include: asynchronous trans-
mission; others provide bisynchronous transmission. These
programs would provide seamless transmission if they
were fully integrated with simple mail transfer protocol
(SMTP) or X.435.

VAN Script Files

For communicating with the VAN, the sender initiates a
session. The session is governed by a predefined set of
commands called ‘‘VAN script,’’ which are specific to the
VAN’s host computer. The functions of a VAN’s script are as
follows: (1) It dials into the VAN, (2) it recognizes the login
name and password for allowing access, (3) it deposits EDI
messages to be delivered to trading partners, and (4) it
retrieves EDI messages from the mailbox.

Unfortunately, there is not a standardized set of com-
mands for communicating with VANs. Different VANs may
have different VAN scripts. Therefore, when purchasing
EDI software, the user should make sure that it has the
VAN script that enables the user to communicate with
the available VAN services. VAN providers know this
difficulty and therefore generally provide the VAN subscri-
bers the software required for communicating with the
application systems. A software vendor that offers scripts
for several different EDI VANs is a desired choice for
purchasing EDI software.

Multiple VAN Support

Trading partners of an EDI user may subscribe to many
different VANs. Therefore, the communications software
must be flexible so that it can connect to many different
VANs.

Direct Trading Partner

Some trading partners may use VAN services whereas
others may not. Those who are not using VAN services
must be connected directly by the EDI software. For receiv-
ing messages from these direct trading partners, a dedi-
cated computer system is required, as no VAN exists to
provide storage or message-forwarding capabilities.

Script Building Tool

In some cases, a trading partner may have to connect to a
VAN or to a mainframe computer for which no communica-
tion script is available. EDI software that has capabilities of
building scripts can help in such situations by creating
custom scripts for connecting to other VANs or directly to
mainframes.

Communication Audit Trails

Communication audit trails can be used for verification
that a transaction was communicated among trading part-
ners. An audit trail may include the following:

� times and dates of communication,

� identifiers,

� acknowledgements, and

� errors encountered, if any, and others.

Viewing Utility

Large amounts of information are generated in EDI pro-
cesses such as audit trails, configuration data, functional
acknowledgements, and others. Manually viewing or edit-
ing all these data may be cumbersome. Viewing utilities
help in viewing various aspects of communication data.

Installation, Maintenance and Support

Several of the following functions are essential to install
and maintain EDI software. Automated installation rou-
tines make it easier to install EDI software and to update
periodically. EDI software has to keep pace with the
changes in standards and versions. Tracing facilities in
the software provide a trace or show the way a transaction
is processed. It helps in debugging translator software.
Logging functions provide the ability to maintain a compu-
terized log of all data interchanges and, therefore, provide
an audit trail. Need may exist to permanently store some
data interchanges among trading partners for a long period
of time. The archiving function helps in this long-term
storage of data, either in regular format or compressed
format. Over a period of time, a lot of data from inter-
changes may accumulate. Automated purging utilities pro-
vide the ability to automatically purge data based on some
criteria such as starting and ending dates, particular
partner, specific item, and others. As a result of power
failure or other reasons, the EDI process may fail during
transaction interchange. Data recovery and restart utili-
ties automatically recover the data and retransmit trans-
actions that were not completed beacuse of the earlier
failure.

EDI COMMUNICATION NETWORK

EDI needs a communication network that will transmit,
receive, and store EDI messages and transactions so that
the entire communication process is fully automated. These
networks can be classified as follows: (1) VANs and value-
added services (VASs), (2) Internet, and (3) direct dedicated
communications.

VAN

VAN is a store-and-forward mechanism for exchanging
business transactions. VAN performs EDI requirements
as VAN acts as the communication facilitator that provides
the function of transmitting, receiving, and storing mes-
sages (see Fig. 4). The easiest way to start communicating

ELECTRONIC DATA INTERCHANGE 5



with the trading partners is to subscribe to a VAN. A VAN
operator provides the EDI communication expertise and
equipment necessary for electronic communication. VAN
providers also provide VASs such as consulting and train-
ing in the mapping of EDI transactions, coding VAN com-
munication script, on-site EDI software and hardware
installation, and others.

VANs are the most widely used communication net-
works for EDI communication. Increased competition
among the VAN providers has resulted in low prices for
VAN services, which has facilitated organizations to out-
source the delivery of data and message services. In an
increasingly competitive marketplace that demands fast
responses to customer needs, an organization may ask the
following question: Why struggle single-handedly trying
to support national and international voice and data
traffic when VAN service providers are ready to assume
those responsibilities at very competitive prices? VAN
services provide the current technology, economies of scale,
customer service fault management, and so on. VAN pro-
vides a single communications access point, 24-hour access
and support, control reports on EDI traffic, and reliability of
services. Advantages of VANs are as follows (1–3):

� VAN is generally available throughout the day, 24
hours a day.

� Any trading partner is just a call away to VAN.

� VAN provides a mailbox capability; that is, messages
are routed, stored, and forwarded any time of the day.

� VAN capabilities are available irrespective of geogra-
phical location or time.

� VANs support different speeds and protocols.

� VANs provide reliable connectivity to trading part-
ners.

� VANs provide security for transactions.

Users can schedule when the VAN scripts is executed.
Execution of VAN scripts can be automated or manual.
Automated execution is the preferred way. In a manual
system, the communications process will have to be started
manually whenever desired. With manual control, the

communications errors can be noted and corrected in
real-time.

There are several requirements that a VAN must fulfill
before it can be used (1–3):

1. A VAN must support the protocol (asynchronous or
bisynchronous) being used by the communication
software. Some VANs may not support the X.25
protocol.

2. A VAN must support the standards such as ANSI
ASC X12, UN/EDIFACT, or industry-specific TDCC,
VICS, and so on.

3. No conflict should exist in the data segment and data
element delimiters used by the trading partners and
the VAN.

4. A VAN should support the access method desired by
the user, such as dial-up lines, leased lines, and so
forth.

5. Data backup and recovery functions must be avail-
able.

6. Data security features should provide transmission
status reports and usage accounting data.

7. Transmission timing should be short.

8. Additional VASs must be provided.

Support by VAN Service Providers

Support is essential for someone who has just bought EDI
software. Users need guidance in installation, mainte-
nance, and use of any new EDI software. Such user support
can be provided both by the software and the vendors. For
example:

� user documentation provides narrative text concern-
ing the daily use of the EDI software,

� technical documentation,

� help success,

� online tutorial,

� vendor services,

Figure 4. Commercial and value-added network.

Business information systems Standards translation S/W

 

Business Information  Systems

Application
interface
software

EDI

ANSI  ASC X.12

Application
interface software

6 ELECTRONIC DATA INTERCHANGE



� training, and

� user groups.

Internet

The Internet provides the retailers and other businesses
with the ability to communicate business documents elec-
tronically. The Internet provides a more convenient form of
business communication. These online business transac-
tions are more efficient and flexible. As no intermediary is
involved, the cost of business transactions using the Inter-
net is lower compared with VAN-assisted electronic com-
merce. With the growth in Internet and related services, it
has become possible for retailers to access a worldwide
network of customers. VANs, as compared with the Inter-
net’s worldwide connectivity, have very limited connectiv-
ity to only a few thousand other paying subscribers. The
Internet also provides interactive capabilities rather than
just store-and-forward functions provided by VANs. These
interactive functions provide browsing abilities to users
and help retailers to market their products to a much larger
audience. One major problem with the Internet is security,
which is discussed in a later section.

Direct Dedicated Connections

There are many transmission and switching mechanisms
that can make it feasible to have direct dedicated connec-
tion. Synchronous digital hierarchy, frame relays, and
asynchronous transfer mode provide the potential for direct
partner interface, mainly from LAN to LAN.

HARDWARE REQUIREMENTS

For operating the EDI software, communication software,
and application systems, a business needs workstations,
servers, and mainframe computers. For communicating
with other organizations, LAN, WAN, intranets, Internets,
and other networks are needed. Routing devices such as
gateways, bridges, routers, brouters, and others are needed
for packet, message, or circuit switching. The detailed
explanation of these hardware devices, network manage-
ment devices, switching mechanisms, and communication
protocols are beyond the scope of this article.

SECURITY

EDI demands that an organization become a part of the
network. Once an organization becomes a part of a network,
it faces challenges from unauthorized intruders and hack-
ers. A list of control activities is provided to ensure that
interchange of data takes place while maintaining the
integrity of the computer systems.

Access Control

Access controls are required at initiation, transmission,
and destination. These controls can be achieved by using
password, user ID, storage lockout, and different levels of
storage and function access.

Data Integrity

Authentication, acknowledgement protocol, computerized
log, digital signatures, and edit checks can be used for
detecting errors during the process of input or trans-
mission. Authentication, integrity, confidentiality, and
nonrepudiation can be achieved through public key cryp-
tosystems that employ digital signature, encryption, and
key exchange technologies. Nonrepudiation can be accom-
plished through the use of certification authority. Upon
user authentication, traditional access control or role-
based access control methods can be employed to define
access rights. For security, many competing algorithms
exist and may give rise to interoperability problems.

Digital certificates, electronic forms that encrypt and
authenticate both ends of the same transaction, are crucial
in enabling EDI over the Internet. They provide the level of
security EDI users are accustomed to with existing VAN
service providers. Digital certificates exist that are compa-
tible with the standard ANSI ASC X12 data types. The
Internet could prove to be a much simpler and cheaper
transmission medium for EDI than VANs if adequate
security is developed.

Transaction Completeness

To avoid loss or duplication of a transaction during trans-
mission, one can use batch totaling, sequential numbering,
and one-to-one checking against the control file.

Availability

Viruses, Trojan horses, programming errors, and hardware
and software errors may interrupt the availability of EDI
systems. One can use anti-virus packages to prevent
viruses. By planning, developing, installing, and operating
error-free software, one can eliminate the problems of
Trojan horses, viruses, and other software errors that
lead to interruption of services. Fault-tolerant systems
including off-site backup, redundant arrays of independent
disks (RAID), disk mirroring, tandem computers, and other
techniques help in avoiding interruption because of sabo-
tage or natural causes.

SUMMARY

EDI is being used for accelerating the flow of business
transactions among business partners. Advances in com-
puter and communication technologies have made it pos-
sible to create transactions in a few minutes and transmit
them to trading partners in seconds. Standardization must
exist among transaction formats for computerized com-
munication to take place between application systems of
different organizations. ANSI ASC X12 and EDIFACT are
two dominant formats for domestic and international inter-
changes, respectively. The output of the sender’s appli-
cation system is sent to the receiver’s application system
with the help of application interface, standard translation
software, and communication software. Understanding of
the different components and their integration require-
ments helps in the successful implementation of EDI.
Such a successful implementation reduces transaction

ELECTRONIC DATA INTERCHANGE 7



costs, provides flexibility, and improves the competitive
advantage.

ACKNOWLEDGMENTS

This article is based on the fundamental concepts explained
in Guidelines for the Evaluation of Electronic Data Inter-
change Products and Electronic Data Interchange (1,2).
The framework of this article and many details are
repeated from these documents.

BIBLIOGRAPHY

1. J. J. Garguilo and P. Markowitz, Guidelines for the Evaluation
of Electronic Data Interchange Products, Gaithosburg, MD:

National Institute of Standards and Technology. Available:
http://www.snad.ncls.gov/.

2. Anonymous, Electronic Data Interchange, National Institute
of EDI. Available: http://www.fie.com/web/era/introedi/
index.html/.

3. Anonymous, Your Introduction to Electronic Commerce, Busi-
ness Handbook. Available: http://ch5.htm at net.gap.net/.

RAJESH AGGARWAL

Middle Tennessee State
University

Murfreesboro, Tennessee

8 ELECTRONIC DATA INTERCHANGE



F

FAILURE DETECTORS FOR ASYNCHRONOUS
DISTRIBUTED SYSTEMS: AN INTRODUCTION

WHY FAILURE DETECTORS?

To stop waiting or not to stop waiting? That is the
question! Asynchronous distributed systems are charac-
terized by the fact that there is no bound on the time it takes
for a process to execute a computation step, or for a message
to go from its sender to its receiver. This is why these
systems are usually called ‘‘time-free’’ systems. The major
part of the software that addresses non-real-time problems
implicitly considers a time-free underlying system. This
has several advantages. The main one is ‘‘generality.’’ As it
is does not require that the underlying system satisfies
specific timing assumptions, the software can be safely
executed on any system. Moreover, the understanding
and the correctness proof are usually easier as they do
not rest on particular timing assumptions.

Unfortunately, the previous advantage can become use-
less as soon as there are failures. Assuming there is a
process per node (processor), let us consider the case where
a node can crash. The problem is then for a process p to
know whether another process q has or has not crashed.
The bad news is that the combination of crashes and asyn-
chrony creates a context where p has no safe means to know
whether q has or has not crashed. If, thinking q has
crashed, p stops waiting from q after some time, it can be
wrong as maybe q has not crashed and the message from q
to p is only very slow. If, after it stops waiting from q and
before it gets q’s message, p takes an irrevocable decision
(motivated by the fact that it thinks that q has crashed), this
decision is wrong (and the safety property of the upper layer
application can consequently be violated1). On the other
side, let us assume that q has crashed. To prevent the bad
previous scenario from occurring, p must wait until it gets
q’s message. It is easy to see that p will wait forever, and the
liveness property of the application will never be satisfied.
This is one of the main problems we are faced with when
designing fault-tolerant distributed algorithms in asyn-
chronous systems prone to failures (2).

Do the same as ancient Greeks did: Ask an oracle!
To solve the previous dilemma, Chandra and Toueg have
introduced and investigated the notion of failure detectors

(3). A failure detector can be seen as a distributed oracle
related to the detection of failures.2 Such oracles do not
change the pattern of failures that affect the execution in
which they are used. Their essential characteristic is
related to the guess they provide about failures. As defined
by Chandra and Toueg (3), a failure detector class is basi-
cally defined by two properties, namely, a completeness
property and an accuracy property. Completeness is on the
actual detection of failures, while accuracy restricts the
mistakes a failure detector can make.

Why use failure detectors? There are several good
reasons for using a failure detector. One lies in the design
approach it favors. More precisely, a failure detector is not
defined in terms of a particular implementation (involving
network topology, message delays, local clocks, etc.) but in
terms of abstract properties (related to the detection of
failures) that allow problems to be solved despite process
crashes. Thus, the failure detector approach allows a
modular decomposition that not only simplifies protocol
design but also provides general solutions. More specifi-
cally, during a first step, a protocol is designed and proved
correct assuming only the properties provided by a failure
detector class. So, this protocol is not expressed in terms of
low-level parameters, but it depends only on a well-
defined set of abstract properties. The implementation
of a failure detector FD of the assumed class can then
be addressed independently. Additional assumptions can
be investigated, and the ones that are sufficient to imple-
ment FD can be added to the underlying distributed
system in order to get an augmented system on top of
which FD can be implemented. In that way, FD can be
implemented in one way in some context and in another
way in another context, according to the particular fea-
tures of the underlying system. It follows that this layered
approach favors the design, the proof, and the portability
of protocols.

Another important advantage of failure detectors lies in
the approach they promote to address problems that are
impossible to solve in time-free asynchronous distributed
systems prone to failures. One of the most famous of them is
the consensus problem that cannot be solved in asynchro-
nous systems as soon as a process can crash (5).3 When
faced with a problem Pb that cannot be solved in an
asynchronous system prone to failures, a natural and
fundamental question that comes to mind is as follows:

Which is the weakest failure detector FDmin(Pb) the underlying
asynchronous system has to be equipped with in order for the
problem Pb to be solved?

Answering this question is important from both a prac-
tical and a theoretical point of view. From a theoretical

1A problem can be defined with a safety and a liveness property. The
safety property stipulates that ‘‘nothing bad ever happens,’’ while
the liveness property stipulates that ‘‘something good eventually
happens’’ (1).

2Let us notice that the oracle notion has first been introduced in
language theory. An oracle is a language whose words can be
recognized in one step from a particular state of a Turing machine
(4). The main characteristic of such oracles is to hide in a single
‘‘observed’’ step a sequence of computation steps or the use of an
uncomputable function. They have been used to provide hierar-
chies of problems with respect to complexity or computability.

3Failure detectors have initially been introduced to cope with the
impossibility to solve consensus in time-free systems prone to
process crashes (3).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



point of view, the properties defining such a weakest failure
detector state the necessary and sufficient conditions under
which the problem Pb can be solved. This means that
FDmin(Pb) defines the borderline beyond which Pb cannot
be solved. More precisely, Pb can be solved only in asyn-
chronous systems enriched with additional mechanisms
able to implement FDmin(Pb). This has an immediate prac-
tical consequence. To solve Pb, we need a system where the
FDmin(Pb) properties can be implemented.4 Of course, if the
system we are provided with satisfies stronger properties,
Pb can be solved. This means that when a (provably correct)
protocol does not work in a system, it is only because the
properties assumed by this protocol are not satisfied by the
underlying system. (Let us notice that the same argument
applies to hierarchies of failure modes (6).)

Failure detectors further a deeper understanding of
distributed computing problems in the presence of failures,
in the sense that they allow us to know whether a problem
Pb1 is ‘‘more difficult’’ to solve than a problem Pb2 or
whether Pb1 and Pb2 require different kinds of assump-
tions. Pb1 is said to be more difficult to solve than Pb2 if it
requires that the underlying system satisfies additional
assumptions not necessary for solving Pb2; that is, formally,
FDmin(Pb1))FDmin(Pb2). If we have neither FDmin(Pb1))
FDmin(Pb2) nor FDmin(Pb2))FDmin(Pb1), Pb1 and Pb2 are
incomparable, which means that they require underlying
systems with different properties in order for them to be
solved.

Can failure detectors be implemented? Guided by
practical motivations, we only consider failure detectors
that cannot guess the future. Those failure detectors have
been called realistic (7). They actually do correspond to the
failure detectors that can be implemented in a synchronous
system (i.e., a system with known upper bounds on both
message delays and the time it requires for a process to
execute a step).

So, a simple way to implement a failure detector is to use
an underlying synchronous system as an additional sub-
system. This subsystem is only used to implement the
required failure detector and is not directly accessible by
theprocesses.Theydonoteverknowtheexistenceof it.They
evolve in a computation model defined by an asynchronous
system enriched with the appropriate failure detector.

As we will see later, it is possible to solve some problems
with eventually accurate failure detectors. Those failure
detectors are assumed to satisfy their accuracy property
(restriction on the mistakes they can make) only after some
finite but unknown time. It appears that the use of such
failure detectors generally requires a majority of correct
processes (this constraint can be seen as the price that has
to be paid to cope with eventual accuracy).

Interestingly,theuseofeventuallyaccuratefailuredetec-
tors allows the design of indulgent algorithms (8), i.e., algo-
rithmsthatneverviolate theirsafetyproperty,whatever the
behavior of the failure detector they use. This means that, if
the failure detector never meets its accuracy property, these
algorithms cannot terminate, but if they terminate, they
terminate correctly. Such eventually accurate failure
detectors are very interesting for a simple reason. They

have best effort implementations in asynchronous systems;
namely, these implementations provide failure detector out-
puts that a priori can only be considered as approximate
outputs. But, very interestingly, when the underlying sys-
tembehavessynchronouslyduringa longenoughperiod, the
outputs are no longer approximate but become correct. The
periods during which the underlying asynchronous system
behaves synchronously are usually called ‘‘stable’’ periods.
An interesting consequence is that, as we can see, the
protocols implementing such failure detectors can run con-
currently with the application processes on the same asyn-
chronous system. This is practically relevant.

It is important to notice that there is no ‘‘magic’’ behind a
failure detector. This means that, if a failure detector allows
solving an otherwise impossible problem P in a given
computation model M, then that failure detector cannot
be implemented in the model M. The impossibility to solve P
in the model M is not circumvented; it is only moved ‘‘inside’’
the failure detector.

Due to its inherent modularity, a main advantage of the
failure detector approach is the very clean separation
between the properties offered by a failure detector and
the machine/network-dependent requirements that allow
for implementation of it (those encapsulate low-level syn-
chrony requirements that can change from one implemen-
tation to another one).

ASYNCHRONOUS SYSTEM MODELS

Process model. We consider a system consisting of a finite
set of n processes P ¼ fp1; p2; . . . ; png. A process can fail by
crashing, i.e., prematurely halting. It behaves correctly
(i.e., according to its specification) until it (possibly)
crashes. By definition a process is correct (during a run)
if it does not crash (during that run); otherwise, it is faulty.
There is no assumption on the time it takes for a (non-
crashed) process to execute a step. In the following, t �
n� 1 denotes the maximum number of processes that can
crash, and f� t the actual number of process crashes during
a given run.

Communication model. Processes communicate and
synchronize by exchanging messages through links. Every
pair of processes is connected by a link. We consider two
types of links.

� The link connecting pi to pj is reliable if it does not
create or duplicate messages, and every message
sent by pi to pj is eventually received by pj (if pj is
correct).

� The link connecting pi to pj is fair lossy if, while it
does not create or duplicate messages, it can lose
messages, but if pi sends an infinite number of mes-
sages to pj and pj executes receive actions infinitely
often, then it receives an infinite number of messages
from pi.

A process pi sends a message m to a process pj by
invoking ‘‘send (m) to pj’’; pj receives it when it terminates
the invocation of ‘‘receive( )’’. The send( ) and receive( )
primitives are provided by the underlying communication4Or (in some cases) approximated, as we will see later.

2 FAILURE DETECTORS FOR ASYNCHRONOUS DISTRIBUTED SYSTEMS: AN INTRODUCTION



network. The notation ‘‘broadcast (m)’’ is used as a shortcut
for ‘‘forall j2f1; . . . ;ngdo send (m) to pj enddo’’. If pi

crashes while executing ‘‘send (m) to pj’’, either m is
sent or m is not sent at all (i.e., send( ) is atomic, while
broadcast( ) is not.)

Computation models. In the following we consider
two types of asynchronous computation models:

� The FLP computation model that considers crash-
prone processes and reliable links.5

� The FLL computation model that considers crash-
prone processes and fair lossy links.

SOLVING CONSENSUS

The Consensus Problem

The consensus problem is a paradigm of agreement pro-
blems. It appears, in one form or another, as soon as
processes have to agree, e.g., on a common action to execute,
on the same decision to take, etc. A well-known example of
where consensus appears is atomic broadcast. That pro-
blem, which appears as a basic software layer in a lot of
replication-based, fault-tolerant distributed systems,
requires that the correct processes deliver the same set
of messages in the same order. So, it is at the same time a
communication problem (all the correct processes have to
deliver the same set of broadcast messages), and a con-
sensus problem (as they have to deliver them in the same
order) (3). So, in the consensus problem, every correct
process pi proposes a value vi and all correct processes
have to decide on some value v, in relation to the set of
proposed values. More precisely, the consensus problem is
defined by the following three properties (3,5):

� C-Termination: Every correct process eventually deci-
des on some value.

� C-Validity: If a process decides v, then v was proposed
by some process.

� C-Agreement: No two correct processes decide differ-
ently.

The agreement property applies only to correct processes.
So, it is possible that a process decides on a distinct value
just before crashing. Uniform consensus prevents such a
possibility. It has the same Termination and Validity
properties plus the following agreement property:

� C-Uniform Agreement: No two processes (correct or not)
decide differently.

In the following we consider the uniform consensus
problem.

An Eventually Accurate Failure Detector

As indicated in the beginning of the article, the consensus
problem cannot be solved in asynchronous systems prone
to even a single process failure (5). It is to circumvent this
impossibility that Chandra and Toueg proposed the fail-
ure detector concept (3). Among the several classes of
failure detectors they have proposed, the one denoted
^S has been shown to be the weakest to solve consensus
(9). Each process pi is equipped with a local failure detector
module that provides it with a set suspectedi; pi can only
read this set that contains the identities of the processes
that are currently suspected to have crashed. Any failure
detector module is inherently unreliable. It can make
mistakes by not suspecting a crashed process or by erro-
neously suspecting a correct one. Moreover, suspicions are
not necessarily stable. A process pj can be added to or
removed from a set suspectedi according to whether pi’s
failure detector module currently suspects pj. We say
‘‘process pi suspects process pj’’ at some time, if at that
time we have pj 2 suspectedi.

To be useful a failure detector class has to satisfy some
properties, and those have to be as weak as possible while
allowing the problem of interest to be solved. The class ^S
includes all the failure detectors satisfying the following
properties:

� Strong Completeness: Eventually, every process that

crashes is permanently suspected by every correct process.

� Eventual Weak Accuracy: There is a time after which some

correct process is never suspected by the correct processes.

The implementation of failure detectors of the class ^S
has been addressed in Refs. 10–14. As noted, all these
implementations assume that the underlying system is
eventually stable. If the stability assumption is satisfied
during a long enough period, the sets suspectedi satisfy the
properties defining ^S. ‘‘Long enough’’ means here ‘‘a
duration allowing the protocol using the failure detector
to terminate.’’

A ^S-based Consensus Protocol

The protocol that follows considers the FLP model. It is
indulgent, so it enjoys the nice property of never violating
consensus safety (validity and uniform agreement), what-
ever the sequence of (correct or bad) values read from the
suspectedi sets; moreover, it terminates (at least) when
these sets contain correct values during a long enough
period (namely, the period during which the consensus
protocol needs the failure detector).

The protocol presented in Fig. 1 is a particular instance
of the generic protocol introduced in Ref. 15. It requires a
majority of correct processes (t < n/2), which has been
shown to be a necessary requirement for indulgent proto-
cols (8). Its principles are surprisingly simple. The pro-
cesses (pi) proceed by asynchronous consecutive rounds (ri).
Each round r is coordinated by a process pc such that c ¼
ðr mod nÞ þ 1 (hence, if the round number never stops
increasing, each process is ensured to be the coordinator
of a future round).

5The name ‘‘FLP’’ is coined from the first letters of Fischer, Lynch,
and Paterson who proved the impossibility of solving consensus in
this system model (5). This abbreviation is of general use in the
literature.

FAILURE DETECTORS FOR ASYNCHRONOUS DISTRIBUTED SYSTEMS: AN INTRODUCTION 3



Let vi be the value initially proposed by pi. The local
variable esti represents pi’s estimate of the decision
value. During a round r, its coordinator pc tries to impose
its current estimate as the decision value. To attain this
goal, a round is made up of two phases. During the first
phase, (1) pc sends estc to all the processes (line 4), and (2)
any process pi waits until it receives pc’s estimate or
suspects it (line 5). According to the result of its waiting,
a process pi sets a local variable auxi to the received value
v ¼ estc, or sets it to a default value ? (line 6). It is
important to notice that due to the completeness property
of the underlying failure detector, no process can block
forever at line 5.

Then, the processes start the second phase of round r,
during which they exchange the values of their auxi vari-
ables (line 7). Let us observe that, due to the ‘‘majority of
correct processes’’ assumption, no process can block forever
at line 8. Moreover, it is important to notice that only two
values can be exchanged: v ¼ estc or ?. Consequently, the
set reci of values received by a process pi can only have the
values fvg; fv; ?g, or f?g. Moreover, due to the ‘‘majority
of correct processes’’ assumption, it is impossible for two
sets reci and recj to be such that reci ¼ fvg and rec j ¼ f?g,
so we also have the following invariant (for each pair of
processes pi and pj, that have not crashed):

reci ¼ fvg)ð8 p j : ðrec j ¼ fvgÞ_ ðrec j ¼ fv; ?gÞÞ
reci ¼ f?g)ð8 p j : ðrec j ¼ f?gÞ_ ðrec j ¼ fv; ?gÞÞ

This invariant dictates the behavior of pi:

� reci ¼ fvg (line 10). In this case, pi decides the value v.
It can safely do so, since in this case, a process that does
not decide adopts v as its new estimate value. More-
over, to prevent possible deadlock situations, pi broad-
casts its decision value.

� reci ¼ fv; ?g: (line 11). In this case, consistently with
the previous item, pi adopts v as its new estimate value,
and proceeds to the next round.

� reci ¼ f?g (line 12). In this case, pi proceeds to the
next round without modifying esti.

The proof that this ^S-based consensus protocol is
correct is relatively easy. It is left to the reader (who can
also find it in Ref. 15). The strong completeness property is
used to show that the protocol never blocks. The eventual
weak accuracy property is used to ensure termination
(there will be a round coordinated by a correct nonsus-
pected process). The majority of correct processes are used
to prove consensus agreement.

Other ^S-based consensus protocols can be found in
Refs. 3,16–18.

Interactive Consistency

This problem has first been introduced in the context of
synchronous systems where some processes can behave in a
Byzantine way (19). Here we consider the interactive con-
sistency problem in the FLP model.

This problem is harder than consensus in the following
sense: The processes have to agree not on a proposed value
but on the vector of proposed values. So, each process pi

proposes a value vi and has to decide a vector Di such that
the following properties are satisfied (we consider here the
uniform version of the problem):

� IC-Termination: Every correct process eventually deci-
des on a vector.

� IC-Validity: Any decided vector D is such that
D½i� 2 fvi; ?g, and is vi if pi does not crash.

� IC-Agreement: No two processes decide differently.

It is shown in Ref. 20 that the weakest failure detector
class that allows the interactive consistency problem to be
solved in the FLP model is the class of perfect failure
detectors. This class, denoted P, contains all the failure
detectors that satisfy the following properties (3):

� Strong Completeness: Eventually, every process that
crashes is permanently suspected by every correct
process.

� Strong Accuracy: No process is suspected before it
crashes.

As we can see, a perfect failure detector never makes
mistakes. A P-based interactive consistency protocol is
described in Ref. 21. Interestingly, this protocol that pro-
ceeds by consecutive asynchronous rounds, is as efficient as
the ‘‘best’’ synchronous interactive consistency protocol
(‘‘best’’ from a time complexity point of view, i.e., when
we count the maximum number of rounds that are
required, namely, min(f þ 2, t þ 1, n)).

While consensus can be solved in the FLP model (with a
majority of correct processes) equipped with ^S, it is not
possible, assuming a solution to the consensus problem, to
design a protocol building a failure detector of ^S. On the
contrary, we show here that, in the FLP model, the con-
struction of a perfect failure detector and interactive
consistency are equivalent problems in the sense that
one can solve either of them as soon as we are provided
with a solution to the other.

Interactive consistency protocols based on a perfect fail-
ure detector are described in Refs. 20 and 21. A protocol

Figure 1. A simple ^S-based consensus protocol (t < n/2) (15).

4 FAILURE DETECTORS FOR ASYNCHRONOUS DISTRIBUTED SYSTEMS: AN INTRODUCTION



providing the inverse construction is described here
(Fig. 2). Assuming a solution to the interactive consistency
problem (subroutine protocol called IC_Protocol(x,v)), this
protocol implements a perfect failure detector. The protocol
consists of two tasks and is very simple.6 Task T1 repeat-
edly invokes the interactive consistency protocol and sus-
pects a process pj as soon as the output Di returned by an
invocation is such that Di½ j� ¼ ? . Task T2 processes the
queries issued by the upper layer. It returns the current
value of suspectedi. The reader can easily check that the
sets suspectedi satisfy strong completeness and strong
accuracy.

SOLVING NON-BLOCKING ATOMIC COMMIT

The Non-Blocking Atomic Commit Problem

Originated from databases, the non-blocking atomic com-
mit problem (NBAC) is certainly one of the oldest agree-
ment problems encountered in distributed computing.
According to its local state, each process first issues a
vote (yes or no). Then, according to the set of votes and
the fact that some processes possibly crashed, the non-
crashed processes have to decide on a single value, namely,
commit or abort. More precisely, the problem is defined by
the following properties:

� NBAC-Termination: Every correct process eventually
decides.

� NBAC-Validity: A decided value is commit or abort.
Moreover:

—NBAC-Justification: If a process decides commit,
all processes have voted yes.

—NBAC-Obligation: If all processes vote yes and
there is no crash, then the decision value is
commit.

� NBAC-Agreement: No two processes decide differently.

It is easy to see that the justification property relates the
commit decision to the yes votes, while the obligation
property eliminates the trivial and useless solution where
all processes would always decide abort. Actually, this
property defines what is a ‘‘good’’ run. It is a run in which
all the processes want to commit (they voted yes) and the

environment behaves correctly (no process crashes). The
decision can only be commit in good runs.

As the reader can see, a major difference between the
specification of consensus and the specification of NBAC
lies in the fact that the latter mentions explicitly process
crashes occurring during a protocol execution.

An Appropriate Failure Detector

Solving NBAC in the FLP model requires the model to be
enriched with appropriate failure detectors. Such failure
detectors are studied and investigated in Refs. 22 and 23.
We consider here timeless failure detectors, i.e., failure
detectors that do not provide information on when exactly
(in the sense of global time) failures occurred. (Let us
notice that P and ^S define classes of timeless failure
detectors.)

To address this question, a failure detector class,
denoted ?P and called the class of anonymously perfect
failure detectors, has been proposed in Ref. 23. This class
is defined as follows:

� Anonymous completeness: If a crash occurs, eventually
every correct process is permanently informed that
some crash occurred.

� Anonymous accuracy: No crash is detected unless some
process crashed.

The class of failure detectors denoted ?Pþ^S includes all
the failure detectors that satisfy both ?P and ^S. In the
following, a failure detector module of that class is repre-
sented at pi as a boolean variable ap_ flagi (‘‘approximate
flag’’) that is true iff a crash is detected.

Figure 3 describes an NBAC protocol based on a fail-
ure detector of ?P þ ^S. This protocol actually reduces
NBAC to consensus (which, as we have seen, can be solved
in the FLP model enriched with ^S when t < n/2). The
protocol is pretty simple. From a methodological point of
view, it is interesting to see how each of ?P and ^S are
used: the first is for ensuring the validity of NBAC, the
second to be able to use the subroutine consensus protocol.

The weakest failure detector to solve the NBAC problem
has been investigated and solved in Ref. 22. That failure
detector, denoted ðC; ?PÞ, has a hierarchical structure. It is
made up of two components (c and ?P), which means that at
any time it outputs a pair of values, one related to c, the
other one related to ?P. The failure detector c is in turn
composed of three failure detector components V, S (see
below), and a new instance of ?P. It initially outputs the
default value ?, and after some finite time behaves as
the pair ðV;SÞ at all processes, or (only in case a failure
has previously occurred) it may behave as ?P at all pro-
cesses. (The switch from ? to ðV;SÞ or ?P need not occur
simultaneously at all processes, but the same choice is
made at all processes. It is important to note that the choice
from ? to ?P is allowable only if a crash has occurred.
Moreover, if a failure occurs, any of the switches from ? to
?P or ðV;SÞ can occur.7)

6The difficult construction is the other one: solving interactive
consistency from a perfect failure detector (20,21).

Figure 2. From interactive consistency to a perfect failure
detector (20).

7This means that, after a finite time, ðC; ?PÞ behaves as (?P, ?P) or
as ððV;SÞ; ?PÞ.

FAILURE DETECTORS FOR ASYNCHRONOUS DISTRIBUTED SYSTEMS: AN INTRODUCTION 5



IMPLEMENTING QUIESCENT COMMUNICATION

This section continues our visit with the failure detector
concept by considering the problem that consists of imple-
menting quiescent communication despite process crashes
and fair lossy links, i.e., in the FLL model (24).

The Quiescence Problem

Considering two processes pi and pj that do not crash
connected by a fair lossy link, a basic communication
problem consists in building a reliable link on top of that
fair lossy link. This problem is well known, and basic
mechanisms such as retransmission and acknowledgments
allow it to be solved. Retransmission allows message losses
to be tolerated, while acknowledgments allow their retrans-
mission to be eventually stopped. When a receiver receives
a message m, it sends back ack(m), and for each message m
it wants to send, the sender repeatedly resends it until it
gets an ack(m). This simple protocol is quiescent in the
sense that, after some time, no process sends or receives
messages related to the transmission of m.

Let us now consider the case where the receiver pj can
crash. In this case, it is possible that pj crashes before
receiving m and the sender will consequently send copies
of m forever. The protocol is no longer quiescent. So, the
problem is to provide quiescent implementations of com-
munication primitives in the FLL model. This problem is
addressed and solved in Ref. 24. This article first shows that
the quiescent communication problem cannot be solved in a
pure FLL model. To solve it, that model has to be appro-
priately enriched with a failure detector. This is not at all
counter-intuitive since, to stop retransmitting a message,
the sender has to know—in a way or another—whether the
receiver has crashed.

Ref. 24 shows that the weakest class of failure detectors
solving the quiescent communication problem is the class of
eventually perfect failure detectors, i.e., the failure detectors
that, after some unknown but finite time, suspect all the
crashed processes and only them. Unfortunately, such a
failure detector cannot be implemented in FLL. So, the
authors investigated another class of implementable failure
detectors capable of providing quiescent communication pro-
tocols. They called it the class of heartbeat failure detectors.

A Heartbeat Failure Detector

A heartbeat failure detector outputs at each process pi an
array HBi[1��n] of non-decreasing counters satisfying the
following properties:

� HB-completeness: If pj crashes, then HBi [j] stops
increasing.

� HB-accuracy: If pj is correct, then HBi [j] never stops
increasing.

As we can see, heartbeat failure detectors can be imple-
mented, but their implementation is not quiescent. In that
sense these failure detectors allow the non-quiescent part of
a communication protocol to be isolated. Moreover, the use
of a heartbeat failure detector favors design modularity and
eases correctness proofs. Additionally, a single heartbeat
failure detector ‘‘service’’ can be used by several upper layer
applications.

A Quiescent Implementation

Figure 4 presents a quiescent protocol providing a reliable
link in an FLL system model equipped with a heartbeat
failure detector. The protocol on the sender side provides an
implementation of the SEND() primitive invoked by the
upper layer application. To that end, it uses the send()
primitive provided by the underlying communication layer.
Similarly, on the receiver side, RECEIVE() notifies the upper
layer that a new message has arrived, while receive() is
used to receive a message from the underlying communica-
tion layer. The protocol is particularly simple and self-
explanatory. The seqi variable (initialized to 0) is used by
the sender as a sequence number generator. It is easy to see
that, after some unknown but finite time, pi either receives
ack(m) (due to the fairness of the underlying channel) or
stops retransmitting as HBi [j] no longer increases (when pj

has crashed).
This protocol shows an important difference between a

quiescent protocol and a terminating protocol. The proto-
col described in Fig. 4 is quiescent as for each message m
sent by pi to pj, there is a time after which no more
protocol messages are exchanged. However, this protocol
is not terminating. This is because, until it receives
ack(m), pi has no means to know whether it has to
retransmit m. If pj crashes and all ack(m) it sent before
are lost, pi will never terminate the task repeat_send
(m, seqi). The reader can observe that this is the best
that can be done. This important difference is discussed in
detail in Ref. 25.

Failure Detectors in Synchronous Systems

While atomic broadcast, consensus, NBAC, etc. cannot be
solved in the FLP computation model, they can be solved
in synchronous systems, i.e., in systems where there are

Figure 3. A simple ?P þ^S-based NBAC protocol (t < n/2) (23).

.

6 FAILURE DETECTORS FOR ASYNCHRONOUS DISTRIBUTED SYSTEMS: AN INTRODUCTION



bounds on processing time and message transfer delay. So,
failure detectors are useless in these systems from a
decidability point of view. They add no computational
power. Nevertheless, failure detectors suited to synchro-
nous systems have recently been introduced. Their aim is
to help design more efficient protocols, i.e., protocols with
a ‘‘best case’’ time complexity that cannot be attained in
pure synchronous systems. To illustrate this idea, we
show here how fast failure detectors can be used to expe-
dite consensus in synchronous systems (26).

Synchronous System Model

As previously mentioned, a synchronous systems is char-
acterized by the existence of a bound on the time it takes to
receive and process a message, and the fact that this bound
is known by the processes. In order to simplify the pre-
sentation and without loss of generality, we assume in the
following that local computations take no time and transfer
delays are upper bounded by D. Thus, a message sent at
time t is not received after t þ D (D-timeliness). The links
are reliable (no creation, duplication, or loss). Moreover,
processes have access to a common clock.

The combination of D-timeliness and no-loss proper-
ties with the possibility of process crashes makes possible
the following behaviors when, at time t, a process pi sends
a message m to processes pj and pk. If pi does not crash at
time t, both pj and pk receive m by time t þ D. However, if
p crashes at time t, different scenarios are possible.
Namely, it is possible that neither pj nor pk receives m,
or that only one of them receives m (by time t þ D) while
the other does not receive it, or that both of them receive
m (by time t þ D).

Fast Failure Detectors

Such failure detectors have been introduced in Ref. 26. A
fast perfect failure detector provides the processes pi with
sets suspectedi that satisfy the following properties (where
d < D):

� d-Timely completeness. If a process pj crashes at time t,
then, by time t + d, every alive process suspects it perma-
nently.

� Strong accuracy. No process is suspected before it
crashes.

Let us observe that, if a process crashes between times t and
t þ d, then some, but not necessarily all, processes may
suspect it at t þ d.

As indicated in Ref. 26, fast failure detectors can be
implemented with specialized hardware (with provides
d << D). From a user point of view (the one in which we
are interested here), they can be used to attain time com-
plexity lower bounds that are better than what can be
attained in a pure synchronous system.

To illustrate this, let us consider the fast failure
detector-based synchronous consensus protocol described
in Fig. 5 (26). This protocol enjoys the following early
deciding property. Started at time T ¼ 0, it allows the
processes to decide by time Dþ fd (let us remember that f is
the actual number of process crashes). Thus, its time
complexity is D þ fd, which is much better than the
best that can be done without using failure detectors,
namely, minð f þ 2; tþ 1ÞD.

Let us now describe in detail the behavior of a process
pi. Let us first observe that, during the time period [0, (i�
1)d), pi can only receive messages. Then, at time (i � 1)d,
if pi suspects all the processes with a smaller id, it sends
its current estimate of the decision value (esti) to all the
processes. When a process pi receives an estimate value
(est), it updates its own estimate (esti) only if it is coming
from a process whose id is larger than maxi (a local
variable initialized to a value smaller than any id). In
that way, the successive values of esti are coming from
processes with increasing ids. Finally, at times
ð j� 1ÞdþD, for j ¼ 1; . . . ;n, pi decides if it trusts the
corresponding process pj. A proof of the protocol can be
found in Ref. 26. It is easy to see that the processes decide
by D time units when the process p1 does not crash (in that
case they decide the value v1 proposed by p1). If p1 crashes
while p2 does not, they decide by time d þ D; according to

Figure 4. A quiescent implementation of a reliable link (24).

FAILURE DETECTORS FOR ASYNCHRONOUS DISTRIBUTED SYSTEMS: AN INTRODUCTION 7



the failure pattern, the decided value is the value v1 pro-
posed by p1 or the value v2 proposed by p2(it is the value v1

proposed by p1, if p1 succeeded in sending v1 to p2). Etc.

ADDITIONAL REMARKS

Other problems. In addition to the previous distributed
computing problems that we have shortly visited, the fail-
ure detector approach has been used to circumvent other
impossibility results. We list here two of them.

The first is the construction of a reliable atomic register
in the FLP model. It has been shown that such a construc-
tion is possible if and only if t < n/2. Intuitively, the
majority of correct processes assumption can be used to
ensure that the last value8 of the register can always be
accessed (27). A natural question is then: ‘‘Which is the
weakest failure detector to implement an atomic register
in the FLP model when n/2� t< n (i.e., when any number
of processes can crash)?’’ This question is answered in
Ref. 22 with the failure detector denoted S, and called the
quorum failure detector. That failure detector outputs a
set trustedi at each process pi (the value of each of these
sets can change with time). Let trustedt

i be the value of
trustedi at time t. Intuitively, trustedi contains a set of
processes that pi currently trusts as being alive. More
formally, the sets trustedi, 1 � i � n, satisfy the following
properties:

� Safety: 8 i; j; t; t0 : trustedt
i \ trustedt0

i 6¼ u.

� Liveness:There is a time after which, for any process pi that

has not crashed, trustedi contains only correct processes.

So, S provides the processes with intersecting sets, and
eventually each of these sets contains only correct pro-
cesses.

S-based algorithms building an atomic register are
described in Refs. 28 and 29. (Interestingly, S can be built
in the FLP model when t< n/2. This is not at all surprising
as the atomic register problem can be solved in the same
context without the help of a failure detector.) For the
interested reader, let us mention that a protocol solving
the consensus problem, despite up to t � n crashes, in the
FLP model enriched with both S and ^S is described in
Refs. 30.

The second problem we mention here is related to com-
munication, namely the design of a uniform reliable broad-
cast primitive. This primitive allows the processes to
broadcast messages, and it ensures that (1) at least the
messages broadcast by the correct processes are delivered
to all the correct processes, and (2) if a process (correct or
faulty) delivers a message m, then all correct processes
deliver m. So, this primitive ensures that no message from a
correct process is ‘‘lost,’’ and that no message delivered by a
process is missed by a correct processes. The correct pro-
cesses deliver the same set of messages, and a faulty process
delivers a subset of it.

As previously mentioned, this problem can be easily
solved in the FLP model when t < n/2 and requires addi-
tional assumptions when n/2 � t < n. The main difficulty
lies in ensuring item (2). The interested reader will find in
Ref. 31 an appropriate (optimal) failure detector and a
uniform reliable broadcast protocol based on such a failure
detector. For the interested reader, a uniform reliable
broadcast protocol that additionally satisfies the quies-
cence property is described in Refs. 14 and 32.

Other failure detectors. Other failure detectors have
been proposed. One of the most well known is the eventual
leader failure detector, denoted V (9). That failure detector
provides the processes with a function leader satisfying the
following properties:

� Validity: Each invocation of leader returns a process
name.

� Eventual Leadership:There is a time t and a correct process
p such that, after t, every invocation of leader by a correct
process returns p.

A failure detector of the class V actually provides the
processes with an eventual leader election capability. But,
let us notice that there is no knowledge of when the leader
is elected. This means that several leaders can coexist
during an arbitrarily long period of time, and there is no
way for the processes to learn when this ‘‘confusing’’
period is over.

V-based consensus protocols are described in Refs. 33
and 34. The requirement t < n/2 is necessary for such
protocols (3). Moreover, it has been shown that V and
^S have the same computational power (32,35). No one
allows the solution of a problem that could be solved with-
out the other.

Consensus is a particular case of a more general pro-
blem, namely the k-set agreement problem. In that

Figure 5. Synchronous consensus with a fast failure detector (26).

8‘‘Last’’ refers here to physical time, as the consistency criterion
considered for the register is atomicity.

8 FAILURE DETECTORS FOR ASYNCHRONOUS DISTRIBUTED SYSTEMS: AN INTRODUCTION



problem, the processes can decide up to k different (pro-
posed) values. Consensus is consequently a 1-set agree-
ment. The weakest failure detector to solve the k-set
agreement problem has been investigated in Ref. 36.

On the methodology. Since the implementation of
some failure detectors (e.g., eventually accurate failure
detectors such as ^S) can be only approximate during
some periods (when the underlying system is unstable),
it is interesting to use a failure detector only in ‘‘extreme’’
cases, which means that the use of a failure detector has to
be avoided whenever possible.

Considering the atomic broadcast problem, several
articles (37–39) have provided atomic broadcast imple-
mentations that use a failure detector-based consensus
black box only in extreme cases. Such protocols are said to
be thrifty (or non-trivial) with respect to the underlying
oracle.

A few references. The reader interested in the imple-
mentation of failure detectors should consult the following
references (9–11, 13, 40–44). Protocols implementing fail-
ure detectors of the class V can be found in Refs. 12,40,45
and 46. The reader interested in the classification of dis-
tributed computing problems in presence of failures can
consult Refs. 47–49. The reader interested in the weakest
failure detector classes to solve some fundamental distrib-
uted computing problems can consult Refs. 9 and 22. A class
of failure detectors (and related problems) that can be
implemented in asynchronous systems is presented in
Ref. 50.

Random oracles have also been investigated to solve
distributed computing problems in the presence of crash
failures (51,52). A combination of random oracles with
failure detectors is addressed in Refs. 53–55.

The condition-based approach to solve agreement pro-
blems consists in characterizing the largest set of input
vectors for which it is possible to solve the problem (56). As a
‘‘trivial’’ example, we can consider the case where we know
that more than a majority of processes do propose the same
value. It is easy to solve consensus for such input vectors
despite one process crash. Roughly speaking, a condition-
based protocol solves the corresponding agreement pro-
blem each time the input vector belongs to the condition
(or when there are no failures), and it does its best to
terminate when the input vector does not belong to the
condition and there are failures. Very recently, a new class
of failure detectors it has been proposed that allows com-
bining the power of conditions with the information on
failures required to solve agreement problems (54).

CONCLUSION

The failure detector approach was introduced by Chandra
and Toueg. Initially designed for asynchronous systems, it
allows a statement of the weakest assumptions that have to
be added to these systems in order to solve problems that
otherwise could not be solved. So, in this type of system,
they allow the barrier separating impossibility and decid-
ability to be crossed. From a more practical software engi-
neering point of view, they strongly favor a modular
approach (they allow hiding the timing assumptions

needed to solve problems that are otherwise impossible
to solve in pure asynchronous systems). Failure detectors
have then been extended to synchronous systems. In these
systems, they allow the attainment of time complexity
lower bounds that could not be attained in purely synchro-
nous systems.

BIBLIOGRAPHY

1. L. Lamport, Proving the correctness of multiprocess programs,
IEEE Trans. Soft. Engineer., 3(2): 125–143, 1977.

2. M. Raynal, Detecting crash failures in asynchronous systems:
what? why? how?Proc. Int. Conference on Dependable Systems
and Networks (DSN’04), Florence, Italy, 2004.

3. T. D. Chandra and S. Toueg, Unreliable failure detectors for
reliable distributed systems, J. ACM, 43(2): 225–267, 1996.
(First version published in the proceedings of the 10th ACM
Symposium on Principles of Distributed Computing, 1991.)

4. J. E. Hopcroft and J. D. Ullman, Introduction to Automata
Theory, Languages and Computation, Reading, MA: Addison
Wesley, 1979.

5. M. J. Fischer, N. Lynch, and M. S. Paterson, Impossibility of
distributed consensus with one faulty process, J. ACM, 32 (2):
374–382, 1985.

6. D. Powell, Failure mode assumptions and assumption cover-
age, Proc. of the 22nd Int’l Symposium on Fault-Tolerant
Computing (FTCS-22), Boston, MA, 1992, pp. 386–395.

7. C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, A rea-
listic look at failure detectors, Proc. IEEE Inter. Conference on
Dependable Systems and Networks (DSN’02), Washington D.
C., 2002, pp. 345–352.

8. R. Guerraoui, Indulgent algorithms, Proc. 19th ACM Sympo-
sium on Principles of Distributed Computing, (PODC’00),
Portland, OR, 2000, pp. 289–298.

9. T. D. Chandra, V. Hadzilacos, and S. Toueg, The weakest
failure detector for solving consensus, J. ACM, 43(4): 685–
722, 1996.

10. C. Fetzer, M. Raynal, and F. Tronel, An adaptive failure
detection protocol, Proc. 8th IEEE Pacific Rim Int. Symposium
on Dependable Computing (PRDC’01), Seoul, Korea, 2001, pp.
146–153.

11. I. Gupta, T. D. Chandra, and G. S. Goldszmidt, On scalable and
efficient distributed failure detectors, Proc. 20th ACM Sympo-
sium on Principles of Distributed Computing (PODC’01),
Newport, RI, 2001, pp. 170–179.

12. M. Larrea, A. Fernández, and S. Arèvalo, Efficient algorithms
to implement unreliable failure detectors in partially synchro-
nous systems, Proc. 13th Symposium on Distributed Comput-
ing (DISC’99), Bratislava (Slovakia), Berlin: Springer Verlag
LNCS #1693, 1999, pp. 34–48.

13. M. Larrea, A. Fernández, and S. Arèvalo, Optimal implemen-
tation of the weakest failure detector for solving consensus,
Proc. 19th Symposium on Reliable Distributed Systems
(SRDS’00), Nuremberg, Germany, 2000, pp. 52–60.

14. A. Mostefaoui, E. Mourgaya, and M. Raynal, Asynchronous
implementation of failure detectors, Proc. Int. IEEE Confer-
ence on Dependable Systems and Networks (DSN’03), San
Francisco, CA, 2003, pp. 351–360.

15. A. Mostefaoui and M. Raynal, Solving consensus using
Chandra-Toueg’s unreliable failure detectors: a general
quorum-based approach, Proc. 13th Symp. on DIStributed

FAILURE DETECTORS FOR ASYNCHRONOUS DISTRIBUTED SYSTEMS: AN INTRODUCTION 9



Computing (DISC’99), Berlin: Springer Verlag LNCS #1693,
Bratislava, Slovakia, 1999, pp. 49–63.

16. M. Hurfin, A. Mostefaoui, and M. Raynal, A versatile family of
consensus protocols based on Chandra-Toueg’s unreliable fail-
ure detectors, IEEE Trans. Comp., 51(4): 395–408, 2002.

17. M. Hurfin and M. Raynal, A simple and fast asynchronous
consensus protocol based on a weak failure detector, Distrib.
Comput., 12(4): 209–223, 1999.

18. A. Schiper, Early consensus in an asynchronous system with a
weak failure detector, Distrib. Comput., 10: 149–157, 1997.

19. L. Pease, R. Shostak, and L. Lamport, Reaching agreement in
presence of faults, J. ACM, 27(2): 228–234, 1980.

20. J.-M. Hélary, M. Hurfin, A. Mostefaoui, M. Raynal, and F.
Tronel, Computing global functions in asynchronous distrib-
uted systems with process crashes, IEEE Trans. Par. Distrib.
Syst., 11(9): 897–909, 2000.

21. C. Delporte-Gallet, H. Fauconnier, Helary J.-M., and M.
Raynal, Early stopping in global data computation, IEEE
Trans. Parallel Distrib. Syst., 14(9): 909–921, 2003.

22. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V.
Hadzilacos, P. Kouznetsov, and S. Toueg, The weakest failure
detetors to solve certain fundamental problems in distributed
computing, Proc. 23h ACM Symposium on Principles of Dis-
tributed Computing (PODC’04), St-John’s, Newfoundland,
Canada, 2004, pp. 338–346.

23. R. Guerraoui, Non-blocking atomic commit in asynchronous
distributed systems with failure detectors, Distrib. Comput.,
15: 17–25, 2002.

24. M. K. Aguilera, W. Chen, and S. Toueg, On quiescent reliable
communication, SIAM J. Comput., 29(6): 2040–2073, 2000.

25. R. Koo and S. Toueg, Effects of message loss on the termination
of distributed protocols, Informat. Proc. Lett.27: 181–188, 1987.

26. M. K. Aguilera, G. Le Lann, and S. Toueg, On the impact of fast
failure detectors on real-time fault-tolerant systems, Proc. 16th
Symposium on Distributed Computing (DISC’02), Berlin:
Springer-Verlag LNCS #2508, 2002, pp. 354–369.

27. H. Attiya and J. Welch, Distributed Computing: Funda-
mentals, Simulations and Advanced Topics, New York:
McGraw-Hill, 1988.

28. C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, Failure
detection lower bounds on registers and consensus, Proc. 16th
Symposium on Distributed Computing (DISC’02), Berlin:
Springer-Verlag LNCS #2508, 2002, pp. 237–251.

29. R. Friedman, A. Mostefaoui, and M. Raynal, Asynchronous
bounded lifetime failure detectors, Informat. Proces. Lett., 94
(2): 85–91, 2005.

30. R. Friedman, A. Mostefaoui, and M. Raynal, A weakest failure
detector-based asynchronous consensus protocol for f < n,
Informat. Proces. Lett., 90(1): 39–46, 2004.

31. M. K. Aguilera, S. Toueg, and B. Deianov, Revisiting the
weakest failure detector for uniform reliable broadcast, Proc.
13th Int. Symposium on DIStributed Computing (DISC’99),
Berlin: Springer-Verlag LNCS #1693, 1999, pp. 21–34.

32. M. Raynal, Quiescent uniform reliable broadcast as an intro-
duction to failure detector oracles, Proc. 6th Int. Conference on
Parallel Computing Technologies (PaCT’01), Novosibirsk,
Springer Verlag LNCS #2127, 2001, pp. 98–111.

33. R. Guerraoui and M. Raynal, The information structure of
indulgent consensus, IEEE Trans. Comput., 53(4): 453–466,
2004.

34. A. Mostefaoui and M. Raynal, Leader-based consensus,
Parallel Proc. Lett., 11(1): 95–107, 2001.

35. F. Chu, Reducing V to ^W, Informat. Process. Lett., 76(6):
293–298, 1998.

36. P. Zielińsky, Anti-V: the weakest failure detector for set agree-
ment, Tech Report #694, University of Cambridge, UK,
2007.

37. M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S.
Toueg, Thrifty generic broadcast, Proc. 14th Symposium on
Distributed Computing (DISC’00), Berlin, Springer-Verlag
LNCS #1914, pp. 268–282, 2000.

38. A. Mostefaoui and M. Raynal, Low-cost consensus-based
atomic broadcast, 7th IEEE Pacific Rim Int’l Symposium on
Dependable Computing (PRDC’2000), IEEE Computer Society
Press, UCLA, Los Angeles, CA, 2000, pp. 45–52.

39. F. Pedone and A. Schiper, Handling message semantics with
generic broadcast protocols, Distrib. Comput., 15(2): 97–107,
2002.

40. M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S.
Toueg, On implementing V with weak reliability and syn-
chrony assumptions Proc. 22th ACM Symposium on Principles
of Distributed Computing (PODC’03), Boston, MA, 2003, pp.
306–314.

41. M. Bertier, O. Marin, and P. Sens, Implementation and per-
formance evaluation of an adaptable failure detector, Proc. Int.
IEEE Conference on Dependable Systems and Networks
(DSN’02), Washington, D. C., 2002, pp. 354–363.

42. W. Chen, S. Toueg, and M. K. Aguilera, On the quality of service
of failure detectors, IEEE Trans. Comput., 51(5): 561–580,
2002.

43. A. Mostefaoui, D. Powell, and M. Raynal, A hybrid approach for
building eventually accurate failure detectors, 10th IEEE
Pacific Rim Int. Symposium on Dependable Computing
(PRDC’2004), Papeete, Tahiti, France, 2004, pp. 57–65.

44. M. Raynal and F. Tronel, Group membership failure detection:
a simple protocol and its probabilistic analysis, Distrib. Syst.
Engineer. J., 6 (3): 95–102, 1999.

45. M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S.
Toueg, Communication-efficient leader election and consensus
with limited link synchrony, Proc. 23th ACM Symposium on
Principles of Distributed Computing (PODC’04), St-John’s,
Newfoundland, Canada, 2004, pp. 328–337.

46. A. Mostefaoui, M. Raynal, and C. Travers, Time-free and
timer-based assumptions can be combined to get eventual
leadership, IEEE Trans. Parall. Distrib. Syst., 17(7): 656–
666, 2006.

47. C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, Shared
memory vs message passing, Tech Report IC/2003/77, EPFL,
Lausanne, December 2003.

48. E. Fromentin, M. Raynal, and F. Tronel, On classes of problems
in asynchronous distributed systems with process crashes,
19th IEEE Int. Conf. on Distributed Computing Systems
(ICDCS’99), Austin, TX, 1999, pp. 470–477.

49. V. Hadzilacos and S. Toueg, Reliable broadcast and related
problems, In S. Mullender (ed.), Distributed Systems,
New York: ACM Press, 1993, pp. 97–145.

50. V. K. Garg and J. R. Mitchell, Implementable failure detectors
in asynchronous systems, Proc. 18th Int’l Conference on Foun-
dations of Software Technology and Theoretical Computer
Science (F-ST & TCS’98), Chennai, India, Berlin: Springer
Verlag LNCS #1530, 1998.

51. M. Ben-Or, Another advantage of free choice: completely asyn-
chronous agreement protocols, 2nd ACM Symposium on Prin-
ciples of Distributed Computing, (PODC’83), Montréal,
Canada, 1983, pp. 27–30.

10 FAILURE DETECTORS FOR ASYNCHRONOUS DISTRIBUTED SYSTEMS: AN INTRODUCTION



52. M. Rabin, Randomized byzantine generals, Proc. 24th IEEE
Symposium on Foundations of Computer Science (FOCS’83),
Los Alamitos, CA, 1983, pp. 116–124.

53. M. K. Aguilera and S. Toueg, Failure detection and randomiza-
tion: a hybrid approach to solve consensus, SIAM J. Comput.,
28(3): 890–903, 1998.

54. A. Mostefaoui, S. Rajsbaum, and M. Raynal, Versatile and
modular consensus protocol, Int. IEEE/IFIP Conf. on Depend-
able Systems and Networks (DSN’02), Washington, DC, 2002,
pp. 364–373.

55. A. Mostefaoui, M. Raynal, and F. Tronel, The best of both
worlds: a hybrid approach to solve consensus, Proc. Int.
Conference on Dependable Systems and Networks (DSN’00),
New York City, 2000, pp. 513–522.

56. A. Mostefaoui, S. Rajsbaum, and M. Raynal, Conditions on
input vectors for consensus solvability in asynchronous dis-
tributed systems, J. ACM, 50(6): 922–954, 2003.

57. A. Mostefaoui, S. Rajsbaum, and M. Raynal, The combined
power of conditions and information on failures to solve

asynchronous set agreement, 24th ACM SIGACT-SIGOPS
Int. Symposium on Principles of Distributed Computing
(PODC’05), Las Vegas, NV, 2005, pp. 179–188.

FURTHER READING

H. Attiya, A. Bar-Noy, and D. Dolev, Sharing memory robustly in
message passing systems, J. ACM, 42(1): 121–132, 1995.

M. Chor and C. Dwork, Randomization in byzantine agreement,
Adv. Comp. Res., 5: 443–497, 1989.

A. Mostefaoui, E. Mourgaya, and M. Raynal, An introduction to
oracles for asynchronous distributed systems, Fut. Generat.
Comput. Syst., 18(6): 757–767, 2002.

MICHEL RAYNAL

IRISA, Université de Rennes
Rennes Cedex, France

FAILURE DETECTORS FOR ASYNCHRONOUS DISTRIBUTED SYSTEMS: AN INTRODUCTION 11



G

GRADIENT-BASED OPTIMIZATION
TECHNIQUES FOR DISCRETE EVENT SYSTEMS
SIMULATION

INTRODUCTION

Often, decision makers shy away from system simulation
modeling as a tool because of the prohibitive computa-
tional cost of generating random realizations. The devel-
opment, in recent years, of efficient ‘‘single-run’’
approaches, as well as dramatically reduced computer
cost through improved hardware, make simulation
more attractive. Now that the roadblocks have been eased,
a new awareness of the prescriptive simulation modeling
applications, such as optimization, goal-seeking, and con-
trolling of the prescribed design input values, is needed.
This article brings together the new approaches to pre-
scriptive simulation modeling.

Discrete event systems simulation modeling has been an
important and effective technique in describing systems in
several areas, such as business and engineering. Simula-
tion modeling is an effective way of pretesting proposed
systems, plans, or policies, before developing expensive
prototypes, field tests, or actual implementations.

Many human-made systems can be modeled as discrete
event systems (DESs); examples are computer systems,
communication networks, flexible manufacturing systems,
production assembly lines, and traffic transportation sys-
tems. DESs evolve with the occurrence of discrete events,
such as the arrival of a job or the completion of a task, in
contrast with continuous dynamic processes, such as aero-
space vehicles, which are primarily represented by differ-
ential equations. Because of the complex dynamics that
result from stochastic interactions of such discrete events
over time, the tasks of performance analysis and optimiza-
tion of DES can be difficult. At the same time, because such
systems are becoming more widespread as a result of
modern technological advances, it is important to have
tools for analyzing and optimizing the parameters of these
systems.

Analyzing complex DESs often requires computer simu-
lation. In these systems, the objective function may not be
expressible as an explicit function of the input parameters;
rather, it involves some performance measures of the sys-
tem whose values can be found only by running the simula-
tion model or by observing the actual system. However,
because of the increasingly large size and inherent com-
plexity of most human-made systems, purely analytical
means are often insufficient for optimization. In these
cases, simulation is an alternative; its chief advantage is
its generality applicability, and its primary disadvantage is
its cost in terms of time and money. Although the price for
computing resources continues to dramatically decrease,
only a statistical estimate as opposed to an exact solution
can be obtained. For practical purposes, a statistical esti-
mate derived from a simulation is sufficient.

These human-made DESs are costly, and therefore it is
important to operate them as efficiently as possible. These
high costs make it necessary to find more efficient means of
conducting simulation and optimizing its output. Consider
optimizing an objective function with respect to a set of
continuous and/or discrete controllable parameters subject
to some constraints.

In almost all simulation models, an expected value can
express the system’s performance. Let

JðuÞ ¼ EfL½XðuÞ�g ð1Þ

be the expected steady-state performance measure of a
stochastic system. For the transient period analysis, see
Equation (1). In Equation (1), X(u) is a random vector with a
known joint probability density function (pdf) f(x;u),
depending on a decision parameter u which could be a
vector u2Q�RN, and L[X(u)] is the performance function.
For example, in a queuing system, L[X(u)] might be the
steady-state waiting time in the system, f(x;u) the under-
lying pdf of the service time, and u the service rate.

Simulation is an option when L[X(u)] is either unknown
or too complicated to calculate analytically. An estimator of
J(u) for a given value u¼u0 is obtained by averaging over n
independent replications; that is

Ĵðu0Þ ¼
Xn

i¼ 1

L½Xiðu0Þ�=n ð2Þ

where xi, i¼1, 2,. . . , n are random vector realizations, and n
is the sample size (number of independent replications,
regenerative cycle, batches, etc.). This equation is an
asymptotically unbiased estimator and converges to J(u)
by the law of large numbers. The goal is to optimize J(u),
subject to u 2 Q

Figure 1 shows a general scheme to integrate simulation
with gradient-based optimization techniques.

The optimizer and simulator modules are closely
coupled, with the output of each module directly providing
input for the other module. When users specify a perfor-
mance measure J(u) to be optimized, they must also select
one or more of the optimization techniques provided in the
following sections. The simulation begins with the proces-
sing of the initial input parameter u. The output data—an
estimate based on Equation (1) for J(u)—are in turn an
input to the optimizer. The optimizer then generates output
parameter u, which in turn is a new input parameter for the
simulator. This process is performed iteratively until one
reaches a satisfactory solution. A general framework for
integrating simulation and optimization as shown in Fig. 1
is proposed in Ref. 1. The inputs are subdivided into two
categories: controllable inputs and uncontrollable inputs.
For example, in a queuing system, the service rate (m) and
arrival rate (l) are controllable and uncontrollable inputs,
respectively; whereas the expected waiting time in the
system J(l, m) could be the expected system performance
measure.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Descriptive analysis includes problem identification,
problem formulation, data collection and analysis, compu-
ter simulation model development, validation and verifica-
tion, and output analysis.

Prescriptive analysis includes sensitivity estimation.
The traditional approach to obtaining sensitivity informa-
tion (derivative, Hessian, etc.) combines Crude Monte Carlo
estimation with finite ‘‘differencing.’’ This approach is
impractical when each simulation run takes hours of com-
puter time on even the fastest computers. Methods, which
yield enhanced efficiency in estimating sensitivity informa-
tion at little additional computational not simulation cost,
are of great value. In recent years, the first two methods—-
infinitesimal perturbation analysis (PA) and score function
(SF), also known as likelihood ratio (LR)—have been pro-
posed for estimating sensitivity while simulating the nom-
inal system. Combined with appropriate variance reduction
techniques, SF or LR method for sensitivity information
could enlarge substantially the class of optimization and
goal-seeking problems that can be solved.

Optimization is trying to find the best course of action,
for example, optimizing the performance function J over
m. Optimization in simulation has challenged researchers
for many years as shown in Fig. 2.

Traditionally, two approaches have been undertaken for
optimization of simulation. First, when any part of a simula-
tion can be solved analytically, simulation analysis is com-
bined with analytical modeling. Second, attention is focused
on statistical design, such as fractional factorial design
and response surface design. Nowadays, the single-run sen-
sitivity estimation is incorporated in the stochastic algo-
rithms, such as Keifer-Wolfowitz, using PA. In using SF or
LR sensitivity estimate, because the performance J and the
sensitivity are estimated from the same sample, they are
dependent; moreover, the effect of these correlated errors
areusuallysignificant.Therefore,slowerprocedures,suchas
the Robbins-Monro (R-M) algorithm, are more satisfactory.

Goal seeking, or targeting the parameter design pro-
blem, means trying to solve design problems to meet the
target value, that is, to solve the inverse simulation

Figure 1. An optimizer support system.

SIMULATOR 

OPTIMIZER 

Input Data

Begin

Output 

End

Figure 2. A classification of optimization
techniques via simulation.

CONTINUOUS DISCRETE 

Deterministic Search Techniques
Response surface techniques
Simple search techniques   

Pattern Search Techniques   
Conjugate direction search
Coordinate Search   

   Hooke and Jeeves type techniques
   Parallel tangent search 
   Simplex-based techniques 
   Steepeest ascent (descent) 

Probabilistic Search Techniques 
   Adaptive search 
   Random search 

Evolutionary Techniques 
   Genetic technique 
   Simulated annealing 

Stochastic Approximation 
   Kiefer-Wolfowitz type techniques 
   Robbins-Monro type techniques 

Gradiate Surface Method 

   Complete 
   enumeration 

   Random 
   selection 

   Tabu 
   search 

   Complete 
   enumeration 

   Genetic  
   techniques 

   Random selection 

QUALITATIVE 

CONTROLLABLE INPUT PARAMETERS 

2 GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION



problem. The ‘‘goal-seeking’’ problem considers the inverse
question of descriptive simulation; namely, what must be
the controllable input parameter value to achieve a desired
output? A simulation-based approach is to estimate the
derivative of the performance measure function with
respect to the input parameter for a nominal system in a
single simulation run, as shown in Fig. 3.

This estimated derivative is used in first-order local
approximation of the stochastic version of Newton’s root-
finding algorithm to estimate the necessary controllable
input parameter with a desired statistical confidence.

Postprescriptive analysis includes stability and the
what-if analysis. In these analyses, the controllable input
parameters are varied to study stability of the solution and
to measure the responsiveness of the estimated perfor-
mance measure to the change in uncontrollable input para-
meters; that is, to perform the so-called what-if analysis.
Simulation models are often subject to serious errors pro-
pagated from statistical errors in estimating the parameters
of the input distributions. Postprescriptive analysis estab-
lishes confidence in the prescriptive results with respect to
small changes of parameters in the input distributions. It
also provides systematic guidelines for allocating scarce
organizational resources to data-collection and data-refine-
ment activities. For example, this estimator requires only
one sample path to estimates; any number of small changes
in m1 are computed simultaneously from a single simulation
run while simulating the nominal system.

The remainder of the article is organized as follows.
‘‘Gradient Estimation’’ presents an introduction to gradient
estimation. The finite difference (FD), simultaneous pertur-
bation (SP), PA, the SF/LR, and harmonic analysis gradient
estimators are presented in the next four sections, respec-
tively. The next section provides a short comparison among
thesedifferentviewsofgradientestimators.Then, gradient-
based optimization techniques are introduced. Stochastic
approximation techniques are presented next, whereas the
section that follows is devoted to gradient surface methods.
Postoptimality tools are derived in ‘‘Postsolution Analysis.’’
Concluding remarks are given last. All techniques are pre-
sented in English-like format and therefore can be imple-
mented in a variety of operating systems and machines,
which provides unlimited portability.

GRADIENT ESTIMATION

In the design, analysis, and operation of DESs any infor-
mation about the sensitivity or gradient dJ(u)/du is useful
to both engineers and managers. The sensitivity dJ/du can

be used in conjunction with various optimization algo-
rithms whose function is to adjust u gradually until a point
is reached where J(u) is maximized (or minimized). If no
other constraints on u are imposed, then we expect dJ/du¼
0 at this point. A typical algorithm is the R-M stochastic
approximation described by

unþ1 ¼ un þ hnðd J=d uÞu¼ un n ¼ 1; 2; . . . : ð3Þ

where the parameter is adjusted gradually from some
initial value u0 until dJ/du ¼ 0 for some un. The amount
of adjustment is proportional to the value of the derivative
evaluated at u ¼ un, with properly selected coefficients hn,
n ¼ 1, 2,. . .. These coefficients are referred to as step sizes,
scaling factors, or learning rates, which could be any posi-
tive sequence of numbers that converge to zero. In our case,
the derivative is replaced by its estimate (2–6).

The gradient estimate can be used as a subroutine in a
nonlinear programming algorithm, such as the Augmented
Lagrangians method (7), to obtain the optimal solution of
the following stochastic nonlinear program:

Problem P:

min JðuÞ ¼ min E½LðXðuÞÞ�

subject to:

giðuÞ ¼ E Gi½ðXðuÞÞ� � 0; i ¼ j; . . . ;m
h jðuÞ ¼ E Hj½ðXðuÞÞ� ¼ 0; j ¼ I; . . . ; p

The objective function and perhaps some constraints are
not known analytically, so their functional evaluation and
their gradients must be replaced by their estimates via
simulation (2, 4, 5).

FINITE DIFFERENCE (FD)

Suppose that we have a system performance parameterized
random variable L(u) for each u in some interval, say [a, b];
that is, a stochastic process {L(u): u e[a, b]}. For example,
L(u) could be the amount of time that a customer waits in
the system. The parameter u could be the mean service rate
of the server.

Suppose that the measure of interest is E[L(u)] and that
the decision maker is interested in the sensitivity of the
measure with respect to the parameter value. Also, assume
that this measure is differentiable in u on [a, b]. The brute
force FD method consists of the following steps:

SIMULATOR 

The goal-seeker

Initial 

Begin

Output

End

Figure 3. Goal seeking or targeting the parameter
design problem.

GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION 3



Step 1: Generate N sample points

Generate N sample points o1, o2, o3, . . .. oN, using u �
Du for some small Du to generate N realizations. This
task is generally done in simulation by generating N
sequences of pseudo-random numbers. Then N realiza-
tions can be generated for L(u � Du), namely L(u � Du,
o1), L(u � Du, o2), L(u � Du, o3), . . . . L(u � Du, oN). In
other words, the simulation is performed N times with
the parameter set at u � Du.

Step 2: Perform another N simulations

Typically using the same pseudo-random numbers, that
is, using common random variate as a variance reduc-
tion technique (VRT), generate N realizations of:

Lðu þ Du; v1Þ; Lðuþ Du; v2Þ; Lðuþ Du; v3Þ; . . . : Lðu

þ Du; vNÞ:

Step 3: Estimate the derivative

dE½LðuÞ�=du ½S Lðuþ Du; viÞ � S Lð0� Du; viÞ�:=2NDu ð4Þ

where the sums are over i ¼ 1, 2, . . . , N. The estimate
should get better as N gets larger.

The first fact to notice about this estimate is that
it requires 2N simulation runs. If u were a parameter vector
and the decision maker were interested in sensitivity ana-
lysis with respect to each of the components, then 2N
simulations would have to be run for each component of
u. This method is inefficient. The second fact to notice about
this estimate is that it may have a very poor variance, and
it may result in numerical calculation difficulties, because
for very small Du there is not much statistical difference
between L(u þ Du) and L(u � Du), and we are dividing this
difference by a small number. Finally, this estimate is
unbiased for each non-zeroDu, because the slope of a secant
line is approximating the slope of the tangent line. This
result leads to the difficult question of which Du to use. To
minimize the ‘‘secant error,’’ we should use a small Du, but
using such a small value contributes to the variance and
numerical difficulties mentioned above. The well-known
Kiefer-Wolfowitz stochastic approximation algorithm (8) is
based on the FD gradient approximation.

SIMULTANEOUS PERTURBATION (SP)

The SP algorithm introduced by Spall (10, 11) has attracted
considerable attention. SP is based on an easily implemen-
ted and highly efficient gradient approximation that relies
on measurements of the performance function, not on mea-
surements of the gradient of the performance function. The
gradient approximation is based on only twofunction mea-
surements, regardless of the dimension of the gradient
vector u. This finding contrasts with the FD approach,
which requires several function measurements propor-
tional to the dimension of the gradient vector. The funda-
mental (and perhaps surprising) theoretical result is that
under reasonably general conditions, SP and Kiefer-Wolfo-
witz FD-based stochastic approximation (for optimization -
purposes) achieve the same level of statistical accuracy for a

given number of iterations, even though SP uses fewer
function evaluations than FD.

The step-by-step summary below shows how to produce
the gradient estimate.

Step 0: Initialization and Coefficient Selection

Set counter index k equal to 0. Pick an initial guess for the
non-negative coefficients C and for h in the SP gain
sequence

Ck ¼ Cðkþ 1Þ�h ð5Þ

A practicallyeffective (andtheoretically valid) value forh

is 0.101; C may be determined based on prior knowledge
and/or numerical experimentation. In the latter case, C
is approximately equal to the standard deviation (noise)
when running the simulation several times with the
same input, using different random number streams.

Step 1: Generation of a simultaneous perturbation vector

Generate by Monte Carlo a p-dimensional random vec-
tor Dk where p is the dimension of u, and each of the p
components of Dk is independently generated from a
Bernoulli (�1, þ1) distribution with a probability of 1/
2 for each outcome.

Step 2: Performance measure evaluations

Obtain two measurements of the performance function
Jð:Þ based on N realizations of simultaneous perturba-
tion around u: L(u þ Ck Dk) and L(u � Ck Dk) with the Ck

and Dk from Steps 0 and 1.

Step 3: Gradient approximation

Generate the simultaneous perturbation approximation
to the (unknown) p-dimensional gradient of J(u) by
averaging over N:

Jðuþ Ck DkÞ � Jðu� Ck DkÞ
2Ck Dk1

..

.

Jðuþ Ck DkÞ � Jðu� Ck DkÞ
2Ck Dkp

ð6Þ

where Dki is the ith component on the Dk vector (Dki may
be a Bernoulli random variable, as discussed in Step 1).
Note that only the denominators change in the p com-
ponents of the gradient estimation; the numerators
reflect the simultaneous perturbation of all components
of u in contrast to the component-by-component pertur-
bation in the FD gradient approximation.

For SP-based optimization, refer to Ref. 6. SP can be
seriously limited by, for example, the stability constraints
of the system (traffic intensity must remain less than 1 for
steady-state sensitivity estimation).

One-measurement PA analog to Equation (5) is:

Jðuþ CkDkÞ
2Ck Dk1

..

.

Jðuþ Ck DkÞ
2Ck Dkp

ð7Þ

4 GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION



A closely related approach to SP is the random directional
SP. Let dk 2 Rp denote a vector that contains p mutually
independent variables generated by the standard normal
distribution. Then the kth component of random direction
gradient estimate is:

½Jðuþ CkdkÞ � Jðu� CkdkÞ�=2Ck ð8Þ

SP uses two different estimators. A single-run version of SP
is given in Ref. 10.

The following approaches avoid any numerical problems
associated with taking the difference as an approximation
to the gradient; they are based on a single simulation run,
and the methods have the potential for real-time applica-
tions.

PERTURBATION ANALYSIS (PA)

PA computes (roughly) what simulations would have pro-
duced had u been changed to u þ Du without actually
making this change (11, 15). The intuitive idea behind
PA is that a sample path constructed using u is frequently
structurally very similar to the sample path using u þ Du.
A large amount of information is the same for both of them.
It is wasteful to throw this information away and to start
the simulation from scratch with uþ Du. In PA, moreover,
we can let Du ! 0 to get a derivative estimator without
numerical problems.

The effect of a parameter change on the performance
measure is important. However, we would like to realize
this change by keeping the order of events exactly the same.
The perturbations will be so small that only the durations,
not the order, of the states will be affected. This effect
should be observed in three successive stages:

Step 1: How does a change in the value of a parameter vary
the sample durations related to that parameter?

Step 2: How does the change in individual sample duration
reflect itself as a change in a subsequent particular
sample realization?

Step 3: Finally, what is the relationship between the var-
iation of the sample realization and its expected
value?

PA calculates the gradient of performance measure for
every realization o. The value of L(u, o) is obtained by a
simulation run. PA calculates the value of L(u þ Du, o) in
parallel. This statement means that PA calculates all deri-
vatives from a single simulation run. Under mild condi-
tions, for every realizationo, a boundD(o) exists, so that the
PA estimator equals the exact path derivation of the per-
formance measure for all |Du| � D(o). Averaging the PA
estimator over independent replication yields E[dL(u, o)/
du]. PA works by computing a sample path derivative from
the simulated sample path, which is used as an estimate of
E{d[L(u)]/du}. This random variable is the derivative d
[L(u)]/du}, which is the derivative of a random variable. If
this estimator is statistically unbiased, then

Efd½LðuÞ�=dug ¼ d E½LðuÞ�=du ð9Þ

This equation says that unbiasedness corresponds to the
interchange of the operations of differentiation and expec-
tation. Much theory of PA involves finding conditions that
justify this interchange. Now, if the interchangeability
holds, then the estimate of dE[L(u)] / du is given by

dE½LðuÞ�=du ¼ EfdLðuÞ�=dug � S dLðu; viÞ=Ndu ð10Þ

where the sum is over all i ¼ 1, 2,. . ., N, and dL(u, oi) is the
random variable dL(u) / du evaluated at the sample pointoi.
The strong law of large numbers implies that

dE½LðuÞ�=du ¼ lim S dLðu; viÞ�=Ndu as N!1 ð11Þ

where the sum is over all i ¼ 1, 2, 3,. . . N.
Let X(u) be a parameterized family of random variables

with F(x, u) as its cumulative probability distribution func-
tion. Assume F(x, u) is continuously differentiable in x and
u, and for Du> 0, F(x, u)� F(x, uþ Du). We can view X(u) as
the inverse transformation X(u) ¼ F1(U, u) where U is
uniformly distributed on [0, 1]. The random variable
dX(u)/du can now be defined by

dXðuÞ=du ¼ lim
Du!0

½F�1ðv; DuÞ � F�1ðv; uÞ�=Du

¼ dF�1ðv; u=duÞ ð12Þ

for each o e [0, 1] for which this limit exists. Under differ-
entiability properties of F(x, u), it can be shown (16) that

dXðuÞ=du ¼ �f@½FðXðuÞ; uÞ�=@ug=@½FðXðuÞ; uÞ�g=@x ð13Þ

This result is useful because it expresses the derivative of a
random variable as a function of the random variable. Note
that the denominator of the right side of Equation (13) is the
probability density function of X(u). It is also useful to note
that this derivative has the minimum variance among all
possible definitions of the sample path derivative (17).

We have already observed that we can view X(u) as the
inverse transformation X(u) ¼ F�1(U, u) where U is uni-
formly distributed on [0, 1]. In other words, the expectation
may be taken over u 2 [0, 1] instead of x, with u ¼ F(x, u);
that is,

JðuÞ ¼
Z

L½xðu; uÞ�du ð14Þ

The interpretation is that the sample path really depends
on a uniformly distributed random variable over which the
expectation is taken, which specifies another random vari-
able X(U, u), in turn determines the sample function

L[X(U, u)]. If we now differentiate Equation (14) with
respect to u, we get

dJ=du ¼
Z
f@L½xðu; uÞ�=@ug du ¼ Ef@L½xðu; uÞ�=@ug ð15Þ

If the interchange of expectation and differentiation is
allowed, then the sample deviation dL/du is an unbiased
estimator of the performance derivative dJ/du. Note that

GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION 5



the sample derivative can be written as follows:

@L½xðu; uÞ�=@u ¼ @L½xðu; uÞ�=@x� : @xðu; uÞ=@u ð16Þ

This result is useful because it reflects that PA consists of
two parts: perturbation generation [i.e., how changes in u

introduce changes in X(u)], and perturbation propagation
[i.e., how a change in X(u) ultimately affects the sample
function L]. Observe that in this whole process, U (the
underlying random number) is kept fixed (16).

Frequently, a PA estimator of d E [L(u)]/du for a perfor-
mance measure random variable L(u) will fail to be unbiased
or strongly consistent, if it is not the case that L(u) is a
continuous function of u. When this happens, the treatment
involves conditioning on another suitably chosen random
variable K(u). Conditioning tends to ‘‘smooth out’’ disconti-
nuities. Hence, the random variable dE[L(u)|K(u)]/du can be
used as a potential estimator, provided it is a continuous
function of u with probability 1, and if this derivative can be
observed from the sample space. Now, if this estimator is
unbiased, then we have

Efd E½LðuÞjKðuÞ�=dug ¼ d EfE½LðuÞjKðuÞ�=du�g ¼ d E½LðuÞ�=du

Obviously, PA algorithms cannot be used for discrete
parameters. Furthermore, for some systems, the common
probability space derivatives do not give relevant informa-
tion about the derivative of the objective function. For these
systems, the finite difference estimator is used. Generally,
these algorithms are concerned with calculating:

Lðuþ Du; vÞ ¼ h ½z1ðuþ Du; vÞ; . . . ; zNðuþ Du;vÞ�

where a finite o is given. In this case, the function h is not
necessarily the same as the nominal sample path; in fact, it
could be different, because a finite perturbation in the
parameter value often produces a perturbed sample path
that is very different from the nominal sample path. The
conclusion is that, except for some limited systems, the
information on the nominal sample path cannot be used
readily to calculate L(u þ Du, o). Instead, one obtains esti-
mates of E[L(u)] and E[L(u þ Du)], which are to obtained
simultaneously by viewing a simulation as a function of the
system parameters (including u) and a sequence of uniform
random variables into the performance measure L. Chan-
ging the value of u by a small amount is equivalent to using a
slightly different mapping. This method leads to the cut-
and-paste concept, which involves making the sample paths
obtained from different parameter values behave similarly
by appending and cutting pieces of the trajectories appro-
priately. This result allows for obtaining estimates of the
performance measure at different values of the parameter
by running parallel simulations.

Related to the cut-and-paste concept is the standard
clock method. Under the assumption that the times
between events of type i are exponentially distributed
with rate li, events are generated at the rate Sli which
is the maximal rate at which events could possibly occur.
Some of these events will be rejected because of perturba-
tions or infeasibility, which allows for many simulations to
be run in parallel. Several approximations allow the Mar-

kov assumption to be relaxed. The standard clock method is
particularly suited for answering ‘‘what if ’’ questions in
real-time.

SCORE FUNCTION OR LIKELIHOOD RATIO METHOD
(SF/LR)

Using Sðx; uÞ ¼ fðx; uÞ=gðxÞ (the so-called likelihood ratio)
and g(x) as the new probability density function, the per-
formance measure can be rewritten as

JðuÞ ¼
R

LðxÞ fðx; uÞ dx ¼
R

LðxÞSðx; uÞ gðxÞ dx
¼ EgfLðxÞSðx; uÞ�

ð17Þ

The derivative of the performance measure becomes

dJ=du ¼
Z

LðxÞ½@ Sðx; uÞ=@u� gðxÞ dx

¼ Eg½LðxÞ Sðx; uÞ½@ ln fðx; uÞ=@u� ð18Þ

which is the likelihood ratio gradient estimator. The
gradient can be estimated simultaneously, at any number
of different parameter values, in a single-run simulation.
Here L(x) is written instead of L[x(u)] because L, which is a
specific realization of the performance metric, is fixed as
u varies. Thus, this approach is referred to as common
realization. The new density function g(x) is usually
assumed to be of the form g(x) ¼ f(x, u0), where u0 is
some fixed value of the parameter, which is called the
reference parameter. The optimal value of u0, to minimize
the variance of the gradient estimate, is estimated by
simulation (5).

If we set g(x)¼ f(x, u), then it is called the score function
method of estimating the gradient

dJ=du ¼
Z

LðxÞ ½@ fðx; uÞ=@u� dx ð19Þ

provided that the interchange of expectation and differen-
tiation in Equation (18) is allowed (18). Moreover, obser-
ving that

@ ln fðx; uÞ=@u ¼ ½@fðx; uÞ=@ u�=fðx; uÞ

we get, assuming f(x, u) 6¼ 0,

dJ=du ¼
Z

LðxÞ ½@ ln fðx; uÞ=@ u� fðx; uÞdx

¼ EfLðXÞ½@ ln fðX; uÞ=@ u�g ð20Þ

In this way, an alternative unbiased estimator of dJ/du is
obtained. This estimator is known as the SF estimator,
which is sometimes also referred to as the LR estimator.
Again, in this case, the parameter u is viewed as affecting
the probability distribution of values of the sample function
but not the particular value observed. This method must be
contrasted to the PA approach where we view u as affecting
the sample function itself.

Recent work on the SF or LR approach includes Refs. 19
and20.Thebasic idea is thatthegradientof theperformance

6 GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION



measure function, J
0
(u), is expressed as an expectation with

respect to the same distributionas the performance measure
function itself. Therefore, the sensitivity information can be
obtained with little computational (not simulation) cost,
while estimating the performance measure. For example,
a gradient estimate of customer sojourn time in a GI/G/1
queuing system could be

XN
i¼ 1

qi½@ ln fðxi; uÞ=@u�=N ð21Þ

where qi is the sojourn time of the ith customer and f(xi, u) is
the pdf of the service time X with service rate u.

It is well known that the crude form of the SF estimator
suffers from the problem of linear growth in its variance as
the simulation run increases (19). However, in the steady-
state simulation, the variance can be controlled by run
length. Furthermore, information about the variance
may be incorporated into the simulation algorithm. A
recent flurry of activity has attempted to improve the
accuracy of the SF estimates. Under regenerative condi-
tions, the estimator can be modified easily to alleviate this
problem, yet the magnitude of the variance may be large for
queuing systems with heavy traffic intensity. A heuristic
decomposition method of estimating the SF-based sensitiv-
ity is proposed in Ref. 4. The heuristic idea is to treat each
component of the system (e.g., each queue) separately,
which synchronously assumes that individual components
have ’’local’’ regenerative cycles. This approach is promis-
ing, because the estimator remains unbiased and efficient
although the global regenerative cycle is very long.

Now, look at the general (nonregenerative) case. In this
case, any simulation will give a biased estimator of the
gradient, as simulations are necessarily finite. If n (the
length of the simulation) is large enough, then this bias is
negligible. However, as noted earlier, the variance of the SF
sensitivity estimator increases with n; so, a crude SF
estimator is not even approximately consistent. Many
ways can be used to attack this problem. Most variation
in an estimator comes from the score function. The variation
is especially high when all past inputs contribute to the
performance and the scores from all are included. When
batch means are used, the variation reduces by keeping the
length of the batch small.

A second method is to reduce the variance of the score to
such an extent that we can use simulations long enough to
eliminate the bias effectively. This approach is the most
promising. The variance may be reduced further by using
standard VRT, such as importance sampling (5). Finally,
we can simply use many iid replications of the simulation.

As a way to reduce the amount of simulation, the n
observations are divided into k groups, or batches, of m
consecutive observations. Batch means are calculated for
each of the k batches. However, the batches are not truly
independent. The mean-squared error of the resulting sen-
sitivity estimates depends highly on the choice of m, but the
optimal value of m isunknown. The estimate of sensitivity is:

Xn

t¼ 1

Li StðuÞ=n ð22Þ

where n¼ km and St (u) is the score associated with Lt. The
batch size used to obtain this sensitivity estimate will
depend on the autocorrelation structure of the sequence
of the batch performances. The score associated with a
particular performance Lt should be calculated from all
previous inputs on which the performance depends. The
performance will be approximately independent of inputs
that occurred in the past. The more Lt depends on past
inputs, the more inputs should be used in the calculation
of the score and the larger m must be. For example, for an
M/M/1 queue, a reasonable batch length is about 10 times
the expected length of the busy period. Even this amount
leads to large bias for high-traffic intensities. Because m is
not infinite, the estimator will be biased. In steady-state
estimation, the performance depends mainly on recent
inputs, is approximately independent of more remote
inputs, and is completely independent of future inputs.
In this case, a long simulation is run. However, instead
of using the score of all the inputs in the estimate, a
weighted score is used:

Xn

t¼ 1

Lt

Xt�1

i¼0

ai Sðx� i; uÞ=n ð23Þ

with the weights decreasing to 0 as i goes to infinity. Two
weighing schemes have been examined in Ref. 21. The first
is termed the moving batch SF estimate. Its weights are:

ai ¼ 1; for i ¼ 0; . . . ;m� 1
ai ¼ 0; for i ¼ m; . . . ; n� 1

ð24Þ

in other words, only the m most recent inputs are consid-
ered in the score. This gives

Xn

t¼ 1

Lt

Xm�1

i¼ 0

Sðxt�i; uÞ=n ð25Þ

By dropping all but the m most recent inputs, the variance
of the resulting sensitivity estimator is reduced. Thus, it
makes sense to drop the m terms, because for some terms Li

is independent of future inputs, so these terms have an
expectation equal to zero. Moreover, the scores are only
approximately independent of the performance, so that the
expectation of these scores is approximately zero. This
estimate of the gradient is closely related to the batch
means. The equations for these estimates for k batches of
length m, n ¼ km are:

Xk

j¼1

Xim
j¼ði�1Þmþ 1

Li

Xj

t¼ði�1Þmþ 1

Sðxt; uÞ=n ð26Þ

or

Xkþ1

j¼2

Xim
j¼ði�1Þm þ 1

Li

Xj

t¼ði�2Þm þ 1

Sðxt; uÞ=n ð27Þ

In each case, only product terms with nonzero expectations
are included. However, with the moving batch estimate,

GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION 7



each score is calculated from the same number of inputs.
The scores for the first estimate are calculated using from t
to m terms; those of the second estimate are calculated
using from t to 2m terms. Some simulation results for these
estimators are given in Ref. 21, which shows substantial
reduction in variance for both estimators.

A disadvantage of these batch estimates is that they take
somewhat longer to compute than a standard batch esti-
mator. As another alternative, exponential weighing may
be used weights of the form ai¼ ai, for some a <1. Other
possible scores for use with a batch estimate are, for i ¼
1,. . .k, and ði� 1Þ< t � im:

S1tðuÞ ¼
X

Li
St

jðuÞ=n
j ¼ ði� 1Þmþ 1

ð28Þ

S2tðuÞ ¼
X

Li
St

jðuÞ=n
j ¼ ði� 2Þmþ 1

ð29Þ

S3tðuÞ ¼
X

Li
Sim

j ðuÞ=n
j ¼ ði� 1Þmþ 1

ð30Þ

S4tðuÞ ¼
X

Li
Sim

j ðuÞ=n
j ¼ ði� 2Þmþ 1

ð31Þ

In Equation (28), the score is computed from all inputs from
the beginning of the batch to the present observation.
Equation (29) also includes the total score of the previous
batch. The estimate using Equation (30) is the score of the
entire batch, which is a crude type of estimator. Equation
(31) is the sum of the scores of the present and the last batch,
which is also a crude type of estimator. A crude estimate is
expected to do more poorly than these efficient estimates.
The performance at time t is independent of future inputs.
Efficient estimators discard these product terms with expec-
tation zero. The idea behind S2t and S4t is as follows. Adding
the score of the previous batch decreases the bias, at the cost
of increasing the variance. At moderate to high-traffic
intensities, this process will lead to a significant reduction
in the mean squared error. At low intensities, the estimates
are already approximately unbiased; so, the mean square
error will be increased. In the case of the crude estimates,
this should do substantially better than merely doubling the
batch size. With S4t, all the additional terms in the score are
correlated with all the performance estimates in the batch
which is not the case when the batch size is doubled. An
improvement in the efficient estimates is expected, as the
minimum number of terms in the score associated with Lt is
mþ 1 rather than 1. These estimators can be considered as
the method of batch means with a ’’window’’ of variable
width as a function of different estimators using, for exam-
ple, its own score function in that window, up to that
window, or even through the whole process.

Another effective VRT is by conditioning. The idea
behind conditional expectation is simple. If LS is the output
of interest, then E(LS) ¼ E{E{LS|Z)} and Var(LS) ¼
E[Var(LS|Z)] þ Var[E(LS|Z) for any random variable Z

for which the conditional expectation exists. In other words,
Var(LS)� Var[E(LS|Z). An estimator based on E(LS) has a
variance no larger than one based on LS. The approach is to
compute E(LS|Z) analytically and to estimate the expected
value of this quantity using Monte Carlo methods. Score
function estimates of sensitivity are of the form L(x)S(u).
Note that

Eu½LðXÞSðuÞ� ¼ EufEu½LðXÞjSðuÞ�SðuÞg ð32Þ

A new sensitivityestimate can be obtained byestimating the
inner expectation, by generating the inputs X conditionally
on the value of S(u), and then by calculating the outer
expectation. Thus, the estimator based on conditioning
takes the form

Z
LðXjSðuÞ ¼ sÞ s fsðuÞðsÞ ds ð33Þ

where fS(u) (s) is the density of the score function. It may be
necessary to evaluate this integral numerically, using the
quadrature rule (21, and refs. therein). Other conditioning
methods are proposed in Ref. 4.

A control variate is another alternative VRT. Consider
SF estimates of the gradient of J(u). It is natural to con-
sider the efficient score function [Ln(f)]’ as the control
variate. Under some mild regularity conditions, use
E{[dLn(f)/du}]¼ 0. Therefore, as another estimator, Equa-
tion (20) can also be written as:

J0ðuÞ ¼
Z
fLðxÞgf0ðx; uÞ dx ¼ Cov ½LðXÞ; S� ð34Þ

Using the usual estimate for this covariance can lead to
large variance reduction (22). Another alternative is:

J0ðuÞ ¼ E½LðXÞ : S� þ a E½S� ð35Þ

where a could be the optimal linear control a� ¼Cov(L, S)/
Var(S), which can be estimated by substituting the usual
estimates of variance and covariance for the true values.

Note also that the gradient can be written as

J0ðuÞ ¼
Z
fLðxÞg f0ðx; uÞ=fðx; uÞ dx

¼
Z

LðxÞ f0ðx; uÞ
wðx; uÞ; fðx; uÞwðx; uÞdx ð36Þ

The best choice for w is the one proportional to LðxÞ:jf0ðx; uÞj.
This function minimizes the variance of J0(u), but this
optimal w depends on the performance function L(x) which
for most cases is not known in advance. One may use the
empirical version of LðxÞ:jf0ðx; uÞj.

The inherent variability of the SF makes variance reduc-
tion techniques extremely important if SF is to be useful.
We have outlined a few of ways to run a simulation to obtain
a SF estimate of the gradient of the performance measure.
Although the type of simulation being run has a large effect
on the precision of the sensitivity estimate, the precision of
the estimate of performance, which is obtained at the same
time, is insensitive to the type of simulation.

8 GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION



HARMONIC ANALYSIS (HA)

Another strategy for estimating the gradient simulation is
based on the frequency domain method, which differs from
the time domain experiments in that the input parameters
are deterministically varied in sinusoidal patterns during
the simulation run, as opposed to being kept fixed as in the
time domain runs. The range of possible values for each
input factor should be identified. Then the values of each
input factor within its defined range should be changed
during a run. In time series analysis, t is the time index. In
simulation, however, t is not necessarily the simulation
clock time. Rather, t is a variable of the model that keeps
track of certain statistics during each run. For example,
to generate the interarrival times in a queuing simulation,
t might be the variable that counts customer arrivals.

In frequency-domain simulation experiments, a sepa-
rate frequency o is assigned to each factor. By basing the
analysis on Fourier series, o varies between 0 and 1/2 in
multiples of 1/T, where T is the number of observations. The
highest frequency is obtained when o is chosen to be 1/2,
and the lowest frequency is achieved wheno is chosen to be
1/T. The lowest frequency completes one cycle, whereas the
highest frequency completes T/2 cycles during each run.
The contribution of each frequency to the variability of a
time series is measured by a spectrum function. Further-
more, the theory of linear systems indicates that a sinu-
soidal input to a linear system, in steady state, results in a
sinusoidal output at the same frequency. Consequently, the
output spectrum and the input factor spectrum are related.

The simulation performance function L(t|u) can be
approximated by two different meta-models: a polynomial
meta-model and a trigonometric meta-model. The polyno-
mial meta-model is obtained from a Taylor series expan-
sion, whereas the trigonometric meta-model is obtained
from a Fourier series expansion. The harmonic gradient
estimator is then derived by matching or equating the
coefficients of these two meta-models.

Frequency-domain simulation experiments identify the
significant terms of the polynomial that approximates the
relationship between the simulation output and the inputs.
Clearly, the number of simulation runs required to identify
the important terms by this approach is much smaller than
those of the competing alternatives, and the difference
becomes even more conspicuous as the number of para-
meters increases (23). The implementation steps are as
follows:

Step 1: Initialization

Assume the input/output relationship for a simulation
model can be approximated by a quadratic dynamic
polynomial response surface meta-model (24). Set
the simulation length T (even), the p oscillation frequen-
cies {oj}, and the p oscillation amplitudes
fajg ð j ¼ 1; 2; . . . ; pÞ. The oscillation frequencies are
Fourier frequencies of the form oj ¼ 2 p hj/T, where
h jef1; 2; . . . ;T=2g�Zþ are from the tables in Ref. 25 to
ensure no confounding of any distinct frequencies when
gradient components can be estimated. The simulation
run length T is set such that maxfjv jjg<b for some b> 0

small. The p oscillation amplitudes {aj} are set such that
each input parameter remains feasible and max {|aj| }<
g for some g > 0,. The value of T and {aj} should also be
set based on information in Table 1 in Ref. 25 to allow the
interchange of the derivative operator and the expecta-
tion operator.

Step 2: Signal simulation run

Make a signal simulation run by varying the p
input parameters during the run, as follows:

u j ¼ u jð0Þ þ a j Sinðv j tÞ; j ¼ 1; 2; . . . :; p; t

¼ 1; 2; . . . ;T ð37Þ

Step 3: Estimate signal run harmonic coefficients
Compute

Asðv jÞ ¼ ð2=a jTÞ
XT
t¼ 1

LsðtÞSin ðv j tÞ; j ¼ 1; 2; . . . ; p ð38Þ

Step 4: Noise control variate simulation run

Make a second (i.e., noise) simulation run with the
p input parameters all held fixed during the run
( i.e., uj ¼ uj(0), j ¼ 1, 2, . . ., p, t ¼ 1, 2,. . ., T).
Common random number streams should be
used for both simulation runs.

Step 5: Estimate noise-run control-variate harmonic coef
ficients
Compute

ANðv jÞ ¼ ð2=a jTÞ
XT
t¼1

LsðtÞSin ðv jtÞ; j ¼ 1; 2; . . . ; p ð39Þ

Step 6: Set the control variate weighing parameters h (oj)
Compute

hðv jÞ ¼
XT
t¼1

Lðtjuð0Þ þ a Sin ðv tÞ

� ðYðtjuð0ÞÞ=
XT
t¼1

L2ðtjuð0Þ ð40Þ

Step 7: Compute gradient estimate of the quadratic poly-
nomial response surface
Compute

Asðv jÞ � hðv jÞANðv jÞ; j ¼ 1; 2; . . . : ; p ð41Þ

A SHORT COMPARISON

L’Ecuyer (25) showed that PA and SF, (or LR), can be
unified. He concluded that PA can be viewed as a (degen-
erate) special case of SF. Extensive comparison of the PA
and SF approaches reveals several interesting differences.
Both approaches require an interchange of expectation and
differentiation. However, the conditions for this inter-
change in PA heavily depend on the nature of L(u), and

GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION 9



they must be verified for each application, which is not the
case in SF. Therefore, in general, it is easier to satisfy SF
unbiasedness conditions. However, SF requires fðx; uÞ 6¼0.
PA assumes that the order of events in the perturbed path is
the same as the order in the nominal path, for a small
enoughDu, which allows calculation of dL/du, the sensitivity
of the sample performance for a particular simulation. For
example, if the performance measure is the mean number of
customers in a busy period, the PA estimate of the gradient
with respect to any parameter is zero! The number of
customers per busy period will not change if the order of
events does not change.

In terms of the information required to implement these
estimators, both approaches require knowledge of the cdf (or
pdf) in which u is as a parameter. SF needs to compute
@ ln fðx; uÞ=@ u. However, in PA it may be sufficient to know
that u is a scale or location parameter, without full knowl-
edge of the associated event lifetime cdf. In addition, the
natureof u, which can only affect event lifetime distributions
in PA, may be more general in the SF approach.

In terms of ease of implementation, PA estimators may
require considerable analytical work on the part of algo-
rithm developer, with some ’’customization’’ for each
application, whereas SF has the advantage of remaining
a general definable algorithm whenever it can be applied.
The derivation of the SF estimator, because L(u) is directly
observed and @ ln fðx; uÞ=@u is readily evaluated; However,
the evaluation of dL/du in PA usually requires some
analysis and is not immediate. this aspect makes SF
attractive. For discrete random variables (r.v.) the com-
parison is rather interesting. Consider a discrete r.v. that
takes the values ai with probability piði ¼ 1; 2; . . . ;nÞ. A
SF algorithm can be developed with respect to the pi

parameters, but not the ai parameters, whereas PA algo-
rithms can be developed with respect to the ai but not the
pi parameters.

Perhaps the most important criterion for comparison
lies in the question of accuracy of an estimator, which is
typically measured through its variance. If an estimator is
strongly consistent, its variance is gradually reduced over
time and ultimately goes to zero. The speed with which this
happens may be extremely important. Because in practice,
decisions normally have to be made in a limited time, an
estimator whose variance decreases fast is highly desirable.
For some simple systems (e.g., JðuÞ ¼ c, with c a constant),
where it is possible to compute explicitly variances of both
PA and SF estimators, it can be shown that the variance of a
SF estimator is significantly larger than that of its PA
counterpart. In general, when PA does provide unbiased
estimators, the variance of these estimators is small. PA
fully exploits the structure of DESs and their state
dynamics by extracting the needed information from the
observed sample path, whereas SF requires no knowledge
of the system other than the inputs and the outputs. There-
fore, when using SF methods, variance reduction is neces-
sary. The question is whether or not the variance can be
reduced enough to make the SF estimator useful in all
situations to which it can be applied. The answer is cer-
tainly yes. Using standard variance reduction techniques
can help, but the most dramatic variance reduction occurs
using new methods of VR such as conditioning (27), which is

shown numerically to have a mean squared error that is
essentially the same as that of PA.

It is much easier to extend the SF to higher derivatives,
for example,

d2JðuÞ=du2 ¼ E½L:S� d2 ln fðu; xÞ=du2� ð42Þ

Finally, the PA approach explicitly seeks to exploit the
structure of event-driven sample paths in evaluating dL/
du. The SF approach does not attempt to do so. In this
respect, SF is a general-purpose methodology for obtaining
sensitivity of performance metrics of stochastic processes,
not necessarily DES.

The SF estimate of the gradient can be related to the FD
estimate. Equation (20) can be rewritten as

f
Z
fLðxÞgfðx; uþ DuÞdx�

Z
fLðxÞgfðx; uÞ dxg=Du ¼

f
Z

LðxÞ fðx; uþ DuÞ
f ðx; uÞ f ðx; uÞ dx�

Z
fLðxÞgfðx; uÞ dxg=Du

fE½LðXÞ fðX; uþ DuÞ
fðX; uÞ � � E½LðXÞ�g=Du

ð43Þ

However, the SF gradient estimate [Equation (20)] can be
rewritten as

Z
LðxÞ ½@ lnfðx; uÞ=@u� fðx;uÞdx¼EfLðxÞ ½@ fðx; uÞ=@u�=fðx; uÞg¼

Ef½LðXÞ=fðX; uÞ�LimDu!0½fðX;uþDuÞ� fðX;uÞ�=Dug¼
LimDu!0fE½LðXÞ

fðX;uþDuÞ
fðX; uÞ ��E½LðXÞ�g=Du

ð44Þ

This shows that the SF estimate is the limit value of the FD
as Du!0.

Feuerverger et al (28) showed that if the performance
depends on an indeterminate, possibly infinite number of
inputs, then the SF gradient estimate is 2pf(L, S), where
f(L, S) is the cross spectral density of {Li, Si} where Si is
the score of Xi. The main ideas and interrelationships of the
various methods are shown in Fig. 4.

OPTIMIZING SIMULATED SYSTEMS

Simulation is the primary analysis tool for designing com-
plex DESs. However, the simulation must be linked with a
mathematical optimization technique to be used effectively
for systems design.

Stochastic approximation procedures include Kiefer-
Wolfowitz and Robbins-Monro types of techniques. Both
types use a gradient estimate. The gradient can be esti-
mated by any of the following approaches: finite difference,
simultaneous perturbation, frequency domain, likelihood
ratio, or infinitesimal perturbation analysis. Introductory
concepts on gradient estimations may be found in Refs.
29–43. In Refs. 44 and 45, theoretical bases are provided.

Gradient surface methods combine the advantages of
response surface methodology and efficient derivative esti-

10 GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION



mation techniques. Introductory discussions are given in
Refs. 46 and 47.

STOCHASTIC APPROXIMATION TECHNIQUES

Two related stochastic approximation techniques have
been proposed, one by Robbins and Monro (48) and one
by Kiefer and Wolfowitz (8). The first technique was not
useful for optimization until an unbiased estimator for the
gradient was found. Kiefer and Wolfowitz (8) developed a
procedure for optimization using finite differences. Both
techniques are useful in the optimization of noisy functions,
but they did not receive much attention in the simulation
field until recently. Generalization and refinement of sto-
chastic approximation procedures give rise to a weighted
average (21), which deals with constraints, nondifferenti-
able functions, and some classes of nonconvex functions,
among other things.

Kiefer-Wolfowitz Type Techniques

Kiefer and Wolfowitz (8) proposed a finite difference approx-
imation to the derivative.Oneversion of the Kiefer-Wolfwitz
(K-W) technique uses two-sided finite differences that result
in the following recursive procedure:

unþ1 ¼ un � ðan=2bnÞ ½Jðun þ bnÞ � Jðun � bnÞ� ð45Þ

where the two sequences an and bn satisfy the following
conditions:

X
an ¼ 1 ð46Þ

lim ðbnÞ ¼ 0 ð47Þ

X
ðan=bnÞ2 <1 ð48Þ

Then the sequence in Equation (45) converges in mean
square and with probability 1 to a local optimum of J(u).
However, because of the FD approximation for the gradient,
the K-W procedure has a slow asymptotic convergence rate,
which is typically of order n�1/3. In general, any technique
that attempts to estimate the gradient via finite differences
will converge at a rate slower than n�1/2 in the computa-
tional efforts (47).

The first fact to notice about the K-W estimate is that it
requires 2N simulation runs, where N is the dimension of
vector parameter u. If the decision maker is interested in
gradient estimation with respect to each of the components
of u, then 2N simulations must be run for each component of
u. This method is inefficient. The second fact is that it may
have a very poor variance, and it may result in numerical
calculation difficulties, because for small bn, there may not
be much statistical difference between estimates of J(un þ
bn) and J(un� bn), and we are dividing this difference by a
small number. Finally, this estimate is unbiased for each
nonzero bn, because the slope of a secant line is approx-
imating the slope of the tangent line. This result leads to the
difficult question of which bn to use. To minimize the
‘‘secant error,’’ a small bn should be used; but using such
a small value contributes to the variance and numerical
difficulties mentioned above.

Robbins-Monro Type Techniques

The original Robbins-Monro (R-M) technique is not an
optimization scheme, but rather a root finding procedure
for functions whose exact values are observed with noise. Its
application to optimization is immediate: Use the procedure
to find the root of the gradient of the objective function.

For simplicity, consider a simple parameter; that is, u is a
scalar. Let H(u) be the unknown function. The goal is to find
u� such that H(u�)¼ 0. To do this, a sequence of experiments
is performed with starting point u1 and successive values of
u according to the recursive relation

unþ1 ¼ un � an:HðunÞ ð49Þ

Change
of profitability

measure   

Frequency
domain  

Performance
evaluations  

Sample patch
reconstruction  

Gradient Estimation 

Likelihood
ratio method  

Harmonic
analysis  

Simultaneous
perturbation  

Perturbation
analysis  

Basic 
Ideas 

Score function
method  

Finite
difference  

Its many
variants  

M
e 
t  
h 
o 
d 
o 
l 
o 
g 
y 

Figure 4. Classification and unification of gradient estimation methods.

GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION 11



where an is one of a sequence of decreasing and divergent
positive numbers (such as 1/n), and H(un) is the noisy obser-
vation obtained from the nth experiment at un. Assuming E
[H(un)| un¼ u]¼H(u), and some additional mild conditions,
the sequence {un} converges to u

�
in mean square error.

Consider the case in which the parameter space is con-
strained to a bounded set D of the form D ¼ (u: qi(u) � 0, i ¼
1, . . . , s), whereqi(u) are continuouslydifferentiable andD is
the closure of its interior. Let X_(y) denote any closest point
in D to y. The projected analog of Equation (16) is

unþ1 ¼ X½un � anHðunÞ� ð50Þ

Interest was renewed in the R-M technique as a means of
optimization, with the development of the perturbation
analysis, likelihood ratio also known as score function,
and frequency domain estimates of derivatives. Optimiza-
tion for simulated systems based on the R-M technique is
known as a ‘‘single-run’’ technique. These procedures opti-
mize a simulation model in a single run simulation with a
run length comparable with that required for a single
iteration step in the other methods. This result is achieved
essentially by observing the sample values of the objective
function and, based on these observations, updating the
values of the controllable parameters while the simulation
is running (that is, without restarting the simulation). This
observing-updating sequence is done repeatedly, which
leads to an estimate of the optimum at the end of a sin-
gle-run simulation. Besides having the potential of large
computational savings, this technique can be a powerful tool
in real-time optimization and control, where observations
are taken as the system is evolving in time.

Generalizing Equation (49) to higher dimension, the
Robbins-Monro type technique takes the following form:

unþ1 ¼ un � anDnrJnðunÞ ð51Þ

where an is the step size sequence, Dn is a matrix of
appropriate dimensions, and rJnðunÞ is the estimate of
the gradient rJ(u) at un. The main idea behind Equation
(51) is a trade-off based on the signal-to-noise ratio of the
gradient estimate rJn(un) to the error of the estimate.
Initially, when un is far from the optimal solution u�, this
ratio is large, and an and Dn can be large. As u� is
approached, notice rJ(u)!0, and the expectation of
rJn(un) is mostly noise. For convergence purposes, an

should approach zero, but not too fast to avoid being stuck
at a nonoptimum. These coefficients are referred to as step
sizes, scaling factors, or learning rates. The R-M sequence
is asymptotically normal, but it has some problems. It
converges slowly when the function is very flat, and it
may not converge when the function is steep. For example,
solving the following equation exp(�3u)�0.9 exp(�4u)�0.1
¼ 0, by R-M does not converge to its solution u

� ¼ 0.5073.
More recently, R-M has been extended to multistep

methods to provide the basic optimization technique for
reasonable problems by ‘‘filtering’’ past observations. One
such step uses two independent estimates:

uiþ1 ¼ ui � an
J01ðuiÞ

minfe; jJ1

2ðuiÞjg
þ J�20ðuiÞ

minfe; jJ01ðuiÞjg

( )
ð52Þ

where e > 0 is the scaling factor, and J01 and J02 are the two
independent estimates of J

0
at ui. When unbiased estima-

tors are used, it converges at the rate of n�1/2, which is the
fastest. The technique is very sensitive to e; that is, the
smaller e is, the more robust the technique is (29).

A practical concern is how to estimate the gradient
rJnðunÞ of the objective function J(u), when the function
J(u) itself has to be estimated from simulation.

GRADIENT SURFACE METHOD

One may combine the gradient-based techniques with the
response surface methods (RSMs) for optimization pur-
poses. A response surface is constructed with the aid of n
response points and the components of their gradients.

The gradient surface method (GSM) combines the virtue
of RSM with that of the single-run, gradient estimation
techniques such as perturbation analysis and the score
function (or likelihood ratio) techniques. A single simula-
tion experiment with little extra work yields Nþ 1 pieces of
information (i.e., one response point and N components of
the gradient). This method is in contrast to crude simula-
tion, where only one piece of information, the response
value, is obtained per experiment. Thus, by taking advan-
tage of the computational efficiency of single-run gradient
estimators, in general, N-fold fewer experiments will be
needed to fit a global surface compared to the RSM. At each
step, instead of using Robbins-Monro techniques to locate
the next point locally, a candidate for the next point is
determined globally, based on the current global fit to the
performance surface. In particular, the gradient estimation
information is used at this step and its previous steps, to
find a function rJnðuÞ to approximate the true gradient
surface rJ(u). Then, the zero point of rJnðuÞ is found and
taken as a candidate for the next iteration point, un þ 1.

The GSM approach has the following advantages. The
technique can quickly get to the vicinity of the optimal
solution because its orientation is global (22, 39). Thus, it
produces satisfying solutions quickly. Like RSM, it uses all
accumulated information. And in addition, it uses gradient
surface fitting, rather than direct performance response-
surface fitting via single-run gradient estimators. This
technique significantly reduces the computational efforts
compared with RSM. Similar to RSM, GSM is less sensitive
to estimation error and local optimality. And, finally, it is an
on-line technique, which mean the technique may be imple-
mented while the system is running.

A typical optimization scheme involves two phases: a
search phase and an iteration phase. Most results in ana-
lytic computational complexity assume that good initial
approximations are available, and the results deal with
the iteration phase only. If enough time is spent in the
initial search phase, then the time needed in the iteration
phase is reduced. The literature contains papers that pro-
vide conditions for the convergence of a process (40); a
process has to be more than convergent in order to be
computationally interesting. It is essential to bound the
cost of computation. In this sense, GSM can be thought of as
helping the search phase and as an aid to bounding the cost
of computation. Standard or simple devices can be adopted

12 GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION



for such issues as stopping rules. It is a complementary tool
for use in combination with other techniques.

Under smoothness and convexity conditions imposed
on J(u), the minimum can be found by solving rJ(u) ¼ 0
that is, to optimize J(u) is equivalent to finding the zero of
rJ(u), without a closed form expression for it. A linear
function is used to estimaterJ(u) directly fitting J(u) by a
quadratic surface. Although derivative information can
also be used to fit the response surface, it is not done for the
following reasons. Denote the gradient surface fitting
function F(u) ¼ Au þ b, where A is an N � N-dimensional
matrix and b is a N-dimensional vector, it is popular to use
the least-squares method to estimate A and b. Then, any
quadratic response surface will yield gradient solutions,
at most, as good as the least squares estimate but no
better. Furthermore, fitting a quadratic surface will
require one more parameter. Also, the linear function
for the estimated gradient surface is used for convenience
only; in principle, more complex surfaces can be used.
Linear GSM, however, is satisfactory for small-size pro-
blems.

Assuming that we have nðn� pÞ estimates of the gradient,
the least-squares method provides the best estimate denoted
by (An þ 1, bn + 1). The zero point of the gradient surface
ðunþ1 ¼ �A�1

nþ1 	 bnþ1Þ is taken as a candidate for the next
iteration point. Surface fitting is accomplished based on the
information about all n points (global behavior of the response
surface). As a result, a small change in the estimation error at
a particular point will have less effect on the result of surface
fittingand itszeropoint thaninordinarygradient techniques,
which can be regarded as a special case of surface fitting, in
which only one point is used to define the gradient surface.

Initially, all data points are used to get an approximate
global fit of the gradient surface (GS). As we get closer to the
optimum, older data points are discarded and data points
that are closer together are used to fit the GS and ensure
convergence. These considerations suggest the use of a
‘‘window size’’ for surface fitting and also raise the following
questions. First, how many points should be chosen to fit
the GS? Second, at each iteration, should we use the same
number of points to fit GS? And finally, whether a fixed
window size or a dynamic window size is used, what is the
rule to add or to drop points from the window; for example,
should the latest L points where L is the size of the window
always be used?

All of these questions suggest that there should be differ-
ent phases in the search for an optimum, as follows. In the
first step, initial points are randomly chosen. With no initial
special knowledge, the minimum number of points is used to
determine the GS. If the results of this fitting yielda solution
that isnotacceptable (e.g., thesolution isoutside the feasible
region known to contain the optimal solution); the solution
point is discarded. The window size is then increased by one
by just randomly adding another new point. When an accep-
table candidate is found, the window size is fixed. This
iteration stage the ‘‘initial phase,’’ or Phase I.

At the next stage, within the fixed window, each new
candidate solution is generated using the same procedure
as in Phase I. At this stage, it is determined whether the
new candidate should be added. If yes, determine which
old point should be dropped. Here is a dropping and

adding rule. Assume the window size is fixed to be L.
Remove the worst point; in minimization problem, uj ¼
max ½Jðuk�Lþ1Þ; . . . ; JðukÞ�. If j 6¼ k; then the new candidate
uk can be added. This stage of iteration is called Phase II.
When uk cannot be added (i.e., uk is the worst point), then
instead of using a randomly chosen new point, use the
stochastic approximation techniques to get a new point
and then switch back to Phase II. When each new candidate
is very close to its predecessor, the optimum may be
approaching. At this point, even switching back to Phase
II may not produce a good-fitting function.

Then, using pure stochastic approximation techniques
may provide a better approach to the optimal solution. This
stage of iteration after switching is called the ‘‘ending
phase’’ or Phase III. Switching back to Phase II avoids
the use of the pure stochastic approximation technique
at the beginning stage, which generally causes slow con-
vergence. But to keep switching from Phase III to Phase II
would waste simulation time. Hence, a maximum switch-
ing number (MSN) should be given. Actually, Phase III is
just a degenerate gradient surface method, where the local
gradient is used to define the gradient surface gk(u). The
detailed algorithm is presented below:

Phase I

Step 0: Given N (minimum window size), M (maximum
window size), MSN set S ¼ 0, L ¼ N þ 1.

Step 1: Randomly choose N initial points u1, u2,. . .. . .., uN.

Step 2: Use any single-run gradient estimators to find the
corresponding derivatives z(ui), i ¼ 1,. . .L�1.

Step 3: Use the least-squares method to find the GSM
function gL with ui and z(ui), i ¼ 1,. . .. . ., L�1.

Step 4: Find the zero point of gL as uL.

Step 5: If L > M, then switch to Phase III; otherwise,

Step 6: If uk is not acceptable (e.g., uk does not satisfy some
constraints), then discard uk and randomly choose a
new point, L ¼ L þ 1, go to 2; otherwise, set the
window size to L, and go to Phase II.

Phase II
Start with k þ L.

Step 7: Use any single-run gradient estimation technique
to find the corresponding derivatives z(uk).

Step 8: Remove the worst point uj¼worst (u1,. . .. . ., uk); if j¼
k then S ¼ S þ 1, switch to Phase III; otherwise, go
to the next step.

Step 9: Use least-squares method to find the GSM function
gk þ 1 with ui and z(ui).

Step 10: Find the zero point of gk þ 1 as estimate for uk þ 1

Step 11: Set ukþ1 ¼ ð1� rkÞuk þ rkukþ1; 0< rk < 1 ð53Þ
Step 12: If the stopping rule is satisfied, stop; otherwise,

k ¼ k þ 1, go to 7.

Phase III
Step 13: Use one point to determine estimate

uk ¼ uk�1 � zðukþ1Þ ð54Þ
set uk ¼ ð1� rkÞuk�1 þ rkuk ð55Þ

Step 14: Is S > MSN? No, switch back to Phase II.

GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION 13



Step 15: Is the stopping rule satisfied? If yes, stop;
otherwise, k ¼ k þ 1, go to Step 13.

Notice that the maximum window size M is used to keep
from infinitely iterating at Phase I. A different stopping
rule may be chosen such as jJðukþ1Þ � JðukÞj � e. Phase II
uses the zero point of gkþ1; ðukþ1Þ and the previous point uk

to predict the new point uk + 1. This is an alternative. If r¼ 1,
uk is just the zero point of gk, then implement the least
squares solution exactly. Whenever r < 1, decide whether
or not to go all the way to the zero point from the current
point. This method enables control of how aggressively the
least squares solution is implemented.

Similar remarks apply to Phase III. Phase III is simply
the stochastic approximation technique. In this technique,
use only one previous point to predict a new candidate.
Determination of MSN depends on each problem. Usually,
if derivative estimates do not require excessive computa-
tion, then MSN can be large. Otherwise, using a large MSN
will waste simulation resources. The least-squares solution
suggests second-order methods, such as the variable metric
(VM) method or Davidon-Fletcher’s method. The least
squares solution of GSM is different in substance and in
philosophy because uk þ 1�uk need not be orthogonal to the
previous descent direction as in the variable metric method.
Furthermore, in GSM the matrix A is determined by using
least-squares fit over many more points than the dimension
of the u vector, whereas VM is primarily a deterministic
technique. Therefore, GSM is less a stochastic version of the
variable metric method than a more efficient version of the
response surface method via gradient estimators. Finally,
the experimental design problem: In particular, given a
window size N, how should points fuig; i ¼ 1; . . . ;N be
chosen initially? In the technique given above, random
sampling design can be used to get these points.

For online optimization, a new design in GSM called
‘‘single direction’’ design may be used. Because for online
optimization it may not be advisable or feasible to disturb
the system, random design usually is not suitable. Single-
direction design gives a starting point and then uses gra-
dient descent steps (i.e., Phase III), to determine the suc-
cessive fu2; . . . ; umþ1g.

The primary consideration is whether the design is
concentrated or widely spread. If the points of the design
are concentrated, then most information comes from the
estimates of the derivative. Using the performance mea-
sures alone gives no information about the optimum. With a
design of this type, if the points are centered at the opti-
mum, asymptotically no advantage exists to including the
estimates of the performance with the estimates of the
derivatives. When the design is not centered, an advantage
is gained by including the performance estimates, if they
are correlated with the derivative estimates. The higher the
correlation, the stronger the advantage will be. As the
estimates tend to be highly correlated, and the probability
that the design is centered at zero, there is an advantage to
including the performance estimates.

When the quadratic model may be assumed to be more
than locally reasonable, and the points of the design may be
spread out, the advantage clearly goes to the estimates
which include the performances. Again, if the performance

and derivative estimates are possibly correlated, then it is
better to use both.

POSTSOLUTION ANALYSIS

Stochastic models typically depend on various uncertain
and uncontrollable input parameters that must be esti-
mated from existing data sets. Focus is given on the sta-
tistical question of how input–parameter uncertainty
propagates through the model into output–parameter
uncertainty. In the case when u is a controllable or
uncontrollable parameter, the decisionmaker is interested
in estimating J(u) for a small change in u¼ u� to u¼ u� þDu,
where u� is the optimal solution or the solution to the goal-
seeking problem; that is, the so-called postsolution analysis
for the purpose of stability with respect to the solution u�, or
the ‘‘what-if’’ analysis. This information can be obtained by
the following single-run simulation perturbation techni-
que.

Similar to Equation (1), the expected performance mea-
sure with perturbed parameter u

� þ Du is:

Jðu� þ DuÞ ¼
Z

LðxÞ:fðx; u� þ DuÞdx ð56Þ

¼
Z

LðxÞ f ðx; u� þ DuÞ
fðx; uÞ fðx; uÞdx ð57Þ

¼ E½LðxÞ�:W ð58Þ

where the likelihood ratio

W ¼ fðx; u� þ DuÞ=fðx; uÞ ð59Þ

provided f(x; u) does not vanish within the set U.
Similar to Equation (1), the expected performance

measure with perturbed parameter u� þ Du is obtained
while simulating the system at the nominal value u�, all
in a single run. Notice that the expectation in Equation
(58) is with respect to pdf, f(x; u) (i.e., the nominal
system). This result was achieved by using the Radon-
Nikodym measure (49), in Equation (58) to transform all
perturbed probability space to the nominal one. This
estimator requires only one sample path of the system
with parameter u�. Using Equation (58), estimates for
any number of Du are computed simultaneously from a
single-run simulation while simulating the nominal sys-
tem. Because it adds only moderate computational cost,
it is efficient.

Although this technique closely resembles Importance
Sampling used as a VRT, its intent is different. The
rationalization of Equation (58) is that the generated
random vector X is roughly representative of X, with pdf
f(x;u�). However, each of these random observations
could also have hypothetically come from f(x; u� þ Du).
The factor W weighs the observations according to this
phenomenon. Regardless of the fact that this approach is
not costly, it produces a larger variance than crude
simultaneous perturbation, which reruns the simulation

14 GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION



for each Du. Because for regular probability functions,

E½W� ¼
Z

fðx; u� þ DuÞ
fðx; uÞ fðx; uÞdx

¼
Z

fðx; u� þ DuÞdx ¼ 1 ð60Þ

Equation (58) can be written as

Jðu� þ DuÞ ¼ E½LðxÞW� ¼ E½LðxÞ:W�=EðWÞ ð61Þ

Other alternative estimators could be:

Ĵðu� þ DuÞ ¼
X
ðLi WiÞ=

X
Wi ð62Þ

Ĵðu� þ DuÞ ¼
X
ðLiWiÞ=nþ a

X
W� n

X
Li

ih
ð63Þ

and

Ĵðu� þ DuÞ ¼
X
ðLi WiÞ=

X
Wi

þ a
X

Wi � n
h iX

Li ð64Þ

where the sums are over all i, i ¼ 1, 2, 3,. . ., n, and a is the
usual optimal linear control factor. As always, some pilot
runs must be performed to study the effectiveness of these
and other filters before implementing them. These estima-
tors have been shown to have less variation than the crude
one based on Equation (58) using M/G/1 queues in Ref. 22
and refs. therein. Some of these estimators are biased, but
theygivereasonableresultsif theperturbationissmalland
L(u) is well behaved. Clearly, jackknifing and bootstrap
may be used to reduce the bias substantially. Other single-
run perturbation techniques are proposed in Ref. 22. The
ideas in this section are also useful as a single-run pertur-
bation to be embedded in optimization techniques, such as
simplex type techniques, random search techniques, and
simulated annealing, in the earlier stage of implementa-
tion. This method saves some computational costs.

THE FUTURE OF OPTIMIZATION BY SIMULATION

With the growing incidence of computer-based modeling
and simulation in many diverse fields, such as business,
economic and government systems (50), the scope of simu-
lation domainmustbeextendedto includemuchmore than
traditional optimization techniques. Optimization techni-
ques for simulation must also account specifically for ran-
domness inherent in estimating the performance measure
and satisfying the constraints of stochastic systems.

Given the input parameters u (which could be a vector)
and a performance measure J(u), the problem of estimat-
ing the sensitivities (i.e., gradient, Hessian, etc.) of J(u)
with respect to u can be tackled through FD, SP, PA, the SF
Method, the LR Method, and HA, as shown in Fig. 4.

Sensitivity estimation is useful for local information,
structural properties, response surface construction, goal-
seeking problem, and optimization of DES simulation. This

aticle described step-by step the existing methods of sensi-
tivitiesestimatorswiththeaimoftheoreticalunificationand
afewcomparisons.AllalgorithmswerepresentedinEnglish-
like format and therefore can be implemented in a variety of
operating systems and machines, which provides unlimited
portability.

PA yields an unbiased estimate if the interchange of
derivative and expectation is permitted. This method
imposes constraints on the nature of the sample function
and the structure of the system that can be analyzed. For SF
and LR, this condition is easier to satisfy. The advantage of
SF and LR methods is that estimates of any number of
derivatives (gradient) can be computed in a single-run
simulation. The major difficulty in applying the SF and
LR methods is that the variance of derivatives estimator
increases as the length of the simulation increases. There-
fore, effective variance reduction techniques must be used
to make SF and LR competitive with PA. The PA fails to
provide unbiased estimates when the sample function L(u)
is discontinuous in u. This problem can be overcome at the
expense of obtaining more information during simulation
run. Implementation of PA and many of its variants are all
problem dependent, whereas SF, LR, FD, SP, and HA are
not. However, SP and FD can be seriously limited by, for
example, the required stability of the system. For example,
traffic intensity must remain less than one for steady-state
sensitivity estimation.

Most work has been performed for u being the para-
meters of input distribution, and strong theoretical results
are available when these methods are implemented on
relatively simple systems. More extensions are required
to estimate sensitivities for more complex systems. Com-
parisons between different methods can rarely be per-
formed theoretically in terms of bias, variance, and
computational complexity. Many studies (51–53) rely on
computer simulations to compare different methods. How-
ever, computational complexity in terms of the total com-
putational effort, for reduction in both the bias and
variance of the gradient estimator depend on the computa-
tional budget allocated for any simulation application.
Simulation time is a crucial bottleneck in the sensitivity
estimation. Future directions for research in gradient esti-
mation lie in parallelization and distributed versions of the
techniques discussed in this study. For example, gradient
estimation by these methods for a computer system may
require days to simulate only a few second of the system’s
operation.

We described the most widely used optimization tech-
niques that can be integrated effectively with a simulation
model. We also described techniques for postsolution ana-
lysis with the aim of theoretical unification of the existing
techniques. All techniques were presented in step-by-step
format to facilitate implementation in a variety of operat-
ing systems and computers, which improves portability.

General comparisons among different techniques in
terms of bias, variance, and computational complexity are
not possible. However, a few studies rely on real computer
simulations to compare different techniques in terms of
accuracy and number of iterations. Total computational
effort for reduction in both the bias and variance of the

GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION 15



estimatedependsonthecomputationalbudgetallocatedfora
simulation (54, 55).

No single technique works effectively and/or efficiently
in all cases. The most promising techniques are the sto-
chastic approximation, simultaneous perturbation, and the
gradient surface methods. Stochastic approximation tech-
niques that use perturbation analysis, score function (or
likelihood ratio), or simultaneous perturbation gradient
estimators optimize a simulation model in a single simula-
tion run. These techniques do so by observing the sample
values of the objective function; based on these observa-
tions, the stochastic approximation techniques update the
values of the controllable parameters while the simulation
is running and without restarting the simulation. This
observing-updating sequence, done repeatedly, leads to
an estimate of the optimum at the end of a single-run
simulation. Besides having the potential of large savings
in computational effort in the simulation environment, this
technique can be a powerful tool in real-time optimization
and control, in which observations are taken as the system
is evolving over time.

Response surface methods have a slow convergence
rate, which makes them expensive. The gradient surface
method combines the advantages of the RSMs and effi-
ciency of the gradient estimation techniques, such as
infinitesimal perturbation analysis, score function (or
likelihood ratio), simultaneous perturbation analysis,
and frequency domain technique. In the GSM, the gradi-
ent is estimated, and the performance gradient surface is
estimated from observations at various points, similar to
the RSM. Zero points of the successively approximating
gradient surface are then taken as the estimates of the
optimal solution. GSM is characterized by several attrac-
tive features: It is a single-run technique and more effi-
cient than RSM; at each iteration step, it uses the
information from all data points rather than just the local
gradient. It tries to capture the global features of the
gradient surface and thereby quickly arrives in the vici-
nity of the optimal solution, but close to the optimum, it
takes many iterations to converge to stationary points.
Search techniques are therefore more suitable as a second
phase. The main interest is to figure out how to allocate the
total available computational budget across the succes-
sive iterations.

We expect the four areas for future research in the field
of optimization techniques for simulation:

1. Computational studies of techniques presented in
this article, for systems with many of controllable
parameters and constraints.

2. Effective combinations of several efficient techniques
to achieve the best results under constraints on com-
putational resources.

3. Development of parallel and distributed schemes

4. Development of an expert system that incorporates
all available techniques.

With respect to the third area of future research above,
not all techniques lend themselves to parallel and distrib-
uted schemes. The last item in the above list would allow a

framework for comparing and selecting the right techni-
que(s) for the problem at hand. Realistic visual interfaces
could also be devised and linked to the simulation prescrip-
tive and postprescriptive process to provide an accurate
visual representation.

ACKNOWLEDGMENTS

I am most appreciative to Dr. David Proctor and the
reviewers for their suggestions and comments. This work
is supported by the National Science Foundation under
grant CCR-9505732.

BIBLIOGRAPHY

Note: Additional and interesting references in particular
applications in the areas of systems engineering and general
network system are available at: http://home.ubalt.edu/
ntsbarsh/Business-stat/RefSim.htm.

1. G. Guariso, M. Hitz, and H. Werthner, An integrated simula-
tion and optimization modelling environment for decision sup-
port, Decision Support Systems, 16, 103–117, 1996.

2. J. Kleijnen and R. Rubinstein, Optimization and sensitivity
analysis of computer simulation models by score function
method, Eur. J. Operational Res., 88, 413–427, 1996.

3. J. Dussault, D. Labrecque, P. L’Ecuyer, and R. Rubinstein,
Combining the stochastic counterpart and stochastic approx-
imation methods, Discrete Event Dynamic Sys. Theory Appl. 7,
5–28, 1997.

4. R. Rubinstein and B. Melamed, Modern Simulation and Mod-
eling, New York: Wiley, 1998.

5. R. Rubinstein and A. Shapiro, Discrete Event Systems: Sensi-
tivity Analysis and Stochastic Optimization by the Score Func-
tion Method, New York: Wiley, 1998.

6. P. Sadegh, Constrained optimization via stochastic approxi-
mation with simultaneous perturbation gradient approxima-
tion, Automatica, 33, 889–892, 1997.

7. D. Pierre and M. Lowe, Mathematical Programming Via Aug-
mented Lagrangians: An Introduction with Computer Pro-
grams, Reading, MA: Addison-Wesley, 1975.

8. J. Kiefer and J. Wolfowitz, Stochastic estimation of the max-
imum of a regression function, Annals Math. Stat., 23, 462–
466, 1952.

9. J. Spall, Multivariate stochastic approximation using a simul-
taneous perturbation gradient approximation, IEEE Tran.
Auto. Control, 37, 332–341, 1992.

10. J. Spall, A one-measurement form of simultaneous perturba-
tion stochastic approximation, Automatica, 33, 109–112, 1997.

11. X-R. Cao, Perturbation analysis of discrete event systems:
Concepts, algorithms, and applications, Eur. J. Operational
Res., 91, 1–13, 1996.

12. M. Fu, Optimization via simulation: A review, Annals Opera-
tions Res., 53, 199–247, 1994.

13. M. Fu, and J-Q. Hu, Conditional Monte Carlo: Gradient Estima-
tion and Optimization Applications, Norwell, MA: Kluwer, 1997.

14. F. Vazquez-Abad, Sensitivity analysis for stochastic DEDS: An
overview, Aportaciones Matematicas, Notas de Investigacion,
7, 163–182, 1992.

16 GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION



15. R. Suri, Perturbation analysis:The state of the art and research
issues explained via the GI/G/1 queue, Proc. of IEEE, 77,
114–137, 1989.

16. P. Glasserman, Gradient Estimation via Perturbation Analy-
sis, Norwell, MA: Kluwer, 1991.

17. C. Cassandras, Discrete Event Systems: Modeling and Perfor-
mance Analysis, Irwin, MA: CRC Press, 1993.

18. P. L’Ecuyer, On the interchange of derivative and expectation
for likelihood derivative estimation, Manage. Sci., 41,
738–748, 1995.

19. H. Arsham, A. Feuerverger, D. McLeish, J. Kreimer, J. and R.
Rubinstein, Sensitivity analysis and the what-if problem in
simulation analysis, Int. J. Math. Comput. Mode., 12, 193–219,
1989.

20. P. Glynn, Likelihood ratio gradient estimation for stochastic
systems, Commun. ACM, 33, 75–84, 1990.

21. J. Dippon and J. Renz, Weighted means in stochastic approx-
imation of minima, SIAM J. Control Optimiz., 35, 1811–1827,
1997.

22. H. Arsham, Performance extrapolation in discrete event sys-
tems simulation, J. Syst. Sci., 27, 863–869, 1996.

23. Y. Ho, S. Leyuan, D. Liyi, and W. Gong, Optimizing discrete
event dynamic systems via the gradient surface method, Dis-
crete Event Dynamic Syst: Theory Appl., 2, 99–120, 1992.

24. S. Jacobson, Convergence results for harmonic gradient esti-
mators, ORSA J. Comput., 6, 381–397, 1994.

25. S. Jacobson, A. Buss, and L. Schruben, Driving frequency
selection for frequency domain simulation experiments, Opera-
tions Res., 39, 917–924, 1991.

26. P. L’Ecuyer, A unified view of the IPA, SF and LR gradient
estimation techniques, Manage. Sci., 36, 1364–1383, 1990.

27. F. Liang, Weighted Markov Chain Monte Carlo and optimiza-
tion, Doctoral Dissertation Shatin, Hong Kong, Chinese Uni-
versity of Hong Kong, 1997.

28. A. Feuerverger, D. McLeish, and R. Rubinstein, A cross spec-
tral method for sensitivity analysis of computer simulation
models, Comtes Rendus: Mathematical Reports Academy
Sciences, Royal Society Canada, 8, 335–339, 1986.

29. S. Andradottir, Simulation optimization, in Handbook on
Simulation, J. Banks (ed.), New York: Wiley, 1998.

30. V. Borkar, Asynchronous stochastic approximations, SIAM J.
Control Optimization, 36, 224–239, 1998.

31. M. Johnson and J. Jackman, Infinitesimal perturbation ana-
lysis: A tool for simulation, J. Operational Res. Soc., 40, 243–
254, 1989.

32. M. Nakayama and P. Shahabuddin, Likelihood ratio derivative
estimation for finite-time performance measures in generalized
semi-Markov processes, Manage. Sci., 44, 1426–1441, 1998.

33. R. Hurrion, An example of simulation optimization using a
neural network metamodel: Finding the optimum number of
kanbans in a manufacturing system, J. Operational Res. Soc.,
48, 1105–1112, 1997.

34. P. L’Ecuyer, N. Giroux, and P. Glynn, Stochastic optimization
by simulation: Some experiments with the M/M/1 queue in
steady-state queue, Manage. Sci., 40, 1245–1261, 1994.

35. H. Walk, Foundations of stochastic approximation, in Stochas-
tic Approximation and Optimization of Random System,
L. Ljung, G. Pflug, G., and H. Walk, (eds.), Basel, Switzerland:
Birkhauser, 1992.

36. Y. Ho, Discrete Event Dynamic Systems, New York: IEEE
press, 1992.

37. R. Suri and M. Leung, Single run optimization of discrete event
simulation-An empirical study using the M/M/1 queue, IIE
Trans., 21, 35–49, 1989.

38. A. Shapiro, Simulation-based optimization: Convergence ana-
lysis and statistical inference, Commun. Stat. Stochastic Mod.,
12, 425–432, 1996.

39. M. Safizadeh, Optimization in simulation: Current issues and
the future outlook, Naval Res. Logistics, 37, 807–825, 1990.

40. G. Pflug, Optimization of Stochastic Models: The Interface
Between Simulation and Optimization, London, UK: Kluwer,
1996.

41. S. Jacobson and L. Schruben, Techniques for simulation
response optimization, Operations Res. Letters, 8, 1–9, 1989.

42. Y. Ermoliev and V. Norkin, Normalized convergence in stochas-
tic optimization, Annals Operations Res., 30, 187–198, 1991.

43. A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algo-
rithms and Stochastic Approximations, New York: Springer-
Verlag, 1990.

44. D. Clark, Necessary and sufficient conditions for the Robbins-
Monro method, Stochastic Processes and their Applications,
17, 359–367, 1984.

45. S. Robinson, Analysis of sample-path optimization, Math.
Operations Res., 21, 513–528, 1996.

46. J. Donohue, E. Houck, and R. Myers, Simulation design for the
estimation of quadratic response surface gradients in the pre-
sence of model mis-specification, Manage. Sci., 41, 244–262,
1995.

47. P. Heidelberger, X. Cao, M. Zazanis, and R. Suri, Convergence
properties of infinitesimal perturbation analysis estimates,
Manage. Sci., 34, 1281–1302, 1988.

48. H. Robbins and S. Monro, A stochastic approximation method,
Annals Math. Stat., 22, 400–407, 1951.

49. H. Arsham, J. Kreimer, and R. Rubinstein, Application of
Radon-Nikodym theorem for simulation of queueing system,
in Discrete Event Simulation and Operations Research, H.
Adelsberger and F. Broceckx (eds.), Belgium: SCS Publisher,
1987.

50. R. Paul, Simulation in Action, London, UK: Springer-Verlag,
1998.

51. M. Fu, J. Hu, and R. Nagi, Comparison of gradient estimation
techniques for queues with non-identical servers, Comput.
Operations Res., 22, 715–729, 1995.

52. T. Lacksone and P. Anussornnitisarn, Empirical comparison of
discrete event simulation optimization techniques, Proc. of the
27th Annual Summer Computer Simulation Conference, 1995,
pp. 96–101.

53. D. Chin, Comparative study of stochastic algorithms for system
optimization based on gradient approximation, IEEE Trans.
Syst. Man, Cybernetics - Part B: Cybernetics, 27, 244–249,
1997.

54. H. Arsham, Monte Carlo techniques for parametric finite
multidimensional integral equations, Monte Carlo Methods
Appl., 13, 173–195, 2007.

55. H. Arsham, Input parameters to achieve target performance in
stochastic systems: A simulation-based approach, Inverse Pro-
blems Eng., 7, 363–384, 1999.

HOSSEIN ARSHAM

University of Baltimore
Baltimore, Maryland

GRADIENT-BASED OPTIMIZATION TECHNIQUES FOR DISCRETE EVENT SYSTEMS SIMULATION 17



I

INFORMATION AGE

INTRODUCTION

The Information Age is a period of time, or era, in which
information itself, in its various forms, constitutes a key or
dominant ingredient in our delivery of products and
services. The Information Age began to emerge in a most
serious manner about halfway through the twentieth cen-
tury, when, for the first time, white collar workers started
to outnumber blue collar employees. This newly born and
growing Information Age was facilitated, in large measure,
by

� pre-existing successes in telegraphy, telephony, radio,
and television;

� bringing large-scale computers into our businesses, led
by IBM;

� the success of xerography and copying machines, nota-
bly by Xerox; and

� the response to the challenge represented by the 1957
launch of Sputnik by the Russians.

All of the above provided initial fuel for the Information
Age engine by proving the importance of information-
related technologies and demonstrating their economic
value in the marketplace. Two additional and extremely
significant sets of events included the refinement and
market penetration of

� the personal computer (PC) along with its resident
applications, and

� connectivity and the Internet.

These events were acknowledged, in the aggregate,
as‘‘trends that were shaping the 1980s’’ in shifting from
an industrial society to an information society (1). In doing
so, at least four key points were considered to be critical:

� the reality and influence of the information-oriented
society,

� computers and communications coming together to
support each other,

� new information technologies migrating from old
industrial activities to new processes, and

� the need for our education system to step up to diffi-
cult challenges associated with the new information
orientation.

The above also supported and empowered the‘‘triumph
of the individual’’ (2) in moving from the twentieth into
the twenty-first century. As the information age is brain-
intensive in distinction to being capital-intensive, the indi-
vidual with the right idea at the right time has a real
opportunity to bring new information-related products

and services into the marketplace. At the same time, this
distinction has placed pressure on the individual to recog-
nize and deal effectively with new problems as well as
opportunities (3).

THE PERSONAL COMPUTER (PC)

The personal computer was a major factor in supporting
the Information Age during its early years. In the late 1970s
and early 1980s, the PC grew from a sophisticated hobby
(Altair, Commodore) into a marginal but useful device
(Apple II, TRS-80) and then into a serious home and busi-
ness machine (IBM PC, Macintosh), with a variety of
available software applications (e.g., word processors,
spreadsheets, databases) (4). The elementary hardware
architecture expanded, and soon we had powerful work-
stations such as those provided by Apollo Computer and
Sun Microsystems. But the PC distinguished itself by con-
tinuously improving its performance while retaining its
competitive and accessible price (e.g., less than $3,000) so
that businesses did not hesitate in providing one to essen-
tially all professional employees. In addition, more and
more households found it to be an attractive asset for all
members of the family. This unprecedented double-front
(office and home) assault had a lot to do with ushering in
and sustaining the Information Age. Increasing numbers of
people, from all walks of life, at home and at the office, were
becoming comfortable with, and dependent on, the PC. And
the PC manufacturers, sharpening their products in a
flourishing market, responded well to the challenge as
new and successful companies were born and thrived
(e.g., Compaq, Dell).

The combination of high performance, low price, and
extensive software availability changed forever the way in
which large numbers of people were dealing with compu-
ters and information. Setting a firm foundation for the
Information Age, the PC, from palm to lap to desktop,
was arguably the most critical ingredient. And the peculiar
nature of affordable software, the PC’s heart and soul,
literally gave‘‘power to the people’’ in ways never experi-
enced before.

INFORMATION SYSTEMS

From the first‘‘Killer App’’ (application) known as Visicalc,
a spreadsheet produced by Dan Bricklin and Bob
Frankston (4), large numbers of software developers
have been building new and better application packages
for the PC. Early software addressed a single function such
as a spreadsheet or a word processor. Soon, multi-function
packages were offered such as Microsoft’s Office and Lotus’
Smartsuite. Application areas continued to spring up that
developers felt could be used by general businesses (e.g.,
accounting packages) as well as the home user (e.g., an
encyclopedia). These areas were further expanded to meet

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



the needs of both government and industry and appeared
under the general category of‘‘information systems.’’ How-
ever, despite this broad title, they came in numerous sub-
types, as illustrated by the list in Table 1. Based on the
first 50 years or so of the Information Age (the last half of
the twentieth century), there is good reason to believe that
even the various system types cited in Table 1 will be
expanded substantially during the twenty-first century
as the Information Age continues to mature and express
itself.

CONNECTEDNESS AND THE INTERNET

The next most powerful force in bringing about the Infor-
mation Age, given the PCs and workstations, relates to the
fact that we learned how to establish computer intercon-
nections in an efficient and cost-effective manner. The
stand-alone desktop computer would become only one of
many nodes in a network that provided a means for people
to communicate and exchange massive amounts of data.
As we moved from local area networks (LANs) to wide
area network (WANs) to the Internet, all of this connecti-
vity greatly enhanced information exchange and produc-
tivity. For example, Lotus Notes was an effective way for
everyone within an enterprise to communicate; the Inter-
net was the way to communicate person-to-person(s) and
enterprise-to-enterprise, all over the world, and with great
speed.

THE ROLE OF SOFTWARE

Underlying the computers and networks, and ultimately
the Information Age, is software. As it ranges from operat-
ing system to application package to multi-functional inte-
grated information system, software is the ‘‘central
intelligence’’ that makes all of it work. Behind the power
of the software is the seminal idea, brainpower, and skill of
the software creator, the new‘‘warrior’’ of the Information
Age.

Considering the central position of software as we move
into the twenty-first century, it remains one of our most

serious unsolved problem areas. We are getting better at it,
and we are also creating new approaches to it, as in moving
from procedural languages to object-oriented techniques
(e.g., from ‘‘C’’ to ‘‘Cþþ’’). To some extent, it is a confusion
of plenty, in search of a better way that most will use and
benefit from. So whether it be reuse, or the more wide-
spread use of commercial-off-the-shelf (COTS) software, or
the renaissance of artificial intelligence (AI), or yet another
development paradigm, the software challenge is likely to
have many new solutions fitted to it as we move through the
Information Age.

EDUCATION

Our education system deals generically with both informa-
tion and learning and so must at least be cited as an
important part of the Information Age. First, our educa-
tional institutions need to evolve new and better ways to
prepare us to function as well as possible in the Information
Age. To accomplish this feat, they must understand what
the Information Age is and where it might be going. They
need to stay close to industry, as much of it will be in
uncharted territories driven by businesses. Second, they
need to carry out applied research that will go beyond the
foundations of the Information Age and into the problems
that industry is and will be facing. Other areas of concern
and interest in which our colleges and universities can
participate are addressed below.

IMPORTANT ISSUES OF THE INFORMATION AGE

In Need of a Theory

Although we are continually producing information sys-
tems, we do not have an adequate ‘‘theory’’ of information
that will explain what it is, how it provides value and
influence, and how, for example, to convert information
into knowledge. In the mid-1950s, a theory was formulated
by the name‘‘information theory,’’ but it was applied
largely to matters of analyzing and building communica-
tions channels and systems (5). One would hope and expect

Table 1. Illustrative Examples of Types of Information Systems

1. accounting 16. office automation
2. transportation 17. network browser & search engines
3. logistics support 18. process reengineering
4. risk management 19. information security
5. contracts management 20. data mining/warehousing
6. financial management 21. presentation graphics
7. geographic information 22. sales and marketing systems
8. legal information 23. decision support
9. enterprise resource planning (ERP) 24. point-of-sale systems
10. configuration management 25. word processing
11. database management 26. project management
12. inventory control 27. voice recognition
13. human resources 28. operations management
14. correspondence tracking 29. purchase/expenditure tracking
15. executive information 30. utility systems

2 INFORMATION AGE



that the academic world will be able to provide the basis for
a theory that will help business and government navigate
through the Information Age.

Information Security

Information Security may turn out to be the most serious
problem of the Information Age. It has a large number of
dimensions, ranging from assuring that people are not able
to access your bank account to preventing viruses from
crashing your system, however large or small, to maintain-
ing your personal and corporate privacy (6). One can be sure
that lack of security will be an invitation to prankster as
well as criminal intrusion, and all sectors of society must be
concerned, from businesses to government to academia to
the individual. This problem will also be exacerbated by the
continued introduction and expansion of wireless systems.

Information Junk Mail and Overload

Along with all the true and useful information will come
increasing amounts of junk (SPAM) as well as information
overload. Humans, we know, have limited personal infor-
mation handling and processing speeds and capabilities.
We will therefore need better ways to rapidly discern true
information from junk, discard the latter, and deal with
the former. Filters to help us through this process are
and will continue to be available; but they too may be
defeated by the determined junk-mailer.

Information and Intelligence

An integral part of the Information Age is to add the
appropriate amounts and types of intelligence to our pro-
ducts and services. Various products, therefore, will‘‘know’’
some things that are best‘‘remembered’’ by the product
instead of the owner or user. Products will have the
improved ability to self-diagnose difficulties in their own
operation, pointing the way for the user to initiate a simple
switch reset or other type of automated repair routine.
Companies will have to understand how much intelligence
to add, such that they will constantly be providing addi-
tional value to the consumer. These patterns have already
shown themselves, for example, in the automobile, but can
be expected to be greatly extended during the twenty-first
century.

Human Interaction

As suggested above, in the Information Age, both products
and services will incorporate unprecedented types and
forms of information for use by industry, government,
academia, and the individual consumer. In each domain,
humans will find themselves part of the loop and at least the
following two pressure points will be evident:

� the information transfers and systems will have to
take full account of possible ways to optimize the
human interactive role, and

� the humans will have to adapt (modify their own
behavior) to maintain high levels of utility, effective-
ness, and productivity.

Decision support systems in industry are good examples
of information systems for which the above factors will be of
increasing importance (see the systems listed in Table 1).

Information Technology versus Information Need

Trends during the last twenty years of the twentieth cen-
tury exhibit an expansive growth of the technology that is
able to organize and process bits and bytes ever faster and
less expensively. This ‘‘technology push,’’ however, has
often outpaced the needs of users, resulting in a gap
between what the information technology has provided
and what the user truly requires, which has led to over-
promising and underdelivering from the perspective of the
user. As the information age matures in the twenty-first
century, an important issue is whether this gap will, on the
whole, increase or decrease. If the former, we will have
more solutions in search of a problem, and more problems
going unsolved. Enterprises that understand and reduce
the gap are likely to outdistance their competitors.

Building Software

As noted earlier, software is likely to remain the underlying
force that gives life to the Information Age. We may there-
fore expect that there will be frontal attacks on the problem
of improving the effectiveness and efficiency of software
development, with new paradigms and languages coming
on the scene and older ones (e.g., C, Cþþ, Java) reengi-
neered for improvements. Promising approaches might
well lie in the following directions:

� extensive reuse of software components;

� software that is able to write new software;

� improved notions relative to software systems archi-
tecting;

� better metrics that aid in software decomposition,
design, and management;

� integrated computer-aided software engineering
(CASE) tools; and

� enhanced software team performance.

The reader is likely to find additional related notions in
many subject areas of this encyclopedia.

Valuing the Information Enterprise

The economics of the Information Age, in several important
dimensions, need to be substantially clarified. One such
dimension is the Internet-based enterprise in which many
of the prior rules for valuation are being rewritten. Another
has to do with the perceived value to the consumer of adding
information to a variety of products and services. A third
aspect is that of the degree to which historical growth
patterns in revenues and profits will be important. The

INFORMATION AGE 3



business marketplace is likely to point the direction
toward some of these answers. Others, hopefully, will be
developed in our universities and financial institutions.

e-Commerce

Electronic commerce (e-commerce) includes any and all
ways in which computers and networks are used to rapidly
transfer information between a variety of corporate and
individual users, which includes electronic data inter-
change (EDI), electronic funds transfer (EFT), electronic
mail (e-mail), on-line catalogs and databases, and the use
of the World Wide Web (www) and Internet (7). A part of
e-commerce involves business-to-business interactions
for purposes of distributing products and information
related thereto. Another dimension relates to business-
to-consumer transactions (such as amazon.com). Both
modes of interaction have been growing and show no signs
of abatement. All of the above uses of e-commerce need to be
assisted by standards as well as the appropriate levels of
security, with its related technologies (e.g., encryption), to
maintain trust and viability throughout the Information
Age.

Creating and Maintaining the Learning Organization

In the Information Age, it will be particularly important to
assure the health and well-being of the Learning Organiza-
tion (8). This statement would appear to be self-evident as
new types and forms of software and information are
created and used. The five disciplines that form the basis
for the Learning Organization are as follows:

� personal mastery,

� mental models,

� building shared vision,

� team learning, and

� systems thinking.

Enterprises that fail to master the Information Age
requirements for learning are not likely to maintain their
competitiveness in a fast-changing world. A vibrant learn-
ing organization, however, is also likely to be a necessary
but insufficient condition for success.

Business Adaptation and Transformation

Related to the above matter of the learning organization is
the issue of business and government adaptation as well as
transformation (i.e., how well, and how quickly, these take
place). Main line businesses (e.g., automobile dealers, hard-
ware stores, appliance manufacturers) will have to answer
at least the following key questions:

� How can I utilize the available information technology
and systems so as to improve the effectiveness and
efficiency of my business?

� How can I extend and advance current information
systems to assure that I stay ahead of my competitors?

Businesses that adapt to the changing environment
and transform themselves with respect to the inte-
gration of information systems of all types are likely to
flourish in the Information Age. Government organizations
will have to do much the same in order to survive over the
long run.

Knowledge Management

Knowledge Management (KM) may be defined as‘‘the way
companies generate, communicate, and leverage their
intellectual assets’’ (9). This relatively new term is part
of a progression that starts with data, operates upon that to
produce information, and then engages in some process
that uses such information as an important element in
creating knowledge. In this context, knowledge may be
viewed as a meta-form of information. Knowledge may
also be thought of as that which is created when various‘‘-
packets’’ of information are combined to establish a new
level of understanding that did not exist previously.
Considerable efforts are underway to try to grasp what it
is that constitutes knowledge, the specific stages of
knowledge development and how organizations need to
approach the matter of assuring the creation and appli-
cation of knowledge (9). Many of the foundations of and
issues related to Knowledge Management are being
examined on a continuous basis (e.g., Knowledge Manage-
ment magazine; see www.kmmag.com). Knowledge
Management is considered to be an important field that
will have to be further explored and instantiated as we
continue to move through the Information Age.

Management in the Information Age

Management of our enterprises during the Information Age
will have to meet the challenges represented by the above-
cited issues, but also may expect organic changes to be
taking place in these enterprises. As an example, Peter
Drucker, one of our leading management commentators,
suggests the following (9):

� a very sharp reduction in the number of management
levels and the total number of managers (e.g., one-half
the levels, and one-third the managers);

� the strong emergence of specialists to be able to create
information, which he defines as ‘‘data endowed with
relevance and purpose’’;

� reliance on task forces (of the above specialists) that
will transcend traditional departmental structures;

� providing a sufficient vision as well as motivation to
unify an organization of information specialists;

� making sure that top management people are pre-
pared and tested for success in the information-based
organization; and

4 INFORMATION AGE



� building the highly competitive enterprise of the
Information Age is the ‘‘managerial challenge of the
future.’’

BIBLIOGRAPHY

1. J. Naisbitt, Megatrends, New York: Warner Books, 1982.

2. J. Naisbitt and P. Aburdene, Megatrends 2000, New York:
Avon Books, 1990.

3. H. Eisner, Reengineering Yourself and Your Company: From
Engineer to Manager to Leader, Norwood, MA: Artech House
Publishers, 2000.

4. R. X. Cringely, Accidental Empires., New York: Harper Busi-
ness, 1992.

5. C. Shannon and W. Weaver, The Mathematical Theory of
Communication, Urbana, IL: The University of Illinois Press,
1949.

6. D. F. Linowes, Privacy in America, Urbana, IL: University of
Illinois Press, 1989.

7. D. Kosiur, Understanding Electronic Commerce, Redmond,
WA: Microsoft Press, 1997.

8. P. Senge, The Fifth Discipline, New York: Doubleday/
Currency, 1990.

9. Harvard Business Review, Discussions on Knowledge Manage-
ment, Boston, MA: Harvard Business School Press, 1998.

HOWARD EISNER

The George Washington
University

Washington, D. C.

INFORMATION AGE 5



M

METROPOLITAN AREA NETWORKS

INTRODUCTION

A metropolitan area network (MAN) is a network that
covers the distances of most cities, about 50 Km. Tradition-
ally, MANs have been data networks. However, as packet
voice over the Internet, IP voice, becomes more widely
accepted, the distinction between voice and data networks
is becoming blurred. Originally, MANs were predomi-
nantly used to interconnect the users in a single organiza-
tion, such as the databases and tellers in the branches of a
bank in a single city. However, the Internet has increased
the demand for high-speed communications to individual
users. The use of MANs has shifted from communications
between users in the same metropolitan area to commu-
nications between users and the global infrastructure.

A MAN is a shared facility, and Internet traffic is bursty.
Internet users require a high data rate for a period of time
and then are silent for a longer period. Because of the bursty
nature of the communications, the average bandwidth that
a user requires is much less than the peak bandwidth that is
needed to avoid waiting to download large amounts of data.
A shared MAN makes it possible for a user to acquire a large
bandwidth during data transmission and to relinquish that
bandwidth to other users during silent intervals. When
there are many users, the total bandwidth in a shared
network can approach the average bandwidth of the users
and provide them with their peak bandwidth most of the
time when it is needed. In effect, a user can purchase
slightly more than his average bandwidth on a shared
network and obtain performance close to a dedicated chan-
nel at his peak bandwidth.

The utilization statistics during busy hours have long
been used to design telephone networks. Before the wide-
spread use of the Internet, and the increased duration of
telephone connections, the number of connections in a local
telephone switch was about one sixth the number of incom-
ing lines. Statistics showed that the smaller number of
connections is sufficient to place almost all of the incoming
call requests during the busiest hours. The widespread use
of the Internet has decreased the ratio of connections to
incoming lines to about one third, but we still do not require
a switch connection for every incoming line. Similarly, we
can use the utilization statistics of data to design shared
MANs with bandwidths that are much less than the peak
requirements of the users.

Local area networks (LANs) take advantage of the uti-
lization statistics of data to share the communications
facilities. For instance, the Ethernet protocol gives the
entire bandwidth to a single user for the duration of his
transmission. The users contend for the bandwidth using a
protocol called carrier sense multiple access with collision
detection (CSMA/CD). In CSMA/CD, a user listens to the
channel before transmitting and does not transmit if other
users are transmitting (CSMA). When a user transmits, he

continues to listen to the channel in case another user has
started to transmit at the same time. If more than one user
transmits at the same time, there is a collision and all of the
users stop transmitting (CD). After detecting a busy chan-
nel or a collision a users waits a random amount of time
before trying to transmit again. The random wait makes it
unlikely that the same users will interfere with one another
multiple times. As more users contend for a channel, users
experience longer access delays before acquiring the chan-
nel. By using the busy hour utilization statistics to limit
the number of users sharing a single LAN, the access delays
are tolerable.

LANs are designed to cover small distances of a few
kilometers, and the protocols take advantage of this char-
acteristic. The CSMA/CD protocol works well when the
time it takes to transmit data is much less than the time
it takes the packet to propagate between users. However,
when the distances and propagation delays increase, so
that the propagation delay is greater than the time that it
takes to transmit the packet, the signal that the source
and receiver detect is different. The source cannot use the
signal that it detects to reliably determine when there is
interference from other users at the receiver.

A MAN covers greater distances than a LAN, so that the
propagation delays are longer. In addition, a MAN is
designed for more users than a LAN, so that the shared
transmission rate must be higher and the time to transmit
a message is less. The protocols that are designed for a
LAN cannot be applied directly to a MAN. The first
generation of MANs used protocols and network topologies
that are specifically designed to span the greater distances
and operate at the higher transmission rates that occur
in a MAN. In the next section, we describe three of these
protocols: the fiber distributed data interface (FDDI),
the dual bus distributed queue protocol (DQDB), and the
Manhattan Street Network(MSN).

The first generation of MAN protocols is not widely used.
The main reasons are economic. In consumer applications,
the cost of the device that is at the customer location is
particularly important. When television was first intro-
duced, the designers went to great lengths to reduce the
cost of TV sets at the expense of the broadcast equipment. In
electronics, the first few devices bear the development costs
and the cost decreases rapidly as more devices are deployed.
Ethernets were common in businesses before consumer
MANs evolved. Multilayered MANs that use an Ethernet
interface in the consumer location have a possibly insur-
mountable advantage over any new technology.

All three of the first-generation MANs were designed to
operate over fiber-optic networks. In a MAN, the cost of new
transmission infrastructure that reaches every location
can be prohibitive. Fiber to the home has not been realized.
Networks that use existing infrastructure, such as the
cable TV network, or reduced infrastructure, such as wire-
less networks, have an economic advantage over any net-
work that requires new facilities. (In this work, we use

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



CATV to refer to cable TV networks. Although CATV
originally signified community access TV, it has become
common to use CATV to refer to cable TV.)

In addition to the economic reasons, the DQDB network
and the MSN have failed to become accepted because they
are compatible with the asynchronous transfer mode
(ATM) protocols rather than the Internet protocols that
are used in routers. In the mid-1990s, ATM switches could
support more high rate communications lines than routers.
ATM is based on fixed size cells that can be exchanged
between multiple inputs and outputs in a space division
switch. A space division switch allows many inputs and
outputs to be switched in parallel. The Internet protocols
are based on variable size packets that routers passed
through a single processor. The processor was a bottleneck
that constrained the total input and output rate of routers.
Increasing line rates in fiber-optic networks made it likely
that ATM switches would replace routers. Many of the
current generation of routers partition the variable size
packets into fixed-size cells and use a space division switch
internally. Once the bottleneck in routers was eliminated,
ATM switches failed to replace routers.

In the third section we will describe the most popular
MANs. Three technologies are currently used, one based on
the telephone network, the second on the CATV network,
and the third on wireless networks.

Telephone networks use adaptive equalizers to in-
crease the data rates that can be transmitted on the exist-
ing telephone lines. The data rates that can be obtained
depend on the quality of the lines between the central office
and the subscriber premises. The lines that are being
installed have fewer loading coils and alternative branches,
which are referred to as ‘‘dog legs,’’ than the lines that were
installed before data became an important service, and can
support higher data rates. Typically, it is possible to obtain
data rates between 1.5 Mbps and 6.3 Mbps on local tele-
phone lines. The technology is referred to as digital sub-
scriber loop(DSL). The data rate can be used in a half duplex
mode where the entire data rate is first used to transmit
from the home to the central office, then used to transmit
from the central office to the home, or it can be partitioned
so that part of the bandwidth is available in each direction.
When more bandwidth is provided in one direction than
the other, DSL is referred to as asymmetric DSL (ADSL).
ADSL is justified in Internet applications because users
download more information from the Internet than they
send to the Internet. DSL and ADSL provide dedicated
lines to a central office and are not a shared MAN. They are
described elsewhere in this encyclopedia.

The CATV infrastructure is evolving from a tree topol-
ogy, with cables from the head end of the network to each
home, to a hub-and-spoke topology, with fibers from the
head end to distribution points, the hubs, and smaller trees
from the hubs to each home. CATV MANs use one protocol
to collect data from the homes connected to a tree that
emanates from a hub, a second protocol to send data to the
homes, and a third protocol or dedicated lines to transfer
data between the hub and the head end of the CATV
network. The hub-and-spoke topology makes it possible
to use conventional Ethernet interfaces at the customer
sites. In the third section, we will describe a variant of the

Ethernet protocol that can be used on CATV networks and
show how the protocol can be modified to also carry voice
communications.

Wireless MANs use separate techniques to collect data
from users in a local area and to transfer that data across
the metropolitan area. Two LAN technologies are des-
cribed, the IEEE 802.11 standard, also referred to as
WiFi for wireless fidelity, and Bluetooth. The WiFi protocol
is a variant of the Ethernet protocol called CSMA/CA,
where CA stands for collision avoidance. We also describe
a polled mode in this protocol that can be used for voice
transmission and multihop protocols that can be used to
extend the range of this network. WiFi is becoming widely
used because the cost of IEEE 802.11 chips are decreasing
and are included in most laptop computers. We also
describe the evolving IEEE 802.16 protocol, which cover
the distances in a metropolitan area and can lead to an
entire wireless MAN. The wireless nature of this solution
makes it possible to deploy this network with less invest-
ment in infrastructure than in wired networks.

MANs are evolving quickly. The solutions that were
described in the previous version of this article have
been replaced. In the conclusion we will attempt to predict
future changes. These changes are fueled by the need for
improved reliability, the emergence of IP voice, the in-
creased use of wireless technologies, the overuse of the cel-
lular bands, the eventual deployment of fiber to the home,
and a resurgence of ATM-like, cell-based transmission.

THE FIRST-GENERATION MANS

FDDI

FDDI (1) is a token passing loop network that operates at
100 Mbps. It is the American National Standards Institute
(ANSI) X3T9 standard and was initially proposed as the
successor to an earlier generation of LANs. FDDI started as
a LAN; however, it is capable of transmitting at the rates
and spanning the distances required in a MAN.

Token Passing Protocol. FDDI uses a token passing
protocol to give each station on the loop a chance to transmit
data. The information that is transmitted on the loop is
framed by a unique character. A frame may contain a token
or a data message. When a station on the loop receives the
token, it may remove the token and transmit data. When
the station has completed its data transmission, it trans-
mits the token so that the next station on the loop has a
chance to transmit. A station that does not have the token
forwards the data frames that it receives on the loop, and a
station that has the token discards any data frames that it
receives. The discarded data were either transmitted by
one of the stations that had the token before the token
site or was transmitted by the token site. If the data were
inserted by another station, it must pass that station to
reach the current token site. In either case, the data has
circulated around the loop at least once and every station
has had a chance to receive it.

In a simple token passing protocol, one station can hold
the token for a very long period of time and delay other
stations. FDDI uses a target token rotation time (TTRT) to

2 METROPOLITAN AREA NETWORKS



control the amount of time that a station may hold the token
and thereby avoids long delays. Two types of stations on an
FDDI network exist, priority stations and asynchronous
stations. Priority stations can transmit up to a prescribed
amount of data each time that the token is received. These
stations can be used to transmit real-time voice and video.
Asynchronous stations can use all of the transmission
capacity that is not currently being used to transmit prior-
ity data. These stations can be used to transmit large
quantities of bursty data.

Each station uses the same TTRT, which is the time that
we would like to have the token take to circulate around the
loop. Each station tracks the token rotation time (TRT),
which is the time that is left before the token exceeds the
TTRT at the current station. When a token arrives earlier
than expected, an asynchronous station can hold the token,
and transmit data, up to its local calculation of TRT. If the
token arrives late, the asynchronous station does not trans-
mit data. In this way, an asynchronous station does not
increase the delay of tokens that are late. In actuality, there
is a minimum-size data packet, and an asynchronous sta-
tion that receives the token just before it is due to arrive
may forward it slightly later than the TTRT.

Each priority station i can send up to Xi bits, which may
be different for each priority station, each time it receives
the token. The time it takes to transmit the bits is the
maximum token hold time for the station THTi. The total
amount of priority traffic is constrained to

P
i THTiþ

D � TTRT, where D is the delay around the loop, including
the propagation time and the delay inserted by each
station. The constraint guarantees that the token can
circulate in less than TTRT when all of the priority stations
are transmitting data.

It is shown in Ref. 2 that the maximum time between
token arrivals is less than 2� TTRT and the average time
between token arrivals is less than TTRT. When the token
does not arrive at a station by 2� TTRT, it is presumed to
be lost, either because of a transmission error or because a
token site failed, and a token recovery procedure is ini-
tiated. State machines that depict the operation of priority
and asynchronous stations are shown in Fig. 1.

Isochronous Traffic. FDDI-II adds the ability to send
isochronous, or circuit-switched, traffic on an FDDI loop.

An isochronous channel is a regularly occurring slot that
is assigned to a specific station.

FDDI-II is implemented by transmitting fixed-size
frames. A central station sends out a framing signal every
125 ms. The first part of the frame is used for isochronous
channels, and the second part of the frame is used to
transmit the bits in the FDDI token passing protocol. An
isochronous station that is assigned one byte per frame has
a 64-Kbps channel. This channel is adequate for telephone
quality voice.

In FDDI-II, the stations that implement the token
passing protocol must switch between the two modes of
operation when they receive framing signals. When a sta-
tion that enters the circuit switched mode, it forwards the
bits it receives. When the circuit-switched mode ends, the
station resumes the token passing protocol where it left off.

Architecture. A single failure of a node or a link discon-
nects the stations on the loop. Poor reliability prevents loop
networks from connecting the number of users associated
with MANs. The reliability of an FDDI is improved with a
second loop that does not carry data during normal opera-
tion, but it is available when failures occur.

FDDI networks have three components as shown in
Fig. 2. The type ‘‘A’’ units connect user devices to the
primary loop and implement the token passing protocol.
The type ‘‘B’’ units manage the reliability. They are con-
nected to both loops and one or more type ‘‘A’’ units. Type
‘‘B’’ units monitor the signal returning from type ‘‘A’’ units
and bypass type ‘‘A’’ units that have stopped operating.
They also monitor the signal on the two loops and bypass
links or other type ‘‘B’’ units that have failed. There is one
type ‘‘C’’ unit on an FDDI network that is responsible for
signal timing and framing.

The outer loop in Fig. 2 is the primary loop and normally
carries the information. The inner loop is the secondary
loop and is used to bypass failed links or failed type ‘‘B’’
units. The signal on the secondary loop is transmitted in
the opposite direction from the primary loop. Normally
type ‘‘B’’ units forward the signal that they receive on the
secondary loop. However, when a primary loop failure is
detected, by a loss of received signal on that loop, a type ‘‘B’’
unit replaces the lost signal with the signal it receives from
the secondary loop and stops transmitting on the secondary

Late

Xmit(Set TRT=TTRT)

Xmit Done
TRT=0

(Set TRT=TTRT)

TRT=0
TRT=0

Priority Station

Not
Late

Not
Late

Wait for Token
Periodically Decrement TRT

Wait for Token
Periodically Decrement TRT

Late

Token
Lost

Token
Lost

Xmit

Rcv. TokenRcv. Token

Rcv. Token
(Don’t Reset TRT)

(Set TRT=TTRT)

Hold Token
Up to THT

Before Reset

Xmit Done
TRT=0

(Set TRT=TTRT) Rcv. Token
(Don’t Reset TRT)

Asynchronous Station

Hold Token
Up to THT

Figure 1. State machines for priority and asyn-
chronous stations.

METROPOLITAN AREA NETWORKS 3



loop. When a type ‘‘B’’ unit stops receiving signal on the
secondary loop, it replaces that signal with the signal it
would have transmitted on the primary loop and stops
transmitting on the primary loop. As an example, in
Fig. 2, the ‘‘X’’ signifies a link failure. The unit B1 stops
receiving the signal on the primary loop, substitutes the
signal that it receives from the secondary unit, and stops
transmitting on the secondary loop. The unit B3 stops
receiving the signal on the secondary loop, transmits the
signal it would have transmitted on the primary loop on the
secondary loop, and stops transmitting on the primary loop.
The entire secondary loop replaces the single failed link on
the primary loop.

The Distributed Queue Dual Bus (DQDB)

DQDB (3,4) is the IEEE 802.6 standard for MANs. It uses
two buses that pass each station, transmits information in
fixed size slots, and uses the distributed queue protocol to
provide fair access to all stations. Signals on the two buses
propagate in opposite directions. A station selects the
appropriate bus to communicate with a specific station
and uses the other to reserve slots on that bus.

DQDB uses two passive, directional taps on each bus for
each station. The first tap reads the signal, and the second
tap adds signal to the bus. The taps read and write data on a
bus without breaking the bus and are common components
in both CATV and fiber-optic networks. The inability to
remove signals makes it necessary for the the bus to have a
break in the communications path where signals can leave
the system.

The taps distinguish directional buses from loop net-
works, which use signal regenerators. In loop networks,
there is a point-to-point transmission link between each
station. Each station receives the signal on one link and
transmits on the next link. A station can add or remove the
signal on the loop. However, a failure in the electronics in a

station breaks the communications path. By contrast, the
stations on a directional bus networks do not interrupt the
signal flow, and a failure in the electronics in a station does
not break the communications path.

The directional taps are passive and do not contain
active elements that can amplify the signal on the bus.
Each tap removes energy from the signal path, and the
signal must be restored to its full strength after passing
several stations. The DQDB standard provides for erasure
nodes (5,6). Erasure nodes are regenerators, similar to the
station interfaces on a loop network. They restore the signal
to its full strength and remove slots that have already
passed their destination, so that the slots may be reused.

The Access Protocol. A baseband signal is transmitted.
Energy exists in a bit position when a ‘‘1’’ is transmitted,
and no energy is in the bit position when a ‘‘0’’ is trans-
mitted. The station at the beginning of each bus, the head
end, periodically transmits a sync signal to divide the
transmission time into fixed-size slots.

The first bit in the slot is a ‘‘busy’’ bit, that is initially ‘‘0’’
and is changed to a ‘‘1’’ when the slot is being used. The read
tap precedes the write tap at each station. The directional
characteristic of the taps makes it possible for a station to
read what upstream stations have transmitted on the bus,
independent of what the station is transmitting. When a
station has data to send, it transmits a ‘‘1’’ in the busy bit,
while simultaneously reading what upstream stations have
transmitted. If the busy bit was ‘‘0,’’ the station transmits
its data. If the busy bit was ‘‘1,’’ then the slot is occupied and
the station stops transmitting. There is no harm in adding
energy to the ‘‘1’’ in the busy bit.

The stations on the bus that are closer to the head end
have priority access over stations that are further away. In
a dual bus network, reservations are used to construct a
distributed first-in–first-out (FIFO) queue that services
all stations in the order that they arrive. When slots arrive,

Figure 2. FDDI loop.

B2

A

Source

A

Source

A

Source

Disabled Link

C

Clock and
Frame Generator

B3

A

Source

X _

B1

A

Source

A

Source

A

Source

Disabled Link

4 METROPOLITAN AREA NETWORKS



a station notifies the upstream stations by transmitting a
reservation on the bus traveling in the opposite direction
from the direction that it will transmit the slot. Each station
maintains a queue of the requests from downstream sta-
tions and its slots, for each bus. When an empty slot arrives
on a bus, the station examines the queue. If the next entry
in the queue is a request from a downstream station, the
station allows the empty slot to pass in order to service that
request, and it removes that request from the queue. If the
next entry in the queue is its own slot, it transmits that slot
and removes it from the queue.

The queue at each station is a time-ordered list of its
own arrivals and the arrivals at downstream stations. The
queue at the head end has the complete list of arrivals, and
the head end places its own messages in the slots they
would have acquired if the actual messages were all in the
queue. The next station on the bus does not have the list of
arrivals at the head end in its local queue. However, the
slots that these messages would have acquired, if they
were in the queue, are busy and are not available to service
the queue. By using the remaining empty slots to service
its queue, the station places its own arrivals after the
arrivals from downstream stations that arrived earlier
than its own message. The station at the end of the bus
only has its own arrivals in its queue, but all arrivals at
upstream stations that arrived before the arrivals in this
queue have acquired slots.

To prevent long messages from blocking short messages,
the slots from each station are serviced in a round-robin
order. Round-robin service can be implemented by main-
taining a separate queue of slot requests for each down-
stream station and servicing each queue in order as empty
slots arrive. An equivalent implementation in a reservation
system is to have a station issue one slot request at a time,
and not issue the next request until the previous request
is serviced. DQDB implements a round-robin, FIFO queue

with two counters that count the reservation requests that
precede its own request, and those that follow it.

To preserve fixed-size slots, DQDB approximates the
reservation system with a single reservation per slot. The
second bit in each slot is a reservation bit and is initially
set to zero. A station sets the bit to one to make a reserva-
tion. If two stations try to make a reservation in the same
slot, the second station receives a one in that slot and must
wait for a susequent slot to make its reservation.

Reservation requests are transmitted to the upstream
stations on the opposite bus as the data. Two separate
reservation systems exist, one for transmitting data on
each bus. In each system, the bus that is used to transmit
data is referred to as the data bus, and the other bus is the
reservation bus. In Fig. 3, we depict the queue formation
on bus A. Figure 3(a) shows the bits transmitted on each
bus, (b) shows the operation of the counter in a station
that is not transmitting slots, and (c) shows the operation
of the counter in a station with a slot to send. In Fig. 3C,
the count down counter contains the number of requests
that preceded the slot from the local station. When this
counter reaches zero, the next empty slot is used to transmit
a slot and then the request counter, which is the number of
requests that arrived after the slot from the local station, is
transferred to the countdown counter and precedes the next
slot from this station.

In a DQDB network with multiple priority levels for
data, there is one reservation bit and two counters for each
priority level. When empty slots are received, the counters
for the higher priority levels are emptied first.

The DQDB protocol does not provide guarantees on
delay or bit rate. An isochronous mode, similar to FDDI,
has been added to support real-time traffic. The slots leav-
ing the head end are grouped into 125 ms frames. In some
slots the busy bit is zero and the slots are available for
the DQDB protocol. In other slots, the busy bit is one. These
slots are reserved for real-time traffic. A station that

Bus A

Bus B

Busy Bits

Request Bits

(a) Bits that Control Transmission on Bus A

Request
Counter

Bus A

Cancel one request for
each empty slot on A-

Bus B

Count requests on B
+

(b) Station with no slots to send

Requests
After

Requests
Before

Bus A

Count down requests
before slot transmission-

Bus B

Count new requests
+

(c) Station with slots to send

Figure 3. Queue formation on Bus A.

METROPOLITAN AREA NETWORKS 5



reserves a single byte in a frame acquires a 64-Kbps chan-
nel with at most a 125-ms delay. This same guarantee is
provided by the telephone system for digital voice.

Protocol Unfairness. The description of the distributed
queue ignores the propagation delay on the buses. The
distance-bandwidth product of IEEE 802.6 standard net-
works creates a potential for gross unfairness (7). The
standard was modified to include bandwidth balancing
(BWB) (8), which eliminated most of the unfairness.

The IEEE 802.6 standard is designed to operate at
155 Mbps, with 53-byte slots, and is compatible with
ATM. At these rates, a cell is only about 0.4 miles long.
The standard spans up to 30 miles. Therefore, there may be
75 cells simultaneously on the bus. Assume that a station
near the head end of the bus has a long file transfer in
progress when a station 50 cells away requests a slot. In the
time it takes the request to propagate to the upstream
station, that station transmits 50 slots. When the request
arrives, the upstream station lets an empty cell pass and
then resumes transmission. An additional 50 slots are
transmitted before the empty cell arrives at the down-
stream station. When the empty slot arrives, the down-
stream station transmits one slot and submits a request for
another. The round trip for this request to get to the
upstream station and return an empty slot is another
100 slots. As a result, the upstream station obtains 100
times the throughput of the downstream station.

A similar imbalance can occur in favor of the down-
stream station when that station starts transmitting first.
Although the downstream station is the only source, it
transmits in every cell, while placing a reservation in every
slot. When the upstream station begins transmitting, there
are no reservations in its counter, but there are 50 reserva-
tions on the bus. Although the upstream source transmits a
slot, a reservation is received. Therefore, the upstream
station must allow one slot to pass before transmitting
its second slot. During the time it takes to service the
reservation and the upstream station’s next transmitted
slot, two reservations arrive. Therefore, the upstream sta-
tion lets two empty slots pass before transmitting its third
slot. The reservation queue at the upstream station con-
tinues to build up each time it transmits a slot, and the
upstream station takes fewer of the available slots. An
imbalance between the upstream and the downstream sta-
tion is sustained indefinitely because the downstream sta-
tion places a reservation on the bus for each of the empty
slots that the upstream station releases. The imbalance is
not as pronounced as when the upstream station starts first,
but it is considerable. The exact imbalance depends on the
distance between two stations and the time that they start
transmitting relative to one another (8).

The BWB mechanism is based on two observations:

1. Each station can calculate the fraction of the slots
that are used, whether or not the data pass the
station.

2. It is possible to exchange information between sta-
tions by using the fraction of the slots that are not
used.

A station sees a busy bit for every slot transmitted by an
upstream station and a reservation for every slot trans-
mitted by a downstream station. By summing the fraction
of the busy bits and reservation bits and adding the fraction
of the slots that the station transmits, the station calculates
the total fraction of the slots that transmit data on the bus.

Table 1 shows how stations can communicate by using
the fraction of unused slots. Each stations tries to acquire
90% of the unused bandwidth on a channel. Station A starts
first and uses 90% of the total slots. When station B arrives,
only 10% of the slots are available. Station B does not know
whether the slots are being used by a single station taking
its allowed maximum share or many stations. Station B
uses 90% of the available slots or 9% of the slots in the
system. Station A now has 91% of the slots available. When
station A adjusts its rate to 90% of 91% of the slots, it uses
82% of the slots, making 18% of the slots available to station
B. Station B adjusts its rate up to 90% of 18%, which causes
the station A to adjust its rate down, and so on until both
stations arrive at a rate of 47.4%. Note that this mode of
communications cannot be used when stations try to
acquire 100% of the slots.

The implementation of BWB in the standard is parti-
cularly simple. A station acquires a fraction of the slots
available by counting the slots it transmits and by placing
an extra reservation in the local reservation queue when
the count reaches a prescribed value. In this way, a station
lets a fraction of the slots that are available remain
empty. For instance, if a station wants to take 90% of the
slots that are available, it counts the slots that it trans-
mits and inserts an extra reservation in the reservation
counter after every ninth slot that it transmits. As a result,
every tenth slot that the station could have taken remains
empty.

With BWB, the fraction of the throughput that station
i acquires, Ti is a fraction ai, of the throughput left behind
by the other stations:

Ti ¼ ai 1�
X
j#i

T j

8<
:

9=
;

Table 1. Convergence of Rates when two Stations use 90%
of the Slots Available to them

Station A Station B

Measure
Bsy+Rqst Take

Measure
Bsy+Rqst Take

0 0.9�1 ¼ 0.9 – –
0 0.9�1 ¼ 0.9 0.9 .9�.1 ¼ .09
0.09 .9�.91 ¼ .82 0.82 .9�.18 ¼ .16
0.16 .9�.84 ¼ .76 0.76 .9�.24 ¼ .22
0.22 .9�.78 ¼ .7 0.7 .9�.3 ¼ .27
0.27 .9�.73 ¼ .66 0.66 .9�.34 ¼ .31
0.31 .9�.69 ¼ .62 0.62 .9�.38 ¼ .34
. . . . . . . . . . . .

0.474 .9�.526 ¼ .474 0.474 .9�.526 ¼ .474

6 METROPOLITAN AREA NETWORKS



When N stations contend for the channel, and use the same
value of a ¼ ai they each acquire a throughput

T ¼ a

1þ aðN � 1Þ

The total throughput of the system increases as a

approaches one or the number of users sharing the facility
becomes large. The disadvantage with letting a approach
one is that it takes the network longer to stabilize. We can
see from the example in Table 1 that the network converges
exponentially toward the stable state. However, as a!1,
the time for convergence goes to infinity. The original
DQDB protocol uses a ¼ 1.

Reliability. The dual bus in a DQDB network is config-
ured as a bidirectional loop, as shown in Fig. 4. The signal
on the outer bus propagates clockwise around the loop, and
the signal on the inner bus propagates counterclockwise.
The signal does not circulate around the entire loop, but it
starts at a head end on each bus and is dropped off the loop
before reaching the head end.

To communicate, a station must know the location of the
destination and the head ends and transmit on the proper
bus. For instance, station A transmits on the outer bus to
communicate with station B, and station B transmits on
the inner bus to communicate with station A.

The dual bus is configured as a loop so that the head end
can be repositioned to form a contiguous bus after a failure
occurs. The head end for each bus is moved so that the
signal is inserted immediately after the failure and drops
off at the failure. This system continues to operate after any
single failure.

The ability to heal failures increases the complexity of
stations on the DQDB network. To heal failures, the station
that assumes the responsibility of the head end must be
able to generate clock and framing signals. In addition,
after a failure each station must determine the new direc-
tion of every other station. For instance, after the failure in
Fig. 4 is repaired, station A must use the inner bus, rather
than the outer bus, to transmit to station B.

Manhattan Street Network (MSN)

The MSN (9) is a two-connected network of 2� 2 switches.
A station is attached to each switching node. The connec-
tivity between nodes in the MSN is the same as in an FDDI
network and a DQDB network, except that the logical
topology of the network resembles the grid of one-way
streets and avenues in Manhattan, as shown in Fig. 5.
Fixed-size cells are switched between the two inputs and
outputs using a strategy called deflection routing. The
fixed-size cells can encapsulate ATM cells, so that the
MSN is compatible with wide-area ATM networks.

In the MSN, packets are routed independently at each
node that they traverse so that the overhead associated
with establishing and maintaining circuits is eliminated.

5,0

4,0

3,0

2,0

1,0

0,0

5,1

4,1

3,1

2,1

1,1

0,1

5,2

4,2

3,2

2,2

1,2

0,2

5,3

4,3

3,3

2,3

1,3

0,3

5,4

4,4

3,4

2,4

1,4

0,4

5,5

4,5

3,5

2,5

1,5

0,5

Station

Station

Figure 5. The Manhattan Street Network.

Frame
Generator

StationStation

Station A
Station B

StationStation

Bus 2

Bus 1

Station

StationStation

Station A
Station B

Frame
Generator

Frame
Generator

Bus 2

Bus 1

NORMAL FAILURE
Figure 4. DQDB network before and after a
failure.

METROPOLITAN AREA NETWORKS 7



The direction of one-way streets and avenues alternate.
By numbering the streets and avenues properly it is pos-
sible to get to any destination without having a complete
map, and when failures occur, detours around the failure
can be determined. The grid is logically constructed on
the surface of a torus instead of a flat plane. The wrap-
around links on the torus decrease the distance between
the nodes and eliminate congestion in the corners.

In deflection routing, packets can be forced to take an
available path rather than waiting for a specific path. It
operates on any network where the nodes have the same
number of inputs and outputs and the network transmits
fixed-size cells. The cells are aligned at a switching point
in a node. In a two-connected network, if both cells select
the same output, and the output buffer is full, one cell is
selected at random and forced to take the other link. The
cell that takes the alternate path is deflected.

Deflection routing gives priority to cells passing
through the node. Cells are only accepted from the local
source when empty cells are arriving at the switch. There-
fore, the number of cells arriving at the switch never
exceeds the number of cells that can be transmitted, and
cells are never dropped because of insufficient buffering.
The link capacities is shared between bursty sources with-
out large buffers and without losing packets because of
buffer overflows. The operation of a deflection routing node
is shown in Fig. 6. Deflection routing is also used for rout-
ing inside some ATM switches (10,11).

The MSN is well suited for deflection routing for three
reasons:

1. At any node many destinations are equidistant on
both output links. Cells headed for these destinations
have no preference for an output link and do not force
other cells to be deflected.

2. When a cell is deflected, only four links are added to
the path length. The worse that happens is that the
cell must travel around the block.

3. Deflection routing can guarantee that cells are never
lost, but it cannot guarantee that they will not be
deflected indefinitely and never reach their destina-
tion. It has been found that this type of livelock does
not occur in the MSN when the cell that is deflected is
selected randomly (12).

Deflection routing is similar to the earlier hot potato
routing (13), which operated with variable-size packets,
on a general topology, with no buffers. Fixed-size cells, the
MSN topology, and two or three cells of buffering con-
verted the earlier routing strategy, which had very low
throughputs, to a strategy that can operate at levels exceed-
ing 90% of the throughput that is achieved with infinite
buffering.

Reliability. The MSN topology has several paths
between each source and destination. The alternate
paths can be used to communicate after nodes or links
have failed.

There are two simple mechanisms to survive failures in
the MSN, as shown in Fig. 7. Node failures are bypassed by
two normally closed relays that connect the rows and
columns through. The missing node in the grid in Fig. 7
has failed. Link failures are detected by a loss of signal, as
in loop networks. Nodes respond to the loss of signal by
not transmitting on the link at right angles to the link that
has stopped. When one link fails, three other links are
removed from service and the node at the input to the

X

D

D

12

In Out

In 1

In 2

Out 1

Out 2

Source

INPUT

P1

P3 P2

SWITCH

P1

P3 P2

OUTPUT

SRC P2

P3 P1

Figure 6. Deflection routing node.

Figure 7. Failure recovery mechanisms in the
MSN.

NODE FAILURES

Bypass Relay

LINK FAILURES

Circuit Elimination

8 METROPOLITAN AREA NETWORKS



failed link stops transmitting on it. The dotted link in Fig. 7
has failed, and nodes stop transmitting on the dashed links.
This link removal procedure works with any number of link
failures. The number of inputs equals the number of out-
puts, so that deflection routing continues to operate without
losing cells. In addition, it has been found that the simple
routing rules that are designed for complete MSNs con-
tinue to work on networks with failures.

Comparison of FDDI, DQDB, and the MSN

DQDB and FDDI are linear topologies. The average num-
ber of links that data traverses increases linearly with the
number of nodes in the network, and the average through-
put that each user can obtain decreases linearly with the
number of users. By contrast, in the MSN, the distance
between nodes increases as the square root of the number of
nodes in the network. As a result, the reduction in the
throughput per user, which occurs as networks become
large, is much less in the MSN than in the FDDI or
DQDB network.

In the DQDB network, the penalty for large networks
can be reduced by breaking the network into segments and
erasing data that have already been received when it
reaches the end of a segment. This strategy works parti-
cularly well when communities of users communicate fre-
quently. When those users are placed on the same segment
of the bus, the traffic between them does not propagate
outside the segment and interfere with users in other
segments. When a community in the middle of the bus
becomes congested in a DQDB network, communications
between nodes at opposite edges of the bus must still pass
through that community.

In the MSN, communities of users are supported in a
very natural way. If nodes that communicate frequently are
located within a few blocks, they only traverse the paths in
those few blocks and do not affect the rest of the network.
Special erasure nodes are not needed because the protocol
removes cells that reach their destination. In addition,
when there is heavy traffic within a neighborhood, com-
munications between other neighborhoods can continue
without passing through that neighborhood. With deflec-
tion routing, cells naturally avoid passing through con-
gested neighborhoods.

Both DQDB and FDDI can survive single failures. How-
ever, when multiple failures occur, the network is parti-
tioned into islands of nodes that cannot communicate with
one another. Nodes in the MSN are not cut off from one
another until at least four failures occur. When four failures
have occurred, the likelihood of nodes being disconnected,
and the number that are actually disconnected, is small. A
quantitative comparison of the reliability of MSN, DQDB,
and FDDI networks is presented in Ref. 14.

An advantage of linear topologies is that routing is
relatively simple. All data that enter an FDDI system is
transmitted on a single path, and there is only one path to
select at any intermediate node. In a DQDB network,
the source must decide which of the two paths leads to
the destination, but once the data are in the network, there
are no choices to make. The MSN network has a simple rule
to select a path, but a choice must be made at each node.

An important consideration in any large network is how
easily it can be modified to add or delete users. In early
LANs, there was a correspondence between the topology of
the network and the physical distribution of users. A loop
network was a daisy chain between adjacent offices and a
bus network passed down a hallway. It is more difficult
to change the wiring between offices than to have all offices
connected to a wiring cabinet and change the interconnec-
tions in that cabinet. As a result, most linear networks are
physically a star network between users and a wiring
cabinet. The users are connected inside to a wiring cabinet
to form a logical loop or bus or mesh network. The number of
wires that must be changed in the wiring cabinet deter-
mines how difficult it is to add or delete users from a
network.

In a bidirectional loop or bus network, adding or deleting
a user is a relatively simple operation. To add a user, the
connection between two users is broken and the new user is
inserted between them. In the wiring cabinet, two wires are
deleted and four are added. In a complete MSN, two com-
plete rows or columns must be added to retain the grid
structure. There are, however, partial MSNs in which rows
or columns do not span the entire grid, and a technique is
known for adding one node at a time to a partial MSN to
eventually construct a complete MSN (15). With this tech-
nique, the number of links that must be changed in the
wiring cabinet is the same as in the loop or bus network.

DQDB and FDDI have an isochronous mode of operation
that provides dedicated circuits to support realtime traffic.
The isochronous mode is well integrated into the DQDB
protocol. Nodes that only require the data mode do not have
to change any protocols or hardware when isochronous
traffic is added to the network. The only change that these
nodes notice is that more slots are busy. By contrast, when
isochronous traffic is added to an FDDI network, every node
must be able to perform context switching to move between
the data and the circuit modes. The MSN does not have an
isochronous mode of operation. Real-time traffic operates
like IP voice on the Internet and is dependent on low
network utilizations.

THE CURRENT GENERATION MANs

CATV

The CATV network is an existing MAN that is designed to
deliver TV programs to a large number of homes. The
network is designed for unidirectional delivery of the
same signal to a large number of receivers. In most
CATV networks, many channels carry signals from the
head end to the home in the downstream direction, and a
smaller number of channels carry signals in the opposite
direction, the upstream direction. The network taps are
also directional and receive signals from downstream but
not from upstream. Signals transmitted through the direc-
tional taps travel upstream. The lines in many homes are
not properly terminated and insert significant noise into
the network, but this noise travels upstream, it is not
received by the other homes, and does not degrade TV
reception from the head end. The upstream channel is a

METROPOLITAN AREA NETWORKS 9



noisy channel that cannot be used to carry high-quality
analog signals, but it can be used to carry digital data.

The CATV network is increasingly being used to provide
high bandwidth data access to the Internet. Several com-
peting standards committees, including the IEEE 802.14
standards committee and the Multimedia Cable Network
Systems group (MCNS), are working on standards that are
not compatible with one another.

The current practice and the evolving standards have
some common characteristics. All channels use 6-Mhz
bands that are used for TV transmission. Many homes
share the upstream channel to send data to the Internet.
The protocols that share this channel include reservation
protocols, which allow homes to acquire scheduled slots,
and contention-based protocols, which are similar to the
CSMA/CD protocol used in Ethernet but may have more
complicated contention resolution schemes based on tree
searches. The upstream channel is relatively noisy, and
cable modems transmit between 1.6 and 10 Mbps in these
channels. The downstream channel carries addressed
packets from the Internet to the many homes.

The data from the Internet come from a single source, a
router, so that there is no contention for this channel.
Typically, in Internet applications there is much more
data to the home than from the home. The downstream
channel has a much higher signal-to-noise ratio than the
upstream channel, and cable modems transmit up to
40 Mbps in the downstream channels.

Instead of describing the many contending standards,
we will demonstrate the use of the CATV network with the
IEEE 802.3 Ethernet standard protocol. This approach has
the advantage that the home terminals use standard Ether-
net chips, which have become inexpensive because they are
widely used, to share the upstream channel. Furthermore,
Ethernets typically transmit encapsulated IP packets that
can be forwarded directly to the Internet. The CSMA/CD
protocol that is used on Ethernets cannot be applied
directly to the upstream CATV channel because

1. The stations that are transmitting on the upstream
channel cannot listen to the other stations to deter-
mine when the channel is busy or when a collision
occurs.

2. The distances spanned by a CATV network are much
greater than the distances spanned by a local network
so that the CSMA/CD protocol become less efficient.

CATV networks have evolved from a tree topology to a
hub-and-spoke topology. In the tree topology, cables from
the head end of the network are connected to each home. In
the hub-and-spoke topology, fibers from the head end carry
signals to each hub and smaller cable trees connect the hub
to the individual homes. The hub-and-spoke topology has
fewer amplifiers and delivers TV signals with a higher
signal-to-noise ratio. The hub-and-spoke topology also
reduces the distance between users connected to the
same hub. The decreased distance between users and the
lower transmission rates on the upstream channel make it
possible to use CSMA/CD to share the upstream channel
between users that are connected to the same hub. When

necessary, a transmission plan, called homenets (16), can
be used to partition the trees emanating from a hub into
several smaller Ethernets.

Each hub limits the number of data users who share a
single Ethernet. Increasing the number of users on an
Ethernet reduces the bandwidth that is available to each
user. Proper placement of the hubs can limit the conten-
tion and provide a desired service level for data. The same
principles can be used to engineer the sharing of the CATV
data network as have been used to engineer the sharing of
local office switches in the telephone network.

Each user must be able to listen to the signals trans-
mitted by all other users to perform CSMA/CD. At each hub,
the signal from the upstream channel is translated to a
frequency that is used by a downstream channel and
retransmitted on the tree originating at the hub, as shown
in Fig. 8. The home terminals listen to the second channel to
determine when the channel is busy or when there are
collisions.

Movable Slot TDM. As IP voice gains wider acceptance,
the data channels on CATV networks will be used to carry
voice. The reservation systems that are being considered by
the standards committees can provide better delay and
bandwidth guarantees than the standard Ethernet proto-
col. A variation of the CSMA/CD protocol called Movable
Slot TDM (MSTDM) (16,17) makes it possible to obtain
high-quality voice on the upstream channel without mod-
ifying the current Ethernet chips. MSTDM makes it pos-
sible to place voice on the upstream channel without
modifying the operation of data-only users

MSTDM gives voice packets priority over data packets.
The data packets follow the standard IEEE 802.3 protocol.
The voice packets listen before transmitting but do not
perform collision detection. When a voice and data packet
collide, the data packet stops transmitting but the voice
packet continues to transmit. There is a preempt interval at
the beginning of each voice packet that does not contain bits
that are needed to receive the voice packet and is long
enough to guarantee that the data packet has stopped

Reflection Point

Station 1

Station 2

Figure 8. Transmission strategy for CSMA/CD access.

10 METROPOLITAN AREA NETWORKS



transmitting before the useful data in the voice packet is
transmitted. If the channel is busy when a voice packet tries
to transmit, it waits until the channel becomes idle and
retransmits immediately.

The first packet in a voice connection uses the same
protocol as the data packets. Subsequent voice packets in a
connection are transmitted a fixed period Tv after the last
successful transmission, whether or not the previous
packet is delayed. If the previous packet is delayed, it
places any voice samples that arrive while it is being
delayed into an overflow area in the packet, so that the
same number of voice samples are waiting at each sched-
uled transmission time. The only constraint on the data
packet is that its length is less than or equal to the length
of a fixed-size voice packet. The packet formats are shown
in Fig. 9.

Scheduled voice sources never collide. All scheduled
voice packets have the same length, require time XV to
transmit, and are scheduled at least XV apart. A scheduled
voice source preempts a data source that collides with it.
A scheduled voice source is delayed by less than XV by a
data source that is currently transmitting, because the data
packet length is less than the voice packet length. If a
scheduled voice source is delayed, it cannot be further
delayed by a data source because it transmits as soon as
the channel becomes idle and preempts any data source
that starts transmitting at the same time. When a sched-
uled voice packet is delayed less than XV, it delays the next
voice source by an amount less than or equal to its own

delay. Therefore, the delay of successive voice sources is
nonincreasing and is less than XV. And voice sources never
collide. The access rule for scheduled voice sources is
CSMA, rather than CSMA/CD. CSMA can be implemented
with a single NAND gate that turns off collision detection.
The NAND gate is external to the commercially available
chips that implement the Ethernet protocol.

When a scheduled voice source is delayed, the overflow
area is occupied by the samples that arrive during the
delay. The overflow area need only be large enough to
accommodate the voice samples that arrive in XV. The
delayed packet adopts a new schedule, and the overflow
area is empty for successive packets that are not delayed.
The upper bound on the delay for a voice sample is TV þ XV .
In Fig. 10 we show the operation of the protocol when
scheduled packets are delayed by a data source or a new
voice source.

When the system bandwidth is completely used by voice
sources, MSTDM becomes a simple TDM system and new
voice sources and data sources cannot disrupt the operation
of the system. Figure 11 depicts the operation of a system
that can support 3.5 voice sources. The small number of
sources is only used to demonstrate the operation of the
protocol. A 10-Mbps system, with 32-Kbps voice sources,
can support several hundred active voice sources. In Fig. 11
there is enough bandwidth for half of a new voice source.
Source 4 joins the system and delays source 1, 2, and 3. The
delayed source 3 delays the newly scheduled source 4,
which once again delays sources 1, 2, and 3. The delay is
nonincreasing, so the scheduled sources never collide, but
the sources are always delayed, so that the overflow area
always has samples. Any new voice or data sources find a
busy channel or collide with a scheduled source and are
preempted.

Wireless Networks

Wireless networks are the most rapidly evolving metro-
politan area networks. Wireless networks require less of
an investment in infrastructure than wired networks,

Data
Data

First Voice Packet

Data Continuing Voice PacketsPre-
empt

Over-
flow

Figure 9. Format of MSTDM packets.

V1 V2 V3 V1 V2 V3 V1 V2 V3

TV TV

Original Schedule

V1 V2 V3 V1 V2 V3D V1 V2 V3

TV TV

Revised Schedule When Scheduled Sources are Delayed by a Data Source

V1 V2 V3 V1 V2 V3V4 V1 V2 V3V4

TV

TV

Revised Schedule When Scheduled Sources are Delayed by a new Voice Source

Figure 10. Scheduled voice sources that are delayed by
a data source or a new voice source.

METROPOLITAN AREA NETWORKS 11



particularly in metropolitan areas where installing new
cables may involve digging up a street. Deploying wireless
networks makes it possible to try new services without
investing in new cables. In addition IEEE 802.11 wireless
interfaces have come down in cost and are included in most
new laptop computers. Wireless interfaces in battery- oper-
ated computers make it possible for users to work where
they they are, rather than searching for power or informa-
tion outlets. And the wireless interface is a single standard,
unlike the many incompatible cable interfaces.

Wireless metropolitan area networks are composed of
access networks that interface to the users, and cover
relatively small distances, and backbone networks that
cover the metropolitan area distances and carry the user
traffic to the wide area network. In this article we discuss
two access networks, the IEEE 802.11 standard network
and Bluetooth. IEEE 802.11 networks operate at higher bit
rates and cover longer distances than Bluetooth networks.
Initially, Bluetooth interfaces were to cost much less than
IEEE 802.11 interfaces. However, the larger number of
IEEE 802.11 units that have been deployed has made
them less expensive than Bluetooth interfaces. It is likely
that IEEE 802.11 networks will dominate and that there
will be very few Bluetooth networks. Bluetooth is included
in this article because it has had a great impact on the
evolving IEEE 802.16 standard. The IEEE 802.16 networks
are wireless networks that can cover the distances spanned
by metropolitan areas and are possible backbone networks
for the wireless access networks.

IEEE 802.11 Networks. IEEE 802.11 networks have two
modes of operation, a point coordination function, which is
polled, and a distributed coordination function, which uses

a protocol called carrier sense multiple access with collision
avoidance, CSMA/CA. The polled operation assumes a
master station that assigns slots to the active transmitters.
The master station also sends unassigned slots in which
new sources can transmit when they want to be added to the
polling list. When multiple sources transmit during an
unassigned slot, there is a collision and the sources must
retry. The CSMA/CA protocol is similar to the Ethernet
protocol and does not require a master station. Currently,
the CSMA/CA protocol is better defined and is more widely
used than the polled protocol. However, the polled protocol
uses the scarce radio bandwidth more efficiently and can
provide the guarantees that are needed for voice commu-
nications. When WiFi networks are used to access a base
station that connects it with a backbone network, the base
station is the logical master station

The CSMA/CD protocol that is used in wired Ethernets
cannot be applied directly to wireless networks. It is pos-
sible to listen to the channel before transmitting (CSMA) to
determine whether another source is transmitting, but it
is not possible to listen to the channel while transmitting
(CD) to determine whether another source is also transmit-
ting. In addition, hidden nodes interfere with the source
at the destination, but they cannot be detected by and
cannot detect the source, as depicted in Fig. 12. The area
ASX is the region in which the signal from the source can
be detected. This area includes the destination. The area
AH is the hidden nodes. A node in AH cannot detect the
signal from the source, but if it starts to transmit, its signal
will interfere with the signal from the source at the desti-
nation. The area AHX is the region in which nodes detect
the signal from a hidden node and includes the destination.

Figure 11. Fully utilized MSTDM
network.

V1 V2 V3 V1 V2 V3 V1 V2 V3 V1 V2 V3 V1 V2 V3 V1 V2 V3 V1 V2 V3

V4 V1 V2 V4 V1 V2

V3 V4 V1 V3 V4 V1

V2 V3 V4 V2 V3 V4

V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3

Figure 12. Hidden nodes.

Src Destx < r

r r

ASX AH

rSrc Dest
x < r

AHX

12 METROPOLITAN AREA NETWORKS



The CSMA/CA protocol uses a three-way handshake to
avoid collisions with hidden nodes, as depicted in Fig. 13.
The source senses the channel, and if there is no transmis-
sion in progress, it sends a request to send (RTS) to the
destination. If the destination receives the RTS, one node
that is hidden from the source is not transmitting, the
destination sends a clear to send (CTS). When the source
receives a CTS, it sends the data packet. If the receiver
correctly receives the data packet, it sends an acknowl-
edgment (ACK). The error rate in wireless networks is
typically higher than that in wired networks, and the
ACK is an integral part of the wireless protocol. In addition,
the packet size in wireless networks is typically smaller
than in wired networks to increase the probability of correct
reception. The nodes in ASX receive the RTS from the
source, but it may not receive the CTS from the receiver.
The node in ASX sets a network allocation vector (NAV) that
stops it from transmitting for a period of time that is long
enough for the receiver to transmit an ACK. A node AH

receives CTS but not RTS or the data. The node in AH sets a
shorter NAV that is long enough for the source to send the
data and the receiver to send an ACK.

The original IEEE 802.11 networks operated at 1 Mbps.
The more recent versions have variable rates and can
operate up to 54 Mbps. A source tries to transmit at the
highest rate. If the signal is not correctly received, the
source reduces its rate, to increase the signal-to-noise ratio,
until the signal is correctly received. The achievable rate is
related to the distance between the source and the desti-
nation. The closer the destination, the higher the signal-to-
noise ratio, and the higher the rate. Table 2 is the approxi-
mate relationship between the distance and the achievable
rate for the current versions of the IEEE 802.11 standard.

The distance spanned by an IEEE 802.11 network can
be increased by using multihop techniques. If the source
cannot reach the access point to the MAN directly, it
transmits the data to an intermediate node, which forwards
the data toward the destination. The intermediate nodes
operate as routers and select the next node on the path to
the destination. The path to the destination is not fixed and
may change as nodes enter and leave the network. The
techniques to find paths are covered in the literature on ad
hoc, multihop, radio networks. This currently is an active
research area and is beyond the scope of the current article.

Bluetooth. Bluetooth is a polled network. It is organized
as piconets with one master and up to seven slave nodes. All
communications are between the master and a slave node,
with half of the slots assigned to the master node. The total
bit rate in a piconet is 1 Mbps.

The number of nodes in a network is increased by con-
necting piconets into a scatternet. A slave node that is in
both piconets operates as a gateway between the piconets,
as depicted in Fig. 14. Multihop communications is imple-
mented on paths that traverse source, to master, to bridge,
to master, . . ., to master, to destination.

IEEE 802.16. The IEEE 802.16 MAN standard is similar
to Bluetooth networks. The network is polled, but the
distance is longer and the bit rates are higher. The network
can span 30 Km, and the slaves can operate at a bit rate that
is 50 Mbps, 100 Mbps, or 150 Mbps, depending on the
signal-to-noise ratio.

The stations that are polled are dropped from the polling
list if they remain inactive for seven consecutive polls. In
addition, the master and slave stations can obtain different
slot rates to reflect asymmetries in the traffic. IEEE 802.16
networks can be interconnected as scatternets.

CONCLUSION

Metropolitan area networks have evolved rapidly in the
last decade because of changes in technology and appli-
cations. The cell switching technology of ATM networks
has lost to the routing technology of IP networks, and the
MANs that were based on cell switching have disappeared.
Consumer applications that connect individuals to the
Internet have become much more important in MANs
than interconnecting users in a corporate network that
spans a metropolitan area. As a result, the price of network
access has become a much more important consideration
and older technologies that are further along the learning

Table 2. Approximate Relationship between Distance and
Transmission rate in IEEE 802.11 Networks

Rate (Mbps) 802.11a 802.11b 802.11g

1 250 200 250
2 175 175 175
6 175 100 175
9 140 70 140

12 140 40 140
18 80 80
24 70 70
36 40 40
48 20 30
54 10 20

Source

Receiver

Node in ASX

Hidden Node in AH

RTS

CTS

DATA

ACK

Blocked (NAV)

Blocked (NAV)

time
Figure 13. Three-way handshake, CSMA/CA—
with ACK.

METROPOLITAN AREA NETWORKS 13



curve have dominated. Users have come to expect tether-
less access to networks, and wireless end-user devices have
become the norm for all of our communications.

In the next decade, we expect the rate of change of
MANs to increase. Initially, the use of wireless backbone
networks will increase, as we explore new and different
communications services. Wireless technologies provide
the fastest, most economical way to construct new net-
works. However, as some services succeed, there will not
be enough wireless bandwidth in the backbone to support
the new demand. The wireless backbone will be replaced by
more efficient, higher rate, fiber-optic networks. Wireless
will not go away. The end user is hooked on tetherless
access. However, the part of the network that is invisible to
the user will apply the most cost-effective technologies.

The Internet has been the defining application for the
current generation of MANs. IP voice is likely to be the
defining application of the next generation of MAN. IP
voice is more efficient than circuit-switched voice because
the channel is not used during silent intervals. However,
the success of IP voice will more likely depend on new
services, such as the walkie-talkie functions that are being
built into cell phones. If this happens, traffic within the
MAN will increase with respect to traffic to the wide-area
networks. Networks that are being designed to reflect
the traffic imbalance between end users and servers in
the Internet will once again be replaced by networks
with balanced loads in both directions.

The success of IP voice and the reduced cost of IEEE
802.11 chips is likely to completely change the current
cellular voice networks. The success of cellular voice has
created a bandwidth crisis in many metropolitan areas. The
smaller distances spanned by IEEE 802.11 networks
makes it possible to reuse the bandwidth more often, and
multihop techniques provide a means to redistribute the
traffic in congested areas. In addition, IEEE 802.11 base
stations are less visible than the current microwave towers.

As we become more dependent on MANs, reliability will
become a more important issue. Currently it is almost
impossible to buy multipath reliability in a metropolitan
area. Even if we buy two lines from different service pro-
viders, both lines may belong to a single provider or
traverse the same conduits. Future MANs are likely to
have a different protocol architecture than our current

layered structure. The new architecture will make more
physical attributes visible, rather than hiding them. In
addition, more reliable mesh structures, such as the
MSN, are likely to replace the current tree, hub-and-spoke,
and ring architectures.

Finally, we expect a resurgence of cell transmission in
the heart of the network. Routers switch cells internally.
Eventually there will be a standard that allows routers to
exchange the cells, rather than having multiple conver-
sions between cells and IP packets. The end-user applica-
tions are not affected by the internal operation of the
network. Cell transmission will also allow the routers to
provide quality of service. It is unlikely that the heavy-
weight ATM standards, or the virtual circuits that are part
of ATM, will return, but these standards are not needed to
implement cell transmission. The return of cell transmis-
sion may make us reconsider the first generation of MANs
that also used cell transmission.

BIBLIOGRAPHY

1. F. E. Ross, An overview of FDDI: The fiber distributed data
interface, IEEE J. Select Areas Commun., 7 (7): 1043–1051,
1989.

2. M. J. Johnson, Proof that timing requirements of the FDDI
token ring protocol are satisfied, IEEE Trans, Commun.,
COM–35 (6): 620–625, 1987.

3. R. M. Newman, Z. L. Budrikis, and J. L. Hullett, The QPSX
man, IEEE Commun. Mag., 26 (4): 20–28, 1988.

4. R. M. Newman and J. L. Hullett, Distributed queueing: A fast
and efficient packet access protocol for QPSX, Proc. 8th Inter-
natl. Conf. on Comp. Comm., Munich, F.R.G., Sept. 15–19,
1986, pp. 294–299.

5. M. Zukerman and P. G. Potter, ‘‘A protocol for eraser node
implementation within the DQDB framework,’’ Proc. IEEE
GLOBECOM ’90, San Diego, C., Dec. 1990, pp. 1400–1404.

6. M. W. Garrett and S.-Q. Li, ‘‘A study of slot reuse in dual bus
multiple access networks,’’ IEEE J. Select. Areas Commun., 9
(2): 248–256, 1991.

7. J. W. Wong, ‘‘Throughput of DQDB networks under heavy
load,’’ EFOC/LAN-89, Amsterdam, The Netherlands, June
14–16, 1989, pp. 146–151.

8. E. L. Hahne, A. K. Choudhury, and N. F. Maxemchuk,
‘‘Improving the fairness of distributed-queue dual-bus

Figure 14. Bluetooth networks.

x
Master

x
Slave

xSlave x
Slave

x
Slave

x
Slave

Piconet

x
M1

x
S1

x
x
S1

x
S1

x x
M2

x
S2

x
S2 x

S2

x
S2x

M3

x
S3 x

Gateway

x
S3

x
S3

x
S3

Scatternet

Gateway
x

14 METROPOLITAN AREA NETWORKS



networks,’’ INFOCOM ’90, San Francisco, CA, June 5–7, 1990,
pp. 175–184.

9. N. F. Maxemchuk, ‘‘Regular mesh topologies in local and
metropolitan area networks,’’ AT&T Tech. J., 64 (7): 1659–
1686, 1985.

10. S. Bassi, M. Decina, P. Giacmazzi, and A. Pattavina, ‘‘Multi-
stage shuffle networks with shortest path and deflection rout-
ing for high performance ATM switching: The open loop
shuffleout,’’ IEEE Trans. Commun., 42 (10): 2881–2889, 1994.

11. A. Krishna and B. Hajek, ‘‘Performance of shuffle-like switch-
ing networks with deflection,’’ Proc. INFOCOM ’90, June 1990,
pp. 473–480.

12. N. F. Maxemchuk, ‘‘Problems arising from deflection routing:
Live-lock, lockout, congestion and message reassembly,’’ in
G. Pujolle (ed.), High Capacity Local and Metropolitan Area
Networks. New York: Springer-Verlag, 1991, p. 209–233.

13. P. Baran, ‘‘On distributed communications networks,’’ IEEE
Trans, Commun. Syst., cs–12 (1): 1–9, 1964.

14. J. T. Brassil, A. K. Choudhury, and N. F. Maxemchuk, ‘‘The
Manhattan Street Network: A high performance, highly reli-
able metropolitan area network,’’ Comput. Networks ISDN
Syst., 26 (6–8): 841–858.

15. N. F. Maxemchuk, ‘‘Routing in the Manhattan Street Net-
work,’’ IEEE Trans, Commun., May COM–35 (5): 503–512,
1987.

16. N. F. Maxemchuk and A. N. Netravali, ‘‘Voice and data on a
CATV network,’’ IEEE J. Select. Areas Commun., SAC–3 (2):
300–311, 1985.

17. N. F. Maxemchuk, ‘‘A variation on CSMA/CD that yields
movable TDM slots in integrated voice/data local networks,’’
BSTJ, 61 (7): 1527–1550, 1982.

N. F. MAXEMCHUK

Columbia University
New York, New York

METROPOLITAN AREA NETWORKS 15



M

MOBILE AND UBIQUITOUS COMPUTING

OVERVIEW

The development of wireless communication technology
and portable computing devices in late 1980s and early
1990s has led to a new computing paradigm, mobile com-
puting, in which mobile devices capable of wireless com-
munications are used to perform various computing tasks
(1). Because of the characteristics of mobile environments,
such as user mobility and severe resource constraints
of mobile devices, many challenges exist in mobile comput-
ing, which include wireless ad hoc communications, mobi-
lity, portability, scalability, resource constraints, and
adaptability (2–5). Since the 1990s, substantial effort has
been made in various areas, which include networking,
database, security, and software engineering, to address
these challenges. However, many challenging issues still
need to be addressed.

The concept of ubiquitous computing was first intro-
duced by Weiser in 1991 (6) based on the idea that the most
powerful and useful technologies ever invented are those
that become indistinguishable from our daily life (6). In his
view, ubiquitous computing represents a new computing
paradigm in which information processing needed by a
person is done by hundreds of computing devices of var-
ious scales, from PDAs to desktop PCs and to even super-
computers, connected through wired or wireless networks
transparently. Comparing ubiquitous computing with
mainframes shared by many users and personal compu-
ters owned by individual users, Weiser considered ubiqui-
tous computing the third wave in computing in which
many computers serve one user (7). Ubiquitous
computing makes computing invisible to people and
allows them to focus more on their uses rather than their
computers.

Ubiquitous computing has many applications, from
intelligent environmental control and smart home appli-
ances, to interactive workspaces, mobile patient-care sys-
tems, context-aware tourist guides, and smart classrooms.
An exemplified scenario can be found in Ref. 6 to illustrate a
day of life in a world of ubiquitous computing. In this
scenario, tiny electronic tabs affixed with various objects
are used to identify and to locate useful items. In-vehicle
devices are used to display the traffic condition and to find
parking spaces. Handheld computers as well as large inter-
active display systems are used to create virtual offices for
collaborative works.

Because of user mobility, and because of heterogeneous
and dynamically changing computing environments,
many research issues need to be addressed in ubiquitous
computing, such as design of tiny, inexpensive, and
energy-efficient mobile devices; interconnection of wired
and wireless networks; lightweight system software
for ubiquitous computing devices; techniques and tools
for developing smart ubiquitous computing application

software; and various security and privacy issues in ubi-
quitous computing environments. Since early 1990s,
much research has been performed to develop the
enabling techniques for ubiquitous computing to address
these issues, and some technical terms have been created
and used to describe similar computing technologies for
ubiquitous computing, such as ‘‘pervasive computing,’’
‘‘ambient intelligence,’’ and ‘‘invisible computing (8–10).’’
Currently, a common definition for ubiquitous computing
is that it is a model of human—computer interaction in
which information processing has been integrated thor-
oughly into everyday objects and activities, or, simply
‘‘computing anytime, anywhere (11).’’

Mobile computing is related closely to ubiquitous com-
puting, but it has a different emphasis. Mobile computing
emphasizes mobility (i.e., the capability to continuously
perform computing tasks in mobile environments).
Although mobility is one of the important requirements
for ubiquitous computing, the major concern of ubiquitous
computing is how to make the interactions between
human and computers transparent to human users.
This concern requires ubiquitous computing systems to
be aware of users’ needs and the ambient environment and
to adapt themselves to provide satisfactory services to
users continuously in dynamically changing ubiquitous
computing environments. Usually this feature is referred
to as context-/situation awareness. In addition, comput-
ing devices used in ubiquitous computing environments
are not limited to mobile devices, and they are connected
through wired and/or wireless networks.

Despite these differences between mobile and ubiqui-
tous computing, the technologies for mobile computing are
still important for ubiquitous computing because ubiqui-
tous computing environments also have many character-
istics similar to those of mobile environments, such as user
mobility and usage of wireless networks. Hence, some
researchers consider that the research in these two areas
should be combined (12), and some researchers even con-
sider that the research of ubiquitous computing subsumes
that of mobile computing (10). In this article, we will not
distinguish the research in these two closely related areas,
and we will use the term ‘‘mobile and ubiquitous comput-
ing’’ to refer to the combination of these two areas.

Research on mobile and ubiquitous computing spans
across many different aspects, which include networking,
databases, artificial intelligence, operating systems, soft-
ware engineering, security and privacy, and so forth. It is
impossible to enumerate and to discuss all the important
research issues in this article. Hence, in this article, we will
summarize the current state of research in the following
four aspects: wireless ad hoc networks, context-/situation-
awareness in mobile and ubiquitous computing environ-
ments, techniques for developing mobile and ubiquitous
computing software, and privacy issues in mobile and
ubiquitous computing. The research results in these four
aspects not only include important enabling techniques for

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



developing mobile and ubiquitous computing systems, but
also provide the most distinct features of mobile and ubi-
quitous computing systems.

WIRELESS AD HOC NETWORKS

The main advantage of mobile and ubiquitous computing
environments is the capability of integrating heteroge-
neous mobile computing devices in various network
domains to provide users with the capability of ‘‘anywhere,
anytime’’ computing.

Being different from the Internet in which terminal
hosts are connected to routers via a fixed network infra-
structure, the heterogeneous mobile computing devices in
mobile and ubiquitous computing environments essentially
communicate with each other in an autonomous manner to
construct a wireless ad hoc network. A wireless ad hoc
network is a self-configuring network of mobile nodes con-
nected by wireless links. Without a fixed network infra-
structure, every node acts as a terminal host and a router
simultaneously for the data transmission in the network.
The network topology is self-organizing and geographically
dispersed in the sense that a link only exists between two
mobile nodes if they are within the physical communication
range with each other. A wireless ad hoc network may
operate in a stand-alone fashion, or may be connected to
the larger Internet.

In wireless ad hoc networks, many research challenges
have been identified from the mobility and energy con-
straints of the individual handheld computing devices,
which are the major types of nodes in wireless ad hoc
networks. In the following sections, these challenges and
solutions are reviewed briefly in the categories of different
layers of the network protocols hierarchy.

Medium Access Control (MAC) Layer

The major challenge for the MAC layer in the wireless
ad hoc networks is how the MAC layer protocols are
designed to allocate the communication resources, such
as the available bandwidth of wireless channels, and to
optimize the network performance efficiently, which can be
measured in term of throughput, transmission delay, and
fairness. In this subsection, we will discuss briefly the
major MAC protocols currently used.

Carrier Sense Medium Access (CSMA). Because of the lack
of centralized control in wireless ad hoc networks, the MAC
protocols in this area are primarily contention based.
CSMA is one of the earliest mechanisms adopted for wire-
less ad hoc networks. In CSMA, a transmitter first senses
the wireless channel in the vicinity and refrains itself from
transmission if the channel is already in use. Various
methods such as ALOHA (13) and n-persistent algorithms
(14), can be used to determine how long the deferred node
should wait before the next attempt.

Medium Access Collision Avoidance (MACA). MACA is a
‘‘virtual sensing’’ mechanism instead of physical sensing.
Such a mechanism is also called packet sensing. Typically,
the virtual sensing mechanisms rely on the transmitter and

the receiver to perform a handshake prior to the transmis-
sion of the data packet. Specifically, the MACA method (15)
conducts the handshake via a pair of request-to-send (RTS)
and clear-to-send (CTS) messages. When a node wants to
send data to another node, it first sends a short RTS packet
to the destination. The receiver responds with a CTS
packet. On receiving the CTS packet, the sender sends
its queued data packet(s). All other nodes that overhear
the CTS message will defer themselves from sending
out any packets until the predicted transmission period
indicated in the CTS packet is passed. Any node that
overhears the RTS signal, but not CTS, is allowed to
send out packets in a certain time period as either the
RTS/CTS handshake is not completed or it is out of range
of the receiver.

IEEE 802.11. The IEEE 802.11 MAC protocol (16) is
another example of using both physical sensing and RTS/
CTS handshake mechanisms. IEEE 802.11 is defined actu-
ally as the standard MAC and physical protocols for wire-
less LANs, not specially designed for multihop wireless ad
hoc networks. The MAC layer consists of two core functions:
a distributed coordination function (DCF) and a point
coordination function (PCF).

DCF controls the medium access through the use of
carrier sense multiple access with collision avoidance
(CSMA/CA) and a random backoff algorithm. Carrier sense
in CSMA/CA is performed using both physical and virtual
mechanisms. Basically, a node can access the channel only
if no signal is physically detected. RTS/CTS mechanism in
IEEE 802.11 can also be used in the situations, where
multiple wireless networks utilizing the same channel
overlap, as the medium reservation mechanism works
across the network boundaries.

Although DCF is designed for asynchronous contention-
based medium access, the IEEE 802.11 MAC protocol
also defines PCF which is based on DCF and supports
allocation-based medium access in the presence of an access
point (AP). An AP plays the role of a point coordinator and
polls each participating node in a round robin fashion (17) to
grant medium access on allocation basis. PCF is not sui-
table for wireless ad hoc networks because it requires
centralized control by the AP, which is not available in
such networks.

Routing Protocols in Wireless Ad Hoc Networks

Routing in wireless ad hoc networks encounters severe
challenges from node mobility/dynamics, with potentially
very large numbers of nodes and limited communication
resources, such as the network bandwidth and energy of
mobile nodes. The routing protocols for wireless ad hoc
networks have to adapt quickly to frequent and unpre-
dictable topology changes and must be efficient in terms of
the communication overhead. Furthermore, because
bandwidth is scarce in wireless ad hoc networks and
the sizes of such networks are usually small compared
with the wired Internet, the scalability issue for wireless
multihop routing protocols is concerned mostly with
excessive routing message overhead caused by the
increase of network population and mobility. In this

2 MOBILE AND UBIQUITOUS COMPUTING



subsection, we will discuss briefly some major routing
protocols currently used.

Classifications of Routing Protocols. Generally, rout-
ing protocols in wireless ad hoc networks use either
distance-vector or link-state routing algorithms (18),
both of which find shortest paths to destinations.

In distance-vector routing, a vector that contains the
communication cost (e.g., hop distance) and next hops to all
the routing destinations is kept and exchanged at each
node. Distance-vector protocols suffer from slow route con-
vergence and a tendency to create loops in mobile environ-
ments.

The link-state routing algorithm overcomes the problem
by maintaining global network topology information at
each router through periodical flooding of link information
on its neighbors. However, such link-state advertisement
scheme generates larger routing control overhead than
that of the distance-vector protocols.

In large wireless ad hoc networks, the transmission of
routing information will consume most of the bandwidth
and unconsequently with block applications, which renders
it unfeasible for bandwidth limited wireless ad hoc net-
works. Thus, reducing routing control overhead becomes a
key issue to achieve routing scalability. Such scalability is
more challenging in the presence of high-node mobility.
When nodes in the network are moving, the hierarchical
partitioning must be updated continuously. Mobile IP solu-
tions work well if a fixed infrastructure exists. However,
when all nodes are moving, such solutions cannot be
applied directly.

Routing protocols in wireless ad hoc networks can be
classified into two categories: proactive and reactive. Many
proactive protocols stem from conventional link-state rout-
ing and will cause large communication overhead in
dynamic network topology. On-demand routing, however,
is an emerging reactive routing in wireless ad hoc net-
works. It differs from conventional routing protocols in
that no routing activities and no permanent routing infor-
mation are maintained at network nodes if no communica-
tion occurs in the network. Hence, it provides a scalable
routing solution. Such a feature makes the on-demand
routing protocol efficient in controlling the communication
overhead in wireless ad hoc networks. Because on-demand
routing protocols are the mainstream protocols in wireless
ad hoc networks, in the remainder of this section, we will
focus our discussion on the on-demand routing protocols
only.

On-Demand Routing Protocols. The design of on-demand
routing protocols is based on the idea that each node tries to
reduce routing overhead by only broadcasting routing
requests when the communication of the node is awaiting.
Representative examples include ad hoc on demand dis-
tance vector routing (AODV) (19), dynamic source routing
(DSR) (20), and temporally ordered routing algorithms
(TORA) (21). Among these protocols, AODV and DSR
have been evaluated extensively in the wireless ad hoc
networks literature and are being considered by the Inter-
net Engineering Task Force (IETF) MANET Working
Group as the leading candidates for standardization.

Typically, on-demand algorithms have a route discovery
phase. Query packets are flooded into the network by the
sources in search of a path. This phase completes when a
route is found or when all possible outgoing paths from the
source are searched. Different approaches for discovering
routes exist in on-demand algorithms. In AODV, on receiv-
ing a query, the intermediate nodes ‘‘learn’’ the path to the
source and enter the route in the forwarding table. Even-
tually, the intended destination receives the query and can
respond ‘‘using the path traced by the query.’’ This function
permits the establishment of a full duplex path. DSR uses
an alternative scheme for tracing on-demand paths, (i.e.,
source routing) in which a source indicates in a data pack-
et’s header the sequence of intermediate nodes on the
routing path. In DSR, the query packet copies in its header
the IDs of the intermediate nodes it has traversed. The
destination then retrieves the entire path from the query
packet, and it uses the retrieved path (via source routing) to
respond to the source, which provides the source with the
path at the same time. Data packets carry the source route
in the packet headers, and a DSR node caches the routes
aggressively to minimize the cost incurred by the route
discovery.

Generally, AODV and DSR are used in flat network
architectures. However, when the size of the wireless ad
hoc network increases beyond a certain threshold, the flat
routing schemes become infeasible because of the exponen-
tial increase of link and processing overhead. One way to
solve this problem and to produce scalable and efficient
solutions is hierarchical routing. Hierarchical routing in
wireless ad hoc networks is based on the idea of organizing
nodes in groups and then assigning nodes different func-
tionalities inside and outside a group. Both routing table
size and update packet size are reduced by including only
part of the network instead of the whole network; hence, the
communication overhead is reduced. The most popular way
of building hierarchy is to group nodes geographically close
to each other into explicit clusters. Each cluster has a
leading node (clusterhead) to communicate to other nodes
on behalf of the cluster (22). An alternate way is to have
implicit hierarchy, in which each node has a local scope,
different routing strategies are used inside and outside the
scope, and communications pass across overlapping scopes.
Because mobile nodes have only a single omni-directional
radio for wireless communications, this type of hierarchical
organization is referred to as logical hierarchy to distin-
guish it from the physical hierarchy of network structure.
Representative examples of hierarchical routing protocols
include Clusterhead-Gateway Switch Routing (CGSR) (23)
and Zone Routing Protocol (24).

TCP in Wireless Ad Hoc Networks

Transmission control protocol (TCP) is the transport layer
protocol that provides reliable end-to-end data delivery in
unreliable networks. Because of its wide use in the Inter-
net, it is desirable to keep using TCP remains to provide
reliable data transfer services within wireless ad hoc
networks. Unfortunately, wireless ad hoc networks differ
from wired Internet significantly in terms of bandwidth,
propagation delay, and link reliability. The implication of

MOBILE AND UBIQUITOUS COMPUTING 3



these differences is that packet losses are no longer caused
mainly by network congestion. Instead, most packet losses
are caused by high bit error rate in wireless channels and
route breakages in dynamic network topology. Hence,
the TCP performance faces the following challenges in
wireless ad hoc networks, in which the network topology is
highly dynamic:

� Channel errors. In wireless channels, relatively high
bit error rate caused by multi path fading and shadow-
ing may corrupt packets in transmission, leading to
loss of TCP data segments or acknowledgments
(ACKs). If a TCP sender cannot receive the ACK within
the retransmission timeout, it reduces its congestion
window to one segment immediately, exponentially
backs off (25) its retransmission timeout (RTO), and
retransmits the lost packets. Thus, intermittent chan-
nel errors may cause the congestion window size at the
sender small, which results in low TCP throughput.

� Mobility. Mobility may cause link breakage and route
failure between two neighboring nodes, when one
mobile node moves out of the other’s transmission
range. In turn, link breakage causes packet losses.
Because TCP cannot distinguish between packet
losses caused by route failures and packet losses
caused by congestion, TCP congestion control mechan-
isms react adversely to such losses caused by route
breakages (26). Meanwhile, discovering a new route
may take longer time than TCP sender’s RTO. If route
discovery time is longer than RTO, the TCP sender will
invoke congestion control after timeout. The through-
put, which has already reduced, will decrease even
more because of the packet loss. It will become worse if
the sender and the receiver of a TCP connection belong
to different network partitions. In such a case, multiple
consecutive RTO timeouts lead to inactivity for one or
two minutes even if the sender and receiver finally get
reconnected.

� Multi-path routing. Routes in wireless ad hoc net-
works are short-lived because of frequent link
breakages. To reduce the delay caused by route re-
computation, some routing protocols, such as TORA
(21), maintain multiple routes between a sender-recei-
ver pair, and they use multi path routing to transmit
packets. In such a case, packets that come from dif-
ferent paths may not arrive at the receiver in the same
order as they were sent out. Not aware of multi path
routing, the TCP receiver will misinterpret such out-
of-order packet arrivals as a sign of congestion. The
receiver will then generate duplicated ACKs that
cause the sender to invoke congestion control algo-
rithms like fast retransmission (on reception of three
duplicated ACKs according to TCP protocol).

� Congestion. The attempt of TCP to use the network
bandwidth fully would easily make wireless ad hoc
networks congested. Because of the factors such as
route change and unpredictable variable MAC delay,
the relationship between congestion window size and
the tolerable per-link data rate is no longer maintained
in ad hoc networks. The congestion window size

computed for the old route may be too large for the
newly found route, which results in network conges-
tion as the sender still transmits at the full rate
allowed by the old congestion window size.

Three types of performance enhancement schemes have
been proposed to improve TCP performance over wireless
ad hoc networks. The first scheme (27,28) improves the TCP
performance using feedback schemes. Through the use of
feedback information to signal non congestion-related
causes of packet losses, the feedback approaches help
TCP distinguish between true network congestion and
other problems, such as channel errors, link contention,
and route failures. The second scheme (26,29) makes TCP
adapt to route changes without relying on feedback from
the network, in light of the concern that feedback mechan-
isms may cause additional complexity and cost in wireless
ad hoc networks. The third scheme (30,31) tailors lower
layers, such as routing layer and MAC layer, according to
TCP congestion control algorithms.

CONTEXT-AWARE/SITUATION-AWARE COMPUTING

As described in the first section, context-aware/situation-
aware computing is a major feature of mobile and
ubiquitous computing. In this section, we will discuss the
basic concepts and applications of context-aware/situation-
aware computing, and how contexts and situations are
modeled. Techniques for developing context-aware/
situation-aware software will be covered in the next sec-
tion. Becasue of limited space, other research issues related
to context-aware/situation-aware computing, including
context sensing, and contextual and situation information
management, are not covered in this article. Readers inter-
ested in these topics are referred to the conferences and
periodicals listed in the last section.

Basic Concepts

Although several issues related to context-aware comput-
ing have been discussed in Refs. 32–35, the term ‘‘context-
aware computing,’’ which was first introduced in 1994 (36),
is defined as the ‘‘ability of a mobile user’s applications to
discover and react to changes in the environment they are
situated in,’’ and the term context is defined as ‘‘the location
of use, the collection of nearby people and objects, as well as
the changes to those objects overtime’’.

Since then, much research has been done in the mobile
and ubiquitous computing community on context-aware
computing. Various definitions of context have also been
made (36–44). For example, Dey and Abowd (40) defined
context as ‘‘any information that can be used to characterize
the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between
a user and an application, including the user and applica-
tions themselves.’’ Chen and kotz (41) defined context as
‘‘the set of environmental states and settings that either
determines an application’s behavior or in which an appli-
cation event occurs and is interesting to the user.’’

Based on various definitions of context, a context has the
following properties: (1) A context changes over time and

4 MOBILE AND UBIQUITOUS COMPUTING



is meaningful only when it is associated with a time
instant, (2) A context must be detectable with appropriate
hardware or software support so that it could be used in
computing, and (3) A context must be relevant to the
interactions between a user and an application. Based
on these properties, Yau, et al. (42,43) defined context as
‘‘any instantaneous, detectable, and relevant property of
the environment, the system, or users.’’

Besides the differences in the definitions of context,
various ways exist to categorize contexts (37,40,41). Schilit,
et al. (37) considered context in computing, user, and
physical environments. Dey and Abowd (40) considered
location, identity, time, and activity as four primary types
of contexts, and they considered other types of contextual
information as secondary pieces because they can be
indexed by the four primary types of contexts. Chen and
Kote (41) suggested to categorize contexts as computing,
user, physical, and time. Nevertheless, these characteriza-
tions of context are informal and only aim at helping
developers identify context to be used in their applications.

Another concept related closely to context is situation.
Although context is considered sometimes the same as
situation (45,46), normally context and situation are con-
sidered different (41–43,47). In Refs. 42 and 43, a situation
is defined as a set of context attributes of users, systems,
and environments over a period of time that affect future
system behavior. Although other definitions exist for
situation (48,49), it is agreed commonly that ‘‘situation’’
is a higher-level concept built upon ‘‘context,’’ and a situa-
tion provides a higher-level understanding of the status of
users or other objects involved in computing than a con-
text. Similar to context-aware computing, situation-
aware computing can be defined as the awareness of
situations and adapting the system’s behavior based on
situation changes (42,43).

The importance of context-aware/situation-aware
computing in mobile and ubiquitous computing environ-
ments lies on the new way of human-computer interaction
in context-aware/situation-aware computing systems.
Dey and Abowd (50) defined context-aware computing
system as follows: ‘‘A system is context-aware if it uses
context to provide relevant information and/or services to
the user, relevancy depends on the user’s task.’’ As shown
in Fig. 1, unlike traditional computing systems that
operate on explicit inputs (data and commands) from
users, context-aware computing systems consider con-
texts as implicit inputs and operate on both contexts
and the explicit inputs from users (51). Hence, the inter-
actions between human users and computers in context-
aware computing are no longer initiated only by human
users. Changes in contexts can also trigger and guide
interactions between users and computers. This techni-
que is extremely useful in mobile and ubiquitous comput-
ing environments, in which computing is expected to be
invisible or distraction-free to users.

Applications of Context-Aware/Situation-Aware
Computing

Context-aware/situation-aware computing is very useful in
various mobile and ubiquitous computing applications,
which are usually categorized based on how contextual
and situation information is used in applications. Schilit,
et al. (37) first classified context-aware applications in the
following four categories:

� Proximate selection, which refers to applications that
automatically find and display objects, such as docu-
ments, printers, and monitors, based on a user’s loca-
tion to allow easier access to these objects.

(a)

User

Context and 
Situation

Context and 
Situation

Device

Computation

User

Issue Command

Return Computation Result

Perceived

Computation Result

Context-Awareness
Situation-Awareness

Requirements

Specify

Computation

(b)

Detected

Figure 1. Different types of human-computer interactions: (a)
user-initiated human-computer interaction and (b) context-
aware/situation-aware human-computer interactions.

MOBILE AND UBIQUITOUS COMPUTING 5



� Automatic contextual reconfiguration, which refers to
applications that automatically add, remove, or
change their components to satisfy users’ needs in
dynamically changing environments.

� Contextual information and commands, which refer to
applications that augment or parameterize users’ com-
mands with context to allow users to access appropri-
ate data or functions based on current contexts.

� Context-triggered actions, which refer to applications
that automatically take actions under certain condi-
tions based on predefined rules provided by users.

This categorization of context-aware applications has
been refined, augmented, or simplified by others (40,52,53).
Among these, Dey (40) provided the simplest and most
general categories that describe possible features provided
by context-aware applications:

� Presentation of information and services to users
(based on contexts). An example for this category is
an application that provides location-based services,
such as searching nearby restaurants and printing
documents on the nearest printer.

� Automatic execution of services (based on contexts). An
example for this category is an environment control
application that automatically adjusts brightness of
lights at home based on residents’ activities.

� Tagging of context to information for later retrieval.
An example for this category is an address book appli-
cation that provides not only the phone numbers, but
also the current status (busy or free) of an addressee so
that a caller can determine whether he wants to post-
pone the call (52).

Context and Situation Modeling

To facilitate the development and the operations of context-
aware/situation-aware computing systems, proper models
for contexts and situations are needed for specifying con-
text-aware/situation-awareness requirements.

Context models have been classified into the following
types: key-value pairs, object-oriented models, logic-based
models, markup language-based models, and graph-based
models (41,46). A key-value pair is the simplest form of
context models, in which a key is the identifier of a parti-
cular context, and the corresponding value is the actual
contextual information. In object-oriented models, contexts
are properties of objects that represent physical or concep-
tual entities in mobile and ubiquitous computing environ-
ments. Logic-based models use logic programming
languages, such as Prolog, to represent and reason con-
textual information. Markup language-based models
describe contexts using various elements defined in
markup language-format documents, such as XML.
Graph-based models represent contexts and various activ-
ities to be performed based on contexts as nodes in graphs,
and they represent relations among contexts and activities
as edges in graphs.

Inspired by the development of the semantic web, recent
research on context modeling has resulted in ontology-
based models, such as CONON (54) and SOUPA (55), which

are usually based on standard ontology languages like
OWL (56). Compared with earlier work on context modeling
(41,46), ontology-based context models can express seman-
tic-rich information related to contexts and have better
support for reasoning with contexts. These advantages of
ontology-based models make them more suitable for devel-
oping ubiquitous computing applications, which need to
adapt to environment changes intelligently.

Early work on situation modeling was mainly conducted
in the artificial intelligence community. Situation Calculus
and its extensions (57–60)weredeveloped for describing and
for reasoning how actions and other events affect the world,
and assume that all actions and events that change the
world are known or predictable. In Situation Calculus, a
situation is considered as a complete state of the world,
which leads to the well-known Frame Problem and Rami-
fication Problem (58). Barwise (61) defined a situation as a
part of ‘‘the way the world M happens to be,’’ which supports
the truth of a sentenceF in M. In addition, Barwise formally
defined the semantics of a situation (62) based on a ‘‘scene,’’
which is a ‘‘visually perceived situation’’ that consists of not
only the objects and individual properties associated with
the objects, but also the relationships among objects.
Barwise’s definition of situation is more practical compared
with the definition of situation in Situation Calculus
because it allows the precise description of situations, and
it can be supported easily by the prevailing object-oriented
modeling techniques. Currently, many researchers have
adopted Barwise’s definition of situation and developed
their own formalisms of situations for various purposes,
such as supporting information fusion (63,64), situation-
aware software development (65–67), and effective human-
computer interaction (68). For example, a core situation
awareness (SAW) ontology was introduced in (63,64) based
on a similar view of situations as Barwise’s, which defines a
situation as a collection of situation objects, including
objects and relations as well as other situations. Another
example is a declarative SAW model presented by Yau et al,
(65,66), which provides developers the capability to specify
the situations of interest, the contexts required for analyz-
ing the situations, and the relations among various situa-
tions and actions graphically. Software tools have been
developed based on this declarative SAW model to translate
graphical specifications automatically to specifications
based on formal languages, such as F-Logic and AS3 logic,
and to synthesize software agents automatically for distrib-
uted context acquisition and situation analysis (65–67).

TECHNIQUES FOR DEVELOPING MOBILE AND
UBIQUITOUS COMPUTING SOFTWARE

How to develop software for mobile and ubiquitous comput-
ing is a problem, which has attracted substantial attention
sincetheverybeginningofmobileandubiquitouscomputing
research. The major challenges in developing mobile and
ubiquitous computing software include location transpar-
ency, disconnected operations, interoperability, context-
awareness/situation-awareness (1,69). Research in this
areahasmainlyfocusedonmiddlewareandsoftwaretoolkits
that provide appropriate development and runtime support
to address these challenges. Hence, in this section we will

6 MOBILE AND UBIQUITOUS COMPUTING



focus on middleware and software toolkits facilitating the
development of mobile and ubiquitous computing software.
Readers interested in other related research topics, such as
testing mobile and ubiquitous computing software, are
referred to the conferences and periodicals listed in the
last Section.

Existing middleware for mobile and ubiquitous comput-
ing can be divided into two major categories based on how
they support the coordination among mobile devices: (1)
object based, and (2) tuple-space based. Notable work from
the first category includes ALICE (70), Mobiware (71),
GAIA (72), RCSM (42,43), and MobiPADS (73), which
are based on object-oriented middleware architecture
like CORBA (Common Object Request Broker Architec-
ture) (74). Notable work in the second category includes
LIME (75) and TSpace (76). Their tuple-space based coor-
dination model supports location transparency and discon-
nected operations, and mobility is viewed as transparent
changes in data stored in the tuple space (75,76).

Besides middleware for mobile and ubiquitous comput-
ing, various embedded operating systems, such as Windows
CE (77), embedded Linux (78) and Plan 9 (79), along with
platform-specific software development kits have been
developed to facilitate the development of mobile and ubi-
quitous computing software.

Among the major challenges in developing mobile and
ubiquitous computing software, the incorporation of con-
text-awareness/situation-awareness has attracted most
attention because it has not been previously addressed in
traditional distributed computing research. Many challen-
ging issues for developing context-aware/situation-aware
software in mobile and ubiquitous computing environ-
ments have been identified, which include the discovery
and the management of heterogeneous context sources,
persistent storage of contextual and situation information,
analysis of collected context data for determining the situa-
tion, interfacing context-aware/situation-aware software
with heterogeneous hardware platforms (40,50,80,81).

Several frameworks, toolkits and infrastructures have
been developed for providing support to context-aware
application development. Notable results include CALAIS
(82), Context Toolkit (50), CoolTown (83), MobiPADS (73),
GAIA (72,84), TSpaces (76,85) and RCSM (42,81). CALAIS
(82) focuses on applications accessible from mobile devices,
and supports acquisition of context about users and devices,
but it is difficult to evolve existing applications when the
requirements for context acquisition and the capabilities
and availabilities of sensors change. Context Toolkit (50)
provides architectural support for context-aware applica-
tions, but it does not provide analysis of complex situations.
CoolTown (83) supports applications that display contexts
and services to end-users. MobiPADS (73) is a reflective
middleware designed to support dynamic adaptation of
context-aware services, and hence enables runtime recon-
figuration of context-aware applications. GAIA (72,84) pro-
vides context service, space repository, security service and
other QoS for managing and interacting with active spaces.
TSpaces (76,85) uses tuple spaces to store contexts and
allows tuple space sharing for application software to read
and write, but it ignores the status of the device where
the application software executes, network conditions, and
the surrounding environment as part of the overall context.
RCSM (Reconfigurable Context-Sensitive Middleware)
(42,81) provides development and runtime support for
situation-aware (SA) application software. Because of lim-
ited space, we will only give a brief overview in the following
subsections on two middleware, RCSM and MobiPADS,
which provide context-awareness/situation-awareness.
Readers interested in this are referred to the conferences
and periodicals listed in the last Section.

RCSM

RCSM is a lightweight SA middleware, which provides
development and runtime support for SAW, dynamic ser-
vice discovery and group communication for ubiquitous
computing applications (42,43,80,81). A conceptual archi-
tecture of RCSM, which is shown in Fig. 2, consists of the
following major components:

1. SA Processor provides the runtime services for situa-
tion analysis and manages the SAW requirements of
SA objects. The SAW requirements of SA objects are
defined using situation-aware interface definition
language (SA-IDL). An SA-IDL compiler was devel-
oped to generate the situation-aware object skeleton
codes and corresponding configuration files, to be
used by the SA Processor to perform situation ana-
lysis. The SA object skeleton codes provide the stan-
dard interfaces for SA objects to interact with the SA
Processor.

2. RCSM object request broker (R-ORB) provides the
runtime services for context discovery and acquisi-
tion, and SA communication management. The con-
text manager in R-ORB implements an efficient
context discovery protocol (86) to support adaptive
context discovery and acquisition in ubiquitous com-
puting environments based on the requirements on

Transport Layer

R-ORB

Situation-Aware 
Processor

Other 
Services

Various Situation-Aware
Middleware Services 

Situation-Aware Interface
Definition Language 

Situation-Aware ObjectsSituation-Aware
Objects 

Situation-Aware ObjectsClient-Server
Objects O

P
E
R
A
T
I
N
G
S
Y
S
T
E
M

SensorsSensors

Figure 2. RCSM’s architecture.

MOBILE AND UBIQUITOUS COMPUTING 7



contexts extracted from the configuration files of SA
applications by the SA processor. SA object discovery
protocols enable efficient and spontaneous commu-
nication between distributed SA objects.

Using SA-IDL, contexts can be described precisely as
context objects, and situations can be composed by not only
the current values of multiple contexts, but also the histor-
ical values of multiple contexts over a period of time. The SA
processor is designed to cache and analyze the context
history to determine the situation. In addition, the SAW
requirements, such as the definitions of situations, can be
modified in runtime through the SA Processor. Once the
requirements are changed, the R-ORB and SA Processor
will reconfigure themselves to collect the necessary con-
texts and perform situation analysis based on the new
requirements.

MobiPADS

Mobile platform for actively deployable service (Mobi-
PADS) (73) is a reflective middleware, which serves as
an execution platform for context-aware mobile computing.
MobiPADS enables active service deployment and reconfi-
guration in response to context changes, and hence it can
optimize the performance of mobile applications when the
context changes.

MobiPADS consists of two types of agents: MobiPADS
server agents, which reside in the network infrastructure
and are responsible for most of the optimization computa-
tions, and MobiPADS client agents, which reside in the
mobile devices and provide various services for mobile appli-
cations. MobiPADS adopts the idea of mobile codes, and
stores the codes of service objects in MobiPADS agents.
Service objects can be deployed on either the client or server
agent, and can migrate between the client and server agents
when needed (e.g., when the device, where the client agent
resides, moves), to enable flexible reconfiguration of mobile
applications. Each MobiPADS agent also has a set of system
components for managing system (MobiPADS client and
server, andservice objects) configurations,migratingservice
objects between MobiPADS server and client, recording
known services, contextual event notification, and establish-
ing virtual communication channels between serviceobjects.
Each MobiPADS service is a pair of mobilets: a slave mobilet
at the server agent for providing actual processing capabil-
ities, and a master mobilet at the client agent for instructing
the slave mobilets and for presenting results to the client.
The mobilets can be chained together to support necessary
service composition for mobile applications, similar to work-
flows in workflow systems. An XML-based language was
developed in MobiPADS to describe how service objects
interact with each other and how they are configured.

MobiPADS uses an event subscription-notification
model to provide context-awareness. The idea is similar
to the ECA (event-condition-action) model in active data-
bases (87). All contexts are modeled as event sources to
generate contextual events when certain conditions are
satisfied. All entities (system components, mobilets and
mobile applications) can subscribe to contextual events of
interests, and they are notified when certain events occur to

achieve context-awareness. MobiPADS also supports event
composition, which allows combining multiple events from
different context sources to express complex semantics.
However, MobiPADS only focuses on the current events,
and it does not consider historical events, which are impor-
tant for achieving SAW.

PRIVACY ISSUES IN MOBILE AND UBIQUITOUS
COMPUTING

Currently, most research in mobile and ubiquitous comput-
ing focuses on how to connect users and service providers in
heterogeneous and dynamically changing computing envir-
onments, and how to develop applications cost-effectively.
However, lack of privacy protection in mobile and ubiqui-
tous computing would hinder its practical usage, and hence
should be considered seriously from the beginning of system
design. Although many privacy techniques are available
to protect digital communications, the context-aware/
situation-aware property of mobile and ubiquitous comput-
ing creates many new challenges and makes many existing
techniques unsuitable (88–91). In such an environment, we
need to consider the following two important aspects: (1) the
protection of context information and (2) the authentication
based on context information. In this section, we will focus
on these two aspects. Other privacy issues, such as identity
protection, secure communication, and key management,
can be addressed using existing techniques (88–91) devel-
oped for general distributed computing systems, and hence
they will not be discussed in this chapter.

Context Information Privacy

In mobile and ubiquitous computing, the contexts of users
are very important because service providers may control
or adapt their services according to their users’ contexts,
such as providing local weather information on users’
locations. Hence, context information of users should be
available to service providers to help them improve service
qualities and provide personalized services. However, con-
text information should be protected because revealing
such information, which may be considered sensitive in
certain applications, creates significant privacy risk, such
as allowing malicious service providers to trace users.
These two conflicting requirements on context information
make the protection of context information difficult. So far,
most research in this area focuses on the protection of
location information (92).

A possible solution for these two conflicting require-
ments is to develop anonymity techniques, which will
break the associations between users’ identities and
their contexts. Thus, service providers can use users’
context information, but they cannot link two different
contexts to the same user. The anonymous use of location
information can be accomplished easily if a centralized
trusted location server (93–95) exists, which serves as
the proxy between users and service providers. The location
server receives the location information from users and
disseminates it to service providers without revealing the
information sources. However, whereas the centralized
trusted location server can perfectly make the location

8 MOBILE AND UBIQUITOUS COMPUTING



information anonymous, it is the performance bottleneck
and may become the single point of failure. Although dis-
tributing the service provided by the centralized trusted
location server to several servers may reduce such negative
impact, it is difficult for administrators to protect and for
users to trust multiple servers. A possible solution pre-
sented in Ref. 96 is to separate the protection of identities
and the protection of locations. The distributed servers will
only be responsible for the protection of users’ identities.
Users’ locations can be protected by grouping several users
together and revealing only the group locations.

Other researchers have developed techniques to reduce
the risk of revealing users’ location information rather than
making the location information anonymous (96). Obfusca-
tion was proposed to provide only inaccurate information to
service providers, like referring the exact location as the
location around a landmark (97), or replacing one user’
location with the location of a group (98). Because different
services have different requirements on the precision of
locations (e.g., city names are sufficient for weather ser-
vices, but more accurate location is required to find the
nearest hospital), the idea of obfuscation is developed even
more to allow users and service providers to negotiate for
the precision of location information (99,100), which
ensures that only the information required for providing
satisfactory services is revealed to service providers.

Although many approaches have been developed to
protect users’ locations, these approaches cannot be
extended easily to protect other context information.
Hence, more investigations on how to protect other context
information are needed.

Context-Based Authentication

Authentication is to ensure that users and service providers
have the identities as they have claimed. In mobile and
ubiquitous-computing environments, besides the require-
ment of the users’ identities, additional requirements exist
on the users’ environment because some service providers
only provide services for users with a particular context,
such as in a certain building. Hence, the authentication in
such environments should include not only users’ identities,
but also users’ contexts, such as the characteristics of com-
munication channel (101) or users’ locations (102–105).

To authenticate users’ contexts, the service providers
need to collect users’ context information. This task can be
done using various types of sensors, such as infrared beams
(102), laser beams (106), and ultrasound (107). Based on the
properties of sensors, various types of sensors can collabo-
rate when the requirement on users’ context information is
too complex to be collected and preprocessed by a single
mechanism. For example, the RF sensor and the ultra-
sound sensor (105) can be combined to determine whether
a user is in the room and whether three users are in line.

During the context information collection process, the
authentication for the identities of service providers is
required to distinguish one service provider from others
to avoid revealing users’ context information to malicious
service providers. To solve this problem, various physical
and software-based solutions have been developed to

ensure the associations between users and service provi-
ders (102,106,108–111).

Because context-based authentication also authenti-
cates users’ context information, the collected context infor-
mation should be integrated into the authentication
protocols. In spatial reference (105), the distance between
a user and a service provider is represented as time latency.
Once the user receives an RF signal from the service
provider, the user inserts a certain delay before sending
the service provider a response. This delay represents the
distance between the user and the service provider. How-
ever, this approach will degrade the performance, espe-
cially when the encoded information is large. Another
solution for integrating the context and the authentication
is to derive the key from the collected context information
directly (112,113).

Similar to existing research on the protection of context
information, the research on context-based authentication
focuses mainly on location-based authentication. Authen-
tication based on other context information need to be
investigated even more.

SUMMARY

In this chapter, we have presented a brief overview of
mobile and ubiquitous computing, and we reviewed four
important research areas in mobile and ubiquitous com-
puting: wireless ad hoc networks, context-aware/situation-
aware computing, techniques for developing mobile and
ubiquitous computing software, and privacy issues in
mobile and ubiquitous computing. Because of limited space,
the materials are presented at a relatively high level.
Readers interested in this topic are referred to the refer-
ences. More references can be found in the following con-
ferences and periodicals: Annual International Conference
on Mobile Computing and Networks (MobiCom), Interna-
tional Conference on Distributed Computing Systems
(ICDCS), International Conference on Ubiquitous Comput-
ing (Ubicomp), International Conference on Pervasive
Computing and Communications (PerCom), International
Conference on Mobile Data Management (MDM), Annual
International Computer Software and Application Confer-
ence (COMPSAC), Network and Distributed System Secur-
ity Symposium (NDSS), IEEE Transactions on Software
Engineering, IEEE Transactions on Mobile Computing,
IEEE Transactions on Parallel and Distributed Systems,
Journal of Parallel and Distributed Computing, IEEE
Personal Communication, IEEE Pervasive Computing,
Journal of Systems and Software, Journal of Software
Practice and Engineering, and International Journal of
Network Security.

BIBLIOGRAPHY

1. D. Duchamp, S. K. Feiner and G. Q. Maguire Jr., Software
Technology for Wireless Mobile Computing, IEEE Trans.
Network, 5 (6): 12–18, 1991.

MOBILE AND UBIQUITOUS COMPUTING 9



2. G. H. Forman and J. Zahorjan, The challenges of mobile com-
puting, IEEE Comput., 27 (4): 38–47, 1994.

3. T. Imielinski and B. R. Badrinath, Mobile wireless computing,
Commun. ACM, 37 (10): 19–28, 1994.

4. L. Kleinrock, Nomadic computing: An opportunity, Comput.
Commun. Rev., 25 (1): 36–40, 1995.

5. M. Satyanarayanan, Fundamental Challenges in Mobile Com-
puting, Proc. 15th ACM Symp. on Principles of Distributed
Computing, 1996, pp. 1–7.

6. M. Weiser, The computer for the 21st century, Scientif. Amer.,
265 (3): 94–104, 1991.

7. M. Weiser and J. S. Brown, The coming age of calm technology,
Beyond Calculation – The Next Fifty Years of Computing, P. J.
Denning and R. M. Metcalfe, (eds.), Berlin: Springer-Verlag,
1996, Chapter 6.

8. D. Norman, The Invisible Computer, Cambridge, MA: MIT
Press, 1998.

9. ISTAG (Information Society and Technology Advisory Group),
Scenarios for Ambient Intelligence in 2010. Available: ftp://
ftp.cordis.europa.eu/pub/ist/docs/istagscenarios2010.pdf, Feb-
ruary 2001.

10. M. Satyanarayanan, Pervasive computing: Vision and chal-
lenges, IEEE Personal Commun., 8 (4): 10–17, 2001.

11. D. Saha, and A. Mukherjee, Pervasive computing: A paradigm
for the 21st century, IEEE Comput., 36 (3): 25–31, 2003.

12. Y. R. Chen, and C. Petrie, Ubiquitous mobile computing, IEEE
Internet Computing, 7 (2): 16–17, 2003.

13. N. Abramson, The ALOHA system-another alternative for
computer communications, Proc. 1970 Fall Joint Computer
Confi, 1970, pp. 281–285.

14. F. A. Tobagi, and L. Kleinrock, Packet switching in radio
channels: Part I – carrier sense multiple-access modes and
their throughput-delay characteristics, IEEE Trans.
Commun., 23 (12): 1400–1416, 1975.

15. P. Karn, MACA-A new channel access method for packet radio,
ARRL/CRRL Amateur Radio 9th Computer Networking Conf.,
1990, pp. 134–140.

16. IEEE, Wireless LAN Medium Access Control (MAC) and Phy-
sical Layer (PHY) Specifications, ANSI/IEEE std 802.11, 1999
Edition (R2003), Part 11.

17. Wikipedia, Round-robin scheduling algorithm. Available:
http://en.wikipedia.org/wiki/Round-robin_scheduling.

18. S. Keshav, An Engineering Approach to Computer Networking:
ATM Networks, The Internet, and the Telephone Network,
Reading, MA: Addison Wesley, 1997.

19. C. E. Perkins and E. M. Royer, Ad-hoc on-demand distance
vector routing, Proc. 2nd IEEE Workshop on Mobile Comput-
ing Systems and Applications, 1999, pp. 90–100.

20. D. B. Johnson and D. A. Maltz, Dynamic source routing in
ad hoc wireless networks, in T. Imielinski and H. Korth (eds.),
Mobile Computing, Dordrecht, Germany: Kluwer Publisher,
1996, pp. 153–181.

21. V. D. Park and M. S. Corson, A highly adaptive distributed
routing algorithm for mobile wireless networks, Proc. 16th

IEEE INFOCOM, 1997, pp. 1405–1413.

22. J. Y. Yu and P. H. J. Chong, A survey of clustering schemes for
mobile ad hoc networks, IEEE Communication Surveys &
Tutorials, 7 (1): 32–48, 2005.

23. C. C. Chiang and M. Gerla, Routing and multicast in multi-
hop, mobile wireless networks, Proc. 6th IEEE Int’l Conf. on
Universal Personal Communications Record, 1997, pp.
546–551.

24. Z. J. Haas and M. R. Pearlman, The performance of query
control schemes for the zone routing protocol, ACM/IEEE
Trans, Network., 9 (4): 427–438, 2001.

25. IETF, RFC793-Transmission Control Protocol. Available:
http://www.faqs.org/rfcs/rfc793.html.

26. T. D. Dyer and R. V. Boppana, A Comparison of TCP perfor-
mance over three routing protocols for mobile ad hoc networks,
Proc. 2001 ACM Symp. on Mobile Ad Hoc Networking and
Computing (MobiHoc 2001), 2001, pp. 56–66.

27. K. Chandran, et al., A Feedback-based scheme for improving
TCP performance in ad hoc wireless networks, IEEE Personal
Commun., 8 (1): 34–39, 2001.

28. J. Liu, and S. Singh, ATCP: TCP for mobile ad hoc networks,
IEEE J. Selected Areas in Communications, 19 (7): 1300–1315,
2001.

29. K. Chen, Y. Xue, and K. Nahrstedt, On setting TCP’s conges-
tion window limit in mobile ad hoc networks, Proc. 2003 IEEE
Int’l Conf. on Communications (ICC’2003), 2003, pp. 1080–
1084.

30. V. Anantharaman, et al., TCP performance over mobile ad-hoc
networks: A quantitative study, J. Wireless Commun. Mobile
Comput., 4 (2): 203–222, 2003.

31. Z. Fu, et al., The impact of multihop wireless channel on TCP
throughput and loss, Proc. IEEE INFOCOM, 2003, pp. 1744–
1753.

32. R. Want, et al., The active badge location system, ACM Trans.
Inform. Syst., 10 (1): 91–102, 1992.

33. B. N. Schilit, M. Theimer, and B. B.Welch, Customizing mobile
application, Proc. USENIX Symp. on Mobile and Location-
Independent Computing, August 1993, pp. 129–138.

34. M. Spreitzer and M. Theimer, Providing location informa-
tion in a ubiquitous computing environment, Proc. 14th
ACM Symp. on Operating System Principles, 1993, pp.
270–283.

35. A. Harter and A. Hopper, A distributed location system for the
active office, IEEE Network, 8 (1): 62–70, 1994.

36. B. N. Schilit, and M. Theimer, Disseminating active map
information to mobile hosts, IEEE Network, 8 (5): 22–32,
1994.

37. B. N. Schilit, N. Adams, and R. Want, Context-aware Comput-
ing Applications, Proc. 1st IEEE Workshop on Mobile Comput-
ing Systems and Applications, 1994, pp. 85–90.

38. P. G. Brown, J. D. Bovey, and X. Chen, Context-aware applica-
tions: From the laboratory to the marketplace, IEEE Personal
Commun., 4 (5): 58–64, 1997.

39. P. Brezillon and J. C. Pomerol, Contextual knowledge sharing
and cooperation in intelligent assistant systems, Le Travail-
Humain, 62 (3): 223–246, 1999.

40. A. Dey, and G. Abowd, Towards a better understanding of
context and context-awareness, Technical Report, GIT-GVU-
99–22, Atlanta,GA: Georgia Institute of Technology, 1999.

41. G. Chen, and D. Kotz, A survey of context-aware mobile com-
puting research, Technical Report TR2000-381, Dartmouth
College, 2000. Available: http://www.cs.dartmouth.edu/reports/
abstracts/TR2000-381/.

42. S. S. Yau, Y. Wang and F. Karim, Development of situation-
aware application software for ubiquitous computing environ-
ments, Proc. 26th IEEE Int’l Computer Software and Applica-
tions Conf (COMPSAC 2002), 2002, pp. 233–238.

43. S. S. Yau, et al., Reconfigurable context-sensitive middleware
for pervasive computing, IEEE Pervas. Comput., 1 (3): 33–40,
2002.

10 MOBILE AND UBIQUITOUS COMPUTING



44. P. Braione and G. P. Picco, On calculi for context-aware
coordination, Proc. 6th Int’l Conf. on Coordination Models
and Languages (COORDINATION 2004), 2004, pp. 38–54.

45. B. Schiele, et al., Situation aware computing with wearable
computers, in W. Barfield and T. Caudell (eds.), Augmented
Reality and Wearable Computers, Matawan, NJ. Lawrence
Erlbaum Press. 1999.

46. G. K. Mostefaoui, J. Pasquier-Rocha, and P. Brezillon, Con-
text-aware computing: A guide for the pervasive computing
community, Proc. IEEE/ACS Int’l Conf. on Pervasive Services
(ICPS’04), 2004, pp. 39–48.

47. A. Schmidt, Ubiquitous Computing: Computing in Context,
Ph.D. Thesis, 2002, Lancaster University, UK.

48. P. Marti, et al., Situated interactions in art settings, Proc.
Workshop on Situated Interaction in Ubiquitous Computing at
CHI2000, 2000. Available: http://www.teco. edu/chi2000ws/
papers/29_marti.pdf.

49. T. Selker and W. Burleson, Context-aware design and
interaction in computer systems, IBM Syst. J., 39(3–4),
2000. Available: http://cac.media.mit.edu:8080/contextweb/
jsp/index.htm.

50. A. K. Dey and G. D. Abowd, A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware
applications, Human-Computer Interact., 16(2–4): 97–166,
2001.

51. S. Pokraev, et al., Context-aware services: State-of-the-art,
TI/RS/2003/137, 2003. Available: https://doc.telin.nl/dscgi/
ds.py/Get/File-27859/Context-aware_services-sota,_v3.0,_fi-
nal.pdf.

52. J. Pascoe, Adding generic contextual capabilities to wearable
computers, Proc. 2nd Int’lSymp. on Wearable Computers,
1998, pp. 92–99.

53. D. Chalmers, Contextual Mediation to Support Ubiquitous
Computing, Ph.D. Thesis, Imperial College, London, England,
2002.

54. X. Wang, et al., Ontology-based context modeling and reason-
ing using OWL, Proc. Context Modeling and Reasoning Work-
shop at the 2nd IEEE Annual Conf. on Pervasive Computing
and Communications, 2004, pp. 18–22.

55. H. Chen, et al., SOUPA: Standard ontology for ubiquitous and
pervasive applications, Proc. Int’l Conf. on Mobile and Ubiqui-
tous Systems: Networking and Services, 2004, pp. 258–267.

56. OWL-S 1.0. Available: http://www.daml.org/services/owl-s/
1.0/.

57. J. McCarthy and P. J. Hayes, Some philosophical problems
from the standpoint of artificial intelligence, Mach. Intell. 4.
463–502, 1969.

58. J. A. Pinto, Temporal reasoning in the situation calculus, Ph.D.
Thesis, University of Toronto, 1994.

59. J. McCarthy, Situation calculus with concurrent events and
narrative, 2000. Available: http: //wwwformal. Stanford. edu/j
mc/narrati ve/narrati ve. html.

60. D. Plaisted, A hierarchical situation calculus, J. Comput. Res.
Reposit. (CoRR), 2003.

61. J. Barwise, Scenes and other situations, J. Philos., 77: 369–
397, 1981.

62. J. Barwise, The situation in logic, CSLI Lecture Notes 17, 1989.

63. C. J. Matheus, M. M. Kokar, and K. Baclawski, A Core ontology
for situation awareness, Proc. 6th Int’l Conf on Information
Fusion, 2003, pp. 545–552.

64. C. J. Matheus, et al., Constructing RuleML-based domain
theories on top of OWL ontologies, Proc. 2nd Int’l Workshop

on Rules and Rule Markup Languages for the Semantic Web
keep: Rule ML, 2003, pp. 81–94.

65. S. S. Yau, et al., Situation-awareness for adaptable service
coordination in service-based systems, Proc. 29th Ann. Int’l
Computer Software and Application Conf. (COMPSAC), 2005,
pp. 107–112.

66. S. S. Yau, et al., Support for situation-awareness in trust-
worthy ubiquitous computing application software, J. Soft.
Pract. Eng. (JSPE), 36 (9): 893–921, 2006.

67. S. S. Yau, et al., Automated agent synthesis for situation
awareness in service-based systems, Proc. of 30th Annual
Int’l Computer Software and Application Conf. (COMPSAC),
2006, pp. 503–510.

68. M. Endsley, and D. Garland, Situation Awareness, Analysis
and Measurement, Mahwah,NJ: Lawrence Erlbaum Associ-
ates, 2000.

69. G. D. Abowd, Software engineering issues for ubiquitous com-
puting, Proc. 21st Int’l Conf. on Software Engineering, 1999,
pp. 75–84.

70. M. Haahr, R. Cunningham, V. Cahill, Supporting CORBA
applications in a mobile environment, Proc. 5th ACM/IEEE
Int’l Conf. on Mobile Computing and Networking (MobiCom),
1999, pp. 36–47.

71. A. T. Campbell, et al., The Mobiware Toolkit: Programmable
support for adaptive mobile networking, IEEE Personal Com-
mun., 5 (4): 32–43, 1998.

72. M. Roman, et al., A middleware infrastructure for active
spaces, IEEE Pervas. Comput. and S.N. Chuang, 1 (4):
74–83, 2002.

73. A. T .S. Chan and S. N. Chuang, MobiPADS: A reflective
middleware for context-aware computing, IEEE Trans, Soft.
Eng., 29 (12): 1072–1085, 2003.

74. Object Management Group, Common object request broker
architecture specification v3.03, 2004. Available: http://
www.omg.org/cgi-bin/apps/doc?formal/04-03 -12. pdf.

75. A. Murphy, G. Picco, and G.-C. Roman, LIME: A middleware
for physical and logical mobility, Proc. 21st Int’l Conf. on
Distributed Computing Systems, 2001, pp.524–533.

76. IBM Research, TSpaces Project. Available: http://www.alma-
den.ibm.com/cs/TSpaces/.

77. Microsoft, Windows CE home page. Available: http://
msdn2.microsoft.com/en-us/embedded/aa731407.aspx.

78. Wikipedia, Embedded Linux. Available: http://en.wikipe-
dia.org/wi ki/Embedded_Linux.

79. Bell Labs, Plan 9 operating system home page. Available:
http://plan9.bell-labs.com/plan9/.

80. S. S. Yau and F. Karim, A context-sensitive middleware-based
approach to dynamically integrating mobile devices into com-
putational infrastructures, J. Parallel Distrib. Comput., 64 (2):
301–317, 2004.

81. S. S. Yau, et al., Development and runtime support for situa-
tion-aware application software in ubiquitous computing
environments, Proc. 28th Annual Int’l Computer Software
and Application Conf. (COMPSAC), 2004, pp. 452–457.

82. B. J. Nelson, Context-aware and location systems, Ph.D. the-
sis, University of Cambridge, 1998 Available: http://www.sig-
mobile.org/phd/1998/theses/nelson.pdf .

83. D. Caswell and P. Debaty, Creating web representations for
places, Proc. 2nd Int’l Symp. on Handheld and Ubiquitous
Computing (HUC2K), 2000, pp. 114–126.

84. C. Hess, M. Roman, and R. H. Campbell, Building applications
for ubiquitous computing environments, Proc. Int’l Conf.

MOBILE AND UBIQUITOUS COMPUTING 11



Pervasive Computing, 2002. Available: http://choices.cs.uiu-
c.edu/gaia.

85. T. J. Lehman et al., Hitting the distributed computing sweet
spot with Tspaces, Comput. Networks, 35 (4): 457–472, 2001.

86. S. S. Yau, D. Chandrasekar and D. Huang, An adaptive,
lightweight and energy-efficient context discovery protocol
for ubiquitous computing environments, Proc. 10th Int’l Work-
shop on Future Trends of Distributed Computing Systems
(FTDCS), 2004, pp. 261–267.

87. U. Dayal, Active database systems, Proc. 3rd Int’l Conf. on
Data and Knowledge Bases, 1988, pp. 150–170.

88. R. Campbell, et al., Towards security and privacy for pervasive
computing, Proc. Int’l Symp. on Software Security, 2002, pp.
1–15.

89. H. Munirul and S. I. Ahamed, Security in pervasive computing:
current status and open issues, Int’l J. Network Secur., 3 (3):
203–214, 2006.

90. P. Bhaskar and S. I. Ahamed, Privacy in pervasive computing
and open issues, Proc. 2nd IEEE Int’l Conf. on Availability,
Reliability and Security, 2007, pp. 147–154.

91. S. I. Ahamed, N. Talukder and M. M. Haque, Privacy chal-
lenges in context-sensitive access control for pervasive com-
puting environment, Proc. 4th Annual Int’l Conf. on Mobile
and Ubiquitous Systems: Computing, Networking and Ser-
vices (MOBIQUITOUS) SPEUCS Workshop, 2007.

92. A. Gorlach, A. Heinemann and W. W. Terpstra, Survey on
location privacy in pervasive computing, in P. Robinson, H.
Vogt and W. Wagealla (eds.), Privacy, Security and Trust
within the Context of Pervasive Computing, Berlin: Springer,
2005, pp. 23–34.

93. M. Gruteser and D. Grunwald, Anonymous usage of location-
based services through spatial and temporal cloaking, Proc. 1st
Int’l Conf. on Mobile Systems, Applications, and Services,
2003, pp. 31–42.

94. B. Gedik and L. Liu, Location privacy in mobile systems: a
personalized anonymization model, Proc. 25th IEEE Int’l Conf.
on Distributed Computing Systems, 2005, pp. 620–629.

95. M. F. Mokbel and C. Y. Chow, The new casper: query proces-
sing for location services without compromising privacy, Proc.
32th Int’l Conf. on Very Large Data Bases, 2006, pp. 763–774.

96. G. Ghinita, P. Kalnis and S. Skiadopoulos, PRIV’E: Anon-
ymous location-based queries in distributed mobile systems,
Proc. 16th Int’l World Wide Web Conf., 2007, pp. 371–389.

97. J. I. Hong and J. A. Landay, An architecture for privacy-
sensitive ubiquitous computing, Proc. 2nd Int’l Conf. on Mobile
Systems, Applications, and Services, 2004, pp. 177–189.

98. C. Y. Chow, M. F. Mokbel and X. Liu, A peer-to-peer spatial
cloaking algorithm for anonymous location-based services,
Proc. 14th ACM Int’l Symp. on Geographic Information Sys-
tems, 2006, pp. 171–178.

99. E. Snekkenes, Concepts for personal location privacy policies,
Proc. 3rd ACM Conf. on Electronic Commerce, 2001, pp. 48–57.

100. M. Duckham and L. Kulik, A formal model of obfuscation and
negotiation for location privacy, Proc. 3rd Int’l Conf. on
Pervasive Computing, 2005, pp. 152–170.

101. T. Kindberg, K. Zhang and N. Shankar, Context authentica-
tion using constrained channels, Proc. 4th IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA),
2002, pp. 14–21.

102. D. Balfanz, et al., Talking to strangers: authentication in
ad-hoc wireless networks, Proc. of the Network and Distrib-
uted System Security Symp., 2002.

103. F. Riccardo, Using entity locations for the analysis of authen-
tication protocols, Proc. 6th Italian Conf. on Theoretical
Computer Science (ICTCS), 1998, pp. 9–11.

104. R. Want, et al., The active badge location system, ACM Trans.
Inform. Syst., 10: 91–102, 1999.

105. R. Mayrhofer, H. Gellersen and M. Hazas, Security by spatial
reference: using relative positioning to authenticate devices
for spontaneous interaction, Proc. 9th Int’l Conf. on Ubiqui-
tous Computing, 2007, pp. 199–216.

106. T. Kindberg and K. Zhang, Secure spontaneous devices asso-
ciation, Proc. 5th Int’l Conf. on Ubiquitous Computing, 2003,
pp. 124–131.

107. T. Kindberg and K. Zhang, Validating and securing sponta-
neous associations between wireless devices, Proc. 6th Int’l
Conf. on Information Security, 2003, pp. 44–53.

108. F. Stajano and R. Anderson, The resurrecting duckling:
security issues for ad-hoc wireless networks, Proc. 7th Int’l
Workshop on Security Protocols, 1999, pp. 172–194.

109. L. E. Holmquist, et al., Smart-its friends: a technique for
users to easily establish connections between smart artifacts,
Proc. 3rd Int’l Conf. on Ubiquitous Computing, 2001, pp.
273–291.

110. L. Feeney, B. Ahlgren and A. Westerlund, Spontaneous net-
working: An application-oriented approach to ad hoc net-
working, IEEE Commun. Magazine, 39 (6): 176–181, 2001.

111. Shared Wireless Access Protocol (Cordless Access) Specifica-
tion (SWAP-CA), Revision 1.0, The Home RF Technical Com-
mittee, 1998.

112. R. Mayrhofer, The candidate key protocol for generating
secret shared keys from similar sensor data streams, Proc.
4th European Workshop on Security and Privacy in Ad-hoc
and Sensor Networks (ESAS), 2007, pp. 1–15.

113. D. Bichler, et al., Key generation based on acceleration data of
shaking processes, Proc. 9th Int’l Conf. on Ubiquitous Com-
puting, 2007, pp. 304–317.

STEPHEN S. YAU

DAZHI HUANG

WEI GAO

YIN YIN

Arizona State University
Tempe, Arizona

12 MOBILE AND UBIQUITOUS COMPUTING



M

MULTICAST PROTOCOLS AND ALGORITHMS

INTRODUCTION

One way to characterize communication is by the number of
parties involved. The traditional communication modes are
unicast, i.e., one-to-one, and broadcast, i.e., one-to-all.
Between these two extremes we find multicast, the trans-
mission of a message or datastream to an arbitrary set of
receivers, i.e., one-to-many. Multicast can be seen as a
unifying communication mode, as it is a generalization of
both unicast and broadcast. Multicast is examined sepa-
rately, however, because the specification of receivers as a
set introduces features and complications that are not
present in traditional unicast and broadcast. A more gen-
eral term is multipoint communication, which implies
many-to-many bidirectional data exchange.

The multicast model of communication is ideal for appli-
cations where data and control are partitioned over multi-
ple entities. Examples include updating replicated
databases, contacting any one of a group of distributed
servers of which the composition is unknown (more appro-
priately termed anycast) and interprocess communication
between multiple cooperating processes. The prototypical
multicast applications, however, are real-time interactive
multimedia conferencing and near real-time media distri-
bution to multiple receivers.

Multicast efficiency is a fundamental requirement for
the success of many group applications. Selective multicast
replaces indiscriminate broadcasting to everyone, reducing
the waste of resources caused by transmitting information
to all receivers. To be more economical than unicast, multi-
cast must conserve resources via sharing: Instead of trans-
mitting information from a sender to each receiver
separately, routes to receivers that share links must carry
the information only once over each shared link. We can
picture a multicast route as a tree rooted at the sender with
a receiver at each leaf and, possibly, some receivers on
internal nodes. This tree must be designed to maximize link
sharing and thus minimize resource consumption.

Besides the obvious issue of how to construct multicast
routing trees, multicast also raises other issues related to
the extension of unicast mechanisms to a multicast
context. For example, the sender in a reliable transport
protocol can recover from communication errors based on
error reports from the receiver. By simply extending this
mechanism to multicast, we run the risk of feedback implo-
sion, when many receivers send such reports toward the
sender, thus swamping the network and the source with
control information. In addition to the scalability issues
raised by this approach, another issue is how the sender
should react when conflicting reports arrive from different
receivers.

MULTICAST MODELS

The difference between multicasting and separately uni-
casting to several destinations is best captured by the
Internet host-group model of Cheriton and Deering (1): A
host-group is a set of network entities sharing a common
identifying multicast address. All group members receive
any data packets addressed to this multicast address. The
senders have no knowledge of group membership and may
or may not belong to the group, corresponding to closed or
open groups, respectively. Multicast messages on the Inter-
net are sent on a best-effort basis, like unicast messages;
i.e., they may be reordered, lost, or duplicated.

This definition allows group behavior over time to be
unrestricted in multiple dimensions; it may have local
(LAN) or global (WAN) membership, be transient or per-
sistent, and have static or dynamic membership. From the
sender’s point of view, the multicast service interface is
identical to unicast; only the address differs. Therefore, it is
the network’s responsibility to manage the multicast com-
munication, transparently to the users. This extra work
compared with unicast is expected to result in a more
efficient usage of resources, which is the primary motive
for network providers to support multicast in the first place.

The host-group model imposes specific requirements for
the implementation of the multicast service. First, there
must be a means for routing packets from a sender to all
group members, which implies that the network must
locate all members of the group and make appropriate
routing arrangements without any assistance from the
sender. Second, as group membership is dynamic, the net-
work must continuously track membership during a
session’s lifetime, which may range from short to very
long periods of time. Tracking is required both to start
forwarding data to new group members and to stop the
wasteful transmission of data to members that have left
the group. This dynamic nature of multicast groups has a
considerable impact on multicast routing.

It should be noted that the Internet host-group model is
by no means unique for multicasting. Some applications
require delivery of messages addressed to a group to be
atomic; that is, each message sent to a multicast group must
be received by either all receivers in the group or none at all.
Atomicity further implies that all received messages must
be processed in the same order by all receivers, i.e., that
multicasts are also totally ordered. As atomic multicast is
complex to implement, it is usually built on top of a simpler
multicast facility, such as the one offered by the Internet.

MULTICAST ROUTING ALGORITHMS

Unicast routing attempts to minimize either trans-
mission cost or delay, depending on the metric used for
optimization. Although these goals seem different, from an

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



algorithmic point of view, they are both equivalent to
finding shortest paths over a network with cost-labeled
links; link costs may stand for either transmission cost
or delay. A shortest path algorithm finds optimal routes
between one node (the sender) and all other nodes in the
network. Two common examples of such algorithms are
those due to Dijkstra and Bellman–Ford. An optimal
route minimizes the sum of the costs of all links included
in the route. The union of all these routes forms a shortest
path tree rooted at the sender. As this is a broadcast tree, as
shown in Fig. 1(a) a straightforward (but not optimal)
solution to the multicast routing problem is to prune off
that tree all links that do not lead to any members of the
group, as shown in Fig. 1(b).

The advantage of these algorithms is that they are easy
to implement and deploy, as they are direct extensions of
existing ones. Each path is optimal by definition, regardless
of changes in group membership, and this optimality comes
essentially for free, because shortest paths need to be
computed anyway for unicast routing. The disadvantage
of these algorithms is that they concentrate on pairwise
optimizations between the sender and each receiver and
only conserve resources as a side effect, when paths happen
to overlap. For large networks with widely dispersed group
members, either the scale of the network or the continuous
network changes will necessarily restrict the use of these
algorithms to subnetworks, requiring a hierarchical rout-
ing technique to support global multicasting.

To achieve the economies promised by multicasting,
optimization must be viewed from the perspective of the

entire distribution tree. This requires building trees that
exploit link sharing as much as possible, duplicating pack-
ets only when paths diverge, so as to minimize the total
distribution cost even at the expense of serving some recei-
vers over longer paths. In algorithmic terms, what is
needed is a minimal cost tree that reaches all receivers,
possibly using additional nodes on the way. This is equiva-
lent to the Steiner tree problem, analyzed by Hakimi (2). In
this problem, a cost-labeled graph and a set of nodes, the
Steiner points, are given and a minimal cost tree is sought
connecting all Steiner points, including both the sender and
all receivers, as shown in Fig. 2(a).

If all nodes were Steiner points, the above problem
would coincide with the spanning tree problem, which
can be solved efficiently. Unfortunately, the Steiner tree
problem belongs to the class of NP-complete problems, as
shown by Garey et al. (3). Fortunately, approximation
algorithms exist for it with proven constant worst-case
bounds and very good average behavior. As an example,
trees built with the heuristic by Kou et al. (4) have at most
twice the cost of Steiner trees, whereas simulations of
realistic network topologies described by Kabada and Jaffe
(5) have shown their cost to be within 5% of the optimum.

The advantage of Steiner tree algorithms is their overall
optimality with respect to a single cost metric, such as
transmission cost. Their disadvantages are also important,
however: These algorithms must be run in addition to the
unicast routing algorithm, and they suffer from scaling
problems for large networks. Furthermore, optimality is
generally lost after changes in group membership and

Figure 1. (a) The broadcast tree formed by the shortest
paths from the sender to all nodes. (b) The multicast tree
obtained by pruning all links that do not lead to receivers from
the broadcast tree.

3
5

6

2

2
1

1

8
7

9

10

Sender Receiver

10

D

H

C

BG

A

E

F

3
5

6

2

2
1

1

8
7

9

10

Sender Receiver

10

D

H

C

BG

A

E

F

(a) (b)

Figure 2. (a) The Steiner tree obtained by minimizing the
overall cost from the sender to all receivers. (b) The core-based
tree formed by the shortest paths from the core (node H) to all
receivers. The sender uses the shortest path to the core for
data transmission.

3
5

6

2

2
1

1

8
7

9

10

Sender Receiver

10

D

H

C

BG

A

E

F

3
5

6

2

2
1

1

8
7

9

10

Sender Receiver

10

D

H

C

BG

A

E

F

(a) (b)

2 MULTICAST PROTOCOLS AND ALGORITHMS



network reconfigurations, unless the tree is repeatedly
recomputed from scratch. Approaches for extending these
algorithms to deal with changes in group membership
without tree recomputation include extending the existing
tree in the cheapest way possible to support new group
members and pruning redundant links when group mem-
bers depart. The quality of the tree will deteriorate over
time after several such modifications, eventually leading to
the need for tree recomputation. Thus, Steiner tree algo-
rithms are best suited to static or slowly changing environ-
ments because changes eventually lead to expensive tree
recomputation to regain optimality.

Shortest path trees and Steiner trees are optimal with
respect to a sender; therefore a separate tree must be built
for each sender in both cases. A different approach is to
employ a center-based tree, which, instead of being rooted at
the sender, is rooted at the topological center-of the recei-
vers. A single center-based tree serves as a common infra-
structure for all senders; therefore, maintenance of the tree
is greatly simplified and nodes belonging to the tree need
only maintain state for one shared tree rather than for
many source-rooted trees. Even though such a tree may not
be optimal for any one sender, it may be an adequate
approximation for all of them together. Unfortunately,
the topological center of the receivers, apart from being
hard to find (this problem is also NP-complete), is not even
permanent in a dynamic multicast environment.

A more practical proposal is to abandon the topological
center as the root of the tree, keeping the basic idea of a
single shared multicast tree for all senders to a group. In
this approach, routing is performed by defining one or more
arbitrarily selected core (or rendez-vous) points to serve as
the basis for tree construction for a group. All senders
transmit their data to the core using an optimal (in the
unicast sense) route, and the core uses a shortest path
tree to distribute these data to all group members, as
shown in Fig. 2(b). As in any shortest path tree, merging
of paths is exploited whenever possible, but it is not an
explicit goal of the routing calculations. Due to the concen-
tration of paths around the core, though, common paths are
expected to arise. Although this approach uses an under-
lying unicast routing algorithm, it is independent of it.

The disadvantage of this approach is that a single shared
multicast tree, especially if it is rooted at an arbitrary node,
is not optimal in any strict sense. The advantages of shared
multicast trees are numerous, however. First, the shared
tree means that this approach scales well in terms of
maintenance costs as the number of senders increases.
Although there is still a tree emanating from each sender,
these trees merge near the core and the distribution mesh is
common from there on. Second, the trees can be made
efficient by choosing appropriately the core points. Third,
routing is performed independently for each sender and
receiver, with entering and departing receivers influencing
only their own path to the core points of the shared tree.
This last property means that network and group member-
ship dynamics can be dealt with without global recomputa-
tion. Finally, the independence from specific unicast
routing schemes, coupled with the scalability of the shared
trees, makes this approach ideal for use on large net-
works. The core points may even be selected to facilitate

hierarchical routing; i.e., a top-level tree can distribute
data to the core point of each subnetwork, and each core
point can then distribute data to the group members in
its subnetwork.

Despite the differences between the approaches dis-
cussed above, simulations have shown that even simple
multicast routing using shortest path trees is not signifi-
cantly worse in terms of total tree cost from the optimal
solutions. For realistic network topologies, Doar and Leslie
(6) have found that the cost of a shortest path tree is less
than 50% larger than that of a near-optimal heuristic tree,
whereas path delays for heuristic trees are 30% to 70%
larger than shortest path delays. As shortest path trees are
easily built and modified using the underlying unicast
routing algorithm and they never deteriorate in terms of
delay, but simply vary in their inefficiency in terms of total
cost, an application prepared to accept this overhead can
avoid special multicast tree construction and maintenance
methods by simply employing the shortest paths.

A similar cost versus simplicity tradeoff is involved
when using shared trees, for all senders to a group. With
shared trees, optimality is hard to achieve and even harder
to maintain; a simple approach is to choose the best core
point among group members only. With this limitation,
when path delay is optimized, simulations show that delays
are close to 20% larger than with shortest paths, and tree
cost is about 10% lower than that of shortest path trees.
Furthermore, even though a single tree minimizes state
and maintenance overhead, this approach suffers from
traffic concentration, exactly due to the single tree used,
because it routes data from all senders through the same
links around the core. Simulations show that delay-optimal
member-centered shared trees can cause maximum link
loads to be up to 30% larger than in a shortest path tree.

FEEDBACK CONTROL

When the basic service offered by the network is a best-
effort one, as in the Internet, generalizing it for multicast is
straightforward: Just send the data along the multicast
routing tree without providing any guarantees with respect
to reliability, throughput, or delay. Many applications,
however, cannot be satisfied by such a service; therefore,
mechanisms such as flow, congestion, and error control
have to be provided on top of this best-effort service. These
mechanisms depend on feedback to the sender, which is
based on either network- or receiver-generated reports.

Error control ensures that packets transmitted by the
sender are received correctly. Packets may be received
corrupted (detected by error-detection codes), or they
may be lost (detected by missing sequence numbers).
Flow control assures that the sender does not swamp the
receiver with data that cannot be consumed in time. Con-
gestion control limits the transmission rate of the sender to
avoid overloading the intermediate network nodes on the
way to the receiver. Although error and flow control require
feedback from the receiver, congestion control would be
best served by feedback from the intermediate nodes them-
selves. In best-effort networks like the Internet, however, it
is only the receivers that provide feedback about packet

MULTICAST PROTOCOLS AND ALGORITHMS 3



losses to the sender, thus leading to confusion between
error-induced and congestion-induced losses.

In the unicast case, flow, error, and congestion control
rely on feedback from a unique receiver. For example, loss
reports may cause the retransmission of lost packets. With
multicast, however, this approach faces the feedback-
implosion problem: If all receivers respond with status
information, they will swamp the sender with, possibly
conflicting, reports. Ideally, senders would like to deal
with the multicast group as a whole, not on an individual
receiver basis, following the host-group model. The sender
cannot simply treat all receivers identically, though,
because this requires either ignoring the feedback of some
receivers or wasting resources by satisfying the worst-
case receivers. For example, the sender could retransmit
only packets lost by all receivers, thus ignoring some losses,
or retransmit any packets lost by any receiver, thus dupli-
cating some packets.

As there is no evident solution to this problem, several
approaches exist emphasizing different goals. The simplest
approach is to ignore the problem at the network and
simply provide a best-effort service. Delegating the resolu-
tion of these problems to higher layers may be an adequate
solution in many cases, because these layers may have
additional information about application requirements
and be able to implement more appropriate mechanisms
than what is possible inside the network. Even in this case,
though, higher layers will have to implement one of the
alternative approaches discussed below.

A second solution sacrifices the host-group model’s
simplicity by keeping per-receiver state at the sender
during multicasts. After transmitting a multicast packet,
the sender waits until a stable state is reached before
sending the next one. For example, in error control, retrans-
missions may be made until all receivers receive the data.
To economize on resources, retransmissions may be multi-
cast when many receivers lose a packet, or unicast when
few do. To reduce the risk of feedback implosion, receivers
should use negative rather than positive acknowledg-
ments, i.e., send responses only when problems occur,
rather than to confirm that packets were received correctly.
Furthermore, these negative acknowledgments may be
multicast to all receivers after waiting for a random period
of time, so as to suppress identical negative acknowledg-
ments from multiple receivers, as suggested by Towsley
et al. (7).

Even with these optimizations, the scalability of such
schemes is doubtful for large and widely dispersed groups,
even when errors, overflows, and congestion are very
rare, because the sender remains solely in charge of all
receivers. In addition, with these schemes the service pro-
vided to a group member is the lowest common denomi-
nator, which may be the slowest or most overloaded
receiver, or the slowest or most congested link. While
more sophisticated variations of this approach exist, their
complexity and inefficiency makes them appropriate only
for specific applications.

A third solution is to distribute the feedback control
mechanism over the entire multicast tree, so as to avoid
propagating the receiver’s feedback all the way to the
sender. In a hierarchical scheme, the intermediate nodes

may either respond directly to feedback from downstream
receivers or merge their feedback into a summary message
and recursively propagate it upstream. If the added com-
plexity of making local decisions on each node (not only
group members) is acceptable, this approach narrows
down the impact of problems to specific parts of the tree,
relieving the sender from dealing with individual receivers.
Note that even though this scheme avoids feedback
implosion, the problem of dealing with possibly conflicting
requests remains.

An alternative non-hierarchical method for distributed
feedback control, targeted especially to error control, is to
let all receivers and senders cooperate in handling losses, as
proposed by Floyd et al. (8). When receivers discover a loss,
they multicast a retransmission request, and anyone that
has that message can multicast it again. Both requests and
replies can have local scope, if the network supports it, so
as to avoid burdening the entire group. To avoid feedback
implosion, these requests and replies are sent after a
fixed delay based on the distance from the source of the
message or the request, respectively, plus a randomized
delay. The result is that most duplicate requests and replies
are suppressed by the reception of the first one. By varying
the random delays, the desired balance between recovery
delay and duplicates can be achieved, and in contrast to
hierarchical schemes, only group members participate in
recovery.

A fourth solution is for the sender to act based on an
estimation of the average conditions across the group. A
scalable feedback mechanism for this estimation has been
proposed by Bolot et al. (9): It first estimates the number of
receivers in a group and then what the average quality of
reception is, using probabilistic techniques. This method
can be used to detect congestion problems and adapt the
transmission rate (to relieve congestion) or the error redun-
dancy factor (to increase the chances of error recovery). In a
refinement of this approach, proposed by Cheung and
Ammar (10), the sender splits the receivers into groups
according to their capabilities and only sends to each group
the data that it can handle. This scheme prevents very fast
or very slow receivers from dragging the whole group
toward one extreme case.

Finally, another approach (mostly orthogonal to the
above) tries to minimize the need for feedback by taking
preventive rather than corrective action. For error control,
this is achieved by using forward error correction (FEC)
rather than error detection codes and retransmissions. For
flow and congestion control, this is achieved by reserving
resources in advance so that both receivers and intermedi-
ate nodes can support the sender’s data rate. Although
FEC imposes considerable processing and transmission
overhead, it requires no additional network mechanisms.
Resource reservations, however, require additional net-
work mechanisms to set up and maintain the resources
for each session.

MULTIMEDIA MULTICASTING

A common use of multicasting is for multimedia commu-
nication, i.e., the exchange of multiple interdependent

4 MULTICAST PROTOCOLS AND ALGORITHMS



media types, such as text, audio, and video. As continuous
media, i.e., audio and video, require considerable transmis-
sion bandwidth, the economies promised by multicasting
are especially attractive in this context. The issues arising
when multimedia are combined with multicasting are
treated more extensively by Pasquale et al. (11).

Host and Network Heterogeneity

Several representational formats exist for each media type,
and each participant in a multicast group may support a
different set of formats. In unicast, translation is equally
effective at either the sender, or the receiver. In multicast,
translation at the sender would require the stream to be
duplicated and translated for each different type of recei-
ver, preventing link sharing over common paths, placing
excessive load on the sender, and requiring the sender to be
aware of each receiver’s capabilities, thus violating the
host-group model. Translation at the receiver is the most
economical and scalable approach in this case, because it
fully exploits sharing and moves responsibilities away from
the sender.

As continuous media impose heavy demands on both
networks and hosts, it is likely that not all receivers will be
able to receive all of a sender’s traffic. This argues in favor of
prioritization of the traffic generated through hierarchical
coding. Hierarchical or layered coding techniques decom-
pose a signal into independent or hierarchically dependent
components, subsets of which can be used to provide partial
reconstruction of the original. Receivers can thus choose
only those parts of the media that they can use or are most
important to them. For example, a high-resolution compo-
nent of a video could be dropped from a congested subnet-
work, allowing low-resolution components to be received
and displayed in that subnetwork, without impacting
uncongested subnetworks.

To avoid complicating the host-group model, each com-
ponent of a hierarchically coded stream may be trans-
mitted to a different multicast group, making the choice
of a particular component equivalent to subscribing to the
corresponding group. Based on this approach, Vicisano
et al. (12) have proposed a purely receiver-driven conges-
tion control scheme, where each receiver estimates the
capacity of the network based on packet losses and only
subscribes to as many groups as can be realistically deli-
vered by its subnetwork. The sender periodically doubles
its transmission rate for each component so as to enable
the receivers to decide whether improved network condi-
tions allow the reception of additional media components.

Resource Reservations

For interactive multimedia applications to be practical, the
network must be able to provide some type of bandwidth
and delay guarantees. If any such guarantees are to be
provided, resources must be reserved at the various net-
work nodes traversed. The exact nature of the reserva-
tions depends on the required service guarantees and the
approach taken toward satisfying them. In any case, the
first component of any resource reservation scheme is a
specification model for describing flow characteristics; this
depends heavily on the model of service guarantees

supported by the network. The second component is a
protocol for communicating these specifications to the
receivers and reserving resources along the transmission
path so as to support the requested services.

The simplest unicast approaches to resource reserva-
tions are source-based. A setup message containing the
flow specification is sent to the destination, with the inter-
mediate nodes committing adequate resources for the con-
nection, if available. Resources are normally overallocated
early on in the path, so that even if nodes encountered
further along the path are short on resources, connection
setup may still succeed. After the setup message reaches its
destination, and assuming the connection can be admitted
along the path, a response message is returned on the
reverse path, allowing intermediate nodes to relax any
excessive commitments made on the first pass.

Similarly, for multicast, there must be a way for senders
to notify receivers of their properties, so that appropriate
reservations may be made. In a homogeneous environment,
reservations should be made once on each outgoing link for
all downstream receivers, so as to minimize resource usage.
Reserved resources may even be shared among multiple
senders to the same group. However, receiver and network
heterogeneity often prohibits use of this simplistic scheme,
because the amount of resources that are available at each
part of the multicast tree may be quite different. A modified
scheme is to allocate resources as before during the first
message’s trip and then have all receivers send back their
relaxation (or rejection) messages. Each node that acts as a
junction only propagates toward the source the most
restrictive relaxation among all those received. However,
as paths from such junctions toward receivers may have
committed more resources than are now needed, additional
passes will be required for convergence or resources will be
wasted.

An alternative is to abandon reservations during the
sender’s setup message, instead reserving resources based
on the modified specifications returned by the receivers.
Again, resource reservations are merged on junction
points, but as these requests are expected to be heteroge-
neous, each junction will reserve adequate resources for
the most demanding receiver and reuse them to support
the less demanding ones. This approach supports both
heterogeneous requests and resource conservation, thus
maximizing the possibility for a new session to be admitted.
As this mechanism converges in one pass, the reservation
state in the switches can be periodically refreshed, turning
the fixed state of a static connection into adaptive state
suitable for a dynamic environment. Therefore, this
mechanism can accommodate both group membership
changes and routing modifications without involving the
sender.

Quality-of-Service Routing

When multicast is used for multimedia communications,
link sharing can lead to considerable economies in trans-
mission bandwidth, but routing must also take into account
two additional factors: delay constraints, particularly for
interactive applications, and media heterogeneity. Sepa-
rate handling of media streams allows using the most

MULTICAST PROTOCOLS AND ALGORITHMS 5



effective coding technique for each stream. The question
arises then of whether the same or separate distribution
trees should be used for each stream. Considering the load
that continuous media put on network links, separate trees
seem preferable. Thus, each media stream could ask for the
appropriate quality-of-service (QoS) parameters and get
routed accordingly, with receivers choosing to participate
in any subset of these trees. On the other hand, the manage-
ment overhead of multiple trees per source may be prohi-
bitive, whereas routing each media stream separately may
complicate inter-media synchronization.

Turning to delay constraints, assuming that we use
delay as the link cost during routing, we already saw
that the shortest path tree and the Steiner tree are differ-
ent: The former minimizes individual path delays, whereas
the latter minimizes overall distribution delay and max-
imizes link sharing. As the global tree metric and the
individual receiver-oriented metrics are potentially in
conflict, we cannot hope to optimize both. We can, however,
try to optimize the global metric subject to the constraint
that the individual metrics are tolerable. As interactive
applications can be characterized by upper bounds on
end-to-end delay, it is reasonable to design the tree to
optimize total cost while keeping individual paths within
some bound. Normally, all receivers are satisfied by the
same delay bound, as this is determined by human percep-
tion properties.

This problem is essentially a version of the Steiner tree
problem with additional constraints on the paths. Even
though it is also NP-complete, fast heuristic algorithms
that are nearly optimal have been developed, for example,
by Kompella et al. (13). Almost identical formulations are
obtained when the constraints are delay jitter, i.e., the
variation of delay, or a probabilistic reliability constraint.
For example, in the case of independent link losses, a loss
probability can be assigned to each link. By using loga-
rithms, the reliability metric can be calculated in linear
form between a source and each destination by adding the
logarithms along the path. Thus, the problem reverts to
tree cost minimization with a constraint on an additive
path-based metric. Finally, the constraint may be a link
capacity that must not be exceeded. Again, heuristic algo-
rithms exist to solve this variant of the problem.

MULTICAST PROTOCOLS ON THE INTERNET

The IP Multicasting Model

The Internet, due to its open architecture, has been exten-
sively used as a testbed for multicast algorithms and pro-
tocols. IP multicasting is based on special (class D)
multicast IP addresses. By simply using a class D address
as the destination of a datagram, i.e., an IP packet, it is
multicast to all group members rather than unicast. To
achieve multicasting in a wide-area network, such as the
Internet, a mechanism is needed to keep track of the
dynamic membership of each group and another mechan-
ism is needed to route multicast datagrams from a sender to
these group members without unnecessary duplication of

traffic. IP multicasting implements these mechanisms in
two parts: Local mechanisms track group membership and
deliver multicasts to group members within a local net-
work, and global mechanisms route datagrams between
local networks.

In each local network, at least one router acts as a
multicast router. A multicast router keeps track of local
group membership and is responsible for forwarding multi-
cast originating from its local network toward other net-
works, as well as for delivering multicasts originating
elsewhere to the local network. The delivery of multicast
datagrams to local receivers, as well as the reception of local
multicasts by the router for subsequent propagation to
other networks, depend on the underlying network tech-
nology. Therefore, the information needed within the local
network regarding group membership in order to achieve
multicast delivery may vary.

In contrast, cooperation among multicast routers for
the delivery of multicast datagrams between networks is
based on a network-independent interface between each
network and the outside world. The information needed to
decide whether multicasts should be delivered to target
networks is whether at least one group member for a
destination group is present there, regardless of the infor-
mation the multicast router needs for local purposes. A
multicast router uses the list of groups present on its
attached local networks along with information exchanged
with its neighboring routers to support wide-area multi-
casting. Based on this interface, alternative algorithms can
be used for global routing without affecting local mechan-
isms. Conversely, as long as this interface is provided by the
local mechanisms, they can be modified without affecting
global routing.

Global Mechanisms

A variety of global, wide-area, multicast routing mechan-
isms exist. The earliest one, proposed by Deering and
Cheriton (14), is the distance vector multicast routing
protocol (DVMRP). The original version of DVMRP is a
variant of the truncated reverse path broadcasting algo-
rithm. Routers construct distribution trees for each source
sending to a group, so that datagrams from the source (root)
are duplicated only when tree branches diverge toward
destination networks (leaves). To construct the tree, each
router identifies the first link on the shortest path from
itself to the source, i.e., on the shortest reverse path, using
the Bellman–Ford distance vector unicast routing algo-
rithm. Datagrams arriving from this link are forwarded
toward downstream multicast routers, i.e., those routers
that depend on the current one for multicasts from that
source. A broadcast distribution tree is thus formed, with
datagrams reaching all routers. As each router knows
which groups are present in its local networks, redundant
datagrams are not forwarded there and the tree is trun-
cated at the lowest level. The latest version of DVMRP
implements the improved reverse path multicasting algo-
rithm, where links leading to networks with no members
for a group are pruned off the tree and are grafted back

6 MULTICAST PROTOCOLS AND ALGORITHMS



when members appear for these groups. Although initially
all data are broadcast, eventually the tree becomes a real
multicasting one.

Another protocol proposed by Moy (15), multicast open
shortest path first (MOSPF), extends Dijkstra’s link state
unicast routing algorithm. Routers flood their membership
lists among them, so that each one has complete topological
information concerning group membership. Shortest path
multicast distribution trees from a source to all destina-
tions are computed on demand as datagrams arrive. These
trees are real multicast ones, but the flooding algorithm
used to construct them introduces considerable overhead.

A radically different approach is the core-based tree
(CBT) protocol proposed by Ballardie et al. (16), which
employs a single tree for each group, shared among all
sources. This tree is rooted on an arbitrarily chosen router,
the core, and extends to all networks containing group
members. It is constructed from leaf network routers
toward the core as group members appear; thus, it is
composed of shortest reverse paths. Sending to the group
is accomplished by sending toward the core; when the
datagram reaches any router on the tree, it is relayed
toward tree leaves. Routing is thus a two-stage process
that can be suboptimal, as datagrams may be sent away
from the receivers during the first stage.

As both shortest path trees and center-based trees have
advantages and disadvantages, the protocol independent
multicast (PIM) protocol proposed by Deering et al. (17)
provides both. PIM supports two modes, the dense mode
and the sparse mode. The dense mode is similar to DVMRP
but independent of the underlying unicast routing algo-
rithm. The sparse mode starts similarly to CBT, construct-
ing a shared tree for all receivers using a core, called a
rendez-vous point in PIM, but it allows paths to individual
receivers to be switched to shortest delay ones upon recei-
ver request.

Networks supporting IP multicasting may be separated
by multicast unaware routers. To interconnect such net-
works, tunnels are used, i.e., virtual links between two
endpoints, composed of a, possibly varying, sequence of
physical links. Multicasts are relayed between routers by
encapsulating multicast datagrams within unicast data-
grams at the sending end of the tunnel and decapsulating
them at the other end. Multicast routers may choose to
forward through the tunnels only datagrams that have
time-to-live (TTL) values above a threshold, so as to limit
multicast propagation across networks.

For unicast routing to scale, the Internet is divided into
autonomous systems (AS), i.e., areas that internally run a
single routing protocol, probably different for each AS. The
border routers of each AS run a common routing protocol to
achieve global unicast routing. Similarly, although multi-
cast routing within an AS can use any of the above proto-
cols, a common protocol, such as the border gateway
multicast protocol (BGMP) proposed by Kumar et al.
(18), must be used among the border routers of each AS
to achieve global routing. BGMP constructs shared trees

between those ASs containing group members, using as the
core the AS where the multicast group was originally
created, thus bridging the multicast routing protocols
used within each AS.

Local Mechanisms

Unlike global mechanisms, only a single set of local
mechanisms exists. These local multicasting and group
management mechanisms are based on shared-medium
broadcast-based networks, such as Ethernet. Delivery is
straightforward on such networks, because each host can
listen to all messages and select only those with the appro-
priate addresses. As an optimization, class D IP addresses
may be mapped, if possible, to native multicast addresses
so as to filter datagrams in hardware rather than in
software.

On these networks, multicasts with local scope do not
require any intervention by the multicast router, whereas
externally originated multicasts are directly delivered to
the local network by the router. The router monitors all
multicast transmissions on the local network so that it may
forward to the outside world those for which receivers exist
elsewhere. The router does not need to track individual
group members; the only information needed to decide
whether an externally originated multicast must be deliv-
ered to the local network is whether at least one group
member exists in the network. Therefore, the multicast
router only requires a local group membership list.

The Internet group management protocol (IGMP) pro-
vides a mechanism for group management well suited to
broadcast networks, because only group presence or
absence is tracked for each group. In the original version
of IGMP, the multicast router periodically sends a query
message to a multicast address to which all local receivers
listento. Each host, on reception of the query, schedules a
reply to be sent, after a random delay, for each group in
which it participates. Replies are sent to the address for the
group being reported, so that the first reply will be heard by
all group members and suppress their transmissions. The
multicast router monitors all multicast addresses, updat-
ing its membership list after receiving each reply. If no
reply is received for a previously present group for several
queries, the group is assumed absent. When a host joins a
group, it sends several unsolicited reports to reduce join
latency if it is the first local member of the group. No explicit
action is required when a host leaves a group, as group
presence eventually times out.

During the time interval between the last host leaving
a group and the router stopping multicast delivery for that
group, called the leave latency, local transmissions to
the group are wasted. To reduce this phenomenon, in the
latest version of IGMP a host must send a leave message
when abandoning a group if it was the last host to send a
report for that group. As this last report may have sup-
pressed other reports, the router must explicitly probe for
other group members by sending a group-specific query to
trigger membership reports for this group. The router can

MULTICAST PROTOCOLS AND ALGORITHMS 7



only assume the group absent if no reports arrive after
several such queries. Group-specific queries may use much
shorter response intervals than general queries, so as to
minimize leave latency.

For networks consisting of point-to-point links, such as
dialup links between home users and their Internet Service
Providers, only a single member per multicast group can
exist at the end-user side. An extension to IGMP for such
networks, proposed by Xylomenos and Polyzos (19), uses
only explicit join and leave messages from the end-user side
to the multicast router, thus reducing both join and leave
latency, as well as avoiding periodic queries and reports.

Related Protocols

In addition to protocols ensuring multicast delivery, many
other protocols, directly or indirectly related to multicast,
exist on the Internet. The multicast address-set claim
(MASC) protocol, proposed by Kumar et al. (18), allows
the entire range of class D IP multicast addresses to be
distributed between ASs, so as to avoid addressing conflicts
when multicast groups originating in different networks
choose the same address.

The session announcement protocol (SAP) is used to
announce the existence of multicast sessions along with
their addresses, so that interested receivers may join the
group. The session description protocol (SDP) describes the
media formats comprising a session so that interested
receivers will know what to expect after joining the group.

If the receivers require QoS guarantees, they may use
the resource reservation protocol (RSVP) by Zhang et al.
(20), to signal their requirements to the sender. When
RSVP requests from multiple receivers meet on the way
to the sender, they are merged into a single reservation that
satisfies the most demanding request. As RSVP reserva-
tions are periodically refreshed, dynamic reservation
modifications and network reconfigurations are supported.

Unresolved Issues

Although multicasting is widely considered to be a valuable
service, it is still not universally supported over the Inter-
net. Many explanations for this phenomenon are proposed
by Diot et al. (21), including security and scalability issues.
Although the traditional security issues raised by unicast,
such as data confidentiality and integrity, are also valid for
multicast, in the multicast context, they are more difficult
to address. For example, secure group communication can
be provided by using independent end-to-end secure uni-
cast channels between all pairs of participants, albeit by
negating the link sharing advantages of multicast. In the
host-group model adopted by the Internet, group member-
ship is unknown to the sender; therefore, it is impossible to
set up security associations between the sender and the
receivers without tracking additional information.

Another issue that became apparent when multicast
started becoming popular is that the amount of forwarding
state required at each multicast router for global multi-
casting does not scale well, because separate entries are
needed for every multicast group, even if a single tree is
used for delivery. If shortest path trees are used instead, the
number of forwarding entries must be multiplied by the

number of senders to the group. In unicast routing, this
problem is solved by aggregating the forwarding state
based on the fact that networks with similar unicast IP
addresses are usually geographically close; therefore, rou-
ters only need a single aggregate entry for many different
IP addresses, pointing in the appropriate direction. Unfor-
tunately, multicast groups may have members everywhere
on the Internet; therefore, this type of aggregation is not
generally possible. Various other aggregation methods
have been proposed, as described by Zhang and Mouftah
(22).

BIBLIOGRAPHY

1. D. R. Cheriton and S. E. Deering, Host groups: A multicast
extension for datagram internetworks, Proc. of the Data Com-
munications Symposium, Vol. 9, 1985, pp. 172–179.

2. S. L. Hakimi, Steiner’s problem in graphs and its implica-
tions, Networks, 1: 113–133, 1971.

3. M. R. Garey, R. L. Graham, and D. S. Johnson, The complexity
of computing Steiner minimal trees, SIAM J. on Appl. Math.,
34: 477–95, 1978.

4. L. Kou, G. Markowsky, and L. Berman, A fast algorithm for
Steiner trees, Acta Informatica, 15: 141–145, 1981.

5. B. K. Kabada and J. M. Jaffe, Routing to multiple destinations
in computer networks, IEEE Trans. on Commun., 31: 343–351,
1983.

6. M. Doar and I. Leslie, How bad is naive multicast routing?
Proc. of the IEEE INFOCOM, Vol. 12, 1993, pp. 82–89.

7. D. Towsley, J. Kurose, and S. Pingali, A comparison of sender-
initiated and receiver-initiated reliable multicast protocols,
IEEE J. Select. Areas Commun., 15: 398–406, 1997.

8. S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang, A
reliable multicast framework for light-weight sessions and
application level framing, Comput. Commun. Rev., 25 (4):
342–356, 1995.

9. J. C. Bolot, T. Turletti, and I. Wakeman, Scalable feedback
control for multicast video distribution in the Internet,
Comput. Commun. Rev., 24 (4): 58–67, 1994.

10. S. Y. Cheung and M. H. Ammar, Using destination set grouping
to improve the performance of window-controlled multipoint
connections, Comput. Commun., 19: 723–736, 1996.

11. J. C. Pasquale, G. C. Polyzos, and G. Xylomenos, The multi-
media multicast problem, Multimedia Syst., 6 (1): 43–59, 1998.

12. L. Vicisano, J. Crowcroft, and L. Rizzo, TCP-like congestion
control for layered multicast data transfer, Proc. of the IEEE
INFOCOM, Vol 17, 1993, pp. 996–1003.

13. V. P. Kompella, J. C. Pasquale, and G. C. Polyzos, Multicast
routing for multimedia communication, IEEE/ACM Trans.
Networking, 1 (3): 286–292, 1993.

14. S. E. Deering and D. R. Cheriton, Multicast routing in data-
gram internetworks and extended LANs, ACM Trans. Comput.
Syst., 8 (2): 85–110, 1990.

15. J. Moy, Multicast routing extensions for OSPF, Commun.
ACM, 37 (8): 61–66, 1994.

16. A. Ballardie, J. Crowcroft, and P. Francis, Core Based Trees
(CBT) — An architecture for scalable inter-domain multicast
routing, Comput. Commun. Rev., 23 (4): 85–95, 1993.

17. S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L.
Wei, The PIM architecture for wide-area multicast routing,
IEEE/ACM Trans. Networking, 4: 153–162, 1996.

8 MULTICAST PROTOCOLS AND ALGORITHMS



18. S. Kumar, P. Radoslavov, D. Thaler, C. Alaettinoglu, D. Estrin
and M. Handley, The MASC/BGMP architecture for inter-
domain multicast routing, Comput. Commun. Rev., 28 (4):
93–104, 1994.

19. G. Xylomenos and G. C. Polyzos, IP multicast group manage-
ment for point-to-point local distribution, Comput. Commun.,
21 (18), 1645–1654, 1998.

20. L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala,
RSVP: A new resource ReSerVation Protocol, IEEE Network, 7
(5): 8–18, 1993.

21. C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen,
Deployment issues for the IP multicast service and architec-
ture, IEEE Network, 14 (1): 78–88, 2000.

22. B. Zhang and H. T. Mouftah, Forwarding state scalability for
multicast provisioning in IP networks, IEEE Commun., 41 (6):
46–51, 2003.

GEORGE C. POLYZOS

GEORGE XYLOMENOS

Athens University of Economics
and Business

Athens, Greece

MULTICAST PROTOCOLS AND ALGORITHMS 9



N

NETWORK FLOW AND CONGESTION
CONTROL

INTRODUCTION

Communication networks are a conglomeration of proces-
sing units of so-called nodes that are connected via com-
munication links. The processing units can be computers,
mobile phones, routers, sensors, and so on, that have
varying capabilities and limitations in the available mem-
ory (buffer) space, processing speed, and transmission
rates. Similarly, the communication links can have varying
reliability characteristics and capacities, and they can be
classified as wireless or wireline (e.g., coaxial and fiber-
optic cables). Although a wireless connection allows for
mobility, its supported rate is smaller than what can be
achieved by, say, a fiber-optic cable. Examples of commu-
nication networks include cellular networks, ad hoc wire-
less networks, the Internet, the Public Service Telephone
Network, and sensor networks.

Typically, numerous applications are served by commu-
nication networks simultaneously. These applications vary
in their characteristics and demands. For example, real-
time traffic (also called inelastic traffic), such as a voice call
or a video transmission, has very stringent delay charac-
teristics and fixed-rate requirements. Such traffic does not
benefit from a rate that is greater than its required amount.
In comparison, elastic traffic such as a file download is
tolerant to delays but prefers the highest possible average
rate. In the remainder of this article, we will use the terms
congestion control and flow control interchangeably.1 Also,
we will call each flow associated with an application a
session. Different sessions will have differing quality-of-
service (QoS) constraints associated with them based on
their demands. The following subsections discuss the cir-
cumstances that motivate the need for flow control.

Buffer Overflows and Delay

Because the resources of a network are shared by all the
sessions that coexist, the performance—in throughput,
delay, energy dissipation, and so on—experienced by each
session is dependent on the behavior of the other sessions
with which it has to compete. When the network resources
are insufficient to support all the sessions satisfactorily, the
interdependence among the performance of the sessions
may hurt the performance of all the sessions that share
the same resources. This situation is demonstrated in the
following example (see Ref. 1 for a deeper analysis).

Example 1. Consider the scenario depicted in Fig. 1 with
two sessions, one from S1 to D1 and the other from S2 to D2.
The capacities of the links are given in the figure in bits per
second (bps). The relay node R maintains a single finite
buffer of size B to serve both of the sessions that traverse it.
We assume that R can send packets over each of its outgoing
links independently (i.e., it can send Session-1 packets to D1

and Session-2 packets to D2 simultaneously). However, the
total number of packets that R can hold is limited by B.
Consider the scenario when the rate of Session-2 is fixed at
a rate slightly less than 1 bps, and the rate of Session-1 is
variable, denoted by l bps. When l is less than 1, the buffer
at R is lightly loaded and the total throughput is approxi-
mately 1þ l bps, which can be as high as almost 2. But, as l
exceeds 1, the buffer is overloaded and starts dropping
packets. Those packets that are dropped need to be retrans-
mitted to R. In such a scenario, S1 and S2 will be almost
always busy sending new as well as dropped packets. But
because the link capacity between S1 and R is four times
the capacity between S2 and R, Session-1 has four times the
chance of capturing a vacancy at the buffer than Session-2.
Thus, the throughput of Session-1 will be four times the
throughput of Session-2. Because the throughput of the
first session can be at most 1 bps (because the capacity of
the link from R to D1 is 1), the throughput of the second
session can be at most 0.25 bps, which yields a total
throughput 1.25 bps. Thus, the total throughput drops to
approximately 1.25 bps from approximately 2 bps because
Session-1 overflows the buffer, and Session-2 cannot fully
use the link from R to D2 because of the packet drops. ^

This example shows that the overloaded system may
perform more poorly than a moderately loaded system.
Flow/Congestion Control is a mechanism that, either proac-
tively or adaptively, regulates the traffic load on the net-
work to prevent performance degradations caused by
overloading of the system.

1To distinguish, the term congestion control may used to identify
mechanisms that specifically aim to prevent congestion in the
network, whereas the term flow control may be used to achieve
other goals such as throughput, delay, fairness, or other quality-of-
service constraints. We will avoid such subtle differences in this
article and use these terms interchangeably.

R

S1 D1

S2 2 D
  B 

Session 1 

Session 2 

4

 1

 1

 1

Figure 1. The scenario investigated in Example 1 that demon-
strates the throughput performance degradation caused by over-
loading.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Fairness

Because the network resources are limited, it is necessary
to divide the available bandwidth fairly among the compet-
ing sessions. In the absence of a fairness mechanism, one
session may dominate other and exhaust the resources of
the network, leaving no service for others. There are var-
ious notions of fairness defined in the literature (see Ref. 2
and references therein for an extensive discussion). The
following example introduces a canonical scenario to facil-
itate the discussion of different types of fairness.

Example 2. Three sessions exist as shown in Fig. 2,
in which Session-1 traverses both links a and b, and Ses-
sions-2 and 3 traverses link a and link b, respectively. If the
capacity of each link is 1 bps, then what is a fair distribution
of the service among the flows? We let x1, x2, and x3 denote
the rates of the three sessions, and we discuss two types of
fairness: max-min fairness and proportional fairness.

� An allocation is said to be max-min fair if the rate of a
session cannot be increased without decreasing the
rate of another session with a smaller rate (than the
one being increased). Thus, this fairness concept aims
at the maximization of the minimum rate provided by
the network. For the scenario in Fig. 2, a max-min fair
allocation would be x1 ¼ x2 ¼ x3 ¼ 0.5 bps. Notice that
according to this allocation, the total rate is 1.5 bps,
although it is possible to achieve a total rate of 2 bps by
setting x1 ¼ 0 and letting x2 ¼ x3 ¼ 1 bps.

� An allocation is said to be proportionally fair if for any
other feasible allocation, the sum of the proportional
changes in each user’s rate is less than or equal to zero.
Mathematically, x$ ¼ ðx$

1; x
$

2; x
$

3) is a proportionally fair
allocation if for any other feasible allocation x, we haveP3

i¼1ð
xi�x$

i

x$

i
Þ � 0. A proportionally fair allocation for the

scenario in Fig. 2 is x$

1 ¼ 1=3, and x$

2 ¼ x$

3 ¼ 2=3. Notice

that the total rate provided by this allocation is 5/3,
which is still smaller than the maximum but larger
than the total rate of the max-min fair allocation. ^

The fairness concept that is most suitable for a given
scenario may be different. It is generally a difficult process
to choose the most convenient fairness criterion for a given
scenario. Once the fairness measure is determined, one of

the primary goals of flow control is to achieve fairness
among the sessions.

Moreover, in a real network, no central authority deci-
des how the resources should be allocated. Therefore, the
flow control mechanism needs to operate in a decentralized
manner to achieve the fairness goals.

MEANS OF CONGESTION CONTROL

Various techniques and strategies can be used to control
congestion in communication networks. In the subsequent
subsections, several such techniques are discussed. Some of
these techniques are exemplified later in the document.

Buffer Management and Scheduling

It is sometimes useful to separate the buffers associated
with different sessions. For example, in Example 1, if two
separate buffers are maintained at node R, one for each
session traversing it, then no performance degradation
would be experienced by the second session because of
the high load generated by the first session. Also, buffer
management enables differentiated services by prioritizing
service according to the importance or urgency of the
sessions.

The presence of multiple buffers at a given node neces-
sitates a scheduling mechanism. When packets of different
sessions are waiting to be transmitted over a given link,
the scheduling mechanism determines the order in which
they should be transmitted. Thus, the scheduling mechan-
ism critically affects the performance of the sessions.
Numerous cross-layer mechanisms combine scheduling
and congestion-control mechanism to achieve optimal per-
formance (e.g., Refs. 3–8). We will return to this topic later in
the section entitled ‘‘Mathematics of Congestion Control.’’

The buffer management mechanism may be first-in–
first-out, in which packets are served in the order in which
they enter the buffer, or some other priority mechanism.
For example, in Ref. 9, more generalized processor-sharing
mechanisms are investigated.

Packet Dropping/Marking

Another means to congestion control is through dropping
and/or marking of packets that overload the network. Such
operations may be used to send feedback to the source of the
associated session and implicitly trigger it to reduce its
traffic generation rate and reduce congestion. For example,
in Example 1, if Session-1’s packets are marked or dropped
even before the buffer at R is full, then Session-2 could
maintain its high-throughput level when the network is
overloaded. We will observe in a later section how such a
mechanism is used in practice.

Call Blocking

Sometimes it might be useful to block those calls that would
congest the network if allowed. This strategy may also be
thought of as a packet dropping at the session level. Call
blocking may be needed if the session has some strict
minimum rate requirement such as in real-time applica-
tions. In such a case, the call is admitted into the network if

x

Session 1 

Session 2 Session 3 

 Link b Link a 

x1

2 3x

Figure 2. Different fairness goals will lead to different allocations
(see Example 2).

2 NETWORK FLOW AND CONGESTION CONTROL



the minimum service can be guaranteed. Otherwise it is
blocked. We will discuss this strategy more in the next
section under the name of admission control.

TAXONOMY FOR CONGESTION/FLOW CONTROL

Various ways are available to classify congestion control
mechanisms into broad categories. In the following subsec-
tion, we discuss some of these taxonomies.

Reservation-Based and Adaptive

The congestion-control mechanisms can be categorized into
two classes: reservation-based and adaptive. Reservation-
based mechanisms aim to prevent congestion from happen-
ing by predicting the effect of incoming sessions on the
overall performance, and admitting or rejecting them based
on the outcome. Such mechanisms, which are also called
admission-control mechanisms, can be implemented in
various ways (see Ref. 2):

1) Resource Reservation. Here, the strategy is to check
whether the network has sufficient resources to
support the QoS constraints of the incoming session.
It aims at reserving resources for the incoming ses-
sion so that it can be served satisfactorily. If all the
links that will be used by the session have the
sufficient capacity, then the session is admitted to
the network. Otherwise, it is rejected. This strategy
requires a fairly good understanding of the
dynamics of the networks so that the potential effect
of a new session can be accurately predicted. Also, it
is less robust to changes in the network topology or
capabilities.

2) Probing. In the strategy, a set of probing packets
are transmitted to estimate the performance that
will be experienced by the new session if it is
admitted. If the estimated performance is acceptable,
then it is admitted. Otherwise, it is rejected.

Admission control provides high performance to the
admitted sessions. Typically, admission control mechan-
isms are used in circuit switched networks. Distributed
admission control mechanisms are investigated in the
literature (10).

Adaptive mechanisms, on the other hand, observe the
congestion level in the network continuously and keep the
session rates at an acceptable level. Also called feedback-
based controllers, such mechanisms are robust to changes
in the network conditions and require minimal information
about the network topology or traffic characteristics. These
qualities render such mechanisms attractive for large and
changing networks such as the Internet and wireless net-
works. However, they may be less attractive for serving
real-time traffic because of their dynamic nature.

Window-Based and Rate-Based

Congestion/flow control mechanisms generally determine
the rate of flow that a session is allowed to pump into the

network. Window and rate-based flow control are two
different ways to implement this traffic generation. In
this section, we discuss the general mechanism of both of
these strategies along with their advantages and disadvan-
tages. More references on this subject can be found in
Refs. 1,2,11.

1) Window-Based Flow Control. The basic idea behind
window-based flow control is to limit the number of
packets that a session is allowed to have in the net-
work at a given time. Many different versions of this
strategy are available, such as router-centric or end-
host-centric versions. The router-centric version per-
forms a node-by-node implementation in which a
window is maintained for each hop of a session’s
route. The end-host-centric version is implemented
at the session sources and performs an end-to-end
window implementation. Because it is the dominant
version implemented in the networks, we describe
the window-based flow control for the end-host-
centric case.

We describe the operation of the mechanism for one of
the sessions, say i. Each Session-i packet that is injected
into the network has a packet ID, and traverses a set of
intermediate links before it is received by its destination. At
the successful reception of each packet, the destination
sends a small acknowledgment (ACK) packet with the ID
of the received packet back to the source. The duration
between the time of injection of a packet into the network by
the source and the time of reception of its ACK by the source
is called the round-trip time (RTT). RTT captures the
queueing delay, processing time, and propagation delay
that is experienced by the packets. Of course, this quantity
is normally random and is dependent on the congestion
level of the network. For the purposes of our discussion
however, we will assume that the RTT of Session-i is fixed
at T seconds.

We assume that the window size associated with
Session-i is fixed to W. Thus, the maximum number of
unacknowledged Session-i packets is limited to W. The
window-based flow control operates as follows: The source
of Session-i keeps track of the number of its packets that are
in flight in a counter. It is allowed to inject new packets into
the network as long as the counter is less than W. When the
counter hits W it stops and awaits ACK(s) from the destina-
tion indicating that it has received one or more of the
packets. If such ACKs arrive, then the counter is decreased
by the number of acknowledged packets and new packets
can be transmitted (see Fig. 3). If no ACKs are received
within a certain duration, then the corresponding packets
are assumed to be lost because of congestion. Then, the
window is emptied and the packet transmission restarts
with the unacknowledged packets.

Next, we discuss the rate achieved by Session-i for a
given W and T. We assume that C gives the capacity that the
network can provide to Session-i in packets per second. We
can consider C as the maximum rate at which packets can
be injected into the network by the source. Although C and
T are actually dependent on the presence and rate of other

NETWORK FLOW AND CONGESTION CONTROL 3



sessions that share the resources, for the moment, we
assume that these values are fixed. When C is sufficiently
large, the rate is limited by W and T as follows. Because W
packets are in flight at any given time and each of these
packets are acknowledged in T seconds, the rate of flow R is
given by R ¼ W/T. However, when C is smaller than this
value, R ¼ C. Combining these two arguments, we have
that R ¼ min(C, W/T).

Notice that this expression captures the effect of high
RTT on the rate of the session for fixed W. In particular,
when RTT is large, the session must have a small data
injection rate to keep the congestion level low. For high-
speed networks, where C is large, an efficient implementa-
tion of the window-based flow control requires W to be also
large. This size reduces the reaction time to a potential
increase in congestion.

So far, we assumed that the values of C and RTT are
fixed. In reality, the choice of W directly affects the value of
RTT. Specifically, as the W increases, the queueing delay
and hence the RTT may increase dramatically. Therefore, a
tradeoff occurs between throughput and delay. One metric
to balance them is to consider the throughput/delay ratio, in
which the goal would be to keep this ratio high. The
following example investigates this metric for a simple
network.

Example 3. Consider the single session in Fig. 4 that
traverses a single relay node with a service rate C packets/
sec. Assume that the queueing delay at the relay in terms of
the arrival rate R is 1

C�R seconds.2 Also assume that the
processing and return time of the ACKs is fixed at d
seconds. Then, the RTT is given by

dþ 1

C� R

We are interested in maximizing R/RTT. In Fig. 4, we
plot the R/RTT as a function of R/C. We observe that this
metric is maximized at a moderate load. This finding is
intuitively meaningful because when R is low, the network

is under-utilized, whereas when R is close to capacity, the
delay is too high.

It is also true that when multiple sessions share the
resources of a node, the capacity available for one session is
influenced by the rate of the other session. Therefore, the
window size of a session affects the C available to other
flows.

Because both C and RTT are dynamic parameters that
depend on the window size of coexisting sessions, it is often
necessary to consider adaptive window flow mechanisms
for congestion control. In fact, most current implementa-
tions use such adaptive schemes to achieve congestion
control. We will investigate some mechanisms used in
the Internet in the next section.

Window-based flow mechanisms react to congestion
relatively quickly (within one window duration). In parti-
cular, if the congestion level increases, then the packet
ACKs are received slowly and the packet injection rate is
decreased. However, window-based flow control does not
guarantee a minimum rate. Thus, it may be unsuitable
for serving fixed-rate traffic, such as voice or video
transmissions.

2) Rate-Based Flow Control. Another flow-rate regula-
tion mechanism is rate-based flow control. This
mechanism differs from the window-based mechan-
ism in that it directly controls the rate of data injec-
tion into the network. Such a strategy is attractive for
high-speed networks in which a window-based flow
control would require extremely large window sizes
and hence incur large delay. Also, rate-based control
can guarantee minimum transmission rates, and
hence it is well suited for serving real-time traffic.

The rate of packet injection of different flows must
be determined based on their QoS constraints and the

   ··· 1   W2 

    · · · 

      ACK      ···       ACK       ACK

  W+1   W+2Source 

Dest. 

time 

RTT 

  ··· 

Figure 3. Operation of the end-to-end sliding window with a
window size of W.

2This is a well-known mean delay formulation of an M/M/1 queue
(see Ref. 12).

Figure 4. Throughput/delay ratio for the single session system
depicted above when d ¼ 100 milliseconds and C ¼ 10 packet per
second. The ratio is maximized at an intermediate level of load as
indicated in the graph.

4 NETWORK FLOW AND CONGESTION CONTROL



limitations of the network resources. For example, for voice
traffic, it must be guaranteed that the minimum rate
requirements are met, and the rate is no more than what
is discernible by the listener.

Once the average rate is determined, say at a value of R
packets per second, then rate-based flow control can be
implemented in various ways. One way is to allow B packets
to be injected into the network every B/R seconds, where B
is some fixed parameter. The choice of B determines the
amount of burstiness that the mechanism can accommo-
date.

Another common implementation is the leaky bucket
scheme, in which a bucket of size B that holds permits is
maintained at the source. A packet is injected into the
network only when a permit is present in the bucket.
One permit enters the bucket every 1/R seconds as long
as the bucket is not full. This way, an average rate of R
packets per second can be achieved for the flow.

Proper choice of bucket parameters is critical for the
performance of the scheme. For example, if B is too small,
then bursty traffic is delayed, whereas if B is too large, then
the traffic may cause too much congestion in the network.
As in the window-based flow control, rate-based flow con-
trol can also be adaptive. In particular, the allowed rate R
and/or the bucket size B may be adjusted based on the
congestion feedback to react to congestion.

CONGESTION CONTROL IN PRACTICE

In this section, we discuss several practical implementation
mechanisms for congestion control in networks. We will
focus on the Internet congestion control mechanisms,
namely the Transmission Control Protocol (TCP) and its
variants, because it is the dominant congestion-control
mechanism implemented in today’s communication net-
works.

TCP Flow Control

TCP is an adaptive window-based flow-control mechanism
that is implemented in the Internet. It is primarily used to
establish reliable, in-sequence delivery of a stream of pack-
ets from the source to the destination. A first version was
originally developed by Jacobson in the late 1980s (13).
In what follows, we describe the main components of
Jacobson’s algorithm as implemented in TCP, and then
we describe several variants of this original version.

The basic idea behind all variants of TCP is to increase/
decrease the window size of a session adaptively based on

the congestion feedback as measured by delayed and/or lost
ACKs. Jacobson’s algorithm is composed of two phases of
window-size adaptation:

1) Slow-Start Phase. The purpose of this phase is to
increase the window size quickly to a relatively high
level before congestion starts to kick in. In particular,
it starts the window with a minimal size (usually 1)
and it increments the window size W with every new
ACK. For example, on the reception of the first ACK,
W becomes 2, after another RTT two ACKs are
received and W is increased to 4, and so on. Thus,
the size grows to roughly twice its previous value in
every RTT rounds. This phase continues until W
reaches a threshold value Th. The threshold value
Th is set at the beginning of the connection to half the
maximum allowable window size. If packets are lost
before Th is reached, then Th is set to half the window
size at that time, and slow-start is restarted with the
new Th value.

2) Congestion-Avoidance Phase. During this phase, the
congestion level is regulated in the network. It imple-
ments an additive increase/multiplicative decrease
operation to achieve this regulation. In particular, W
is incremented by 1 for every W ACKs received.
Notice that this increase is much slower than in
the slow-start phase, and it is called additive
increase. Whenever a packet loss is detected the
size of the window is decreased, and different ver-
sions of TCP (Tahoe, Reno, NewReno, and SACK)
implement different strategies. We will assume a
particular multiplicative decrease strategy where Th
is set to half the current window size, and the slow-
start phase is restarted with the new Th value.

Because of the additive increase and multiplicative
decrease nature of the implementation, a typical through-
put pattern of TCP is in the form of a sawtooth, where the
rate gradually increases up to the point where a packet loss
is experiences when an abrupt decrease occurs. Figure 6
depicts the evolution of the window size under a typical
TCP implementation. The slow-start phase is in operation
between T0 and T1 where the window size quickly grows up
to a level of W0. Then the congestion avoidance phase kicks
in and increases the window size gradually up to W1 until
time T2 at what epoch the ACKs of the outstanding packets
are no longer received by the source. After a time-out

Arrivals NetworkS

   B 

R  permits 
per second 

Figure 5. Leaky bucket implementation for rate-based flow
control.

time t  T 0 T1  T2   T3  T4 

 W0 

 W1 

Window size W(t) 

Figure 6. Typical evolution of the window size under TCP.

NETWORK FLOW AND CONGESTION CONTROL 5



interval the window size is reduced to 1 at time T3, and the
slow-start phase is restarted with the window size thresh-
old Th set to W1/2. At T4, this threshold is reached and the
congestion avoidance phase is initiated, and so on.

All the variations of TCP described so far use packet
losses as an indicator of congestion. Another measure
of congestion can be the queueing delay at the links.
TCP-Vegas (14) reacts to such indicators. The idea is simi-
lar: The source increases its window size when the queue-
ing delay is low, and it decreases its window size when the
queueing delay is high. This form of reaction is different in
that it adapts the source rate before packet drops start to
occur. More detail can be found in Refs. 2 and 14. One
attractive feature of TCP-Vegas is that it has been shown to
converge to a proportionally fair allocation (cf. Example 2).
For a comparison of the performance of different versions of
TCP, the reader is referred to Refs. 2,15–18.

Although TCP has been a success in the Internet, some of
its basic assumptions render it unsuitable for next genera-
tion communication networks. In particular, TCP assumes
that packet losses and delays as indicators of congestion.
Whereas it is typically true for reliable wireline networks, it
is not true for wireless and mobile networks. In a wireless
network, packet drops and delays may also occur because of
temporary channel fluctuations, even when the congestion
level is very low. Thus, TCP performs poorly under wireless
fading environments. References 19 and 20 discuss several
improvements on TCP to deal with such deficiencies.

Congestion Avoidance Mechanisms

Most TCP implementations in operation require packet
drops in their congestion control. This method may not
be attractive because of the additional delay incurred
because of the retransmission of lost packets. Several con-
gestion avoidance mechanisms are proposed to avoid con-
gestion rather than reacting to it. We discuss some of these
in the following section.

1) Random Early Detection (RED). RED is a mechanism
introduced in Ref. 21 to inform the sources of poten-
tial future congestion in the network by marking or
dropping packets based on queue-length levels. Spe-
cifically, based on its current average queue-length
estimate, each intermediate node randomly decides
to mark/drop some of its packets with a probability
that is linearly related to the average queue length
(see Fig. 7). Thus, when used together with TCP,
such marking/dropping implicitly indicates that
the intermediate node is becoming heavily conges-
ted. TCP reacts to such indicators by dropping its
rate and reducing the congestion. RED helps the
system reduce its average queue-length levels and
hence decrease the queueing delay experienced by
the flows.

2) Explicit Congestion Notification (ECN). Another
method to indicate congestion is through what is
called an ECN mechanism (22–24). Here, a single
bit is reserved in every packet as an indicator of
congestion. As a packet traverses intermediate
nodes, the nodes can set the ECN bit to one if their

congestion level is high. For example, RED can use
this bit to mark the packets when the congestion level
is high. The ECN bit can also be used by other
mechanisms such as the mechanisms to be discussed
in the next section.

MATHEMATICS OF CONGESTION CONTROL

Although congestion control mechanisms have been pro-
posed and implemented in practice for decades, their math-
ematical formulation has been relatively recent. In this
section, we will discuss a mathematical model of congestion
control for general topology networks that is based on an
optimization framework. This line of work is initiated by
the seminal work of Kelly et al. (25,26), and then it is
extended in subsequent works (e.g., see Refs. 1,27–29;
also see Refs. 2 and 30 for excellent overviews).

Utility Maximization Framework

In this framework, the preferences of sessions and the
aimed fairness characteristics are captured through a uti-
lity function formulation. For each session, say i, there
exists a concave and strictly increasing function Ui(xi)
that is a function of its mean rate. The concave form of
the function reflects the law of diminishing returns, and
says that the same increase in the rate is more valuable at a
small rate than at a large rate. We assume that each
session, say i, has a fixed route R(i) associated with it,
and each link, l, in the network has a fixed capacity denoted
by cl. Then, yl ,

P
i:l2RðiÞ xi gives the total rate of flow over

link l. The goal of congestion control can be considered to set
the session rates, (xi), to optimize the following:

max
ðxiÞ� 0

X
i

UiðxiÞ

subject to yl � cl for each link l
ð1Þ

This model primarily captures the wireline network model
with general topologies. It is very general in that it can
capture various forms of fairness criteria (such as max-min
or proportional fairness) depending on the choice the utility
functions (see Ref. 31). For example, when UiðxiÞ ¼ logðxiÞ

P(drop) 

1

Average
Queue-Length

Pmax

0
Qmin Qmax

Figure 7. Dropping probability function of RED. The mechanism
aims to discourage congestion by dropping packets when the
average queue length exceeds Qmin with the probability of drop
increasing linearly with the queue-length level.

6 NETWORK FLOW AND CONGESTION CONTROL



the solution of Equation (1) is the proportionally fair
allocation.

Under the stated assumptions, Equation (1) is a convex
optimization problem and various methods can be used to
solve it (see Refs. 32 and 33). Amongst these methods is the
Lagrangian method that leads to a decentralized solution,
and hence is most attractive for the network setting.
Although the details of the analysis can be found in the
literature (e.g., Refs. 7,8,26 and 27), here we discuss the
high-level description of the solution.

The operation can best be described through the
perspective of two agents: the network and the source.
These two agents interact with each other through a
pricing mechanism. In particular, each link, l, in the
network determine a price, pl, for using its resources
based on its current load yl. The price is high if yl is
close to its capacity cl, and it is low if yl is much smaller
than cl. Thus, the price of each link measures its usage
at the time. Given a set of link prices (pl), the price
associated with session-i is pi

,
P

l2RðiÞ pl which gives
the total price of the links that session i traverses. pi can be
interpreted as the price that session i has to pay per unit
flow of data it sends in the network. Then, the source of
session i adjusts its data rate xi so that the utility it gains
from the network minus the cost is maximized. Mathe-
matically, xi maximizes ðUiðxiÞ � xi piÞ for each session i.
This operation is intuitively meaningful because those
flows with high utility values will afford to pump more
data into the network, whereas those with low utility
values will have to reduce their rates, and consequently
the total utility will be high. The adjusted set of session
rates are then used at each link to update the prices such
that the price of the under-utilized links are reduced
whereas the overloaded links are increased. When this
procedure of price adjustment by the network and rate
adjustment at the sources are repeated indefinitely, the
rate allocation vector (xi)i converges to the solution of
Equation (1). A pictorial overview of this iterative strategy
is depicted in Fig. 8.

Various open problems require more attention. The
assumed concave form of utility functions is well-suited
for applications such as file transfer, they do not accurately
capture real-time traffic. Several works have addressed the
operation under nonconcave utility functions (e.g., Ref. 34).
Yet, there is need for capturing QoS constraints of real-time
traffic. Also, the question of convergence rate of the iterative
algorithm is of interest for both theoretical and practical
reasons.

Cross-Layer Design

The utility-based formulation discussed in the previous
section can also be used to develop cross-layer controllers
that include scheduling and routing decisions in addition to
congestion control. Here, the routes of the sessions are not
fixed and are to be determined by the controller. Such
mechanisms are investigated recently in the literature
(e.g., Refs. 3–7,20,35). In what follows, we describe the
high-level idea behind these schemes.

Again the operation of the cross-layer mechanism can be
separated into two agents: the network and the source.
Here, in contrast to the previous algorithm (see Fig. 8), the
network is also responsible for the scheduling and routing
decisions of packets. Thus, each node must determine
which packets to transmit over which of its outgoing links.
The routing capability allows the network to use under-
utilized links in the network, whereas the scheduling cap-
ability allows the network to give more priority to sessions
that experience higher congestion. The source, as before, is
responsible for the congestion control decisions.

The solution uses buffer management (cf. the second
section) strategy to maintain separate queues at each
node for those packets that are destined for the same end
node. The lengths of these queues are used by the net-
work and the source to make the scheduling-routing and
congestion-control decisions. In particular, the network
uses the queue-lengths to give priority to those queues
with a high backlog compared with the queues in the
neighboring nodes. Also called the back-pressure strat-
egy (36), this strategy aims to spread packets of each
session throughout the network to establish the most
efficient routes. The source uses the queue-length infor-
mation as the price that must be equalized to the utility
to be gained from service. Thus, the cross-layer mechan-
ism is coupled through the occupancy level of the queues
maintained at the nodes. This high-level interaction is
depicted in Fig. 9.

It is shown that such a scheme will provide the optimal
performance (in terms of utility maximization) that any
scheduling-routing-congestion control mechanism can pro-
vide. It is surprising that a loose coupling through appro-
priately maintained queue-lengths can provide such
optimal behavior. All of these strategies extend to wireless
networks (see Ref. 8).

FINAL REMARKS

In this brief overview, we observed that congestion/flow
control aims at keeping the load of the network at a mod-
erate level so that certain objectives can be reached. The
objectives may be to provide certain QoS guarantees that

Figure 8. Iterative procedure of congestion control that solves
Equation (1). In the iteration, e is a small positive constant that
determines the step size of the evolution.

Figure 9. High level interaction between the network and the
sources under the cross-layer scheme.

NETWORK FLOW AND CONGESTION CONTROL 7



the competing traffic requires and/or to satisfy certain
fairness criteria. No congestion control mechanism can
achieve all these in the most general sense. We have dis-
cussed the most critical issues related to congestion control,
as well as some methods and strategies that can be used to
achieve the assumed objectives. Although there are some
successful practical implementations of congestion control,
these require significant improvements to be applicable to
next generation high-speedwireless networks. We dis-
cussed several recent designs that are based on an optimi-
zation framework, and we have pointed out to some of the
open problems.

BIBLIOGRAPHY

1. D. Bertsekas and R. Gallager, Data Networks. Englewood
Cliffs, NJ: Prentice Hall, 1987.

2. R. Srikant, The Mathematics of Internet Congestion Control.
Boston, MA: Birkhäuser, 2004.

3. X. Lin and N. Shroff, The impact of imperfect scheduling on
cross-layer rate control in multihop wireless networks. Pro-
ceedings of IEEE Infocom, Miami, FL, 2005.

4. A. Eryilmaz and R. Srikant, Fair resource allocation in wireless
networks using queue-length based scheduling and congestion
control. Proceedings of IEEE Infocom, Vol. 3, Miami, FL, 2005,
pp. 1794–1803.

5. A. Stolyar, Maximizing queueing network utility subject to
stability: Greedy primal-dual algorithm. Queueing Sys., 50(4):
401–457, 2005.

6. M. J. Neely, E. Modiano, and C. Li, Fairness and optimal
stochastic control for heterogeneous networks, Proceedings
of IEEE Infocom, Miami, FL, 2005, pp. 1723–1734.

7. A. Eryilmaz and R. Srikant, Joint congestion control, routing
and mac for stability and fairness in wireless networks. IEEE J.
Selected Areas Communicat., Special Issue on Nonlinear Opti-
mization of Communication Systems, 14: 1514–1524, 2006.

8. X. Lin, N. Shroff, and R. Srikant, A tutorial on cross-layer
optimization in wireless networks, IEEE J. Selec. Areas Com-
municat., Special Issue on Nonlinear Optimiz. Communicat.
Sys., 14: 1452–1463, 2006.

9. A. Parekh and R. Gallager, A generalized processor sharing
approach to flow control in integrated services networks: The
single node case, IEEE/ACM Trans. Network., 1993.

10. F. P. Kelly, P. B. Key, and S. Zachary, Distributed admission
control. IEEE J. Sele. Areas Communicat., 18: 2617–2628,
2000.

11. L. Peterson and B. Davie, Computer Networks: A Systems
Approach, 2nd ed. San Francisco, CA: Morgan Kaufmann
Publishers, 2000.

12. L. Kleinrock, Queueing Systems, Volume 1: Theory. New York:
Wiley–Interscience, 1975.

13. V. Jacobson, Congestion avoidance and control. ACM Comput.
Communicat. Rev., 18: 314–329, 1988.

14. L. S. Bramko and L. L. Peterson, TCP Vegas: end-to-end
congestion avoidance on a global Internet, IEEE J. Sele. Areas
Communicat., 1995, pp. 1465–1480.

15. J. Mo, R. J. La, V. Anantharam, and J. Walrand, Analysis and
comparison of TCP Reno and Vegas. Proceedings of Infocom,
1999, pp. 1556–1563.

16. S. H. Low, L. Peterson, and L. Wang, Understanding vegas: A
duality model. J. of ACM, 49: 207–235, 2002.

17. T. V. Lakshman and U. Madhow, The performance of TCP/IP
for networks with high bandwidth-delay products and random
loss. IEEE/ACM Trans. Network., 1997, pp. 336–350.

18. U. Madhow, T. V. Lakshman, and B. Suter, TCP/IP perfor-
mance with random loss and bidirectional congestion. IEEE/
ACM Trans. Network., 2000, pp. 541–555.

19. H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. H. Katz,
A comparison of mechanisms for improving TCP performance
over wireless links, IEEE/ACM Trans. Network., 1997.

20. H. Chaskar, T. V. Lakshman, and U. Madhow, TCP over wire-
less with link level error control: Analysis and design methodol-
ogy, IEEE/ACM Trans. Network., 7(5): 605–615, 1999.

21. S. Floyd and V. Jacobson, Random early detection gateways for
congestion avoidance, IEEE/ACM Trans. Network., 1993,
pp. 397–413.

22. S. Floyd, TCP and explicit congestion notification. ACM Comp.
Communi. Rev., 24: 10–23, 1994.

23. K. K. Ramakrishnan and R. Jain, A binary feedback scheme for
congestion avoidance in computer networks with a connection-
less network layer. Proceedings of ACM Sigcomm, 1988,
pp. 303–313.

24. S. Kunniyur and R. Srikant, End-to-end congestion control:
utility functions, random losses and ECN marks. Proceedings
of IEEE Infocom, Tel Aviv, Israel, 2000.

25. F. P. Kelly, Charging and rate control for elastic traffic.
European Trans. Telecommunicat., 8: 33–37, 1997.

26. F. P. Kelly, A. Maulloo, and D. Tan, Rate control in commu-
nication networks: Shadow prices, proportional fairness and
stability, J. Operat. Res. Soc., 49: 237–252, 1998.

27. S. H. Low and D. E. Lapsley, Optimization flow control, I: Basic
algorithm and convergence. IEEE/ACM Trans. Network., 7:
861–875, 1999.

28. R. La and V. Anantharam, Utility based rate control in the
internet for elastic traffic. IEEE/ACM Trans. Network., 10(2):
272–286, 2002.

29. L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, Jointly optimal
congestion control, routing, and scheduling for wireless ad hoc
networks, Proceedings of IEEE Infocom, Barcelona, Spain,
2006.

30. S. Shakkottai and R. Srikant, Network optimization and
control. Foundat. Trends in Networking, 2: 2007.

31. J. Mo and J. Walrand, Fair end-to-end window-based conges-
tion control. IEEE/ACM Trans. Network., 8(5): 556–567, 2000.

32. D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex Optimization.
Belmont, MA: Athena Scientific, 2003.

33. S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge, UK: Cambridge University Press, 2004.

34. J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, Non-convex
optimization and rate control for multi-class services in the
internet. IEEE/ACM Trans. Network., 13: 827–840, 2005.

35. S. Sarkar and L. Tassiulas, End-to-end bandwidth guarantees
through fair local spectrum share in wireless ad-hoc networks,
Proceedings of IEEE Conference on Decision and Control,
Maui, HI, 2003.

36. L. Tassiulas and A. Ephremides, Stability properties of con-
strained queueing systems and scheduling policies for max-
imum throughput in multihop radio networks, IEEE Trans.
Auto. Control, 36: 1936–1948, 1992.

ATILLA ERYILMAZ

The Ohio State University
Columbus, Ohio

8 NETWORK FLOW AND CONGESTION CONTROL



N

NETWORK RELIABILITY AND FAULT-
TOLERANCE

When we make a telephone call, the call is connected
through a communication network to the receiving party.
Similarly, when we send an e-mail using the Internet, the
message is sent through a communication network to the
recipient. Such communication networks are made up of
nodes and links that connect the nodes by hardware as well
as the software components that allow for the functionality
to communicate through such networks. Network reliabil-
ity refers to the reliability of the overall network to provide
communication in the event of failure of a component or
components in the network. The term fault-tolerant is
usually used to refer to how reliable a particular component
(element) of a network is (e.g., a switch or a router.) The
term fault-tolerant network, on the other hand, refers to
how resilient the network is against the failure of a
component.

Communication network reliability depends on the sus-
tainability of both hardware and software. A variety of
network failures, lasting from a few seconds to days
depending on the failure, is possible. Traditionally, such
failures derived primarily from hardware malfunctions
that result in downtime (or ‘‘outage period’’) of a network
element (a node or a link). Thus, the emphasis was on the
element-level network availability and, in turn, the deter-
mination of overall network availability. However, other
types of major outages have received much attention in
recent years. Such incidents include accidental fiber cable
cut, natural disasters, and malicious attack (both hardware
and software). These major failures need more than what is
traditionally addressed through network availability. For
one, these types of failures cannot be addressed by conges-
tion control schemes alone because of their drastic impact
on the network. Such failures can, for example, drop a
significant number of existing network connections; thus,
the network is required to have the ability to detect a fault
and isolate it, and then either the network must reconnect
the affected connections or the user may try to reconnect it
(if the network does not have reconnect capability). At the
same time, the network may not have enough capacity and
capability to handle such a major simultaneous ‘‘reconnect’’
phase. Likewise, because of a software and/or protocol
error, the network may appear very congested to the
user (1–3). Thus, network reliability nowadays encom-
passes more than what was traditionally addressed
through network availability.

In this article, we will use the term network reliability in
a broad sense and cover several subtopics. We will start
with network availability and performability and then
discuss survivable network design, followed by fault detec-
tion, isolation, and restoration as well as preplanning. We
will conclude with a short discussion on recent issues and
literature.

NETWORK AVAILABILITY AND PERFORMABILITY

Network availability refers to some measure of the relia-
bility of a network. Thus, network availability analysis
considers the problem of evaluating such a measure.
[Note that in current literature, this is often termed as
the network reliability analysis (4)]. Moore and Shannon
did early work in this area (5). We discuss network avail-
ability through an example. Figure 1 shows that two tele-
phones are connected by distribution segments (A) to local
switches (S), while the switches are connected by the
facility (B). The following allocation of outage/downtime
percentage is assumed for the different elements: S 0.01%;
A, 0.01%; B, 0.03%. Then, the availability of this connection
is (1� 0.0001)4(1� 0.0003)¼ 99.93%; this translates to the
maximum downtime of 368 min per year.

In general, network availability computation addresses
the availability of a network in operational states, and
discrete probability models are often used in analysis.
Let E denote the set of elements of a network (for examples
all the nodes and links). Each element may be in up or down
state, where up refers to fully operational and down refers
to total loss of the element. Let pe denote that probability
that element e 2 E is up—this is also referred to as the
availability of element e. Now consider the subset Ei of E
consisting of the up elements of state i. Then, the prob-
ability that the network is in up state Ei is given by

ð1Þ

Note that there are 2jEjpossible states (where jEjdenotes
the cardinality of the set E); thus, usually network avail-
ability computation needs to deal with the problem of this
exponential growth in states. A variety of algorithms for
efficient computation have been developed over the years
for different availability measures; the interested reader is
directed to 4 and the references therein for additional
information.

A related issue to availability is the performability. Most
availability measures deal only with the connectivity
aspect of the network; for example, what is the availability
of a path from a source node to a destination node. However,
when a failure occurs, the network may not be able to
perform at the same level as when there was no failure.
For example, the average network blocking in voice tele-
phone networks (circuit-switched networks) is typically the
measure for grade-of-service (GoS). A common value of GoS
is 1% blocking under the normal operational mode, but
under a specific outage, this may increase to more than 10%
blocking; similarly, in a packet-switched network, the aver-
age packet delay may increase by an order of magnitude
during a major failure compared to under the normal
circumstances. Thus, the network failure performability
addresses the performance of the network under various
failure states. Consider a network with m elements that can

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



each be either in operational or in a completely failed state;
then, the total number of states is 2m. The performability
measure P is given by

ð2Þ

where Pr(k) is the probability of state k, and X(k) is the
measure (e.g., network blocking in circuit-switched net-
works or average delay in packet-switched networks) in
state k. Again, we face the issue of the exponential number
of states. This can, however, be bounded by considering
most probable t states as was first shown by Li and Silvester
(6). Often, with the proper choice of t, the performability
measure can be quite accurately computed. For example, if
in a network, multiple simultaneous link failure scenarios
are extremely unlikely, then the most probable states are
the failure of each link independently. Accordingly, one
may limit the computation to these states.

SURVIVABLE NETWORK CAPACITY DESIGN

While network availability and performability address
important measures for evaluating the reliability of a net-
work, designing the networks for survivability is extremely
important for overall network reliability. In this section, we
address this topic for the capacity design problem using
separate examples for circuit-switched networks and
packet-switched networks.

Circuit-Switched Traffic Networks Example

Consider the three-node circuit-switched network (Fig. 2)
for which we are given that the availability of each link is
99.9%. We assume that the network has symmetric offered
traffic (or load) and capacity. Offered load in circuit-
switched networks is given in erlangs; this load is the
product of the average call arrival rate and the average
call holding time. For example, if the average call arrival
rate is 200 calls/h and the average call holding time is 3 min,
then the offered load is 10 erlangs (¼3 � 200/60).

For the symmetric three-node network, offered load
between any pair of nodes is assumed to be 10 erlangs,
and the link capacity on each link is given to be 21 trunks (or
circuits). We assume that the traffic between each pair of
nodes is routed on the direct link that connects the end
nodes of the pair, and we would like to know the call-
blocking probability. For an offered load of a erlangs, and
c trunks, and under the assumption that call arrival follows
a Poisson process, Erlang-B loss formula can be used for

computing the blocking probability, which is given by

ð3Þ

Thus, in our example, we have E(21, 10) ¼ 0.000889 �
0.001. That is, the network is providing a service quality
(grade-of-service) of 0.1% blocking. (In actuality, the block-
ing for each pair of nodes is slightly different because any
traffic blocked on the direct link can try the alternate
route.)

Now, suppose that the link 2–3 fails; in this case, the
network is still connected because node 1 is connected to
node 3 via node 2. Assuming that the network still has the
same amount of offered load, the load between node 2 and
node 3 is now required to be routed through node 1; thus,
the load offered to each link is 20 erlangs, whereas the
capacity on each link is still 21 trunks. Thus, the blocking
seen by traffic on each link is E(21, 20) ¼ 0.13144, and the
blocking seen by pair 2–3 traffic going through node 1 is
even higher. Under the link independence assumption, the
blocking on a path consisting of two links is given by 1� (1�
b)2, where b is the link blocking probability. Thus, in our
example, the blocking for traffic between 2–3 going through
node 1 is 1 � [1 � E(21, 20)]2 ¼ 0.24558.

Thus, we can see that, under no failure, the network
provides a grade-of-service of 0.1%, whereas under a single
link failure, the worst traffic pair blocking is 24.558%,
although the network connectivity is still maintained.
Recall that the link availability was assumed to be
99.9%; this means that the link can possibly be down for
as long as 8 hours in a year. If we assume one event per link
per year, then this link could conceivably be down for up to 8
hours straight! In some networks, this may be unacceptable
given that the worst traffic pair blocking jumps to 24.558%
from 0.01%. If we assume that the network should still
provide a 0.1% blocking grade even under a single failure
for every traffic pair, then to accommodate for the worst
path blocking, we need link blocking on each of the remain-
ing links to be b such that the path blocking for traffic
between node 2 and node 3 using links 2–1 and 1–3 needs to
satisfy 1� (1� b)2¼ 0.001; this translates to b¼ 0.0005 for
each link. Because we now have an offered load of 20
erlangs on each link, we need to find the smallest c such
that E(c, 20) ¼ 0.0005. Solving for integral c, we find that c
needs to be at least 36 (i.e., we need to have 36 units of
capacity on links 1–2 and 1–3 each). By the same argument,
if we consider the failure of a different link independently,
then the other two links each need 36 trunks. Thus, to cover
for failure of each link independently, each link needs 36
trunks to provide the same level of blocking as was

Figure 1. Network view for availability example.
Figure 2. Three-node network.

2 NETWORK RELIABILITY AND FAULT-TOLERANCE



originally wanted for the network in the nonfailure mode.
In other words, the network needs 80% more capacity to
cover for a link failure compared to the no-failure case
although network availability requirement was met.

Packet-Switched Networks Example

Consider this time a three-node packet-switched network.
We will use Fig. 2 again. In packet networks, the offered
traffic is usually given by the average packet arrival rate
(packets per second, pps in short). If the average packet
arrival rate to a network link is l and follows a Poisson
process, the average packet size is exponentially distribu-
ted with mean 1/m̂ kilobits, and the link speed is C kilobits
per second (kbit/s), then the average packet delay (caused
by the queueing phenomenon) can be obtained from the M/
M/1 queueing system and is given by

ð4Þ

For the three-node example, we assume unit mean packet
size (i.e., m̂ ¼ 1), in addition to assuming that the average
arrival traffic between each pair of nodes is 10 packets per
second and that the capacity of each link is 30 kbit/s. If all
traffic between each node-pair is routed on the direct link,
this provides an average delay of T(10, 30, 1)¼ 0.05 s, or 50
ms. Now suppose that the link 2–3 fails, then the traffic
between node 2 and node 3 is routed through node 1; this
induces an offered traffic of 20 pps on each remaining link.
Thus, the average delay on each link (1–2 and 1–3) is 100 ms
which is observed by traffic between nodes 1 and 2 and
between nodes 1 and 3. On the other hand, the traffic
between nodes 2 and 3 will go over two links and will
thus experience a delay of 2 � 100 ¼ 200 ms; this delay
is four times more than under the no-failure situation.

If the network goal is to provide the average delay for any
pair to be less than or equal to 50 ms under a single link
failure, then to meet this condition we need link capacity C
such that 2 T(20, C, 1)¼2/(C�20)¼0.05 which implies that
C needs to be 60 kbit/s on each of the remaining links.
Similarly, if we consider the independent failure of a dif-
ferent link, then the other two links will require 60 kbit/s to
provide the same level of service. Thus, in this network, we
see that we need to double the capacity to provide the same
level of service obtained under a single-link failure.

Discussion

We can see from these examples that if the network is not
provided with additional capacity, then the traffic blocking
can be very high in circuit-switched networks, which can
result in excessive retry by users, or the packet backlog
(queue) can build up in packet-switched networks. Thus, a
transient effect can take place. From these two examples for
two different networks, we can also see that, in some
circumstances, the network capacity needs to be 80% to
100% more to provide the same level of service under a
single link failure. This of course depends on the network
objective (in our examples, we have used the objective that
worst-pair traffic blocking or delay is minimized). In some
networks, this near doubling of capacity can be cost-prohi-

bitive; thus, the network performance requirement under
failure may be relaxed. For example, under a single-ele-
ment failure, it may be acceptable to have 5% blocking
under a single link failure for the circuit-switched network
case, or the average delay is acceptable to be 100 ms for the
packet-switched network case. It is easy to see that this will
reduce the additional capacity requirements in both cases.

Even though additional capacity can meet GoS require-
ment under a failure, the actual network topology layout
and routing are also critical for survivable design (7). Thus,
we also need to understand the network connectivity
requirement for the purpose of survivability. For instance,
a network needs to be minimally two-edge connected to
address a single-link failure; this means that there must be
two links connected to each node so that if one of them fails,
a node can still be connected to the rest of the network
through the other link; this avoids isolation of a node or a
part of a network from the rest of the network. If a network
is prone to multiple link failures at a time, this would
require the network to have a higher degree of connectivity,
which, in turn, would usually mean more network resource
requirement to address for such failure situations. Survi-
vable design for different node and edge connectivity level
is extensively discussed in Ref. 8; the interested reader is
directed to this reference for additional information.

Going back to the three-node examples, recall that the
routing choice was limited to taking the only two-link path
in the event of a failure. In a larger network, usually
multiple routes between each origin and destination nodes
are available; in the event of a failure, traffic can be sent on
any of the unaffected paths. However, the actual flow on
each path would depend on the actual routing rule in place
as well as the availability of network capacity. Thus, it is not
hard to see that the actual capacity requirement to address
a failure in the network depends also on the actual routing
schemes available in the event of a failure.

In any case, the overall network survivability and relia-
bility depends on a number of issues. Network capacity
design for survivability, as we see from these examples,
plays an important part. In the next section, we discuss
fault detection and isolation as well as network restora-
tion—another key piece in network reliability.

FAULT DETECTION, ISOLATION, AND RESTORATION

Usually, different elements in a network are equipped with
alarm generation capability to indicate the occurrence of
any abnormal condition, which may cause the reduction or
complete loss of the element. This abnormal condition is
sometimes labeled as a fault. When an actual failure occurs,
depending on the triggers set by various elements in the
network, multiple alarms may be generated by a number of
network elements—this is the fault-detection phase. Then,
the network management system that monitors the net-
work needs to determine the root cause of the fault. Fault
isolation is the process of identifying the root cause of the
fault. Thus, an issue that first needs to be addressed is
correlation of alarms (9) to determine and isolate the actual
point of failure in the network. Such fault-detection sys-
tems are needed to determine the cause of a fault quickly so

NETWORK RELIABILITY AND FAULT-TOLERANCE 3



that appropriate action can be taken. It is easy to see the
relation of fault isolation to network reliability. The longer
it takes to detect the cause of a fault, the longer it takes to fix
it, and thus, conceivably the network is affected for a longer
period of time, which decreases the performability of the
network. Rule-based and model-based systems are used for
fault isolation. Both centralized and distributed fault loca-
lization can be used; see Ref. 10 for a survey of different
techniques.

Along with the fault-isolation phase, the restoration/
repair phase begins. First, the network may be provided
with additional capacity. If the additional capacity is pro-
vided so that even after failure the quality of service is met,
then from the user’s viewpoint, the failure is not perceived!
Thus, a way of ‘‘restoring’’ the network is through addi-
tional capacity in the network (although, in actuality, the
fault is not physically repaired yet). As we have already
seen, to address for a single failure, the network may need
twice the capacity, which may be sometimes cost prohibi-
tive. Thus, the network may be provided with less than full
spare capacity to address for a failure. In such cases, if the
network has adaptive routing capability, then some of the
traffic can be rerouted around the failure; thus, the users
may not perceive the full impact of a failure.

Sometimes, the spare capacity can be provided in a
different layer in the network because of cost and techno-
logical considerations. In the simplest architectural view of
the communication network infrastructure, services such
as voice or Internet are provided over logical switched or
router-based networks; the capacity required for these
logical networks is then provided over the physical trans-
mission network, which may be connected by the digital
cross-connect systems or SONET (Synchronous Optical
Network) rings. For example, if a network is equipped
with fast automated digital cross-connect system and/or
SONET self-healing ring capability at the transmission
network, the network where the services are provided
may not perceive any failure because of fast automated
restoration (11,12). At the same time, the transmission
network level restoration schemes do not address failures
such as a line card failure, or a switch or router failure; thus,
restoration at the logical network level also needs to be
triggered; this may include rerouting and automatic recon-
nection of affected connections. It is clear from this discus-
sion that to restore from a failure, the network should be
equipped with capacity as well as the proper network
management system and software components to detect,
isolate, and recover from a failure.

Other types of failures such as a software attack or a
protocol operation failure cannot be addressed through the
restoration process discussed earlier. An example is the SYN

attack (2) in transmission control protocol (TCP), which
severely affected an Internet service provider (TCP is the
transport layer protocol on which services such as email,
file transfer, and web browsing are provided in the Inter-
net). In this case, the mechanism is needed to identify
where such attacks are coming from so as to stop such
attacks.

ADVANCED PREPARATION FOR NETWORK RELIABILITY

To provide network reliability, it is also important to do
preplanning and/or advanced preparation. Of course, one
way is to have additional spare capacity in the network.
However, there can be a failure in the network that can
actually take away the spare capacity if the network is not
designed properly because of dependency between the logi-
cal network and the physical network (7). Thus, it is neces-
sary to audit the network and find the vulnerable points in
the network and then to equip the network with additional
capabilities to avoid such vulnerabilities. For example,

1. The network may be provided with transmission-
level diversity so that for any transmission link fail-
ure there is at least another path not on the path of the
failure.

2. A redundant architecture at network nodes can be
built to address for a node component or nodal failure;
this may include dual- or multihoming to provide for
multiple access and egress points to and from the core
network.

To address for failures due to a software or protocol
operations error or a software attack, different types of
preparations are necessary. Several software errors that
have occurred on various data networks such as the ARPA-
NET, Internet, and SS7 Network (the data network that
carries the signaling information for the public telephone
network) (1,2) have caused such severe congestion in the
network that it cannot be adequately addressed by normal
congestion control schemes. Although enormous efforts go
into developing robust software, it is not always possible to
catch all possible software bugs (and sometimes bugs in the
protocol operation). Should any software errors occur, the
network should be provided with the capability to go to a
known state in a speedy manner [e.g., speedy manual net-
work reinitialization (1)]. If an error occurs as a result of a
new feature, then it should have the ability to disable this
feature and go to a known state for which the track record is
good (3). To address for a software attack that can take
advantage of a protocol’s ‘‘loop hole,’’ however, requires the
development of intrusion-detection schemes.

RECENT ISSUES

Much research remains to be done to address network
reliability in today’s complex networking environment.
We briefly touch on two areas in this regard: multilayered
networking architecture and software errors/attacks.

Networking environment is evolving to various services
being provided over multiple interconnected networks with
different technologies and infrastructure. For example, the
voice service is provided over circuit-switched networks,
which are carried over the transmission network. Simi-
larly, for Internet, applications such as web, email, and file
transfers are carried over internet protocol (IP) layer con-
nected by routers, which can be connected to the same
transmission network or carried over an asynchronous
transfer mode (ATM) or frame relay layer and then over

4 NETWORK RELIABILITY AND FAULT-TOLERANCE



the same transmission network. Thus, we are moving to an
environment that we have coined the multinetwork envir-
onment. In such environment, in each of these networking
layers, different types of failures/attacks and responses are
possible. Some work in recent years has addressed this
subject to some extent (7,13-17). It remains to be seen the
impact of the failure propagation from one network to
another, how the restoration process at each of these layers
interacts with one another, whether they can make the best
use of the network resources, and what type of network
management coordination is needed for this purpose. Thus,
network reliability in such interconnected multitechnology
architecture needs further research.

Software/protocol operations errors and software
attacks encompass the other area where mechanisms are
needed to provide network reliability. This subject is rela-
tively new—research on intrusion detection mechanisms is
currently being explored to determine if an attack has
occurred. Also, we need to see more work that helps us
understand how severely the network will be affected in
terms of network performance if a software attack or pro-
tocol failure occurs and how to recover from this anomaly.
Also, the network architecture should be revisited to iden-
tify if there are ways to reconfigure the network after an
attack so that parts of the network remain operational.

BIBLIOGRAPHY

1. B. A. Coan and D. Heyman, Reliable software and communica-
tion: III. Congestion control and network reliability, IEEE J.
Select. Areas Commun., 12: 40–45, 1994.

2. S. Dugan, Cyber sabotage, Infoworld, 19(6): 57–58, 1997.

3. D. J. Houck, K. S. Meier-Hellstern, and R. A. Skoog, Failure
and congestion propagation through signalling controls, in J.
Labetoulle and J. Roberts (eds.), Proc. 14th Intl. Teletraffic
Congr., Amsterdam: Elsevier, 1994, pp. 367–376.

4. M. O. Ball, C. J. Colbourn, and J. S. Provan, Network relia-
bility, in M. O. Ball, et al., (eds.), Network Models, Handbook of
Operations Research and Management Science, Vol. 7, Amster-
dam: Elsevier, 1995, pp. 673–762.

5. E. Moore and C. Shannon, Reliable circuits using less reliable
relays, J. Franklin Inst., 262: 191–208, 281–297, 1956.

6. V. O. K. Li and J. A. Silvester, Performance analysis of net-
works with unreliable components, IEEE Trans. Commun., 32:
1105–1110, 1984.

7. D. Medhi, A unified approach to network survivability for
teletraffic networks: Models, algorithms and analysis, IEEE
Trans. Commun., 42: 535–548, 1994.

8. M. Grötschel, C. L. Monma, and M. Stoer, Design of survivable
networks, in M. O. Ball, et al. (eds.), Network Models, Hand-
book of Operations Research and Management Science, vol. 7,
Amsterdam: Elsevier, 1995, pp. 617–672.

9. G. Jakobson and M. Weissman, Alarm correlation, IEEE
Netw., 7 (6): 52–59, 1993.

10. S. Kätker and K. Geihs, A generic model for fault isolation in
integrated management systems, J. Netw. Syst. Manage., 5:
109–130, 1997.

11. W. D. Grover, Distributed restoration of the transport network,
in S. Aidarous and T. Plevyak (eds.), Telecommunications

Network Management into the 21st Century, Piscataway, NJ:
IEEE Press, 1994, pp. 337–417.

12. T.-H. Wu, Fiber Network Service Survivability, Norwood, MA:
Artech House, 1992.

13. R. D. Doverspike, A multi-layered model for survivability in
intra-LATA transport networks, Proc. IEEE Globecom’91,
1991, pp. 2025–2031.

14. R. D. Doverspike, Trends in layered network management of
ATM, SONET, and WDM technologies for network surviva-
bility and fault management, J. Netw. Syst. Manage., 5: 215–
220, 1997.

15. K. Krishnan, R. D. Doverspike, and C. D. Pack, Improved
survivability with multi-layer dynamic routing, IEEE Com-
mun. Mag., 33 (7): 62–69, 1995.

16. D. Medhi and R. Khurana, Optimization and performance of
network restoration schemes for wide-area teletraffic net-
works, J. Netw. Syst. Manage., 3: 265–294, 1995.

17. D. Medhi and D. Tipper, Towards fault recovery and manage-
ment in communication networks, J. Netw. Syst. Manage., 5:
101–104, 1997.

READING LIST

This list includes work on network reliability that address
different failure and fault issues. This list is by no means
exhaustive. This sampling should give the reader some feel
for the wide variety of work available for further reading, as
well as lead to other work in this subject.

Y. K. Agrawal, An algorithm for designing survivable networks,
AT&T Tech. J., 63 (8): 64–76, 1989.

D. Bertsekas and R. Gallager, Data Networks, 2nd ed., Englewood
Cliffs, NJ: Prentice-Hall, 1992.

C. Colbourn, The Combinatorics of Network Reliability, Oxford,
UK: Oxford Univ. Press, 1987.

P. J. Denning (ed.), Computers Under Attack: Intruders, Worms,
and Viruses, Reading, MA: ACM Press & Addison-Wesley,
1990.

B. Gavishet al., Fiberoptic circuit network design under reliability
constraints, IEEE J. Select. Areas Commun., 7(8): 1181–1187,
1989.

B. Gavish and I. Neuman, Routing in a network with unreliable
components, IEEE Trans. Commun., 40: 1248–1258, 1992.

A. Girard and B. Sansó, Multicommodity flow models, failure
propagation, and reliable loss network design, IEEE/ACM Trans.
Netw., 6: 82–93, 1998.

W. D. Grover, Self healing networks: A distributed algorithm for k-
shortest link-disjoint paths in a multigraph with applications in
real time network restoration, Ph.D. Dissertation, Univ. Alberta,
Canada, 1989.

Fault Management in Communication Networks, Special Issue of
J. Netw. Syst. Manage., 5 (2): 1997.

Integrity of Public Telecommunication Networks, Special Issue
IEEE J. Select. Areas Commun., 12 (1): 1994.

Y. Lim, Minimum-cost dimensioning model for common channel
signaling networks under joint performance and reliability
constraints, IEEE J. Select. Areas Commun., 8 (9): 1658–1666,
1990.

NETWORK RELIABILITY AND FAULT-TOLERANCE 5



C. L. Monma and D. Shallcross, Methods for designing commu-
nications networks with certain two-connected survivability con-
straints, Oper. Res., 37: 531–541, 1989.

L. Nederlof et al., End-to-end survivable broadband networks,
IEEE Commun. Mag., 33 (9): 63–70, 1995.

B. Sansó, F. Soumis, and M. Gendreau, On the evaluation of
telecommunication networks reliability using routing models,
IEEE Trans. Commun., 39: 1494–1501, 1991.

D. Shier, Network Reliability and Algebraic Structures, Oxford,
UK: Oxford Univ. Press, 1991.

D. Tipper et al., An analysis of congestion effects of link failures in
wide-area networks, IEEE J. Select. Areas Commun., 12: 179–192,
1994.

DEEPANKAR MEDHI

University of Missouri–
Kansas City

Kansas City, Missouri

6 NETWORK RELIABILITY AND FAULT-TOLERANCE



N

NETWORK SECURITY FUNDAMENTALS

OVERVIEW

Communication is at the heart of computer systems. Infor-
mation stored at one location is moved to another location,
combined with data from other sources, and processed to
meet the needs of the users. Rarely can user commands or
the information they access avoid traversing networks,
which leaves the data and systems vulnerable to a variety
of attacks. A malicious intruder might intercept, falsify,
damage, or altogether prevent the networked communica-
tions. This chapter focuses on security goals, vulnerabil-
ities, and defenses for networked systems. When we use the
word security, it is in the context of networked computer
systems; other use will be made clear by context.

In discussing security issues, we will often make use of
examples, using the characters Alice, Bob, and Eve. Nor-
mally, Alice and Bob are attempting some sort of commu-
nication, a message, and Eve is maliciously interfering with
or intercepting it. These examples are representative, but
they should not be taken too literally. Alice and Bob are
likely to be computer programs exchanging information,
perhaps performing a handshake to initiate a session. Eve
may be some sort of eavesdropping program logging com-
munication between Alice and Bob, or she might be an agent
actively introducing falsified messages. Therefore, in our
context, Eve can be either a passive attacker or an active
attacker.

A common theme in both networking and security is the
idea of a protocol—a prescribed sequence of events designed
to facilitate communication among the participants. In
particular, cryptographic protocols are used to exchange
information that should remain confidential.

Security Goals

A variety of goals can be identified with regard to network
security, but three basic ones stand out: confidentiality,
integrity, and availability (sometimes reduced to the acro-
nym CIA). Information must be readily accessible when
needed. Alice has sent Bob a message, and he wants to get it.
It must be available to him. Information must be intact, and
accurate, secure from both accidental and malicious
change. The message Bob gets from Alice should be that
message exactly as Alice sent it. Its integrity must be
preserved as it crosses the network. Access must be
restricted to confidential data. Eve should not be able to
read the message Alice has sent to Bob. Things intended to
be private must remain private.

Principles

A few key principles are recognized when discussing
security First, security is an ongoing process rather
than a tool or simple action (Bruce Schneier’s dictum is
‘‘Security is a process, not a product’’). Second, security

may be dependent on technology, but both people and
business processes are crucial elements and often vulner-
able. If Bob keeps his password on a sticky note on his
monitor, Eve may have an easy time reading Bob’s mes-
sages from Alice! Social engineering is a term for attacking
security simply by deceiving the people involved and lying
to them to gain passwords or other keys to access systems
or data. Eve calls Bob, claims to be from the IT depart-
ment, and says she needs his password to correct a (non-
existent) problem with his e-mail. Third, security has an
inescapable economic element—any security effort
requires some cost and in exchange reduces some risks.
Careful risk analysis is necessary to ensure that the
security process is cost effective. Finally, defense in depth
is necessary, with layers of security protecting resources.
Any one layer might be compromised, but if yet more
layers exist the information remains secure.

Policies

Any organization interested in security needs a security
policy, a clear statement of the organization’s specific goals,
defining security for their information systems. Policies
serve a variety of purposes. They define what is and is
not acceptable use of an organization’s information
resources. They identify what assets are to be protected
from what threats, and they establish priorities for dealing
with the various risks. They provide plans, practices, and
processes to follow to improve security and to deal with
breaches of security. Among other roles, an organization’s
security policy can be an effective tool for educating per-
sonnel about both the importance of security and the prac-
tices for achieving it.

Elements

Security is a broad field, and it requires broad knowledge,
particularly of software and networking. Our approach
to organizing the topic is to first discuss the foundations
of security in cryptography. Then we will discuss various
security services offered on networks. The following
section will discuss the various attacks against our
security goals and services. After discussing vulnerabil-
ities and attacks, we address defense mechanisms that
can be used to thwart the attacks. Finally, we briefly
discuss some issues specifically related to wireless net-
work security.

FOUNDATIONS

When two or more computers want to talk in a ‘‘secure’’ way,
they may expect their communication to meet one or any
combination of the following security requirements, which
are an extended set of the traditional security goals, CIA:

� Confidentiality (or privacy)—Ensuring that no one can
access the information except the intended receiver.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



� Integrity—Ensuring that data are not maliciously
tampered with during transmission and operation
and can be altered only by those authorized.

� Availability—Ensuring that computer services are
operable and resources are accessible throughout their
lifetimes.

� Authentication—Ensuring that the identity of an
entity in the communication is genuine.

� Authorization (access control)—Determining and
enforcing who is allowed access to what resources,
hosts, software, and network connections.

� Non-repudiation—Ensuring that it can be definitely
established that an entity has sent a particular mes-
sage, and that they cannot deny having done so.

To meet these requirements, use of cryptography is
necessary, although not sufficient. Generally speaking,
cryptography is the art of scrambling information into
some unintelligible form and (usually) providing a secret
method of recovering the original message. When a message
is in its original, unscrambled form, it is called plaintext (or
cleartext). The scrambled message is known as ciphertext.
The process of converting plaintext to ciphertext is known
as encryption, whereas recovering the original plaintext
message from the encrypted ciphertext is called decryption.

Three main types of cryptographic schemes exist: secret
key (also called shared key or symmetric) cryptography,
hash functions, and public key (or asymmetric) cryptogra-
phy. To implement such schemes, modern cryptographic
technology makes extensive use of mathematics, especially
number theory. As is obvious from the names, a key plays a
special role in cryptography. A key is a parameter to a
cryptography algorithm that controls details of its beha-
vior. It is common practice to assume that someone attack-
ing a cryptographic scheme knows all the algorithm and
process details except for the key. Among other conse-
quences, this dictates that security through obscurity is
not an acceptable approach, and that open security pro-
cesses and algorithms may be more secure as they can be
thoroughly tested by the entire community.

Basic Number Theory

In this section, we will describe some concepts and theo-
rems that have been commonly used in cryptographic
algorithms.

Most public key cryptographic algorithms are based on
modular arithmetic. Modular arithmetic is arithmetic
where the results of operations are restricted to non-negative
integers less than some fixed number n, a range of [0. . .(n
�1)]. An integer converted to this range is modulo n or mod
n. Conceptually, modular operations perform ordinary
arithmetic operations (such as addition, multiplication,
or exponentiation) and then convert the result to the appro-
priate range by returning the remainder after division by n.
So, for example, 23 mod 10 ¼ 3; and (5 þ 8) mod 10 ¼ 3.

First we define some basic concepts:

A prime number is a positive integer that is evenly
divisible by exactly two positive integers (itself and 1).

The largest number that divides two numbers n and m is
called the greatest common divisor (gcd) and denoted
gcd(n, m).

Two integers are relatively prime if and only if their gcd
is 1.

The multiplicative inverse of x, denoted x�1 or 1/x, is the
number that, when multiplied by x, yields 1. For exam-
ple, 7 is the multiplicative inverse of 3 mod 10, because
7 � 3 mod 10 ¼ 1. A multiplicative inverse does not
always exist. A positive integer x has a multiplicative
inverse mod n if gcd(x, n) ¼ 1.

Some modular arithmetic properties are important in
cryptographic algorithms, such as:

Modular addition: (aþb) mod n¼ [(a mod n) + (b mod n)]
mod n.

Modular subtraction: (a�b) mod n¼ [(a mod n)� (b mod
n)] mod n.

Modular multiplication: (a � b) mod n ¼ [(a mod n) �
(b mod n)] mod n.

These three properties are particularly useful,
because we can substitute the expressions on the right
for those on the left, applying the mod operator early and
often and keep the values in our calculations smaller
than n.

Modular addition and multiplication form a commuta-
tive ring with the laws of (where a, b, and c are all positive
integers):

Associativity: [(a + b) + c] mod n ¼ [a + (b + c)] mod n.

Commutativity: (a + b) mod n ¼ (b + a) mod n.

Distributivity: [(a + b) � c] mod n ¼ [(a � c) + (b � c)]
mod n.

Fermat’s theorem (or Fermat’s little theorem)—If p is a
prime number, then for any integer a, ap�1mod p ¼ 1.

Euler’s totient function—the totient f(n) of a positive
integer n is the number of positive integers less than n and
relatively prime to n. Therefore, if n is prime, f(n) ¼ n�1.
If n ¼ p � q, and p and q are primes, f(n) ¼ (p � 1)(q � 1).

Euler’s Theorem—for every a and n that are relatively
prime, af(n)mod n¼ 1. Then we can prove that, for modular
exponentiation, we have xy mod n¼ xy mod f(n)mod n, where
x and y are positive integers too.

The Euclidean algorithm (also called Euclid’s algo-
rithm)—one of the earliest algorithms developed, it can
be used to find the gcd or to find the modular inverses of a
number n, given n and a modulus m. The algorithm does not
require factoring the two integers (a slow process) but
works by repeatedly dividing the two numbers and their
remainder in turns.

Secret Key Cryptography

Secret key cryptography uses a single, shared key for both
encryption and decryption. It leads to the necessity of
sharing the keys securely, called the key exchange or key
distribution problem.

2 NETWORK SECURITY FUNDAMENTALS



Based on how data are processed in encryption, secret
key cryptography schemes are usually categorized as either
stream cipher or block cipher.

Stream ciphers operate on plaintext digits one at a time
and constantly changes the key used in transformation of
successive digits. The sequence of keys used is called a
keystream and is often generated from a simpler key. A
stream cipher generates successive digits of the keystream
based on an internal state. Based on the two essential ways
that the state can be updated, stream ciphers are categor-
ized into two types: synchronous stream ciphers, where the
state is updated and therefore the keystream is generated
independently of the plaintext and ciphertext, and self-
synchronizing ciphers, where the state is updated based
on the previous ciphertext.

Stream ciphers are often used when the length of the
plaintext is unknown in advance. Examples of stream
ciphers include RC4, LEVIATHAN, A5/1, A5/2, Chameleon
and FISH. RC4 was designed by Rivest for RSA Security. It
uses a keystream of variable size and operates on bytes.
RC4 is used for file encryption. LEVIATHAN is a seekable
stream cipher, which means that the user may efficiently
skip forward to any part of the keystream. LEVIATHAN
generates a keystream efficiently using its unique tree
structure.

Block ciphers operate on a large block of plaintext digits
each time, and the transformation uses a fixed key. Block
ciphers can operate in different modes, of which the follow-
ing four modes are common:

Electronic Code Book (ECB)—the simplest but the
‘‘worst’’ method. In ECB, each block is independently
encrypted with the secret key and then all ciphered blocks
are assembled together. A problem of ECB is that identical
blocks will generate identical ciphertext. As such it is
susceptible to brute-force attacks, and malicious alteration
is also possible.

Cipher Block Chaining (CBC)—avoids the problem in
ECB by exclusively-ORing (XORing) the previous block of
ciphertext with the next plaintext before applying encryp-
tion with the secret key. As no previous block for the
very first data block exists it uses an initial random
number known as an Initialization Vector (IV). The use
of an IV guarantees that repeated identical blocks of
plaintext result in different ciphertext each time they
are encrypted.

Output Feedback (OFB)—allows encryption of blocks of
varying sizes. It generates a sequence of one-time pads by
encrypting the previous feedback and then feeding it into a
shift register. Only k bits (size of the blocks) are kept, and
the remaining is discarded. The initial pad is generated
from an IV. The one-time pad is XORed with plaintext to
generate the ciphertext. OFB does not propagate errors but
is vulnerable to message alteration if an attacker knows the
plaintext and the ciphertext.

Cipher Feedback (CFB)—similar to OFB but takes the
previous ciphertext (not the previous feedback) to generate
the one-time pads.

A few secret key cryptographic algorithms in use today,
which employ block ciphers, are Data Encryption Standard
(DES), International Data Encryption Algorithm (IDEA),
and Advanced Encryption Standard (AES).

DES was published in 1977 by the National Bureau of
Standards (NBS) [now the National Institute of Standards
and Technology (NIST)]. It was designed by IBM based on
their Lucifer cipher. DES uses a 56-bit key and operates on
64-bit blocks. DES employs complicated rules and rounds of
transformations, which is asserted to be specifically
designed to yield efficient implementation in hardware
but relatively slow implementation in software. However,
advances in CPUs have made it feasible to implement in
software. DES is now considered to be insecure for many
applications, mainly because of its small key size. Some
other weaknesses have been proved in theory but remain
infeasible to mount in practice.

Two variations of DES are Triple-DES (3DES) and DES-
X (DESX). 3DES uses up to three 56-bit keys (to prevent
brute-force attacks) and makes three encryption passes
over each block (to prevent man-in-the-middle attacks).
DESX was designed to increase the difficulty of brute-force
attacks by XORing an extra 64-bit key to the plaintext
before applying DES, and then XORing another 64-bit key
after the encryption.

IDEA was developed by Xuejia Lai and James L. Massey
of ETH Zurich and published in 1991. It was originally
called IPES (Improved Proposed Encryption Standard).
IDEA was designed to improve efficiency in software imple-
mentation. IDEA uses a 128-bit key and operates on 64-bit
blocks as does DES. However, IDEA relates the encryption
and decryptions keys in a more complicated manner. IDEA
is patented by Ascom.

AES, also know as Rijndael, is a successor of DES and
has replaced DES for many applications where 3DES was
too slow. The algorithm was designed by Belgian crypto-
graphers Joan Daemen and Vincent Rijmen. AES allows
variable block and key sizes, and the latest specification
allows a choice of any combination of block sizes and key
sizes of 128 bits, 192 bits, or 256 bits.

Other secret-key cryptographic algorithms include
blowfish—a 64-bit block cipher invented by Bruce Schneier,
which is optimized for 32-bit processors with large data
caches; twofish—a 128-bit block cipher using 128, 192,
or 256 bit keys; and CAST-128—a DES-like substitution-
permutation algorithm using a 128-bit key operating on a
64-bit block.

Public Key Cryptography

As secret key schemes require that the shared key(s) be
exchanged before any secure communication can take
place, an alternative that does not require prior prepara-
tion is appealing. Public key encryption makes use of two
keys, a public key, used for encryption, and a private key,
used by the recipient of a message to decrypt it. As the
public key can only be used for encryption, it is safe for
anyone to know and use, because all they can do is create a
message that only the holder of the private key can decrypt.
The two keys are related mathematically through a trap-
door one-way function—one that is easy to compute in the
forward direction but hard to invert without the knowledge
of the trapdoor (private key). The common (and widely
used) example of such a trapdoor one-way function is prime
factorization: It is easy to compute the product of two large

NETWORK SECURITY FUNDAMENTALS 3



prime numbers, but difficult to factor such a product, unless
you already know one of the factors.

Public key schemes are used for a variety of purposes.
The public key can be used to encrypt a message sent to the
holder of the corresponding private key. The holder of a
private key can use it to sign (encrypt a copy of) a message,
which allows recipients to verify the signature using the
public key. Public key schemes may also be used to securely
exchange the shared keys needed for a secret key scheme.
Secret key schemes are often markedly more efficient than
public key schemes, so using public key encryption to
exchange a (relatively small) key, which is then used to
encrypt the bulk of the communications, is an effective use
of computation resources.

The Diffie–Hellman key exchange is the earliest example
in the literature. Rivest, Shamir, and Adelman developed
what has become known as the RSA algorithm, perhaps the
best known of public key schemes. More recent examples
include ElGamal and the NIST Digital Signature Algo-
rithm (DSA).

Hash Functions

Hash functions, also called message digests or one-way
transmissions, are algorithms for creating small fixed-
size digital ‘‘fingerprints’’ for any kind of data. The output
of a hash function is called the hash value. Let H denote a
hash function, m denote the input message, and h denote
the hash value. Then h ¼ H(m). Hash functions used for
security must be one-way; that is, given a hash value h, it
is computationally infeasible to find an input x such that
H(x) ¼ h.

Besides the one-way property, properties required of
hash functions include randomness and collision free. Ran-
domness means that the resulting output should appear
random and is not affected by the pattern of the message.
Collision free means it should be computationally infeasible
to determine two different messages with the same hash
values (two different inputs with the same hash value is
referred to as a collision). Collision-free hash functions
protect message integrity because it will not be feasible
to substitute a forged message for another message still
produces the same hash value. Other properties of hash
functions include flexibility (the function can be applied to
messages of any block size), convenience (the function
produces short output value), and performance (it is fast
to compute a hash value).

Because of these properties, hash functions can be used
to provide security services such as authentication of users,
authentication of messages by generating a message
authentication code (MAC), data integrity, and encryption.
Because hash functions are not reversible, both encryption
and decryption need to run the algorithm in the forward
direction—usually a hash value is Exclusive-ORed with a
message to produce the ciphertext, whereas the same hash
value is Exclusive-ORed with the ciphertext to recover the
original message.

The hash algorithms that are in common use today
include:

Message digest (MD) produces a 128-bit hash from
a message of arbitrary size. There are a series of MD

algorithms, such as MD2, MD4, and MD5. MD2 was
designed for systems with limited memory (1). It takes a
message of an arbitrary number of octets and produces a
128-bit digest. MD4 was designed to be 32-bit word oriented
for fast processing on 32-bit CPUs. MD4 can handle mes-
sages with an arbitrary number of bits, whereas MD2
requires the message to be an integral number of octets.
MD4 was developed by Rivest. Also developed by Rivest to
diminish potential weaknesses reported in MD4, MD5
makes more manipulation on the original data to achieve
better security but with compromises on performance. MD5
has been implemented in a large number of products.

Secure hash algorithm (SHA) was proposed by NIST in
the secure hash standard (SHS). The first member of the
SHA family was published in 1993. SHA-1 was published
two years later. It takes a message of at most 264 bits long
and produces a 160-bit hash value (2). Compared with MD5,
SHA-1 is a little slower to execute but presumably more
secure. SHS proposed four other versions of the algorithm:
SHA-224, SHA-256, SHA-384, and SHA-512, which pro-
duce hash values of length 224-, 256-, 384-, or 512-bit,
respectively.

RIPEMD is a series of hash functions that came from
RACE Integrity Primitives Evaluation Message Digest.
RIPEMD is based on the design principles used in MD4.
RIPEMD-160 was developed by Hans Dobbetin, Antoon
Bosselaers, and Bart Preneel, and first published in
1996. It is a 160-bit hash function and has similar perfor-
mance to SHA-1. Other members of the RIPEMD family
include RIPEMD-128, RIPEMD-256, and RIPEMD-320,
which are 128-, 256-, and 320-bit versions of the algorithm,
respectively. RIPEMD-256 only reduces the chance of acci-
dental collisions and does not offer a higher level of security
than RIPEMD-128. The reason lies in the fact that
RIPEMD-256 is similar to RIPEMD-128 but initializes
two parallel lines with different initial values and then
exchanges a chaining variable between the two parallel
lines after each round. Therefore, RIPEMD-256 does not
introduce more complexity than RIPEMD-128 for attackers
to launch collision attacks (to find two different inputs that
will produce the same hash value). This feature also applies
to RIPEMD-320 with respect to RIPEMD-160.

Some other hash functions include HAVAL (HAsh of
VAriable Length), a hash algorithm with many levels of
security, and Whirlpool, a relatively new function.

Researchers have found collision attacks can be
launched against MD5, SHA-0, RIPEMD, and other hash
functions. Despite these attacks, there are many products
that use these hash functions, and it will take years to
substitute other functions (once such functions have been
agreed on).

SECURITY SERVICES

Once cryptographic fundamentals are in place, one can
deploy them as part of various services to provide security.
Managing the keys for cryptography, authenticating users,
and authorizing access to resources are all examples of such
services. A clear distinction should be maintained between
authentication, establishing a positive identification, and

4 NETWORK SECURITY FUNDAMENTALS



authorization, permitting a known individual to access
some resource.

Key Management

Keys are an essential element of secure communications,
and services must support their use. Services needed
include generating keys (or key pairs in the case of public
key systems); distributing keys—Alice must first obtain
Bob’s public key before she can encrypt a message using it;
and storing keys—if we want to verify Alice’s digital sig-
nature on a document, we need access to the public key
corresponding to the private key she used to sign it. Such
services provide a point of attack against cryptographic
systems. If the stored keys can be compromised, then
falsified documents can be sent and authentication efforts
can be foiled. Often, discussions of system security assume
that key management is secure—it is conducted by a
trusted third party. Another (and necessary) service is
the ability for users to revoke a key pair if their private
key is ever compromised. The keys were (and remain) valid
for messages transmitted prior to their revocation but can
no longer be used for new messages.

Identity Authentication

A crucial service is authenticating the identity of an entity.
When Alice and Bob communicate, they want to authenti-
cate each other, because Eve might be masquerading as
either of them. When users connect with a banking service,
they want to be certain they are providing their PIN or
password to their bank and not to someone who will use it to
empty their account. Phishing attacks work by masquer-
ading as a service provider and then collecting usernames,
passwords, and other crucial information from victims.
Authentication is usually by means of a password or iden-
tity token of some sort. Authentication testing relies on the
information, physical item, or biological characteristic
being unique to (and in possession of) the individual being
identified. Iris scanning, fingerprinting, and DNA analysis
make use of biological tokens. Keys, badges, or smart cards
are physical items often used for authentication. Informa-
tion tokens include passwords and such familiar security
questions as, ‘‘What is your mother’s maiden name?’’

Password Authentication

A common approach to authentication in computer systems
is the use of usernames and passwords. The system main-
tains a store associating usernames with passwords, and so
long as a user provides a valid username and the corre-
sponding password, they are authenticated (so far as the
system is concerned). This approach assumes that the
password has not been compromised. The simplest
approaches transmit or store passwords in clear text. telnet
and ftp were popular programs vulnerable because of
cleartext passwords. Their use has largely been replaced
by ssh or sftp (secure ftp). Common improvements on pass-
word based authentication include storage and transmis-
sion of passwords in a hashed form and the addition of salt,
a random value hashed with the password. A good example

is the LDAP (Lightweight Directory Access Protocol)
Authentication Password Schema (3).

Digital Signatures

Similar to authentication of a user is the need to determine
the author of a document. This determination is accom-
plished via digital signatures. Using an asymmetric encryp-
tion technique, Alice can sign a document using a hash of the
document that she encrypts with her private key. Bob can
verify the signature using Alice’s public key. Assuming her
private key has not been compromised, Alice cannot deny
sending a message with her digital signature (nonrepudia-
tion). As keys can be compromised, this a need then exists to
revoke a public–private key pair. Documents signed with a
key after revocation are no longer assumed valid.

SECURITY ATTACKS

A wide variety of attacks are aimed at breaking system
security and privacy. To understand the need for certain
defense mechanisms, it is vital to understand how a system
might be insecure without it. In this section, we provide a
brief discussion of different attacks.

Sniffing

Sniffing is a category of passive attack. An attacker can use
a special program, denoted as sniffer, to passively monitor a
computer network for key information without interfering
much with normal activities in the network. The key infor-
mation may be authentication information such as a pass-
word or any other information transmitted in packets such
as IP address and TCP ports. In some case, even traffic
characteristics of packets such as frequency, size, and
interarrival time may be critical for security.

Sniffing’s principle is simple. In a broadcast-based envir-
onment such as Ethernet, a network card can be used to
monitor traffic on the media. If the frame’s destination
MAC address is the card’s MAC address, the frame is
accepted by the card and forwarded to upper layers of
the protocol stack. Otherwise the network card discards
the incoming frame. To deploy sniffing, a sniffer puts a
network card into promiscuous mode, so that all frames on
the network segment are accepted and captured. The snif-
fer generally listens on a special network programming
socket, denoted as raw socket, and captures all packets.
Typically sniffers run a protocol analysis of the captured
packets and extract the interesting information. In a
switched network, additional techniques are necessary to
divert the traffic to a machine for capture and analysis.

A popular sniffing and protocol analysis tool is the open
source Wireshark (www.wireshark.org, formerly known
as Ethereal). Although Wireshark is available for both
UNIX and Windows. Besides its sniffing capabilities, Wir-
eshark is an excellent protocol analyzer of captured pack-
ets. Many other sniffing tools are tailored for special
purposes, such as tcpdump (command line version of
Wireshark), dsniff, ettercap, and Cain & Abel. Many of
these tools are multipurpose programs, providing features
in addition to sniffing.

NETWORK SECURITY FUNDAMENTALS 5



Session Hijacking

Session hijacking is a category of active attack. In a session
hijacking, an attacker puts herself in the middle of the
communication path between a client and a server, takes
over the communicating session, and pretends to be one of
the participants. Session hijacking is usually an extension
of sniffing.

An attacker may use a variety of other attacks to redirect
the traffic through her own box. These attacks may include
ARP poisoning, MAC flooding, port stealing, DHCP spoof-
ing, DNS spoofing, and various routing games such as
ICMP redirect. Once an attacker puts herself between
the client and the server, she can change the content of a
session. For example, if the client is downloading software,
the attacker can attach a Trojan horse code to the download.
An attacker may also hijack SSL and SSH sessions by
providing fake certificates. Session hijacking may be
used against both TCP and UDP sessions. To hijack TCP
sessions, the attacker must make an extra effort to deal
with sequence numbers and other TCP details.

Popular hijacking tools include ettercap, dsniff, and
hunt. Ettercap runs on most popular systems such as Linux
and Windows. Ettercap on Linux is stable. It is a multi-
purpose program used primarily for sniffing, capturing,
and logging traffic on switched LANs by using attacks
such as ARP poisoning. For example, ettercap can redirect
an HTTP session through its host and change the HTTP
page.

Spoofing

Spoofing is a category of active attack. In such an attack, an
attacker intentionally ‘‘provides false information about a
principal’s identity in order to obtain unauthorized access
to systems and their services’’ (4). In an IP spoofing attack,
the attacker changes the source IP address within the IP
header of a packet so that the packet source IP address can
be random and the packets appear to have come from a
different source other than the real sender. This is a simple
way for an attack over a network to obscure its origin. E-
mail headers are also easy to spoof so that the e-mail
appears to be sent from another person. A web page may
also be spoofed so that users think they are accessing a
known site, but actually they are receiving web pages
controlled by an attacker. This can be achieved in the
following way: Recall the DNS service maps website names
to their IP addresses. An attacker may use DNS spoofing to
redirect user requests to a malicious website by replying to
DNS requests with the IP of the malicious site rather than
the IP of the actual site.

Password Cracking

In modern computer systems, passwords are not stored in
clear text in case attackers break into the system and obtain
the password store. Passwords are normally hashed and
then stored with user names as indexes. Even when pass-
words are stored in a hashed form, if an attacker obtains the
list of hashed passwords, they can use either a dictionary
attack or a brute force attack to retrieve the original
passwords.

In a dictionary attack, an attacker first obtains a list of
common passwords. Those common passwords might be
common names, words, place names, or acronyms. Then the
attacker hashes all those common passwords and compares
them with the victim’s password hash. If there is a match,
the attacker obtains the original password. The attacker
may precompute hashes of these common passwords to
speed the password cracking. If a dictionary attack does
not work, the attacker may also resort to a brute force
attack. In a brute force attack, the attacker tries all combi-
nations of password elements such as letters, numbers, and
special symbols until there is a hit.

A cracking dictionary might contain a great number of
common words, names, and variations, and the size of such
a popular dictionary could be over 19 MB. Therefore, it is
important to choose a good password (i.e., one incorporating
random elements) because it is just a matter of time for an
attacker to crack the hashed password. A good password
will greatly increase the cracking time and extend the life
span of the password. Choosing an appropriate hash func-
tion is also important. Popular hash functions include DES
(by early UNIX systems) and MD5. MD5 is safer than DES
because MD5 creates a hash of 128 bits and generates a
much larger password pool.

Popular password cracking tools include John the Rip-
per, Crack, L0phtCrack, and Cain & Abel. John the Ripper
is a powerful password cracking tool that works under both
UNIX and Windows.

Denial of Service

A denial-of-service (DoS) attack is a category of active
attack. In a DoS attack, an attacker tries to exhaust a
limited resource available to users. Basically, if some
resource is limited, the attacker may use a variety of
approaches to use it up so that no one else can access it.
Thus, access to the resource is denied to authorized users.

An attacker may attack a resource locally. Those
resources may include the local system process table,
CPU time, disk space, and index node (inode) of a UNIX
system. An attacker may also attack a resource remotely.
These resources may include the entire remote system, a
specific service, or network bandwidth. For example, in a
ping of death attack, an oversized ping packet could cause
a remote Windows 95 system memory leakage and crash
the system. In a SYN flood attack, flooding SYN packets
arriving at a host may overfill the TCP half-open connec-
tion buffer so that no more legal connections will be
allowed.

Distributed Denial of Service (DDoS)

The distributed denial-of-service (DDoS) attack uses multi-
ple attacking entities to prevent the legitimate use of a
service. On the Internet, each entity such as a host, net-
work, and service has limited resources. If these resources
are consumed by too many users, no more users can access
them. Because of the administration and privacy require-
ments, security mechanism deployment on the Internet is
often not coordinated across multiple domains; yet Internet
security is highly interdependent, which is why an attacker
may deploy a DDoS attack on the Internet.

6 NETWORK SECURITY FUNDAMENTALS



A DDoS attack has two phases. First, attackers compro-
mise several hosts. These hosts become masters, which are
also called handlers. Masters then compromise hundreds or
even thousands of additional hosts, called zombies, and
install DDoS flooding tools on the zombies. Zombies are
also called daemons, slaves, or agents. This compromising
process is normally automated and searches for a large
number of vulnerable hosts, such as those without recent
security patches. When attackers are ready to attack, a
signal is transmitted from masters to all zombies, which all
generate attacking traffic to throttle the target. Using
masters allows attackers to hide their origin. To further
hide their traces, attackers may access masters through a
sequence of stepping stones, i.e., intermediary compro-
mised machines, which may be scattered around countries
across different continents. IP spoofing is often used by
zombies to further obscure the attackers.

Popular DDoS tools include trinoo, Tribe Flood Network
(TFN), Tribe Flood Network 2000 (TFN2K), stacheldraht,
shaft, and mstream. TFN is made up of client (master) and
zombie programs and is capable of deploying ICMP flood,
SYN flood, UDP flood, and Smurf style attacks. It can also
work as a backdoor and provide an ‘‘on-demand’’ root shell
bound to a TCP port.

Cryptanalysis

Cryptanalysis is an attack that may retrieve secret infor-
mation such as the encryption key from ciphertext
(encrypted message). Four types of cryptanalysis exist.
The ciphertext only cryptanalysis refers to the case where
only ciphertext is available for an attacker. The known
plaintext cryptanalysis refers to the case where a
<plaintext, ciphertext> pair is available. The chosen plain-
text cryptanalysis refers to the case where the attacker
introduces specific plaintext and obtains the corresponding
ciphertext. The chosen ciphertext cryptanalysis refers to
the case where the attacker chooses a ciphertext and
decrypts it with an unknown key in such a scenario as
an unattended decryption machine. The above four cases
are roughly ordered by the amount of information available
to the attacker.

Many concrete cryptanalysis attacks exist. Frequency
analysis is the study of the frequency of letters or groups of
letters in a ciphertext. The method is very useful against
mono-alphabetic ciphers such as the Caesar cipher, which
does not change the plaintext character frequency in the
ciphertext. In English, ‘‘e’’ tends to be common, whereas ‘‘q’’
is rare. Likewise, ‘‘st,’’ ‘‘ng,’’ ‘‘th,’’ and ‘‘er’’ are common pairs
of letters. So if ‘‘m’’ has the highest frequency in the
ciphertext of a mono-alphabetic cipher message, it is highly
possible that ciphertext ‘‘m’’ corresponds to plaintext ‘‘e.’’
Linear cryptanalysis and differential cryptanalysis are two
widely applicable attacks on modern block ciphers.

DEFENSE MECHANISMS

We have discussed a variety of attacks. Various security
systems and protocols have been designed to combat
those attacks. In the following discussion, we introduce
a few of them, which may achieve security goals such as

confidentiality, integrity, authentication, and nonrepu-
diation to different extents.

Kerberos

Kerberos is an authentication system developed at MIT,
which uses secret key cryptography. The system is avail-
able for both UNIX and Windows platforms. The Kerberos
protocol is named after the three-headed dog, Kerberos,
from Greek mythology. The protocol also consists of three
parts: the Key Distribution Center (KDC), the client (also
known as the principal), and the server with the service the
principle wishes to access. The KDC maintains a centra-
lized authentication mechanism and provides two func-
tions: Authentication Service (AS) and Ticket-Granting
Service (TGS).

Kerberos is based on the Needham–Schroeder Protocol
with minor modifications. In Kerberos, if a user wants to
use a service available on a target server, the authentica-
tion follows the following procedure:

1. AS Exchange: The client and KDC share a secret key,
which can be derived from the client password hash.
The client sends a request of Ticket to Get Tickets
(TGT) with her name to KDC. KDC searches for the
client name in the centralized database, and AS
replies to the client request. The AS reply has two
sections: a TGT (encrypted with a key known only to
TGS) and a session key (encrypted with the shared
key between the client and KDC) to handle future
communications between the client and KDC.

2. TGS Exchange: If the client wants to use the service,
she sends the TGT to TGS, which decrypts this TGT.
If approved, a service ticket is generated by TGS and
sent to the client. The service ticket has two portions:
client portion and server portion, both containing the
same secret for the client and the server. The client
decrypts the client portion of the service ticket by
using the TGS session key obtained from the earlier
AS reply. The client blindly sends the server portion
of the TGS reply to the target server.

3. Client/Server Exchange: The server decrypts the
server portion of the service ticket from the client
by using its own long-term key with the KDC. Then
an authentication protocol such as the challenge-
response protocol based on the secret key cryptogra-
phy can be used to authenticate the client. A service
session is then built between the server and client.

IPsec

IPsec (Internet Protocol Security) is a set of protocols that
support secure communication at the network layer. It was
developed by the International Engineering Task Force
(IETF) (5), to provide ‘‘interoperable, high quality, crypto-
graphically-based security’’ for IPv4 and IPv6. IPsec can
provide security services such as access control, connection-
less integrity, data origin authentication, anti-replay ser-
vice, and data confidentiality.

IPsec can be run in two encryption modes: transport
mode and tunnel mode. Transport mode encapsulates only

NETWORK SECURITY FUNDAMENTALS 7



each packet’s payload and provides secure connections
between two endpoints in a network, or an endpoint and
a gateway, if the gateway serves as the destination host.
Tunnel mode encapsulates the entire IP packet (including
not only the payload but also the header) and thus provides
a secure path between two gateways. Tunnel mode is used
to deploy a Virtual Private Network (VPN) as a secure
virtual tunnel that can be established across the untrusted
Internet.

IPsec provides two security services: Authentication
Header (AH) (6) and Encapsulating Security Payload
(ESP) (7). AH provides authentication, integrity, and
optional anti-replay services, whereas ESP may provide
all of the above as well as confidentiality (encryption). AH
and ESP can be used alone or in combination with each
other to provide desired security services.

In AH protocol, an authentication header is inserted
between the IP header and the higher layer protocol header
such as TCP and UDP (transport mode), or between a new
IP header and the original IP header (tunnel mode). The
authentication header contains a cryptographic hash-
based message authentication code over nearly all the fields
of the IP packet.

The ESP header is inserted after the IP header and
before the higher layer protocol header (transport mode)
or before the encapsulated entire IP packet (tunnel mode).

Both ESP and AH rely on security associations (SAs),
which are collections of connection-specific parameters that
specify some shared secrets such as key, algorithm, and
policies to use. These secrets are established to seed the
authentication function and to key the encryption algo-
rithm. SAs are stored in the Security Associations Database
(SADB).

IPsec Key Management

Encryption and authentication keys are used in IPsec for
encoding and decoding. The two parties using IPsec in their
communication share and exchange the keys that their
security protocols use. Key management is an essential
and important issue for IP security. The primary security
protocol that supports this purpose is called ‘‘Internet Key
Exchange’’ (IKE).

IKE allows IPsec-enabled devices to exchange their
security associations to populate their security association
databases. IKE is considered a ‘‘hybrid’’ protocol because it
combines three key management protocols: ISAKMP
(Internet Security Association and Key Management Pro-
tocol), Oakley, and SKEME.

ISAKMP is a generic protocol that supports many
different key exchanges. It also defines the procedures
for authentication, creation and management of SAs, key
generation, and provisions for DoS and replay attacks.

Oakley describes a specific mechanism for key exchanges
through definition of various key exchange modes. The keys
generated usingOakley mightbeused toencrypt data with a
long privacy lifetime, e.g., 20years ormore.Oakley isused to
establish a shared key with an assigned identifier and
associated authenticated identities for the two parties.

SKEME uses a different key exchange mechanism than
Oakley. It provides several modes to perform fast and

frequent rekeying. SKEME provides scalability and flex-
ibility to key exchanges.

Several other key management protocols have been
proposed, such as SKIP and Photuris. SKIP (Simple Key-
management for Internet Protocols) is a key management
protocol for sessionless datagram-oriented protocols such
as IPv4 and IPv6. Photuris is a session-key management
scheme that is used with AH and ESP. Photuris is primarily
used for creating VPNs, establishing sessions for mobile
nodes over bandwidth-limited channels, and short-lived
sessions between a great number of clients and servers.

IP Traceback

DoS has become a pressing problem for today’s Internet.
DDoS has even more impact than DoS because a DDoS
attacker uses many compromised slave systems to increase
the impact when attacking. Highly automated attack tools
have been developed and used to falsify the source ID
supplied in the IP packets (called IP spoofing) obscuring
the origin of the attack. The problem of finding the source of
an IP packet is called IP traceback, and most IP traceback
approaches have targeted DoS attack detection.

A brute force solution to traceback is to have every router
mark every packet or keep a record of each packet as it is
transmitted. However, this solution is not feasible because
of the storage space and performance overhead required.

Most existing IP traceback approaches try to store some
information about packets either in routers along the way
or in the packet itself, and to reduce space and commu-
nication overhead. Some approaches are probabilistic, and
some are deterministic. These approaches fall into four
categories: packet marking, logging, link testing, and
ICMP-based traceback.

Packet marking approaches work by inserting traceback
data into the packet to be traced, to mark the packet when it
passes through routers on its way to the destination. Stefan
Savage et al. (8) proposed a Probabilistic Packet Marking
(PPM). In PPM, routers mark the packet with low prob-
ability (e.g., 1/20,000), with either the router’s IP address or
the edges of the path that the packet has traversed before
reaching the router. When enough packets are received, all
edges and all fragments will be collected to reconstruct the
attack path. The low probability of marking reduces asso-
ciated overhead. Several modified PPM approaches have
also been proposed.

Logging is an intuitive solution to establish the true
origin of attack traffic. It logs packets handled by key
routers throughout the Internet and then uses data mining
approaches to extract information about the attack path.
This approach allows accurate analysis of attack traffic, but
the amount of processing and storage space for the logs is
very demanding.

Link testing methods work through hop-by-hop tracing.
The testing is started from the victim, and upstream links
are tested to determine which one carries the attack traffic.
The testing is recursively repeated until it reaches the
origin of the attack. Link testing can only be carried out
while an attack is active.

The ICMP-based traceback was proposed by Steven
Bellovin. It works by probabilistically sending an ICMP

8 NETWORK SECURITY FUNDAMENTALS



traceback packet to the destination with a low probability
(say, 0.005%). These ICMP packets contain partial path
information, including information that indicates the
origin of the packet, the time when it was sent, and its
authentication. The low probability suppresses the proces-
sing overhead and the bandwidth requirement.

While traceback approaches have been deployed, other
efforts are made to restrict illegitimate packets, such as
ingress filtering. Ingress filtering restricts spoofed packets
at ingress points by blocking traffic except from authorized
source networks that can use the router.

SSL/TLS

Secure Sockets Layer (SSL) and its successor, Transport
Layer Security (TLS), are cryptographic protocols that
provide secure communications on the Internet.

SSL was developed in Netscape Navigator in 1995 and is
now used by both Netscape and Internet Explorer. Many
web services use SSL to protect communications between
clients and servers, especially when clients need to provide
confidential information such as credit card numbers. An
example of the protocols for this service is https. Numerous
other SSL-enhanced protocols (e.g., SSLtelnet, SSLftp, or
stunnel) also take advantage of SSL. Two versions of SSL,
versions 2 and 3 (v1 was only used internally at Netscape
and was never released), are commonly used, and v3 is
rapidly replacing v2.

TLS was developed by the IETF, based on and extending
SSLv3.0. It is not compatible with SSL. TSL 1.1 is the
current approved version of TLS. TLS 1.1 is very similar
to TLS 1.0, but version 1.1 uses a modified format of
encrypted RSA premaster secret, which is done to prevent
an attack found in TLS 1.0.

SSL/TLS runs on top of TCP and beneath application
protocols such as HTTP, FTP, and SMTP. The protocols
use two keys, a public key and a secret key. SSL/TLS
provides security services such as authentication, confi-
dentiality, and integrity. It has two layers: record protocol
and handshake protocol. The record protocol ensures that
communication privacy is protected by using symmetric
encryption and ensures the communication is reliable.
The handshake protocol allows the server to authenticate
itself to the client with public key cryptography and then
allows the negotiation of symmetric cryptographic
keys before the transmission. The reason for using a
combination of public key encryption and symmetric
key encryption is that public key encryption provides
better authentication, whereas symmetric key encryption
provides better performance. The handshake protocol
involves four phases:

1. Hello—the client sends a clientHello message speci-
fying a list of cipher suites, compression methods, and
the highest version it supports. Then the server
chooses from among the connection parameters
that the client has offered and sends the choices
back in a serverHello message.

2. Server key exchange and authentication—the server
sends a certificate and a server_key_exchange mes-
sage. The currently used certificates are based on

X.509, but specifications for the use of OpenPGP
based certificates are also available.

3. Client key exchange and authentication—the client
sends a certificate if the server asked and a client_key
exchange message. A certificate_verify message is
also sent.

4. Finish—client and server send wrap-up messages.

In SSL/TSL, authentication is provided only on the
server’s side. To provide mutual authentication, PKI (pub-
lic key infrastructure) needs to be deployed at the client.

Firewalls

A firewall is a system that sits between a private network
(or a computer) and the rest of the network and attempts to
keep malicious traffic away from the private network. All
traffic entering or leaving the private network must pass
through and be examined by the firewall, which will block
traffic that does not meet the specified security criteria.
Firewalls can provide controlled access to network infor-
mation and protect against risks such as DoS, unauthorized
access, or modification of internal data. Firewalls cannot
protect against internal traffic or traffic that routes around
the firewall.

A firewall can be implemented in hardware or software,
or a combination of both. It must be configured correctly to
function properly. Generally speaking, three types of fire-
wall techniques exist:

Filter—deployed at the ISO network layer. Two types of
filtering exist: packet filtering and session filtering. In
packet filtering, decisions to blocking or transmit is made
on a per-packet basis. No state information is examined or
maintained during the filtering. Therefore, the firewall
does not know whether a packet belongs to an existing
connection or is trying to establish a new one. This type of
firewall is also called stateless. An example of packet filter-
ing is Linux iptables. The firewalls that use session filtering
are stateful firewalls. That is, they extract and maintain
‘‘state’’ information of connections. In session filtering,
decisions are made based on the context of the connection.
If a packet is a new connection, the firewall will check
against security policy; if the packet is part of an existing
ongoing connection, the firewall will look it up in a state
table and an update table, which maintain the state infor-
mation. Filtering is fairly effective and transparent to
users, but it is susceptible to IP spoofing and difficult to
configure.

Circuit-level firewalls (or gateways)—applies security
policies when a TCP or UDP connection is established.
Once the connection has been established, the packets of
the connection will be allowed through without additional
checking. An example of a circuit-level gateway is SOCKS.

Application firewalls (or gateways)—applies security
mechanisms to specific applications, such as telnet, ftp,
or http servers. An application firewall examines packets
more thoroughly and therefore is considered more secure
than a circuit-level firewall. But application firewalls cost
more in terms of money and resources. Another disadvan-
tage of application gateways is that they may not be applic-
able to all types of connections.

NETWORK SECURITY FUNDAMENTALS 9



Both application firewalls and circuit-level firewalls use
proxy servers, which sit between the two hosts or networks
and intercept all messages passing through. External hosts
will establish connections with the proxy server, and the
proxy server performs communications with the internal
hosts. Proxy servers can hide the topology of a private
network so that the external hosts only see the IP address
of the proxy server and can only communicate with the
internal hosts through the proxy. However, transparent
application gateways have been introduced, which means
the internal hosts do not have to be aware of the existence of
a proxy server or to run special software to communicate
with the server.

Secure Email

To understand the necessity of securing e-mail, we need to
review how an e-mail message is sent and received. When a
sender sends an e-mail, the sender’s e-mail client software
such as Thunderbird uses Simple Mail Transport Protocol
(SMTP) to contact the sender’s SMTP server. The sender’s
SMTP server relays the e-mail to the recipient’s SMTP
server, which delivers the e-mail to the inbox of the right
e-mail account. The e-mail may be stored on any inter-
mediate SMTP servers for later forwarding. Then a reci-
pient uses Post Office Protocol (POP) or Internet Message
Access Protocol (IMAP) to download a message stored at the
recipient’s SMTP server. In the case of webmail, the sender
and recipient communicate to their respective SMTP ser-
vers through a webmail server. A sender first uses the
HTTP protocol to put messages on the webmail server,
which contacts its SMTP server for delivery. The recipient
may have a webmail server, which uses POP/IMAP
to download the user message to the webmail server.
Then a recipient may use HTTP to get access to e-mail
messages.

Normal e-mail messages are transmitted on the wire
and stored at intermediate servers in cleartext. SMTP,
POP, IMAP, and webmail may ask a user to input user
name and password, which may lead to identity theft. To
protect the user name and password, SSL should be used
between a user and the corresponding SMTP server. Most
modern SMTP servers and e-mail client software provide
this capability. In the case of webmail, HTTPS should be
used.

SSL only protects the e-mail path between a user and the
corresponding SMTP server. Beyond that, the e-mail is still
stored and transmitted in cleartext. To provide the end-to-
end content protection, we may use S/MIME and PGP. Both
protocols use public key cryptography. Each user has a key
pair <public key, private key>. If Alice wants to send a
message to Bob, Alice uses Bob’s public key to encrypt the
message and Bob uses his private key to decrypt the mes-
sage. E-mail content confidentiality is maintained in this
way. Alice may also use her own private key to create a hash
of the message in order to use as a digital signature to her
e-mail. Then Bob can use Alice’s public key to decrypt the
signature (encrypted email hash), compute his own version
of the e-mail hash, and compare these two hashes. If they
match each other, the message integrity is verified. This

process is called signature verification. Such signatures
also support authentication of Alice and nonrepudiation.

S/MIME is built into many e-mail clients like Microsoft
Outlook, but a certificate needs to be bought from a third-
party company such as Thawte.com or Verisign.com. PGP
is open source and available for free. Enigmail is an exten-
sion to the mail client of Mozilla/Netscape and Mozilla
Thunderbird, which allows users to access the authentica-
tion and encryption features provided by GnuPG for secure
e-mail.

Virtual Private Networks (VPNs)

A VPN is a secure tunnel from a remote site, through the
Internet, to the user’s home network. When a VPN client
logs onto a VPN server within a domain, the client compu-
ter will work as though it is in the same domain as the
server. A VPN server can act as a gateway into a whole
network or to a single computer. It listens for VPN clients
attempting to connect to it. Using VPN, we can transpar-
ently integrate several physically separate working sys-
tems on the Internet as a single (virtual rather than
physical) local network.

A VPN client may communicate with a VPN server with
either of two protocols: the Point-to-Point Tunneling Pro-
tocol (PPTP) or Layer Two Tunneling Protocol with Inter-
net Protocol security (L2TP/IPSec). PPTP has good
encryption coupled with the function of user authentica-
tion. IPSec is safer because of its sophisticated encryption
schemes but does not include authentication routines.
L2TP is IPSec with authentication built in.

There are VPN servers for both Linux and Windows.
Linux uses iptables and other software packages. Setting
up a VPN server on a Windows XP Professional is straight-
forward. Many VPN client software packages exist.

Intrusion Detection

According to Amoroso in Wykrywanie intruzów, ‘‘intrusion
detection is the process of identifying and responding to
malicious activity targeted at computing and networking
resources.’’ An intrusion detection system (IDS) can be
classified based on different criteria. Based on where an
IDS is positioned, there are host based IDS (HIDS) residing
on a single host and protecting that host, network based
IDS (NIDS) monitoring an entire network segment, and
perimeter IDS residing on a gateway or edge router and
monitoring traffic between networks, usually an intranet
and the Internet.

An IDS can also be classified based on intrusion detec-
tion approaches. An IDS may use anomaly detection, so
host or network behaviors deviating from normal daily
routine may be identified as suspicious. An IDS may also
use attack signatures for detection. Packets and software
for attacks often have unique patterns, such as special code
that may cause a specific buffer overflow. Such patterns
serve as the signature of an attack. Different attacks have
different signatures. An IDS using signatures maintains a
database of those signatures. An IDS may analyze audit
trails, log files, processes, and network traffic for anomaly
detection or signature detection.

10 NETWORK SECURITY FUNDAMENTALS



There are a lot of commercial and open-source IDS tools
such as Internet Security Systems’ RealSecure IDS, Cisco’s
Secure IDS, and snort. Snort is a popular network intrusion
open-source package. It allows a user to specify a set of rules
that include the patterns to be detected in packets, along
with corresponding IDS actions such as an alert for
matched packets. A large database of rules for known
attacks is included. Snort also allows the user to create
custom plug-ins to extend detection beyond that available
through the default pattern matching. Snort is used by
many other packages and products. A packet passes
through phases in Snort’s detection engine: packet acquisi-
tion, packet decoder, preprocessor, detection engine, and
intrusion report. Snort is often coupled with a database for
storing alert data and an interface such as the Basic
Analysis and Security Engine (BASE) for user-friendly
alert display and data management.

Digital Forensics

Digital forensics involves obtaining and analyzing digital
information for use as evidence in civil, criminal, and
administration cases. There are a few phases during a
digital forensics process (9): (1) Notification: an incident
is detected, and the response team is informed; (2) preser-
vation: make an exact copy of the digital crime scene; (3)
survey: examine the crime scene for obvious pieces of digital
evidence; (4) search: a more thorough search for additional
evidence to support or refute hypotheses; (5) reconstruc-
tion: test the existing evidence and hypotheses to form a
final theory; and (6) presentation: the final theory is pre-
sented to the parties requesting the investigation.

Digital forensics includes computer forensics and net-
work forensics. Computer forensics is concerned with reco-
vering, searching, and preserving digital evidence from
floppy disk, hard disk, memory, CDs, and other media.
The task of network forensics includes analysis of network
traffic for violation evidence and traceback to the attacker.
This task is where network forensics differs from intrusion
detection, which focuses on detection of intrusions. For
example, in the case of an e-mail Trojan horse, intrusion
detection is concerned with detection and thwarting such a
threat, whereas network forensics is also concerned with
finding the source of the malicious e-mail.

Digital forensics is an active frontier for cyber security.
Researchers and companies have been developing sophis-
ticated software for safely preserving and recovering evi-
dence from digital data. Tools include AccessData’s
Forensic Toolkit (FTK), Digital Intelligence’s Encase For-
ensic Edition, and X-Ways Forensic Addition. These tools
provide an integrated environment for recovering a variety
of evidence such as deleted files from a storage media.

WIRELESS NETWORK SECURITY

Wireless technology provides a user the capability of com-
munication with great flexibility and freedom. Wireless
networks have been rapidly extending their capabilities
and are becoming the communication infrastructure of
choice. Wireless communication channels are also inter-

operable with the traditional Internet. With the increasing
use of wireless technology, the security of wireless net-
works has become a serious concern.

The risk to users of wireless networks has been increas-
ing exponentially as the service becomes more and more
popular. Any security threats that exist in conventional
wired networks also exist for wireless networks. Wireless
networks use open shared media, and in many cases, com-
munication is broadcast, making wireless networks more
vulnerable to attacks such as eavesdropping, DoS (includ-
ing signal jamming on communication channels and bogus
requests and messages injection at the network level),
identity theft, masquerading, and unauthorized access to
wireless devices or networks. Besides these threats, mal-
icious entities can also intrude on the privacy of legitimate
users and track their physical movements.

Wireless networks are usually categorized into three
types based on their coverage range: Wireless Wide Area
Networks (WWANs), Wireless Local Area Networks
(WLANs), and Wireless Personal Area Networks (WPANs).
WWANs include wide area technologies such as 2G cellu-
lar, Global System for Mobile Communication (GSM), Cel-
lular Digital Packet Data (CDPD), and Mobitex.

The IEEE 802.11 standard, the original WLAN stan-
dard, was first developed in 1997 to support medium-range,
higher data rate applications and to address mobile and
portable stations. The standard uses WEP and WPA to
protect it security.

Wired Equivalency Privacy (WEP) was the original
encryption standard for wireless communications. WEP
comes in different key sizes. The commonly used key
lengths are 128 and 256 bits. WEP intended to make
wireless networks as secure as wired networks, but secur-
ity flaws have been discovered and exploited. A demonstra-
tion held by a group from the FBI showed that publicly
available tools can be used to break a WEP protected net-
work, and it took only three minutes. WEP protection is
better than nothing, but deployment of WPA encryption
can be more secure.

WPA stands for Wi-Fi Protected Access. It is an early
version of the 802.11i security standard and was developed
by the WiFi Alliance to replace WEP. WPA has two
improvements over WEP: improved data encryption
through the temporal key integrity protocol (TKIP), and
it provides user authentication, which is generally missing
in WEP, through extensible authentication protocol (EAP).

Bluetooth is an industrial specification for WPAN. Blue-
tooth dynamically connects remote devices such as PDAs,
cell phones, and laptops. Bluetooth provides security ser-
vices such as authentication, confidentiality, and author-
ization. As with the 802.11 standard, Bluetooth does not
address other security services such as nonrepudiation or
audit. Bluetooth offers several security modes, and device
manufacturers determine which mode to include in a Blue-
tooth-enabled device.

Besides wireless cellular networks that rely on an infra-
structure of non-mobile access points (such as base sta-
tions), wireless networks without infrastructure, a mobile
ad hoc network (MANET), have also been widely studied.
MANETs are defined as peer-to-peer networks between

NETWORK SECURITY FUNDAMENTALS 11



mobile devices that do not have an access point in between.
Mobile ad hoc networks are characterized by the absence of
a fixed infrastructure, rapid topology change, and high
node mobility. Absence of infrastructure makes ad hoc
networks more difficult to secure, because it is hard to
deploy control points. Additionally, limits on energy con-
sumption, computation resources, and bandwidth force ad
hoc network security mechanisms to be lightweight in
both computation and communication. Asymmetric crypto-
graphy is usually considered too expensive for MANETs.
Symmetric cryptographic algorithms and one-way func-
tions are commonly used to protect data integrity and
confidentiality.

A wireless sensor networks (WSN) is a large-scale
mesh network that consists of a great number of small
sensor nodes communicating via radio. WSNs can be
applied in areas such as military, home, and health.
Compared with ad hoc networks, WSNs tend to have
even more rapidly changing topology, even severe con-
straints on power, computation, and space. Communica-
tions in sensor networks are usually broadcast, whereas
most communication in an ad hoc network is point-to-
point. End-to-end encryption is impractical in sensor net-
works. Usually hop-by-hop encryption mechanisms are
used, in which sensor nodes store encryption keys with
their immediate neighbors.

ACKNOWLEDGMENT

The book chapter is a brief survey of network security
fundamentals. During the writing, we have referred to
many online sources, articles, and books. We thank those
authors for their brilliant work.

BIBLIOGRAPHY

1. B. Kaliski, The MD2 Message-Digest Algorithm (Request for
Comments: 1319), 1992. Available: http://www.ietf.org/rfc/
rfc1319.txt.

2. D. Eastlake, 3rd, P. Jones, US Secure Hash Algorithm 1
(SHA1) (Request for Comments: 3174), 2001. Available:
http://www.ietf.org/rfc/rfc3174.txt.

3. K. Zeilenga, LDAP Authentication Password Schema (Request
for Comments: 3112), 2001. Available: http://www.ietf.org/rfc/
rfc3112.txt.

4. M. Kaeo, Designing Network Security, Second Edition, Indi-
napolis: 2003.

5. S. Kent, R. Atkinson, Secutiry Architecture for the Internet
Protocol (Request for Comments: 2401), 1998. Available: http://
www.ietf.org/rfc/rfc2401.txt.

6. S. Kent, R. Atkinson, IP Authentication Header (Request for
Comments: 2402), 1998. Available: http://www.ietf.org/rfc/
rfc2402.txt.

7. S. Kent, R. Atkinson, IP Encapsulating Security Payload
(ESP) (Request for Comments: 2406), 1998. Available: http://
www.ietf.org/rfc/rfc2406.txt.

8. S. Savage, D. Wetherall, A. Karlin, T. Anderson, Practical
network support for IP traceback, in Proceedings of the Con-
ference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, Stockholm, Sweden,
2000, pp. 295–306.

9. B. D. Carrier and J. Grand, A hardware-based memory acqui-
sition procedure for digital investigations, Journal of Digital
Investigations, 1: 2004.

FURTHER READING

C. Kaufman, R. Perlman, and M. Speciner, Network Security:
Private Communication in a Public World, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall, 2002.

R. Russell (ed.), D. Kaminsky, R. F. Puppy, J. Grand, K2, D.
Ahmad, H. Flynn, I. Dubrawsky, S. W. Manzuik, and R. Permeh,
Hack Proofing Your Network, 2nd ed. New York, Syngress, 2002.

J. Beale, A. R. Baker, B. Caswell, and M. Poor, Snort 2.1 Intrusion
Detection, 2nd ed. New York: Syngress, 2004.

C. Prosise, K. Mandia, M. Pepe, Incident Response and Computer
Forensics, 2nd ed. New York: McGraw-Hill, 2003.

G. Hoglund and G. McGraw, Exploiting Software: How to Break
Code. Reading, MA: Addison-Wesley, 2004.

J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. ‘‘noir’’ Eren, N. Mehta,
and R. Hassell, The Shellcoder’s Handbook: Discovering and
Exploiting Security Holes. New York: Wiley, 2004.

D. A. Wheeler, Secure Programming for Linux and Unix
HOWTO, 2006. Available: http://www.dwheeler.com/secure-pro-
grams/Secure-Programs-HOWTO/.

W. G. Kruse II and J. G. Heiser, Computer Forensics: Incident
Response Essentials, Reading, MA: Addison-Wesley, 2002.

STEVEN GRAHAM

XINWEN FU

Dakota State University
Madison, South Dakota

BIN LU

West Chester University of
Pennsylvania

West Chester, Pennsylvania

12 NETWORK SECURITY FUNDAMENTALS



O

OPTICAL COMMUNICATION

Optical communication is a form of telecommunication that
uses light as the transmission medium.

For most of human history, long-distance communica-
tion posed many challenges. Optical communication in its
primitive form played a crucial role. In ancient China, the
beacon towers on hilltops of the Great Wall that spans more
than 4000 miles often played a key role in military com-
munication in ancient war times. Once the enemy pressed
toward the border, the signal from the beacon tower would
be sent by beacon (fires or lanterns) during the night or by
smoke signals in the daytime. When the city of Troy fell, the
ancient Greeks learned the news from a system of fire
beacons on adjacent islands that carried a prearranged
signal nearly 400 miles. In the eighteenth century, a
French visionary named Claude Chappe built a series of
towers, each adorned with giant arms that could be clearly
seen with a telescope from adjacent towers. These arms
would be positioned differently to represent the various
letters of the alphabet, and in this fashion, messages could
be passed from tower to tower and across the whole of
France. Over 100 years ago, Alexander Graham Bell
invented the ‘‘photophone,’’ an ingenious system that
was beyond his time for sending sound on a light beam.
This important invention is recognized as the progenitor of
the modern fiber optical communication that carries an
increasing amount of the world’s telecommunication
traffic.

Today, optics-enabled visual communication is still
widely used in our daily lives. For example, aircrafts use
the landing lights at airports to land safely, especially at
night and under adversary weather conditions. Aircrafts
landing on an aircraft carrier use a similar system to land
correctly on the carrier deck. Ships often use a signal lamp
to signal in Morse code or use international maritime signal
flags to exchange messages. Distress flares are used by
sailors in emergencies, whereas lighthouses and naviga-
tion lights are used to communicate navigation hazards.

In general, an optical communication system consists of
a transmitter or a light source that encodes a message into
an optical signal, a channel, or a waveguide that carries the
signal to its destination, and a receiver that reproduces the
message from the received optical signal. The modern
guided optical communication is based on the light’s total
internal reflection principle, explained by the Snell’s Law,
which has been known for centuries and was used to
illuminate streams of water in elaborate public fountains
in Victorian times. The development of modern optical
communication is indebted to technological breakthroughs
and improvements realized in several areas: light source—
LED and laser, materials and the manufacturing of low-
loss lightwave guides—optical fibers, and other compo-
nents and devices essential for effective optical transmis-
sion and communication as well as sophisticated
electronics and signal processing techniques.

Optical fiber offers much higher bandwidths [nearly 50
terabits per second (Tb/s)] than copper cables and is less
susceptible to various kinds of electromagnetic interfer-
ences and other undesirable effects. It possesses a lot of nice
properties: low signal attenuation (as low as 0.2 dB/km),
low signal distortion, low power requirement, low material
usage, small space requirement, and relatively low cost.
Optical fiber transmission has played a key role in increas-
ing the bandwidth of telecommunications networks, espe-
cially in the last 20 years as the Internet has penetrated our
daily lives. In the first-generation optical networks, optical
fiber was used purely as a transmission medium, serving as
a replacement for copper wires, and all the switching and
processing of the bits were handled by electronics. These
optical networks are widely deployed today in all kinds of
telecommunications networks. Examples of first-genera-
tion optical networks are SONET (synchronous optical
network) and SDH (synchronous digital hierarchy) net-
works, which form the core of the telecommunications
infrastructure in North America and in Europe and Asia,
respectively, as well as a variety of enterprise networks.
Incorporating some switching and routing functions that
were performed by electronics into the optical part of the
network, the second-generation and future generation opti-
cal networks are capable of providing more functions than
simple point-to-point transmission, for example, lightpath
service, dynamic service provisioning, and so on. Optical
communication networks will essentially serve as optical
transport networks (OTNs) that enable everything over
optics integration, e.g., IP over WDM (wavelength division
multiplexing) integration, leading to the building of the
next-generation optical Internet.

The applications of optical communication are abun-
dant, including short-distance interconnection inside com-
puters, digital optical audio cables, optical transport
networks, backhaul networks that carry traffic and net-
work control information between wireless base stations
and other network elements, medical applications (such as
gastroscope, endoscopy, and laparoscopic surgery), indus-
trial fiberscope or borescope for inspecting anything hard to
reach (such as jet engine interiors), and fiber-to-the-curb
(FTTC) or fiber-to-the-home (FTTH) as a solution to the
first-mile problem.

There are two main types of optical communications
based on the medium or optical waveguide that optical
signals traverse: (1) fiber optical communication and (2)
free-space optical communication.

THE BASIC COMPONENTS

The research on optical communications was started sub-
stantially in 1960 by the invention of the laser and followed
by studies simultaneously in three facets: light source,
transmission line, and light detector. The optical commu-
nication system is composed of optical fiber to transmit
light, laser to emit light, photodiode to detect light, and

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



various optic components to control the flow of light signals.
In particular, the optical fiber has provided significant
motive power to the growth of optical communications,
because of its low loss and enormous capacity of signal
transmission in the single mode fiber, excellent mechanical
properties such as small diameter, and adequate tensile
and bending strength.

Optical Fiber

The optical fiber works on the principle of total internal
reflection. Total internal reflection is an optical phenom-
enon that occurs when light crosses materials with differ-
ent refractive indices. When the light in the material with a
larger refractive index strikes the medium boundary with a
large enough angle of incidence with respect to the norm,
the light will stop crossing the boundary altogether and
instead totally reflect back internally. The development of
optical fiber as the waveguide for effective signal transmis-
sion did not occur until the 1950s. At that time, researchers
focused on the development of fiber bundles for image
transmission, primarily for medical applications such as
flexible gastroscopes. The first fiber optic semiflexible gas-
troscope was invented by Basil Hirschowitz, C. Wilbur
Peters, and Lawrence E. Curtiss, researchers at the Uni-
versity of Michigan in 1956. Initially, optical fibers had
relied on air as the low-index cladding material. During
the development of the gastroscope, simply bundling a
large number of such optical fibers together resulted in
the loss of total internal reflection as well as the image
transmitted. This loss prompted Curtiss to invent the first
glass-clad fibers that use a layer of low-index glass as the
cladding material that wraps the high-index glass core
(Fig. 1).

However, fiber attenuation that light dims significantly
after passing through just a few meters of glass was a big
problem. In 1965, Charles K. Kao and George A. Hockham,
then of British company Standard Telephones and Cables,
first recognized that attenuation of contemporary fibers
was caused by impurities in glass rather than by funda-
mental physical effects such as scattering, and they sug-
gested how signal loss could be greatly reduced so that
optical signals could run for kilometers instead of just a few
meters. In a paper published in 1966, they reported, in

concrete terms, on the potential of massive optical commu-
nications, through estimation of transmission capacity of
optical fiber and transmission distance derived from the
magnitude of expected loss and acceptable light power.
They demonstrated that optical fiber could be a practical
medium for communication if the attenuation could be
reduced below 20 dB per kilometer. Subsequently,
researchers Robert D. Maurer, Donald Keck, Peter Schultz,
and Frank Zimar of American glass maker, Corning, Inc.,
developed a low-loss optical fiber with 17-dB/km optic
attenuation in 1970 by doping silica glass with titanium,
to make a long stride to the commercialization of low-loss,
large-capacity optical fiber communication. In 1977, Gen-
eral Telephone and Electronics (GTE) sent the first live
telephone traffic through fiber optics in Long Beach, Cali-
fornia. The first transatlantic telephone cable using optical
fiber went into operation in 1988.

Optical fiber is a composite material constructed of two
layers of glass or plastic (Fig. 1). Typically optical fiber
consists of a silica-based core and cladding surrounded by
one or two layers of polymeric material that provides
mechanical protection of the glass surface. The inner layer,
the core, has a higher refractive index than the outer layer,
the cladding. Light injected into the core and striking the
core-to-cladding interface at greater than the critical angle
will be reflected back into the core. Two basic types of fiber
exist: multimode fiber and single-mode fiber. Figure 1
shows a typical single-mode fiber with component layers.
A mode is a path that a light signal takes through a fiber.
Modes result from the fact that light will only propagate
in the fiber core at discrete angles within the cone of
acceptance.

Multimode Fiber

A multimode fiber is one in which the guided light ray takes
different paths through the fiber. Multimode fiber, the first
to be manufactured and commercialized, is best designed
for short transmission distances. This type of fiber has a
core diameter from 50 mm to 85 mm, much larger compared
with single-mode fiber, and therefore it is easier to couple
light into the core of multimode fiber than of single-mode
optical fiber. The most common multimode fiber deployed in
the late 1970s and early 1980s had a core diameter of 50 mm.
The large core allows many modes or rays of light to
propagate. Therefore, light entering the fiber at the same
time may arrive at the other end at slightly different times,
which results in the light being spread out, a phenomenon
called modal dispersion(1). The effect of modal dispersion is
that the signal (i.e., the digital pulse) becomes smeared as it
travels down the fiber. Today, multimode fiber is used
almost exclusively for private premises systems in which
distances are usually less than 1 km.

Single-Mode Fiber

A way to eliminate modal dispersion is to reduce the core’s
diameter until the fiber will propagate only one mode
efficiently; i.e., the energy of the light signal travels in
the form of one mode. A single-mode fiber is one in which
the guided light ray takes one path through the fiber. The

Figure 1. A typical single-mode optical fiber with diameters of
the component layers.

2 OPTICAL COMMUNICATION



diameter of single-mode fiber is only 8–10 mm. Single-mode
fiber allows for a higher capacity to transmit information
because it can retain the fidelity of each light pulse over
longer distances and exhibits no dispersion caused by
multiple modes. Single-mode fiber also enjoys lower fiber
attenuation than multimode fiber. Like multimode fiber,
early single-mode fiber was generally characterized as
step-index fiber, which means the refractive index of the
fiber core is a step above that of the cladding rather than
graduated as it is in graded-index fiber. Modern single-
mode fibers have evolved into more complex designs such as
matched clad, depressed clad, and other exotic structures.
Because of the smaller core diameter, coupling light into the
core of single-mode fiber is more difficult. The requirements
for other single-mode connectors and splices are also much
more demanding. Single-mode fiber suffers from chromatic
dispersion (1) in that different wavelengths of light travel at
different speeds in the fiber, or the spectral components of
the pulse travel at different speeds, which makes the optical
signal smeared as it travels down the fiber.

Three basic classes of single-mode fiber are used in
modern telecommunications systems. The oldest and
most widely deployed type is non-dispersion-shifted fiber
(NDSF). These fibers were initially intended for use near
1310 nm because of zero-dispersion property in the 1310-
nm region. Later, 1550-nm communication systems made
NDSF fiber undesirable because of its very high chromatic
dispersion at the 1550 nm wavelength. To address this
shortcoming, fiber manufacturers developed dispersion-
shifted fiber (DSF) that exhibits zero dispersion in the
1550-nm region. However, when multiple, closely spaced
wavelengths in the 1550-nm region were transmitted in the
dense wavelength division multiplexing (DWDM) systems,
DSF exhibits serious nonlinearities as data rates, power,
and number of channels increase. A new class of fibers, non-
zero-dispersion-shifted fibers (NZ-DSF), was developed to
address the problem of nonlinearities. The fiber is available
in both positive and negative dispersion varieties and is
rapidly becoming the fiber of choice in new fiber deploy-
ment, especially for DWDM systems.

Although most fibers are made of silica glass, low-cost
plastic fibers can be made of polymers that are cheap
materials and allow a simple production by extrusion.
Plastic optical fibers have found widespread applications
in consumer markets (e.g., home networks), the automotive
and aircraft industry, and so on.

One of optical fiber’s key performance properties is fiber
attenuation that characterizes the decay of light signal’s
strength as it travels down the fiber. Figure 2 shows the
spectral attenuation performance of typical silica-based
multimode fiber and single-mode fiber. Notice the two
low-loss wavelength windows: 1310-nm and 1550-nm
regions. The 1550-nm window is preferred for long-haul
transmission because of its low attenuation, width, and the
availability of optical amplifiers.

Light Source

Light is part of the electromagnetic spectrum. In optical
communication and networking, the practice is to use
wavelength rather than frequencies to define an optical
channel. The wavelength is usually measured in nan-
ometers (nm) or micrometers (mm). The relationship
between frequency and wavelength of a signal is given
by Frequency (in Hertz) = Speed of light in a vacuum (in
meters/second) / Wavelength (in meters). Therefore, the
higher the frequency of the signals, the shorter the wave-
lengths. For example, a frequency of 192.1 THz operates
with a wavelength of 1560.606 nm, whereas a frequency of
194.7 THz operates with a wavelength of 1539.766 nm.
Three low-loss windows in the 0.8-, 1.3- and 1.55-mm infra-
red wavelength bands are used for optical communication
because optical fibers transmit infrared wavelengths with
less attenuation and dispersion.

Many different types of light sources can be used for
optical communication. The most important one is the
laser. A laser (light amplification by stimulated emission
of radiation), first demonstrated in 1960, is an optical
source that emits photons in a coherent beam (1). The early
lasers were multilongitudinal mode (MLM) Fabry-Perot
lasers. These MLM lasers emit light over a fairly wide
spectrum of several nanometers to tens of nanometers.
The actual spectrum consists of multiple discrete spectral
lines, which can be thought of as different longitudinal
modes, hence, the term MLM. For high-speed optical com-
munication systems, the spectral width of the source must
be as narrow as possible to minimize the effects of chromatic
dispersion. Likewise, a narrow spectral width is also
needed to minimize cross-talk among channels in WDM
systems. A single-longitudinal mode (SLM) laser emits a
narrow single-wavelength signal in a single spectral line
that reduces the spectrum of the transmitted optical signal

900 1000 1100 1200 1300 1400 16001500

Wavelength (nm)

Multimode

Single-mode

OH absorption peak

0.5

1

1.5

2

2.5

3

3.5

O-band 1260 nm to 1360 nm
E-band 1360 nm to 1460 nm
S-band 1460 nm to 1530 nm
C-band 1530 nm to 1565 nm
L -band 1565 nm to 1625 nm
U-band 1625 nm to 1675 nm

Figure 2. Fiber spectral attenuation perfor-
mance.

OPTICAL COMMUNICATION 3



to close to its modulation bandwidth. The penalty from
chromatic dispersion is significantly reduced. Lasers
have been used as transmitters and to pump or power
optical signal amplifiers. Semiconductor lasers are the
most popular light sources for optical communication sys-
tems.

A distributed-feedback (DFB) laser is a laser where the
whole cavity or resonator consists of a periodic structure,
which acts as a distributed reflector in the wavelength
range of laser action, and contains a gain medium that
compensates for the resonator losses. The DFB laser struc-
ture, which excels in wavelength precision, ensures stable
single-wavelength oscillations of laser emissions. DFB
lasers are required in almost all high-speed transmission
systems today.

A tunable laser is a device that can tune over a range of
wavelengths. The following tuning mechanisms are typi-
cally used: (1) Injecting current into a semiconductor laser
causes a change in the refractive index of the material,
which in turn changes the lasing wavelength; (2) tempera-
ture tuning; and (3) mechanical tuning that is used in lasers
that use a separate external cavity mechanism. Some
successful types of widely tunable lasers are the super-
structure grating distributed Bragg reflector laser
(SSGDBR), the grating-assisted codirectional coupler
with sampled grating reflector laser (GCSR), and the
sampled grating DBR laser (SGDBR) (2). All of these
devices are capable of continuous tuning ranges greater
than 40 nm. Another way to obtain a tunable laser source is
to use an array of wavelength-differentiated lasers and
turn one of them on at any time; e.g., an array of DFB
lasers can be fabricated, each of them at a different wave-
length. Tunable lasers are highly desirable components for
WDM networks because fewer lasers are needed to support
a multichannel WDM system and network operators need
to stockpile fewer spare ones in the event that transmitters
fail in the field and need to be replaced. Tunable lasers are
also one key enabler of reconfigurable optical networks as
well as for optical packet-switched networks, where data
need to be transmitted on different wavelengths on a
packet-by-packet basis.

Light-emitting diodes (LEDs) (1,3) provide a cheaper
alternative to laser in many applications where the com-
munication data rates are low and distances are short. An
LED is a forward-biased pn-junction in which the recom-
bination of the injected minority carriers (electrons in the p-
type region and holes in the n-type region) by the sponta-
neous emission process produces light. The light output of
an LED has a fairly broad continuous spectrum of several
nanometers to tens of nanometers. LEDs are not capable of
producing high-output powers, and typical output powers,
are on the order of �20 dBm. They cannot be directly
modulated at data rates higher than a few hundred mega-
bits per second. A laser provides higher output power than
an LED and therefore allows transmission over greater
distances.

Detector

A receiver converts an optical signal into a usable electrical
signal. Photodetectors perform the opposite function of

light emitters (1,3). The most common detector is the
semiconductor photodiode, which produces current in
response to incident light. Detectors operate based on the
principle of the pn-junction. An incident photon striking the
diode gives an electron in the valence band sufficient energy
to move to the conduction band, which creates a free
electron and a hole. If the creation of these carriers occurs
in a depleted region, the carriers will quickly separate and
create a current. As they reach the edge of the depleted
area, the electrical forces diminish and current ceases.
Because the pn-diodes are insufficient detectors for fiber
optic systems, to improve the efficiency of the photodetec-
tor, both p-i-n(PIN) photodiodes and avalanche photodiode
(APDs) are designed to compensate for the drawbacks of the
pn-diode. Once the detector converts optical signals back
into electrical currents proportional to the incident optical
power, the currents are then amplified to a usable level and
fed to the decision circuit of the digital communication
system that estimates the data bits from the electrical
currents received. This process depends on the modulation
schemes used at the transmitters.

Modulation

The process of imposing data on the optical signal is called
modulation. The most widely used modulation scheme for
optical communication is called on-off keying (OOK), where
the light signal is turned on or off, depending on whether
the data bit is 1 or 0. Other forms of modulation include
return-to-zero (RZ) modulation, phase shift keying (PSK)
modulation, frequency shift keying modulation, and so on.
OOK modulation can be realized in two ways: (1) by direct
modulation of a semiconductor laser or an LED, where the
drive current to the light source is turned on or off based on
whether the data bit is 1 or 0; and (2) by using an external
modulator. Direct modulation is simple; its application is,
however, limited to certain types of lasers. Direction mod-
ulation will result in a phenomenon wherein the carrier
frequency of the transmitted pulse varies with time, which
causes a broadening of the transmitted spectrum. In exter-
nal modulation, an OOK external modulator is placed in
front of a light source and turns the light signal on or off
based on the data to be transmitted, whereas the light
source itself is continuously operated. External modulators
become essential in transmitters for communication sys-
tems using other forms of modulation, e.g., RZ modulation.
Two types of external modulators are widely used today:
lithium niobate modulators and semiconductor electro-
absorption (EA) modulators. A summary of reported mod-
ulator results is provided in Ref. (4), which takes into
account design considerations and applications. In Ref.
(5), a tandem electroabsorption modulator with an inte-
grated semiconductor optical amplifier is developed that is
capable of both non-return-to-zero and return-to-zero data
transmission at 40 Gb/s.

Optical Fiber Amplifier

One milestone in the evolution of optical fiber communica-
tion systems was the development of erbium-doped fiber
amplifiers (EDFAs) in the late 1980s and early 1990s,
which are capable of amplifying signals at many wave-

4 OPTICAL COMMUNICATION



lengths in the 1550-nm window simultaneously in the
optical domain and therefore reduces the cost of long-dis-
tance fiber systems by eliminating the need for optical-
electro-optical regenerators. This technology enables the
transmission capacity of optical communication systems to
be significantly increased by using multiple wavelength
channels simultaneously through wavelength division
multiplexing (WDM). Under WDM, the optical transmis-
sion spectrum is carved up into several nonoverlapping
wavelength bands, with each wavelength supporting a
single communication channel. WDM provides the ability
to turn on capacity quickly by lighting up new wavelengths
in fibers already deployed. WDM systems with EDFAs are
widely deployed today and are achieving capacities over
1Tb/s on a single fiber. Other types of optical amplifiers
exist, each suitable for a spectral range; e.g., thulium-doped
fiber amplifiers can be used for amplification in the S band
around 1460–1530 nm, praseodymium-doped fiber ampli-
fiers are for the 1.3-mm window, neodymium and ytterbium
fiber amplifiers are for 1-mm laser sources, and Raman
amplifiers can potentially generate gain in very different
large wavelength regions.

Other Components

Various other optic components have been developed to
control the flow of light signals. Optical filters are devices
for selecting wavelengths from optical signals. Optical
filters are essential components to construct multiplexers
and demultiplexers used in WDM terminals wherein multi-
plexers combine wavelength channels into a single optical
signal before transmission and demultiplexers extract indi-
vidual wavelength channels from the optical signal after
reception. Multiplexers and demultiplexers can be cas-
caded to realize static wavelength crossconnects (WXCs).
The device routes signals from an input port to an output
port based on the wavelength. Dynamic WXCs can be
constructed by combining optical switches with multiplex-
ers and demultiplexers such that wavelengths of signals
from an input port can be dynamically selected and routed
to an output port. Many different technologies are available
to realize optical switches (1): (1) mechanical switches, e.g.,
using a mirror arrangement whereby the switching state is
controlled by moving a mirror in and out of the optical
path; (2) two-/three-dimensional (2-D/3-D) micro-electro-
mechanical system (MEMS) switches (6,7); (3) bubble-
based waveguide switches; (4) liquid crystal switches; (5)
electro-optic switches; and (6) thermo-optic switches.
Among the various technologies, the 3-D-MEMS beam
steering mirror technology offers the best potential for
building large-scale optical switches.

Optical switches are used inside WXCs to reconfigure
them to provision lightpath, a circuit-switched end-to-end
optical channel. Multiplexers and demultiplexers are com-
ponents for constructing wavelength add/drop multiplex-
ers (WADMs), devices used in WDM systems for mixing and
routing different channels of light into or out of a single
mode fiber. ‘‘Add’’ and ‘‘drop’’ refer to the capability of the
device to add one or more new wavelength channels to an
existing multiwavelength WDM signal, or to remove one or
more channels, routing those signals to another network

path. A wavelength converter is a device that converts data
from one incoming wavelength to another outgoing wave-
length. Wavelength converters can be used to improve the
utilization of the available wavelengths on the network
links.

OPTICAL FIBER COMMUNICATION

Evolution of Optical Fiber Transmission System

The construction of a communication network, which has
and will continue to bring forth an extensive social innova-
tion from the past decades to this new millennium, owes
very much to the recent progress in the communication
technologies. Above all, the development of optical fiber
communication technology, which allows transmitting a
large quantity of information over longer distance at
reduced cost, has intensively promoted the progress. The
evolution of an optical communication system has gone
through several generations (1,8) (Fig. 3).

Early systems of the late 1970s through the early 1980s
used LEDs or MLM laser transmitters in the 0.8- and 1.3-
mm wavelength bands and multimode fibers, which enables
the signal to be transmitted for a reasonable distance before
the signal needs to be regenerated every few kilometers
(e.g., 10 km) through an optical-electro-optical regenera-
tion process. During regeneration, the receiver converts the
incoming optical signal to an electrical signal. The signal is
amplified, reshaped by sending it through a logic gate, and
retimed. Retiming is a bit-rate-specific function. This signal
is then modulated and retransmitted using a light source.
This regeneration with reshaping and retiming completely
resets the effects of nonlinearities, fiber dispersion, and
amplifier noise; moreover, it does not introduce additional
noise. Regenerators were expensive devices and continue to
be expensive today. The distance between regenerators is
limited because of attenuation and modal dispersion. These
early systems operated at bit rates ranging from 32 to 140
Mb/s. Such systems are still used for low-cost computer
interconnection at a few hundred megabits per second over
a few kilometers, e.g., fiber channels for connecting com-
puter servers to shared storage devices and for intercon-
necting storage controllers and drives.

The next generation of systems deployed starting
around 1984 used MLM lasers in the 1.3-mm wavelength
band and single-mode fiber that eliminates modal disper-
sion, therefore dramatically increasing the bit rates and
distances possible between regenerators. Typically, the
regenerator spacing in these systems is about 40 km or
higher, limited primarily by fiber attenuation, and a few
hundred megabits per second of bit rates are achieved. With
improved optical fiber—single-mode fiber and laser as the
transmitters—in the late 1980s, a new generation of sys-
tems in the 1.55-mm lower loss wavelength window was
deployed. This generation increased the span between
regenerators further. However, the data bit rates were
limited by chromatic dispersion, which did not exist in
the 1.3-mm band. This effect was offset by the development
and deployment of dispersion-shifted fibers as well as by
using SLM lasers that transmit pulses with significantly

OPTICAL COMMUNICATION 5



reduced spectrum width. As a result, data bit rates were
increased to more than 1 Gb/s.

The invention of EDFA optical amplifiers made it fea-
sible to deploy a new generation of WDM systems, taking
advantage of EDFA amplification of signals at many wave-
lengths simultaneously in the optical domain. The capacity
increase of optical communication systems experienced a
quantum leap. Instead of increasing the bit rate alone,
using WDM, more than one wavelength can be used for
transmission concurrently while the bit rate on individual
wavelength channel can remain unchanged or be further
increased. WDM techniques can thus be used to bridge the
mismatch between electronic speeds and that of fiber equip-
ment. Fewer regenerators are needed because, at a regen-
erator location, a single optical amplifier can replace an
entire array of expensive regenerators, one per fiber.
Another advantage of optical amplification is protocol
transparency. WDM systems allow incremental capacity
upgrade on demand. Starting in the mid-1990s, WDM
systems with EDFAs were deployed. Today, almost all
long-haul carriers have widely deployed amplified WDM
systems. Transmission bit rates on a single channel have
risen to 10–40 Gb/s. High-capacity amplified terabits/sec-
ond WDM systems have hundreds of channels at 10 Gb/s
with distances between electrical regenerators extending
to a few thousand kilometers. Nowadays, achievable trans-
mission capacity continues to grow while the cost per bit
transmitted per kilometer continues to get lower to a point
where it has become practical for carriers to price circuits
independently of the distance.

Optical Fiber Networks

Early deployment of optical data communication networks
included metropolitan area networks, such as the 100-Mb/s
fiber distributed data interface (FDDI), and networks to
interconnect mainframe computers, such as the enterprise
serial connection (ESCON). At the same time, synchronous
optical network (SONET), a standard for connecting fiber
optic transmission systems, was proposed by Bellcore in the
middle 1980s. SONET defines a hierarchy of interface rates
that allow data streams at different rates to be multiplexed.
SONET establishes optical carrier (OC) levels from 51.8

Mbps (OC-1) to 9.95 Gbps (OC-192). Prior rate standards
used by different countries specified rates that were not
compatible for multiplexing. With the implementation of
SONET, communication carriers throughout the world can
interconnect their existing digital carrier and fiber optic
systems.

Today, a public network can be divided into a long-haul
network and a metropolitan or metro network. The metro
network spans a large campus or a region, typically reach-
ing tens to a few hundred kilometers. The long-haul net-
work interconnects different regional networks and can be
as large as a few thousand kilometers. The metro network
consists of a metro access network and a metro interoffice
network. The access network extends from a central office
out to individual businesses or homes as far as a few kilo-
meters away, mostly collecting traffic from customer loca-
tions into the carrier network. The metro interoffice
network interconnects central offices within a region. Opti-
cal fiber pairs and WDM technology have been used as the
links in both the long-haul and the metro networks. Ring
topologies have been widely deployed because of their
simplicity and low cost and their ability to offer an alter-
native path to reroute traffic in case of failure. Metro access
networks are almost exclusively ring based. In long-haul
networks, mesh topologies are getting more attention
recently because they offer more alternative paths and
can be more resource efficient if properly managed. In
many cases, a mesh network is actually implemented in
the form of interconnected ring networks.

Point-to-Point WDM Systems

Driven by the increasing demands on communication band-
width, WDM technology has been widely deployed for
point-to-point communications in the Internet infrastruc-
ture. When the bandwidth demand exceeds the capacity in
existing fibers, WDM can be more cost-effective than laying
more fibers, especially over a long distance because more
wavelength channels can be lit up as necessary. The
trade-off is between the cost of installation/burial of addi-
tional fibers and the cost of additional line terminating
equipment.

Figure 3. Evolution of optical fiber transmis-
sion systems.

Receiver

EDFA amplifies all wavelengths

Receiver

Receiver

Transmitter

Transmitter

Transmitter WDM multiplexer

SLM laser

WDM demultiplexer

~10 km

Regenerator - 3R (Reamplify, Reshape, and Retime)

ReceiverTransmitter

LED

Multimode fiber

MLM laser

ReceiverTransmitter

Single-mode fiber

1.3 µm

ReceiverTransmitter

SLM laser
1.55 µm

Receiver

Receiver

Receiver

Transmitter

Transmitter

Transmitter

ReceiverReceiver

ReceiverReceiver

ReceiverReceiver

TransmitterTransmitter

TransmitterTransmitter

TransmitterTransmitter

ReceiverTransmitter ReceiverReceiverTransmitterTransmitter

ReceiverTransmitter ReceiverReceiverTransmitterTransmitter

ReceiverTransmitter ReceiverReceiverTransmitterTransmitter

6 OPTICAL COMMUNICATION



Broadcast-and-Select Local Area Optical WDM Networks

A broadcast-and-select local area WDM optical network
consists of nodes connected by two-way fibers via a passive
star coupler. Nodes are equipped with fixed tuned or tun-
able transceivers. A node’s transmission over an available
wavelength is received by the star coupler, which combines
the received transmission with signals from other sources.
The combined signal power is equally split and forwarded to
all of the nodes on their receive fibers. A node’s receiver then
tunes to a wavelength agreed upon between the transmit-
ter and the receiver using a distributed protocol. Two types
of network architecture are possible (9): (1) single-hop archi-
tecture where a transmitter and a receiver communicate
directly via the coupler; and (2) multi-hop architecture
where information is forwarded via nodes in the network.

Metro Optical Ring Networks

Much of today’s optical ring networks are built around
SONET rings. A pair of fibers is used in unidirectional
path-switched ring (UPSR) where one fiber is used as the
working fiber and the other as the protection fiber. Traffic
from node A to node B is sent simultaneously on the work-
ing fiber in the clockwise direction and on the protection
fiber in the counterclockwise direction. As a result, if a link
fails on one fiber, node B will be able to receive from the
other fiber. The bidirectional line-switched ring (BLSR)
connects adjacent nodes through one or two pairs of optical
fibers, which corresponds to BLSR/2 and BLSR/4, respec-
tively. BLSRs are much more sophisticated than UPSRs by
incorporating additional protection mechanisms. Unlike a
UPSR, working traffic in a BLSR can be carried on different
fibers in both directions and is routed along the shortest
path in the ring. Half of the capacity of each fiber is reserved
for carrying the protection traffic in BLSR/2. In the event of
a link failure, the traffic on the failed link is rerouted along
the other part of the ring using the protection capacity
available in the two fibers. A BLSR with four fibers (i.e.,
BLSR/4) uses a pair of fibers for protection and employs a
span switching protection mechanism first. If a transmitter
or receiver on a working fiber fails, the traffic is routed on
the protection fibers between the two nodes on the same
span. BLSRs provide spatial reuse capabilities by allowing
protection capacity to be shared between spatially sepa-
rated connections. BLSRs are significantly more complex to
implement than UPSRs because of the extensive signaling
required between the nodes. The WDM technology has
provided the ability to support multiple SONET rings on
a single fiber pair by using wavelength add/drop multi-
plixers (WADMs) to separate the multiple SONET rings.
This tremendously increases the capacity as well as the
flexibility of the optical ring networks. However, additional
electronic multiplexing equipment is needed, which dom-
inates the cost component and needs to be minimized via
traffic grooming (10).

Wavelength-Routed Optical Networks

The massive increase in network bandwidth from WDM
has heightened the need for faster switching at the core of

the network (i.e., long-haul networks) to move from point-
to-point WDM transmission systems to an all-optical back-
bone network that eliminates the need for per-hop packet
forwarding. Wavelength-routed networks have been a
major focus area since early 1990s. Wavelength-routed
networks are considered to be an ideal candidate for
wide area backbone networks.

A wavelength-routed network physically consists of
several optical cross-connects (OXCs) or wavelength rou-
ters, taking an arbitrary topology. Each wavelength router
takes in a signal at each wavelength at an input port and
routes it to a particular output port, independent of the
other wavelengths. The wavelength routers may also be
equipped with wavelength converters that allow the optical
signal on an incoming wavelength of an input fiber to be
switched to some other wavelength on an output fiber link.
The basic mechanism of communication in a wavelength-
routed network is a lightpath. A lightpath is an all-optical
communication channel that may span more than one fiber
link between two nodes in the network. The intermediate
nodes in the physical fiber path route the lightpath in the
optical domain using the wavelength routers. If no wave-
length converters are used, a lightpath must use the same
wavelength on each hop of its physical fiber link, which is
known as the wavelength continuity constraint. However, if
converters are available, a different wavelength on each
fiber link may be used to create a lightpath. A fundamental
requirement of a wavelength-routed optical network is that
two or more lightpaths traversing the same fiber link must
use different wavelengths so that they do not interfere with
each other. The end-nodes of the lightpath access the light-
path with transmitters and receivers that are tuned to the
wavelength used by the lightpath.

Because of limitations on the number of wavelengths
that can be used, and hardware constraints at the network
nodes, it is not possible to set up a lightpath between every
pair of source and destination nodes. The particular set of
lightpaths that are established on a physical network con-
stitutes the virtual topology or logical topology. Careful
design of virtual topologies over a WDM network is to
combine the best features of optics and electronics. The
trade-off is between bandwidth flexibility and electronic
processing overhead. The traffic on the lightpath does not
have to undergo optoelectronic conversion at intermediate
nodes. Traffic delay can be reduced through the use of
virtual topologies and appropriate routing. However,
because lightpaths are circuit-switched, forming lightpaths
locks up bandwidth in the corresponding links on the
assigned wavelength. A good virtual topology trades
some ample bandwidth inherent in the fiber to obtain a
solution that is the best of both worlds. Different virtual
topologies can be set up on the same physical topology,
which allows operators to choose or reconfigure a virtual
topology that achieves the best network performance given
network conditions such as average traffic between net-
work nodes.

Passive Optical Networks

The access network or first-mile network, once called the
last mile, connects the service provider central offices to

OPTICAL COMMUNICATION 7



business and residential subscribers. Currently, a variety
of technologies and services are in use: dial-up service, DSL
technology, cable modem, point-to-point microwave radio,
and metro wireless access networks, which suffer from
several drawbacks, e.g., limited reachable distances, lim-
ited data rates (shared in the case of cable TV network), and
so on. Subscribers demand first-mile access solutions that
are broadband and offer low-cost media-rich services.
Fiber-to-the-home solution is still costly in most cases.
To alleviate the problems and minimize fiber deployment
cost, passive optical networks (PONs) (11,12) deploy a
remote switch close to the subscribers’ neighborhood and
use a point-to-multipoint optical network with no active
elements in the signals’ path from source to destination.
PONs allow for a long reach (over 20 km) between central
offices and customer premises and much higher bandwidth
per customer. All transmissions in a PON are performed
between an optical line terminal (OLT) and optical network
units (ONUs). The OLT resides in the central office, con-
necting the optical access network to the metro network.
The ONUs are located at the customer location. From OLT
to ONUs, a PON is a point-to-multipoint broadcast network
(Fig. 4), and in the reverse direction, it is a multipoint-to-
point network (Fig. 5) where bandwidths are shared by, for
instance, TDM.

Ethernet is an inexpensive technology that is ubiquitous
and interoperable with a variety of legacy equipment, and it
is a logical choice for an IP data-optimized access network.
The IEEE P802.3ah Ethernet in the First Mile Task Force
completed its work with the approval of IEEE Std 802.3ah-
2004 on Ethernet PON (EPON). An Ethernet PON (EPON)
is a PON that carries all data encapsulated in Ethernet
frames. PONs use a single wavelength in each of the two
directions, and the wavelengths are multiplexed on
the same fiber through coarse WDM. For example, the
Ethernet PON (EPON) uses the 1490-nm wavelength for
OLT to ONUs (downstream) traffic and the 1310-nm wave-
length for ONUs to OLT (upstream) traffic. An enhance-
ment of the PON supports an additional downstream
wavelength, which may be used to carry video and cable
TV services separately. PONs are in the initial stages of
deployment in many parts of the world to support con-
verged IP video, voice, and data services. In the near future,

WDM-PONs in which multiple wavelengths may be sup-
ported in either or both upstream and downstream direc-
tions may become commercialized as technologies and
markets mature (12).

FREE-SPACE OPTICAL COMMUNICATION

Invented in the 1970s, free-space optics (FSO) (13), fiber-
optic communication without the fiber, is an optical com-
munication technology that uses low-power light propagat-
ing in free space to transmit two-way data between two
points at gigabit-per-second rates (Fig. 6). Small-scale FSO
systems have already been installed around the world. The
reinvigoration of FSO is from the demand of advanced
bandwidth-intensive services and applications as well as
the inability of traditional copper wires and coaxial cables
to keep up with the gigabits-per-second capacity needed in
the first mile. Traditional fiber-oriented access networks
incur high installation costs. Commercially available FSO
equipment provides data rates much greater than those of
digital subscriber lines or coaxial cables—from 10 Mb/s to
1.25 Gb/s. In addition, FSO systems can cost one third to
one tenth the price of conventional underground fiber optic
installations. Moreover, an FSO link can be up and running
in a matter of days, whereas it could take 6 to 12 months to
lay optic cables.

The operational principle of FSO is essentially the same
as that of fiber optical communication. Similarly, FSO can
also support multiple channels using WDM. The narrow
transmitted infrared light beam suffers from beam disper-

OLT

ONU1

ONU2

ONU3

12 2 3 12 2 3

1
2

2
3

1
2

2
3

user3

user1

user2

1

2 2

3

Header Payload FCS

802.3 Frame

2 2

Figure 4. Downstream traffic of Ethernet over passive optical
networks.

OLT

ONU1

ONU2

ONU3

2 2

user3

user1

user2

1

2 2

3

1

3

2 2 3

1

Header Payload FCS

802.3 Frame

Time slot

2 22 2

11

111

33

2 22 2 33

111

802.3 Frame802.3 Frame

Time slot

Figure 5. Upstream traffic of Ethernet over passive optical
networks.

Figure 6. Free-space optical communication link connecting two
office buildings.

8 OPTICAL COMMUNICATION



sion where the light beam diverges over distance to form a
cone with a fairly large breadth, rapidly reducing the
amount of energy collectable by the receiver and energy
received decreases inversely with the square of the dis-
tance. The lasers’ limited power restricts their range to up
to a few kilometers. Another critical issue is to align the
light transmitter and receiver. As the light beam is narrow,
alignment is affected easily by building sway and the
thermal expansion and contraction of materials. Therefore,
automatic active tracking systems are necessary that use
movable mechanical platforms with feedback controls for
regular adjustment to keep the transmitter and receiver on
target in both directions, which adds complexity and cost to
the FSO systems.

When used in vacuum, for example, for inter-space craft
communication, FSO may provide similar performance to
that of fiber optic systems. However, for terrestrial applica-
tions, the distance and data rate of FSO connections are
highly dependent on atmospheric conditions. FSO links are
prone to frequent failures caused by atmospheric absorp-
tion. Fog is vapor composed of water droplets, which are
only a few hundred microns in diameter but can modify
light characteristics or completely hinder the passage of
light through a combination of absorption, scattering, and
reflection. Fog causes significant loss of received optical
power with 10–100 dB/km, which considerably limits the
maximum range of an FSO link. This optical attenuation
factor scales exponentially with distance. Rain and snow
have little effect on FSO technology. Scintillation and
pollution (smog) also cause varying degrees of attenuation.
These factors result in an attenuated receiver signal and
lead to higher bit error rates (BERs). Physical obstructions
such as flying birds or construction cranes can temporarily
block a single-beam FSO system, but this tends to cause
only short interruptions, and transmissions are easily and
automatically resumed.

To overcome these issues, solutions such as multibeam
or multipath architectures are devised, which use more
than one transmitter and more than one receiver. Each
optical transceiver node can be set up to communicate with
several nearby nodes in a network arrangement. Some
state-of-the-art devices also have larger fade margin
(e.g., extra power, reserved for rain, smog, and fog). Spe-
cifically, to increase the link range/reliability and network
availability, FSO systems can be designed with limited link
lengths as part of an interconnected optical mesh topology
that connects FSO nodes. Each FSO node is equipped with
multiple transceivers. These transceivers allow the nodes
to communicate with nearby neighbors. Traffic generated
by the clients of these nodes is ultimately relayed by the
multihop optical mesh to the wired access infrastructure,
e.g., a fiber ring add/drop multiplexer or an end-office
switch. In addition to requiring a few optical transceivers,
each repeater station in a mesh system must contain an
electronic switch to combine (multiplex) the traffic from the
local clients with that beamed from other nearby FSO nodes
and to route traffic between the wired access infrastructure
and each client served in the network. One approach to the
reliable operation of a low-cost, free-space optical mesh is
adequate density of switching nodes. If the density is
sufficiently high, the length of each optical link will be

sufficiently small such that fog attenuation can be negli-
gible and mechanical tolerances can be loose. The FSO link
expenses associated with tight link margins (e.g., pointing
accuracy, optical beam-width, focusing, high-power lasers,
and sensitive photo-receivers) can be eliminated or signifi-
cantly reduced. The mesh topology can also be connected to
several different locations of the wired access infrastruc-
ture, thereby providing greater overall capacity of the net-
work. Intelligent routing and network management, e.g.,
multipath routing, can be implemented to choose a path for
each FSO node’s traffic through the mesh that passes
through one of the system’s outlets to the wired access
infrastructure. Should a link fail, traffic would be redir-
ected along an alternative path, making use of redundant
routes and thereby facilitating rapid recovery from equip-
ment failures. By reserving some unallocated capacity on
each optical link, the network designer can ensure that
sufficient capacity exists to reroute and recover from single-
or multiple-link failures that might occur. The network
reliability and availability can be further boosted by com-
bining 60-GHz microwave radio with FSO because severe
rain (which might cause a radio link failure) and dense fog
(which might cause an FSO link failure) do not exist
simultaneously, and microwave radio has some advan-
tages, e.g., a longer distance and less attenuation by fog.
Linking these two technologies, high access capacity can be
economically and reliably delivered over a wide service
area.

The advantages of FSO are many, including quick link
setup, license-free operation, high transmission security,
high bit rates, protocol transparency, and no interference.
FSO is useful where physically connecting transmit and
receive locations is difficult or economically prohibitive.
The applications of FSO networks are abundant. FSO
can be used for constructing community wireless networks
where the network should largely self-configure and have
robust connectivity, scalable network capacity, and low
capital cost. Optical wireless networks are emerging as a
viable, cost-effective technology for rapidly deployable
broadband sensor communication infrastructures. The
use of directional, narrow beam, optical wireless links
provides great promise for secure, extremely high data
rate communication between fixed or mobile nodes, which
is very suitable for sensor networks in civil and military
contexts. FSO can also be used for communications between
spacecrafts, including elements of a satellite constellation.

ADVANCED TOPICS

Many areas of optical communication and networking are
under intensive research and development. For example,
integrated optics is to develop miniaturized optical devices
of high functionality on a common substrate. The state-of-
the-art of integrated optics is still far behind its electronic
counterpart. Today, only a few basic functions are commer-
cially feasible. However, a growing interest exists in the
development of more and more complex integrated optical
devices. New types of fibers are still being developed. The
emerging field of photonic crystals led to the development of
photonic crystal fiber, which guides light by means of

OPTICAL COMMUNICATION 9



diffraction from a periodic structure, rather than total
internal reflection. The first photonic crystal fibers became
commercially available in 1996. Photonic crystal fibers can
be designed to carry a higher power than conventional fiber,
and their wavelength-dependent properties can be manipu-
lated to improve their performance in certain applications.
The Internet Engineering Task Force (IETF) is investigat-
ing the use of Generalized Multi-Protocol Label Switching
(GMPLS) and related signaling protocols (14) to set up and
tear down lighpaths as well as for traffic engineering.
GMPLS is an extension of Multi-Protocol Label Switching
(MPLS) that supports multiple types of switching, includ-
ing switching based on wavelength (a.k.a. Multi-Protocol
Lambda Switching). With GMPLS, the OXC backbone net-
work and the IP/MPLS subnetworks will share common
functionality in the control plane, which makes it possible
to seamlessly integrate all-optical networks within the
overall Internet infrastructure. Various protection and
restoration schemes and protocols for increasing the survi-
vability and availability of WDM optical networks have
been developed (1). Traffic grooming (10,15), dynamic ser-
vice provisioning, and support for multicast services in
optical networks are also active areas of research in both
academia and industry. Finally, new network architectures
such as optical burst switching (OBS) and optical packet
switching (OPS) are currently under active research,
experimentation, and evaluation.

FURTHER READING

W. Grover, Mesh-Based Survivable Networks: Options and Stra-
tegies for Optical, MPLS, SONET and ATM Networking. Upper
Saddle River, NJ: Prentice-Hall PTR, 2003.

U. Black, Optical Networks: third Generation Transport Systems.
Upper Saddle River, NJ: Prentice Hall, 2002.

S. Dixit (ed.), IP over WDM: Building the Next Generation Optical
Internet. Hoboken, NJ: Wiley, 2003.

A. Somani, Survivability and Traffic Grooming in WDM Optical
Networks. Cambridge, UK: Cambridge University Press, 2006.

C. Ye, Tunable External Cavity Diode Lasers. London: World
Scientific, 2004.

BIBLIOGRAPHY

1. R. Ramaswami and K. N. Sivarajan, Optical Networks: A
Practical Perspective, 2nd ed.San Francisco, CA: Morgan Kauf-
mann, 2002.

2. B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren,
Widely tunable sampled grating DBR laser with integrated
electroabsorption modulator, IEEE Photonics Technol. Lett.,
11 (6): 638–640, 1999.

3. G. E. Keiser, Optical fiber Communications, 3rd ed., Boston,
MA: McGraw-Hill, 2000.

4. R. C. Alferness, Waveguide electrooptic modulators, IEEE
Trans. Microwave Theory Techniques, 30 (8): 1121–1137, 1982.

5. B. Mason, A. Ougazzaden, et al, 40-Gb/s tandem electroabsorp-
tion modulator, IEEE Photonics Technol. Lett., 14 (1): 27–29,
2002.

6. L. Lin, E. L. Goldstein, R. W. Tkach, On the expandability of
free-space micromachined optical cross connects, J. Lightwave
Technol., 18 (4): 482–489, 2000.

7. T. Yamanoto, J. Yamaguchi, N. Takeuchi, A. Shimizu, E.
Higurashi, R. Sawada, and Y. Uenishi, A three-dimensional
MEMS optical switching module having 100 input and 100
output ports, IEEE Photonics Technol. Lett., 15 (10): 1360–
1362, 2003.

8. B. Mukherjee, WDM optical communication networks: Pro-
gress and challenges, IEEE J. Selected Areas Commun., 18
(10): 1810–1824, 2000.

9. B. Mukherjee, Optical Communication Networks. New York:
McGraw-Hill, 1997.

10. E. Modiano, Traffic grooming in WDM networks, IEEE Com-
mun. Mag., 39 (7): 124–129, 2001.

11. IEEE 802.3ah Ethernet in the First Mile Task Force. Home
page. http://www.ieee802.org/3/efm/public/index.html, August
2006.

12. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer,
K. Kim and B. Mukherjee, Wavelength-division-multiplexed
passive optical networks (WDM-PON) technologies for broad-
band access: A review, OSA J. Optical Networking, 4 (11): 737–
758, 2005.

13. Free Space Optics Technology. Home page. http://www.free-
spaceoptics.org/freespaceoptics/default.cfm, August 2006.

14. IETF Common Control and Measurement Plane Working
Group. Home page. http://www.ietf.org/html.charters/ccamp-
charter.html, August 2006.

15. K. Zhu, B. Mukherjee, A review of traffic grooming in WDM
optical networks: Architecture and challenges, Optical Net-
works Mag., 4 (2), 2003.

BIN WANG

Wright State University
Dayton, Ohio

10 OPTICAL COMMUNICATION



P

PARALLEL AND VECTOR PROGRAMMING
LANGUAGES

A parallel programming language is a formal notation for
expressing algorithms. The meaning of this notation can be
defined by appealing to a parallel computational model.

Parallel programming languages have more compli-
cated data and control models than sequential program-
ming languages. The data model in sequential languages is
that of the random access machine (RAM) model in which
there is a single address space of memory locations that can
be read and written by the processor. The analog in parallel
languages is the shared-memory model in which all mem-
ory locations reside in a single address space and are
accessible to all the processors (the word processors in
this article always refers to the logical processors in the
underlying parallel execution model of the language and
not to hardware processors). A more decoupled data model
is provided by the distributed-memory model in which each
processor has its own address space of memory locations
inaccessible to other processors. The choice of the data
model determines how processors communicate with
each other—in a shared-memory model, they communicate
by reading and writing shared locations, but in a distrib-
uted-memory model, they communicate by sending and
receiving messages.

The control model in a parallel programming language
determines how processors are coordinated. The simplest
parallel control model is lock-step (vector) synchronization.
At every step of program execution, each processor is either
turned off or is required to perform the same operation as all
other processors. The active processors at each step work on
different data items, so this control model is also called the
single-instruction–multiple-data (SIMD) model. SIMD-
style parallel execution can be exploited in performing
vector operations like adding or multiplying the elements
of a set of vectors. Bulk synchronization is a more decoupled
control model in which processors synchronize occasionally
by using a barrier instruction. No processor is allowed to
execute a statement past a barrier until all processors have
arrived at that barrier. Between the execution of successive
barrier statements, processors are autonomous and may
execute different operations. Bulk synchronization can be
used to exploit the data parallelism that arises when a
function f is applied to each of the elements of a data
structure such as a vector. All evaluations of f can be
performed in parallel, so processors synchronize only at
the beginning and end of this computation. Since f may
have conditionals inside it, the processors may end up
performing different computations, which is permitted in
the bulk synchronous model. The most decoupled form of
synchronization is fine-grain synchronization in which two
or more processors can synchronize on their own whenever
they need to, without involving other processors. This form
of parallel execution is sometimes called multiple-instruc-
tion–multiple-data (MIMD) parallelism. The MIMD model

is appropriate for exploiting task parallelism, which arises
when autonomous computations (tasks) can execute con-
currently, synchronizing only for exclusive access to
resources or for coordinating access to data that is being
produced and consumed concurrently by different tasks.

Figure 1 classifies the languages discussed in this article
according to their control and data models. A survey of
parallel programming languages can be found in Ref. 1.

LOCK-STEP SYNCHRONOUS PARALLEL LANGUAGES

Lock-step (SIMD) parallel languages are used mainly to
program vector and array processors for performing scien-
tific computations in which matrices are the primary data
structures. Not surprisingly, most of these languages are
extensions of FORTRAN. Programs in these languages
contain a combination of scalar and vector operations.
On array processors such as the Connection Machine
CM-2 (Thinking Machines) (2) the scalar operations are
usually performed by a front-end high-performance work-
station, while the vector operations are performed on the
array processor. Vector processors such as the CRAY pro-
cessor (3) can execute both scalar and vector instructions.
Therefore, the key problem in designing a SIMD language
is to design constructs that expose as many vector opera-
tions as possible to the compiler.

Shared-Memory SIMD Languages

The simplest vector operations involve the application of an
arithmetic or boolean function to each element of an array
(or arrays), thus computing the sum of two arrays by
elements. These operations can be expressed quite simply
by overloading arithmetic and boolean operators. For
example, the FORTRAN-90 (4) statement C ¼ A þ B spe-
cifies that the sum by elements of arrays A and B is to be
stored into array C.

In many applications, however, vector operations must
be performed on some but not all of the elements of an array.
For example, in solving partial differential equations, it may
be necessary to apply one operator to points in the interior of
the domain and a different one to points at the boundaries.
Operator overloading is not sufficient to permit the expres-
sion of conditional vector operations, so a variety of con-
structs for describing sparse index sets have been invented.

Many SIMD languages provide the programmer with
constructs for specifying the array section on which the
vector operation is to be performed. One approach is to use
control vectors, first introduced in the Burroughs Illiac IV
FORTRAN language (5)—a value of true in a control vector
indicates that the vector operation should be performed for
the corresponding data element. An asterisk indicates a
control vector of arbitrary length in which all elements are
true. The following code shows the use of control vectors in
this language. The first array statement adds the elements
of the A and C arrays pointwise and assigns the results to A.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Because only the odd elements of B are true, the second
array assignment adds only the odd elements ofA andC and
assigns the results to odd elements of A.

do 10 i ¼ 1, 100,2
B(i) ¼ .true.
B(i þ 1) ¼ .false.

10 continue
A(�) ¼ A(�) þ C(�)
A(B(�)) ¼ A(B(�)) þ C(B(�))

An important special case of conditional vector opera-
tions is constant-stride vector operations in which the
elementary operations are applied to every kth element
of the vector(s) for some integer k. On many vector compu-
ters, it is difficult to generate efficient code for these opera-
tions if control vectors are used. The operands and results of
vector operations are usually stored in memory, so it is
usually not worth performing an arithmetic operation in
vector mode unless the loads and stores can also be done in
vector mode. However, some computers [such as the CRAY-
1 and CRAY-2 (3)] permit only constant-stride loads and
stores from memory. Unless the compiler can determine
that the true entries in a control vector occur with a fixed
stride, it is forced to generate scalar loads and stores.

The IBM VECTRAN language (6) addressed this pro-
blem by introducing array triplets, which can describe
many constant-stride array sections. An array triplet con-
sists of three expressions separated by colons and specifies
the start, end, and stride of the range of execution of a
statement. If the stride is 1, the last expression and its
preceding colon can be omitted. There is an obvious simi-
larity between triplets and the specification of DO loop
index sets in FORTRAN. The following code shows a use
of triplets. After the last statement is executed, A(2) con-
tains 1, A(4) contains 2, etc. Multidimensional arrays can
be handled by using a triplet for each dimension of the
array. Array triplet notation is also used in other array
languages like MATLAB (7) and FORTRAN-90 (4).

do 10 i ¼ 1, 10
10 A (i) ¼ i
A(2:10:2) ¼ A(1:5)

Although triplet notation is powerful, it is not a replace-
ment for control vectors since it cannot describe arbitrary
index sets. Therefore, VECTRAN supplemented the triplet
notation with where statements, an example of which is
given below.

where (A(1:100) .LT. 0)
A(1:100) ¼ � A(1:100)

otherwise
A(1:100) ¼ 0.0

endwhere

The where statement first evaluates a logical array
expression. Statements in the body of where are executed
for each index for which the logical array expression is true,
while statements in theotherwise clause are executed for
indices for which the logical expression is false. The clauses
can contain only assignment statements where statements
are in FORTRAN-90 as well.

The approaches described so far for expressing condi-
tional vector operations are data-oriented in the sense they
require the programmer to specify the array section on
which the vector operation must be performed. A comple-
mentary approach is to embellish the control constructs in
the language. One such construct, which was introduced in
the IVTRAN language (8), is theforall statement in which
the sparse index set is specified in terms of the control
variables of the loop. The following code shows an example
of its use. The loop has a two-dimensional index space in
which all iterations can be performed in parallel, and in each
iteration (i, j), the assignment is performed if A(i, j) is
less than zero. Note that the forall construct permits
assignment to constant-stride array sections such as diag-
onals, which cannot be described using triplet notation.

forall (i ¼ 1:100:2, j ¼ 1:100, A(i, j) .LT.
0)
A(i, j) ¼ B(i, j)

Although reduction operations such as adding all the
elements of a vector can also be done in vector mode,
shared-memory SIMD languages have traditionally not

Figure 1. A classification of parallel programming languages.

2 PARALLEL AND VECTOR PROGRAMMING LANGUAGES



had constructs to support these operations. However, most of
them provide library routines that can be invoked by the
programmer to perform reduction operations in vector mode.

Other shared-memory vector languages are LRLTRAN
(9) from Lawrence Livermore Laboratories, BSP FOR-
TRAN (10) from Burroughs, and Cedar FORTRAN (11)
from the University of Illinois, Urbana. Cedar FORTRAN
permitted the expression of both SIMD and MIMD paral-
lelism. None of these languages, other than FORTRAN-90
and MATLAB, is in use.

Distributed-Memory SIMD Languages

The CM-2 machine (2) from Thinking Machines was a dis-
tributed-memory array processor and its assembly lan-
guage, called Paris (parallel instruction set) (12), had
FORTRAN,C,andLisp interfacesthatpermitprogrammers
towritehigh-level languageprogramswithPariscommands
embedded in them. The resulting languages were called
FORTRAN/Paris, C/Paris, and Lisp/Paris, and they are
examples of distributed-memory SIMD languages.

The programming model of Paris has an unbounded
number of virtual processors (VPs) that can be configured
into Cartesian grids of various sizes. Each VP has local
memory for storing data, a context flag that controls instruc-
tion execution, and a unique address that can be used by
other VPs to send it messages. Each VP can perform the
usual arithmetic and logical operations, taking operands
from its local memory and storing the result back there (one
of the operands can be an immediate constant that is
broadcast from the front-end processor). The execution of
these operations can be made conditional on the context
flag. Interprocessor communication is performed by execut-
ing the send instruction. Since processors operate in lock
step, a separate instruction for receiving messages is not
required; rather, the execution of the send instruction
results in data transfer from the source VP to the destina-
tion VP. Therefore, the send instruction has to specify the
address of the receiving processor and the memory
addresses of the source and destination locations of the
message. A given VP may receive messages from several
other VPs during a send operation. If so, the data in these
messages can be combined using a reduction operator
specified in the send instruction. A noteworthy feature
of Paris is that it was the first SIMD language to include
a rich set of instructions for performing global reductions
and parallel prefix operations on data stored in the VPs.

BULK SYNCHRONOUS PARALLEL LANGUAGES

Lock-step synchronization provides a simple programming
model but it can be inefficient for programs with many
data-dependent conditionals. Since processors operate in
lock step, every processor must participate in the execution
of both clauses of a conditional statement even though it
performs computations in only one of the clauses. Bulk
synchronization is a more relaxed synchronization model
in which processors execute instructions autonomously but
must rendezvous at intervals by executing a barrier instruc-
tion. No processor can execute an instruction past a barrier

until all processors have arrived at that barrier. The inter-
val between two successive barriers is called a superstep.

The requirement that all processors rendezvous at all
barriers means that the most natural approach to program-
ming in this model is to require all processors to execute the
same program even though they can take different paths
through that program to arrive at the same sequence of
barrier instructions. This approach is sometimes called
single-program–multiple-data (SPMD) parallelism, but
this term has been abused sufficiently that we will not
use it any further in this article.

Bulk synchronization is appropriate for exploiting data
parallelism in programs. The simplest kind of data paralle-
lism arises when a function is applied to each element of a
data structure (like mapcar in LISP). A more subtle form of
data parallelism arises when an associative operation such
as addition or multiplication is used to combine all the
elements of a data structure together. There is a well-known
parallel algorithm (‘‘tree reduction’’) for performing this
operation in time proportional to the logarithm of the num-
berofelements inthedatastructure (13).Dataparallelismis
also present in the computation of parallel prefix operations.

Shared-Memory Bulk Synchronous Languages

We use High-Performance FORTRAN (HPF) (14) as our
example. HPF is somewhat unique among parallel lan-
guages in that it was designed by a group of no less than 50
researchers. It has two parallel loop constructs called the
FORALL loop and the INDEPENDENT directive for expres-
sing bulk synchronous parallelism. The body of the FOR-
ALL must consist of a sequence of assignments without
conditionals or invocations of general procedures,
although side-effect functions, declared to be PURE func-
tions, can be invoked in a FORALL. These functions can
contain conditionals. There is an implicit barrier at the
end of every statement in a FORALL. The semantics of the
FORALL is that all iterations of the first statement can be
executed concurrently, and when these are completed, all
iterations of the second statement can be executed con-
currently, and so on. The right hand side of each state-
ment is fully evaluated before the assignment is
performed.

The INDEPENDENT directive before a DO loop tells the
compiler that the iterations of the loop can be done in
parallel since they do not effect each other. There is an
implicit barrier at the end of the loop but loop iterations do
not have to be synchronized in any way. This directive is
often used to expose opportunities for parallel execution to
the compiler, as shown in the following code. TheNEW clause
asserts that J is local to the outer loop. Iterations of the
outer loop can be executed concurrently if the values of
IBLACK(I) are distinct from the values of IRED(J) and if
the IBLACK array does not have repeated values. This
information cannot be deduced by a compiler, so the INDE-
PENDENT directive is useful for conveying this information.

!HPF$ INDEPENDENT, NEW(J)
DO I ¼ 1, N
DO J ¼ IBEGIN(I), IEND(J)
X(IBLACK(I)) ¼ X(IBLACK(I)) þ X(IRED(J))

PARALLEL AND VECTOR PROGRAMMING LANGUAGES 3



END DO
END DO
In HPF, the assignment of computational work to pro-

cessors is not directly under the control of the programmer.
Instead, it relies on a combination of data-distribution
directives and compiler technology to produce code with
good locality, as described in Refs. 15 and 16. The two basic
distributions are block and cyclic distributions. Block dis-
tributing an array gives each processor a set of contiguous
elements of that array; if there are p processors and n array
elements, each processor gets a contiguous block of n/p
elements. In a cyclic distribution, successive array ele-
ments are mapped to successive processors in a round-robin
manner; therefore, element i is mapped to processor i mod
p. HPF also supports a block–cyclic distribution in which
blocks of elements are dealt to processors in a round-robin
manner. The compiler can exploit data distributions in
assigning work by assigning an iteration to a processor if
that processor has most of the data required by that itera-
tion. Alternative strategies like the owner-computes rule
(16) are also popular.

An HPF program for computing p is shown below. It
approximates the definite integral

R
1

0
4/(1 þ x2) dx by

using the rectangle rule, computing the value of (1/n)
Sn

i¼1 4/{1 þ [(i � 0.5)/n]2}. In this program, n is chosen to
be 1000. SUM is a built-in function for computing the sum of
the elements of a distributed array.

PURE REAL FUNCTION F(X)
REAL, INTENT(IN) :: X
F ¼ 4.DO/(1.DO þ X�X)
END FUNCTION F
PROGRAM COMPUTE_PI
REAL TEMP(1000)

!HPF$ DISTRIBUTE TEMP(BLOCK)
WIDTH ¼ 1.DO/1000
FORALL (I ¼ 1:1000)
TEMP(I) ¼ WIDTH � F((I � 0.5DO)�WIDTH)
END FORALL
T ¼ SUM(TEMP)
END

A second version of HPF called HPF-2 with support for
irregular computations and task parallelism has been
defined. IBM, PGI, DEC (now Compaq), and other compa-
nies have HPF compilers targeted to distributed-memory
computers like the IBM SP-2 computer. However, the
quality of the compiler-generated code is relatively poor
in comparison to handwritten parallel code, and source-
level performance prediction has proved to be difficult since
performance depends greatly on decisions about interpro-
cessor communication made by the compiler (17). For these
reasons, interest in HPF is on the wane.

Distributed-Memory Bulk Synchronous Languages

The first theoretical study of bulk synchronous models was
done by Valiant, who proposed the bulk synchronous par-
allel (BSP) model (18) as a bridging model between parallel
hardware and software. A parallel machine in the BSP
model has some number of processors with local memories,

interconnected by a routing network. The computation
consists of a sequence of supersteps; in each superstep, a
processor receives data sent by other processors in the
previous superstep, performs local computations, and
sends data out to other processors that receive these
data in the following superstep. A processor may send
and receive any number of messages in each superstep.
Consecutive supersteps are separated by barrier synchro-
nization of all processors. Communication is therefore
separated from synchronization.

Although BSP is a model and not a language, a number
of libraries that implement this model on a variety of
parallel platforms have been written (19,20). In this article,
we describe the BSP Green library (19), which provides the
following functions:

1. void bspSendPkt(int pid, const bspPkt
�pktPtr): Send a packet to the process whose
address is pid; the data to be sent are at address
pktPtr.

2. bspPkt �bspGetPkt(): Receive a packet sent in the
previous superstep; returns NULL if all such packets
have already been received.

3. void bspSynch(): Barrier synchronization of all
processors.

4. int bspGetPid(): Return the process ID.

5. int bspGetNumProcs(): Return the number of pro-
cesses.

6. bspGetNumPkts(): Return the number of packets
sent in the previous superstep to this process that
have not yet been received.

7. bspGetNumStep(): Return the number of the cur-
rent superstep.

The first three functions are called fundamental func-
tions since they implement the core functionality of the BSP
model, and the last four are called supplemental functions.
This set of functions is somewhat limited, and a more user-
friendly library would provide other supplemental func-
tions such as one to perform reductions, while remaining
true to the BSP spirit. For example, the BSPLib project
(http://www.BSP-Worldwide.org/) includes support for
one-sided communication and high-performance unbuf-
fered communication.

The following program (from Ref. 19) uses the BSP
Green library functions to perform a trivial computation
with three processors connected logically in a ring. Each
processor sends the value of a local variableA to its neighbor
in the ring and then performs a local computation with the
value it receives. This takes two two supersteps. Note that
some of the code (such as the calls to memcpy) is at a fairly
low level of abstraction. The philosophy behind the decision
to expose such details to the programmer is that all
expensive operations should be evident when reading the
program text.

void program(void)
{ int pid, numProcs, A,B,C;
bspPkt pkt, �pktPtr;

4 PARALLEL AND VECTOR PROGRAMMING LANGUAGES



pktPtr ¼ &pkt;
pid ¼ bspGetPid(); //get process ID
numProcs ¼ bspGetNumProcs(); /get number of
processes

if(pid¼¼0){A¼3;B¼12;}//initializeAandB
if (pid ¼¼ 1) {A ¼ 1; B ¼ 18;}
if (pid ¼¼ 2) {A ¼ 5; B ¼ 7;}
memcpy((void �)pktPtr, (void �)&A, 4); //Store
A into packet buffer

bspSendPkt((pidþ1)%numProcs, pktPtr); //send
data to neighbor in ring

bspSynch(); //superstep synchronization
pktPtr ¼ bspGetPkt(); //receive packet
memcpy((void�)&C,(void�)pktPtr,4); //store
data in C
C ¼ C þ B;

fprintf(stdout, ‘‘Process %d, C¼ %d\n’’, pid,
C);

bspSynch(); // superstep synchronization
}

One of the goals in the design of BSP is to permit
accurate performance prediction of parallel programs. Per-
formance prediction of BSP programs is made using a
model with three parameters: (1) the number of processors
p, (2) the gap g, which reflects the network bandwidth
available to each processor, and (3) the latency L, which
is the time required to send a packet through the network
and perform a barrier synchronization. If a BSP program
consists of S supersteps, the execution time for superstep i
is wi þ ghi þ L, where wi is the longest computation time
required by any processor in that superstep and hi is the
largest number of packets sent or received by any proces-
sors in that superstep. This performance model assumes
that communication and computation are not overlapped.
The execution time for the program is Wþ gHþ LS, where
W ¼ Swi and H ¼ Shi.

A major contribution of BSP has been to highlight what
can be accomplished with its minimalist approach to com-
munication and synchronization. However, the exchange of
a single message between just two processors requires the
cooperation of all processors in the machine! The BSP
counterargument is that worrying about optimizing indi-
vidual messages makes parallel programming too difficult
and that the focus should be on getting the large-scale
structure of the parallel program right.

FINE-GRAIN SYNCHRONOUS PARALLEL LANGUAGES

The most relaxed form of synchronization is fine-grain
synchronization in which two or more processors can syn-
chronize whenever they need to without the involvement of
other processors. This style of programming is usually
called multiple-instruction–multiple-data (MIMD) pro-
gramming. Fine-grain synchronization is appropriate for
exploiting task parallelism in which autonomous computa-
tions (tasks) need to synchronize either to obtain exclusive
access to shared resources or because they are organized as

a pipeline in which data structures are produced and con-
sumed concurrently.

Shared-Memory MIMD Programming

We discuss FORTRAN/OpenMP (21), which is a new indus-
try standard API (Applications Programmer Interface) for
shared-memory parallel programming and contrast it with
the more ‘‘expression-oriented’’ approach of Multilisp (22).

OpenMP. OpenMP is a set of compiler directives and
run-time library routines that can be used to extend FOR-
TRAN and C to express shared-memory parallelism. It is an
evolution of earlier efforts like pthreads and the now-mor-
ibund ANSI X3H5 effort. An OpenMP FORTRAN program
for computing p is shown below. A single thread of control is
created at the start, and this thread executes all statements
till the PARALLEL directive is reached. The PARALLEL
directive and its corresponding END PARALLEL directive
delimit a parallel section. At the top of the parallel section, a
certain number of slave threads are created that cooperate
with the master to perform the work in the parallel section
and then die at the bottom of the parallel section. In our
example, the only computation in the parallel section is the
do loop. Furthermore, the DO directive asserts that the
iterations of the loop can be performed in parallel. Optional
clauses in this directive permit the programmer to specify
how iterations should be assigned to threads. For example,
the SCHEDULE(DYNAMIC,5) clause specifies that itera-
tions are assigned to threads in blocks of five iterations;
when a thread completes its iterations, it returns to ask for
more work, and so on. There is an implicit barrier synchro-
nization at the bottom of the parallel DO loop, as well as at
the end of the parallel region. The barrier synchronization
may be avoided by specifying the clause NOWAIT at these
points. Once the parallel region is done, all threads except
the master die. The master completes the execution of the
rest of the program.

By default, all variables in a parallel region are shared
by all the threads. Declaring a variable to bePRIVATE gives
each thread its own copy of that variable. By default, loop
control variables like i in our example are PRIVATE. Note
that all the threads in our program write to the sum
variable. Declaring sum to be a REDUCTION variable per-
mits the compiler to generate code for updating this vari-
able atomically. The compiler may also generate more
elaborate code such as performing the reduction in a tree
of processors.

program compute_pi
integer n,i
double precision w,x,sum,pi,f,a
f(a) ¼ 4.d0/(1.d0 þ a�a)
print �, ‘Enter the number of intervals’
read �,n
w ¼ 1.0d0/n
sum ¼ 0.0d0

!$OMP PARALLEL
!$OMP DO SCHEDULE(DYNAMIC,5), PRIVATE(x),

PARALLEL AND VECTOR PROGRAMMING LANGUAGES 5



REDUCTION(þ: SUM)
do i ¼ 1, n
x ¼ w � (i � 0.5d0)
sum ¼ sum þ f(x)
enddo

!$OMP END PARALLEL
pi ¼ w�sum
print �,
computed pi ¼ ‘, pi
stop
end

Fine-grain synchronization in OpenMP is accomplished
by the use of critical sections. The CRITICAL and END
CRITICAL directives restrict access to the enclosed region
to one thread at a time. For example, instead of declaring
SUM to be a reduction variable as before, we can use a critical
section to update it atomically as shown below.

!$OMP PARALLEL
!$OMP DO SCHEDULE(DYNAMIC,5), PRIVATE(x,temp)
do i ¼ 1, n
x ¼ w � (i � 0.5d0)
temp ¼ f(x)

!$OMP CRITICAL
sum ¼ sum þ temp

!$OMP END CRITICAL
enddo

!$OMP END PARALLEL

OpenMP also has a parallel section directive. Each
section contains computations that can be performed in
parallel with the computations in the other sections of this
construct. OpenMP is being supported by SGI, KAI (Silicon
Graphics Inc., Kuck and Associates Inc.), International
Business Machines, and other companies.

Multilisp. It is instructive to contrast OpenMP with
Multilisp (22), which is also a shared-memory MIMD par-
allel language, but one in which synchronization between
producers and consumers of data can often be folded quite
elegantly into the data accesses themselves. Multilisp is a
parallel extension of Scheme, which was intended for writ-
ing parallel programs for the MIT Concert multiprocessor.
There are two parallel constructs, one for evaluating the
arguments to a function in parallel (pcall), and another
for computing a value in parallel with executing code that
will eventually use that value (future).

The expression (pcall F A) is equivalent to the Scheme
procedure call (F A) except that the expressions F and A are
evaluated in parallel. The function that expression F eval-
uates to is invoked after that evaluation of the argument A
is complete. The pcall construct can be nested; for exam-
ple, the expressions F and Amay themselves contain pcall
constructs.

The future construct can be used to fork off a computa-
tion that is performed in parallel with execution of code that
may ultimately need the value of that computation. For
example, the expression (pcall cons A B) evaluates A and
B in parallel, and builds the cons cell when the evaluations
are complete. The construction of the data structure need

not wait for the termination of the computations of A and B
since these computations can immediately return ‘‘place
holders’’ for the ultimate values, replacing these place
holders with the actual values when those become avail-
able. This can be accomplished by the invocation (pcall
cons (future A) (future B)). While the computation of
A and B is taking place, the cons cell can be used to build
other data structures or be passed to other procedure
invocations. An operation such as addition that tries to
use the value of A or B before that value is available is
blocked until the corresponding place holder is replaced
with the value; when that value becomes available, that
computation is allowed to continue. This is a form of fine-
grain data-flow synchronization at the level of data struc-
ture elements.

The following program shows a Multilisp version of
Quicksort (taken from Ref. 22). The partition procedure
uses the first element elt of list l to divide the rest of l into
two lists, one containing only elements less than elt and
the other containing elements greater than or equal to elt.
These lists are themselves sorted in parallel recursively,
and the resulting lists, together with elt, are appended
together to form the output. To reduce the overhead of
explicitly appending lists, qs takes an additional argument
rest that is the list of elements that should appear after the
elements of l in the sorted list.

(defun qsort (l) (qs l nil))
(defun qs (l rest)
(if (null l) rest
(let ((parts (partition (car l) (cdr l)))) ;
sort the two partitions in parallel
recursively

(qs (left-part parts)
(future (cons (car l) (qs (right-part
parts) rest)))))))

(defun partition (elt lst)
(if (null lst)
(bundle-parts nil nil)
(let ((cdrparts (future partition elt (cdr
lst))))
(if (> elt (car lst))
(bundle-parts (cons (car lst)
(future (left-part cdrparts)))

(future (right-part cdrparts)))
(bundle-parts (future (left-part
cdrparts))
(cons (car lst)
(future (right-part cdrparts))))))))

(defun bundle-parts (x y) (cons x y))
(defun left-part (p) (car p))
(defun right-part (p) (cdr p))

It can be seen that this Multilisp program is a functional
program to which future’s have been added. The problem
of deciding where it is safe and profitable to insertfuture’s
in a general Multilisp program is a nontrivial one
since Multilisp is an imperative language in which
expression evaluation can have side effects. The suggested
programming style is to write mostly functional code and

6 PARALLEL AND VECTOR PROGRAMMING LANGUAGES



look for opportunities to evaluate data structure elements
as well as function arguments in parallel.

As in Scheme, the linked list is the key data structure in
Multilisp. The role of lists in parallel programming is some-
what controversial because unlike arrays, lists are sequen-
tial access data structures and this sequentiality can limit
acceleration in some programs. For example, consider
applying a function f in parallel to each data item in a
list. The list must traversed sequentially to spawn the
parallel tasks, so parallel speed-up will be limited especially
if the time for each function evaluation is small. If an array is
used instead, the time required for the entire computation
may be as small as the maximum of the times required for
the individual function evaluations. Although linked lists
are not used very often in parallel programming, note the
future construct and its associated dataflow synchroniza-
tion can be used in the context of other data structures.

The Linda language (23) also folds synchronization into
data accesses, although in the case of Linda, synchroniza-
tion is done during associative access of a shared tuple
space.

Object-Oriented MIMD Languages

We describe HPCþþ (24) and Java (25). There are both
shared-memory languages.

HPCþþ. HPCþþ (24) is a Cþþ library and language
extension framework. For exploiting loop level parallelism,
HPCþþ has compiler directives called pragmas which are
similar to the OpenMP directives. For example, parallel
loops are exposed to the compiler by the HPC_INDEPEN-
DENT directive, used in the following code to compute the
ComputePi function.

double ComputePi(int n) {
double w ¼ 1.0/n;
double sum ¼ 0.0;
#pragma HPC_INDEPENDENT, PRIVATE x
for (int i ¼ 1; i < n; iþþ) {
double x ¼ w � (i � 0.5);
#pragma HPC_REDUCE
sum þ¼ f(x);}

return sum;}
double f(double a) {
return 4.0/(1.0 þ a�a);

}

One of the innovative aspects of HPCþþ is its extension
of the standard template library (STL) to support data
parallelism. The STL in Cþþ provides (1) containers that
define aggregate data structures like vector, lists, and
queues, (2) iterators for enumerating over the contents of
containers, and (3) algorithms that allow operations by
element to be applied to containers. HPCþþ has a parallel
standard template library (PSTL) that provides parallel
versions of these.

The most important container class in PSTL is the
Array container (STL does not have multidimensional
arrays that are crucial for scientific programming). By
default, array containers are block-distributed but the

programmer can specify a custom distribution by providing
a distribution object containing a function that maps array
indices to processors. The par_for_each iterator in PSTL
is the parallel analog of the for_each iterator in STL.
HPCþþ also has a number of parallel algorithms such as
par_apply for applying a function to each element of a
container, and par_reduction, which is a parallel apply
followed by a reduction with an associative binary opera-
tion. The following code shows HPCþþ code for summing
all the positive elements of a vector. The vector v is block
distributed. The parameters to the par reduction algo-
rithm are the associative combining operation, the function
to be applied to each element of the container, and the
starting and ending parallel iterators for the reduction.

BlockDistribution d(100, 100/numcontexts());
distributed_vectorhdoublei v(100, &d);
class GreaterThanZero{
public:
double operator() (double x){
if (x > 0) return x;
else return 0;

}
};
. . .
double total ¼ par_reduction(plushdoublei(),
GreaterThanZero(),

v.parbegin(),
v.parend());

. . .

HPCþþ is under active development. Planned enhance-
ments to the existing implementation include a library for
distributed active objects and an interface to CORBA via
the IDL mapping. Another approach to extending Cþþ for
parallel computing is the Charmþþ effort (26).

Java

Java is a new object-oriented programming language that
has a library of classes that support programming with
threads. The thread library is intended primarily for writ-
ing multithreaded uniprocessor programs such as GUI
managers. A parallel Java program consists of a number
of threads executing in a single global object namespace.
These threads are instances of user-defined classes that are
usually subtypes of the Thread class in the Java library
that override the run method of the Thread class to define
what threads must do once they are created. Threads are
first-class objects that can be named, passed as parameters
to methods, returned from methods, etc. In addition, meth-
ods inherited from the Thread class permit a thread to be
suspended, resumed, put to sleep for specified intervals of
time, etc. Java also supports the notion of thread groups.
Threads in a group can be suspended and resumed
collectively.

Synchronization in Java is implemented using monitors.
A monitor is associated with every object that contains a
method declared to be synchronized. Whenever control
enters a synchronized method in an object, the thread
that invoked that method acquires the monitor for that
object until the method returns. Other threads cannot

PARALLEL AND VECTOR PROGRAMMING LANGUAGES 7



call a synchronized method in that object until the monitor is
released.

Java was not intended to be a language for parallel
scientific computation. For example, it does not support
multidimensional arrays nor are there any constructs for
performing collective communication operations like
reductions. However, there are efforts under way to use
Java as a coordination language for multiplatform compu-
tational science applications (27).

Distributed-Memory MIMD Languages

One of the earliest distributed-memory MIMD languages is
communicating sequential processes (CSP) (28) which
spurred a lot of work on the theory and practice of mes-
sage-passing language constructs. More recent languages
in this area have taken a message-passing library like PVM
(Parallel Virtual Machine) (29) or MPI (Message Passing
Interface) (30) and grafted it onto a sequential language to
obtain a distributed-memory parallel programming lan-
guage. We will use FORTRAN/MPI to discuss this class
of languages. In this programming model, a certain number
of processes are assumed to exist, each having a unique
name (usually a non-negative integer) and its own address
space. Processes communicate by sending and receiving
messages. A process can send data to another process by
executing a SEND command, specifying the data to be
transferred and the name of the recipient. The receiving
process gets the data by executing a RECEIVE command,
specifying the name of the sending process and the variable
into which the data should be stored.

There are a number of variations on this basic SEND–
RECEIVE theme. Blocking SEND–RECEIVE constructs
requires the two processes to rendezvous before the data
transfer takes place, which allows data to be transferred
from one process to another without buffering in the oper-
ating system. However, if one process gets to the rendezvous
considerably in advance of the other one, it cannot do useful
work till the other process catches up with it. This problem
led to the development of nonblocking SEND and RECEIVE
constructs. A nonblocking SEND permits the sending pro-
cess to continue execution as soon as the data has been
shipped out to the receiving process even if the receiving
process has not executed a RECEIVE command; the non-
blocking RECEIVE construct is like a probe that permits the
receiving process to check for availability of data without
getting stuck if the data has not yet been received.

In addition to these SEND/RECEIVE commands, MPI
has a number of collective communication calls that are
useful for doing reductions, broadcasts, etc., collectively
among process groups. These collective operations can be
implemented using send and receive commands, but it is
often possible to exploit the topology of the interconnection
network to implement them more efficiently. MPI permits
processes to belong to any number of process groups (called
communicators in MPI terminology). All processes are
members of the universal group MPI_COMM_WORLD.

The following code computes the value of p. The invoca-
tions of MPI_COMM_SIZE and MPI_COMM_RANK permit a
process to determine the number of processes in the system
and its own ID. The broadcast of the value of n is performed

by invokingMPI_BCAST. The parameters to this call are the
(1) the starting address of the data to be broadcast, (2) the
number of values to be broadcast, (3) the type of the data, (4)
the ID of process initiating the broadcast, (5) the process
group to which the broadcast is performed, and (6) an error
flag. Global reductions may be performed with a similar
invocation.

program compute_pi
include ‘mpif.h’
double precision mypi,pi,w,sum,s,f,a
integer n, myid, numprocs,i,rc
f(a) ¼ 4.d0/(1.d0 þ a�a)
call MPI_INIT(ierr)
callMPI_COMM_RANK(MPI_COMM_WORLD,myrid,ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs,
ierr)

if (myid .eq. 0) then
print �, ‘Enter number of intervals’
read �, n

endif
call
MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_
WORLD,ierr)

w ¼ 1.0d0/n
sum ¼ 0.0d0
do i ¼ myidþ1,n,numprocs
x ¼ w�(i � 0.5d0)
sum ¼ sum þ f(x)

enddo
mypi ¼ w�sum
call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_
PRECISION,
MPI_SUM,0,MPI_COMM_WORLD,ierr)

if (myid .eq. 0) then
print �, ‘computed pi ¼’, pi

endif
call MPI_FINALIZE(rc)
stop
end

IMPLICITLY PARALLEL PROGRAMMING LANGUAGES

Many of the parallel programming languages described
previously are in active use, but none of them is particularly
abstract since they are all close to particular implementa-
tion models of parallel computing. It is likely that as better
compiler and run-time systems technology becomes avail-
able, languages for programming parallel machines will
become more abstract. This evolution would then parallel
the evolution of sequential programming language that
started out being very close to the hardware on which
programs ran, but have since evolved to higher levels of
abstraction. For example, early sequential languages like
FORTRAN had GOTO statements which were manifesta-
tions of jump instructions in the underlying hardware, but
GOTO statements have since been replaced by more
abstract structured programming constructs. Similarly,
variables in FORTRAN were names for fixed-memory loca-

8 PARALLEL AND VECTOR PROGRAMMING LANGUAGES



tions and existed for the duration of the program just like
memory addresses in the machine model, but the data
models of modern programming languages are built on
abstract notions like type, scope, and lifetime.

Although existing compiler and run-time systems tech-
nology is inadequate to permit efficient parallel program-
ming in high-level abstract programming languages, many
such languages have been proposed. In this section, we
describe ZPL (Z-level Programming Language), an impera-
tive array language that relies on parallelizing compiler
technology to find opportunities for parallel execution, the
functional languages Id and Haskell, and the logic pro-
gramming languages Concurrent Prolog and PARLOG. An
even more ambitious approach is taken by Unity (31),
which attempts to derive parallel programs from high-level
specifications written in a variation of temporal logic.

ZPL

In a FORTRAN or C program, statements that read and
update disjoint memory locations can be executed concur-
rently. Therefore, it is possible in principle to use a sequen-
tial programming language like FORTRAN to program a
parallel machine if one has a parallelizing compiler that can
extract opportunities for parallel execution from sequential
programs. An early compiler of this sort was PARAFRASE
(32), which took FORTRAN programs and attempted to find
parallel DO loops through program analysis. However,
automatic parallelization has proved to be difficult in gen-
eral, although there has been noteworthy success in some
problem domains like numerical linear algebra.

ZPL (33) is an imperative array language without expli-
citly parallel constructs that relies on compiler technology
to identify opportunities for parallel execution. A novel
feature of this language is its region construct, an alter-
native to the triplet notation for describing the constant-
stride index sets that was presented earlier. A disadvan-
tage of the triplet notation is that it must be repeated for
every subarray reference with this index sets (as in[1:n]¼
B[1:n]þ C[1:n].) ZPL permits a more compact expression
of such statements by providing the region construct that
permits the definition and naming of index sets. The
declaration region R ¼ [1..n] can be viewed as defining
a template of virtual processors of the appropriate size.
Regions can be used with both data declarations and blocks
of statements, as shown in the following code. An integer
Intval is allocated on each virtual processor of the region;
similarly, the statements in the block are executed by each
virtual processor. Index1 is a keyword that permits each
virtual processor to determine its index.

program Compute_pi; — Program to approx. pi
config var n : integer ¼ 100; — Changeable
on Cmd Line

region R ¼ 1..n; — Problem space
procedure f(a : double) : double; — Fcn for
rectangle rule
return 4 / (1 þ 2);

procedure Compute_pi(); — Entry point
var Intval : [R] double; — A vector of rect.
pt.s

pi : double; — Scalar result
[R] begin
Intval :¼ (Index1 � 0.5) / n; — Figure
interval pts

pi :¼ þ< f(Intval) / n; — Approximate,
sum, div

writeln(‘‘Computed pi ¼ ’’, pi);— Output to
standard out

end;

Regions in ZPL may also be defined by applying opera-
tions like shifts to previously defined regions. Although
ZPL compilers have been written for a variety of parallel
platforms, it remains to be seen if the performance of the
compiled code is sufficient to persuade programmers to
move away from writing explicitly parallel programs in a
language like FORTRAN with MPI.

Functional Languages

One approach to addressing the difficulty of determining
noninterference of statements in languages like FORTRAN
or C is to use functional language. These languages are
based on the notion of mathematical functions that take
values as inputs and produces values as outputs. When
executing a functional language program, all functions
whose inputs are available can be evaluated in parallel
without fear of interference. This data-driven parallel
execution model is the foundation of a number of functional
languages like VAL (34), ID (35), and SISAL (36). An
alternative execution model called lazy evaluation evalu-
ates a function only if its inputs are available and it has
been determined that the result of the function is required
to produce the output of the program. Lazy evaluation
permits the programmer to define and use infinite data
objects such as infinite arrays or infinite lists (as long as
only a finite portion of these infinite objects is required to
produce the output), a feature that has been recommended
for promoting modularity. Miranda (37) and Haskell (38)
are languages that are based on the lazy evaluation model.
Neither language is intended for parallel programming,
but there is interest in defining a parallel verison of Has-
kell.

Operations like I/O do not fit naturally into the func-
tional model since they are effects and not functions. Has-
kell uses monads to integrate I/O into a purely functional
setting. A monad provides the illusion of an object with
updatable state on which all actions are sequenced in a
well-defined manner, which is sufficient for performing I/O.
Monads permit the introduction of a limited form of side
effects into functional language in a controlled manner, but
these side effects are limited since monads cannot be used to
define objects that can be updated concurrently.

Two problems have limited the impact of functional
languages on the parallel programming community. The
first is aggregate update problem, which refers to the diffi-
culty of manipulating data structures like large arrays
efficiently. Data structures are treated as values in func-
tional languages, so they cannot be updated in place. The
effect of storing a value v into element i of array A must be
obtained by defining a new array B that is identical to A

PARALLEL AND VECTOR PROGRAMMING LANGUAGES 9



except in the ith position where it has the value v. A naive
implementation that makes a copy of A will be very
inefficient. A variety of compiler optimizations (39) and
language constructs like [I structures in Id (40)] have
been proposed to address this problem but it is not clear
to what extent these address the problem. A second problem
is locality. In principle, an interpreter for a functional
language can keep a work list of expressions whose inputs
are available and evaluate these expressions in any order.
Unless this is done carefully, it will have an adverse effect on
locality, making it difficult to exploit caches and memory
hierarchies. One solution is to remove caches from the
implementationmodeland relyonmultithreaded processors
like dataflow processors that are latency tolerant. A com-
plementary solution is to use compiler techniques to extract
long sequential threads of computation from functional
programs, and exploit locality in the execution of these
threads. However, there appears to be little commercial
interest in building multithreaded processors at this time;
furthermore, the problem of sequentializing functional
programs does not appear to be any easier than the problem
of parallelizing imperative language programs.

Logic Programming Languages

Although functional languages eliminate the notion of
sequential control from the programming model, they still
retain the notion of directionality in the sense that the
inputs of a function are distinct from its output. Logic
programming languages provide an even higher level of
abstraction by eliminating directionality through the use of
relations (predicates) instead of functions. A logic program
consists of a set of clauses that describe relations either
explicitly by enumerating the tuples in the relation or
implicitly in terms of other relations. Clauses that describe
a relation explicitly are called facts, while those that
describe relations implicitly are called rules. The first three
facts in the program shown below specify that the father
relation contains the tuples hAdam,Abeli, hAdam,Caini,
and hAbel,Billi. The parent relation is described by a
rule: for all X and Y, the tuple hX,Yi is contained in the

parent relation if it is contained in the mother relation
(informally, X is the parent of Y if X is the mother of Y). The
grandfather clause is defined implicitly as well: for all X,
Y and Z, the tuple hX,Yi belongs to the grandparent
relation if hX,Zi and hZ,Yi belong to the parent relation.

father(Adam, Abel).
father(Adam, Cain).
father(Abel, Bill).
mother(Eve, Abel).
mother(Eve, Cain).
parent(X,Y) :� mother(X,Y).
parent(X,Y) :� father(X,Y).
grandparent(X,Y) :� parent(X,Z),parent(Z,Y).
:� grandparent(Adam,W).

In terms of formal logic, the symbol :� stands for logical
implication, and the symbol, on the right-hand side of
clauses stands for conjunction. Variables like X and Y are
universally quantified over the clause in which they
appear. Each clause is therefore a Horn clause, and the
program is a conjunction of Horn clauses.

Given the relations, it is possible to make a variety of
queries such as asking if a given tuple occurs in a relation.
Bottom-up query evaluation starts from the facts and uses
the rules repeatedly to compute the tuples in the relations
of the program, terminating when enough information has
been obtained to answer the query. This kind of data-driven
evaluation obviously exposes a lot of parallelism but it can
lead to an unbounded amount of useless computation in
general. Top-down query evaluation generates subpro-
blems from the original query and solves them recursively
to answer the query. The query grandfather(Adam,W)
can be answered if we can find a Z and W such that par-
ent(Adam,Z)and parent(Z,W). The first subproblem
can be solved in two ways: either by solving mother
(Adam,Z)or by solving father(Adam,Z). These explora-
tions can be described compactly by an AND-OR tree,
shown in Fig. 2.

Parallelism in top-down query evaluation comes in two
flavors called and-parallelism and or-parallelism. In and-

Figure 2. And-or tree.

10 PARALLEL AND VECTOR PROGRAMMING LANGUAGES



parallelism, conjunctive subgoals such as parent(A-
dam,Z) and parent(Z,W) in our example are solved
concurrently. The first subgoal produces possible solutions
for Z, the second subgoal produces possible solutions for Z
and W and the natural join of these solution sets produces
the answers to the original query. Similarly in or-paralle-
lism, disjunctive subgoals are solved in parallel and the
results are unioned together.

The idealized model of parallel logic programming
described here is difficult to implement efficiently, so
researchers have proposed adding constructs to give pro-
grammers some control of parallel execution. To avoid hav-
ing to compute the natural join of solutions from conjunctive
subgoals solved in parallel, mode declarations can be used to
specify that some subgoals will produce solutions that will
be consumed by other subgoals. For example, Concurrent
Prolog (41) has read-only annotations (?) using which we can
write the grandfather clause as follows:

grandparent(X,Y) :� parent(X,Z),parent(Z?,Y).

This requires the first subgoal to produce Z and the
second subgoal to read it. Similarly, PARLOG (42) has
mode declarations on variables in the left-hand side of
clauses. A limited form of or-parallelism called committed
choice or-parallelism that uses Dijkstra’s guards
has been proposed in Guarded Horn Clauses (43) and
PARLOG.

Logic programming ideas continue to be used in areas
such as artificial intelligence, but there is little mainstream
interest at this point. The early enthusiasm for separating
the logic of algorithms from their control did not last very
long, and logic programming found themselves introducing
extralogical constructs like guards and modalities to
improve program efficiency. In addition, a real program-
ming language has to have arithmetic functions like addi-
tion and multiplication, but interpreted functions have
always existed somewhat uneasily in the relational model.
Some of these concerns are being addressed by Concurrent
Constraint Programming languages like OZ (44).

CONCLUSION

Parallel programming today is done in languages that are
very close to particular parallel implementation models.
Thus, efficiency comes at the cost of portability. It is likely
that parallel programming languages will become more
abstract when the necessary compiler and runtime systems
technology becomes available.

BIBLIOGRAPHY

1. D. Skillicorn and D. Talia, Programming Languages for Par-
allel Processing, New York, NY: IEEE, 1994.

2. Thinking Machines Corporation, Connection Machine CM-200
Technical Summary, June 1991.

3. CRAY Research Inc., CRAY-1 Computer System Hardware
Reference Manual, 1978, Bloomington, MN.

4. W. Brainerd, C. Goldberg, and J. Adams, Programmer’s Guide
to FORTRAN 90, New York: Springer, 1996.

5. R. Millstein and C. Muntz, The Illiac IV FORTRAN compiler,
ACM Sigplan Notices, 10 (3): 1–8, 1975.

6. G. Paul and M. Wilson, An introduction to VECTRAN and its
use in scientific computing, Proc. 1978 LASL Workshop Vector
Parallel Process., 1978, pp. 176–204.

7. MathWorks Inc., MATLAB Programmer’s Manual, 1996,
Natick, MA.

8. R. Millstein and C. Muntz, The Illiac IV Fortran compiler, ACM
Sigplan Notices, 10 (3), 1975.

9. R. G. Zwakenberg, Vector extensions to LRLTRAN, ACM
Sigplan Notices, 10 (3): 77–86, 1975.

10. Burroughs Corporation, Burroughs Scientific Processor Vector
Fortran Specification, 1978, Paoli, PA.

11. M. Guzzi et al., Cedar FORTRAN and other vector parallel
FORTRAN dialects, J. Supercomput., 3: 37–62, 1990.

12. Thinking Machines Corporation, Paris Reference Manual,
1991, Cambridge, MA.

13. F. Leighton, Introduction to Parallel Algorithms and Archi-
tectures, San Francisco: Morgan Kaufmann, 1992.

14. C. Koelbel et al., The High Performance Fortran Handbook,
Cambridge, MA: MIT Press, 1994.

15. D. Callahan and K. Kennedy, Compiling programs for distrib-
uted memory multiprocessors, J. Supercomput., 2 (2), 151–169,
1988.

16. A. Rogers and K. Pingali, Process decomposition through
locality of reference, Proc. ACM Symp. Program. Lang. Design
Implement., Portland, OR, 1989.

17. P. Hansen, An evaluation of high performance FORTRAN,
ACM Press Sigplan Notices, 33 (3): 57–64, 1998.

18. L. Valiant, A bridging model for parallel computation, Com-
mun. ACM, 33 (8): 103–111, 1990.

19. M. Goudreau et al., Towards efficiency and portability:
Programming with the BSP model, Proc. 8th Annu. ACM
Symp. Parallel Algorithms Architect., Padua, Italy, June,
1996, pp. 1–12.

20. R. Miller, A library for bulk synchronous parallel program-
ming, Proc. BCS Parallel Process. Specialist Group Workshop
Gen. Purp. Parallel Comput., London, England, December,
1993, pp. 100–108.

21. OpenMP Organization, OpenMP: A proposed industry stan-
dard API for shared memory programming. Available http://
www.openmp.org

22. R. Halstead, Multilisp: A language for concurrent symbolic
computation, ACM Trans. Programming Lang. Syst., 7 (4): 31–
56, October 1985.

23. D. Gelernter et al., Parallel programming in Linda, Proc. Int.
Conf. Parallel Programming, Chicago, IL, August 1985, pp.
255–263.

24. E. Johnson and D. Gannon, HPCþþ: Experiments with the
Parallel Standard Templates Library, Technical Report TR-96-
51, Indiana University, 1996.

25. J. Gosling, W. Joy, and G. Steele, The Java Language Speci-
fication, New York: Addison-Wesley, 1996.

26. L. Kale and S. Krishnan, Charmþþ: A portable concurrent
object-oriented system based on Cþþ, Proc. Conf. Object-
Oriented Programming Syst., Lang. Appl., Washington,
D.C., September 1993.

PARALLEL AND VECTOR PROGRAMMING LANGUAGES 11



27. K. Dincer and G. Fox, Using Java and JavaScript in the Virtual
Programming Laboratory: A web-based parallel programming
environment. Technical report, Syracuse University, 1997.

28. C. Hoare, Communicating sequential processes, Commun.
ACM, 21 (8): 666–677, 1978.

29. A. Beguelin et al., A user’s guide to PVM: Parallel virtual
machine. Technical Report TM-11826, Oak Ridge National
Laboratories, 1991.

30. W. Gropp, E. Lusk, and A. Skjellum, Using MPI. M.I.T. Press,
1994.

31. K. Chandy and J. Misra, Parallel Program Design: A Founda-
tion, New York: Addison-Wesley, 1988.

32. D. Kuck, et al., The effects of program restructuring, algorithm
change and architectural choice on program performance, Int.
Conf. Parallel Programming, Chicago, IL, 1984, pp. 129–138.

33. W. Griswold, et al., Scalable abstractions for parallel program-
ming, Proc. 5th Distributed Memory Comput. Conf., Seattle,
WA, 1990, pp. 1008–1016.

34. W. Ackerman and J. Dennis, VAL—A value-oriented language,
Technical Report LCS/TR-218, MIT, 1979.

35. R. Nikhil, K. Pingali, and Arvind, Id Nouveau, Technical
Report CSG Memo 265, M.I.T. Laboratory for Computer
Science, 1986.

36. J. McGraw et al., Sisal: Streams and iterations in a single-
assignment language, Technical Report M-146, Lawrence Lil-
vermore National Laboratories, 1985.

37. I. Holyer, Functional Programming with Miranda, London,
England, UCL Press, 1992.

38. J. Peterson et al., Haskell: A purely functional language online,
1997. Available www: http://www.haskell.org

39. D. Cann, Compilation techniques for high performance appli-
cative computation, Ph.D. thesis, Fort Collins, Colorado State
University, 1989.

40. Arvind, R. Nikhil, and K. Pingali, I-structures: Data structures
for parallel computing, ACM Trans. Programm. Lang. Syst.,
11, 598–632, October 1989.

41. E. Shapiro, Concurrent Prolog: collected papers, volume 1,
chapter A subset of Concurrent Prolog and its interpreter.
Cambridge, MA: M.I.T. Press, 1987.

42. K. Clark and S. Gregory, Concurrent Prolog: Collected Papers,
Vol. 1, Chapter PARLOG: Parallel programming in logic, Cam-
bridge, MA: MIT Press, 1987.

43. K. Ueda, Concurrent Prolog: Collected papers, Volume 1, Chap-
ter Guarded Horn Clauses. Cambridge, MA: M.I.T. Press,
1987.

44. G. Smolka, Problem solving with constraints and program-
ming, ACM Computing Surveys, 28 (4), 1996.

KESHAV PINGALI

Cornell University
Ithaca, New York

12 PARALLEL AND VECTOR PROGRAMMING LANGUAGES



P

PARALLEL ARCHITECTURES

INTRODUCTION

The need for solving increasingly complex problems has led
to the design of fast computers capable of performing
several things at once. Although it is difficult to give a
single, precise definition that would describe all parallel
architectures, one can think of these machines in terms of
their parallel computational capabilities to speed up the
execution of real applications. With large, compute-inten-
sive applications, more operations can potentially be per-
formed in parallel. To realize the speed up desired in
executing an application, three components must work
together: solution algorithms involving many independent
operations, explicit or implicit parallel programming lan-
guages that identify parallel operations used to implement
the algorithms, and the architecture of an underlying
computer that can execute multiple operations simulta-
neously (1). In an attempt to define and distinguish
between various types of parallelism that may be imple-
mented in parallel architectures, Flynn (2) has character-
ized architectures based on the presence of single or
multiple instruction streams and data streams. Single
instruction stream (SI) combined with single data stream
(SD) leads to SISD computers (single instruction stream,
single data stream), which are the traditional sequential
machines (also known as von Neumann). Single instruction
stream combined with multiple data (MD) are SIMD or
vector computers. In these machines, multiple processing
elements (PEs) simultaneously execute the same instruc-
tion on different data. For example, an SIMD computer
with 64 PEs can add the elements of two vectors A and B
with 64 elements each in one single instruction A þ B. This
instruction is the equivalent of 64 addition operations on a
sequential machine. However, everything else being equal,
it is performed in roughly 1/64 of the time it would take in
the sequential version. Multiple instruction streams com-
bined with multiple data, MIMD, are multiprocessor archi-
tectures. Multiprocessors consist of several autonomous
processors capable of executing independent sequential
programs concurrently or cooperatively execute a single
parallel program. The first results in increased system
throughput but individual programs do not run faster,
whereas the second approach leads to executing individual
applications fast, which is the primary purpose of using
these powerful computing machines. MIMD computers are
capable of thread-level parallelism that is more generally
applicable than data-level parallelism of SIMD computers.
Multiprocessors are further distinguished by the way in
which memory is accessed by processors. If all processors
can access all system memory locations, then the multi-
processor is characterized as shared memory. If each pro-
cessor has access to only its own memory, then it is
characterized as distributed memory. In shared memory

MIMD computers, parallel processors communicate with
each other by writing and reading shared memory loca-
tions, whereas in distributed MIMD machines, processors
must communicate through sending and receiving mes-
sages to and from each other. Other variations of memory
access that result in multiprocessor hybrids not classified
by Flynn’s taxonomy will be described in a later section. The
last combination of multiple data stream and single data
stream is not very practical, although there are a few
research machines that it may fit. Implied in all parallel
types of architectures described here as SIMD or MIMD is
the existence of some form of network to provide connec-
tivity between their components (processor to processor or
processor to memory) to facilitate communication and coop-
eration among parallel units (3). Parallel computer systems
are at times categorized even more by the number of
physical parallel units (processors) they provide. A mas-
sively parallel system (MPP) is often the term used to refer
to parallel systems with hundreds and thousands of pro-
cessors. The interconnection networks in these large-scale
parallel systems must be highly concurrent and capable of
delivering many simultaneous messages very fast.

A DEEPER LOOK INTO PARALLELISM IN COMPUTER
ARCHITECTURES

In general, two main approaches to building faster com-
puters are a faster clock rate, driven by the advances in the
technology, and concurrency in operations, driven by
architectural design. Sequential computer designers
have been exploiting successfully both of these techniques
to build very fast SISD computers. The next step in
achieving a higher speed is parallel architectures. To
gain insight into the variety of parallelism and to distin-
guish the concurrency within SISD and parallel compu-
ters, the focus here will be on architectural parallelism
introduced at various levels of computer design instead of
clock rates. The two main approaches to introduce opera-
tional concurrency are overlap and replication. In the
original von Neumann architecture, the major compo-
nents consisted of a control unit (CU) and an arithmetic
logic unit (ALU) together forming the central processing
unit (CPU) and the main memory (M). Today, these still
form the major components, but much has been done to
improve performance of this early computer (Fig. 1). When
a computer is started, it repeatedly executes a hardware
loop known as fetch/execute cycle. Initially the program
instructions are stored in the main memory. To execute
the program, the CPU must fetch instructions from the
memory. The program counter register (PC) in the CPU
always holds the address of the next instruction in the
memory to be fetched and executed. To make sure the
following terminologies are not new to the reader, without
going into details, let us assume a machine instruction of
the form c ¼ a op b, where ‘‘op’’ refers to one of the machine
operations implemented in hardware, such as addition,

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



subtraction, and multiplication. a, b, and c are addresses
of operands of this instruction in memory, and from the
instruction, their addresses can be calculated in the CPU.
A typical fetch/execute cycle for a von Neumann computer
consisted of the following sequential steps:

1. IF: Fetch instruction from M at address pointed to by
PC; bring it into the CPU.

2. ID: Decode instruction and increment PC to point to
the next instruction.

3. Effective operand address calculation.

4. Operand fetch: Fetch operands from M at above
address(es) and bring them into the CPU.

5. Execute: Perform the operation indicated by the
instruction.

6. Store result: Store at the result operand address in M.

Improvements on this base machine started with adding
features for faster input/output (I/O) processing where the
concepts of overlap and parallelism were first introduced as
are currently used and applied. The next major architec-
tural advance toward concurrency in SISD architectures,
also applied to many parallel computers, is a powerful
technique known as pipelining. Going back to the sequential
steps of the fetch/execute cycle in the von Neumann, it is
clear that once an instruction is fetched from memory, no
new instruction may be fetched until the current one has
completed its execution. Using additional hardware, the
steps of fetch/execute cycle can be overlapped as shown in
Fig. 2. In this instruction pipeline, instructions follow each
other through the pipeline stages that correspond to the
fetch/execute cycle described above. Instructions are being

executed sequentially and enter the pipeline in order, but
once the pipeline is full (start-up time), five different instruc-
tions are being processed at different pipeline stages simul-
taneously and one instruction completes at every pipeline
step rate. Theoretically, this design can be five times faster
than the non-pipelined processor. However, complexities
are associated with pipelining that make this peak perfor-
mance unachievable although still by far faster than the
non-pipeline design. The major issues here have to do with
branches (control hazard) and dependencies between
instructions (data hazard) in the pipeline. From the fetch/
execute cycle, it can be seen that the next instruction being
fetched is always coming from the next address relative to
the current instruction being executed. However, when the
instruction is for example a conditional branch, depending
on the true/false outcome of the test, the next instruction
may be coming from a different address called the target of
the branch. In such an instruction, the content of PC is
changed to that of the target. In a pipelined processor, the
outcome of the branch is not known at the time the next
instruction is to be fetched; therefore, the pipeline must be
emptied. Performance degradation can also occur when an
instruction in the pipeline needs the result of another
instruction in the pipeline as its operand, which are known
as data hazards. Solutions to deal with these types of
dependencies (data and control hazards) may introduce
bubbles or null operations into the pipeline. Various meth-
ods to deal with branch instructions and data hazards and to
optimize the pipeline performance have been developed (4).
Multiple arithmetic units in SISD computers introduced a
different means for parallelism (replication). In this case,
the CPU design is modified so that it consists of several
arithmetic units capable of executing one operation each,
but they can perform simultaneously. In this type of com-
puter, potentially as many instructions as there are arith-
metic units can be executing concurrently. To increase the
potential for parallel execution, special hardware to pre-
fetch several instructions from memory (look-ahead buffer),
test for resource and data conflicts, and issue instructions
out of program order (score boarding) is necessary. The two
types of parallelism described here, instruction pipeline and
multiple arithmetic (functional) units, for SISD computers
are known as low-level parallelism and because of techno-
logical advances are included in most desktop computers of
today. Instruction-level parallelism (ILP), very long instruc-
tion word (VLIW) architectures, and superscalar machines

CU ALU

M IOP I/O

Figure 1. von Neumann architecture with I/O processor for I/O
and CPU overlap. (Reprinted from Ref. 1 with Permission from
Pearson Education.)

Figure 2. Instruction pipeline for an SISD archi-
tecture.

Instruction fetch

Instruction decode

Operand fetch

Execute

Store  operand

Time

I1

I1

I1

I1

I1

I2

I2

I2

I2

I2

I3

I3

I3

I3

I3

Jump

Jump

Jump

Jump

Jump

1 2 3 4 5 6 7 8

2 PARALLEL ARCHITECTURES



are also advances based on these basic parallel techniques.
These machines are still classified as SISD even though they
incorporate much concurrency in their design.

PARALLEL ARCHITECTURES

Technological advances combined with sophisticated archi-
tectural design resulted in uniprocessor performance
growth throughout the 1986–2002 period. During this
time, a large number of diverse, innovative, and expensive
parallel computer architectures (supercomputers) have
been designed with varying success mostly for the scientific
community with compute-intensive applications. Network-
ing available microprocessors to build affordable multipro-
cessors (commodity multiprocessors) made the field of
parallel processing available to the larger community.
The uniprocessor performance growth is reaching its limit
because of high clock speed, resulting in problems with
power consumption and heat dissipation, and a limited
amount of ILP that can be exploited from sequential pro-
grams. The increasing capacity of a single chip has enabled
placement of multiple processors on a single die resulting in
multicore architectures. These machines can run at a lower
clock speed to reduce heat dissipation and power consump-
tion, they allow exploitation of a higher degree of concur-
rency from parallel programs instead of sequential
programs, and they provide greater system density. Multi-
core architectures, which contain multiple logical proces-
sors in a single package available in almost all computers

today, have renewed the interest in parallel computers as
they are being mass produced. Different forms of multi-
processors with SIMD parallelism on a single cell chip have
also been designed. Effective use of these computers
through parallel algorithms, programming languages,
compilers, and operating systems will greatly improve
the overall system and application performance. Parallel
computer architectures are mainly defined based on pro-
viding an explicit and coherent framework for high-level
parallel solutions to application problems. This definition
distinguishes the type of parallelism these machines must
provide from those of SISD described earlier.

SIMD Computers

SIMD architectures provide hardware to execute the same
instruction on many data items. SIMD computers incorpo-
rate this parallelism either through several arithmetic pipe-
lines (pipelined SIMD), which is the most common (5), or
through replicating PEs (true SIMD), (Fig. 3). These com-
puters have a control unit that is capable of fetching and
decoding instructions. SIMD computers have a single pro-
gram counter in the control unit and perform the concurrent
operations in locked steps using a global clock. The control
unit sends the vector instructions either to the complete
replicated arithmetic units in the true SIMD or issues them
into arithmetic pipelines to be processed in an assembly
fashion in thepipelined SIMD. SIMDComputers implement
special vector and communication instructions for
data routing in addition to the typical SISD machine

CPU AU AU AU

MMM

(a) True SIMD or vector computer (distributed memory model)

CPU

MMM

Arithmetic Pipeline

(b) Pipelined SIMD computer

AU - Arithmetic unit CPU - Central processing unit M - Memory

AU AU AU

CPU

MMM

(c) True SIMD or vector computer (shared memory model)

Alignment network

Figure 3. SIMD architectures. (Reprinted from
Ref. 1 with Permission from Pearson Education.)

PARALLEL ARCHITECTURES 3



instructions. The true SIMD computers can further be
organized as a distributed memory where each PE has
access to its own memory [Fig. 3(a)]. In this model, an
interconnection network provides communication between
the PEs. Alternatively, SIMD computers may be organized
as shared memory SIMD where an interconnection network
allows for data routing between PEs and memory modules,
[Fig. 3(b)]. Pipelining keeps the amount of parallel activity
high while reducing the hardware requirement, [Fig. 3(c)].
Pipelined SIMD computers consist of pipelined arithmetic
units that are different from instruction pipelining
described for the SISD computers. Pipelining of arithmetic
operationsdivideseach operation, forexample floating point
addition, into several smaller ones and executes the sub-
functions in parallel on different data as shown in Fig. 4.

SIMD Issues. Partitioning and data layout in memory for
parallel access and interconnection networks for routing
data are two key performance issues in SIMD machines. In a
true distributed SIMD computer with 64 PEs, the addition
of two 64-element vectors such as C¼ Aþ B can be thought
of as storing the corresponding vector elements (ai, bi, ci) in
the ith memory for the ith PE. Upon issuing the add instruc-
tion, the 64 PEs in the distributedmodelwill simultaneously
fetch their corresponding a and b operands from their
memories, perform the addition, and store the result in
the corresponding c locations. The key to obtaining good
performance in this machine is to store the data to be
accessed for parallel operation in different memory modules
for parallel access. The interconnection network between
the PEs must provide enough concurrency for PEs to
exchange data. If the array elements are stored in the
same memory module, then the array elements will have
to be accessed from the memory sequentially and sent to the
correct PE degrading performance to that of a sequential
machine. The prime memory system is a technique for
avoiding multiple references to the same memory module

with regular access patterns (6). Although data layout in
memory is the responsibility of the programmer, program-
ming language, or compiler, the machine must provide an
interconnection network to allow for routing the data to the
correct PE needing it. In the shared memory model, the
machine architecture must provide high concurrency inter-
connection networks between the memory modules and the
PEs to allowdata from different memories to be routed to the
PEs in parallel. In pipelined SIMD, elements of A and B
vectors are streamed into a floating point add pipeline as
shown in Fig. 4. Although the vector components are not
accessed simultaneously, successive references must still be
made to different memory modules to attain full memory
bandwidth and to match the pipeline speed. Most pipelined
SIMD architectures provide fast vector registers where the
vector operands are fetched into from memory and results
are stored in before the final store in memory, vector register
pipelined SIMD. Pipeline chaining, where the result of one
arithmetic pipeline is fed as input into another arithmetic
pipeline, is used to improve performance by reducing the
number of memory accesses. An example for a chaining
operation is D ¼ A(B þ C), where the result from B þ C
pipeline is fed into the multiple pipeline with elements of
vector A synchronized with the first result from the adder.
Some pipelined SIMD machines do not provide vector reg-
isters. In these machines, vector operands are pipelined
from memory in a stream fashion to the arithmetic pipeline
and results are stored similarly into memory, memory-to-
memory pipelined SIMD. A larger memory bandwidth is
needed to supply the pipelines with data at the pipeline
speed. In this type of machine, the best performance is
achieved for very long vector operations. As with instruction
pipeline, a startup cost is associated with filling the pipe-
lines. But once the pipeline is full, one result is produced at
every minor pipeline cycle.

The parallelism provided by SIMD architectures is at
the instruction level and is well suited to applications
needing regular-patterned parallel operations. Today,
SIMD processors most commonly are organized within
an MIMD configuration to provide higher degrees of par-
allelism.

MIMD Architectures

A multiprocessor is a computer system that consists of
multiple processors capable of executing independent
instruction streams and one integrated system for moving
data among the processors, memory, and I/O devices.
MIMD computers can support higher levels of parallelism
such as subprograms and tasks in comparison with SIMD-
type parallelism. The parallelism in these machines can be
exploited by numerous types of parallel operations that
may be identified in the application programs. Many con-
figurations of multiprocessors have been realized. What
distinguishes the various configurations is the way in
which results produced by one processor are made available
to the others. Unlike SIMD, little difference exists between
the programmer’s view of one processor of an MIMD
and the single processor of an SISD computer. The two
basic types of MIMD computers, shared memory and dis-
tributed MIMD, are shown in Fig. 5.

Unpack

Exponent compare

Align Mantissa

Add

Normalize

Pack

A(7) B(7)

A(6)

A(5)

C(4)

C(3)

C(2)

B(6)

B(5)

C

A B

Figure 4. Floating point add pipeline. (Reprinted from Ref. 1
with Permission from Pearson Education.)

4 PARALLEL ARCHITECTURES



Shared-Memory MIMD. Thegeneral interconnectionnet-
work (switch) between the processors and system memory of
Fig.5(a) indicates thatany processor can access anymemory
location. The communication and cooperation among pro-
cessors that execute a parallel program takes place through
reading and writing of shared memory locations. Synchro-
nization operations must be provided to control access to
shared data and to control the rate of progress of cooperating
processes. Similar to SIMD machines, good performance
depends on the interconnection network providing enough
concurrency and bandwidth for fast and parallel memory
accesses by processors. Shared memory MIMD computers
may be designed as pipelined processors as in the SISD case
insteadof multiple complete processors [Fig. 5(b)]. However,
unlike the SISD pipeline where the instructions issued into
the pipeline come from a single process, instructions issued
into the MIMD pipeline come from different instruction
streams (processes). Therefore, the number of bubbles
inserted into the MIMD pipeline caused by instruction
dependencies is reduced significantly in comparison with
SISD pipelining. The pipelined MIMD architectures are
also known as multithreaded computers (7–10).

MIMD computers with various configurations, mainly
due to the type of memory access they are organized to
provide, have been designed. For example, each processor
of the shared memory model in Fig. 5(a), may have some
local (private) memory [Fig. 5(c)]. The private memories
may be cache memories if they are controlled by hardware.

The issue in this type of architecture is how the local
memories are used. The simplest is when they are used for
read-only data and program stacks in shared memory
MIMD. When the local cache memories in a shared memory
MIMD are used for shared variables that may be both read

and written, then a cache coherence protocol is needed to
ensure the information in the main memory and the cache
memories will remain consistent during program execu-
tion. Several approaches to providing coherent caches in
these types of MIMD architectures have been implemented
(11,12). A shared memory MIMD computer is referred to as
uniform memory access (UMA) if it is configured such that
any memory location can uniformly be accessed in the same
amount of time. If the machine is organized so that access to
some locations in the shared memory takes longer than
others, then it is called a non-uniform memory access
(NUMA). A cluster is formed by connecting several shared
memory multiprocessors through a communication net-
work that they can use to send and receive instructions.
In this case, the shared memory of each component of the
cluster is considered private with respect to the other
components. The recent multicore computers take the place
of a cluster node where each multicore provides a shared
memory MIMD configuration.

Distributed-Memory MIMD. Each node of this architec-
ture consists of an autonomous processor and its local
memory. The communication and cooperation among pro-
cessors executing a parallel program takes place by proces-
sors explicitly send and receipt messages through the
interconnection network. In these architectures, the syn-
chronization is tied to the send and receipt of messages.
Distributed memory architectures are distinguished from
each other by the topology of the interconnection network
through which their processors are connected. The network
topologies will directly impact the way messages are routed
from one processor to another, the number of messages that
can concurrently be exchanged, the latency of message

CPU

M

M

M

CPU

CPU

Switch

Shared memory

M CPU Switch CPU M

CPU

M

Distributed memory

(a) True MIMD or multiprocessor

CPU
Execution pipeline

Process
queue

M
Memory

reference queue

M

M

(b) Pipelined MIMD computer

CPU -  Central processing unit M-Memory  

Pipelined
switch

CPU

M

M

M

CPU

CPU

Switch

CM

CM

CM

CM - Cache memory

(c) MIMD with shared and local memory

Figure 5. MIMD architectures. (Reprinted from Ref. 1 with Permission from Pearson Education.)

PARALLEL ARCHITECTURES 5



delivery, and the performance of executing parallel pro-
grams on the distributed memory architecture. Some of
common topologies are shown in Fig. 6. The ring topology
has commonly been used to interconnect a number of com-
puters. In a unidirectional ring connecting N processors,
each node is connected to one source and one destination
processor. A message may have to travel through N-1 nodes
(hops) to arrive at its destination. This longest path between
any two nodes is called the diameter of the network. A
bidirectional ring will improve the network diameter so
that the longest path a message travels is N/2. The ring
topologies have simple logic and can be used effectively with
few processors, but several architectures have been imple-
mented using more complex extensions of the ring such as
multilevel hierarchy of unidirectional rings (13). Mesh
topologies have been used extensively in designing distrib-
uted memory MIMD machines. Many topologies may be
listed under this topology from a simple linear array to high-
dimensional meshes. Two-dimensional mesh topologies are
the most common. They are distinguished by the way the
boundary nodes are connected to their neighboring proces-
sors. For example, Wrap-around connections reduce the
network diameter. In a k- dimensional network with Nk

nodes on each dimension, the diameter is k(Nk�1).
Hypercube topologies arrange N ¼ 2n processors in an
n-dimensional cube. Each node of this machine is
directly connected to n ¼ log2N other processors through
a bidirectional link. Tree topologies with parent–child-type
connections support divide-and-conquer problem-solving
approaches. For two processors to communicate in this
architecture, a path ascending from the two to a common
parent is used. In these machines, the links closer to the root
have a high traffic rate than the leaf nodes resulting in a
bottleneck. Fat trees, where the number of links connecting
parent–child processors increases as we get closer to the
root, have been used to alleviate the problem. Full connec-
tivity, although desirable, is not practical to implement for
multiprocessors with large number of processors, N, as N2

connections will be needed.

It may be noteworthy to consider that by replacing the
single processor at each node with a shared memory MIMD,
a cluster architecture can be configured. In general, hard-
ware and software techniques may be devised to implement
a distributed memory MIMD computer as a shared memory
multiprocessor that results in a distributed shared memory
machine (DSM), which is also referred to as a shared
address space multiprocessor.

Issues in MIMD. The performance of a parallel archi-
tecture is impacted significantly by inter-related factors
such as the algorithm design, programming languages,
operating systems, processor design, interconnection net-
works, memory hierarchy, cache and memory manage-
ment, and latency tolerance mechanism. The performance
capabilities of computers are often reported with mea-
sures such as Hertz ratings or peak-floating-point-opera-
tion-per-second (FLOPS) ratings. Careful interpretation
of these processor-centered measures is needed as they do
not reveal enough information regarding the architec-
ture’s overall performance. The data transfer capacity
of the machine is a more accurate way to express perfor-
mance and is measured by bandwidth and latency. The
basis for this performance measure is that data have to
arrive at the processor before they can be operated on. The
layers of memory hierarchy and interconnection networks
that may separate data from the processor will influence
the amount of delay associated with getting data to the
processor. For example, in shared memory MIMD, a pro-
cessor may be slowed down when it has to wait for large
shared memory access latency, for either data transmis-
sion or cache coherence information. In a distributed
memory MIMD, the movement of messages containing
intermediate results is the principal reason for not obtain-
ing a peak operation rate in the processor. Discussions
regarding the scalability of parallel architectures mostly
favor distributed MIMD computers. However, regardless
of the memory organization, a scalable computer system is
defined as one in which data transport depends on the
bandwidth and not on the latency, so that as the system

Figure 6. Common distributed memory MIMD toplo-
gies. (Reprinted from Ref. 1 with Permission from
Pearson Education.)

(a) Linear array (b) Mesh (c) Ring

(d) Tree(c) Fully connected (e) 3-cube, Hypercube  

6 PARALLEL ARCHITECTURES



size is increased, bandwidth increases but not the latency.
Latency in computer architectures is mainly dealt with in
two ways: (1) latency reduction as in cache memories or cut-
through routing in interconnection networks, and (2)
latency tolerance mechanisms as in overlapping operations
in pipelining and multiprogramming. Thus, a computer
architecture that can reduce its performance dependence
on latency through one or a combination of these techniques
will be the most scalable. In general, the optimal balance
occurs when bandwidths aboveandbelow a given level differ
by the amount of data reuse at that level, which is a difficult
goal to achieve. When traffic is bursty, latency to satisfy a
request for the next higher level can prevent the bandwidth
from being fully utilized. Cluster computer organizations
have become popular and are used commonly today. The
cluster architectures are also highly vulnerable to most of
these issues. They need to address issues of latency, syn-
chronization, fine-grain parallelism, memory management,
deep memory hierarchy, data movement, application types,
form and degree of parallelism within applications in order
to achieve high performance.

Other Parallel Architectures

Dataflow Architectures. Parallelism in computation is
normally stated by specifying which operations can be
executed in parallel, allocating storage to data, and sche-
duling those operations on parallel units. Dataflow is a
concept that allows a computation to be represented with-
out specifying any control flow or other dependence con-
straints on the order of operations except those of flow
dependence among data. The concepts of dataflow have
been central in the field of parallel processing and were
originated by Dennis in 1973 (14). Computations can be
represented accurately with dataflow graphs, which con-
sist of directed edges, nodes (or actors), and tokens. The
nodes or actors represent an operation corresponding to a
program instruction and are connected by directed edges.
The tokens are data values that move over directed edges;
they are operated on at the node and are transformed into
result tokens. Program instructions are executed (or fired)
when their needed data tokens arrive at the instruction
node. In this way the traditional control flow in other
programming paradigms is replaced by dataflow. Data-
flow architectures that are capable of executing dataflow
graph concepts have processing elements that receive
input data tokens (operands), perform the specified opera-
tion upon receipt of the operands, form new result tokens,
and send them to the destination actor (instruction) in the
dataflow graph. This capability is a major departure from
the conventional von Neumann model that uses a program
counter in the processor to address and fetch instructions.
In this model, instructions are stationary, but data flows
to the instruction that needs them as operands. The
architecture of dataflow machines is impacted by the
type of dataflow representations it must implement. In
a static model, only one instance of a data token value is
allowed per input edge of a node at a time. A typical static
dataflow architecture is shown in Fig. 7. In a dynamic
model, multiple instances of data tokens may exist on an
input edge at a given time. Tokens belonging to different

instances must be distinguished using matching tags.
Dynamic dataflow is more flexible, can achieve higher
parallelism, and results in a more complex architecture.
Storage is a major issue that dataflow computers need to
address. The ideal dataflow representation requires repli-
cation of data for every use or modification as no allocation
of a memory location to data (variables) exists. Efficient
scheduling of all ready operations for parallel execution is
also another challenging issue that needs to be carefully
addressed in dataflow architectures.

Systolic Arrays. Systolic arrays are special-purpose
architectures consisting of simple computing cells with
regular design patterns that are constructed in a modular
layout well suited for VLSI implementations (15,16). Data
are pumped through computing arrays in a pipeline fash-
ion. In most cases, the computing cells in an array are
identical and the design of the array is geometrically
regular. For example, two-dimensional systolic arrays
can be designed to perform fast matrix multiplication
operations where each cell of the array can perform a
multiply–add operation on its input operands as the
appropriate elements of the two matrices flow through
the cells of the array. Systolic arrays represent data
dependences in the cell interconnections and can result
in very efficient implementation of special-purpose algo-
rithms (17).

BIBLIOGRAPHY

1. H. F. Jordan and G. Alaghband, Fundamentals of Parallel
Processing, Englewood Cliffs, NJ: Prentice Hall, 2003.

2. M. J. Flynn, Some computer organizations and their effective-
ness, IEEE Trans. Computers, 21(9): 948–960, 1972.

3. T. Y. Feng, A survey of interconnection networks, IEEE Com-
puter, 14(12): 12–27, 1981.

4. J. P. Shen and M. Lipasti ‘‘Modern Processor Design: Funda-
mentals of Superscalar Processors’’, McGraw-Hill, 2005.

5. P. M. Kogge, The Architecture of Pipelined Computers, New
York: McGraw-Hill, 1981.

6. D. H. Lawrie and C. R. Vora, The prime memory system for
array access, IEEE Trans. Computers, 31(5): 1982.

Operation
units

Update Fetch
Instruction queue

Activity
store

Figure 7. A typical dataflow architecture. (Reprinted from Ref. 1
with permission from Pearson Education.)

PARALLEL ARCHITECTURES 7



7. R. Saavedra-Barrera, D. Culler, and T. vonEicken, Analysis of
multithreaded architectures for parallel computing, Proceed-
ings of 2nd Annual ACM Symposium on Parallel Algorithms
and Architectures, 1990.

8. R. S. Nikhil, Tutorial notes on multithreaded architectures,
Proceedings of 19th Annual Symposium on Computer Archi-
tecture, 1992.

9. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Poter-
field, and B. Smith, The Tera computer system, Proceedings of
the International Conference on Supercomputing, Amsterdam,
1990.

10. D. E. Lenoski and W-D. Weber, Scalable Shared-Memory
Multiprocessing, San Fransisco, CA: Morgan-Kaufman Pub-
lishers, 1995.

11. S. Adve and K. Gharachorloo, Shared memory consistency
models: A tutorial, IEEE Computer, 29(12): pp. 66–76,
1996.

12. D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer
Architecture, San Francisco, CA: Morgan Kaufmann Publish-
ers, 1999.

13. Kendall Square Research Corporation, KSR-1 Principles of
Operation, 1991.

14. J.B. Dennis, ‘Data flow supercomputers,’ Computer, 13: 48–56,
1980.

15. H. T. Kung and C. E. Leiserson, Systolic arrays (for VLSI), in
Duff and Stewart, eds., Sparse Matrix Proceedings, Knoxville,
TN: SIAM, 1978.

16. H. T. Kung, VLSI Array Processors, Englewood Cliffs, NJ:
Prentice-Hall, 1988.

17. D. I. Moldovan, Parallel Processing from Applications to Sys-
tems, San Mateo, CA: Morgan Kaufmann Publishers, 1993.

CROSS REFERENCES

Clusters. See Clusters and Grids.

Shared memory MIMD. See Shared-Memory Multiprocessors.

Interconnection networks. See Interconnection Networks.

Pipelined processors. See Computer Architecture.

Dataflow architectures. See Dataflow Computers.

GITA ALAGHBAND

University of Colorado
Denver, Colorado

8 PARALLEL ARCHITECTURES



P

PARALLEL DATABASE MANAGEMENT SYSTEMS

A database is a collection of data. A database management
system, also called a DBMS, allows users to create a new
database by specifying the logic structure of the data. For
instance, the world of interest is represented as a collection
of tables in relational DBMSs. This simple model is useful
for many applications, and it is the model on which the
major commercial DBMSs are based today. After a data-
base has been created, the users are allowed to insert new
data and query and modify existing data. The DBMS
provides the users with the ability to access the data
simultaneously, without allowing actions of one user to
interfere with those of other users. The DBMS ensures
that no simultaneous accesses can corrupt the data acci-
dentally. In this article, we discuss how parallel processing
technology is used to effectively address the performance
bottleneck in DBMSs. After a brief discussion of the various
parallel computer architectures suitable for DBMSs, we
present the techniques for organizing data in such
machines and the strategies for processing these data using
multiple processors. Finally, we discuss some future direc-
tions and research problems.

Modern DBMSs are designed to support the client–
server computing paradigm. In this paradigm, applications
running on client computers or workstations are allowed to
store and access data from a remote database server. This
configuration makes best use of both hardware and soft-
ware resources. Both the client and the database server can
be dedicated to the tasks for which they are best suited. This
architecture also provides an opportunity for both horizon-
tal (i.e., more servers) and vertical (i.e., larger servers)
scaling of resources to perform the task.

Today’s database servers are generally general-purpose
computers running database management software,
typically a relational DBMS. These servers employ essen-
tially the same hardware technology used for the client
workstations. This approach offers the most cost-effective
computing environment for a wide range of applications by
leveraging the advances in commodity hardware. A poten-
tial pitfall of this approach is that the many equally power-
ful workstations may saturate the server. The situation is
aggravated for applications that involve very large data-
bases and complex queries. To address this problem,
designers have relied on parallel processing technologies
to build the more powerful database servers (1–4). This
solution enables servers to be configured in a variety of
ways to support various needs.

PARALLEL DATABASE SERVER ARCHITECTURES

The disk input/output (I/O) limitation problem has long
been the obstacle for database applications. The disk I/O
bottleneck sets a hard limitation on the performance of a
database server. To address this problem, all parallel data-

base approaches distribute the data across a large number
of disks to take advantage of their aggregate disk band-
width. The different types of parallel database servers are
characterized by the way their processors are allowed to
share the storage devices. Existing systems employ one of
the three basic parallel architectures (5): shared everything
(SE), shared disk (SD), and shared nothing (SN). None
emerges as the undisputed winner. Each has its advan-
tages as well as its disadvantages.

Shared Everything Architecture

The processors share all disks and memory modules
[see Fig. 1(a)]. Examples of this architecture include IBM
mainframes, HP T500, SGI Challenge, and the symmetric-
multiprocessor (SMP) systems available from PC manu-
facturers. A major advantage of this approach is that
interprocessor communication is fast because the proces-
sors can cooperate via the shared memory. This system
architecture, however, does not scale well for very large
databases. For an SE system with more than 32 processors,
the shared memory would have to be a physically distrib-
uted memory to accommodate the aggregate demand on the
shared memory from the large number of processors. An
interconnection network (e.g., multistage network) is
needed, in this case, to allow the processors to access the
different memory modules simultaneously. As the number
of the processors increases, the size of the interconnection
network grows accordingly, which renders longer memory
access latency. The performance of microprocessors is very
sensitive to this factor. If the memory-access latency
exceeds one instruction time, the processor may idle until
the storage cycle completes. A popular solution to this
problem is to have cache memory with each processor.
However, the use of caches requires a mechanism to ensure
cache coherency (i.e., ensure that all cached copies of the
same data item have the same value). As we increase the
number of processors, the number of messages caused by
cache coherency control (i.e., cross interrogation) increases.
Unless this problem can be solved, scaling an SE database
server into the range of 64 or more processors will be
impractical. Commercial DBMSs designed for this archi-
tecture include Informix Online Dynamic Server, Oracle
Parallel Query Option, and IBM DB2/MVS.

Shared Disk Architecture

To address the memory-access-latency problem encoun-
tered in SE systems, each processor is coupled with its
private memory in an SD system [see Fig. 1(b)]. The disks
are still shared by all processors as in SE. Intel Paragon,
nCUBE/2, and Tandem’s ServerNet-based machines typify
this design. As each processor may cache data pages in its
private memory, SD also suffers the high cost of cache
coherency control. In fact the interference among proces-
sors is even more severe than in SE. As an example, let us

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



consider a disk page containing 32 cache lines of data. No
interference occurs in an SE system as long as the
processors update different cache lines of this page. In
contrast, an update to any of these cache lines in an SD
system will interfere with all processors currently having a
copy of this page even when they are actually using differ-
ent cache lines of the page. Commercial DBMSs designed
for this architecture include IBM IMS/VS Data Sharing
Product, DEC VAX DBMS and Rdb products, and Oracle on
DEC’s VAXcluster and Ncube Computers.

Shared Nothing Architecture

To improve scalability, SN systems are designed to over-
come the drawbacks of SE and SD systems [see Fig. 1(c)]. In
this configuration, a message-passing network is used to
interconnect a large number of processing nodes (PNs).
Each PN is an autonomous computer consisting of a pro-
cessor, a local private memory, and dedicated disk drives.
Memory access latency is no longer a problem. Further-
more, as each processor is only allowed to read and write its
local partition of the database, cache coherency is much
easier to maintain. However, SN is not a performance
panacea. Message passing is significantly more expensive
than data sharing through the centralized shared memory
as in SE systems. Some examples of this architecture are
Teradata’s DBC, Tandem NonStopSQL, Intel’s Paragon,
and IBM 6000 SP. Commercial DBMSs designed for this
architecture include Teradata’s DBC, Tandem Non-
StopSQL, and IBM DB2 Parallel Edition.

To combine the advantages of the previously discussed
architectures and to compensate for their respective
disadvantages, new parallel database servers are
converging toward a hybrid architecture (6). In this archi-

tecture, SE clusters are interconnected through a com-
munication network to form an SN structure at the
intercluster level (see Fig. 2). The motivation is to mini-
mize the communication overhead associated with the SN
structure, yet keep each cluster size small within the
limitation of the local memory and I/O bandwidth. Exam-
ples of this architecture include new Sequent computers,
IBM RS/6000 SP, NCR 5100M, and Bull PowerCluster.
Some commercial DBMSs designed for this structure are
the Teradata Database System for the NCR WorldMark
5100 computer, Sybase MPP, and Informix-Online
Extended Parallel Server.

DATA PARTITIONING TECHNIQUES

Traditional use of parallel computers is to speed up the
complex computation of scientific and engineering applica-
tions. In contrast, database applications use parallelism
primarily to increase the disk-I/O bandwidth. The level
of achievable I/O concurrency determines the degree of
parallelism that can be attained. If each relation (i.e.,
dataset) is divided into partitions, each stored on a distinct
disk, a database operator can often be decomposed into
many independent operators, each working on one parti-
tion. To maximize parallelism, several data partitioning
techniques have been used (7).

Round-Robin Partitioning

The tuples (i.e., data records) of a relation are distributed
among the disks in a round-robin fashion. The advantages
of this approach are simplicity and the balanced data load
among the disks. The drawback of this scheme is that it does
not support associative search (i.e., search for tuples with
the desired attribute values). Any search operations would
require searching all disks in the system. Typically, local
indices must be created for each data partition to speed up
the local search operations.

Communication 
network 

Shared everything (SE) Shared disk (SD) 

(a)

P P P P 

Communication 
network 

(b)

P P P P 

M 

M M M M 

M M M 

Shared nothing (SN) 

: Memory module 

: Processor 

: Disk drive 

Communication 
network 

(c)

P P P P P 

M M M M 

M 

Figure 1. Three basic architectures for parallel database
servers. Both disks and memory modules are shared by all
processors in SE. Only disks are shared in SD. Neither disks nor
memory modules are shared by the processors in SN.

P P 

Bus Bus 

Communication network 

Memory Memory 

Cluster 1 Cluster N

P P P P 

Figure 2. A hybrid architecture for parallel database servers. SE
clusters are interconnected to form an SN structure at the
intercluster level.

2 PARALLEL DATABASE MANAGEMENT SYSTEMS



Hash Partitioning

A randomizing hash function is applied to the partitioning
attribute (i.e., key field) of each tuple to determine the disk
to store the tuple. Like round-robin partitioning, hash
partitioning usually provides an even distribution of data
across the disks. However, unlike round-robin partitioning,
the same hash function can be employed at run time to
support associative searches. A drawback of hash partition-
ing is its inability to support range queries. A range query
retrieves tuples that have the value of the specified attri-
bute falling within a given range. This type of query is
common in many applications.

Range Partitioning

This approach maps contiguous key ranges of a relation to
various disks. This strategy is useful for range queries
because it helps to identify data partitions relevant to
the query, skipping all uninvolved partitions. The disad-
vantage of this scheme is that data processing can be
concentrated on a few disks, which leaves most computing
resources underused. This phenomenon is also known as
access skew. To minimize this effect, the relation can be
divided into a large number of fragments using very small
ranges. These fragments are distributed among the disks in
a round-robin fashion.

Multidimensional Partitioning

Range partitioning cannot support range queries expressed
on nonpartitioning attributes. To address this problem,
multidimensional partitioning declusters a relation based
on multiple attributes. As an example, let us consider the
case of partitioning a relation using two attributes, say age
and salary (see Fig. 3). Each data fragment is characterized
by a unique combination of the age and salary ranges. For
instance, tuples in the fragment [8,7] in Fig. 3 have the age
values in range 8 and the salary values in salary range 7.
These data fragments can be assigned to the disks in
various ways (8–11). As an example, the following function
can be used to assign a fragment ½X1;X2; . . . ;Xn� to a disk:

DISK IDðX1;X2; . . . ;XnÞ ¼
�Xd

i¼2

�
Xi �GCDi

N

�

þ
Xd

i¼1

ðXi � Shf distiÞ
�

mod N

(1)

where N is the number of disks and d is the number
of partitioning attributes;

Shf disti ¼ ½
ffiffiffiffiffi
N
p
�i�1 and GCDi ¼ gcdðShf disti;NÞ. A

data placement example using this mapping function is
illustrated in Fig. 3. Visually, the data fragments repre-
sented by the two-dimensional grid are assigned to the nine
disks as follows:

1. Compute the shift distance Shf dist. For this exam-
ple, Shf dist ¼ ½

ffiffiffiffiffi
N
p
� ¼ 3.

2. Mark the top-most row as the check row.

3. Disks 0, 1, . . ., 8 are assigned to the nine fragments in
this row from left to right. Make the next row the
current row.

4. The allocation pattern for the current row is deter-
mined by circularly left-shifting the pattern of the
row above it by three (i.e., Shf dist) positions.

5. If the allocation pattern of the current row is identical
to that of the check row, we perform a circular left-
shift on the current row one more position and mark
the current row as the new check row.

6. If there are more rows to consider, make the next row
the current row and repeat steps 4, 5, and 6.

Assuming that nine had been determined to be the optimal
degree of I/O-parallelism for the given relation, this data
placement scheme allows as many types of range queries
to take full advantage of the I/O concurrency as possible.
Range queries expressed on either age or salary or both can be
supported effectively. The optimal degree of I/O parallelism is
known as the degree of declustering (DoD), which defines the
number of partitions a relation should have. For clarity, we
assume in this example that the number of intervals on each
dimension is the same as the DoD. The mapping function
Eq. (1), however, can be used without this restriction.

Many studies have observed that linear speed-up for
smaller numbers of processors could not always be extra-
polated to larger numbers of processors. Although increas-
ing the DoD improves the performance of a system,
excessive declustering will reduce throughput caused by
overhead associated with parallel execution (12). Full
declustering should not be used for very large parallel
systems. The DoDs should be carefully determined to max-
imize the system throughput. A good approach is to evenly
divide the disks into several groups and to assign relations
that are frequently used together as operands of database
operators (e.g., join) to the same disk group. Having differ-
ent DoDs for various relations is not a good approach
because the set of disks used by each relation would usually
overlap with many sets of disks used for other relations.
Under the circumstances, scheduling one operator for
execution will cause most other concurrent queries to
wait because of disk contention. This approach generally
results in very poor system utilization.

PARALLEL EXECUTION

Today, essentially all parallel database servers support the
relational data model and its standard query language:
SQL (structured query language). SQL applications writ-
ten for uniprocessor systems can be executed in these
parallel servers without needing to modify the code. In a
multiuser environment, queries submitted to the server are
queued up and are processed in two steps:

� During compile time, each query is translated into a
query tree that specifies the optimized order for execut-
ing the necessary database operators.

� During execution time, the operators on these query trees
are scheduled to execute in such a way to maximize
system throughput while ensuring good response times.

PARALLEL DATABASE MANAGEMENT SYSTEMS 3



Three types of parallelism can be exploited: intra-
operator parallelism, intraquery parallelism, and interqu-
ery parallelism.

Intra-operator parallelism is achieved by executing a
single database operator using several processors. This
result is possible if the operand relations are already parti-
tioned and distributed across multiple disks. For instance,
a scan process can be precreated in each processor at system
start-up time. To use a set of processors to scan a relation in
parallel, we need only to request the scan processes residing
in these processors to carry out the local scans in parallel.
To effectively support various types of queries, it is desir-
able to create at least one process in each processor for each
type of primitive database operator. These processes are
referred to as operator servers. They behave as a logical
server specializing in a particular database operation. Once
an operator server completes its work for a query, the
logical server is returned to the free pool awaiting another
service request to come from some pending query. By
having queries share the operator servers, this approach
avoids the overhead associated with process creation.
Intraquery parallelism is realized by arranging query
operators in a query tree to allow several database opera-
tors to run concurrently without changing the query result.
On the other hand, interquery parallelism is realized by
scheduling database operators from different queries for
concurrent execution. Two scheduling approaches have
been used as follows.

Competition-Based Scheduling

In this scheme, a set of coordinator processes is precreated
at system start-up time. They are assigned to the queries by
a dispatcher process according to some queuing discipline,
say, first come first serve. The coordinator that is assigned
the query becomes responsible for scheduling the operators
in the corresponding query tree. For each operator in the
tree, the coordinator competes with other coordinators for
the required operator servers. When the coordinator has
successfully acquired all operator servers needed for the

task, the coordinator coordinates these servers to execute
the operation in parallel. An obvious advantage of this
approach is its simplicity. It assumes that the number of
coordinators has been optimally set by the system admin-
istrator and deals only with ways to reduce service times.
The scheduling strategy is fair in the sense that each query
is given the same opportunity to compete for the computing
resources.

Planning-Based Scheduling

In this approach, all active queries share a single scheduler.
As this scheduler knows the resource requirements of all
active queries, it can schedule the operators of these queries
based on how well their requirements match the current
condition of the parallel system. For instance, a best-fit
strategy can be used to select from the pending operators
the one that can make the maximum use of currently
available operator servers to execute first. The motivation
is to maximize the resource utilization. This approach,
however, is not as fair as the competition-based technique.
Queries that involve very small or very large relations can
experience starvation. The scheduler can also become a
bottleneck. To ameliorate the latter problem, a parallel
search algorithm can be used to determine the best fit.

We note that the scheduling techniques discussed pre-
viously do not preclude the possibility of executing two or
more operators of the same query simultaneously (intra-
query parallelism). Both scheduling techniques try to max-
imize the system performance by strategically mixing all
three forms of parallelism discussed herein.

LOAD BALANCING

As each PN in an SN system processes the portion of the
database on its local disks, the degree of parallelism is
dictated by the placement of the data across the PNs.
When the distribution is seriously skewed, balancing the
load on these PNs is essential to good system performance

Figure 3. Two-dimensional data partitioning
based on age and salary. The 9 � 9 data fragments
are assigned to nine processing nodes. Range
queries based on age, salary, or both can be
supported effectively.

0 1 2 3 4 5 6 7 8

3 4 5 6 7 8 0 1 2

6 7 8 0 1 2 3 4 5

1 2 3 4 5 6 7 8 0

4 5 6 7 8 0 1 2 3

7 8 0 1 2 3 4 5 6

2 3 4 5 6 7 8 0 1

5 6 7 8 0 1 2 3 4

8 0 1 2 3 4 5 6 7

Range 0

Range 1

Range 2

Range 3

Range 4

Range 5

Range 6

Range 7

Range 8

Salary

R
an

ge
 0

R
an

ge
 1

R
an

ge
 2

R
an

ge
 3

R
an

ge
 4

R
an

ge
 5

R
an

ge
 6

R
an

ge
 7

R
an

ge
 8

Age

A check row

Tuples in this fragment 
have age in range 8 and salary

in range 7.

This fragment is 
assigned to disk 3.

4 PARALLEL DATABASE MANAGEMENT SYSTEMS



(12,13). Although SE systems allow the collaborating pro-
cessors to share the workload more easily, load balancing is
still needed in such systems to maximize processor utiliza-
tion (14). More specifically, the load balancing task should
equalize the load on each disk, in addition to evenly dividing
the data-processing tasks among the processors. As an
example, let us consider an extreme scenario in which a
large portion of the data that needs to be processed happens
to reside on a single disk. As little I/O parallelism can be
exploited in this case, the storage subsystem cannot deliver
a level of I/O performance commensurate with the compu-
tational capabilities of the SE system. Although the data-
processing tasks can still be perfectly balanced among the
processors by sharing the workload stored on that one disk,
the overall performance of the system is deteriorated
because of poor utilization of the available I/O bandwidth.
Similarly, balancing the data load among the disks is
essential to the performance of SD systems. In summary,
no architecture is immune to the skew effect. We shall see
shortly that similar techniques can be used to address this
problem in all three types of systems.

SE and SD systems, however, do have the advantage
under the following circumstances. Let us consider a
transaction-processing environment in which frequently
accessed data are localized to only a few disks. Further-
more, the system memory is large enough to keep these
frequently used data in the memory buffer most of the time.
In this case, it is very easy for the processors of an SE or SD
system to share the workload because each processor is
allowed to access the shared disks. In contrast, when an SN
system is faced with this situation, only a couple of the PNs
that own the disks with the frequently used data are overly
busy. The remaining PNs are idle most of the time. This
phenomenon, however, is most likely from bad data place-
ment and usually can be rectified by redistributing the
tuples.

Many load-balancing techniques have been developed
for parallel database systems. Let us first examine
techniques designed for SN systems. Several parallel join
algorithms have been proposed. Among them, hash-based
algorithms are particularly suitable for SN systems. In
these strategies, the operand relations are partitioned
into buckets in the hashing phase by applying the same
randomizing hash function to the join key value, e.g., the
join key value modulo the desired number of buckets.
The buckets of the two relations, which correspond to the
same hash value, are assigned to the same PN. These
matching bucket pairs are evenly distributed among the
PNs. Once the buckets have been assigned, each processor
joins its local matching bucket pairs independently of
the other PNs in the joining phase. This strategy is very
effective unless there is a skew in the tuple distribution; i.e.,
some buckets are substantially larger than the remaining
buckets. When severe fluctuations occur among the bucket
sizes, some processors are assigned significantly more
tuples on which to perform the local join operation. As the
computation time of the join operation is determined by
the slowest PN, skew in the tuple distribution seriously
affects the overall performance of the system.

To minimize the skew effect, the buckets can be redis-
tributed among the PNs as follows. At the end of the

hashing phase, each PN keeps as many of the larger local
buckets as possible; however, the total number of tuples
retained should not exceed the ideal size each PN would
have if the load were uniformly distributed. The excessive
buckets are made available for redistribution among the
PNs, using some bin-packing technique (e.g., largest pro-
cessing time first), so as to balance the workload. This
strategy is referred to as partition tuning (12). It handles
severe skew conditions very well. However, when the skew
condition is mild, the overhead associated with load balan-
cing outweighs its benefits, which causes this technique to
perform slightly worse than methods that do not perform
load balancing at all, because this load balancing scheme
scans the entire operand relations to determine the redis-
tribution strategy. To reduce this overhead, the distribu-
tion of the tuples among the buckets can be estimated in the
early stage of the bucket formation process as follows (15):

� Sampling Phase: Each PN independently takes a
sample of both operand relations from its disk. The
size of the sample is chosen such that the entire sample
can fit in the memory capacity. As the sampling tuples
are brought into memory, they are declustered into
several in-memory buckets by hashing on the join
attributes.

� Partition Tuning Phase: A predetermined coordinat-
ing processor computes the sizes of the sampling buck-
ets by adding up the sizes of the corresponding local
buckets. It then determines how the sampling buckets
should be assigned among the PNs, using some bin-
packing technique, so as to evenly distribute the sam-
pling tuples among the PNs.

� Split Phase: Each processor collects the assigned local
sampling buckets to form the corresponding sampling
join buckets on its disk. When all sampling tuples have
been stored to disks, each PN continues to load the
remaining tuples from the relations and redistribute
them among the same buckets on disks. We note that
tuples are not written to disk one at a time. Instead,
each processor maintains a page buffer for each hash
value. Tuples having the same hash values piggyback
to the same page buffer, and the buffer is sent to its disk
destination when it is full.

� Join Phase: Each PN performs the local joins of
respectively matching buckets.

The sampling-based load balancing technique has the fol-
lowing advantages. First, the sampling and load balancing
processes are blended with the normal join operation. As a
result, the sampling phase incurs essentially no overhead.
Second, as the sample is a byproduct of the normal join
operation and therefore is free, the system can afford to use
a large sample whose size is limited only by the memory
capacity. Although the technique must rely on page-level
sampling to keep the I/O cost low, studies show that a
sample size as small as 5% of the size of the two operand
relations is sufficient to accurately estimate the tuple dis-
tribution under practical conditions. With the capacity of
today’s memory technology, this scheme is effective for a
wide range of database applications.

PARALLEL DATABASE MANAGEMENT SYSTEMS 5



We note that although we focus our discussion on the join
operation, the same technique can also be used for other
relational operators. For instance, load balancing for the
union operation can be implemented as follows. First, each
PN hashes its portion of each operand relation (using an
attribute with a large number of distinct values) into local
buckets and stores them back on the local disks. A pre-
determined coordinating PN then assigns the respectively
matching bucket-pairs to the PNs using the partition tun-
ing technique. Once the distribution of the bucket pairs has
been completed, each PN independently processes its local
bucket pairs as follows. For each bucket pair, one bucket is
first loaded to build an in-memory hash table. The tuples of
the other bucket are then brought into memory to probe the
hash table. When a match is found for a given tuple, it is
discarded; otherwise, it is inserted into the hash table. At
the end of this process, the hash tables located across the
PNs contain the results of the union operation. Obviously,
the sampling-based technique can also be adapted for this
and other relational operators.

Partition tuning can also be used to balance workload in
SE and SD systems. Let us consider an SE system, in which
the operand relations are evenly distributed among n disks.
A parallel join algorithm which uses n processors is given
below.

� Sampling Phase: Each processor is associated with a
distinct disk. Each processor independently takes a
local sample of both operand relations from its disk.
The size of the local samples is chosen such that the
entire sample can fit in the available memory. As the
sampling tuples are brought into memory, they are
declustered into several in-memory local buckets by
hashing on the join attributes. Each processor also
counts the number of tuples in each of its local buckets.

� Partition Tuning Phase: A predetermined coordinat-
ing processor computes the sizes of the sampling buck-
ets by adding up the sizes of the corresponding local
buckets. It then determines how the sampling buckets
should be assigned among the disks, using some bin-
packing technique, so as to distribute the sampling
tuples evenly among the disks.

� Split Phase: Each processor collects the assigned local
sampling buckets to form the corresponding sampling
join buckets on its disk. When all sampling tuples have
been collected to disks, each PN continues to load from
its disk the remaining tuples of the two relations and
redistribute them among the same buckets.

� Join Phase: Each PN joins the matching buckets
located on its disk independently of the other PNs.

We observe in this algorithm that each disk performs the
same number of read-and-write operations assuming the
operand relations were evenly distributed across the disks.
Furthermore, each processor processes the same number of
tuples. The workload is perfectly balanced among the com-
puting resources. An important advantage of associating a
processor with a distinct disk unit is to avoid contention and
to allow sequential access of the local partitions. Alterna-
tively, the load can be evenly distributed by spreading each

bucket across all disks. This approach, however, requires
each disk to serve all processors at once during the join
phase, causing the read head to move in an anarchic way.
On another issue, each processor using its local buckets and
page buffers during the sampling phase and split phase,
respectively, also avoids contention. If the processors were
allowed to write to a set of shared buckets as determined by
the hash values, some mechanism would have been neces-
sary to synchronize the write conflicts. This approach is not
good because the contention for some buckets would be very
severe under a skew condition.

FUTURE DIRECTIONS AND RESEARCH PROBLEMS

Traditional parallel computers were designed to support
computation-intensive scientific and engineering applica-
tions. As the processing power of inexpensive workstations
has doubled every two years over the past decade, it has
become feasible to run many of these applications on work-
stations. As a result, the market for parallel scientific and
engineering applications has shrunk rapidly over the same
period. A few major parallel computer manufacturers
having financial difficulties in recent years are evidence
of this phenomenon. Fortunately, a new and much stron-
ger market has emerged for those manufacturers that
could make the transition to adapt their machines to
database applications. This time, business is much more
profitable for the following reasons. First, the database
market is much larger than that of scientific and engineer-
ing applications. In fact, significantly more than half of the
computing resources in the world today are used for data-
processing-related tasks. Second, advances in micropro-
cessor technology do not make workstations more suitable
for handling database management tasks, which are
known to be I/O intensive. It would be impractical to
pack a workstation with a very large number of disks.
Third, managing a large amount of multimedia data has
become a necessity for many business sectors. Only par-
allel database servers can have the scalable bandwidth to
support such applications.

As parallel database systems displaced scientific and
engineering applications as the primary applications for
parallel computers, manufacturers put a great deal of
attention in improving the I/O capabilities of their
machines. With the emergence of multimedia applications,
however, a new hurdle, the network-I/O bottleneck (16–18),
has developed for the database community. Essentially all
of today’s parallel database servers are designed for con-
ventional database applications. They are not suitable for
applications that involve multimedia data. For conven-
tional database applications, the server requires a lot of
storage-I/O bandwidth to support query processing. On the
other hand, the demand on the network-I/O bandwidth is
minimal because the results returned to the clients are
typically a very small fraction of the data examined by the
query. In contrast, the database server must deliver very
large multimedia objects as query results to the clients in a
multimedia application. As an example, the network-I/O
bottleneck is encountered in Time Warner Cable’s Full
Service Network project in Orlando. Although each SGI
Challenge server used in this project can sustain thousands

6 PARALLEL DATABASE MANAGEMENT SYSTEMS



of storage-I/O streams, the network-I/O bottleneck limits
its performance to less than 120 MPEG-1 video streams.
This poor performance is reminiscent of a large crowd
funneling out of the gates after a football match. To address
this bottleneck, eight servers had to be used at Time
Warner Cable to serve the 4000 homes, which significantly
increased the hardware cost and the costs of hiring addi-
tional system administrators. It is essential that future-
generation servers have sufficient network-I/O bandwidth
to make their storage bandwidth available to clients for
retrieving large multimedia data.

Today’s parallel database systems use only sequential
algorithms to perform query optimization despite the large
number of processors available in the system. Under time
constraints, no optimizer can consider all parallel algo-
rithms for each operator and all possible query tree orga-
nizations. A parallel query optimizer is highly desirable
because it would have the leeway to examine many
more possibilities. A potential solution is to divide the
possible plans among several optimizer instances running
on different processors. The costs of various plans can
be estimated in parallel. At the end, a coordinating opti-
mizer compares the best candidates nominated by the
participating optimizers and selects the best plan. With
the additional resources, it also becomes feasible to opti-
mize multiple queries together to allow sharing of inter-
mediate results. Considering the fact that most
applications access 20% of their data 80% of the time,
this approach could be a major improvement. More work
is needed in this area.

Parallel database systems offer parallelism within the
database system. On the other hand, existing parallel
programming languages are not designed to take advan-
tage of parallel database systems. A mismatch occurs
between the two technologies. To address this issue, two
strategies can be considered. One approach is to introduce
new constructs in the parallel programming language to
allow computer programs to be structured in a way to
exploit database parallelism. Alternatively, one can con-
sider implementing a persistent parallel programming
language by extending SQL with general-purpose parallel
programming functionality. Several companies have
extended SQL with procedural programming constructs
such as sequencing, conditionals, and loops. However, no
parallel processing constructs have been proposed. Such a
language is critical to applications that are both I/O inten-
sive and computationally intensive.

As the object-oriented paradigm becomes a new stan-
dard for software development, SQL has been extended
with object functionality. The ability to process rules is also
being incorporated to support a wider range of applications.
How to enhance existing parallel database server technol-
ogy to support the extended data model is a great challenge
facing the database community. For instance, SQL3 sup-
ports sequence and graph structures. We need new data
placement techniques and parallel algorithms for these
nonrelational data objects. Perhaps, techniques developed
in the parallel programming language community can be
adapted for this purpose.

BIBLIOGRAPHY

1. H. Boraket al., Prototyping bubba, a highly parallel database
system, IEEE Trans. Knowl. Data Eng., 2: 4–24, 1990.

2. D. DeWittet al., The gamma database machine project, IEEE
Trans. Knowl. Data Eng., 2: 44–62, 1990.

3. K. A. Hua and H. Young, Designing a highly parallel database
server using off-the-shelf components, Proc. Int. Comp. Symp.,
1990, pp. 17–19.

4. M. Kitsuregawa, H. Tanaka, and T. Moto-oka, Application of
hash to data base machine and its architecture, New Gen.
Comp., 1 (1): 63–74, 1983.

5. M. Stonebraker, The case for shared nothing, Database Eng., 9
(1): 1986.

6. K. A. Hua, C. Lee, and J. Peir, Interconnecting shared-nothing
systems for efficient parallel query processing, Proc. Int. Conf.
Parallel Distrib. Info. Sys., 1991, pp. 262–270.

7. D. DeWitt and J. Gray, Parallel database systems: The future
of high performance database systems, Commun. ACM, 35 (6):
85–98, 1992.

8. L. Chen and D. Rotem, Declustering objects for visualization,
Proc. Int. Conf. Very Large Data Bases, 1993, pp. 85–96.

9. H. C. Du and J. S. Sobolewski, Disk allocation for Cartesian
product files on multiple disk systems, ACM Trans. Database
Sys., 7 (1): 82–101, 1982.

10. C. Fabursos and P. Bhagwat, Declustering using fracals, Proc.
Int. Conf. Parallel Distrib. Inf. Sys., 1993, pp. 18–25.

11. K. A. Hua and C. Lee, An adaptive data placement scheme for
parallel database computer systems, Proc. Int. Conf. Very
Large Data Bases, 1990, pp. 493–506.

12. K. A. Hua and C. Lee, Handling data skew in multicomputer
database systems using partitioning tuning, Proc. Int. Conf.
Very Large Data Bases, 1991, pp. 525–535.

13. J. Wolf, D. Dias, and P. Yu, An effective algorithm for paralle-
lizing hash joins in the presence of data skew, Proc. Int. Conf.
Data Eng., 1991, pp. 200–209.

14. E. Omiecinski, Performance analysis of a load balancing hash-
join algorithm for shared memory multiprocessor, Proc. Int.
Conf. Very Large Data Bases, 1991, pp. 375–385.

15. K. A. Hua, W. Tavanapong, and Y. Lo, Performance of load
balancing techniques for join operations in shared-nothing
database management systems, J. Parallel Distributed Com-
put. 56: 17–46, 1999.

16. K. Hua and S. Sheu, Skyscraper broadcasting: A new broad-
casting scheme for metropolitan video-on-demand systems,
Proc. ACM SIGCOMM’97 Conf., 1997.

17. S. Sheu, K. Hua, and W. Tavanapong, Chaining: A generalized
batching technique for video-on-demand systems, Proc. IEEE
Int. Conf. Multimedia Com. Sys., 1997.

18. K. A. Hua, M. Tantaoui, and W. Tavanapong, Video delivery
technologies for large-scale deployment of multimedia applica-
tions. Proc. IEEE on Evaluation of Internet Technologies
towards the Business Environment, 2004.

KIEN A. HUA

University of Central Florida
Orlando, Florida

WALLAPAK TAVANAPONG

Iowa State University
Ames, Iowa

PARALLEL DATABASE MANAGEMENT SYSTEMS 7



P

PEER-TO-PEER COMMUNICATION

INTRODUCTION

A peer-to-peer (P2P) system is a type of distributed system
constructed at the application level and running at the edge
of the Internet, usually on personal computers such as
desktops and laptops of millions of users. Each end point
in a P2P system is called a peer. Peers communicate
through peer-to-peer protocols, which are on top of the
Transmission Control Protocol and Internet Protocol.
Peer-to-peer communication mainly refers to the commu-
nication protocols of peer-to-peer systems.

Peer-to-peer communication is different from a tradi-
tional client–server model. In peer-to-peer communication,
peers in the system are symmetric: Each peer is both a
client that requests information and services and a server
that produces and/or provides information and services. A
peer in peer-to-peer systems is also known as a servent,
abbreviated from the combination of the words ‘‘server’’ and
‘‘client.’’ P2P systems aim to use the information and
resources among end users of the Internet, which comple-
ments existing client–server systems.

A peer-to-peer system is an autonomous system in
which peers are self-organized into an overlay network.
Thus, peer-to-peer systems are often called peer-to-peer
networks. No strict central control exists over all peers in
the system (although there may be some kinds of centra-
lized coordination mechanisms), and peers are free to come
and go at any time. That is, P2P systems are highly
transient. A major and important peer-to-peer application
is file sharing among peers. The representative P2P file-
sharing systems are Napster (1), Gnutella (2), KaZaa (3),
eDonkey/eMule/Overnet (4), and BitTorrent (5).

The Basic Facilities of P2P Systems

The main facilities that P2P systems provide to peers are
the content location, file downloading facilities, and incen-
tive for service contributions. By organizing the index of the
content that is shared by peers in the system into a uniform
structure (centralized or decentralized), a P2P system can
provide a hash table-like interface, where the content
location and the content ID map are one-to-one. By per-
forming a content search at each peer locally in parallel, a
P2P system can support advanced search facilities such as a
keyword search and a full-text search. By using some
advanced techniques such as Latent Semantic Indexing,
a hash table-like interface can also support a keyword
search in P2P networks. Some P2P systems have no search
facility and rely on users employing Web-based search
engines to search the desired content manually.

Some P2P systems use the HTTP protocol for file down-
loading, such as Napster, Gnutella, and KaZaa. BitTorrent
and eDonkey/eMule/Overnet use their own file download-
ing protocols so that the server can control the data sending
rate. BitTorrent and eDonkey/eMule/Overnet support par-

allel downloading, in which each peer can download differ-
ent parts of the file from multiple peers simultaneously.

KaZaa also supports parallel downloading by using the
range request in the HTTP protocol. The advantage of
parallel downloading is that it can reduce downloading
time on the client side, and thus, it improves the user
experience significantly. Another advantage is that peers
do not need to wait for the complete downloading of the file
to serve for other peers. Once the peer has downloaded a
chunk of the file completely, it can serve other peers and
continue to download other chunks simultaneously.

Early P2P systems such as Napster and Gnutella have
no incentive mechanism for peers to contribute their ser-
vice. Instead, they rely on the altruism of peers to support
the file-sharing service. As a result, free riding is very
common in such systems (6); many peers called free riders
receive services without making any contribution. KaZaa
provides a credit-based system to encourage peers to con-
tribute, but it is difficult to prevent collusion on the con-
tribution each peer makes. BitTorrent uses a ‘‘tit-for-tat’’
mechanism to restrain free riding and to prevent collusion
effectively.

The Classification of P2P Systems

In general, peer-to-peer file-sharing systems can be clas-
sified as centralized, in which a central server hosts the
indices of the content shared by peers in the system or
decentralized, in which the indices of the content are
distributed among peers in the system. Decentralized
peer-to-peer systems can be further classified into unstruc-
tured and structured systems, based on the mechanisms of
overlay organization and index search. A structured
peer-to-peer system has global coordination on the overlay
structure and the datasets in the system, whereas an
unstructured system does not. Furthermore, according
to the methodology of file sharing, peer-to-peer systems
can be classified as exchange-based, where peers exchange
different files with each other by their interests, or
swarming-based, where peers download the same content
by exchanging small chunks of a large file.

In addition to being used for file sharing, peer-to-peer
systems have also been used for Internet telephony, also
known as voice over IP (VoIP), and live media streaming
on the Internet, also known as IPTV. Skype (7,8) is a
peer-to-peer VoIP system, in which peers are used for
both searching clients and relaying voice packets. PPLive
(9,10) is a peer-to-peer streaming video system, which uses
peer-to-peer collaboration to distribute online and live
media among users.

CENTRALIZED P2P SYSTEM

The first generation of peer-to-peer file-sharing systems is
centralized and index-based, such as Napster. In centra-
lized peer-to-peer systems, a central index server maintains

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



the directory of files that all peers are sharing, and peers
send queries to the server to search the content they want.
In Napster, a large cluster of dedicated central servers is
used to maintain the indices of the shared files. Each peer
connects to one of these servers when it joins the system,
uploads the index of its shared files to the server, and sends
queries to the server. The server responds with a list of
matched files with the location of these files to the peer.
Upon receiving the response, the peer selects one file from
the return list and initiates a file downloading. The server
also monitors the state of peers through the connection and
sends related information within the response message.
The file transmission is between the clients without passing
through the server. Fig. 1 shows the architecture of a
centralized, index-based P2P system.

Napster was closed in 2002 due to legal issues. Open-
Napster (OpenNap) (11) is an open source project that
extends the Napster protocol for file sharing.

Index-based peer-to-peer systems are not scalable and
are prone to a single point of failure, which can be over-
loaded due to flash crowd or attacked by malicious users.

DECENTRALIZED AND UNSTRUCTURED P2P SYSTEMS

To circumvent the limitations of centralized peer-to-peer
systems, the P2P community has developed decentralized
peer-to-peer systems. Instead of maintaining a huge index
in a central server or server cluster for the search service, a
decentralized system distributes searching and locating
loads across the participating peers. In such systems, peers
self-organize into an overlay network to communicate with
each other.

The overlay network of a peer-to-peer system is a logical
network on top of the Internet. Each peer selects a number
of peers as its neighbors to connect to in order that the
departure of a single peer cannot disconnect the peer from
the overlay network. A host-cache site, which maintains a

list of active peers in the system, works as the bootstrap site
of the P2P system, which provides an entry for new peers to
join the system. When a peer wants to join the system, it
connects to the host-cache site to get a list of peers and
randomly selects a number of peers to connect to. A peer
may try to connect to other peers when some of its neighbors
leave or may accept connection requests from other peers.
We call such a P2P overlay an unstructured P2P network
because the connections of peers are random and do not
follow any rules. However, in practice the connectivity of
peers in the overlay is not randomly distributed. Instead,
the node degree of the overlay topology graph is heavily
skewed due to the heterogeneity of the lifetime and com-
puting capacity of peers. Research has shown that the node
connectivity of many unstructured P2P networks follows a
two-phrase Zipf-like distribution, as shown in Fig. 2. This
kind of overlay is highly resilient to random node break-
downs but is vulnerable to attacks that target those highly
connected nodes.

Each peer in a P2P overlay network is not only a servent
but also a router that forwards messages it receives to its
neighboring peers. In this way, a message can travel the
network to reach the destination peer whose location is
unknown to the sender. Message forwarding enables con-
tent search over the P2P overlay network. We briefly
introduce three well-known peer-to-peer search algorithms
for unstructured P2P networks, namely, flooding, super
node, and random walk.

Flooding is a broadcast mechanism for the P2P system,
such as Gnutella. In the flooding algorithm, a peer sends a
message to its neighbors, which in turn forward the mes-
sage to all their neighbors except the message sender. Each
message has a unique message ID. A message received by a
peer that has the same message ID as the one received
previously is considered a redundant message and will be
discarded. Flooding is conducted in a hop by hop fashion
counted by Time-to-Live (TTL). A message starts off with
its initial TTL, which is decremented by one when it travels

peer

peer

peer
peer

peer

central
index

 retsulc  revres  xedni

query

response

downloading

Figure 1. Index-based P2P system.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

peers

no
de

 d
eg

re
e

Figure 2. The connectivity degree of an unstructured P2P net-
work.

2 PEER-TO-PEER COMMUNICATION



across one hop. A message comes to its end either because it
becomes a redundant message or because its TTL is decre-
mented to 0. The default initial TTL value is 7 since 7-hop
flooding can cover more than 90% of the nodes in the P2P
network. Fig. 3 shows the message flooding on the P2P
overlay network.

Flooding is very simple and very effective. However, it
may cause a great amount of redundant or unnecessary
traffic. It has been estimated that routing traffic for the
Gnutella network was about 1.7% of the total traffic in
the U.S. Internet backbones in December 2000. To reduce
the flooding traffic in a P2P overlay, many P2P systems,
such as KaZaA, Morpheus, and current Gnutella, adopt a
super node architecture. A super node is a proxy and index
server of a number of leaf nodes. A peer connects to one or
several super nodes to join the overlay network. The super
node maintains the indices of its leaf nodes, and queries are
only flooded in the super node network, in order to limit the
flooding scope. Although a super node may leave the system
at any time, a peer can still maintain the connection to the
overlay network by connecting to several super nodes
simultaneously. Fig. 4 shows the super node of the P2P
overlay network.

Random walk is another approach to reduce search
traffic. The content distribution in the system is heavily
skewed, and popular objects have more copies in the system

than unpopular ones. Most queries in P2P systems are for
popular objects, which are distributed redundantly in the
system. Thus, it is unnecessary to travel every node in the
overlay to find the information a peer needs. In the random
walk search approach, several walkers randomly travel the
network in parallel and forward the query initiated by the
sender along the travel path. An improved random walk
algorithm is the biased random walk, in which each peer
maintains the indices of its one-hop neighbors, and in which
the query is routed to the node with higher connectivity
randomly. Thus, the query is routed to the nodes with
highest connectivity quickly, and the indices in these highly
connective nodes can satisfy the query with high probabil-
ity. Although random walk has the least communication
traffic for message routing, it may result in a long response
time. As a result, it has not been practically implemented so
far. By constructing a content abundant cluster (CAC) on
top of the entire P2P network, which consists of those peers
with more objects than other peers, CAC can also reduce the
search scope without increasing the average query
response time (12).

DECENTRALIZED STRUCTURED P2P SYSTEMS

The lack of global data management in unstructured P2P
systems makes content locating inefficient and expensive.
Decentralized structured P2P systems organize peers in
the system into a distributed hash table (DHT), which
supports hash table-like operations in the overlay network.
In structured P2P systems, each node maintains a routing
table that is determined by the overlay structure of the
distributed hash table. Each object is placed in a unique
location in the system based on its key value and can
be reached by routing query between nodes, according to
the DHT routing rules. The object and its key can be
maintained by different peers. The key idea is that the
key space is organized as a hierarchical structure so that
the key search can be conducted efficiently. A one-dimen-
sional distributed hash table, such as Chord, Pastry, and
Tapestry, uses skiplist-like routing or tree-like routing to
pass the query to the destination node. Such distributed
hash tables can provide O(log n) lookup with each node
maintaining O(log n) routing table entries. The content
addressable network (CAN) uses a multi dimensional map-
ping mechanism that can provide O(dN1/d) lookup with
each peer maintaining O(d) routing table entries, where
d is the dimension of the system coordination space and N is
the number of nodes in the system.

Fig. 5 shows a two-dimensional CAN structure. Keys are
mapped into a two-dimensional Cartesian space, with each
rectangle of the coordination zone representing a fraction of
the entire key space. Each object is mapped into a key in the
two-dimensional Cartesian space one-to-one. Each rec-
tanglular zone in the key space is assigned to a peer, which
maintains the objects mapped to the keys in this rectangle.
The figure shows how a message is routed from coordinate
(0.4,0.1) to (0.9,0.7) in the overlay network. Each node
maintains a routing table, where each entry corresponds
to the coordination zones of one of its neighbors. Intuitively,
routing in a CAN overlay is performed by following a

X

X

X

X redundant message

hop 1

hop 2

Figure 3. A two-hop flooding in an unstructured P2P network.

super node

leaf node

Figure 4. The super node architecture for an unstructured P2P
network.

PEER-TO-PEER COMMUNICATION 3



straight line in the vertical dimension and then a straight
line in the horizontal dimension from the source node to
destination node in a decentralized way.

The typical popular distributed hash tables are Tapestry
(13), Pastry (14), CAN (15), and Chord (16). Distributed
hash tables are often used as an infrastructure to construct
large-scale distributed file systems or storage systems.
Although early P2P file-sharing systems were usually
unstructured, recently distributed hash tables have also
been used in P2P file sharing; for example, Overnet uses
Kademlia (17) for content search.

BITTORRENT: A SWARMING-BASED P2P SYSTEM

Early P2P file-sharing systems, for example, Napster,
Gnutella, KaZza, and eDonkey/eMule/Overnet are basi-
cally exchange-based. In exchange-based P2P systems,
peers share and exchange different files with each other.

BitTorrent is a swarming-based of P2P system that has
become very popular recently. As reported by CacheLogic,
BitTorrent traffic represented 53% of all P2P traffic on the
Internet in June 2004 (18). Unlike traditional P2P systems
such as Napster (1), Gnutella (2), and KaZaa (3), which use
various search protocols to find a target file, BitTorrent
organizes peers that share the same file into a P2P network
and focuses on an efficient replication mechanism to dis-
tribute the file among them.

BitTorrent uses parallel downloading techniques to
speed up content distribution. By dividing a file into small
chunks, a peer can download multiple parts of the file in
parallel, which enhances the efficiency of file distribution.
Once a peer completes downloading, it becomes a seed of the
system. BitTorrent uses a ‘‘tit-for-tat’’ incentive mechan-
ism, which enables peers with high uploading bandwidth to
have correspondingly high downloading bandwidth. The
incentive mechanism of the BitTorrent system effectively
prevents free riding, which is the most important difference
between BitTorrent systems and other systems. In prac-
tice, BitTorrent-like systems scale fairly well during flash
crowds and are now widely used for various purposes, such
as for distributing large software packages (19).

In a BitTorrent system, a content provider creates a
meta file (with the torrent suffix name) for the data file it

wants to share and publishes the meta file on a website.
Then the content provider starts a BitTorrent client with a
full copy of the torrent file as the original seed. For each data
file, a tracker site is used to help peers find each other to
exchange the file chunks. A user starts a BitTorrent client
as a downloader at the beginning in order to download file
chunks from other peers or seeds in parallel. A peer that has
downloaded the file completely also becomes a seed that
could, in turn provide a downloading service to other peers.
All peers in the system, including both downloaders and
seeds, self-organize into a P2P network, known as a torrent
(or a swarm). The initial seed can leave the torrent when
other seeds are available; the content availability and
system performance in the future depend on the arrival
and departure of downloaders and seeds. With the decrease
of content popularity over time, the downloading speed of
the file may become poor or even unavailable because of the
decrease of the number of peers sharing the file (20).

SUMMARY

Peer-to-peer communications are applications that use a
self-organized protocol to connect a large number of end
machines to share resources among them, where each peer
is both a client and a server. The applications of peer-to-peer
communications have expanded from initial music file
exchanges to large software distribution, live streaming
video, and VoIP. Traditional media and movie industries
are also considering using peer-to-peer techniques to dis-
tribute their content with the protection of copyrights. We
believe that peer-to-peer communication represents a com-
mon and cost-effective trend on the Internet.

BIBLIOGRAPHY

1. http://www.napster.com/.

2. http://www.gnutelliums.com/.

3. http://www.kazaa.com/.

4. http://www.edonkey2000.com/.

5. http://bittorrent.com/.

6. E. Adar and B. Huberman, Free riding on Gnutella, Technical
report, Xerox PARC, August 2000.

7. Skype–Internet calls, http://www.skype.com/.

8. S. Ren, L. Guo, and X. Zhang, ASAP: An AS-aware peer-relay
protocol for high quality VoIP with low overhead, Proc. 26th
International Conference on Distributed Computing Systems,
July 2006.

9. PPlive–the largest world wide Internet tv network home.
http://www.pplive.com/en/index.html.

10. X. Hei, C. Liang, I. Liang, Y. Liu, and K. W. Ross, Insight into
PPlive: Measurement study of a large scale P2P IPTV SYSTEM,
PROC. WWW 2006 WORKSHOP OF IPTV SERVICES OVER WORLD WIDE

WEB, 2006.

11. OpenNap: Open source Napster server. http://opennap. sour-
ceforge.net/.

12. L. Guo, S. Jiang, L. Xiao, and X. Zhang, Exploiting content
localities for efficient search in P2P systems, Proc. 18th Inter-
national Symposium on Distributed Computing, October 2004,
pp. 349–364.

(0, 0) (1, 0)

(0, 1)
(1, 1)

(0.4, 0.1)

(0.9, 0.7)

Figure 5. The content addressable network.

4 PEER-TO-PEER COMMUNICATION



13. B. Zhao, J. Kubiatowicz, and A. Joseph, Tapestry: An infra-
structure for fault-tolerant wide-area location and routing, in
Report No. UCB/CSD-01-1141, April 2001.

14. A. Rowstron and P. Druschel, Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems,
Proc. IFIP/ACM Middleware 2001, Heidelberg, Germany,
November 2001, pp. 329–350.

15. S. Ratnasamy, P. Francis, M. Handley, and R. Karp, A scalable
content-addressable network, Proc. ACM SIGCOMM 2001,
San Diego, CA, August 2001, pp. 161–172.

16. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan, Chord: A scalable peer-to-peer lookup service for
Internet applications, Proc. ACM SIGCOMM 2001, San Deigo,
CA, August 2001, pp. 149–160.

17. P. Maymounkov and D. Mazieres, Kademlia: A peer-to-peer
information system based on the XOR metric. Proc. 1st Inter-
national Workshop on Peer-to-Peer Systems, March 2002.

18. A. Parker, The true picture of peer-to-peer file sharing. Avail-
able http://www.cachelogic.com, 2004.

19. M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. A. Hamra,
and L. Garc’es-Erice, Dissecting BitTorrent: Five months in a
torrent’s lifetime, Proc. 5th Annual Passive & Active Measure-
ment Workshop, April 2004.

20. L. Guo, S. Chen, Z. Xiao, E. Fan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of BitTorrent-like sys-
tems, Proc. Internet Measurement Conference 2005, October
2005, pp. 35–48.

LEI GUO

XIAODONG ZHANG

The Ohio State University
Columbus, Ohio

PEER-TO-PEER COMMUNICATION 5



P

PROGRAMMING MODELS: CLIENT–SERVER,
PROCESS GROUPS, AND PEER-TO-PEER

INTRODUCTION

Programming a distributed application is often signifi-
cantly different from programming an application intended
for a single machine. Accessing a remote object may require
locating the object first. The object may not currently be
available, and even if it is, access latency may be high or
unpredictable in case of slow or overloaded network con-
nections. The rate of access to an object may grow unrea-
sonably high as the number of clients in the network grows,
overrunning the physical resources that implement the
object. Security may be an additional issue, as the network
is easily accessed by unrelated third parties. As a result,
programming a distributed application is often signifi-
cantly harder than programming a centralized one, and
thus, much thought has been given to how to make dis-
tributed programming easier.

The most popular approach to achieving this simplicity
is to make distributed programming similar to centralized
programming, which is also known as transparency. For
the execution of any kind of program, there are two basic
ingredients: memory and processing. The memory contains
the data structures that are used by the program, whereas
the processing implements the program’s algorithms. In
this essay we focus on memory and the complications of
distributing this memory to a set of machines connected
only by a network.

Perhaps the most obvious approach is to implement a
shared virtual memory address space that can be used by
all processes involved in the distributed application.
Indeed, this approach exists and is known both as shared
virtual memory and distributed shared memory (1). It is
typically implemented using hardware page protection bits
and intercepting memory locking operations. The approach
is valid for homogeneous sets of mutually trusting pro-
cesses and thus best applied in parallel applications run-
ning on CPU clusters.

Instead, we will be focusing on the more general case
of sharing arbitrary storage objects among a distributed
set of processes. In our terminology, an object has
state and a set of operations or methods that operate on
the state. Distributed shared memory then is a special
case, in which the object is a memory page and the
methods are read, write, lock, and unlock operations on
the page.

An object is implemented by one or more servers and
accessed by one or more clients. Clients send requests for
operations to servers, and servers return results to the
clients, which is called the client–server model. Typically,
servers run on different machines than clients, but this is
not a requirement. However, remote access is sometimes
necessitated by geographic, reliability, and/or security con-
siderations.

The client–server model is ubiquitous in today’s distrib-
uted systems. Examples include shared file systems,
shared database systems, e-mail, domain name resolution,
and of course the World Wide Web. In each of these cases,
the specific network protocols are different, but they all
involve client–server interactions and allow a set of clients
to share and access storage resources.

THE CLIENT–SERVER PARADIGM

The most prominent implementation of the client–server
model today is the one where individual server processes
implement services. Each server may have many clients.
Perhaps the best known example is the Web server, but
other examples include FTP, TELNET, SMTP, and shared
databases. The server maintains one or more resources or
objects. Clients send requests to access or modify the objects
or even to have the server do some processing on behalf of
the clients.

A server may be also be a client to another server. For
example, a Web server may need to access a remote
database in order to retrieve data for one of its Web
clients. In the case of e-mail, a client sends a request to
post an e-mail message to an SMTP server. The server,
in turn, has to send a request to the recipient’s POP server
to deliver the message. In the case of domain name
resolution, one domain name service (DNS) server may
need to ask another server for the information it needs to
satisfy the request of a client, and this can continue
recursively.

In Fig. 1, we show a typical example of client–server
interactions. A Web browser first looks up a DNS name by
sending a request to a DNS server. The DNS server then
recursively may use another DNS server. After receiving a
response containing an address, the Web browser sends a
request to the corresponding Web server. The Web server
may in turn invoke several application servers, which may
in turn interact with a set of databases. In all of these cases,
a specific protocol has been developed for the interactions
between a client and a server.

In 1984, Andrew Birrell and Bruce Nelson developed a
paradigm called remote procedure call (RPC) (2), which
makes these interactions look like normal procedure calls
from a client’s code into the server’s code. To the client, the
only difference is that a new exception may be raised such
as that the server is not available. To the server, each
client’s invocation typically looks like a separate thread
that is spawned within the server’s address space.

The way this process works is quite simple. On the client
end, a stub procedure is created for each of the procedures
that the server exports. The stub collects all arguments into
a request message and sends this message to the server.
The stub procedure now blocks the client process while
awaiting the reply. At the server, the message is unpacked
and the procedure is invoked. The result is placed into a
reply message that is sent back to the client. On receipt, the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



stub retrieves the result from the message and resumes the
client process.

Despite its simplicity, often some issues are tricky to
resolve. For example, how does the client’s stub procedure
determine to which server to send the request? What if the
client wants to operate on two different objects stored at two
different servers? What if the client specifies as its argu-
ment a reference to a very large object within its address
space? How are unreferenced objects released (distributed
garbage collection)?

Many RPC platforms have been developed over the
years. Currently, the best known are Web Services, Java
Remote Method Invocation (RMI), and CORBA. Web Ser-
vices builds on top of the HTTP protocol used to access Web
servers and uses XML for data representation within the
messages. RMI uses Java’s automatic serialization of Java
objects to create request and response messages. CORBA
(3) is a language-independent framework that uses an
Interface Description Language (IDL) to describe a server’s
methods and its parameters. An Object Request Broker
(ORB) automatically locates objects and activates servers if
necessary.

Besides RPC, another common form of communication is
the one in which a server communicates a stream of events
to its clients. Rather than polling a server for updates to
objects, a client can be notified at the time such updates
occur. A popular form of such event notification is known as
publish/subscribe and is treated in more detail below.

PROCESS GROUPS

Although the client–server paradigm simplifies the struc-
turing of distributed applications, it does little to deal with
the realities of scale. Servers are centralized processes that
can easily become bottlenecks and are also single points of
failures. Many clients may not get the service they require
if a server becomes overloaded or crashes. Both problems
can be addressed by using a collection of machines to
implement a service.

A process group is a set of processes cooperating on a
common task, such as the maintenance of one or more
shared objects. The processes are commonly called the
members of the group. The notion of process group was
first introduced in the V system (4). The V system supported
an unreliable multicast mechanism by which one member

could send a message to all members of a group. More recent
process group implementations support various forms of
reliable communication.

Process groups can be created for a variety of purposes.
For example, a service could be made fault tolerant by
creating multiple copies of the server. By grouping the
servers into a process group, the reliable communication
properties can be exploited to keep the servers in sync with
one another. For dealing with high load, a service can be
partitioned so that each server is responsible for a subset of
objects. Process groups can also be used for clients. An
example is an event notification service, in which the multi-
cast capabilities of a process group can be used to dissemi-
nate events to a group of clients. Below we look at two
popular incarnations of process groups, namely Virtual
Synchrony and Publish/Subscribe.

Virtual Synchrony

Virtual Synchrony (VSync) was introduced in the Isis
system (5). VSync presents a model of a distributed com-
putation in which an execution of a program is divided
into self-contained failure-free epochs. At the beginning
of an epoch, each process is notified about the current
membership or view of the epoch, that is, the set of
processes that participate in the computation and are
alive and reachable during the epoch. The only messages
that may be delivered during an epoch are messages that
were sent in that epoch by the initial members of that
epoch. Processes may only fail by crashing at the end of an
epoch; in which case, they will not participate in the next
epoch. Finally, no message loss occurs in an epoch, and all
messages sent in an epoch must be delivered before the
end of the epoch.

In asynchronous distributed environments, messages
may be arbitrarily delayed, lost, reordered, or duplicated;
processes may crash or become arbitrarily slow or other-
wise unavailable at any given moment; and the network
may even partition. Clearly, the pure model as stated
above cannot be implemented in these environments.
However, it is possible to implement a non-blocking emu-
lation, in which a process cannot tell the difference
between the observed execution and an execution in
which no failures occur.

In Fig. 2, we show an example of an epoch with five
processes A through E. Time is from left to right. The actual

Figure 1. Typical client–server interactions
when accessing the WWW. Arrows point from
clients to servers.

2 PROGRAMMING MODELS: CLIENT–SERVER, PROCESS GROUPS, AND PEER-TO-PEER



execution is shown in Fig. 2(a). Process A sends a message.
Only processes B and C receive the message. Processes A, B,
and E crash soon afterward. The VSync protocol will detect
the crashes and end the epoch but not before sending a
copy of the message from C to D. As a result, C and D
cannot distinguish the execution from that of Fig. 2(b), in
which no failures occurred. This behavior allows consider-
ably simplified algorithms of several important distributed
paradigms, such as replication, leader election, and
voting.

One of the most prevalent uses of VSync is replicating
objects, in which the state of an object is copied among a set
of servers. To keep the replicas consistent with one another,
they have to start in the same state and execute updates in
the same order (6). Most VSync implementations therefore
support state transfer and totally ordered multicast. State
transfer mechanisms allow newly joined members to
receive a copy of the state at the beginning of an epoch.
Totally ordered multicasts allow the members of the group
to apply all updates in the same order.

Although simple, VSync has significant scalability pro-
blems, as both the rate of failures and the recovery time
grow with the size of the membership of the group.

Publish/Subscribe

Another popular paradigm for building distributed appli-
cations is publish/subscribe (Pub-sub) (7). In this paradigm,
publishers post messages, whereas subscribers specify
what messages they are interested in. The pubsub system
is responsible for routing the publisher’s messages to the
corresponding subscribers. Pubsub can be broadly classi-
fied into two types. In topic-based pubsub (TPS),
subscribers specify what topics they are interested in.
Topics are typically indicated by a string name. A publisher
specifies a topic for each message that it sends. TPS is
essentially a multicast mechanism, in which the multicast
address is the topic.

In content-based pubsub (CPS), each message contains
a set of attributes. By specifying a predicate over such
attributes, a subscriber indicates which messages it is

interested in. Note that TPS is easily implemented over
CPS by having each message contain an attribute that
indicates the topic. CPS is capable of much more precise
addressing than TPS but often at much increased routing
overhead.

Pubsub has become the backbone of many datacenters.
It has gained its popularity because little structure is
imposed on the applications. Subscribers can come and
go, and the publisher does not need to be aware of the
set of subscribers or where they reside. Similarly, publish-
ers can migrate from one machine to another without
having to notify the subscribers. A publisher simply posts
messages and subsequently can forget about them. This
lack of structure makes it very easy to glue together various
applications within a datacenter and to scale the system up
to virtually any size.

For these reasons, datacenters use pubsub not only as a
multicast communication mechanism to keep distributed
data such as caches and configuration files up to date but
also for point-to-point communication between services.
Besides the flexibility afforded by not specifying explicit
networkaddresses,pubsubmakesiteasytolisteninonpoint-
to-point communication for the purposes of monitoring
and debugging.

Essentially, pubsub is a shared object paradigm, in
which an object is some implicit state that is shared among
a set of processes. Either this state is updated by publishing
a request message that specifies the update to be performed
on the state or the result of an update is notified after the
fact by publishing an update notification message. Subscri-
bers specify which state changes they are interested in,
either by noting the topic (TPS) or by using a predicate
(CPS).

Herein lie some problems with the pubsub paradigm.
As the publisher does not know the set of receivers for any
particular message, it cannot guarantee that the message
is delivered to all receivers. Even it it did, the publisher
could crash before it can ensure that the message is
received by all subscribers. For the same reasons, no
ordering can be guaranteed among the set of subscribers,
and so the shared state may be observed differently by
different subscribers. Such problems can lead to rare,
unexpected executions that are hard to track down and
debug.

PEER-TO-PEER (P2P)

The proliferation of home computers and home Internet
connections has made an enormous number of connected
storage and computing resources available. Peer-to-peer
techniques aim to exploit this availability by providing
mechanisms to harness all these resources. P2P intends
to provide global services to any client anywhere at any
time. This goal is complicated because the resources
provided by home computers and home Internet connec-
tions are often highly unreliable, highly heterogeneous,
and highly susceptible to malicious exploitation. Building
a large reliable system out of such components is a sig-
nificant challenge, but one in which significant progress
has been made.

(a) (b)

Figure 2. (a) Actual execution. (b) VSync execution. Arrows
indicate messages. ‘‘*’’ indicates a process crash. Dotted arrows
indicate lost messages, whereas the dashed arrow indicates a
message retransmission.

PROGRAMMING MODELS: CLIENT–SERVER, PROCESS GROUPS, AND PEER-TO-PEER 3



In pure P2P systems, hosts that traditionally are exclu-
sively clients also become servers. Together, they provide a
large storage and/or execution facility. Again, we will focus
on storage, but projects that focus on computing exist as
well, such as SETI@HOME, which harvests unused home
computer cycles to search for signs of extraterrestial intel-
ligence in radio telescope data. P2P techniques have
become highly popular for sharing music and video, and
this has driven much of the initial P2P protocol develop-
ment. Other drivers include censorship concerns and anon-
ymity. Today, one of the most popular P2P applications is
Skype, which provides Internet telephony.

The first widely used P2P protocols, such as Gnutella,
are simple. As a distinction between clients and servers
no longer exists, we will call the processes that execute
the P2P protocol agents. Each agent connects to a small,
more or less random set of other agents, and thus a graph
of agents emerges. To search for a file, a request is
flooded from one agent up to a certain depth in this
graph. Any successful matches are returned to the origi-
nating agent. By caching results, the most popular
files will be found easily. But the flooding protocol is
inefficient both in terms of resources used and in how
long it can take to obtain a result, and rare files can be very
hard to find.

The first more structured approaches were actually
proposed before the development of Gnutella. The most
famous result is that of Plaxton et al. (8), which presents a
technique for finding nearby replicas of objects. The basic
idea is to create a user-level routing framework for mes-
sages. Messages are addressed to objects’ identifiers. Each
agent is set up with a routing table that allows it to forward
incoming messages to other agents if it does not store the
requested object itself.

Peer-to-peer protocols come in various shapes. They can
be roughly classified as

� Resource sharing, location, and search

� Application-level routing

� Monitoring and aggregation

SETI@HOME is a resource-sharing protocol in which cli-
ents contribute their CPU resources to a public cause.
Various large-scale P2P storage services have been pro-
posed as well, in which clients offer capacity on their disks
that can be used for cheap backup or caching of public data.
Such services could also be used to make censorship-
sensitive material available in an anonymous and reliable
way. Other P2P services, like Gnutella and BitTorrent,
make clients’ resources available for public access without
offering public storage. Such services focus on location and
search, and many audio and video sharing facilities are
good examples.

Application-level routing is another interesting area for
P2P protocols. Although the Internet essentially supports
only unicast routing between hosts, P2P protocols can
provide both unicast and multicast routing with a rich
set of addressing and routing options not found in the
Internet. Many such protocols have been developed, spe-
cializing in such features as location-independent routing,

optimizing latency or bandwidth, fault-tolerance, security,
and anonymity.

Although multicast and pubsub protocols disseminate
data from a sender to a set of receivers, it is often required
to retrieve information from a set of processes or objects
and to return the result to a single process. For example,
in a sensor network, it may be necessary to calculate the
average temperature in a particular geographical area.
For such applications, P2P protocols have been developed
that allow clients to query a set of objects and aggregate
the results. Such systems often support standing queries
that report updates of aggregates.

Programmers can use the sharing, location, routing, and
aggregation paradigms to build various distributed, colla-
borative services. Unfortunately, so far only preliminary
proposals have been made toward standardizing the inter-
faces to these P2P paradigms, which complicates wide-
spread adoption.

CONCLUSION

Whether you use client–server, process groups, or P2P
techniques, distributed programming revolves around
the maintenance of shared objects. An object can be
low level such as a CPU, memory, or any hardware device
or high level such as a spreadsheet, a Web page, or an
entire running application. The objects have a state that
can be centralized in one location, copied in various
locations (replication), or partitioned across various loca-
tions. The state in turn is manipulated through procedure
calls.

Depending on your performance and reliability require-
ments, either RPC, process groups, or P2P, or some combi-
nation, may be the best approach to implementing your
application. Client–server style request–response interac-
tions such as RPC are routinely used, for example, in the
implementation of the World Wide Web and for the resolu-
tion of domain names using DNS.

Process groups are used within datacenters for
the management of replicated services and in the imple-
mentation of publish/subscribe. P2P techniques are
popular among home Internet users for file sharing and
Internet telephony. A developer of distributed applica-
tions needs a thorough understanding of each of these
techniques.

BIBLIOGRAPHY

1. K. Li and P. Hudak, Memory coherence in shared virtual
memory systems. Proc. Fifth ACM Symp. on Principles of Dis-
tributed Computing, Calgary, Alberta, Canada, Aug. 1986, pp.
229–239.

2. A. D. Birrell and B. J. Nelson, Implementing remote procedure
calls. ACM Trans. Comput. Syst., 2(1): 39–59, 1984.

3. S. Vinoski, CORBA: Integrating diverse applications within
distributed heterogeneous environments. IEEE Communi.
Mag., 35(2): 46–55, 1997.

4. D. Cheriton and W. Zwaenepoel, Distributed process groups in
the V kernel. ACM Trans. Comput. Syst., 3(2): 77–107, 1985.

4 PROGRAMMING MODELS: CLIENT–SERVER, PROCESS GROUPS, AND PEER-TO-PEER



5. K. P. Birman and T. A. Joseph, Reliable communication in the
presence of failures. ACM Trans. Comput. Syst., 5(1): 47–76,
1987.

6. F. B. Schneider, Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Comput. Surv., 22(4):
299–319, 1990.

7. B. Oki, M. Pfluegl, A. Siegel, and B. Skeen, The information
bus—an architecture for extensible distributed systems. Proc.
Fourteenth ACM Symp. on Operating Systems Principles, Ashe-
ville, NC, Dec. 1993, pp. 58–68.

8. C. G. Plaxton, R. Rajaraman, and A. W. Richa, Accessing nearby
copies of replicated objects in a distributed environment. Proc.
ACM Symp. on Parallel Algorithms and Architectures, 1997, pp.
311–320.

ROBBERT VAN RENESSE

Cornell University
Ithaca, New York

PROGRAMMING MODELS: CLIENT–SERVER, PROCESS GROUPS, AND PEER-TO-PEER 5



Q

QUEUEING THEORY

INTRODUCTION

Waiting is a common phenomenon in our daily lives. People
wait in a post office, at an elevator, at traffic lights, and so
on. Airplanes wait to take off. Parts wait to be assembled.
Data wait to be transmitted. Taxis wait for passengers, and
passengers wait for taxis.

A system in which waiting phenomena exist is called a
queueing system. (The word ‘‘queueing’’ is probably the
only American English word that contains five vowels in a
row). Queueing theory is an academic discipline that stu-
dies queueing phenomena in a systematic way.

A queueing system is composed of a set of customers, a
set of server(s), and a service discipline (also called an order
of service). A doctor is a server, and patients are customers.
Failed machines are customers, and a repairman is a
server. Data packets are customers, and the router is a
server.

The first systematic treatment of a queueing system was
carried out by A. K. Erlang (1878–1929) in early 1900s
when he studied the congestion phenomena in a telephone
exchange (1-3). See also Ref. (4).

In computer science, queueing theory is at the heart of
analyzing the performance of several systems such as a
router that routes data packets in a computer network (5), a
communication switch that switches data or voice packets
in a computer or telecom network, a data storage system
(such as a hard disk) that serves requests for data access, a
file server that serves user requests for access to files, a web
server that serves requests for web content, and so on.

Queueing theory is critical to analyze these and other
computer systems to ensure efficient resource usage. The
arrival pattern of requests for service (be it any service) is
rarely deterministic; it is mostly a random process. Elim-
inating wait time (when there will be no need to use
queueing theory to analyze the performance) will in most
cases require provisioning the resource for peak usage.
However, in such a design, the system will be idle most
of the time (except during peak times) and, hence, it will
lead to a waste of resources. In several systems, introducing
even a small amount of wait period (using buffers), can
significantly bring down the amount of resources needed to
serve the user requests. This resource efficiency is one
primary reason for the prevalence of queueing theory in
analyzing the performance of computer systems.

Another reason for the prevalence of queueing theory in
computer system analysis is the need to make quality-of-
service (QoS) guarantees (or to provide guidance on
expected performance) to users. QoS can include a guar-
antee on the response time, a guarantee on the minimum
throughput, and a guarantee on the minimum availability,
among others. Making any of these guarantees for a given
design typically involves analyzing the system for its
queueing behavior.

In summary, queueing theory is an important analytical
tool in computer science that has a wide variety of applica-
tions. In this article, we provide an introduction to queueing
theory. We discuss key concepts and major results for the M/
M/1, M/M/1/K, M/M/c, M/M/c/c, M/G/1, closed queueing net-
works, and open queueing networks. We conclude with a
brief discussion of current research interests in this area.

A QUEUEING SYSTEM

A system is an organization in which entities interact with
each other. A queueing system is a system in which custo-
mers arrive, wait, receive service, and leave. Customers
and servers interact with each other in such a way that if
the service time of a customer is delayed, other customers
end up waiting longer, and if the server momentarily stops
serving customers, the number of waiting customers may
increase.

Characteristics of a Queueing System

The distinguishing characteristics of a queueing system are
as follows:

Customer Classification. In many cases, customers form
a single class. But, if there are multiple types of services, or
if the customers have priorities, then customers may be
classified according to their types of service and/or prio-
rities.

Population Types. Customers can be from a finite popu-
lation or an infinite population. As an example of a finite
population, consider a factory where there are three
machines. As soon as the machines break down, they are
sent to the repair shop. Then, the repair shop becomes a
queueing system and the broken machines are customers.
In this system, only three machines can be customers.

No definite distinction is made between finite and infinite
populations. The customers to a hardware store in a town
are from a finite population to be exact. But if the population
size is large, they can be thought of as the customers from an
infinite population. In general, a queueing system with a
finite population is more difficult to analyze.

The Arrival Process. When the interarrival periods are
independent and identically distributed (i.e., a renewal
process), the arrival process is represented by the inter-
arrival time distribution. The arrival rate is defined as the
average number of arriving customers per unit time. This
rate is the reciprocal of the average interarrival time. In
some special cases, arrival rates may vary depending on the
number of customers in the system. This rate is called the
state-dependent arrival rate (or load-dependent arrival
rate). Arrival rate can vary as a function of time, as well.
This arrival process is called nonstationary. Restaurants
are a good example.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



In some cases, customers arrive in groups (batch arri-
val).

All arriving customers may not enter the system, and
some may leave without receiving service. The average
number of customers that enter the system (i.e., receive
service) per unit time is called the input rate or effective
arrival rate. If all arriving customers enter the system, the
arrival rate is equal to the input rate. One rich application
area of queueing theory is computer networks. In many
cases, arrival processes in the communication systems are
not renewal processes; i.e., interarrival times are neither
independent nor identically distributed.

The Service Process. In many cases, service times of
customers are assumed to be independent and identically
distributed. In this case, as soon as a customer arrives, a
random sample is generated from the service time dis-
tribution and the sampled value is assigned to the custo-
mer as its service time. This service time is independent
of his waiting time or the number of customers in the
system.

The service rate is defined as the average number of
customers that can be served per unit time, which is the
reciprocal of the average service time. The service rate can
vary as a function of the number of customers in the system
(state-dependent service rate or load-dependent service
rate).

The service times of customers may be determined by the
customers or by the servers. From the modeling point of
view, we do not need to differentiate between these two. The
service times may not be identically distributed for all
customers. In this case, the complexity of analysis
increases.

In many systems, customers depart the system as soon
as they have received service. But, in some systems, the
serviced customers may return to the queue (are fed back)
for another round of service. A good example is the inspec-
tion system in which defects are returned for reprocessing.

Customers may be served one at a time (single-unit
service) or in batches (batch service, bulk service).

Usually, one server is dedicated to one customer or one
customer group. But, there are some cases where more than
one server is assigned to serve a customer.

Number of Servers. There are cases of a single server,
multiple servers, and an infinite number of servers. In
many multiple-server systems, the servers are identical.
In a queueing system with an infinite number of servers,
customers are served immediately on arrival.

Service Discipline. A service discipline is a rule that
stipulates how the next customer is selected at a service
completion or in the middle of a service. Typical service
disciplines are FCFS (first come, first served), LCFS (last
come, first served), RSS (random selection for service), and
PR (priority). Other service disciplines are SJF (shortest job
first), LJF (longest job first), SRPT (shortest remaining
processing time), and so on.

Customer Behavior. Customers may not enter the sys-
tem for some reason (balk). They may even renege from the

system (i.e., leave without receiving service). In the case of
forced balking, we say that the customers are blocked or
lost. If multiple waiting lines exist, customers may move
from one to another (jockeying). Sometimes, blocked cus-
tomers may retry to enter the system. For example, when a
telephone line is busy, customers may hang up and try
again.

Queue Structure. In most queueing systems, customers
form one waiting line (single-queue system). However,
multi-queue systems (i.e., one line for each server) do exist,
as in some fast food restaurants. Also, situations exist
where a single server serves multiple queues, in turn. A
single-lane bridge is a good example. This bridge is analo-
gous to the token-ring system.

Sometimes, the input/output of several queueing sys-
tems is interconnected to form a queueing network. If the
queueing systems are connected in series, the network is
called a tandem queue.

Performance Measures. Some important performance
measures are as follows:

Queue length (system size, queue size). This is the num-
ber of customers in the system, including the one(s) in
service, if any.

Waiting Time. The waiting time of a customer is the time
from its arrival until it begins to be served. To obtain the
waiting time distribution, we need to keep track of all the
possibilities that the test customer (an arbitrarily selected
customer) experiences.

Sojourn Time. Sojourn time is the time from the arrival
until the customer departs the system. Usually, this time is
the sum of waiting time and the service time. It is some-
times also called the response time.

Busy period. This period is the time when the server
begins to be busy until it becomes idle.

KENDALL’S NOTATION

Until the 1950s, the authors had to list all the character-
istics to explain a queueing system and a lot of confusion
often ensued. Kendall suggested that a queueing system be
specified by the notation (6):

arrival process/service process/number of servers

But the inconsistent notation among authors still caused
a lot of problems. Several technical societies whose journals
contained such articles recognized the problem and held a
joint conference at Northeastern University in May 1971 to
discuss the standardization of terminology and notation.
The Operations Research Society of America recommended
that the queueing systems be specified in the following
notation:

2 QUEUEING THEORY



(arrival process/service process/number of servers)

When necessary an appendage may be added of the form

(/system capacity/size of calling population/service disci-
pline)

When the appendage is omitted, the infinite system
capacity, the infinite size of the calling population, and
the service discipline FCFS is assumed. The system capa-
city refers to the maximum number of customers that can
exist in the system (usually including the one(s) in service).
Calling population refers to the group of potential custo-
mers. The following notation is recommended.

M Markovian. It denotes Poisson arrivals, expo-
nential interarrival time, or exponential service
time

Ek Erlang distribution of order k
PH Phase-type distribution
D Deterministic (constant)
G General (sometimes GI (General and Indepen-

dent) is used instead)
Geo Geometric
B Bernoulli
MAP Markovian arrival process
MMPP Markov modulated poisson process
FCFS First-come–first-served
LCFS Last-come–first-served
RSS Random selection for service

Sometimes FIFO (first in–first out) is used in place of
FCFS, LIFO (last in–first out) in place of LCFS, and SIRO
(selection in random order) in place of RSS.

Batch arrivals and batch services are denoted by super-
scripts.

Many queueing systems exist that cannot be described
by the above notation. In these cases, authors invent their
own notation.

As examples of the above notation, M/M/1 is a queueing
system in which customers arrive according to the Poisson
process, the service times are exponential, and there is one
server. System capacity (1), the size of the calling popula-
tion (1), and FCFS service discipline are omitted. For
another example, M/G/1 is a queueing system in which
customers arrive according to the Poisson process, the
service times are general (i.e., not necessarily exponential),
and one server exists. MX/G/1 is an M/G/1 queueing system
in which customers arrive in groups. (X denotes a group
size. For example, customers arrive in taxis where the taxis
arrive according to a Poisson process).

LITTLE’S FORMULA

Consider some ‘‘system’’ in which customers arrive, get
served, and depart. Let A(t) be the number of entering
customers during t and D(t) be the number of departing
customers during t. The ith customer enters the system at
ai and departs the system at di. Let Aa(t) and Da(t) be the
average arrival and departure processes. If we assume that

all entering customers depart the system only after their
service is finished, we have a situation as shown in Fig. 1,
where W is the mean time a customer stays in the system
and L is the mean number of customers in the system at an
arbitrary time. Then, we have

L ¼ lW (1)

Equation (1) is called Little’s formula in the queueing
literature (7). We note that in Equation (1), l is the entering
rate, not the arrival rate (in some queueing systems, not all
arriving customers enter the system).

THE EXPONENTIAL DISTRIBUTION

Let X be a random variable with the following distribution
function (DF)

FðxÞ ¼ PrðX � xÞ ¼ 1� e�lx (2)

Then, X is said to be exponentially distributed. Its prob-
ability density function (pdf) becomes

f ðxÞ ¼ d

dx
FðxÞ ¼ le�lx; ðx� 0Þ (3)

The nth moment of X is given by

EðXnÞ ¼
Z 1

0
xnle�lxdx ¼ n!

ln (4)

Thus, the mean and variance become

EðXÞ ¼ 1

l
(5)

and

VarðXÞ ¼ EðX2Þ � E2ðxÞ ¼ 1

l2
(6)

The Momoryless Property

Let us assume that the lifetime of a light bulb follows
exponential distribution. Let the bulb begin to operate at
time 0. Knowing that the bulb has not failed until time t, the

λθ =tanθθ

D(t)

Da(t)Aa(t)

L

W

A(t)

a1 d1

Figure 1. Little’s formula L ¼ lW .

QUEUEING THEORY 3



probability that it will not fail during the next s time units is
given by

PrðX> tþ sjX> tÞ ¼ PrðX> tþ s;X> tÞ
PrðX> tÞ

¼ PrðX> tþ s

PrðX> tÞ ¼
e�lðtþsÞ

e�lt
¼ e�ls (7)

From Equation (2), we know that e�ls ¼ PrðX> sÞ is the
probability that the bulb does not fail during (0, s). Thus,
the fact that the bulb has not failed until t does not affect the
future life of the bulb. In other words, as long as the bulb is
working, it is just like the new one at every moment. This
property is called the memoryless property of exponential
distribution. It can be proved (mathematically) that the
exponential distribution is the unique continuous probabil-
ity distribution with the memoryless property.

THE POISSON PROCESS

If the interarrival times of the customers follow indepen-
dent and identically distributed (iid) exponential distribu-
tion with mean 1/l, then we say that the customers arrive
according to the Poisson process with rate l. If we define
N(t) to be the number of such customers arriving in t time
units, then we can show that

Pr½NðtÞ ¼ n� ¼ e�ltðltÞn

n!
; ðn ¼ 0; 1; 2; . . .Þ (8)

The Poisson arrival process is a completely random process,
which means that customers arrive in a random way. This
is similar to the memoryless property of the exponential
distribution.

PASTA (POISSON ARRIVALS SEE TIME AVERAGES)

Suppose that customers arrive in a queueing system
according to a Poisson process. Consider an arbitrarily
arriving customer A. Also consider an outsider B who
passes by the queueing system at an arbitrary time. PASTA
(8) says that what is observed by A (arriving customer’s
distribution) is stochastically equivalent to what is
observed by B (outsider’s distribution). Thus, if we denote
Pn as the probability that B observes n customers (this is
equal to the probability that there are n customers at an
arbitrary point of time) and p̄n as the probability that A
observes n customers just before its arrival, then,

pn ¼ Pn (9)

Equation (9) is not guaranteed if arrivals do not follow a
Poisson process.

For a more detailed discussion of the PASTA property,
we refer the readers to Ref. (9).

M/M/1 QUEUEING SYSTEM

In an M/M/1 queueing system, customers arrive according
to a Poisson process and the service times follow an expo-

nential distribution. If we define l to be the arrival rate,
m ¼ 1=EðSÞ to be the service rate, and X(t) to be the number
of customers in the queueing system at time t, the stochastic
process fXðtÞ; t� 0g becomes the birth–death process and
we obtain a rate-flow diagram as shown in Fig. 2.

Defining PnðtÞ ¼ Pr½XðtÞ ¼ n� to be the probability that
there are n customers in the system at time t, we obtain the
following system equations:

d

dt
P0ðtÞ ¼ �lP0ðtÞ þ mP1ðtÞ

d

dt
PnðtÞ ¼ lPn�1ðtÞ � ðlþ mÞPnðtÞ þ mPnþ1ðtÞ; ðn ¼ 1; 2; . . .Þ

(10)

In the steady state,
d

dt
PnðtÞ! 0 and PnðtÞ!Pn. Thus, the

steady-state system equations are

0 ¼ �lP0 þ mP1;

0 ¼ lPn�1 � ðlþ mÞPn þ mPnþ1; ðn ¼ 1; 2; . . .Þ:
(11)

Interpretations of the system equations in Equation (11)
are as follows:

First equation: lP0 is the rate out of state 0 and mP1 is the
rate into state 0. These two rates should be equal in
steady state.

Second equation: ðlþ mÞPn is the rate out of state n.
lPn�1 þ mPnþ1 is the rate into state n. These two rates
should be equal in steady state.

The solution to Equation (11) becomes

Pn ¼ ð1� rÞrn; ðn ¼ 0; 1; . . .Þ; ðr ¼ l=mÞ (12)

It is observed from Equation (12) that for the system to be
stable, it is necessary to have

r< 1 (13)

Interpretation of Equation (13) is obvious if we note that
r ¼ l=m ¼ lEðSÞ is the average amount of work that is
brought into the system per unit time and that 1 is the
maximum amount of load that can be reduced per unit time
by the server. We note that r also is the probability that the
server is busy in steady state.

Performance Measures

Some performance measures of the M/M/1 queueing system
are as follows:

0 1 2 n–1 n n+1 .   .   ..   .   .

λ λ λ λ

µ µµ µ

λ

µ

Figure 2. The rate-flow diagram of the queue length process of
M/M/1.

4 QUEUEING THEORY



Mean Queue Length.

L ¼
X1
n¼0

nPn ¼
r

1� r
(14)

Mean Number of Waiting Customers.

Lq ¼
X1
n¼1

ðn� 1ÞPn ¼
r2

1� r
¼ r

1� r
� r

¼ L� Lin service (15)

In Equation (15), Lin service is the mean number of customers
being served at an arbitrary time; i.e.,

Lin service ¼ ð1ÞPbusy þ ð0ÞPidle ¼ Pbusy ¼ r (16)

Mean System Sojourn Time.

W ¼ L

l
¼ 1

m� l
ðLittle’s lawÞ (17)

Mean Waiting Time.

Wq ¼
Lq

l
¼ r

m� l
ðLittle’s lawÞ (18)

Alternatively,

Wq ¼W � EðSÞ ¼ 1

m� l
� 1

m
¼ r

m� l
(19)

Behavior of the Mean Waiting Time

Figure 3 shows the mean waiting time as r varies (for
simplicity, m is fixed at 1). Notice that the mean waiting
time increases sharply as r approaches 1, which means that
when r is close to 1 (this function is called the heavy traffic),
even a small increase in the arriving traffic results in an
enormous amount of increased waiting time. From Little’s
law, we can make a similar conclusion regarding the mean
number of waiting customers, the mean queue length, and

the mean system sojourn time. This type of queueing
behavior is typical of queueing systems and can be observed
in many real-world systems.

For a more elementary introduction of the M/M-type
queueing systems, we refer the readers to Refs. (10–12).

M/M/1/K QUEUEING SYSTEM

The M/M/1/K queueing system is the same as M/M/1 except
that the maximum number of customers that can exist in
the system is limited by K (including the one in service).
Thus the customers who arrive when K customers are in the
system are lost. The rate-flow diagram is as shown in Fig. 4.

In this system, the steady-state exists even when r> 1.
Arriving customers cannot enter the system with probabil-
ity Pk according to PASTA. Thus the entrance rate (effective
arrival rate) becomes

le ¼ lð1� PKÞ (20)

Thus, the Little’s formula in this case becomes

L ¼ leW ¼ lð1� PKÞW (21)

From the rate-flow diagram and using the approach of
Equation (11), we can set up the steady-state system of
equations as follows:

0 ¼ �lP0 þ mP

0 ¼ lPn�1 � ðlþ mÞPn þ mPnþ1; ðn ¼ 1; 2; . . . ;K � 1Þ
0 ¼ lPK�1 � mPK

(22)
By solving Equation (22), we obtain

Pn ¼

ð1� rÞrn

1� rKþ1
; ðr 6¼ 1Þ

1

K þ 1
; ðr ¼ 1Þ

8>><
>>:

(23)

Mean Performance Measures

From Equation (23), we can derive the performance mea-
sures as follows:

Mean Queue Length.

L ¼
XK
n¼0

nPn ¼
r

1� r
�ðK þ 1ÞrKþ1

1� rKþ1
; ðr 6¼ 1Þ

K

2
; ðr ¼ 1Þ:

8>><
>>:

(24)

Figure 3. The mean waiting time.

0 1 2 K-1 K.   .   .

λ λ λ

µµ µ

λ

µ

Figure 4. The rate-flow diagram of M/M/1/K.

QUEUEING THEORY 5



Mean System Sojourn Time.

W ¼ L

lð1� PKÞ
ðLittle’s lawÞ (25)

Mean Number of Customers in Service.

Lin service ¼ ð0ÞP0 þ ð1Þð1� P0Þ ¼
ð1� rKÞr
1� rKþ1

(26)

Mean Number of Waiting Customers.

Lq ¼ L� Lin service (27)

Mean Waiting Time.

Wq ¼
Lq

lð1� PKÞ
ðLittle’s lawÞ (28)

M/M/c QUEUEING SYSTEM

Customers arrive according to a Poisson process with rate
l. c identical servers exist, and the service times follow the
exponential distribution with mean EðSÞ ¼ 1=m. All custo-
mers wait in a single line. If an arriving customer observes
multiple idle servers, it ‘‘randomly’’ chooses one server with
equal probability. It is known that the departure process
from the steady-state M/M/c queueing system is again a
Poisson process with rate l.

Figure 5 shows the rate-flow diagram for the queue
length process of the M/M/c queueing system.

The system equations can be set up as in Equations (10)
and (11). The steady-state queue length probability
becomes

Pn ¼

ln

n!mn
P0; ð1 � n � c� 1Þ

ln

cn�cc!mn
P0; ðn� cÞ

8>><
>>:

(29)

where

P0 ¼
Xc�1

k¼0

ðl=mÞk

k!
þ ðl=mÞc

c!ð1� rÞ

" #�1

; r ¼ l

cm

� �
(30)

The stability condition becomes

r ¼ l

cm
< 1 (31)

It is to be noted that r is the probability that server-i is busy
at an arbitrary time for all i.

Erlang Delay Formula (Erlang C Formula)

From Equation (29) and from PASTA, the probability that
an arbitrary arriving customer waits becomes

Cðc; aÞ ¼
X1
j¼c

P j ¼

ac

c!ð1� a
cÞXc�1

k¼0

ak

k!
þ ac

c!ð1� a
cÞ

(32)

where

a ¼ lEðSÞ ¼ l=m (33)

is called the offered load, which is the average amount of
work offered to the servers per unit time. C(c,a) is deter-
mined by the offered load. C(c,a) is called the Erlang delay
formula or Erlang C formula.

Mean Performance Measures

From Equation (29), we can derive the performance mea-
sures as follows:

Mean Number of Waiting Customers.

Lq ¼
X1
n¼c

ðn� cÞPn ¼
ac

c!ð1� r2ÞP0 (34)

Probability that an Arbitrary Server is Busy.

Pbusy ¼
a

c
¼ r (35)

Mean Number of Customers in Service.

Lin service ¼ Pbusyc ¼ lEðSÞ ¼ l=m ¼ a (36)

Mean Queue Length.

L ¼ Lq þ Lin service (37)

Mean Waiting Time.

Wq ¼
Lq

l
ðLittle’s lawÞ (38)

Mean Sojourn Time.

W ¼ L

l
ðLittle’s lawÞ (39)

Or

W ¼ Wq þ EðSÞ ¼ Wq þ
1

m
(40)

0 1 2 c-1 c c+1.   .   . .   .   .
λ λ λ λ

cµ cµµ 2µ (c−1)µ

Figure 5. The rate-flow of M/M/c.

6 QUEUEING THEORY



M/M/c/c QUEUEING SYSTEM

In M/M/c/c queueing systems, arriving customers cannot
enter the system if all servers are busy. A typical example is
the telephone exchange system. If all lines are busy, arriv-
ing calls are blocked.

The steady-state system equations can be set up as in M/
M/1.Thequeuelengthprobabilitiesinthiscaseareasfollows:

P0 ¼
Xc

k¼0

ak

k!

" #�1

ða ¼ lEðSÞÞ (41)

Pn ¼
an=n!
Xc

k¼0

ak=k!

ðn ¼ 0; 1; 2; . . . cÞ (42)

Erlang Loss Formula (Erlang B formula)

The probability that an arriving customer is blocked is
given by

Bðc;aÞ ¼ Pc ¼
ac=c!

Xc

k¼0

ak=k!

(43)

B(c,a) is called the Erlang loss formula or Erlang B formula.

Some Useful Relations

(i) Bðc;aÞ ¼ aBðc� 1; aÞ
cþ aBðc� 1;aÞ ; ðBð0;aÞ ¼ 1Þ (44)

Note that Equation (44) can be used to compute the loss
probability recursively.

(ii) Cðc;aÞ ¼ cBðc; aÞ
c� a½1� Bðc;aÞ� (45)

(iii) Bðc;aÞ<Cðc;aÞ: (46)

(iv)
Cðc;aÞ ¼ 1

1þ c�a
aBðc�1;aÞ

; ðc>a;Bð0;aÞ ¼ 1Þ (47)

(v) Cðc;aÞ ¼ 1

1þ c� a

a

c� 1� aCðc� 1;aÞ
ðc� 1� aÞCðc� 1;aÞ

; ðc> aþ 1Þ

ð48Þ

Note that Equation (48) can be used to compute the delay
probability recursively.

An Application of the Erlang B Formula

Consider a small telephone exchange system with c = 10
lines. The current QoS is 99%; i.e., 1% of arriving calls are
blocked. It is expected that the number of arriving calls will
double next year. To maintain the same QoS, how many
more lines are needed?

(i) From Bð10;aÞ ¼ P10 ¼
a10=10!

X10

k¼0

ak=k!

¼ 0:01, we derive

the offered load a ¼ lEðSÞ ¼ 4:461.

(ii) If arrival rate doubles, the offered load doubles to
8.922.

(iii) So, we need to determine a value for c such that

Bðc; 8:922Þ ¼ Pc ¼
8:922c=c!Xc

k¼0

8:922k=k!

� 0:01.

(iv) Because Bð16; 8:922Þ ¼ 0:0104 and Bð17; 8:922Þ ¼
0:0054, we conclude that at least 17 lines are needed
to maintain 99% QoS.

Notice that even though the arrival rate doubles, only
70% of additional lines are needed to maintain the same
QoS.

M/G/1 QUEUEING SYSTEM

So far we dealt with queueing systems in which the service
times follow iid exponential distribution. Now, let us con-
sideraqueueingsysteminwhichcustomersarriveaccording
to a Poisson process but the service times are not necessarily
exponentiallydistributed.IfweletX(t) tobethequeuelength
at time t, the stochastic process fXðtÞ; t� 0g is no longer a
Markov process because the service time does not possess
the memoryless property. Thus, the system equations as in
the M/M/1 queueing system are not possible for the M/G/1
queueing system, which means that we need a completely
new method to analyze the M/G/1 queueing system. This
goal can be accomplished by analyzing the queue length just
after service completions (i.e., customer departures).

Let us define the probabilities as follows:

Pn probability that there are n customers at an
arbitrary time,

pn probability that an arbitrary arriving customer
observes n customers,

pn probability that an arbitrary departing custo-
mer leaves n customers behind in the system.

Then, for an M/G/1 queueing system, we have

pn ¼ Pn ¼ pn (49)

Equation (49) comes from PASTA. pn ¼ pn comes from the
fact that in an M/G/1 queueing system, the number of
customers increases by one and decreases by one. Equation
(50) implies that the mean queue length L at an arbitrary
time is equal to the mean queue length L+ just after an
arbitrary departure and the mean queue length L� just
before an arbitrary arrival

L ¼ L� ¼ Lþ (50)

Thus, we will derive L+ instead of L.
Let us define the random variables as follows:

Nþn the number of customers just after the depar-
ture of the nth customer,

Anþ1 the number of customers that arrive during the
service of the ðnþ 1Þst customer.

QUEUEING THEORY 7



Then, we obtain

Nþnþ1 ¼
�

Nþn � 1þ Anþ1; ðNþn � 1Þ
Anþ1; ðNþn ¼ 0Þ

(51)

We note that the service times are iid and that customer
arrivals are independent of what is happening in the sys-
tem. Thus, the number An is independent of n, and without
loss of generality we can use the generic notation A.

Let us define UðNþn Þ as

UðNþn Þ ¼
�

1; ðNþn � 1Þ
0; ðNþn ¼ 0Þ

(52)

Using Equation (52), we can express Equation (51) as
follows:

Nþnþ1 ¼ Nþn �UðNþn Þ þ Anþ1 (53)

In steady state, we obtain

lim
n!1

EðNþnþ1Þ ¼ lim
n!1

EðNþn Þ ¼ Lþ (54)

If we take an expectation and let n!1 on Equation (53),
we obtain

Lþ ¼ Lþ � lim
n!1

E½UðNþnþ1Þ� þ lim
n!1

EðAnþ1Þ (55)

which implies that

lim
n!1

E½UðNþnþ1Þ� ¼ lim
n!1

EðAnþ1Þ: (56)

EðAnþ1Þ can then be computed as follows:

EðAnþ1Þ ¼ EðAÞ ¼
ð1

0
EðAjS ¼ xÞsðxÞdx

¼
ð1

0
lx � sðxÞdx ¼ lEðSÞ ¼ r (57)

where s(x) is the pdf of the service time.
Squaring Equation (53), we get

ðNþnþ1Þ
2 ¼ ðNþn Þ

2 þ ½UðNþn Þ�
2 þ ðAnþ1Þ2

� 2Nþn UðNþn Þ � 2Anþ1UðNþn Þ þ 2Nþn Anþ1

(58)

The following identities can be shown to hold:

lim
n!1

E½ðNþnþ1Þ
2� ¼ lim

n!1
E½ðNþn Þ

2� (59)

lim
n!1

E½ðUðNþnþ1ÞÞ
2� ¼ lim

n!1
E½ðUðNþnþ1Þ� ¼ r (60)

lim
n!1

E½Nþn �UðNþn Þ� ¼ lim
n!1

EðNþn Þ ¼ Lþ (61)

Taking expectation, letting n!1 on both sides of
Equation (58), and using Equation (57) together with

Equations (59), (60), and (61), we obtain

Lþ ¼ r� 2r2 þ EðA2Þ
2ð1� rÞ (62)

EðA2Þ can be obtained as follows:

EðA2Þ ¼ VarðAÞ þ E2ðAÞ ¼ VarðAÞ þ r2 (63)

where, by using the mean and variance of the Poisson
random variable,

VarðAÞ ¼ E½VarðAjSÞ� þ Var½EðAjSÞ�

¼ EðlSÞ þ VarðlSÞ ¼ rþ l2VarðSÞ (64)

Using Equations (63) and (64) in Equation (62) yields

Lþ ¼ L� ¼ L ¼ rþ l2EðS2Þ
2ð1� rÞ (65)

From Little’s law, the mean sojourn time becomes

W ¼ L

l
¼ EðSÞ þ lEðS2Þ

2ð1� rÞ (66)

Since the sojourn time is the sum of the waiting time and
the service time, it can be shown using Equation (66) that
the mean waiting time becomes

Wq ¼
lEðS2Þ
2ð1� rÞ (67)

Then, from Little’s law,

Lq ¼ lWq ¼
l2EðS2Þ
2ð1� rÞ ¼

r2

2ð1� rÞ þ
l2VarðSÞ
2ð1� rÞ (68)

which can alternatively be derived from

Lq ¼ L� r (69)

Significance of Variance of the Service Time

As Equation (68), the variance of the service time affects the
system performance significantly. Table 1 shows the mean
queue length of five different M/G/1 systems with the same
arrival rate and mean service times, but with different
variances of the service times (M/D/1 is a queueing system
with deterministic (constant) service time).

Notice the differences in the mean queue lengths ran-
ging from 0.25 to1 (the Pareto distribution is an example of
probability distributions with finite mean but with infinite
variance). This distribution is possible because the mean
queue length depends heavily on the variance of the
service time [see Equation (68)]. Note that the mean queue
length of system 2 is 33 times larger than that of the M/D/1
queue. The difference is more spectacular in system 3.

8 QUEUEING THEORY



But, it should be noted that the server is idle 50% of its time
in all five systems since we have the same r ¼ lEðSÞ ¼ 0:5.
It is hard to imagine a queueing system in which an average
of 10,000 customers are waiting, but the server is idle 50%
of its time.

It is important to appreciate, from this example, the
effect of the variance on the system performances. In gen-
eral, if one wants to reduce the mean queue length and the
mean waiting time, the variance is the first thing to check.

For an analysis of the variants of the M/G/1 queueing
system, including vacation systems and server controls, we
refer the readers to Ref. (9).

QUEUEING NETWORKS

A queueing network is composed of several queueing sys-
tems connected to each other. Many computer systems,
communication systems, and production systems can be
modeled by a queueing network.

Classification by Network Structure

Each queueing system that comprises a queueing network
is called a node. Multiple servers can exist in a node.

A queueing network can be classified as an open net-
work, a closed network, or a mixed network. One might add
a tandem queue as a special case of an open network.

OQN (Open Queueing Network). In an open queueing
network, customers can enter the system and leave the
system. An arrival to a node can be from either outside
(external arrival) or inside (internal arrival). Figure 6
shows an OQN in which the finished customers at node-1
leave the system with probability p1 and join node-i with
probability pi; ði ¼ 2; . . . mÞ.

CQN (Closed Queueing Network). In a CQN, a fixed
number of customers circulate (existing customers cannot

leave the system, and new customers cannot enter the
system). Figure 7 shows a CQN model in which there are
three nodes and N customers are circulating in the system.

Mixed-Type Queueing Network. This network is a mix-
ture of OQN and CQN. Some classes of customers are free to
leave or enter the system, where as others are not allowed to
do so.

Tandem Queue (Series Queue). In a tandem queue, mul-
tiple nodes are connected in a series (Fig. 8). If it is closed, it
is called a cyclic queue (Fig. 9).

MARKOVIAN OPEN QUEUEING NETWORKS (JACKSON
NETWORKS)

A Jackson network is an open Markovian queueing
network in which external customers arrive according to
Poisson processes and service times follow exponential
distributions. This network was first studied by Jackson
(13,14) and is named after him.

The Jackson network is an open queueing network with
the following specifications (13). Let K be the number of
nodes.

(i) External arrivals to node-i occur according to a
Poisson process with rate li. External arrival pro-
cesses are independent.

(ii) The service time at node-i is load-dependent expo-
nential: When n customers are at the node, the
service rate is mi(n). The case of identical multiple

Table 1. Mean queue lengths for different variances of the
service times

M/D/1 M/M/1 System 1 System 2 System 3

l 2 2 2 2 2
E(S) 0.25 0.25 0.25 0.25 0.25
Var(S) 0 1/16 1 2 1
Lq 0.25 0.5 4.25 8.25 1

Departure

λ µk

µm

.

.

.

.

.

.

.

.

.

.

.

.

External
arrival

Internal
arrival

µ1

µ2

p1

p2

pk

pm

Figure 6. An open queueing network.

µ1

µ2

µ3

N

p

1-p

Figure 7. A closed queueing network.

1 2 3

Figure 8. A tandem queue.

1 2 3

Figure 9. A cyclic queue.

QUEUEING THEORY 9



servers can be viewed as a single-server node with
load-dependent service rate.

(iii) The customer whose service is completed at node-i
goes to node-j with a routing probability of gij or
departs the system with a probability of
gi0 ¼ 1�

PK
j¼1gi j.

(iv) The buffer size at each node is infinity.

System Equations

Consider a simple case of K = 2 nodes with a single server at
each node (Fig. 10). More complex systems can be analyzed
in an analogous way.

Let us define Pðn1;n2Þ as the probability that there are
n1 customers at node-1 and n2 customers at node-2. Then,
the steady-state system equations can be written as follows:

ðm1 þ m2 þ l1 þ l2ÞPðn1;n2Þ
¼ l1Pðn1 � 1;n2Þ þ l2Pðn1;n2 � 1Þ
þ m1g12Pðn1 þ 1;n2 � 1Þ þ m2g21Pðn1 � 1;n2 þ 1Þ
þ m1g10Pðn1 þ 1;n2Þ þ m2g20Pðn1;n2 þ 1Þ

(70)

The left-hand side of the above equation is the rate out of
state ðn1;n2Þ, and the right-hand side is the rate into state
ðn1;n2Þ. In Ref. (13), Jackson showed that the following
‘‘product-form’’ solution satisfies Equation (70).

Pðn1;n2Þ ¼ ð1� r1Þrn1

1 � ð1� r2Þrn2

2 (71)

where

ri ¼
Li

mi
(72)

In Equation (72), L1 is the aggregate arrival rate into note-
1 and is given by

L1 ¼ l1 þ
X2

j¼1

L jg j1 (73)

Note that l1 is the external input rate into node-1 andX2

j¼1

L jg j1 is the internal input rate into node-1. Likewise, we

get

L2 ¼ l2 þ
X2

j¼1

L jg j2 (74)

From Equation (71), we see that the marginal queue length
distribution at node-1 is Pðn1Þ ¼ ð1� r1Þrn1

1 and Pðn2Þ ¼
ð1� r2Þrn2

2 at node-2. Observe that each node behaves as if
it were an M/M/1 queue with arrival rate Li and service rate
mi. But these queues are not actually M/M/1 queues because
the aggregate arrival process (i.e., superposition of the
internal and external arrival processes) at each node is
not a Poisson process. The aggregate arrival process is not
even a renewal process. In general, the aggregate arrival
process, into a node at which customers visit more than
once is not a Poisson process.

If there exists more than one identical server at a node,
we can use the M/M/c results from Equations (41) and (42).
That is, the probability Pðn1;n2; . . . nKÞ that there are n1

customers at node-1, n2 customers at node-2,. . . and nK

customers at node-K is given by the product-form
probability as follows:

Pðn1;n2; . . . nKÞ ¼
YK
j¼1

P jðn jÞ (75)

where

PiðkÞ ¼

Lk
i

k!mk
i

Pið0Þ; ð1 � k � ci � 1Þ

Lk
i

ck�ci

i ci!m
k
i

Pið0Þ; ðn� ciÞ

8>>>><
>>>>:

(76)

and

Pið0Þ ¼
Xci�1

k¼0

ðLi=miÞk

k!
þ ðLi=miÞci

ci!ð1� riÞ

" #�1

; ðri ¼
Li

cimi
Þ (77)

Li can be computed using

Li ¼ li þ
XK
j¼1

L jg ji (78)

Equation (78) is called the traffic equation.

Mean Performance Measures

From Equations (75), (76) and (77), we can derive the
following performance measures.

Mean Number of Waiting Customers at Node-i.

Lqi
¼ ðLi=miÞci

ci!ð1� r2
i Þ

Pið0Þ (79)

Mean Queue Length at Node-i.

Li ¼ Lqi
þ Li

mi
(80)

λ 1

λ 2
γ 10

γ 21

γ 12

γ 20

µ
1

µ 2

Figure 10. A Jackson network with two nodes (each node has a
single server).

One-Time Mean Waiting Time at Node-i.

Wqi
¼ Lqi

Li
ðLittle’s lawÞ (81)

10 QUEUEING THEORY



One-Time Mean Sojourn Time at Node-i.

Wi ¼
Li

Li
ðLittle’s lawÞ (82)

Total Mean Time a Customer Spends in the Network. Let
WT be the total mean time a customer spends in the net-
work. Let Ri be the mean time an arriving customer (inter-
nal or external) to node-i spends in the system until it
departs the network. The customer has to spend Wi time
at node-i first. Then, it goes to node-j with probability gi j

and spend Rj time starting all over again from node-j until
it departs the network. Thus, we obtain

Ri ¼ Wi þ
XK
j¼1

R jg ji (83)

An arbitrary external customer enters the network
through node-i with probability

ai ¼
li

XK
j¼1

l j

(84)

Thus, we get

WT ¼
XK
j¼1

aiRi (85)

Total Mean Number of Customers in the Network at an
Arbitrary Time. From Little’s law, the total mean number
LT of the customers in the network can be obtained using

LT ¼
XK
j¼i

l j

0
@

1
AWT (86)

which is equal to

LT ¼
XK
j¼1

Li (87)

Total Mean Service Time Received. Let vi be the mean
number of times an external customer visits node-i before it
departs the network. Then, vi can be computed using

vi ¼ ai þ
XK
j¼1

v jg ji (88)

The total mean service time received at node-i is

Di ¼
vi

mi
(89)

The total mean service time received by a customer in the
network is

DT ¼
XK
j¼1

D j (90)

MARKOVIAN CQN (GORDON-NEWELL NETWORK)

The Gordon-Newell network is a Markovian CQN (15). In a
CQN, a fixed number of customers circulate the system. We
use an example for illustration; see Fig. 11.

Suppose a fixed number of N customers circulate in the
network of Fig. 11. Let Pðk;N � kÞ be the probability that k
customers at node-1 exist and N � k customers exist at
node-2. In steady-state, we obtain the following set of
system equations,

ðm1 þ m2ÞPðk;N � kÞ ¼ m1Pðkþ 1;N � k� 1Þ þ m2P

� ðk� 1;N � kþ 1Þ;
� ðk 6¼ 0; k 6¼NÞ ð91Þ

m1Pð1;N � 1Þ ¼ m2Pð0;NÞ and (92)

m1PðN; 0Þ ¼ m2PðN � 1; 1Þ (93)

In steady-state, if a customers enter node-1 per unit time,
the same number of customers enter node-2 per unit time.
Let us define r1 ¼ a

m1
and r2 ¼ a

m2
, where a is an arbitrary

constant. Thus, r1 and r2 are not the probability that the
servers are busy. The reason why r1 and r2 are not unique
will be discussed subsequently. If we use m1 ¼ a

r1
and m2 ¼ a

r2

in the above equations, we get the product-form probability
as follows:

Pðk;N � kÞ ¼ 1

Cð2;NÞ r
k
1r
ðN�kÞ
2 (94)

Note that Cð2;NÞ is a normalization constant that is
determined using

XN
k¼0

Pðk;N � kÞ ¼ 1 (95)

Also, note that Cð2;NÞ changes if a changes (and thus r1

and r2 change). But the effect of a is absorbed into Cð2;NÞ
and therefore Pðk;N � kÞdoes not change. For convenience,
if we let a ¼ m1, we get r1 ¼ 1;r2 ¼ m1=m2; and

Pðk;N � kÞ ¼ 1

Cð2;NÞ r
ðN�kÞ
2 (96)

Using
XN
k¼0

Pðk;N � kÞ ¼ 1, we get

Cð2;NÞ ¼
1� rNþ1

2

1� r2
; ðm1 6¼m2Þ

N þ 1; ðm1 ¼ m2Þ

8<
: (97)

where r2 ¼ m1=m2.

µ
1

µ
2

Figure 11. A closed queueing network with feedback.

QUEUEING THEORY 11



In general, because the entrance and exit to and from the
network is impossible, the traffic equation becomes

Li ¼
XK
j¼1

L jg ji (98)

This equation does not have a unique solution because

XK
j¼1

gi j ¼ 1 (99)

Thus, fLi; ði ¼ 1; 2; . . . ;KÞg obtained from the traffic equa-
tion are not unique. If we let fei; ði ¼ 1; 2; . . . ;KÞg be a
solution to Equation (98), then ei is proportional to Li.
One simple way is to let e1 ¼ 1, which means that a custo-
mer visits note-1 once while he visits node-i for ei times.

For the general CQN with K nodes and N circulating
customers, according to Gordon and Newell (15)

Pðn1;n2; . . . nKÞ ¼
1

CðK;NÞ
YK
i¼1

fiðniÞ (100)

where

fiðniÞ ¼
eni

iYni

j¼1

mið jÞ
(101)

fið0Þ ¼ 0 (102)

CðK;NÞ is a normalization constant that is be determined
using

CðK;NÞ ¼
X

for all system states

YK
i¼1

fiðniÞ (103)

As in the preceding example, the biggest problem
with a CQN is how to determine the normalization con-
stant. In the preceding example, we had only two nodes

and it was not a problem. But we have
N þ K � 1
K � 1

� �

different system states in general. If we have K ¼ 8 nodes
and N ¼ 20 customers circulating in the network,
the number of different system states becomes

N þ K � 1
K � 1

� �
¼ 888; 030. Computing that many probabil-

ities to determine the normalization constant CðK;NÞ is
almost impossible even for the closed network of moderate
size. Buzen (16) presents an efficient algorithm to compute
the normalization constant.

CURRENT RESEARCH ISSUES

The research area of queueing theory is mature by now.
However, several research issues are still being investi-

gated actively. One such area is that of self-similar traffic
models. Traditionally, the traffic models assumed in queue-
ing theory were assumed to be Markovian, which was true
of telephone network traffic. Subsequently, as queueing
theory began seeing applications in other disciplines, other
models of traffic were added. In the early 1990s research
revealed that the traffic in computer networks did
not follow the traffic models assumed in the literature.
Rather, the traffic model exhibited a self-similarity beha-
vior where the traffic pattern observed at different time
scales had the same bursty pattern. This observation led to
a spur in the research activity on the impact of this traffic
model in the design of computer systems. This research
area continues to be active today. For an overview of traffic
patterns and optimal scheduling, we refer the reader to
Refs. (17), (18), and (21).

Another rich research area is the discrete-time queueing
system. In the discrete-time queueing systems, the time is
expressed in multiples of slots and services can start only at
slot boundaries. Because information in communication
systems is transmitted by means of discrete units of cells,
discrete-time models are believed to be more suitable to
represent the modern telecommunication systems. Read-
ers are referred to Refs. (19) and (20).

BIBLIOGRAPHY

1. A.K. Erlang, The theory of probabilities and telephone con-
versations, Nyt Tidsskrift Matematik, B. 20: 33–39,1909.
Reproduced in Brockmeyer et al. (4), pp. 131–137.

2. A.K. Erlang, Solution of some problems in the theory of prob-
abilities of significance in automatic telephone exchanges,
Electroteknikeren 13: 5–13, 1917. Reproduced in Brockmeyer
et al. (4), pp. 138–155.

3. A.K. Erlang, Telephone waiting times, Matematisk Tids-
skrift, B, 31: 1920. Reproduced in Brockmeyer et al. (4), pp.
156–171.

4. E. Brockmeyer, H.L., Halstrom and A., Jensen, The Life and
Works of A.K. Erlang, Copenhagan: Copenhagen Telephone
Co., 1948.

5. D. Berksekas and R. Gallager, Data Networks, Englewood
Cliffs, NJ: Prentice Hall, 1992.

6. D.G. Kendall, Stochastic processes occurring in the theory of
queues and their analysis by the method of imbedded Markov
chains, Ann. Mathemat. Stat. 24: 338–354, 1953.

7. J.D.C. Little, A proof for the queueing formula: L = lW, Oper.
Res., 9 (3): 383–387, 1961.

8. R.W. Wolff, Poisson arrivals see time averages, Oper. Res., 30
(2): 223–231, 1982.

9. H. Takagi, Queueing Analysis, Vol I: Vacation and Priority
Systems, Part 1, Amsterdam: North-Holland, 1991.

10. W.C. Giffin, QUEUING: Basic Theory and Applications,
Columbus, OH: Grid Inc., 1978.

11. D. Gross, and C.M. Harris, Fundamentals of Queueing Theory,
2nd ed., New York: John Wiley & Sons, 1985.

12. R.B. Cooper, Introduction to Queueing Theory, 2nd ed.,
New York: Elsevier North Holland, 1981.

13. J.R. Jackson, Networks of waiting lines, Oper. Res., 5: 518–
527, 1957.

14. J.R. Jackson, Jobshop-like queueing systems, Manage. Sci., 10
(1): 131–142, 1963.

12 QUEUEING THEORY



15. W.J. Gordon, and G.F., Newell, Closed queueing systems with
exponential servers, Oper. Res., 15: 254–265, 1967.

16. J.P. Buzen, Computational algorithms for closed queueing
networks with exponential servers, Comm. of ACM, 16: 527–
531, 1973.

17. T.G. Robertazzi, Computer Networks And Systems: Queueing
Theory and Performance Evaluation, 3rd ed., New York:
Springer, 2000.

18. W. Stallings, High Speed Networks: TCP/IP and ATM Design
Principles, Englewood Cliffs, NJ: Prentice Hall, 1998.

19. H. Bruneel, and B.G. Kim, Discrete-Time Models for
Communication Systems including ATM, Dordrecht, the
Netherlands: Kluwer Academic Publishers, 1993.

20. H. Takagi, Queueing Analysis, Vol 3: Discrete-Time Systems,
Amsterdam: North-Holland, 1993.

21. M. Harchol-Balter, http://www.cs.cmu.edu/�harchol/
homepage.html.

HO WOO LEE

Sungkyunkwan University
Suwan, Korea

SANTOSH KUMAR

University of Memphis
Memphis, Tennessee

QUEUEING THEORY 13



S

SERVICE-ORIENTED ARCHITECTURE AND
WEB SERVICES

INTRODUCTION

Service-oriented architecture (SOA) (1,2) is a software
paradigm that enables large applications to be created in
an ad hoc, loosely coupled manner from smaller modules
called services. SOA defines a methodology for the reuse
and interoperability of software components and business
processes within and between enterprises over the Internet
and, thus, promises to achieve flexibility, agility, and cost
savings for enterprises.

In the past, enterprises integrated their silo systems
using a point-to-point or enterprise application integration
(EAI) approach for each project. That approach resulted
in systems that are complex, difficult-to-modify, and
expensive-to-maintain. Today, an enterprise must be
able to do business with many other enterprises, and it
must be able to respond rapidly to changes and challenges,
such as competitive pricing and offshoring to compete in
the global economy.

SOA enables enterprises to develop and deploy applica-
tions more rapidly. It supports modularity of design,
facilitates software reuse, promotes standardization, and
supports interoperability across diverse hardware plat-
forms, operating systems, and programming languages.
Software reuse spreads the costs of software development
over many customers. Interoperability allows software
services to be accessed without having to know their under-
lying implementations or the computing platforms on
which they run.

SOA offers the promise of reduced time and costs in
software development, and reduced application and infra-
structure complexity. It aims to promote business between
enterprises, increase profits, improve product quality,
increase customer satisfaction and achieve operation
agility.

Web services (3) are the most common implementation
of the service-oriented architecture. However, some SOA
implementations do not use Web services but provide simi-
lar benefits.

SERVICE-ORIENTED ARCHITECTURE

SOA (1,2) is an architecture definition and process that
enables large applications to be created in an ad hoc, loosely
coupled manner from modular services. A service is a unit of
work performed by a service provider to achieve desired end
results for a service consumer. SOA has the following
requirements:

� Interoperability of services regardless of the hardware
platforms and operating systems on which they are

deployed or the programming languages in which they
are written.

� Description of services in a clear and unambiguous
manner that allows a potential consumer to find and
use a service offered by a provider.

� Access to services by means of a standard communica-
tion protocol and a common format for messages and
the data that they contain, so that a consumer can
access and use a service offered by a provider.

SOA consists of multiple layers and components, as
shown in Fig. 1. The top layer provides the Services Inter-
face, which allows the clients to invoke the services, and the
bottom layer contains the Application Services. The middle
layer contains the Services Coordinator, which controls the
flow of messages from the Services Interface to the Applica-
tion Services. SOA may also contain application-neutral
Service Management components and Quality of Service
components, as shown in Fig. 1.

The essence of SOA is independent services that can be
called in a standard way to perform their tasks, without a
service needing to know about a client and without a client
needing to know how a service actually performs its tasks.
Each service interaction is self-contained, and different
service interactions are coupled loosely, so that each service
interaction is independent of other service interactions.
SOA supports communication between services using stan-
dard protocols and enables one application to perform a
service on behalf of another service.

In SOA, a service represents a larger unit of functionality
than a traditional function or class. Unlike a function, the
software providing a service must not interact internally with
the software of other services. In SOA, services are coupled
loosely, incontrastto thefunctionsthatalinkerbindstogether
to form an executable or a dynamically linked library.

Underlying SOA is metadata that are used to describe
not only the characteristics of the services but also the data
that the services exchange. The metadata must be in a form
that system designers can understand and in a form that
software systems can use dynamically and automatically.

In SOA, services work together based on a formal defini-
tion or contract (e.g., WSDL description) that is indepen-
dent of the underlying hardware platform and operating
system on which the services are deployed and the pro-
gramming language in which they are written.

As shown in Fig. 2, a service can assume one or more of
three roles: service provider, service broker, or service
requester.

A service provider creates a service and defines an inter-
face for invoking that service. The service provider also
creates a service description for the service and makes the
service available to potential consumers through a service
broker by publishing the service description in a service
registry.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



A service broker uses the information in the service
description to catalog the service and to search for the
service when it receives a request for information about
the service. The service broker provides a service, the
address, and the interface are known a priori to the service
requester.

A service requester that is trying to find a service queries
the service broker. The service broker replies with a service
description that indicates where to find the service and how
to invoke it. The service requester can then bind to the
service provider by invoking the service.

The basic service concept is extended by orchestration of
fine-grained services into more coarse-grained business
services, which in turn can be incorporated into business
processes and workflows.

SOA can be implemented using a variety of technologies,
including Web Services, RPC, Java RMI, CORBA, and
DCOM. Typically, the services run in Java Enterprise
Edition or .NET environments that manage memory allo-
cation and deallocation, allow ad hoc and late bindings and
perform type checking. Services written in Java for Java
Enterprise Edition environments and services written in
C# for .NET environments can be used by a client, and can
use each other. Legacy systems, written in COBOL, can be
wrapped and presented as services.

WEB SERVICES

SOA is typically implemented using Web services (3),
although that is not required. The World Wide Web

Consortium (W3C) defines a Web service as:

A software application identified by a URI, whose interfaces and
bindings are capable of being defined, described, and discovered
as XML artifacts. A Web Service supports direct interactions
with other software agents using XML-based messages
exchanged via Internet-based protocols.

This definition states explicitly that a Web service
is based on XML. It emphasizes that a Web service
must be capable of being defined, described, and discov-
ered, to enable creation of client software that binds to,
and interacts with, the Web service using the defined
interfaces.

XML

The eXtensible Markup Language (XML) (4) provides a
common syntax for Web services documents, so that
the information in those documents is self-describing.
It defines the rules that a document must follow to be
well-formed. XML aims to achieve interoperability, port-
ability, and automatic processing with data independence
for different programming languages, middleware sys-
tems, and database management systems.

Like the HyperText Markup Language (HTML), XML
has elements, attributes, values, and tags. XML elements
and attributes provide type and structure information for
the data values. XML element tags describe the data values
that they enclose. For example:

Figure 1. Service-Oriented Architecture. SOA consists of multiple layers and components and promotes modularity of design and software
reuse.

Figure 2. Service-oriented architecture. The service provider creates a service and publishes a service description at the service broker. The
service consumer finds the service description at the service broker and then uses the service provided by the service provider.

2 SERVICE-ORIENTED ARCHITECTURE AND WEB SERVICES



<Service provider>

<Name>Enterprise</Name>
<PhysicalAddress>3210 State Street, Santa Barbara,
CA 93101<\PhysicalAddress>
<PhoneNumber>805-569-6222<\PhoneNumber>
<URL>www.enterprise.com<\URL>

<\ServiceProvider>

XML provides a standard way to define the structure of
documents so that they are suitable for automatic proces-
sing. An XML parser can determine that a document con-
tains a certain element and can extract the content
associated with that element.

XML schemas and document type definitions are used to
specify document types and to state that a document is of a
certain document type. An XML document verifier can be
used to check whether the structure and content of a
document are consistent with the prescribed type. Cur-
rently, XML schemas and document type definitions do
not provide semantic information about the document or
the elements contained within the document.

More precise tagging instructions have been defined for
various vertical business sectors. In particular, the Orga-
nization for the Advancement of Structured Information
Standards (OASIS) and the United Nations Center for
Trade Facilitation and Electronic Business (UN/CEFACT)
have developed the electronic business XML (ebXML) stan-
dard (5) as a successor to the Electronic Data Interchange
(EDI) standard. The ebXML standard defines an architec-
ture and a specification that are designed to automate
business process interactions among trading partners.

Web services are classified into two categories: Repre-
sentational (REST) Web services or Simple Object Access
Protocol (SOAP) Web services. Both kinds of Web ser-
vices use XML for formatting the data so that they are
self-describing. These two categories of Web services are
discussed below.

REST Web Services

REST Web services (6,7) are based on the concept of a
resource, which has a Uniform Resource Identifier (URI).
A resource may have zero or more representations. If no
representations for the resource exist, the resource is said
not to exist. A REST Web service has the following addi-
tional requirements:

� Interfaces are limited to HTTP, namely:

- GET is used for obtaining a representation of a
resource. A consumer uses it to retrieve a representa-
tion from a URI.

- DELETE is used for removing a representation of a
resource.

- POST is used for updating or creating a representa-
tion of a resource.

- PUT is used for creating a representation of a resource.

� Messages are in XML, which are confined by a schema
written in a schema language such as RELAX NG (8) or
XML Schema (9).

� Messages can be encoded with URL encoding.

� Services and service providers must be resources,
whereas a consumer may be a resource but is not
required to be a resource.

REST Web services require little infrastructure support
other than standard HTTP and XML. They are simple and
effective, because HTTP is available widely and works for
most applications.

As interest in REST Web services has grown, so has the
scope and size of business applications that it supports.
The input parameters to the HTTP methods have grown in
size and number. Structured response values have also
grown in complexity, ranging from customer XML name-
spaces to JavaScript Object Notation (JSON) (10). These
trends have made descriptors a natural addition to REST
Web Services.

The newly proposed Web Application Description Lan-
guage (WADL) (11) provides standard descriptors for
REST Web services just as the Web Services Description
Language (WSDL) provides standard descriptors for
SOAP Web services (see the section on WSDL below). A
WADL descriptor not only describes the service, including
the grammars, resources, and methods of the service, but
also aids in the creation of stubs that are used to build
service clients. Currently, tools for WADL that create
stubs from descriptors are available only for Java envir-
onments.

IBM has initiated a project, named Project Zero (12), for
REST Web services that aims to extend the Service
Oriented Architecture for enterprises to the Web Oriented
Architecture. The Zero platform is a Java runtime envir-
onment that is optimized to run script and REST Web
services. It uses PHP and Groovy for producing REST
Web Services and Ajax for building interactive clients. It
allows enterprise services to be transformed and exposed as
RSS/Atom feeds, which are easy to consume using feed
readers.

REST Web services are growing in popularity, perhaps
because they are lighter weight than SOAP Web services
and because they can achieve a higher level of interoper-
ability more easily.

SOAP Web Services

Today, most people think of Web services as SOAP Web
services, rather than as REST Web services. (See the sec-
tion on SOAP below.) SOAP Web services are based on the
following core specifications and standards:

� SOAP (13), which is an XML-based protocol for acces-
sing a Web service using HTTP or SMTP.

� WSDL (14), which is an XML-based language for
describing Web services and the means to access them.

� Universal Description Discovery and Integration
(UDDI) (15,16), which is used by the service broker
(registry).

Some industry organizations, such as the Web Services
Interoperability (WS-I) organization (17), mandate the use

SERVICE-ORIENTED ARCHITECTURE AND WEB SERVICES 3



of both SOAP and WSDL in their definition of a Web
service.

SOAP Web services are classified into two categories:
SOAP Document-Centric Web services and SOAP Remote
Procedure Call (RPC) Web services. These two categories of
SOAP Web services are discussed below.

SOAP Document-Centric Web Services

In SOAP document-centric Web services, the service
requester and service provider exchange XML documents.
They must agree on the structures of the documents to be
exchanged. The documents are transported between them
in SOAP messages.

As an example of a SOAP document-centric Web service,
consider a service for reserving a rental car from a car
rental agency.

The service requester creates a rental car reservation
document, which contains the kind of car requested, city,
and date. The service requester then sends the rental car
reservation document to the car rental agency in a SOAP
message. The body of the SOAP message contains the
rental car reservation document, and the header includes
information that identifies the service requester to the car
rental agency, as shown at the left in Fig. 3.

The service provider (the car rental agency) creates a
reservation confirmation document, which contains the
cost of the car rental and the reservation Id for the service
requester, and then sends it to the service requester in a
SOAP message. The body of the SOAP message contains
the reservation confirmation document, and the header
includes information that identifies the car rental agency,
as shown at the right in Fig. 3.

SOAP RPC Web Services

In SOAP RPC Web services, the service requester encap-
sulates a remote procedure Call (RPC) in a SOAP message
and sends the request message to the service provider. The

body of the SOAP request message contains the procedure
call, including the name of the procedure being invoked and
the input parameters. The service provider processes the
RPC and returns the results and output parameters in a
SOAP response message to the service requester. The body
of the SOAP response message contains the result and the
output parameters of the RPC. The service requester and
service provider must agree on the RPC signature rather
than on the document structures.

As an example of a SOAP RPC Web service, again
consider a service for reserving a rental car from a car
rental agency.

The service requester creates a SOAP message and
sends it to the car rental agency as a request. The body
of the SOAP message contains the procedure name reser-
veRentalCar, as well as the city, date, and kind of car
parameters, as shown at the left in Fig. 4.

The service provider (the car rental agency) processes
the RPC and returns a SOAP message to the service
requester as a response. The body of the SOAP message
contains the reservation Id and the cost of the rental car
as the return values of the RPC, as shown at the right in
Fig. 4.

Any additional properties associated with the RPC are
included in the header of the SOAP message. For example,
for a transactional RPC, the request header includes the
transaction context, which enables the receiver to process
the request as a transaction.

The SOAP RPC Web service tunnels application-specific
RPC interfaces through the generic SOAP interface. Effec-
tively, it prescribes both system behavior and application
semantics, and is imperative rather than descriptive,
which is contrary to the spirit of SOA. Procedural interfaces
require more complete and rigorous specification, and
greater prior agreement, than do document interfaces.
Consequently, some people consider applications created
with SOAP RPC Web services not as interoperable as SOAP
document-centric Web services. Both the WS-I Basic Profile
and the SOAP 1.2 Specification consider support for SOAP
RPC optional.

Figure 3. SOAP document-centric Web service. The SOAP message communicated by the service requester contains a reservation request
document, and the SOAP message communicated by the service provider contains a reservation confirmation document.

4 SERVICE-ORIENTED ARCHITECTURE AND WEB SERVICES



SOAP

SOAP (13) defines how to organize information and mes-
sages using XML, so that the information can be exchanged
among service requesters, service providers, and service
brokers.

SOAP is an application-layer protocol that operates on
top of other protocols, most commonly the HyperText
Transfer Protocol (HTTP) but also the Simple Mail Trans-
fer Protocol (SMTP).

SOAP supports applications that interact via one-way
asynchronous messages as for SOAP document-centric
Web services and also applications that interact via two-
way synchronous request-response messages as for SOAP
RPC Web services.

SOAP messages are used as envelopes that enclose the
data that the application wants to send. An envelope con-
sists of two parts: a header and a body. The header is
optional, and the body is mandatory. Both the header
and the body can have multiple subparts in the form of
header blocks and body blocks, as shown in Figs. 3 and 4 for
SOAP Web services.

A SOAP message has a sender, a receiver, and an
arbitrary number of intermediaries (nodes) that process
the message and route it to the receiver. The information
that the sender wants to transmit to the receiver is in the
message body. Additional information needed for inter-
mediate processing or for value-added services (such as
security or transactions) is included in the message header.

SOAP incurs processing overhead for parsing and serial-
izing the XML messages, and communication overhead for
the extra XML tags, but it promotes interoperability among
the interacting service requesters, service providers, and
service brokers.

WSDL

WSDL (14) provides descriptors for SOAP Web Services in
a standard way. A WSDL descriptor specifies how to

interact with the Web service, the data that are to be
sent, the operations that are involved, the protocol that is
to be used to invoke the service, and the data that can be
expected in return. A WSDL descriptor can be used as
input to a tool that generates stubs and can be used to
capture information that allows reasoning about seman-
tics. Thus, it is similar in purpose to the Interface Defini-
tion Language (IDL) of other middleware platforms, such
as the Common Object Request Broker Architecture
(CORBA).

A WSDL descriptor consists of an abstract part and a
concrete part, as shown in Fig. 5. The abstract part is
analogous to conventional IDL and uses type, message,
operation, and port type constructs. These four constructs
are called abstract because they do not have a concrete
binding, a specific encoding, or a definition of a service that
implements them.

Types allow the exchanged data to be interpreted cor-
rectly at both endpoints of the communication. By default,
WSDL uses the same basic and structured types as XML
schemas.

Messages are typed documents that are divided into
parts, each of which has a name and a type. For example,
a message for a procedure call with integer and string
parameters has a part that contains the integer and a
part that contains the string.

Operations are classified as one-way, notification,
request-response, and solicit-response. One-way and noti-
fication operations involve a single message, whereas
request-response and solicit-response operations involve
two messages. One-way and request-response operations
are initiated by the client, whereas notification and solicit-
response operations are initiated by the service.

A port type in WSDL is analogous to an interface in IDL.
A port type consists of a set of related operations.

The concrete part of a WSDL description defines an
instance of a service and uses interface bindings, ports,
and service constructs.

An interface binding specifies the message encoding and
protocol bindings for all operations and messages defined in
a port type. In particular, it specifies the encoding rules to
be used in serializing the parts of a message into XML. It
can also be used to specify that an operation is either SOAP
document-centric or SOAP RPC style, or that the messages
of the operation must be communicated using SOAP with
HTTP or SMTP bindings.

A port combines the interface binding information with
the network address, specified as URIs, where the imple-
mentation of the port type can be accessed.

A service is a logical grouping of ports, which are typi-
cally related ports at the same address.

UDDI

The UDDI specification (15,16) defines a mechanism for
clients to find Web services dynamically. UDDI is based on
the notion of a business registry (essentially, a naming or
directory service). UDDI defines data structures and appli-
cation programming interfaces for publishing service
descriptions in the business registry and for querying the
registry to look for published descriptions.

Figure 4. SOAP RPC Web service. The SOAP message from the
service requester contains a RPC, and the SOAP message from the
service provider contains the results from execution of the RPC.

SERVICE-ORIENTED ARCHITECTURE AND WEB SERVICES 5



UDDI registries have three types of users to which they
expose their application programming interfaces: service
providers that want to publish a service (and its usage
interfaces), service requesters that want to obtain services
of a certain kind and bind programmatically to those ser-
vices, and other registries (service brokers) that need to
exchange information. Interaction with a UDDI registry
takes place as a sequence of exchanges of XML documents,
typically using SOAP.

UDDI supports application developers in finding infor-
mation about Web services, so that they know how to write
clients that can interact with those services. It also enables
dynamic binding by allowing clients to query the registry
and obtain references to services in which they are inter-
ested. In addition, it supports the idea of a Universal
Business Registry (UBR), where anyone can publish ser-
vice descriptions and can query the registry for services of
interest.

The information within a UDDI registry can be categor-
ized as follows:

� Listings of organizations, contact information, and
services that those organizations provide.

� Classifications of companies and Web services accord-
ing to taxonomies that are either standardized or user-
defined.

� Descriptions of how to invoke Web services, by means
of pointers to service description documents, stored

outside the registry, for example, at a service provi-
der’s site.

As yet, few applications use a UDDI registry to dis-
cover a Web service and then invoke that Web service
dynamically using its WSDL interface. Rather, in current
practice, client applications are designed explicitly to
invoke Web services with known WSDL interfaces and
Uniform Resource Identifiers (URIs). Currently, some
Web services can be found on publicly available Web sites,
such as the XMethods Website (18), but it is also possible
to find Web Services using Google or Amazon as described
in Ref. 19.

In addition to the core specifications (XML, SOAP,
WSDL, UDDI), many other SOAP Web Services specifica-
tions, exist which are general in referred to as WS-�. These
specifications include:

� WS-AtomicTransaction, WS-Coordination, WS-Busi-
nessActivity–Specifications that define mechanisms
and interfaces for transactions in a distributed envir-
onment (20).

� WS-ReliableMessaging–A protocol, issued by IBM,
BEA, Microsoft, TIBCO, and currently being standar-
dized by OASIS, for reliable messaging between two
Web Services (21).

� WS-Reliability–An OASIS protocol for reliable messa-
ging between two Web services (22).

� WS-Security–A specification that defines how to use
XML encryption and XML signatures in SOAP mes-
sages to secure message exchange as an alternative or
extension to HTTPS (23).

The growing numbers of these SOAP Web services
specifications increase the complexity of the systems being
built from SOAP Web services and increase the difficulty of
achieving interoperability.

CHALLENGES FOR SERVICE-ORIENTED ARCHITECTURE
AND WEB SERVICES

One of the primary challenges for SOA and Web Services is
achieving interoperability across diverse hardware plat-
forms, operating systems, programming languages, and
data representations. The Web Services Interoperability
(WS-I) organization (24) has developed the Basic Profile
and the Basic Security Profile to improve interoperability.
A profile is a set of core specifications (SOAP, WSDL, etc.) in
a specific version (SOAP 1.1, UDDI 2, etc.) with additional
requirements to restrict the use of the core specifications.
The WS-I has also published use cases and tools to assess
whether a Web service is conformant with the WS-I profile
guidelines.

Related to the challenge of interoperability is ensuring
that the XML data are interpreted in the same way by both
the service requester and the service provider. Each well-
defined data item, such as a date, can be represented in
multiple ways. Many data items used in business inter-
actions are much less well defined. Web services, and the

Figure 5. Web Service Description Language. The WSDL
descriptor not only describes a service but also allows client stubs
to be created from the descriptor.

6 SERVICE-ORIENTED ARCHITECTURE AND WEB SERVICES



Web in general, currently focus on syntactic aspects of
representing and communicating information. In con-
trast, semantic Web services (25) aim for automation of
Web services by standardizing the representation and
handling of semantic metadata to describe the services
and how to use them. Semantics are difficult even for
humans, and initial use of semantic Web services will
be restricted to narrow, well-defined domains. The ability
to locate an appropriate Web service, based on semantics,
and to choose among alternative Web services, requires
major advances in automated analysis of semantic infor-
mation.

Another major challenge for SOA and Web services is the
orchestration of services into complex applications and the
management of how they interact. Metalanguages, such as
the Business Process Execution Language (BPEL) (5), and
specifications, such as the Web Services Choreography
Description Language (WS-CDL) (26), provide a means
of orchestrating fine-grained services into more coarse-
grained business services, which in turn can be incorpo-
rated into business processes and workflows. As more
enterprises use Web services for business interactions,
more coordination between service requesters and service
providers will be required. Such coordination will, in turn,
require more coordination between business partners,
rather than simply interfaces between service requesters
and service providers.

Also a major challenge for SOA and Web services is the
management of change. New services are introduced, and
old services are discontinued. Data items acquire new attri-
butes and even new meanings. Operation with multiple
interfaces or multiple data representations to achieve inter-
operability for legacy relationships adds considerable pro-
gramming complexity and a high rate of errors. SOA and
Web services communities have yet to address the topic of
change management.

SOA supports services on both sides of the firewall and,
thus, opens up the most critical business processes and data
to security and privacy risks. WS-Security (23) offers a
solution for SOAP Web services, but REST Web services
need to use SSL or define their own security protocols.
Security appliances that parse XML messages, ensuring
that known business partners originated them, can help to
address the security and privacy issues, as can HTTPS and
IP filtering.

Reliability is also a challenge for SOA and Web services.
No guarantee exists that SOAP messages sent over HTTP
or SMTP will be delivered reliably to the applications
exactly once and in the correct order. The competing
WS-ReliableMessaging (21) and WS-Reliability (22) speci-
fications address this issue for SOAP Web services. How-
ever, without agreement on a single standard, reliable
messaging will be implemented in an ad hoc manner, which
unnecessarily complicates interoperability, portability,
and extensibility.

Critics of SOA and Web services claim that they result in
additional XML layers with applications running slower
and consuming more processing power as a consequence.
Performance is an issue because XML documents are text-
based (rather than binary-based), self-describing, and

interpreted. Consequently, they consume more network
bandwidth, memory space, and processing cycles. How-
ever, new XML parsing and indexing technologies are
available, such as VTD-XML (17), that promise to improve
the performance of SOA and Web services significantly.
Moreover, SOA can be implemented using technologies,
such as Java Business Integration (JBI) (27), that do not
depend on XML or RPC.

CONCLUSION

SOA aims to promote modularity and reuse of software
components. It also aims to maintain interoperability
between software applications within a single enterprise
and between enterprises that operate across diverse
computing platforms over the Internet. SOA can be
implemented using Web services, although that is not
required.

Web services depend on the use of XML to structure and
tag information so that it is self-describing. Web services
can be categorized as REST Web services and SOAP Web
services. REST Web services currently rely only on XML
and HTTP, but soon they might also depend on WADL for
describing Web services. SOAP Web services use SOAP to
convey XML documents and RPCs in messages between
service requesters and service providers, WSDL to describe
Web services so that they can be easily accessed, and UDDI
to publish and discover Web services.

The potential widespread use and benefits of SOA and
Web services are compelling. By supporting modularity of
design and maintaining interoperability, they enable
enterprises to streamline and automate their business
processes and allow diverse computer systems applications
to be coupled together. They offer the promise of reduced
application development time and cost, increased business
agility, and increased business profits.

BIBLIOGRAPHY

1. OASIS, Reference Model for the Service-Oriented Architecture
(SOA). Available: http://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=soa-rm.

2. Open Group, Service-Oriented Architecture (SOA). Available:
http://opengroup.org/projects/soa/doc.tpl?gdid=10632.

3. W3C, Web Services Architecture, 2004. Available: http://
www.w3.org/TR/ws-arch.

4. W3C, eXtensible Markup Language (XML), 2004. Available:
http://www.w3.org/XML/.

5. OASIS and UN/CEFACT, Extensible Business Using eXten-
sible Markup Language (ebXML), 2004. Available: http://
www.ebxml.org/geninfo.htm.

6. P. Prescod, Second Generation Web Services, February 2002.
Available: http://webservices.xml.com/pub/a/ws/2002/02/06/
rest.html.

7. P. Prescod, REST and the Real World, February 2002. Avail-
able: http://www.xml.com/pub/a/ws/2002/02/20/rest.html.

8. OASIS, Relax NG, September 2003. Available: http://www.re-
laxng.org/.

SERVICE-ORIENTED ARCHITECTURE AND WEB SERVICES 7



9. W3C, XML Schema, October 2007. Available: http://
www.w3.org/XML/Schema.

10. Java Service Object Notation (JSON), 2007. Available: http://
www.json.org.

11. D. Rubio, WADL: The REST Answer to WSDL, July 2007.
Available:http://searchwebservices.techtarget.com/tip/
0,289483,sid26_gci1265367,00.html.

12. OASIS, Reference Model for the Service-Oriented Architecture
(SOA). Available: http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=soa-rm.

13. W3C, Simple Object Access Protocol (SOAP), April 2007. Avail-
able: http://www.w3.org/TR/soap/.

14. W3C, Web Services Description Language (WSDL), June 2007.
Available: http://www.w3.org/TR/wsdl/.

15. OASIS, Universal Description, Discovery and Integration Spe-
cifications (UDDI), 2004. Available: http://www.uddi.org/spe-
cification.html.

16. UDDI Consortium, UDDI Executive White Paper, 2001. Avail-
able: http:// www.uddi. org /pubs /UDDI_Executive_White_
Paper.pdf.

17. VTD-XML, 2007. Available: http://vtd-xml.sourceforge.net/.

18. XMethods. Available: http://xmethods.org/ve2/index.po.

19. Y. Li, Y. Liu, L. Zhang, G. Li, B. Xie, and J. Sun, An exploratory
study of Web Services on the Internet, Proc. IEEE Int. Conf.
web services, Salt Lake City, UT, 2007, pp. 380–387.

20. IBM, Web Services Transactions Specifications (WS-Atomic-
Transaction, WS-BusinessActivity, WS-Coordination), 2004.
Available: http://www-106.ibm.com/developerworks/library/
specification/ws-tx.

21. IBM, BEA, Microsoft, and TIBCO, Web Services ReliableMes-
saging, 2004. Available: http://www-128.ibm.com/developer-
works/webservices/library/ws-rm/.

22. OASIS, Web Services Reliability Specification (WS-Reliabil-
ity), 2004. Available: http://oasis-open.org/committees/tc_
home.php?wg_abbrev=wsrm.

23. OASIS, Web Services Security Specification (WS-Security),
2004. Available: http: //www.oasis-open.org /committees/tc_
home.php?wg_abbrev=wss.

24. Web Services Interoperability Organization (WS-I). Available:
http://wwww.ws-i.org.

25. S. McIlraith, T. C. Son, and H. Zeng, Semantic web services,
IEEE Intelligent Sys., 16 (2): 46–53, 2002.

26. W3C, Web Service Choreography Description Language (WS-
CDL), 2007. Available: http://www.w3.org/TR/2004/WD-ws-
cdl-10-20041217/.

27. Java Community Process, Java Business Integration (JBI),
2007. Available: http://jcp.org/en/jsr/detail?id=208.

FURTHER READING

G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services
Concepts: Architectures and Applications, Berlin: Springer-Verlag,
2004.

S. Chatterjee and J. Webber, Developing Enterprise Web Services:
An Architect’s Guide, Upper Saddle River, NJ: Prentice Hall, 2003.

T. Erl, Service-Oriented Architecture: Concepts, Technology and
Design, Upper Saddle River, NJ: Prentice Hall, 2005.

M. Fisher, The Java Web Services Tutorial 1.0., 2002. Available:
http://www.java.sun.com/webservices/docs/1.0/tutorial.

E. Newcomer and G. Lomow, Understanding SOA with Web Ser-
vices, Boston, MA: Addison Wesley, 2005.

O. Zimmerman, M. R. Tomlinson, and S. Peuser, Perspectives on
Web Services: Applying SOAP, WSDL and UDDI to Real-World
Projects, Berlin: Springer-Verlag, 2003.

LOUISE E. MOSER,
P. M. MELLIAR-SMITH

University of California
Santa Barbara, California

8 SERVICE-ORIENTED ARCHITECTURE AND WEB SERVICES



S

SHARED MEMORY MULTIPROCESSORS

INTRODUCTION

Shared memory multiprocessors are multiprocessor sys-
tems that logically implement a single global address space.
The model for parallel programming based on such sys-
tems, the shared address space model, is straightforward
and frees programmers from the tedious and sometimes
complicated task of orchestrating all communication and
synchronization through explicit message passing to access
remote data. As a result, this class of multiprocessor sys-
tems has received much commercial as well as research
interest. The effectiveness of shared memory systems as a
cost-effective option for high-performance parallel and dis-
tributed computing is quantified by four key characteris-
tics: simplicity, portability, efficiency, and scalability.

Simplicity: Shared memory systems provide a uniform
and easy-to-use model for accessing all shared data,
whether local or remote. Beyond such uniformity and
ease of use, shared memory systems should provide
simple programming interfaces that allow them to be
platform and language independent.

Portability: The portability of the shared memory pro-
gramming environment across a wide range of plat-
forms is important as it obviates the labor of rewriting
codes for large complex applications. In addition to
being able to be portable across ‘‘space,’’ good shared
memory systems should also be portable across
‘‘time,’’ i.e., be able to run on future systems, to enable
system stability.

Efficiency: For shared memory systems to achieve
widespread acceptance, they should be capable of
providing high efficiency over a wide range of appli-
cations without requiring much programming
effort, especially applications with irregular and/
or unpredictable communication patterns.

Scalability: To support high-performance computing,
shared memory systems should be able to run effi-
ciently on systems with hundreds (or potentially
thousands) of processors. Scalability offers end users
yet another form of stability—knowing that applica-
tions running on small-to-medium systems could run
unchanged and still deliver good performance on
large systems.

Most existing shared memory multiprocessor systems
represent a practical balance of these properties. The
shared memory abstraction in existing systems is sup-
ported either in hardware or in software or using a hybrid
approach. Figure 1 illustrates the spectrum of shared
memory multiprocessor systems. Based on the underlying
architectural approach, the current systems can be broadly
grouped into two categories: (1) physically shared memory
(PSM) multiprocessors and (2) distributed shared memory

(DSM) multiprocessors. However, irrespective of their
architectures, shared memory systems must address two
critical issues, cache coherence and memory consistency.

Cache Coherence

Although the shared memory abstraction enables global
accesses to remote data in a straightforward manner, the
difference in access time between local and remote memory
accesses in some of these architectures is significant (access
times may differ by a factor of 10 or higher). Local caches
can be used to hide long remote memory access times.
However, ensuring coherence of cached data across the
multiprocessor system with (possibly remote) memory is
a challenging problem (Fig. 2). Two key approaches have
been used to maintain cache coherence.

Snoopy Cache Coherence Protocols. Small shared mem-
ory multiprocessor systems that are based on a shared bus
implement snoopy protocols to maintain cache coherence.
In this approach, all caches snoop on the shared ‘‘snoopy’’
bus. When a processor writes into a shared cache block, the
write request is transmitted on the bus. All caches snooping
on the bus read the address associated with every read/
write request and check whether they are currently caching
that address. If a cache contains the address, the corre-
sponding entry in the cache is invalidated in case of a write
request, or it is used to satisfy the read request. For write-
through caches, where data are simultaneously written to
main memory and cache, the snoopy protocol is only an
incremental addition to the normal cache protocol and the
memory is always up-to-date. Write-back caches, which
copy modified data to the source memory only when a cache
block is replaced, require extra work to implement the
protocol. In this type of cache, the most recently modified
copy of the data may be in some processor’s cache, and on a
read miss, the coherence protocol has to retrieve these data
by snooping all the caches.

Snoopy protocols require all read and write requests to
be broadcast on the bus. As the bus processes only one
request at a time, concurrent writes to the same cache are
automatically serialized. This serialization of requests by
the bus imposes an ordering on all writes, which is critical to
maintaining coherence. For small multiprocessor systems
(up to 64 processors), snoopy cache coherence protocols
work well. The use of caches reduces bandwidth require-
ments for the bus and main memory. Furthermore, as
the caches are kept functionally transparent, the shared-
memory programming model is preserved. For larger
systems, however, the bus becomes a communication
bottleneck.

Directory-Based CacheCoherence. Directory-based cache
coherence protocols use a directory to keep track of the
caches that share the same cache line. The individual caches
are inserted into and deleted from the directory to reflect the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



use or rollout of shared cache lines. This directory is also
used to purge (invalidate) a cached line because of a remote
write to that line.

The directory can either be centralized or distributed
among nodes of the shared memory multiprocessor system.
Generally, a centralized directory is implemented as a bit
map of the individual caches, where each bit set represents
a shared copy of a particular cache line. The advantage of
this type of implementation is that the entire sharing list
can be found by simply examining the appropriate bitmap.
However, each potential reader and writer has to access the
centralized directory, which becomes a bottleneck. Addi-
tionally, the reliability of the scheme is a serious issue as a
fault in the bit map would result in an incorrect sharing list.

The bottleneck and single point of failure resulting from
a centralized directory is alleviated by distributing the
directory. The distributed directory scheme (also called
the distributed pointer protocol) implements the sharing
list as a distributed linked list. In this implementation,
each directory entry (corresponding to a cache line) points
to the next member of the sharing list. Cache lines are
inserted into and deleted from the linked list as necessary.

Shared Memory Consistency Models

In addition to the use of caches, scalable-shared memory
multiprocessor systems migrate or replicate data to local
processors. Most scalable systems choose to replicate
(rather than migrate) data as this gives the best perfor-
mance for a wide range of application parameters. With

replicated data, maintaining memory consistency becomes
an important issue. The shared memory scheme (hardware
or software) must control replication in a manner that
preserves the abstraction of a single address-space shared
memory.

The shared memory consistency model refers to how
local updates to shared memory are communicated to the
processors in the system. The most intuitive model is that a
read should always return the last value written. However,
the idea of ‘‘the last value written’’ is not well defined in
multiprocessor environments, and its different interpreta-
tions have given rise to a variety of memory consistency
models such as sequential consistency (1), processor
consistency, release consistency (2), entry consistency
(3), scope consistency (4), and variations of these.

‘‘Sequential consistency’’ requires that the result of any
execution is the same as if the operations of all processors
were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the
order specified by its program. This definition implies
(1) maintaining program order among operations from
individual processors and (2) maintaining a single sequen-
tial order among operations from all processors. The second
aspect makes it appear as if a memory operation executes
atomically or instantaneously with respect to other mem-
ory operations (5). The simplicity of this model, however,
exacts a high price because sequentially consistent memory
systems preclude many optimizations, such as reordering,
batching, or coalescing, which are feasible in uniprocessor
system. These optimizations reduce the performance

Figure 1. Taxonomy of shared
memory multiprocessors.

Distributed Shared Memory 
(DSM) systems 

Physically Shared Memory 
Systems

Crossbar-based
Interconnet Systems 

(e.g., Sun Starfire)

Hardware -
based

DSM Systems

Mostly Software-
Page-based DSM 

Systems
(e.g., TreadMarks, 
Brazos, Mirage+ ) 

All- Software
Object-based
DSM Systems

CC-NUMA/COMA/S-COMA
(e.g., CC-NUMA: SGI Origin, Stanford

DASH, COMA: KSR1) 
(Composite Schemes like R-NUMA 

and ASCOMA)

Hybrid Schemes 
(with low-level message-passing) 

(e.g., MIT Alewife, Stanford FLASH)

Fine-grained
(e.g., Shasta DSM) 

Coarse-grained
(e.g., Orca, 
CRL, SAM, 
Midway)

Shared Memory Multiprocessors 

Bus Based Systems 
(e.g., Sun SparcStation, 

Intel PentiumPro) 

Figure 2. Coherence problem when shared data
are cached by multiple processors. Suppose initi-
ally x = y = 0 and both P1 and P2 have cached
copies of x and y. If coherence is not maintained,
P1 does not get the changed value of y and P2 does
not get the changed value of x.

Time Processor P1 Processor P2 

x  =  0 
x  =  a 

y  =  c  

y  =  0 
y  =  b 

x  =  d 

2 SHARED MEMORY MULTIPROCESSORS



impact of having distributed memories and have led to a
class of weakly consistent models.

A weaker memory consistency model offers fewer guar-
antees about memory consistency, but it ensures that a
‘‘well-behaved’’ program executes as though it were run-
ning on a sequentially consistent memory system. Once
again the definition of ‘‘well behaved’’ varies according to
the model. Relaxed memory consistency models can be
categorized based on two key characteristics: (1) how is
the program order requirement relaxed and (2) how is the
write atomicity requirement relaxed. Program order
relaxations include relaxing the order from a write to a
following read, between two writes, and from a read to a
following read or write. Atomicity relaxations differ in
whether they allow a read to return the value of another
processor’s write before the write is made visible to all
other processors. Table 1 summarizes hardware-centric
relaxations in program order allowed by the various mem-
ory consistency models commonly supported in commercial
systems.

Some researchers have proposed DSM systems that
support a family of consistency protocols or application-
specific protocols, and programmers are allowed to choose
any one of them for each memory object (or page) or each
stage of an application. Although this scheme might be
able to achieve optimal performance, it does impose
undue burden on the programmer. Another suggestion is
to implement adaptive schemes that automatically choose
the appropriate memory consistency protocol to trade off
between performance and programming ease.

As many recent high-performance computing platforms
have been built by loosely connecting a constellation of
clusters, each of them being made of a set of tightly con-

nected nodes, hierarchy-aware consistency protocols have
been proposed. At first such protocols have focused on
improving locality in data management by caching remote
data within clusters. Later studies have addressed locality
in synchronization management, which is also a major
source of inefficiency.

Programs with good behavior do not assume a stronger
consistency guarantee from the memory system than is
actually provided. For each model, the definition of ‘‘good
behavior’’ places demands on the programmer to ensure
that a program’s access to the shared data conforms to that
model’s consistency rules. These rules add an additional
dimension of complexity to the already difficult task of
writing new parallel programs and porting old ones. But
the additional programming complexity provides greater
control over communication and may result in higher per-
formance. For example, with entry consistency, communi-
cation between processors occurs only when a processor
acquires a synchronization object.

PHYSICALLY SHARED MEMORY (PSM) MULTIPROCESSORS

The structure of a physically shared memory multiproces-
sor system is illustrated in Fig. 3. A small number of
microprocessors (typically less than 64) is integrated
with a common memory using a shared bus or a crossbar
interconnect, that allows all processors to have roughly
equal access time to the centralized main memory, i.e.,
uniform memory access (UMA). Physically shared memory
multiprocessors are also termed as symmetric multiproces-
sors (SMPs) or centralized shared memory processors. PSM
multiprocessors using a shared bus interconnect are called
bus-based symmetric multiprocessors.

The primary strengths of PSM systems include uniform
memory access and a single address space offering the ease
of programmability. These systems do not need explicit
data placement, as memory is equally accessible by all
processors. The PSM design approach is used in commer-
cially successful machines such as the Compaq PentiumPro
and Sun UltraEnterprise.

Bus-Based Systems

Early PSM machines, including many desktop PCs and
workstations, used a shared serial bus with an address
cycle for every transaction. This tied the bus during each

Table 1. Relaxations in Program Order Allowed by
Different Memory Consistency Models

Model Program Order Relaxation

Sequential consistency None
Processor consistency Write->Read
Weak ordering Data->Data
Release consistency* Data->Data, Data->Acquire,

Release->Data, Release->Acquire

*Release consistency categorizes synchronization operations into acquires

and releases.

Note: Only the program order between memory operations to different

locations is considered.

One or more 
levels of 

cache

One or more 
levels of 

cache

One or more 
levels of 

cache

One or more 
levels of 

cache

P P P P

Main Memory I/O System 

Shared Bus or Crossbar Interconnect 

Figure 3. Physically shared memory multi-
processors (P: Processor, I/O: Input and Output).

SHARED MEMORY MULTIPROCESSORS 3



access for the needed data to arrive. An example is the Sun
Microsystems Mbus (6) used in SparcStations. This shared
bus, in addition to allowing access to the common memory,
is used as a broadcast medium to implement the snoopy
cache coherence protocol.

Subsequent PSM designs used the Split-Transaction
Bus (7), with separate buses for address and data. It allows
an address cycle to overlap with a data transfer cycle. Split-
Transaction buses were used in Sun Microsystems’ original
Gigaplane (7), in the Ultra-Enterprise 3000-6000. The
split-transaction bus also allowed overlapping of snooping
and data transfer activities, thereby increasing bandwidth.
However, this overlapping needed handshaking during
data transfer. The Pipelined Bus, used as the PentiumPro
System Bus, is a special case of split-transaction bus
wherein the address and data cycles are pipelined and
devices can respond only in specific cycles, obviating the
need for the data handshake. This scheme, however,
requires the data cycle to correspond to the slowest device.

Crossbar-Based PSM Systems

In crossbar-based systems, the data bus is replaced with a
crossbar switch to provide high-performance UMA. The
address bus is also replicated by a factor of four. Point-
to-point routers and an active center-plane with four
address routers are the key components of the larger
UMA symmetric multiprocessors such as the Sun Ultra
Enterprise series (6).

Although physically shared memory multiprocessor
architectures are used in most commercially successful
machines, these systems have relatively high minimum
memory access latency as compared with high-performance
uniprocessor systems. Furthermore, the inherent memory
contention in these systems limits their scalability.

Example System—Sun Ultra-Port Architecture

Figure 4 illustrates the family of SUN Ultra Port Archi-
tectures (6) used in their workstations. These systems use a
combination of bus and crossbar to implement shared
memory. In the smaller Ultra 450 system (1–4 processors),
illustrated in Fig. 4(a), a centralized coherency controller
and a crossbar is used to connect the processors directly to

the shared memory. This system is a relatively low-cost
single-board configuration. The intermediate-sized Ultra
6000 system has a Gigaplane bus that interconnects multi-
ple system boards and is designed to provide a broad range
of expandability with the lowest possible memory latency,
typically (216 ns for a load miss). This scheme supports
systems with 6 to 30 processors and is shown in Fig. 4(b).
For large systems with 24 to 64 processors, the address bus
is replicated by a factor of four. The scheme is illustrated in
Fig. 4(c). These four address buses are interleaved so that
memory addresses are statically divided among the four
buses; i.e., each address bus covers one quarter of the
physical address space. A 16 � 16 crossbar is chosen to
match the quadrupled snoop rate. To avoid failures on one
system board from affecting other boards, and to electri-
cally isolate the boards, point-to-point router application-
specific integrated circuits (ASICs) are used for the entire
interconnect, i.e., for the data crossbar, the arbitration
interconnect, and the four address buses. The ASICs are
mounted on a centraplane, which is physically and elec-
trically in the middle of the system.

PHYSICALLY DISTRIBUTED MEMORY ARCHITECTURES

The structure of a typical distributed memory multiproces-
sor system is shown in Fig. 5. This architecture enables
scalability by distributing the memory throughout the
machine and by using a scalable interconnect to enable
processors to communicate with the memory modules.
Based on the communication mechanism provided, these
architectures are classified as multicomputer/message
passing architectures and DSM architectures. The multi-
computers use a software Message Passing layer to com-
municate among themselves, and they are called message
passing architectures. In these systems, programmers are
required to explicitly send messages to request/send remote
data. As these systems connect multiple computing nodes
sharing only the scalable interconnect, they are also
referred to as multicomputers.

DSM machines logically implement a single global
address space although the memory is physically distrib-
uted. The memory access times in these systems depended

Figure 4. Three Ultra Port Archi-
tecture Implementations: (a) small
system consisting of a single board
with four processors, I/O interfaces,
and memory; (b) a medium-sized sys-
tem with one address bus and a wide
data bus between boards; and (c) a
large system with four address buses
and a data crossbar between boards.
[Source: A. Charlesworth (6).]

5.1.1.1.1.1.1.1.1.
(c) Starfire Ultra 10000 

24-64 processors

A
dd

re
ss

 B
us

 

(a)  Ultra 450 
1-4 processors 

(b)  Ultra 600 
6-30 Processors

A
dd

re
ss

 B
us

 

32
-b

yt
e-

w
id

e 
da

ta
 b

us

Sy
st

em
 C

on
tr

ol
le

r 

5 
X

 5
 d

at
a 

cr
os

sb
ar

 

P

P

P

P

I/O 
Bridges

M

System
Board

System
Board

System
Board

System
Board 

System
Board 

System
Board 

16
 X

 1
6 

da
ta

 c
ro

ss
ba

r 

4 SHARED MEMORY MULTIPROCESSORS



on the physical location of the processors and are no longer
uniform. As a result, these systems are also termed as
nonuniform memory access (NUMA) systems.

Classification of Distributed Shared Memory (DSM) Systems

Providing DSM functionality on physically distributed
memory requires the implementation of three basic
mechanisms.

Processor side hit/miss check: This operation, on the
processor side, is used to determine whether a parti-
cular data request is satisfied in the processor’s local
cache. A ‘‘hit’’ is a data request satisfied in the local
cache, whereas a ‘‘miss’’ requires the data to be
fetched from the main memory or the cache of another
processor.

Processor side request send: This operation is used on
processor side in response to a ‘‘miss,’’ to send a
request to another processor or the main memory
for the latest copy of a data item and wait for a
response.

Memory side operations: These operations enable the
memory to receive a request from a processor, per-
form any necessary coherence actions, and send its
response typically in the form of the requested data.

Based on how these mechanisms are implemented in hard-
ware/software, various DSM systems can be classified as
list in Table 2.

Almost all DSM models employ a directory-based cache
coherence mechanism implemented either in hardware or
software, which makes these systems highly scalable. DSM
systems have demonstrated the potential to meet the objec-

tives of scalability, programmability, and cost-effectiveness
(8, 9). In general, hardware DSM systems provide excellent
performance without sacrificing programmability. Soft-
ware DSM systems typically provide a similar level of
programmability while trading some performance for
reduced hardware complexity and cost.

Hardware-Based DSM Systems

Hardware-based DSM systems implement the coherence
and consistency mechanisms in hardware, which makes
these systems faster but more complex. Clusters of sym-
metric multiprocessors, or SMPs, with hardware support
for shared memory, have emerged as a promising approach
to building large-scale DSM parallel machines. Each node
in these systems is an SMP with multiple processors. The
relatively high volumes of these small-scale parallel ser-
vers make them extremely cost-effective as building blocks.

Hardware-Based DSM System Classification. In hardware-
based DSM systems, software compatibility is preserved
using a directory-based cache coherence protocol. This
protocol supports a shared-memory abstraction despite
having memory physically distributed across the nodes.
Several cache coherence protocols have been proposed for
these systems. These protocols include (1) cache-coherent
nonuniform memory access (CC-NUMA), (2) cache-only
memory access (COMA), (3) simple cache-only memory
access (S-COMA), (4) reactive-NUMA, and (5) adaptive
S-COMA. Figure 6 illustrates the processor memory hier-
archies for CC-NUMA, COMA, and S-COMA architectures.

Cache Coherent Nonuniform Memory Access (CC-NUMA).
Figure 6(a) shows the processor memory hierarchy in a

Table 2. DSM Systems Classification

System Type Hardware-implemented Software-implemented Sample Systems

Hardware-based DSM All processor side
mechanism

Some part of memory
side support

SGI Origin (8), HP/Convex Exemplar (9),
IBM RP3 (10), MIT Alewife (11),
and Stanford FLASH (12)

Mostly software-based
DSM

Hit/miss check based on
virtual memory
protection mechanism

All other support Coherence
unit is virtual memory page

TreadMarks (2), Brazos (4),
and Mirageþ (13)

Software-based DSM None All three mechanisms
mentioned above

Orca (1), SAM (14), CRL (15),
Midway (3), and Shasta (16)

A scalable interconnection network

M I/O M M M

M M M MI/O

I/O I/O I/O

I/O I/O I/O

P+C P+C P+C P+C

P+C P+C P+C P+C

Figure 5. Distributed memory
multiprocessors (PþC: Processor þ
Cache, M: Memory). Both message-
passing systems and DSM systems
have the same basic organization.
The key distinction is that the
DSMs implement a single shared
address space.

SHARED MEMORY MULTIPROCESSORS 5



CC-NUMA system. In this system, a per-node cluster cache
lies next to the processor cache in the hierarchy. Remote
data may be cached in a processor’s cache or the per-node
cluster cache. Memory references not satisfied by these
hardware caches must be sent to the referenced page’s
home node to obtain the requested data and perform neces-
sary coherence actions. The first processor to access a
remote page within each node results in a software page-
fault. The operating system’s page fault handler maps the
page to a CC-NUMA global physical address and updates
the node’s page table. The Stanford DASH (17) and SGI
Origin (8) systems implement the CC-NUMA protocol.

Cache-Only Memory Access (COMA). The key idea
behind the COMA architecture is to use the memory within
each node of the multiprocessor as a giant cache (also
termed as attraction memory), which this is shown in
Fig. 6(b). Data migration and replication is the same as
in regular caches. The advantage of this scheme is the
ability to capture remote capacity misses as hits in local
memory; i.e., if a data item is initially allocated in a remote
memory and is frequently used by a processor, it can be
replicated in the local memory of the node where it is being
frequently referenced. The attraction memory maintains
both the address tags as well as the state of data. The
COMA implementation requires a customized hardware
and hence has not become a popular design choice. The
Kendall Square Research KSR1 (18) machine implemented
the COMA architecture.

Simple Cache OnlyMemoryAccess (S-COMA). A S-COMA
system [shown in Fig. 6(c)] uses the same coherence pro-
tocol as CC-NUMA, but it allocates part of the local node’s
main memory to act as a large cache for remote pages. S-
COMA systems are simpler and much cheaper to imple-
ment than COMA, as they can be built with off-the-shelf
hardware building blocks. They also use standard address
translation hardware. On the first reference to a remote
page from any node, a software page fault occurs, which is
handled by the operating system. It initializes the page
table and maps the page in the part of main memory being
used as cache. The essential extra hardware required in S-
COMA is a set of fine-grain access control bits (1 or 2 per
block) and an auxiliary translation table. The S-COMA

page cache, being part of main memory, is much larger
than the CC-NUMA cluster cache. As a result, S-COMA
can outperform CC-NUMA for many applications. How-
ever, S-COMA incurs substantial page overhead as it
invokes the operating system for local address translation.
Additionally, programs with large sparse data sets suffer
from severe internal fragmentation resulting in frequent
mapping and replacement (or swapping) of the S-COMA
page caches, which is a phenomenon called thrashing. In
such applications, CC-NUMA may perform better. As S-
COMA requires only incrementally more hardware than
CC-NUMA, some systems have proposed providing sup-
port for both protocols. For example, the S3.mp (19) project
at Sun Microsystems supports both S-COMA and CC-
NUMA protocols.

Hybrid Schemes—Reactive-NUMA and ADAPTIVE-SCOMA.
Given the diversity of application requirements, hybrid
schemes such as reactive-NUMA (R-NUMA) (20) and adap-
tive-SCOMA (ASCOMA) (21) have been proposed. These
techniques combine CC-NUMA and S-COMA to get the best
of both with incrementally more hardware. These schemes
have not yet been implemented in commercial systems.

Example Systems. Table 3 presents several research/
commercial hardware-based DSM systems.

Recent Advances. Sequential consistency imposes more
restrictions than simply preserving data and control depen-
dences at each processor. It can restrict several common
hardware and compiler optimizations used in uniproces-
sors. Relaxed consistency models allow optimization to
some extent by permitting relaxations of some program
ordering. As it is sufficient to only appear as if the ordering
rules of the consistency model are obeyed (22), some
researchers have proposed deploying features, such as
out-of-order scheduling, non-blocking loads, speculation,
and prefetching, into recent processors to improve the
performance of consistency models. Three such hardware
techniques are described below.

Hardware Prefetching: The instruction window is used
to maintain several decoded memory instructions. In
existing hardware-based DSM implementations,

Figure 6. Processor memory
hierarchies in CC-NUMA,
COMA, and S-COMA (P–C: Pro-
cessor – Cache, H/W: Hardware).

Cluster
Cache

Main
Memory Directory

Address
Tags 

Attraction
Memory

Directory
Main

Memory

Simple-
COMA

H/W

Local data only 

Local and 
remote 

data 

Local and remote data 

CC-NUMA

(a)
COMA

(b)

S-COMA

(c)

P+C
P+C

P+C

6 SHARED MEMORY MULTIPROCESSORS



these instructions may not be issued to the memory
because of consistency constraints. With hardware
prefetching, the processor can issue nonbinding pre-
fetches for these instructions without violating the
consistency model, thus hiding some memory latency.

Speculative Load Execution: This technique specula-
tively consumes the value of loads brought into the
cache, regardless of consistency constraints. In case
consistency is violated, the processor rolls back its
execution to the incorrect load.

Cross-Window Prefetching: Instructions currently not
in instruction window but expected to be executed in
the future can also be prefetched. This technique
alleviates the limitations imposed by a small instruc-
tion window size.

At the processor level, the above techniques narrow the
performance gap between consistency models. Other
design decisions below the processor level, such as cache
write policy and cache coherence protocol, can also affect
the performance of the consistency model.

Software-Based DSM Systems

These systems use software to, either partially or comple-
tely, implement shared memory. This alternative approach
has been used by several DSM systems. Based on their
design, these DSM systems can be classified as mostly
software-based systems and all software systems.

Mostly DSM systems are page-based systems. They
make use of the virtual memory hardware in the under-
lying system to implement shared memory consistency

Table 3. Hardware-Based DSM Systems

System Name System Features

SGI Origin (8) (Fig. 7) The Origin adopts the directory-based cache coherence protocol. Its primary
design goal is to minimize the latency difference between remote and local
memory, and it includes hardware and software support to ensure that most
memory references are local. It primarily supports the shared-memory
programming model.

HP/CONVEX Exemplar (Fig. 8) (9) The Exemplar adopts the two-tiered directory-based cache-coherence protocol.
Its primary design goal is to combine the parallel scalability of message-passing
architectures with hardware support for distributed shared memory,
global synchronization, and cache-based latency management. It supports
shared-memory and message-passing programming models.

IBM RP3 (10) (Fig. 9) The RP3 adopts the directory-based cache coherence protocol. Its primary
design goal is to evenly distribute the global address space across all modules to
balance access requests across the modules. It supports the shared-memory
programming model.

The MIT Alewife Machine (11) (Fig. 10) The Alewife machine adopts a software-extended cache coherence scheme
called LimitLESS (23,24), which implements a full-map directory protocol.
Its primary design goal is to combine several mechanisms, including
software-extended coherent shared memory, integrated message passing,
support for fine-grain computation, and latency tolerance, to enable parallel
systems to be both scalable and programmable. It supports shared-memory
and message-passing programming models.

The Stanford FLASH
Multiprocessor (12) (Fig. 11)

FLASH adopts the directory-based cache coherence protocol. Its primary design
goal is to efficiently integrate cache coherent shared memory and low overhead
user-level message passing. It supports shared-memory and message-passing
programming models.

Scalable Interconnect Network 

Processor  A Processor  B

Memory 
And
Dir.

Hub
Chip 

I/O
Crossbar

Node
1

Node
511

Node 0 

I/O Controls 

Figure 7. Origin block diagram.
[Source: J. Laudon et. al. (8).]

SHARED MEMORY MULTIPROCESSORS 7



models in software and to resolve conflicting memory
accesses (memory accesses to the same location by different
processors, at least one of which is a write access). Exam-
ples of mostly software page-based DSM systems include
TreadMarks (2), Brazos (4) and Mirageþ (13).

The advantage of page-based DSM systems is that they
eliminatetheshared-memory hardwarerequirement,which
makes them inexpensive and readily implementable. These
systemshavebeenfoundtoworkwell forcertainapplications
classes, e.g., dense matrix codes (2). As the coherence policy
isimplementedinsoftware,itcanbeoptimizedtomakeuseof
the operating system to implement coherence mechanisms.
The use of the operating system, however, makes it slow as
compared with hardware coherence mechanisms. Addition-
ally, the coarse sharing granularity (i.e., large page size)
results infalsesharingandrelativelyhighercommunication
time per page. One solution is to have multigrain systems,
e.g., using fine-grain shared memory within an SMP and
page-based distributed-shared memory across SMPs.

All-software DSM systems are typically object-based
systems. The virtual view of a shared address space is
implemented entirely in software in these systems.
Examples for DSM systems in this category include Orca
(1), SAM (14), Midway (3), CRL (15) and Shasta (16).

Write-Update and Write-Invalidate Protocols. A key issue
in software-based DSM systems is the write protocol. Two
approaches maintain the memory coherence requirement
for a write operation. One approach is to ensure that a
processor has an exclusive access to a data item before it
writes to it, which is the write invalidate protocol because it
invalidates all other copies on a write. It is by far the most
common protocol. The other alternative is to update all the
cached copies of a data item when it is written, which is the
write update protocol.

Single- and Multiple-Writer Protocols. Most DSM sys-
tems (and hardware caches) use single-writer protocols.

Figure 8. Architecture of the HP/Convex Exem-
plar X-Class SPP. [P/C: Processor/ Cache,
CTI: Coherent Toroidal Interconnect, PCI:
Peripheral component interconnect. Source:
T. Brewer et. al. (9).]

32- way Interleaved Shared Memory                    (256 MB to 16 GB) 

Data Mover Data Mover 3 PCI 
Slots

3 PCI 
Slots

P/C P/C P/C P/C

Data Mover Data Mover 

Data Mover Data Mover 

Data Mover Data Mover 

Hypernode 0 

Hypernode 1

Hypernode 2

Hypernode 3

8 X 8 Crossbar Switch 

Figure 9. IBM RP3 block diagram.
Switching Network 

P

Address
Mapper 

Network 
Interface

Cache

Local
Memory 

Global 
Memory 

Node
0

Node
511

Node
1

8 SHARED MEMORY MULTIPROCESSORS



These protocols allow multiple readers to access a given
page simultaneously, but a writer is required to have
exclusive access to a page before making any modifications.
Single-writer protocols are easy to implement because all
copies of a given page are always identical, and page-fault
can always be satisfied by retrieving a valid copy of the
page. This simplicity often comes at the expense of high
message traffic. Before a page can be written, all other
copies must be invalidated. These invalidations can then
cause subsequent access misses, if the processors whose
pages have been invalidated are still accessing the page’s
data. False sharing occurs when two or more unrelated
data objects are located in the same shared page and are
written concurrently by separate processors. As the con-
sistency unit (usually a virtual memory page) is large in
size, false sharing is a potentially serious problem. It causes
the performance of the single-writer protocol to further
deteriorate because of interference between unrelated

accesses. Multiple-writer protocols allow multiple proces-
sors to simultaneously modify their local copy of a shared
page. The modifications are then merged at certain points
of execution.

Example Systems. Table 4 presents several software-
based DSM systems.

EMERGING ENABLING TECHNOLOGIES FOR SHARED
MEMORY SYSTEM

Recent years have seen the emergence of hardware devices
customized to support certain types of shared memory
system implementations. Furthermore, standards and
technologies have emerged that have the potential to facil-
itate shared memory system implementations in a broader
way.

CPU

Network 
Router

CPU

CMMUCache

Distributed 
Shared

Memory 

Distributed 
Memory 

Private
Memory 

HOST

Alewife node 

VME 
Host

Interface

Figure 10. The Alewife architecture
(CMMU: Communication and Memory
Management Unit, FPU: Floating-point
Unit).

DRAM CPU

2nd Level 
Cache

MAGIC 

Figure 11. FLASH system architec-
ture. [Source: J. Kuskin et al. (12).]

SHARED MEMORY MULTIPROCESSORS 9



SCI: Scalable Coherent Interface

Scalable Coherent Interface (SCI) is an ANSI/IEEE 1596-
1992 standard that defines a point-to-point interface and a
set of packet protocols. The SCI protocols use packets with a
16-byte header and 16, 64, or 256 bytes of data. Each packet
is protected by a 16-bit CRC code. The standard defines
1-Gbit/second serial fiber-optic links and 1-Gbyte/second
parallel copper links. SCI has two unidirectional links that
operate concurrently. The SCI protocols support shared
memory by encapsulating bus requests and responses into
SCI request and response packets. Packet-based handshake
protocols guarantee reliable data delivery. A set of cache
coherence protocols is defined to maintain cache coherence
in a shared memory system. SCI technology has been used to
implement DSM systems, e.g., the hardware-based DSM
system HP/CONVEX Exemplar. Recently it has also been
adopted to buildsoftware-based DSM systems, e.g., a cluster
of PCs interconnected by a SCI network providing a
memory-mapped file abstraction (29).

Active Memory Techniques for CCNUMA Multiprocessors

Active memory systems provide a promising approach to
overcome the memory wall (30) for applications with irre-
gular access patterns that are not amenable to techniques

like prefetching or improvements in the cache hierarchy.
The central idea in this approach is to perform data-parallel
computations or scatter/gather operations, via address
remapping techniques in the memory system, to either
offload computation directly or to reduce the number of
processor cache misses. This technique is expanded to
multinode hardware DSM systems (31) using the same
active memory controller with an integrated commodity
network interface and without any hardware modifica-
tions, by designing appropriate extensions to the DSM
cache coherence protocol.

APPLICATIONS OF SHARED MEMORY MULTIPROCESSOR
SYSTEM

Shared memory multiprocessor systems are traditionally
used to provide an intuitive programming model for par-
allel programs based on shared memory. Memory sharing
technology is also viewed as a building block for construct-
ing a Single System Image (SSI). It can also be used for code
coupling or for realizing shared data repositories.

Single System Image (SSI)

The computing trend is moving from clustering high-end
mainframes to clustering desktop computers, triggered by

Table 4. Software-Based DSM Systems

System Name System Features

Page-based DSM systems
TreadMarks (2) TreadMarks is a mostly software-page-based DSM system. It uses lazy release consistency as its

memory consistency protocol and adopts the multiple-writer protocol to reduce false-sharing effect.
TreadMarks is implemented on a network of workstations.

Brazos (4) Brazos is a mostly software page-based DSM system. The Brazos implements a scope consistency model,
which is a bridge between the release consistency and entry consistency models. Brazos is implemented
on network of workstations.

Mirageþ (13) Mirage+ is a mostly-software page-based DSM system. It extends the strict coherence protocol of the
IVY system (25). It also allocates a time window during which nodes possess a page, which provides
some degree of control over processor locality. Mirageþ is implemented on a network of personal computers.

Object-based DSM systems
Orca (1) Orca is an all-software object-based DSM system. It implements sequential consistency and adopts the

write-update coherence protocol with function shipping and totally ordered group communication to
achieve competitive performance.

SAM (14) SAM is an all-software object-based DSM system. Its design ties synchronization with data access and
avoids the need for coherence communication. It is implemented as a portable C library and supports
user-defined data types.

Midway (3) Midway is an all-software object-based DSM system. It supports multiple consistency models within a single
parallel program and requires a small amount of compile time support to implement its consistency protocols.

CRL (15) CRL is an all-software DSM system. It employs a fixed-home, directory-based write-invalidate protocol and
provides memory coherence through entry or release consistency. It is implemented as a library.

Shasta DSM (16) Shasta is a fine-grained all-software DSM system. It supports coherence at fine-granularity, and coherence
is maintained using a directory-based invalidation protocol. A key design goal of Shasta is to overcome both
the false sharing and the unnecessary data transmission.

DSM Using. NET (26) This is an all-software object-based DSM system. It follows a Multiple Readers Multiple Writers (MRMW)
memory model. Its implementation is based on the Microsoft .NET framework adding facilities for object
sharing and replication and relies on the availability of IPv4 or IPv6 (unreliable) multicast.

Orion (27) Orion is an all-software DSM system. It implements the home-based eager release consistency model.
Adaptive schemes for the home-based model are also proposed to provide good performance with minimal
user intervention. A POSIX-thread-like interface is provided.

DSZOOM-WF (28) DSZOOM-WF is an all-software DSM system. It implements the sequential consistency model. It assumes
basic low-level primitives provided by the cluster interconnect and the operating system bypass functionality
to avoid the overhead caused by interrupt- and/or poll-based asynchronous protocol processing, which affects
the performance of most software-based DSM systems.

10 SHARED MEMORY MULTIPROCESSORS



widespread use of PCs, workstations, gigabyte networks,
and middleware support for clustering (32). Future clusters
will offer increased SSI support with better transparency,
for which a single memory space is a fundamental building
block.

Code Coupling/Shared Data Repository

Mome (33), a user-level DSM, is designed to provide a
shared segment space for parallel programs running on
distributed memory computers or clusters. Besides sup-
porting high-performance SPMD applications, the system
also targets coupling of parallel applications using an
MIMD model. The Mome DSM allows heterogeneous pro-
cesses running on distributed memory architectures and
clusters to share data by mapping the shared memory
segments into their address space. A persistent data repo-
sitory for parallel applications is enabled by allowing pro-
grams to dynamically connect to the DSM, map existing
segments on their memory, read and modify the data, and
leave this data in the repository for further use by other
programs.

CONCLUDING REMARKS

Shared-memory machines built with symmetric multi-
processors and clusters of distributed multiprocessors
are becoming widespread, both commercially and in aca-
demia (1,3,4,6,8,9,11–13,15,19,20,34). Shared memory
multiprocessors provide ease of programming while
exploiting the scalability of distributed-memory architec-
tures and the cost-effectiveness of SMPs. They provide a
shared memory abstraction even though memory is phy-
sically distributed across nodes. Key issues in the design of
the shared memory multiprocessors are cache coherence
protocols and shared memory consistency models, as dis-
cussed in this article. Symmetric multiprocessors (SMPs)
typically use snoopy cache coherence protocols, whereas,
the DSM systems are converging toward directory-based
cache coherence. More popular consistency models
include sequential consistency, release consistency, and
scope consistency.

High-level optimizations in the programming model,
such as single global address space and low latency access
to remote data, are critical to the usability of shared
memory multiprocessors. However, these optimizations
directly trade off with system scalability and operating
system performance. Current shared memory multipro-
cessors are built to achieve very high memory perfor-
mance in bandwidth and latency (6,8). An important
issue that needs to be addressed is the input/output beha-
vior of these machines. The performance of distributed
input/outputs and the distributed file system on a shared
memory abstraction need to be addressed in the future
designs.

BIBLIOGRAPHY

1. H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen,
and T. Ruhl, Performance evaluation of the Orca shared object
system, ACM Trans. Comput. Syste., 1998.

2. C. Amza, A. Cox, S. Dwarakadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel, TreadMarks: Shared
memory computing on networks of workstations, IEEE
Comput., 1996.

3. B. Bershad, M. Zekauskas, and W. Swadon, The midway dis-
tributed shared memory system, Proc. IEEE International
Computer Conference (COMPCON), 1993.

4. E. Speight and J. K. Bennett, Brazos: A third generation DSM
system, Proc. 1997 USENIX.

5. S. V. Adve and K. Gharachorloo, Share memory consistency
models: A tutorial, WRL Research Report 95/7, September 1995.

6. A. Charlesworth, STARFIRE: Extending the SMP envelope,
Proc. IEEE MICRO, January/February 1998.

7. Sun Enterprise X000 Server Family: Architecture and Im-
plementation. Available: http://www.sun.com/servers/white-
papers/arch.html.

8. J. Laudon and D. Lenoski, The SGI Origin: A ccNUMA Highly
Scalable Server. Available: http://www-europe.sgi.com/origin/
tech_info.html.

9. T. Brewer and G. Astfalk, The evolution of HP/Convex Exem-
plar, Proc. IEEE Computer Conference (COMPCON), Spring,
February 1997.

10. G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J.
Kleinfelder, K. P. McAuliffe, E. A. Melton, A. Norton, and J.
Weiss, The IBM research parallel processor prototype (RP3):
Introduction and architecture, Proc. International Conference
on Parallel Processing, August 1985.

11. A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Krauz,
J. Kubiatowicz, B. Lim, K. Mackenzie, and D. Yeung. The MIT
Alewife machine: Architecture and performance, Proc. 22nd

International Symposium on Computer Architecture (ISCA),
June 1995.

12. J. D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachor-
loo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Roseblum, and J. Henessy, The Stanford FLASH multi-
processor. Proc. 21st International Symposium on Computer
Architecture, April 1994.

13. B. D. Fleisch, R. L. Hyde, and N. Christian, Mirageþ: A kernel
implementation of distributed shared memory for a network of
personal computers, Softw. Pract. Exper., 1994.

14. D. J. Scales and M. S. Lam, The design and evaluation of a
shared object system for distributed memory machines, Proc.
First Symposium on Operating Systems Design and Implemen-
tation, November 1994.

15. K. L. Johnson, M. Kaashoek, and D. Wallach, CRL: high-
performance all-software distributed shared memory, Proc.
15th ACM Symposium on Operating Systems Principles
(SOSP ’95), 1995.

16. D. J. Scales, K. Gharachorloo, and A. Aggarwal, Fine-grain
software distributed shared memory on SMP clusters,
Research Report 97/3, February 1997.

17. D. Lenoski, J. Laudon, K. Garachorloo, W.-D. Weber, A. Gupta,
J. Henessy, M. Horowitz, and M. S. Lam, The Stanford dash
multiprocessor, IEEE Comput. 25 (3): 63–79, 1992.

18. H. Burkhardt III, S. Frank, B. Knobe, and J. Rothnie,
Overview of the KSR1 computer system, Tech. Rep KSR-
TR-9202001, Kendall Square Research, Boston, MA,
February 1992.

19. A. Saulsbury and A. Nowatzyk, Simple COMA on S3.MP,
Proc. 1995 International Symposium on Computer Architec-
ture Shared Memory Workshop, Portofino, Italy, June
1995.

SHARED MEMORY MULTIPROCESSORS 11



20. B. Falsafi and D. A. Wood, Reactive NUMA: A design for
unifying S-COMA and CC-NUMA, Proc. 24th International
Symposium on Computer Architecture (ISCA), 1997.

21. C. Kuo, J. Carter, R. Kumarkote, and M. Swanson, ASCOMA:
An adaptive hybrid shared memory architecture, Proc. Inter-
national Conference on Parallel Processing (ICPP’98), August
1998.

22. S. Adve, V. Pai, and P. Ranganathan, Recent advances in
memory consistency models for hardware shared-memory sys-
tems, Proc. IEEE, 1999.

23. D. Chaiken, J. Kubiatowicz, and A. Agarwal, LimitLESS direc-
tories: A scalable cache coherence scheme, Proc. 4th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, April 1991.

24. D. Chaiken and A. Agarwal, Software-extended coherent
shared memory: Performance and cost, Proc. 21st Annual Inter-
national Symposium on Computer Architecture, April 1994.

25. IVY system. Available http://cne.gmu.edu/modules/dsm/red/
ivy.html.

26. T. Seidmann, Distributed shared memory using the NET
framework, Proc. 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID’03).

27. M. C. Ng and W. F. Wong. Orion: An adaptive home-based
software distributed shared memory system, Proc. Seventh
International Conference on Parallel and Distributed Systems
(ICPADS’00), Iwate, Japan, July 4–7, 2000.

28. Z. Radovic and E. Hagersten, Removing the overhead from
software-based shared memory, Proc. 2001 ACM/IEEE Con-
ference on Supercomputing, Denver, CO.

29. A. Meyer and E. Cecchet, Stingray: Cone tracing using a soft-
ware DSM for SCI clusters, Proc. 2001 IEEE International
Conference on Cluster Computing (CLUSTER’01).

30. W. A. Wulf and S. A. McKee, Hitting the memory wall: Implica-
tions of the obvious, Comput. Architecture News, 23 (1): 20–24,
1995.

31. D. Kim, M. Chaudhuri, and M. Heinrich, Active memory
techniques for ccNUME multiprocessors, Proc. 17th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS
2003), Nice, France, April 22–26, 2003.

32. K. Hwang, H. Jin, E. Chow, C. Wang, and Z. Xu, Design SSI
clusters with hierarchical checkpointing and single I/O space,
IEEE Concurrency, 60–69, 1999.

33. Y. Jegou, Implementation of page management in Mome, a
user-level DSM, Proc. 3rd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid (CCGRID’03),
2003

34. B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, Operat-
ing system support for improving data locality on CC-NUMA
computer servers, Proc. 7th Symposium on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPOLS VII), 1996.

FURTHER READING

Message Passing Interface Forum, MPI: A Message Passing Inter-
face Standard, May 1994.

LI ZHANG

MANISH PARASHAR

Rutgers, The State University of
New Jersey

Piscataway, New Jersey

12 SHARED MEMORY MULTIPROCESSORS



S

SOFTWARE ENGINEERING FOR
TELECOMMUNICATIONS SYSTEMS

INTRODUCTION

Since the construction of the worldwide telephone network
started more than a century ago, advances in communica-
tion systems and their widespread availability have been a
source of profound change in societies and are an important
part of what we call the ‘‘information society.’’ Today,
communication systems allow people to talk, see, and
exchange data with each other almost independently of
their physical location in the world. In the so-called devel-
oped countries, telephones are in virtually every household,
cell phones are omnipresent, and half a billion computers
are part of the Internet—together, these technologies form
a gigantic network that allows anyone easy access to an
enormous amount of information and to communicate
easily with each other.

According to a broad definition, any system that makes
communication over long distances (tele ¼ distant) possi-
ble is a telecommunication system. Historically however,
the term refers primarily to telephony networks for fixed
and mobile communication. For the Internet and other
interconnections of computers, the term computer network
is used. The term communication system can refer to both
computer networks and telecommunication systems.
Because of the convergence of telecommunication and
Internet technology, the once sharp line between computer
networks and telecommunication systems has, however,
been blurred in recent years. End users engaged in distant
communication are indifferent as to whether their voice is
transported via traditional telecommunication networks or
over the Internet—as long as the service preserves high-
quality demands expected from telecommunication sys-
tems: lost calls, too much delay in voice transmission,
echoes, and so on are not tolerated.

Although from today’s point of view many commonal-
ities seem to exist between the two, the telephone system
and the Internet were historically created with different
aims and design philosophies in mind and are based on
different technologies. The telephone system was designed
primarily for voice communication between humans; even
data services like transmission of facsimiles (fax) used tone
modulation techniques over the voice channel. The tele-
phone system uses circuit and packet switching to establish
a dedicated connection with guaranteed quality of service
(QoS) for the duration of a call. The Internet, on the other
hand, was designed for flexible data exchange between
computers with the capability to compensate single points
of failure—it was intended as a network for military pur-
poses in the first place. The Internet uses packet switching
for efficient communications with best effort QoS.

Many definitions for software engineering exist in the
literature. One definition that we feel is particularly
suitable in the context of telecommunication systems is

‘‘the application of engineering to software’’ (1). In fact,
(electrical) engineers built the first telecommunication
systems. The key challenges for software engineering
telecommunication systems developed from several
aspects that make telecommunication systems special.
These aspects relate to the system in general and the
software components in particular and can be subdivided
into industry practices, general technical challenges, and
quality demands. Important industry practices in the
telecommunications domain include the definitions of
standards and protocols, the layering of systems, and
intensive testing. General technical challenges develop
mainly from the distribution aspect of telecommunication
systems and the large amount of communication that
these systems need to handle simultaneously in real
time. For example, modern switching systems can handle
several ten thousands of calls simultaneously. Thereby,
high-quality demands must be fulfilled.

From a user’s perspective, telecommunication systems
must provide a high quality of service, namely the fulfill-
ment of real-time and lossless requirements. In addition to
that, they must satisfy high availability, reliability, and
robustness demands. For example, delays greater than a
tenth of a second or lost words in a telephone conversation
are unacceptable; the expectation of users is that the tele-
phone system ‘‘always works’’ and that especially emer-
gency calls always go through, no matter the amount of
traffic. From the perspective of software engineers, tele-
communication systems must be scalable, extensible, and
portable. Scalability means that the code basis can be used
for different traffic demands. For example, it is desirable
that the same switching software can be used in a system
that handles an average of 1000 simultaneous calls as well
as in a system that handles 100,000 calls simultaneously.
Scalability is especially important as the demand for tele-
communication services is steadily increasing. Extensibil-
ity is important because the services that must be provided
by telecommunication systems are constantly subject to
enhancements. Portability has to do with the long lifetime
of telecommunication software and the rapid advances in
hardware platforms; one cannot afford to throw away the
software developed for two decades just because of a switch
to new hardware.

The next section provides an overview of relevant his-
toric developments and crucial design decisions that led to
today’s telecommunication systems; important background
information for understanding what makes software engi-
neering for telecommunication systems special is given.
The section entitled System Design in the Large describes
fundamental telecommunication concepts that are encoun-
tered when designing systems in the large. The basic
notions of distribution and communication, as well as
layering, planes and resource control are discussed. Sys-
tems Design in the Small is the topic of the section that
follows. The last section surveys a selection of the literature
on modeling telecommunication systems and introduces

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



the Real-Time Object-Oriented Modeling (ROOM) language
as an example of a modeling language for telecommunica-
tion systems.

BACKGROUND AND RATIONALE

Modern telecommunication systems were developed in the
early 1960s. The new technology of computer control, called
stored program control (SPC), started to substitute electro-
mechanical systems (2). One of the main advantages intro-
ducing SPC was flexible systems, in which additions and
changes could be introduced primarily through program
modifications rather than through changes in the hardware
(3). However, by the late 1960s, it was time for a review. At
Ericsson, one had learned that the current generation of
SPC, as it existed in the late 1960s, was expensive and way
too complex, with hindsight, for widespread use, except, to
some extent, in the American Bell companies. The disad-
vantages were above all in the high costs of handling—
design, testing, modification, fault-correction, production,
installation, and operation and maintenance (4). What was
needed was a new approach to structure and organize these
complex systems. With the engineering techniques avail-
able at that time—‘‘Structured Programming’’ is in the air
(5), the principle of functional modularity was a promising
approach. Within Ericsson, it was IVAR JACOBSON who made
the important contribution of the ‘‘block concept’’ in 1967
(6), which included the structuring of the system into self-
contained functional modules (blocks), with all interwork-
ing between blocks performed by software signals (7). The
development of Ericsson’s AXE switching system was based
on these principles; it went into trial service late in 1976
and became and still is one of the most successful switching
systems worldwide (4).

Hand in hand with this development, the study of new
languages was initiated. The industry was in need of
languages highly adapted to the demands of programming
and designing telecommunication systems. The outcome of
these efforts were Specification and Description Language
(8) (SDL), Message Sequence Chart (9) (MSC), CHILL
CCITT High Level Language (CHILL) (10), and Man-
Machine Language (MML) (11). All three languages have
been standardized by Consultatif International de Télé-
graphique et Téléphonique) (CCITT) and are still in use
today. In the early 1980s, SDL and MSCs were intended
for system specification and design, CHILL for detailed
design, coding and testing, MML primarily for operation
and maintenance. Especially for coding, many companies
developed their own variant of a programming language.
For example, Ericsson developed the Programming Lan-
guage for EXchanges (PLEX) (7), and Northern Telecom
developed the Procedure Oriented Type Enforcing Lan-
guage (PROTEL) (12); both languages are block struc-
tured. More recently, new languages and paradigms
have become part of the toolset of software engineers in
the telecommunication domain. An example of a modern
programming language for telecommunication systems is
Erlang (13); Erlang can be classified as a functional pro-
gramming language. It was developed at the Ericsson
Computer Science Laboratory in the late 1980s and was

released as open source in 1998. It has been used in
industrial projects for the production of highly reliable
and fault-tolerant telecommunication systems. For exam-
ple, Ericsson’s AXD301 switching system handles 30–40
million calls per week and node, and its reliability is
measured at 31 milliseconds downtime per year. It con-
tains 1.7 million lines of Erlang code (14).

In 1994, the ROOM language appeared. ROOM blends
object-oriented and real-time concepts and techniques and
is thus particularly well suited for modeling telecommuni-
cation systems. Elements of ROOM were added to the
Unified Modeling Language (UML) (15,16) version 2.0
that was released in 2004. In 2006, the Object Management
Group (OMG) released the specification for the Systems
Modeling Language (SysML) (17), which is a modeling
language for systems engineering that seems to be a pro-
mising addition to the toolset of software engineers in the
telecommunications domain. A good chance exists that
telecommunication systems engineering might benefit
from the recent research and commercial interest in gen-
erative (18) and model-driven development (19). Domain-
specific notations have been used by telecommunication
engineers for a long time, and new technologies might
enable the generation of systems based on descriptions
using these notations.

The complexity of switching systems by sheer size of
code is impressive. Already around 1980, several hundred
programmers had produced over one million lines of code
over a five-year period for the DMS-100 switching system
family of Northern Telecom. The source code was organized
into 15,000 procedures in 1500 modules (12). The systems of
today are even more complex. A code base of several million
lines of code is not unusual. Still, these systems fulfill high-
quality demands on availability, reliability, fault tolerance,
and so on. Such systems can be upgraded and maintained
while being in operation! A downtime of some few minutes
per year is already perceived as ‘‘bad quality.’’

Considering their complexity, it may come as no surprise
that architecture is and always has been an important issue
in telecommunication systems design. Architecture is and
was a means to deal with complexity. Of course, the term
‘‘architecture’’ was not defined clearly, but it is absolutely in
line with the design paradigm of the 1970s: The modulariza-
tionofasystemisregarded as its architecture.Architectures
were not modeled, as we tend to say today, but rather
described either informally, usually in some sort of box-
line diagrams, or formally with SDL. It is interesting to
read which design conceptions were identified for new soft-
warearchitecturesinthe1980s: independentsubsystemsfor
call control (features), signaling, and hardware control; data
abstractions partitioned for each subsystem; formal commu-
nication protocols; concurrent and asynchronous operation
ofeachsubsystem;terminal-orientedcontrol;layeredvirtual
machines; finite state machine specifications; application
programs; and systems programs (20)—the topicality of
the list is astonishing.

Before ‘‘software engineering’’ was an established field,
telecommunication engineers had already established a
disciplineofengineeringhighlyreliable,scalable,androbust
real-time systems, which are open and standardized—
and it included software. When the telecommunication

2 SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS



engineers included programmable devices into their sys-
tems, they integrated these devices into a hardware-
driven environment. Thus, they applied a lot of their
hardware principles to software. In effect, they made it
transparent to the system, whether an entity is realized in
hardware or software. Simply speaking, the software
was and still is developed as seriously and effortful like
hardware. Because failures and downtimes of telecommuni-
cation components are not an option, much energy is put
into the design and architecture of those systems. The engi-
neering aspect of the software part of telecommunication
systems resembles many qualities of systems engineering:
standardized interfaces, message-orientation, cascading,
and composition as main design principles; exhaustive
testing routines including load andstress testing, configura-
tion management, process driven development—to name
just a few—are best practices in the telecommunication
domain.

The concepts, techniques, and requirements we describe
in the historic overview above are still relevant to software
engineering for telecommunication systems today. It is the
way telecommunication engineers design their systems in
the large and in the small that is special. That is why we put
our focus on these two topics in the following sections. Other
software engineering issues like requirements engineering
and traceability, configuration and product management,
software product lines and families, testing, project man-
agement and so on do not differ that much from software
development practices in other domains such as large
enterprise information systems.

Regarding software engineering for telecommunica-
tion systems, no established body of literature exists
yet, which reflects a commonly agreed viewpoint on how
telecommunication systems are (to be) designed in the
large and in the small. However, if you spend some years
in the telecommunication industry among systems
designers and software developers and study existing
publications, then you will notice that they somehow
speak ‘‘one language’’ and design their software in similar
ways. This article is an attempt to uncover the elements of
design of telecommunication system engineers to provide
valuable input for the interested reader. A more elabo-
rated version of the systematics presented here can be
found in Ref. 21.

SYSTEMS DESIGN IN THE LARGE

In telecommunications, systems design in the large must
deal with the notion of distribution, layering, planes, and
resource control. We will discuss each issue in turn.

Distribution

A telecommunication system is made up of entities like
switching systems, radio base stations, and mobile phones.
These entities are physically distributed in space; they are
either located in a fixed place (like switching systems) or are
mobile (like mobile phones). These entities collaborate with
each other to provide a service to end users. Thus, the most
obvious characteristic of a communication system is its
aspect of distribution. If two or more devices, processes,

users or—more abstractly—entities are physically spread
in space but want to collaborate, they somehow have to
bridge spatial distribution and establish communication.
We will give rather informal definitions of the concepts
related to distribution in the following sections. Formal
definitions of these concepts can be found in Ref. 22.

Communication. ‘‘It is all about communication’’—this
slogan characterizes concisely the motto of telecommunica-
tions. We can classify three types of communication used
in telecommunications. The classification scheme bases
on the question ‘‘Who controls whom?’’ We can distinguish
three basic combinations of the exertion of control between
two communicating parties: (1) no side exerts control, that
is no side has a state model of the other side to influence the
other side’s behavior in a controlled way, which we call
data-oriented communication; (2) only one side exerts con-
trol, which we call control-oriented communication; (3) both
sides exert control, which we call protocol-oriented commu-
nication.

Any communication type can be realized in a connection-
oriented mode, a connectionless mode, or even other kinds
of communications styles. We will come back to this in the
discussion of communication services. Note that commu-
nication in telecommunications is message-oriented and
that communication relations are strictly specified in form
of protocols.

Decomposition and Remote Communication. What is dis-
tribution? With the eyes of software engineers, we tackle
the notion of distribution in two steps: First, distribution is
an issue of logical decomposition. Second, we need to con-
sider the effects of remote communication.

We can view a telecommunication system as a logical
entity that encapsulates some functionality and offers
interfaces (often called ‘‘ports’’) for message-based commu-
nication with the environment. We assume that the beha-
vior of the system is given, meaning that we know the set of
allowed messages per interface, their format, how the
system reacts on messages delivered to the interfaces
and which messages it emits to the environment. The
behavior of a telecommunication system is often said to
provide services to its environment, usually its end users.

A first step toward distribution is that the entity under
consideration can be logically split up (‘‘decomposed’’) into
separate parts, each part representing a new entity. The
parts also communicate to each other via messages through
their interfaces. The interfaces are connected via so-called
channels, which are sometimes also called connectors. A
channel is an idealized communication medium, which
transfers messages faultless and in an instant. In other
words, a logical entity gets refined by a network of sepa-
rated but cooperating parts. From an outer perspective, the
conglomerate of parts preserves the behavior that can be
experienced at the interfaces of the single entity. The
decomposition process is recursive.

The second step is to take into account that the com-
munication over a channel is not ideal but suffers from the
real-world effects of remote communication. When the
decomposed parts get spread over, say, hosts or physical
nodes, they require some sort of communication means to

SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS 3



bridge the spatial separation. The interaction of the
decomposed parts in a distribution network is not fault-
free per se; it is sensitive to disturbances on the commu-
nication medium and dependent on the properties of the
connection. We condense the whole communication med-
ium in a model of a nonideal channel, which we call
complex connector. The complex connector is a component
that represents the properties of the communication chan-
nel and its effects on the transmission of messages. These
properties are called QoS attributes and include all rele-
vant characteristics, such as reliability, throughput,
jitter, and delay (21,22).

To summarize: A telecommunication system is a dis-
tributed system. To its end users, a telecommunication
system appears as a single, coherent, service-provisioning
system. As a matter of fact, the system is decomposed into a
number of physically separated but interacting parts,
called nodes, which constitute a communication network.
The effects of remote communication are captured by the
notion of a complex connector.

Network Topology and Communication Services. Readers
might be familiar with the fact that communication sys-
tems are composed of a stack of layers. We will come back to
layering in a subsequent section entitled Layering. In this
section we view each layer in a communication system as a
self-contained unit without any dependencies to other
layers. Each layer unit consists of distributed entities
communicating remotely to each other via a network
that interconnects the entities. In short, we treat a layer
as a distributed network in its own right.

Here, we are concerned with what kind of communica-
tion services and communication resources the distributed
entities use to bridge their spatial distance; for the time
being we are not interested in how it is achieved via a lower
layer. That means our understanding of a network is an
abstract model of distribution, which includes a network
topology (who is permitted to communicate with whom) and
the used communication services. A communication service
can offer connection-oriented or connectionless communi-
cation means.

Connection-Oriented Communication Services. With the
help of the complex connector, we can describe static con-
figurations of distant connection-oriented communication.
The complex connector concentrates all impacts that the
transmission may have on the messages to be conveyed. In
reality, connections are rarely static; they are rather a form
of a long-lasting, dynamically created connection. Nor-
mally, connections are set-up and released on demand.
Thus, we need something; we can ask for inserting and
removing a complex connector between any two ports at
some point in time. The connection-oriented communica-
tion service fulfills this role. In a telecommunication
system, circuit switching is a connection-oriented commu-
nication services.

Connectionless Communication Services. A style of com-
munication exists that requires no connection. Instead,
messages include the address of the receiver. The sender
hands the message over to a connectionless communication

service, which distributes the message according to the
address to a destination. If the sender wants to get a
response on a delivered message from the receiver, then
the sender has to include its source address in the message
as well. In a telecommunication system, packet switching is
a connectionless communication service.

Addressing. Addressing is crucial for communication sys-
tems in general and telecommunication systems in parti-
cular. In the following, we focus on addressing in the context
of telecommunication systems. Generally speaking, an
address denotes a concept to identify and locate objects in
a defined scope. The scope is the so-called address space (or
name space), which is an assembly of addresses with each
address being unique in the assembly. An address associa-
tion relates two addresses to each other; the association is
directed pointing from one address (the source address) to
another address (the destination address). Source and des-
tination address may or may not belong to the same address
spaces; wemustmakea difference betweenexternal address
associations and internal address associations. External
address associations relate addresses of different address
spaces, internal address associations relate addresses of the
same address space.

For example, the difference between connection-
oriented communication and connectionless communica-
tion is basically different ways of working with address
spaces. In connection-oriented communication, commu-
nication interfaces are associated with a fixed (better:
temporarily fixed) communication partner. Information
that is pushed to the interface is conveyed to the commu-
nication partner; reversely, information the communica-
tion partner wants us to notice, pops up at the interface. In
that sense, the interface is a sort of representation of the
other party, and the interface identifier is an internal
address denoting the other party. So, to talk to another
party it is necessary to either use another interface (that is
bound to the other party) or to newly bind the interface
with the other communication party.

For connectionless communication, the general addres-
sing structure looks different. The arrangement of associa-
tions is so that two communication partners do not
maintain direct relations between their address spaces.
Instead, local addresses are associated to a third party,
which is an external address space. Consequently, users
who communicate connectionless need to have an internal
representation of the address space outside their locally
addressable scope. They need to specify the destination of
their messages. Users who communicate connection-
oriented do not have to do that.

Remarks. Definitions on distribution to be found in lit-
erature suffer preciseness on the one hand and generality
on the other hand. We think that at an abstract-level
distribution is primarily a logical conception and that it
is adequate to give a formal definition based on a proper
model. Secondary, distribution has a technical dimension.
A formal definition of distribution is given in Ref. 22.

No notion exists of a complex connector in Open Systems
Interconnection (OSI), but in practice, telecommunication
engineers work with this concept. As an evidence for that

4 SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS



statement, have a look at channel substructures in SDL (23,
p.121), which basically captures the same intention as
complex connectors.

Addressing is a delicate issue in modeling and an
neglected issue in software engineering.

Layering

Layering is one of the oldest techniques in software engi-
neering to structure a system. Possibly the first, who made
systematically use of layering was Dijkstra, he used layer-
ing for the design of the THE operating system (24). Layer-
ing is also a key structuring principle in the design of
communications systems, be they telecommunications or
computer networks. In the previous section, we intention-
ally left out the issue of layering. We simply said that one
can look at each layer of a distributed communication
system individually. Now it is time to explain, how several
layers of communication networks are interconnected and
make up a layered system.

In the next section, we will briefly outline the seven layer
reference model (RM) of open systems interconnection(25)
(OSI). We will then distill the key idea that underlies
layering. This progression will naturally lead us to two
viewpoints one can have on a communication network: a
network-centric or a node-centric perspective. Finally, we
discuss the concept of planes.

The OSI Reference Model. Layering is a means to step-
wise provide higher-level services to a user or the next
‘‘upper’’ layer, and to separate levels of services by pre-
cisely defined interfaces. This overall design principle is
reflected by the use of protocol stacks. The OSI RM is the
most prominent framework for a layered communication
architecture. We do not repeat OSI RM to the full extent,
we just would like to remind the reader of the basic out-
look, see Fig. 1: Several network layers are stacked on
each other, each layer realizing a complete network of its
own. Higher-layer network services rely on lower layer
services until a physical layer is reached. Additional
introductory information can be either retrieved from
the X-Series of the ITU-T recommendations or from text-
books. Almost any textbook on computer networks and/or
data communications gives an introduction into OSI RM,
for example Ref. 26.

We wish to highlight one important point. OSI RM
clearly distinguishes two communication relations: layer-
to-layer (‘‘vertical’’) communication from peer-to-peer
(‘‘horizontal’’) communication. ‘‘Vertical’’ communication
refers to the exchange of information between layers
(that is levels of services usually within the same physical
entity) in the form of Service Data Units (SDU). ‘‘Horizon-
tal’’ communication refers to the exchange of information
between remote peers. Remote peers are physically dis-
tributed and communicate with each other according to a
protocol in the form of protocol messages, also called Pro-
tocol Data Units (PDU), thereby sharing the same level of
protocol conventions. PDUs are the vehicles for SDUs. A
single SDU may be packaged into one or more PDUs. Such
PDUs are also called data PDUs. Nondata PDUs are called
control PDUs. In a multilayer communication architecture,
a service provisioning layer becomes the service user of the
next lower layer.

Communication Refinement. To understand how two dif-
ferent networks of service levels are connected through
layering, one has to know that Fig. 1 unveils only half the
truth. The dotted lines labeled with ‘‘Peer protocol’’ do not
represent protocol relations only. Each double-headed
arrow ‘‘hides’’ a complete infrastructure of a communica-
tion service for this specific layer. The communication
service per layer is an abstract model of the style of com-
munication (connection-oriented, connectionless), proper-
ties (delay, reliability, etc.), topology, and addressing
schema. This abstract model can be refined into a more
concrete model, which is in effect the next lower layer of the
protocol stack. The next lower layer includes the commu-
nicating entities (the boxes next to the double-headed
arrow) and the communication service of that layer. In
essence, layering is the result of refining communication
services; we call this communication refinement.

Communication refinement leads to two different view-
points on distributed layered communication systems.
Both viewpoints are important for systems modeling in
software.

Network-Centric Viewpoint. If we regard the communi-
cation service as an abstract model of the means of com-
munications, suppressing all the details of lower layers,
then we just observe a network of communicating entities of
one layer using the communication service. This view is the
network-centric viewpoint on communication systems.
This view allows one to look onto a network as a distributed
system ignoring layering. We made use of this technique in
the section about distribution.

Node-Centric Viewpoint. If all communication services
are resolved by a refinement, which represents the next
lower layer, we end up with a situation similar to Fig. 1: We
have a communication service at the very bottom, a phy-
sical media, which cannot be resolved more. The pile of
boxes labeled ‘‘Open System’’ on the left and on the right
represent the entities that, together, make up the software
or hardware, which resides on a physical node in a network.
This view is the node-centric viewpoint on communication
systems.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Physical media for OSI 

Open

System

Open

System
Peer protocol

Figure 1. OSI seven layer reference model; see Ref. 25, p. 31.

SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS 5



Planes

One concept that has turned out to be extremely useful is
the concept of planes. The concept was introduced in Inte-
grated Services Digital Network (ISDN) (27), taken over in
Global System for Mobile communication (28), and cur-
rently shapes the network architecture of Universal Mobile
Telecommunication System (UMTS) (29). The distinction is
usually in three planes, namely the control plane, the user
plane, and the management plane.

A plane encapsulates service functionality and may
have internally a layered (protocol) structure. Planes are
an organizational means on top of layering and commu-
nication refinement, respectively. In telecommunications,
the user plane provides for user information flow transfer
(data PDUs), along with associated controls (e.g., flow
control, recovery from errors); the control plane performs
call and connection control functions (control PDUs), deal-
ing with the necessary signaling to set up, supervise, and
release calls and connections; the management plane takes
care of (1) plane management functions related to the
system as a whole including plane coordination and (2)
functions related to resources and parameters residing in
the layers of the control and/or user plane (30).

OSI RM is not prepared to handle planes (nor is the
Internet architecture), which is also one of its major defi-
ciencies. The control and user plane are not separated. In
software engineering, the organization of a system in
planes is almost unknown. On a case-by-case basis,
designers had and still have to invent individual solutions
to handle planes in their models. For example, in ISDN the
engineers introduced a synchronization and coordination
function (SCF) as a major component of the management
plane. The SCF is connected to the highest layer of the user
plane and to the highest layer of the control plane to
coordinate and synchronize the required collaboration of
planes (27).

Resource Control

A field that is largely ignored in computer networks but is of
importance in telecommunications is the issue of resource
control—most popular textbooks on computer networks and
distributed systems do not touch on the subject at all. The
term resource does not only include physical resources such
as adaptors, switchboards, echo cancellers, codec conver-
ters, and so on, but also resources implemented in software.
On a software level, resources can be combined, added by
some functionality, and offer value added services that
make a user believe to access a ‘‘new’’ kind of resource
that is more than the sum of its physical components.
Take for example an alarm clock and a radio, add a compos-
ing layer, and you will get a clock radio. The new feature,
that the radio turns on at a certain alarm time, is more than
any of the resources could provide in isolation.

We recognize a need to pay some special attention to
resource control. As was mentioned previously, telecom-
munication systems are sliced in a control and a user plane;
basically, it is the control plane that controls the user plane.
In most cases this control relationship breaks down to
resource control. The control plane controls resources of
the user plane. Although the control plane and the user

plane may operate as largely independent networks, the
combining spots are locations of resource control. Usually,
the node hosting the resource brings together the control
and the user plane. Traditionally, the aspect of resource
control has been a local, internal issue. Often, inside such a
node, the border between controlling and controlled beha-
vior is blurred and not fully separable. At best, the
designers define a proprietary application programming
interface (API) for the resource.

One of the intentions of UMTS has been to clearly
separate the control and the user plane and to avoid the
blur of the control / user plane inside nodes hosting
resources; this idea is the so-called architectural split
introduced with UMTS. As a result of that, the telecommu-
nication sector of the International Telecommunication
Union (ITU-T) defined a protocol, a control-oriented proto-
col in our terminology, that describes how a user can control
a switching center. This protocol is called media gateway
control protocol, it is specified in H.248 (31) and has been
taken over as a standard by IETF as well, see RFC 3015
(32). With the definition of a protocol and the separation in a
resource user and a resource provider all prerequisites are
given to aim for physical separation of both roles. In the
UMTS architecture, these two roles are logically fulfilled by
the media gateway controller and the media gateway. It is
up to a manufacturer to produce two individual nodes or a
single combined node. Important is that the distinction has
been made logically.

Remarks

We mentioned the OSI RM. The reference model of the
Internet Architecture, is related loosely to OSI RM, see
Ref. 26. Other frameworks exist that address the topic of
distributed communication system and propose a termi-
nology, a set of conceptions, and a system architecture
organization. The most important frameworks to mention
are the Reference Model for Open Distributed Processing
(33,34) (RM-ODP), the Telecommunications Information
Networking Architecture (35) (TINA), and the object man-
agement architecture (36,37), (OMA), which is the basis
for the Common Object Request Broker Architecture
(38,39) (CORBA). Basically, all three frameworks specify
an environment to develop, install, and maintain distri-
buted applications.

SYSTEMS DESIGN IN THE SMALL

When it comes to systems design in the small, the most
apparent issue a software engineer is confronted with is
that telecommunication systems are real-time systems.
An understanding of real-time systems and a suitable
approach for designing such systems is required. The use
and the understanding of the term ‘‘real-time system’’ is not
consistent in the literature. It is a mixture of characterizing
attributes and structural properties of a system. For exam-
ple: On one hand, it is said that a real-time system fulfills
timing constraints, (i.e., a real-time system has to react to a
stimulus in a certain time frame); in this example the
guaranteed response time is an attribute, which charac-
terizes a real-time system. On the other hand, real-time

6 SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS



systems are often classified as ‘‘embedded systems.’’ An
embedded system can be seen as a specific part of a larger
system, which is a structural aspect. Besides this lack of
clarity in terminology, there is not even common agreement
on the word ‘‘real-time.’’ The following paragraphs sum-
marize findings from studying the literature.

What is a Real-Time System?

Real-time systems are defined as those systems in which
the correctness of the system depends not only on the logical
result of computation, but also on the time in which the
results are produced (40). After more than a decade this
definition still seems to be the greatest common denomi-
nator. Here, ‘‘real-time’’ is an attribute to ‘‘system.’’
Because of their specific field of application, additional
attributes are usually associated with real-time systems.
Included in this category are e.g., reliability, fault toler-
ance, adaptability, and speed (41).

Hard versus Soft Real-Time

The most popular classification is the distinction in hard
and soft real-time systems. Hard real-time systems are
under deadline constraints. Passing a deadline is consid-
ered unacceptable. A soft real-time system retains some
tasks that are still valuable for execution even if they miss
their deadlines (41). Telephony systems belong to the class
of soft real-time systems (42): Passing of deadlines is
accepted as long as the number of failures is below a defined
threshold. Although this categorization might be true in
general, some components in telecommunication networks,
have to fulfill hard real-time constraints. For example, the
time delay perceived as acceptable for voice transmission in
a speech conversation places tough time limitations on a
mobile phone for speech encoding- and decoding including
cyphering and channel coding.

Rough Structure

A very rudimentary structure of the basic elements of a
real-time system is given by Ref. 42: It consists of hardware,
sensors and effectors, the environment, and software. The
sensors and effectors interact with the environment;
the software controls the actions of the hardware via a
hardware interface. A similar description using different
terminology can be found in Ref. 43: A real-time system
consists of a controlling and a controlled system. The con-
trolling system interacts with its environment using infor-
mation about the environment available from various
sensors and activating elements in the environment
through ‘‘actuators.’’ The controlled system can be viewed
as the environment with which the computer interacts.

A loose reasoning describes why timing aspects and
structural issues of a real-time system are related: Timing
correctness requirements arise because of the physical
impact of the controlling systems’ activities on its environ-
ment. That means that the environment needs to be mon-
itored periodically and sensed information needs to be
processed in time (41). This finding implies that we have
to distinguish the environment from a controlling part, and
detecting and acting devices are needed.

What is an Embedded System?

The definition of an embedded system is vague; it mainly
describes a structural aspect. In its most general form, an
embedded system is simply a computer system hidden in a
technical product (44). A more concrete definition is that
most embedded systems consist of a small microcontroller,
and limited software situated within (e.g., an automobile or
a video recorder) (45). Three issues seem to be important
here: (1) size matters, (2) an embedded system is part of a
technical system, and (3) it serves the purpose of the
technical system and not vice versa. Issue (3) especially
helps delimitate nonembedded systems from embedded
systems. A Personal Computer (PC) for instance is a gen-
eral purpose computing machine, the software and the
central processing unit (CPU) are an integral part of it.
This eliminates a PC from being an embedded system. A
counterexample might be a mobile phone. The digital signal
processing chip and its software serve a single purpose: to
offer phone functionality. Embedded systems may or may
not have real-time constraints (43), but many real-time
systems are embedded systems (45).

To summarize: The special character of systems, that
have a physical impact on the ‘‘real’’ world by means of
reactiveness is most significantly described by the
requirement on the timing constraints to be met by the
system. Such systems are called real-time systems. Addi-
tional properties, which reflect other aspects of the phy-
sical impact character, include reliability, fault tolerance,
stability, safety and so on. As yet no commonly agreed list
of properties exists that constitutes a real-time system.
Moreover, the physical impact nature of such systems
implies a rough structure: a controlling part interacting
with the environment (the controlled part) through sen-
sors and effectors. The hardware mediates between the
sensors/effectors and the software of the system. Many
real-time systems are embedded systems, which means
they serve a specific purpose in a technical system, which
is actually the case for all nodes in a telecommunication
system.

Despite these various aspects of real-time systems and
partly confusing definitions from the literature, designing
real-time systems is a well-established domain. When
designing telecommunication systems in the small, it
becomes obvious that just a few key design concepts are
required, such as active objects for modeling threads and
message-orientation for modeling asynchronous communi-
cation. Interestingly, these concepts can also be used for
systems design in the large. This statement means that one
can use the same language for both systems design in the
small and in the large. In the section on Real-Time Object-
Oriented Modeling, we describe a language that can be used
for both tasks.

MODELING TELECOMMUNICATION SYSTEMS

In this section, we describe different modeling approaches
by surveying the available literature. We then go on to
describe ROOM, which is a language in widespread use in
the telecommunications domain. ROOM can be used for
both systems design in the large and in the small.

SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS 7



Modeling Approaches

Since the UML has been standardized by the Object Man-
agement Group (OMG) and published in many books,
modeling is on everybody’s lips. Also, the importance of
the architecture level in software systems is more and more
respected, see for example OMG’s initiative on Model Dri-
ven Architecture (46). However, when it comes to modeling
telecommunication systems the fundus of literature is even
smaller.

In some books, the object-oriented paradigm has been
used to model communication systems. One example is
‘‘Object-Oriented Networks: Models for Architecture,
Operations, and Management’’ (47). The book uses not
only conventional object-oriented modeling concepts but
also advanced concepts from specialization theory. The
syntax used to capture the semantics of models is the
Abstract Syntax Notation One (see Ref. 48). The author
develops a classification scheme adapted to the needs of
communication networks that enables a designer to
develop understandable and meaningful object and class
diagrams. The approach is descriptive and the techniques
presented seem to be suited for modeling product archi-
tectures. The risk is that given ‘‘facts’’ are just schemati-
cally modeled (it is relatively easy to note down an object
diagram for almost anything) without any reflection about
the actual functioning and the actual meaning for the
architecture.

Another example is ‘‘Object-Oriented Network Proto-
cols’’ (49). The book’s intention is to provide a foundation for
the object-oriented design and implementation of network
communication protocols. Although modeling of communi-
cation systems is not the topic of the book, it is worth to have
a look at the modular communication system framework
developed by the author. It gives an insight how protocols
could be modeled and that object-orientation is a practical
approach in protocol design.

A completely different approach is taken by ‘‘Modeling
Telecom Networks and Systems Architecture: Conceptual
Tools and Formal Methods’’ (50). This book condenses more
than 20 years of experience gained on the subject within
Ericsson. It presents a method and a language for modeling
telecommunication system and is based on the processing
system paradigm (51). The whole field of communication
systems is covered, and a stringent methodology and clas-
sification scheme is discussed. The interested reader might
also look at Ref. 52.

Real-Time Object-Oriented Modeling

Subsequently, we briefly present the ROOM language to
give the reader a notion of what kind of concepts software
engineers in the telecommunication system domain work
with. Even though the publication of ROOM dates back to
1994, it is still modern and a rare example of a well-docu-
mented design language, see Ref. 42. Many features of the
ROOM language have been incorporated into the UML
(15,16). Nonetheless, we have chosen to describe ROOM,
because it represents a coherent set of features required for
designing (embedded) real-time systems in the telecommu-
nication domain; the UML is just a rich set of modeling
concepts a designer can choose from. In this section we will

briefly discuss structural elements of ROOM, behavioral
elements and mention model execution.

Structural Elements. Actor, Port, Message, Protocol. The
ROOM language is built on the notion of an actor. An actor
represents a physical device or a software unit; it is a sort of
active object that clearly separates its internals from the
environment. Everything inside the actor, meaning the
actor’s structure and behavior, is not visible to the environ-
ment. Only at distinct points of interaction, so-called ports,
the actor interfaces the environment. A port is somewhat
comparable to an interface as known for example, in the
UML but the comparison blurs two important facts. First,
ports in ROOM are not method interfaces but message
interfaces. A message consists of a message name, priority,
and data. Messages may be incoming and/or outgoing at a
port (the direction is always defined from the viewpoint of
the actor). So, ports are message exchange points between
the actor and its environment. Secondly, a port is not only an
interface that tells the environment how to use the actor but
also is a definition of the actor’s expectations on the envir-
onment. Therefore, a protocol is always associated with a
port, which defines the set of incoming and outgoing mes-
sages that may pass the port. An actor is specified by means
of an actor class. An actor class is symbolized by a rectan-
gular box with a thick black border. A port is figured by a
small squared box that appears on the border of an actor
class symbol. An example is shown in Fig. 2.

Actor References. An actor can be composed of other
actors. In ROOM, references describe compositions. That
means, an actor class specification may reference zero or
more other actor class specifications. Such a reference is
called actor reference; it is a way to include other actors into
the name space and life-time context of an actor. Per actor
reference, a replication factor determines the maximum
number of valid actors of the referenced actor class that can
be put in context. By default, the replication factor is set to
one. The following types of references can be distinguished:
an actor reference may be fixed, optional, imported or
substitutable. These types specify run-time relations.
For a fixed actor reference, actors of the referenced actor
class are incarnated along with the incarnation of the
composing actor. If the actor reference is declared as
optional, then actors of the referenced actor class can be

Figure 2. Actor class containing all types of actor references.

8 SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS



dynamically created and destroyed during the life time of
the composing actor. The maximum number of allowed
actors (given by the replication factor of the actor refer-
ence) may not be exceeded. If declared as imported, then
an actor that already exists in another context of another
composing actor is plugged-in at incarnation of the com-
posing actor. That means a single actor instance may act
in two or more contexts of a composing actor: in the context
of the ‘‘original’’ composing actor that created the actor
and owns the permission to destroy it and in the context of
one or more other composing actors which imported that
specific actor. Imported actor references are a powerful
tool to define different roles for different contexts of an
actor and thereby to define patterns of collaboration. A
substitutable actor reference means that any actor
instance of that actor reference can be replaced by another
actor, provided that the other actor’s class specification is
compatible with the referenced actor class of the actor
reference. Here, compatibility means that the other class
specification supports at least the same set of ports (with
the same message schema).

Binding, Contract. To build up complete structures of
actor references, some means to interconnect their ports
must exist. This connection is done by so-called bindings,
sometimes also referred to as connectors. A binding con-
nects a port of an actor reference either with the port of
another actor reference or with a port of the composing
actor class. Bindings define communication relationships
on class level. The auxiliary concept of a contract consists of
a binding and the two interface components (ports) that the
binding connects.

Example. An example of an actor class specification that
encompasses all the discussed modifications of an actor
reference is shown in Fig. 2. Actor references are symbo-
lized by a rectangular box with a thinner black border and
can only appear ‘‘inside’’ the context (also called decom-
position frame) of an actor class specification. Names for
actor references begin with a small letter. Names for
bindings begin with a small letter by convention. Some-
times, to avoid visual clutter, the names of bindings and
ports are not displayed in the diagram. The replication
factor of a replicated actor reference is displayed inside a
box in the upper right-hand corner. Optionality is indi-
cated by stripes. If imported, the actor reference is colored
grey. Substitutability is indicated by a ‘‘+’’ symbol in the
upper left-hand corner.

The Behavior Component. A component specifies the
actor class’ behavior. In fact, the behavior component is
invisible; the behavior component’s border is colored in
grey just for demonstration purposes. Thus, all ports of
an actor class specification that are not connected some-
where else are actually connected to the actor’s behavior
component; they are called end ports. Otherwise, they are
called relay ports. All other ports (p3, p4) that ‘‘hang
around’’ are also implicitly connected to the behavior com-
ponent. Reference ports (the name for ports of actor refer-
ences) that are not involved in a contract are actually not in
use, see p5.

Layer Connection, Service Provision Point, Service Access
Point. The notion of layers is a built-in concept in ROOM.
Layering is a form of abstraction that is used to define
‘‘islands’’ of self-contained functionality that provide ser-
vices to another ‘‘island’’ of functionality. In contrast to the
horizontal structure of peer-to-peer communication
between ports, layers represent a vertical organization
of a system. The terms ‘‘horizontal’’ and ‘‘vertical’’ are
apparently vague and indicate the difficulty for giving a
precise definition of layers. Actually, the sort of interfaces
used to describe layers are very close to ports. The inter-
face of an actor that provides (layer) services towards
another actor is called service provision point (SPP).
The SPP may be replicated; the number of replications
is given by a replication factor. Its counterpart, the inter-
face that accesses services of an SPP is called service
access point (SAP). SAPs can be replicated as well but
they rarely need to. The SPP and the SAP each have a
protocol associated with it that determines the interface
type. Similar to a binding, a SPP and a SAP are connected
to each other by a layer connection.

Behavioral Elements. ROOMcharts, Scheduler. We
already mentioned the behavior component of an actor.
In ROOM, behavior is specified in form of state machines,
so-called ROOMcharts, a variant of Harel’s statechart
formalism (53). Actors in ROOM are reactive objects with
their own thread of execution, which is a typical character-
istic for real-time systems. All incoming messages at the
behavior component are events that may trigger a transi-
tion to leave a state, to perform some action and enter the
same or another state. For a state, entry and exit actions
can be specified. Actions are specified in a detail level
language such as C, C++, or Java. A guard (a boolean
condition) can be attached to a transition, which prevents
the transition from firing if the condition evaluates to false.
The concept of composite states enables the modeler to nest
states within states. Once all actions have been executed
(ROOM follows the ‘‘run-to-completion’’ processing model),
the actor ‘‘falls asleep’’ waiting for additional events to
process. Because incoming events are queued, the actor
may immediately become busy again until the event queue
is empty. Events can also be deferred (i.e., the processing is
postponed). Message priorities change the order of event
processing usually to ‘‘the more important, the more up
front in the event queue.’’ In principle, the scheduling
semantics of the scheduler can be adapted to any other
scheme. ROOM is flexible in that respect to cover a wide
range of real-time applications. For example, time-based
scheduling (‘‘the more urgent, the more up front in the
queue’’) may be an alternative.

Data Classes. Complex data structures can be modeled
using the concept of data classes. Data classes correspond to
traditional classes: they define data and methods that
operate on them. In contrast to actors, data objects do
not have their own thread of control; they are extended
state variables that are encapsulated within the actor and
are accessible by the behavior component. Typically, data
classes are based on classes provided by the detail-level
programming language. That means within an actor the

SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS 9



modeler can use and stick to a traditional object-oriented
design paradigm. In addition to their role as variables, data
classes are used to define the data carried in messages.
Remember that a message consists of a name, a priority,
and data, or more precisely, a data object. This single data
object is an instance of a predefined or user defined data
class. The basic requirement put on data objects is that they
must be serializable for message transfer by the ROOM
virtual machine.

Model Execution. In principle, two possible methods
exist to execute ROOM models: (1) the model is accompa-
nied by an interpreter called the ROOM virtual machine,
which is a hypothetical platform implemented in software
that interprets ROOM models; and (2) the elements of the
model are mapped to their functional equivalents in the
target environment, which usually is a real-time operating
system.

BIBLIOGRAPHY

1. IEEE Standard Glossary of Software Engineering Terminol-
ogy. Standard 610. 12-1990, Piscataway, NJ: IEEE Standards,
1990.

2. J. Meurling and R. Jeans, A Switch in Time—An Engineer’s
Tale, Chicago, IL, Telephony Publishing Corp., 1985.

3. F. S. Viglinate, Fundamentals of stored program control of
telephone switching systems. Proceedings of the 1964 19th
ACM National Conference, 1964, pp. 142.201–142.206.

4. J. Meurling and R. Jeans, The Ericsson Chronicle: 125 Years in
Telecommunications, Stockholm, Sweden: Införmationsförla-
get Heimdahls, 2000.

5. O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured
Programming, New York: Academic Press, 1972.

6. I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard,
Object-Oriented Software Engineering, Reading, MA: Addison-
Wesley, 1992.

7. D. Herzberg, UML-RT as a candidate for modeling embedded
real-time systems in the telecommunication domain, in R.
France and B. Rumpe, (eds.), UML ’99 —The Unified Modeling
Language: Beyond the Standard; Second International Con-
ference, Fort Collins, CO, 1999, LNCS 1723, Springer, 1999, pp.
330–338.

8. Specification and Description Language (SDL), ITU-T Recom-
mendation Z.100, International Telecommunication Union,
November 1999.

9. Message Sequence Chart (MSC), ITU-T Recommendation
Z.120, International Telecommunication Union, November
1999.

10. CCITT High Level Programming Language (CHILL), ITU-T
Recommendation Z.200, International Telecommunication
Union, October 1996.

11. Introduction to the CCITT Man-Machine Language, ITU-T
Recommendation Z.301, International Telecommunication
Union, November 1988.

12. B. K. Penny and J. W. J. Williams, The software architecture
for a large telephone switch, IEEE Trans. Communicat. Com-
municat. Software, COM-30(6): 105–114, 1982.

13. J. Armstrong, Programming Erlang: Software for a
Concurrent World, Raleigh, NC: The Pragmatic Programmers,
2007.

14. J. Armstrong, Concurrency oriented programming in erlang,
Proc. of the German Unix User Group’s Frühjahrsfachgespräch
(FFG), 2003.

15. Unified Modeling Language: Superstructure, Version 2.1.1,
Technical Specification, Object Management Group (OMG),
February 2007.

16. Unified Modeling Language: Infrastructure, Version 2.1.1,
Technical Specification, Object Management Group (OMG),
February 2007.

17. OMG Systems Modeling Language (OMG SysML) Version 1.0,
Technical Specification, Object Management Group (OMG),
September 2007.

18. K. Czarnecki and U. W. Eisenecker, Generative Programming:
Methods, Tools, and Applications, New York: ACM Press/
Addison-Wesley Publishing Co., 2000.

19. T. Stahl and M. Völter, Model-Driven Software Development,
London: John Wiley & Sons, 2006.

20. D. A. Lawson, A new software architecture for switching
systems, IEEE Trans. Commun. Communication Software,
COM-30(6): 17–25, 1982.

21. D. Herzberg, Modeling telecommunication systems: From
standards to system architectures, PhD thesis, Aachen Uni-
versity of Technology, Department of Computer Science III,
2003.

22. D. Herzberg and M. Broy, Modeling layered distributed com-
munication systems, Formal Aspects Comput., 17(1): 1–18,
2005.

23. J. Ellsberger, D. Hogrefe, and A. Sarma, SDL—Formal Object-
oriented Language for Communicating Systems, London: Pre-
ntice Hall, 1997.

24. E. W. Dijkstra, The structure of the ‘‘THE’’-multiprogramming
system. Commun. ACM, 11(5): 341–346, 1968.

25. Information Technology—Open Systems Interconnection—
Basic Reference Model: The Basic Model, ITU-T Recommenda-
tionX.200, International TelecommunicationUnion,July 1994.

26. A. S. Tanenbaum, Computer Networks, 4th edition, Upper
Saddle River, NJ: Prentice Hall PTR, 2003.

27. ISDN Protocol Reference Model, ITU-T Recommendation
I.320, International Telecommunication Union, November
1993.

28. J. Eberspacher and H.-J. Vögel, GSM—Switching, Services
and Protocols, New York: Wiley, 1998.

29. B. Walke, M. P. Althoff, and P. Seidenberg, UMTS—Ein Kurs,
J. Schlembach Fachverlag, 2001.

30. B-ISDN Protocol Reference Model and its Application, ITU-T
Recommendation I.321, International Telecommunication
Union, April 1991.

31. Gateway Control Protocol, ITU-T Recommendation H.248,
International Telecommunication Union, June 2000.

32. F. Cuervo, N. Greene, C. Huitema, A. Rayhan, B. Rosen, and J.
Segers, Megaco Protocol Version 1.0. Standard RFC 3015,
Internet Engineering Task Force, November 2000.

33. Information Technology—Open Distributed Processing—
Reference model: Overview. ITU-T Recommendation X.901,
International Telecommunication Union, 1997.

34. J. R. Putman, Architecting with RM-ODP, Englewood Cliffs,
NJ: Prentice Hall, 2001.

35. M. Chapman and S. Montesi, Overall Concepts and Principles
of TINA—Version 1.0, Tina baseline, TINA-C, February 1995.

36. R. M. Soley and C. M. Stone, Object Management Architecture
Guide—Revision 3.0. Document ab/97-05-05, Object Manage-
ment Group (OMG), June 1995.

10 SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS



37. R. M. Soley and C. M. Stone, Object Management Architecture
Guide, 3rd edition, New York: Wiley, 1995.

38. T. J. Mowbray and W. A. Ruh, Inside CORBA: Distributed
Object Standards and Applications, Reading, MA: Addison-
Wesley, 1997.

39. Common Object Request Broker Architecture: Core Specifica-
tion—Version 3.0. Specification formal/2002-11-03, Object
Management Group (OMG), November 2002.

40. J. Stankovic, Misconceptions about real-time computing: A
serious problem for next generation systems, IEEE Comput.,
21(10): 10–19, 1988.

41. A. B. Tucker, Real-time and embedded systems, in The Com-
puter Science and Engineering Handbook, Boca Raton, FL:
CRC Press, 1997, pp. 1709–1724.

42. B. Selic, G. Gullekson, and P. T. Ward, Real-Time Object-
Oriented Modeling, New York: John Wiley & Sons, Inc., 1994.

43. J. A. Stankovic, Real-time and embedded systems, ACM Com-
put. Surv., 28(1): 205–208, 1996.

44. D. E. Simon, An Embedded Software Primer, Reading, MA:
Addison-Wesley, 1999.

45. J. A. Stankovic et al. Strategic directions in real-time and
embedded systems. ACM Comput. Surv., 28(4): 751–763, 1996.

46. J. Miller and J. Mukerji, Model driven architecture (MDA).
Technical Description ormsc/2001-07-01, Object Management
Group (OMG), 2001.

47. S. Bapat, Object-Oriented Networks—Models for Architecture,
Operations, and Management. Englewood Cliffs, NJ: Prentice
Hall, 1994.

48. J. Larmouth, ASN.1 Complete, San Francisco, CA: Morgan
Kaufmann, 1999.

49. S. Boecking, Object-Oriented Network Protocols., Reading, MA:
Addison-Wesley, 2000.

50. T. Muth, Modeling Telecom Networks and Systems Architec-
ture: Conceptual Tools and Formal Methods, Berlin: Springer,
2001.

51. T. Muth, D. Herzberg, and J. Larsen, A fresh view on model-
based systems engineering: The processing system paradigm,
in Proc. of the 11th Annual International Symposium of The
International Council on Systems Engineering (INCOSE
2001); Melbourne, Australia, 2001.

52. T. Muth, Functional Structures in Networks: AMLn—A Lan-
guage for Model Driven Development of Telecom Systems,
Berlin: Springer, 2005.

53. D. Harel, Statecharts: A visual formalism for complex systems,
Sci. Comp. Prog., 8(3): 231–274, 1987.

DOMINIKUS HERZBERG

TIM REICHERT

Heilbronn University
Heilbronn, Germany

SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS 11



T

TIME AND STATE IN ASYNCHRONOUS
DISTRIBUTED SYSTEMS

INTRODUCTION

A distributed system is characterized by multiple processes
that are spatially separated and are running independently.
As processes run, they change their states by executing
events. Processes communicate with each other by exchan-
ging messages over a set of communication channels. How-
ever, message delays are arbitrary and may be unbounded.

Two inherent limitations of distributed systems are as
follows: lack of global clock and lack of shared memory. Two
important implications exist. First, due to the absence of
any system-wide clock that is equally accessible to all
processes, the notion of common time does not exist in a
distributed system, and different processes may have dif-
ferent notions of time. As a result, it is not always possible to
determine the order in which two events on different
processes were executed. Second, since processes in a
distributed system do not share common memory, it is
not possible for an individual process to obtain an up-to-
date state of the entire system. In addition, because of the
absence of a global clock, obtaining a meaningful state of
the system, in which states of different processes are con-
sistent with each other, is difficult.

We describe different schemes that implement an
abstract notion of time and can be used to order events
in a distributed system. We also discuss ways to obtain a
consistent state of the system possibly satisfying certain
desirable property.

CLOCKS AND ORDERING OF EVENTS

For many distributed applications such as distributed
scheduling and distributed mutual exclusion, it is impor-
tant to determine the order in which various events were
executed. If the system has a shared global clock, then time-
stamping each event with the global clock would be suffi-
cient to determine the order. However, if such a clock is not
available, then it becomes impossible to determine the
actual execution order of events. A natural question to
ask is as follows: What kind of ordering information can
be ascertained in the absence of a global clock?

Each process in the system generates a sequence of
events. Therefore it is clear how to order events within a
single process. If event e occurred before f on a process, then
e is ordered before f. But, how do we order events across
processes? If e is the send event of a message and f is the
receive event of the same message, then e is ordered before f.
Combining these two ideas, we obtain the following defini-
tion:

Definition 1 (Happened-Before Relation). The happened-
before relation, denoted by !, is the smallest transitive
relation that satisfies the following:

(1) If e occurred before f on the same process, then e! f.

(2) If e is the send event of a message and f is the receive
event of the same message, then e ! f.

As an example, consider a distributed computation
involving three processes, namely P1, P2, and P3, shown
in Fig. 1. In the figure, time progresses from left to right.
Moreover, circles denote events and arrows between pro-
cesses denote messages. Clearly, e2! e4; e3! f3, and
e1! g4:. Also, events e2 and f2 are not related by
happened-before relation and therefore could have been
executed in any order.

The concept of happened-before relation was proposed
by Lamport (1). The happened-before relation imposes a
partial order on the set of events. Any extension of the
happened-before relation to a total order gives a possible
ordering in which events could have been executed.

The happened-before relationship also captures the
causality between events. If an event e happened-before
an event f, then e could have caused f. In other words, if
e had not occured, then f may not have occurred as well.
Events e and f are said to be causally related.

For some distributed applications such as distributed
mutual exclusion, it is sufficient to know some total order in
which events could have been executed. The total order may
or may not correspond to the actual order of execution of
events. However, all processes must agree on the same total
order. Furthermore, the total order must respect the hap-
pened-before relation. We next describe a mechanism to
determine such an ordering at runtime.

Ordering Events Totally: Logical Clocks

A logical clock time-stamps each event with an integer
value such that the resulting order of events is consistent
with the happened-before relation (Fig. 2). Formally,

Definition 2 (Logical Clock). A logical clock C is a map
from the set of events E to the set of natural numbers N with
the following constraint:

8 e; f 2E : e! f)CðeÞ<Cð f Þ

The implementation of logical clock, first proposed by
Lamport (1), uses an integer variable to simulate local clock
on a process. On sending a message, the value of the local
clock is incremented and then sent with the message. On
receivinga message, a process takes the maximum of its own
clock value and the value is received with the message. After

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



taking the maximum, the process increments the clock
value. On executing an internal event, a process simply
increments its clock. The algorithm can be used even when
message communication is unreliable and unordered.

A logical clock has been used to devise efficient distrib-
uted algorithms for solving many problems in distributed
computing such as mutual exclusion, causal message order-
ing, and termination detection. For example, in many
mutual exclusion algorithms, a logical clock is used to
time-stamp requests for critical section. Requests will
smaller time-stamps are given priority over requests
with larger time-stamps.

Ordering Events Partially: Vector Clocks

A logical clock establishes a total order on all events, even
when two events are incomparable with respect to the
happened-before relation. For many problems such as dis-
tributed debugging and distributed checkpointing and
recovery, it is important to determine whether two given
events are ordered using the happened-before relation or
are incomparable.

The set of events E are partially ordered with respect
to!, but the domain of logical clock values, which is the set
of natural numbers, is a total order with respect to<. Thus,
logical clocks do not provide complete information about the
happened-before relation. We describe a mechanism called
a vector clock that allows us to infer the happened-before
relation completely.

Definition 3 (Vector Clock). A vector clock V is a map
from the set of events E to NN (vectors of natural numbers)
with the following constraint:

8 e; f 2E : e! f ,VðeÞ < Vð f Þ

Because ! is a partial order, it is clear that the time-
stamping mechanism should also result in a partial order.
Thus, the range of the time-stamping function cannot be a
total order like the set of natural numbers used for logical
clocks. Instead, we use vectors of natural numbers. Given
two vectors x and y of dimension N, we compare them as
follows:

x � y ¼ ð8 k : 1 � k � N : x½k� � y½k�Þ
x< y ¼ ðx � yÞ _ ðx 6¼ yÞ

For example, [1,2,1] < [2,2,3] but [2,3,0] and [0,4,1] are
incomparable. The vector clock mechanism was proposed
independently by Fidge (2) and Mattern (3). Figure 3 shows
an implementation of vector clock using vectors of size N,
where N is the number of processes in the system.

The algorithm presented in Fig. 3 is described by the
initial conditions and by the actions taken for each event
type. A process increments its own component of the vector
clock after each event (lines 4, 9, and 11). Furthermore, it
includes a copy of its vector clock in every outgoing message
(line 5). On receiving a message, it updates its vector clock
by taking a component-wise maximum with the vector clock
included in the message (lines 7 and 8). It is not required
that message communication be ordered or reliable. A
sample execution of the algorithm is given in Fig. 4.

A vector clock is useful when it is important to determine
the exact relationship between two events. For example,
when debugging a distributed program, the programmer
may want to find out whether two events are causally
related. A potential race condition exists if there is no
causal relationship between two events. (This relationship
can be detected by comparing the vector time-stamps of the
two events.) Likewise, the knowledge that an event could
not have caused another event can be used to locate a bug
more efficiently. Another application of vector clock arises
when simulating a system in a distributed manner. In a
distributed simulation system, a process needs to know the
clock of other processes in order to safely advance its own
clock. The notion of a vector clock applies naturally in such
a system. The jth entry of a vector clock at process Pi can be
interpreted as Pi’s knowledge about the (virtual) time at
process Pj.

P1

P2

P3

g1 g2 g3 g4

f1 f2 f3 f4 f5

e1 e2 e3 e4 e5

Figure 1. An example of a distributed computation.

Process Pi ::
1 var
2 c: integer initially 0;

3 send event :
4 c : = c + 1;
5 send c along with the message;

6 receive event with d as the received timestamp:
7 c : = max (c,d) + 1;

8 internal event :
9 c : = c + 1;

Figure 2. A logical clock algorithm.

Process Pi :
1 var
2 u :array[1..N] of integer

initially(   j : j = i : u [j]= 0);

3 send event :
4 u [i] := u [i]+ 1;
5 send u along with the message;

6 receive event of a message tagged with vector u:
7 for j := 1 to N do
8 u [j]:= max (u [j], u[j]);
9 u [i] := u [i]+ 1;

10 internal event :
11 u [i] := u [i]+ 1;

A

Figure 3. A vector clock algorithm.

2 TIME AND STATE IN ASYNCHRONOUS DISTRIBUTED SYSTEMS



As it can be observed, when capturing the happened-
before relationship between events, we use a vector
containing N entries, where N is the number of processes
in the system. Each process has to maintain a vector of size
N and each message has to carry a vector of size N, which is
expensive when N is large. A question that arises is as
follows: Is it possible to capture the happened-before using
a vector of smaller size? The answer is in general ‘‘no’’. It can
be shown that there are distributed computations for which
a vector of size at least N is required to faithfully capture the
happened-before relationship (4).

Higher Dimensional Clocks

It is natural to ask whether two or more dimensional clocks
can give processes additional knowledge. The answer is
‘‘yes.’’ For an event e, let e.v denote the value of the local
clock immediately after executing e. A vector clock can be
viewed as a knowledge vector. In this interpretation, for an
event e on process Pk, e.v[i] denotes what process Pk knows
about process Pi after executing event e. In some applica-
tion, it may be important for the process to have even more
fine-grained knowledge about its causal past. The value
e.v[i, j] could represent what process Pk knows about what
process Pi knows about process Pj. For example, if e.v[i,k]�
m for all i, then process Pk can conclude that everybody
knows that it has executed at least m events.

Physical Clocks

Until now, we assumed that message delays are arbitrary
and unbounded. However, if message delays are bounded
(but still arbitrary), then another way to time-stamp events
is to equip each process with a physical clock. Due to
limitations in technology, it is possible for physical clocks
on different processes to drift apart from each other.
Therefore, different physical clocks have to be synchronized
with each other at a regular interval. Clocks are
synchronized in a manner such that a sufficiently small
constant e exists satisfying the following:

8 i; j : jCiðtÞ � C jðtÞj< e ð1Þ

where CiðtÞ denotes the value of the physical clock on
process Pi at time t. Let dCiðtÞ=dt denote the rate at which
the clock on process Pi is running at time t. Clearly, if Ci is

an ideal clock, then dCiðtÞ=dt ¼ 1. Even if Ci is not an ideal
clock, we assume that its rate of drift is bounded. Specifi-
cally, let k be the maximum rate at which a clock can drift
away from the actual time. Therefore for all i:

1� k<dCiðtÞ=dt< 1þ k ð2Þ

Clearly, to avoid anomalous behavior, the time-stamp of a
receive event should be greater than the time-stamp
of the corresponding send event. Therefore, for all i, j,
and t:

Ciðtþ mÞ>C jðtÞ ð3Þ

where m is the transmission time. To achieve synchroniza-
tion of physical clocks that satisfies Equations (1), (2), and (3),
the following algorithm proposed by Lamport (1) can be used:

1. Each process sends a synchronization message to all
its neighboring processes after every t units of time. A
process includes its value of local physical clock along
with the message.

2. A process, on receiving a synchronization message
with time-stamp Tm, sets its physical clock value to
the maximum of its current value and Tm þ mm,
where mm is the minimum amount of time required
for message transmission.

GLOBAL STATE

To solve many problems in distributed systems such as
termination detection, we need to examine the state of the
entire system, which is also referred to as global state or
global snapshot. (In contrast, state of a process is referred
to as local state or local snapshot.) A simple collection of
local states, one from each process, may not correspond to
a meaningful system state. To appreciate this, consider a
distributed database for a banking application. Assume
for simplicity that only two sites keep the accounts for a
customer. Also assume that the customer has $500 at the
first site and $300 at the second site. In the absence of any
communication between these sites, the total money of the
customer can be easily computed to be $800. However, if
there is a transfer of $200 from site A to site B, and a simple
procedure is used to add up the accounts, we may falsely
report that the customer has a total of $1000 in his or her
accounts (to the chagrin of the bank). This happens when
the value at the first site is used before the transfer and the
value at the second site after the transfer. Clearly, the two
values are not consistent with each other. Note that
$1000 cannot be justified even by the messages in
transit (or that ‘‘the check is in the mail’’). We now describe
what it means for a global state to be meaningful or
consistent.

Consistent Global State

Intuitively, a global state captures the set of events that
have been executed so far. For a global state G to be

3
0
2

1
3
0

1
3
3

2
0
0

1
2
0

0
0
1

1
0
0

0
1
0

0
0
2

P1

P2

P3

Figure 4. A sample execution of the vector clock algorithm.

TIME AND STATE IN ASYNCHRONOUS DISTRIBUTED SYSTEMS 3



consistent, it should satisfy the following condition:

8 e; f : ðe! f Þ ^ ð f 2GÞ) e2G

Sometimes, it is more convenient to describe a global
state in terms of local states instead of events. For a local
state s, let s.p denote the process to which s belongs. We can
extend the definition of the happened-before relation,
which was defined on events, to local states as follows:
s ! t if s.p executed an event e after s and t.p executed
an event f before t such that either e ¼ f or e! f . Two local
states s and t are concurrent, which is denoted by skt, if s‰ t
and t‰ s. For a global state G, let G[i] refer to the local state
of process Pi in G. We now define what it means for a global
state to be consistent, when the global state is expressed as
a collection of local states.

Definition 4 (Consistent Global State). A global state G is
consistent if it satisfies

8 i; j : G½i� kG½ j�

In general, a global state can be used to deduce mean-
ingful conclusions about the state of the system only if it is
consistent.

Finding a Consistent Global State

We discuss how to obtain a consistent view of the entire
system. The algorithm, which was proposed by Chandy and
Lamport (5), assumes that all channels satisfy the first-in–
first-out (FIFO) property. Moreover, it also records the
state of all communication channels, which is given by
the set of messages in transit. The computation of the
snapshot is initiated by one or more processes. We associate
with each process a variable called color that is either white
or red. All processes are initially white and turn red even-
tually. Intuitively, the computed global snapshot corre-
sponds to the state of the system just before processes
turn red. After recording its local state, a process turns
red. Thus, the local snapshot of a process is simply the state
just before it turned red. The algorithm relies on a special
message called a marker. The consistent global snapshot
algorithm is given by the following rules:

(1) (Turning Red Rule): When a process records its
local state, it turns from white to red. On turning red,
it sends out a marker on every outgoing channel
before sending any application message on that
channel. It also starts recording messages on all
incoming channels.

(2) (Marker Receiving Rule): On receiving a marker,
a white process turns red. The process also stops
recording messages along that channel.

A process has finished its local snapshot when it has
received a marker on each of its incoming channel. The

algorithm requires that a marker be sent along all chan-
nels. Thus, it has an overhead of one message per channel in
the system. We have not discussed how to combine local
snapshots into a global snapshot. A simple method would be
for all processes to send their local snapshots to a prede-
termined process. This color-based description of Chandy
and Lamport’s algorithm for recording a consistent global
state of the system was proposed by Dijkstra.

One advantage of Chandy and Lamport’s snapshot algo-
rithm is that it is not necessary to ‘‘freeze’’ the computation
when recording a global state. However, it is possible that
the global state recorded by the algorithm is such that the
system never actually passes through the (recorded) state
during its execution. But, Chandy and Lamport show that it
is possible to reorder the events (while still respecting the
happened-before relation) in such a way that the system
indeed passes through the recorded global state (5).

Finding a Consistent Global State Satisfying the Given Property

Sometimes it is not sufficient to find just any consistent
global state. Rather, we may want to find a consistent global
state that satisfies certain global property (6–8). If the
global property is stable, that is, it stays true once it
becomes true, then repeated invocations of the Chandy
and Lamport’s algorithm for taking a consistent global
snapshot can be used to find the required global state.

We discuss an algorithm that can be used to find a
consistent global state satisfying an unstable property.
We will assume that the given global property, say B, is
constructed from local predicates using Boolean connec-
tives. We first show that B can be detected using an algo-
rithm that can detect q, where q is a pure conjunction of
local predicates. The predicate B can be rewritten in its
disjunctive normal form as

B ¼ q1 _ . . . _ qk k� 1

where each qi is a pure conjunction of local predicates.
Next, observe that a global state satisfies B if and only if it
satisfies at least one of the qi’s. Thus, the problem of
detecting B is reduced to solving k problems of detecting
q, where q is a pure conjunction of local predicates.

Formally, we define a weak conjunctive predicate (WCP)
to be true for a given computation if and only if a consistent
global state exists in the computation for which all con-
juncts are true (7). Intuitively, detecting a WCP is useful
generally when one is interested in detecting a combination
of states that is unsafe. For example, violation of mutual
exclusion for a two-process system can be written as ‘‘P1 is
in the critical section and P2 is in the critical section.’’ To
detect a weak conjunctive predicate, it is necessary and
sufficient to find a set of concurrent local states, one on each
process, in which all local predicates are true. We now
present an algorithm to do so.

In this algorithm, one process serves as a checker. All
other processes involved in detecting the WCP are referred
to as application processes. Each application process main-
tains a vector clock. It also checks for the respective local

4 TIME AND STATE IN ASYNCHRONOUS DISTRIBUTED SYSTEMS



predicate. Whenever the local predicate of a process
becomes true for the first time since the most recently
sent message (or the beginning of the trace), it generates
a debug message containing its local time-stamp vector and
sends it to the checker process.

Note that a process is not required to send its vector clock
every time the local predicate is detected. If two local states,
say s and t, on the same process are separated only by
internal events, then they are indistinguishable to other
processes so far as consistency is concerned; that is, if u is a
local state on some other process, then sku if and only if tku.
Thus, it is sufficient to consider at most one local state
between two external events and the vector clock need not
be sent if no message activity has occurred since the last
time the vector clock was sent.

The checker process is responsible for searching for a
consistent global state that satisfies the WCP by consider-
ing a sequence of candidate global states. If the candidate
global state either is not consistent or does not satisfy some
term of the WCP, the checker can efficiently eliminate
one of the local states in the global state. The eliminated
state can never be part of a consistent global state
that satisfies the WCP. The checker can then advance
the global state by considering the successor to one of the
eliminated states. If the checker finds a global state for
which no state can be eliminated, then that global state
satisfies the WCP and the detection algorithm halts.

Finding All Consistent Global States Satisfying
the Given Property

In debugging applications, it is sometimes useful to record
all consistent global states that satisfy the given property.
A computation slice is a concise representation of all such
global states. A slice of a distributed computation with
respect to a given property B is a concise representation
of all the global states that satisfy B(8).

To understand the principle behind slicing, one needs to
note that a computation (an acyclic directed graph on set of
events) can be viewed as a generator of all consistent global
states. A subset of vertices H of a directed graph is a
consistent global state if it satisfies the following condition:

If H contains a vertex v and (u, v) is an edge in the graph,
then H also contains u. Given a computation, if one adds
additional edges to the computation, the number of con-
sistent possible global state can only decrease. The goal of
slicing is to determine the maximum set of edges to add to
the graph such that the resulting graph continues to con-
tain all consistent global states of the computation that
satisfy the given property. Note that when an edge is added
to the original graph, the resulting graph may not be acyclic
anymore.

As an example, consider the distributed computation
shown in Fig. 5(a). Its slice with respect to the global
property ‘‘all channels are empty’’ is depicted in Fig. 5(b).

Three main motivations for computing all the global
states satisfy a given property. First, for debugging appli-
cations, the programmer may not know the exact condition
under which a bug occurs, but only that whenever the bug
occurs B is true. Therefore we have to record all global
states that satisfy B. Based on slicing, one can provide a
‘‘fast-forward’’ utility in debuggers where the system only
goes through global states satisfying B. The second motiva-
tion comes from detecting predicates of the form B1 ^B2 in
which the programmer knows an efficient detection
algorithm for B1 but not B2. Instead of searching the set
of all global states for a global state that satisfies B1 ^B2,
slicing allows the programmer to restrict the search to only
those global states that satisfy B1. This set of global states
may be exponentially smaller than the original set of global
states.

The reader is referred to Ref. 9 for a more detailed
description of slicing and associated algorithms.

BIBLIOGRAPHY

1. L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Commun. ACM, 21(7): 558–565, 1978.

2. C. Fidge, Logical time in distributed computing systems, IEEE
Computer, 24(8): 28–33, 1991.

3. F. Mattern, Virtual time and global states of distributed sys-
tems, Parallel and Distributed Algorithms: Proceedings of the
Workshop on Distributed Algorithms (WDAG), 1989, pp. 215–
226.

(a) (b)

P1

P2

P3

P1

P2

P3

Figure 5. (a) A distributed computation and (b) its slice with respect to the property ‘‘all channels are empty.’’

TIME AND STATE IN ASYNCHRONOUS DISTRIBUTED SYSTEMS 5



4. B. Charron-Bost, Concerning the size of logical clocks in dis-
tributed systems, Informat. Process. Lett., 39: 11–16, 1991.

5. K. M. Chandy and L. Lamport, Distributed snapshots: Deter-
mining global states of distributed systems, ACM Trans.
Comp. Syst., 3(1): 63–75, 1985.

6. R. Cooper and K. Marzullo, Consistent detection of global
predicates, Proc. of the ACM/ONR Workshop on Parallel
and Distributed Debugging, Santa Cruz, California, 1991,
163–173

7. V. K. Garg and B. Waldecker, Detection of weak unstable
predicates in distributed programs, IEEE Trans. Parallel Dis-
tributed Sys., 5(3): 299–307, 1994.

8. S. Alagar and S. Venkatesan, Techniques to tackle state explo-
sion in global predicate detection, IEEE Trans. Softw. Engi-
neer., 27(8): 704–714, 2001.

9. V. K. Garg, Elements of Distributed Computing, New York:
John Wiley and Sons, Inc., 2002.

10. N. Mittal and V. K. Garg, Computation slicing: Techniques and
theory, Proc. of the Symposium on Distributed Computing
(DISC), 2001, pages 78–92.

VIJAY K. GARG
1

The University of Texas
at Austin

Austin, Texas

NEERAJ MITTAL

The University of at Dallas
Richardson, Texas

1Supported in part by the NSF Grant CNS-0509024, Texas
Education Board Grant 781, SRC Grant 2006-TJ-1426, and
Cullen Trust for Higher Education Endowed Professorship.

6 TIME AND STATE IN ASYNCHRONOUS DISTRIBUTED SYSTEMS



T

TRANSPORT LAYER

INTRODUCTION

The Internet has evolved into an extremely large complex
system and has changed many important aspects of our
lives. Like any complex engineering system, the design of
the Internet is carried out in a modular way, where each
main functional module is called a ‘‘layer.’’ One of the
layering structures often used is the five-layer model con-
sisting of the physical layer, the link layer, the network
layer, the transport layer, and the application layer.1 See
Fig. 1 for a simple illustration.

The sending and receiving computers each run analo-
gous stacks, with data being passed down the stack from the
sending application, and then up the receiver’s stack to the
receiving application. The physical layer is the part that
actually moves information from one place to another, such
as by varying voltages on wires or generating electromag-
netic waves. The application layer is the part with which
users interact, such as the hypertext transport protocol
(HTTP) used to browse the Web, or the simple mail transfer
protocol (SMTP) used to send e-mail.

Each layer consists of protocols to specify such things as
the data format, the procedure for exchanging data, the
allocation of resources, and the actions that need to be taken
in different circumstances. This protocol can be implemen-
ted in either software or hardware or both. This article
concerns transport layer protocols and their associated algo-
rithms, mainly focusing on the wireline Internet but also
discussing some other types of networks such as wireless
ones.

The transport layer manages the end-to-end transpor-
tation of packets across a network. Its role is to connect
application processes running on end hosts as seamlessly as
possible, as if the two end applications were connected by a
reliable dedicated link, thus making the network ‘‘invisi-
ble.’’ To do this, it must manage several nonidealities of real
networks: shared links, data loss and duplication, conten-
tion for resources, and variability of delay. By examining
these functionalities in turn, we will provide a brief intro-
duction to this important layer, including its functions and
implementation, with an emphasis on the underlying ideas
and fundamentals. We will also discuss possible directions
for the future evolution of the transport layer and suggest
some further reading.

MULTIPLEXING: MANAGING LINK SHARING

One basic function of the transport layer is multiplexing
and demultiplexing. Usually there are multiple application

processes running on one host. For example, a computer
may be sending several files generated by filling in web
forms, while at the same time sending e-mails. The net-
work layer only cares about sending a stream of data out of
the computer. Therefore, the transport layer needs to
aggregate data from different applications into a single
stream before passing it to the network layer. This is
called multiplexing. Similarly, when the computer
receives data from the outside, the transport layer is again
responsible for distributing that data to different applica-
tions—such as a web browser or e-mail client—in a process
called demultiplexing. Figure 1 also shows the data direc-
tions for multiplexing (sending) and demultiplexing
(receiving).

Multiplexing is achieved by dividing flows of data from
the application into (one or more) short packets, also called
segments. Packets from different flows can then be inter-
leaved as they are sent to the network layer. Demultiplex-
ing is achieved by allocating each communication flow a
unique identifier. The sender marks each packet with its
flow’s identifier, and the receiver separates incoming
packets into flows based on their identifiers. In the Inter-
net, these identifiers consist of transport layer port num-
bers, and additionally the network layer addresses of the
sender and receiver and a number identifying the trans-
port layer protocol being used. Even before a flow is
started, a ‘‘well-known’’ port number can be used to iden-
tify which process on the receiver the sender is attempting
to contact; for example, Web servers are ‘‘well known’’ to
use port 80.

Multiplexing and demultiplexing is one of the most
fundamental tasks of the transport layer. Other functions
are required by some applications but not by all, and so
different transport layer protocols provide different subsets
of the possible services. However, essentially all transport
layer protocols perform at least multiplexing and demulti-
plexing.

There are two dominant types of transport layer protocol
used in the Internet. One is UDP (User Datagram Protocol),
and the other is TCP (Transmission Control Protocol). The
former provides unreliable and connectionless service to
the upper layers, whereas the latter generates reliable and
connection-based service.

1There are also some other ways of defining these layers; e.g., the
standard OSI (open systems interconnection) reference model
defines seven layers with the session layer and the presentation
layer added.

Figure 1. Internet protocol stack.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



UDP: Multiplexing Only

UDP is a very simple protocol. It is called connectionless
because all UDP packets are treated independently by the
transport layer, rather than being part of an ongoing flow.2

Besides minor error checking, UDP essentially only does
multiplexing and demultiplexing. It does not provide any
guarantee that packets will be received in the order they are
sent, or even that they will be received at all. It also does not
control its transmission rate. In fact, the rationale behind
the design of UDP is to let applications have more control
over the data sending process and to reduce the delay
associated with setting up a connection. These features
are desirable for certain delay-sensitive applications such
as streaming video and Internet telephony. In general,
applications that can tolerate certain data loss/corruption
but are sensitive to delay would choose to use UDP.

TCP: Reliable Connection-Oriented Transport

In contrast to UDP, TCP provides a connection-oriented
service, which means that it sends data as a stream of
related packets, making concepts such as the order of pack-
ets meaningful. In particular, TCP provides reliable service
to upper layer applications, ensuring that the packets are
correctly received and in the order in which they are sent.

At the start of a connection, TCP uses a three-way
handshake to establish a connection between sender and
receiver, in which they agree on what protocol parameters
to use. This process takes 1.5 round-trip times (one side
sends a SYNchronize packet, the other replies with a SYN
and an ACKnowledge packet, and the first confirms with an
ACK), which is an overhead avoided by UDP.

TCP receives data from the application as a single
stream, e.g., a large file, and segments it into a sequence
of packets. It tries to use large packets to minimize over-
head, but there is a maximum size that the network can
carry efficiently, called the MTU (maximum transfer unit).
TCP is responsible for choosing the correct size, in a process
called path MTU discovery. In contrast, UDP is given data
already segmented into packets, and so it is the applica-
tion’s responsibility to observe MTU restrictions.

TCP is the most common transport protocol in the
Internet; measurements show that it accounds for about
80% of the traffic (1). Applications such as file transmission,
Web browsing, and e-mail use it partly because of its ability
to transfer continuous streams of data reliably, and partly
because many firewalls do not correctly pass other proto-
cols. The following two sections, on reliable transmission
and congestion control, describe in greater detail the main
features of TCP.

RELIABLE TRANSMISSION: MANAGING LOSS,
DUPLICATION, AND REORDERING

When the underlying network layer does not guarantee to
deliver all packets, achieving reliable transmission on top of
this unreliable service becomes an important task. Reasons

for packet loss include transient routing loops, congestion of
a resource, or physical errors that were not successfully
corrected by the physical or link layer.

This problem is very similar to that faced by the link
layer. The difference is that the link layer operates over a
single unreliable physical link to make it appear reliable to
the network layer, whereas the transport layer operates
over an entire unreliable network to make it appear reliable
to the application. For this reason, the algorithms employed
at the transport layer are very similar to those employed at
the link layer, and they will be reviewed briefly here.

ARQ (Automatic Repeat-reQuest) is the basic mechan-
ism to deal with data corruption. When the receiver receives
a correct data packet, it will send out a positive acknowl-
edgment (ACK); when it detects an error, it will send out a
negative acknowledgment (NAK).

Because physically corrupted packets are usually dis-
carded by the link layer, the transport layer will not directly
observe that a packet has been lost, and hence, many trans-
port layer protocols do not explicitly implement NAKs. A
notableexception ismulticast transport protocols.Multicast
protocols allow the sender to send a single packet, which is
replicated inside the network to reach multiple receivers,
possiblynumberinginthethousands.IfeachsentanACKfor
every packet, the receiver would be flooded. If instead recei-
vers send NAKs only when they believe packets are missing,
the network load is greatly reduced. TCP implicitly regards
ACKs for three or more out-of-order packets (resulting in
‘‘duplicate ACKs’’) as forming a NAK.

An interesting problem immediately develops. If the
sender only sends the next packet when it is sure the first
one is received correctly, the system will be very inefficient.
In that case, the sender would only be able to send one packet
every round-trip time (the time it takes for a packet to reach
the destination and the ACK to return), whereas the time
taken to send a packet is usually much smaller than the
round-trip time. This is especially true for today’s high-speed
networks. For example, consider a 1 Gbit/s (1,000,000,000
bits per second) connection between two hosts that are
separated by 1500 km and therefore have a round-trip
distance of 3000 km. Sending a packet of size 10 kbit takes
only 10 ms (ten microseconds), whereas the round-trip time
cannot be smaller than the physical distance divided by the
light of speed (300,000 km per second), which in this case is
10 ms. In other words, in this case, the utilization of the
sender is about 0.1%, which is clearly not acceptable. This is
the motivation for the general sliding window algorithm that
will be discussed in the following subsection.

Sliding Window Transmission Control

The basic idea here is again simple. The sender sends more
packets into the network while it is waiting for the acknowl-
edgment of the first packet. This certainly increases the
utilization. On the other hand, it cannot send too much
before receiving ACKs as that may heavily congest the
network or overflow the receiver. In general, the sender
is allowed to send no more than W packets into the network
before receiving an acknowledgment. Here W is called the
window size. If W ¼ 1, it reverts to the inefficient transmis-
sion previously discussed. Since the sender can send W

2It is common for the application layer to implement flows on top of
UDP, but that is not provided by UDP itself.

2 TRANSPORT LAYER



packets every round-trip time, the utilization is increased
by a factor of W if the network and receiver can handle the
packets. If not, then there will be congestion and the value
of W must be reduced, which is the topic of the next section.
The left of Fig. 2 shows the case when packets are success-
fully received. It shows that using W > 1 allows more than
one packet to be sent per round-trip time (RTT), increasing
the throughput of the connection.

However, things become a little more complex when
W > 1 as now the sender needs to keep track of acknowl-
edgments from more than one packet in one round-trip
time. This is done by giving every packet a sequence num-
ber. When a packet is received, the receiver sends back an
ACK carrying the appropriate sequence number.

When packets are received out of order, the receiver has
three options, depending on the protocol. It may simply
discard packets that are received out of order, it may for-
ward them immediately to the application, or it may store
them so that it can deliver them in the correct order once the
missing packet has been received, possibly after being
resent. Finally, if the sender has not received an ACK for
a particular packet for a certain amount of time, a timeout
event occurs. After that, the sender resends all packets that
are sent out but have not yet been acknowledged.

Realization

The following example presents a simplified example of
how the above ideas are realized by TCP, which is currently
the most widespread example of sliding window transmis-
sion control.

Example 1. Rather than acknowledging each packet,
TCP ACKs cumulatively acknowledge all data up until
the specified packet. This increases the robustness to the
loss of ACKs. Figure. 2 shows the operation of TCP when
packet W þ 1 is lost. Initially, the window spans from 1 to
W, allowing the first W packets to be sent. The sender then
waits for the first packet to be acknowledged, causing
the window to slide to span packets 2 to W þ 1, allowing
the W þ 1st packet to be sent. This continues until the
second window is sent, and after sending the 2Wth packet,
the sender again must pause for an ACK to slide the window
along. However, this time, the W þ 1st packet was lost, and
so no ACK is received. When packet W þ 2 is received, the
receiver cannot acknowledge it, since that would implicitly
acknowledge packet W þ 1, which has not yet arrived.
Instead, it sends another ACK for the most recently
received packet, W. This is repeated for all subsequent

arrivals, until W þ 1 is received. When the sender receives
the third duplicate ACK for W, it assumes that W þ 1 was
lost, and retransmits it. It then continues transmitting
from where it left off, with packet 2W þ 1.

The precise response to packet loss of current TCP is
more complex than in this example, because packet loss is
treated as a signal that a link in the network is overloaded,
which triggers a congestion control response, as described
in the following section.

CONGESTION CONTROL: MANAGING RESOURCE
CONTENTION

When transport layer protocols were first designed, they
were intended to operate as fast as the receiver could
process the data. The transport layer provided ‘‘flow con-
trol’’ to slow the sender down when the receiver could not
keep up. However, in the 1980s, the Internet suffered from
several famous congestion collapses, in which the sliding
window mechanism was resending so many packets that
the network itself because overloaded to the point of inop-
erability, even when the receivers were not overloaded.

Recall from the previous section that senders use W > 1
to increase the utilization of the network. Congestion
occurred because flows sought to use more than 100% of
the network capacity. As a result, a set of rules were
proposed (2) for how senders should set their windows to
limit their aggregate sending rate while maintaining an
approximately fair allocation of rates.

Congestion control considers two important topics: what
rates would we ideally like to allocate to each flow in a given
network, and how can we achieve that in practice using only
distributed control. The latter is made difficult because of
the decentralized nature of the Internet: senders do not
know the capacity of the links they are using, how many
other flows share them, or how long those flows will last;
links do not know what other links are being used by the
flows they are carrying; and nobody knows when a new flow
will arrive. Figure 3 shows an example in which two flows
each use three links, of which they share one.

Let us now consider the current solutions to the problem
of implementing congestion control in a scalable way, and
then examine the other problem of deciding what rate
allocation is more desirable.

Existing Algorithms

There are two main phases of a congestion control algo-
rithm: slow start and congestion avoidance, punctuated by

Figure 2. Sliding window flow control, with packet W þ 1 being lost.

TRANSPORT LAYER 3



short periods of retransmission and loss recovery. We now
introduce both using the standard TCP congestion control
algorithm, commonly called TCP Reno.3

When a TCP connection begins, it starts in the slow start
phase with an initial window size of two packets. This
results in a slow initial transmission, giving rise to the
name. It then rapidly increases its sending rate. It doubles
its window every round-trip time until it observes a packet
loss, or the window reaches a threshold called the ‘‘slow
start threshold.’’ If a loss occurs, the window is then halved,
and in either case, the system enters the congestion avoid-
ance phase. Note that the sender increases its transmission
rate exponentially during the slow start.

In the congestion avoidance phase, the sender does what
is known as Additive Increase Multiplicative Decrease
(AIMD) adjustment. This was first proposed by Chiu and
Jain (3) as a means to obtain fair allocation, and imple-
mented in the Internet by Jacobson (2). Every round-trip
time, if all packets are successfully received, the window is
increased by one packet. However, when there is a loss
event, then the sender will halve its window. Because large
windows are reduced by more than small windows, AIMD
tends to equalize the size of windows of flows sharing a
congested link (3). Finally, if a timeout occurs, the sender
will start from slow start again. Figure 4 shows how the
window evolves along time in TCP Reno. Importantly, TCP
Reno uses packet loss as congestion indication.

In summary, the basic engineering intuition behind
most congestion control protocols is to start probing the
network with a low transmission rate, quickly ramp up
initially, then slow down the pace of increase, until an
indicator of congestion occurs and transmission rate is
reduced. Often packet loss or queueing delay (4) are used
as congestion indicators, and packet loss events are in turn
inferred from local measurements such as three duplicated
acknowledgments or timeout. These design choices are
clearly influenced by the views of wireline packet-switched
networks, in which congestion is the dominant cause of
packet loss. The choice of the ramp-up speed and congestion

indicators have mostly been based on engineering intuition
until recent developments in predictive models of conges-
tion control have helped with a more systematic design and
tuning of the protocols.

This window adaptation algorithm is combined with the
sliding window transmission control, to form the whole
window-based congestion control mechanism, as illu-
strated in Fig. 5. The transmission control takes two inputs,
the window size and the acknowledgments from the net-
work. The window size is controlled by the congestion
control algorithm such as TCP Reno, which updates the
window based on the estimated congestion level in the
network. In summary, with window-based algorithms,
each sender controls its window size—an upper bound on
the number of packets that have been sent but not acknowl-
edged. As pointed out by Jacobson (2), the actual rate of
transmission is controlled or ‘‘clocked’’ by the stream of
received acknowledgments (ACKs). A new packet is

Figure 3. Two flows sharing a link, and also using nonshared links.

3Most systems actually implement a variant of Reno, typically
NewReno, since Reno performs poorly when two packets are lost
in a single round trip. However, the differences do not affect the
descriptions in this section, and so we use the term ‘‘Reno.’’

Time

Slow Start

window
W Congestion Avoidance 

RTT

1

W/2

ssThreshold

2

Timeout

Figure 4. TCP Reno Window Trajectory.

Figure 5. Window-based congestion control.

4 TRANSPORT LAYER



transmitted only when an ACK is received, thereby ideally
keeping the number of outstanding packets constant and
equal to the window size.

Theoretical Foundation

As mentioned, congestion control is essentially a resource
allocation scheme that allocates the capacities of links to
TCP flows. It is desirable to be able to calculate the share of
the capacity and discuss its properties, such as the fairness
of the allocation.

Many valuable models of TCP have been proposed. Since
Kelly’s work in the late 1990s, generic congestion control
protocols have been modeled as distributed algorithms
maximizing the total benefit obtained by the applications
(5–8). This ‘‘reverse-engineering’’ approach shows that
existing TCP congestion control mechanisms are implicitly
solving an underlying global optimization, with an inter-
pretation of link-price-based balancing of bandwidth
demand by the end users. Following economic terminology,
the user objective being maximized is called the utility, and
the utility that the ith flow obtains by sending at a rate xi is
denoted Ui(xi). If each flow i uses a set of links L(i) and link l
2 L(i) has capacity cl, then the problem of maximizing the
utility can be expressed as follows:

max
x� 0

X
i

UiðxiÞ

subject to
X

i:l2LðiÞ
xi � cl

This is a convex optimization problem provided that the
utility functions follow the usual ‘‘law of diminishing
returns,’’ that is, the utility increases as the rate received
increases, but the incremental benefit becomes smaller.
Such problems have a very rich mathematical structure.

The theory of Lagrange duality for convex optimization
allows the problem to be decomposed into subproblems in
which each flow independently chooses its rate based on
congestion signals from the links, such as packet loss or
queueing delay, which are computed based only on local
information. Again following economic terminology, these
congestion signals are sometimes referred to as prices.

The strict convexity structure also implies that the
optimal rates are unique, and that those rates are inde-
pendent of many properties of the links, such as their buffer
sizes. In particular, as long as the congestion signal is zero
when the sum of the rates through the link is less than its
capacity, it does not matter how the congestion signals are
calculated; the equilibrium rates will depend only on the
utility functions, which are in turn determined by the TCP
algorithm at the sender.

The choice of utility function determines the notion of
fairness implemented by the network (9). If the utility
function is almost linear, it reflects only slightly diminish-
ing returns as the transmission rate is increased, and the
network will seek to maximize the sum of the rates of all
flows, with no regard to fairness. At the opposite extreme, if

the incremental benefit decreases rapidly, the utility func-
tion will be very concave and max–min sharing is achieved.
The max–min rate allocation is the one in which no flow can
increase its rate, except by reducing the rate of a flow that
already has a lower rate. This is often seen as the fairest
way to allocate rates.

A logarithmic utility function results in a compromise
between fairness and throughput known as proportional
fairness. Similarly, to a first approximation, the utility of
the AIMD algorithm used by TCP Reno is as follows:

UiðxiÞ ¼ �
1

xit
2
i

where ti is the round-trip time of the flow i. This is similar to
proportional fairness, but it tends slightly toward improv-
ing fairness at the expense of throughput, as will be seen in
the following example.

Example 2. Consider a network with two congested
links, each with a capacity of c. One flow uses both links,
and each link also carries a single-link flow, as shown in
Fig. 6.

The maximum sum of rates is achieved when
x1 ¼ x2 ¼ c and x3 ¼ 0, which maximizes the sum of uti-
lities if ui(xi) is approximately proportional to xi. This is
clearly unfair since the two-link flow cannot transmit at
all. In contrast, the max–min rates are x1 ¼ x2 ¼ x3 ¼ c/2,
which maximizes the sum of utilities if ui(xi) rises very
sharply for xi < c/2, and rises only very slightly for xi > c/2.
This is completely fair in that all flows receive the same
rate, but it is unfair in the sense that the long flow causes
twice as much congestion but still achieves the same rate.
In this case, the total rate has reduced from c þ c ¼ 2c to
c/2 þ c/2 þ c/2 ¼ 1.5c.

The proportional-fair rates, which maximize logarith-
mic utilities, are x1 ¼ x2 ¼ 2c/3 and x3 ¼ c/3. These rates
are in the ratio 2:1 because the resources consumed are in
the ratio 1:2, and they give a total rate of around 1.67c. If all
flows have equal round-trip times ti, TCP Reno will give
average rates in ratio 1 :

ffiffiffi
2
p

, namely x1 ¼ x2 ¼
ffiffiffiffiffi
2c
p

=ð1þffiffiffi
2
p
Þ and x3 ¼ c/(1 þ

ffiffiffi
2
p

), with a total throughput of 1.59c.
The fact that the rates are more similar for Reno than for
proportional fairness, but the sum of rates is lower,
supports the statement that Reno is a compromise between
proportional fairness and max–min fairness.

In concluding this subsection, we mention that there has
been a lot of recent research on both reverse-engineering
and forward-engineering congestion control protocols,
based on the above mathematical model and its variants.
Some of the ongoing research issues will be briefly pre-
sented toward the end of this entry.

Figure 6. A two-link network shared by three flows.

TRANSPORT LAYER 5



TIMING RESTORATION: MANAGING DELAY VARIATION

In most cases, it is desirable for the transport layer to pass
data to the receiving application as soon as possible. The
notable exception to this is streaming audio and video. For
these applications, the temporal spacing between packets is
important; if audio packets are processed too early, the
sound becomes distorted. However, the spacing between
packets gets modified when packets encounter network
queueing, which fluctuates in time. In its role of hiding
lower layer imperfections from the upper layers, it is up to
the transport layer to reestablish the timing relations
between packets before sending them to the application.

Specialist transport protocols such as the Real Time
Protocol (RTP) are used by flows requiring such timing
information. RTP operates on top of traditional transport
layer protocols such as UDP and provides each packet with
a timestamp. At the receiver, packets are inserted as soon
as they arrive into a special buffer known as a jitter buffer,
or playout buffer. They are then extracted from the jitter
buffer in the order in which they were sent and at intervals
exactly equal to the interval between their timestamps.
Jitter buffers can only add delay to packets, not remove
delay; if a packet is received with excessive delay, it must
simply be discarded by the jitter buffer. The size of the jitter
buffer determines the tradeoff between the delay and
packet loss experienced by the application.

TCP can itself cause delay fluctuation, both through
ACK-clocking and the fluctuation in rate induced by
Reno-like congestion control. When transmitting video
and other streaming data, it is sometimes desirable to
have packets sent with more uniform spacing. The bursti-
ness caused to ACK-clocking can be avoided by paced TCP.
Rather than sending packets exactly when acknowledg-
ments are received, paced TCP sends one window’s worth of
packets uniformly spaced throughout a round-trip time.
Many congestion control algorithms have been proposed
that dispense with Reno’s AIMD, reducing burstiness on
longer timescales; notable examples include TCP Vegas
and TCP Friendly Rate Control (TFRC).

RECENT AND FUTURE EVOLUTION

With the Internet expanding to global scale and becoming
ubiquitous, it is encountering more and more new environ-
ments. On the one hand, the TCP/IP ‘‘hourglass model’’4 has
been very successful at separating applications from the
underlying physical networks and enabling the Internet’s
rapid growth. On the other hand, some basic assumptions
are becoming inaccurate or totally invalid, which therefore
imposes new challenges. This section describes some of the
hot issues in both the Internet Engineering Task Force
(IETF, the primary Internet standards body) and the broad
research community. Many topics touch on both implemen-
tation issues and fundamental questions. We will start

with the most implementation related ones and then
progress to the more theoretical ones. It is certainly clear
that the list below cannot be exhaustive and instead reflects
the authors’ taste and expertise. For example, many more
variants of TCP congestion control are proposed in the last
few years than can be surveyed within an encycopedia. In
addition to the rest of this section, there are many other
exciting developments in the theory and practice of trans-
port layer design for future networks.

Protocol Enhancement

1) Datagram Congestion Control Protocol: Although TCP
provides reliable in-order data transfer and congestion
control, UDP provides neither. However, applications
such as video transmission should implement congestion
control, but they do not need guaranteed transmission.
Moreover, they cannot tolerate the delay caused by retrans-
mission and in-order delivery. Consequently, the IETF has
developed a new protocol called DCCP (Datagram Conges-
tion Control Protocol), which can be viewed either as UDP
with congestion control or as TCP without the reliability
guarantees. Because many firewalls block unknown proto-
cols, DCCP has not yet been widely used, although it is
implemented in many operating systems.

2) Multiple indicators of congestion: The current TCP
NewReno relies primarily on detection of packet loss to
determine its window size. Other proposals have been made
that rely primarily on estimates of the queueing delay. The
utility maximization theory applies to networks in which
all flows are of the same ‘‘family.’’ For example, all flows in
the network may respond solely to loss; different flows may
respond differently to loss, provided that loss is the only
congestion signal they use. However, when a single net-
work carries flows from both the ‘‘loss’’ and ‘‘delay’’ families,
or flows responding to other ‘‘price’’ signals such as explicit
congestion signals, the standard theory fails to predict how
the network behaves.

Unlike networks carrying a single family of algorithms,
the equilibrium rates now depend on router parameters,
such as buffer sizes, and flow arrival patterns. The equili-
brium can be nonunique, inefficient, and unfair. The situa-
tion is even more complicated when some individual flows
respond to multiple congestion signals, such as adjusting
AIMD parameters based on estimates of queueing delay.
Thishasmotivatedrecentefforts toconstructamoregeneral
framework, which includes as a special case the theory for
networks using congestion signals from a single family (10).

Applications

1) Delay-tolerant networks: Sliding window protocols
rely on feedback from the receiver to the sender. When
communicating with spacecraft, the delay between sending
and receiving may be minutes or hours, rather than milli-
seconds, and sliding windows become infeasible. This has
lead to research into ‘‘interplanetary TCP.’’ Technology
called DTN (Delay-Tolerant Networking) is being devel-
oped for this, and also for more mundane situations in
which messages suffer long delays. One example is in
vehicular networks, in which messages are exchanged
over short-range links as vehicles pass one another, and

4It is called an hourglass because a small number of simple network
and transport layer protocols connect a large variety of complex
application layer protocols above with a large variety of link and
physical layer protocols below.

6 TRANSPORT LAYER



are physically carried by the motion of the vehicles around a
city. In such networks, reliability must typically be
achieved by combinations of error correcting codes and
multipath delivery (e.g., through flooding).

2) Large bandwidth delay product networks: In the late
1990s, it became clear that TCP NewReno had problems in
high speed transcontinental networks, commonly called
‘‘large bandwidth-delay product’’ or ‘‘large BDP’’ networks.
The problem is especially severe when a large BDP link
carries only a few flows, such as those connecting super-
computer clusters. In these networks, an individual flow
must have a window W of many thousands of packets.
Because AIMD increases the window by a single packet
per round trip, the sending rate on a transatlantic link will
increase by around 100 kbit/s. It would thus take almost
three hours for a single connection to start to use fully a 1
Gbit/s link.

Many solutions have been proposed, typically involving
increasing the rate at which the window is increased, or
decreasing the amount by which it is decreased. However,
these both make the algorithm more ‘‘aggressive,’’ which
could lead to allocating too much rate to flows using these
solutions and not enough to flows using the existing TCP
algorithm. As a result, most solutions try to detect whether
the network actually is a ‘‘large BDP’’ network, and adjust
their aggressiveness accordingly. Another possibility is to
avoid dealing with packet loss in large BDP networks.
Researchers have developed various congestion control
algorithms that use congestion signals other than packet
loss, e.g., queueing delay. Many proposals also seek to
combine timing information with loss detection. This leads
to the complications of multiple indicators of congestion
described previously.

An alternative that is often proposed is for the routers on
the congested links to send explicit messages indicating the
level of congestion. This was an important part of the
available bit-rate (ABR) service of asynchronous transport
mode (ATM) networks. It may allow more rapid and precise
control of rate allocation, such as the elimination of TCP’s
time-consuming slow start phase. However, it presents
significant difficulties for incremental deployment in the
current Internet.

3) Wireless networks: Wireless links are less ideal than
wired links in many ways. Most importantly, they corrupt
packets because of fading and interference, either causing
long delays as lower layers try to recover the packets, or
causing packets to be lost. The first of these results in
unnecessary timeouts, forcing TCP to undergo slow start,
where as the latter is mistaken for congestion and causes
TCP NewReno to reduce its window. Again, many solutions
have been proposed. Some mask the existence of loss, where
as others attempt to distinguish wireless loss from conges-
tion loss based on estimates of queueing delay or explicit
congestion indication.

The fundamental task of resource allocation is also more
challenging in wireless networks, partly because resources
are more scarce and users may move, but more importantly
because of the interaction between nearby wireless links.
Because the capacity of a wireless link depends on the
strength of its signal and that of interfering links, it is

possible to optimize resource allocation over multiple layers
in the protocol stack. This cross-layer optimization gener-
alizes the utility maximization. It provides challenges as
well as opportunities to achieve even greater performance,
which requires a careful balance between reducing com-
plexity and seeking optimality.

Research Challenges

1) Impact of network topology: Transport layer conges-
tion control and rate allocation algorithms are often studied
in very simple settings. Two common test networks are
dumbbell networks in which many flows share a single
congested link, and parking lot networks, consisting of
several congested links in series with one flow traversing
all links, and each link also being the sole congested link for
another short flow. Figure 6 shows a two-link parking lot
network. These are used partly because they occur fre-
quently in the Internet (such as when a flow is bottlenecked
at the ingress and egress access links), and partly because
there are intuitive notions of how algorithms ‘‘should’’
behave in these settings. However, these simple topologies
often give a misleading sense of confidence in our intuition.
For example, in parking lot topologies, algorithms that give
a high rate to the single link flows at the expense of the
multilink flow achieve higher total throughput, and thus it
is widely believed that there is a universal tradeoff between
fairness and efficiency. However, networks exist in which
increasing the fairness actually increases the efficiency
(11). This and other interesting and counter-intuitive phe-
nomena develop only in a network setting where sources
interact through shared links in intricate and surprising
ways.

2) Stochastic network dynamics: The number of flows
sharing a network is continually changing, as new applica-
tion sessions start, and others finish. Furthermore, packet
accumulations at each router is shaped by events in all
upstream routers and links, and packet arrivals in each
session are shaped by the application layer protocols,
including those in emerging multimedia and content dis-
tribution protocols. Although it is easy to study the effects of
this variation by measuring either real or simulated net-
works, it is much harder to capture these effects in theore-
tical models. Although the deterministic models studied to
date have been very fruitful in providing fundamental
understanding of issues such as fairness, there is an
increasing interest in extending the theoretical models to
capture the stochastic dynamics occurring in real net-
works.

As an example of one type of these dynamics, consider a
simple case of one long flow using the entire capacity of a
given link, and another short flow that starts up using the
same link. If the short flow finishes before the long flow
does, then the finish time of the long flow will be delayed by
the size of the short flow divided by the link capacity,
independent of the rate allocated to the short flow, provided
that the sum of their rates is always the link capacity. In
this case, it would be optimal to process the flows in ‘‘short-
est remaining processing time first’’ (SRPT) order; that is,
to allocate all rate to the short flow and meanwhile totally

TRANSPORT LAYER 7



suspend the long flow. However, as the network does not
know in advance that the short flow will finish first, it will
instead seek to allocate rates fairly between the two flows.
This can cause the number of simultaneous flows to be
much larger than the minimum possible, resulting in each
flow getting a lower average rate than necessary. The
fundamental difficulty is that the optimal strategy is no
longer to allocate instantaneous rates fairly based on the
existing flows.

FURTHER READING

The transport layer is a main topic in many textbooks on
computer networks, which is now a standard course in most
universities. This article only seeks to provide a basic
understanding of the transport layer. For those who are
interested in digging into details and working in related
areas, the following references are a useful starting point.
For a complete introduction to computer networks includ-
ing the transport layer, see any of the major networking
textbooks such as Ref. 12. The Internet’s main transport
layer protocol, TCP, is described in detail in Ref. 13,
although several details have evolved since that was writ-
ten. For a general mathematical approach to understand-
ing network layering, see a recent survey (14). Samples of
early TCP congestion control analysis include Refs. 15–18.
A survey on the mathematical treatment of Internet con-
gestion control can be found in Ref. 19. Enduring issues are
also well described in Ref. 20.

BIBLIOGRAPHY

1. M. Fomenkov, K. Keys, D. Moore, and K. Claffy, Longitudinal
study of Internet traffic in 1998-2003, WISICT ’04: Proc. Winter
Int. Symp. Info. Commun. Technol, 2004.

2. V. Jacobson, Congestion avoidance and control, Proc. ACM
SIGCOMM, 1988.

3. D. M. Chiu and R. Jain, Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,
Computer Networks ISDN Sys., 17(1): 1–14, 1989.

4. L. Brakmo and L. Peterson, TCP Vegas: End-to-end congestion
avoidance on a global Internet, IEEE J. Selected Areas Com-
muni.13(8): 1465–80, 1995.

5. F. Kelly, A. Maoulloo, and D. Tan, Rate control for commu-
nication networks: Shadow prices, proportional fairness and
stability. J. Operational Research Society, 49: 237–252, 1998.

6. S. Kunniyur and R. Srikant, End-to-end congestion control
schemes: Utility functions, random losses and ECN marks,
IEEE/ACM Trans. Networking, 11(5): 689–702, 2003.

7. S. Low, A duality model of TCP and queue management algo-
rithms. IEEE/ACM Trans. Networking, 11(4): 525–536, 2003.

8. S. Low and D. Lapsley, Optimization flow control—I: Basic
algorithm and convergence, IEEE/ACM Trans. Networking,
7(6): 861–874, 1999.

9. J. Mo and J. Walrand, Fair end-to-end window-based conges-
tion control, IEEE/ACM Trans. Networking, 8(5): 556–567,
2000.

10. A. Tang, J. Wang, S. Low and M. Chiang, Equilibrium of
heterogeneous congestion control: Existence and uniqueness,
IEEE/ACM Trans. Networking, 15(4): 824–837, 2007.

11. A. Tang, J. Wang and S. H. Low, Counter intuitive throughput
behaviors in networks under end-to-end control, IEEE/ACM
Trans. Networking, 14(2): 355–368, 2006.

12. J. Kurose and K. Ross, Computer Networking. Fourth edition,
Addison Wesley, 2007.

13. W. R. Stevens, TCP/IP Illustrated, Volume 1, The Protocols.
Upper Saddle River, NJ: Addison-Wesley, 1994.

14. M. Chiang, S. Low, A. Calderbank and J. Doyle, Layering as
optimization decomposition: A mathematical theory of network
architectures, Proc. of the IEEE, 95(1): 255–312, 2007.

15. T. Lakshman and U. Madhow, The performance of TCP/IP for
networks with high bandwidth-delay products and random
loss, IEEE/ACM Trans. on Networking, 5(3): 336–350, 1997.

16. M. Mathis, J. Semke, J. Mahdavi and T. Ott, The macroscopic
behavior of the TCP congestion avoidance algorithm, ACM
Computer Communication Review, 27(3): 67–82, 1997.

17. J. Padhye, V. Firoiu, D. Towsley and J. Kurose, Modeling TCP
throughput: A simple model and its empirical validation, ACM
Computer Communication Review, 28(4): 303–314, 1998.

18. K. Ramakrishnan and R. Jain, A Binary feedback scheme for
congestion avoidance in computer networks with connection-
less network layer, Proc. ACM SIGCOMM, 1988.

19. R. Srikant, The Mathematics of Internet Congestion Control,
Cambridge, MA: Birkhauser, 2003.

20. J. Walrand and P. Varaiya, High Performance Communication
Networks, San Francisco: CA, Morgan Kaufmann, 2000.

AO TANG

Cornell University
Ithaca New York

LACHLAN L. H. ANDREW

California Institute of Technology
Pasadena, California

MUNG CHIANG

Princeton University
Princeton New Jersey

STEVEN H. LOW

California Institute of Technology
Pasadena, California

8 TRANSPORT LAYER



V

VIDEO CONFERENCING AND IP TELEPHONY

INTRODUCTION

In the early 1990s, computer processing power and net-
working connectivity had advanced enough to allow for the
digitizing, compression, and transmission of audio and
video. Communicating audio and video over traditional
packet-switched networks, however, is harder than tradi-
tional data communications for several reasons. First, the
amount of data required to transmit video and audio can be
significantly higher than their traditional data counter-
parts. Second, the stream needs to be continuous over time,
requiring that the resources be sufficiently allocated to
allow for the continuity of the media being delivered. Third,
for video conferencing and IP telephony, the end-to-end
latency needs to be minimized. This latency includes the
capture and compression of the audio and video, compres-
sion, transmission, and display on the remote side. Finally,
because the data are being streamed, the variation in delay
(i.e., jitter) needs to be minimized as well.

Through the 1990s, several efforts focused on standar-
dizing the storage and transmission of digital media
emerged. These standards covered a broad range of appli-
cations and network assumptions. For example, MPEG-1
was designed for the storage of VHS quality video onto a
CD-ROM, whereas MPEG-2 was designed for high-
definition digital video applications (1). Other standards
such as H.261 and H.263 were designed to enable digital
media over telephony-based networks (2). From an inter-
networking perspective, standards such as Session Initia-
tion Protocol (SIP), H.320, and H.323 were defined to
specify how connections for video conferencing and IP
telephony were managed.

In the rest of this article, we will provide an overview of
digital audio and video formats as well as a discussion of
compression algorithms. We will then provide an overview
of both video conferencing and IP telephony. Finally, we
will summarize where these fields are moving to in the
future.

DIGITAL MEDIA BACKGROUND

Sound

Sound is a variation in air pressure that the human ear can
detect. The physical parameters of a sound wave involve its
frequency and amplitude. The ability to detect such sound
depends on the physiology of the ear. For example, humans
can typically hear frequencies between 15 Hz and 20 kHz.
Cats and dogs, on the other hand, can typically hear fre-
quencies up to 40 or 60 kHz. Sound can be represented
digitally through a sampled signal stream. The stream is
determined by two primary factors: the sample depth (or
the bits required to represent each sample) and the sam-
pling frequency (samples per second). The goal of digitizing

sound is to take samples at a rate high enough to capture
the highest frequency needing to be represented and to use
a large enough sampling depth in order to avoid significant
sample distortion. According to Nyquist, the sampling rate
needs to be twice the maximum frequency required. As
humans are capable of hearing up to about 20 kHz, captur-
ing all audio, a human can hear requires a sampling
frequency of at least 40 kHz. For this reason, CD-audio
uses a 44.1 kHz with a 16-bit per channel sample.

For computer and telephony applications that require
audio, several standards can be used to represent the
sound, including the International Telecommunications
Union (ITU) G.711 standard and MPEG-audio (from the
MPEG-1 audio and video codec). For IP telephony, the
primary representation is the G.711 format. G.711 is an
international ITU standard for representing sound for a
64-kbps channel. It is a pulse code modulation scheme that
uses 8 bits per sample with a sampling frequency of 8 kHz.
Thus, the speech signal is limited to a 4-kHz band. Two
methods are used. A-law and m-law differ slightly in their
nonlinear transform used to encode the data into 8-bit
samples. Both encoding mechanisms use a nonlinear, loga-
rithmic, transform of the input sample space. As a result,
the samples are spaced uniformly on a perceptual scale to
represent the amplitude.

The compression of audio signals can take several forms.
In the G.711 standard, the compression ratio from its
samples is fixed to approximately 1.7 to 1. Additional
compression algorithms have been developed for telephony
applications. These applications include algorithms that
perform silence suppression or take advantage of the lim-
itation of human hearing by removing perceptually unde-
tectable sound. In particular, the MPEG audio algorithms
(e.g., MPEG audio layer 3, or MP3) remove perceptually
undetectable sound and are applicable to a wider range of
audio streams, including music.

Video

Digital video consists of a sequence of images, called
frames. Digital video can be described by its (1) frame
rate—the number of frames captured per second and
(2) the resolution of the images in pixels. Unfortunately,
high-quality video requires significant resources. For
example, a VHS quality video stream of 352 � 240 pixels
at 30 frames per second requires approximately 60 mega-
bits per second to transmit over a network in uncompressed
form. Digital video compression algorithms aim to reduce
the required bit rate by a factor of 50 to 100.

Digital video compression algorithms take advantage of
the redundancy within a frame and between frames of the
video. Since the early 1990s, many different video compres-
sion algorithms have been developed such as H.261, H.263,
Motion JPEG, MPEG-1, and MPEG-2. The ITU and the
International Standards Organization (ISO) have standar-
dized the H.26� and the MPEG formats, respectively.
In addition, there are proprietary formats such as the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



RealVideo suite from Real Networks, Quicktime from
Apple, and the Windows Media Encoding algorithm from
Microsoft. For the rest of this article, we will focus on video
compression techniques that have been primarily devel-
oped and used in video conferencing systems.

Video Compression Standards. Two primary groups are
responsible for the development of standardized video
compression formats: the ITU and the Motion Pictures
Experts Group (MPEG). The ITU is responsible for many
of the encoders and decoders (codecs) that are used in the
H.320 and H.323 umbrella standards for video conferen-
cing and IP telephony. The ITU group is responsible for the
H.261, H.263, and H.264 standards, which we provide brief
overviews of here.

� H.261 is a video coding standard for audio and video
over multiples of 64 kilobit per second (kbps) channels.
The standard, which was intended specifically for inter-
active video conferencing applications, supports two
main resolutions. The Common Interchange Format
(CIF) is defined as 352 � 288 pixel video, and quarter
CIF (QCIF) is defined for 176� 144 pixel video. H.261 is
intended for communicationchannels thataremultiples
of 64 kilobits per second and is sometimes called px64
where p runs from 1 to 30. The compression algorithm
uses the discrete cosine transform (DCT) as its main
compression algorithm. The DCT algorithm transforms
small blocks (8 � 8 pixel in size) of the video into the
frequency domain, allowing for greater compression
efficiency. In H.261, there are two main types of pic-
tures. (1) intracoded frames, which are independently
coded; and (2) predictive coded frames, which are pre-
dicted from a previous frame. Finally, block-based
motion compensation is used to reduce the bit rate for
predictive coded frames.

� H.263 is a video coding format for audio and video that
is considered the successor to the H.261 standard. It is
similar in format to H.261 but provides better picture
quality for the same bandwidth. It was originally
intended for bandwidth as low as 20 kbps to 40 kbps
but has been applied to larger bandwidth scenarios. It
improves the image quality for a given bit rate through
half-pixel motion compensation. It also supports addi-
tional pixel resolutions, including Sub-Quarter CIF
(SQCIF) at 128 � 96 pixel video, 4CIF at 704 � 576
pixels, and 16CIF at 1408 � 1152 pixel resolution.
Finally, it provides bidirectionally coded frames,
called PB frames, which are similar to MPEG-style
P and B frames that we will describe in the compres-
sion section.

� H.264 is a newer video compression algorithm from the
ITU and MPEG groups. It provides even higher com-
pression efficiency than the H.263 standard through
several refinements. Many of these refinements are
beyond the scope of this overview.

The MPEG group is a working group of the ISO and the
International Electro-Technical Commission (IEC). They

are responsible for the MPEG-1, MPEG-2, and MPEG-4
standards. An overview of each is described below.

� MPEG-1 is one of the first standardized video compres-
sion formats. In 1988, the Motion Pictures Expert
Group gathered a group of companies to standardize
the compression of VHS quality video for storage to
CD-ROM. The standard, released in 1992, specified the
compression of CIF quality video and audio into a
1.5-Mbps stream. As in the ITU video coding standards,
the core MPEG algorithms are DCT-based. MPEG has
three types of frames (1) I-frames that are indepen-
dently coded frames using a technique similar to the
JPEG compression algorithm; (2) P-frames that are
predictive coded to a previous frame; and (3) B-frames
that are coded with respect to both a previous and a
future reference frame. Compression ratios in the
range of 100:1 are possible using MPEG. As an aside,
the popular MP3 format is the MPEG-1 Audio Layer-3
compression algorithm.

� MPEG-2 is intended for the compression of TV signals
and other applications capable of 4 Mbps and higher
data rates, which result in a very high-quality video
stream. MPEG-2 is the algorithm that is typically used
for DVD format video disks. The underlying algo-
rithms between MPEG-1 and MPEG-2 are very simi-
lar. MPEG-2 provides several refinements to deal with
the interlaced video signals found in television signals.

� MPEG-4 was originally intended for low-bit-rate appli-
cations. One such application is the streaming of video
over wireless channels. Through its development, it
became a compression format intended for video in
general. It has numerous refinements over the pre-
vious MPEG formats. It also adds several new features
such as primitive media objects that allow for the
specification of virtually arbitrary objects, both nat-
ural and synthetic.

Fortunately, all of the above compression algorithms from
the ISO and the ITU are DCT-based and are fairly similar in
their basic structure. In the next section, we will describe a
generic DCT-based video compression algorithm. Readers
interested in the low-level details of a particular encoding
algorithm are referred to the list of references at the end of
the article.

A Generic Video Compression Algorithm. In this section,
we will describe a basic DCT-based video compression
algorithm. The purpose of this discussion is to give an
overview of DCT-based video so that we can better describe
the issues involved in delivering video over the Internet. We
will describe a video compression algorithm that is most
similar to the MPEG-1 video standard as it is the most
‘‘generic’’ of the standards above.

The two main areas that compression algorithms can
take advantage of are redundancy within a single frame
and the redundancy between nearby video frames. I-frames
are independently coded video frames. They result in
the largest size when compressed but are independently
decodable. P-frames are predictive coded from a previous

2 VIDEO CONFERENCING AND IP TELEPHONY



reference frame. This results in a frame that is considerably
smaller than the I-frames but also requires a reference
frame to be present in order for it to be decodable. Finally,
B-frames are bidirectionally interpolated between two
reference frames, one in the past and one in the future.
This results in the smallest compressed frames but requires
the most computation in order to decode it. The actual
ordering of frames depends on the application. For
MPEG-1, virtually any ordering of frame types is possible;
however, repeated patterns are typically chosen. An exam-
ple sequence, along with the frame dependence, is shown in
Fig. 1.

Within a frame, the data are compressed in several
steps. First, the pixels encoded in the red, green, blue
(RGB) color space are first converted into the YUV color
space, which represents the luminosity channel (grayscale)
and two chrominance channels that add color. Next, the
frame is split into 16� 16 pixel regions called macroblocks.
Each macroblock is then further subdivided into 8� 8
blocks. The purpose of this is that the U and V channels
are typically further subsampled because the human eye
cannot discern small differences in the chrominance chan-
nels. In general, each 16� 16 pixel U and V block is repre-
sented by one 8� 8 pixel subsampled block, respectively.
Once the frame is divided into its relevant blocks, the blocks
are then compressed.

For each block within a macroblock, several additional
steps are taken. An overview of the basic steps is shown in
Fig. 2. Each block is transformed into the frequency domain
through a DCT. The unique property of this transform is
that areas of relatively constant color can be represented by
only a few coefficients, rather than the 64 unique pixel
values in the spatial domain. After the DCT transform, the
DC value (or average value) for the entire block is in the

upper left-hand corner. The rest of the coefficients are
called the AC coefficients. If all coefficients are 0, then
this means the entire block can be represented by a solid
8� 8 block of a single value. The coefficients are then
quantized. Quantization accomplishes two main functions.
First, it converts the floating point values back into inte-
gers. Second, it reduces the number of nonzero coefficients
that need to be represented by dividing each coefficient by a
predefined table look-up and a user-defined quantization
value. Finally, the coefficients are zigzag ordered, run-
length encoded, and then entropy encoded (typically
Huffman encoding). The steps for the last part of the
compression are shown in Fig. 3.

For coding P- and B-frames, each macroblock has an
additional block-based motion compensation algorithm
applied to it. The goal of the motion compensation algo-
rithm is to find an area within the reference frame that is
the closest match to it. Although a pixel by pixel comparison
within the reference frames might be computationally
prohibitive, several heuristics have been proposed and
put to use that make finding reasonably close matches
fairly quick. These heuristics include performing sampled
searches and limiting the area that the reference frame is
searched for a match. For the P-frames, the previous refer-
ence frame (either an I- or P-frame) is searched for the
match. The closest match is then used as a prediction for the
blocks to be encoded. The goal is to have a prediction that
requires very little correction, which results in many coef-
ficients in the transform to be close to 0. For the B-frames,
both the previous reference frame and a future reference
frame are used to find a match. Furthermore, the B-frame
allows for the forward and reverse matches to be interpo-
lated in order to predict the block to be encoded. Clearly,
B-frames require the buffering of several frames in order

 I I B B B B B B B B PP

Figure 1. This figure shows the frame dependence and frame
pattern that can be found in an MPEG-1 video stream.

DCT8x8
block

DC
Value

AC
Coefficients

Zig-zag
ordering

Run-length 
encoding 

Entropy 
Encoding

……

Figure 2. This figure shows the basic steps involve in the coding
of each block within a single frame of video.

100 70.4

0.4 9.8

0.6

0.6 20.3

-0.6

0.7 -0.7

2.3 0.7 0.0

0.0 0.0 0.0

0.0 0.7 0.0 8 0.3

1.6 0.0 0.0 0.0 0.0

0.6 0.0 0.0 0.0 0.0

0.0 -0.2 0.0 0.0 0.0

0.6 10 0.0 0.0

0.0 1.1 0.0 0.0 0.0 -0.3 0.0 0.3

0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 -0.7 0.0 0.0

50 23

0 4

0

0 4

0

0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(1, 23) 
(3, 4) 
(2,4)
(9,1)
End of Block 

Entropy 
Encoding

Figure 3. This figure shows the basic process of quantization and run-length encoding. Coefficients in the upper left are quantized with
larger values. For the run-length encoding, the run represents the number of zeros until the next coefficient.

VIDEO CONFERENCING AND IP TELEPHONY 3



for the forward reference frame to appear at the encoder.
This additional delay may not be acceptable for some low-
latency applications.

Because the compressed stream is heavily dependent on
the data, the actual compressed frame sizes tend to vary
considerably over time. As a result, this variability can
cause strain on the network that needs to deliver each
frame of video with low latency as well as fairly constant
delay jitter. As an example, we have graphed the result of
applying MPEG compression to a sequence of frames. They
are shown in Fig. 4 for a constant quality compressed video
stream. We will describe the impact of the video require-
ments later in the chapter.

Basic Multimedia Transport

There are several ways in which video conferencing and IP
telephony data can be transmitted between two points.
Transmitting data over a telecommunications channel
(e.g., ISDN or the plain analog telephone network) is rela-
tively simple, requiring that the application allocate as
many channels as necessary. As the network is circuit
switched, transmitting data over such networks is rela-
tively easy and has guaranteed service. The main disad-
vantage of using the telephony network is the high cost
associated with using such a service. The alternative to this
is to use a data network such as the Internet to transfer the
session.

The primary transport mechanisms that are in use for
the Internet are the Transmission Control Protocol (TCP)
or the User Datagram Protocol (UDP) over the Internet
Protocol (IP). TCP provides a congestion-controlled
(network-friendly) delivery service that is reliable. Thus,
nearly all data traffic such as Web traffic or file transfers
occur over the TCP protocol. There are two main disadvan-
tages of using TCP for video conferencing and telephony
networks. First, because TCP attempts to fairly share net-
work bandwidth while maximizing throughput, the band-
width from the application perspective is bursty over time.
Second, TCP is a reliable transport protocol. When the
network drops a packet because of congestion, an appli-
cation-layer delay will be induced because TCP will
retransmit the lost data. UDP is a lighter weight protocol

that simply transmits packets. Whether the packet arrives
at the receiving side is left up to the application layer to
manage. For video conferencing and IP telephony, this has
several implications. First, lost data may impact the ability
to display or play-back the data being transmitted. Upon
the loss of a packet within a compressed video stream, the
application will not be able to display the frame or frames
that were in the packet. Furthermore, all other packets will
need to be discarded until the application can find an area
within the stream to resynchronize itself with the video
stream (e.g., the start of new frame). Second, UDP is not
sensitive to the load within the network. As a result, it may
overrun the network with data. For IP telephony applica-
tions, this may not be that large a concern as the data rate
for IP telephony is relatively small. For video conferencing,
this becomes a larger concern.

For managing the real-time nature of audio and video,
the Real-time Transport Protocol (RTP) and the Real-time
Transport Control Protocol (RTCP) can be used. Typically,
these protocols are used in tandem to deliver streaming
data over the best-effort Internet. RTCP is the control part
of the protocol that provides feedback information to the
applications. For example, it provides feedback on the
quality of the data delivered such as packet loss or network
jitter. In addition, it provides for intrastream synchroniza-
tion. RTP is the transport mechanism for real-time data
that is typically built on top of the UDP/IP protocols. It
provides primitive network information to the application
such as sequencing of packets and time-stamps for media
synchronization.

MULTIMEDIA CONFERENCING AND TELEPHONY SESSION
MANAGEMENT

For interactive conferencing and telephony, there are two
primary protocols that are in use for data networks: H.323
and the SIP.

H.323

H.323 is an ITU standard for packet-based multimedia
communications that was released in 1996. It is, perhaps,
the most widely deployed protocol for video conferencing

0

5000

10000

15000

20000

25000

30000

35000

40000

150014001300120011001000

Frame Number

F
ra

m
e 

S
iz

e 
(B

yt
es

)

0

5000

10000

15000

20000

25000

30000

35000

300250200150100500

Frame Number

F
ra

m
e 

S
iz

e 
(B

yt
es

)

Figure 4. This figure shows the result of compression of video into MPEG and H.263. On the left, in MPEG, there are three distinct frame
types (I-frames are diamonds, P-frames are triangles, B-frames are squares). On the right is an H.263 sequence with I-and P-frames (P being
smaller in size).

4 VIDEO CONFERENCING AND IP TELEPHONY



and IP telephony. The H.323 protocol is used for several
interactive applications, including the popular Polycom
and Microsoft NetMeeting products. H.323 encompasses
several standards, some of which are mandatory in H.323
implementations and others that are optional. For video
conferencing and telephony, H.323 must implement H.261
and G.711, for video and audio, respectively. Other stan-
dards such as H.263 are optional. H.323 defines several
entities that can participate in interactive conferencing and
telephony. They are as follows:

� Terminals—Terminals are the end devices that the
users use. These devices include telephones, video
phones, PCs running video conferencing software,
and voice mail systems.

� Multipoint Control Units—Multipoint control units
(MCUs) are used to manage multiway video and audio
conferences. For video conferencing applications,
MCUs take the individual incoming videos from the
participants and mix the streams together to create a
mosaic of the videos. As a result, MCUs add delay to the
video conference and are expensive because of the
hardware cost necessary to mix video in real time.
MCUs are, however, necessary for low-latency multi-
way video conferencing.

� Gateways—Gateways are used to allow H.323-
compliant systems to interact with other systems.
For example, a gateway can be used to cross between
H.323- and SIP-based communications. Additionally,
they can be used to bridge between an H.323-based
network and the regular voice telephony network.

� Gatekeepers—Gatekeepers, although not necessary to
use H.323, can act as a manager for H.323 sessions.
They can provide address translation from local
addresses to IP addresses. Gatekeepers can also per-
form bandwidth management, authentication, and
billing.

For the actual transmission of data, H.323 specifies several
standards for the encoding of audio, video, and data. As
mentioned, H.323 requires the support of H.261 streams for
video and G.711 for audio. In addition, there are many
optional components such as having H.263 as a video codec.
In more recent versions of H.323, support for H.264 video
streams has been added.

Session Initiation Protocol

The SIP is a protocol standardized by the Internet Engi-
neering Task Force (IETF) for the transmission of telecon-
ferencing and multimedia communications over the
Internet. SIP was introduced in 1999 in IETF RFC 2543
and later updated in 2002 in IETF RFC 3261 (3). SIP, like
H.323, is an umbrella protocol that provides the signaling
necessary to bring video, audio, and data communications
together for interactive applications (4). SIP is more open in
that it does not require any particular media compression
format to be implemented. As a result, its use may include
other interactive applications beyond audio and video. Its
main functions include the negotiation and initiation of

sessions between two endpoints as well as connection
maintenance and termination. SIP is a text-based protocol
allowing for simple debugging and easier interoperability.

SIP is a peer-to-peer architecture, where the endpoints
are called user agents. The endpoints can be SIP-enabled
telephones or PCs. Gateways can also be used to provide
translation between various entities (e.g., format transla-
tion or between different types of networks).

MANAGING THE DATA IN VIDEO CONFERENCING
AND TELEPHONY

In the rest of this article, we briefly describe some issues
with managing the actual compressed data within video
conferencing and telephony applications.

Voice Over IP

Although voice can be represented with relatively few bytes
when compared with video, it is still possible to reduce the
amount of data required to transmit voice over IP further.
The Algebraic Code Excited Linear Prediction (ACELP)
algorithm can be used to further compress the audio.
This has been specified in the G.723.1 standard. Other
techniques involve silence suppression, which has been
applied in the regular telephony network.

Sending voice over IP requires the management of two
key parameters: end-to-end delay and delay jitter. Both of
these parameters can impact the ability of two users to
interactively carry on a conversation. End-to-end delay is
the amount of delay required for the actual transmission of
bits across the network (including all queuing delay within
the routers of the network). Typically, the delay is corre-
lated to the number of routers that the packets must go
through. Overcoming network delay that causes unaccep-
table application-layer performance requires dedicated
network lines, which is typically an expensive operation.
Fortunately, the delay within the Internet is typically not
that large.

Delay jitter, or the variation in end-to-end delay, is more
problematic to handle in general. Buffering can be used to
mitigate delay jitter. Unfortunately, the variation in delay
continues to vary over time. Tuning the buffer delay to
handle the maximum delay jitter will cause unnecessary
delay at the other times. Tuning the buffer delay to some-
thing too small, however, will cause excessive packet loss
and drops in the audio. Techniques like queue management
can be used to actively adapt the amount of buffering at the
client to mitigate the effects of delay jitter for audio appli-
cations (5).

Video Conferencing Over IP

As mentioned, delivering compressed video over packet-
switched networks is even more complicated than deliver-
ing voice over IP because of (1) the variability in frame sizes
from the compression algorithms, (2) the larger size of the
video relative to the audio channel, and (3) the variability in
both network delay and delay jitter. In the remainder of this
section, we will briefly highlight some mechanisms that one
can use to deliver high-quality video over the Internet.

VIDEO CONFERENCING AND IP TELEPHONY 5



Depending on the choice of frame types that are used, a
small amount of buffering can be used to smooth the video
stream a little so that the extra bandwidth required to
deliver I-frames can be amortized across several smaller
predictive coded frames. Unfortunately, such smoothing is
very sensitive to delay as each frame that is buffered
requires an additional one thirtieth of a second. This is
partially why there is a noticeable delay in most video
conferencing applications.

In addition to buffering of data for video, one can employ
techniques that actively manage the video data itself by
adapting the video to the underlying network resources.
Adaptation can happen either at encode time, where the
video codec estimates the available network bandwidth and
codes for it, or can be at transmission time, where the
sender of the video can drop some data in order to make
it fit within the available network resources. For the for-
mer, the network bandwidth needs to be actively monitored
in order to provide feedback to the encoder. The encoder, in
turn, can adjust the quantization value, which forces more
coefficients to zero, making the video stream smaller. The
net effect, however, is that the quality of the video will be
lower. For senders that code the video and drop data in
order make it fit within the available network bandwidth,
typically layered encoders are used. Standards such as
MPEG-2, MPEG-4, and H.264 have been designed to allow
for fine-grain scalability on-the-fly. Layered encoders work
by encoding the video stream into multiple layers consist-
ing of a ‘‘base-layer’’ and ‘‘enhancement layers.’’ Sending a
higher priority ‘‘base-layer’’ that encodes a basic quality
video stream first allows a minimum quality of video deliv-
ered to the client. The delivery of each enhancement layer
after that will gradually continue to raise the quality of the
video. Typically, most encoders use no more than four
layers.

To support layered transmission, encoders use one of
two mechanisms. First, the encoder can use a lower pixel
resolution as a base layer and as an enhancement layer,
which provides more details that raise the quality of the
video. Second, the encoder can split the coefficients between
the various layers. For example, the encoder can encode the
lowered numbered coefficients in the zigzag ordering in one
layer and have the enhancement layer with the remaining
coefficients. Thus, the enhancement layer adds the higher
frequency details to the image. Finally, the encoder can

encode all the higher order bits of the coefficients into the
base layer. Each enhancement layer can then add more of
the lower order bits in succession. Obviously, using
enhancement layers will reduce the coding efficiency of
the compression algorithm but, nevertheless, make them
more flexible for network adaptation.

Even with buffering and layered coding, it is entirely
plausible that packets will be dropped within the network.
Removing data from a compressed stream can cause sig-
nificant artifacts within the display, particularly if data are
lost in a reference frame on which other frames will depend.
In such an event, error correction techniques can be
applied. Several such techniques can be used. First, the
frame that has any data lost can just not be displayed.
Second, for macroblocks that are lost, the macroblocks from
the previous frame can be reused. Third, one can use the
previous motion vector to offset a previous macroblock into
the new frame. Finally, one could interpolate the data from
nearby regions within the current frame. Error recovery
techniques, however, are not a replacement for streaming
and adaptation algorithms.

BIBLIOGRAPHY

1. D. Le Gall, ‘‘MPEG: A Video Compression Standard for Multi-
media Applications’’, Communications of the ACM, Vol. 34, No.
4, pp. 46–58, April 1991.

2. Ming Liou, ‘‘Overview of the px64 kbit/s Video Coding
Standard’’, Communications of the ACM, Vol. 34, No. 4, pp.
59–63, April 1991.

3. Internet Engineering Task Force (IETF) Request for Com-
ments (RFC) 3261, ‘‘SIP: Session Initiation Protocol’’, June
2002.

4. Josef Glasmann, W. Kellerer, ‘‘Service Architectures in H.323
and SIP – A Comparison’’, White Paper, Munich University of
Technology (TUM), Siemens AG, Germany.

5. D. L. Stone and K. Jeffay, ‘‘Queue Monitoring: A Delay Jitter
Management Policy’’, in Proceedings of the International Work-
shop on Network and Operating System Support for Digital
Audio and Video, pp. 149–160, November 1993.

WU-CHI FENG

Portland State University
Portland, Oregon

6 VIDEO CONFERENCING AND IP TELEPHONY



W

WIDE-AREA NETWORKS

INTRODUCTION

Wide-area networks (WANs) can be defined roughly as the
computer networks that cover a broad geographical area.
These networks may be considered as the opposite of local-
area networks (LANs) and metropolitan-area networks
(MANs). LANs refers to the networks within a single office,
building, or campus, wheres MANs refers to the networks
within a single metropolitan area.

Although no specific boundary definition distinguishes
MANs from WANs, in the real world a WAN usually covers
multiple locations in a country or, in many cases, in multi-
ple countries. WANs are usually used to connect LANs and
MANs in different locations. The most typical WAN is the
Internet. Another example would be an intranet for a large
enterprise that has multiple geographically distributed
branches.

The size difference between WANs and LANs/MANs
necessitates some fundamental differences in both the net-
work hardware and software. Communications over a
WAN travel much longer distances, and, although it is
not necessarily true, usually many more hosts and pieces
of network equipment comprise WANs. WANs need to use
switches and, more importantly, routers to connect differ-
ent LANs and other networks. In contrast, LANs usually do
not need routers. Furthermore, the networks and network-
ing equipment in a WAN can all belong to different orga-
nizations; thus, stricter policies may be applied in a WAN.

WANs, like other networks, are usually organized in a
layered architecture so that technology changes in one
layer will not affect functionalities of other layers. For
example, a transport protocol, such as TCP, can work on
top of many different physical networks.

In the rest of this article, we will describe WANs in detail
for each layer in the five-layer TCP/IP reference model.
Brief background knowledge is introduced first.

BACKGROUND

TCP/IP Model

The TCP/IP network reference model, also known as the
Internet reference model, is a depiction of the layered model
used in the current Internet. Another well-known model is
the OSI reference model, which is also a layered architec-
ture, but the OSI model has two additional layers that do
not exist in the current Internet.

The TCP/IP model has five layers (Fig. 1). From bottom
to top they are the physical layer, data-link layer, network
layer, transport layer, and application layer. In network
terms, they are also called Layer 1 to Layer 5, respectively.

The physical layer takes care of the encoding and decod-
ing of signals (bits) that represent the data passed down

from the upper layers. This layer is responsible for moving
the data along the physical network wires and equipment.

The data-link layer transmits packets, or a group of bits,
between two hosts. Data are packed by using different
schemes, such as Ethernet (1) or ATM (asynchronous
transfer mode) (2). Switches work in this layer so that
packets can be transferred to different network segments.

The first two layers are often mixed together. Examples
of hardware/protocols working in these two layers include
Ethernet, SONET (synchronous optical networking), Wi-Fi
(3), PPP (point-to-point protocol) (4), and so on. Ethernet
and SONET are usually used for high-speed networks,
WiFi is used for wireless networks, and PPP is used for
home dial-up networks or DSL (digital subscriber line).

The network layer addresses two issues: addressing and
routing. In other words, hosts and certain pieces of network
equipment are assigned a unique network address; then
packets can be routed to a certain destination. Routing
allows the network to be extended to a much broader area.
Protocols in this layer include communication protocols
such as IP (Internet protocol) (5); routing protocols such
as OSPF (open shortest path first) (6), IS–IS (intermediate
system to intermediate system) (7), and BGP (border gate-
way protocol) (8); and address-resolution protocols such as
ARP (address resolution protocol) (9).

The transport layer is responsible for transferring appli-
cation data on an end-to-end basis. It provides direct sup-
port for application-data transfer. Congestion control is one
of the most important schemes in the layers. It allows all
connections to coexist and to realize their fair and efficient
share of the network bandwidth. The two core transport
protocols are TCP (transmission control protocol) (10) and
UDP (user datagram protocol) (11); over 90% of the Internet
traffic is carried by TCP.

Finally, applications such as worldwide web (WWW), file
transfer protocol (FTP), and e-mail work in the application
layer. Applications define their own specific protocols and
send data using the transport protocols.

At the sender side, applications pass their data down to
each lower layer, which adds their own packet header in
front of each packet. The data eventually is transmitted to
the receiver side via the physical link. At the receiver side,
the data packet is passed up, and each layer interprets and
removes the proper packet headers.

End-to-End Principle

Another principle that plays a significant role in the Inter-
net design is the end-to-end (E2E) principle (12). It has been
applied to the Internet design since the early 1980s. The
E2E principle argued that systems tend to require end-to-
end processing to operate correctly, in addition to any
processing in the intermediate system. It pointed out
that most features in the lowest level of a communications
system have costs for all higher-layer clients, even if those
clients do not need the features, and are redundant if the
clients have to reimplement the features on an end-to-end

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



basis. As a result, the Internet can be described as a ‘‘dumb,
minimal’’ network with smart terminals.

For example, IP is a very simple protocol that transmits
packets only with best-effort delivery, whereas TCP adds
reliability control, flow control, and congestion control to
the data transfer. All of these schemes are done at the end
host.

In addition to the layered architecture and E2E prin-
ciple, more Internet design guidelines can be found in
Ref. 13.

Standardization

For network equipment and software to communicate with
each other, the network hardware and software must follow
the same standard, usually called a protocol in network
terms. Most protocols are formed by two organizations.
IEEE (Institute of Electrical and Electronics Engineers)
focuses on lower layers (physical and data-link layer),
whereas IETF (Internet Engineering Task Force) focuses
on network, transport, and application layers. IETF pub-
lishes Internet standards as RFCs (Request for Comment).
Other standardization committees include ITU (Interna-
tional Telecommunication Union) and ANSI (American
National Standards Institute).

INFRASTRUCTURE (LAYER 1/2)

The bottom two layers set up the infrastructure of a com-
puter network. In the real world, they are often treated
together as one single layer.

Today, WANs use optical fiber as the major physical
signal transfer media. Fiber is less expensive and provides
much faster speed (compared with traditional media such
as copper). The Internet2 (a WAN that connects most
educational institutes in United States) just realized 100
gigabits per second (Gb/s) backbone transfer speed.

Fiber/WDM

Optical fiber is the major physical media used in WANs. The
light signal is reflected by the cladding layer outside the
fiber core until it reaches the other end (Fig. 2).

The reflection of light within the fiber core is affected by
the diameter of the core. The larger the core is, the more
reflections are needed for the light to pass through. Fiber
with a significant larger core (compared with wavelength)

is called multimode fiber; the light may have many different
paths because of the input angle.

However, if the core is thin enough (the diameter is less
than 10 times that of the wavelength), the above geometric
analysis cannot be used, but electromagnetic analysis is in
effect. In this case, the light can traverse only one mode in
the fiber. Such fibers are called single-mode fibers.

Single-mode fiber is better in conserving the light power
and thus can pass the light through a greater length.
However, it is also more expensive to make. Overall, fibers
are cheaper than traditional media, such as copper, and can
transmit signals much farther without the use of relay
equipment. For example, 1 Gb/s (1 gigabit = 1,000,000,000
bits) Ethernet copper cable can only extend to 100 meters,
whereas 1 Gb/s Ethernet single-mode fiber can extend to
6000 meters.

Signals transmitted in the fiber can be differentiated by
the different wavelengths of the light. Therefore, a single
fiber can be used to carry multiple signals at the same time.
This use is called wavelength-division multiplexing (WDM).
WDM significantly increases the capacity of a single fiber.
Greater capacity increasing can be done by simply upgrad-
ing the WDM equipment at the end of the fiber.

Dense wavelength-division multiplexing, or DWDM, is
common today. DWDM can support wavelengths that are
closer to each other, thus it supports more data channels.
For example, some DWDM equipment can support up to
160 channels (which means up to 160 separate connections
can be supported by a single fiber).

Note that computers and switches do not recognize
optical signals directly yet. (All-optic switches are in experi-
mental stage.) Light signals have to be converted to elec-
tronic signals for processing, which limits the network
speed. Currently 100 Gb/s is being deployed, whereas 10
Gb/s is becoming common in WANs.

Physical Layer

Data-Link Layer Data-Link Layer

Network Layer

Transport Layer

Application Layer

Physical Layer

Network Layer

Transport Layer

Application Layer

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 1. TCP/IP-layered model.

core

cladding

cladding

Figure 2. Light passing through optical fiber.

2 WIDE-AREA NETWORKS



Tiers of Network

A natural question is: Who owns the fiber around the world?
Although fiber is a relatively inexpensive solution for a
WAN, it is still beyond the financial ability of most single
organizations (business or government) to deploy fibers
over a wide area. Because WANs usually span interna-
tional borders, not only economical but also political issues
are involved.

In the real world, the hardware infrastructure of WANs
is actually maintained in a ‘‘tier’’ hierarchical structure
(Fig. 3). The most powerful stakeholders use each other’s
network by a reciprocal agreement. More precisely, this
agreement is a settlement-free peering agreement. The
networks owned by such organizations are called Tier 1
networks. Traffic from one Tier 1 network can pass through
another Tier 1 network without paying any fee. In return, it
allows traffic from other Tier 1 networks to pass through for
free. Obviously, not many Tier 1 networks exist in the
world. Other smaller and less-powerful networks that
own a segment of the network but have to pay some Tier
1 networks to pass their traffic are called Tier 2 networks.
Both Tier 1 and Tier 2 networks are usually by large
national or international networking companies. In fact,
Tier 2 networks may purchase services from multiple Tier 1
networks, and it is possible that some Tier 2 networks are
larger than some Tier 1 networks.

Similarly, if a network is operated by solely purchasing
services from either Tier 1 or Tier 2 networks, without any
settlement-free peering, then it is called a Tier 3 network.
Typical Tier 3 networks are those local ISPs (Internet
service providers, e.g., DSL, cable, or campus network)
that cover a small community.

In network terms, each region in Fig. 3 is also called an
autonomous system (AS), defined as a collection of IP net-
works and routers under the control of one entity.

Switch and VLAN

Above the physical fiber, switches work at Layer 2, and they
forward packets to destinations according to the physical
MAC (media access control) address.

Note that sometimes the term ‘‘switch’’ is used to name
interconnection devices in other layers, too. However, such
devices working at Layer 1 are usually called hubs and
Layer 3 switches are usually called routers to differentiate
them from Layer 2 switches. Hubs, switches, and routers
have different functionalities as they work at different
layers. In this article, we use the term ‘‘switch’’ only for
Layer 2 interconnecting devices.

A switch learns the MAC addresses of those switches
and hosts that connect to it and forwards the packets to the
destination with the specified MAC address. This method is
not a scalable because as the MAC-address table of a switch
is limited in size. For the same reason, switches are usually
only used in LANs.

In technical terms, a Layer 2 switch covers a broadcast
domain. Each switch is capable of broadcasting a packet to
every connected switch or host. When the packet reaches a
switch, it checks the hardware address (MAC) and either
forwards the packet or drops it (if no MAC address is
associated with the switch).

However, the forwarding scheme described above can
cause an infinite loop if the switches are connected in a loop.
The problem is solved using the spanning tree protocol
(STP) (14). STP forms a logical tree structure among all
connected switches to avoid loops in the forward path.

An important technology called virtual LAN, or VLAN,
allows networks to expand to wide area and to form a WAN
by using only switches. VLAN allows multiple network
segments to be grouped together even if they are physically
located in different places and belong to different LANs.

Originally VLANs were created to separate a physically
connected network into several independent logical net-
works to help management and security. For example, the
LAN in a campus can be separated into VLANs for different
departments (even though offices of the same department
may not be physically located together). Without a VLAN,
this separation has to be done by routers, with additional
cost and performance overhead. This purpose remains the
major purpose of the VLAN today.

Although it is possible to use VLAN to construct a WAN,
such WANs are small ones and usually only used as an
Intranet for a single organization. Wide-area VLANs are
usually used inside a single organization to extend the
logical network to their branches located in different places.
For general public WANs, routers are used for much
greater flexibility and scalability.

IP AND ROUTING (LAYER 3)

Routers are usually used to interconnect network segments
to construct a WAN, such as the Internet. Whereas Layer 2
switches use a physical address (MAC) to match the desti-
nation by broadcasting the message to all adjacent switches
or hosts, routers, which are sometimes called Layer 3
switches, use an IP address to locate a single path to the
destination by looking up a routing table that is updated by
routing protocols.

IP addresses are assigned hierarchically to each orga-
nization and its subdepartments; thus, the router knows

Figure 3. Tier hierarchy of the Internet.

WIDE-AREA NETWORKS 3



that all packets with destinations within a specific IP
range can be forwarded to the same next hop. Otherwise
the router would need to maintain too many entries for it
to handle. Currently, version 4 of IP uses 32-bit
addresses, which are usually represented by four num-
bers between 0 and 255 (a.b.c.d). For example, a uni-
versity uses IP address 192.168.X.X, where X can be any
number between 0 and 255. The math department uses
192.168.0.X, the English department uses 192.168.1.X,
and so on. For more information about IP addressing, see
Ref. 15.

To route a packet, each router maintains a routing table
that tells the next hop of a packet which destination falls
into a specific IP range. When a packet comes in, it checks
the destination address against each entry in the routing
table (Fig. 4).

Forexample, inFig.4,allpacketssenttothemathdepart-
ment 192.168.0.X (192.168.0.1 masked by 255.255.255.0,
results which in 192.168.0.X) will be sent to the router in
math department 192.168.0.1 via the physical router inter-
face 1.

The algorithm used to update the routing table is
called a routing algorithm. Two kinds routing algorithms
occur: distance-vector protocol and linked-state protocol.
In distance-vector algorithms, each link/hop is assigned
a cost. The algorithm computes a route of hops with the
smallest sum of cost based on the Bellman–Ford algo-
rithm (16). Each router periodically sends its routing
cost information to all of its neighbors; thus, its neigh-
bors can update the routing table according to the new
cost information.

In link-state algorithms, each router broadcasts to the
whole network its own connectivity information. Thus each
node will obtain the map information (a graph) of the whole
network. The routing table can be computed from the graph
by finding the shortest path, for example, using Dijkstra’s
algorithm (17).

Because the Internet is organized through many auton-
omous systems (AS) (Fig. 3), intra-AS and inter-AS rout-
ing have different requirements and limitations. Interior
gateway protocols (IGPs) are used inside an autonomous
system, whereas exterior gateway protocols (EGPs) are
used between autonomous systems. Roughly speaking,
IGP seeks to optimize a complete autonomous system;
thus, its coverage is limited because of the limitation of
computation power on the router and the number of
messages generated by the protocol. In contrast, EGPs
work on only representative nodes from each autonomous
system.

Today, the most common routing algorithms are
OSPF, IS–IS, and BDP. Both OSPF and IS–IS are
link-state algorithms, and both belong to IGP. In con-
trast, BGP uses a distance-vector algorithm, and it
belongs to EGP.

TRANSPORT PROTOCOL (LAYER 4)

Transport protocols provide end-to-end data-transfer ser-
vice for the applications. They provide data-transfer func-
tionality to applications without knowing the intermediate
routers and switches, which are taken care of by Layer 3
and Layer 2, respectively. Transport protocols can be
described by the following characteristics:

Connection-oriented or connection-less. Certain trans-
port protocols need to set up a virtual circuit for
data transfer between two end hosts. The existence
of the connection allows easier control of reliabil-
ity, security, and traffic. In contrast, some other
protocols do not set up a connection, and an end-
host entity can send a message to any destination
at any time.

Streaming or messaging. Transport protocols also differ
at the semantics of data delivery. Some protocols
treat the application data as an infinite stream,
and the receiver side can read at any length. The
other class of protocols, namely messaging, conserves
the boundary of each application buffer, and the
receiver side will be able to retrieve the original buffer
one at a time.

Reliability. Data can be delivered either completely
intact or simply in a best-effort manner. Some pro-
tocols allows user-defined partial reliability. In this
mode, only the data that can be delivered within a
specified time are guaranteed full reliability; other-
wise, it will be discarded. Note that when data is not
delivered reliably, the application messages can be
delivered out of order.

Congestion control. Transport protocols usually work
on shared networks; therefore, they need to adjust
the data sending rate to realize fairness and effi-
ciency of the network bandwidth usage. Different
protocols may use different congestion-control algo-
rithms, whereas some protocols do not have any
congestion control at all. Recall that transport pro-
tocols work in an end-to-end manner, and no single
point in the network coordinates traffic from differ-
ent flows (i.e., flows do not know the existence of each
other). This agreements makes congestion control
probably the most difficult part in developing trans-
port protocols.

TCP and UDP

TCP and user datagram protocol (UDP) are the two core
protocols of the transport layer. Over 90% of Internet traffic
is carried by TCP because it is reliable and because it has a
congestion-control scheme to use the network efficiently
and stably. UDP is used in a certain area only when
reliability is not required or when applications have their
own reliability control.

TCP is the de facto transport protocol on the Internet. It
is a connection-oriented, reliable, streaming protocol. TCP
is used for WWW/HTTP, e-mail, FTP, and many other
Internet applications.

Address Mask NextHop Interface
192.168.0.1 255.255.255.0 192.168.0.1 1
192.168.1.1 255.255.255.0 192.168.1.1 2

Figure 4. Routing table.

4 WIDE-AREA NETWORKS



For TCP, a connection needs to be established between
two nodes before the data transfer. The user buffers are
packed into segments (packets). The receiver sends back
acknowledgments for received packets. A loss report is sent
back to the sender if packet loss is detected, thus the sender
will retransmit the lost packets. In addition, a retransmis-
sion timer is used in case no acknowledgments or loss
reports are received. In this way, TCP guarantees data
reliability. However, TCP does not keep the boundaries of
the application buffers (i.e., TCP works in data-streaming
mode).

TCP has two important schemes to maintain the stabi-
lity of the network. Flow control is used to avoid over-
whelming packets to overrun the receiver. The receiver
acknowledges the flow window size (the available space for
incoming data) so that the sender will never send more data
than the flow window size.

Whereas flow control is used to maintain the stability of
end hosts, congestion control is used to maintain the sta-
bility of the complete network. Basically, TCP starts send-
ing data at a low initial rate and slowly increases the
sending rate if no packet loss is detected. However, once
a packet loss happens, TCP will halve the sending rate and
increases again. This scheme is the AIMD (additive
increasing multiplicative decreasing) scheme used in
TCP congestion control.

Figure 5 depicts the change in sending rate of a single
TCP flow. The algorithm had been working fine until
recently when the inexpensive optical fiber greatly
increased the network bandwidth. The recovery time after
a packet loss (during which time the sending rate increases
from the lowest point to the highest) depends on the band-
width-delay product (BDP), which can be very large in
WANs (e.g., 10Gb/s network between NYC and Tokyo
with more than 200ms round-trip delay). Thus, TCP does
not work well on such networks. New TCP algorithms are
being investigated, including HighSpeed TCP (18), CUBIC
TCP (19), and Compound TCP (20), just to name a few.

UDP is a connectionless, unreliable, messaging protocol.
Applications can send data to any destination without
setting up a connection. This feature allows UDP to send
data simultaneously to multiple destinations, which is
described by the term ‘‘multicast,’’ in contrast to the ‘‘uni-
cast’’ mode in which data has a single determined destina-
tion. However, multicast in WANs is often limited or
blocked by routers to avoid data flooding.

Although data transferred over UDP is unreliable,
sometimes it is a desirable feature because reliability
requires additional mechanisms such as acknowledging,

which leads to additional delay in data transfer. Some
applications, like streaming media, can tolerate limited
packet loss, but cannot tolerate long delays. Finally, mes-
sages transferred over UDP can be conserved so that the
receiving side knows the boundaries between messages.
Applications will be able to read a whole message each time,
which is a convenient feature.

New Transport Protocols

The core transport protocols were designed for general
purposes, and both TCP and UDP have been working for
several decades. The rapid growth of the Internet has
enabled a wide variety of applications (although, it can
also be argued that these emerging applications stimulate
the Internet expansion), and it is not shocking that neither
TCP nor UDP may fit the requirements of some new appli-
cations. Therefore, recently several new transport proto-
cols have been proposed.

The datagram congestion control protocol (DCCP) is a
message-oriented protocol (21). DCCP can be regarded
as a somewhat-enhanced version of UDP. In contrast to
UDP, DCCP applies congestion control on the unreliable
messaging delivery. Various congestion-control schemes
are deployed in DCCP. However, the new feature comes
with a cost; DCCP requires connection setup, and hence
multicast is not supported, which means that it cannot
replace the connection-less UDP. DCCP is designed for
certain applications such as streaming media and Inter-
net telephony, which require timed delivery of each
message.

Whereas DCCP is somewhat related to UDP, SCTP
(stream control transmission protocol) (22) can be com-
pared with TCP. SCTP provides reliable message stream-
ing, instead of the byte streaming of TCP. That is, SCTP is a
messaging protocol. In addition, SCTP also supports par-
allel streams in one single connection. These streams can
deliver message independently so that packet loss in one
stream will not block others. (In TCP, when packet loss
occurs, subsequent data cannot be delivered until the
packet loss is recovered.) Furthermore, SCTP also supports
multi-homing, and one SCTP socket can be bound to multi-
ple IP addresses of the end which hosts, which enables
transparent failover between redundant network paths.
Finally, transport protocols can also be built at the applica-
tion layer on top of UDP. UDT (UDP-based data transfer
protocol) (23) is such an example. UDT is a high-speed data-
transfer protocol that targets a fair and efficient usage of
high-speed long-distance links, a situation that applies to
many WANs today. UDT solves TCP’s efficiency problems
described in Fig. 5. In addition, because it is at the applica-
tion level, it does not require changes in operating systems
to get deployed.

APPLICATION (LAYER 5)

The application layer hosts most of the Internet applica-
tions, including WWW, e-mail, FTP, Telnet, SSH, stream-
ing multimedia, and so forth.

Applications define their own protocols, pack the appli-
cation data, and pass it into lower layers. Each layer below

Time

S
en

di
ng

 R
at

e 
(c

w
nd

)

Figure 5. AIMD.

WIDE-AREA NETWORKS 5



adds their own packet header and eventually delivers the
data at the physical layer (see Fig. 1). At the other end, the
data is passed from the lower layers to the upper layers, and
each layer’s own packet header is removed. The application
will receive the data and interpret it according to the
application-specific protocol.

Applications on WANs often differ from those usually
running in LANs. In addition, WAN applications are
usually more difficult to write because WANs are less
reliable, are less predictable, and have less available band-
width.

For example, it is fairly easy to move a 1 Gb file between
two hosts in the same LAN, but it may take days to move the
same file between Asia and America. Actually, certain
applications address such file-transfer problems in WANs.
Content distribution network (CDN) (24) is an example.

For similar reasons, other applications that work well in
LANs, such as database systems (DBMS), may not have
good performance over WANs.

WWW

We describe the most popular application, WWW, as an
example of Internet applications. A user usually types a
URL into the web browser to go to a website. The URL is
translated into IP address by another application-layer
service called domain name system or DNS (25). DNS is
a hierarchical service that translates domain names
(URL) into IP addresses (recall that IP addresses
are also assigned to organizations in a hierarchical
manner).

After the web browser obtains the IP address of the web
server, it sets up a TCP connection to the web server
listening on the IP address. The subsequent process is
interpreted by HTTP (hypertext transfer protocol) (26).

The web browser first will send out an HTTP request
message to the server for a specific page. The server then
responds to the request by either sending the requested
page back or sending error information (e.g., 404 Page Not
Found). Web pages are special text documents written in
HTML, or hypertext markup language (27).

After successfully receiving the web page, the browser
will parse the HTML web page and render the page
within the browser display. The HTML page may con-
tain non-HTML components, such as a flash movie. The
web browser will locate the proper local programs to run
the components.

Web pages also contain forms and allow uses to submit/
upload information. The web browser will send a ‘‘PUT’’
request to the server to upload the user’s input. The web
server will then process the input and return the result, if
necessary.

WWW has evolved considerably since its birth in the
early 1980s. Today it has grown far beyond the simple
static web page of text. It now serves as a platform for a
broad range of complicated applications such as e-com-
merce, social networking, search engine, online video, and
so forth. In recent years, an informal term, Web 2.0, is
being used to represent a set of emerging Internet and
WWW-based applications that aim to facilitate creativity,
collaboration, and sharing between users. Examples of

Web 2.0 applications include blogs, wikis, and online
communities.

CONCLUDING REMARKS

We have briefly described wide-area networks from the
perspective of each layer in the TCP/IP model. In the last
four decades or so, computer networks have expanded from
a small network with just several nodes connected by 2.4
Kb/s to today’s Internet with billions of nodes and backbone
speed now at a 100 Gb/s level.

WANs will continue to evolve rapidly, and new transport
media, switches, network protocols, and, in particular,
applications, will emerge.

BIBLIOGRAPHY

1. Ethernet/IEEE 802.3 group. Available: http://www.ieee802.
org/3/.

2. A. E. Joel, Jr., Asynchronous Transfer Mode. IEEE Press,
1993.

3. WiFi/IEEE 802.11 group Available: http://www.ieee802.org/
11/.

4. W. Simpson, (ed.), The Point-to-Point Protocol (PPP). RFC
1661, July 1994.

5. J. Postel, (ed.), Internet Protocol. RFC 791, Sep. 1981.

6. J. Moy, OSPF Version 2. RFC 2338, Internet Engineering Task
Force, April 1998.

7. D. Oran, (ed.), OSI IS-IS Intra-domain Routing Protocol. RFC
1142, February 1990.

8. Y. Rekhter, T. Li, and S. Hares, (eds.), A Border Gateway
Protocol 4 (BGP-4). RFC 4271, January 2006.

9. D. C. Plummer, An Ethernet Address Resolution Protocol. RFC
826, November 1982.

10. J. Postel, (ed.), Transmission Control Protocol. RFC 793, Sep.
1981.

11. J. Postel (ed.) User Datagram Protocol, RFC 768, Aug. 1980.

12. J. H. Saltzer, D. P. Reed, and D. D. Clark, End-to-end
arguments in system design, ACM Transactions on Computer
Systems 2, 4; 277–288, 1984.

13. R. Bush and D. Meyer, Some Internet Architectural Guidelines
and Philosophy. RFC 3439, December 2002.

14. R. Perlman, An algorithm for distributed computation of a
spanning tree in an extended LAN, ACM SIGCOMM Computer
Communication Review 15 (4): 44–53 1985.

15. Y. Rekhter and T. Li, An Architecture for IP Address Allocation
with CIDR. RFC 1518, September 1993.

16. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. MIT Press and McGraw-
Hill, 2001, pp. 588-592.

17. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. MIT Press and McGraw-
Hill, 2001, pp. 595–601.

18. S. Floyd, HighSpeed TCP for Large Congestion Windows. RFC
3649, Experimental, December 2003.

19. I. Rhee and L. Xu, CUBIC: A new TCP-friendly high-speed TCP
variant, PFLDnet, Lyon, France, 2005.

20. K. Tan, J. Song, Q. Zhang, and M. Sridharan, A compound TCP
approach for high-speed and long distance networks, Proc.

6 WIDE-AREA NETWORKS



INFOCOM 2006 / 25th IEEE International Conference on
Computer Communications, April 2006, pp. 1–12.

21. E. Kohler, M. Handley, and S. Floyd, Designing DCCP: Con-
gestion control without reliability, Proc. ACM SIGCOMM,
2006.

22. L. Ong and J. Yoakum, An Introduction to the Stream Control
Transmission Protocol (SCTP). RFC 3286, May 2002.

23. Y. Gu and R. L. Grossman, UDT: UDP-based data transfer for
high-speed wide area networks, Computer Networks, 51 (7),
2007.

24. J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B.
Weihl, Globally distributed Content Delivery, IEEE Internet
Computing, September/October 2002, pp. 50–58.

25. P. Mockapetris, Domain Names - Implementation and Speci-
fication. RFC1035. Nov. 1987.

26. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee, Hypertext Transfer Protocol - HTTP/
1.1. RFC 2616, June 1999.

27. T. Berners-Lee and D. Connolly, Hypertext Markup Language -
2.0. RFC 1886, November 1995.

FURTHER READING

S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460, December 1998.

J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach Featuring the Internet, 3rd ed. Addison Wesley, 2004.

W. Stallings, Data and Computer Communications, 8th ed.
Prentice Hall, 2006.

W. R. Stevens, TCP/IP Illustrated, Vol. 1: The Protocols.

W. R. Stevens and G. R. Wright, TCP/IP Illustrated, Vol. 2: The
Implementation.

A. S. Tanenbaum, Computer Networks, 4th ed. Prentice Hall PTR,
2002.

YUNHONG GU

University of Illinois at Chicago
Chicago, Illinois

WIDE-AREA NETWORKS 7



W

WIMAX NETWORKS

IEEE Std 802.16-2004 or Worldwide Interoperability for
Microwave Access (WiMAX), is a broadband wireless
system that offers packet-switched services for fixed,
nomadic, portable, and mobile accesses. WiMAX uses
orthogonal frequency division multiplexing (OFDM) and
many other advanced technologies in the physical (PHY)
and the medium access control (MAC) layers to provide
higher spectrum efficiency than a code division multiple
access (CDMA) system. Moreover, WiMAX supports
scalable channel bandwidths and can be operated over
different frequency bands so that operators have the
flexibility to deploy a WiMAX network over various radio
spectrums. With these important features, WiMAX has
become one of the most important technologies for broad-
band wireless access (BWA) in both fixed and mobile
environments.

IEEE Std 802.16-2004 is initially designed as an access
technology for a wireless metropolitan area network
(WMAN). The first specification ratified by the IEEE in
2004, i.e., IEEE Std 802.16-2004, targets on fixed and
nomadic accesses in both line-of-sight (LOS) and non-
line-of-sight (NLOS) environments. In the IEEE 802.16e-
2005 amendment, the IEEE 802.16e system (also called
Mobile WiMAX) further provides handover, sleep-mode,
idle-mode, and roaming functions to facilitate mobile
accesses. The system also uses scalable orthogonal fre-
quency division multiplexing access (SOFDMA), which is
optimized for accessing dynamic mobile radio channels.
Besides the PHY and MAC layer specifications, IEEE work-
ing groups and technical forums have also defined manage-
ment and networking protocols for WiMAX. For example,
IEEE Std 802.16g standardizes the management plane for
both fixed and mobile devices and networks. IEEE Std
802.16f and IEEE Std 802.16i facilitate cross-vendor inter-
operability for IEEE 802.16 and IEEE 802.16e devices and
networks, respectively. To address the requirements for
network and service deployment, the WiMAX Forum was
thus formed in 2001 to promote and certify WiMAX pro-
ducts. The WiMAX Forum also specifies management plane
procedures, an end-to-end network architecture, applica-
tion and service operations, and conformance test cases for
both fixed and mobile WiMAX. With these efforts, WiMAX
becomes a complete solution for broadband wireless access
beyond 3G.

This article provides an overview to WiMAX from an
end-to-end perspective. The next section describes
the architecture and entities of a WiMAX network.
Then the design of fixed/mobile WiMAX PHY and MAC
layers is presented. Then in the subsequent sections,
protocols and procedures for the network entry, connec-
tion management, mobility management, sleep-mode
and idle-mode operations, and security management are
introduced.

WIMAX NETWORK ARCHITECTURE

Based on IEEE Std 802.16 and IEEE Std 802.16e, the
network group (NWG) under the WiMAX Forum develops
network architecture, entities, and protocols for a WiMAX
network and defines reference points between the entities.
These network entities are logical components and may be
integrated in a physical network node. A reference point is a
conceptual point between network entities, which associ-
ates with a number of protocols. When logical entities
colocate in a network node, reference points between the
entities are implicit. Figure 1 illustrates the WiMAX net-
work architecture consisting of three major parts: subscri-
ber stations/mobile stations [SSs/MSs; Fig. 1(1)], network
access providers [NAPs; Fig. 1(2)], and network service
providers [NSPs; Fig. 1(3,4)]. An SS/MS is customer pre-
mise equipment (CPE) that is a mobile or a personal device
for individual usage or a residential terminal that is shared
by a group of users. Subscription, authentication, author-
ization, and accounting (AAA) of WiMAX services can be
applied to either devices or both devices and subscribers. In
this architecture, interfaces R1–R8 between network enti-
ties are specified. The R1 interface between SSs/MSs and
BSs implements control and data planes conformed to
IEEE Std 802.16-2004 and IEEE Std 802.16e-2005 speci-
fications, and other management plane standards. R2
logical connection between an SS/MS and the home AAA
server is established for authentication and authorization
purposes.

An NAP establishes, operates, and maintains several
access service networks [ASNs; Fig. 1(8)] deployed in dif-
ferent geographical locations. An ASN consists of base
stations [BSs; Fig. 1(5)] controlled by one or more ASN-
gateways [ASN-GWs; Fig. 1(6)]. An ASN-GW inter-works
an ASN with a connectivity service network [CSN; Fig. 1(7)]
operated by a network service provider (NSP). The ASN-
GW transmits packets between SSs/MSs and CSNs,
handles ASN-anchored mobility, implements a mobile IP
foreign agent, and security functions such as authenticator
and key distributor. The ASN-GW also manages radio
resources of the BSs in an ASN.

The functional partition between BS and ASN-GW is an
implementation issue not defined by either IEEE 802.16 or
WiMAX Forum. Generally speaking, a BS implements most
PHY and MAC functions. On the other hand, an ASN-GW
implements data plane functions such as packet classifica-
tion, and control plane functions such as handover deci-
sions, radio resource control, an address allocation relay,
and an AAA proxy. In decentralized ASN implementation,
certain functions such as handover decisions and radio
resource management are moved from ASN-GW to BS.
This approach increases the scalability of an ASN. R4,
R6, R7, and R8 reference points are defined in an ASN.
R4 is the interface between ASN-GWs. This interface
defines control plane for mobility management and data

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



packet forwarding between ASN-GWs during handover. R6
reference point defines control and data plane packet deliv-
ery between BSs and an ASN-GW. R8 is the interface for
transferring control plane packets and optionally data
packets between BSs. This interface facilitates fast and
seamless handover.

An NSP operates a CSN, and the CSN manages sub-
scriber information such as service policies, AAA records,
and so on. To provide services to SSs/MSs, an NSP can
either establish its own service networks such as IP multi-
media core network subsystem (IMS) in a CSN or forwards
SSs/MSs’ requests to other application service providers
[ASPs; Fig. 1(9)]. A user initially subscribes to the services
through a contract agreement with an NSP. The NSP then
establishes contact agreements with one or more NAPs that
offer WiMAX access services. Also, the NSP may have
roaming agreements with other NSPs so that a roaming
SS/MS can attach to its home NSP [Fig. 1(4)] via visited
NSPs [Fig. 1(3)]. In such a case, the SS/MS first associates
with an NAP, which only has a contact agreement with a
visited NSP. Then, the visited NSP relays authentication
messages to the SS/MS’s home NSP, and finally the home
NSP authenticates and authorizes the SS/MS. To further
access Internet or services provided by ASP networks, IP
addresses should be assigned to SSs/MSs. An ASN-GW
implements DHCP relay functions and forwards SSs/
MSs’ IP acquisition requests to either visited NSPs or
home NSPs to obtain IP addresses. In a CSN, R3 (between
an NAP and an NSP) and R5 (between NSPs) are defined.
The R3 reference point implements control plane protocols
such as AAA, policy enforcement, and mobility manage-
ment. Data plane packets are tunneled and transferred
between an ASN and a CSN over the R3 interface. The R5
reference point consists of a set of control and data plane
protocols for interconnecting home NSP with visited NSP.

PHY AND MAC LAYERS

Figure 2 illustrates the control plane and data plane
protocols for WiMAX. IEEE Std 802.16 and IEEE Std
802.16e specify control plane messages for network entry,
connection management, mobility management, security
management, and so on. These messages are carried by
either basic, primary management or secondary manage-
ment connection identifiers (CIDs) [(1) in Fig. 2(a)] and
then they are transferred between SSs/MSs and BSs
through the MAC layer [(3) in Fig. 2(a)] and the PHY
layer [(4) in Fig. 2(a)]. In IEEE Std 802.16, a connection
that is numbered by a unique CID in a cell is a unidirec-
tional mapping between BS and MS MAC peers for trans-
ferring a service flow’s traffic. The WiMAX Forum further
defines control protocols [(2) in Fig. 2(a)] between BSs and
ASN-GWs over UDP/IP in order to support the control
plane procedures in an ASN network.

IEEE Std 802.16 and IEEE Std 802.16e also define the
data plane protocols for data packet delivery between SSs/
MSs and BSs. The convergence sublayer [CS; (6) in
Fig. 2(b)] performs packet classification, header suppres-
sion, and converts packets between upper layer and the
MAC layer. Currently, two CSs, i.e., the asynchronous
transfer mode (ATM) CS and packet CS, are supported
[(7) in Fig. 2(b)]. The MAC layer receives service data units
(SDUs) from the CS, which may fragment and pack the
SDUs, encrypts the packets, generates the MAC protocol
data units (PDUs), and then sends the PDUs to the PHY
layer [(3) in Fig. 2(a)]. The PHY layer performs the base-
band processing on MAC PDUs and transmits the informa-
tion over the air by using OFDM/OFDMA technologies [(4)
in Fig. 2(a)]. A BS or an SS/MS receives the signals and then
passes data to the MAC layer after the baseband proces-
sing. The receiver MAC needs to reassemble the PDUs,

Figure 1. WiMAX network architecture.

2 WIMAX NETWORKS



performs retransmission if necessary, decrypts the packets,
and finally forwards the packets to upper layer protocols via
the service-specific CSs. To deliver packets between BSs
and ASN-GWs, the WiMAX Forum reuses Generic Routing
Encapsulation [GRE; (8) in Fig. 2(b)], which is a tunnel
protocol over an IP transport infrastructure defined by the
Internet Engineering Task Force (IETF).

Figure 3 shows the details of data packet processes for
IEEE Std 802.16 and IEEE Std 802.16e. A network-layer
connection such as an IP connection has to be mapped to a
service flow, which has its own service flow identifier
(SFID) in a WiMAX network. The service flow is defined
as a unidirectional flow of MAC SDUs and has its own
quality-of-service (QoS) requirements. A service flow is a
logical entity. During transmission, the service flow must
associate with a link-layer connection, i.e., an IEEE 802.16
connection with a CID. One of CS major tasks performs the
CID classification while it receives upper layer SDUs such
as ATM cells or IP packets [Fig. 3(1)]. The classification for
the ATM CS can be done by mapping ATM virtual circuit or
virtual path to a specific CID. On the other hand, the packet
CS may have to check the IP or TCP/UDP header of the
SDU to determine the CID. Besides the CID mapping, the
CS may perform the optional payload header suppression
(PHS) to eliminate the redundant parts of the SDUs during
the transmission over the air interface [Fig. 3(2)]. For
example, if the header information of an IP packet is not
used during transmission and routing in a WiMAX net-
work, the IP header can be removed by the sender and
reconstructed by the receiver to save radio resources. An
SS/MS and a BS that activate the PHS function should first
negotiate header suppression parameters. For example,

the PHS parameters are composed of a classification rule
for identifying the packets that should be processed by the
header suppression, a payload header suppression mask
(PHSM) that indicates the parts of a header should be
removed, and a payload header suppression field (PHSF)
that tells the receiver the original parts of headers for
reconstruction. These PHS-related information are
described in a data structure, indexed, and stored on the
BS and the corresponding SS/MS. When a BS or an SS/MS
sends a packet, the CS matches the PHS rules, finds the
PHS index (PHSI), masks the packet using the PHSM,
generates the new PDU with the PHSF, and sends the
packet to the receiver. The receiver checks the PHSI in the
PDU, searches the PHS information, and rebuilds the
original packet using the PHSM and PHSF. The PHS is
applied to a connection, and each connection may associate
with more than one PHS rule and PHS setting.

SDUs are sent to the MAC layer after they are processed
by the CS. The MAC layer may perform the block proces-
sing of the automatic repeat request (ARQ) on MAC SDUs
if the ARQ is enabled for this connection [Fig. 3(3)]. The
ARQ mechanisms used for retransmitting lost packets are
optional in IEEE Std 802.16 but are mandatory for IEEE
Std 802.16e. WiMAX and Mobile WiMAX support several
ARQ mechanisms, and their parameters should be
negotiated by a BS and an SS/MS. When the ARQ is
enabled, SDUs are first segmented into fixed-size ARQ
blocks, which are the basic retransmission units defined in
the ARQ mechanism. When any ARQ block is lost, the
sender needs to retransmit the ARQ block. As an ARQ
block is the basic retransmission unit, the following MAC
processes such as packet fragmentation and packing must

802.16/802.16e

PHY

802.16/802.16e

MAC

Management CIDs

802.16/802.16e

PHY

802.16/802.16e

MAC

Management CIDs 

L1

L2

UDP/IP

L1

L2

Control Protocols

UDP/IP

Control Protocols

R1 R6
SS/MS BS ASN-GW

802.16/802.16e

PHY

802.16/802.16e

MAC

802.16/802.16e

PHY

802.16/802.16e

MAC

ATM CS 

or Packet CS

L1

L2

IP

L1

L2

IP

R1 R6 R3
SS/MS BS ASN-GW

CSNATM CS 

or Packet CS

ATM or IP

GRE GRE

CSN

ATM or IP

L1

MIP

L1

L2

IP

R3

(a) Control plane

(b) Data plane

L2

Figure 2. Overview of WiMAX protocol stack.

WIMAX NETWORKS 3



align with the boundary of an ARQ block. The MAC
fragmentation divides an MAC SDU into one or more small
PDUs [Fig. 3(4)], and the MAC packing packs multiple
MAC SDUs into a single MAC PDU [Fig. 3(6)]. The MAC
concatenates multiple MAC PDUs into a single transmis-
sion [Fig. 3(7)]. The MAC fragmentation, packing, and
concatenation mechanisms are designed for efficient use
of the available radio resources to meet the QoS require-
ments. The MAC layer also encrypts and decrypts MAC
PDUs to prevent packet sniffing and modifications [Fig.
3(9)]. To perform packet encryption and decryption, a
security association (SA) for a connection contains the
security information and settings such as encryption
keys. The SA information is negotiated by a BS and an
SS/MS during the connection establishment phase. The
MAC layer in the sender then encrypts MAC PDUs, and
the receiver can decrypt these PDUs according to the
information in the SA.

One of the most critical tasks for the MAC layer is the
PDU scheduling and radio resource management. IEEE
Std 802.16 and IEEE Std 802.16e reuse the data over cable
system interface specifications (DOCSIS) MAC, which is a
deterministic access method with a limited use of conten-

tion for bandwidth requests. All radio resources for down-
link (DL) and uplink (UL) accesses are controlled by a BS.
An SS/MS receives DL bursts that contain several PDUs to
the SS/MS, and sends packets via the UL transmission
opportunities, called UL bursts, which are also scheduled
by a BS. In WiMAX, each service flow has its own QoS, and a
BS uses these QoS information of these service flows to
schedule DL/UL bursts. For example, a BS can schedule DL
resources to SSs/MSs according to the QoSs associated with
service flows. Also, a BS schedules UL resources based on
the QoS of UL service flows and the bandwidth requests
from SSs/MSs. All DL/UL schedules are decided by a BS,
and the scheduling results are embedded in the DL-MAP
and UL-MAP in every OFDM frame. SSs/MSs should listen
to the DL-MAP and UL-MAP and receive and transmit
packets according to the schedule.

For the IEEE 802.16 and IEEE 802.16e PHY layer, a
system channel bandwidth must be first allocated. WiMAX
supports both frequency division duplex (FDD), which
requires two separated spectrums for DL and UL accesses,
and time division duplex (TDD) where DL/UL accesses
share the same spectrum. FDD may suffer from inefficient
channel utilization due to unbalanced UL/DL traffics. TDD,

Figure 3. Overview of packet processing
in IEEE Std 802.16 and IEEE Std 802.16e.

PHY Layer

ATM or IP Layer

ranging

CQICH
UL Burst #3

UL Burst #2

UL Burst #1

SDU

SDU

CID classification
Header suppression

PDU PDU PDU PDU

Fragmentation

Packing

System channel bandwidth

… …

DC sub-carrier
Guard sub-carriers

Data sub-carriers
Pilot sub-carriers

Sub-carrier 
frequency 
spacing

S
ub-channel num

ber

Downlink sub-frame Uplink sub-frame

OFDM 
frames

OFDM frame

OFDM symbol

pream
ble

P
C

H
D

L M
A

P
U

L M
A

P

DL Burst #1

DL Burst #2

DL Burst #3

A
C

K
-C

H

Concatenation

Convergence Sub-layer

MAC Layer

Packet encryption

ARQ or H-ARQ processing

4 WIMAX NETWORKS



on the other hand, can dynamically change the allocation of
the UL and DL resources in each OFDM frame and is more
flexible than FDD in terms of radio resource management.
Figure 3 also shows a frame structure of a TDD-based
OFDMA system. A system channel bandwidth is divided
into several subcarriers. The frequencies of subcarriers are
all orthogonal. These subcarriers can be categorized into
pilot subcarriers that are used for pilot, a DC subcarrier
that indicates the center subcarrier, guard subcarriers that
serve as the guard band, and data subcarriers that are used
to carry data packets. In OFDMA, subcarriers are further
divided into groups, and one subcarrier from each group
forms a subchannel. Subchannels are the basic unit to
schedule DL/UL accesses. As shown in Figure 3, DL/UL
bursts are scheduled and transmitted by several subchan-
nels and for several OFDM symbols. A DL/UL burst that
may contain several MAC PDUs for the same SS/MS are the
basic schedule unit.

An OFDM frame is fixed with lengths such as 2 ms, 5 ms,
and 10 ms, and each frame is composed of several OFDM
symbols [Fig. 3(8)]. Two consecutive OFDM frames are
guarded by a Receive Transition Gap (RTG). In an OFDM
frame, a BSfurther divides a frame intoa DLsubframeand a
UL subframe. An OFDM frame begins with a DL subframe,
and a DL subframe has a preamble to identify the start of an
OFDM frame. Followed by the preamble, a frame control
header (FCH) contains the DL frame prefix and specifies the
burst profile and the length of a DL-MAP. After FCH, the
first DL burst is a broadcast burst containing many impor-
tant information such as DL-MAP, UL-MAP, downlink
channel describer (DCD), and uplink channel describer
(UCD). The DL-MAP indicates the DL burst allocations,
and the DCD describes the coding and modulation scheme
that each burst uses. On the other hand, UL-MAP and UCD

inform SSs/MSs how UL bursts are arranged and how UL
bursts should be coded and modulated. OFDM/OFDMA
support adaptive modulation and coding (AMC), and each
burst can apply different modulation and coding schemes
depending on the channel condition between a BS and an SS/
MS. In UL subframes, there are several important bursts.
Thecontentionranging period isaperiod thatanSS/MSuses
for the initial ranging. The channel quality information
channel (CQICH) is a channel for SSs/MSs to report its
channel conditions, and it can be used for the AMC. The
details will be further elaborated in the next section.

NETWORK ENTRY

An SS/MS has to complete network entry procedures before
it can access the Internet. Network entry for an SS/MS
begins with a cell selection procedure [Fig. 4(1)]. An
SS/MS first searches the cells that it associated before. If
the last associated cells cannot be detected, the SS/MS
performs a complete search of the spectrum. To locate the
boundary of an OFDM frame, an SS/MS seeks for the
preambles situated in the beginning of every OFDM/
OFDMA frame. Once OFDM frames are synchronized,
the SS/MS decodes FCH and the first DL burst containing
the broadcast information from the BS [Fig. 4(2)]. The
broadcast information composes of a DL-MAP, UL-MAP,
DCD, and UCD, which indicate to all SSs/MSs how a DL
subframe and UL subframe are organized. Based on the
information, an SS/MS locates the contention period for the
initial raging [Fig. 4(3)]. The initial ranging synchronizes
the time and frequency between a BS and an SS/MS and
adjusts the transmission power. The initial ranging is a
contention-based ranging, which means that all SSs/MSs

Figure 4. An example of network entry.

WIMAX NETWORKS 5



send ranging requests in the same period. If an SS/MS does
not receive ranging response from the BS, the SS/MS should
increase the transmission power and retransmit the ran-
ging requests in the subsequent contention-based ranging
periods with random back-offs. After successfully receiving
a ranging response, the initial ranging is complete. The CID
of an initial ranging message (RNG-REQ) is zero. When a BS
replies to the request, a ranging response message (RNG-
RSP) informs the SS/MS of the basic CID and the primary
management CID, which are used to carry important man-
agement messages between the BS and the SS/MS.

After ranging procedures, an SS/MS negotiates basic
capacities of the PHY/MAC layer such as ARQ supports
with a BS through SBC-REQ/SBC-RSP messages
[Fig. 4(4)]. Following the basic capacity exchanges, authen-
tication and authorization procedures are performed
[Fig. 4(6)]. For an SS shared by several users, devices
and subscribers might be authenticated and authorized
separately. Security management related functions will
be discussed below. Once an SS/MS has been authenticated
and authorized, an SS/MS sends a registration request
message (REG-REQ) to register to a WiMAX network
[Fig. 4(7)]. In the registration response message
(REG-RSP), the BS provides the SS/MS a new CID called
the secondary management CID. The secondary manage-
ment CID carries management messages forwarded to the
network nodes behind a BS/ASN-GW. To access Internet,
the SS/MS further acquires an IP address [Fig. 4(8)] either
allocated by the visiting NSP or issued by the home NSP.

CONNECTION MANAGEMENT AND QOS

After an SS/MS has successfully attached to a WiMAX net-
work,thehomeNSPdownloadstheuser’sQoSprofileandthe

associated policy rules to the service flow management
(SFM) and service flow authorization (SFA) [Fig. 5(1)].
Both SFA/SFM are logical entities implemented in an
ASN/NAP. SFM is responsible for the admission control
and management such as creation and deletion of service
flows. SFA is responsible for evaluating service requests
against the user’s QoS profile. The establishment of a new
serviceflowiseither initiatedbythenetworkorbyanSS/MS.
Figure 5 shows an example where an SS/MS sends a service
flowcreationmessage(DSA-REQ)toaBStoinitiateaservice
flow [Fig. 5(2)]. A service flow creation message from an SS/
MS contains a service flow identifier (SFID) and may specify
thePHSandotherMACparameters.WhenaBSreceivesthe
message, it first checks the integrity of the message and
sends an acknowledgment message (DSA-RVD) to the SS/
MS. Then the BS determines whether the service flow is
acceptedaccordingtotheQoSprofileandavailableresources
of a BS. If so, the BS replies to the SS/MS with a response
message (DSA-RSP),andthentheserviceflow isestablished
[Fig.5(3)].WhenaBSoranSS/MSstartstotransmitpackets,
the service flow needs to be activated and associated with a
link-layer connection with a unique CID.

A connection for a service flow is associated with a
schedule data service that is an unsolicited grant service
(UGS), enhanced real-time polling service (ertPS), real-
time polling service (rtPS), non-real-time polling service
(nrtPS), or best effort service (BE). These data service
scheduling are defined by IEEE Std 802.16. IEEE
802.16e further defines ertPS. Characteristics of data con-
nections for these scheduling services are described below.

� UGS: For a UGS connection, a BS guarantees a fixed
amount of DL or UL transmission bandwidths. UGS is

Figure 5. An example of service flow
establishment.

6 WIMAX NETWORKS



suitable for the constant bit rate (CBR) traffic such as
voice over IP (VoIP) without silence suppression.

� ertPS: Different from a UGS service, ertPS supports
VoIP with silence suppression or variable bit rate
(VBR) real-time services. In ertPS, a BS not only allo-
cates fixed amount of UL or DL resources to an MS, but
also allocates the bandwidth requests in the UL bursts
to an MS so that the MS can use the bandwidth requests
to change UL allocations. This mechanism allows a BS
to save the radio resources if it does not have packets to
transmit during silence periods.

� rtPS: To support real-time service flows such as video
streaming, a BS allocates periodical bandwidth
requests in UL bursts to an SS/MS and polls the SS/
MS if there is any UL burst need. If an SS/MS has
packets to transmit, it can simply use the reserved
bandwidth request slots to request UL bursts. Since
the requests of UL bursts are done by a periodical
polling basis, the response time for a UL packet is
fast and the rtPS can support real-time applications.

� nrtPS: For non-real-time traffic, such as Web access
and Telnet, an nrtPS connection is allocated regular
bandwidth request resources to an SS/MS, and an SS/
MS that has packets to transmit should use the band-
width requests to request UL bursts. Since the band-
width request is not sent periodically, the bandwidth
request might not be received by the BS immedi-
ately and the delay for UL burst allocations cannot
be guaranteed.

� BE: A BS allocates resources to BE connections in a
best effort manner. Therefore, this type of connection
cannot guarantee any QoS.

A BS has to schedule DL and UL resources and guar-
antees the QoSs of the service flows. It also has to refer to
the channel qualities between a BS and each SS/MS to
schedule DL/UL bursts, which associate with different
modulation and coding schemes in order to maximize the
radio utilization.

MOBILITY MANAGEMENT

WiMAX mobility functions can be categorized into
ASN-anchored and CSN-anchored mobility management.
ASN-anchored handover, also called micro mobility,
implies that an MS moves from one BS to another BS
without updating its care-of address (CoA). CSN-anchored
handover, on the other hand, defines macro mobility where
an MS changes its serving ASN-GW/FA and its CoA. In
general, the handover procedure includes the following
steps. First, an MS performs a cell (re)-selection, which
comprises scanning and association procedures to locate
candidate BSs to handover. Second, the MS is informed or
decides to handover to the target BS. Finally, the MS
completes network (re)-entry procedures and performs net-
work-layer handover procedures if necessary.

The scan measures the signal qualities of the neighbor-
ing BSs for an MS, and the measurement reports are used
for either MSs or BSs to select the target BS during hand-

overs [Fig. 6(1)]. Initially, the serving BS may indicate MSs
for the scanning trigger-conditions in DCD and/or neighbor
advertisement messages (MOB_NBR-ADV). The MOB_
NBR-ADV broadcasting message contains a list of sug-
gested BSs for scanning and the DCD, UCD, and other
parameters of the BSs. Therefore, an MS can synchronize
with the neighbor BSs. After receiving DCD or MOB_NBR-
ADV messages, an MS should measure the signal qualities
of the serving BS and other BSs and check whether the
measurement results satisfy the trigger criteria. If the scan
procedure is triggered, an MS sends a MOB_SCN-REQ
message to the serving BS with the MS’s preferred scan-
ning and interleaving intervals. Also, the MOB_SCAN-
REQ message contains a list of BSs that are selected
from the neighbor BSs in the MOB_NBR-ADV message
or other BSs, which are not in the neighbor BS list. The
serving BS then replies a scan response message
(MOB_SCN-RSP), which contains the final list of BSs to
scan, the start frame of the scan, the length of a scanning
and interleaving interval, and the scan iteration. The start
frame of the scan indicates the exact frame for the MS to
perform scan, and the scan and interleaving interval are
used to determine the length of a scan and normal operation
period. The scanning and interleaving intervals are sched-
uled in a round-robin basis, and the scan iteration controls
the number of iterating scanning intervals.

An MS may perform associations with neighbor BSs
during scanning intervals. Association helps an MS to
establish basic relationships such as ranging for these
BSs, which may become potential target BSs for the MS.
By conducting associations before handovers, MSs can
reduce the time to synchronize and register with the target
BS. The scanning type in a MOB_SCN-RSP message indi-
cates whether an MS should perform an association with a
neighbor BS, and what association type an MS and a BS
should establish. Several scanning types are defined.

� Without Association: The MS does not have to per-
form associations during scanning intervals.

� Association Level 0 (scan/association without coor-
dination): The MS should perform an association dur-
ing scanning intervals, but the neighbor BSs do not
allocate dedicated ranging regions for the MS. There-
fore, the MS must perform ranging procedures such as
an initial ranging on a contention basis.

� Association Level 1 (association with coordination):
The serving BS coordinates ranging parameters of the
neighbor BSs for the MS. The serving BS sends an
association request over the backbone to notify the
neighbor BSs, and the neighbor BSs allocate ranging
opportunities for the MS and inform the serving BS.
Then the serving BS sends the MS the association
parameters such as the reserved ranging slots via a
MOB_SCN-RSP message. The association parameters
assist the MS to send ranging requests to the neighbor
BSs in the reserved ranging slots. That reserved-based
ranging is faster than the contention-based ranging.

� Association Level 2 (network assisted association
reporting): The MS is not required to wait for ranging

WIMAX NETWORKS 7



response messages replied by the neighbor BSs after
sending ranging requests. The ranging response mes-
sages are forwarded to the serving BS over the back-
bone network and are sent by the serving BS to the MS.

A handover followed by scanning and association pro-
cedures can be initiated by an MS or the network. Figure 6
gives an example of an ASN-anchored handover initiated
by an MS. After the cell selection [Fig. 6(1)], an MS sends a
handover request message (MOB_MSHO_REQ) to the ser-
ving BS [Fig. 6(2)]. The handover request message contains
a list of candidate BSs and a measurement report of the
BSs. Based on this report and some other information on
the serving BS, the serving BS sends a handover request
message (HO request) to one or several neighbor BSs over
the backbone network to identify the possible target BSs.
Once the neighbor BSs receive handover requests from the
serving BS, the BSs may send a context request to the
context server to collect information such as the QoSs of
current connections of the MS and check whether they have
sufficient resources to support this handover. After the
context transfer and data path pre-registration, the neigh-
bor BSs send handover response messages (HO response) to
the serving BS. The serving BS summarizes the results
from the neighbor BSs and finally decides a new list of
recommended BSs and replies a MOB_BSHO-RSP message
to the MS. Meanwhile, buffering schemes for queueing
incoming packets to the MS should be performed on an
ASN-GW and/or BSs to the MS to prevent packet loss.

After receiving a handover response message (MOB_B-
SHO-RSP), an MS should send a handover indication mes-
sage (MOB_HO-IND) to confirm or terminate the handover
process. In the MOB_HO-IND message, an MS explicitly
notifies the target BS of the MS. Finally, an MS disconnects
from the serving BS and synchronizes with the target BS.
An MS can either perform ranging procedures or directly
accesses the target BS if the association has been already

established during the scanning phase. After the ranging
procedure, an MS needs to perform network (re)-entry
procedures [Fig. 6(3)]. To accelerate network (re)-entry,
the target BS can obtain the configurations and settings
such as service flows, state machines, and service informa-
tion of an MS from the serving BS via the context server
without the MS’s involvement.

During handover, an MS may have to disconnect from
the serving BS and then attaches to the network again via
the target BS. Packets may be lost, and services may be
disrupted during handover. To reduce the handover delay
and minimize packet loss during handover, two advanced
handover mechanisms, i.e., fast BS switching (FBSS) and
macro diversity handover (MDHO), are proposed in the
IEEE 802.16e-2005 specification. In FBSS and MDHO, an
MS maintains a diversity set and an anchor BS. The
diversity set is a list of target candidate BSs to handover
for an MS. An anchor BS is the serving BS that transmits/
receives packets to/from the MS over the air interface for
FBSS. For MDHO, an MS receives the same data packets
from all BSs in the diversity set, and only monitors the
control information from the anchored BS, which may be
any BS in the set. An MS must associate with the BSs in the
diversity set before handover and should perform a diver-
sity set update to include new neighbor BSs or remove BSs
with poor signal qualities from the list. The ASN-GW
should multicast incoming packets for an MS to all BSs
in the diversity set, and therefore, the BSs in the diversity
set are always ready to serve the MS for FBSS and MDHO.
For the packet transmission over the air interface, an MS
transmits/receives packets to/from the anchored BS only
for FBSS. Since packets are ready in the BSs in the diver-
sity set, the packet transmission can be resumed quickly
after an MS performs an anchor BS update to change the
serving BS. The packet loss and handover delay are
reduced by employing the FBSS. On the other hand, in
MDHO the BSs in the diversity set transmit the same data

Figure 6. An example of an ASN-anchored
handover.

8 WIMAX NETWORKS



packets to the MS simultaneously. In this case, an MS can
still receive packets from several BSs during handovers,
and the MDHO approach further minimizes the packet loss
and handover delay.

CSN-anchored mobility management involves MSs
moving from the current FA to another FA. This type of
handover requires MSs to change its CoA. Mobile WiMAX
supports network-layer handover for both IPv4 and IPv6
networks. For IPv4, client mobile IP (CMIP) and proxy
mobile IP (PMIP) are supported. For IPv6, only client
mobile IPv6 (CMIPv6) is defined because each MS has its
own IP address in an IPv6 network. CMIP integrates the
conventional mobile IP (MIP) mechanisms with the designs
for an MS and a Mobile WiMAX network to handle network-
layer handover. On the other hand, to minimize the devel-
opment efforts on MSs and to reduce MIP message
exchanges over the air interface, PMIP suggests running
a PMIP client on the ASN-GW or a dedicated node in the
ASN. The PMIP client serves an agent to handle network-
layer handover for MSs, and thus, network-layer handover
is transparent to the MS.

SLEEP AND IDLE MODE MANAGEMENT

Power consumption might not be a problem for Fixed
WiMAX, but it is a critical issue for Mobile WiMAX, which
targets on portable devices. IEEE Std 802.16e, therefore,
defines sleep-mode operations for MSs that have data con-
nections but does not have a packet to send or receive. Three
power-saving classes for sleep-mode operations are defined
to accommodate network connections with different char-
acteristics. Each connection on an MS can be associated
with a power-saving class, and connections with a common
demand property can be grouped into one power-saving
class. If an MS establishes multiple connections with dif-
ferent demand properties, the periods that an MS can sleep
are determined by the sleep-mode behaviors associated
with all connections. The parameters of a power-saving
class, i.e., the time to sleep and listen, the length of a sleep
period and a listen period are negotiated by a BS and an MS.
Then, an MS can sleep during the sleep periods, and can
wake up to listen to the incoming packets during listen
periods. Once an MS receives DL-MAP, which indicates
packets to receive, the MS must return to the normal mode
to receive the packets. Three power-saving classes are
defined as follows:

� The type-one power-saving class specifies that an MS
sleeps for a period and wakes up to listen for incoming
packets. If there is no packet to send or receive during a
listen period, the MS doubles the period for the next
sleep. This power-saving class is suitable for Web
browsing or data access services.

� The type-two power-saving class requires an MS to
repeat the sleep and listen with fixed periods. This
sleep mode is appropriate for real-time connections
such as VoIP and video streaming services with per-
iodic packet delivery. In this class, an MS only needs
to wake up for packet delivery in those listen

periods without violating the QoSs of the real-time
connections.

� The type-three power-saving class defines the length of
a sleep period, and an MS sleeps for that period and
then returns to the normal operation.

On the other hand, if an MS does not have any connec-
tion for a period, an MS might want to switch to a deeper
sleep state, called the idle mode, to conserve the energy.
Mobile WiMAX defines its own idle-mode operations and
paging network architecture. Four logical entities, i.e.,
paging controller (PC), paging group (PG), paging agent
(PA), and location register (LR), for idle-mode and paging
operations are defined. A PG that comprises one or several
PAs in the same NAP is controlled by a PC, and a PC can
manage one or more PGs. A PC can access an LR that
contains information such as paging parameters for idle-
mode MSs, and administers the activities of all idle-mode
MSs situated in the PG managed by the PC. A PC can
function as an anchor PC that is in charge of the paging and
idle-mode management, and/or a relay PC that only for-
wards paging-related messages between PAs and an
anchor PC. A PC could either colocate with a BS or a PC
can be implemented on a network node such as an ASN-GW
to communicate with its PAs through the R6 interface. PAs
that are implemented on BSs interact with the PC to per-
form paging functions.

Figure 7 illustrates an example for an MS to enter the
idle mode, update its location, and to be paged by the
network. This example assumes that an LR and PC colocate
on an ASN-GW and PAs are implemented on BSs. When an
MS decides to switch to the idle mode [Fig. 7(1)], it first
sends a de-registration message (DREG-REQ) to the
ASN-GW [Fig. 7(2)]. The serving BS/PA and ASN-GW/
PC release the resources such as the data path occupied
by the MS and update the information of the MS to the LR.
Meanwhile, the PA and PC negotiate, configure, and inform
the paging parameters such as paging cycle, paging offset,
paging interval length, anchor PC identifier, and paging
group identifier for the MS. Based on the paging cycle
(PAGING_CYCLE), paging offset (PAGING_OFFSET),
and paging interval length, the MS derives the BS paging
listening interval. A BS paging listening interval begins
from the PAGING_OFFSET frame in every paging cycle,
and each paging listening interval lasts for paging interval
length. The MS has to stay awake during the entire BS
paging listening interval in order to receive BS broadcast-
ing paging messages (MOV_PAG-ADV).

The MS should perform a location update (LU) upon LU
evaluation conditions [Fig. 7(3)]. For example, the MS
performs an LU while the MS detects change of the paging
group or when idle-mode timer expires. After a BS receives
LU messages, the BS/PA updates the MS information to the
PC/LR. When receiving an incoming packet sent to an idle
MS, the ASN-GW/FA first obtains the information of the
MS from the LR and informs the PC to page the MS. Then,
the PC generates a paging announcement message and
sends it to the relay PCs or PAs [Fig. 7(4)]. Based on the
paging parameters of the MS, PAs/BSs send BS broad-
casting paging messages (MOV_PAG-ADV) to the MS.

WIMAX NETWORKS 9



After an MS is paged, the MS shall exit idle mode, perform
ranging with the serving BS, and complete the network
(re)-entry procedures [Fig. 7(6)].

SECURITY MANAGEMENT

Security management in WiMAX includes authentication,
authorization, key management, and encryption functions.
When an SS/MS attaches to a WiMAX network, it is
requested to perform the authentication and authorization
based on X.509 protocol before it can register to a network.
In IEEE Std 802.16e, authentication and authorization are
enhanced by adopting IEEE Std 802.1X. In IEEE Std
802.16, the authentication and authorization can be
applied to both a device and subscribers if an SS serves
as a gateway, and it is shared by several users. Figure 8
shows an example for authentication and authorization
using IEEE Std 802.1X. The authenticator first sends an

identifier request to an SS/MS based on the EAP protocol
after the SS/MS finishes the services capacity exchange
with a BS during a network entry [Fig. 8(1)]. Depending on
the authentication method negotiated by the authenticator
and the subscriber, i.e., SS/MS, the message exchange
between the authenticator and subscriber may be different
[Fig. 8(2)]. After the authentication and authorization pro-
cedures, the SS/MS can register to a WiMAX network.

IEEE Std 802.16 uses privacy key management protocol
version 1 (PKMv1) to support packet encryption and
decryption. IEEE Std 802.16e further enhances the fea-
tures by supporting PKMv2. In PKMv2, the master session
key (MSK) is first established between the AAA server in
the home NSP and the SS/MS. The MSK is transferred to
the authenticator in the ASN, e.g., ASN-GW, which gen-
erates a pairwise master key (PMK) based on the MSK and
other information. After the PMK is established, an SS/MS
and authenticator further establish the authentication key
(AK). The AK is then transferred from an ASN-GW to the

Figure 7. An example of idle-mode operation.

Figure 8. An example of the authentication and key exchange.

10 WIMAX NETWORKS



serving BS. Finally the serving BS and SS/MS derive the
traffic encryption key (TEK) based on IEEE 802.16 and
IEEE 802.16e specifications [Fig. 8(2)]. With TEK, the data
packets are encrypted and decryption based on specific
algorithms such as the Advanced Encryption Standard
(AES). Data encryption and decryption are applied to all
data connections and the secondary management connec-
tion. Each connection must associate with a security asso-
ciation (SA), which is identified by an SA identifier (SAID).
An SA is a data structure shared by a BS and an SS/MS. It is
constructed during the connection establishment phase
and describes the security information such as keys or
other parameters for the connection.

SUMMARY

WiMAX and Mobile WiMAX have become a complete net-
work solution for a broadband wireless and mobile com-
munication system. With a total packet-switched design,
the existing all-IP service network, e.g., IP multimedia
subsystem (IMS), can be easily integrated with a WiMAX
network to offer mobile data services. Although the basic
functions and protocols of WiMAX have been established,
several challenging issues need to be further investigated.
Adaptive Antenna Systems (AAS) and Multiple-Input Mul-
tiple-Output (MIMO) are considered as important technol-
ogies for an OFDM-based system. They significantly
influence MAC and radio resource management (RRM).
Cross-layer approaches that consider not only physical
behaviors, MAC designs, and upper layer transport and
application protocols are important and should be further
studied. MAC/RRM scheduling algorithms should be devel-
oped to improve the throughput and radio utilization,
guarantee QoS, and minimize the power consumption for
mobile devices. Mobility management mechanisms such as
FBSS and MDHO for Mobile WiMAX and the integration of
IEEE Std 802.16e and IEEE Std 802.21 can optimize and
support seamless handovers within a Mobile WiMAX net-
work and between WiMAX and other wireless access tech-
nologies. Technologies such as Mobile Multi-hop Relay
(MMR), i.e., IEEE Std 802.16j, and Advanced IEEE
802.16, i.e., IEEE Std 802.16m, also bring new challenges

for MAC, RRM, mobility management, and network archi-
tecture designs.

BIBLIOGRAPHY

1. IEEE Standard 802.16-2004, Air Interface for Broadband
Wireless Access Systems, 2004.

2. IEEE Standard 802.16e-2005, Air Interface for Fixed and
Mobile Broadband Wireless Access Systems; Amendment
2: Physical and Medium Access Control Layers for Combined
Fixed and Mobile Operation in Licensed Bands, 2005.

3. H. Yaghoobi, Scalable OFDMA physical layer in IEEE 802.16
WirelessMAN, Intel Tech. J., 8 (3): 201–212, 2004.

4. Understanding WiMAX and 3G for Portable/Mobile Broadband
Wireless, Intel Tech. White Paper, 2004.

5. WiMAX End-to-End Network Systems Architecture (Stage 3:
Detailed Protocols and Procedures), WiMAX Forum Draft
Document, Aug. 2006.

6. Fixed, nomadic, portable and mobile applications for 802.16-
2004 and 802.16e WiMAX networks, WiMAX Forum Technical
Document, Nov. 2005.

7. Mobile WiMAX – Part I: A Technical Overview and Perfor-
mance Evaluation, WiMAX Forum Technical Document,
March 2006.

8. WiMAX End-to-End Network Systems Architecture (Stage 2:
Architecture Tenets, Reference Model and Reference Points,
WiMAX Forum Draft Document, Aug. 2006.

9. G. Hair, J. Chou, T. Madejski, K. Perycz, D. Putzolu, and J.
Sydir, IEEE 802.16 medium access control and service provi-
sioning, Intel Tech. J., 8(3): 213–228, 2004.

10. A. Ghosh, D. R. Wolter, J. G. Andrews, and R. Chen, Broadband
Wireless Access with WiMAX/802.16: Current performance
benchmarks and future potential, IEEE Comm. Mag.,
2005.

11. WiMAX Forum, http://www.wimaxforum.org/home/.

12. IEEE 802.16 Work Groups, http://www.ieee802.org/16/.

SHIAO-LI TSAO

YI-BING LIN

National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

WIMAX NETWORKS 11



A

ABSTRACT DATA TYPES

INTRODUCTION TO DATA ABSTRACTION

The tasks involved in the design, development, and main-
tenance of large software systems are extremely complex
because the details that need to be mastered far exceed
most programmers’ comprehensive ability. Abstraction is a
fundamental technique for dealing with comprehension. In
addition, abstraction supports reuse of code and flexibility
in choosing different implementations.

Abstraction means that one focuses on the essential prop-
ertiesofthesoftwaresystemwhileignoringmostofthedetails
of the implementation. Well-designed procedures and data
types that hide the unnecessary implementation details are
the key to abstraction and are discussed in Refs. 1 and 2.

Data abstraction focuses on the types of data and the
operations on that data and ignores the complex details of
the code. Abstract data types (ADTs) have been devised to
support data abstraction.

An initial step toward the notion of using abstract data
types (ADTs) was introduced through classes in the pro-
gramming language Simula (3) in the 1960s. Parnas first
discussed the concept of information hiding through mod-
ularization (4,5), which formed a basis for ADTs. Subse-
quent research introduced the notion of programming with
ADTs (6). Since then, procedural languages such as ADA
(7), CLU (8) and object-oriented languages such as Small-
talk (9), Cþþ (10), and Java (11) have allowed program-
mers to implement ADTs.

Early work formalizing ADTs also includes the
introduction of procedural abstraction (12) and the use
of algebraic methods in semantics (13,14,15). This
research evolved into topics such as algebraic specification
(16, 17, 18) and type theories (19). Hoare (20) provided an
early theoretical treatment of ADTs within procedural
languages. Many systems for the formal description of
programs such as VDM (21) and Z (22) naturally support
ADTs because they allow the description of intentions
rather than detailed implementation. One use of VDM in
this context can be found in Refs. 23 and 24.

The remainder of this article introduces ADTs for the
data types stack, queue, set, and bag by describing their
semantics or meaning using a form of mathematical
description called algebraic semantics. The article also
contains a detailed description of a stack implementation
in the procedural programming language C (25). In this
way, the reader can observe the details of how a practical
ADT implementation might be structured.

INTRODUCTION TO THE CONCEPT OF ABSTRACT
DATA TYPES

The term ‘‘abstract data type’’ can be understood based on
four related phases; ‘‘type,’’ ‘‘data type,’’ ‘‘data structure,’’

and ‘‘abstract.’’ These terms are amplified in the next few
paragraphs.

A type is a classification term related to collections of
entities with common properties. For example, a type could
represent all the people who live in a specific city or all the
engineers in a country or state.

A data type is a type in which the classification relates to
data values, such as integers, characters, or strings, or
structures of data values, such as (string, integer) pairs,
which could represent persons and their corresponding
ages. A specific data type, such as all the real numbers or
all the integers, also has related operations, such as addition
and multiplication. A data structure is a specific implemen-
tationofadata type.Thetermabstract isdefined later inthis
section after a brief discussion of some specific data types.

A data type in programming languages such as Pascal or
Java is usually defined by:

(i) a collection of data values with similar character-
istics (data type),

(ii) the operations on the data type, and

(iii) the implementation of the type and its correspond-
ing operations (data structure).

Many different data types exist. Simple ones in program-
ming languages are integers, reals (real numbers), charac-
ters, or strings of characters. Operations on integers or reals
can include addition, subtraction, multiplication, or equals,
whereas operations on strings could be concatenation,
equals, or substring. More complex types can include arrays,
tuples (sometimes called records), stacks, and queues.

Arrays are ordered finite sequences of the same data
type, so we can have an array of reals. Elements of an array
are usually accessed by their position in the sequence, and
operations on an array include those to extract an element
from a given position or place an element in a given position.

Tuples are ordered finite sequences of different data
types and can also be extracted or placed by their posi-
tion or by the name of the position. A tuple could consist
of a name, gender, and age, where the name is a string
of alphabetic characters, the age is a non-negative inte-
ger, and the gender is a single character, namely, ‘‘F’’
or ‘‘M.’’

Stacks consist of elements of the same data type and
operate on the last-in-first-out principle similar to the stack
of plates at a buffet table in a restaurant. Stacks have three
basic operations, namely, push, which puts an item on top of
the stack; popOff, which removes an item from the top of the
stack but does not copy its value; and top, which copies the
value of an element from the top of the stack but does not
remove it. There is also a function isEmpty that determines
if the stack is empty, because top and popOff can not be
applied to an empty stack. From a programming perspec-
tive, it is also convenient to have an operation pop, which
combines the effect of top and popOff.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Queues also consist of elements of the same data type
and operate on a first-in-first-out principle in which ele-
ments are added at one end of the queue and removed from
the other end. A queue is similar to a line waiting at a bus
stop. Typical operations on a queue are add, which puts an
element on a queue; front, which provides access to the
value of the earliest added item placed on a queue; and
remove, which removes the earliest added item placed on a
queue. A queue also has a function isEmpty because front
and remove cannot operate on an empty queue. Queues can
also have an operation delete, which combines the opera-
tions front and remove.

Each data type can be implemented in many different
ways. For example, integers can use a representation that
allows for plus (þ) and minus (�) signs or uses a modular or
wrap-around approach. Complex data types such as stacks
and queues can be implemented as either a fixed-size
sequence (often called an array) of memory cells that are
contiguous or separate memory cells that are linked
together where each cell contains pointers (or the address)
to its immediate successor or predecessor. This second
implementation is called a linked list and allows a stack
or queue or similar data type to grow to the size of available
memory rather than be constrained to a fixed size as in an
array.

An abstract data type (ADT) is a data type and its related
operations, independent of its underlying implementation.
Therefore, a change in this implementation should not
affect the program that is using abstract data types because
it only uses the operations and the data types involved with
those operations, thus, following the hiding principle (4).
Usually the operations on an ADT are defined by an inter-
face, which cannot change when the ADT implementation
changes.

A definition of abstract data type provided by the
National Institute of Standards and Technology (NIST)
(26) states that an ADT is a set of data values and associated
operations that are precisely specified independent of any
particular implementation.

To use a data type as an ADT, two specific details must be
known:

(i) The meaning of the operations or functions acting
on the ADT or operation semantics, that is, the
properties of the data objects that the operations
require and produce, and

(ii) The form of the operations on an ADT or operations
syntax, that is, the program interface to the ADT.

The next two sub-sections contain a general description
of how the syntax and semantics can be represented.

Operation Meaning or Semantics

The semantics of the operations or functions acting on an
ADT can be described in natural language, mathematics,
or programming languages. By using mathematics, it
becomes possible to be precise about the semantics of
each operation and thus be able to reason about results,
such as the effects of an operation, the relationships to
other operations and properties of data objects related to

other ADTs, and whether a program implements an ADT
correctly.

The descriptions of operation semantics in this article
will use algebraic semantics. Other mathematical nota-
tions such as logic could be used, but algebraic semantics
seems to be the easiest to comprehend. In this case, alge-
braic semantics is simply the definition of the behavior of an
ADT using an algebra. An algebra consists of one or more
sets of values (called domains or sorts) and a set of opera-
tions on these domains. Simply stated:

algebra ¼ <domains, operations>

The algebraic approach uses a set of statements (axioms)
in a mathematical format to describe the properties of
the operations. Operations in an algebra are usually
described in terms of each other. Note that the data repre-
sentation and implementation are not part of the algebraic
specification.

In the description that follows, the algebraic statements
that define each operation in terms of the domain will be
accompanied by a verbal description to assist the reader in
understanding the meaning of the statement.

Operation Form or Syntax

The operation form or syntax describes how the ADT is
used, that is, what types of values or parameters are
required for the operations and what type of values the
operation provides or returns. Programming languages
and mathematical descriptions use different approaches
to specify the operations or interface to an ADT. We choose
the programming language C to illustrate a way of speci-
fying the interface independent of the implementation
and an algebraic method to provide a mathematical
description.

Now that we have presented a general description of
the syntax and semantics of ADTs, in the next part of this
article, we will describe the algebraic semantic operations
and the syntax of a stack in detail so that the principles
involved are clear. The algebraic semantics of the stack
are defined first because this specifies the operations
needed. Once the stack is thoroughly described, the alge-
braic semantics for other ADTs, including queue, set, and
bag, are presented. The reader should be able to infer the
program syntax from these semantic descriptions of
operations.

THE STACK ADT

Informal Definition

A stack is a collection of items of the same data type in which
only the most recently added item may be examined or
removed. For example, the data type could be integers, real
numbers, or something more complex, such as a tuple. If the
most recently added item is removed, then the second most
recently added item becomes the most recently added item
and may be examined or removed. The stack is also known
as a last-in-first-out data type or LIFO.

2 ABSTRACT DATA TYPES



The subsequent discussion uses elements from the
domain of natural numbers {1, 2, 3, . . .} as the data type
to be placed on a stack. The symbol ‘‘N’’ is used to represent
this domain. Using only natural numbers as the data type
simplifies the discussion without affecting its generality.
Changing to a different data type is straightforward as it
only requires choosing a new domain such as X ¼ {x1,
x2,x3,. . .}. For example, if the data type is a tuple that
consists of a name and an age, then the domain X would
be the domain that consists of all name, age pairs.

Algebraic Semantics of Operations

Operations on a Stack. The normal definition of a stack S
has the following basic operations:

� push(v, S) puts item v from N on stack S and returns a
stack. Thus, the operation push operates on two
domains, the domain N and the domain of all stacks
of N, which is designated as St. The operation push
returns a member of the domain St.

� popOff(S) removes the item from N most recently placed
on the stack S and returns a stack. The function popOff
only operates on the domain St returning a member of St.

� top(S) provides access to the item v from N, the item
most recently placed on the stack S, and returns that
value. The function top operates on the domain St and
returns a value in the domain N.

� isEmpty(S) returns a value true (T) if stack S is empty
and false (F) in all other cases. The function isEmpty is
necessary to ensure that popOff and top do not try to
manipulate an empty stack. The function isEmpty
introduces the Boolean domain designated by B, which
contains two members true (T) and false (F). The
function isEmpty operates on the domain St and
returns a value in the domain B.

� new() returns a new stack. The function new operates
on the domain St and returns a specific member of St,
namely, the empty stack.

Related Domains. Based on the previous discussion, it
can be seen that the operations on a stack involve three
domains:

N—the domain of natural numbers

St—the domain of all stacks of natural numbers includ-
ing the empty stack

B—the domain of Boolean values (true, false)

Elements of the domain N are pushed onto a stack in St,
and produce a stack in St. Elements of the domain N are
produced when the top of the stack in St is examined, and
elements of the domain St are produced when the top
element in St is removed. Thus, elements of the domains
N and St act as both input and output for the operations
push, popOff, and top. Finally, the operation isEmpty acts
on an S in St to produce elements of the domain B. Elements
of B are only outputs of operations.

A domain is often called a sort, and the domain and the
operations on the domain are called the signature of the

algebra. A many-sorted algebra has operations based on
more than one domain. Because an ADT uses values from
several different sorts or domains, an ADT can be defined by
a many-sorted algebra.

Algebraic Semantics of a Stack. Once the operations for a
stack are understood, a set of precise mathematical iden-
tities or axioms that describe the behavior of the stack in
terms of the operations must be created. These axioms are
developed and explained progressively. Note that these
identities use the ‘‘�’’ sign to indicate that the two sides
of the expression are identical.

Axiom 1—popOff(push(v, S)) � S
This axiom says that when an item v from the domain

N is pushed onto S and then removed, the stack is the same.
For example, if elements 1, 2, and 3 are in stack S with 31

at the top of the stack, then popOff(push(300, S)) produces
S ¼ (1, 2, 3) because 300 is pushed onto S by the push
operation to produce S = (1, 2, 3, 300), and then the element
300 is removed by the popOff operation.

Axiom 2—top(push(v, S)) � v
Here, when an item v is pushed onto S from the domain

N, the function top provides access to that item. For exam-
ple, if a new stack is produced by new(), then top(push(5,
push(2, new())) will produce 5 and leave the stack as (2, 5).

Axiom 3 for isEmpty (S):
Axiom 3a—isEmpty(new()) � true
The stack generated by new() is the empty stack. Testing

the empty stack with the operation isEmpty produces true.
Axiom 3b—isEmpty(push(v, S)) � false
The push operation puts one element on the stack, so

even if S is empty, the stack generated by push is not.
Therefore, isEmpty returns false.

These three axioms define the complete behavior of a
stack. However, an additional operation can be introduced,
namely, the operation pop, because pop is used later in the
syntactic description of the stack as a matter of program-
ming convenience. The operation pop is defined in terms of
top and popOff. The operation pop returns the value of the
top item on the stack, removes the item most recently
placed on the stack S, and returns a stack. Thus, pop
returns a tuple (v, S) where v belongs to N and S belongs
to St. Thus, a new domain T has been introduced, namely,
all pairs of values from N and St. The operation of combin-
ing two domains to make tuple is called the Cartesian
product, in this case, the Cartesian Product of N and St.

Axiom4—pop(push(v, S))�(top(push(v,S)), popOff(push
(v,S))) � (v, S)

This axiom defines the pop operation. An item v is placed
on the stack with push; top provides access to the data
item v, and popOff removes v leaving the stack S. Thus, the
result of the pop operation is a tuple that consists of the top
element and the remaining stack. In a stack (1, 4 ,8), the
operation pop(push(5, (1, 4, 8)) creates a stack (1, 4, 8, 5),
and pop(1, 4, 8, 5) produces (5, (1,4,8)) which provides access
to 5, removes 5, and leaves the stack (1,4, 8).

1Note that stacks are written from left to right and the last added
element is the rightmost element in the sequence.

ABSTRACT DATA TYPES 3



The axioms popOff and top have assumed that the stack
always has an entry. We could define a new domain E contain-
ing one element, namely, the value ‘‘error,’’ and two corre-
sponding axioms for popOff and top acting on an empty stack.

Axiom 5—popOff(new()) � error
This axiom states that removing the top element of an

empty stack produces an error.
Axiom 6—top(new()) � error
This axiom states that examining the top element of an

empty stack produces an error.
The equations just presented define equivalences

between syntactic elements; they specify the transforma-
tions that are used to translate from one syntactic form to
another. This mathematical description of an axiom for an
operation on an ADT is known as a rewrite rule, which
means which that any axiom ‘‘X�Y’’ is a statement that any
occurrence of an X can be replaced with a Y. For example,
whenever the expression or sequence of symbols of the form

popOff(push(v, S))

is encountered, it can be replaced by the symbol S. If

popOff(push(w, T))

is encountered, then, similarly, it can be replaced by the
symbol T.

Syntax of Operations

Interface. In this section, several programs for a stack
that is written in the programming language C and uses the
information-hiding principle are described to show how to
produce an ADT in practice. The presentation is based
on a calculator program adapted from Ref. 25. Hopefully,
the commentary that accompanies the programs is self-
explanatory. However, if the reader needs more details
about the language C, then Ref. 25 is an excellent reference.

The calculator program, which is shown next, uses
reverse polish (also called postfix) notation instead of infix
because it makes a simple demonstration of the stack. Some

/* Stack example using an array */
#include <stdio.h>
#include <stdlib.h> /* for atof() */
#define MAXOP 100 /* max size of operand or operator */
#define NUMBER ’0’ /* signal that a number was found */

#define MAXVAL 100 /* max depth of val stack */
int sp; /* next free stack position */
double stack[MAXVAL]; /* value stack as an array */
int getop(char[]);
void new();
void push (double);
double pop (void);

/* reverse Polish calculator */

main()
{

int type;
double op2;
char s[MAXOP];
new();
while ((type = getop(s)) != EOF)
{

switch (type)
{

case NUMBER:
push(atof(s));
break;

case’+’:
push(pop() + pop());
break;

case ’*’:
push(pop() * pop());
break;

case’-’:
op2 = pop();
push(pop() - op2);
break;

case’/’:
op2 = pop();
if(op2!=0.0)

push(pop() / op2);
else

printf("error: zero divisor\n");
break;

case ’\n’:
printf("\t%.8g\n", pop());
break;

default:
printf("error: unknown command%s\n", s);

break;
}

}
return 0;

}
/* new; initialize the stack */
void new()
{

sp = 0;
}
/* is Full: is stack full? */
int isFull()
{ if(sp<MAXVAL)

return 0;
else

return 1;
}
/* isEmpty: is stack empty? */
int isEmpty()
{
if(sp>0)

return 0;
else

return 1;
}
/* push: push f onto value stack */
void push (double f)
{

if (!isFull())
stack[sp++] = f;

else
printf("error: stack full can not push %g\n", f);

}
/* top: return top value from the stack */
double top()
{

return stack[sp-1];
}
/* popOff: remove top elementof stack */
void popOff()
{

--sp;
}
/* pop: pop and return top value from stack */
double pop()
{

double top_value;
if(!isEmpty())
{

top_value = top();
popOff();
return top_value;

}
else
{

printf("error: stack empty\n");
return 0.0;

}

4 ABSTRACT DATA TYPES



calculators and programming languages, such as Post-
script (27), use reverse polish notation. In reverse polish
notation each operator follows its operands; so the familiar
infix expression

(3þ2)*(6�2) is written as 3 2 þ 6 2 � *

Parentheses are not needed in postfix notation, and it is
unambiguous, as long as we know how many operands go
with each operator. In this example, each operator expects
two operands.

The implementation of the calculator is simple. When
each operand is encountered, as the expression is scanned
from left to right, the operand is pushed on the stack. When
an operator occurs, the stack is popped the correct number
of times (in this case, always two), the operator is applied to
the operands, and the result is pushed back on the stack.

In the example just described, 3 and 2 would be pushed
on the stack, the ‘‘þ’’ operator would cause the stack to be
popped twice, and the result 5 would be computed and be
pushed on the stack. Next, the 6 and 2 would be pushed on
the stack, and then the ‘‘�’’ operator would cause the stack
to be popped twice with the result 4 being pushed back on
the stack. Finally, the operator ‘‘�’’ would cause the stack to
be popped twice (remember 5 and 4 are on the stack), which
would produce the final result of 20. Note that the equal sign
(¼) isusedforassignment,whereastheidentityoperatorand
its inverse are coded as ‘‘==’’ and ‘‘!=’’, respectively.

Note that the operations described for a stack have been
used in this example so that the syntactic form and alge-
braic semantic form look similar. An actual operational

program could be simplified by omitting top, popOff, and
ifEmpty and coding them inline.

The algebraic semantics approach always assumes that
elements in the domain St can grow without bound; in other
words, no bound exist on the size of memory available for a
stack. Of course, programs run in large, but finite, memory,
and a limit to memory size and thus a limit to the size of a
stack does exist. Therefore, the function isFull is intro-
duced to indicate when no more memory is available so
appropriate action can be taken.

The part of the program labeled main{} is the calculator
and consists of a loop that ‘‘reads’’ operands (decimal num-
bers) and operators (þ, *, -, and /). Inside the loop is a case
statement that pushes numbers on the stack or pops num-
bers, applies the operator, and pushes the result back on the
stack. One or two functions need explaining. The function
getop uses other functions to collect the characters com-
prising an operand or operator from the input, the function
atof converts the collection of characters constituting an
operand (digits and a decimal point) into a decimal or
floating point number.

Notice that the program uses an array for the stack that
is defined by the statements:

#define MAXVAL 100 /* max depth of val stack */
int sp; /* next free stack position */
double stack[MAXVAL]; /* value stack */

The stack is an array of 100 elements of floating point numbers

(double). To demonstrate data abstraction, the statements that

define an array will be replaced by statements that define a

linked list, namely:

struct stack_element {
double data; /* data value */
struct stack_element * next; /* pointer to next

data element */
};
struct stack_element * stack_top; /* top of stack */

The statement ‘‘struct stack_element’’ defines a new data type

that contains a number and a pointer to the next stack element.

The asterisk (*) indicates that next is a pointer to a data type

called stack_element. The definition in this case is recursive.

The functions new, isFull, isEmpty, push, top, popOff and pop

are replaced by new functions with the same name where the

differences between each function is indicated by boldface

type.

/* new; initialize the stack */
void new()
{

stack_top = NULL;

}
/* is Full: is stack full? */
int isFull(struct stack_element * s)
{
if (s !=NULL)

return 0;
else

return 1;
}
/* isEmpty: is stack empty? */
int isEmpty()
{
if(stack_top !=NULL)

return 0;
else

#include <ctype.h>
int getch(void);
void ungetch(int);

/* getop: get next operator or numeric operand */
int getop(char s[])
{

int i, c;
while ((s[0] = c = getch()) == ’’ k c == ‘\t’)

;
s[1] = ’\0’;
if (!isdigit(c)&& c !=’.’)

return c; /* not a number */
i = 0;
if(isdigit (c)) /* collect integer part */

while (isdigit (s[++i] = c = getch ( )))
;

if(c == ’.’) /* collect fraction part */
while (isdigit (s[++i] = c = getch ( )))

;
s[i] = ’\0’;
if(c!=EOF)

ungetch (c);
return NUMBER;

}

#defineBUFSIZE100
char buf[BUFSIZE]; /* buffer for ungetch */
int bufp = 0; /* next free position in buf */

intgetch(void) /*geta(possiblypushedback)character*/
{

return (bufp > 0) ? buf[--bufp] : getchar();
}
void ungetch(int c) /* push character back on input */
{

if (bufp >= BUF SIZE)
printf("ungetch: too many characters\n");

else
buf[bufp++] = c;

}

ABSTRACT DATA TYPES 5



return 1;
/* push: push f onto value stack */
void push (double f)
{

struct stack_element * p; /* new stack element */

p = malloc(sizeof(struct stack_element));

if(!isFull(p))
{

(*p).data = f;

(*p).next = stack_top;

stack_top = p;

}
else

printf("error: stack full can not push %g\n", f);
}
/* top: return top value from the stack */
double top()
{

return (*stack_top).data;

}
/* popOff: remove top elementof stack */
void popOff()
{

struct stack_element * temp;

temp = stack_top;

stack_top = (*stack_top).next;

free(temp);

}
/* pop: pop and return top value from stack */
double pop(void)
{

double top_value;
if(!isEmpty())
{

top_value = top();
popOff();
return top_value;

}
else
{

printf("error: stack empty\n");
return 0.0;

}
}

Notice that substitution of a linked-list implementation for an

array implementation does not require a change in the

program main{}, that is, the program using these operations.

This is what makes this data type abstract; the use of its

operations is independent of the underlying implementation,

but not of the interface.

The program can be generalized by allowing the push
and pop operations to have a stack as an argument, which,
thus, allows them to be used in more general situations. A
version of the program main{} that uses an array for the
stack and the functions new, isFull, isEmpty, push, top,
popOff and pop with arguments follows. Programs written
in the language C follow the call-by-value convention in
which they always pass the values of a parameter. C uses an
‘‘asterisk’’ sign (*) to indicate that a variable is a pointer and
the ‘‘and’’ sign (&) to indicate the value associated with a
pointer. The function malloc creates a block of memory the
same size as an element of the data type. Note that the
functions for getop are not included because they do not
change from implementation to implementation, which is
another example of data abstraction.

/* Stack example using an array with arguments */
#include <stdio.h>
#include <stdlib.h> /* for atof() */
#define MAXOP 100 /* max size of operand or operator */
#define NUMBER ’0’ /* signal that a number was found */
#define MAXVAL 100 /* max depth of val stack */
struct stack_type {

int sp; /* next free stack position */

double array [MAXVAL]; /* value stack */
};
struct stack_type * stack;
int getop(char[]);
void new(struct stack_type **);
void push (double, struct stack_type *);
double pop (struct stack_type *);

/* reverse Polish calculator */
main()
{

int type;
double op2;
char s[MAXOP];
new(&stack);
while ((type = getop(s)) != EOF)

{
switch (type)
{
case NUMBER:

push(atof(s), stack);
break;

case’þ’:
push(pop(stack) þ pop(stack), stack);
break;

case ’*’:
push(pop(stack) * pop(stack), stack);
break;

case’-’:
op2 = pop(stack);
push(pop(stack) - op2, stack);
break;

case ’/’:
op2 = pop(stack);
if(op2!=0.0)

push(pop(stack) / op2, stack);
else

printf("error: zero divisor\n");
break;

case ’\n’:
printf("\t%.8g\n", pop(stack));
break;

default:
printf("error: unknown command %s\n", s);
break;

}
}
return 0;

}
/* new; initialize the stack */
void new(struct stack_type ** s)
{

*s = malloc(sizeof(struct stack_type));
(**s).sp = 0;

}
/* is Full: is stack full? */
int isFull(struct stack_type * s)
{
if((*s).sp<MAXVAL)

return 0;
else

return 1;
}
/* isEmpty: is stack empty? */
int isEmpty (struct stack_type * s)
{
if((*s).sp>0)

return 0;
else

return 1;
}
/* push: push f onto value stack */
void push (double f, struct stack_type * s)
{

if(!isFull(s))
(*s).array[(*s).spþþ] = f;

else
printf("error: stack full can not push %g\n", f);

}
/* top: return top value from the stack */
double top(struct stack_type * s)
{

return (*s).array[(*s).sp-1];

6 ABSTRACT DATA TYPES



}
/* popOff: remove top elementof stack */
void popOff( struct stack_type * s)
{

--(*s).sp;
}
/* pop: pop and return top value from stack */
double pop(struct stack_type * s)
{

double top_value;
if (!isEmpty(s))
{

top_value = top(s);
popOff(s);
return top_value;

}
else
{

printf("error: stack empty\n");
return 0.0;

}
}

Again, the statements defining the stack as an array, namely,

struct stack_type {
int sp; /* next free stack position */
double array[MAXVAL]; /* value stack */

};
struct stack_type * stack;

are replaced by the statements defining a list:

struct stack_element {
double data; /* data value */
struct stack_element * next; /* pointer to next data

element */
};
struct stack_element * stack; /* top of stack */

Further more, the functions new, isFull, isEmpty, push, top,

popOff and pop are replaced by new functions with the same

name where the differences between each function is indicated

by boldface type.

/* new; initialize the stack */
void new(struct stack_element ** s)
{

*s = NULL;

}
/* is Full: is stack full? */
int isFull(struct stack_element * s)
{
if (s !=NULL)

return 0;
else

return 1;
}
/* isEmpty: is stack empty? */
int isEmpty (struct stack_element * s)
{
if (stack != NULL)

return 0;
else

return 1;
}
/* push: push f onto value stack */
void push (double f, struct stack_element * s)
{

struct stack_element * p; /* new stack element */

p = malloc(sizeof(struct stack_element));

if(!isFull(p))
{

(*p).data = f;

(*p).next = stack;

stack = p;

}
else

printf("error: stack full can not push %g\n", f);

}
/* top: return top value from the stack */
double top(struct stack_element * s)
{

return (*stack).data;

}
/* popOff: remove top elementof stack */
void popOff( struct stack_element * s)
{

struct stack_element * temp;

temp = stack;

stack = (* stack).next;

free(temp);

/* pop: pop and return top value from stack */
double pop(struct stack_element * s)
{

double top_value;
if (!isEmpty(s))
{

top_value = top(s);
popOff(s);
return top_value;

}
else
{

printf("error: stack empty\n");
return 0.0;

}
}

This section is intended to illustrate how a specific ADT,
namely, a stack, may be implemented in practice. Similar
techniques apply to all ADTs. The remainder of the article
focuses on the definition for several ADTs using algebraic
semantics. Included are the abstract data types (ADTs) for
queue, set, and bag.

THE QUEUE ADT

The queue is the next ADT to be examined because it is
similar to the stack in operation. However, the axioms for
the queue involve recursion.

Informal Definition

A queue is a collection of items in which only the earliest
added item may be accessed. The queue, just like an orderly
line to board a bus or airplane, has a head and a tail. Items
at the head are the next to board the bus or plane or to be
accessed. Items joining the queue join at the tail. If no other
item is added to the tail, then this item would be the last to
be accessed. The queue is also known as a first-in-first-out
data type or FIFO. Similar to the stack, this presentation
about queues only uses elements from the domain of nat-
ural numbers as the data type to be placed on a queue. All
possible queues of natural numbers themselves form a
domain that is named Qu.

Operations on a Queue

The queue Q has the following basic operations:

� add(v,Q) puts item v from the domain N on a queue Q
and returns a new queue Q. The function combines
elements from two domains N and the domain of all
queues of N that is designated by Qu, and produces an
element from the domain Qu.

� front(Q) provides access to the value of the earliest
added item placed on the queue Q. The operation front

ABSTRACT DATA TYPES 7



takes an element from the domain Qu and produces an
element from the domain N.

� remove(Q) removes the item placed first on the queue
Q. The function or operation remove takes an element
from the domain Qu and produces an element in the
domain Qu.

� isEmpty(Q) returns a value true (T) if Q is empty and
false (F) in all other cases. Thus, isEmpty maps an
element from the domain Quto the domain B (Boolean).

� new() returns a new queue. The function new operates
on the domain Qu and returns a specific member of Qu,
namely, the empty queue.

Related Domains

Based on the previous discussion, it can be seen that the
operations on a stack involve three domains:

N—the domain of natural numbers

Qu—the domain of all queues of natural numbers

B—the domain of Boolean values

Note that we could introduce the domain containing
‘‘error,’’ but we do not include it in this and subsequent
examples.

Algebraic Semantics of Operations

Once the operations are defined for a queue, the axioms that
describe their behavior are produced. These axioms are
developed and explained progressively. Note that axioms 1
and 2 each have two parts because the axioms are recursive.
The first part of the axiom is the result for a queue of length
1, whereas the second part of the axiom deals with the case
where the queue has more than one element. An analysis of
the recursion shows the operation moving recursively from
the tail to the head of the queue to locate the element to be
returned and to be removed. In other words, the recursive
definition reduces a queue of length greater than 1 one step
at a time until the resulting queue is of length 1 and the
front element of the queue can be accessed or removed.

Axiom 1 for front(Q):
Axiom 1a—front(add(v, (new())) � v
This axiom states that the front operation on a queue of

length 1 returns the single element in the queue. In other
words, when an item v is added to an empty queue, then it is
the front item on the queue.

Axiom 1b—front(add(v, add(w, Q))) � front(add(w, Q))
This axiom defines the general recursive definition of the

front operation. It states that the front of a queue with
elements v and w added to a queue Q is the same as the
front of the Q with only the element w added. The operation
front is applied repeatedly to reduce the length of the queue
to a queue of length 1 where Axiom 1a can be applied. For
example, if Q has elements 5, 7 and the front is 7, then the
front of (v, w, 5, 7) is the same as the front of (w, 5, 7). This
queue then is processed by the same expression, namely,
Axiom 1b to produce (5, 7) and finally (7). The queue (7) then
is processed by Axiom 1a to produce 7 as the front.

Axiom 2 for remove(Q):
Axiom 2a—remove(add(v, new())) � new()
This axiom states that removing a single item from a

queue of length 1 produces the empty queue.
Axiom 2b—remove(add(v, add(w, Q))) � add(v, remove

(add(w, Q)))
This axiom provides the recursive definition of the

remove operation. It states that removing the head of
the queue (v, w, Q) is the same as removing the head of
the queue (w, Q). Again, the axiom is applied recursively to
reduce the queue to a length of 1 where Axiom 2a is
applied. If Q has elements 5, 7 and the front is 7, then
remove(add(v, add(w, 5, 7))) is the same as add(v, remove
(add(w, 5, 7))), which is the same as add(v, add(w, remo-
ve(add(5, 7)))), which becomes add(v, add(w, add(5,
remove(7, new())))). Of course, remove(7, new()) is
new(), which is the empty stack. Thus, the queue is (v,
w, 5) with the 7 removed.

Axiom 3 for isEmpty():
Axiom 3a—isEmpty(new())) � true
A new queue is empty, and therefore isEmpty returns

the value true (T).
Axiom 3b—isEmpty(add(v, Q)) � false
For a queue that has at least one element, isEmpty

returns the value false (F).
These three axioms define the complete behavior of a

queue. However, an additional operation delete could be
introduced as a matter of programming convenience. The
operation delete is defined in terms of front and remove.
The operation delete returns the value of the front item of a
queue and removes this front item. Thus, delete returns a
tuple (v, Q) where v belongs to N and Q belongs to Qu. Thus,
a new domain T has been introduced, namely, the domain of
all pairs of values from N and Qu.

Axiom 4—delete(add(v, add(w, Q))) � (front(add(v,
add(w, Q))), remove(add(v, add(w, Q)))

This axiom states that deleting the item at the head
of the queue Q produces a tuple of two elements, namely,
the item at the front of the queue and the queue itself.
For example, delete operating on the queue (v, w, 3)
produces the tuple containing the element 3 and the
queue (v, w).

THE SET ADT

Informal Definition

A set is an unordered collection of elements where each
element occurs at most once. A set has three properties:
(1) All elements belong to a universe or domain, (2) either
each element is a member of the set or it is not, and (3) the
elements are unordered. The statement ‘‘all elements
belong to a universe’’ needs some explanation. A universe
encompasses all elements that have at least one common
property. For example, the universe of all black chairs
encompasses all chairs that are black. They could be
made of wood, leather, or other materials. Another example
is the universe or domain of all grades in a course where the
numeric grades are integers from 0 to 100. A set could be
some of these grade values. Because an element of a set can

8 ABSTRACT DATA TYPES



occur only once, if two students receive a grade of 72, the
grade 72 only appears once in the set.

Operations on a Set

A set S has the following basic operations:

� add(v, S) adds an element v to a set S if v is not already
in the set and returns a set S. The function add
operates on the domain N of natural numbers and
the domain of all sets of N, which is designated by
Se, and produces a set in the domain Se.

� isIn(v, S) determines if a set S contains the element v
and returns either true (T) or false (F). Thus isIn
operates on the domain of all sets of natural numbers
Se and returns a value in the Boolean domain B.

� remove(v, S) removes an element v from the set S if v is
in the set. The operation remove operates on the
domain N of natural numbers and the domain Se

and produces a set in the domain Se.

� isEmpty(S) determines if the set has no elements and
returns either true or false. Thus isEmpty operates on
the domain of all stacks of natural numbers Se and
returns a value in the Boolean domain B.

� new() returns an empty set. The function new operates
on the domain Se and returns a specific member of Se.

Related Domains

Based on the previous discussion, it can be seen that the
operations on a stack involve three domains:

N—the domain of natural numbers

Se—the domain of all sets of natural numbers

B—the domain of Boolean values

Semantics of Operations

Now that the operations have been defined, we provide
their definition through a set of axioms. Axioms for isIn,
add, remove, and isEmpty exist where isIn, add, and
remove have three parts and isEmpty has two parts. Multi-
ple axioms are required for each of these operations to cover
all situations. Note that the operations add, isIn, and
remove are recursive.

Axiom 1 for add(v,S):
Axiom 1a—add(v, add(v, S)) � add(v, S)
A set has only one occurrence of an element. Adding an

element twice is the same as adding it once.
Axiom 1b—add(v, add(u, S)) � add(u, add(v, S)) v 6¼ u
This axiom states that elements that are not the same

can be added to a set in either order.
Axiom 2 for isIn(v, S):
This operation has the value true (T) or false (F).
Axiom 2a—isIn(v, new()) � false
An empty set does not contain any elements, so the

element v is not in the set. The operation is false.
Axiom 2b—isIn(v, add(v, S)) � true

A set that just has had v added must contain v. If v was
already in the set then the new v will not be added. Thus, v
is in the set whether it is added by the add operation or not,
and so the isIn operation is true.

Axiom 2c—isIn(v, add(u, S)) � isIn(v , S) if v 6¼ u
This axiom provides a recursive definition of the isIn

operation. The operation states that v is not the most
recently added element to S, but it may be in the remainder
of S. For example, the elements 5, 4, 3, and 7 can be added to
S using the operations add(7, add(3, add(4, add(5, new())))).
Then, isIn(4, add(7, add(3, add(4, add(5, new()))))) could be
replaced by isIn(4, add(3, add(4, add(5, new())))), which
could be replaced by isIn(4, add(4, add(5, new())), which
is true.

Axiom 3 for remove(v, S):
Axiom 3a—remove(v, new()) � new()
Removing the element v from the empty set produces the

empty set.
Axiom 3b—remove(v, add(v, S)) � remove(v, S)
The first step in this axiom adds the element v to the set

S. If v is already in S, then adding v produces S, which gives
the right-hand side of the identity. If v is not in S, then we
get S, which can also be written as remove(v, S).

Axiom 3c—remove(v, add(u, S))� add(u, remove(v, S)) if
v 6¼ u

This axiom states that removing v from the set that
results when u is added to S (v 6¼ u) is the same as add u to
the set that results when v is removed from S.

Axiom 4 for isEmpty(S):
Axiom 4a—isEmpty(new())) � true
A new set is empty, and therefore isEmpty returns the

value true (T).
Axiom 4b—isEmpty(add(v, S)) � false
For a set that has at least one element, isEmpty returns

the value false (F).

THE BAG ADT

Informal Definition

A bag is an unordered collection of elements where each
element can occur more than once. A bag has three proper-
ties: (1) All elements belong to a universe or domain,
(2) either each element of the universe or domain is a
member of the bag or it is not, and (3) the elements are
unordered. The statement ‘‘all elements belong to a uni-
verse’’ has already been explained under the discussion of
the set ADT. The example of all grades in a course shows
how a set and bag differ. For example, if two students
receive a grade of 72, then the grade 72 could only appear
once in the set of grades but twice in a bag of grades.

Operations on a Bag

A bag S (we use S for sack, a synonym for a bag, as B is
already taken as the symbol for the Boolean domain) has
the following basic operations:

� add(v, S), which adds an element to the bag.

� isIn(v, S), which tells whether an element is in the bag.

ABSTRACT DATA TYPES 9



� numberIn(v, S), which tells how many times an
element is in the bag.

� remove(v, S), which removes an element from the bag.

� isEmpty(S), which returns true if the bag is empty and
false otherwise.

� new(), which returns a new empty bag from the domain
of all bags.

Related Domains

Based on the previous discussion, it can be seen that the
operations on a stack involve three domains:

N – the domain of natural numbers

Sb – the domain of all bags of natural numbers

B – the domain of Boolean values

Axiom 1—add(v, add(u, S)) � add(u, add(v, S))
This axiom states that the elements can be added in

either order and achieve the same result because all ele-
ments are added to the bag.

Axiom 2 for isIn(v, S):
Axiom 2a—isIn(v, new()) � false
The element is not in the empty bag, and so the operation

is false.
Axiom 2b—isIn(v, add(v, S)) � true
The element is in the bag because it has just been added,

and so the operation is true.
Axiom 2c—isIn(v, add(u, S)) � isIn(v, S) if v 6¼ u
The element v is not in the bag produced by adding u to S,

but it could be in S itself.
Axiom 3 for numberIn(v, S):
Axiom 3a—numberIn(v, new()) � 0
The number of times the element v is in the empty bag is

zero.
Axiom 3b—numberIn(v, add(v, S))� 1þ numberIn(v, S)
If the element v is added to S, then the count of v is one

more than the number of times v is in S.
Axiom 3c—numberIn(v, add(u, S)) � numberIn(v, S) if

v 6¼ u
If the element u is added to S where v and u are not the

same, then the count of v is the same as the number of times
v is in S.

Axiom 4 for remove(v, S):
Axiom 4a—remove(v, new()) � new()
Removing v from the empty bag produces the empty bag.
Axiom 4b—remove(v, add(v, S)) � S
Removing v after it has been added to S produces S.
Axiom 4c—remove(v, add(u, S))� add(u, remove(v, S)) if

v 6¼ u
Removing v from S augmented by u is the same as

removing v from S when v and u are not the same.
The axiom isEmpty is not defined because it is similar to

the ones for data types previously discussed.

SUMMARY

This article provides a comprehensive introduction to
methods for describing and implementing abstract data

types (ADTs). Many other ADTs could be described, includ-
ing maps, which can be used to define dictionaries and
priority queues. More information can be found in the
references. A very complete formal description of ADTs is
contained in Ref. 1, although the mathematical symbolism
requires some translation into the notation used in this
article.

BIBLIOGRAPHY

1. H. A. Partsch, Specification and Transformation of Programs:
A Formal Approach to Software Development. Springer-
Verlag, 1990.

2. Available: http :/ / www.cs.uiowa.edu /~ slonnegr / plf / Book /
Chapter12.pdf.

3. O.-J. Dahl, K. Nygaard, SIMULA: An ALGOL-based simula-
tion language, Communications of the ACM, 9(9): 671–678,
1966.

4. D. L. Parnas, On the criteria to be used in decomposing systems
into modules, Communications of the ACM, 15(12): 1053–1058,
1972.

5. D. L. Parnas, A technique for software module specification,
Communications of the ACM, 15: 330–336, 1972.

6. B. Liskov, S. Zilles, Programming with abstract data types,
SIGPLAN Notices, April 1974.

7. USA Department of Defense, Reference Manual for the Ada
Programming Language, ANSI/MIL-STD-1815 A, 1983.

8. B. Liskov, A. Snyder, R. Atkinson and C. Schaffert, Abstraction
mechanisms in CLU, Communications of the ACM, 22: 564–
576, 1977.

9. A. Goldberg and D. Robson, Smalltalk-80: The Language and
Its Implementation. Addison-Wesley, 1983.

10. B. Stroustrup, The Cþþ Programming Language, 3rd ed.,
special ed. Addison-Wesley, 2000.

11. K. Arnold, J. Gosling, and D. Holmes. Java Programming
Language, 4th ed., Sun Microsystems.

12. S. Zilles, Procedural encapsulation: A linguistic protection
mechanism, SIGPLAN Notices, 8(9): 142–146, 1973.

13. J. Guttag, Abstract data types and the development of data
structures, Communications of the ACM, June 1977.

14. J. Guttag, E. Horowitz and D. Musser, The design of data type
specifications, International Conference on Software Engineer-
ing (ICSE), 1976, pp. 414–420.

15. J. Goguen, J. Thatcher, E. Wagner and J. Wright, Initial
algebra semantics and continuous algebras, J. ACM, 24(1):
68–95, January 1977.

16. J. Guttag and J. Horning, An Introduction to the Larch Shared
Language, IFIP, 1983.

17. E. Ehrig and B. Mahr, Fundamentals of Algebraic Specifica-
tion: Equations and Initial Semantics, Springer-Verlag, 1985.

18. J. Goguen and J. Meseguer, Eqlog: Equality, types, and generic
modules for logic programming, in Functional and Logic Pro-
gramming. Prentice-Hall, 1986, pp. 295–263.

19. J. Mitchell and G. Plotkin, Abstract types have existential type,
Proc. ACM Symposium on Principles of Programming Lan-
guage, 1986.

20. C. A. R. Hoare, Proof of the correctness of data representations,
Acta Informatica, 1: 271–281, 1972.

21. C. B. Jones, Systematic Software Development Using VDM.
Prentice Hall, 1990.

10 ABSTRACT DATA TYPES



22. J. M. Spivey, Z Reference Manual. Prentice-Hall, 1989.

23. D. D. Cowan and C. J. P. Lucena, Abstract data views: An
interface specification concept to enhance design for reuse,
IEEE Trans. on Software Engineering, 21(3): 229–243,
1995.

24. P. S. C. Alencar, D. D. Cowan and C. J. P. Lucena, A logical
theory of interfaces and objects, IEEE Trans. on Software
Engineering, 28(6): 548–575, 2002.

25. B. W. Kernighan, and D. M. Ritchie, The C Programming
Language, 2nd ed., Prentice Hall Software Series, 1988.

26. Available: http://www.nist.gov/dads/HTML/abstractDataType.
html NIST.

27. G. C. Reid, Thinking in PostScript. Addison-Wesley, 1990.

DONALD COWAN

P.S.C. ALENCAR

University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT DATA TYPES 11



A

AGENT-ORIENTED SOFTWARE ENGINEERING

INTRODUCTION

Agent-oriented softwareengineering (AOSE) isan approach
toconstruct software systems basedon the agent paradigm.1

An agent can be thought of as an autonomous and social
entity, which can communicate, coordinate, and cooperate
with other agents to achieve goals. This notion of agent
offers a higher-level abstraction than the notion of object
used in object oriented (OO) software engineering.

AOSE approaches were originally proposed to engineer
software agents. However, as soon as heterogeneous, net-
worked software systems began to appear, machine-
oriented views of computing appeared to be inappropriate
to understand the complexity of these systems and to
design them. AOSE is being recognized as a promising
approach, offering human-oriented abstractions when
designing these software systems (1). Along this view,
agents are not only building blocks of a software systems,
but also are proposed as design abstractions.

More generally, it can be said that AOSE provides com-
putational abstractions, models, and tools with which to
conceptualize and implement distributed software systems,
whether they are realized as software agents or not. In the
following article we will call them agent-oriented (AO)
systems.

To help understanding the complexity of these systems
and the type of problems we encounter building them, it can
beusefultoconsidersomeapplicationsofsoftwareagentsand
of current distributed systems, along with their properties.

Systems that operate in high-risk situations that are
unsuitable or impossible for humans, like control systems
on board robotic spacecraft for deep space exploration, were
initially considered ‘‘killer’’ applications for software
agents. For instance, the NASA space exploration mission
Deep Space 1 in 1999 experimented with agent-based soft-
ware to manage exploration tasks in a flexible way. This
software has been named Remote agent.2 The Remote agent
software could plan and execute many activities on board
the spacecraft, being given only general mission goals from
ground controllers on the Earth. An example goal might
have been to ‘‘take asteroid pictures for navigation every 2
days for 2 hours’’ or ‘‘turn off the camera once you are done
using it.’’ The Remote agent monitored the execution of a
plan that had been generated to accomplish a goal, to assess
unforeseen failure conditions, and to decide to change a
plan accordingly. For instance, it could recognize false
information sent by a failed sensor and correctly ignore
it. A main feature of Remote agent is that of behaving
autonomously and in a goal-directed way.

In a domestic scenario, Robot vacuum cleaners are
available today that behave autonomously (once switched
on), having the ability to perceive their environment and
adjusting their actions to achieve their design objectives,
such as cleaning a room.

The Internet and the availability of distributed compu-
tational resources and services offer tremendous technolo-
gical challenges and opportunities for AO systems. When
planning for a journey or a vacation, we can access a virtual
travel agency on the Internet to get an offer for a travel
package that consists of flights, hotel rooms, and car rental,
taking into account our date constraints and preferences,
and we may eventually buy it, paying by credit card, in a
secure way.

Current e-commerce applications provide product dis-
covery and packaging (e.g., flight, hotel, car rental). More-
over, they perform simple bidding actions on behalf of a
user. Research is progressing toward developing systems
that act as brokers, engaging negotiation activities in the
context of multiple auctions, taking into account customer
preferences and constraints.3

The main feature of this type of agent-based system is
the ability to interact with other systems following high
level protocols, such as electronic auctions, and to decide
how to perform a bid according to a specific policy that fit the
customer’s objectives.

Web 2.0, that is, the second generation of web-based
communities and hosted services (such as social-networking
sites, wikis, and folksonomies), which aim to facilitate col-
laboration and sharing between users, is also presenting
tough software engineering problems. Complexity here
derives from the heterogeneity of the platforms and net-
works these systems operate on; the diversity of their users,
with different needs and preferences that evolve continu-
ously; and the dynamicity of their operating environment.

Intervehicle communications for improving traffic safety
and efficiency are also worth mentioning as a challenging
application scenario for AO systems. A car can communicate
with neighboring vehicles with the aim of coordinating at
critical points (e.g., blind crossing, highway entries) or in
case of critical events (e.g., accident, fog). These types of
functions are particularly useful on secondary roads, which
cannot be equipped with an information and warning ser-
vice infrastructure (such as highways have). Communica-
tion between heterogeneous systems is a primary issue to be
addressed together with the need of making these systems
aware of their local environment, which changes while
moving.

Summarizing, AO systems are software systems that
behave in a goal-directed manner, either recognizing and
adopting users’ goals or being driven by their own goals.
They are situated, that is, they are aware of their opera-
tional context and are autonomous, being requested to

3Yearlycompetitionsareorganizedtoverifyresearchadvancements
and to further stimulate it, http://www.sics.se/tac/page.php?id=1.

1Herein, see Intelligent Agent.
2http://asc.arc.nasa.gov/projects/remote-agent/faq.php.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



respond dynamically to changing circumstances while try-
ing to achieve a goal. They interact with other systems
using high-level communication protocols. They act on
behalf of humans who may have different needs and pre-
ferences, which evolve continuously. These software sys-
tems can be implemented as software agents, using agent
programming environments, or as software components
deployed in a distributed system platform. The most chal-
lenging application areas, accordingly to Luck (2), are
ambient intelligence, which foresees an environment of
potentially thousands of embedded and mobile devices
that interact to support user-centred goals and activities.
Grid computing should enable the efficient use of distrib-
uted computational resources, and Electronic Business
supports the automation of information gathering and
purchase transactions over the Internet.

Having to deal with such complex application domains,
how can we understand them properly to identify require-
ments and properties of suitable software systems? That
is, how can we design software with properties of auton-
omy and social interaction? How can we implement and
test them? In other words, which type of software engi-
neering methods and tools are appropriate to build such a
system?4

AOSE aims at addressing these questions. First, it
proposes to adopt the notion of agent and its related notions
as a conceptual paradigm to understand and specify proper-
ties of AO systems.

Second, AOSE offers methodologies for analyzing the
requirements and the software architecture of these soft-
ware systems. AOSE methodologies adopt a visual model-
ing language, based on the agent paradigm, define models
to be built during requirements analysis and system-design
phases. They often offer specialized techniques for the
analysis of these models.

Third, AOSE can offer structured processes that guide
the development of the software system from early require-
ments analysis down to the implementation in terms of
agent code or software components of a distributed system
platform.

Content

In the following, the agent paradigm and examples of
modeling languages based on it will be described. AOSE
methodologies and examples of tool-supported software
development processes will be also illustrated. Research
on challenging issues in the AOSE area is very active. Some
of the most promising efforts and trends will be recalled
briefly.

THE AGENT-ORIENTED PARADIGM

On Agent Definition

The concept of software agent has evolved from artificial
intelligence (AI) research areas, and in particular from

distributed AI work, which date back to 1980. Different
definitions have been proposed since then (3,4), which show
influence from a variety of disciplines, including economics,
philosophy, logic, ecology, and social science. This fact also
motivates the use of the agent paradigm along different
perspectives.

Adopting the software engineering perspective, common
properties referred by all the different definitions and that
are considered making the agent paradigm disruptive with
respect to previously adopted software engineering para-
digms (2) are represented by the following:

– Autonomy and Situatedness. An agent is a compu-
ter program that encapsulates some state (also
called mental state) that is not accessible to other
agents, and it makes decisions about what to do,
based on this state, without the direct intervention
of others. An agent can perceive the environment in
which it operates, through appropriate sensors, and
respond in a timely fashion to changes that occur in
it. An agent’s environment may be the physical
world, the Internet, a collection of other agents, or
a combination of them. An agent can exhibit a goal-
directed behavior and can select dynamically and
autonomously which action to execute, according to
its designed objectives.

– Social Ability. An agent can interact with other
agents (artificial and human) through high-level pro-
tocols. It can coordinate and collaborate with other
peers for achieving its designed objectives.

Quoting Luck (2), the agent paradigm ‘‘causes a re-
evaluation of the very nature of computing, computation
and computational systems, through concepts such as
autonomy, coalitions and ecosystems, which make no
sense to earlier paradigms.’’ It can be useful to contrast
the definition given above with other widely used abstrac-
tions in software engineering, that is, the object paradigm
and the system component abstraction. Worth mentioning
is also the difference between software agent and agent
in the world, as used in requirements engineering
approaches.

Agents versus Objects. Objects are defined as computa-
tional entities that encapsulate some states, perform actions
or methods on this state, and communicate by message
passing. Agents have goals and skills (services) to achieve
them. Agents exploit a symbol-level communication.

Even if objects encapsulate state and behavior realiza-
tion (method), they do not encapsulate behavior activation
(action choice). An object’s public method can be invoked
by any object, and only once the method has been invoked,
the corresponding actions are executed. Objects are pas-
sive, they can not refuse to execute them. Objects can be
used to enable agent technology. Most currently used
agent-programming languages and platforms are built
on top of Java (5). More generally, object and methods
abstractions are considered too low-level granularity for
describing interactions. This motivated the development
of more powerful abstraction mechanisms, such as system
component.

4Herein, see: Software Engineering: Software Life-Cycle Activities
and Software Engineering: Software Engineering Tools and Tech-
niques

2 AGENT-ORIENTED SOFTWARE ENGINEERING



Agents versus System Components. A software compo-
nent is a system element that offers a predefined service
and communicates with other components. Components
are considered to be a higher level of abstraction than
objects, and as such they do not share state and commu-
nicate by exchanging messages that carry data. A main
difference between components and agents is in the
mechanism they use to communicate, which is usually
referred as imperative versus declarative message pas-
sing, and in the purpose of communication. A component
communicates with another one to force it to execute the
body of a method without saying why. The sender is
entirely responsible for such an execution (that is, it is
responsible for guaranteeing that preconditions hold and
for changes caused in the system). An agent communi-
cates with another one in an attempt to transfer part
of its mental state to the receiver. For instance, it
can delegate one of its goals to the receiver. It is up to
the receiver to accept this delegation. Moreover, the
receiver is solely responsible for the outcome of its own
actions.

The different communication models determine a major
difference in their relationship to the outer world (the
environment). Agents execute in the environment (that
is the execution of their actions affects the environment);
they can perceive it so that changes in the environment
reflect into changes of the agent’s mental state. Compo-
nents use interfaces to enumerate what they can do and
how clients can get in contact with them. Interfaces can
specify postconditions, which define how the state of the
component changed on executing an action, but no informa-
tion on the environment is given (6).

Agents in Requirements Engineering. Requirements engi-
neering provides methods and techniques for supporting
the identification of users and stakeholders needs, and for
analyzing them in terms of alternative solutions. Its ulti-
mate goal is that of deriving software requirements that fit
those needs. In requirements engineering, the agent para-
digm is used to analyze the application domain, in which a
new software has to be introduced, in terms of agent’s
intentionality and sociality. Agents here are humans,
organizations, and artificial systems; each one has its
own goals and mutual dependencies for goal achievement.
Introducing a new software system means introducing a
new agent in the domain, which will provide alternative
ways to achieve the domain agents’ goals. Requirements of
this software are traced back to domain agents’ goals,
which provide a rationale for requirements and also a
way for detecting reasons for possible conflicts among
requirements. As pointed out by Yu (7) despite the fact
that ‘‘agents-as-software’’ and ‘‘agents-in-the-world’’ may
share conceptual features, important differences must be
taken into account when using them. For instance, assign-
ing greater autonomy to software agents means building a
more powerful and complex system. When modeling the
world instead, the analyst ascribes an increasing level
of autonomy to the modeled agent when the implications of
a greater level of uncertainty and variability need to be
understood. As for sociality, agents in the world engage in
complex relationships, which form an unbounded network,

so when modeling them the purpose is to provide a means to
acknowledge complexity in the world rather then to identify
mechanisms to manage it.

Agent-Oriented Modeling Languages

Modeling languages allow one to represent the structure
and the properties of a system in an abstract way. The most
widely used in software engineering is the Unified Model-
ing Language (UML) (8), which is the standard language
for object-oriented modeling. Besides a specific syntax and
semantics, modeling languages usually provide a diagram-
matic notation, which allows one to represent a system
specification with a set of diagrams.

Visual modeling has been recognized as a powerful
support for communication among the stakeholders
involved in the development process and for the documen-
tation of a project. It became a popular practice as soon as
software tools that provide functions to create models and
diagrams started to become available.

Modeling is a core activity in software development
processes that follow the model-driven architecture
(MDA) approach (9). Indeed, MDA conceives the software
development as a modeling process. The basic artifacts in
an MDA process are models that are used to specify the
software to be built. Two types of models are usually
created: (1) a model that corresponds to a software speci-
fication which is independent from the technology that
will be used for its realization, called also platform-inde-
pendent model; and (2) a model specified in a language,
which allows it to represent basic construct of the target
implementation platform (the platform-specific model).
MDA proposes guidelines and standards to automate
the mapping from a platform-independent model to a
platform-specific model, provided that the syntax and
semantics of the modeling languages used to build these
models are given in terms of a meta-model. The term meta-
model is used to indicate a model of the concepts that can
be used to design and describe actual systems. These
meta-models are usually specified as UML class diagrams.
The models that describe a system contain instances of
the meta-model classes. Figure 1(a) sketches the structure
of an MDA process (9,10). Mapping between source and
target models are obtained through an application of
mapping rules defined between the elements of the
meta-models of the source and the target modeling lan-
guages.

The ultimate goal of MDA is to improve the quality of
software products and the development process, by
allowing for the reuse of models and mappings between
models. Nowadays, lot of effort is required to develop
model interoperability standards, as well as model-to-
model transformation concepts and techniques for their
automation in MDA. The MDA initiative refers mainly to
OO software development, but its ideas and standards
influenced AO approaches also.

Agent-oriented modeling languages are usually given
their own graphical notation and UML meta-models to
express their syntax and semantics. In a broad sense, we
may consider three main families of AO modeling lan-
guages: (1) languages that inspired directly from the AO

AGENT-ORIENTED SOFTWARE ENGINEERING 3



paradigm. Examples of languages belonging to this family
are the agent-object-relationship modeling language
(AORML) (11), the i� framework (12), and Knowledge
Acquisition in autOmated Specification (KAOS) (13), which
have been initially proposed for modeling and analyzing
requirements; (2) languages defined by abstracting from
specific agent programming languages. Examples include
the modeling language used by the Prometheus methodol-
ogy; (3) languages that extend UML with agent paradigm
notions. Examples are Agent UML (AUML) (14), Agent
Modeling Language (AML) (15), and the modeling lan-
guage used by the ADELFE methodology.

Figure 2 illustrates AO modeling languages’ genealogy.
In the rest of this section, for each family, an example of a
modeling language is given in more detail. Some consider
the situation at the time of writing analogous to the
situation that preceded the agreement, which led to the
definition of a unified language for object-orientation,
namely UML.

Languages Inspired from the AO Paradigm

The i� framework (12) proposes an agent-oriented
approach to requirements engineering, which focuses on
the intentional characteristics of agents, such as goals,

beliefs, abilities, and commitments. The underlying idea
is that agents in organizations depend on each other for
goals to be achieved, tasks to be performed, and resources to
be furnished, which leads to a network of dependencies.
That is, the framework rests on a concept of distributed
intentionality, from which the name i� derives.

Primitive concepts of the i�modeling framework are: the
concept of actor, which is an entity that has strategic goals
and intentionality within the system or the organizational
setting. An actor can represent a physical or a software
agent, a role played by an agent in a specific context or a set
of roles ( position). The concept of goal represents a stra-
tegic interest of an actor. The language distinguishes hard
goals from soft goals, which are typically used to model
nonfunctional requirements. Task ( plan) represents, at
an abstract level, a way of doing something; resource
represents a physical or an informational entity. More-
over, the framework supports several primitive relation-
ships, such as strategic dependencies between actors
where one actor wants something and another is willing
and able to deliver it. Additional types of relationships are:
goal AND/OR decompositions, means-end relationships
between a plan (the means) and a goal (the end), as well
as positive/negative contributions from goals/plans to soft
goals.

Figure 1. (a) Model to model transformations according to the MDA approach (9). (b) A portion of the meta-model specifying the semantics of
the i� based notation used in the Tropos methodology (10).

Figure 2. Genealogy of AO modeling languages.
The abstraction level increases going from programming
languages to paradigms. The UML language for object-
oriented analysis and design was defined by abstracting
from OO languages. Some AO modeling languages result
from an analogous abstraction process from AO program-
ming languages (e.g. Prometheus) whereas others
inspire directly from the AO paradigm (e.g. i�, KAOS,
AORML), or extend UML with AO concepts (e.g. AHL,
AUML, ADELFE).

4 AGENT-ORIENTED SOFTWARE ENGINEERING



Thesenotionsaremore formallyspecified inthe language
meta-model,whichis illustrated inFig.1(b).Forinstance,an
actordependency isa4-aryrelationship:Thefirstandsecond
arguments are of type actor (depender and dependee), and
the third argument is of type goal or plan or resource (depen-
dum).It isalsopossibletospecifyareasonforthedependency
(labeledaswhy),whichcanbeagoaloraplan,whichispartof
a goal/plan decomposition or a resource. A model is an
instance of the meta-model and can have a graphical repre-
sentation in terms of an actor diagram that represents
strategic dependencies between networks of actors and a
goal diagram, which depicts how actor goals have been
decomposed into subgoals and possibly operationalized
through means–end relationships.

An example of goal diagram is given in Fig. 3, which illu-
stratesanexcerptfromamodelofan ‘‘hotelcleaning’’domain.

Two stakeholders, the hotel’s manager, and the customer are
represented as actors, the Manager and Customer actors
respectively, with their goals. The point of view of the actor
Manager with reference to main goals like keep clean the
building is analyzed inside the balloon diagram. This top level
goal is OR-decomposed into subgoals, which represents alter-
native ways to achieve it, namely engaging a cleaning company
or acquiring a cleaning robot system.

Abstracting from Agent Programming Languages

As soon as agent programming environments were ready
to be used outside the academic environment, modeling
languages for specifying agent applications started to be
proposed. The aim was mainly that of providing a modeling
language for a practical methodology that should guide a
software engineer during the use of a specific programming
environment, which is eventually generalizable to others.

Along this line, we can mention the modeling language
used by the Prometheus methodology (16). Among the basic

concepts of this modeling language are those of percepts and
action, which represent information that the environment
provides to an agent and the actions the agent can perform
to change the environment, respectively. Moreover, two
types of agents can be specified: proactive agents, which can
pursue goals, and reactive agents, which respond to
significant occurrences (events). These events may be per-
cepts from the environment, but they may also be messages
from another agent or even internal occurrences. In case of
proactive agents, the concepts of belief and plan are used to
represent states and library of plans to achieve goals. To
model social properties of agents concepts like commitment,
norm, and team are also provided.

A set of diagrams to build views on a model are provided,
including goal, scenario, role, system overview, agent over-
view diagrams. Figure 4, depicts a simple system overview
diagram for a cleaning robot agent.

Extending UML

The UML language provides different mechanisms for its
extensions, for instance, the stereotype mechanism that
extends the UML vocabulary adding new model elements
or the profile mechanism for tailoring the language to a
specific problem domain. These features of UML were
exploited in several AO modeling language proposals,
which aimed at capitalizing on the wide use of UML in
software engineering and on the availability of a variety of
tools supporting UML, to favor the adoption of agent-based
technology.

The AUML proponents made explicit their intention to
provide minimal extension to UML for supporting the spe-
cification of properties peculiar to agents and for reusing
UML diagrams as much as possible during AO systems
design. The initial work on AUML focused on agent interac-
tion,whichisspecifiedthroughsequencediagrams,thatwere
extended, for instance with AND, OR, XOR operators (14).

Manager
customer happy Customer

be comfortable

requests satisfied

Actor SoftGoal Hard Goal

+

+

+

+

+

+
+

–

–

HGoal2HGoal

Contribution

Legend

Decomposition

be not disturbed

room clean

evrything
under control

keep clean
the building

cleaning company
engaged

flexible
solutions

enabling technology

minimize costs

cleaning robots
acquired

Figure 3. Goal diagrams of the Early Requirements Tropos model of the hotel cleaning domain.

AGENT-ORIENTED SOFTWARE ENGINEERING 5



AUMLsequencediagramswereadoptedbyFIPA5 toexpress
agent interaction protocols and became a reference notation
for several methodologies to specify agent protocols. The
example inFig.5, illustratesaninteractionprotocol inwhich
an agent (a robot cleaner) requests peers about offering help
for cleaning tasks. The protocol admits a set of communica-
tive actions such as refusal to help, acceptance, and inform.
Agent class diagrams as well as extensions to other UML
elements like package, template, and activity diagrams are
also provided. AUML definition is currently a task of the
Agent Platform Special Interest Group of OMG,6 whose final
objective includes thatof promotinga standard agentmodel-
ing language.

Based on UML extensions are the modeling language
used by the ADELFE methodology (17) and the AML (15),
which represents an industrial initiative.

AGENT-ORIENTED SOFTWARE ENGINEERING
METHODOLOGIES

Software engineering methodologies define a structure for
the development process in terms of phases, activities, and
work products (artifacts).

Research on AOSE methodologies received a lot of
attention in the last 10 years, and currently we may count

tens of different proposals. Indeed, on one side, research-
ers try to analyze and compare them along different
criteria, like coverage of the agent abstractions used in
modeling, model’s completeness, consistency, complexity,
re-usability; development life-cycle; availability of tools;
and in general usability of the methodology. On the other
side, a reciprocal contamination and evolution of some
previously proposed methodologies can be observed. Cur-
rently few of them provide tool-supported environments.
Interesting is also an analysis made by Sellers et al. (18)
that identified the roots of state-of-the art methodologies
in OO frameworks like RUP and Fusion.

We focus here on AOSE methodologies that adopt a
model-based approach. These methodologies define the
models to be created, step by step, during the different
phases in the development process, and adopt an AO mod-
eling language for their specification.

To give a flavor of what AOSE methodologies offer today,
in the following, basic features of the principal methodol-
ogies will be recalled along basic phases of the software
development process, namely requirements analysis, sys-
tem design, implementation and testing. Excerpts from the
analysis and design of the ‘‘cleaner world’’ scenario,
adapted to the problem of room cleaning in a hotel, will
be used to exemplify.7 In particular, room cleaning will be
considered as a cooperative task performed by a team of
autonomous agents, which have on-board sensors to help
moving in the environment avoiding collision with objects
or moving entities, and the ability to engage forms of
collaborations with the other robots to ask/offer help for
cleaning.

Garbage detected

Obstacle on path

Waste bin located

Request from robot

Cleaning Robot

battery charged status

agent data action percept protocol

Legend

environment knowledge

Help ask-offer

Interact wih customer

offer help

update plan

carry garbage to waste bin

move to pos X

avoid collision

pick-up garbage

Request from customer

info on robots

Figure 4. System overview diagram in the Prometheus methodology for the cleaning robot agent.

5The Foundation for Intelligent Physical Agent (FIPA) aims at
promoting agent-based technology and the interoperability of its
standards with other technologies. Since 2005, it is an IEEE
Computer Society standards organization.
6The Object Management Group (OMG) is an international con-
sortium aiming at promoting standards for a wide range of tech-
nologies. The effort on AUML definition has been first carried out
inside FIPA, and since 2005 it is one of the OMG initiatives, http://
agent.omg.org/.

7The ‘‘cleaner world’’ scenario has been largely used in AI research.
A description is given by Firby (19).

6 AGENT-ORIENTED SOFTWARE ENGINEERING



Analysis

The analysis phase aims at understanding the problem
domain and the requirements of the software system to
be built. These aspects are crucial in developing software
because poor understanding of the problem domain and of
customer needs is a major reason for software projects
failures. This fact motivates the development of a specific
discipline inside software engineering, named require-
ments engineering, which offers methods and techniques
to discover and specify requirements, to analyze and verify
the consistency of a requirements specification, and to
manage requirements changes.

Focusing on AO approaches, the analysis phase will be
guided by questions like the following ones. How will the
system affect the current domain organization? Which
goals will be the system responsible for? How will the
system interact with the environment? The resulting mod-
els will specify aspects like: the role(s) of the system-to-be
with respect to domain stakeholders; its assigned goals
(responsibilities); reasoning capabilities, sensors/effectors
the system should be provided with; human-system and
system-system interaction protocols.

Table 1 recalls specific models to be built in this phase,
according to some AOSE methodologies. In particular, the
Tropos(20) methodology borrows ideas from the i� frame-
work for requirements engineering and proposes to model
the application domain first, using actor and goal dia-

grams, as those depicted in Fig. 3 and in Fig. 6. In the
Early Requirements model, the domain stakeholders are
represented as actors together with their goals and their
strategic dependencies for goal achievement. For exam-
ple, the hotel cleaning scenario is modeled in terms of two
main stakeholders: the hotel manager and the customer
(Fig. 3).

The manager goal keep clean the building is analyzed
along alternative ways to achieve it. Exploiting a cleaning robot
system is represented by the subgoal cleaning robots
acquired. This alternative is considered a more flexible solu-
tion with respect to engaging a cleaning company and contri-
butes to reduce costs, this is represented in terms of positive
contributions to the soft-goals flexible solutions and
minimize costs.

A deep understanding of the domain is considered a
crucial step to understand the role of the software system
to be built and to identify the goals the new system should
contribute to achieve. This is represented in the Late
Requirements model, an excerpt from the model of the hotel
cleaning scenario is depicted in Fig. 6.

The RobotTeam actor represents the cleaning robot system.
The overall objective of the system is that of daily cleaning the
building (clean building goal). A predefined task allocation
is given to the cleaning agents, but dynamic re-planning of the
cleaning task is used to manage unforeseen situations like

Figure 5. AUML specification of the ask/offer help
interaction protocol between cleaning robot agents.

AGENT-ORIENTED SOFTWARE ENGINEERING 7



Table 1. Artefacts by Process Steps, Supporting Tools and Development Process of Some AOSE Methodologies (6, 18).

Process
Phase Tropos MAS-CommonKADS Gaia o-MaSE Prometheus

Early Req. goal
actor-diagrams in i�

Domain model Analysis Overview model

Analysis
(Tools)

Late Req. goal- actor-
diagrams in i�

(TAOM4E modeler;
T-Tool model checker)

Agent, Organization,
Expertise, Task,

Communication,
Coordination models

Role, Interaction
models - no specific
notation-

Goal, Organization,
Role models - OO
derived notation;

Role Description
Document
(aT3 tool)

Scenarios, System
goals, System Interface
(actions,
perceptions) models
(PDT modeler)

Design
(Tools)

System actor goal-
actor-diagrams in i�

Design, Expertise
models

Organization
structure,
Role, Interaction
models

Agent class and
Protocol models

System overview
(Agent-role

grouping), Protocol
(interaction
diagrams),
Agent descriptors

Interaction,
Capability
and Plan diagrams
in AUML
(TAOM4E modeler)

Agent, Organization
and Reaction models

Agent, Service and
acquaintance

models

Plan, Capability
models
(aT3 tool)

Process, Agent
overview, Capability
descriptors (capability,

event, data,
plan descriptors)
(PDT modeler)

Implementa-
tion
(Tools)

MDA mapping to
JADE/Jadex
Agent skeleton

(t2� tool - TAOM4E)

Automatic code
generation
in JACK

Testing
(Tools)

Goal-oriented testing
methodology (eCAT
tool TAOM4E)

Interaction protocol
debugger (petri nets)

Development
Process

Iterative and
incremental

Cyclic risk-driven
process

Iterative within
phase, sequential
between phases

Iterative across all
phases

Iterative across all
phases

<agent xmlns=”http://jadex.sourceforge.net/jadex”

name=”cleaningRobot” package=”robots”>
<imports>

<import>cleaner.plans.*</import>
<import>...</import>

</import>
</beliefs>....</beliefs>

<maintaingoal name=”be_cooperative”>

</maintaingoal>

<achievegoal name=”clean_building”>

</achievegoal>

</goal>

</agent>

<plans>...</plans
.....

<Parameter name=”param” class=”String” />

<Parameter name=”param” class=”String” /> 

<Parameter name=”result” class=”String” />

<Parameter name=”result” class=”String” />

<goals>

...

....

Robots
Team

be informed

Manager

charged
battery

internal
stake ok

collision
avoided

customer
requests
satisfied

initial
plan
given

keep clean
the building

 clean
 building

 clean
 building

 be nice

 be nice to waste
bin carried

 stay operational

 stay operational

be cooperative

be cooperative

help offered

help requested

Cleaning
Robot

garbage
picked-up

Figure 6. Hotel cleaning scenario: excerpts of Late Requirements and Architectural diagrams in Tropos. A fragment of the Jadex code that
has been automatically derived from the Architectural diagram is also shown.

8 AGENT-ORIENTED SOFTWARE ENGINEERING



extra effort required to clean a room or robot malfunctions.
Re-planning results from agents collaboration (be coopera-
tive goal). Of course re-planning can still end up with a failure
condition that will be communicated to the hotel manager.

Another methodology, MAS-CommonKADS (21) adapts
conceptualization techniques, such as Class-Responsibility-
Collaboration (CRC) cards together with user centred tech-
niques and prescribes a set of models to be built in the
analysis phase, including an organization model that
describes the agent society, and a communication model
that describes the human-software agent interactions.

In other AOSE methodologies the analysis phase focuses
directly on the system-to-be and subsequently on the
external actors, which interact with it. For instance,
Gaia (22) assumes that requirements have been identified
during a preliminary requirements elicitation activity and
prescribes to build role and interaction models for the
system. Note that Gaia does not commit to any specific
notation for its models. Analogously in o-MaSE (23) first a
goal model of the system is created and refined into an AND/
OR goal tree, from which the organizational model is
derived. The organizational model points out interfaces
with external actors and it will be complemented with a
specification of the interaction between those actors and
specific roles in the system (Role model).

Other AOSE methodologies, like Prometheus, adapt Use
Case analysis techniques used also in OO methodologies,
which identify the external entities (referred to as actors)
that will use or interact in some way with the system-to-be
and the key scenarios around which the interaction will
occur. The system interface is also modeled in terms of
perceptions and actions the system can perform on the
environment.

Design

The design phase aims at defining the system architecture
accordingly to the functional and nonfunctional require-
ments analyzed in the previous phase. AOSE approaches
designattwolevelscalledthemacroandthemicrolevels.The
macro level concerns the specification of the system archi-
tecture in terms of components (e.g., agent types or multia-
gent systems) and of their dependencies. Here, available
architectural styles (organizational patterns) can be used
as a reference structure for the architecture. An example of
system architecture model in Tropos is depicted in Fig. 6.

The Robots Team system is defined in terms of Cleaning
Robot agents with the following four individual goals: clean
its environment by removing dirt whenever possible, that
is pick-up any garbage and carry it to a near waste bin;
keep itself operational by monitoring its internal state and
in particular its battery charge state. Whenever the battery
state is low, move to the charging station; be nice to other-
people or objects that are close by, e.g. it should not collide
with others. Moreover it should understand requests by an
hotel customer like: ‘‘do not clean here now’’ or ‘‘do a quick
cleaning now’’; be collaborative with the other robot, that is
answer to a request for help giving information about the
percentage of assigned work done, the battery charge state
and the location.

The corresponding agent model according to the Pro-
metheus methodology is illustrated in Fig. 4.

The micro level concerns the design of the single
agents. It specifies the agent’s knowledge and reasoning
capabilities, and the interaction protocols along with
it will interact with the other agents. Interaction proto-
cols are usually specified with diagrams as the one
depicted in Fig. 5. Table 1 summarizes design model
sets of current AOSE methodologies and supporting
tools.

Implementation and Testing

Most currently available AOSE methodologies provide the
developers a well-defined set of agent classes to implement
and instantiate, according the specification that results
from the design process. Guidelines or support for the
implementation phase is usually considered out of the scope
of the methodology.

The application of MDA principles to software develop-
ment provides techniques to build automatic mappings
from design specifications to code skeleton, in a chosen
implementation platform. Research work on the applica-
tion of these techniques to the case of AO systems is giving
promising results (24).

Figure 6, depicts a fragment of agent code, in Jadex,
which has been derived automatically from the agent’s goal
diagram of the Architectural design model in Tropos.

Agent programming environments, such as JADE and
JACK, build on Java programming environments that
provide their own supporting tools for programming and
debugging (5). Current research addresses the need of
debugging tools that can integrate the different program-
ming paradigms and monitor the execution and commu-
nication of agents.

AO systems verification and testing is also mainly
addressed in the research context.

Development Process and Tools

The development process of the AOSE methodologies
involves a high degree of iteration within and or across
the development phases. Process’s features, from an over-
view on ten methodologies (18), are partially reported in
Table 1.

Providing CASE tools at support of AOSE methodologies
has been recognized a crucial step toward the adoption of
Agent-Oriented Software Engineering methodologies by
industry. Currently, specialized tools, which exploit
model-checking or deductive reasoning techniques, are
provided to support specific tasks such as the consistency
verification of requirements (or design) specifications.

Visual modelers are provided by Tropos and Pro-
metheus, whereas methodologies that adopt UML-based
notation provide customization of UML modelers. The
above-mentioned modelers provide also functions for auto-
matic code generation toward specific Multi-Agent System
platforms.

AGENT-ORIENTED SOFTWARE ENGINEERING 9



RESEARCH DIRECTIONS

Several challenges stimulate research in AOSE, as pointed
out by Luck (2) and Zambonelli (25). Worth mentioning are
efforts toward unification of AOSE methodologies and defi-
nitions of standards, as well as research on designing soft-
ware with autonomic properties.

Given the great number of AOSE methodologies that can
be found in literature, and the fact that each one defines its
own concepts and system structure, interoperability
becomes a main challenge. The Agentlink AOSE Technical
Forum Group8 addressed this issue by studying and com-
paring meta-models of existing methodologies to find com-
monalities and to give clear definitions of the core concepts
used in AO systems development. The final objective was to
propose a unified AO meta-model to become a reference for
future agent-oriented modeling languages and develop-
ment tools. This work is summarized by Bernon (26).
The definition of standards for AOSE, including AO
meta-models, is currently being investigated by other par-
allel initiative, such as IEEE/FIPA, OMG, and ISO.

Meta-models of the AO development process and of its
products are at the core of method engineering
approaches, which propose a project-specific methodology
by composing coherent parts of existing methodologies,
called method fragments. Method engineering has been
successful applied in OO development (27). It requires a
repository of method fragments specified accordingly to
process and product meta-models. Construction guide-
lines support the use of the repository for deriving a
personalized development methodology, which fits the
needs of specific projects. Currently, a wide repository
of method fragments coming from well-known AOSE
methodologies, such as Gaia, and Prometheus, Tropos,
has been included in the Open Process Framework (28).
A similar approach is pursued by the FIPA Methodology
Technical Committee. The method engineering approach
allows, on one side, to overcome the need of a universally
applicable methodology, and on the other side, it forces
methods interoperability by means of meta-models.

The need of more solid tools to support agent systems
developers is motivating studies on automating the gen-
eration of code from AO specifications and the verification of
specifications and system testing. Adapting verification
and testing techniques from concurrent and distributed
systems may be not sufficient for the case of AO systems.
Autonomous and deliberative behaviors of AO systems that
operate in an open world may lead to unpredictable scenar-
ios, and it may become difficult to say whether the AO
systems are behaving ‘‘as wished.’’ These problems become
harder and harder as soon as the number of agents
increases, the emergent behaviors are likely to be mani-
fested. Studies on automating test cases generation and
execution are promising toward managing scalability and
evolvability issues. More generally, providing adequate
development techniques and methods to support depend-
ability characteristics, such as fault avoidance, fault toler-
ance, fault removal and fault forecasting, will make AO
systems more robust, trustworthy, secure, and safe.

Research on the integration with other recently pro-
posed computational paradigms, such as service-oriented
architecture and autonomic computing, is also under way.
According to the service-oriented architecture (29) model
for distributed applications, new applications can be cre-
ated at run-time by dynamically aggregating existing com-
ponents, each one providing predefined computational
services.

Autonomic computing (30) aims at creating computa-
tional systems, which can manage themselves. More spe-
cifically, these systems should automatically configure and
reconfigure under varying (and unpredictable) conditions;
they should self-optimize their operations by monitoring
their components and fine tuning their workflow to achieve
system goals; and they should automatically discover pro-
blems and recover from situations that might cause mal-
functions. These properties are called in brief self-�

properties. The autonomic computing vision takes inspira-
tion from the autonomic function of the human central
nervous system, which controls key functions without con-
scious awareness or involvement. This vision shares many
goals with AO computing. AOSE seems to offer candidate
solutions both at the design and the technology levels to
manage the complexity of autonomic systems.

CROSS-REFERENCES

Intelligent Agent
Object-Oriented Analysis and Design

BIBLIOGRAPHY

1. N. R. Jennings, An agent-based approach for building complex
software systems, Commun. ACM, 44 (4): 35–41, 2001.

2. M. Luck, P. McBurney, O. Shehory, and S. Willmott, Agent
Technology: Computing as Interaction (A Roadmap for Agent
Based Computing).Liverpool, UK: AgentLink, 2005.

3. J. Ferber, Multi-Agent Systems: An Introduction to Distributed
Artificial Intelligence. Boston, MA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

4. M. Wooldridge, An Introduction to MultiAgent Systems.
New York: John Wiley & Sons Ltd, 2002.

5. R. H. Bordini, L. Braubach, M. Dastani, A. E. F. Seghrouchni, J.
J. Gomez-Sanz, J. Leite, G. O’Hare, A. Pokahr, and A. Ricci, A
survey of programming languages and platforms for multi-
agent systems. Informatica, 30 (1): 33–44, 2006.

6. F. Bergenti, M.-P. Gleizes, and F. Zambonelli, eds., Methodolo-
gies and Software Engineering for Agent Systems: The Agent-
Oriented Software Engineering Handbook.New York: Springer,
2004.

7. E. Yu, Agent orientation as a modelling paradigm, Wirtschaft-
sinformatik, 43 (2): 123–132, 2001.

8. G. Booch, J. Rambaugh, and J. Jacobson, The Unified Modeling
Language User Guide. The Addison-Wesley Object Technology
Series. Reading, MA: Addison-Wesley, 1999.

9. S. J. Mellor, K. Scott, A. Uhl, and D. Weise, MDA Distilled.
Boston, MA: Addison-Wesley, 2004.

10. A. Susi, A. Perini, P. Giorgini, and J. Mylopoulos, The Tropos
metamodel and its use, Informatica, 29: 401–408, 2005.

8http://www.agentling.org.

10 AGENT-ORIENTED SOFTWARE ENGINEERING



11. G. Wagner and K. Taveter, Towards radical agent-oriented
software engineering processes based on AOR modeling. In
Henderson-Sellers and Giorgini [18], 2005, pp. 277–315.

12. E. Yu, Modelling Strategic Relationships for Process Reengi-
neering. PhD Thesis, Toronto, Canada: University of Toronto,
Department of Computer Science, 1995.

13. A. van Lamsweerde and E.Letier, Handling obstacles in goal-
oriented requirements engineering. IEEE Trans. Software
Eng. 26 (10): 978–1005, 2000.

14. M.-P. Huget, J. Odell, and B. Bauer, The AUML approach. In
Bergenti et al. [6], 2004, pp. 231–257.

15. I. Trencansky and R. Cervenka, Agent modeling language
(AML): a comprehensive approach to modeling MAS. Informa-
tica, 29 (4): 391–400, 2005.

16. L. Padgham and K. Taveter, Prometheus: A Practical Agent-
Oriented Methodology. In Henderson-Sellers and Giorgini [18],
2005, pp. 107–135.

17. C. Bemon, V. Camps, M. -P. Gleizes, and G. Picard. Engineer-
ing Adaptive Multi-Agent Systems: the ADELFE Methodol-
ogy. In Henderson-Sellers and Giorgini [18], 2005, pp. 172–
202.

18. B. Henderson-Sellers and P. Giorgini, eds., Agent-Oriented
Methodologies.Hershey, PA: Idea Group Inc., 2005.

19. J. Firby, An architecture for a synthetic vacuum cleaner. In
Proc. of the AAAI Fall Symp. Series Workshop on Instantiating
Real-World Agents. Raleigh, NC, 1993.

20. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini, Tropos: an agent-oriented software development
methodology. Auton. Agents Multi-Agent Sys., 8 (3): 203–236,
2004.

21. C. A. Iglesias and M. Garijo. The Agent-Oriented Methodology
MAS-CommonKADS. In Henderson-Sellers and Giorgini [18],
2005, pp. 46–78.

22. F. Zambonelli, N. R. Jennings, and M. Wooldridge, Developing
multiagent systems: the gaia methodology, ACM Trans. Softw.
Eng. Methodol. 12 (3): 317–370, 2003.

23. S. DeLoach. Engineering organization-based multiagent sys-
tems. In Software Engineering for Multi Agent Systems IV
(SELMAS), Springer, LNCS 3914: 109–125, 2006.

24. L. Penscrini, A. Perini, A. Susi, and J. Mylopoulos, High
variability design for software agents: extending tropos,
ACM Trans. Auton. Adapt. Syst., 2 (4): 2007.

25. F. Zambonelli and A. Omicini, Challenges and research direc-
tions in agent-oriented software engineering, Auton. Agents
Multi-Agent Syst., 9 (3): 253–283, 2004.

26. C. Bernon, M. Cossentino, and J. Pavón, Agent-oriented soft-
ware engineering. Knowl. Eng. Rev., 20 (2): 99–116, 2005.

27. S. Brinkkemper, Method engineering: engineering of informa-
tion systems development methods and tools. Informat. Soft.
Technol., 38 (4): 275–280, 1996.

28. D. G. Firesmith and B. Henderson-Sellers, The OPEN Process
Framework: An Introduction. Boston, MA: Addison-Wesley,
2002.

29. M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and
B. J. KrÞmer, Service-oriented computing: a research road-
map. In Service Oriented Computing, volume 05462 of Dag-
stuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum f?r Informatik (IBFI), Schloss Dagstuhl,
Germany, 2006.

30. J. O. Kephart and D. M. Chess, The vision of autonomic
computing, IEEE Comput. 36 (1): 41–50, 2003.

Reading List

F. Bergenti, M.-P. Gleizes, and F. Zambonelli, eds., Methodologies
and Software Engineering for Agent Systems: The Agent-Oriented
Software Engineering Handbook. New York: Springer, 2004.

B. Henderson-Sellers and P. Giorgini, eds., Agent-Oriented Meth-
odologies. Hershey, PA: Idea Group Inc., 29005.

ANNA PERINI

Fondazione Bruno Kessler—IRST
Trento, Italy

AGENT-ORIENTED SOFTWARE ENGINEERING 11



A

AGENT TECHNOLOGY

INTRODUCTION

Agent technology is a rapidly growing subdiscipline of
computer science on the border of artificial intelligence
and mainstream software engineering studying the con-
struction of intelligent systems. It is centered around the
concept of an (intelligent/rational/autonomous) agent. Gen-
erally, An agent is a software entity that displays some
degree of autonomy; it performs actions in its environment
on behalf of its user but in a relatively independent way. It
takes initiatives to perform actions on its own by ‘‘deliber-
ating’’ its options to achieve its goal(s).

Although there is no generally accepted precise defini-
tion of an agent, some consensus surrounds the (possible)
properties of an agent (1,2): Agents are hardware or
software-based computer systems that enjoy the properties
of:

� Autonomy. The agent operates without the direct
intervention of humans or other agents, and it has
some control over its own actions and internal state.

� Situatedness. Agents are situated in an environment.
They sense it and act in it.

� Reactivity. Agents perceive their environment and
react to it in a timely fashion.

� Pro-activity. Agents take initiatives to perform actions
and may set and pursue their own goals.

� Social ability. Agents interact with other agents (and
humans) through communication; they may coordi-
nate and cooperate while performing tasks.

Other properties that agents may have are mobility (the
ability of an agent to move around in an electronic network
and the Web in particular), veracity (the assumption that
an agent will not knowingly communicate false informa-
tion), benevolence (the assumption that an agent will
always try to do what is asked of it), and rationality (the
assumption that an agent will act to achieve its goals, and it
will not act in such a way as to prevent its goals being
achieved, its beliefs permitting), cf. Ref. 1.

Thus we observe that agents have both informational
and motivational attitudes; they handle and act on certain
typesof information (such as knowledge, or ratherbeliefs) as
well as motivations (such as goals). Many researchers
adhere to a stronger notion of agency that is sometimes
referred to as a ‘‘cognitive’’ agent, which is an agent that
realizes the above properties by means of mentalistic atti-
tudes that pertain some notion of a mental state. The mental
state involves such notions as knowledge, beliefs, desires,
intentions, goals, plans, commitments, and so on. The idea
behind this notion is that through these mentalistic atti-
tudes, the agent can achieveautonomous, situated, reactive,
proactive, and social behavior in a way that is mimicking or
at least inspired by the human way of thinking and acting.

So, in a way we may regard agent technology as a modern
incarnation of the old ideal of creating intelligent artifacts in
artificial intelligence (AI). Indeed, some modern textbooks
in AI (3,4) even identify AI with the study of agents!

However, we may also regard agent technology as a next
step after the currently very popular object techno- logy in
the form of object-oriented programming. Some researchers
regard agents as a special kind of objects, and some use the
term‘‘activeobjects’’ foragents (cf.Ref.2,p.26,27).However,
in principle, some fundamental differences exist between
agents and objects. In object-oriented programming, objects
are simply ‘‘used’’: For instance, a call to a method of an
object, will provided everything works normally just be
executed by that object. In some sense, objects are just
passive entities that can be employed in a system. For
agents, however, it is different. An agent cannot be con-
trolled directly by some program outside that agent (such as
another agent). The agent should be requested to perform a
task or to provide a pieceof information. This request may be
denied for reasons that concern that agent: Perhaps it is too
busy, the request is not in line with its own goals, or perhaps
even the agent is not in the right ‘‘mood’’. (We will later see
how far these ‘‘human-like’’ qualities of agents may go.) In
short, one may say that the main difference between agents
and objects is the lack of autonomy of the latter (no control
over its internal state and actions), whereas for the concept
of an agent, it is one of the defining properties.

It is also important to note that the property of situat-
edness that agents are supposed to possess puts them apart
from the expert systems from the 1980s. Expert systems are
not situated: They only get information (symptoms) as
input (from a user) and yield information (a diagnosis) as
output (to that user). They do not really sense an environ-
ment, and they do not act directly in such an environment.

Althoughthe initial researchonagents focusedonmodels
of individual agents, more recent developments in agent
technologyemphasizeparticularlymodelsandarchitectures
of multiagent systems, in which multiple agents share the
sameenvironmentand interact with itandeachother.Here,
we see the emergence of an interesting amalgam of the areas
of (distributed) artificial intelligence and distributed com-
puting in mainstream computer science. As a consequence,
one may discern a trend toward distribution (of resources,
‘‘intelligence’’, and reasoning) and delegation of tasks
between agents. Below, we will sketch the main research
issues. But first, we turn to the start of agent technology:
Philosophical ideas about (human and artificial) agents that
actautonomously inanenvironment.Theseagentsactbased
on decisions involving their ‘‘mental states,’’ in particular
that pertain to knowledge and objectives.

PHILOSOPHICAL BACKGROUND

The field of agent technology emerged out of philosophical
considerations on how to reason about courses of action
and human action, in particular. An area of analytical

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



philosophy is occupied with what is called practical
reasoning, in which one studies so-called practical syllo-
gisms that constitute patterns of inference regarding
actions. As an example, a practical syllogism may have
the following form (5).

Would that I exercise.

Jogging is exercise.

Therefore, I shall go jogging.

Although this example has the form of a deductive syllo-
gism in the familiar Aristotelian tradition of ‘‘theoretical
reasoning’’, on closer inspection it seems that this syllogism
does not express a purely logical deduction: The conclusion
simply does not follow logically from the premises. It con-
stitutes a representation of a decision of the agent (going to
jog), where this decision is based on mental attitudes of the
agent, which are his/her beliefs (‘‘jogging is exercise’’) and
his/herdesiresorgoals (‘‘wouldthatIexercise’’).So,practical
reasoning is ‘‘reasoning directed toward action—the process
of figuring out what to do’’, as Wooldridge (6) puts it. The
process of reasoning about what to do next on the basis of
mental states such as beliefs and desires is called delibera-
tion. The philosopher Michael Bratman has argued that
humans (and more generally, resource-bounded agents)
also use the notion of an intention when deliberating their
next action (7). An intention is a desire that the agent is
committed to and will try to fulfill until it believes it has
achieved it or has some other rational reason to abandon it.
Thus, we could say that agents, given their beliefs and
desires, choose some desire as their intention, and ‘‘go for
it’’.As such, we can view Bratman’s theory as an extension of
the more general theory of intentional stance of Daniel
Dennett (8). This stance views complex entities (including
humans, animals, and computers) as if they were rational
agents that deliberate their beliefs and desires for deciding
their next actions. As an aside, we remark that Dennett’s
intentional stance is very much related to similar theories in
psychologyandbiology,andasethology, inparticular,where
humans, including children and animals, are supposedly
endowed with a theory of mind about other such entities.
Thus, humans can reason about the mental states of these
entities (Ref. 9, p. 838–841). Bratman’s philosophical theory
has been formalized through several studies, in particular
the work of Cohen and Levesque (10) Rao and Georgeff (11),
and van der Hoek et al. (12), and it has led to the Belief-
Desire-Intention model (BDI) of intelligent or rational
agents 11. Since the beginning of the 1990s, researchers
have turned to the problem of realizing artificial agents. We
will discuss this development in some more detail below.

AGENT LOGICS

As mentioned above, to get a more precise grasp on the
philosophical considerations of Bratman, AI researchers
started to use formal tools in the form of especially devised
logics for formalizing the main ideas. These approaches are
based on modal logics, which are logics that concern mod-
alities such as knowledge, belief, time, obligation, and
action. Modal logics have been proposed in philosophy to
analyze the properties of these modalities. Semantics of

these logics are usually provided by ‘‘possible world seman-
tics’’ or ‘‘Kripke-semantics’’ (13), in which modal operators
are interpreted by means of an accessibility (or possibility)
relation, relating possible worlds according to the modality
at hand. So, for instance, for temporal logic, this accessi-
bility relation expresses the flow of time, whereas for
epistemic logic (the logic of knowledge) the accessibility
relation points at possible alternative worlds that the agent
deems possible on the basis of its (lack of) knowledge. For
example, a knowledge operator then expresses truth in all
epistemically alternative worlds designated by the acces-
sibility relation (cf. Refs. 14 and 15).

Cohen and Levesque (10) used a (linear-time) temporal
logic for the description of agent behavior. In their work,
which has been very influential in subsequent agent
research, they try to capture the notion of intention in terms
of more primitive notions such as belief, goal, and action. So,
the culmination of their paper is a definition of intention in
terms of these notions. Actually they give two, because two
natural notions of intention are suggested: intention to do/
perform an action and intention to be in a particular state or
situation. So for instance, an example of the former is the
intention to go on a journey, whereas an example of the
latter is the intention to be in a particular city, for example,
Paris. Of course, relations exist between these two kinds of
intentions, but they are distinct concepts in principle.

Next, Rao and Georgeff came up with their famous BDI
logic, which is sometimes also called BDI-CTL because it is
based on the (branching–time) temporal logic CTL (com-
putation tree logic). This logic is devised in mainstream
computer science to reason about concurrent processes
(16). Rao and Georgeff’s approach to formalizing Bratman’s
philosophy is different from that of Cohen and Levesque.
Apart from the fact that they use a branching–time logic
(catering for possible choices of actions by the agent in a
more direct fashion), they also do not build a definition of
intention in terms of other notions. Rather they introduce
in their logic three independent operators (modalities) for
beliefs, desires (or goals), and intentions; then, they start to
analyze possible relations between these three operators,
which are captured by axioms. For instance, they propose to
have an axiom Intend(p)! Desire(p), which indicates that
an intention is a (special) kind of desire.

Finally, we mention that van der Hoek et al. (12)
propose yet another approach to formalizing Bratman’s
theory of intentions. This approach, which is called
KARO for Knowledge, Abilities, Results and Opportunities,
comprising the core of the logic, is based not on temporal
logic but on dynamic logic. Dynamic logic is a logic proposed
in mainstream computer science to reason about programs
(17). Here, it is used to reason about the actions of agents.
Furthermore, several BDI-style operators are added such
as knowledge, belief, desire, goal, and commitment to
specify the behavior of agents.

AGENT ARCHITECTURES

Next, we turn to the issue of constructing agent-based sys-
tems. Since the philosophical and logical work on intelligent
agents mentioned in the introduction was published,

2 AGENT TECHNOLOGY



researchers have embarked on the enterprise of realizing
agent-based systems. Actually, the first architecture for
artificial agents was given by the philosopher Bratman
himself together with two colleagues from artificial intelli-
gence, David Israel and Martha Pollack. These authors
devised their IRMA architecture (18). At around the same
time, the influential BDI architecture (11) and its derivative
Procedural Reasoning System (PRS) (19) were proposed,
which in turn inspired the dMARS architecture (20). In
brief, in the BDI architecture, the interpreter executes a
sense-reason-act (ordeliberation) cycle, repeating the follow-
ing processes:getting (sense) input, leading topossiblebelief
updates, in turn leading to generating new desires/goals,
which are then filtered to intentions. These intentions cause
the execution of actions usually by means of plans from a
precompiled plan library. The BDI architecture and its
derivatives are called deliberative agent architectures.

However, also other agent architectures exist. Reactive
agent architectures perform no deliberation or any kind of
reasoning; they simply react to an environment. A typical
example of such a reactive agent architecture is the sub-
sumption architecture proposed by Brooks, (21). In essence,
this architecture consists of layered modules, that run in
parallel when given input from the environment. However,
the output of these layers may inhibit that of other layers,
according to a hierarchy (called a subsumption hierarchy).
In this way, a priority relation is given amongst several
behaviors generated by the modules. For example, in
robotic applications, collision avoidance takes priority
over exploring and wandering around.

One may also combine reactive behavior and delibera-
tion into one system, which generates hybrid agent archi-
tectures. Typically, these agents are also layered
architectures in which the layers deal with reactive beha-
viors and deliberative behavior(s). Horizontally layered
architectures resemble the subsumption architecture,
where layers run in parallel after which possible conflicts
in outcomes should be resolved in some way by means of a
supervisory control framework. However, vertically
layered architectures also exist, in which the input from
the environment enters the top (or bottom) layer, and then
input/output go through all layers successively, with final
output from the bottom (or top, respectively) layer. The
advantage of vertically layered architectures is that ‘‘con-
flicts’’ between layers are solved ‘‘on the fly’’, so to speak,
whereas horizontally layered architectures typically will
react faster (because of the layers running in parallel). An
example of a horizontally layered architecture is the Tour-
ingMachines architecture, which was proposed by Fergu-
son (22). An example of a vertically layered architecture is
Mller’s InteRRaP (23). For more information about agent
architectures, the reader is referred to Wooldridge (2).

AGENT-ORIENTED PROGRAMMING AND SOFTWARE
ENGINEERING

Agent architectures are suitable for conveying the general
ideas about the building blocks of agents. But of course,
they are hard to use in building actual agents from scratch
in some general-purpose programming language. To get a

more systematic grip on the construction of agents, new
developments came into existence. Some researchers took
it onto themselves to provide methods and techniques
(sometimes erroneously called a ‘‘methodology’’) for
constructing agents in a principled way, similar to what
has been done in the ‘‘traditional’’ ways of programming
such as object-oriented programming. Typically, one dis-
cerns phases of the development of an agent system such as
the (requirements) analysis phase, the design phase, and
the actual implementation phase. This research area is
generally referred to as agent-oriented software engineer-
ing (24,25). Several methods have been proposed in the
literature so far. We mention here DESIRE (26), GAIA
(27), AUML (28), TROPOS (29), OPERA (30). Most of these
methods ultimately are meant to implement agent systems
using generic, general-purpose programming languages
such as JAVA or C++. However, some researchers feel
that using agent concepts (such as those in the BDI model)
in the analysis phase and design phase, but not in the
implementation phase (since general-purpose languages
do not contain agent notions), hampers a smooth and
correct construction of these systems (e.g., Ref. 31).

These researchers devised dedicated agent-oriented
programming languages to program agents directly in
terms of mentalistic notions in the same spirit as the
ones mentioned above. Thus, these languages typically
contain beliefs, goals, commitments, and/or plans as
built-in programming concepts (and nowadays mostly
with a precise and formal semantics). The first researcher
who proposed this approach was Yoav Shoham with the
language AGENT0 (32). This language enables the pro-
grammer to program timed commitments of agents, based
on their beliefs and messages (such as requests to perform
actions) from other agents. Other languages include Agent-
Speak(L) / Jason, (Concurrent) METATEM, CONGOLOG,
JACK, JADEX, and 3APL/2APL (33–36). Although all
these languages have in common that they employ several
mentalistic notions as mentioned above, they still differ
widely from each other. For instance, AgentSpeak(L) (and
its JAVA-based interpreter JASON) can be viewed as a
programming language based on (a simplified version of)
the PRS architecture. It can deal with beliefs and goals, and
it can generate plans on the basis of those by means of a plan
library via an intricate mechanism using triggering
events. METATEM is based on the idea of making logical
specifications executable, which restricts, of course, the
formulas one can use in the specification. These formulas
are a certain subset of temporal logic mixed with other
modalities such as knowledge. In a way, one can view
this approach as ‘‘temporal logic programming’’. The
(CON)GOLOG family of languages is based on the situation
calculus, which is popular specification formalism to reason
about action and change, proposed by AI pioneer John
McCarthy (37). In essence, a CONGOLOG program, which
is basically an imperative-style program, provides direc-
tions while doing planning to reach a goal (‘‘sketchy
planning’’). JACK is an extension of JAVA with agent-
oriented constructs, whereas JADEX is a BDI reasoning
engine implemented in JAVA that provides an execution
environment and an application platform interface. 3APL
and its successor 2APL are rule-based languages proposed

AGENT TECHNOLOGY 3



originally as simplifications of AgentSpeak(L), with rules
for plan generation (given goals and beliefs) and plan
revision (given beliefs, and—in the case of 2APL—to be
applied only when current plans fail).

MULTIAGENT SYSTEMS AND AGENT SOCIETIES

Agent-based systems become truly interesting and useful if
we have multiple agents at our disposal that share the same
environment. Here, we have to deal with several of more or
less autonomous agents interacting with each other. Such
systems are called multiagent systems (MASs) (2) or some-
times also agent societies. The field of MASs as such can be
viewed as generated from Distributed AI, but many com-
puter scientists interested in distributed/parallel comput-
ing and concurrent programming, more in general, have
been drawn to it. The advantages of a distributed way of
solving problems and performing complex tasks are the
following:

� Computations can be done in parallel (so, in principle,
they can be done faster).

� Computations and reasoning can be done locally by the
agents with limited information about the environment.

� The distributed nature of a MAS may improve robust-
ness and reliability, because other agents may take
over from failing agents.

However, a price must be paid: Performance may be
lower (suboptimal) whereas centralized single-agent
systems may perform optimally in the ideal case that all
information and resources are available. On the other
hand, these centralized systems typically are more brittle
with respect to robustness and reliability, and they may
take a very long time to come up with the optimal solution.
Another possible price to be paid concerns the communica-
tion overhead in a MAS to let the agents cooperate and
coordinate properly. (cf. Ref. 38).

AGENT INTERACTION: COORDINATION
AND COMPETITION

When considering multiagent systems, especially when we
want to design such systems, one needs to think about how
the agents will mutually interact. Several kinds of inter-
action are possible. Generally, it is dependent on the role
the agents play in the system. In fact, in most current
agent-oriented software engineering methodologies, a mul-
tiagent system is designed by first considering the organi-
zational or social structure of the system, in which roles of
agents literally play a pivotal role. These roles determine
all kinds of (social) properties of the agents that play a
particular role, such as objectives, rights, and norms (30).
Because of dependencies and power relations between
roles, roles also ultimately determine how (role-playing)
agents will/should interact and which coordination type
they follow. In Ref. 39, three of these are distinguished:
market, network, and hierarchy. In markets, agents are
self-interested and competing with each other; in networks,

there is mutual interest and cooperation, where trust in
other agents is a crucial factor. In a hierarchy, there
are dependency and power relations, and delegation of
objectives and tasks takes place. Note that even in the
case of cooperation, it is not a priori obvious how autono-
mous agents will react to requests from other agents:
Because they ultimately have their own goals, it may be
the case that they do not have the time to comply, or simply
do not want to because they have incompatible objectives of
their own.

Ultimately, when designing a MAS it should be speci-
fied how role-enacting agents should communicate with
each other. This depends on the aims and characteristics
of the application at hand, the way roles are related to each
other, and how role objectives and norms are ‘‘passed’’
between related roles (30). To this end, communication
protocols are employed, which specify who is to commu-
nicate with whom on what subject in what fashion. Com-
munication protocols consist of communication actions
that are taken mostly from standardized agent commu-
nication languages (see the next section). These protocols
are application-dependent. For instance, agents in an
auction scenario will use typical protocols for bidding.
Several well-known protocols are defined in the auction
theory literature, such as English, Dutch, and Vickrey
auctions (40). Note that these protocols are not always
fixed a priori: Depending on the setting (coordination
type), these protocols may be subject to negotiation
between agents (‘‘contract negotiation’’ in Ref. 30).

In general, one can say that the designer of a multiagent
system employs mechanism design, that is, the design of
protocols that govern multiagent interactions such that
desirable properties hold, such as guaranteed success
(eventually agreement will be reached), certain efficiency
and optimality criteria (such as Pareto efficiency), stability
(agents that have an incentive to behave in a particular
way, such as the Nash equilibrium, in which agents do not
have any incentive to deviate from their behavior), and
equity (are all agents treated fairly?) (cf. Ref. 40). Many of
these criteria stem from the classic discipline of game
theory, initiated by von Neumann and Morgenstern (42),
which provides a rigorous, mathematical analysis of games.

In cooperative settings, one can consider coordination
through joint intentions. As we have recognized the impor-
tance of the notion of intention (and BDI more generally) in
the case of a single agent, we might also consider whether
intentions (and other BDI notions) may be generalized to
group notions. This method has resulted in notions such as
common knowledge, common/mutual belief, and joint
intentions (42). Work along these lines has yielded coordi-
nation models based on teamwork, in which teams are
formed on the basis of joint intentions (goals) and recog-
nized potential for cooperative action (43–45).

In more open forms of agent societies, such as networks
and especially markets, room for negotiation between
agents exists. Above, we have observed already that agents
may negotiate their interaction contracts, including the
protocols that will be used to interact with other agents
in the system. However, other things may be negotiated as
well, such as tasks and goods, depending on the application
at hand (46). The area of agent negotiation has become a

4 AGENT TECHNOLOGY



field of its own. A related area that is also getting more
attention is that of agent argumentation. Argumentation is
a classic field in philosophy and logic (47). It deals with
trying to convince other agents of the truth or falsity of some
state of affairs by putting forward reasons (arguments) for
and against propositions, together with justifications for
the acceptability of these arguments (2). It was already
realized that argumentation can play a role in reasoning
forms in AI, particularly the defeasible ones, where it is
possible that preliminary conclusions have to be withdrawn
when more information becomes available (48). Because
traditional (game-theoretic) negotiation has severe limita-
tions, especially in the setting of agents, namely that
positions can neither be justified nor changed, researchers
have turned to argumentation-based negotiation. Here
we have negotiations in which argumentation is employed
to reach an agreement (49,50). Argumentation takes
place through a dialog, that is a series of arguments, com-
municated between agents. This topic brings us to the
important subject of agent communication.

AGENT COMMUNICATION

As we have observed before, MASs will generally involve
some kind of communication between agents. Agents may
communicate by means of a communication primitive
such as a send (agent, performative, content), which
has as semantics to send to the agent specified the content
specified with a certain illocutionary force, specified by the
performative (e.g., inform or request). The area of agent
communication (and agent communication languages) is a
field of research in itself (51). It includes the languages
that are used for communication [agent communication
languages (ACLs)]. The most well-known ACLs are KQML
(Knowledge Query and Manipulation Language) (52) and
FIPA (53). These languages define performatives, such as
inform, request, and confirm, without mandating any
specific language for message content (cf. Refs. 2 and
38). These performatives stem from speech act theory in
the philosophy of language, which was introduced by
Austin (54) and further developed by Searle (55). Here
it was observed that certain natural language utterances
could be viewed as actions that change the state of the
world by uttering them. These speech acts (performatives)
are now used as building blocks for communication
protocols for agents.

A related issue, particularly within heterogeneous agent
societies, concerns the (content) language (ontology) agents
use to reason about their beliefs and communicate with
each other. Of course, if agents stem from different sources
(designers) and have different tasks, generally they will
employ different and distinct ontologies (concepts and their
representations) for performing their tasks. When commu-
nicating, it generally is not efficacious to try to transmit
their whole ontologies to each other or to translate every-
thing into one giant ‘‘universal’’ ontology if it would exist
anyway. Rather, it seems that a kind of ‘‘ontology negotia-
tion’’ should take place to arrive at a kind of minimal
solution (i.e., sharing of concepts) that will facilitate
communication between those agents (56,57).

NORMS AND E-INSTITUTIONS

In general, one has to consider the issue of balancing the
individual agent’s autonomy with its behaviour in an agent
society. Often this is regarded in a way similar to the way
human societies operate: the behaviour of an agent in a
society is constrained by norms. These are properties that
agents should adhere to, either specified declaratively or
procedurally by means of protocols. Typically the normsthat
an agent has to obey concern prohibitions and permissions
to perform certain actions, which may be role-dependent. A
MAS in which norms govern the behaviour of the agents is
called a normative system (58,59, p. 276). The subsystem of
a normative system that specifies (and enforces) the norms
on agents in a MAS, is called an electronic institution
(e-institution) (60).

APPLICATIONS

This brings us to an important question: What kind of
applications are particularly suited for an agent-based solu-
tion? Although it is hard to say something about this topic in
general, one may particularly think of applications in which
(e.g., logistical or planning) tasks may be distributed in such
as way that subtasks may be (or rather preferably so)
performed by autonomous entities (agents). For instance,
in situations where it is virtually impossible to perform the
task centrally, either because of the complexity of this task
or a large degree of dynamics (changes) in the environment
in which the system has to operate. So, applications such as
cooperative distributed problem solving agents, task and
resource allocation in agent systems, distributed sensing
agents, multiagent planning, and robotic cooperating
teams, as well as workflow and business management
and the management of industrial systems, fall into this
category. These applications have become important sub-
areas of agent research themselves. For instance, although
planning is a classic subject within AI, particularly research
in distributed planning has been taken up within the con-
text of multiagent systems (61,62).

Also in the area of information retrieval and manage-
ment, especially in case of large amounts of (complex)
information, there are applications of agents of this kind:
Information agents may, for example, function as broker-
ing and matchmaking entities to connect providers and
users of information and services. This method is essen-
tially a distributed way of searching information. In these
applications, one thus views agents more or less as a novel
computing paradigm, related to grid, peer-to-peer and
ubiquitous computing.

Of course, also applications also exist in which there is a
natural notion of a ‘‘cognitive’’ agent, that is, an agent
possessing mental attitudes. For instance, in virtual envir-
onments such as (entertaining or serious) gaming where
virtual characters need to behave in a natural or ‘believable’
way and have human-like features, agents seem to be the
obvious choice for their realization. The cognitive attitudes
of an agent may also be employed fruitfully in human–
machine interaction applications, in interaction with
advanced software systems, and in robotic applications.

AGENT TECHNOLOGY 5



Thus, this category includes synthetic, embodied, emo-
tional, and believable agents; agent based simulation and
modeling of cognitive and social behavior; human-machine
interfaces; as well as humanoid and sociable robots.

We should not forget the common-sense meaning of
agent, which is ‘‘someone representing you or who looks
after your affairs on your behalf’’. So, this definition yields
the application of personal software assistants, in which
agents play the role of proactive assistants to users working
with some application (2). Examples are personal informa-
tion agents and web agents. In the same vein, we have
applications in e-commerce/e-business (such as comparison
shopping agents and auction bots in auctions and electronic
markets) applications for the Web (where agents may act on
behalf of a user), and mobile agents that travel to other
platforms on behalf of their users.

ADDITIONAL DEVELOPMENTS

In this section, we will sketch a few more developments.
First, as agent programming gets more mature, one realizes
the need for the formal verification of agent programs.
Because it is deemed imperative to check the correctness
of complex agent-based systems for very costly and life-
critical applications, one tries to develop formal verification
techniques for agents such as model checkers (63). By no
means is this a trivial matter. Having agent logics available
as mentioned above does not mean that these logics can be
used directly for verification. One of the problems known
from the literature (e.g., Ref. 64) is that agent logics such as
BDI-CTLarenotgrounded incomputation.That is tosaythe
notions used in those logics, such as beliefs, desires, and
intentions, as well as semantical structures such as possible
worlds and accessibility relations, are not related directly to
computationalnotions.So,researchersareworkingtobridge
the gap between agent programs and agent logics. The aim
here is to obtain verification methods, preferably (semi-)
automated ones, such as proof systems and model checkers.

On another front, research considers extensions to the
deliberation process of agents, which includes notions that
seem to be ‘‘irrational’’ at first sight, such as emotions. The
idea here is that emotions may provide heuristics in choos-
ing between (many) alternative options of goals and plans.
Thus, they enhance the decision-making capabilities of
agents. Also, it is to be expected that the agent will behave
more ‘‘human-like’’, which is an aspect that is important
in its own right in certain applications (such as believ-
able virtual characters and advanced human–machine
interfaces) (see e.g., Ref. 65). Another example of reconsi-
dering agent deliberation is in the context of ‘‘hybrid’’ agent
systems with ‘‘humans in the loop’’, where there is ‘mixed
initiative’ (from both humans and artificial agents), which
gives rise to the notion of adjustable autonomy of the agent.
That is, in some cases the agent is more autonomous (has
more initiative) than in other cases (66).

CONCLUSION

In this article, we have reviewed the area of agent technol-
ogy. In particular, we have recognized how the idea of agent

technology and agent-oriented programming evolved from
philosophical considerations about human action to a way
of programming intelligent artificial (computer-based) sys-
tems. We have also looked at the important and promising
subfield of MAS, in particular the main issues of interest
here and possible applications. Since (multi) agent pro-
gramming is a way to construct complex intelligent systems
in a structured and anthropomorphic way, it appears to be a
technology that is widely applicable, and it may well
become one of the main programming paradigms of the
future.

ACKNOWLEDGMENTS

Thanks to the anonymous referees of this article for their
valuable suggestions for improvement.

BIBLIOGRAPHY

1. M. J. Wooldridge and N. R. Jennings. (eds.), Intelligent Agents,
Lecture Notes in Artificial Intelligence vol. 890, Berlin:
Springer, 1995.

2. M. J. Wooldridge. An Introduction to MultiAgent Systems.
Chichester, UK: John Wiley & Sons, 2002.

3. S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Englewood Cliffs, NJ: Prentice Hall, 1995.

4. N. J. Nilsson. Artificial Intelligence: A New Synthesis, San
Francisco, CA. Morgan Kaufmann, 1998.

5. R. Audi (ed.), The Cambridge Dictionary of Philosophy,
Cambridge, UK: Cambridge University Press, 1999.

6. M. J. Wooldridge. Reasoning about Rational Agents. Cam-
bridge, MA: The MIT Press, 2000.

7. M. E. Bratman. Intentions, Plans, and Practical Reason. Cam-
bridge, MA: Harvard University Press, 1987.

8. D. Dennett, The Intentional Stance. MA: Cambridge, Bradford
Books / MIT Press, 1987.

9. R. A. Wilson and F. C. Keil. (eds.), The MIT Encyclopedia of the
Cognitive Sciences. Cambridge, MA: Bradford Book / MIT
Press, 1999.

10. P. R. Cohen and H. J. Levesque, Intention is choice with
commitment, Artif. Intell. 42(3): 213–261. 1990.

11. A. S. Rao and M. P. Georgeff, Modeling rational agents within a
BDI-architecture, in J. Allen., R. Fikes., and E. Sandewall,
(eds.), Proc. 1991 Conf. On Knowledge Representation. San
Francisco, CA: Morgan Kaufmann, 1991, pp. 473–484.

12. W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer, An
integrated modal approach to rational agents, in M. Wool-
dridge and A. Rao., (eds.), Foundations of Rational Agency.
Dordrecht, The Netherlands: Kluwer, 1998, pp. 133–168.

13. S. Kripke, Semantical analysis of modal logic, Zeitschrift for
Mathematische Logik und Grundlagen der Mathematik 9:
67–96, 1963.

14. B. Chellas, Modal Logic: an Introduction, Cambridge, UK:
Cambridge University Press, 1980.

15. J.-J. Ch. Meyer and W. van der Hoek, Epistemic Logic for AI
and Computer Science. Cambridge, UK: Cambridge University
Press, 1995.

16. E. A. Emerson, Temporal and modal logic, in: J. vanLeeuwen
(ed.), Handbook of Theoretical Computer Science, Vol. B:
Formal Models and Semantics New york: Elsevier, 1990,
pp. 995–1072.

6 AGENT TECHNOLOGY



17. D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic, Cambridge,
MA: The MIT Press, 2000.

18. M. E. Bratman, D. J. Israel, and M. L. Pollack, plans and
resource-bounded practical reasoning, Computat. Intell. 4:
349–355, 1988.

19. M. P. Georgeff and A. L. Lansky, Reactive reasoning
and planning, Proceedings of the 6th National Conference on
Artificial Intelligence (AAAI-87), Seattle, WA, 1987, pp.
677–682.

20. M. d’Inverno et al., A formal specification of dMARS, in A. Rao,
M. P. Singh, and M. J. Wooldridge, (eds.), Intelligent Agents IV
1365, Berlin: Springer, 1997, pp. 155–176.

21. R. A. Brooks, Intelligence without reason, Proc. IJCAI-91,
Sydney, Australia, 1991, pp. 569–595.

22. I. A. Ferguson, TouringMachines: an architecture for dynamic,
rational, mobile agents. PhD Thesis, Clare Hall, cambridge
UK: University of Cambridge, 1992.

23. J. Müller, A cooperation model for autonomous agents, in J. P.
Müller, M. Wooldridge., and N. R. Jennings. (eds.), Intelligent
Agents III. Lecture Notes in Artificial Intelligence vol. 1193,
Berlin: Springer, 1997, pp. 245–260.

24. P. Ciancarini and M. J. Wooldridge. (eds.), Agent-Oriented
Software Engineering, Lecture Notes in Artificial Intelligence,
Vol 1957, Berlin: Springer, 2001.

25. F. Bergenti., M.-P. Gleizes., and F. Zambonelli (eds.), Meth-
odologies and Software Engineering for Agent Systems – The
Agent-Oriented Software Engineering Handbook, Boston MA:
Kluwer, 2004.

26. F. Brazier et al., Formal specification of multi-agent systems: a
real-world case, Proc. ICMAS-95, San Francisco, CA, 1995,
pp. 25–32.

27. M. J. Wooldridge, N. R. Jennings, and D. Kinny, A methodology
for agent-oriented analysis and design, Proc. Agents ’99,
Seattle, WA, 1999, pp. 69–76.

28. J. Odell, H. Parunak, and B. Bauer, Representing agent inter-
action protocols in UML, in P. Ciancarini and M. J. Wooldridge
(eds.), Agent-Oriented Software Engineering. Lecture Notes
in Computer Science vol. 1957, Berlin: Springer, 2001, pp.
185–194.

29. J. Castro, M. Kolp, and J. Mylopoulis, Towards requirements-
driven information systems engineering: the TROPOS project,
informat. Syst., 27: 365–389, 2002.

30. V. Dignum, A Model for Organisational Interaction, Based on
Agents, Founded in Logic, PhD thesis, Utrecht, The Nether-
land. University of Utrecht, 2004.

31. M. Dastani, J. Hulstijn, F. Dignum, and J.-J. Ch. Meyer,
Issues in multiagent system development, in N. R. Jennings.
C. Sierra., L. Sonenberg., and M. Tambe., (eds.), Proceedings
3rd International Joint Conference On Autonomous
Agents & MultiAgent Systems (AAMAS 2004)New York:
ACM, 2004.

32. Y. Shoham, Agent-oriented programming, Artif. Intell. 60(1):
51–92, 1993.

33. M. Fisher, A survey of concurrent METATEM—the language
and its applications, in D. M. Gabbay and H. J. Ohlbach (eds.),
Temporal Logic Lecture Notes in Artificial Intelligence vol.
827, Berlin; Springer, 1994, pp. 480–505.

34. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch.
Meyer, Agent programming in 3APL, Internat. J. Auton.
Agents Multi-Agent Sys. 2(4): pp. 357–401, 1999.

35. G. deGiacomo, Y. Lespérance, and H. Levesque, ConGolog, a
concurrent programming language based on the situation
calculus, Artif. Intell. 121 (1,2): pp. 109–169, 2000.

36. R. H. Bordini.M. Dastani., J. Dix., and A. El Fallah Seghrouchni
(eds.), Multi-Agent Programming (Languages, Platforms and
Applications), New York: Springer Science, 2005.

37. J. McCarthy and P. Hayes, Some philosophical problems form
the standpoint of artificial intelligence, in B. Meltzer and
D. Michie., (eds.) Machine Intelligence 4. Edinburgh, UK:
Edinburgh Univ. Press, 1969.

38. G. Weiss (ed.), Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. Cambridge, MA: MIT Press,
1999.

39. V. Dignum, J.-J. Ch. Meyer, H. Weigand, and F. Dignum, An
Organisational-Oriented Model for Agent Societies, in G. Lin-
demann., D. Moldt., M. Paolucci., B. Yu., (eds.), Proc. Interna-
tional Workshop on Regulated Agent-Based Social Systems:
Theory and Applications (RASTA’02)Univ. Hamburg. FBI—
HH-M-318/02, 31–50, 2002.

40. T. Sandholm, Distributed rational decision making, in G. Weiss
(ed.), Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Cambridge, MA: MIT Press, 1999,
pp. 201–258.

41. J. vonNeumann and O. Morgenstern, Theory of Games and
Economic Behaviour. Princeton, NJ: Princeton University
Press, 1944.

42. P. R. Cohen and H. J. Levesque, Rational interaction as the
basis for communication, in P. R. Cohen, J. Morgan., and M. E.
Pollack (eds.), Intentions in Communication, Cambridge, MA:
MIT Press, 1990, pp. 221–256.

43. P. R. Cohen and H. J. Levesque, Teamwork, Nous, 25(4):
487–512, 1991.

44. N. R. Jennings, Controlling cooperative problem solving in
industrial multi-agent systems using joint intentions, Arti.
Intelli.75(2): 195–240, 1995,

45. M. Tambe, Towards flexible teamwork, J. AI Res.7: 83–124,
1997.

46. J. S. Rosenschein and G. Zlotkin, Rules of Encounter: Design-
ing Conventions for Automated Negotiation among Computers.
Cambridge, MA: MIT Press, 1994.

47. D. N. Walton and E. C. W. Krabbe, Commitment in Dialogue:
Basic Concepts of Interpersonal Reasoning. Albany, NY: SUNY
Press, 1995.

48. H. Prakken and G. Vreeswijk, Logics for defeasible argumen-
tation, in D. Gabbay and F. Guenthner (eds.), Handbook of
Philosophical Logic, 2nd ed. Boston, MA: Kluwer, 2001.

49. K. P. Sycara, Multiagent compromise via negotiation, in L.
Gasser and M. Huhns (eds.), Distributed Artificial Intelli-
gence, Vol. II. London: Pitman/Morgan Kaufmann, 1989, pp.
119–138.

50. S. Parsons, C. A. Sierra and N. R. Jennings, Agents that reason
and negotiate ny arguing, J. Logic Computat.8(3): 261–292, 1998,

51. F. Dignum and M. Greaves (eds.), Issues in Agent Commu-
nication, Lecture Notes in Artificial Intelligence, Vol. 1906,
Berlin: Springer, 2000.

52. J. Mayfield, Y. Labrou, and T. Finin, Evaluating KQML as an
agent communication language, in M. Wooldridge., J. P.
Müller,. and M. Tambe (eds.), Intelligent Agents II. Lecture
Notes in Artificial Intelligence vol. 1037, Berlin: Springer,
1996, pp. 347–360.

53. FIPA, Specification Part 2 – Agent Communication Language,
Technical Report, 1999.

54. J. L. Austin. How To Do Things With Words. Oxford UK:
Oxford University Press, 1962.

55. J. R. Searle, Speech Acts: an Essay in the Philosophy of
Language, Cambridge, UK: Cambridge University Press, 1969.

AGENT TECHNOLOGY 7



56. S. Bailin and W. Truszkowski, Ontology negotiation between
intelligent information agents, Knowl. Engineer. Rev. 17(1):
7–19, 2002.

57. J. vanDiggelen, R. J. Beun. F. Dignum, R. M. vanEijk, and J.-J.
Ch. Meyer, ANEMONE: An Effective Minimal Ontology Nego-
tiation Environment, in P. Stone and G. Weiss., (eds.), Proc.
Fifth Int. Joint Conf. On Autonomous Agents and Multiagent
Systems (AAMAS’06) Hakodate, Hokkaido, Japan: ACM Press,
2006, pp. 899–906.

58. J.-J. Ch. Meyer and R. J. Wieringa, Deontic Logic in Computer
Science: Normative System Specification. Chichester, UK:
Wiley, 1993.

59. A. Jones and M. Sergot, On the characterization of law and
computer systems: the normative system perspective, in: J.-J.
Ch. Meyer and R. J. Wieringa. (eds.), Deontic Logic in Com-
puter Science: Normative System Specification. Chichester,
UK: Wiley, 1993, pp. 275–307.

60. M. Esteva, J. Padget, and C. Sierra, Formalizing a language for
institutions and norms, in: J.-J. Ch. Meyer and M. Tambe
(eds.), Intelligent Agents VIII, Lecture Notes in Artificial Intel-
ligence vol. 2333, Berlin: Springer, 2001, pp. 348–366.

61. E. Ephrati and J. S. Rosenschein, Multi-agent planning as a
dynamic search for social consensus, Proc. 13th Int. Joint Conf.
on Artificial Intelligence (IJCAI-93), 1993, Morgan Kaufmann,
San Mateo, CA, 1993, pp. 423–429.

62. D. E. Wilkins and K. Myers, A multiagent planning architec-
ture, Proc. 4th Int. Conf. on Artificial Intelligence Planning
Systems (AIPS-98), Menlo Park, CA: AAAI Press, pp. 154–162,
1998.

63. J. L. Rash. C. A. Rouff., W. Truszkowski., D. Gordon., and M. G.
Hinchey (eds.), Proceedings First Goddard Workshop on
Formal Approaches to Agent-Based Systems (FAABS 2000),
Lecture Notes in Artificial Intelligence vol. 1871, Berlin:
Springer, 2001.

64. W. Van der Hoek and M. Wooldridge, Towards a logic of
rational agency, Logic J. IGPL, 11(2): 133–157, 2003.

65. M. Dastani and J.-J. Ch. Meyer, Programming emotional
agents, in G. Brewka., S. Coradeschi., A. Perini and P. Tra-
verso., (eds.), Proc. ECAI 2006 Riva del Garda, Amsterdam:
IOS Press, 2006, pp. 215–219.

66. G. Klein, D. D. Woods. J. M. Bradshaw. R. R. Hoffman. P. J.
Feltovich, Ten challenges for making automation a ‘‘team
player’’ in joint human-agent activity, IEEE Intell. Sys.19(6):
91–95, 2004,

FURTHER READING

F. Dignum, Autonomous Agents with Norms, Artif. Intell. and Law
7: 1999, pp. 69–79.

M. N. Huhns and M. P. Singh. Readings in Agents. Morgan
Kaufmann, San Francisco, CA: 1998.

(worthwhile collection of the older, seminal papers)

AutonomousAgents & Multi Agent Systems, the yearly proceedings
of the international JAAMAS conferences, ACM Press, since 2002.
These are the continuation of separate conferences and workshops
started in the 1990s until 2002, i.e., ICMAS (Int. Conf. on MultiA-
gent Systems), Autonomous Agents and ATAL (Agent Theories,
Architectures and Languages). There is also a journal with the
same name, originally published by Kluwer and currently by
Springer.

JOHN-JULES CH. MEYER

Utrecht University
Utrecht, The Netherlands

8 AGENT TECHNOLOGY



A

AGILE SOFTWARE DEVELOPMENT

Plan-driven methods work best when developers can determine
the requirements in advance . . . and when the requirements
remain relatively stable, with change rates on the order of one
percent per month.

––Barry Boehm (1)

WHAT IS AGILITY IN SOFTWARE DEVELOPMENT?

In this section, we discuss the model underlying agile
software development and typical characteristics of soft-
ware development projects that might be prudently
handled via an agile development methodology.

Agile Model

Agile methods (13–15) are a subset of iterative and evolu-
tionary methods (10,11) and are based on iterative
enhancement (8) and opportunistic development processes
(16). Each iteration is a self-contained mini-project with
activities that span requirements analysis, design, imple-
mentation, and testing (10). Each iteration leads to an
iteration release (which may be only an internal release)
that integrates all software across the team and is a grow-
ing and evolving subset of the final system. The purpose of
having short iterations is so that feedback from iterations N
and earlier, and any other new information, can lead to
refinement and requirements adaptation for iteration
Nþ 1. The customer adaptively specifies his or her require-
ments for the next release based on observation of the
evolving product, rather than speculation at the start of
the project (6). There is quantitative evidence that frequent
deadlines reduce the variance of a software process and,
thus, may increase its predictability and efficiency (17).

The pre-determined iteration length serves as a timebox
for the team. Scope is chosen for each iteration to fill the
iteration length. Rather than increase the iteration length
tofit thechosen scope, the scope is reduced tofit the iteration
length. A key difference between agile methods and past
iterative methods is the length of each iteration. In the past,
iterations might have been three-or six-months long. With
agile methods, iteration lengths vary between one and four
weeks, and intentionally do not exceed 30 days.

Research has shown that shorter iterations have lower
complexity and risk, better feedback, and higher produc-
tivity and success rates (10).

An area of commonality among all agile methodologies is
the importance of the people performing the roles and the
recognition that, more so than any process or tool, people are
the most influential factor in any software project. Brooks
acknowledges the same in The Mythical Man Month (18),

The quality of the people on a project, and their organization and
management, are more important factors in success than are the
tools they use or the technical approaches they take.

Unfortunately, there are commonalities among some
agile methods that may be less than positive. One is
that, unlike more classic iterative methods, explicit quan-
titative quality measurements and process modeling and
metrics are de-emphasized. Possible justifications for this
lack of modeling and metrics range from lack of time, to
lack of skills, to intrusiveness, to social reasons. Addition-
ally, only relatively small agile teams will be likely to be
able to self-organize; self-organization is one of the agile
principles) into something resembling a Software Engi-
neering Institute (SEI) Capability Maturity Model
(CMM) scale (19). Level 4 or 5 organization.

Agile Development and Principles

In February 2001, several software engineering consul-
tants joined forces and began to classify a number of similar
change-sensitive methodologies as agile [a term with a
decade of use in flexible manufacturing practices (20,21)
which began to be used for software development in the late
1990s (22)]. The term promoted the professed ability for
rapid and flexible response to change of the methodologies.
The consultants formed the Agile Alliance and wrote The
Manifesto for Agile Software Development and the Princi-
ples Behind the Agile Manifesto (23,24). The methodologies
originally embraced by the Agile Alliance were Adaptive
Software Development (ASD) (25), Crystal (14,26),
Dynamic Systems Development Method (DSDM) (27),
Extreme Programming (XP) (28), Feature-Driven Devel-
opment (FDD) (29,30) and Scrum (31,32).

Agile Software Development Values. The Agile Alliance
documented its value statement (24) as follows:

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive

documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

The implication is that formalization of the software
process hinders the human and practical component of
software development, and thus reduces the chance for
success. Although this statement is true when formaliza-
tion is misused and misunderstood, one has to be very
careful not to overemphasize and under-measure the items
on the left-hand side, which can lead to the same problem,
poor quality software. The key is appropriate balance (33).

The Principles. The Agile Alliance also documented the
principles they follow that underlie their manifesto (24). As
such, the agile methods are principle-based rather than

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



rule-based (10). Rather than have pre-defined rules regard-
ing the roles, relationships, and activities, the team and
manager are guided by these principles:

1. Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.

2. Welcome changing requirements, even late in devel-
opment. Agile processes harness change for the cus-
tomer’s competitive advantage.

3. Deliver working software frequently, from a couple
of weeks to a couple of months, with a preference to
the shorter time scale.

4. Business people and developers must work together
daily through the project.

5. Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

6. The most efficient and effective method of conveying
information to and within a development team is
face-to-face conversation.

7. Working software is the primary measure of pro-
gress.

8. Agile processes promote sustainable development.

9. The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

10. Continuous attention to technical excellence and
good design enhances agility.

11. Simplicity – the art of maximizing the amount of
work not done – is essential.

12. The best architectures, requirements, and designs
emerge from self-organizing teams.

13. At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

Characteristics of Projects Suitable for Agile Methods

Agile software development methodologies are not neces-
sarily suitable for all projects. Boehm and Turner (33) share
their view of the characteristics of projects that operate in
agile ‘‘home grounds,’’ where home ground is defined as the
situation for which the approach has the greatest potential
for success. The agile home ground is summarized in
Table 1. It is important to note that some agile methodo-
logists feel that their methodologies are suitable for most
any project. Empirical and theoretical studies are needed to
both support and refute the characteristics described by
this home ground and the scope, effectiveness, and cost of
the agile approach.

The general characteristics of agile and plan-driven
methods led Boehm and Turner (33) to define five critical
factors that can be used to describe a project environment
and can be used to help determine the appropriate balance
between agile and plan-driven methods:

1. Size (number of people on team).

2. Criticality (the impact of a software defect in terms
of comfort, money, or lives).

3. Dynamism (the degree of requirements and techno-
logy change).

4. Personnel1 (ratio of high and low skill level of team-
to-team size).

5. Culture (whether the individuals on the team prefer
predictability/order or change).

Boehm and Turner have created a polar chart as a means
for visually displaying a team’s values for each of these
criticality factors. An example of such a polar chart is in
Fig. 1. Each of the five factors has an axis. Each axis is
labeled with carefully chosen values based on Boehm and
Turner’s experience. For each axis, the further from the
graph’s center the project lies, the more appropriate are
plan-driven methods. Conversely, the more a point lies
toward the center of the chart, the more a project may
benefit from agile methods.

Consider the black polygon joining the points of a sample
project in Fig.1. Starting at the top of the chart (Personnel),
this team is comprised of a large number of novices and a
small number of experts. Additionally, the requirements
(Dynamism) are not expected to change much throughout
the project. The team members have a fairly strong pre-
ference for order and predictability (Culture). There are

1Boehm and Turner adapt levels of Software Method Understand-
ing and Use as defined by Cockburn (14). 1B personnel are team
members who can perform procedural steps with training. 1A
personnel are able to perform discretionary method steps.
Level 2 personnel are able to tailor a method to fit a new situation.
Level 3 personnel are able to revise a method to fit an unprece-
dented situation.

Table 1. Agile and Plan-driven Home Grounds (Adapted
from Ref. 34)

Project Characteristics Agile Home Ground

Primary goals Rapid value, responding to change
Size Smaller teams and projects
Environment Turbulent, high change, project focused
Customer relations Dedicated on-site customer, focused on

prioritized product releases (increments)
Planning and control Team has an understanding of plans

and monitors to this plan
Communications Passed from person to person (tacit,

interpersonal)
Requirements Prioritized, informal stories and/or

features and more formal use cases.
Requirements are likely to change in
unpredictable ways

Development Simple design, short increments
Test Automated, executable test cases are

used to further define the specifics of
the requirements

Customers Dedicated, co-located
CRACK* performers

Developers At least 30% experts or very
experienced team members; no
unexperienced personnel

Culture Team enjoys being empowered and
having freedom (thriving on chaos)

*CRACK ¼ Collaborative, Representative, Authorized, Committed, and

Knowledgeable

2 AGILE SOFTWARE DEVELOPMENT



about 15 people on the team (Size). The impact of a software
defect could result in the loss of essential funds (Criticality)
(i.e., the business could lose a large amount of money if the
software fails). An example could be a retail point-of-sale
application failure in which customers leave the store
because the computers are not working. Based on the shape
of the polar chart for this particular application, the project
may not be suitable for an agile methodology. As a general
rule, high-risk projects (34) may require more than agile
methodologies may offer.

EXAMPLES OF AGILE SOFTWARE DEVELOPMENT
METHODOLOGIES

This section provides a brief introduction to three agile
methodologies. The three were chosen to demonstrate the
range of applicability and specification of the agile meth-
odologies. For each methodology, we provide an overview
and discuss documents and artifacts produced by the devel-
opment team, the roles the members of the development
team assume, the process, and a discussion.

Extreme Programming (XP)

XP (28,35) originators aimed at developing a methodology
suitable for ‘‘object-oriented projects using teams of a dozen
or fewer programmers in one location’’ (36).

The methodology is based on five underlying values:
communication, simplicity, feedback, courage, and respect.

1. Communication. XP has a culture of oral commu-
nication and its practices are designed to encourage
interaction. The communication value is based on
the observation that most project difficulties occur

because someone should have spoken with someone
else to clarify a question, collaborate, or obtain help.
‘‘Problems with projects can invariably be traced
back to somebody not talking to somebody else about
something important’’ (28).

2. Simplicity. Design the simplest product that
meets the customer’s needs. An important aspect
of the value is to only design and code what is in the
current requirements rather than to anticipate and
plan for unstated requirements.

3. Feedback. The development team obtains feed-
back from the customers at the end of each iteration
and external release. This feedback drives the next
iteration. Additionally, there are very short design
and implementation feedback loops built into the
methodology via pair programming and test-driven
development (37).

4. Courage. The other three values allow the team to
have courage in its actions and decision making. For
example, the development team might have the
courage to resist pressure to make unrealistic com-
mitments.

5. Respect. Team members need to care about each
other and about the project.

Although one may be able to come up with reasonable
quantitative metrics for the first three values, it is quite
difficult to assess the other two, at least in advance, unless
quantitative risk-based metrics and models are used
(34,38).

Documents and Artifacts. In general, XP relies on ‘‘doc-
umentation’’ via oral communication, the code itself, and

Agile

Pian-driven

Personnel
(Percent level 1B) (Percent level 2 and 3)

Dynamism
(Percent requirements-

change/month)

40

30

20

10

0

15

20

25

30

35

50

90
3

10

30

100

300

Size
(Number of personnel)

Culture
(Percent thriving on chaos versus order)

Criticality
(Loss due to impact

of defects) Single
life

Many
lives

Discretionary
funds

Essential
funda Comfort

70

50

30

10

30
10

5
1

Figure 1. Example polar chart (adapted from
Ref. 33).

AGILE SOFTWARE DEVELOPMENT 3



tacit knowledge transfer rather than written documents
and artifacts. The following relatively informal artifacts
are produced:

� Story cards, paper index cards that contain brief
requirement descriptions. The user story cards are
intentionally not a full requirement statement but
are, instead, a commitment for further conversation
between the developer and the customer. During this
conversation, the two parties will come to an oral
understanding of what is needed for the requirement
to be fulfilled. Customer priority and developer
resource estimate are added to the card. The resource
estimate for a user story must not exceed the iteration
duration.

� Task list, a listing of the tasks (typically one-half to
three days in duration) for the user stories that are to
be completed for an iteration. Tasks represent concrete
aspects of a story. Programmers volunteer for tasks
rather than being assigned to tasks.

� CRC cards (39) (optional), paper index card on
which one records the responsibilities and collabora-
tors of classes that can serve as a basis for software
design. The classes, responsibilities, and collaborators
are identified during a design brainstorming/role-
playing session involving multiple developers. CRC
stands for Class-Responsibility-Collaboration.

� Customer acceptance tests, textual descriptions
and automated test cases that are developed by the
customer. The development team demonstrates the
completion of a user story and the validation of custo-
mer requirements by passing these test cases.

� Visible wall graphs, to foster communication and
accountability, progress graphs are usually posted in a
team work area. These progress graphs often involve
how many stories are completed or how many accep-
tance test cases are passing.

Roles

� Manager, owns the team and its problems. He or she
forms the team, obtains resources, manages people
and problems, and interfaces with external groups.

� Coach, teaches team members about the XP process
as necessary, intervenes in case of issues, and monitors
whether the XP process is being followed. The coach is
typically a programmer and not a manager.

� Tracker, regularly collects user story and acceptance
test case progress from the developers to create the
visible wall graphs. The tracker is a programmer, not a
manager or customer.

� Programmer, writes, tests, and designs, code; refac-
tors; and identifies and estimates tasks and stories
(this person may also be a tester).

� Tester, helps customers write and develop tests (this
person may also be a programmer).

� Customer, writes stories and acceptance tests; picks
stories for a release and for an iteration. A common
misconception is that the role of the customer must be

played by one individual from the customer organiza-
tion. Conversely, a group of customers can be involved
or a customer representative can be chosen from
within the development organization (but external
to the development team).

Process. The initial version of the XP software metho-
dology (28) published in 2000 had 12 programmer-centric,
technical practices. These practices interact, counterba-
lance, and reinforce each other (13,28). However, in a
survey (40) of project managers, chief executive officers,
developers, and vice-presidents of engineering for 21 soft-
ware projects, it was found that none of the companies
adopted XP in a ‘‘pure’’ form wherein all 12 practices were
used without adaptation. In 2005, XP was changed to
include 13 primary practices and 11 corollary practices
(35). The primary practices are intended to be (35) useful
independent of each other and the other practices used,
although the interactions between the practices may
amplify their effect. The corollary practices are likely to
be difficult without first mastering a core set of the primary
practices.

Below, the 13 primary technical practices of XP are
briefly described:

� Sit together, the whole team develops in one open
space.

� Whole team, uses a cross-functional team of all those
necessary for the product to succeed.

� Informative workspace, place visible wall graphs
around the workspace so that team members (or other
interested observers) can get a general idea of how the
project is going.

� Energized work, XP teams do not work excessive
overtime for long periods of time. The motivation
behind this practice is to keep the code of high quality
(tired programmers inject more defects) and the pro-
grammers happy (to reduce employee turnover). Tom
DeMarco contends that, ‘‘extended overtime is a
productivity-reducing technique’’ (41).

� Pair programming (42), refers to the practice
whereby two programmers work together at one com-
puter, collaborating on the same design, algorithm,
code, or test.

� Stories, the team members write short statements of
customer-visible functionality desired in the product.
The developers estimate the story; the customer prior-
itizes the story.

� Weekly cycle, at the beginning of each week, a meet-
ing is held to review progress to date, have the custo-
mer pick a week’s worth of stories to implement that
week (based on developer estimates and their own
priority), and to break the stories into tasks to be
completed that week. By the end of the week, accep-
tance test cases for the chosen stories should be run-
ning for demonstration to the customer to drive the
next weekly cycle.

4 AGILE SOFTWARE DEVELOPMENT



� Quarterly cycle, the whole team should pick a theme
or themes of stories for a quarter’s worth of stories.
Themes help the team reflect on the bigger picture (i.e.,
at the end of the quarter, deliver this business value).

� Slack, in every iteration, plan some lower-priority
tasks that can be dropped if the team gets behind
such that the customer will still be delivered their
most important functionality.

� Ten-minute build, structure the project and its asso-
ciated tests such that the whole system can be built and
all the tests can be run in ten minutes so that the
system will be built and the tests will be run often.

� Test-first programming, all stories have at least one
acceptance test, preferably automated. When the
acceptance test(s) for a user story all pass, the story
is considered to be fulfilled. Additionally, automated
unit tests are incrementally written using the test-
driven development (TDD) (43) practice in which code
and automated unit tests are alternately and incre-
mentally written on a minute-by-minute basis.

� Continuous integration, programmers check into
the code base completed code and its associated tests
several times a day. Code may only be checked in if all
its associated unit tests and all unit tests of the entire
code base pass.

� Incremental design, rather than develop an antici-
patory detailed design before implementation, invest
in the design of the system every day in light of the
experience of the past. The viability and prudence of
anticipatory design has changed dramatically in our
volatile business environment (13). Refactoring (44) to
improve the design of previously written code is essen-
tial. Teams with robust unit tests can safely experi-
ment with refactorings because a safety net is in place.

Below, the 11 corollary technical practices of XP are
briefly described:

� Real customer involvement, the customer is avail-
able to clarify requirements questions, is a subject
matter expert, and is empowered to make decisions
about the requirements and their priority. Addition-
ally, the customer writes the acceptance tests.

� Incremental deployment, gradually deploy func-
tionality in a live environment to reduce the risk of
a big deployment.

� Team continuity, keep effective teams together.

� Shrinking team, as a team grows in capacity
(because of experience), keep their workload constant
but gradually reduce the size of the team.

� Root cause analysis, examine the cause of a discov-
ered defect by writing acceptance test(s) and unit
test(s) to reveal the defect. Subsequently, examine
why the defects was created but not caught in the
development process.

� Shared code, once code and its associated tests are
checked into the code base, the code can be altered by
any team member. This collective code ownership
provides each team member with the feeling of owning

the whole code base and prevents bottlenecks that
might have been caused if the ‘‘owner’’ of a component
was not available to make a necessary change.

� Code and tests, maintain only the code and tests as
permanent artifacts. Rely on social mechanisms to
keep alive the important history of the project.

� Daily deployment, put new code into production
every night.

� Negotiated scope contract, fix the time, cost, and
required quality of a project but call for an ongoing
negotiation of the scope of the project.

� Pay-per-use, charge the user every time the system is
used to obtain their feedback by their usage patterns.

Discussion. The main advantages of XP relative to
small, co-located teams have been demonstrated by several
industrial case studies, including (45–49):

� Improved quality;

� Improved productivity (although the measures were
relatively inexact);

� Improved team morale;

� Anecdotally, improved customer satisfaction.

The possible drawbacks of XP are as follows:

� XP may not be applicable for other than small, co-
located teams developing noncritical software,
although XP has been successfully used with mis-
sion-critical projects (50), distributed teams (51), and
for scientific research (52).

� XP de-emphasizes documentation and relies on social
mechanisms to keep alive the important history of the
project. As a result, XP must be adapted for projects
that require traceability and audit-ability.

� Some developers may not transition to pair program-
ming easily; transitioning to the test-driven develop-
ment practice may require technical training for some
developers.

� The real customer involvement practice has shown to
be very effective for communicating and clarifying
requirements, but is a pressured, stressful, and
time-consuming role (53).

Crystal

The RUP (4,5) is a customizable process framework.
Depending on the project characteristics, such as team
size and project size, the RUP can be tailored or extended
to match the needs of an adopting organization. Similarly,
the family of Crystal Methods (14) were developed to
address the variability of the environment and the specific
characteristics of the project. However, RUP generally
starts with a plan-driven base methodology and tailors
down for smaller, less-critical projects. Conversely, Crystal
author Alistair Cockburn feels that the base methodology
should be ‘‘barely sufficient.’’ He contends, ‘‘You need one
less notch of control than you expect, and less is better when
it comes to delivering quickly,’’ (13). Moreover, because the

AGILE SOFTWARE DEVELOPMENT 5



project and the people evolve over time, the methodology so
too must be tuned and evolved during the course of the
project.

Crystal is a family of methods because Cockburn
believes that there is no ‘‘one-size-fits-all’’ development
process. As such, the different methods are assigned colors
arranged in ascending opacity; the most agile version is
Crystal Clear, followed by Crystal Yellow, Crystal Orange,
and Crystal Red. The graph in Fig. 2 is used to aid the choice
of a Crystal Method starting point (for later tailoring).
Along the x-axis is the size of the team. As a team gets
larger (moves to the right along the x-axis), the harder it is
to manage the process via face-to-face communication and,
thus, the greater the need for coordinating documentation,
practices, and tools. The y-axis addresses the system’s
potential for causing damage. The lowest damage impact
is loss of comfort, then loss of discretionary money, loss of
essential money, and finally loss of life. Based on the team
size and the criticality, the corresponding Crystal metho-
dology is identified. Each methodology has a set of recom-
mended practices, a core set of roles, work products,
techniques, and notations.

All the Crystal Methods emphasize the importance of
people in developing software. ‘‘[Crystal] focuses on people,
interaction, community, skills, talents, and communication
as first order effects on performance. Process remains
important, but secondary’’ (13). There are only two absolute
rules of the Crystal family of methodologies. First, incre-
mental cycles must not exceed 4 months. Second, reflection
workshops must be held after every delivery so that the
methodology is self-adapting. Currently, only Crystal Clear
and Crystal Orange have been defined. Summaries of these
two methodologies are provided below.

Crystal Clear. Crystal Clear (14,26) is targeted at a D6
project and could be applied to a C6 or an E6 project and
possibly to a D10 project (see Fig. 2). Crystal Clear is an
optimization of Crystal that can be applied when the team
consists of three to eight people sitting in the same room or
adjoining offices. The property of close communication is
strengthened to ‘‘osmotic’’ communication, meaning that

people overhear each other discussing project priorities,
status, requirements, and design on a daily basis. Crystal
Clear’s model elements are as follows:

� Documents and artifacts: release plan, schedule of
reviews, informal/low-ceremony use cases, design
sketches, running code, common object model, test
cases, and user manual.

� Roles: project sponsor/customer, senior designer-pro-
grammer, designer-programmer, and user (part time
at least).

� Process: incremental delivery, releases less than 2–3
months, some automated testing, direct user involve-
ment, two user reviews per release, and methodology-
tuning retrospectives. Progress is tracked by software
delivered or major decisions reached, not by docu-
ments completed.

Crystal Orange. Crystal Orange is targeted at a D40
project. Crystal Orange is for 20–40 programmers working
together in one building on a project in which defects could
cause the loss of discretionary money (i.e., medium risk).
The project duration is between 1 and 2 years and time-to-
market is important. Crystal Orange’s model elements are
as follows:

� Documents and artifacts: requirements document,
release plan, schedule, status reports, UI design docu-
ment, inter-team specs, running code, common object
model, test cases, migration code, and user manual.

� Roles: project sponsor, business expert, usage expert,
technical facilitator, business analyst, project man-
ager, architect, design mentor, lead designer-program-
mer, designer-programmer, UI designer, reuse point,
writer, and tester.

� Process: incremental delivery, releases less than
3–4 months, some automated testing, direct user
involvement, two user reviews per release, and
methodology-tuning retrospectives.

Figure 2. The family of Crystal Methods
(adapted from Ref. 14). Number of people (+ 20%) 

Comfort 
(C) 

Essential 
money 

(E) 

Life 
(L) 

1 – 6 –20 –40 –100 –200 –500 –1,000 

L6 L20 L40 L100 L200 L500 L1000

E6 E20 E40 E100 E200 E500 E1000

D6 D20 D40 D100 D200 D500 D1000

C6 C20 C40 C100 C200 C500 C1000

Discretionary  
money 

(D)

Criticality 
(defects cause loss of . . . ) 

6 AGILE SOFTWARE DEVELOPMENT



Discussion. No empirical case studies of Crystal teams
have been published. Anecdotally, the main advantages of
Crystal methods are as follows:

� The family of methods accommodates teams of any size
and criticality.

� The philosophy underlying the Crystal methods
emphasizes simplicity, agility, and communication.

Possible drawbacks of Crystal are as follows:

� The flexibility of the methods may not provide enough
prescriptive guidance to all teams on which software
development practices to use.

� Not all of the Crystal methods have been defined.

Feature-driven Development (FDD)

FDD (29,30) authors Peter Coad and Jeff de Luca charac-
terize the methodology as having ‘‘just enough process to
ensure scalability and repeatability and encourage crea-
tivity and innovation all along the way’’ (13). Throughout,
FDD emphasizes the importance of having good people and
strong domain experts. FDD is build around eight best
practices: domain object modeling; developing by feature;
individual class ownership; feature teams; inspections;
regular builds; configuration management; and report-
ing/visibility of results. UML models (54,55) are used exten-
sively in FDD.

Documents and Artifacts

� Feature lists, consisting of a set of features whereby
features are small, useful in the eyes of the client,
a client-valued function that can be implemented in
two weeks or less. If a feature would take more
than two weeks to implement, it must be further
decomposed.

� Design packages, which consist of sequence dia-
grams and class diagrams and method design informa-
tion

� Track by Feature, a chart that enumerates the
features that are to be built and the dates when
each milestone has been completed.

� ‘‘Burn Up’’ Chart, a chart that has dates (time) on the
x axis. On the y axis is an increasing number of
features that have been completed. As features are
completed, this chart indicates a positive slope over
time.

Roles

� Project manager, the administrative lead of the
project responsible for reporting progress, managing
budgets, and fighting for and managing resources
including people, equipment, and space.

� Chief architect, responsible for the overall design of
the system including running workshop design ses-
sions with the team.

� Development manager, responsible for leading the
day-to-day development activities including the reso-
lution of resource conflicts.

� Chief programmer, as outlined by Brooks’ ideas on
surgical teams (18), an experienced developer who acts
as a team lead, mentor, and developer for a team of
three to six developers. The chief programmer provides
the breadth of knowledge about the skeletal model to a
feature team, participates in high-level requirements
analysis and design, and aids the team in low-level
analysis, design, and development of new features.

� Class owner, responsible for designing, coding, test-
ing, and documenting new features in the classes that
he or she owns.

� Domain experts, users, clients, sponsors, business
analysts, and so on who have deep knowledge of the
business for which the product is being developed.

� Feature teams, temporary groups of developers
formed around the classes with which the features
will be implemented. A feature team dynamically
forms to implement a feature and disbands when
the feature has been implemented (two weeks or less).

Process. The FDD process has five incremental, itera-
tive processes. Guidelines are given for the amount of time
that should be spent in each of these steps, constraining the
amount of time spent in overall planning and architecture
and emphasizing the amount of time designing and
building features. Processes 1 through 3 are done at the
start of a project and then updated throughout the deve-
lopment cycle. Processes 4 and 5 are done incrementally on
2-week cycles. Each of these processes has specific entry
and exit criteria, whereby the entry criterion of Process N
is the exit criteria of Process N-1.

� Process 1: Develop an overall model (time: 10%
initially, 4% ongoing).
Domain and development team members work
together to understand the scope of the system and
its context. High-level object models/class diagrams
are developed for each area of the problem domain.
Model notes record information about the model’s
shape and why some alternatives were selected and
others rejected.

� Process 2: Build a features list (time: 4% initially,
1% ongoing).
Complete list of all the features in the project; func-
tional decomposition that breaks down a ‘‘business
activity’’ requested by the customer to the features
that need to be implemented in the software.

� Process 3: Plan by feature (time: 2% initially, 2%
ongoing).
A planning team consisting of the project manager,
development manager, and chief programmer plan the
order in which features will be developed. Planning is
based on dependencies, risk, complexity, workload
balancing, client-required milestones, and check-
points. Business activities are assigned month/year

AGILE SOFTWARE DEVELOPMENT 7



completion dates. Every class is assigned to a specific
developer. Features are bundled according to technical
reasons rather than business reasons.

� Process 4: Design by feature (time: 34% ongoing in
2-week iterations).
The chief programmer leads the development of design
packages and refines object models with attributes.
The sequence diagrams are often done as a group
activity. The class diagrams and object models are
done by the class owners. Domain experts interact
with the team to refine the feature requirements.
Designs are inspected.

� Process 5: Build by feature (time: 43% ongoing in
2-week iterations).
The feature team implements the classes and methods
outlined by the design. This code is inspected and unit
tested. The code is promoted to the build.

Progress is tracked and made visible during the design-
by-feature/build-by-feature phases. Each feature has six
milestones, three from the design-by-feature phase
(domain walkthrough, design, and design inspection) and
three from the build-by-feature phase (code, code inspec-
tion, promote to build). When these milestones are com-
plete, the date is placed on the track-by-feature chart,
which is prominently displayed for the team. When a
feature has completed all six milestones, this completion
is reflected on the ‘‘Burn Up’’ chart. All features are scoped
to be completed within a maximum of two weeks, including
all six milestones.

Discussion. No empirical case studies of FDD teams
have been published. Anecdotally, the main advantages
of FDD are as follows:

� Teams that value and are accustomed to object-
oriented analysis and design and associated documen-
tation and inspections will transition to FDD more
easily than some of the other agile methods.

� The documentation produced could lead to higher
quality projects and enable traceability and audit-
ability.

Possible drawbacks of FDD are as follows:

� The up-front design may not make FDD as agile as
other methodologies.

� Teams must purchase and use UML design tools.

SUMMARY

In this article, we presented an overview of the agile soft-
ware development model and the characteristics of the
projects that may be suited for the use of this model.
Additionally, we provided overviews of three representa-
tive methodologies: XP, Crystal, and FDD. A summary of
the distinguishing factors of these three methodologies is
presented in Table 2.

There are other defined agile software development meth-
odologies as well, including ASD (25), Agile Modeling (56),
DSDM (27), Lean Development (57), and Scrum (13,31).
Additionally, teams can configure an agile RUP methodol-
ogy. All agile methodologies consider software development
to be an empirical process that necessitates short ‘‘inspect
and adapt’’ feedback loops throughout the project. Further-
more, although we have not explicitly focused on such in
this article, all of the agile methods do support either
implied or explicit verification and validation processes.
In some instances, it manifests as pair programming, in
some as test-driven development, and in some as explicit
unit, integration, system, and acceptance testing of the
classic type. In general, there is also an underlying business
model that often hinges on customer satisfaction, but in
reality is very much driven by resource constraints and
end-user expectations in terms of functionality and end-
product quality. It is probably wise for a potential adopter of
agile methodologies to first explicitly define the business
model (including expected resource constraints and pro-
duct quality), and then pick an appropriate process model
(using a combination of scientific quantitative and quali-
tative methods) based on that information and the project
characteristics (33).

Table 2. Summary of XP, Crystal, and FDD Methodologiese

Agile
Methodology Distinguishing Factor

XP � Intended for 10–12 co-located,
object-oriented programmers
� Five values
� 13 primary and 11 corollary highly

specified, disciplined development practices
� Minimal archival documentation
� Rapid customer and developer

feedback loops

Crystal � Customizable family of development
methodologies for small to very large teams
� Methodology dependent on size of team

and criticality of project
� Emphasis of face-to-face communication
� Consider people, interaction, community,

skills, talents, and communication as
first-order effects
� Start with minimal process

and build up as absolutely necessary

FDD � Scalable to larger teams
� Highly specified development practices
� Five subprocesses, each defined with entry

and exit criteria
� Development are architectural shape,

object models, and sequence diagrams
(UML models used throughout)

� 2 week features

8 AGILE SOFTWARE DEVELOPMENT



BIBLIOGRAPHY

1. B. Boehm, Get ready for agile methods, with care, IEEE
Computer, 35(1): 64–69, 2002.

2. W. S. Humphrey, A Discipline for Software Engineering. Read-
ing, MA: Addison Wesley, 1995.

3. W. S. Humphrey, PSPsm: A Self-Improvement Process for Soft-
ware Engineers. Upper Saddle River, NJ: Addison-Wesley,
2005.

4. P . Kroll and P. Kruchten, The Rational Unified Process
Made Easy: A Practitioner’s Guide to the RUP. Boston, MA:
Addison-Wesley, 2003.

5. P. Kruchten, The Rational Unified Process: An Introduction,
3rd ed. Boston, MA: Addison-Wesley, 2004.

6. B. Boehm, A spiral model for software development and
enhancement, Computer, 21(5): 61–72, 1988.

7. B. W. Boehm, Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1981.

8. V. R. Basili and A. J. Turner, Iterative enhancement: A prac-
tical technique for software development, IEEE Transactions
on Software Engineering, 1(4): 266–270, 1975.

9. R. Fairley, Software Engineering Concepts. New York:
McGraw-Hill, 1985.

10. C. Larman, Agile and Iterative Development: A Manager’s
Guide. Boston, MA: Addison-Wesley, 2004.

11. C . Larman and V. Basili, A history of iterative and incremental
development, IEEE Computer, 36(6): 47–56, 2003.

12. L . Williams and A. Cockburn, Special issue on agile methods,
IEEE Computer, 36(3): 2003.

13. J. Highsmith, Agile Software Development Ecosystems. Boston,
MA: Addison-Wesley, 2002.

14. A. Cockburn, Agile Software Development. Reading, MA: Addi-
son Wesley Longman, 2001.

15. P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen,
New directions in agile methods: A comparative analysis,
International Conference on Software Engineering (ICSE
203), Portland, OR, 2003, pp. 244–254.

16. B. Curtis, Three Problems Overcome with Behavioral Models
of the Software Development Process (Panel), International
Conf. on Software Engineering, Pittsburgh, PA, 1989, pp. 398–
399.

17. T . Potok and M. Vouk, The effects of the business model on
the object-oriented software development productivity, IBM
Syst. J., 36(1): 140–161, 1997.

18. F. P. Brooks, The Mythical Man-Month, Anniversary Edition.
Reading, MA: Addison-Wesley, 1995.

19. M. C. Paulk, B. Curtis, and M. B. Chrisis, Capability maturity
model for software version 1.1, Software Engineering Institute
CMU/SEI-93-TR, February 24, 1993.

20. Lehigh University, Agile competition is spreading to the
world,1991. Available: http://www.ie.lehigh.edu/

21. R. Dove, Response Ability: The Language, Structure and Cul-
ture of the Agile Enterprise. New York: Wiley.

22. M. Aoyama, Agile software process and its experience, Inter-
national Conference on Software Engineering, Kyoto, Japan,
1998, pp. 3–12.

23. M . Fowler and J. Highsmith, The Agile Manifesto, in Software
Development, August 2001, pp. 28–32.

24. K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.
Cunningham, M. Fowler, J. Grenning, J. Highsmith, A.
Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor,

K. Schwaber, J. Sutherland, and D. Thomas, The Agile
Manifesto, 2001, http://www.agileAlliance.org.

25. J. Highsmith, Adaptive Software Development. New York:
Dorset House, 1999.

26. A. Cockburn, Crystal ‘‘Clear’’: A human-powered software
development methodology for small teams. Boston, MA:
Addison-Wesley, 2005.

27. J. Stapleton, DSDM: The Method in Practice, 2nd ed: Addison-
Wesley Longman, 2003.

28. K. Beck, Extreme Programming Explained: Embrace Change.
Reading, MA: Addison-Wesley, 2000.

29. S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-
Driven Development. Upper Saddle River, NJ: Prentice Hall
PTR, 2002.

30. P. Coad, E. LeFebvre, and J. DeLuca, Java Modeling in Color
with UML.Englewood Cliffs, NJ: Prentice Hall, 1999.

31. K . Schwaber and M. Beedle, Agile Software Development with
SCRUM. Upper Saddle River, NJ: Prentice-Hall, 2002.

32. K. Schwaber, Agile Project Management with SCRUM. Red-
mond, WA: Microsoft Press, 2004.

33. B . Boehm and R. Turner, Using risk to balance agile and plan-
driven methods, IEEE Computer, 36(6): 57–66, 2003.

34. B. Boehm, Software Risk Management. Washington, DC: IEEE
Computer Society Press, 1989.

35. K. Beck, Extreme Programming Explained: Embrace Change,
2nd ed., Reading, MA: Addison-Wesley, 2005.

36. R. Jeffries, A. Anderson, and C. Hendrickson, Extreme Pro-
gramming Installed. Upper Saddle River, NJ: Addison-Wesley,
2001.

37. L. Williams, The XP programmer: The few minutes program-
mer, IEEE Software, 20(3): 16–20, 2003.

38. M . Vouk and A. T. Rivers, Construction of reliable software in
resource-constrained environments, in W. R. Blischke and D.
N. P. Murthy, (eds.) Case Studies in Reliability and Mainte-
nance, Hoboken, NJ: Wiley-Interscience, John Wiley and Sons,
2003, pp. 205–231.

39. D . Bellin and S. S. Simone, The CRC Card Book. Reading, MA:
Addison-Wesley, 1997.

40. K. El Emam, Finding success in small software projects, Agile
Project Management, 4(11): 2003.

41. T. DeMarco, Slack: Getting Past Burnout, Busywork, and the
Myth of Total Efficiency.New York: Broadway, 2002.

42. L . Williams and R. Kessler, Pair Programming Illuminated.
Reading, MA: Addison-Wesley, 2003.

43. K. Beck, Test Driven Development – by Example. Boston, MA:
Addison Wesley, 2003.

44. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the design of existing code. Reading,
MA: Addison-Wesley, 1999.

45. P. Abrahamsson. Extreme programming: First results from a
controlled case study, 29th EUROMICRO Conference, Belek,
Turkey, 2003.

46. J. Grenning, Launching extreme programming at a process-
intensive company, IEEE Software, 18(6): 27–33, 2001.

47. L. Layman, L. Williams, and L. Cunningham, Exploring
extreme programming in context: An industrial case study,
Agile Development Conference, Salt Lake City, UT, 2004,
pp. 32–41.

48. L. Layman, L. Williams, and L. Cunningham, Motivations
and measurements in an agile case study, ACM SIGSOFT
Foundation in Software Engineering Workshop Quantitative

AGILE SOFTWARE DEVELOPMENT 9



Techniques for Software Agile Processes (QTE-SWAP), Newport
Beach, CA, 2004.

49. L. Williams, W. Krebs, L. Layman, A. Antón, and P. Abra-
hamsson, Toward a framework for evaluating extreme pro-
gramming, Empirical Assessment in Software Eng. (EASE)
2004, Edinburgh, Scotland, 2004, pp. 11–20.

50. J. Drobka, D. Noftz, and R. Raghu, Piloting XP on Four
Mission-Critical Projects, IEEE Software, 21(6): 70–75, 2004.

51. L. Laymana, L. Williams, D. Damian, and H. Buresc, Essential
communication practices for extreme programming in a global
software development team, Information and Software Tech-
nology (TBD), 48(9): 781–794, 2006.

52. W . Wood and W. Kleb, Exploring XP for scientific research,
IEEE Software, 20(3): 42–54, 2003.

53. A. Martin, R. Biddle, and J. Noble, The XP customer role in
practice: Three studies, Agile Development Conference, Salt
Lake City, UT, 2004.

54. M. Fowler, UML Distilled, 3rd ed. Reading, MA: Addison-
Wesley, 2004.

55. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Reading, MA: Addison-Wesley,
1999.

56. S. W. Ambler, Agile Modeling. New York: Wiley, 2002.

57. M . Poppendieck and T. Poppendieck, Lean Software Develop-
ment. Boston, MA: Addison-Wesley, 2003.

LAURIE WILLIAMS

MLADEN VOUK

North Carolina State University
Raleigh, North Carolina

10 AGILE SOFTWARE DEVELOPMENT



A

ANALYTICAL CUSTOMER RELATIONSHIP
MANAGEMENT

INTRODUCTION

As bandwidth continues to grow, and newer information
appliances become available, marketing departments
everywhere see this as an opportunity to get in closer touch
with potential customers. In addition, with organizations
constantly developing more cost-effective means of custo-
mer contact, the amount of customer solicitation has been
on a steady rise. Today, with the internet as the ultimate
low-latency, high-bandwidth, customer contact channel
with practically zero cost, customer solicitation has reached
unprecedented levels.

Armed with such tools, every organization has ramped
up its marketing effort, and we are witnessing a barrage of
solicitations targeted at the ever-shrinking attention span
of the same set of customers. Once we consider the fact that
potentially good customers, i.e., ‘‘those likely to buy a pro-
duct,’’ are much more likely to get a solicitation than those
who are not so good, the situation for the good customers is
even more dire. This issue is really testing the patience of
many customers, and thus, we have witnessed a spate of
customers signing up to be on ‘‘no solicitation’’ lists, to avoid
being bombarded with unwanted solicitations.

From the viewpoint of the organizations, the situation is
no better. Even though the cost of unit customer commu-
nication has dropped dramatically, the impact of unit com-
munication has dropped even faster. For example, after a
lot of initial enthusiasm, it is now widely accepted that the
impact of web page banner advertisements in affecting
customer opinion is practically negligible. On the other
hand, the impact of targeted e-mails, especially with finan-
cial offers, is quite high. In essence, each organization is
spinning its wheels in trying to target the same set of good
customers, while paying insufficient attention to under-
standing the needs of the ‘‘not so good customers’’ of today,
and converting them into good customers of tomorrow. A
clear example of this mutual cannibalism of customers is
the cellular phone industry, where each service provider
is constantly trying to outdo the others. ‘‘Customer churn’’
is a well-accepted problem in this industry.

A well-accepted wisdom in the industry is that it costs
five to seven times as much to acquire a new customer than
to retain an existing one. The reason is that the organiza-
tion already has the loyalty of existing customers, and all
that is required for retention is to meet the customer’s
expectations. For customer acquisition, however, the cus-
tomer must be weaned away from another organization,
which is a much harder task. As a result, it is crucial that
the selection of customers to target is done with care, and
that the right message be sent to each one. Given these
needs, it becomes important for an organization to under-
stand its customers well. Thus, one can consider customer

relationship management to consist of two parts as follows:

CRM ¼ customer understandingþ relationship management

This equation is not new, because in the classic ‘‘neigh-
borhood store’’ model of doing business, the store had a
highly localized audience, and the store owner knew prac-
tically everyone in the neighborhood—making it easy for
him to meet the needs of his customers. It is the big
corporations, serving a mass customer base, that have
difficulty in understanding the needs of individual custo-
mers. The realization of this gap of knowledge has been one
of the driving factors for the rapid adoption of CRM soft-
ware by many corporations. However, the initial deploy-
ment of CRM software has been for the second part of the
CRM equation, namely ‘‘relationship management.’’ As
described, relationship management efforts without an
understanding of the customer can be marginally effective
at best, and sometimes even counterproductive.

The approach that resolves this dilemma is the use of
data analytics in CRM, with the goal of obtaining a better
understanding of the needs of individual customers.
Improved customer understanding drives better customer
relationship management efforts, which leads to better and
more frequent customer responses and in turn leads to
more data collection about the customer—from which a
more refined customer understanding can be gained. This
positive feedback cycle—or ‘‘virtuous loop’’ as it is often
called—is shown in Fig. 1.

Although this picture is very desirable, unfortunately
several technical and organizational challenges must be
overcome to achieve it. First, much customer data are
collected for operational purposes and are not organized
for ease of analysis. With the advance of data analysis
techniques, it is becoming feasible to exploit these data
for business management, such as to find existing trends
and discover new opportunities. Second, it is critical that
this knowledge cover all channels and customer touch
points, so that the information base is complete and delivers
a holistic and integrated view of each customer. This knowl-
edge includescustomer transactions, interactions, customer
denials, service history, characteristics and profiles, inter-
active survey data, click-stream/browsing behavior, refer-
ences, demographics, psychographics, and all available and
useful data surrounding that customer. This information
may also include data from outside the business as well, for
example, from third-party data providers such as Experian
or Axciom. Third, organizational thinking must be changed
from the current focus on products to include both customers
and products, as illustrated in Fig. 2. Successful adoption of
CRM requires a change in focus by marketing from ‘‘who I
can sell this products to?’’ to ‘‘what does this customer need?’’
It transforms marketing from tactical considerations, i.e.,
‘‘how do I get this campaign out of the door’’ to strategic
focus, i.e., ‘‘what campaigns will maximize customer value?’’

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



The goal of this article is to introduce the data analytics
opportunities that exist in customer relationship manage-
ment, especially in the area of customer understanding. As
the data collected about customers is becoming more com-
plete, the time is ripe for the application of sophisticated
data mining techniques towards better customer under-
standing. The rest of this paper is organized as follows: in
Section 2 we introduce the concept of analytical customer
relationship management. Section 3 briefly describes the
underlying technologies and tools that are needed, namely
data warehousing and data mining. Section 4 describes a
number of organizational issues that are critical to success-
ful deployment of CRM in an organization, and Section 5
concludes the paper.

ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT

Significant resources have been spent on CRM, leading to
the success of CRM software vendors such as Seibel, Oracle,
and Epiphany. However, in the initial stages sufficient
attention was not paid to analyzing customer data to
target the CRM efforts. Simple heuristics and ‘‘gut-feel’’
approaches led to profitable customers being bombarded
with offers (often turning them off), while there being little
attempt to develop today’s the ‘‘less valuable’’ customers
into tomorrow’s valuable ones. This lack of attention to
customer needs is the cause of decreasing customer satis-
faction across a wide variety of industries.1

Fortunately, however, the tremendous advancement in
datamanagementandanalysis technologies isprovidingthe
opportunity to develop fine-grained customer understand-
ing on a mass scale and to use it to better manage the
relationship with each customer. It is this approach to devel-
opingcustomerunderstandingthroughdataanalysis, forthe
purpose of more effective relationship management, that we
call analytical customer relationship management (ACRM).
ACRM can make the customer interaction functions of a
company much more effective than they are currently.

Customer Segmentation

Customer segmentation is the division of the entire
customer population into smaller groups, called customer
segments. The key idea is that each segment is fairly
homogeneous from a certain perspective, although not

necessarily from other perspectives. Thus, the customer
base is first segmented by the value they represent to an
organization, and then by the needs they may have for
specified products and services.

The purpose of segmentation is to identify groups of
customers with similar needs and behavior patterns, so
that they can be offered more tightly focused products,
services, and communications. Segments should be identi-
fiable, quantifiable, addressable, and of sufficient size to be
worth addressing. For example, a vision products company
may segment the customer population into those whose
eyesight is perfect and those whose eyesight is not perfect.
As far as the company is concerned, everyone whose eye-
sight is not perfect falls in the same segment, i.e., of
potential customers, and hence, they are all the same.
This segment is certainly not homogeneous from the per-
spective of a clothing manufacturer, who will perhaps
segment on attributes like gender and age.

A company’s customer data are organized into customer
profiles. A customer’s profile consists of three categories of
data, namely (1) identity, (2) characteristics, and (3) beha-
vior. These categories correspond to the following questions:
Who is the person? What attributes does he/she have? How
does he/she behave? Two types of segmentation can be
performed based on the profile, namely

� Group customers based on common characteristics,
and identify their common patterns of behavior.

� Group customers based on common patterns of beha-
vior, and identify their common characteristics.

As shown in Fig. 3, each customer segment represents a
different amount of profit per customer; the treatment of
each segment can be different. The figure shows examples
of the type of questions the company can ask about seg-
ments. Also included are some overall strategic questions
about which segments to focus on, and how much.

Customer Communication

A key element of customer relationship management is
communicating with the customer. This communication
consists of two components, namely (1) deciding what
message to send to each customer segment, and (2) select-
ing the channel through which the message must be sent.
Message selection for each customer segment depends on
the strategy being followed for that segment, as shown in
Fig. 4. The selection of the communication channel depends
on several characteristics of each channel, including cost,
focus, attention, and impact.

Typical communication channels include television,
radio, print media, direct mail, and e-mail. Television is
a broadcast channel, which is very good at sending a
common message to a very large population. Although it
is very effective in building brand recognition, it is difficult
to target a specific segment, as well as to measure response
at the individual customer level. Radio, like television, is a
broadcast medium, and hence, it is difficult to use for
targeted communication to individual customers. Some
television and radio stations, e.g., public radio and public
television, develop a fairly accurate sample of their listener/

Customer
understanding

Customer
response

Customer
relationship

actions

Figure 1. ‘‘Virtuous circle’’ of CRM.

1Of course, customer expectation keeps rising over time, and the
source of dissatisfaction today is very different than that of a few
years ago. However, all organizations must constantly fight this
battleindustries, as illustrated in Fig. .2

2 ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT



viewer base through periodic fundraisers. Print media like
newspapers and magazines can be used for much more
focused communication, because the subscriber’s profile is
known. However, the readership of print media is usually
much larger than the subscription base—a ratio of 1:3 in the
United States—and hence, for a large part of the readership
base, no profile is available. Direct mail is a communication
channel that enables communicating with individual cus-
tomers through personalized messages. In addition, it pro-
vides the ability of measuring response rates of customers
at the individual level, because it enables the contacted
customer to immediately respond to the message, if so
desired. Finally, given its negligible cost, e-mail is becom-
ing the medium of choice for customer contact for many
organizations.

Figure 4, courtesy of Stevens and Hegarty (2), illustrates
the problem of formulating the customer communication
strategy. Each communication channel has its own char-
acteristics in terms of cost, response rate, and attention.
The goal of communication strategy optimization is to
determine the (set of) communication channel(s) for each
customer that minimizes cost or maximizes sale, profit, and
so on. Although communication channel optimization has

been a well-studied problem in the quantitative marketing
literature, characteristics of new channels such as e-mail
and the Web are not well understood. Thus, there is a need
to revisit these problems.

Sending the message to each customer through the
chosen communication channel is not enough. It is crucial
to measure the impact of the communication. This mea-
surement is done by using an approach called response
analysis. As shown in Fig. 5, response analysis metrics,
e.g., number of respondents, acquired customers, number
of active customers, and number of profitable customers,
can be calculated. These are analyzed to (1) determine how
effective the overall customer communication campaign
has been, (2) validate the goodness of customer segmenta-
tion, and (3) calibrate and refine the models of the various
communication channels used. Although response analysis
for traditional communication channels is fairly well
understood, for new channels like e-mail and the Web,
hardly anything is known. Understanding how customers
relate to these new medium, which aspects they like and
which they do not, and what are the right set of metrics to
measure the usage of the medium, are all open questions
and have attracted much research (3–5).

Traditional Marketing

Products : 1 2 3 4 5 ......

Customer Focused Marketing

Products :

1     2     3     4    .  . . 

1

2

3

4

Customers :

.

.

.

Figure 2. Change of focus from product only to customer þ product.

Should the customers in
different segments be served
differently?

Who are these
customers; what do
they look like?

600
500
400
300
200
100

0Profit

Can we service them with a lower cost
channel?
What can we do to make this segment more
profitable?

Figure 3. Segmentation of customers by profitability.

ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT 3



Customer Retention

Customer retention is the effort carried out by a company to
ensure that its customers do not switch over to the competi-
tion’s products and services. A commonly accepted wisdom,
which is acquired through substantial experience, is that it
is five to seven times more expensive to acquire a new
customer than to retain an existing one. Thus, it is of
paramount importance to retain customers, especially

highly profitable ones. A good loyal customer base that
persists for a long time is one of the best advertisements
for a business, creating an image of high quality. This image
helps in attracting other customers who value long-term
relationships and high-quality products and services.

Figure 6 shows how a company thinks of its various
customer segments, from a current and future profitability

perspective. Clearly, the quadrants on the right bottom and
the right top should be targeted for retention. In addition,
the right top customer quadrant must be targeted for
strengthening the relationship, as there is significant
unrealized potential.

A successful customer retention strategy for a company
is to identify opportunities to meet the needs of the custo-
mer in a timely manner. A specific example is of a bank that
used the event ‘‘ATM request for cash is rejected due to lack
of funds’’ to offer unsecured personal loans to credit-worthy
customers the next day. This offer was found to have a very
high success rate, with the additional advantage of building
customer loyalty. Classically, this analysis has been done at
an aggregate level, namely for customer segments. Given
current-day analytic tools, it should be possible to achieve it
at the level of individual customers.

Customer Loyalty

From a company’s perspective, a loyal customer is one who
prefers the company’s products and services to those of its
competition. Loyalty can range from having a mild prefer-
ence all the way to being a strong advocate for the company.

It is well accepted in consumer marketing that an average
customer who feels closer to a company (high loyalty) is
significantly more profitable than one who feels less close
(low loyalty). Thus, ideally a company would like all its
customers to become loyal, and then to quickly advance up
the loyalty chain.

Figure 7, courtesy of Heygate (1), illustrates the concept
of tracking a customer to identify events in his/her life.
Many of these events offer opportunities for strengthening
the relationship the company has with this customer. For

MARKET

Different cost vs. effectiveness tradeoffs
for different channels

Figure 4. Formulating the optimal customer communication
strategy.

Test

Who responded?
Who is dormant?

3-4 months1-2 months 5-6 months 7-8 months 9-10 months 11-12 months

Who is active?
Who is delinquent?

Who is profitable?

Response

Customers

Analysis

Figure 5. Analyzing the response to customer communications.

Customer
Retention

Cross sell

Manage up or out

Valued
Customer
Program

Customer’s current
contribution

Customer’s with potential
in increasing contribution

Figure 6. Treatment of various customer segments.

Time

Eventbased sales opportunities

Customer
relationship
profitability

Actions which build
relationship warmth

No-fault service
“Have a nice day”
Targeted sales

Figure 7. Lifetime impact of customer loyalty.

4 ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT



example, sending a greeting card on a customer’s birthday
is a valuable relationship-building action—with low cost
and high effectiveness.

In marketing language, this strategy is called ‘‘event
marketing,’’ where the idea is to use the occurrence of
events as marketing opportunities. Sometimes even nega-
tive events can be used to drive sales. For example, a bank
adopted the policy of offering a personal loan to every
customer whose check bounced or there were insufficient
funds for ATM withdrawal. This program was very success-
ful and enhanced the reputation of the bank as being really
caring about its customers.

The data mining community has developed many tech-
niques for event and episode identification from sequential
data. There is a great opportunity for applying those tech-
niques here, because recognizing a potential marketing
event is the biggest problem here.

DATA ANALYTICS SUPPORT FOR ANALYTICAL CRM

In this section we describe the back-end support needed for
analytical CRM. Specifically, we first outline a generic
architecture and then focus on the two key components,
namely data warehousing and data mining.

Data Analytics Architecture

Figure 8 shows an example architecture needed to support
the data analytics needs of analytical CRM. The key
components are the data warehouse and the data analysis
tools and processes.

Data Warehouse

Building a data warehouse is a key stepping stone in getting
started with analytical CRM. Data sources for the ware-
house are often the operational systems, which provide the
lowest level of data. Data sources are designed for opera-
tional use, not for decision support, and the data reflect this
fact. Multiple data sources are often from different systems,
running on a wide range of hardware, and much of this
software is built in-house or highly customized. Data from
multiple sources are mismatched. It is important to clean
warehouse data because critical CRM decisions will be
based on it. The three classes of data extraction tools
commonly used are as follows: data migration that allows
simple data transformation, data scrubbing that uses
domain-specific knowledge to scrub data, and data auditing
that discovers rules and relationships by scanning data and
detects outliers.

Loading the warehouse includes some other processing
tasks, such as checking integrity constraints, sorting, sum-
marizing, and build indexes. Refreshing a warehouse
requires propagating updates on source data to the data
stored in the warehouse. The time and frequency to refresh
a warehouse is determined by usage, types of data source,
and so on. The ways to refresh the warehouse include data
shipping, which uses triggers to update the snapshot log
table and to propagate the updated data to the warehouse,
and transaction shipping, which ships the updates in the
transaction log. For technical details on transforming,

refreshing, and maintaining data warehouses, see Refs.
6–13.

The key entities required for CRM include Customer,
Product, and Channel. Usually information about each of
these entities is scattered across multiple operational data-
bases. In the warehouse these databases are consolidated
into complete entities. For example, the Customer entity in
the warehouse provides a full picture of who a customer is
from the entire organization’s perspective, including all
possible interactions, as well as their histories. For smaller
organizations the analysis may be done directly on the
warehouse, whereas for larger organizations, separate
data marts may be created for various CRM functions
like customer segmentation, customer communication,
and customer retention. A typical approach for designing
entities in a data warehouse is called dimensional model-
ing, which organizes data into fact tables and dimension
tables. Fact tables contain measurements or metrics of
business processes and foreign keys of dimension tables.
Dimension tables store the context of measurement, includ-
ing the demographics of customers, time and place. A
typical example is to store the content of each transaction
such as transaction amount and products purchased in a
fact table, while recording the characteristics of the asso-
ciated customer, the channel, and the products in dimen-
sion tables. Interested readers are referred to Refs. 14 and
15, for modeling in data warehouse.

Data Mining

The next generation of analytic CRM requires companies to
span the analytical spectrum and focus more effort on
looking forward. The ‘‘what has happened’’ world of report
writers and the ‘‘why has it happened’’ OLAP worlds are not
sufficient. Time-to-market pressures, combined with data
explosion, are forcing many organizations to struggle to
stay competitive in the ‘‘less time, more data’’ scenario.
Coupled with the need to be more proactive, organizations
are focusing their analytical efforts to determine what will
happen, what they can do to make it happen, and ultimately
to automate the entire process. Data mining is now viewed
today as an analytical necessity. The primary focus of data
mining is to discover knowledge, previously unknown;
predict future events; and automate the analysis of very
large datasets.

Operational
databases

Other data
sources

Extract
Transform
Load (ETL)

Data
Analysis

OLAP

Data mining

Data marts

Data
Warehouse

Figure 8. Data analytics architecture.

ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT 5



The data mining process consists of several steps. First
the data collected must be processed to make it mine-able. It
requires several steps to clean the data and to handle
mismatches in format, structure, semantics, and normali-
zation and integration. A very good book on the subject is
Ref. 16. Once the data have been cleaned, various data
mining algorithms can be applied to extract models from it.
Several data mining techniques have been developed, and
the one to be applied depends on the specific purpose at
hand. Reference 17 provides an excellent introduction to
various data mining algorithms, whereas Ref. 18 shows
how they can be applied in the context of marketing.

The most common data mining task is classification,
which refers to assigning a new object one of the predefined
classes by examining its features. The classification task is to
learn a prediction model from a training set consisting of
examples with features and preassigned classes. Such a
model can be then used to predict the class of a new object.
For example, one may classify customers as good, okay, and
bad customers by using classification techniques based on
their transaction records and provide incentives only to a
handful of good customers for product/service promotion.
Classification techniques can be extended to handle nondis-
crete outcomes, e.g., estimating the lifetime value of a cus-
tomer. Bayesian classifier (19,20), decision trees (21–24),
decision rules (25,26), support vector machine (27,28), neural
networks (29–31), and genetic algorithms (32,33) are among
the most popular classification techniques.

Another common data mining task is clustering, which
partitions a group of objects into a set of more homogeneous
subgroups. Clustering is also called unsupervised learning,
especially in the artificial intelligence community, as
opposed to classification (also known as supervised learn-
ing) that requires domain experts assigning classes to
examples in a training set. In clustering, objects are
grouped based on pairwise similarities. It is up to the
designer to determine the appropriate similarity metrics
in a specific domain. Commonly used similarity metrics
include reciprocal Euclidean distance, correlation coeffi-
cient, and cosine function. For example, customers can be
segmented by their socioeconomical status, and different
promotion packages can be tailor-made for different clus-
ters of customers. Well-known clustering techniques
include k-means, k-nearest neighbors (34,35), partitioning
or hierarchical clustering (36–39), and expectation-maxi-
mization (EM) algorithm (40,41).

A common data mining task that was more recently
proposed is association mining, which determines groups
of closely related objects. A well-known example is the
market basket example that identifies the set of products
that often go together in customers’ shopping carts; e.g.,
people who buy milk tend to also buy bread. Such associa-
tion rules can be used to plan item placement on shelves and
to design attractive packages. Association rule mining
techniques can be extended to identify trends in time-
variant data. For example, time series patterns derived
from the transactions of former customers may help us
better understand the ex-customer’s behavior and subse-
quently retain (good) customers. Various techniques have
been proposed to identify association rules (42–52) and
sequential and time series patterns (53–65).

Once a model has been developed, it can be used for two
kindsofpurposes.Thefirstpurposeistogainanunderstand-
ingof thecurrentbehaviorof thecustomers.Amodelusedfor
thispurposeiscalledadescriptivemodel.Bothclusteringand
classification intendtofindadescriptivemodel fromexisting
data. The second purpose is to use the model to make predic-
tionsaboutthefuturebehaviorofthecustomers.Amodelused
for this purpose is called a predictive model. The descriptive
model, which is extracted from past behavior, is used as a
starting point from which a predictive model can be built.
Suchanapproachhasbeenfoundtobequitesuccessful,asitis
basedontheassumptionthatpastbehaviorisagoodpredictor
of future behavior, with appropriate adjustments. This
assumption holds quite well in practice.

Finally, a data mining task that has been widely
adopted by many online stores is personalization, which
intends to provide information about products/services
that fits a customer’s personal need. A personalization
system, often better known as a recommendation system,
maintains an interest profile for each customer and recom-
mends to a customer only those products/services that are
highly related to his/her interest profile. Although tradi-
tional approaches require users to explicitly specify their
interest profiles, modern recommendation systems adopt
data mining techniques to build interest profiles from
previous transactions. Two types of approaches have
been proposed for building personal interest profiles:
the content-based approach and the collaborative
approach. The content-based approach derives the content
features of a customer’s past interaction data and builds a
prediction model for each customer that, when given the
content features of an item, indicates the probability that
the customer likes the item. Various classification tech-
niques have been applied in this context (66-70). The
collaborative approach considers the social features of
users’ interests and recommends items to a customer by
taking into account other customers’ preferences. There
are two broad categories of approaches for estimating the
preference of an unseen item to a customer: memory-based
and model-based approaches (71). The memory-based
approach uses a rating matrix, with rows being customers
and columns being items, to represent customers’ ratings
on items. It computes a weighted sum on rows or columns
of the rating matrix for predicting the preference of a
customer to an item (72–77). Possible weighting schemes
include correlation, cosine and regression. The model-
based approach builds a coherent prediction model for
all customers based on customers’ ratings. The prediction
model takes as input a customer and an item and outputs
the probability that the customer likes the item. Various
techniques in classification (71,78–80), clustering (81–
83), and association mining (84–88) have been proposed
for building such a prediction model.

ORGANIZATIONAL ISSUES IN ANALYTICAL CRM
ADOPTION

Although the promise of analytical CRM, both for cost
reduction and revenue increase, is significant, this cannot
be achieved unless there is successful adoption of it within

6 ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT



an organization. Adaptation of an analytical CRM system
within an organization is considered a business transfor-
mation project. In addition to deployment of new technol-
ogy, it requires significant changes to existing processes
that define how an enterprise should interface and treat
all its customers and partners. In this section we describe
some key organizational issues in CRM adoption.

Customer First Orientation

Companies that offer several products and services have
traditionally organized their customer facing teams, e.g.,
sales, marketing, customer service, and so on, vertically
along product lines, called ‘‘Lines of Business (LOBs).’’
The goal of any such product marketing team is to build
the next product for its LOB; the goal of the sales team is to
identify the customers who would be likely to buy this
product, and customer service is trained to support the
specifc product sets. Organizations adopting such a model,
also known as functional-based organizations, causes
customer needs and companies overall goals to be treated
as secondary when compared with the LOB’s priorities
and needs. In such an organizational model, initiatives
such as cross-selling become a big challenge because
either the sales team does not have knowledge of other
products that the company has to offer or does not have
any financial incentive to offer products from other LOBs
that customers may want to buy. The vertical organiza-
tional model also influences the enterprise architecture by
having each LOB have its own customer database and
associated business applications resulting in a complex
enterprise architecture.

In addition to the architecture, a functional-based orga-
nizational model dictates what data about the customers
should be collected. The collected data in such an organiza-
tion are usually transactional in nature and less focused on
customer’s behavior and needs and make some analytical
computations very difficult and less reliable, if not impos-
sible. Additionally, it is possible for each LOB to have its
own data about a given customer. The LOB-specific data
about a customer can be inconsistent, resulting in a data
inconsistency problem.

To overcome the above challenges and improve the chance
of success in a CRM analytic project, the customer-focusing
teams of an organization must be reoriented to make them
focus on customers in addition to product lines while
eliminating barriers caused by the vertical organizational
model. These teams can be organized around well-defined
customer segments, e.g., infants, children, teenagers, young
professionals, and so on, and each given the charter of
defining product design, marketing, sales, and service
strategies that are geared to satisfying the needs of their
customer segment. As part of this, some activities might be
targeted to individual customers.

Attention to Data Aspects of Analytical CRM

The most sophisticated analytical tool can be rendered
ineffective if the appropriate data are not available. To
truly excel at CRM, an organization needs detailed infor-
mation about the needs, values, and wants of its customers.
Leading organizations gather data from many customer

touch points and external sources, and bring these data
together in a common, centralized repository, in a form that
is available and ready to be analyzed when needed. This
process helps ensure that the business has a consistent and
accurate picture of every customer and can align its
resources according to the highest priorities. Given this
observation, it is critical that sufficient attention be paid to
the data aspects of the CRM project, in addition to the
software.

As discussed, most functional-based organizations lack
that data required to make the analytical CRM project
successful. The challenges are two-fold. The first challenge
is when data (e.g., customer data) coming from each LOB
need to be integrated into an enterprise-wide database to be
used by ACRM applications. Differences in database
schema and data content between LOBs may create data
quality issues that can make the analytical CRM application
less reliable. The second challenge is to adjust ongoing
business processes to collect the necessary data and use
the analytic CRM to focus on customer and companies
priorities rather than an each LOB’s priorities. In many
cases, such adjustment requires changes in the way sales,
marketing, and executive teams are compensated as well
as how each LOB contribution to overall company is
recognized.

Organizational ‘‘Buy In’’

Although data mining and data warehousing are very
powerful technologies, with a proven track record, there
are also enough examples of failures when technology is
deployed without sufficient organizational ‘‘buy in.’’ As
described, the parts of the organization that will benefit
the most from analytical CRM are the business units, i.e.,
marketing and sales, and not the IT department. Thus, it is
crucial to have ‘‘buy in’’ from the business units to ensure
that the results will be used appropriately.

As described, deployment of analytical CRM is a
company-wide business transformation project. It
requires deployment of new technologies and transition
from LOB-centric processes to company-centric pro-
cesses. Example of such processes are how commissions
are computed for sales, marketing, and executive teams as
well as the way each LOB’s contribution to the company is
recognized. Transitioning from LOB-centric processes to
company- centric processes requires some specific actions.

First, a CRM project needs to be owned and sponsored
by a corporate executive from the business side who
manages the business and technical development
teams, and a cross-functional team who manages the
scope of the project. The team is responsible to identify
a road map for migration from the existing environment to
the new one. As part of the road map, business and
technology changes and impact to the different groups
(i.e., business case) needs to be identified and communi-
cated early in the project lifecycle to all affected units. It is
important to make sure all impacted units have represen-
tation in the cross-functional team. The ideal (cross-func-
tional) team should have enthusiastic members, who are
committed, and are also viewed as leaders in their respec-

ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT 7



tive parts of the organization. This will make the disse-
mination of the successes much easier.

Second, all affected LOBs must support the road map
and make commitments to adapt the new processes intro-
duced by analytical CRM systems. Third, the new processes
need to have an appropriate set of measurable metrics, to
ensure that all steps for project success are being taken.
Fourth, the project needs to be regularly reviewed by the
executive team to ensure that any potential issue is
addressed in a timely manner. Finally, incentives for per-
forming well on the project should be included as part of the
reward structure to ensure motivation.

Incremental Introduction of CRM

Introducing CRM into an organization must be managed
carefully. Given its high initial cost, and significant
change on the organization’s processes, it is quite possible
that insufficient care in its introduction leads to high
expense, seemingly small early benefits, which can lead
to low morale and excessive finger-pointing and possibility
of failure.

As shown in Fig. 9, courtesy of Forsyth (89), it is better to
have an incremental ‘‘pay-as-you-go’’ approach rather than
a ‘‘field-of-dreams’’ approach. The benefits accrued from the
first stage become evident and act as a catalyst for accel-
erating the subsequent stages. This makes the choice of the
first project and its team very critical. Ideally, the project
must be in a potentially high-impact area, where the cur-
rent process is very ineffective. The process transformation
and end-user training are two major success factors of a
CRM project. The ‘‘pay-as-you-go’’ approach provides a way
to transform the process and to train end users gradually.
The gradual adaptation of a new system is an important
factor in the success of any large project like CRM that
impacts many aspects of a business.

Architectural Challenges

As discussed, in many companies, the enterprise architec-
ture is a reflection of how LOBs operate. In a LOB-centric
business model, each LOB has its own set of applications
and databases and associate processes. To migrate to a
single corporate-wide CRM system, a migration plan
should be put in place to sunset LOB-centric systems
and processes and move all existing data and interfaces
to work in the new environment. This migration creates a
set of special challenges, including scalability, support for
company and LOB-specific functions, data integration, and
performance. The architecture should also comply with any
applicable corporate-wide standards.

Deployment Platform

In the recent decade, many companies have been dealing
with the ‘‘buy’’ vs. ‘‘build’’ question for complex systems like
CRM. Many companies decided to stop internal deployment
of CRM systems and to license CRM applications from
companies like Siebel, SAP, and PeopleSoft. However,
deployment of these licensed applications has taken
more time and cost more thanexpected. because their inte-

gration into the existing environment and process impacts
have been greater than expected. Thus, it is important for
the team to put a realistic plan together when starting a
new CRM project.

Advancements in the application hosting and high cost of
deployment and operation of CRM systems have created a
market for hosting the CRM applications. In this business
model, a company instead of having its CRM application will
subscribe to a CRM application service. The application
service provider is responsible for operation and mainte-
nance of the environment, and the company pays a sub-
scription fee. This new approach was pioneered by
salesforce.com and has been followed by other CRM com-
panies.

CONCLUSION

The Internet has emerged as a low-cost, low-latency, and
high-bandwidth customer communication channel. In
addition, its interactive nature provides an organization
with the ability to enter into a close, personalized dialog
with its individual customers. The simultaneous matura-
tion of data management technologies like data ware-
housing, and analysis technologies like data mining,
has created the ideal environment for making customer
relationship management a much more systematic effort
than it has been. Although there has been a significant
growth of software vendors providing CRM software, and
of using them, the focus so far has largely been on the
‘‘relationship management’’ part of CRM rather than on
the ‘‘customer understanding’’ part. Thus, CRM functions
such as e-mail-based campaigns management and online
ads are being adopted quickly. However, ensuring that the
right message is being delivered to the right person and
that multiple messages being delivered at different times
and through different channels are consistent is still in a
nascent stage. As a result, companies are overcommuni-
cating with their best customers, while insufficient atten-
tion is being paid to develop new ones into the best
customers of the future.

In this article we have described how ACRM can fill the
gap. Specifically, we described how data analytics can be
used to make various CRM functions like customer
segmentation, communication targeting, retention, and
loyalty much more effective.

Profit

Profit

Time

Time

“Field-of-dreams” approach
    -will it ever pay back
    - bad idea

“Pay-as-you-go” approach
-self funding
- easy to adjust to mistakes
- quick to leverage wins
- good idea

Figure 9. Incremental approach to CRM adoption.

8 ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT



BIBLIOGRAPHY

1. R. Heygate, How to build valuable customer relationships,
2001. Available at: http://www.crm-forum.com/library/sophron/
sophron-022/brandframe.html.

2. P. Stevens and J. Hegarty, CRM and Brand Management - do
they fit together?, 1999. Available at: http://www.crm-forum.
com/library/sophron/sophron-002/brandframe.html.

3. J. P. Benway and D. M. Lane, Banner blindness: web searchers
often miss obvious links, Internetworking, 1(3), 1998, avai-
lableat http://www.internettg.org/newsletter/dec98/banner_
blindness.html.

4. T. L. Cheyne and F. E. Ritter, Targeting audiences on the
Internet, Comm. ACM, 44(4): 94–98, 2001.

5. R. D. Gopel, G. Walter, and A. K. Tripathi, Amediation: a new
horizons in effective email advertise, Comm. ACM, 44(12):
91–96, 2001.

6. Y. Cui and J. Widom, Lineage tracing for general data ware-
house transformations, Proc. of International Conference on
Very Large Databases (VLDB), 2001, pp. 471–480.

7. Y. Cui and J. Widom, Practical lineage tracing in data ware-
houses, 16th International Conference on Data Engineering
(ICDE), 2000, pp. 367–378.

8. P. Vassiliadis, M. Bouzeghoub, and C. Quix, Towards quality-
oriented data warehouse usage and evolution, Proc. of the 11th
Conference on Advanced Information Systems Engineering
(CAiSE), 1999, pp. 164–179.

9. C. Hurtado, A. Mendelzon, and A. Vaisman, Updating OLAP
dimensions, Proc. of ACM DOLAP, 1999, pp. 60–66.

10. H. Garcia-Molina, W. Labio, and J. Yang, Expiring data in a
warehouse, Proc. of International Conference on Very Large
Databases (VLDB), 1998, pp. 500–511.

11. H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan,
and R. Kanneganti, Incremental organization for data record-
ing and warehousing, Proc. of International Conference on Very
Large Databases (VLDB), 1997, pp. 16–25.

12. P. Scheuermann, J. Shim, and R. Vingralek, Watchman: a data
warehouse intelligent cache manager, Proc. of International
Conference on Very Large Databases (VLDB), 1996,
pp. 51–62.

13. Y. Zhuge, H. Garcia-Molina, and J. L. Wiener, The strobe
algorithms for multi-source warehouse consistency, Interna-
tional Conf. on Parallel and Distributed Information Systems
(PDIS), 1996, pp. 146–157.

14. W. Inmon, Building the Data Warehouse, 3rd ed. New York:
John Wiley & Sons, Inc., 2002.

15. R. Kimball, The Data Warehouse Toolkit: The Complete Guide
to Dimensional Modeling, 2nd ed. New York: John Wiley &
Sons, Inc., 2002.

16. D. Pyle, Data Preparation for Data Mining, San Francisco, CA:
Morgan Kaufmann Publishers, 1999.

17. D. J. Hand, H. Mannila, and P. Smythe, Principles of Data
Mining, Cambridge, MA: MIT Press, 2000.

18. O. C. Rud, Data Mining Cookbook: Modeling Data for Market-
ing, Risk and Customer Relationship Management, New York:
John Wiley and Sons, 2000.

19. P. Domingos and M. Pazzani, On the optimality of the simple
Bayesian classifier under zero-one loss, Mach. Learning, 29
(2–3): 103–130, 1997.

20. R. Kohavi, Scaling up the accuracy of naı̈ve-Bayes classifiers:
A decision-tree hybrid, Proc. the 2nd International Confer-
ence on Knowledge Discovery and Data Mining, 1996, pp.
202–207.

21. J. R. Quinlan, Induction to decision trees, Mach. Learning,
1(1): 81–106, 1986.

22. J. R. Quinlan, C4.5: Programs for Machine Learning, San
Mateo, CA: Morgan Kaufman, 1993.

23. S. K. Murthy, Automatic construction of decision trees from
data: A multi-disciplinary survey, Data Mining Knowledge
Disc., 2(4): 345–389, 1998.

24. V. Ganti, J. Gehrke, and R. Ramakrishnam, Mining very large
databases, IEEE Computer, 32: 38–45, 1999.

25. P. Clark and T. Niblett, The CN2 induction algorithm, Machine
Learning, 3(4): 261–283, 1989.

26. P. Clark and R. Boswell,. Rule induction with CN2: Some
recent improvements, Proc. Fifth European Working Session
on Learning, 1991, pp. 151–163.

27. B. Scholkopf, C. J. C. Burges, and A. J. Smola, Learning with
Kernels: Support Vector Machines, Regularization, Optimiza-
tion, and Beyond, Cambridge, MA: MIT Press, 2001.

28. N. Cristianini, An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods, Cambridge, UK:
Cambridge University Press, 2000.

29. L. V. Fausett, Fundamentals of Neural Networks, Upper
Saddle River, N.J.: Prentice Hall, 1994.

30. K. Smith and J. Gupta, Neural Networks in Business: Techni-
ques and Applications, Hershey, PA: Idea Group Publishing,
2002.

31. G. P. Zhang, Neural Networks in Business Forecasting,
Hershey, PA: Information Science Publishing, 2003.

32. D. E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Reading, MA: Addison-Wesley, 1989.

33. M. Mitchell, An Introduction to Genetic Algorithms, Cambridge,
MA: MIT Press, 1998.

34. B. V. Dasartyed, Nearest Neighbor: Pattern Classification
Techniques. IEEE Computer Society, 1991.

35. T. Hastie and R. J. Tibshirani, Discriminant adaptive nearest
neighbor classification, IEEE Trans. Pattern Anal. Mach.
Intell., 18(6): 607–612, 1996.

36. M. J. Berry and G. Linoff, Data Mining Techniques: for Market-
ing, Sales, and Customer Support, New York: John Wiley &
Sons, 1997.

37. R. T. Ng and J. Han, Efficient and effective clustering
methods for spatial data mining, Proc. of Int’l Conf. on
VLDB, 1994.

38. L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis, New York: John Wiley &
Sons, 1990.

39. A. K. Jain and R. C. Dubes, Algorithms for clustering data,
Upper Saddle River, N.J.: Prentice-Hall, 1988.

40. A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum
likelihood from incomplete data via the EM algorithm, J. Royal
Statistical Soc., 39: 1–38, 1977.

41. G. J. McLachlan and T. Krishnam, The EM Algorithm and
Extensions, New York: Wiley and Sons, 1998.

42. R. Agrawal, T. Imielinski, and A. Swami, Mining associations
between sets of items in massive databases, Proc. of the
ACM SIGMOD Int’l Conference on Management of Data,
Washington D.C., 1993, pp. 207–216.

43. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo, Fast discovery of association rules, Advances
in Knowledge Discovery and Data Mining, Chapter 12.
Cambridge, MA: AAAI/MIT Press, 1995, pp. 307–328.

ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT 9



44. R. Agrawal and R. Srikant, Fast algorithms for mining associa-
tion rules, Proc. of the 20th Int’l Conference on Very Large
Databases, Santiago, 1994, pp. 487–499.

45. R. Srikant, Q. Vu, and R. Agrawal, Mining association rules
with item constraints, Proc. of the 3rd Int’l Conference on
Knowledge Discovery in Databases and Data Mining, Newport
Beach, CA, 1997.

46. R. Srikant and R. Agrawal, Mining generalized association
rules, Proc. of the 21st Int’l Conference on Very Large Data-
bases, Zurich, Switzerland, 1995.

47. J. S. Park, M. Chen, and P. S. Yu, Using a hash-based method
with transaction trimming for mining association rules, IEEE
Trans. Knowledge Data Engin., 9(5): 813–825, 1997.

48. M. Zaki, S. Parthasarathy, M. Ogihara, and Wei Li, New
algorithms for fast discovery of association rules, 3rd Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD’97), Newport Beach, CA, 1997, pp. 283–286.

49. R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang, Exploratory
mining and pruning optimizations of constrained associations
rules, Proc. of1998 ACM-SIGMOD Conf. on Management of
Data, Seattle, WA, 1998. Available at http://db.cs.sfu.ca/
sections/publication/kdd/kdd.html.

50. S. Brin, R. Motwani, and C. Silverstein, Beyond narket bas-
kets: Generalizing association rules to correlations, Proc. 1997
ACM SIGMOD, Montreal, Canada, 1997.

51. C. Bettini, X. S. Wang, S. Jajodia, and J. Lin, Discovering
frequent event patterns with multiple granularities in time
sequences, IEEE Transactions on Knowledge and Data Engi-
neering, 10(2): 222–237, 1998.

52. J. Han, J. Pei, and Y. Yin, Mining frequent patterns without
candidate generation, Proc. of Int. Conf. on Management of
Data, Dallas, TX, 2000.

53. H. Mannila, H. Toivonen, and A. Inkeri Verkamo, Discovery of
frequent episodes in event sequences, Technical Report
C-1997-15, Department of Computer Science, University of
Helsinki, Finland, 1997.

54. R. Agrawal and R. Srikant, Mining sequential patterns, Proc. of
the Int’l Conference on Data Engineering (ICDE), Taipei,
Taiwan, 1995, pp. 3–14.

55. R. Srikant and R. Agrawal, Mining sequential patterns: Gen-
eralizations and improvements, Proc. of the Fifth Int’l Con-
ference on Extending Database Technology (EDBT), Avignon,
France, 1996, pp. 3–17.

56. G. Berger and A. Tuzhilin, Discovering unexpected patterns in
temporal data using temporal logic, in O. Etzion, S. Jajodia,
and S. Sripada (eds.), Temporal Databases: Res. Prac., Berlin:
Springer-Verlag, 1998, pp. 281–309.

57. B. Padmanabhan and A. Tuzhilin, A belief-driven method for
discovering unexpected patterns, Proc. of the 4rd International
Conference on Knowledge Discovery and Data Mining (KDD-
98), 1998, pp. 94–110.

58. M. Zaki, Efficient enumeration of frequent sequences, 7th
International Conference on Information and Knowledge Man-
agement, Washington DC, 1998, pp. 68–75.

59. K. Wang, Discovering patterns from large and dynamic
sequential data, J. Intell. Inf. Syst., 9(1): 33–56, 1997.

60. V. Guralnik, D. Wrjesekera, and J. Srivastava, Pattern direc-
ted mining for frequent episodes, Proc. of the Fourth Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD-98), New York, 1998, pp. 51–57.

61. A. C. Harvey, Forecasting, Structural Time Series Models and
the Kalman Filter, Cambridge, UK: Cambridge University
Press, 1989.

62. G. Dong and J. Li, Efficient mining of emerging patterns:
Discovering trends and differences, Proc. SIGKDD, 1999,
pp. 43–52.

63. B. Liu, W. Hsu, and Y. Ma, Mining association rules with
multiple minimum supports, Proc. of the ACM SIGKDD Int’l.
Conf. on Knowledge Discovery and Data Mining, 1999,
pp. 337–341.

64. J. Han, G. Dong, and Y. Yin, Efficient mining of partial periodic
patterns in time series database, Proc. ICDE, 1999, pp. 106–
115.

65. B. Ozden, S. Ramaswamy, and A. Silberschatz, Cyclic associa-
tion rules, Proc. ICDE, 1998, pp. 412–421.

66. R. Mooney and L. Roy, Content-based book recommending
using learning for text categorization, Proc. of the ACM
Conf. on Digital Libraries, 2000, pp. 195–204.

67. M. Pazzani, J. Muramatsu, and D. Billsus, Syskill & Webert:
Identifying interesting Web sites, Proc. of the Nat. Conf. Artif.
Intell., 13(5–6): 54–61, 1996.

68. J. Rucker and M. J. Polanco, Siteseer: personalized navigation
for the Web, Comm. ACM, 35(12): 73–75, 1992.

69. B. Krulwich and C. Burkey, The infoFinder agent: Learning
user interests through heuristic phrase extraction, IEEE
Expert, 12(5): 22–27, 1997.

70. K. Lang, Newsweeder: learning to filter Netnews, Proc. of the
12th Intl. Conf. on Machine Learning, 1995, pp. 331–339.

71. J. Breese, D. Heckerman, and C. Kadie, Empirical analysis of
predictive algorithms for collaborative filtering, Proc. of the
14th Conference on Uncertainty in Artificial Intelligence, 1998,
pp. 43–52.

72. U. Shardanand and P. Maes, Social information filtering:
Algorithms for automating word of mouth, Proc. of the Con-
ference on Human Factors in Computing Systems, 1995, pp.
210–217.

73. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
GroupLens: An open architecture for collaborative filtering of
netnews, Proc. of the ACM Conference on Computer Supported
Cooperative Work, 1994, pp. 175–186.

74. J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R.
Gordon, and J. Riedl, GroupLens: applying collaborative filter-
ing to Usenet news, Comm. ACM, 40(3): 77–87, 1997.

75. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, An
algorithmic framework for performing collaborative filtering,
Proc. of the 1999 Conference on Research and Development in
Information Retrieval, 1999, pp. 230–237.

76. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Analysis of
recommendation algorithms for e-Commerce, Proc. of the 2’nd
Conference on Electronic Commerce, 2000, pp. 158–167.

77. B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, Item-based
collaborative filtering recommendation algorithms, Proc. of the
Tenth International World Wide Web Conference on World
Wide Web, 2001, pp. 285–295.

78. A. Ansari, S. Essegaier, and R. Kohli, Internet recommenda-
tion systems, J. Market. Res., 37(3): 67–85, 2000.

79. D. Billsus and M. Pazzani, Learning collaborative information
filters, in J. Shavlik (ed.), Machine learning: Proc. of the
Fifteenth International Conference, San Francisco, CA:
Morgan Kaufmann, 1998, pp. 46–54.

80. D. Pennock, E. Horvitz, S. Lawrence, and C. Giles, Collabora-
tive filtering by personality diagnosis: a hybrid memory- and
model-based approach, Proc. of the Conf. on Uncertainty in
Artificial Intelligence, 2000, pp. 473–480.

10 ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT



81. T. W. Yan, M. Jacobsen, H. Garcia-Molina, and U. Dayal, From
user access patterns to dynamic hypertext linking, Comp.
Networks, 28(7–11): 1007–1014, 1996.

82. B. Mobasher, R. Cooley, and J. Srivastava, Creating adaptive
Web sites through usage-based clustering of URLs, Proc. of the
IEEE Knowledge and Data Engineering Exchange Workshop,
1999, pp. 19–25.

83. J. Srivastava, R. Cooley, M. Deshpande, and P. Tang, Web
usage mining: discovery and applications of usage patterns
from Web data, SIGKDD Explorations, 1(2): 12–23, 2000.

84. W. Lin, S. A. Alvarez, and C. Ruiz, Collaborative recommenda-
tion via adaptive association rule mining, Proc. of the WebKDD
Workshop, Boston, MA, 2000.

85. B. Mobasher, H. Dai, T. Luo, M. Nakagawa, and J. Witshire,
Discovery of aggregate usage profiles for Web personalization,
Proc. of the WebKDD Workshop, 2000.

86. J. Herlocker and J. Konstan, Content-independent task-
focused recommendation, IEEE Internet Comput., 5(6):
40–47, 2001.

87. J. Pitkow and P. Pirolli, Mining longest repeating subse-
quences to predict World Wide Web surfing, Proc. of the
USENIX Symposium on Internet Technologies and Systems,
1999, pp. 139–150.

88. M. Deshpande and G. Karypis, Selective markov models for
predicting Web-page accesses, Proc. of the First International

SIAM Conference on Data Mining, 2001. Available at: http://
www.siam.org/meetings/sdm01/pdf/sdm0l_04.pdf.

89. R. Forsyth, Avoiding Post-Implementation Blues Managing
the Skills, 2000. Available at: http://www.crm-forum.com/
library/pre/pre-025/brandframe.html.

JAIDEEP SRIVASTAVA

University of Minnesota,
Minneapolis, Minnesota

JAMSHID A. VAYGHAN

IBM Corporation
Rochester, Minnesota

EE-PENG LIM

Nanyang Technological,
University

Singapore

SAN-YIH HWANG

National Sun Yat-sen
University

Kaohsiung, Taiwan

JAU-HWANG WANG

Central Police University,
Taoyuan, Taiwan

ANALYTICAL CUSTOMER RELATIONSHIP MANAGEMENT 11



A

ASPECT-ORIENTED SOFTWARE DEVELOPMENT:
AN INTRODUCTION

INTRODUCTION

Software development is a challenging task because of the
complexity, heterogeneity, and distributed nature of mod-
ern software systems and the interactions and dependen-
cies that need to be managed therein. An established
approach to solving complex problems is by breaking
them into smaller, more manageable, and easily under-
standable parts, for example, modules. After the subpro-
blems are solved, all the solutions are combined to provide a
solution to the initial complex problem. In software engi-
neering, the same division and combination principles are
applied: the division into subproblems is termed as mod-
ularization, and the combination of solutions is termed
composition.

Modularity of software has long been the primary tool
used in software development and a subject for computer
science research. Fundamental software-structuring
mechanisms such as procedures, functions, objects, and
components are essential modularization mechanisms
used in contemporary software-development paradigms.
Each of these modules is intended to represent a clearly
identified part of the software, and altogether they interact
to provide the complete solution expected from the software
application. This practice improves the individual module’s
understandability and facilitates its change, when needed.
This practice is what has been referred to as the principle of
separation of concerns by Dijkstra in his seminal book A
Discipline of Programming (1).

A concern in software development is an interest, that
pertains to the system’s development, its operation, or any
other matters that are critical or otherwise important to a
stakeholder (2). The principle of separation of concerns thus
states that each concern that is relevant to the software
application is best treated separately. For instance, in
object-orientation (one of today’s most widely used develop-
ment paradigms) separation of concerns is achieved by
decomposing an application into individual real-life or con-
ceptual objects and exploiting the object-oriented software-
development principles (i.e., encapsulation, polymorphism,
inheritance, and delegation) for application development. In
an ideal situation, each object pertains to a single concern.
Nevertheless, despite the wide support for separation of
concerns in modern software-development paradigms (such
as object-orientation), concerns still exist that are difficult or
even impossible to modularize by means of the established
mechanisms. For instance, such concerns as synchroniza-
tion policies in multithreaded systems, logging, persistence,
error handling, real-time constraints, and faulttolerance
are often intermixed with (or, in other words, spread across)
several other modules in the system. Such concerns are said
to crosscut the other modules and, therefore, are called
crosscutting concerns.

A practical example of the extent of crosscutting in a
system is provided by Kiczales et al. in Ref. (3) and is
reproduced in Fig. 1. This figure shows the modules
(object-oriented classes) of the Apache Tomcat Web server
represented as vertical bars, whereas the implementation
of the logging concern is indicated by the horizontal lines
(which represent lines of logging code). The logging concern
clearly crosscuts many distinct modules.

Crosscutting concerns, such as logging in Fig. 1, com-
plicate software development because they do not fit the
primary decomposition of the development paradigm (the
object boundaries in Fig. 1). As a result, the responsibilities
of the individual modules are not clearly demarcated. Not
only is an object responsible for its core state and behavior
(pertaining to its business functionality, for instance) but
also for that of the crosscutting concern (such as logging).
This phenomenon is referred to as tangling. At the same
time, we observe the scattering effect whereby a given
crosscutting concern, for example, logging, is not modular-
ized in a single element and hence hampers our ability to
reason about its effect and behavior with respect to the
other modules; such reasoning requires inspection of all
the modules where logging is realized. In practice, this
straightforwardly translates into an inability to reuse
the implementation of a crosscutting concern, without
resorting to code duplication. This practice goes against
the established best practice of separation of concerns that
we highlighted above because the crosscutting effect
results in software that is difficult to understand and
maintain. Addressing this problem of crosscutting is the
main focus of aspect-oriented software-development
(AOSD) techniques.

AOSD techniques provide systematic means for identi-
fication, modularization, and composition of concerns that
normally would be crosscutting in other development para-
digms (e.g., object-oriented or procedural paradigms) (4).
With AOSD, such a concern will continue to exert a broad,
crosscutting influence on other concerns, but its represen-
tation and realization can be localized in a single module.

AOSD CONCEPTS

AOSD techniques provide systematic means for identifica-
tion, modularization, and composition of crosscutting con-
cerns throughout software development lifecycle. Modules
in other contemporary paradigms are all rooted in func-
tional decomposition (e.g., subroutines, functions, objects,
and components). To characterize these modules, Kiczales
et al. (5) coined the term generalized procedure and argued
that such generalized procedures are to be invoked expli-
citly via a direct call ‘‘by name’’ at the syntactic location in
the software artifact where their execution is desired.

For instance, consider the code fragment in Fig. 2, taken
from the implementation of a concurrent buffer. Two major
concerns exist in this implementation: buffer functionality
and concurrency locks. The concurrency-locking concern is

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



a crosscutting concern because it crosscuts the implemen-
tation of each method of the buffer, as illustrated by the
black lines on the left-hand side of the figure. To invoke the
locking/unlocking functionality, the lock() and unlock()
methods must be called by name at the syntactic locations
where their functionality is required. Furthermore, the
buffer object must hold the functional buffer state as well
as the locking semaphores. Aspect-orientation proposes a
fundamentally new kind of modularization and composi-
tion that goes beyond generalized procedures. The ele-
ments of AOSD supporting this new modularization and
its composition techniques are presented next.

Aspect

A crosscutting concern is encapsulated within a dedicated
module called an aspect; an aspect is a modularized cross-
cutting concern. The specification of an aspect’s interac-
tion with the other modules is its primary distinction with
respect to modules based on the concept of generalized
procedures. For aspects in the implementation of a soft-
ware artifact, this means that, in contrast to the explicit
invocation of a generalized procedure, an aspect’s invoca-
tion is not bound to such an explicit, syntactically located
invocation statement. Instead, an explicit specification
about when an aspect will be applied can be either
attached to an aspect (e.g., as in Ref. 6) or provided in
separate dedicated composition specifications (e.g., Refs. 7
and 8). For aspects in requirements, architecture, and

design, this, distinction means reasoning about the cross-
cutting concerns and about their dependencies and inter-
actions with other concerns without having to inspect
multiple modules.

The aspect’s invocation mechanism has also been
referred to as implicit invocation by Xu et al. (9) and was
uniformly characterized with respect to generalized proce-
dures by Kiczales and Mezini in Ref. (10): ‘‘one useful way to
uniformly characterize the different mechanisms is as
establishing different kinds of bindings along a path
from points in a program to the implementation of an
operation that must execute at those points.’’ Whereas pro-
cedures are one way to introduce bindings from a point in a
program (i.e., where the procedure call resides) to their
implementation, pointcuts and advice are a means to intro-
duce additional points and bindings. The points to which
advices can be bound are termed joinpoints, and the bind-
ings are specified by pointcuts. These concepts are
described next.

Joinpoint and Joinpoint Model

In all aspect-oriented techniques, aspects can only be
invoked, or composed with other modules, at some well-
defined and principled points within the software artifacts.
These points are referred to as joinpoints. All possible kinds
of joinpoints for the given AOSD approach are described in
a joinpoint model. As stated in Ref. 2: ‘‘A joinpoint is a point
of interest in some artifact in the software lifecycle through
which two or more concerns may be composed. A joinpoint
model defines the kinds of joinpoints available and how
they are accessed and used.’’ For example, in most aspect-
oriented programming languages, the possible kinds of
joinpoints are method calls, field references and assign-
ments, exception handler executions, method executions,
and so forth. In requirements, joinpoints can be specific
requirements or concerns encapsulating those require-
ments. In design, elements of a UML diagram, for instance,
can serve as joinpoints.

Pointcut

The set of joinpoints at which a given aspect should interact
with some other modules is specified via a pointcut. Point-
cuts can be defined by extension, for example, enumerating
each joinpoint relevant for the given aspect application, or
by intension, for example, via some kind of more abstract
joinpoint selection criteria. These criteria typically are
properties of the joinpoints to be selected (e.g. name pat-
terns, structural or dynamic relations with other join-
points, etc.). Because aspects normally have a broad
influence on the system, affecting a number of other con-
cerns, defining their interactions by enumerating join-
points is rather inefficient. Consequently, in AOSD,
pointcuts are normally defined by intension. Thus, a point-
cut is a predicate that matches joinpoints.

Advice

As discussed above, an aspect affects a set of other concerns
at the joinpoints. In AOSD terminology, it is said that
aspects advise other concerns. An advice represents the

Figure 1. An example of a crosscutting concern (logging) in a
software application [3].

Figure 2. A fragment of a concurrent buffer in Java.

2 ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION



semantics of an aspect that will interact with some other
concern at a joinpoint. Depending on the AO approach used
and the lifecycle stage of aspect modeling, the advice can
take a variety of forms. For instance, in Fig. 2, the lock() and
unlock() operations of the synchronization concern will be
contained in code-level advices that impose additional
behavior on the buffer object (see the section titled ‘‘Con-
current Buffer Example in AOP’’).

Traditionally, an advice in AOSD implies a behavior-
related interaction between aspectual and nonaspectual
artifacts. Such an interaction is also defined in respect with
some temporal, conditional, or unconditional order. For
instance, the behavioral modification can be applied by
an advice before, after, instead of, or concurrently with
the original behavior of the advised artifact.

Intertype Declarations

Although an advice normally modifies behavior at the
advised joinpoints, some AOSD approaches use an addi-
tional mechanism called inter-type declarations (or intro-
ductions) for directly modifying the structure of the original
artifacts. For instance, an intertype declaration may insert
a new requirement into a viewpoint or a new variable
declaration into a class or even change subtype relations,
and so forth.

Composition/Weaving

In AOSD, traditionally the composition or weaving is the
integration of the separated crosscutting elements back
into the modules crosscut by them. For instance, during
composition the lock() advice of a concurrency aspect would
be inserted into the buffer class and would produce the
same result as shown in Fig. 2. In the case of implementa-
tion-level aspects, such weaving is often part of the compi-
lation to executable code, but load-time and run-time
weaving is also possible in many aspect languages and
frameworks.

Recently, some AOSD works have pointed out that,
especially in the case of nonimplementation artifacts, it
is not always necessary to integrate the aspectual elements
in other modules; often a composition specification is suffi-
cient for reasoning about aspectual and nonaspectual mod-
ule interactions (8, 11, 12). The composition specification
defines which aspectual elements (advice, intertype
declarations, and so forth.) affect which joinpoints (selected
by pointcuts) of which nonaspectual modules and defines
what are the temporal, conditional, or unconditional cir-
cumstances of aspect invocation.

ASPECT-ORIENTED SOFTWARE-DEVELOPMENT LIFECYCLE

Aspect-oriented software-engineering techniques have the
same objectives as any other software-engineering techni-
ques: to understand, represent, and realize software sys-
tems. The unique contribution of AOSD is in providing
additional abstraction and reasoning capabilities via the
constructs discussed above. These constructs assist in
modularizing concerns that would otherwise be scattered
(i.e., included piece by piece) in other concern modules.

Such concern scattering also results in the entanglement of
elements of independent concerns in the same module. By
using aspects such scattering and tangling issues are
removed, which in turn leads to simpler and more-cohesive
modules for concern representation.

AOSD does not enforce any particular sequence or life-
cycle activities; individuals choosing to use this technology
may continue to use their own established activities along
with the additional modularization and reasoning mechan-
isms of AOSD. Nevertheless, a number of AOSD
approaches currently strive to provide a whole AO devel-
opment process covering the set of activities that leads from
requirements to implementation. For instance, the AOSD
with Use-cases approach (13) provides support for require-
ment modeling via use cases, their refinement into design,
and guidelines for mapping these designs onto an AO
implementation language. Similarly the Theme (14, 15)
approach consists of Theme\Doc part for requirements
analysis and Theme\UML part for design representation
of the aspects from Theme\Doc. Detailed guidelines then
are provided (16) for realizing Theme designs in the
AspectJ and Hyper/J AO programming languages.

However, being a relatively young area, AOSD has not
yet consolidated its development activities into an estab-
lished set, as has, for instance, object-oriented develop-
ment. Thus, several analysis, architecture, design, and
implementation approaches exist that are not necessarily
linked into an end-to-end development process. In the rest
of this article, we discuss a subset of current AOSD
approaches, without focusing on one specific approach
that covers the end-to-end software development process.
This choice is motivated by the goal of outlining the diverse
and varied approaches that constitute AOSD rather than
detailing a specific approach. Readers interested in any
particular approach are pointed to further sources via
relevant references. At the same time, we detail a specific
requirements, architecture, design, and implementation
approach to outline how the AOSD concepts fit with the
established lifecycle artifacts. Because it is not possible to
cover all facades of AOSD in this introduction, we also
provide additional references to related topics, where
appropriate.

ASPECT-ORIENTED REQUIREMENTS ENGINEERING

Crosscutting concerns, such as logging, distribution, and
fault tolerance, first manifest themselves in requirements,
and this is where one must start treating them. Aspect-
oriented requirements-engineering (AORE) approaches
aim to facilitate identification and analysis of such cross-
cutting concerns during requirements engineering to
understand their potential effects and tradeoffs with respect
to other stakeholder requirements. Often AORE approaches
extend existing requirements-engineering techniques with
additional support for modularization and composition of
crosscutting concerns. Such support is missing in most
contemporary requirements-engineering techniques. For
instance, in the classical use-cases approach (17), nonfunc-
tional requirements (NFR) cannot be readily modeled.
Although techniques such as goal-based approaches

ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION 3



(18, 19) support modularization and analysis of such NFRs,
they lack effective composition mechanisms to explore the
complex dependencies and interactions fully, as such an
analysis entails. Thus, AORE focuses on providing systema-
tic means for modularization and composition of crosscut-
ting concerns in requirements.

Aspects in AORE

Presently, a number of AORE approaches are researched
actively (4, 8, 11, 13, 20). Some provide an additional
modularization unit to represent requirements-level
aspects (e.g., Refs. 4, 13, and 20), whereas others strive
to use uniform modules for both aspectual and nonaspec-
tual requirements artifacts (e.g., Refs. 8 and 11). In both
cases, a requirements-level aspect is an artifact that encap-
sulates a concern that has a broad influence on the require-
ments in several other requirements-level artifacts. A
summary of key concepts and techniques for AORE is
provided by Baniassad et al. in Ref. 21, whereas a detailed
comparative analysis between AORE and other contem-
porary requirements-engineering techniques is provided in
the survey by Chitchyan et al. (22).

One may note that some (although not many) estab-
lished non-AO requirements approaches already provide
systematic modularization support for crosscutting con-
cerns. For instance, the goal-based approaches (18, 19)
support modularization of both functional and nonfunc-
tional goals. However, the main distinction between the AO
and non-AO requirements approaches is in the support for
composition in the former. Contemporary (non-aspect-
oriented) RE approaches hardly provide any composition
support, with compositions often entangled with the
requirement artifact development process. For instance,
the composition of goals and softgoals is an integral part of
goal interdependency graph development; goal composi-
tions cannot be represented or reasoned about in isolation
from the whole set of goals in the graph. In AORE, the
compositions are normally represented in separate dedi-
cated composition modules to reason about the dependen-
cies and interactions exerted by crosscutting requirements
rather than attached to the aspectual artifacts.

In the rest of this section, we will use the AORE with
Arcade approach (4) to illustrate the AORE concepts. AORE
with Arcade builds on the viewpoints-based requirements-
engineering approach (23, 24) and provides a dedicated
module for aspect representation. An aspectual module
here contains requirements that affect requirements of
several viewpoints. For instance, an aspect may contain
requirements about security, concurrency, and so forth. As
common in all RE approaches, this viewpoint-based
approach provides a unique identifier for each concern
(via its name) and each of its distinct requirements (via
number-based ids unique within the scope of each concern).

Compositions in AORE with Arcade are defined in dedi-
cated composition modules. The joinpoint model exposes
unique identifiers of requirements and viewpoint/aspect
names. The pointcuts are defined by extension, which
enumerates the module name and id pairs for each require-
ment that participates in a composition. A pointcut can also
use a wildcard, for example, a universal quantifier, such as

all. An example of a pointcut with use of a wildcard is, for
instance, ‘‘all requirements with id ¼ 1’’. Of course, point-
cuts by extension are only one way of representing
aspect compositions in requirements. Name-pattern-based
(25, 26) and semantics-based (8) pointcut definitions
are also used in several AORE approaches. An example
of a name-pattern-based pointcut in the aspect-oriented
V-graph-based approach (25) is ‘‘Register.�’’. This pointcut
references all goals of ‘‘Register’’ type in a goal graph,
independent of their topic names. A semantics-based point-
cut definition, however, refers to the content (i.e., meaning)
of the requirement that participates in a composition rather
than its id or name patterns. One such approach is proposed
in Ref. 8; it uses the grammatical semantics of the natural
language as a basis for composition.

In AORE with Arcade the requirements in the aspects
are the advices that are imposed upon viewpoints. This
approach does not use intertype declarations and does not
execute an actual composition to produce new require-
ments specification with advising requirements inserted
into the viewpoints. Instead, the Arcade compositions are
used as an analysis tool to detect requirement interactions
and conflict points and to enable trade-off analysis. This
same approach is taken in several other AORE works, (e.g.,
Refs. 8 and 27). The AO V-graph approach (25), however,
does have a dedicated intertype declaration mechanism,
whereby new goals are inserted into the goal graph at
the identified points. AO V-graph also provides a tool-
supported mechanism for transforming the original goals
and aspects into an integrated-goalgraph. This integrated
graph, however, is not used for analysis but only for vali-
dating the expected composition results.

In summary, AORE uses the joinpoint, pointcut, advice,
and intertype declaration notions of AOSD to provide
improved separation of concerns and composition at the
requirements level. The composition definitions are often
used as an analysis tool for conflict-point identification
and interaction understanding. However, the actual
transformational compositions are also realized in some
approaches. It is also essential to note that not all aspectual
artifacts identified at the requirements level will subse-
quently be represented as code-level aspects. On the con-
trary, some may well transform into other software
artifacts (e.g., architectural topology) or business-related
decisions (e.g., procedures for security policy used by the
business) before an application is implemented. In addi-
tion, new aspects, often related to the selected development
technology, will develop at the other stages of software
development, but these will not be visible in requirements.

Concurrent Buffer Example in AORE

The Arcade example for the buffer and its related concur-
rency requirements is illustrated in Fig. 3. Note, that the
XML notation of the Arcade approach is used, where view-
points, aspects, and composition elements are defined, each
of which contains a set of requirement elements. A set of
composition actions and operators is also used (here
touched upon briefly) where necessary to explain the
general meaning of the composition. Details of the Arcade
approach can be found in Ref. 4.

4 ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION



Figure 3(a) shows the Buffer viewpoint, which has two
requirements: first, stating the need to check if the buffer is
empty, and second, instructing to get an element from the
Buffer. The Concurrency aspect is demonstrated in
Fig. 3(b), and contains two requirements: one for locking
the Buffer and another for unlocking it. Finally, the inter-
action between the Buffer viewpoint and the Concurrency
aspect is shown in the composition defined in Fig. 3(c). From
this composition, we see that the requirements with id
numbers 1 and 2 of the Concurrency aspect influence all
the requirements of the Buffer viewpoint. Thus, Concur-
rency is a crosscutting concern with respect to Buffer. The
requirement with id ¼ 1 of the Concurrency aspect will be
enforced (enforce action) before (before operator) all
requirements of Buffer, whereas the requirement with
id ¼ 2 will be enforced after (after operator) all require-
ments of the Buffer. Thus, the Concurrency requirements
with ids 1 and 2 advise the Buffer’s requirements.

As shown in Fig. 3, the pointcuts for composition are
quantified as viewpoint¼ ‘‘Buffer’’ and id¼ ‘‘all’’, and advice
is defined by reference to concern and id pairs (e.g., aspect¼
‘‘Concurrency’’, and id ¼ ‘‘1’’). The composition states that
the advice must be imposed before/after the joinpoints
selected via the pointcuts. The composition does not carry
out any immediate transformation of the composed require-
ments. Instead, it is an analysis tool that explicitly shows
the effect of the aspects on the viewpoints and the inter-
actions between the two.

ASPECT-ORIENTED ARCHITECTURE

The architecture of a computing system is concerned with
the description of its general structure. With the emergence

of AOSD, several architectural-design approaches have
focused on researching how aspects manifest in the archi-
tecture and how they should be represented (22, 28–30). A
discussion of several aspect-oriented architecture (AOA)
approaches is provided in Ref. 22. In this section, we discuss
the work on aspect-oriented architecture description lan-
guages (ADLs) because these have been the main focus of
development of aspect-oriented techniques at the architec-
ture level.

Aspects in Aspect-Oriented Architecture (AOA)

In accordance with Medvidovic and Taylor (3), the neces-
sary elements of an ADL are components, connectors, and
architectural configurations. Components and connectors
must have associated interfaces that detail the operations,
messages, and variables the components use to interact
with each other. These interactions and their rules are
modeled via connectors. Most ADLs aiming to incorporate
AOSD concepts have defined several extensions to this base
set of ADL constructs. While discussing AO ADLs, we will
use the work of Pinto and colleagues (32–34) as an example
AO ADL, primarily because we believe that this work uses
only the minimal set of extensions necessary to accommo-
date AOSD concepts in an ADL.

The majority of AO ADLs [such as Prisma (35),
Fractal (36), and DAOP-ADL (37, 38)] have opted to
add a new aspect construct into the ADL to represent
a crosscutting concern at the architectural level. The AO
ADL by Pinto and colleagues (32–34), however, suggests
that no need exists to use a special type of component for
an aspect. Component interface in this AO ADL is
described as either provided by a given component or
used (i.e., required) by it. The interface contains a set of

<Concern name =“Concurrency”>
<Requirement id =“1”> System locks the buffer. </Requirement>
<Requirement id =“2”> System unlocks the buffer. </Requirement>

</Concern>

<Viewpoint name= “Buffer”>
<Requirement id =“1”> Check if the buffer is empty. </Requirement>
<Requirement id =“2”> Get an element from the buffer</Requirement>

</Viewpoint>

Composition: ConcurrentBuffer
<Composition>

id=“1”><Requirement aspect=“Concurrency”
operator=“before”><Constraint action=“enforce”

id=“all”/><Requirement viewpoint=“Buffer”
</Constraint>
<Outcome action=“fulfilled”/>

</Requirement>
id=“2”><Requirement aspect=“Concurrency”

operator=“after”><Constraint action=“enforce”
id=“all”/><Requirement viewpoint=“Buffer”

</Constraint>
<Outcome action=“fulfilled”/>

</Requirement>
</Composition>

(a)

(b)

(c)

Figure 3. AORE with Arcade representation of Buffer, Concurrency, and their composition.

ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION 5



operations and state variables. The operations are given
role names.

AO ADL (32–34) encapsulates the broad crosscutting
influence of aspectual concerns in the architectural con-
nectors. Thus, instead of defining new aspect components,
this approach refines the connectors by extending their
semantics with aspectual bindings. Whereas regular bind-
ings in the connectors represent the composition of archi-
tectural elements, the aspectual bindings represent the
composition between components that have a broadly
scoped interaction with the other components.

The joinpoint model of the AO ADL by Pinto and col-
leagues (32–34) comprises the role names and operation
names exposed by the components. When defining an
aspectual binding, a pointcut may be defined as, for
instance, ‘‘any component playing a particular role’’ or
‘‘any component that has an operation with a given name
in one of its provided interfaces’’, and so forth.

An advice in the AO ADL by Pinto and colleagues
(32–34) is an operation, which is bound in the aspectual
binding to a set of joinpoints selected by a pointcut. This
advice operation can be imposed before, after, or concur-
rently with the advised operation. The AO ADL by Pinto
and colleagues (32–34) does not use any constructs for
intertype declarations. Instead, when it is necessary to
introduce a new state variable or operation, the traditional
notion of composite component is used. The modified com-
ponent then is represented by a compound component with
the original and additional interfaces. So far, the notion of
intertype declaration has not been used much in AOA work
(except for in Ref. 35), and the above discussed use of the

traditional compound component for this purpose makes
definition of such new construct unnecessary.

Thus, as shown by the above discussion, the accommo-
dation of aspects within architecture design can be
achieved without drastic changes to the traditional ADL
constructs. For instance, Pinto and colleagues (32–34) do
this by only extending the connector semantics. With such
an approach, when no aspects are used in a system, the
same component bindings as in non-AO systems can be
used, which both minimizes changes to ADL constructs and
enables component reuse.

It must be noted that in architecture, crosscutting con-
cerns are not necessarily always related to individual com-
ponents. For instance, work by Garcia et al. (39) illustrates
that aspects are also useful in representing architectural
decisions that affect multiple architectural views. In addi-
tion, not all identified crosscutting concerns can be mod-
ularized into components; some of them will continue to
reside in multiple components (40) (e.g., beacuse of proce-
ssing efficiency or other reasons). In such cases, it could still
be useful to have a way of aspect documentation.

Concurrent Buffer Example in AOA

The AO ADL example for the buffer and its related con-
currency elements is shown in Fig. 4 below. Here both
Buffer and Concurrency concerns are represented as com-
ponents, with their related operations. In this case, the
Buffer provides two operations: isEmpty and get [Fig. 4(a)].
Similarly, the Concurrency component provides the lock
and unlock operations [Fig. 4(b)]. The connector for these

<component name= “Buffer”>

<provided-interface role=”BufferInterface”>

<operation name=”isEmtpy”/>

<operation name=”get”/>

</provided-interface>

</component>

<component name= “Concurrency”>

<provided-interface role= “ConcurrencyInterface”>

<operation name=”lock”/>

<operation name=”unlock”/>

</provided-interface>

</component>

<connector name= “ConcurrentBuffer”>

<required-role name= “BufferRole”>

<role-specification>

and component-name=“Buffer”

or “add”)(operation-name=“isEmpty”

</role-specification>

</required-role>

<aspectual-role name=”Locking”>

<role-specification>

and component-name=“Concurrency”

or “unlock”)(operation-name=“lock”

</role-specification>

</aspectual-role>

<aspectBindings>

<aspectual-binding name=“LockBuffer”

<pointcut-specification>

required-role-name=“BufferRole”

</pointcut-specification>

<binding operator=“before”>

<aspectual-component aspectual-role name=“Locking”

advice-name=“lock”/>

</binding>

</aspectual-binding>

<aspectBindings>

</connector>

(b)(a)

(c)

Figure 4. AOA representation of Buffer and Concurrency concerns and their connector.

6 ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION



two concerns is shown in Fig. 4(c), in which an aspectual
binding is defined to pre-advise (operator ¼ before) all
operations of the Buffer (pointcut specification: ‘‘Buffer-
Role’’ where component name ¼ ‘‘Buffer’’ with operation
names ‘‘isEmtpy’’ or ‘‘get’’) with the lock (advice name ¼
‘‘lock’’) operation of the Concurrency component. If desired
(although not shown here), a similar binding could have
been defined to post-advise (if used with operator ¼ after)
all Buffer operations with the unlock operation of the
Concurrency component.

ASPECT-ORIENTED DESIGN

In a vein similar to AORE and AOA, several approaches
have been proposed for modeling and analysis of aspects
during detailed design. Mostly, these approaches are based
on the UML or its extensions; they provided support for
modularization of crosscutting concerns and for specifying
their compositions with other design elements [for a
detailed analysis of aspect-oriented design techniques,
see the survey by Chitchyan et al. (22)]. Most interesting
approaches in this context are Theme/UML (15, 16) and the
works by Klein et al. (41) and Cottenier et al. (42). We
discuss Theme/UML in more detail below. The work by
Klein et al. focuses on semantics of design composition and
treats aspect composition as a model-composition problem.
The approach proposed by Cottenier et al. exposes the state
semantics of the design elements and bases the aspect
compositions on these state chart specifications (exposed
as part of the joinpoint model). This approach is rooted in
the notion of model-driven engineering whereby weaving
takes place at the design level, and code for the target
platform is generated.

Aspects in Aspect-Oriented Design (AOD)

The vast majority of the work on AOD has opted to extend
UML to accommodate aspect-oriented concepts. Some
approaches have extended the UML meta-model (14, 15,
43), others have provided dedicated AOD profiles (44), and
yet others have used a subset of UML’s built-in extension
mechanisms, such as stereotypes (28, 29, 45). In the rest of
this section, we will use the Theme/UML (15, 16) approach
to demonstrate the AO concepts in design because this
approach is one of most referenced and generic AOD
approaches developed so far.

In the Theme/UML approach, the UML meta-model is
extended to support modularization of designs into themes.
Themes are UML packages that may encapsulate any
feature, concern, or requirement that must be handled in
the system (16). Here, the notion of a crosscutting theme is
used for aspect representation. A crosscutting theme is a
theme that provides some behavior that crosscuts other
behavior in designs (16). In Theme/UML, the behavior is
modeled via sequence diagrams, whereas structural cross-
cutting (i.e., nonbehavioral elements that could be included
into a base theme via a crosscutting theme) can be modeled
via class and package diagrams. Other approaches also use
other UML modeling elements, such as activity diagrams
(13), or focus on a subset of crosscutting, for example
modeling only the structural elements as aspects via a

dedicated �aspect� stereotype (43), or modeling only
the various joinpoint selection queries (46, 47) and so forth.

The joinpoints in Theme/UML are represented as para-
meterized class and operation names that are defined and
referenced in a theme’s template parameters section. These
parameters define the Theme/UML pointcuts. During
theme composition, these parameterized names are
assigned to specific classes and operations via binding
specifications. The binding specification also elaborates
on the details of composition (e.g., merge or override the
operation from the base theme with that of the crosscutting
one). Thus, the binding in Theme/UML specifies the pre-
cedence of operations (e.g., which operation will be executed
first), the type of advice (e.g., before/after or around), and,
where necessary, conflict resolution between elements of
themes to be merged. The work on joinpoint-designation
diagrams (JPDD) (46, 47) provides a set of somewhat-
modified (because of parameterization, addition of indirect
relationships, etc.) UML-based modeling elements for
capturing the intention of joinpoint selection queries, i.e.,
pointcuts. The JPDDs represent the conceptual models of
queries: whether the joinpoints are selected on basis of
object interaction (control flow-based queries realized via
UML-based sequence diagrams), data interchange (data
flow-based queries realized via UML-based activity dia-
grams), or state change (state-based queries realized via
UML-based state charts). Each of these JPDD types can be
used in combination with the others and the (modified)
class/object diagrams.

Although Theme/UML does not explicitly define intro-
duction as a construct, the theme merging requires inclu-
sion of the nonparameterized elements of the contributing
crosscutting themes into the final result. Thus, such
nonparameterized crosscutting theme elements as classes,
operations, attributes, and relationships (e.g., inheritance)
can be perceived as introductions into the composed theme:
They modify/crosscut the structure of the original base
themes. With JPDDs, the introductions can be asserted
via class/object diagrams. Moreover, here the powerful
notion of indirect relationships(46, 47) is also used,
whereby the existence of the relationship is stated without
naming its precise location. For example, a new class in the
class hierarchy can be introduced without stating its pre-
cise location. Instead, using the indirect inheritance rela-
tion, one may state that this class will be added somewhere
in the given hierarchy.

Concurrent Buffer Example in AOD

The Theme/UML example for the buffer and its crosscut-
ting concurrency concern is shown in Fig. 5 below.

Here both Concurrency and Buffer concerns are repre-
sented as themes. Concurrency [shown in Fig. 5(a)] is the
crosscutting theme. Concurrency has lockedOp() and
unlockedOp() template operations intended to replace
respectively the original_locked() and unlocked() opera-
tions of some ConcurrenctClass by pre-advising these ori-
ginal operations with lock() operation of Concurrency
and by post-advising them with its unlock() operation.
The execution order of the operations (i.e., pre-advising,
original operation, and post-advising) would normally be

ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION 7



presented via an additional UML interaction diagram that
is omitted in Fig. 5.

The base Buffer theme, which contains two public opera-
tions, isEmpty() and get(), is presented in Fig. 5(b). To
specify that the Buffer theme is crosscut by the Concur-
rency theme, they are bound, as shown in Fig. 5(c). The
binding specification [shown at the bottom of Fig. 5(c)]
states, that

� the Buffer class of the Buffer theme instantiates the
parameterized ConcurrentClass of the Concurrency
theme, and

� both isEmtpy() and get() operations instantiate
the _lockedOp() and _unlockedOp() operations. Each
isEmtpy() and get() operation will be advised by
both the _lockedOp() and _unlockedOp() operations,
because thetwo formeroperationsaregroupedviacurly
brackets.

ASPECT-ORIENTED PROGRAMMING (AOP)

The aspect-oriented paradigm is endowed with a large and
vibrant body of AOP languages (see http://www.aosd.net)
and frameworks (e.g., Refs. 7, 48 and 49), that can be
applied in the development stage of the software lifecycle.
This situation can be explained by the fact that AOP first
emerged as a programming-level technique but is perhaps
more accurately motivated by the fact that almost every
AOP language has its particular purpose and character-
istics. A survey of the contemporary work on AOP lan-
guages and language execution models is available from
Ref. 50.

Aspects in AOP

In this section, we discuss the instantiation of the aspectual
elements for AOP by using as an example a particular
programming language: AspectJ (6, 5). AspectJ can be

considered as the flagship language of aspect orientation
as it has made a transition from being a research topic to the
state-of-the-practice.

AspectJ extends the Java language with aspect-oriented
constructs for pointcuts, advice, and inter type declara-
tions; it permits to encapsulate these into a class-like
module: the aspect. Like an ordinary class, an aspect can
also have methods, fields, and initializers of its own.
Advices in AspectJ (and most other aspect languages)
can be seen as anonymous methods, bound to a pointcut
rather than to a method name and with bodies not essen-
tially different from regular Java methods. The advice body
contains regular statements and expressions that are exe-
cuted when the advice is invoked at a joinpoint captured by
its pointcut. Most often, specific keywords and pseudo-
variables are available for use in advices only. AspectJ,
for example, offers access to the currently executing join-
point through the pseudo variable thisJoinPoint. Never-
theless, in some AOP languages, interesting exceptions
from such an advice model occur. Most notably, domain-
specific aspect languages (DSALs) permit the implementa-
tion of an aspect’s advice in a dedicated domain-specific
language. Interestingly, some earliest aspect languages are
DSALs: D is a DSAL for synchronization concerns (51) and
RG was designed specifically as an optimization aspect
performing loop fusions. More recently, DSALs have
emerged for aspects such as business rules (52) and
advanced transaction management (53).

The invocation of any advice is determined by a pointcut,
which is defined (traditionally, although not always) within
the aspect itself by means of a set of predefined pointcut
predicates. Such predicates permit to quantify over join-
points (and their properties) to identify the joinpoints of
interest to the aspect. In AspectJ, joinpoints are principled
points in the execution of the program, such as field refer-
ences or assignments, method executions, calls, and
returns, to name but a few. These joinpoints can be quali-
fied by the signatures and names of the fields, by methods
and classes they apply to, and also with respect to the

<<theme>>

Concurrency

Concurrency

+ lock ()

+ unlock()

ConcurrentClass

+ lockedOp()

_locked()-

+ unlockedOp()

_unlocked()-

<<theme>>

Buffer

Buffer

()+ isEmpty

+ get()

<<theme>>

Concurrency

<<theme>>

Buffer

bind [ <Buffer, {isEmtpy( ), get( )}> ]

(a) (b)

(c)

<ConcurrentClass, _lockedOp(..), _unlockedOp(..)>

<ConcurrentClass, _lockedOp(..), _unlockedOp(..)>

Figure 5. AOD with Theme representation of Concurrency and Buffer themes and their binding.

8 ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION



dynamic scope in which the joinpoint is executed. Most
aspect languages feature a similar pointcut specification
language, with some notable exceptions using the lan-
guage’s reflective facilities (e.g., AspectS (59)) or computa-
tional logic (e.g., Carma (55, 56) and Alpha (57)) to define
pointcuts.

Asaresult of composition,mostAOP languagesproducea
mergedexecutablecodefromtheaspectualandnonaspectual
modules. In AspectJ, a compiler is used to compose the
aspects’ implementation with the Java classes by ‘‘weaving’’
theaspectcodeintotheclassesthatarecrosscutbytheaspect.
The term ‘‘weaver’’ has historically been used for aspect-
oriented compilers, because these had generally been imple-
mented as a preprocessor to other compilers. The AspectJ
compiler, for example, was using such an approach but now
performs weaving on the bytecode of (compiled) classes.
Currently, an entire body of research investigates efficient
executionandcompilationmechanisms foraspect languages
(58, 59). Research is under way, for example, for efficient
weaving of aspects with complex and dynamic pointcuts (60)
or weaving of aspects that can be dynamically removed from
the running software application. These weavings require
sophisticated weaving techniques that are sound and that
minimize the run-time performance overhead.

Concurrent Buffer Example in AOP

We can now change the implementation of our concurrent
buffer example from Fig. 2 so that the crosscutting concern
of concurrency locking is modularized as an aspect. From
the code in Fig. 2, one can distill that the joinpoints of the
concurrency locking aspect and the buffer functionality are
the execution of the methods of the buffer (i.e., isEmpty(),
get(), . . .). Indeed, whenever the method isEmpty() executes,

we need to lock the readLock and unlock it when the
execution has finished. Figures 6 and 7 show the implemen-
tations of the Locking aspect and the SimpleBuffer class
using the AspectJ language. The code for both concerns is
now cleanly separated. The Buffer class is merely dealing
with the functionality of a buffer and the entire locking
concern is modularized in the aspect.

For simplicity, the lockedMethods() pointcut of the
aspect captures all method execution joinpoints of the
SimpleBuffer class. Line 5 of Fig. 6 defines this pointcut
by means of the execution pointcut-predicate. This predi-
cate accepts a method signature as an argument and cap-
tures all joinpoints that are executions of methods
characterized by that signature. The signature consists
of the return type, class name, method name, and argument
types of method. In the definition of such a signature,
wildcards can be used to describe a pattern, rather than
concrete signatures. In the example, we use the ‘‘�’’ wildcard
to match any return type and method name. Similarly, the
‘‘��’’ wildcard is used to match any type pattern in the
argument list. Therefore, the lockedMethods() pointcut
will capture all executions of any method defined on the
SimpleBuffer class.

The actual aspect behavior is expressed in a before
advice that executes the locking and in an after advice
that executes the unlocking. Each of these advices is
defined such that they are executed when a joinpoint
captured by the lockedMethods() pointcut occurs. The bind-
ing of the advice to the pointcut is specified in the header of
each advice (lines 7 and 11). As such, when the isEmpty()
method executes, the aspect is implicitly invoked and the
before advice executes, followed by the isEmpty() method
body. The after advice is executed when the isEmpty()
method execution finishes.

AOSD APPLICATIONS AND OPEN RESEARCH CHALLENGES

Several nontrivial applications of AOSD techniques have
been reported in literature, both in terms of nontrivial
studies in academic research labs and in real-world
industrial settings. A significant number of these relate
to middleware and distributed systems, both from the
perspective of taming the complexity of the middleware
itself (61, 62), and supporting modularization of crosscut-
ting concerns in distributed applications (63–65). Other
nontrivial application studies pertain to modularizing

1    public class SimpleBuffer { 
2     private Object[] data = new Object[100]; 
3 private int nrOfElements=0; 
4
5 public boolean isEmpty() { 
6  return nrOfElements == 0; 
7 } 
8
9    public Object get() { 
10       return data[nrOfElements--]; 
11   } 
}

Figure 7. The SimpleBuffer class without synchronization code.

1    public aspect Locking { 
2      private final ReentrantReadWriteLock lock = new ReentrantReadWriteLock(); 
3      private final Lock readLock = lock.readLock(); 
4
5      pointcut lockedMethods(): execution(* SimpleBuffer.*(..)); 
6
7      before(): lockedMethods() { 
8 readLock.lock();
9      } 
10
11      after(): lockedMethods() { 
12       readLock.unlock(); 
13      } 
14  }

Figure 6. The Locking aspect in AspectJ.

ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION 9



persistence-related functionality, (66, 67), and evolution of
operating-system code, (68). Several industrial AOP frame-
works, for example JBoss (48) and Spring (69), target
enterprise component architectures, whereas the mysql
database system (http://www.mysql.org) now uses AspectJ
as the underlying logging mechanism. In terms of indus-
trial adoption, AspectJ has made a transition from state-of-
the-art to becoming state-of-the-practice, whereas frame-
works such as JBoss and Spring are also seeing increasing
use in Enterprise Java applications.

Seveal empirical studies of AOSD techniques have also
been reported, (70–73). These studies quantify the com-
parative benefits and drawbacks of AOSD compared with
other software-development paradigms, such as OO. Simi-
larly, studies demonstrating the nontrivial nature of cross-
cutting concerns in industrial code (74) highlight the
fundamental complexity of software systems that AOSD
techniques aim to address.

Despite the promising applications and empirical stu-
dies, several open research challenges remain. The major
challenge to industrial adoption is in the area of aspect
testing. Although a few techniques have been proposed to
date, (75–77), extensive research is needed to understand
whether current software testing techniques can be applied
in an AOSD context and, more importantly, what specific
testing challenges need to be addressed for using AOSD in
an industrial setting. Related to this is the issue of compo-
sition fragility. Most AOSD techniques employ syntactic
references (or wildcards quantifying over such syntactic
references) as a basis of composition specifications.1 This
use strongly couples aspects to other modules, which not
only makes testing of aspects very challenging but also
leads to composition fragility whereby changes in other
modules invalidate pointcut specifications.2 This problem
has been highlighted by recent works, (8, 30), that advocate
composition specifications based on high-level models and
semantics. Finally, the deployment of aspects in hetero-
geneous environments is an area largely unexplored. Most
current AOP techniques tend to focus on deploying aspects
within the context of a single system or virtual machine.
Aspect deployment in a heterogeneous distributed envir-
onment is a topic that requires close attention to make AOP
techniques relevant to the emerging class of large-scale
distributed systems such as those in ubiquitous and GRID-
based systems.

BIBLIOGRAPHY

1. E. W. Dijkstra, A Discipline of Programming. Englewood
Cliffs, NJ: Prentice Hall, 1976.

2. K. van de Berg, J.-M. Conejero, and R. Chitchyan, AOSD
ontology 1.0: Public ontology of aspect orientation, in Report
of the EU Network of Excellence on AOSD, 2005.

3. G. Kiczales, AspectJ: Aspect-oriented programming using java
technology (0.7), in JavaOne Conference, 2000.

4. A. Rashid, A. Moreira, and J. Araujo, Modularisation and
composition of aspectual requirements, 2nd International Con-
ference on Aspect-Oriented Software Development (AOSD’02),
2003, pp. 11–20.

5. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. M. Loingtier, and J. Irwin, Aspect-oriented programming,
11th European Conference on Object-Oriented Programming
(ECOOP), 1997, Springer LNCS 1241, pp. 220–242.

6. The AspectJ Project. Available: http://www.eclipse.org/aspectj/,
2007.

7. JAC - A Framework for Aspect-Oriented Programming in Java.
Available: http://jac.objectweb.org/, 2007.

8. R. Chitchyan, A. Rashid, P. Rayson, and R. Waters, Semantics-
based composition for aspect-oriented requirements engineer-
ing, 6th International Conference on Aspect-Oriented Soft-
ware Development, 2007, ACM Press, pp. 36–48.

9. J. Xu, H. Rajan, and K. Sullivan, Understanding aspects via
implicit invocation, Automated Software Engineering (ASE),
2004, IEEE Computer Society Press, pp. 332–335.

10. G. Kiczales and M. Mezini, Separation of concerns with pro-
cedures, annotations, advice and pointcuts, European Confer-
ence on Object-Oriented Programming (ECOOP), 2005,
Springer LNCS 3586, pp. 195–213.

11. A. Moreira, J. Araujo, and A. Rashid, Multi-dimensional separa-
tion of concerns in requirements engineering, 13th IEEE Inter-
national Conference on Requirements Engineering Conference
(RE 05), 2005, IEEE Computer Society, pp. 285–296.

12. A. Rashid and A. Moreira, Domain models are NOT aspect free,
Proc. MoDELS/UML, 2006, pp. 155–169.

13. I. Jacobson and P.-W. Ng, Aspect-Oriented Software Develop-
ment with Use Cases. Addison Wesley Professional, 2005.

14. E. Baniassad and S. Clarke, Theme: An approach for aspect-
oriented analysis and design, International Conference on Soft-
ware Engineering, 2004, IEEE Computer Society, pp. 158–167.

15. S. Clarke and E. Baniassad, Aspect-Oriented Analysis and
Design: the Theme Approach. Addison-Wesley, 2005.

16. S. Clarke and R. Walker, Generic aspect-oriented design with
Theme/UML, in zilla Elrad. R. E. Filman, S. Clarke, M. Aksit,
(eds.) Aspect-Oriented Software Development. Addison-
Wesley, 2005, pp. 425–458.

17. I. Jacobson, M. Chirsterson, P. Jonsson, and G. Overgaard,
Object-Oriented Software Engineering: A Use Case Driven
Approach 4th ed. Addison-Wesley, 1992.

18. A. Dardenne, A. v. Lamsweerde, and S. Fickas, Goal-directed
requirements acquisition, Science of Computer Programming,
20. pp. 3–50, 1993.

19. A. Lamsweerde, Goal-oriented requirements engineering: A
guided tour, 5th IEEE International Symposium on Require-
ments Engineering, 2001, IEEE Press, pp. 249–263.

20. J. Whittle and J. Araujo, Scenario modeling with aspects, IEEE
Proceedings - Software, Vol. 151, No. 4, Special Issue on Early
Aspects: Aspect-Oriented Requirements Engineering and
Architecture Design, pp. 157–172, 2004.

21. E. L. A. Baniassad, P. Clements, J. Araujo, A. Moreira, A.
Rashid, and B. Tekinerdogan, Discovering Early Aspects,
IEEE Software, 23 (1): pp. 61–69, 2006.

22. R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. Pinto, J.
Bakker, B. Tekinerdogan, S. Clarke, and A. Jackson, Survey
of (aspect-oriented) analysis and design approaches, Lancaster

1This problem is not a problem specific to AOSD. Most contempor-
ary software-development paradigms employ such syntactic refer-
ences for method calls, attribute accesses, and so forth.
2Note that the issue of composition fragility is not limited to AOP
languages. The problem has also been highlighted in analysis and
design techniques, for example, in the context of requirements
engineering (8).

10 ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION



University, Lancaster, Survey Report AOSD-Europe-ULANC-
9, 2005.

23. I. Sommerville and P. Sawyer, PREview viewpoints for process
and requirements analysis, Lancaster University, Lancaster
REAIMS/WP5.1/LU060, 29 May 1996.

24. I. Sommerville and P. Sawyer, Viewpoints: Principles, pro-
blems and a practical approach to requirements engineering,
Annals of Software Engineering, 3: 101–130, 1997.

25. L. F. Silva, A guided strategy the modeling aspect-oriented
requirements (in Portuguese), in Computer Science, vol. PhD.
Rio de Janeiro, Brazil: Catholic University of Rio de Janeiro
(PUC-Rio), 2006.

26. Y. Yu, J. C. S. d. P. Leite, and J. Mylopoulos, From goals to
aspects: Discovering aspects from requirements goal models,
International Conference on Requirements Engineering, 2004,
IEEE Computer Society, pp. 38–47.

27. A. Moreira, J. Araújo, and I. Brito, Crosscutting quality attri-
butes for requirements engineering, 14th International Con-
ference on Software Engineering and Knowledge Engineering
(SEKE), 2002, ACM, pp. 167–174.

28. W.-M. Ho, F. Pennaneach, J.-M. Jezequel, and N. Plouzeau,
Aspect-oriented design with the UML, in Workshop on Multi-
Dimensional Separation of Concerns in Software Engineering
(ICSE 2000), 2000.

29. W. M. Ho, J.-M. Jezequel, F. Pennaneac’h, and N. Plouzeau, A
toolkit for weaving aspect oriented UML designs, Proc. 1st Int’
Conf. on Aspect-Oriented Software Development (AOSD-2002),
G. Kiczales, (ed.), 2002, pp. 99–105.

30. A. Kellens, K. Mens, J. Brichau, and K. Gybels, Managing the
evolution of aspect-oriented software with model-based point-
cuts, European Conference on Object-Oriented Programming
(ECOOP), 2006, Springer LNCS 4067, pp. 501–525.

31. N. Medvidovic and R. Taylor, A classification and comparison
framework for software architecture description languages,
IEEE Trans. Soft. Eng., 26(1): 70–93, 2000.

32. R. Chitchyan, M. Pinto, A. Rashid, and L. Fuentes, COMPASS:
composition-centric mapping of aspectual requirements to
architecture, Transactions on Aspect-Oriented Software Devel-
opment, Vol. 4, 2007, pp. 3–53.

33. M. Pinto and L. Fuentes, AO-ADL: An ADL for describing
aspect-oriented architectures. Early Aspect Workshop (held
with AOSD’07), 2007.

34. M. Pinto, N. Gámez, and L. Fuentes, Towards the architectural
definition of the health watcher system with AO-ADL, Early
Aspect Workshop (held with ICSE’07), 2007.

35. J. Pérez, I. Ramos, J. Jaén, P. Letelier, and E. Navarro,
PRISMA: Towards quality, aspect-oriented and dynamic soft-
ware architectures, 3rd IEEE Intl Conf. on Quality software
(QSIC 2003), 2003, IEEE Computer Society, pp. 59–66.

36. N. Pessemier, L. Seinturier, and L. Duchien, Components,
ADL and AOP: Towards a common approach, RAMSE: Work-
shop on Reflection, AOP, and Meta-Data for Software Evolu-
tion (held with ECOOP’04), 2004, pp. 61–69.

37. M. Pinto, L. Fuentes, and J. Troya, A dynamic component and
aspect platform, The Computer Journal, 48(4): 401–420, 2005.

38. M. Pinto, D. Jiménez, and L. Fuentes, Developing dynamic and
adaptable applications with CAM/DAOP: A virtual office appli-
cation, 4th International Conference on Generative Program-
ming and Component Engineering (GPSE), 2005, LNCS, 3676,
pp. 438–441.

39. A. Garcia, T. Batista, A. Rashid, and C. Sant’Anna, Driving and
Managing Architectural Decisions with Aspects, ACM SIG-
SOFT Software Engineering Notes, 31(5), 2006.

40. C. Sant’Anna, E. Figueiredo, A. F. Garcia, and C. J. P. d.
Lucena, On the modularity of software architectures: A con-
cern-driven measurement framework, First European Confer-
ence on Software Architecture (ECSA’07), 2007, LNCS, 4758,
pp. 207–224.

41. J. Klein, L. Helouet, and J. Jezequel, Semantics-based weaving
of scenarios, International Conference on Aspect-Oriented
Software Development (AOSD), 2006, ACM, pp. 27–38.

42. T. Cottenier, A. van den Berg, and T. Elrad, Joinpoint inference
from behavioral specification to implementation, European
Conference on Object-Oriented Programming (ECOOP),
2007, Springer LNCS 4609, pp. 476–500.

43. J. Suzuki and Y. Yamamoto, Extending UML with aspects:
Aspect support in the design phase, Workshop on Aspect-
Oriented Programming (held with ECOOP 1999), 1999.

44. L. Fuentes, M. Pinto, and A. Vallecillo, How MDA can help
designing component- and aspect-based applications,
Enterprise Distributed Object Computing Conference
(EDOC), 2003.

45. J. L. Herrero, F. Sanchez, F. Lucio, and M. Toro, Introducing
separation of aspects at design time, Workshop on Aspects and
Dimensions of Concerns (held with ECOOP 2000), 2000.

46. S. Hanenberg, D. Stein, and R. Unland, From aspect-oriented
design to aspect-oriented programs: Tool-supported transla-
tion of JPDDs into code, 6th International Conference on
Aspect-Oriented Software Development, 2007, ACM, pp. 49–
62.

47. D. Stein, S. Hanenberg, and R. Unland, Expressing different
conceptual models of join point selections in aspect-oriented
design, 5th International Conference on Aspect-Oriented Soft-
ware Development, 2006, ACM, pp. 15–26.

48. JBoss Aspect Oriented Programming Webpage. Available:
http://www.jboss.org/products/aop: JBoss, 2007.

49. The Spring Framework. Available: http://www.springframe-
work.org/, 2007.

50. Survey of aspect-oriented languages and execution models,
VUB, Brussels, Belgium, AOSD-Europe Project Report (D12)
AOSD-Europe-VUB-01, 2005.

51. C. V. Lopes, D: A language framework for distributed program-
ming, Ph.D. dissertation, Boston, MA: Northeastern Univer-
sity, 1997.

52. M. D’Hondt and V. Jonckers, Hybrid aspects for weaving
object-oriented functionality and rule-based knowledge, Inter-
national Conference on Aspect-Oriented Software Develop-
ment (AOSD), 2004, ACM, pp. 132–140.

53. J. Fabry and T. Cleenewerck, Aspect-oriented domain specific
languages for advanced transaction management, Interna-
tional Conference on Enterprise Information Systems
(ICEIS’05), 2005, pp. 428–432.

54. R. Hirschfeld, Aspects - Aspect-Oriented Programming with
Squeak, in M. Askit, M. Mezini, and R. Unland, (eds.), Objects,
Components, Architectures, Services and Applications for a
Networked World. Springer, 2003, pp. 216–232.

55. J. Brichau, A. Kellens, K. Gybels, K. Mens, R. Hirschfeld, and
T. D’Hondt, Application-specific models and pointcuts using a
logic meta language, in W. D. Meuter (ed.), Advances in
Smalltalk, vol. LNCS. Springer-Verlag, 2006, pp. 1–22.

56. K. Gybels and J. Brichau, Arranging language features for
more robust pattern-based crosscuts, Second International
Conference on Aspect-Oriented Software Development
(AOSD), 2003, ACM, pp. 60–69.

57. K. O stermann, M. Mezini, and C. Bockisch, Expressive
pointcuts for increased modularity, European Conference on

ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION 11



Object-Oriented Programming (ECOOP), 2005, Springer-Ver-
lag, LNCS, pp. 214–240.

58. C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann, Virtual
Machine Support for Dynamic Join Points, International Con-
ference on Aspect-Oriented Software Development (AOSD’04),
2004, ACM, pp. 83–92.

59. M. Haupt and M. Mezini, Virtual machine support for aspects
with advice instance tables, First French Workshop on Aspect-
Oriented Programming, 2004.

60. C. Bockisch, S. Kanthak, M. Haupt, M. Arnold, and M. Mezini,
Efficient Control Flow Quantification, International Confer-
ence on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2006, ACM Sigplan, pp. 125–138.

61. E. Truyen, B. N. Joergensen, and W. Joosen, Customization of
object request brokers through dynamic reconfiguration,
TOOLS Europe, 2000, IEEE Computer Society Press, pp.
181–194.

62. C. Zhang and H.-A. Jacobsen, Resolving feature convolution in
middleware systems, ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2004, ACM, pp. 188–205.

63. A. Colyer and A. Clement, Large-scale AOSD for middleware,
International Conference on Aspect-Oriented Software Devel-
opment (AOSD), 2004, ACM, pp. 56–65.

64. M. A. Kersten and G. C. Murphy, Atlas: A case study in building
a web-based learning environment using aspect-oriented pro-
gramming, SIGPLAN Notices, OOPSLA, 34(10): 340–352,
1999.

65. S. Soares, E. Laureano, and P. Borba, Implementing distribu-
tion and persistence aspects with AspectJ, Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), 2002, ACM, pp. 174–190.

66. A. Rashid, Aspect-OrientedDatabase Systems. Springer-Verlag,
2003.

67. A. Rashid and R. Chitchyan, Persistence as an aspect, 2nd
International Conference on Aspect-Oriented Software Devel-
opment, 2003, ACM, pp. 120–129.

68. Y. Coady and G. Kiczales, Back to the future: a retroactive
study of aspect evolution in operating system code, Interna-
tional Conference on Aspect-Oriented Software Development
(AOSD), 2003, ACM, pp. 50–59.

69. Spring, Aspect-Oriented Programming with Spring. Available:
http://www.springframework.org/docs/reference/aop.html,
2007.

70. N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia, T. Batista,
and C. Lucena, Composing design patterns: A scalability study
of aspect-oriented programming, International Conference on

Aspect-Oriented Software Development (AOSD), 2006, ACM,
pp. 109–121.

71. A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena,
and A. v. Staa, Modularizing design patterns with aspects: A
quantitative study, International Conference on Aspect-
Oriented Software Development (AOSD), 2005, ACM,
pp. 3–14.

72. P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A.
Garcia, N. Cacho, C. Sant’Anna, U. Kulesza, S. Soares, P.
Borba, and A. Rashid, On the impact of aspectual decomposi-
tions on design stability: An empirical study, European Con-
ference on Object-Oriented Programming (ECOOP’07), 2007,
Springer LNCS 4609, pp. 176–200.

73. C. Lopes and S. Bajracharya, An analysis of modularity in
aspect oriented design, International Conference on Aspect-
Oriented Software Development (AOSD), 2005, ACM,
pp. 15–26.

74. M. Bruntink, A. v. Deursen, M. D’Hondt, and T. Tourwe,
Simple crosscutting concerns are not so simple: Analysing
variability in large-scale idioms-based implementations, Inter-
national Conference on Aspect-Oriented Software Develop-
ment (AOSD), 2007, ACM, pp. 199–211.

75. T. Xie and J. Zhao, A framework and tool supports for gen-
erating test inputs of aspectJ programs, International Con-
ference on Aspect-Oriented Software Development (AOSD),
2006, ACM, pp. 190–201.

76. D. Xu and W. Xu, State-based incremental testing of aspect-
oriented programs, International Conference on Aspect-
Oriented Software Development (AOSD), 2006, ACM,
pp. 180–189.

77. J. Zhao, Data-flow-based unit testing of aspect-oriented pro-
grams, International Computer Software and Applications
Conference (COMPSAC’03), 2003, IEEE Computer Society,
pp. 188–197.

JOHAN BRICHAU

Université catholique
de Louvain

Louvain-la-Neuve, Belgium

RUZANNA CHITCHYAN

AWAIS RASHID

Lancaster University
Lancaster, United Kingdom

THEO D’HONDT

Vrije Universiteit Brussel
Brussels, Belgium

12 ASPECT-ORIENTED SOFTWARE DEVELOPMENT: AN INTRODUCTION



A

ASSEMBLY LANGUAGE

INTRODUCTION

An assembly language is a symbolic representation of a
corresponding machine language. Whereas a machine lan-
guage program consists of bit patterns, an assembly lan-
guage program consists of alphanumeric names (symbols),
numbers, and other special characters. The names describe
operations to be performed (mnemonics) as well as storage
locations and registers from which data (operands) are to be
fetched or stored. While the machine language instruction
is the only instruction a computer can ‘‘understand,’’ it is
very difficult for humans to write a program using pure
machine language directly. Assembly language was the
first step taken some 60 years ago to facilitate programming
and it led to the development of more powerful program-
ming languages (higher level languages).

A program called the assembler is used to translate the
assembly language code to its machine language equiva-
lent. This translation process is known as assembling (or
assembly). The object code produced is then loaded into the
computer usually with the help of a loader (and a linker)
before it is run (or execute) t here.

Today, with the availability of powerful high level lan-
guages, assembly language is not used for writing programs
directly except in some special situations. Nevertheless,
most compilers still translate programs written in high level
language first to assembly language code and then use the
assembler to generate the object code in machine language.
Therefore, assembly language is still playing a key role in
the operation of all computers. In situations when perfor-
mance and/or resource limitations are essential and compi-
ler-generated code may not be optimal, people often rely on
assembly language programming to maximize program
performance (e.g., the innermost loop of computationally
very intensive program) or to preserve resources (e.g.,
memory space in embedded systems).

The idea of using symbolic code to write programs was
developed soon after the first computers were built. Cer-
tainly, something was available on the EDSAC (done by
David Wheeler) called ‘‘initial orders’’(1). One punched
three items into paper tape (a letter, a decimal address,
and a final letter) and the Initial Orders (which were actu-
ally stored in a read only memory made from telephone
uniselectors) would convert the letter to the binary machine
language operation code (op code), convert the decimal
address to binary, and then add 1 of 12 constants that
had been preset by the programmer to that address depend-
ing on the final letter.

FORMAT OF ASSEMBLY STATEMENTS

An assembly language program consists of a collection of
statements. An assembly statement is usually entered on

one line and may consist of as many as four fields: the label,
the operation, the operand, and the comment fields. The
general format of a statement is:

Label Operation Operand Comment

For example:

BEGIN ADD ALPHA,BETA,GAMMA g ¼ a þ b

Some assemblers require that the fields start in particular

columns. Such assemblers are said to require the statements to

be in fixed format. Other assemblers allow a free format,

wherein the field can be separated by one or more blanks or by

special symbols.

1. Label field. A label is a user-defined symbol that is
used as the name of a memory location. The name
may then be used by other statements to refer to that
memory location instead of the numerical machine
address of the location. A label on a statement is
needed only when the statement is referred to else-
where in the program. It may be left blank.

2. Operation field. The operation field contains a sym-
bolic name of an operation. The operation specifies an
action to be performed by the computer either at
assembly time or at run time, which depends on
the type of operation. An operation may be one of
three types.

a. An executable instruction. This operation is to be
carried out by the computer when running the
program. It is represented here symbolically as
a mnemonic of a machine language instruction
(such as ADD, DIV, or BR). At assembly time,
the mnemonic is translated by the assembler
into a binary string, the opcode.

b. A directive (pseudo operation). Directives are com-
mands to the assembler to perform certain func-
tion during assembly time. For example, a
directive may be called ‘‘DS’’ (Define Storage)
which tells the assembler to reserve a block of
memory space for the program.

c. A macro call. A macro assigns a name to a sequence
of assembly statements, called the body of the
macro. When the name of the macro appears in
the operation field of an assembly statement, the
assembler will insert the body of the macro in that
location of the program. Not every assembler pro-
vides such a facility.

3. Operand field. The operand field contains information
needed by the operator in the operation field. It may
consist of several subfields; each contains an operand,
depending on the nature of the operation. An operand
may be in the form of a symbolic name, such as
ALPHA, which represents the memory location at
which theoperandresides. Itmaybeaspecialreserved

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



name, such as R4, which specifies an internal register
of the computer in which the operand resides. It may
be a constant, such as 314, which defines the value of
the operand directly. Or, it may even be a simple
arithmetic expression made up of symbols, constants,
and arithmetic operators, such as ALPHA þ 4

4. Comment field. The comment field contains a descrip-
tion of the function of the statement. The comment
field is strictly for the benefit of the programmer and
is not part of the program itself. Most assemblers
provide such a field but ignore it during assembly.

EXAMPLES OF ASSEMBLY LANGUAGE CODE

In his paper ‘‘Programming the EDSAC (2),’’ Campbell-
Kelly showed an example of code using the first form of the
initial order (Figure 1).

Only the symbols in the ‘‘Order’’ column are entered into
the computer without any spacing. Basically, only the
operation and the operand fields are used. Because absolute
addresses are used, the program is not relocatable. The
location field, like the comment field (Notes), is ignored. The
S and L in the second field of each instruction specify the
length of the operand. The first version of the initial order
was soon replaced by an improved version. The program
above can now be written in the subroutine form as below
(Figure 2). Symbolic names are now used in the operand
field and the program is more relocatable. The first line of
the code is not an executable instruction, but rather is a
directive (pseudo-operation) that instructs the initial order
to save the location of u which will be used in the subsequent
code to calculate the address.

The same example, using a popular computer architec-
ture in the 1980s viz. the VAX-11, may have the following
code (data input omitted):

The convention used in this assembly language is:

� All labels end with a colon(:)

� All directives start with a period(.)

� Any character string after a semicolon(;) on a line
belongs to the comment field

� In the operation field, a system macro begins with the
dollar sign ($)

On an MIPS computer, an example of reduced instruc-
tion set computer (RISC) architecture, the same program
may take the following form:

The convention used in this assembly language is simi-
lar to that of the VAX, except instead of a ‘‘;’’ the symbol ‘‘#’’
is used to mark the beginning of a comment field and a
macro does not begin with a special symbol.

Notes Order Location  
Clear accumulator using location 0
    as a rubbish bin

T L 100 

Add location 8 into accumulator A 8L 101 
E 105S 102 Transfer control to location 105

    if accumulator ≥ 0
Subtraction location 8 from accumulator S 8L 103 
Subtraction location 8 from accumulator S 8L 104 
Store accumulator in location 8,
    leave accumulator clear 

T 8L 105 

Figure 1. An example of an early assembly language program to
convert a number to its absolute value.

Notes Order Location  
Control Combination G K  
Clear accumulator  T D 0 
Add location h into accumulator A H 1 

2 E 5 θ Transfer control to location 
   5θ if accumulator ≥ 0
 Subtraction location H from accumulator S H 3 

Subtraction location H from accumulator S H 4 
Store accumulator T H 5 in location H, leave

accumulator clear 

Figure 2. Assembly language of program in Figure 1 written as a
subroutine

NUM: .BLKW 1 ;reserve a 32 bit
memory space for
input

ABS: .BLKW 1 ;reserve a 32 bit
memory space for
result

.ENTRY ABSOLUTE,0 ;a directive indicat-
ing the entry point

MOVW NUM,R2 ;Is NUM � 0?
BGEQ POSITIVE ;yes
MNEGW R2,R2 ;No, negate num

POSITIVE:
MOVW R2,ABS ;absolute value is

in R2
$EXIT_S ;Systemcall toreturn

control
.END ABSOLUTE ;directive

.data # data section
num: .word �35
abs: .word 0

.text # code section
main: # starts execution

at main.
la $s1, num # load address of

number1 into $s1.
lw $t1, 0($s1)
bge $t1, $0, store
neg $t2, $t1

store: sw $t2, 4($s1) #put absolute into
memory location
number2.

li $v0, 10 # syscall code 10 is
for exit.

syscall # make the syscall.

2 ASSEMBLY LANGUAGE



ADDRESSING MODES

As mentioned above, the assembly language is basically a
symbolic representation of the machine language. As
machine languages become more complicated, additional
symbols are introduced to represent the new features in the
machine language. One of the first features introduced is
indexing and the use of the index registers. For example, an
assembly language instruction for the IBM 704 may be as
follows:

ADD ARRAY(4)

The effective memory address is computed by adding the

contents of index register to the memory address represented

by the symbol ARRAY. In the 1970s, as more complex

instruct sets were devised to match the higher level language

constructs, new addressing modes were also introduced. A

machine such as the VAX-11 has no less than 12 different

addressing modes. Table 1 summarizes those addressing modes

and how they are represented in the VAX-11 assembly

language.

Although each assembler may choose to use different
symbols to represent different addressing modes, what is
used in the VAX-11 assembly language is typical. With the
emphasis on simplifying the instruction set, modern com-
puters usually also have fewer addressing modes than that
of the VAX-11. The Itanium has, for example, only four
addressing modes: immediate, register, register indirect,
and autoincrement.

DIRECTIVES (PSEUDO-OPERATIONS) AND PSEUDO-
INSTRUCTIONS

Directives, also known as pseudo-operations in the early
days of assembly language programming, are statements in
assembly language that direct the assembler to perform
certain functions during the assembly process. They may
reserve some memory locations needed by the program or
assign a constant value to a particular memory location.
Directives do not produce executable machine language
code. Some may mark the beginning of a program and data
segment. In the examples above, .ENTRY, .END, .BLKW,
.word, .data etc. are typical examples of directives.

In an attempt to limit the size of the instruction set,
modern computers tend not to include an instruction if its
function can be carried out by other instructions in the set.
Although the practice has the advantage of simplifying the
design of the processor, it makes assembly language less
intuitive. As a result, the assembly languages of these
machines often include pseudo-instructions, which have
no corresponding machine language instructions, to facil-
itate programming and place the burden of translating
these instructions to real machine language instructions
to the assembler (Fig. 3). For example, in the MIPS example
above, the instructions la (load address), abs (absolute
value), and li (load immediate) are pseudo- instructions.
The assembler translates each of these instructions to one
or more regular assembly language instructions and then
generates the machine code. For example li is converted to

Table 1. Example of address modes used in the VAX-11

Addressing mode Assembler symbol Effect Example

Register Rx x ¼ 0�14 Operand is in the register named ADDL R1,R2
Register deferred
(indirect)

(Rx) x ¼ 0�14 The memory address of the operand is in Rx ADDL (R1),R2

Immediate (literal) #constant Operand is specified directly as a constant following
the symbol #

ADDL #14,R1

Autoincrement (Rx)þ x ¼ 0�14 Same as register deferred except that the contents of the
register are incremented after it is accessed

ADDL (R1)+,R2

Autoincrement
deferred

@(Rx)þ x ¼ 0�14 Same as autoincrement except the contents of Rx
are used as a memory address of the operand

ADDL @(R1)+,R2

Autodecrement �(Rx) x ¼ 0�14 Same as autoincrement except that the contents ADDL �(R2),R5
of the register are decremented BEFORE the
value is used

Displacement displ(Rx)
x ¼ 0�14

The value represented by displ is added to the
contents of Rx to form the effective address

ADDL 200(R3),R9

Displacement deferred @displ(Rx) Same as displacement except that the address calculated is
the location of the effective address of the operand

ADDL @20(R3),R9

Relative displacement Same as displacement except that instead of using a general
register, the program counter (R15) is used

ADDL X,R1

Relative deferred @displacement Same as displacement deferred using the program counter
instead of the general register

ADDL @X,R1

Index baseaddress[Rx] The contents of the index register Rx are added to the base
address, which can be specified using any of the above-
mentioned addressing modes

ADDL X[R2],R6

Absolute @#absoluteaddr The memory address specified is the physical memory
address independent of the program location

ADDL @#1000,R5

ASSEMBLY LANGUAGE 3



ori (OR immediate) and abs is converted to a sequence of
three instructions.

MACROS

Another powerful feature incorporated in many assemblers
is macro (also referred to as open subroutine in early
literature). Assembly language programmers frequently
need to repeat similar segments of code at various sites
in a program. In such cases, the segment of code can be
defined as a macro; then, during the assembly time, wher-
ever the name of the macro appears in the program, the
assembler replaces the name by the statements within the
macro. This replacement is termed macro expansion.

To add flexibility and generality to macros, most assem-
blers allow macros to have (dummy) parameters. When
invoking a macro, the programmer specifies corresponding
arguments to replace the parameters in the macro. This
causes the assembler to generate different code for different
invocations of the macro.

A macro is similar to a subroutine because it assigns a
name to a sequence of statements. However, several impor-
tant differences exist between a macro and a subroutine.

1. A macro is invoked at assembly time. A subprogram is
invoked at execution time.

2. When a macro is invoked, the assembler substitutes
the macro body for the macro call. When a subroutine
is invoked, the computer hardware transfers control
to the beginning of the subroutine; upon completion,
the hardware transfers control back to the calling
program.

3. As many copies of the macro body exist in the object
code as calls to the macro. Only one copy of the

subprogram exists in the object code, regardless of the
number of calls to the subprogram.

In the examples above, $EXIT_S in the VAX-11 program
and syscall in the MIPS program are macros that are part of
the system library.

BIBLIOGRAPHY

1. D.J. Wheeler, Programme organization and initial orders for
the EDSAC, Proc. Roy. Soc. (A) 202: 573–589, 1950.

2. M. Campbell-Kelly, Programming the EDSAC: Early Program-
ming Activity at the University of Cambridge, Annals History
Comput., 2 (1): 4–48, 1980.

FURTHER READING

No lack of text books on assembly languages, exists often
under the title Computer Organization and Programming.
The following are a few examples:

El-Asfouri, Johnson, and King, Computer Organization and Pro-
gramming Reading, MA: Addison Wesley, 1984.

C.W. Gear, Computer Organization and Programming, 3rd
edition. New York: McGraw-Hill, 1980.

K.R. Irvine, Assembly Language for Intel-Based Computers, 5th
edition. Englewood Cliffs, NJ: Pearson Prentice Hall, 2007.

D.H. Stabley, Logical Programming with System/360, New York:
Wiley, 1970.

DR. WILLIS KING

University of Houston
Houston, Texas

$s1, num  ; la $17, 4097 [num]   lui  # load address of number1  
# into $s1. 

$9, 0($17)                    ; lw      $t1, 0($s1) lw  
$t2, $t1 ; abs  $10, $0, $9                addu 

$9, 8 bgez  
$10, $0, $9 sub  
$10, 4($17)                  ; sw sw  # put absolute into memory $t2, 4($s1) 

#  location number2. 
$2, $0, 10                  ori  # syscall code 10 is for exit. $v0, 10  ; li  

syscall # make the syscall. ; syscall  

Figure 3. Examples of pseudo-instruction conversion: The source program on the right (after the
semicolon on each line) is translated to that on the left. Note that the pseudo-instruction abs generates
three instructions.

4 ASSEMBLY LANGUAGE



A

AUTONOMOUS DECENTRALIZED SYSTEMS

Autonomous decentralized systems (ADS) are distributed
computing systems, each of which is composed of subsys-
tems with autonomy to control itself and coordinate with
other subsystems. The ADS are constructed on the basis of
the ADS concept; that is, a system is treated as result of
integration of autonomous subsystems with the objective
of resolving online property of online expansion, fault
tolerance, and online maintenance (1,2). The data field
(DF) architecture for the ADS makes each subsystem
autonomous (3,4). Each autonomous subsystem includes
its own management system, an autonomous control pro-
cessor (ACP), and application software modules. Subsys-
tems are connected mutually only through the DF. The
ACP broadcasts data together with a content code, which
is defined uniquely based on content of data, and it inde-
pendently selects to receive data based on the content code
(content-code communication). The ACP executes an
application software module upon receiving all necessary
data for the module (data-driven mechanism). Under the
DF architecture, subsystems need not know the direct
relation with others for communication and execution and
need not inform others upon its addition to or deletion
from the system. Then the subsystem can be constructed,
modified, added, and deleted during operation of the other
subsystems (online expansion). The subsystem indepen-
dently checks to select correct data from multiple data
with the same content code sent from the replicated sub-
systems to the DF. This independent checking mechanism
enables each subsystem to prevent the propagation of
faults from occurring in other subsystems (fault toler-
ance). In the DF, data are broadcasted with a test flag
as well as with the content code. The ACP selects to receive
data by the content code and to change subsystem opera-
tion mode from online to test when received data attaches
a test flag. It starts test execution using test data, but it
does not output executed result data to devices. Online
and test modes coexist in the system, but the test sub-
system does not interrupt online subsystems (online
maintenance). The ADS concept is applied to the various
fields of technologies (5,6), such as networks, including
Internet, communication, multicomputers, software,
control, and robotics, and they have been realized in
application systems such as transportation, factory auto-
mation, office automation, and telecommunication. In
these applications, the ADS improve lifecycle cost, soft-
ware productivity, flexibility, and adaptability.

ADS CONCEPT

The cost-reduction constraints on computing resources,
including networks, has lessoned the requirement for
efficient utilization but has raised the need for making
them easy to use and easy to construct. Computing sys-
tems increasingly have been required to be adaptable to

applications (7). For these reasons, the ADS has the
objective of meeting the following requirements of online
property:

1. Online expansion. As system size increases, its
step-by-step construction and expansion should be
possible without stopping whole system operation.

2. Fault tolerance. Even if part of the system fails, the
system should be able to continue operation without
fault propagation.

3. Online maintenance. Maintenance and test proce-
dures should be possible without suspending the
system operation.

Systems requiring the online property have the follow-
ing attributes:

1. The system always has faulty parts.

2. It changes constantly alternating among operation,
maintenance, and expansion.

3. It hopes to accomplish its objective and function
almost completely.

That is, the system is defined under the following stand-
points:

1. Being faulty is ‘‘normal.’’

2. The system is result of integration of subsystems.

On this standpoint, the system is called the autonomous
decentralized system if the following two properties are
satisfied as such a living thing, which is composed of largely
autonomous and decentralized subsystems.

1. Autonomous controllability. If any subsystem fails,
is repaired, and/or is newly added, the other subsys-
tems can continue to manage themselves and to per-
form their own responsible functions.

2. Autonomous coordinability. If any subsystem fails,
is repaired, and/or is newly added, the other subsys-
tems can coordinate their individual objectives
among themselves and it can operate in a
coordinated manner.

These two properties assure online property of the sys-
tem. Each autonomous subsystem requires its own intelli-
gence to manage itself without directing to or being directed
by other subsystems and to coordinate with the other
subsystems. To realize an autonomous decentralized sys-
tem with two properties, each subsystem is required to
satisfy the following conditions:

1. Equality. Each subsystem is equal in function. No
master–slave relation exists among subsystems.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



2. Locality. Each subsystem manages itself and coor-
dinates with others based only on local information.

3. Uniformity. Each subsystem is uniform in struc-
ture and self-contained so that it manages itself
and coordinates with others.

DF

The ADS is realized under a DF architecture with no
central operating or coordinating system. Each subsystem
has its own management system, the ACP to manage itself
and to coordinate with the others. The subsystem incl-
udes application software modules and an ACP called
‘‘Atom.’’ All subsystems are connected only through the
DF (Fig. 1); all data are broadcasted into the DF as
messages. The DF in the Atom is called the Atom data
field (ADF). Individual data include a content code
uniquely defined based on the content of the data. A
subsystem selects to receive a message on the basis of
content code (content-code communication) (Fig. 2). The
sender need not point out the receiver’s address. Physi-
cally, the DF corresponds to a network or memory. In the
network, the broadcast message physically is deleted by
its originating subsystem or the terminator in the network
after the message is transmitted over entire system. When
the DF corresponds to the memory, the first-in–first-out
(FIFO) memory is used and messages in memory are
deleted after all subsystems check whether to accept it
or not. This content-code communication enables each
subsystem to be autonomous in sending and receiving
data. That is, subsystems need not know the relationship
among sources and the destinations. This feature of the
content-code communication ensures the locality of infor-
mation necessary for each subsystem.

DATA-DRIVEN MECHANISM

The application software module in the subsystem starts
execution after all necessary data are received (data-driven
mechanism). This mechanism loosely couples modules.
Each subsystem independently judges and controls its
own execution. Required content codes for application

software modules are preregistered in the ACP, which
can dynamically assigns content codes based on changes
in application software modules. The subsystem need not
inform other subsystems if content codes assigned to the
ACP are changed.

Each ACP has functions of managing the data, check-
ing the data, and supporting the test and diagnosis
(Fig. 3). The function of the application software module
is characterized by the relation between the content codes
of the input data and the output data. The data-driven
mechanism is realized by the following two management
modules of the ACP.

DF Management

The DF management module acts as the interface between
the DF and the ADF. The ADF includes the table of the
relationship between application software modules in the
Atom and content codes required to execute each applica-
tion software module. According to registered content
codes, the DF management module receives the data
from the DF and stores it in the corresponding area in
the ADF. The data that originates within the Atom is
broadcasted into the DF by this management module.

Execution Management

The execution management module monitors the ADF. As
soon as all the data necessary to the application software
module is received in the ADF by the DF management
module, the execution management module drives the
application software module. With this execution manage-
ment module, application software modules run asynchro-
nously and freely. This autonomous execution property
ensures that the application software module cannot be
directed to execute by any other application software mod-
ule so that it can continue its operation even in the event of
fault occurrence, expansion, and maintenance of the other
application software modules.

ADS TECHNIQUES

The online property of the system is resolved by following
three techniques.

Atom
(Subsystem)

ACP System
Software

Application
Software

ACP: Autonomous Control Processor

Message
Data Field

ACP ACPACPACP

Message

ACPACP ACPACP

Figure 1. DF architecture.

2 AUTONOMOUS DECENTRALIZED SYSTEMS



Online Expansion

In the Atom-level expansion, application software modules
are newly installed in or moved to others. They need only to
register necessary content codes in their own ACPs and do
not need to inform others. This local generation within the
Atom requires no application software modules or subsys-
tems to be revised and needs no interrupt operation. In the
system-level expansion, different ADSs are integrated into
one. Two types of systems integration are designed (Fig. 4).
In the first type, different systems are combined into one
system in which all data from systems are broadcasted to
the combined DF (Fig. 4). In the second type, different
systems are connected by a gateway, which selects the
data to be passed through based on content codes
(Fig. 4). The ACP of the gateway registers content codes
necessary for the system on DF-A to pass through from
DF-B, and data to be passed to DF-B from DF-A. During the
registration of content codes in the gateway ACP, the
subsystems need not stop operation.

Fault Tolerance

DF architecture and its data-driven mechanism ensure
that application software modules run freely and asynchro-
nously. When fault tolerance of application software mod-
ule is required, the module is replicated. Replicated
application software modules run independently and
send out processed results with the same content code to
the DF. Faulty data are also sent out to the DF. The ACP in
each subsystem receives all data with the same content
code from replicated modules and selects the correct data
from the ‘‘same’’ data (Fig. 5). Here, the data consistency
management module in the ACP identifies the ‘‘same’’ data
both by content code and by event number induced with the
data. This event number is located in the message. The
event number is set originally at the module receiving
the information from an external source via input devices
such as sensors and terminals. Although application soft-
ware modules process data successively, the original event
number is preserved in these processes. The ‘‘same’’ data
with the same content code and event number is collected
from the DF within a predetermined time interval or when
it reaches a predetermined number. Correct data are
selected from among the ‘‘same’’ data through majority
voting logic flexibly adapted to correspond to the predeter-
mined time interval or to the total number of received data.
Under this logic, fault occurrence is detected and each
application software module avoids being affected by fault
propagation. After fault detection, faulty application soft-
ware modules are recovered. In DF architecture, a subsys-
tem with a replicated module can intercept any data
broadcast from other replicated modules. Even if the sub-
system includes a faulty application software module, it
detects the internal faults via this interception. If an appli-
cation software module is faulty, the subsystem continues
operation by using correct data received from the other
replicated application software module, not using its gen-
erating data. This recovery does not stop the entire system.

This data consistency mechanism ensures fault toler-
ance and easily can be adapted to system reconfiguration
without stopping the operation.

Online Maintenance

DF architecture makes it easy for application software
modules to be tested while the system is operating. An
online test is supported by a BIT (built-in tester module) in

F: Flag

CC: Content Code

SA: Sender Address

C: Control Code

CRC: Cyclic Redundancy Check

F      CC      SA     C                     Data                          CRC     F

Figure 2. Message format.

ADF

DF Manager

Execution
Manager

Built-in
Tester

Construction
Manager

Consistency
Manager

Functional
Module 1

Functional
Module n

Functional
Module 2

Application Software

ACP

Figure 3. Modular software structure.

AUTONOMOUS DECENTRALIZED SYSTEMS 3



each ACP and by an EXT (external tester module) as the
application software module (Fig. 6). The BIT module in the
subsystem sets its application software module in the test
mode, generates test data, and checks test result. The
application software module being in test mode receives
data from the DF and processes it. It broadcasts test result
data with a test flag to the DF. The BIT of the system in test
mode prevents the signal from being sent to output devices
such as controllers. Test result data are used successively to
test other application software modules. The EXT monitors
test data and test result data in the DF. By correlating test
data with test result data, the EXT checks the fault occur-
rence in the application software module in the test mode
and broadcasts the fault detection. The EXT also detects
how a fault propagates among modules by monitoring these
data. The BIT independently decides whether to change the
test mode to online mode based on test results. This test
mechanism makes it possible for both online and test modes
to coexist in the system.

Software Productivity

In addition to evaluating online property, the ADS
improves software productivity. Input and output data
only via the DF encapsulated the application software
module and has no direct relationship to other modules.
The data-driven mechanism need not have the linkage
among modules. Environment generation for the applica-
tion software module only registers necessary content
codes in its ACP. These software features make it possible
to produce the application software module independently
of other modules. The relationship between input data of
module and output data of other modules generates data
flow among the modules. In the design phase, incorrectness
of data flow such as an infinite loop among the appli-
cation software modules or incompleteness of modules
for generating data is checked. Fault propagation is
detected by using the data flow. Based on the analysis of
data flow, modules on the critical path of the data flow are

Integration

Data Field A Data Field B

Close Relation

Data Field A+B

DF A DF B

Gateway

Atom
Atom For DF B Atom For DF A

Loose Relation

Figure 4. Online expansion.

Data Field

APL1

ACPACP

APL2

ACP ACP

Atom
APL1 APL2 APL2 APL3 APL4 APL5

Replicated Application 

Software Modules

Consistency 

Manager

Figure 5. Fault tolerance.

4 AUTONOMOUS DECENTRALIZED SYSTEMS



replicated to attain fault tolerance. This distributed soft-
ware development helps to improve the productivity, espe-
cially for the software design and testing in a building-block
manner.

APPLICATION

The ATOS of the Tokyo metropolitan-area railway system
covers 23 train lines and 289 stations on these lines. The
total line length is approximately 1100 km. This system
serves around 14 million passengers per day. Train service
runs about 22 hours a day and is running nonstop through-
out the year. The minimum interval between trains at rush
hour is 2 minutes. Recently the service types of train traffic

have been increasing for the passengers. For example,
there are the trains through the specially arranged routes
across several different train lines, which is event-related
train service not listed in the standard timetable (8).

One requirement for this system is that the construction
takes place step by step without stopping the train service
and without disrupting the operation of the current-
installed parts of the system. This system has been devel-
oped over 10 years, and some of the current parts gradually
will be replaced even before the entire system construction
is completed. This system continuously is evolving and will
continue to expand.

Figure 7 shows the structures of the overall system and
the station subsystem. Each computer is equipped with the
ACP to achieve the online property. The networks for

Data Field

APL

ACP ACPACP

On-line data

APL EXT

BIT

On-line APL     Test APL
BIT: Built-In Tester    
EXT: External Tester

BITBIT

Figure 6. Online maintenance.

control information

Traffic management

GW

GW

GW

GW

GW

∫∫

∫∫
∫∫

∫∫

I/OI/O

GW

information-Ethernetcontrol-Ethernet

information-Ethernetcontrol-Ethernet

Train-line traffic
schedule management

Station control Station control Station informationStation information

: Control data, : Information data

Inter-line network

train-line network

Information management

Train-line passengers
information management

Figure 7. System structure of ATOS.

AUTONOMOUS DECENTRALIZED SYSTEMS 5



connecting among the station subsystems in the train line
and among the train lines are used for both the control and
the information missions. In the station subsystem, the
computers for the control and the information are divided
and connected by their own mission-oriented networks, the
control Ethernet, and the information Ethernet, through
the gateway.

The total system is composed of one interline network
and 17 train-line networks. The system-wide traffic
management subsystem produces the train-traffic sche-
dules and monitors the traffic, and the system-wide infor-
mation management subsystems supply the traffic
information services, which are connected by an interline
network. The system for one train line is composed of the
station subsystems, a train line, traffic schedule manage-
ment subsystem, and a train-line passenger’s information
service management subsystem. The train-line traffic sche-
dules management subsystem distributes the train-line
traffic schedules to the train station subsystems, monitors
positions of the trains in the train-line, and makes the
minor changes in the schedules. In the train-line traffic
schedule management subsystem, the control Ethernet
connects the train-line traffic reschedule management
computer and the maintenance management computer.
The train-line traffic reschedule management computer
is replicated for fault tolerance. The train-line passengers’
information service management subsystem connected to
the interline network includes several computers con-
nected by the information Ethernet. Each subsystem is
composed of several computers connected by the Ethernet.
In the system, the communication uses the ADS content-
code communication protocol in the UDP mode. The band-
width of the common network is divided into control and
information missions.

FUTURE TREND OF ADS

The ADS concept and technologies have been applied in
various fields of transportation, factory automation, utility
management, satellite on-board control, newspaper print-

ing factory, information services, e-commerce, community
service, and so on. Most of them use the ACP as middleware
run on standard operating systems, such as Windows and
UNIX, and on a standard transmission protocol of TCP/IP.
Some ADS technologies were approved to be the de facto
standard of the ODVA (Open DeviceNet Vendor Associa-
tion) in 1996, the Factory Automation System in Japan in
2000, the BAS (Building Automation System) in Japan in
2000, and the OMG (Object Management Group) in 2000.

BIBLIOGRAPHY

1. K. Mori, S. Miyamoto, and H. Ihara, Proposition of autonomous
decentralized concept, Trans. IEE of Japan, 104C, (12)
303–340, 1984.

2. K. Mori, Autonomous decentralized systems: concepts, data
field architecture and future trends, IEEE Proc. of ISADS93,
1993, pp. 28–34.

3. K. Mori, H. Ihara, Y. Suzuki, K. Kawano, M. Koizumi,
M. Orimo, K. Nakai, and H. Nakanishi, Autonomous Decen-
tralized Software Structure and its Application, IEEE Proc. of
FJCC86, 1986, pp. 1056–1063.

4. H. Ihara and K. Mori, Autonomous Decentralized Computer
Control System, IEEE Computer, 17 (8): 57–66, 1984.

5. S. Yau and G. H. Oh, An object-oriented approach to software
development for autonomous decentralized systems, IEEE
Proc. of ISADS93, 1993, pp. 37–43.

6. K. H. Kim and C. Subbaraman, Interconnection schemes for
RTO.k objects in loosely coupled real-time distributed compu-
ter systems, IEEE Proc. of COMPSAC97, 1997, pp. 121–128.

7. K. Mori, Expandable and fault tolerant computers and com-
munications systems: autonomous decentralized systems,
IEEE Proc. of ISCC99, 1999, pp.228–234.

8. K. Mori, Trend of autonomous decentralized systems, IEEE
Proc. of FTDCS04, 2004, pp.213–216.

KINJI MORI

Tokyo Institute of Technology
Tokyo, Japan

6 AUTONOMOUS DECENTRALIZED SYSTEMS



C

CAPABILITY MATURITY MODELS (CMM)

INTRODUCTION

Today software is a major asset of many companies.
Research and development investment primarily goes
into software development for a majority of applications
and products. To stay competitive with software develop-
ment, many companies are putting in place improvement
initiatives of their key processes that are generally engi-
neering processes first. Often the improvement programs
also include a broader reengineering perspective.

Strengthened process capability is key. If you do not
know where you are and where you want to go, change will
never lead to more added value for your business. Effective
process improvement is achieved using the well-known
capability maturity models (CMM and from now on
CMMI as CMM has been sun set as of the end of 2005).
This model provides a framework for process improvement
and is used by many software-intensive development orga-
nizations; software could be the entire system or only one
component, but the advantage of the newly promoted
CMMI is that multiple disciplines can be addressed: soft-
ware, systems, hardware, and services. The maturity
model defines five levels of maturity plus an improvement
framework for process maturity and, as a consequence,
quality and predictability.

This model must be combined with a strong focus on
business objectives and metrics for follow-up of change
implementation. Otherwise, the main risk is to focus on
processes exclusively and lose track of what is essential for
customers and shareholders.

Model-based process improvement involves the use of a
model to guide the improvement of an organization’s pro-
cesses. Process improvement grew out of the quality man-
agement work of Deming, Crosby, and Juran and is aimed
at increasing the capability of work processes. Essentially,
process capability is the inherent ability of a process to
produce planned results. As the capability of a process
increases, it becomes predictable and measurable, and
the most significant causes of poor quality and productivity
are controlled or eliminated.

Models provide a common set of process requirements
that capture best practices and practical knowledge in a
format that can be used to guide priorities. By using a
model, organizations can modify or create processes using
practices that have been proven to increase process cap-
ability.

THE ORIGIN

In 1986, Watts Humphrey, the SEI, and the Mitre Corpora-
tion responded to a request by the U.S. Federal Govern-
ment to create a way of evaluating the software capability of
its contractors. The group used IBM’s concepts to create a

software maturity framework, a questionnaire, and two
appraisal methods. Over the next few years, this work was
continued and refined.

In 1991, the SEI published the CMM for Software ver-
sion 1.0, a model that describes the principles and practices
underlying software process maturity. The CMM is orga-
nized to help software organizations improve along an
evolutionary path, growing from an ad hoc, chaotic envir-
onment toward mature, disciplined software processes. The
CMM was used and evaluated for two years and then
revised and released as version 1.1 in 1993.

A similar revision was planned for 1997 as version 2.0;
this version was developed but never released as an inde-
pendent model. However, the proposed revision was used as
the source for the CMMI integration effort.

The Software CMM (SW-CMM) focused primarily on
process management. Among the ‘‘key process areas’’ in the
model, only one, ‘‘Software Product Engineering,’’ specifi-
cally targets the core engineering tasks, which range from
the analysis of software requirements to software design,
coding, integration, and testing at the concluding end. All
other SW-CMM key process areas were written such that
they could easily be applied to development work other
than software. Along with the success of the SW-CMM in
improving software development, this flexibility may
explain the interest in applying the CMM concepts to
disciplines beyond software; much of what was believed
to be good with the SW-CMM had a utility that was not
restricted to just the software area.

The five maturity levels of CMM and their respective
impact on performance are described in Table 1.

To understand why and how the ‘‘CMMI project’’ has
been started at the SEI, it is probably useful to have a quick
look at the various sources that were available at the end of
the 1990s. The various models in use were the following:

MODELS DESCRIPTION

SW-CMM: The original CMM developed at the Software
Engineering Institute (SEI). In 1986, the SEI, with assis-
tance from MITRE Corporation, began developing a pro-
cess maturity framework intended to assist organizations
in improving their software processes. In 1987, the SEI
released a brief description of the process maturity frame-
work and a maturity questionnaire (CMU/SEI-87-TR-23).
The fully developed model (version 1.1) was released in
1993.

SE-CMM The Systems Engineering Capability Matur-
ity Model (SE-CMM) describes the elements of an organi-
zation’s systems engineering process that are essential to
good systems engineering. This model was developed by the
Enterprise Process Improvement Collaboration (EPIC),
which included industry, government, and academic mem-
bers. It was merged in 1998 with the INCOSE SECAM to
form the Electronics Industry Alliance’s EIA 731.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



SA-CMM: A collaborative effort among the U.S.
Department of Defense, the SEI, industry, and other
U.S. government agencies, the Software Acquisition
Capability Maturity Model (SA-CMM) supports bench-
marking and improvements of the software acquisition
process.

People CMM: This model addresses the ability of soft-
ware organizations to attract, develop, motivate, organize,
and retain competences and good skills.

IPD-CMM: The Integrated Product Development
CMM (IPD-CMM) was published only in draft form.

FAA-iCMM: The first completed attempt at integra-
tion; this model developed at the U.S. Federal Aviation
Administration (FAA) integrates material from many
sources: the SE-CMM, the SA-CMM, the SW-CMM, EIA
731, Malcolm Baldrige, ISO/IEC 15504, ISO/IEC 15288,
and ISO/IEC 12207. Now at Version 2, it is being used as a
unified means of guiding process improvement across the
entire FAA. It has also been adopted by Aviation Autho-
rities in Europe.

ISO/IEC 12207: An international standard on software
life-cycle processes; it was first issued in 1995 and amended
in 2002. ISO is the International Organization for Stan-
dardization.

ISO/IEC 15504: A draft international standard that
defines the requirements for performing process assess-
ment as a basis for use in process improvement and cap-
ability determination. This initiative started in 1992 and
changed several times the scope of the required part versus
the informative part of the target standard. CMMI is fully
compliant with ISO/IEC 15504 requirements.

Fundamentally, process improvement integration has a
major impact in four areas: cost, focus, process integration,
and flexibility.

By applying a single model, organizations that would
otherwise use multiple models can reduce the cost of nota-
bly training, appraisals, and maintenance of redundant
process assets.

An integrated process improvement program can clarify
the goals and business objectives of the various initiatives.
By integrating process improvement activities across a
wider range of disciplines, it becomes easier to rally the
troops to the process improvement banner.

A final benefit provided by integration is the ability to
add disciplines as the business or engineering environment
changes.

CMMI OVERVIEW

The CMMI Product Suite contains an enormous amount of
information and guidance to help your organization
improve its processes.

1. Materials to help you evaluate the content of your
processes—information that is essential to your
technical, support, and managerial activities.

2. Materials to help you improve process performance—
information that is used to increase the capability of
your organization’s activities.

This integration was intended to reduce the cost of imple-
menting multidiscipline model-based process improvement
by

� Eliminating inconsistencies.

� Reducing duplication.

� Increasing clarity and understanding.

� Providing common terminology.

� Providing consistent style.

� Establishing uniform construction rules.

� Maintaining common components.

� Assuring consistency with ISO/IEC 15504.

� Being sensitive to the implications for legacy efforts.

Table 1.

CMM Level Title Focus Key Process Areas

5 Optimizing Continuous process
improvement on all levels

Process change management
Technology change management
Defect prevention

4 Managed Predictable product
and process quality

Quality management
Quantitative process management

3 Defined Standardized and tailored
engineering and management process

Organization process focus
Organization process definition
Training program
Integrated project management
Software product engineering
Inter-group coordination
Peer reviews

2 Repeatable Project management and
commitment process but
still highly people-driven

Requirement management
Software project planning
Software project tracking and oversight
Software quality assurance
Software configuration management
Software subcontract management

1 Initial Heroes and massive
effort with chaotic results

2 CAPABILITY MATURITY MODELS (CMM)



The project milestones between 1997 and 2002 were as
follows:

1997 CMMI initiated by U.S. Department of Defense
and NDIA.

1998 First team meeting held.

1999 Concept of operations released; first pilot com-
pleted.

2000 Additional pilots completed.

CMMI-SE/SW version 1.0 released for initial use.

CMMI-SE/SW/IPPD version 1.0 released for initial
use.

CMMI-SE/SW/IPPD/SS version 1.0 released for piloting.

2002 CMMI-SE/SW version 1.1 released.

CMMI-SE/SW/IPPD version 1.1 released.

CMMI-SE/SW/IPPD/SS version 1.1 released.

CMMI-SW version 1.1 released.

Since August 2006, a CMMI V1.2 has been available for use.
The new version includes simplifications, reduction of the
number of practices to implement, and restructuring,
which were recommended by users (Table 2).

The fundamental organizational feature of all CMMI
models is the ‘‘process area.’’

Any process improvement model must include a scale
relating to the importance and role of the materials con-
tained in the model. In the CMMI models, a distinction is
drawn among the terms ‘‘required,’’ ‘‘expected,’’ and ‘‘infor-
mative.’’

The sole required component of the CMMI models is the
‘‘goal.’’ A goal represents a desirable end state, the achieve-
ment of which indicates that a certain degree of project and
process control has been achieved. Each process area has

between one and four specific goals; the entire CMMI-SE/
SW/IPPD/SS model (version 1.1) includes a total of 55
specific goals.

Examples include: Requirements Management REQM
SG 1: Requirements are managed, and inconsistencies with
project plans and work products are identified.

Project Monitoring and PMC SG 2: Corrective
actions are control managed to closure when the project’s
performance or results deviate significantly from the
plan.

In contrast to a specific goal, a generic goal has a scope
that crosses all process areas. Generic goals are character-
istics of the maturity. Consider, for example, GG 2: ‘‘The
process is institutionalized as a managed process.’’ In the
CMMI glossary (CMMISE/ SW/IPPD/SS, version 1.1,
Appendix C), a ‘‘managed process’’ is a performed process
that is planned and executed in accordance with policy;
employs skilled people having adequate resources to pro-
duce controlled outputs; involves relevant stakeholders; is
monitored, controlled, and reviewed; and is evaluated for
adherence to its process description.

The only expected component of the CMMI models is the
statement of a ‘‘practice.’’ A practice represents the
‘‘expected’’ means of achieving a goal. Every practice in
the CMMI models is mapped to exactly one goal. Between
two and seven specific practices are mapped to each specific
goal; the entire CMMI-SE/SW/IPPD/SS version 1.1 model
includes a total of 189 specific practices, which are mapped
to the 55 specific goals.

In contrast to a specific practice, a generic practice has a
scope that crosses all process areas. For example, one
generic practice that is mapped to the generic goal to
institutionalize a managed process (GG 2) addresses the
training of people. Consider GP 2.5: ‘‘Train the people
performing or supporting the process as needed.’’

Table 2. Description of maturity levels and process areas in V1.1

Level Focus Process Area

5: Optimizing Continuous process improvement Causal analysis and resolution
Organizational innovation and deployment

4: Quantitatively Managed Quantitative management Quantitative project management
Organizational process performance

3: Defined Process Standardization Organizational process focus
Organizational process definition
Organizational training
Integrated project management
Risk management
Decision analysis and resolution
Requirements development
Technical solution
Product integration
Verification
Validation

2: Managed Basic project management Requirements management
Project planning
Project monitoring and control
Measurement and analysis
Process and product quality assurance
Configuration management
Supplier agreement management

1: Initial

CAPABILITY MATURITY MODELS (CMM) 3



CMMI models contain 10 types of informative compo-
nents. The major ones are as follows:

Purpose. Each process area begins with a brief state-
ment of purpose for the process area.

Reference. Explicit pointing from one process area to
all or part of another process area is accomplished with a
reference.

TypicalWorkProducts. When a practice is performed,
there will often be outputs in the form of work products.

Subpractices. For many practices in the CMMI mod-
els, subpractices provide a decomposition of their meaning
and the activities that they might entail as well as an
elaboration of their use.

Discipline Amplifications. One of the most distinc-
tive aspects of CMMI as compared with prior source models
is the fact that the CMMI model components are discipline-
independent. To maintain the usefulness of the discipline-
specific material found in its source models, CMMI provides
discipline amplifications that are introduced with phrases
such as ‘‘For software engineering’’ or ‘‘For systems engi-
neering.’’

Amplifications are informative material, so they are not
required in an appraisal.

The move to V1.2 includes the following changes speci-
fied in Table 3.

A NEW REPRESENTATION: THE CONTINUOUS
REPRESENTATION

One source model for CMMI, the SW-CMM, was a ‘‘staged’’
model. Another source model, the Systems Engineering
Capability Model, was a ‘‘continuous’’ model.

A staged model provides a predefined road map for
organizational improvement based on proven grouping
and ordering of processes. The term ‘‘staged’’ comes from
the way that the model describes this road map as a series of
‘‘stages’’ that are called ‘‘maturity levels.’’ Each maturity
level has a set of process areas that indicate where an orga-
nization should focus to improve its organizational process.

We have already emphasized that the key process areas
at level 2 of the SW-CMM focus on the software project’s
concerns related to establishing basic project management
controls. Level 3 addresses both project and organizational
issues, as the organization establishes an infrastructure
that institutionalizes effective software engineering and
management processes across all projects.

Continuous models provide less specific guidance on the
order in which improvement should be accomplished. They
are called continuous because no discrete stages are asso-
ciated with organizational maturity. EIA 731 and ISO/IEC
15504 are examples of continuous models.

In continuous models, the generic practices are grouped
into capability levels (CLs), each of which has a definition
that is roughly equivalent to the definition of the maturity
levels in a staged model.

In a continuous appraisal, each process area is rated at
its own capability level. An organization will most likely
have different process areas rated at different CLs. The
results can be reported as a capability profile.

Continuous models describe improvement through the
capability of process areas, singly or collectively. A cap-
ability level includes a generic goal and its associated
generic practices that are added to the specific goals and
practices within the process area. When the organization

Table 3.

Level Process Area V1.1 Process Area V1.2

5: Optimizing Causal analysis and resolution
Organizational innovation and deployment

Causal analysis and resolution
Organizational innovation and deployment

4: Quantitatively Managed Quantitative project management
Organizational process performance

Quantitative project management
Organizational process performance

3 : Defined Organizational process focus
Organizational process definition
Organizational training
Integrated project management
Risk management
Decision analysis and resolution
Requirements development
Technical solution
Product integration
Verification
Validation
Integrated product and project development
Integrated supplier management

Organizational process focus
Organizational process definition þ IPPD practices
Organizational training
Integrated project management þ IPPD practices
Risk management
Decision analysis and resolution

requirements development
Technical solution
Product integration
Verification
Validation

2: Managed Requirements management
Project planning
Project monitoring and control
Measurement and analysis
Process and product quality
Assurance Configuration management
Supplier agreement management

Requirements management
Project planning
Project monitoring and control
Measurement and analysis process and product quality

assurance
Configuration management
Supplier agreement management þ ISM

1: Initial

4 CAPABILITY MATURITY MODELS (CMM)



meets the process area-specific goals and generic goals, it
achieves the capability level for that process area.

Staged models describe the maturity of organizations
through successful implementation of ordered groups of
process areas. These groups, or stages, improve processes
together, based on achievements in the previous stage.

We will not go into detail regarding the differences
between these two representations; the discussion might
become unclear at this stage, and this is a question to be
debated with sponsors of process improvement initiatives:
which representation fits the best with their target. Never-
theless, we can reinforce the concept of one model with two
viewsorrepresentations:CMMIprovidesa mapping tomove
from the continuous to the staged perspective. For maturity
levels 2 and 3, the concept is straightforward and easy
to understand. If an organization using the continuous
representation has achieved capability level 2 in the seven
process areas that make up maturity level 2 (in the staged
representation),thenitcanbesaidtohaveachievedmaturity
level 2.

Similarly, if an organization using the continuous repre-
sentation has achieved capability level 3 in the seven
process areas that make up maturity level 2 and the 14
process areas that make up maturity level 3 (a total of 21
process areas in CMMI-SE/SW/IPPD/SS), then it can be
said to have achieved maturity level 3.

USING CAPABILITY MODELS

Organizations generally have many different business
objectives, such as produce quality products or services,
create value for the stakeholders, be an employer of choice,
enhance customer satisfaction, increase market share, or
implement cost savings and best practices.

To meet any of these objectives, organizations must have
a clear understanding of what it takes to produce products
or services. To improve, they need to understand the varia-
bility in the processes that are followed, so that when
adjusted, they will know whether the adjustment is advan-
tageous.

As systems grow more complex, the processes used to
develop them will follow suit. The complexity of processes
inevitably increases to keep pace with the number of indi-
viduals who are involved in performance.

The CMMI Product Suite offers a growing number of
multi- and single-discipline models, all developed with
integrated process improvement in mind.

The best combination of disciplines for an organization
will depend on its business, organization, environment, and
process improvement objectives.

For Version 1.1 of the model, four combinations of dis-
ciplines are available from which to choose, with an increas-
ing scope of coverage.

The CMMI-SW model covers software engineering (SW);
the CMMI-SE/SW model covers both systems engineering
(SE) and software engineering; the CMMI-SE/SW/IPPD
model adds in integrated product and process development
(IPPD); and finally, the CMMI-SE/SW/IPPD/SS model pro-
vides additional emphasis on supplier sourcing (SS) and
managing suppliers.

In Version 1.2 and the constellation concept, three dis-
ciplines are covered: development (CMMI for develop-
ment), acquisition (CMMI for Acquisition), and Services
(CMMI for services). The two last disciplines are not yet
officially released but announced for 2007 by the SEI. The
three variants will share a core of 16 process areas. It is
obvious that the more the CMMI is used, the more attempts
are made to fit the needs in the field.

The relevant factors for the selection of CMMI model are
as follows:

Core business of the organization: The organization’s
fundamental activities, business objectives, and
organizational culture all influence the choice of
the appropriate CMMI model. Ideally, the disciplines
chosen are the ones that are most critical to the
organization’s success.

Organization: It might be helpful to align process
improvement plans with any organizational changes
that are concurrently under way. The IPPD
extensions are particularly useful in change manage-
ment.

Improvement scope and objectives: Reducing the num-
ber of disciplines in which improvement effort is
deployed is not good in the long term. Organizations
who started with SW-CMM and focused only on soft-
ware discipline during a couple of years finally move
to CMMI just because it will bring benefit to the whole
if maturity models concepts are also applied in other
disciplines.

Selecting the IPPD extension mentioned above with the
CMMI-SE/SW model provides two additional process
areas (integrated teaming and organizational environ-
ment for integration), plus one expanded process area
(integrated project management). Selecting the SS exten-
sion of the CMMI-SE/SW/IPPD model provides one addi-
tional process area (integrated supplier management).
There will be an interest in this model extension if the
organization is part of an acquisition-oriented bigger
organization or participates in a project where the acqui-
sition of products and services from an external source is a
central issue of concern.

APPRAISALS

One part of the CMMI Product Suite that deals with
appraisals is the Appraisal Requirements for CMMI
(ARC), version 1.1. This document comprises 42 ‘‘require-
ments’’ that provide a mixed set of requirements and design
constraints on an appraisal method. For those who have
been used to the CBA-IPI assessment method, there are
several variances. The CBA IPI method was a mixture of
document’s checking and discovery of the reality of projects
through interviews with a bigger focus on the discovery
aspect when SCAMPI—the CMMI—based appraisal
method, Standard CMMI Appraisal Method for Process
Improvement, focuses more on verification.

One key principle is the process implementation indi-
cator (PII), a proof that a practice is really implemented.

CAPABILITY MATURITY MODELS (CMM) 5



In CMMI, PIIs refer to the ‘‘footprints’’ that are the
necessary or incidental consequence of practice implemen-
tation.

PIIs include artifacts as well as information gathered
from interviews with managers and practitioners. There
are three PIIs types:

Direct Artifacts: Tangible outputs resulting directly
from implementation of a practice (e.g., Typical
Work Products).

Indirect Artifacts: Artifacts that are a side effect or
indicative of performing a practice (e.g., meeting
minutes, reviews, logs, and reports).

Affirmations: Oral or written statements confirming or
supporting implementation of the practice (e.g.,
interviews and questionnaires).

PII-based process appraisal uses PIIs as the focus for
verification of practice implementation. This process is in
contrast to an observation-based approach (CBA IPI) that
relies on the crafting of observations that pertain to model
implementation strengths or weaknesses.

Essential SCAMPI method attributes are as follows:

1. Accuracy: Level of confidence that the appraisal
results reflect the strengths and weaknesses of the
assessed organization; i.e., no significant strengths
and weaknesses are left undiscovered.

2. Repeatability: The degree to which the ratings and
findings of an appraisal are likely to be consistent
with those of another independent appraisal con-
ducted under comparable conditions; i.e., another
appraisal of identical scope will produce consistent
results.

3. Cost/Resource Effectiveness: Person-hours spent
planning, preparing, and executing an appraisal. A
reflection of the organizational investment in obtain-
ing the appraisal results.

4. Meaningfulness of Results: Usefulness of the results
(findings) to the organization in establishing
improvement initiatives.

5. Arc Compliance.

CMMI appraisal premises are as follows:

� Goal achievement is a function of the extent to which
the corresponding practices are present in the planned
and implemented processes of the organization.

� Practice implementation at the organizational unit
level is a function of the degree of practice implemen-
tation at the instantiation level (e.g., projects).

� The aggregate of objective evidence available to the
appraisal team is used as the basis for determination of
practice implementation.

� Appraisal teams are obligated to seek and consider
objective evidence of multiple types in determining the
extent of practice implementation.

Three classes of appraisals have been defined by the SEI.
They can be differentiated as in Table 4.

Most organizations use the three classes in combination
in order to achieve a better result.

CMMI SCAMPI Class B/Class C Appraisals, as cur-
rently defined by the SEI Appraisal Requirements
for CMMI, Version 1.1 (ARC), are used primarily to
gauge the progress made toward meeting applicable
capability or maturity level-specific or generic goals as
determined by compliance with the guidance from specific
and generic practices, identify remaining gaps, and decid-
ing on plans for future process improvement actions. One
way is to structure Class B appraisals to better under-
stand an organization, their business goals, and more
importantly, how the organization has interpreted the
CMMI to meet specific business and quality goals.

Interpretation of the CMMI goals differs from one orga-
nization to the next, even when they are within the same
company. A Class B appraisal gives the opportunity to
appraise to what extent each of the process areas has
been implemented, and how. It is important to gain this
understanding and, more specifically, to recognize when
and if alternative practices have been implemented. Alter-
native practices, for some organizations, are an acceptable
approach and are usually tied to business goals, types of
projects (new development, enhancements/maintenance,
etc.), technology in use, and/or organizational cultures.
However alternative practices must continue to meet the
goals of the process areas.

One primary output of an appraisal is a characterization
of practice implementation at the project level (instance of
implementation). A practice may be as outlined in Table 5.

This output is based on data collection and aggregation.
In performing such activities, two requirements of SCAMPI
family have to be looked at:

� Corroboration: Must have direct artifacts, combined
with either indirect artifact or affirmation.

Table 4.

Characterstics Class A Class B Class C

Amount of objective evidence
gathered (relative)

High Medium Low

Ratings generated Yes No No
Resource needs (relative) High Medium Low
Team size (relative) Large Medium Small
Appraisal team leader requirements Lead appraiser Lead appraiser or person

trained and expeienced
Person trained
and experienced

6 CAPABILITY MATURITY MODELS (CMM)



� Coverage: Must have sufficient objective evidence for
implementation of each practice, for each instance.
Must have face-to-face (F2F) affirmations (avoid
‘‘paper only appraisals’’):

– At least one instance for each practice.

– At least one practice for each instance.

– Fifty percent of practices for each PA goal, for each
project, have at least one F2F affirmation data
point.

A SCAMPI appraisal is divided into three phases: 1)
initial planning and preparation, 2) on-site appraisal,
and 3) reporting of results. Each phase includes multiple
steps. The first phase involves analyzing requirements,
developing a plan, selecting and preparing the team,
obtaining and analyzing the initial objective evidence,
and preparing for the collection on site of additional
objective evidence.

The second phase focuses on collecting and examining
objective evidence, verifying and validating that evidence,
making sure that it is adequately documented, and devel-
oping the appraisal results (findings and ratings).

The third phase involves the presentation of the final
findings to the sponsor, conducting any needed executive
briefings, and appropriately packaging and archiving the
appraisal assets, including submission of all information
needed by the CMMI Steward (SEI).

Only a SCAMPI lead appraiser, who has been trained
and authorized by the CMMI Steward, may lead a SCAMPI
A appraisal.

To start an improvement program that leads to a full
SCAMPI appraisal, an organization could use several Class
C appraisals leading up to a Class B appraisal. Process
improvements are made based on the findings of the quick
looks at parts of the organization. The lessons learned in
this way can be used to provide broader organizational
improvements.

As improvements indicate that the part of the organiza-
tion is ready for the next step, a Class B appraisal can be
performed and its findings subsequently are used to pre-
pare for the full SCAMPI A appraisal.

USING APPRAISAL RESULTS FOR PROCESS
IMPROVEMENT

Software process improvement is a systematic, collabora-
tive, and long-range method to evolve the way software
work is organized and performed. Improvement methods
include the IDEAL method, which is an integrated
approach for PI defined by the SEI. IDEAL identifies five
phases: initiating, diagnosing, establishing, acting, and
leveraging. Each of these phases is centered on a particular
activity:

� Specify business goals and objectives that will be rea-
lized or supported (Initiating).

� Identify the organization’s current state with respect
to a related standard or reference model (Diagnos-
ing).

� Develop plans to implement the chosen approach
(Establishing).

� Bring together everything available to create a ‘‘best
guess’’ solution specific to organizational needs—for
example, existing tools, processes, knowledge, and
skills—and put the solution in place (Acting).

� Summarize lessons learned regarding processes used
to implement IDEAL (Leveraging).

Software capability is a sophisticated mixture of these
preceding statements, but some concepts must be consid-
ered as part of the software capability.

Capability implies that an organization can learn from
the past, especially from mistakes, learn from others, and
translate lessons learned into process evolutions. Improve-
ment iteration cycles will only be complete if measurements
are defined to quantify the improvement.

When maturity of the organization improves, the stan-
dard process changes. Getting from Level 2 to Level 3
implies that all good practices within projects are institu-
tionalized and that an assessment process is in place that
will help to identify the best practices across projects, which
will be documented into the organization standard software
process (OSSP).

Table 5.

Fully implemented (FI) � Direct artifacts present and appropriate
� Supported by indirect artifact and/or affirmation
� No weaknesses noted

Largely implemented (LI) � Direct artifacts present and appropriate
� Supported by indirect artifact and/or affirmation
� One or more weaknesses noted

Partially implemented (PI) � Direct artifacts absent or judged inadequate
� Artifacts or affirmations indicate some aspects of the practice are implemented
� One or more weaknesses noted

Not implemented (NI) � Any situation not covered by above, e.g., insufficient objective
evidence to be characterized by one of the above

CAPABILITY MATURITY MODELS (CMM) 7



The Steps to Implement Process and Tools in an Organization

The OSSP of the CMM and CMMI is a new process in the
organization.

If an organization decides to develop an organization-
wide environment, a project to develop the organization’s
development environment has to be initiated. Such a pro-
ject will work very closely with the software development
project teams.

The process implementation project is divided into sev-
eral phases where all four IDEAL steps are performed in
each phase until the project is ready and the process and
tools are deployed and successfully used by the entire
organization. A process implementation project can be
divided into phases. The four phases address:

� Phase 1: Sell the process implementation project to the
sponsors.

� Phase 2: Handle the major risks.

� Phase 3: Complete everything—templates, guidelines,
and examples of Development Cases are ready, and a
training curriculum is in place.

� Phase 4: Deploy it to the entire organization.

The recommendations for successfully implementing a pro-
cess change are to:

� Identify change agents at various levels in the orga-
nizations.

� Plan the change in small, reasonable, and measurable
steps.

� Communicate the changes using ground-level lan-
guage appropriate to the level of the organization.

Measurement

Measurement is one common feature in the CMM. A com-
mon feature exists for each key process area from Level 2 to
Level 5 and indicates when a practice is institutionalized.
Metrics are so important that in the CMMI there is a
measurement process area.

What is key in the CMM is to measure processes to
determine their adequacy at Level 2 and their effectiveness

Table 6. Return-on-investment report: defect phase
containment

Over 80% of defects found before Delivery

Caputo Impressed by Results
Code Reviews Play a Vital Role in Improvement

By the middle of 2002, the program was coming under more
and more pressure to improve field quality and reduce the
number of patches required to keep the product running.
The team decided to find ways to improve defect detection and
removal during development.

What It Took To Get Defects Removed
Here is a listing of actions taken to improve detect detection
and removal with focus on CMM Level 3:
Establishing phase containment programs.

� Increase code review coverage to 100%
� All requirements, design, coding, and test plans are

inspected, results are recorded using tool & Compliance is
reviewed via score card

� Established error tracking for document views

Defect Removal Results

AMS Defects - Phase Containment

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

Req
uir

em
en

ts

Des
ign

Cod
e

SIG
SVT

Cus
to

m
er

3.6.0 - DR4(04/01) 4.0.x - DR4(08/01) 4.1.5 - DR4(06/02) 4.2.0 - DR4(11/02)

AMS Defects - Phase Containment

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

Des
ign

Cod
e

SIG
SVT

Cus
to

m
er

3.6.0 - DR4(04/01) 4.0.x - DR4(08/01) 4.1.5 - DR4(06/02) 4.2.0 - DR4(11/02)

2 .2%

Req
uir

em
en

ts

AMS was able to substantially increase the number of defects
found prior to SVT (System Verification Test)

� version 4.1.5: 41%
� version 4.2: 81%

Cost Savings Apparent

Estimates show substantial ROI

Over $600K Saved in One Year
This estimate includes a reduction in the number of patches
associated with version 4.2 as compared to version 4.1.5,
and the labor associated with correcting bugs in the future.

Number of Patches Declines

As of December 2003, there have only been 3 patches since the
release of Release 4.2 in June 2003, as compared to 18 patches for
version 4.1.5, totaling over $600,000 cost savings, as a direct result
in the ROI of the CMM Level 3 phase containment/ code reviews
process improvement program.

The return in investment (ROI) is measured by estimating the
cost to fix defects if they leak out testing to the customer, divided
by the time invested in conducting the code inspections. The 2.2
ROI indicates that 2.2 bug fixing hours were saved for every
1 hour spent in code inspection. This ROI of 2.2 for version 4.2
was an improvement over the 0.9 ROI for version 4.1.5.

8 CAPABILITY MATURITY MODELS (CMM)



at Level 3. The shift from reporting to analyzing and acting
on metrics is generally difficult, but a clear sign that the
projects are more mature. Small and early successes mana-
ging a project quantitatively lead to accepting and under-
standing the benefits of measurement.

In addition to these general requirements, some key
process areas have specific requirements for measures
such as software project planning, software project track-
ing and oversight, and integrated software management.
These requirements are related to project data that enable
project estimates and project control.

The specific PA ‘‘measurement and analysis’’ of the
CMMI integrates project control metrics and measurement
made against business goals.

The project measurements artifact stores the project’s
metrics data. It is kept current as measurements are made
or become available. It also contains the derived metrics
calculated from the primitive data and should also store
information, such as procedures and algorithms, about how
the derived metrics were obtained. Reports on the status of
the project—for example, progress toward goals (function-
ality, quality, and so on), expenditures, and other resource
consumption—are produced using the project measure-
ments.

PROCESS MANAGEMENT

Successful processes are not static. Processes must be
managed. Having defined processes on any level of an
organization also asks for process change management.
To facilitate change, any process element should refer to
a process owner who typically serves as a focal point for
change proposals and change decisions. A process owner is
an expert for a specific process and guides any type of
evolution, improvement, or coaching. Any single instance
of a process element should be placed under configuration
control, which allows managing change in the context of
several parallel projects.

Table 6 gives a good example of ROI calculation follow-
ing process management.

CONCLUSION

The community of users of maturity models is rapidly
growing all over the world. Several indicators can be looked
at as follows:

� The variety of organizations adopting the maturity
approach: from defense suppliers to the general indus-
try players to banking and services.

� The various countries represented in the SEI training
sessions: Europe and the Far East are now well repre-
sented.

� The wide audience of the annual SEPG conference
and the sister events: European SEPG and Asian
SEPG.

� The number of lead instructors and lead appraisers
qualified by the SEI.

Process improvement based on maturity models is now
reaching the mass market but will remain a competitive
advantage for the organizations that adopt it and
align process change management with their business
strategy.

FURTHER READING

D. M. Ahern, A. Clouse, and R. Turner, CMMI Distilled, 2nd
ed.Reading, MA: Addison-Wesley, 2003.

B. W. Boehm, Anchoring the software process. IEEE Softw., 73–82,
1996.

L. Carter, et al., The Road to CMMI: Results of the First Technology
Transition Workshop, CMU/SEI-2002-TR-007, Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University,
February 2002.

M. Chrissis, M. Konrad, and. S. Shrum, CMMI: Guidelines for
Process Integration and Product Improvement, Boston: Addison-
Wesley, 2003.

CMMI Product Development Team, Standard CMMI Assessment
Method for Process Improvement: Method Description (SCAMPI),
Version 1.0 (CMU/SEI-2000-TR-009).

CMMI Product Development Team, Assessment Requirements
for CMMI (ARC), Version 1.0 (CMU/SEI-2000-TR-011), August
2000.

CMMI Product Team, CMMI Version 1.1, CMMI-SE/SW/IPPD/SS,
V1.1 (CMU/SEI-2002-TR-011 and ESC-TR-2002-011), Improving
Processes for Better Products, Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, March 2002.

R. McFeeley, IDEAL: A User’s Guide for Software Process Improve-
ment, Pittsburgh, PA: Software Engineering Institute, 1996.

W. S. Humphrey, Managing the Software Process, Reading, MA:
Addison-Wesley, 1989.

M. Paulk, et al., Capability Maturity Model for Software, Version
1.1, Pittsburgh, PA: Software Engineering Institute, 1993.

M. Paulk, et al., The Capability Maturity Model: Guidelines
for Improving the Software Process, Reading, MA: Addison-
Wesley, 1995.

ANNIE COMBELLES

DNV
Arcueil, France

CAPABILITY MATURITY MODELS (CMM) 9



C

CLASS AND OBJECT

INTRODUCTION

Object-oriented technologies have become the main stream
in software system development. To improve the quality of
software systems, object-oriented methods help software
developers produce reusable, extensible, robust, and por-
table systems. The object-oriented approach encompasses
the entire software lifecycle from requirement and design
to implementation and testing. Methods and languages, as
well as supporting tools, are applied to different stages.
Evolving from modular programming and abstract data
type (ADT), object orientation separates the interface from
its implementation so that the implementation is hidden.
The software developer programs to the interface not to the
implementation. Instead of designing and developing a
software system based on processes and functions, objects
become the first-class element. In this way, system decom-
position is not based on functionalities in terms of main
program and subroutines. It is based on the entities in a
system. These entities with their data and operations are
encapsulated into objects.

At the foundation of object-oriented technologies, class
and object are important concepts. In the rest of this article,
we provide a detailed description of these two concepts.

CLASS

With the increasing complexity and scale of software sys-
tems, extendibility, reusability, and reliability become
important goals in software development. New software
components should be easily added in the software systems.
Existing components can be reused in different systems.
Software systems should also be tolerant to faults. Tradi-
tional approaches use functions as a basis for the architec-
ture of software systems. The designer structures the
software systems around functions. This top-down func-
tional decomposition is easy to obtain the system architec-
ture initially. However, it is difficult to change the system
architecture in the future. Most software systems undergo
numerous changes after their first delivery. The model of
software development should not only consider the period
leading to that delivery but also consider the subsequent
era of change and revision. Although functional decomposi-
tion can be useful for developing individual algorithms and
close to computer architecture, it is not intuitive to model
and analyze the requirement and design of real-world
applications that are often organized into entities and their
relationships.

The architecture of functional decomposition is main
program/subroutine. In these top-down approaches, the
main program is typically first identified. The subroutines
are then developed. In contrast, object-oriented approaches
decompose software systems around data from the bottom
up. For example, the height, weight, and age of a person are

identifiedfirst.Theyarethengroupedintoaclass.Thechoice
ofmainfunction isoneof thevery laststeps tobetakeninthe
software development process. The developer delays the
description and implementation of the topmost function of
the system as late as possible. Instead, the types of objects in
a system are analyzed first. Software design progresses
through the successive improvements of the understanding
of theseobject types.Thisbottom-upprocessallowsbuilding
robust and extensible solutions to parts of the problem and
combining them into more and more powerful assemblies.
These components, if assembled differently, may combine
with other components and form other systems.

In the remainder of this section, we examine the basic
building block of object-oriented systems: class.

Static Structure

Class is the basic notion from which everything in object
technology derives. A class corresponds to an abstract
concept and encapsulates a set of data together with the
operations that apply to the data. The set of data is often
called the attributes of the class. For example, ‘‘Person’’ is a
concept and can be represented as a class. The class ‘‘Per-
son’’ may contain the attributes like name, height, weight,
and birth year. These attributes describe the information of
the class, which is often hidden. Information hiding is an
explicit mechanism for defining visibility/scope, which
allows other classes to have limited rights to access these
attributes. Information hiding is achieved via signatures,
interfaces, and directives.

A class is a type that describes a set of possible data
structures that may be represented in the memory of a
computer and manipulated by a software system at the
implementation level. A type is the static description of
certain dynamic data elements that are processed during
the execution of a software system. The notion of type is a
semantic concept that directly influences the execution of a
software system by defining the form of data structures that
the system will create and manipulate at run time. The set
of types often include primitive types such as integer, float,
and character as well as user-defined types such as record
types, pointer types, and array types. A class can be con-
sidered a user-defined type.

Intuitively, a class can be seen as a mold from which the
instance of the class, called an object, can be built. Similar to
a cake mold that can be used to make many cakes with the
same shape, the instances of a class share common char-
acteristics (attributes and operations). Any particular
execution of a system may use the classes to create objects
(data structures). Each such object is derived from a class.
From another point of view, a class can be considered as a
‘‘frame’’ representing an abstract concept, whereas the
instances, or objects, of the class are concrete individuals
under the frame/concept. For example, ‘‘Person’’ is a frame/
concept, whereas ‘‘John,’’ ‘‘Mary,’’ and ‘‘Bob’’ are instances/
objects of ‘‘Person.’’ These objects share the common attri-
butes such as name, height, weight, and birthyear.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



The software programs of a system are embedded in a set
of classes in terms of operations. The program text is static
and exists independently of any execution. In contrast, an
object derived from a class is a dynamically created data
structure, existing only in the memory of a computer during
the execution of a system. Object-oriented programming
languages include some module facility for organizing pro-
gramtexttogetherwithsometypesystemfordatastructure.
Amodule, invarious formssuchasoperations, routines,and
packages, is a unit of software decomposition. Software
program texts are decomposed into module structures syn-
tactically.Thedecompositionistypicallyaroundasetofdata
that is manipulated. All modules (operations) that control
the same set of data are organized into the same class.

In non-object-oriented approaches, the type and module
concepts remain distinct. In contrast, the notion of class
merges the two concepts into a single construct in object-
oriented approaches. A class is both a type and a module.
This merger facilitates the encapsulation of the data that,
for example, can be accessed only by the operation modules
in the class. Information hiding is one of the important
principles in object-oriented methods.

Attribute

Each class contains several attributes that characterize the
properties of a set of objects. All objects of the same class
have the same set of attributes. The values of these attri-
butes distinguish different objects of the same class. For
example, the class ‘‘Person’’ may contain the attributes
such as name, height, weight, and birth year, which may
be defined in object-oriented programming languages as
follows:

class Person {
string name;
float height;
float weight;
int birthyear;

}

All instances of this class have these attributes but with
potentially different values. One particular person may
have the name of ‘‘John,’’ height of 6 feet, weight 180
pounds, and born in 1980. Another person may have the
name of ‘‘Mary,’’ height of 5.5 feet, weight 120 pounds, and
born in 1981. In addition to primitive types, class attributes
may include other classes. For instance, each person has
parents who are instances of the ‘‘Person’’ class as well. In
this case, two additional attributes with user-defined type
(the class ‘‘Person’’) can be added into the previous class
definition as follows:

class Person {
string name;
float height;
float weight;
int birthyear;
Person* father;
Person* mother;

}

In object-oriented analysis and design, a system is
decomposed around attributes. In a typical approach,
classes and their attributes are identified by searching
for the nouns (entities) in the requirements. These entities
are the candidates of classes. Their properties are the
candidates of the corresponding class attributes. In non-
object-oriented approaches, conversely, system decomposi-
tion is around operations by searching for the verbs (pro-
cesses) in the requirements.

Operation

The operation defines a certain computation (algorithm)
applicable to all instances of a class. In general, the opera-
tions of a class manipulate the attributes in the class. In
object-oriented analysis and design, the operations are
identified in terms of the attributes in a class so that the
computation and algorithm may apply to the attributes. For
instance, the operation ‘‘age’’ can be defined to calculate the
age of a person as follows:

int age() {
return thisyear - birthyear;

}

An operation consists of an interface (header) and a body.
The interface of an operation may include the name, para-
meters, and return type. The body of an operation is a
sequence of instructions describing the implementation
of the computation and algorithm. The implementation
of an operation is hidden from the user who only needs
the interface information to invoke the operation (e.g., the
user of a calculator does not need to know how the calcu-
lator performs its function). Some object-oriented program-
ming languages separate the interface from its
implementation and call the interface ‘‘operation’’ and
the implementation ‘‘method.’’ In this way, the same inter-
face (operation) may have different implementations
(methods) that can be dynamically selected at run time,
called dynamic binding. This separation also facilitates the
modification of the implementation as long as the interface
stays unchanged. For the example of the Y2K problem,
suppose the ‘‘birthyear’’ stores a two-digit format of data
originally. The change from two-digit to four-digit for
‘‘birthyear’’ and ‘‘thisyear’’ only affects the implementation
of the ‘‘age’’ operation. It does not affect the interface of the
operation. Thus, the client who uses the operation need not
be aware of this change.

In practice, it is common to have ‘‘getter’’ and ‘‘setter’’
operations to access the attributes of a class. For example,
the operations ‘‘getHeight’’ and ‘‘setHeight’’ can be defined
to access the ‘‘height’’ attribute as follows. These operations
may be used to retrieve the height information of a person
and change the height value when the person grows up:

float getHeight() {
return height;

}
setHeight(float h) {

height = h;
}

2 CLASS AND OBJECT



Class Diagram

In the previous sections, we introduced the basic concept of
class and discussed attributes and operations using some
examples at the implementation level. At the design level,
graphical notations are often used for conveying concepts
and information. For example, the Unified Modeling Lan-
guage (UML) provides several diagrams, such as class,
object, sequence, and collaboration diagrams, to model
and represent object-oriented design. UML is a general-
purpose language for specifying, constructing, visualizing,
and documenting artifacts of software-intensive systems. It
provides a collection of visual notations to capture different
aspects of the system under development. In particular, a
class diagram is one of the important diagrams provided by
UML. In a class diagram, each class is represented as a
rectangle typically with three compartments containing
the name, attributes, and operations of the class. For
example, the ‘‘Person’’ class can be represented as follows
in the class diagram:

In class diagrams, only the important interface information
of a class is represented so that the designers are able to
concentrate on essential issues at the early stage of soft-
ware development. They do not need to consider low-level
implementation issues until necessary. Graphical nota-
tions, such as class diagrams, can also help the designers
to communicate their design decisions.

Type

Similar to the record and array types, a class is a user-
defined type from a programming language point of view. It
combines a set of attributes as a single type. All instances of
a class have the same set of attributes of the class. Unlike
record type, a set of operations is also defined in the class
type. Thus, all instances of a class may perform these
operations on their own set of attributes. For instance,
the ‘‘Person’’ class is a user-defined type. Its instance can
be defined as follows:

Person p;

Like other variables in programming languages, the value
of ‘‘p’’ can be assigned, changed, and accessed. Once ‘‘p’’ is
assigned an instance/object of ‘‘Person,’’ the operation
defined in ‘‘Person’’ can be invoked to perform on ‘‘p,’’
such as ‘‘p.age()’’ that calculates the age in terms of the
attribute values of ‘‘p.’’

The type-checking facility is also available for the class
type in object-oriented programming languages. Type mis-
match can be checked by the compiler.

In general, the objective of a type system is to prevent
illegal operations from being performed on inappropriate
values. A strong typed language can guarantee that opera-
tions are only performed on values of the appropriate type.
Strong typed languages, such as Java, can perform most
their analysis and checks at the compile time.

Accessibility

Information hiding is one of the important principles in
object-oriented approaches for the design of coherent and
flexible architecture. The attributes of an object are encap-
sulated to restrict the accesses from outside the object. They
usually can be manipulated only by the operations defined
inside the class. That is, the class type defines the acces-
sibility of attributes for all its objects. As well as the
attributes, the operations can be hidden partially or com-
pletely. In this way, the class is more reusable and resilient
to change.

Object-oriented programming languages often provide
different levels of accessibility to the attributes and opera-
tions of objects. At one extreme, no attributes and opera-
tions can be accessed by the clients outside the object. At the
other extreme, all attributes and operations can be accessed
by the operations outside the object. Some object-oriented
programming languages, such as C++ and Java, use ‘‘pub-
lic’’ and ‘‘private’’ to represent unrestricted and no access,
respectively. In the following declarations, for example, the
‘‘height’’ attribute cannot be accessed by any clients and the
‘‘getHeight’’ operation can be accessed by all clients:

private float height;
public float getHeight();

Most object-oriented programming languages also provide
partial accessibility in between the two extremes. A certain
kind of clients may be able to access the attributes and
operations of an object. This set of clients can be defined in
the class of the object. For example, ‘‘protected’’ is used, in
C++ and Java, to refer to the corresponding attribute or
operation that can only be accessed by the objects of the
class and its subclasses. In addition, some programming
languages separate different kinds of access rights, such as
read, write, and execution. The clients may be further
assigned by a class different access rights to the attributes
of its objects.

Class Relationships

The primary tasks of object-oriented analysis and design
include discovering classes and identifying relationships
among classes. A class represents some useful concept and
thus can be discovered by looking for nouns in the require-
ment specifications, whereas the behavior and operations
of a class can be found by looking for verbs in the require-
ment specifications. Various relationships exist among
different classes, which may be useful for the system
designer to develop reusable and robust systems. We briefly

Person

string name;
float height;
float weight;
int birthyear;
Person* father;
Person* mother;

int age();
float getHeight();
setHeight(float h);

CLASS AND OBJECT 3



introduce three important class relationships in this sec-
tion, including inheritance, association/aggregation, and
dependency.

Inheritance is an ‘‘is-a’’ relationship between classes.
For example, a student is a person. A class ‘‘Student’’ can be
identified as a kind of ‘‘Person’’ described in the previous
sections. The class ‘‘Person’’ is called the superclass of the
class ‘‘Student,’’ whereas ‘‘Student’’ is a subclass of ‘‘Per-
son.’’ A subclass inherits the attributes and operations of its
superclass. Moreover, a subclass may have its own specific
attributes and operations. For example, the class ‘‘Student’’
may have specialized attributes such as GPA, in addition to
all attributes of the class ‘‘Person.’’ A subclass can overwrite
some operations defined in the superclass, which may lead
to polymorphism, where the different versions of the opera-
tion (defined in the class and subclasses) may be invoked
through dynamic binding during the program execution.

Association or aggregation is a ‘‘has-a’’ relationship
among classes. This relationship is usually implemented
by using a class as the type of attributes. For example, a
‘‘Person’’ may have an attribute ‘‘address,’’ and ‘‘address’’
can be identified as another class ‘‘Address’’ that has attri-
butes ‘‘number,’’ ‘‘street,’’ ‘‘city,’’ ‘‘state,’’ ‘‘zip,’’ etc. Gener-
ally, a class is associated with another class if its attributes
refer to the other class. A class may also be associated with
itself, by having itself as the type of attributes. For instance,
a ‘‘Person’’ may have another ‘‘Person’’ as the type of its
‘‘father’’ or ‘‘mother,’’ as described in the previous section.

Dependency is a ‘‘uses’’ relationship among classes. One
class depends on another class if it comes into contact with
the other class in some way. For example, the method age()
of ‘‘Person’’ can be implemented by getting the system date
that may be a type of the class ‘‘Date,’’ extracting the
current year from the system date, and subtracting the
‘‘birthyear’’ from the current year. In this way, the class
‘‘Person’’ depends on the class ‘‘Date’’ by using an object of
‘‘Date’’ to calculate the age. Association/aggregation is a
stronger form of dependency.

OBJECT

An object is a run-time instance of some class. It is the
concrete manifestation of a class. An object-oriented system
creates a certain number of objects and lets these objects
interact with each other at any time during its execution.
The run-time structure is the organization of these objects
and of their relationships. The dynamic and unpredictable
nature is part of the reason for the flexibility of object-
oriented approaches. Whereas class, discussed in the pre-
vious section, is concerned mostly with conceptual and
structural issues, object includes behavioral aspects, in
particular, the management of memory in the execution
of object-oriented systems.

A simple class model may render complex instances,
which reflects in part the power of object-oriented methods.
Some interactions among the objects may be defined in the
static structure in the classes. Many other object interac-
tions may only be available at run time. It is often impos-
sible to prevent the runtime object structures of systems
from becoming large and complex. Such run-time complex-

ity does not have to affect the static structure that should be
kept as simple as possible. A small software text can
describe a huge computation containing millions of objects
from a simple class structure at execution time.

Dynamical Structure

The highly dynamic nature of the object-oriented model is
described in terms of a run-time object structure. As
opposed to traditional static approaches, the object-
oriented environment lets systems create objects as needed
at run time, based on a pattern that is often impossible to
predict by a mere static examination of the static structure.
Each object has to be created before it can be used in the
software systems. At the initial state, only one object, the
root object, is created. The systems repetitively create new
objects on the object structure.

In object-oriented programming languages, the creation
of a new object may involve the allocation of memory space
for the attributes and the initialization of their values.
Some special operation may be invoked to accomplish the
initialization process when an object is created. The initial
values of the attributes may be modified in the later stage at
run time.

Similar to a record in traditional programming lan-
guages, an object, the instance of a class, is allocated
memory space for its attributes defined in the class. The
values of these attributes are stored in this memory space.
For example, an object of the class ‘‘Person’’ may have the
attribute values shown as follows:

Unlike a record, an object has access not only to the attri-
butes but also to the operations defined in its class. After an
object is created, the client can use the reference to this
object to refer to its attributes and invoke its operations.

Object Diagram

As well as a class diagram modeling classes and the static
structure of object-oriented systems, UML provides an
object diagram to model the dynamic structure of the
systems. Object diagrams model the instances of things
contained in class diagrams. They visually describe the
objects and their interactions in the systems. An object
diagram shows a set of objects and their relationships at a
point in time. Graphically, it is a collection of vertices and
arcs representing objects and links, respectively. For exam-
ple, an object diagram of the objects of the ‘‘Person’’ class
can be shown as follows:

Attributes Values

name ‘‘John’’

height 6

weight 180

birthyear 1980

4 CLASS AND OBJECT



father : Person

name = “Bob” 

mother : Person

name = “Rose”

p : Person

name = “John”

In object diagrams, the ‘‘:’’ symbol is used to separate the
object identifier from its class identifier. Both of them are
underlined. An anonymous instance may be defined by
omitting the object name as, for example, ‘‘: Person.’’
Each occurrence of an anonymous object is considered
distinct from all other occurrences. It is also possible to
omit the class name if it is unknown. In this case, the object
name should be explicitly given. The attribute values can be
shown to explicitly represent the state of the object at a
given time. Objects may be connected by links to represent
the relationships among them.

Object Identity

Each object created at the execution of an object-oriented
system has a unique identity that is independent from the
values of its attributes. Two objects of the same class have
different identities. They may share the same values on
their attributes, respectively. The values of the attributes
may change at run time. However, object identity cannot
change. Each object is assigned an identity ID (called OID)
that is held during its lifetime in the system. For example,
the object variables ‘‘p’’ and ‘‘q’’ of the class ‘‘Person’’ may be
declared as follows:

Person p, q;

where ‘‘p’’ and ‘‘q’’ can refer to two distinct objects with
different identities although they may share the same
values of their attributes, for example, as follows:

These two objects have exactly the same values of their
attributes, but they are two distinct objects. Most object-
oriented programming languages do not consider two
objects with the same attributes and the attribute values
as the same object. The concept of object identity compro-
mises some operators, such as assignment and comparison,
in traditional software systems. One object cannot
simply assign its attribute values to the attributes of

another object. Two objects cannot be compared by a
comparison operator ð< ; >; ¼¼Þ to render a definite
result. For example, ‘‘ p ¼¼ q’’ cannot be used to check
whether ‘‘p’’ and ‘‘q’’ share the same values of their attri-
butes, respectively. ‘‘ p ¼ q’’ is incorrect if the user wants to
assign all attribute values of ‘‘q’’ to the attributes of ‘‘p’’,
respectively. In these cases, the user has to compare or
assign each field individually. At run time, the attribute
values of ‘‘p’’ and ‘‘q’’ may be changed, e.g., as follows:

In addition to attributes of basic types, objects may have
attributes that represent other objects. For instance, each
person having a father and a mother may have the follow-
ing additional fields:

where ‘‘f’’ and ‘‘m’’ are the references to the objects of the
‘‘Person’’ class.

Member Access

In object-oriented programming, each attribute or opera-
tion belongs to some object. The user has to know the
corresponding object before he/she can access an attribute
or operation. Thus, not only the name of an attribute or
operation and its parameters, but also the name of the
targeting object needs to be available in order to access the
member attribute or operation. The attributes and opera-
tions of an object can be accessed by other objects using the
dot notation (with the ‘‘.’’ symbol), where the object name is
before the dot and the attribute or operation name is after
the dot. This kind of access is said to be qualified in that the
targeting object of the call is explicitly identified. To get the
height of John (object ‘‘p’’), for example, we can use
‘‘p.getHeight()’’.

To refer the member attributes or operations within the
same object, one does not need the object name if no
ambiguity. This is called the unqualified call because the
targeting object is implicit. For example, the ‘‘getHeight’’

Attributes Values of p Values of q

name ‘‘John’’ ‘‘John’’

height 6 6

weight 180 180

birthyear 1980 1980

Attributes Values of p Values of q

name ‘‘John’’ ‘‘Mary’’

height 6 5.5

weight 180 120

birthyear 1980 1981

Attributes Values

name ‘‘John’’

height 6

weight 180

birthyear 1980

father f

mother m

CLASS AND OBJECT 5



operation defined in the ‘‘previous Operation’’ section
returns the value of ‘‘height’’ from the same object.

Current Instance

A class describes the properties and behavior of objects of a
certain type. Sometimes, we may need to refer to the
current instance of a class explicitly by using a reserved
word (‘‘this’’ in C++ and Java) in an object-oriented pro-
gramming language. For instance, in the following method:

setHeight(float height) {
this.height = height;

}

the assignment ‘‘this.height = height’’ avoids ambiguity
because the two ‘‘height’’ variables refer to two different
variables. The first ‘‘height’’ refers to an attribute defined in
the current object. The second ‘‘height’’ refers to the argu-
ment of the operation ‘‘setHeight’’. Therefore, ‘‘this’’ is
prefixed to the first ‘‘height’’ to explicitly identify the correct
variable. Otherwise, ‘‘height = height’’ cannot accomplish
the desired result.

Similarly, when an operation of the superclass is over-
written by a subclass, an object of the subclass has two
definitions of the same operation: one defined in the super-
class and the other defined in the subclass. The object may
need to explicitly refer to the operation defined in the
superclass by using a reserved word (‘‘super’’ in C++ and
Java) in object-oriented programming languages. For
example, suppose a student has to be over five years old.
Thus, the ‘‘age’’ operation in the ‘‘Person’’ class can be
overwritten in the ‘‘Student’’ class:

int age() {
int result = super.age();
if (result< 6) // print out {\\ error processing }
return result;

}

where ‘‘super.age()’’ is used to refer to the ‘‘age’’ operation
defined in the superclass (the ‘‘Person’’ class in this case) to
avoid confusion with the ‘‘age’’ operation defined in the
subclass (the ‘‘Student’’ class in this case).

Memory Management

At run time, object-oriented systems dynamically create
objects and let the objects interact with each other. Each
object is allocated certain memory space at creation. The
particular size of memory space for each object depends on
the types of the attributes of the corresponding class. For
example, the object of the ‘‘Person’’ class contains six attri-
butes: one string type, two float types, one integer type, and
two reference types. Thus, the size of memory space allo-
cated to the object is the total size of all six types. It normally
cannot be changed although the value of each attribute may
be changed at run time.

When an object finishes its tasks and is no longer useful,
it should be deleted from the system so that the memory
space it occupies can be released. This task is important
because these useless objects may eventually take huge

memory space such that the system cannot create new
objects anymore. This task is called garbage collection.
Some object-oriented programming languages, such as
Java, can manage automatic garbage collection. The devel-
oper does not need to worry about deleting useless objects.
The run-time system of the language may search the mem-
ory and delete waste objects from time to time. Other object-
oriented languages, like C++, do not provide the facility for
automatic garbage collection. In this case, the developer
has to explicitly delete an object when it is no longer useful.

SUMMARY

Class and object are the fundamental concepts of object-
oriented technologies. They model the static and dynamic
structures of object-oriented systems, respectively. A class
declares several attributes and operations that can be
accessed by the clients with limited right. An object is an
instance of a class. Objects are created, used, and deleted at
run time. Object-oriented systems manage objects and the
memory space they occupy through their identities. Class
and object are the basis for other object-oriented concepts,
such as generalization, association, aggregation, and poly-
morphism.

FURTHER READING

K. Arnold and J. Gosling, The Java Programming Language,
Reading, MA: Addison-Wesley, 1996.

G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, Reading, MA: Addison-Wesley, 1999.

P. Coad, D. North, and M. Mayfield, Object Models—Strategies,
Patterns, and Applications, Englewood Cliffs, NJ: Prentice Hall,
1995.

P. Coad and E. Nash Yourdon, Object–Oriented Analysis, Engle-
wood Cliffs, NJ: Prentice Hall, 1990.

S. Cook and J. Daniels, Designing Object Systems, Englewood
Cliffs, NJ: Prentice Hall, 1994.

M. Ellis and B. Stroustrup, The Annotated C++ Reference Manual,
Reading, MA: Addison-Wesley, 1990.

C. Ghezzi and M. Jazayeri, Programming Language Concepts, 3rd
Ed., New York: Wiley, 1998.

B. Meyer, Object–Oriented Software Construction, Englewood
Cliffs, NJ: Prentice Hall, 1997.

J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual, Reading, MA: Addison-Wesley, 1999.

R. Sethi, Programming Languages: Concepts and Constructs, 2nd
Ed., Reading, MA: Addison-Wesley Longman, 1996.

L. B. Wilson and R. G. Clark, Comparative Programming Lan-
guages, 3rd ed., Reading, MA: Addison-Wesley, 2001.

JING DONG

University of Texas at Dallas
Dallas, Texas

JIANCHAO HAN

California State University,
Dominguez Hills

Carson, California

6 CLASS AND OBJECT



C

COMPONENT-BASED SOFTWARE
ENGINEERING

INTRODUCTION

Software systems are pushed continually to address
increasing demands of scalability and correctness. To
meet these requirements, software development has
evolved into a process of reusing existing software assets
rather than constructing a new software system completely
from scratch (1). By reducing time-to-market, software
reuse has improved the economic and productivity factors
of software production (2).

The granularity of software reuse has evolved in tandem
with the capabilities of existing programming languages—
from functions/procedures found in imperative program-
ming languages, to the object/class mechanisms available
in object-oriented programming languages. The current
context of software reuse also scales from stand-alone soft-
ware development for a single machine to capabilities
supporting distributed software systems. Component-
based software engineering (CBSE) (3) is becoming an
accepted engineering discipline for promoting software
reuse throughout the software engineering lifecycle.
Beyond software reuse, CBSE also offers a promising
way to manage the complexity and evolution of the devel-
opment process through a unique means of encapsulation
and separation of concerns at different abstraction levels
(4).

This article begins with a description of the key char-
acteristics of a software component and then provides a
survey of the major component models based on those key
characteristics. The latter part of this article discusses the
existing engineering issues in CBSE and examines the
major research projects that are addressing the challenges.
Finally, this article explores recent software engineering
technology toward automation in CBSE, which promises to
offer yet another channel for boosting the productivity of
software development.

SOFTWARE COMPONENTS UNVEILED

Software Component and Component Interface

The definition of a software component has been addressed
widely in the literature (5). A software component essen-
tially represents a precompiled independent module, pos-
sibly from a third-party vendor, and can be composed to
create an even larger software component or system. A
precompiled module comes in binary form, thus third-party
integration requires a software component to have a
mechanism to describe itself before it can be used, just
like a typical user’s guide for a commercial product. This
special role is played by the component interface.

How component interfaces are defined varies, but such
definitions are mainly intended to expose just enough
information for third-party applications to consume with-
out having to disclose underlying implementation details.
This type of information hiding is a common practice in
industry for intellectual property protection. Most common
interface constituents include some form of the following
characteristics:

� public methods of the underlying components, which
represent their functional offerings to third-party
applications.

� properties, which are generally used for specifying
component configuration and deployment require-
ments. A component is not only a functional unit
for composition, but also exercises its role in the
overall software product configuration and deploy-
ment. In addition to functional properties, distributed
software components sometimes specify nonfunc-
tional properties such as throughput, availability,
and end-to-end delay (for a more detailed list, see
Ref 6. In a distributed environment, a software product
generated by component composition is evaluated on
the overall functionality and satisfaction of nonfunc-
tional properties.

� events, which are used for provisioning notification
among components when something of interest hap-
pens. The notified components will trigger event hand-
lers, which are registered beforehand as event
listeners.

Although the component interface specification can be
Unified Modeling Language (UML; see http://www.omg.
org/uml/) -based (7), or formal methods-based (8), the most
common approach in application development is to use an
Interface Definition Language (IDL; see http://en.wikipe-
dia.org/wiki/Interface_Definition_Language). To compose
the components, third-party software applications need to
make either (1) static invocation via interfaces that compile
the component IDL into the whole application to generate
the executable code, or (2) dynamic invocation to discover
and invoke the component interface at run time without
extra compilation. Although most IDLs dictate the pro-
gramming language used for third-party applications
(e.g., Java IDL can only be used in Java applications),
certain IDLs are language neutral for third-party software
applications (i.e., a language-specific IDL compiler can be
used to compile the IDL into the designated language of the
third-party software applications in order to compose the
corresponding component). One such example is Common
Object Request Broker Architecture (CORBA; see http://
www.omg.org/corba) IDL, which permits interoperability
of components written in different languages.

The remaining part of this section briefly surveys
the most representative commercial component techno-

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



logy models in the market based on the afore-mentioned
characteristics.

Major Component Technology Models

Microsoft COM and DCOM. Component Object Model
(Com; see http://www.microsoft.com/com) is the binary
standard set by Microsoft for all software components on
the Windows platform. Every COM component can imple-
ment any number of interfaces, each representing a differ-
ent view or behavior of the object. The Distributed
COM(DCOM) extends COM with distribution based on
the Remote Procedure Call (RPC) mechanism. Microsoft
Transaction Server (MTS) further extends DCOM with a
container adding transaction and other services, which
constitutes the COMþ component model.

� Environment: Windows platform. DCOM further
needs MTS as a container.

� IDL: Microsoft (MS) IDL. Each interface distinguishes
itself by including a universally unique identifier
(UUID) in the MS IDL interface definition. As COM
represents a binary standard, the IDL can be used for
various MS languages such as MS Cþþ and Visual
Basic.

� Property: fields defined in IDL.

� Event: An event in a COM component is realized by
implementing a miniature COM object called the con-
nection point, which implements a standard event
dispatch.

� Invocation: supports both static invocation and
dynamic invocation. To enable dynamic invocation, a
COM component needs to implement a specific inter-
face rather than relying on any infrastructural sup-
port, which is in contrast to CORBA components
described later.

Sun Enterprise Javabeans (EJB). EJB (see http://java.sun.
com/products/ejb) is the server-side component model for
developing enterprise business applications in Java. It is
tailored to Java-based applications in which a ‘‘bean’’ is a
component.

� Environment: An EJB is contained in an EJB con-
tainer running on a J2EE Server. The container pro-
vides added services to EJB, such as transactions and
security.

� IDL: There is no specific IDL to expose the EJB com-
ponent as the EJB component implements standard
interfaces. A client invokes the stub code of those
interfaces to access the EJB component at the server
side.

� Property: Properties of EJB components are repre-
sented as deployment attributes in an extended
markup language (XML; see http://www.w3.org/xml)
deployment descriptor file.

� Event: EJB provides event services by using a
message-driven bean (MDB).

� Invocation: supports both static invocation and
dynamic invocation. The latter actually leverages

Java reflection, which is more of a Java feature rather
than an EJB feature.

OMG CORBA Component Model (CCM). CORBA is the
initiative of the Object Management Group (OMG; see
http://www.omg.org) for enabling interconnections among
distributed software components across heterogeneous
platforms. CCM (see http://www.omg.org/technology/
documents/formal/components.htm) was introduced with
CORBA 3.0. In contrast to the prior CORBA object
model, CCM is designed for loose coupling between
CORBA objects, facilitating component reuse, deployment,
configuration, extension, and management of CORBA
services.

� Environment: Running inside a CCM container over
a CORBA ORB.

� IDL: CORBA Component Implementation Defini-
tion Language (CIDL), which is implementation inde-
pendent and can be compiled to different languages
based on the requirement of the underlying ORB.

� Property: attributes defined in CIDL, which are
used mainly for component configuration.

� Event: events are defined directly in CIDL. Events
are transmitted via an event channel.

� Invocation: supports both static invocation and
dynamic invocation. The latter is enabled only if the
CORBA ORB implements the dynamic invocation
interface (DII), which is in contrast to COM compo-
nents, for which dynamic invocation relies on an indi-
vidual component’s implementation.

Microsoft .NET Component Model. This component
model is listed last because it is a fairly new model com-
pared with the preceding three component models. In the
Microsoft .NET (see http://www.microsoft.com/net) frame-
work, an assembly is a component that runs on the Micro-
soft Common Language Runtime (CLR) (9). Each .NET
language (e.g., C#, VB.NET, Cþþ.NET) can be compiled
into assembly files in the form of intermediate code, which
are further just-in-time compiled into native code that
can be executed in the CLR. The interoperability for an
assembly is at the logical, intermediate code level rather
than strictly at the physical, binary level, which makes
assembly components easier to use and integrate when
compared with COM components. Additionally, the .NET
component model provides a significant number of benefits
including a more robust, evidence-based security model,
automatic memory management, and native Web Services
support.

� Environment: Windows platform, .NET framework,
CLR.

� IDL: MS CIL, (Microsoft Common Intermediate
Language).

� Property: represented as metadata in the MS CIL,
which is readable and writable within the CLR.

2 COMPONENT-BASED SOFTWARE ENGINEERING



� Event: events are defined as first-class language con-
structs in .NET programming languages.

� Invocation: supports both static invocation and
dynamic invocation. The latter is realized by .NET
reflection.

This section described major characteristics and represen-
tative samples of software component models. The next
section discusses engineering principles for CBSE.

ENGINEERING COMPONENT-BASED SOFTWARE SYSTEMS

To achieve the benefits of CBSE mentioned earlier, there
are many issues that need to be addressed. We describe a
list of representative issues and supporting technologies.

Componentizing Large Software Projects. Componentiza-
tion for a software application needs to identify reusable
assets from the initial phase of the software engineering
lifecycle. Domain analysis (10) can be applied to identify
the similarities among software applications, and those
similarities can be used as a basis for implementing
software components. The most popular domain analysis
technique is Feature-Oriented Domain Analysis (FODA)
(11), for which the relationship between parent feature
and child feature are specified. The result of FODA is a
feature set, with each feature corresponding to a reusable
component. Componentization via FODA can be either
manual or automatic (12). Moreover, a product line (13)
can be derived during the domain analysis phase to derive a
family of software components that implement common
features, but satisfy different specific needs (such as with
different nonfunctional properties).

In CBSE, there are concerns that crosscut the modular-
ization boundaries of individual components (e.g., Quality
of Service (QoS), distribution, and synchronization). Con-
sequently, there is a need for componentization to capture
those concerns in a modular way as well. The idea of aspect-
oriented programming (AOP) (14) can be applied to CBSE.
AOP essentially provides a means to capture crosscutting
aspects in a modular way with new language constructs
and a new type of translator called a weaver to compose the
aspects into the base components. AOP can provide benefits
to CBSE in the sense that crosscutting assets can be
identified during domain analysis (15) or software model-
ing (16). The crosscutting assets can be used to derive
aspectual components (17) that are weaved into the main
components to realize component composition.

Ensuring the Reusability of SoftwareComponents. Software
component reusability requires comprehensive support
ranging from language design and infrastructural enabling
to application architecture.

� Language Design: The language in which the com-
ponents are written needs to be flexible and descrip-
tive with reduced run time overhead [an example of
such a language is Cecil (18,19)]. The reusability of
.NET components has also been greatly enhanced

with the logical interoperability of CIL. In contrast,
although COM is a binary standard for components, its
reusability is restricted to the physical code level,
which requires much more complicated effort from
the component user.

� Infrastructural Enabling: Infrastructure support
provides separation of concerns—security, transac-
tion, persistence, and memory management can all
be managed by the underlying infrastructure with the
software component implementation remaining as
lean as possible to achieve a finer granularity, thus
making it more reusable. Examples of such infrastruc-
ture include J2EE servers and EJB containers for EJB
components, ORB and CCM containers for CORBA
components, and CLR for .NET components.

� Application Architecture: CBSE not only moti-
vates the reusable components in the small, but also
motivates the reusable design in the large. Design pat-
terns (20) offer a reusable solution to recurring pro-
blems in software design, which can help in developing
a library of components accommodating a relatively
fixed set of concepts in a specific problem domain.

Predictable Assembly for Software Components. Although
component composition largely targets syntactical compo-
sability, it is also desirable to provide behavioral predict-
ability for an assembled software system at design time
before component composition. Predictability is not pos-
sible for any arbitrary design; with constraints such as
memory space and battery life omnipresent, real-time
embedded systems have sufficient grounds to apply pre-
dictable assembly based on computation of constraints and
design space pruning (21,22).

Publishing and Discovering Software Components. Soft-
ware components can only be used by registering with a
central repository that provides for both static discovery
and dynamic discovery, which can take two forms: pro-
prietary or public. Proprietary publishing can only be
discovered and used by third-party software with the desig-
nated (matching) platform or component technology. One
example is CORBA components, which are published via
an interface repository and discovered via the CORBA
naming service. Recent emergence of service-oriented
architecture (SOA) (23) can be seen as a component-based
software system with public publishing and discovery
infrastructure based on the Universal Description, Dis-
covery, and Integration (UDDI) standard, for which Web
services can be consumed across a heterogeneous distri-
buted environment (23).

TOWARD AUTOMATION IN CBSE

CBSE boosts productivity in terms of reusability and
manageability of software components (5). Recent progress
in software engineering has seen yet another dimension for
enhancing productivity through automation, particularly
automation in both component generation and component
assembly.

COMPONENT-BASED SOFTWARE ENGINEERING 3



Automation in Component Generation

There are two directions toward automatic component
generation. One is a model-driven approach (e.g., model-
driven architecture; MDA; see http://www.omg.org/mda)
for code generation based on high-level implementation-
independent models. The other is the concept of a software
factory1(24), which leverages domain-specific best prac-
tices and schematizes those best practices for automatic
component generation.

MDA. MDA is an initiative from OMG for capturing the
essence of a software system in a manner that is indepen-
dent of the underlying implementation platform. Model-
driven software development permits a software solution to
be more easily targeted to different platforms while also
protecting key software assets from obsolescence. Model-
driven approaches, like MDA, can assist in re-engineering
legacy software systems and commercial-off-the-shelf
(COTS) software into platform-independent models
(PIMs). A PIM can be mapped to software components on
platform-specific models (PSMs), such as CORBA, J2EE, or
.NET. In this way, legacy systems and COTS components
can be reintegrated into new platforms efficiently and
cost-effectively (25). The vision of MDA also includes stan-
dards that enable generative construction of interoperat-
ing bridges between different technologies leveraging
application and platform knowledge. One of the MDA
technologies is an Interworking Architecture (see http://
www.omg.org/cgi-bin/doc?formal/02-06-21), which provides
a bridge that allows COM and CORBA objects to interope-
rate from model-driven specifications.

Software Factory. With new component models and
infrastructure emerging each year, CBSE is becoming
more complicated from the viewpoints of design, implemen-
tation, and deployment. Nevertheless, the goal of CBSE is
not only to promote software reuse but also to boost the
industrialization of software components in a manner simi-
lar to the success of hardware components. Toward that
end, a software factory is defined as a ‘‘software product line
that configures extensible tools, process, and content using
a software factory template based on a software factory
schema to automate the development and maintenance of
variants of an archetypical product by adapting, assem-
bling, and configuring framework-based components’’ (24).
Compared with MDA, the major difference is that a soft-
ware factory focuses on domain-specific modeling to pre-
sent the best practice, whereas MDA is more ambitious
aiming at generating full component code for any PSM.

Automation in Component Assembly

Although the preceding section on automatic component
generation can be seen as an effort toward creating a
component factory, the concept of automatic component
assembly is focused on creating a software system factory.

Among related research projects, UniFrame (6,26) is a
framework for assembling heterogeneous distributed com-
ponents with nonfunctional property guarantees. It uses a
unified meta-component model (UMM) (27) to encode the
meta-information of a component, such as functional prop-
erties, implementation technologies, and cooperative attri-
butes. In UniFrame, a generative domain model (GDM)
(10) is also used to capture the domain knowledge and to
elicit assembly rules for automatic generation of glue/wrap-
per code to bridge the heterogeneity. Upon violation of
nonfunctional property constraints for the assembled sys-
tem, a discovery service is triggered to identify alternative
component candidates and the automatic component
assembly process is repeated until nonfunctional require-
ments are satisfied. Complementary to the UniFrame
approach, Cao et al. (28) propose a rule-inference-based
approach for choosing alternative components, which sim-
plifies the discovery process for alternative component
candidates. Also, rather than using GDM for generating
glue/wrapper code generation rules, Cao et al. (28) use
dynamic binary code adaptation to instrument hook code
for component assembly at run time.

CONCLUSION

CBSE has been recognized as an important approach for
promoting reusability and manageability of software sys-
tems. This article identified the key characteristics of CBSE
and introduced several mainstream component techno-
logy models. The article also examined the primary
CBSE challenges and introduced related work. With the
rapid evolution of the software engineering discipline,
CBSE is also evolving accordingly. As such, pilot efforts
on adopting automated software engineering in compo-
nent-based software development, such as those described
here, have much promise. Although still in their early
stages, these approaches provide new opportunities for
promoting productivity of component-based software
development and are becoming active research topics for
CBSE communities.

BIBLIOGRAPHY

1. D. McIlroy, Mass-produced software components, Software
Engineering Concepts and Techniques, 1968 NATO Conference
on Software Engineering, 138–155, 1969.

2. P. Devanbu, S. Karstu, W. Melo, and W. Thomas, Analytical
and empirical evaluation of software reuse metrics, Proc. of
18th International Conference on Software Engineering
(ICSE), IEEE Computer Society, 1996: 189–199.

3. G. T. Heineman and W. T. Councill, Component Based Soft-
ware Engineering: Putting the Pieces Together, Reading, M.A.:
Addison-Wesley, 2001.

4. A. W. Brown, Large-Scale Component-Based Development,
Englewood Cliffs, N.J.: Prentice Hall, 2000.

5. C. Szyperski, Component Software, Reading, M.A.: Addison-
Wesley, 2002.

6. R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, and C. C.
Burt, A quality of service-based framework for creating dis-
tributed heterogeneous software components, Concurrency

1The term software factory is overloaded; the same term was used
by Michael Evans in his 1989 book The software factory : a fourth
generation software engineering environment. We use the concept
as defined in Ref. 24.

4 COMPONENT-BASED SOFTWARE ENGINEERING



and Computation: Practice and Experience, 14 (12): 1009–
1034, 2002.

7. J. Cheesmana and J. Daniels, UML Components, Reading,
M.A.: Addison-Wesley, 2001.

8. G. T. Leavens and M. Sitaraman, Foundations of Component-
Based Systems, Cambridge, 2000.

9. D. Box and C. Sells, Essential .NET Volume 1: The Common
Language Runtime, Reading, M.A.: Addison-Wesley, 2003.

10. K. Czarnecki and U. W. Eisenecker, Generative Programming:
Methods, Tools, and Applications, Reading, M.A.: Addison
Wesley, 2000.

11. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, Feature-oriented domain analysis (FODA) feasibil-
ity study, Technical Report, CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Carnegie Mellon University,
Pittsburgh, P.A.: 1990.

12. F. Cao, Z. Huang, B. R. Bryant, C. C. Burt, R. R. Raje, A. M.
Olson, and M. Auguston , Automating feature-oriented domain
analysis, Proc. of International Conference on Software Engi-
neering, Research and Practice (SERP), CSREA Press, 2003.
pp. 944–949,

13. J. Whithey, Investment analysis of software assets for product
lines, Technical Report, CMU/SEI-96-TR-010, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh,
P.A.: 1996.

14. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin, Aspect-oriented programming,
Proc. European Conference on Object-Oriented Programming
(ECOOP), 220–242, 1997.

15. F. Cao, B. R. Bryant, R. Raje, M. Auguston, A. Olson, and C. C.
Burt, A component assembly approach based on aspect-
oriented generative domain modeling, Electronic Notes in
Theoretical Computer Science, 114: 119–136, 2005.

16. J. Gray, T. Bapty, S. Neema, and J. Tuck, Handling cross-
cutting constraints in domain-specific modeling, Commun.
ACM, 44 (10): 87–93, 2001.

17. J. C. Grundy, Multi-perspective specification, design and
implementation of components using aspects, International
J. Software Eng. Knowledge Eng.,10 (6): 713–734, Singapore:
World Scientific, 2000.

18. C. Chambers, The Cecil language: specification and rationale,
Technical Report #93-03-05, Department of Computer Science
and Engineering, University of Washington, Seattle, W.A.,
1993.

19. C. Chambers, Towards reusable, extensible components, ACM
Computing Surveys, 28(4): 192–192, 1996.

20. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns, Elements of Reusable Object-Oriented Software,
Reading, M.A.: Addison-Wesley, 1995.

21. S. A. Hissam, G. A. Moreno, J. A. Stafford, and K. C. Wallnau,
Enabling predictable assembly, J. Systems Software, 65 (3):
185–198, 2003.

22. S.-H. Liu, F. Cao, B. R. Bryant, J. G. Gray, R. R. Raje, A. Olson,
and M. Auguston, Quality of service-driven requirements ana-
lyses for component composition: a two-level grammar
approach, Proc. of the 17th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE), 731–
734, 2005.

23. S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y.
Nakamura, and R. Neyama , Building Web Services with Java,
Indianapolls, IN: SAMS, 2002.

24. J. Greenfield and K. Short, Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools,
New york: Wiley, 2004.

25. D. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing, New York: Wiley, 2003.

26. A. M. Olson, R. R. Raje, B. R. Bryant, C. C. Burt, and M.
Auguston, UniFrame-a unified framework for developing ser-
vice-oriented, component-based, distributed software systems,
in Z. Stojanovic and A. Dahanayake(eds.), Service-Oriented
Software System Engineering: Challenges and Practices, Her-
shey, P.A.: Idea Group, 2004.

27. R. R. Raje, UMM: Unified Meta-object Model for open distrib-
uted systems, Proc. IEEE International Conference of Algo-
rithms and Architecture for Parallel Processing, IEEE
Computer Society, 454–465, 2000.

28. F. Cao, B. R. Bryant, R. R. Raje, A. M. Olson, M. Auguston, W.
Zhao, and C. C. Burt, A non-invasive approach to assertive and
autonomous dynamic component composition in service-
oriented paradigm, J. Univer. Comp. Sci., 11(10): 1645–
1675, 2005.

FEI CAO
z

JEFF GRAY

BARRETT R. BRYANT

University of Alabama at
Birmingham

Birmingham, Alabama

zNow at Microsort Corporation, Redmond, Washington.

COMPONENT-BASED SOFTWARE ENGINEERING 5



C

COMPUTER ANIMATION

INTRODUCTION

Computer animation is widely used in games, movies, and
TV programs. Topics such as human animation, fluid
dynamics, rigid bodies, cloth simulation, flocking, and
deformable models are covered in this field. In this article,
we introduce the key techniques used for such kind of
animations by observing the life of a virtual character
‘‘Joe,’’ who is living in cyberspace.

MOTION SYNTHESIS AND ANATOMICAL MODELS

Joe is a handsome, middle-age ‘‘virtual’’ office worker who is
hardworking, rich, and an enthusiast of unusual hobbies.
He wakes up every morning at 5 o’clock and goes to jog. He
has three modes of jogging: keyframe animation,1 physi-
cally based, and data driven (Fig. 1).

Joe hates his running motion generated by keyframe
animation as it looks so unnatural; the animator was very
lazy and used only four keyframes for this motion. All the
dynamics are ignored and his body moves like a puppet

controlled by a first grader. When he uses this mode, all the
other pedestrians laugh at him.

The next mode is physically based.2 In this mode, the
motion of the body is simulated by forward dynamics (1–5).3

At every frame, the torques are applied to the joints and the
movements are computed. The problem is then how to
compute the torque that results in a natural running
motion. Joe uses a PD controller (6,7)4 for that purpose.
He thinks this mode is a bit better as his jogging motion
satisfies the laws of dynamics. For example, while his body
is moving in the air, his body is pulled down to the ground by
the gravity, and he can feel the impact of the ground
reaction force when the foot lands onto the ground. He
saw the Hodgins family (Fig. 2) (8) jogging using this mode.
He said ‘‘Hi’’ to them, but unfortunately it looked like they
just ignored him and ran away. Actually, they tried to grin
back but their necks were immediately pulled back to the
original posture as the feedback gain was too strong. Joe
liked to use this mode a few years ago, but he realized the
PD controller did not work any more after he gained too
much weight. PD control is very sensitive to the change of
physical parameters such as mass and moment of inertia.
One day, he went out to jog and fell to the ground imme-
diately. He had to continue the locomotion miserably like a
toy until a kind pedestrian helped him to switch off the PD
controller.

1Keyframe animation is the most well known and fundamental
technique to generate 3-D character animation. It can be used to
generate scenes of rigid objects like boxes or balls rolling on the
floor, airplanes flying in the air, or human characters moving
around in the environment. The method is very simple and
intuitive; several keyframe postures must be prepared, and then
the system interpolates these postures by linear interpolation or
polynomial curves such as B-splines (Fig. 1). The method is
intuitive and simple, but whether the motion looks natural
depends on the skills of the animator.
2Physically based animation is a common term for all sorts of
animation techniques that are based on the laws of physics.
Such techniques are used in almost all sorts of animation, which
those of characters, trees, cloth, hair, and liquid.
3Forward dynamics is a term used commonly in robotics. When
simulating the movements of a multibody system such as a robot or
a human, the status of the system is represented by the generalized
coordinates u, which includes parameters such as the location\or-
ientation of the root and the joint angles of the rotational joints.
Based on Newton’s laws of dynamics, the motion equation of the
system can be written as

t ¼Müþ V þG ð1Þ

where t is the externally added force\torque to the body, M is the
mass matrix, V is the Coriolis force, and G is the gravity force. By
specifying the torque applied to the body, the acceleration of the
generalized coordinates can be computed as follows:

ü ¼M�1ðt� V �GÞ ð2Þ

By using ü, the generalized coordinates and their velocities can be
computed by integration. This computation, to calculate the move-
ments of the system by giving the torque as the input, is called
forward dynamics. Forward dynamics was considered as a heavy
computation process in the old days (1), Only methods of O(N3)
complexityexisted, where N is the degrees of freedom of the system;
however, nowadays, methods of O(N) are available (2). The oppo-
site procedure is called inverse dynamics, which is to compute the
torque/force generated at the joints from the motion data. Inverse
dynamics analysis is used in the sports and the manufacturing area
to examine how much torque is required at each joint to achieve a
given movement. It is also used in spacetime constraints when the
objective function includes terms of joint torques (3–5).
4PD control was developed originally in robotics to control robot
manipulators. It has been used in computer animation to control
multibody systems such as humans. The equation of PD control can
be written by

t ¼ kðud � uÞ þ dðu
:
d � u

:
Þ ð3Þ

where t is the torques to be made at the joints, ðu; u˙ Þ are the
generalized coordinates the body and their derivatives, ðud � u

˙
dÞ

are their desired values at the keyframes, and k, d are constants
each called elasticity and viscosity, respectively. It is possible to say
that in this mode the body is pulled toward the keyframes by the
elastic and the damping forces. The larger the deviation from the
desired motion is, the larger the torques exerted to the joints will
be. The acceleration ü will be computed based on Newton’s laws of
dynamics, and the velocity and the generalized coordinates of the
body is finally updated.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Now, he simply uses the motion capture5 data to
control himself. The data are captured by an optical motion
capture system that is mostly used today. As they are real
human motion, they look realistic and natural. As several
techniques to edit the motion have been developed, such as
inverse kinematics6 or spacetime constraints (9–13)7, the
same jogging motion can be used for different situations
such as zigzag running or running up hills (Fig. 3).

Figure 1. The trajectory of a ball flying
generated from three keyframes shown in
(a), by using (b) linear interpolation and
(c) cubic interpolation.

 1

2

3

(c)(b)(a)

Figure 2. The Hodgins family [Hodgins and Pollard (8)].

5Motion capture system is a device to digitize the 3-D trajectory of
the human motion. Three different types of motion capture systems
exist in the market: optical, magnetic, and mechanical. Currently,
the optical system has the highest share for its high precision,
robustness, and large capturing volume.
6Inverse Kinematics is a term originally used for a problem to
compute the generalized coordinates of the system from the 3-D
position of its segments/end effectors. In computer animation, it is a
term for a technique to edit the posture of a virtual character by
changing the location of the body segments by dragging it with a
mouse. The animator can drag any position of the character in the
scene, and then the generalized coordinates of the body are updated
in a way that the body follows the movement of the mouse cursor
naturally (Fig. 3). Inverse kinematics is a problem that makes use
of the redundant degrees of freedom (DOF) of the system. The DOF
of the human body is much larger than the DOF of instructions by
the user, which is two/three in case the user controls the segment
by a mouse. Several methods exist: cyclic coordinate descent
method, pseudo inverse method, and analytical methods. The
opposite word is forward kinematics, which means to calculate
the 3-D position/orientation of the end effectors from the general-
ized coordinates.
7Spacetime constraints (9) is a method to calculate the trajectory of
the body by optimizing an objective function while satisfying
constraints specified by the user. The problem can be written in
the following form:

min
u

J ¼
Z

f ðuÞdt� s:t: ð4Þ

C1ðuÞ ¼ 0 ð5Þ

C2ðuÞ � 0 ð6Þ

where J is the objective function, u are the trajectories of the
generalized coordinates of the body, and C1 and C2 are the equality
and inequality constraints, respectively. For example, it is possible

to generate a natural-looking jumping motion by minimizing the
following function during jumping (10,11)

min
u

J ¼
Zt f

t0

ðmðtÞ �M0Þ2dt ð7Þ

where m(t) is the linear and angular momentum of the body at the
moment of jump, (to, tf) are the time the jumping starts and ends,
and Mo is the linear and angular momentum of the body at time to.
Spacetime constraints have also been used for motion editing and
for retargeting the captured motion to a character with different
body size (12,13). This technique can be performed by solving the
following optimization problem

min
u

J ¼
Zt f

t0

ðuðtÞ � u0ðtÞÞ2dt: ð8Þ

where u0(t) is the original motion data. In this case, the idea is to
keep the whole motion as similar as possible to the original motion.

2 COMPUTER ANIMATION



Recently, several real-time statistical approaches8 have
been proposed that can produce motions by interpolating
various captured motions (14,15). These methods are more
reliable than simple editing techniques, although they
require many samples. Joe now uses such a statistical
approach and feels much more comfortable because he
does not face any problems as before. He can run up the
stairs and change his stride smoothly to avoid stepping onto
chewed gum or dog’s stool. For switching from one motion to
another, such as from running to walking, he uses the
MotionGraph (16–18) (Fig. 4) 9. Joe came back from jogging,

took off his wet clothes, and stood in front of the mirror. He
was satisfied to glare at his thick muscular body slightly
sweating [Fig. 5(a)]. He bent his elbow and his bicep muscle
pumped up under the skin (19) [Fig. 5(b)]. The muscle is
modeled in a way that the volume is kept constant, and
therefore, when it is shortened, the cross-sectional area
increases (20). The body is composed of bones, muscles, the
fat layer, and the skin. Collisions between the tissues are
always monitored. When the muscles contract, they will
deform in a way such that they do not penetrate the bones.
The fat layer moves over the surface of the muscles, and
finally the skin covers the whole body. His body is modeled
by the musculoskeletal system generated from the Visible
Human Dataset (21). Analytic models (21–28)10 are effective

8Statistical approaches first search the motions in the motion
database that are similar to the required motion and interpolate
these motions to obtain the desired motion. For example in Refs. 14
and 15, reaching motion to arbitrary positions were generated by
mixing several appropriate sample reaching motions.
9MotionGraph is a technique to control the avatar interactively
using the captured motion data. In the MotionGraph, each posture
is considered as the node of a graph, and in case the posture and the
velocity of the body at the nodes are similar, they are connected by
an edge (Fig. 4). As far as the avatar moves along the edges of the
MotionGraph, smooth transition can be expected.

Figure 3. Changing the posture of a human figure
by using inverse kinematics. The user specifies the
motion of the hand, and the system calculates the
joint angles of the body automatically.

Figure 4. MotionGraph.

10Anatomic models are used to model realistic humans. Surface/
volumetric data of the muscles, bones, fat, and skin from the visible
human dataset (21) or from high resolution CT images are used to
model the anatomic structure of the body. They have been used to
model the facial expressions (19,22–24) and the surface of the body
(19,20,25). The muscles deform according to the control signals.
The muscles can also be used to simulate realistic kinematic
movements (26–28).

COMPUTER ANIMATION 3



to model not only the body (19,20,25) but also the face
(23,24) (Fig. 6). Using the analytic models, it is possible to
generate wrinkles on the forehead and dimples at the
cheeks.

PHYSICALLY-BASED ANIMATION (RIGID BODIES, FLUIDS,
HAIR, CLOTHES ETC.)

Before he took a shower, he went into the kitchen, poured a
glass of water, and drank it (Fig. 7) (29). Thanks to the
progress in fluid simulation(29,30),11 he can enjoy drinking
pure water instead of thick, high-viscosity drinks such as
protein milk or porridge, or drinks like powder that are

modeled by particles (Fig. 8).12 He once sufferred from
constipation and hemorrhoids as he was only drinking
protein milk every day.

After drinking water, he went to take a shower. The
splashing water coming out from the shower is modeled by
the particle system. Of course, rendering a scene of taking a
bath is not a difficult task anymore, but there is no point
using the computer resources to calcualte the complex fluid
dynamics for a bathing scene of a middle age man like Joe.
After the shower, he shaved his face quickly and blowdried

Figure 5. Joe’s skin and his muscles modeled
under his skin (19).

Figure 6. Joe’s muscles under his face (24).11Fluid simulation is used to simulate flows of liquid and smoke. u,
which is the velocity vector field of the flow, is updated by solving
the Navier-Stokes equation:

@u

@t
¼ �ðu � rÞu� 1

r
pþ vr2uþ F ð9Þ

together with the equation of mass conservation:

r � u ¼ 0 ð10Þ

where r is the fluid density, v is the kinematic viscosity, F is the
external force, and p is the pressure of the liquid. By solving
Equations (9) and (10) together, the velocity field u and pressure
p is updated at each time step. Usually, the space is split into
Cartesian grids, and the above equations are solved for all the grids
at their centers. For simulation of smoke, particles are put into the
grids, and their motions are computed using the velocity vector
field by Euler integration. For simulation of liquid, it is necessary to
track and to visualize the boundary between the liquid and the air.
The level set method (30) is used to perform liquid simulation. An
implicity function f that returns a negative value inside the liquid
and a positive outside of it is first defined. f can be updated using
the vector field by solving the following equation:

@f

@t
þ u � rf ¼ 0 ð11Þ

The new boundary can be calculated by tracking f ¼ 0. Because
rendering of liquid requires the visualization of the boundary and
the splashes, particles can be used together with the level set
method to increase the visual reality (29).

12The particle system is very convenient as it can model various
natural phenomenon such as smoke and splashing water. The
motion of every particle is modeled by simple mass point dynamics:

maðtÞ ¼ F ð12Þ
vðtþ DtÞ ¼ vðtÞ þ aðtÞDt ð13Þ
xðtþ DtÞ ¼ xðtÞ þ vðtÞDt ð14Þ

where m is the mass of the particle, x, v, a are the position, velocity,
and acceleration of the particle, respectively,Dt is the sample time,
and F is the external force. The problem of particle systems is that
the fluid gets split easily into smaller pieces and as a result, it looks
like a collection of particles (as it actually is) instead of fluids.

4 COMPUTER ANIMATION



his hair (31)13 [Fig. 9(a)]. Watching his hair being blown dry
naturally by the wind, he remembered the old days when he
could only have either a skin head (so that no computation
is needed for his hair) or a rigid body hair cap composed of
polygons [Fig. 9(b)]. Now, he does not have to feel miserable
anymore as computers are fast enough to simulate hair by
physical animation.

Then, he went to the kitchen to eat breakfast. His break-
fast is always cereal, and he pours the Cheelios from the box
into his bowl (32) (Fig. 10). The movements of each Cheerio
poured into the bowl as they collide14 with each other was

Figure 8. This is what he was drinking previously.

Figure 9. (a) Joe’s hair blown in the wind (31).
(b) His hair was like this until a few years ago.

Figure 7. Pouring water in to the glass (29).

13To simulate the motion of hair in a realistic manner, it is
necessary to use physically based methods. The heavy computation
cost is caused by the collision detection, and physical simulation of
the great number of particles/rigid bodies composing the hair. Choe
et al. (31) combined impulse-based simulations and the implicit
integrators to compute the motion of hair efficiently.

14Collision detection is one of the main problems to solve when
doing physical simulation. It is important not only for simulation of
rigid bodies, but also for simulation of deformable objects such as
cloth. It is necessary to detect when the bodies are colliding, and
then add impulses/forces to the objects that are involved in the
collision. Usually, rough estimation is done first by checking the
collision of the bounding boxes of the objects first. The bounding box
is a rectangular box that surrounds the object. Once the collisions
between the bounding boxes are found, a precise collision detection
based on the shapes of the objects is conducted.

COMPUTER ANIMATION 5



simulated by rigid body simulation (33,34)15 After break-
fast, Joe tried to brush his teeth. He squeezed the tube of
toothpaste. But unfortunately, it was empty. Because Joe is
a stingy guy, he tried to squeeze out the last bit of the

toothpaste (Fig. 11) (35). The scene of the poor tube
squeezed over and over (Fig. 11) was generated by using
Laplacian coordinates (36,37)16, which works robustly for
drastic deformtion of 3-D three-dimensional objects.

Joe first wore his UNIQLO shirt, and spread out his
hands to see whether it fit him well (38) (Fig. 12). After
finding out it is OK, he wore his underwear, shirt, and suit.
These clothes are all modeled by particles aligned in

Figure 10. Joe eats Cherrios for breakfast (32).

Figure 11. Using the Laplacian coordinates, a rectangular shape
tube can be squeezed as shown above without any problem (35).

15The main difficulty for simulating many rigid bodies in the scene
is how to detect their collisions and to compute the impulses.
Classic methods to simulate the collisions by Poisson’s law, which
is to apply elastic force proportional to the amount of penetration of
objects, is unstable, and the decision of elastic parameters must be
done carefully. An impulse-based simulation (33) is a popular
method to simulate rigid bodies colliding. Instead of computing
the forces between the objects, it computes the impulses added to
the colliding bodies based on the velocity of the colliding points.
Static contacts can also be simulated by a concept called micro-
collisions.

Another popular method to simulate rigid bodies is developed by
Jakobsen (34), which is based on particle systems. Rigid bodies are
modeled by several particles that are connected by edges of fixed
length. Collisions of objects are simulated simply by pushing the
penetrating vertex back onto the nearest surface on the other
object. In this method, the position of particles are updated by
Verlet Integration, which makes the system work more stably.

16Laplacian coordinates enable large deformation of complex
detailed meshes while keeping the shape of the details in their
natural orientation. Let us define the position of the vertices in the
original surface by vi and the corresponding vertices in the
deformed surface by v0i. The Laplacian coordinate of vertex i is
defined by the following equation:

di ¼ vi �
1

di

X
j2Ni

v j ð15Þ

where Ni is the set of vertices that surrounds vertex i and di is the
number of elements in Ni. Suppose we want to specify the location
of some of the vertices in the deformed surface as

v0i ¼ ui; i2fm; . . . ;ng;m<n ð16Þ

and solve for the remaining vertices fv0ig; i2f1; . . . ;m� 1g. In
Ref. 36, this problem is solved by minimizing the difference of
the Laplacian coordinates before and after the deformation:

minfv0
i
g;i2f1;...;m�1g

Xn

i¼1

kdi � d0ik
2 þ

Xn

i¼m

kv0i � uik2 ð17Þ

which can be solved by quadratic programming. Other additional
constraints, such as keeping the volume constant (35), can be added
when solving this problem.

Figure 12. This is the shirt Joe loves most (38).

6 COMPUTER ANIMATION



grid that are connected to the adjacent particles with
springs dampers (Fig. 13). The implicit integrator (38)17

enables stable and quick simulation of clothes. Before going
to work, he stood in front of the family altar, hit the ring by

the stick, and prayed for his ancestors. He learned this
custom when he traveled to Japan. When he hit the ring,
the ring cracked (39)18 into pieces and fell down onto the
ground (Fig. 14) (40). It was a sign of bad luck.

Figure 13. Cloth is modeled by particles and springs/dampers
that connects them.

17Implicit integraton enables simulation systems to take larger
steps to update the position and the velocity of the particles. In the
traditional explicit forward Euler method, the integration is done
in the following way:

Dx
Dv

� �
¼ h

v0

M�1 f0

� �
ð18Þ

where x, v are the positions and velocities of the particles,
the force f0 is defined by f(x0,v0), M�1 is the mass matrix, and h
is the time step. The step size h must be selected small enough
otherwise, the system could be blowed off. To avoid this error in
the implicit integration method, instead of Equation (18), the
following equation is solved:

Dx
Dv

� �
¼ h

v0 þ Dv
M�1 f ðx0 þ Dx0; v0 þ DvÞ

� �
ð19Þ

In the forward method, we only have to calculate f0 and integrate
forward, but in the implicity backward method, we have to
calculate Dx, Dv that satisfies Equation (19). This method can
be performed by first expanding the Taylor series f ðx0 þ Dx0; v0 þ
DvÞ at x0,v0 as

f ðx0 þ Dx0; v0 þ DvÞ ¼ f0 þ
@ f

@x
Dxþ @ f

@v
Dv ð20Þ

By substituting this equation into Equation (19), we get

Dx
Dv

� �
¼ h

v0 þ Dv

M�1 f0 þ
@f

@x
Dxþ @f

@v
Dv

 !
ð21Þ

By substituting Dx ¼ hðv0 þ DvÞ into the bottom of Equation (21),
we can get

Dv ¼ hM�1 f0 þ
@f

@x
hðv0 þ DvÞ þ @f

@v
Dv

� �
ð22Þ

and solve for Dv. Then, Dx can be calculated by hðvþ v0Þ. The
backward implicity method is more stable than the foward expli-
cit method as the motion of the particles are calculated not only
based on the status at t = t0, but checking whether you can go
back to the original position from the updated position using the
derivative values at t ¼ t0 þ Dt. As a result, the system can update
the status with fixed large time steps.
18Simulation of objects being cracked and broken is required for
many scenes in games and movies. O’Brien and Hodgins (39)
simulated objects being broken by calculating where the destruc-
tion should start and how it should propagate all over the object.

Figure 14. The ring cracked into pieces, which is definitely a bad
sign (40).

COMPUTER ANIMATION 7



FLOCKING, CROWD, 2-D ANIMATION, REACTIVE
MOTION

He went out his house and walked toward the subway
station. He saw crows flocking (41)19 in the sky while he

was leaving his house (Figs. 15 and 16). At that time, the
subway station was very crowded20 and thousands of peo-
ple were walking in and out (42) (Fig. 17). A long queue was
at the platform waiting for the arrival of the train. Every
morning, he witnesses the chaotic scene of the queue of
people rushing into the train and getting pushed out by the
passengers trying to get off. Joe was selecting the motion
carefully to proceed most effectively without colliding with
the other passengers (43) (Fig. 18). His strategy was based
on reinforcement learning (43–46)21 Joe rushed so harshly
and something unexpected happened; accidentally he
pushed the breast of a young lady with his arm (Fig. 19).

Figure 15. Another bad sign in the morning.

Figure 16. Forces applied to the indi-
vidual flocking object: (from left to
right) separation, alignment, cohesion
and avoidance.

Figure 17. Here is where the battle starts in the morning .

19Flocking (41) is a physically based animation technique used to
simulate scenes of birds flocking or fishes schooling. Each module
that represents the individual is considered as a particle, and it is
controlled not only by the self-driving force which is determined by
the destination/direction it wants to proceed, but also by the
following four external forces (Fig. 16):

1. Separation force works as potential fields that push away the
individuals to avoid collision with the others.

2. Alignment force makes the individual proceed towards the
same direction as the other flock-mates.

3. Cohesion force makes the individual move to the average
position of local flock-mates. It spaces everyone out evenly,
and applies a boundary to contain the members.

4. Avoidance keeps the flocks from running into buildings,
rocks, or any other external objects in the environment.

20The topic to simulate thousands of characters moving around in
the scene is called crowd simulation. Most crowd simulation tech-
niques are agent based, which means that each character is self-
motivated and decides his/her motion based on the objective, the
destination, and the distance with the other characters. The agent-
based method originates from flocking. Because humans are much
more self-motivated than birds or fishes, various other techniques
are combined with flocking to make the scene look realistic.

21Reinforcement learning is an approach to achieve real-time
optimal control. It is related closely to dynamic programming in
the sense that it determines the optimal motion using only the
information at each state. More specifically, at each time step i,
suppose the avatar selects an action and gets a reward defined by ri.
The optimal policyp p offers an action at every state that maximizes
the following return value:

R ¼
X

i

giri ð23Þ

where 0 � g � 1. The term gi is added because more uncertainty
exists in the future. It has been used to help pedestrians avoid other
obstacles/avatars walking in the streets (43,44), to control a boxer
to approach and hit the target (45), and to train a computer-
controlled fighter in computer games (46).

8 COMPUTER ANIMATION



His elbow deformed22 the soft breast of the lady. Joe was
happy for awhile, but at the next moment, he was pulled out
from the train by this lady, and they started to argue. Soon,
the woman realized that Joe was actually a muscular man.
This woman was also an enthusiast of unusual hobbies and
surprisingly, started to get attracted to Joe! Joe felt so lucky
that he forgot about all the bad signs in the morning. He
started to talk about his hobbies, such as jogging, muscle
training, and cartoon animations. Then the woman replied,
‘‘Cartoon animations!? Great, I am actually an Otaku!23

Hey, why don’t you come to my home and watch some
Manga songs now?’’ ‘‘Absolutely!!’’ Joe agreed, and Joe
called his boss to tell them that he was sick and he would
not be coming into work that day. The woman’s name was
Joie, which was the same name as the girl Joe liked in junior
high. After arriving to Joie’s home, they sat on the sofa in
front of the computer, and visited the YouTube website to
watch the theme songs of the cartoon animations. The TV
songs of the 2-D cell animations (47,48)24 that he watched in
the 1980s calms his mind, especially when he is feeling
harassed like this morning (Fig. 20).

After watching ‘‘Maicching Machiko Sensei,’’ which is an
animation that is not suitable for kids but acceptable for
adults like Joe and Joei, they stared at each other in a
good mood. Unfortunately, an even more muscular guy,
who looks like the Hulk,25 opened the door and came
into the room. Joei had a lot of muscular boyfriends and
unfortunately, one of her boyfriends stepped into her room
at the worst time. Seeing Joe and Joei together made this
boyfriend not only appear physically like the Hulk, but also
act mentally like the Hulk.

The boyfriend started to destroy everything in the room
and rushed to Joe. Joe was not confident to fight well, but as
he was just watching some cartoon songs of the transform-
ing robot ‘‘Daitarn 3,’’ he was brave enough to fight back.
Joe could predict the attacks available by the boyfriend as
his movements were so similar to the Hulk, and Joe was so
fond of the Hulk that he had watched it many times. Joe
expanded the game tree (49)26 (Fig. 21), and he discovered
that whatever motion he selects, he is going to be knocked to
the ground in the end. Therefore, he selected the motion

Figure 19. The breast is deformed by Laplacian coordinates with
constraints of constant volume.

22Objects such as soft tissues are called deformable objects. Tech-
niques to handle deformable objects are required to generate
animations not only for the surface of human skin but also for
tissues inside the body for simulation of surgical operations and
nonrigid objects like jelly or plastic objects.
23Otaku are people who are obsessed with cartoons, hero stories,
animation figures, toys, and games. It is a Japanese term that had a
negative meaning originally; it meant implicitly the people who are
not good at communicating with other people, and watch cartoons
and hero stories obsessively on TV. However, when the word
spread internationally, thanks to the popular Japanese cartoon/
hero story culture, it was taken as a positive word. It means the
group of people who enjoy such hobbies. Many Otaku people are in
the world now, who discuss the details and the side stories of
animations and who wear the costumes of the heroes in the stories.
242-D cell animation is the traditional animation created by draw-
ing pictures on transparent sheets called cell. Today, the costs of
creating 2-D animation have been reduced significantly because of
the use of computers. In the old days, all animations were drawn by
the animators who required a huge amount of time and labor cost.
Nowadays, computers reduce such manual labor not only through
computer-based editing of 2-D cell pictures, but also by using 3-D
computer animation to generate 2-D cell animation. Techniques for

rendering 3-D models in 2-D cell animation style are called toon
rendering (Fig. 20). In such case, nonphotorealistic rendering
techniques are used to color the polygons. Techniques to render
video captured movie data in 2-D cell animation style have also
been developed (47). A poisson filter can be used to add cartoon
taste to captured motion data (48). In TV animations such as ‘‘SD
Gundam Force,’’ ‘‘The World of Golden Eggs,’’ and ‘‘Zoids’’ toon
rendering is used for production. In games such as ‘‘Dragon Ball
Z: Sagas’’, ‘‘DragonQuest VIII’’, and ‘‘Metal Gear AC!D2’’, toon
rendering is used for real-time rendering.
25The Hulk is a cartoon written by writer Stan Lee, penciller Jack
Kirby, and inker Paul Reinman. It was first published in Marvel
Comics in 1962. The hero, Dr. Robert Bruce Banner, tranforms
into the Hulk when his tension reaches some threshold. The Hulk,
who is enormously muscular and has green skin, is very destruc-
tive, attacks his enemies, and destroys the buildings and infra-
structures of the town. It was remade recently into a Hollywood
movie using new techniques of computer graphics in 2003.
26Game tree is used for strategy making of computer-based
players of games such as tic-tac-toe, chess and go. Every node
represents the ply of one of the players, and the out-going edge
represents the available move at each ply. Recently, Shum et al.
(49) proposed a method to apply it to simulate competitive inter-
actions such as boxing and chasing.

Figure 18. Joe can select the near-optimal movements that
makes him proceed towards the train while avoiding the other
passengers (43).

COMPUTER ANIMATION 9



that would minimize his damage, which was to receive an
upper cut at the chin (50) (Fig. 22). Thanks to the momen-
tum-based inverse kinematics, he could keep his balance by
stepping backward (50,51).27 But Joe was certainly not
powerful enough to cope with the crazy boyfriend anymore.
The second attack was a somersault kick; the sound of the

kick passing through the air and smashing Joe’s face was
sound rendered (52,53)28 by the method proposed by
Dobashi et al. (53). The boyfriend’s leg smashed Joe’s
nose and he fell to the ground like a ragdoll29. The motion
to fall down onto the ground was simulated by Zordan’s

Figure 20. A toon rendered pot (left) and a frame of a tooned video (right) (40).

Figure 21. An expanded game tree of fighting. The distance
along the vertical axis represents time. The red and blue circle
nodes represent the moments each fighter launch a new action,
respectively. Each edge represents the action that has been
selected by the fighter.

28Sound rendering techinques are used to increase the sense of
immersion by generating sound synchronized with the animation.
In the original sound rendering paper (52), the sound was pre-
recorded; however, in Ref. 53, the sound was simulated fluid
dynamics.
29Ragdoll physics is the simulation of a multibody system without
actively torque or force applying at the joints. The body will just fall
down like a doll in that case, but it is enough to simulate a dead body.

27A great demand exists for scenes where people are pushed away
or knocked to the ground in movies and games because recreating
such dangerous scenes is difficult. Ragdoll physics are often used
when the character falls to the ground. If the avatar is just
supposed to take a few steps backward and start a new motion,
then techniques that take advantage of motion capture data are
also available (50,51).

Figure 22. Actually Joe loves this (50).

10 COMPUTER ANIMATION



technique (51) to combine PD control and motion capture
data (Fig. 23) . Poor Joe, his nose was deformed drastically
by Laplacian coordinates, and a huge amount of blood
poured from his nose. This fight was the event the bad
signs were referring to.

BIBLIOGRAPHY

1. M. W. Walker and D. E. Orin, Efficient dynamic computer
simulation of robot manipulators, ASME J. Dyn. Syst., Meas.
Control 104: 205–211, 1982.

2. R. Featherstone, Robot Dynamics Algorithm, Boston, MA:
Kluwer Academic Publishers, 1987.

3. P. M. Isaacs and M. F. Cohen, Controlling dynamic simulation
with kinematic constraints, behavior functions and inverse
dynamics, Comput. Graph. 21(4): 215–224, 1987.

4. M. F. Cohen, Interactive spacetime control for animation,
Comput. Graph. 26: 293–302, 1992.

5. Z. Liu, S. J. Gortler, and M. F. Cohen, Hierarchical spacetime
control, Comput. Graph. 28(2): 35–42, 1994.

6. J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien,
Animation of human athletics, Comput. Graph. (SIGGRAPH),
1995, pp. 71–78.

7. W. L. Wooten and J. K. Hodgins, Animation of human diving,
Comput. Graph. Forum 15, 1: 3–13, 1994.

8. J. K. Hodgins and N. S. Pollard, Adapting simulated behaviors
for new characters Comput. Graph. (SIGGRAPH), 1997. 153–
162.

9. A. Witkin and M. Kass, Spacetime constraints, Proc. Comput.
Graph., 22: 159–168, 1988.

10. C. K. Liu and Z. Popović, Synthesis of complex dynamic char-
acter motion from simple animations, ACM Trans. Graph.
21(3): 408–416, 2002.

11. Y. Abe, C. K. Liu, and Z. Popović, Momentum-based parame-
terization of dynamic character motion, Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
2004, pp. 173–182.

12. M. Gleicher, Retargetting motion to new characters, Comput.
Graph. Proc. Annual Conference Series, 1998, pp. 33–42.

13. J. Lee and S. Y. Shin, A hierarchical approach to interactive
motion editing for humanlike figures, Proc. of SIGGRAPH’,
199, pp. 39–48.

14. L. Kovar and M. Gleicher, Automated extraction and parame-
terization of motions in large data sets, ACM Trans.
Graph.23(3): 559–568, 2004.

15. T. Mukai and S. Kuriyama, Geostatistical motion interpola-
tion, ACM Trans. Graph.24(3): 1062–1070, 2005.

16. L. Kovar, M. Gleicher, and F. Pighin, Motion graphs, ACM
Trans. Graph. 21(3): 473–482, 2002.

17. O. Arikan and D. Forsyth, Motion generation from examples,
ACM Trans. Graph. 21(3): 483–490, 2002.

18. J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S.
Pollard, Interactive control of avatars animated with human
motion data.ACM Trans. Graph. 21(3): 491–500, 2002.

19. J. Teran, S. Blemker, V. Ng Thow Hing, and R. Fedkiw, Finite
volume methods for the simulation of skeletal muscle, Proc.
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA), 2003, pp. 68–74.

20. F. Scheepers, R. E. Parent, W. E. Carlson, and S. F. May,
Anatomy-based modeling of the human musculature, Comput.
Graph. (SIGGRAPH), 1997, pp. 163–172.

21. V. H. Project, Available: http://www.nlm.nih.gov/research/visi-
ble/visible_human.html.

22. S.-H. Lee and D. Terzopoulos, Heads up! Biomechanical mod-
eling and neuromuscular control of the neck, ACM Trans.
Graph.25(3): 1188—1198.

23. K. Kahler, J. Haber, H. Yamauchi, and H.-P Seidel, Head shop:
Generating animated head models with anatomical structure,
Proc. ACM SIGGRAPH Symposium on Computer Animation
(SCA)2002, pp. 55–64.

24. E. Sifakis, A. Selle, A. Robinson-Mosher, and R. Fedkiw, Simu-
lating speech with a physics-based facial muscle model, Proc.
ACM SIGGRAPH Symposium on Computer Animation (SCA),
2006, pp. 260–270.

25. J. Wilhelms and A. V. Gelder, Anatomically based modeling,
Proc. Comput. Graph. (SIGGRAPH), 1997, pp. 172–180.

26. T. Komura, Y. Shinagawa, and T. L. Kunii, Creating and
retargetting motion by the musculoskeletal human body
model, T. Vis. Comput.5: 254–270, 2000.

27. Y. Lee, D. Terzopoulos, and K. Waters, Realistic modeling for
facial animation. Proc. ACM SIGGRAPH’ 95 Conference, 1995,
pp. 55–62.

28. W. Rachel, G. Eran, and F. Ronald, Impulse-based control of
joints and muscles, IEEE Trans. Visu. Comput. Graph. In
press.

29. N. Foster and R. Fedkiw, Practical animation of liquids, Proc.
SIGGRAPH, 2001, pp. 15–22.

30. S. Osher and R. Fedkiw, Level Set Methods and Dynamic
Implicit Surfaces, Berlin: Springer, 2002.

31. B. Choe, M. G. Choi, and H.-S. Ko, Simulating complex
hair with robust collision handling, ACM SIGGRAPH/

Figure 23. Joe being kicked down
onto the ground (49).

COMPUTER ANIMATION 11



Eurographics Symposium on Computer Animation, 2005, pp.
153–160.

32. E. Guendelman, R. Bridson, and R. Fedkiw, Nonconvex rigid
bodies with stacking, ACM Trans. Graph. (TOG) 22(3): 871–
878, 2003.

33. B. Mirtich and J. Canny, Impulse-based simulation of rigid
bodies, Proc. Symposium on Interactive 3D Graphics, 1995.

34. T. Jakobsen, Advanced character physics, Proc. In Game Devel-
opers Conference, 2001, pp. 383–401.

35. K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y.
Shum, 2005. Large mesh deformation using the volumetric
graph laplacian, ACM Trans. Graph.24(3): 496–503, 2005.

36. O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl, and
H.-P. Seidel, Laplacian surface editing, Proc. Eurographics/
ACM SIGGRAPH Symposium on Geometry Processing, Euro-
graphics Association, 2004, pp. 179–188.

37. Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossl, and
H.-P. Seidel, Differential coordinates for interactive mesh
editing, smi 00, 2004, pp. 181–190.

38. D. Baraff and A. Witkin, Large steps in cloth simulation,
Comput. Graph., (SIGGRAPH ’98), 1998, pp. 43–54.

39. J. F. O’Brien and J. K. Hodgins, Graphical modeling and
animation of brittle fracture, Proc. SIGGRAPH, 1999, pp.
137–146.

40. N. Molino, Z. Bao, and R. Fedkiw, A virtual node algorithm for
changing mesh topology during simulation, ACM Trans.
Graph. (TOG)23(3): 385–392, 2004.

41. C. Reynolds, Flocks, herds, and schools: A distributed beha-
vioral model, Proc. SIGGRAPH 87 21, 1987, pp. 25–34.

42. W. Shao and D. Terzopolos, Autonomous pedestrians, Proc.
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2005, pp. 19–28.

43. A. Treuille, Y. Lee, and Z. Popović, Near-optimal character
animation with continuous control, ACM Trans. Graph.26(3):
2007.

44. L. Ikemoto, O. Arikan, and D. Forsyth, Learning to move
autonomously in a hostile world, Technical Report No. UCB/
CSD-5-1395, University of California, Berkeley, 2005.

45. J. Lee and K. H. Lee, Precomputing avatar behavior from
human motion data. Proc. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2004, pp. 79–87.

46. T. Graepel, R. Herbrich, and J. Gold, Learning to fight, Proc.
Computer Games: Artificial Intelligence Design and Education
(CGAIDE), 2004, pp. 193–200.

47. J. Wang, Y. Xu, H.-Y. Shum, and M. Cohen, Video tooning,
ACM Trans. Graph. (Proc. SIGGAPH) 23 (3): 574–583, 2004.

48. J. Wang, S. Drucker, M. Agrawala, and M. Cohen, The cartoon
animation filter. ACM Trans. Graph. (TOG) 25(3): 1169–1173,
2006.

49. H. P. Shum, T. Komura, and S. Yamazaki, Simulating compe-
titive interactions using singly captured motions, Proc. ACM
Virtual Reality Software Technology, 2007.

50. T. Komura, E. S. Ho, and R. W. Lau, Animating reactive motion
using momentum-based inverse kinematics, J. Comput. Ani-
mat. Virtual Worlds (special issue of CASA)16(3): 213–223,
2005.

51. V. B. Zordan, A. Majkowska, B. Chiu, and M. Fast, Dynamic
response for motion capture animation, ACM Trans. Graph.
24(3): 697–701, 2005.

52. T. Takala and J. Hahn, Sound rendering, Proc. SIGGRAPH,
2002, pp. 211–220.

53. Y. Dobashi, T. Yamamoto, T. Nishita, Real-time rendering of
aerodynamic sound using sound textures based on computa-
tional fluid dynamics. ACM Transactions on Graphics 23, 3,
732–740.

TAKU KOMURA

University of Edinburgh
Edinburgh, Scotland

12 COMPUTER ANIMATION



C

CONCURRENT PROGRAMMING

INTRODUCTION

Concurrent programming refers to the development of
programs that address the parallel execution of several
tasks. A process or task represents the execution of a
sequential program or a sequential component in a con-
current program. Each task deals with one sequential
thread of execution; thus, no concurrency is allowed within
a task. However, overall system concurrency is obtained by
having multiple tasks executing in parallel. The tasks often
execute asynchronously (i.e., at different speeds) and are
relatively independent of each other for significant periods
of time. From time to time, the tasks need to communicate
and synchronize their operations with each other. Concur-
rent programming has been applied extensively in the
development of operating systems, database systems,
real-time systems, interactive systems, and distributed
systems.

HEAVYWEIGHT AND LIGHTWEIGHT PROCESSES

The term ‘‘process’’ is used in operating systems as a unit of
resource allocation for the processor (CPU) and memory.
The traditional operating system process has a single
thread of control and thus has no internal concurrency.
Some modern operating systems allow a process, referred to
as a heavyweight process, to have multiple threads of con-
trol, thereby allowing internal concurrency within a pro-
cess. The heavyweight process has its own memory. Each
thread of control, also referred to as a lightweight process,
shares the same memory with the heavyweight process.
Thus, the multiple threads of a heavyweight process can
access shared data in the process’s memory, although this
access must be synchronized.

The terms ‘‘heavyweight’’ and ‘‘lightweight’’ refer to the
context switching overhead. When the operating system
switches from one heavyweight process to another, the
context switching overhead is relatively high, requiring
CPU and memory allocation. With the lightweight process,
context switching overhead is low, involving only CPU
allocation.

The terminology varies considerably in different operat-
ing systems, although the most common is to refer to the
heavyweight process as a process (or task) and the light-
weight process as a thread. For example, the Java virtual
machine usually executes as an operating system process
supporting multiple threads of control (1). However, some
operating systems do not recognize that a heavyweight
process actually has internal threads and only schedule
the heavyweight process to the CPU. The process then has
to do its own internal thread scheduling.

A process, which is also known as a task, refers to a
dynamic entity that executes on a processor and has its own
thread of control, whether it is a single-threaded heavy-

weight process or a thread within a heavyweight process
(2). The task corresponds to a thread within a heavyweight
process (i.e., one that executes within a process) or to a
single-threaded heavyweight process. Many issues con-
cerning task interaction apply regardless of whether the
threads are in the same heavyweight process or in different
heavyweight processes.

COOPERATION BETWEEN CONCURRENT TASKS

In the design of concurrent systems, several problems need
to be considered that do not arise when designing sequen-
tial systems. In most concurrent applications, it is neces-
sary for concurrent tasks to cooperate with each other
to perform the services required by the application. The
following three problems commonly arise when tasks coop-
erate with each other:

1. The mutual exclusion problem. This problem
occurs when tasks need to have exclusive access to
a resource, such as shared data or a physical device. A
variation on this problem, where the mutual exclu-
sion constraint can be relaxed in certain situations, is
the multiple readers and writers problem.

2. Task synchronization problem. Two tasks need
to synchronize their operations with each other.

3. The producer/consumer problem. This problem
occurs when tasks need to communicate with each
other to pass data from one task to another. Commu-
nication between tasks is often referred to as inter-
process communication (IPC).

These problems and their solutions are described next.

MUTUAL EXCLUSION PROBLEM

Mutual exclusion arises when it is necessary for a shared
resource to be accessed by only one task at a time. With
concurrent systems, more than one task might simulta-
neously wish to access the same resource. Consider the
following situations:

� If two or more tasks are allowed to write to a
printer simultaneously, output from the tasks will
be randomly interleaved and a garbled report will be
produced.

� If two or more tasks are allowed to write to a data
repository simultaneously, inconsistent and/or incor-
rect data will be written to the data repository.

To solve this problem, it is necessary to provide a syn-
chronization mechanism to ensure that access to a critical
resource by concurrent tasks is mutually exclusive. A task
must first acquire the resource, that is, get permission to
access the resource, use the resource, and then release the

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



resource. When task A releases the resource, another task
B may now acquire the resource. If the resource is in use by
A when task B wishes to acquire it, B must wait until A
releases the resource.

The classic solution to the mutual exclusion problem was
first proposed by Dijkstra (3) using binary semaphores. A
binary semaphore is a Boolean variable that is accessed
only by means of two atomic (i.e., indivisible) operations,
acquire (semaphore) and release (semaphore). Dijkstra ori-
ginally called these the P (for acquire) and V (for release)
operations.

The indivisible acquire (semaphore) operation is exe-
cuted by a task when it wishes to acquire a resource. The
semaphore is initially set to 1, meaning that the resource is
free. As a result of executing the acquire operation, the
semaphore is decremented by 1 to 0 and the task is allocated
the resource. If the semaphore is already set to 0 when the
acquire operation is executed by task A, this means that
another task, say B, already has the resource. In this case,
task A is suspended until task B releases the resource by
executing a release (semaphore) operation. As a result, task
A is allocated the resource. It should be noted that the task
executing the acquire operation is suspended only if the
resource has already been acquired by another task. The
code executed by a task while it has access to the mutually
exclusive resource is referred to as the critical section or
critical region.

EXAMPLE OF MUTUAL EXCLUSION

An example of mutual exclusion is a shared sensor data
repository, which contains the current values of several
sensors. Some tasks read from the data repository to pro-
cess or display the sensor values, and other tasks poll the
external environment and update the data repository with
the latest values of the sensors. To ensure mutual exclusion
in the sensor data repository example, a sensor Data
Repository Semaphore is used. Each task must execute
an acquire operation before it starts accessing the data
repository and execute a release operation after it has fin-
ished accessing the data repository. The pseudocode for
acquiring the sensor Data Repository Semaphore to enter
the critical section and releasing the semaphore is as follows:

acquire (sensorDataRepositorySemaphore)
Accesssensordatarepository[Thisisthecritical
section.]
release (sensorDataRepositorySemaphore)

The solution assumes that, during initialization, the
initial values of the sensors are stored before any reading
takes place.

In some concurrent applications, it might be too restric-
tive to only allow mutually exclusive access to a shared
resource. Thus, in the sensor data repository example just
described, it is essential for a writer task to have mutually
exclusive access to the data repository. However, it is
permissible to have more than one reader task concurrently
reading from the data repository, provided there is no
writer task writing to the data repository at the same

time. This is referred to as the multiple readers and writers
problem (2,4,5) and may be solved by using semaphores.

TASK SYNCHRONIZATION PROBLEM

Event synchronization is used when two tasks need to
synchronize their operations without communicating
data between the tasks. The source task executes a signal
(event) operation, which signals that an event has taken
place. Event synchronization is asynchronous.

The destination task executes a wait (event) operation,
which suspends the task until the source task has signaled
the event. If the event has already been signaled, the
destination task is not suspended.

EXAMPLE OF TASK SYNCHRONIZATION

Consider an example of event synchronization from con-
current robot systems. Each robot system is designed as a
concurrent task and controls a moving robot arm. A pick-
and-place robot brings a part to the work location so that a
drilling robot can drill four holes in the part. On completion
of the drilling operation, the pick-and-place robot moves the
part away.

Several synchronization problems need to be solved.
First, there is a collision zone where the pick-and-place
and drilling robot arms could potentially collide. Second,
the pick-and-place robot must deposit the part before the
drilling robot can start drilling the holes. Third, the drilling
robot must finish drilling before the pick-and-place robot
can remove the part. The solution is to use event synchro-
nization, as described next.

The pick-and-place robot moves the part to the work
location, moves out of the collision zone, and then signals
the event part Ready. This awakens the drilling robot,
which moves to the work location and drills the holes. After
completing the drilling operation, it moves out of the colli-
sion zone and then signals a second event, part Com-
pleted, which the pick-and-place robot is waiting to
receive. After being awakened, the pick-and-place robot
removes the part. Each robot task executes a loop, because
the robots repetitively perform their operations. The solu-
tion is described below and depicted using the Unified
Modeling Language notation (6,7) in Fig. 1. Each robot
task is depicted by a box with a thick outline. The event
signals are shown as arrows.

pick & Place Robot:
while workAvailable do

Pick up part
Move part to work location

pick&PlaceRobot drillingRobot

partReady

partCompleted

Figure 1. Example of task synchronization with two event
signals.

2 CONCURRENT PROGRAMMING



Release part
Move to safe position
signal (partReady)
wait (partCompleted)
Pick up part
Remove from work location
Place part

end while;

drilling Robot:
while workAvailable do

wait (partReady)
Move to work location
Drill four holes
Move to safe position
signal (partCompleted)

end while;

Next, consider the case in which a giver robot hands over
a part to a receiver robot. Once again, there is the potential
problem of the two robot arms colliding with each other.
However, this time we cannot prevent both robots from
being in the collision zone at the same time because, during
the hand-over, there is a time when both robots are holding
the same part.

The solution we adopt is to allow only one robot to move
within the collision zone at any given time. First, one robot
moves into the collision zone. It then signals to the other
robot that it has reached the exchange position. The second
robot now moves into the collision zone. An event signal
collision Zone Safe is used for this purpose. The giver
robot signals a second event, part Ready, to notify the
receiver robot that it is ready for the hand-over. Two
more event signals are used during the hand-over, part
Grasped and part Released. The part hand-over has to
be as precise as a baton hand-over in a relay race. The
solution is illustrated in Fig. 2 and described as follows:

Giver robot (robot A):
while workAvailable do

Pick up Part
Move to edge of collision zone
wait (collisionZoneSafe)
Move to exchange position
signal (partReady)
wait (partGrasped)
Open Gripper to release part
signal (partReleased)
wait (collisionZoneSafe)
Leave collision zone

end while;

Receiver robot (robot B):
while workAvailable do

Move to exchange position
signal (collisionZoneSafe)
wait (partReady)
Close Gripper to grasp part
signal (partGrasped)
wait (partReleased)
Leave collision zone
signal (collisionZoneSafe)
Place part

end while;

Task synchronization may also be achieved by means of
message communication as described next.

PRODUCER/CONSUMER PROBLEM

A common problem in concurrent systems is that of pro-
ducer and consumer tasks. The producer task produces
information, which is then consumed by the consumer
task. For this to happen, data need to be passed from
the producer to the consumer. In a sequential program,
a calling operation (procedure) also passes data to a
called operation. However, control passes from the calling
operation to the called operation at the same time as
the data.

In a concurrent system, each task has its own thread of
control and the tasks execute asynchronously. It is there-
fore necessary for the tasks to synchronize their opera-
tions when they wish to exchange data. Thus, the producer
must produce the data before the consumer can consume
it. If the consumer is ready to receive the data but the
producer has not yet produced it, then the consumer must
wait for the producer. If the producer has produced the
data before the consumer is ready to receive it, then either
the producer has to be held up or the data need to be
buffered for the consumer, thereby allowing the producer
to continue.

A common solution to this problem is to use message
communication between the producer and consumer
tasks. Message communication between tasks serves two
purposes:

1. Transfer of data from a producer (source) task to a
consumer task (destination).

2. Synchronization between producer and consumer.
If no message is available, the consumer has to
wait for the message to arrive from the producer.
In some cases, the producer waits for a reply from
the consumer.

Message communication between tasks may be loosely
coupled or tightly coupled. The tasks may reside on the same
node or be distributed over several nodes in a distributed
application.

With loosely coupled message communication, the pro-
ducer sends a message to the consumer and continues
without waiting for a response. Loosely coupled message

robotA robotB

partReady
part 
Released

collision
ZoneSafe

part 
Grasped

Figure 2. Example of task synchronization with four event
signals.

CONCURRENT PROGRAMMING 3



communication is also referred to as asynchronous message
communication.

With tightly coupled message communication, the
producer sends a message to the consumer and then imme-
diately waits for a response. Tightly coupled message
communication is also referred to as synchronous message
communication and in Ada as a rendezvous.

LOOSELY COUPLED MESSAGE COMMUNICATION

With loosely coupled message communication, also referred
to as asynchronous message communication, the producer
sends a message to the consumer and either does not need a
response or has other functions to perform before receiving
a response. Thus, the producer sends a message and con-
tinues without waiting for a response. The consumer
receives the message. As the producer and consumer tasks
proceed at different speeds, a first-in-first-out (FIFO) mes-
sage queue can build up between producer and consumer. If
there is no message available when the consumer requests
one, the consumer is suspended.

An example of loosely coupled message communica-
tion is given in Fig. 3 using the UML notation. The
producer task sends messages to the consumer task. A
FIFO message queue can exist between the producer and
the consumer. The message is labeled asynchronous
message. Parameters of the message are depicted in
parentheses, that is, asynchronous message (para-
meter1, parameter2).

TIGHTLY COUPLED MESSAGE COMMUNICATION
WITH REPLY

In the case of tightly coupled message communication with
reply, also referred to as synchronous message communica-
tion with reply, the producer sends a message to the con-

sumer and then waits for a reply. When the message
arrives, the consumer accepts the message, processes it,
generates a reply, and then sends the reply. The producer
and consumer then both continue. The consumer is sus-
pended if no message is available. For a given producer/
consumer pair, no message queue develops between the
producer and the consumer. In some situations, it is also
possible to have tightly coupled message communication
without reply (7).

An example of tightly coupled message communication
with reply is given in Fig. 4 using the UML notation. The
producer sends a message to the consumer. After receiving
the message, the consumer sends a reply to the producer.
The message is labeled synchronous message. Para-
meters of the message are depicted in parentheses, that
is, synchronous message (parameter1, parameter2).
The reply is depicted in UML by a separate dashed message
with the arrowhead pointing in the reverse direction of the
original message.

EXAMPLE OF PRODUCER/CONSUMER MESSAGE
COMMUNICATION

As an example of tightly coupled message communication
with reply, consider the case where a vision system has to
inform a robot system of the type of part coming down a
conveyor, for example, whether the car body frame is a
sedan or station wagon. The robot has a different welding
program for each car body type. In addition, the vision
system has to send the robot information about the location
and orientation of a part on a conveyor. Usually this infor-
mation is sent as an offset (i.e., relative position) from a
point known to both systems. The vision system sends the
robot a tightly coupled message, the car ID Message,
which contains the car Model ID and car Body Offset,
and then waits for a reply from the robot. The robot indi-
cates that it has completed the welding operation by send-
ing the done Reply.

In addition, the following event synchronization is
needed. Initially, a sensor signals the external event car
Arrived to notify the vision system. Finally, the vision
system signals the actuator move Car, which results in the
taking away of the car by the conveyor. The solution is
illustrated in Fig. 5 and described next.

Vision System:
while workAvailable do

wait (carArrived)
Take image of car body
Identify the model of car
Determinelocationandorientationofcarbody

aProducerTask aConsumerTask

asynchronous
message

send (message) receive (message)

Figure 3. Loosely coupled (asynchronous) message communica-
tion.

aProducerTask aConsumerTask

synchronous message

send (message)
wait for  reply

receive (message)
send (reply)

reply

Figure 4. Tightly coupled (synchronous) message communica-
tion with reply.

aVisionSystem aRobotSystem

doneReply

carIdMessage

Figure 5. Example of message communication.

4 CONCURRENT PROGRAMMING



send carIdMessage (carModelId, carBodyOff-
set) to Robot System
wait for reply
signal (moveCar)

end while;
Robot System:
while workAvailable do

wait for message from Vision System
receive carIdMessage (carModelId, carBody-
Offset)
Select welding program for carModelId
Execute welding program using carBodyOffset
for car position
send (doneReply) to Vision System

end while;

INFORMATION HIDING APPLIED TO ACCESS
SYNCHRONIZATION

The solution to the mutual exclusion described is error
prone. It is possible for a coding error to be made in one
of the tasks accessing the shared data, which would then
lead to serious synchronization errors at execution time.
Consider, for example, the mutual exclusion problem
described. If the acquire and release operations were
reversed by mistake, the pseudocode would be

release (sensorDataRepositorySemaphore)
Access sensor data repository [should be critical
section]
acquire (sensorDataRepositorySemaphore)

As a result of this error, the task enters the critical
section without first acquiring the semaphore. Hence, it
is possible to have two tasks executing in the critical sec-
tion, thereby violating the mutual exclusion principle.
Instead, the following coding error might be made:

acquire (sensorDataRepositorySemaphore)
Access sensor data repository [should be critical
section]
acquire (sensorDataRepositorySemaphore)

In this case, a task enters its critical section for the first
time but then cannot leave because it is trying to acquire a
semaphore it already possesses. Furthermore, it prevents
any other task from entering its critical section, thus
provoking a deadlock, where no task can proceed.

In these examples, synchronization is a global problem
that every task has to be concerned about, which makes
these solutions error prone. By using information hiding
(8,9), the global synchronization problem can be reduced to
a local synchronization problem, making the solution less
error prone. With this approach, only the information
hiding object need be concerned about synchronization.
An information hiding object that hides details of synchro-
nizing concurrent access to data is also referred to as a
monitor (10), as described next.

MONITORS

A monitor combines the concepts of information hiding
and synchronization. A monitor is a data object that
encapsulates data and has operations that are executed
mutually exclusively. The critical section of each task is
replaced by a call to a monitor operation. An implicit
semaphore is associated with each monitor, referred to
as the monitor lock. Thus, only one task is active in a
monitor at any one time. A call to a monitor operation
results in the calling task acquiring the associated sema-
phore. However, if the lock is already taken, the task
blocks until the monitor lock is acquired. An exit from
the monitor operation results in a release of the sema-
phore; i.e., the monitor lock is released so that it can be
acquired by a different task. The mutually exclusive
operations of a monitor are also referred to as guarded
operations or synchronized methods in Java.

Example of Monitor

An example of a monitor is given next. Consider the sensor
data repository described above. The monitor solution is to
encapsulate the data repository in an Analog Sensor
Repository data abstraction object, which supports
read and update operations. These operations are called
by any task wishing to access the data repository. The
details of how to synchronize access to the data repository
are hidden from the calling tasks.

The monitor provides for mutually exclusive access to an
analog sensor repository. There are two mutually exclusive
operations to read from and to update the contents of the
analog repository, as shown in Fig. 6. The two operations
are as follows:

readAnalogSensor (in sensorID, out sensor-
Value, out upperLimit, out lowerLimit,
out alarmCondition)

This operation is called by reader tasks that wish to read from
the sensor data repository. Given the sensor ID, this operation
returns the current sensor value, upper limit, lower limit, and
alarm condition to users who might wish to manipulate or
display the data. The range between the lower limit and the
upper limit is the normal range within which the sensor value
can vary without causing an alarm. If the value of the sensor is

aReader
Task

aWriter
Task

«data abstraction»
:AnalogSensor

Repository

readAnalogSensor(in sensorID,
out sensorValue,
out upperLimit,
out lowerLimit,
out alarmCondition)

updateAnalogSensor

(sensorID, sensorValue)

Figure 6. Example of concurrent access to data abstraction
object.

CONCURRENT PROGRAMMING 5



below the lower limit or above the upper limit, the alarm
condition is equal to low or high, respectively.

updateAnalogSensor(insensorID,insensorValue)

This operation is called by writer tasks that wish to write to the
sensor data repository. It is used to update the value of the sensor
in the data repository with the latest reading obtained by mon-
itoring the external environment. It checks whether the value of
the sensor is below the lower limit or above the upper limit and, if
so, sets the value of the alarm to low or high, respectively. If the
sensorvalueiswithinthenormalrange, thealarmissettonormal.

The pseudocode for the mutually exclusive operations is
as follows:

monitor AnalogSensorRepository

readAnalogSensor(insensorID,outsensorValue,
out upperLimit, out lowerLimit, out alarmCondi-
tion)

sensorValue := sensorDataRepository (sen-
sorID, value);

upperLimit := sensorDataRepository (sen-
sorID, upLim);

lowerLimit := sensorDataRepository (sen-
sorID, loLim);

alarmCondition := sensorDataRepository
(sensorID, alarm);

end readAnalogSensor;

updateAnalogSensor(insensorID,insensorValue)
sensorDataRepository (sensorID, value) := sen-
sorValue;

if sensorValue >= sensorDataRepository (sen-
sorID, upLim)

then sensorDataRepository (sensorID,
alarm) := high;

else if sensorValue <= sensorDataRepository
(sensorID, loLim)
then sensorDataRepository (sensorID, alarm)
:= low;

else sensorDataRepository (sensorID, alarm)
:= normal;

end if;
end updateAnalogSensor;
end AnalogSensorRepository;

CONDITION SYNCHRONIZATION

In addition to providing synchronized operations, monitors
support condition synchronization. This allows a task
executing the monitor’s mutually exclusive operation to
block, by executing a wait operation until a particular con-
dition is true, for example, waiting for a buffer to become full
or empty. When a task in a monitor blocks, it releases the
monitor lock, allowing a different task to acquire the monitor
lock. A task that blocks in a monitor is awakened by some
other task executing a signal operation (referred to as notify
in Java). For example, if a reader task needs to read an item
from a buffer and the buffer is empty, it executes a wait

operation. The reader remains blocked until a writer task
places an item in the buffer and executes a signal operation.

If semaphore support is unavailable, mutually exclusive
access to a resource may be provided by means of a monitor
with condition synchronization, as described next. The
Boolean variable busy is encapsulated by the monitor to
represent the state of the resource. A task that wishes to
acquire the resource calls the acquire operation. The task
is suspended on the wait operation if the resource is busy.
On exiting from the wait, the task will set busy equal to
true, thereby taking possession of the resource. When the
task finishes with the resource, it calls the release opera-
tion, which sets busy to false and calls the signal opera-
tion to awaken a waiting task.

Below is the monitor design for mutually exclusive
access to a resource. Additional examples of monitors
and condition synchronization are given in Ref. (7).

monitor Semaphore
-- Declare Boolean variable called busy,

initialized to false.
private busy : Boolean = false;
-- acquire is called to take possession of the

resource
-- the calling task is suspended if the resource

is busy
public acquire ()

while busy = true do wait;
busy := true;
end acquire;

-- release is called to relinquish possession of
the resource

--ifataskiswaitingfortheresource,itwillbe
awakened

public release ()
busy := false;
signal;

end release;
end Semaphore;

RUN-TIME SUPPORT FOR CONCURRENT PROGRAMMING

Run-time support for concurrent programming may be
provided by

1. A kernel of an operating system. This has the func-
tionality to provide services for concurrent program-
ming. In some modern operating systems, a
microkernel provides minimal functionality to sup-
port concurrent processing with most services pro-
vided by system-level tasks.

2. The run-time support system for a concurrent lan-
guage.

3. A threads package, which provides services for mana-
ging threads (lightweight processes) within heavy-
weight processes.

With sequential programming languages, such as
C, Cþþ, Pascal, and Fortran, there is no support for

6 CONCURRENT PROGRAMMING



concurrent tasks. To develop a concurrent multitasked
application using a sequential programming language,
it is therefore necessary to use a kernel or threads
package.

With concurrent programming languages, such as
Ada and Java, the programming language provides con-
structs for concurrent tasks, including task creation and
deletion, as well as task communication and synchroniza-
tion. In this case, the language’s run-time system handles
task scheduling and provides the services and underlying
mechanisms to support inter-task communication and
synchronization.

FURTHER READING

The body of knowledge on concurrent programming has
grown substantially since Dijkstra’s seminal work (3).
Among the significant early contributions were Brinch
Hansen (11), who developed an operating system based
on concurrent tasks that incorporated semaphores and
message communication, and Hoare (10), who developed
the monitor concept that applies information hiding to task
synchronization. Several concurrent programming algo-
rithms were developed, such as the multiple readers and
writers algorithm (12), the sleeping barber algorithm (3),
the dining philosophers algorithm (13), and the banker’s
algorithm for deadlock prevention (3). Many of the original
papers on concurrent programming are out of print.
Because concurrent processing is such a fundamental
concept, it has been described in textbooks for over three
decades. The best modern sources of information on con-
current programming are books on operating systems,
such as Silberschatz et. al. (5) and Tanenbaum (4), or
books on concurrent programming languages, such as
Java (14) or Ada (15). Two recommended references for
further reading on concurrent programming are Bacon
(2), which describes concurrent systems, both centralized
and distributed, and Magee and Kramer (1), which
describes concurrent programming with Java. The
application of concurrent programming to the design of
concurrent, distributed, and real-time applications is
described in Gomaa (8).

ACKNOWLEDGMENT

Part of the material in this article is extracted from:
H. Gomaa, Designing Concurrent Distributed & Real-
Time Applications with UML, # 2000 Hassan Gomaa.

Reprinted by permission of Pearson Education, Inc. Pub-
lishing as Pearson Addison Wesley.

BIBLIOGRAPHY

1. J. Magee and J. Kramer, Concurrency: State Models & Java
Programs, New York: J. Wiley, 1999.

2. J. Bacon, Concurrent Systems, 2nd ed., Reading, MA: Addison
Wesley, 1998.

3. E. W. Dijkstra, Cooperating sequential processes, in F. Genuys
(ed.), Programming Languages, New York: Academic Press,
1968, pp. 43–112.

4. A. S. Tanenbaum, Modern Operating Systems, 2nd ed., Engle-
Wood Cliggs, NJ: Prentice Hall, 2001.

5. A. Silberschatz, P. Galvin, and G. Gagne, Operating System
Concepts, 7th ed., Reading, MA: Addison Wesley, 2004.

6. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, Reading, MA: Addison Wesley, 1999.

7. H. Gomaa, Designing Concurrent, Distributed, and Real-Time
Applications with UML, Reading, MA: Addison Wesley, 2000.

8. D. Parnas, On the criteria for decomposing a system into
modules, Comm. ACM, 1972.

9. D. Parnas, Designing software for ease of extension and con-
traction, IEEE Trans. on Softw. Eng., 1979.

10. C. A. R. Hoare, Monitors: An operating system structuring
concept, Comm. ACM, 17, (10), 549–557, 1974. C. A. R. Hoare,
Communicating Sequential Processes, Englewood Gliffs, NJ:
Prentice Hall, 1985. D. Hoffman and D. Weiss, (eds), Software
Fundamentals, Collected Papers by David L. Parnas, Reading,
NA: Addison Wesley, 2001.

11. P. Brinch Hansen, Operating System Principles, Ebglewood
Gliffs, NJ, Prentice Hall, 1973.

12. P. J. Courtois, F. Heymans, and D. L. Parnas, Concurrent
control with readers and writers, Acta Informatica, 1, 375–
375, 1972.

13. E. W. Dijkstra, Hierarchical ordering of sequential processes, in
C. A. R Hoare and R. H. Perrot (eds.), Operating Systems
Techniques, New York: Academic Press, 1972.

14. D. Lea, Concurrent Programming in Java: Design Principles
and Patterns, 2nd ed., Reading, MA: Addison Wesley, 1999.

15. J. Barnes, Programming in Ada 95, Reading MA: Addison
Wesley, 1995.

HASSAN GOMAA

George Mason University
Fairfax, Virginia

CONCURRENT PROGRAMMING 7



D

DISTRIBUTED AND COLLABORATIVE
DEVELOPMENT

Rapid advancements in computer, communications, and
network technologies over the years have revolutionized
how computers are used. One of the emerging application
areas that has gained increasing usage and visibility is
computer-supported cooperative work (CSCW). The main
goal of CSCW systems is to facilitate effective collaboration
among users who may be distributed across geographical
distance and time, using computer-based means, which
may range from e-mail to instant messaging to video con-
ferencing to chance meetings in online virtual environ-
ments.

Meanwhile, due in large part to the widespread emer-
gence of virtual organizations and the growing trend of
outsourcing, software development is fast becoming a
group activity that is performed by geographically and
temporally distributed team members. It is no longer unu-
sual to have a large-scale software development project that
has members located in different time zones around the
world; in many cases, the members have not even-met each
other. Thus, it is no coincidence that supporting distributed
software development teams is area of increasing focus in
CSCW system design (1–4).

The key to successful software development in distrib-
uted environments is awareness of task status and activ-
ities of team members to enable coordination and conflict
detection/avoidance, to whose end online file sharing
and version control systems and general-purpose commu-
nications systems (e.g., e-mail and instant messaging
applications) have often been used to provide awareness
information indistributedsoftwaredevelopment.However,
in general, such general-purpose systems are not consid-
ered ideal as source of awareness information, largely
because these systems require collaborators to perform a
significant amount of extra work (e.g., diligently document-
ing one’s actions and activities in e-mail messages or online
forums and carefully following e-mail discussion threads
and file check-in and check-out history) to keep track of
project progress and activities. In addition, unmediated
generation and unfiltered reception of awareness-related
messages can lead to information overload. Therefore, in
CSCW, a desired goal is to automatically provide selective
awareness information to distributed team members.

Nonetheless, general-purpose file sharing and commu-
nications systems have successfully been used to support
many large-scale, open-source development efforts (5–7).
Success of these tools in open-source development efforts
forms a sharp contrast with ongoing efforts in the CSCW
community to build specialized tools and technologies for
providing awareness in distributed environments, which is
especially notable considering that specialized awareness
tools and technologies, with the possible exception of
‘‘buddy lists’’ in instant messaging applications, have not

yet been widely adopted by software developers in their
everyday work activities.

OVERVIEW OF COMPUTER-SUPPORTED COLLABORATIVE
WORK SYSTEMS

The main goal of CSCW systems is to facilitate effective
collaboration among users who may be distributed across
geographical distance or time using computer-based
means. With factors of geographical distance and time,
collaborative work can be distinguished into four types of
interactions, as shown in Fig. 1 (adopted from Ref. 8). For an
in-depth overview of CSCW and issues, see Ref. 8. Face-to-
face interaction occurs when all the collaborators are avail-
able in the same place at the same time. Common examples
of this type of interaction include face-to-face group meet-
ings and presentations. In synchronous distributed inter-
action, collaborators work together at the same time but are
not located in the same place. Video conferencing and
distance learning are good examples of such an interaction.

Asynchronous interaction occurs when collaborators are
collocated but do not work with each other directly at the
same time. This kind of interaction can often be found in
workplaces with different work hours or shifts (e.g., hospi-
tals) where communication is still required to pass along
information and knowledge to coordinate tasks and activ-
ities. Asynchronous and distributed interaction occurs
when collaborators are not collocated and unavailable for
working together at the same time. Open-source develop-
ment, in which collaborating software developers are often
distributed around the world and have never met each
other, is an example of this type of interaction.

In practice, software development typically involves
multiple types of interactions. The main mode of interac-
tion may also change as team requirements and needs
change over time. For example, in the beginning of a given
project, project members may frequently hold face-to-face
meetings to raise and discuss issues in depth, to generate
project plans and requirements, and to get familiar with
each other. Once the project is well under way, the fre-
quency of face-to-face interaction often decreases whereas
that of distributed interaction increases, with project mem-
bers communicating with each other via e-mail, instant
messaging, and other electronic means. Whether software
development occurs in a collocated or distributed environ-
ment, online file repository and version control system [e.g.,
CVS (9)] is almost always employed to store, control access
to, and detect conflicts in source code files, project docu-
ments, and bug reports.

CONCEPTS, TERMINOLOGY, AND ISSUES

Fundamental to enabling collaborative work over geogra-
phical and temporal distance are the concepts of awareness
and shared artifacts. Awareness refers to the ability of

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



distributed collaborators to keep track of each other’s activ-
ities and coordinate their work; see the next section for a
detailed description and discussion of awareness. Shared
artifacts (or shared data) collectively refer to software
entities on which collaborators perform their work. For
example, in group editing (10,11), where multiple authors
can work on the same document at the same time, the
documents being edited would constitute the shared arti-
facts. In an online chat or instant messaging (IM) session,
the exchanged messages would collectively form the shared
artifacts. For collaborative software development, the
shared artifacts may include requirements and design
documents, source code files, bug reports, and code
libraries/packages. As such, shared artifacts always reflect
the current state of collaborative work.

An important issue in providing shared artifacts in
distributed collaborative work is the system architecture
(i.e., the exact manner in which shared artifacts are shared
and accessed by collaborators). In a centralized architec-
ture, shared artifacts are stored and maintained at a single
location, and collaborators access and make updates on
them (12,13). In a replicated architecture, collaborators
work on their own copies of shared artifacts (14) and the
state is synchronized among the copies synchronously or
asynchronously. In general, it is easier to maintain the
same state of shared artifacts under concurrent updates for
all the collaborators in a central architecture than doing so
in a replicated architecture. However, there are two drivers
for use of replicated architectures. First is supporting dis-
connected use of shared artifacts. If a user is disconnected
from the network or has poor connectivity, working on a
local copy of a shared artifact is the only option, with
merging of updates into other copies occurring later. Sec-
ond, elapsed time between making an update and observing
its effect on shared artifacts can be slow and unpredictable
in a centralized architecture, especially over a wide area
network, which can make it difficult to get interactive
response times. With a replicated architecture, updates
can be made locally and then immediately distributed to
other participants. Conflicting updates can, of course,
occur, and a number of solutions have been developed by
the CSCW community, ranging from use of locks to opera-
tion transforms that result in the same state at all sites,

even if participants issue operations in parallel on the same
object (10,11).

Distributed software development typically has a hybrid
architecture, where the shared artifacts (e.g., source code
files and other documents) are stored and maintained at a
central (and often remote) location, but separate local
copies are created per user at check-out time, and any
conflicts between multiple versions of the same artifact
are detected and (manually) resolved at check-in time by
means of a version control system [e.g., CVS (9)]. This
architecture is feasible, in part, because once separate
copies of, say, source code files, are created, programmers
tend to work on them in isolation, and thus, the issues of
providing a high level of interactivity among collaborators
and having to always synchronize the state of shared
artifact replicas do not occur. Later in this article, we
describe an emerging programming practice, called Pair
Programming (15), in which a pair of programmers works
on the same code at the same time, and how they coordinate
their activities.

In addition to awareness and shared artifacts, another
concept is that of a shared workspace. A shared workspace
provides a sense of place where collaboration takes place. It
is generally associated with some part of the screen real
estate of the user’s computer where the user ‘‘goes’’ to work
on shared artifacts, discovers work status, and interacts
with his/her collaborators. It is often supported by the
graphical user interfaces (GUIs) (i.e., ‘‘windows’’) of appli-
cation tools used for working on shared artifacts. CSCW
systems exist that are specifically designed to provide a
shared workspace [e.g., XTV (16) and TeamRooms (17)].
Regardless of how it is provided, the main function of a
shared workspace is to provide awareness of work status
and activities of individual collaborators on shared arti-
facts, which, in turn, are essential for coordinating and
controlling collaboration and achieving group goals.

One key issue in providing a shared workspace is the
degree to which users’ activities in the workspace are
‘‘public’’ or known to their collaborators. To illustrate,
consider XTV (16), which is a predecessor to Microsoft
NetMeeting in terms of its ability to support application
sharing. Specifically, XTV allows any X Windows applica-
tions to be shared between multiple, distributed hosts by
capturing X Windows screen update events at the server
host in real time, where the shared application is running,
and distributing the captured events to a client host, which
draws the windows of the shared application by replaying
the received events. Therefore, in XTV, all the user actions
with the shared application and resulting updates to the
application windows are shown to everyone. That is, the
shared workspace provided by the windows of the shared
application is totally public.

On the other hand, other systems allow collaborators to
perform both private and public activities in the shared
workspace. For example, DistView (18) allows the windows
of a shared application to be selectively shared (i.e., users
have control over which application windows are shared
and when). Specifically, DistView allows users to export
windows at any time during application execution, which
then become available for others to import. When a window
is thus shared, it always shows a synchronized view of

Same Time Different Time

S
am

e 
P

la
ce

D
iff

er
en

t P
la

ce

face-to-face
interaction

asynchronous
interaction

asynchronous
distributed
interaction

synchronous
distributed
interaction

Figure 1. Taxonomy of computer-supported collaborative work.

2 DISTRIBUTED AND COLLABORATIVE DEVELOPMENT



application data being displayed even when collaborators
update the data and maintains the same physical attri-
butes (e.g., window size). In DistView, a shared window also
shows a telepointer that indicates the mouse movements
of the current owner of the window, where the ownership
of the window can be passed among collaborators. There-
fore, in the same shared application, DistView provides
both a public workspace through shared windows and a
private workspace through unshared windows of the appli-
cation.

Different approaches are appropriate for different appli-
cations. For example, XTV and other application sharing
systems (e.g., Microsoft NetMeeting) are well suited for
distributed meeting or presentation applications, where a
well-defined, formal role of a coordinator or presenter exists
whose shared artifacts (e.g., viewgraphs) and actions on
them, such as transitioning to a new viewgraph, should be
visible to everyone in their entirety. However, they may not
be appropriate for other applications, including large-scale
collaborative science (19) and distributed software devel-
opment, where collaborators largely work in private, and
collaboration often occurs on an as-needed basis. For such
applications, the ability to provide private and public
shared workspace and to allow users to make transitions
between the two types of shared workspaces on demand is
critical.

AWARENESS

Software development is inherently a collaborative activ-
ity, which typically involves a team of programmers, tes-
ters, managers, and customers working together over a
period of time. Team members collectively produce a num-
ber of artifacts, including requirements documents, design
documents, progress reports, and software modules/com-
ponents. Team members may be collocated and can work
together at the same time (e.g., as in a single-site corporate
environment) or may be distributed over geographical dis-
tance and time (e.g., as in an outsourcing situation). In
either case, critical to the success of a software development
team is the ability to coordinate activities of team members,
which is largely facilitated by the means of what CSCW
researchers refer to as awareness(20,21).

In general, a group of people working together requires
some ‘‘sense’’ of who is working on what and when, and
‘‘feel’’ for where the group work stands with respect to what
the team is ultimately trying to achieve. Such awareness
information plays a critical role in the effectiveness and
success of team work. As explained in Ref. 22, it ‘‘provides a
context for your own activity. This context is used to ensure
that individual contributions are relevant to the group’s
activity as a whole, and to evaluate individual actions with
respect to group goals and progress. The information, then,
allows groups to manage the process of collaborative work-
ing.’’

Therefore, many software engineering practices and
methodologies include rigorous provisions for providing
adequate and timely awareness of work status and pro-
gress. For example, Extreme Programming is a recent
software development methodology that emphasizes infor-

mal and frequent requirements gathering, communication,
testing, and (customer) feedback (23). Part of the Extreme
Programming practice includes daily, stand-up meetings,
in which each of development team members report on: ‘‘the
prior day’s accomplishments; any obstacles, difficulties, or
stumbling blocks faced; and what he or she plans to accom-
plish during the current day on the basis of the selected
stories and tasks’’ (23). It also includes use of a new pro-
gramming paradigm, called Pair Programming, in which,
to quote Ref. 15, ‘‘two programmers working side-by-side,
collaborating on the same design, algorithm, code, or test.
One programmer, the driver, has control of the keyboard/
mouse and actively implements the program. The other
programmer, the observer, continuously observes the work
of the driver to identify tactical (syntactic, spelling, etc.)
defects and also thinks strategically about the direction of
the work. On demand, the two programmers can brain-
storm any challenging problem. Because the two program-
mers periodically switch roles, they work together as equals
to develop software.’’ In Pair Programming, the member-
ship of a team may change as needed over the project
lifecycle, which has a side effect of spreading in-depth
knowledge about the design and status of individual soft-
ware modules and components under development
throughout the entire project team.

Although studies exist that apply the Extreme Program-
ming practices in a distributed environment [e.g., (24,25)],
its primary methods of providing awareness are built on the
assumption that team members are collocated (to the
extent that they can get together at a common place without
difficulty) and are mostly available for collaboration at the
same time. The issue of providing awareness becomes
significantly difficult when team members are distributed
across geographical distance and time. In distributed envir-
onments, collaborators are forced to interact with each
other via electronic/computer-based media (e.g., audio/
video conferencing and messaging systems), which signifi-
cantly limits the availability of sensory, physiological, and
environment cues (e.g., eye contacts, hand gestures, and
audience attention on individuals) which are readily and
seamlessly communicated in face-to-face meetings, shared
offices, or collocated cubicle environments and are found to
play a critical role in coordination and control of collabora-
tive activities (6). Furthermore, information and knowl-
edge sharing may be significantly reduced in distributed
environments as opportunities do not exist for informal
interactions among team members (e.g., water-cooler con-
versations, chance meetings in hallways, and ‘‘dropping by’’
colleagues’ offices for small talks). Without any provision,
collaborators would have to diligently document coding,
decision making, design, and other activities; collect sup-
port materials; and communicate them (say via e-mail)
with their colleagues, who, in turn, would have to carefully
review and understand the received materials to keep
up-to-date with the current status of their work. Most of
these tasks are usually ‘‘add-ons’’ to already heavy work-
loads, which can lead to significant loss of productivity.
Using ‘‘off-the-shelf’’ audio/video conference bridges and
project management tools is helpful but cannot replace
rich awareness information that is readily available in
collocated environments.

DISTRIBUTED AND COLLABORATIVE DEVELOPMENT 3



Therefore, much research in CSCW has focused on
providing awareness for distributed teams of collaborators
as seamlessly and effortlessly as possible. For example,
DistEdit-based group editors (10,11) allow multiple, geo-
graphically distributed users to edit the same document at
the same time and include a locking mechanism for allow-
ing concurrent updates, in which the ‘‘locked regions’’ of the
document are color-coded per individual author. These
serve as an awareness mechanism, by which concurrent
authors can easily tell who is working on which part of the
document and thus avoid conflicting edits. TeamRooms (17)
provides a desktop window that functions as a room-based
virtual environment, where distributed users can place
tools (e.g., for leaving notes for each other, text-based
chatting, and brainstorming) and resources (e.g., URLs
to online documents or websites) for group use. In addition
to a ‘‘buddy list’’ of users currently in the room, TeamRooms
provides a ‘‘radar view,’’ a miniaturized version of the
shared window that shows both the part of the room
each user is currently viewing and the tools each user
may be using. The radar view conveys some awareness
of what each user is doing in the shared space. Application
(or screen) sharing systems (e.g., XTV (16) and Microsoft
NetMeeting) turn the desktop screen of a collaborator, in
part or in their entirety, into a shared workspace on
demand and allow distribute collaborators to closely keep
track of each other’s activities in highly interactive and
synchronous sessions.

Distributed software development is a special form of
collaborative work that requires a high level of awareness
among team members at all times to seamlessly integrate,
maintain, and keep track of progress of various software
modules and related artifacts (e.g., specification of func-
tional and operational requirements, design documents,
change requests, and bug fixes). Awareness is also required
to avoid conflicts and duplicate work among distributed
members of development and administrative teams. Exam-
ples of awareness information specific to distributed soft-
ware development include the following: who is working on
what software modules, causal and temporal dependency
relationships between different software modules, change
history of a software module (including who has made
changes and why), history of bug reports and fixes, and
constituent components of a software release and their
version information. In distributed software development,
awareness should not only be provided in a timely and
unobtrusive manner so as not to disrupt ongoing work but
also persist over a long period of time (possibly beyond the
lifetime of a software project) to facilitate knowledge build-
ing and information sharing among geographically and
temporally distributed team members. In the remainder
of this article, we describe and discuss various approaches
to providing awareness for collaborative software develop-
ment by distributed teams.

APPROACHES TO COLLABORATIVE SOFTWARE
DEVELOPMENT IN DISTRIBUTED ENVIRONMENTS

In this section, we describe a few exemplary approaches to
supporting collaborative software development for distrib-

uted teams. We note that although each of the described
approaches is different in terms of specific mechanisms, the
fundamental objective is the same, which is to provide
adequate awareness to collaborating teams of software
developers and managers to help them achieve a high level
of activity coordination and efficiency in a distributed
environment.

Virtual Environments as Shared Workspace

Providing shared workspace for distributed software devel-
opers and managers has been one of the main topics for
CSCW researchers. One of the earlier examples in the area
is ConversationBuilder (26), in which each software devel-
opment activity (e.g., bug tracking) is modeled as a con-
versation. A conversation is essentially a software
development process for a specific task and may specify a
set of artifacts relevant to the task (e.g., code files and
documentation), an (ordered) list of actions to be performed
on the artifacts, user roles under which actions are to be
performed, and per-artifact capability objects for specifying
what actions can be performed on the artifact and by whom.
Associated with a conversation is the concept of a conversa-
tion space, a virtual space where participants in a conver-
sation can keep track of the current state of a conversation.
To support real-life work patterns of software developers
and managers, ConversationBuilder allows users to parti-
cipate in multiple conversations at the same time. To
accommodate new tasks, ConversationBuilder also allows
users to create and enact new conversations. Conversation-
Builder stores shared artifacts in a conversation in a
hypertext database and provides a suite of client applica-
tions for providing configuration and versioning informa-
tion of shared artifacts and graphically visualizing
‘‘relations between nodes in the hypertext, and relations
among a user’s conversations’’ (26).

Although conversation space objects in the Conversa-
tionBuilder function as the shared workspace among dis-
tributed conversation participants, they do not provide the
sense of real space in the physical world; they are not
intended to reflect real-life entities in a virtual world. In
contrast, much research has been conducted in providing
an online shared workspace built on real-life concepts or
entities in the physical world. One of the main goals of such
works is to minimize the ‘‘learning curve’’ of distributed
users in adapting to and making effective use of virtual
workspaces by building them with metaphors for familiar
concepts, organizations, and objects that are commonly
encountered in everyday life. And many such reality-based
virtual workspaces have been built on the facilities pro-
vided by a pioneering virtual environment system, called
Multi-User Dungeons (MUDs) (27).

Initially developed for online, multi-user gaming, a
typical MUD environment includes a number of rooms
that are connected with each other (via doors and hall-
ways), objects that are contained in rooms, tools for working
on or changing some state of objects, and players who
represent human users. Players navigate a MUD environ-
ment by visiting connected rooms and (try to) achieve their
goals by finding and performing operations on appropriate
objects with provided tools. A key element in any MUD

4 DISTRIBUTED AND COLLABORATIVE DEVELOPMENT



environment is that online players can meet each other,
either by chance or by appointment in some room(s), and
interact with each other (i.e., to collaborate or compete with
each other). MUDs are generally implemented in a client-
server system. That is, distributed users connect to MUD
servers by using MUD client applications, which also pro-
vide a user interface (UI) for displaying a map of rooms,
navigating rooms, and issuing commands. The earlier (and
still predominant) means of providing UI is text-based, in
which users specify their behaviors (e.g., ‘‘look east’’) or
issue commands (e.g., ‘‘pick up’’) at the command line.

At the core of a MUD system is a MUD engine, a software
entity that functions much like an operating system (OS) in
that it allows a variety of custom systems to be built. These
systems still retain the basic MUD concepts, such as rooms,
objects, commands, and players, but apply them to different
application domains other than online gaming and enter-
tainment. Over the years, the number and variety of MUD-
based systems have rapidly grown to the extent that a new
phrase, Multi-User Dimensions, has been invented to refer
to those systems in new application areas, which include
online communities, distance learning, and collaborative
network administration.

Given the built-in concepts of rooms, objects, and
players, it is no surprise that MUDs have also been used
to provide shared virtual workspaces and access to shared
artifacts in collaborative, distributed software develop-
ment (28,29). In a typical use scenario, distributed devel-
opers would enter a MUD environment by connecting to a
MUD server specifically set up for their work and start
navigating rooms. In a given room, a developer may find
objects that represent project artifacts (e.g., source code
files) and issue commands on the objects (e.g., ‘‘build’’). A
command issued in the virtual environment usually causes
some preconfigured tools (e.g., a complier and linker in an
IDE) to start executing out in the ‘‘physical world’’ (e.g., on
the developer’s local host). Online developers may encoun-
ter others who are connected to the MUD server at the same
time and may decide to ‘‘chat’’ with each other via available
communication tools in the environment. They may also
create special-purpose rooms for, say, conducting sched-
uled meetings, and senior members of a project may provide
‘‘guided tours’’ of the project to newcomers by navigating
rooms while conducting chat sessions with them at the
same time (29). The presentation of a virtual environment
may range from a text-based UI to a 3-D rendering of rooms,
hallways, objects, and developers (via avatars).

When developing MUD-based virtual environments for
distributed software development, one major issue to con-
sider is how to map concepts, abstractions, and entities of
software engineering to MUD’s room-based metaphors.
Depending on what a room represents, the semantics of
a developer visiting a room can dramatically change. For
example, if a room represents a specific activity to be
performed as part of a software process, the objects con-
tained in the room could be tools and artifacts needed for
performing the activity (28). Developers can be assigned to
specific activities (with appropriate access rights) in the
process and work on them by visiting corresponding rooms.
Constraints can be set for exiting a room to ensure that, for
example, the corresponding activity has been completed to

the extent that the downstream activities in the process can
be performed. In another approach, rooms can represent
software artifacts themselves (29), in which, for example, a
room represents a software module, and objects contained
in the room represent individual class files that make up
the module. In this approach, visiting a room would mean
that the visitor intends to work on the corresponding
artifact. A comprehensive discussion of different mapping
approaches to model software processes in MUD-based
virtual environments can be found in Ref. 28.

Different mapping approaches have their own advan-
tages and disadvantages. For example, when rooms repre-
sent software process activities, it is convenient to model
the entire software process by way of connecting rooms and
establishing appropriate exit constraints. However, mod-
eling a software developer who works on multiple tasks at
the same time is more difficult (28). When rooms represent
software or project artifacts, dependency relationships
among them can easily be made explicit by connecting
appropriate rooms together. However, it would be not
only difficult to support the multithreading work practices
of individual project members but also inconvenient to
represent the overall context in which modeled artifacts
are used. Determining which approach to use in a given
project is not trivial and depends on many factors, including
the project size and required level of realism.

Awareness and Visualization Widgets

Providing awareness in virtual environments generally
requires that some extra work be performed to first set
up an appropriate environment (e.g., create rooms, objects,
and commands in a MUD-based system). Furthermore,
virtual environments are typically separated from the tools
and systems that software developers and managers use to
perform their work, which often means that users have to
stop their work, context-switch, and go to a virtual envir-
onment to receive and generate awareness information. All
of these factors can incur extra administrative and usage
overheads and reduce the effectiveness of virtual environ-
ments. Ideally, users should be able to keep track of project
status and others’ activities without much effort and with-
out intervening with their own work.

To this end, researchers have been working to bring
awareness into users’ ‘‘regular’’ workspaces. For example,
Jazz (2,3) is an Eclipse-based integrated development
environment (IDE) that includes a suite of embedded tools
and mechanisms for providing awareness and enabling
communication for a team of distributed developers. The
basic idea is that ‘‘from the individual developer’s perspec-
tive, the IDE is where coding takes place and is the home of
many different development tools. If coding is a team effort,
then why not add collaborative capabilities to the IDE
toolset alongside the editor, compiler, and debugger?’’ (2).
Specifically, Jazz provides a ‘‘buddy list’’ of developer team
members as part of the IDE workspace. From this list,
called the Jazz Band, team members can see the online
status of each other, initiate multimedia communications
sessions, and infer who is currently engaged in what activ-
ities and with whom. It also allows team members to
initiate chat sessions from selected sections of code, save

DISTRIBUTED AND COLLABORATIVE DEVELOPMENT 5



the exchanged messages as an annotation to the selected
code, and review them at a later time. In addition, the folder
and file list in the Jazz IDE provides version control infor-
mation (e.g., who has checked out what items and when,
update status on local copies of checked-out items, and
commit status). These features allow developers to seam-
lessly keep track of the current status of their work as a
whole and spontaneously initiate discussion and share
knowledge without having to leave the IDE workspace,
thus helping reduce ‘‘costs’’ associated with acquiring, gen-
erating, and using awareness to coordinate and collaborate
in distributed software development.

CSCW tools, such as Jazz, have, as yet, not been widely
used as a collaboration mechanism for distributed software
developers. This use may only be a question of time, because
it takes time for a new technology to be widely used, but
another reason may be that, although while software devel-
opment is a collaborative activity in terms of planning,
designing, coordination, testing, and integration, writing
code has mostly been considered as an isolated, individual
activity. This perception of code-writing has recently been
challenged by the advent of Pair Programming as part of
the Extreme Programming (15). Pair Programming has
been shown to enable (collocated) programmers to be
more productive (in terms of lines of code produced per
day per programmer) and to produce a higher quality of
code (23). This has, in turn, provided a strong motivation
for adapting Pair Programming in distributed team envir-
onments. For example, Baheti et al. (25) have created a
Distributed Pair Programming (DPP) environment using
Microsoft NetMeeting and have evaluated the performance
of distributed student teams on a large class project. Their
study has found that ‘‘software development involving
Distributed Pair Programming is comparable to that devel-
oped using collocated pair programming or virtual teams
without distributed pair programming.’’ Ho et al. (24) has
created a Eclipse plug-in module, called Sangam, to allow
DPP in an Eclipse-based Java development environment.
Sangam uses replicated state model for shared artifacts,
allowing distributed partners to participate in Pair Pro-
gramming without having to first synchronize their screen
resolutions or refresh rates and without requiring a
high network bandwidth, as is often the case with using
screen sharing across a wide area network. However, it
remains to be seen how well DPP would apply to large-scale
projects, where team members are distributed not only
geographically but also temporally across different time
zones.

Another, and perhaps surprising, source of awareness
for distributed software development teams is configura-
tion management and version control systems [e.g., (CVS)
(7,9)]. Dix (30) observes that when an artifact is shared in
collaborative work, it is ‘‘not only the subject of commu-
nication, it can also become a medium of communication. As
one participant acts upon the artifact, the other observes
the effects of the action. We call this observation by the
other participant feedthrough.’’ Configuration manage-
ment and version control systems work as a feedthrough
mechanism by enabling users to keep track of who has
worked on what modules, avoid concurrent and conflicting
updates, and know whom to work with to integrate sepa-

rately developed versions of the same module by examining
the check-in and check-out state (or history) of individual
modules. By maintaining interdependencies among soft-
ware modules and their connections to other artifacts (e.g.,
design and requirements documents), these systems also
allow users to help establish and maintain the context of
their work. In addition, the logs of problem reports and
fixes, along with developer descriptions and comments on
the nature of a given bug and the rationale for its fix,
function as a group memory mechanism, which helps new-
comers to the project get up to speed, even when original
members no longer work on the project or work in the same
place (7).

However, configuration management and version con-
trol systems do not provide a comprehensive overview of the
complete product under development and require a con-
siderable amount of time and effort on the part of users to
produce meaningful comments and descriptions of their
development activities (7). Furthermore, the UI for disco-
vering and gaining access to appropriate information in
these systems is usually primitive and difficult to use.

To address these issues, research has been performed to
provide the graphical means of visualizing and accessing
the version history, current check-out (or owner) state, and
known issues and fix status of all software modules and
project artifacts. Also often represented in such visualiza-
tions are the release history of a given product and version
information and dependency relationships among software
modules and project artifacts that constitute a given
release. The visualization techniques widely vary from a
color-coded line representation of source code lines for
representing age and authorship of corresponding code
to a hypertext-based, interactive 3D view of source code
files and interdependencies. See Ref. 4 for a comprehensive
survey of exemplary works in this area. Most of these
systems perform a syntactic analysis of source code files
and collect change history data from a version control
system to generate information to be visualized.

Open-Source Software Development

Open-source software development involves a largely dis-
persed group of software developers who do not necessarily
know each other but have voluntarily come together to
work on software problems and issues to achieve common
goals. Over the years, a large number of large-scale open-
source software projects have been undertaken that have
not only been successful in terms of producing high-quality,
high-performance software systems and tools but also have
had a significant impact on the entire Information Tech-
nology (IT) and software industry. A few notable examples
include: Linux operating system, Apache Web server,
Mozilla Web browser, and Xerces XML parser from the
Apache XML Project.

Open-source software development represents ‘‘an
extreme case of geographically distributed development,
where developers work in arbitrary locations, rarely or
never meet face to face’’ (5). In addition, the process of
open-source software development is not well-defined and
lacks ‘‘many of the traditional mechanisms used to coordi-
nate software development, such as plans, system-level

6 DISTRIBUTED AND COLLABORATIVE DEVELOPMENT



design, schedules, and defined processes,’’ which are
‘‘generally considered to be even more important for
geographically distributed development than for collocated
development’’ (5). There is no explicit or formal division of
work (i.e., who is responsible for what) and ‘‘developers can
contribute to any part of the code’’ (1). Furthermore, ‘‘no
formal quality control programs exist and no authoritative
leaders monitor the development’’ (6).

Given this seemingly chaotic environment, what is per-
haps more surprising is that open-source developers do not
employ sophisticated awareness and coordination mechan-
isms, other than e-mail (developer mailing lists) and ver-
sion control systems [e.g., CVS (9)]. In general, e-mail (or
any text-based chat tools) would not be considered as an
effective or user-friendly means of providing awareness in
distributed environments as e-mail is not directly used in
producing/manipulating artifacts of software development.
Thus, to use e-mail as the means of providing awareness
implies that it is the responsibility of users (i.e., software
developers and project managers) to manually compose and
distribute necessary awareness information, which, in
turn, would (significantly) increase the overall workload
of individual users. Although a version control system is
often part of a software development process, its main use is
to allow users to detect and resolve conflicting code changes
to the same source files according to some pre-defined
policies. As discussed earlier in the section, without further
provision, it is not easy to use a typical version control
system as a useful awareness tool in distributed software
development environment.

Despite the lack of formal processes and integrated,
automated means of generating and distributing aware-
ness, open-source developers are able to keep track of
current project status by fostering an online culture of
‘‘keeping it public’’ (1). They create and subscribe to devel-
oper, bug-tracking, and other project-related mailing lists
and take it upon themselves to carefully answer questions
and closely follow discussion threads and status reports,
even if they may not be directly relevant to their current
tasks or interests. In addition, many subscribe to (CVS)
commit logs so that they would be notified whenever code
updates are made. Mailing list messages and commit log
entries are also archived, and publicly accessible ‘‘how-to’’
and other project-related documents are provided so that
newcomers to the project can be brought up-to-date without
having to ask too many ‘‘newbie’’ questions. Open commu-
nications and public discussions are strongly encouraged to
the extent that ‘‘if it doesn’t happen on list, it doesn’t
happen’’ (1), and those members who do not follow the
established protocol and commit code changes without
first acquiring consensus from other members via
public discussion may be publicly discredited. All of these
factors combine to create the effect of ‘‘overhearing con-
versations’’ in open, collocated work environments and
allow open-source developers to keep informed of who
the ‘‘gurus’’ are in what subject areas, who are working
on what, and who are responsible for ensuring integrity and
functionality of what parts of the system/application under
development.

In addition, an organizational hierarchy often emerges
in which a relatively small group of contributors form a core

development group that defines, designs, and implements
the main functionality and architecture of the system
under development, while the others become users, testers,
and implementers of add-on features (1). There is no formal
process for determining who should be assigned to which
group. Rather, ‘‘leaders’’ emerge based on the level and
quality of participation and (perceived) expertise in subject
areas. In addition to implementing the core functionalities
and maintaining the integrity of modules they are respon-
sible for, core developers may also define and then refine
(via public discussions) application programming interfaces
(APIs) for add-on feature development by other contribu-
tors. On the other hand, the user group of an open-source
project, which is typically much bigger in size than the core
developer group (for example, see Ref. 6 ), provides ‘‘enough
eyeballs’’ to catch and report bugs, which prompt core
developers to create and distribute patches.

CONCLUSION

Critical to successful software development in distributed
environments is awareness of current work status and
activities of distributed team members (i.e., who is doing
what, when, and why), which, in turn, enables seamless
coordination and conflict avoidance and detection. Provid-
ing the right awareness at the right time and to the right
people has been an active area of research in the field of
CSCW. In this article, we have introduced and discussed
key CSCW concepts (i.e., shared artifacts and shared work-
space) and design issues related to providing awareness in
distributed software development. In addition, we have
described and discussed common collaboration practices
in open-source development efforts. In sharp contrast with
ongoing awareness research in CSCW, open-source devel-
opers successfully employ general-purpose communication
and coordination tools (e.g., e-mail mailing lists, version
control systems, and bug tracking systems) to provide
awareness to a large number of widely distributed teams
of volunteer software developers.

At first glance, the findings from open-source develop-
ment communities seem to suggest that specialized aware-
ness facilities are not really required in practice. However,
a deeper analysis shows that open-source developers can
effectively use general-purpose tools for generating and
gathering awareness mainly because they work very
hard at it. As described earlier, open-source developers
carefully and rigorously document their actions and activ-
ities and share with others by posting them on online,
public forums (e.g., e-mail mailing lists). They also dili-
gently follow others’ postings and dutifully answer ques-
tions. All of these activities take much time and effort on
the part of individual contributors.

Thus, it would appear that open-source development can
greatly benefit from use of specialized awareness utilities
(1). However, employing such a tool would require a homo-
genous run-time environment for the tool, fresh download
and installation of the tool by everyone, and, more impor-
tantly, commitment by everyone that they would regularly
use the tool as they do with e-mail or CVS. All of these
aspects may be very difficult to achieve among distributed

DISTRIBUTED AND COLLABORATIVE DEVELOPMENT 7



developers who do not know each other and are not under
control of any formal authority. As such, use of e-mail and
CVS as sources of awareness information may have
resulted, not from the superior utilities of these tools as
an awareness mechanism, but from necessity and conve-
nience of not having to deploy, learn, and use new software.
This observation is in line with the current trend of online
discussions and bug reporting and tracking operations
migrating to the World Wide Web (WWW), which allows
developers to access the same awareness information as
before by using the single most widely deployed and used
software application today, the Web browser.

The above observations do not account for the fact that
specialized awareness facilities have not been widely
adapted in software development, which we believe is
largely because we do not yet have a good understanding
of both complexities and subtleties of software development
work and interaction patterns and requirements and work
habits of software developers and managers. Most of the
existing awareness facilities for distributed software devel-
opment have been adapted from those developed for gen-
eral workspace environments and thus may not be able to
meet awareness requirements specific to distributed soft-
ware development activities. Much research is still
required to better understand distributed software devel-
opment as a unique form of collaborative work.

BIBLIOGRAPHY

1. C. Gutwin, R. Penner, and K. Schneider, Group awareness in
distributed software development, Proc. 2004 ACM Conference
on Computer Supported Cooperative Work, Chicago, IL, 2004,
pp. 72–81.

2. L.-T. Cheng, C. R. B. de Souza, S. Hupfer, J. Patterson, and S.
Ross, Building collaboration into IDEs, ACM Queue, 1(9): 40–
50, 2004.

3. S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson, Introducing
collaboration into an application development environment,
Proc. ACM 2004 Conference on Computer Supported Coopera-
tive Work, Chicago, IL, 2004, pp. 21–24.

4. M.-A. D. Storey, D. Čubranić, and D. M. German, On the use of
visualization to support awareness of human activities in soft-
ware development: A survey and a framework, Proc. 2005 ACM
symposium on Software visualization, St. Louis, Missouri,
May 14–15, pp. 193–202.

5. A. Mockus, R. T. Fielding, and J. D. Herbsleb, Two case studies
of open source software development: Apache and Mozilla,
ACM Trans. Software Eng. Methodol. (TOSEM), 11(3): 309–
346, 2002.

6. Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida,
Collaboration with lean media: How open-source software
succeeds, Proc. 2000 ACM Conference on Computer Supported
Cooperative Work, Philadelphia, PA, 2000, pp. 329–338.

7. R. E. Grinter, Using a configuration management tool to coor-
dinate software development, Proc. Conference on Organiza-
tional Computing Systems, Milpitas, CA, 1995, pp. 168–177.

8. C. A. Ellis, S. Gibbs, and G. Rein, Groupware: Some issues and
experiences, Comm. ACM, 34(1): 38–58, 1991.

9. P. Cederqvist, Version Management with CVS, Technical
Report. Available: http://www.cvshome.org/files/documents/
19/532/cederqvist-1.11.18.pdf, 2004.

10. M. Knister and A. Prakash, Issues in the design of a toolkit for
supporting multiple group editors, Computing Systems—J.
Usenix Assoc., 6(2): 135–166, 1993.

11. M. Knister and A. Prakash, DistEdit: A distributed toolkit
for supporting multiple group editors, Proc. Third Conf. on
Computer-Supported Cooperative Work, Los Angeles, CA,
1990, pp. 343–355.

12. P. Dewan and R. Choudhary, Flexible user interface coupling
in collaborative systems, Proc. ACM CHI’91 Conference on
Human Factors in Computing Systems, 1991, pp. 41–48.

13. J. Patterson, R. Hill, S. Rohall, and W. Meeks, Rendezvous: An
architecture for synchronous multi-user applications, Proc.
ACM 1990 Conference on Computer Supported Cooperative
Work, Los Angeles, CA, 1990, pp. 317–328.

14. R. Hall, A. Mathur, F. Jahanian, A. Prakash, and
C. Rasmussen, Corona: A communication service for scalable,
reliable group collaboration systems, Proc. ACM 1996 Confer-
ence on Computer Supported Cooperative Work, Boston, MA,
1996, pp. 140–149.

15. Pair Programming, Available: http://www.pairprogramming.
com.

16. H. Adbel-Wahab and M. Feit, XTV: A framework for sharing X
window clients in remote synchronous collaboration, Proc.
IEEE Tricomm ’91: Communications for Distributed Applica-
tions and Systems, Chapel Hill, North Carolina, April 18–19,
1991.

17. M. Roseman and S. Greenberg, TeamRooms: Network places
for collaboration, Proc. of the ACM 1996 Conference on Com-
puter Supported Cooperative Work, Boston, MA, 1996, pp. 325–
333.

18. A. Prakash and H. Shim, DistView: Support for building effi-
cient collaborative applications using replicated objects, Proc.
ACM 1994 Conference on Computer Supported Cooperative
Work, Chapel Hill, NC, 1994, pp. 153–164.

19. S. Subramanian, G. R. Malan, H. S. Shim, J. H. Lee, P. Knoop,
T. E. Weymouth, F. Jahanian, and A. Prakash, Software
architecture for the UARC Web-Based collaboratory, IEEE
Internet Comput., 3(2): 46–54, 1999.

20. J. Hill and C. Gutwin, Awareness support in a groupware
widget toolkit, Proc. 2003 International ACM SIGGROUP
Conference on Supporting Group Work, Sanibel Island, FL,
2003.

21. C. Gutwin and S. Greenberg, A descriptive framework of work-
space awareness for real-time groupware, Computer Sup-
ported Cooperative Work, 11(3): 411–446, 2002.

22. P. Dourish and V. Bellotti, Awareness and coordination
in shared workspaces, Proc. 1992 ACM Conference on
Computer-Supported Cooperative Work, Toronto, Ontario,
Canada, 1992, pp. 107–114.

23. L. Williams, The XP programmer: The few minutes program-
mer, IEEE Software, May/June 2003.

24. C.-W. Ho, S. Raha, E. Gehringer, and L. Williams, Sangam – A
distributed pair programming plug-in for eclipse, OOPSLA’04
Eclipse Technology eXchange (ETX) Workshop, Vancouver,
British Columbia, Canada, 2004, pp. 73–77.

25. P. Baheti, E. Gehringer, and D. Stotts, Exploring the efficacy of
distributed pair programming. XP Universe 2002, Chicago, IL,
August 4–7, 2002.

26. S. M. Kaplan, W. J. Tolone, A. M. Carroll, D. P. Bogia, and C.
Bignoli, Supporting collaborative software development with
ConversationBuilder, Proc. 5th ACM SIGSOFT Symposium on
Software Development Environments, Tyson’s Corner, VA,
1992, pp. 11–20.

8 DISTRIBUTED AND COLLABORATIVE DEVELOPMENT



27. P. Curtis and D. Nichols, MUDs grow up: Social virtual reality
in the real world, Proc. Third International Conference on
Cyberspace, 1993.

28. J. C. Doppke, D. Heimbigner, and A. L. Wolf, Software process
modeling and execution within virtual environments, ACM
Trans. Software Eng. Methodol. (TOSEM), 7(1): 1–40, 1998.

29. S. E. Dossick and G. E. Kaiser, CHIME: A metadata-based
distributed software development environment, ACM SIG-
SOFT Software Eng. Notes, 24(6): 464–475, 1999.

30. A. Dix, Computer Supported Cooperative Work – A Framework,
Design Issues in CSCW, D. Rosenburg and C. Hutchinson,
(eds.), New York: Springer-Verlag, 1994, pp. 23–37.

HYONG-SOP SHIM

Telcordia Technologies
Piscataway, New Jersey

ATUL PRAKASH

University of Michigan
Ann Arbor, Michigan

JANG HO LEE

Hongik University
Seoul, Korea

DISTRIBUTED AND COLLABORATIVE DEVELOPMENT 9



E

EMBEDDED OPERATING SYSTEMS

INTRODUCTION

Many of the systems and devices used in our modern society
must provide a response that is both correct and timely.
More and more computer systems are built as integral parts
of many of these systems to monitor and control their
functions and operations. These embedded systems often
operate in environments where safety is a major concern.
Examples range from simple systems, such as climate-
control systems, toasters, and rice cookers, to highly com-
plex systems such as airplanes and space shuttles. Other
examples include hospital patient-monitoring devices and
braking controllers in automobiles.

We use operating systems (1) as interfaces between
computer applications and computer hardware. Most
noticeably, operating systems are used to access and control
operations in desktop and notebook (laptop) personal com-
puters (PCs). You are probably familiar with one or more of
the following operating systems: Linux, Microsoft Windows
(XP, NT, 2000, 98, 95), Apple Mac OS X, and UNIX.

In order to conveniently use a PC, we must first
install and run an operating system. Operating systems
are not only used to operate PCs, but also other types of
microprocessor-driven devices, such as personal digital
assistants (PDAs), which use smaller versions of PC opera-
ting systems such as Palm OS, Windows Pocket PC, and
Embedded Linux (Embedix). These PDAs do not have a
secondary memory and their main memory can vary in size
from 8 MB to 64 MB. Processor speed may vary from several
MHz to 400 MHz (Intel Xscale 400 MHz processor).

You will find operating systems even in devices whose
main functions are not computation, such as DVD (digital
video disk) players and VCRs (video cassette recorders).
Microprocessors together with scaled-down versions of lar-
ger operating systems are embedded in these systems to
control their operations. Time-critical or real-time systems
use real-time operating systems, such as Wind River’s
VxWorks, which are more deterministic.

We can define an operating system (OS) as a program
that provides a convenient environment for embedded
applications consisting of multiple tasks. System calls
are used for process/task management, memory manage-
ment, input/output (I/O) drivers, and time delay. Error
handling and recovery are also provided. An OS allows
efficient sharing of resources among tasks in a single-user
system or among users (each with one or more tasks) in a
multiple-user system.

The goal of conventional, non-real-time operating sys-
tems is to provide a convenient interface between the
computer applications and the computer hardware while
attempting to maximize average throughput, to mini-
mize average waiting time for tasks, and to ensure the
fair and correct sharing of resources. However, meeting task
deadlines is not an essential objective in non-real-time

operating systems because its scheduler usually does not
consider the deadlines of individual tasks when making
scheduling decisions.

For real-time applications in which task deadlines must
be satisfied, a real-time operating system (RTOS) with an
appropriate scheduler for scheduling tasks with timing
constraints must be used. Since the late 1980s, several
experimental as well as commercial RTOSs have been
developed, most of which are extensions and modifications
of existing OSs such as UNIX. Most current RTOSs conform
to the IEEE POSIX standard and its real-time extensions
(2–4). Commercial RTOSs include LynxOS, RTMX O/S,
QNX, VxWorks, and pSOSystem.

LynxOS is LynuxWorks’ hard RTOS based on the Linux
operating system. It is scalable, Linux-compatible, and
highly deterministic. LynuxWorks also offers BlueCat
Linux, an open-source Linux for fast embedded system
development and deployment. RTMX O/S has support for
X11 and Motif on M68K, MIPS, SPARC, and PowerPC
processors. VxWorks and pSOSystem are Wind River’s
RTOSs with a flexible, scalable, and reliable architecture,
and it is available for most CPU platforms. Here, we use
VxWorks (5) to illustrate several RTOS features. This
article is organized as follows: the next section describes
process synchronization, followed by an introduction of real-
time scheduling, a discussion on memory management, a
focus on input/output issues, and finally, a conclusion.

INTERPROCESS COMMUNICATIONS

A process (or task) is the basic unit of work in a computer
system. Here, we use the terms ‘‘process’’ and ‘‘task’’ inter-
changeably. A third concept is the ‘‘thread,’’ which is
usually defined as a lightweight process but with less over-
head for its maintenance. Unless the system is very simple,
there is usually more than one process in a real-time
system. In a uniprocessor system, processes interleave
their executions, giving the appearance of concurrent
processing.

Processes can communicate with one another in a num-
ber of ways: (1) accessing (reading and/or writing) shared
memory containing data structures; (2) via pipes or mes-
sage queues; (3) using sockets (for interprocessor commu-
nication in a network) or socket-implemented remote
procedure calls (RPC); and (4) signals.

As more than one process may attempt to access the
same shared data structure at the same time, approach (1)
requires mutual exclusion, which can be achieved by one of
the following methods: (a) disabling of interrupts, (b) dis-
allowing preemption, or (c) using semaphores.

In solution (a), interrupts are disabled before an access
to the shared resource, thus the running process can access
this resource while being the only process running in the
CPU without the possibility of being interrupted by another
ready process. After accessing this shared resource, inter-
rupts are enabled again. This approach is the most

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



inefficient because time-critical processes or interrupt
service routines (ISRs) responding to external events
may not run even if they do not access the same shared
resource while interrupts are disabled. Even in non-real-
time systems, this solution is not appropriate for user
applications.

In solution (b), the running process accessing the shared
resource cannot be preempted by any other process (even
with a higher priority than the running process) except
ISRs. This solution can still lead to unacceptable real-time
response and suffers the same problem as solution (a);
that is, processes with higher priorities may not run even
if they do not access the same shared resource while pre-
emption is locked. The best mechanism for mutual exclusion
and other synchronization problems in real-time and non-
real-time systems is the semaphore described next.

Semaphores

A semaphore is like an arbiter for controlling access to a
shared data structure, much like a traffic light used to
control the flow of traffic (vehicles) passing through a
shared intersection. Obviously, two vehicles cannot be
simultaneously at the same spot; an attempt to do so would
result in a collision. A semaphore can also be used to
synchronize tasks and to guard multiple instances of a
resource.

Conceptually, a semaphore is denned as follows:

Operations: wait and signal (P and V);

State of semaphore: (count, queue);

count � 0 implies ‘count’ tokens (or privileges) are
available;

count < 0 implies absolute value of ‘count’ ¼ number of
processes waiting in this semaphore’s queue; and
queue¼queue of processes waiting onthissemaphore.

The wait and signal operations are defined as follows:

Wait(semaphore):
disable interrupts;
count = count - 1;
if count < 0 then
begin

add calling process to semaphore queue;
change this process’ state from running to
waiting
/* note that the calling process is now wait-
ing in the queue �/

end
enable interrupts;
return
Signal(semaphore):
disable interrupts;
count = count + 1;
if count <= 0 then
begin

remove process from semaphore queue;
change this process’ state from waiting to
ready

/* note that the removed process is not the
calling process */

end
enable interrupts;
return

Note that we need to make the ‘‘wait’’ and ‘‘signal’’
operations atomic because they access and modify shared
data (count and queue of waiting processes). This mutual
exclusive access to shared data is ensured by disabling the
interrupts before each operation and enabling the inter-
rupts after each operation. Note that using a Test and Set
Lock hardware instruction or having the real-time OS
enforce the mutual exclusion are other ways to support
the wait and signal operations, instead of disabling and
enabling the interrupts.

In many OSs, especially embedded/real-time OSs, there
are three types of semaphores optimized to handle different
types of problems: (1) binary, (2) mutual exclusion, and (3)
counting. All three types of semaphores are, in fact, defined
the same way as given above; the initial value of the
variable ‘‘count’’ determines the semaphore type.

UNIX, a general OS, provides the semaphore operations
such as: semget() creates an array of one or more sema-
phores, semop() provides operations such as wait and signal
on semaphores, and semctl() destroys a semaphore and
deallocates associated memory. VxWorks, an RTOS, has
the following semaphore operations: semBCreate() allo-
cates and initializes a binary semaphore, semMCreate()
allocates and initializes a mutual exclusion semaphore,
semCCreate() allocates and initializes a counting sema-
phore, semTake() perfoms the wait operation on a sema-
phore, semGive() perfoms the signal operation on a
semaphore, semFlush() unblocks all tasks waiting for a
semaphore, and semDelete() destroys a semaphore and
deallocates associated memory.

Now we solve several common problems with sema-
phores. Each example also illustrates the specific type of
semaphore appropriate for the problem being solved.

Example 1: Sorting - A Synchronization/Ordering Problem.
The problem is to sort an array of numbers by creating two
tasks to sort each half of the array, and then merging the
sorted halves into one sorted array. Before the merge can
start, we have to ensure that the two sorting tasks must
finish first. We use a binary semaphore ‘‘done’’ to solve this
problem.

cobegin
sort(l, n div 2)
sort(n div 2 + 1, n)

coend
merged, n div 2, n)
Main process:
:
done = create_semaphore(0);
create_process(first process);
create_process(second Process);
wait(done);
wait(done);

2 EMBEDDED OPERATING SYSTEMS



:
Sort process:
:
sorting steps;
signal(done);
terminate

Example 2: Mutual Exclusion. This standard mutual
exclusion problem is to ensure that access to a shared
resource or variable by more than one task results in a
consistent value for this resource. Suppose that the access
is to add one to the value of the shared variable. We solve
this problem by first creating a mutual exclusion sema-
phore ‘‘mutex.’’

mutex = create_semaphore (1)

Then, we insert a wait operation before this mutually
exclusive access (to the shared variable x) and a signal
operation afterward.

Process a:
wait(mutex)
x = x + 1
signal(mutex)
Process b:
wait(mutex)
x = x + 1
signal(mutex)

Example 3: Buffer Pool - A Counting Problem. There are 10
temporary memory buffers, each can be allocated to one
process only. The pseudocode for creating the counting
semaphore ‘‘available_buffers,’’ allocating a buffer, and
releasing a buffer are shown below. Once the counter has
been reduced to zero, the next process will be suspended
waiting for a buffer to become available.

available_buffers = create_semaphore(10);
wait(available_buffers);
‘‘allocate buffer’’;
‘‘return buffer to pool’’;
signal(available_buffers);

The VxWorks RTOS provides the semCCreate() function
to create a counting semaphore. For this example, we
rewrite the above pseudocode using a VxWorks Wind count-
ing semaphore, resulting in the following code:

available_buffers = semCCreate (10);
semTake(available_buffers, WAIT_F0REVER);
‘‘allocate buffer’’;
‘‘return buffer to pool’’;
semGive(available_buffers);

There are several simple programming rules that should
be observed when using semaphores in concurrent pro-
gramming. First, it is important that each task waits or
signals the correct semaphore, so double-checking this
process is critical in coding and debugging. Second, the
value of variable ‘‘count’’ should conserve, that is, for each
wait operation, there should be a corresponding signal
operation that will be executed within a bounded period

of time (or number of steps). We need to ensure that the
execution of the tasks does not lead to deadlocks. Third, the
initial value of variable count must be chosen carefully
depending on the type of problem we are going to solve.

Real-Time Extensions

RTOSs often offer additional features to semaphores opti-
mized for running real-time applications. We describe sev-
eral such features in this section.

One feature employs priority inheritance algorithms to
solve the priority inversion problem, which can occur when
mutual exclusion is enforced. Priority inversion is a situa-
tion in which a higher-priority task is forced to wait for an
indefinite period of time (which is not acceptable in a real-
time system) in order for a lower-priority task to complete
its execution.

The following example illustrates this situation. Sup-
pose we have a preemptive system with a number of tasks
including tasks A, B, and C. Task A has higher priority than
task B, and task B has higher priority than task C. Task A
and C may access the same resource controlled by a sema-
phore. At some point during their executions, task C (the
lowest-priority task) has gained access to the resource. Now
task A (the highest-priority task) waits on the mutual
exclusion semaphore guarding this resource and is blocked
(and must wait in this semaphore’s queue), even though
task A’s priority is higher than task C’s. This scenario is
acceptable in a real-time system if task A does not need to
wait longer than the time period (the critical section) for
task C to use the resource. However, because this system is
a preemptive system, task C may be preempted by task B
(which has a higher priority) when it becomes ready and
does not want to access the resource held by task C. Other
tasks having higher priorities than task C’s may continu-
ally preempt task C indefinitely, resulting in a indefinite
waiting period for task A, which remains in the sema-
phore’s queue.

A common solution to this problem is the priority inheri-
tance algorithm or protocol. It ensures that a task holding a
mutually exclusive resource executes at the priority of the
highest-priority task waiting for this resource until it and
all its previous instances, if any, signal the semaphore
guarding this resource (that is, it has released all mutual
exclusion semaphores for this resource). Then this task
returns to its normal priority to continue execution. This
protocol prevents this low-priority task accessing a
mutually exclusive resource from being preempted for an
indefinite period of time by tasks with lower priorities than
that of the waiting task.

In the VxWorks RTOS, the SEM_INVERSION_SAFE
option is provided and can be enabled as follows:

semMUTEX = semMCreate(SEM_Q_PRIORITY | SEM_
INVERSION_SAFE);

Another feature is a user-specified queuing discipline for
the semaphore’s queue, which, in general, follows a first-in-
first-out (FIFO) order.

In the VxWorks RTOS, there are two possible queuing
disciplines: priority (SEM_Q_PRIORITY) and FIFO

EMBEDDED OPERATING SYSTEMS 3



(SEM_Q_FIFO). We choose a queuing discipline when we
create a semaphore as follows:

semA = semBCreate(SEM_Q_PRIORITY | SEM_EMPTY);
semB = semBCreate(SEM_Q_FIFO I SEM_EMPTY);

This queuing discipline selection is not available for
POSIX-compatible semaphores.

Another feature is wait-timeout, which specifies how
long a task will wait in a semaphore’s queue. A timeout
value of 0 indicates that the task does not wait at all. A
bounded positive timeout value X indicates that the task
will wait X time units before the wait operation fails. An
infinite time value means that the task will wait indefi-
nitely if needed; this value is the default value in the
general definition of the wait operation.

In the VxWorks RTOS, these three timeout values are
represented, respectively, by NO_WAIT (0), a positive
value, and WAIT_FOREVER (�1):

semTake (newSem, NO_WAIT);
semTake (newSem, 100);
semTake (newSem, WAIT_FOREVER);

This timeout option is not available for POSIX-
compatible semaphores. Other real-time extensions to
semaphores include task-deletion safety and ownership
of mutual exclusion semaphores.

PROCESS/TASK SCHEDULING

Scheduling a set of computer processes or tasks is to deter-
mine when to execute which task, thus determining the
execution order of these tasks, and, in the case of a multi-
processor or distributed system (6), to also determine an
assignment of these tasks to specific processors. This task
assignment is analogous to assigning tasks to a specific
person in a team of people. Scheduling is a central activity of
a computer system, usually performed by the OS. Schedul-
ing is also necessary is many non-computer systems such as
assembly lines.

In non-real-time systems, the typical goal of scheduling
is to maximize average throughput (number of tasks com-
pleted per unit time) and/or to minimize average waiting
time of the tasks. In the case of real-time scheduling, the
goal is to meet the deadline of every task by ensuring that
each task can complete execution by its specified deadline.
This deadline is derived from environmental constraints
imposed by the application.

Schedulability analysis is to determine whether a spe-
cific set of tasks or a set of tasks satisfying certain con-
straints can be successfully scheduled (completing
execution of every task by its specified deadline) using a
specific scheduler.

Schedulability Test. A schedulability test is used to vali-
date that a given application can satisfy its specified dead-
lines when scheduled according to a specific scheduling
algorithm.

This schedulability test is often done before the tasks’
runtime, that is, before the computer system and its tasks

start their execution. If the test can be performed effi-
ciently, then it can be done at run-time as an online test.

Schedulable Utilization. A schedulable utilization is the
maximum utilization allowed for a set of tasks that will
guarantee a feasible scheduling of this task set.

A hard real-time system requires that every task com-
pletes its execution by its specified deadline, and that fail-
ure to do so, even for a single task, may lead to catastrophic
consequences. A soft real-time system allows some tasks or
task instances to miss their deadlines, but a task that
misses a deadline may be less useful or valuable to the
system.

There are basically two types of schedulers: static and
run-time (online or dynamic).

Optimal Scheduler. An optimal scheduler is one that
may fail to meet a deadline of a task only if no other
scheduler can.

Note that ‘‘optimal’’ in real-time scheduling does not
necessarily mean ‘‘fastest average response time’’ or
‘‘shortest average waiting time.’’ A task Ti is characterized
by the following parameters:

S: start, release, ready, or arrival time

c: (maximum) computation time

d: relative deadline (deadline relative to the task’s start
time)

D: absolute deadline (wall clock time deadline)

Non-Real-Time Schedulers

First-in-First-Out. Processes in the ready queue are
scheduled in the order they arrive. This scheduler is simple
and fair, but the average waiting time may be long.

Shortest-Process-First. The shortest process in terms of
computation time (CPU burst) is scheduled first. There are
two variations: preemptive and non-preemptive. Starva-
tion is a possibility in this scheduling strategy.

Round-Robin. Each process in the ready queue is sched-
uled FCFS for a time slice called the quantum. This sche-
duler is fair and reduces the average waiting time, but we
have to ensure that the context-switch time is much less
than the quantum.

Priority. Processes in the ready queue are scheduled
according to their priorities (which may be fixed or
dynamic).

Real-Time Scheduling and Schedulability Analysis

Scheduling of real-time tasks depends on the type(s) of
tasks in the applications. Although non-realtime tasks
are usually single-instance, there are two other common
types of real-time tasks. A single-instance task executes
only once. A periodic task has many iterations, and there is
a fixed period between two consecutive executions of the
same task. For example, a periodic task may perform signal

4 EMBEDDED OPERATING SYSTEMS



processing of a radar scan once every 2 seconds, so the
period of this task is 2 seconds. A sporadic task has zero or
more instances, and there is a minimum separation
between two consecutive releases of the same task. For
example, a sporadic task may perform emergency maneu-
ver of an airplane when the emergency button is pressed,
but there is a minimum separation of 20 seconds between
two emergency requests. An aperiodic task is a sporadic
task with either a soft deadline or no deadline. Therefore, if
the task has more than one instance (sometimes called a
job), we also have the parameters p period (for periodic
tasks) and minimum separation (for sporadic tasks)

The following are additional constraints that may com-
plicate scheduling of tasks with deadlines:

(1) Resources shared by tasks.

(2) Precedence relations among tasks and subtasks.

(3) Frequency of tasks requesting service periodically.

(4) Whether task preemption is allowed.

If tasks are preemptable, we assume that a task can be
interrupted only at discrete (integer) time instants unless
we indicate otherwise. VxWorks uses preemptive priority
scheduling of tasks, allowing the preemption of a running
task if a higher-priority task arrives. The priority of a task
can be based on its specified deadline or other attributes.
For tasks having the same priority, VxWorks uses the
round-robin scheduling algorithm to allow the CPU to be
shared fairly. Preemption locks are offered to prevent task
preemption, but they do not lock out interrupt handling.

Determining Computation Time

The application and the environment in which the applica-
tion is embedded are main factors determining the start
time, deadline, and period of a task. The computation (or
execution) times of a task is dependent on its source code,
object code, execution architecture, memory management
policies, and actual number of I/Os.

For real-time scheduling purposes, we use the worst-
case execution (or computation) time (WCET) as c. This
time is not simply an upper bound on the execution of the
task code without interruption. This computation time has
to include the time the CPU is executing nontask code
caused by this task as well as the time an I/O request
spends in the disk queue.

Determining the computation time of a process is crucial
to successfully scheduling it in a realtime system. An overly
pessimistic estimate of the computation time would result
in wasted CPU cycles, whereas an under-approximation
would result in missed deadlines.

Uniprocessor Scheduling

We introduce scheduling in real-time systems by studying
the problem of scheduling tasks on a uniprocessor system.
Here, we describe schedulers for preemptable and indepen-
dent tasks with no precedence or resource-sharing con-
straints. More details on real-time scheduling with
resource and synchronization constraints can be found in
Ref. 7.

To simplify our discussion of the basic schedulers, we
assume that the tasks to be scheduled are preemptable and
independent. A preemptable task can be interrupted at any
time during its execution and resumed later. We also
assume that there is no context-switching time. In practice,
we can include an upper bound on the context-switching
time (8) in the computation time of the task. An indepen-
dent task can be scheduled for execution as soon as it
becomes ready or released. It does need to wait for other
tasks to finish first or to wait for shared resources. We also
assume here that the execution of the scheduler does not
require the processor, that is, the scheduler runs on another
specialized processor. If there is no specialized scheduling
processor, then the execution time of the scheduler must
also be included in the total execution time of the task set.
Later, after understanding the basic scheduling strategies,
we will extend these techniques to handle tasks with more
realistic constraints.

Fixed-Priority Schedulers: Rate-Monotonic and Deadline-
Monotonic Algorithms. A popular real-time scheduling
algorithm is the rate-monotonic (RMS or RM) scheduler,
which is a fixed(static)-priority scheduler using the task’s
(fixed) period as the task’s priority. RMS executes at any
time instant the instance of the ready task with the shortest
period first. If two or more tasks have the same period, then
RMS randomly selects one for execution next.

Example. Consider three periodic tasks with the follow-
ing arrival times (S), computation times (c), and periods (p,
which are equal to their respective relative deadlines, d):

J1 : S1 ¼ 0; c1 ¼ 2; p1 ¼ d1 ¼ 5:

J2 : S2 ¼ 1; c2 ¼ 1; p2 ¼ d2 ¼ 4:

J3 : S3 ¼ 2; c3 ¼ 2; p3 ¼ d3 ¼ 20:

The RM scheduler produces a feasible schedule as
follows. At time 0, J1 is the only ready task, so it is
scheduled to run. At time 1, J2 arrives. As p2 < p1, J2

has a higher priority, so J1 is preempted and J2 starts to
execute. At time 2, J2 finishes execution and J3 arrives. As
p3 > p1, J1 now has a higher priority, so it resumes
execution. At time 3, J1 finishes execution. At this time,
J3 is the only ready task, so it starts to run. At time 4, J1 is
still the only task, so it continues to run and finishes
execution at time 5. At this time, the second iterations
of J1 and J2 are ready. As p2 < p1, J2 has a higher priority,
so J2 starts to execute. At time 6, the second iterations of J2

finishes execution. At this time, the second iterations of J1

is the only ready task, so it starts execution, finishing at
time 8. The timing diagram of the RM schedule for this
task set is shown in Fig. 1.

The RM scheduling algorithm is not optimal in general
because there exist schedulable task sets that are not RM-
schedulable. For a set of tasks with arbitrary periods,
there is a simple schedulability test with a sufficient,
but not necessary, condition for scheduling with the RM
scheduler (9).

EMBEDDED OPERATING SYSTEMS 5



Schedulability Test 1. Given a set of n independent, pre-
emptable, and periodic tasks on a uniprocessor, let U be the
total utilization of this task set. A sufficient condition for
feasible scheduling of this task set is U � nð21=n � 1Þ.

However, using this simple schedulability test may
underutilize a computer system because a task set whose
utilization exceeds the above bound may still be RM-
schedulable. There is a sufficient and necessary condition
for scheduling using the RM algorithm. Its derivation is
omitted here but can be found in Ref. 7.

Schedulability Test 2. Let

wiðtÞ ¼
Xi

k¼1

ck
t

pk

’
; 0< t � pi

&

where ck and pk are, respectively, the computation time and
the period of task Jk. The following inequality

wiðtÞ � t

holds for any time instant t chosen as follows:

t ¼ k p j; j ¼ 1; . . . ; i; k ¼ 1; . . . ;
pi

p j

%$

if and only if task Ji is RM-schedulable. If dinot ¼ pi, we
replace pi by min(di, pi) in the above expression.

Another fixed-priority scheduler is the deadline-
monotonic (DM) scheduling algorithm, which assigns
higher priorities to tasks with shorter relative deadlines.
It is intuitive to see that if every task’s period is the same as
its deadline, then the RM and DM scheduling algorithms
are equivalent. In general, these two algorithms are
equivalent if every task’s deadline is the product of a
constant k and this task’s period, that is, di ¼ kpi.

Dynamic-Priority Schedulers. An optimal run-time
scheduler is the earliest-deadline-first (also known as
EDF or ED) algorithm, which executes at every instant
the ready task with the earliest (closest or nearest) abso-
lute deadline first. The absolute deadline of a task is its
relative deadline plus its arrival time. If more than one
task have the same deadline, EDF randomly selects one
for execution next. EDF is a dynamic-priority scheduler
because task priorities may change at run-time depending

on the nearness of their absolute deadlines. We now
describe an example.

Example. There are four single-instance tasks with the
following arrival times, computation times, and absolute
deadlines:

J1 : S1 ¼ 0; c1 ¼ 4; D1 ¼ 15

J2 : S2 ¼ 0; c2 ¼ 3; D2 ¼ 12

J3 : S3 ¼ 2; c3 ¼ 5; D3 ¼ 9

J4 : S4 ¼ 5; c4 ¼ 2; D4 ¼ 8

A first-in-first-out (FIFO or FCFS) scheduler (often used in
non-real-time OSs) gives an infeasible schedule shown in
Fig. 2. Tasks are executed in the order they arrive and
deadlines are not considered. As a result, task J3 misses its
deadline after time 9, and task J4 misses its deadline after
time 8, before it is even scheduled to run.

However, the EDF scheduler produces a feasible
schedule, shown in Fig. 3. At time 0, tasks J1 and J2 arrive.
As D1 > D2 (J2’s absolute deadline is earlier than J1’s
absolute deadline), J2 has higher priority and begins to
run. At time 2, task J3 arrives. As D3 <D2, J2 is preempted
and J3 begins execution. At time 5, task J4 arrives. As D4<
D3, J3 is preempted and J4 begins execution.

At time 7, J4 completes its execution one time unit before
its deadline of 8. At this time, D3 < D2 < D1, so J3 has the
highest priority and resumes execution. At time 9, J3

completes its execution, meeting its deadline of 9. At this
time, J2 has the highest priority and resumes execution. At
time 10, J2 completes its execution 2 time units before its
deadline of 12. At this time, J1 is the only remaining task
and begins its execution, finishing at time 14, meeting its
deadline of 15.

Using the notion of optimality that we have defined in
the introduction, the EDF algorithm is optimal for schedul-
ing a set of independent and preemptable tasks on a uni-
processor system.

3J

2J

1J

1050 15 20 25 time

Process

Figure 1. RM schedule.

J1
J2

J3
J4

50 10 15
time

Figure 2. FIFO schedule.

J2
J3

J4 J3 J2 J1

50 10 15
time

Figure 3. EDF schedule.

6 EMBEDDED OPERATING SYSTEMS



Theorem. Given a set S of independent (no resource
contention or precedence constraints) and preemptable
tasks with arbitrary start times and deadlines on a uni-
processor, the EDF algorithm yields a feasible schedule for
S if and only if S has feasible schedules.

Therefore, the EDF algorithm fails to meet a deadline of
a task set satisfying the above constraints only if no other
scheduler can produce a feasible schedule for this task set.
The proof of EDF’s optimality is based on the fact that any
non-EDFschedulecanbetransformedintoanEDFschedule.

Another optimal run-time scheduler is the least-laxity-
first (LL or LLF) algorithm (also known as the minimum-
laxity-first (MLF) algorithm or least-slack-time-first (LST)
algorithm). Let c(i) denote the remaining computation time
of a task at time i. At the arrival time of a task, c(i) is the
computation time of this task. Let d(i) denote the deadline
of a task relative to the current time i. Then the laxity (or
slack) of a task at time i is d(i) – c(i). Thus, the laxity of a task
is the maximum time the task can delay execution without
missing its deadline in the future. The LL scheduler exe-
cutes at every instant the ready task with the smallest
laxity. If more than one task has the same laxity, LL
randomly selects one for execution next.

For a uniprocessor, both earliest-deadline-first (ED) and
least-laxity-first (LL) schedulers are optimal for preemp-
table tasks with no precedence, resource, or mutual exclu-
sion constraints. There is a simple necessary and sufficient
condition for scheduling a set of independent, preemptable
periodic tasks (9).

Schedulability Test 3. Let Ci denote the computation
time of task Ji. For a set of n periodic tasks such that the
relative deadline di of each task is equal to or greater than
its respective period piðdi� piÞ, a necessary and sufficient
condition for feasible scheduling of this task set on a uni-
processor is that the utilization of the tasks is less than or
equal to 1:

U ¼
Xn

i¼1

ci

pi
� 1

For a task set containing some tasks whose relative
deadlines di are less than their respective periods, there
is no easy schedulability test with a necessary and suffi-
cient condition. However, there is a simple sufficient con-
dition for EDF-scheduling of a set of tasks whose deadlines
are equal or shorter than their respective periods.

We next consider the scheduling of sporadic tasks
together with periodic tasks.

Sporadic Tasks. Sporadic tasks may be released at any
time instant, but there is a minimum separation between
releases of consecutive instances of the same sporadic task.
To schedule preemptable sporadic tasks, we may attempt to
develop a new strategy or reuse a strategy we have pre-
sented. In the spirit of software reusability, we describe a
technique to transform the sporadic tasks into equivalent
periodic tasks, which makes it possible to apply the sche-
duling strategies for periodic tasks introduced earlier.

A simple approach to schedule sporadic tasks is to treat
them as periodic tasks with the minimum separation times

as their periods. Then we schedule the periodic equivalents
of these sporadic tasks using the scheduling algorithm
described earlier. Unlike periodic tasks, sporadic tasks
are released irregularly or may not be released at all.
Therefore, although the scheduler (say the RM algorithm)
allocates a time slice to the periodic equivalent of a sporadic
task, this sporadic task may not be actually released. The
processor remains idle during this time slice if this sporadic
task does not request service. When this sporadic task does
request service, it immediately runs if its release time is
within its corresponding scheduled time slice. Otherwise, it
waits for the next scheduled time-slice for running its
periodic equivalent.

MEMORY MANAGEMENT

Data and programs are stored in the memory components of
a computer system. Most RTOSs do not use virtual memory
to ensure that processing time is more deterministic and
overhead is substantially reduced. Therefore, the memory
address space is not part of a task’s context. We review
several memory models below, from simple to complex. The
simple memory models date back to the early days of
computer design. Because of their low management over-
head and access time predictability, they are often used in
small embedded systems.

Bare Machine

This earliest memory model is simple and flexible. It has no
operating systems and provides no services. It is used in
small microprocessor and, thus, in many small embedded
systems.

Resident Monitor

A resident monitor uses a static fence (an address) to divide
(or separate) the memory space into two sections, one used
exclusively by the OS (called the resident monitor in the
early days of computing) and another assigned to the user’s
programs and data. The RM resides from memory location 0
up to 1, the address indicated by fence. The user’s space is
from the address indicated by the fence to maximum
address. Note that the actual memory space allocated to
the user may be smaller than fence, the maximum address.
The first address assigned begins with the address indi-
cated by the fence.

In this memory model, the logical address of a user’s
program or data space is different from the actual or
physical address. To determine the physical address given
a logical address, we need to add the logical address to the
fence address. Thus, physical address ¼ fence þ logical
address, or in assembly code, fence(logical address).

For user’s program:
if physical address < fence

then addressing error
may cause an interrupt

Relocation

Relocation, or dynamic fence, allows more memory alloca-
tion flexibility by using a transient area separating the

EMBEDDED OPERATING SYSTEMS 7



resident monitor and the user’s space. This transient area
can be used by either the monitor or the user. In this model,
the first address of the monitor starts from 0 (as in the
above model), but the first address of the user starts from
the maximum address. Hence the user’s space grows
backward.

As above, to determine the physical address given a
logical address, we need to add the logical address to the
fence address.

Swapping

With the development of lower-cost and larger-size memory
components such as disks, OS designers introduce swap-
ping, which allows user’s programs and data to be stored in
the larger memory component. These programs and data
can be swapped into or out of the main memory as needed.
For the first time, the entire user’s space needs not reside in
the main memory during the lifetime of the user’s job. To
ensure good performance, that is, the processor is working
on the user’s application programs, we require that the time
slice allocated to a user to be much larger than the swap
time. In embedded RT systems, swapping can only be used
in situations where a task will not be used for some sig-
nificant period of time.

Paging

Paging is a modern approach (used today) that performs
memory management using noncontiguous memory allo-
cations.

Virtual Memory Management

The main idea is that the entire address space for a process
needs not reside in the main memory for the process to
execute. The early solution is overlaying, which is manual
memory management by the user. Overlaying is done by
the user’s program. For virtual memory management to be
successful, there must be program locality, which means
that, during any period of time, a program usually refer-
ences only a small subset of its data and instructions.
Another motivation for virtual memory management is
the presence of a memory hierarchy, that is, there are at
least two memory levels such that the main memory has a
high cost and a fast access time and a secondary memory
has a low cost and a slow access time. This extra layer of
memory mapping/processing and frequent disk I/O
requests make the virtual memory model inappropriate
for many real-time applications, where response time of the
tasks must be bounded. In fact, tasks with hard deadlines
are locked in memory so that there are no page faults.

INPUT/OUTPUT

Embedded and real-time systems applications interact
with the computer hardware and the external environment
much more closely and in a variety of formats, whereas non-
real-time applications’ I/O are via a standard keyboard/
mouse and screen display/printer. For example, in an auto-
mobile, inputs to the embedded hardware/software are
through the steering wheel, pedals, gear shifter, and an

increasing array of electronic switches and buttons. Out-
puts are sent to the display dials and screens, and result in
the activation of antiskid braking mechanisms, steering-
ratio changes, and muting of the radio while the phone
rings (to name a few of the many output effects).

To ensure portability of the code, most RTOSs provide
I/O functions that are source-compatible with I/O in non-
real-time OSs such as UNIX and Windows. However,
because of the dynamic nature and domain-specificity of
real-time applications, RTOSs also offer additional features
tailored for embedded systems. For example, VxWorks
allows the dynamic installation and removal of device
drivers. VxWorks also allows the preemption of device
drivers because they execute in the context of the task
invoking them, whereas UNIX device drivers cannot be
preempted because they execute in system mode. File
descriptors or IDs (fds) are unique and specific to each
process in UNIX and Windows, but they are globals (except
for the standard input (0), output (1), and error (2)) acces-
sible by any task in VxWorks.

As a result of the variety of input and output devices in
an embedded real-time system, RTOSs provide far more
flexibility for the device driver to handle I/O and to use
customized I/O protocol. In non-real-time OSs, user I/O
requests are processed first and heavily in the device-
independent component of the I/O system before passing
them to the device drivers (for the display and keyboard).
However, RTOSs allow real-time I/O requests to bypass
this standard I/O processing and delegate the control to the
device drivers, which makes it possible to use specialized
I/O protocols and to ensure satisfaction of requests’ dead-
lines or throughput. In VxWorks, the I/O system in this
case would act like a switch routing the I/O requests
directly to the specified I/O device drivers.

CONCLUSION

This article has given a brief introduction to real-time/
embedded systems, task synchronization, real-time sche-
duling, memory management, and I/O. The requirement to
satisfy hard deadlines in embedded systems means that
attention must be given to every task with a hard deadline,
which makes it more challenging to develop embedded
applications, which necessitate a realtime/embedded OS
to ensure that real-time tasks complete by their specified
deadlines.

BIBLIOGRAPHY

1. A. Silberschatz et al., Operating Systems Concepts, 7th ed.,
New York: Wiley, 2005.

2. B. O. Gallmeister and C. Lanier, Early experience with POSIX
1003.4 and POSIX 1003.4A, Proc. IEEE Real-Time Systems
Symposium, 1991, pp. 190–198.

3. B. Gallmeister, POSIX.4: Programming for the Real World, 1st
ed., January 1995 1-56592-074-0.

4. Available: http://standards.ieee.org/regauth/posix/.

5. Wind River, VxWorks 5.5 Programmer’s Guide, 2002.

6. T. Lee and A. M. K. Cheng, Multiprocessor scheduling of hard-
real-time periodic tasks with task migration constraints, Proc.

8 EMBEDDED OPERATING SYSTEMS



IEEE-CS workshop on real-time computing systems and appli-
cations, Seoul, Korea, 1994.

7. A. M. K. Cheng, Real-Time Systems, Scheduling, Analysis, and
Verification, New York: Wiley, 2002.

8. F. Jiang and A. M. K. Cheng, A context switch reduction
technique for real-time task synchronization, Proc. IEEE-
CS Intl. Parallel and Distributed Processing Symp., San
Francisco, CA, 2001.

9. C. L. Liu and J. Layland, Scheduling algorithms for multi-
programming in a hard-real-time environment, J. ACM,
20(1): 1973, pp. 46–61.

ALBERT MO KIM CHENG

University of Houston
Houston, Texas

EMBEDDED OPERATING SYSTEMS 9



E

EMBEDDED SOFTWARE

INTRODUCTION

Electronic devices are commonplace in our lives today.
Many products we buy and use contain one or more minia-
ture integrated circuits powered by electricity. Often these
integrated circuits contain one or more central processing
units (CPUs), with the CPU being the core computational
hardware component of a programmable computer.

We usually describe a CPU found in these everyday
products as an ‘‘embedded processor’’ and call the computer
program that this CPU executes ‘‘embedded software.’’ A
good starting definition of embedded software is:

Embedded software is software that is ultimately inte-
grated with other electrical and mechanical components
and sold to the end-user as a complete product.

This definition is not precise, and there is much room for
interpretation. However, by using the term ‘‘embedded’’
usually we are trying to denote something unique or dif-
ferent to distinguish the CPUs and the software found
inside our everyday products from the CPUs and software
found on our desktop, in the accounting back office, or in the
server room. This article explores some issues faced by the
developers of embedded software, emphasizing how these
issues differ from or are more challenging than the issue
faced by developers of desktop or back office software.

EMBEDDED SOFTWARE EXAMPLES

Table 1 lists some common products containing embedded
software. The table provides a rough estimate of the soft-
ware complexity incorporated in these products, expressed
as total source-lines-of-code (SLOCs). Even by today’s stan-
dards of software development, the software complexity of
these products is enormous. In today’s products, the domi-
nant aspects of a product’s functionality are expressed
through software.

Economics drives the complexity explosion of embedded
software. The microprocessors, microcontrollers, and digi-
tal signal processors in today’s products permit the baroque
expression of product features and functions. This expres-
sion is limited physically only by the cost of the memory to
store and to execute the code and by the imagination of the
product designer. The per-bit cost of memory—in the form
of disk drives, flash memories, random-access memories,
and read-only memories—drops roughly by a factor of two
every two years (1). Today even a $100 product can hold
upward of 50M SLOCs. Product creators say: ‘‘I can afford
to put 50 Mbytes of memory and 200 Mbytes of ROM in my
handheld product. I want to fill it up with quality software
features that sell!’’

Table 2 lists some characteristics often associated with
embedded software. No single product will have all of these,

but most embedded software will have at least some of these
characteristics. Each characteristic can present special
challenges to the software developer.

The following sections discuss several of the most diffi-
cult issues faced by embedded software developers:

� Software cost and development productivity

� Rapid time-to-market and hardware/software code-
sign

� Reliability and testing

� Heterogeneous multiprocessor software development

� Real-time systems

� Energy usage and energy management

� Human computer interfaces and human factors

� Security against attack and theft

These issues are not exclusive to embedded software nor do
they cover all aspects of computer science that can be
applied to the development process. The issues are chosen
to illustrate many critical elements of embedded software
that are different or more challenging for embedded soft-
ware than for desktop or for back office applications.

SOFTWARE COST AND DEVELOPMENT PRODUCTIVITY

Software development cost and schedule are critical issues
with virtually all software-intensive products. The explo-
sion in the complexity of embedded software makes this
especially true for products containing embedded software.
Software development is a nonrecurring cost as it is a one-
time expense. The cost of manufacturing the product is a
recurring cost as it is incurred each time an individual
product is made. Many products containing embedded soft-
ware sell at very low prices, and thus, their recurring costs
must be very small. However, the nonrecurring costs of
software development must be amortized across the total
sales to recover its cost.

A product containing a million lines of code could cost
$20–40M to develop from scratch using even the best soft-
ware engineering practices (2)1. The amortized cost of the
software across even a million units would be $20–40, with
a likely unsupportable percentage of the selling price in a
competitive, low-cost market. The nonrecurring cost of
software has become a critical cost issue even in very
expensive products such as luxury automobiles or commer-
cial airplanes, depending on the total quantity of software
involved, the very strict quality requirements placed on the
software development process, and the lesser sales volumes
compared with less expensive products.

In a competitive environment, software reuse is the most
effective tool we have to lower the cost of software devel-
opment. Reuse effectively amortizes costs across a higher
sales volume, lowering the per-unit cost. Producers of

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



products containing embedded software use several meth-
ods of software reuse:

� Software product line concepts

� Commercial embedded operating systems

� Software/hardware platforms

� Software standards

� Open source software

� Value chains of third-party developers

The software product line (3)2—often called a software
product family in Europe—attempts to achieve efficiencies
similar to those attained with an assembly line in modern
manufacturing methods. A product line approach recog-
nizes that most products in a market segment are very
similar, varying only in certain well-defined and predict-
able ways. For example, many different automobile models
from a manufacture share several common functions, but
they differ in parameters or in options in a specific config-
uration. The same is true for cellular telephone handsets
and television sets. Software reuse becomes easier when
the commonality and differences in the software design are
exploited.

The software product line approach focuses first on
software architecture:

The software architecture of a program or computing system is
the structure or structures of the system, which comprise soft-
ware elements, the externally visible properties of those ele-
ments, and the relationship among them (4).

Developers find it easier to create reusable components
when the architecture takes into account similarities as
well as points of variation across the different products in
the product family. Within the constraints of the architec-
ture, developers can create reusable software components
and other software assets for the initial products, and then
they can refactor continuously those components to main-
tain the product line as new products are created. Compa-
nies adopting software product lines have reported case
studies showing factors-of-two or better improvements in
software development productivity over their previous
‘‘serendipitous’’ reuse strategies. Also, defects were
decreased significantly and time-to-market was shortened
considerably (5).

The software product line approach also recognizes that
domain expertise3 is an important aspect of embedded
software design. Embedded software often interacts with
real-world signals or mechanical systems. Domain knowl-
edge and special mathematical skills—digital signal pro-
cessing, digital communications, real-time control, image
processing, or computer graphics, for example—facilitate
effective software implementation. A focused development
team with the correct mixture of software engineering
skills and domain expertise can make the difference
between a successful and an unsuccessful product.

Commercial embedded operating systems are a tremen-
dous source of software reuse. In many embedded applica-
tions, most lines-of-code are provided by the operating
system. Windows CETM, Symbian OSTM, and Embedded
LinuxTM are examples of commonly used operating systems.
Usually, the embedded operating system provides compo-
nents and skeletal architectures for the run-time environ-
ment, the user interface framework, the peripheral drivers,
the media encoders/decoders, and the communication pro-
tocols needed by the product. The generality and extended
functionality of the operating system allows the operating
systems to be used across many of embedded products.

The generality of a commercial embedded operating
system also can be a curse. The embedded operating

Table 1. Some Products Containing Embedded Software

Product SLOC (M) Comments

Next-generation jumbo jet airliner 1,000 critically reliable, active real-time control,
high potential for product liability

2006 luxury sedan 30–50 highly reliable, up to 75 distributed CPUs,
cost sensitive, active real-time control

Residential gateway 10–20 very low cost, quick to market

CT medical imager 4–6 highly reliable, potential for product liability

High-end cellular telephone handset 3–10 energy efficient, very low cost, reliable,
3–6 different CPUs, quick to market

Programmable digital hearing aid .005–.02 10–30M multiply/accumulates per second at 0.001 watt power,
extremely low cost, programmable post-manufacture

Table 2. Some Characteristics of Embedded Software

� Low cost
� Small ‘‘footprint’’
� Short time to market
� High reliability
� ‘‘Close’’ to the hardware
� Codesigned with a system on a chip
� Software/firmware in ROM/PROM
� Low power and power management
� Very high performance on a specialized task
� Heterogeneous, multiple processors
� Software on a special-purpose processor
� Observing and controlling real-world signals
� Real time
� ‘‘Nontraditional’’ or safety-critical user interface
� Security against attack and theft

1See entry on SOFTWARE ENGINEERING.

2See entry on SOFTWARE ENGINEERING.
3See entry on DOMAIN EXPERTISE.

2 EMBEDDED SOFTWARE



systems must be tailored and configured to eliminate fea-
tures that are not used, requiring a significant effort. Even
then, the resulting executable code size may be too large for
low ‘‘footprint’’ applications or too complex for adequate
testing. These factors are critical in highly distributed
systems like those found in an automobile.

A software/hardware platform is a development envir-
onment and framework of software and hardware compo-
nents designed to provide common features and functions
that can be reused across an application domain. Often a
platform is an outcome of a software product line, but it also
can evolve from legacy products. Usually the platform
provides a programmer interface layer above the operating
system on which many similar applications can be built.
Platforms can be proprietary, commercial, or a mixture of
the two.

A cellular handset manufacturer or a television set
manufacturer, for example, will develop a proprietary plat-
forms that is then customized specifically for each of the
different products in the product line. Commercial
embedded application platforms are becoming more com-
mon in the industry. Qualcomm’s BrewTM and Nokia’s
Series 60TM on Symbian OS are two examples of commer-
cial platforms for development of mobile wireless applica-
tions. Platforms provide independent developers with a
post-manufacture development opportunity, and they offer
similar productivity advantages to those of a software
product line.

Software standards are an effective concept used to
increase embedded software reuse. Usually, standards spe-
cify interfaces between software modules or between hard-
ware and software. However, standards can cover software
architecture, run-time environments, security, testing, and
software methodology. Standards do not specify the imple-
mentation, allowing competition among vendors for creative
solutions. Standards can be industry-specific or application-
specific, developed through cooperation directly between
otherwise competing companies. Once the standard is
worked out, it may be held and maintained by a vendor-
neutral standards body (6) or by a consortium of companies.
The Institute of Electrical and Electronics Engineers,
International Organization for Standardization, Interna-
tional Telecommunications Union, and the World Wide
Web Consortium are a few examples of standards bodies
with significant impact on embedded software reuse. Some-
times standards are established informally as ‘‘de facto’’
standards when everyone merely follows the industry
leader’s interface practices.

Open source software (7) is another form of software
reuse used in embedded systems. Under the open source
license, software is made available in source form, allowing
the product developer to benefit from features and bug fixes
added by other developers. Sometimes the developers may
be creating similar products, and sometimes not.
Embedded Linux is a very successful example of software
reuse via an open source license. Open source software is
not necessarily free for commercial use nor is it public
domain software. Usually, licensing fees and legal restric-
tions apply for use of the intellectual property contained in
the software.

Third-party developers contribute to software reuse.
Software development for complex products rarely is per-
formed completely by the product developer alone. For
example, semiconductor vendors will license significant
software content, software tools, and example code to the
purchaser of their programmable components as a way of
winning business. For the most competitive programmable
semiconductor products, semiconductor vendors may
license production quality software components that can
be dropped directly into an embedded software product.
Similarly other companies—usually called ‘‘third-party
developers’’—spring up to provide specialized domain
expertise, software integration skills, and licensed soft-
ware for specialized processors. Third-party developers
often provide complete hardware/software subassemblies
containing significant embedded software. A diesel engine
for an automobile or a jet engine for an aircraft would be
examples of these subassemblies. Because third-party
developers sell their software to multiple customers for
multiple products, effectively they are promoting software
reuse.

Embedded operating systems, third-party software, and
open source software are all examples of a ‘‘value chain (1)’’
(sometimes called ‘‘value web’’) that fosters software reuse
and allows embedded software products with millions (or
even billions) of lines of code to be created so that the very
high nonrecurring cost of its development is amortized
effectively across a very large number of products.

RAPID TIME-TO-MARKET AND HARDWARE/SOFTWARE
CODESIGN

The old cliché ‘‘time is money’’ is certainly true when it
comes to product introduction. Time-to-market is a critical
aspect of embedded software development for many pro-
ducts. Sales of a new consumer product—a digital still
camera or a music player, for example—peak just before
Christmas. The difference of a few weeks in the critical
development schedule can make the difference between
financial success and failure in the marketplace.

Embedded software development can be challenging
especially in this environment. Software development costs
go up when development schedules are shortened artifi-
cially. The developer may need a software process that
consciously trades short development time for programmer
efficiency to maintain a tight schedule4.

Hardware/software codesign methodology often is
employed to gain rapid time-to-market for products con-
taining embedded software that is ‘‘close to the hardware’’
and when one or more integrated circuits are yet-to-be-
developed. The software developer cannot wait for the
hardware to start development of the software. Hard-
ware/software codesign methods5 must be used so that
the software and hardware developments can proceed in
parallel. Hardware/software codesign is a methodology for
simultaneous development of new hardware, new software,

4See entry on SOFTWARE DEVELOPMENT METHODOLOGIES AND PRO-

CESSES.
5See entry on HARDWARE/SOFTWARE CODESIGN.

EMBEDDED SOFTWARE 3



and new development tools. The complex interactions
among the application domain, the various hardware
and software components, and the development tools
must be simulated or modeled at varying levels of abstrac-
tion early in and throughout the design process. Embedded
software allows the inevitable changes in requirements or
minor hardware fixes to be implemented quickly and late in
the development cycle. Consequently, software is fre-
quently a preferred design choice for quick time-to-market
products even when a more hardware-centric approach
would have lower recurring costs.

RELIABILITY AND TESTING

Many products containing embedded software have high
reliability requirements. We expect our telephones to be
more reliable than our desktop computers. We expect our
automobiles to be more reliable than our telephones, and
we expect our airplanes to be more reliable than our auto-
mobiles. Reliability is a very key component of product
liability costs (8), warranty costs, software maintenance
costs, and ultimately product success.

We can achieve adequate reliability through application
of good software engineering practices: software architec-
ture, design for reliability, a quality software development
process6 and extensive test coverage7. However, no system
is 100% reliable. Several aspects of embedded systems
make achieving the desired level of reliability very difficult.

Adequate test coverage is difficult to achieve for software
that senses and controls real-world signals and devices. We
would like to test such software against all combinations
and permutations of its environment, but this is difficult
because of the real-world temporal variation in inputs and
external state. If the software is very complex, it is even
worse because the huge combinitorics of internal state
compounds the problem. The product test cycle for tele-
communications products can be 9–12 months over thou-
sands of sample products in various configurations and
environments. For a commercial aircraft, the software
testing process can take years.

For higher reliability systems, reliability techniques
such as redundancy and voting, error-checking and recov-
ery, formal reliability models, formal software validation
tools, temporal logic models of system behavior, require-
ment-driven margins of safety, and executable assertions
must be used to augment rigorous testing (9).

Real-time embedded software executing on complex
integrated circuits is more difficult to test and debug
than software with relaxed time constraints. Real-time
systems often follow the uncertainty principle: ‘‘When
you test them, their reliability and performance change.’’
To achieve adequate testing, inputs must be provided to
internal components, and internal state and outputs must
be collected as nonintrusively as possible. Historically, this
task was assigned to a logic analyzer or to a real-time test
harness. However, today’s complex integrated circuits are
pin-limited and bandwidth-limited relative to their inter-

nal computation rates. It is difficult to achieve high data
transfer rates on and off the chip nonintrusively. Modern
programmable integrated circuits may employ special test
and debug ports—IEEE 1149.1 (Joint Test Action Group)
standard, for example—and add special internal nonintru-
sive trace circuitry, similar to a built-in logic analyzer, to
capture internal data. Combined with software design-for-
test concepts, this internal circuitry increases real-time
test coverage.

No product is without latent defects. Latent defects are a
product liability—a future cost for financial compensation
for injured parties. Manufacturers warrant their product
against latent defects—a future cost for recalling, repair-
ing, or replacing defective products. Product litigation and
product recalls are expensive. These future costs depend on
the number and the severity of defects in the current
product and on the speed and the efficacy in which defects
are fixed before they cause a problem. Embedded software
defects have become a major cost factor. To predict and
manage these costs, the developer can create a latent defect
model to help drive pricing and maintenance decisions.
Usually such models are based on metrics captured over
the lifecycle of the software development process. For
embedded software, frequently this means adding extra
software and hardware to products to capture operational/
test data in the field. Extra software and hardware also may
be added to enable or to lower the cost of field upgrades.
Latent defect models are statistical in nature and usually
are based on historical metrics associated with the software
developer’s software process as well as on the specific
development and test metrics captured during the specific
product’s development cycle8.

When developers use a latent defect models for pricing
and product improvement decisions, they need similar
models and data from their third-parties and other sources
of reusable software. The lack of models and data can be a
barrier to using third-party or open-source software.

HETEROGENEOUS MULTIPROCESSOR DEVELOPMENT

Products with complex embedded software content are
often heterogeneous multiprocessor systems. These sys-
tems can bring big advantages. Different CPUs or compu-
tational accelerators can be specialized and optimized for
the specific task demanded of them. Real-time activities can
be isolated physically from nonreal-time functions to sim-
plify the analysis and design. Whole devices can be powered
down when not used to save power. Mission-critical opera-
tions can be isolated physically from less reliable code so as
to eliminate the unpredictable side effects of unreliable
code. Multiple processors can lower or eliminate data
transmission costs, which can be more expensive and
time consuming than the computation itself.

However, multiple heterogeneous processor systems
come with a development penalty. Programming different
CPUs usually requires different programmer training and
new design skills. Specialized processors or computational

6See entry on RELIABILITY TEST.
7See entry on SOFTWARE ENGINEERING PRACTICES. 8See entry on DEFECT MODELS IN SOFTWARE PROCESS.

4 EMBEDDED SOFTWARE



accelerators may have development tool limitations that
make them harder to program.

Tool stability and versioning is very important for effi-
cient software development but especially so for embedded
software for heterogeneous processors. For example, a
subassembly manufacturer in the automotive industry
will have developed and tested millions of lines of code
that are then reused in hundreds of different vehicles
manufactured by many manufacturers. A new version of
a compiler may provide improved code performance or may
fix compiler defects. But changing to the new compiler
would require recompilation, revalidation, and testing of
all the existing code used in each of the various products
and product environments. This task is daunting and time
consuming. Using the old compiler version for lifecycle
maintenance on older products is preferred. However,
keeping track of all versions of tools for all variations of
software is hard. Embedded software developers usually
keep all their software tools in the same configuration
management system that contains the code they are devel-
oping to avoid unnecessary or unanticipated costs and
delays caused by new tool versions.

REAL-TIME SYSTEMS

Many products contain real-time (10)9 embedded software.
Real-time software, like any other software, accepts inputs,
updates the internal state, and produces outputs. However,
the time relationship of the outputs relative to the inputs
and the implicit or explicit representation of time in the
software are what make software real time. Often real-time
software is part of a feedback loop controlling real-world
signals and mechanical devices—an aircraft ‘‘fly-by-wire’’
flight control system, for example. But real-time software
also is important in products such as portable music or
digital video players dealing with audio and video percep-
tion. Human perception is sensitive to temporal aspects of
sound and vision.

Real time is more about predictable or deterministic
computationalperformancethanabout fastorhighthrough-
put. A unit of computation can have a time deadline relative
to some event. When failing to complete the computation
before the deadline causes a failure, we call the deadline a
‘‘hard’’ deadline and the system is called a hard real-time
system. If the system can miss the deadline occasionally and
still meet requirements, we call the deadline a ‘‘soft’’ dead-
line and the system is called a soft real-time system. A flight
control system usually is a hard real-time system, whereas
an audio decoder is more likely a soft real-time system. In
reality, real time is a continuum between hard and soft
based on the allowable statistics and the severity of missed
deadlines and the developer must make a corresponding
tradeoff between determinism and speed. A flight controller
almost always will use deterministic software techniques
over faster but less predictable ones, whereas an audio
decoder may meet requirements by using high throughput
but occasionally using approximate computations or even
sometimes allowing noticeable artifacts in the sound.

Designing complex embedded real-time systems is a
tough task. It usually helps to consider time explicitly in
the design and to develop a model of computation as part of
the software architecture. A model of computation (11)—or
‘‘framework’’—is a set of rules or design patterns that
determine the interaction of all the time-critical compo-
nents of the software. The choice of computational model
depends on the domain and on the specifics of the real-time
requirements. A good model of computation can lead to
lower development cost and higher reliability.

A real-time operating system (RTOS) can provide reu-
sable components and a framework for the chosen model of
computation. Some embedded operating systems, such as
Windows CE or Symbian OS, provide significant real-time
features. Additionally, commercial RTOS vendors (12)—
Wind River, Green Hills Software, or LynuxWorks, for
example—provide robust frameworks for highly reliable,
hard real-time embedded systems.

ENERGY USAGE AND ENERGY MANAGEMENT

Many products containing embedded software are battery
powered. Customers prefer infrequent battery charging or
replacement, which in turn means efficient use of energy
(13). Usually, embedded software is involved in the energy
management of energy-efficient products. Energy usage
and energy management are key elements to the software
design.

System designers use many different techniques for
energy management. Some examples are as follows:

� Special CPUs or other processors

� Clock and power control of circuits

� Parallel computation

� Voltage scaling

Special processors—programmable digital signal proces-
sors or programmable digital filter banks, for example—
can improve greatly the energy efficiency over a conven-
tional CPU. Often these devices require custom program-
ming and can exacerbate the issues with the heterogeneous
multiprocessor nature of the software. However, the ben-
efits of more energy efficiency make the challenges worth-
while (14).

The programmable, in-ear digital hearing aid is an
excellent example of the marriage of embedded software
and a programmable special-purpose signal processor.
Although current-day digital hearing aids may contain
some embedded software for control, they do most of the
signal processing with hard-wired digital filters implemen-
ted directly in logic. They do not employ the superior soft-
ware signal processing techniques demonstrated in the
research laboratories because the power consumption
would use up the battery in hours or even in minutes.
An embedded digital signal processor, augmented with
programmable digital filters or other specialized program-
mable processors, can provide superior sound quality and
can adapt better to the hearing impairment. Because it is
programmable, the same basic design can be adapted to a

9See entry on REAL-TIME SOFTWARE.

EMBEDDED SOFTWARE 5



wider range of hearing disabilities and may even be repro-
grammed in the audiologist’s office. Ultimately this energy-
efficient embedded software product will benefit over 600M
hearing-impaired people worldwide.

Digital integrated circuits use one or more clock signals
to synchronize digital logic operations. Every time the clock
toggles, it consumes energy as it charges or discharges the
electrical capacitance of the on-chip interconnect wires it
drives. Usually the clock toggles at twice the frequency of
the rest of the logic and consequently is one of the largest
consumers of energy in an integrated circuit. When the
clock toggles at its full rate, it is consuming energy even
when the digital logic circuits it is synchronizing are not
performing any useful work. Thus energy efficient inte-
grated circuits control the clock rates for the various inter-
nal circuits and subsystems in an on-demand manner. This
clock management function usually is performed by the
embedded software.

Today’s fastest and most dense integrated circuits con-
tain exceedingly small transistors with minimal geome-
tries under 65 nm. The very low voltages and very high
clock rates enabled through these small transistors have a
detrimental side effect on energy usage. When powered,
these small transistors leak current in a manner analogous
to a leaky faucet. The current lost to a single transistor is
small, but the current lost in a large circuit of 500M
transistors can be huge. When circuits are not performing
useful work, power must be switched off to conserve the
energy that would otherwise be lost. This power switching
may also be part of the embedded software function, adding
yet another layer of complexity. But more importantly,
most of the circuits that are powered down contain registers
or memory to hold internal state information. These data
must be made available again to the software and other
logic functions when they are reactivated. Critical state
information that could be lost must be preserved in special
memories or with special memory power-down configura-
tions, or they must be recreated again and reinitialized
when the circuit is powered up. This function also can be
assigned to the embedded software. Power management is
now a complex feature of energy-efficient integrated cir-
cuits requiring embedded software for correct operation.

Parallel computation can be used to lower energy con-
sumption. The rate at which energy is consumed in a CMOS
digital integrated circuit is directly proportional to the clock
rate, whereas the time it takes the software to perform its
task is inversely proportional to the clock rate. Total energy
consumed for a fixed unit of software functionality remains
constant over a wide range of clock rates. However, if
you can lower the integrated circuit voltage, the rate of
energy consumption drops as the square of the voltage,
whereas the maximum achievable clock rate drops only
roughly proportionally to the voltage. Operating the inte-
grated circuit at its lowest operating voltage saves energy,
albeit at a reduced clock rate. Two CPUs operating in
parallel at a slow clock rate are roughly twice as energy
efficient as a single CPU operating at twice the clock rate,
assuming that the parallel computation still can achieve
the same computational efficiency. Parallel computation is
not always easy or achievable, but it can conserve energy
when used effectively in an embedded system. Program-

ming parallel processes is a difficult aspect of energy-effi-
cient, embedded software design.

Voltage scaling is a similar concept. Voltage scaling
recognizes that in many embedded systems the computa-
tional load is not uniform over time and may not even be
predictable. Voltage scaling allows the software to select its
own clock rate and select the required operating voltage,
computational speed, and resultant energy consumption
rate. When properly scheduled, the software can complete
the current computational load ‘‘just in time,’’ and, thus,
achieve the best energy efficiency. For soft and hard real-
time systems, voltage scaling can save energy, but it adds
yet an additional layer of complexity to the software design.
In dynamic applications, effective use of voltage scaling
requires extra software components to predict future com-
putational loads in advance.

HUMAN–COMPUTER INTERFACES AND HUMAN FACTORS

Frequently, the software embedded in a product interacts
directly with a user. Thus, the product is an extension of the
user in performing his task. The design of the software
behind this interface is critical in the success or failure of
the product.

Products with physically limited input and output cap-
abilities can be difficult to use, and superior usability is a
major factor of product success. For example, sales of a
digital video recorder can improve when a more user-
friendly interface is implemented to capture unattended
broadcasts. Some products are meant to be used in eyes-free
or hands-free environments or to be accessible by persons
with a visual or physical impairment. Cellular telephones
and automotive navigation systems, for example, may
employ voice recognition and response to augment the
traditional user interface. In complex and exacting tasks,
such as piloting and aircraft, the user can be overwhelmed
with information. A good interface will prioritize automa-
tically and present only the most critical information, while
avoiding information overload by suppressing the less
important information. In any safety-critical system,
such as in aircraft or in automobile electronics, human
errors are a real safety concern. The user interface software
must avoid confusing protocols, repetitive monotony, and
user mental fatigue that can lead to human errors or lapses
in judgment. The user interface must check and confirm
potentially disastrous commands while maintaining the
responsiveness the user needs to perform in an emergency
under stress.

Attention to human factors is a key element of the design
and testing process for embedded software that interacts
directly with humans. User-centered design (15), some-
times called human-centered design, is one design process
that attempts to inject the user’s wants, needs, and varia-
bility into the software development and maintenance
lifecycle. User-centered design recognizes that the user’s
behavior must be viewed in the context of the full range of
the product’s use scenarios. Users and potential users are
involved continuously throughout the design cycle via user
focus groups, assessments of usage scenarios task analyses
and interface mock-ups or sketches, and testing with work-

6 EMBEDDED SOFTWARE



ing prototypes and preproduction software. User-centered
design ensures that the user is well represented in the
design process, but it does not diminish the other aspects of
good software design and software reuse processes.

User-centered design is not a panacea for interacting
with the user. User interfaces for safety-critical embedded
software are particularly demanding. Catastrophic errors
usually are rare and occur as a result of the simultaneous
occurrence of two or more even rarer events. The statistical
margins of variations of human characteristics, user tasks,
environmental conditions, and software defects are all
difficult to predict, to observe, and to characterize through
direct interaction with users. User-centered design must be
combined with a strong safety methodology, such as the
International Electrotechnical Commission’s ‘‘Functional
Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems’’ (IEC 61508) or the joint Radio
Technical Commission for Aeronautics and European
Organization for Civil Aviation Equipment DO-178B Level
A software development standard.

SECURITY AGAINST ATTACK AND THEFT

We are all familiar with the issues of computer viruses and
electronic theft in today’s desktop and World Wide Web
environments (16). Although not yet commonplace,
embedded software products also are susceptible to these
security issues. Because so much of our society depends on
embedded software, terrorism is another threat. The
threats are evolving. In the past, embedded software was
constrained to ROM, was not connected electronically to a
network, and was never upgraded. Tampering was difficult
and ineffectual, so the threat was minimal. This situation is
no longer true. Cellular handset developers, automotive
companies, aircraft producers, media player developers, as
well as most other industry segments are now taking digital
security seriously. Cellular handset manufacturers are
working with semiconductor vendors to put security fea-
tures in hardware to thwart cellular handset cloning and
viruses.

Content providers are concerned with theft of their
products. In the near future, digital rights management
(17) will be included in the embedded software of virtually
all audio and video players and recorders. Digital rights
management is a set of security features that allow a
rightful owner or licenser of digital content to use it, but
it keeps anyone from copying and distributing the content.
Digital rights management usually involves some sort of
encryption of the digital media combined with a mechanism
to bind the use of the encrypted media to a specific hardware
device or player. It also can include information unobtru-
sively embedded in the media—often called a ‘‘water-
mark’’—to identify uniquely the source and distribution
path of the media in such a way that an illegal copy and the
illegal copier can be identified and prosecuted.

Security and protection against theft are becoming
every bit as important in products with embedded software
are they are in desktop software products. Security and
digital rights management are primarily implemented

with software and are becoming yet another critical soft-
ware development issue with embedded software.

SUMMARY

Embedded software is commonplace. It is a defining con-
stituent of the many products we use daily. More and more,
products depend on electronics and software to implement
the many new functions we demand. As a result, the com-
plexity of embedded software is exploding.

Development of complex embedded software is a
nonrecurring cost that must be amortized across sales of
all products that use the software. Because of the high cost
of developing software containing millions of lines of code,
software reuse, in all its forms, is the only practical way to
minimize this cost to the consumer.

The embedded software developer faces many special
challenges. Among these challenges are quick time-to-mar-
ket with hardware/software codesign, high-quality designs
with high reliability, special design-for-test features
enabling high test coverage, scalable modular designs
incorporating many different CPUs and instruction sets,
software architectures and computational models that
address real-time applications, designs that support
energy-efficient use of the underlying electronics, user-
centric interfaces, and protection from the risks of compu-
ter hacking, terrorism, theft, and litigation.

BIBLIOGRAPHY

1. D. G. Messerschmitt, C. Szyperski, Software Ecosystem:
Understanding an Indispensable Technology and Industry,
Cambridge MA: The MIT Press, 2003.

2. S. McConnell, Software Estimation: Demystifying the Black
Art, Redmond, WA: Microsoft Press, 2006.

3. J. Bosch, Design and Use of Software Architectures: Adopting
and Evolving a Product Line Approach, London: Addison-
Wesley, 2000.

4. L. Bass, P. Clements, R. Kazman, Software Architecture in
Practice, 2nd ed. Boston, MA: Addison-Wesley, 2003.

5. Software Engineering Institute (SEI), Software Product Lines
(2006), Pittsburgh, PA: Carnegie Mellon University. Available:
http://www.sei.cmu.edu/productlines/.

6. Wikipedia Foundation, Inc. Standards Organization (2006).
Available: http://en.wikipedia.org/wiki/Standards_organiza-
tion.

7. Open Source Initiative OSI. Available: http://www.opensour-
ce.org.

8. J. R. Hunziker and T. O. Jones, Product Liability and Innova-
tion: Managing Risk in an Uncertain Environment, Washing-
ton, D.C.: National Academy, 1994.

9. D. Peled, Software Reliability Methods, New York: Springer,
2001.

10. H. Gomaa, Software Design Methods for Concurrent and Real-
Time Systems, Reading, MA: Addison-Wesley, 1993.

11. E. A. Lee, What’s ahead for embedded software?, IEEE Comp.
Mag., 33: 18–26, 2000.

12. C. Adams, COTS operating systems: Boarding the Boeing 787,
Avionics Magazine, April 1, 2005.

EMBEDDED SOFTWARE 7



13. CMP Media, LLP., DSP Design Line, Low-power signal proces-
sing. Available: http://www.dspdesignline.com/showArticle.
jhtml?articleID ¼ 187002922. July 2008.

14. T. Glökler and H. Meyr, Design of Energy-Efficient Application-
Specific Instruction Set Processors, Boston MA: Kluwer Aca-
demic, 2004.

15. D. Norman, Human-centered product development, in D.
Norman (ed.), The Invisible Computer, Cambridge, MA: The
MIT Press, 1998.

16. B. Schneier, Secrets and Lies: Digital Security in a Networked
World, New York: John Wiley, 2000.

17. B. Rosenblatt, B. Trippe, and S. Mooney, Digital Rights Man-
agement: Business and Technology, New York: M&T Books,
2002.

JOHN LINN

Texas Instruments
Dallas, Texas

8 EMBEDDED SOFTWARE



F

FAULT-TOLERANT SOFTWARE

INTRODUCTION

Fault tolerance is the survival attribute of a system or
component to continue operating as required despite the
manifestation of hardware or software faults (1). Fault-
tolerant software is concerned with all the techniques
necessary to enable a software system to tolerate software
design faults remaining in the system after its development
(2). When a fault occurs, fault-tolerant software provides
mechanismstoprevent thesystemfailure fromoccurring (3).

Fault-tolerant software delivers continuous service
complying with the relevant specification in the presence
of faults typically by employing either single-version soft-
ware techniques or multiple-version software techniques.
We will address four key perspectives for fault-tolerant
software: historical background, techniques, modeling
schemes, and applications.

HISTORICAL BACKGROUND

Most of the fault-tolerant software techniques were intro-
duced and proposed in 1970s. For example, as one of single-
version fault-tolerant software techniques, the exception
handling approach began to appear in the 1970s, and a wide
range of investigations in this approach led to more mature
definitions, terminology, and exception mechanisms later
on (4). Another technique, checkpointing and recovery, was
also commonly employed to enhance software reliability
with efficient strategies (5).

In the early 1970s, a research project was conducted at
the University of Newcastle (6). The idea of the recovery
block (RB) evolved from this project and became one of the
methods currently used for safety-critical software. RB is
one of three main approaches in so-called design diversity,
which is also known as multi-version fault-tolerant soft-
ware techniques. N-version programming was introduced in
1977 (7), which involved redundancy of three basic elements
in the approach: process, product, and environment (8). N
self-checking programming approach was introduced most
recently, yet it was based on the concept of self-checking
programming that had long been introduced (9).

Since then, many other approaches and techniques have
been proposed for fault-tolerant software, and various
models and experiments have been employed to investigate
various features of these approaches. We will address them
in the following part of this article.

Definitions

As fault-tolerant software is capable of providing the
expected service despite the presence of software faults
(7,10), we first introduce the concepts related to this
technique (11).

Failures. A failure occurs when the user perceives that a
software program is unable to deliver the expected service
(9). The expected service is described by a system specifica-
tion or a set of user requirements.

Errors. An error is part of the system state, which is
liable to lead to a failure. It is an intermediate stage in
between faults and failures. An error may propagate
(i.e., produce other errors).

Faults. A fault, sometimes called a bug, is the identified
or hypothesized cause of a software failure. Software faults
can be classified as design faults and operational faults
according to the phases of creation. Although the same
classification can be used in hardware faults, we only
interpret them in the sense of software here.

Design Faults. A design fault is a fault occurring in soft-
ware design and development process. Design faults can be
recovered with fault removal approaches by revising the
design documentation and the source code.

Operational Faults. An operational fault is a fault occur-
ring in software operation due to timing, race conditions,
workload-related stress, and other environmental condi-
tions. Such a fault can be removed by recovery (i.e., rollback
to a previously saved state and executed again).

Fault-tolerant software thus attempts to prevent fail-
ures by tolerating software errors caused by software
faults, particularly design faults. The progression ‘‘fault-
error-failure’’ shows their causal relationship in a software
lifecycle, as illustrated in Fig. 1. Consequently, there are
two major groups of approaches to deal with design faults:
(1) fault avoidance (prevention) and fault removal during
the software development process, and (2) fault tolerance
and fault/failure forecasting after the development process.
These terms can be defined as follows:

Fault Avoidance (Prevention). To avoid or prevent the
introduction of faults by engaging various design meth-
odologies, techniques, and technologies, including struc-
tured programming, object-oriented programming, software
reuse, design patterns, and formal methods.

Fault Removal. To detect and eliminate software faults
by techniques such as reviews, inspection, testing, verifica-
tion, and validation.

Fault Tolerance. To provide a service complying with the
specification in spite of faults, typically by means of single-
version software techniques or multi-version software tech-
niques. Note that, although fault tolerance is a design
technique, it handles manifested software faults during
software operations. Although software fault-tolerance
techniques are proposed to tolerant software errors, they
can help to tolerate hardware faults as well.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Fault/failure Forecasting. To estimate the existence of
faults and the occurrences and consequences of failures
by dependability-enhancing techniques consisting of relia-
bility estimation and reliability prediction.

Rationale

The principle of fault-tolerant software is to deal with
residual design faults. For software systems, the major
cause of residual design faults can be complexity, difficulty,
and incompleteness involved in software design, imple-
mentation, and testing phases. The aim of fault-tolerant
software, thus, is to prevent software faults from resulting
in incorrect operations, including severe situations such as
hanging or, at worst, crashing the system. To achieve this
purpose, appropriate structuring techniques should be
applied for proper error detection and recovery. Neverthe-
less, fault-tolerance strategies should be simple, coherent,
and general in their application to all software systems.
Moreover, they should be capable of coping with multiple
errors, including the ones detected during the error recov-
ery process itself, which is usually deemed fault-prone due
to its complexity and lack of thorough testing.

To satisfy these principles, strategies like checkpoint-
ing, exception handling, and data diversity are designed for
single-version software, whereas RB, N-version program-
ming (NVP), and N self-checking programming (NSCP)
have been proposed for multi-version software. The details
of these techniques and their strategies are discussed in the
next section.

Practice

From a user’s point of view, fault tolerance represents two
dimensions: availability and data consistency of the appli-
cation (12). Generally, there are four layers of fault toler-
ance. The top layer is composed of general fault-tolerance
techniques that are applicable to all applications, including
checkpointing, exception handling, RB, NVP, NSCP, and
other approaches. Some of the top-level techniques will be
addressed in the following section. The second layer con-
sists of application-specific software fault-tolerance tech-
niques and approaches such as reusable component, fault-
tolerant library, message logging and recovery, and so on.
The next layer involves the techniques deployed on the level
of operating and database systems, for example, signal,
watchdog, mirroring, fault-tolerant database (FT-DBMS),
transaction, and group communications. Finally, the
underlying hardware also provides fault-tolerant comput-
ing and network communication services for all the upper
layers. These are traditional hardware fault-tolerant tech-
niques including duplex, triple modular redundancy
(TMR), symmetric multiprocessing (SMP), shared memory,
and so on. Summary of these different layers for fault-
tolerance techniques and approaches are shown in Fig. 2.

Technologies and architectures have been proposed to
provide fault tolerance for some mission-critical applica-
tions. These applications include airplane control systems
(e.g., Boeing 777 airplane and AIRBUS A320/A330/A340/
A380 aircraft) (13–15), aerospace applications (16), nuclear
reactors, telecommunications systems and products (12),
network systems (17), and other critical software systems.

Figure 1. The transition of fault, error,
and failure in a software lifecycle.

Software
development

Software
validation

Software
operation

Software
maintainance

Developer Tester User Maintainer

Fault
Avoidance

Fault
Removal

Fault (Error)
Tolerance

Fault (Error)
Forecast

Fault Error Failure

Figure 2. Layers of fault tolerance.

Hardware

Operating / Database Systems 

Application Software Systems 

Generic Software Systems 

duplex, TMR,  ... 

signals, monitor, watchdog, 
mirroring, FT-DBMS, ... 

reusable component, 
                    message logging and recovery, ... 

checkpointing, exception handling, 
RB, NVP, NSCP, ... 

2 FAULT-TOLERANT SOFTWARE



FAULT-TOLERANT SOFTWARE TECHNIQUES

We examine two different groups of techniques for fault-
tolerant software: single-version and multi-version soft-
ware techniques (2). Single-version techniques involve
improving the fault detection and recovery features of a
single piece of software on top of fault avoidance and
removal techniques. The basic fault-tolerant features
include program modularity, system closure, atomicity of
actions, error detection, exception handling, checkpoint and
restart, process pairs, and data diversity (2,18).

In more advanced architectures, design diversity is
employed where multiple software versions are developed
independently by different program teams using different
design methods, yet they provide the equivalent service
according to the same requirement specifications. The main
techniques of this multiple-version software approach are
RB, NVP, NSCP, and other variants based on these three
fundamental techniques.

All the fault-tolerant software techniques can be
engaged in any artifact of a software system: procedure,
process, software program, or the whole system including
the operating system. The techniques can also be selec-
tively applied to those components especially prone to
faults because of the design complexity.

Single-Version Software Techniques

Single-version fault tolerance is based on temporal
and spacial redundancies applied to a single version of
software to detect and recover from faults. Single-version
fault-tolerant software techniques include a number of
approaches. We focus our discussions on two main methods:
checkpointing and exception handling.

Checkpointing and Recovery. For single-version soft-
ware, the technique most often mentioned is the checkpoint
and recovery mechanism (19). Checkpointing is used in
(typically backward) error recovery, by saving the state
of a system periodically. When an error is detected, the
previous state is recalled and the whole system is restored
to that particular state. A recovery point is established
when the system state is saved and discarded if the process
result is acceptable. The basic idea of checkpointing is
shown in Fig. 3. It has the advantages of being independent
of the damage caused by a fault.

The information saved for each state includes the values
of variables in the process, its environment, control infor-
mation, register values, and so on. Checkpoints are snap-
shots of the state at various points during the execution.

There are two kinds of checkpointing and recovery
schemes: single process systems with a single node and
multiple communicating processes on multiple nodes (3).
For single process recovery, a variety of different strategies
is deployed to set the checkpoints. Some strategies use
randomly selected points, some maintain a specified time
interval between checkpoints, and others set a checkpoint
after a certain number of successful transactions have
been completed.

For multiprocess recovery, there are two approaches:
asynchronous and synchronous checkpointing. The
difference between the two is that the checkpointing
by the various nodes in the system is coordinated in
synchronous checkpointing but not coordinated in asyn-
chronous checkpointing. Different protocols for state
saving and restoration have been proposed for the two
approaches (3).

Exception Handling. Ideal fault-tolerant software sys-
tems should recognize interactions of a component with
its environment and provide a means of system structur-
ing, making it easy to identify the part of the system needed
to cope with each kind of error. They should produce normal
and abnormal (i.e., exception) responses within a compo-
nent and among components’ interfaces (20). The structure
of exception handling is shown in Fig. 4.

Exception handling, proposed in the 1970s (21), is often
considered as a limited approach to fault-tolerant software
(22). As departure from specification is likely to occur,
exception handling aims at handling abnormal responses
by interrupting normal operations during program execu-
tion. In fault-tolerant software, exceptions are signaled by
the error detection mechanisms as a request for initiation of
an appropriate recovery procedure. The design of exception
handlers requires consideration of possible events that can
trigger the exceptions, prediction of the effects of those
events on the system, and selection of appropriate mitigat-
ing actions.

A component generally needs to cope with three kinds
of exceptional situations: interface exceptions, local excep-
tions, and failure exceptions. Interface exceptions are

Execution

Error Detection 

Checkpoint
Memory

Output

Input

checkpoint
Retry

Figure 3. Logic of checkpoint and recovery.

normal
operation

exception
handling

local
exceptions

return

Service
request

Normal
response

Service
request

Normal
response

Interface
exceptions

Failure
exceptions

Interface
exceptions

Failure
exceptions

Figure 4. Logic of exception handling.

FAULT-TOLERANT SOFTWARE 3



signaled when a component detects an invalid service
request. This type of exception is triggered by the self-
protection mechanisms of the component and is treated
by the component that made the invalid request. Local
exceptions occur when a component’s error detection
mechanisms find an error in its own internal operations.
The component returns to normal operations after
exception handling. Failure exceptions are identified by a
component after it has detected an error that its fault-
processing mechanisms were unable to handle success-
fully. In effect, failure exceptions notify the component
making the service request that it has been unable to
provide the requested service.

Multi-Version Software Techniques

The multi-version fault-tolerant software technique is the
so-called design diversity approach, which involves devel-
oping two or more versions of a piece of software according
to the same requirement specifications. The rationale for
the use of multiple versions is the expectation that compo-
nents built differently (i.e., different designers, different
algorithms, different design tools, and so on) should fail
differently (7). Therefore, in the case that one version fails
in a particular situation, there is a good chance that at least
one of the alternate versions is able to provide an appro-
priate output.

These multiple versions are executed either in sequence
or in parallel, and can be used as alternatives (with sepa-
rate means of error detection), in pairs (to implement
detection by replication checks) or in larger groups (to
enable masking through voting). Three fundamental
techniques are known as RB, NVP, and NSCP.

Recovery Block. The RB technique involves multiple
software versions implemented differently such that an
alternative version is engaged after an error is detected
in the primary version (6,10). The question of whether there
is an error in the software result is determined by an
acceptance test (AT). Thus, the RB uses an AT and back-
ward recovery to achieve fault tolerance. As the primary
version will be executed successfully most of the time, the
most efficient version is often chosen as the primary alter-
nate and the less efficient versions are placed as secondary
alternates. Consequently, the resulting rank of the ver-
sions reflects, in a way, their diminishing performance.

The usual syntax of the RB is as follows. First of all, the
primary alternate is executed; if the output of the primary
alternate fails the AT, a backward error recovery is invoked
to restore the previous state of the system, then the second
alternate will be activated to produce the output; similarly,
every time an alternate fails the AT, the previous system
state will be restored and a new alternate will be activated.
Therefore, the system will report failure only when all the
alternates fail the AT, which may happen with a much
lower probability than in the single-version situation. The
RB model is shown in Fig. 5, while the operation of RB is
shown in Fig. 6.

The execution of the multiple versions is usually sequen-
tial. If all the alternate versions fail in the AT, the module
must raise an exception to inform the rest of the system
about its failure.

N-Version Programming. The concept of NVP was first
introduced in 1977 (7). It is a multi-version technique in
which all the versions are typically executed in parallel and
the consensus output is based on the comparison of the
outputs of all the versions (2). In the event that the program

Figure 5. The recovery block (RB)
model.

recovery cache

primary version

alternate 1

alternate n

acceptance test

...

Input Output

establish
checkpoint

execute
alternate

restore
checkpoint

entry

exit

acceptance
test

discard
checkpoint

pass

new alternate
exists &

deadline not
expired

Yes

exception
signals

fail

Figure 6. Operation of recovery block.

4 FAULT-TOLERANT SOFTWARE



versions are executed sequentially due to lack of resources,
it may require the use of checkpoints to reload the state
before a subsequent version is executed. NVP model is
shown in Fig. 7.

The NVP technique uses a decision algorithm (DA) and
forward recovery to achieve fault tolerance. The use of a
generic decision algorithm (usually a voter) is the funda-
mental difference of NVP from the RB approach, which
requires an application-dependent AT. The complexity of
the DA is generally lower than that of the AT. In NVP,
because all the versions are built to satisfy the same spe-
cification, it requires considerable development effort but
the complexity (i.e., development difficulty) is not necessa-
rily much greater than that of building a single version.
Much research has been devoted to the development of
methodologies that increase the likelihood of achieving
effective diversity in the final product (8,23–25).

N-Self Checking Programming. NSCP was developed in
1987 by Laprie et al. (9,26). It involves the use of multiple
software versions combined with structural variations of the
RBandNVPapproaches.BothATsandDAscanbeemployed
in NSCP to validate the outputs of multiple versions.

The NSCP method employing ATs is shown in Fig. 8.
Same as RB and NVP, the versions and the ATs are devel-
oped independently but each designed to fulfill the require-
ments. The main difference of NSCP from the RB approach
is in its use of different ATs for different versions. The
execution of the versions and tests can be done sequentially
or in parallel, but the output is taken from the highest-
ranking version that passes its AT. Sequential execution
requires a set of checkpoints, and parallel execution
requires input and state consistency algorithms.

NSCP engaging DAs for error detection is shown in
Fig. 9. Similar to NVP, this model has the advantage of
using an application-independent DA to select a correct
output. This variation of self-checking programming has
the theoretical vulnerability of encountering situations
where multiple pairs pass their comparisons but the out-
puts differ between pairs. That case must be considered and
an appropriate decision policy should be selected during the
design phase.

Comparison Among RB, NVP, and NSCP. Each design
diversity technique, RB, NVP, and NSCP, has its own adv-
antages and disadvantages compared with the others. We
compare the features of the three and list them in Table 1.

The differences between AT and DA are: (1) AT is more
complex and difficult in implementation, but it can still
produce correct output when multiple distinct solutions
exist in multiple versions, and (2) DA is more simple,
efficient, and liable to produce correct output because it
is just a voting mechanism; but it is less able to deal with
multiple solutions.

Other Techniques. Besides the three fundamental
design diversity approaches listed above, there are some
other techniques available, essentially variants of RB,
NVP, and NSCP. They include consensus RB, distributed
RB, hierarchical NVP, t/(n-1)-variant programming, and
others. Here, we introduce some of these techniques briefly.

Distributed Recovery Block. The distributed recovery
block (DRB) technique, developed by Kim in 1984 (27), is
adopted in distributed or parallel computer systems to
realize fault tolerance in both hardware and software.
DRB combines RBs and a forward recovery scheme to
achieve fault tolerance in real-time applications. The DRB
uses a pair of self-checking processing nodes (PSP) together
with both the software-implemented internal audit function
and the watchdog timer to facilitate real-time hardware
fault tolerance. The basic DRB technique consists of a pri-
mary node and a shadow node, each cooperating with a RB,
and the RBs execute on both nodes concurrently.

Consensus Recovery Block. The consensus RB approach
combines NVP and the RB technique to improve software
reliability (28). The rationale of consensus RBs is that RB
and NVP each may suffer from its specific faults. For
example, the RB ATs may be fault-prone, and the DA in

Decision
AlgorithmInput Output

version 1

version 2

version n

Figure 7. The N-version programming (NVP) model.

version 1

version 2

version n

Decision
AlgorithmInput

Output

Acceptance test 1

Acceptance test 2

Acceptance test n
Figure 8. N self-checking pro-
gramming using acceptance test.

FAULT-TOLERANT SOFTWARE 5



NVP may not be appropriate in all situations, especially
when multiple correct outputs are possible. The consensus
RB approach employs a DA as the first-layer decision. If a
failure is detected in the first layer, a second layer using
ATs is invoked. Obviously, having more levels of checking
than either RB or NVP, consensus RB is expected to have an
improved reliability.

t/(n-1)-Variant Programming. t/(n-1)-variant program-
ming (VP) was proposed by Xu and Randell in 1997 (29).
The main feature of this approach lies in the mechanism
engaged in selecting the output among the multiple ver-
sions. The design of the selection logic is based on the theory
of system-level fault diagnosis. The selection mechanism
of t/(n-1)-VP has a complexity of O(n)—less than some
other techniques—and it can tolerate correlated faults in
multiple versions.

MODELING SCHEMES ON DESIGN DIVERSITY

There have been numerous investigations, analyses, and
evaluations of the performance of fault-tolerant software
techniques in general and of the reliability of some specific
techniques (3). Here we list only the main modeling and
analysis schemes that assess the general effectiveness of
design diversity.

To evaluate and analyze both the reliability and the
safety of various design diversity techniques, different

modeling schemes have been proposed to capture design
diversity features, describe the characteristics of fault
correlation between diverse versions, and predict the relia-
bility of the resulting systems. The following modeling
schemes are discussed in chronological order.

Eckhardt and Lee’s Model

Eckhardt and Lee (EL Model) (30) proposed the first prob-
ability model that attempts to capture the nature of failure
dependency in NVP. The EL model is based on the notion
of ‘‘variation of difficulty’’ over the user demand space.
Different parts of the demand space present different
degrees of difficulty, making the program versions built
independently more likely to fail with the same ‘‘difficult’’
parts of the target problem. Therefore, failure indepen-
dency between program versions may not be the necessary
result of ‘‘independent’’ development when failure prob-
ability is averaged over all demands. For most situations, in
fact, positive correlation between version failures may be
exhibited for a randomly chosen pair of program versions.

Littlewood and Miller’s Model

Littlewood and Miller (31) (LM model) showed that the
variation of difficulty could be turned from a disadvantage
into a benefit with forced design diversity (32). ‘‘Forced’’
diversity may insist that different teams apply different
development methods, different testing schemes, and dif-
ferent tools and languages. With forced diversity, a problem
that is more difficult for one team may be easier for another
team (and vice versa). The possibility of negative correla-
tion between two versions means that the reliability of a
1-out-of-2 system could be greater than it would be under
the assumption of independence. Both EL and LM models
are ‘‘conceptual’’ models because they do not support pre-
dictions for specific systems and they depend greatly on the
notion of difficulty defined over the possible demand space.

Dugan and Lyu’s Dependability Model

The dependability model proposed by Dugan and Lyu
in Ref. 33 provides a reliability and safety model for

Figure 9. N self-checking pro-
gramming using decision algo-
rithm.

version 1-A

version 1-B

version n-A

comparison

comparison

Decision
Algorithm

Input

version n-B

Output

Table 1. Comparison of Design Diversity Techniques

Features
Recovery
block

N-version
programming

N self-checking
programming

Minimum no.
of versions

2 3 4

Output
mechanism

Acceptance
Test

Decision
Algorithm

Decision Algorithm
and Acceptance
Test

Execution
time

primary
version

slowest
version

slowest pair

Recovery
scheme

backward
recovery

forward
recovery

forward and
backward recovery

6 FAULT-TOLERANT SOFTWARE



fault-tolerant hardware and software systems using a
combination of fault tree analysis and the Markov modeling
process. The reliability/safety model is constructed by three
parts: A Markov model details the system structure and two
fault trees represent the causes of unacceptable results in
the initial configuration and in the reconfigured state.
Based on this three-level model, the probability of unre-
lated and related faults can be estimated according to
experimental data.

In a reliability analysis study (33), the experimental
data showed that DRB and NVP performed better than
NSCP. In the safety analysis, NSCP performed better than
DRB and NVP. In general, their comparison depends on the
classification of the experimental data.

Tomek and Trivedi’s Stochastic Reward Nets Model

Stochastic reward nets (SRNs) are a variant of stochastic
Petri nets. SRNs are employed in Ref. 34 to model three
types of fault-tolerant software systems: RB, NVP, and
NSCP. Each SRN model is incorporated with the complex
dependencies associated with the system, such as correla-
tion failures and separate failures, detected faults and
undetected faults. A Markov reward model underlies the
SRN model. Each SRN is automatically converted into a
Markov reward model to obtain the relevant measures. The
model has been parameterized by experimental data in
order to describe the possibility of correlation faults.

Popov and Strigini’s Reliability Bounds Model

Popov and Strigini attempted to bridge the gap between the
conceptual models and the structural models by studying
how the conceptual model of failure generation can be
applied to a specific set of versions (32). This model esti-
mates the probability of failure on demand given the knowl-
edge of subdomains in a 1-out-of-2 diverse system. Various
alternative estimates are investigated for the probability of
coincident failures on the whole demand space as well as in
subdomains. Upper bounds and likely lower bounds for
reliability are obtained by using data from individual
diverse versions. The results show the effectiveness of
the model in different situations having either positive or
negative correlations between version failures.

Experiments and Evaluations

Experiments and evaluations are necessary to determine
the effectiveness and performance of different fault-
tolerant software techniques and the corresponding mod-
eling schemes. Various projects have been conducted to
investigate and evaluate the effectiveness of design diver-
sity, including UCLA Six-Language project (2,35), NASA
4-University project (23,32,36), Knight and Leveson’s
experiment (24), Lyu–He study (33,37), and so on.

These projects and experiments can be classified into
three main categories: (1) evaluations on the effectiveness
and cost issues of the final product of diverse systems
(7,24,38–42); (2) experiments evaluating the design process
of diverse systems (8); and (3) adoption of design diversity
into different aspects of software engineering practice
(37,43).

To investigate the effectiveness of design diversity, an
early experiment (7), consisting of running sets of student
programs as 3-version fault-tolerant programs, demon-
strated that the NVP scheme worked well with some sets
of programs tested, but not others. The negative results
were natural because inexperienced programmers cannot
be expected to produce highly reliable programs. Another
student-based experiment (24) involved 27 program
versions developed differently. Test cases were conducted
on these program versions in single-and multiple-version
configurations. The results showed that NVP could improve
reliability; yet correlated faults existed in various versions,
adversely affecting design diversity. In another study,
Kelly et al. (38) conducted a specification diversity project,
using two different specifications with the same require-
ments. Anderson et al. (39) studied a medium-scale naval
command and control computer system developed by pro-
fessional programmers through the use of the RB. The
results showed that 74% of the potential failures could
be successfully masked. Another experiment evaluating
the effectiveness of design diversity is the Project on
Diverse Software (PODS) (40), which consisted of three
diverse teams implementing a simple nuclear reactor
protection system application. There were two diverse
specifications and two programming languages adopted
in this project. With good quality control and experienced
programmers, high-quality programs and fault-tolerant
software systems were achieved.

For the evaluation of the cost of design diversity,
Hatton (41) collected evidence to indicate that diverse
fault-tolerant software techniques are more reliable than
producing one good version, and more cost effective in the
long run. Kanoun (42) analyzed work hours spent on variant
design in a real-world study. The results showed that costs
were not doubled by developing a second variant.

In a follow-up to the work of Avizienis and Chen (7), a six-
language NVP project was conducted using a proposed
N-version Software Design Paradigm(44). The NVP para-
digm was composed of two categories of activities: standard
software development procedures and concurrent imple-
mentation of fault-tolerance techniques. The results ver-
ified the effectiveness of the design paradigm in improving
the reliability of the final fault-tolerant software system.

To model the fault correlation and measure the relia-
bility of fault-tolerant software systems, experiments have
been employed to validate different modeling schemes. The
NASA 4-University project (36) involved 20 two-person
programming teams. The final 20 programs went through
a three-phase testing process, namely, a set of 75 test cases
for AT, 1100 designed and random test cases for certification
test, and over 900,000 test cases for operational test. The
same testing data have been widely employed (23,31,32) to
validate the effectiveness of different modeling schemes.

The Lyu–He study (37) was derived from an experimen-
tal implementation involving 15 student teams guided by
the evolving NVP design paradigm in Ref. 8. Moreover, a
comparison was made between the NASA 4-University
project, the Knight–Leveson experiment, the Six-Lan-
guage project, and the Lyu–He experiment in order to
further investigate and discuss the effectiveness of design
diversity in improving software reliability. The results

FAULT-TOLERANT SOFTWARE 7



were further used in Ref. 33 to evaluate the prediction
accuracy of Dugan and Lyu’s Model. Lyu et al. (43) reported
a multi-version project on The Redundant Strapped-Down
Inertial Measurement Unit (RSDIMU), the same specifica-
tion employed in the NASA 4-University project. The
experiment developed 34 program versions, from which
21 versions were selected to create mutants. Following a
systematic rule for the mutant creation process, 426
mutants, each containing a real program fault identi-
fied during the testing phase, were generated for testing
and evaluation. The testing results were subsequently
engaged to investigate the probability of related and
unrelated faults using the PS and DL models.

Current results indicate that, for design diversity tech-
niques, NSCP is the best candidate to produce a safe result,
whereas DRB and NVP tend to achieve better reliability
than NSCP, although the difference is not significant.

APPLICATIONS

There are many application-level methodologies for fault-
tolerant software techniques. As we have indicated, the
applications include airplane control systems (e.g., Boeing
777 airplane (14) and AIRBUS A320/A330/A340/A380 air-
craft (15,45)), aerospace applications (16), nuclear reactors,
telecommunications products (12), network systems (17),
and other critical software systems such as wireless net-
work, grid-computing, and so on. Most of the applications
adopt single-version software techniques for fault tolerance
(i.e., reusable component, checkpointing and recovery, and
so on). The design diversity approach has only been applied
in some mission-critical applications, for example, airplane
control systems, aerospace, and nuclear reactor applica-
tions. There are also emerging experimental investigations
into the adoption of design diversity in practical software
systems, such as SQL database servers (46).

We may summarize the fault-tolerant software applica-
tions into four categories: (1) reusable component library
(e.g., Ref. 12); (2) checkpointing and recovery schemes
(e.g., Refs. 19 and 47); (3) entity replication and redundancy
(e.g., Refs. 48 and 49); (4) early applications and projects on
design diversity (e.g., Refs. 14,45,46). An overview of some
of these applications is given below.

Huang and Kintala (12) developed three cost-effective
reusable software components (i.e., watchd, libft, and REPL)
to achieve fault tolerance in the application level based on
availability and data consistency. These components have
been applied to a number of telecommunication products.

According to Ref. 19, the new mobile wireless environ-
ment poses many challenges for fault-tolerant software due
to the dynamics of node mobility and the limited band-
width. Particular recovery schemes are adopted for the
mobile environment. The recovery schemes combine a state
saving strategy and a handoff strategy, including two
approaches (No Logging and Logging) for state saving,
and three approaches (Pessimistic, Lazy, and Trickle) for
handoff. Chen and Lyu (47) have proposed a message
logging and recovery protocol on top of the CORBA archi-
tecture, which employs the storage available at the access

bridge to log messages and checkpoints of a mobile host in
order to tolerate mobile host disconnection, mobile host
crash, and access bridge crash.

Entity replication and modular redundancy are also
widely used in application software and middleware.
Townend and Xu (48) proposed a fault-tolerant approach
based on job replication for Grid computing. This approach
combines a replication-based fault-tolerance approach
with both dynamic prioritization and dynamic scheduling.
Kalbarczyk et al. (49) proposed an adaptive fault-tolerant
infrastructure, named Chameleon, which allows different
levels of availability requirements in a networked environ-
ment, and enables multiple fault-tolerance strategies
including dual and TMR application execution modes.

The approach of design diversity, on the other hand, has
mostly been applied in safety critical applications. The
most famous applications of design diversity are the Boeing
777 airplane (14) and AIRBUS A320/A330/A340/A380 air-
craft (15,45). The Boeing 777 primary flight control com-
puter is a triple-triple configuration of three identical
channels, each composed of three redundant computation
lanes. Software diversity was achieved by using different
programming languages targeting different lane proces-
sors. In the AIRBUS A320 series flight control computer
(45), software systems are designed by independent design
teams to reduce common design errors. Forced diversity
rules are adopted in software development to ensure soft-
ware reliability. In an experimental exploration of adopting
design diversity in practical software systems, Popov and
Strigini (46) implemented diverse off-the-shelf versions of
relational database servers including Oracle, Microsoft
SQL, and Interbase databases in various ways. The servers
are distributed over multiple computers on a local network,
on similar or diverse operating systems. The early results
support the conjecture that reliability increases with the
investment of design diversity.

SUMMARY

Fault-tolerant software enables a system to tolerate soft-
ware faults remaining in the system after its development.
When a fault occurs, fault-tolerant software techniques
provide mechanisms within the software system to prevent
system failure from occurring.

Fault-tolerant software techniques include single-
version software techniques and multiple-version software
techniques. There are two main techniques for single-
version software fault tolerance: checkpointing and excep-
tion handling. Three fundamental techniques are available
for multi-version fault-tolerant software: RB, NVP, and
NSCP. These approaches are also called design diversity.

Various modeling schemes have been proposed to eval-
uate the effectiveness of fault-tolerant software. Further-
more, different applications and middleware components
have been developed to satisfy performance and reliability
demands in various domains employing fault-tolerant soft-
ware. Fault-tolerant software is generally accepted as a key
technique in achieving highly reliable software.

8 FAULT-TOLERANT SOFTWARE



ACKNOWLEDGMENT

This work was fully supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative
Region, China (Project No. CUHK4205/04E).

BIBLIOGRAPHY

1. IEEE Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries, Piscatawag, NJ: IEEE Stan-
dards, 1990.

2. M. R. Lyu (ed.), Software Fault Tolerance. New York: Wiley,
1995.

3. L. L. Pullum, Software Fault Tolerance Techniques and Imple-
mentation. Boston: Artech House, 2001.

4. F. Cristian, Exception handling and tolerance of software
faults, in M. R. Lyu (ed.), Software Fault Tolerance, New
York: Wiley, 1995, pp. 81–107.

5. V. F. Nicola, Checkpointing and the modeling of program
execution time, in M. R. Lyu (ed.), Software Fault Tolerance,
New York: Wiley, 1995, pp. 167–188.

6. B. Randell and J. Xu, The evolution of the recovery block
concept, in M. R. Lyu (ed.), Software Fault Tolerance, New
York: Wiley, 1995, pp. 1–21.

7. A. Avizienis and L. Chen, On the implementation of N-version
programming for software fault tolerance during execution,
Proc. of the Computer Software and Application Conference
(COMPSAC77), Chicago, Illinois: 1977, pp. 149–155.

8. A. Avizienis, Dependable computing depends on structured
fault tolerance, Proc. of the 1995 6th International Symposium
on Software Reliability Engineering, Toulouse, France, 1995,
pp. 158–168.

9. J. C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, Architectural
issues in software fault tolerance, in M. R. Lyu (ed.), Software
Fault Tolerance, New York: Wiley, 1995, pp. 47–80.

10. B. Randell, System structure for software fault tolerance, IEEE
Trans. Software Eng., 1(2): 220–232, 1975.

11. J. C. Laprie and K. Kanoun, Software reliability and system
reliability, in M. R. Lyu (ed.), Handbook of Software Reliaiblity
Engineering, New York: McGraw-Hills, 1996, pp. 27–69.

12. Y. Huang and C. Kintala, Software fault tolerance in the
application layer, in M. R. Lyu (ed.), Software Fault Tolerance,
New York: Wiley, 1995, pp. 231–248.

13. R. J. Bleeg, Commercial jet transport fly-by-wire architecture
considerations, AIAA/IEEE 8th Digital Avionics Systems Con-
ference, October 1988, pp. 399–406.

14. A. D. Hills and N. A. Mirza, Fault tolerant avionics, AIAA/
IEEE 8th Digital Avionics Systems Conference, October 1988,
pp. 407–414.

15. R. Maier, G. Bauer, G. Stoger, and S. Poledna, Time-triggered
architecture: a consistent computing platform, IEEE Micro,
22(4): 36–45, 2002.

16. P. G. Neuman, Computer Related Risks. Boston: Addison-
Wesley, 1995.

17. K. H. Kim, The distributed recovery block scheme, in M. R. Lyu
(ed.), Software Fault Tolerance, New York: Wiley, 1995, pp.
189–210.

18. W. Torres-Pomales, Software fault tolerance: a tutorial, NASA
Langley Research Center, Hampton, Virginia, Tech. Rep. TM-
2000-210616, Oct. 2000.

19. D. K. Pradhan, Fault Tolerant Computer System Design. Eng-
lewood Cliffs, NJ: Prentice Hall, 1996.

20. P. A. Lee and T. Anderson, Fault Tolerance: Principles and
Practice. New York: Springer-Verlag, 1990.

21. J. B. Goodenough, Exception handling: issues and a proposed
notation, Commun. ACM, 18(12): 683–693, 1975.

22. F. Cristian, Exception handling and software fault tolerance,
Proc. of the 10th International Symposium on Fault-Tolerant
Computing (FTCS-10), 1980, pp. 97–103.

23. D. E. Eckhardt, A. K. Caglavan, J. C. Knight, L. D. Lee, D. F.
McAllister, M. A. Vouk, and J. P. J. Kelly, An experimental
evaluation of software redundancy as a strategy for improving
reliability, IEEE Trans. Software Eng., 17(7): 692–702, 1991.

24. J. C. Knight and N. G. Leveson, An experimental evaluation of
the assumption of independence in multiversion programming,
IEEE Trans. Software Eng., 12(1): 96–109, 1986.

25. P. G. Bishop, Software fault tolerance by design diversity, in
M. R. Lyu (ed.), Software Fault Tolerance, New York: Wiley,
1995, pp. 211–230.

26. J. C. Laprie, J. Arlat, C. Beounes, K. Kanoun, and C. Hourtolle,
Hardware and software fault tolerance: definition and analysis
of architectural solutions, Proc. of the 17th International Sym-
posium on Fault-Tolerant Computing (FTCS-17), Pittsburgh,
PA: 1987, pp. 116–121.

27. K. H. Kim, Distributed execution of recovery blocks: an
approach to uniform treatment of hardware and software
faults, Proc. of the 4th International Conference on Distributed
Computing Systems, 1984, pp. 526–532.

28. R. K. Scott, J. W. Gault, and D. F. McAllister, Fault tolerant
software reliability modeling, IEEE Trans. Software Eng.,
13(5): 582–592, 1987.

29. J. Xu and B. Randell, Software fault tolerance: t/(n-1)-variant
programming, IEEE Trans. Reliability, 46(1): 60–68, 1997.

30. D. E. Eckhardt and L. D. Lee, A theoretical basis for the
analysis of multiversion software subject to coincident errors,
IEEE Trans. Software Eng., 11(12): 1511–1517, 1985.

31. B. Littlewood and D. Miller, Conceptual modeling of coincident
failures in multiversion software, IEEE Trans. Software Eng.,
15(12): 1596–1614, 1989.

32. P. T. Popov, L. Strigini, J. May, and S. Kuball, Estimating
bounds on the reliability of diverse systems, IEEE Trans.
Software Eng., 29(4): 345–359, 2003.

33. J. B. Dugan and M. R. Lyu, Dependability modeling for fault-
tolerant software and systems, in M. R. Lyu (ed.), Software
Fault Tolerance, New York: Wiley, 1995, pp. 109–138.

34. L. A. Tomek and K. S. Trivedi, Analyses using stochastic
reward nets, in M. R. Lyu (ed.), Software Fault Tolerance,
New York: Wiley, 1995, pp. 139–165.

35. J. Kelly, D. Eckhardt, M. Vouk, D. McAllister, and A. Caglayan,
A large scale generation experiment in multi-version software:
description and early results, Proc. of the 18th International
Symposium on Fault-Tolerant Computing, 1988, pp. 9–14.

36. M. A. Vouk, A. Caglayan, D. E. Eckhardt, J. Kelly, J. Knight, D.
McAllister, and L. Walker, Analysis of faults detected in a
large-scale multi-version software development experiment,
Proc. of the Digital Avionics Systems Conference, 1990, pp. 378–
385.

37. M. R. Lyu and Y. T. He, Improving the N-version programming
process through the evolution of a design paradigm, IEEE
Trans. Reliability, 42(2): 179–189, 1993.

38. J. P. Kelly and A. Avizienis, A specification-oriented multi-
version software experiment, Proc. of the 13th Annual Inter-
national Symposium on Fault-Tolerant Computing (FTCS-13),
Milano, 1983, pp. 120–126.

FAULT-TOLERANT SOFTWARE 9



39. T. Anderson,P. A. Barrett, D. N. Halliwell, and M. R. Moulding,
Software fault tolerance: an evaluation, IEEE Trans. Software
Eng., 12(1): 1502–1510, 1985.

40. P. G. Bishop, D. G. Esp, M. Barnes, P. Humphreys, G. Dahll,
and J. Lahti, PODS - a project on diverse software, IEEE Trans.
Software Reliability, 12(9): 929–940, 1986.

41. L. Hatton, N-version design versus one good version, IEEE
Software, pp. 71–76, Nov/Dec 1997.

42. K. Kanoun, Real-world design diversity: a case study on cost,
IEEE Software, pp. 29–33, July/August 2001.

43. M. R. Lyu, Z. Huang, K. S. Sze, and X. Cai, An empirical study
on testing and fault tolerance for software reliability engineer-
ing, Proc. of the 14th IEEE International Symposium on Soft-
ware Reliability Engineering (ISSRE’2003), Denver, Colorado,
2003, pp. 119–130.

44. M. R. Lyu, A design paradigm for multi-version software, Ph.D.
dissertation, UCLA, Los Angeles, May 1988.

45. P. Traverse, Dependability of digital computers on board air-
planes, Proc. of the 2nd IFIP Working Conference on Depend-
able Computing for Critical Applications, Tucson, Arizona,
1991, pp. 133–152.

46. P. Popov and L. Strigini, Diversity with off-the-shelf compo-
nents: a study with SQL database servers, Proc. of the Inter-
national Conference on Dependable Systems and Networks
(DSN 2003), 2003, pp. B84–B85.

47. X. Chen and M. R. Lyu, Message logging and recovery in
wireless corba using access bridge, Proc. of the 6th Interna-
tional Symposium on Autonomous Decentralized Systems
(ISADS2003), Pisa, Italy, 2003, pp. 107–114.

48. P. Townend and J. Xu, Fault tolerance within a grid environ-
ment, Proc. of the UK e-Science All Hands Meeting 2003,
Nottingham, UK, 2003, pp. 272–275.

49. Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi, and K. Whisnant,
Chameleon: a software infrastructure for adaptive fault toler-
ance, IEEE Trans. Parallel Distrib. Sys., 10(6): 560–579, 1999.

MICHAEL R. LYU

XIA CAI

The Chinese University of
Hong Kong

Shatin, Hong Kong

10 FAULT-TOLERANT SOFTWARE



F

FORMAL PROGRAM VERIFICATION

The objective of formal verification is to produce a mathe-
matical proof that a given implementation (or code) is
correct; i.e., it behaves as specified. The specifications of
behavior must be formal to achieve formal verification (see
the article Formal Specification). Formal verification offers
the highest level of software quality assurance, and it is
critical for ensuring correctness of systems where life,
mission, or security might be at stake.

Testing is currently the primary technique used for
quality assurance. Most commercial software endures
extensive testing until no more serious errors are revealed
by testing and the customers choose to accept the reliability
of the resulting code. The quality of assurance when based
on testing depends on the quality of the test cases. The
difficulty lies in the process of choosing ‘‘good’’ test cases. A
test case is one element of the domain of possible inputs
for the software. In most cases, it is impractical and impos-
sible to apply testing for all elements of the input domain
because the domain is vast and, often, infinite. Therefore,
the chosen test cases must include a reasonable coverage of
all possible inputs. However, even with a wide variety of
well-chosen test cases, testing can only reveal errors; it
cannot guarantee a lack of errors: On the other hand,
verification can provide a guarantee of correct, error-free
code; i.e., the code will produce specified outputs for all
valid inputs, which is the topic of this article.

Formal verification is only concerned with one aspect of
softwarequalityassurances–codecorrectnesswithrespectto
specifications. Validation is a complementary aspect of qual-
ityassurancethatestablisheswhetherthemappingfromthe
customer’s requirements to the program specification is
appropriate. Validation is a challenging problem because
of the difficulty in interpreting the needs of the client and in
developing suitable specifications (see the article Verifica-
tion and Validation). Assuming the behavior of the software
has been properly and adequately specified, this article will
explain how to verify that code meets that specification.

MOTIVATION FOR VERIFICATION

In 1969, James C. King proposed a program verifier to prove
the correctness of a program (1). At about the same time,
Tony Hoare presented formal proof rules for program ver-
ification in his landmark paper on the topic (2). In the
absence of mechanical verification, use of informal ‘‘proof
arguments’’ can result in seemingly correct software with
hidden errors. To understand how this is possible and why
formal proofs are important, it is useful to discuss a recent
example from the literature. In 2006, Joshua Bloch reported
an error in using a binary search algorithm that develops
when searching large arrays and observed that this problem
is typical of such algorithms (3). His example is reproduced
on the next page.

The pseudocode for this algorithm, which has been in use
for decades, fails in line 6 if the sum of the low value and the
high value is greater than die maximum positive integer
value. In cases with a large number of elements, the value of
‘‘low + high’’ may overflow, which causes the algorithem not
to perform as expected. Amazingly, this simple error has
remained hidden in a common piece of code for many years.
If this fairly simple and widely used code has an error, it is
possible that nearly all current-day software, including
safety-critical software, has similar errors, unless it has
been verified formally.

1: public static int binarySearch(int& a,
int key) {

2: int low = 0;
3: int high = a.length -1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1;
11: else if(midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

Bloch also noted in Ref. 3 that the binary search code
had been ‘‘proved’’ to be correct, although in actuality only a
typical, informal argument had been given and not a formal
proof. If integer bounds are specified and the code under-
goes verification through a mechanical verification system
(such as the one detailed later), the error would have been
caught in a straightforward manner. A key goal is to replace
informal proofs with automated ones. The example shows
that a verification system must consider all aspects of
correctness—including checking that variables stay within
their specified bounds. Of course, this means that the
verification system must include language support for
writing mathematical specifications for the code.

Verification of modern object-oriented software systems
involves several challenges:

� It must be scalable and enable independent proofs of
correctness for each component implementation using
only the specifications of reused components, not their
code.

� It must enable full verification to guarantee that the
implementation fulfills the completely specified beha-
vior.

� It must be mechanical, requiring programmers to
supply assertions, where necessary, but not be con-
cerned with constructing the actual formal proofs.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Verification must be usable not only in relatively simple
software, but also in large software systems. To provide
scalable verification, the verification process must provide
a method to reason about and to verify individual compo-
nents. For example, suppose that there is a specification S
and that I is one of its many implementations. Suppose also
that I relies on other components with specifications S1 and
S2. To verify the correctness of I with respect to S, the
verification system must only require the specifications of
reused components (S1 and S2) but not the corresponding
implementations. A consequence of this requirement is that
a specification should capture all the information needed to
reason about and use a component, without divulging
implementation details. If the verification system is com-
ponent-based, allowing for specification and verification of
each component in the system, then it might be scaled up for
verification of larger systems, which also allows for reason-
ing about any level of a system even before all implementa-
tions are written, resulting in relative correctness proofs,
meaning that the entire system is correct, if each subsystem
is correct.

We distinguish full verification from ‘‘lightweight ver-
ification’’ that is based on lightweight specifications (see the
article Formal Specification) with the intent of checking
only certain characteristics of the code. Lightweight ver-
ification can be used to check for common, specification-
independent programming errors such as dereferencing
null pointers (4) or unexpected cycles in pointer-based
data structure (5). Lightweight verification does not
require specification or internal assertions to prove the
absence of these simple errors. But other errors may
remain. So, to prove the correctness of software (that the
realization implements a complete specification of the
behavior of the component), full specification and verifica-
tion are necessary.

For verification to be practical and reliable, it must be
mechanical. As observed in the example of the binary
search algorithm, nonmechanical verification (because
of the many details it relies on) is prone to human error.
Given an implementation annotated with suitable asser-
tions, corresponding specifications, and appropriate the-
orems from mathematics, an automated verification
system will postulate a correctness assertion, mechani-
cally. The implementation will be deemed correct if and
only if the correctness assertion can be proved, also
mechanically.

EXAMPLE CODE AND SPECIFICATIONS FOR VERIFICATION

To illustrate the principles of formal verification involving
specification of components, we consider a simple example
along with its full verification. To ensure that the results
are general and applicable to modem object-based lan-
guages, we consider a data abstraction example that encap-
sulates objects. However, the same principles discussed
here can be applied to detect (and correct) the errors in
the binary search code. The code given below is intended to
reverse a Stack object or variable, and it is typical of the
kind of code written in modern imperative languages.

To complete formal verification of this code, we must
have a precise snecification of Stack behavior and the Flip
operation in a formal specification language. Figure 1,
contains the specification of a Stack component in
RESOLVE specification notation; see the Formal Specifica-
tion article, where the specification of a queue component
(similar to this) is described in detail.

The specification of a concept (such as Stack_Template)
presents a mathematical model for the type provided by the
concept and explains formally the behavior of operations to
manipulate variables of that type. In this example, the
Stack type is modeled by a mathematical string of entries.
The exemplar clause introduces a Stack, S, which is used to
describe a generic stack variable in this specification. The
concept provides initialization details, constraints for the
variables of the type, and specifications for each operation.
As implied by the name, the initialization clause describes
the initial state of a variable of the type. In this example,
initially a Stack is empty. Since the mathematical model
for a Stack is a string, the initial value of a Stack is the
empty string. The constraint clause formally expresses that
every Stack object is always constrained to be within
bounds; i.e., the length of the string must be less than
Max_Depth, which must be provided when Stack_Tem-
plate is instantiated for a particular use.

Concept Stack_Template(type Entry; evaluates Max_Depth: Integer); 
uses Std_Integer_Fac, String_Theory; 
requires Max_Depth > 0; 

Type Family Stack is modeled by Str(Entry); 
exemplar S; 
constraint |S| <= Max_Depth; 
initialization ensures S = empty_string; 

Operation Push(alters E: Entry; updates S: Stack);
requires |S| < Max_Depth; 
ensures  S = <#E> o #S; 

Operation Pop(replaces R: Entry; updates S: Stack); 
requires |S| > 0; 
ensures #S = <R> o S; 

Operation Depth(restores S: Stack): Integer; 
ensures Depth = (|S|); 

Operation Rem_Capacity(restores S: Stack): Integer; 
ensures Rem_Capacity = (Max_Depth - |S|); 

Operation Clear(clears S: Stack); 

end Stack_Template; 

Figure 1. A specification of a stack concept.

Procedure Flip(updates S: Stack); 
Var S_Reversed: Stack; 
Var Next_Entry: Entry; 

While (Depth(S) /= 0) do
   Pop(Next_Entry, S); 
   Push(Next_Entry, S_Reversed); 

end;
  S :=: S_Reversed; 

end Flip; 

2 FORMAL PROGRAM VERIFICATION



The specification for an operation can be viewed as a
contract between the client and the implementer. Before a
call of any operation, the precondition (or requires clause)
must be true. In this example, the Push operation requires
thatthereisroomintheStackforanotherelement.Similarly,
to guarantee correct functionality, the Pop operation
requires that there is at least one element in the Stack.
The implementation of an operation must guarantee that
the postcondition (or ensures clause) is satisfied at the end of
the procedure if the precondition holds. The ensures clause
for Push provides the guarantee that S is updated so that it
becomes the original value of E (a parameter of Push) con-
catenatedwiththeoriginalvalueofS.RESOLVEdenotesthe
incoming values with a # symbol todifferentiate betweenthe
incoming and the outgoing values of a parameter in the
specification. Pop removes the top entry from the parameter
Stack S and replaces the parameter R with the top entry.

Given the specification of the Stack component and the
mathematical modeling of Stacks as strings of entries, the
Flip operation can be specified formally as in Fig. 2 using
the mathematical string reversal operator (Rev). This spe-
cification can be written without knowledge (or even exis-
tence) of any implementation or Stack_Template.

To facilitate mechanical verification of the Flip code,
programmers must annotate loops with suitable assertions
as shown in Fig. 3.

To verify code involving a loop, the programmer must
include a loop invariant (using the maintaining clause), a
progress metric expression that decreases with each itera-
tion of the loop (using the decreasing clause), and a list of
all variables that the loop may change (using the changing
clause). To prove termination, the decreasing metric must
be an ordinal (i.e., it must have a least element). The metric
cannot be an integer expression, for example, because it can
be decreased f‘orever. Providing the list of changing vari-
ables in a loop makes it unnecessary to assert in the invar-
iant that variables not affected by loops remain unchanged.
The loop annotations are necessary, in general, to prove the
correctness and termination of the loop. If a weak or wrong
annotation were supplied, the ability to prove correctness of
the operation would be compromised. The literature makes

a distinction between partial and total correctness proofs. If
code is only partially correct, there is a guarantee of correct-
ness only if the code terminates. Total correctness addition-
ally requires a proof that the code will terminate. In this
article, we consider proofs of total correctness.

The programmer-supplied invariant must be true at
the beginning and at the end of each iteration, including
the first and last iterations. When forming an invariant,
the goal of the loop (and the entire operation) must be
considered. For example, if Flip had a ‘‘maintaining
|S| þ |S_Reversed|¼|#S|’’ clause, it would be a
true invariant, but it would not fully describe the behavior
of the loop and would not give the verifier the ability to
prove the code to be correct with respect to the
given specification. Alternatively if the assertion,
‘‘maintaining #S¼S_Revetsed o S,’’ were provided as
the invariant, at the time the while loop is processed, the
verifier will flag it because the assertion cannot be estab-
lished to be an invariant. Similarly, if the decreasing
clause is incorrect, no proof of the total correctness of
the operation can be provided, because the verification
systetm cannot guarantee the termination of the loop.
Invariants and other annotations should be valid and
should be goal-directed, i.e., sufficient to establish code
correctness with respect to given specifications.

FORMAL VERIFICATION BASICS

Formal verification must be based on a sound and complete
proof system. Soundness guarantees that if the code is
incorrect, the verifier will not say that the code is correct.
Completeness, on the other hand, assures that if the code is
correct, the verifier will never say that the code is incorrect.
Completeness can be only relative because of the inherent
incompleteness in any nontrivial mathematical theory, on
such as number theory on which proofs of programs are
based. The more practical problems for completeness
because of inadequate assertions, inexpressive languages
for writing necessary assertions, or inadequate proof rules.

A proof system consists of proof rules for each statement
or construct in a language. Given the goal and code of an
implementation, the verifier applies proof rules (which
replace code with mathematical assertions) and then sim-
plifies the assertions with the objective of reducing the final
assertion to ‘‘true.’’

For example, consider the following piece of assertive
code (a combination of code, facts, and goals), also called a
Hoare triple. In the example, S and T are two Stack vari-
ables. The swap statement (also the last statement in the
Flip code in the previous section) exchanges the values of
the participating variables, without introducing aliasing.
All code is written and verified within a context, and the
Context here includes mathematical String_Theory, the
Stack_Template specification, as well as declarations of
Stack variables. It is not listed explicitly in this article.

Procedure Flip(updates S: Stack); 
Var S_Reversed: Stack; 
Var Next_Entry: Entry; 

While (Depth(S) /= 0)
changing S, S_Reversed, Next_Entry; 
maintaining #S = Rev(S_Reversed) o S; 
decreasing |S|; 

do  
Pop(Next_Entry, S); 
Push(Next_Entry, S_Reversed); 

  

end;
S :=: S_Reversed;  

end Flip; 

Figure 3. An implementation of an operation to flip a stack.

Operation Flip(updates S: Stack); 
ensures S = Rev(#S); 

Figure 2. A specification of an operation to flip a stack.

 Context \ 
Assume S = empty_string; 

  T :=: S; 
 Confirm T = empty_string; 

FORMAL PROGRAM VERIFICATION 3



To simplify the assertive code, a proof rule for the swap
statement needs to be applied. In the rule shown below, it is
necessary and sufficient to prove what is above the line to
prove what follows below the line. This is the typical format
of a formal proof rule. In the rule, C stands for Context. The
notation, RP[x ı̂ y, y ı̂ x], means that concurrently, every x
is replaced with y and every y is replaced with x. Intuitively,
this rule means that to confirm what follows after the swap
statement the same assertion needs to be confirmed before
the swap statement but with x and y in exchanged in the
assertion.

After the application of the swap rule, the following
assertive code remains:

The next statements to be processed by the verifier are
Assume and Confirm clauses. The rule for removing the
Assume clause has the effect of making the resulting asser-
tion an implication. The rule for handling the Confirm
clause is simply syntactic: Eliminate the keyword Confirm.

In our example, after the application of the Assume Rule,
we have the following assertion:

Subsequently following the application of the Confirm Rule
produces the final assertion:

Since this implication is provable mechanically using
mathematical logic, the assertion simplifies to:

Thus, we can see that our final assertion is true; there-
fore, assuming the soundness of the proof rules we have

employed, we can conclude that the original assertive code
is correct. However, if we started out with an incorrect
assertive code, as shown below, the verifier would produce a
false assertion, assuming completeness of our rules.

Initial (incorrect)
assertive code

Generated (unprovable)
assertion

Assume S¼ empty_string; T:¼ :S;
Confirm S¼ empty_string;

S¼ empty_string
implies T¼ empty_string;

EXAMPLE VERIFICATION OF THE STACK FLIP CODE

To illustrate aspects of verifying more typical code, in this
section, we consider verification of the Stack Flip code in
Fig. 3 with respect to its specification in Fig. 2.

Given a specification and an implementation, the first
step in verification is to generate the corresponding asser-
tive code, in which assertions from specifications and pro-
gramming statements are combined. The rule for
generating the assertive code is not shown, but it is
straightforward for this example. The requires clause of
the operation becomes an assumption at the beginning.
Because flip has no requires clause, the assumption is true
trivially. Also, it is necessary that constraints on para-
meters to the operation become an assumption at the start
of the assertive code. The ensures clause of the operation
needs to be confirmed after the code.

Also, the verifier generates the Remember statement
at the beginning that allows the mechanical assertion
generator to maintain the difference between values of
the incoming and the outgoing variables until all the state-
ments have been processed and the beginning of the code
has been reached. At that time, the Remember Rule allows
all ‘‘’’ signs to be removed.

Once assertive code is formed, we apply proof rules for
statements in a goal-oriented manner starting with the last
statement. If the proof rules are sound, then each applica-
tion leads to a shorter assertive code (with one less

Remember;
Assume |S| <= Max_Depth; // Constraints on parameter Stack S  
Assume true; // Assumes the requires clause of Flip 

Var S_Reversed: Stack; 
Var Next_Entry: Entry; 

While (Depth(S) /= 0) 
changing S, S_Reversed, Next_Entry; 
maintaining #S = Rev(S_Reversed) o S; 
decreasing |S|; 

do
   Pop(Next_Entry, S); 
   Push(Next_Entry, S_Reversed); 

end;
  S :=: S_Reversed; 

Confirm S = Rev(#S); // Confirm the ensures clause of Flip 

 Proof Rule for the Swap Statement: 

 C \ code; Confirm RP[x⇝y, y⇝x]; 
  —————————————————————— 
 C \ code; x :=: y; Confirm RP; 

Assume Rule: 

 C \ code; Confirm IP implies RP; 
 —————————————————————— 
 C \ code; Assume IP; Confirm RP; 

Confirm Rule: 

 C \ RP; 
 —————————————————————— 
 C \ Confirm RP; 

 Confirm S = empty_string implies 
S = empty_string. 

      S = empty_string implies 
         S = empty_string.    

true.

Assume S = empty_string; 
Confirm S = empty_string; 

4 FORMAL PROGRAM VERIFICATION



statement) that if proved guarantees that the original
assertive code is correct. In this example, the last statement
is a swap statement. So the rule for the swap statement
(discussed in the last subsection) is applied first, and this
leads to the assertive code shown below.

The next statement is a while loop statement. Before we
discuss a rule for that statement and apply it, it is instruc-
tive to study a rule for the simpler if–then–else statement
that is given below.

The if–then–else rule creates two assertions. One asser-
tion assumes that the condition is true and alters the
confirm statement based on the code in the ‘‘then’’ section.
The other assumes that the condition is false and alters the
confirm statement based on the code in the ‘‘else’’ section.
These assertions are based on the mathematical form of the
conditional statements, denoted by Math (BE) in the rule.
For example, the condition Depth(S)/¼ 0 is transformed to
the mathematical statement |S|/¼ 0 based on the specifi-
cation of Depth.

The proof rule must also check that any requirements for
the use of the condition in the if statement are satisfied. For
example, if the if statement has the condition,
‘‘Depth(S) þ X /¼ 0,’’ then the verification system must
be able to check the common problem of computational
integer overflow also observed in the binary search code
example. This is the purpose of the clause ‘‘Confirm
Invk_Cond(BE)’’ in the rule, where Invk_Cond simply is
a conjunction of constraints and preconditions emanating
from die evaluation of the condition BE.

We have a while loop to be verified as the next statement
in our example assertive code, and it has the following
general format with suitable annotations:

The rule has three parts (2), two of which are concerned
with proving the invariance of the invariant through induc-
tion:

Base Case: It must be confirmed that the invariant is
true before the while loop.

Inductive Case: If the invariant is assumed true at the
start of an iteration of the loop, it can be proved true at
the end of the iteration. (For total correctness, it must
also be shown that with each iteration of the while loop,
the decreasing expression does decrease.)

The invariant must be strong enough to prove the asser-
tion following the loop statement:

A formal version of the while loop proof rule using the if–
then–else rule is shown below, where the ‘‘then’’ part
corresponds to the inductive proof of the invariant and
the ‘‘else’’ part corresponds to the proof of the assertion
after the loop statement. After applying this rule, and the
rule for an if–then–else statement, the assertions simplify
to what is discussed above.

As a result of the formation of the rule as one unit
(instead of the three previously discussed) and to simplify
invariants, the verifier-introduced Change statement is
necessary. The Change statement differentiates between
variables that are altered in the loop and variables that the
loop leaves unaltered. Without it, the verifier would assume
that in the inductive case, when the ‘‘Assume inv and BE’’
clause is processed, that these are unaltered variables that
are modifiable by the application of rules on the code before
the while loop. Thus, the statement has the effect of intro-
ducing new names for each variable listed in the changing
clause by aging them with a ‘‘?’’ and by replacing each
variable X witn ?X in subsequent assertions. In the case
when a variable has been aged already and ?X is found in
subsequent assertions, the verifier will introduce ??X and
so on, as necessary. So, all verification-introduced variables
will be preceded by one or more question marks, and they
are all quantified universally.

The while loop rule yields two pieces of assertive code,
one for each path in the if–then–else construct. In part one
(when the loop condition is true), we confirm the invariant
before the loop and also show that if true at the beginning of
an iteration, it will be true at the end of the iteration. In our
example, the invariant is the assertion, #S ¼ (Rev(S_Re-
versed) o S), where #S refers to the value of S at the

Assertive code after processing swap statement:  

Remember;
Assume |S| <= Max_Depth; 
Assume true;

Var S_Reversed:Stack; 
Var Next_Entry:Entry; 
While (Depth(S) /= 0) 
…
end;

Confirm S_Reversed = Rev(#S); 

C\ code; Confirm Invk_Cond(BE); 

Assume Math(BE); code; Confirm RP;

C\ code; Assume not(Math(BE)); 

 Confirm RP;
 ————————————————————————————————— 

C\ code; 

If-then-else Rule:

If BE then code; else code_2; 
end if; Confirm RP; 

code_2;

 C \ code; While BE changing VLst; maintaining
 Inv; decreasing P_Exp; do body; end;
Confirm RP; 

   code; Confirm Inv; 

Assume Inv and Math(BE); body; Confirm Inv; 

   (Inv and not Math(BE)) implies RP; 

 C \ code; 

While Loop Rule:

Confirm Inv; Change VLst; Assume Inv 
and ?P_Val = P_Exp;  If BE then  body; Confirm
 Inv and P_Exp < ?P_Val ; else Confirm
 RP; end ;

——————————————————————————————————————— 

 C \ code; While  BE changing VLst; maintaining
maintaining  Inv; decreasing  P_Exp; do
 body; end; Confirm RP; 

FORMAL PROGRAM VERIFICATION 5



beginning of the operation and S refers to the current value
of S at the start or end of the loop. Therefore, this invariant
states that the concatenation of the reversal of the Stack,
S_Reversed, and of the current Stack S, will equal the value
of S at the start of the operation. Part one also forms an
assertion that checks that the decreasing expression does
decrease with each iteration by setting the value of the
verification variable ?P_Val to the ordinal expression, in
this example |S|, and then checking that the value of that
variable has decreased after the loop body. Type checking
will guarantee that the decreasing expression is an ordinal,
so no verification obligation is raised by the decreasing
clause.

The while rule yields a second piece of assertive code,
‘‘part two,’’ associated with exiting the loop. Based on the
invariant and the negation of the conditional statement, it
checks that the original Confirm statement after the loop
can be proven. However, it does not include the first confirm
statement (the one confirming the invariant, Inv) because
that is already an obligation in part one.

The two pieces of assertive code that result from apply-
ing the loop rule (and subsequently the if–then–else state-
ment rule) on the example code are shown below.

First we discuss the proof of the second assertive code
because it is easier to discharge. Application of the rules for
the Change statement (that renames changing variables in
assertions after the change statement with ? marks), the
Remember statement (that strips the ‘‘#’’ signs off the
values of the incoming variables), and handling of Assume
and Confirm clauses lead to the implication shown below.
(The verifier also applies the variable declaration rules
although they have no impact because neither S_Reversed
nor Next_Entry are in the assertion to be confirmed.)

The final clause ‘‘?S_Reversed = Rev(S)’’ must be shown.
A mechanical proof system can complete the proof relying
on mathematical units for definitions as shown below.

The first part of the while loop rule requires processing
the code inside the loop. For this assertive code, the next
statement to beprocessed isa call to Push.Before we present
a proof rule to process a call to Push, first it is useful to
understand the simpler function invocation rule.

Where the context C includes the specification of opera-
tion F:

The rule supposes that the specification of the function is
in the context. The function restores and leaves its para-
meter x unchanged. The return value or the result is some
function of the parameter x. Pre_F is the precondition (or the
requires clause) for the function, and it must be satisfied
before the function is called. Given mis function specifica-
tion, suppose that the next statement to be processed is a
function assignment v :¼ F(u). The proof rule states that to
prove the assertion RP after the assignment, it is sufficient
to prove that the precondition for the call holds and that RP
holds if v is replacedwith the result of the function; of course,
in the preconditions and postconditions, proper actual para-
meters must be substituted for formal parameters.

This function assignment rule is the one that needs to
be applied to handle the assignment statements in the
binary search code, given at the beginning of this article.
The ‘‘expression assignment rule’’ for the assignment
statement v :¼ E in Ref. 2 is just a special case of function
assignment rule, and it assumes expression assignment
does not involve any precondition checking, such as for
overflows.

Assertive code after processing while statement—Part One: 

Remember;
Assume |S| <= Max_Depth; 
Assume true;

 Var S_Reversed:Stack; 
 Var Next_Entry:Entry; 
Confirm #S = (Rev(S_Reversed) o  S); 
Change S, S_Reversed, Next_Entry; 
Assume (#S = (Rev(S_Reversed) o  S) and  ?P_Val = |S|); 
Confirm true;             // Pre-Condition of Depth(S) 
Assume |S| /= 0; 

Pop(Next_Entry, S); 
Push(Next_Entry, S_Reversed); 

Confirm (#S = (Rev(S_Reversed) o  S) and  (|S| <  ?P_Val));

 Function Call Rule: 

 C \ code; Confirm Pre_F[x⇝u] and RP[v⇝ f(x)[x⇝
u]] ; 

  —————————————————————— 
 C \code; v := F(u); Confirm RP; 

Operation F(restores x:T1): T2;
requires Pre_F(x); 
ensures F = f(x); 

6 FORMAL PROGRAM VERIFICATION



To handle the call to Push in the same code, an opera-
tion call rule is needed. In the simple case, the output
is expressed as a function of the inputs in the ensures
clause and the rule is similar to the one for invoking
functions:

Where the context includes the specification of opera-
tion P:

The ensures clause of Push ‘‘S = <#E> o #S’’ in the
Stack_Template specification in Fig. 1 is such that the
output value (S) is expressed directly in terms of the
inputs (#S and #E). So the simple operation call rule
can be applied for the call Push(Next_Entry, S_Reversed)
in the example assertive code. After replacing #E and #S in
the expression <#E> o #S with, respectively, Next_Entry
and S_Reversed, we have Next_Entry o S_Reversed, so we
need to replace any S_Reversed in the Confirm assertion
with (Next_Entry o S_Reversed). In addition, we need to
confirm the requires clause of Push (after proper substitu-
tions), which leads us to the assertive code below where
the modified clauses are shown italicized.

Next, the verification system must process the proce-
dure call Pop(Next_Entry, S). This process is the case of a
more general call to an operation where the ensures clause
is not expressed as a function of the input values. In fact,
the specification might be relational, and there might be
many outputs for the same inputs. So we have to prove the
Confirm assertion after the call for whatever outputs
result from the call, as long as the outputs satisfy the
ensures clause. To maintain the difference between vari-
ables before and after a procedure call—in which they are
possibly altered—the name ?X is used for the value of the
variable X after the call. The new variables are implicitly,

quantified, universally, which leads us to the general
operation call rule shown below.

Where the context C includes the specification of
Operation P:

In Ref. 6, Kulczycki et al. explain how to generalize the
operation call rule even more to address calls with
repeated arguments and how to pass parameters without
introducing aliasing. For this article the rule above is
adequate. Application of the rule to the call to Pop in
our example leads to the following assertive code after
the substitution of actual parameters for formal ones and
to use of new names to distinguish values after the call.

Our assertive code at this point has no executable
statements and two assertions to be confirmed. For ease
of explanation, we separate the assertive code and its proof
into two parts: The first part corresponds to the base case
and confirms the requirement that the invariant holds at
the beginning of the while loop. The second part corre-
sponds to the inductive part of the proof of the invariance
of the loop invariant.

Assertive code after processing the call Push(Next_Entry, S_Reversed):  

Remember;
            … 
 Pop(Next_Entry, S); 
Confirm
 ((|S_Reversed| <  Max_Depth) and
 (#S = (Rev(<Next_Entry> o  S_Reversed) o  S) and  (|S| <  ?P_Val)));

 Simple Integer Expression Assignment Rule: 

 C \ code; Confirm RP[v⇝ E] ; 
  —————————————————————— 
 C \code; v := E; Confirm RP; 

 Simple Operation Call Rule: 

 C \ code; Confirm Pre_P[  x⇝u, y⇝v] 

and RP[v⇝f(#x,#y)[#x⇝u, #y⇝v]] ; 
  —————————————————————— 

C\ code; P(u,v); Confirm RP; 

 Operation Invocation Rule: 

 C \ code; Confirm Pre_ P[y⇝ b]   and

(Post_P[x⇝a,  y⇝b]   implies

RP[a⇝a, b⇝b]); 
 —————————————————————— 
 C \ code; P( a, b); Confirm RP; 

Operation P(replaces x, updates y);  
requires Pre_P; 
ensures Post_P; 

Operation  P(alters x: T1, updates y: T2);
requires  Pre_P; 
ensures y = f(#x, #y); 

FORMAL PROGRAM VERIFICATION 7



The proof of the Confirm assertion to show that the
invariant Lodz before the loop is given below.

After applying rules for Assume and Confirm clauses to
prove the second confirm assertion, we have the following
resulting assertive code where the underlined clauses
need to be proved.

After the application of the appropriate rules, the asser-
tion can be proved mechanically by an automated theorem
prover, such as Isabelle (7). Because of space considera-
tions, we do not present additional steps of simplification,
except to note mat only names change in the confirm
assertion to be proved. The Change statement will have
the effect of changing names S to ??S (because ?S is already
used in the assertion to be proved) and S_Reversed to
?S_Reversed. No Next_Entry exists in the assertion, so no
changes are to be made for that variable. By design, after
these substitutions, the resulting assertion is devoid of
names S_Reversed or Next_Entry, so the variable initi-
alization clause has no effect. With the stripping off of #
signs on handling of the remember statement, the result-
ing assertion to be proved is similar to what needs to be
confirmed above, except that the names have changed. So
we consider the same assertion as in the assertive code
above without name changes, and we simply outline how
the obligations can be discharged by a mechanical prover
using suitable theorems.

Thus, the proposed implementation of Flip has been
verified fully with respect to the Flip and Stack specifica-
tions assuming that the proof rules presented and dis-
cussed here, as a collection, are sound and that all logical
steps described here have been checked by a sound,
mechanical proof-checking system. The process described
here is scalable in that Flip does not need to be reverified
for each implementation of Stack_Template: It is verified
once for all against the Stack_Template specification.
Furthermore, this process is scalable in that client pro-
grams using Flip would be verified with respect to Flip’s
specification: The verification of this Flip implementation
need not be (and should not be) revisited with each new
call to Flip.

With the proof rules used above, it is also possible to
attempt verification on the binary search implementation
discussed in the introduction of this article. To verify the
binary search algorithm, the code must first be specified
properly. Annotations for the while loop must also be
included. Then, assuming suitable specification of integer
and array operations, the verifier would follow the process
discussed in this article, but produce an improvable asser-
tion indicating that either an error exists or that mechan-
ical proof was impossible.

SOUNDNESS AND COMPLETENESS

The development of proof rules, such as the ones described
in this article, that can be applied mechanically to assertive
programs to establish their correctness is a significant step
toward formal reasoning about computer programs. How-
ever, two important questions about such a proof system
need to be addressed. One of these questions is both obvious
and absolutely vital; the other is more subtle, but never-
theless important. The vital issue—whether the rules are
sound—can be expressed informally by the question,
‘‘Might the rules permit one to prove that a program is
correct when, in fact, it is not.’’ The second, more subtle,
issue—whether the rules satisfy the completeness prop-
erty—can be expressed informally by the question, ‘‘Are the
rules adequate to prove the correctness of every valid
program?’’

To answer these questions about soundness and com-
pleteness, a formal system for verification must define
semantics for assertive programs, in addition to the proof
rules for establishing correctness. The semantics define the
intuitive notion of program validity. To define the meaning
of ‘‘valid’’ formally, denotational semantics are defined
based on the states of a program. Typically, states are
described as mappings from variable names to values,

8 FORMAL PROGRAM VERIFICATION



but in general, these mappings will need to be relations. To
formalize the validity of assertive programs involving spe-
cifications, it is necessary to enhance the state space with,
three special status denoted by, say, MW, VC, and ?Here,
VC stands for ‘‘Vacuously Correct,’’ and it is the result when
one of the assumptions of the code fails. For example, the
Flip code assumes Push works properly, so it goes to state
VC and becomes vacuously correct, if Push fails to satisfy its
guarantees. MW stands for ‘‘Manifestly Wrong,’’ and it is
the result when an assertive program starts in a normal
state but fails to meet one of its obligations. This obligation
may be its ensures clause or the requirement of one of the
called operations. For example, the Flip code needs to call
Pop properly and not pass it an empty stack. If it fails that
obligation or fails to reverse a stack, then it goes to MW. The
symbol,? is used to designate ‘‘spinning,’’ i.e., the state of a
program that has gone into an infinite loop. Once a program
has entered any one of these three special states, it remains
in that state.

An assertive program is valid if, for all starting states
that are normal, the program does not enter MW or?. This
explanation corresponds to ‘‘total correctness,’’ because it
includes the requirement that the program terminate. For
partial correctness, validity simply requires that a program
not enter the state MW.

Using these semantics, soundness is proven inductively
by establishing for each proof rule that if its hypotheses are
valid semantically, then its conclusion line must also be
valid semantically. To examine the completeness question,
we need to assume validity of the conclusion and then show
that the hypotheses are valid. Of course, here we are
talking about relative completeness as defined in the lit-
erature.

RELATED WORK

Various aspects of formal verification have received much
attention in the literature. An excellent summary of many
of the current areas of research in verification may be found
in Leavens et al. (8). Principles of reasoning used in this
article in the context of RESOLVE notation may be found in
Refs. 9–11. Also see the ‘‘Formal Specification’’ article for
related specification issues.

Some verification efforts are integrated, whereas some
others address specific aspects of verification. An inte-
grated method of verification is based on refinement.
This process consists of refinement between levels of
abstraction that are based on abstraction relations. Start-
ing from higher levels of abstraction (written as a specifica-
tion) through refinement a correct lower level result (such
as an implementable solution) is developed. Verification
then becomes the process of checking the correctness of
refinement steps. The Vienna Development Model (VDM)
is based on this process (12,13). Each step of refinement
creates proof obligations that show the refinement process
does not alter the meaning of the original specification.

PVS is both a specification language and a theorem
prover (14,15). The included specification language is based
on higher order logic and provides a type system. The
specification language is accompanied closely by an inter-

active proof system that together provides the ability to
complete verification of large systems.

‘‘Why’’ is a software verification tool (16). It is directed
toward construction of functional programs with asser-
tions, though imperative constructs such as iteration are
available. The focus is on typically built-in types, such as
arrays rather than modularization or generic data abstrac-
tions. Tools associated with the ‘‘Why’’ system can be used
to generate verification conditions, similar to the ones given
in this article.

Model checking is often used as an alternative to full
verification of behavior. Typically, the goal is to check
whether (in the context of verification) the model (or imple-
mentation) has certain properties (the specification) (17).
Property verification is an area of model checking that
verifies that certain specific characteristics (or properties)
are evident in the implementation. An excellent summary
of model checking efforts as well as a specific system for
model checking Java programs using JPF (Java Path Fin-
der) can be found in Ref. 18. Symbolic execution principles
have been employed in SLAM, which is a model checking
system for C programs (19). Verification of safety specifica-
tions (20) is an area of ongoing research in property ver-
ification.

Research into verification of existing languages must
deal with situations, such as aliasing, that greatly compli-
cate modular reasoning. Using Isabelle, a theorem prover
(7), Verisoft provides an integrated system for full verifica-
tion of CO programs, a subset of the C language (20). By
design, CO precludes several inherent verification difficul-
ties that exist with the C language, such as aliasing. Correct
pointer manipulation, on the other hand, is one goal of the
ESC-Java effort (4).

Much research also exists on modular verification of
object-oriented programs. Leino et al. and Muller et al.
have dealt with verification of pointer behavior for
object-oriented programs (4,21). JML, short for Java Mod-
eling Language, is a specification language for Java. In
JML, subclasses must have stronger specifications (stron-
ger postconditions, weaker preconditions) than those of
their superclass (22,23). Although the initial focus of
JML has been on specification and run-time assertion
checking, more recent efforts include verification. A pre-
cursor to JML is Larch that provides a two-tiered style of
specification that requires specifications written in two
languages: the Larch Interface Language and the Larch
Shared Language (24). Some programs specified using
Larch have beeen checked using LP, the Larch Prover.
LSL specifications are algebraic. For more details on alge-
braic specifications, including an example, please see the
article ‘‘Formal Specification.’’

ACKNOWLEDGMENTS

This work is funded in part from grants CCR-011381, DMS-
0701187, and DUE-0633506 from the U.S. National Science
Foundation and by a grant from NASA through the SC
Space Grant Consortium. We thank Bill Ogden for his role
in developing the proof rules given in this article. Our
sincere thanks are due to Bruce Weide and the anonymous

FORMAL PROGRAM VERIFICATION 9



referees for their careful reading of this manuscript and for
their suggestions for improvement. The assertions in this
article have been generated mechanically using the
RESOLVE verifier available at www.cs.clemson.edu/
�resolve.

BIBLIOGRAPHY

1. J. King, Symbolic execution and program testing, Commun.
ACM, 19 (7): 385–394, 1976.

2. C. A. Hoare, An axiomatic basis for computer programming,
Commun. ACM, 12(10): 576–580, 1969

3. J. Bloch, http://googleresearch.blogspot.com/2006/06/extra-
extra-readall-about-it-nearly.html, 2006.

4. K. R .M. Leino, G. Nelson, J. B. Saxe, ESC/Java User’s
Manual, Technical Note 2000–002, Compaq Systems Research
Center, 2000.

5. B. Hackett, R. Rugina, Region-based shape analysis with
tracked locations, Proceedings of the ACM SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL’05),
Long Beach, CA, 2005.

6. G. Kulczycki, M. Sitaraman, W. F. Ogden, B. W. Weide, Clean
Semantics for Calls with Repeated Arguments, Technical
Report RSRG-05-01, Department of Computer Science, Clem-
son University, Clemson, SC. 2005.

7. The Isabelle Theorem Proving Environment, Developed by
Larry Paulson at Cambridge University and Tobias Nipkow at
TU Mumich. Available: http://www.cl.cam.ac.uk/Research/
HVG/Isabell.

8. G. T. Leavens, J. Abrial, D. Batory, M. Butler, A. Coglio, K.
Fisler, E. Hehner, C. Jones, D. Miller, S. Peyton-Jgnes, M.
Sitaraman, D. R. Smith, A. Stump, Roadmap for enhanced
lnguages and methods to aid verification, Proceedings of the 5th
international Conference on Generative Programming and
Component Engineer, 2006. GPCE ’06. New York: ACM Press,
2006, PP. 221–236.

9. J. Krone. The role of verification in software reusability, Ph.D.
Thesis, Columbus, OH: The Ohio State University, 1988.

10. W. Heym, Computer program verification: improvements for
human reasoning, Ph.D. Thesis, Columbus, OH: The Ohio
State University, 1995.

11. M, Sitaraman, S. Atkinson, G. Kulczycki, B. Weide, T. J. Long,
P. Bucci, W. Heym, S. Pike, J. E. Hollingsworth, Reasoning
about software-component behavior, Proceedings of the 6th
International Conf. on Software Reuse. Berlin: Springer-Ver-
lag 2000, pp. 266–283.

12. C. B. Jones, Systematic Software Development using VDM, 2nd
ed. Englewood Cliffs, NJ: Prentice Hall International, 1990.

13. A.A. Koptelov, A.K. Petrenko, VDM vs. programming language
extensions or their integration, Proceedings of the First Inter-
national Overture Workshop, Newcastle, 2005.

14. S. Owre, J. M. Rushby, N. Shankar, PVS: A prototype verifica-
tion system, Proceedings of the 11th International Conference
on Automated Deduction, 1992, pp. 748–752.

15. S. Owre, J. Rusby, N. Shankar, F. von Henke, Formal verifica-
tion for fault-tolerant architectutes: prolegomena to the design
of PVS, IEEE Trans. Software Engineer. 21 (2): 107–125, l995.

16. J. Fillitre, C. Marché, The Why/Krakatoa/Caduceus platform
for deductive program verification, in W. Damm and H. Her-
manns (eds.), 19th International Conference on Computer
Aided Verification, Lecture Notes in Computer science, Berlin,
Germany, 2007.

17. W. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking,
Cambridge, MA: The MIT Press, 2000.

18. W. Visser, K. Havelund, G. Brat, S. Park, Model checking
programs, IEEE International Conference on Automated Soft-
ware Engineering, 2000.

19. T. Ball, R. Majumdar, T. Millstein, S. K. Rajamani, Automatic
predicate abstraction of C programs, Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design
and Implementation (Snowbird, Utah, United States). PLDI
’01. New York: ACM Press, 2001, pp. 203–213.

20. D. Leinenbach, W. Paul, E. Petrova, Towards the formal ver-
ification of a C0 compiler: code generation and implementation
correctness, Software Engineering and Formal Methods, 2005.
SEFM 2005. Third IEEE International Conference on, 2005.

21. P. Muller, A. Poetzsch-Heffter, Modular specification and ver-
ification techniques for object-oriented software components,
in G.T. Leavens, M. Sitaraman, (eds). Foundation of compo-
nent-Based Systems.Cambridge: Cambridge University Press,
UK 2000.

22. G.T. Leavens, A. L. Baker, C. Ruby, Preliminary design of JML:
a behavioral interface specification language for Java, ACM
SIGSOFT Software Engineering Notes, 31 (3): 1–38, 2006

23. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens,
K.R.M. Leino, E. Poll, An overview of JML tools and applica-
tions, Internat. J. Software Tools Technol. Transfer, 7 (3):
212–232, 2005.

24. J.V. Guttag, J.J. Horning, Larch: Languages and Tools for
Formal Specification. New York: Springer-Verlag, 1993.

HEATHER K. HARTON

MURALI SITARAMAN

Clemson University
Clemson, South California

JOAN KRONE

Denison University
Granville, Ohio

10 FORMAL PROGRAM VERIFICATION



FORMAL SPECIFICATION

A formal specification of a software component is a math-
ematical description of the component’s behavior. The spe-
cification of a component tells its users, or clients, what it
does and lets its implementers know what behavior needs to
be provided. A specification does not indicate or dictate the
details of a how a component is or should be implemented.
When the specification is formal, it serves as an unambig-
uous contract between component users and implementers,
which can reduce significantly the costs of software integra-
tion and testing that result from miscommunication
between users and developers of components in large-scale
software development. A formal specification is essential to
achieve formal verification (see the article ‘‘Formal Program
Verification’’), whose goal is to prove that an implementa-
tion is correct with respect to its specification. Most current
techniques for formal specification focus on specifying the
functional behavior of a software component, but specifica-
tion of performance behavior is becoming just as important.

INTRODUCTION TO FORMAL SPECIFICATION

A specification describes some essential aspect of the soft-
ware’s behavior, such as functionality or performance,
without divulging or prescribing implementation details.
For a simple example, consider the following Sort operation
on Queues:

Operation Sort(Q: Queue); ensures In_Order(Q) and Is_Per-
mutation(#Q, Q);

Just like programming languages, specification lan-
guages have well-defined syntax and semantics. The spe-
cification above is given in RESOLVE, which is an
integrated programming and specification language (1,2).
A behavioral description of sorting in other specification
languages may differ syntactically, but the essence of the
specified behavior would be the same. For example, some
specification languages use different keywords, (e.g., post
instead of ensures clause) to express behavior. Some use
alternative notations (e.g., Q and Q0 in the ensures clause
instead of #Q and Q) to distinguish the values of parameters
before and after operations. A variety of other specification
notations, including Larch (3), VDM (4), and Z (5), are
summarized in a later section of this article. We have
chosen RESOLVE for this article because it is designed
to support both full specification and verification of beha-
vior, serving to explain not only specification principles in
this article, but also verification principles in the related
article ‘‘Formal Program Verification’’. RESOLVE also
includes notations for specifying performance behavior,
which is an emerging area of importance.

In the specification of the Sort operation, the value of the
parameter Q is updated. In general, specifications of such
operations may include a requires clause that specifies
the precondition of the operation, i.e., what must be true
in the program state just before the operation begins for the
operation call to be legal. In the current case, the Sort
operation has no requires clause, which means that the
caller can invoke it on any Queue. The ensures clause
specifies the postcondition of the operation. It indicates
what a correct implementation will guarantee just after
the operation as long as the caller satisfies the precondi-
tions at the time of the call. In this case, a correct imple-
mentation of the Sort operation makes two guarantees: All
elements of the resulting Q will be ‘‘in order,’’ and the
current value of Q (i.e., its resulting value at the end of
the operation) is a permutation of the incoming or previous
value of Q, denoted by #Q. The functions In_Order and
Is_Permutation are mathematical functions defined on (the
abstract values of) Queues. Although the above specifica-
tion describes the behavior of the Sort operation, it is not
biased toward or based on any one implementation tech-
nique. A programmer can implement the operation using
any comparison-based sorting algorithm, such as insertion
sort, quicksort, or merge sort.

Benefits of Specification

The specification of an operation can be viewed as a contract
between the client and the imple-menter of the operation.

FORMAL SPECIFICATION 1307

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



The contract indicates the rights and responsibilities of
both parties. The client has a responsibility to satisfy the
precondition before invoking the operation, whereas the
implementer has a responsibility to satisfy the postcondi-
tion if the precondition is met. The same notion of a contract
also applies to components and their specifications.

A formal specification is necessary to allow a software
developer to prove mathematically that program code is
correct with respect to the specification. Although the
goal of full program verification is the most fundamental
one, formal specification can benefit software developers in
other ways as well. In his article ‘‘Seven Myths of Formal
Methods’’ (6), Anthony Hall noted that merely developing a
formal specification for their project ‘‘helped us to clarify the
requirements, discover latent errors and ambiguities, and
make decisions about functionality at the right stages.’’
Formal specifications can be checked for consistency or com-
pletenessevenbeforethecodeiswritten,allowingdevelopers
to catch certain mistakes early in the development cycle.
Developers can use the specifications as unambiguous
requirements for their program code, and once the code is
written, static checking tools (7) and runtime assertion
checkers (8) may be employed to detect a variety of errors.

Informal, Lightweight, and Full Specification

Specifications can be either formal or informal, and the use
of one does not preclude the other. Informal specifications
use natural language, pictures, or real-world metaphors to
describe a component. An informal specification for the sort
operation may simply comprise one-line comments for the
preconditions and postconditions, as in the following code:

Operation Sort(Q: Queue); ensures (� the elements of Q are in
sorted order �);

The signature of the operation alone is not a specification

because—apart from the appropriately chosen name—it does

not describe the behavior of the operation. A good example of

a well-organized library of informal specifications is the on-

line documentation for the Java API. These documents

indicate how each class or interface behaves. Java interfaces,

in contrast, indicate only the signatures of the methods that

implementing classes must provide. Some specification lan-

guages, such as the Java Modeling Language (JML) (9), allow

informal descriptions to be written as comments in syntactic

slots where formal assertions are typically required. This

process allows programmers to keep their specifications

organized when they may not have the resources to write full

formal descriptions.

Although informal specifications can give programmers
a quick understanding of how a component can be used,
they have at least two drawbacks. First, the descriptions
they provide are often imprecise, ambiguous, or incomplete.
This issue can prevent a client from fully understanding or
making proper use of a component. Second, informal
descriptions cannot be understood by programming tools
such as static checkers and runtime assertion checkers. For
example, static checkers such as ESC/Java (7) can use JML
specifications to help statically detect potential program-
ming errors and errors in specifications. Tools that perform

runtime assertion checking (8,10) determine whether a
particular execution of the program is consistent with
the machine-readable specifications. Also, tools exist for
generating verification conditions (see the article ‘‘Formal
Program Verification’’) and for theorem proving [such as
PVS (11) or Isabelle/HOL (12)]. New tools continue to be
developed that use formal specifications to assist in pro-
gram testing, debugging, and verification.

A lightweight specification is a formal specification that
captures only some aspects of the behavior of an operation or
a component. Lightweight specifications vary in their diffi-
culty and utility. At one end are specifications that are
extremely simple, but easy to check, such as a specification
of an Enqueue operation that merely asserts that the length
of the resulting queue is one element longer (10). An alter-
native lightweight specification might specify that a given
sequence of operations does not create cycles or null-pointer
accesses (3). In general, lightweight specifications are useful
in runtime assertion checking and extended static checking,
but their utility is limited in full verification. In contrast to
lightweight specification, full specification requires atten-
tion to a full range of specification features, including math-
ematical models for all types, computational bounds,
invariants for all loops, and abstraction relations for all
implementations. These and other specification features
are described below. Full specifications are necessary for
full verification of program behavior.

Specification-Based Reasoning

A fundamental principle of component-based software
development is that a component should be usable solely
on the basis of its specification. Figure 1 shows a design-
time diagram of a software system in which circles repre-
sent component specifications and rectangles represent
implementations (or realizations) of the specifications.
A realization will typically use and therefore depend on
other components, but reasoning about the correctness
of the realization should be modular; i.e., it should only
involve the specifications (not the implementations) of
reused components. In Fig. 1, for example, to reason that
the Queue_Based realization of Messenger is correct, the

Figure 1. A design-time diagram to illustrate specification-based
reasoning.

1308 FORMAL SPECIFICATION



details of how the Queue specification is implemented
should not be necessary. One result of this specification-
based style of reasoning is that a developer may substitute
one implementation of a component for another without
affecting the functional behavior of the system. For exam-
ple, a straightforward array-based implementation of the
Queue component can be substituted with a circular array
implementation, and only the performance of the system—
not the behavior—will change. Modular or specification-
based reasoning is necessary if reasoning about software
systems is to be scalable.

SPECIFICATION OF A TYPICAL COMPONENT

This section illustrates the specification of a typical soft-
ware component. A specification may be model-based or
algebraic. We use a model-based style for the central exam-
ple in this article, deferring a discussion of an algebraic
approach to a later section that summarizes various other
specification efforts. In a model-based approach, a mathe-
matical model is used to explain each programming type
whether it is built in or user defined. Each variable has an
abstract value based on the mathematical model of its type,
and preconditions and postconditions are written for each
operation using that model.

Specification for a Queue Component

Figure 2 shows a model-based specification for a Queue
component. The Queue example is sufficiently complex to
illustrate the basic ideas of formal specification.

The Queue_Template specification in Fig. 2 is generic—
it is parameterized by an Entry type and an integer,
Max_Length, which dictates the upper bound for a Queue.
It must be properly instantiated with appropriate argu-
ments before it can be used. The specification requires
that the expression the user passes as an argument for
Max_Length (during instantiation) must be a positive inte-
ger. The uses clause lists the dependencies. Here, the spe-
cification uses String_Theory—a purely mathematical
compilation unit that contains properties and definitions
related to mathematical strings, including those used in this
specification. Automated tools depend on mathematical
units when type checking mathematical expressions in
specifications, as discussed in a later section in this article,
and for generating verification conditions for formal verifi-
cation.

In RESOLVE, the state space always consists of the
abstract values of the currently defined variables. The
abstract value space for a type is defined in the specification
that provides it. For example, the type family declaration
in the Queue_Template concept introduces the program-
ming type Queue and associates mathematical strings of
entries as the space for the values of Queue variables.
Therefore, users can reason about a programming variable
of type Queue as a mathematical string of entries. In this
concept, the term type family is used instead of just type
because the concept (and, therefore, the type) is generic
until it is instantiated, so the declaration of Queue here
encompasses an entire family of types. The notion that a
programming variable can be viewed abstractly as a pure
mathematical value is central to model-based specification
and simplifies specification-based reasoning. All variables,
even those of basic types, have an abstract (mathematical)
interpretation. For example, an array variable may be
viewed as a mathematical function from natural numbers
to its contents, and an integer variable may be viewed as a
mathematical integer, with suitable constraints to capture
computational bounds.

The exemplar declaration in Queue_Template intro-
duces a variable Q of type Queue to describe properties
that hold for any arbitrary Queue variable. For example,
the constraints clause immediately following the exemplar
declaration indicates that the length of any Queue must
always be less than Max_Length. Like the requires and
ensures clauses, the constraints clause is a mathematical
expression. Therefore, the type of Q in the constraints clause
is a mathematical string of entries.The String_Theory math
unit imported by the uses clause defines the bar outfix
operator |a| as the length of string a. The initialization
ensures clause indicates that each newly declared Queue
has a length of zero. The only string that has a length of zero
is the empty string, so this is the same as saying that all
newly declared Queue objects can be viewed abstractly as
empty strings.

A good component specification should provide a suitable
set of operations. Together, the operations should be com-
plete functionally, yet minimal. Guidelines for this core set
of operations that we call primary operations are given in
Ref. 13. To manipulate Queue variables, the current concept
describes five operations: Enqueue, Dequeue, Length,
Rem_Capacity, Swap_Front, and Clear.

Concept Queue_Template (type Entry; evaluates Max_Length: Integer);
 uses String_Theory;
 requires Max_Length > 0;

Type Family Queue is modeled by Str(Entry);
 exemplar Q;
 constraints | Q | ≤ Max_Length;
 initialization ensures | Q | = 0;

Operation Enqueue(alters E: Entry; updates Q: Queue);
 requires | Q | < Max_Length;
 ensures Q = #Q o 〈#E〉;

Operation Dequeue(replaces E: Entry; updates Q: Queue);
 requires | Q | > 0;
 ensures #Q = 〈E〉 o Q;

Operation Length(restores Q: Queue): Integer;
 ensures Length = | Q |;

Operation Rem_Capacity(restores Q: Queue): Integer;
 ensures Rem_Capacity = ( Max_Length – | Q | );

Operation Swap_Front(updates E: Entry; updates Q: Queue);
 requires | Q | > 0;
 ensures ∃α: String(Entry) ∋ #Q = 〈Ε〉 o α and Q = 〈#Ε〉 o α;

Operation Clear(clears Q: Queue);
 end Queue_Template; 

Figure 2. A specification for a bounded Queue.

FORMAL SPECIFICATION 1309



A variety of specification parameter modes appear in the
operation signatures. These modes are unique to the
RESOLVE specification language, and they have been
conceived especially to make specifications easier to under-
stand. The Enqueue operation, for example, specifies its
Queue parameter in the updates mode, allowing the
ensures clause to indicate how it will be modified. In con-
trast, it lists the Entry parameter in the alters mode and
indicates only that the Entry may be modified, but it does
not indicate how. From this specification, a client knows
only that the resulting Entry contains a valid but unspe-
cified value of its type. Therefore, an implementer of
Enqueue is not forced to copy the Entry. Copying a variable
of an arbitrary type may be expensive, so this specification
also allows the implementer to swap Entries, which can be
done in constant time (14).

When a parameter is specified in the replaces mode, as in
the Dequeue operation, its value will be replaced as speci-
fied in the ensures clause, regardless of what value it had
when the operation was called. Again, this design makes it
unnecessary to copy and return the item at the front of the
queue, allowing more efficient swapping to be used.

The restores parameter mode used in the specification of
Length indicates that the value of the parameter after the
operation is the same as the value of the parameter before
the operation, although the code for the operation may
change it temporarily. A restored parameter Q adds an
implicit conjunct to the ensures clause that Q¼ #Q. If a
parameter is specified to be in the preserves mode, it may
not be modified during the operation. In other words, the
preserves mode specifies that the concrete state as well as
the abstract state remains unmodified, whereas the
restores mode specifies only that abstract state remains
unmodified. Function operations (operations with return
values) should not be side-effecting, so typically all their
parameters must be restored or preserved.

The clears parameter mode indicates that, after the
operation, the parameter will have an initial value. For
this reason, the Clear operation does not need an ensures
clause: Its only purpose is to give the queue an initial value,
which is specified by the clears parameter mode.

The specifications of the operations are given using
the requires and ensures clauses. The requires clause of
the Enqueue operation states that the length of the incom-
ing Queue Q must be strictly less than Max_Length. The
ensures clause states that the new Queue Q has a value
equal to the string containing only the old value of E
concatenated with the old value of Q. A variable inside of
angle brackets, such as h#Ei, denotes the unary string
containing the value of that variable. A small circle repre-
sents string concatenation, so a o b denotes the concatena-
tion of strings a and b. The angle brackets and the
concatenation operator are defined in String_Theory.

As an example, suppose P ¼ hC;D;Fi is a Queue of Tree
objects whose maximum length is ten, and suppose X ¼ X is
a Tree. Before a client invokes the operation Enqueue(X, P),
he is responsible for ensuring that the length of the Queue
parameter is strictly less than ten. Since the length of P in
our example is three, he can invoke the operation knowing
that after the call, P ¼ #P o h#Xi, or P ¼ hC;D;Fi o hXi
¼ hC;D;F;Xi. Since the Entry X is specified in alters

mode, the client knows only that X has a valid value of
its type: It may be D, it may be X, or it may be some other
Tree value.

The RESOLVE language has an implicit frame prop-
erty (15) that states that an operation invocation can only
affect parameters to the operation—represented here by P
and X. Therefore, the client knows that no other variables
in the program state will be modified. This simple rule is
possible in RESOLVE, but not necessarily in other lan-
guages, such as Java, because in RESOLVE, common
sources of aliasing are avoided (for example, by using
swapping rather than reference assignment).

Reasoning about the Dequeue operation is similar to
reasoning about the Enqueue operation. The Length opera-
tion is a function. Like most function operations, this
operation has no requires clause. The ensures clause states
that Length¼|Q|, indicating that the return value of the
function is just the length of Q. The Swap_Front operation
allows the front Entry of a Queue to be examined (and
returned with a second call), without displacing it.

The Queue_Template specification can be implemented
in variety of ways. However, users of Queues can ignore
those details because all they need to know is described in
the specification unambiguously. This developmental inde-
pendence is crucial for large-scale software construction.

Mathematical Types and Type Checking in Specifications

Specifications that import mathematical types to explain
program types give rise to two kinds of typing for the same
variable, depending on whether the variable is used in a
programming or a mathematical context. Specification
languages include mathematical types for this purpose.
Extensible specification languages allow new types to be
defined and composed from other types. Typical mathema-
tical types include booleans, natural numbers, integers,
real numbers, sets, strings, functions, and relations. This
small set of types can be composed and reused to specify a
variety of computing concepts. For example, mathematical
strings can be used in specifying a variety of programming
concepts, such as stacks, queues, priority queues, and lists.

Mathematical types, definitions, and appropriate theo-
rems involving those definitions may be described in math-
ematical theory units that themselves must be robust
enough to allow specifications to be built on top of them.
For example, the definitions of the string-forming outfix
operator ‘‘h i’’ and string concatenation operator ‘‘o,’’ both of
which are used in the specification of Queue_Template, are
given in Fig. 3 from the String_Theory mathematical unit.

…
Definition 〈x: Γ〉: Str(Γ) = ext(Λ, x);

Inductive Definition (s: Str(Γ)) o (t: Str(Γ)): Str(Γ) is
(i)  s o Λ = Λ;
(ii) ∀x: Γ, s o (ext(t, x)) = ext(s o t, x); 

…
Inductive Definition |s: Str(Γ)|: N is
         … 

Figure 3. Example mathematical definitions in String_Theory.

1310 FORMAL SPECIFICATION



The mathematical unit String_Theory defines strings
over some set G, which is a local (mathematical) type used to
represent an arbitrary set. Strings are syntactically iden-
tified to be the mathematical type Str using two definitions:
L, the empty string, and ext, a function that extends a
string with an object of type G. A comprehensive string
theory that defines these and other mathematical string
notations has been specified in RESOLVE, but its inclusion
here is beyond the scope of this article.

When programming objects appear in assertions in spe-
cifications, their mathematical types are used rather than
their programming types. For the purposes of type checking
of these mathematical assertions, we need only know the
signatures and types of the definitions involved. For exam-
ple, the ensures clause of Enqueue ‘‘Q¼ #Q o h#Ei’’ is
checked for type consistency starting with the values of
#Q and #E. The type of #Q evaluates to Str(Entry), and #E
has type Entry. The string-forming operator h i applied to
#E returns an expression of type Str(Entry). The concate-
nation operator o applied to #Q and h#Ei also yields an
expression of type Str(Entry). This is compared with the
left-hand side of the equality and the type of Q, which also
has type Str(Entry). The types match, and the statement is
found to be consistent. For another example, if Stacks and
Queues are both modeled by mathematical strings of
entries, then an ensures clause such as ‘‘S¼ #Q o hxi’’
(where x is of type Entry) would type-check correctly
even if S were a Stack and Q were a Queue.

SPECIFICATION OF ASSERTIONS WITHIN
IMPLEMENTATIONS

The use of mathematical assertions is not confined to
component specifications. Assertions such as abstraction
relations, representation invariants, and loop invariants
are forms of internal implementation-dependent specifica-
tions that need to be supplied along with code. They serve
two purposes. First, they help human programmers. They
formally document the design intent of the implementers,
and they facilitate team development (within an implemen-
tation) and ease later maintenance and modification.
Second, the assertions are necessary for automated pro-
gram verification systems that cannot, in general, deduce
these assertions that capture design intent.

To illustrate the role and use of implementation-specific,
internal specifications, a portion of an array-based imple-
mentation for Queue_Template is given in Fig. 4. The
Queue data type is represented by a record with one array
field (Contents) and two integer fields (Front and Length).
The Contents array holds the elements of the Queue, Front
is the index of the array that holds the first element in the
Queue, and Length is length of the Queue.

The conventions clause—the representation invariant—
indicates properties that must hold before and after the code
for each exported (i.e., not private) Queue operation. The
conventions here indicate that both the Front and
the Length fields must always be between zero and the
value of the Max_Length variable from the Queue_
Template. The correspondence clause—the abstraction
relation—plays a fundamental role in specification-based
reasoning. It defines the value of the conceptual Queue

(Conc.Q) as a function of the fields in the Queue’s repre-
sentation. In this abstraction relation, the P notation indi-
cates string concatenation over a range of values. The
relation states that the conceptual Queue is the mathema-
tical string resulting from the concatenation from k¼Q.
Front to Q.FrontþQ. Length � 1 of the unary strings
whose elements are given by expression Q.Contents(k
mod Max_Length). For example, if Max_Length¼ 5, Con-
tents¼ [C;D;F;Q;X], Length¼ 3, and Front¼ 3, then the
conceptual Q would be hContents(3)i o hContents(4)i o
hContents(0)i¼ hQ;X;Ci. Note that, in this implementa-
tion, some elements in the array have no effect on the
conceptual value of the Queue. For example, an array value
of [hC;G;V;Q;Xi] in the aboveexample wouldyield the same
conceptual Queue value. The P notation is defined such that
when the index at the top is smaller than the one at the
bottom, it becomes the emptystring.This is the reason in the
initial state when Front and Length are set to 0 that the
conceptual Queue corresponds to the empty string as spe-
cified in the initialization ensures clause.

To understand how the representation invariant and
abstraction relation are used in reasoning, consider the
implementation of the Enqueue operation given in Fig. 6.
Let the representation value of the Queue parameter Q be
as described above: Q.Contents¼ [C;D;F;Q;X] and
Q.Length¼Q.Front¼ 3. Suppose that the element E that

Realization Circular_Array_Realiz for Queue_Template; 

Type Queue = Record
                  Contents: Array 0..Max_Length – 1 of Entry; 
                  Front, Length: Integer; 

end;

conventions 0 ≤ Q.Front < Max_Length and 
0 ≤ Q.Length < Max_Length;  

correspondence

            Conc.Q = Q.Contents(k mod Max_Length)
k=Q.Front

Q.Front+Q.Length−1

∏ ;

Procedure Enqueue(alters E: Entry; updates Q: Queue); 
            Q.Contents((Q.Front + Q.Length) mod Max_Length) :=: E; 
            Q.Length := Q.Length + 1; 

end Enqueue; 

       (* implementation of other Queue operations *) 

end Circular_Array_Realiz; 

Figure 4. A portion of an array-based implementation of Queues.

Figure 5. An enhancement for sorting a Queue.

FORMAL SPECIFICATION 1311



we want to enqueue has a value of V. The conceptual value
of the Queue, hQ;X;Ci, indicates how the Queue is viewed
by someone reading the concept or specification. Therefore,
when we check the precondition and postcondition as it is
given in the concept, we have to use the abstraction relation
to translate the representation value of Q into its concep-
tual value. This instance of the representation is consistent
with all the preconditions of the Enqueue operation. The
representation invariant is satisfied, since Length and
Front are both between 0 and 4. The precondition of the
operation is satisfied, since the length of the conceptual
Queue, hQ;X;Ci, is strictly less than Max_Length. The
implementation of Enqueue first swaps Contents(3 þ 3)
mod 5¼Contents(1) with E, so that Contents(1) becomes
V and E becomes D. Then it increases Length by one so that
Length becomes 4. Thus, after the procedure, Q.Con-
tents¼ [C;V;F;Q;X], Q.Length¼ 4, Q.Front¼ 3, and
E¼ D. This result is consistent with the representation
invariant, since Q.Length¼ 4 is still strictly less than
Max_Length¼ 5. The conceptual value of Q is now
hQ;X;C;Vi, and the ensures clause, Q¼ #Q o h#Ei, is
satisfied since hQ;X;C;Vi ¼ hQ;X;CiohVi.

When at least one realization has been implemented for
a concept, a developer can create a usable factory or facility
by instantiating the concept and indicating the realization
that will be used to implement it. Variables can then be
declared using any type defined in this way. The code below
shows how this is done in RESOLVE:

Facility Int_Queue_Fac is Queue_Template(Integer, 500)
realized by Circular_Array_Realiz; � � �Var Q Int_Queue_Fac.
Queue;

A Queue Sorting Enhancement

Figure 5 gives an example of an enhancement for sorting a
Queue. In RESOLVE, an enhancement is a way to add
additional functionality to a concept without altering the
concept specification or its implementations. The enhance-
ment Sort_Capability specifies a secondary operation.
The use of secondary operations facilitates data abstraction
and information hiding and allows developers to keep the
number of primary operations in a component to a
minimum. The Sort operation can be implemented using
a combination of Queue primary operations without
directly depending on the internal details of any particular
Queue implementation.

The Sort_Capability enhancement is generic. It is
parameterized by a mathematical definition of the rela-
tion -, which takes two parameters of type Entry and
returns a Boolean value. The requires clause states that
- must be total and transitive (i.e., a total preordering),
ensuring that the entries can be sorted. The specification
of the sort operation itself is the same as that given in the
beginning of this article, except that we have used the
idea of ‘‘conformal’’ a higher order predicate: A string Q is
conformal with the ordering -, if it is arranged according
to that order. Both the predicates used in the specifica-
tion, namely Is_Conformal_with and Is_Permutation, are
defined in the mathematical unit String_Theory
(imported by Queue_Template).

Figure 6 gives one possible implementation of the
Sort operation—an insertion sort. The insertion sort imple-
mentation takes a programming operation, Are_Ordered,
as a parameter. Any operation can be passed into the

Figure 6. An implementation for the Queue sort operation.

1312 FORMAL SPECIFICATION



implementation as long as it has the same signature as
Are_Ordered and has an ensures clause that is consistent
with the ensures clause of Are_Ordered. The Are_Ordered
operation simply provides a means to check programmati-
cally whether two Entry variables are ordered according to
the mathematical definition of -.

The developer of an implementation involving a loop
must give an invariant for the loop, which is introduced
here via the maintaining clause. A loop invariant is an
assertion that (i) must be an invariant, i.e., true at the
beginning and end of each iteration of the loop, and (ii) must
be strong enough to help establish the postcondition of the
operation.

The loop invariant given in the procedure body for the
sort operation is ‘‘Is_Conformal_with(-, Temp) and
Is_Permutation(#Q, Q o Temp).’’ Proving that this invar-
iant is true at the beginning and end of each iteration is
done by a verification tool using induction (see the article
‘‘Formal Program Verification’’). Here, we explain infor-
mally why the given assertion is an invariant for this
particular instance. Consider a Queue of Trees Q whose
value at the beginning of the procedure is hQ7;X4;C6i,
where Tree Ti represents a Tree with i nodes, and the
Trees are ordered based on the number of nodes they have.
We can refer to the incoming value of Q at any state in the
procedure as the old value of Q, or #Q. At the beginning of
the first loop iteration, Temp has an initial value of its
type, so that Q ¼ hQ7;X4;C6i and Temp = h i. The loop
invariant is true since Temp is in agreement with the
order and Q o Temp ¼ hQ7;X4;C6i o hi ¼ hQ7;X4;C6i ¼ Q.
The body of the loop dequeues the first Tree, Q7, from
Queue Q and inserts it, in the correct order, into Temp, so
at the end of the first loop iteration, Q ¼ hX4;C6i and
Temp ¼ hQ7i. The loop invariant is true since Temp is in
order and Q o Temp ¼ hX4; C6; Q7iOh i ¼ hX4;C6;Q7i is a
permutation of #Q. The program state at the beginning of
the second iteration is the same as the program state at the
end of the first iteration, so the loop invariant remains
true. During the second iteration, X4 is dequeued from Q
and inserted in order into Temp so that Q ¼ hC6i and
Temp ¼ hX4;Q7i. The loop invariant holds again since
Q o Temp ¼ hC6iohX4;Q7i ¼ hC6;X4;Q7i is a permutation
of #Q. At the end of the final iteration, Temp ¼ hX4;C6;Q7i,
and Q ¼ hi, so the invariant still holds.

A verification tool will also use the invariant to prove the
postcondition: that the new Queue value is conformal with
the given order and a permutation of the old Queue value.
The general case is easy to explain, so we do not restrict
ourselves here to #Q ¼ hQ7;X4;C6i. At the end of the loop,
we know that the loop condition, Length(Q) /= 0, is false and
that the loop invariant is true. Therefore, we know that Q is
empty, Temp is in order, and Temp is a permutation of Q.
When we swap the values of Temp and Q, Q is in order and
Q is a permutation of #Q, which is what we needed to show.

Another use of specification in this procedure is the
decreasing clause. The decreasing clause introduces a pro-
gress metric, which is used to prove that the loop termi-
nates. The progress metric is a natural number that must
decrease with each iteration of the loop. Since natural
numbers cannot be negative, a proof that the metric
decreases implies that the loop terminates (see thie article

‘‘Formal Verification’’). In the example where #Q ¼
hQ7;X4;C6i; jQj ¼ 2 at the end of the first iteration, 1 at
the end of the second, and 0 at the end of the third. Progress
metrics are also used to show termination for recursive
procedures.

The following code is an example of a facility declaration
that includes the sort enhancement:

Facility Int_Queue_Fac is Queue_Template( Integer, 500 )
realized by Circular_Array_Realiz enhanced by Sort_
Capability( � ) realized by Insertion_Sort_Realiz( Int_
Less_Eq ); .

PERFORMANCE SPECIFICATION

Although specification of functionality has received much
attention, specification of performance characteristics,
such as time and space requirements, are also necessary
for reliable software engineering. When multiple imple-
mentations of the same specification occur, developers can
use the performance specifications to choose one over the
other depending on the needs of their application. This
flexibility is essential, since different implementations pro-
vide tradeoffs and no single implementation of a concept is
likely to be appropriate universally. Just as formal speci-
fications of functionality are necessary for mechanized
verification, formal specifications of performance are neces-
sary for verification of performance correctness, which is a
key requirement for embedded and other critical systems.
In this article, we only show specifications of duration (time
requirements) for components using the Queue example.
For more details, including analysis of space requirements,
please see Ref. 16.

In RESOLVE, performance specifications are given
through the profile construct. Figure 11 shows a part of a
performance profile called QSC for a class of ‘‘space con-
scious’’ Queue implementations that keep the internal
array free of unutilized garbage (16). The profile in the
figure does not make any assumptions about the generic
terms Entry and Max_Length. Consequently, its expres-
sions are written using these terms. Although a profile is
implementation dependent, it should be free of nonessen-
tial implementation details. This capability is provided
using a defines clause. This clause allows a profile to use
constants (QSCI, QSCI1, QSCE, QSCD, QSCSfe, etc.), whose
values will come from the implementation. R�0:0 indicates
that their values must be positive real numbers. For each
operation, a profile supplies the time necessary to execute
the operation using a duration clause.

In Fig. 7, the duration expression for initialization is the
summation of two terms. The first term, QSCI, is an imple-
mentation-based overall constant overhead. The second
term is calculated in two steps. First, the sum of QSCI1

(an implementation-based constant overhead for each
Entry) and Entry.I_Dur (duration to create an initial
valued Entry) is calculated. Then the sum is multiplied
by Max_Length to obtain the total time to initialize every
Entry in the array structure that is used to represent the
Queue internally.

To understand the duration expression for Enqueue,
consider the following implementation of the Enqueue

FORMAL SPECIFICATION 1313



operation, which assumes that the Queue is implemented
as space-conscious circular array:

Procedure Enqueue(alters E Entry; updates Q Queue);
Q.Contents((Q.Front + Q.Length) mod. Max_ Length) :=: E;
Q.Length := Q.Length + 1; end Enqueue;

In this implementation, the Enqueue procedure per-
forms the following actions: It accesses a record a total of
five times; it swaps an array element once; and it performs
one integer assignment, two additions, and a mod operation
(Fig. 12). Therefore, for this implementation of the Enqueue
operation, QSCE, used in the profile in Fig. 12, is given the
following definition:

Definition QSCE: R�0:0 = DurCall(2) + 5�Record.Dur+Array.Dur:=:

+ Int.Dur :=: +2. Int.Dur + + Int.Dur mod;

In this expression, DurCall(2) denotes the time to call an
operation with two arguments. The duration expression of
Dequeue is slightly more complex because it involves initi-
alization of a new Entry variable and a variable finalization.

SUMMARY OF VARIOUS FORMAL SPECIFICATION EFFORTS

The RESOLVE specification language has been used
in developing an extensive component library, teaching
graduate and undergraduate courses (17,18), and develop-
ing commercial software (19). Several other specification
languages have found wide use. Formalism is a shared
objective of all these languages. This section contains a
summary of various efforts.

The Z notation specification language, which was
developed at Oxford University Computing Laboratory,
is based on set theory and first-order predicate logic (5). A
Z statement value can be either true or false and cannot
be undefined. Like RESOLVE, Z is typed language: Every
variable has a type, reducing errors in specification. For
smaller problems, the mathematical notation can be
understood easily, but specifications become unattrac-
tive as the problem size increases. This obstacle is over-
come by introducing schema notation. A schema replaces
several statements with a single statement, and it can be
composed of several other schemas. This gives Z a mod-

ular structure. Just as Z provides logical operators on
predicates, it also provides matching operators for sche-
mas. Z specification statements are human readable and,
in general, nonexecutable. Z provides both formatting
and type-checking tools. Many systems have been built
using Z specification, including hardware systems,
transaction processing systems, communication sys-
tems, graphics systems, HCI systems, and safety-critical
systems (20).

VDM-SL (4,21,22) is a model-oriented specification
language that originated in the IBM Laboratory in
Vienna. It uses propositional calculus and predicate logic.
VDM-SL functions do not have side effects and are defined
by their signature and preconditions and post-conditions.
The Vienna Development Method (VDM) is a program
development method based on VDM-SL and tool support.
Its object-oriented version is called VDMþþ. The VDM
development cycle starts with an abstract specification
and ends with an implementation. The cycle is based on
two steps: data reification and operation decomposition.
Data reification (a VDM term commonly known as data
refinement) involves the transition from abstract to con-
crete data types and the justification of this transition. A
reification step is taken if behavior of the reifying and
original definitions is guaranteed to be the same. A con-
crete definition of a function is said to reify or satisfy its
abstract definition if for all arguments of the required type
satisfying the precondition, the transformation process
yields results that are of the required type and satisfy the
postcondition.

RAISE (Rigorous Approach to Industrial Software
Engineering) is a formal method technique based on
VDM (23). It has been used to specify and develop software
systems for industrial use. RSL, the specification lan-
guage of RAISE, supports concurrent and sequential
programming features (24).

Larch (3,25) is one of the earlier specification lan-
guages and is designed as a family of languages with
two tiers of specification: The top tier is a behavioral
interface specification language (BISL), and the bottom
tier is the Larch Shared Language (LSL), which is an
algebraic style specification language. The LSL is lan-
guage-independent and is used to describe the mathe-
matical vocabulary used in the preconditions and
postcondition specifications. LSL specifications are
algebraic rather than model-based. Instead of using
mathematical types to model programming types, they
introduce a set of axioms that together define the beha-
vior of the component. Figure 8 gives a portion of a Queue
specification similar to the one in Ref. 3. In the specifica-
tion, E is the type for elements in the queue and C is the
queue type. Functions are declared using the keyword
introduces, and their behaviors are defined through the
axioms in the asserts clause. For additional examples of
LSL specifications, see Ref. 3.

Using the shared language, BISL is designed for a
given programming language to specify both the inter-
face and the behavior of program modules in that lan-
guage. The modules are implemented in a particular
programming language. Since a BISL is based on a
specific programming language, the specification is

Profile QSC short_for Space_Conscious for Queue_Template; 
defines

 QSCI, QSCI1, QSCE, QSCD, QSCSfe, QSCL, QSCRC, QSCC: R≥0.0;
Type Family Queue; 

initialization
duration QSCI + (QSCI1 + Entry.I_Dur) * Max_Length; 

Operation Enqueue(alters E: Entry; updates Q: Queue); 
ensures Entry.Is_Init(E);
duration QSCE;

Operation Dequeue(replaces R: Entry; updates Q: Queue); 
duration QSCD + Entry.I_Dur + Entry.F_Dur(#R) ; 

                …  … 

Figure 7. Part of a duration profile for bounded Queue imple-
mentations.

1314 FORMAL SPECIFICATION



easy to understand and use. Currently, the available
BISLs are Larch/CLU for CLU, Larch/Ada for Ada,
LCL for ANSI C, LM3 for Modula-3, Larch/Smalltalk
for Smalltalk-80, Larch/Cþþ for Cþþ, and Larch/ML
for Standard ML. Different features of BISL, such as
abstraction, side effects, exception handling, name visi-
bility, concurrency, and iterators, depend on how these
features are handled by the specific programming lan-
guage. The LSL checker and LP (Larch Prover) can be
used to check Larch statements. First, the LSL checker
is used to check the consistency of LSL specification
statements and to help generate proof obligation state-
ments. LP uses proof by induction or contradiction to
show the correctness of newly created statements. LP is
an interactive proof assistant that supports all of the
Larch languages.

JML is a BISL tailored for Java (9,26). In JML, speci-
fication statements are written just before the header of the
method using the Design-by-Contract (DBC) approach.
JML specifications are written as special comments to
the source file. Hence, it is easier for the programmer to
understand than special-purpose mathematical notations.
JML can be used with DBC, runtime assertion checking,
static checking, specification browsing, and formal verifi-
cation using theorem prover tools. In JML, inheritance
relationships must adhere to the notion of behavioral sub-
typing: The specifications of the methods in a class must
conform to the specifications of the methods they override
in the parent class, which ensures that an object of a given
type can always be substituted for an object of the parent
type without violating the contract described by the speci-
fication (27). The Spec# language is similar in spirit to JML
but is designed to be used with C# (28).

Other well-known specification languages include
Euclid, Eiffel, ANNA, and SPARK. The Euclid program-
ming language, based on Pascal, was developed for system
programming and program verification (29–31). Eiffel is
designed to support lightweight specifications (10). It was
one of the first languages to facilitate run-time assertion
checking. ANNA, a language extension of Ada, was

designed to develop annotations so that formal methods
of specification and documentation can be applied to Ada
programs (32). SPARK is also based on Ada and is designed
to be used for safety-critical applications (33).

ACKNOWLEDGMENTS

This work is funded in part from grants CCR-0113181,
DMS-0701187, and DUE-0633506 from the U.S. National
Science Foundation and by a grant from NASA through the
SC Space Grant Consortium. We thank the referees, Bill
Ogden, and Bruce Weide for their comments on various
aspects of this article.

BIBLIOGRAPHY

1. M. Sitaraman and B. W. Weide, eds., Special Feature: Compo-
nent-Based Software Using RESOLVE, ACM SIGSOFT Soft-
ware Engineering Notes 19, No. 4, 1994, pp. 21–67.

2. M. Sitaraman, S. Atkinson, G. Kulczyski, B. W. Weide, T. J.
Long, P. Bucci, W. Heym, S. Pike, J. Hollingsworth, Reasoning
about software-component behavior, Proceedings of the Sixth
International Conference on Software Reuse, Springer Verlag,
Vienna, Austria, 2000, pp. 266–283.

3. J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet,
J. M. Wing, Larch: Languages and Tools for Formal Specifica-
tion, Berlin: Springer-Verlag, 1993.

4. C. B. Jones, Systematic Software Development using VDM, 2nd
ed. Englewood Cliffs, NJ: Prentice Hall International, 1990.

5. J. M. Spivey, The Z Notation: A Reference Manual, Englewood
Cliffs, NJ: Prentice-Hall, 1992. Available: http://spivey.
oriel.ox.ac.uk/mike/zrm/index.html.

6. A. Hall, Seven myths of formal methods, IEEE Software, Vol.
7(5): 11–19, 1990.

7. K. R. M. Leino, G. Nelson, J. B. Saxe, ESC/Java User’s
Manual. Technical Note 2000–002, Compaq Systems Research
Center, 2000.

8. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, D. R. Cok, How
the design of JML accommodates both runtime assertion

      Queue (E, C): trait 
            introduces 
                  empty: → C 
                  enqueue: E, C → C 
                  front: C → E 
                  dequeue: C → C 
                  length: C → Int 
                  isEmpty: C → Bool 
                  … 
            asserts 
                  C generated by empty, enqueue 
                  ∀ q: C, e: E 
                        … 
                        front(enqueue(e, q)) == if q = empty then e else front(q); 
                        dequeue(enqueue(e, q)) == 

                        length(empty) == 0; 
                        length(enqueue(e, q)) == length(q) + 1; 
                        isEmpty(q) == q = empty; 
                  … 

if q = empty then empty else enqueue(e, dequeue(q)); 

Figure 8. A portion of an LSL specification for a queue.

FORMAL SPECIFICATION 1315



checking and formal verification, Science of Computer Pro-
gramming, Vol. 55. New York: Elsevier, 2005, pp. 185–205.

9. G. T. Leavens, A. L. Baker, C. Ruby, Preliminary design of
JML: a behavioral interface specification language for java,
ACM SIGSOFT Software Engineering Notes, 31 (3): 1–38,
2006.

10. B. Meyer, Reusable Software: The Base Object-Oriented Com-
ponent Libraries, Englewood Cliffs, NJ: Prentice Hall, 1994.

11. S. Owre, N. Shankar, J. Rushby, PVS: A prototype verification
system, Proceedings CADE 11, Saratoga Springs, NY,
1992.

12. T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, LNCS, Vol. 2283. New York:
Springer 2002.

13. B. W. Weide, W. F. Ogden, S. H. Zweben, Reusable software
components, Advances in Computers, Vol. 33, M. Yovits (ed).
New York: Academic Press, 1991, pp. 1–65.

14. D. E. Harms, B. W. Weide, Copying and swapping: influences
on the design of reusable software components, IEEE Trans.
Software Engineering, Vol. 17(5): 424–435, 1991.

15. A. Borgida, J. Mylopoulos, R. Reiter, ‘‘. . .And nothing else
changes’’: the frame problem in procedure specifications, Pro-
ceedings of the 15th International Conference on Software
Engineering, Baltimore, MD, 1993, pp. 303–314.

16. J. Krone, W. F. Ogden, M. Sitaraman, Performance analysis
based upon complete profiles, In Proceedings SAVCBS 2006,
Portland, OR, 2006.

17. M. Sitaraman, T. J. Long, T. J. , B. W. Weide, E. J. Harner, L.
Wang, A formal approach to component-based software engi-
neering: education and evaluation, Proceedings of the Twenty
Third International Conference on Software Engineering,
IEEE, 2001, pp. 601–609.

18. B. W. Weide, T. J. Long, Software Component Engineering
Course Sequence Home Page. Available: http://www.cse.ohio-
state.edu/sce/now/.

19. J. Hollingsworth, L. Blankenship, B. Weide, Experience report:
using RESOLVE/C++ for commercial software, Eighth Inter-
national Symposium on the Foundations of Software Engineer-
ing, ACM SIGSOFT, 2000, pp. 11–19.

20. J. Bowen, Formal Specification and Documentation Using Z: A
Case Study Approach, International Thomson Computer
Press, 1996, Revised 2003.

21. A. A. Koptelov, A. K. Petrenko, VDM vs. programming
language extensions or their integration, Proceedings
of the First International Overture Workshop, Newcastle,
2005.

22. VDM Specification Language, 2007. Available: http://en.wiki-
pedia.org/wiki/VDM_specification_language.

23. M. Nielsen, C. George, The RAISE language, method, and
tools, Proceedings of the 2nd VDM-Europe Symposium
on VDM—The Way Ahead, Dublin Ireland, 1988, pp.
376 –405.

24. B. Dandanell, Rigorous development using RAISE, ACM SIG-
SOFT Software Engineering Notes, Proceedings of the
Conference on Software for Critical Systems SIGSOFT ’91,
16(5), 29–43, 1991.

25. J. M. Wing, Writing Larch interface language specifications,
ACM Transactions on Programming Languages and Systems,
9(1): 1–24, 1987.

26. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens,
K. R. M. Leino, E. Poll. An overview of JML tools and applica-
tions, International Journal on Software Tools for Technology
Transfer, 7(3): 212–232, 2005.

27. B. H. Liskov, J. M. Wing, A behavioral notion of subtyping,
ACM Transactions on Programming Languages and Systems,
16(6): 1811–1841, 1994.

28. M. Barnett, K. R. M. Leino, W. Schulte, The Spec# program-
ming system: an overview, CASSIS 2004, LNCS Vol. 3362,
Springer, 2004.

29. R. C. Holt, D. B. Wortman, J. R. Cordy, D. R. Crowe, The Euclid
language: a progress report, ACM-CSC-ER Proceedings of the
1978 Annual Conference, December, 1978, pp. 111–115.

30. G. J. Popek, J. J. Horning, B. W. Lampson, J. G. Mitchell, R. L.
London, Notes on the design of Euclid, Proceedings of an ACM
Conference on Language Design for Reliable Software, March,
1977, pp. 11–18.

31. D. B. Wortman, J. R. Cordy, Early experiences with Euclid,
Proceedings of ICSE-5 IEEE Conference on Software Engineer-
ing, San Diego, CA, 1981, pp. 27–32.

32. D. Luckham, Programming with Specifications: An Introduc-
tion to ANNA, a Language for Specifying Ada Programs, LNCS
260, Berlin: Springer-Verlag, 1990.

33. B. Carre?, J. Garnsworthy, SPARK—an annotated Ada
subset for safety-critical programming, Proceedings of
the Conference on TRI-ADA ’90 TRI-Ada ’90, 1990, pp.
392–402.

GREGORY KULCZYCKI

Virginia Polytechnic Institute
Blacksburg, Virginia
MURALI SITARAMAN

KIMBERLY ROCHE

Clemson University
Clemson, South Carolina
NIGHAT YASMIN

The University of Mississippi
University, Mississippi

1316 FORMAL SPECIFICATION



L

LAMBDA-CALCULUS

INTRODUCTION

The l-calculus is an abstract language and system of rules
for higher order programming, in the sense that in this
calculus one can represent programs that modify other
programs, as well as programs that operate on numbers.

It was invented in 1928 by an American logician, Alonzo
Church, as part of a logical system in which he hoped to
describe the foundations of mathematics. This larger sys-
tem turned out to be inconsistent and was abandoned, but
the l-calculus at its core survived, and Church’s group
found that, using it, they could give a precise definition
of what computability meant. From this definition, they
discovered the first rigorous proof that certain important
problems could never be solved by computer. (It was pub-
lished in 1936, see Ref. 1.)

But until the 1970s, l-calculus had very little use in
actual computing, as most practical programming lan-
guages were only first order.

Since then, however, many higher-order programming
languages have been developed. They incorporate either a
form of l-calculus or something equivalent to it, and earlier
studies of l-calculus have helped to show what these lan-
guages can do. Roughly speaking, techniques can be tried
out and developed on l-calculus, and then applied to the
more complex practical languages.

To give the reader the flavor of l-calculus as quickly as
possible, we shall describe here its simplest, ‘‘pure,’’ form,
but with the warning that most applications use more
complicated variants.

Additional information on l-calculus is available in
many websites and books on computing, as well as in the
introductory account by Hindley and Seldin [2] and the
comprehensive book by Barendregt [3].

SYNTAX OF l-CALCULUS

An arithmetical expression such as ‘‘x2 þ 3’’ defines a func-
tion of x; Church denoted this function by

lx � x2 þ 3

Associated with this notation is a rule: for all numbers n,

ðlx � x2 þ 3ÞðnÞ ¼ n2 þ 3

Church’s notation is useful in dealing with expressions that
contain more than one variable: For example, the expres-
sion ‘‘xþ 2y’’ can be viewed as defining either a function of x,
with y held constant, or a function of y, with x held constant.
In the l-notation, these two functions are easily distin-
guished; they are called, respectively,

lx � xþ 2y; ly � xþ 2y

We have

ðlx � xþ 2yÞðnÞ ¼ nþ 2y
ðly � xþ 2yÞðnÞ ¼ xþ 2n

Church’s l-notation led to a formal language, whose expres-
sions are called l-terms and are intended to denote opera-
tors or programs or mathematical functions.

Definition 1 (l-terms). (Ref. 2, Def. 1.1.) Assume given an
infinite sequence of variables x, y, z, x1, y1, z1, x2, y2, z2, . . .
(to denote arbitrary programs or operators). Then l-terms
are constructed as follows:

(a) each variable is a l- term;

(b) from any l- terms M and N, construct a new l-term
(M N) (to denote the application of operator M to
input N);

(c) from any variable x and l-term M, construct a new
l-term ðl x �MÞ (to denote the function of x that M
defines).

Notation 2. A term (MN) is called an application and
ðlx �MÞ an abstraction. (In mathematics the application of
M to N is usually called ‘‘M(N)’’; the reason it is called
‘‘(MN)’’ in l-calculus is merely a historical accident.) To
denote arbitrary l-terms, we shall use capital letters. We
shall write

M�N

to mean that M is the same term as N. Parentheses and
repeated ls will often be omitted in such a way that, for
example,

M N PQ�ðððM NÞPÞQÞ;
lxyz �MN�ðlx � ðly � ðlz � ðMNÞÞÞÞ

In the rest of this section, let x, y, z, u, v be any distinct
variables.

Examples of l-terms:

(a) ðlx � ðxyÞÞ,
(b) ððly � yÞðlx � ðxyÞÞÞ,
(c) ðxðlx � ðlx � xÞÞÞ
(d) ðlx � ðyzÞÞ

In (c) there are two occurrences of lx in one term; this is
allowed by the definition of ‘‘l-term,’’ although discouraged
in practice. In (d), there is a term of form ðlx �MÞ such that x
does not occur in M; this is allowed, and such terms denote
constant-functions.

To show how l-terms are used as programs, some more
apparatus is needed. We shall just give a brief sketch.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Definition 3 (Free and bound variables). (Ref. 2, Def. 1.11.)
Any occurrence of a variable x in a term lx �M is said to be
bound by the lx. The x in lx is said to be binding and bound.
Any nonbound occurrence in a term is said to be free. The set
of all variables that occur free in a term P is called

FVðPÞ

A combinator or closed term is a term in which no variable
occurs free.

Warning. When free or bound variables are mentioned,
it is really occurrences of variables that are meant. A
variable can have bound occurrences and free occurrences
in the same term. For example, consider the term

P�ðly � xÞðly � yxðlx � y y xÞÞ

In this term, the leftmost v is bound and binding, the other v
is free, the leftmost two x’s are free, the other two x’s are
bound, and all three y’s are bound. Also

FVðPÞ ¼ fy; xg

Definition 4 (Substitution). (Ref. 2, Def. 1.12.) For any
terms M, N and any variable x, define [N/x] M to be the
result of substituting N for each free occurrence of x in M,
and changing any ly’s in M to prevent variables free in N
from becoming bound in [N/x] M. In detail:

(a) ½N=x�x�N;

(b) ½N=x�y� y ðassuming yX x Þ;
(c) ½N=x�ðPQÞ� ½N=x�P½N=x�Q;

(d) ½N=x�ðlx � PÞ� lx � P;

(e) ½N=x�ðly � PÞ� ly � P if x =2FVðPÞ ;
(f) ½N=x�ðly � PÞ� ly � ½N=x�P if x2FVðPÞand y =2FVðNÞ;
(g) ½N=x�ðly �PÞ�lz � ½N=x�½z=y�P ifx2FVðPÞand y2FVðNÞ;

(Here z is a variable chosen to be =2 FVðNPÞ.)

Example. Let M� ly � yx.

If N� xy : ½ðxyÞ=x�ðly � yxÞ � ly � ½ðxyÞ=x�ðyxÞ by ðfÞ
� ly � yðxyÞ by ðaÞ � ðcÞ

If N� xy : ½ðxyÞ=x�ðly � yxÞ � lz � ½ðxyÞ=x�ðzxÞ by ðgÞ
� lz � zðxyÞ by ðaÞ � ðcÞ

Remark. If (g) were omitted from the definition of sub-
stitution, then we would have the undesirable fact that,
although ly � x and ly � x both denote the same operator (the
constant-operator whose output is always x), they would
come to denote different operators when v was substituted
for x:

½y=x�ðly � xÞ would be ly � y; ½y=x�ðly � xÞ would be ly � y

Informally speaking, terms that differ only by changing
bound variables have the same meaning. For example,
lx � x and ly � y both denote the identity-operator. The
process of changing bound variables is defined formally
as follows.

Definition 5 (Changing bound variables, a-conversion).
(Ref. 2, Def. 1.17.) If y =2FVðMÞ, we say

ðaÞ lx �M� a l y � ½y=x�M

If P changes to Q by a finite (perhaps empty) series of
replacements of form (a), we say

P� aQ

The relation � a can be proved symmetric (i.e. if P� a Q
then Q� a P) cf. Ref. 2, Lemma 1.19.

The l-calculus analog of computation is defined as
follows.

Definition 6 (b-contraction, b-reduction). (cf. Ref. 2, Def.
1.24.) A term of form

ðlx �MÞN

is called a b-redex. (It represents an operator applied to an
input.) If it occurs in a term P, and we replace one occur-
rence of it by

½N=x�M

then we say that we have contracted that occurrence of it. If
this contraction changes P to a term P0, then we say

P! bP0

A finite (perhaps empty) or infinite series of contractions
and changes of bound variables is called a b-reduction. If it
is finite and changes P to Q, then we say that P b-reduces to
Q or

P H bQ

Example. Here are some reductions; the redex con-
tracted at each step is underlined. In (c) the reduction is
infinite, even though the term never changes.

ðaÞ ðlx � ððly � xyÞuÞÞðly � yÞ ! b ðly � ðly � yÞyÞu
! b ðly � yÞu
! b u:

ðbÞ ðlx � ððly � xyÞuÞÞðly � yÞ ! b ðl x � xuÞðly � yÞ
! b ðly � yÞu
! b u:

ðcÞ ðlx � xxÞðlx � xxÞ ! b ðlx � xxÞðlx � xxÞ
! b � � � :

2 LAMBDA-CALCULUS



Definition 7 (b-normal form). A term N that contains no
b-redexes is called a b-normal form or b-nf. If M H b N, then
N is called a b-normal form of M.

Not every term has a b-normal form; in fact, Example (c)
above shows that

ðlx � xxÞðlx � xxÞ

has none. Examples (a) and (b) above raise the question of
whether a term can have more than one b-normal form. In
fact it cannot, except for changes of bound variables. This
result is a consequence of the following general theorem.

Theorem 8 (Church-Rosser theorem for b-reduction). (cf.
Ref. 2, Thm. 1.32.) If P H b M and P H b N (see Fig. 1), then a
l-term T exists such that

M H b T; N H bT

The Church-Rosser theorem implies that no term P can
have more than one b-normal form, as follows. Suppose P
could be reduced to two normal forms N1 and N2. Then by
the theorem, N1 and N2 could both be reduced to a term T.
But N1 and N2 contain no redexes, because they are normal
forms. Hence, their reductions to T must have no contrac-
tions, only perhaps changes of bound variables. Thus N1, N2

and T must be identical except for bound variables.
In Definition 7, N is often called the b-normal form of M.

Note 9 (Some combinators). Here are some of the most
commonly used combinators, with their standard names

and reduction properties. {In this table, ‘‘X ’’, ‘‘Y ’’, ‘‘F ’’, and
‘‘G’’ denote arbitrary l-terms.}

Note 10 ( Functions of many variables ). A l-term F
represents an operator that accepts an input X and pro-
duces an output that we call (FX). But in mathematics,
some functions such as addition need two inputs before
they can produce an output. No such functions are given in
l-calculus. However, mathematical many-place functions
can be represented indirectly by one-input operators if we
choose these operators to be higher order (i.e., operators
whose outputs are other operators). For example, let f be a
2-place function that accepts numbers m, n as inputs and
produces an output-number f ðm;nÞ. Define a correspond-
ing one-input operator f � as follows. First, to each input-
value m there corresponds a one-input operator fm such
that, in standard mathematical notation,

fmðnÞ ¼ f ðm;nÞ for all n

Then define f � by setting

f � ðmÞ ¼ fm for all m

This gives, for all m, n,

ð f �ðmÞÞðnÞ ¼ fmðnÞ ¼ f ðm;nÞ

In the computing community, the act of representing f by
f� is often called currying, after Haskell Curry, who was
one of the contributors to l-calculus. (Although Curry
never claimed it to be his own idea.)

Note 11 (Computable functions). (cf. Ref. 2, Ch. 4.) If the
combinators 0; 1; 2; . . . ;n; . . . in Note 9 are taken to repre-
sent the numbers 0, 1, 2, . . ., n, . . ., then certain other
combinators represent mathematical functions or opera-
tors. For example, let

Add � luuxy � ux(uxy) Mult � luux � uðux)

Then, it can be shown that, for all natural numbers m
and n,

Add m n H b mþ n Mult m n H b m� n

Figure 1. Church-Rosser theorem.

I� lx � x ðidentity combinatorÞ: IX H b X
B� lxyz � xðyzÞ ðcompositionÞ, BFGX H b FðGXÞ
C� lxyz � xzy ðcommutatorÞ, CFXY H b FYX
K� lxy � x ðconstant-formingÞ, KXY H b X
S� lxyz � xzðyzÞ ðsubstitution &compositionÞ, SFGX H b FXðGXÞ
W� lxy � xyy ðdoublingÞ, WFX H b FXX
Y�ðlux � xðuuxÞÞðlux � xðuuxÞÞ ðfixed-point combinator; cf:Ref:2 x3BÞ, YF H b FðYFÞ
0� lxy � y ðto represent zeroÞ, 0 FX H b X
n� lxy � xny ðto represent number nÞ, n FX H b FnX

where

FnX� FðFð. . . ðF XÞ . . .ÞÞ with n ‘‘F’’s

LAMBDA-CALCULUS 3



In general, a k-argument function f of natural numbers is
said to be represented or l-defined by a l-term M when

Mn1 . . . nk H b f ðn1; . . . ;nkÞ

for all natural numbers n1, . . ., nk. It can be proved that
every function that is computable (by any of the standard
idealized computers in the literature, such as a Turing
machine) is l-definable.

In this sense, all computable functions can be pro-
grammed in l-calculus.

TYPES IN l-CALCULUS

Types are expressions that are intended to denote sets:
When a program or function or operator f changes members
of a set denoted by s to members of a set denoted by t, we
may say that f has the typeðs! tÞ. Types were introduced
into l-calculus by Church in Ref. 4; he assigned to every
variable a unique type and constructed composite typed
terms by two rules, which may be written in modern nota-
tion as follows:

ðiÞ from typed termsMðs!tÞ andNs ; construct ðMðs!tÞNsÞt
ðiiÞ fromavariablexs and termMt; construct ðlxs �MtÞs!t

� �

ð1Þ

Systems of l-calculus in which types are part of a term’s
construction in this way are called Church-style systems. In
such a system, for example, the expression ðlx � xÞ is not a
term; but, for every type t, there is a variable vt from which
we can build a term

ðlyt � ytÞt!t

Roughly speaking, for every definable set a Church-style
system has an identity-operator on that set, but it does not
have a ‘‘universal’’ identity operator.

In contrast, in a Curry-style system, the l-terms are
constructed without types, and types are assigned to terms
by formal rules (as in Definition 13 below). For example, in
such a system, ðlx � xÞ is a term and it receives an infinite
number of types:

a!a; b!b; ða! bÞ! ða! bÞ etc: ð2Þ

Also in the Curry style, types may contain parameter-
symbols called type-variables; if a is a type-variable, then
all the types in Equation (2) can be obtained from the single
type a!a by substitution; a!a is called a principal type of
ðlx � xÞ.

Many different type-systems are based on many vari-
eties of l-calculus, and some of these are intermediate
between these two styles.

To show one type-system in more detail, we shall here
describe a simple Curry-style system, which is designed for
use with functions of natural numbers {0, 1, 2, 3, . . .}. It is a
variant of system TA!l in Ref. 2, Ch. 12 and of system l! -
Curry in Ref. 5, §3.

Definition 12 (Simple types). (cf. Ref. 2, Def. 11.1.) Let N
be a symbol to denote the set of all natural numbers; we
shall call N a type-constant. Let a, b, c, . . . be a sequence of
other symbols; we shall call them type-variables. Then,
types are expressions constructed from type-constants
and type-variables by this rule:

from any types s; t; construct ðs! tÞ ð3Þ

Examples. The following are types:

a; N; ða! bÞ; ða!NÞ; ððN!aÞ! ðb!NÞÞ

Notation. Greek letters r, s, t, will denote arbitrary
types. Parentheses may be omitted from types in such a
way that, for example,

r! s! t � ðr!ðs! tÞÞ

Definition 13 (System TA!l ). (cf. Ref. 2, Def. 12.6.) A type-
assignment formula or TA-formula is any expression M: t,
where M is a l-term (as in Definition 1), and t is a type.

TA!l has the following three rules. Roughly speaking,
each rule means that from the expressions above the line,
one may deduce the expression below. Deductions are built
as trees, with one formula at the bottom and assumptions at
the tops of branches. (See Ref. 2, §§12.1–12.6 for details;
TA!l is very like Gentzen’s ‘‘Natural Deduction’’ systems in
logic, cf. Ref. 6.)

ð! eÞ; the! -elimination rule :
M : s! t N : s

ðMNÞ : t;

ð! iÞ; the! -introduction rule :

½x : s�
..
.

M : t
ðlx �MÞ : ðs! tÞ;

ð� aÞ; rule of bound variables :
M : t M� a N

N : t:

Explanation. Rule (! i) means that if we already have
made a deduction of M: t from x: s and perhaps a set G of
other assumptions not containing x, then we can deduce,
from G alone, the statement ðlx �MÞ : ðs! tÞ. Also, after we
use rule (! i), we enclose the assumption x : s in brackets
wherever it occurs in the deduction-tree above M: t, to show
that it is now no longer regarded as an assumption. It is now
called a cancelled or discharged assumption (Cf. Ref. 2,
§12.1.). So a deduction grows in two ways, by adding new
conclusions at the bottom, and by adding brackets to
assumptions. A deduction with all assumptions discharged
is called a proof.

Example. Let S� lxyz � xzðyzÞ and let r, s, t be any types.
Fig. 2 shows a proof of

S : ðr!ðs! tÞÞ! ððr! sÞ! ðr! tÞÞ

Note that each assumption is undischarged at the start of
the deduction and then becomes discharged later.

4 LAMBDA-CALCULUS



Definition 14. If x1,. . ., xn are distinct variables and there
is a deduction of M: t with all assumptions discharged
except those in the set {x1: r1, . . ., xn: rn}, then we say the
formula M: t has been deduced from {x1: r1, . . ., xn: rn},

or
x1 : r1; . . . ; xn : rn ‘M : t

In the special case that n¼ 0 (i.e. that there exists a proof of
M: t), we say

‘M : t

For additional reading on l-calculus with types we recom-
mend Ref. 5 for a survey and comparison of several systems,
Ref. 2 Chs. 10–13 for introductions to some of these, or Ref. 7
for a comprehensive and computer-oriented textbook.

l-CALCULUS IN COMPUTER SCIENCE

The l-calculus can be considered the smallest commonly
used universal programming language. Quoting Peter
Landin [8]: ‘‘Whatever the next 700 programming lan-
guages turn out to be, they will surely be variants and
extensions of l-calculus.’’

In this section, we will survey more interesting devel-
opments of computer science in which the l-calculus has
played a crucial role. Our main source for the historical
information will be Cardone and Hindley [9].

Computability Theory

As we mentioned in Note 11, one can represent numbers
and computable functions on numbers by l-terms. We gave
l-terms to represent two standard mathematical functions,
but we did not show how to l-define the predecessor func-
tion, which is much more tricky. Indeed, when Kleene, who
was a student of Church, showed to his teacher a l-defini-
tion he had constructed for the predecessor function,
Church conjectured that all intuitively computable
functions must be l-definable (Ref.10, P.186). This intui-
tion of Church led to what came to be known as ‘‘Church’s
Thesis’’:

l-definability exactly captures the informal notion of effective
computability.

In fact, Kleene analyzed the notion of l-definability and
showed that every recursive function can be coded
(by means of ‘‘normal forms’’) into the l-calculus [11, 12].
Church related the notion of effective computability to that
of recursive function and hence, to l-definability. He proved

at the same time that the question of the equivalence of two
l-terms (not in normal-form) is undecidable [1]. Immedi-
ately after the work of Church but independently of it,
Turing introduced his machine approach to computation
and proved the undecidability of the halting problem [13].
Then, learning of Church’s work, he proved the equivalence
between his notion of computability and that of l-definable
function [14].

Functional Programming

At the end of the 1950s, John McCarthy at Stanford
University proposed the first functional language, LISP
(LISt Processing) [15]. He wrote: ‘‘To use functions as
arguments, one needs a notation for functions, and it
seemed natural to use the l-notation of Church.’’ LISP
allows the reduction of a b-redex (see Definition 6)

ðlx �MÞN

only if N is a value (i.e., either a l-abstraction or a constant).
Usually such a b-redex is called a by-redex [16]. Moreover,
LISP does not allow reduction under a l-abstraction (as we
did in Example (b) after Definition 6); and substitution in
LISP captures free variables, that is, clauses (f)-(g) of
Definition 4 are replaced by:

ðf0Þ ½N=x�ðly � PÞ� ly � ½N=x�P

where any occurrences of y that may be free in N (l.h.s.) are
captured by the l-abstraction in the r.h.s. This difference is
usually expressed by saying that the l-calculus uses static
binding, whereas LISP uses dynamic binding. New LISP
dialects (Common LISP [17], SCHEME [18], etc.) use static
binding. LISP today is a family of computer programming
languages used in artificial intelligence, Web development,
finance, computer science education, and a variety of other
applications.

Although LISP is an untyped language, ML (Meta-
Language) is a functional programming language based
on type assignment for l-calculus (cf. Definition 14): The
programmer can write untyped programs, but the compiler
will either infer types or return an error message [19, 20].
Several languages are in the ML family today: SML
(Standard ML) [21], and CAML (Categorical Abstract
Machine Language) [22]. ML’s applications include
language design and manipulation (compilers, analyzers,
theorem provers), bioinformatics, financial systems, a
genealogical database, and a peer-to-peer client/server
program.

Figure 2.

LAMBDA-CALCULUS 5



Evaluation Strategies

Examples (a) and (b) after Definition 6 showed that the
same l-term can be reduced in two different ways by
choosing different b-redexes to contract. The Church-
Rosser Theorem for b-reduction (Theorem 8) shows that
this choice does not influence the final result, if any. But it
can influence the number of contractions and hence affect
efficiency, because for example:

ðlx � xxÞððly � yÞðlz � zÞÞ ! b ðly � yÞðlz � zÞððly � yÞðlz � zÞÞ
! b ðlz � zÞððly � yÞðlz � zÞÞ
! b ðly � yÞðlz � zÞ
! b ðlz � zÞ

while

ðlx � xxÞððly � yÞðlz � zÞÞ ! b ðlx � xxÞðlz � zÞ
! b ðlz � zÞðlz � zÞ
! b ðlz � zÞ

Furthermore, the choice of b-redexes can lead either to a
terminating or to a diverging computation, as in:

ðlxy � yÞððlz � zzÞðlz � zzÞÞ ! b ðly � yÞ
ðlxy � yÞððlz � zzÞðlz � zzÞÞ ! b ðlxy � yÞððlz � zzÞðlz � zzÞÞ

! b ðlxy � yÞððlz � zzÞðlz � zzÞÞ
! b � � �

In the first reductions of both the above examples, we chose
always to contract the left-most outer-most b-redex,
whereas in the second reductions we chose always the
left-most outer-most by-redex.

An evaluation strategy is a systematic way of indicating
which b-redex or by-redex to contract in an arbitrary l-term.
The two strategies shown above are called, respectively,
call-by-name and call-by-value [16]. They correspond
respectively to call-by-name and call-by-value parameter
passing in procedures of programming languages. For
example, considering the procedure squareðxÞ ¼ x� x, the
evaluation of square(2þ 1) when x is a call-by-name
parameter gives (2þ 1)� (2þ 1), whereas when x is a call-
by-value parameter, it gives square(3).

An interesting strategy is that of lazy evaluation, which
increases efficiency by waiting until the last possible
moment to evaluate a term and by never reducing under
an abstraction. This strategy allows one also to deal with
infinite data structures. For example, one could construct a
function that creates the infinite list of Fibonacci numbers.
The calculation of the nth Fibonacci number would be
merely the extraction of that element from the infinite
list. The entire infinite list would never be calculated,
only the values that influence a particular calculation.
MIRANDA [23] and HASKELL [24] are examples of lazy
functional programming languages.

The study of evaluation strategies for l-calculus
strongly influenced the implementation of functional pro-
gramming languages.

Various other techniques have been developed to get
more efficient implementations; we just mention here
graph reduction [25]. In graph reduction, a l-term is repre-
sented as a directed graph without cycles:

and duplicated computation of shared subterms is avoided
by duplicating arrows in the graph. For example, the con-
traction

ðlx � yðxxÞÞððlz � zÞtÞ ! yðððlz � zÞtÞððlz � zÞtÞÞ

is written as

The efficiency of graph reduction is enhanced when a
functional program is translated to a fixed set of functions
without free variables (combinators) [26] or when a func-
tional program is translated to a set of functions without
free variables and the members of the set are selected to be
optimal for that program (super combinators) [27].

Thanks to these techniques and to the computational
power of modern computers, functional languages have
achieved a degree of practicality that was previously the
prerogative of imperative languages.

Semantics

ALGOL60 (ALGOrithmicLanguage) [28]wasanimperative
language designed in 1960 by the Working Group 2.1 of IFIP
(InternationalFederationforInformationProcessing).Peter
Landin translated the core of ALGOL 60 into l-calculus
extended with assignment [29]. This translation was the
first formal semantics of a real programming language.

Two key problems of programming language semantics
are:

� the semantics of looping constructs (while, until, . . .
statements), and of recursive procedures, requires the
solution of recursion equations. For example Euclid’s
algorithm is a recursive procedure:
gcdðn;mÞ ¼ if m ¼ 0 then n else gcdðm;n modulo mÞ

� (higher order) procedures can receive other procedures
as arguments, so the meaning of a procedure must be
both a function and an argument.

These problems arise also in giving the semantics of l-
calculus, because:

6 LAMBDA-CALCULUS



� recursion equations can be solved using the fixed-point
combinator (see Note 9 and [Ref. 2, Corollary 3.3.1]);

� each l-term can appear either in function or in argu-
ment position, so its meaning must be both a function
and an argument.

Dana Scott gave the first actual model of l-calculus in 1969.
He solved the domain equation

D ¼ ½D!D�

in the category of complete lattices and continuous func-
tions [30], and his model became the basis of the denota-
tional semantics of programming languages [31].

Introductions to models of l-calculus in general and
Scott’s model in particular can be found in Ref. 3, Chs. 5
and 18–20, and Ref. 2, Chs. 14–16 .

More recently, the l-calculus provided models of biolo-
gical phenomena [32]. Moreover the l-calculus of objects
(i.e., a l-calculus enriched with suitable operators) was
used to give the semantics of, and to study the types of,
object-oriented languages [33]. Last, we mention that a
linear and reversible l-calculus with constants can repre-
sent atomic quantum logic gates [34].

Proofs and Programs

It is easy to check that by erasing l-terms from the rules
of the system TA!l of Definition 13 and omitting type-
constants, we get the intuitionistic logic of implication.
This observation is at the basis of the Curry-Howard
isomorphism [35, 36], which involves the following corre-
spondences:

types , logical formulas

closed terms , proofs

b-reduction , cut elimination

Certified Programming is centered on the Curry-Howard
isomorphism. The key idea in fact is that the development of
a program to satisfy a specification is the same as finding a
proof of a logical formula. In this way, the program obtained
comes with its correctness proof. The typed l-calculus is
used as a programming language, a specification language
and a programming logic. For example, a constructive proof
of the sentence ‘‘for all pairs of integers n1, n2 there is an
integer m such that m ¼ n1 þ n2’’ is a program that com-
putes the sum of two integers. (Usually, the programs
obtained in this way are fairly large and, for efficiency,
methods of deleting noncomputational parts are currently
being studied.)

In the late 1960s, N. G. de Bruijn started the AUTO-
MATH (AUTOmated MATHematics) project [37], which
was based on a l-calculus with dependent types (types
which can contain terms). He designed a language for
expressing complex mathematical theories in such a way
that a computer can verify a proof’s correctness. The full
textbook ‘‘Grundlagen der Analysis’’ of E. Landau has been
translated into this language and verified by computer
(Part D of Ref. 38).

In Martin-Löf’s Constructive Type Theory [39–41] the
following identifications can be made:

� a is an element of the set t

� a is a proof of the proposition t

� a is an object with the type t

� a is a program with the specification t

� a is a solution to the problem t.

Martin-Löf developed his type theory (based on a
l-calculus with dependent types) between 1970 and 1980
as a foundational language for mathematics. He designed a
functional programming language that includes its own
logic.

The PRL (Proof/Program Refined Logic) Project [42]
focuses on implementing computational mathematics
and on providing logic-based tools that help to automate
programming. A proof of a logical formula is compiled into
an executable and certified code (essentially a l-term).
Nuprl (pronounced ‘‘new pearl’’) [43] is a family of proof
development systems for the incremental verification of
software systems’ properties. Martin-Löf ’s type theory
strongly influenced the development of Nuprl.

Coc (Calculus of Constructions) [44] combines depen-
dent types with universal quantification on type variables.
It is a higher-order typed l-calculus in which types are first-
class values: it allows one to define functions from, say,
integers to types and types to types, as well as functions
from integers to integers. Coc is the basis of Coq [45], which
is a proof assistant that

� handles mathematical assertions,

� mechanically checks proofs of these assertions,

� helps to find formal constructive proofs,

� extracts a certified program from the constructive
proof of its formal specification.

Coq is written in the OCAML (Objective Caml) [46] system,
which is the main implementation of the CAML language.

BIBLIOGRAPHY

1. A. Church, An unsolvable problem of elementary number
theory, Am. J. Mathemat., 58: 345–363, 1936.

2. J. R. Hindley and J. P. Seldin, Lambda-calculus and Combi-
nators, an Introduction. Cambridge, U.K.: Cambridge Univer-
sity Press, 2008.

3. H. P. Barendregt, The Lambda Calculus, its Syntax and
Semantics, 2nd ed. Amsterdam, The Netherlands: North-
Holland Co., 1984.

4. A. Church, A formulation of the simple theory of types,
J. Symbol. Logic, 5: 56–68, 1940.

5. H. P. Barendregt, Lambda calculi with types, in S. Abramsky,
D. Gabbay, and T. Maibaum (ed.), Handbook of Logic in
Computer Science, Volume 2, Background: Computational
Structures. Oxford, U.K.: Clarendon Press, 1992, pp. 117–
309.

6. D. Prawitz, Natural Deduction. Stockholm, Sweden: Almqvist
and Wiksell, 1965.

7. B. C. Pierce, Types and Programming Languages. Cambridge,
MA: M.I.T. Press, 2002.

LAMBDA-CALCULUS 7



8. P. J. Landin, The next 700 programming languages, Commu-
nicat. ACM, 9 (3): 157–166, 1966.

9. F. Cardone and J. R. Hindley, Lambda-calculus and combina-
tors in the 20th century, in D. Gabbay and J. Woods (eds.),
Handbook of the History of Logic, Volume 5: Logic from Russell
to Church. Amsterdam, Netherlands, Elsevier 2008, pp.
533–627.

10. H. P. Barendregt, The impact of the lambda calculus, Bull.
Symbol. Logic, 3 (2): 181–215, 1997.

11. S. C. Kleene, Lambda-definability and recursiveness, Duke
Mathemat. J., 2: 340–353, 1936.

12. S. C. Kleene, A theory of positive integers in formal logic, Am. J.
Mathemat., 57: 153–173, 219–244, 1935.

13. A. Turing, On computable numbers, with an application to the
Entscheidungsproblem, Proc. London Mathematical Society,
42 (2): 230–265, 1936. Correction: Proc. London Mathematical
Society. 43: 544–546, 1937.

14. A. Turing, Computability and l-definability, J. Symbol. Logic,
2: 153–163, 1937.

15. J. McCarthy, Recursive functions of symbolic expressions and
their computation by machine, Communicat. ACM, 3: 184–195,
1960.

16. G. D. Plotkin, Call-by-name, call-by-value and the l-calculus,
Theoret. Comp. Sci., 1 (2): 125–159, 1975.

17. P. Seibel, Practical Common Lisp. Berkeley, CA: A press, 2005.
Available: http://www.gigamonkeys.com/book/.

18. H. Abelson and G. J. Sussman, Structure and Interpretation of
Computer Programs, 2nd ed. Cambridge, MA: M.I.T. Press,
U.S.A., 1996.

19. J. R. Hindley, The principal type-scheme of an object in com-
binatory logic, Trans. Am. Mathemat. Soc., 146: 29–60, 1969.

20. R. Milner, A theory of type polymorphism in programming,
J. Comp. Sys. Scie., 17: 348–375, 1978.

21. L. C. Paulson, ML for the Working Programmer, 2nd ed.
Cambridge, U.K.: Cambridge University Press, 1996.

22. G. Cousineau and M. Mauny. The Functional Approach to
Programming. Cambridge, U.K.: Cambridge University Press,
1998.

23. D. A. Turner, Miranda—a non-strict functional language with
polymorphic types, in J. P. Jouannaud (ed.), Functional
Programming Languages and Computer Architectures, volume
201 of Lecture Notes in Computer Science. Berlin: Springer
Verlag, 1985, pp. 1–16.

24. S. L. Peyton Jones, Haskell 98 Language and Libraries: the
Revised Report. Cambridge, U.K.: Cambridge University
Press, 2003.

25. C. Wadsworth, Semantics and pragmatics of the Lambda-
calculus, PhD thesis, Oxford, U.K.: University of Oxford, Pro-
gramming Research Group, 1971.

26. D. Turner, A new implementation technique for applicative
languages, Software—Practice Exper., 9: 31–49, 1979.

27. R. J. M. Hughes, The design and implementation of program-
ming languages, PhD thesis, Oxford, U.K.: University of
Oxford, 1984.

28. J. Backus, F. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A.
J. Perlis, H. Rutishauser, K. Samuelson, B. Vauquois, J. H.
Wegstein, A. van Wijngaarden, and M. Woodger. Revised
Report on the Algorithmic Language Algol 60. IFIP, 1963.
Available: http://www.masswerk.at/algol60/report.htm.

29. P. J. Landin, A correspondence between ALGOL 60 and
Church’s lambda notation, Communicat. ACM, 8: 89–101,
158–165, 1965.

30. D. S. Scott, Continuous lattices, in F. W. Lawvere (ed.),
Toposes, Algebraic Geometry and Logic, volume 274 of
Lecture Notes in Mathematics, Berlin: Springer-Verlag,
1972, pp. 97–136.

31. J. E. Stoy, Denotational Semantics: The Scott-Strachey
Approach to Programming Language Semantics. Cambridge,
MA: M.I.T. Press, 1977.

32. W. Fontana, W. Günter, and L. W. Bass, Beyond digital nat-
uralism, Artif. Life, 1/2: 211–227, 1994.

33. M. Abadi and L. Cardelli, A Theory of Objects. Berlin: Springer-
Verlag, 1996.

34. A. van Tonder, A lambda calculus for quantum computation,
S. I. A. M. J. Comput., 3: 1109–1135, 2004.

35. H. Curry, Some properties of equality and implication in
combinatory logic, Ann. Mathemat., Series 2, 35: 849–860,
1934.

36. W. A. Howard, The formulae-as-types notion of construction,
in J. P. Seldin and J. R. Hindley (eds.), To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism.
New York: Academic Press, 1980, pp. 479–490.

37. N. G. de Bruijn, The mathematical language AUTOMATH,
its usage and some of its extensions, in M. Laudet, D. Lacombe,
and M. Schuetzenberger (eds.), Symposium on Automatic
Demonstration, volume 125 of Lecture Notes in Mathematics
Berlin: Springer Verlag, 1970, pp. 29–61. Also in Ref. 38.

38. R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, eds. Selected
Papers on Automath, volume 133 of Studies in Logic and the
Foundations of Mathematics. Amsterdam, The Netherlands:
North-Holland Co., 1994.

39. P. Martin-Löf, An intuitionistic theory of types: predicative
part, in H. E. Rose and J. C. Shepherdson, (eds.), Logic Collo-
quium 073, volume 80 of Studies in Logic and the Foundations
of Mathematics. Amsterdam, Netherlands: North-Holland Co.,
1975, pp. 73–118.

40. P. Martin-Löf, Constructive mathematics and computer
programming, in Logic, Methodology and Philosophy of
Science, VI. Amsterdam, Netherlands: North-Holland Co.,
1982, pp. 153–175.

41. P. Martin-Löf, Intuitionistic Type Theory. Studies in Proof
Theory. Napoli Italy: Bibliopolis, 1984.

42. R. L. Constable, Constructive mathematics and automatic
program writers, Proc. IFIP Congress, Amsterdam, Nether-
lands: North-Holland Co., 1971, pp. 229–233. Available: http://
www.cs.cornell.edu/Info/Projects/.

43. R. L. Constable et al., Implementing Mathematics with the
Nuprl Proof Development System. Englewood Cliffs, NJ: Pre-
ntice-Hall, 1986.

44. T. Coquand and G. Huet, The calculus of constructions,
Informat. Computat., 76: 95–120, 1988.

45. G. Huet, G. Kahn, and C. Paulin-Mohring, The Coq Proof
Assistant, A Tutorial. Paris, France: INRIA, 2006. Available:
http://coq.inria.fr/V8.1/tutorial.html.

46. X. Leroy, The Objective Caml system release 3.10. Paris,
France: INRIA, 2007. Available: http://caml.inria.fr/pub/docs/
manual-ocaml/index.html.

MARIANGIOLA DEZANI-CIANCAGLINI

University of Turin
Turin, Italy

J. ROGER HINDLEY

Swansea University
Swansea, Wales, United Kingdom

8 LAMBDA-CALCULUS



M

MIDDLEWARE FOR DISTRIBUTED SYSTEMS

MIDDLEWARE IS PART OF A BROAD SET OF INFORMATION
TECHNOLOGY TRENDS

Middleware represents the confluence of two key areas of
information technology (IT): distributed systems and
advanced software engineering. Techniques for developing
distributed systems focus on integrating many computing
devices to act as a coordinated computational resource.
Likewise, software engineering techniques for developing
component-based systems focus on reducing software com-
plexity by capturing successful patterns of interactions and
creating reusable frameworks for integrating these compo-
nents. Middleware is the area of specialization dealing
with providing environments for developing systems that
can be distributed effectively over a myriad of topologies,
computing devices, and communication networks. It aims
to provide developers of networked applications with the
necessary platforms and tools to (1) formalize and coordi-
nate how parts of applications are composed and how they
interoperate and (2) monitor, enable, and validate the
(re)configuration of resources to ensure appropriate appli-
cation end-to-end quality of service (QoS), even in the face of
failures or attacks.

During the past few decades, we have benefited from the
commoditization of hardware (such as CPUs and storage
devices), operating systems (such as UNIX and Windows),
and networking elements (such as IP routers). More
recently, the maturation of software engineering focused
programming languages (such as Java and Cþþ), operat-
ing environments (such as POSIX and Java Virtual
Machines), and enabling fundamental middleware based
on previous middleware R&D (such as CORBA, Enterprise
Java Beans, and SOAP/Web services) are helping to com-
moditize many common-off-the-shelf (COTS) software com-
ponents and architectural layers. The quality of COTS
software has generally lagged behind hardware, and
more facets of middleware are being conceived as the com-
plexity of application requirements increases, which has
yielded variations in maturity and capability across the
layers needed to build working systems. Nonetheless,
improvements in software frameworks (1), patterns (2,3),
component models (4), and development processes (5) have
encapsulated the knowledge that enables COTS software to
be developed, combined, and used in an increasing number
of real-world applications, such as e-commerce websites,
avionics mission computing, command and control sys-
tems, financial services, and integrated distributed sen-
sing, to name but a few.

Some notable successes in middleware for distributed
systems include:

� Distributed Object Computing (DOC) middleware
(6–10) (such as CORBA, Java RMI, SOAP), which pro-

vides a support base for objects that can be dispersed
throughout a network, with clients invoking opera-
tions on remote target objects to achieve application
goals. Much of the network-oriented code is tool gen-
erated using a form of interface definition language
and compiler.

� Component middleware (11) (such as Enterprise Java
Beans, the CORBA Component Model, and .NET),
which is a successor to DOC approaches, focused on
composing relatively autonomous, mixed functionality
software elements that can be distributed or collocated
throughout a wide range of networks and intercon-
nects, while extending the focus and tool support
toward lifecycle activities such as assembling, config-
uring, and deploying distributed applications.

� World Wide Web middleware standards (such as web
servers, HTTP protocols, and web services frame-
works), which enable easily connecting web browsers
with web pages that can be designed as portals to
powerful information systems.

� Grid computing (12) (such as Globus), which enables
scientists and high-performance computing research-
ers to collaborate on grand challenge problems, such as
global climate change modeling.

Within these middleware frameworks, a wide
variety of services are made available off-the-shelf to
simplify application development. Aggregations of sim-
ple, middleware-mediated interactions form the basis
of large-scale distributed systems.

MIDDLEWARE ADDRESSES KEY CHALLENGES
OF DEVELOPING DISTRIBUTED SYSTEMS

Middleware is an important class of technology that is
helping to decrease the cycle time, level of effort, and
complexity associated with developing high-quality, flex-
ible, and interoperable distributed systems. Increasingly,
these types of systems are developed using reusable soft-
ware (middleware) component services, rather than being
implemented entirely from scratch for each use. When
implemented properly, middleware can help to:

� Shield developers of distributed systems from low-
level, tedious, and error-prone platform details, such
as socket-level network programming.

� Amortize software lifecycle costs by leveraging pre-
vious development expertise and capturing implemen-
tations of key patterns in reusable frameworks, rather
than rebuilding them manually for each use.

� Provide a consistent set of higher-level network-
oriented abstractions that are much closer to applica-
tion and system requirements to simplify the develop-
ment of distributed systems.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



� Provide a wide array of developer-oriented ser-
vices, such as logging and security that have pro-
ven necessary to operate effectively in a networked
environment.

Middleware was invented in an attempt to help simplify
the software development of distributed computing sys-
tems, and bring those capabilities within the reach of
many more developers than the few experts at the time
who could master the complexities of these environments
(7). Complex system integration requirements were not
being met from either the application perspective, in which
it was too hard and not reusable, or the network or host
operating system perspectives, which were necessarily con-
cerned with providing the communication and endsystem
resource management layers, respectively.

Over the past decade, middleware has emerged as a set
of software service layers that help to solve the problems
specifically associated with heterogeneity and interoper-
ability. It has also contributed considerably to better envir-
onments for building distributed systems and managing
their decentralized resources securely and dependably.
Consequently, one of the major trends driving industry
involves moving toward a multi-layered architecture
(applications, middleware, network, and operating system
infrastructure) that is oriented around application compo-
sition from reusable components and away from the more
traditional architecture, where applications were devel-
oped directly atop the network and operating system
abstractions. This middleware-centric, multi-layered
architecture descends directly from the adoption of a net-
work-centric viewpoint brought about by the emergence of
the Internet and the componentization and commoditiza-
tion of hardware and software.

Successes with early, primitive middleware, such as
message passing and remote procedure calls, led to more
ambitious efforts and expansion of the scope of these mid-
dleware-oriented activities, so we now see a number of
distinct layers taking shape within the middleware itself,
as discussed in the following section.

MIDDLEWARE HAS A LAYERED STRUCTURE, JUST LIKE
NETWORKING PROTOCOLS

Just as networking protocol stacks are decomposed into
multiple layers, such as the physical, data-link, net-
work, and transport, so too are middleware abstractions
being decomposed into multiple layers, such as those
shown in Fig. 1.

Below, we describe each of these middleware layers and
outline some of the technologies in each layer that have
matured and found widespread use in COTS platforms and
products in recent years.

Host Infrastructure Middleware

Host infrastructure middleware leverages common pat-
terns (3) and best practices to encapsulate and enhance
native OS communication and concurrency mechanisms to
create reusable network programming components, such
as reactors, acceptor-connectors, monitor objects, active
objects, and component configurators (13,14). These com-
ponents abstract away the peculiarities of individual oper-
ating systems, and help eliminate many tedious, error-
prone, and nonportable aspects of developing and main-
taining networked applications via low-level OS program-
ming APIs, such as Sockets or POSIX pthreads. Widely
used examples of host infrastructure middleware include:

� The Sun Java Virtual Machine (JVM) (15), which
provides a platform-independent way of executing
code by abstracting the differences between operating
systems and CPU architectures. A JVM is responsible
for interpreting Java bytecode and for translating the
bytecode into an action or operating system call. It is
the JVM’s responsibility to encapsulate platform
details within the portable bytecode interface, so
that applications are shielded from disparate operat-
ing systems and CPU architectures on which Java
software runs.

Figure 1. Layers of middleware and surrounding
context.

2 MIDDLEWARE FOR DISTRIBUTED SYSTEMS



� .NET (16) is Microsoft’s platform for XML Web ser-
vices, which are designed to connect information,
devices, and people in a common, yet customizable
way. The common language runtime (CLR) is the
host infrastructure middleware foundation for Micro-
soft’s .NET services. The CLR is similar to Sun’s JVM
(i.e., it provides an execution environment that
manages running code and simplifies software devel-
opment via automatic memory management mechan-
isms, cross-language integration, interoperability
with existing code and systems, simplified deploy-
ment, and a security system).

� The Adaptive Communication Environment (ACE)
(13,14) is a highly portable toolkit written in Cþþ
that encapsulates native OS network programm-
ing capabilities, such as connection establishment,
event demultiplexing, interprocess communication,
(de)marshaling, concurrency, and synchronization.
The primary difference between ACE, JVMs, and
the .NET CLR is that ACE is always a compiled inter-
face rather than an interpreted bytecode interface,
which removes another level of indirection and helps
to optimize runtime performance.

Distribution Middleware

Distribution middleware defines higher-level distribu-
ted programming models whose reusable APIs and com-
ponents automate and extend the native OS network
programming capabilities encapsulated by host infrastruc-
ture middleware. Distribution middleware enables clients
to program distributed systems much like stand-alone
applications (i.e., by invoking operations on target objects
without hard-coding dependencies on their location, pro-
gramming language, OS platform, communication proto-
cols and interconnects, and hardware). At the heart of
distribution middleware are request brokers, such as:

� The OMG’s Common Object Request Broker Architec-
ture (CORBA) (6) and the CORBA Component Model
(CCM) (17), which are open standards for distribution
middleware that allows objects and components,
respectively, to interoperate across networks regard-
less of the language in which they were written or the
platform on which they are deployed. The OMG Real-
time CORBA (RT-CORBA) specification (18) extends
CORBA with features that allow real-time applica-
tions to reserve and manage CPU, memory, and net-
working resources.

� Sun’s Java Remote Method Invocation (RMI) (10),
which is distribution middleware that enables devel-
opers to create distributed Java-to-Java applications,
in which the methods of remote Java objects can be
invoked from other JVMs, possibly on different hosts.
RMI supports more sophisticated object interactions
by using object serialization to marshal and unmar-
shal parameters as well as whole objects. This flex-
ibility is made possible by Java’s virtual machine
architecture and is greatly simplified by using a single
language.

� Microsoft’s Distributed Component Object Model
(DCOM) (19), which is distribution middleware that
enables software components to communicate over a
network via remote component instantiation and
method invocations. Unlike CORBA and Java RMI,
which run on many OSs, DCOM is implemented pri-
marily on Windows.

� SOAP (20), which is an emerging distribution middle-
ware technology based on a lightweight and simple
XML-based protocol that allows applications to
exchange structured and typed information on the
Web. SOAP is designed to enable automated Web
services based on a shared and open Web infrastruc-
ture. SOAP applications can be written in a wide range
of programming languages, used in combination with a
variety of Internet protocols and formats (such as
HTTP, SMTP, and MIME), and can support a wide
range of applications from messaging systems to RPC.

Common Middleware Services

Common middleware services augment distribution mid-
dleware by defining higher-level domain-independent ser-
vices that allow application developers to concentrate on
programming business logic, without the need to write the
‘‘plumbing’’ code required to develop distributed systems by
using lower-level middleware directly. For example, appli-
cation developers no longer need to write code that handles
naming, transactional behavior, security, database connec-
tion, because common middleware service providers bundle
these tasks into reusable components. Whereas distribu-
tion middleware focuses largely on connecting the parts in
support of an object-oriented distributed programming
model, common middleware services focus on allocating,
scheduling, coordinating, and managing various resources
end-to-end throughout a distributed system using a com-
ponent programming and scripting model. Developers can
reuse these component services to manage global resources
and perform common distribution tasks that would other-
wise be implemented in an ad hoc manner within each
application. The form and content of these services will
continue to evolve as the requirements on the applications
being constructed expand. Examples of common middle-
ware services include:

� The OMG’s CORBA Common Object Services (COR-
BAservices) (21), which provide domain-independent
interfaces and capabilities that can be used by many
distributed systems. The OMG CORBAservices
specifications define a wide variety of these services,
including event notification, logging, multimedia
streaming, persistence, security, global time, real-
time scheduling, fault tolerance, concurrency con-
trol, and transactions.

� Sun’s Enterprise Java Beans (EJB) technology (22),
which allows developers to create n-tier distributed
systems by linking a number of pre-built software
services—called ‘‘beans’’—without having to write
much code from scratch. As EJB is built on top of
Java technology, EJB service components can only
be implemented using the Java language. The CCM

MIDDLEWARE FOR DISTRIBUTED SYSTEMS 3



(17) defines a superset of EJB capabilities that can be
implemented using all the programming languages
supported by CORBA.

� Microsoft’s .NET Web services (16), which comple-
ments the lower-level middleware .NET capabilities
and allows developers to package application logic into
components that are accessed using standard higher-
level Internet protocols above the transport layer, such
as HTTP. The .NET Web services combine aspects of
component-based development and Web technologies.
Like components, .NET Web services provide black-
box functionality that can be described and reused
without concern for how a service is implemented.
Unlike traditional component technologies, however,
.NET Web services are not accessed using the object
model-specific protocols defined by DCOM, Java RMI,
or CORBA. Instead, XML Web services are accessed
using Web protocols and data formats, such as HTTP
and XML, respectively.

Domain-Specific Middleware Services

Domain-specific middleware services are tailored to the
requirements of particular domains, such as telecom,
e-commerce, health care, process automation, or aerospace.
Unlike the other three middleware layers, which provide
broadly reusable ‘‘horizontal’’ mechanisms and services,
domain-specific middleware services are targeted at verti-
cal markets. From a COTS perspective, domain-specific
services are the least mature of the middleware layers
today. This immaturity is due partly to the historical
lack of distribution middleware and common middleware
service standards, which are needed to provide a stable
base upon which to create domain-specific services. As they
embody knowledge of a domain, however, domain-specific
middleware services have the most potential to increase
system quality and decrease the cycle time and effort
required to develop particular types of networked applica-
tions. Examples of domain-specific middleware services
include the following:

� The OMG has convened a number of Domain Task
Forces that concentrate on standardizing domain-
specific middleware services. These task forces vary
from the Electronic Commerce Domain Task Force,
whose charter is to define and promote the specifica-
tion of OMG distributed object technologies for the
development and use of electronic commerce and elec-
tronic market systems, to the Life Science Research
Domain Task Force, who do similar work in the area of
life science, maturing the OMG specifications to
improve the quality and utility of software and infor-
mation systems used in life sciences research. There
are also OMG Domain Task Forces for the health-care,
telecom, command and control, and process automa-
tion domains.

� The Siemens Medical Solutions Group has developed
syngo. (See http://www.syngo.com), which is both an
integrated collection of domain-specific middleware
services as well as an open and dynamically extensible
application server platform for medical imaging tasks

and applications, including ultrasound, mammogra-
phy, radiography, magnetic resonance, patient mon-
itoring systems, and life support systems. The syngo
middleware services allow health-care facilities to
integrate diagnostic imaging and other radiological,
cardiological, and hospital services via a black-box
application template framework based on advanced
patterns for communication, concurrency, and config-
uration for business and presentation logic supporting
a common look and feel throughout the medical
domain.

OVERARCHING BENEFITS OF MIDDLEWARE

The various layers of middleware described in the previous
section provide essential capabilities for developing and
deploying distributed systems. This section summarizes
the benefits of middleware over traditional non-middle-
ware approaches.

Growing Focus on Integration Rather than on Programming

This visible shift in focus is perhaps the major accomplish-
ment of currently deployed middleware. Middleware origi-
nated because the problems relating to integration and
construction by composing parts were not being met by
applications, which at best were customized for a single
use; networks, which were necessarily concerned with pro-
viding the communication layer; or host operating systems,
which were focused primarily on a single, self-contained
unit of resources. In contrast, middleware has a funda-
mental integration focus, which stems from incorporating
the perspectives of both OSs and programming model con-
cepts into organizing and controlling the composition of
separately developed components across host boundaries.
Every middleware technology has within it some type of
request broker functionality that initiates and manages
intercomponent interactions.

Distribution middleware, such as CORBA, Java RMI, or
SOAP, makes it easy and straightforward to connect sepa-
rate pieces of software together, largely independent of
their location, connectivity mechanism, and the technology
used to develop them. These capabilities allow middleware
to amortize software lifecycle efforts by leveraging pre-
vious development expertise and reifying implementa-
tions of key patterns into more encompassing reusable
frameworks and components. As middleware continues
to mature and incorporate additional needed services,
next-generation applications will increasingly be assembled
by modeling, integrating, and scripting domain-specific
and common service components, rather than by being
programmed from scratch or requiring significant custo-
mization or augmentation to off-the-shelf component
implementations.

Focus on End-to-End Support and Integration, Not Just
Individual Components

There is now widespread recognition that effective devel-
opment of large-scale distributed systems requires the use
of COTS infrastructure and service components. Moreover,

4 MIDDLEWARE FOR DISTRIBUTED SYSTEMS



the usability of the resulting products depends heavily on
the weaving of the properties of the whole as derived from
its parts. In its most useful forms, middleware provides the
end-to-end perspective extending across elements applic-
able to the network substrate, the platform OSs and system
services, the programming system in which they are devel-
oped, the applications themselves, and the middleware that
integrates all these elements together.

The Increased Viability of Open Systems Architectures and
Open-Source Availability

By their very nature, distributed systems developed by
composing separate components are more open than sys-
tems conceived and developed as monolithic entities. The
focus on interfaces for integrating and controlling the
component parts leads naturally to standard interfaces,
which, in turn, yields the potential for multiple choices for
component implementations and open engineering con-
cepts. Standards organizations, such as the OMG, The
Open Group, Grid Forum, and the W3C, have fostered
the cooperative efforts needed to bring together groups of
users and vendors to define domain-specific functionality
that overlays open integrating architectures, forming a
basis for industry-wide use of some software components.
Once a common, open structure exists, it becomes feasible
for a wide variety of participants to contribute to the off-
the-shelf availability of additional parts needed to con-
struct complete systems. As few companies today can afford
significant investments in internally funded R&D, it is
increasingly important for the IT industry to leverage
externally funded R&D sources, such as government
investment. In this context, standards-based middleware
serves as a common platform to help concentrate the results
of R&D efforts and ensure smooth transition conduits from
research groups into production systems.

For example, research conducted under the DARPA
Quorum, PCES, and ARMS programs focused heavily on
CORBA open systems middleware. These programs yielded
many results that transitioned into standardized service
definitions and implementations for CORBA’s real-time
(9,18), fault-tolerant (23,24), and components (17) specifi-
cations and productization efforts. In this case, focused
government R&D efforts leveraged their results by export-
ing them into, and combining them with, other on going
public and private activities that also used a standards-
based open middleware substrate. Before the viability of
common middleware platforms, these same results would
have been buried within a custom or proprietary system,
serving only as the existence proof, not as the basis for
incorporating into a larger whole.

Advanced Common Infrastructure Sustaining Continuous
Innovation

Middleware supporting component integration and reuse is
a key technology to help amortize software lifecycle costs by
leveraging previous development expertise (e.g., compo-
nent middleware helps to abstract commonly reused low-
level OS concurrency and networking details away into
higher-level, more easily used artifacts). Likewise, middle-
ware also focus efforts to improve software quality and

performance by combining aspects of a larger solution
together (e.g., component middleware combines fault tol-
erance for domain-specific elements with real-time QoS
properties).

When developers need not worry as much about low-
level details, they are freed to focus on more strategic,
larger scope, application-centric specializations concerns.
Ultimately, this higher-level focus will result in software-
intensive distributed system components that apply reu-
sable middleware to get smaller, faster, cheaper, and better
at a predictable pace, just as computing and networking
hardware do today, which, in turn, will enable the next
generation of better and cheaper approaches to what are
now carefully crafted custom solutions, which are often
inflexible and proprietary. The result will be a new tech-
nological paradigm where developers can leverage fre-
quently used common components, which come with
steady innovation cycles resulting from a multi-user basis,
in conjunction with custom domain-specific components,
which allow appropriate mixing of multi-user low cost and
custom development for competitive advantage.

KEY CHALLENGES AND OPPORTUNITIES FOR NEXT-
GENERATION MIDDLEWARE

This section presents some of the challenges and opportu-
nities for next-generation middleware. One such challenge
is in supporting new trends toward distributed ‘‘systems of
systems,’’ which include many interdependent levels, such
as network/bus interconnects, embedded local and geogra-
phically distant remote endsystems, and multiple layers of
common and domain-specific middleware. The desirable
properties of these systems of systems, both individually
and as a whole, include predictability, controllability, and
adaptability of operating characteristics with respect to
such features as time, quantity of information, accuracy,
confidence, and synchronization. All these issues become
highly volatile in systems of systems, because of the
dynamic interplay of the many interconnected parts. These
parts are often constructed in a similar way from smaller
parts.

Many COTS middleware platforms have traditionally
expected static connectivity, reliable communication chan-
nels, and relatively high bandwidth. Significant challenges
remain, however, to design, optimize, and apply middle-
ware for more flexible network environments, such as self-
organizing peer-to-peer (P2P) networks, mobile settings,
and highly resource-constrained sensor networks. For
example, hiding network topologies and other deployment
details from networked applications becomes harder (and
often undesirable) in wireless sensor networks because
applications and middleware often need to adapt accord-
ing to changes in location, connectivity, bandwidth, and
battery power. Concerted R&D efforts are therefore
essential to devise new middleware solutions and capabi-
lities that can fulfill the requirements of these emerging
network technologies and next-generation applications.

There are significant limitations today with regard to
building the types of large-scale complex distributed sys-
tems outlined above that have increasingly more stringent

MIDDLEWARE FOR DISTRIBUTED SYSTEMS 5



requirements and more volatile environments. We are also
discovering that more things need to be integrated over
conditions that more closely resemble a dynamically chan-
ging Internet than they do a stable backplane. One problem
is that the playing field is changing constantly, in terms of
both resources and expectations. We no longer have the
luxury of being able to design systems to perform highly
specific functions and then expect them to have life cycles of
20 years with minimal change. In fact, we more routinely
expect systems to behave differently under different con-
ditions and complain when they just as routinely do not.
These changes have raised a number of issues, such as end-
to-end-oriented adaptive QoS, and construction of systems
by composing off-the-shelf parts, many of which have pro-
mising solutions involving significant new middleware-
based capabilities and services.

To address the many competing design forces and run-
time QoS demands, a comprehensive methodology and
environment is required to dependably compose large,
complex, interoperable distributed systems from reusable
components. Moreover, the components themselves must
be sensitive to the environments in which they are pack-
aged. Ultimately, what is desired is to take components that
are built independently by different organizations at dif-
ferent times and assemble them to create a complete sys-
tem. In the longer run, this complete system becomes a
component embedded in still larger systems of systems.
Given the complexity of this undertaking, various tools and
techniques are needed to configure and reconfigure these
systems so they can adapt to a wider variety of situations.

An essential part of what is needed to build the type of
systems outlined above is the integration and extension of
ideas that have been found traditionally in network man-
agement, data management, distributed operating sys-
tems, and object-oriented programming languages. But
the goal for next-generation middleware is not simply to
build a better network or better security in isolation, but
rather to pull these capabilities together and deliver them
to applications in ways that enable them to realize this
model of adaptive behavior with tradeoffs between the
various QoS attributes. The payoff will be reusable mid-
dleware that significantly simplifies the building of appli-
cations for systems of systems environments. The
remainder of this section describes points of emphasis
that are embedded within that challenge to achieve the
desired payoff:

Reducing the Cost and Increasing the Interoperability of Using
Heterogeneous Environments

Today, it is still the case that it costs quite a bit more in
complexity and effort to operate in a truly heterogeneous
environment, although nowhere near what it used to cost.
Although it is now relatively easy to pull together distrib-
uted systems in heterogeneous environments, there
remain substantial recurring downstream costs, particu-
larly for complex and long-lived distributed systems of
systems. Although homogeneous environments are simpler
to develop and operate, they often do not reflect the long-
run market reality, and they tend to leave open more
avenues for catastrophic failure. We must, therefore,

remove the remaining impediments associated with
integrating and interoperating among systems composed
from heterogeneous components. Much progress has been
made in this area, although at the host infrastructure
middleware level more needs to be done to shield devel-
opers and end users from the accidental complexities of
heterogeneous platforms and environments. In addition,
interoperability concerns have largely focused on data
interoperability and invocation interoperability. Little
work has focused on mechanisms for controlling the overall
behavior of integrated systems, which is needed to provide
‘‘control interoperability.’’ There are requirements for
interoperable distributed control capabilities, perhaps
initially as increased flexibility in externally controlling
individual resources, after which approaches can be devel-
oped to aggregate these into acceptable global behavior.

Dynamic and Adaptive QoS Management

It is important to avoid ‘‘all or nothing’’ point solutions.
Systems today often work well as long as they receive all the
resources for which they were designed in a timely fashion,
but fail completely under the slightest anomaly. There is
little flexibility in their behavior (i.e., most of the adapta-
tion is pushed to end users or administrators). Instead of
hard failure or indefinite waiting, what is required is either
reconfiguration to reacquire the needed resources automa-
tically or graceful degradation if they are not available.
Reconfiguration and operating under less than optimal
conditions both have two points of focus: individual and
aggregate behavior. To manage the increasingly stringent
QoS demands of next-generation applications operating
under changing conditions, middleware is becoming
more adaptive and reflective. Adaptive middleware (25)
is software whose functional and QoS-related properties
can be modified either (1) statically (e.g., to reduce foot-
print, leverage capabilities that exist in specific platforms,
enable functional subsetting, and minimize hardware/soft-
ware infrastructure dependencies or (2) dynamically (e.g.,
to optimize system responses to changing environments or
requirements, such as changing component interconnec-
tions, power levels, CPU/network bandwidth, latency/jit-
ter, and dependability needs.

In mission-critical distributed systems, adaptive mid-
dleware must make such modifications dependably (i.e.,
while meeting stringent end-to-end QoS requirements).
Reflective middleware (26) techniques make the internal
organization of systems, as well as the mechanisms used in
their construction, both visible and manipulable for mid-
dleware and application programs to inspect and modify at
run time. Thus, reflective middleware supports more
advanced adaptive behavior and more dynamic strategies
keyed to current circumstances (i.e., necessary adaptations
can be performed autonomously based on conditions within
the system, in the system’s environment, or in system QoS
policies defined by end users.

Advanced System Engineering Tools

Advanced middleware by itself will not deliver the capabil-
ities envisioned for next-generation distributed systems.
We must also advance the state of the system engineering

6 MIDDLEWARE FOR DISTRIBUTED SYSTEMS



tools that come with these advanced environments used to
build and evaluate large-scale mission-critical distributed
systems. This area of research specifically addresses the
immediate need for system engineering tools to augment
advanced middleware solutions. A sample of such tools
might include:

� Design time tools, to assist system developers in under-
standing their designs, in an effort to avoid costly
changes after systems are already in place (which is
partially obviated by the late binding for some QoS
decisions referenced earlier).

� Interactive tuning tools, to overcome the challenges
associated with the need for individual pieces of the
system to work together in a seamless manner.

� Composability tools, to analyze resulting QoS from
combining two or more individual components.

� Modeling tools for developing system models as adjunct
means (both online and offline) to monitor and under-
stand resource management, in order to reduce the
costs associated with trial and error.

� Debugging tools, to address inevitable problems that
develop at run time.

Reliability, Trust, Validation, and Assurance

The dynamically changing behaviors we envision for next-
generation middleware-mediated systems of systems are
quite different from what we currently build, use, and have
gained some degrees of confidence in. Considerable effort
must, therefore, be focused on validating the correct func-
tioning of the adaptive behavior and on understanding the
properties of large-scale systems that try to change their
behavior according to their own assessment of current
conditions before they can be deployed. But even before
that, long-standing issues of adequate reliability and trust
factored into our methodologies and designs using off-
the-shelf components have not reached full maturity and
common usage, and must therefore continue to improve.
The current strategies organized around anticipation of
long lifecycles with minimal change and exhaustive test
case analysis are clearly inadequate for next-generation
dynamic distributed systems of systems with stringent QoS
requirements.

TAKING STOCK OF TECHNICAL PROGRESS ON
MIDDLEWARE FOR DISTRIBUTED SYSTEMS

The increased maturation of, and reliance on, middleware
for distributed systems stems from two fundamental trends
that influence the way we conceive and construct new
computing and information systems. The first is that IT
of all forms is becoming highly commoditized (i.e., hard-
ware and software artifacts are getting faster, cheaper, and
better at a relatively predictable rate). The second is the
growing acceptance of a network-centric paradigm, where
distributed systems with a range of QoS needs are con-
structed by integrating separate components connected by
various forms of reusable communication services. The
nature of the interconnection ranges from the very small

and tightly coupled, such as embedded avionics mission
computing systems, to the very large and loosely coupled,
such as global telecommunications systems.

The interplay of these two trends has yielded new soft-
ware architectural concepts and services embodied by mid-
dleware. The success of middleware has added new layers
of infrastructure software to the familiar OS, programming
language, networking, and database offerings of the pre-
vious generation. These layers are interposed between
applications and commonly available hardware and soft-
ware infrastructure to make it feasible, easier, and more
cost effective to develop and evolve systems via reusable
software. The past decade has yielded significant progress
in middleware, which has stemmed, in large part, from the
following:

Years of Iteration, Refinement, and Successful Use. The
use of middleware is not new (27,28). Middleware concepts
emerged alongside experimentation with the early Internet
(and even its predecessor the ARPAnet), and middleware
systems have been continuously operational since the mid-
1980s. Over that period of time, the ideas, designs, and
(most importantly) the software that incarnates those ideas
have had a chance to be tried and refined (for those that
worked), and discarded or redirected (for those that did
not). This iterative technology development process takes a
good deal of time to get right and be accepted by user
communities and a good deal of patience to stay the course.
When this process is successful, it often results in stan-
dards that codify the boundaries, and patterns and frame-
works that reify the knowledge of how to apply these
technologies, as described in the following subsections.

The Maturation of Open Standards and Open Source. Over
the past decade, middleware standards have been estab-
lished and have matured considerably, particularly with
respect to mission-critical distributed systems that possess
stringent QoS requirements. For instance, the OMG has
adopted the following specifications in recent years: (1)
Minimum CORBA (29), which removes nonessential fea-
tures from the full OMG CORBA specification to reduce
footprint so that CORBA can be used in memory-
constrained embedded systems; (2) Real-time CORBA
(18), which includes features that enable applications to
reserve and manage network, CPU, and memory resources
more predictably end-to-end; (3) CORBA Messaging (30),
which exports additional QoS policies, such as timeouts,
request priorities, and queuing disciplines, to applications;
and (4) Fault-tolerant CORBA (23), which uses entity
redundancy of objects to support replication, fault detec-
tion, and failure recovery. Robust implementations of these
CORBA capabilities and services are now available from
multiple suppliers, many of whom have adopted open-
source business models. Moreover, the scope of open sys-
tems is extending to an even wider range of applications
with the advent of emerging standards, such as the Real-
Time Specification for Java (31), and the Distributed Real-
Time Specification for Java (32).

The Dissemination of Patterns and Frameworks. Also dur-
ing the past decade, a substantial amount of R&D effort has

MIDDLEWARE FOR DISTRIBUTED SYSTEMS 7



focused on developing patterns and frameworks as a means
to promote the transition and reuse of successful middle-
ware technology. Patterns capture successful solutions to
commonly occurring software problems that occur in a
particular context (2,3). Patterns can simplify the design,
construction, and performance tuning of middleware and
applications by codifying the accumulated expertise of
developers who have confronted similar problems before.
Patterns also raise the level of discourse in describing
software design and programming activities. Frameworks
are concrete realizations of groups of related patterns (1).
Well-designed frameworks reify patterns in terms of func-
tionality provided by the middleware itself, as well as
functionality provided by an application. A framework
also integrates various approaches to problems where there
are no a priori, context-independent, optimal solutions.
Middleware frameworks (14) can include strategized selec-
tion and optimization patterns so that multiple indepen-
dently developed capabilities can be integrated and
configured automatically to meet the functional and QoS
requirements of particular applications.

In the brief space of this article, we can only summarize
and lend perspective to the many activities, past and
present, that contribute to making middleware technology
an area of exciting current development, along with
considerable opportunity and unsolved challenging R&D
problems. We have provided references to other sources to
obtain additional information about ongoing activities in
this area. We have also provided a more detailed discussion
and organization for a collection of activities that we
believe represent the most promising future directions
for middleware. The ultimate goals of these activities
are to:

1. Reliably and repeatably construct and compose dis-
tributed systems that can meet and adapt to more
diverse, changing requirements/environments, and

2. Enable the affordable construction and composition
of the large numbers of these systems that society will
demand, each precisely tailored to specific domains.

To accomplish these goals, we must overcome not only
the technical challenges, but also the educational and
transitional challenges, and eventually master and sim-
plify the immense complexity associated with these envir-
onments, as we integrate an ever-growing number of
hardware and software components together via advanced
middleware.

BIBLIOGRAPHY

1. R. Johnson, Frameworks ¼ Patterns þ Components, CACM,
40(10), 1997.

2. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Reading, MA:
Addison–Wesley, 1995.

3. D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, New York: Wiley, 2000.

4. C. Szyperski, Component Software– Beyond Object-Oriented
Programming, Reading, M.A.: Addison-Wesley, 1998.

5. I. Jacobson, G. Booch, J. Rumbaugh, Unified Software Devel-
opment Process, Reading, M.A.: Addison-Wesley, 1999.

6. Object Management Group, The Common Object Request
Broker: Architecture and Specification Revision 3.0.2, OMG
Technical Document, 2002.

7. R. Schantz, R. Thomas, and G. Bono, The architecture of the
cronus distributed operating system, Proceedings of the 6th
IEEE International Conference on Distributed Computing Sys-
tems, Cambridge, M.A., 1986.

8. R. Gurwitz, M. Dean and R. Schantz, Programming support
in the cronus distributed operating system, Proceedings of
the 6th IEEE International Conference on Distributed Comput-
ing Systems, Cambridge, MA, 1986.

9. D. Schmidt, D. Levine, and S. Mungee, The Design and Per-
formance of the TAO Real-Time Object Request Broker, Com-
puter Communications Special Issue on Building Quality of
Service into Distributed Systems, 21 (4), 1998.

10. A. Wollrath, R. Riggs, J. Waldo, A distributed object model for
the java system, USENIX Computing Systems, 9 (4), 1996.

11. G. Heineman and B. Councill, Component-Based Software
Engineering: Putting the Pieces Together, Reading, MA:
Addison-Wesley, 2001.

12. I. Foster, and K. Kesselman, The Grid: Blueprint for a Future
Computing Infrastructure, Morgan Kaufmann, 1999.

13. D. Schmidt, S. Huston, CþþNetwork Programming Volume 1:
Mastering Complexity with ACE and Patterns, Reading, M.A.:
Addison-Wesley, 2002.

14. D. Schmidt, S. Huston, CþþNetwork Programming Volume 2:
Systematic Reuse with ACE and Frameworks, Reading, M.A.:
Addison-Wesley, 2003.

15. T. Lindholm, F. Yellin, The Java Virtual Machine Specifica-
tion, Reading, MA: Addison-Wesley, 1997.

16. T. Thai and H. Lam, .NET Framework Essentials, Cambridge,
M.A.: O’Reilly, 2001.

17. Object Management Group, CORBA Components, OMG Docu-
ment formal/2002-06-65.

18. Object Management Group, Real-Time CORBA, OMG Docu-
ment formal/02-08-02, 2002.

19. D. Box, Essential COM, Reading, MA: Addison-Wesley, 1997.

20. J. Snell, K. MacLeod, Programming Web Applications with
SOAP, Cambridge, M.A.: O’Reilly, 2001.

21. Object Management Group, CORBAServices: Common Ob-
ject Service Specification, OMG Document formal/98-12-31,
edition, 1998.

22. A. Thomas, Enterprise Java Beans Technology, 1998. Avail-
able: http://java.sun.com/products/ejb/white_paper.html.

23. Object Management Group, Fault Tolerance CORBA Using
Entity Redundancy RFP, OMG Document orbos/98-04-01 edi-
tion, 1998.

24. M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. Sanders,
B. Bakken, M. Berman, D. Karr, R. Schantz, AQuA: An
adaptive architecture that provides dependable distributed
objects, Proceedings of the 17th IEEE Symposium on Reliable
Distributed Systems, 1998, pp. 245–253.

25. J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal,
R. Shapiro, C. Rodrigues, M. Atighetchi, D. Karr, Comparing
and contrasting adaptive middleware support in wide-area and
embedded distributed object applications. Proceedings of the
21st IEEE International Conference on Distributed Computing
System, Phoenix, AZ, 2001.

8 MIDDLEWARE FOR DISTRIBUTED SYSTEMS



26. G.S. Blair, F. Costa, G. Coulson, H. Duran, et al., The design of
a resource-aware reflective middleware architecture, Proceed-
ings of the 2nd International Conference on Meta-Level Archi-
tectures and Reflection, St.-Malo, France, Springer-Verlag,
LNCS, Vol. 1616, 1999.

27. R. Schantz, BBN and the Defense Advanced Research Projects
Agency, Prepared as a Case Study for America’s Basic
Research: Prosperity Through Discovery, A Policy Statement
by the Research and Policy Committee of the Committee for
Economic Development (CED), June 1998, Available: http://
www.dist-systems.bbn.com/papers/1998/CaseStudy.

28. P. Bernstein, Middleware, A model for distributed system
service, CACM, 39: 2, 1996.

29. Object Management Group, Minimum CORBA, OMG Docu-
ment formal/00-10-59, 2000.

30. Object Management Group, CORBA Messaging Specification,
OMG Document orbos/98-05-05, 1998.

31. G. Bollella and J. Gosling, The real-time specification for
java,Computer, June 2000.

32. D. Jensen, Distributed Real-Time Specification for Java,
2000 Available: java.sun.com/aboutJava/communityprocess/
jsr/jsr_050_drt.html.

FURTHER READING

BBN, Quality Objects Toolkit for Adaptive Distributed Applica-
tions. Available: http://quo.bbn.com.

Sun Microsystems, Jini Connection Technology. Available: http://
www.sun.com/jini/index.html.

B. Sabata, S. Chatterjee, M. Davis, J. Sydir, T. Lawrence, Taxon-
omy for QoS Specifications, Proceedings of the Workshop on Object-
oriented Real-time Dependable Systems (WORDS 97), February
1997.

RICHARD E. SCHANTZ

BBN Technologies
Cambridge, Massachusetts

DOUGLAS C. SCHMIDT

Vanderbilt University
Nashville, Tennessee

MIDDLEWARE FOR DISTRIBUTED SYSTEMS 9



O

OPTIMIZING COMPILERS

INTRODUCTION AND MOTIVATION

Optimization is achieved by analyzing a given input
program and applying a variety of code transformations
to it. Which optimizing steps and code transformations
may be applied depends on the semantics of the source
programming language and the results of the analyses.
Optimization is not performed on the source code but on a
compiler-internal program representation; the form of the
latter can significantly influence both the optimizations
that can be applied as well as their effect. Some optimiza-
tions are essential on many systems, especially RISC archi-
tectures, without which programs would be very inefficient.
There is no guarantee that an optimized program will
execute faster, or that more extensive optimization will
lead to an improvement in performance; however, improve-
ment will typically occur, especially for large, complex
programs with extensive datasets, in short, for just those
programs in which manual analysis is difficult to carry out.
Moreover, any manual analysis and modification of inter-
mediate code carries with it the danger of accidentally
changing the program’s semantics. In contrast, the code
transformations applied by an optimizing compiler are
guaranteed to leave the semantics unchanged. Moreover,
significant time savings can often be obtained by an opti-
mizing compiler at very little cost, because the optimization
phase of a compiler is typically executed only once and the
program may be executed very many times. (Strictly speak-
ing, the term ‘‘optimization’’ is, of course, a misnomer
because it is almost guaranteed that the resulting object
code is not optimal; however, for historical reasons, we
will use the term ‘‘optimization’’ in its intended meaning
of program improvement, with this caveat.)

There are many design choices facing the developers of
an optimizing compiler. The ability of the system to improve
a large variety of input programs may depend on the
accuracy of the analysis performed. Yet the required ana-
lyses can be highly expensive and difficult to implement.
Modern compilers typically perform optimizations in multi-
ple phases, each with a distinct purpose. Typically, certain
sequences of analyses and transformations are combined
into an optimization strategy that is accessible via a com-
piler switch. Thus, the user may choose between several
predefined collections of optimizations when the compiler is
invoked.

Not all languages are created equal with regard to
optimization. For example, the potential for aliasing of
variables in a code can have a major impact on the outcome
of optimization. As each program change requires us to
reason about the state a program will be in at a given point
during execution, if two variables may share the same
memory location at some point, the analyses must consider
how the desired transformation will affect each of them,
which may severely limit the potential for optimizing a

program, especially when translating programs written in
languages that permit uncontrolled use of pointers (if these
features are extensively exploited in the code).

BASIC OPTIMIZATIONS

A variety of well-known optimizations are useful for
improving code written in many different programming
languages and for execution on most modern architectures.
As such, they are widely implemented. They include opti-
mizations to eliminate statements that will never be exe-
cuted (useless code); to replace certain operations by faster,
equivalent ones (e.g., strength reduction); and to eliminate
redundant computations, possibly by moving statements in
the code to a new location that permits the results to be used
in multiple locations subsequently. Examples of this last
optimization include hoisting code from loops, so that it is
executed just once, rather than during each loop iteration,
and partial redundancy elimination, variants of which
attempt to move statements so that an expression is com-
puted once only in a given execution path. Another popular
optimization called constant propagation attempts to deter-
mine all variable references that have a constant value no
matter what execution path is taken, and to replace those
references with that value, which, in turn, may enable the
application of further optimizations.

These optimizations are generally known as scalar opti-
mizations, because they are applied to scalar variables
without regard to the internal structuring of a program’s
complex data objects, and thus consider the individual
elements of arrays to be distinct objects. They may be
applied to small program regions in the form of so-called
peephole optimizations, but also to entire procedures or
even beyond. In order to perform them on a given program,
it is necessary to analyze and represent the structure of
each procedure being translated in such a way that all of its
possible execution paths are identified. The implementa-
tion must then efficiently identify all points in the code
where a given optimization is applicable and perform the
specified translation.

Data Flow Analysis

Collectively, the analysis required to perform this work is
known as data flow analysis (DFA), which studies the flow
of values of data objects throughout a program. The ana-
lysis that determines the structure of a program is known
as control flow analysis (CFA). Intraprocedural CFA con-
structs a flowgraph (or program graph), a directed graph
with a single entry node, whose nodes represent the pro-
cedure’s basic blocks and whose edges represent transfers
of control between basic blocks. Basic blocks are maximal
length sequences of statements that can only be entered via
the first and only be exited via the last statement; they
partition a procedure. The single-exit property can be
enforced on the flowgraph if it is needed. Loops, including

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



implicitly programmed loops, can be identified in the flow-
graph and a variety of node orderings defined and computed
that enable data flow problems to be efficiently applied to it.
Although scalar optimizations can be performed easily
within basic blocks, their application to an entire procedure
gives them considerably greater power.

For example, consider the following fragment of pseudo
code.

x := A[j];
z := 1;
if x < 4

then z := x;
fi
c := z + x

Figure 1 shows a flowgraph representing the flow of
control in these statements. Each node in the graph corre-
sponds to one of its basic blocks. The edges represent the
flow of control between them.

Many data flow optimizations are closely related to the
so-called use-definition (UD) and definition-use (DU)
chains. (In fact, below we introduce one way of representing
a procedure internally that makes DU chains explicit in the
code.) A UD chain links a use of a variable to the set of all
definitions of that variable that may reach it (i.e., all
possible sources of the value that will be used); a DU chain
links a definition of a variable to all of its possible uses. For
example, the value of x defined in the first statement of the
above code is used three times subsequently (on lines 3, 4,
and 6 of the text), so the DU chains will link the definition to
each of these uses. UD analysis will link each of the uses to
this definition. The interactions of a basic block with the
remainder of a program may be modeled by identifying its
outward-exposed variable definitions, those definitions
that may have uses in other basic blocks, and its out-
ward-exposed uses, those variable uses that are defined
in other basic blocks and may be used by this block. For
example, basic block B3 in Fig. 1(a) has an outward-exposed
definition of variable c and outward-exposed uses of vari-
ables x and y. This information has many applications.

Strategies for register allocation, for instance, may benefit
from knowing which variables are live at the exit of a basic
block. A variable is live if it may be used subsequently (i.e.,
if there is a path from the corresponding node in the
flowgraph to a node with an outward-exposed use of that
variable) and the path is definition-free for that variable. A
variable that is not live should not be kept in a register. UD
chains provide the required information. For example, x
and z are live at the end of basic block B1 in Fig. 1(a),
because they are subsequently used. The UD chains will
link these uses of x and z to the definitions in B1.

Data Flow Problems

The task of determining all the points in the program where
a specific optimization is applicable, or where a specific
property holds, is known as a data flow problem. For
example, the live variables problem may be solved by
traversing a single-exit flowgraph, starting with its unique
exit node, and propagating information on outward-
exposed uses to nodes that precede them on paths from
the start node. Any variable definition for which there is a
subsequent outward-exposed use is live. The available
expressions problem computes the expressions that are
available on entry to a basic block. It requires a traversal
of the flowgraph that begins with the start node and then
visits subsequent nodes after all nodes that may precede
them have been visited. The analysis gathers the expres-
sions that are computed in a basic block and are outward-
exposed (i.e., the variables used in the computation have
not been redefined) and combines them with the expres-
sions reaching this basic block that are preserved (i.e., the
variables used in that computation have not been rede-
fined). If there is an outward-exposed use of the same
expression within the associated code, the resulting set
of expressions will be available in the successor nodes of
the callgraph. If there is an outward-exposed use of the
same expression within the associated code, the computa-
tion is redundant and may be eliminated. For example, if we
assume that Fig. 1(a) is part of a larger flowgraph, then the
expression z+x will be available to a successor node of B3
if and only if neither of these variables have been redefined
in the interim (and all paths to the node pass through B3).
Any computation of z+x in such nodes is redundant and
may be eliminated. There are a variety of approaches to
detect and handle redundant computations in practice.

Data flow problems may be classified as top-down or
bottom-up problems, depending on the order of information
propagation. Live variables analysis is a bottom-up pro-
blem, and the available expressions computation is an
example of a top-down problem. They may also be classified
as existence problems or all problems. In the former case,
the task is to find a path satisfying a given property; in the
latter, the property must hold for all paths. For a variable to
be live, we only need identify one path with an outward-
exposed use that reaches the node in question; so it is an
existence problem. In contrast, the available expressions
problem is an all problem, because the expression is only
available (and hence redundant) at a given point in the code
if it is available no matter what execution path was taken to
reach that point.

b < M[ 
        a < 0 B1

B2

    B3

 
B1

 

B3

B4

(a)

Flow Graph with Basic Blocks 

(b)

Conversion to SSA form 

x := A[j] 
z := 1 
x < 4? 

x1 :=A[j0]
z1 := 1 
x1 < 4 ?  

z := x z2 := x1

c := z +x z3 := (z1,z2)

c1 := z3 + x1 

f

              B

Figure 1. Representing control flow in a procedure.

2 OPTIMIZING COMPILERS



Techniques for Solving Data Flow Problems

The practical solution of data flow problems was enhanced
by a strategy that exploits the fact that they can be modeled
by monotone data flow systems (MDSs). A semilattice is
used to represent data flow information and monotone
functions model the way data flow information is modified
when control passes through a basic block in the procedure.
Virtually all data flow problems may be elegantly formu-
lated in terms of MDSs; the associated solution mechanism
is a simple iterative fixpoint algorithm whose implementa-
tion is efficient and very reasonable in its memory require-
ments for many data flow problems. In order to apply the
iterative algorithm to a given data flow problem, this
problem must be classified as either top down or bottom
up; it must be formulated in terms of information to be
computed at each node of the flowgraph, which is typically a
set of variables, variable references, or statements. The
effect a basic block has on the information computed for the
nodes preceding it (or succeeding it, in the case of bottom-up
problems) must be specified. Finally, it must be specified
how information sets are merged when two paths meet in
the flowgraph. Then the algorithm will begin at either the
start (top-down) or exit (bottom-up) node of the flowgraph,
compute the specified information, and propagate that
information to the nodes succeeding or preceding it,
respectively. This information will be updated and the
resulting set propagated in the same direction. The pre-
sence of loops and, therefore, cycles in the flowgraph
necessitates that this process be repeated on the current
data until no more changes in information are observed.
For example, the live variables problem begins by comput-
ing the set of variables in a basic block that have outward-
exposed uses, which are passed to preceding nodes in the
flowgraph, where all those that remain outward-exposed
are augmented with those that have outward-exposed
uses in that basic block and, in turn, are propagated.
More powerful strategies using so-called interval analysis
exist; they require considerably more implementation
effort, but execute faster and make it easier to incremen-
tally update data flow information. Both the iterative
algorithm and the interval analysis expect a flowgraph
to represent a procedure.

Typical Data Flow Optimizations

Among the many other optimizations that have been
defined and are applied to basic blocks and procedures
is copy propagation, which replaces a variable with one
that is equivalent to it. Constant folding evaluates expres-
sions at compile time when their operands are known to
be constant, and is especially applied when they are inte-
gers. Common subexpression elimination and value num-
bering are two subtly different techniques that support
the identification and removal of computations that are
unnecessary because the values have already been deter-
mined. Partial redundancy elimination is a more powerful
approach to handling this problem and is increasingly
preferred over these alternatives. Bounds checking elim-
ination is important for programming languages where it
must be tested whether array references are within the
defined range of index values. Loop-invariant code motion

finds computations that produce the same result each time
a loop is executed and moves them out of the loop. Some
optimizations are performed multiple times, which is espe-
cially true with respect to dead code elimination, because
during the course of applying transformations, the compi-
ler may introduce code that is not needed and that can be
subsequently removed. The compiler must also be able to
simplify algebraic and logical expressions, both to reduce
the work of computing them, but also to facilitate the
implementation of those optimizations that require them
to be compared or evaluated.

New Approaches to Data Flow Analysis

A relatively new approach to performing optimizations on
a procedure requires the prior conversion of the program
to a static single assignment (SSA) form. This representa-
tion makes the DU chains explicit by requiring that vari-
ables be defined once only. It is achieved by renaming
variables and by introducing so-called join (f) functions at
any point in the code where two or more definitions may
reach a single use. It is possible to optimize this repre-
sentation to minimize the number of join functions
required. In Fig. 1(b), we show the SSA form of the flow-
graph given in standard form in Fig. 1(a). It uses a f

function in basic block B3 to indicate that the value of z
may come from either B1 or B2.

The SSA representation makes several optimizations,
including strength reduction, partial redundancy elimina-
tion, and constant propagation, easier to specify and more
efficient to implement in comparison with the techniques
described above; its use is growing. However, it is relatively
hard to perform alias analysis on this representation.
A compiler is likely to convert code to SSA form only
temporarily during the overall optimization process.

INTERPROCEDURAL OPTIMIZATIONS

The strategies described above are typically applied to the
individual procedures of a program. However, it is also
possible to optimize code across procedure boundaries. The
growing use of structured programming techniques has led
to the increased modularization of programs, which may
consist of a large number of relatively small procedures;
thus, it has become important to consider how to improve
code in a way that takes procedure and function invocations
into account. Interprocedural analysis (IPA) is the name
given to techniques that gather information about the
calling relationships between different program units,
and optimizations based on them are called interprocedural
optimizations.

Interprocedural Analysis

Just as the flowgraph is the basis for optimizations within
a procedure, so the callgraph is the foundation for inter-
procedural optimizations. This data structure is designed
to represent the relationships between the procedures
and functions of a program. The nodes of the callgraph
represent the individual program units; there is a direc-
ted edge between nodes if and only if the procedure

OPTIMIZING COMPILERS 3



corresponding to the source invokes the procedure corre-
sponding to the sink at least once. A traditional callgraph
has only one edge between a pair of nodes per direction,
no matter how often the sink procedure is called, and
thus provides less information about the paths that are
taken through a program than does a (procedure’s) flow-
graph; alternative multigraph representations of the
calling sequences represent each invocation separately
and thus provide additional information. In order to per-
form interprocedural optimizations, the actual arguments
at each callsite must also be saved. It is possible to aug-
ment this information with details that help identify those
sequences of calls, or call chains, that may occur at run
time.

The only tricky part of constructing a call graph occurs
when procedures are passed as arguments to other proce-
dures. An example of this is given in Fig. 2 and is based on
one given by Muchnik. Here, procedure m invokes g twice,
but it is not reflected directly in the call graph where there
is one edge fromm tog. In turn, procedure g makes two calls,
one to procedure j and one to procedure p. But p is a
variable: Our analysis of the code shows that it will be
associated withh, so that g actually calls j andh. Edges are
inserted accordingly. Procedure h calls i, and thus we add
an edge from caller to callee. Procedure j calls a, which
again is not an actual procedure, so we must determine
which values it may assume at run time. Our code inspec-
tion shows that it may only be associated with i, so we
must insert an edge from j to i in the call graph. We now
determine that procedure i invokes g and add a corre-
sponding edge to the call graph in order to complete it. Note

that nodes in the call graph correspond to actual procedures
and procedure parameters do not occur in it.

Strategies for Interprocedural Optimization

A compiler generally translates an input code one proce-
dure at a time (known as separate compilation). Strategies
for applying optimizations interprocedurally must take
this fact into account, and thus they are often separated
into analysis phases that identify call sites and build the
callgraph and a transformation phase that occurs after
some analyses have been applied to each procedure indi-
vidually, possibly spread among several phases of compila-
tion to support other kinds of optimization, such as that
described in the Array and Loop Optimizations Section, or
possibly only shortly before the final code generation.

Purpose of Interprocedural Optimization

One reason that interprocedural analysis might produce
superior results is that, without it, worst-case assumptions
must be made with respect to the impact of procedure calls
during (intraprocedural) DFA: It must be assumed that the
call modifies every variable that is visible to both it and the
calling procedure, including every global variable. Thus
IPA can be used to improve the results of standard DFA. It
may also be used explicitly to improve code that spans
multiple procedures. Before we give examples of more
sophisticated uses of IPA, we describe some of the simpler
optimizations. At the end of this section, we consider the
limitations of IPA.

Reducing Runtime Cost of Procedure Invocations

There are some interprocedural optimizations that may
be implemented and carried out with relatively little
effort. Each time a procedure is called at run time, infor-
mation essential to the execution of the caller must be
saved, the execution environment for the callee must be
set up and control transferred. Upon its termination, the
caller’s environment must be restored, which incurs non-
trivial overheads. Several optimizations are able to
reduce these overheads, either directly or by reducing
the number of procedure calls. One popular optimization
in the latter category is known as procedure inlining: It
replaces a procedure call in the code by the suitably
adapted body of the procedure. If the call is made within
a loop, this may sometimes lead to considerable savings.
Unfortunately, however, it has proved to be very hard to
come up with a good strategy for performing this optimi-
zation in general. If applied too frequently, the size of the
object code may increase substantially, introducing other
overheads. Strategies to control its application may take
into account the frequency with which a call is expected to
be executed, the length of the procedure’s code, its location
relative to the program hotspots, or some combination of
these.

Advanced Interprocedural Optimization

A sophisticated compiler may be able to improve perfor-
mance of a program by moving code between procedures or
by applying basic optimizations on code that spans multiple

procedure m ( ) 
begin 
     call g( ) 
     call g( ) 
end 
 
procedure g( ) 
begin 
 procedure   p  
     p:= h 
     call p( ) 
     call j( i ) 
end 

procedure h ( ) 
begin 
     call( i ) 
end 
 
procedure i( ) 
begin 
     call g( ) 
end 
 
procedure j(a) 
 Procedure     a  
begin 
     call a( ) 
end 

m

g 

h 
 j

 i

Figure 2. Program with procedure variables and resulting
call graph.

4 OPTIMIZING COMPILERS



procedures. For instance, code hoisting might extract code
from a procedure into its calling procedures, or vice versa.
As an example of the latter, register allocation might be
performed between procedures in the late stages of compi-
lation. If constant propagation proves that one or more
arguments to a procedure assume constant values at a
given callsite, it might be possible to exploit this informa-
tion to create a particularly fast, specialized version of the
procedure for that callsite.

Limitations of Interprocedural Analysis

One of the main purposes of interprocedural analysis is to
determine which data are accessed, generally subdivided
into the tasks of determining what values are defined and
which are used, as the result of a given procedure invoca-
tion. Note that this determination also depends on the data
accessed by those procedures that are invoked by the one
under consideration. One of the difficulties with interpro-
cedural analysis and optimizations based on it is that it is,
in general, impossible to represent precisely the informa-
tion gathered by IPA. For instance, a procedure may
include several different possible execution paths, each
of which accesses a different region of an array. When
the compiler summarizes the impact of this procedure, it
will combine this information and assume that all of the
array elements that may be accessed on some path will
indeed be accessed, as it has no way of knowing which of
these paths will be executed. Moreover, it may be impos-
sible to represent precisely the set of array elements that
may be accessed, and the compiler must always be con-
servative. A variety of approaches to representing these
regions has been proposed, from simple array sections
(representation via a lower bound, upper bound, and stride
in each array dimension) via linearization of accesses, lists
of accesses, and representation as a convex region. The
more complex the representation, the more time it will take
to compute the region corresponding to a procedure call. Yet
the usefulness of some interprocedural optimizations rests
heavily on obtaining maximum precision in this analysis.

ARRAY AND LOOP OPTIMIZATIONS

Data Dependence Analysis

The optimizations introduced above are applied to indivi-
dual scalar variables and are unable to explicitly consider
structured data objects such as arrays. In particular, they
are unable to deal with subscripted variables or to analyze
the data access patterns in loops, where a statement may be
executed many times, each time reading and writing a
different set of variables. As a result, important optimiza-
tions may be missed. Consider the following pseudo-Fortran
code fragment:

DO I:=1:N
S:=S+A[I]*B[I]
B[I]:= 2*C[I]+A[I]

OD I

If one were to look only at the variables without differ-
entiating individual vector elements, the code would
appear as follows:

DO I:=1:N
S:=S+A*B
B:= 2*C+A

OD I

On the other hand, the ability to distinguish between
different elements of the vectors A, B, and C permits us to
recognize that the code can be executed in a very different
order (something that would not be valid for the undiffer-
entiated version):

DO I:=1:N
S:=S+A[I]*B[I]

OD I
DO I:=1:N

B[I]:= 2*C[I]+A[I]
OD I

The ability of the compiler to analyze accesses to struc-
tured data objects, especially arrays, in the presence of
nonconstant subscript expressions is crucial for a number
of advanced optimization techniques, the foundation of
which is (data) dependence analysis. Dependence analysis
is a collection of techniques that allow the automatic deter-
mination at compile time whether two references to an
array will both refer to one or more elements of an array
(i.e., whether the regions of the array accessed by them will
overlap). If they do not overlap, the compiler is free to
reorganize the code in these statements as desired to
optimize it. If they do, and one of them defines the variable,
then it is essential that the relative order of those accesses
be maintained. Indeed, the results of this analysis will
enable the compiler to determine whether certain code
transformations are semantically valid (produce the
same results) in a specific context.

Numerous dependence tests have been developed and
published; they are either exact or approximate. Exact tests
determine precisely whether there is a dependence.
Approximate tests will test for a condition whose validity
implies that there is a dependence; if the condition is not
satisfied, one assumes that a dependence is present.
(known as a ‘‘nonfatal’’ assumption: It may be that, in
fact, no dependence is present even though the condition
is not satisfied; however, because the presence of a depen-
dence merely impedes the application of a code transforma-
tion, not being able to transform the code will leave
the semantics unchanged. We may simply miss out on
some possible optimization, which an exact test would
have allowed us to carry out.) Exact tests tend to be com-
putationally intensive, if not infeasible, which is why
approximate tests are commonly used in compilers dedi-
cated to this type of optimization (typically vectorizing and
parallelizing compilers).

Code Transformations

Once a complete dependence analysis for a given code has
been carried out, code transformations can be applied.
Paramount is, of course, that the semantics of the code

OPTIMIZING COMPILERS 5



not be affected by these transformations. As loops tend to
account for a significant portion of the computation time of
many programs, most code transformations focus on loops
and arrays. Very common are loop distribution (replacing
one big loop by several smaller ones—see for example, the
code fragment above) and loop interchange (where the
inner and the outer loop of a loop nest are inter-
changed—see the examples in I/O Management Section).
Other code transformations are the wavefront method,
replication and alignment, loop fusion and fission, and strip
mining. These techniques were designed with specific
objectives in mind, typically automatic vectorization or
parallelization.

Vectorization

Vectorization is the attempt to produce ‘‘vector code,’’ which
is really pipelined code: What is conceptually a vector
operation, for example, A[1:N]: ¼ B[1:N]+C[1:N], is imple-
mented as a pipeline of N operations A[i]: ¼ B[i]+C[i]. A
vectorizing compiler takes ordinary scalar code and pro-
duces equivalent vector code, which is typically done auto-
matically, with no or very little user intervention.
Semantically valid code transformations are applied to
the given program in order to obtain code that can be
vectorized. Automatic vectorization has been spectacularly
successful, so much so that today very little manual vector-
ization is done. A good rule of thumb is that through
vectorization, a program may run perhaps five or more
times faster than the corresponding scalar version, which
should require no more than 5% of the development cost of
the original scalar program.

Parallelization

The resounding success of automatic vectorization raised
expectations that automatic parallelization is similarly
feasible, which proved to be quite unrealistic. Although
the fundamental ideas are similar, the granularity of par-
allel code must be coarser (‘‘more’’ must be executed) than
that of vector code, because the start-up costs of a pipeline
are much lower than those of a process or even a lightweight
thread. As a result, automatic parallelization has not deliv-
ered on its promise, in spite of almost two decades of
intensive work.

Language Support

One way in which people have attempted to avoid the
difficulties encountered by automatic parallelization is to
employ language support, some of which has always
occurred in conjunction with vectorization where vectori-
zation directives indicated to a compiler knowledge of the
programmer that the compiler did not have or was unable to
acquire. For example, an approximate test might be unable
to exclude the possibility of a dependence, thereby imped-
ing a possible optimization, while the programmer, alerted
to this difficulty, may know that no dependence is present
and can indicate this dependence to the compiler via a
vectorization directive. Parallelizing compilers must rely
on this type of language support to a much greater extent,

given the much greater difficulties in parallelizing code
automatically.

I/O MANAGEMENT

Motivation

In conventional programming, source code is compiled by a
compiler; then the resulting object code is turned over to a
run-time support system operating under the operating
system (OS). This OS knows very little to nothing about the
given program; in contrast, a compiler, especially a high-
performance compiler, knows a good deal about the pro-
gram. This knowledge is especially useful if the program is
a ‘‘regular’’ program, such as one involved in many aspects
of scientific computation. The information we are inter-
ested in is routinely collected by the compiler (in other
words, the information collected is neither special nor
unusual) and consists mainly of dependence information,
which in turn determines which code transformations are
semantically valid for a given program fragment.

It is instructive to keep a few key numbers in mind:
Access to a single number residing in main memory today
takes a few nanoseconds; if the same number resides on
magnetic disk, access to it may require tens of milliseconds.
Thus, if we fail to keep a number in main memory, which is
needed sometime later, it may take 10 million times longer
to get to it! Note that the corresponding factor for cache
misses is less than 10 (caches are typically less than ten
times faster than main memory); the same holds for bank
conflicts (it takes four to six cycles to access an item, so
pipelining accesses, which banks facilitate, will speed
things up by at most that value).

It is important to understand that effective I/O manage-
ment requires knowledge that is routinely available to a
compiler, but is not accessible to the OS. Specifically, it is at
the compiler level that decisions are made how to map
multidimensional arrays into the one-dimensional memory
space. It is at the compiler level where it can be determined
whether certain code transformations preserve the seman-
tics of a given source code. Both of these aspects are of
crucial importance to the efficiency of I/O, as the following
examples indicate.

Example 1. Bank conflicts: Assume that memory is orga-
nized in 64 banks and that one memory access takes four
clock cycles. Consider the following code:

DO I:=1:65536:S
A[I]:=I*I

OD I

where A is an array of size 1:65,536 and S may assume
different integer values. It is important to understand the
way in which array elements are mapped to memory banks:
While the first array element, A[1] resides in some arbi-
trary bank, say bank b, the next element, A[2], resides in
the next bank, namely bank b+1, A[3] in bank b+2, and so
on, until the bank number exceeds 64, in which case one
starts with bank 1. Now, if S is 64, it follows that every array
element accessed by this code resides in bank b; therefore,
each access will take four clock cycles. However, if S ¼ 1, it

6 OPTIMIZING COMPILERS



is obviously possible to pipeline the accesses, resulting in an
overall time requirement of essentially one cycle per access
(altogether, we need 65,539 cycles to retrieve 65,536 ele-
ments). It should be clear that it is the value of S that
creates problems in this case. However, consider the follow-
ing code (under the exact same assumptions):

DO I:=1:1024
DO J:=1:1024
A[I,J]:=I*I

OD J
OD I

Let us assume the mapping of the two-dimensional
array A occurs in column-major order (as is the case for
all Fortran-based languages). In this case, one can verify
that each array access requires almost exactly four
cycles: The code accesses the array A in rows, and given
the stated assumptions, all the elements of any row reside
in the same memory bank. Intriguingly, if the array
were mapped in row-major order, or alternatively, if the
code were replaced through loop interchange by the
(completely equivalent) code

DO J:=1:1024
DO I:=1:1024
A[I,J]:=I*I

OD I
OD J

the access cost per array element would be one clock
cycle.

Example 2. Virtual memory management: Consider the
following code fragment (similar to the last of Example 1):

DO J:=1:65536
DO I:=1:65536
A[I,J]:=I*I

OD I
OD J

Assume Virtual Memory Management (VMM) is used,
with an active memory set size of 1024 pages and a pure
LRU replacement strategy (the page Least Recently Used
is replaced whenever the active memory set size is
exceeded). Furthermore, assume that a page holds exactly
2048 elements of the array A; consequently, 2M (or
2,097,152) pages are needed to hold A. As the active
memory set is relatively small, it should be clear that
paging will occur. Exactly how much depends, however,
on the mapping of the 2-D array A into the memory space:
If the mapping is in row-major order, every page will be
retrieved exactly once, resulting in 2M page transfers. On
the other hand, if the mapping is in column-major order,
the first 1024 elements of the first row will each correspond
to a page; initializing A[1,1025] will invoke the replace-
ment function, because only 1024 pages can be accommo-
dated, the page corresponding to A[1,1] will be displaced,
which proceeds until the end of the first row is reached;
then the second row of A is initialized. At this point, one
observes that the page corresponding to A[1,1] is also
that of A[2,1]; unfortunately, this page had been replaced
long ago and must now be installed again. The upshot of

this process is that, for each array element, a page has to be
installed; as there are more than 4 billion (4,294,967,296)
elements, the difference, in numbers of pages transferred,
between the row-major and the column-major mappings
amounts to a factor of 2048.

Several observations are in order: First, the vast
majority of programmers are not aware of the mapping
function that is employed (in spite of the rule of thumb
that Fortran uses column-major and all other languages
row-major). Second, and more important for our discus-
sion, a compiler could easily determine that a loop inter-
change is semantically valid; therefore, if the language
dictates column-major mapping (where we would need
over 4 billion page transfers), the interchange of the
I and the J loops would result in an equivalent code, but
one that requires only about 2 million page transfers!
Note that this interchange can only be done at the com-
piler level; once things are turned over to the OS, the
context within which page transfers occur has been lost
and with it the ability of restructuring accesses in seman-
tically valid ways.

Automatic Minimization of Memory Bank Conflicts

Let us first look at memory bank conflicts. Given a pro-
gram, together with information about memory mapping,
number of cycles required to access main memory, and
number of memory banks, a compiler can carry out an
analysis (at compile time) of the number and type of bank
conflicts that the program causes. This analysis is based
on the assumption that the dimensions of the arrays are
known at compile time (true for many languages, includ-
ing Fortran and C). There are two ways in which a com-
piler can attempt to reduce bank conflicts, by changing the
shape of arrays, and by inserting a filler of an appropriate
length.

Changing the Shape of an Array. Consider the second code
fragment of Example 1 above, assuming column-major
mapping. Although, of course, it is possible to do a loop
interchange in this case, matrix multiplication, for exam-
ple, will require access by rows and by columns; therefore,
this approach would not work in general. However, one can
redefine the shape of the matrix; instead of defining it as
(1:1024, 1:1024), one could define it as (1:1025, 1:1024),
assuming the mapping is column-major. (If the mapping is
row-major, the array should be defined as (1:1024, 1:1025).)
In this way, traversing a row will not result in bank con-
flicts, as now A[1,1] is in bank 1, A[1,2] is in bank 2 (instead
of in bank 1, as before the reshaping), and so on. Note that it
is only the definition of the array that must be changed; all
of the code manipulating the array remains completely
unaffected. Furthermore, the amount of "wasted" memory
is relatively small, one single column (or row). This process
can be done at compile time, driven by the bank conflict
analysis (in other words, if the analysis indicates a signifi-
cant amount of conflicts, the reshaping operation is carried
out and the resulting code is subjected to a bank conflict
analysis; if the reshaped version has fewer conflicts than
the original one, the new version is used, otherwise the
original is restored).

OPTIMIZING COMPILERS 7



Inserting a filler. Consider the code fragment

S:=0
DO I:=1:1024

S:=S+A[I]*B[I]
OD I

where we assume as before that we have 64 banks and
each access takes four cycles. Moreover, we assume that the
two arrays are of size 1024 and are declared in a way that
causes them to be allocated contiguously in main memory.
One can easily see that A[1] and B[1] will end up in the same
bank, and so will A[2] and B[2], A[3] and B[3], and so on,
which causes a significant amount of conflicts, which the
compiler can determine at compile time. Inserting a filler of
length 4 between the two arrays causes these conflicts to
evaporate, as now A[1] will be in bank 1, but B[1] in bank 5;
similarly, A[2] will be in bank 2 and B[2] in bank 6, A[3] in
bank 3 and B[3] in bank 7, and so on. Again, the memory
bank conflict analysis of the compiler can drive this process.
More sophisticated analyses can also be carried out, taking
into account the fact that the length of the filler can be
varied as required. In this example, any length between 4
and 60 would work, allowing the compiler to consider and
combine constraints imposed by other code fragments.

Automatic Minimization of Block Transfers: I/O Profiling

The code transformations referred to in the Code Trans-
formations Section can be carried out with the objective of
minimizing I/O, instead of vectorization or parallelization,
which can be visualized by considering the Example 2 above
for column-major mapping. It should be obvious that sig-
nificant savings in I/O can be achieved provided a loop
interchange is semantically valid. For this purpose, it is
necessary to first establish the I/O profile of a given pro-
gram, which can be done automatically at compile time and
provides a measure of the amount of I/O occurring during
execution. Based on the dependence analysis, the compiler
can now carry out semantically valid code transformations,
with the goal of reducing I/O. The resulting modified code is
again I/O profiled; if the new version has a better I/O profile
than the original one, it is retained, otherwise different code
transformations are applied. In this way, it can either be
established that the original program was already I/O
efficient, or else a more I/O efficient program is obtained.

Compiler-Driven I/O Management

It should be clear from the previous paragraphs that all
techniques described can be carried out automatically on
the basis of information that is available to the compiler (at
compile time). In fact, it is not very difficult to comprehend
that the compiler has significantly more knowledge about
the program (access patterns, use of complex structures
and arrays, etc.) than the operating system. Therefore, it
should also be obvious that I/O management is best accom-
plished by the compiler. In other words, it should be the
compiler that determines which blocks are to be transferred
between disk and main memory or between main memory
and cache, not the OS. This gives rise to compiler-driven I/
O management, which will likely play an increasingly
important role because external memory devices, primarily

magnetic disk drives, have not increased in access speed
over the past decade or so (and there is no indication that
this trend will change), while CPUs have become signifi-
cantly faster. This fact implies that more and more formerly
CPU-bound programs will become I/O-bound, emphasizing
the increasing need for intelligent I/O management.

LOW-LEVEL OPTIMIZATIONS

Among the most important optimizations applied in prac-
tice are those that attempt to examine and improve a
version of the program that is a representation of the actual
machine code that will be generated. At this low level, it is
possible to analyze the use of data and to assign registers
carefully, and to examine the sequences of instructions
generated and consider how they will be mapped to the
hardware resources. The use of such information to
improve the selection and ordering of instructions, as
well as details of the assignment of data to registers, is
highly machine-specific. For instance, if it is known that it
takes a certain number of cycles to load an integer into a
register and the generated code uses an integer in the
instruction immediately following a load, then the compiler
might attempt to reorder the instructions so that other
work is performed while the value is being loaded. Simi-
larly, knowledge of the time it takes to handle a branch in
the code might permit the insertion of other instructions in
order that cycles are not wasted. Other low-level optimiza-
tions will already have attempted to optimize the number of
branches required by the code. They may also attempt to
perform branch prediction, which attempts to determine
the most likely path that will be taken at run time, or may
attempt to identify sequences of code that may be trans-
lated in a particularly efficient way on the target machine.
Such machine idioms may be very short sequences of code,
often the combination of two instructions into a single
instruction in the target machine’s instruction set.

Register Allocation

Possibly the best-known low-level optimization is register
allocation. The purpose of register allocation is to make the
best possible use of registers, a limited set of highest-speed
memory locations that allow for the most efficient machine
instructions to be applied. Note that some architectures
require that all data used as operands be in registers.

As with most optimization problems, there is no prac-
tical algorithmic solution to the problem of assigning vari-
ables optimally to registers, and thus heuristics are used to
provide approximate solutions instead. The standard
approaches to dealing with this issue require an analysis
of the live range of variables (i.e., the determination of the
code region where a variable is referenced), which is used to
construct a so-called interference graph to represent vari-
ables and their live ranges. Nodes correspond to variables
and there is an edge between a pair of nodes if and only if
their live ranges overlap. If there is no edge between a pair
of nodes, it will be possible to assign them to the same
register, because they are needed at different times during
execution. On the other hand, if there is an edge, then we
need different registers to hold the current values of the

8 OPTIMIZING COMPILERS



variables involved. By associating a distinct color with each
hardware register, we may equate the problem of assigning
distinct registers to these variables with the problem of
coloring the interference graph in such a way that no
connected nodes have the same color. In practice, several
approaches have been proposed to find colorings for the
interference graph, typically by simplifying this graph (by
removing nodes and the edges from them) until one is found
for which the given hardware-dependent number of regis-
ters can indeed provide such a mapping. As there are
seldom sufficient registers to hold all live variables simul-
taneously, the mapping is typically achieved by spilling
registers, the term given to the storing of values tempora-
rily in memory until they can be restored to a register.
Spillage will occur for all variables whose nodes were
eliminated from the graph during the construction of a
solution. The increase in instruction-level parallelism, or
potential to exploit multiple functional units simulta-
neously, has increased the need for more variables to be
in registers at any given time, and has made it harder to
provide good solutions to this optimization problem.

Instruction Scheduling

Instruction scheduling refers to the ordering of machine
instructions for execution, which is complicated by the
need to keep a number of different functional units busy
during execution. As this order obviously also affects the
live range of the variables referenced, the scheduling of
instructions is not independent of register allocation, and
this interdependence is one of the difficulties of low-level
optimization.

Typically, a machine will permit the independent, con-
current execution of specific kinds of instructions and it is
the job of this phase in compilation to determine indepen-
dent sets of computations that can be fed to the correspond-
ing functional units simultaneously. An obvious limiting
factor in this scheduling is the occurrence of a branch in the
code; a variety of approaches have been proposed to help the
machine carry out useful work despite those branches,
including speculative techniques that guess at the branch
that will be taken and begin to perform the work in that
execution path. If the guess turns out to be incorrect, work
is needed to undo the instructions performed.

Many current machines permit software pipelining,
which is analogous to hardware pipelining, and perfor-
mance improvements are obtained by overlapping the
execution of distinct operations, which is typically most
useful for loops, in which a set of instructions is repeated
many times and in which data reuse may be high and the
reuse distance known. The instruction scheduling required
to facilitate software pipelining may be supported by loop
unrolling, in which the body of a loop is increased by
replicating the code (with suitable adaptation) for a given
number of loop iterations known as the unroll factor. That
is, there will be fewer loop iterations, but each of them will
have more code and presumably higher levels of reuse of
certain data objects. If the unroll factor chosen is too large,
then the data required might not fit into cache, which is
likely to offset any performance gains provided by this
approach, so the unroll factor must be carefully chosen.

Emerging ideas on instruction scheduling consider how
this process can be supported by having additional ‘‘helper’’
threads to determine the branches that will be taken, or to
prefetch data to avoid some of the inevitable delays when
instructions cannot be reordered in such a way that stalls
(or waits) are offset.

PRACTICAL CONSIDERATIONS

Optimizing compilers are ordinary compilers with a well-
developed optimization phase. There are often various
options to select, depending on what optimizations are to
be attempted. Clearly, no optimization should be performed
if the program is not yet debugged or in its final form. It is
important to view optimization as an investment: Carrying
out the required analyses comes at a cost, namely the time
the compiler requires to complete them. Unless there is a
reasonable expectation that this investment will bring an
acceptable return, it makes no sense to do optimization. For
example, a program that is used once and whose execution
time is short is not a good candidate for optimization. On the
other hand, a program that is executed frequently and runs
for long periods should probably be extensively optimized.

Another point that must be stressed is that optimization
typically will reduce the running time of a program by a
constant factor. This factor may be quite attractive, say
60%, but it will not grow asymptotically. To illustrate,
consider two methods of sorting n numbers, one taking
4nlog2(n) instructions, the other n2/4 instructions. In this
case, the advantage of the first method increases with n.
Optimization does not work in this manner—if it saves 60%
of a given program, this percentage will remain essentially
unchanged and independent (for the most part) of the size of
the input.

Finally, we note that a ‘‘good’’ optimizing compiler is by
no means one that attempts to apply all possible analyses
and code transformations. Indeed, such a compiler would be
extremely costly to use because all this work will require a
great deal of time and effort. As a result, a large number of
programs would never be able to recover the investment in
optimization through a reduction of the aggregate running
time (taken over the life of the program). Instead, a good
optimizing compiler tends to be one that applies a limited
number of strategies very efficiently. In this way, a much
larger number of programs can benefit properly from
optimization.

OUTLOOK

As the complexity of hardware continues to grow, the need
for re-evaluation and further development of optimization
strategies is great. Current challenges include the need to
enable code to exploit increasing levels of architectural
parallelism at a low level, and to take the impact of a
variety of new hardware and operating system mechanisms
for multithreading into account. The widespread prolifera-
tion of a variety of handheld devices and telecommunica-
tions applications has led to the broader use of Java as a
programming language and the necessity of choosing
combinations of interpretation and dynamic compilation

OPTIMIZING COMPILERS 9



to minimize download time, execution time, memory usage,
and power consumption. Multisite and grid computing has
led to interest in the portability of code and thus to opti-
mization at run time (or a separation of basic translations
from the major optimizations). These ideas have given
impetus to the exploitation of dynamic optimization for
traditional languages, as well as the somewhat simpler
gathering of profile data by a compiler and its use in a
feedback loop that aims to improve the application of
optimizations, possibly in a manner that is specific to a
single execution. There are costs associated with the repla-
cement of code fragments during execution, as well as the
more obvious cost of any dynamic instrumentation needed
to determine the suitability of such replacement, which is
an area of active research and development. With the
continued innovation in computer architectures and the
growth in size of applications, computer jobs, and system
configurations, we expect to see innovations in the area of
compiler optimization for some time to come.

FURTHER READING

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques and Tools, Reading, MA: Addison-Wesley.

E. L. Leiss, Parallel and Vector Computing: A Practical Introduc-
tion, New York: McGraw-Hill.

S. S. Muchnik, Advanced Compiler Design and Implementation,
San Francisco, CA: Morgan Kaufmann Publishers.

H. Zima and B. M. Chapman, Supercompilers for Parallel and
Vector Computers, Reading, MA: Addison-Wesley.

BARBARA M. CHAPMAN

ERNST L. LEISS

University of Houston
Houston, Texas

10 OPTIMIZING COMPILERS



P

PARAMETER PASSING

Modern programming languages use various techniques
to pass parameters to a function (or method). We discuss
the techniques used in some of the more popular program-
ming languages in current use, namely C, C++, Ada, Java,
and C#, and mention some techniques found in other
languages.

INTRODUCTION

Suppose our programming language defines a function:

int idx = 1;

int arr[ ] = { 37, 12, 17 };

// Array of length 3, indices 0...2

void foo( int param )

{

idx++;

param++;

print( param ); // What is printed here?

}

In this example, as in all others, the parameters that are listed

with the function declaration are the formal parameters. The
parameters supplied in the function call are the actual
arguments (sometimes also known as the actual para-
meters). The function can be invoked as shown below:

foo( arr[ idx ] ); // What happens to arr?

The natural question, of course, is to ask what is printed on the

last line of function foo, and what are the array contents that

are printed after invoking foo?
Of course, experienced programmers will answer easily

the question in the language of their choice, but the answer
depends on the underlying decisions made in the design of
the particular programming language that dictates how the
parameters are actually beingpassed. For instance, hereare
some possible scenarios (all of which add one to idx):

1. param is simply a copy of arr[1]. In this case, param
is initially 12 and is incremented, and the value 13 is
printed. However, arr[1] (and thus the remainder
of arr) are unchanged.

2. param is a synonym for arr[1]. In this case, arr[1]
is incremented to 13.

3. param is a synonym for arr[idx], and since idx is
incremented to 2, param++ increments arr[2].

Because all of the above results could plausibly be the
desired outcome, each programming language provides
mechanisms to achieve at least one of these results. Need-
less to say, the example above, with just one integer

parameter and a few lines of code, is fairly simple. Thus,
a full programming language will have many complications
and subtleties that are beyond the scope of this article. The
remainder of this article describes the most common para-
meter passing mechanisms in five fairly similar languages
that are in common use today: C, C++, Ada, Java, and C#.
We also briefly mention parameter passing in other lan-
guages.

PARAMETER PASSING IN C

Call-By-Value

Before discussing call-by-value in C, it is helpful to explain
how values are treated in C (and similar languages such as
C++). C makes use of the notion of two types of values: an L-
value and an R-value. In C, an L-value is an expression that
refers to a region of storage that can be examined and stored
into. An R-value refers to a data value that is stored at some
address in memory. A literal constant can serve as an R-
value. Variables in C, such as x, �p, or a[i] have two
values: the L-value (address) and the R-value (contents
of that address).

In C, all parameters to functions are passed using the
mechanism of call-by-value. In call-by-value, the actual
argument is copied into the formal parameter (this is
Scenario 1 in the example in the introduction). So in call-
by-value, the formal parameter is a new local variable that
is initialized with the R-value of the actual argument. Call-
by-value has some limitations.

The first limitation is that call-by-value is expensive if
used on parameters that are large. Because C is not an
object-oriented language, most parameters are primitive
types or pointer variables. Thus, they are inexpensive to
copy. In original C, struct types (i.e., aggregates) could
not be passed as a parameter, and instead they are passed
indirectly by passing a pointer to the struct. Modern C
does allow passing of struct types; however, because of
the cost of copying, struct types are almost always
passed by using a pointer. Arrays could theoretically be
expensive to pass via call-by-value, but in C this is not an
issue because arrays in C are represented by a pointer
variable that points at a suitably large block of memory.
What is being passed is not the array but is the address of
the large block of memory that stores the array items.
(Unfortunately this means that an additional parameter
that represents the array size must also be passed, or some
other mechanism must be used.) Similarly, strings
are actually arrays of characters, and pointer variables
are used.

The second limitation is that call-by-value does not allow
the function to change the actual argument, which makes
routines such as swap, which would swap its two para-
meters, impossible to write directly.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Call-By-Passing Pointers

In C, as described in the previous section, arrays and
strings are passed by using a pointer to the block of memory
in which they are stored, as are structs. Call-by-value
guarantees that the value of the pointer variable is used, so
after the call returns, the pointer variable will be viewing
the same block of memory, but the contents of the block of
memory can change. This mechanism is also useful for
writing routines, such as swap, that change two variables.
Sample code is shown below:

void swap( int �px, int �py )

{

int tmp = �px;
�px = �py;
�py = tmp;

}

In this routine the two parameters represent the addresses (i.e.,

the L-values) of the two integers that are being swapped. To

invoke swap, we simply pass in two addresses (L-values) as

shown in the following fragment.

int x = 5;

int y = 7;

swap( &x, &y );

Call-By-Macro Expansion

Another alternative in C is the use of preprocessor macros.
These macros technically are not functions, and have sig-
nificant differences from functions. Because they look
enough like functions and are often used like functions,
we describe its parameter passing mechanism.

In the call-by-macro expansion, the actual arguments
are substituted textually in the macro body in all places
where the corresponding formal parameters appear. Then
the macro body replaces the macro call. Thus, in C, given
the macro:

#define CUBE( a ) ( (a) � (a) � (a) )

the statement

y = CUBE( x + 3 ) � 5;

is interpreted as

y = ( (x + 3) � (x + 3) � (x + 3) ) � 5;

Scenario 3, as described in the Introduction, can be

implemented straightforwardly in C if macros and the comma

operator are used:

#definefoo(param)(idx++,param++,print(param))

Macros have some distinct advantages over functions, but also

they have some tremendous liabilities. On the positive side,

macro parameters are typeless (one can pass an int, double,
etc. as a parameter).Macros avoid the overhead of a copy,which

can save time (but not as much time as was the case in the 1970s,

at the height ofC’s popularity). The time savingswas the original

motivation for the use of macros. Macros can be used to evade

call-by-value restrictions. Macros can also be used for very

tricky code in which several parameters can be combined to

form a resulting string that can then be the name of a variable.

Themajor problemwithmacros is that they are not semantically

equivalent to function calls. Most obviously, without the exces-

sive parenthesis shown in the macros the programmer runs the

risk of the macro expansion generating code that is wrong

because of precedence rules. For instance, with no parenthesis,

the macro is interpreted as

y = x + 3 � x + 3 � x + 3 � 5

Even with parenthesis, macro arguments are evaluated

as many times as needed in the expansion, so for instance

CUBE(sin(theta)) calls the expensive sin function three

times, thus losing any speed benefit that might have accrued.

And if the macro argument contains a side effect, as in

CUBE(++x), the macro call is unpredictable but definitely

not the same as a corresponding function call.

An additional concern with macros has to do with pro-
blems that can arise when variables in the macro expansion
collide with variables in the function that contains a call to
the macro. In this article’s last section, we see call-by-name,
which was prominently used in Algol 60. Call-by-name uses
variable capture to avoid these issues.

PARAMETER PASSING IN C++

C++ is designed for the most part as a superset of C, so all
parameter passing idioms described for C are valid in
C++. However, because passing pointers and using
macros are notoriously error-prone, C++ provides alter-
natives that are much safer than the corresponding C
constructs.

Inline Optimization

In C++, functions can be declared inline. When the compiler
inlines a function call, the effect is that the function call is
replaced by the body of the function, with the formal para-
meters replaced carefully by the actual arguments. How-
ever, if a formal parameter is used more than once, it is
evaluated only once, and its value is saved and reused for
the subsequent occurrences. This process makes an inline
function semantically equivalent to a normal function call,
differentiating it from a macro expansion.

When a C++ function is declared inline, the declaration
is considered nonbinding advice to the compiler. If the body
of the function is not suitably compact, or the actual argu-
ments are not relatively simple (or are aliased), the com-
piler is likely to avoid the optimization.

Call-By-Reference

In call by reference, the formal parameter is a synonym
(alias) for the evaluated argument (they have the same L-
values). A formal parameter that is declared with an & is
considered to be passed using call-by-reference semantics.

2 PARAMETER PASSING



Thus, Scenario 2 in the Introduction can be implemented
with the following code:

void foo( int & param )

{

idx++;

param++;

print( param ); // What is printed here?

}

When the call to foo is made, as before:

foo( arr[ idx ] ); // What happens to arr?

param becomes another name forarr[1] (becauseidx is 1 at

the time of the call). Call-by-reference makes it easy to write a

swap routine without using pointer variables:

void swap( int & x, int & y )

{

int tmp = x;

x = y;

y = tmp;

}

In this routine, the two parameters represent the two integers

that are being swapped. To invoke swap, we simply pass in two

integers as shown in the following fragment:

int xx = 5;

int yy = 7;

swap( xx, yy );

Call-by-reference requires that the actual argument be a

modifiable L-value (i.e., it can be assigned to; thus objects that

we declared with const are not acceptable arguments) and of

the same type, or in the case of inheritance, the actual argument

can be a public subclass of the formal parameter type. Call-by-

reference is typically implemented by the compiler by passing

invisibly the address of the actual argument, and then by

dereferencing the pointer variable that is received by the

function.

Call-By-Reference to a Constant

In C, when large aggregates need to be passed to a function,
a pointer variable is used to pass the address of the aggre-
gate, rather than an entire copy of the aggregate. But
working with pointer variables is clumsy. Consider the
following code:

int binarySearch( vector<int> arr, int x )

{ /� implementation not shown �/ }

In this code, even though binarySearch is a fast operation

(using O(log N) time), the code will require O( N ) time because

call-by-valuewillmandate a copyof theN-elementvector that
is passed as the first parameter. An alternative, supported in

other older languages such as Pascal, is pass by reference:

int binarySearch( vector<int> & arr, int x )

{ /� implementation not shown �/ }

This code will be much faster because it avoids the copy of

the vector. However, it is NOT semantically equivalent. If the

implementation resizes arr, or makes a change to arr, the
original version will not reflect a change in the actual argument,

whereas the new version will. In addition, the original version

works with constant (i.e., immutable)vectors; the new version

does not. Both problems are solved using call-by-reference to a

constant:

intbinarySearch( constvector<int>&arr,intx)

{ /� implementation not shown �/ }

In this code, the actual argument is still being passed by

reference. However, in the scope of binarySearch, arr is

treated as a constant. Thus attempts to resize or change arrwill

result in a compiler error. Consequently there is a guarantee that

when binarySearch returns, the actual argument will not

have been changed (it is possible to trick the compiler by using

type casts to remove the const, but doing so requires at least

some effort).

Call-by-reference to a constant also is sometimes known
as call-by-constant reference.

C++ Parameter Passing Summary

For the most part, parameter passing in C++ either uses
call-by-value (the default), call-by-reference, or call-by-
reference to a constant. Macros are now rarely used, and
modern optimizing compilers perform inline optimization
whether or not it is requested by the programmer. The
decision on which parameter passing mechanism to use is
critical, and the following table summarizes the general
principles on which mechanism is appropriate:

Call-by-reference Actual argument may need to be changed.
In this case, it does not matter what is

the type of the actual argument.
Call-by-value Actual argument should not be changed,

and copy cost is minimal.
The actual argument is usually a primitive

or pointer type or a class type that is
unusually easy to copy.

Call by reference
to a constant

Actual argument should not be changed,
and copy cost is expensive.

The actual argument is a class type
such as vector.

PARAMETER PASSING IN ADA

Ada’s approach to parameter passing is somewhat different
from C++’s approach. In C++, when we have an actual
argument that we want to be sure will not be changed by
the function, the programmer will declare that either call-
by-value or call-by-reference to a constant is used, because
either mechanism provides (for the most part) the guaran-
tees that we want. However, the programmer must make a

PARAMETER PASSING 3



decision on whether a copy of the actual argument should be
made (call-by-value) or hidden pointers should be used
(call-by-reference to a constant). Ada takes the position
that this choice is best left to the compiler. The programmer
should specify simply that the formal parameter should be
‘‘read only.’’

Thus, in Ada, parameters are passed in one of three
modes, representing roughly ‘‘read only,’’ ‘‘read and write,’’
and ‘‘write only.’’ These parameters are in, in out, and
out, respectively. The default mode is in.

A second difficulty is that in the call bar(x,y), there is
no way to tell, without looking at the signature of bar,
whether it is possible thatxandy can be changed in the call.
Ada avoids this problem by differentiating between ‘‘func-
tions’’ and ‘‘procedures.’’ A function in Ada must have a
return value, and the caller cannot ignore the return value.
A procedure in Ada cannot have a return value. Ada
requires that all parameters to functions are in para-
meters. Thus, it is guaranteed that the actual arguments
to a function will not be changed during the execution of the
function call, and it is easy to distinguish between a func-
tion and a procedure. However, as in C++, in a procedure
call, there is no way to tell how parameters are being passed
without looking at the procedure’s signature.

In Mode

The formal parameter is a constant and permits only read-
ing of the value of the associated actual parameter. The
formal parameter cannot be assigned to (so it cannot appear
on the left-hand side of an assignment statement). If the
parameter is a primitive, then a copy is made. Otherwise, a
reference is used. Thus, the Ada compiler makes these
decisions that can cause significant performance problems
for C++ programmers.

In Out Mode

The formal parameter is not a constant and permits both
reading and writing the value of the associated actual
parameter. The formal parameter can appear on both sides
of an assignment statement.

If the parameter is large, then the compiler will probably
elect to pass by reference, as in C++. Arrays are passed this
way, and some types are required by the language speci-
fication to be passed by reference.

Call-By-Value Return

However, if the parameter is a primitive, then the language
specification requires that a copy is made when the proce-
dure commences (recall that all function parameters are
passed using in mode). When the procedure returns, the
current state of the formal parameter is copied back into the
actual argument. This is known as call-by-value return, or
sometimes as copy-in, copy-out.

In most circumstances, call-by-value return and call-by-
reference achieve the same semantic result as allowing the
actual argument to be changed by the procedure. However,
there are some subtle cases, many of which involve para-
meter aliasing, when call-by-value return and call-by-refer-
ence give different results. Consider the following contrived

example:

u : integer := 5;

procedure silly( x: in out integer ) is

begin

u := 0;

x := x + 1;

end silly;

Suppose we invoke silly(u). Using call-by-reference as the

parameter passing mode would set u to 1. However, the result is

different if call-by-value return is used, because since x will be a

copy of u, the value of x prior to the procedure return will be 6

and then that value is copied back to u.
The Ada Language Specification allows the compiler to

choose either method to pass record types using in out
mode, and thus in the presence of aliasing, the compiler’s
choice affects the behavior of the program. Ada programs
that rely on knowing which parameter passing mechanism
has been chosen by the compiler are considered nonporta-
ble. The program above is portable because, as was men-
tioned, primitive types must use call-by-value return to
pass in out parameters.

Out Mode

In early versions of Ada, the compiler permitted only to
write the value of the associated actual parameter, and the
formal parameter could appear only on the left-hand side of
an assignment statement. This rule was relaxed, so now the
formal parameter is a variable and may be assigned values;
however, its initial value should be considered undefined
(because if the initial value is important, then in out is the
correct parameter passing mode). Technical issues involve
the idea that the actual argument is undefined, but might
be partially constructed, and its partial initialization
should not be lost. As a result, parameter passing is similar
to in out parameters.

Named Parameters

The print procedure shown below is typical of procedures
that have lots of parameters: Many of the parameters
have the same type, and it is difficult to remember the
order of the parameters. The normal way of invoking the
procedure is to use positional parameters: The caller must
list the parameters in the same order that the function does.
If the caller of the procedure supplies the last parameters in
the wrong order, the program will still compile, unless
parameters of different types are interchanged. Obviously
this procedure is prone to error.

procedure print( file_name : String;

indent : integer;

line_len : integer;

lines_per_page : integer );

Ada allows the use of named parameters. For instance the

following calls are all acceptable:

print( file_name => "foo.txt", indent => 5,

line_len => 72, lines_per_page => 62 );

4 PARAMETER PASSING



print( file_name => "foo.txt", indent => 5,

lines_per_page => 62, line_len => 72 );

print( lines_per_page => 62, indent => 5,

line_len => 72, file_name => "foo.txt" );

Each actual argument is associated specifically with a formal

parameter; the order does not matter. It is also possible to mix

the positional arguments and the named arguments, but the

positional arguments must all come first, and in their correct

positions. So it is customary to make sure the most important

formal parameters are specified first in the signature. Here are

examples of a valid mixed parameter call:

print( "foo.txt", line_len => 72, indent => 5,

lines_per_page => 62 );

print( "foo.txt", indent => 5,

lines_per_page => 62, line_len => 72 );

print( "foo.txt", 5,

lines_per_page => 62, line_len => 72 );

PARAMETER PASSING IN JAVA

In Java, the only parameter passing mechanism available
is call-by-value. For value types (which are primitive types,
only), the value is copied. For reference types (which are
everything else, including strings, arrays, and collections),
this means that the value of the reference variable, rather
than the entire object being referenced, is copied. Thus, the
copy is never expensive.

As in C, a mechanism exists to evade the call-by-value
restriction and to simulate call-by-reference. In Java,
because the state of the object that is being accessed by
the formal parameter’s reference variable can always be
changed, information can be passed back to the caller by
embedding it in an object and passing a reference to the
object. Sometimes the object is simply an array of length 1.
Other times it is a more complex entity. Some routines, such
as swap, are impossible to write cleanly in Java.

PARAMETER PASSING IN C#

The C# model is similar to the Java model, with a few
additions. As in Java, a distinction exists between value
types and reference types, and although value types can
include types that are not primitives (known as struct
types), the general expectation still exists that parameter
passing using call-by-value should never be expensive.
Thus, almost all parameter passing in C# is similar to
Java and the default is call-by-value.

However, C# also allows call-by-reference. Both the
formal parameter and actual arguments must be preceded
with the keyword ref (if exactly one of the parameter/
argument pair contains ref, it is an error). Here is sample
C# code for swap:

void swap( int ref x, int ref y )

{

int tmp = x;

x = y;

y = tmp;

}

In this routine, the two parameters represent the two integers

that are being swapped. To invoke swap, we simply pass in two

integers as shown in the following fragment.

int xx = 5;

int yy = 7;

swap( ref xx, ref yy );

Requiring the ref prior to the actual argument solves C++’s
problem that in C++, the caller cannot distinguish a para-
meter passed using call-by-reference from call-by-value or
call-by-constant reference without seeing the correspond-
ing function signature.

C# also provides out parameters that behave somewhat
like in Ada. As withrefparameters, the keywordoutmust
be used prior to the formal parameter and the actual
argument. The compiler will assume that the out formal
parameter is uninitialized on entry to the function and will
verify that it is definitely assigned before the function
return.

PASSING A FUNCTION AS A PARAMETER

All of the languages that we have examined provide the
ability to pass a function (or procedure) as a parameter to a
function (or procedure). In all cases, the syntax is definitely
nontrivial, but one of two competing philosophies is as
follows.

1. Pass a pointer to the function as a parameter (C, C++,
Ada).

2. Embed the function inside a class type, and pass a
reference (or copy) of the class type as a parameter
(C++, Ada, Java, C#). This idea is often known as a
function object.

Passing a Pointer to a Function in C, C++, and Ada

Passing the pointer is generally considered an inferior
solution; among the languages we have examined, this
solution is most appropriate in C. The following function
applies function func to every element in array input and
produces the answer in the corresponding slots of array
output:

void evaluate( const double input[ ],

double output[ ],

int n, double ( �func ) ( double x ))
{

int i = 0;

for( i = 0; i < n; i++ )

output[i ] = (�func) ( input[i ] );

}

The onerous syntax for a pointer to function in C can be

simplified in modern C with:

PARAMETER PASSING 5



void evaluate( const double input[ ],

double output[ ],

int n, double func( double x ))
{

int i = 0;

for( i = 0; i < n; i++ )

output[i ] = func( input[i ] );

}

In either case, the following code fragment computes some

square roots and logarithms:

double arr[ ] = { 8.5, 7.9, 4.2, 7.3 };

double roots[ 4 ];

double logs[ 4 ];

evaluate( arr, roots, 4, sqrt );

evaluate( arr, logs, 4, log10 );

This code also works, unchanged in C++, but as mentioned it
is considered by modern C++ programmers to be an inferior
solution to the one shown later that makes use of function
objects. The same basic logic can be used in Ada95, as shown
in the following code:

with Text_IO; use Text_IO;

with Numerics.Elementary_Functions;

use Numerics.Elementary_Functions;

procedure Function_Pointers is

type Array_Type is array( Integer range <> )

of Float;

type Math_Func is access function (X : Float) :

Float;

procedure Evaluate( Input : Array_Type;

Output : out Array_Type;

func : Math_Func ) is

begin

for( I in Input’range ) loop

Output[ I ] := Func.all( Input[ I ] );

end loop;

end Evaluate;

begin

Arr:Array_Type(1..4):={8.5,7.9,4.2,7.3};

Root : Array_Type( 1..4 );

Logs : Array_Type( 1..4 );

Evaluate( Arr, Roots, Sqrt’access );

Evaluate( Arr, Logs, Log’access );

end Function_Pointers;

Function Objects in Ada, Java, and C#

In these languages, functions are passed to parameters by
embedding each function in a class type, and then by
creating an instance of the class type. Then, a reference
to the object (containing the function) can be passed as a
parameter. In these languages, inheritance in the form of
an interface is used to specify the signature of the function
being passed. Here is a Java example:

interface MathFunctionObject

{

double func( double x );

}

class FunctionPointers

{

public static void evaluate

( double [ ] input,

double [ ] output,

MathFunctionObject f )

{

for( int i = 0; i < input.length; i++ )

output [i ] = f.func( input [i ] );

}

public static void main( String [ ] args )

{

double [ ] arr = { 8.5, 7.9, 4.2, 7.3 };

double [ ] roots = new double [4 ];

double [ ] logs = new double [4 ];

evaluate( arr, roots, new SqrtObject( ) );

evaluate( arr, logs, new Log10Object( ) );

}

private static class SqrtObject

implements MathFunctionObject

{

public double func( double x )

{ return Math.sqrt( x ); }

}

private static class Log10Object

implements MathFunctionObject

{

public double func( double x )

{ return Math.log10( x ); }

}
}

Function Objects in C++

In C++, inheritance is replaced by template expansion and
overloading of operator(). The syntactic tricks are that
evaluate is expanded once for each function object type
and func.operator() is replaced by simply func.

template <typename MathFunctionObject>
void evaluate( const vector<double> & input,

vector<double> & output,

MathFunctionObject func )

{

for( int i = 0; i < input.size( ); i++ )

output[ i ] = func( input[ i ] );

}

class SqrtObject

{

public:

double operator() ( double x ) const

{ return sqrt( x ); }

};

class Log10Object
{

public:

6 PARAMETER PASSING



double operator() ( double x ) const

{ return log10( x ); }

};

int main( )

{

vector<double> arr( 4 );

arr[ 0 ] = 8.5; arr[ 1 ] = 7.9;

arr[ 2 ] = 4.2; arr[ 3 ] = 7.3;

vector<double> roots( 4 );

vector<double> logs( 4 );

evaluate( arr, roots, SqrtObject( ) );

evaluate( arr, logs, Log10Object( ) );

}

Passing Functions in Functional Languages

In other languages, particularly functional languages such
as Scheme, ML, or Haskell, functions are treated as just
another kind of value and do not require the baroque syntax
of the languages we have illustrated in this section.

ADDITIONAL FEATURES

Two interesting features that are somewhat common are
the use of default parameters and variable numbers of
arguments.

Default Parameters

Default parameters are found in both C++ and Ada. In these
languages, formal parameters can be provided with default
values that will be used if the actual argument is omitted.

Here is a C++ example:

double myLog( double n, int base = 10 )

{

return log10( n ) / log10( base );

}

In this example, the call myLog(n,2) is valid, and so is

myLog(n). In the later case, base will be presumed to be 10.

Significant rules exist regarding when and where default para-

meters can be used, and the parameters do not mix well with

other features, such as inheritance. The Ada code is comparable

with its C++ equivalent.
Because many languages support function overloading

(allowing the same function name to be used as long as
parameter signatures differ), default parameters are not
essential and can be viewed as strictly a syntactic conve-
nience.

Variable Arguments

Variable argument lists, in which an unknown number of
actual arguments can be passed, are found in C, C++, C#,
and later versions of Java (starting with Java 5). In all
instances, zero or more ‘‘known’’ actual arguments are
passed, followed by the ‘‘unknown’’ group. Strictly speak-
ing, variable arguments are a convenience, because one can

always achieve the same effect by using an array to encap-
sulate the unknown group of actual arguments. Not sur-
prisingly, then, Java 5 and C# take a similar approach in
which the unknown actual arguments are accessed by an
array. Here is example code for implementing a variable
argument max function in Java:

public static int max( int first, int ... rest )

{

int maxValue = first;

for( int i = 0; i < rest.length; i++ )

if( rest[ i ] > maxValue )

maxValue = rest[ i ];

return maxValue;

}

The same idiom is used in C#, via params arrays:

int max( int first, params int [ ] rest )

{

int maxValue = first;

for( int i = 0; i < rest.Length; i++ )

if( rest[ i ] > maxValue )

maxValue = rest[ i ];

return maxValue;

}

In both languages, these functions support calls such as

max(3,5,2,1,4), max(3,5), and max(3). Also supported

is max(3,new int[]{5,2}), which illustrates how the com-

pilers are really handling the situation (and how similar C# and

Java really are).

C and C++ use a significantly uglier strategy of invoking
macros that manipulate the runtime stack. The calls to the
macros are platform independent, although the implemen-
tation of the macros obviously is not.

PARAMETER PASSING IN OTHER LANGUAGES

Call-By-Name

Call-by-name is a parameter passing mechanism that is
most associated with the influential 1960s programming
language, Algol-60. In call-by-name, the actual arguments
are substituted in the macro body in all places where the
corresponding formal parameters appear. Although this
sounds exactly like call-by-macro expansion, which is
used in C (and also C++), the important difference is that
the substitution is not textual. Rather, it is capture avoid-
ing, meaning that care is taken to ensure that actual
arguments and local function variables that have identical
names are treated differently. For instance, if the actual
argument is arr[idx] and the function also contains a
local variable named idx, when arr[idx] is substituted
for all occurrences of the formal parameter, idx represents
the variable in the caller’s context, rather than the local
variable named idx in the function. This is done using a
structure known as a thunk.

Call-by-name has two desirable properties. First, if an
actual argument is not actually needed in the function, it is
not evaluated. Here is a simple example:

PARAMETER PASSING 7



int foo( bool cond, int x, int y )

{

if( cond )

return x;

else

return y;

}

Consider either of the following calls: foo(true,u,1/u) or

foo(false,loop(u),bar(u)). In the first call, if u is 0,

the C parameter passing mechanism, which is call-by-value,

will cause a divide-by-zero error. But using call-by-name,

because the formal parameter y is never needed, no divide-

by-zero will occur. In the second case, if function loop is

nonterminating, if call-by-value is used, then foo never

finishes (actually it never starts). With call-by-name, loop is

never called. This process makes it easier to prove program

properties mathematically.

The second desirable property is that it allows functions
to be passed as parameters via a mechanism known as
Jensen’s device. The classic Algol example is given by the
following Algol code:

real procedure SIGMA(x, i, n);

value n;

real x; integer i, n;

begin

real s;

s := 0;

for i := 1 step 1 until n do

s := s + x;

SIGMA := s;

end

To find the sum of the first 15 cubes, we can call

SIGMA(i�i�i,i,15). In this call, formal parameter x is

replaced with i�i�i.
Unfortunately, call by name has some significant pro-

blems. First, it can be challenging to write even seemingly
simple routines like swap, because of the potential of calls
such as swap(v,arr[v]). With call-by-name, once v is
changed in the swap routine, it will be impossible to change
the correct element in arr. Second, the implementation of
thunks is somewhat cumbersome. And third, actual argu-
ments are reevaluated every time the corresponding formal
parameter is used, which can be very inefficient. Conse-
quently, although Algol 60 was itself an extremely influen-
tial language, and introduced call-by-value parameter
passing which is still used today, call-by-name parameter
passing has not stood the test of time, and is mostly of
historical interest.

Call-by-Need

Call-by-need is like call-by-name, except that when an
actual argument is evaluated, its value is saved, in a
process called memoization. If the formal parameter reap-

pears, rather than reevaluating the actual argument, the
saved value is used. In imperative languages, such as all of
the languages described earlier in this article, this strategy
does not work, because the value of the actual argument
could change because of side effects. However, in purely
functional languages, with no effects, call-by-need pro-
duces the same results as call-by-name, with each actual
argument evaluated at most once (and sometimes not at
all). In addition, routines such as swapping are not expres-
sible anyway, and thus call-by-need can be practical, and is
in fact implemented in some functional languages, most
notably Haskell.

SUMMARY

Although parameter passing seems like a simple topic, in
reality, many options and subtleties can emerge. One
appeal of functional languages is the relatively simple
syntax involved in parameter passing. C and Java limit
parameter passing to call-by-value and have standard
workarounds to allow call-by-reference to be simulated,
and to pass functions. Ada’s parameter passing is nice
because it distinguishes between the mode (in, out, or in
out) rather than the underlying implementation used to
achieve the effect. C++ has the most complex parameter
passing mechanisms, including the unfortunate require-
ment for the programmer to choose between call-by-value
and call-by-reference to a constant. C# parameter passing
blends features from Java, Ada, and C++, combining the
best features.

FURTHER READING

B. Kernighan and D. M. Ritchie, The C Programming Language,
2nd ed., Englewood Cliffs, NJ: Prentice-Hall, 1988.

B. Stroustrup, The C++ Programming Language, 3rd ed., Reading,
MA: Addison-Wesley, 1997.

Annotated Ada Reference Manual, ISO/IEC 8652:1995(E) with
Technical Corrigendum 1, 2000.

J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Program-
ming Language Specification, 3rd ed., Boston, MA: Addison-Wes-
ley, 2005.

A. Hejlsberg, S. Wiltamuth, and P. Golde, The C# Programming
Language, 2nd ed., Boston, MA: Addison-Wesley, 2006.

P. Naur, Revised Report on the Algorithmic Language ALGOL 60,
Commun. ACM, 3: 299–314, 1960.

S. P. Jones, Haskell 98 Language and Libraries: The Revised
Report, Cambridge: Cambridge University Press, 2003.

R. W. Sebesta, Concepts of Programming Languages, 8th ed.,
Boston, MA: Addison-Wesley, 2008.

MARK ALLEN WEISS

Florida International
University

Miami, Florida

8 PARAMETER PASSING



P

PROGRAM TRANSFORMATION: WHAT, HOW,
AND WHY

WHAT: THE MANIPULATION OF COMPLEX VALUES

A typical computer program consists of a sequence of
instructions that manipulate values belonging to a variety
of simple data types. In this context, a data type is con-
sidered to be simple if its values have a simple syntactic
structure. Integers, reals, Booleans, strings, and charac-
ters are all examples of simple data types. In contrast, when
viewed as a value, the sequence of characters that make up
a program written in a high-level language such as Java or
Cþþ can be seen as having a highly complex syntactic
structure.

Informally speaking, a good litmus test for determining
whether a particular value is simple is to consider the
complexity of user-defined methods capable of reading in
such a value from a file, storing this value internally within
a program, and writing this value to a file. Thinking
along these lines reveals that typical computer languages
provide input/output (I/O) support for simple types (e.g.,
getc, read, input1, inputN, put, print, and write) as well as
primitive support for basic operations on these types (e.g.,
equality comparison, relational comparisons, addition, and
subtraction).

A similar level of support is generally not provided for
values having syntactic structures that cannot be directly
modeled in terms of simple values. Thus, as the structure of
the data becomes more complex, a greater burden is placed
on the programmer to develop methods capable of perform-
ing desired operations (e.g., I/O, equality comparison, inter-
nal representation, and general manipulations). In the
limit, the techniques employed for structure recognition
include the development of domain-specific parsers, reuse
of general-purpose context-free parsers such as LL, LALR,
LR parsers (1), and even state-of-the-art parsers such as
Scannerless Generalized LR (SGLR) parsers (2,3). The
values constructed by these tools are typically output using
sophisticated algorithms such as abstract pretty printers
(4,5).

Parsers such as LL, LALR, LR, and SGLR parsers all
ultimately make use of powerful parsing algorithms for
recognizing the structure of a sequence of symbols. From a
theoretical perspective, these parsing algorithms are cap-
able of recognizing the class of languages known as context-
free languages. This class of languages is interesting
because it represents the most complex class that can be
efficiently recognized by a computer using general-purpose

algorithms. The syntactic structure of modern program-
ming languages typically fall in the class of context-free
languages or slight variations thereof (6).

Figure 1 gives an example of an extended-BNF
grammar fragment describing the syntactic structure of
a simple imperative language we will call Imp. The
directives %LEFT_ASSOC ID and %PREC ID are used
to declare and assign precedence and associativity to opera-
tions and productions in the grammar (for more on pre-
cedence and associativity, see Ref. 1). These assignments
allow portions of the grammar that would otherwise be
ambiguous to be uniquely parsed. Informally summarized,
the language described by the grammar fragment defines
an Imp program as consisting of a single block containing a
statement list. In turn, a statement list consists of zero or
more labeled statements. A label may be optionally asso-
ciated with a statement. A statement can either be a block,
one of three different kinds of ‘‘if’’ statements, a ‘‘while’’
loop, an assignment, a ‘‘goto’’ statment, or a statement
called ‘‘skip’’ whose execution does nothing (i.e., ‘‘skip’’ is
a no-op). Programs written in this language can be parsed
using an LALR parser that has been extended with asso-
ciativity and precedence.

As a result of their context-free roots, the structure of
character sequences corresponding to typical computer
programs can be modeled in terms of a tree structure
(also known as a term structure). Tree structures come
in two basic flavors: parse trees, which literally reflect the
structure described by the context-free grammar used to
define the programming language, or abstract syntax trees,
which capture the essence of the structure described by the
context-free grammar (for more on extended-BNF gram-
mars and abstract syntax, see Ref. 7). More compact inter-
nal representations such as directed acyclic graphs (DAGs)
are also possible; but a discussion of these representations
lies beyond the scope of this article.

HOW: EQUATIONAL REASONING – THE ESSENCE
OF PROGRAM TRANSFORMATION

Program transformation concerns itself with the manipu-
lation of programs. Conceptually speaking, a (program)
transformation system accepts a source program as its
input data and produces a transformed program known
as a target program as its output data. Thus, a transforma-
tion system treats programs in much the same way that
traditional programs treat simple data. In general, systems
that share this view of programs-as-data are called meta-
programming systems. A compiler is a classic example of a
meta-programming system.

In spirit, the goal in program transformation is to
manipulate programs using techniques similar to the tech-
niques used by mathematicians when they manipulate
expressions. For example, in mathematics, the expression
x^ true can be simplified to x. Similarly in Java, the
sequence of assignments x ¼ 5; x ¼ x can be simplified to

This work was supported in part by the United States Department
of Energy under Contract DE-AC04-94AL85000. Sandia is a multi-
program laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy.
Victor Winter was also partially supported by NSF grant number
CCR-0209187.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



the single assignment x¼ 5. In Boolean algebra, the expres-
sion e1_ e2 is equivalent to e2_ e1 for any arbitrary Boo-
lean expressions e1 and e2. However, in Java, Boolean
expressions are conditionally evaluated1 and, as a result,
e1ke2 is not equivalent to e2ke1 (consider the evaluation of
the Boolean expression truek4=0< 5). On the other hand, in
Java, a conditional statement of the form if (BE) stmt1; else
stmt2; is equivalent to if (!(BE)) stmt2; else stmt1; for any
Java Boolean expression BE and Java statements stmt1

and stmt2. Having seen a few examples of manipulation, let
us take a more detailed look at how mathematical expres-
sions can be manipulated in general through a process
known as equational reasoning.

Equational Reasoning: A Technique for Mathematical
Manipulation

In mathematics, there are axioms (i.e., laws) and theorems
stating how expressions of a certain type (e.g., Boolean
expressions) can be manipulated. Axioms and theorems are
oftentimes given in the form of equations relating two
syntactically distinct expressions. Figure 2 gives a stan-
dard set of axioms defining a Boolean algebra.

The axioms for Boolean algebra provide us with the basis
for manipulating Boolean expressions. In mathematics,
when manipulating a mathematical expression, a common
goal is the simplification of that expression. In math
classes, problems are often given in which the goal is to
simplify an expression until it can be simplified no further.
This activity is referred to as solving the expression, and the
simplified form of the expression is called the answer. In the
context of equational reasoning, such an answer is called a
normal form. For example, the normal form of 7 � 7þ 1 is

50. In this article, we will use the terms rewriting and
simplification interchangeably.

In addition to expression simplification, in mathematics,
one is also interested in knowing whether one expression is
equal to another expression. This activity is known as
theorem proving. Theorems have the general form: e1 ¼
e2 if cond, where cond defines the conditions under which
e1 ¼ e2 holds. In the degenerative case, where e1 ¼ e2
always holds, one may drop the conditional portion and
simply write the theorem as e1 ¼ e2.

Suppose that one is interested in knowing whether or
(b, b) ¼ b is a theorem, where or(b, b) is the prefix form of the
Boolean expression b_ b. How does one go about proving
such a theorem? One approach for proving a theorem of the
form e1 ¼ e2 is to separately try to rewrite e1 and e2 into
their normal forms and then compare the results. A varia-
tion of this idea is to pick whichever term e1 or e2 is more
complex and rewrite it in the hopes that it can be simplified
to the other term. Having said that, we will view the proof of
or(b, b) ¼ b in terms of a simplification problem. In parti-
cular, we are interested in rewriting the expression or(b, b)
to b, which conveniently already happens to be in its normal
form, thereby proving the theorem or(b, b)¼ b. The proof of
or(b, b) ¼ b is shown in Fig. 3. An important thing to note
about the sequence of ‘‘simplifications’’ that are applied to
or(b, b) is that they are anything but simple. It turns out
that, in the context of first order logic, there is no universal
definition for the notion of simplification that can be used to
prove all theorems. Indeed, it is well known that theorem
proving in the realm of first-order logic is, in fact, undecid-
able. The implications of this observation is that the com-
plete automation of Boolean simplification is not realistic.

Operationally, the simplifications shown in Fig. 3 are
accomplished through a process known as equational rea-
soning, which is based on equational logic (8). Informally1This form of evaluation is also referred to as short-circuiting.

Figure 1. A grammar fragment of a simple imperative language called Imp.

2 PROGRAM TRANSFORMATION: WHAT, HOW, AND WHY



stated, equational reasoning is the notion that ‘‘equals may
be substituted for equals’’(8). The axioms of Boolean alge-
bra shown in Fig. 2 provide us with an initial set of equal
quantities in the form of equations, and it is instances of
these axioms that are used in the proof shown in Fig. 3.

Equational reasoning is a cornerstone of mathematics
and is an indispensable tool at the mathematician’s dis-
posal when it comes to reasoning about expressions. In
theory, the concepts and mechanisms underlying equatio-
nal reasoning should also be adaptable to reason about and
manipulate programs. Just as in mathematics, in computer
science there are axioms and theorems stating how pro-
gram structures belonging to a given language relate to one
another. Realizing this fact, our original definition of pro-
gram transformation can be refined as follows:

Program transformation involves the discovery and develop-
ment of suitable axioms and theorems and their application to
programs in accordance with the laws of equational logic to
achieve a particular goal.

The Mechanism of Equational Reasoning

In order to consider manipulating programs in the way
mathematicians manipulate expressions, it is helpful to
first analyze and abstract the techniques and concepts
underlying equational reasoning. In addition, we are inter-
ested in knowing the extent to which various techniques
and processes can be automated. Ideally, we are aiming for
a fully automated system that, when presented with a
program and a goal (e.g., simplification), will produce an
output program satisfying that goal.

Variables and Matching. In equational reasoning, the
variable plays an important role. For example, the axioms
in Fig. 2 make use of the variables x, y, and z. Variables allow
equations to be written that capture general relationships
between expression structures. Matching (8) is an activity
involving variables that is very important in equational
reasoning. Let e denote an expression we are interested in
manipulating, and let e1 ¼ e2 denote the equation we are
considering using to manipulate e. Matching allows us to
determine whether e isan instanceof e1 or e2. For example, in
the proof in Fig. 3 it is possible to rewrite or(b, b) to and(or(b,
b), true) using the equation and(x, true) ¼ x and realizing
that or(b, b) is an instance of x (i.e., the variable x can denote
a quantity like or(b, b)). Similarly, it is possible to rewrite the
expression or(b, and(b, not(b))) to or(b, false) by using the
equation and(x, not(x)) ¼ false and realizing that the sub-
expression and(b, not(b)) is an instance of and(x, not(x)).

Let e denote an expression that may contain one or more
variables and let t denote an expression containing no

variables. We will write e� t to denote the attempt to match
e with t. We will refer to e� t as a match equation. A match
equation is a Boolean-valued test that either succeeds, or
fails. If a match equation succeeds, then it means that t is an
instance of e, which more specifically means that there exist
values that when substituted for the variables in e will
produce the expression t. For example, if we substitute b for
x in the expression and(x, not(x)), we get and(b, not(b)), thus
and(x, not(x)) � and(b, not(b)) succeeds under the substi-
tution x 7! b. Substitutions are abstractly denoted by the
symbol s. The act of replacing the variables in an expres-
sion e as defined by is known as applying the substitution s

to e and is written s(e).
Matching-related concepts have been heavily

researched. Under suitable conditions, it is appropriate
to use more powerful algorithms to construct an expres-
sion that is an instance of two other expressions. These
algorithms include unification (9), AC-matching (10), AC-
unification (11), and even higher-order unification and
matching (12).

Equation Orientation, Confluence, and Termination.
Given an expression t, a crucial aspect of equational reason-
ing is how one makes the decision regarding which equation
should be used to simplify t or one of its subexpressions. In
the realm of rewriting, the complexity of the decision-
making process has been simplified by orienting equations.
For example, instead of writing e1 ¼ e2, one would write
e1! e2. An oriented equation of the form e1! e2 is called a
rewrite rule. The orientation e1! e2 constrains the equa-
tional reasoning process to the replacement of instances of
e1 by instances of e2 and not the other way around2.

Orienting equations into rewrite rules greatly simplifies
the task of deciding which rewrite rule should be applied to
a given term. However, equation orientation does not elim-
inate the decision altogether. In general, expressions still
exist to which two or more competing rules apply (see the
next subsection for more details on rule application). Under
such conditions, we say that the rules interfere with one
another. The simplest example of a pair of interfering rules
are two rewrite rules having identical left-hand sides (e.g.,
e1! e2 and e1! e3). Ideally, we would like to have a set of
rules that do not interfere with each other, or at least know
that if rules do interfere with one another the interference
somehow does not matter. A consequence of the notion of
‘‘interference not mattering’’ is that the normal form for an

2A discussion of the techniques used to decide how equations
should be oriented lies beyond the scope of this article.

Figure 2. The standard axioms for a Boolean algebra.

PROGRAM TRANSFORMATION: WHAT, HOW, AND WHY 3



expression, when it exists, must be unique. In general, rule
sets having the property of ‘‘interference not mattering’’ are
said to be confluent or equivalently Church–Rosser (8,13).
Formally, the Church–Rosser property is defined as
e1$
�

e2) e1 # e2. Informally, this property means that
expressions that are equal can always be joined through
the application of rewrite rules (i.e., oriented equations) in
the (Church–Rosser) rule set. In other words, given a rule
set R, we say that two expressions can be joined if they both
can be rewritten to the same expression using only the
rewrite rules found in R.

An important result concerning the confluence/Church–
Rosser property is that it is possible to mechanically check
whether a rule set possesses this property. It is also possible
in certain cases to convert a rule set that is not confluent
into an equivalent rule set that is confluent (8).

Confluence is a highly desirable property for a rule sets
to possess because it implies that the decision of which
order rules should be applied during the course of an
equational reasoning session is immaterial. Thus, the algo-
rithm driving the equational reasoning process is trivial,
one simply applies rules where ever and whenever possible
secure in the knowledge that the rewriting process will
always arrive at the same normal form, when it exists.

When does a normal form not exist? Given a confluent
rule set, the only circumstances under which a normal
form does not exist is if the rule set is nonterminating.
For example, consider the rule set consisting of the
single rule x! f ðxÞ. This rule set is trivially confluent
but is nonterminating and therefore produces no normal
forms. Using this rule set to ‘‘simplify’’ the expression b
will yield the nonterminating sequence of rewrites
b! f ðbÞ! f ð f ðbÞÞÞ! . . .. A rule set is said to be terminat-
ing if every simplification sequence eventually produces a
normal form. The combination of confluence and termina-
tion let us conclude that all expressions have a normal form
and that their normal forms are unique.

In general, the problem of showing that a rule set is
terminating is undecidable. However, in practice one can
often show that a particular rule set is terminating. As a
result of the highly desirable properties of rule sets that are
confluent and terminating, the termination problem is a
heavily researched area in the field of rewriting (8).

Rule Extensions and Application. The basic notion of a
rewrite rule can be extended in two important ways. The
first extension allows a label to be associated with a basic
rewrite rule. The result is called a labeled rewrite rule.
Labeled rewrite rules typically have the form label:
lhs! rhs, where lhs and rhs are expressions. A transfor-

mation system supporting labeled rewrite rules allows the
option of labeling rewrite rules and treats a reference to a
label as a shorthand for a reference to the rule.

In the second extension, a labeled rewrite rule can be
extended with a condition. The result is called a labeled
conditional rewrite rule. Conditions can take on a number
of forms, but all ultimately can be understood as a Boolean
condition that enables or prohibits a rewrite rule from being
applied. Consider the rule x=x! 1 if x 6¼ 0. In this article, a
labeled conditional rewrite rule has the form label:
lhs! rhs if condition. We will also only consider a
restricted form of condition consisting of Boolean expres-
sions involving match equations as defined in the variables
and matching subsection.

Let r denote an arbitrary rewrite rule and let e denote an
expression. If r is used as the basis for performing a
manipulation of e, we say that r is applied to e, which is
what we mean when we say rule application. More speci-
fically, when using a conditional rewrite rule of the form
lhs! rhs if cond to simplify an expression t, one first
evaluates the Boolean expression lhs� t^ cond. If this
Boolean expression evaluates to true and produces the
substitution s, then t is rewritten to rhs0, where rhs0 ¼
sðrhsÞ is the instance of rhs obtained by applying the
substitution s to the expression rhs.

Program Fragments as ‘‘Expressions’’. Thus far, we have
given an overview of the mechanisms underpinning rewrit-
ing. However, we have not said much about notations for
describing expressions. When manipulating Boolean
expressions, the choice of notation is fairly straightforward.
One can, for example, write a Boolean expression in infix
form e1 _ e2 or in prefix form orðe1; e2Þ. How do these ideas
translate to program structures? One possibility is to
express code fragments in prefix form. However, there
are some disadvantages to such an approach. One disad-
vantage is that there is some notational complexity asso-
ciated with prefix forms because it is not how we write
programs in general. This conceptual gap holds in the
realm of Boolean algebra as well. For example, most read-
ers will probably find x_ y^ z to be more readable than
or (x, and(y, z)). This problem is amplified as the complexity
of the structure expressed increases (and code fragments
can have a complex structure). To address the comprehen-
sibility problem, we will express code fragments in an infix
form that we call a parse expression (14,15). A parse expres-
sion is essentially a shorthand for a parse tree and assumes
that the syntax of the programming language has been
defined by an extended-BNF. In general, a parse expression
has the form Bva0b, where B is a nonterminal in the gram-

Figure 3. An example of axiom-based manipulations of Boolean expressions.

4 PROGRAM TRANSFORMATION: WHAT, HOW, AND WHY



mar and the derivation B)þ a is possible. The difference
between a as it occurs in the derivation and a0 as it occurs in
the parse expression is that in a0 all nonterminal symbols
have been subscripted, making them variables. In parti-
cular, when we say variable we mean a symbol that can
participate in matching as described.

Let us consider the grammar fragment for Imp shown
in Fig. 1. The parse expression assignvid1 ¼ E1b denotes
a parse tree whose root is the nonterminal assign and
whose leaves are id1, ¼, and E1. As id1 and E1 are
variables, this parse expression denotes the most general
form of an assignment statement. The expression
assignvid1 ¼ E1 op1 E2b denotes a less general form of an
assignment in which an identifier id1 is bound to an expres-
sion E1 op1 E2, that is, an expression containing a least one
binary operator.

Matching works for parse expressions just as would
be expected. For example, the match equation assign
vid1 ¼ E1b� assignvx ¼ 5þ 4b succeeds with the substitu-
tion id1 7! idvxb and E1 7!Ev5þ 4b. Similarly, the match
equation assignvid1 ¼ E1 op1 E2b� assignvx ¼ 5þ 4b also
succeeds with the substitution id1 7! idvxb;E1 7!Ev5b, and
E2 7!Ev4b. We are now ready to look at a more concrete
example of program transformation.

Example: A Pseudo-Compiler for Imp

A compiler takes a source program as input and produces
an assembly program as output. As such, a compiler is a

meta-programming system. In this section, we look at an
example of how an Imp program can be partially compiled
via rewriting. The goal in our example is to take an Imp
source program and transform it into an Imp target pro-
gram. We claim, without proof, that the rewrite rules
presented for accomplishing this goal are both confluent
and terminating. The normal form of an Imp source pro-
gram is an Imp target program, and it can be obtained by
the exhaustive application of the labeled conditional
rewrite rules shown in Fig. 4.

In order to be considered a target program, an Imp
program should satisfy the following properties:

� All expressions in the target program should be simple
expressions. An expression is a simple expression if it
satisfies one of the following properties: (1) the expres-
sion consists solely of a base value (i.e., either an
integer or an identifier), (2) the expression consists
of a binary operation involving two base values (e.g.,
15þ 27), or (3) the expression consists of a unary
operation on a base value (e.g., !(x)). All other expres-
sions are not simple.

� A target program may contain no ‘‘while’’ loops.

Figure 4. Rewrite rules capable of transforming Imp source programs into equivalent target programs.

3The ability to generate a new identifier name is supported by most
program transformation systems.

PROGRAM TRANSFORMATION: WHAT, HOW, AND WHY 5



� A target program may contain no ‘‘if-then’’ or ‘‘if-then-
else’’ statements, which makes the ‘‘if’’ statement the
only remaining conditional construct.

� The Boolean expression associated with the ‘‘if’’ state-
ment must be an identifier (e.g., it may not be an
expression of the form e1 op e2).

As a result of their simple structure, Imp target pro-
grams are similar to assembly programs. In fact, Imp target
programs are just one step away from assembly programs
and can be transformed into assembly programs on a
statement by statement basis. Figure 5 gives an example
of how an assignment statement can be directly trans-
formed into a sequence of assembly instructions.

We hope the reader is convinced by this concrete exam-
ple that the bulk of the general transformation from Imp
target programs to assembly code is straightforward. Thus,
we return our attention to the problem of transforming Imp
source programs into Imp target programs.

Figure 6 shows an Imp source program and the target
program that is obtained after applying the labeled condi-
tional rewrite rules given in Fig. 4. In Fig. 4, the rewrite
rules assign_simplify1, assign_simplify2, and assign_sim-
plify3 collectively account for the three cases that need to be
considered when simplifying an expression in the context of
an assignment statement. The rule assign_simplify1 is a

conditional rule that removes (unnecessary) outermost
parenthesis from an expression. The rule assign_simplify2
transforms the assignment of an identifier to a negated
expression into a sequence of two assignment statements,
provided the negated expression is not a base value. For
example, the assignment x ¼ !ð3 < 4Þ will be transformed
to x 1 ¼ 3 < 4; x ¼ !ðx 1Þ, where x 1 is a new identifier.
Notice that to carry out this kind of manipulation, one
must have the ability to generate a new (heretofore unused)
identifier. In the rewrite rules shown, this functionality is
realized by the function new, which we do not discuss
further in this article3. And lastly, note that without the
conditional check : ðE1�Evbase1bÞ, the rule assign_sim-
plify2 would be nonterminating.

The rule assign_simplify3 transforms an assignment
statement containing a nonsimple expression (e.g., an
expression containing two or more binary operators) into
a sequence of three assignment statements. For example,
the assignment x ¼ 4þ 5 � 6 � 7 would be rewritten into
the assignment sequence x 1 ¼ 4; x 2 ¼ 5 � 6 � 7; x ¼
x 1þ x 2. Notice that the assignment x 2 ¼ 5 � 6 � 7 still
contains a complex expression and will again be simplified
by the assign_simplify3 rule. In the rule assign_simplify3,
the parse expression stmt listvid1 ¼ E2 op1E3; stmt list1b
denotes a statement list whose first statement is the assign-
ment of the form id1 ¼ E2 op1 E3. Analysis of the problem
shows that matching this structure is a necessary but
not sufficient condition to ensure that an expression is
not simple. In order for an expression to be not simple, it
must also not be the case that both E2 and E3 are base
structures. Formally, this property is captured in the
conditional portion of assign_simplify3 by the Boolean
expression : ðE2�Evbase2b^E3�Evbase3bÞ. The remain-
ing portion of the condition id2�new^ id3�new is

Figure 6. An Imp source program and an equivalent Imp target program.

Figure 5. An example of how an assignment statement in an
Imp target program can be transformed into a sequence of
assembly instructions.

6 PROGRAM TRANSFORMATION: WHAT, HOW, AND WHY



responsible for binding the variables id2 and id3 to new
identifier names (e.g., id2 7! idvx 1b).

The remaining rules in Fig. 4 make use of notational
constructs similar to those we have just discussed. The
rules jump1, jump2, and jump3 are respectively responsi-
ble for rewriting ‘‘if-then’’ statements, ‘‘if-then-else’’ state-
ments, and ‘‘while’’ loops into equivalent sequences
consisting of ‘‘if-statements’’, labels, ‘‘goto’’ statements,
and ‘‘skip’’ statements. Here, the ‘‘skip’’ statement is used
to provide a point, beyond a given block, to which a ‘‘goto’’
can jump. In many cases, additional optimizing transfor-
mations can be applied to remove unneeded ‘‘skip’’ state-
ments. However, the ‘‘skip’’ statement cannot be removed
entirely (consider the case where the last portion of a
program is a block that one wants to jump over).

And lastly, the simplify_if rule makes sure that the
Boolean condition associated with an ‘‘if’’ statement consists
of a base value.

Program Transformation Frameworks

The Equation orientation, confluence, and termination
subsection mentioned that confluence and termination
are highly desirable properties for rule sets because the
problem of deciding which rule to apply then becomes
immaterial. Unfortunately, when transforming programs
it is often the case that rewrite rules are created that are
neither confluent nor terminating and cannot be made so.
Under these conditions, if transformation is to succeed,
explicit control must be exercised over when, where, and
how often rules are applied within a term structure. A
specification of such control is referred to as a strategy,
and systems that provide users with constructs for specify-
ing control are known as strategic programming systems.

The control mechanisms in a strategic programming
system fall into two broad categories: combinators and
traversals. The computational unit in a rewrite system is
the rewrite rule. Similarly, the computational unit in a
strategic programming system is the strategy. A strategy
can be inductively defined as follows:

� A rewrite rule is a strategy.

� A well-formed expression consisting of strategies, com-
binators, and traversals is a strategy.

Of central importance to a framework exercising explicit
control over the application of rules is the ability to observe
the outcome of the application of a rule to a term. Specifi-
cally, to exercise control, a system needs to be able to
answer the question ‘‘Did the application of rule r to
term t succeed or fail?’’ In summary then, a strategic
programming system can be thought of as a rewriting
system that has been extended with mechanisms for expli-
citly controlling the application of rules where the notion of
failure plays a central role.

Strategic Combinators. A combinator is an operator
(generally unary or binary) that can be used to compose
one or more strategies into a new strategy. Let s1 and s2

denote two strategies. Typical combinators include

� sequential composition denoted s1; s2. The application
of s1; s2 to a term t will first apply s1 to t and then apply
s2 to the result.

� left-biased choice denoted s1<þs2. When applied to a
term t, the strategy s1 <þs2 will first try to apply s1 to t;
if that succeeds and produces the result t0, then t0 is the
result of applying s1 <þ s2 to t. Otherwise, s2 is applied
to t. If this application succeeds and produces t00 as it’s
result, then t00 is the result of applying s1 <þs2. How-
ever, if the application of s2 to t fails, then the applica-
tion of s1 <þ s2 is said to fail.

� right-biased choice denoted s1 þ> s2. The strategy
s1 þ> s2 is equivalent to s2 <þ s1.

� nondeterministic choice denoted s1 þ s2. If both s1 and
s2 can be applied to a term t, then s1 or s2 is nonde-
terministically chosen and applied to t. If only one
strategy can be applied, that strategy is selected,
and if both strategies do not apply, then the application
of s1 þ s2 to the term t fails.

Traversals. The combinators described in the previous
subsection provide the ability to discriminate and sequence
the application of strategies to a term. When a strategy
contains a combinator, the application of that strategy to a
term is defined with respect to the structure of the strategy,
irrespective of the structure of the term. In contrast, a
traversal focuses on the structure of the term, but does
not consider the structure of the strategy. Broadly speak-
ing, a traversal specifies the order in which a term and its
subterms are visited. Thus, a traversal can be understood
as a mechanism for sequencing term structures. Typically,
when a term is visited, some action is performed like the
application of a strategy to the term.

Some traversals capture sequencing notions that are
broadly applicable across a wide range of applications. Such
traversals are called generic traversals. A typical and very
useful generic traversal is one that performs a top-down
left-to-right traversal of a tree structure and uniformly
applies a given strategy to all subtrees encountered.
Another generic traversal is one that performs a bottom-
up left-to-right traversal of a tree structure. And a third
generic traversal is one in which the traversal is stopped
after the first successful application of a given strategy.
Other generic traversals have been identified in the litera-
ture (14,16,17).

In some cases, the notion of generic traversal has direct
analogies with traditional models of computation. For
example, a top-down (outside-in) approach to evaluation
corresponds to a lazy evaluation style where functions
are applied to arguments without (first) evaluating the
arguments.

In contrast, a bottom-up (inside-out) approach corre-
sponds to a strict evaluation where the arguments to func-
tions are evaluated before functions are applied.

Strategic Frameworks. In addition to the combinators
and traversals, strategic programming frameworks may
contain a variety of additional features. These features can
include (1) the ability to create rewrite rules and strategies
dynamically (14,15,18), (2) the ability to define strategy

PROGRAM TRANSFORMATION: WHAT, HOW, AND WHY 7



application via congruences(16,19), and (3) constructs that
allow user-defined generic traversals to be created (14,18).

ELAN (16), TL (14), the r-calculus (14), the S0g-calculus,
and Stratego (20) are examples of strategic programming
frameworks. Of these frameworks, ELAN and Stratego
have implementations, and a dialect of TL is implemented
in a system called HATS (21).

WHY: APPLICATIONS

Abstractly, a program transformation system can be
viewed as a system that transforms a source program
into a target program. In Ref. 22, an excellent overview
is given of a wide variety of software-related activities that
can be approached from a transformation-oriented perspec-
tive. Activities are broadly classified as either belonging to
the category of rephrasing or translation. In this section, we
present a taxonomy similar to the one given in Ref. 22,
but with a greater emphasis placed on semantics. In parti-
cular, our taxonomy is motivated by the relationship
between the semantic models necessary to understand
the source and target programs. Within this classification
system, we identify seven major bi-directional goals of
program transformation:

� Clarity. This goal focuses on separation and encapsu-
lation of functional and behavioral concerns.

� Efficiency. This goal focuses on changing the resource
usage of an executing program. Resources of primary
concern are time and space.

� Computability. This goal focuses on the translation
between noncomputable and computable program
representations. Technically speaking, the goal of a
compiler is to take a source program that cannot be
directly executed on a computer and translate it into a
target program that can be executed on a computer. In
most cases, this goal involves moving between seman-
tic models at two different levels of abstraction.

� Simplicity. This goal focuses on transforming a source
program to a target program where the semantic
model for the source program is either a subset or
superset of the semantic model of the target program.

� Functionality. This goal focuses on changing the func-
tional behavior of the source program. The semantic
model for the source and target program are the same.

� Translation. This goal focuses on transforming a
source program into an equivalent target program
having a different syntax and generally a different
semantic model. Here, both semantic models are
roughly at the same level of abstraction.

� Computation. This goal focuses on using transforma-
tions to perform computations, that is, one is inter-
ested in some form of evaluation of a program or
expression.

Transformations that Shift between Semantic Models

Compilation is a classic example of a fully automatic trans-
formation whose source and target programs are under-

stood with respect to different semantic models. The goal is
computability. Source programs define computations that
are typically understood in terms of semantic models con-
taining high-level concepts such as variables, data struc-
tures, and recursion whereas target programs define
computations that are understood in terms of semantic
models consisting of registers, memory locations, bytes,
and bits.

Synthesis and refinement are two examples of activities
in which source programs having specification-like char-
acteristics are transformed into executable implementa-
tions. The goal is computability. Transformations in this
realm are typically not fully automatic (otherwise they
would be called compilers) and require some form of atten-
tion on a per problem basis. Specification languages can,
and oftentimes do, make use of constructs that are not
computable. Thus, the semantic shift between source and
target programs can be dramatic.

Migration is an activity in which a program written in
one language is transformed into an equivalent program
written in another language where both the source and
target languages are roughly at the same level of abstrac-
tion (e.g., Cþþ and Java). The goal is translation. Such
transformation can involve subtle shifts in semantic mod-
els. For example, the expression (xþþ)þx has a precise
semantics in Java and is, technically speaking, undefined
Cþþ.

Aspect-oriented programming is a paradigm in which
cross cutting aspects of software are defined separately
(23,24). These aspects are then woven into a base program
that can then be compiled and executed in a traditional
fashion. The weaving of aspects into a program is typically
approached from a transformation-oriented perspective.
The goal in weaving is translation.

Transformations that Remain within a Single Semantic Model

In partial evaluation (25), knowledge that a general-
purpose source program will be used in a context where
one or more of its inputs are fixed is used as the basis for
transformation. The goal is computability. In particular,
the target program produced is one in which all computa-
tions that can be performed statically have been carried
out, which oftentimes results in a dramatic improvement in
the efficiency of the resulting program.

Desugaring is an activity in which the goal of transfor-
mation is simplification. In desugaring, the target program
that is produced belongs to a language that is a strict subset
of the language of the source program. The pseudo-compiler
example given earlier is an example of a desugaring trans-
formation.

Renovation is an activity focusing on altering the beha-
vior of a software system that is currently in use. The goal is
functionality. The need for renovation is driven by changing
requirements that are placed on the software.

Program optimization is a highly researched area in
computer science. The goal in optimization is efficiency.
Optimizations can occur at a variety of abstraction levels. A
classic example can be found in Ref. 26 where an expo-
nential algorithm for calculating Fibonacci numbers is
transformed into a linear time algorithm. Well-known

8 PROGRAM TRANSFORMATION: WHAT, HOW, AND WHY



optimizations include constant propagation, constant fold-
ing, strength reduction, and common subexpressions
elimination (1).

In the following sections, we take a more in-depth look at
two transformational activities that are, in some sense, at
the opposite ends of the conceptual spectrum.

Refactoring. When developing software, it is common to
reach a point where some unanticipated structural or
functional dependencies make the resulting software archi-
tecture difficult to understand or resistant to future mod-
ification. When such a point is reached, programming effort
needs to be expended to ‘‘clean up’’ the software. Refactor-
ing is the term used to describe general techniques and
methods that can be used to ‘‘clean up’’ software. More
formally stated, the goal of refactoring is to restructure
software to make it clearer (e.g., improving its design) while
preserving its functionality. In contrast, the goal in obfus-
cation is to make software harder to understand.

Examples of refactoring range from simple to complex
and include:

� Identifier renaming. The goal of identifier renaming is
to give a identifier a new name that more accurately
describes its purpose.

� Method extraction. The goal of method abstraction is
to abstract a sequence of statements into a method.

� Object-oriented generalization. The goal of generali-
zation is to identify a collection of classes that share
common features (e.g., methods and fields) and to
migrate these common features to a super class.

� Object-oriented specialization. The goal of object-
oriented specialization is to identify a class containing
a general abstraction whose realization consists of a
number of distinct special cases. When such a class is
discovered, a number of subclasses should be gener-
ated and each special case should be migrated into its
own subclass.

Ideally, refactoring is accomplished by carrying out a
sequence of small transformations each of which are so
simple that they are ‘‘obviously’’ correctness-preserving. In
addition to simplicity, these transformations also should
build on one another in a cumulative fashion. Under these
circumstances, a sequence of simple transformations can
have an overall effect that results in a dramatic refactoring
of the program. In many cases, refactoring is subjective
activity. As a result, the ideal refactoring system is one that
has an interactive dimension to it allowing users to actively
participate in the refactoring process. Furthermore, such a
system should support an undo operation that allows refac-
torings to be retracted, thereby allowing a variety of refac-
toring possibilities to be explored.

William Opdyke’s PhD thesis (27) is generally cited as
the first major work that extensively looks at software
refactoring as an area of research in its own right. However,
in spite of this origination, the importance and implications
of refactoring were not fully appreciated until popularized
by Martin Fowler et al. in a book titled Refactoring–Improv-
ing the Design of Existing Code (28). Since then, software

refactoring has become widespread. A number of tools are
available to help software developers perform refactorings.
Among these tools are Transmorgrify, Eclipse, RECODER,
and RefactorIT. Refactoring has also been identified as an
essential component of extreme programming (29).

The Evaluation of l-expressions. Functional program-
ming languages have their origins in a formalism known
as the l-calculus (30). The syntax of the l-calculus is
extremely simple. The elements of the language of l-calcu-
lus are called l-expressions or expressions for short. A l-
expression can be a constant, a variable, the application of
one l-expression to another l-expression, or a l-abstraction
of the form ðl id:EÞ, where id is an identifier and E is a l-
expression.

The l-calculus is a powerful notation for describing
general-purpose computation. In fact, it has been shown
that any computable function can be described in terms of a
l-calculus expression. In this framework, computation con-
sists of the evaluation of l-expressions. The goal in an
evaluation is to simplify a l-expression until it can be
simplified no further. If such a point is reached, we say
the expression is in its normal form.

The manipulation of l-expressions is governed by the
three axioms shown below. The first two axioms make use of
an operation that substitutes a value for all free occur-
rences of a variable within a l-expression. Let E denote a
l-expression, let x a variable, and let v denote a value (i.e., a
l-expression). The expression E½x 7! v� denotes the ins-
tance of E that is obtained by replacing all free occurrences
of x in E by v. The first and third axioms make use of the
ability to determine whether a variable occurs free within a
l-expression. The formal definitions of E½x 7! v� and occurs
free are straightforward but lie beyond the scope of this
article. For more information, see Ref. 30.

� Axiom 1. Alpha-conversion (variable renaming).
lx:E$

a
ly: E½x 7! y�provided y does not occur free in E.

� Axiom 2. Beta-conversion (function application).
ðlx:E1ÞE2$b E½x 7!E2�.

� Axiom 3. Eta-conversion (redundant layers of
l-abstraction). ðlx:F xÞ$

h
F provided x does not occur

free in F and F is a l-abstraction.

The equivalences in these axioms can be oriented from
left to right to form corresponding reductions or rewrite
rules. A l-expression is simplified by applying reductions
until the normal form of the expression is reached. When
reducing l-expressions, the workhorses of reduction are the
rewrite rules derived from the second and third axioms, and
a l-expression to which these rules can be applied is called a
redex.

An important corollary to a famous theorem known as
the Church–Rosser Theorem states that normal forms for l-
expressions are unique (up to variable renaming). Given
the knowledge of the uniqueness of normal forms, an
interesting question to ask is: ‘‘Given a l-expression E,
can the normal form of E be reached by applying reductions
in any order to any subexpression of E?’’ A second Church–
Rosser theorem states that one is guaranteed to reach the

PROGRAM TRANSFORMATION: WHAT, HOW, AND WHY 9



normal form of a l-expression (if it exists) by always redu-
cing the left-most, outer-most redex, and only applying
a-conversion when needed to avoid the name capture pro-
blem (see Ref. 30 for more on the name capture problem).

SUMMARY AND CONCLUSION

In this article, program transformation is defined as a
mechanism for manipulating programs (and other software
artifacts) having its roots firmly grounded in equational
reasoning. On an intuitive level, equational reasoning can
be thought of as the notion that ‘‘equals can be replaced by
equals’’ (3). Formalization of this notion makes use of
concepts such as (1) matching/unification, (2) confluence,
and (3) termination. The practical adaptation of the ideas
underlying equational reasoning to the realm of meta-
programming (i.e., program transformation) requires the
use of parsing technology to automatically recognize the
complex term structures that are typically possessed by
computer programs. These term structures can be defined
using context-free grammars and can be stored internally
by the transformation system as (1) parse trees, which
directly reflect the structure defined by the grammar;
(2) abstract syntax trees, which capture the essence of
the structure described by the context-free grammar; or
even (3) DAGs.

Applications lending themselves to a transformational
perspective can be found in numerous areas including:
compilation, refactoring, synthesis, refinement, and even
computation.

Interest in program transformation is driven by the idea
that, through their repeated application, a set of simple
rewrite rules can affect a major change in a software
artifact. From the perspective of dependability, the explicit
nature of transformation exposes the software develop-
ment process to various forms of analysis that would other-
wise not be possible.

FURTHER READING

T. Mens and T. Tourw, A Survey of Software Refactoring.IEEE
Trans. on Softw. Eng., 30 (2): 126–129, 2004.

V. L. Winter, S. Roach, and G. Wickstrom, Transformation-
Oriented Programming: A Development Methodology for
High Assurance Software, in M. Celkwoitz, (ed.), Advances in
Computers, vol. 58, Academic Press, Amsterdam.

BIBLIOGRAPHY

1. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers Principles,
Techniques, and Tools, Reading, M.A.: Addison Wesley, 1988.

2. M. Tomita, Efficient Parsing for Natural Languages – A Fast
Algorithm for Practical Systems. Dordreoht, The Netherlands:
Kluwer Academic Publishers, 1986.

3. M. van den Brand, A. Sellink, and C. Verhoef, Current Parsing
Techniques in Software Renovation Considered Harmful,
Ischia, Italy,1998.

4. R. D. Cameron, An abstract pretty printer. IEEE Softw., 5 (6):
61–67, 1988.

5. L. F. Rubin, Syntax-directed pretty printing a first step
towards a syntax-directed editor, IEEE Trans. Softw. Eng.,
SE-9 (2): 119–127, 1983.

6. J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction fo
Automata Theory, Languages, and Computation, 2nd ed.,
Reading, M.A., Addison Wesley, 2001.

7. R. Stansifer, The Study of Programming Languages, Engle-
wood Cliffs, N.J: Prentice Hall, 1995.

8. F. Baader and T. Nipkow, Term Rewriting and All That,
Cambridge, U.K.: Cambridge University Press, 1998.

9. A. Martelli and U. Montanari, An efficient unification algo-
rithm, ACM Trans. Prog. Lang. Syst., 4 (2): 258–282, 1982.

10. S. Eker, Associative-commutative matching via bipartite
graph matching. Comp. J., 38 (5): 381–399, 1995.

11. D. Kapur and P. Narendran, Double-exponential Complexity
of Computing a Complete Set of AC-Unifiers. Logic in Computer
Science (LICS), Santa Cruz, CA, June 1992.

12. G. Dowek, Higher-order unification and matching, in Hand-
book of Automated Reasoning, Vol. 2, 2001, pp. 1009–1062.

13. A. V. Aho, R. Sethi, and J. D. Ullman, Code Optimization and
Finite Church-Rosser Systems. Design and Optimization of
Compilers, R. Rustin, (ed.), Englewood CIiffs, NJ: Prentice
Hall, 1972, pp. 89–106.

14. V. L. Winter and M. Subramaniam, The Transient Combinator,
Higher-Order Strategies, and the Distributed Data Problem.
Sci. Comp. Prog., 52: 165–212, 2004.

15. V. L. Winter, Strategy Construction in the Higher-Order Fra-
mework of TL. The 5th International Work-shop on Rule-Based
Programming (RULE 2004), Electr. Notes Theor. Comput. Sci.,
124: 141–170, 2005.

16. H. Cirstea and C. Kirchner, Intoduction to the rewriting cal-
culus. INRIA Research Report RR-3818, December 1999.

17. R. Lämmel, Typed generic traversal with term rewriting stra-
tegies. J. Logic, Algebra. Prog., 54: 1–64, 2003.

18. E. Visser, Scoped dynamic rewrite rules, in M. van den
Brand and R. Verma, (eds.), Rule Based Programming
(RULE’01), volume 59/4 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, New York,
September 2001.

19. P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and
C. Ringeissen, An overview of ELAN, in C. Kirchner, and
H. Kirchner, (eds.), International Workshop on Rewriting Logic
and its Applications, vol. 15 of Electronic Notes in Theoretical
Computer Science, France: Elsevier Science, New York, 1998.

20. E. Visser, Z. Benaissa, and A. Tolmach, Building Program
Optimizers with Rewriting Strategies, Proc. Third ACM
SIGPLAN International Conference on Functional Program-
ming (ICFP’98), 1998.

21. HATS. Available http://faculty.ist.unomaha.edu/winter/hats-
uno/HATSWEB/index.html.

22. E. Visser, A survey of rewriting strategies in program trans-
formation systems, in B. Gramlich and S. Lucas, (eds.), Work-
shop on Reduction Strategies in Rewriting and Programming
(WRS’01), vol. 57 of Electronic Notes in Theoretical Computer
Science, Utrecht, The Netherlands, 2001. Elsevier Science
Publishers, New York.

23. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. Loingtier, and J. Irwin, Aspect-Oriented Programming, New
York: Springer-Verlag, 1997.

24. C. V. Lopes and G. Kiczales, D: A Language Framework for
Distributed Programming. Technical report SPL9710047
Xerox Palo Alto Research Center, February 1997.

10 PROGRAM TRANSFORMATION: WHAT, HOW, AND WHY



25. N. Jones, C. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation. Englewood Cliffs, N.J: Pre-
ntice Hall, 1993.

26. R. M. Burstall and J. Darlington, A transformation system for
developing recursive programs, JACM, 24 (1): 44–67, 1977.

27. W. F. Opdyke, Refactoring Object-Oriented Frameworks.
PhD Thesis, University of Illinois at Urbana-Champaign,
Champaign, IL.

28. M. Fowler, K. Beck, J. Bryant, W. Opdyke, and D. Roberts,
Refactoring – Improving the Design of Existing Code, Reading,
M.A.: Addison-Wesley, 1999.

29. K. Beck, eXtreme programming eXplained: Embrace Change.
Reading, P.A.: Addison-Wesley, 1999.

30. H. P. Barendregt. The lambda calculus: Its syntax and seman-
tics, in Studies in Logic and the Foundations of Mathematics,
vol. 103. Revised ed. Amsterdam: North-Holland, 1984.

VICTOR L. WINTER

University of Nebraska at
Omaha

Omaha, Nebraska

PROGRAM TRANSFORMATION: WHAT, HOW, AND WHY 11



R

RAPID PROTOTYPING

INTRODUCTION: WHY RAPID PROTOTYPING IS NEEDED

Explicit process models for software development have
evolved in response to various problems encountered in
the development of large, complex software systems. These
problems include cost/schedule overruns and the produc-
tion of systems that do not operate as specified or do not
meet customer needs. Process models have converged on
rapid prototyping methods to reduce the risks of software
misdevelopment.

Before process models were made explicit, software
development suffered from chaotic implementation without
comprehensive, prior, requirements analysis or design. For-
mulating requirements that accurately represent the needs
of customers is a limiting factor in the success of software,
particularly for large systems that serve diversified user
communities. Different people have partially overlapping
and sometimes contradictory viewpoints on different
aspects of the requirements that are associated with their
particular job functions. Requirements analysts mustcreate
precise, formal models of unfamiliar problems, based on
imprecise communication with system stakeholders, each
of whom only has a partial understanding of the system
requirements. The situation is worse for applications where
computers are being introduced for the first time. The new
system fundamentally may redefine the job functions of the
customers so that the introduction of the system can cause
changes in the job functions it is intended to support.
The full impact of a proposed software requirement, there-
fore, can be very difficult to predict and assess.

The accuracy of the transition from fluctuating informal
views of the problem to a fixed formal model is fundamen-
tally uncertain. Ideally, we would like to have dynamic
formal models that can be adapted easily to changing
situations. Reasonably accurate approximate models can
be created by using an iterative guess/check/modify cycle
that relies on prototype demonstrations and customer feed-
back to converge to a consensus about the requirements.
The purpose of system and software prototyping is to help
customers understand and criticize the proposed systems
and to explore the possibilities that computer solutions can
bring to their problems in a timely and cost effective man-
ner. Measurements of prototypes can reduce uncertainty
about the properties of a proposed design before it is imple-
mented and support assessments of suitability, feasibility,
performance, relative merits of alternative designs, and
impact on stakeholder organizations.

The main incentive for using prototypes is economic:
Scale models and prototype versions of most systems are
much less expensive to build than the final versions. Pro-
totypes, therefore, should be used to evaluate proposed
systems if acceptance by the customer or the feasibility
of development is in doubt. As complexity of the proposed
system increases, so does the probability of requirements

errors creeping into the specification and the cost of imple-
menting the system. Software prototyping is an appropri-
ate tool for increasing the probability of project success and
for potentially reducing cost in such situations.

WHAT IS RAPID PROTOTYPING?

A prototype is an executable model of a proposed system
that accurately reflects a chosen subset of its properties,
such as display formats, functionality, or response times.
Prototypes are useful for formulating and validating
requirements, resolving technical design issues, and speed-
ing up development of proposed systems. Rapid prototyping
refers to the capability to create a prototype with signifi-
cantly less effort than it takes to produce an implementa-
tion for operational use.

RELATION TO THE FINAL SYSTEM

Prototypes can be developed either to be thrown away after
producing sought insight or to evolve into the product
version of the software. A tradeoff exists between these
approaches, where the choice depends on the context of
the effort.

A software prototype may not satisfy all constraints on the
final version of the system. For example, the prototype may

� provide only a subset of all the required functions,

� be expressed in a more powerful or more flexible lan-
guage than the final version,

� run on a machine with more resources than the pro-
posed target architecture,

� be less efficient in both time and space than the final
version,

� be limited in capacity (databases may be implemented
in main memory),

� not include the full facilities for error checking and
fault tolerance, and

� not have the same degree of concurrency as the final
version.

Such simplifications often are introduced to make the pro-
totype easier and faster to build. To be effective, partial
prototypes must have a clearly defined purpose that deter-
mines what aspects of the system must be reproduced
faithfully and which ones safely can be neglected.

The Throw-Away Approach

The main advantage of the throw-away approach is that it
enables the use of special-purpose languages and tools even
if they introduce limitations that would not be acceptable in
an operational environment or even if they are not capable
of expressing and addressing the entire problem. The
throw-away approach is most appropriate in the project

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



acquisition phase where the prototype is used to demon-
strate the feasibility of a new concept and to convince a
potential sponsor to fund a proposed development project.

The main disadvantage of a throw-away prototype is
spending implementation effort on code that will not con-
tribute directly to the final product. Also, the temptation
exists to skip or abbreviate documentation for throw-away
code. This temptation is harmful because the lessons
learned from the prototyping effort may be lost if they are
not recorded. Lack of documentation and degradation of the
initial design simplicity may block the evolution of the
prototype before it reaches a form that captures customer
needs, with respect to the scope of the prototyping effort.

The Evolutionary-Build Approach

The evolutionary-build approach produces a series of pro-
totypes in which the final version becomes the software
product. This approach depends on special tools and tech-
niques because usually it is not possible to put a prototype
into production use without significant changes to its
implementation to optimize the code and to complete all
details. The conceptual models and designs contained in a
prototype usually can be used in the final version. Precise
specifications for the components of a prototype and clear
documentation of its design, therefore, are critical for
effective software prototyping, as are tools for transforming
and completing designs and implementations.

RELATION TO THE SOFTWARE EVOLUTION PROCESS

Rapid prototyping should be an integral part of the software
development and evolution process. Prototyping can reduce
the amount of maintenance effort spent on correcting
requirements errors after systems have been delivered.
However, prototyping requires explicit planning for itera-
tions because the feedback process generally needs several
cycles to converge. To keep the process predictable and
visible to project managers, schedule and budget for multi-
ple cycles should be arranged at the outset.

RELATION TO SOFTWARE AUTOMATION

To be effective, prototypes must be constructed and mod-
ified rapidly, accurately, and inexpensively. They do not
have to be efficient, complete, portable, or robust, and they
do not have to use the same hardware, system software, or
implementation language as the delivered system. The
automated construction of programs is needed to support
the evolutionary approach to rapid prototyping, and such
tools can be very useful in this context even if the resulting
programs are not very efficient.

RELATION TO OTHER DEVELOPMENT APPROACHES

Rapid prototyping is related to other development
approaches that emphasize customer involvement and
iterative development, such as agile programming, rapid
application development, and the spiral model. The com-
mon theme is using customer feedback to ensure the system
will solve the intended problems.

Agile programming is a specialization of incremental
development that emphasizes the frequent delivery of
working code and intensive communication with customers
over detailed documentation and design. Some specific
approaches in this category include extreme programming,
Scrum, and Crystal. These approaches use deliverable code
instead of prototypes to elicit customer feedback and
requirements adjustments. They depend on the assump-
tions that the code can be modified cheaply and reliably and
that this process can be done with minimal informal doc-
umentation. They work best on a small scale and with
availability of intensive involvement of knowledgeable
customers. Current agile approaches have relatively little
automation support because of the informality of the
designs and documentation.

Rapid Application Development was introduced in the
1980s as an approach to combine rapid prototyping and
computer aided software engineering (CASE). Most CASE
tools claim to support the approach, which is targeted at
large-scale systems and seeks to capture requirements
in forms that can enable tools to generate at least some
parts of the code.

TheSpiralModelwasproposedin1988byBoehm.Itseeks
to develop large systems via a combination of risk assess-
ment, prototyping, and incremental development. The
approach seeks to mitigate several kinds of risks; the risks
related to misunderstood requirements and to customer
acceptance of the new system are addressed via prototyping.

RELATION TO REQUIREMENTS ENGINEERING

Typical challenges in requirements engineering involve
dealing with ambiguity, incompleteness, inconsistency,
and unstated requirements. Prototyping is one method
for addressing these issues.

Communication between people with different areas of
expertise is problematic because the people may be asso-
ciating different meanings with the same terminology with-
out realizing it. Specialized terms typically are well defined
and clear to experts in each field but ambiguous in the wider
context. Readers may not be aware of the specialized senses
of the words and may assume their common meanings
instead or assume different specialized meanings for the
same word drawn from their own area of expertise. Proto-
typing provides concrete examples of proposed system
behavior that can help expose this type of problem. By
helping system stakeholders visualize how the proposed
system will affect their jobs and responsibilities, prototype
demonstrations also can elicit previously unstated require-
ments and expose incomplete descriptions that are likely to
be interpreted differently by stakeholders and developers.

Inconsistencies arise naturally in requirements for sys-
tems with many different stakeholders, particularly if they
have different responsibilities and associated conflicts of
interest. The resulting conflicts and inconsistencies can be
very difficult to identify if the documentation is lengthy.
Because a prototype must be consistent with the require-
ments it seeks to demonstrate, constructing a prototype can
provide early detection of inconsistencies that lie within the
scope of the demonstration.

2 RAPID PROTOTYPING



USER’S VIEW OF AN INTEGRATED PROTOTYPING
ENVIRONMENT

A prototyping environment is a set of tools for supporting
prototyping. The main functions that should be provided by
an integrated prototyping environment are a convenient
interface for formulating and viewing the specifications
and design of a prototype, execution and analysis capabil-
ities, support for evolution and reuse, and optimization
capabilities.

The designer interface should provide decision support
for the designer and a high-level model of the decisions that
the designer must make so that major choices can be made
explicitly and implied details can be supplied by a design
management system. Such facilities are essential for redu-
cing the amount of detail that a prototype designer must
consider explicitly. Static analysis tools should help the
designer assess prototype properties such as type consis-
tency, feasibility of timing constraints, consistency
between the levels of a hierarchical description, precondi-
tions on input parameters and generic parameters, con-
straints on relative rates of producer and consumer
processes, an absence of deadlocks in distributed and par-
allel systems, an absence of unhandled exceptions, and so
forth.

Execution support should include methods for executing
incomplete specifications and facilities for controlling, mon-
itoring, measuring, and summarizing the results of execu-
tion, as well as debugging. Reusable components and
default assumptions are needed to realize specified beha-
vior if details of algorithms and data structures have not
been given by the designer.

The environment should include a design database that
supports the evolution of the prototype by managing the
dependencies between the requirements and the prototype
design, supporting change impact analysis, recording the
history of the prototype development, coordinating concur-
rent updates to the design, and providing facilities for
combining design alternatives in different combinations.
Meaning-changing transformations also are important for
supporting evolution.

Optimization facilities are needed to support the transi-
tionfromtheprototypeversiontothesoftwareproduct.Such
facilitiesareneededto improve theperformanceofquickand
simple first implementations of requirements within the
scope of a prototype that are not covered by existing reusable
components with mature implementations. This optimiza-
tion process can be partially automatic and can be partially
guided by the designer via annotations that provide imple-
mentation advice. Such annotations, in some cases, can
enable the details of the product code to be generated auto-
matically from the same source as the prototype, while
allowing designers to tune the performance of the imple-
mentation by selectively overriding the default implemen-
tation methods used during the prototype execution with
more sophisticated data structures and algorithms. Such
facilities are essential for a mature, integrated prototyping
environment because they enable product quality perfor-
mance while preserving the flexibility inherent in a proto-
typedescriptiontailoredtosupportsystemmaintenanceand
rederivation.

SUPPORTING TECHNOLOGY FOR EFFECTIVE
PROTOTYPING

Computer-aided prototyping depends on emerging technol-
ogies and is migrating gradually into practical use as these
technologies mature. The relevant technologies involve the
following, as explained below:

1. Prototyping languages

2. Execution support

3. Software reuse

4. Computer-aided design

Prototyping Languages

Rapid prototyping languages are used to create software
prototypes, which are executable descriptions of simplified
models of proposed software systems. They also support
processes that document, analyze, and adjust the models. A
prototyping language is used by both people and the soft-
ware tools in a prototyping environment. To support the
human users, a prototyping language should make it easy
to write, understand, and modify the models. To support
the tools, the language should be easy to analyze and
transform to reflect requirement changes. An example of
a prototyping language is prototype system description
language (PSDL). PSDL provides a simple representation
of system decompositions by using data flow diagrams that
are augmented with nonprocedural control constraints and
timing constraints (maximum response times, maximum
execution times, minimum inter stimulus periods, periods
of periodic operators, and deadlines). The language repre-
sents both periodic and data-driven tasks and both discrete
(transaction-oriented) and continuous (sampled) data-
streams.

A prototyping language should provide a simple compu-
tational model and primitives that match the problem
domain as closely as possible. This goal can be met either
via domain-specific prototyping languages or by providing
domain-specific components and toolkits.

In addition to supporting an execution capability, lan-
guages used in prototyping must simplify the description of
the software and capture specifications and requirements.
Specifications and links to requirements are needed to
record which aspects of the prototype are system require-
ments so that they can be distinguished from accidental
consequences of execution support mechanisms. This dis-
tinction affects the presentation and analysis of prototype
demonstrations and the transformation of stable proto-
types into software products.

Execution Support Technology

Execution support for a prototyping language requires
extending conventional translation techniques with trans-
formations and application-specific techniques for automa-
tically generating programs to allow the execution of
incompletely specified facilities. This extension can be per-
formed with the help of default assumptions for unspecified
decisions and scheduling processes that meet real-time
constraints.

RAPID PROTOTYPING 3



Scheduling requires models of the target hardware con-
figuration. Because the components of a prototype may not
be fully optimized and may run on different hardware than
the product version, demonstrations of prototypes with
real-time constraints often require simulations that pro-
vide linearly scaled real-time performance that faithfully
represents the behavior of the intended system, possibly at
a reduced speed. In cases where control of the physical
systems must be part of the demonstration, either suitably
time-scaled models of the physical systems must be con-
structed or the software must be hosted on hardware that is
sufficiently fast to run the simulations in actual real time to
keep up with the dynamics of the real physical system.

Real-Time Scheduling

Prototyping of embedded software presents special chal-
lenges because such software often is associated with
real-time constraints that must be met under all operat-
ing conditions. Concurrent control loops also are common
in embedded systems. Explicit control over the scheduling
of parallel tasks usually is necessary to guarantee that
such hard real-time constraints can be met because the
scheduling capabilities provided by most operating sys-
tems are somewhat removed from the level of support
needed for implementing hard real-time systems. The
execution support system for a prototyping language
that addresses real-time systems, therefore, should pro-
vide higher-level facilities for scheduling real-time opera-
tions. No generally effective and universally accepted
approach to real-time scheduling exists. Thus, the execu-
tion support system for a prototyping language should
provide the designer with several choices of scheduling
methods and should generate the code structures neces-
sary to realize those methods in practice.

Program Transformations

Transformations that add detail are needed to execute
incompletely specified components. Such transformations
should supply reasonable default values for attributes
necessary for execution if the designer does not specify
them explicitly. This supply of default values is essential
for rapidly testing and demonstrating partially completed
prototypes.

The quality of the choices is less important than the
ability to replace default assumptions. Quickly and easily
with increasingly accurate alternatives, which can be
drawn from predefined domain-specific toolkits and poli-
cies. For example, each data type can have a built-in default
output representation as a string in a text box, with a
selectable list of optional alternative representations. For
numerical values, alternative representations such as
gauges, plots, or moving graphics can enable visualization
in different ways. Fine tuning can be done via controllable
parameters.

Default values can be overridden explicitly to produce
more accurate models of the system or to improve its
performance. Default implementations can be created by
simple or increasingly sophisticated techniques, such as
interactively asking the user to supply values, using ran-

dom selections from a fixed set of responses, using internet
searches or responses from online games, using logic pro-
gramming to simulate black-box specifications, or using
transformation techniques to generate effective implemen-
tations from black-box descriptions.

Automated Program Construction

The prototyping systems with the highest levels of auto-
mation support have been designed for specific problem
domains. Such prototyping systems have been developed
for problem domains that include business information
processing, user interfaces, computer languages, and
real-time systems.

Generators for business information systems provide
graphical interfaces to databases to define database sche-
mas, queries, and reports by graphically defining table
layouts. Many commercially available tools exist in this
category.

Interface generation systems generate graphical user
interfaces based on a set of predefined components, such as
windows, menus, scroll bars, and buttons. These compo-
nents are placed and adapted interactively.

Generators for language processors are based mostly on
attribute grammars. These systems can generate various
tools for computer languages based on a context-free gram-
mar for the language, augmented with equations that
define computed attributes for the nodes of the parse
tree. This technology can be used to prototype tools for
computer languages, including translators, interpreters,
pretty printers, type checkers, dataflow analyzers, and so
forth. Applications span programming languages, specifi-
cation languages, and data definition languages for data-
bases; they span hardware description languages and
command languages for applications programs. Attribute
grammar processors have been coupled to generators
for syntax-directed editors and program transformation
systems.

The most powerful systems are domain-specific and
include built-in knowledge about effective solution meth-
ods for typical problems in the domain. This knowledge is
typically materialized in the form of reusable components,
special-purpose code generators, or inference engines with
domain-specific rules for combining and adapting compo-
nents. Many tools come with GUI generators and support
rapid component composition via drag-and-drop interfaces
that let users create annotated graphical pictures of the
intended connection structure and then generate the cor-
responding connection and control code. For example, the
CAPS system for prototyping real-time control systems
uses a scheduling algorithm to find a schedule that meets
the hard real-time constraints associated with the compo-
nents and then generates the control module that connects
the components and executes them according to the sche-
dule. Other systems recognize interface mismatches and
are capable of generating adapter code to correct some types
of mismatches. For example, the AMPHION system for
spacecraft mission planning automatically inserts trans-
formations between different coordinate systems where
they are needed to bridge the gaps between components
that use different kinds of coordinates.

4 RAPID PROTOTYPING



Software Reuse and Open Architectures

Software reuse is essential for rapid prototyping because it
can enable the designer to avoid many details that have
been considered previously. The environment should assist
the designer in retrieving reusable components and in
tailoring and combining available components to fulfill
queries that do not exactly match any of the reusable
components explicitly stored in the software base. Reuse
can be applied at the levels of code (algorithms and data
structures), design (system decompositions), and require-
ments models (domain-specific concepts). A difficulty with
this approach is the cost of obtaining suitable components,
re-engineering them to be reusable in wider contexts, and
ensuring that they can be interconnected without conflicts.

Open architectures are useful for enhancing the effec-
tiveness of reuse for software prototyping and system evolu-
tion. An architecture is the common structure of a family of
systems that span a particular problem domain. This struc-
ture consists of subsystem slots, their organization and
interconnections, and the constraints, protocols, and stan-
dards associated with the slots and connections. A subsys-
tem slot is a place in the architecture that can be filled with a
plug-in component that conforms to the associated con-
straints, protocols, and standards. An architecture is open
if the details of the architecture are known publiclyandhave
been specified accurately enough to enable any component
or connector that meets the given constraints to be used
together with any combination of other components that
satisfy the architecture to form a properly working system.
Open architectures define families of reusable plug-compa-
tible components and create associated market incentives
for many vendors to create such components. They support
flexible systems in prototyping that can be reconfigured by
swapping components for other plug-compatible compo-
nents with different characteristics.

Computer-Aided Design

Computer-aided design relevant to prototyping includes
configuration management, integration of subsystems,
high-level debugging, explanations, and optimization.
Many of these design processes are amenable to a model-
based generation approach, in which many details are
derived automatically from simplified high-level models.

System Integration

The individual subsystems that comprise a large system
commonly are developed by different teams of develo-
pers. Integration tools can aid the process of combining
such subsystems by supporting validation of the decom-
position before to dividing up the work and can be used
for comparison purposes when assessing whether deliv-
ered subsystems conform to their requirements. Both
testing and proof technologies are relevant to this vali-
dation process.

High-Level Debugging

A mature prototyping environment should support debug-
ging and error handling at the level of abstraction provided

by the prototyping language. Errors and failures during
prototype execution should be mapped from the underlying
programming-language level to the level of the prototype
language to keep low-level programming details from
intruding when the designer tests and demonstrates a
prototype.

Explanations

Justifications for decisions made by the tools should be
available as a feedback mechanism for the designer in cases
where the automated design completion procedures fail.
Such a failure explanation facility is needed to support
systematic computer-aided design in situations where com-
plete automation is not possible.

CONCLUSION

Ideally, prototyping should be integrated with the process
that produces the final implementation. To produce deli-
verable software, prototyping tools should provide optimi-
zation capabilities to produce programs whose efficiency is
comparable to the designs of competent programmers. This
goal generally is feasible only in the context of specific
application domains that have mature solution techniques.
The beginnings of the required technologies are visible:
Correctness-preserving transformations and performance-
estimation techniques can be used to guide derivation
strategies that systematically produce efficient implemen-
tations.

In the longer term, prototyping systems will have rea-
soning capabilities and extensive knowledge bases that
may include generic models of the problem domain, com-
mon goals of customers, common system structures, and
generators producing specifications and code for classes of
software components. Facilities for supporting formal ver-
ification of prototype decompositions are desirable to
ensure that the proposed decompositions are viable, espe-
cially if the subcomponents are to be built by different
developers.

FURTHER READING

D. Dampier, Luqi, and V. Berzins, Automated merging of software
prototyes, J. Systems Integration, 4(1): 33–49, 1994.

F. Kordon (ed.), Special issue on Rapid System Prototyping, Vols.
8(3–5): of Distributed Systems Online, IEEE, 2007.

F. Kordon, Luqi , and L. Wills, (eds.) Special issue on Rapid System
Prototyping, Vol. 70(3): of Journal of Systems and Software,
Elsevier, 2003.

X. Liang, L. Zhang, and Luqi , Automatic Prototype Generating via
Optimized Object Model, ACM ADA Letters, 23(2): 22–31, 2003.

Luqi ,Computer-Aided Prototyping for a Command-and-Control
System Using CAPS, IEEE Software, 9(1): 56–67, 1992.

Luqi, Real-Time Constraints in a Rapid Prototyping Language,
J. Computer Languages, 18(2): 77–103, 1993.

Luqi (ed.), Special issue on Computer Aided Prototyping,
Vol. 6(1–2) of J. Systems Integration, Kluwer, 1996.

Luqi , C. Chang, and H. Zhu, Specifications in Software Prototyp-
ing, J. Systems and Software, 42(2): 189–197, 1998.

RAPID PROTOTYPING 5



Luqi , Z. Guan, V. Berzins, L. Zhang, D. Floodeen, V. Coskun, J.
Puett, and M. Brown, Requirements Document Based Prototyping
of CARA Software, Int. J. Software Tools for Technology Transfer,
5(4): 370–390, 2004.

LUQI

Naval Postgraduate School
Monterey, California

6 RAPID PROTOTYPING



R

REQUIREMENTS SPECIFICATION AND
ANALYSIS

The first step in engineering a software system is to under-
stand what the system should do—this is referred to as the
specificationsof therequirements forthesoftwaresystemor,
alternatively, as requirements specifications or software
requirements specifications (SRS). Once the requirements
have been specified, very often the next step is to analyze
them to update, modify, and prioritize the requirements so
thatthesoftwaredevelopmentteamdevelopsabetterunder-
standingofthesystemtobedeveloped,theconstraintsonthe
system, and initial estimates on cost and schedule for devel-
oping the system—this step is referred to as requirements
analysis. Thus, requirements specification and analysis is a
two-step process that is also iterative—analysis may lead to
revised specifications that could entail additional analysis.
Requirements specification and analysis is a phase in soft-
ware engineering; from a software engineering perspective,
the requirements specification and analysis phase is fol-
lowed by the software design phase.

The requirements specification and analysis phase of a
software project is the most important phase of software
development and should not be omitted under any condi-
tion. More than half of software projects have failed because
of errors in the requirements specification and analysis
phase, and the cost for correcting errors committed during
this phase increases exponentially as software system
development progresses through the remaining phases of
design, implementation, testing, and maintenance. It has
been estimated (1), as shown in Fig. 1, that if an error
detected and fixed during the requirements phase will
incur a cost ratio of 1, then the same error if detected
and fixed during the design phase will incur a cost ratio
of between 3 and 6, during the implementation phase will
incur a cost ratio of 10, during the development testing will
incur a cost ratio of between 15 and 40, during the accep-
tance testing will incur a cost ratio of between 30 and 70,
and if the error is detected and fixed when the system is
under operation (or during the maintenance phase), the
organization will incur a cost ratio of between 40 and 1000.
Therefore, proper requirements specification and analysis
is important during software development.

A basic rule of SRS development is to capture ‘‘what’’ the
software system should do and never rush to the ‘‘how’’ the
requirement is to be achieved—violation of this simple rule
will lead to an early commitment to design without suitably
exploring alternative designs. Even though this rule seems
simple enough, the history of requirements specifications is
replete with examples of breaches of this rule that may be a
reason for the large number of software project failures—
the temptation to rush to design or even implementation
without first understanding the requirements is sometimes
too much for software engineers. Thus, very often solutions
are produced for the wrong problem or wrong solutions are
produced for the actual problem!

Requirements for a software system can be classified
into two types: functional and nonfunctional. Functional
requirements specify what the system should do, whereas
nonfunctional requirements specify the global character-
istics of the software system. Thus, the requirement ‘‘The
input to the software system should be by means of a key-
board entry, mouse click, or stylus movement’’ is a func-
tional requirement, whereas ‘‘The software system should
have fast responses to user inputs’’ is a nonfunctional
requirement (NFR) since the ‘‘fast responses’’ requirement
is usually not achievable by means of just a few components
in the software system but is a globally observed charac-
teristic of the software system. Functional requirements
include requirements related to inputs, outputs, processes
(or functions), and stored data for the new system. Func-
tional requirements also capture the interfaces between
the system and its users as well as the interfaces between
systems. Nonfunctional requirements (also referred to as
quality requirements or system attributes) capture
requirements related to characteristics such as perfor-
mance, usability, security, reliability, availability, main-
tainability, and portability; effort, budget, and schedule
estimations; documentation and training needs; quality
management; and constraints under which the final system
may be expected to operate, for example, operating system,
processing speed, network bandwidth, memory size, or
implementation language.

An SRS typically includes

1. Verbal descriptions of functional and nonfunctional
requirements.

2. Analysis artifacts such as requirements prioritiza-
tion, dependencies, versioning, cost and staff size
estimations, formulation of acceptance tests, and
analysis of NFRs.

3. All associated models developed during analysis.

Not only does the SRS serve as the starting point for
subsequent phases of software development, SRS also often
serves as a legal contract between the software developing
organization and the customer who will actually be pur-
chasing and/or using the software.

The process of developing software requirements and
analyzing them is illustrated in Fig. 2, and the focus during
this phase is on the customers and users of the proposed
software system. The process starts invariably with an
understanding of the current system and its problems—
the current system may be manual or computerized. This
task is also called problem analysis. The techniques to help
with this task include the PIECES (performance, informa-
tion, economics, control, efficiency, and service) framework,
Ishikawa diagrams (also called fish-bone diagrams), study
of forms and documentation used with the current system,
interviews with users of current system, and observations
of use of the current system. The outputs of this task include
the problem statement and system improvement objectives

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



that are used during the second task to guide elicitation of
requirements from the users and customers. Usually, a
subtle distinction is made between a user (also called an
end user) and a customer. Customer is the organization or
person(s) who will be paying for the software or sponsoring
the software project, whereas users are the actual users of
the software system who will be interacting with the soft-
ware for the benefit of their organization; of course, custo-
mers may be users as well. The most important technique to
elicit requirements is interviewing, but recently JRP (joint
requirements planning) and discovery prototyping have
emerged as supplementary techniques. The outputs of
this task include notes, minutes, voice recordings, and
updated prototypes. The third task uses the outputs of
requirements elicitation to develop the initial SRS that
documents the requirements using any combination of
tabular listing, use-cases, and user stories. The first, sec-

ond, and third tasks collectively form the requirements
specifications step referred to earlier. The fourth task
analyzes the initial SRS using reviews and customer/
user clarifications to identify priorities, dependencies, ver-
sions, cost and manpower estimates, acceptance tests, and
NFR analyses. The output of this task is the updated SRS.
The fifth and final task models the requirements using any
combination of UML (Unified Modeling Language) dia-
grams, ERD (Entity Relationship Diagrams) (2), DFD
(Data Flow Diagrams), and formal methods. The output
of the fifth task, also called logical design, is the updated
SRS with models. The fourth and fifth tasks together form
the requirements analysis step mentioned earlier. The SRS
is now ready for the next phase of software development,
namely, design, which is also called the physical design
since implementation or physical aspects of the software
system will have to be considered. As indicated in Fig. 2, the
process is not linear but iterative; it is possible to go from
one task to any of the earlier tasks whenever an error or
omission is detected. Each technique is discussed in more
detail in the subsequent sections. Typically, requirements
specification and analysis phase lasts one third of the total
project time and the durations of the individual tasks
within this period are distributed almost evenly.

TASK 1: UNDERSTAND PROBLEMS WITH THE
CURRENT SYSTEM

Very frequently the main driving force behind the devel-
opment of new software systems is the set of problems faced
by the end users in using the current system and processes,
both of which may include a combination of manual and
computerized aspects. Therefore, a good understanding of
the problems with the current system will give the devel-
opers a set of measurable objectives that the new system

Relative
Cost of
Detecting and
Fixing an
Error

Phase in which
the Error is Detected
and Fixed

1

3 to 6

10

15 to 40

30 to 70

40 to 1000

R
eq

u
ir

em
en

ts
S

p
ec

if
ic

at
io

n
an

d
 A

n
al

ys
is

D
es

ig
n

Im
p

le
m

en
ta

ti
on

D
ev

el
op

m
en

t
T

es
ti

n
g

A
cc

ep
ta

n
ce

T
es

ti
n

g

O
p

er
at

io
n

(M
ai

n
te

n
an

ce
)

Figure 1. Relative costs of detecting and fixing an error in dif-
ferent software development phases (not drawn to scale).

 Customers andUsers

Understand Problems with Current
System

PIECES Framework,Ishikawa
Diagrams, Existing Documents,
Interviews, Observations

Elicit Requirements for
New System
Interviews,JRP,
Prototypes

Develop Initial Requirements
Specification

Tabular Lists, Use Cases,
User Stories

Analyze Requirements

Reviews, Prioritization,
Dependencies,  Acceptance
Tests,NFR's Analysis

Model Requirements

UML,ERD,DFD Model
Diagrams

Problem Statement,
System Improvement

 Objectives

Notes,
Voice Recordings

Initial SRS

SRS Updated with
Analysis Data

SRS Updated with Models

Legend:
   Communication with User/Customer
   Transition from one step to the next
   Iteration

Task
Technique

(to Design Phase)

Figure 2. Process of software requirements specification and analysis.

2 REQUIREMENTS SPECIFICATION AND ANALYSIS



should satisfy. Examples of measurable objectives are
‘‘Number of orders processed should increase by 10%’’ or
‘‘Response time decreases by 20%.’’ These objectives can be
achieved by fixing certain problems with the current sys-
tem, and therefore, those problems provide not only oppor-
tunities for improving the current system but also serve as
starting points for developing the requirements for the new
and improved system. However, how does one identify the
problems? The PIECES framework (3) is an excellent tool to
document problems in an existing system—very frequently
problems occur in the categories of performance, informa-
tion, economics, control (and/or security), efficiency, and
service. Other techniques include interviewing users of the
current system, examining problem reports on the current
system, and observing actual usage of the current system.
When a large number of end users are involved, question-
naires may also be used. Once the problems are identified,
they are documented in a problem statement matrix that
lists the problems identified, the urgency of each problem,
the monetary benefits in fixing each problem, and how each
problem might be fixed such as, for example, by developing
a new system or simply patching the existing one. Once the
problems have been identified, it becomes necessary to
determine their causes, and for this purpose, Ishikawa
diagrams (also called fish-bone diagrams) (1) may be
used. For each problem, an Ishikawa diagram is developed
wherein the problem is mentioned along the main bone and
the side bones represent categories under which causes for
the problem may be grouped; the actual causes are listed off
the side bones. Ishikawa diagrams help distinguish
between symptoms and problems, and once all the pro-
blems are identified, a systematic effort may be undertaken
to determine how the problems may be eliminated—called
opportunities for improvement—and in this process, the
preliminary requirements for the new system can be iden-
tified. As a result of this process, we develop the system
improvement objectives matrix that lists, for each problem
in the problem statement matrix, the probable causes and
the measurable objectives for verifying the absence of the
problem in the new system.

TASK 2: ELICIT REQUIREMENTS FOR NEW SYSTEM

As one might expect, software requirements are usually
provided by the end users of the proposed software system.
This process of gathering requirements from end users is
called requirements elicitation. Even though elicitation
seems like a simple activity, the trouble is that very fre-
quently users are not sure of what they want (4)! Eliciting
requirements should preferably be handled by software
engineers well versed in communication and an under-
standing of human nature, because they will be required,
quite often, to lead the process of elicitation by careful
questioning of the end users. Interviews are the most
common technique for eliciting requirements from end
users. During interviewing, the questions necessary to
elicit functional and nonfunctional requirements should
be put to the end users. For example, questions such as
‘‘What should the system do?’’, ‘‘What inputs will the system
receive?’’, ‘‘What outputs should the system generate?’’, and

‘‘What are the data formats?’’ are examples of questions that
will help elicit functional requirements, whereas questions
such as ‘‘What is the maximum tolerable throughput of the
system?’’, ‘‘What types of access control are required?’’,
‘‘What is the expected mean time between failures?’’,
‘‘What operating systems should the system work in?’’,
and ‘‘What programming language will be used to imple-
ment the system?’’ are examples of questions that will help
elicit nonfunctional requirements. The user responses to
these questions may be captured as notes or minutes on
paper, or voice may be recorded digitally or on tapes.
Important points to keep in mind are the types of questions
to ask such as open-ended (for example, ‘‘What is the max-
imum number of expected users for the system?’’) and closed-
ended (for example, ‘‘Will the maximum number of expected
users for the system be less than ten or between ten and
hundred or more than hundred?’’), whether the interviews
should be structured or unstructured, understanding body
language since only about 7% information (1) is commu-
nicated verbally, and understanding proxemics or the rela-
tionship between people and space around them. When a
large number of end users exists it may be cost effective to
use questionnaires. An important factor in developing
questionnaires is whether free-format questions or fixed-
format questions need to be asked.

Another source of requirements are the physical forms
and documents that are used for the existing system,
including user manuals, filled-in forms used for data cap-
ture, standard operating procedures, notes, memos,
e-mails, and forms capturing user feedback. Often, the
new software system replaces physical forms and docu-
ments, and the requirements engineer will have to under-
stand the form’s contents and its usage, along with the
processes listed in the documents to formulate require-
ments for the new software system.

JRP is another technique for eliciting requirements—
JRP is part of the JAD (Joint Applications Development)
philosophy that requires the relevant stakeholders (users
and their managers) to participate in a workshop for col-
laboratively gathering the requirements. The JRP sessions
are facilitated usually by an external moderator who
ensures that the sessions focus on their objectives and
not let egos dominate the proceedings. JRP requires atten-
dance from the technical staff as well so that any require-
ments that may not be feasible may be immediately pointed
out to the concerned users. JRP ensures that collective
responsibility for system development occurs and that
the users are actively involved in the development process,
which encourages them to take ownership of the project.

The discovery prototype is yet another technique for
eliciting requirements in which a small-scale working
model (sometimes referred to as a ‘‘quick-and-dirty’’ imple-
mentation) of the proposed system is developed and given to
the users to work with. Based on the philosophy that the
users will understand the requirements once they actually
see a working sample, the users are frequently able to
better articulate their requirements based on their experi-
ences with the prototypes. Discovery prototypes are useful
in eliciting requirements that are not clearly understood
(sometimes by the users themselves). It must be kept in
mind that the prototypes cannot be considered as the first

REQUIREMENTS SPECIFICATION AND ANALYSIS 3



version of the system and that their intent was require-
ments discovery only.

TASK 3: DEVELOP INITIAL SOFTWARE REQUIREMENTS
SPECIFICATION

Tabular SRS

Typically, software requirements are listed in categories
with each requirement given a unique number for easy
reference. Figure 3 shows an example list of requirements
for a hypothetical software system that manages accounts
for a bank. The software requirements are categorized at
the highest level into Interface Requirements, System
Requirements, and Portability Requirements; under each
category, the requirements are subcategorized—for exam-
ple, under the Interface Requirements category, the sub-
categories include User Interface Requirements, Network
Interface Requirements, and System Interface Require-
ments. The simplest way to capture the nesting of levels
of software requirements is to use the nested decimal
notation as shown in Fig. 3. Typically, a requirement
that a software system should have (also called a manda-
tory or essential requirement) is indicated by using words
such as ‘‘shall,’’ ‘‘should,’’ or ‘‘must,’’ with the importance
decreasing in this order—that is, a requirement with a
‘‘shall’’ is more important than a requirement with a
‘‘should,’’ and this is more important than a requirement
with a ‘‘must.’’ In practice, an organization may adopt its
own conventions and follow it consistently—it should be
noted that modality of terms used in SRS could be different

from their usage in ordinary conversation. More impor-
tantly, requirements should be unambiguous, correct, con-
sistent, verifiable, complete, and unique (5); an ambiguous
requirement is not specific, for example, ‘‘When the user
presses the key and/or turns the knob the value displayed
should be updated’’ —here it is not clear what value should
be displayed when both the key and the knob are turned at
the same time; a consistent requirement does not conflict
with another requirement; a correct requirement is within
the domain of the software system, that is, it is a require-
ment of the software system and not an extraneous factor; a
verifiable requirement is one that can be subsequently
verified as having been included in the final completed
software system; a complete set of requirements capture
responses to all possible classes of inputs; and the unique-
ness of requirements ensures the that they do not repeat
either in the same or another form.

Figure 3 shows both functional and nonfunctional
requirements. Requirement 1.1.5 and requirement 2.1
are nonfunctional requirements, whereas the others are
functional requirements.

Use-Cases

Another technique for documenting requirements, which is
increasingly becoming popular, is use-cases (6); this
includes both the use-case diagram and the use-case
narratives. The use-case diagram captures all the interac-
tions between the software system and the external
entities, whereas the use-case narrative captures the
sequential processing of an interaction. Together, they
define the scope of the system, give a detailed insight

Number Software Requirements
1 Interface requirements.
1.1 User interface requirements.
1.1.1 The user should be able to interface with the software by means of keys, knobs, and mouse.
1.1.2 When the user presses a key, the value of the key pressed should appear on the front panel.
1.1.3 When the user turns the knob clockwise, the value of the entity at the cursor should increase;

when the user turns the knob counter-clockwise, the value of the entity at the cursor should
decrease.

1.1.4 When the user clicks the mouse, the cursor should shift to the position pointed to by the
mouse.

1.1.5 The software system should be reliable enough not to miss key presses, knob turns, and
mouse clicks, and be fast enough to respond to these events quickly.

1.2 Network interface requirements.
1.2.1 The software system should be accessible over the network using the TCP/IP protocol over 

Ethernet.
1.2.2 The software system functionality should be accessible over the network using a list of 

commands.
1.2.3 The software system should ensure that the parameter values updated over the network are

reflected on the front panel.
1.2.4 The software system network access should be password protected for security.
1.3 System interface requirements.
1.3.1 The system should interface with the ATM system and the Web-based banking system.
2 System requirements.
2.1 The software system shall accurately manage customer accounts for the bank.
2.2 The software system should allow creation of new accounts, deletion of existing accounts, and 

operation of accounts; account operations include deposits, withdrawals, and transfers.
2.3 The software system should identify each person allowed to access the system by a unique 

user-id and password combination.
2.4 The software system should interact with the users by means of graphical user interfaces.
2.5 The software system should respond to queries and accept updates from the ATM system and 

the Web-based banking system.
2.6 All information should be stored in a central repository that can be accessed by all users and

other systems.
2.7 All users should be able to access the central repository over the network.
3 Portability requirements.
3.1 The software system must execute in both Windows and Mac environments.
3.2 The software system should be distributed in a format that allows easy self-installation.
3.3 The software system should be downloadable from the bank’s website.

Figure 3. Spreadsheet (or tabular) listing of software requirements for a bank account management system.

4 REQUIREMENTS SPECIFICATION AND ANALYSIS



into the software system to be developed, and allow more
accurate effort and schedule estimates. Consider, for exam-
ple, the use-case diagram shown in Fig. 4, where the stick
figure represents a user in a specific role, also called an
actor, interacting with a specific functionality or use-case of
the software system represented by the oval shape. In Fig.
4, a Bank Manager actor exists, and its use-case is Create
New Account that describes the sequence of activities
occurring during interaction between the software system
Bank Account Management System and the user Bank
Manager. Also, it may be noted from Fig. 4 that the
Bank Manager interacts with the use-case Delete Existing
Account as well while the Customer interfaces only with the
Operate Account use-case. More importantly, from the use-
case diagram of Fig. 4, one may infer that the Bank Man-
ager does not interact with the use-case Operate Account
just as the Customer does not interact with the use-cases
Create New Account and Delete Existing Account. There-
fore, use-case diagrams also serve as a mechanism to define
the scope of the system. Frequently use-cases and scenarios
have been used interchangeably in the literature. However,
a subtle difference does exist. A scenario is one instance of
execution of the use-case, whereas a use-case is an abstract
entity; therefore, one use-case can typically represent sev-
eral scenarios of use. Also, one use-case may include one or
more requirements for the software system.

The actual sequence of activities is described in the use-
case narrative, an example of which is given in Fig. 5. The
narrative of Fig. 5 captures the different ways the user Bank
Manager can provide inputs to the system and receive out-
puts from the system, and it captures the detailed sequence
of activities undertaken by the system in response to user

inputs. Figure 5 is just one way of writing the use-case
narrative—different formats are possible, including some
that capture exceptional events, alternative events, and
responses to multiple users (or, more appropriately, roles).
Also, the details in the use-case narrative may be achieved
iteratively over time—that is, the first version of the narra-
tive may have only the intent of the use-case, the second
version may have more details, the third even more details,
and so on till all minutiae are uncovered in the final versions
of the narrative. The details in a use-case may be modeled
using UML activity diagrams during the modeling task.

User Stories

Another technique for capturing initial requirements is
user stories (7)—a user story is a brief (usually about three
sentences) description of an expected functionality written
by the user. An example user story is given in Fig. 6. Each
user story is usually captured on an index card and in many
cases is written (actually handwritten) directly by the user
or the domain expert using the language of the domain.
That way it becomes a convenient medium to discuss busi-
ness requirements with the users. Moreover, from a man-
agement perspective, each user story is given a unique
number and a priority so that when the stack of user stories
is collected, the scope of the system to be developed is well
defined and the user stories may be prioritized for different
iterations of the software system. In addition, since each
user story is expected to take a fixed unit of time to imple-
ment, typically about a week, the schedule for the project
can also be determined.

Decision Tables

Decision tables (1,8) are yet another technique for docu-
menting requirements, although at a detailed level to
capture business rules. Decision tables capture true or false
values of conditions and their resultant effects on decisions.
For example, if we have the following situation:

A bank account can be established only when the customer has
both a social security number (SSN) and documented proof of
residency; if the customer can electronically remit her salary to
the account each month, then the monthly fee is waived; else a
monthly fee is imposed.

To make the decision whether a new account may be
approved and, if so, whether a fee needs to be imposed, the
decision table shown in Fig. 7 will be useful. In Fig. 7, T
stands for a condition that is true, whereas F stands for a
condition that is false, X represents an irrelevant condition
(that is, it can be either true or false, but its value does not
affect the decision), and the applicable decision is indicated
with the a mark. Therefore, in only one situation can a new
account be approved without a fee and that is when all three
conditions (customer has SSN, customer has residency
proof, and customer can remit salary electronically) are
true; when the first two conditions are true, but the custo-
mer is unable to remit salary electronically, then a new
account is approved but with a fee imposed; in all other
cases, a new account is not approved.

Use Case Name Create Bank Account

Use Case ID UC001

Actor Bank Manager

Typical Course of

Events

Actor Action

1. The actor  informs the

system that a new

account is to be created.

3. The actor  informs the

system the type of

account to be created.

5. The actor enters  the

account details.

System Response

2. The system asks the

user the type of account

to be created.

4. The system asks the

user the account details.

6. The system creates

the new account and

returns with the account

number.

Figure 5. Use-case narrative for the use-case Create Bank
Account in Fig. 4.

  Bank Manager

Create New
Account

Delete
Existing
Account

Operate
Account

  Customer

Bank Account Management System

Figure 4. Modeling requirements with UML use-case diagrams.

REQUIREMENTS SPECIFICATION AND ANALYSIS 5



TASK 4: ANALYZE REQUIREMENTS

The main purpose of requirements analysis is to refine the
requirements collected during the requirements elicitation
phase. Usually the requirements collected initially do not
satisfy all the characteristics of being unambiguous, correct,
consistent, verifiable, complete, and unique—the require-
ments may be considered ‘‘raw’’ that need to be refined and
better understood for subsequent phases of software devel-
opment. The chief technique for this purpose is reviewing
the requirements. During reviews, teams of development
personnel along with customers/users go over the SRS
developed to determine errors and omissions. Any errors
and omissions determined will have to be corrected before
proceeding. Reviews can be used iteratively during this
phase and can be applied to any artifact developed during
the process of requirements specification and analysis.
Other goals of requirements analysis include requirements
prioritization, determining requirements dependencies,
determination of versions, schedule formation, staff size
determination, preliminary cost estimation, formulation
of acceptance tests, and analyzing NFRs.

Requirements Prioritization

Even though at the end of the requirements specification
phase we may have a list of all expected software require-
ments, it may not be feasible for the software development
organization to implement all requirements in the very first
version of the software, the chief reasons being the time
constraints and the delays incurred because of the inevita-
ble changes to software requirements. Therefore, only a
subset of the requirements is usually delivered in the first
version, and this subset includes only those requirements
deemed most important by the customer and considered
most feasible by the software development organization.
Customers/users determine requirements priorities while
their feasibilities are evaluated by the developers—thus,
even though the customer, for example in Fig. 3, may state

that requirements 1.1.1, 1.1.2, and 1.1.3 are more important
than 1.1.4, the current state of hardware technology for the
system may not incorporate a knob-based input; in this case,
the developers may negotiate with the customer to provide
only the requirements 1.1.1 and 1.1.2 with the first release
and push requirements 1.1.3 and 1.1.4 to a subsequent
release of the software system. An important aspect of
negotiating with customers is to ensure that a ‘‘win–win’’
situation is reached for all concerned stakeholders.

Identifying Requirements Dependencies

Requirements frequently have dependencies among them-
selves such that in order to fulfill one requirement, another
requirement must have been fulfilled previously. For exam-
ple, requirement 1.2.3 in Fig. 3 assumes that requirement
1.1.2 is already satisfied since front panel updating ability
is a prerequisite for requirement 1.2.3; therefore, require-
ment 1.1.2 may need to be developed before requirement
1.2.3. Identification of such dependencies will also help
with scheduling the software system development such
that requirements upon which others are dependent are
completed before the requirements that depend on them.
When requirements are captured as use-cases, then the
dependencies may exist among use-cases. Here the use-
case upon which most other use-cases are dependent should
be completed before the others.

Requirements Versioning

Prioritization of requirements and identification of their
interdependencies can help identify the versioning require-
ments that determine the distribution of features (a feature
is a use-case or a set of requirements) among the different
versions of the software system. Therefore, for example, if a
high-priority requirement is dependent on a low-priority
one, it may be necessary to have the low-priority require-
ment along with the high-priority one as part of the first
version of the system. Versioning assumes software devel-
opment is based on an incremental process.

Schedule Formation

Versioning is closely tied to scheduling the software devel-
opment project—thus, if the initial requirements identify
the need for ten versions to accommodate all the features
required by the customer, then by estimating the time
needed to complete each version, an accurate schedule
for the project may be developed. Since SRS frequently
serves as a contract between the software development

Customer has SSN T F F T T

Customer has residency proof F T F T T

Customer can remit salary electronically X X X F T

Bank account approved with fee α

Bank account approved without fee α

Bank account not approved α α α

Figure 7. Documenting detailed business rules using decision
tables.

Figure 6. Requirements capture using a user story.

6 REQUIREMENTS SPECIFICATION AND ANALYSIS



organization and the customer, determination of the sche-
dule at this stage will allow the software organization to
negotiate properly requirements and cost for the project.
For example, using the process chosen for the project, if
each version takes four months of development (design and
implementation), then for ten versions and assuming
sequential development, the project manager can quickly
lay out a schedule lasting more than three years.

Staff Size Determination

Another objective of requirements analysis is to identify
accurately the staffing requirements for the project—this
will help the software organization quickly determine
whether the expected schedule and cost can be satisfied
or whether more negotiation with the customer is required.
Since SRS frequently serves as a contract between the
software development organization and the customer, it
will be useful to consider staff size requirements at this
stage itself. For determining staff size, if prior experience
with the company’s methodology indicates that a feature
takes 10 person-days to design, implement, and test, then
for ten features, 100 person-days will be required; based on
versioning, which has already decided the approximate
sequences of feature-sets to be delivered to the customer,
the average staff size for development can be determined
quickly.

Project Cost Estimation

Based on personnel requirements and expected length of
the project, the project manager can develop or revise pre-
liminary estimates for the budget so that the project benefits
may be determined clearly. Again, since SRS frequently
serves as a contract between the software development
organization and the customer, it will be useful to identify
or update project costs based on requirements so that, if
needed, additional negotiation regarding requirements and
schedule may be held between the two parties. For estimat-
ing project costs, past experience could serve as the guide;
for example, if past experience indicates that each person-
day costs $500, then a project requiring 100 person-days of
effort will cost $50,000. However, cost estimation may also
be performed using well-known models such as the
COCOMO (Constructive Cost Models) that helps, especially
COCOMO II (the latest version) (9), to calculate effort in
terms of person-months during the requirements specifica-

tion and analysis phase itself; therefore, if the cost per
person-month is known, the project cost can be estimated.

Formulating Acceptance Tests

Requirements analysis serves the very important purpose
of developing acceptance tests that document the tests the
user will execute on the final system for verifying that the
system indeed satisfies the requirements—thus, for exam-
ple, if we consider the user story shown in Fig. 6, the user
may say that the acceptance tests shown in Fig. 8 will be
executed to confirm the proper implementation of the user
story. Development of acceptance tests during this phase
will help clarify requirements and encourage proper design
of software. For example, from the customer’s acceptance
tests, we can request the rules for identifying correct
account numbers and, during design, develop a system
that will first check that the entered account number is
legal before continued processing.

Analyzing NFRs

Analyzing NFRs brings with it its own set of issues, chief
among them being the inherent vagueness in defining
NFRs. Although several techniques have been proposed,
most seem to suffer from their own restricted definitions for
the nonfunctional requirements they seek to analyze. How-
ever, from a wide applicability standpoint, two techniques
stand out: the House of Quality and the NFR Framework.
The House of Quality is part of the Quality Function Deploy-
ment process that was originally developed for the manu-
facturing industries in Japan and hasbeenused forsoftware
requirements quality analysis as well. In its simplest form,
the House of Quality is a matrix where rows represent the
NFRs and the columns represent the technical aspects of the
project thathelp achieve the NFRs,and at the intersection of
each row and column, we identify the extent to which the
technical aspects satisfy the customer’s NFRs using quali-
tative measures such as strongly positive, positive, nega-
tive, and strongly negative. The ‘‘roof of the house’’ is the
correlation between the technical factors themselves that
captures the conflicting or synergistic interactions between
the factors. The House of Quality may be extended with
other aspects such as project planning and cost for achieving
the NFRs. For example, for the bank account management
system modeled in Fig. 4, if the user considers NFRs main-
tainability, reliability, and performance as being the most

Acceptance Tests for User-Story No. 87

Test Case 87.1 Test Case 87.2

System Input: Account No. 123456789 System Input: Account No. 045677653

System Output: Incorrect Bank Account

System Output: Are you sure?

System Input: Yes

System Output: Account Deleted

Figure 8. Acceptance tests for the user story of Fig. 6 .

REQUIREMENTS SPECIFICATION AND ANALYSIS 7



important, then an analysis of these NFR’s using the House
of Quality is presented in Fig. 9. In Fig. 9, the technical
aspects considered are the two use-cases from Fig. 4, and the
three additional use-cases identified for the system. In Fig.
9, we see that in the central part of the figure we denote how
the use-cases affect the customer requirements—positive
impacts are denoted by ‘‘+’’ whereas negative impacts are
denoted by ‘‘�’’. Thus, for example, the use-case UC033:
Transfer Request From ATM System has a negative influ-
ence on Performance, since two systems (the ATM system
and the bank account management system) need to inter-
face in order to complete this request, and such system
interfaces are typically slower; however, the use-case
UC010: Transfer Request From Teller has a positive influ-
ence on Performance, since only one system (the bank
account management system) is involved and the required
data are entered by the experienced teller. At the top of the
figure, we indicate the trade-offs between the use-cases by
using ‘‘+’’ to denote synergies and ‘‘�’’ to denote conflicts.
Thus, UC001: Create Bank Account conflicts with UC002:
Delete Bank Account since they are two opposing features
with different constraints, whereas UC040 and UC010
synergize each other since developing one feature
(UC040) helps in reducing dependence on the other
(UC010). This information can be used for project planning,
cost/effort determination, and use-case prioritization, and it
can be captured in an extended version of Fig. 9.

Some drawbacks of the House of Quality technique
include the inability to capture justifications and the flex-
ibilitytoaccommodatevariousdefinitionsofNFRs.TheNFR
framework (10) addresses these drawbacks. The chief arti-
fact of the NFR framework is the Softgoal Interdependency
Graph (SIG), which captures all information pertaining to
the achievement or otherwise of the NFRs. In a SIG, the
NFRs are captured as NFR softgoals (depicted by a cloud-
shape) that are to be achieved during the process of software

development (we are concerned with the requirements spe-
cification and analysis), and three relationships are possible
between NFR softgoals: AND (depicted by a single arc)
means that the parent NFR softgoal is achieved only if all
child softgoals of the AND-relationship are achieved; OR
(depicted by a double arc) means that the parent NFR soft-
goal is achieved if even one of the child softgoals in the OR-
relationship is achieved; and EQUAL relationship relates
(by a line) one child to a parent and the parent is achieved if
the child is achieved. Even though we used the word
‘‘achieved,’’ the actual NFR framework term is satisfied,
which means relative satisfaction and not absolute satisfac-
tion.ThesystemfeaturesarecapturedintheSIGbymeansof
operationalizing softgoals (depicted by a dark-bordered
cloud-shape), and the contributions of the operationalizing
softgoals to the NFR softgoals are captured by contributions
that come in four flavors: strongly positive (++), positive (+),
negative (�), and strongly negative (��). The contributions
canbepropagateduptheSIGusingwell-definedpropagation
rules of the NFR framework. Finally, the reasons for the
contributions (and, in fact, any element of the SIG) can be
captured by means of argumentation softgoals (depicted by
dashed-bordered cloud-shapes). The information in the
House of Quality of Fig. 9 regarding two use-cases (UC001
and UC033) is captured easily by the SIG of Fig. 10—in this
figure, the use-cases have been represented as operationa-
lization softgoals (operationalizations refer to the artifacts
currentlyunderconsiderationthathelpachieveordenyNFR
softgoals, and during the requirements specification and
analysis phase, the artifacts could be requirements, use-
cases, user stories, or decision tables). In Fig. 10, it may be
noted that the argumentation softgoals capture justifica-
tions, the decomposition of the NFR softgoals (the AND–
OR–EQUAL relationships) capture the definitions of the
NFRs, and the propagation rules permit the determination
of whether the NFRs are achieved, and, more importantly,
they help identify the reasons in either case.

TASK 5: MODEL REQUIREMENTS

Modeling helps to clarify requirements with the customers
and users, so that the SRS is unambiguous, complete, and
captures all essential requirements. Modeling is based on
the premise that ‘‘a picture is worth a thousand words’’ and
that information can be captured concisely using pictures.
Modeling may be accomplished using modeling notations or
formal logic.

Modeling Notations

Common modeling approaches include unified modeling
language (UML) diagrams (11), data flow diagrams
(DFDs) (1), and entity relationship diagrams (ERDs) (1).
The common diagrams used for requirements analysis in
UML include use-case model diagrams (as in Fig. 4), activ-
ity diagrams, class diagrams, sequence diagrams, and state
charts. Noun-parsing of use-case narratives helps discover
potential classes for developing class diagrams. DFDs are
useful for modeling business processes and for capturing
the interaction between manual and computerized pro-
cesses (8). DFDs can be hierarchical with each level expand-

Maintainability: ease of

maintaining the system
+ + - + -

Reliability: system

available 99% of the time
+ + - + -

Performance: system

responds quickly
+ - - + -

U
C

00
1:

C
re

at
e 

B
an

k
A

cc
ou

n
t

U
C

00
2:

D
el

et
e 

B
an

k
A

cc
ou

n
t

-
+

U
C

03
3:

T
ra

n
sf

er
 r

eq
u

es
t 

fr
om

A
T

M
 s

ys
te

m

U
C

01
0:

 T
ra

n
sf

er
re

q
u

es
t 

fr
om

T
el

le
r

U
C

04
0:

T
ra

n
sf

er
 r

eq
u

es
t 

fr
om

w
eb

-b
an

k
in

g 
sy

st
em

+

+

-

-

-

+

+

+

Customer's
NFR's

System
Features

Legend: “+” means positive influence (synergistic)
             “–” means negative influence (conflicting)

Figure 9. Application of House of Quality to analyze nonfunc-
tional requirements (NFRs).

8 REQUIREMENTS SPECIFICATION AND ANALYSIS



ing on the processes at a higher level—level 0 is the highest
level and is called the context diagram, which considers the
entire system as one black box; level 1 is the lower level that
expands the black box of level 0; level 2 is the next lower
level; and so on. A rule of thumb is to ensure that a higher
level process is decomposed into at least five detailed pro-
cesses at the lower level. ERDs can capture relationships
between real-world entities in the problem domain and
serve as an excellent technique to model data requirements
for the domain. Petri nets have also been used to model
requirements, but their semantics may be difficult for the
average user to understand. Petri nets help to model con-
current activities where the order of occurrence is not
important (12).

Formal Methods

Formal techniques for modeling requirements include first-
order logic, temporal logic, Object Constraint Language, Z
language, algebraic specifications, Specification and
Description Language, and Software Cost Reduction (12).
Formal techniques attempt to avoid problems associated
with misinterpreting semantics of a model or inherent
ambiguity in using natural languages (such as, for exam-
ple, English) for documenting requirements. Again without
going into details, it may be safely mentioned that practi-
cality and scalability of these methods is limited even
though claims have been made that for mission-critical
systems these techniques are useful.

REQUIREMENTS MANAGEMENT

One of the major issues with requirements analysis is what
to do when an error is discovered in the requirements—the
error may be an incorrect requirement, ambiguous require-
ment, or even a missing requirement. The processes by
which changes to the requirements specifications are
handled fall under the category of requirements manage-
ment. An important aspect of requirements management is
ensuring that all stakeholders during the requirements

phase always refer to the most updated set of requirements.
Frequently a committee, called the Change Control Board,
is formed to manage requirements, and all requests for
changes need to be forwarded to this committee, which
then decides on the necessity for the changes and, if
required, updates the requirements and disseminates
change notices.

Another facet to requirements management is the devel-
opment of traceability tables where each traceability table
relates requirements to an aspect of the system. Thus, for
example, there could be a features traceability table, source
traceability table, dependency traceability table, subsys-
tem traceability table, and interface traceability table. The
features traceability table relates each requirement to a
feature (or functionality) of the system, the source trace-
ability table relates each requirement to its source, the
dependency traceability table indicates how requirements
are dependent on each other, the subsystem traceability
table relates each requirement to the subsystem the
requirement applies to, and the interface traceability table
captures the relationship between requirements and sys-
tem interfaces.

TOOL SUPPORT FOR REQUIREMENTS SPECIFICATION AND
ANALYSIS

The most important software tools for requirements speci-
fication are a word processor or spreadsheet software. Both
of them help capture software requirements—the advan-
tage with a word processor is that diagrams and detailed
descriptions can be captured, whereas the main advantage
of a spreadsheet software is that the requirements can be
represented in tabular forms that help to add, delete, and
modify requirements easily. Also, both tools help capture
categorized or nested requirements. Some modeling envir-
onments such as IBM’s Rational Requisite Pro (13) and
Telelogic’s System Architect (14) help draw use-cases and
determine requirements dependencies. Drawing applica-
tions such as Smartdraw (15) and Microsoft Visio (16) have
libraries for modeling requirements using UML, ERD, and

Quality[Banking System]

Ease of
Maintenance

Maintainability
[Banking System]

Reliability
[Banking System]

Performance
[Banking System]

UC001: Create
Bank Account

UC033: Transfer
request from
ATM system

Simple
use-case

Availability
[99%] Fast Response

+ +
Simple

use-case

Involves
interaction

between two
systems

-

Uses interf aces
between two

systems

-

-
+

Figure 10. SIG of the NFR framework.

REQUIREMENTS SPECIFICATION AND ANALYSIS 9



DFD notations. In order to capture different versions of
requirements a configuration management tool such as
open-source Concurrent Versions System (17) or IBM’s
Rational ClearCase (13) may be useful. Very often the
versioning system is integrated with a Web-based system
that is usually developed for each project so that interfaces
for viewing and uploading the latest requirements are
readily available. Sometimes, the Web-based repository
serves as a bulletin board service as well so that all update
notifications are issued at one place—the Web-based sys-
tem then becomes a central repository for all data pertain-
ing to the project including requirements.

DOORS (Dynamic Object Oriented Requirements Sys-
tem) (18) marketed by Telelogic is a tool for collaborative
requirements management that helps capture, view, and
update the latest requirements for a project. In addition,
DOORS can help with change management and can be
integrated with third-party application tools.

The Automated Requirements Measurement (ARM)
(19) tool from NASA can evaluate requirements specified
in the English language for words, including imperatives,
directives, continuances, options, and weak phrases. These
constructs are measured in terms of size, specification
depth, readability, and text structure.

RESEARCH PROBLEMS IN REQUIREMENTS SPECIFICATION
AND ANALYSIS

As stated, one of the important problems with the require-
ments specification and analysis phase is that users are
frequently unable to articulate their needs—the roots for
this problem may lie in an interdisciplinary area over-
lapping the fields of neuroscience, psychology, and cogni-
tion. A team of interdisciplinary researchers need to
analyze the causes of this problem so that tools—both
hardware and software—to better elicit requirements
from people may be developed. Another problem is that
of modeling requirements for communication among sta-
keholders (20)—current communication tools that use
natural language such as English are prone to ambigu-
ities, whereas a modeling language such as UML requires
training for proper usage. Another issue that requires
additional study is that of analysis paralysis, which refers
to the problem of being in a state of perpetual analysis
with no end to the phase in sight—the answer to the
question ‘‘When has enough analysis been done?’’ is of
considerable interest to practitioners (21). A very useful
development in this area would be identification of con-
ceptual patterns of user needs so that these concepts
may be used as building blocks for developing require-
ments for new systems; in addition, these concepts may
be used as a mechanism for communicating with users.
For example, concepts such as human–machine inter-
action, data access, and networking seem to be common
for most systems, and these could be designated as
patterns that can be used for building new systems.
Yet another research area is quantification of require-
ments quality (10) so that practitioners know when they

are done—currently this field is in its infancy with tools
such as ARM providing mainly syntactic metrics, but it
needs to be developed to include semantic or conceptual
levels.

BIBLIOGRAPHY

1. IEEE Std 830-1998, Recommended Practice for Software
Requirements Specifications, June 25, 1998.

2. J. L. Whitten and L. D. Bentley, Systems Analysis and Design
Methods, 7th ed. New York: McGraw-Hill, 2007.

3. R. S. Pressman, Software Engineering: A Practitioner’s
Approach, 6th ed. New York: McGraw-Hill, 2005.

4. S. R. Schach, Object-Oriented & Classical Software Engineer-
ing, 6th ed. New York: McGraw-Hill, 2005.

5. S. L Pfleeger and J. M. Atlee, Software Engineering: Theory
and Practice, 3rd ed. Englewood Cliffs, NJ: Prentice Hall,
2006.

6. L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Func-
tional Requirements in Software Engineering. Boston, MA:
Kluwer Academic Publishers, 2000.

7. R. Denney, Succeeding with Use Cases: Working Smart to
Deliver Quality. Reading, MA: Addison-Wesley Professional,
2005.

8. M. Cohn, User Stories Applied: For Agile Software Develop-
ment. New York: Wiley, 2004.

9. J. Wetherbe and N. P. Vitalari, Systems Analysis and Design:
Traditional, Best Practices, 4th ed. St. Paul, MN: West Publish-
ing, 1994.

10. B. W. Boehm, C. Clark, E. Horowitz, C. Westland, R. Madachy,
and R. Selby, Cost models for future life cycle processes:
COCOMO 2.0, Ann. Soft. Eng., 1(1): 57–94, 1995.

11. L. Chung and N. Subramanian, Process-oriented metrics for
software architecture adaptability, Proc. International Sym-
posium on Requirements Engineering, IEEE Computer Press,
Aug–Sep. 2001, pp. 310–311.

12. A. van Lamsweerde, Requirements engineering in the year 00:
a research perspective, Proc. 22nd International Conference on
Software Engineering (ICSE’00), Limerick, Ireland, June 5–9
2000, pp. 5–19.

13. P. Zave and M. Jackson, Four dark corners of requirements
engineering, ACM Trans. Soft. Eng. Methodology, 6(1): 1–30,
1997.

14. www.uml.org

15. http://satc.gsfc.nasa.gov/tools/arm/

16. http://www.telelogic.com/corp/products/doors/index.cfm

17. http://www-306.ibm.com/software/rational/

18. http://www.nongnu.org/cvs/

19. www.smartdraw.com

20. http://office.microsoft.com/en-us/visio/default.aspx

21. http://www.telelogic.com/products/systemarchitect/index.cfm

NARAYANAN SUBRAMANIAN

University of Texas at Tyler
Tyler, Texas

10 REQUIREMENTS SPECIFICATION AND ANALYSIS



S

SOFTWARE AGING AND REJUVENATION

INTRODUCTION

Several studies have now shown that outages in computer
systems are more due to software faults than due to hard-
ware faults (1,2). Recent studies have also reported the
phenomenon of ‘‘software aging’’ (3,4) in which the state
of the software degrades with time. The primary causes
of this degradation are the exhaustion of operating
system resources, data corruption, and numerical error
accumulation, which eventually may lead to performance
degradation of the software, crash/hang failure, or both.
Some common examples of ‘‘software aging’’ are memory
bloating and leaking, unreleased file-locks, data corrup-
tion, storage space fragmentation, and accumulation of
round-off errors (3). Aging has not only been observed in
software used on a mass scale but also in specialized soft-
ware used in high-availability and safety-critical appli-
cations (4). This type of aging in operational software
systems is different from code decay in software systems
caused by maintenance (5,6). The former results in per-
formance problems, system slow downs, and crashes,
whereas the latter results in unrunnable or invalid soft-
ware and maintenance-induced bugs.

As aging leads to transient failures in software sys-
tems, environment diversity, a software fault-tolerance
technique, can be employed proactively to prevent degra-
dation or crashes, which involves occasionally stopping
the running software, ‘‘cleaning’’ its internal state or its
environment and restarting it. Such a technique known as
‘‘software rejuvenation’’ was proposed by Huang et al.
(4,7,8), 1 which counteracts the aging phenomenon in a
proactive manner by removing the accumulated error con-
ditions and freeing up operating system resources. Garbage
collection, flushing operating system kernel tables, and
reinitializing internal data structures are some examples
by which the internal state or the environment of the
software can be cleaned.

Software rejuvenation has been implemented in the
AT&T billing applications (4). An extreme example of a
system-level rejuvenation, proactive hardware reboot, has
been implemented in the real-time system collecting billing
data for most telephone exchanges in the United States (9).
Occasional reboot is also performed in the AT&T telecom-
munications switching software (10). On reboot, called
software capacity restoration, the service rate is restored
to its peak value. On-board preventive maintenance in
spacecraft has been proposed and analyzed by Tai et al.
(11), which maximizes the probability of successful mission

completion by the spacecraft. These operations, called
operational redundancy, are invoked whether or not
faults exist. Proactive fault management was also recom-
mended for the Patriot missiles’ software system (12,13).
A warning was issued saying that a very long running
time could affect the targeting accuracy. This decrease in
accuracy was evidently due to overflow in the counter
keeping track of time, during conversion from integer to
real numbers. The longer the system ran continuously, the
larger the error became. The warning, however, failed to
inform the troops how many hours ‘‘very long’’ was and that
it would help if the computer system was switched off and
on every eight hours, which exemplifies the necessity and
the use of proactive fault management even in safety
critical systems. More recently, rejuvenation has been
implemented in cluster systems to improve performance
and availability (14–17). Two kinds of policies have been
implemented taking advantage of the cluster failover fea-
ture. In the periodic policy, rejuvenation of the cluster
nodes is done in a rolling fashion after every deterministic
interval. In the prediction-based policy, the time to reju-
venate is estimated based on the collection and statistical
analysis of system data. The implementation and analysis
are described in detail in Refs. 14 and 15. A software
rejuvenation feature known as process recycling has
been implemented in the Microsoft IIS 5.0 web server
software (18). The popular web server software Apache
implements a form of rejuvenation by killing and recreating
processes after a certain numbers of requests have been
served (19,20). Software rejuvenation has been proposed
for specialized transaction processing servers (21), cable
and DSL modem gateways (22), in Motorola’s Cable Modem
Termination System (23), and in middleware applications
(24) for failure detection and prevention. Automated reju-
venation strategies have been proposed in the context of
self-healing and autonomic computing systems (25).
Recently, recursive restarts and micro-reboot has been
proposed to increase availability (26). Software rejuvena-
tion (preventive maintenance) incurs an overhead (in terms
of performance, cost, and downtime), which should be
balanced against the loss incurred due to unexpected out-
age caused by a failure. Thus, an important research issue
is to determine the optimal times to perform rejuvenation.

Here, we present two approaches for analyzing soft-
ware aging and studying aging-related failures. The rest
of this article is organized as follows: The next section
describes various analytical models for software aging
and to determine optimal times to perform rejuvenation.
Measurement-based models are dealt with next, followed
by discussion of the implementation of a software rejuve-
nation agent in a major commercial server, various appro-
aches and methods of rejuvenation. The article concludes
with pointers to future work.

1Although we use the by-now-established phrase ‘‘software aging,’’
it should be clear that no deterioration of the software system per se
is implied but rather the software appears to age due to the gradual
depletion of resources (8). Likewise, ‘‘software rejuvenation’’ actu-
ally refers to rejuvenation of the environment in which the software
is executing.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



ANALYTIC MODELS FOR SOFTWARE REJUVENATION

The aim of the analytic modeling is to determine optimal
times to perform rejuvenation that maximizes availability
or minimizes the probability of loss or minimizes the mean
response time of a transaction (in the case of a transaction
processing system), which is particularly important for
business-critical applications for which adequate response
time can be as important as system uptime. The analysis is
done for different kinds of software systems exhibiting
varied failure/aging characteristics.

The accuracy of a model-based approach is determined
by the assumptions made in capturing aging. In Refs.
4,11,27–29, only the failures causing unavailability of
the software are considered, whereas in Ref. 30 only a
gradually decreasing service rate of a software that serves
transactions is assumed. Garg et al. (31), however, consider
both these effects of aging together in a single model.
Models proposed in Refs. 4,27,28 are restricted to hypo-
exponentially distributed time to failure. Those proposed
in Refs. 11,29,30 can accommodate general distributions
but only for the specific aging effect they capture. Generally
distributed time to failure, as well as the service rate being
an arbitrary function of time are allowed in Ref. 31. It has
been noted (2) that transient failures are partly caused by
overload conditions. Only the model presented by Garg et
al. (31) captures the effect of load on aging. Existing models
also differ in the measures being evaluated. In Refs. 11 and
29, software with a finite mission time is considered. In
Refs. 4,27,28,31, measures of interest in a transaction-
based software intended to run forever are evaluated.

Bobbio et al. (32) present fine-grained software degra-
dation models, where one can identify the current degrada-
tion level based on the observation of a system parameter.
Optimal rejuvenation policies based on a risk criterion and
an alert threshold are then presented. Dohi et al. (33,34)
present software rejuvenation models based on semi-
Markov processes. The models are analyzed for optimal
rejuvenation strategies based on cost as well as steady-
state availability. Given a sample data of failure times,
statistical non-parametric algorithms based on the total
time on test transform are presented to obtain the optimal
rejuvenation interval.

Basic Model for Rejuvenation

Figure 1 shows the basic software rejuvenation model
proposed by Huang et al. (4). The software system is initi-
ally in a ‘‘robust’’ working state, 0. As time progresses, it
eventually transits to a ‘‘failure-probable’’ state, 1. The
system is still operational in this state, but can fail
(move to state 2) with a non-zero rate. The system can be
repaired and brought back to the initial state, 0. The soft-
ware system is also rejuvenated at regular intervals from
the failure probable state 1 and brought back to the robust
state 0.

Huang et al. (4) assume that the stochastic behavior of
the system can be described by a simple homogeneous
continuous-time Markov chain (CTMC) (35). The CTMC
is then analyzed and the expected system downtime and the

expected cost per unit time in the steady state are com-
puted. An optimal rejuvenation interval that minimizes
expected downtime (or expected cost) is obtained.

It is not difficult to introduce the periodic rejuvenation
schedule and to extend the CTMC model to the general one.
Dohi et al. (33,34) developed semi-Markov models with
the periodic rejuvenation and general transition distri-
bution functions. Garg et al. (27) have developed a Markov
Regenerative Stochastic Petri Net (MRSPN) model where
rejuvenation is performed at deterministic intervals
assuming that the failure probable state 1 is not observable.

Software Rejuvenation in Transactions-Based Software
Systems

In Ref. 31, Garg et al. consider a transaction-based soft-
ware system whose macro-states representation is presen-
ted in Fig. 2. The state in which the software is available
for service (albeit with decreasing service rate) is denoted
as state A. After failure, a recovery procedure is started.
In state B, the software is recovering from failure and is
unavailable for service. Lastly, the software occasionally
undergoes rejuvenation, denoted by state C. Rejuvenation
is allowed only from state A. Once recovery from failure
or rejuvenation is complete, the software is reset to state A
and is as good as new. From this moment, which constitutes
a renewal, the whole process stochastically repeats itself.

The system consists of a server-type software to which
transactions arrive at a constant rate. The effect of aging
in the model may be captured by using decreasing service
rate and increasing failure rate, where the decrease or the
increase respectively can be a function of time, instanta-
neous load, mean accumulated load, or a combination of
the above.

Two policies that can be used to determine the time to
perform rejuvenation are considered. Under policy I, which
is purely time-based, rejuvenation is initiated after a con-
stant time d has elapsed since it was started (or restarted).
Under policy II, which is based on instantaneous load and

completion of
repair

completion of
rejuvenation

0

2 1 3

state
change

system failure rejuvenation

Figure 1. State transition diagram for rejuvenation.

B A C

Undergoing PMRecovering

Available

Figure 2. Macro-states representation of the software behavior.

2 SOFTWARE AGING AND REJUVENATION



time, a constant waiting period d must elapse before reju-
venation is attempted. After this time, rejuvenation is
initiated if there are no transactions in the system. Other-
wise, the software waits until the queue is empty upon
which rejuvenation is initiated. The goal of the analysis is to
determine optimal values of d (rejuvenation interval under
policy I and rejuvenation wait under policy II) different
objective functions such as the availability, the loss prob-
ability, and the mean response time.

Software Rejuvenation in a Cluster System

Software rejuvenation has been applied to cluster systems
(14,16), which significantly improves cluster system avail-
ability and productivity. The Stochastic Reward Net
(SRN) model of a cluster system employing simple time-
based rejuvenation is shown in Fig. 3. The cluster consists
of n nodes, which are initially in a ‘‘robust’’ working state,
Pup. The aging process is modeled as a two-stage hypo-
exponential distribution (increasing failure rate) (35) with
transitions Tf prob and Tnoderepair. Place Pf prob represents a
‘‘failure-probable’’ state in which the nodes are still opera-
tional. The nodes then can eventually transit to the fail
state, Pnode fail1. A node can be repaired through the transi-
tion Tnoderepair, with a coverage c. In addition to individual
node failures, there is also a common-mode failure (transi-
tion Tcmode). The system is also considered down when there
are a (a � n) individual node failures. The system is
repaired through the transition Tsysrepair.

In the simple time-based policy, rejuvenation is done
successively for all the operational nodes in the cluster,
at the end of each deterministic interval. The transition
Trejuvinterval fires every d time units depositing a token in
place Pstartrejuv. Only one node can be rejuvenated at any
time (at places Prejuv1 or Prejuv2). Weight functions are
assigned such that the probability of selecting a token
from Pup or Pf prob is directly proportional to the number

of tokens in each. After a node has been rejuvenated, it goes
back to the ‘‘robust’’ working state, represented by place
Prejuved, which is a clone place for Pup in order to distinguish
the nodes that are waiting to be rejuvenated from the nodes
that have already been rejuvenated. A node, after rejuve-
nation, is then allowed to fail with the same rates as before
rejuvenation even when another node is being rejuvenated.
Clone places for Pupb and Pf prob are needed to capture this
result. Node repair is disabled during rejuvenation. Reju-
venation is complete when the sum of nodes in places
Prejuved, Pfprobrejuv, and Pnode fail2 is equal to the total number
of nodes, n. In this case, the immediate transition Timmd10

fires, putting back all the rejuvenated nodes in places Pup

and Pfprob. Rejuvenation stops when there are a�1 tokens
in place Pnode fail2, to prevent a system failure. The clock
resets itself when rejuvenation is complete and is disabled
when the system is undergoing repair. Guard functions
(g1 through g7) are assigned to express complex enabling
conditions textually.

For the analysis, the following values are assumed. The
mean times spent in places Pup and Pf prob are 240 hrs and
720 hrs, respectively. The mean times to repair a node, to
rejuvenate a node, and to repair the system are 30 mins,
10 mins, and 4 hrs, respectively. In this analysis, the
common-mode failure is disabled and node failure cover-
age is assumed to be perfect. All the models were solved
using the SPNP (Stochastic Petri Net Package) tool (36).
The measures computed were expected downtime and the
expected cost incurred over a fixed time interval. It is
assumed that the cost incurred due to node rejuvenation
is much less than the cost of a node or system failure since
rejuvenation can be done at predetermined or scheduled
times. In our analysis, we fix the value for costnode fail at
$5,000/hr and the costre juv at $250/hr. The value of costsys fail

is computed as the number of nodes, n, times costnodefail.
Figure 4 shows the plots for an 8/1 configuration (8 nodes

including 1 spare) system employing simple time-based

Pup

Pfprob

P

P

sysfail

nodefail2

Tnoderepair

TnodefailTimmd1

Timmd2

n

Pnodefail1

Trejuvinterval

Pclock

Pstartrejuv

T

fprobrejuv

rejuved

Prejuv1

rejuv1

Prejuv2

Trejuv2

T Timmd7

Timmd10

Timmd12

sysrepairT Timmd5

Timmd4

g1

g1g1

g1 g1

T Pnodefailrejuv Tfprobrejuv

Tfprob

P

cmodeT

n

immd8T Timmd9
prob=n2prob=n1

g1

Timmd13

T

g1

immd14

T

g2

immd3T g3

immd6

g5

immd15

g4 g4

g6

g2

immd11T g7 g7

(1-c)

c

#

#

# #

Figure 3. SRN model of a cluster
system employing simple time-
based rejuvenation.

SOFTWARE AGING AND REJUVENATION 3



rejuvenation. The upper plot and lower plots show the
expected cost incurred and the expected downtime (in
hours), respectively, in a given time interval, versus reju-
venation interval (time between successive rejuvenation)
in hours. If the rejuvenation interval is close to zero, the
system is always rejuvenating and thus incurs high cost
and downtime. As the rejuvenation interval increases, both
expected downtime and cost incurred decrease and reach
an optimum value. If the rejuvenation interval goes beyond
the optimal value, the system failure has more influence on
these measures than rejuvenation. The analysis was
repeated for 2/1, 8/2, 16/1, and 16/2 configurations. For
time-based rejuvenation, the optimal rejuvenation interval
was 100 hours for the 1-spare clusters, and approximately
1 hour for the 2-spare clusters.

MEASUREMENT-BASED MODELS FOR SOFTWARE
REJUVENATION

While all the analytical models are based on the assumption
that the rate of software aging is known, in the measure-
ment-based approach, the basic idea is to monitor and
collect data on the attributes responsible for determining
the health of the executing software. The data is then
analyzed to obtain predictions about possible impending
failures due to resource exhaustion.

In this section, we describe the measurement-based
approach for detection and validation of the existence of
software aging. The basic idea is to periodically monitor
and collect data on the attributes responsible for deter-
mining the health of the executing software, in this case
the UNIX operating system. Garg et al. (3) propose an
approach for detection and estimation of aging in the
UNIX operating system. An SNMP-based distributed re-
source monitoring tool was used to collect operating system
resource usage and system activity data from nine hetero-
geneous UNIX workstations connected by an Ethernet

LAN at the Department of Electrical and Computer
Engineering at Duke University. A central monitoring
station runs the manager program, which sends get re-
quests periodically to each of the agent programs running
on the monitored workstations. The agent programs, in
turn, obtain data for the manager from their respective
machines by executing various standard UNIX utility
programs like pstat, iostat, and vmstat. For quantifying
the effect of aging in operating system resources, the metric
Estimated time to exhaustion is proposed.

In the time-based estimation method presented by Garg
et al. (3), data was collected from the UNIX machines at
intervals of 15 minutes for about 53 days. Time-ordered
values for each monitored object are obtained, constituting
a time series for that object. The objective is to detect
aging or a long-term trend (increasing or decreasing) in
the values. Only results for the data collected from the
machine Rossby are discussed here.

First, the trends in operating system resource usage and
system activity are detected using smoothing of observed
data by robust locally weighted regression, proposed by
Cleveland (3). This technique is used to get the global trend
between outages by removing the local variations. Then,
the slope of the trend is estimated in order to do prediction.
Figure 5 shows the smoothed data superimposed on the
original data points from the time series of objects for
Rossby. Amount of real memory free (plot 1) shows an over-
all decrease, whereas file table size (plot 2) shows an in-
crease. Plots of some other resources not discussed here

0 100 200 300 400 500 600
1.2

1.4

1.6

1.8

2

2.2
× 104

Rejuvenation Interval (hours)

E
xp

ec
te

d 
C

os
t

0 100 200 300 400 500 600
0.85

0.9

0.95

1

1.05

Rejuvenation Interval (hours)

E
xp

ec
te

d 
D

ow
nt

im
e

Figure 4. Results for an 8/1 cluster system employing time-
based rejuvenation.

R
ea

l M
em

or
y 

F
re

e

15
00

0
25

00
0

35
00

0

Time

F
ile

 T
ab

le
 S

iz
e

0 10 20 30 40 50

Time

0 10 20 30 40 50

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Figure 5. Non-parametric regression smoothing for Rossby
objects.

4 SOFTWARE AGING AND REJUVENATION



also showed an increase or decrease, which corroborates
the hypothesis of aging with respect to various objects.

The seasonal Kendall test (3) was applied to each of
these time series to detect the presence of any global trends
at a significance level, a, of 0.05. With Za¼ 1.96, all values
are such that the null hypothesis (H0) that no trend exists is
rejected for the variables considered. Given that a global
trend is present and that its slope is calculated for a parti-
cular resource, the time at which the resource will be
exhausted because of aging only is estimated. Table 1 refers
to several objects on Rossby and lists an estimate of the
slope (change per day) of the trend obtained by applying
Sen’s slope estimate for data with seasons (3). The values
for real memory and swap space are in Kilobytes.

A negative slope, as in the case of real memory, indicates
a decreasing trend, whereas a positive slope, as in the case
of file table size, is indicative of an increasing trend. Given
the slope estimate, the table lists the estimated time to
failure of the machine due to aging only with respect to
this particular resource. The calculation of the time to
exhaustion is done by using the standard linear approxi-
mation y ¼ mx þ c.

The method discussed in Ref. 3 assumes that accu-
mulated depletion of a resource over a time period depends
only on the elapsed time. However, it is intuitive that
the rate at which a resource is depleted is dependent on
the current workload. In Refs. 37 and 38, a measurement-
based model to estimate the rate of exhaustion of operating
system resources as a function of both time and the system
workload is discussed. The SNMP-based distributed
resource monitoring tool described previously was used
for collecting operating system resource usage and system
activity parameters (at 10 min intervals) for over 3 months.
Only results for the data collected from the machine Rossby
are discussed here. The longest stretch of sample points in
which no reboots or failures occurred were used for building
the model. A semi-Markov reward model (39) is constructed
using the data. First, different workload states are identi-
fied using statistical cluster analysis and a state-space
model is constructed. Corresponding to each resource, a
reward function based on the rate of resource exhaustion in
the different states is then defined. Finally, the model is
solved to obtain trends and the estimated exhaustion rates
and time to exhaustion for the resources.

A methodology based on time-series analysis to detect
and estimate resource exhaustion times due to software
aging in a web server while subjecting it to an artificial
workload is proposed in Ref. 19. The experiments are
conducted on an Apache web server running on the Linux
platform.

The analysis can be done using two different appro-
aches: (1) building a univariate model for each of the out-
puts or, (2) building only one multivariate model with seven

outputs. In this case, seven univariate models are built and then

combined into a singlemultivariatemodel. First, the parameters

are determined to determine their characteristics and build an

appropriate model with one output and four inputs for each

parameter—connection rate, linear trend, periodic series with a

period of one week, and periodic series with a period of one day.

The autocorrelation function (ACF) and the partial autocorre-

lation function (PACF) for the output are computed. The ACF

and the PACF help us decide the appropriate model for the data

(40). For example, from the ACF and PACF of used swap
space, it can be determined that an autoregressive model of

order 1 [AR(1)] is suitable for this data series. Adding the inputs

to the AR(1) model, we get the ARX(1) model for used swap

space:

Yt ¼ aYt�1 þ b1Xt þ b2Lt þ b3Wt þ b4Dt ð1Þ

where Yt is the used swap space, Xt is the connection rate,
Lt is the time step that represents the linear trend, Wt is
the weekly periodic series, and Dt is the daily periodic
series. After observing the ACF and PACF of all the para-
meters, we find that all of the PACFs cut off at certain lags.
So all the multiple input single output (MISO) models are
of the ARX type, only with different orders, which gives
great convenience in combining them into a multiple input
multiple output (MIMO) ARX model, which is described
later.

In order to combine the MISO ARX models into a MIMO
ARX model, we need to choose the order between different
outputs, which is done by inspecting the CCF (cross-
correlation function) between each pair of the outputs to
find out the leading relationship between them. If the CCF
between parameter A and B gets its peak value at a posi-
tive lag k, we say that A leads B by k steps and it might
be possible to use A to predict B. In our analysis, there are

Table 1. Estimated slope and time to exhaustion for Rossby, Velum, and Jefferson objects

Resource Name Initial Value Max Value
Sen’s Slope
Estimation

95% Confidence
Interval

Estimated Time
to Exh. (days)

Rossby
Real Memory Free 40814.17 84980 �252.00 �287.75 : �219.34 161.96
File Table Size 220 7110 1.33 1.30 : 1.39 5167.50
Process Table Size 57 2058 0.43 0.41 : 0.45 4602.30
Used Swap Space 39372 312724 267.08 220.09 : 295.50 1023.50

Jefferson
Real Memory Free 67638.54 114608 �972.00 �1006.81 : �939.08 69.59
File Table Size 268.83 7110 1.33 1.30 : 1.38 5144.36
Process Table Size 67.18 2058 0.30 0.29 : 0.31 6696.41
Used Swap Space 47148.02 524156 577.44 545.69 : 603.14 826.07

SOFTWARE AGING AND REJUVENATION 5



21 CCFs that need to be computed. And, in order to reduce
the complexity, we only use the CCFs that exhibit obvious
leading relationship with lags less than 10 steps. The next
step after determination of the orders is to estimate the
coefficients of the model by the least squares method. The
first half of the data is used to estimate the parameters and
the rest of the data is then used to verify the model. Figure 6
shows the two-hour-ahead (24-step) predicted used swap
space, which is computed using the established model and
the data measured up to two hours before the predicted
time point. From the plots, we can see that the predicted
values are very close to the measured values.

In Ref. 8, a model is developed to account for the
gradual loss of system resources, especially the memory
resource. In a client-server system, for example, every
client process issues memory requests at varying points
in time. An amount of memory is granted to each new
request (when there is enough memory available), held
by the requesting process for a period of time, and presum-
ably released back to the system resource reservoir when it
is no longer in use. A memory leak occurs when the amount
of allocated memory is not fully released. The available
memory space is gradually reduced as such resource leaks
accumulate over time. As a consequence, a resource request
that would have been granted in the leak-less situation
may not be granted when the system suffers from memory
resource leaks. This model accommodates both the leak-
free case and the leak-present case. The model relates
system degradation to resource requests, releases or
resource holding intervals, and memory leaks. These quan-
tities can be monitored and modeled directly from obtain-
able data measurements (19).

Avritzer and Weyuker (10) monitor production traffic
data of a large telecommunication system and describe
a rejuvenation strategy that increases system availabi-
lity and minimizes packet loss. Cassidy et al. (21) have
developed an approach to rejuvenation for large online

transaction processing servers. They monitor various
system parameters over a period of time. Using pattern
recognition methods, they come to the conclusion that
13 of those parameters deviate from normal behavior just
before a crash, providing sufficient warning to initiate
rejuvenation.

IMPLEMENTATION OF A SOFTWARE REJUVENATION
AGENT

The first commercial version of a software rejuvenation
agent (SRA) for the IBM xSeries line of cluster servers has
been implemented with our collaboration (14–16). The
SRA was designed to monitor consumable resources, esti-
mate the time to exhaustion of those resources, and gen-
erate alerts to the management infrastructure when the
time to exhaustion is less than a user-defined notification
horizon. For Windows operating systems, the SRA acquires
data on exhaustible resources by reading the registry per-
formance counters and collecting parameters such as
available bytes, committed bytes, non-paged pool, paged
pool, handles, threads, semaphores, mutexes, and logical
disk utilization. For Linux, the agent accesses the /proc
directory structure and collects equivalent parameters
such as memory utilization, swap space, file descriptors
and inodes. All collected parameters are logged on to disk.
They are also stored in memory preparatory to time-to-
exhaustion analysis.

In the current version of the SRA, rejuvenation can be
based on elapsed time since the last rejuvenation or on
prediction of impending exhaustion. When using timed
rejuvenation, a user interface is used to schedule and per-
form rejuvenation at a period specified by the user. It allows
the user to select when to rejuvenate different nodes of the
cluster, and to select ‘‘blackout’’ times during which no
rejuvenation is to be allowed. Predictive rejuvenation relies
on curve-fitting analysis and projection of the use of key
resources, using recently observed data. The projected data
is compared with prespecified upper and lower exhaustion
thresholds, within a notification time horizon. The user
specifies the notification horizon and the parameters to be
monitored (some parameters believed to be highly indi-
cative are always monitored by default), and the agent
periodically samples the data and performs the analysis.
The prediction algorithm fits several types of curves to the
data in the fitting window. These different curve types have
been selected for their ability to capture different types of
temporal trends. A model-selection criterion is applied to
choose the ‘‘best’’ prediction curve, which is then extra-
polated to the user-specified horizon. The several para-
meters that are indicative of resource exhaustion are
monitored and extrapolated independently. If any moni-
tored parameter exceeds the specified minimum or maxi-
mum value within the horizon, a request to rejuvenate is
sent to the management infrastructure. In most cases, it is
also possible to identify which process is consuming the
preponderance of the resource being exhausted, in order to
support selective rejuvenation of just the offending process
or a group of processes.

0 100 200 300 400 500 600
4

5

6

7

8

9

10

11

12

13

14
× 106

Time (hours)

us
ed

 s
w

ap
 s

pa
ce

 (
by

te
s)

measured
two-hour predicted

Figure 6. Measured and two-hour-ahead predicted used swap
space.

6 SOFTWARE AGING AND REJUVENATION



APPROACHES AND METHODS OF SOFTWARE
REJUVENATION

Software rejuvenation can be divided broadly into two
approaches as follows:

� Open-loop approach: In this approach, rejuvena-
tion is performed without any feedback from the sys-
tem. Rejuvenation, in this case, can be based just on
elapsed time (periodic rejuvenation) (4,27) or instan-
taneous/cumulative number of jobs on the system (31).

� Closed-loop approach: In the closed-loop approach,
rejuvenation is performed based on information on the
system ‘‘health.’’ The system is monitored continu-
ously (in practice, at small deterministic intervals)
and data is collected on the operating system resource
usage and system activity. This data is then analyzed
to estimate time to exhaustion of a resource that may
lead to a component or an entire system degradation/
crash. This estimation can be based purely on time and
workload-independent (3,14), or it can be based on both
time and system workload (37,38).

The closed-loop approach can be further classified
based on whether the data analysis is done offline or
online. Offline data analysis is done based on system
data collected over a period of time (usually weeks or
months). The analysis is done to estimate time to
rejuvenation. This offline analysis approach is best
suited for systems whose behavior is fairly determi-
nistic (37,38). The online closed-loop approach, on the
other hand, performs online analysis of system data
collected at deterministic intervals (14). Another
approach to estimate the optimal time to rejuvenation
could be based on system failure data (34).

This classification of approaches to rejuvenation is
shown in Fig. 7.

Rejuvenation is a very general proactive fault manage-
ment approach and can be performed at different levels—
the system level or the application level. An example of a
system-level rejuvenation is a hardware-reboot. At the
application level, rejuvenation is performed by stopping
and restarting a particular offending application, process,
or a group of processes, also known as a partial rejuvena-
tion. The above rejuvenation approaches when performed
on a single node can lead to undesired and often costly
downtime. Rejuvenation has been recently extended for
cluster systems, in which two or more nodes work together
as a single system (14,16). In this case, rejuvenation can be
performed by causing no or minimal downtime by failing
over applications to another spare node.

CONCLUSIONS

In this article, various analytical models for software aging
and to determine optimal times to perform rejuvenation
were described. Measurement-based models based on data
collected from operating systems were also discussed. The
implementation of a software rejuvenation agent in a major
commercial server was then briefly described. Finally,

various approaches to rejuvenation and rejuvenation gran-
ularity were discussed.

In the measurement-based models presented in this
article, only aging due to each individual resource has
been captured. In the future, one could improve the algo-
rithm used for aging detection to involve multiple para-
meters simultaneously, for better prediction capability and
reduced false alarms. Dependencies between the various
system parameters could be studied. The best statistical
data analysis method for a given system is also yet to be
determined.

BIBLIOGRAPHY

1. J. Gray and D. P. Siewiorek, High-availability computer sys-
tems, IEEE Computer, 1991, pp. 39–48.

2. M. Sullivan and R. Chillarege, Software defects and their
impact on system availability – A study of field failures in
operating systems, Proc. 21st IEEE Int’l. Symposium on Fault-
Tolerant Computing, 1991, pp. 2–9.

3. S. Garg, A. Van Moorsel, K. Vaidyanathan, and K. Trivedi, A
methodology for detection and estimation of software aging,
Proc. of 9th Int’l. Symposium on Software Reliability Engineer-
ing, Paderborn, Germany, 1998, pp. 282–292.

4. Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, Software
rejuvenation: Analysis, module and applications, Proc. of 25th
Symposium on Fault Tolerant Computing, FTCS-25, Pasa-
dena, California, 1995, pp. 381–390.

5. S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A.
Mockus, Does code decay? Assessing the evidence from change
management data, IEEE Trans. Software Eng., 27 (1): 1–12,
2001.

6. D. L. Parnas, Software Aging, Proc. 16th Int’l. Conf. on Soft-
ware Engineering, Sorrento, Italy, 1994, pp. 279–287.

7. Available: http://www.software-rejuvenation.com.

8. Y. Bao, X. Sun, and K. Trivedi, A workload-based analysis of
software aging and rejuvenation, IEEE Trans. Reliability, 54
(3): 541–548, 2005.

9. L. Bernstein, Text of Seminar Delivered by Mr. Bernstein.
University Learning Center, George Mason University, Janu-
ary 29, 1996.

10. A. Avritzer and E. J. Weyuker, Monitoring Smoothly Degrad-
ing Systems for Increased Dependability. Empirical Software
Eng. J., 2 (1): 59–77, 1997.

Open-loop approach Closed-loop approach

Elapsed Elapsed time 

Time-based

     analysis

    Time & 
workload-based

  time 
(periodic)

     and load

  analysis
    Time & 

workload-based
     analysis

Time-basedFailure 
    data   analysis

On-lineOff-line

SOFTWARE REJUVENATION

Figure 7. Approaches to software rejuvenation.

SOFTWARE AGING AND REJUVENATION 7



11. A. T. Tai, S. N. Chau, L. Alkalaj, and H. Hecht, On-board
preventive maintenance: Analysis of effectiveness and optimal
duty period, 3rd Int’l. Workshop on Object Oriented Real-time
Dependable Systems, Newport Beach, CA, 1997.

12. L. Bernstein and C. M. R. Kintala, Software Rejuvenation.
CrossTalk – J. Defense Software Eng., August 2004.

13. E. Marshall, Fatal error: How patriot overlooked a scud,
Science, 1347, 1992.

14. V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S.
Trivedi, K. Vaidyanathan, and W. Zeggert, Proactive manage-
ment of software aging, IBM J. R&D, 45 (2): 2001.

15. IBM Netfinity Director Software Rejuvenation – White Paper,
Research Triangle Park, NC:IBM Corp., Jan. 2001.

16. K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S.
Trivedi, Analysis and implementation of software rejuvenation
in cluster systems, Proc. of the Joint Int’l. Conference on
Measurement and Modeling of Computer Systems, ACM SIG-
METRICS 2001/Performance 2001, Cambridge, MA, 2001.

17. W. Xie, Y. Hong, and K. S. Trivedi, Software rejuvenation
policies for cluster systems under varying workload, Proc. of
Tenth Int’l. Pacific Rim Dependable Computing Symp., PRDC
2004, Papeete, Tahiti, French Polynesia, 2004.

18. Available: http://www.microsoft.com/technet/prodtechnol/
windows2000serv/technologies/iis/ default.mspx.

19. M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, Analysis
of software aging in a web server, IEEE Trans. Reliability, 55
(3): 411–420, 2006.

20. Available: http://www.apache.org.

21. K. Cassidy, K. Gross, and A. Malekpour, Advanced pattern
recognition for detection of complex software aging in online
transaction processing servers, Proc. of DSN 2002, Washington
D.C., 2002.

22. C. Fetzer and K. Hostedt, Rejuvenation and failure detection in
partitionable systems, Proc. of the Pacific Rim Int’l. Sympo-
sium on Dependable Computing, PRDC 2001, Seoul, South
Korea, 2001.

23. Y. Liu, Y. Ma, J. J. Han, H. Levendel, and K. S. Trivedi,
Modeling and analysis of software rejuvenation in cable
modem termination system, Proc. of the Int’l. Symp. on Soft-
ware Reliability Engineering, ISSRE 2002, Annapolis, MD,
2002.

24. T. Boyd and P. Dasgupta, Premptive module replacement
using the virtualizing operating system, Proc. of the Work-
shop on Self-Healing, Adaptive and Self-Managed Systems,
SHAMAN 2002, New York, NY, 2002.

25. Y. Hong, D. Chen, L. Li, and K. S. Trivedi, Closed loop design for
software rejuvenation, Proc. of the Workshop on Self-Healing,
Adaptive and Self-Managed Systems, SHAMAN 2002,
New York, NY, 2002.

26. G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
Microreboot, A technique for cheap recovery, Proc. 6th Sym-
posium on Operating Systems Design and Implementation
(OSDI), San Francisco, CA, 2004.

27. S. Garg, A. Puliafito, and K. S. Trivedi, Analysis of software
rejuvenation using markov regenerative stochastic petri net,
Proc. of the Sixth Int’l. Symposium on Software Reliability
Engineering, Toulouse, France, 1995, pp. 180–187.

28. S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi, Time and load
based software rejuvenation: Policy, evaluation and optimal-

ity, Proc. of the First Fault-Tolerant Symposium, Madras,
India, 1995.

29. S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi, Minimizing
completion time of a program by checkpointing and rejuvena-
tion, Proc. 1996 ACM SIGMETRICS Conference, Philadelphia,
PA, 1996, pp. 252–261.

30. A. Pfening, S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi,
Optimal rejuvenation for tolerating soft failures, Perform.
Eval., 27 & 28: 491–506, 1996.

31. S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, Analysis of
preventive maintenance in transactions based software sys-
tems, IEEE Trans. Comput., 47(1): 96–107, 1998.

32. A. Bobbio, A. Sereno, and C. Anglano, Fine grained software
degradation models for optimal rejuvenation policies, Perform.
Eval., 46: 45–62, 2001.

33. T. Dohi, K. Goseva–Popstojanova, and K. S. Trivedi, Analysis of
software cost models with rejuvenation, Proc. of the 5th IEEE
International Symposium on High Assurance Systems Engi-
neering, HASE 2000, Albuquerque, NM, 2000.

34. T. Dohi, K. Goseva–Popstojanova, and K. S. Trivedi, Statistical
Non-Parametric Algorithms to Estimate the Optimal Software
Rejuvenation Schedule, Proc. of the 2000 Pacific Rim Interna-
tional Symposium on Dependable Computing, PRDC 2000, Los
Angeles, CA, 2000.

35. K. S. Trivedi, Probability and Statistics with Reliability, Queu-
ing and Computer Science Applications, 2nd ed., New York:
Wiley, 2001.

36. C. Hirel, B. Tuffin, and K. S. Trivedi, SPNP: Stochastic Petri
Net Package. Version 6.0. B. R. Haverkort et al. (eds.), TOOLS
2000, Lecture notes in computer science 1786, Heidelberg:
Springer-Verlag, 2000, pp. 354–357.

37. K. Vaidyanathan and K. S. Trivedi, A comprehensive model for
software rejuvenation, IEEE Trans. on Dependable and Secure
Computing, 2 (2): 124–137, 2005.

38. K. Vaidyanathan and K. S. Trivedi, A comprehensive model for
software rejuvenation, IEEE Trans. on Dependable and Secure
Computing, Apr. 2005 (in press).

39. K. S. Trivedi, J. Muppala, S. Woolet, and B. R. Haverkort,
Composite performance and dependability analysis, Perform.
Eval., 14(3–4): 197–216, 1992.

40. R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its
Applications, New York: Springer-Verlag, 2000.

FURTHER READING

E. Adams, Optimizing Preventive Service of the Software Pro-
ducts, IBM J. R&D, 28 (1): 2–14, 1984.

KISHOR S. TRIVEDI

Duke University
Durham, North Carolina

KALYANARAMAN VAIDYANATHAN

Scalable Systems Group,
Sun Microsystems, Inc.

San Diego, California

8 SOFTWARE AGING AND REJUVENATION



S

SOFTWARE ARCHITECTURE

INTRODUCTION

During the 1990s, architectural design emerged as an
important subfield of software engineering. Practitioners
have come to realize that having a good architectural
design is a critical success factor for complex system devel-
opment. A good architecture can help ensure that a system
will satisfy key requirements in such areas as performance,
reliability, portability, scalability, and interoperability. A
bad architecture can be disastrous.

Practitioners have also begun to recognize the value of
making explicit architectural choices and leveraging past
architectural designs in the development of new products.
Today, there are numerous books on architectural design,
regular conferences and workshops devoted specifically to
software architecture, a growing number of commercial
tools to aid in aspects of architectural design, courses in
software architecture, major government and industrial
research projects centered on software architecture, and
an increasing number of formal architectural standards.
Codification of architectural principles, methods, and prac-
tices has begun to lead to repeatable processes of archi-
tectural design, criteria for making principled tradeoffs
among architectures, and standards for documenting,
reviewing, and implementing architectures.

THE ROLES OF SOFTWARE ARCHITECTURE

What exactly is meant by the term ‘‘software architecture?’’
If we look at the common uses of the term ‘‘architecture’’ in
software, we find that it is used in different ways, often
making it difficult to understand what aspect is being
addressed. Among the uses are: (1) the architecture of a
particular system, as in ‘‘the architecture of system S
contains components C1. . . Cn’’; (2) an architectural style,
as in ‘‘system S adopts a client-server architecture’’; and (3)
the general study of architecture, as in ‘‘there are many
books on software architecture.’’

Within software engineering, however, most uses of the
term focus on the first of these interpretations. A typical
definition is:

The software architecture of a program or computing system is
the structure or structures of the system, which comprise soft-
ware elements, the externally visible properties of those ele-
ments, and the relationships among them (1).

Although numerous similar definitions of software archi-
tecture exist, at the core of all of them is the notion that the
architecture of a system describes its gross structure using
one or more views. The structure in a view illuminates a set
of top-level design decisions, including things such as how
the system is composed of interacting parts, where the main
pathways of interaction are, and what the key properties of

the parts are. Additionally, an architectural description
ideally includes sufficient information to allow high-level
analysis and critical appraisal.

Software architecture typically plays a key role as a
bridge between requirements and code (see Fig. 1).

By providing an abstract description (or model) of a
system, the architecture exposes certain properties while
hiding others. Ideally, this representation provides an
intellectually tractable guide to the overall system, permits
designers to reason about the ability of a system to satisfy
certain requirements, and suggests a blueprint for system
construction and composition.

For example, an architecture for a signal processing
application might be constructed as a dataflow network
in which the nodes read input streams of data, transform
that data, and write to output streams. Designers might use
this decomposition, together with estimated values for
input data flows, computation costs, and buffering capa-
cities, to reason about possible bottlenecks, resource
requirements, and schedulability of the computations.

To elaborate, software architecture can play an impor-
tant role in at least six aspects of software development.

1. Understanding: Software architecture simplifies our
ability to comprehend large systems by presenting
them at a level of abstraction at which a system’s
design can be easily understood (2–4). Moreover, at
its best, architectural description exposes the high-
level constraints on system design, as well as the
rationale for specific architectural choices.

2. Reuse: Architectural design can support reuse in
several ways. Current work on reuse generally
focuses on component libraries. Architectural design
supports, in addition, both reuse of large components
(or subsystems) and also frameworks into which
components can be integrated. Such reusable frame-
works may be domain-specific software architectural
styles (5,6), component integration standards (7), and
architectural design patterns (8).

3. Construction: An architectural description provides a
partial blueprint for development by indicating the
major software components and dependencies
between them. For example, a layered view of an
architecture typically documents abstraction bound-
aries between parts of a system’s implementation,
clearly identifying the major internal system inter-
faces, and constraining what parts of a system may
rely on services provided by other parts (2).

4. Evolution: Software architecture can expose the
dimensions along which a system is expected to
evolve. By making explicit the ‘‘load-bearing walls’’
of a system, system maintainers can better under-
stand the ramifications of changes, and thereby more
accurately estimate costs of modifications. Moreover,
architectural descriptions separate concerns about
the functionality of a component from the ways in

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



which that component interacts with other compo-
nents, by clearly distinguishing between components
and mechanisms that allow them to interact. This
separation permits one to more easily change con-
nection mechanisms to handle evolving concerns
about performance and reuse.

5. Analysis: Architectural descriptions provide new
opportunities for analysis, including system consis-
tency checking (9,10), conformance to constraints
imposed by an architectural style (11), conformance
to quality attributes (12), dependence analysis (13),
and domain-specific analyses for architectures built
in specific styles (14–16).

6. Management: Experience has shown that successful
projects view achievement of a viable software archi-
tecture as a key milestone in an industrial software
development process. Critical evaluation of an archi-
tecture typically leads to a much clearer understand-
ing of requirements, implementation strategies, and
potential risks (17).

7. Communication: An architectural description often
serves as a vehicle for communication among stake-
holders. For example, explicit architectural design
reviews allow stakeholders to voice opinions about
relative weights of features and quality attributes
when architectural tradeoffs must be considered (12).

PRECURSORS

The notion of providing explicit descriptions of system struc-
tures goes way back. In the 1960s and 1970s there were
active debates about criteria on which to base modulariza-
tion of software (18,19). Programming languages began to
provide new features for modularization and the specifica-
tion of interfaces.

In 1975, DeRemer and Kron (20) argued that creating
program modules and connecting them to form larger
structures were distinct design efforts. They created the
first module interconnection language (MIL) to support
that connection effort. In an MIL, modules import and
export resources, which are named programming-language
elements such as type definitions, constants, variables, and
functions. A compiler for an MIL ensures system integrity
using intermodule-type checking. Since DeRemer and
Kron’s proposal, other MILs have been developed for spe-
cific programming languages such as Ada and Standard

ML, and have provided a base from which to support soft-
ware construction, version control, and system families
(21,22). Enough examples are available to develop models
of the design space (23).

These early efforts to develop good ways to talk about
system structures and to provide criteria for software
modularization focused primarily on the problem of code
organization and relationships between the parts based
on interactions such as procedure call and simple data
sharing. The key question was how to partition the software
into units that could be implemented separately by soft-
ware developers, and that would provide downstream
benefits in support of extensibility, maintenance, and
system understandability.

Today’s view of software architecture builds on the
insights and concepts from the early days of software struc-
turing, but goes much further by also considering archi-
tectural representations that capture a system’s run-time
structures and behavior. By representing architectures
as interacting components (viewed as actual run-time
entities), these representations more directly facilitate
reasoning about system properties such as performance,
security, and reliability. Additionally, modern views of
software architecture provide a much richer notion of
interaction (than procedure call and simple data sharing),
permitting new abstractions for the ‘‘glue’’ that allows
components to be composed.

A NEW DISCIPLINE EMERGES

Initially, architectural design was largely an ad hoc affair.
Architectural definitions relied on informal box-and-line
diagrams, which were rarely maintained once a system
was constructed. Architectural choices were made in an
idiosyncratic fashion—typically by adapting some previous
design, whether or not it was appropriate. Good architects,
even if they were classified as such within their organiza-
tions, learned their craft by hard experience in particular
domains and were unable to teach others what they knew.
It was usually impossible to analyze an architectural
description for consistency or to infer nontrivial properties
about it. There was virtually no way to check that a given
system implementation faithfully represented its archi-
tectural design.

However, despite their informality, architectural des-
criptions were central to system design. As people began
to understand the critical role that architectural design
plays in determining system success, they also began to
recognize the need for a more disciplined approach. Early
authors began to observe certain unifying principles in
architectural design (24), to call out architecture as a field
in need of attention (4), and to establish a working voca-
bulary for software architects (3). Tool vendors began
thinking about explicit support for architectural design.
Language designers began to consider notations for archi-
tectural representation (25).

Within industry, two trends highlighted the importance
of architecture. The first was the recognition of a shared
repertoire of methods, techniques, patterns, and idioms
for structuring complex software systems. For example,

 

Requirements

 

Software Architecture

Code

Figure 1. Software architecture as a bridge.

2 SOFTWARE ARCHITECTURE



the box-and-line-diagrams and explanatory prose that
typically accompany a high-level system description often
refer to such organizations as a ‘‘pipeline,’’ a ‘‘blackboard-
oriented design,’’ or a ‘‘client-server system.’’ Although
these terms were rarely assigned precise definitions,
they permitted designers to describe complex systems
using abstractions that make the overall system intelli-
gible. Moreover, they provided significant semantic con-
tent about the kinds of properties of concern, the expected
paths of evolution, the overall computational paradigm,
and the relationship between this system and other similar
systems.

The second trend was the concern with exploiting com-
monalities in specific domains to provide reusable frame-
works for product families. Such exploitation is based on
the idea that common aspects of a collection of related
systems can be extracted so that each new system can be
built at relatively low cost by ‘‘instantiating’’ the shared
design. Familiar examples include the standard decompo-
sition of a compiler (which permits undergraduates to
construct a new compiler in a semester), standardized
communication protocols (which allow vendors to intero-
perate by providing services at different layers of abstrac-
tion), fourth-generation languages (which exploit the
common patterns of business information processing),
and user interface toolkits and frameworks (which provide
both a reusable framework for developing interfaces and
sets of reusable components, such as menus and dialog
boxes).

Much has changed in the past two decades. Although
there is wide variation in the state of the practice, broadly
speaking, architecture is much more visible as an impor-
tant and explicit design activity in software development.
Job titles now routinely reflect the role of software archi-
tect; companies rely on architectural design reviews as
critical staging points; and architects recognize the impor-
tance of making explicit tradeoffs within the architectural
design space.

In addition, the technological basis for architectural
design has improved dramatically. Three of the important
advancements have been the development of architec-
ture description languages and tools, the emergence of
product line engineering and architectural standards,
and the codification and dissemination of architectural
design expertise.

ARCHITECTURE DESCRIPTION LANGUAGES AND TOOLS

The informality of most box-and-line depictions of archi-
tectural designs leads to a number of problems. The mean-
ing of the design may not be clear. Informal diagrams
cannot be formally analyzed for consistency, completeness,
or correctness. Architectural constraints assumed in the
initial design are not enforced as a system evolves. There
are few tools to help architectural designers with their
tasks.

To alleviate these problems, there have been a number of
important developments. First has been the emergence of
practitioner guidelines (2) and published standards for
architectural documentation (26,27), which have helped

to codify best practices and provide some uniformity to
the way architectures are documented.

A second development has been the creation of formal
notations for representing and analyzing architectural
designs. Sometimes referred to as ‘‘Architecture Descrip-
tion Languages’’ or ‘‘Architecture Definition Languages’’
(ADLs), these notations usually provide both a conceptual
framework and a formal language for characterizing
software architectures (25,28). They also typically provide
tools for parsing, displaying, compiling, analyzing, or simu-
lating architectural descriptions.

Examples of ADLs include AADL (29), Acme (30), Adage
(14), C2 (31), Darwin (16), Rapide (10), SADL (32), UniCon
(33), Meta-H (34), and Wright (9). Although all of these
languages are concerned with architectural design, each
provides certain distinctive capabilities: AADL supports
the design and analysis of real-time and embedded compu-
ter systems; Acme supports checking of conformance to
architectural styles; Adage supports the description of
architectural frameworks for avionics navigation and gui-
dance; C2 supports the description of user interface sys-
tems using an event-based style; Darwin supports the
analysis of distributed message-passing systems; Meta-H
provides guidance for designers of real-time avionics con-
trol software; Rapide allows architectural designs to be
simulated and has tools for analyzing the results of those
simulations; SADL provides a formal basis for architectural
refinement; UniCon has a high-level compiler for architec-
tural designs that supports a mixture of heterogeneous
component and connector types; and Wright supports the
formal specification and analysis of interactions between
architectural components.

Although these languages (and their tools) differ in
many respects, a number of key insights have emerged
through their development.

The first insight is that good architectural description
benefits from multiple views, each view capturing some
aspect of the system (2,26,27,35). Two of the more impor-
tant classes of view are:

� Code-oriented views, which describe how the soft-
ware is organized into modules and what kinds if
implementation dependencies exist between those
modules. Class diagrams, layered diagrams, and
work breakdown structures are examples of this class
of view; and

� Execution-oriented views, which describe how the
system appears at run time, typically providing one or
more snapshots of a system in action. These views are
useful for documenting and analyzing execution prop-
erties such as performance, reliability, and security.

A second insight is that architectural description of execu-
tion-oriented views, as embodied in most of the ADLs
mentioned earlier, requires the ability to model the follow-
ing as first-class design entities:

� Components represent the computational elements
and data stores of a system. Intuitively, they cor-
respond to the boxes in box-and-line descriptions of

SOFTWARE ARCHITECTURE 3



software architectures. Examples of components
include clients, servers, filters, blackboards, and data-
bases. Components may have multiple interfaces, each
interface defining a point of interaction between a
component and its environment. A component may
have several interfaces of the same type (e.g., a server
may have several active http connections).

� Connectors represent interactions among compo-
nents. They provide the ‘‘glue’’ for architectural
designs, and they correspond to the lines in box-and-
line descriptions. From a run-time perspective, con-
nectors mediate the communication and coordination
activities among components. Examples include sim-
ple forms of interaction, such as pipes, procedure call,
and event broadcast. Connectors may also represent
complex interactions, such as a client-server protocol
or an SQL link between a database and an application.
Connectors have interfaces that define the roles played
by the participants in the interaction.

� Systems represent graphs of components and connec-
tors. In general, systems may be hierarchical: Compo-
nents and connectors may represent subsystems that
have their own internal architectures. We will refer to
these as representations. When a system or part of a
system has a representation, it is also necessary to
explain the mapping between the internal and exter-
nal interfaces.

� Properties represent additional information (beyond
structure) about the parts of an architectural descrip-
tion. Although the properties that can be expressed by
different ADLs vary considerably, typically they are
used to represent anticipated or required extra-func-
tional aspects of an architectural design. For example,
some ADLs allow one to calculate system throughput
and latency based on performance estimates of the
constituent components and connectors. In general,
it is desirable to be able to associate properties with any
architectural element in a description (components,
connectors, systems, and their interfaces). For exam-
ple, a property of an interface might describe an inter-
action protocol.

� Styles represent families of related systems. An archi-
tectural style typically defines a vocabulary of design
element types as a set of component, connector, port,
role, binding, andproperty types, together withrules for
composing instances of the types. We will describe some
of the more prominent styles later in this article.

To illustrate the use of these modeling constructs, consider
the example shown in Fig. 2. The system defines an execu-
tion-oriented view of a simple string-processing application
that extracts and sorts text. The system is described in a
pipe-filter style, which provides a design vocabulary con-
sisting of a filter component type and pipe connector type,
input and output interface (port) types, and a single binding
type. In addition, there would likely be constraints (not
shown) that ensure, for example, that the reader/writer
roles of the pipe are associated with appropriate input/
output ports. The system is described hierarchically: Mer-
geAndSort is defined by a representation that is itself

a pipe-filter system. In complementary documentation,
properties of the components and connectors might list,
for example, performance characteristics used by a tool to
calculate overall system throughput.

PRODUCT LINES AND ARCHITECTURAL STANDARDS

As noted earlier, an important trend has been the desire to
exploit commonality across multiple products. Two specific
manifestations of that trend are improvements in our
ability to create product lines within an organization and
the emergence of domain-specific architectural standards
for cross-vendor integration.

With respect to product lines, a key challenge is that a
product line approach requires different methods of devel-
opment. In a single-product approach, the architecture
must be evaluated with respect to the requirements of
that product alone. Moreover, single products can be built
independently, each with a different architecture.

However, in a product line approach, one must also
consider requirements for the family of systems and the
relationship between those requirements and the ones
associated with each particular instance. Figure 3 illus-
trates this relationship. In particular, there must be an
up-front (and ongoing) investment in developing a reusable
architecture that can be instantiated for each product.
Other reusable assets, such as components, test suites,
tools, and so on, typically accompany this approach.

Although product line engineering is not yet wide-
spread, we are beginning to have a better understanding

Product  
Architecture 

Product  
Requirements 

Product Line  
Requirements 

Product Line  
Architecture 

induced     
    constraint 

Figure 3. Product line architectures.

Splitter 

Grep MergeAndSort 

Merge Sort 

System simple : PF 

Style PF 

Filter 

Output Port 

Input Port 

Pipe 

Binding 

Figure 2. A system in the pipe-filter style.

4 SOFTWARE ARCHITECTURE



of the processes, economics, and artifacts required to
achieve the benefits of a product line approach. A number
of case studies of product line successes have been pub-
lished (36,37). Moreover, organizations such as the
Carnegie Mellon University’s Software Engineering
Institute are well on their way toward providing concrete
guidelines and processes for the use of a product line
approach (38).

Like product line approaches, domain-specific architec-
tural standards for cross-vendor integration provide frame-
works that permit system developers to configure a wide
variety of specific systems by instantiating those frame-
works. But more importantly, such standards support the
integration of parts provided by multiple vendors. A num-
ber of these have been sanctioned as formal international
standards (such as those sponsored by the Institute of
Electrical and Electronics Engineers, Incorporated
(IEEE) or the International Standards Organization
(ISO)), whereas others are ad hoc or de facto standards
promoted by one or more industrial leaders.

A good example of a formal standard is the High-Level
Architecture (HLA) for Distributed Simulation (5). Initially
proposed by the U.S. Defense Modeling and Simulation
Office as a standard to permit the integration of simulations
produced by many vendors, it now has become an IEEE
Standard (IEEE P1516.1/D6). The HLA prescribes inter-
face standards defining services to coordinate the behavior
of multiple semi-independent simulations. In addition, the
standard prescribes requirements on the simulation com-
ponents that indicate what capabilities they must have,
and what constraints they must observe on the use of
shared services.

An example of an ad hoc standard is Sun’s Enterprise
Java-Beans (EJB) architecture (6). EJB is intended to
support distributed, Java-based, enterprise-level applica-
tions, such as business information management systems.
Among other things, it prescribes an architecture that
defines a vendor-neutral interface to information services,
including transactions, persistence, and security. It
thereby supports component-based implementations of
business processing software that can be easily retargeted
to different implementations of those underlying services.

CODIFICATION AND DISSEMINATION

One early impediment to the emergence of architectural
design as an engineering discipline was the lack of a shared
body of knowledge about architectures and techniques for
developing good ones. Today, the situation has improved,
due in part to the publication of books on architectural
design (1,8,24,26,36,39) and courses (40).

A common theme in these books and courses is the use of
standard architectural styles. An architectural style typi-
cally specifies a design vocabulary, constraints on how that
vocabulary is used, and semantic assumptions about that
vocabulary (2,11). For example, a pipe-filter style might
specify vocabulary in which the processing components are
data transformers (filters) and the interactions are via
order-preserving streams (pipes). Constraints might
include the prohibition of cycles. Semantic assumptions

might include the fact that pipes preserve order and that
filters are invoked non-deterministically.

Other common styles include blackboard architectures,
client-server architectures, event-based architectures, and
object-based architectures. Each style is appropriate for
certain purposes, but not for others. For example, a pipe-
and-filter style would likely be appropriate for a signal
processing application, but not for an application in which
there is a significant requirement for concurrent access
to shared data (41). Moreover, each style is typically asso-
ciated with a set of associated analyses. For example, it
makes sense to analyze a pipe-filter system for system
latencies, whereas transaction rates would be a more
appropriate analysis for a repository-oriented style.

The identification and documentation of such styles (as
well as their more domain-specific variants) enables others
to adopt previously defined architectural patterns as a
starting point. In that respect, the architectural commu-
nity has paralleled other communities in recognizing the
value of established, well-documented patterns, such as
those found in Ref. 42.

While recognizing the value of stylistic uniformity, rea-
lities of software construction often force one to compose
systems from parts that were not architected in a uniform
fashion. For example, one might combine a database from
one vendor, with middleware from another, and a user
interface from a third. In such cases, the parts do not always
work well together—in large measure because they make
conflicting assumptions about the environments in which
they were designed to work (43), which has led to a recogni-
tion of the need to identify architectural strategies for
bridging mismatches. Although we are far from having
well-understood ways of detecting such a mismatch, and
of repairing it when it is discovered, a number of techniques
have been developed, some of which are illustrated in Fig. 4
(due to Mary Shaw).

RELATED AREAS

There are a number of closely related areas.

Software Development Methods

One of the hallmarks of software engineering progress
has been the development of methods and processes for

A B

Change A’s 
form  to
B’s form

Attach adaptor
or wrapper to A

Introduce
intermediate

form

Negotiate to 
find common 

form for A & B 

Make B 
multilingual

Transform
on the fly

Publish 
abstraction
of A’s form

Provide B with
import/export
convertor

1
2 3 4

5
78 6

9 Maintain parallel consistent versions

Figure 4. Some mismatch repair techniques.

SOFTWARE ARCHITECTURE 5



software development. Like software architecture, meth-
ods attempt to provide a path from requirements to code
that eliminates some of the ad hoc development practice of
the past.

Methods complement software architecture: The former
attempt to provide a set of regular steps for software
development, whereas the latter attempts to provide a basis
for developing and analyzing certain design models along
that path.

To the extent that they support conceptual design of
systems, they also address architectural concerns. On the
other hand, most methods tend to favor a particular archi-
tectural style. For example, object-oriented methods natu-
rally favor architectural designs based on interacting
objects, whereas other methods favor other styles.

Object-Oriented Design and Modeling

There are a number of parallels between the evolution of
object-oriented design techniques and the trends of soft-
ware architecture, outlined above.

� Description Languages and Tools: Object-oriented
systems have long had design languages and tools to
support their use. The Unified Modeling Language
(UML) has emerged as a standard notation, unifying
many of its predecessors (44). Increasingly, vendors
are developing tools that take advantage of this tech-
nological standardization.

� Product Lines and Standards: Object-oriented fra-
meworks have long been an important point of lever-
age in system development. In particular, component-
oriented integration mechanisms, such as CORBA,
.NET, and JavaBeans have played an important role
in supporting integration of object-oriented parts. In
other more domain-specific ways, frameworks like
J2EE, VisualBasic, and MFC, have helped improve
productivity in specific areas.

� Codification and Dissemination: There has been
considerable work and interest in object-oriented pat-
terns, which serve to codify common solutions to imple-
mentation problems (42).

Given these similarities, it is worth asking the following
question: What are the important differences between the
two fields? To shed light on the issue, it is helpful to view the
relationship between architecture and object-oriented
methods from at least three distinct perspectives.

1. Object-oriented design as an architectural style: This
perspective treats the part of object-oriented devel-
opment that is concerned with system structure as
the special case of architectural design in which the
components are objects and the connectors are
procedure calls (method invocation). Some ADLs
support this view, providing built-in primitives for
inter-component procedure call.

2. Object-oriented design as an implementation base:
This perspective treats object-oriented development
as a lower-level activity, more concerned with imple-
mentation. Viewed this way, object modeling becomes

one viable implementation target for any architec-
tural design.

3. Object-oriented design as an architectural modeling
notation: This perspective treats a notation such as
UML as a suitable notation for all architectural
descriptions (8,35,45). Proponents of this perspective
have advocated various ways of using object model-
ing, including class diagrams, collaboration dia-
grams, and package diagrams (36,46,47). From this
perspective, architecture is viewed as a sub-activity
of object-oriented design.

Elaborating on the relationship between ADLs and object-
oriented modeling notations, such as UML, Fig. 5 shows
some of the paths that might be followed. Path A-D is one in
which an ADL is used as the modeling language. Path B-E
is one in which UML is used as the modeling notation. Path
A-C-E is one in which an architecture is first represented in
an ADL, but then transformed into UML before producing
an implementation.

Using a general-purpose modeling language such as
UML has the advantages of providing a notation that
practitioners are more likely to be familiar with and pro-
viding a more direct link to object-oriented implementa-
tions and development tools. But general-purpose object
languages suffer from the problem that the object concep-
tual vocabulary may not be ideally suited for representing
architectural concepts, and there are likely to be fewer
opportunities for automated analysis of architectural
properties.

Component-Based Systems

Component-based systems are closely related to object-
oriented systems insofar as both are based on the cons-
truction of systems from encapsulated entities that provide
well-defined interfaces to a set of services. However, most
component-based systems have a strong intrinsic archi-
tectural flavor in that they are usually coupled with an
integration framework that prescribes what kinds of inter-
faces the components must have and ways in which com-
ponents can interact at run time (7).

From an architectural perspective, component-based
systems such as .NET, CORBA, and J2EE define archi-
tectural styles that are predominantly object-oriented. In

Code

Requirements 

Architecture 
in an ADL

Architecture 
in UML

C

A B

D E

Figure 5. ADLs versus object modeling.

6 SOFTWARE ARCHITECTURE



addition, they may support other forms of interaction such
as event publish-subscribe. However, component integra-
tion standards typically go beyond architectural modeling
by providing run-time infrastructure and (in many cases)
considerable support for generating code from more
abstract descriptions.

FUTURE PROSPECTS

The field of software architecture is one that has experi-
enced considerable growth since the 1990s, and it promises
to continue that growth for the foreseeable future. As
architectural design matures into an engineering discipline
that is universally recognized and practiced, there are a
number of significant challenges that will need to
be addressed. Many of the solutions to these challenges
are likely to occur as a natural consequence of dissemina-
tion and maturation of the architectural practices and
technology that we know about today. Other challenges
develop because of the shifting landscape of computing
and the needs for software: These challenges will require
significant new innovations. This article has attempted to
provide a high-level overview of the terrain, illustrating
where software architecture has come over the past few
years and outlining relationships between software archi-
tecture and other aspects of software engineering.

ACKNOWLEDGMENTS

The author would like to acknowledge a number of collea-
gues and students who have helped clarify his ideas on
software architecture, including Barry Boehm, Dewayne
Perry, John Salasin, Mary Shaw, Dave Wile, Alex Wolf, and
past and present members of the ABLE research group at
Carnegie Mellon University.

BIBLIOGRAPHY

1. L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, 2nd ed., Reading, MA: Addison-Wesley, 2003.

2. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Little, R. Nord, and J. Stafford, Documenting Software Archi-
tecture: Views and Beyond, Reading, MA: Addison-Wesley,
2002.

3. D. Garlan and M. Shaw, An Introduction to software archi-
tecture, in Advances in Software Engineering and Knowledge
Engineering, Singapore: World Scientific Publishing Com-
pany, 1993, pp. 1–39.

4. D. E. Perry and A. L. Wolf, Foundations for the study of soft-
ware architecture, ACM SIGSOFT Software Eng. Notes, 17 (4):
40–52, 1992.

5. F. Kuhl, R. Weatherly, and J. Dahmann, Creating Computer
Simulation Systems: An Introduction to the High Level Archi-
tecture. Englewood Cliffs, NJ: Prentice Hall, 2000.

6. V. Matena and M. Hapner, Enterprise JavaBeans, Palo Alto,
CA: Sun Microsystems, Inc., 1998.

7. C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Reading, MA: Addison-Wesley, 1998.

8. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern Oriented Software Architecture: A System of
Patterns, New York: Wiley, 1996.

9. R. Allen and D. Garlan, A formal basis for architectural con-
nection, ACM Trans. Software Engin. Methodol., July 1997.

10. D. C. Luckham, L. M. Augustin, J. J. Kenny, J. Veera, D. Bryan,
and W. Mann, Specification and analysis of system architecture
using Rapide, IEEE Trans. Software Eng., 21 (4): 336–355,
April 1995.

11. G. Abowd, R. Allen, and D. Garlan, Using style to understand
descriptions of software architecture, in Proc. SIGSOFT’93:
Foundations of Software Engineering, ACM Press, December
1993.

12. P. Clements, L. Bass, R. Kazman, and G. Abowd, Predicting
software quality by architecture-level evaluation, in Proc. Fifth
International Conference on Software Quality, Austin, TX,
1995.

13. J. A. Stafford, D. J. Richardson, and A. L. Wolf, Aladdin: A Tool
for Architecture-Level Dependence Analysis of Software, Uni-
versity of Colorado at Boulder, Boulder, C.O., Technical Report
CU-CS-858-98, April 1998.

14. L. Coglianese and R. Szymanski, DSSA-ADAGE: An environ-
ment for architecture-based avionics development, in Proc.
AGARD’93, 1993.

15. D. Garlan, R. Allen, and J. Ockerbloom, Exploiting style in
architectural design environments, Proc. SIGSOFT’94: The
2nd ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ACM Press, December 1994, pp. 170–
185.

16. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying
distributed software architectures, in Proc. Fifth European
Software Engineering Conference, ESEC’95, September 1995.

17. B. Boehm, P. Bose, E. Horowitz, and M. J. Lee, Software
requirements negotiation and renegotiation aids: A theory-
W based spiral approach, Proc. 17th International Conference
on Software Engineering, 1994.

18. E. W. Dijkstra, The structure of the ‘‘THE’’ – multiprogram-
ming system, Comm. ACM, 11 (5): 341–346, 1968.

19. D. Parnas, On the criteria to be used in decomposing systems
into modules, Comm. ACM, 15 (12): 1053–1058, 1972.

20. F. DeRemer and H. H. Kron, Programming-in-the-Large ver-
sus Programming-in-the-Small, IEEE Trans. Software Eng.,
SE-2 (2): 80–86, June 1976.

21. D. L. Parnas, Designing software for ease of extension and
contraction, IEEE Trans. Software Eng., 5: 128–138, 1979.

22. L. W. Cooprider, The representation of software families, PhD
Thesis, Technical Report CMU-CS-79-116. Carnegie Mellon
University, Pittsburgh, PA: 1979.

23. D. E. Perry, Software interconnection models, Proc. 9th Inter-
national Conference on Software Engineering, IEEE Com-
puter Society Press, 1987.

24. E. Rechtin, Systems Architecting: Creating and Building Com-
plex Systems, Englewood Cliffs, NJ: Prentice Hall, 1991.

25. N. Medvidovic and R. N. Taylor, A Classification and compar-
ison framework for software architecture description lan-
guages, IEEE Trans. Software Eng., 26 (1): 70–93, 2000.

26. International Organization for Standardization, ISO/IEC
10746 1–4 Open Distributed Processing–Reference Model
(Parts 1–4), July 1995. ITU Recommendation X. 901–904.

27. IEEE Std. 1471-2000, Recommended Practice for Architectural
Description of Software-Intensive Systems, Piscataway, NJ:
IEEE Standards, October 2000.

SOFTWARE ARCHITECTURE 7



28. D. Garlan and D. Perry, Introduction to the special issue on
software architecture, IEEE Trans. Software Eng., 21 (4),
1995.

29. Society of Automotive Engineering, SAE AADL Information
Site, Available: http://www.aadl.info.

30. D. Garlan, R. T. Monroe, and D. Wile, G. T. Leavens and
M. Sitaraman (eds.), Acme: Architectural description of
component-based systems, Foundations of Component-Based
Systems, Cambridge UK: Cambridge University Press, 2000,
pp. 47–68.

31. N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor, Using
object-oriented typing to support architectural design in the C2
style, Proc. 4th ACM Symposium on the Foundations of Soft-
ware Engineering, SIGSOFT’96, New York: ACM Press, 1996.

32. M. Moriconi, X. Qian, and R. Riemenschneider, Correct archi-
tecture refinement, IEEE Trans. Software Eng., Special Issue
on Software Architecture, 21 (4): 356–372, 1995.

33. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and
G. Zelesnick, Abstractions for software architecture and tools
to support them, IEEE Trans. Software Eng., 21 (4): 314–335,
1995.

34. P. Binns and S. Vestal, Formal real-time architecture specifi-
cation and analysis, 10th IEEE Workshop on Real-Time Oper-
ating Systems and Software, May 1993.

35. P. B. Kruchten, The 4þ1 view model of architecture, IEEE
Software, November, 1995, pp. 42–50.

36. C. Hofmeister, R. Nord, and D. Soni, Applied Software Archi-
tecture, Reading, MA: Addison-Wesley, 2000.

37. P. Donohoe, (ed.), Software Architecture: TC2 First Working
IFIP Conference on Software Architecture (WICSA1), Boston,
MA: Kluwer Academic Publishers, 1999.

38. P. Clements and L. Northrop, Software Product Lines: Practices
and Patterns, Boston, MA: Addison-Wesley Longman, 2001.

39. M. Shaw and D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline, Englewood Cliffs, NJ: Prentice
Hall, 1996.

40. D. Garlan, M. Shaw, C. Okasaki, C. Scott, and R. Swonger,
Experience with a course on architectures for software sys-
tems, Proceedings of the Sixth SEI Conference on Software
Engineering Education, New York: Springer Verlag, LNCS
376, October 1992.

41. M. Shaw and P. Clements, A field guide to boxology: Preli-
minary classification of architectural styles for software sys-
tems, Proc. of COMPSAC 1997, August 1997.

42. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Design, Read-
ing, MA: Addison-Wesley, 1995.

43. D. Garlan, R. Allen, and J. Ockerbloom, Architectural mis-
match: Why reuse is so hard, IEEE Software, 12 (6): 17–28,
1995.

44. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual, Reading, MA: Addison-Wesley,
1999.

45. S. Mellor, K. Scott, D. Weise, and A. Uhl, Mda Distilled:
Principles of Model-Driven Architecture, Reading, MA: Addi-
son-Wesley, 2004.

46. D. Garlan and A. J. Kompanek, Reconciling the needs of
architectural description with object-modeling notations,
Proc. Third International Conference on the Unified Modeling
Language, 2000.

47. N. Medvidovic and D. S. Rosenblum, Assessing the suit-
ability of a standard design method for modeling software
architectures, Proc. First Working IFIP Conference on Soft-
ware Architecture (WICSA1), San Antonio, TX, 1999.

DAVID GARLAN

Carnegie Mellon University
Pittsburgh, Pennsylvania

8 SOFTWARE ARCHITECTURE



S

SOFTWARE COMPONENT REPOSITORIES

INTRODUCTION

In the past, reuse has primarily been the result of oppor-
tunistic success, where one program was able to take
advantage of the efforts of another. A paradigm shift is
needed from current software engineering and develop-
ment practices to a software engineering process in which
software reuse is institutionalized and becomes an insepar-
able part of the software development process. Reuse
should be systematic, driven by a demand for software
components identified as a result of domain analysis and
architecture development. Reuse needs to be treated as
an integral part of engineering and acquisition activities.
It is essential that an organizational infrastructure be
implemented to manage domains, define products and
standards, establish ownership criteria, allocate invest-
ment resources, and direct the establishment and popula-
tion of reuse repositories. An effective infrastructure will
guide reuse activities to avoid duplication of effort, impose
necessary standardization, and ensure repository popula-
tion is user demand-driven.

WHAT IS SOFTWARE COMPONENT REPOSITORY?

A component repository system that supports software
reuse (3) by helping programmers locate, comprehend,
and modify components has three parts: a repository
that contains components, an indexing and retrieval
mechanism, and an interface for user interaction.

Usually, component repository capabilities include the
following:

� Automated repository system with a graphical user
interface (GUI) for browsing, searching and retrieval;

� Standard component description framework (e.g., to
include purpose, functional description, certification
level, key environmental constraints, historical
results of usage, and legal restrictions);

� Effective classification scheme for each domain; and

� Thorough system and component documentation.

REPOSITORY MECHANISM

Each repository system should provide as much automated
support to users as possible on identification, comparison,
evaluation, and retrieval of similar reusable components.
Support for adapting, transforming, and specializing com-
ponents is desirable. It must also provide a range of support
to users in locating and comparing the relative reusability
of individual repository components. Furthermore, the
system must be readily available to system developers if
it is to be used, and it must support access from a variety of
platforms. As the repository acquires a significant number

of reusable software components (RSCs), an automated
search and retrieval system becomes indispensable (4–6).
Whatever tool is used, the repository must have a way to
classify RSCs so that a user can quickly find what is wanted
without frustration and delay. Sophisticated, expert sys-
tem, knowledge-based approaches and new technologies for
high-speed text search are the subjects of current research
efforts.

Standard component description frameworks help ease
the process of comprehension and comparison of similar
components, and they include data such as relative
numeric measures for reusability, reliability, maintainabil-
ity and portability (7). Inclusion of testing and component
documentation provides additional information to help the
potential user gauge the effort required to tailor the com-
ponent for reuse.

Effective classification schemes are essential to assist
the user in locating and comparing repository components
and to speed the process of identifying appropriate compo-
nents for the task at hand (8,9). Finally, system and
component documentation complete the cycle of evaluation
and enable the reuser to determine which components have
reuse potential with regard to specific requirements and to
fully comprehend the process of obtaining components for
reuse in a new application.

In addition, other equally important requirements have
been identified that require resolution to support cohesive,
wide reuse, including [1] integration of repository capabil-
ities and procedures within the system development and
acquisition process; [2] identification and support of specific
requirements associated with the security and integrity of
reusable components implementing trusted computing
base (TCB) or other security capabilities; and [3] intercom-
munication and interoperabllity among diverse repository
systems. Experience has shown that these requirements
can only be resolved through the combination of developing
new technologies, standard procedures, and evolution or
revision of existing policies.

REPOSITORY RETRIEVAL

Component retrieval is a fundamental issue in software
reuse. The retrieval process involves finding a component
matching the desired functionality and making sure that
the component satisfies required nonfunctional properties
such as timing and resource constraints.

Precision and recall are two measures that have tradi-
tionally been used to evaluate methods for retrieving soft-
ware components. Let Q be the set of items that should be
returned in answer to the query and let R be the choice set
actually returned. Then precision can be defined as
jR\Qj=jQj, which measures the ability to return only the
relevant components. Recall can be defined as jR\Qj=jRj,
which measures the ability not to miss relevant compo-
nents. Desirable retrieval techniques should yield high
precision and recall.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Classic Retrieval Approaches

The most classic approach to retrieval is to classify items by
keywords and then search for items that have certain given
keywords (10). Experience shows that this approach works
poorly for retrieving software components from even mod-
erately large repositories. One problem is that the user
must be familiar with both the classification scheme and
the particular repository. Also, it is very difficult to get both
high precision and high recall. This situation suggests that,
for ranked filtering, it would be most appropriate to use a
small number of keywords.

Another classic approach is browsing. Browsing systems
depend on links among the items to be searched and on the
user following those links to find the desired item. Experi-
ence shows that browsing through large structures can be
very frustrating and time-consuming. The problem is that
the structure of the links often does not match the needs of
most users and that different users may need different
structures.

The Facet Approach

Prieto-Diaz (11) proposed using facets, which are groups of
related terms in a subject area. For example, a facet to
describe the functions performed by components might use
terms chosen from find, compare, sort, update, send,
receive, and so on. This approach provided a better descrip-
tion of UNIX components than a pure keyword approach
because of its standardized structure. However, it still
relies on an informal description of components, using a
limited set of facets and terms. Facets also suffer from the
same problem as the keyword approach.

AI Approaches

Artificial intelligence (AI) based approaches use a know-
ledge base and statistical information to retrieve reusable
components, based on a keyword search from texts describ-
ing the components (12–14). However, because the char-
acterization of the component behavior is completely
informal, the behavior is unpredictable.

The Ontology-based Approach

Yen (15) used an ontology-based approach to facilitate
browsing and effective search in a repository for embedded
software. They developed a merging and echoing techni-
que, which converts the ontology into a hierarchy suitable
for browsing, but without the loss of critical semantics of the
ontology. A search result categorization approach was
developed to eliminate the problem of obtaining a large
number of search results without reducing the recall factor.
As the ontology approach can typically have many views, it
may not be suitable for navigation and browsing.

Specification-based Approaches

Specification-based approaches use semantics for software
component retrieval (16,17). The primary aim was to check
that retrieved components yield the behavior specified in
the user’s query, therefore increasing the precision of
retrieval. Zaremski and Wing (18) focused on specification

matching, using the Larch/ML interface language to
express pre- and post-conditions in first-order logic and
the Larch prover to verify that candidate components
satisfy these conditions. Various senses of matching are
defined, but neither ranking nor partial semantic matching
is considered.

In general, using formal specifications as search keys
has two main problems. The first problem is practical: Not
all users are sophisticated enough to write formal specifica-
tions, much less correct ones. The second problem is that
semantic matching is very time-consuming, because some
form of theorem proving must be done. As theorem proving
requires unbounded time, practical implementations must
impose time limits, which reduce recall.

Automated Retrieval

Luqi et al. (19) proposed an automated retrieval approach.
In this approach, search is organized as a series of increas-
ingly stringent filters on candidate components. They first
filter components by comparing their signatures with that
of the query, which is accomplished by signature matching,
which looks for maps that translate the type and function
symbols of the query into corresponding type and function
symbols of candidate components. A first stage of signature
filtering can compare pre-computed syntactic profiles of
components with the profile of the query. These profiles
are special data structures that support an efficient approx-
imation of signature matching. Signature matches can be
partial, in that only part of the functionality the user seeks
may actually be available. Profile matching should be
followed by full signature matching. To achieve high recall,
filters in the early stages must eliminate only those com-
ponents that are definitely not compatible with the query.

Finally, semantic filters rank components by how well
they satisfy the equations in the query. In this process,
equations that are logical consequences of the query spe-
cification are translated through the signature matches
into equations whose proof is attempted in the candidate
specifications. For greatest efficiency, it is desirable to
restrict queries to be ground equations; these ground equa-
tions correspond to test cases and enable semantic match-
ing to be efficiently decidable. The candidates in the choice
set are ranked according to their likelihood of success. If the
closest match is partial, the user will need to modify the
closest matching component. This whole process can be
made iterative.

Figure 1 shows the multi-level filtering architecture of
the automated retrieval approach; the top line is to indicate
user modification of the query in light of the final filtering
results.

In comparing with other approaches, the automated
retrieval approach has the following merits:

1. It can simultaneously achieve high precision and
high recall (20).

2. It compares formal specifications of components
using ground equation test cases as queries.

3. Users do not need to deal with formal specifica-
tion notation, but instead can express queries in a

2 SOFTWARE COMPONENT REPOSITORIES



standard programming notation, which is automa-
tically translated into algebraic notation.

4. It seeks to achieve both efficiency and effectiveness by
imposing a series of increasingly stringent filters that
use both syntactic and partial semantic information
about components.

5. A rank is provided on components in the choice set,
measuring how well they fit the user’s query and
enabling sorting by relevance.

6. Generic modules are allowed in the software base.

7. It addresses structuring the software base to facil-
itate search.

8. Users can give selection criteria to control the search
and display of retrieved components.

9. Besides returning the ranked components, it also
reports information to help the user reformulate
the query in case no suitable component was found.

SOME REUSABLE SOFTWARE COMPONENT REPOSITORIES

Microsoft Repository

Microsoft Repository is composed of two major components:
a set of ActiveX interfaces that a developer can use to define
open information models and a repository engine that is the
underlying storage mechanism for these information mod-
els (21). The repository engine sits on top of an SQL Server
and Microsoft JET database system.

A tool developer can use Microsoft Repository to share
and reuse components. To share components effectively, it
is useful to share not only the executable image of a com-
ponent but also descriptive information about the compo-
nent and its configuration.

Microsoft Repository uses an SQL Server database to
store object and relationship data. The repository engine is
scalable from desktop-based to server-based solutions. The
repository exposes information models by way of ActiveX
objects and uses an SQL Server as a storage and query
provider.

+1Reuse Repository

The +1Reuse system supports reuse repositories created
and maintained by the user, project-wide ‘‘filtered’’ reposi-
tories under strict quality controls, and selective reuse.
Selective reuse enables reuse of any submodel from an

existing or re-engineered +1Environment projrect. In a
sense, every +1Environment project is a reuse repository.
Selective reuse significantly improves a user’s ability to
reuse all source code and documentation from all previous
projects and at any granularity, which, to the best of our
knowledge, is currently the only system to support this
feature.

The +1Reuse system supports reuse of design, documen-
tation, source code, header files, test cases, test shell
scripts, expected test results, and modeling information.

The +1Reuse system was developed by +1 Software
Engineering Co. in California (22). It is now running on
Sun Workstation platforms under Solaris. The GUI is based
on OpenWindows, Motif, and CDE.

ComponentSource Repository

ComponentSource provides a web-based repository for
‘‘off-the-shelf’’ reusable software components (23). It uses
a taxonomy to structure components to facilitate retrieval.
This taxonomy provides an effective way of locating gen-
eric components (domain-independent) that are well
known to programmers and corresponds well with their
intuition. ComponentSource has spent many years accu-
mulating the world’s largest online repository of quality
software components and development tools. Every pro-
duct that is listed on the site has first gone through a
commercial and technical assessment process, to review
such things as software and documentation quality, sam-
ple code, likely support issues, and the ongoing viability of
the supplier.

Agora

The Component-Based Systems (CBS) Initiative at the
Software Engineering Institute (SEI) developed the Agora
software prototype to investigate the integration of search
technology with component introspection to create a dis-
tributed, worldwide component repository.

Agora is a prototype component repository being devel-
oped by the SEI at Carnegie Mellon University (24,25). The
objective of this work is to create an automatically gener-
ated, indexed, database of software components classified
by component models (e.g., JavaBean, ActiveX, CORBA,
Enterprise JavaBean). Agora combines introspection with
Web search engines to reduce the costs of bringing software
components to, and finding components in, the software
marketplace.

Query

Library

Syntactic
Matching

Semantic
Matching

User
Browsing

Ranked
Components
Choice set &

Useful
Data

Ground

Equation

Checking

Signature

Matching

Profile &

Keyword

Filtering

Figure 1. An organization model for
software component search.

SOFTWARE COMPONENT REPOSITORIES 3



The Agora search engine enhances existing but rudi-
mentary search capabilities for Java applets. By using Java
introspection, the Agora search engine can maintain a more
structured and descriptive index that is targeted to the type
of content (the component model) and the intended audi-
ence (application developers) than is supported by existing
search engines. For example, information about component
properties, events, and methods can be retrieved from
Agora.

CAPS Software Reusable Component Repository

CAPS (Computer-Aided Prototyping System) is a research
project developed by the Software Engineering Group at
the Naval Postgraduate School (26). Initial implementation
of CAPS software base was first explored in 1988 (27). An
implementation of the software base was accomplished in
1991 by using ONTOS, an object-oriented database man-
agement system that provides an interface to C++ for
customization and flexibility (28). The CAPS software
base has been changing to a software component repository
since 1998 (19). The CAPS component repository supports
two critical functions: component storage and component
retrieval. Much effort has been made to improve the com-
ponent retrieval method (20,29). To the best of our knowl-
edge, CAPS Repository is the only one that supports profile
matching and signature matching. It simultaneously
provides high precision and recall retrieval. The CAPS
repository is still under construction. A prototype has
been developed to verify the performance of the retrieval
methods.

CONCLUSION

Web-based reuse is the current trend of software compo-
nent repositories. Usually, the aim is to provide a service
within a domain, organization, or area. This kind of repo-
sitory is used in a wide scope. Another trend of component
repositories is to be a part of an integrated CASE environ-
ment. The aim is to provide an integrated CASE environ-
ment for a software development organization. This kind of
repository is generally used in a relatively narrow scope.

As suggested by Weisert (30), to guarantee successful
software reuse, the software development organization
must support a component repository, to which program-
mers contribute new components as byproducts of their
projects, and from which other programmers will draw
existing components for use in their projects.

BIBLIOGRAPHY

1. B. Fischer, M. Kievernagel, and W. Struckmann, VCR: A VDM-
based software component retrieval tool, Proc. ICSE-17 Work-
shop on Formal Methods Application in Software Engineering
Practice, Seattle, WA, 1995.

2. A. Mili, R. Mili, and R. Mittermeir, Storing and retrieving
software components: A refinement based system, Proc. 16th
Int’l Conf. on Software Engineering, Sorrento, Italy, 1994,
pp. 91–100.

3. G. Fischer, S. Henninger, and D. Redmiles, Cognitive tools
for locating and comprehending software objects for reuse,
Proc. 13th International Conference on Software Engineering,
Austin, TX, 1991, 318–328.

4. J. Penix, P. Baraona, and P. Alexander, Classification and
retrieval of reusable components using semantic features,
Proc. 10th Knowledge-Based Software Engineering Con-
ference, Boston, MA, pp. 131–138, 1995.

5. A. M. Zaremski, Signature and Specification Matching, PhD
thesis, Carnegie Mellon University, Pittsburgh, PA 1996.

6. A. M. Zaremski and J. M Wing, Specification matching of
software components, 3rd ACM SIGSOFT Symposium on
the Foundations of Software Engineering, New York, 1995.

7. J. Penix and P. Alexander, Design representation for automat-
ing software component reuse, Proc. First International Work-
shop on Knowledge-Based Systems for the (re)Use of Program
Libraries, Sophia Antipolis, France, 1995.

8. R. McDowell and J. Solderitsch, The Reusability Library Fra-
mework, Proc. 3rd Unisys Defense Systems Software Engineer-
ing Symposium, 1990.

9. R. McDowell and K. Cassell, The RLF librarian: A reusability
librarian basedon cooperating knowledge-based systems, Proc.
4th Annual Rome Air Development Center Knowledge-Based
Software Assistant Conference, Utica, N.Y., 1989.

10. Y. Matsumoto, A software factory: An overall approach to
software production, in P. Freeman, (ed.), Tutorial on Software
Reusability, 1987, pp. 155–178.

11. R. Prieto-Diaz, Implementing faceted classification for soft-
ware reuse, Comm. ACM, 34(5):89–97, 1991.

12. E. Ostertag, J. Hendler, R. Prieto-Diaz, and C. Braun, Comput-
ing similarity in a reuse library system, ACM Tran. Softw. Eng.
Methodol., 1(3):205–228, 1992.

13. S. Henninger, Using iterative refinement to find reusable soft-
ware. IEEE Software, 11(5):48–59, 1994.

14. G. Fischer, S. Henninger, and D. Redmiles, Cognitive tools
for locating and comprehending software objects for rescue,
Proc. 13th International Conference on Software Engineering,
Austin, TX, 1991.

15. I-L. Yen, J. Goluguri, F. Bastani, L. Khan, and J. Linn, A
component-based approach for embedded software develop-
ment, 5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, Washington, D.C., 2002.

16. Luqi, Normalized specifications for identifying reusable soft-
ware, Proc. 1987 Fall Joint Computer Conference, IEEE, Dallas,
TX, 1987, pp. 46–49.

17. A. Mili, R. Mili, and R. Mittermeir, Storing and retrieving
software components, Proc. 16th International Conference on
Software Engineering, Sorrento, Italy, 15–19, 1994.

18. A. Moormann Zaremski, and J. M. Wing, Specification match-
ing of software components, ACM Trans. Softw. Eng. Methodol,
6(4): 333–369, 1997.

19. Luqi and J. Guo, Toward automated retrieval for a software
component repository, Proc. IEEE International Conference
and Workshop on the Engineering of Computer Based Systems
(IEEE ECBS), Nashville, T.N., 1999, pp. 99–105.

20. D. Nguyen, An Architectural Model for Software Compo-
nent Search, PhD Dissertation, Naval Postgraduate School,
Monterey, C.A., 1995.

21. Microsoft Repository. http://msdn.microsoft.com/archive/default.
asp?url=/archive/en-us/dnarrepos/html/msdnr/eposwp.asp.

4 SOFTWARE COMPONENT REPOSITORIES



22. +1 Software Engineeering Corporate Mission, http://www.
plus-one.com/company.html.

23. Component Source. Available: http://www.componentsource.-
com/CS/Default.asp.

24. R. Seacord, S. Hissam, and K. Wallnau, Agora: A search engine
for software components, IEEE Internet Computing, 2(6):62–
70, 1998.

25. R. Seacord, S. Hissam, and C. Wallnau, Agora: A search engine
for software components. Technical report, CMU/SEI-98-TR-
011, 1998.

26. Luqi and M. Ketabchi, A Computer-aided prototyping system,
IEEE Trans. Software Eng, 5(2):66–72, 1988.

27. R. Steigerwald, Luqi, and J. McDowell, CASE Tool for reusable
software component storage and retrieval in rapid prototyping,
Inf. Softw Techn, 38(9):698–705, 1991.

28. S. Dolgoff, Automated Interface for Retrieving Reusable Soft-
ware Components, Master’s Thesis, Naval Postgraduate
School, Monterey, C.A., 1992.

29. J. Herman, Improving Syntactic Matching for Multi-Level
Filtering, M.S. Thesis, Naval Postgraduate School, Monterey,
C.A., 1997.

30. C. Weisert, Reusable Components—Decades of Misconcep-
tions, Guidelines for Success. Available: http://www.idinews.-
com/reUse.html. 29 February 2004.

LUQI

Naval Postgraduate School
Monterey, California

LIN ZHANG

Beijing University of
Aeronautics and Astronautics

Beijing, China

SOFTWARE COMPONENT REPOSITORIES 5



S

SOFTWARE CYBERNETICS

INTRODUCTION

Separately, the concepts of software and cybernetics are
well known and found as in the definitions extracted from
an online dictionary.

Software (1). The programs and procedures required to
enable a computer to perform a specific task, as opposed to
the physical components of the system (hardware).

Cybernetics (1). Thestudyof communication and control,
typically involving regulatory feedback, in living organisms,
in machines, and in organizations and their combinations,
for example, in sociotechnical systems, computer-controlled
machines such as automata, and robots.

As we can see from the definition above, cybernetics
includes software that implements a control system but
does not include the control of software itself, much less the
control of the software development process. For example,
the design of the software for a cruise control system of an
automobile is considered part of cybernetics, but the design
of a software/technique to regulate the behavior of another
software system is not addressed in the scope of cyber-
netics. A new area is therefore needed to develop control
systems with this purpose. It should be noted that the
definition of control systems (as seen below) used in this
new area remains unchanged.

Control Systems (1). A control system is a device or set of
devices that manage the behavior of other devices. Some
devices or systems are not controllable. A control system is
an interconnection of components connected or related in
such a manner as to command, to direct, or to regulate itself
or another system. A control loop is a collection of instru-
ments and control algorithms arranged in such a fashion as
to regulate a variable at a setpoint or a reference value. The
loop part of the name refers to the fact that most control
loops make use of feedback in a continuous loop. These loops
are referred to as closed-loop control. An open-loop con-
troller does not directly make use of feedback. The most
common control loop uses a feedback or PID controller.

Control theory has been successfully applied to solve
problems in areas such as biology, management, and social
sciences. The successful application of the same concepts to
control/regulate the behavior of software systems and/or of
the software development process (2) in all its aspects is
what we now refer to as software cybernetics. Software
cybernetics also includes principles and theories in soft-
ware engineering that can be applied to control engineer-
ing. In this article we provide a definition of software
cybernetics and delineate its scope. Research in software
cybernetics has been applied to many distinct areas such as
software development, adaptive software, network secur-

ity, and fault tolerance; a brief description of these applica-
tions appears in this article.

Software cybernetics has been consistently expanding
since its inception and the community is organizing itself
mainly through the International Workshop on Software
Cybernetics (IWSC). However, skepticism continues to
exist as some reject the feasibility/use of regulating soft-
ware systems or its development process by mathematical
laws. Also, a belief exists that control is purely a continuous
approach and overlooks the fact that discrete counterparts
do exist for all continuous techniques. Moreover, even when
a continuous approach is used to model the behavior of the
object under consideration, a control technique can be
applied at discrete time intervals. The difficulties in apply-
ing feedback control to software processes, for example,
have been delineated by Lehman et al. (3). One of the
difficulties they point out is the immaturity of software
processes. They state, ‘‘...we need research to establish
appropriate theories from which to derive necessary control
mechanisms and experimentations to establish their set-
tings and effects.’’ Although this has not yet been fully
accomplished, results from research on software cyber-
netics have moved a few steps toward this goal. Another
aspect contributing to the slow development and adoption
of control-theoretic concepts for software is the paucity of
control-system researchers involved in software engineer-
ing. Again, software cybernetics offers an environment
where collaboration among both areas can flourish.

DEFINITION AND SCOPE

According to Norbert Wiener (4), cybernetics refers to con-
trol and communication in man and humans in machines.
Accordingly, one may define software cybernetics as control
and communication in the software, its processes, and
systems. However, this definition is not satisfactory for
two reasons. First, it implies that software cybernetics
should cover various ad hoc control activities in software
engineering and various communication mechanisms in
concurrent computing. It would be difficult to distinguish
software cybernetics from the existing discipline of soft-
ware engineering and the theories of concurrent comput-
ing. Second, the above definition rules out the possibility
that the principles and theories of software engineering can
be applied to control theories and engineering.

It is important to note that control is a well-established
discipline, of which feedback and optimization are two
central themes. In addition, a solid theoretical foundation
has yet to be established for the existing discipline of soft-
ware engineering. Therefore, we define software cyber-
netics as an emerging discipline that explores the
theoretically justified interplay between software and con-
trol. More importantly, according to Cai et al. (5), software
cybernetics addresses issues and questions that relate to
(1) the formalization and quantification of feedback

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



mechanisms in software processes and systems, (2) the
adaptation of control theoretic principles to software pro-
cesses and systems, (3) the application of the principles of
software theories and engineering to control systems
and processes, and (4) the integration of the theories of
software engineering and control engineering. In response
to these issues and questions, research subareas of software
cybernetics can be divided into four classes: fundamental
principles, cybernetic software engineering, cybernetic
autonomic computing, and software-enabled control.

Figure 1 presents the structure of a typical closed feed-
back control loop (6). Although it is oriented towards phy-
sical systems, the same structure can be used to control
software systems and software processes. The block labeled
‘‘System’’ in Fig. 1 can be mapped to a software system or
software process as the object to be controlled, and the
actuators could be exemplified as the process manager
executing suggested changes (in case the object to be con-
trolled is a software process), or the operating system allo-
cating additional memory when the object under control is a
software application. Clearly, the application of control
requires quantification/qualification of the output variables
to be controlled and the input values used to control them.
This means that any measurable quantities/qualities with
respect to software products and processes can be poten-
tially controllable. For example, consider the control system
proposed for the software system test phase by Cangussu
et al. (7); the controller uses the model parameters and two
inputs corresponding to the test manager’s vectors to induce
changes in the process. The control technique explicity
requires that the user be able to quantify the values of
the control inputs, and it implicitly requires—through the
use of the model parameters—the data from which the
model parameters were calibrated. This example illustrates
that the data requirements of a particular application of
software cybernetics are primarily dictated by the under-
lying model, with a small additional requirement in the
specification of the expected model inputs.

It should be clear that software cybernetics is not the
only overlap of software systems/software engineering with
control theory. The implementation of a controller for a
boiler system represents this overlap (software being used
to implement a control mechanism). However, software
cybernetics is more comprehensive and can be seen more
as the mapping of software systems/software engineering
concepts to concepts in control systems. For example, the

use of control theory to regulate the amount of memory
reserved for a cache system represents this mapping.

Fundamental Principles

The research area of fundamental principles (FP) is con-
cerned with the fundamental questions and theoretical
foundation of software cybernetics. Such questions are as
follows: Can the software behavior be controlled? What role
can feedback play in software processes and systems? How
can software behavior be modeled in the framework of
software cybernetics? Three specific topics should be
addressed in this research area: modeling formalism, con-
trollability and bisimulation, and feedback complexity and
bisimulation.

Modeling Formalism. To address the question of
whether software behavior can be controlled in a theore-
tically justified manner, it is important to examine how
software behavior can be modeled. Three modeling form-
alisms have been proposed: formal models, dynamical
system models, and controlled Markov chains. A typical
formal model is the extended finite state machine (EFSM),
which has been widely adopted to describe communication
software behavior (8). It is interesting to note that an
EFSM can be reformulated as a closed-loop control system
comprising a controlled object and a controller (9). This
implies that most software systems can be modeled as a
control system.

Linear dynamic system models have been proposed to
describe software testing process (7) and software service
behavior (10). In the continuous-time domain, the model is
in the form of Equation (1).

x
� ðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þDuðtÞ

�
ð1Þ

where x(t), u(t), and y(t) are state vector, control input, and
output, respectively, and A, B, C, and D are matrices of
appropriate dimension. The discrete-time counterpart of
Equation (1) is given by Equation (2)

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ
yðkÞ ¼ CxðkÞ þDuðkÞ

�
ð2Þ

where k denotes the kth sampling instant.

Actuators

Measurements

System

Disturbances

Adjustments
Controller

Sensors

Desired value
of the output Control

signal

Measurement
noise

System attributes
and performance

Actual
Output

Control

Figure 1. Typical feedback loop (5).

2 SOFTWARE CYBERNETICS



Finally, controlled Markov chains have been proposed to
describe the software testing process (11). The states in a
controlled Markov chain are defined by software variables
of interest such as the number of defects remaining in the
software under test. As distinct testing actions are applied
to the software under test, the software state transitions
take place in accordance with a Markov law whose prob-
ability distributions depend on the applied testing actions.

Controllability and Bisimulation. Controllability is a fun-
damental concept in modern theories of control. Generally,
a dynamic system is said to be controllable if a control input
transforms the system from an arbitrary state to the zero
state in a finite length of time (12). Furthermore, a (formal)
language of a discrete-event system is said to be control-
lable if the prefix closure is invariant under the occurrence
of uncontrollable events (13). On the other hand, bisimula-
tion is a fundamental concept in process algebra and con-
current computing (14). It determines whether two
processes in a computing system or two states in a state
space are equivalent in some sense of actions and state
transitions. Three classes of research have been delineated
within the topic of controllability and bisimulation. The
first class reveals that inherent relationships exist between
controllability and bisimulation (15,16). This fact is sur-
prising and supports the suggestion that control theories
and computing theories may be put into a unified theore-
tical framework.

The second class of research is devoted to the introduc-
tion of bisimulation relations for conventional dynamic
systems (17). It is shown that the abstract notion of bisi-
mulation in the context of open maps may characterize the
equivalence relations for discrete event systems, for con-
ventional dynamic systems, as well as for hybrid systems
(18,19). The third class of research is concerned with how to
control a system so that the resultant closed-loop system
bisimulates or approximately bisimulates another system
in some sense (20).

Feedback Complexity and Limitation. It is well known in
the control community that feedback is not a panacea for
achieving control goals. There are limitations on the role
that feedback can play (21). Normally, a closed-loop control
system is composed of controller and a controlled object,
which communicate with each other in a collaborative
manner to achieve a given control objective. Feedback
between the controller and the controlled object defines a
kind of communication. On the other hand, the commu-
nication complexity theory is a well-established area in
computer science, which is concerned with why commu-
nication is necessary for two collaborative agents to com-
plete a given task (22). A natural question arises: Can
feedback limitation be formulated in the context of com-
munication complexity theory? This research topic remains
largely unexplored.

Cybernetic Software Engineering

Cybernetic software engineering (CSE) treats software
development as a control problem and applies control the-
oretic principles to guide software process improvements

and quality assurance (23). Because a software develop-
ment process is often divided into several phases such as
requirement analysis, design, and testing, control theoretic
principles are applied to individual phases.

Software Requirement Acquisition. Software require-
ment acquisition is an interactive process between the
software development personnel and the user, and feed-
back is an intrinsic feature of the process. It is argued that
the requirement acquisition process be treated as feedback
requirements process control (RPC) system, where the
requirements specification of the application serves as
the object to be controlled (24). The RPC perspective can
then be applied to assess the quality of the requirement
acquisition process and to guide the corresponding process
improvement. This research area is in its early stages of
development.

Software Synthesis. Because most software systems can
be treated as a control system, it is natural to raise the
question whether control theories can help guarantee the
correctness of software design solutions. A modest amount
of research has been devoted to address this question where
the control theories of discrete-event systems are applied.
In the work of Marchand and Samaan (25), and Wang et al.
(26) the software under synthesis, modeled by a polynomial
dynamical system (PDS) serves as the required controller,
whereas the operating environment serves as the con-
trolled object. Sridharan et al. (27,28) applies the theory
of supervisory control to synthesize the safety controllers
for ConnectedSpaces, which is a collection of one or more
devices, each described by its Digital Device Manual and
reachable over a network. On the other hand, it is shown
that software fault-tolerance can be treated as a robust
supervisory control problem and the traditional idea of
diverse redundancy can be avoided (29).

Software Test Management. A control mechanism has
been used to regulate the behavior of the system test
process. A mathematical model capturing the dominant
behavior of the process has been developed (7). The para-
meters of the model are calibrated using data from the
ongoing process by means of a least squares approach. A
parametric control approach is then used to regulate the
process and to correct problems such as schedule slippage.
The approach has been statically validated using a Kro-
necker product to conduct a sensitivity analysis (30) and
has also been successfully applied to a series of projects
from large corporations (31).

Adaptive Testing. Adaptive testing is the software test-
ing counterpart to adaptive control and is the outgrowth of
the controlled Markov chain (CMC) approach to software
testing. In the CMC approach, the software under test
serves as the controlled object and is modeled by a con-
trolled Markov chain, whereas the test strategy serves as
the corresponding controller. The software under test and
the test strategy make up a closed-loop feedback control
system. Although the test strategy uses the test history to
generate or select the next set of test cases to be applied to
the software under test, adaptive testing implies that the

SOFTWARE CYBERNETICS 3



underlying parameters in the test strategy be also updated
online during testing by using the test history. It is shown
that adaptive testing can be applied not only for software
reliability improvements by removing the detected defects
(11,32), but also for software reliability assessment by
freezing the code of the software under test (33).

Cybernetic Autonomic Computing

Autonomic computing (referred to later as CAC) is an
initiative launched by IBM (34). It is aimed at making
computing systems self-managing, which implies that
computing should be self-configuring, self-optimizing,
self-healing, and self-protecting. By cybernetic automatic
computing we refer to autonomic computing achieved by
applying control-theoretic or cybernetic principles and
methods. Moreover, computing systems are treated as a
feedback closed-loop control system and thus should be
self-stabilizing. Several research topics have been
addressed in the literature as follows.

Software-Aging Control. Aging is a phenomena widely
studied in hardware reliability community. Hardware sys-
tems tend to age because of physical deterioration such that
the corresponding failure rate function behaves as a non-
decreasing function of the operating time. In 1990s soft-
ware systems also suffered from the aging phenomena
(35,36). Software aging emerges as a result of computing
resource contention, memory leakage, file-space fragmen-
tation, and so on. It causes the computing systems to
demonstrate performance degradation and then to hang,
panic, and crash. This is particularly true for Web servers
in the Internet environment. Three questions can be raised
for software aging. First, what are the underlying aging
mechanisms (37,38)? Second, how can software aging be
modeled (39,40)? Finally, how can software aging be fore-
casted and controlled (41,42)? Software-aging control is an
interesting research area deserving of additional investi-
gation.

Adaptive Software. The environments where software
products are executing today have considerably increased
in complexity. The number of simultaneous users on dis-
tinct platforms with different resource constraints and the
dynamic interaction among all of these elements constitute
the basis for this complex and often open environment such
as the Internet. Adaptive software operating in the envir-
onment of this kind identifies the changes in the environ-
ment, adjusts its internal architecture and/or parameters,
and assesses its behavior to provide satisfactory quality of
service. Feedback is an imperative kind of activity for
adaptive software and a crucial problem is how to formu-
late, to quantify, and to optimize the underlying feedback
mechanism. Three questions have been partially addressed
in the literature. First, what architectures should be
adopted for adaptive software (43,44)? Second, what control
algorithms should be developed for adaptive software
(45–47)? Finally, what quality attributes should be
employed to assess adaptive software (48)? Adaptive soft-
ware is a research topic in which control-theoretic princi-
ples and methods can play a fundamental role.

Self-Stabilizing Software. The notion of self-stabilization
was introduced by Dijkstra in 1974 (49) and a many self-
stabilizing computing algorithms has been reported in the
literature (50,51). A system is said to be self-stabilizing if,
regardless of its initial state, it is guaranteed to arrive at a
legitimate state in a finite number of steps. This implies
that self-stabilizing software can resume normal operation
in the presence of transient software faults. Although it is
observed that self-stabilization shares some concepts with
self-management in autonomic computing (52), research on
self-stabilizing software is still in early stages. This topic is
important for two reasons. First, existing mainstream
mechanisms for software fault-tolerance lack solid theore-
tical foundation (29) and self-stabilizing software may be
considered as a new kind of fault-tolerant software that is
theoretically justified. Second, the notion of self-stabiliza-
tion is different from the traditional notion of Lyapunov’s
stability, and self-stabilizing software may lead to a new
theory of stability.

Autonomic Computing Prototyping. Although autonomic
computing systems are claimed to mimic the autonomic
neurons in biological systems (53,54), the field of autonomic
computing does not currently provide researchers with a
clear idea of what is required to develop an autonomic com-
puting system (48). What are the fundamental concepts and
principles of autonomic computing? Whatare the qualitative
and quantitative goals of autonomic computing? What are
the architectures that autonomic computing systems should
adopt? What are the computing models and algorithms that
autonomic computing should be based on? All these ques-
tions should be addressed in the research works on auto-
nomic computing. By autonomic computing prototyping we
mean that these questions are addressed and examined by
developing various prototyping systems. These systems can
be observed in the various works presented at the interna-
tional conferences on autonomic computing (55,56).

Software-Enabled Control

Software-enabled control (SEC) was initially a research
program launched by the U.S. Defense Advanced Research
Projects Agency (57,58). The motivation for SEC is twofold.
First, conventional control systems, including adaptive
control systems, and robust control systems, are often
over-designed based on simplified models of system
dynamics and well-defined operational environments.
This leads to underperformance in normal environments
and control vulnerabilities that arise in extreme environ-
ments such as damaged control surfaces for modern air-
crafts. Second, developments in software technology have
enabled new apparatus for control systems, including
device networks, smart sensors, programmable actuators,
and systems-on-a-chip. A challenge is how to design control
and software, or how to exploit software and computation to
achieve new control capabilities. This requires a new per-
spective of system dynamics. Besides conventional
accounts of parameter uncertainty, noise, and disturbance,
the new system dynamics should also take into account
dynamic tasking, sensor and actuator reconfiguration,
fault detection and isolation, and structural changes in

4 SOFTWARE CYBERNETICS



plant model and dimensionality. It should also treat soft-
ware as a dynamic system which has an internal state, time
scales, transients and saturation points, responds to
inputs, and produces outputs. SEC is now an established
research area that shares the general idea of software
cybernetics (57,58). In the following we identify three
research topics that relate to SEC.

Control Software Architecture. Research in control soft-
ware architecture is concerned with particular types of
software architectures that fit well the implementation
of complex control algorithms. There are two primary con-
cerns. First, the control software of concern is mostly real-
time embedded software. This is particularly true for air-
borne software of modern aircrafts. Second, monolithic
structures should be avoided to reflect the closed-loop feed-
back feature of control systems (57,58). Overall, the control
software architecture should follow the new perspective of
system dynamics. An outgrowth of this research topic is the
so-called open control platform (OCP) for Unmanned Aerial
Vehicles (UAVs), which is an object-oriented software
infrastructure that allows seamless integration of cross-
platform software and hardware components in any control
system architecture.

Software-Enabled Control Synthesis. The endeavor for
software-enabled control was carried out mainly for modern
aircrafts in general, and UAVs in particular. How to put
flight control, flight management, task management, and
software constraints into a unified framework is a grand
challenge for computer science, control theory, and software
engineering. For example, the distributed controller
enabled by emerging real-time middleware support can
consist of hierarchical systems, integrated subsystems, or
independent confederated systems, such as multi-vehicle
systems. It is unclear how to synthesize the required coor-
dinated control algorithms.

Control Software Validation. Conventional software vali-
dation assumes that the underlying algorithms implemen-
ted by the software under validation are given a priori and
are not adjusted online. For example, conventional soft-
ware testing assumes that a test oracle is given a priori.
However, this assumption is not true for software-enabled
control that follows the new perspective of system
dynamics. Control algorithms may be adjusted or even
reconfigured in response to sensor/actuator failures or
unexpected conditions. This may trigger the reconfigura-
tion of control software to adopt an alternative software
architecture. On the other hand, software reconfiguration
in response to software component failures may require
that control algorithms are updated to guarantee flight
safety. There is a dynamic process of interactions between
control algorithms and software systems. This imposes a
challenge to software validation (57,58).

APPLICATIONS OF SOFTWARE CYBERNETICS

In this section we highlight applications developed within
the research areas presented in Section 2. Since the majority

of the research work falls within more than one of the areas
from Section 2, we have organized the works by application
area. The research topics are then individually categorized
based on the four main software cybernetics research areas
defined in Section 2 and are also listed below.

� Fundamental Principles (FP)

� Cybernetic Software Engineering (CSE)

� Cybernetic Autonomic Computing (CAC)

� Software-Enabled Control (SEC)

Process Management

By process management we refer to the work directed
toward the task of bringing control-theoretic approaches
to bear on the perennial problems of software process
improvement and control. Xu et al. (24) have mapped the
66 key practice areas from the Requirements Engineering
Good Practice Guide (59) to the corresponding parts of a
typical control system (i.e., to actuators, sensors, etc.) and
sketch an overview of the process of building a Require-
ments Process Controller. Their work falls in the CSE area.

Management of the construction phase of incremental
software development is addressed by Miller (60), where a
state-model of the construction phase is proposed, and an
outline given of a control strategy based on model predictive
control (MPC) (61). The control attempts to minimize the
deviation between the actual progress and the schedule
while balancing the cost of the control resources with the
cost of schedule deviation. These projects can be character-
ized as part of FP and CSE areas.

Modeling and control of the system test phase (STP) of
software development within a control-theoretic formalism
has been addressed by Cangussu et al. (7,30) where a state-
model is constructed for the STP and a partial eigenvalue-
assignment control technique is proposed. The control
technique presents a test manager with a set of options
which will likely achieve the quality objectives by the
schedule deadline. Miller et al. propose (62) a controller
for the STP model based on MPC. This work can also be
characterized as part of FP and CSE areas.

Buy and Darabi build upon their work on time-extended
Petrinets (63,64) to construct a supervisory controller cap-
able of enforcing constraints on a class of workflow pro-
cesses. Workflows can be used to describe many processes,
including those in software development. This work is best
characterized by the area of CSE.

Padberg has studied the link between software process
modeling and Markov Decision Theory (65), where a model
of software development is proposed as a Markov Decision
Process, and an optimal schedule is derived using a
dynamic programming approach. CSE again is the best
characterization of this work.

Software Development

Although body of work proposes architecture and design
elements to support software cybernetic implementations,
these elements are out-of-scope for the present survey.

SOFTWARE CYBERNETICS 5



Instead we focus on the actual usage of control-theoretic
techniques and ideas.

The task of designing software can be aided by super-
visory control techniques which commonly augment exist-
ing systems to impose constraints. Examples of design
synthesis via supervisory control are given in Sections
3.1 and 3.4.

Software testing has also received considerable atten-
tion from the software cybernetics community (11). Cai
et al. (32) view the software under test as a controlled
object which is modeled by a controlled Markov chain.
The testing strategy is synthesized as an optimal controller
of the software under test. This body of work falls within the
CSE area.

Research has also focused on the application of adapta-
tion techniques to improve random testing. Chan et al. (66)
propose an adaptive center of gravity constraint to pure
random testing to improve the input domain coverage with
fewer tests. Cai et al. (67) propose a dynamic partitioning of
the input domain for random testing to improve the test
selection process. As above, CSE characterizes this work.

Adaptive Software

Control-theoretic foundations for the construction of adap-
tive software have been studied (45–47). For example, a
system identification technique is used to capture the
behavior of a software application with respect to a speci-
fied resource usage (47). The derived model is then used to
predict constraint violations and the software is adapted
accordingly to avoid such violations. An increase in soft-
ware robustness is achieved with this adaptation. The work
on adaptive systems is better characterized by the CAC
research area.

Safety

Software cybernetics has been used to address the enforce-
ment of safety policies in collaborative environments.
Sridharan et al. (27,28) propose a safety enforcement envir-
onment called ‘‘ConnectedSpaces’’ with a formalism for
describing and exchanging the safety policy of a device
within a ConnectedSpace. A form of supervisory control
is then applied to achieve online generation of a safety
controller for the ConnectedSpace that adapts as devices
enter and exit the ConnectedSpace. This research project
involves both areas of FP and CSE.

Adaptive software introduces its own safety concerns: Is
it possible for the adaptation to fail and leave the system in
a dangerous state? This issue is addressed by Liu et al. (68)
where a stability monitor is constructed based on Lyapunov
Stability Theory (69). The stability monitor determines
whether the current data will prevent the adaptation pro-
cess from converging (i.e., because of due to abnormal or
incorrect data) and, if so, it prevents the data from reaching
the adaptation routine. FP and CAC characterize these
projects.

Networking

Techniques based on control theory have been applied to
common problems in networking as well. Moerdyk et al.

(70) propose a hybrid optimal controller based on MPC
which achieves load-balancing in a cluster of computer
nodes.

Tan et al. (71) propose a technique for handling high-
bandwidth traffic aggregates (e.g., DOS attacks) by instal-
ling rate throttles in upstream routers and building control-
theoretic algorithms to adaptively, robustly, and fairly set
the throttle rates at the routers. CAC can be used to
characterize the projects in this section.

Fault Tolerance

Software rejuvenation refers to the idea that software can
repair its internal state to prevent a more severe future
failure. A framework for adaptive software rejuvenation is
proposed by Bao et al. (42) with examples given for mon-
itoring and for adapting the rejuvenation schedule in
response to resource loss (e.g., memory leaks.)

A self-stabilizing program is one which guarantees the
arrival at a legitimate state after a finite number of steps,
regardless of the initial state (49). Gouda and Herman (72)
relate program adaptation to self-stabilization in the con-
text of fault tolerance. The research areas of CAC and SEC
characterize these projects.

Information Security

Venkatesan and Bhattacharya (73) propose a threat-
adaptive security policy in which a trust model is developed
as a finite state machine from a set of rules specifying how
trust is to be adjusted. Depending on the level of trust, the
system requires varying levels of authentication; the intent
is to improve performance while retaining control over the
access of untrusted users.

An approach to security quantification is proposed by
Griffin at al. (74). A state-space representation of security is
proposed, followed by a stochastic attack model. Analysis of
the pair yields estimates of mean time-to-failure, the prob-
ability of reaching a particular fail-state, and a method of
optimizing the security policy. FP and CSE are a good
characterization for these work.

FUTURE DIRECTIONS

Many areas have already benefited from the use of control
theoretical aspects but much more needs to be explored.
There is always the alternative of increasing the number of
areas where software cybernetics can be applied. This is
naturally occurring as more and more researchers embrace
the benefits of applying control techniques and theories
within their research areas. The diverse areas surveyed in
this article provide a clear indication of this phenomena.
However, most of the research on software cybernetics can
be considered to be in their preliminary stages and much
more detailed solutions with a full body of results/concepts
must be in place before software cybernetics can achieve a
reasonable level of maturity.

For example, the work on software project management
has been almost restricted to the final phases of the devel-
opment process or more specifically to the testing phases.
This occur because later phases are easier to quantify and

6 SOFTWARE CYBERNETICS



less subjective than early phases of the development pro-
cess. The lack of better and/or more precise quantification
mechanisms to represent early phases are not only a matter
of their subjectivity but also a matter of the immaturity of
software engineering (3). Clearly, software cybernetics
research in this area has to move toward all the phases
of the development process until a full body of models and
control mechanisms are in place to regulate the entire
development process.

Another aspect to be considered is how software cyber-
netics will require the development of new techniques (or
the adjustment of existing ones) used in control. For exam-
ple, the quantification of noise is well understood and used
when controlling physical systems. However, noise in soft-
ware is difficult to quantify. Though most researchers make
assumptions about noise (for example, assuming a white
Gaussian (Normal) random noise (75), v½n� � N½0;s2�, of
zero mean and variance s2 at an instant n to represent
noise), we believe that there has not been a detailed study
about the quantification of noise for software systems. The
availability of such a study may lead to the development of
new techniques to handle the specifics of software systems.

CONCLUDING REMARKS

Control theory is a tool that can be used to regulate systems
and processes. Software systems do not operate in a static
environment and many aspects of software (either at oper-
ating system, networking, or application level) need to be
regulated to improve performance, increase reliability, and
even regulate resource usage. Similarly, the same concepts
can be applied to regulate the development process of a
software product. Software cybernetics is therefore an area
that brings together researchers from both the software
and the control systems communities to develop solutions
for these problems. The initial results of research projects
on software cybernetics are an indication of the benefits of
molding this new exciting area. Developments targeting
network security, safety, testing process, and fault toler-
ance, among others, demonstrate this potential.

BIBLIOGRAPHY

1. Wikipedia. Available: http://en.wikipedia.org/wiki/Main_Page.

2. L. Osterweil, Software processes are software too, Proceedings
of the 9th International Conference on Software Engineering,
1987, pp. 2–13

3. M. M. Lehman, D. E. Perry, and W. M. Turski, Why is it so hard
to find feedback control in software process?Proc. of 19th
International Australasian Computer Science Conference, Mel-
bourne, Australia, 1996, pp. 107–115.

4. N. Wiener, Cybernetics: or Control and Communication in the
Animal and the Machine, New York: John Wiley, 1948.

5. K. Y. Cai, J. W. Cangussu, R. A. DeCarlo, and A. P. Mathur, An
overview of software cybernetics, Proc. of the 11th Interna-
tional Workshop on Software Technology and Engineering
Practice, 2003, pp. 77–86.

6. G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control system
design. Upper Saddle River, NJ: Prentice Hall, 2001.

7. J. W. Cangussu, R. A. DeCarlo, and A. P. Mathur, A formal
model of the software test process, IEEE Transactions on
Software Engineering, 28(8): 782–796, 2002.

8. Introduction to SDL 88. Available: http://www.sdlforum.org/
sdl88tutorial/index.html, 2002.

9. P. Wang and K. Y. Cai, Representing extended finite state
machines for SDL by a novel control model of discrete event
systems, Proceedings of the Sixth International Conference on
Quality Software, IEEE Computer Society Press, 2006.

10. C. Lu, R. ZhangY. LuT. F. Abdelzaher, and J. A. Stankovic,
Feedback performance control in software services, IEEE Con-
trol Systems Magazine, 23(3): pp. 74–90, 2003.

11. K.-Y. Cai, Optimal software testing and adaptive software
testing in the context of software cybernetics, Informat. Softw.
Technol., 44: 841–855, 2002.

12. C. T. Chen, Linear System Theory and Design, New York: CBS
College Publishing, 1984.

13. P. J. Ramadge and W. M. Wonham, The control of discrete
event systems, Proc. IEEE, 77: 81–98, 1989.

14. R. Milner, Communication and Concurrency, Englewood
Cliffs: Prentice-Hall, 1989.

15. G. Barrett and S. Lafortune, Bisimulation, the supervisory
control problem and strong model matching for finite state
machines, Discrete Event Dynamic Sys: Theory and Applicat.,
8: 377–429, 1998.

16. J. J. M. M. Rutten, Coalgebra, concurrency, and control. CWI,
SEN-R9921, 1999.

17. A. J. van derSchaft, Equivalence of dynamical systems by
bisimulation, IEEE Trans. Auto. Control, 49(12): 2160–2172,
2004.

18. E. Haghverdi, P. Tabuada, and G. J. Pappas, Bisimula-tion
relations for dynamical, control, and hybrid systems, Theoret.
Comp. Sci., 2005.

19. A. Joyal, M. Nielsen, and G. Winskel, Bisimulation from open
maps, Informat. Comput., 127(2): 164–185, 1996.

20. C. Zhou, R. Kumar, and S. Jiang, Control of non-deterministic
discrete-event systems for bisimulation equivalence, IEEE
Trans. Auto. Control, 51(5): 754–765, 2006.

21. M. M. Seron, J. H. Braslavsky, and G. C. Goodwin, Funda-
mental Limitations in Filtering and Control, New York:
Springer, 1997.

22. E. Kushilevitz and N. Nisan, Communication Complexity,
Cambridge UK: Cambridge University Press, 1997.

23. K. Y. Cai, T. Y. Chen, and T. H. Tse, Towards research on
software cybernetics, Proc. 7th IEEE International Sympo-
sium on High Assurance Systems Engineering, 2002, pp.
240–241.

24. H. Xu, P. Sawyer, and I. Sommerville, Requirement process
establishment and improvement: from the viewpoint of cyber-
netics, Computer Software and Applications Conference, 2005.
29th Annual International, 2005, pp. 89–92.

25. H. Marchand and M. Samaan, Incremented design of a power
transformer station controller using a controller synthesis
methodology, IEEE Trans. Softw. Enginee., 26(8): 729–741,
2000.

26. X. Y. Wang, Y. C. Li, and K. Y. Cai, On the polynomial
dynamical system approach to software development, Science
in China (Series F), 47(4): 437–457, 2004.

27. B. Sridharan, A. P. Mathur, and K.-Y. Cai, Using supervisory
control to synthesize safety controllers for connnectedspaces,
Proceedings of the 3rd International Conference on Quality
Software, IEEE Computer Society Press, 2003, pp. 186–193.

SOFTWARE CYBERNETICS 7



28. B. Sridharan, A. P. Mathur, and K.-Y. Cai, Synthesizing dis-
tributed controller for safe operation of connected spaces,
Proceedings of the IEEE International Conference on Pervasive
Computing and Communication, 2003, pp. 452–459.

29. K. Y. Cai and X. Y. Wang, Towards a control-theoretical
approach to software fault-tolerance, Proc. the 4th Interna-
tional Conference on Quality Software, 2004, 198–205.

30. J. W. Cangussu, R. A. DeCarlo, and A. P. Mathur, Using
sensitivity analysis to validate a state variable model of the
software test process, IEEE Trans. Softw. Engineer., 29(5):
430–443, 2003.

31. J. W. Cangussu, R. M. Karcich, R. A. DeCarlo, and A. P.
Mathur, Software release control using defect based quality
estimation, Pro. of 15th International Symposium on Software
Reliability Engineering, Saint-Malo, Bretagne, France, 2004.

32. K.-Y. Cai, Y. C. Li, and K. Liu, Optimal software testing in the
setting of controlled markov chains, Euro. J. Operat. Res.,
162(2): 552–579, 2005.

33. K. Y. Cai, Y. C. Li, and K. Liu, Optimal and adaptive testing for
software reliability assessment, Informat. Softw. Technol., 46:
989–1000, 2004.

34. Autonomic computing: IBM perspective on the state of infor-
mation technology. Available: http://www.ibm.com/research/
autonomic.

35. Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, Software
rejuvenation: Analysis, module, and applications, Proc. The
25th International Symposium on Fault-Tolerant Computing,
1995, pp. 381–390.

36. E. Marshall, Fatal error: How patriot overlooked a scud,
Science, 255: 1347, 1992.

37. K. C. Gross, V. Bhardwaj, and R. Bickford, Proactive detection
of software aging mechanisms in performance critical compu-
ters, Proc. the 27thAnnual NASA Goddard/IEEE Software
Engineering Workshop, 2003.

38. M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, and Y.
Liu, Software aging and multifractality of memory resources,
Proc. the 2003 International Conference on Dependable Sys-
tems and Networks, 2003.

39. S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, Analysis of
preventive maintenance in transactions based software sys-
tems, IEEE Trans. Comp., 47(1): 96–107, 1998.

40. L. Li, K. Vaidyanathan, and K. S. Trivedi, An approach to
estimation of software aging in a web server, Proc. Interna-
tional Symposium on Empirical Software Engineering, 2002.

41. T. Dohi, K. Goseva-Popstojanova, K. Vaidyanathan, K. S.
Trivedi, and S. Osaki, Preventive software rejuvenation -
theory and applications, In H. Pham, Springer Handbook of
Reliability, New York: Springer-Verlag, 2002.

42. Y. Bao, X. Sun, and K. S. Trivedi, Adaptive software rejuvena-
tion: Degradation model and rejuvenation scheme, Proceed-
ings 2003 International Conference on Dependable Systems
and Networks, 2003. pp. 241–248.

43. C. Dellarocas, M. Klein, and H. Shrobe, An architecture for
constructing self-evolving software systems, Proc. the Third
International Software Architecture Workshop, 1998, pp. 29–32.

44. P. Oreizy, M. Gonlick, R. Taylor, D. Heilaignel, G. Johnson, N.
Medvidov, et al.An architecture-based approach to self-adap-
tive software, IEEE Intell. Sys., 14(3): 54–62, 1999.

45. J. Palsberg, C. Xiao, and K. Lieberherr, Efficient implementa-
tion of adaptive software, ACM Transactions on Programming
Languages and Systems, 17(2): 264–292, 1995.

46. Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. E. Kaiser,
and D. Phung, A control theory foundation for self-managing

computing systems, IEEE J. Selected Areas in Communica-
tions, 23(12): 2213–2222, 2005.

47. J. W. Cangussu, K. Cooper, and C. Li, A control theory based
framework for dynamic adaptable systems, Proc. of the 19th
Annual ACM Symposium on Applied Computing, 2004.

48. P. Lin, A. MacArthur, and J. Leaney, Defining automatic
computing: A software engineering perspective, Proc. the
2005 Australian Software Engineering Conference. 2005.

49. E. W. Dijkstra, Self-stabilizing systems in spite of distributed
control, Commun. ACM, 17(11): 643–644, 1974.

50. M. Schneider, Self-stabilization, ACM Computing Surveys,
25(1): 45–67, 1993.

51. S. Dolev, Self-Stabilization, Cambridge MA: The MIT Press,
2000.

52. K. Herrmann, G. Muhl, and K. Geihs, Self management: The
solution to complexity or just another problem, IEEE Distrib.
Syst. Online, 6(1), 2005.

53. A. G. Ganek and T. A. Corbi, The dawning of the auto-nomic
computing era, IBM Sys. J., 42(1): 5–18, 2003.

54. J. O. Kephart and D. M. Chess, The vision of au-tonomic
computing, IEEE Computer, 36(1): 41–50, 2003.

55. Proc. of the International Conference on Autonomic Computing.
2004.

56. Proceedings of the international conference on auto-nomic
computing. IEEE Computer Society, 2005.

57. T. Samad and G. Balas, ed. Software-Enabled Control: Infor-
mation Technology for Dynamical Systems, Hoboken: IEEE
Press, 2003.

58. J. S. Bay and B. S. Heck, Software-enabled control: An intro-
duction to the special section, IEEE Control Sys. Mag., 23(1):
19–20, 2003.

59. I. Sommerville and P. Sawyer, Requirements Engineering: A
Good Practice Guide, New York: John Wiley and Sons, Inc.,
1997.

60. S. D. Miller, A control-theoretic aid to managing the construc-
tion phase in incremental software development, 30th Annual
International Conference on Computer Software and Applica-
tions (COMPSAC), 2006.

61. E. F. Camacho and C. Bordons, Model Predictive Control, New
York: Springer Publication, 2004.

62. S. D. Miller, R. A. DeCarlo, A. P. Mathur, and J. W. Cangussu, A
control-theoretic approach to the management of the software
system test phase, J. Sys. Softw.; Special section on Software
Cybernetics, 11(79): 1486–1503, 2006.

63. U. Buy and H. Darabi, Deadline-enforcing supervisory control
for time Petri nets, CESA ’2003 - IMACS Multiconference on
Computational Engineering in Systems Applications, Lille,
France, 2003.

64. U. Buy and H. Darabi, Sidestepping verification complexity
with supervisory control, Proc. 2003 Workshop on Software
Engineering for Embedded Systems: From Requirements to
Implementation - The Monterey Workshop Series, Chicago,
Illinois, 2003. Available: www.cs.uic.edu/shatz/SEES.

65. F. Padberg, Linking software process modeling with markov
decision theory, Computer Software and Applications Confer-
ence, 2004. 28th Annual International, 2004, pp. 152–155.

66. F. T. Chan, K. P. Chan, T. Y. Chen, and S. M. Yiu, Adaptive
random testing with eg constraint, Computer Software and
Applications Conference, 2004, Proceedings of the 28th Annual
International, 2004, pp. 96–99.

8 SOFTWARE CYBERNETICS



67. K.-Y. Cai, T. Jing, and C.-G. Bai, Partition testing with
dynamic partitioning, Computer Software and Applications
Conference, 2005, 113–116.

68. Y. Liu, S. Yerramalla, E. Fuller, B. Cukic, and S. Gu-rurajan,
Adaptive control software: can we guarantee safety?Computer
Software and Applications Conference, 2004. Proceedings of the
28th Annual International, 2004, pp. 100–103.

69. V. I. Zubov, Methods of A. M. Lyapunov and Their Application.
U. S. Atomic Energy Commission, 1957.

70. B. Moerdyk, R. A. Decarlo, D. Bird-well, M. Zefran, and J.
Chiasson, Hybrid optimal control for load balancing in a cluster
of computer nodes, Proceedings of the IEEE International
Conference on Control Applications, 2006.

71. C. Tan, D. Chiu, J. C. S. Lui, and D. K. Yau, Handling high-
bandwidth traffic aggregates by receiver-driven feedback con-
trol, Computer Software and Applications Conference, 2005,
2005, pp. 143–145.

72. M. G. Gouda and T. Herman, Adaptive programming, IEEE
Trans. Softw. Engineer., 17(9): 911–921, 1991.

73. R. M. Venkatesan and S. Bhattacharya, Threat-adaptive
security policy, Performance, Computing, and Communica-
tions Conference, 1997. IPCCC 1997, 1997, pp. 525–531.

74. C. Griffin, B. Madan, and T. Trivedi, State space approach to
security quantification, Computer Software and Applications
Conference, 2005. COMPSAC 2005, 29th Annual Interna-
tional, 2005, pp. 83–88.

75. A. Leon-Garcia, Probability and Random Processes for Elec-
trical Engineering, 2nd ed., Reading, MA: Addison-Wesley
Publishing Company Inc, 1994.

JOÃO W. CANGUSSU

University of Texas at Dallas
Richardson, Texas

KAI-YUAN CAI

Beijing University of
Aeronautics and Astronautics

Beijing, China

SCOTT D. MILLER

ADITYA P. MATHUR

Purdue University
West Lafayette, Indiana

SOFTWARE CYBERNETICS 9



S

SOFTWARE EFFORT PREDICTION

INTRODUCTION

Empirical modeling to predict software development effort
has been an important topic in software engineering stu-
dies for over 30 years. The basic underlying premise is that
historical data about past projects can be employed as a
basis to predict effort for future projects. For both engineer-
ing and management purposes, accurate prediction of
effort is of significant importance, and to improve estima-
tion accuracy is an important goal of most software
organizations. A continuing pursuit exists to derive better
techniques and models to improve predictive performance.

Until recently, the emphasis has been on algorithmic
models that postulate some functional relationship
between effort and significant project characteristics, and
that are derived from project data using statistical
techniques such as regression analysis. Some of these
models incorporate tuning parameters so that the model
can be adapted to different development environments. In
recent years, an increased emphasis has been on the use of
machine learning and on neural network approaches. Some
of these have produced promising results. An important
goal of these studies is to characterize projects by the
features that have the most impact on effort and use
them as independent variables in prediction models. For
example, size, complexity, functionality, and so on all
potentially are relevant attributes that impact effort.

Formally, the development of a predictive model can be
seen as finding a functional mapping between a project’s
features, called inputs, and between effort, called output,
that satisfies some predictive performance criterion. The
data (D) and the function (f) can be represented as
follows:

D ¼ fxi; yi; xi Rd; yi R; i ¼ 1; 2; ;ng (1)

and

y ¼ f ðx; bÞ þ e (2)

Here x denotes the software project features, d is the
number of features, y is the effort, n is the number of
projects in the dataset, b is the parameter set, and e is
an error term. The derived model can be seen as a particular
realization of the function in Equation (2) obtained by some
modeling technique. The predictive performance of a model
is evaluated by some accuracy measure or measures. Two
measures employed commonly in software effort research
are the mean magnitude of relative error (MMRE) and

prediction at level y, Pred (y), defined as:

MMREi ¼
1

n

Xn

i¼1

jActual Effort� Predicted Effort j
Actual Effort

(3)

PREDðyÞ ¼ Number of estimates within ðy� yyÞ
n

(4)

As the definitions imply, models with low MMRE and high
Pred(y) are preferred.

This article describes the main effort prediction techni-
ques and discusses some issues that develop during the
modeling process. The next section presents an overview of
the commonly used models and some representative com-
parative studies. The prediction modeling process is
described in the following section. An illustrative example
is then used in the next section to derive support vector
models from several industrial projects. Finally, some con-
cluding remarks are presented.

MODELS AND COMPARISONS

A large number of effort prediction models (1) have been
proposed. This section presents model groupings and pro-
vides highlights of commonly used models. Key findings
from some comparative studies also are presented. The
following represents selected studies and is not intended
to be a review of the literature on effort estimation.

Model Categories

Most currently used models use historical data for para-
meter estimation. Based on the technology employed for
model development, current models can be grouped into the
following categories:

� Statistical

� Neural networks

� Machine learning

Statistical models are derived from historical data using
statistical methods, mostly regression analysis. The statis-
tical models were some of the earliest tobe developed.Exam-
ples of the statistical models are provided in Refs. 2 and 3.
Bayesian models have also been developed (4,5).

Neural network models formulate the prediction pro-
blem as developing a trained net to approximate the input-
output mapping that is used to derive effort estimates for
new projects.

The machine learning techniques used for software
effort prediction modeling are rule induction, case-based

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



reasoning (CBR), neuro-fuzzy logic, and so on. Currently, a
popular CBR approach is based on the Angel tool (6,7).

Another possible category is expert judgment, where the
models are generated by experts. Experts are individuals
with knowledge about the development environment and
have experience with similar systems. Such approaches
clearly are nonrepeatable and are biased. However, for
local use, expert judgment can be a very effective and
accurate effort estimation technique.

Effort Models

Some of the models from the above categories are summar-
ized below, roughly in a chronological order.

Walston and Felix (2) developed one of the earlier cost
models, based on data from IBM systems. They used pri-
marily regression analysis for model fitting. Their basic
model was Effort = 5.2(size)��0.91. This simple model was
the basis of several later studies.

Putnam (8) proposed a lifecycle manpower distribution
model based on his observations for many defense sys-
tems. This model had previously been used for hardware
projects. Its parameters were determined from previous
projects, adjusted for the characteristics of the new pro-
jects and new environments. Its analytical form facilitates
the derivation of many useful project-related performance
measures to monitor and to control resource allocation.

Boehm (9) developed the COCOMO model that is cur-
rently one of the most widely used models. It was based on
data from 63 projects using a statistical approach and expert
judgment. The primary project feature is its size in delivered
source instructions. Its basic form is man-month-
s = a�(KDSI)��b. The parameters a and b depend on the
software development mode. The man-month estimate is
then adjusted by 15 cost drivers. Subsequent revisions (10)
and updates have incorporated many current trends and
techniques in software development.

Function Points. Most of the algorithmic models use lines
of code as an important software feature. However, size
must be estimated by other means, which affects adversely
the prediction accuracy of the model. To overcome this
difficulty, Albrecht and Gaffney (11) use function points
as a substitute for size. Function points can be derived from
the requirements and the specification documents thus
becoming available early in the lifecycle. In these models,
effort is related directly or indirectly to function points.

Analogy. Estimation by analogy is a form of case-based
reasoning. The key phases of estimation by analogy are the
identification of a problem as a new case, the retrieval of
similar cases from a repository, the reuse of knowledge
derived from previous cases, and the suggestion of a solu-
tion for a new case. Several different algorithmic
approaches can be used to assess similarity between new
case and cases in the repository, for example, the k-nearest
neighbor and the fuzzy similarity. Several case studies (6)
have documented experiences with the use of analogy.

Neural network. Such models have been proposed within
the past 10 years. Wittig and Finnie (12) employed a back-
propagation training approach for a multi-layer perceptron
network. Shin and Goel (13) developed radial basis function
models using data from Bailey and Basili (3), whereas Lim
(14) employed support vector machines (SVMs) on many
datasets for effort-prediction modeling.

Comparative Studies

Over the past 15 years, several comparisons of modeling
techniques have been reported. Key findings from some of
these reports are summarized below. However, general
conclusions cannot be drawn from such studies because
almost every technique requires subjective decisions dur-
ing the modeling process, which influence the results
invariably. Nevertheless, such studies provide some inter-
esting insights into the strengths and the limitations of the
various techniques.

Sheppard and Schofield (7) studied the performance of
analogy, of stepwise multiple regression, and of multiple
regression on a large number of industrial projects devel-
oped in different environments for many applications.
They found that their analogy approach had a superior
performance as judged by MMRE and Pred(25) mea-
sures.

Briand et al. (15) presented the results of a comprehen-
sive comparison of common effort estimation techniques.
They compared predictive performance on multi-organiza-
tion and company-specific data and found no significant
difference with respect to modeling techniques. However,
on their data, regression models outperformed analogy-
based estimation.

Dolado (16) evaluated regression, neural networks, and
genetic programming for effort estimation using several
datasets and concluded that the improvements by machine
learning techniques were not impressive.

Lim (14) developed SVM-based effort models for several
datasets, (6,11,17,18). Their performance was superior to
the models derived by multiple regression, stepwise multi-
ple regression, and analogy (6) in terms of MMRE and
Pred(25).

MODEL DEVELOPMENT PROCESS

Developing a prediction model consists of finding some
expression for the function in Equation (2), generally called
‘‘function approximation’’ in modeling literature. Various
models described above are manifestations of this approx-
imation. The process to derive these functions depends on
the chosen technique, but, at an abstract level, a common
underlying process exists that is described below and
shown in Fig. 1.

Modeling Approach

The first issue is to determine a modeling approach. This
decision is governed by the application and the develop-
ment environment as well as by the available data and by
modeling expertise. Requirements of predictive perfor-

2 SOFTWARE EFFORT PREDICTION



mance, ease of use, and model interpretability also affect
this selection.

Data Selection

The modeling approach dictates data selection. For exam-
ple, if a regression model is to be built, explicit data in the
form of Equation (1) is required. The case is the same for
neural network models. For case-based reasoning models, a
case base and domain knowledge are required. Also, pre-
processing of the data usually is necessary, which includes
dealing with missing data, outliers, normalization, and
data transformation, as well as with feature subset selec-
tion and with dimensionality reduction. Obviously, data
selection has a major impact on model performance.

Algorithm Selection

An algorithm to determine model parameters is chosen to
satisfy some desired speed and efficiency constraints. If a
linear regression model is chosen, the algorithm is straight-
forward. For neural network modeling, several algorithms
are available. Other decisions include the approach to
determine network architecture, error tolerance, and train-
ing parameters. For CBR models, issues of distance mea-
sures, adjustment mechanism, and so on, are to be
addressed. This process is nontrivial, which requires
much insight into the algorithms and their tradeoffs. As

examples, see Ref. 13 for radial basis function models and
Ref. 19 for SVMs.

Performance Evaluation

By using measures such as MMRE and Pred(y), multiple
models usually are developed and their performance is
evaluated. Some model validation approaches are employed
for model comparison. One approach is to divide the data
into training, validation, and test sets. Models are derived
from the training set. Their performance is evaluated on the
validation set and usually the best performing model is
selected. If the dataset is of limited size, k-fold cross-valida-
tion is more appropriate. The data are divided into k groups
of almost equal size. A model is developed from (k-1) sets and
its performance is evaluated on the kth set. This process is
repeated k times and the average of the k values is a
measure of model performance. In the special case when
the dataset is small, k = 1 is used and is called the leave-one-
out cross-validation approach.

Model Selection and Assessment

Model performance on the test set is considered to be a
measure of its generalization performance (i.e., its predic-
tive performance on future projects). Other factors that are
employed generally for model assessment are ease of use,
meaningfulness, interpretability, and so on. Model com-
plexity is also an important concern. A parsimonious model
is almost always preferred because, among other things, it
requires fewer data features for model development and
use.

Model Use

The selected model is employed to predict the effort of new
systems. Lessons learned are used to improve future pre-
dictions.

SUPPORT VECTOR MACHINE PREDICTION

SVM is a relatively new approach for effort estimation. It
possesses some very nice mathematical properties and has
shown promising performance in fields such as bioinfor-
matics, medicine, and banking. SVM is a new type of
learning algorithm based on statistical learning theory.
Specifically, it represents an approximate implementation
of the method of structural risk minimization, which states
that the generalization error of a learning machine is
bounded by the sum of its training error and a term that
depends on its Vapnik–Chervonenkis dimension (20). A
brief description of SVM is given below, followed by an
illustrative example.

Support Vector Machine

Originally, SVMs were employed for linearly separable
pattern classification tasks (i.e., for data that are linearly
separable in the input space). Even though the above is
unrealistic for most real-world applications, its treatment is
helpful to understand the SVM fundamentals. For realistic
situations, a high dimensional feature space is constructed

Modeling Approach

Data Selection

Algorithm Selection

Performance Evaluation

Model Selection and 
Assessment

Model Use

Figure 1. Model development process.

SOFTWARE EFFORT PREDICTION 3



by using an inner-product kernel K(x,xi). The input data are
mapped into this feature space and the linear classification
problem is solved in the feature space. Recently, this
approach has been extended to solve nonlinear regression
problems such as effort estimation modeling. In this context,
the function in Equation (2) is nonlinear in the parameters
and can be written as

y ¼ f ðx; bÞ�
Xn

i¼1

yiaiKðx; xiÞ (5)

where for the Gaussian kernel is

Kðx; xiÞ ¼ expf� 1

2s2
kx� xik2g (6)

The dual problem to be solved for the above model is, given
the project data of Equation (1), find the Langrange multi-
pliers ai’s such that the following objective function is
maximized (21).

Qðai; a
0
iÞ ¼

Xn

i¼1

yiðai � a0iÞ � e
Xn

i¼1

ðai þ a0iÞ �
1

2

Xn

i¼1

Xn

j¼1

ðai

� a0iÞða j � a0jÞKðxi; x jÞ (7)

subject to
Xn

i¼1

ðai � a0iÞ ¼ 0 (8)

0 � ai;a
0
i � C; i ¼ 1; 2; ;n (9)

In the above, the kernel width s, the penalty parameter C,
and theVapnik loss function e are to be specified by the user.
These parameters are called the support vector hyperpar-
amaters. Finally, the effort prediction model is

ŷ ¼
Xn

i¼1

yiaiKðx; xiÞ ð10Þ

where the ai’s are between 0 and C and x are the features of
the project for which effort is to be predicted. Thus, for
specified s, C, and e, and for the software project data D
represented by Equation (1), the necessary model para-
meters are derived by support vector regression, and Equa-
tion (10) is used to predict effort.

Illustrative Example

Data about some projects from Ref. 18 and reported in Ref. 6
are used here to develop support vector effort models. It
consists of 77 projects, each with nine features (i.e., d = 9
and n = 77 for this data). The data was separated addition-
ally into three groups of 44, 23, and 10 projects according to
its development environment. The four datasets are labeled
DE, DE1, DE2, and DE3, respectively.

The first step is to determine the support vector
hyperparameters, which is an important problem and
has been studied extensively in the literature (22). For
this example, a new methodology proposed in Ref. 14 is
used. It is called SVEG (Support Vector parameter selection
using Experimental design-based Generating set search).
SVEG combines ideas from the Design of Experiments and
from the generated set of search areas. It consists of three
steps, namely, to determine hyperparameter ranges, to
define an experimental design in the hyperparameter
space, and to conduct a generating set search. A central
composite design is constructed based on the ranges of s, C,
and e, determined according to the SVEG methodology.
Then, a generating set is constructed and a generating set
search is undertaken using the experimental design points
as the initial settings for the search.

Performance measures MMRE and Pred(25) are
obtained by the leave-one-out approach. Based on the
values of these parameters, the support vector regression
model is developed as described above. The predictive
performance of the developed models is evaluated by gen-
erating a set search. Two models are selected, one with the
smallest MMRE and another with the largest Pred(25). The
average test errors of the selected models are listed in
Table 1.

It is noted that the predictive performance improves if
the data are from a homogeneous environment, as is the
case for DE1, DE2, and DE3 compared with the DE per-
formance. Also included in this table are the performance
results from the models developed by stepwise multiple
regression and the analogy reported in Ref. 6. From a
comparative perspective, the SVEG has better performance
on both measures for each dataset. Similar results were
found for several other projects (14).

CONCLUDING REMARKS

This article addresses the issue of software effort predic-
tion. To provide a perspective on the current state of
practice and research, highlights about commonly used
models and key findings from some comparative studies

Table 1. Prediction Performance for Example Data

MMRE (%) Pred(25) (%)

Dataset Regression Analogy SVEG Regression Analogy SVEG

DE 66 64 52 42 36 46
DE-1 41 37 35 45 47 54
DE-2 29 29 24 48 47 64
DE-3 36 26 25 30 70 80

4 SOFTWARE EFFORT PREDICTION



are presented. The modeling approach is illustrated using
support vector machines for some industrial data.

BIBLIOGRAPHY

1. M. Jorgensen and M. Shepperd, A systematic review of soft-
ware development cost estimation studies, IEEE Trans. Soft.
Engineer., 33: 33–53, 2007.

2. C. E. Walston and C. P. Felix, A method of programming
measurement and estimation, IBM Syst. J., 16: 54–73, 1977.

3. J. W. Bailey and V. R. Basili, A meta-model for software
development resource expenditures, Proc. 5th International
Conference on Software Engineering, 107–116. 1981.

4. S. Chulani, B. Boehm, and B. Steece, Bayesian analysis of
empirical software engineering cost models. IEEE Trans. Soft.
Engineer., 25: 573–583, 1999.

5. D. Zhang and J. J. P. Tsai, Machine Learning Applications in
Software Engineering, Singapore: World Scientific, 2005.

6. C. Schofield, An Empirical Investigation into Software Effort
Estimation by Analogy, Ph.D. Dissertation, Dorset, UK: Bour-
nemouth University, 1998.

7. M. Shepperd, and C. Schofield, Estimating software project
effort using analogies, IEEE Trans. Soft. Engineer., 12: 736–
743, 1997.

8. L. H. Putnam, A general empirical solution to the macro sizing
and estimating problem, IEEE Trans. Soft. Engineer., 4: 345–
361, 1978.

9. B. W. Boehm, Software Engineering Economics. New York:
Prentice-Hall, 1981.

10. B. W. Boehm, COCOMO II Experience and Plans, ESCOM97,
Berlin, 1997.

11. A. J. Albrecht and J. R. Gaffney, Software function, source lines
of code, and development effort prediction: A software science
validation, IEEE Trans. Soft. Engineer., 9: 639–648, 1983.

12. G. Wittig and G. Finnie, Estimating software development
effort with connectionist models, Informat. Soft. Technol.,
39: 469–476, 1997.

13. M. Shin and A. L. Goel, Empirical data modeling in software
engineering, IEEE Trans. Soft. Engineer., 26: 567–576, 2000.

14. H. Lim, Support Vector Parameter Selection Using Experi-
mental Design Based Generating Set Search (SVEG) with
Applications to Predictive Software Data Modeling, Ph.D Dis-
sertation, Syracuse, N. Y., Syracuse University, 2004.

15. L. Briand, et al. A replicated assessment and comparison of
common software cost modeling techniques, Interna. Conf.
Software Engineering, 377–386, 2000.

16. J. Dolado, Limits to methods in cost estimation, Technical
Report, Spain: University of Vasque County, 1999.

17. C. F. Kemerer, An empirical validation of software cost estima-
tion models, Commun. ACM, 30: 416–429, 1987.

18. J. M. Desharnais, Analyse statistique de la productivitie des
projets informatique a partie de la technique des point des
fonction, Masters Thesis, Montreal: University of Quebec,
1988.

19. H. Lim and A. L. Goel, Support Vector Machines for Data
Modeling with Software Engineering Applications, in H.
Pham (ed.), Springer Handbook of Engineering Statistics,
London: Springer Verlag, 2006.

20. V. N. Vapnik, Statistical Learning Theory. New York: Wiley-
Interscience, 1998.

21. S. Haykin, Neural Networks – A Comprehensive Foundation,
2nd ed., Upper Saddle River, N.J., Prentice Hall, 1999.

22. R. M. Rifkin, Everything Old is New Again: A Fresh Look at
Historical Approaches in Machine Learning, Ph.D. Disserta-
tion, Cambridge, MA: Massachusetts Institute of Technology,
2002.

HOJUNG LIM

Korea Electronics Technology
Institute (KETI)

Sungnam, Korea

AMRIT L. GOEL

Syracuse University
Syracuse, New York

SOFTWARE EFFORT PREDICTION 5



S

SOFTWARE INSTRUMENTATION

INTRODUCTION

Since the inception of computer systems, development of
reliable (i.e., bug-free) and efficient (i.e., extracting max-
imum performance from the available hardware resources)
software programs has been one of the major concerns for
the developer/programmer community. Over time, the task
of ensuring such reliability and efficiency has become pro-
gressively complex along with the software systems them-
selves. Consequently, to assist the individual coders, a set of
tools and methods for program analysis, debugging, and
profiling has been developed. Although such tools usually
vary widely in their designs and intents, many of them are
similar in that they employ a technique called software
instrumentation, or simply instrumentation. Naturally,
instrumentation has been an active area of research over
the past few decades.

In its simplest form, instrumentation involves adding
extra code to a program’s text. The intent usually is to
monitor some kind of program behavior—either for debug-
ging or for optimization purposes. For example, a program-
mer who wants to optimize the execution time of a large
program might first like to know the regions of code that are
executed most of the time, and then go on to optimize those
frequently executed sections (rather than naively trying to
optimize the entire program–a large part of which might
have been written to handle extremely rare error cases). To
accomplish this task, the programmer at least needs to
know how many times each function in the program has
been invoked i.e., she/he needs to monitor the function
calling behavior of the program. The simplest way to
accomplish this is to employ manual instrumentation—
that is, to add extra statements at the beginning of each
function to increment a counter variable that corresponds
to that function, and printing all the counters when the
program exits.

The abovementioned manual strategy no longer remains
viable as the size of the program grows (e.g., large programs
with hundreds of functions) or as the complexity of the
monitoring task increases (e.g., monitoring execution of
each statement or each memory access rather than each
function). Consequently, many program analysis tools have
beendevelopedovertheyears forautomatic instrumentation
of program code. Because manual instrumentation is emplo-
yed mostly in ad-hoc basis without any general methodology
or tool support, only automated instrumentation toolswill be
discussed in this article.

Before going into more details, it is necessary to define a
few terms clearly that will be used throughout this article.
As has been mentioned already, instrumentation means
adding extra code to a program or modifying the program
text—usually to monitor some program behavior for the
purpose of performance analysis or debugging (some other
uses of instrumentation will be introduced later in this

article). The extra code added is termed as instrumentation
code. When instrumentation code is added automatically by
a tool, the tool is called an instrumenter. The application
being modified through instrumentation is called the target
application.

The rest of this article is organized as follows. In the next
two subsections, the most important usages of instrumen-
tation are introduced, and a classification of different
instrumentation techniques is provided. Two major classes
of instrumentation techniques are discussed in detail in the
following two sections. Finally, the article is concluded with
a brief summary.

Purposes of Instrumentation

Instrumentation techniques vary widely in their design
and implementation. In the following, the different pur-
poses for which instrumentation techniques are used will
be introduced:

1. Profiling, performance analysis, and program
optimization. Profiling and performance analysis
involve identification of most computation-intensive
sections of an application program, followed by the
optimization of such sections by partial or complete
rewriting. Computation-intensive sections of a pro-
gram might correspond to coarse-grain program ele-
ments, such as complete functions, or might be more
fine grained such as loops, basic blocks1 or even
individual program statements or instructions. The
required information for performance analysis can be
obtained by attaching counters to each program ele-
ment of interest (i.e., functions or basic blocks) and
incrementing them when the corresponding program
element is executed. The extra code for initialization,
incrementing, and printing of such counters can be
added through instrumentation. A wide variety of
profiling tools, such as UNIX prof and GNU gprof
(2), MIPS Pixie (3) and QPT (4), use instrumentation
for various profiling tasks such as basic block count-
ing and function call-graph profiling. Instrumenta-
tion is also used in several other important program
analysis tool such as program tracing (5) and memory
trace generation for cache simulation. Tools like Intel
Thread Profiler (6) extend performance profiling even
to multithreaded applications.

Apart from manual optimizations based on profil-
ing, many compilers, such as GNU gcc (7), Micro-
soft’s Visual Cþþ (8) and Intel Cþþ and Fortran
compilers (9), can automatically use profiling data to

1Basic blocks are well-known abstract program elements. A basic
block is defined as the maximum sequence of program statements
that do not contain any control flow. For detailed definition of basic
blocks please consult Ref. 1.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



optimize applications. This method is usually known
as profile guided optimization. There are certain
performance events, such as cache miss rate and
branch prediction, which are difficult to track
through static analysis. Instrumentation is also
used to dynamically optimize programs by analyzing
such events (10,11).

2. Programming error detection and debugging.
Instrumentation is used heavily in many program
error detection—especially memory access error
detection—tools. Memory access errors (e.g., out-of-
bound accesses from statically or dynamically allo-
cated arrays, memory leaks, etc.) are the most com-
mon sources of program malfunctions or performance
degradations. Several tools—such as IBM Rational
Purify (12), Valgrind (13), and Insureþþ (14)—use
instrumentation for detecting memory-access errors.
For example, IBM Rational Purify automatically
modifies the object code of a program by inserting
instrumentation code before every memory access
instruction (i.e., load or store) and every invocation
of dynamic memory allocation/deallocation routines
(e.g., malloc and free). When the program is executed,
the added instructions keep track of the memories
allocated/deallocated during execution and signal
error when access violations occur. The results of
memory error detection process can also be used to
eliminate bugs from the program. Other tools such as
Intel Thread Checker (15) address issues in
multithreaded programming (e.g., detection of race
conditions).

3. Virtualization. Virtualization is a technique that
emulates or simulates applications, operating sys-
tems (OSs), or whole platforms on a host environment
(i.e., a single physical computer running a specific
operating system). The emulation engine is usually
called a Virtual Machine (VM). Virtual machines are
frequently used for porting and testing of software on
new or unsupported hardware/OS, or for migrating to
a new hardware/OS. Another common usage of vir-
tualization is to facilitate implementation of easily
portable and interoperable languages [such as C# (16)
or Java (17)], and efficient execution engines for
scripting languages [such as Python (18) and Tcl
(19)]. For example, programs written in Java are
translated by the Java compiler to a platform-
independent bytecode that, in turn, is executed by a
platform specific implementation of the Java Virtual
Machine (JVM) (17).

Another application of virtualization is in building
Instruction-Set Simulators2 (ISSs) (20) that can

imitate the behavior of Instruction Set Architectures
(ISAs) other than that of the host machine. Apart
from allowing programmers to debug, test, and opti-
mize their applications on different ISAs, ISSs can
also be used to evaluate the hardware performance
while designing new processor architectures, or
embedded Systems-on-Chip (SoCs).

Instrumentation techniques are used in many
abovementioned virtualization platforms. Tools
such as VMWare (21), Virtual PC (VPC) (22),
and PinOS (23) use a technique called Dynamic
Binary Instrumentation (DBI) to emulate the beha-
vior of a guest OS on the host computer. These tools
have varying purposes—the most prominent being
porting, testing, and migration to unsupported
OSs. For a more-detailed discussion on virtualiza-
tion, the interested reader may consult Ref. 24.
Other tools, such as the novel Virtual Co-Processor
(VCP) (25) use instrumentation to facilitate ex-
tremely quick ISA simulation and debugging for
embedded system programmers. Tools such as
Ref. 26 use instrumentation for evaluation of
SoC performance in the virtualization environment
described in Ref. 27.

4. Software quality assurance and testing. Instru-
mentation is often helpful in many tasks related to
software quality assurance and testing. The uses of
instrumentation in memory error detection has
already been illustrated. Many memory errors—
specially memory leaks—do not directly exhibit them-
selves as bugs but degrade program performance in
the long run. Therefore, eliminating them is often a
requirement for writing high-quality software.

Another usage of instrumentation is in code cover-
age analysis. A piece of software is said to have, say
90% code coverage, if 90% of all Lines-Of-Code (LOC)
are executed at least once for a set of given test data. A
high percentage of code coverage usually indicates a
highly tested software, whereas a low code coverage
percentage indicates that either the software has
many unreachable sections of code (and therefore is
in need of cleanup), or the test suite is inadequate.
Code coverage detection tools, such as Insureþþ (14),
Quantify (28), and gcov (29), usually insert instru-
mentation code at the end of each basic block to test
whether that basic block has been executed at least
once.

One characteristic of instrumentation is its intrusive-
ness (i.e., the instrumentation code almost always modifies
the exact program behavior). For example, added code
might increase the execution time of the program or might
affect the cache behavior by changing the exact memory
locations accessed. Such intrusive behavior might not be
acceptable in many cases, especially for performance ana-
lysis, program error detection, and debugging.

Classification of Instrumentation Techniques

Traditionally, applications are written in human readable
high-level languages (such as C, Cþþ, FORTRAN, and

2Many of todays ISSs are built using a technique called binary
translation, which dynamically translates one Instruction Set
Architecture to another during program execution. Because, bin-
ary translation is not really instrumentation, it is kept out of
discussion in this article.

2 SOFTWARE INSTRUMENTATION



Pascal), which are automatically translated to binary
executables by the compiler tool chain. This binary
executable is normally executed on a host machine. Instru-
mentation techniques are usually classified based on how
and when the instrumentation code is added inside a
program in this compilation-execution process. Tools that
add instrumentation code before execution are called static
instrumenters, whereas those modifying a program during
execution are known as dynamic instrumenters. Some
examples of prominent static and dynamic instrumenta-
tion techniques are provided in Fig. 1 along with pointers to
the sections and subsections where they are discussed in
more detail.

Many modern high-level languages such as Java and
C# are often compiled to machine-independent intermedi-
ate formats that, in turn, are executed through interpre-
tive or Just-In-Time (JIT) compilation techniques. The
.NET framework (30) from Microsoft (Redmond, WA)
extends this concept by allowing several different lan-
guages to be compiled to a single intermediate format
and runs it on a VM called Common Language Runtime
(CLR)(31). For the sake of brevity, these intermediate
formats will be referred to as byte codes. For such lan-
guages and platforms, static instrumenters can only
instrument the byte codes of corresponding applications,
because no executables are available.

Some tools exist that support both static and dynamic
instrumentation. Two examples of such tools are
Insureþþ (14) and Vulcan (10). Insureþþ is a runtime
memory analysis and error-detection tool for C and Cþþ

which can perform instrumentation at three abstraction
levels (1) source code instrumentation, (2) binary instru-
mentation at link time, and (3) dynamic instrumentation
based on the tool Chaperon (part of Insureþþ suite).
Vulcan is an executable editing framework for instru-
menting programs that are composed of components in
IA-32, IA-64, and Microsoft Intermediate Language
(MSIL) binaries. Vulcan supports both static and dynamic
instrumentation, as well as facilities to instrument dis-
tributed components. However, it should be noted that
tools that support both static and dynamic instrumenta-
tion are usually rare.

STATIC INSTRUMENTATION

As has been mentioned earlier, static instrumentation
techniques generally insert instrumentation code inside
a program statically i.e. during of after compilation but
definitely prior to execution. Compiling the source code of a
program to the linked binary executable generally involves
three steps (as shown in Fig. 1):

1. Compilation. In this step, the source code written in
a high-level programming language (such as C, Cþþ,
Java, or Pascal) is translated to the assembly lan-
guage representation for a target machine.

2. Assembling. The assembly language representation
of the program is converted to binary object code in
this step. For languages like C# or Java, this means
translation into some form of bytecode.

3. Linking. In this step, a set of separately compiled
and assembled binary object files are linked together
to produce the target executable. For languages like
C# and Java, linking can mean merging of several
bytecode files into one single bytecode that can be
executed on a VM.

Instrumentation code can be inserted during each of
the above three steps. It is also possible to instrument the
source code before it is handed over to the compiler
(source-to-source instrumentation), or the linked execu-
table produced by the compiler tool chain (binary instru-
mentation/rewriting). In the following subsections, many
such static instrumentation techniques are discussed in
detail with a special focus on their relative merits and
demerits. The instrumentation techniques have been
categorized depending on the step in the compilation
process (or, before and after it) where instrumentation
code is inserted.

Source-to-Source Instrumentation

Source-to-source transformations can insert instrumenta-
tion code directly inside a program’s text. Usually, such
instrumentation strategies are applied to measure some
abstract source-level behavior of a program, rather than
testing, debugging on a target machine. The goal of such
instrumentation can vary widely—from measuring poten-
tial parallelism in scientific/engineering programs (32) to
evaluating high-level algorithmic complexity for multime-Figure 1. Instrumentation techniques in the compiler tool chain.

SOFTWARE INSTRUMENTATION 3



dia and signal processing algorithms (33) and performance
estimation during embedded SoC design (26). Naturally,
the program instrumentation techniques also vary a lot
depending on the final goal. For example, Ref. 32 directly
rewrites source code of FORTRAN programs to measure
parallelism, Ref. 33 translates C programs to Cþþ
programs and uses overloaded operators to collect execu-
tion statistics, whereas Ref. 26 lowers standard ANSI-C
code to a Intermediate Representation (IR) for instrumen-
tation and then writes back the instrumented IR as low-
level C code. Although useful in niche application areas
(such as high-performance computing and embedded sys-
tems design), source-to-source instrumenters are not
widely popular because of the slow speed of instrumented
programs compared with other forms of static instrumen-
tation, inability to track library functions and requirement
of reinstrumentation before compilation each time a pro-
gram’s source is modified.

One source-to-source instrumentation framework,
which is not bound to niche application areas and conse-
quently can find wide acceptance, is CCured (34). CCured
has been invented to detect memory access violations in C
applications. It analyzes a program and inserts the smal-
lest number of runtime checks needed to detect memory
access errors. It claims to be an order of magnitude faster
than another popular memory access detection tool
purify (12).

Instrumentation During Compilation

During compilation, a compiler can introduce instrumen-
tation code inside a program as it is compiled. Most
common examples of such profilers are the UNIX prof
and the GNU gprof (2) profilers. For example, the gprof
profiler is tightly bound to the gcc compiler tool chain,
which inserts a call to a monitoring routine at the prolog
of each function being compiled. When the instrumented
binary executes, the monitoring routine collects execu-
tion statistics and dumps it into a file. The self- and
cumulative execution times of different functions, as
well as the dynamic call graph of the program, are later
reconstructed by an analysis program from the dumped
information.

The advantages of compiler-based instrumentation are
twofold. Firstly, the instrumenter can use the extensive
program analysis done by the compiler to insert the instru-
mentation code intelligently, which reduce the overhead of
profiling/tracing/measurement. Second, the instrumenta-
tion code can be made to report measurement statistics in
human-readable terms such as procedure names, variable
names, file names and line numbers by using the database
of syntactic and semantic structures constructed by the
compiler.

However, several drawbacks of compiler based instru-
mentation are outlined below:

1. Compiler based instrumentation techniques are
not easily extensible. Because most compilers are
extremely complex pieces of software, adding new
instrumentation functionalities is very difficult.

2. A program may be built from source code written in
different languages (which, in turn, might be
compiled by different compilers) and precompiled
libraries. Compiler-based instrumentation cannot
be used in such cases, because each compiler might
use a different instrumentation strategy, and the
libraries might be compiled without using any instru-
mentation.

3. Compiler-based instrumentation requires a re-com-
pilation of source files. This is often time consuming
and annoying for a programmer who intends to
quickly analyze or debug an application.

Instrumentation During Assembling

A compiler generates assembly code for a target machine,
which is handed over to an assembler for producing the
binary object code. One possible point for instrumentation
is to rewrite the assembly code before passing it to the
assembler. Two examples of such instrumentation systems
are presented in Refs. 5 and 35. In contrast to compiler-
based instrumentation, instrumenting the assembly code
has the advantage that it can be extended easily to incor-
porate new functionalities. Still, assembly instrumentation
is not very popular, because it suffers from other disadvan-
tages similar to compiler based instrumentation (e.g.,
tracking library function calls and need to re-assemble
before debugging and analysis).

Instrumentation of Object Code Before Linking

Many drawbacks of compiler-based and assembler-level
instrumentation strategies can be overcome if instrumen-
tation is performed on the assembled object code. This
process of object code modification is called Object Code
Insertion (OCI). One prominent user of this technique is
the software testing and quality assurance tool IBM
Rational Purify (12). Purify reads object files generated
by existing compilers and adds instructions to track mem-
ory leaks and access errors without changing the symbol
table or the program semantics. The major advantages of
OCI techniques over compiler-based or assembly-level
instrumentation are as follows:

1. OCI does not require recompilation of high-level lan-
guage programs to object code level. Consequently,
OCI is much faster than compiler-based instrumen-
tation.

2. Several different languages can be supported easily
at the object code level. For example, one major
difference between object codes generated from C
and Cþþ is that Cþþ objects contain mangled names.
An OCI instrumenter for C object codes can be
used easily for Cþþ objects with the assistance of a
demangler.

3. OCI works well with all kinds of objects, which
includes the ones derived from hand optimized
assembly code, as well as precompiled libraries.

4 SOFTWARE INSTRUMENTATION



Link-Time and Post-Linking Executable Editing

One of the most common forms of static software instru-
mentation is executable editing.3 Executable editing can be
carried out during linking the different components (i.e.,
object modules and static libraries) of a program or by
directly modifying the linked binary executable. Like object
code instrumentation, executable editing eliminates most
disadvantages of compiler-based and assembly-level
instrumentation. Executable editors can be used to instru-
ment programs without recompiling the sources, track
statically linked library functions, and handle executables
built using a collection of different source languages.

Information about the entire application, which includes
the relocation information, is available during (or after)
linking an executable. The executable editors usually use
this global information for efficiently instrumenting bin-
aries, which is impossible for compiler-based, assembly-
level, and even object code-level instrumenters. Such global
information is used by many binary tools not only to instru-
ment but also to optimize programs (36). However, the focus
of this section will be confined to instrumentation techni-
ques based on binary tools.

One of the earliest examples of executable editors is the
MIPS profiling and tracing tool Pixie (3), which instrumen-
ted fully linked executables. Following Pixie, several binary
tools, such as QP, QPT (4), and Epoxie (37) appeared. The
major problem with these tools were that they were
designed to perform only one single type of instrumenta-
tion, typically program tracing and basic block counting. It
was difficult to extend or alter the functionalities of
these tools. Naturally, these fixed-functionality tools
were followed by many executable editing frameworks
that facilitated the construction of customized program
instrumentation and analysis tools. The genesis and evolu-
tion of these frameworks are discussed in the next few
subsections.

It is to be mentioned that several bytecode instrumen-
tation tools also exist for languages like Java or C#. One
example is the Java Runtime Analysis Toolkit (JRat) (38),
which can keep track of timing statistics, function tracing,
and so on. JRat currently allows five different kinds of Java
application instrumentation, one of which is bytecode
instrumentation.

Executable Editing Frameworks. Executable editing fra-
meworks were first conceived as tool-construction systems
that could be used to build a variety of instrumentation
programs. They are built on the observation that several
apparently different tasks such as basic block counting,
cache simulation, memory access error detection, and pro-
gram tracing can be performed by inserting instrumenta-
tion code at a few selected points in a program. Such
selected insertion points may include, but are not limited
to, the beginning and the end of a basic block, prologue and

epilogue of a function, and before and after an instruction.
An executable editing framework usually provides a com-
mon infrastructure that facilitates injection of user-defined
routines inside a program’s executable at some such
selected insertion points.

To understand the philosophy of executable editing
frameworks, a simple program analysis tool, which counts
the number of times each conditional branch in the pro-
gram is taken (39), can be considered. The building of such a
program analysis tool can be divided into two phases:

1. Instrumentation phase. The instrumenter needs to
examine each instruction of the edited executable
and test whether this instruction is a conditional
branch. If the instruction in question is indeed a
conditional branch, then the instrumenter needs to
insert a function call that increments a counter.

2. Analysis phase. The analysis phase is activated when
the instrumented binary executes. The function calls,
inserted during the instrumentation phase, incre-
ment required counters and finally, dumps the col-
lected statistics into a file before the program exits.

The major hurdle in constructing the above analysis tool
is to build a program representation that can be traversed
one instruction at a time, examined to detect conditional
branches, and modified by inserting instrumentation code.
It is relatively simple to write the instrumentation and
analysis routines that insert and collect the branch profil-
ing data. This is the general case for many program ana-
lysis tools. The philosophy of executable editing
frameworks is to let the user write the instrumentation
and analysis routines, while a convenient, intuitive and
modifiable representation of the program binary is supplied
by the framework itself. This work flow reflected is in the
Fig. 2 where the binary executable program (or, a pre-
linking object file) is translated to an internal representa-
tion inside the editing framework. A set of custom instru-
mentation routines can traverse and modify this
representation using an API, which is also provided by
the editing framework. The final instrumented binary
may contain custom analysis routines inserted through
instrumentation.

Figure 2. General work flow of executable editing frameworks.

3Executable editing is also known by a variety of names, such as
rewriting an executable file, and binary rewriting. Tools that per-
form executable editing are known as binary tools or executable
editors. These terms will be used interchangeably during the rest of
this article.

SOFTWARE INSTRUMENTATION 5



As an example, ATOM (39) can be considered as one of
the first executable editing frameworks. The program
representation used by ATOM was based on OM (40)—a
link-time code optimization framework. OM modeled a
program as a sequence of procedures. Each procedure
consisted of a sequence of basic blocks, and each basic block,
in turn, consisted of a sequence of instructions. Instructions
were modeled using a simple Register Transfer Level (RTL)
syntax which was machine independent and generic
enough for a variety of RISC machines. The custom instru-
mentation routines were combined with OM to build cus-
tom instrumenters. During linking, the object modules and
static libraries could be supplied to such a custom instru-
menter that would first build up a symbolic representation
of the whole program through OM. The custom instrumen-
tation routines then interfaced with the symbolic repre-
sentation to traverse and insert analysis code in the
program.

Another instrumentation framework built on ATOM-
like philosophy was EEL (41), which also constructed a
program representation and provided means for user-
defined routines to traverse and modify it. The major
difference was that whereas ATOM was a link-time instru-
mentation system EEL worked on linked binary executa-
bles. However, the interfaces of EEL were lower level and
more detailed than those of ATOM. The added details
provided more control over the instrumentation process
while complicating the writing of user routines.

One major innovation of EEL was that it provided ways
to retarget the analysis tools for processing binaries of
different target machines. This retargeting was done by
providing a concise description of the target instruction set
that helped EEL tools to parse binary instruction codings
and understand the syntax and semantics of different
machine instructions, typically jump, branch, and memory
access instructions.

Following the footsteps of ATOM and EEL, several
binary instrumentation frameworks, such as Etch, BIT,
and Vulcan appeared. Etch (42) was designed to tackle
Win32 binaries on x86 machines, whereas Vulcan has
been designed to tackle components available in IA-32,
IA-64, and MSIL binaries in Win32 environment.

Vulcan (10) deserves a special mentioning because, to
the best of our knowledge, it is the only framework that not
only permits both static and dynamic instrumentation/
modification of binaries on a single machine, but also
provides tools for dynamic modification of binaries that
run on remote machines. It is a framework that has been
specially designed to modify/analyze/instrument applica-
tions whose components might be distributed over several
machines in a networked environment. For such applica-
tions, it is important that tasks like code generation or
optimization are delayed until execution time, which is
what Vulcan facilitates.

With the increasing popularity of languages like Java
and C# and platforms like .NET, which support interoper-
able software development by compiling source code to
some kind of intermediate bytecode, the number of frame-
works targeting some form of bytecode instrumentation
and manipulation has been also increasing. One of the first
Java bytecode instrumentation frameworks is BIT (43).

Two other important Java bytecode manipulation frame-
works are JOIE (44) and BCEL (45) (BCEL is now part of
the Apache project). All of them provide APIs for manip-
ulation of Java bytecodes. Other similar instrumentation
frameworks include SERP (46) and Javassist (47).

Several frameworks also exist for instrumentation of
.NET bytecode. One of them is AbstractIL (48) from Micro-
soft, which provides methods to access .NET binaries in a
convenient format which can be analyzed, transformed or
instrumented. RAIL (49) is another framework, which
claims to be a general purpose instrumentation library
for .NET platform.

DYNAMIC INSTRUMENTATION

Historically, static instrumentation techniques appeared
first; so far, they have been mainly used in program ana-
lysis, debugging, testing, and code-coverage tools. How-
ever, they suffer from some major limitations, which are
sketched below:

1. Static instrumentation techniques modify the soft-
ware executable. Running an extra tool for instru-
mentation before executing the code is often not
convenient for programmers.

2. Static instrumentation can only cover code that is
statically linked. It is not possible to track execution
of dynamically linked code, shared libraries, or dyna-
mically generated code through static instrumen-
tation. This issue is the most severe with static
instrumentation, because most executables nowa-
days contain a large section of code in dynamically
linked libraries.

3. Static binary instrumentation is often difficult for
binary formats that allow mixing of code and data,
rather than separating them in well-defined sections
(e.g., Win32 binaries).

These limitations have forced the development of
dynamic instrumenters that perform instrumentation at
runtime (i.e., when the program is executing). Unlike static
instrumenters, dynamic instrumenters can only work on
compiled executable binaries (or, bytecodes). Therefore,
dynamic instrumentation is also called Dynamic Binary
Instrumentation (DBI). Unlike static instrumenters that
expect the instrumented code to run directly on the host
machine, DBI tools insert themselves between the original
application and the host machine to supervise the execution
closely (Fig. 3 highlights this difference between DBI and
static instrumentation). Such close monitoring can be per-
formed in various ways. For example, some dynamic instru-
menters, such as Pin (50) and DynInst (51) use UNIX/
LINUX ptrace (ptrace is part of the Linux kernel (52))
command to obtain control of an application. ptrace allows
the dynamic instrumenter to monitor the execution of each
instruction, and accordingly add instrumentation code.
Another method for dynamic instrumentation is to use
the so-called library interposers (53). For instance, in
UNIX systems, the LDPRELOAD environment variable
forces the dynamic loader to load a shared library in an
application’s address space. This shared library can contain

6 SOFTWARE INSTRUMENTATION



functions to monitor execution of the application and
perform instrumentation. One user of this technique is
DynamoRio (54).

The most important advantage of dynamic instrumen-
tation is that any piece of code executed can be tracked and
analyzed. Through dynamic techniques it is possible to
instrument not only statically linked libraries and object
files, but dynamically generated or linked code and shared
libraries, too. Additionally, dynamic instrumenters do not
need to parse through a program binary to detect code and
data segments and build a complete program representa-
tion before instrumentation. Moreover, indirect branches
are especially difficult to handle through static instrumen-
tation. As the targets of indirect branches cannot be
resolved at compile time, a static instrumenter must con-
servatively assume that each instruction is a potential
branch target. Therefore, each instruction has to be instru-
mented, even for simple basic block counting. Through
dynamic instrumentation, such cases can be easily
handled. From a programmer’s perspective, dynamic
instrumentation is extremely convenient for debugging,
because no extra pass for instrumentation is necessary.

Although dynamic instrumentation is advantageous in
many ways, it is not without its limitations. The overall
execution time of an application can be affected greatly if
dynamic instrumentation is used on it in runtime. There-
fore, both static and dynamic instrumentation frameworks
suffer from intrusiveness, as they alter the timing of soft-
ware execution. Additionally, dynamic instrumenters are
rather difficult to implement compared with static ones.

Unlike static instrumenters, DBI frameworks cannot be
categorized on the basis of the step (in the compilation
process) where instrumentation code is added. Instead,
the DBI frameworks are classified based on the techniques
used for instrumentation. Figure 3 shows a possible classi-
fication of DBI tools based on those techniques. DBI tech-
niques can be applied on application level for the use of

profiling, performance measurement, and memory error
detection. Several DBI tools, such as Pin (50), Valgrind (13)
and DynamoRio (54), are used mostly (but not exclusively)
for this purpose. Some other DBI tools can be applied on the
system level. Examples of such tools are VMWare (21),
Dimension (55), and PinOS (23). These tools mostly exploit
instrumentation for running a virtual guest OS on top of a
host OS and can even keep track of the OS kernel and its
performance characteristics. Such a technique is typically
referred to as virtualization and is discussed in depth in
Ref. 24.

Based on the underlying techniques of instrumentation,
all DBI tools can be classified under two major categories.
The first one is called probe-based DBI. In this approach,
code snippets, which are known as trampolines, are
inserted in an application during its execution. Examples
for such probe-based instrumentation frameworks are
DynInst (51), DTrace (56), and Vulcan (10). The second
technique is known as dynamic binary transformation.
This technique can be subdivided into three main
approaches—namely, copy & annotate, copy & modify
and Just-In-Time(JIT)-compilation based approaches.

The copy & annotate approach copies code that is about
to be executed, inserts the instrumentation code into this
copy, and executes this annotated code. Example frame-
works that use this techniques include PIN (50), Nirvana
(57), and Dimension (55). A very similar binary transfor-
mation approach is copy & modify. However, the use cases
of these two techniques differ significantly. Whereas copy &
annotate tools are mostly used for profiling, error detection
and debugging, copy & modify tools are mostly used for
virtualization [VMWare (21) and Virtual PC (22)].

The second binary transformation approach is known
as Just-In-Time-compilation based approach [e.g., Valgrind
(58)]. Such DBI frameworks intercept a program element
[usually a basic block (1)] that is about to be executed, and
recompiles the application code JIT to insert instrumenta-
tioncode. All binary transformation techniques are typically
considered to be costly in terms of execution time. Therefore,
these frameworks incorporate caching strategies to improve
performance of DBI engines.

In the following subsections, the focus will be on dynamic
instrumentation techniques and not on the instrumenta-
tion tools themselves. For example, the dynamic instru-
mentation tools Memcheck (13) and Cachegrind (13) target
different problems in software development, nevertheless
both are based on the underlying Valgrind (13) framework.
So Valgrind, rather than Memcheck or Cachegrind, will be
discussed in detail.

Probe-Based Approaches

Probe-based approaches dynamically analyze executing
applications to identify instrumentation points that are,
typically, either function boundaries, or the start/end of
basic blocks. The instrumentation framework then inserts
probes into the executing code at suitable instrumentation
points. A probe usually overwrites the instruction at the
corresponding instrumentation point, and adds a jump to a
code segment usually called a trampoline. The overwritten
instruction is usually relocated inside the trampoline. The

Figure 3. Overview of dynamic instrumentation techniques.

SOFTWARE INSTRUMENTATION 7



trampoline also contains additional instrumentation code
that might increment a counter, a timer or do something
else depending on the instrumentation objective. Figure 4
depicts the principle of probe-based dynamic instrumenta-
tion. It is to be noted that trampolines themselves can be
complex and make calls to other trampolines. For the sake
of simplicity, this information is omitted from the figure.

Examples of well-known probe-based instrumentation
frameworks are DTrace (56), ParaDyn (59), which is based
on DynInst (51), as well as Vulcan (10). Despite several
advantages,probe-based instrumentation frameworks have
been mostly replaced over time by binary transformation
techniques because of the following disadvantages.

1. Trampolines are implemented using one or more
levels of branches. This can have significant perfor-
mance penalties.

2. In probe-based instrumentation, the instructions
from the original code are overwritten and/or relo-
cated by the jumps to the trampolines. Adding such
jump instructions requires relocation of all other
instructions after the overwritten instruction. Addi-
tionally, all jump targets, whether direct or indirect,
have to be updated as the intended jump target might
have been relocated. Such update can only be handled
by a dynamic relinking and update step, which is, in
principle, feasible, but rather difficult to implement
in practice. Consequently, the execution of such code
loses transparency, and the implementation task
becomes extremely challenging.

Binary Transformation

Figure 5 illustrates the common philosophy behind the
binary transformation frameworks. As can be observed

from the figure, in contrast to the probe-based frame-
works, which insert instrumentation code in the original
program text. A binary transformation tool copies the
original code and generates a completely new set of
instructions from it. The new piece of code may contain
instrumentation code added inside it. The behavior of the
original code, however, is preserved as far as possible.
Usually, the copied code is put into a software cache inside
the program memory for future execution to the same
section of the application.

Binary transformation frameworks/tools such as the Pin
(23, 50) and VMW are (21) make use of the copy & annotate/
modify approach, whereas Valgrind (58) relies on the JIT-
compilation based approach. Copy & annotate/modify
frameworks are typically, but not necessarily, used for
performance measurements and error detection. JIT-
compilation based approaches are rather often used for
more fine-grained software instrumentation.

Advantages of binary transformation compared to
probe-based approaches are:

1. The original application is never executed in such
frameworks and no code modifications are applied to
the original application’s code. Therefore separation
of the instrumented and original code can be done
safely (e.g., Pin separates both into two different
threads). Moreover, there is no need for code reloca-
tion which makes the implementation simpler.

2. Optimized caching strategies of the copied code can
improve performance of the instrumentation frame-
work. Even jumps and branches can be removed
dynamically by flattening the cached application’s
instructions.

3. Instrumentation can be incorporated at the very start
of the application’s code and not only after calling the
entry point (usually the main function) of the appli-
cation. For example, Valgrind can even monitor the
loading process of an application and accordingly
detect errors there.

4. Self-modifying and referential code can be better
supported through binary transformation. For exam-
ple, Valgrind supports the Ada programing language,
which particularly uses self-modifying code (58).

Copy and Annotate/Modify Frameworks. The copy &
annotate and copy & modify approaches both come under
the category of binary transformation frameworks and are
closely related from technical point of view. Whereas copy &

Figure 5. Binary transformation frameworks.

Figure 4. Probe-based instrumentation.

8 SOFTWARE INSTRUMENTATION



annotate frameworks, like Pin, focus on performance mea-
surements as well as on error detection, the main purpose of
copy & modify frameworks lies on virtualization, like
VMWare (21) and VirtualPC (22).

Figure 5(a) depicts the basic principle of such DBI frame-
works. The first step is the fetching of a piece of code
from the application’s text (which is characteristic of all
binary transformation approaches), and a transformation
process that directly inserts extra code into original text
according to the objectives of instrumentation. The trans-
formation process is typically very simple within copy &
annotate/modify tools—it does not contain any transfor-
mations to and from an intermediate representation (which
is characteristic of the JIT-compilation based tools). The
resulting instructions are then executed on the host
machine, and the procedure is repeated from the beginning.

JIT-Compilation-Based Frameworks. Just-in-time com-
piled DBI frameworks are more suitable for fine-grained
instrumentation of executables. The key idea of such
frameworks is to decompile and then to re-compile the
binary code dynamically. Examples for such JIT-based
instrumentation frameworks are Valgrind (58), Strata
(60), DynamoRio (54), and Diota (61).

To understand the philosophy of JIT-based instrumen-
tation frameworks, Valgrind can be considered as an exam-
ple. Valgrind is an open-source framework that is used in
many large projects [e.g. the Linux Desktop Environment
KDE (62) and Firefox (63)]. Valgrind is the underlying
infrastructure or core of a collection of assorted tools. Other
softwares, like Memcheck (13) or Cachegrind (13), can build
on this core framework to accomplish specific tasks by
performing appropriate types of instrumentation.

Like other binary transformation frameworks, Valgrind
first copies a set of instructions from the executable binary.
The next step is to generate a new set of instructions that
contain instrumentation code. Instead of directly inserting
instrumentation code in the copied instructions as within
the copy & annotate/modify technique, Valgrind follows a
complex process as outlined below and in Fig. 5(b):

1. Decompilation. The IA-32 binary code of the applica-
tion is dynamically disassembled into an intermedi-
ate representation named UCode.

2. Optimization. In this step, redundancy introduced by
the previous phase is removed to improve execution of
the instrumented code.

3. Instrumentation. Appropriate instrumentation code
can be inserted by a tool in this step. This exactly is
the phase when tools like Memcheck or Cachegrind
interact with the Valgrind core framework to instru-
ment the intermediate UCode.

4. Register allocation. Here registers are allocated for
the virtual registers of the intermediate UCode.

5. Code generation. Finally, instrumented IA-32 code is
generated from the register-allocated UCode. The
generated code is then executed.

As is clear from this example, insertion of instrumenta-
tion by a JIT-compilation based approach introduces a lot of

execution overhead. Consequently, most JIT-based tools are
much slower than their copy & annotate/modify counter-
parts, which use direct techniques for instrumentation. For
example, in Valgrind, the slowdown factor ranges between
20 and 50 (13) times of the original execution depending on
the instrumentation used. This result is 4 times slower than
Pin and 4.4 times slower than DynamoRio (58). Another
problem of JIT based DBIs is that the recompilation process
completely erases all links to the original code.

The advantage of JIT-based approaches is that they can
go beyond performance analysis and simple OS virtualiza-
tion. For example, JIT approaches can be used to emulate a
completelydifferent ISA onthe hostmachine. Thisapproach
will be difficult to accomplish through copy & annotate/
modify DBI frameworks, however, it is possible in principle.

SUMMARY

Software instrumentation is a technique that is widely
applied in program analysis, debugging, performance
optimization, and virtualization. The instrumentation
techniques can be classified into static and dynamic soft-
ware instrumentation. Historically, static approaches
appeared first. They have been, and still are, used in the
fields of performance analysis, error detection, and soft-
ware quality assurance and testing. Dynamic approaches
can be used for all of these, but additionally, they are used in
several virtualization environments.

Static instrumentation frameworks/tools can be classi-
fied into five groups according to the compilation step in
which instrumentation code is added. These are source-to-
source instrumentation, instrumentation during compila-
tion, instrumentation of the assembly, instrumentation of
the object code before linking and finally, link-time and
post-link instrumentation. Static instrumentation techni-
ques suffer from the problem that dynamically generated or
linked code cannot be tracked using them. Moreover, static
instrumentation often involves an extra pass over the
application, which adds instrumentation code. This code
is often inconvenient for many programmers. Despite of
these limitations, static approaches are often simple to
implement and still find widespread usage in many
profiling, program analysis, error detection, and testing
tools.

In contrast to static instrumentation, which has to be
applied before execution of the application, techniques
based on dynamic instrumentation can be applied at run-
time. They can track any piece of executed code, which
includes shared and dynamically linked libraries and dyna-
mically generated code. Moreover, they can be used directly
on a compiled binary without any extra pass through a
special tool. Two major approaches are used for dynamic
instrumentation: probe-based approaches and binary
transformation. Binary transformation approaches can
be subclassified into three different techniques, which
are copy & annotate, copy & modify, and JIT-compilation
based. Copy & annotate and JIT-compilation based-
approaches target primarily performance measurement
and error detection, whereas copy & modify frameworks
and tools are targeting the field of virtualization.

SOFTWARE INSTRUMENTATION 9



BIBLIOGRAPHY

1. S. S. Muchnick, Advanced compiler design and implementa-
tion, Morgan Kaufmann, San Francisco, CA: 1997.

2. S. L. Graham, P. B. Kessler, and M. K. McKusick, An execution
profiler for modular programs. Softw., Pract. Exper., 13 (8):
671–685, 1983.

3. MIPS Computer Systems, RISCompiler and C Programmer’s
Guide, 1989.

4. J. R. Larus and T. Ball, Rewriting executable files to measure
program behavior, Softw., Pract. Exper., 24 (2) 197–218,
1994.

5. S. J. Eggers, D. R. Keppel, E. J. Koldinger, and H. M. Levy,
Techniques for efficient inline tracing on a shared-memory
multiprocessor. In SIGMETRICS ’90: Proceedings of the
1990 ACM SIGMETRICS conference on Measurement and
modeling of computer systems, New York, ACM Press, 1990.

6. Intel Threading Profiler Tools, Available: http://www.intel.
com/support/performancetools/threadprofiler.

7. GNU Compiler Collection (GCC), Available: http://gcc.gnu.org/.

8. Microsoft Visual Cþþ Development Center, Available: http://
msdn.microsoft.com/visualc/.

9. Intel Compiler, Available: http://www.intel.com/cd/software/
products/asmona/eng/compilers/284132.htm.

10. A. Edwards, A. Srivastava, and H. Vo. Vulcan, Binary
transformation in a distributed environment, Microsoft
Corporation, Technical Report MSR-TR-2001-50, April
2001.

11. J. Chen, H. Lu, P. Yew, and W. Hsu, Design and implementa-
tion of a lightweight dynamic optimization system, 2004.

12. R. Hastings and B. Joyce, Purify: Easy detection of memory
leaks and access errors. In Proc. Winter Usenix Conference,
pp. 1–12, 1992.

13. N. Nethercote, Dynamic Binary Analysis and Instrumentation.
PhD thesis, University of Cambridge, United Kingdom,
November 2004.

14. Parasoft Insureþþ, Available: http://www.parasoft.com/.

15. Intel Threading Checker Tools, Available: http://www.intel.
com/support/performancetools/threadchecker.

16. Visual CSharp Developer Center, Available: http://msdn.
microsoft.com/vcsharp/.

17. Java Programming Language, Available: http://java.sun.com/.

18. PythonProgrammingLanguage,Available:http://www.python.
org/.

19. TCL Developer Xchange. http://www.tcl.tk/.

20. A. Nohl, G. Braun, A. Hoffmann, O. Schliebusch, H. Meyr, and
R. Leupers, A Universal technique for fast and flexible instruc-
tion-set architecture simulation. Proc. of the Design Automa-
tion Conference (DAC), New Orleans, June 2002.

21. VMWare Inc., Available: http://www.vmware.com/.

22. Microsoft VirtualPC, Available: http://www.microsoft.com/
windows/products/winfamily/virtualpc/default.mspx.

23. P. P. Bungale and C.-K. Luk, Pinos: A programmable frame-
work for whole-system dynamic instrumentation. VEE ’07:
Proc. of the 3rd international conference on Virtual execution
environments, New York, 2007, pp. 137–147.

24. J. E. Smith and R. Nair, Virtual machines: versatile platforms
for systems and processes. 2005.

25. L. Gao, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr, A fast
and generic hybrid simulation approach using C virtual

machine. In CASES ’07: Compilers, Architecture and Syn-
thesis for Embedded Systems, 2007.

26. T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers,
and H. Meyr, A SW performance estimation framework for
early System-Level-Design using fine-grained instrumenta-
tion. Proc. of the Conference on Design, automation and test
in Europe (DATE), 2006, pp. 468–473.

27. T. Kempf, M. Dorper, R. Leupers, G. Ascheid, and H. Meyr,
T. Kogel, and B. Vanthournout, A modular simulation frame-
work for spatial and temporal task mapping onto multi-pro-
cessor SoC platforms. Proc. of the Conference on Design,
Automation & Test in Europe (DATE), Munich, Germany,
March 2005.

28. IBM Rational PurifyPlus (includes Quantify), Available: http://
www.ibm.com/software/awdtools/purifyplus/.

29. Gcov Using the GNU Compiler Collection (GCC), Available:
http://gcc.gnu.org/onlinedocs/gcc/gcov.html.

30. .NET Framework Developer Center, Available: http://
msdn2.microsoft.com/en-us/netframework/default.aspx.

31. Common Language Runtime Overview, Available: http://
msdn2.microsoft.com/en-us/library/ddk909ch(vs.71).aspx.

32. M. Kumar, Measuring parallelism in computation-intensive
scientific/engineering applications, IEEE Trans. Comput., 37
(9): 1088–1098, 1988.

33. M. Ravasi and M. Mattavelli, High-level algorithmic complex-
ity evaluation for system design, J. Sys. Architecture: the
EUROMICRO J., 48 (13–15): 403–427, 2003.

34. G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
Ccured: Type-safe retrofitting of legacy software, ACM Tran.
Prog. Languages Sys. (TOPLAS), 27 (3): 477–526, 2005.

35. B. P. Miller, M. Clark, J. K. Hollingsworth, S. Kierstead, S.-S.
Lim, and T. Torzewski, Ips-2: The second generation of a
parallel program measurement system, IEEE Tran. Parallel
Distributed Sys., 1 (2): 206–217, 1990.

36. A. Srivastava and D. W. Wall, Link-time optimization of
address calculation on a 64-bit architecture, PLDI ’94: Proc.
of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, New York, 1994,
pp. 49–60.

37. D. W. Wall, Systems for late code modification, in RobertGie-
gerich and Susan L.Graham, ed., Code Generation - Concepts,
Tools, Techniques, New York: Springer-Verlag, 1992, p. 275–
293.

38. JRat the Java Runtime Analysis Toolkit, Available: http://
jrat.sourceforge.net/.

39. A. Srivastava and A. Eustace, Atom: A system for building
customized program analysis tools, Proc. of the ACM SIGPLAN
1994 Conference on Programming Language Design and
Implementation, 39 (4): 528–539, 2004.

40. A. Srivastava and D. W. Wall, A practical system for inter-
module code optimization at link-time, J. Prog. Languages, 1
(1): 1–18, 1992.

41. J. R. Larus and E. Schnarr, Eel: machine-independent execu-
table editing, PLDI ’95: Proc. of the ACM SIGPLAN 1995
Conference on Programming Language Design and Implemen-
tation, New York, 1995, pp. 291–300.

42. T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B.
N. Bershad, and J. B. Chen, Instrumentation and optimization
of Win32/Intel executables using etch, in USENIX Windows
NT Workshop, pp. 1–8, Aug. 1997.

43. H. B. Lee and B. G. Zorn, BIT: A tool for instrumenting java
bytecodes, in USENIX Symposium on Internet Technologies
and Systems, 1997.

10 SOFTWARE INSTRUMENTATION



44. G. A. Cohen, J. S. Chase, and D. L. Kaminsky, Automatic
program transformation with joie, ATEC’98: Proc. of the
Annual Technical Conference on USENIX Annual Technical
Conference, 1998, Berkeley, CA, 1998, p. 14, USENIX Associa-
tion.

45. Byte Code Engineering Library (BCEL), Available: http://
jakarta.apache.org/bcel/.

46. SERP Bytecode Manipulation Framework, Available: http://
serp.sourceforge.net/.

47. S. Chiba, Load-time structural reflection in Java, Lecture Notes
in Computer Science, 1850, 2000.

48. D. Syme, A fast and generic hybrid simulation approach using
C virtual machine, in Microsoft Research, Cambridge, Septem-
ber 2001, Available: http://research.microsoft.com/projects/
ilx/.

49. B. Cabral, P. Marques, and L. Silva, Rail: Code instrumenta-
tion for .net. Proc. OOPSLA ’04: Companion to the 19th Annual
ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, New York, 2004, pp.
210–211.

50. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, Pin: building
customized program analysis tools with dynamic instrumenta-
tion. PLDI ’05: Proc. of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, New
York, 2005, pp. 190–200.

51. J. K. Hollingsworth, B. P. Miller, and J. Cargille, Dynamic
program instrumentation for scalable performance tools, May
1994.

52. Linux Kernel, Available: http://www.kernel.org/.

53. Debugging and Performance Tuning with Library Inter-
posers, Available: http://developers.sun.com/solaris/articles/
lib interposers.html.

54. G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and S.
Amarasinghe, Dynamic native optimization of interpreters,
IVME ’03: Proc. of the 2003 Workshop on Interpreters, Virtual
Machines and Emulators, New York, 2003, pp. 50–58.

55. J. Yang, S. Zhou, and M. L. Soffa, Dimension: An instrumenta-
tion tool for virtual execution environments. VEE ’06: Proc. of
the 2nd international conference on Virtual execution environ-
ments, New York, 2006, pp. 164–174.

56. B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, Dynamic
instrumentation of production systems. ATEC’04: Proc. of the
USENIX Annual Technical Conference 2004 on USENIX
Annual Technical Conference, Berkeley, 2004, p. 2.

57. S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,
M. Drinic, D. Mihocka, and J. Chau, Framework for instruc-
tion-level tracing and analysis of program executions. VEE ’06:
Proc. of the 2nd international conference on Virtual execution
environments, New York, 2006, pp. 154—163.

58. N. Nethercote and J. Seward, Valgrind: A framework for
heavyweight dynamic binary instrumentation. PLDI ’07:
Proc. of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, New York, 2007,
pp. 89–100.

59. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollings-
worth, R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T.
Newhall, The paradyn parallel performance measurement
tool, Computer, 28 (11): 37–46, 1995.

60. K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson,
and M. L. Soffa, Retargetable and reconfigurable software
dynamic translation, CGO ’03: Proc. of the international sym-
posium on Code generation and optimization, Washington,
D.C., 2003, pp. 36–47.

61. J. Maebe, M. Ronsse, and K. De Bosschere, DIOTA: Dynamic
instrumentation, optimization and transformation of applica-
tions, Proc. of the International Conference on Parallel Archi-
tectures and Compilation Techniques 2002 (PACT ’02),
September 2002.

62. K Desktop Environment (KDE), Available: http://www.kde.org/

63. Firefox, Available: http://www.firefox.org/.

TORSTEN KEMPF

KINGSHUK KARURI

LEI GAO

Institute for Integrated Signal
Processing Systems

RWTH Aachen University
Aachen, Germany

SOFTWARE INSTRUMENTATION 11



S

SOFTWARE MODULE RISK ANALYSIS

INTRODUCTION

The practical goal of a software development team is to
deliver the product within the allotted time and budget.
The team strives to achieve the best possible software
quality within the given resources. Assessing software
module risk is generally a precursor to a software quality
enhancement initiative. To improve software quality,
development teams apply various techniques such as
reengineering, extra reviews, and additional testing. Ana-
lyzing the risk associated with modules for a given system
often involves software quality estimation and then apply-
ing quality improvement techniques to the modules that
need it the most.

In software engineering practice, assessing the risk of a
software module is often attained by either classifying it
into risk-based classes, such as fault-prone (fp) or not fault-
prone (nfp), or by predicting the number of software faults
expected. In addition, a software module’s risk can be
assessed by obtaining a relative risk-based ordering of all
software modules. The software attribute that represents
software quality, i.e., risk-based class, number of faults, or
another factor, is referred to as software quality data.
Although other software quality models exist, we focus
primarily on software quality classification, software fault
prediction, and software module-order models. These mod-
els are more widely used in software engineering practice.

Software measurements play a vital role in developing
software quality estimation models (1), because of the soft-
ware engineering assumption that software metrics reflect
the quality of a software product. A software metric is an
attribute that quantifies or qualifies a certain aspect of the
software module or program. For example, ‘‘lines of code’’
can represent the size of a program. Several types of soft-
ware metrics exist in the literature (2) ranging from very
basic attributes to more complex attributes. The use of
specific software metrics for software quality estimation
depends on the system under evaluation and other prac-
tical considerations.

The output of software quality estimation models are
predictions that the development team can use to identify
high-risk or low-quality modules in the software system.
The need for identifying such modules is primarily from
economic and practical needs. An ideal software develop-
ment situation would be that all modules are targeted for
inspection and quality improvement to maximize software
reliability. However, in practice, a software development
team generally has limited and finite resources allocated
for quality improvement. Software quality estimation mod-
els provide practical assistance to the development team by
isolating high-risk software modules for a targeted and
cost-effective use of project resources.

We present three types of software quality estimation
models, i.e., software quality classification, software fault

prediction, and module-order modeling, all built using a
case study of software measurement data from a large
telecommunications system. A software quality classifica-
tion model predicts the class membership of modules into
predefined quality-based classes (3). A software fault pre-
diction model predicts the number of faults expected in the
modules (4). A module-order model predicts the relative
risk-based ordering of the software modules (5). Our aim is
to provide the reader with sufficient information of
research on software module risk analysis, so as to promote
further software quality and/or interdisciplinary research.

SOFTWARE QUALITY ESTIMATION MODELS

Software development is a human-intensive endeavor, and
software quality is invariably affected by many factors that
vary among development organizations. To achieve useful
accuracy, software quality models must be built for each
specific development environment. In addition, each soft-
ware project team must decide on which software measure-
ments are to be collected and recorded for software quality
estimation. Software measurements have been used as
quality predictors in software development. However,
there is yet no consensus as to what software metrics are
preferable for quality estimation.

Most literature on software metrics is typically aimed at
demonstrating the efficacy of individual metrics. However,
this does not directly relate to building useful software
quality models. Our previous experience with software
measurement data from industrial projects has indicated
that a software quality model based on only one software
metric does not have useful accuracy and robustness. A
simple metric, such as lines of code, is not sufficient by itself.
A more complex metric, such as McCabe’s cyclomatic com-
plexity (2), is also not enough by itself. A better approach is
to employ multiple software metrics to build a software
quality model instead of only one metric.

A given software development organization is often
equipped with data collection tools, such as a software
metric-analyzer tool. Hence, the relative cost of collecting
many software metrics, instead of just a few, is not a
practical problem. To determine software metrics that
are better predictors of quality for a given system, a data
mining approach should be taken instead of an arbitrary- or
heuristic-based selection approach. Pragmatic considera-
tions usually determine the set of available software
metrics. We do not advocate the universal use of a given
set of software metrics; instead, we prefer a data mining
approach to selecting software metrics that are good quality
predictors for the given software system.

To build a useful software quality estimation model, the
following modeling steps are followed:

� Analysis of a previous system release or similar pro-
ject, for which software quality data is known. Soft-
ware measurement data are collected for this project.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



� The known software metrics and software quality data
are used to build a software quality model. The model is
then used to predict the quality of modules in the
current project, for which software quality data are
not known. We shall focus our discussion to three types
software quality estimation models: software fault
prediction, software quality classification, and soft-
ware module-order modeling.

� The obtained predictions are used as a guide to allow a
targeted software quality improvement initiative.

A software fault prediction model tries to find the rela-
tionship between the given set of software measurements of
the modules and the number of faults expected in each
module. A software fault is a defect in an executable product
that causes a software failure. Faults are a result of mis-
takes or omissions made by the developers. A software
quality classification model tries to find the relationship
between the given set of software measurements of the
modules and their membership into predetermined risk-
based classes, such as fp and nfp. An advantage of a fault
prediction model is that it allows the development team to
observe the quality of modules in a relative sense. However,
a development team may only be interested in knowing
which modules should be targeted for quality improvement,
regardless of their relative quality—a classification model
provides such a software quality model.

A classification model, however, does not provide the
relative risk of the modules classified as fp, which makes it
difficult to initiate software quality improvement toward
the most high-risk modules. In addition, a fault prediction
model may predict well for low-risk modules but predict
poorly for high-risk modules. These disadvantages are
overcome by a module-order model, in which the relative
risk-based order of the software modules is predicted.
More specifically, the output of such a model is a ranking
of the modules according to a risk factor, such as number of
faults expected. Such a model is attractive to the software
quality assurance team because it provides valuable gui-
dance for quality improvement without quantifying the
quality of individual program modules. To obtain a cost-
effective software quality improvement, the available
resources can be applied to the modules starting from
the most-risky and selecting additional modules according
to the quality-based ranking of program modules until the
available resources are exhausted.

A given software development team may choose to select
any one of the three software quality models based on their
organizational preference, expertise with the modeling
approach, and available resources for carrying out the
software quality modeling and analysis process. The per-
formance of software quality models is often measured by
their prediction accuracy. The prediction of a software
quality classification model is often measured by its mis-
classification error rates—the lower the error rates, the
better the model. In a two-group (fp and nfp) classification
model, two types of errors can occur, Type I and Type II. A
Type I error occurs when a nfp module is predicted as fp,
whereas a Type II error occurs when a fp module is pre-
dicted as nfp. A Type II error is more costly than a Type I

error, because it implies a lost opportunity to fix a fault
before system operations. In contrast, a Type I error implies
unnecessary inspection of a good quality module. In our
studies (6), we have observed an inverse relationship
between the Type I and Type II error rates—as one
increases, the other decreases. Hence, the selection of
the final model requires the knowledge of a preferred
balance between the two error rates.

The prediction of a fault prediction model can be mea-
sured by the average absolute error (AAE) or the average
relative error (ARE). The relative importance of these two
performance measures is out of scope for this article and is
an open research issue. The AAE and ARE performance
measures are computed as follows:

AAE ¼ 1

n

Xn

i¼1

jyi � ŷij ð1Þ

ARE ¼ 1

n

Xn

i¼1

yi � ŷi

yi þ 1

����
���� ð2Þ

where yi is the actual number of faults in a module, ŷi is the
predicted number of faults in a module, and n is the number
of modules in the target dataset. The denominator in ARE has
a one added to avoid division by zero, because a software
module could have zero faults associated with it. Our studies
evaluate fault prediction models using both AAE and ARE.

In our study, the prediction of a module-order model is
measured by evaluating, for a given cutoff percentage of
modules, how accurately the model accounts for the actual
number of faults for that cutoff point. A cutoff point reflects
the percentage of modules that the software development
team will choose to apply software quality improvement
techniques. Subsequently, different projects will choose
different cutoff points according to their quality improve-
ment requirements. The precise evaluation procedure for a
module-order model is discussed in more detail in the next
section.

MODELING TECHNIQUES

In the literature one can find various techniques and
methods for building software quality estimation models.
Although most techniques are suited either for quality
classification or fault prediction, not many can address
both problems. Some techniques used for software quality
classification include discriminant analysis (7), logistic
regression (8,9), decision trees (6,10), artificial neural net-
works (11,12), genetic programming (13), belief networks
(14), fuzzy logic (10), and case-based reasoning (15). Some
techniques used for software fault prediction include multi-
ple linear regression (16), artificial neural networks (16),
case-based reasoning (17), and regression trees (18).

In this study, we present the logistic regression techni-
que for building software quality classification models and
the multiple linear regression technique for software fault
prediction. These methods are commonly used in classifica-
tion and regression problems, especially in the software
quality engineering field. A good comparative study that
compares seven software quality classification methods is

2 SOFTWARE MODULE RISK ANALYSIS



presented in Ref. (3). A similar comparative study that
compares five software fault prediction methods is pre-
sented in Ref. (16).

Logistic Regression

Logistic regression is a statistical modeling technique in
which the dependent variable has only two possible values
and the independent variables may be categorical, discrete,
or continuous (8). In the context of classification with
logistic regression, we designate a module being fp as an
‘‘event’’ (19). Therefore, if p is the probability of an event,
i.e., a module is fp, ð p

1�pÞ is the odds of an event. We denote xj

as the jth independent variable. A logistic regression model
has the following form:

loge
p

1� p

� �
¼ �0 þ �1x1 þ . . .þ � jx j þ . . .þ �mxm ð3Þ

where m represents the number of independent variables
and �0, . . ., �m are model coefficients.

In software engineering, most software metrics have a
monotonic relationship with faults that are inherent in the
underlying processes. In practice, not all independent vari-
ables may contribute to the logistic regression model. To
exclude insignificant variables, the stepwise logistic regres-
sion method for model selection was adopted (19). The
significance tests for each variable are based on the chi-
squared statistic. We compute the maximum likelihood
estimates of the parameters of the model, bj, using the
iteratively reweighted least-squares algorithm (20), where
bj is the estimated value of �j. The estimated logistic
regression model takes the following form:

loge
p̂

1� p̂

� �
¼ b0 þ b1x1 þ . . .þ b jx j þ . . .þ bmxm ð4Þ

To classify program modules as either fp or nfp with the

logistic regression model, ð p̂

1� p̂
Þ is computed using the

above equation. A module xi’s class, Class(xi), is assigned

as nfp if ð1� p̂
p̂ Þ > � and fp, otherwise. The term � is a

modeling parameter that can be empirically varied to
obtain the preferred classification model (19). The desired
balance between the error rates is project dependent and is
largely influenced by the software quality improvement
needs of the development team and the disparity between
the respective costs of misclassifications.

Multiple Linear Regression

The multiple linear regression technique provides a statis-
tical means of estimating or predicting a dependent vari-
able as a function of known independent variables. The
model is in the form of an equation where the response or
dependent variable is expressed in terms of predictors or
independent variables. The general form of a multiple
linear regression (MLR) model can be given by

ŷ ¼ a0 þ a1x1 þ . . .þ amxm ð5Þ
y ¼ a0 þ a1x1 þ . . .þ amxm þ e ð6Þ

where x1,. . ., xm are the m independent variables’ values,
a0,. . ., am are the parameters to be estimated, ŷ is the
dependent variable to be predicted, y is the actual value
of the dependent variable, and e ¼ y� ŷ is the error in
prediction.

The data available are initially subject to statistical
analysis, with the aim to remove any correlation existing
between independent variables and to remove insignificant
independent variables, not accounting for the dependent
variable. The process of determining the variables that are
significant is known as model selection. Several methods of
model selection exist. They are forward elimination, step-
wise selection, and backward elimination (20). Here, step-
wise regression is used.

Stepwise regression selects an optimal set of indepen-
dent variables for the model. In this process, variables are
either added or deleted from the regression model at each
step of the model building process. Once the model is
selected, the parameters a0,. . ., am are then estimated using
the least-squares method. The values of the parameters are
selected such that they minimize

PN
i¼1 e2

i , where N is the
number of observations in the fit dataset.

Module-Order Modeling

A module-order model (MOM) can be defined as a software
metrics-based quality estimation model, which is used to
predict the prioritized rank-order of modules according to a
predetermined software quality factor. The choice of the
quality factor is dependent on the project management
team; however, it should be a good representation of the
actual quality of the module. A good example would be the
number of faults (as defined by the project) expected in a
software module during system test or operations. A MOM

predicts the relative quality of each program module, espe-
cially those that are the most faulty.

A MOM comprises the following three components: (1) an
underlying software quality prediction model; (2) a ranking
of modules according to the quality factor predicted by the
underlying model; and (3) a procedure for evaluating
the accuracy and effectiveness of the predicted ranking.
In the context of a MOM, a software metrics-based under-
lying software quality prediction model may be considered
as a function of a vector of software measurements xi,
predicting a quality factor Fi, for module i; i.e., Fi = f(xi).
Generally speaking, any prediction technique may be
selected as an underlying quality prediction model. We
use the prediction obtained by the multiple linear regres-
sion technique.

When obtaining the quality-based rankings of software
modules, the following notations are used. Let F̂ðxiÞ be an
estimate of Fi by the underlying prediction model f̂ ðxiÞ. Ri is
the perfect ranking of the observation i according to Fi,
whereas R̂ðxiÞ is the same ranking but according to F̂ðxiÞ. In
module-order modeling, the emphasis is on whether a
module falls above a certain cutoff percentile that indicates
the proportion of modules that are to be targeted for relia-
bility enhancements. All modules that fall above the cutoff
percentile will be subjected to quality improvement.
According to the allocated software quality improvement
resources, the project management team will select a

SOFTWARE MODULE RISK ANALYSIS 3



certain cutoff percentile and apply quality enhance-
ment processes to all modules that fall within that cutoff
value.

Once the quality-based rankings are determined, the
following steps illustrate the evaluation procedure for a
module-order model (5). Given a model and a test dataset
with software modules indexed by i:

1. Management will choose to enhance modules in a
priority-based order, beginning with the most faulty.
However, the rank of the last module that will
be enhanced is uncertain at the time of modeling.
Determine a range of percentiles that covers manage-
ment’s options for the last module (from the rank
order), based on the schedule and resources allo-
cated for a software quality improvement. Choose a
set of representative cutoff percentiles c from that
range.

2. For each cutoff percentage value of interest c, define
the number of faults accounted for by the modules
above the percentage c. This process is done for both
the perfect and the predicted ranking of the modules:
G(c) is the number of faults accounted for by the
modules that are ranked (perfect ranking) above
the percentile c, and ĜðcÞ is the number of faults
accounted for by the modules that are predicted as
falling above the percentile c.

GðcÞ ¼
X

i:R� c

Fi ð7Þ

ĜðcÞ ¼
X

i:R̂ðXiÞ� c

Fi ð8Þ

3. Calculate the percentage of faults accounted for by

each ranking, namely, GðcÞ
Gtot

and ĜðcÞ
Gtot

, where Gtot is the

total number of actual faults of all program modules
in the given dataset.

4. Calculate the performance of the module-order model

�ðcÞ ¼ ĜðcÞ
GðcÞ, which indicates how closely the faults

accounted for by the model ranking match those of
the perfect module ranking. In the context of accuracy
of a MOM at a given c value, the performance of the
model, i.e., �(c), should be as close to 1 (or 100%) as
possible. After evaluating the accuracy and robust-
ness of a MOM, it is ready for use on a current similar
project or subsequent release. Determine the pre-
dicted ranking, by ordering modules in the current
dataset according to F̂ðxiÞ.

In practice, a manager is interested in the accuracy of a
MOM only at the preferred cutoff percentile value. As all
modules that fall above the preferred cutoff point get the
same reliability enhancement treatment, the distance of
the predicted rank-order from the actual is not an appro-
priate measure of model accuracy. We are therefore not
interested in the accuracy of the rank-order within the
enhanced group, which consists of modules that are sub-
jected to quality improvements. However, we do want �(c)
to be close to 100% for the c of interest.

EMPIRICAL CASE STUDY

System Description

The case study data were collected over two successive
releases, from a very large legacy telecommunications
system, abbreviated as LLTS. The software system is an
embedded-computer application that included finite-state
machines. Using the procedural development paradigm,
the software was written in a high-level language and was
maintained by professional programmers in a large orga-
nization. The releases considered in our study are labeled
as Release 1 and Release 2 and do not represent the first two
chronological releases of the system.

A software module was considered as a set of related
source-code files. Faults attributed to a software module
were recorded only if their discovery resulted in changes to
the source code of the respective module. Software fault
data were collected at the module level by the problem
reporting system and comprised post-release faults discov-
ered by customers during system operations. A problem
reporting system is an information system for managing
software faults from initial discovery through distribution
of fixes. Preventing the occurrence of software faults after
deployment was a high priority for the developers, because
visits to customer sites involved extensive consumption of
monetary and other resources.

Configuration management data analysis identified
software modules that were unchanged from the prior
release. A configuration management system is an infor-
mation system for managing multiple versions of artifacts
produced by software development processes. Fault data
collected from the problem reporting system was tabulated
into problem reports, and anomalies were resolved.
Because of the nature of the system being modeled, i.e., a
high-assurance system, the modules associated with post-
release faults were very few as compared with modules
with no faults. Two clusters of modules were identified:
unchanged and updated. The updated modules comprised
those that were either new or had at least one update to
their source code since the prior release. Among the
unchanged modules, almost all (over 99%) of them had
no faults and, therefore, were not considered for modeling
purposes.

We selected updated modules with no missing data in
the relevant variables. These updated modules had several
million lines of code, with a few thousand of these modules
in each system release. The number of updated modules
(that remained after unchanged modules or those with
missing data were removed) that were considered for the
two releases are 3649 for Release 1 and 3981 for Release 2.
In the case of the software quality classification study, a
module was considered as nfp if it had no post-release faults
and fp otherwise. The proportion of modules with no faults
among the updated modules of Release 1 was pG ¼ 0.937,
and the proportion with at least one fault was pR ¼ 0.063.
Such a small set of fp modules is often difficult for a software
quality modeling technique to identify.

The set of available software metrics is usually deter-
mined by pragmatic considerations. A data mining
approach is preferred in exploiting software metrics

4 SOFTWARE MODULE RISK ANALYSIS



data, by which a broad set of metrics are analyzed rather
than limiting data collection according to a predetermined
set of research questions. Data collection for this case study
involved extracting source code from the configuration
management system. The available data collection tools
determined the number and selection of the software
metrics. Software measurements were recorded using
the EMERALD (Enhanced Measurement for Early Risk
Assessment of Latent Defects) software metrics analysis
tool, which includes software-measurement facilities and
software quality models. Another project might collect and
consider a different set of software metrics for modeling
purposes (21–23).

Preliminary data analysis selected metrics that were
appropriate for our modeling purposes. Another software
project may consider (depending on availability) a different
set of software metrics as more appropriate. Software
metrics collected included 24 product metrics, 14 process
metrics, and 4 execution metrics. The 14 process metrics
were not used in our empirical evaluation, because this
study is concerned with the software quality estimation of
program modules after the coding (implementation) phase
and before system tests. Therefore, the case study consists
of 28 independent variables (Tables 1 and 2) that were used
to predict the respective dependent variable: Class (fp or
nfp) for software quality classification, and Faults for soft-
ware fault prediction. The predicted number of faults are

used to rank the modules for building the module-order
model.

The software product metrics in Table 1 are based on call
graph, control flow graph, and statement metrics. An exam-
ple of call graph metrics is the number of distinct procedure
calls. A module’s control flow graph consists of nodes and
arcs depicting the flow of control of the program. Statement
metrics are measurements of the program statements with-
out implying the meaning or logistics of the statements. The
problem reporting system maintained records on past pro-
blems. The proportion of installations that had a module,
USAGE, was approximated by deployment data on a prior
system release. Execution times in Table 2 were measured
in a laboratory setting with different simulated workloads.

It should be noted that software quality estimation
models based on source code metrics that are available

Table 2. LLTS Software Execution Metrics

Symbol Description

USAGE Deployment percentage of the module.
RESCPU Execution time (microseconds) of an

average transaction on a system serving consumers.
BUSCPU Execution time (microseconds) of an average

transaction on a system serving businesses.
TANCPU Execution time (microseconds) of an average

transaction on a tandem system.

Table 1. LLTS Software Product Metrics

Symbol Description

Call Graph Metrics
CALUNQ Number of distinct procedure calls to others.
CAL2 Number of second and following calls to others.

CAL2 ¼ CAL � CALUNQ where CAL is the total number of calls.
Control Flow Graph Metrics

CNDNOT Number of arcs that are not conditional arcs.
IFTH Number of non-loop conditional arcs, i.e., if–then constructs.
LOP Number of loop constructs.
CNDSPNSM Total span of branches of conditional arcs. The unit of measure is arcs.
CNDSPNMX Maximum span of branches of conditional arcs.
CTRNSTMX Maximum control structure nesting.
KNT Number of knots. A ‘‘knot’’ in a control flow graph is where arcs cross

due to a violation of structured programming principles.
NDSINT Number of internal nodes (i.e., not an entry, exit, or pending node).
NDSENT Number of entry nodes.
NDSEXT Number of exit nodes.
NDSPND Number of pending nodes, i.e., dead code segments.
LGPATH Base 2 logarithm of the number of independent paths.

Statement Metrics
FILINCUQ Number of distinct include files.
LOC Number of lines of code.
STMCTL Number of control statements.
STMDEC Number of declarative statements.
STMEXE Number of executable statements.
VARGLBUS Number of global variables used.
VARSPNSM Total span of variables.
VARSPNMX Maximum span of variables.
VARUSDUQ Number of distinct variables used.
VARUSD2 Number of second and following uses of variables.

VARUSD2 ¼ VARUSD � VARUSDUQ, where VARUSD is the total
number of variable uses.

SOFTWARE MODULE RISK ANALYSIS 5



relatively later (such as software product metrics) in the
software development process may have some drawbacks.
For example, it may be difficult to relate the model with
software engineering issues related to the requirements
and specifications development phase. In addition, some
early software design quality issues may not be completely
reflected by the model. The ideal scenario would be to
evaluate software quality in a progressive manner as the
project develops, using techniques suited for the given
development phase. However, limited software project
funds often restrict implementing such an ideal scenario.

Software Quality Classification Model

The logistic regression model formed after the stepwise
logistic regression procedure for identifying significant
independent variables (at an � ¼ 0.15 significance level)
for the LLTS case study is shown below:

log
p̂

1� p̂

� �

¼ �6:0473þ 0:0327 FILINCUQþ 1:9610 USAGE

þ 0:0230 LGPATH þ 0:0145 LOP

þ 0:0002 VARSPNMX � 0:0032 STMCTL

þ 0:0079 NDSPNDþ 0:0031 IFTH ð9Þ

where p̂ is the estimated value of p, and the respective
software metrics are described in Tables 1 and 2. This model
was built using the Release 1 software modules as a training
dataset. The modules of Release 2 were used as a test dataset
to evaluate the prediction accuracy of the model.

In our case study, we varied the value of the parameter �
to obtain the preferred balance between the error rates. The
misclassification rates for the logistic regression models
based on the different values of � are presented in Table 3.
Other values for � were also considered; however, we have
presented a representative set in the table. An inverse
relationship between the Type I and Type II error rates
is observed. A very high value of � yielded a very low Type II
error and a very high Type I error. On the other hand, a very
low value of � yielded a very high Type II error and a very
low Type I error. For example, when � = 50, the correspond-
ing fitted (Release 1) model yielded a Type I error rate of

67% and a Type II error rate of 3.5%. Moreover, when � = 1,
the corresponding model yielded a Type I error rate of 0.4%
and a Type II error rate of 91.7%.

In our previous studies with high assurance systems
such as the legacy telecommunication system presented, a
preferred balance of equality between the Type I and Type
II error rates and Type II being as low as possible was
chosen as the model selection criterion. Such a model
selection criterion is representative of a software project
that has very few fp modules in comparison with the nfp
modules, and when the cost of misclassifying a fp module is
much greater than the cost of misclassifying a nfp module.
In addition, such a model selection strategy provides a
practical software quality classification. If a model with
the lowest Type II error rate is selected as the final model, it
will have a very high Type I error rate. This implies that a
large number of modules will be predicted as fp, with many
of them actually being nfp. Such a model is not practical for
cost-effective software quality improvement.

Therefore, based on our model-selection strategy, the
preferred balance was obtained when � = 16. We observe
that for � = 16 the two error rates are approximately equal,
with the Type II error rate being low. The performance of
this model for the test dataset, i.e., Release 2, is fairly
reasonable and is not too overfitted. An overfitted model
is one that performs very well on the fit dataset but per-
forms very poorly on the test dataset. We observe that, for
Release 2, the model with � = 16 maintains the preferred
balance between the two error rates reasonably well.

Software Fault Prediction Model

The multiple linear regression technique with stepwise
regression selected seven software metrics at a significance
level of � = 0.05. A significance level represents the statis-
tical degree of importance for the independent variables.
The selected metrics are FILINCUQ, CNDNOT, NDSENT,
NDSEXT, NDSPND, NDSINT, and STMDEC. The model
parameters were estimated, and the following model was
obtained:

Faults ¼ 0:0143FILINCUQ � 0:0035CNDNOT

þ 0:0238NDSENT � 0:009NDSEXT

þ 0:017NDSPND þ 0:0066NDSINT

� 0:0031STMDEC

The values of average absolute and average relative
errors obtained from the model are presented in Table 4.
The table also shows the standard deviation of the two error
measures. We observe that, with respect to AAE, the per-
formance of the model for the test dataset is better than the

Table 3. Logistic Regression Classification Models

Release 1 Release 2

� Type I Type II Type I Type II

50 67.00 % 3.50 % 64.79 % 4.23 %
30 49.80 % 8.70 % 46.70 % 11.64 %
25 42.90 % 13.50 % 39.90 % 14.81 %
20 34.90 % 19.70 % 31.59 % 21.69 %
18 31.00 % 21.00 % 28.11 % 24.87 %
16 27.00 % 24.90 % 25.00 % 29.60 %
10 15.50 % 38.90 % 14.61 % 41.80 %
5 6.20 % 60.30 % 6.20 % 67.20 %
1 0.40 % 91.70 % 0.40 % 91.53 %

0.067 0.00 % 100.00 % 0.00 % 100.00 %

Table 4. Fault Prediction Model Performance

Dataset AAE SDAE ARE SDRE

Release 1 1.007 1.534 0.550 0.545
Release 2 0.890 1.091 0.571 0.610

6 SOFTWARE MODULE RISK ANALYSIS



fit dataset, which is generally not expected. The trained
model has an AAE of about 1 fault, with its predictive
performance of AAE = 0.890. With respect to the ARE perfor-
mance measure, the trained model has an error rate of 0.55.
The performance of the model for the test dataset is very
similar with ARE = 0.571. When considering both perfor-
mance measures, we note that the multiple linear regres-
sion model does not show overfitting tendencies.

A comparison of the software metrics used by the clas-
sification and fault prediction model reveals that the
FILINCUQ and NDSPND metrics are common to the
two models. This finding may suggest that these two
metrics are useful (among others) software quality predic-
tors for the legacy telecommunications system considered
in this study. The problem of feature selection or attribute
selection is very important in software quality estimation,
because it could reduce data collection efforts and improve
the robustness of the software quality models.

Software Module-Order Model

The software fault prediction obtained by the multiple
linear regression model is used as the underlying prediction
model for the module-order model. More specifically, for the
given dataset, the modules are ranked according to their
predicted number of faults, starting with the highest. The
results of the model are summarized in Table 5, which
evaluates the model at different cutoff values, i.e., c values.
We note that, for Release 1, 100 % of software faults are
accounted for at c = 0.50; i.e., GðcÞ

Gtot
¼ 1:000. Similarly, for

Release 2, 100 % of software faults are accounted for at
c = 0.60.

The fourth and seventh columns in the table represent
the performance �(c) of the module-order model for the
Release 1 and Release 2 datasets, respectively. We observe
that �(c) generally increases with a decrease in c, which is
expected because as c is decreased more modules are sub-
jected to inspection and hence more software faults will be
accounted for. The performance of the model is generally
lower for the test dataset than the fit dataset, which sug-
gests that the module-order model may be prone to some
overfitting. However, it should be noted that the ranking of
the model is obtained by the predictions of the underlying

multiple-linear regression model. This finding suggests
that the efficiency of the underlying prediction model is
likely to affect the performance of the subsequent module-
order model.

THREATS TO VALIDITY

Controlled experiments to evaluate the usefulness of
empirical models are not practical because of the many
human factors that affect software quality. Hence, we
adopted a case study approach to demonstrate the useful-
ness of the software quality estimation models in a real-
world setting. To be credible, the software engineering
community demands that the subject of an empirical study
be a system with the following characteristics (24). The
subject of an empirical case study must be developed

� By a group and not by an individual

� By professionals and not by students

� In an industry/government organization and not in a
laboratory

� As large as industry projects and not a toy problem

We note that our case study fulfills all of the above criteria
through collaborative arrangements with the development
organization.

CONCLUSION

The task of delivering a software product with good quality
is daunting, especially in the presence of limited budget and
time constraints. Software development teams apply var-
ious techniques to improve software quality, so as to max-
imize software quality within the given project resources.
Software quality estimation models predict the quality of
software modules can be used to provide a targeted soft-
ware quality improvement initiative.

A software quality classification model predicts the class
membership of modules into risk-based classes, such as
fault-prone and not fault-prone. A software fault prediction
model estimates the number of faults in a software module.
A software module-order model predicts the relative risk-
based order of the modules. These software quality models
are built using software measurements and quality data
obtained from a previous system release or similar project.
The trained models are then used to predict the software
quality of the modules currently under development. These
software quality models have successfully been used in
software engineering practice toward software quality
improvement of real-world projects.

This article presents the useful principles of building
software quality classification, software fault prediction,
and software module-order models. The logistic regression
technique was used to build the classification model, whereas
the fault prediction model was built by using the multiple
linear regression technique. The module-order model was
obtained by ranking the modules according to the predictions
of the fault prediction model. A case study of software mea-
surement data obtained from a telecommunications system

Table 5. Module-Order Model Based on Multiple Linear
Regression

Release 1 Release 2

c
GðcÞ
Gtot

ĜðcÞ
Gtot

�(c)
GðcÞ
Gtot

ĜðcÞ
Gtot

�(c)

0.95 0.381 0.239 0.627 0.368 0.204 0.554
0.90 0.541 0.361 0.667 0.539 0.330 0.613
0.85 0.645 0.458 0.709 0.671 0.421 0.628
0.80 0.743 0.522 0.703 0.748 0.489 0.654
0.75 0.794 0.577 0.726 0.814 0.539 0.662
0.70 0.843 0.624 0.740 0.880 0.591 0.672
0.65 0.891 0.670 0.752 0.946 0.632 0.668
0.60 0.940 0.706 0.751 1.000 0.672 0.672
0.55 0.988 0.737 0.746 1.000 0.709 0.709
0.50 1.000 0.771 0.771 1.000 0.740 0.740

SOFTWARE MODULE RISK ANALYSIS 7



was used to build the respective models. Several other soft-
ware systems have also been explored in other related stu-
dies, and have demonstrated the effectiveness of software
quality estimation models toward cost-effective software
quality improvement.

Some modeling tools that can be used for building soft-
ware quality models include SAS (www.sas.com), S-Plus
(www.mathworks.com), CART (www.salford-systems.com),
MATLAB (www.mathsoft.com), SMART (www.cse.fau.edu/
esel), IBM Intelligent Data Miner (www.ibm.com), and
WEKA (25). Not all tools have a wide selection of modeling
techniques. For example, CART predominantly implements
a decision- and regression-tree-based modeling approach. In
contrast, WEKA provides a collection of modeling techni-
ques, suchas C4.5decision treeand instance-based learning.

ACKNOWLEDGMENTS

We express our gratitude to Dr. Kehan Gao for her patient
reviews of the manuscript. In addition, we thank the
various current and previous members of the Empirical
Software Engineering Laboratory, Florida Atlantic Uni-
versity, for their assistance with empirical and modeling
analysis.

BIBLIOGRAPHY

1. N. F. Schneidewind, Body of knowledge for software quality
measurement, IEEE Comput., 35 (2): 77–83, 2002.

2. N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous
and Practical Approach, 2nd ed. Boston, MA: PWS Publishing
Company, 1997.

3. T. M. Khoshgoftaar and N. Seliya, Comparative assessment of
software quality classification techniques: An empirical case
study, Empirical Softw. Eng. J., 9 (3): 229–257, 2004.

4. A. R. Gray and S. G. MacDonell, Software metrics data ana-
lysis: Exploring the relative performance of some commonly
used modeling techniques, Empirical Softw. Eng. J., 4: 297–
316, 1999.

5. T. M. Khoshgoftaar and E. B. Allen, Ordering fault-prone
software modules, Softw. Quality J., ll (l): 19–37, 2003.

6. T. M. Khoshgoftaar, X. Yuan, and E. B. Allen, Balancing
misclassifica-tion rates in classification tree models of software
quality, Empirical Softw. Eng. J., 5: 313–330, 2000.

7. P. Runeson, M. C. Ohlsson, and C. Wohlin, A. classification
scheme for studies on fault-prone components, Lecture Notes
Comput. Sci., 2188: 341–355, 2001.

8. K. El Emam, W. Melo, and J. C. Machado, The prediction of
faulty classes using object-oriented design metrics, J. Syst.
Softw., 56 (1): 63–75, 2001.

9. N. F. Schneidewind, Investigation of logistic regression as a
discriminant of software quality, Proc. 7th Int. Softw. Metrics
Symp., London, UK, 2001, pp. 328–337.

10. A. Suarez and J. F. Lutsko, Globally optimal fuzzy decision
trees for classification and regression, Pattern Anal. Mach.
Intell., 21 (12): 1297–1311, 1999.

11. M. Reformat, W. Pedrycz, and N. J. Pizzi, Software quality
analysis with the use of computational intelligence, Proc. IEEE

Int. Conf. Fuzzy Syst., Vol. 2, Honolulu, HI, 2002, pp. 1156–
1161.

12. Z. Xu and T. M. Khoshgoftaar, Software quality prediction for
high assurance network telecommunications systems, Com-
put. J., 44 (6): 557–568, 2001.

13. T. M. Khoshgoftaar, Y. Liu, and N. Seliya, Genetic program-
ming-based decision trees for software quality classification,
Proc. 15th International Conference on Tools with Artificial
Intelligence, Sacramento, 2003, pp. 374–383.

14. L. Guo, B. Cukic, and H. Singh, Predicting fault prone modules
by the dempster-shafer belief networks, Proc. 18th Interna-
tional Conference on Automated Software Engineering, Mon-
treal, Quebec, Canada, 2003, pp. 249–252.

15. K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, Comparing
case-based reasoning classifiers for predicting high-risk soft-
ware componenets, J. Syst. Softw., 55 (3): 301–320, 2001.

16. T. M. Khoshgoftaar and N. Seliya, Fault prediction modeling
for software quality estimation: Comparing commonly used
techniques, Empirical Softw. Eng. J., 8 (3): 255–283, 2003.

17. K. Ganesan, T. M. Khoshgoftaar, and E. B. Allen, Case-based
software quality prediction, Int. J. Softw. Eng. Knowl. Eng., 10
(2): 139–152, 2000.

18. S. S. Gokhale and M. R. Lyu, Regression tree modeling for the
prediction of software quality, in H. Pham, (ed.), Proc. 3rd
International Conference on Reliability and Quality in Design,
Anaheim, CA, 1997, pp. 31–36.

19. T. M. Khoshgoftaar and E. B. Allen, Logistic regression mod-
eling of software quality, Int. J. Reliability Quality Safety Eng.,
6 (4): 303–317, 1999.

20. R. H. Myers, Classical and Modern Regression with Applica-
tions, Boston, MA: PWS-KENT, 1990.

21. L. C. Briand, W. L. Melo, and J. Wust, Assessing the applic-
ability of fault-proneness models across object-oriented soft-
ware projects, IEEE Trans. Softw. Eng., 28 (7): 706–720, 2002.

22. M. C. Ohlsson and P. Runeson, Experience from replicating
empirical studies on prediction models, Proc. 8th International
Software Metrics Symposium, Ottawa, Ontario, Canada, 2002,
pp. 217–226.

23. Y. Ping, T. Systa, and H. Muller, Predicting fault-proneness
using OO metrics: An industrial case study, in T. Gyimothy and
F. B. Abreu, (eds.), Proc. 6th European Conference on Software
Maintenance and Reengineering, Budapest, Hungary, 2002,
pp. 99–107.

24. C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslen, Experimentation in Software Engineering: An
Introduction, Boston, MA: Kluwer Academic Publishers, 2000.

25. I. H. Whitten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques with JAVA Implementations.
San Francisco, CA: Morgan Kaufmann, 2000.

TAGHI M. KHOSHGOFTAAR

Florida Atlantic University
Boca Raton, Florida

NAEEM SELIYA

University of Michigan—
Dearborn

Dearborn, Michigan

8 SOFTWARE MODULE RISK ANALYSIS



S

SOFTWARE PERFORMANCE EVALUATION

INTRODUCTION

Performance and quality of service (QoS) aspects of mod-
ern software systems are crucially important for their
successful adoption in the industry. Most generally, the
performance of a software system indicates the degree to
which the system meets its objectives for timeliness and
the efficiency with which it achieves this. Timeliness is
normally measured in terms of meeting certain response
time or throughput requirements and scalability goals.
Response time refers to the time required to respond to a
user request, for example a Web service call or a database
transaction, and throughput refers to the number of
requests or jobs processed per unit of time. Scalability,
on the other hand, is understood as the ability of the
system to continue to meet its objectives for response
time and throughput as the demand for the services it
provides increases and resources (typically hardware) are
added.

Numerous studies, for example, exist in the areas of
e-business, manufacturing, telecommunications, military,
health care, and transportation that have shown that a
failure to meet the performance requirements can lead to
serious financial losses, loss of customers and reputation,
and in some cases even to loss of human lives. To avoid the
pitfalls of inadequate QoS, it is important to evaluate the
expected performance characteristics of systems during all
phases of their lifecycle. The methods used to do this are
part of the discipline called software performance engineer-
ing (SPE) (1,2). Software performance engineering helps to
estimate the level of performance a system can achieve and
provides recommendations to realize the optimal perfor-
mance level (3).

However, as systems grow in size and complexity,
estimating their performance becomes a more and more
challenging task. Modern software systems are often
composed of multiple components deployed in highly dis-
tributed and heterogeneous environments. Figure 1
shows a typical architecture of a multitiered distributed
component-based system (4). The application logic is par-
titioned into components distributed over physical tiers.
Three tiers exist: presentation tier, business logic tier,
and data tier. The presentation tier includes Web servers
hosting Web components that implement the presenta-
tion logic of the application. The business logic tier
includes a cluster of application servers hosting business
logic components that implement the business logic of the
application. Middleware platforms such as Java EE (5),
Microsoft .NET (6), or CORBA (7) are often used in this
tier to simplify application development by leveraging
some common services typically used in enterprise appli-
cations. The data tier includes database servers and
legacy systems that provide data management services.

The inherent complexity of such architectures makes it
difficult to manage their end-to-end performance and
scalability. To avoid performance problems, it is essential
that systems are subjected to rigorous performance eva-
luation during the various stages of their lifecycle. At
every stage, performance evaluation is conducted with a
specific set of goals and constraints. The goals can be
classified in the following categories, some of which par-
tially overlap:

Platform selection: Determine which hardware and
software platforms would provide the best scalability
and cost/performance ratio. Software platforms
include operating systems, middleware, database
management systems, and so on. Hardware plat-
forms include the type of servers, disk subsystems,
load balancers, communication networks, and
so on.

Platform validation: Validate a selected combination
of platforms to ensure that taken together they pro-
vide adequate performance and scalability.

Evaluation of design alternatives: Evaluate the
relative performance and scalability of alternative
system designs and architectures.

Performance prediction: Predict the performance of
the system for a given workload and configuration
scenario.

Performance tuning: Analyze the effect of various
deployment settings and tuning parameters on the
system performance and find their optimal values.

Performance optimization: Find the components
with the largest effect on performance and study
the performance gains from optimizing them.

Scalability and bottleneck analysis: Study the per-
formance of the system as the load increases and
more hardware is added. Find which system compo-
nents are most utilized and investigate whether they
are potential bottlenecks.

Sizing and capacity planning: Determine the
amount of hardware that would be needed to guar-
antee certain performance levels.

Two broad approaches help conduct performance eva-
luation of software systems: performance measurement and
performance modeling. In the first approach, load testing
tools and benchmarks are used to generate artificial work-
loads on the system and to measure its performance. In the
second approach, performance models are built and then
used to analyze the performance and scalability character-
istics of the system. In both cases, it is necessary to char-
acterize the workload of the system under study before
performance evaluation can be conducted. The workload
can be defined as the set of all inputs that the system
receives from its environment during a period of time (3).

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



In performance evaluation studies normally workload
models are used that are representations of the real system
workloads.

WORKLOAD MODELS

A workload model is a representation that captures the
main aspects of the real workload that have effect on the
performance measures of interest. We distinguish
between executable and nonexecutable models. Executa-
ble models are programs that mimic real workloads and
can be used to evaluate the system performance in a
controlled environment. For example, an executable
model could be a set of benchmark programs that emulate
real users sending requests to the system. Nonexecutable
models, on the other hand, are abstract workload descrip-
tions normally used as input to analytical or simulation
models of the system. For example, a nonexecutable model
could be a set of parameter values that describe the types
of requests processed by the system and their load inten-
sities. Workload models are aimed to be as compact as
possible and at the same time representative of the real
workloads under study.

As shown in Fig. 2, workload models can be classified
into two major categories: natural models and artificial
models (3). Natural models are constructed from real
workloads of the system under study or from execution
traces of real workloads. In the former case, they are called
natural benchmarks, and in the latter case they are called
workload traces. A natural benchmark is a set of programs
extracted from the real workload such that they represent
the major characteristics of the latter. A workload trace is

a chronological sequence of records describing specific
events that were observed during execution of the real
workload. For example, in the three-tier environment
described earlier, the logs collected by the servers at
each tier (Web servers, application servers and database
servers) can be used as workload traces. Although traces
usually exhibit good representativeness, they have the
drawback that they normally consist of huge amounts of
data and do not provide a compact representation of the
workload.

Unlike natural models, artificial workload models are
not constructed using basic components of real workloads
as building blocks, however, they try to mimic the real
workloads. Artificial models can be classified into syn-
thetic benchmarks, application benchmarks, and abstract

Client 1    Client 2                                   Client n

AS 1                                                        AS m

Load Balancers

Presentation
Tier

Business Logic 
Tier

Data Tier

Firewall

Legacy Systems

Web Routers

WS 1                     WS 2                             WS k

Intra/InterNET

Web Servers (WS)
1..k

App. Servers (AS) 
1..m

Database Servers (DS)
1..p

Client Side

Clients  
1..n

DS 1     ...      DS p

Figure 1. A multitiered distributed component-based system.

Workload
Models

Natural
models

Natural
Benchmarks

Workload
Traces

Synthethic
Benchmarks

Application
Benchmarks

Abstract
Descriptions

Executable Non-executable

Artificial
Models

Figure 2. Taxonomy of workload models.

2 SOFTWARE PERFORMANCE EVALUATION



workload descriptions. Synthetic benchmarks are artifi-
cial programs carefully chosen to match the relative mix of
operations observed in some class of applications. They
usually do no real, useful work. In contrast, application
benchmarks are complete real-life applications. They are
normally designed specifically to be representative of a
given class of applications. Finally, abstract workload
descriptions are nonexecutable models composed of a
set of parameter values that characterize the workload
in terms of the load it places on the system components.
Such models are typically used in conjunction with ana-
lytical or simulation models of the system. Depending on
the type of workload, different parameters may be used,
such as transaction/request types, times between succes-
sive request arrivals (interarrival times), transaction
execution rates, transaction service times at system
resources, and so on. As an example, an e-commerce work-
load can be described by specifying the types of requests
processed by the system (e.g., place order, change order,
cancel order), the rates at which requests arrive, and the
amount of resources used when processing requests, that
is, the time spent receiving service at the various system
resources such as central processing units (CPUs), input–
output (I/O) devices, and networks. For additional exam-
ples and details on executable and nonexecutable work-
load models, the reader is referred to Refs. 8 and 9, as well
as 3 and 10, respectively.

PERFORMANCE MEASUREMENT

The measurement approach to software performance eva-
luation is typically applied in three contexts:

– Platform benchmarking: Measure the performance
and scalability of alternative platforms on which a
system can be built and/or deployed.

– Application profiling: Measure and profile the perfor-
mance of application components during the various
stages of the development cycle.

– System load testing: Measure the end-to-end system
performance under load in the later stages of devel-
opment when a running implementation or a proto-
type is available for testing.

In all three cases, executable workload models are used.
In this section, we briefly discuss the above three contexts
in which performance measurements are done. A more
detailed introduction to performance measurement tech-
niques can be found in Refs. 1, 8, 9, 11 and 12. The
Proceedings of the Annual Conference of the Computer
Measurement Group (CMG) are an excellent source of
recent publications on performance measurement tools,
methodologies, and concepts.

Platform Benchmarking

While benchmarking efforts have traditionally been
focused on hardware performance, over the past 15 years,
benchmarks have increasingly been used to evaluate the
performance and scalability of end-to-end systems includ-

ing both the hardware and software platforms used to build
them (9). Thus, the scope of benchmarking efforts has
expanded to include software products like Web servers,
application servers, database management systems, mes-
sage-oriented middleware, and virtual machine monitors.
Building on scalable and efficient platforms is crucial to
achieving good performance and scalability. Therefore, it is
essential that platforms are validated to ensure that they
provide adequate level of performance and scalability
before they are used to build real applications. Where
alternative platforms are available, benchmark results
can be used for performance comparisons to help select
the platform that provides the best cost/performance ratio.
Two major benchmark standardization bodies exist, the
Standard Performance Evaluation Corporation (SPEC)
(13) and the Transaction Processing Performance Council
(TPC) (14). Many standard benchmarks have appeared in
the last decade that provide means to measure the perfor-
mance and scalability of software platforms. For example,
SPECjAppServer2004 and TPC-App for application
servers, SPECjbb2005 for server-side Java, TPC-W and
SPECweb2005 for Web servers, TPC-C, TPC-E and TPC-H
for database management systems, and SPECjms2007
for message-oriented middleware. Benchmarks such as
these are called application benchmarks because they are
designed to be representative of a given class of real-world
applications.

Although the main purpose of application benchmarks is
to measure the performance and scalability of alternative
platforms on which a system can be built, they can also be
used to study the effect of platform configuration settings
and tuning parameters on the overall system performance
(9,15,16). Thus, benchmarking not only helps to select
platforms and validate their performance and scalability,
but also helps to tune and optimize the selected platforms
for optimal performance. The Proceedings of the Annual
SPEC Benchmark Workshops are an excellent source on the
latest developments in benchmarking methodologies and
tools (17).

Application Profiling

Application profiling is conducted iteratively during the
system development cycle to evaluate the performance of
components as they are designed and implemented. Design
and implementation decisions taken at the early stages of
system development are likely to have a strong impact on
the overall system performance (1). Moreover, problems
caused by poor decisions taken early in the development
cycle are usually most expensive and time-consuming to
correct. Therefore, it is important that, as components are
designed and implemented, their performance is measured
and profiled to ensure that they do not have any internal
bottlenecks or processing inefficiencies. Software profilers
are normally used for this purpose.

Software profilers are performance measurement tools
that help to gain a comprehensive understanding of the
execution-time behavior of software components. They
typically provide information such as the fraction of time
spent in specific states (e.g., executing different subrou-
tines, blocking on I/O, running operating system kernel

SOFTWARE PERFORMANCE EVALUATION 3



code) and the flow of control during program execution. Two
general techniques are normally used to obtain such infor-
mation, statistical sampling and code instrumentation
(11,12). The statistical sampling approach is based on
interrupting the program execution periodically and
recording the execution state. The code instrumentation
approach, on the other hand, is based on modifying
the program code to record state information whenever
a specified set of events of interest occur. Statistical
sampling is usually much less intrusive; however, it only
provides statistical summary of the times spent in different
states and cannot provide any information on how the
various states were reached (e.g., call graphs). Code instru-
mentation, on the other hand, is normally more intrusive;
however, it allows the profiler to precisely record all the
events of interest as well as the call sequences that show the
flow of control during program execution. For example,
in CPU time profiling, statistical sampling may reveal
the relative percentage of time spent in frequently-called
methods, whereas code instrumentation can report the
exact number of times each method is invoked and the
calling sequence that led to the method invocation.

System Load Testing

Load testing is typically done in the later stages of system
development when a running implementation or a proto-
type of the system is available for testing. Load-testing tools
are used to generate synthetic workloads and measure the
system performance under load. Sophisticated load-testing
tools can emulate hundreds of thousands of ‘‘virtual users’’
that mimic real users interacting with the system. While
tests are run, system components are monitored and per-
formance metrics (e.g., response time, throughput and
utilization) are measured. Results obtained in this way
can be used to identify and isolate system bottlenecks,
fine-tune system components, and measure the end-to-
end system scalability (18). Unfortunately, this approach
has several drawbacks. First of all, it is not applicable in
the early stages of system development when the system is
not available for testing. Second, it is extremely expensive
and time-consuming because it requires setting up
a production-like testing environment, configuring load
testing tools, and conducting the tests. Finally, testing
results normally cannot be reused for other applications.

PERFORMANCE MODELING

The performance modeling approach to software perfor-
mance evaluation is based on using mathematical or
simulation models to predict the system performance
under load. Models represent the way system resources
are used by the workload and capture the main factors
that determine the system behavior under load (10). This
approach is normally much cheaper than load testing and
has the advantage that it can be applied in the early stages
of system development before the system is available for
testing. A number of different methods and techniques
have been proposed in the literature for modeling software
systems and predicting their performance under load.
Most of them, however, are based on the same general

methodology that proceeds through the steps depicted in
Fig. 3 (1, 3, 19–21).

First, the goals and objectives of the modeling study are
specified. After this, the system is described in detail in
terms of its hardware and software architecture. The aim is
to obtain an in-depth understanding of the system archi-
tecture and its components. Next, the workload of the
system is characterized and a workload model is built.
The workload model is used as a basis to develop a perfor-
mance model. Before the model can be used for performance
prediction, it has to be validated. This is done by comparing
performance metrics predicted by the model with measure-
ments on the real system. If the predicted values do not
match the measured values within an acceptable level of
accuracy, then the model must be refined and/or calibrated.
Finally, the validated performance model is used to predict
the system performance for the deployment configurations
and workload scenarios of interest. The model predictions
are analyzed and used to address the goals set in the
beginning of the modeling study. We now take a closer
look at the major steps of the modeling process.

Workload Characterization

Workload characterization is the process of describing the
workload of the system in a qualitative and quantitative
manner (20). The result of workload characterization is a
nonexecutable workload model that can be used as input to
performance models. Workload characterization usually
involves the following activities (1, 22):

– The basic components of the workload are identified.

– Basic components are partitioned into workload
classes.

– The system components/resources used by each work-
load class are identified.

Figure 3. Performance modeling process.

4 SOFTWARE PERFORMANCE EVALUATION



– The inter-component interactions and processing
steps are described.

– Service demands and workload intensities are quan-
tified.

In the following, we discuss each of these activities in
turn.

The Basic Components of the Workload are Identified.
Basic component refers to a generic unit of work that
arrives at the system from an external source (19).
Some examples include HTTP requests, remote procedure
calls, Web service invocations, database transactions,
interactive commands, and batch jobs. Basic components
could be composed of multiple processing tasks, for exam-
ple client sessions that comprise multiple requests to the
system or nested transactions (open or closed). The choice
of basic components and the decision how granular they
are defined depend on the nature of the services provided
by the system and on the modeling objectives. Because, in
almost all cases, basic components can be considered as
some kind of requests or transactions processed by the
system, they are often referred to as requests or transac-
tions1.

Basic Components are Partitioned into Workload Classes.
To improve the representativeness of the workload model,
the basic components are partitioned into classes (called
workload classes) that have similar characteristics. The
partitioning can be done based on different criteria, depend-
ing on the type of system modeled and the goals of the
modeling effort (19, 23). The basic components should be
partitioned in such a way that each workload class is as
homogeneous as possible in terms of the load it places on the
system and its resources.

The System Components and Resources Used by Each
Workload Class are Identified. For example, an online
request to place an order might require using a Web
server, application server, and backend database server.
For each server, the concrete hardware and software
resources used must be identified. It is distinguished
between active and passive resources (10). An active
resource is a resource that delivers a certain service to
transactions at a finite speed (e.g., CPU or disk drive). In
contrast, a passive resource is needed for the execution of a
transaction, but it is not characterized by a speed of
service delivery (e.g., thread, database connection or
main memory).

The Intercomponent Interactions and Processing Steps are
Described. The aim of this step is to describe the proces-
sing steps, the inter-component interactions, and the flow
of control for each workload class. Also for each processing
step, the hardware and software resources used are
specified. Different notations may be exploited for this
purpose, for example client/server interaction diagrams

(20), execution graphs (1), communication-processing delay
diagrams (19), as well as conventional UML sequence and
activity diagrams (24).

Service Demands and Workload Intensities are Quanti-
fied. The goal is to quantify the load placed by the workload
components on the system. Service-demand parameters
specify the average total amount of service time required
by each workload class at each resource. Most techniques
for obtaining service-demand parameters involve running
the system or components thereof and taking measure-
ments. Some techniques are also available that can
be used to estimate service-demand parameters in the
early stages of system development before the system is
available for testing (25). Workload-intensity parameters
provide for each workload class a measure of the number of
units of work (i.e., requests or transactions), that contend
for system resources. Depending on the way workload
intensity is specified, it is distinguished between open
and closed classes. For open classes, workload intensity
is specified as an arrival rate, whereas for closed classes it is
specified as average number of requests served concur-
rently in the system.

The product of the workload characterization steps
described above (i.e., the workload model) is sometimes
referred to as software execution model because it repre-
sents the key facets of software execution behavior (1).

Performance Models

A performance model is an abstract representation of the
system that relates the workload parameters with the
system configuration and captures the main factors that
determine the system performance. Performance models
can be used to understand the behavior of the system and
predict its performance under load. Figure 4 shows the
major types of performance models that are available in the
literature for modeling computer systems. Note that this
model classification is not clear cut because some model
types partially overlap. Performance models can be
grouped into two main categories: simulation models and
analytical models. One of the greatest challenges in build-
ing a good model is to find the right level of detail. A general
rule of thumb is: ‘‘Make the model as simple as possible, but
not simpler!’’ Including too much detail might render the
model intractable, on the other hand, making it too simple
might render it unrepresentative.

Simulation Models. Simulation models are software pro-
grams that mimic the behavior of a system as requests
arrive and get processed at the various system resources.
Such models are normally stochastic because they have one
or more random variables as input (e.g., the request inter-
arrival times). The structure of a simulation program is
based on the states of the simulated system and events that
cause the system state to change. When implemented,
simulation programs count events and record the duration
of time spent in different states. Based on these data,
performance metrics of interest (e.g., the average time a
request takestocompleteor theaveragesystemthroughput)
can be estimated at the end of the simulation run. Estimates

1The term transaction here is used loosely to refer to any unit of
work or processing task executed in the system.

SOFTWARE PERFORMANCE EVALUATION 5



areprovidedin the formofconfidence intervals.A confidence
interval is a range with a given probability that the esti-
mated performance metric lies within this range. The main
advantage of simulation models is that they are very general
and can be made as accurate as desired. However, this
accuracy comes at the cost of the time taken to develop
and run the models. Usually, many long runs are required
to obtain estimates of needed performance measures with
reasonable confidence levels.

Several approaches to developing a simulation model
(22) exist. The most time-consuming approach is to use a
general purpose programming language such as C++ or
Java, possibly augmented by simulation libraries (e.g.,
CSIM or SimPack). Another approach is to use a specialized
simulation language such as GPSS/H, Simscript II.5, or
MODSIM III. Finally, some simulation packages
support graphical languages for defining simulation mod-
els (e.g., Arena, Extend, SES/workbench). A comprehensive
treatment of simulation techniques can be found in Refs. 26
and 27.

Analytical Models. Analytical models are based on math-
ematical laws and computational algorithms used to derive
performance metrics from model parameters. Analytical
models are usually less expensive to build and more
efficient to analyze compared with simulation models.
However, because they are defined at a higher level of
abstraction, they are normally less detailed and accurate.
Moreover, for models to be mathematically tractable,
usually many simplifying assumptions need to be made
impairing the model representativeness.

Queueing networks and generalized stochastic Petri nets
are perhaps the two most popular types of models used in
practice. Queueing networks provide a very powerful

mechanism for modeling hardware contention (contention
for CPU time, disk access, and other hardware resources)
and scheduling strategies. A number of efficient analysis
methods have been developed for a class of queueing net-
works called product-form queueing networks, which enable
models of realistic size and complexity to be analyzed (28).
The downside of queueing networks is that they are not
expressive enough to model software contention accurately
(contention for processes, threads, database connections,
and other software resources), as well as blocking, simulta-
neous resource possession, asynchronous processing, and
synchronization aspects. Even though extensions of queue-
ing networks, such as extended queueing networks (29) and
layered queueing networks (also called stochastic rendez-
vous networks) (30–32), provide some support for modeling
software contention and synchronization aspects, they are
often restrictive and inaccurate.

In contrast to queueing networks, generalized stochastic
Petri net models easily can express software contention,
simultaneous resource possession, asynchronous proces-
sing, and synchronization aspects. Their major disadvan-
tage, however, is that they do not provide any means for
direct representation of scheduling strategies. The
attempts to eliminate this disadvantage have led to the
emergence of queueing Petri nets (33–35), which combine
the modeling power and expressiveness of queueing net-
works and stochastic Petri nets. Queueing Petri nets enable
the integration of hardware and software aspects of system
behavior in the same model (36, 37). A major hurdle to the
practical use of queueing Petri nets, however, is that their
analysis suffers from the state space explosion problem
limiting the size of the models that can be solved. Currently,
the only way to circumvent this problem is by using simula-
tion for model analysis (38).

Details of the various types of analytical models shown in
Fig.4arebeyondthescopeof thisarticle.Thefollowingbooks
canbeusedasreference foradditional information (3,12,28,
35, 39–42). The Proceedings of the ACM SIGMETRICS
ConferencesandthePerformanceEvaluationJournalreport
recent research results in performance modeling and eva-
luation. Further relevant information can be found in the
Proceedings of the International Conference on Quantitative
Evaluation of SysTems (QEST), the Proceedings of the
Annual Meeting of the IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Tele-
communicationSystems (MASCOTS), theProceedingsof the
International Conference on Performance Evaluation Meth-
odologies and Tools, (VALUETOOLS) and the Proceedings
of the ACM International Workshop on Software and Per-
formance (WOSP).

Model Validation and Calibration

Before a model can be used for performance prediction, it
has to be validated. We assume that the system modeled or
a prototype of it is available for testing. The model is said
to be valid if the performance metrics (e.g., response time,
throughput, and resource utilization) predicted by the
model match the measurements on the real system within
a certain acceptable margin of error (3). As a rule of thumb,
errors within 10% for utilization and throughput, and

Analytical
Models

Performance
Models

Markov Chain
Models

Semi-Markov
Models

Queueing
Network Models

Product-Form
Queueing Networks

Non-Product-Form
Queueing Networks

Extended Queueing
Networks

Generalized
Stochastic Petri Nets

Queueing Petri Nets

Petri Net Models

Layered Queueing
Networks

Simulation
Models

Continuous-Time
Markov Chains

Discrete-Time
Markov Chains

Stochastic
Process Algebra

Figure 4. Major types of performance models.

6 SOFTWARE PERFORMANCE EVALUATION



within 20% for response time are considered acceptable
(10). Model validation is normally conducted by compar-
ing performance metrics predicted by the model with
measurements on the real system. This testing is per-
formed for several different scenarios varying the model
input parameters. If the predicted values do not match the
measuredvalueswithinanacceptablelevelofaccuracy, then
the model must be refined. Otherwise, the model is deemed
validandcanbeusedforperformanceprediction.Thevalida-
tion and refinement process is illustrated in Fig. 5. It is
important that the model predictions are verified for several
scenarios under different transaction mixes and workload
intensities before the model is deemed valid. The model
refinement process usually involves the following activities:

– The model input parameters are verified.

– Assumptions and simplifications made when building
the model are revisited.

– The system is monitored under load to ensure that all
critical aspects of its behavior are captured by the
model.

– It is considered to increase the level of detail at which
the system is modeled.

If after refining the model, predicted metrics still do not
match the measurements on the real system within an
acceptable level of accuracy, then the model has to be
calibrated. Model calibration is the process of changing
the model to force it to match the actual system (43). This
is achieved by changing the values of some model input or
output parameters. The parameters may be increased or
decreased by an absolute or percentage amount. Normally,
input parameters are changed (e.g., service demands); how-
ever, in certain cases, also output parameters might be
changed. If an output parameter is altered when calibrating

the baseline model, then it must be altered in the same
manner whenever the model is used for performance pre-
diction. After the model is calibrated, the validation proce-
dure must be repeated to make sure that the calibrated
model now accurately reflects the real system and workload.
For a detailed discussion of model calibration techniques,
the reader is referred to Refs. 10 and 44.

The extent to which a model can be validated quantita-
tively as described above depends on the availability of an
implementation of the system components. In the initial
phases of system development when no implementation is
available, model validation would be limited to revisiting
the assumptions made when building the model. If a system
or a prototype with a similar architecture to the one mod-
eled is available, then it could be used to provide some rough
measurement data for quantitative validation.

Software Performance Engineering

Over the last 15 years, a number of approaches have been
proposed for integrating performance evaluation and
prediction techniques into the software engineering process.
Efforts were initiated with Smith’s seminal work pioneered
under SPE (45). Since then many meta-models for describ-
ing performance-related aspects (46) have been developed
by the SPE community, the most prominent being the UML
SPT profile and its successor the UML MARTE profile, both
of which are extensions of UML as the de facto standard
modeling language for software architectures. Other pro-
posed meta-models include SPE-MM (47), CSM (48), and
KLAPER (49). The common goal of these efforts is to enable
the automated transformation of design-oriented software
models into analysis-oriented performance models, which
make it possible to predict the system performance. A recent
servey of model-based performance prediction techniques
was published in Ref. 50. Many techniques that use a range
of different performance models have been proposed includ-
ing standard queueing networks (3, 25, 47, 51), extended
queueing networks (49, 52, 53), layered queueing networks
(48), stochastic Petri nets (54, 55), and queueing Petri nets
(4, 21). In recent years, with the increasing adoption of
component-based software engineering, the performance
evaluation community has focused on adapting and extend-
ing conventional SPE techniques to support component-
based systems. For a recent survey of performance predic-
tion methodologies and tools for component-based systems,
refer to Ref. 56.

OPERATIONAL ANALYSIS

An alternative approach to performance evaluation known
as operational analysis is based on a set of basic invariant
relationships between performance quantities (57). These
relationships, which are commonly known as operational
laws, can be considered as consistency requirements for the
values of performance quantities measured in any parti-
cular experiment. We briefly present the most important
operational laws. Consider a system made up of K resources
(e.g., servers, processors, disk drives, network links). The
system processes transactions requested by clients. It is
assumed that during the processing of a transaction,

Figure 5. Model validation and refinement process.

SOFTWARE PERFORMANCE EVALUATION 7



multiple resources can be used and at each point in time the
transaction is either being served at a resource or waiting
for a resource to become available. A resource might be used
multiple times during a transaction, and each time a
request is sent to the resource, we will refer to this as
the transaction visiting the resource. The following nota-
tion will be used:

Vi the average number of times resource i is visited
during the processing of a transaction.

Si the average service time of a transaction at resource i
per visit to the resource.

Di the average total service time of a transaction at
resource i.

Ui the utilization of resource i (i.e., the fraction of time
the resource is busy serving requests).

Xi the throughtput of resource i (i.e., the number of
service completions per unit time).

X0 the system throughput (i.e., the number of transac-
tions processed per unit time).

R the average transaction response time (i.e., the aver-
age time it takes to process a transaction including
both the waiting and service time in the system).

N the average number of active transactions in the
system, either waiting for service or being served.

If we observe the system for a finite amount of time T,
assuming that the system is in steady state, then the
following relationships can be shown to hold:

Utilization Law:

Ui ¼ Xi � Si

Forced Flow Law:

Xi ¼ X0 � Vi

Service Demand Law:

Di ¼ Ui=X0

Little’s Law:

N ¼ X0 � R

The last of the above relationships, Little’s Law, is one of
the most important and fundamental laws in queueing
theory. It can also be extended to higher moments (58).
If we assume that transactions are started by a fixed set of
M clients and that the average time a client waits after
completing a transaction before starting the next transac-
tion (the client think time) is Z, then using Little’s Law, the
following relationship can be easily shown to hold:

Interactive Response Time Law:

R ¼ M

X0
� Z

Although operational analysis is not as powerful as
queueing theoretic methods for performance analysis, it
has the advantage that it can be applied under much more
general conditions because it does not require the strong
assumptions typically made in stochastic modeling. For a
more detailed introduction to operational analysis, the
reader is referred to Refs. 3, 10, and 22.

SUMMARY

In this article, an overview of the major methods and
techniques for software performance evaluation was pre-
sented. First, the different types of workload models that
are typically used in performance evaluation studies were
considered. Next, an overview of common tools and tech-
niques for performance measurement, including platform
benchmarking, application profiling, and system load
testing, was given. Then, the most common methods for
workload characterization and performance modeling of
software systems were surveyed. The major types of per-
formance models used in practice were considered and
their advantages and disadvantages were discussed. An
outline of the approaches to integrating model-based per-
formance analysis into the software engineering process
was presented. Finally, operational analysis was intro-
duced briefly as an alternative to queueing theoretic
methods.

BIBLIOGRAPHY

1. C. U. Smith and L. G. Williams, Performance Solutions - A
Practical Guide to Creating Responsive, Scalable Software,
Reading, MA: Addison-Wesley, 2002.

2. R. R. Dumke, C. Rautenstrauch, A. Schmietendorf, and A.
Scholz, eds. Performance Engineering, State of the Art and
Current Trends, Vol. 2047 of Lecture Notes in Computer
Science, New York: Springer, 2001.

3. D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, Performance
by Design, Englewood Cliffs, NJ: Prentice Hall, 2004.

4. S. Kounev, Performance Engineering of Distributed
Component-Based Systems - Benchmarking, Modeling and
Performance Prediction, Herzogenrath, Germany: Shaker
Verlag, 2005.

5. Sun Microsystems, Inc. Java Platform, Enterprise Edition
(Java EE), 2007. http://java.sun.com/javaee/.

6. Microsoft Corp. Microsoft .NET Framework, 2007. http://
msdn.microsoft.com/netframework/.

7. Object Management Group (OMG). Common Object Request
Broker Architecture (CORBA), 2007. http://www.corba.org/.

8. L. K. John and L. Eeckhout, eds., Performance Evaluation and
Benchmarking. Boca Raton, FL: CRC Press, 2006.

9. R. Eigenmann, ed., Performance Evaluation and Benchmark-
ing with Realistic Applications. Cambridge, MA: The MIT
Press, 2001.

10. D. A. Menascè, V. A. F. Almeida, and L. W. Dowdy, Capacity
Planning and Performance Modeling - From Mainframes to
Client-Server Systems, Englewood Cliffs, NJ: Prentice Hall,
1994.

11. D. Lilja, Measuring Computer Performance: A Practitioner’s
Guide, Cambridge, U.K., Cambridge University Press, 2000.

8 SOFTWARE PERFORMANCE EVALUATION



12. R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simula-
tion, and Modeling, New York: Wiley-Interscience, 1991.

13. Standard Performance Evaluation Corporation (SPEC). http://
www.spec.org/.

14. Transaction Processing Performance Council (TPC). http://
www.tpc.org/.

15. S. Kounev and A. Buchmann, Improving data access of J2EE
applications by exploiting asynchronous processing and
caching services, Proc. of the 28th International Conference
on Very Large Data Bases - VLDB2002, Hong Kong, China,
2002.

16. S. Kounev, B. Weis, and A. Buchmann, Performance tuning
and optimization of J2EE applications on the JBoss platform,
J. Comput. Res. Manage., 113: 2004.

17. SPEC Benchmark Workshop Proceedings. http://www.spec.
org/events/.

18. B. M. Subraya, Integrated Approach to Web Performance
Testing: A Practitioner’s Guide, Hershey, PA: IRM Press,
2006.

19. D. Menascé and V. Almeida, Capacity Planning for Web Per-
formance: Metrics, Models and Methods, Upper Saddle River,
NJ: Prentice Hall, 1998.

20. D. Menascé, V. Almeida, R. Fonseca, and M. Mendes, A meth-
odology for workload characterization of e-commerce sites,
Proc. of the 1st ACM Conference on Electronic Commerce,
Denver, CO, 1999, pp. 119–128.

21. S. Kounev, Performance modeling and evaluation of distributed
component-based systems using queueing Petri nets, IEEE
Trans. Soft. Engineer., 32(7): 486–502, 2006.

22. D. Menascé and V. Almeida, Scaling for E-Business - Technol-
ogies, Models, Performance and Capacity Planning, Upper
Saddle River, NJ: Prentice Hall, 2000.

23. J. Mohr and S. Penansky, A forecasting oriented workload
characterization methodology, CMG Trans., 36: 1982.

24. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Reading, MA: Addison-Wes-
ley, 1999.

25. D. A. Menascé and H. Gomaa, A method for desigh and per-
formance modeling of client/server systems, IEEE Trans. Soft.
Engin., 26(11): 2000.

26. A. Law and D. W. Kelton, Simulation Modeling and Analysis.
3rd ed. New York: Mc Graw Hill Companies, Inc., 2000.

27. J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-
Event System Simulation, 3rd ed. Upper Saddle River, N.J:
Prentice Hall, 2001.

28. G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing
Networks and Markov Chains: Modeling and Performance
Evaluation with Computer Science Applications, 2nd ed.
New York: John Wiley & Sons, Inc., 2006.

29. E. A. MacNair, An introduction to the research queueing
package, WSC ’85: Proc. of the 17th Conference on Winter
Simulation, New York, NY, 1985, pp. 257–262.

30. M. Woodside, Tutorial Introduction to Layered Modeling
of Software Performance, 3rd ed., 2000. Available:
http://www.sce.carleton.ca/rads/lqn/lqn-documentation/tutor-
ialg.pdf.

31. P. Maly and C. M. Woodside, Layered modeling of hardware
and software, with application to a LAN extension router, Proc.
of the 11th International Conference on Computer Performance
Evaluation Techniques and Tools - TOOLS 2000, Motorola
University, Schaumburg, Ill, 2000.

32. M. Woodside, J. Neilson, D. Petriu, and S. Majumdar, The
stochastic rendezvous network model for performance of syn-
chronous client-server-like distributed software, IEEE Trans.
Comput., 44(1): 20–34, 1995.

33. F. Bause, Queueing Petri nets - A formalism for the combined
qualitative and quantitative analysis of systems, Proc. of the
5th International Workshop on Petri Nets and Performance
Models, Toulouse, France, 1993.

34. F. Bause and P. Buchholz, Queueing Petri nets with product
form solution, Perform. Eval., 32(4): 265–299, 1998.

35. F. Bause and F. Kritzinger, Stochastic Petri Nets - An Intro-
duction to the Theory, 2nd ed. New York: Vieweg Verlag, 2002.

36. F. Bause, P. Buchholz, and P. Kemper, Integrating software
and hardware performance models using hierarchical queue-
ing Petri nets, Proc. of the 9. ITG / GI - Fachtagung Messung,
Modellierung und Bewertung von Rechen- und Kommunika-
tionssystemen, (MMB’97), Freiberg, Germany, 1997.

37. S. Kounev and A. Buchmann, Performance modelling of dis-
tributed e-business applications using queuing Petri nets,
Proc. of the 2003 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software - ISPASS2003, Aus-
tin, TX, 2003.

38. S. Kounev and A. Buchmann, SimQPN - a tool and methodology
for analyzing queueing Petri net models by means of simula-
tion, Perform. Eval., 63(4-5): 364–394, 2006.

39. K. S. Trivedi, Probability and Statistics with Reliability,
Queueing and Computer Science Applications, 2nd ed. New
York: John Wiley & Sons, Inc., 2002.

40. R. Sahner, K. Trivedi, and A. Puliafito, Performance and
Reliability Analysis of Computer Systems - An Example-Based
Approach Using the SHARPE Software Package, Dordrecht,
The Netherlands: Kluwer Academic Publishers, 1996.

41. K. Begain, G. Bolch, and H. Herold, Practical Performance
Modeling - Application of the MOSEL Language, Dardrecht:
The Netherlands, Kluwer Academic Publishers, 2001.

42. J. Hillston, A Compositional Approach to Performance Model-
ling, Cambridge, U.K., Cambridge University Press, 1996.

43. P. J. Buzen and A. W. Shum, Model calibration. in Proc. of the
1989 International CMG Conference, Reno, Nevada, 1989, pp.
808–811.

44. J. Flowers and L. W. Dowdy, A comparison of calibration
techniques for queuing network models, Proc. of the 1989
International CMG Conference, Reno, Nevada, 1989 pp. 644–
655.

45. C. U. Smith, Performance Engineering of Software Systems,
Boston, MA: Addison-Wesley Longman Publishing Co., Inc.,
1990.

46. V. Cortellessa, How far are we from the definition of a common
software performance ontology? WOSP’05: Proc. of the 5th
international Workshop on Software and Performance, 2005,
pp. New York, NY195–204.

47. C. U. Smith, C. M. Llad, V. Cortellessa, A. Di Marco, and L. G.
Williams, From UML models to software performance results:
an SPE process based on XML interchange formats, WOSP ’05:
Proc. of the 5th International Workshop on Software and
Performance, New York, NY, 2005, pp 87–95.

48. D. Petriu and M. Woodside, An intermediate metamodel with
scenarios and resources for generating performance models
from UML designs, Soft. Sys. Mode., 6(2): 163–184, 2007.

49. V. Grassi, R. Mirandola, and A. Sabetta, Filling the gap between
design and performance/reliability models of component-based
systems: A model-driven approach, J. Sys. Soft., 80(4): 528–558,
2007.

SOFTWARE PERFORMANCE EVALUATION 9



50. S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, Model-
based performance prediction in software development: A sur-
vey, IEEE Trans. Soft. Engineer., 30(5): 295–310, 2004.

51. V. S. Sharma, P. Jalote, and K. S. Trivedi, A Performance
Engineering Tool for Tiered Software Systems. Los Alamitos,
CA: IEEE Computer Society, 2006, pp. 63–70.

52. V. Cortellessa and R. Mirandola, Deriving a queueing network
based performance model from UML diagrams, WOSP ’00:
Proc. of the 2nd International Workshop on Software and
Performance, New York, NY, 2000, pp. 58–70.

53. A. D’Ambrogio and G. Iazeolla, Design of XMI-based tools for
building EQN models of software systems, in P. Kokol (ed.),
IASTED International Conference on Software Engineering,
part of the 23rd Multi-Conference on Applied Informatics,
Innsbruck, Austria, Calgary, Alberta, Canada: IASTED/
ACTA Press, 2005 pp. 366–371.

54. J. P. Lopez-Grao, J. Merseguer, and J. Campos, From UML
activity diagrams to stochastic Petri nets: application to soft-
ware performance engineering, SIGSOFT Softw. Eng. Notes,
29(1): 25–36, 2004.

55. S. Bernardi and J. Merseguer, QoS assessment via stochastic
analysis, IEEE Inter. Comput., 10(3): 32–42, 2006.

56. S. Becker, L. Grunske, R. Mirandola, and S. Overhage, Per-
formance prediction of component-based systems: A survey
from an engineering perspective, in R. H. Reussner, J. Stafford,
and C. Szyperski, (eds.), Architecting Systems with Trust-
worthy Components, Vol. 3938 of LNCS, New York: Springer,
2006, pp. 169–192.

57. P. J. Denning and J. P. Buzen, The operational analysis of
queueing network models, ACM Comput. Surv., 10(3): 225–
261, 1978.

58. W. Witt, A review of L = lambda-W and extensions, Queueing
Sys., 9(3): 235–268, 1991.

SAMUEL KOUNEV

University of Cambridge
Cambridge, United Kingdom

10 SOFTWARE PERFORMANCE EVALUATION



S

SOFTWARE PRODUCT CERTIFICATION

INTRODUCTION

Here, we examine the process and challenges of certifying
software-intensive systems. We will first review the inter-
pretation of the term, certification. We then review differ-
ent types of certification processes, and discuss challenges
to forming software certification procedures. And finally,
we discuss a strategy for gaining the maximum benefit from
performing certification by formulating the correct proce-
dures that are needed to roll out a certification plan by
recommending appropriate guidelines to those developers
whose products will be judged.

DIFFERENT TYPES OF CERTIFICATION
(WHO, WHAT, WHY?)

Software certification is simply the process of generating a
certificate that supports claims such as (1) the software was
developed in a certain manner, (2) the software will exhibit
some set of desirable run-time characteristics (also termed
attributes), (3) the software version is the authentic one, or
(4) the software has some other static characteristic
embedded into it (for example, there are no faults of type
X). The reason for having certificates in the first place is to
be able to make predictions about how successfully the
software will operate over time. Missions, environments,
hardware, threats, personnel, and many other factors
change during the software’s lifetime, and the purpose
for creating certificates is to reduce the uncertainty as to
what impact all of these changes will have on the software.

So, for example, the certificate could simply state that a
particular type of testing was applied and to what degree of
thoroughness that testing was performed. A certificate can
state that the software should be successfully composed
with any other software component that contains a certain
set of predefined characteristics. Or a certificate can state
that the software will never fail more than once in
10,000 hours. Furthermore, any certificate created for
(2) must have very specific assumptions about the environ-
ment, mission, and threat space that the software will
experience during operational deployment. Thus, a certifi-
cate is simply the end product of this accreditation process.

Note that the information content in a certificate must
be carefully written. Failure to remove ambiguities or
inconsistencies in certificates essentially renders them as
dangerous. For example, if a certificate that is based on test
results only claims that, for 10 distinct test cases that were
used, the output from the software was always a positive
integer, that should not be interpreted as a guarantee that
all other test cases not tried, the output will always be a
positive integer. Therefore, key facet to software certifica-
tion is to not over claim aspects of how the software will
behave in the future. And without a proper scoping of the

bounds of the claims in the certificate, the certificate will be
flawed.

Two key questions that arise before certification occurs
are as follows: (1) Who does the certification? and (2) what is
being certified?

Let’s first turn to the question of who performs the
certification. The process of creating a certificate is typi-
cally performed by one of three parties: (1) either by the
vendor of the software, (2) by a user, or (3) by an indepen-
dent third party that is performing the service independent
of the vendor or users. These key approaches roll a certi-
fication process out after the appropriate standards (i.e.,
criteria for certificate judgment and scope) are formed.
Note, however, that first-party certification is always
viewed suspiciously, and second-party certification adds
an additional burden on the user of the software that may
be a burden for which the user cannot perform. Therefor,
third-party certification is generally viewed as preferable.

Numerous examples of third-party certification occur in
industries such as electronics (e.g., Underwriters Labora-
tory), aviation [e.g., DERs (designated engineering repre-
sentatives)], and, consumer products (e.g., Consumer
Reports magazine). In industrial applications, organiza-
tions such as TUV dominate the market for the assessment
of programmable controllers used in the process industry,
and they are also active in railways and nuclear power
plant assessments. In aviation, DERs are employee repre-
sentatives of the company building the aircraft or compo-
nents who have sworn their allegiance to a regulatory
organization such as the FAA or CAA. And in terms of
consumer products, a plethora of consumer advocate orga-
nizations do everything from rate the safety of toys for
children to rating the quality of automobiles.

Many quality-of-service (QOS) attributes of software
can be certified: reliability, safety, security, performance,
etc. In this effort, we are focusing on two attributes: inter-
operability and safety.

Certification approaches are not a totally new idea. For
example, The Open Group certifies that Linux implemen-
tations are indeed Linux and that X-windows conforms to
their standards. Other examples are protocol testing by
telecoms laboratories and compiler testing to demonstrate
conformance with a language definition. (The rather mis-
named Ada validation suite tests for certain functional
aspects of the compiler but not for all required QOS attri-
butes such as reliability.) However, the uniqueness of this
effort stems from the following hypothesis: it is better to
certify products that have negative safety consequences if
they fail than to only certify how those products were
developed.

We begin from the premise that interoperability can only
be successfully achieved if the following characteristics
are considered: (1) composability, (2) predictability,
(3) attribute measurement, (4) QoS attribute trade-off
analysis (economic and technical), (5) fault tolerance and

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



non-interference analysis, (6) requirements traceability,
(7) access to prequalified components, and finally, (8) pre-
cise bounding of the software’s mission, environment, and
threat space. If we have access to information concerning
these 8 considerations, we contend that a plausible and
scientifically sound approach to software certification can
be formulated. Furthermore, information concerning
human factors must be included in the definition concern-
ing the assumed, target environment.

This discussion then brings us to the issue concerning
the difference between an (1) original certification,
(2) decertification, (3) miscertification, and (4) recertifica-
tion. As mentioned, the original certification is based on
specific assumptions about the environment, mission, and
threat space that the software will encounter during
operational usage. In most systems over time, these
assumptions will change more quickly than the code itself
can be modified.

Therefore, some events require that an existing certifi-
cate (or parts of it) be nullified. This process is a decertifica-
tion. To ensure that the software can handle changing
assumptions, additional certification activities will be
required. This process is a recertification, and it need not
necessarily be a complete start from scratch effort, provided
that assurances included in the original certificate still
hold. And a miscertification is simply the problem of creat-
ing the wrong certificate or no certificate at all (when one
should have been created). Miscertifications are of grave
concern, and the goodness of the certification process and
how well it is adhered to in order to avoid this event are of
much importance.

Before leaving the topic of miscertifications, we must
stress that, ultimately, any certification program must
ensure fairness. Vendors of products generally view reg-
ulation and certification suspiciously, where vendor A
believes that vendor B got a better deal when going through
the process. All steps must be considered to ensure that a
fair hearing of all evidence occurs. This process does not
mean that mistakes will not be made, but if a certification
program is perceived as a coin toss, where the outcomes
made are lacking repeatable, scientific, and statistical pro-
cesses, the certification program will ultimately die.

Certificates are typically done as a follow-up check to
ensure that certain processes were followed during devel-
opment; these ‘‘process certificates’’ are the first type of
certification that will be discussed here. The second type of
software certification often mentioned refers to the licen-
sing of software engineering professionals; this is still
referred to as software certification but should more appro-
priately be referred to as ‘‘professional licensing.’’ And the
third and most important but most difficult claim that a
certificate can make is the determination of how the soft-
ware will behave in use. This process is referred to as
‘‘product certification,’’ and that is our focus here.

Note that the three key messages that a certificate can
convey are not necessarily the same:

1. Compliance with standards vs.

2. Fitness for purpose vs.

3. Compliance with the requirements.

Compliance with the standards simply means that
the standards that were required during development
were indeed followed, but that does not mean that the
product itself is fit for the purpose that the user needed for
it to be, and that does not necessarily mean that the
software complies with the requirements.

The key difference between (2) and (3) is that those two
are only equivalent if the requirements accurately and
completely defined what the user needed the software to
do, and thus, it is possible that the software meets the
requirements but does not perform as the user needs. Note
that (1) deals with process certification and that (2) and (3)
deal with product certification.

The beauty of having a certificate with correct infor-
mation is that it allows for a common language (a.k.a.,
mutual recognition agreements that support interoper-
ability) that can be employed to discuss relatively abstract
notions. As we know, software is somewhat amorphous in
that, unlike a hardware entity, it is hard to get an under-
standing about the QoS properties of entities that are so
abstract.

So from that standpoint, certification standards can
be beneficial. One classic example is the recent adoption
by many nations of the Common Criteria, which is simply
a process certificate that defines various security levels
and the processes that must be employed to demonstrate
those levels. And furthermore, some accreditation
agencies (e.g., NIST) now certify third-party companies
that actually perform the work and generate the certifi-
cates.

But with the exception of a few other process certificates
(e.g., IEC 61508 and RTCA DO-178B), not many organiza-
tions perform third-party certifications that are product-
focused. In fact, organizations such as Microsoft and Nets-
cape have been accused of violating user privacy, by spying
on their users during product usage and sending informa-
tion back to the companies that allow those companies to
not only collect accurate operational profiles (operational
profiles are part of what we consider as the environment)
but also to perform a ‘‘quasi’’ first-person product certifica-
tion.

Note that software certification is similar to Indepen-
dent Verification and Validation (IV&V), a technique that
has long been used in the NASA and DoD communities, and
so we now should explain how those two term relate. To
begin, Barry Boehm defines validation as making sure that
you are building the right product, and verification involves
assuring that you build the product right (i.e., correctly).
And although these terms may seem confusing, they are
both closely related.

Furthermore, little ‘‘i’’ Validation and Verification
(V&V) is simply performing first-person V&V on a system,
and big ‘‘I’’ V&V requires independence, from either a
second party or third party (third party is typically pre-
ferred). How IV&V relates to certification is as follows:
They are the same, provided that the type of certification
being performed is either a process certification or product
certification. However, one caveat here: Certification typi-
cally results in a certificate, and IV&V does not necessarily
result in a certificate.

2 SOFTWARE PRODUCT CERTIFICATION



BENEFITS AND THREATS

The development, deployment, and integration of systems
developed and perhaps certified to a wide range of military
standards is an inescapable part of the problem of interest
here. There are, however, benefits and threats from
attempting this, as follows.

Potential Benefits

� Certification can influence the vendor space from
which the DoD acquires components. That is to say
that a certification program can force a minimum set of
requirements that all software should satisfy. This
processs has the potential to raise the general level
of dependability or to reduce costs to the users.

� Certification as a basis for gaining assurance over
time, as a form of trend analysis that shows that a
system is improving during development or maturing
during usage.

� Risk transfer from the user or vendor to the certifica-
tion authority.

� Guarantees of some minimum level of behavior (both
functional and nonfunctional) for products. Note that
nonfunctional behaviors generally include safety,
security, availability, performance, fault tolerance,
maintainability, survivability, and sustainability.
And also note that quantitative and qualitative metrics
such as mean-time-to-failure, mean-time-to-repair,
mean-time-to-hazard, up-time, and performance can
all be collected as part of the evidence needed to create
a software certificate.

Potential Threats

� Adding unnecessary costs and delays to projects

� Giving unwarranted confidence in system behavior as
a result of miscertification

� Preventing flexibility, innovation, and interoperabil-
ity, as certificates can be quite narrowly defined

� Reducing the ability of user to undertake an examina-
tion of a product (why bother if organization XYZ has
already done it?)

Although it is unclear as to what the current world market
is in software certification, we can look at the recent NIST
report that said that, in the United States alone, the United
States lost around $60B as a result of inadequate software
testing in 2001. Had the United States had access to a
certification organization such as Underwriter’s Labora-
tory to provide independent assessments on the quality of
the software before its release, it is not surprising to assume
that that number could have been decreased.

Note that there are two differing ‘‘political’’ camps on the
ethics of having certification processes: there are those that
believe any ‘‘bar’’ that people are forced to cross is better
than no bar at all. And there are those that believe that any
bar lulls those that produce products into a false sense of
security: So long as they do ‘‘just enough’’ to cross the bar,

then they have done enough to satisfy minimum industry
standards. In practice, any certification approach will have
an impact on the market and the behavior of suppliers, and
so the issues are not solely technical, and any strategy must
be cognizant of the perhaps subtle interplay of technical,
social, and market forces.

The future systems are likely to be heterogeneous,
dynamic coalitions of systems of systems (SoS), and as
such, they will have been built and assessed to a wide
variety of differing standards and guidelines. Our main
recommendations are that the certification of SoS should be
based around the concept of interoperability cases, general-
izing the current requirement for safety and reliability
cases. Examples of ‘‘reliability cases’’ can be found in Brit-
ish Def Stan 00-42 Part 3, which deals with system relia-
bility and maintainability; Part 2 of that standard deals
specifically with building software reliability cases. Safety
cases are required in the British military’s Def Stan 00-55
and more recently in the United Kingdom’s CAA Safety
Regulation of air traffic management systems and its pro-
posals1.

Ultimately, all certificates are not warranties or guar-
antees but evidence, arguments, and claims. Thus, all
information to support creation of a certificate should be
based on a claims-arguments-evidence2 framework with
the following components:

1. A goal-based view of that expresses certification
requirements in terms of a set of claims about the
system and its QoS attributes

2. Evidence that support the claims

3. An explicit set of argument that provides a link from
the evidence to the claims

4. For critical systems, the underlying assumptions and
concepts used to support and formulate the goals and
claims should be described in terms of a series of
models (e.g., at system, architecture, design, and
implementation levels)

Such a framework should provide a technical basis that
allows for interworking of standards such as IEC 61508 ,
UL 1998, and DO1783 IEC 61508 is process and system
safety focused, UL 1998 is component safety and product
oriented, and DO178B is system and reliability focused.
Thus, harmonizing three such standards into a single
approach can only be accomplished using an approach
such as the claims-evidence-arguments perspective
because standard is attempting to convey a different defini-
tion for what is or is not trustworthy.

Although this goal-based approach moves from safety to
other dependability areas (e.g., to interoperability), it needs

1CAP670 SW01, ‘‘Requirements for Software Safety Assurance in
Safety Related ATS Equipment.’’
2An introduction to safety cases on which these idea are built can
be found at http://www.adelard.com/ that hosts the guidance for
the IEE Functional Safety portal on this topic.
3Need a cross-reference and consistency with the standards section
of the report.

SOFTWARE PRODUCT CERTIFICATION 3



supporting technical work and the development of a body of
practice. Although there is considerable experience with
this approach for safety applications worldwide, it may be
new to some organizations, and the deployment of the
approach could be facilitated by:

1. Guidance on strategies and arguments for demon-
strating claims and on how claims might be derived,
including guidance on what are useful certifiable and
measurable properties.

2. Guidance on how evidence is generated by validation
and vertifcation techniques. This is not found in any
existing standards, and we have begun to elaborate
on how evidence is generated throughout the life-
cycle. It should be noted that it is extremely difficult
to provide high-fidelity certificates for highly critical
systems. To obtain substantially improved mean-
time-to-failure measures (beyond those of commer-
cial software), one order of magnitude in fault density
reduction is generally required.

3. Guidance on pragmatics such as feasibility, scalabil-
ity, and tool support.

4. Guidance on the relationship to (and the interface
with) frequently used standards.

CONCLUSIONS

Disparate forms of certification exist, and they vary widely
in their objectives, the level of detail information they
provide, and their ability to effectively reduce project and
system risk.

Certification is an attempt to transfer a product’s risk to
the certifier, but in most safety situations, the user of the
system remains responsible for the product’s safety. How-
ever, in other situations, the risk transfer can be real, thus
making it highly attractive to the user. However, for soft-
ware, the fear of liability that stems from potentially mis-
certifying software has prevented much commercial
interest in creating laboratories such as UL.

All military organzations, both in the United States and
abroad, should encourage certification as a tool for support-

ing interoperability and hence confidence that their sys-
tems are behaving as anticipated. Process certification
should not be totally dismissed and can support confidence
in the evidence collected (and normally be a prerequisite to
baseline standards such as ISO9001), but the overall
emphasis of certification should be on the product. We
propose that a claim-argument-evidence-based approach
should be adopted as best practice.

At this stage, we are cautious about recommending the
actual arrangements for rolling out a certification program,
and whether self-certification, second-party, or indepen-
dent certification is optimal. For critical systems, third
party is generally regarded as best practice. And for less
critical systems, the benefits of independent oversight
should be assessed, and only those activities that add value
to prejects should be identified.

FURTHER READING

J. Voas and C. Vossler, Defective software: An overview of legal
remedies and technical measures available to consumers, Adv.
Comput., 53: 451–497, 2001.

J. Voas, Software Certificates and Warranties: Ensuring Quality,
Reliability, and Interoperability. New York: Wiley, 2004.

J. Voas, Certification: Reducing the hidden costs of poor quality,
IEEE Software, 16 (4): 22–25, 1999.

R. Bloomfield, J. Cazin, D. Craigen, N. Juristo, E. Kesseler, and
J. Voas, Final Report of the NATO Research Task Group IST-027/
RTG-009 on the Validation, Verification, and Certification of
Embedded Systems, 2004.

J. Voas, Certifying off-the-shelf software components, IEEE Com-
puter, 31 (6): 53–59, 1998. (Translated into Japanese and reprinted
in Nikkei Computer magazine).

J. Voas, Toward a usage-based software certification process, IEEE
Computer, 33 (8): 32–37, 2000.

J. Voas, Certifying software for high assurance environments,
IEEE Software, 16 (4): 48–54, 1999.

JEFFREY VOAS

SAIC
Arlington, Virginia

4 SOFTWARE PRODUCT CERTIFICATION



S

SOFTWARE QUALITY CLASSIFICATION
MODELS

INTRODUCTION

Software quality is an important attribute for the success-
ful operation of high-assurance systems. Many measures of
quality exist, fault content being the most common. An
ideal system will have no faults, but given the current state-
of–the-art of software engineering, no large system can be
guaranteed to be fault-free, and the goal is to minimize the
presence of faults in the delivered product. Toward this
objective, a variety of tools and techniques are employed
throughout the development lifecycle. Among these, test-
ing is considered to be the most effective technique. Because
testing resources are limited and expensive, it is highly
desirable to identify and target potentially fault-prone
components early for efficient allocation of testing and
other quality assurance efforts, where the term ‘‘fault-
prone’’ is application-dependent, which requires objective
and dependable models that relate component metrics to
fault-proneness. Such models can be used to classify com-
ponents into two classes, fault-prone or not fault-prone.
However, the software development process is not under-
stood well enough to derive theory-based models. There-
fore, such models are mostly obtained from experimental or
historical data using one of many available techniques after
an empirical modeling process. The conjecture is that new
components that are similar to the old ones likely are to
have equivalent fault-proneness.

Formally, this modeling activity can be described as
developing an input–output mapping pattern on the basis
of limited evidence about its nature. The evidence avail-
able is a set of labeled data about n components, denoted
as

D ¼ fðxi;yiÞ : xi 2Rd; yi 2R; i ¼ 1; 2; . . . ; ng ð1Þ

Here, xi are the component metrics and yi are the class
labels. This article addresses various issues that occur
during the model development and evaluation process.

Classification models are employed in many disciplines
(e.g., astronomy, medicine, computer science, social
sciences, and engineering). A vast body of literature exists
that deals with the development of such models using
techniques from statistics, machine learning, neural net-
works, and so on. In software engineering, the component
classification problem has been addressed using techniques
such as principal component analysis, logistic regression,
neural networks, classification trees, and case-based rea-
soning. Some of the reported studies provide a comparative
assessment of various classification techniques to gain
insight into their applicability and predictive performance
in varying software development environments.

The remainder of this article is organized as follows. A
brief technical description of some component classification
techniques is presented, as is an overview of selected
representative studies. A generic model development and
evaluation process is then presented, which includes a
description of several important issues that occur during
this process. The radial basis function (RBF) model, a
recent technique used for software component classifica-
tion, is also described. A case study is presented to illustrate
the modeling process using RBF and NASA software data.
Some concluding remarks are presented to finalize the
article.

CLASSIFICATION TECHNIQUES

This section provides a brief description of some commonly
used techniques reported in the literature for software
classification applications. Details about their theoretical
underpinnings and model fitting algorithms can be found in
Han and Kamber (1) and in Hastie et al. (2).

Logistic Regression

Logistic regression is used to determine the posterior prob-
ability of a class as a linear function of predictor variables.
In the simple case of two classes, the probability, p, of a
component being fault-prone in terms of metrics x1, x2, . . ., xd

is given by

log
p

1� p

� �
¼ bo þ

Xd

i¼1

bixi ð2Þ

The parameters b’s are usually obtained by the maximum
likelihood estimation method. Let the class of a component
be yi, yi ¼ 0 or 1, where 0 is not fault-prone and 1 is fault-
prone, and suppose there are n components in the dataset.
Then treating yi’s as n independent Bernoulli trials, with
success probability p, the likelihood function is obtained
from Equation (2) based on the data from Equation (1). The
function is then solved using the Newton Raphson algo-
rithm. The metrics values of a new component are then used
to determine its class using the fitted model obtained from
Equation (2).

Classification Trees

Tree-based classification models partition the metrics
space according to some specified criterion. The model is
represented graphically as a spanning tree that is tra-
versed according to component metrics and their values.
The leaf nodes represent component classes. The tree is
generated recursively in a top-down fashion using one of
many algorithms. Quinlan’s (3) in a popular algorithm that
starts with a single node (root node) that represents the
metric that best discriminates between component classes

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



using an entropy-based criterion. Subtrees are then gen-
erated recursively using the remaining metrics.

Principal Component Analysis

In most practical applications, the metric values are corre-
lated so that the resulting models are hard to interpret and
are not stable. Principal component analysis (PCA) is a
statistical technique that generates new metrics, called the
principal components, that are weighted sums of the ori-
ginal metrics. These metrics are orthogonal to each other,
but not independent. Generally, small number of principal
components can capture the effect of all the metrics. A
classification model is developed in terms of these principal
components, which leads to a reduction in the dimension-
ality of the model, a desirable feature of a classifier. How-
ever, all the metrics values of a new component are still
needed to determine its class.

Case-Based Reasoning

This technique generates classification models based on
previous similar cases in the database, called the case base.
The similarity of a component in terms of its metrics is
determined by a specified distance measure. The rationale
behind this technique is that components that are similar to
each other are likely to have a similar fault-proneness
property. Many issues need to be resolved while designing
a case-based classifier, such as choice of distance measure,
number of neighbors to use for determining fault-prone-
ness, and weights to assign to the component metrics.

Neural Networks

A neural network consists of one input, one output, and one
or more hidden layers, each responsible for data processing.
The component metrics are presented to the input layer.
Their weighted values are processed by the nodes (neurons)
in the first hidden layer according to a specified activation
function, weights, and bias values. The outputs are then
presented to the next layer for processing. This process
continues until the output layer evaluates the component
class. The architecture and other parameter values of the
network are determined by using one of many algorithms,
such as the popular back-propagation algorithm. During
training, the discrepancy between the network generated
and the true output values is back-propagated through the
network to update the weight and bias parameters. The
training process is repeated for a specified number of
iterations or when a desired accuracy is achieved.

SOFTWARE CLASSIFICATION STUDIES

Several classification models have been developed and are
employed in software engineering applications. Many stu-
dies during the past 15 years have described the results of
classification investigations using domain-specific data
from specific development environments and one or more
classification techniques. As a result, it is not practical to
draw general inferences about the relative merits of various
techniques. Yet, they provide insights into their applicabil-
ity and use for different environments and applications.

Some selected representative studies are summarized
below. The objective here is to provide a perspective on
the state of research and of practice rather than a complete
literature review.

An empirical comparison of several classification tech-
niques was reported in Lanubile and Visaggio (4) based on
small business applications written by students. They con-
sidered discriminant analysis, PCA, logistic regression,
classification trees, and so on. Their results indicated
that no model was able to discriminate effectively between
fault-prone and non-fault-prone components. Denaro et al.
(5) applied logistic regression and cross validation by using
many metrics combinations from systems produced in
industrial environments. Their results are optimistic but
cautionary about the cost-effectiveness and practical
applicability of such models. Briand et al. (6) studied sub-
sets of metrics, called optimized set reduction, to charac-
terize objects. These subsets form patterns that are used to
classify new objects. Tree-based models were presented by
Khoshgoftaar and Seliya in Ref. 7. Classification trees were
used by Selby and Porter (8) to analyze fault-proneness of
components from several NASA software systems. Fenton
and Neil (9) provided a critical evaluation of many defect
detection models. They suggested the use of Bayesian belief
networks for improved performance.

Case-based reasoning classification models were com-
pared by El Eman et al. (10). They evaluated many combi-
nations of the parameters that need to be specified for such
models. The data source was a large real-time system,
written by professional programmers in a commercial
environment. They found that the classification perfor-
mance was not sensitive to the choice of parameters.

Khoshgoftaar and Seliya (11) give the results of a com-
parative assessment of logistic regression, case-based rea-
soning, classification trees, and so on by using data from
four releases of a large telecommunication system. They
also presented tree-based methods in Ref. 7. They found
that the predictive performance of the techniques was
significantly different across releases. This observation is
consistent with some other studies, indicating that predic-
tion of fault-proneness is influenced by system and data
characteristics.

Various studies have investigated the fault-proneness
issue for classes in object-oriented development based on
class metrics. A study by Basili et al. (12) compared the
relative predictive performance of design-based object-
oriented metrics. Recently, Zhou et al. (13) reported that
design metrics were able to predict low severity faults
better than high severity ones in fault-prone classes.
Nagappan et al. (14) studied post-release defects in some
Microsoft systems and their statistical correlation to com-
plexity metrics. They employed principal component
regression to predict the likelihood of defects in the field
for new entities. They also noted that the predictors from
one project can be useful for similar new projects.

Ma et al. (15) analyzed fault data from five NASA
projects for software quality prediction. They employed
balanced random forests, classification trees, k-nearest
neighbors, and several other machine learning and statis-
tical techniques to compare performance using six mea-
sures, including accuracy.

2 SOFTWARE QUALITY CLASSIFICATION MODELS



Neural network-based classification models have also
been employed by many authors [e.g., Zhang and Tsai (16)].
Two recent studies using radial basis functions, a special
type of neural network, are reported by Goel and Shin (17)
as well as Shin and Goel (18).

MODEL DEVELOPMENT PROCESS

Classification model development can be seen as an itera-
tive multistep process as shown in Fig. 1. Most techniques
follow such a process even though they differ in implemen-
tation details. The modeling process requires a thorough
understanding of the data, the techniques, and the applica-
tion environment. The first step involves the selection of
metrics data to be used and the undertaking of data pre-
processing. In the second step, statistical or other algo-
rithms are used to determine parameters and to evaluate
model performance. Multiple candidate models are usually
considered. The third step involves model selection and its
assessment. Some pertinent issues that occur during the
modeling process are briefly described below. Details can be
found in Goel and Shin (19), Han and Kamber (1), and
Hastie et al. (2).

Data Selection and Preprocessing

Selection of data to be used for modeling is a nontrivial task
that requires an understanding of the development envir-
onment and the application domain. Using too many or too
few metrics is undesirable. Sometimes data about many
metrics are available, but all may not be necessary, which
can happen when some metrics have interdependencies or
when some are irrelevant. Subset selection techniques can
be used to reduce the number of metrics for modeling.
Preprocessing of data (e.g., data cleansing, normalization,
grouping, and transformation) are undertaken at this
stage.

Model Fitting and Evaluation

Often, multiple algorithms are available for determining
model parameters. Efficiency and accuracy considerations
generally dictate the choice of the algorithm to use. The
performance of the model is evaluated using criteria such as
Type I and Type II errors, overall classification accuracy,
and so on. Several models are generally considered and
their performance measures are evaluated. A commonly
used approach is to divide the data into three groups called
training, validation, and test data. Training data is used to
fit candidate models. Their performance is evaluated on the
validation data and generally the model with the lowest
validation error is preferred. Some other common
approaches are cross-validation, leave-one-out, and boot-
strap (2). If the models are not good, different datasets or
modeling techniques are selected.

Model Selection and Assessment

In this step, a preferred model is determined, based on
several considerations. In addition to the error measures,
model complexity is also an important issue. Generally, a
parsimonious model is preferred. Yet, too simple a model
may not fit the data well, whereas a complex model may fit
it too well and will fail to produce good results on new
components. This phenomenon is well known as the under-
fitting-overfitting or bias-variance dilemma. Sensitivity
analyses are performed to evaluate multiple models. The
adequacy of the model from its use and applicability per-
spectives is assessed at this stage. Issues such as compre-
hensibility and reasonableness are also considered. An
appropriate model is then selected based on the above
considerations. The performance of the selected model on
the test data is used as a measure of its predictive accuracy
and usually is considered to be an important criterion to
evaluate the usefulness and applicability of a model. If no
model is satisfactory or alternate models are desired, the
iterative process is repeated.

RADIAL BASIS FUNCTION MODEL

This section presents a recently introduced new technique
(17,18) for software quality evaluation using radial basis
functions (RBF), a class of advanced mathematical models
for function approximation or classification. They have
been employed in a wide variety of disciplines, from signal
processing to medical diagnosis. The RBF is a nonlinear
model that consists of two mappings. In the first, inputs are
transformed nonlinearly by the basis functions; in the
second, the transformed outputs are weighted linearly to
produce the output. Formally, for a mapping f : Rd!R,
the RBF network model can be described as

fðxÞ ¼
Xm
j¼1

wjwjðxÞ ¼
Xm
j¼1

wjwðkx� mjk=sjÞ ð3Þ

where x2Rd is the input vector and m is the number of basis
functions. Also, mj 2Rd is the jth basis function center, sj’s
are basis function widths, wj’s are weights, and k � k denotes

Metrics
database

Data selection and 
preprocessing

Model fitting
and evaluation

Model selection 
and assessment

Use for quality 
classification

Model Satisfactory

M
od

el
  U

ns
at

is
fa

ct
or

y

Figure 1. Model development process.

SOFTWARE QUALITY CLASSIFICATION MODELS 3



the Euclidean distance. The basis functions f(�) here play
the role of transfer functions in traditional neural net-
works, except for the unique feature that their responses
to the input vectors are monotonically decreasing or
increasing with distance from the centers, and hence the
name. In practice, the Gaussian is the most popular basis
function because it has attractive mathematical properties
of universal and best approximation and its hill-like shape
is easy to control with the parameter s. The mathematical
form of the mapping in Equation (3) for the Gaussian case
becomes

fðxÞ ¼
Xm
j¼1

wjexpð�kx� mjk2=2s2
j Þ ð4Þ

A diagrammatic representation showing the details of the
above mappings is given in Fig. 2. Here, the input layer
takes the metrics data X to be used for classification mod-
eling. The hidden layer performs the nonlinear transforma-
tions on these data via the m basis functions. The output
layer produces the classification results y by the weighted
responses from the basis functions.

The RBF model is defined completely by the parameter
set P ¼ ðm;s;m;wÞ. Therefore, the RBF design problem is
to determine its three m parameters, namely, m centers, m
widths, and m weights. Many algorithms have been pro-
posed in the literature to determine these parameters. In a
new algorithm, called the SG (Shin–Goel) algorithm, the
modeling problem is formulated as follows (17,18,20). First,
the algorithm selects the number of basis functions for a
given global s that satisfies a specified measure of model
complexity, called representational capability. For a
selected (m,s) pair, the corresponding centers are deter-
mined next. Finally, the linear parameters w are deter-
mined by the pseudo-inverse method. This algorithm is
purely algebraic and employs only matrix computations.
In particular, it avoids random iterations and leads to a
consistent and reproducible design.

ILLUSTRATIVE EXAMPLE

Data from selected NASA software systems, SEL (21), are
used in this section to illustrate the classification model
development, evaluation, and selection process. The data-
base contains project and product measure from space-
related systems and has been used in many other studies
[e.g., Selby and Porter (8), Selby (22), and Shin and Goel
(18)]. The RBF model and the SG algorithm described above
are employed for developing the classification models in
this example.

Data Selection and Preprocessing

The database contains values of several metrics and the
number of faults for each component in the form of Equa-
tion (1). Only three metrics, the design metrics, are used in
this simple example. These metrics are listed in Table 1
along with two statistics, the average and the standard
deviation. A module is defined to be fault-prone if the
number of defects exceeds five. The design metrics become
available early in the software development lifecycle and,
therefore, classifiers based on these can be used for early
identification of potential fault-prone components. How-
ever, as mentioned earlier, metrics selection is an impor-
tant issue but is not discussed further in this example.

Next, the three metrics were normalized to be in the
range [0,1] as follows.

Normalized Value ¼ Original value�Minimum value

Maximum value�Minimum value

� �

For model development, evaluation, and selection, half of
the components were randomly selected to form the train-
ing set. The other half were randomly divided into two
equal sets to form the validation and test sets.

Model Fitting and Evaluation

The algorithm described in the previous section was used to
develop RBF classifiers. Six fitted models and their classi-
fication errors on the training, validation, and test sets are
listed in Table 2. It is noted that the training error tends to
decrease with increasing model complexity (m) but not
monotonically. Because of noise in real-world data, the
training error can sometimes increase with m, as is the
case here. However, the trend will show decreasing train-
ing error as m increases, and the value eventually will
become very small when the model complexity gets very
high. The validation and test errors first decrease with m

Figure 2. Radial basis function model structure.

Table 1. List of Metrics

Variable Description Average
Standard
Devidation

X1 Function calls from
this component

9.51 11.94

X2 Function calls to
this component

3.91 8.45

X3 Input/Output parameters 27.78 23.37

4 SOFTWARE QUALITY CLASSIFICATION MODELS



and then increase. Again, the values are not likely to follow
a monotonic pattern for data from actual systems, although
the trend will be as mentioned above . Plots of these errors
versus m and s as well as versus m are shown in Figs. 3 and
4, respectively. These plots provide useful insight into the
behavior of training, validation, and test errors, even for
this limited set of data and models.

Model Selection and Assessment

In practice, the model with the smallest validation error is
selected from the candidate models. From the data in
Table 2 and the plots in Figs. 3 and 4, model C would
seem to be the preferred choice. However, other models
may also be acceptable, depending on the application.
When evaluated on test data, the classification error of
this model is 25.63%. This indicates that if model C is used
to determine the fault-proneness of new, yet unseen, com-
ponents, it is likely to make about 25.63% erroneous clas-
sifications. From the software engineering perspective, this
value is respectable and the model could be considered to be
satisfactory.

Sensitive Analysis

The above classifiers were obtained from the design metrics
only. To evaluate the effect of metrics selection, classifiers
were also developed based on three coding metrics (size,

comment lines, and number of decisions) as well as for all
six metrics. The test errors for these cases were 24.92% and
23.86%, respectively. From a software engineering view-
point, they are all satisfactory values. Other error mea-
sures could be used for model evaluation and selection, as
well as different sensitivity analyses could also be pursued.
Such choices depend on the software development and
application environment.

CONCLUDING REMARKS

This article discusses the importance of classification mod-
els for early identification of fault-prone software compo-
nents to increase testing efficiency and effectiveness. Some
commonly used modeling techniques and selected classifi-
cation studies are summarized. A generic modeling process
is presented and some issues that develop during this
process are highlighted. A recently introduced classifica-
tion technique based on radial basis functions is described.
A case study is discussed to illustrate the model develop-
ment, evaluation, and selection process. In conclusion, it
should be noted that modeling from data is a difficult
problem, which is especially true in software engineering
applications.

Table 2. RBF Models and Classification Errors

Model s Complexity (m)

Classification Error (%)

Training Validation Test

A 0.2 21 23.86 24.62 26.62
B 0.4 10 23.37 24.62 25.13
C 0.6 7 23.12 24.12 25.63
D 0.8 4 23.62 25.63 26.13
E 1.0 4 23.87 26.13 26.13
F 1.2 4 23.62 26.13 26.63

Figure 3. Classification errors versus (m-s). Figure 4. Classification errors versus m.

SOFTWARE QUALITY CLASSIFICATION MODELS 5



BIBLIOGRAPHY

1. J. Han and M. Kamber, Data Mining, 2nd ed., San Francisco,
CA: Morgan Kauffman, 2006.

2. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Interference, New York: Springer, 2001.

3. J. R. Quinlan, C4.5 Programs for Machine Learning, San
Francisco, CA: Morgan Kaufmann, 1993.

4. F. Lanubile and G. Visaggio, Evaluating predictive quality
models derived from software measures: lessons learned, J.
Syst. Softw., 38: 225–234, 1997.

5. G. Denaro, M. Pezze, and S. Morasca, Towards industrial
relevant fault-proneness models, Internat. J. Soft. Engineer.,
Knowledge Engineer., 14: 1–23, 2003.

6. L. Briand, V. Basili, and C. Hetmanski, Developing interpre-
table models with optimized set reduction for identifying high-
risk components, IEEE Trans. Soft. Enginee., 19: 1028–1044,
1993.

7. T. M. Khoshgoftaar and N. Seliya, Tree-based software quality
estimation models for fault prediction, METRICS 2002, IEEE
Computer Society, pp.203–214, 2002.

8. R. W. Selby and A. A. Porter, Learning from examples: gen-
eration and evaluation of decision trees for software resource
analysis, IEEE Trans. Soft. Engineer.14(12): 1743–1757, 1998.

9. N. Fenton and M. Neil, A critique of software defect prediction
models, IEEE Trans. Soft. Engineer., 25: 675–689, 1999.

10. K. El Eman, et al., Comparing case-based reasoning classifiers
for predicting high risk software components, J. Syst. Soft., 55:
301–320, 2001.

11. T. Khoshgoftaar and N. Seliya, Comparative assessment of
software quality classification techniques: an empirical case
study, Empirical Soft. Engineer., 9: 229–257, 2004.

12. V. R. Basili, L. C. Briand and W. L. Melo, A validation of object-
oriented design metrics as quality indicators, IEEE Trans.
Soft. Engineer., 22: 751–761, 1996.

13. Y. Zhou et al. Empirical analysis of object-oriented design
metrics for predicting high and low severity faults, IEEE
Trans. Soft. Engineer., 32: 771–789, 2006.

14. N. Nagappan et al., Mining metrics to predict component fail-
ures, Proc. 28th International Conference on Software Engi-
neering, Shanghai, China, pp. 452–460, 2006.

15. Y. Ma, L. Guo, and B. A. Cukic, Statistical framework for the
prediction of fault-proneness, in D. Zhang, and J.J. Tsai, (eds.),
Advances in Machine Learning Applications in Software Engi-
neering, Hershey, PA: Idea Group, 2007.

16. D. Zhang and J. J. P. Tsai, Machine Learning Applications in
Software Engineering, Singapore: World Scientific, 2005.

17. A. Goel and M. Shin, Radial basis functions: an algebraic
approach (with Data Mining Applications), Tutorial at the
15th European Conference on Machine Learning, (ECML
2004), Pisa, Italy, 2004.

18. M. Shin and A. L. Goel, Modeling software component criti-
cality using a machine learning approach, in T. G. Kim (ed.),
Artif. Intell. Simulat., Lecture Notes in Computer Science,
New York: Springer, pp. 440–448. 2004.

19. A. L. Goel and M. Shin, Tutorial on software models and
metrics, Internat. Conf. on Software Engineering, Boston,
MA, 1997.

20. M. Shin and A. L. A. Goel, Empirical data modeling in software
engineering using radial basis functions, IEEE Trans. Soft.
Engineer., 28: 567–576, 2000.

21. Software Engineering Lab. Database Organization and User’s
Guide, SEL-81-102, NASA/GSFC, Greenbelt. MD, 1983.

22. R. W. Selby, Enabling reuse – based software development for
large – scale systems, IEEE Trans. Soft. Engineer., 31: 495–
510, 2005.

MIYOUNG SHIN

Kyungpook National University
Daegu, Korea

AMRIT L. GOEL

Syracuse University
Syracuse, New York

6 SOFTWARE QUALITY CLASSIFICATION MODELS



S

SOFTWARE QUALITY MODELING AS A
RELIABILITY TOOL

INTRODUCTION

Software engineering practitioners agree that a software
quality- and reliability-centric focus is ideal for most soft-
ware project development efforts. A specific definition of
software quality, however, is often a point of debate because
‘‘software quality’’ encompasses many different attributes
of software with varying relative importance (1). For exam-
ple, one may argue that conformance to requirements and
specifications must govern software quality, whereas
another may argue that ease of maintenance, low complex-
ity, and good documentation are equally, if not more,
important. Although software quality can often have a
qualitative or subjective evaluation, software reliability
is typically measured using objective criteria. In essence,
software reliability is one of the multiple software quality
factors, such as understandability, maintainability, usabil-
ity, and testability.

The general aim of software quality and reliability
methods is to obtain a defect-free, dependable, and func-
tional software system. This article provides a brief over-
view of software quality and reliability tools1 and presents a
detailed case study on software quality modeling by using
decision tree models. Software quality is the burden of all
stakeholders involved in the project, including manage-
ment, developers, and customers. Hutton (2) defines
‘‘must haves’’ for a successful outcome of a software quality
improvement initiative, which include (1) a compelling
reason for change, (2) suitable sponsors, (3) an informed
commitment of sponsors, and (4) a change agent or ‘‘cham-
pion.’’ Having effective software quality tools has been the
subject of core software engineering research and practice,
and suggested standards such as CMMI (3,4) and ISO 9001
(5) explicitly state requirements that must be met for a high
quality software product. Some commonly used software
quality improvement methods include formal inspections,
walkthroughs, defect tracking, software measurement-
based analysis, and testing (1,6). The advent and accep-
tance of agile software engineering has introduced new
issues in software quality engineering, some of which are
aptly discussed by Ming et al. (7) and Mnkandla et al. (8).

Software reliability engineering has been introduced
with various models and tools over the last two decades
(9–11). The growth of software reliability engineering
research is about 35% per year (12), attributed largely to
technical conferences and journals dedicated to this matur-
ing field. Operational profiles and their use for software
reliability and testing was introduced initially by Musa
(12). Different types of software reliability models are
options depending on available project data and the devel-
opment phase. A good overview of different types of soft-

ware reliability models is provided by Asad et al. (9), in
which the authors lay out a logical approach to selecting a
specific software reliability model among the over-thirty
models surveyed. The different models were classified
based on early prediction models, software reliability
growth models, input domain-based models, architec-
ture-based models, and hybrid reliability models. The selec-
tion criteria used by Asad et al. [9] included attributes such
as required model input, required user output, structure
and nature of project, data validity, and the development
and testing processes. The popularity of object-oriented
development and increasing use of service-oriented archi-
tectures has fueled research in reliability analysis exhaus-
tive literature review is out of scope for this article. based on
software architecture. A recent study provides good insight
into the state of the art of software architecture-based
reliability analysis (10).

Our research focus has included software quality models
as effective tools for targeted and resource-aware software
quality improvement. A software quality estimation model
is typically trained with known software measurement and
defect data of a previously developed system release or
similar project (13–16). The model then is applied to predict
unknown defect data of program modules currently under
development. Based on such a quantitative analysis, soft-
ware quality modeling can generally be achieved by two
commonly used approaches: software defect prediction and
software quality classification. The former involves esti-
mating the expected number of defects in the software,
whereas the latter involves grouping similar program mod-
ules based on their expected quality, for example, fault-
prone (fp) or not-fault prone (nfp). We focus on the software
quality classification models because they are more appeal-
ing from a practical point of view. In addition to software
quality modeling, classification models have been studied
for other software engineering problems, such as require-
ments engineering (17) and component-based software
engineering (18). Although different methods have been
investigated for software quality classification, decision
trees models have gained popularity among practitioners
because of their comprehensible model structure, ease in
model interpretation, and quick rule extraction for data-
base retrievals (19–23).

The empirical case study presented compares five deci-
sion tree methods for software quality modeling, and they
include, Classification and Regression Trees (CART)(21),
S-PLUS (SPL), Sprint-Sliq (SPT) (22), C4.5 (23), and
Treedisc (TD) (24). The software measurement and defect
data is obtained from multiple releases of a very large
telecommunications software system (21). The different
models are evaluated for decision tree structure, model
complexity, and software quality prediction performance.
In addition, the decision trees are evaluated for their
expected costs of misclassification at different cost
ratios. A relative ranking of the five models is obtained
based on statistical testing using ANOVA models and

1As exhaustive literature review is outside the scope of this article.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



multiple- pairwise hypothesis testing. It is shown that with
respect to expected costs of misclassification, the CART
model yielded better results at lower cost ratios, where as
the SPT model yielded better results at higher cost ratios.

Theremainderofthisarticlesummarizesthedecisiontree
models investigated in our study and details our empirical
case study, including software system description, modeling
approach, and empirical results. Finally, we summarize our
work and include some directions for future work.

DECISION TREE-BASED CLASSIFICATION MODELS

The Classification and Regression Trees (CART) (25) sys-
tem is a widely used decision tree model with many appli-
cations to data mining and data preprocessing. The
algorithm searches for questions that split tree nodes
into relatively homogeneous child nodes, such as a high-
(or low-)-risk group. The nodes become more homogeneous
as the tree evolves, identifying important segments. The
initial tree is grown to the maximum possible size and then
is pruned backward using cross validation and cost com-
plexity. Certain model parameters, such as number of
observations in leaf nodes and depth of tree, can be con-
trolled to yield different models (21).

The SPL system combines an intuitive graphical user
interface with an extensive data analysis environment for
advanced data mining, including regression tree models
(26). At the core of the SPL system is S, the language
designed specifically for data visualization and exploration,
statistical modeling, and programming with data. Limited
to processing only numerical data, the regression tree is
constructed by recursive binary partitioning of the training
data. A generalized classification rule is used to label each
leaf node after the regression tree is built. Model para-
meters, such as minimum node size and minimum node
deviance, can be controlled to obtain the desired pruned
tree (20).

The C4.5 learner is an inductive supervised learning
system, which employs decision trees to represent a quality
model (27). It consists of four principal programs: decision
tree generator, production rule generator, decision tree
interpreter, and production rule interpreter. In contrast
to CART and SPL, the C4.5 classifier can entertain non-
numeric data types during modeling and provide a non
binary partitioning of data at decision nodes. Tree pruning
can be controlled by modeling parameters, including mini-
mum node size and pruning percentage (23).

The TD algorithm is an SAS macro implementation of
the modified chi-square automatic interaction detection
algorithm (19). A predictor variable is selected to be the
variable that is most significantly associated with the
dependent variable according to a chi-squared test of inde-
pendence in the contingency table. The algorithm requires
special preprocessing of the data sets and is suitable for
ordinal predictors with many categories. A decision tree is
built by recursively partitioning the data set until a stop-
ping criterion is satisfied, such as minimum node size and
p-value.

The SPT algorithm the (scalable parallelizable induction
of decision trees-supervised learning in quest algorithm also

known as the sprint-Sliq algorithm) can be used to build
classification trees that can analyze both numeric and cate-
gorical attributes (28,29). As a modified version of the
CART, it uses a pruning technique based on the minimum
description length principle. The IBM Intelligent Data
Miner that implements the SPT algorithm, was used in
our study (22). The Gini index is the default for evaluating
goodness-of-fit of possible splits at a decision node.

EMPIRICAL CASE STUDY

Software System and Measurements

The case study data was collected from a very large legacy-
embedded telecommunications system (abbreviated as
LLTS) over four successive releases. Using the procedural
development paradigm, the software was written in a high-
level language similar to Pascal and was maintained by
professional programmers in a large organization. A soft-
ware module was considered as a set of related source-code
files. Fault data was collected at the module level by the
problem reporting system and consisted of post release
faults discovered by customers during system operations.
Faults were recorded only if their discovery resulted in
changes to the source code of the respective module. Pre-
venting discovery of faults after deployment was a high
priority for the developers because visits to customer sites
involved extensive consumption of monetary and other
resources.

Configuration management data analysis identified
software modules that were unchanged from the prior
release. Fault data collected from the problem reporting
system were tabulated into problem reports, and anomalies
were resolved. Because of the nature of the system being
modeled, for example, a high-assurance system, the num-
ber of modules associated with post release faults were very
few compared with modules with no faults. Two clusters of
modules were identified: unchanged and updated. The
updated modules consisted of those that were either new
or had at least one update to their source code since the
prior release. Among the unchanged modules, almost all of
them had no faults and, therefore, were not considered for
modeling purposes.

We selected updated modules with no missing data in
relevant variables. These updated modules had several
million lines of code, with a few thousand of these modules
in each system release. The number of updated modules
(that remained after unchanged modules or those with
missing data were removed) that were considered for
each of the four releases are: 3649 for Release 1, 3981 for
Release 2, 3541 for Release 3, and 3978 for Release 4. A
module was considered as nfp (non fault-prone) if it had no
post release faults and fp (fault-prone)otherwise.

The proportions of modules with no faults among the
updated modules of Release 1, Release 2, Release 3, and
Release 4 were respectively 93.7%, 95.3%, 98.7%, and
97.7%. The corresponding proportions of modules with
one or more faults were 6.3%, 3.9%, 1.0%, and 2.1%. The
number of modules with no faults generally increased over
successive releases, as is expected for a legacy system in an
environment similar to LLTS. This increase is because the

2 SOFTWARE QUALITY MODELING AS A RELIABILITY TOOL



development process for such a high-assurance software
system generally tends to improve with time. However, for
another system, other factors such as new development
staff or changes in system functionality could increase the
number of faults and introduce additional fp modules.
Software quality models for LLTS were trained with
Release 1 program modules, whereas the latter three
releases were used as test data for model evaluation.

Software data collection for LLTS involved recording
measurements using the EMERALD software metrics ana-
lysis tool (21). Preliminary analysis selected metrics appro-
priate for our modeling purposes and included 24 product
metrics, 14 process metrics, and 4 execution metrics. The
process metrics were not used in this study because we
focus on software quality modeling and prediction after the
coding (implementation) phase and before system tests.
The case study, hence, consists of 28 independent variables
that are used to predict a program module as fp or nfp. In
Table 1, the top 24 attributes are product metrics based on
call graph, control flow graph, and statement metrics,
whereas the bottom four attributes are execution metrics.
The USAGE metric was approximated by deployment data
on a previous system release, whereas execution times were
measured in a laboratory setting with different simulated
workloads.

Modeling and Evaluation

The decision tree models are trained using a common model
building and selection process. The Release 1 program

modules are used as training data, whereas the Release
2 data set is used for model selection. For each decision tree
method, different models are built by varying the respective
model parameters. In the case of CART, model selection
was based on 10-fold cross validation with Release 1. How-
ever, a close inspection of the different CART models indi-
cated that the same model would be selected if Release 2
was used for model selection. This situation alleviates any
threat to empirical validity from a non uniform model-
selection process. We note that cross validation was not
explicitly available for the other four decision tree classi-
fiers. A generalized classification rule is used with all five
methods for classifying modules as fp or nfp(19–22).

A Type I error occurs when a nfp module is misclassified
as fp, whereas a Type II error occurs when a fp module is
misclassified as nfp. Although it is beneficial to detect,
before operations, as many fp modules as possible, the
usefulness of a software quality classification model is
affected by its Type I error rate. A model with a very low
Type II error rate and a very high Type I error rate is not
practical because given the large number of modules pre-
dicted as fp (many of them are actually nfp), deploying the
limited quality improvement resources will pose a diffi-
culty. The model-selection strategy of our study consists of
finding the preferred balance of equality between the two
error rates, with Type II being as low as possible. Such a
strategy was used based upon the recommendation of the
software quality engineers and the project management
team of the system being modeled. A different application

Table 1. Software Metrics

Symbol Description

CALUNQ Number of distinct procedure calls to others.
CAL2 Number of second and following calls to others
CNDNOT Number of arcs that are not conditional arcs
IFTH Number of non loop conditional arcs, i.e., if–then constructs
LOP Number of loop constructs
CNDSPNSM Total span of branches of conditional arcs. The unit of measure is arcs
CNDSPNMX Maximum span of branches of conditional arcs
CTRNSTMX Maximum control structure nesting
KNT Number of knots, which is where arcs cross because of a violation

of structured programming principles
NDSINT Number of internal nodes, i.e., not an entry, exit, or pending node
NDSENT Number of entry nodes
NDSEXT Number of exit nodes
NDSPND Number of pending nodes, i.e., dead code segments
LGPATH Logarithm (base two) of the number of independent paths
FILINCUQ Number of distinct include files
LOC Number of lines of code
STMCTL Number of control statements
STMDEC Number of declarative statements
STMEXE Number of executable statements
VARGLBUS Number of global variables used
VARSPNSM Total span of variables
VARSPNMX Maximum span of variables
VARUSDUQ Number of distinct variables used
VARUSD2 Number of second and following uses of variables
USAGE Deployment percentage of the module
RESCPU Time of an average transaction on a system serving consumers
BUSCPU Time of an average transaction on a system serving businesses
TANCPU Time of an average transaction on a tandem system

SOFTWARE QUALITY MODELING AS A RELIABILITY TOOL 3



may consider another preferred balance between the error
rates.

The cost of a Type I misclassification, CI, is the effort
wasted (ineffective reviews) on an nfp module, and the cost
of a Type II misclassification, CII, is the lost opportunity to
correct faults early for an fp module. The disparate costs of
misclassifying an fp and nfp module poses a problem in
evaluating competing software quality models. Hence, a
unified cost metric, normalized expected cost of misclassi-
fication (NECM), is proposed and used in our case study
(30). The NECM metric is a function of the two error rates,
the prior probabilities of the two groups, and the cost ratio
CII

CI
. The cost ratio used during modeling depends on the

project type and application domain, for example, a mis-
sion-critical software will have a higher CII compared with
an in-house business application. Moreover, the actual cost
ratio for a project cannot be determined until after devel-
opment and deployment. Hence, for a given application
domain, one may consider a range of cost ratios that include
representative and basic values. We compute the NECM
values for our case study system at different cost ratios. If
p f p is the prior probability of fp modules, pn f p is the prior
probability of nfp modules, Prð f pjn f pÞ) is the proportion
of nfp classified as fp, and Prðn f pj f pÞ is the proportion
of fp classified as nfp, then NECM is given by

Prð f pjn f pÞpn f p þ
CII

CI
Prðn f pj f pÞp f p:

In a comparative study such as ours, it is important to
know whether performance differences between models are
statistically significant. We use the two-way ANOVA (ana-
lysis of variance) randomized complete block experimental
design with five factor treatments (i.e., decision tree clas-
sifiers) and three blocks (i.e., Release 2, 3, and 4 test data
sets) (31). We are interested in observing if the different
tree models and the different system releases are signifi-
cantly different from their respective counterparts. The
response variable is the NECM metric of the five decision
trees computed for the three test data releases at a given
cost ratio. The p-values obtained by the ANOVA design
models indicate the significance of the differences among
the five models and among the three test data sets. Multi-
ple-pairwise comparison methods facilitate more detailed
insight into the differences of means and provide a statis-
tical technique for comparing two methods at a time. We
use the Bonferroni’s multiple-pairwise comparison equa-
tion (32) in conjunction with hypothesis testing using the p-
vsdue approach. For two competing models A and B, the
null (Ho) and alternate (HA) hypotheses for the multiple-
pairwise comparison are H0 : NECMA�NECMB and
HA : NECMA< NECMB.

Results and Discussion

The five decision tree models are compared with respect to
their complexity, robustness, and prediction performances.
For a given tree model, the number of leaf nodes (TN) and
the number of unique software attributes used (IVUT)
express the model’s complexity. Robustness is evaluated
in terms of model stability, for example, how consistently
the preferred balance (between Type I and Type II error
rates) of equality is maintained across the different

releases. A robust model is important because the software
quality assurance team typically prefers a ‘‘no surprise’’
software reliability engineering policy. Classification
performance is evaluated in terms of misclassification
error rates and NECM values. In our study, we consi-
der a large range of cost ratios, for example,
CII

CI
¼ f1; 2; 3; 4; 5; 10; 15; 20; 25; 50; 100; 200; 350; 500g;to

compute NECM values. However, for a high-assurance
system such as LLTS, a range of 20 to 100 is most practical
and likely.

Given the limited space considerations, we graphically
illustrate only two of the five decision trees, for example,
CART (Fig. 1) and SPT (Fig. 2). The other three models are
presented in our respective prior works (19,20,23). The
CART model (TN ¼ 3; IVUT ¼ 2) depicted lowest complex-
ity, whereas the SPT model (TN ¼ 15; IVUT ¼ 11) showed
highest complexity. Both models selected FILINCUQ, the
number of unique include files, as the most important (i.e.,
root node) software attribute for LLTS. The five models
would be ranked in descending order as CART, SPL, TD,
C4.5, and SPT if based solely on model complexity. In our
study, we observed that TN and IVUT were generally
proportional, for example, a larger tree used more unique
software attributes.

The misclassification error rates and normalized
expected costs of misclassification for the five models are
shown in Tables 2 and 3, respectively. The error rates are
typical for the given system. The NECM values are only
shown for cost ratios 1, 2, 5, 10, 25, 50, and 100, again
because of limited space considerations. The SPT and
TD models provide the best consistency in the preferred
balance between the Type I and Type II error rates,
whereas the CART model yielded the poorest consistency
in the preferred balance. The average balance across
Releases 2, 3, and 4 for SPT, TD, and CART are 2.84%,

3

1

2

4 5

FILINCUQ

USAGE
<34.5 >34.5

  >0.08<0.08  

NFP              NFP                           FP
Figure 1. CART classification tree model.

4 SOFTWARE QUALITY MODELING AS A RELIABILITY TOOL



1

2 29

13

10

11

2512

17 18

20

21

22

23 28

4

3

5

6 7

8

9

26 27

14

15

16 19

24

FILINCUQ

FILINCUQ

CALUNQ USAGE

TANCPU
VARSPNMX

VARSPNSMLOP

STMDEC

CTRNSTM

LGPATH

CAL2

CAL2

<49.5 >49.5

<34.5 >34.5

>0.905<0.905

<45.605 >45.605

<15.635 >15.635

<134 >134

<752.5 >752.5

<25956 >25956

<7.5 >7.5

<21.58  >21.58

<101 >101

<4.5 >4.5

<822.5 >822.5

TANCPU
<633.5 >633.5

NFP          FP     FP     FP      FP       NFP      FP       FP     NFP     FP       FP        FP           NFP         FP           FP

Figure 2. SPRINT-SLIQ classification tree model.

Table 2. Misclassification Rates for Models

Method Rel. Type 1 % Type 11 % Overall %

2 24.47 26.84 24.58
SPT 3 25.38 20.83 25.32

4 28.48 26.88 28.44
2 31.67 23.28 31.27

CART 3 30.30 14.89 30.10
4 35.64 22.82 35.34
2 25.08 26.46 25.15

SPL 3 26.67 21.28 26.60
4 32.24 21.74 32.00
2 25.08 29.10 25.27

TD 3 28.91 25.53 28.87
4 28.33 28.26 28.33
2 22.94 29.10 23.23

C4.5 3 25.44 21.27 25.39
4 31.34 28.26 31.27

Table 3. NECM Values for Models

Cost Ratio, CII

CI

Method Rel. 1 2 5 10 25 50 100

2 0.246 0.263 0.314 0.398 0.652 1.075 1.920
SPT 3 0.251 0.264 0.303 0.369 0.566 0.894 1.550

4 0.284 0.301 0.352 0.436 0.690 1.114 1.960
2 0.311 0.326 0.370 0.443 0.663 1.030 1.763

CART 3 0.293 0.303 0.331 0.378 0.518 0.753 1.222
4 0.348 0.363 0.406 0.478 0.693 1.053 1.772
2 0.252 0.268 0.318 0.402 0.652 1.068 1.902

SPL 3 0.263 0.277 0.317 0.384 0.585 0.920 1.591
4 0.316 0.329 0.371 0.439 0.644 0.987 1.672
2 0.253 0.272 0.327 0.418 0.693 1.152 2.068

TD 3 0.287 0.303 0.351 0.432 0.673 1.075 1.879
4 0.283 0.301 0.354 0.443 0.711 1.156 2.046
2 0.233 0.252 0.307 0.398 0.673 1.132 2.048

C4.5 3 0.252 0.265 0.305 0.372 0.573 0.908 1.578
4 0.311 0.329 0.383 0.472 0.739 1.184 2.074

SOFTWARE QUALITY MODELING AS A RELIABILITY TOOL 5



2.49% and 12.21%, respectively. These values were com-
puted by averaging the absolute differences between the
Type I and Type II error rates of a given model across the
three test data sets. For SPT, this average is computed as
fj24:47� 26:84j þ j25:38� 20:83j þ j28:48� 26:88jg=3 ¼
2:84. In terms of model robustness, the five models would be
ranked in descending order as TD, SPT, C4.5, SPL, and
CART.

A graphical illustration of the influence of cost ratios on
the significance of the differences between the methods is
shown in Fig. 3. The figure plots p-values against the
different cost ratios. The details of our ANOVA models,
including degrees of freedom, mean squares, sums of
squares, and F statistic, are not shown to maintain sim-
plicity. The ANOVA models revealed that for all cost ratios
considered, the system releases are significantly different
(at a ¼ 0.05) from each other. In addition, the five decision
tree methods were significantly different (at a ¼ 0.10) from
each other for most cost ratios, except 10 (p-value ¼
0.3070), 15 (p-value ¼ 0.3640), 20 (p-value ¼ 0.2520),
and 25 (p-value ¼ 0.1570). The spike in the middle portion
of the curve (Fig. 3) indicates poor significance of the
difference in NECM values of the tree models.

In our multiple-pairwise comparisons, each tree model is
compared with the other four models using a one-tailed
pairwise comparison. For example, CART is compared with
SPL, SPT, TD, and C4.5 individually. Thus, for each pair of
methods A and B, we have two comparisons: ‘‘Is A better
than B?’’ and ‘‘Is B better than A?’’. The p-values computed
from the multiple-pairwise comparisons for the limited set
of cost ratios is shown in Table 4. The table can be viewed as
a matrix, for example, each pair of methods forms a com-
parison; methods in the second column are compared with
the methods listed in the headings of the tables. Methods
are not compared to themselves, and this situation is
indicated by a ‘‘�’’ in the table. Because five methods com-
parise our comparative study, 20 comparisons exist for each
cost ratio.

To infer the performance rank order of the methods, we
present the details only for cost ratio 2. The following steps
break down the inference process of how the rank order for
the five models is obtained.

1. From comparisons SPT vs. CART (p ¼ 0.0062),
CART vs. SPT (p ¼ 1.0000), SPT vs. SPL
(p ¼ 0.5347), SPL vs. SPT (p ¼ 1.0000), SPT vs.
TD (p ¼ 0.5115), TD vs. SPT (p ¼ 1.0000), SPT vs.
C4.5 (p ¼ 1.0000), and C4.5 vs. SPT (p ¼ 1.0000), we
observe that SPT is better than all methods except
C4.5. Therefore, SPT will be ranked either first or
second.

2. From comparisons C4.5 vs. CART (p ¼ 0.0118),
CART vs. C4.5 (p ¼ 1.0000), C4.5 vs. SPL
(p ¼ 0.9749), SPL vs. C4.5 (p ¼ 1.0000), C4.5 vs.
TD (p ¼ 0.9383), TD vs. C4.5 (p ¼ 1.0000), C4.5 vs.
SPT (p ¼ 1.0000), and SPT vs. C4.5
(p ¼ 1.0000), we observe that C4.5 is better than
all the methods except SPT. Therefore, C4.5 will be
ranked either first or second.

Given the intermediate results from Steps 1 and 2,
we can conclude that the first two in the rank order
are SPT and C4.5

3. From comparisons TD versus SPL (p ¼ 1.0000) and
SPL versus TD (p ¼ 1.0000), we conclude that SPL
and TD are similar to each other. However, looking
at comparisons SPT versus SPL (p ¼ 0.5347), SPT

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 10 15 20 25 50 10
0

20
0

35
0

50
0

cost ratio 

p
-v

al
u

e

tree models

Figure 3. p-values.

Table 4. Multiple-pairwise Comparison p-values

CII

CI
SPT CART SPL TD C4.5

SPT � 0.0041 0.4611 0.5983 1.0000
CART 1.0000 � 1.0000 1.0000 1.0000

1 SPL 1.0000 0.0259 � 1.0000 1.0000
TD 1.0000 0.0195 1.0000 � 1.0000
C4.5 1.0000 0.0071 0.7972 1.0000 �

SPT � 0.0062 0.5347 0.5115 1.0000
CART 1.0000 � 1.0000 1.0000 1.0000

2 SPL 1.0000 0.0348 � 1.0000 1.0000
TD 1.0000 0.0365 1.0000 � 1.0000
C4.5 1.0000 0.0118 0.9749 0.9383 �

SPT � 0.0228 0.8109 0.3399 1.0000
CART 1.0000 � 1.0000 1.0000 1.0000

5 SPL 1.0000 0.0877 � 1.0000 1.0000
TD 1.0000 0.2329 1.0000 � 1.0000
C4.5 1.0000 0.0581 1.0000 0.7937 �

SPT � 0.1838 1.0000 0.2165 0.9172
CART 1.0000 � 1.0000 1.0000 1.0000

10 SPL 1.0000 0.3489 � 0.4075 1.0000
TD 1.0000 1.0000 1.0000 � 1.0000
C4.5 1.0000 0.5778 1.0000 0.6669 �

SPT � 1.0000 1.0000 0.1434 0.7397
CART 1.0000 � 1.0000 0.0763 0.4249

25 SPL 1.0000 1.0000 � 0.0858 0.4729
TD 1.0000 1.0000 1.0000 � 1.0000
C4.5 1.0000 1.0000 1.0000 0.5868 �

SPT � 1.0000 1.0000 0.1376 0.7013
CART 0.2453 � 0.7125 0.0101 0.0527

50 SPL 0.9530 1.0000 � 0.0431 0.2408
TD 1.0000 1.0000 1.0000 � 1.0000
C4.5 1.0000 1.0000 1.0000 0.5983 �

SPT � 1.0000 1.0000 0.1439 0.6982
CART 0.0762 � 0.3442 0.0037 0.0168

100 SPL 0.7108 1.0000 � 0.0315 0.1673
TD 1.0000 1.0000 1.0000 � 1.0000
C4.5 1.0000 1.0000 1.0000 0.6249 �

6 SOFTWARE QUALITY MODELING AS A RELIABILITY TOOL



versus TD (p ¼ 0.5115), C4.5 versus SPL
(p ¼ 0.9749), and C4.5 versus TD (p ¼ 0.9383), we
observe that SPL performs relatively better than TD
when both are compared against SPT and C4.5.
Hence, SPL will be placed before TD.

4. Based on comparisons SPL versus CART
(p ¼ 0.0348), CART versus SPL (p ¼ 1.0000), TD
versus CART (p ¼ 0.0365), and CART versus TD
(p ¼ 1.0000), SPL and TD are both better than CART.

Given the intermediate results from Steps 3 and 4,
we can conclude the following partial rank order:
SPL, TD, and CART.

5. Combining the partial rank order deduction in Step 4
with the knowledge of the first two (deduction of Step
2) in the rank order, the final order for cost ratio 2 is
SPT, C4.5, SPL, TD, and CART.

The rank orders for different cost ratios are shown in
Table 5, where the notation� signifies that the method on
the left side is either better than or similar to the method
on right side. At lower cost ratios ðCII

CI
� 15Þ, SPT performs

the best, whereas CART performs the worst. For cost ratio
20, SPL performs the best, whereas TD performs the
worst. For cost ratios between 25 and 500, CART performs
the best, whereas TD performs the worst. The SPT model
is more robust to changes in the cost ratios. Thus, based on
the performance order presented in Table 5, we conclude
that for lower cost ratios SPT should be preferred,
whereas for higher cost ratios CART should be preferred.

In empirical software engineering, threats to internal
validity are unaccounted influences that may affect case
study results. To be credible, the subject of an empirical
study must be a system that is (33): (1) developed by a group
rather than an individual, (2) developed by professionals
rather than students, (3) developed in an industrial envir-
onment rather than an artificial setting, and (4) large
enough to be comparable to real industry projects. The
software system investigated in this study meets all these
requirements. In the context of this study, poor estimates
can be caused by a wide variety of factors, including mea-
surement errors while recording software metrics, errors in
model selection, and the presence of outliers and noise in
the training data. Measurement errors are inherent to the
data collection effort. A common model-building and model-
selection approach has been adopted, and the statistical
analysis was performed by only one skilled person to keep
modeling errors to a minimum. Threats to external validity
are conditions that limit generalization of case study
results. As our results are based on analysis of the LLTS

data set, another system may yield different conclusions.
However, the comparative modeling approach would be the
same.

CONCLUSION

An important requirement for a high-quality and depend-
able software product is the availability and application of
effective tools for software quality and reliability improve-
ment. In this article, software quality estimation models
have been used to provide insight into the reliability of
software systems and, thereby, control the software devel-
opment process to minimize software failures. Many soft-
ware applications involve the use of software in safety-
critical situations, which warrant the need to develop and
quantify effective measures and models of software qual-
ity. The timely prediction of faulty components, before
their operations, can enable software quality assurance
teams to target enhancement efforts only to the needed
areas.

Tree-based classification modeling is a simple yet effi-
cient technique that facilitates such a prediction. We com-
pared existing tree-based classification techniques with
respect to their performance accuracy, model structure,
and model complexity. The modeling methods we compared
are CART, S-PLUS, Sprint-Sliq, C4-5, and Treedisc. These
methods were used to build software quality models that
predict program modules as either fp or nfp. The case study
used data collected over four successive releases of a very
large telecommunications system. A common model build-
ing, selection, and evaluation process is used for all the
decision tree classifiers. A two-way ANOVA randomized
block experimental design analysis examines (1) whether
the decision trees perform significantly differently than
each other and (2) whether the different system releases
were different from each other.

We observe that in the context of classification accu-
racy, obtained preferred balance, and model stability, the
Sprint-Sliq classification model is generally a better
method as compared with the other four decision tree
models. However, with respect to model interpretation
and model complexity, CART and S-PLUS are generally
better methods. We note that results of this study may not
be applicable to another software system because the
models were built using software metrics and defect
data of the LLTS software. However, the modeling and
evaluation process generally remain unchanged when
applied for software quality modeling of another system.
Hence, future work may include investigating a similar
comparative study with software metrics data from
another software system.

REFERENCES

1. P. A. Jansma, When management gets serious about managing
software, Proc. IEEE Aerospace Conference, March 2005, pp.
4366–4382.

2. D. H. Hutton, The Change Agents Handbook: A Survival Guide
for Quality Improvement Champions. Milwaukee, WI: ASQ
Quality Press, 1994.

Table 5. Performance Order of Tree Models

CII

CI
Performance Order

1 SPT � C4.5 � TD � SPL � CART
2 SPT � C4.5 � SPL � TD � CART
5 SPT � C4.5 � SPL � TD � CART
10 SPT � SPL � C4.5 � TD � CART
25 CART � SPL � SPT � C4.5 � TD
50 CART � SPL � SPT � C4.5 � TD
100 CART � SPL � SPT � C4.5 � TD

SOFTWARE QUALITY MODELING AS A RELIABILITY TOOL 7



3. M. B. Chrissis, M. Konrad, and S. Shrum, CMMI: Guidelines
for Process Integration and Product Improvement, 2nd ed.The
SEI Series in Software Engineering. Addison Wesley, 2006.

4. B. Curtis, W. E. Hefley, and S. A. Miller, The People Capability
Maturity Model: Guidelines for Improving the Workforce, 1st
ed., The SEI Series in Software Engineering. Addison Wesley,
2001.

5. M. C. Paulk, A comparison of iso 9001 and the capability
maturity model for software, Technical Report CMU/SEI-94-
TR-12, ESC-TR-94-12. Carnegie Mellon University, Software
Engineering Institute, July 1994.

6. J. A. McDonough, Template for software quality management
for department of defense programs, Proc. IEEE National
Aerospace and Electronics Conference, NAECON, Vol. 3, Day-
ton, OH, May. 1990, pp. 1281–1283.

7. H. Ming, J. Verner, Z. Liming, and M. A. Babar, Software
quality and agile methods, Proc. 28th International Computer
Software and Applications Conference, COMPSAC, Vol. 1,
2004, pp. 520–525.

8. E. Mnkandla and B. Dwolatzky, Defining agile software qual-
ity assurance, Proc. International Conference on Software
Engineering Advances, Tahiti, Oct. 2006, pp. 36–43.

9. C. A. Asad, M. I. Ullah, and M. J. Rehman, An approach for
software reliability model selection, Proc. 28th International
Computer Software and Applications Conference, COMPSAC,
vol. 1, 2004, pp. 534–539.

10. S. S. Gokhale, Architecture-based software reliability analysis:
Overview and limitations, IEEE Tran. on Dependable and
Secure Computing, 4(l): 32–40, 2007.

11. H. Okamura and T. Dohi, Building phase-type software relia-
bility models, Proc. of 17th International Symposium on Soft-
ware Reliability Engineering, ISSRE’06, Raleigh, NC, Nov.
2006, pp. 289–298.

12. J. D. Musa, Introduction to software reliability engineering
and testing, Proc. 8th International Symposium on Software
Reliability Engineering, ISSRE’97, Albuquerque, NM, Nov.
1997, pp. 3–12.

13. T. M. Khoshgoftaar. and N. Seliya, Comparative assessment of
software quality classification techniques: An empirical case
study, Empirical Software Engineering Journal, 9(3): 229–
257, 2004.

14. N. Nachiappan, L. Williams, J. Hudepohl, W. Snipes, and M.
Vouk, Preliminary results on using static analysis tools for
software inspection, Proc. 15th International Symposium on
Software Reliability Engineering, ISSRE’04, St. Malo, France,
Nov. 2004, pp. 429–439.

15. A. P. Nikora and J. C. Munson, Developing fault predictors for
evolving software systems, Proc. 9th IEEE International Soft-
ware Metrics Symposium, Pasadena, CA, Sept. 2003, pp. 338–
350.

16. N. F. Schneidewind, Body of knowledge for software quality
measurement, IEEE Computer, 35(2): 77–83, February 2002.

17. A. P. Nikora, Classifying requirements: Towards a more rig-
orous analysis of natural-language specifications, Proc. 16th
IEEE International Symposium on Software Reliability Engi-
neering, Chicago, IL, Nov. 2005, pp. 291–300.

18. G. Kotonya, I. Sommerville, and S. Hall, Towards a classifica-
tion model for component-based software engineering
research, Proce. 29th Euromicro Conference, Chicago, IL,
Sept. 2003, pp. 43–52.

19. T. M. Khoshgoftaar and E. B. Allen, Controlling overfitting in
classification-tree models of software quality, Empirical Soft-
ware Engineering Journal, 6(l): 59–79, 2001.

20. T. M. Khoshgoftaar, E. B. Allen, and J. Deng, Using regression
trees to classify fault-prone software modules, IEEE Tran. on
Reliability, 51(4): 455–462, 2002.

21. T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hude-
pohl, Classification tree models of software-quality over multi-
ple releases, IEEE Trans. on Reliability, 49(1): 4–11, 2000.

22. T. M. Khoshgoftaar and N. Seliya, Software quality classifica-
tion modeling using the SPRINT decision tree algorithm, Proc.:
l4th International Conference on Tools with Artificial Intelli-
gence, Washington, DC, November 2002, pp. 365–374.

23. V. Ponnuswamy, Classification of software quality with tree
modeling using C4.5 algorithm. Master’s Thesis, Boca Raton,
FL: Florida Atlantic University, December 2001.

24. T. M. Khoshgoftaar, X. Yuan, and E. B. Allen, Balancing
misclassification rates in classification tree models of software
quality, Empirical Software Engineering Journal, 5: 313–330,
2000.

25. D. Steinberg and P. Colla, CART: A supplementary module for
SYSTAT. San Diego, CA: Salford Systems, 1995.

26. L. A. Clark and D. Pregibon, Tree-based models, in J. M.
Chambers and T. J. Hastie (eds.), Statistical Models in S.
Pacific Grove, CA: Wadsworth International Group, 1992,
pp. 377–419.

27. J. R. Quinlan, C4.5. Programs For Machine Learning: Machine
Learning. San Mateo, CA: Morgan Kaufmann, 1993.

28. M. Melita, R. Agarwal, and J. Rissanen, SLIQ: A fast scalable
classifier for data mining, IBM White Paper Series. Available:
http: www.almaden.ibm.com/cs/quest, March 1996.

29. J. Shafer, R. Agarwal, and M. Mehta, SPRINT: A scalable
parallel classifier for data mining, IBM White Paper Series,
Available: http://www.almaden.ibm.com/cs/quest, September
1996.

30. T. M. Khoshgoftaar, E. B. Allen, and J. Deng. Controlling
overfitting in software quality models: Experiments with
regression trees and classification, Proc. 7th International
Software Metrics Symposium, London, UK, April 2001, pp.
190–198.

31. J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman,
Applied Linear Statistical Models. Tom Casson, 1996.

32. G. P. Beaumont, Statistical Tests: An Introduction with Mini-
tab Commentary. Prentice Hall, 1996.

33. L. G. Votta and A. A. Porter, Experimental software engineer-
ing: A report on the state of the art, Proc. the 17th International
Conference on Software Engineering, Seattle, WA, April 1995,
pp. 277–279.

NAEEM SELIYA

University of Michigan—Dearborn
Dearborn, Michigan

TAGHI M. KHOSHGOFTAAR

Florida Atlantic University
Boca Raton, Florida

8 SOFTWARE QUALITY MODELING AS A RELIABILITY TOOL



S

SOFTWARE SAFETY

INTRODUCTION

Safety is a property of a system such that it will provide
hazard-free operation and, thus, will not endanger human
life, jeopardize property, nor harm the environment. Alter-
natively, safety relates to those activities that seek either to
minimize or to eliminate hazardous conditions that can
cause bodily injury (1). Merriam-Webster (2) defines safety
as ‘‘the condition of being safe from undergoing or causing
hurt, injury, or loss.’’ Leveson (3) states: ‘‘Safety is freedom
from accidents or losses.’’ Safety is a relative term as it
depends on the perspective of an individual of what is risky;
some would pass on a rock climbing or parachute jumping
opportunity. Additionally, as a the state of a system changes
in time, its level of safety also may change: Consider the
airplane in a hangar and one cruising at 30,000 feet.

In addition, to provide desired functionality, perfor-
mance, and quality of service, system designers strive to
prevent accidents, mishaps, and incidents. An accident is
defined by safety engineers as ‘‘an unwanted and unex-
pected release of energy’’ (4). This incomplete definition is
expanded: A mishap is defined as ‘‘. . . an unplanned event or
series of events resulting in death, injury, occupational
illness, damage to or loss of equipment or property, or
damage to the environment’’ (5). An incident is an event
that involves no loss but a potential for loss under a differ-
ent circumstance. All three terms exemplify a safety viola-
tion. With more systems relying on software, spectacular
mishaps (e.g., accidents of Ariane-5, Therac-25 radiation
therapy machines, the Mars Climate Orbiter mission, the
Patriot Missile problem, the London Ambulance Service
failure, the Osprey crash, etc.) have been attributed to
software (6,7).

For modern software-intensive systems, safety-critical
software functions are those that directly or indirectly can
cause or allow a hazardous system state to exist, which in
turn, may lead to a safety violation. However, software is
unique: it is an abstract concept similar to music. Software
is represented by a set of computer instructions like music
is represented by a set of notes on a music sheet. By itself,
software can do nothing and therefore, obviously, it is not
hazardous. Similar to music, which must be played on an
instrument, software must be executed on hardware in
order to do anything useful. And if the hardware is part
of a system that can lead to injury, death, destruction,
loss of property, or damage to the environment, then system
safety, including software safety, is paramount. Such sys-
tems will be called safety-critical. With more of our ubiqui-
tous technology being controlled by software, a significant
portion of the risk we face is in the hands of software
engineers.

Software is considered safety-critical if it meets one of
the three following criteria (8):

1. Resides in a safety-critical system, as determined by
the system hazard analysis, AND (at least one of the
following):

a. causes or contributes to an identified hazard

b. provides control or mitigation for identified
hazards

c. controls safety-critical functions

d. processes safety-critical commands or data

e. detects and reports, or takes corrective action, if
the system reaches a specific hazardous state

f. mitigates damage if a hazard occurs

g. shares the processor with safety-critical software

2. Processes data or analyzes trends that lead directly to
the safety decisions of the operator

3. Provides full or partial verification or validation of
safety-critical systems, including hardware or soft-
ware subsystems

Modem microprocessors and their flexible software
have replaced the physical constraints of the electro-
mechanical components of earlier systems. The real-
time nature of modern application adds an additional
layer of complexity and indeterminism (9,10). Adding
functionality is an attractive proposition, and the design
may expand beyond capabilities of the developers to prop-
erly analyze it. Because of software flexibility, the number
of interactions increases to the point that they cannot be
properly understood or planned. Inability to consider all
possible system states or operator actions increases the
likelihood for system mishaps. Additionally, computers
introduce failure modes that cannot be handled easily by
traditional hardware-based methods (e.g., redundancy),
where the failures or random nature are caused by indi-
vidual components rather than by systemic interactions
between multiple components (11).

FAULTS AND FAILURES

Nothing is perfect, and thus mistakes are expected to be
made by people in all phases of system development: spe-
cification, design, coding, manufacturing, and so forth. A
mistake can cause a fault, which may be a defect within the
hardware or a software bug introduced by the developer.
Another source of fault can be a component or a tool
deficiency. External disturbance also may trigger a fault
by changing the system operating conditions.

IEEE standards define a fault as ‘‘an incorrect step,
process, or data definition in a computer program’’ (12).
A system or a component is said to have failure if it cannot
perform its required functions within specified perfor-
mance requirements. A symptom of the failure is observa-
ble as the system ‘‘incorrect’’ behavior at the system
boundary, which represents an external view of the system
not meeting the requirements.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



Software professionals use the term error to designate
the result of a fault that leads to failure—resulting not only
from the fault but also from the current system state and
possibly a combination of events. However, the error often
is understood as a defect, bug, or flaw in a program. The
term software anomalies have been used (13) classifying
the items that are missing (omission errors) and items that
are incorrect (commission errors). Therefore, differentiat-
ing between faults and errors is extremely difficult. For
fault-tolerant systems, it is essential to define faults and
failures. Other terms like error, defect, or bug can be only a
source of confusion. Thus, it is recommended to substitute
the term fault anywhere error or a similar term is used.

All faults are internal and may lay dormant, either
being latent (not discovered) or detected. Alternatively,
faults can be active, propagating other faults but still
latent or resulting in failures observable outside the sys-
tem boundary. Thus, a fault can lead to other faults or to a
failure or to neither. Effectively, fault and failure are
equivalent, except the boundary of the relevant system
or subsystem is different: A failure of a subsystem may be
considered a fault in the parent system.

There are numerous reasons for system faults to occur.
Hardware may exhibit faults because of component defects
and external disturbances like electromagnetic interfer-
ence, radiation, temperature, pressure, and a physical
damage. Operator mistakes constitute yet another reason
for faults to occur. The reasons attributed mostly to soft-
ware are:

� Specification mistakes in a form of wrong software
requirements, incorrect algorithms, bad architectural
decisions, ill-selected hardware platform, flawed tools,
etc.

� Implementation mistakes, including poor design,
sloppy construction, inadequate testing, wrong com-
ponent selection, misunderstanding system software
and low-level interfaces, faulty interfaces, imperfect
tools, coding defects, etc.

Faults can be categorized considering their nature,
duration, and extent. The nature of fault can be random
or systematic. Random faults typically are limited to hard-
ware, because of the wear-out of a component or a loose
interconnect. Systematic faults can occur both in hardware
and software because of mistakes in specification, design,
and implementation (coding and manufacturing) (4).

The duration of a fault can be categorized as permanent
or intermittent. A permanent fault remains until a correc-
tive action is taken. The typical systemic causes of software
permanent faults include mistakes in specification (incor-
rectness, ambiguity, inconsistency, and incompleteness),
conceptual or architectural error in design, logical errors in
algorithmic calculations, coding issues like improper para-
meter passing, location of synchronization constructs,
instruction side-effect, stack problems (in terms of over-
flow, underflow, and memory leak), incorrect initialization
of variables, range excess, and so forth. Another category of
fault duration is the intermittent or transient fault, which
tends to appear and then disappear after a short time. It

may appear once more at a later time when appropriate
conditions occur again. Typical causes of software inter-
mittent faults are because of real-time conditions, concur-
rency, and resource contention (e.g., deadlock, live-lock,
and priority inversion). However, the resulting failure may
persist even though the fault seemingly disappeared. The
extent of a fault can be either localized, for example, limited
to one software module by means of partitioning and pro-
tection to prevent fault propagation, or global, with system-
wide effects.

Techniques for fault management include requirement
definition methodologies, architectural and design solu-
tions, testing strategies, and use of mathematical formal-
ism in the system requirements and design.

HAZARDS ANALYSIS

A hazard is a situation in which a potential source exists for
danger or harm to people or the environment (14). Risk of
human life, destruction of environment, and financial loss
are the primary considerations in safety assessment. The
issue is thegravityofamishap, for example, theconsequence
of the operation rather than the actual operation outcome:
Risk is evaluated as a combination of the likelihood of a
mishap and the severity of the mishap consequences. A
hazard is a set of conditions, or a state, that could lead to
a mishap, given the right environmental trigger or set of
events. A mishap (or even worse, an accident) is the actual
realization of the negative potential inherent in a hazard. As
presented in Fig. 1, three components of a ‘‘hazard triangle’’
must exist for a hazard to occur: hazardous element, initiat-
ing mechanism, and target and threat (15).

Often hazards and the related mishaps can result from a
mismatch between a model of the process used to create the
software and the actual physical process the software is
controlling. The mismatch may be caused by an incorrect or
incomplete software model of the process or by lack of
accurate information about the system state. One goal of
the software safety analysis then is to verify that the model
(representing the requirements) specifies sufficiently safe
behavior in all circumstances (16). The specification is
analyzed with respect to known hazards by using the state
machine concept and searching. Safety analyses often need
to consider what can be termed as a negative property (i.e.,
‘‘bad things do not happen’’), as opposed to functional
requirements defined in terms of positive properties (i.e.,
‘‘good things do happen’’) (17).

Some accidents could have been avoided by considering
potential hazards. Building safe systems requires perform-
ing detailed analysis of the software with respect to system
hazards. Specific hazards must be identified early in the
development lifecycle, safety-critical requirements must be
identified, and the likelihood and the criticality of a poten-
tial resulting accident need to be assessed. Special precau-
tions need to be taken, and the resulting software should be
designed in such a way that these potential hazards can
either be avoided or controlled and that the risks associated
with these hazards can be mitigated.

A variety of system-level hardware mechanisms, exter-
nal to the computer, can be used to handle hazardous

2 SOFTWARE SAFETY



conditions. They often have an equivalent representation
in software. Requiring depressing the brake pedal before
turning the ignition key limits a sequence of events
that might permit a little child to start an engine, this
example illustrates interlock. In software, interlocks are
implemented by designing the execution of specific code
elements in a sequence (using synchronization mechan-
isms, for example, semaphores) or by inhibiting execution
until certain conditions are met. To prevent the system
from entering into an unsafe state (or someone from enter-
ing a dangerous area), lockouts are used. In software,
lockouts are techniques to control access to safety-critical
code or data, implemented by a variety of access-right
mechanisms (e.g., monitors and safety kernels). To enforce
continuation in a safe state, lockins are used, for example,
rejecting an input that would transition the system to an
unsafe state (3).

A variety of techniques have been applied successfully to
software modules and to components used to analyze the
software behavior and its impact on the overall system
operations. Analysis can be static in the early development
phase, focusing on prevention, and dynamic, requiring
actual execution of the program. Another categorization
is between functional (including traditional testing, formal
inspections, Cleanroom, and code/scenario analysis) and
logical (including special cases of testing: boundary, fault
injection, and structural) (18).

Of particular value to software safety have been well-
established techniques common to both system and
hardware: Fault Tree Analysis (FTA), Event Tree
Analysis (ETA), Failure Modes and Effects Analysis
(FMEA), Failure Modes, Effects and Criticality Analysis
(FMECA), Markov Chains (MKV), Bayesian Belief Net-
works (BBN), Petri Nets (PN), Hazard and Operability
Analysis (HAZOP), Cause Consequence Analysis (CCA),
Operational/Support Hazard Analysis (OSHA), and Sneak
Circuit Analysis (SCA) (15).

RISK ANALYSIS

The reality is that hazards do exist. The related risks need
to be assessed and mitigated by considering three steps of
building from a hazard to a mishap as presented in Fig. 2.

When building safety-critical software, the developers
need to ensure an acceptable level of risk. At each of the
three steps, the objective is to eliminate the risks where
possible and to reduce the risks that are unavoidable. The
criterion for risk acceptance is based on the decision of
whether the risk is ‘‘As Low As Reasonably Practicable’’
(ALARP). The approach is to identify clearly two distinct
and separated regions: acceptable and unacceptable
regions of risk. Between these two regions, a gray area
exists where the risk is tolerable only if further reduction is
impractical or the cost of reduction is disproportional to the
gained improvement (4).

HAZARDOUS
ELEMENT

(a source of
energy)

INITIATING
MECHANISM

(an event triggering
the hazard)

TARGET & THREAT
(an object vulnerable to 

injury, damage, destruction)

HAZARD
Figure 1. Hazard triangle.

Reduce probability that
a hazard will occur

Reduce probability that
the hazard will lead to an accident

Mitigate severity 
associated with the accident 

RISK ASSESSMENT
AND MITIGATION 
STEPS

Figure 2. Progression from hazard to mishap.

SOFTWARE SAFETY 3



Risk is a measure associated with hazard, representing
the relative importance of the hazard and defining a possi-
bility of something undesirable to occur. Risk is a composite
of the probability and the severity of a mishap. Typically, the
risk is expressed as a combination of likelihood (frequency)
and severity (consequence).

Table 1 presents an example of risk categorization for
civil aviation, according to the Radio Telecommunication
Committee for Aviation DO-178B (19), and for military
applications, following Department of Defense MIL STD
882D (5).

Considering the categorization of the likelihood and
severity, the overall mishap risk can be classified using a
risk assessment matrix in the order of decreasing risks
level (e.g., letters A to D, Roman numerals I to IV, High to

Low). Software may be categorized regarding its impact on
the system operation. Table 2 shows an example of such
categorization based on MIL STD 882C (20).

Using the defined software control category and the
related system hazard criticality, a hazard criticality matrix
can be built to identify the hazard risk index. This system-
level assessment allows the software developers to apply
varying levels of rigor and managerial approval.

THE NATURE OF SOFTWARE

Software does not degrade or change over time. Software
does not fail by itself, and it always works the same way.
Unlike when manufacturing physical entities, software can

Table 1. Risk categorization

AVIATION: RTCA DO-178B MILITARY: Mil Std 882D

Severity � Catastrophic—prevents flight
continuation

� Hazardous—large reduction of
flight safery and possible accident

� Major—significant safety reduction
of flight safely and possible injuries

� Minor—slight reduction of flight
safety and discomfort

� No effect—no influence on safety

� Catastrophic—deaths, total disability,
$1M loss, irreversible environmental
damage

� Critical—pennanent multiple injuries
resulting in partial disability, $200K
loss, reversible environmental
damage

� Marginal—injury or illness, $10K
loss, environmental damage easy to
mitigate

� Negligible—minor injury or illness,
$2K loss, minimal environmental
damage

Likelihood � Probable (frequent and reasonably
probable): l0�4–100

� Improbable (remote and extremely
remote): 10�9–10�5

� Extremely improbable: < 10�9

� Frequent—likely to occur often; �10�1

� Probable—fikely to occur several
times: 10�2—10�1

� Occasiional—likely to occur some
times: 10�3—10�2

� Remote—unlikely but possible to
occur: 10�6—10�3

� Improbable—extremely unlikely to
occur: < 10�6

Table 2. Mil Std 882C software control categories

MilStd 882C Software
Control Categories Description

I Software exercises autonomous control over potentially hazardous hardware systems, subsystems,
or components without the possibility of intervention to preclude the occurrence of a hazard. Failure
of the software or a failure to prevent an event leads directly to a hazard’s occurrence.

IIa Software exercises control over potentially hazardous hardware systems, subsystems, or components
allowing time for intervention by independent safety systems to mitigate the hazard. However,
these systems by themselves are not considered adequate.

IIb Software item displays information requiring immediate operator action to mitigate a hazard. Software
failures ill allow or fail to prevent the hazard’s occurrence.

IIIa Software item issues commands over potentially hazardous hardware systems, subsystems, or
components requiring human action to complete the control function. There are several, redundant,
independent safety measures for each hazardous event.

IIIb Software generates information of a safety-critical nature used to make safety-critical decisions.
There are several, redundant, independent safety measures for each Hazardous event.

IV Software does not control safety-critical hardware systems, subsystems, or components and does not
provide safety-critical information.

4 SOFTWARE SAFETY



be duplicated bit by bit without any variations. It seems to
be easy to modify and change. However, physical change of
a line of code may wreck havoc in the logical structure of the
program. Leveson writes: ‘‘. . .while natural constraints
enforce discipline on the design, construction, and modifi-
cation of a physical machine, these constraints do not exist
for software’’ (3). The unique and typically complex nature
of software, combined with its tremendous flexibility, makes
it difficult to analyze all the possible ways software performs
(or occasionally fails to perform) the desired function.
Despite recent progress in component-based design, soft-
ware is not standardized to the extent that hardware is.
Software may break immediately after installation, because
of environmental or usage conditions not considered by the
developers. It may fail intermittently, because of sporadic
environmental conditions related to the timing sequence of
external events. It may perform reliably until a certain
unexpected combination of events or user inputs. It may
work well for years until specific operating conditions
change. Hardware fails because of physical stress, time,
wearing out, and environmental factors. In contrast, soft-
ware fails by human error during requirements, design,
code, test, or maintenance. Factors affecting software fail-
ure rate, and thus software reliability, include complexity,
methodologies and tools, process, schedule, and computing
platforms (21).

The advantages of software, because of its flexibility,
easy upgrade, high level of sophistication, and added func-
tionality, outweigh potential risk associated with the
software use in safety-critical systems. Software-controlled
devices can collect information, interpret information, per-
form diagnostics, or present elegant interfaces to the user,
typically at a more acceptable cost than can their hardware
counterparts.

According to Brooks (22), the ‘‘essential’’ properties of
software represent inherently its nature. To build safe soft-
ware, these properties need to be considered and dealt with:

� Complexity: Computer programs have an extremely
large number of execution paths and binary data that
can create a number of combinations exceeding the
number of hardware states in most complex integrated
circuits.

� Error Sensitivity: Small errors may have a huge
impact on the output; for example, flipping one bit
totally may change the outcome of computations,
resulting in a catastrophic failure.

� Difficulty with Testing: Exhaustive testing is not
achievable for a program exceeding a few hundreds
lines of code; it is particularly difficult in reactive
systems, where sporadic external events may have
impact on execution flow.

� Correlated Failures: Most failures in software do not
result from wear-out but rather from developer-
inserted defects; redundant systems may duplicate
the original error, whereas the alternative designs
may introduce new defects.

� Lack of Professional Standards: Anyone writing com-
puter code can be called a ‘‘software engineer,’’ and no
objective way exists to argue with that, given the

increasing dependency on software, the idea of licen-
sing software engineers is ever more attractive.

Software is just another system component. The defects
in software can cause hazardous events in the hardware it
is controlling. A close collaboration between the system,
safety, and software engineers is essential to identify poten-
tial causes of hazards. Software must be evaluated for its
contribution to the safety of the system during the concept
and planning phases and before its development or
acquisition.

There are two aspects to be considered for software
in safety-related systems. The first aspect is to design
software in such a way to help mitigate the known
hazards to the system. The second aspect is to construct
the software in such way that it will not contribute to
additional hazards because of undesired or incorrect
operation.

SAFETY: TERMS AND CONCEPTS

The term software safety, or better software system
safety, relates to the features and procedures (18) that
ensure that the software is designed so that (a) the
system performs predictably under normal and abnor-
mal conditions and (b) the likelihood of unplanned events
is minimized; their consequences are controlled and
contained. The discipline of software safety is the sys-
tematic approach to identifying, analyzing, and tracking
software mitigation and control of hazards and hazar-
dous functions to ensure safe enough (ALARP) software
operation within a system.

Software safety is an integral component of the system
development. A software specification inaccuracy, design
defect, or the lack of appropriate safety-critical require-
ments can contribute to a system failure or unsafe human
decision. To achieve an acceptable level of safety for soft-
ware used in critical applications, software safety metho-
dology must be used not only in the requirements definition
and the conceptual design, but also throughout the devel-
opment and operational lifecycle of the system.

Despite visible progress since Leveson (3) made these
observations in the early 1990s, often only marginal or
superficial connection exists between software engineers
and system/safety engineers. The former treat the compu-
ter as a stimulus–response subsystem and do not consider
the system hazards or effects of software on system safety.
The latter often ignore software and treat the computer as a
black box, not giving consideration to hazards that it can
mitigate or introduce.

Safety engineers identify different modes of safe opera-
tion of a fault-tolerant system. A fail-safe system is one that
in case of failure will revert to a non operating state that will
cause no mishap. A fail-operate system is a system that will
continue to operate and will remain in a safe, possibly
degraded state (23). The assessment of the system hazards
and risk is the base for determination of what mode of fault-
tolerant system will be necessary.

The Software System Safety Handbook(24) defines fun-
damental goals for software to ensure system safety. They

SOFTWARE SAFETY 5



are adapted here as ‘‘the ten commandments’’ of software
safety:

1. Identify, evaluate, and eliminate hazards associated
with the system and its software and reduce the risk
to an acceptable level throughout the lifecycle.

2. Design safety into the software in a timely, cost-
effective manner.

3. Address failure modes in the design of the software,
including hardware, software, human, and system.

4. Minimize the number and complexity of safety-
critical interfaces.

5. Minimize the number and complexity of safety-
critical computer software components.

6. Apply sound human engineering principles to the
design of the software user interface to minimize
the probability of human error.

7. Minimize reliance on administrative procedures for
hazard control.

8. Use sound software engineering practices and docu-
mentation in the development of the software.

9. Address safety issues as part of the software testing
effort at all levels of testing.

10. Design software for ease of maintenance and modifi-
cation or enhancement.

RELIABILITY VERSUS SAFETY

One important characteristic of a system is reliability. A
widely accepted definition of reliability is the probability
that the system will perform its function at a given time
(25,26). Software reliability is the probability of failure-free
software operation for a specified period of time in a spe-
cified environment. To assess reliability, developers and
analysts take a bottom-up approach, placing the focus on
the sources of the failures. In contrast, safety is a top-down
paradigm, concentrating on system hazards, for example,
on how the system contributes to endangering people;
destruction of the system; and its environment (3). Because
both reliability and safety assessment practices use the
same methods and tools, they often are misconstrued as
equivalent. Reliability engineering can complement safety.
However, even a highly reliable system may be unsafe and,
conversely, an unreliable (or simply not working) system
may be perfectly safe. To make the point, consider a loaded
unsecured gun in the hand of a child (reliable but not safe)
and an aircraft with a non working engine sitting in a
hangar (not reliable but safe). In fact, accidents may hap-
pen without evident system failure. Most accidents result
from a combination of procedural or operator mistakes,
environmental events, and system faults. A safety analysis
considers the possibility of reaching a hazardous state
when components operate without evident failure, concen-
trating on the interaction between the components in var-
ious states and environmental conditions.

According to Leveson (11), with respect to the require-
ments, the produced software may be reliable and correct,
but still unsafe when:

� The software correctly implements its requirements,
but the specified behavior is unsafe from a system
perspective.

� The requirements do not specify a particular behavior
required for the safety of the system.

� The software has unintended (and unsafe) behavior
beyond what is specified in the requirements.

Nearly all software-related accidents can be traced
either to (a) incomplete or incorrect assumptions about
the operation of the system or the operations required
from the computer, or to (b) environmental conditions or
system states remaining unhandled. Failure of the soft-
ware may cause a situation that leads to the system getting
out of control and endangering or harming the operator
and/or public. The complexity and apparent ‘‘easy’’ mod-
ifiability of software is the major obstacle to achieving
system safety.

SOFTWARE FAULT TOLERANCE

The handling of software faults takes place in the context of
overall system fault tolerance (23,27–29). Because software
faults are expected to exist, they need to be managed. Fault
management (in the form of avoidance, removal, evasion,
and tolerance) depends on the phase of the project. In the
development phase the concept of fault avoidance is
applied, for example, the reduction of faults through care-
fully selected design and implementation methodologies,
the adherence to a rigorous development process, verifica-
tion, and validation (including testing, inspections, and
application of formal methods). Another complementary
approach is fault removal, which is based on identification
and removal of faults found through testing. In the opera-
tional phase, fault evasion is based on the detection and
mitigation of fault effects before they occur.

The ability of a system or component to continue normal
operation regardless of presence of hardware or software
faults is known as fault tolerance. The objective of fault
tolerance is to design a system in such a way that faults do
not result in a system failure and a related safety violation.
Fault-tolerant systems have an ability to continue with
normal operation even though a fault has occurred. Fault
tolerance evidently improves reliability, availability, and
safety.

Fault-tolerant software is capable of mitigating the
impact of errors before they cause the failure of the system.
In software-intensive systems, the issue is to handle
requirements and design deficiencies where most of soft-
ware faults reside. The fault-tolerance process consists of
four stages:

� Detection—identification of the problem, for example
the erroneous state.

� Diagnosis—evaluation of the potential damage and
determination of the causes.

� Containment—prevention of the damage propagation
to other system modules.

� Recovery—replacement of the erroneous system state
with a correct state to continue operation.

6 SOFTWARE SAFETY



A fault detection mechanism is based on checking the
functionality of the components. The specific techniques for
detecting data inconsistency include parity, checksum, resi-
due, and cyclic code. Built-in testing (BIT) either in a form of
predefined pattern generators to check the output against
expected result or in a form of progress monitoring watch-
dogs/timeouts to detect illegal sequences, deadlock, or sys-
tem inactivity are other popular techniques. Use of
predefined reference devices to monitor correctness of the
input or a device self-test at startup is often used in
embedded dependable systems. At the system level, two
basic fault detection mechanisms are the acceptance test
(with either a known value or by comparison) and voting
(30). The quality of such decision elements (adjudicators) is
vital to the dependability of a system.

Recovery can be executed either backward or forward.
In backward recovery, upon detection of error, the system
is rolled back to the previously saved checkpoint, which is
an error-free known state. Backward recovery typically is
an application-independent scheme that can be used as
long as the previous error-free state is known. However,
the scheme may require that the system stops its opera-
tion in the process of recovery. Another disadvantage is
that significant resources may be required to save the
checkpoints periodically and to roll back when the error is
detected. In more complex systems, a domino effect may
occur when interacting processes are not properly syn-
chronized. One process rolls back to a checkpoint, which
causes the interacting process to roll back, which in turn
may cause the first process to roll back further, and so
forth. In contrast, the forward recovery is based on either a
transition to a predefined state from which the system
operation can be continued or a compensation for the
detected discrepancy from the desired value. Forward
recovery is application-specific and requires knowledge
of the system state. Typically, the forward recovery
scheme is faster because it does not require time-consum-
ing rollback (31).

Software fault-tolerance techniques allow a system to
tolerate software faults that may remain after system
delivery. Software fault-tolerance techniques are based
on the concepts of diversity in three areas: design, data,
and temporal. Diversity introduces overhead that
requires additional resources in terms of time, space, or
both. The techniques depend on the type of computing
software environment, A common misconception exists
that the system must be redundant to be safe. A simplex
system is one that does not employ redundancy and still
can be fail-safe (but not necessary fail-operate). Redun-
dant systems, with more than one computer, are employed
in situations that require high dependability to ensure
operation in presence of failure (23). In either case, a
system may have one or more versions of the software.
In a single version software environment, the techniques
are limited to monitoring, assuring atomicity of opera-
tions, verifying decisions, and handling exceptions. Multi-
ple version software environments, with independently
developed software versions, provide for more assurance
and complete recovery. The techniques used include (a)
recovery blocks where the critical block of execution is
checked for acceptance and, in case of failing the accep-

tance test, an alternate version is executed sequentially,
(b) N-version programming where separate, indepen-
dently developed software versions are operating in par-
allel on redundant computer resources and the output is
decided based on the voting or based on the application-
specific acceptance test, and (c) N-self-checking program-
ming where the outputs from each concurrently operating
component are compared and accepted only when they
agree. Multiple data representation environments use
diverse representation of input data. Example techniques
are (a) retry blocks where an acceptance test is used to
determine if the retry should be activated, and (b) N-copy
programming using two or more copies of the program and
an appropriate data re-expression algorithm (31). For
more detailed description, see the article Fault Tolerant
Software.

SOFTWARE SAFETY IMPLEMENTATION

Application of coding standards and the need to create read-
able,easy-to-maintaincodeoftencontradictssmartprogram-
ming focused on reducing the execution time or/and saving
memory.Safety-criticalsoftwareoftenimplementsdefensive
programming guards against run-time errors. Each module
has an initial code segment, which checks assumptions and
data validity before the algorithm execution. For object-
oriented programming, a class should be instantiated only
one time as an object declared outside the block with a static
lifetime. Using pointers is prohibited explicitly in much
safety-critical application code. Also, to avoid potential mem-
ory leaks a dynamic allocation and de-allocation of memory
should be avoided. Use of software-based checksums (e.g.,
cyclic redundancy check) also is recommended.

Evaluation and assessment of software safety is a
rather difficult proposition. The approaches include safety
requirement coverage, checklists, meeting specific pro-
cess objectives, and so forth (32–34). Formal methods,
based on discrete mathematics, provide a rigorous
mechanism for describing both system and software dur-
ing the development lifecycle. This description can be
analyzed to verify the system behavior. The methods
can prove certain properties of the system (safety, live-
ness, and reachability) and demonstrate that the compu-
ter program transfers its pre-conditions into desired post-
conditions. In highly dependable applications, the use of
formal methods has been encouraged and occasionally
mandated (35–37).

A popular approach is to annotate a program with spe-
cification constructs to support formal verification. A proof
of correctness is a formal verification approach based on
enforcing a strict subset of the programming language thus
applicable to the new development of safety- and mission-
critical softwarerather thanontryingto improvethequality
of legacy code. The goal of another formal verification
approach is the detection of a substantial proportion of
defects rather than proving program correctness. Both
approaches have been developing a variety of tools support-
ing formal analysis. Some of these tools forgo completeness
and soundness of a new language in order to be more useful
on un annotated or lightly-annotated legacy code.

SOFTWARE SAFETY 7



Language Subsets

Programming languages need to be tailored before they can
be used in safety-critical software. This tailoring is done by
identifying a subset of the language that excludes certain
features that are hard to use and verify (38).

An example of a formal verification approach that
focuses on providing proof of correctness is SPARK Ada
(39), a commercially-supported notation that has been
used to develop some sizeable critical systems. SPARK
uses an ordinary Ada 95 compiler. However, SPARK is
more than an Ada subset because of the addition of anno-
tations and the availability of the SPARK examiner tool
that checks for adherence to the subset. The annotations
provide design information about the usage of variables
that would not be present in conventional Ada code.
SPARK is really a design tool using the concept of correct-
ness by construction (40).

The Motor Industry Software Reliability Association
(MISRA) has developed coding guidelines for the C pro-
gramming language intended to improve intelligibility of
the programs and the predictability of the code behavior for
safety-critical applications (41). A major difference from
SPARK Ada is that no specific tool is associated with the
guidelines. However, the industry has developed a variety
of tools that check for the selected subset. The MISRA
guidelines are formulated as set of rules based on two
principles: (a) promotion of a common programming style
and (b) avoidance of language features that are suspected to
lead to program failure (with or without appropriate failure
data). The first principle is supporting code maintainabil-
ity; the second is related more to the actual hazards origi-
nating from the coding practices, and these rules can be the
base for the selection of a safe language subset to prevent
the occurrence of common mode failures. For example, the
C language has a rich set of operators that can be combined
without multiple levels of tedious parentheses. Unfortu-
nately, problems are reported with the precedence of the
default operators and the side effects, which can be avoided
by adhering to specific rules. Some development groups in
other industries have adopted the MISRA C guidelines,
which can be enforced by performing static code analysis on
application source code. However, MISRA-C rules and the
related static checking do not guarantee predictable execu-
tion, for example, an array index range only can be checked
dynamically (42).

The Ravenscar profile was established as a model for
building safe and reliable real-time systems. The profile
was defined in 1997 at an Ada 95 workshop convening at the
village of Ravenscar in northern England (43). The work-
shop defined a set of tasking features compatible with a
realistic size of application but defined to be implemented
efficiently and be reasonably easy to certify. Such a safe Ada
95 subset includes tasking that is restricted by preventing
local declaration of tasks, dynamic allocation of tasks, and
asynchronous transfer of control. Memory allocation is
allowed only once at program elaboration time. De-
allocation is disallowed, simplifying run-time system.
Task rendezvous is not allowed, and tasks can communi-
cate only via protected objects. The tasks are dispatched in
FIFO manner, with a ceiling-locking protocol priority. A

single global handler handles all exceptions. The restric-
tions support a deterministic model of computation
required for safety critical applications, which could be
certifiable to the highest integrity levels.

Java has not been considered a suitable programming
language for safety-critical applications because of its
automatic garbage collection, complex object-oriented
programming features, and inadequate support for real-
time multi threading. The Real-Time Specification for
Java has introduced features that help in the real-time
domain. However, the complex programming model and
the resulting supporting real-time virtual machine com-
plexity prevent confident use of Java in high-integrity
systems. The proposed Ravenscar-Java profile (44) con-
centrates on reliability, robustness, traceability, and
maintainability, with an objective to ensure predictability
in three areas: memory use, timing, and control and data
flows. The profile allows for concurrent execution of sche-
dulable objects (threads and event handlers) based on pre
emptive priority-based scheduling. Schedulable objects
have to be either periodic or sporadic with minimum
inter-arrival times, and the priority ceiling protocol is
required to be implemented in the runtime system. This
profile facilitates the use of off line schedulability analy-
sis, which is associated with fixed priority scheduling (for
example, deadline- or rate-monotonic analysis)

Partitioning and Firewalls

For highly critical applications in regulated industries,
depending on the criticality of the application as defined
by system safety assessment, object code analysis on the
target level often is required. To reduce potential errors, the
development methodology calls for independence and diver-
sity. For independence, it is understood that the verifica-
tion/validation is performed by an independent entity.
Depending on the criticality of the module, it can be a
different organization, a different unit within the same
company, or a different person not previously engaged in
the development. Diversity in development of the same
module, independently by two or more teams, is a mechan-
ism to reduce the likelihood of similar human mistakes.
Despite wide use in highly critical applications (nuclear,
aviation, and space), the approach has been considered
controversial, because common specification defects or
the selection of the same approach in a difficult part of
the implementation by the teams may compromise the
diversity concept (45).

Certainly, the additional safety code required for check-
ing, monitoring, redundancy, voting, and acceptance tests
adds complexity to the software and thus inherently
increases the safety risk. Rigorous software verification
by means of testing, analysis, and inspection always is
required (46). The recommended option to reduce the
impact of potential safety violations and fault propagations
includes the use of firewalls for safety-critical modules.
Such firewalls can be accomplished by placing the source
in separate translation units (separate files) and declaring
all external functions and data inside the module as static
(private in Cþþ), with the only not-static functions being
external ports (public in Cþþ).

8 SOFTWARE SAFETY



Partitioning is a fundamental concept used to implement
differing levels of protection in systems combining both
critical and non critical software. Partitions are used in
fault-tolerant systems that require high availability, redun-
dancy, or dynamic re-configuration (47). Traditionally, par-
titioning has been implemented via memory address space
to ensure that the non critical and critical codes do not use
the same physical resources. A microprocessor supervisor/
user mode can be a vehicle to implement such partition. The
increasing demands on reliability and dynamic reconfigura-
tion require the use of an explicit spatial firewall often
implemented as a memory management unit. Additionally,
a temporal firewall implemented by the run-time executive
may be used. Such a solution may include fixed time-slice
round-robin scheduling of all partitions or implementation
of a partition priority scheme such that the critical partition
gets as much CPU time as it needs.

Some modern real-time operating systems (RTOS) sup-
port partitioning adhering to standards such as the ARINC
653 Application Executive (APEX) for integrated modular
avionics (48). The partitioned system executive consists of
two major parts: (a) the operating system kernel that
controls the scheduling of and the communications between
the partitions that are resident on that processor and (b) the
partition operating system that supports the internal sche-
duling of each of the partition threads and the mechanism
to detect and respond to error situations within the appli-
cation partition.

Safety Kernels

The software in safety-related systems must have certain
behavioralproperties tobeconsideredsafe.Theseproperties
can be expressed as predicates that the software must main-
tain with respect to its inputs, outputs, and states. Showing
that the software for a particular system satisfies a given set
of predicates is a verification problem, which typically is
carried out via combination of analyses, tests, and inspec-
tions. More formal analysis for code of a significant size is
difficult and expensive. One useful strategy is to design the
softwaresothatthemostrigorousanalysiscanbeappliedtoa
relatively small portion of the entire software, with conven-
tional methods applied to the remainder of the software.

Safety kernels are small, relatively simple units, which
ensure desired particular behavior for the overall system
without making any assumptions about the proper func-
tioning of the remaining software. Kernels have a success-
ful history in operating systems as a means of protecting
access to computing resources and in security applications
as a means of preventing unauthorized information flow.
Because of the small size of the kernel, it can be thoroughly
tested, analyzed, and verified. To enforce safety, two con-
ditions must hold: (a) All predicates describing safe opera-
tion at the system level must be under the kernel control,
and (b) an arbitrary behavior external to the kernel cannot
impact the predicates (17).

SAFETY IN THE LIFECYCLE

Successful software safety can be implemented only as part
of an overall system safety program. A continuous coordi-

nation and open communication between systems engi-
neers, system safety personnel, software developers,
software assurance personnel, and project management
is the key to success. The critical steps to achieve software
safety is first to perform rigorous safety analysis of the
system, identifying the role and impact of software on
safety. The identification of hazards and failure modes
attributed to software allows developers to trace the safety
requirement to software components and to appropriate
testing procedures.

For software developers building safety-critical sys-
tems, an ideal and practically impossible objective to realize
is to develop complete and correct requirements, a defect-
free design, and a fault-free software implementation.
Thus, the accepted feasible approach is to develop fault-
tolerant designs, which will detect and compensate for
software faults while the system is operating.

Depending on their placement in the system develop-
ment lifecycle, the hazard analyses may have variety of
forms (15):

� Preliminary Hazard List (PHL), to identify potential
hazards/mishaps in the conceptual phase of developing
a system

� Preliminary Hazard Analysis (PHA), to analyze the
hazards and establish the initial system safety
requirements

� Subsystem Hazard Analysis (SSHA), concentrating on
the system components to identify hazards causal
factors, effects, risks, and mitigation measures

� System Hazard Analysis (SHA), focusing on integra-
tion to ensure that overall system risk is known and
accepted

� Operating/Support Hazard Analysis (OSHA), with a
focal point on the procedures and human interface to
assess the safety of operations

� Safety Requirements/Criteria Analysis (SRCA), to
ensure that all identified hazards match their respec-
tive safety requirements and that they can be vali-
dated

IEC 61508 standard (49) identifies two types of safety
requirements: safety function requirements and safety
integrity requirements. The safety function requirements
define the input/output sequences that perform the safety-
critical operation. For example, a boiler could have a pres-
sure sensor (input) that can reach a maximum value (algo-
rithm) before the gas is shut off (output) to the burner. The
safety integrity requirements define diagnostics and fail-
safe mechanisms used to ensure that failures of the system
are detected and that the system goes to a safe state if it is
not capable of performing a safety function. Examples of
integrity elements in the boiler would be a current-range
diagnostic on the pressure sensor or a watchdog timer. If
either of these elements detected a failure, they could force
the system to a safe state.

The Software System Safety Handbook (24) divides
safety requirements into two categories: generic and speci-
fic. The generic software safety requirements are domain
independent and are applicable to common safety problems.

SOFTWARE SAFETY 9



Generic requirements address such issues as the need for
detection, isolation, and recovery from any failure of a
safety-critical software function, checking the prerequisite
conditions, status, and handling of software inhibits by the
modules and assuring return to safe state/mode; they also
use self-tests, unused code, configuration, fault contain-
ment, exception handling, error propagation, and so forth.
The complete list of generic software safety requirements
can be found in the Appendix E of the Handbook (50). The
specific, software safety requirements include application-
specific, system-unique constraints that can be identified in
three ways (50):

(a) Top-down analysis of system requirements to identify
system hazards and to specify which system functions
are safety-critical. The entire safety organization par-
ticipates in the mapping of these requirements to the
software.

(b) Preliminary hazard analysis considers whether system
hazards are mapped to the software. Software hazard-
control features are identified and specified as require-
ments.

(c) Bottom-up analysis (e.g., flow diagrams, failure
modes, effect analyses, fault trees) where the design
solutions are analyzed and new hazard causes can be
identified.

STANDARDS AND CERTIFICATION

A safety standard is a systematic approach to assure safety
that is codified by a regulatory authority organization. The
purposeofsuchastandardistoimprovethesafetyofacritical
system, to specify minimum standards of design and devel-
opment techniques within the relevant industry, to encou-
rage a structure of professional responsibility, to promote
uniformity of approach between different teams and indus-
tries, as well as to provide legal basis in the case of a dispute.

Certification (or approval) is a process of getting a formal
approval from a statutory authority (government or indus-
try) to use the product. Depending on the determined
system safety integrity level, an independent verification
and validation (IV&V) effort may be required to get the
system certified (from another developer, department,
organization, or governmental agency). Collection of appro-
priate supporting evidence, particularly safety-related, in a
format defined by standards and guidelines is the basis for
the certification. Certification indicates a conformance to
standards or guidelines and can be applied to individuals,
organizations, tools, methods, systems, or products.

In other terms, certification is a legal recognition by the
authority that an entity (product, service, organization, or
person) complies with the applicable requirements. The objec-
tive of certification is to improve safety of the product by (51):

� enforcing minimum safety standards,

� increasing the awareness of safety,

� improving organizational structure, and

� encouraging professional responsibility.

The developer needs, therefore, to prepare and present
the safety case that proves adherence to standards, which
typically is a huge investment of time and resources.

Table 3 represents selected standards used in the devel-
opment of safety-critical systems. The focus is on the stan-
dards directly related to the systems with significant
software components.

The Functional Safety: The Safety Related Systems
IEC61508 standard (49) was issued by the International
Electrotechnical Commission in 1995. This standard is
accepted in Europe as a generic standard for the functional
safety of a programmable electronic system with a focus on
product functionality in terms of the entire system, not only
the software. Part 3 of the document (IEC 61508-03) is
dedicated to software safety. Meeting the requirements of
IEC 61508 for software development involves a systematic
process, which emphasizes requirements traceability, cri-
ticality analysis, and validation.

Three major guidelines for ensuring safety of software
intensive systems are: RTCA DO-178B (aviation), NASA-
STD-8719.13A (aerospace), and MIL STD 882C/D (mili-
tary).

Aviation

In 1980, the Radio Technical Commission for Aeronautics,
now RTCA, Inc., convened a special committee to establish
guidelines for developing airborne systems. After two
revisions, DO-178B was published in 1989 (19). The
FAA Advisory Circular AC20-115B mandates use of
DO-178B for the development of software in airborne
systems. The FAA Order 8110.49 compiles a variety of
guidelines related to the use of software in airborne sys-
tems (52). Chapter 10 of the FAA System Safety Handbook
(53) addresses issues of software in airborne system devel-
opment.

DO-178B addresses the issue of lack of software visibility
at the system level by describing ihe system aspect of soft-
ware development, software lifecycle, planning, develop-
ment, verification, configuration management, quality
assurance, certification, required data, and additional con-
siderations. The document amplifies the notion that safety
assessment is a hierarchical process including functional
hazard analysis on the aircraft and at the system level,
common cause analysis, preliminary system safety assess-
ment, and system safety assessment (SSA). The SSA
documentation includes a system description, event prob-
abilities, and classification and analyses of failure condi-
tions. DO-178B defines safety and reliability categories for
airborne equipment (catastrophic 10�9, hazardous 10�7,
major 10�5, minor 10�3, and no effect) and their relation
tothedevelopmentassurancelevelsfromthehighestAtothe
lowest E. The main element of DO-178B are ten tables of
objectives related to lifecycle processes described in the
guide.Eachtableincludesentriesforanobjective(identifier,
description, and document section reference), applicability
by software level, required artifacts, and control category.
The objectives can be satisfied either with or without inde-
pendence, conditionalon theassurance level.The focus is on
the lifecycle transition criteria and traceability.

10 SOFTWARE SAFETY



Software development processes artifacts defined in
the DO-178B include the plan for software aspect of cer-
tification (PSAC), development, verification, configura-
tion management and quality assurance plans, design
and code standards, requirements and design specifica-
tion data, source and executable code, verification proce-
dures and test cases and their results, life cycle
configuration index, problem reports, configuration man-
agement and quality assurance records, and the software
accomplishment summary (SAS). The PSAC and SAS are
obligatory, whereas others need to be either submitted to
the certifying authority for review or made available when
requested, depending on the assessed criticality of the
system.

Aerospace

The NASA Software Safety Guidebook NASA-STD-
8719.13A (54) replaces the older NSS1740.13. The standard
defines whether the software is safety-critical and
describes the activities necessary to ensure that safety is
designed into the software. This standard also specifies the
software safety requirements, activities, data, and docu-
mentation necessary for the acquisition or development of
software in a safety-critical system. The standard describes
the general purpose of a safety process and the minimal
requirements for a safety process (as a list of ‘‘shall’’ state-
ments for specific stages of the software lifecycle) with an
emphasis on IV&V.

For a software quality analysis process, the following
activities are prescribed:

� Evaluation of standards and procedures

� Audits of management, engineering, and assurance
processes

� Reviews of project documentation

� Monitoring of formal inspections and reviews

� Monitoring/witnessing of formal acceptance-level soft-
ware testing

For software quality engineering process, the following
activities are recommended:

� Analysis, identification, and detailed definition of
quality requirements

� Evaluations of standards, design, and code

� Collection and analysis of metric data pertaining to
quality requirements

Military

System Safety Program Requirements MIL-STD-882C
was released in 1993 (20) and the updated version Stan-
dard Practice for System Safety MIL-STD-882D in 2000
(5). The standard focus is on the entire system rather than
on the software specific components. In version 882C

Table 3. Selected safety/software standards

Domain Standards/Guidelines Organizations Involved

Aerospace � RTCA/DO-178B
� NASA-STD-8719.13A
� NASA GB-1740.13-96
� ECSS-Q-80A

� FAA : Federal Aviation Administration,
� NASA : National Aeronautic and Space Agency
� EUROCAE : European Organisation for Civil Aviation

Equipment
� RTCA : Radio Telecommunication Committee for

Aviation
� ESA - European Space Agency

Military � MIL-STD-882C/D
� DEF STAN 00-55

� DoD : Department of Defense
� MoD: Ministry of Defence

Nuclear � EC 60880 Ed. 2,2006
� AECL CE-1001 rev 2
� IEC 62138, 2004

� CANDU : Canada Deuterium Uranium

Transportation � EN 50128
� IEC 62279, 2002
� MISRA Guidelines

� MISRA : Motor Industry Software Reliability
Association

Biomedical � IEC 601-1-4 (1996-06)
� ANSI/AAMI SW68
� ANSIUL1998
� AAMI TIR32:2004

� FDA : Food and Drug Administration

Generic � IEC 61508-3, 1998
� IEC 61511-1,2003
� AS 61508.3,1999
� IEEE 1228-1994

� IEC - International Electrotechnical Commission
� IEEE - Institute of Electrical and Electronic Engineers
� ANSI - American National Standards Institute
� CENE - Comité Européen de Normalisation Electrotechnique

SOFTWARE SAFETY 11



entire sections are dedicated to the software safety, and
the appendix identifies specific tasks associated with
management and engineering. In contrast, version
882D mentions software only three times, and the specific
tasks are not described clearly. The standard identifies
acronyms and definitions, general requirements
(approach, hazards and risks mitigation, and hazard
reduction), and the detailed requirements—delegated to
appendix as guidelines. The main objective of the stan-
dard is to reduce or eliminate hazards via the following
mitigation measures:

� Hazard elimination through design selection

� Incorporation of safety devices (with periodic func-
tional checks of the devices)

� Use of warning devices to detect the hazard condition
and to produce warning signals

� Development of operating procedures and training for
personnel

� Reduction of risk to acceptable level

� Performing verification and risk assessment review

� Tracking hazards

The STD-882D defines hazard severity categories (I–IV:
catastrophic, critical, marginal, and negligible) and prob-
ability levels (A–E: frequent, probable, occasional, remote,
and improbable). It also provides the related definition of
risk levels (high, serious, medium, and low), their impact,
approaches, and mitigation measures, as well as the system
safety design order of precedence (i.e., the order to be
followed for satisfying system safety requirements and
reducing risks). The standard also provides the definition
of system safety planning (objective, organization, mile-
stones, reporting, approach, and methodology), safety per-
formance requirements (quantitative and standards), and
safety design requirements.

BIBLIOGRAPHY

1. Encyclopedia Britannica Available: http://www.britannica.
com/eb/article-9064709/safety [2007 June 12].

2. Merriam-Webster. Available: http://www.merriam-webster.
com/dictionary/safety [2007 June 12].

3. N. Leveson, Safeware—System Safety and Computers. Read-
ing, MA: Addison Wesley, 1995.

4. N. Storey, Safety-Critical Computer Systems. Reading, MA:
Addison Wesley Longman, 1996.

5. Department of Defense Standard Practice for System Safety,
DoD Std 882D, Feb 2000. Available: http://safetycenter.navy.
mil/instructions/osh/milstd882d.pdf [2007 June 12]

6. C. M. Knutson and S.Carmichael,Safety first: Avoiding software
mishaps, Embedded Systems Programming. Available: http://
www.embedded.com/2000/0011/001lfeatl.htm [2007 June 12].

7. A. Kornecki and J. Lewis, Software tragedies: Case studies in
software safety, Proc. 21st International System Safety Con-
ference, System Safety Society, Montreal, 2003, pp. 896–905.

8. Goddard Space Center Information and Tools for Saftware
Assurance Practitioners in the NASA Community. Available:

http://sw-assurance.gstc.nasa.gov/disciplines/safety/
index.php [2007 June 12].

9. A. Burns and J. Mc Dermid, Real-time safety critical systems:
Analysis and synthesis, Software Engineering Journal, 9 (6), l994.

10. T. Anderson and J. Knight, A framework for software fault
tolerance in real-time systems, IEEE Trans. Software Engi-
neering, SE-9 (3) 355–364, 1983.

11. N. Leveson, System safety in computer-controlled automotive
systems, Proc. SAE Congress, 2000. Available: http://sunny
day.mit.edu/papers/sae.pdf [2007, June 12].

12. IEEE Standard Board. Standard Glossary of Software Engi-
neering Terminology, Std. 610.12, 1990. Available: http://stan
dards.ieee.org/reading/ieee/std_public/description/se/610.12-
1990 desc.html deschfail [2007, June 12].

13. Guide to Classification for Software Anomalies, IEEE
Std.1044.1–1995.

14. Safety Aspects—Guidelines for Their Inclusion in Standards,
ISO/IEC Guide 51, 1999. Available: http://webstore.iec.ch/
preview/info_isoiecguide51%7Bed2.0%7Den.pdf [2007, June
12].

15. C. Ericson, Hazard Analysis Techniques for System Safety.
New York: 2005.

16. M. Jaffe, N. Leveson, M. Heimdahl and B. Melhart, Software
requirements analysis for real-time process control systems,
IEEE Trans. Software Engineering, 17 (3): 241–258, 1991.

17. J. Rushby, Kernels for safety, in T. Anderson (ed.), Safe and
Secure Computing Systems. Blackwell Scientific Publications,
1989.

18. D. Herrmann, Software Safety and Reliability. IEEE Computer
Society, 1999.

19. Radio Technical Commission for Aeronautics, Software Con-
siderations in Airborne Systems and Equipment Certification,
RTCA DO-178B, RTCA SC-167, 1992. Available for
purchase: Radio Technical Commission for Aeronautics site,
www.rtca.org.

20. Department of Defense,System Safety ProgramRequirements,
DoD Std 882C, Jan 1993. Available: http://www.wbdg.org/cch/
FEDMIL/ms882c.pdf [2007 June 12]

21. A. Kornecki and J. Erwin, Characteristics of safety critical
software, Proc. 22nd International System Safety Conference,
System Safety Society, Providence, RI, 2004.

22. F. Brooks, The Mythical Man Month, 20th anniversary ed.
Reading, MA: Addison-Wesley, 1995.

23. W. Dunn, Practical Design of Safety-Critical Computer Sys-
tems. Reliability Press, 2002.

24. Joint Services Software Safety Committee, Software System
Safety Handbook, December 1999. Available http://www.
egginc.com/dahlgren/files/ssshandbook.pdf [2007 June 12].

25. M. Friedman and J. Voas, Software Assessment: Reliability,
Safety, Testability. New York: Wiley, 1995.

26. M. Lyu, Handbook of Software Reliability Engineering. New
York: McGraw Hill, 1996.

27. A Conceptual Framework for Systems Fault Tolerance, SEI,
March, 1995. Available: http://hissa.ncsl.nist.gov/chissa/SEI_
Framework/framework_6.html [2007 June 12].

28. J-C. Laprie, Definition and analysis of hardware and software
fault tolerant architectures, IEEE Computer, 23 (7): 39–51,
1990.

29. D. Pradhan, Fault Tolerant Computer System Design. Engle-
wood Cliffs, NJ: Prentice Hall, 1996.

30. S-T. Levi and A. Agrawala, Fault Tolerant System Design. New
York: McGraw Hill, 1994.

12 SOFTWARE SAFETY



31. L. Pullum, Software Fault Tolerance Techniques and Imple-
mentation. New York: Artech House, 2001.

32. D. Parnas, A. Van Schouven, A. Po Kwan, Evaluation of safety
critical software, Communications of the ACM, pp. 636–648,
June 1990.

33. A. Kornecki, Assessment of software safety via catastrophic
events coverage, Proc. 21st IASTED International Conference
on Software Engineering (SE’2003), February 2003.

34. R. de Lemos, A. Saeed and T. Anderson, Analyzing safety
requirements for process control systems, IEEE Software,
May 1995.

35. J. Rushby, Formal Methods and Their Role in Certification of
Critical Systems, Technical Report, CSL-95-l, SRI Interna-
tional, 1995.

36. J. Bowen and M. Hinchey, High Integrity System Specification
and Design. New York: Springer1999.

37. N. Platt, J. Van Katwijk and H. Toetenel, Application and
benefits of formal methods in software development, Software
Engineering Journal, 7 (5) 335–346, 1992.

38. P. V. Bhansali, A systematic approach to identifying a safe
subset for safety-critical software, ACM SIGSOFT Software
Engineering Notes. ACM Press, 28 (4), 2003

39. J. Barnes, High Integrity Software: The SPARK Approach to
Safety and Security. Reading, MA: Addison Wesley, 2003.

40. A. Hall and R. Chapman, Correctness by construction: Devel-
oping a commercial secure system, IEEE Software, pp. 18–25,
Jan/Feb 2002.

41. MISRA C guidelines (1998) ISBN 0-9524156-9-0, Available for
purchase: Motor Industry Software Reliability Association
site, www.misra.org.uk.

42. L. Hatton, Safer Language Subsets: An overview and a case
history, MISRA C, Information and Software Technology, 46
(7): 465–472, 2004.

43. B. Dobbing and A. Burns, The Ravenscar profile for real-time
and high integrity systems, CrossTalk—The Journal of
Defense Software Engineering, Nov 2003.

44. J. Kwon, A. J. Welling and S. King, Predictable memory
utilization in the Ravenscar–Java Profile, Proc. IEEE Inter-
national Symposium on Object-Oriented Real-Time Distribu-
ted Computing, 2003. Available: http://citeseer.1st.psu.edu/
kwon03predictable.html [2007 June 12].

45. J. Knight and N. Leveson, An experimental evaluation of the
assumption of independence in multiversion programming,
IEEE Trans. Software Engineering, SE-12, (1): 96–109, 1986.

46. S. Gardiner, Testing Safety Related Software—A Practical
Handbook. New York: Springer, 1998.

47. B. Dobbing, Building partitioning architectures based on the
Ravenscar profile, Special Issue: Presentations from SIGAda
2000, XX (4), 2000.

48. ARINC653 Avionics Application Software Standard Interface,
Part 1: Required Services, Part 2: Extended Services, Part 3:
Conformity Test Specification. Available for purchase: Aero-
nautical Radio, Inc. site, www.arinc.com.

49. Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-Related Systems—Part 3: Software
Requirements, IEC 61508-3 (1998–12) Available: for pur-
chase: International Electrotechnical Commission site
www.iec.ch/61508.

50. Directorate for Safety, US Army, Communication-Electronics
Life Cycle Management Command, Software System Safety
AMSEL-SF. Fort Monmouth, NJ. Available: http://
www.monmouth.annv.mil/cecom/safety/sys_service/softwar-
e.htm [2007 June 12].

51. J. Voas, Certifying software for high assurance environments,
IEEE Software, pp. 48–54, Jul/Aug. 1999.

52. U.S. Department of Transportation, Federal Aviation Admin-
istration,Software Approval Guidelines, FAA Order 8110.49,
2003. Available: http://www.airweb.faa.gov [2007 June 12].

53. Federd Aviation Administration (FAA System Safety Hand-
book. Available: http://www.faa.gov/librarv/manuals/aviation/
nsK_management/ss_handbook/ [2007 June 12].

54. NASA Glenn Research Center Safety and Assurance Directo-
rate NASA Software Safety Guidebook, NASA STD-8719.13 A.
Available: http://www.hq.nasa.gov/office/codeq/doctree/
871913.pdf [2007 June 12].

ANDREW J. KORNECKI

Embry Riddle Aeronautical University
Daytona Beach, Florida

SOFTWARE SAFETY 13



S

SOFTWARE SECURITY

Software security is a branch of computer security that
addresses enforcement of secure behavior of development
and operation of software systems. As shown in Fig. 1,
computer security consists of four layers: crypto, protocols,
systems and languages, and applications (1). Although the
crypto and protocol layers often involve software and oper-
ating systems and programming languages are in essence
software, software security is primarily concerned with
security issues at the application layer. It is built upon
the crypto, protocols, and systems and languages layers.
The goal is to prevent, detect, and recover from software
attacks that violate application-specific security require-
ments with respect to confidentiality, integrity, and avail-
ability (CIA). Confidentiality, integrity and availability
refer to the concealment, trustworthiness, and desired
use of information and resources (2).

Software security has been a major source of cyber
security risks for many reasons. First, many attacks
against a company’s network come at the application
layer. They bypass the traditional security mechanisms
at the crypto, protocols, and systems layers (e.g., firewall
and intrusion detection, to name a few). However, protec-
tion of software applications is in general beyond the
capabilities of these mechanisms because they lack
knowledge of application semantics. For example, a fire-
wall cannot distinguish between the traffic of an
attempted attack and the traffic of legitimate use of an
application through the open ports. Second, software
security is often added as an afterthought near the end
of software development. It is well-known that ‘‘pene-
trate-and-patch’’ is a common yet dumb practice for soft-
ware security. Although secure coding is important,
software security requires a lot more beyond coding.
For example, a large portion of the security flaws uncov-
ered during Microsoft’s ‘‘security push’’ in 2002 were
closely related to design-level problems (3). Principled
use of assurance techniques is yet seldom adopted
throughout software development processes (4). Last, a
lack of well-trained workforce exists for secure software
development. Software security has not gained much
attention until recently.

It is well accepted that software security should be
addressed throughout software development processes.
The rest of this article discusses software security from
the software engineering perspective. It serves as an over-
view of secure software engineering.

THE ADVERSARY’S PERSPECTIVE OF SOFTWARE SECURITY

As mentioned before, the goal of software security is to
prevent, detect, and recover from software attacks. Attacks
are misuses and anomalies of the intended system func-
tionality. They violate the security goals of information,

resources, and services. Consider a web-based shopping
cart application. One of its intended functions is to allow
customers to purchase goods online. A potential misuse of
this intended function is that the customers may purchase
goods at reduced prices by unexpected modification to the
price data. This misuse violates integrity of the price data.
The adversary’s perspective of software security refers to
the idea that thinks of software security from the stand-
point of how an adversary would attack or exploit a soft-
ware application. A software application should be
considered insecure until demonstrated to be resistant to
all potential attacks. Strictly speaking, no software is
absolutely secure. We refer to the potential attacks as
security threats.

As shown in Fig. 2, the adversary’s perspective of soft-
ware security advocates that security threats should be
identified according to the security objectives imposed on
the intended functions, services, and related information
and resources. The information and resources that a soft-
ware system must protect from attacks are called assets.
They are potential targets of attacks. The security threats
then suggest what, where, and how security features for
threat mitigation should be applied. Thus, the intended
functions and threat mitigations together form a system
that is secured from the identified security threats. The
adversary perspective of software security can be applied
throughout the software development processes, which
include from requirements analysis, design, implementa-
tion, testing, and deployment.

Amplification of Vulnerabilities in Software Development
Processes

Security threats are caused by security vulnerabilities in
software artifacts (e.g., design and code). A vulnerability is
a security flaw that represents a valid way for an adversary
to realize one or more threats. An unfortunate fact is that
more vulnerabilities and hence more security threats may
emerge when the development moves from one phase to the
next (e.g., from design to implementation). We call this
phenomenon amplification of vulnerabilities in software
development processes, as shown in Fig. 3 where each
shaded circle represents a vulnerability. On one hand,
one vulnerability in the artifact of an earlier software
development phase can result in multiple vulnerabilities
in a later development phase. For example, a missing or
incomplete security requirement can lead to several vul-
nerabilities in the design and code. On the other hand,
design and implementation may introduce new security
holes that are specific to the design and implementation
choices. For example, the design of a web-based shopping
cart application that relies on client-side input validation
may leave a vulnerability that can be exploited to
purchase goods at modified and reduced prices. Using C
as the implementation language may result in C-specific
buffer overflow vulnerabilities. Amplification of security

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



vulnerabilities requires that threat modeling, risk assess-
ment, threat mitigation, and risk control should be con-
ducted in each development phase. The earlier the
vulnerabilities are found, the cheaper the cost to fix them.

Threat Modeling

To better understand security requirements and solutions,
it is important to identify, specify, evaluate, prioritize, and
mitigate security threats. Threat modeling is the process of
producing a simplified, abstract description of how an
adversary would perform potential attacks or pose security
threats to the system. It can be conducted at various levels
of abstraction and granularity or in various software devel-
opment phases—requirements, design, implementation,
and even testing.

Several notations have been proposed for threat model-
ing, such as misuse cases (based on use case modeling),
threat trees (a variation of fault trees for safety analysis),
threat nets (based on Petri nets), anti-goals (based on goal-
oriented requirements analysis), and threat traces (based
on sequence diagrams or activity diagrams). Among these
notations, threat trees and misuse cases have been widely
applied. Threat trees [or attack trees (6)] represent security
threats in a tree structure, with the goal as the root node
and different ways of achieving that goal as leaf nodes.
Figure 4 shows a sample threat tree. The goal of the threat
is to obtain another person’s username and password. To
achieve this goal, the adversary must obtain a valid user-
name AND a valid password for the username. To obtain a
valid username, the adversary can either use an error
string from the login page to determine username validity
OR trick a user to disclose her username. Similarly, to

obtain a valid password of the username, the adversary can
either use the login page to guess the password by brute
force OR trick the user to disclose her password. In general,
AND nodes represent different steps toward achieving the
same goal, whereas OR nodes are alternatives. A threat
tree implies attack paths through which the threat can be
accomplished. Each attack path is a route from a leaf to the
root, inclusive of AND nodes. For example, the threat in
Fig. 4 has four attack paths. It is also possible to compose
threat trees. A threat tree can represent a node in another
threat tree. In addition, threat trees can be documented in
a textual form. Figure 5 shows the textual description of the
threat tree in Fig. 4. Threat trees are simple and easy to
understand. For rigorous modeling, however, formal meth-
ods such as Petri net can be applied (5).

From the adversary’s perspective of software security
shown in Fig. 2, threat modeling should not be independent
of system modeling. System modeling should deal with both
intended functions and threat mitigations (security
requirements or mechanisms). A threat makes no sense
if it is irrelevant to the intended functions. For example, the
node 1.1.1 in Fig. 4 indicates that the system offers a login
page. Threat modeling and system modeling may exploit
different modeling notations. For example, the Microsoft’s
threat modeling approach (7,8) uses data flow diagrams for
system modeling and threat trees for threat modeling, Xu
and Nygard’s approach (5) uses Petri nets as a unified
formalism for system modeling and threat modeling.

To select appropriate notations for threat modeling and
system modeling, the following issues should be taken into
consideration:

� The notations for threat modeling and system model-
ing must be able to express the desired level of abstrac-
tion. Security threats make sense only when they are
defined with respect to the intended functions at the
same level of abstraction. For example, misuse cases
are suitable for capturing security threats at the
requirements phase because they are based on the
use case modeling approach to requirements analysis.
However, they are probably inappropriate for model-
ing threats at the level of detailed design.

� The notation for system modeling must be able to
capture the information, resources, and services that

crypto 

protocols

systems and languages 

applications

Figure 1. Layers of computer security (1).

Security
threats  

Security 
objectives

Intended 
functions

Threat 
mitigation

Secured
software 

Figure 2. The adversary’s perspective of software security (5).

Development process 

Requirements          Design Code

Figure 3. Amplification of security vulnerabilities in software
development processes.

2 SOFTWARE SECURITY



should be protected but can be threatened. A threat is
meaningless unless it involves some asset or target
that is of interest to the adversary.

� The notation for threat modeling must be able to
capture the interaction between the threat model
and the system model. A threat is meaningless unless
it involves some way through which the adversary can
interact with the system. In other words, threat models
must be traceable—it can be determined which part of
the intended functionality is relevant to a given threat
and which part of the system mitigates the threat if the
threat is claimed to be mitigated.

Threat identification is often a challenging task before
threat modeling can be done. In general, we can identify
security threats in terms of security objectives (e.g., CIA),
threat catalogs, and threat elements (assets of interest to
the adversary and way of interaction with the system).

� Identifying threats with respect to security objectives.
We can check each intended function and related
information and resources to see if it can be misused
to violate confidentiality, integrity, or availability. For
example, purchasing goods online is an intended func-
tion in a shopping cart application. To elicit security
threats, we can ask such questions: Could the adver-
sary purchase goods without payment or at reduced
price? Could the adversary put the system out of
service?

� Identifying threats using threat catalogs or checklists.
We can use a security catalog (a list of threat types) to
elicit security threats. For example, Shirey (14) cate-
gorizes security threats as disclosure (unauthorized
access to assets and services), deception (acceptance
of false data), disruption (interruption or prevention
of correct operation), and usurpation (unauthorized
control of some part of a system). Howard and
LeBlanc’s STRIDE catalog (7) includes spoofing (an
impersonation of one entity by another), tampering
(unauthorized change of data), repudiation (a false

denial that an entity sent or created something),
information disclosure (unauthorized access to infor-
mation or exposure of protected data), denial of ser-
vice (a long-term inhibition of service), and elevation
of privilege (access to assets with a higher security
context than intended). Different threat catalogs can
be overlapping. For example, spoofing is a form of both
deception and usurpation; tempering is a form of
deception, disruption, and usurpation; repudiation
is a form of deception; and denial of service is a
form of usurpation.

� Identifying threats in terms of assets and system
interactions.
A meaningful threat must involve assets of interest to
the adversary and a way of interacting with the sys-
tem. We can identify threats by inspecting whether the
information and resources (e.g., patient information)
and the user interface (e.g., input of user name and
password) can be misused or exploited.

Assessment of Security Risks

Security threats are unwanted risks that have negative
consequences. After security threats have been identified
and specified, we can evaluate their risks quantitatively
and decide how to control the risks. As security threats
are ubiquitous, the quantitative evaluation helps prioritize
the threats. With limitedbudgetandresources, forexample,
wecanchoosetomitigatethethreatsthatareofhighestrisks.

Risk exposure is a traditional approach to quantifying
the effects of risks. The risk exposure of a threat is the
multiplication of the risk impact (i.e., the loss associated
with the threat) by the risk probability (i.e., the likelihood
that the event will occur). Consider the disclosure of patient
information as an example. If the likelihood of this threat is
0.4 and the loss caused by such an attack is $100,000, then
the risk exposure of the threat is $40,000. Although threat
mitigation reduces security risks, it may not be possible or
practical to completely remove the risks. In particular, a
threat mitigation technique, (e.g., SSL) may have its own

1. Obtain another person’s user name and password 
AND 1.1 Obtain a valid user name  

OR 1.1.1 use an error string from the login page to determine username validity 
1.1.2 trick a user to disclose her username 

1.2 Obtain a valid password 
OR 1.2.1 use the login page to guess the password  

1.2.2 trick the user to disclose her password Figure 5. The textual description of a
threat tree.

1. Obtain another 
person’s user name 
and password 

1.1 Obtain a 
valid user name 

1.1.1 Use an error 
string from the login 
page to determine 
username validity 

1.1.2 Trick a 
user to disclose 
her username 

1.2.1 Use the 
login page to 
guess the 
password  

1.2.2 Trick the 
user to disclose 
her password 

OROR

AND
1.2 Obtain a 
valid password 

Figure 4. A sample threat tree.

SOFTWARE SECURITY 3



threats. We must take into account the cost of threat
mitigation and the security risks after the mitigation. To
do so, we can measure the risk leverage of threat mitiga-
tion. It is the difference in risk exposure divided by the cost
of mitigating the threat. Formally, risk leverage is equal to
(risk exposure before mitigation-risk exposure after miti-
gation)/ cost of mitigation.

If the leverage value of the threat mitigation technique
is not high enough to justify the action, then we can look for
other mitigation techniques.

Microsoft’s DREAD is another way to evaluate the
risks of security threats. For each threat, the damage
potential, reproducibility, exploitability, affected users,
and discoverability are rated on a scale of one to ten. The
bigger the rating, the greater the risk the threat poses to
the system. The overall risk is determined by averaging
the five ratings. As an example, Table 1 shows the
DREAD ratings of threat ‘‘attacker manipulates patient
information.’’

Threat Mitigation

Different strategies are used for dealing with the risks of
security threats. Primary examples include (1) assuming
the risks without taking any action, (2) avoiding the risks
by changing functional or performance requirements such
that the threats no long exist, and (3) adopting security
requirements or techniques to mitigate the threats. To
reduce the threat of spoofing, for example, we can add an
authentication requirement. To meet this requirement,
several security techniques are available, such as digest,
Kerberos, and passport. To mitigate the threats of temper-
ing with data, we may choose from authorization, message
authentication codes, digital signatures, and temper-
resistant protocols, e.g., SSL/TLS. A partial list of mitiga-
tion requirements and techniques for the STRIDE threats
can be found in (7). In addition, security design patterns can
also serve as general mitigation techniques.

A mitigation requirement or technique may counter-
measure multiple threats. For example, authentication is
useful for mitigating both spoofing and denial of service.
One threat (e.g., information disclosure) may entail multi-
ple mitigation techniques. When a mitigation requirement
or technique is applied, the threat model and system model
should be updated to reflect the decision. This model will

improve the traceability of threats and mitigations within a
development phase and across different development
phases.

Appropriate applications of mitigation techniques can
significantly reduce the risks of security threats. it does not
mean that the software will be absolutely secure. Security
threats are ubiquitous. Even if it is possible to identify all
threats, mitigation of all threats is in general beyond the
availability of required resources. Moreover, mitigation
requirements and techniques are subject to their own
threats. It is not realistic to expect the prevention of all
potential attacks, although the process of threat modeling,
risk assessment, and threat mitigation within a develop-
ment phase is often repetitive. The process would stop
when, for the limited resources available, the level of
security has become acceptable, and the unmitigated
threats are believed to be sufficiently expensive for an
adversary to accomplish. Prevention of attacks is critical,
but it is not the only goal of software security. Security-
intensive software should also address issues that pentain
to the detection of and recovery from attacks. Auditing such
as logging and monitoring is a common approach to this
end. Auditing is also critical to forensics, the goal of which is
to investigate when and how an attack has happened and
who is responsible.

REQUIREMENTS ANALYSIS OF SECURE SOFTWARE

The requirements analysis process for building a software
system aims at capturing precisely what to build. The
requirements of a software system include functional
requirements, nonfunctional requirements, design con-
straints, and process constraints (9):

� A functional requirement describes required behavior
in terms of required activities, such as reactions to
inputs.

� A nonfunctional requirement, or quality requirement,
describes some quality characteristic that the software
solution must possess, such as fast response and ease of
use.

� A design constraint is a design decision, such as choice
of platform or interface components, that has already
been made and that restricts the set of solutions.

Table 1. An Example of DREAD Risk Rating

Threat Description Attacker Manipulates Patient Information

Threat target Patient data
Threat category Tempering with data and potentially

information disclosure
Risk Damage potential: 10

Reproducibility: 7
Exploitability: 8
Affected users: 10
Discoverability: 10
Overall: 9

Comments This threat concerns accessing the patient
information as it travels across the network.

4 SOFTWARE SECURITY



� A process constraint is a restriction on the techniques
or resources that can be used to build the system.

In general, security requirements are nonfunctional
requirements. However, they can entail functional
requirements and additional constraints on the develop-
ment process. For example, user registration can be con-
sidered as a functional requirement that is raised by the
need of authentication. Security requirements are not
independent of functional requirements, design con-
straints, or process constraints. Security requirements
analysis should therefore be an integral part of the
requirements analysis process. Modeling notations for
security requirements are usually extensions to those
for functional requirements. For example, the misuse
case approach (10–15) is based on the use case approach,
the anti-goal approach (16) is based on the goal-oriented
requirements analysis, and the abuse frame approach (17)
extends the problem frames.

Misuse Cases

The misuse case approach centers a round an interactive
modeling of use cases, misuse cases, and mitigation use
cases. From the adversary’s perspective, use cases, misuse
cases, and mitigation use cases (or security use cases)
describe the intended behaviors (i.e., functional require-
ments), security threats, and security mitigations (i.e.,
security requirements), respectively. In the interactive
modeling, we first identify use cases; each use case defines
the interaction between an external actor (role played by a
person or thing) and the system to accomplish a goal. Then,
we identify potential misuse cases with respect to the use
cases; each misuse case defines the interaction between an
adversary (or mis-actor) and the system to accomplish the
goal of attacking the system by exploiting the use cases. For
example, ‘‘Steal credit card information’’ is a misuse case
that threatens the use case ‘‘Order goods’’ in an online
shopping application. Finally, mitigation use cases are
suggested as countermeasures of the misuse cases. Each
mitigation use case defines the requirement for mitigating
the misuse cases. For example, ‘‘Encrypt messages’’ is a
mitigation use case for the misuse case ‘‘Steal credit card
information.’’ The interactive modeling is often iterative,
starting with a small set of use cases and dealing with more

use cases in the next iteration. As mitigations are subject to
misuses, misuses of mitigation use cases should also be
examined in each cycle.

Use/misuse case diagrams and textual descriptions are
often used to document use cases, misuse cases, and
mitigation use cases and the relationships among
them. Figure 6 shows some use cases (‘‘Register custo-
mer’’ and ‘‘Order goods’’), misuse cases (‘‘Flood system’’,
‘‘Steal credit card information’’, ‘‘Tap communication’’),
and mitigation use cases (‘‘Block repeated registration,’’
‘‘Encrypt messages’’) in an online shopping application.
As in the traditional use case approach, ‘‘includes,’’
‘‘extends,’’ and ‘‘generalization’’ can be used to label the
relationships between misuse cases. For example, ‘‘Steal
credit card information’’ includes ‘‘Tap communication.’’
These relationships may also exist between mitigation
use cases and regular use cases. ‘‘threatens’’ can be used
to label the link from a misuse case to the corresponding
use case(s), and ‘‘mitigates’’ to depict the relationship
between a mitigation use case and the corresponding
misuse case.

A use/misuse/mitigation use case diagram provides a
high-level view of the intended functions and security
requirements. To better understand the system, however,
many details need to be described. In Fig. 6, for example,
‘‘Steal credit card information’’ is a misuse case with
regard to the use case ‘‘Order goods.’’ It makes no sense
unless the use case requires the customer to provide
credit card information. To complement a use/misuse/
mitigation use case diagram, textual descriptions are
often used to capture the detailed use cases, misuse cases,
and mitigation use cases. A use case template in the
traditional use case approach, although no standard,
exists usually includes case number, case name, goal,
actors, preconditions, main flow of events, alternative
flows, related business logic, and postconditions. This
template can be used as a basis for describing use cases,
misuse cases, and mitigation use cases. To keep track of
the relationships between use cases, misuse cases, and
mitigation use cases, we can add a new entry for enumer-
ating misuse cases and mitigation use cases to the tem-
plate for use cases and mitigation use cases. Table 2
shows the textual description of the use case UC 11
‘‘Order goods.’’ In Step 6 of the main flow of events, the
customer submits credit card information. This is where

Register 
customer

Order
goods

Flood
system

Steal credit 
card info 

Tap com-
munication

Encrypt 
messages

Block repeated 
registrationextends 

includes

includes

threatens 

mitigates

includes 

threatens 

mitigatesCustomer Adversary

Figure 6. A use/misuse/mitigation use case dia-
gram.

SOFTWARE SECURITY 5



the use case is threatened by the misuse case MC 10
‘‘Steal credit card information.’’ Therefore, the last entry
of the table lists the misuse case (MC10) and the corre-
sponding mitigation use case (SC 5).

Anti-Goals

The anti-goal approach (16) is based on the goal-oriented
requirements analysis, in which goals prescribe intended
behaviors. Goals may refer to the intended services (func-
tional goals) or to quality of service (nonfunctional goals).
They are organized in AND/OR refinement-abstraction
hierarchies in which higher-level goals are strategic and
coarse grained, whereas lower-level goals are technical and
fine grained. AND-refinement links relate a goal to a set of
subgoals whereas OR-refinement links may relate a goal to
a set of alternative refinements. Goal refinement ends
when every subgoal is realizable. A requirement is a term-
inal goal under responsibility of an agent (active component
such as a human and device).

To produce requirements for more robust systems,
obstacle analysis (18) takes a pessimistic view at the goals.
It tries to identify and resolve as many ways of obstructing
the goals as possible. An obstacle to some goal is a condition
that prevents the goal from being achieved. In the context of
security, threats are obstacles or anti-goals intentionally
set up by attackers. Threat trees are built systematically
through anti-goal refinement until leaf nodes are either
software vulnerabilities or anti-requirements. New secur-
ity requirements are then obtained as countermeasures by
application of threat resolution operators to the specifica-
tion of the anti-requirements and vulnerabilities.

SECURE SOFTWARE DESIGN

Secure software design is a process of transforming the
software security problem into a solution. It must meet the
security requirements and avoid potential vulnerabilities
caused by the design decisions.

Principles of Secure Design

In addition to the principles of traditional software design,
such as abstraction and modularization, the design of
secure software should also follow the general principles
for security design. Six principles of secure software design
are discussed below. Although they all originate from the
general design principles of computer and information
security (19), the discussion below places an emphasis on
software applications. When these principles are applied to
a specific application, they may need to be scoped and
revisited to resolve potential conflicts. More design princi-
ples can be found in Refs. 20–22.

Least Privilege. The principle of least privilege states
that a subject (user or software component) should be
given only those privileges necessary to complete a
task. If a subject does not need access to an object to
perform its task, then it should not be granted that access
privilege. If a subject needs extra privileges required of a
specific action, then the extra privileges should be relin-
quished immediately on completion of the action. For
example, if a web server is only responsible for serving
marketing pages, then it should only be given access to the
exact set of files it serves to its clients.

Table 2. Textual Description of the Use Case ‘‘Order Goods’’

Case Number UC11

Case name Order goods
Goal To order goods from the system
Actors Customer, system
Preconditions

1. The customer is registered.

2. The customer has logged on to the system.

Main flow of events

1. The customer enters order goods section.

2. The system displays the customer’s account detail.

3. For each product that the customer wishes to order, the customer
enters its identity.

4. The customer provides delivery details.

5. The system calculates and displays the price of the goods ordered.

6. The customer submits credit card information.

7. The system confirms the result of transaction.

8. The system collects the detail of the order.

9. The system processes the order.

Postconditions 1. The order and its detail are entered in the system and the order is processed.
Misuse cases and
mitigation cases

MC10 Steal credit card info
(Step 6 in the main flow of events)

SC5 Encrypt messages

6 SOFTWARE SECURITY



Simplicity. Theprincipleofsimplicity isalsoknownasthe
principle of economy of mechanism. It states that security
design should be as simple as possible. Complex design is
moredifficult tounderstand,test,andmaintain.It is likelyto
have more possibilities for errors. For example, the UNIX
sendmail utility that routes mail from a sender to a recipient
isacomplicatedprogramwithmanysecurityholes.Complex
design often makes assumptions about the system and
environment. Security problems may develop when these
assumptionsare made incorrectly. Toachievesimplicity and
reduce the number of security holes, a secure design should
try to localizesecuritychecks.For example, chokepointsand
aspect-orientation can serve this purpose. A choke point is a
centralized component through which all control must pass.
Aspect-orientation can modularize security concerns into
separate components.

Secure Defaults. The principle of secure defaults states
that a user or software component should be denied access
to an object unless it is given explicit access to that object or
the access request is found to be consistent with security
policy. When the software is designed, it should, by default,
be optimized for security wherever possible. The principle
of secure defaults is of particular importance for software
deployment—the initial configuration should not turn on
every possible feature and make every service available to
the user by default.

Secure Failure. The principle of secure failure states
that a failure or exception in a function or mechanism
should not lead to violation of security policy. When the
failure or exception occurs, the software should be kept in
a state that denies rather than grants access. When a user
or software component has access to an object but cannot
complete its task, it should still ensure some level of
security. It should undo the changes that it had made
in the secure state of the system before it terminates. It
should not report error messages that reveal useful infor-
mation to malicious users. For example, a basic trick of
Structured Quens Language (SQL) injection attacks is to
first determine the names of data fields in a database by
exploiting the error messages for maliciously crafted SQL
queries. Some SQL servers by default include the names of
data fields in the error messages.

Defense in Depth. The principle of defense in depth
states that a secure design should manage security risk
with diverse or hierarchical strategies rather than rely on
any one defense. As mentioned before, mitigation techni-
ques or secure mechanisms cannot prevent all potential
attacks because they are subject to their own threats. To
protect sensitive information on a server, for example, one
can integrate a hierarchy of defense strategies, such as a
firewall, authentication, encrypted storage, and encrypted
messages. The defense in depth would significantly
increase the difficulty and costs of a full breach. This
defense also contributes to secure failure—the software
can continue securely even when one strategy has failed.
As mitigation techniques are not perfect, a secure design
should also consider mechanisms that help to detect and
recover from attacks.

Usability. The principle of usability states that secur-
ity mechanisms should not make the software more
difficult to use than if the security mechanisms were
not present. The extra burden on users added by the
security mechanisms should be minimal and reasonable.
From the usability study of a program for sending and
receiving encrypted email, Whitten and Tygar (23)
observed that most users were not able to successfully
send or receive encrypted e-mail, even though the user
interface seemed ‘‘reasonable.’’ According to Whitten and
Tygar, secure software is usable if the users: ‘‘(1) are
reliably made aware of the security tasks they need to
perform; (2) are able to figure out how to successfully
perform those tasks; (3) don’t make dangerous errors; and
(4) are sufficiently comfortable with the interface to con-
tinue using it.’’

Security Design Patterns

As many security problems are shared by various distrib-
uted applications, security design patterns can provide
reusable security solutions from application to application.
A security design pattern is a generic, well-understood
solution to a recurring security problem. For example,
passwords are a widely accepted approach to remote user
authentication. To mitigate the common threat of password
cracking via brute force (e.g., guessing), one can block
repeated password attempts through the security pattern
‘‘account lockout.’’ This pattern imposes on a limit on the
number of incorrect password attempts. More patterns can
be found in Refs. 26 and 27.

Beyond design patterns, security patterns can also
be used to improve the development process of secure
software. For example, the Security Patterns Repository
(Version 1.0) (24) describes 13 patterns (called procedural
patterns) that often impact the organization or manage-
ment of a software development project.

SECURE CODING

Secure design does not automatically guarantee a secure
implementation. Secure coding must not only correctly
implement all security policies and mechanisms (e.g.,
authentication and authorization) of a secure design, but
also it must avoid potential implementation-level vulner-
abilities caused by the chosen programming languages,
compilers, tools (e.g., database systems and commercial
software packages), and platforms (e.g., operating sys-
tems). Relatively more work has occurred on secure coding
than any other aspects of secure software development. A
great variety of implementation-level vulnerabilities and
countermeasures has been identified. A root cause for most
vulnerabilities is inadequate validation of inputs from
users and software components (of course, adequate input
validation is not as easy as one might think). This section
introduces a few of the most common problems (buffer
overflow, format string, SQL injection, and cross-site
scripting). Some good practices of secure coding are also
suggested. For further reading, we refer the reader to Refs.
3, 7, 21, 22, 27 and 28.

SOFTWARE SECURITY 7



Buffer Overflow

Buffer overflow has been and likely continues to remain the
principal method for remotely injecting malicious code into
target software. A buffer overflow, or buffer overrun, is an
anomalous condition in which a program attempts to store
data beyond the boundaries of a buffer (e.g., stack and heap)
because of insufficient bounds checking. For example, it can
happen if a string of characters is copied from one buffer to
another when the length of the string is greater than the size
of the target buffer. As a consequence, adjacent memory is
overwritten by the extra code and data that may cause a
program to crash or produce incorrect results. In particular,
the extra code and data can be injected maliciously to make
the program operate in an unintended way.

The techniques to exploit buffer overflow fall into two
categories: stack overflow and heap overflow. An exploit of
stack overflow attempts to manipulate a program by (1)
overwritinga localvariablethat isnearthebuffer inmemory
on the stack to change the behavior of the program, (2)
overwriting the return address in a stack frame, or (3)
overwriting a function pointer or exception handler, which
is subsequently executed. An exploit of heap overflow
attempts to corrupt a heap to cause the program tooverwrite
the internal structures such as linked list pointers. A heap is
an area of memory that is dynamically allocated by a pro-
gram at run-time. The canonical heap overflow technique
overwrites dynamic memory allocation linkage and uses the
resulting pointer exchange to overwrite a function pointer.

Various techniques exist for detecting or preventing
buffer overflows with various tradeoffs (http://en.wikipe-
dia.org/wiki/Buffer-overflow):

� Choosing a type-safe programming language can avoid
many buffer overflow problems. It requires a careful
consideration of tradeoff between safety and perfor-
mance costs. Among the most popular languages, C
and C++ provide no built-in protection against acces-
sing or overwriting data in any part of memory. The
Java and .NET bytecode environments are relatively
safer.

� Correct use of safe libraries of an unsafe language can
prevent most buffer overflow vulnerabilities. For
example, strings and arrays are the two main build-
ing-block data types in C and C++ in which buffer
overflows commonly occur. When C/C++ is chosen
for the implementation, safe library implementations
for these datatypes should be used.

� Stack-smashing protection can detect the most com-
mon buffer overflows by checking that the stack has
not been altered when a function returns. If it has been
altered, then the program exits with a segmentation
fault.

� Executable space protection can prevent execution of
code on the stack or the heap. Any attempt to execute
that code will cause an exception.

� Address space layout randomization randomizes the
virtual memory addresses at which functions and
variables can be found. This method can make exploits
of buffer overflows more difficult, but not impossible.

� Deep packet inspection attempts to block packets
which have the signature of a known attack or have
a long series of no-operation instructions.

Format String

The format string problem stems from the use of unfiltered
user input as the format string parameter in certain C/C++
functions that perform formatting, such as printf(). A mal-
icious user may use the %s and %x format tokens to print
data from the stack or possibly other locations in memory or
use the %n format token to write data or code to the
memory. This error would lead to the same problems as
buffer overflows: crashing the program or executing the
maliciously injected code. Format string vulnerabilities
develop because C/C++’s argument passing conventions
are not type safe. Many compilers can check format strings
and report warnings for dangerous or suspect formats.

SQL Injection

SQL is a standard programming language for retrieving
information from and updating a database. SQL injection is
a technique that injects SQL statements into an input (e.g.,
user-supplied identity and password in a web page) for
malicious purposes (e.g., obtaining other users’ passwords
and unauthorized access to a database). It exploits security
vulnerability in the database layer of an application.

Primary forms of SQL injection vulnerabilities (http://
en.wikipedia.org/wiki/SQL_injection) are as follows:

� Incorrectly filtered escape characters. User input is
passed into a SQL statement without being filtered for
escape characters. It may allow for potential manip-
ulation of the statements performed on the database by
the end user.

� Incorrect type handling: SQL injection may occur
when a user supplied field is not strongly typed or is
not checked for type constraints.

� Vulnerabilities inside the database server, such as
MySQL server’s real_escape_chars() functions.

Techniques for avoiding SQL injection include:

� Input sanitization. User inputs are sanitized to ensure
that they contain no dangerous code.

� Security privileges. Setting security privileges on the
database to the least required. For example, the
delete rights to a database for end users are seldom
required.

� Disabling literals. SQL injection can be avoided if the
database engine supports a feature called disabling
literals, where text and number literals are not allowed
as part of SQL statements.

Cross-Site Scripting

Cross-site scripting (XSS) is a technique that injects code
(e.g., HTML code and client-side scripts) into the web pages
viewed by other users. An XSS vulnerability can be

8 SOFTWARE SECURITY



exploited to bypass access controls and produce phishing
attacks and browser exploits.

Three forms of XSS vulnerabilities exist (http://en.
wikipedia.org/wiki/Cross-site_scripting):

� Vulnerability in a client-side script. For example, if a
piece of JavaScript accesses a URL request parameter
and uses this information to write some HTML to its
own page, and it this information is not encoded using
HTML entities, then an XSS hole will likely be present,
because this written data will be reinterpreted by
browsers as HTML that could include additional
client-side script.

� Non-persistent or reflected vulnerability. It occurs
when data provided by a web client is used immedi-
ately by server-side scripts to generate a page of results
for that user. If user-supplied data is not validated but
included in the resulting page without HTML encod-
ing, this will allow client-side code to be injected into
the dynamic page.

� Stored or persistent or second-order vulnerability
(also referred to as HTML injection) can occur
when data provided to a web application by a user
is first stored persistently on the server (in a data-
base, file system, or other location), and it is later
displayed to users in a web page without being
encoded using HTML entities.

Techniques for avoiding XSS exploits, among others,
include encoding of all user-supplied HTML special char-
acters so as to prevent them from being interpreted as
HTML and input validation of all potentially malicious
data sources.

Good Secure Coding Practices

The principles of secure design in previous section also
apply to detailed code design. Besides these principles,
the Top 10 Secure Coding Practices by Robert Seacord’s
(https://www.securecoding.cert.org/) include the following:

� Validate input:

Validate input from all untrusted data sources. Proper
input validation can avoid most implementation-level
vulnerabilities. Be suspicious of most external data
sources, including command line arguments, network
interfaces, environmental variables, and user-con-
trolled files.

� Heed compiler warnings:

Compile code using the highest warning level available
for the compiler and eliminate warnings by modifying
the code.

� Sanitize data sent to other systems:

Sanitize all data passed to complex subsystems such as
command shells, relational databases, and commer-

cial off-the-shelf components. Attackers may invoke
unused functionality in these components through the
use of SQL, command, or other injection attacks. It is
not necessarily an input validation problem because
the complex subsystem being invoked does not under-
stand the context in which the call is made. Because
the calling process understands the context, it is
responsible for sanitizing the data before invoking
the subsystem.

� Adopt a secure coding standard:

Develop and/or apply a secure coding standard for the
chosen language and platform. The CERT Secure
Coding Standards for C and C++ can be found at
https://www.securecoding.cert.org/.

VALIDATION AND VERIFICATION FOR SECURITY
ASSURANCE

Security assurance provides justification that security
mechanisms, as implemented and operated, meet security
requirements through assurance evidence and approvals
based on evidence (2). Many problem sources exist in the
development of secure software, such as omissions and
mistakes in requirements specifications, design flaws,
and implementation errors. Assurance addresses each of
these problem sources. For instance, design assurance is
the evidence establishing that a design is sufficient to meet
the requirements of the security policy. In the following, we
discuss several common approaches to security assurance.
It should be noticed, however, that no silver bullet exists for
security assurance. Various techniques are often used
throughout software development to improve the level of
assurance.

Review for Security

Review is a common practice of software development.
Review of specification, design, and code can identify and
eradicate many problems at various development phases,
such as omissions and inconsistency in requirements spe-
cification, flaws in design, and programming errors (e.g.,
format string and buffer overflow vulnerabilities). Review
practices include formal inspections and lightweight
reviews. A formal inspection involves a careful and detailed
process with multiple participants and multiple phases. A
lightweight review requires less overhead than formal
inspections. Review approaches include over-the-shoulder
(one developer looks over the author’s shoulder as the latter
walks through the documentation or code), pair program-
ming, email pass-around, and tool-assisted review (e.g.,
anonymous CVS allows groups of individuals to collabora-
tively review code).

Assurance Arguments and Formal Methods

Assurance arguments fall into two main categories: prop-
erty-based and threat-based arguments. A property-based
argument is a statement about a security property or
constraint [e.g., if a user is authorized by the given security

SOFTWARE SECURITY 9



policy to perform operations on a resource, then the system
must grant the access request (29)]. A threat-based argu-
ment is a statement about whether a threat exists (e.g., an
adversary can intercept payment information). Property-
based and threat-based arguments imply different strate-
gies for proof or disproof. To verify a property-based argu-
ment, one can check to observe whether the specification or
code always satisfies the property or constraint. To verify a
threat-based argument, one can check to observe whether a
chance exists for the threat to be realized according the
specification or code. However, both approaches can take
advantage of formal methods for specifying and reasoning
about software security. Formal methods are mathematical
tools for rigorous specification and (partially) automated
verification. In the property-based approach, properties are
often formalized as logical formulas and then proved via
either theorem-proving or model-checking. In the threat-
based approach, security can be assured through refuta-
tion. A threat-driven security design (5), for example, is
said to be secured from the anticipated security threats
under two conditions: (1) It is possible for the security
threats to occur in the intended functions alone—the func-
tions are insecure and the security threats are identified
correctly; and (2) the security threats will never take place
after the security features are applied—they are indeed
absent from the security design unless the security features
themselves are compromised. As a matter of fact, this style
of refutation for assurance can be applied to threat model-
ing, no matter whether the modeling notation is formal (5)
or informal (12,30).

Static Code Analysis for Security

Static code analysis is the analysis of source code or a
compiled form of the program (e.g., object code or byte
code) that is performed without actually executing the
code (31). Often supported by automated tools, static ana-
lysis can help to identify and eradicate many coding pro-
blems, including security vulnerabilities, before a program
is released. The basic idea of static analysis is to look for a
predefined set of patterns or rules in the code that indicate
possible security vulnerabilities. As the results of static
analysis are not perfect, they require additional evaluation.
For example, a static analysis tool can produce false nega-
tives or false positives (32). False negatives mean that the
program contains vulnerabilities that the tool does not
report, whereas false positives refer to reported vulnerabil-
ities that the program does not contain. False negatives
are very dangerous because they lead to a false sense of
security.

Static analysis tools often take advantage of compiler
technology. For example, some tools are based on lexical
analysis. They preprocess and tokenize source files and
then match the resulting token stream against a library of
vulnerable constructs such as gets(&buf) in the C language.
Annotations can be used to help the analysis. For example,
CQual (33) requires a C programmer to annotate a few
variables as either tainted or untainted and then uses type
inference rules to propagate the qualifiers. Once the qua-
lifiers are propagated, type checking can reveal format
string vulnerabilities in the C program. Splint (33) allows

developers to add annotations for finding abstraction viola-
tions, unannounced modifications to global variables, and
possible use-before-initialization errors. Computer-aided
verification techniques have also been applied to static
analysis. The Eau Claire tool (31) uses a theorem-prover
to create a general specification-checking framework for C
programs. It can help find common security problems like
buffer overflows, file access race conditions, and format
string bugs. MOPS (35) takes a model-checking approach
to look for violations of temporal safety properties. Devel-
opers can model their own safety properties, and some have
used the tool to check for privilege management errors,
incorrect construction of chroot jails, file access race con-
ditions, and ill-conceived temporary file schemes.

Software Testing for Security

Different from static code analysis for security, software
testing for security is the process of executing a program
with the intent of finding vulnerabilities. Software testing
exercises a program with not only positive test cases for
verifying that the system does what it is supposed to do
(e.g., access is granted to authenticated and authorized
users), but also negative or dirty test cases for verifying
that the system does not do what it is not supposed to do
(e.g., access is not granted to unauthorized users).
Although both positive and negative tests are required
of testing of any software, testing for security must pay
more attention to negative tests because by nature they
verify whether the system can be misused. This finding
indicates that security testing is hard because too many
possible negative tests can occur. It needs to test the
‘‘presence of an intelligent adversary bent on breaking
the system’’(36), which is the major difference between
software security and software safety.

Security testing of software applications is different
from network and system testing for security, such as
network scanning, vulnerability scanning, password crack-
ing, log reviews, file integrity checkers, virus detectors, and
war driving for identifying unauthorized modems or wire-
less access points. When feasible, however, it can extend
or take advantage of existing system security testing
techniques, particularly penetration testing. A penetra-
tion test is a traditional method of evaluating the security
of a computer system or network by simulating an attack
by an adversary, known as a cracker. This testing is
conducted from the position of a potential attacker and
can involve active exploitation of security vulnerabilities.
The underlying idea is aligned with the adversary’s per-
spective of software security and applicable to security
testing of software applications. Specifically, one can
derive security tests as attack attempts from threat mod-
els (e.g., threat trees, threat nets, misuse cases) and threat
mitigations. Then the code is exercised with the derived
tests to determine whether the software is free from the
attacks. This strategy is an example of black-box testing,
which views the software under test as a black box without
knowledge of internal workings of the code. As security
threats are pervasive and software testing is highly labor-
intensive, security testing should be based on risk assess-
ment and threat prioritization (called risk-based testing),

10 SOFTWARE SECURITY



which is usually an integral part of the threat modeling
process. Black-box testing closely simulates the actions of an
actual cracker and tests whether security mechanisms are
properly implemented. It is yet weak at detecting the
attacks that require some implementation-level knowledge
of the software. At the other end, white-box testing takes
advantage of the knowledge of the internal workings
from the source code. It is often very effective in finding
programming errors. According to the amplification
phenomenon of vulnerabilities in software development
processes, all different types of vulnerabilities (e.g., omis-
sions in specification, flaws in design, and implementation
specific faults) might accumulate in the code. To detect and
reduce these vulnerabilities, various testing strategies are
often required.

ADVANCED TOPICS: ASPECT-ORIENTED DEVELOPMENT
OF SECURE SOFTWARE

Separation of concern is one important software engineer-
ing principle. Aspect-oriented programming (AOP) (37) is a
new paradigm for separating concerns that crosscut multi-
ple system components. The representative AOP language
is AspectJ, which is an extension to the Java programming
language. AOP modularizes crosscutting concerns into
aspects with the advice invoked at the specified points of
program execution. An aspect-oriented program consists of
base components (or classes) and aspects that can be woven
into an executable whole. The base classes in an aspect-
oriented program can also be executed independently. This
model allows for incremental or separate development of
aspects. An aspect is an encapsulated entity of inter-type
declarations, pointcuts, and advice. Inter-type declarations
introduce new members such as instance variables and
methods to the base classes. A pointcut is a collection of
join points, and each join point is a well-defined point (e.g.
method-call) in the flow of a program execution. A piece of
advice for a pointcut defines additional code to be executed
at each of the join points picked out by the pointcut.
Originated from AOP, aspect-oriented software develop-
ment (AOSD) aims to deal with crosscutting concerns at
different development phases, (e.g., requirements analysis,
architectural design, and detailed component design).

Security is in natural a crosscutting concern that
involves many components of a software application. For
example, authentication is often required of many system
components in an online shopping application. With a

traditional approach, each of the places that require
authentication would first need to call an authentication
method, as shown in Fig. 7(a). With the aspect-oriented
approach, however, the authentication concern is sepa-
rated from these components and modularized into an
authentication aspect, as shown in Fig. 7(b). These compo-
nents, when first developed, are not concerned about
authentication. The authentication aspect will collect all
places that are required of authentication (i.e., join points)
and define what authentication method is applied (i.e.,
advice). In the traditional approach, security concerns
are scattered across many components. This approach
may require frequent, close interaction between nonsecur-
ity and security personnel on the development team. Gen-
erally speaking, this method would make the development
of secure software ineffective and inefficient because of the
common shortage of security experts available. AOSD also
fits in the adversary’s perspective of software security—
both security threats and threat mitigations have a nature
of crosscutting. Notice that AOSD itself is not a security
feature. It can help to address software security issues
primarily because it caters for the principle of simplicity
through improved modularization.

Aspect-Oriented Security Requirements

Aspect-orientation offers a better way to structure security
threats and mitigation requirements. In the misuse case
approach, one can easily identify these issues: (1) a single
misuse case can threaten a use case at different steps of its
main or alternate flows of events, (2) a single misuse case
can threaten multiple use cases, and (3) a single step in the
main or alternate flows of events of a use case can be
threatened by multiple misuse cases. For example, step 6
‘‘the customer submits credit card information’’ in the main
flow of events of the use case ‘‘Order goods’’ in Table 2 is
subject to such threats as block system, replay of message,
modification of messages, and tap communication. The
same issues exist for mitigation use cases. As such, the
relationships among use cases, misuse cases, and mitiga-
tion use cases can be very complex. If a single use/misuse
case diagram is used to depict all use cases, misuse cases,
mitigation use cases, and their relationships, then the
diagram likely becomes unreadable.

In the aspect-oriented misuse case approach developed
by Xu et al.(38), misuse cases are called threat aspects,
whereas mitigation use cases are called mitigation
aspects. A point in a use case section (e.g., step 6 in the

Component1

Authentication
Function 

Componentn

Component1

Authentication 
Function 

Componentn

Authentication
Aspect 

(b) Aspect-Oriented Approach (a) Traditional Approach Figure 7. Tradition approach versus aspect-oriented approach.

SOFTWARE SECURITY 11



main flow of events of use case ‘‘Order goods’’) can be
referenced as a join point. If a join point is a point at
which a security threat can happen, then it is called a
threat point (a point of vulnerability). The various join
points that are threatened by a particular threat are
grouped together in a pointcut. That is, a threat pointcut
is a collection of join points that are vulnerable to a
common threat. Thus, each threat aspect consists of a
group of pointcuts and their advice (how the threats can
happen at corresponding threat points). After crosscut-
ting threats are specified, one can identify the require-
ments for mitigating the threats. A mitigation aspect
consists of mitigation pointcuts and advice. Each mitiga-
tion pointcut includes one or more threat pointcuts, which
means that a mitigation can apply to one or more threats.
A piece of mitigation advice contains the mitigation logic
required to countermeasure the identified threats. There-
fore, each mitigation aspect indicates a security concern.
The above aspect-oriented organization can help different
stakeholders understand requirements specifications by
better clarifying the following questions: (1) For a given
use case, what are the identified misuse cases and mitiga-
tion use cases? (2) For a given misuse case, what use cases
does it threaten and what mitigation use cases are iden-
tified? (3) For a mitigation use case, to what use cases and
misuse cases does it apply?

Aspect orientation can also be integrated into other
approaches to security requirements analysis. Based on
the notion of problem frames for elicitation of functional
requirements, for example, Haley et al.(39) have developed
away to derive security requirements from crosscutting
threat descriptions.

Aspect-Oriented Design for Security

Aspect orientation can contribute to the principle of simpli-
city for secure design by separating crosscutting security
policies and mechanisms from functional components. For
example, enforcing access control policies in a secure design
may spread the access control concern across many design
modules. The interference of the access control concern with
other application behavior can make it difficult to under-
stand, analyze, and evolve the access control concern (40).
Using an aspect-oriented modeling approach to addressing
the pervasive access control concern of an application, one
can localize the access control concern in an aspect. Aspect
orientation also fits in the adversary’s perspective of secure
software design. One can first identify security threats with
respect to the components of intended functions and then
specify mitigation mechanisms as aspects (5).

AOP for Security

An obvious application of AOP to security is separation of
crosscutting security code from functional code for better
modularization (41). Another application is to improve the
security of legacy applications. According to Viega et al.
(42), a large portion of commercial applications have
significant security problems that are present in the
design phase and persist through to implementation.
Penetrate-and-patch is the traditional approach to

resolving security problems—after vulnerabilities are
revealed, the source code is modified, and then the revised
version is compiled and released. With AOP, however,
some security problems of a legacy application can be
addressed without direct modification to the legacy
code. To this end, aspects can be used to insert code before
or after points of interest or replace the code at the points
of interest. Sample scenarios are replacing insecure func-
tion calls with secure replacements, performing error-
checking on security-critical calls, and logging data that
are relevant to security.

AOP also offers a potential for better reuse of security
solutions. Various core security requirements are common
to many distributed software applications. Although these
applications can follow security design patterns for respec-
tive security requirements, the implementation of the
security patterns often vary from application to applica-
tion. With AOP, a security design pattern can be realized as
an abstract aspect that encodes the security solution in
advice. When an application adopts a security design pat-
tern, it only needs to extend the abstract aspect of the
pattern and provide concrete pointcuts. The concrete point-
cuts collect the points of program execution at which the
security solution should be applied.

BIBLIOGRAPHY

1. J. Wing, A symbiotic relationship between formal methods
and security, Proc. of NSF Workshop on Computer Security,
Fault Tolerance, and Software Assurance: From Needs to
Solution, 1998, pp. 26–38.

2. M. Bishop, Computer Security: Art and Science, Reading, MA:
Addison-Wesley, 2003.

3. G. Hoglund and G. McGraw, Exploiting Software: How to
Break Code, Reading, MA: Addison-Wesley, 2004.

4. P. G. Neumann. Principled assuredly trustworthy composable
architectures, Project Report, Computer Science Laboratory,
Menlo Park, CA: SRI International, 2004.

5. D. Xu and K. E. Nygard, Threat-driven modeling and verifica-
tion of secure software using aspect-oriented Petri nets, IEEE
Trans. Softw. Engin.32 (4): 265–278, 2006.

6. B. Schneier, Attack trees, Dr. Dobb’s J. Softw. Tools24 (12):
21–29, 1999.

7. M. Howard and D. LeBlanc,Writing Secure Code, 2nd ed.
Redmode WA: Microsoft Press, 2003.

8. F. Swiderski and W. Snyder, Threat Modeling., Redmond, NA:
Microsoft Press, 2004.

9. S. L. Pfleeger, and J. M. Atlee, Software Engineering: Theory
and Practice, 3rd Ed., Englewood Cliffs, NJ: Prentice Hall,
2006.

10. I. Alexander. Misuse cases: Use cases with hostile intent, IEEE
Soft., 20: 58–66, 2003.

11. D. G. Firesmith. Security use cases, J. Object-Technol., 2 (3):
53–64, 2003.

12. J. McDermott, Abuse-case-based assurance argumentss, Proc.
of the 17th Annual Computer Security Application Conference
(ACSAC’01),2001, pp. 366–374.

13. J. McDermott and C. Fox, Using abuse case models for security
requirements analysis, Proc. of the 15th Annual Computer
Security Application Conference (ACSAC’99), 1999, pp.
55–66.

12 SOFTWARE SECURITY



14. R. W. Shirey, Security architecture for Internet protocols: A
guide for protocol designs and standards. Internet Draft: draft-
irtf-psrg-secarch-sect1 -00, November 1994.

15. G. Sindre and A. L. Opdahl, Eliciting security requirements by
misuse cases, Proc. of TOOLS Pacific, 2000, pp. 120–131.

16. A.van Lamsweerde, Elaborating security requirements by
construction of intentional anti-models, Proc. of ICSE’04,
pp. 148–157, 2004.

17. L. Lin, B. A. Nuseibeh, D. C. Ince, M. Jackson, and J. D. Moffett,
Analyzing security threats and vulnerabilities using abuse
frames. Technical Report No. 2003/10, Millon Keynes Uk:
The Open University.

18. A. van Lamsweerde and E. Letier, Handling obstacles in goal-
oriented requirements engineering. IEEE Trans. Softw.
Engin.26 (10): 978–1005, 2000.

19. J. Saltzer and M. Schroeder, The protection of information in
computer systems, Proc. of the IEEE, 63 (9): 1278–1308, 1975.

20. T. V. Benzel, C. E. Irvine, T. E. Levin, G. Bhaskara, T. D.
Nguyen, and P. C. Clark,Design principles for security,
SecureCore Technical Report, ISI-TR-605 and NPS-CS-05-
010, Monterey and Los Angeles, CA: Naval Postgraduate
School and University of Southern California, 2005.

21. N. Daswani,C. Kern, and A. Kesavan, Foundations of Security:
What Every Programmer Needs to Know, Berkeley CA: Apress,
2007.

22. J. Viega and G. McGraw, Building Secure Software: How to
Avoid Security Problems in the Right Way, Reading, MA:
Addison Wesley, 2002.

23. A. Whitten and J. D. Tygar, Why Johnny can’t encrypt: A
usability evaluation of PGP 5.0, Proc. of the 8th USENIX
Security Symposium, 1999, pp. 169–183.

24. D. M. Kienzle, M. C. Elder, D. Tyree, and J. Edwards-Hewitt,
Security Patterns Repository, Version 1.0. Available: http://
www.scrypt.net/�celer/securitypatterns/

25. M. Hafiz, A collection of privacy design patterns, Pattern
Languages of Programs (PLoP) Conference, 2006.

26. B. Blakely and C. Health, Security Design Patterns, Berkshire,
UK: The Open Group, 2004.

27. C. Steel, R. Nagappan, and R. Lai, Core Security Patterns: Best
Practices and Strategies for J2EE, Web Services, and Identity
Management, Englewood chiffs, NJ: Prentice Hall, 2005.

28. M. Howard, D. LeBlanc, and J. Viega, 19 Deadly Sins of Soft-
ware Security: Programming Flaws and How to Fix Them, New
York: The McGraw-Hill Companies, 2005.

29. Y. Deng, J. Wang, J. Tsai, and K. Beznosov, An approach for
modeling and analysis of security system architectures, IEEE
Trans. Knowl. Data Engineer. 15 (5): 1099–1119, 2003.

30. D. Xu and J. Pauli, Threat-driven design and analysis of secure
software architectures, J. Informat. Assur. and Secur., 1 (3):
171–180, 2006.

31. B. Chess, Improving computer security using extended static
checking, Proc. IEEE Symp. Security and Privacy, 2002,
pp. 118–130.

32. B. Chess and G. McGraw, Static analysis for security, IEEE
Secur. Priv., 2: 76–79, 2004.

33. J. Foster, T. Terauchi, and A. Aiken, Flow-sensitive type
qualifiers, Proc. of ACM Conf. Programming Language Design
and Implemtation (PLDI2002), 2002, pp. 1–12.

34. D. Larochelle, and D. Evans, Statically detecting likely buffer
overflow vulnerabilities, Proc. 10th Usenix Security Symp
(USENIX’01), 2001, pp. 177–189.

35. H. Chen, D. Dean, and D. Wagner, Model checking one million
lines of C code, Proc. of the 11th Annual Network & Distributed
System Security Symp. (NDSS), 2004, pp. 171–185.

36. B. Potter, B. Allen, and G. McGraw, Software security testing,
IEEE Security & Priv., 2: 81–85, 2004.

37. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. M. Loingtier, and J. Irwin, Aspect-oriented programming,
Proc. of the European Conference on Object-Oriented Program-
ming (ECOOP’97), 1997, pp. 220–242.

38. D. Xu, V. Goel, K. Nygard, and W. E. Wong, Aspect-oriented
specification of threat-driven security requirements, Internat.
J. Comp. Applicat. Technol., In press.

39. C. B. Haley, R. C. Laney, and B. Nuseibeh, Deriving security
requirements from crosscutting threat descriptions, Proc. of
the International Conference on Aspect-Oriented Software
Development (AOSD’04), 2004, pp. 112–121.

40. I. Ray, R. France, N. Li, and G. Georg, An aspect-based
approach to modeling access control concerns, Informat. Softw.
Technol., 46 (9): 575–587, 2004.

41. B. DeWin, B. Vanhaute, and B. De Decker, Security through
aspect-oriented programming, Proc of the First Annual Work-
ing Conference on Network security: Advances in Network and
Distributed Systems Security, 2001, pp. 125–138.

42. J. Viega, J. T. Bloch, and P. Chandra, Applying aspect-oriented
programming to security, Cutter IT J., 14 (2) 2001, pp. 31–39.

DIANXIANG XU

North Dakota State University
Fargo, North Dakota

SOFTWARE SECURITY 13



S

SOFTWARE TESTING: TESTING NEW SOFTWARE
PARADIGMS AND NEW ARTIFACTS

INTRODUCTION TO THE ARTICLE

The purpose of software testing is to improve the quality of
the software product by detecting and removing as many
failures as possible, so to increase the developer confidence
in the proper functioning of the software. For this purpose,
software testing is not meant to be an exhaustive technique
for software verification and validation. It can show that
software defects are present, while not being able to show
their absence (1).

Software testing is centered on the concept of selecting
some (fault enabling) inputs from a possibly infinite input
domain, to perform system runs driven by such inputs, and
to compare the expected results with the real ones. If
expected and observed behaviors differ, then a failure is
manifested becauseof a system fault that needs to befixed.A
successful test is the one that uncovers undiscovered errors.

By taking a look at the evolution of software testing in
the past decades, we can recognize that two (among the
others) can be considered the main sources of advances in
software testing: (1) testing techniques have been applied
over new software development paradigms, languages, and
applications, and (2) testing techniques have been applied
over new artifacts (other than the source code).

This article presents current testing techniques along
those two directions.

Testing New Software Paradigms

Over the course of the past 50 years, the way software has
been produced is changed greatly. We have moved from
procedural code, toward object-oriented systems, to com-
ponent-based development (as pictorically described in
Fig. 1); from thousands to millions of lines of code with
real-time, reliability, safety, and performance require-
ments. Software testing has had to change accordingly.
Traditional techniques, adopted for testing procedural
code, had to be extended for testing object-oriented (OO)
software: inheritance, polymorphism, dynamic binding,
and other OO characteristics required new testing fea-
tures. With the introduction of component-based systems,
component-based testing has been introduced for testing
the components in isolation or the assembly.

Testing New Artifacts

In traditional approaches to software testing, specific meth-
odologies are used to select test cases based on the source
code of the program to be tested (2). The main practical
drawback related to (purely) source code testing is that
because the code is produced at the latest step in the soft-
ware production process, testing activities are left to the
end of the software lifecycle. In consequence, schedule

slippage, time-to-market pressures, and cost-constraints
result in neglected testing.

Nowadays, source code is no longer the single source for
selecting test cases, and we can apply testing techniques all
along the development process, by basing test selection on
different pre-code artifacts (3); the test selection phase can
be based on system specifications (formally or informally
defined), on architectural high-level design, or on compo-
nent-based or object-oriented specifications.

All these testing techniques deserve consideration.
Recent studies have shown that different test selection
techniques target different classes of faults (e.g., Ref. 4),
and that the combined use of diverse techniques is always
more effective than concentrating the effort on only one
technique (even though proved tobe the most efficacious) (5).

This Article

Thegoalof thisarticle is toprovideaviewonsoftware testing
techniques from this specific perspective, as graphically
described in Fig. 2. It discusses code-based testing with a
specific focus on testing object-oriented software. It covers
component-based testing and distinguishing between com-
ponent-testing and component-based testing. It analyzes
specification-based testing (with particular attention to for-
maltesting,model-basedtesting,andsoftware-architecture-
based testing).

This article provides the most comprehensive treatment
of the testing subject from the specific perspective pre-
sented above, which describes the state of the art and
provides references for further readings and expected
directions for future work. As the article is oriented to a
wide audience of readers, a glossary of testing terms has
been provided in Appendix A to facilitate the reading to
inexperienced readers. As the study is limited in size,
references are provided to those best sources an interested
reader may refer to for detailing the concepts outlined in
this work. The focus has also been oriented to mature
research, to practices of current use, and to current trends,
while limiting the discussion on the latest speculative
research that, although promising, might never work
out. Moreover, this article focuses on systematic testing
techniques, while not considering purely experience-dri-
ven, not repeatable, testing techniques.

The remaining sections are structured according to the
following template: problem statement, information on the
main achievements, links to tool support, and references to
further readings.

Further Readings

M.J. Harrold’s (6) ICSE 2000 Future of Software Engineer-
ing track paper on software testing provides a clear and
wide roadmap on fundamental research topics to be further
investigated to obtain practical testing methods, tools, and
processes to develop high-quality software. A. Bertolino’s
(7) ICSE 2007 Future of Software Engineering track paper

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



on software testing provides a roadmap that structures
and classifies software testing into three main aspects:
achievements (where we are today), dreams (where
researchers would like to go), and challenges (as a way to
move from achievements to dreams). M. Pezzé and M.
Young (8) authored a recent book on Software Testing
and Analysis, which covers both the basic concepts and
techniques, testing methods, and processes. ISSTA (9),
ICST (10) and TESTCOM (11) are among the main con-
ferences on software testing.

CODE-BASED TESTING: TESTING THE SOURCE CODE

Problem Statement

Code-based testing (also known as structural testing or
white box testing) assumes visibility into internal data
and structures of the system implementation. Test cases
are selected according to the structure of the program and
executed to exercise program statements.

The code structure is (typically) represented through a
graph: Traditional white box analysis techniques use a
control flow or data flow graph representation of a program.
In control flow graphs, nodes correspond to sequentially
executed statements whereas edges represent the flow of
control between statements. A data flow graph extends the
content of a control flow graph by adding information on
variables accessed and modified by program statements.

Achievements

The test selection phase in code-based testing consists of
selecting the minimum number of test cases that cover as
much as possible of the flow graph. Designers have been
applying white box techniques for a long time, and several
coverage criteria are available today. Some criteria are

based on the control flow, whereas others are based on
the data flow.

Statement Coverage. This criterion reports whether each
executable statement is encountered. This coverage selects
a test set T such that, by executing a program P for each test
in T, each elementary statement of P (i.e., each node in the
graph) is executed at least once. The chief characteristic of
this measure is that it provides the weakest coverage: If
compared with other coverage criteria (see Fig. 3), then
statement coverage is subsumed by any of the structural
coverage criteria.

Branch Coverage. This criterion measures the coverage
of all blocks and case statements that affect the control flow.
Boolean expressions are evaluated for both true and false
conditions. This criterion selects a test set T such that, by
executing P for each test in T, each of P’s control flow graph
is traversed at least once (i.e., each branch of the control
flow graph has to be executed by at least one test case). This
measure has the advantage of simplicity, but it may ignore
branches within Boolean expressions (see condition cover-
age below), or relevant combinations of branches (consid-
ered in path-based criteria).

Condition Coverage. This criterion measures the subex-
pressions independently of each other, allowing for a better
analysis of the control flow. It forces the exploration of
possible conditions of a boolean expression in a branch,
which covers different combinations of the individual con-
ditions in a compound boolean expression. This coverage
criterion selects a test set T such that, for each test in T,
each edge of P’s control flow is traversed at least once and all
possible values of the constituents of compound conditions
are exercised at least once. Many variations of the condition
coverage criterion exist (see Ref. 8 chapter 12 for a detailed
explanation). Here, it is worth mentioning the modified
condition/decision coverage (MCDC), which is required by
many certification agencies: It enhances the condition/
decision coverage criterion requiring that each condition
independently affecting the outcome of the corresponding
decision has to be tested (12). MCDC is an attractive
compromise between number of required test cases and
thoroughness of the test, since with a complexity of n+11 (in

Component A

Component B

Component C

Class X

Class Z

Class Y
Procedure  p1

Procedure p2

Figure 1. From procedural programming to component-based
development.

Implementation
:new paradigms

Modules/
Procedures

Specification
:new artifacts can have

Components and CBSSoftware
Architecture

OO Design OO Systems

Testing new paradigms Testing new artifacts 

Figure 2. Testing new software paradigms and new artifacts. 1n+1 test cases for a decision with n inputs

Path Coverage

Branch Coverage

Statement Coverage

Condition Coverage

A

B

A subsumes B

Legend

A

B
A specific criterion in

A subsumes B

Figure 3. Subsume relationship among the analyzed coverage
criteria.

2 SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS



the best case), it achieves many of the benefits of the
multiple-condition testing, which has a complexity of 2n.

Path Coverage. It measures the coverage of all paths.
Path coverage is similar to condition/decision coverage,
but it handles multiple sequential decisions. As the num-
ber of paths soon becomes unfeasible, several variations of
this criterion are considered to limit the number of loops.
This technique selects a test set T such that, executing P
for each test in T, all paths that lead from the initial to the
final node of the P’s control flow graph are traversed at
least once.

Data-Flow Coverage. Data-flow testing (13–15) offers a
family of criteria for unit testing of programs represented
as data-flow graphs. It improves control-flow testing by
identifying how the execution of a certain statement can
affect the system computation. Data flow testing criteria
pair variable definitions with uses, which ensures that each
computed value is actually used, and thus selecting from
among many execution paths a set that is more likely to
propagate the result of erroneous computation to the point
of an observable failure (8). Many coverage criteria are
based on data flow, the most important being: all DU pairs
adequacy criterion (it requires each DU pair to be exercised
in at least one program execution), all DU paths adequacy
criterion (extends the all DU pairs criterion by requiring
each simple DU path to be traversed at least once) and all
definitions adequacy criterion (which requires pairing each
definition with at least one use).

Let P be the following program:

1 function P return INTEGER

2 begin

3 X, Y:INTEGER;

4 READ(X); READ(Y);

5 while (X > 10) loop

6 X := X - 10;

7 exit when X = 10;

8 end loop;

9 if (Y < 20 and then X mod 2=0) then

10 Y := Y + 20;

11 else

12 Y := Y - 20;

13 end if;

14 return 2 � X + Y ;

15 end P;

The corresponding control flow graph is shown in Fig. 4.
Some structural tests follow:

All-statement coverage: Inputs: (x¼ 20, y¼10) and (x¼ 20,
y¼30),where(x¼20,y¼10)coversnodes<1,2,3,4,5,6,8,9>,
and (x ¼ 20, y ¼ 30) covers nodes <1,2,3,4,5,7,9>.

All-branches coverage: Inputs: (x ¼ 20, y ¼ 10), (x ¼ 15,
y ¼ 30), and (x ¼ 20, y ¼ 15) where (x ¼ 20, y ¼ 10) covers
nodes <1,2,3,4,5,6,8,9> and braches in <2T,4T,5T,6T>,
(x¼ 15, y¼ 30) covers nodes<1,2,3,4,2,5,7,9> and braches
in <2T,4F,2F,5F>, and (x ¼ 20, y ¼ 15) covers nodes
<1,2,3,4,5,6,7,9> and braches in <2T,4T,5T,6F>.

It is important to remark that a 100% coverage is typi-
cally unfeasible because it may require the execution of
unreachable code (referred as ‘‘infeasibility’’ problem).

Many other coverage criteria are used in practice. For
more details, please refer to Refs. 16–19. How coverage
criteria have been adapted to concurrent programs may be
found in Ref. 20. An analysis of coverage criteria costs may
be found in Ref. 21. A comparison of structural testing
criteria can be found in Ref. 8.

Tool Support

As far as concerns tool support, the Open Source Testing
Tools (22) website presents a list of open source testing tools
(for white-box testing), whereas the Software QA Testing
and Test Tool Resources (23) website presents a list of
software quality-assurance and testing tools.

Further Readings

M. Pezzé and M. Young (8) authored a chapter (ch.12),
entitled ‘‘Structural Testing,’’ which presents the various
structural testing techniques with examples. Chapter 13,
which is entitled ‘‘Data Flow Testing,’’ presents theory and
examples on data flow testing.

Testing Object-Oriented Software: Testing the Source Code

Problem Statement. Testing OO software resembles test-
ing procedural software, in which the focus moves from
unit, to integration and system testing, and regression
testing (24). However, OO software has some specific char-
acteristics that make testing OO software diverse from
other testing strategies and requires specialized techni-
ques. In particular, as remarked in Ref. 25 and thoroughly
discussed in Refs. 8 and 26, the unique facets of testing OO
software are that each method must be tested in the context
of its class and inherited features; objects are stateful and
need to be tested in the different states; and encapsulation,
dynamic binding, inheritance, and exceptions make the
system behavior unpredictable so that an apparently harm-
less modification may affect different portions of the pro-
gram.

Achievements. In code-based testing of OO software,2

new criteria are introduced (extending the classic state-
ments, branches, conditions, and decisions coverage) to
cope with state-dependent behavior.

2Although this section will focus on structural testing of OO
software, model-base testing techniques will be described in the
Specification-Based Testing Section.

2T 2F 

4F

4T

5T

5F

6F

6T

1. Begin

2.
if x>10

3.x = x-10

4.if x=10

5.if  y<20

6. If
x mod 2 =0

7.y = y-20

8.y = y+20

9.Return

Figure 4. The control flow graph of the P program above.

SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS 3



When considering unit testing of OO code, a unit is the
class, and unit testing aims at testing the functions that
belong to a class. As noticed in Ref. 8, although an indivi-
dual method might be considered as a unit, testing a single
method can become unpractical, because methods (in a
class) interact by modifying object states and affect other
methods’ behavior. For this reason, unit testing of OO
software is usually referred as intraclass testing. When
performing intraclass testing of the source code, a graph
model [typically, a control flow graph (CFG)] is built for
each method, and CFGs of the various methods in a class
are joined together to specify intraclass method calls. This
joined graph is usually referred to as a class control flow
graph (CCFG) (27). CCFGs are then used to compute def-
use pairs, by first annotating the CCFG with definitions
and uses and then traversing it to compute all pairs.

When different classes are integrated, inter-class testing
checks interactions among objects of different classes. Sou-
ter and Pollock (28) define a contextual def-use pair (d, u) of a
variable o to be used in interclass testing. Buy, et al. (29)
combine dataflow analysis with symbolic execution and
automatic deduction to generate test cases that satisfy
data flow criteria. In Refs. 30 and 31, it is recognized that
a representation based on simple CFGs is inadequate for
interclass testing of Java programs. To handle all Java
language constructs and features adequately (such as
inheritance, polymorphism and dynamic binding, and
exception handling), a Java interclass graph (JIG) repre-
sentation is provided. A JIG extends the CFG to handle
variable and object type information, internal or external
methods, interprocedural interactions through calls to inter-
nal or external methods from internal methods, interproce-
dural interactions through calls to internal methods from
external methods, and exception handling. The JIG is used
in Refs. 30 and 31 for regression testing of Java programs.

Data flow testing criteria for computing definitions and
uses of object attributes have been proposed in the context
of unit and integration testing of OO software (as discussed
in Ref. 26).

Tool Support. As far as tool support for testing object-
oriented code, a recent study on tool support for white-box
testing of OO software seems to be missing. Other than the
popular JUnit unit testing framework for Java code (32),
many other tools (typically, for structural intra class test-
ing of Java or C++ programs) can be found in References
33–36.

Further Readings. D.C. Kung, et al. (37) authored a book
that initially identifies difficulties and challenges in testing
object-oriented software, then focuses on unit, integration,
regression, and object state testing. J.D. McGregor and D.A.
Sykes (24) cover the entire process in testing OO software,
focusing on the what, why, how, who, and when. This text
specifically focuses on testing classes, testing interactions,
class hierarchies, and distributed objects. M. Pezzé and M.
Young (8), chapter 15, entitled ‘‘Testing Object-Oriented
Software’’ focuses on interclass and intraclass testing. It
also focuses on testing in case of polymorphism, dynamic
binding, inheritance, genericity, and exceptions. In L.
Mariani and M. Pezzé (26), both specification-based and

structural-based approaches for intra-class and inter-class
testing of OO software are discussed.

COMPONENT-BASED TESTING

Roughly speaking, a component-based software system is
an assembly of reusable components that are designed to
meet the quality attributes identified during the architect-
ing phase (38), whereas a component is defined as ‘‘a unit of
composition with contractually specified interfaces and
explicit context dependencies only’’ (39). Components are
specified, designed, and implemented with the intention to
be reused, and they are assembled in various contexts to
produce a multitude of software systems. The main pecu-
liarities in component-based software development are
that components can be white-box or black-box (e.g., if
components are off-the-shelf, their implementation is not
accessible), they can be produced in house or bought from
external vendors, they can be written in different program-
ming languages and run in different execution environ-
ments, a detailed specification may exist or not.

Problem Statement

Component-based testing consists of two main tasks: test-
ing the individual components (i.e., component testing),
and testing the component-based systems built by assem-
bling components.

In component testing, the goal is to detect software errors
and to validate the quality of the software components
considered as the smallest test unit (40). Testing of compo-
nents becomes extremely important for the success of the
entire component-based system (CBS) because the quality
of the entire system is strongly affected by the quality of
each single component. In testing component-based sys-
tems, instead, the main goal is to test the assembly of
heterogeneous components, possibly written in different
programming languages, distributed across the network
and executed in various platforms.

Although many issues are specific to component testing
and testing component-based software (see Ref. 41 chapters
2.3 and 4.2, and Ref. 42) two issues can be considered the
most relevant, which are common to both aspects of com-
ponent-based testing:

– Availability of information about components: The
basic ingredient of any testing strategy is the avail-
ability of information/representation that describes
relevant aspects of the component to be tested.
Although in traditional software development pro-
cesses the organization has a full control on the sys-
tem under development (from requirements down to
implementation), in component-based development
the source code is in the general case not available.
In the specific context of commercial-off-the shelf
(COTS) components, components are retrieved from
the market and come to the users without the source
code. This lack of information poses particularly diffi-
cult questions to the final user for what concerns
testing.

4 SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS



– Presence of different stakeholders: Different stake-
holders take place in the development of a compo-
nent-based system, which belongs to even unrelated
organizations. Each of these stakeholders has to define
and follow a specific testing process while pursuing, in
general, different objectives. In this article we mainly
differentiate between two main roles: the component
developer (who implements software components to be
easily and widely reused) and the component user (who
integrates the component in a final system).

The component developer starts the development of
a component having in mind possible reuse scenarios
that will make the component worthy to be bought by a
possible user. In general, the process adopted will
follow a ‘‘traditional’’ approach, and the testing process
will not show major novelties.

The component user is the developer of a complex
system that decided to manage the complexity by
reusing existing components. In case of COTS compo-
nents, the unavailability of the source code makes all
the traditional code-based techniques not applicable.
Moreover, the scarcity of information makes also
black-box approaches more difficult to apply.

Therefore, developers and users of components are com-
pletely different actors from a testing point of view, in which
the former has complete view of the component internal
details but little information on the final deployment envir-
onment, and the latter has little information on the inner
parts of the component but a precise understanding of the
final deployment environment.

In summary, component-based testing strongly relies on
the information available to any possible stakeholder inter-
ested in carrying on a testing campaign on a software
component or a set of them. At the same time, it is necessary
to understand how the available information can be fruit-
fully used for testing purposes.

Achievements

In the following part of this section, existing component-
based testing approaches are classified according to two
main criteria: who defines the test to be executed, and which
information are sued to define the test cases. Alternative
classifications can be found in Refs. 41,43,44 and 45.

Following the proposed classification, three main classes
have been identified:

– Developer-defined test cases;

– Developer-defined component models suitable for
analysis and testing derivation by the user;

– User-defined test cases.

In developer-defined test cases, test cases are defined by
the developers and provided as they are to the component
user, who can just run them (i.e., the user has no control on
the test selection phase).

Built in test (BIT) approaches and testable architectures-
based CB testing are typical examples of approaches in this
category. Built in testing is a generic approach to testing
where the component is augmented with executable test

cases that are built into the component, together with its
normal functions. BIT requires component developers to
embed tests in software component implementation to
support self-testing. By running the embedded test cases,
the component user can thus validate in the final environ-
ment the hypotheses made by the component developer.
Several techniques have implemented this philosophy.
Edwards (46) has proposed a framework to provide BIT
wrappers for component testing, using the specification
language RESOLVE as an example. Wang et al. (47)
make use of the BIT for enhancing component-based soft-
ware maintainability. They build tests in component source
code as extra member functions. Other BIT techniques are
used in Refs. 48 and 49. More details on BIT approaches can
be found in Refs. 41 and 43.

The testable architectures-based CB testing approach can
be recognized as a special case of BIT in which component
developers equip the component with a specific testable
architecture that allows the component user to execute
the test cases easily. The test information is appended by
the developer in the form of specifications, instead of enclos-
ing them in the component itself. One of the most known
approaches is the one presented by Momotko and Zalewska
(50) which propose a testable architecture based on the
Component+ built in testing (C+ BIT) technology for testing
component interactions with the environment at run-time.

In developer-defined component models suitable for ana-
lysis and testing derivation by the user, the component
developer provides users with (behavioral) models to use
for test case selection. All forms of additional information
appended to the software component (either by the devel-
oper, the user, or a third-party tester, so as to simplify
software testing) can be regarded as forms of meta-data.

Wu et al. (51) define a test model called component
interaction graph (CIG) for integration testing. As a first
step, test elements are identified to build a CIG, and test
cases are generated for each test element in the CIG.
Another interesting approach, likewise relying on the defi-
nition of a particular framework for component testing, has
been proposed by Atkinson and Gross (52). The framework
is not intended for the execution of generic test cases, but
rather focuses on providing the component user with spe-
cific test cases derived from contract specifications.

In user-defined test cases, the user has full control on the
test selection phase. Three main approaches can be
assigned to this class: interface probing (53), in which
the component user derives a set of test cases, executes
the component in accordance with them, and analyzes the
outputs produced; the component deployment testing (CDT)
approach where Bertolino and Polini (54) propose an inte-
gration testing framework for easing the execution of test
cases derived from user architectural specifications; the
Behavior Capture and Test Framework proposed by Mar-
iani and Pezzé (55) in which the saving and monitoring of
test results in one environment can be useful for evaluating
component behavior in another environment.

Further Readings

M.J. Harrold et al.’s (42) paper focuses on issues and
challenges in analysis and testing of CBS, from both the

SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS 5



component developer and component user perspectives.
J. Z. Gao, et al. (41) published a complete book on compo-
nent testing and testing component-based systems and
quality assurance. S. Beydeda and V. Gruhn (56) provide
a collection of papers that cover the topics of built-in testing,
metadata, software product line, testability, and integra-
tion testing. M. Jaffar-ur Rehman et al. (43) published a
recent survey on issues and solutions in component-based
testing.

SPECIFICATION-BASED TESTING

A software specification describes the expected behavior
and characteristics of a software product as outlined by
Poston (57).

In specification-based testing (also called functional
testing or black box testing), the internal structure and
behavior of the program is not known (i.e., the program is
considered as a black box, because we cannot observe
what internally happens). What is assumed to have is a
model of the system under test and the objective is to
analyze whether the system behaves correctly with
respect to the specifications, that is, to find discrepancies
between the actual behavior of the implemented system’s
functions and the desired behavior, as described in
the functional specifications. Test sets are derived from
the system specification, and the test selection phase
can start even before the code is available (although
test execution still needs the existence of the system
implementation).

Manifold are the motivations for making use of a
specification-based testing approach. (1) Code unavail-
ability: If source code is not available (not yet developed
or not publicly released), then test cases can be produced
out of a specification. (2) Scalability: Even if source code
is available, it becomes rapidly unfeasible to provide
complete coverage of complex systems. Being specifica-
tions more abstract than source code, specification-based
testing is certainly more scalable. (3) Accuracy: specifica-
tion-based testing complements code-based testing tech-
niques; although source code testing is typically
structural and at a syntactic level (i.e., source code
structure coverage), specification-based testing is more
functional and at a semantic level (i.e., system functions
coverage). (4) Effectiveness: A specification-based testing
plan can start before the code is available, which avoids
having to leave the testing activities to the end of the
software lifecycle, when schedule slippage, time-to-mar-
ket pressures, and cost-constraints may result in
neglected testing.

The rest of this section will cover the topics of model-
based testing based on formal specifications (when the
model is generated from a formal specification or the formal
specification itself is used as the test input), and model-
based testing based on diagrammatic specifications (which
refers to UML-based testing and testing based on models
designed through diagrammatic tools). Next, this article
presents existing work on software architecture-based
testing (to be considered as a form of specification-based
testing).

Model-Based Testing Based on Formal Specifications

Problem Statement. A formal specification can be
regarded as ‘‘the expression in some formal language and
at some level of abstraction, of a collection of properties
some system should satisfy’’ (58). A formal specification
language consists of a clearly defined syntax (the notation),
fully specified semantics (the specifiable objects), and some
satisfied relation (the semantics associated to the syntax).
Although a formal specification can be of difficult use (if
compared with informal specifications), it has precise,
unambiguous semantics, which enables mathematical pre-
cision of the analysis of systems and the reasoning about
them (59). Moreover, a specification written in a formal
language can be processed by automated tools, and formal
specification-based testing guarantees higher accuracy,
objectivity, and repeatability than ad-hoc test derivation
from informal specifications.

Achievements. Testing from formal specifications has
received much attention in the last decades. The first
approaches for specification-based testing were proposed
in the 1980s. Since then, many specification-based testing
approaches have been proposed, based on formal languages
such as Z, VDM, CSP, CCS, LOTOS, SDL, and Petri Nets
(60). More recently, conformance testing approaches based
on Labeled Transition Systems or Finite State Automata
(or their variations) have been proposed (61–63). Here, we
restrict our attention to test selection and execution from
such formal specifications, for which a mature theory of
conformance testing now exists, together with automated
tool support.

The aim of a formal conformance testing framework is to
define a conformance relation between the implementation
under test IUT and the (formal) specification S. Such a
relation precisely establishes when IUT is a correct imple-
mentation of S and is based on the test hypothesis, that is,
the IUT can be modeled by a formal object MOD, such that
all the observations that we can make on the IUT and on
MOD (along the executions of all defined test cases) cannot
be distinguished (64). In such a way, we can formally define
an ‘‘implementation relation’’ (imp) that correlates S with
MOD. IUT conforms to S iff MOD is imp-correct with
respect to S.

Figure 5. graphically summarizes how a conformance
testing framework works.

In Tretmans’ approach (62,65), both the specification S
and the model MOD of the implementation I are expressed

Test Generator 

Implementation
Formal model 

MOD
Test Executor 

Specification
S

Test Suite

Test Results 
(pass/ fail ) 

Figure 5. The conformance testing framework.

.

6 SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS



using input/output transition systems (IOTSs), which is an
extension of the classic LTS model, in which the set of
actions are partitioned into the input actions and the out-
put actions. The implementation relation imp used is of the
form ioco, that is a relation holding when MOD can never
produce an output that could not have been produced by S
after the same sequence of actions, or trace(66).

Similar derivations are obtained by von Bochmann et al.
(63) who use finite state machines to derive the system
specification, its implementation and ‘‘conformance rela-
tions’’ (equivalence, quasi-equivalence, reduction) to gen-
erate test sequences. Fernandez et al. (67), use IOLTS in
their approach for an automatic, on-the-fly generation of
test cases.

Tools. TorX, TGV, and TVEDA are well-known tools for
automating the test selection and execution process in
formal testing.

TorX (68) allows an on-the-fly test generation and execu-
tion (i.e., test derivation and test execution occur simulta-
neously). The input language is LOTOS or Promela, and the
test selection can be random or manual. In TGV (61) the
tester can use his/her knowledge of the implementation
under test and of the context to guide the test selection
through the notion of a test purpose (61,66) (which permits
to focus on testing relevant interactions, while hiding the
others). The TGV input languages are LOTOS or SDL, and
test cases are derived in TTCN (69). TVEDA (70) derives
TTCN tests from SDL specifications.

Differently from TGV and TVEDA, TorX allows test
derivation and execution in an integrated manner.

Further Readings. C. Jard and T. Jeron (71) provide one
of the most recent papers on TGV; it describes the tool and
the theory behind it. Reference (72) points to the TGV
website. J. Tretmans (59) covers the theory behind confor-
mance testing in an easy-to-understand and complete way.

Model-Based Testing Based on Diagrammatic Specifications

Problem Statement. A model-based testing approach
accepts two main inputs, a model of the software under
test and a set of test generation directives (which guide the
test cases selection), and outputs a test specification (which
includes a set of stimuli the tester should introduce in the
system together with expected responses) (73). This section
will focus on model-based specifications in the Unified
Modeling Language (UML) (74).

Achievements. Binder surveys how each and every UML
diagram could be tested (Reference 25, ch. 8). Although
UML structural diagrams are usually employed for testing
design consistency (gray-box testing), behavioral diagrams
are used for functional testing, precisely, interaction dia-
grams for integration testing (interactions among objects),
and state diagrams for functional testing of objects.

This section will focus especially on a representative
subset of (mostly academic) scenario-based and state-based
testing approaches. Figure 6 [taken from Navlasky (75)]

step  1
step  2
step  3

AND /
OR

Scenarios

step  1
step  2
step  3

step  1
step  2
step  3

Scenarios

Scenarios

State-Based
Specifications

AND /
OR

AND /
OR

State-Based
Specifications

State-Based
Specifications

TEST GENERATION 

structural
specifications

structural
specifications

other
specifications

other
specifications

code relationships

other
specifications

relationshipscode

code relationships

EXECUTION/EVALUTION

COVERAGEANALYSIS

REGRESSION TESTING

relationships

concrete test scripts

concrete test scripts

abstract test scripts

pr
od

uc
ed

us
ed

 / 
in

pu
t

test tracestest results

xxxxxxx
xxxxxxx

PASSED
FAILED
FAILED

step 1
step 2
step 3

abstract test scripts

step 1
step 2
step 3

coverage measurement reports

zz

zz

zz

Figure 6. Steps in model-based testing.

SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS 7



summarizes the test generation, test execution and evalua-
tion, coverage analysis, and regression testing activities
implemented by automated model-based testing
approaches.

The test selection activity receives models as input and
produces test scripts as output. The inputs are textual or
graphical scenarios, state-based, or other specifications
(structural specifications, such as class or component dia-
grams and activity diagrams). Sometimes, the code itself
becomes an input of the test generation activity. The out-
puts are test scripts (sometimes referred to as test
sequences), and comprise the following: a set of steps to
be followed when testing a program, as well as input and
output values. Test scripts are either abstract or concrete.
Abstract test scripts describe the steps a tester should
follow when using the system, the inputs to provide, and
the outputs to expect. Concrete test scripts can be compiled
and automatically executed. They consist of calls to meth-
ods in the code, the inputs to provide, and the outputs to
expect. The evaluation is either made manually by the
tester or automatically by an oracle.

The test execution and result evaluation activity receives
asinputabstractorconcretetestscriptsoutputtedbythetest
generation activity. Test execution runs test scripts over the
source code. The observed behaviors are evaluated against
expected results, as expressed by the specification models.

Coverage analysis can be automatically performed to
evaluate how much of the code has been covered. Regres-
sion testing can be applied to re-test changed models.

In the study conducted in Ref. 75 and summarized
in Ref. 76, 11 automated model-based testing approaches
were evaluated. Six of them are based on scenarios,
two on state-based models, two on both scenarios and state
machines, and one on scenarios or state machines. Figure 7
summarizes the input artifacts used by the 11 surveyed
model-based testing techniques.

By taking a look at other surveys on the topic, Utting
et al. (77) place model-based testing approaches into a
seven-dimension orthogonal taxonomy. The dimensions
characterize the approaches with regard to the nature of
the model used (e.g., what is modeled, notation used), to the
nature of the test generation techniques used (e.g., test
selection coverage) and to the nature of the test execution
(e.g. on-line, or off-line).

In their work, Prasanna et al. (78) survey test case
generation approaches. They classify these approaches
into two categories: specification-based approaches and
model-based approaches.

Tools. Hartman (73) presents a survey on model-
based test generation tools. He distinguishes between
test generators and model-based input generators. He
also distinguishes between test generators and test auto-
mation framework, where the automation framework exe-
cutes the test sequences without human supervision. The
objective of Hartman’s survey is to place the AGEDIS (79)
project and tool in relation to other tools. He groups the
tools into academic and commercial and succinctly
describes each of them. It is therefore a good reference to
a list of tool supported approaches.

In their book chapter (80), Belinfante et al. provide an in-
depth evaluation of test case generation tools. The book,
however, is on model-based testing for reactive systems,
where models are described in their majority with formal
specification languages.

Further Readings. R. V. Binder (25) mostly describes
model-based test design techniques (based on combina-
tional models, state machines and the UML) for OO sys-
tems and test design patterns. M. Broy et al. (81) provide a
collection of papers presented at the 2004 Dagstuhl semi-
nar on ‘‘Model-Based Testing of Reactive Systems.’’ It
covers testing of finite state machines, testing of labeled
transition systems, model-based test case generation, tools
and case studies, standardized test notation, and execution
architectures. L. Mariani and M. Pezzé (26) discuss both
specification-based and structural-based approaches for
intra-class and inter-class testing of OO software. The
Model Based Testing Forum (82) is a useful forum on
model-based testing.

Software Architecture-based Testing

A software architecture (SA) is the first design artifact that
can be produced during the software development. It
breaks down the system into several cooperating elements
(components, connectors, data elements). Although compo-
nents represent the core artifacts, a software architecture
consists in the study of how such components can be inte-
grated in order to satisfy desired functional and non func-
tional requirements.

According to Stafford and Bosch (38), software architec-
ture represents an integral part of any component-based
software system; software architecture and components
are two sides of the same coin. A component-based design
can be (1) component-driven, if existing components are
integrated via a component framework, according to a
certain architecture; or (2) architecture-driven, if compo-
nents are produced or acquired in order to satisfy archi-
tectural requirements.

Problem Statement. A growing interest in software
architectures characterizes the last decade. Although
most initial effort has been on how to specify an architec-
ture, how to select the right architecture has become one of
the most relevant challenges in recent days. In particular,
the importance of the role of SA in testing and analysis is
becoming evident (83).

When referring to software architecture and testing, we
need to distinguish between SA-based testing and testing

Structural spec. X X

Other
specifications

X X X X

X

X

X

X X

X

X

Code X X X

X

X

Scenario-based X X X X X X X X

State Machine X X X X

X

X

X

R
O

T
S

E
T

T
U

A L
M

U

M
E

T
O

T

F
T

O
O

S

E
TI

U
S-

W
O

C

R
O

T
N

E
C

S

Ce
Ti

D
e

S

SI
D

E
G

A U
M

L
 T

e
stme
ts

y
S-

C
S

C
U

L
m s

A

Figure 7. The main artifacts used in model-based testing.

8 SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS



SAs. In SA-based testing, the goal is to use the SA specifica-
tion as a reference model to extract suitable test classes for
the higher levels of testing and to refine them into concrete
tests at the code level (84). In testing SA, instead, the main
goal consists in assessing the SA quality with respect to
expected requirements it shall meet.

Two major issues are to be solved in architecture-based
testing: traceability and test execution.

Traceability consists of ‘‘relating the abstract values of
the specification to the concrete values of the implementa-
tion’’ (85). Because test cases are selected from the (inten-
tionally abstract) architectural model, they have to be
refined into more concrete test sequences to execute these
tests on the code. Similar problems can be found in speci-
fication-based testing (previously discussed), but they are
typically solved by making use of detailed and lower-level
specifications.

Test execution entails forcing the implementation
under test (IUT) to execute the specific sequence of events
that has been selected. However, a problem develops with
concurrent programs that, starting from the same input,
may exercise different sequences of interactions (among
several concurrent processes) and produce different
results. This problem has already been analyzed in
the literature, and nondeterministic and deterministic-
testing (86) approaches have been proposed.

Achievements. Several authors have advocated the
use of architectural models to drive testing, and in
particular to select relevant behaviors of interactions
between system components based on the early SA spe-
cification. In Ref. 87, the authors analyze the advantages
in using SA-level testing for reuse of tests and to test
extra-functional properties. In Ref. 88, the authors
define six architecture-based testing criteria, which adapt
specification-based approaches. Those two papers repre-
sent the fist attempts in software testing based on an
architectural specification.

In Ref. 89, the authors present an architecture-based
integration testing approach that takes into considera-
tion architecture testability, simulation, and slicing. In
Ref. 90, Harrold presents an approach for effective soft-
ware architecture regression testing, and in Ref. 6 she
also discusses the use of software architecture for test-
ing. In Ref. 91, Rosenblum adapts his strategy for com-
ponent-based systems testing to SAs. The testing
approach is based on architectural models, which could
be simulated or executed or used to guide integration or
regression testing of the implemented system. The
author also shows how formal models of test adequacy
can be used in conjunction with architectural models to
guide testing.

In Ref. 92 the authors propose a technique to test data
flow and control flow properties at the architectural level.
Six architecture relations among architecture units are
defined and then used to define architecture testing paths.
Five architecture-level testing criteria are proposed. How-
ever, to the best of our knowledge, the approach in Ref. 84 is
still the only comprehensive attempt to tackle the whole
cycle of SA-based testing.

Reference 93 presents a framework for SA-based regres-
sion testing, coping with two main types of evolution:
architectural evolution and code evolution.

Figure 8 shows a synthetic table of SA-based testing
techniques, pointing out the specific goals of each given
paper/approach.

Further Readings. H. Muccini, et al. (84) present a com-
prehensive attempt to tackle the whole cycle of SA-based
testing. H. Muccini et al. (93) propose an approach for SA-
based regression testing.

ONGOING RESEARCH IN SOFTWARE TESTING

Although previous sections have discussed consolidated
testing techniques based on different development para-
digms and based on different precode artifacts, this section
introduces some ongoing research that, while not consoli-
dated, is being used in academic and practical domains and
are being considered key technologies. We here focus on
testing service-oriented applications, on the UML testing
profile, and on product line testing.

Testing Service-Based Applications

Service oriented computing aims to provide the basis for
building software by assembling independent, loosely
coupled services. Services are understood as autonomous,
platform-independent computational entities that can be
described, published, categorized, discovered, and dynami-
cally assembled for developing massively distributed, inter-
operable, evolvable systems and applications. These
characteristics pushed service-oriented computing toward
its present widespread success, which is demonstrated by
the industrial investments on this technology.

Problem Statement. Web services represent a concrete
instantiation of the service oriented paradigm, where web
services are distributed and integrated via Web standards.
Because web services are considered a key technology in
software production today, how to test them is becoming a
relevant task in many industrial organizations.

Bertolino
idrarevnI

‘ 96 

Ref. [87]

Richardson
Wolf
‘ 96 

Ref. [88]

Richardson
Stafford

Wolf
‘97

Ref. [89]

Harrold
‘98

Ref. [90] 

Rosenblum
‘98

Ref. [91] 

Jin
Offutt

‘ 01 

Ref. [92] 

Muccini
Bertolino
Inverardi

‘04
Ref. [84] 

Muccini,
Dias,

Richardson
‘ 06 

Ref. [93] 
Introduction to the topic ++ ++ ++ + + + 

Test case
Selection

+ + ++ + ++ ++ 

Coverage Criteria ++ ++ + ++ + 
Adequacy criteria ++ ++ 
Test Execution ++ ++ 

Testin g 
Activities

+noitaulavEstluseR +
Unit ++ 
Integration ++ ++ + Testing

Pha ses System
+++++++gnitseTdesab-ASTesting

++tnemssessaASlaoG
+++++ytilibatseT

SA styles ++
++++++gnitseTnoissergeR

Other

Traceability

Figure 8. Software architecture-based testing techniques.

SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS 9



The main issues and challenges related to testing web
services resemble those related to component-based testing
(as already analyzed previously and remarked in Ref. 95),
with some extensions as in the following:

– Lack of control: As in component-based development,
services can be produced by different stakeholders.
However, although component-based applications
can beproduced bya single organizationby integrating
reusable components, service oriented systems are
never under the full control of a single organization.

– Different Stakeholders: Although two main stake-
holders are involved in component-based testing,
five main actors might be concerned with testing of
services: service developers, service providers, service
integrators, third-party certification authorities, and
final users. Each can thus require specific testing
techniques, which are related to the level of knowl-
edge/control they do have on the service and on the
testing purpose.

– Different stages: A web service can be tested at three
different stages: before deployment, at registration
time, and at execution time.

A service can be tested before its deployment by
using off-line testing. At this time, the service devel-
oper or provider tests the service by simulating pos-
sible usage scenarios. Successively, at registration
time, the test can be executed in a real execution
environment to provide more realistic results. The
discovery and directory services can then be rein-
forced with testing functionalities. Eventually, at

execution time, the system can be monitored so as to
discover run-time service failures.

– Different ways of integrating services: Services can be
composed by following two complementary views:
orchestration and choreography. In the orchestration,
an orchestrator defines the interaction order among
components. A choreography, instead, specifies the
interaction among all the services that take place in
the system. Different interaction primitives and lan-
guages are used by the two views, which impose clear
distinctions among choreography-based and orches-
tration-based testing (96).

Achievements. Many approaches have been proposed so
far for testing web services.

The survey study in Ref. 97 takes into consideration 12
web services testing frameworks and classify them accord-
ing to many parameters, the most relevant being the fol-
lowing: the testing web service architecture, the
stakeholders involved in the testing activity, the web ser-
vices specification languages, and the testing strategies.
The table in Fig. 9 summarizes the survey main results.

In Reference 95 , a comparison among three web ser-
vices testing tools (Parasoft SOATest, Mindreef SOAP-
Scope, and PushToTest TestMaker) is reported according
to the following (main) parameters: support for functional
testing; support for custom scripting, type of licence, and
type of interface; support for simulation and recording;
and support for extra-functional testing.

Stakeholder
(Developer/

Provider/
Standard body)

W.K. Tsai, R. Paul,
L. Yu, A. Saimi,

and Z. Cao
[IEICE Trans. on
Information and
Systems, 2003]

D, P, S

W.T. Tsai, Y. Chen,
Z. Cao, X. Bai,

H. Huang, and R. Paul
[AWCC, 2004]

D, P

R. Heckel, and
L. Mariani

[FASE, 2005]
P, S

Y. Zheng, J. Zhou,
and P. Krause

[ICIT, 2007]
D, P

Paper Title

Scenario-based web service testing with
distributed agents

Using Progressive Group Testing

Automatic conformance testing of web
services

A model checking based test case generation
framework for web services

A. Bertolino, and
A. Polini

[Euromicro, 2005]

The audition framework for testing web
services interoperability D, P, S

R. Heckel and
M. Lohmann
[Tacos, 2004]

Towards contract-based testing of web
services P, S

Z. Li, W. Sun,
Z. Jiang, and X. Zhang

[ICSW, 2005]

Bpel4ws unit testing: Framework and
implementation P

E. Martin, S. Basu,
and T. Xie

[ICSE RD, 2007]
WebSob: A Tool for Robustness Testing of

Web Services D

W. T. Tsai,
R. Paul, W. Song,

and Z. Cao
[HASE, 2002]

Coyote: An xml-based framework for web
services testing P

R. Sumra and
R. Venkatvaradan
[Developer.com

whitepaper, 2005]

Web Service's Test Harness: A Functional,
Load, and Performance Testing Framework

for Web Services
P

Z. Xiangpeng, Y.
Hongli, C. Chao, D.

Xiwu, and Q. Zongyan
[AWCVS, 2006]

Verification of  WS-CDL Choreography P, S

P. Mayer and
D. Lübke

[TAV-WEB, 2006]
Towards a bpel unit testing framework D

Specification
Language

WSDL

-

WSDL, I/O
dependencies,
sequence of
invocations,
concurrent
sequences

WSDL

WSDL, GT Rules

WSDL, Contracts

WSDL, PSM

BPEL

WS-CDL, CDL

WSDL, BPEL,
extension

mechanisms

WSDL, BPEL

WSDL

Type of Testing

Integration/
Regression

Functional,
Performance,
Load, Stress,

CHO

Unit,
Integration,
Regression,

Non Functional

Unit, Integration,
Stress

Functional,
Stress

Functional,
Integration

Integration

BPEL Unit
Process

Functional

BPEL Unit
Process

Unit, Integration

Unit, Robustness

Orchestration

-

Unit, Integration

noitargetnI,tinU

Unit

Unit

Unit, Integration

-

Local
Choreography

-

Unit

Integration

Integration

-

Global
Choreography

Integration

-

Unit, Integration

Unit

-

Composition Style

Figure 9. Comparing testing web services frameworks.

.

10 SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS



Further Readings. L. Baresi and E. Di Nitto (98) book
containscontributionsfromleadingacademicandindustrial
research groups on static analysis, testing, monitoring, and
nonfunctional analysis of web services.

MDA-Based Testing: The UML Testing Profile

Problem Statement. With the widespread adoption of
software models and model-based testing techniques,
new challenges arise. A multitude of different model-based
testing approaches are available today (as outlined pre-
viously), each one focusing on different UML models, dif-
ferent level of abstractions, and different test selection/
execution/coverage criteria. As soon as a model evolves,
related models and the test themselves shall evolve to keep
the specification and test specification consistent. Explicit
support for models’ alignment is rarely available. More-
over, it is not uncommon during evolution that only the low-
level design and implementation are changed to meet tight
deadlines, while the model specification is not updated to
track the changes being made to the implementation (99).
As soon as the specification ‘‘drifts’’ out of conformance with
the implementation, it is no longer representative of the
expected behavior.

Explicit relationships need to be devised between spe-
cifications and their implementations (sometimes called
mapping), and between specifications and test results
(sometimes called traces) (as initially discussed in Ref. 85).

Achievements. To handle such problems and to bridge
the gap between models and implementation, in 2001 the
object management group (OMG) has released the UML
testing profile request for proposal. As a result, the UML
testing profile (UTP) (100) has become an official OMG
standard since late 2005, with the main goal of allowing
a conformance testing activity to take place in parallel with
the system development. The main objectives of the UTP
are to provide an ontology of testing-related artifacts
needed for testing purposes and to model transformation
algorithms to move toward different models. The UTP
implements the MDA philosophy by providing a common
framework for system development and testing. The UTP
profile extends the UML 2.0 meta-model to introduce test-
specific concepts. The analogy to MDA has been illustrated
in Fig. 10. The PIT is the platform independent test, which
is generated through model-to-model transformation tech-
niques from the platform independent model (PIM). Fol-
lowing the MDA philosophy, as the PIM is transformed into
a platform specific model (PSM), the PIT is transformed
into a platform specific test (PST), i.e., a test executable on
the PSM. Although vertical transformations permit to
move from the PIT, to the PST and test code, horizontal
transformations permit to move back and forth from devel-
opment to testing.

The main goals and principles of UTP are:

� To interweave software development and test-
ing. The main principle implemented in the UTP is
that software testing needs to be carried out during
the entire software development, and it should be
connected as much as possible with the system devel-

opment models. The UTP thus provides a unique
notation based on the UML to be used by both software
developers and software testers, and it provides the
ability to move from the modeling domain to the
testing one.

� Conformance Testing. The UTP has been proposed
to provide an answer to the need of solid conformance
testing, certification, and branding.

� Structure + behavior Modelling. The UTP takes
into consideration both structural and behavioral
diagrams. Structural diagrams are used to specify
the testing components. Behavioral diagrams are
used for specifying test cases and for identifying
the test cases execution order.

� Black-box testing. UTP focuses on black-box con-
formance testing. For this reason, the profile itself
does not consider any information on the internal
structure of the system under test.

The UTP contributes to the aforementioned goals in two
different ways; it provides an ontology of model-based
testing concepts to produce a testing model, and it describes
some transformation rules for moving from development
models (PIM and PSM) to testing models (PIT and PST).
The ontology of concepts has been categorized into four
conceptual packages: test architecture, test behavior, test
data, and time. Each package has a specific goal and con-
tains meta-classes that identify the UTP ontology. Each
package is described in detail in Ref. 100.

Further Readings. The UML Testing Profile (100) pro-
vides the OMG official specification for the UML Testing
Profile, v 1.0. von P. Baker and colleagues (101) authored
the first book on the UML Testing Profile. Z. Ru Dai et al.
(102,104) present three papers on the UTP and its relation
with TTCN-3.

Testing Software Product Lines

Software product lines (SPLs) represent a more strategic
approach to reuse, where components and other assets are
identified in relation with specific application domains,

PIM PIT

PSM PST

Transformation

Transformation

Code
Test
code

System
Development

System
Test

Figure 10. The UTP contextualization in MDA.

SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS 11



architectures, and scopes (opposed to software reuse
schemes which try to create assets as general as possible).
Quoting Clements and Northrop (105), ‘‘a software product
line is a set of software-intensive systems sharing a com-
mon managed set of features that satisfy the specific needs
of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed
way.’’ The idea behind a system–family approach is to build
a new system or application from a common set of assets
(e.g., component, known requirements or design elements,
models, artifacts) in the same domain.

The main concepts that characterize an SPL are those of:

� Domain-specific core assets: Instead of creating libraries
of general purpose components, hoping they will be used
in future development, SPLs make a predictive analysis
of such artifacts that may be reused in the development of
a specific domain-related product (106).

� Commonality and variability: Commonality defines what
different products have in common and guides the pro-
duction of domain-specific core assets. Variability is the
ability to change or customize a software system (107)
(i.e., to distinguish one product from another in the SPL),
and it requires to delay design decisions such that many
decisions are left open until a certain product is selected
out of the product line. A variation point identifies one or
more locations at which the variation will occur.

� Domain engineering and application engineering: Tak-
ing a look at an SPL software process, two main phases
are always contemplated: domain engineering and appli-
cation engineering. In the former phase, commonality
and variability of the entire family are analyzed, whereas
during application engineering an individual applica-
tion, member of the SPL, is selected.

WhentestinganSPL, traditional testingtechniqueshave
to be adapted so as to take into consideration the SPL pecu-
liarities described above. The main challenge is in investi-
gating how the entire SPL can be used to generate testing
information automatically that may be effectively reused to
test each derivable product, as discovered in Ref. 108.

Further Readings. J.D. McGregor (109) provides princi-
ples and techniques in testing software product lines. A.
Tevanlinna et al. (110) describe the state-of-the art of
product family testing techniques.

FUTURE DIRECTIONS IN SOFTWARE TESTING

Harrold (6) and Bertolino (7) in their ICSE 2000 and ICSE
2007 (respectively) Future of Software Engineering (FOSE)
papers on software testing, highlight several working
directions and challenges in software testing. While shar-
ing most of them, I would like to briefly discuss here those
areas I personally believe will be of major relevance in next
generation software testing techniques.

Testing Evolving at Run-Time Software

An increasingly important requirement for software-
intensive systems is the ability of changing over time,

because of the need to add/remove new features dynami-
cally, the need to provide a more dependable system, or the
need to protect the system from run-time incoming attacks
or deficiencies. This newly acquired level of dynamicity,
while enhancing the flexibility of a software system that
can become self-adaptable, imposes new degrees of complex-
ity when certain qualities of the system must be guaranteed.
Continuously evolving systems become difficult to be ana-
lyzedwith techniques used over traditionally static systems.
In the context of such highly dynamic systems, the focus
moves from validating the static configuration to validating
the changing over-time design. Thus, whereas in traditional
static systems the verification can be done once before
system deployment, for dynamic architectures the valida-
tion becomes a perpetual activity to be performed during
system execution. On-line testing and monitoring techni-
ques are currently being analyzed for testing such types of
software (see for example Refs. 95 and 111).

Automation in Software Testing

Practitioners regard software testing as the central means
for ensuring that a system behaves as expected. The intro-
duction of automated testing techniques has strongly facili-
tated the introduction of software testing into practice;
automation has reduced the amount of effort spent on
technical testing activities and has also increased the pre-
cision of activities, like result evaluation, often performed
by humans and thus more error prone. However, testing in
industrial projects can be effective only when the testing
effort is ‘‘affordable’’: the testing approaches should support
automatic creation of test plans sooner, they should auto-
mate most testing activities, and testing and development
shall proceed hand-by-hand being automated in the same
development and testing framework.

As a side effect, software testing automation would also
improve technology transfer of testing and analysis
research. Technology transfer is fundamental for making
research useful in industrial domains and for bridging the
gap among academic research and industrial needs, as
remarked by Boshernitsan (112) in his ISSTA 2006 invited
speak. Hartman (113) describes his experience as well as
the challenges and dreams in making model-based testing
an industrial practice. Test automation is remarked as one
of the main means to make model-based testing an indus-
trial practice.

Integration of Testing and Analysis Techniques. Integra-
tion of analysis techniques is a topic that has recently been
receiving some attention in the software engineering com-
munity (e.g., Ref. 114). This problem can be addressed from
two different viewpoints: integrating analysis techniques
during the development process (from requirement-based
to source code analysis) and integrating different analysis
techniques at the same stage in software development (e.g.,
design-based testing and model-checking).

Antimodel-Based Testing

Specification-based testing is certainly useful and effective;
however, there can be several reasons why such an
approach cannot be applied or is too expensive for

12 SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS



deployment in a specific context. One of the main obstacles
relies on the assumption that a complete and consistent
model of the software system exists, whereas for certain
classes of systems (e.g., component-based systems), we
cannot assume a priori that a specification or the source
code are available. In such cases, model-based testing is not
applicable, or would be too costly.

This is the rationale for an ‘‘antimodel-based testing
approach’’: whereas model-based testing starts from an
a-priori established model and tries to execute some
sequences derived from this model, in ‘‘antimodel based’’
testing the opposite direction is taken: the implementation
is executed on some sample executions, and by observing
the traces of execution an abstract model of the system is
inferred/synthesized a posteriori.

Self-Testing

An increasingly important requirement for software sys-
tems is the ability to self-manage, (i.e., to autonomically
manage themselves). According to Kephart and Chess
(115), the four main autonomic areas are self-protection,
self-configuration, self-optimization, and self-healing.
Other colleagues describe other forms of self� -techniques,
such as self-adaptivity, and self-organization. In the con-
text of self�- systems, self-testing seems to be a natural way
to move forward, in which the system has the ability to test
(and repair) itself autonomically.

CONCLUDING REMARKS

This article has tried to provide an ample view on software
testing from two different viewpoints: the development
technology to be tested and the artifacts to be used
for testing purposes. A detailed list of references on high-
quality research work has been provided to help the reader
acquire a more advanced knowledge on each area covered.

ACKNOWLEDGMENTS

I wish to thank the anonymous reviewers, Mauro Pezzé and
Antonia Bertolino for their useful feedback on a prelimin-
ary version of this paper. I thank you Andrea Polini for his
contribution and help within the component-based testing
section of this article, and Damien Andrew Tamburry for is
thorough proofreading.

APPENDIX A: A GLOSSARY OF SOFTWARE TESTING TERMS

This section provides an explanation of the main terms
used in software testing. In order to make the explanation
more practical, some of the described concepts will be
applied to the BuyOnline fictitious web application, which
allows users to register, to select products from a list, to
visualize their descriptions and information, and to buy
them online.

Test Case: A test case is a set of inputs, execution conditions, and
a pass/fail criterion [116] . A test case thus includes not only
input data but also any relevant execution conditions and

procedures, and includes a way of determining whether the
program has passed or failed the test on a particular execu-
tion [8].

A single test case tc1 for the BuyOnline application
might be: select product with id 563AD, put it in the chart,
buy it by credit card.

Test Suite: A test suite is a collection of test cases.

Further test cases can be generated to test the BuyOn-
line application (by changing the selected products, by
removing a product from the chart, or by changing the
payment type). All together they will form a test suite for
the BuyOnline system.

Test Process: The testing process consists of different activities,
the most important being:

– Test Selection: it consists in selecting a suitable and
finite set of test cases from the possibly infinite set;

– Test Execution and Evaluation: it consists in execut-
ing the code accordingly to the selected test cases and
comparing real and expected results.

The test selection activity provides guidelines on how to
select test cases. It is driven by a ‘‘test criterion’’ and has to
produce ‘‘suitable’’ test cases:

Test Criterion: A test criterion provides the guidelines, rules,
and strategy by which test cases are selected. In general, a
test criterion is a means of deciding which shall be a ‘‘good’’
set of test cases [117] .

Suitability: A test case is suitable if it contributes to discovering
as many failures as possible, according to a test criterion.

Test cases for the BuyOnline application can be selected
randomly (i.e., by randomly selecting products, payments
types, and functions to be run) or through a more systema-
tic approach, like code coverage (i.e., test cases are selected
so to cover all the functions, or the code statements/
branches/paths.)

The test execution activity consists in executing the code
according to test case inputs. Typically, it describes how to
bring the software system in a state so that the test input
can be given.

When executing the BuyOnline application according to
test case tc1, the user has to be registered first, then the test
case inputs can be provided.

The test oracle evaluates whether the observed outputs
comply to expected behaviors. The test oracle can be the
tester herself: based on her knowledge of the expected sys-
tem output, she can predict the expected behavior and thus
compare the oracle with the real behavior. Otherwise, the
oracle can be automatically generated e.g., from an existing
specification or from a previous version of the system.

The test oracle for tc1 may state that if product 563AD is
the one selected, it is the one delivered and the credit card is
charged for its correct amount.

The test adequacy criteria permit to judge whether the
test campaign is sufficient. In general, the test adequacy

SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS 13



should state that a test suite is adequate when it allows the
identification of any failures. However, since the number of
failures is not known a priori, we need to approximate the
intuitive concept of adequacy. Thus, a test criterion can be
used to define a stopping rule for evaluating the adequacy of
the selected test suite.

The testing campaign of the BuyOnline is adequate as
soon as the selected test suite covers, for example, the
amount of source code defined in the test criterion.

Further Readings

A. Bertolino et al. (3) in their chapter, part of the Guide to
the Software Engineering Body of Knowledge, provide a
compendium and guide to the body of knowledge on soft-
ware testing as developed in the past four decades.

BIBLIOGRAPHY

1. E. W. Dijkstra, Chapter I: Notes on Structured Programming,
1972, pp. 1–82.

2. S. Rapps and E. J. Weyuker, Selecting software test data
using data flow information, IEEE Trans. Soft. Engin., 4:
367–375, 1985.

3. A. Bertolino and E. Marchetti, Software testing, in: SWEBOK:
Guide to the Software Engineering Body of Knowledge. Piscat-
away, NJ: IEEE 2004.

4. J. R. Horgan and A. P. Mathur, Software testing and relia-
bility, in handbook of software reliability and system relia-
bility. (1996) 531–566.

5. B. Littlewood, P. T. Popov, L. Strigini, and N. Shryane,
Modeling the effects of combining diverse software fault
detection techniques. IEEE Trans. Softw. Eng. 26: 1157–
1167, 2000.

6. M. J. Harrold, Testing: a roadmap, in A. Finkelstein, (ed.),
ACM ICSE 2000, The Future of Software Engineering, 2000,
pp. 61–72.

7. A. Bertolino, Software testing research: achievements, chal-
lenges, dreams, in L. Briand, A. Wolf, (eds.), ACM ICSE 2007,
Future of Software Engineering, 2007, pp. 85–103.

8. M. Pezzé and M. Young, Software Testing and Analysis:
Process, Principles and Techniques. New York: Wiley,
2007.

9. ISSTA: International Symposium on Software Testing and
Analysis. Available: http://issta08.rutgers.edu/.

10. ICST: International Conference on Software Testing,
Verification and Validation. Available: http: / /www.cs.
colostate. edu/icst2008/.

11. TESTCOM: International Conference on Testing of Commu-
nicating Systems. Available: http://www-higashi.ist.osaka-u.
ac.jp/TESTCOM-FATES08/history.html.

12. K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K.
Rierson, A Practical Tutorial on Modified Condition/Decision
Coverage. Technical Report NASA/TM-2001-210876,
National Aeronautics and Space Administration (NASA),
2001.

13. J. W. Laski, B. Korel, A data flow oriented program testing
strategy. IEEE Trans. Softw. Eng.9: 347–354, 1983.

14. P. G. Frankl and E. J. Weyuker, An applicable family of data
flow testing criteria. IEEE Trans. Softw. Eng.14: 1483–1498,
1988.

15. B. Beizer, Software Testing Techniques, 2nd ed. Boston, MA:
International Thomson Computer Press, 1990.

16. S. Cornett, Code Coverage Analysis. Available: http://
www.bullseye.com/coverage.html.

17. Wikipedia: Code Coverage. Available: http://en.wikipedia.
org/wiki/Code_coverage.

18. A. H. Watson and T. J. McCabe: Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric. NIST
Special Publication 500-235, 1996.

19. W. G. Bently and E. F. Miller: Ct coverage initial results.
Softw. Qual. J. 2: 29–47, 1993.

20. R. N. Taylor, D. L. Levine, and C. D. Kelly, Structural testing
of concurrent programs. IEEE Trans. Softw. Eng.18: 206–
215, 1992.

21. B. Marick: Experience with the Cost of Different Coverage
Goals for Testing. Available: http://www.testing.com.

22. Tools: Open source testing tools. Available: http://www.
opensourcetesting.org/.

23. Tools: Software QA Testing and Test Tool Resources.
Available: http://www.aptest.com/resources.html.

24. J. D. McGregor and D. A. Sykes: Practical Guide to Testing
Object-Oriented Software, 1st ed. Reading, MA: Addison-
Wesley Professional, 2001.

25. R. V. Binder: Testing Object-Oriented Systems: Models, Pat-
terns, and Tools, Reading, MA: The Addison-Wesley Object
Technology Series, 1999.

26. L. Mariani and M. Pezzé, Testing object oriented software, in
A. D. Lucia, F. Ferrucci, G. Tortora, and M. Tucci, (eds.),
Emerging Methods, Technologies and Process Management
in Software Engineering. New York: Wiley-Interscience,
2008.

27. M. J. Harrold and G. Rothermel, Performing data flow testing
on classes, in SIGSOFT ’94: Proceedings of the 2nd ACM
SIGSOFT symposium on Foundations of Software Engineer-
ing. New York: ACM Press, 1994 pp. 154–163.

28. A. L. Souter and L. L. Pollock: The construction of contextual
def-use associations for object-oriented systems, IEEE Trans.
Softw. Eng. 29: 1005–1018, 2003.

29. U. Buy, A. Orso, and M. Pezzé, Automated testing of classes,
in ISSTA ’00: Proceedings of the 2000 ACM SIGSOFT inter-
national Symposium on Software Testing and Analysis.
New York: ACM Press, 2000, pp. 39–48.

30. M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M.
Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi, Regression
test selection for java software, Proceedings of the ACM
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 2001), Tampa Bay, FL,
2001, pp. 312–326.

31. A. Orso, N. Shi, and M. J. Harrold, Scaling regression testing
to large software systems, Proceedings of the 12th ACM
SIGSOFT Symposium on the Foundations of Software Engi-
neering (FSE 2004), Newport Beach, CA: 2004, pp. 241–252.

32. Junit: The JUnit unit testing framework. Available: www.
junit.org/,http://sourceforge.net/projects/junit/.

33. SourceForge: Sourceforge website. Available: http://
sourceforge.net/.

34. Eclipse: Eclipse plugins. Available: http://eclipse-plugins.2y.
net/eclipse/index.jsp.

35. Tigris: Tigris.org: Open Source Software Engineering Tools.
Available: http://www.tigris.org/.

36. Wikipedia: Wikipedia: List of unit testing frameworks.
Available:http://en.wikipedia.org/wiki/ListOofOunitOtestingO
frameworks.

14 SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS



37. D. C. Kung, P. Hsia, and J. Gao: Testing Object-Oriented
Software (Practitioners), 1st ed. Piscataway, NC: Wiley-IEEE
Computer Society Press, 1998.

38. J. Stafford, and J. Bosch, Architecting Component-Based
Systems, in Building Reliable Systems from Components.
Norwood, MA: Artech House Publishers, 2002.

39. C. Szyperski, Component Software. Beyond Object Oriented
Programming. Reading, MA: Addison Wesley, 1998.

40. B. Beizer, Black-Box Testing: Techniques for Functional
Testing of Software and Systems. New York: Wiley, 1995.

41. J. Z. Gao, H. S. J. Tsao, and Y. Wu, Testing and Quality
Assurance for Component-Based Software. Norwood, MA:
Artech House Computer Library, 2003.

42. M. J. Harrold, D. Liang, and S. Sinha, An approach to
analyzing and testing component-based systems, in: Proceed-
ings of the First International ICSE Workshop on Testing
Distributed Component-Based Systems, 1999.

43. M. Jaffar-ur Rehman , F. Jabeen, A. Bertolino, and A. Polini,
Testing software components for integration: a survey of
issues and techniques, Softw. Test. Verif. Reliab.17: 95–133,
2007.

44. S. Beydeda and V. Gruhn, State of the art in testing compo-
nents, in: QSIC ’03: Proceedings of the Third International
Conference on Quality Software, Washington, DC: IEEE
Computer Society, 2003, pp. 146.

45. A. M. R. Vincenzi, J. C. Maldonado, M. E. Delamaro, E. S.
Spoto, and W. E. Wong, Component-based software: an over-
view of testing. in: Component-Based Software Quality.
Volume Lecture Notes in Computer Science. Berlin: Springer,
2003, pp. 99–127.

46. S. H. Edwards: A framework for practical, automated black-
box testing of component-based software. Softw. Test., Verif.
Reliab.11: 97–111, 2001.

47. Y. Wang, G. King, and H. Wickburg, A method for built-in
tests incomponent-basedsoftwaremaintenance, in:CSMR ’99:
Proceedings of the Third European Conference on Software
Maintenance and Reengineering, Washington, DC: IEEE
Computer Society, 1999, pp. 186.

48. E. Martins, C. M. Toyota, and R. L. Yanagawa, Constructing
self-testable software components, in: DSN ’01: Proceedings of
the 2001 International Conference on Dependable Systems and
Networks, Washington, DC: IEEE Computer Society, 2001,
pp. 151–160.

49. F. Barbier and N. Belloir: Component behavior prediction and
monitoring through built-in test, in: 10th IEEE International
Conference and Workshop on the Engineering of Computer-
Based Systems (ECBS’03), 2003, pp. 17–22.

50. M. Momotko and L. Zalewska, Component+ built-in testing - a
technology for testing software components. Foundations of
Computing and Decision Sciences, Inst. Comput. Sci. Poznan
University Technol. 29(1-2), 133–148, 2004.

51. Y. Wu, D. Pan, and M. H. Chen: Techniques for testing
component-based software, in: ICECCS ’01: Proceedings of
the Seventh International Conference on Engineering of Com-
plex Computer Systems, Washington, DC: IEEE Computer
Society, 2001, pp. 222–232.

52. C. Atkinson and H. Gross, Built-in Contract Testing in Model-
Driven Component-Based Development, Proceedings of
Workshop on Component-Based Development Processes.
2002.

53. B. Korel, Black-box understanding of cots components, in:
IWPC ’99: Proceedings of the 7th International Workshop on
Program Comprehension, Washington, DC: IEEE Computer
Society, 1999, pp. 92+.

54. A. Polini and A. Bertolino, A user-oriented framework for
component deployment testing, in: Testing Commercial-off-
the-Shelf Components and Systems. Berlin: Springer Verlag,
2004.

55. L. Mariani and M. Pezzé, Behavior capture and test: Auto-
mated analysis of component integration. In: ICECCS ’05:
Proceedings of the 10th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS’05),
Washington, DC: IEEE Computer Society, 2005, pp. 292–
301.

56. S. Beydeda and V. Gruhn, Testing Commercial-off-the-Shelf
Components and Systems. Berlin: Springer, 2005.

57. R. M. Poston, Automating Specification-Based Software Test-
ing. Piscalaway, NJ: Institute of Electrical & Electronics
Engineer, 1996.

58. A. van Lamsweerde, Formal specification: a roadmap, in:
ACM ICSE 2000, The Future of Software Engineering, A.
Finkelstein, 2000.

59. J. Tretmans, Testing Techniques. Technical report, Univer-
sity of Twente, The Netherlands, 2002.

60. M. R. Donat, Automating formal specification-based testing,
in: TAPSOFT ’97: Proceedings of the 7th International Joint
Conference CAAP/FASE on Theory and Practice of Software
Development, London, UK: Springer-Verlag, 1997, pp. 833–
847.

61. C. Jard and T. Jéron TGV: Theory, Principles and Algo-
rithms, Conf. IDPT 2002, Pasadena, CA, 2002.

62. J. Tretmans: Test generation with inputs, outputs and repe-
titive quiescence, Softw. Conc. Tools 17: 103–120, 1996.

63. G. von Bochmann and A. Petrenko, Protocol testing: Review
of methods and relevance for software testing, In: ISSTA,
1994, pp. 109–124.

64. G. Bernot, Testing against formal specifications: a theoretical
view, In: TAPSOFT ’91: Proceedings of the international joint
conference on theory and practice of software development on
Advances in distributed computing (ADC) and colloquium on
combining paradigms for software development (CCPSD),
Vol. 2. New York: Springer-Verlag, 1991, pp. 99–119.

65. J. Tretmans, Testing concurrent systems: a formal approach,
In: CONCUR’99. Volume LNCS 1664, 1999, pp. 46–65.

66. R. G. de Vries and J. Tretmans, Towards formal test purposes,
In: Proc. FATES’01, Aalborg, Denmark, 2001.

67. J. C. C. Fernandez, C. Jard, T. Jeron, L. Nedelka , and C. Viho:
An experiment in automatic generation of test suites for
protocols with verification technology, Sci. Comp. Progr. 29
(1997) 123–146.

68. TorX: TorX Test Tool Information, Available: http://fmt.cs.
utwente.nl/tools/torx/introduction.html.

69. TTCN: Testing and test control notation. Available: http://
www.ttcn-3.org/.

70. R. Groz and N. Risser, Eight years of experience in test
generation from fdtsusing tveda, In: FORTE X/PSTV XVII ’97:
Proceedings of the IFIP TC6 WG6.1 Joint International Con-
ference on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE X) and Pro-
tocol Specification, Testing and Verification (PSTV XVII),
London, UK: Chapman & Hall, Ltd., 1998, pp. 465–480.

71. C. Jard and T. Jeron, TGV: theory, principles and algorithms:
A tool for the automatic synthesis of conformance test cases
for non-deterministic reactive systems. Int. J. Softw. Tools
Technol. Transf. 7: 297–315, 2005.

72. TGV: Test Generation and Verification. Available: http://
www-verimag.imag.fr/async/TGV/index.shtml.en.

SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS 15



73. A. Hartman, Model Based Test Generation Tools. Technical
report, (AGEDIS project).

74. Object Management Group, OMG/Unified Modelling Lan-
guage(UML) V2.1.2, 2007.

75. L. Naslavsky, D. J. Richardson, and H. Ziv: Scenario-
based and State Machine-based Testing: An Evaluation of
Automated Approaches. Technical report, University of Cali-
fornia, Irvine, ISR Technical Report UCI-ISR-06-13, 2006.

76. L. Naslavsky, H. Muccini, and D. Richardson: Scenario-based
and state machine-based testing: an evaluation of automated
approaches, In: MTOOS 2006, First Int. Workshop on Model-
based Testing and Object Oriented Systems, co-located with
OOPSLA, 2006.

77. M. Utting, A. Pretschner, and B. Legeard, A taxonomy of
model-based testing. Technical report 04/2006, Department
ofComputerScience,The University of Waikato, New Zealand,
2006.

78. M. Prasanna, S. N. Sivanandam, R. Venkatesan, and R.
Sundarrajan, A Survey on Automatic Test Case Generation.
Acad. Open Internet J. 2005.

79. AGEDIS: AGEDIS Project on Automated Generation and
Execution of Test Suites for DIstributed Component-based
Software. Available: http://www.agedis.de/index.shtml.

80. A. Belinfante, L. Frantzen, and C. Schallhart, Tools for test
case generation, In: Model-Based Testing of Reactive Sys-
tems. Springer LNCS, 2005, pp. 391–438.

81. M. Broy, B. Jonsson, J. P. Katoen, M. Leucker, and A.
Pretschner, eds.: Model-Based Testing of Reactive Systems:
Advanced Lectures. Springer-Verlag Berlin and Heidelberg
GmbH & Co. K (2005).

82. Forum: Model-based testing forum. Available: http://tech.
groups.yahoo.com/group/model-based-testing/.

83. H. Muccini and M. Vieira, eds., ROSATEA 2007: 3rd Int.
Workshop on The Role Of Software Architecture in Testing
and Analysis, Co-located with CBSE and QOSA, 2007.

84. H. Muccini, A. Bertolino, and P. Inverardi:Using software
architecture for code testing. IEEE Trans. Softw. Engin.30:
160–171, 2003.

85. J. Dick and A. Faivre, Automating the generation and sequen-
cing of test cases from model-based specifications, in: J. C. P.
Woodcock and P. G. Larsen (eds.), FME’93: Industrial-
Strenght Formal Methods, LNCS 670. Berlin: Springer
Verlag, 1993, pp. 268–284.

86. R. H. Carver and K. C. Tai, Use of sequencing constraints for
specification-based testing of concurrent programs, IEEE
Trans. Softw. Engin. 24(6): 471–490, 1998.

87. A. Bertolino and P. Inverardi: Architecture-based software
testing, Proc. ISAW96. 1996.

88. D. J. Richardson and A. L. Wolf, Software testing at the
architectural level, ISAW-2, in Joint Proc. of the ACM
SIGSOFT ’96 Workshops, 1996, pp. 68–71.

89. D. J. Richardson, J. Stafford, and A. L. Wolf, A Formal
Approach to Architecture-based Software Testing. Technical
report, University of California, Irvine, 1998.

90. M. J. Harrold Architecture-based regression testing of evol-
ving systems, Proc. Int. Workshop on the Role of Software
Architecture in Testing and Analysis - ROSATEA 98, 1998,
pp. 73–77.

91. D. Rosenblum, Challenges in exploiting architectural models
for software testing, Proc. Int. Workshop on the Role of
Software Architecture in Testing and Analysis-ROSATEA.
1998.

92. Z. Jin and J. Offutt, Deriving tests from software architec-
tures, ISSRE, 2001, pp. 308–313.

93. H. Muccini, M. Dias, and D. J. Richardson, Software archi-
tecture-based regression testing, Int. J. Syst. Soft., 79(10):
1379–1396, 2006.

94. H. Muccini, Software Architecture for Testing, Coordination
and Views Model Checking. PhD thesis, University of Rome,
La Sapienza, 2002.

95. PLASTIC: PLASTIC IST project, Deliverable D4.1: Test Fra-
mework Specification and Architecture. 2007. Available:
http://www.ist-plastic.org.

96. A. Bucchiarone, H. Melgratti, and F. Severoni, Testing ser-
vice composition, Proceedings of the 8th Argentine Sympo-
sium on Software Enginnering (ASSE 2007), 2007.

97. F. Severoni, Studio Comparativo sui Framework di Testing
per Web Services (in italian). Master’s thesis, University of
L’Aquila, Italy, 2007.

98. L. Baresi and E. D. Nitto, eds. Test and Analysis of Web
Services, 1st ed. New York: Springer, 2007.

99. D. E. Perry and A. L. Wolf, Foundations for the study of
software architecture, ACM SIGSOFT Software Engineering
Notes 17(4): 40–52, 1992.

100. UTP: Omg: Uml2.0 testing profile. final adoptedspecification,
2005.

101. von, Paul Baker, Z. R. Dai, and J. Grabowski, Model-Driven
Testing: Using the UML Testing Profile. Berlin, Springer,
2007.

102. I. Schieferdecker, Z. R. Dai, J. Grabowski, and A. Rennoch,
The UML 2.0 testing profile and its relation to TTCN-3,
Proceedings of the 15th IFIP International Conference on
Testing of Communicating Systems, 2003.

103. Z. R. Dai, J. Grabowski, H. Neukirchen, and H. Pals: From
design to test with UML-applied to a roaming algorithm for
bluetooth devices, Proceedings of the 16th IFIP International
Conference on Testing of Communicating Systems (Test-
Com2004), Oxford, UK: Lecture Notes in Computer Science
2978, 2004.

104. J. Zander, Z. R. Dai, I. Schieferdecker, and G. Din, From
U2TP models to executable tests with TTCN-3 - an approach
to model driven testing, Proceedings of the 17th IFIP Inter-
national Conference on Testing of Communicating Systems
(TestCom2005), 2005.

105. P. Clements and L. M. Northrop, Software Product Lines:
Practices and Patterns, 1st ed. Reading MA: Addison-Wesley
Pub Co, 2001.

106. C. W. Krueger, Introduction to software product lines.
Available:http://www.softwareproductlines.com/introduction/
introduction.html.

107. M. Jaring and J. Bosch, Representing variability in software
product lines: a case study. SPLC, 2002, pp. 15–36.

108. H. Muccini and A. van der Hoek, Towards testing product line
architectures, Proc. ETAPS 2003 workshop on ‘‘Test and
Analysis of Component Based Systems’’ (Tacos). Warsaw,
Poland, 2003.

109. J. D. McGregor, Testing a Software Product Line. Technical
report, CMU/SEI-2001-TR-022, 2001.

110. A. Tevanlinna, J. Taina, and R. Kauppinen, Product family
testing: a survey. SIGSOFT Softw. Eng. Notes 29(2): 12–12,
2004.

111. H. Muccini, A. Polini, F. Ricci, and A. Bertolino, Monitoring
architectural properties in dynamic component-based sys-
tems, In: 10th International ACM SIGSOFT Symposium

16 SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS



on Component-Based Software Engineering. Volume Lecture
Notes in Computer Science, LNCS 4608, 2007.

112. M. Boshernitsan, Technology transfer of testing and analysis
research: observations from the receiving end, Invited
Speaker at ISSTA 2006, the Int. Symposium on Software
Testing and Analysis, 2006.

113. A. Hartman, Model Based Testing: What? Why? How? and
Who cares? Invited Speaker at ISSTA 2006, the Int. Sympo-
sium on Software Testing and Analysis, 2006.

114. RISE 07, 4th Int. Workshop on Rapid Integration of Software
Engineering techniques. (2007).

115. J. O. Kephart and D. M. Chess, The vision of autonomic
computing. Computern 36(1) (2003) 41–50.

116. IEEE Std 829-1998: IEEE standard for software test docu-
mentation, 1998.

117. A. Bertolino, Software testing research and practice, ASM
2003, Invited Presentation. Volume LNCS 2589. Taormina,
Italy, 2003.

HENRY MUCCINI

University of L’ Aquila
L’ Aquila, Italy

SOFTWARE TESTING: TESTING NEW SOFTWARE PARADIGMS AND NEW ARTIFACTS 17



S

SOFTWARE VERIFICATION AND VALIDATION

Software verification and validation are software quality
assurance activities that aim to ensure that the software
system is developed according to a development process
and meets the customer’s needs (1). In other words, ver-
ification is about ‘‘are we building the product right,’’ and
validation is about ‘‘are we building the right product’’ (2).
Validation is divided even more into static validation and
dynamic validation. Static validation checks the correct-
ness of the software product without executing the soft-
ware system or a prototype, whereas dynamic validation
executes the software system or a prototype. Software
testing is one form of dynamic validation.

To explain, verification is concerned about the process to
produce the product. That is, are we building the product in
the right way? This process includes two aspects: (1) the
right process and (2) correctly following the right process.
As a minimum condition, the ‘‘right process’’ must require
that a lower level artifact satisfy the requirements stated in
the higher level artifact. Unlike verification, which is con-
cerned about the ‘‘correctness’’ of the process, validation is
concerned about the correctness of the product. That is, are
we building the correct product? We need both verification
and validation because either of them alone is not sufficient.
For example, an implementation may satisfy the specifica-
tion, but the specification may be incorrect. Moreover, the
implementation may satisfy the specification and the spe-
cification is also correct, but the code may be hard to under-
stand, test, and maintain. Customer review and/or expert
review of requirements specifications would detect the
former, whereas code review and code inspection would
detect the latter. Therefore, a ‘‘right’’ (which means
‘‘preferred’’) software development process should include
these verification and validation activities.

In the following sections, we first provide definitions of
commonly encountered verification and validation con-
cepts, followed by verification and validation in the soft-
ware lifecycle, formal verification, and software testing
techniques.

DEFINITIONS

This section presents the definitions of commonly used
terminologies in software verification and validation.

Bug: A defect in the program code.

Desk checking: Examination of software artifact, typi-
cally the source code, by the developer to detect bugs,
anomalies, and other potential problems.

Error: An unanticipated condition that puts the system
into an incorrect state.

Failure: A result produced by the software under test
does not satisfy the expected outcome.

Fault: A defect in the software system.

Inspection: A step-by-step checking of the software
artifact/product against a predefined list of criteria,
called a checklist.

Peer review: Evaluating the software artifacts by
peers who are required to answer a list of questions
to assess the artifact and provide improvement sug-
gestions, if any.

Regression test: Rerun some test cases to ensure that
the modified software system still delivers the func-
tionality as required.

Software attribute: Property or characteristic of soft-
ware.

Software metrics: Measurements of software
(attributes).

Software quality assurance: Activities to ensure that
the software under development or modification will
meet desired quality requirements.

Test driver: Code to invoke the component under test
and to check the outcome of the component under
test.

Test harness: Test driver and test stub.

Test script: Code to test functionality of software sys-
tem.

Test stub: Code to replace the module or procedure that
is invoked by the component under test so that the
component under test can be executed.

Testing: Executing a program with the intent to
uncover bugs.

Verification and validation: According to Barry
Boehm, verification is ‘‘are we building the product
right?’’ And validation is ‘‘are we building the right
product?’’

Walk-through: Manually reviews the software artifact
by following the described logic step by step with a
certain scenario of operating the system and/or on
certain input data as the test case. The artifact
reviewed could be requirements specifications, high-
level design, detailed design and source code, and so
on. The walk-through of the source code is often per-
formed by manually executing the software with test
data to simulate machine execution of the software.

VERIFICATION AND VALIDATION IN THE LIFECYCLE

This section presents verification and validation in the
software lifecycle. That is, what is checked in each lifecycle
phase and who performs the checking. Moreover, what
techniques are used to perform the checking.

Verification and Validation for the Requirements Phase

Verification and validation in the requirements phase
detects errors in the requirements specification and

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



the analysis models. The techniques used include require-
ments reviews, inspection, walk-through, and prototyping.
Requirements reviews include customer/user reviews,
technical reviews, and expert reviews.

Customer/user reviews are performed by involving
the customer and/or users of the system. Customer/user
reviews should examine the requirements specification and
look for problems in the following areas:

1. The correspondence between requirements and the
real world. That is, the requirements specification
correctly describes the functional requirements of the
application for which the system is to be built or
extended.

2. The user interfaces, which includes the appearance,
the look and feel, sequence of interaction, input/out-
put data and formats, and the GUI implementation
technologies.

3. Nonfunctional requirements. That is, whether the
nonfunctional requirements, including performa-
nce requirements, security requirements, and user
friendliness requirements, are stated correctly.

4. Constraints. That is, whether application-specific
constraints are stated correctly. Application-specific
constraints may include constraints on the operating
environment, political constraints, technological con-
straints, and so on.

Technical review is an internal review performed by the
technical team. Technical review techniques include peer
review, inspection, and walk-through:

� In peer review, the requirements specification and the
analysis models are reviewed by peers, who are guided
by a list of review questions designed to assess quali-
tatively the quality of the product being reviewed.
Answers to the questions by the peers may vary dras-
tically because the answers represent the reviewer’s
opinion about the product under review and heavily
depend on the reviewer’s knowledge, experience, back-
ground, and criticality. This process is similar to the
product review reports published in consumer maga-
zines. The review reports by different writers may
differ drastically. The review meeting usually runs
about two hours and takes place one to two weeks
after the review assignments, which allows the devel-
oper and the peers to discuss the feedback and to
identify action items to address the issues.

� Inspection checks the requirements and the analysis
models against a list of items that are found to be error
prone or problematic (3,4). Unlike reviews, inspection
looks for more specific problems and the answers can
be more objective. This process is similar to car inspec-
tion in which the inspector checks the engine, brake,
lights, and so on. to see whether each of them is work-
ing properly. Since it is more well defined, a computer
can perform a car inspection nowadays.

� Walk-through is carried out by explaining and exam-
ining the requirements (5). In particular, the analyst
who wrote the requirements specification explains

each requirement to the peers who would raise ques-
tions and stimulate doubts. The analyst would answer
the questions and address the doubts. In addition, each
of the analysis models is examined carefully. That is,
the analyst who drafted the model leads the peers
through the model and provides necessary clarification
while the peers may ask questions and raise doubts.
This process is similar to the new car salesperson at a
car dealer who demonstrates a new car to potential
buyers by showing various kinds of operations of the
car. The buyers usually would raise questions and
concerns during the demonstration, and the salesper-
son would address the questions and concerns.

The above verification and validation activities should
aim to reveal the following problems:

� Incompleteness, which includes
1. Definition incompleteness; for example, some appli-

cation-specific concepts are not defined.

2. Internal incompleteness; for example, some require-
ment expression has an ‘‘if part’’ but does not have
the ‘‘else part.’’ Another example is that a decision
tree or decision table has not considered all possible
combinations of the conditions used to construct the
decision tree or the decision table.

3. External incompleteness; that is, cases exist in the
real-world application but are not included in the
requirements specification. For example, a decision
table or decision tree does not include a condition
that should have been included.

� Inconsistency, which includes
1. Type inconsistency; that is, an inconsistent specifi-

cation is provided of one or more data types in the
requirements or analysis model.

2. Logical inconsistency; that is, contradictory conclu-
sions can be inferred from the specification.

3. View inconsistency; that is, inconsistency exists
betweenviewsof thesystembydifferent user groups.
For example, the perception of user group A is
contradictory to the perception of user group B.

� Ambiguity, which includes
1. Ambiguity in the definition of application specific

concepts.

2. Ambiguity in the formulation of requirements.

� Redundancy, which includes
1. Duplicate definitions of the same concept.

2. Duplicate formulations of the same requirement or
constraint.

3. Unnecessary concepts or constraints.

� Intractability, which means the high-level require-
ments do not correspond to the lower level require-
ments. If the system is being developed using the
object-oriented paradigm, then the technical review
must ensure that the use cases are tractable to the
requirements and vice versa. It is often facilitated by
constructing a requirements–use cases tractability
matrix during the analysis phase. The matrix shows
which requirement is to be realized by which use cases.

2 SOFTWARE VERIFICATION AND VALIDATION



The review should ensure at a minimum that each
requirement is realized by some use cases and that
each use case serves to realize some requirements.

� Infeasibility in terms of performance, security, and
cost constraint. That is, can the development team
deliver the functional capabilities as stated in the
requirements specification with the expected perfor-
mance and security within the cost and schedule
constraints?

� Unwanted implementation details. Implementation
details must not be mentioned in the requirement
specification because this limits the design space.
Examples include mentions of pointers, physical
data structures, and use of pseudocode or program-
ming language statements.

Expert review in the requirements phase means review
of the requirements specification by domain experts, look-
ing for

1. Incorrect or inaccurate formulation of domain-speci-
fic laws, rules, behaviors, policies, standards, and
regulations.

2. Incorrect, inaccurate, inappropriate, or inconsistent
use of jargons.

3. Incorrect perception of the application domain.

4. Other potential domain-specific problems or con-
cerns.

In the requirements phase, prototyping or rapid proto-
typing can take many different forms. The main purpose is
to construct quickly a prototype of the system and to use it to
acquire customer/user feedback. That is, prototyping is
used as a validation technique in the requirements phase
to help ensure that the team understands whether the
customer/user requirements are captured correctly.

The simplest prototype could be a set of drawings that
illustrate the user interfaces of the future system. The most
sophisticated prototype could be a partially implemented
system that the users can experiment with to gain hands-on
experience. The most commonly observed prototype is one
in which the team can demonstrate the functionality and
user interfaces of the system to the customer or end users.
Which type of prototype to use is an application-dependent
issue. For instance, applications that are concerned mostly
with mission-critical operations would benefit from proto-
types that demonstrate the functionality and behavior.
Applications that are end user oriented would benefit
from prototypes that demonstrate the user interfaces.

The requirement phase is ideal for preparing system test
cases to be used to validate the system before deployment. If
use cases or scenarios have been used in requirements
analysis, then they can be used to prepare system test
cases. First, for each use case or scenario, the user input
parameters are identified. Next, the possible input values of
each input parameter are determined, which can be done as
follows. For each input parameter, at least three possible
cases can be considered (1) valid value is used, (2) an invalid
value is used, and (3) the input parameter is not applicable
or not available. A more refined approach will consider

other partitions of the input parameter according to the
application at hand. In addition to equivalence partition-
ing, boundary values for each input parameter can also be
used. A table with the columns representing the input
parameters and the rows representing the test cases can
then be constructed and used during the system testing
phase.

Verification and Validation for the Design Phase

Verification and validation in the design phase assess the
correctness, consistency, and adequacy of the design with
respect to the requirements and analysis models. Verifica-
tion and validation activities in the design phase use
review, inspection, walk-through, formal verification,
and prototyping techniques. Depending on who performs
these activities, we have peer review, customer review, and
expert review. Peer review, inspection, walk-through, and
formal verification are performed by the development team.
They are mostly verification activities, although some of
them may be concerned with design validation.

Peer review, inspection, walk-through, and formal ver-
ification check the design documentation to ensure

1. Correct use of the design language, which includes:
� The notions and notations of the design specifica-

tion language are used correctly.

� The design specification expresses clearly and cor-
rectly the design of the proposed system.

2. Adequacy. The design specification prescribes a solu-
tion that is implemented that will satisfy the require-
ments of the proposed system. It can be done as
follows:
� The high-level verification ensures that each

requirement is realized by some modules in the
design and that each module in the design is neces-
sary for satisfying some requirements.

� The detail-level verification aims at ensuring that
the capability stated in each requirement can actu-
ally be delivered when the system is implemented
according to the design specification. It can be
accomplished by a design traversal to demonstrate
how the requirement can be satisfied.

3. Nonredundancy, which includes:
� The design does not include items that are not

necessary for satisfying the requirements or for sig-
nificantly improving design quality. (For instance,
design patterns may introduce additional classes,
but proper use of design patterns significantly
improves design quality.)

� The design does not contain items that are already
covered by another part of the design. For instance,
a rule in a decision table may already be covered by
other rule(s).

4. Consistency, which includes:
� Logical consistency. That is, the various portions of

the design specification do not contain contradictory
design descriptions. For example, the decision table
or decision tree are commonly used in the design
phase to describe a process logic for modules. A

SOFTWARE VERIFICATION AND VALIDATION 3



decision table or decision tree is inconsistent if two
or more rules have the same condition combination
but different action sequences. When the design is
represented in a modeling language such as UML, it
may contain several diagrams to represent the sys-
tem from different views and/or at different levels of
abstraction. These diagrams must also be checked
for consistency across the diagram.

� Definition-use consistency. That is, the use of a
component, class, data structure, data element, or
function corresponds to the respective definition
and interaction sequence. For example, the invoca-
tion of a function must correspond to the definition
of the function signature and return type. A com-
monly observed inconsistency in object interaction
design or sequence diagramming is an object calling
another object, but the called function is not defined.

� Design/specification consistency. That is, the design
specification is consistent with the models con-
structed in the analysis phase.

5. Internal completeness. Checking internal complete-
ness is to ensure that the design has covered all
possible combinations of a given set of conditions.
For example, if a decision table has three binary
conditions, then it must contain eight independent
rules to cover the eight possible combinations of the
three binary conditions.

6. Design principle compliance. The design follows well-
known design principles such as separation of con-
cerns, high cohesion, and low coupling. This process
can be facilitated by computing and analyzing a set of
design quality metrics, such as cohesion, coupling,
scope of effect, scope of control, fan-in, fan-out, class
size, height of inheritance tree, and design complexity
metrics. For example, the class size metric is the
number of methods in a class. If the class size less
the number of getters and setters is large, then the
class may have been assigned too many responsibil-
ities. It then may signify that the cohesion of the class
will be low. The reviewers can then focus their effort
on examining such classes.

7. Module interface. That is, communication between
modules is explicit and easy to understand. Moreover,
no hidden assumptions should be provided for invok-
ing a module.

Although peer review, inspection, and walk-through are
concerned mostly with design verification, customer review
and prototyping are concerned mainly with design valida-
tion. They are usually performed jointly by the develop-
ment team and the customer (or customer representative,
including the system analyst). As a design validation activ-
ity, customer review and prototyping aim at detecting
mismatches, omissions, or inconsistencies between the
design and the customer’s interpretation of the require-
ments, including

1. Mismatch between designed functionality and/or
behavior and the functionality and/or behavior as
expected by the customer/users.

2. Mismatch between system states, events, and cases
and the actual states, events, and cases in the busi-
ness domain. It includes checking of external com-
pleteness.

3. Mismatch between the system’s user interface design
and what is expected by the customer/users.

4. Mismatch between the system’s interfaces to other
systems and the required interfaces in the real world.

Another validation activity in the design phase is the
preparation of functional test cases, behavioral test cases,
and integration test cases. The design phase is ideal for the
preparation of these test cases because all needed informa-
tion is contained in the design documents. For example, if
decision tables have been used in the design phase to
express process logic, then each rule of the decision table
is a cause–effect test case. If state machines have been used
in the design phase to describe state-dependent behaviors,
then the state machines can be used to derive transition
sequences to test the implemented state-dependent beha-
viors.

Integration test cases can be derived from structured
charts (also called routine diagrams) using a preorder
traversal in top-down integration and postorder traversal
in bottom-up integration. If the system is being developed
using an object-oriented approach, then the integration test
cases can be derived from sequence diagrams or collabora-
tion diagrams, that is, deriving test cases that will exercise
message passing paths according to the coverage criteria
selected.

Verification and Validation for the Implementation Phase

Verification and validation for the implementation phase
ensure that the source code complies with the organiza-
tion’s coding standards; implements the required function-
ality, satisfies performance, real-time, and security
requirements; and properly handles exceptional situations.
Desk checking, code review, inspection, and walk-through
are referred commonly to as verification and static valida-
tion methods, whereas testing is referred commonly to as
the dynamic validation method. All these process are used
in the implementation phase.

In desk checking, the programmer checks the program
written by him/her. The programmer may use a pencil, a
calculator, and/or other devices. It is an informal process,
and hence, the effectiveness and efficiency depends on the
individual programmer. In code review, the program is
reviewed by peers who are required to comment on the
quality of the code and answer a set of questions. Code
inspection checks the code against a list of problems or
defects that are commonly found in programs. The most
famous code inspection method was proposed by Fagan and
is called the Fagan inspection method (3,4). In walk-
through, the reviewers use test data or a specific scenario
in the operation of the software and manually follow step by
step the logic described in the artifact under review to
understand how the system operates and then to detect
errors (5). For example, when the artifact under review is a
piece of source code, the reviewers manually execute
the program by following the control flow between the

4 SOFTWARE VERIFICATION AND VALIDATION



statements and expressions in the code. Finally, testing is
actually executing the program with test cases derived
using ad hoc or systematic test case generation methods.

Desk checking, code review, code inspection, and walk-
through are aimed to detect problems such as follows:

1. Incorrect/inadequate implementation of functional-
ity.

2. Mismatch of implementation and design.

3. Mismatch of module interfaces.

4. Coding standards are not followed.

5. Poor code quality as measured by various code quality
metrics such as cyclomatic complexity (e.g., some
companies require this to be no more than 10), infor-
mation hiding, cohesion and coupling, and modular-
ity.

6. Improper use of the programming language.

7. Incorrect/improper implementation of data struc-
tures or algorithms.

8. Errors/anomalies in the definition and use of vari-
ables such as variables or objects are defined but not
used, not initialized, or not initialized correctly.

9. Infinite loop.

10. Incorrect use of logical, arithmetic, or relational
operators.

11. Incorrect invocation of functions.

12. Inconsistencies caused by concurrent updates to
shared variables.

Desk checking, code review, code inspection, and walk-
through are effective in detecting errors and anomalies if
applied properly. In particular, ordinary testing methods
may not detect problems as described by items 4–6and 8–12.
On the other hand, testing is distinct and indispensable
because testing can detect performance bottlenecks and
incorrect interface. These issues usually cannot be detected
by the static validation methods.

Verification and Validation for Integration Phase

In the integration phase, the software modules are inte-
grated to form a complete software system. Dynamic valida-
tion or testing is the main activity of this phase. The purpose
of integration testing is to detect errors in the interfaces
between the software modules. These errors include

1. Incorrect assignment of actual parameters to formal
parameters.

2. Incorrect assignment of values to variables in one
module and/or incorrect use of the variables in
another module.

3. Incorrect interaction between modules. For example,
incorrect sequence of function calls or module invoca-
tions.

4. Incorrect state behavior resulting from module inter-
actions

Integration testing can be carried out by using one or
more of the following strategies. These strategies assume

that the architectural design has a tree or lattice structure
with a top-level module that invokes second-level modules,
which invoke third-level modules, and so on:

1. Top-down strategy. Integration testing begins with
testing the interfaces between the top-level module
that corresponds to the overall system and modules
that are invoked by the top-level module. Lower level
modules that are invoked by modules being inte-
grated are replaced by test stubs. A test stub is a
module that is constructed specifically to provide the
output values as expected by the higher level module.
We need to use test stubs because we have not tested
the interfaces between the modules being integrated
and the modules being replaced; if any of these inter-
faces is incorrect, then the error may propagate up
and affect the integration testing result at the higher
level.

2. Bottom-up strategy. Integration testing begins with
testing the interfaces between the lowest level mod-
ules and their parent module and progresses up the
hierarchy. A test driver is needed to invoke the parent
module because the interface between the parent
module and its parent module has not been tested.

3. Hybrid strategy. As the name suggests, integration
testing may proceed using both of the above strategies
in various combinations.

4. Criticality-based strategy. Integration testing begins
with integrating critical modules of the system first as
long as the modules are available. This strategy
allows the critical modules to be exercised more often
and hopes to detect more errors in these modules.

5. Availability-based strategy. Integration testing is
carried out incrementally by adding modules that
are ready to be integrated into the software system.

6. Monolithic strategy. Integration testing is performed
by integrating all modules of the system at once.

Verification and Validation for System Testing

During the system testing phase, the software system is
integrated with other systems and tested against the soft-
ware/system requirements. System testing is usually per-
formed in the development environment. The end product
of system testing is a system that is ready for deployment
and acceptance testing in the customer’s target environ-
ment.

As indicated, system testing is performed against the
software/system requirements, including functional and
nonfunctional requirements. The objective is to ensure
that the system satisfies the functional and nonfunctional
requirements. In addition, the system must also satisfy the
constraints stated in the requirements specification. Sys-
tem testing with respect to functional requirements can be
carried out using one or more of the following approaches:

� Use case-based testing. As described in the section
entitled ‘‘Verification and Validation for the Require-
ments Phase,’’ if system use cases have been derived
from the requirements, then system testing can be

SOFTWARE VERIFICATION AND VALIDATION 5



performed by testing that the system satisfies each use
case. Please see this section for more detail.

� Random testing. Test data are selected randomly to
test the system against the requirements. This process
may or may not use an input data distribution profile,
which can be obtained from existing or similar systems’
usage log.

In addition to functional testing, performance and stress
testing are also performed during the system testing phase.
Performance testing includes testing the throughput and
response time according to the predefined workload, and
stress testing is concerned with system throughput and
response time under a workload that is multiple times or
even ten folds of the normal workload.

Verification and Validation for Acceptance Testing

During the acceptance testing phase, the analyst or a
consultant hired by the customer will conduct or direct
the testing of the system in the customer’s target environ-
ment to ensure that the system operates properly in that
environment. Because the difference between system test-
ing and acceptance testing is the environment, acceptance
testing can be carried out by executing a subset of the test
cases used during system testing. Clearly, test cases selec-
tion should be guided by changes to environment para-
meters, such as system configuration, run conditions, and
network configurations.

Verification and Validation for Maintenance

Once the system is installed and operational in the target
environment, the maintenance phase begins. Therefore, the
operation and maintenance phases are in fact one combined,
indivisible phase. Because of system dynamics (6), continual
changes are made to the system once it is released to field
operation. Changes or enhancements performed on the
system are called collectively maintenance activities, which
include:

� Corrective maintenance to correct errors in the sys-
tem.

� Enhancements to add additional capabilities to the
system.

� Improvements to the system, including performance,
response time, user friendliness, and other quality
aspects.

� Migration to new hardware, new technologies, or new
operating environment.

� Preventive maintenance to prepare the system for
possible problems such as virus attack.

The verification and validation techniques such as
review, inspection, walk-through, and testing can still be
used in the maintenance phase to verify and validate the
changes. However, several issues must be considered dur-
ing the maintenance phase:

� Change impact analysis. Changes can affect other
parts of the system, and the impact must be identified

and analyzed before the changes are made. This pro-
cess is described usually in the Engineering Change
Proposal along with change cost and schedule and is
evaluated by a Change Control Board. This topic is
beyond the scope of this article and is covered by the
article ‘‘Software Configuration Management.’’

� Review, inspection, and walk-through may be con-
ducted for new, changed, and affected modules.

� New test cases must be designed to test the newly
introduced modules.

� The changed and affected modules must be retested
using existing test cases to ensure that no undesired
side effect has been introduced. This process is com-
monly called regression testing.

FORMAL VERIFICATION

Formal verification is a means to verify a specification or a
design mathematically. Two main approaches to formal
verification exist.

The first approach is based on theorem-proving meth-
ods (7–9). We call this approach the proof-theoretical
approach. In this approach, a system specification consists
of a set of declarative statements or declarative sentences.
These statements typically specify properties of real-
world and/or system entities or objects, their behaviors,
and their relationships. In mathematical terms, the set of
statements is called a theory and is assumed to be true at
all times because the statements state what are about the
system. In computer science and software engineering,
the statements are called nonlogical axioms because they
are not logically true but assumed to be true according to
laws of the real-world application. For example, ‘‘every
customer has an account’’ and ‘‘every account is owned by
a customer’’ cannot be proved to be true logically, but they
could be true for some bank application. Formal verifica-
tion in the proof-theoretical approach is to prove that
desired system properties or constraints are logical con-
sequences of the nonlogical axioms. That is, desired prop-
erties or constraints can be derived logically from the
nonlogical axioms.

Consider, for example, an overly simplified formal spe-
cification of a stack:

1. Maximal size of stack.

MAX ¼ 2

2. Initial size of stack.

sizeðS0Þ ¼ 0

where S0 denotes the initial state.

3. Operation ‘‘push’’ (we focus only on the size but
nothing else).

sizeðSÞ ¼ s & s < MAX! sizeðpushðSÞ ¼ sþ 1

6 SOFTWARE VERIFICATION AND VALIDATION



(If stack size in state S is s and s is less than MAX,
then stack size in the state resulting from pushing a
element onto the stack is sþ1.)

4. Operation ‘‘pop,’’

sizeðSÞ ¼ s & s> 0! sizeðpopðSÞÞ ¼ s� 1

Now suppose we want to prove the desired property
stating that ‘‘there is some state in which the stack
size will be MAX.-formally

5.

ð 9SÞsizeðSÞ ¼ MAX

That is, a state S exists in which the size of the stack is
MAX.

We will illustrate the proof using the resolution
proof technique proposed by Robinson (10). To prove
that Q is a logical consequence of P1, P2, . . ., Pn, we
prove that �Q, P1, P2, . . ., Pn cannot be true at the
same time, where Q, P1, P2, . . ., Pn are statements.

Aresolution proof begins with the set of state-
ments {Q, P1, P2, . . ., Pn}, and each resolution tries
to deduct a statement called resolvent from two
statements using the logical inference rule ‘‘A &
ðA!BÞ)B’’ or equivalently ‘‘A & ð�A_BÞ)B.’’
That is, from statement ‘‘A’’ and statement
‘‘�A_B,’’ we can deduct ‘‘B.’’ Clearly, each resolu-
tion step takes two statements and produces one
new statement. If the set of statements can be
deduced to produce the nil statement, denoted by
‘‘&’’ and representing a contradiction, then the the-
orem is proved. The proof of our stack example is
shown in Fig. 1.

Figure 1 is a special case because it does not use
the so-called ‘‘frame axiom’’ originally proposed by
McCarthy and Hayes (11). In their effort to con-
struct the first question answering system using
logical inference, McCarthy and Hayes discovered
that the specification of the effect of an operation
like items 3 and 4 in the above stack specification
example is not enough. The specification must also
state that everything that is not changed by the
operation remains true in the new state resulting

from the operation. This process is commonly
referred to as the ‘‘frame axiom.’’ Fortunately, noth-
ing is not changed by the operations push and pop;
therefore, our simple example does not have to use
the frame axiom.

Now suppose we want to prove another desired
property that states ‘‘the size of the stack is always
greater than or equal to zero.’’ Formally

6.

ð 8SÞsizeðSÞ> ¼ 0

The reader will soon discover that applying resolution to
prove this property is extremely difficult (almost impossi-
ble). A proof technique that is commonly used to prove
theorems that state properties true for all cases like this
is the proof by induction technique. Using an induction
proof, the property is proved for the basis case, and then
it is assumed to be true for all cases up to a number k; finally,
the property is proved for the kþ1 case. We illustrate this in
the following. We use op(S) to denote either push(S) or
pop(S) and opk(S) a sequence of k push or pop operations
applied in S.

The basis step. Since size (S0)¼ 0 is given in item 2 in the
specification, this implies size(S0)>¼0. Therefore, property
is true in S0.

The hypothesis step. Now assume that size(opk(S0))>¼0
for all sequences of k push or pop operations applied in the
initial state.

The induction step. We need to prove size(opk+1(S0))>¼
0. Since there are only two operations, size(opk+1(S0)) can
only be size(push(opk(S0))) or size(pop(opk(S0))). Since
size(push(opk(S0))) ¼ size(opk(S0))þ1 according to item 3)
and size(opk(S0))>¼0 from to hypothesis, size(push(-
opk(S0))) > 0, and hence size(push(opk(S0))) >¼0. More-
over, since size(opk(S0))>¼0 and pop can only be applied in
state opk(S0) if size(opk(S0))>0. Thus, size(push (opk(S0)))
>¼0. Therefore, size(opkþ1(S0))>¼0.

A property regarding a software system that is true in all
states, like the above example, is called an invariants.

The second approach is called model checking(12–15).
This approach can also be called the model-theoretical
approach. In this approach, the system is represented by
an operational model, which typically depicts the system
behavior. The commonly used operational model for model
checking is a state machine consisting of vertices repre-
senting system states and directed edges representing
system behaviors that cause state transitions. Each sys-
tem state is specified by a logical or conditional statement.
That is, the system is in that state if and only if the
condition is evaluated to true using system attributes.
Formal verification in the model-checking approach
begins with the initial system state and generates the
states by applying the operations. The desired properties
or constraints are checked against each state generated,
and violations are reported.

Consider a simplified thermostat example consisting of
only a season switch, an AC relay and a furnace relay asFigure 1. Resolution proof of the simplified stack specification.

SOFTWARE VERIFICATION AND VALIDATION 7



shown in Fig. 2. The desired properties for the thermostat
could be as follows:

C1. Not (SeasonSwitchOff and (FurnaceOn or ACOn))

C2. Not (FurnaceOn and ACOn)

C3. Not (SeasonSwitchCool and FurnaceOn)

C4. Not (SeasonSwitchHeat and ACOn)

Applying the operations of the thermostat results in the
tree as shown in Fig. 3. A system state is represented by a
triple (S1, S2, S3), where S1 denotes the state of the season
switch, S2 denotes denotes the state of the furnace relay,
and S3 denotes the state of the AC relay. The figure shows
that starting in the initial state, the thermostat can enter

into a state in which the season switch is at cool and the
furnace and AC are both on. This state violates constraint
C2 and constraint C3. In practice, model checking can be
used to check not only static constraints like C1–C4 but also
temporal constraints that involve sequences of states
rather than a single state. This process is also true for
the theorem-proving approach. Furthermore, the model
checker could explore millions of state rather than only a
few states as shown in Fig. 3.

In practice, the state machine models are converted into
the specification language of the model checker. Using
SPIN (14), this would be the Promela language, which is
a subset of the C programming language. The property to be
verified is expressed as a temporal logic expression. The
checker will explore the state space and verify the property.

In recent years, model checking has been applied to
checking code or implementation rather than to checking
the specification (16–18). This process has been termed
‘‘software model checking.’’ In software model checking,
the model is constructed from code or implementation
rather than from the specification. The construction can
be manual or semiautomatic.

SOFTWARE TESTING TECHNIQUES

This section gives a brief introduction to well-known soft-
ware testing techniques and methods.

Software Testing Processes

Generally speaking, software testing is an iterative process
that involves several technical and managerial activities.
In this section, we will focus on the technical aspects. As
shown in Fig. 4, the main technical activities in the soft-
ware testing process include planning, generating, and
selecting test cases; preparing a test environment; testing
the program under test; observing its dynamic behavior;
analyzing its observed behavior on each test case; reporting
test results; and assessing and measuring test adequacy.

OffHeat Cool
heat off

off cool

SeasonSwitch:

Furnace
off 

Furnace
on

[temp < target temp and SeasonSwitch == Heat] 
turnon_furnace( ) 

[temp > target temp + d or SeasonSwitch != Heat] 
turnoff_furnace( ) 

FurnaceRelay: 

AC
off 

AC
on

[temp > target temp and SeasonSwitch == Cool] 
turnon_AC( ) 

[temp < target temp - d or SeasonSwitch != Cool] 
turnoff_AC( )

ACRelay:

Figure 2. Thermostat specification.

off, off, off 

heat,off,off cool,off,off 

off, off, off 

SS, FR, AR 

SS. he SS.cool 

heat, on, off off, off, off 

off, on, off 

off, off, off cool, on, off heat, on, off 

off, on, off cool, on, on

SS.off 
SS.off FR.turn On 

SS.off 

SS.heat 

SS.cool 

FR.turnOff

SS.off AR.turnOn 

Figure 3. Partial state space of the thermostat example.

8 SOFTWARE VERIFICATION AND VALIDATION



In software testing practice, testers are confronted with
questions like: Which test cases should be used? How to
determine whether a testing is adequate? Or when can a
testing process stop? These questions are known as the test
adequacy problem (19). They are the central issues in
software testing, and the most costly and difficult issues
to address. A large number of test criteria have been
proposed and investigated in the literature to provide
guidelines to answer these questions. Some of them have
been used in software testing practice and are required by
software development standards. A great amount of
research has been reported to assess and compare their
effectiveness and efficiency.

The observation of dynamic behavior of a program under
test is essential for all testing. Such observations are the
basis of validating a software’s correctness. The most often
observed software behaviors are the input–output of the
program during testing. However, in many cases, observa-
tion of the internal states, the sequences of code executed,
as well as other internal execution histories are necessary
to determine the correctness of the software under test.
Such internal observations are often achieved by inserting
additional code into the program under test, which is
known as software instrumentation. Automated tools are
available for the instrumentation of programs in various
programming languages. Behavior observation can also be
a very difficult task, for example, in the testing of concur-
rent systems because of nondeterministic behavior in test-
ing component-based systems because of the unavailability
of source code, in testing real-time systems because of their
sensitiveness to timing and load, in testing systems that are
history sensitive such as machine learning algorithms
where the reproduction of a behavior is not always possible,
in testing of service-oriented systems because of the lack of
control of third-party services, and so on.

Checking the correctness of a program’s output as well
as other aspects of dynamic behavior is known as the test
oracle problem. A test oracle is a piece of program that
simulates the behavior of the program under test. It could
be as simple as a person or a program that judges the output
of the program under test according to the given input. If a
formal specification of the system is available, then the
output can be judged automatically, e.g., by using algebraic
specifications (20–22). A recent development in the
research on the metamorphic software testing method
enables testers to specify relationships between outputs
of a program on several of test cases and to check whether
the relationships held during testing (23).

Testing methods

Testing activities, especially test case selection and gen-
eration and test adequacy assessment, can be based on
various types of information available during the testing
process. For example, at the requirements stage, test cases
can be selected and generated according to the require-
ments specification. At the design stage, test cases can be
generated and selected according to the architectural
design and detailed design of the system. At the implemen-
tation stage, test cases are often generated according to the
source code of the program. At the maintenance stage, test
cases for regression testing should take into consideration
the part of the system that has been modified, either the
functions added or changed or the parts of the code that are
modified. In general, software testing methods can be
classified as follows1.

� Specification-based testing methods. In a specification-
based testing method, test results can be checked
against the specification, and test cases can be gener-
ated and selected based on the specification of the
system. For example, test cases can be generated
from algebraic specifications (24), derived from speci-
fications in Z (25, 26), or using model checkers to
automatically generate test cases from state machine
specifications (27, 28).

� Model-based testing methods. A model-based testing
method selects and generates test cases based on dia-
grammatic models of the system, which could be a
requirements model or design model of the system.
For example, in traditional structured software devel-
opment, test cases can be derived from data flow, state
transition, and entity-relationship diagrams (29). For
testing object-oriented software systems, techniques

1Traditionally, testing methods were classified into white-box and
black-box testing. White-box testing was defined as testing accord-
ing to the details of the program code, whereas black-box testing
does not use the internal knowledge of the software. Many modern
testing methods are difficult to classify either as black box or as
white box. Thus, many researchers now prefer a more sophisticated
classification system to better characterize testing methods.

Planning

Generating
test cases 

Preparing test 
environment 

Test execution and 
behavior observation 

Analyzing test results 
(adequacy and correctness)

Reporting test results

Bug Report Quality Report

Figure 4. Illustration of activities in software testing process.

SOFTWARE VERIFICATION AND VALIDATION 9



and tools have been developed to generate test cases
from various UML diagrams (30, 31) .

� Program-based testing methods. A program-based
testing method selects and generates test cases based
on the source code of the program under test. Tools and
methods have been developed to generate test cases to
achieve statement, branch, and basis path coverage.
Another program-based testing method is the so-called
decision condition testing method, such as the modified
condition/decision coverage (MC/DC) criterion (32)
and its variants (33), which focus on exercising the
conditions in the program that determine the direc-
tions of control transfers.

� Usage-based testing methods. A usage-based testing
method derives test cases according to the knowledge
about the usage of the system. For example, a random
testing method uses the knowledge about the prob-
ability distribution over the input space of the soft-
ware, such as the operation profile. Another commonly
used form of usage-based testing is to select test cases
according to the risks associated with the functions of
the software.

It has been recognized for a long time that testing should
use all types of information available rather than just rely
on one type of information (34). In fact, many testing
methods discussed here can be used together to improve
test effectiveness.

Testing Techniques

Several software testing techniques have been developed
to perform various testing methods. These testing techni-
ques can be classified as follows.

� Functional testing techniques. Functional testing tech-
niques thoroughly test the functions of the software
system. They start with the identification of the func-
tions of the system under test. The identification of
functions can be based on the requirements specifica-
tion, the design, and/or the implementation of the
system under test. For each identified function, its
input and the output spaces and the function in terms
of the relation between the input and the output are
also identified. Test cases are generated in the func-
tion’s input/output spaces according to the details of
the function. The number of test cases selected for each
function can also be based on the importance of the
function, which often requires a careful risk analysis of
the software application. Usually, functions are clas-
sified into high risk, medium risk, or low risk according
to the following criteria

1. The cost and the consequences that a failure of the
function may cause.

2. The frequency with which the function will be used.

3. The extent to which the whole software systems’
functionality and performance depends on the func-
tion’s correctness and performance.

4. The likelihood that the implementation of the func-
tion contains faults, say because of high complexity,
the capability, and maturity of the developers, or
any priori knowledge of the system.

A heuristic rule of functional testing is the so-called 80–
20 rule, which states that 80% of test efforts and resourses
should be spent on 20% of the functions of the highest
risks.

An advantage of functional testing techniques is that
various testing methods can be combined. For example,
functions can be identified according to the requirements
specification. If additional functions are added during
design, they can also be identified and added into the list
of functions to be tested. An alternative approach is to
identify functions according to the implementation, such
as deriving from the source code. When assigning risks to
the identified functions, many factors mentioned in the
above criteria can be taken into consideration at the same
time. Because some factors are concerned with users’
requirements and some are related to the design and
implementation, it naturally combines requirements-
based with design and implementation-based methods.
The main disadvantage is that functional testing tech-
niques are largely manual operations, although they are
applicable to almost all software applications.

� Structural testing techniques. Structural testing tech-
niques regard a software system as a structure that
consists of a set of elements of various types interre-
lated to each other through various relationships.
They intend to cover the elements and their interre-
lationships in the structure according to certain cri-
teria. Typical structural testing techniques include
control flow testing and data flow testing techniques
and various techniques developed based on them.

Control flow testing techniques represent the struc-
ture of the program under test as a flow graph that is a
directed graph where nodes represent statements and
arcs represent control flows between the statements.
Each flow graph must have a unique entry node where
computation starts and a unique exit node where
computation finishes. Every node in the flow graph
must be on at least one path from the entry node to the
exit node. For instance, the following program that

x≤0 or y≤0x≤0 or y≤0

begin 

input (x,y) 

x:=x-y y:=y-x 

output(x+y) 

 end 

x>0, y>0, x≤y

x>0,y>0,x>y

x>0, y>0, x>y x>0,y>0, x≤y

x>0,y>0, x≤yx>0, y>0, x>y 

x≤0 or y≤0

a

b

c d

e

f

Figure 5. Flow graph of the Greatest Common Divisor program.

10 SOFTWARE VERIFICATION AND VALIDATION



computes the greatest common divisor of two natural
numbers using Euclid’s algorithm can be represented
as a flow diagram shown in Fig. 5.

Procedure Greatest-Common-Divisor;

Var x, y: integer;

Begin

input (x,y);

while (x>0 and y>0) do

if (x>y)

then x:¼ x-y

else y:¼ y-x

endif

endwhile;

output (xþy);
end

As a control flow testing method, statement testing requires
the test executions of the program on test cases exercise all
the statements, i.e. nodes, in the flow graph. For example,
paths p¼ (a, b, c, d, e, f) in Fig. 5 cover all nodes in the flow
graph; thus, the test case t1¼ (x¼2, y¼1) that causes the
path p to be executed is adequate for statement testing.
Obviously, adequate statement testing may not execute all
the control transfers in the program. Branch testing
requires the test cases to exercise all the arcs in the flow
graph, i.e. all the control flows, thus the branches, of the
program. The test case t1 is therefore inadequate for branch
testing. Various path testing techniques require test execu-
tions cover various types of paths in the flow graph, such as
all paths of length-N for certain fixed natural number N, all
simple paths (i.e., the paths that contain no multiple
occurrences of any arcs), all elementary paths (i.e., paths
that contain no multiple occurrences of nodes), and so on.

Data flow testing techniques focus on how values of
variables are assigned and used in a program. Each vari-
able occurrence is therefore classified to be either a defini-
tion occurrence or a use occurrence:

– Definition occurrence: Where a value is assigned to the
variable.

– Use occurrence (also called reference occurrence):
Where the value of the variable is referred to. Use
occurrences are also classified into computation uses
(c-use) and predicate uses (p-use).

Predicate use: Where the value of a variable is used
to decide whether a predicate is true for selecting
an execution path.
Computation use: Where the value of a variable is
used to compute a value for defining other vari-
ables or as an output value.

For example, in the assignment statement y:¼ x1 � x2,
variables x1 and x2 have a computation use occurrence,
whereas variable y has a definition occurrence. In the if-
statement if x¼0 then goto L endif, variable x has a
predicate use occurrence. Figure 6 shows the flow graph
with data flow information of the program given in Fig. 5.

Using such data flow information, the data flow in a
program can be expressed by the paths from a node where a

variable x is defined to a node where the variable is used,
but no other definition occurrence of the same variable x on
the path (which is called the definition-clear path of x). Such
a path is called a definition-use association. The principle
underlying all data flow testing is that the best way to test
whether an assignment to a variable is correct is to check it
when its assigned value is used. Therefore, data flow test
criteria are defined in the form of exercising definition-use
associations or various compositions of the relation. For
example, a data flow test criterion in Weyuker–Rapps–
Frankl’s data flowing testing techniques require testing
all definition-use associations(35, 36) . Other data flow
testing techniques include Laski and Korel’s definition
context coverage criteria (37), and Ntafos’s interaction
chain coverage criteria (38).

� Fault-based testing techniques. Fault-based testing
techniques detects all faults of certain kinds in the
software. For example, mutation testing detects all
the faults that are equivalent to mutants generated by
a set of mutation operators (39,40). In general, a
mutation operator is a transformation that modifies
the software with a single small change and preserves
the software’s syntax to be well formed. For example, a
typical mutation operator changes a greater than
symbol > in an expression to be the less than symbol
<. When this mutation operator is applied to the

begin

define: x,y
 use: x, y

use: x, y, define: yuse: x, y, define: x

use: x, y

end

use: x, y

use: x,y

 use: x,y

use: x,y

use: x, y

use: x, y

a

b

c d

e

f

 use: x,y

 use: x,y

Figure 6. Flow graph with data flow information.

Procedure Greatest-Common-Divisor; 

Var x, y: integer; 

Begin

 input (x,y); 

 while (x>0 and y>0) do 

  if (x<y) /*Mutation operator applied */ 
   then x:= x-y  

   else y:= y-x  

  endif 

 endwhile; 

 output (x+y); 

end

Figure 7. A mutant of the Greatest Common Divisor program.

SOFTWARE VERIFICATION AND VALIDATION 11



condition of the if-statement in the program given in
Fig. 5, the mutant in Fig. 7 will be generated.

Procedure Greatest-Common-Divisor;

Var x, y: integer;

Begin

input (x,y);

while (x>0 and y>0) do

if(x<y)/�Mutationoperatorapplied �/

then x:¼ x-y

else y:¼ y-x

endif

endwhile;

output (xþy);
end

Each mutation operator represents a kind of error that
could be made by software developers. If a test case enables

Table 1. Levels of mutation analysis

Level Goal Method (Mutation operators)

Interface
Analysis

Ensure interfaces
between software
components are
correct and
adequately tested in
integration testing.

(1) Mutation operators are designed to model
integration errors,

(2) Tests only the connections between two
modules, a pair at a time, and

(3) Applies integration mutation operators
only to module interfaces such as function
calls, parameters, or global variables.

Language
Specific
Feature
Analysis

Ensure language-specific
features were used properly.

For example, for test of Java-specific features:
Delete and insert This keyword;
Delete and insert Static keyword;
Delete member variable initialization; etc.

Polymorphism
Analysis

Exercise all possible dynamic-
type bindings to ensure the
correctness of polymorphic
behavior of object references.

Change the instantiation type of an object reference
to a child or parent class;
Delete, insert, or change type cast operator;
Delete overloading method declarations;
Change the parameters of overloading method calls.

Inheritance
relationship
Analysis

Ensure the inheritance
relationships,
including variable
hiding, method
overriding, uses of
super, and definition
of constructors, are
correctly defined.

Delete or insert overriding methods and
hiding variables;
Change the calling position of overriding
methods,
Rename overriding methods;
Delete and insert keyword ’Super’;
Delete and insert parent constructor calls;
etc.

Class
Encapsulation
Analysis

Ensure class
declarations correctly
use encapsulation
facilities for various
accessibility levels.

Change the access modifiers
(i.e., private, protected, public,
and unspecified) of the attributes
and methods in class declarations.

Statement
Analysis

Ensure that every
branch is taken and the
every statement is
necessary.

Replace statement with CONTINUE;
Replace logical and relational with true or
false;
Check labels on arithmetic IF statements for
usage;
Replace DO statements with FOR
statements.

Predicate
Analysis

Exercise predicate
boundaries.

Alter predicate and DO loop limits ub-
expressions by small amounts;
Insert absolute value operators into predicate
sub-expressions;
Alter relational operators.r

Domain
Analysis

Exercise different
data domains.

Change constants and sub-expressions by
small amounts;

Coincidental
Correctness
Analysis

Guard against
coincidental
correctness.

Change data references and operators to
other syntactically correct alternatives.

12 SOFTWARE VERIFICATION AND VALIDATION



the original software under test and the mutant to produce
different outputs, we say that the mutant is killed by the
test case or simply that the mutant is dead, which means
that the modified part of the program has been executed
and that the part actually affects the behavior of the
system. Therefore, if the original program contains a fault
at the location where the mutation operator is applied, the
test case should be able to detect it. Otherwise, solely based
on the test executions on the test cases, we would have no
evidence to claim that the test cases are capable of differ-
entiating the mutants from the original. In other words, if a
fault exists, the test cases would not be able to detect it. Of
course, there are two reasons that a mutant remains alive
after testing on all test cases. First, the mutant is equiva-
lent to the original. Thus, it cannot be killed. Second, the
test cases were unable to kill it because of its inadequacy.
The proportion of nonequivalent mutants that remain
alive after testing, which is called mutation score in the
software testing literature, gives a clear indication of the
adequacy of the test set and serves as a test adequacy
criterion.

Measuring the mutation score of a test set is, therefore,
an analysis of the test adequacy. Different levels of muta-
tion analysis can be done by applying mutation operators
to the corresponding syntactical structures in the program
(41–44). Table 1 summarizes the levels of mutation ana-
lysis and the methods to achieve the goals of the analysis.

Mutation testing tool such as Mothra for Fortran (42)
and MuJava for Java (45) have been developed to generate
automatically a large number of mutants from a program
under test and to execute the program under test and the
mutants and to collect the data about dead and alive
mutants. Test cases can also be generated to kill a mutant
(46). The equivalence of a mutant to the original is not
decidable, but it can be determined automatically for a
large proportion of mutants.

The idea of program mutation testing can also be
extended to specification-based testing in which mutants
of specifications are generated (47). A specification mutant
is killed if the correctness of the output of the program under
test is judged differently by the original specification.

More recently, the idea of mutation has also been applied
to generate test data. A set of mutation operators designed
so that when applied to a test case, they generate a set of test
data that are of subtle differences from the original test case
(48). This technique can be applied to test software systems

whose test cases are of a complicated structure, such as
modeling tools, and other test case generation techniques
would have difficulties.

� Error-based testing techniques. Error-based testing
techniques check all error-prone aspects of the system,
where errors are mistakes made software developers.
For example, test cases are often selected to test if
division by zero error was processed properly by the
program.

Among whether the well-established error-based testing
techniques are the boundary analysis testing techniques,
which select test cases on the boundary and near the
boundary of an input space in order to make sure that
the programmer has computed correctly the boundary,
which has been recognized for a long time as error-prone.
As illustrated in Fig. 8, two types of boundary errors have
long been recognized as the most common programming
errors. They are shift errors, in which the border of an input
domain is shifted parallel to the correct border either
toward the outside of the input domain or toward the out-
side of the domain, and rotation errors in which the border
is rotated with respect to the correct border.

To detect shift errors of a border in N-dimensional
input space, N test cases must be selected on the border
and an additional test case must be selected nearby the
border. If the input on the border belongs to the input
domain, which are called on tests, the test case near the
border must be selected outside the input domain, which is

Domain of Input Space 

Shift error 

Correct border 

Rotation error 

Off test 

On test 

Figure 8. Illustration of boundary shift and rotation errors.

Domain of Input Space 

Correct border if implemented 
border incorrectly shifted 

towards inside 
Implemented border 

Adjacent Domain of Input 

Correct border if implemented 
border incorrectly shifted 
towards outside 

Computed function f1 (x,y) 
Computed function f2 (x,y)

a

b

c

Test cases

Figure 9. Selection of test cases using N � 1 criterion.

SOFTWARE VERIFICATION AND VALIDATION 13



called off test. Otherwise, if the inputs on the border do not
belong to the valid input of the domain, the test case near
the border should be selected inside the input domain. In
this case, the test cases on the border are off tests, whereas
the test case near the border is on test. As illustrated in
Fig. 9 for two-dimensional input spaces, by selecting data
according to this N � 1 criterion, all shift errors can be
detected provided that the computed functions in the
input domain and outside the domain are different and
the border is linear, e.g., a straight line in two dimensional
space (49).

However, N� 1 criterion cannot guarantee the detection
of rotation errors. To detect rotation errors, in addition to
the selection of N test cases on the border, N test cases must
also be selected near the border in the same way as the N�1
criterion. It is the so-called N � N criterion (50).

ACKNOWLEDGMENT

We thank the anonymous reviewers for constructive com-
ments and improvement suggestions.

BIBLIOGRAPHY

1. D. R. Wallace and R. U. Fujii, Software verification and valida-
tion: an overview, IEEE Software, 6 (3): 10–17, 1989.

2. B. W. Boehm, Software engineering economics, IEEE Trans. on
Software Eng., 10 (1) 4–21, 1984.

3. T. Gild, D. Gramham, Software Inspection. Reading, MA:
Addison-Wesley, 1993.

4. D. A. Wheele, (ed.), Software Inspection: An Industry Best
Practice, Piscataway, Nj: IEEE Computer Society Press, 1996.

5. E. Yourdon, Structured Walkthroughs 4th ed. Englewood
Cliffs, Nj: Prentice-Hall International, 1989.

6. L. A. Belady and M. M. Lehman, A model of large program
development, IBM Systems J., 3: 225–252. 1976.

7. M. Newborn, Automated Theorem Proving: Theory and Prac-
tice, Benlin: Springer, 2000.

8. C.A.R. , Hoare, An axiomatic basis for computer programming,
CACM 12 (10): 576–583, 1969.

9. C. A. R. , Hoare, et al., Laws of programming, CACM, 30(8):
672–687, 1987.

10. J. A. Robinson, A machine-oriented logic based on the resolu-
tion principle, J. ACM, 12(1): 23–41, 1965.

11. J. McCarthy, and P. Hayes, Some philosophical problems from
the stanpoint of artificial intelligence, in Machine Intelligence,
no. 4, B. Meltzer and D. Michie (eds.), Edinburgh: Edinburgh
University Press, 1969, 463–502.

12. OE. M. , Clarke, Jr. , Grumberg, and D.A. Peled, Model
Checking, Cambridges, MA: The MIT Press, 1999.

13. E. M. Clarke, Automatic verification of finite-state concurrent
systems using temporal logic specifications, ACM Trans.
Programming Lang. Syst., 8 (2): 244–263, 1986.

14. G. J. Holzmann, The model checker SPIN, IEEE Trans. Soft-
ware Engineering, 23 (5): 1997.

15. T. Henzinger, et al., Symbolic Model Checking for Real-Time
Systems Proceedings, The Seventh Annual IEEE Symposium
on Logic in Computer Science, 1992, pp. 394–406.

16. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, Model
Checking Programs, Autom. Software Engineer. J., 10 (2):
2003.

17. M. B. , Dwyer, J. Hatcliff Robby, C. S. Pasareanu, W. Visser,
Formal Software analysis emerging trends in software
model checking, Future Software Engineering, 2007,
pp. 120–136.

18. S. Chandra, P. Godefroid, C. Palm, Software model checking
in practice: an industrial case study, Proceedings of the 24th
International Conference on Software Engineering, 2002,
pp. 431–441.

19. H. Zhu, P. Hall, and J. May, Software unit test coverage and
adequacy, ACM Computing Surveys, 29 (4): 366–427, 1997.

20. G. Bernot, M. C. Gaudel, and B. Marre, Software testing based
on formal specifications: a theory and a tool,Software Engineer-
ing J., 387–405, 1991.

21. H. Zhu, A note on test oracles and semantics of algebraic
specifications, Proc. of QSIC’03, Dallas Tx, 2003, 91–99.

22. H. Y. Chen, T. H. Tse, and T. Y. Chen, TACCLE: a methodology
for object-oriented software testing at the class and cluster
levels, ACM TSEM, 10 (1): 56–109, 2001.

23. T. Y. Chen, T. H. Tse, and Z. Q. Zhou, Fault-based testing
without the need of oracles, Informat.Software Technol., 45 (1):
1–9, 2003.

24. L. Bouge, N. Choquet, L. Fribourg, and M. C. Gaudel, Test sets
generation from algebraic specifications using logic program-
ming, J. Systems Software, 6 (4): 343–360, 1986.

25. P. A. Stocks and D. A. Carrington, Test templates: a specifica-
tion-based testing framework, Proc. of ICSE’93, 1993,
pp. 405–414.

26. P. Ammann, and J. Offutt, Using formal methods to derive test
frames in category-partition testing, Proceedings of 9th Annual
Conf. on Computer Assurance, IEEE, Gaithersburg, MD, 1994,
pp. 69–79,

27. P. Ammann, P. E. Black, and W. Majurski, Using model
checking to generate tests from speci_cations, Proc. of 2nd
IEEE International Conference on Formal Engineering Meth-
ods (ICFEM’98), Brisbane, Australia, 1998, p. 46.

28. H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural, Data
flow testing as model checking, Proc. of ICSE’03, Portland, or,
2003.

29. H. Zhu, L. Jin, D. Diaper, Software requirements validation via
task analysis, J. System Software, 61 (2): 145–169, 2002.

30. J. Offutt, and A. Abdurazik, Using UML collaboration dia-
grams for static checking and test generation, The Third
International Conference on the Unified Modeling Language
(UML ’00), York, UK, 2000, pp. 383–395.

31. S. Li, J. Wang and Z. Qi, Property-oriented test generation
from UML statecharts, Proceedings of the 19th International
Conference on Automated Software Engineering (ASE’04).

32. RTCA/DO-178B. Software considerations in airborne systems
and equipment certification, 1992.

33. J. Chilenski, An investigation of three forms of the modified
condition decision coverage (MCDC) criterion, Technical
Report DOT/FAA/AR-01/18, FAA, Washington, D. C., 2001.

34. J. B. Goodenough and S. L. Gerhart, Toward a theory of test
data selection, IEEE TSE, 3,1975.

35. S. Rapps and E. J. Weyuker, Selecting software test data using
data flow information, IEEE TSE, 11 (4): 367–375, 1985.

36. P. G. Frankl and J. E. Weyuker, An applicable family of data
flow testing criteria, IEEE TSE, 14 (10), 1483–1498, 1988.

37. J. Laski and B. Korel, A data flow oriented program testing
strategy, IEEE TSE, 9: 33–43, 1983.

38. S. C. Ntafos, On required element testing, IEEE TSE, 10 (6):
795–803, 1984.

14 SOFTWARE VERIFICATION AND VALIDATION



39. R. A. DeMillo, R. J. Lipton, and F. G. Sayward, Hints on test
data selection: help for the practising programmer, Computer,
11, 34–41, 1978.

40. R. G. Hamlet, Testing programs with the aid of a compiler,
IEEE TSE, 3 (4), 279–290, 1977.

41. T. A. Budd, Mutation analysis: ideas, examples, problems and
prospects, in B. Chandrasekaran, and S. Radicchi, (eds.),
Computer Program Testing, Amsterdam: North-Holland,
1981, 129–148.

42. K. N. King and A. J. Offutt, A FORTRAN language system for
mutation-based software testing, Softw.–Practice Exper.,
21 (7): 685–718, 1991.

43. M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, Integration
testing using interface mutation, in Proceedings of Interna-
tional Symposium on Software Reliability Engineering (ISSRE
’96), 1996, 112–121.

44. S. Kim, J. Clark, and J. McDermid, Class mutation: mutation
testing for object-oriented programs, Proc. of Net.Object Days
Conference on Object-Oriented Software Systems, 2000.

45. Y. S. Ma, J. Offutt, and Y. R. Kwon, MuJava: an automated
class mutation system, Software Test. Verificat. Reliab., 15 (2):
97–133, 2005.

46. R. A. DeMillo and A. J. Offutt, Experimental results from an
automatic test case generator, ACM Trans. Soft. Engine. Meth-
odol., 2 (2): 109–127, 1993.

47. M. R. Woodward, Errors in algebraic specifications and an
experimental mutation testing tool, SEJ, 1993, pp. 211–224.

48. L. Shan and H. Zhu, Testing software modelling tools using
data mutation, Proc. of ICSE’06-AST’06, Shanghai, China,
2006, ACM Press, pp. 43–49.

49. L. J. White and E. I. Cohen, A domain strategy for computer
program testing, IEEE TSE, 6 (3): 247–257, 1980.

50. L. A. Clarke, J. Hassell, and D. J. Richardson, A close look at
domain testing, IEEE TSE, 8 (4): 380–390, 1982.

DAVID KUNG

University of Texas at Arlington
Arlington, Texas

HONG ZHU

Oxford Brookes University
Oxford, United Kingdom

SOFTWARE VERIFICATION AND VALIDATION 15



F

THE FINITE ELEMENT METHOD

INTRODUCTION

Finite element methods are now widely used to solve
structural, fluid, and multiphysics problems numerically
(1). The methods are used extensively because engineers
and scientists can mathematically model and numerically
solve very complex problems. The analyses in engineering
are performed to assess designs, and the analyses in the
various scientific fields are carried out largely to obtain
insight into and ideally to predict natural phenomena. The
prediction of how a design will perform and whether and
how a natural phenomenon will occur is of much value:
Designs can be made safer and more cost effective, while
insight into and the prediction of nature can help, for
example, to prevent disasters. Thus, the use of the finite
element method greatly enriches our lives.

As with many other important scientific developments,
it is difficult to give an exact date of the ‘‘invention’’ of the
finite element method. Indeed, we could trace back the
development of the method to the Greek philosophers
and in modern times to physicists, mathematicians, and
engineers (see the discussions in Refs. 2 and 3). However,
the real impetus for the development of what is now
referred to as the finite element method was provided by
the need to analyze complex structures in aeronautical
engineering and the availability of the electronic computer.
Namely, when using the finite element method, large sys-
tems of algebraic equations need to be assembled and
solved, and the computer provides the necessary means
to accomplish this task.

The papers of Argyris and Kelsey (4) and Turner et al. (5)
were seminal contributions in the 1950s. The name ‘‘finite
element method’’ was coined by R.W. Clough in 1960 (6).
The potential of the finite element method for engineering
analysis was clearly foreseen, and henceforth the research
on finite element methods started to accelerate in various
research centers in Europe and in the United States. While
significant papers and books were written in the next
decade (see for example the references in Refs. 2 and 3),
the development and rapidly increasing use of some com-
puter programs clearly contributed in a major way to the
acceptance and advancement of the method. Indeed, with
no computer programs ever developed, the finite element
method would have been a theoretical entity without much
attention given to it.

The three finite element programs that had a major
impact were ASKA, NASTRAN, and SAP (7–9). The
NASTRAN and ASKA programs rapidly became major
analysis tools in the aerospace and automotive industries.
The SAP programs were largely used in civil and mechan-
ical engineering industries and at universities. The avail-
ability and wide use of the source codes of SAP IV and
NONSAP with the description of the techniques used
therein, see Bathe et al. (9–12), had a seminal effect on

the development of new algorithms, many finite element
programs, and also finite element theory (3,13).

Today, finite element methods probably are used for the
analysis of every major engineering design and probably in
every branch of scientific studies. The method is now used
primarily through the application of commercial finite
element programs (see the section titled, ‘‘The Use of
the Finite Element Method in Computer-Aided Engineer-
ing’’). These programs are used on mainframes, worksta-
tions and PCs and are employed to solve very complex
problems. While the finite element methods were used
originally for the analysis of solids and structures, the
procedures arenow employed also for the analysis of multi-
physics problems, including fluid flows with fluid–struc-
ture interactions (1–3).

The objective in the following sections is to briefly
describe the finite element method and give some refer-
ences that can be consulted for additional study. The
description and references, of course, are by no means
exhaustive. For the equations used, the notation of Ref. 3
is employed.

THE FORMULATION OF THE FINITE ELEMENT METHOD

Figures 1 to 3 show typical finite element meshes (or finite
element assemblages) modeling some solid, structural, and
fluid systems. In each case the finite elements are used to
represent the volume of the system. The finite elements are
connected at the nodal points located at the corners and
along the sides and in the faces of the elements. However,
nodal points can also be located within the volume of an
element. An important feature is that the finite elements do
not overlap geometrically but together fill the complete
volume of the solid or fluid.

Considering the analysis of a three-dimensional solid,
like the wheel in Fig. 1, the geometry and the displacements
of each element (within each element including all element
surfaces) are completely described by the geometric posi-
tions and displacements of the element nodal points. The
element nodal coordinates prior to any displacements
are known, of course, and the nodal displacements are
the unknowns to be calculated. The basic step is to inter-
polate the element geometry and the element displace-
ments by using the nodal values. Here the isoparametric
element interpolation, a most important development due
to Irons (14), is largely used. For an element with q nodal
points we use

x ¼
Xq

i¼1

hixi; y ¼
Xq

i¼1

hiyi; z ¼
Xq

i¼1

hizi

u ¼
Xq

i¼1

hiui; v ¼
Xq

i¼1

hivi; w ¼
Xq

i¼1

hiwi ð1Þ

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



where the hi are the given interpolation functions, (xi, yi, zi)
are the known coordinates of nodal point i, and (ui, vi, wi) are
the unknown displacements of nodal point i. The hi are
functions of the element natural coordinates (r, s, t), which
relate uniquely to the global coordinates. In this assump-
tion, the same interpolation is employed for the geometry
and the displacements, and these equations are applicable
to very general curved element configurations. However,
in by far most analyses and certainly in nonlinear analy-
ses, low-order linear, non-curved elements are preferred
(4-node quadrilateral elements in the two-dimensional
(2-D) analyses of solids, and 8-node brick elements in the
three-dimensional (3-D) analyses of solids), but quadratic
elements (9-node elements in 2-D analyses and 27-node
elements in3-D analyses) can bemoreeffective (3).Toobtain
a more accurate solution, mostly the number of elements is
simply increased; that is, the h-method is used. Alterna-
tively, also the number and size of elements can be kept
constant and the order of the geometry and displacement
interpolations is increased; that is, the p-method is used. Of
course, these approaches can also be combined and then an
h/p-method is employed (15).

While some of the first finite elements for structural
analyses were largely formulated based on physical
insight and intuition, the development and use of a
general theory based on the principle of virtual work (or
virtual displacements) established a firm foundation and
a general approach for the formulation of finite elements.

Today, the principle of virtual displacements is the basic
equation used to formulate displacement-based finite ele-
ments. Considering a general solid, this principle can be
written as (3)

Z
V

e TtdV ¼
Z

S f

u Sf
T

fS f dSþ
Z

V
u TfBdV ð2Þ

where the unknown (real) stresses are t, the known
applied body forces are fB, the known applied surface
tractions are fSf , the virtual displacements are u, and
the virtual strains that correspond to the virtual displace-
ments are e . Of course, the stresses need to satisfy the
given stress-strain laws, and the strains (the virtual and
real quantities) must satisfy the strain–displacement
relationships. Also, the real displacements must satisfy
the given displacement boundary conditions and the vir-
tual displacements must be zero at the locations of the
prescribed real displacements. The integrations are per-
formed over the volume, V, and traction-loaded surface,
Sf, of the solid considered.

The principle of virtual displacements, with these con-
ditions satisfied, is totally equivalent to the differential
formulation of the boundary value problem. The principle
is referred to also as a variational formulation and a weak
formulation (2,3).

In linear analysis, the displacements are assumed to be
infinitesimally small, the material laws are assumed to
be constant, and the volume and surfaces over which the
integrations are performed are known and constant, that is,
unaffected by the displacements. Substituting from Equa-
tion (1) into Equation (2) and invoking the principle of
virtual displacements as many times as there are nodal
displacement degrees of freedom, we obtain

KU ¼ R ð3Þ

where K is the stiffness matrix, U is the displacement vector
listing all unknown nodal point displacements (the ui, vi, wi,
for all nodes, i = 1, 2, . . ., as applicable), and R is a vector of
externally applied forces at the nodal-point displacement

Figure 1. Finite element model of a wheel using three-
dimensional brick elements, and a typical 8-node brick element
(q=8).

Figure 2. Finite element model of a car body using predomi-
nantly shell elements.

Figure 3. Finite element computational fluid dynamics (CFD)
model of a manifold; FCBI elements, about 10 million equations
solved in less than 1 hour on a single-processor PC.

2 THE FINITE ELEMENT METHOD



degrees of freedom. The solution of Equation (3) yields the
nodal displacements for Equation (1) and hence the strains
and stresses in all elements.

In dynamic analysis, the body forces include inertia and
damping effects, and these can be included directly in the
solution to obtain (3)

MÜþCU
:
þKU ¼ R ð4Þ

where M is the mass matrix (usually a consistent mass
matrix), C is a damping matrix (frequently the Rayleigh
damping matrix is used), and Ü, U

:
denote the nodal

accelerations and velocities, respectively. In structural
vibration analyses, these dynamic equilibrium equations
are solved by using mode superposition or implicit direct
time integration (for example, by using the popular tra-
pezoidal rule).

However, for wave propagation analyses, the dynamic
equilibrium equations solved are generally (3)

MÜ ¼ R � F ð5Þ

where F represents the nodal forces that correspond to the
element stresses. Usually, a lumped (diagonal) mass
matrix is used.

The above equations have been written for a three-
dimensional solid, but also are applicable with appropri-
ate modifications for the analysis of two-dimensional
solids. Furthermore, the equations can be extended and
then also are applicable for the analysis of structures
modeled by beams, plates, and shells. The extension is
reached by introducing midsurfaces, displacements and
rotations, and the applicable kinematic and stress
assumptions. For example, in the analysis of shells, the
Reissner–Mindlin kinematic assumption—that plane sec-
tions originally plane and normal to the midsurface of the
shell remain plane—is introduced, and the assumption
that the stress normal to that midsurface is zero is
imposed. Because the pure displacement-based finite ele-
ments are not effective for thin shells (and plates and
beams), that is, they ‘lock’ in bending actions (see the
section below titled, ‘‘The Analysis of Shells’’), mixed
and hybrid formulations are used to reach more effective
elements. The construction of such elements in essence is
based on an extension of the principle of virtual displace-
ments, namely the use of the Hu–Washizu variational
principle (2,3). Effective structural elements can then
directly be employed in Equations (3–5) together with
the displacement-based solid elements (but of course U
now also includes nodal rotations).

Considering nonlinear analysis, the nonlinear effects can
arise from nonlinear material behavior, like plasticity and
creep; from geometric nonlinear effects, that is, large dis-
placements and large strains; and from contact between
bodies established as a result of the displacements. In these
cases, the basic principle of virtual displacements and the
extensions for structural elements still are directly applic-
able, but the appropriate stress and strain measures need be
used and the equilibrium need be considered in the
deformed geometry of the bodies. For such general non-

linear analyses, the total Lagrangian (TL) and the updated
Lagrangian (UL) formulations provide a fundamental basis
of solution (3,16) and are widely used. In these formulations,
the nonlinear material behavior is introduced to establish
the stresses for ‘‘given’’ deformations, that is, not using a
rate formulation when the constitutive relations are rate-
independent (see also Ref. 17). If required, contact condi-
tions including frictional effects are imposed as constraints
on the nodal displacements and forces over the contacting
surfaces. Because the large deformations and nonlinear
material conditions and the solution for the actual areas
of contact introduce significant nonlinearities in the govern-
ing equations, iteration for solution in general is required
(see below).

Considering a dynamic solution based on implicit direct
time integration, and assuming that contact conditions are
not present, the incremental nonlinear analysis is accom-
plished by solving at discrete times Dt apart

M tþDtÜþ C tþDtU
:
þtþDtF ¼tþDtR ð6Þ

where the equilibrium is considered at time t þ Dt, and the
nodal forces tþDtF and tþDtR correspond to the internal
element stresses and the externally applied loads, respec-
tively. In static analysis, simply the inertia and damping
effects are neglected and the superscript t ¼ time denotes
the load level (but is also an actual physical variable when a
material law is time-dependent).

Because the nodal forces highly depend on the deforma-
tions and all the considered nonlinearities need be included
in calculating these forces, an iteration is necessary for the
solution of Equation (6). A Newton–Raphson iteration, or
variant thereof, is commonly performed, with the govern-
ing equations

tþDt
K̂
ði�1Þ

DUðiÞ ¼ tþDtR̂ ði�1Þ � tþDtFði�1Þ

tþDtUðiÞ ¼ tþDtUði�1Þ þ DUðiÞ
ð7Þ

where tþDtK̂ði�1Þ is the effective tangent stiffness matrix
that corresponds to the linearization of the nodal force
vectors with respect to the incremental displacements

DUðiÞ. The hat in tþDtK̂
ði�1Þ

and tþDtR̂
ði�1Þ

is used to signify
that also mass and damping effects are included (3). In
static analysis these effects of course are neglected. The
iteration is continued until appropriate convergence cri-
teria (based on forces, displacements, or energy) are satis-
fied. To reach fast convergence, and quadratic convergence
when near the solution, it is important to use the linear-
ization ‘‘consistent’’ with the stress integration procedures
and the force updating used to evaluate the right-hand side
of Equation (7) (3,17,18).

If contact conditions are to be included, then for exam-
ple, for normal contact the following conditions need be
satisfied (3):

tþDtl� 0; tþDtg� 0; tþDtl � tþDtg ¼ 0 ð8Þ

THE FINITE ELEMENT METHOD 3



where tþDtg represents the gap and tþDtl represents the
normal contact force. To reach stable and accurate solu-
tions, appropriate interpolations of contact tractions need
be used (19). Of course, with the relations in Equation (8)
imposed as conditions on Equation (6), penetration is pre-
vented at the contacting surfaces. Frictional contact con-
ditions are similarly solved for; see Ref. 3. These conditions
to enforce contact between bodies enter into the iteration
for equilibrium and compatibility; that is, Equation (7)
needs to be amended to enforce the contact relations.

The use of Equation (7) (in general amended for contact
conditions) for dynamic analysis of course implies that a
transient solution with implicit time integration is pur-
sued. If a short time duration or wave propagation analysis
is to be performed (e.g., a crash simulation in the motor car
industry), then an explicit time integration frequently is
more effective. In this case, Equation (5), also amended to
include contact conditions, is used with the nodal vectors
continuously updated for all nonlinearities, which result
from large deformations, contact and nonlinear material
effects in the step-by-step solution. The solution is attrac-
tive because no iteration is performed like in Equation (7);
however, the disadvantage is that the time step size in the
forward integration needs to be very small (because the
time integration is only conditionally stable) (3).

Equations (7) and (5), as discussed above, are applicable
to the nonlinear analysis of solids and structures; however,
for structural elements, a mixed formulation need be used
(see the section titled, ‘‘The Analysis of Shells’’). Also, in
material nonlinear analysis, frequently (almost) incom-
pressible conditions are encountered, as when modeling
a rubber-like material or elasto-plastic conditions. In these
cases, considering a solid, it is effective to use a mixed
formulation in which the unknown displacements and
pressure are interpolated; that is, the u/p formulation is
employed (see the section titled, ‘‘The Reliable and Effective
Analysis of Solids’’).

The same basic approach also can be followed to
establish finite element solutions of heat transfer pro-
blems (considering solids or fluids) and of incompressible
fluid flows. In these cases, the temperature and the
velocities (and pressure) need to be interpolated; in
essence the ‘‘principle of virtual temperatures’’ and the
‘‘principle of virtual velocities’’ are employed. These prin-
ciples in concept are similar to the principle of virtual
displacements and hence of course also correspond to
weak formulations. A major added difficulty arises in
the use of the Eulerian formulation of fluid flows because
of the convective effects. A pure interpolation of velocities
and temperature results in a unstable solution. This
instability can be circumvented, like in finite difference
solutions, by introducing some form of upwinding (see
the section titled, ‘‘Finite Element Discretizations for
Incompressible Fluid Flows’’).

The Lagrangian formulations for the solids and struc-
tures and the Eulerian formulations for fluid flows have
been fully coupled by the use of arbitrary Lagangian–
Eulerian formulations, referred to as ALE formulations
for fluid–structure interactions. Such formulations are
now used to solve reliably very complex multiphysics

problems that involve displacements of solids and struc-
tures, temperature distributions, fluid flows, electromag-
netic effects, and so on (see for example Refs. 1–3, and 20).

EFFECTIVE FINITE ELEMENT PROCEDURES

The first requirement of any analysis is of course the
selection of an appropriate mathematical model to repre-
sent the physical problem (3). The next requirement is to
solve this model with reliable and effective numerical
methods. Because the use of reliable and effective finite
element methods is very important, much research effort
has been expended to reach such procedures.

The Reliable and Effective Analysis of Solids

The analysis of solids is efficiently accomplished by using
the pure displacement-based finite element method
referred to above, unless incompressible or almost incom-
pressible material conditions are considered, as in the
analysis of rubber-like materials or in elasto-plastic
response. In incompressible analysis, the pure displace-
ment-based discretizations ‘‘lock,’’ and a mixed interpola-
tion based on displacements and pressure is much more
effective. However, the appropriate combination of displa-
cement and pressure interpolations must be used.

The phenomenon of locking is of fundamental impor-
tance for the understanding of what we mean by a reliable
finite element formulation. Figure 4 shows schematically
the error in some norm between the finite element solution,
uh, and the exact solution, u, of the mathematical model to
be solved, as the mesh is refined. Of course, the exact
solution is in general not known, but we can think of a
close approximation to the exact solution, obtained by a
finite element analysis using a very fine mesh. If for almost
incompressible analysis, a pure displacement-based finite
element formulation is used, then the convergence curves
in Figs. 4(a) and 4(b) are generally much below and above
the respective curves obtained in the compressible analy-
sis. Hence the error obtained for a given mesh depends on
the bulk modulus and significantly increases as incompres-
sible conditions are approached. Because the displace-
ments become small measured on what they should be,
the phenomenon is referred to as ‘‘locking’’. Finite element
discretizations that lock, like schematically referred to in
Fig. 4, are not reliable because small changes in some data
can cause large changes in the solution error.

Hence a reliable finite element discretization displays
the following convergence behavior in the appropriate
norm:

ku� uhk’chk ð9Þ

where c is a constant (that is, independent of the bulk
modulus), h is the generic element size, and k is the order
of interpolation used. To reach such finite element discre-
tizations in almost, or fully, incompressible analysis, the
use of the displacement–pressure interpolation is effective
where the displacement and pressure interpolations used
should satisfy two conditions (3,21–23). First, the ellipticity

4 THE FINITE ELEMENT METHOD



condition must be satisfied

aðvh; vhÞ�akvhk2 8 vh 2Khð0Þ ð10Þ

where a (., .) is the (deviatoric strain energy) bilinear form of
the problem, Khð0Þ represents all those finite element
interpolations vh over the mesh which satisfy the discre-
tized zero divergence condition, and a is a constant greater
than zero. And second, the inf-sup condition should be
satisfied for any mesh, and in particular as h! 0,

inf
qh 2Qh

sup
vh 2Vh

R
Vol qhdiv vh dVol

kvhkkqhk
�b> 0 ð11Þ

where, for the mesh, Vh is the space of displacement inter-
polations, Qh is the space of pressure interpolation, appro-
priate norms are used, and b is a constant. Effective finite
elements that satisfy these two conditions are given, for

example, in Refs. 3 and 22. It is also possible to develop
finite elements that bypass the inf-sup condition and do not
lock, but these then depend on nonphysical numerical
parameters (22,23).

The Analysis of Shells

The first developments of practical finite element methods
were directed toward the analysis of aeronautical struc-
tures, that is, thin shell structures. Since these first
developments, much further effort has been expended
to reach more general, reliable, and effective shell finite
element schemes. Shells are difficult to analyze because
they exhibit a variety of behaviors and can be very sensi-
tive structures, depending on the curvatures, the thick-
ness t, the span L, the boundary conditions, and the
loading applied (23). A shell may carry the loading largely
by membrane stresses, largely by bending stresses, or by
combined membrane and bending actions. Shells that only
carry loading by membrane stresses can be efficiently
analyzed by using a displacement-based formulation
(referred to above); however, such formulations ‘‘lock’’
(like discussed above when considering incompressible
analysis) when used in the analysis of shells subjected
to bending. To establish generally reliable and effective
shell finite elements (that can be used for any shell ana-
lysis problem), the major difficulty has been to overcome
the ‘‘locking’’ of discretizations, which can be severe when
thin shells are considered.

The principles summarized above for incompressible
analysis apply, in essence, also in the analysis of plate and
shell structures. The critical parameter is now the thick-
ness to span ratio, t/L, and the relevant inf-sup expression
ideally should be independent of this parameter. To obtain
effective elements, the mixed interpolation of displace-
ments and strain components has been proposed and is
widely used in mixed-interpolated tensorial component
(MITC) and related elements (3,23–25). The appropriate
interpolations for the displacements and strains have
been chosen carefully for the shell elements and are
tied at specific element points. The resulting elements
then only have displacements and rotations as nodal
degrees of freedom, just as for the pure displacement-
based elements. The effectiveness of the elements can
be tested numerically to see whether the consistency,
ellipticity, and inf-sup conditions (23) are satisfied. How-
ever, the inf-sup condition for plate and shell elements is
much more complex to evaluate than for incompressible
analysis (26), and the direct testing by solving appropri-
ately chosen test problems is more straightforward
(23,27,28). Some effective mixed-interpolated shell ele-
ments are given in Refs. 3,23 and 25.

For plates and shells, instead of imposing the Reiss-
ner–Mindlin kinematic assumption and the assumption
of ‘‘zero stress normal to the midsurface,’’ also three-
dimensional solid elements without these assumptions
can be used (29–31). Of course, for these elements to be
effective, they also need to be formulated to avoid ‘‘lock-
ing;’’ that is, they also need to satisfy the conditions
mentioned above and more (23).

Figure 4. Locking phenomenon (when using pure displacement
interpolations in almost incompressible analysis).

THE FINITE ELEMENT METHOD 5



Finite Element Discretizations for Incompressible Fluid Flows

Considering all fluid flow problems, in engineering prac-
tice most problems are solved by using finite volume and
finite difference methods. Various CFD computer pro-
grams based on finite volume methods are in wide use
for high-speed compressible and incompressible fluid
flows. However, much research effort has been expended
on the development of finite element methods, in parti-
cular for incompressible flows. Considering such flows and
an Eulerian formulation, stable finite element procedures
need to use velocity and pressure interpolations like those
used in the analysis of incompressible solids (but of course
velocities are interpolated instead of displacements) and
also need to circumvent any instability that arises in the
discretization of the convective terms. This requirement is
usually achieved by using some form of upwinding (see for
example Refs. 3, 32 and the references therein). However,
another difficulty is that the traditional finite element
formulations do not satisfy ‘‘local’’ mass and momentum
conservation. Because numerical solutions of incompres-
sible fluid flows in engineering practice should satisfy
conservation locally, the usual finite element methods
have been extended (see for example Ref. 33).

One simple approach that meets these requirements is
given by the flow-condition-based interpolation (FCBI)
formulation, in which finite element velocity and
pressure interpolations are used to satisfy the inf-sup
condition for incompressible analysis, flow-condition-
dependent interpolations are used to reach stability in
the convective terms, and control volumes are employed
for integrations, like in finite volume methods (34). Hence
stability is reached by the use of appropriate velocity and
pressure interpolations, the conservation laws are satis-
fied locally, and, also, the given interpolations can be used
to establish consistent Jacobian matrices for the Newton–
Raphson type iterations to solve the governing algebraic
equations (which correspond to the nodal conditions to be
satisfied).

An important point is that the FCBI schemes of fluid flow
solution can be used directly to solve ‘‘fully coupled’’ fluid
flows with structural interactions (20,35). The coupling of
arbitrary discretizations of structures and fluids in which
the structures might undergo large deformations is
achieved by satisfying the applicable fluid–structure inter-
face force and displacement conditions (20). The complete
set of interface relations is included in the governing nodal
point equations to be solved. Depending on the problem and
in particular the number of unknown nodal point variables,
it may be most effective to solve the governing equations by
using partitioning (36). However, once the iterations have
converged (to a reasonable tolerance), the solution of the
problem has been obtained irrespective of whether parti-
tioning of the coefficient matrix has been used.

While the solution of fluid–structure interactions is
encountered in many applications, the analysis of even
more general and complex multiphysics problems includ-
ing thermo-mechanical, electromagnetic, and chemical
effects is also being pursued, and the same fundamental
principles apply (1).

Solution of Algebraic Equations

The finite element analysis of complex systems usually
requires the solution of a large number of algebraic equa-
tions; to accomplish this solution effectively is an important
requirement.

Consider that no parallel processing is used. In static
analysis, ‘‘direct sparse solvers’’ based on Gauss elimina-
tion are effective up to about one half of a million equations
for three-dimensional solid models and up to about 3 million
equations for shell models. The essence of these solvers is
that first graph theory is used to identify an optimal
sequence to eliminate variables and then the actual Gauss
elimination (that is, the factorization of the stiffness matrix
and solution of the unknown nodal variables) is performed.

For larger systems, iterative solvers possibly combined
with a direct sparse solver become effective, and here in
particular an algebraic multigrid solver is attractive. Mul-
tigrid solvers can be very efficient in the solution of struc-
tural equations but frequently are embedded in particular
structural idealizations only (like for the analysis of plates).
An ‘‘algebraic’’ multigrid solver in principle can be used for
any structural idealization because it operates directly on
the given coefficient matrix (37). Figure 5 shows a model
solved by using an iterative scheme and gives a typical
solution time.

Considering transient analysis, it is necessary to distin-
guish between vibration analyses and wave propagation
solutions. For the linear analysis of vibration problems,
mode superposition is commonly performed (3,38). In such
cases, frequencies and mode shapes of the finite element
models need be computed, and this is commonly achieved
using the Bathe subspace iteration method or the Lanczos
method (3).

For the nonlinear analysis of vibration problems,
usually a step-by-step direct time integration solution is
performed with an implicit integration technique, and fre-
quently the trapezoidal rule is used (3). However, when
large deformation problems and relatively long time dura-
tions are considered, the scheme in Ref. 39 can be much

Figure 5. Model of a rear axle; about a quarter of a million
elements, including contact solved in about 20 minutes on a
single-processor PC.

6 THE FINITE ELEMENT METHOD



more effective. The solution of a finite element model of one
half of a million equations solved with a few hundred time
steps would be considered a large problem.

Of course, the explicit solution procedures already men-
tioned above are used for short duration transient and wave
propagation analyses (3,40).

In the simulations of fluid flows, the number of nodal
unknowns usually is very large, and iterative methods need
to be used for solution. Here algebraic multigrid solvers are
very effective, but important requirements are that both
the computation time and amount of memory used should
increase about linearly with the number of nodal unknowns
to be solved for. Figure 3 gives a typical solution time for a
Navier–Stokes fluid flow problem. It is seen that with
rather moderate hardware capabilities large systems can
be solved.

Of course, these solution times are given merely to
indicate some current state-of-the-art capabilities, and
have been obtained using ADINA (41). Naturally, the
solution times would be much smaller if parallel processing
were used (and then would depend on the number of
processors used, etc.) and surely will be much reduced
over the years to come.

The given observations hold also of course for the solu-
tion of multiphysics problems.

MESHING

A finite element analysis of any physical problem requires
that a mesh of finite elements be generated. Because the
generation of finite element meshes is a fundamental step
and can require significant human and computational
effort, procedures have been developed and implemented
that automatize the mesh generation without human inter-
vention as much as possible.

Some basic problems in automatic mesh generation are
(1) that the given geometries can be complex with very
small features (small holes, chamfers, etc.) embedded in
otherwise rather large geometric domains, (2) that the use
of certain element types is much preferable over other
element types (for example, brick elements are more effec-
tive than tetrahedral elements), (3) that graded meshes
need be used for effective solutions (that is, the mesh should
be finer in regions of stress concentrations and in boundary
layers in fluid flows or the analysis of shells), and (4) that an
anisotropic mesh may be required. In addition, any valu-
able mesh generation technique in a general purpose ana-
lysis environment (like used in CAE solution packages, see
the section titled, ‘‘The Use of the Finite Element Method in
Computer-Aided Engineering’’) must be able to mesh com-
plex and general domains.

The accuracy of the finite element analysis results,
measured on the exact solution of the mathematical model,
highly depends on the use of an appropriate mesh, and this
holds true in particular when coarse meshes need be used to
reduce the computer time employed for complex analyses.
Hence, effective mesh generation procedures are most
important.

Various mesh generation techniques are in use (42).
Generally, these techniques can be classified into mapped

meshing procedures, in which the user defines and con-
trols the element spacings to obtain a relatively struc-
tured mesh, and free-form meshing procedures, in which
the user defines the minimum and maximum sizes of
elements in certain regions but mostly has little control
as to what mesh is generated, and the user obtains an
unstructured mesh. Of course, in each case the user also
defines for what elements the mesh is to be generated.
Mapped meshing techniques in general can be used only
for rather regular structural and fluid domains and
require some human effort to prepare the input but
usually result in effective meshes, in the sense that the
accuracy of solution is high for the number of elements
used. The free-form meshing techniques in principle can
mesh automatically any 3-D domain provided tetrahedral
elements are used; however, a rather unstructured
mesh that contains many elements may be reached.
The challenge in the development of free-form meshing
procedures has been to reach meshes that in general do
not contain highly distorted elements (long, thin sliver
elements must be avoided unless mesh anisotropy is
needed), that do not contain too many elements, and
that contain brick elements rather than tetrahedral ele-
ments. Two fundamental approaches have been pursued
and refined, namely methods based on advancing front
methodologies that generate elements from the boundary
inwards and methods based on Delaunay triangulariza-
tions that directly mesh from coarse to fine over the
complete domain. Although a large effort has already
been expended on the development of effective mesh
generation schemes, improvements still are much
desired, for example to reach more general and effective
procedures to mesh arbitrary three-dimensional geome-
tries with brick elements.

Figure 1 shows a three-dimensional mapped mesh of
brick elements, a largely structured mesh, for the analysis
of a wheel, and Fig. 6 shows a three-dimensional mesh of
tetrahedral elements, an unstructured mesh, for the ana-
lysis of a helmet. It is important to be able to achieve the
grading in elements shown in Fig. 6 because the potential
area of contact on the helmet requires a fine mesh.

Figure 7 shows another important meshing feature for
finite element analysis, namely the possibility to glue in a
‘‘consistent manner’’ totally different meshes together (19).
This feature provides flexibility in meshing different parts
and allows multiscale analysis. The glueing of course is
applicable in all linear and nonlinear analyses.

Because the effective meshing of complex domains still is
requiring significant human and computational effort,
some new discretization methods that do not require a
mesh in the traditional sense have been developed (43).
These techniques are referred to as meshless or meshfree
methods but of course still require nodal points, with nodal
point variables that are used to interpolate solid displace-
ments, fluid velocities, temperatures, or any other conti-
nuum variable. The major difference from traditional finite
element methods is that in meshfree methods, the discrete
domains, over which the interpolations take place, usually
overlap, whereas in the traditional finite element methods,
the finite element discrete domains abut each other, and
geometric overlapping is not allowed. These meshfree

THE FINITE ELEMENT METHOD 7



methods require appropriate nodal point spacing, and the
numerical integration is more expensive (43,44). However,
the use of these procedures coupled with traditional finite
elements shows promise in regions where either traditional
finite elements are difficult to generate or such elements
become highly distorted in geometric nonlinear analysis
(43).

THE USE OF THE FINITE ELEMENT METHOD IN COMPUTER-
AIDED ENGINEERING

The finite element method would not have become a suc-
cessful tool to solve complex physical problems if the
method had not been implemented in computer programs.
The success of the method is clearly due to the effective
implementation in computer programs and the possible

wide use of these programs in many industries and
research environments. Hence, reliable and effective finite
element methods were needed that could be trusted to
perform well in general analysis conditions as mentioned
above. But also, the computer programs had to be easy to
use. Indeed, the ease of use is very important for a finite
element program to be used in engineering environments.

The ease of use of a finite element program is dependent
on the availability of effective pre- and post-processing
tools based on graphical user interfaces for input and
output of data. The pre-processing embodies the use of
geometries from computer-aided design (CAD) programs
or the construction of geometries with CAD-like tools, and
the automatic generation of elements, nodal data, bound-
ary conditions, material data, and applied loadings. An
important ingredient is the display of the geometry and
constructed finite element model with the elements,
nodes, and so on. The post-processing is used to list and
graphically display the computed results, such as the
displacements, velocities, stresses, forces, and so on. In
the post-processing phase, the computed results usually
are looked at first to see whether the results make sense
(because, for example, by an input error, a different than
intended finite element model may have been solved), and
then the results are studied in depth. In particular, the
results should give the answers to the questions that
provided the stimulus for performing the finite element
analysis in the first instance.

The use of finite element programs in computer-aided
engineering (CAE) frequently requires that geometries from
CAD programs need be employed. Hence, interfaces to
import these geometries into the finite element pre-proces-
sing programs are important. However, frequently the com-
puter-aided design geometry can not be used directly to
generate finite element meshes and needs to be changed
(‘‘cleaned-up’’) to ensure well-connected domains, and by
deleting unnecessary details. The effective importing of
computer-aided design data is a most important step for
thewideuseoffiniteelementanalysis inengineeringdesign.

As mentioned already, the purpose of a finite element
analysis is to solve a mathematical model. Hence, in the
post-processing phase, the user of a finite element program
ideally would be able to ascertain that a sufficiently accu-
rate solution has been obtained. This means that, ideally, a
measure of the error between the computed solution and
the ‘‘exact solution of the mathematical model’’ would be
available. Because the exact solution is unknown, only
estimates can be given. Some procedures for estimating
the error are available (mostly in linear analysis) but need
to be used with care (45,46), and in practice frequently the
analysis is performed simply with a very fine mesh to
ensure that a sufficiently accurate solution has been
obtained. Figure 8 shows an example of error estimation.
Here, the scheme proposed by Sussman and Bathe (47) is
used in a linear, nonlinear, and FSI solution using ADINA.

In the first decades of finite element analysis, many
finite element programs were available and used. However,
the ensuing strive for improved procedures in these pro-
grams, in terms of generality, effectiveness, and ease of use,
required a significant continuous development effort. The
resulting competition in the field to further develop and

Figure 6. Model of a bicycle helmet showing mesh gradation.

Figure 7. Glueing of dissimilar meshes.

8 THE FINITE ELEMENT METHOD



Figure 8. Error estimation example: analysis of a cantilever with a hole. (a) Mesh of 9-node elements used for analysis of cantilever (with
boundary conditions). (b) Cantilever structure — linear analysis, estimated error in region of interest shown. (c) Cantilever structure —
linear analysis, exact error in region of interest shown. (d) Cantilever structure — nonlinear analysis, estimated error in region of interest
shown. (e) Cantilever structure — nonlinear analysis, exact error in region of interest shown. (f) Cantilever structure — FSI analysis,
estimated error in region of interest shown. (g) Cantilever structure — FSI analysis, exact error in region of interest shown.

THE FINITE ELEMENT METHOD 9



continuously support a finite element program reduced the
number of finite element systems now widely used to only a
few: MSC NASTRAN, NX NASTRAN, ANSYS, ABAQUS,
ADINA, and MARC are the primary codes used for static
and implicit dynamic analyses of structures, and LS-
DYNA, RADIOSS, PAMCRASH are the primary codes
used for explicit dynamic analyses. For multiphysics pro-
blems, notably fluid–structure interactions, primarily
ADINA and ANSYS are used.

CONCLUSIONS AND KEY CHALLENGES

Since the first publications on the practical use of the finite
element method, the field of finite element analysis has
exploded in terms of research activities and applications.
Numerous references are given on the World Wide Web.
The method is now applied in practically all areas of
engineering and scientific analyses. Since some time, the
finite element method and related techniques frequently
are simply referred to as ‘‘methods in computational fluid
and solid mechanics.’’

With all these achievements in place and the abundant
applications of computational mechanics today, it is surely

of interest to ask, ‘‘What are the outstanding research and
development tasks? What are the key challenges still in
the field?’’ These questions are addressed in the prefaces of
Ref. 1, see the 2003 and 2005 volumes.

Although much has been accomplished, still, many
exciting research tasks exist in further developing finite
element methods. These developments and the envisa-
ged increased use of finite element methods not only will
have a continuous and very beneficial impact on tradi-
tional engineering endeavors but also will lead to great
benefits in other areas such as in the medical and health
sciences.

Specifically, the additional developments of finite ele-
ment methods should not be directed only to the more
effective analysis of single media but also must focus on
the solution of multiphysics problems that involve fluids,
solids, their interactions, and chemical and electromag-
netic effects from the molecular to the macroscopic scales,
including uncertainties in the given data, and should also
be directed to reach more effective algorithms for the
optimization of designs.

Based on these thoughts, we can identify at least eight
key challenges for research and development in finite ele-
ment methods and numerical methods in general; these

Figure 8. (Continued )

10 THE FINITE ELEMENT METHOD



challenges pertain to the more automatic solution of math-
ematical models, to more effective and predictive numerical
schemes for fluid flows, to mesh-free methods that are
coupled with traditional finite element methods, to finite
element methods for multiphysics problems and multiscale
problems, to the more direct modeling of uncertainties in
analysis data, to the analysis and optimization of complete
lifecycles of designed structures and fluid systems, and
finally, to providing effective education and educational
tools for engineers and scientists to use the given analysis
procedures in finite element programs correctly and to the
full capabilities (1).

Hence, although the finite element method already is
widely used, still, many exciting research and develop-
ment efforts exist and will continue to exist for many
years.

BIBLIOGRAPHY

1. K. J. Bathe, ed., Computational Fluid and Solid Mechanics.
New York: Elsevier, 2001, 2003, 2005, 2007.

2. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method,
Vols. 1 and 2, 4th ed., New York: McGraw Hill, 1989, 1990.

3. K. J. Bathe, Finite Element Procedures. Englewood Cliffs, NJ:
Prentice Hall, 1996.

4. J. H. Argyris and S. Kelsey, Energy theorems and structural
analysis, Aircraft Engrg., Vols. 26 and 27, Oct. 1954 to May
1955.

5. M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp,
Stiffness and deflection analysis of complex structures, J.
Aeronaut. Sci., 23: 805–823, 1956.

6. R. W. Clough, The finite element method in plane stress
analysis, Proc. 2nd ASCE Conference on Electronic Computa-
tion, Pittsburgh, PA, Sept. 1960, pp. 345–378.

7. J. H. Argyris, Continua and discontinua, Proc. Conference on
Matrix Methods in Structural Mechanics, Wright-Patterson
A.F.B., Ohio, Oct. 1965, pp. 11–189.

8. R. H. MacNeal, A short history of NASTRAN, Finite Element
News, July 1979.

9. K. J. Bathe, E. L. Wilson, and F. E. Peterson, SAP IV —A
Structural Analysis Program for Static and Dynamic Response
of Linear Systems, Earthquake Engineering Research Center
Report No. 73–11, University of California, Berkeley, June
1973, revised April 1974.

10. K. J. Bathe, E. L. Wilson, and R. Iding, NONSAP—A Structural
Analysis Program for Static and Dynamic Response of
Nonlinear Systems, Report UCSESM 74–3, Department of Civil
Engineering, University of California, Berkeley, May 1974.

11. K. J. Bathe, H. Ozdemir, and E. L. Wilson, Static and Dynamic
Geometric and Material Nonlinear Analysis, Report UCSESM
74-4, Department of Civil Engineering, University of Califor-
nia, Berkeley, May 1974.

12. K. J. Bathe and E. L. Wilson, Numerical Methods in Finite
Element Analysis. Englewood Cliffs, NJ: Prentice Hall, 1976.

13. J. Mackerle, FEM and BEM in the context of information
retrieval, Comput. Struct., 80: 1595–1604, 2002.

14. B. M. Irons, Engineering applications of numerical integration
in stiffness methods, AIAA J., 4: 2035–2037, 1966.

15. I. Babuška and T. Strouboulis, The Finite Element Method and
its Reliability. Oxford, UK: Oxford Press, 2001.

16. K. J. Bathe, E. Ramm, and E. L. Wilson, Finite element for-
mulations for large deformation dynamic analysis, Int. J.
Numer. Methods Eng., 9: 353–386, 1975.

17. F. J. Montáns and K. J. Bathe, Computational issues in large
strain elasto-plasticity: an algorithm for mixed hardening and
plastic spin, Int. J. Numer. Methods Eng., 63: 159–196, 2005.

18. M. Kojić and K. J. Bathe, Inelastic Analysis of Solids and
Structures. Berlin: Springer, 2005.

19. N. El-Abbasi and K. J. Bathe, Stability and patch test perfor-
mance of contact discretizations and a new solution algorithm,
Comput. Struct., 79: 1473–1486, 2001.

20. K. J. Bathe and H. Zhang, Finite element developments for
general fluid flows with structural interactions, Int. J. Numer.
Methods Eng., 60: 213–232, 2004.

21. F. Brezzi and K. J. Bathe, A discourse on the stability condi-
tions for mixed finite element formulations, J. Comput. Meth-
ods Appl. Mechanics Eng., 82: 27–57, 1990.

22. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element
Methods. Berlin: Springer, 1991.

23. D. Chapelle and K. J. Bathe, The Finite Element Analysis of
Shells – Fundamentals. Berlin: Springer, 2003.

24. K. J. Bathe and E. N. Dvorkin, A formulation of general shell
elements — The use of mixed interpolation of tensorial com-
ponents, Int. J. Numer. Methods Eng., 22: 697–722, 1986.

25. K. J. Bathe, A. Iosilevich and D. Chapelle, An evaluation of the
MITC shell elements, Comput. Struct., 75: 1–30, 2000.

26. K. J. Bathe, The inf-sup condition and its evaluation for mixed
finite element methods, Comput. Struct., 79: 243–252, 971,
2001.

27. D. Chapelle and K. J. Bathe, Fundamental considerations for
the finite element analysis of shell structures, Comput. Struct.,
66: no. 1, 19–36, 1998.

28. J. F. Hiller and K. J. Bathe, Measuring convergence of mixed
finite element discretizations: An application to shell struc-
tures, Comput. Struct., 81: 639–654, 2003.

29. K. J. Bathe and E. L. Wilson, Thick shells, in Structural
Mechanics Computer Programs, W. Pilkey, K. Saczalski and
H. Schaeffer, eds. Charlottesville: The University Press of
Virginia, 1974.

30. M. Bischoff and E. Ramm, On the physical significance of
higher order kinematic and static variables in a three-dimen-
sional shell formulation, Int. J. Solids Struct., 37: 6933–6960,
2000.

31. D. Chapelle, A. Ferent and K. J. Bathe, 3D-shell elements and
their underlying mathematical model, Math. Models& Methods
Appl. Sci., 14: 105–142, 2004.

32. J. Iannelli, Characteristics Finite Element Methods in Compu-
tational Fluid Dynamics. Berlin: Springer Verlag, 2006.

33. T. J. R. Hughes and G.N. Wells, Conservation properties for the
Galerkin and stabilised forms of the advection-diffusion and
incompressible Navier-Stokes equations, J. Comput. Methods
Appl. Mech. Eng., 194: 1141–1159, 2005, and Correction 195:
1277–1278, 2006.

34. K. J. Bathe and H. Zhang, A flow-condition-based interpolation
finite element procedure for incompressible fluid flows, Com-
put. Struct., 80: 1267–1277, 2002.

35. K. J. Bathe and G. A. Ledezma, Benchmark problems for
incompressible fluid flows with structural interactions, Com-
put. Struct., 85: 628–644, 2007.

36. S. Rugonyi and K. J. Bathe, On the finite element analysis of
fluid flows fully coupled with structural interactions, Comput.
Model. Eng. Sci., 2: 195–212, 2001.

THE FINITE ELEMENT METHOD 11



37. K. Stuben, A review of algebraic multigrid, J. Computat. Appl.
Math., 128(1–2): 281–309, 2001.

38. J. W. Tedesco, W. G. McDougal, and C. A. Ross, Structural
Dynamics. Reading, MA: Addison-Wesley, 1999.

39. K. J. Bathe, Conserving energy and momentum in nonlinear
dynamics: a simple implicit time integration scheme, Comput.
Struct., 85: 437–445, 2007.

40. T. Belytschko and T.J.R. Hughes (eds), Computational Meth-
ods for Transient Analysis. New York: North Holland, 1983.

41. K. J. Bathe, ADINA System, Encycl. Math., 11: 33–35, 1997;
see also: http:// www.adina.com.

42. B.H.V. Topping, J. Muylle, P. Iványi, R. Putanowicz, and B.
Cheng, Finite Element Mesh Generation. Scotland: Saxe-
Coburg Publications, 2004.

43. S. Idelsohn, S. De, and J. Orkisz, eds. Advances in meshfree
methods, Special issue of Comput. Struct., 83, no. 17–18, 2005.

44. S. De and K. J. Bathe, Towards an efficient meshless computa-
tional technique: the method of finite spheres, Eng. Computat.,
18: 170–192, 2001.

45. M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in
Finite Element Analysis. New York: Wiley, 2000.

46. T. Grätsch and K. J. Bathe, A posteriori error estimation
techniques in practical finite element analysis, Comput.
Struct.,83: 235–265, 2005.

47. T. Sussman and K. J. Bathe, Studies of finite element proce-
dures — on mesh selection, Comput. Struct., 21: 257–264, 1985.

KLAUS-JÜRGEN BATHE

Massachusetts Institute of
Technology

Cambridge, Massachusetts

12 THE FINITE ELEMENT METHOD



ABSTRACT

The objective in this article is to give an overview of finite
element methods that currently are used extensively in
academia and industry. The method is described in
general terms, the basic formulation is presented, and
some issues regarding effective finite element procedures
are summarized. Various applications are given briefly to
illustrate the current use of the method. Finally, the
article concludes with key challenges for the additional
development of the method.



U

UNIFIED MODELING LANGUAGE (UML)

UML is a graphically oriented computer language used to
represent software programs and related phenomena in a
manner that allows its users to focus on the essential aspects
of their software without being distracted by syntactic and
technology-specific details found in traditional program-
ming languages. In effect, a UML specification of a program
is an example of an engineering model, that is, a reduced
representation of an existing or planned design constructed
to facilitate the assessment of key characteristics of that
design. Given the complexity of modern software systems,
the use of models and modeling as a complexity reduction
technique is both obvious and necessary.

Since its adoption as a standard technology by the
Object Management Group (OMG) in 1996 (1), UML
has been widely adopted by software developers and
researchers and is supported by numerous tool vendors.
It is also an integral part of many computer science and
software engineering curricula throughout the world. It is
probably the most widespread software modeling lan-
guage and has served as the foundation or inspiration
for numerous domain-specific modeling languages and
standards.

THE HISTORY OF THE DEVELOPMENT OF UML

The idea of modeling software dates back at least as far as
classic flowcharts, which were used to depict algorithmic
flow in an intuitive graphical form that captured the
essence of the algorithm without the encumbrance of
irrelevant detail. Since those early days, many other
languages were proposed for modeling software systems.
In particular, during the late 1980s and early 1990s, there
was an explosion of new modeling languages and
notations, stimulated by the resurgence of interest in
object-oriented languages and methods (2). One of the
characteristics of these technologies was that software
based on them typically involved complex structural rela-
tionships (often mimicking structural relationships in the
physical world), which became very difficult to discern in
the text-based linear forms characteristic of traditional
programming languages. Unfortunately, this diversity
led to major fragmentation in terms of expertise and
tooling. Users who wanted to take advantage of such
methods found that they were forced to make a choice
that would invariably lead them into isolation and an
undesirable lock-in to those tools and vendors that sup-
ported their particular selection.

This was the setting in which UML was defined, first as a
merger of two of the most widely known and most popular
software modeling notations of the time—the Booch OO
method (3) and the Object Modeling Technique (4) devised
by Rumbaugh et al. . These were joined later by the Object-
Oriented Software Engineering method and notation of

Jacobson et al. (5) As this joint notation was being defined,
it was also proposed as an industry standard, in response to
a request for proposal issued in 1995 by the OMG, a repre-
sentative consortium of software product vendors and users.
At this point, other experts joined the original UML team of
Jim Rumbaugh, Grady Booch, and Ivar Jacobson and the
first version of standardized version of UML, UML 1.1, was
adopted by the OMG in December 1996.

After the initial adoption, several lesser revisions of the
language were produced. With two exceptions, these revi-
sions did not add significant new features, comprising
primarily minor fixes and clarifications. The first major
addition, the concept of profiles, was introduced with UML
version 1.4. Profiles provided a more structured facility for
defining domain-specific variations of UML. The second
major innovation was the introduction of a model of
actions—a more precise definition of the run-time seman-
tics of UML and a corresponding action language. The
latter identified a set of basic primitive instructions for
creating and manipulating run-time artifacts, such as
objects and links, as well as instructions for inter-object
communications. (Initially, the actions model was defined
as a supplementary specification to the overall standard
but has eventually integrated into the standard in
version 1.5.)

The addition of the actions model to UML was caused
by the growing pressure to extend it beyond being just a
relatively informal documentation facility for supporting
analysis and design activities. Instead—stimulated by
experiences with several successful commercial products—
there was a strong motivation to evolve UML into a fully
fledged computer language that could be used to specify and
even implement software systems. This style of software
development in which high-level modeling languages play
a primary role in analysis, design, and in some cases,
implementation (as opposed to an optional support role)
is often called model-driven development (MDD). The cen-
tral idea behind MDD is that, because modeling languages
are free of attention-diverting implementation-specific
detail, they are better suited to coping with the complexity
of modern software design than most common program-
ming languages. Furthermore, if such languages are sup-
ported by powerful computer-based tools, which can
unburden software developers from having to perform
various time-consuming and mechanistic activities (such
as translating the modeling specifications into correspond-
ing programming language implementations), then MDD
has the potential to improve significantly both the quality of
software and the productivity of developers. In response to
the growing interest and successes of MDD, the OMG
defined a vision and a plan for a series of industry standards
in support of MDD, which it named Model-Driven Archi-
tecture (MDA) (6).

For UML to be an effective MDD tool, it was necessary
to provide a much tighter and more extensive specification
of its semantics and its syntax. This, along with strong

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



pressure to add some new modeling capabilities, led to a
major revision of UML, UML 2.0, which was adopted by
the OMG in 2004 (7–11). Several further minor revisions
of this standard were defined in subsequent years to fix
lesser technical issues and inconsistencies and to add
clarifications.

Distinguishing Characteristics of UML

As noted above, software modeling languages have a long
history, starting with flowcharts, through to so-called
structured analysis and structured design languages
(inspired by the principles of structured programming),
and on to a variety of object-oriented modeling languages
and notations. UML builds on this tradition, reusing
many of the proven ideas and methods of its predecessors.
However, it is worth noting that modeling language
design is still in its infancy, with no systematic design
processes defined that are based on well-understood
scientific and engineering principles. In other words,
unlike programming languages, a sound and complete
theory of modeling language construction has yet to
emerge.

The principal features of UML 2 that drove its design are
the following:

1. Object orientation

2. Visual concrete syntax

3. Separation of views

4. Single underlying model

5. Customizability

Object Orientation. UML emerged at the time of
heightened interest in the object paradigm and object-
oriented programming languages. Consequently, it was
very much influenced by the dominant object-oriented
programming languages of the time, in particular Cþþ
and Smalltalk-80. It incorporates many, if not most, of the
primary concepts and terminology of those languages,
such as the notions of class, inheritance, encapsulation,
polymorphism, and the like. Although it is possible to
model non-object-oriented systems with UML, the
underlying conceptual foundations are still based on
the object paradigm. For example, the semantics of
UML require that all run-time behaviors, regardless of
whether they are in the form of state machines, activities,
or actions, are the consequence of the actions of objects,
even when such objects are not explicit in the user model.
Furthermore, in UML 2. even behaviors are defined as
kinds of objects—although this may be transparent to the
modeler.

Note, however, that important elements of the relational
paradigm as used in database theory are also included,
particularly in the area of class modeling (i.e., UML class
diagrams). Specifically, in the modeling of associations.
UML 2 provides a capability to render an association as
either the equivalent of a table entry, to accommodate the
relational approach, or, alternatively, as a set of attributes
belonging to multiple classes, in support of the object-
oriented approach.

Visual concrete syntax. The use of diagrams and graphi-
cal forms started with the earliest software modeling lan-
guages. This is due to the synthetic nature of visual
representations, which seem to appeal to human intuition
and cognitive mechanisms. Thus, flowcharts, which pro-
vide a static view of dynamic phenomena (the execution of
an algorithm), are typically more easily grasped than
equivalent textual representations. Similarly, visual repre-
sentations are generally preferred for depicting structural
relationships such as network topologies and inheritance
relationships. This is particularly useful in object-oriented
systems, since their fundamental operational paradigm is
that of a network of collaborating entities (objects). Conse-
quently, UML provides graphical representations for many
of its key concepts. These are usually supplemented with
textual annotations to capture the more detailed aspects.
Several textual versions of UML have been defined, but
none of them have been broadly accepted, which confirm
the intuitive appeal of visual languages.

Separation of Views. Software invariably reflects the
complexity of the real world in which it operates, and
this complexity can often overwhelm our cognitive abilities.
A traditional means for dealing with this problem is to focus
only on those aspects of the system that are of concern to the
observer. For example, when trying to understand how a
collection of objects collaborate to achieve some emergent
system-level behavior, the details of the inheritance struc-
ture of the objects involved is not relevant and can be safely
ignored. However, when the focus shifts to the implemen-
tation of these objects, their inheritance structures become
of paramount importance, whereas the interactions become
irrelevant. This has motivated many modeling language
designers to partition their language into multiple different
types of views, with each type of view defined such that it
renders only those aspects that are relevant to its specific
set of concerns. In such languages, the full system specifi-
cation is represented by the combination of all individual
views. UML too has adopted this approach and defines
several different diagram types that describe the structure
and behavior of the modeled software system as well as the
structure of the model itself. These diagram types are as
follows:

� Package diagrams

� Class diagrams

� Instance diagrams

� Structure diagrams (subdivided into collaboration dia-
grams and composite structure diagrams)

� Interaction diagrams (subdivided into sequence dia-
grams, interaction overview diagrams, communica-
tion diagrams, as well as interaction tables)

� Activity diagrams

� Statechart diagrams

� Use-case diagrams

� Deployment diagrams

The purpose, form, and meaning of these diagrams are
explained below.

2 UNIFIED MODELING LANGUAGE (UML)



Single Underlying Model. One of the common problems
in many older modeling languages that use multiple
types of views is inconsistencies that can be introduced
into the model when two or more types of views overlap.
Namely, some elements or aspects of a system may be
specified in more than one type of view. If the views are
constructed independently, it can happen that an ele-
ment defined in multiple views may have contradictory
specifications. To avoid this problem, the diagrams in
UML are defined as partial views of a single underlying
model. This model is constructed according to the rules of
UML as defined by its metamodel. The UML metamodel
is a formal model, specified using the Meta-Object Facil-
ity, a standard OMG language used to define modeling
languages (12). It specifies all the modeling concepts of
UML as well as the rules for how these concepts can be
combined to ensure semantic and syntactic consistency of
UML models. Thus, when something is specified in any
UML diagram, it can be checked against the metamodel
rules, and violations of those rules that would lead to
inconsistencies in the model can be identified and
flagged. (It should be noted, however, that the UML
metamodel does not guard against all possible inconsis-
tencies, so that additional consistency checks may still be
required.)

Customizability. UML is a general-purpose modeling
language that covers a broad spectrum of application
domains. This generality implies that UML must abstract
out characteristics that may vary from one domain to
another or from one technology to another. For instance,
different domains may have very different multitasking
and scheduling policies. Or, different programming lan-
guages might differ in their rules for type compatibility or
forms of inheritance (e.g., Java only supports single
inheritance, whereas Cþþ supports multiple inheri-
tance). To cope with this diversity, UML incorporates
numerous semantic variation points, where the well-
formedness rules of the metamodel provide for domain-
specific or technology-specific choices to be specified. This
implies that standard UML cannot be used as an imple-
mentation language, since it is not sufficiently refined to
produce a complete implementation. However, it does
provide a customization capability, in the form of profile
definition mechanisms, with which it is possible to pro-
duce a specialized variant or domain-specific interpreta-
tion of UML. Such specializations, known as profiles, can
be taken to any desired degree of precision, including
transforming UML into a domain-specific implementation
language with all the necessary detailed semantics
required to generate complete implementations directly
from the model. One important feature of the profile
mechanism is that a validly defined profile can be sup-
ported by any tool that supports standard UML, poten-
tially eliminating or greatly reducing the need for
developing and maintaining custom tooling.

UML Diagram Types

The following discussion is a brief overview of the purpose
and form of individual UML diagram types. Not all diagram

types are illustrated but only the ones that are most widely
used. Furthermore, only the salient aspects of the concepts
in those diagrams are described. Readers interested in
more detail should refer to the standard itself or one of
the references in the Bibliography.

In most UML tools, models are created through the
construction of diagrams. Note that a given model element
can appear in more than one diagram or diagram type. In
each case, only those aspects that are relevant to that view
need be shown.

Package Diagrams. Packages are different from most
other UML concepts because they are typically not used to
model anything (although they can and are sometimes
used for that purpose). Instead, they are used to partition
the model into convenient groupings. A UML package is a
named container that houses a collection of related model
elements, possibly including other packages. The top-
level package that contains all other packages and model
elements is called a model. UML does not impose or
assume any specific grouping criteria for packages, leav-
ing the choice up to the modeler (e.g., grouping for reuse,
grouping by ownership, or grouping by functional cohe-
sion).

A package diagram graphically shows packages, their
contents, and their relationships to other packages. In
Fig. 1, ModelPackage contains three subsystem packages
and imports the contents of the UtilitiesLibrary package.
Note that the subsystem packages could have been drawn
within the ModelPackage graphical element to show that
they are contained inside the ModelPackage.

Class Diagrams. Class diagrams are the most widely
used diagrams in UML. They are based on classic entity-
relationship diagrams from database theory, but they have
been adapted to the needs of the object paradigm. A class in
UML is a specification of an object type, including all of
its structural features (called properties), and behavioral
features (called operations), as well as their visibilities with
respect to other objects (public, protected, private or pack-
age). When an instance of a class is created, the result is an
object with all the features specified for the class.

Model Package

Subsystem1 Subsystem2 Subsystem3

Utilities Library
«import»

Figure 1. A package diagram.

UNIFIED MODELING LANGUAGE (UML) 3



A class is represented in a class diagram by a rectangle
with the name of the class inside the rectangle. The dia-
grammatic representation may optionally include partial
or complete lists of attributes and operations of the class.
Each list is contained in its own subcompartment as shown
in Fig. 2. The Employee class in the diagram is shown with
three typed attributes and two operations, whereas the
Company class is only shown with two attributes and no
operations.

The class diagram in Fig. 2 also illustrates some
important relationships that can exist between classes
in UML. The arrow with the triangular arrowhead
denotes generalization. That is, the class Manager is a
special case of the more general class Employee. As such,
Manager automatically inherits all the features (attri-
butes and operations) of its parent class, but it may add its
own additional features (e.g., the name of the department
that the manager manages). The other lines in this dia-
gram represent associations, which show how instances
of the class at one end of the association relate to
instances of the class at the other end. For example,
the association between Employee and Company indi-
cates that for each instance of Employee there is exactly
one corresponding Company that is that employee’s
employer (the meaning of an association for a class is
read at the far end), and that for each instance of the
Company class, there is a set of zero or more (indicated by
the ‘‘�’’ character) instances of the class Employee who are
the employees of that company.

Instance Diagrams. These are also known as object dia-
grams, because they usually show how specific objects
(class instances) relate to each other. Note that class dia-
grams abstract out individual object characteristics and
only capture what is common across all instances of the
classes shown in a diagram.

To distinguish more easily instances from classes, the
names of instances in instance diagrams are underlined
and the name of their type (class) is shown following a colon
symbol. The instance diagram in Fig. 3 shows a set of object
instances and is a particular case of the specification
defined by the class diagram in Fig. 2. It depicts an instance
of a company (named ‘‘Big Co.’’) that has four employees,
one of which is the manager of the HR department who
manages the other three employees. The lines that connect
the objects are instances of corresponding associations and
are called links.

Structure Diagrams. Whereas class diagrams specify
what is common across all potential instances of a class
independently of time, instance diagrams describe ‘‘snap-
shots’’ of a running system, showing specific instances at
specific points in time. Structure diagrams belong in
between these two extremes: Although they represent
instances and their mutual relationships, they abstract
away details of which particular instances are involved
as well as the time of occurrence. This makes them useful
for generic modeling of instances and their interconnection
patterns. Figure 4 shows a collaboration, which is one kind
of structure diagram that identifies a structural pattern of
collaborating object instances (note that this diagram is a
kind of generalization of the diagram in Fig. 3). The nodes
represent generalized instances (generalized in the sense
that their identities and attribute values have been
abstracted out) and are called roles, whereas the lines
represent generalized links and are called connectors.

Structure diagrams are also used to describe the imple-
mentation structure of complex classes that consist of
collaborations of encapsulated objects. This internal
structure is described by a collaboration structure drawn
within a frame that represents the outer shell of the
complex class (in contrast to the dashed oval frame
used for collaborations).

Interaction Diagrams. UML interactions capture end-to-
end scenarios that result from the collaborative actions of

0..*

10..*

0..1

Employee

Manager

Company
employees

reports

employer

name : String
numEmployees : lnteger

name : String

department : String

manager

reclassify (newJob : Job Category)
newSalary (newS: Amount)

position: JobCategory
salary : Amount

Figure 2. A class diagram.

c: Companyhr1 : Employee

hr2 : Employee
hrBoss : Manager

hr2 : Employee

name = “ Joe Doe” 
name = String 
numEmployees : lnteger

name = “ Dee Bell” 
name = “ Sam Qu” 
department = “ Human resources” 

name = “ Don Able” 

Figure 3. An instance diagram.

4 UNIFIED MODELING LANGUAGE (UML)



multiple objects, which communicate with each other
across links. Consequently, interactions are tightly coupled
to collaboration structures, since these structures are used
to identify both the participants of an interaction as well as
the links (connectors) through which the communications
takes place. The most common form for representing inter-
actions in UML is the sequence diagram. These are dia-
grams in which the vertical axis represents the passage of
time (although in some cases, it may run horizontally),
whereas the horizontal axis identifies the participants in
the interaction, shown as labeled vertical dashed lines
called lifelines—as illustrated in Fig. 5. Communications
between participants are represented by labeled lines with
arrowheads that indicate the direction in which the mes-
sages are flowing. Several shorthand notations are defined
to simplify complex interactions or to designate special
semantics, such as the box labeled ‘‘loop’’ in Fig. 5, which
indicates that the enclosed message sequence may be
repeated multiple times. The thin rectangles overlapping
the lifelines are called execution occurrences and model
states during which the respective object is actively execut-
ing some behavior.

UML also provides other ways of representing interac-
tions including communication diagrams, interaction over-
view diagrams, and interaction tables.

Activity Diagrams. Activity diagrams are an extended
version of classic flowcharts and are used to represent
algorithmic behaviors (e.g., business processes). The exten-

sions include the ability to model the passing of data from
one algorithmic step to the next (data flows) and to model
concurrent execution.

The nodes in an activity graph represent either primi-
tive actions or invocations of other activities (to support
hierarchical functional decomposition). The directed arcs
that join these nodes either represent the flow of data
between nodes (object flows) or the passing of execution
control from one node to another (control flows). A flow can
be split into multiple concurrent flows, and conversely,
concurrent flows can be reduced to a sequential flow. As
an option, the individual nodes in an activity can be asso-
ciated with the entities responsible for their execution,
using a tabular format called swimlanes. An example of
an activity diagram with swimlanes is shown in Fig. 6.
When this activity starts, the boss role first waits for the
arrival of a start signal and, when it comes, creates an order
that is sent out to two employees (emp[1] and emp[2]). The
employees then work on their respective copies of the order
in parallel (the vertical bar with one incoming and two
outgoing flows designates a concurrency fork). Note that
the flows from GetOrder to the two ProcessOrder nodes are
examples of object flows, which is signified by the labeled
rectangle placed over the flow. The label identifies the type
of data that flows between the nodes. Flows that do not
have data placed over them are control flows, which means
that execution control is passed from the source node to
the destination node as soon as the source node completes.
The activity then waits for both employees to complete the

CompanyStructure

boss : Manager emp : Employee [0..*] : Company

Figure 4. A structure diagram showing a collabo-
ration.

finished

do

done

sd Repeat

boss : Manager

start

loop

emp : Employee [1] : Company

Figure 5. Sequence diagram.

UNIFIED MODELING LANGUAGE (UML) 5



processing of their orders (indicated by the vertical bar with
two incoming and one outgoing flow), and when that hap-
pens, the activity terminates.

Statechart Diagrams. State machines are used to
describe event-driven behaviors in UML. An event can
be the reception of a communications message, the expiry
of some instant in time, or a change of state of some entity.
The specific finite state machine formalism used in UML is
a variant of David Harel’s statecharts (13). Statecharts
introduce several graphical shortcuts that enable the spe-
cification of some very complex behaviors in very concise
ways. They also provide for hierarchical modeling so that a
state at one level of abstraction can be decomposed into a
statechart in its own right at the next lower level as illu-
strated by state ProcessingOrder in Fig. 7. Note also the
transition from the edge of the ProcessingOrder state to the
terminal state (indicated by a diagonal cross icon). This
transition is taken when the stop event occurs regardless of
which substate of the ProcessingOrder state is current at
the time of the event. This is a shorthand representation for
two separate transitions from the two inner states, each
triggered by the same stop event.

Use-Case Diagrams. These diagrams are used to model
requirements expressed in the form of use cases (i.e., ways
in which the system under consideration is used to provide

the desired functionality). Use case diagrams (see Fig. 8)
identify the actors, who interact with the system to achieve
the desired use case. They can also show various relation-
ships between different use cases, such as when one use
case incorporates another more primitive use case. In fact,
use-case diagrams are merely a special form of class
diagrams. However, these diagrams are not suitable for
viewing the actual contents of use cases, which are typically
captured as text.

Deployment Diagrams. Deployment diagrams are used
to specify how software is distributed across an execution
platform. In these diagrams, the software is represented by
its physical manifestations, such as files, binary executa-
bles, deployment descriptors, and the like. Standard UML
provides relatively rudimentary capabilities for modeling
deployment, which is why this type of diagram is used less
often in practice than any of the others. Where more
sophisticated modeling of deployment is required, it may
be necessary to define appropriate profiles. One such pro-
file, adopted as an OMG recommendation, is the profile for
Modeling and Analysis of Real-Time and Embedded
systems (MARTE)(14).

UML Profiles

Profiles are a means for defining domain-specific interpre-
tations of UML. Profiles usually consist of several refine-
ments of standard UML concepts such that these
refinements capture the specific characteristics of the con-
cepts of a particular domain. For example, in the domain of
concurrent programming, a mutual exclusion semaphore
concept can be defined as a specialization of the general
UML class concept. Such an extension would add suitable
constraints and features that distinguish a semaphore from

Figure 6. An activity diagram with swimlanes.

boss : Manager emp[1] : Employee

Process
Order

:OrderGetOrderstart
Process
Order

emp[2] : Employee

WaitForStart

WaitForDone1

WaitForDone2

done/

done/

stop/

reset/

start/GetOrder()

Processing Order

Figure 7. Statechart diagram.

Customer

DepositFunds

TransferFunds

WithdrawCash

ATM

*

*

*

*

*
*

Figure 8. Use-case diagram.

6 UNIFIED MODELING LANGUAGE (UML)



other types of objects. These types of modeling concept
extensions are called stereotypes, and once defined, they
can be used like any other first-class UML language con-
structs. Since they are derived from standard UML con-
cepts, they are compatible with any tool that supports the
UML standard. Another important advantage of this
approach to designing domain-specific modeling languages
is that it reuses the design and validation efforts that went
into standard UML.

Profile users have the choice to restrict their models
to only use the domain-specific extensions defined in the
profile, or alternatively, they can decide to combine the
extensions with the general UML concepts. By selecting
the first option, it is possible to derive a compact domain-
specific language that is significantly smaller than the
UML standard.

In addition to using profiles to construct domain-spe-
cific languages, it is possible to use them as domain-
specific model filters. This is because of the ability for a
UML profile to be dynamically applied to a UML model
without corrupting the model. That is, when that profile is
removed (‘‘unapplied’’) at a later time, the original model,
emerges unchanged. Such a ‘‘model filter’’ profile can be
used to define a domain-specific interpretation of the
original model. For example, it may be desired to deter-
mine the performance characteristics of a UML-based
design. By applying a performance-based profile to the
design model, it becomes possible to recast the UML model
as a performance model, which can then be analyzed by
appropriate methods and tools. Since the performance
model is derived directly from the original model, the
likelihood of translation errors from one formalism to
another can be greatly reduced.

BIBLIOGRAPHY

1. Object Management Group, http://www.omg.org/.

2. I. Graham, Object-Oriented Methods: Principles and Practice,
3rd ed., Reading MA: Addison-Wesley, 2000.

3. G. Booch, Object-Oriented Analysis and Design with Applica-
tions. Benjamin-Cummings Publishing, 1993.

4. J. Rumbaugh, M. Blaha, W. Lorensen, F. Eddy, and W.
Premerlani, Object-Oriented Modeling and Design. Englewood
cliffs, NJ: Prentice-Hall, 1990.

5. I. Jacobson, Object Software Engineering: A Use Case Driven
Approach. Reading MA: Addison-Wesley Professional, 1992.

6. Object Management Group, Model Driven Architecture (MDA),
OMG document ormsc/2001-07-01. Available: http://www.
omg.org/docs/ormsc/01-07-01.pdf, July 2001.

7. Object Management Group, The Unified Modeling Language:
Infrastructure—version 2.1.2, OMG document form/2007-11-
04, Available: http://www.omg.org/docs/formal/07-11-04.pdf,
November 2007.

8. Object Management Group, The Unified Modeling Language:
Superstructure—version 2.1.2, OMG document form/2007-11-
02, Available: http://www.omg.org/docs/formal/07-11-02.pdf,
November 2007.

9. Object Management Group, Object Constraint Language:
Infrastructure—version 2.0, OMG document form/2006-05-
01. Available: http://www.omg.org/docs/formal/06-05-01.pdf,
May 2005.

10. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual, 2nd ed., Reading, MA: Addison-
Wesley, 2005.

11. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide. 2nd ed., Reading, MA: Addison-Wesley,
2005.

12. Object Management Group, Meta Object Facility Core
Specification—version 20, OMG document form/2006-01-
01. Available: http://www.omg.org/docs/formal/06-01-01.pdf,
January 2006.

13. D. Harel, A visual formalism for complex systems. in Science of
Computer Programming 8. Amsterdam: North-Holland, 1987,
pp. 231–274.

14. Object Management Group, UML Model for Modeling and
Analysis of Real-time and Embedded Systems (MARTE),
OMG document ptc/07-08-04. Available: http://www.omg.org/
docs/ptc/07-08-04.pdf, August 2007.

BRAN SELIC

Malina Software Corporation
Nepean, Ontario, Canada

UNIFIED MODELING LANGUAGE (UML) 7



V

VIENNA DEVELOPMENT METHOD

The Vienna Development Method (VDM) is one of the
longest established model-oriented formal methods for
the development of computer-based systems and software.
It consists of a group of mathematically well-founded lan-
guages and tools for expressing and analyzing system
models during early design stages, before expensive imple-
mentation commitments are made. The construction and
analysis of the model help to identify areas of incomplete-
ness or ambiguity in informal system specifications, and to
provide some level of confidence that a valid implementa-
tion will have key properties, especially those of safety or
security. VDM has a strong record of industrial application,
in many cases by practitioners who are not specialists in the
underlying formalism or logic. Experience with the method
suggests that the effort expended on formal modeling and
analysis can be recovered in reduced rework costs that
develop from design errors.

VDM models are expressed in a specification language
(VDM-SL) that supports the description of data and func-
tionality. Data are defined by means of types built using
constructors that define structured data and collections
such as sets, sequences, and mappings from basic values
such as Booleans and numbers. These types are very
abstract, which allows the user to add any relevant con-
straints as data type invariants. Functionality is defined in
terms of operations over these data types. Operations can
be defined implicitly by preconditions and postconditions
that characterize their behavior, or explicitly by means of
specific algorithms. An extension of VDM-SL, called
VDM++, supports object-oriented structuring of models
and permits direct modeling of concurrency.

Because the modeling language has a formal mathe-
matical semantics, a wide range of analyses can be per-
formed on models, both to check internal consistency and
to confirm that models have emergent properties. Ana-
lyses may be performed by inspection, static analysis,
testing, or mathematical proof. To assist in this process,
extensive tool support is available for building models in
collaboration with other modeling tools, to execute and
test models, to carry out different forms of static analysis,
and to generate executable code in a high-level program-
ming language.

The origins of VDM lie in work done in the IBM Labora-
tory at Vienna in the 1970s, where a formal specification
language (Meta-IV) was developed to define the program-
ming language PL/I. Meta-IV was subsequently used to
define minimal BASIC, parts of FORTRAN and APL,
ALGOL 60, Ada, and Pascal. The first description of this
form of VDM, which was based on Meta-IV, was published
in 1978 (1). Dines Bjørner and colleagues at the Dansk
Datamatik Center developed the language definition cap-
abilities of VDM that delivered the first European Ada

compiler to achieve validation. Their modeling style, which
emphasized explicit definition of functions, came to be
known as the Danish School of VDM. Cliff Jones and
colleagues, working at IBM Hursley, Oxford, and Manche-
ster Universities subsequently developed the parts of VDM
that were not specifically aimed at programming language
definition into a more general modeling framework (2);
their style, which emphasizes abstract modeling and vali-
dation by proof, became known as the English School of
VDM. An account of the scientific decisions embodied in
VDM can be found in Jones’ summary (3).

The standardization of VDM-SL by the British Stan-
dards Institution and the International Organization for
Standardization (ISO) sought to define a language that
could accommodate the Danish and English Schools. It
also provided an impetus for the development of tools to
support the analysis of models written in the newly
standardized language. At the same time, discussion
surrounded the possibility of a ‘‘lightweight’’ application
of formal modeling technology, which stressed the care-
fully targeted application of formal modeling, with
strong industry-standard tool support. In spite of the
‘Method’ in its name, the use of VDM does not prescribe a
particular development process or methodology. Instead,
the components of the method may be used as developers
see fit. This pragmatic approach (4) led to substantial
advances in the application of VDM and later extended
to the VDM++ language (5).

The major part of this article is an overview of the
elements of the modeling language, validation technology,
tool support, and industrial application. More advanced
technical aspects of the semantics of the modeling language
and its associated proof theory are briefly introduced.
Current trends and open questions are identified. The
leading source of current information is the VDM Portal
(www.vdmportal.org), and the most current text on the
tool-supported approach to system modeling and validation
in VDM++ is Fitzgerald et al. (5). Texts on more detailed
topics are cited in the body of the article.

SYSTEM MODELING IN VDM

The use of VDM involves the development and analysis of
models to help understand systems and predict their prop-
erties. Good models exhibit abstraction and rigor. Abstrac-
tion is the suppression of detail that is not relevant to the
purpose for which a model is constructed. The decision
about what to include and what to omit from an abstract
model requires good engineering judgment. A guiding
principle in VDM is that only elements relevant to the
model’s purpose should be included; it follows that the
model’s purpose should be clearly understood and
described. Rigor is the capacity to perform a mathematical

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



analysis of the model’s properties to gain confidence that an
accurate implementation of the modeled system will have
certain key characteristics.

Incomputing systems development, modeling and design
notations with a strong mathematical basis are termed
formal. VDM is based on a formal specification language
VDM-SL, the semantics of which are given mathematically
in an ISO Standard (6). VDM models, although often
expressed in an executable subset, are developed primarily
for analysis rather than for final implementations.

Model Structure

In VDM, models consist of representations of the data on
which a system operates and the functionality that is to be
performed. Data includes the externally visible input/out-
put and internal state data. Functionality includes the
operations that may be invoked at the system interface
as well as auxiliary functions that exist purely to assist in
the definition of the operations. The ISO Standard (6)
defines a (nonmandatory) module framework for VDM-
SL models. This framework includes traditional import
and export features as well as module parameterization
and instantiation.

The VDM++ language extends VDM-SL with facilities
for specification of object-oriented systems, and structures
models into class definitions, each of which has similar
elements to a single VDM-SL specification, with the state
variables taking the role of instance variables and the
operations playing the part of methods. The remainder of
this section will restrict consideration to VDM-SL, with
VDM++ considered at a later stage.

Modeling Data

Data models in VDM are founded on basic abstract data
types together with a set of type constructors. A full account
of VDM-SL data types and type constructors is provided in
current texts (5).

Basic types include numbers (natural, integer, rational,
and real) and characters. Note that, in accordance with
VDM’s abstraction principle, no predetermined maximum
representable numbers or real number precisions exist. If a
user wishes to specify these limits because they are rele-
vant to the problem being modeled, then it is possible to do
so explicitly by means of invariants. Invariants are logical
expressions (predicates) that represent conditions to be
respected by all elements of the data type to which they
are attached.

Throughout this article, the ASCII syntax of the VDM-
SL will be used. An alternative mathematical syntax is
used in the older texts but, although both are permitted by
the ISO Standard, the ASCII syntax is considered the more
accessible for readers unfamiliar with the notations of
discrete mathematics. Keywords are, by convention, shown
in bold face. Consider, as a simple example, a system for
monitoring the flight paths of aircraft in a controlled air-
space. A simple data type definition that represents the
Latitude of an aircraft would be given as follows:

Latitude = real

If it is desired to restrict the Latitude to the range of
numbers from –90 to 90 inclusive, then an additional con-
dition is added to the data type in the form of an invariant.
This extended type definition is as follows:

Latitude = real
inv lat == lat >= —90 and lat <= 90

The invariant is an integral part of the data type. Thus, it
is not possible to create a value of type Latitude that does
not respect the invariant. The modeler must ensure that all
functions and operations that create such elements respect
the invariant.

More sophisticated data types are built using construc-
tors. A record type constructor permits the definition of
tuples with named fields. For example, assuming defini-
tions of types that represent Latitude, Longitude, and
Altitude, it is possible to define a type of values repre-
senting aircraft position, as follows:

Position :: lat :Latitude
long:Longitude
alt : Altitude

A value of type Position is a composite whose compo-
nent values can be extracted by giving the field names.
Thus, the Longitude component of a position p is given by
p.long. VDM-SL also contains type constructors for build-
ing union and Cartesian product types.

Models are typically built around structured collections
of values, so VDM-SL provides type constructors that sup-
port several collection types: sets (finite unordered collec-
tions), sequences (finite ordered collections or arrays), and
mappings (finite functions). For example, one may wish to
define a type to model the path of an aircraft as a finite
sequence of positions. The corresponding definition is:

FlightPath = seq of Position

Thus, an element of type FlightPath is a finite
sequence of position records. Given a value fp of type
FlightPath, the initial Altitude is expressed as
fp(1).alt. If modeling a flight control system that
must manage several aircraft, then it would be appropriate
to define a type that relates aircraft identifiers to their flight
paths as a mapping:

FlightDetails = map AircraftId to FlightPath

A mapping in VDM is the abstract model of an associa-
tive array; individual associations are represented using an
‘‘arrow’’ notation. For example, ‘{3 |-> ‘‘text1’’, 7 |->
‘‘text2’’}’ represents an association between numbers
and character strings. In the flight details example, the
mapping represents a finite collection of flight paths
indexed by the aircraft identifier. Given a flight details
mapping ‘fd’ and an aircraft identifier ‘a’, the following
expression denotes the initial Altitude of ‘a’:

fd(a)(1).alt

2 VIENNA DEVELOPMENT METHOD



Several special basic types also facilitate abstraction.
The token type is used to denote values whose representa-
tions are immaterial. Tokens can be compared for equality,
but they have no internal representation so no other opera-
tors may be applied to them. Tokens are particularly useful
for defining types that are necessary to a model but for
which no individual elements are required. For example, if
the air traffic model is concerned primarily with flight paths
rather than call signs, then the modeler may choose not to
give a detailed representation for the AircraftId type,
preferring to use a token type:

AircraftId = token

Modeling Functionality

Functionality is described in terms of functions and
operations that accept input values and deliver output
values that belong to the types defined in the model. As
with data, VDM-SL contains features to support abstrac-
tion of functionality.

Each basic type and type constructor has associated
syntax allowing values to be expressed. For example, a
sequence of four natural numbers might be expressed
directly as follows:

[3, 7, 7, 2]

Comprehension notations allow more sophisticated con-
structions. For example, the following expression repre-
sents a sequence of all the squares of numbers up to 25:

[n**2 | n in set {1,. . .,25}]

The types are equipped with operators that allow com-
plex expressions to be constructed. For example, given a
value s that belongs to a sequence type, the expression len
sdenotes the length of the sequence. Two sequencess1 and
s2 may be concatenated by an infix operator: s1^s2.

As in programming languages, some operators are par-
tial, (i.e., undefined for certain values of their arguments.)
For example, a sequence lookup such as the expression
s(i) is undefined if the sequence s contains fewer than i
elements. Such misapplications of partial operators corre-
spond to potential run-time errors in a corresponding
implementation. The behavior of a real computing system
when such an error occurs is not usually predictable. An
error message may be returned, or an infinite loop may be
entered, for example. Because such behavior can rarely be
known at modeling time, VDM treats them all as mathe-
matically undefined in the semantics.

Functions may be described explicitly or implicitly. An
explicit function definition is an expression that denotes the
resulttobereturnedintermsofinputparameters.Returning
totheairspacemanagementexample, themodelermaywish
tospecifyafunctionthataddsanewpositionontotheendofa
flight path. The function definition is given as follows:

AddPos: FlightPath * Position -> FlightPath
AddPos(fp,p) == fp^[p]

Implicit function definitions provide an important abstraction

capability in VDM. Although an explicit definition like the one

shown above is concise, it may be considered to bias a reader

implementing the model toward a particular implementation,

for example using a corresponding concatenation operator

built in to a programming language if present. An implicit

definition describes a function purely in terms of the result to

be delivered, with no direct reference to any algorithm to be

used in the computation. This definition is given in terms of a

logical (Boolean) expression that must be satisfied by the

result. This expression is termed a postcondition. A classic

example is a specification of a function for computing the

square root r of a natural number n:

SQRT(n:nat)r:real
post r*r = n

Here the required result is merely characterized, with
no bias toward any particular implementation. In particu-
lar, it will be noted that the postcondition does not constrain
the result to be either positive or negative; the modeler has
indicated that either result will suffice provided that it is a
square root of the input n. Such implicit specification is
valuable where the provision of an algorithmic description
would obscure the meaning of the model. The disadvantage
is that an implicit operation specification is not directly
executable. In the airspace management example, an
implicit specification might be used for a function to select
a specific aircraft for landing, specified as follows, where the
‘in set dom’ construction means that the result returned is
present in the domain of the flight details mapping struc-
ture:

Select(fd:FlightDetails)a:AircraftId
post a in set dom fd

Both explicitly and implicitly defined functions may not

always be applicable. For example, the function above cannot

return a result if the flight details mapping fd were empty. The

function description therefore cannot be satisfied for all valid

inputs. Nonemptiness of the input fd is a precondition on the

successful application of the function. Such preconditions are

recorded explicitly in VDM. Thus, a satisfiable specification of

the Select function would be as follows, where the precondi-

tion is shown in italics:

Select(fd:FlightDetails)a:AircraftId
pre dom fd <> {}
post a in set dom fd

Preconditions, like invariants, provide a means of
recording constraints that are often left unrecorded in
informal descriptions of computer-based systems. In the
example above, the precondition is required to ensure that
the function can return a correct result in accordance with
the postcondition. An implicit specification can be consid-
ered a contract: An implementation of the operation pro-
mises to return a result that satisfies the postcondition
provided the calling environment ensures that the precon-
dition is satisfied. If the precondition is not satisfied, then
no guarantees about behavior are made.

VIENNA DEVELOPMENT METHOD 3



Modeling State and Operations

Many systems have persistent state variables that are read
and modified by operations and that retain data between
operationinvocations. InVDM,suchsystemsaremodeledby
defining a distinguished state variable of a defined type and
operations that, like functions, deliver outputs from inputs
but that may also have side effects on the state variables.

A state-based version of the airspace management sys-
tem might have a single state variable of type FlightDe-
tails, modeling the current state of the airspace:

state Airspace of
fd: FlightDetails

end

An operation to add a new aircraft with a single position
p in its flight path might be specified implicitly as follows.
Note the use of the prefix ‘~’ to denote the state variable’s
value before execution of the operation. This decorated
version is required because the postcondition describes a
mathematical relation between the preoperation and post-
operation states. The munion operator used in the post-
condition here forms the union of two mappings provided
the two mappings do not disagree (any values in both
domains map to the same range value).

New(a:AircraftId,p:Position)
ext wr fd: FlightDetails
pre a not in set dom fd
post fd = ~fd munion {a |-> [p]}

Operations may be specified explicitly as well as impli-
citly. Where state variables may be modified, the language
for expressing such explicit operation definitions is close to
that of a classic imperative programming language, albeit
one with very abstract data types. For example, the follow-
ing explicit definition of the New operation contains a single
assignment to describe the updating of the fd state com-
ponent. The signature of the operation, which is shown in
the first line of the definition, shows only the visible input
and output types. Because this operation produces no
external output, but merely updates the state, the return
type is empty, as indicated by the ‘‘()’’.

NewOp: AircraftId * Position ==> ()
NewOp(a,p) == fd := fd munion {a |-> [p]}
pre a not in set dom fd

Full details of implicit and explicit specification styles for

both functions and operations can be found in the VDM

literature (4, 5).

Modeling Object-Oriented and Concurrent Systems in VDM++

VDM++ provides facilities for the description of object-
oriented systems. The elements of classic VDM-SL are
all present, but the extended language provides for models
based on class definitions in which each object’s local
state is represented as instance variables and operations

are treated as methods. Information hiding and inheritance
are also supported.

VDM-SL is limited to the description of sequential sys-
tem models, although such models may be implemented in
a parallel-computing framework. The challenge in model-
ing concurrent computation is that separate threads (inde-
pendent sequences of computations) may communicate
through shared variables and inconsistencies can develop
when two or more independent threads access a shared
variable simultaneously. Considerable research has been
performed on handling shared variable concurrency in
VDM, notably by extending the pre/postcondition frame-
work with rely and guarantee conditions that state, respec-
tively, the properties that an operation requires to be
invariant and the properties that it guarantees to maintain
during its execution (7).

The rely/guarantee approach has been a significant
contribution to design methodologies for concurrent
systems generally. VDM++ takes a rather pragmatic
line. Here inconsistencies may develop through simulta-
neous access to shared objects by separate threads. These
inconsistencies are avoided by providing synchronization
constraints in the form of permission predicates that
describe the conditions under which an operation may be
carried out. A permission predicate may refer to an instance
variable used as a flag to prevent other threads from an
object being used in a critical way by another thread. It may
also access special variables that represent the number of
times each operation in an object has been requested,
activated, or completed, or representing the number of
currently active invocations of the current operation. Con-
sider a simple model in which a sensor produces data,
writes it to a buffer object, and then these data are con-
sumed by a consumer object. The buffer object provides a
data model of the buffer and methods (operations) to Put
and Get data. The consumer object should only invoke the
Get operation on the buffer when data is available to get.
This restriction could be modeled by allowing a special
value nil to indicate emptiness of the buffer, in which
case the permission predicate (denoted by the keywordper)
on the Get operation in the buffer object is of the form
shown below:

per Get => data <> nil

If such a specialnilflag is not available, one could count
the number of completed Put and Get operations and
permit a Get operation under the condition specified as
follows:

per Get => #fin(Put) - #fin(Get) = 1;
mutex(Put,Get)

Here the expression ‘#fin(op)’ represents the number of

completed occurrences of the operation op. The mutex condi-

tion enforces mutual exclusion of the Put and Get operations.

It is worth emphasizing the difference between pre-
conditions and permission predicates on operations. An
operation’s precondition records a fundamental assump-
tion about the circumstances under which the operation

4 VIENNA DEVELOPMENT METHOD



will be invoked. If an operation is called in violation of its
precondition, then no guarantees are given about the
system’s subsequent behavior (the modeling equivalent
of a run-time error). In contrast, a permission predicate
determines whether a request to perform an operation will
be granted or denied. If permission is denied, then the
request is blocked and another thread may be executed; a
particular thread of computation may be held up when a
permission predicate evaluates to false, but other threads
can progress.

MODEL VALIDATION

Validation is the process of gaining confidence that the
model describes the behavior that one would expect of an
accurate representation of the system of interest. As a
consequence of VDM-SL’s formal definition, a particularly
wide range of validation checks can be performed, with
automated support, to identify potential static and run-
time errors in a model as it is constructed. Most checks are
described as proof obligations because they are observed as
requirements on the modeler. Once the proof obligations
have been discharged, the model’s emergent behavior can
be checked against expectations, which is described as
validation conjectures.

Proof Obligations and Validation Conjectures

A range of basic proof obligations is common to all VDM
models. For example, it should always be possible to tell
whether a value belongs to a specified data type. Conse-
quently, any invariants must be expressions that always
return a value (true or false), given any element of the
restricted supertype. For example, the definition of the
Latitude data type defined earlier uses an invariant
‘lat>=—90andlat<=90’. It must be possible to evaluate
the invariant for any real number, so that it is possible to
tell whether the number is a valid Latitude. This task
seems trivial in this example, but it need not always be so.
In particular, if an invariant makes use of a partial opera-
tor, then it is necessary to ensure that the partial operator is
not applied outside its domain of definition. Consider a
general type definition of the following form:

T = Rep
inv t == P(t)

The proof obligation for the invariant is shown below,
where ‘inv-T’ refers to the invariant as a Boolean function.
The ‘forall’ keyword is a quantifier over the type Rep,
wheret is the ‘‘bound variable’’ that ranges over the type, so
this formula literally states that ‘‘for all values t of type Rep,
the invariant yields a valid Boolean value’’ (the ‘&’ symbol is
merely used as a syntactic separator):

forall t:Rep & inv-T(t) : bool

One of the more significant and useful proof obligations
is that of invariant preservation. When a functionf returns
a result of typeR and the definition ofRhas an invariant, an

obligation exists to show that the function respects the
invariant on R. Formally, consider a function with the
following signature (a signature is a summary of input
and result types):

f: I -> R

In this case, the proof obligation is stated formally as follows:

forall i:I & pre-f(i) => f(i):R

For example, a function to increase a Latitude by
adding an increment must be shown to take proper account
of the invariants and behave correctly at the extremes of the
range.

Versions of invariant preservation also exist for impli-
citly defined functions and particularly for implicitly spe-
cified operations, where the obligation is termed
satisfiability. Consider an operation Op taking an input i
of type I and operating on a state variable s of type S,
returning a result r of type R. The operation is said to be
satisfiable provided that, for all inputs satisfying the pre-
condition, there exist a state after execution and result that
together satisfy the postcondition. Formally, the obligation
is to show the following:

forall i:I, ~s:S & pre-Op(i,s) =>
exists s:S, r:R & post-Op(i,~s,s,r)

In practice, satisfiability is one of the most important
checks to be performed on a model. Because invariants
frequently embody safety constraints, checking that func-
tionality respects them is one means of early detection of
subtle defects in an implementation.

Validation Techniques

Once a model’s proof obligations are satisfied, its other
properties may be explored using a range of techniques.
Again, because of the formality of the modeling language’s
semantics, analysis by mathematical proof is possible, and
it is often done for critical applications. At a less rigorous
level, models can also be explored by testing.

Explicitly defined functions and operations can be exe-
cuted directly by means of an interpreter, provided they are
expressed within an executable subset of the language. The
expressiveness of modeling languages like VDM-SL is such
that useful expressions can be written that are neverthe-
less not readily executable. One main cause of nonexecut-
ability is quantification over unbounded data types. For
example, the following function definition is not executable
because it quantifies over the whole unbounded type of
natural numbers.

is_square(i) == exists j:nat & i = j**2

In this example, an interpreter could be expected to
iterate over the natural numbers until a suitable value
for j is found. In the case where i is not a square, the
iteration might not terminate unless some additional rea-
soning is performed, using information from the problem

VIENNA DEVELOPMENT METHOD 5



domain to halt it. The main existing VDM and VDM+ +
interpreters forbid attempts to execute formulae involving
unbounded quantifications. Quantifications over other col-
lections such as finite sets are permitted, however, so one
might define the is_square function as follows:

is_square(i) == exists j in set {0,...,i} &
i = j**2

The disadvantage of building this extra knowledge into the

model is that it is information added for the specific purpose

of executing the model, and so may compromise abstraction

(8,9).

Despite the caveats about executability, VDM models
used in industrial applications are often built within the
executable subset and validated mainly through testing.
Tool support allows very efficient interpretation of the
model, and additional tools facilities support batch-mode
testing as well as test-coverage analysis. The level of con-
fidence gained by model testing is limited by the quality of
the test set. However, the level of abstraction means that
validation tests used on a model provide a strong basis for
designing tests used on subsequent system implementa-
tions.

Formal proof provides a much more general validation
technique than testing. The formal semantics of VDM-SL
has generated a well-documented proof theory (10), and the
development of automated support for proof is the subject of
research in the Overture project (www.overturetool.org).
Experiments suggest that typically up to 90% of proof
obligations can be automatically discharged by a theorem
prover. However, user-guided proof, given adequate tool
support, can be an effective means of exploring a model
when an automated analysis simply identifies the presence
of defect.

TOOL SUPPORT

VDM’s recent industrial application has been closely tied to
its tool support. Early tools for VDM, such as Adelard’s
SpecBox (11), (Adelard LLP, London, UK) were largely
confined to basic static checking and pretty-printing of
specifications. However, the availability of the ISO VDM-
SL Standard (6, 12) gave impetus to the development of a
toolset based on a parser, type-checker, and interpreter for
the executable subset of the language. The product that
ultimately resulted from this work, VDMTools (13), was
primarily aimed at cost-effective industrial use rather than
expressive completeness. VDMTools originated with the
Danish company IFAD, but it is now maintained and
further developed by the Japanese corporation CSK Sys-
tems.

A feature of successful tool support is that it should be
capable of integration with existing tools in the develop-
ment environment. VDMTools supports models written
with the aid of any environment that can output a text
file (or Microsoft Word (Microsoft corporation, Redmond,
WA) file using a VDM style), but it has also been important
to develop a link between the VDMTools environment and
other object-oriented design tools. A bidirectional link

exists with the IBM Rational Rose (IBM, Armonk, NY)
toolkit that allows modelers to design the model structure
as a UML class diagram and convert this directly to a
VDM++ model. Subsequent changes to the VDM++ model
can be reflected in the UML model and vice versa. Once a
model has been written, it can be syntax checked and type
checked. Proof obligations can be generated automatically
and checked manually. This interplay between UML and
VDM++ models, kept in sequence as a design evolves, is an
instance of an approach sometimes referred to as ‘‘round-
trip engineering.’’

To support validation, the VDMTools contain an inter-
preter for test-based analysis of specifications written
within an executable subset. Testing is supported by a
coverage analyzer. A CORBA-based application program-
mer interface (API) allows models to be executed on the
interpreter but accessed through a graphical user inter-
face, so that domain experts unfamiliar with the modeling
language can explore the behavior described by the model
by playing out scenarios or other test cases. The interpreter
has a dynamic link library feature that allows external
modules to be incorporated. Interpretation of an abstract
model is typically slow compared with program code, so
automatic code generation can be used to derive program-
ming language implementations (e.g., in Java or C++)
direct from the model.

The emphasis in VDM tool support has been on the
provision of facilities that allow the formalism to be applied
within existing development processes and in conjunction
with existing tools. This emphasis has meant that the
priority for tool support has been the provision of an effi-
cient interpreter and the supporting features. Support for
proof has been limited to research activity. A major spur to
the development of a proof system for VDM was provided by
the Mural tool (14), developed as part of the IPSE2.5 project
in the 1990s. Mural provided an environment that sup-
ported manual construction of proofs by human users, with
the tools managing the bookkeeping aspects of proof pro-
duction. For example, the tool ensured that all the inference
steps in a proof were sound applications of previously
defined or proven rules, and it also managed the structur-
ing of large numbers of rules into structured collections.
Such a user-led proof is extremely time consuming if it all
has to be done manually. However, advances in automated
proof technology have allowed experimental use of theorem
provers to discharge most proof obligations derived from
VDM models. The expressiveness of the modeling language
means that not all proof obligations or validation conjec-
tures that are true can be proven completely automatically.
Future extensions to VDMTools will support automatic
proof of most obligations, but the provision of fully inte-
grated manual and automatic proof support remains a
research goal.

INDUSTRIAL APPLICATIONS

VDM has a strong record of industrial application in a wide
variety of application domains. After the development of
VDMTools, the approach advocated in industry concen-
trated on the construction of abstract models and test-based

6 VIENNA DEVELOPMENT METHOD



analysis. Several examples of industrial application give an
indication of the ways in which the modeling technology is
applied. More detailed analysis of these applications has
been reported elsewhere (15).

The ConForm project (16) was an industrial case study
rather than a commercial application. British Aerospace
Systems and Equipment (BASE) studied two concurrent
developments of a security-related software component
using, in one stream, current best practice and, in the other
stream, model-oriented specification using VDM-SL. Com-
parison of the two developments suggested a shift of effort
from implementation to analysis phases in the system
development and also indicated a shift in the volume and
types of query raised against informal requirements. The
project involved both systems and software engineers
applying the modeling technology.

DustExpert (developed in 1995–1997 by Adelard LLP) is
a safety-related knowledge-based system to advise on the
construction of industrial plants that contain potentially
explosive dusts. A VDM-SL model of 12kLOC is derived
from about 450 pages of requirements formed the basis of
manual proofs concerning safety properties as well as test-
based analysis using the interpreter. Together these con-
tributed to the product’s safety case. The defect density of
the completed product (implemented in Prolog and C++)
was reported by the developers as lower than 1 defect/
kLOC.

In 1996, Praxis reported on the development of the
Central control function Display Information System
(CDIS), an air traffic control support system for use in
the London area (17). Several modeling approaches were
used, including a modular variant of VDM. The operational
software was about 197kLOC in size and exhibited 0.75
defects per kLOC, which made it one of the larger projects to
have applied formal modeling techniques at the time.

TradeOne (developed between 2000 and 2002) is a
back-office system for securities trading, developed by
JFITS, now the CSK Systems part of CSK. Metrics from
the development process were reported in 2005 (5). Two
complex subsystems that handle tax exemptions and
options were modeled in VDM++ prior to implementation
in C++ and Java. The defect densities were reported as
zero and 0.05 defects per kDSI in the two running sub-
systems. The effort profile for the development was also
analyzed, which suggested an increase in the proportion of
effort devoted to analysis. Overall development costs were
compared extremely favorably against regular COCOMO
(18) estimates.

Felica Networks Inc. in Japan have reported an applica-
tion of VDM++ to the development of the firmware for a next
generation mobile Integrated Circuit chip, which is based
on contactless card technology (15). VDM++ models were
developed alongside UML models as part of the process of
improving requirements descriptions prior to implementa-
tion. The model was validated by performing over a high
volume of tests to achieve very high path coverage. Most
defects uncovered in requirements were attributed to the
use of formal modeling. Of these, slightly more than half
were attributed to issues raised during construction of the
model, and the remainder was attributed to testing the
model.

Industrial application of proof technology has so far been
restricted largely to specialist high-integrity systems in
areas such as the nuclear industry (19), although the
variety of domains covered in the examples presented
here suggests that model-oriented formalisms like VDM
have the potential to be applied widely. However, a ten-
dency exists to restrict the use of proof to areas in which
high quality is the dominant concern or the complexity of
functionality or data threatens the success of a develop-
ment.

REIFICATION: FROM MODELS TO DESIGNS

Formal models often serve as abstract specifications of
systems to be implemented in high-level programming
languages. Each model typically contains representations
of elements of the problem domain (for example, aircraft
identifiers and flight plans), but an implementation must
be expressed in terms of concepts present in the chosen
programming language. Reification (more widely known as
refinement) is the process of transforming an abstract
model in VDM into a concrete one that includes represen-
tations of data and functionality that are expressed readily
in the target programming language. The reification pro-
cess is typically done in a series of steps, in which each
introduces small changes to the model and involves ver-
ification that the modified (concrete) model still describes
the same behavior as its more abstract predecessor. By
composing several reification steps, a sufficiently concrete
model may be reached. VDM pioneered the use of proof
obligations to govern this stepwise reification process (2).
Rules govern the reification of state definitions and opera-
tions.

Data Reification

In data reification, an abstract type representation is
replaced by a more concrete counterpart. For example,
an abstract set of aircraft (an unordered collection of
objects) might be reified by a more concrete ordered
sequence (array) structure. This structure might, in
turn, be reified even more to a model of a linked list prior
to translation into a programming language that supports
linked list structures.

A data reification step is correct if every abstract state
has a concrete counterpart. The correctness is typically
checked by proposing a retrieve function that recovers
the abstract counterpart from any concrete model. The
retrieve function must be total and adequate. A total
retrieve function is one that is defined on any possible
concrete value. An adequate retrieve function is one that
ensures every abstract value has a concrete counterpart (in
mathematical terms, the function is ‘‘surjective’’). For-
mally, given a concrete type C, an abstract type A, and a
retrieve function r:

forall c:C & retr(c):A Totality
forall a:A & exists c:C & r(c)=a Adequacy

VIENNA DEVELOPMENT METHOD 7



In the example, the retrieve function simply gathers the
elements of the array and generates the set that contains all
those elements. Stated formally in VDM-SL, this appears
as follows:

retr: seq of AircraftId -> set of AircraftId
retr(c) == elems c

Note that, in this example, the concrete type introduces
redundancy because a sequence may contain duplicate
values, whereas a set suppresses duplication. A set that
contains a single aircraft identifier might be represented by
a sequence that contains just one element or by a sequence
that contains two or more repetitions of the same aircraft
identifier.

When a model is subjected to data reification, the opera-
tion specifications that work on the abstract state must be
adjusted to the new concrete form. Informally, the concrete
operation may have a more liberal (‘‘weaker’’) precondition
than the abstract version, but it must have at least as
restrictive a postcondition (i.e., one that is ‘‘stronger’’). If
an operation OpA is reified to a concrete counterpart OpC,
then two conditions must be satisfied. First, OpC must be
defined to operate on at least the states that OpAworked on
(when viewed through the retrieve function). Second, OpC
must define a relation between states that respects the
relation between states defined by the abstract form (when
viewed through the retrieve relation). These two conditions
are expressed formally as the Domain Rule and Result Rule
shown below.

forall c:C & pre-OpA(retr(c)) ¼>
pre-OpC(c) Domain Rule

forall ~c,c:C & Result Rule

pre-OpA (retr(~c)) and post-OpC(~c,c) ¼>
post-OpA(retr (~c),retr(c))

A full discussion of the data reification proof obligations is

given by Jones (2).

Operation Decomposition

In reifying functionality, operations are broken down into
simpler suboperations linked by control constructs such as
sequential compositions, conditionals, or loops. Successive
decomposition steps add control constructs and reduce the
complexity of the suboperations. Rules governing such
decomposition steps are given in a ‘‘triple’’ format. In
such a format, the expression

{P} Op {Q}

is written to indicate that the operation Op, when invoked in a

state that satisfies the Boolean condition P, terminates and

results in a condition satisfying the condition Q, where Q is a

logical expression over both the before and after states. As a

simple example, consider a rule for introducing conditionals.

Specifically, suppose an operation with precondition pre and

postcondition post is to be decomposed into a structure of the

following form:

if test then TH else EL

where test is a Boolean expression, and TH and EL are

operations that correspond to the functionality to be executed

in each limb of the conditional. The condition under which the

decomposition is sound is given as follows:

fpre and testgTH fpostg;
fpre and not testgELfpostg; pre) dðtestÞ
fpregðif test then TH else ELÞfpostg

Herethedecompositionshownbelow the line isasserted
to be sound under the conditions shown above the line. It is
necessary to show that the postcondition is established in
both the TH and EL branches of the conditional. The
‘‘d(test)’’ condition is a requirement that the test actually
terminates. All three conditions may be established under
the assumption that the precondition pre holds. Other
rules for operation decomposition are presented in Jones’
book (2).

SEMANTICS AND FORMAL REASONING

VDM was one of the first modeling languages to have a
mathematical semantics codified in an ISO standard (6,12).
The semantics are denotational in style and give the mean-
ing of models expressed in a core language into which full
VDM-SL may be translated. The semantics is defined in
terms of domains built on complete partial orders. The
meaning of a VDM model is defined as a collection of
possible environments that define domains for each of
the defined data types. Operations are denoted as sets
of valid relations over the domains that correspond to
the types of the inputs and state (20).

As noted earlier, VDM has several features that sup-
port a level of abstraction in models that is not typically
found in programming languages. These features lead to
the more interesting aspects of the denotational seman-
tics. One of the most significant features is the ability to
use a style of loose specification. Loose specification devel-
ops where the model permits a level of choice. For example,
an implicitly specified function or operation presents a
choice over which of possibly many results satisfying the
postcondition is to be returned. Loose specification is also
supported by other constructs in the language, which
allow choices to be arbitrarily from sets of values, for
example. Two possible semantics are used for loose
expressions. The first, termed underdeterminedness,
interprets the construct as defining a set of possible dif-
ferent deterministic implementations. The second,
termed nondeterminism, allows implementations that
are themselves nondeterministic. The VDM-SL semantics
treat looseness in function definitions as underdetermin-
edness, although operations are potentially nondetermi-
nistic. Functions that contain loose-choice operators are
thus denoted as sets of possible deterministic functions,
each representing a different choice. For operations, the
possibility of nondeterminism is retained to allow the
modeler to describe behavior that may be governed by
factors outside the collection of inputs to the operation
(21).

8 VIENNA DEVELOPMENT METHOD



Logic and Proof in VDM

VDM has a well-established theory that supports the con-
struction of proofs about models and reifications. One of the
most distinctive features of VDM is the handling of unde-
finedness. Undefined terms can develop naturally in an
abstract modeling framework as well as in program code.
For example, an expression that looks up a value in a
sequence has the possibility of yielding an undefined value
if the index is out of range. The user can also define
functions that may not terminate for certain inputs. The
following simple example is regularly used in discussions
about logics handling undefinedness. The subp function
takes two integers i and j as inputs and returns i—j
provided i = j, but otherwise its result is undefined:

subp: int * int -> int
subp(i,j) == if i=j then 0 else subp(i,j+1)

In reasoning about this function, the following assertion is

plausible:

forall i,j:int & i < j or subp(i,j) = i—j

If i< j, then the right hand term using subp in this expression

is undefined, and so the whole conjecture is meaningless in a

classical logic.

The problem of how to reason about undefined values is a
significant one in formal methods. Many approaches aim to
use classical two-valued logic. Some approaches ban poten-
tially undefined terms, and they generate proof obligations
to enforce this. Other approaches allow undefinedness but
insist that terms such as subp(i,j) always yield a valid
(type correct) but unknown value. VDM’s approach is unu-
sual in that its logic is nonclassical, which allows undefined
value terms and undefined logical values the logic of partial
functions (LPF) (22) underpins reasoning about models and
reification in VDM (23,24). LPF is in many respects similar
to a classic logic, but the definitions of operators are
extended to cope with undefined, as well as true and false
terms. For example, the truth tables for disjunction and
negation are shown below, where ? represents an unde-
fined Boolean expression:

A B AorB
true true true

true false true

true ? true

false true true

false false false

false ? ?
? true true

? false ?
? ? ?

A not A

true false

false true

? ?

The truth table for ‘or’ may be thought of as describing a
parallel lazy evaluation of the operands: the expression ‘A

orB’ evaluates to true if one operand evaluates to true, even
if the other operand is undefined. Returning to the subp
example above, the use of LPF allows the or-expression to
return true even when the second operand is undefined,
because under exactly the same conditions, the first oper-
and is true.

The most far-reaching consequence of this definition of
logical operators to handle undefinedness is that some laws
of classic logic do not hold in LPF. In particular, the law of
the excluded middle (that ‘A or not A’ is always true) is not
valid in LPF. An operator d is introduced to LPF to express
definedness: d(A) is true whenA is Boolean. The theorems of
classic predicate logic that are not also theorems of LPF can
be transformed to theorems of LPF provided ‘‘d(A)’’ hypoth-
eses are added. The practical consequence of this theorem is
that, in performing proofs about VDM models, definedness
has to be proved only where it is necessary.

LPF provides a natural way of handling undefinedness
in reasoning about VDM models. The most comprehensive
account of the application of LPF (10) is a product of the
development of the Mural proof support system (14). Unlike
Mural, many automated proof support tools focus on sup-
porting classic logics as a priority. Indeed, the attempts to
develop proof support systems for VDM have so far stopped
short of implementing LPF, instead generating proof obli-
gationstoensurethatusesofpartialoperatorsareprotected.
Although LPF provides an intuitive approach in proof-
theoretic terms, it is hard to implement in a classic inter-
preter: operators such as disjunction, as shown above, are
symmetric, so implementation requires parallel evaluation
of both operands in case one evaluates but the other is
undefined. For this reason, the VDMTools interpreter takes
a left-to-right lazy evaluation approach (in the case of dis-
junction, for example, the second operand is not evaluated if
the first evaluates to true). Other formal methods take
different approaches to dealing with the risk of undefined
terms, and these methods are briefly discussed below.

RELATED APPROACHES

VDM is one of a family of model-oriented formal methods
that includes Z (25), the B method (26), and the RAISE
method and specification language (27,28). All four
approaches share the abstract and rigorous modeling of
data and functionality, but they differ in their focus.
Z emphasizes the description of properties of data and
functions, rather than giving direct definitions, which
makes it particularly well suited to abstract system speci-
fication. A distinctive feature is the schema calculus, which
allows for composition of specifications from structural
units (schema). B is focused more on the refinement-based
development of program code from abstract specifications
(given in the Abstract Machine Notation). VDM and Z have
been compared in Ref. 29, and VDM and B have been
studied with respect to their potential integration (30).
The RAISE method is based on the use of a ‘‘wide-spectrum’’
specification language, which is intended to encompass in a
single formalism the features needed to move from abstract
property-oriented specifications to lower level code. All of

VIENNA DEVELOPMENT METHOD 9



these languages share with VDM an extensive history of
industrial application.

An interesting area of difference between the formal-
isms is in their underpinning logics, and in particular the
mechanisms for handling undefined terms. The ISO Stan-
dards for Z and VDM are neutral about logic and proof
theory. In Z, a range of logics have been explored [e.g., (31)]
including approaches that seek to avoid undefined terms
that develop altogether in the logic. In LPF, which is often
used with VDM, undefinedness is handled directly in the
logic itself. RAISE addresses the problem of executing
expressions that contain symmetric operators with unde-
fined operands by adopting a ‘‘conditional logic’’ (left to
right) evaluation of formulae that may contain undefined
terms (as does the VDMTools interpreter) (32).

CURRENT TRENDS AND OPEN QUESTIONS

From the original work on programming language and
compiler design, the goal of research on VDM has been
the development of a usable formal method. This principle
influenced the standardization of the VDM-SL semantics,
the pragmatic approach to tools, and the principles of light-
weight application that have influenced industrial use. The
same principle has guided foundational research on the
modeling of concurrency, logics, and reification. Many
research questions surrounding VDM result from practical
need. It is possible to identify several significant trends that
are setting the agenda for contemporary research, parti-
cularly in the areas of modeling, semantics, proof support,
and tools frameworks.

VDM-SL and VDM++ can describe a very wide range of
computing system. However, their ease of use is hindered in
some application areas by an absence of convenient abstrac-
tions. For example, no current support exists for modeling
timing characteristics unless one builds clocks and event
histories explicitly into an application model. A current
challenge is to include timing specifications into VDM++.
This extended dialect of VDM++ is known as the VDM++ in
constrained environments (VICE) dialect that has its own
version of VDMTools. Studies (33–35) suggest that it is
potentially valuable in the analysis of distributed
embedded control software. Furthermore, VICE admits
the possibility of combining discrete time models of con-
trollers with continuous time models of controlled processes
and supporting analysis through cosimulation (36). The
combined model may provide a basis for improved colla-
boration between systems and software engineers, which is
a weak aspect of many design processes for embedded
systems. Aside from the goal of modeling temporal beha-
vior, other current goals include the use of abstractions to
model distributed computation and the modeling of faults
and their propagation.

The construction of a dependable system requires more
than simply the production of trustworthy software to run
on a computer. The immediate environment involves other
devices, people, and organizations. If assurance is to be
gained that a computer-based system (rather than merely
the software) is to function as required, then it is appro-
priate to model and analyze this wider system. A current

research goal in the area of control-system design (37) is to
provide support for reasoning about this ‘‘whole system’’
view. The contractual character of implicit specifications
using preconditions/postconditions, and rely/guarantee
conditions is potentially useful here.

Tool support is vital to the successful adoption of formal
methods. The increasing power of static analysis, theorem
proving, and model checking is making it possible to inte-
grate a range of analysis tools with model generation and
editing facilities. Open-platform technologies such as
Eclipse (Portland, OR) have the potential to promote inter-
operability between separately developed specialized ana-
lysis tools, in contrast to the tightly coupled architecture of
the current VDMTools.

Within the field of proof support, a current goal is to
develop implementations of LPF suitable for automatic
background discharging of proof obligations and valida-
tion conjectures. User guidance will remain a necessity,
and so a open question is how to provide a good interface
that allows a user to marshal automated tools in support
of a structured proof. Such user-guided proof may even be
desirable if proof is properly used as a means of exploring
models rather than simply a form of automated check. In
the longer term, a major research challenge is the devel-
opment of theories to support reasoning about stochastic
properties, such as failure behavior, that affect overall
system functionality.

The Vienna Development Method is one of the seminal
formal methods for computer systems development. Its
evolution since the 1970s has been marked by the devel-
opment first of sound foundations in the form of semantics
and proof theory, then by strong tool support and industrial
application. A major trend since the 1990s has been the
work to lower the barrier to using the technology by devel-
oping tools that support forms of analysis that are already
familiar to systems developers, such as high-coverage test-
ing. Current work towards more cost-effective automatic
proof and static analysis, more open tools frameworks, and
the ability to model and analyze real-time and distributed
systems, is likely to increase both the range and quality of
applications of this and other formal methods.

BIBLIOGRAPHY

1. D. Bjørner, C. B. Jones (eds.), The Vienna development method:
the meta-language, in Springer-Verlag Lecture Notes in Com-
puter Science, Vol. 61, 1978.

2. C. B. Jones, Systematic Software Development using VDM, 2nd
edition, Englewood cliffs, NJ. Prentice-Hall International,
1990.

3. C. B. Jones, Scientific decisions which characterize VDM, in J.
M. Wing, J. C. P. Woodcock, and J. Davies (eds.), FM099 –
Formal Methods, Lecture Notes in Computer Science, Vol. 1708,
New York: Springer-Verlag, 1999, pp. 28–47.

4. J. Fitzgerald and P. G. Larsen, Modelling Systems: Practical
Tools and Techniques in Software Development, Cambridge,
UK: Cambridge University Press, 1998.

5. J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M.
Verhoef, Validated Designs for Object-oriented Systems,
New York: Springer-Verlag, 2005.

10 VIENNA DEVELOPMENT METHOD



6. ISO/IEC 13817-1:1996, Information technology – Program-
ming languages, their environments and system software
interfaces – Vienna Development Method – Specification Lan-
guage – Part 1: Base language.

7. C. B. Jones, Accommodating interference in the formal design
of concurrent object-based programs, Formal Meth. Sys. Des.,
8(2): 105–122, 1996.

8. I. J. Hayes, C. B. Jones, Specifications are not (necessarily)
executable, Softw. Engineer. J., 4(6): 330–338, 1989.

9. N. E. Fuchs, Specifications are (preferably) executable, Softw.
Engineer. J., 7(5): 323–334, 1992.

10. J. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore and B.
Ritchie, Proof in VDM: A Practitioner’s Guide, New York:
Springer-Verlag, 1994.

11. R. Bloomfield, P. Froome, and B. Monahan, SpecBox: a toolkit
for BSI-VDM, SafetyNet 5: 4–7, 1989.

12. N. Plat and P. G. Larsen, An overview of the ISO/VDM-SL
standard, Sigplan Notices, 27(8): 76–82, 1992.

13. R. Elmstrøm, P. G. Larsen, and P. B. Lassen, The IFAD VDM-
SL toolbox: a practical approach to formal specifications, ACM
Sigplan Notices, 29(9): 77–80, 1994.

14. C. Jones, K. Jones, P. Lindsay, and R. Moore, Mural: A Formal
Development Support System, New York: Springer-Verlag,
1991.

15. J. S. Fitzgerald and P. G. Larsen, Triumphs and challenges for
the industrial application of model-oriented formal methods, in
T. Margaria, A. Philippou, and B. Steffen (eds.) Proc. 2nd Intl.
Symp. on Leveraging Applications of Formal Methods, Verifi-
cation and Validation, 2007.

16. P. G. Larsen, J. S. Fitzgerald and T. M. Brookes, Applying
formal specification in industry, IEEE Softw., 13(3): 48–56,
1996.

17. A. Hall, Using formal methods to develop an ATC information
system, IEEE Softw., 12(6): 66–76, 1996.

18. B. W. Boehm, Software Engineering Economics, Englewood
Cliffs, NJ: Prentice-Hall, 1981.

19. J. S. Fitzgerald and C. B. Jones, Proof in the analysis of
a model of a tracking system, in J. C. Bicarregui (ed.), Proof
in VDM: Case Studies, New York: Springer-Verlag, 1998,
pp. 1–29.

20. P. G. Larsen and W. Pawlowski, The formal semantics of ISO
VDM-SL, Comp. Stand. Interf., 17(5-6): 585–602, 1995.

21. P. G. Larsen and B. S. Hansen, Semantics for under-
determined expressions, Formal Asp. Comput., 8(1): 47–66,
1996.

22. C. B. Jones and K. Middelburg, A typed logic of partial func-
tions reconstructed classically, Acta Informat., 31(5): 399–430,
1994.

23. C. B. Jones, Reasoning about partial functions in the formal
development of programs, Elect. Notes Theoret. Comput. Sci.,
145: 3–25, 2006.

24. J. S. Fitzgerald, The typed logic of partial functions and the
Vienna Development Method, in D. Bjørner and M. C. Henson
(eds.), Logics of Specification Languages, New York: Springer-
Verlag, 2008, pp. 427–461.

25. J. Woodcock and J. Davies, Using Z: Specification, Refinement
and Proof, Englewood Cliffs, NJ: Prentice-Hall, 1996.

26. J.-R. Abrial, The B-Book: Assigning Programs to Meanings,
Cambridge, UK: Cambridge University Press, 1996.

27. The RAISE Language Group, The RAISE Specification Lan-
guage, BCS Practitioner Series, Englewood Cliffs, NJ: Prentice
Hall, 1992.

28. The RAISE Method Group, The RAISE Development Method,
BCS Practitioner Series, Englewood Cliffs, NJ: Prentice Hall,
1995.

29. I. J. Hayes, C. B. Jones, and J. E. Nicholls, Understanding the
differences between VDM and Z, ACM Softw. Engineer. News,
19(3): 75–81, 1994.

30. J. Bicarregui, B. Matthews, B. Ritchie, and S. Agerholm,
Investigating the integration of two formal methods, Formal
Aspec. Comput.10(5-6): 532–549, 1998.

31. M. C. Henson, M. Deutsch and S. Reeves, Z Logic and its
applications, in D. Bjørner and M. C. Henson (eds.), Logics
of Specification Languages, New York: Springer-Verlag, 2008,
pp. 489–596.

32. C. George and A. E. Haxthausen, The logic of the RAISE
specification language, in D. Bjørner and M. C. Henson
(eds.), Logics of Specification Languages, New York:
Springer-Verlag, 2008, pp. 349–399.

33. P. Mukherjee, F. Bousquet, J. Delabre, S. Paynter and P. G.
Larsen, Exploring timing properties using VDM++ on an
industrial application, in J. C. Bicarregui and J. S. Fitzgerald
(eds.), Proc. Second VDM Workshop, 2000. Available at http://
www.vdmportal.org

34. M. Verhoef, P. G. Larsen, and J. Hooman, Modeling and
validating distributed embedded real-time systems with
VDM++, in J. Misra, T. Nipkow, and E. Sekerinski (eds.),
FM 2006: Formal Methods, Lecture Notes in Computer
Science, Vol. 4085, New York: Springer-Verlag, 2006, pp.
147–162.

35. M. Verhoef and P. G. Larsen, Interpreting distributed system
architectures using VDM++ – a case study, in B. Sauser and G.
Muller (eds.), Proc. 5th Annual Conference on Systems Engi-
neering Research, 2007. Available at http://www.stevens.edu/
engineering/cser/

36. M. Verhoef, P. Visser, J. Hooman and J. Broenink, Co-simulation
of Real-time Embedded Control Systems, in J. Davies and
J. Gibbons (eds.), Integrated Formal Methods: Proc. 6th. Intl.
Conf., Lecture Notes in Computer Science, Vol. 4591, 2007, New
York: Springer-Verlag, pp. 639–658.

37. C. Jones, I. Hayes, and M. Jackson, Deriving specifications for
systems that are connected to the physical world, in C. B. Jones,
Z. Liu, and J. Woodcock (eds.), Formal Methods and Hybrid
Real-Time Systems: Essays in Honour of Dines Bjørner and
Zhou Chaochen on the Occasion of their 70th Birthdays, Lec-
ture Notes in Computer Science, Vol. 4700, New York:
Springer-Verlag, 2007, pp. 364–390.

JOHN S. FITZGERALD

Newcastle University
Newcastle upon Tyne,

United Kingdom

PETER GORM LARSEN

Engineering College of Aarhus
Aarhus, Denmark

MARCEL VERHOEF

CHESS
Haarlem, The Netherlands

VIENNA DEVELOPMENT METHOD 11



V

VISUAL PROGRAMMING LANGUAGES

INTRODUCTION

Since the advent of modern digital computers in the 1940s,
diagrams have played a role in software development.
Initially, they were paper-based aids, used by programmers
to design and understand the structure of their programs,
but as hardware became more powerful and input-output
devices such as cathode-ray tube displays, light guns, and
tablets became available, researchers began to investigate
the direct use of diagrams in the design and coding of
software. The arrival of high-quality, relatively low-cost
graphics in the 1980s enabled graphical operating systems,
making personal computers (PCs) more accessible, greatly
accelerating their adoption. The immediate beneficiaries of
this innovation were end users, who could now interact
with operating systems and applications by directly manip-
ulating concrete visual representations provided by gra-
phical user interfaces (GUIs). Software developers,
however, were less fortunate. In addition to writing pro-
grams to implement the core functionality of applications,
they now had to use the same textual languages and tools to
deal with the complexities of GUI programming.

The lack of adequate development tools, together with
the availability of low-cost graphics, heightened interest
in the direct use of diagrams in software development,
leading to research on various fronts, including visual
software project management tools, such as those found
in integrated development environments (IDEs), visual
editors for GUI creation, visual tools for software modeling
and engineering (1), and visual programming languages.

A Visual Programming Language (VPL) is a language in
which significant parts of the structure of a program are
represented in a pictorial notation, which may include
icons, connecting lines indicating relationships, motion,
color, texture, shading, or any other nontextual device.
Although text may occur in the pictorial notation, its role
should be secondary, naming program entities for example.
This definition requires significant parts of program struc-
ture to be represented pictorially, but it does not rule out
languages that also express other parts of the structure
textually.

VPLs are motivated by the observation that in tradi-
tional languages, multidimensional program structures
and data are coded into strings, requiring an extra layer
of syntax, and that by expressing the structure of programs
and data pictorially, a more concrete representation of
those structures might be achieved, making it easier to
build, debug, understand, and reason about programs.

Our focus in this article is on visual programming
languages, that is, languages for expressing algorithms.
Consequently, although visual tools are widely used in
other aspects of software development, specification, mod-
eling, metamodeling, and so forth, we do not cover them
here.

VPL EXAMPLES

Like a textual programming language, a VPL can be clas-
sified in various ways; for example, by the programming
model on which it is based, the target user, whether it is
general-purpose or domain-specific, declarative or impera-
tive, or whether programs are constructed directly or by
demonstration. Like textual programming languages,
VPLs exist in their own, perhaps not quite so extensive,
Tower of Babel: hence, a small selection of examples will
inevitably exclude some features. Here we provide exam-
ples, each presented under a heading that emphasizes a
particular characteristic, but chosen to illustrate a reason-
ably broad range of VPL features.

Data Flow

In data flow VPLs, computation at the lowest level is
specified by graphs consisting of icons that represent opera-
tions on data, connected by lines representing the flow of
data between operations.

The earliest implemented data flow VPL that we are
aware of was due to W. Sutherland in 1966 (2). In the 1970s
and early 1980s, data flow was adopted as a hard-
ware model in projects aimed at building computers
for parallel processing. Data flow diagrams were used as
programming aids, but in only one project were they used
directly, incorporated in a primitive data flow VPL (3).
Just as these hardware projects were dying out in the
1980s for lack of viable products, graphical PCs began to
appear, prompting researchers and industry practitioners
to further investigate data flow as a viable model for visual
programming. Data flow is the model most frequently used
as the basis for industrial VPLs. We briefly describe two of
them.

Prograph is a VPL intended, like Java or Cþþ, for
general-purpose application development (4). Figure 1
depicts a Prograph method quicksort that implements
the quicksort algorithm for sorting lists. The method con-
sists of a sequence of two data flow diagrams, implementing
the base case and recursive cases of the algorithm, which
are shown in the two windows labeled 1:2 quicksort and 2:2
quicksort. The input list flows from the caller into the base-
case diagram through the root on the input bar at the top of
the diagram and into the match operation named (). The
match compares the incoming value with its own value [the
empty list, ()]. If this comparison succeeds, the incoming
empty list flows to the terminal on the output bar and is
passed to the caller. If the match fails, the next-case-on-
failure control ) fires, terminating execution of the case
and initiating execution of the recursive case. The input list
flows into the built-in operation detach-l, which divides the
list into its first element (head) and the remaining list (tail),
which flow out of the two roots on the bottom of the opera-
tion. The partition operation compares the head with each of
the elements in the tail, dividing the latter into the lists of

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



elements less than and greater than or equal to the head.
These two lists are sorted by recursive calls to quicksort, the
head of the original list is attached to the beginning of the
second sorted list, and the resulting list is joined to the end
of the first sorted list.

The annotations on the partition operation indicate its
repetitive nature. In particular, the list annotation (. . .) on
the second terminal requires the input to be a list, each
element of which will be consumed by an execution of
partition. The same annotation on the roots indicates that
lists will be produced, consisting of the values produced
by the individual executions of partition. We invite the
reader to complete the explanation of this example by
examining the diagrams for partition. Note that if there
is no data link attached to a terminal on an output bar, no
value for that output will be returned to the caller.

Figure 1 illustrates the above comment about concrete
representation of program structure in visual languages.
For example, the two invocations of quicksort in the recur-
sive case of the algorithm are independent and could be
executed in parallel. Representing the computation in a
data flow diagram, as in the second case of the quicksort
method, clearly exposes this characteristic of the algorithm.

Prograph is an example of a structured data flow VPL, in
which data flow diagrams are embedded in structures that
control how they are invoked. For example, the list annota-
tions on the roots and right-hand terminal of the partition
operation in Figure 1 define an iterative, possibly parallel,
list-processing construct.

In structured data flow VPLs, diagrams are acyclic, and
in each invocation of a diagram, each data link is assigned a
valueatmostonce. Incontrast, in theunstructuredmodelon
which the data flow hardware projects were based, a pro-
gramconsistsof a single data flow graph inwhich iteration is
achieved via cycles, and conditional execution by special
operations that route values along different data links
depending on Boolean input. Because of the difficulty of
building and understanding the control structures required
for nontrivial programs, unstructured data flow is generally

limited to application domains in which cyclic data flow is
natural. For example, Simulink, a domain-specific, data
flow VPL for simulating dynamic systems, is primarily
unstructured, although it also provides some control con-
structs. Figure 2showsa Simulinkprogramthatsimulatesa
bouncing ball by continuously recomputing its velocity and
position in a feedback loop consisting of two cycles.

Imperative Programming

Imperative VPLs focus on the flow of control rather than on
the flow of data. The earliest example of an imperative
visual notation is possibly von Neumann and Goldstine’s
Flow Diagrams, essentially the familiar unstructured flow-
charts, consisting of computational blocks connected by
lines indicating transfer of control.

Imperative VPLs not based on flowcharts have also been
designed. An example is VIPR, a language in which control
flow is expressed via containment and connectivity (5).
A statement is represented by a circle that may have one
or both of a guard and an expression attached. If the guard
(a logical expression) evaluates to true, the expression is

Figure 1. Prograph implementation of the quicksort algorithm for list sorting.

Figure 2. A Simulink program for simulating the motion of a
bouncing ball.

2 VISUAL PROGRAMMING LANGUAGES



evaluated. A sequence of statements is represented by
concentric circles, which are executed from outside to inside
and peeled away as execution proceeds. Circles are also
connected in various ways to indicate other kinds of control
flow. Figure 3 depicts the form of a VIPR while loop,
represented by the circle inside the outer ‘‘container’’ circle.
When this statement is executed, the guards on the
enclosed statements are executed. If B evaluates to true,
the left-hand statement expands to fill the container; the
statement inside it is executed, causing the evaluation of
S1; and the circle inside that executes, replacing itself with
a new copy of the loop structure.

Note that in VIPR, the relationship between a statement
and the control structure it invokes is explicitly indicated
by a line connecting the two, as illustrated in Fig. 3, in
contrast to most VPLs. For instance, in the Prograph
example in Fig. 1, the relationship between the partition
operation and its diagrams is indicated symbolically.

Imperative VPLs with static representations have not
proved to be as useful as data flow. However, VPLs in which
the user demonstrates imperative algorithms rather than
writing them explicitly have had some success. One such
language is ToonTalk, which is meant for children and
presents the task of programming as direct manipulation
of objects in a video game environment (6). A program is
represented as a city, in which houses represent processes.
The programmer enters a house where he or she trains
robots to perform tasks using a small number of tools and
assembles them into teams that perform procedures.

There is no static representation of ‘‘code’’ in ToonTalk,
so it is not possible to provide diagrams for an example
program; however, we will outline the process of building a
program for computing factorial, illustrated with some
snapshots. First, as shown in Fig. 4(a), the programmer
takes a new robot from the toolbox, names it fact start,
creates a sample input in the form of a box with two slots,
and drops it on the robot to initiate training. The sample
input slots, labeled N and Answer, respectively contain the
input integer, and a bird representing a pointer to the

location to which to return the result (the bird’s nest). The
environment contains a toolbox with an unlimited supply
of objects for building programs; a notebook for storing any
kind of item; a magic wand for copying; a dust-buster for
deleting; and a pump for enlarging or shrinking. The
programmer is represented by a hand for grasping and
moving objects.

Dropping the input on the robot causes an animated
transition into the robot’s thought bubble, where the
robot’s task is demonstrated. The final step of this train-
ing is shown in Fig. 4(b). The robot has been taught to
append to the right end of the box a slot named Factorial
containing 1, and two slots, labeled I and must be less, to
the left end. Appending boxes is accomplished by juxta-
posing them, whereupon a mallet-bearing mouse per-
forms the operation. The slot labeled must be less
contains a balance, tipped to the right to show how the
numbers on either side compare. Terminating training
causes an animated return to the environment. At this
point, the robot’s thought bubble contains a copy of the
training input, indicating that this is the only input he
will accept. The programmer generalizes this by erasing
the 3 from the N slot leaving a green patch indicating that
any integer is acceptable, as in Fig. 4(c).

In a similar fashion, the programmer trains a robot
named fact loop to accept any five-slot box with integers in
the first, third, and fifth slots, and a right-tilted balance
in the second, to increment the first integer and to multi-
ply the last integer by the result. Note that given an
input, a robot repeats its task until the the input is no
longer of the right form, so fact loop will stop when the
integers in the first and third boxes are equal. Finally, the
programmer trains a robot named fact finish to accept any
five-slot box with integers in the first, third, and fifth
slots, to remove the last integer from its slot, drop it into
the fourth slot on to the bird, which carries the integer to
its nest, and clean up by selecting a bomb from the toolbox
and detonating it.

Next, the three trained robots are assembled into a team,
as shown in Fig. 4(d), with the acceptable input patterns
shown in their thought bubbles. A team is a sequence of
robots that, when given an input, act on it in order. The
team is stored in the notebook.

Finally, the programmer creates a two-slot input box
containing bird and integer, takes a truck from the toolbox,
and places the box on it, together with a copy of the robot
team from the notebook [Fig. 4(e)]. The truck goes to a new
house, where the robots act on the provided box, finally
blowing up the house to terminate the spawned process.
The bird returns the result [Fig. 4(f)].

Although it is not possible to see a program, or to edit a
chosen part of it, the environment provides a ‘‘time travel’’
feature that allows the programmer to record the program-
ming, replay from any point, and take control at any point to
redo the programming from that point on.

Sheet-Based

Spreadsheets, although introduced before the advent of the
graphical PCs that enabled current VPL research, are
almost certainly the most popular VPLs. This is possibly

State

B? ~B?
S2S1

Figure 3. The loop while B do S1; S2 in VIPR (from Ref. 5).

VISUAL PROGRAMMING LANGUAGES 3



because they are relatively simple, presenting a ledger-like
sheet for entering and performing arithmetic on values, a
metaphor familiar to the end users for whom spreadsheets
are intended. The sheet is the single significant pictorial
element that qualifies the original spreadsheet as a VPL,
according to our definition, since the implicit acyclic data
flow graph, created by formulas in cells referring to other
cells, is not visible. Nevertheless, evidence exists that the
visual characteristics of the sheet help users build a mental
representation of the underlying data flow (7). Spread-
sheets have evolved to include more pictorial elements,
such as the auditing feature of Microsoft Excel (Microsoft
Corporation Redmond WA), which allows the data flow
graph to be displayed.

Numerous enhancements to spreadsheets have been
proposed. Some are minor refinements of the original
idea, such as allowing a spreadsheet program to consist
of several sheets that may reference each other, thereby

providing a simple type of modularization. Others are
aimed at enhancing the programming aspects by adding
to or replacing the ‘‘formula-in-cell’’ data flow model, which
is not Turing complete.

In the language Forms/3, sheets are generalized to
forms (8). A Forms/3 program consists of a collection of
forms containing cells, which are analogous to spread-
sheet cells but can be arranged arbitrarily. As in standard
spreadsheets, cells contain formulas which may refer to
cells on the same form or other forms.

Forms/3 attains Turing completeness by providing
recursion and iteration. Recursion is illustrated by the
example in Fig. 5, which depicts a collection of forms
that compute Fibonacci numbers, constructed as follows.
The form named Fib with four cells is constructed first, and
formulas 4, N–1 and N–2 entered in the cells N, N1, and N2
respectively, resulting in the values shown in those cells.
This form is copied twice, producing the forms Fib1 and

Figure 4. Programming factorial in ToonTalk.

4 VISUAL PROGRAMMING LANGUAGES



Fib2, which inherit structure and content from Fib. Their
gray background and the annotation like Fib in their bottom
left corners show that they are copies. Next, the formula in
the N cells of Fib1 and Fib2 are replaced by Fib:N1 and
Fib:N2, respectively, referring to the N1 and N2 cells of the
Fib form. The edited cells’ values are recomputed, and their
backgrounds turn white to show that their contents are
no longer inherited. Finally, a formula is entered into the
Ans cell of the Fib form, as shown, computing a value in
terms of the values of the Ans cells of the copies. Clearly, if
this formula were propagated directly to the copies, the
underlying data flow graph would become cyclic. However,
when a formula is propagated from a form A to a copy B, a
reference to a cell on a copy C of A is interpreted as a
reference to a copy D of B, bearing the same relationship to
B as C does to A. When propagated formulas are evaluated,
copies are created as required. Hence, in our example, as
soon as the formula in the Ans cell of Fib is entered, two
copies of Fib1 are created to compute Fibonacci numbers
corresponding to the contents of the N1 and N2 cells of
Fib1. Note that the base case of the propagated Ans formula
applies in each of these copies and in Fib2, so no further
forms are required.

Iteration in Forms/3 is achieved by introducing the
notion of time as a sequence of ‘‘clock ticks’’ and functions
that can be used in formulas to recompute the value of a cell
at each tick, and to refer to a cell’s value at an earlier tick.

Two-dimensional rectangular grids of cells are also
used in VPLs in which visual transformation rules are
used for programming games and simulations. One VPL
of this genre is KidSim (later named Cocoa, then Stagecast
Creator), a programming environment for children (9). In
KidSim, each cell in the grid may contain an agent, and
each type of agent may have a sequence of rules describing
its behavior. In the example in Fig. 6, there are three types
of agents, ‘‘ground,’’ ‘‘wall,’’ and ‘‘mascot,’’ populating the

grid. The window on the left shows the rules for mascot,
each defining, by means of ‘‘before and after’’ pictures, how
the grid is transformed when certain relationships between
adjacent grid cells are met. Rules 2 to 4, respectively, will
cause the mascot to move right if above a ground cell and
left of an empty cell, and to fall if the cell below is empty. The
window at bottom left, and the highlighted region of the
grid window, show a new rule being defined: the user is
dragging the mascot agent to an new position in the high-
lighted region to demonstrate how the adjacent cells with
the given ‘‘before’’ configuration should be transformed.
After the rule is constructed, clicking the ‘‘Run’’ button
on the control palette starts the simulation, during which
the rules for each agent in the grid are applied at each time
tick. The rules for an agent are tried in the order they occur
until one is found with a ‘‘before’’ pattern that matches the
region around the agent.

Declarative

Declarative VPLs, like their textual counterparts, are
descriptive rather than prescriptive; that is, the program-
mer defines relationships between values rather than pro-
viding instructions for computing one value from another.
Common declarative models are functional programming
and logic programming. Moment is a simple, domain-specific,
declarative language for defining two-dimensional scenes
(10). Each graphic object in a scene corresponds to a func-
tion represented by an icon in a scene graph diagram. The
scene graph may also include functions that perform
computations but do not represent objects in the scene.
Function icons are connected by data flow links, defining
constraints to be enforced when objects in the scene are
manipulated.

At the top of Fig. 7 is a Moment scene graph that defines
the scene at bottom right, demonstrating Varignon’s

Figure 5. Computing Fibonacci numbers in Forms/3.
Figure 6. Defining a rule in KidSim.

VISUAL PROGRAMMING LANGUAGES 5



Theorem: as the sides or vertices of the black quadrilateral
in the scene are dragged, the gray quadrilateral deforms
but remains a parallelogram. The Scene Graph window
contains an enclosure called Varignons_Theorem, corres-
ponding to the content of the scene graph. This enclosure
contains four instances of a function midptline, defined by the
enclosure at bottom left, connected by links that constrain
their endpoints to form the black quadrilateral. The gray
quadrilateral is represented in the graph by a function
Quadrilateral connected by links that constrain its vertices
to the midpoints of the lines. We leave it to the reader to
determine the structure of the lines that make up the black
quadrilateral by inspecting the midptline enclosure.

In L-sheets, a recently proposed enhancement to spread-
sheets, the standard formula-in-cell data flow program-
ming model is augmented with a logic-based VPL to
obtain Turing completeness, and to provide a means for
specifying spreadsheet structure (11).

L-sheets is basedon the observation thatspecifying array
structure, relationships between arrays and computations
that fill arrays, key activities in spreadsheet design, are
analogous in logic programming to specifying term struc-
ture, relationships between terms and computations that
bind variables occurring in terms. Accordingly, L-sheets
incorporates a form of logic programming based on unifica-
tion of visually represented arrays.

An L-sheets program sheet consists of a set of defini-
tions, each composed of a sequence of cases. Figure 8
depicts a program sheet with three definitions, gauss,
triangularise, and backsubstitute, which together define
Gaussian elimination with partial pivoting for solving
simultaneous linear equations. A case is analogous to a

Prolog clause and consists of a pale gray head template,
followed by a sequence of dark gray or white body tem-
plates. In our example, gauss has one case, whereas
triangularise and backsubstitute each consist of two. A
template, analogous to a Prolog literal, has a name and
sequence of parameters, each of which is an array, that is
either basic or compound.

A compound array is a rectangle further subdivided into
arrays. A basic array is a rectangle of cells, and can have
either one or a variable number of rows and one or a
variable number of columns. For example, the first para-
meter in the head of the second case of triangularise consists
of three arrays labeled A, B, and C. A consists of two
horizontally juxtaposed basic arrays, the left-hand one
having one column and a variable number of rows, indi-
cated by the horizontal dotted line. The right-hand basic
array in A has variable numbers of rows and columns. The
content of a basic array is a variable that may be bound to a
set of spreadsheet-style formulas.

The user applies the definition gauss by selecting in
the worksheet two rectangular arrays of cells. These arrays
are unified with the two parameters in the head of the single
case of gauss. The worksheet array bound to A contains the
coefficients and the right-hand sides of the equations, and
must be n rows by nþ 1 columns, otherwise, the application
of gauss will fail. The worksheet array bound to C must be a
single row of length n, for the solution vector. When these
unifications have succeeded, execution proceeds in a fashion
analogous to Prolog; that is, templates are introduced by the
body of the case and executed in order.

The base case of triangularise applies if the coeffi-
cient array consists of a single row and two columns,

Figure 7. Defining a drawing in Moment.

6 VISUAL PROGRAMMING LANGUAGES



corresponding to one equation in one variable, the solution
to which is computed directly by the formulas in the cells of
the second parameter.

In the second case of triangularise, the first body tem-
plate is a guard, the parameters of which have Boolean-
valued expressions as contents. For example, the content
of the selected parameter, displayed at the top of the
window, compares the first element of the row named B
of the array to be triangularised with the first element
of every row above it. Similarly, the second parameter of
the guard compares the first element of B with the
first element of each row below it. The third parameter
ensures that the absolute value of the first element of B
is not zero.

The second case of triangularise illustrates that array
unification is not unique. If the array to be triangularised
has n rows, there are n possible unifications, generated in
succession until the guard template succeeds, indicating
that the pivot row has been found.

Observing that a black rectangle represents an array at
least one dimension of which is zero, we invite the reader to
complete the explanation of this example.

Note that, like textual logic programming languages,
L-sheets is an example of a rule-based language, since each
case specifies a transformation rule that may be applied to
advance an execution state by transforming the structure
and content of arrays.

Component Based

Various VPLs have been proposed and implemented
based on the metaphor of networked computing devices,

or components, each performing a variety of tasks in
response to messages and data received from other com-
ponents. An example can be found in IBM’s VisualAge
products, in which a component-based VPL is layered
over a textual programming language (SmallTalk, Java,
Cþþ) (12).

Figure 9 depicts a VisualAge for Java message-flow
diagram that defines interactions between interface com-
ponents. An arrowed line starting from a square dot on a
component indicates that when a particular event origi-
nates from that component, a message will be sent to the
component at the head of the arrow. A line that originates
from a round dot on a component indicates the retrieval of
data from that component. For example, the line from the
‘‘Add’’ button to the ‘‘To-Do List’’ scrolling list indicates
that, when the button is clicked, a message will be sent to
the list, together with the content of the ‘‘To-Do Item’’ text
box. Clearly, key information about such interactions is not
represented in the diagram and must be viewed separately:
for example, the kind of event that triggers the message, the
identity of the message to be sent, and the data to be
retrieved. Although for a click on the ‘‘Add’’ button in
this example, it is clear what these items must be, it is
less obvious for interactions between more complex compo-
nents. Noting that the data arrow pointing out of the dotted
boundary refers to a database component, we invite the
reader to guess the messages, data, and events involved in
the interactions between the ‘‘To-Do List’’ and the
‘‘Remove’’ button.

Component-based VPLs are well suited to programming
tasks such as that illustrated in the example; however, they
do not facilitate algorithms requiring iteration or condi-
tional execution.

VPL FORMALIZATION AND CLASSIFICATION

All programs, regardless of how they are represented, must
be compiled into machine-executable form. In a textual
language, compiling a program involves lexical analysis,

Figure 8. An L-sheetsprogram defining Gaussianelimination for
solving simultaneous linear equations.

Figure 9. A message-flow diagram in VisualAge for Java.

VISUAL PROGRAMMING LANGUAGES 7



which divides the string of symbols into larger meaningful
chunks (tokens), such as identifiers, operators, and key-
words, then parsing the token stream to produce a parse
tree. Semantic analysis is usually performed during the
construction of the parse tree by using an attribute gram-
mar, a context-free grammar in which nonterminal sym-
bols are annotated with attributes, and productions are
augmented with rules that relate these attributes and
attach semantic information, such as snippets of assembly
language code, to the parse tree. This semantic information
is then used for code generation.

Since analogous processes are required for visual
programs, the theory of VPLs has largely developed by
analogy with the theory of textual languages, with two
major differences. First the structure of grammars for
VPLs is complicated by the difference between text and
two-dimensional pictures. Text is abstract, not a one-
dimensional picture, so symbols have no size or absolute
position and cannot overlap. Juxtaposition in one dimen-
sion is the only relationship between symbols in a string. In
contrast, an object in a two-dimensional picture is not just a
symbol. It has size and shape, so it may touch, overlap,
occlude, or contain another object, or be separated from
another object by a vector of any length or orientation.

The other major difference between the theories of
textual and visual languages is the way in which they
are applied. Strings have a universally accepted repre-
sentation as sequences of standard codes. Hence, any text
editor can be used to write programs and to save them in
generic text files. Consequently, although IDEs fre-
quently include syntax-directed editors that either refuse
to allow syntactically incorrect input, or highlight and
warn about syntax errors, the primary application of
grammars is to lexical analysis and parsing. In contrast,
there is no universal coding for object-based drawings, so
formal descriptions of VPLs tend to be used for building
syntax-directed editors, rather than for parsing generic
drawings (13).

Among the most widely used formalisms for describing
the structure of visual languages are graph grammars,
proposed in the late 1960s as a means for describing
the structure of graphs (14). A graph grammar (GG),
analogous to a transformational grammar defining a
textual language, consists of a set of rules for transforming
a graph by identifying a subgraph by pattern matching, and
replacing it with another subgraph. Various derivatives of
GGs have been devised to better suit the requirements of
visual languages, such as layered and reserved. Other
formalisms developed for visual languages include posi-
tional grammars, relational grammars, relation gram-
mars, constraint multiset grammars, attributed multiset
grammars, and hypergraph grammars (15).

As noted, programming languages can be classified in
different ways for different purposes. The Chomsky hierar-
chy classifies textual languages according to syntactic struc-
ture, and what it implies about expressive power and
algorithmic properties. Classifying VPLs in a similar way
is problematic because of the variety of formalisms used to
define them. Marriott and Meyer approach this problem by
establishing a Chomsky-like hierarchy of VPLs based on

copy-restricted constraint multiset grammars (CCMGs),
then showing how various VPL grammar formalisms
can be mapped on to CCMGs (15). Placing a VPL in this
hierarchy provides insights into its limitations, and infor-
mation with practical implications, such as the complexity
of parsing.

Other classifications of VPLs have a more pragmatic
flavor. For example, Costagliola et al. define a framework
in which a VPL is classified according to the syntactic
attributes of visual tokens and spatial relationships
between tokens that form the alphabet of the grammar.
Their classification leads to a class hierarchy (in the
object-oriented programming sense), incorporated into a
compiler-compiler for semiautomatically generating VPL
compilers and syntax-directed editors (16).

EVALUATION AND DESIGN

In the early days of VPL research, researchers tended to
invent new visual notations to explore the possibilities of
the medium, assuming that the greater expressive power of
pictures would inevitably lead to languages better then
textual ones. Results were reported, together with claims of
superiority, based largely on intuition. Amid growing con-
cern about the need to validate such claims, Blackwell
reduced them to 12 categories, related each category to
the cognitive science literature, showing some to be well
founded and others to have little or no support, and con-
cluded by pointing out the need to properly account for
cognitive processes in VPL design and evaluation (17).

The Cognitive Dimensions (CD), proposed by Green and
Petre, has had a significant influence on VPL research,
providing a framework within which visual language
designers can assess the potential impact of design choices
(18). The CD framework consists of the 13 dimensions listed
in Table 1, each capturing a significant characteristic of a
notation, and supported by empirical evidence.

To illustrate, some applications are as follows.
Abstraction gradient: In Prograph, although the pro-

grammer may code complicated computations in a single
data flow diagram, as the number of operations and data
flow links increases, the diagram becomes cluttered and
complicated, encouraging the programmer to collapse
meaningful subdiagrams into single operations.

Hidden dependencies: In the original form of spread-
sheets,theonlywaytodiscoverthatacelldependedonothers
was to select it to reveal its formula. Furthermore, there was
no way to find the cells dependent on a particular cell.

Progressive evaluation: Spreadsheets deliver the ulti-
mate in progressive evaluation since execution is ‘‘always
on,’’ evaluating all affected cells immediately after every
edit. This property is preserved in some spreadsheet deri-
vatives, such as Forms/3.

Closeness of mapping: The correspondence between pro-
blem and program in Moment is almost one-to-one. Each
object in the drawing is represented by a node in the
program, and each visually apparent constraint between
objects (e.g., endpoints of two lines coincide) is represented
by a link between program nodes.

8 VISUAL PROGRAMMING LANGUAGES



Consistency: If the user, knowing some of a language,
can reliably guess the structure of the rest, then the lan-
guage is consistent. Although it seems unlikely that a little
knowledge of ToonTalk will allow the user to infer much
more, once the user has understood that placing one num-
ber on another causes the mallet-wielding mouse to per-
form addition, he or she may very well conclude that placing
other objects in close proximity will cause the mouse to
perform an appropriate operation.

Viscosity: In ToonTalk, to rectify a programming error,
the programmer must rewind the animation to a point
preceding the error, then redo the entire program from
there on. This is possible only if the ‘‘time travel’’ feature is
turned on.

There are various ways to evaluate the effectiveness of
VPLs. One unscientific but telling measure is the degree to
which VPLs have been adopted in industry. Some VPLs
have had considerable commercial success. For example,
LabVIEW, a data flow VPL for programming hardware
controllers, has several million users worldwide, and
Simulink has a strong user base in the engineering
industry. Although the VPLs in both products are general
enough to code any algorithm, the products themselves are
domain-specific. In contrast, no VPLs for general- purpose
application development enjoy such success. A possible
explanation is provided by a focus-group study commis-
sioned by Apple Computer in the 1990s to determine the
viability of Prograph for industrial development. Despite
strongly positive feedback on the Prograph development
environment, comments from participants indicated that it
would be unlikely for a VPL that did not comply with
prevailing software industry standards to be adopted,
implying that a VPL must be able to be used interchange-
ably with a standard textual language such as Java.

More detailed evaluation data are obtained via user
studies, reports from users with extensive experience of
particular VPLs, and user surveys targeting specific ques-
tions about VPL performance. Although results have been
mixed, some indicate the superiority of VPLs in certain
situations. One user study testing the performance of
programmers solving matrix problems in Forms/3,
Pascal, and APL showed that 73% of the Forms/3 programs
were correct, compared with 53% and 40% of the APL and

Pascal programs, respectively (19). Based on extensive
experience with LabVIEW in more than 40 projects, Baroth
and Hartsough concluded that LabVIEW’s VPL contributes
significantly to productivity in software development (20).
In an extensive survey of LabVIEW users, respondents
rated its visual aspects significantly higher than its non-
visual ones (21), a result consistent with Baroth and Hart-
sough’s conclusions.

CONCLUDING REMARKS

As Ambler and Kimura noted in their preface to the pro-
ceedings of the 1994 IEEE Symposium on Visual Lan-
guages, ‘‘In 1984, the goal of visual language research
was . . . using pictures to construct programs and to then
watch their execution.’’ Accordingly, the initial focus was on
inventing pictorial notations to explore the potential of
graphics for representing algorithms and data. As VPL
research has evolved, the focus has shifted and widened.
Current emphases are as follows:

� Cognitive issues

& Empirical studies of programmers—professionals,
novices, children, and end users

& Principles of notational design

� Software engineering

& Theory

& Software modeling

& Software visualization tools

� VPLs for domain-specific and end-user programming

& Languages

& Debugging tools and methodologies

� Formal methods

& Syntax and semantics

& Generating VPLs from specifications

& Diagrammatic reasoning

Table 1. Cognitive Dimensions

Dimension Description

Abstraction gradient Degree to which abstraction is allowed, encouraged, and supported
Closeness of mapping Does the notation closely mirror domain objects and relationships
Consistency The notation represents similar meanings with similar constructs
Diffuseness/Terseness Are too many or too few symbols required to represent a meaning
Error-proneness Notation traps the programmer into making errors
Hard mental operations Notation makes some programming tasks inherently difficult
Hidden dependencies Significant relationships between program entities are not displayed
Premature commitment Programming decisions precede the information required to make them
Progressive evaluation Programs can be run at any time, complete or not
Role-expressiveness The function of a program structure is implied by its appearance
Secondary notation Comments or other information not formally part of the program
Viscosity Is unreasonable effort required to make a change
Visibility How easily can any part of a program be displayed

VISUAL PROGRAMMING LANGUAGES 9



BIBLIOGRAPHY

1. K. Zhang, J. Kong, and J. Cao, Visual software engineering, in
B. W. Wah (ed.), Encyclopedia of Computer Science and Engi-
neering. New York: Wiley, 2008.

2. W. R. Sutherland, The On-Line Graphical Specification of
Computer Procedures, Ph.D. dissertation, Cambridge: Massa-
chusetts Institute of Technology, 1966.

3. A. L. Davis and S. A. Lowder, A sample management applica-
tion program in a graphical data-driven programming lan-
guage, Dig. Papers, Compcon Spring, 81: 162–165, 1981.

4. P. T. Cox, F. R. Giles, and T. Pietrzykowski, Prograph: a step
towards liberating programming from textual conditioning,
Proc. IEEE Workshop Visual Programming, Rome, Italy,
1989, pp. 150–156.

5. W. Citrin, M. Doherty, and B. Zorn, The design of a completely
visual object-oriented programming language, in M. Burnett,
A. Goldberg, and T. Lewis (eds.), Visual Object-Oriented
Programming: Concepts and Environments. Greenwich,
CT: Manning Publications, 1995.

6. K. Kahn, ToonTalkTM—An animated programming
environment for children, J. Visual Languages and Computing
7(2): 197–217, 1996.

7. R. Navarro-Prieto and J. J. Cañas, Are visual programming
languages better? The role of imagery in program comprehen-
sion. Int. J. Human-Computer Studies 54(6): 799–829, 2001.

8. M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein,
and S. Yang, Forms/3: A first-order visual language to explore
the boundaries of the spreadsheet paradigm. J. Functional
Programming 11(2): 155–206, 2001.

9. D. C. Smith, A. Cypher, and J. Spohrer, KidSim: Programming
agents without a programming language. Commun. ACM
37(7): 54–67, 1994.

10. S. Greenwold, Spatial Computing, MSc Thesis, Cambridge:
Massachusetts Institute of Technology, 2003.

11. P. T. Cox and P. Nicholson, Unification of arrays in spread-
sheets with logic programming, Proc. Workshop on Practical
Aspects of Logic Programming, San Francisco, CA, 2008.

12. M. Carrel-Billiard and J. Akerley, Programming with Visual-
Age for Java. Englewood Cliffs, NJ: Prentice Hall, 1998.

13. K. Wittenburg, Relational grammars: Theory and practice in a
visual language interface for process modeling, Proc. Interna-
tional Workshop on Theory of Visual Languages, Gubbio, Italy,
1996.

14. I. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, Hand-
book of Graph Grammars and Computing by Graph Transfor-
mation Volume 2: Applications, Languages and Tools.
Singapore: World Scientific, 1999.

15. K. Marriott and B. Meyer, Visual Language Theory. New York:
Springer-Verlag, 1998.

16. G. Costagliola, A. Delucia, S. Orefice, and G. Polese, A classi-
fication framework to support the design of visual languages. J.
Visual Languages and Computing 13(6): 573–600, 2002.

17. A. F. Blackwell, Metacognitive theories of visual programming:
What do we think we are doing, Proc. IEEE Symposium on
Visual Languages, Boulder, CO, 1996, pp. 240–246.

18. T. R. G. Green and M. Petre, Usability analysis of visual
programming environments: A ‘cognitive dimensions’ frame-
work. J. Visual Languages and Computing 7(2): 131–174, 1996.

19. R. Pandey and M. Burnett, Is it easier to write matrix manipu-
lation programs visually or textually? An empirical study,
IEEE Symposium on Visual Languages, Bergen, Norway,
1993, pp. 344–351.

20. E. Baroth and C. Hartsough, Visual programming in the real
world, in M. Burnett, A. Goldberg, and T. Lewis (eds.), Visual
Object-Oriented Programming: Concepts and Environments.
Greenwich, CT: Manning Publications, 1995.

21. K. N. Whitley and A. F. Blackwell, Visual programming in the
wild: A survey of LabVIEW programmers. J. Visual Languages
Computing, 12(4): 435–472, 2001.

FURTHER READING

The following online bibliography contains an extensive listing of
VPL papers and, since authors can enter their own papers, tends
to be fairly current.

M. M. Burnett, (no date). Visual Language Research Bibliogra-
phy. [Online]. Oregon State University. Available: http://
www.cs.orst.edu/~burnett/vpl.html, December 12, 2007.

Although VPL research results now appear in many journals and
conferences, the primary sources are:

S.-K. Chang and S. Levialdi (eds.), Journal of Visual Languages
and Computing, Elsevier.

Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, IEEE Computer Society Press.

A comprehensive discussion of empirical studies on the use and
value of diagrams in programming can be found in:

A. F. Blackwell, K. N. Whitley, J. Good, and M. Petre, Cognitive
Factors in Programming with Diagrams, Artificial Intell. Rev.
15: 95–114, 2001.

The following paper provides a survey of the development of data
flow languages including a section on data flow VPLs:

W. M. Johnston, J. R. Hanna, and R. J. Millar, Advances in
dataflow programming languages, ACM Computing Surv.
36(1): 1–34, 2004.

The following journal special issue reports on experiences with
Green and Petre’s cognitive dimensions framework.

A. F. Blackwell (ed.) Special issue: ten years of cognitive dimen-
sions: J. Visual Languages and Computing 17(4): 285–287, 2006.

An earlier survey of VPL research can be found in:
M. M. Burnett, Visual programming, in J. G. Webster (ed.),
Encyclopedia of Electrical and Electronics Engineering.
New York. Wiley, 1999.

A thorough overview of visual languages, including underlying
theory and applications to a variety of areas, is provided by:

K. Zhang, Visual Languages and Applications. New York:
Springer, 2007.

The following work consists of a collection of chapters by different
authors on specific visual language topics, providing an insight
into some of the current research in the area.

F. Ferri (ed.), Visual Languages for Interactive Computing:
Definitions and Formalizations. Hershey, PA: IGI Global, 2007.

PHILIP T. COX

Dalhousie University
Halifax, Nova Scotia, Canada

10 VISUAL PROGRAMMING LANGUAGES



V

VISUAL SOFTWARE ENGINEERING

INTRODUCTION

Graphical notations are widely used in software design and
development. These notations can greatly help the model-
ing and representation of software architecture (1) and
design (2). There are many benefits of informal graphic
notations: First, they can be used to convey complex con-
cepts and models, such as object-oriented design. Notations
like those in UML (2) serve a useful purpose in commu-
nicating designs and requirements. Second, they can help
people grasp a large amount of information more quickly
than text can. Third, as well as being easy to understand,
drawing diagrams is normally easier than writing text in a
predefined language. Fourth, graphical notations cross
language boundaries and can be used to communicate
with people of different cultures.

Visual software engineering refers to the use of various
visual means in addition to text in software development.
The forms of the development means include graphics,
sound, color, gesture, and animation. The Software devel-
opment lifecycle involves the activities of project man-
agement, requirements analysis and specification,
architectural and system design, algorithm design, coding,
testing, quality assurance, maintenance, and if necessary,
performance tuning. These software engineering activities
may be assisted through various visual techniques, includ-
ing visual modeling, visual database query, visual pro-
gramming, algorithm animation, program visualization,
data visualization, and document visualization. Such
visual techniques are sometimes categorized into software
visualization (3), which in a broader sense may include the
objective of education in algorithms, programming, and
compilers, as well as that of software development (4,5).
Figure 1 illustrates the various aspects of software engi-
neering assisted through visualization.

In the first phase of the software engineering process,
software managers are responsible for planning and sche-
duling project development. They typically use several data
visualization forms, such as Gantt charts, to illustrate the
project schedule meeting a series of milestones. They may
also use activity networks to plan project paths leading to
the project completion from one milestone to another, or use
Petri nets to model the transitions of project activities.

The second phase involves requirements analysis and
specification. This phase is usually conducted using various
visual modeling techniques, on graphical formalisms such
as Statecharts for dynamic analysis and class diagrams for
static analysis. More advanced techniques include execu-
table specifications, which can then be realized through
visual specification languages. Specifications can be pro-
vided via visual programming.

The third phase of the software engineering process
establishes an overall software architecture through sys-
tem and software design. Visual modeling techniques may

continue playing a key role, through architectural visuali-
zation using various types of architectural diagrams, such
as class diagrams and collaboration diagrams. During this
phase, algorithm design is needed and the behavior of the
algorithm may be understood through visualization and
animation. The detailed functionality may need to be trans-
formed into one or more executable programs. Visual lan-
guage techniques with their well-founded graph grammar
support suit particularly well the design, verification, and
reuse of executable programs, which will be the focus of this
article.

Many modern software systems access databases for
organized and inter-related data items from large quanti-
ties of data. The logical organization of data is typically
modeled in entity-relationship diagrams in relational data-
bases. Complex database queries can be provided through
form-based visual structures. For a database management
system, visualizing internal segmentation due to fragmen-
ted data storage is extremely useful in guiding efficient
data placement policies.

In the fourth and fifth phases, the domain software is
implemented and coded via visual programming. Both unit
testing and integrated testing may be done through tech-
niques such as program slicing and be visualized on graph
formalisms such as dependence graphs and call graphs.

Next, software documentation and online help systems
are essential for the quality assurance of any software
product. They are designed for end users of the software.
A comprehensive online help system has a complex network
structure that is usually hierarchical with cross-links. A
visualized help graph provides an intuitive road map for
tutorial, guiding, or diagnostic purposes.

The final maintenance phase takes the longest time in
the software lifecycle. During this period, more bugs or
requirements errors may be revealed and corrected
through program visualization. Program comprehension
and analysis can be achieved effectively through graphical
visualization. Also during this phase, the performance of
the domain software may be improved after it functions as
required. Performance evaluation and comparison can be
conducted effectively through data visualization (some-
times called statistical visualization). The major difference
between program visualization and data visualization is
that the visual notations in the former usually correspond
directly to the program semantics, whereas those in the
latter correspond quantitatively to certain program mea-
surements. For example, nodes in a call graph represent
procedures/functions and edges represent call relation-
ships. A segment in a pie chart is significant only in its
size and in what it measures.

The remaining part of this article focuses on one of the
visual software engineering approaches, i.e., using graph
grammars as the underlying theory to support visual soft-
ware modeling, requirements analysis, architecture
design, verification, and evolution.

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



A SOUND FOUNDATION

The aforementioned informal graphical notations and
formalisms used in various software engineering phases
are good at illustration and providing guidance. They are,
however, not amendable to automated analysis and trans-
formation. For example, in software architecture design,
the developer has to rely on his/her personal experience to
discover errors and inconsistencies in an architecture/
design diagram. He/she also has to manually redraw the
whole architecture/design diagram whenever a change or
update is needed. These human tasks are tedious and error-
prone. This article presents an approach that can automa-
tically verify and transform design diagrams based on
graph grammars. The approach abstracts Statecharts,
class diagrams, and architecture styles into a grammatical
form (as explained in this article). It will then be able to
parse a given architecture/design diagram to analyze
whether the diagram has some required properties or
reconciles some design principles. Moreover, design pat-
terns can be easily visualized and architectural evolution
can be achieved through graph transformation.

Graph grammars provide a theoretical foundation for
graphical languages (6). A graph grammar consists of a set
of rules, which illustrates the way of constructing a com-
plete graph from a variety of nodes. It specifies all possible
inter-connections between individual components; i.e., any
link in a valid graph can be eventually derived from a
sequence of applications of grammar rules (the activity
also known as graph rewriting or graph transformation).
Conversely, an unexpected link signals a violation on the
graph grammar. A graph grammar can be used to ‘‘glue’’
various components into a complete system. Graph gram-
mars form a formal basis for verifying structures in a
diagrammatic notation, and they can be viewed as a model

to simulate dynamic evolution. Such an approach facili-
tates the following aspects of software engineering:

� Graphs are used to specify software by distinguishing
individual components and depicting the relationships
between the components. A graph grammar specifying
design choices and policies provides a powerful
mechanism for syntactic checking and verification,
which are not supported by most current tools.

� In addition to software design and verification, this
approach facilitates a high level of software reuse by
supporting the composition of design patterns and uses
graph transformation techniques in assisting the evo-
lution and update of software architectures and in
reusing the existing products.

A graph grammar is similar to a string (textual) grammar
in the sense that it consists of finite sets of labels for nodes
and edges, an initial graph, and a finite set of production
rules. It defines the operational semantics of a graphical
language (6). Graph transformation is the application of
production rules that model the permitted actions on
graphs representing system structures and states.

In the following explanation of graph grammars, we will
use the popular software modeling language Statecharts
(7) as our demonstration language, for which a graph
grammar can be defined.

In a graph grammar, a graph rewriting rule, also called a
production, as shown in Fig. 2, has two graphs called left
graph and right graph. A production can be applied to a
given graph (called a host graph) in the form of an L-
application or R-application. A redex is a subgraph in
the host graph that is isomorphic to the right graph in
an R-application or to the left graph in an L-application. A
production’s L-application to a host graph is to find in the

Figure 1. Software engineering assisted by gra-
phical visualization.

Requirements 

Design 

Coding 

Testing 

Maintenance 

Quality Assurance 

Visual Modeling 

Algorithm Animation

Visual Programming

Program Visualization

Data Visualization

Document Visualization

Software Engineering
Activities 

Visualization 
Assistance 

Example Visual 
Formalisms 

Petri Nets, 
Statecharts 

Bar Charts 

Data Flow Graphs 

Dependence Graphs, 
Call Graphs 

Pie Charts, 
Gantt Charts 

Hypertext 

Management 

Visual Query Form-Based 

2 VISUAL SOFTWARE ENGINEERING



host graph a redex of the left graph of the production and
replace the redex with the right graph of the production.
The L-application defines the language of a grammar.
The language is defined by all possible graphs that can
be derived using L-applications from an initial graph
(i.e., l) and consist of only terminals, i.e., the graph ele-
ments that cannot be replaced. An R-application is a
reverse replacement (i.e., from the right graph to the left
graph) that is used to parse a graph.

A graph grammar is either context-free or context-
sensitive. A context-free grammar requires that only one
nonterminal is allowed on the left-hand side of a production
(8). Most existing graph grammars for visual languages are
context-free. A context-sensitive graph grammar, on the
other hand, allows the left and right graphs of a production
to have an arbitrary number of nodes and edges. Motivated
by the need for a general-purpose visual language genera-
tor, the authors have developed a context-sensitive graph
grammar formalism called the reserved graph grammar
(RGG) (9).

In an RGG, nodes are organized into a two-level hier-
archy as illustrated in Fig. 2. A large rectangle is the first
level called a super-vertex with embedded small rectangles
as the second level called vertices. In a node, each vertex is
uniquely identified by a capital letter. The name of a super-
vertex distinguishes the type of nodes similar to the type of
variables in conventional programming languages. A node
can be viewed as a module, a procedure, or a variable,
depending on the design requirement and granularity.
Edges are used to denote communications or relationships
between nodes. Either a vertex or a super-vertex can be the
connecting point of an edge.

In a context-sensitive grammar, replacing a redex with a
subgraph while considering the inter-connection relation-
ship between the redex and its surrounding graph elements
is traditionally called embedding. The RGG handles the
embedding problem using a marking mechanism that com-
bines the context information with an embedding rule. The
embedding rule states: If a vertex v in the redex of the host
graph has an isomorphic vertex v0 in the corresponding
production’s right graph and neither v nor v0 is marked,
then all edges connected to v should be completely inside
the redex. The marking mechanism, will be explained
further through examples provided here, makes the RGG
expressive, unambiguous, and efficient in parsing.

The RGG formalism uses the object-oriented language
Java as a lower level specification tool for instructions and
attributes that may not be effectively or accurately speci-

fied graphically. These instructions and attributes that are
applied to the graph under transformation to perform
syntax-directed computations such as data transfer and
animation are specified in a piece of Java code (called
action) attached to the corresponding production. Different
actions can be performed on different attributes of the redex
of a production to achieve the desired modeling and anima-
tion effects. Such an action code is like a standard exception
handler in Java by treating each attribute as an object. It
associates computation tightly with structural (syntacti-
cal) transformation. For example, one can provide the
following action code to specify the state transition of a
car object from stop to star:

action(AAMGraph g) {
Attribute attributes ¼ g.getAttributes();
attributes.getObject(‘‘car’’).setState(‘‘stop’’, ‘‘start’’);

}

This arrangement allows a software engineer to precisely
specify and generate any executable system for visual soft-
ware modeling and verification as discussed in the next few
sections.

The RGG formalism has been used in the implementa-
tion of a toolset called VisPro, which facilitates the genera-
tion of visual languages using the Lex/Yacc approach (10).
As a part of the VisPro toolset, a visual editor that could be
used to create visual programs and parsing algorithms is
automatically created based on grammar specifications.

MODELING WITH STATECHARTS

This section illustrates the application of the RGG formal-
ism to Statecharts and explains how the marking mechan-
ism works. Figure 3 depicts a snapshot of a subgraph
transformation for a Statechart graph using the production
in Fig. 2. In Fig. 3(a), the isomorphic graph in the dotted box
is a redex. The marked vertices and the vertices corre-
sponding to the isomorphic vertices marked in the right
graph of the production are painted gray. The transforma-
tion deletes the redex while keeping the gray vertices. Then
the left graph of the production is embedded into the host
graph, as shown in Fig. 3(b), while treating a vertex in the
left graph the same as the corresponding gray vertex. This
shows that the marking mechanism allows some edges of a
vertex to be reserved after transformation. For example, in

T

2:B

B
State 

AND 

State
T

1:T 

B

T

2:B

B
State 

AND 

1:T

:=

Figure 2. A graph rewriting rule (or a production).

T

B

B
State 

AND 

State 
T

T

B
State 

T

B

T

B

B
State 

AND 

T

State
T

B

(a) Before transformation (b) After transformation 

Figure 3. Reserving edges during parsing.

VISUAL SOFTWARE ENGINEERING 3



Fig. 3(a), the edge connecting to the ‘‘State’’ node outside the
redex is reserved after transformation.

In the definition of the Statecharts grammar, an ‘‘AND’’
node may connect to multiple ‘‘State’’ nodes, indicating the
AND relationships among the states. A ‘‘State’’ node, how-
ever, is allowed to connect to only one ‘‘AND’’ node. We show
how such a connectivity constraint can be expressed and
maintained in the RGG. The solution is simple: Mark the B
vertex of the ‘‘AND’’ node, and leave the T vertex of the
‘‘State’’ node unmarked in the definition of the production
(as illustrated in Fig. 2). According to our embedding rule,
the isomorphic graph in the dotted box in Fig. 4(a) is not a
redex, because the isomorphic vertex of the unmarked
vertex T in the ‘‘State’’ node has an edge that is not com-
pletely inside the isomorphic graph. Therefore, the graph in
Fig. 4(a) is invalid. On the other hand, the graph in Fig. 4(b)
is valid according to the embedding rule. There is a redex,
i.e., the isomorphic graph in the dotted box, in the graph,
because the isomorphic vertex of B in ‘‘AND’’ connecting to
‘‘State’’ in the right graph of the production is marked, even
though it has an edge connected outside the isomorphic
graph. Therefore, the marking mechanism helps not only in
embedding a graph correctly, but also in simplifying the
grammar definition. It allows an implicit representation to

avoid most context-specifications while being more expres-
sive. This greatly reduces the complexity of visual expres-
sions and, in turn, increases the efficiency of the parsing
algorithm.

The graph grammar expressed in the RGG formalism for
a main subset of the Statechart notations is listed in Fig. 5,
including the initial state, initial AND, initial transition,
general AND state, general OR state, and general transi-
tion productions. The last three general productions can all
be repeatedly applied during the graph rewriting process.
Figure 6 depicts an example Statechart and its representa-
tion in the node-edge form that is recognized by the RGG to
be parsed by the Statechart grammar. With the Statechart
grammar defined, any user-drawn Statechart diagrams
like the one shown in Fig. 6(a) can be validated for its
syntactical correctness and executed according to the
action code attached to each production (action codes are
not shown in the figure).

SPECIFYING CLASS DIAGRAMS

This section goes through an example to illustrate the
representation of class diagrams in the RGG’s node-edge
form, and then it defines a graph grammar for class dia-
grams. A parser can verify some properties of the diagrams.
The next section discusses how this graph grammar can
help visualizing design pattern applications and composi-
tions in their class diagrams.

Class diagram, one of the most popular diagrams for
object-oriented modeling and design, visually models the
static structure of a system in term of classes and relation-
ships between classes (2). To verify the structure of a class
diagram in Fig. 7(a), one needs to first translate the class
diagram into a node-edge format [Fig. 7(b)], on which the
RGG parser operates, in the same fashion as for Statecharts
presented in the last section.

In a class diagram, classes are represented by compart-
mentalized rectangles. In its node-edge counterpart, a node
labeled Class denotes the top compartment containing the
class name. A set of nodes labeled Attri represents attri-
butes in the middle compartment. Nodes are sequenced by
linking two adjacent attributes in the same order as dis-
played in the compartment, and the sequence is attached to
a class by linking the first Attri node with the Class node.
Operations in the bottom compartment are processed in the
same manner as attributes when replacing Attri by Oper
nodes.

Associations denoted by straight lines typically used in
UML (2) carry the information about relationships between
classes. In a node-edge diagram, a node labeled Asso is used
to symbolize an association. A line connecting an Asso node
to a Class node holds an association relationship between
them. Associations may be named, preferably in a verbal
form, being either active, like ‘‘works for,’’ or passive, like
‘‘is hired by,’’ and thus called verbal constructs in UML (2).
To indicate the direction in which the name should be
read, vertex R in an Asso node is connected to the Class
node designated by a verbal construct, and vertex L to the
other Class node. On the other hand, if the order is un-
important, one can ignore the difference between R and L.

T

B
AND

State
T

B

AND 
T

B

(a) Illegal connection 

State
T

B

T

B
AND

State
T

B
State

T

B

(b) Legal connection 

State
T

B

Figure 4. Determining connectivity.

T

2:B

B
State 

AND 

State
T

1:T

B

T

2:B 

B
State 

AND 

1:T 

:=
T

B

2:B 
State 

State 

1:T 

2:B
State 
1:T

:=

S
2:B

3:State Trans 6:State 
4:T 1:T

5:B 
T

2:B 
3:State 6:State 

4:T 1:T 

5:B 
:=

T
2:B

3:State Trans 
1:T

2:B
3:State

1:T
:=

And-State Or-State 

Initial State 

Transition 

1:T 

B
AND State

1:T

B

And 
:=

:=

Initial Transition 

B
State 

T
λ

Figure 5. The graph grammar for Statecharts.

4 VISUAL SOFTWARE ENGINEERING



For example, Fig. 8(a) specifies an association Drive
between classes Person and Car, where a small triangle
points to the Car class designated by a verbal construct.
Correspondingly, in the node-edge representation in Fig.
8(b), vertex R in the Drive Asso node is connected to the Car
class node.

Aggregation and composition, two special types of asso-
ciations, are represented by Aggr and Comp nodes, respec-
tively, in the node-edge representation. An Aggr/Comp
node bridges a pair of Class nodes in the same fashion as
an Asso node does.

Standby

Off

High 

Low 

Warm 

Cool Hot 

On 

down up

minus 
minus 

plus plus 

on 

off

NotOn 

off 

on 

S

B
State State

TT

B

T

S Trans T

T

B
AND 

State 
T

B

State 
T

B

Trans 

S

B
State State

TT

B

TTrans 

T Trans S

S

State 
T

B

TTrans 

T Trans S

S

B
State State

TT

B

TTrans

T Trans S

S

B
State State 

TT

B

TTrans 

T Trans S

T Trans 

TTrans 

TTrans 

TTrans

(b)  

(a)

Figure 6. An example Statechart (a) and its node-
edge representation (b).

 

(a) A class diagram  

Root 

A C 

Class 
A 

P 

C 

O 

E 

Oper 

N 

P 

Oper 

N 

P 

Oper 

N 

P 

Oper 

N 

P 

Class 
A 

P 

C 

O E 

Oper 

N 

P 

Class 
A 

P 

C 

O 
E 

Oper 

N 

P 
Oper 

N 

P 

Oper 

N 

P 

Oper 
N 

P 

Oper 
N 

P 

Inter Class 
A 

P 

C 

O E 
Inter 

Class 
A 

P 

C O 

E 

Oper 

N 

P 
Attri 

N 

P 

Class 
A 

P 

C 
O 

E 

Oper 

N 

P 
Oper 

N 

P 

Inter 

Pattern 
P 

Aggr L 
R 

Aggr L 
R 

Pattern 
P 

(b) The corresponding RGG representation

Component 
{Composite[1]:Component} 
{Decorator[1]:Component} 

+Show() {Composite:Operation} 
 {Decorator:Operation} 

+Add(Component)                     {Composite:Add} 
+Remove(Component)         {Composite:Remove} 
+GetChild(int)                    {Composite:GetChild} 

           Context 
       {Decorator} 

+Show()  {Operation} 

                 Content 
        {Composite[1]:Leaf} 

{Decorator[1]:ConcreteComponent} 

+Show()  {Composite:Operation} 
{Decorator:Operation} 

             Composite 
           {Composite} 

+Show()                    {Operation} 
+Add(Component)             {Add} 
+Remove(Component){Remove} 
+GetChild(int)          { GetChild} 

    ConcreteContextA 
  {ConcreteDecorator } 

-addedState  {addedState} 

+Show()        {Operation} 

ConcreteContextB 
{ConcreteDecorator } 

+Show()                          {Operation} 
+AddedBehavior() {AddedBehavior} 

Component->Show(); 

Context::Show(); 
AddedBehavior(); 

For all g in children g.Show(); 

component children 

Figure 7. A class diagram and its corresponding RGG diagram.

VISUAL SOFTWARE ENGINEERING 5



In UML, generalization denotes a hierarchical rela-
tionship between a general description and a specific
description. In the node-edge representation, a directed
edge linking from the vertex labeled c in a Class node to
the vertex labeled p in another Class node designates the
generalization relationship from the former class to the
latter class. In other words, vertex c indicates a general
class and vertex p denotes a specific class.

To facilitate parsing and verifying the structure of an
RGG diagram, we introduce a new node to the node-edge
representation, namely root, which has no counterpart in
the class diagram. A root node is connected to any Class
node that represents a class without a super-class.

Although a graph grammar abstracts the essence of
structures, it cannot convey precise information visually.
The RGG stores concrete and numeric information in attri-
butes as described. For example, association names are
recorded in attributes attached to Asso nodes. Those values
of attributes can be retrieved and evaluated in the parsing
process.

Figure 7(a) illustrates a class diagram, and Fig. 7(b)
presents its corresponding node-edge diagram recogniz-
able by its RGG. The shaded texts in Fig. 7(a) represent
pattern names as extended notations to UML, and the
dotted rectangles in Fig. 7(b) correspond to the extended
UML (11).

A graph grammar can be viewed as a style to which
any valid graph should conform; i.e., any possible inter-
connection between graph entities must be specified in the
grammar. Each production defines the local relationships
among the graph elements/entities. Collecting together the
productions defining all relationships, an RGG grammar
specifies the way of constructing a valid class diagram
using graph entities represented by different types of
nodes.

Figure 9 presents all RGG productions that define class
diagrams. Production 1 reduces two attribute nodes into
one, which is treated as one entity in later applications.
Repetitive applications of Production 1 reduce all attri-
butes of a class to one attribute, which is later treated
together with its class by Production 3. Productions
1 and 2 serve to reduce a sequence of attributes and
operations. Production 3 specifies the class structure by
attaching sequences of operations and attributes to a Class
node. Production 4 defines the constraints between asso-
ciations. Productions 5 and 6 specify the template class and
the interface, respectively. Productions 7, 12, and 14 all
define associations, and Productions 8 and 9 specify aggre-
gation and composition, respectively. Productions 10 and
13 demonstrate the generalization through inheritance.
Production 15 represents the initial state. The nodes and
vertices in dotted rectangles define pattern-extended class
diagrams, which will be explained in the next section.

DESIGN PATTERN VISUALIZATION

UML (2) provides a set of notations to represent differ-
ent aspects of a software system. However, it is still not
expressive enough for some particular problems, such as
design pattern applications and compositions (12). This
section introduces the idea of using the RGG formalism
to visualize design patterns through their corresponding
class diagrams.

Design patterns (13) document good solutions to recur-
ring problems in a particular context, and their composi-
tions (12) are usually modeled using UML. When a design
pattern is applied or composed with other patterns, the
pattern-related information may be lost because UML does
not track this information. Thus, it is hard for a designer to
identify a design pattern when it is applied or composed.
The benefits of design patterns are compromised because
designers cannot communicate with each other in terms of
the design patterns they use when the design patterns are
applied or composed. Several graphical notations have been
proposed to explicitly represent pattern-related informa-
tion in UML class diagrams (11). Although these solutions
need to attach additional symbols and/or text, they all
suffer from the scalability problem when the software
design becomes very large. A solution that can dynamically
visualize pattern-related information based on the RGG is
illustrated in Fig. 9. A new type of node, called pattern, is
used to denote a specific pattern, and pattern-related infor-
mation is expressed by linking a pattern node with its
associated class nodes. Figure 7(b) presents the correspond-
ing node-edge diagram by highlighting the newly intro-
duced nodes and edges with dotted lines.

A syntactic analyzer implemented in the parser can
dynamically collect separate pieces of information and
reconstruct them into a new graph entity if desirable. In
the process of parsing, a sequence of applications of Pro-
duction 17 in Fig. 9 collects all classes belonging to the same
pattern to support user interaction and queries. For exam-
ple, if the user clicks on the composite class in Fig. 7(a), the
component class, content class, and composite class, which
belong to the Composite pattern, are all highlighted. There-
fore, there is no need to attach any additional information to
the original class diagrams.

AUTOMATIC VERIFICATION

Tools supporting general syntactic checking on class dia-
grams already exist. They, however, cannot verify certain
properties. For example, multi-inheritance may cause
ambiguity in the class design and usage. It is desirable
to prohibit multi-inheritance when modeling software
implemented in conventional programming languages.
As explained, each production specifies a local structure.
By ‘‘gluing’’ separate structures together, repetitive appli-
cations of various productions can generate a complete
structure. A graph specifying a structure is invalid if it
breaks at least one relationship specified in any production.
For example, Production 6 in Fig. 9 defines that one inter-
face can be attached to only one class. If an interface is

Class
(Person)

A

P

C

O Asso
(Drive)

L R Class
(Car)

A

P

C

O

(b)  (a) 

Person Car Drive 

Figure 8. An (a) association and its (b) node-edge
representation.

6 VISUAL SOFTWARE ENGINEERING



designed to relate to more than one class, a parser can
indicate a violation of Production 6.

The following example illustrates how to verify inheri-
tance relationships between classes. In Fig. 9, Production
10 defines the case of single inheritance, and Production 13
specifies that of multi-inheritance. As any valid relation-
ship between components can be eventually derived from

the graph grammar for class diagrams, removing Pro-
duction 13 would implicitly prohibit any multi-inheritance.
To explain in detail how to invalidate multi-inheritance,
we need to apply the marking technique (9) explained
earlier. A marked vertex is distinguished by assigning to
it a unique integer. It preserves outgoing edges connected
to vertices outside a replaced subgraph. In the right graph

Attri 
1:P 

N 

Attri 
2:N 

P 

:= Attri 
2:N 

1:P 

<1> Attributes 

Oper 
P 

2:N 

Oper 
1:P 

N 

:= Oper 
2:N 

1:P 

<2> Operations 

:= 

Asso 5:L 
C 

7:R 

8:T 

Asso 1:L 
C 

3:R 
2:S 

4:T 

6:S 
Asso 5:L 

C 
7:R 

8:T 

Asso 1:L 
C 

3:R 
2:S 

4:T 

6:S 

<4> Constraints 

Root 
A C 

:= λ 

<15> Initial 

<3> Class 

:= 

Attri 
P 

N 
Oper 

P 

N 

4:Class 
A 

1:P 

3:C 

2:O 

E 

Pattern 
P 

Root 
1:A 2:C 

:= Root 
1:A 2:C 

<16> Patterns 

4:Class 
A 

1:P 

3:C 

2:O 

E 

<5> Template class 

:= Ins 4:Class 
A 

1:P 

3:C 

2:O 

E 

4:Class 
A 

1:P 

3:C 

2:O 

E 
:= Inter 

<6> Interface 

4:Class 
A 

1:P 

3:C 

2:O 

E 
4:Class 

A 

1:P 

3:C 

2:O 

E 

<7> Association 

Asso 
C S 

L 
T 

R := Class 
A 

1:P 

3:C 

2:O 

E 

Class 
A 

4:P 

5:C 

6:O 

E 

Class 
A 

1:P 

3:C 

2:O 

E 
Class 
A 

4:P 

5:C 

6:O 

E 

<8> Aggregation 

Comp L R := Class 
A 

1:P 

3:C 

2:O 

E 

Class 
A 

4:P 

5:C 

6:O 

E 

Class 
A 

1:P 

3:C 

2:O 

E 
Class 
A 

4:P 

5:C 

6:O 

E 

<9> Composition 

Aggr L R := Class  
A 

1:P 

3:C 

2:O 

E 

Class 
A 

4:P 

5:C 

6:O 

E 

Class  
A 

1:P 

3:C 

2:O 

E 
Class 
A 

4:P 

5:C 

6:O 

E 

<10> Inheritance 

:= Class 
A 

1:P 

2:C 

O 

E 

Class 
A 

1:P 

2:C 

O 

E 

Class 
A 

P 

C 

O 

E 

:= 

<11> Classes Root 
A 1:C 

Root 
A 1:C 

Class 
A 

P 

C 

O 

E 

<12> Association    class 

:= 

Asso 1:L 
C 

3:R 

4:T 

2:S 

Asso 1:L 
C 

3:R 

4:T 

2:S 

Class 
A 

P 

C 

O E 

:= 

<13> Multi-inheritance 

Class 
A 

1:P 

2:C 

O 

E 

Class 
A 

1:P 

C 

O 

E 

Class 
A 

3:P 

4:C 

O 

E 
Class 

A 

1:P 

2:C 

O 

E 

Class 
A 

1:P 

C 

O 
E 

Class 
A 

3:P 

4:C 

O 

E 

<14> Reflective association 

Asso 
C S L 

T R 

:= Class 
A 

1:P 

3:C 

2:O 

E 

Class 
A 

1:P 

3:C 

2:O 

E 

8:Pattern 
7:P 

:= 

<17> Pattern reduction 

8:Pattern 
7:P 

6:Class 
4:A 

1:P 

3:C 

2:O 

5:E 
6:Class 

4:A 

1:P 

3:C 

2:O 

5:E 

Figure 9. A graph grammar defining class diagrams.

VISUAL SOFTWARE ENGINEERING 7



of Production 10, the edge indicates an inheritance rela-
tionship between the classes. The unmarked vertex p in the
bottom class node representing a subclass requires that any
class can only inherit from at most one other class. On the
other hand, the marked vertex c in the top class node
representing a super-class defines that one super-class
can have multiple subclasses, conforming to the principle
of single inheritance. If the multiinheritance as illustra-
ted in Fig. 10(a) occurs, the application of Production 10
results in an undesirable condition called the dangling edge
condition (6), which is prohibited in the RGG formalism. In
the case in which one class has more than one subclass, a
successful application is shown in Fig. 10(b).

ARCHITECTURAL EVOLUTION

The architectures of software systems are not usually fixed.
To meet the changing requirements and/or adapt to a
different context, a software architecture may need to be
transformed into a new configuration. Furthermore, a
high-level software architecture style may gradually be
refined into a detailed architecture (14) during software
development. This transformation process can be tedious
and error-prone without tool support. This section illus-
trates the automated transformation for software evolution
from one architecture style to another. Graph rewriting
provides a device for reusing existing software components
by evolving them into newly required forms.

A software architecture style defined through an RGG
characterizes some common properties shared by a class of
architectures. To satisfy new requirements and reuse exist-
ing designs, an architecture with one style needs to evolve
into another with a more appropriate style in the new
context. In general, software architecture transformation
proceeds in two steps: (1) Verify the style of an architecture,
and (2) transform an architecture from one style to another
style.

Assume that a system is originally implemented in a
client–server style, consisting of only one server storing all
data. To retrieve data, clients must send requests to, and
receive responses from, the server. This communication
pattern is abstracted into a graph grammar shown in Fig.
11(a), and an architecture with that style is illustrated in
Fig. 11(b).

When the amount of data and communication increases,
one server may no longer be able to bear clients’ requests.
One possible solution is to distribute data to different

servers. Therefore, we need to transform the current style
to a more advanced one by dividing servers into control and
data servers. A system can only contain one control server,
but it may have several data servers. A client sends
requests to the control server, which forwards them to
an appropriate data server. Then, the data server directly
replies to the client. Such a communication pattern is
defined in Fig. 11(c), which is achieved through the graph
rewriting rule for transformation in Fig. 11(d).

Let us go through another example to illustrate the idea
of architecture evolution through graph transformation. A
simple pipe-and-filter system without feedback is shown in
Fig. 12(a), where a circle represents a task and a directed
edge indicates a data stream between tasks. Correspond-
ingly, a node labeled Str/Task simulates a stream/task in
the node-edge representation. An edge connecting the R/L
vertex in a Str node to the I/O vertex in a Task node
expresses an incoming/outgoing stream. Figure 12(c)

Class 
A

O

E

Class 
A

P

C

O

E

C

P

Class 
A

O

E C

P

ACEAE C

Class 
A

O

E

Class 

P

O

C

P

Class O

P

(a) Illegal inheritance

Dangling 

edge 

Reserved 

edge 

(b) Legal inheritance 

Figure 10. Inheritance verification.

(d) Transformation rule 

S
Client

Data 
C

S
Client

1:Server 

2:C

:=

1:Server 

2:C

(b) An architecture with the
client-server style  

C

S
Client 

Server 

S
Client 

S
Client 

S
Client

1:C
Server 

S
Client

:= 1:C 
Server 

(a) Client-server style 

(c) An evolved
architecture 

C
Server 

S
Client

Data 
C

Data 
C

S
Client

S
Client 

S
Client 

Figure 11. Architectural transformation.

(c) The node-edge representation for the example system

Str L R Task I O

Str L R

Str L R

Str L R

TaskI O

TaskI O

TaskI O

TaskI O

StrL R

StrL R

StrL R

StrL R

StrL R

StrL R

TaskI O Str L R

StrL R Task 1:I 2:O := Task 1:I 2:O 

TaskI 1:O Str L 2:R :=TaskI 1:O StrL 2:R 

TaskI OØ:= 

(b) RGG definition of pipe-and-filter system 
(a) Pipe-and-filter system 

without feedback 

Task 3:I 4:OTask 1:I 2:O

:= 

Task 3:I 4:OTask 1:I 2:O

(d) The transformation rule 
(e) Pipe-and-filter system with 

feedback 

Figure 12. Pipe-and-filter system.

8 VISUAL SOFTWARE ENGINEERING



illustrates the node-edge representation for the system
shown in Fig. 12(a). The productions defined in Fig. 12(b)
abstract the communication pattern in pipe-and-filter sys-
tems without feedback. By allowing an edge between two
Task nodes to indicate a feedback between them, the graph
rewriting rule given in Fig. 12(d) transforms a system
without a feedback to one with feedback. Fig. 12(e) illus-
trates a system with feedback after applying the rule in
Fig. 12(d) to the example in Fig. 12(a), where the dotted
edges represent feedbacks.

CONCLUSION

Having introduced the basic concept of visual software
engineering, this article presents a graph grammar
approach to software architecture specification, verifica-
tion, and evolution. Through this approach, various dia-
grammatical forms can be translated to the graphical
notation recognizable by the RGG formalism and then
applied by graph transformation in achieving the desired
effect. In summary, the approach facilitates a sound soft-
ware engineering practice with the following benefits:

� Consistent: It expresses software architectures in
terms of ‘‘box and line’’ drawings (15), like the common
practice of software engineers (16).

� Scalable: The underlying graph grammar formalism
is applicable to various classes of diagrams. It is easy to
accommodate new components by extending the graph
schema and revising corresponding grammar rules
and, thus, support software reuse.

� Automatic: Automatically generated by a visual lan-
guage generator, such as VisPro (10), a transformation
tool is capable of syntactic checking of software archi-
tectures. Automatic transformation from one architec-
ture style to another assists software engineers in
reusing existing products in new applications.

FURTHER READING

Visual software engineering has been a new relatively
concept since the emerging graphical tools, notably
UML, have increasingly been used in the software industry
in recent years. The more commonly acknowledged term for
visual software development and for software education is
‘‘software visualization’’ (3–5). A related active research
area is visual programming and visual languages (17), from
which the approach presented in this article was originally
developed. The following summaries point to the represen-
tative early work in using graph transformation techniques
to assist software engineering, specifically software archi-
tecture design.

Dean and Cordy (18) present a diagrammatic represen-
tation of software architectures. A graph visualizes the
structure of a software architecture, and a graph grammar
abstracts the overall organization of a class of architec-
tures. Based on the equivalent of context-free grammars,

Dean and Cordy introduced a pattern matching mechanism
for recognizing classes of software architectures.

Métayer (16) also defines the style of architectures
using graph grammars that are defined in terms of set
theory. Instead of discussing pattern matching over soft-
ware architectures, Métayer emphasizes the dynamic evo-
lution of an architecture, performed through graph
rewriting. An algorithm is presented to check whether
an evolution breaks communication constraints.

Radermacher (19) discusses graph transformation tools
supporting the construction of an application conforming to
a design pattern, which is specified through graph queries
and graph rewriting rules. A prototype can be generated by
the PROGRES graph rewriting environment (20).

BIBLIOGRAPHY

1. M. Shaw and D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline, Englewood Cliffs, NJ.: Prentice Hall,
1995.

2. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide. Reading, MA.: Addison-Wesley, 1999.

3. K. Zhang (ed.), Software Visualization–From Theory to Prac-
tice, Boston, MA.: Kluwer Academic Publishers, 2003.

4. P. Eades and K. Zhang (eds.), Software Visualisation, Series on
Software Engineering and Knowledge Engineering, Vol. 7,
Singapore: World Scientific Publishing Co., 1996.

5. J. Stasko, J. Domingo, M. H. Brown, and B. A. Price, Software
Visualization: Programming as a Multimedia Experience,
Cambridge, MA.: MIT Press, 1998.

6. G. Rozenberg (ed.), Handbook on Graph Grammars and
Computing by Graph Transformation: Foundations, Vol. 1,
Singapore: World Scientific, 1997.

7. D. Harel, Statecharts: A visual formalism for complex systems,
Sci. Comp. Prog., 8 (3): 231–274, 1987.

8. K. Wittenburg and L. Weitzman, Relational grammars: Theory
and practice in a visual language interface for process model-
ing, Proc. of AVI’96, Gubbio, Italy, 1996.

9. D. Q. Zhang, K. Zhang, and J. Cao, A Context-Sensitive Graph
Grammar Formalism for the Specification of Visual Lan-
guages, Comp. J., 44 (3): 187–200, 2001.

10. K. Zhang, D-Q. Zhang, and J. Cao, Design, construction, and
application of a generic visual language generation environ-
ment, IEEE Trans. Software Eng., 27 (4): 289–307, 2001.

11. J. Dong and K. Zhang, Design Pattern Compositions in UML,
in K. Zhang (ed.), Software Visualization – From Theory to
Practice, Boston, MA.: Kluwer Academic Publishers, 2003,
pp. 287–208.

12. R. K. Keller and R. Schauer, Design components: Towards
software composition at the design level, Proc. 20th Int. Conf.
Software Eng., Tokyo, Japan, 1998, pp. 302–311.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns, Elements of Reusable Object-Oriented Software,
Reading, MA.: Addison-Wesley, 1995.

14. M. Moriconi, X. L. Qian, and R. A. Riemenschneider, Correct
architecture refinement, IEEE Trans. Software Eng., 21 (4):
356–372, 1995.

15. R. Allen and D. Garlan, Formalizing architectural connection,
Proc. 16th Int. Conf. Software Eng., Sorrento, Italy, 1994, pp.
71–80.

VISUAL SOFTWARE ENGINEERING 9



16. D. L. Métayer, Describing software architecture styles using
graph grammars, IEEE Trans. Software Eng., 24 (7): 521–533,
1998.

17. M. M. Burnett, Visual Language Research Bibliography, 2004.
Available: http://www.cs.orst.edu/~burnett/vpl.html.

18. T. R. Dean and J. R. Cordy, A syntactic theory of software
architecture, IEEE Trans. Software Eng., 21 (4): 302–313,
1995.

19. A. Radermacher, Support for design patterns through graph
transformation tools, Proc. Application of Graph Trans-
formations with Industrial Relevance, LNCS 1779, Berlin
Heidelberg: Springer–Verlag, 1999, pp. 111–126.

20. A. Schürr, A. Winter, and A. Zündorf, The PROGRES
approach: Language and environment, in G. Rozenberg (ed.),
Handbook on Graph Grammars and Computing by Graph
Transformation: Applications, Vol. 2, Singapore: World-
Scientific, 1999, pp. 487–550.

KANG ZHANG

The University of Texas at
Dallas

Richardson, Texas

JUN KONG

The North Dakota State
University

Fargo, North Dakota

JIANNONG CAO

Hong Kong Polytechnic
University

Hung Hom, Kowloon
Hong Kong

10 VISUAL SOFTWARE ENGINEERING



A

ANSWER SET PROGRAMMING

INTRODUCTION

Computer applications pervade our life, and these days
many problems of everyday life are dealt with in an auto-
mated way. However, not all problems are easy to solve by a
computer, some have an increased intrinsic complexity.
Finding efficient and correct methods for solving them is
not an easy task. Traditional software engineering is
focused on an imperative, algorithmic approach, in which
the computer is basically being told what steps should be
followed in order to solve the given problem. Finding good
algorithms for hard problems requires skill and knowledge
and is often not obvious. This can be dealt with by involving
an expert, but there is a serious drawback: When the
specification of the problem changes slightly, perhaps
only because additional information on the nature of the
problem becomes available, major reengineering is often
necessary. The main problem is that the knowledge about
the problem and its solutions has been represented impli-
citly by representing a specific way of solving the problem
rather than the problem itself. The case of updating repre-
sentations is sometimes called elaboration tolerance.

An alternative that suits elaboration tolerance better is
called declarative programming. In this approach, the
problem and its solutions are specified explicitly. That is,
it is expressed what features the problem and its solution
must have, rather than specifying how a solution is to be
obtained. Methods like this actually come natural in
science but also in everyday life. Before we try to work
out how to solve a problem, we usually first try to under-
stand it and figure out how a solution would like, before
trying to find a method, to obtain a solution. One of the first
to put this approach into perspective in computer science
was John McCarthy in the 1950s (1). He also postulated
that the most natural language for specifying problems and
solutions would be logic and, in particular, predicate logic.

In fact, logic is an excellent candidate for declarative
programming: It provides a simple and abstract formalism,
and in addition, it has the potential for automation. Similar
to an abstract or electronic machine that can execute an
imperative model (an algorithm) in order toobtain a solution
of the modeled problem, computational logic has produced
tools that allow for automatically obtaining solutions, given
a declarative specification in logic. Indeed, many people
nowadays use this way of solving problems: Queries to
relational databases together with the database schemata
are indeed declarative specifications of the solutions that the
query results provide. And, indeed, the probably most
widely used database query language, SQL, is basically
predicate logic written in a particular way (2).

However, one wants to go beyond databases as they are
used today. It has been shown that relational databases and
query languages like SQL can only represent fairly simple
problems. For instance, problems like finding the cheapest

tour of several cities, or filling a container with items of
different size, such that the value transported in the con-
tainer is maximized, are typical problems that probably
cannot be solved using SQL. It might seem unusual to use
the word ‘‘probably’’ here, but underlying this conjecture is
one of the most famous open problems in computer
science—the question of whether P equals NP. These are
complexity classes; basically, every problem has some
intrinsic complexity, which is based on how many resources
are required to solve it on a standard machine model, in
terms of the size of the problem input. P is defined as the
class of problems, which require at most an amount of time,
which can be expressed as a polynomial over the input size
(which is variable). NP is just a slight alteration, in which
instead of a deterministic machine model, a nondetermi-
nistic machine model is assumed. A nondeterministic
machine is a somewhat unusual concept: Instead of execut-
ing commands one-by-one, always going from one machine
state to another, a nondeterministic machine may be in two
or more states (at the same time) after having executed a
command. In a sense, this means that the machine has the
possibility to store and work with an unbounded number of
machine states at any time. Intuitively, one would expect
that a deterministic and a nondeterministic machine are
quite different from each other, and that the nondetermi-
nistic machine can solve more problems under the same
time constraints. However, up to now, nobody has been able
to prove convincingly neither that P and NP are different,
nor that they are equal. However, intuitively one would
expect that they are different, and people have shown that
many more unintuitive results would follow if P and NP
coincided.

Logic programming is an attempt to use declarative
programming with logic that goes beyond problems in P
and, thus, beyond traditional databases. The main con-
struct in logic programming is a rule, a expression that
looks like Head Body, where Body is a logic conjunction
possibly involving negation, and Head is either an atomic
formula or a logic disjunction. This can be seen as a logic
formula ( denoting implication), with the special meaning
that Head is defined by that rule. In the beginning of the
field (as described in the following section), logic program-
ming actually attempted to become a full-scale ‘‘program-
ming language.’’ Its most famous language, Prolog (3),
aimed at this, but had to renounce to full declarativity in
order to achieve that goal. For instance, in Prolog rules, the
order inside Body matters, as does the order among rules
(most notably for termination). Moreover, Prolog also had
several nonlogical constructs.

Answer set programming (ASP) is a branch of logic pro-
gramming, which does not aspire to create a full general-
purpose language. In this respect, it is influenced by
database languages, as also these are not general-purpose
languages, but suffice for a particular class of problems.
ASP does, however, attempt to enlarge the class of problems
that can be expressed by the language. Although, as

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



mentioned, SQL probably cannot express hard problems in
NP, ASP definitely can. Actually, ASP can express all
problems in the complexity class

Pp
2 and its complementQp

2 , which are similar to NP, but probably somewhat larger
(but at least equally large).

In ASP, the rule construct Head  Body (where Head
can be a disjunction) is read like a formula in nonmonotonic
logics rather than classical logic. Nonmonotonic logics are
an effort to formulate a logic of common sense that is
adapting the semantics of logic such that it corresponds
better to our everyday reasoning, which is characterized by
the presence of incomplete knowledge, hypothetical reason-
ing, and default assumptions. It can be argued that non-
monotonic logics are much better suited in such a setting
than classical logic.

Summarizing, ASP is a formalism that has emerged
from logic programming. Its main representation feature
are rules, which are interpreted according to common sense
principles. It allows for declarative specifications of a rich
class of programs, generalizing the declarative approach of
databases. In ASP, one writes a program (a collection of
rules), which represent a problem to be solved. This pro-
gram, together with some input, which is also expressed by
a collection of rules, possesses a collection of solutions
(possibly also no solution), which correspond to the solu-
tions of the modeled problem. Since these solutions are
usually sets, the term ‘‘answer set’’ has been coined.

Concerning terminology, ASP is sometimes used in a
somewhat broader sense, referring to any declarative form-
alism representing solutions as sets. However, the more
frequent understanding is the one adopted in this article,
which dates back to Ref. 4. Moreover, since ASP is the most
prominent branch of logic programming in which rule
heads may be disjunctive, sometimes the term ‘‘disjunctive
logic programming’’ can be found referring explicitly to
ASP. Yet other terms for ASP are A-Prolog and stable logic
programming. For complementary introductory material
on ASP, we refer to Refs. 5 and 6.

LOGIC PROGRAMMING

The roots of answer set programming lie predominantly in
logic programming, nonmonotonic reasoning, and data-
bases. In this section, we give an overview on the history
of logic programming from the perspective of answer set
programming. It, therefore, does not cover several impor-
tant subfields of logic programming, such as constraint
logic programming (7) or abductive logic programming (8).

As mentioned, probably the first to suggest logic, and in
particular predicate logic, as a programming language was
John McCarthy in the 1950s (1). McCarthy’s motivating
example was set in artificial intelligence, and involved
planning as its main task, an agenda on which was con-
tinuously elaborated; see, for instance, Ref. 9.

Developments in computational logic, most notably
the specification of the resolution principle and unification
as a computational method by J. Alan Robinson in 1965
(10), acted as a catalyst for the rise of logic programm-
ing. This development eventually really set off when a
working system, Prolog, developed by a group around Alain

Colmerauer in Marseilles, France, became available (3). A
few other, somewhat more restricted systems had been
available before, but Prolog was to make the breakthrough
for logic programming.

One of the prime advocates of what would become known
as the logic programming paradigm has been Robert
Kowalski, who provided the philosophical basis and con-
cretizations of the logic programming paradigm, for
instance, in Refs. 11 and 12. Kowalski also collaborated
with Colmerauer on Prolog, and in the realm of his group in
Edinburgh, Scotland, alternative implementations of Pro-
log were created. There has also been a standardization
effort for the language, which would become known as
Edinburgh Prolog and served as the de facto specification
of Prolog for many years until the definition of ISO Prolog in
1995 (13).

However, logic programming, and Prolog in particular,
was inspired by, but not the same as classical first-order
logic. Initially the differences were not entirely clear. The
first effort to provide a formal definition for the semantics of
logic programming was also undertaken by Kowalski, who
together with Maarten van Emden gave a semantics based
on fixpoints of operators for a restricted class of logic
programs (Horn programs, also called positive programs)
in Ref. 14. This fixpoint semantics essentially coincided
with minimal Herbrand models and with resolution-based
query answering on Horn programs. The major feature
missing in Horn programs is negation—however, Prolog
did have a negation operator.

Indeed, the quest for finding a suitable semantics in the
spirit of minimal models for programs containing negation
turned out to be far from straightforward. A first attempt
was made by Keith Clark in Ref. 15 by defining a transfor-
mation of the programs to formulas in classical logic, which
are then interpreted using the classical model semantics.
However, the approach gave arguably unintuitive results
for programs with positive recursion. In particular, the
obtained semantics does not coincide with the minimal
model semantics on positive programs. At about the
same time, Raymond Reiter formulated the Closed World
Assumption in Ref. 16, which can be seen as the philoso-
phical basis of the treatment of negation. Another mile-
stone in the research on the intended semantics for
programs with negation has been the definition of what
later became known uniformly as perfect model semantics
for programs that can be stratified on negation, in Refs. 17
and 18. The basic idea of stratification is that programs can
be partitioned in subprograms (strata) such that the rules
of each stratum contain negative predicates only if they are
defined in other strata. In this way, it is possible to evaluate
the program by separately evaluating its partitions in such
a way that a given ‘‘stratum’’ is processed whenever the
ones from which it (negatively) depends have already been
processed.

Although an important step forward, it is obvious that
not all logic programs are stratified. In particular, pro-
grams that are recursive through negation are never stra-
tified, and the problem of assigning a semantics to
nonstratified programs still remained open. There were
basically two approaches for finding suitable definitions:
The first approach was giving up the classical setting of

2 ANSWER SET PROGRAMMING



models that assign two truth values, and introduce a third
value, intuitively representing unknown. This approach
required a somewhat different definition, because in the
two-valued approach, one would give a definition only for
positive values, implicitly stating that all other constructs
are considered to be negative. For instance, for minimal
models, one minimizes the true elements, implicitly stating
that all elements not contained in the minimal model will
be false. With three truth values, this strategy is no longer
applicable, as elements that are not true can be either
false or undefined. For resolving this, Allen Van Gelder,
Kenneth Ross, and John Schlipf introduced the notion of
unfounded sets in Ref. 19, in order to define which elements
of the program should be definitely false. Combining exist-
ing techniques for defining the minimal model with
unfounded sets, they defined the notion of a well-founded
model. In this way, any program would still be guaranteed
to have a single model, just like there is a unique minimal
model for positive programs and a unique perfect model for
stratified programs.

The second approach consisted of viewing logic prog-
rams as formulas in nonmonotonic logics (see, for instance,
Ref. 20 for an overview) rather than formulas of classical
logic (with an additional minimality criterion) and as a
corollary, abandoning the unique model property. Among
the first to concretize this were Michael Gelfond in Ref. 21,
who proposed to view logic programs as formulas of auto-
epistemic logic, and Nicole Bidoit and Christine Froidevaux
in Ref. 22, who proposed to view logic programs as formulas
ofdefault logic.Bothof thesedevelopmentshavebeenpicked
upbyMichael Gelfond andVladimirLifschitz,who inRef. 23
defined the notion of stable models, which is inspired by
nonmonotonic logics, however does not refer explicitly to
these, but rather relies on a reduct that effectively emulates
nonmonotonic inference. It was this surprisingly simple
formulation, which did not require previous knowledge
on non-classical logics that has become well known. Differ-
ent to well-founded models, there may exist no, one, or many
stable models for one program. However, well-founded and
stable models are closely related; for instance, the well-
founded model of a program is contained in each stable
model (cf. Ref. 24). Moreover, both approaches coincide
with perfect models on stratified programs.

Yet another, somewhat orthogonal line of research con-
cerned the use of disjunction in rule heads. This construct is
appealing, because it allows for direct nondeterministic
definitions. Prolog and many other logic programming
languages traditionally do not provide such a feature, being
restricted to so-called definite rules. Jack Minker has been
a pioneer and advocate of having disjunctions in programs.
In Ref. 25, he formulated the Generalized Closed World
Assumption, which gave a simple and intuitive semantics
for disjunctive logic programs. This concept has been ela-
borated on over the years, most notably by the Extended
GCWA defined in Ref. 26. Eventually, also the stable model
semantics has been extended to disjunctive programs in
Ref. 27 by just minimally altering the definition of Ref. 23.
On the other hand, defining an extension of well-founded
models for disjunctive programs remains a controversial
matter to this date with various rivalling definitions,
(cf. Ref. 28).

The final step toward answer set programming in the
traditional sense has been the addition of a second kind of
negation, which has a more classical meaning than nega-
tion as failure. Combining this feature with disjunctive
stable models of Ref. 27 led to the definition of answer
sets in Ref. 4.

FORMAL DEFINITION OF ASP

In what follows, we provide a formal definition of the syntax
and semantics of answer set programming in the spirit of
Ref. 4, that is, disjunctive logic programming involving two
kinds of negation (referred to as strong negation and nega-
tion as failure), under the answer sets semantics.

Syntax

Following a convention dating back to Prolog, strings start-
ing with uppercase letters denote logical variables,
whereas strings starting with lowercase letters denote
constants. A term is either a variable or a constant. Note
that, as common in ASP, function symbols are not consid-
ered.

An atom is an expression Pðt1; . . . ; tnÞ, where p is a
predicate of arity n and t1; . . . ; tn are terms. A classical
literal l is either an atom p (in this case, it is positive), or
a negated atom:p (in this case, it is negative). A negation as
failure (NAF) literal lll is of the form l or not l, where l is a
classical literal; in the former case lll is positive, and in the
latter case negative. Unless stated otherwise, by literal we
mean a classical literal.

Given a classical literal l, its complementary literal : l is
defined as: p if l¼ p and p if l¼: p. A set L of literals is said
to be consistent if, for every literal l2L, its complementary
literal is not contained in L.

A disjunctive rule (rule, for short) r is a construct

a1 V � � � V an b1; . . . ; bk; not bkþ1; . . . ; not bm: ð1Þ

where a1; . . . ; an; b1; . . . ; bm are classical literals and
n� 0; m� k� 0. The disjunction a1 V � � � V an is called
the head of r, whereas the conjunction b1; . . . ; bk, not
bkþ1; . . ., not bm is referred to as the body of r. A rule
without head literals (i.e., n ¼ 0) is usually referred to as
an integrity constraint. A rule having precisely one head
literal (i.e., n ¼ 1) is called a normal rule. If the body is
empty (i.e., k¼m¼ 0), it is called a fact, and in this case, the
‘‘ ’’ sign is usually omitted.

The following notation will be useful for additional
discussion. If r is a rule of form (1), then HðrÞ ¼
fa1; . . . ;ang is the set of literals in the head and BðrÞ ¼
BþðrÞ [B�ðrÞ is the set of the body literals, where BþðrÞ
(the positive body) is fb1; . . . ; bkg and B�ðrÞ (the negative
body) is fbkþ1; . . . ; bmg. An ASP program P is a finite set
of rules. A not-free program P (i.e., such that
8 r2P : B�ðrÞ ¼ ;) is called positive or Horn,1 and a
_ -free program P (i.e., such that 8 r2P : jHðrÞj � 1) is
called normal logic program.

1In positive programs, negation as failure (not) does not occur,
whereas strong negation (:) may be present.

ANSWER SET PROGRAMMING 3



In ASP, rules in programs are usually required to be
safe. The motivation of safety comes from the field of
databases, where safety has been introduced as a means
to guarantee that queries (programs in the case of ASP) do
not depend on the universe (the set of constants) consid-
ered. As an example, a fact p(X). gives rise to the truth of
p(a) when the universe fag is considered, whereas it gives
rise to the truth of p(a) and p(b) when the universe fa; bg
is considered. Safe programs do not suffer from this
problem when at least the constants occurring in the
program are considered. For a detailed discussion, we refer
to Ref. 2.

A rule is safe if each variable in that rule also appears in
at least one positive literal in the body of that rule. An ASP
program is safe, if each of its rules is safe, and in the
following we will only consider safe programs.

A term (an atom, a rule, a program, etc.) is called ground,
if no variable appears in it. Sometimes a ground program is
also called propositional program.

Example 3.1. Consider the following program:

r1 : aðXÞ _ bðXÞ cðX;YÞ; dðYÞ; not eðXÞ:
r2 :  cðX;YÞ; kðYÞ; eðXÞ; not bðXÞ:
r3 : m n; o; að1Þ:
r4 : eð1; 2Þ:

r1 is a disjunctive rule with Hðr1Þ ¼ faðXÞ; bðXÞg; Bþðr1Þ ¼
fcðX;YÞ;dðYÞg, and B::ðr1Þg ¼ feðXÞg:r2 is an integrity
constraint with Bþðr2Þ ¼ fcðX;YÞ; kðYÞ; eðXÞg, and
B�ðr2Þ ¼ fbðXÞg: r3 is a ground, positive, and nondis-
junctive rule with Hðr3Þ ¼ fmg;Bþðr3Þ ¼ fn; o;að1Þg, and
B�ðr3Þ ¼ ;: r4, finally, is a fact (note that  is omitted).
Moreover, all of the rules are safe. &

Semantics

We next describe the semantics of ASP programs, which
is based on the answer set semantics originally defined
in Ref. 4. However, different than Ref. 4, only consistent
answer sets are considered, as it is now standard practice.

We note that in ASP the availability of some preinter-
preted predicates is assumed, such as ¼; <; > : However, it
would also be possible to define them explicitly as facts, so
they are not treated in a special way here.

Herbrand Universe and Literal Base. For any program P,
the Herbrand universe, denoted by UP, is the set of all
constants occurring in P. If no constant occurs in P, UP
consists of one arbitrary constant2. The Herbrand literal
base BP is the set of all ground (classical) literals construc-
tible from predicate symbols appearing in P and constants
in UP (note that, for each atom P, BP contains also the
strongly negated literal :p).

Example 3.2. Consider the following program:

P0 ¼ f
r1 : aðXÞ _ bðXÞ  cðX;YÞ:
r2 : cðXÞ cðX;YÞ; not bðXÞ:
r4 : cð1; 2Þ:
g

then, the universe is UP0 ¼ {1,2}, and the base is BP0 ¼
{a(1), a(2), b(1), b(2), c(1), c(2), c(1,1), c(1,2), c(2,1), c(2,2),
:a(1),:a(2),:b(1),:b(2),:c(1),:c(2),:c(1,1),:c(1,2),:c(2,1),
:c(2,2)}. &

Ground Instantiation. For any rule r, Ground(r) denotes
the set of rules obtained by replacing each variable in r by
constants in UP in all possible ways. For any programP, its
ground instantiation is the set GroundðPÞ ¼ [ r2P
Ground(r). Note that for propositional programs, P ¼
GroundðPÞ holds.

Example 3.3. Consider again problemP0 of Example 3.2.
Its ground instantiation is:

GroundðP0Þ ¼ f
g1 : að1Þ _ bð1Þ cð1; 1Þ: g2 : að1Þ _ bð1Þ cð1; 2Þ:
g3 : að2Þ _ bð2Þ cð2; 1Þ: g4 : að2Þ _ bð2Þ cð2; 2Þ:
g5 : eð1Þ cð1; 1Þ; not bð1Þ: g6 : eð1Þ cð1; 2Þ; not bð1Þ:
g7 : eð2Þ cð2; 1Þ; not bð2Þ: g8 : eð2Þ cð2; 2Þ; not bð2Þ:
g9 : cð1; 2Þ:
g

Note that the atom cð1; 2Þ was already ground in P0,
whereas the rules g1; . . . ; g4 ðresp: g5; . . . ; g8Þ are obtained
by replacing the variables in r1 (resp. r2) with constants in
UP0

. &

Answer Sets. For every program P, its answer sets are
defined using its ground instantiation GroundðPÞ in two
steps: First the answer sets of positive disjunctive pro-
grams are defined, and then the answer sets of general
programs are defined by a reduction to positive disjunctive
programs and a stability condition.

An interpretation l is a consistent3 set of ground clas-
sical literals I�B p w.r.t. a program P. A consistent inter-
pretation X�BP is called closed under P (where P is a
positive disjunctive datalog program), if, for every
r2GroundðPÞ; HðrÞ \ X 6¼ ; whenever BðrÞ�X. An inter-
pretation which is closed underP is also called model ofP.
An interpretation X�BP is an answer set for a positive
disjunctive program P, if it is minimal (under set inclu-
sion) among all (consistent) interpretations that are
closed under P.

Example 3.4. The positive program P1 ¼ fa_ : b_ c:g
has the answer sets fag; f: bg; and fcg; note that they
are minimal and correspond to the multiple ways of satis-
fying the disjunction. Its extension P2 ¼ P1 [f a:g has

2Actually, since the language does not contain function symbols
and since rules are required to be safe, this extra constant is not
needed. However, we have kept the classic definition in order to
avoid confusion.

3A set I�BP is consistent if for each positive classical literal such
that l2 I it holds that : l =2 I.

4 ANSWER SET PROGRAMMING



the answer sets f: bg and fcg, since comparing P2 with P1,
the additional constraint is not satisfied by interpre-
tation fag. Moreover, the positive program P3 ¼
P2 [f: b c: ; c : b:g has the single answer set
f: b; cg (indeed, the remaining consistent closed interpre-
tation fa; : b; cg is not minimal). Although, it is easy to see
that, P4 ¼ P3 [f cg has no answer set. &

The reduct or Gelfond–Lifschitz transform of a ground
program P w.r.t. a set X�BP is the positive ground pro-
gram PX, obtained from P by

� Deleting all rules r2P for which B�ðrÞ \X 6¼ ; holds

� Deleting the negative body from the remaining rules

An answer set of a program P is a set X�BP such that X is
an answer set of GroundðPÞX .

Example 3.5. For the negative ground program P5 ¼
fa not b:g; A ¼ fag is the only answer set, as P A

5 ¼ fa:g.
For example, for B ¼ fbg;P B

5 ¼ ;, and so B is not an answer
set. &

Example 3.6. Consider again programP0 of Example 3.2,
whose ground instantiation GroundðP0Þ has been reported
in Example 3.3. A naÿve way to compute the answer sets of
P0 is to consider all possible interpretations, checking
whether they are answer sets of GroundðP0Þ.

For instance, consider interpretation I0 ¼ fcð1; 2Þ;að1Þ;
eð1Þg; the corresponding reduct GroundðP0ÞI0 contains
rules g1; g2; g3; g4; g9; plus eð1Þ cð1; 1Þ; eð1Þ cð1; 2Þ;
eð2Þ cð2; 1Þ; and eð2Þ cð2; 2Þ; obtained by canceling
the negative literals from g5; g6; g7; and g8, respectively.
We can thus verify that I0 is an answer set for GroundðP0ÞI0

and therefore also an answer set for GroundðP0Þ and P0.
Let us now consider the interpretation I1 ¼ fcð1; 2Þ;

bð1Þ; eð1Þg; which is a model of GroundðP0Þ. The reduct
GroundðP0ÞI1 contains rules g1; g2; g3; g4; g9 plus both
eð2Þ cð2; 1Þ and eð2Þ cð2; 2Þ (note that both g5 and g6

are deleted because bð1Þ 2 I1). I1 is not an answer set of
GroundðP0ÞI1 because fcð1; 2Þ; bð1Þg� I1 is. As a conse-
quence, I1 is not an answer set of P0.

It can be verified that P0 has two answer sets, I0 and
fcð1; 2Þ; bð1Þg: &

KNOWLEDGE REPRESENTATION AND REASONING IN ASP

ASP has been exploited in several domains, ranging from
classical deductive databases to artificial intelligence. ASP
can be used to encode problems in a declarative fashion;
indeed, the power of disjunctive rules allows for expressing
problems that are more complex than NP, and the
(optional) separation of a fixed, non-ground program
from an input database allows one to obtain uniform solu-
tions over varying instances.

More importantly, many problems of comparatively
high computational complexity can be solved in a natural
manner by following a ‘‘Guess&Check’’ programming
methodology, which was originally introduced in Ref. 29
and refined in Ref. 30. The idea behind this method can be
summarized as follows: A database of facts is used to specify

an instance of the problem, whereas a set of (usually dis-
junctive4) rules, called the ‘‘guessing part,’’ is used to define
the search space; solutions are then identified in the search
space by another (optional) set of rules, called ‘‘checking
part,’’ which impose some admissibility constraint. Basi-
cally, the answer sets of the program, which combines the
input database with the guessing part, represent ‘‘solution
candidates’’ those candidates are then filtered, by adding
the checking part, which guarantee that the answer sets of
the resulting program represent precisely the admissible
solutions for the input instance. To grasp the intuition
behind the role of both the guessing and the checking parts,
consider the following example.

Example 4.1. Suppose that we want to partition a set of
persons in two groups, while avoiding that father and
children belong to the same group. Following the
guess&check methodology, we use a disjunctive rule to
‘‘guess’’ all the possible assignments of persons to groups
as follows:

groupðP; 1Þ _ groupðP; 2Þ personðPÞ:

To understand what this rule does, consider a simple
instance of the problem, in which there are two persons:
joe and his father john. This instance is represented by four
facts

personð johnÞ: personð joeÞ: fatherð john; joeÞ:

We can verify that the answer sets of the resulting program
(facts plus disjunctive rule) correspond to all possible
assignments of the three persons to two groups:

fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;1Þ;groupðjoe;1Þg
fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;1Þ;groupðjoe;2Þg
fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;2Þ;groupðjoe;1Þg
fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;2Þ;groupðjoe;2Þg

However, we want to discard assignments in which father
and children belong to the same group. To this end, we add
the checking part by writing the following constraint:

 groupðP1;GÞ; groupðP2;GÞ; fatherðP1;P2Þ:

The answer sets of the augmented program are then the
intending ones, where the checking part has acted as a sort
of filter:

fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;1Þ;groupðjoe;2Þg
fpersonðjohnÞ;personðjoeÞ;fatherðjohn;joeÞ;groupðjohn;2Þ;groupðjoe;1Þg

&

In the following, we illustrate the usage of ASP as a tool
for knowledge representation and reasoning by example.
In particular, we first deal with a problem motivated by

4Some ASP variants use choice rules as guessing part (see Refs.
31–33). Moreover, in some cases, it is possible to emulate disjunc-
tion by unstratified normal rules by ‘‘shifting’’ the disjunction to the
body (31–36), but this is not possible in general.

ANSWER SET PROGRAMMING 5



classical deductive database applications; then we exploit
the ‘‘Guess&Check’’ programming style to show how a
number of well-known harder problems can be encoded in
ASP.

Reachability. Given a finite directed graph G¼ (V, A), we
want to compute all pairs of nodes ða; bÞ 2V � V such that b
is reachable from a through a nonempty sequence of arcs in
A. In different terms, the problem amounts to computing
the transitive closure of the relation A.

The input graph is encoded by assuming that A is
represented by the binary relation arc(X, Y), where a fact
arc(a, b) means that G contains an arc from a to b; i.e.,
ða; bÞ 2A; although the set of nodes V is not explicitly
represented, since the nodes appearing in the transitive
closure are implicitly given by these facts.

The following program then defines a relation reach-
able(X, Y) containing all facts reachable(a, b) such that b is
reachable from a through the arcs of the input graph G:

r1 : reachableðX;YÞ arcðX;YÞ:
r2 : reachableðX;YÞ arcðX;UÞ; reachableðU;YÞ:

The first rule states that that node Y is reachable from node
X if there is an arc in the graph from X to Y, whereas the
second rule reprents the transitive closure by stating that
node Y is reachable from node X if a node U exists such that
U is directly reachable from X (there is an arc from X to U)
and Y is reachable from U.

As an example, consider a graph represented by the
following facts:

arcð1; 2Þ: arcð2; 3Þ: arcð3; 4Þ:

The single answer set of the program reported above
together with these three facts program is freachable
ð1; 2Þ; reachableð2; 3Þ; reachableð3; 4Þ; reachableð1; 3Þ;
reachableð2; 4Þ; reachableð1; 4Þ;arcð1; 2Þ;arcð2; 3Þ;
arcð3; 4Þg. The first three reported literals are inferred by
exploiting the rule r1, whereas the other literals containing
the predicate reachable are inferred by using rule r2.

In the following section, we describe the usage of the
‘‘Guess&Check’’ methodology.

Hamiltonian Path. Given a finite directed graph G ¼
(V, A) and a node a2V of this graph, does a path in G exist
starting at a and passing through each node in V exactly
once?

This is a classical NP-complete problem in graph theory.
Suppose that the graph G is specified by using facts over
predicates node (unary) and arc (binary), and the starting
node a is specified by the predicate start (unary). Then,
the following program Php solves the Hamiltonian Path
problem:

r1 : inPathðX;YÞ _ outPathðX;YÞ arcðX;YÞ:
r2 : reachedðXÞ startðXÞ:
r3 : reachedðXÞ reachedðYÞ; inPathðX;YÞ:
r4 :  inPathðX;YÞ; inPathðX;Y1Þ;Y <>Y1:
r5 :  inPathðX;YÞ; inPathðX1;YÞ;X <>X1:
r6 :  nodeðXÞ; not reachedðXÞ; not startðXÞ:

The disjunctive rule (r1) guesses a subset S of the arcs to be
in the path, whereas the rest of the program checks
whether S constitutes a Hamiltonian Path. Here, an
auxiliary predicate reached is defined, which specifies
the set of nodes that are reached from the starting
node. Doing this is very similar to reachability, but the
transitivity is defined over the guessed predicate inPath
using rule r3. Note that as reached is completely deter-
mined by the guess for inPath, no further guessing is
needed.

In the checking part, the first two constraints (namely, r4

and r5) ensure that the set of arcs S selected by inPath
meets the following requirements, which any Hamiltonian
Path must satisfy: (1) there must not be two arcs starting at
the same node, and (2) there must not be two arcs ending in
the same node. The third constraint enforces that all nodes
in the graph are reached from the starting node in the
subgraph induced by S.

Let us next consider an alternative program P0hp, which
also solves the Hamiltonian Path problem, but intertwines
the reachability with the guess:

r1 : inPathðX;YÞ_outPathðX;YÞ reachedðXÞ;arcðX;YÞ:
r2 : inPathðX;YÞ_ outPathðX;YÞ startðXÞ; arcðX;YÞ:
r3 : reachedðXÞ inPathðY ; XÞ:
r4 :  inPathðX;YÞ; inPathðX;Y1Þ; Y<>Y1:
r5 :  inPathðX;YÞ; inPathðX1;YÞ; X<>X1:
r6 :  nodeðXÞ; not reachedðXÞ; not startðXÞ:

Here, the two disjunctive rules (r1 and r2), together with the
auxiliary rule r3, guess a subset S of the arcs to be in the
path, whereas the rest of the program checks whether S
constitutes a Hamiltonian Path. Here, reached is defined in
a different way. In fact, inPath is already defined in a way
that only arcs reachable from the starting node will be
guessed. The remainder of the checking part is the same
as in Php.

Ramsey Numbers. In the previous example, we have seen
how a search problem can be encoded in an ASP program
whose answer sets correspond to the problem solutions. We
now build a program whose answer sets witness that a
property does not hold; i.e., the property at hand holds if
and only if the program has no answer set. We next apply
the above programming scheme to a well-known problem of
number and graph theory.

The Ramsey number R(k, m) is the smallest integer n
such that, no matter how we color the arcs of the com-
plete undirected graph (clique) with n nodes using two
colors, say red and blue, there is a red clique with k nodes
(a red k-clique) or a blue clique with m nodes (a blue
m-clique).

Ramsey numbers exist for all pairs of positive integers
k and m (37). We next show a program Pra that allows us
to decide whether a given integer n is not the Ramsey
Number R(3,4). By varying the input number n, we can
determine R(3,4), as described below. Let F ra be the
collection of facts for input predicates node and arc encod-
ing a complete graph with n nodes. Pra is the following

6 ANSWER SET PROGRAMMING



program:

r1 : blueðX;YÞ _ redðX;YÞ arcðX;YÞ:
r2 :  redðX;YÞ; redðX;ZÞ; redðY ;ZÞ:
r3 :  blueðX;YÞ; blueðX;ZÞ; blueðY ;ZÞ;

blueðX;WÞ; blueðY ;WÞ; blueðZ;WÞ:

Intuitively, the disjunctive rule r1 guesses a color for each
edge. The first constraint (r2) eliminates the colorings
containing a red clique (i.e., a complete graph) with three
nodes, and the second constraint (r3) eliminates the color-
ings containing a blue clique with four nodes. The program
Pra [F ra has an answer set if and only if there is a coloring
of the edges of the complete graph on n nodes containing no
red clique of size 3 and no blue clique of size 4. Thus, if
there is an answer set for a particular n, then n is not
R(3,4); that is, n < R(3, 4). On the other hand, if Pra [F ra

has no answer set, then n � R(3,4). Thus, the smallest n
such that no answer set is found is the Ramsey number R
(3,4).

Strategic Companies. In the examples considered so far,
the complexity of the problems is located at most on the first
level of the Polynomial Hierarchy (38) (in NP or co-NP). We
next demonstrate that also more complex problems, located
at the second level of the Polynomial Hierarchy, can be
encoded in ASP. To this end, we now consider a knowledge
representation problem, inspired by a common business
situation, which is known under the name Strategic Com-
panies (39).

Suppose there is a collection C ¼ fc1; . . . ; cmg of compa-
nies ci owned by a holding, a set G ¼ fg1; . . . ; gng of goods,
and for each ci we have a set Gi�G of goods produced by ci

and a set Oi�C of companies controlling (owning) ci. Oi is
referred to as the controlling set of ci. This control can be
thought of as a majority in shares; companies not in C,
which we do not model here, might have shares in compa-
nies as well. Note that, in general, a company might have
more than one controlling set. Let the holding produce all
goods in G; i.e., G ¼ [ ci 2CGi.

A subset of the companies C0 �C is a production-
preserving set if the following conditions hold: (1) The
companies in C0 produce all goods in G; i.e.,
[ ci 2C0Gi ¼ G. (2) The companies in C0 are closed under
the controlling relation; i.e. if Oi�C0 for some i ¼ 1; . . . ;m;
then ci 2C0 must hold.

A subset-minimal set C0, which is production-preser-
ving, is called a strategic set. A company ci 2C is called
strategic, if it belongs to some strategic set of C.

This notion is relevant when companies should be sold.
Indeed, intuitively, selling any nonstrategic company does
not reduce the economic power of the holding. Computing
strategic companies is on the second level of the Polynomial
Hierarchy (39).

In the following discussion, we consider a simplified
setting as considered in Ref. 39, where each product is
produced by at most two companies (for each
g2G; jfcijg2Gigj � 2) and each company is jointly con-
trolled by at most three other companies; i.e., jOij � 3 for
i ¼ 1; . . . ;m. Assume that for a given instance of Strategic
Companies, F st contains the following facts:

� company(c) for each c2C

� prod_byðg; c j; ckÞ, if fcijg2Gig ¼ fc j; ckg, where cj and
ck may possibly coincide

� contr_byðci; ck; cm; cnÞ, if ci 2C and Oi ¼ fck; cm; cng,
where ck; cm;, and cn are not necessarily distinct.

We next present a program Pst, which characterizes this
hard problem using only two rules:

r1 : startðYÞ _ startðZÞ prod byðX;Y ;ZÞ:
r2 : startðWÞ contr byðW ;X;Y ;ZÞ; stratðXÞ;

startðYÞ; startðZÞ:

Here strat(X) means that company X is a strategic com-
pany. The guessing part of the program consists of the
disjunctive rule r1, and the checking part consists of the
normal rule r2. The program Pst is surprisingly succinct,
given that Strategic Companies is a hard problem.

The programPst exploits the minimization that is inher-
ent to the semantics of answer sets for the check whether a
candidate set C0 of companies that produces all goods and
obeys company control is also minimal with respect to this
property.

The guessing rule r1 intuitively selects one of the com-
panies c1 and c2 that produce some item g, which is
described by prod_by(g, c1, c2). If there was no company
control information, the minimality of answer sets would
naturally ensure that the answer sets of F st [fr1g corre-
spond to the strategic sets; no further checking would be
needed. However, in case control information is available,
the rule r2 checks that no company is sold that would be
controlled by other companies in the strategic set, by simply
requesting that this company must be strategic as well. The
minimality of the strategic sets is automatically ensured by
the minimality of answer sets.

The answer sets ofF st [Pst correspond one-to-one to the
strategic sets of the holding described in F st; company c is
thus strategic iff strat(c) is in some answer set of F st [Pst.

An important note here is that the checking ‘‘constraint’’
r2 interferes with the guessing rule r1: applying r2 may
‘‘spoil’’ the minimal answer set generated by r1. For exam-
ple, suppose the guessing part gives rise to a ground rule

r3 : stratðc1Þ _ stratðc2Þ prod byðg; c1; c2Þ:

and the fact prod_by(g, c1, c2) is given in F st. Now suppose
the rule is satisfied in the guessing part by making strat(c1)
true. If, however, in the checking part an instance of rule r2

is applied that derives strat(c2), then the application of the
rule r3 to derive strat(c1) is invalidated, as the minimality of
answer sets implies that rule r3 cannot justify the truth of
strat(c1), if another atom in its head is true.

FURTHER READING AND RELATED ISSUES

In this section, we consider some additional topics that
allow the reader to have a broader picture of ASP. In
particular, we introduce the general architecture of ASP
systems, and we briefly describe several language exten-
sions that have been proposed so far.

ANSWER SET PROGRAMMING 7



System Algorithms

Initially somewhat impeded by complexity considerations,
reasonable algorithms and systems supporting ASP became
available in the second half of the 1990s. The first widely
used ones were Smodels (33,40), supporting nondisjunctive
ASP, and DLV (30), supporting ASP (with disjunction) as
defined in Ref 4. These two systems have been improved
over the years and are still in widespread use. Later on,
more systems for nondisjunctive ASP, like ASSAT (41,42),
Cmodels (5), and Clasp (43) became available, and also more
disjunctive ASP systems became available with the advent
of GnT (44) and cmodels-3 (45).

Although, as discussed below, the systems do not use the
same techniques, they basically agree on the general archi-
tecture depicted in Fig. 1.

The evaluation flow of the computation is outlined in
detail. Upon startup, the input specified by the user is
parsed and transformed into the internal data structures
of the system.5

In general, an input program P contains variables, and
the first step of a computation of an ASP system is to
eliminate these variables, generating a ground instantia-
tion ground(P) of P. This variable-elimination process is
called instantiation of the program (or grounding) and is
performed by the Instantiator module (see Fig. 1).

A naÿve Instantiator would produce the full ground
instantiation Ground(P) of the input, which is, however,
undesirable from a computational point of view, as in
general many useless ground rules would be generated.
All of the systems therefore employ different procedures,
which are geared toward keeping the instantiated program
as small as possible. A necessary condition is, of course, that
the instantiated program must have the same answer sets
as the original program. However, it should be noted that
the Instantiator solves a problem, which is in general
EXPTIME-hard, the produced ground program being
potentially of exponential size with respect to the input
program. Optimizations in the Instantiator, therefore,
often have a big impact, as its output is the input for the
following modules, which implement computationally hard
algorithms. Moreover, if the input program is normal and
stratified, the Instantiator module is, in some cases, able to
compute directly its stable model (if it exists).

The subsequent computations, which constitute the
nondeterministic part of an ASP system, are then per-
formed on ground(P) by both the Ground Reasoner and
the Model Checker. Roughly, the former produces some

‘‘candidate’’ answer set, whose stability is subsequently
verified by the latter. The existing ASP systems mainly
differ in the technique employed for implementing the
Ground Reasoner. There are basically two approaches,
which we will refer to as search-based and rewriting-based.
In the search-based approach, the Ground Reasoner imple-
ments a backtracking search algorithm, which works
directly on the ground instantiation of the input program.
Search-based systems, like DLV and Smodels, are often
referred to as ‘‘native’’ ASP systems, because the employed
algorithms directly manipulate logic programs and are
optimized for those. In the rewriting-based approach, the
Ground Reasoner transforms the ground program into a
propositional formula and then invokes a Boolean satisfia-
bility solver for finding answer set candidates.

As previously pointed out, the Model Checker verifies
whether an answer set candidate at hand is an answer set
for the input program. This task is as hard as the problem
solved by the Ground Reasoner for disjunctive programs,
whereas it is trivial for nondisjunctive programs. However,
there is also a class of disjunctive programs, called Head-
Cycle-Free programs (34), for which the task solved by the
Model Checker is provably simpler, which is exploited in
the system algorithms.

Finally, once an answer set has been found, ASP systems
typically print it in text format, and possibly the Ground
Reasoner resumes in order to look for additional answer
sets.

Language Extensions

The work on ASP started with standard rules, but fairly
soon implementations extending the basic language
started to emerge. The most important extensions to the
ASP language can be grouped in three main classes:

� Optimization constructs

� Aggregates

� Preference handling

Optimization Constructs. The basic ASP language can be
used to solve complex search problems, but it does not
natively provide constructs for specifying optimization pro-
blems (i.e., problems where some goal function must be
minimized or maximized). Two extensions of ASP have
been conceived for solving optimization problems: weak
constraints (30,46) and optimize statements (33).

In the basic language, constraints are rules with an
empty head and represent a condition that must be satis-
fied, and for this reason, they are also called strong con-
straints. Contrary to strong constraints, weak constraints
allow us to express desiderata, that is, conditions that

Figure 1. General architecture of an ASP
system.

Model Checker

Input
Program Instantiator Ground Reasoner Output

5The input is usually read from text files, but some systems also
interface to relational databases for retrieving facts stored in
relational tables.

8 ANSWER SET PROGRAMMING



should be satisfied. Thus, they may be violated, and their
semantics involves minimizing the number of violated
instances of weak constraints. In other words, the presence
of strong constraints modifies the semantics of a program
by discarding all models that do not satisfy some of them,
whereas weak constraints identify an approximate solu-
tion, that is, one in which (weak) constraints are satisfied as
much as possible.

From a syntactic point of view, a weak constraint is like a
strong one where the implication symbol is replaced by

. The informal meaning of a weak constraint B is ‘‘try to
falsify B’’ or ‘‘B should preferably be false.’’ Additionally, a
weight and a priority level for the weak constraint may be
specified after the constraint enclosed in brackets (by
means of positive integers or variables). When not specified,
the weak constraint is assumed to have weight 1 and
priority level 1, respectively.

In this case, we are interested in the answer sets that
minimize the sum of weights of the violated (unsatisfied)
weak constraints in the highest priority level and, among
them, those that minimize the sum of weights of the
violated weak constraints in the next lower level, and
so on. In other words, the answer sets are considered
along a lexicographic ordering along the priority levels
over the sum of weights of violated weak constraints.
Therefore, higher values for weights and priority levels
allow for marking weak constraints of higher importance
(e.g., the most important constraints are those having the
highest weight among those with the highest priority
level).

As an example, consider the Traveling Salesman Pro-
blem (TSP). TSP is a variant of the Hamiltonian Cycle
problem considered earlier, which amounts to finding the
shortest (minimal cost) Hamiltonian cycle in a directed
numerically labeled graph. This problem can be solved
by adapting the encoding of the Hamiltonian cycle problem
given in Section 4 in order to deal with labels, by adding
only one weak constraint.

Suppose again that the graph G is specified by predicates
node (unary) and arc (ternary), and that the starting node is
specified by the predicate start (unary).

The ASP program with weak constraints solving the
TSP problem is thus as follows:

r1 : inPathðX;Y ;CÞ _ outPathðX;Y ;CÞ arcðX;Y ;CÞ:
r2 : reachedðXÞ startðXÞ:
r3 : reachedðXÞ reachedðYÞ; inPathðY ;X;CÞ:
r4 :  inPathðX;Y ; Þ; inPathðX;Y1; Þ;Y <>Y1:
r5 :  inPathðX;Y ; Þ; inPathðX1;Y ; Þ;X <>X1:
r6 :  nodeðXÞ; not reachedðXÞ:
r7 : inPathðX;Y ;CÞ:½C; 1	

The last weak constraint (r7) states the preference
to avoid taking arcs with high cost in the path, and has
the effect of selecting those answer sets for which the total
cost of arcs selected by inPath (which coincides with the
length of the path) is the minimum (i.e., the path is the
shortest).

The TSP encoding provided above is an example of the
‘‘guess, check and optimize’’ programming pattern (30),

which extends the original ‘‘guess and check’’ (see
Section 4) by adding an additional ‘‘optimization part,’’
which mainly contains weak constraints. In the example
above, the optimization part contains only the weak con-
straint r7.

Optimize statements are syntactically somewhat sim-
pler. They assign numeric values to a set of ground literals,
and thereby select those answer sets for which the sum of
the values assigned to literals that are true in the respective
answer sets are maximal or minimal. It is not hard to see
that weak constraints can emulate optimize statements,
but not vice versa.

Aggregates. There are some simple properties, often
originating in real-world applications, which cannot be
encoded in a simple and natural manner using ASP. Espe-
cially properties that require the use of arithmetic opera-
tors on a set of elements satisfying some conditions (like
sum, count, or maximum) require rather cumbersome
encodings (often requiring an ‘‘external’’ ordering relation
over terms), if one is confined to classic ASP.

Similar observations have also been made in related
domains, notably database systems, which led to the defini-
tion of aggregate functions. Especially in database systems,
this concept is by now both theoretically and practically
fully integrated. When ASP systems became used in real
applications, it became apparent that aggregates are
needed also here. First, cardinality and weight constraints
(33), which are special cases of aggregates, have been
introduced. However, in general, one might want to use
also other aggregates (like minimum, maximum, or aver-
age), and it is not clear how to generalize the framework of
cardinality and weight constraints to allow for arbitrary
aggregates. To overcome this deficiency, ASP has been
extended with special atoms handling aggregate functions
(47–53). Intuitively, an aggregate function can be thought
of as a (possibly partial) function mapping multisets of
constants to a constant.

An aggregate function is of the form f(S), where S is a set
term of the form {Vars : Conj}, where Vars is a list of
variables and Conj is a conjunction of standard atoms,
and f is an aggregate function symbol.

The most common aggregate functions compute the
number of terms, the sum of non-negative integers, and
the minimum/maximum term in a set.

Aggregates are especially useful when real-world pro-
blems have to be dealt with. Consider the following example
application6. A project team has to be built from a set of
employees according to the following specifications:

1. At least a given number of different skills must be
present in the team.

2. The sum of the salaries of the employees working in
the team must not exceed the given budget.

Suppose that our employees are provided by several
facts of the form emp(EmpId, Skill, Salary); the minimum

6In the example, we adopted the syntax of the DLV system, the
same aggregate functions can be specified also by exploiting other
ASP dialects.

ANSWER SET PROGRAMMING 9



number of different skills and the budget are specified by
the facts nSkill(N) and budget(B). We then encode each
property stated above by an aggregate atom, and we enforce
it by an integrity constraint:

r1: inðIÞ _ outðIÞ empðI;Sk;SaÞ:
r3: nSkillðMÞ;not#countfSk:empðI;Sk;SaÞ;inðIÞg>¼M:
r4: budgetðBÞ;not#sumfSa;I: empðI;Sk;SaÞ;inðIÞg<¼B:

Intuitively, the disjunctive rule ‘‘guesses’’ whether an
employee is included in the team or not, whereas the two
constraints correspond one-to-one to the requirements.
Indeed, the function #count counts the number of employ-
ees in the team, whereas #sum sums the salaries of the

employees that are part of the team.

Note that thanks to the aggregates, the translation of
the specifications is straightforward.

Preference Handling. ASP programs usually follow a
‘‘guess and check’’ programming pattern (see Section 4),
where a set of rules (the guessing part) is used to guess a
solution (or equivalently, to generate answer set candi-
dates), whereas another set of rules, called the checking
part, is added to discard solutions that are not admissible.
This methodology allows the programmer to distinguish
between solutions and nonsolutions. However, in many
realistic applications, the possibility to make more fine-
grained distinctions is required, and in particular, distinc-
tions between more and less preferred solutions are needed
(see Ref. 54 for a discussion). For this reason, there has
been a substantial amount of work on extending ASP
programs with preferences, and in particular, the major
focus has been on qualitative approaches. This stems from
the fact that for a variety of applications, numerical infor-
mation is hard to obtain (preference elicitation is difficult)
and often turns out to be unnecessary (see Ref. 54). Still,
language extensions based on quantitative information,
such as the weak constraints mentioned above, emulate
qualitative preferences under certain conditions, and vice
versa. There are two basic possibilities for representing
qualitative preferences. In one approach, the preference is
specified among rules, mirroring the fact that some rules
may be more reliable than others, and striving to use a set of
rules that is as preferred as possible for giving a reason to
an answer. In the second approach, the preferences are
specified among literals, reflecting information on either
the likelihood or the desirability of the affirmations repre-
sented by the literals.

In the first kind of formalisms, preferences are specified
by means of an ordering among rules. Formally, an ordered
logic program is a pair (P,<) where P is a logic program and
<� (P � P) is a strict partial order. Given r1, r2 2 P, the
relation r1< r2 expresses that r2 has higher priority than r1.

For example, consider the following program:

r1 : : a: r2 : b : a; not c: r3 : c not b:

This program has two answer sets, one given by {:a, b} and
the other given by {:a, c}. For the first answer set, rules r1

and r2 are applied; for the second, r1 and r3. However,
assume that we have reason to prefer r2 to r3 expressed

by r3 < r2. In this case, we would want to obtain just the
first answer set and we say say that the first is a preferred
answer set.

In general, defining which answer sets should be the
preferred ones in this setting is not always as obvious as in
the example above, and indeed several approaches have
been proposed. A comprehensive comparison of three major
semantics, defined by Delgrande, Schaub, Tompits (55), by
Brewka and Eiter (56), and by Wang, Zhou, Lin (57), has
been presented in Ref. 58.

In the second representational approach, preferences
are represented among atoms, literals, or formulas. One
way of specifying this has been proposed in Ref. 59, which is
the use of ordered disjunction in rule heads. In particular,
the operator � in rule heads acts as a disjunction also
specifying preferences. The meaning of a rule a1 � � � � �
an body, is that if the body is satisfied, then some ai must
be in the answer set, most preferably a1, if this is impos-
sible, then a2, and so on. The formal semantics is defined by
means of answer sets of split programs and of rule satisfac-
tion degrees. There are some degrees of freedom when
aggregating the satisfaction degrees of several rules, lead-
ing to different semantics, the main ones being cardinality-
based, set-inclusion-based, and Pareto-based.

In the ordered disjunction approach, the construction of
answer sets is amalgamated with the expression of prefer-
ences. Optimization programs (60), on the other hand,
strictly separate these two aspects. An optimization pro-
gram is a pair (Pgen, Ppref). Here, Pgen is an arbitrary logic
program used to generate answer sets. All we require is that
it produces sets of literals as its answer sets. Ppref is a
preference program. Preference programs consist of pre-
ference rules of the form c1 >� � �>cn  body, where the ci

are Boolean combinations of literals built from _, ^, : and
not. As in the case of ordered disjunction, the semantics of
these programs is based on the degree of satisfaction of
preference rules, and as in the case of ordered disjunctions,
there are several options for aggregating these satis-
faction degrees for defining semantics.

Another ASP extension suitable for preference handling
has been presented in Ref. 61. There, standard ASP has
been enriched by introducing consistency-restoring rules
(CR-rules) and preferences, leading to the CR-Prolog lan-
guage. Basically, in this language, besides standard ASP
rules one may specify CR-rules, which are expressions of
the form: r : a1 _ � � � _ an þ body ðn� 1Þ. The intuitive
meaning of the CR-rule r is as follows: If body is true,
then one of a1; . . . ;an is ‘‘possibly’’ believed to be true.
Importantly, the name of CR-prolog rules can be directly
exploited to specify preferences among them. In particular,
if the fact prefer(r1, r2) is added to a CR-program, then rule
r1 is preferred over rule r2. This allows one to encode partial
orderings among preferred answer sets by explicitly writ-
ing preferences among CR-rules.

Other Extensions. ASP has been extended in other direc-
tions in order to meet the requirements of different applica-
tion domains; hence, there is a number of interesting
languages having the roots on ASP. For instance, ASP
has been exploited for defining and implementing action
languages (i.e., languages conceived for dealing with

10 ANSWER SET PROGRAMMING



actions and change)k (62), ande (63), whereas in Ref. 64, a
framework for abduction with penalization has been
proposed and implemented as a front-end for the ASP
system DLV. A logic language called ID-Logic (65) has
been introduced to deal with classical logic with inductive
definitions (which correspond semantically to logic rules).
Other ASP extensions have been conceived to deal with
Ontologies (i.e., abstract models of a complex domain). In
particular, in Ref. 66, an ASP-based language for ontology
specification and reasoning has been proposed, which
extends ASP in order to deal with complex real-world
entities, like classes, objects, compound objects, axioms,
and taxonomies. In Ref. 67, an open world semantics for
ASP programs has been proposed. Moreover, in Ref. 68, an
extension of ASP, called HEX-Programs, which supports
higher order atoms as well as external atoms has been
proposed. External atoms allows one to embed external
sources of computation in a logic program. Thus, HEX-
programs are useful for various tasks, including meta-
reasoning, data type manipulations, and reasoning on
top of Description Logics (DL) (69) ontologies. Template
predicates have been introduced in Ref. 70. Template
predicates are special intensional predicates defined by
means of generic reusable subprograms, which have
been conceived for easing coding and improving readability
and compactness of programs. Finally, nested programs,
allowing for nested logical expressions to occur in rules,
have also been studied (71,72).

Applications

Answer set programming has been successfully applied to
many areas, including:

� Information integration. ASP has been exploited for
supporting consistent query answering, in informa-
tion integration systems under the so-called Global-as-
View approach (73–75), also in the presence of data
inconsistencies and data incompleteness.

� Configuration and verification management. In pro-
duct configuration (76), ASP has been used as a
declarative semantics providing formal definitions
for main concepts in product configuration, including
configuration models, requirements, and valid config-
urations. And, in particular, in the field of software
configuration, a prototype configurator for the com-
plete Debian Linux system distribution has been
implemented by using ASP (17).

� Knowledge management. ASP has a strong potential
for exploitation in the area of knowledge management
and semantic technologies.

An ASP-based system for ontology representation
and reasoning, called OntoDLV (66), is employed in
many real-world applications, ranging from e-learning
to enterprise ontologies and agent-based applications.
In Ref. 78, an ASP-based approach to the problem of
recognizing and extracting information from unstruc-
tureddocumentshasbeenpresented. InRefs.79and80,
a system for content classification, called OLEX, is
presented, which exploits ASP to extract concepts and
semantic metadata from documents.

� Security engineering. In Ref. 81, it is shown how secur-
ity protocols can be specified and verified efficiently and
effectively by embedding reasoning about actions into
logic programming. In particular, two significant case
studies in protocol verification have been modeled: the
classical Needham–Schroeder public-key protocol and
the Aziz–Diffie key agreement protocol for mobile
communication.

Moreover, applications from various areas can be found
in the literature, including auctions (82), scheduling (83),
policy description (84), workflow management (85), outlier
detection (86), linguistics (87), multiagent systems (88–90),
and e-learning (90).

Concluding, ASP is an appealing tool for knowledge
representation and reasoning, and thanks to the appli-
cability of the implementations of ASP solvers to real-world
problems, ASP is tackling many industrially relevant
applications.

It is worth noting that ASP systems are currently away
from comfortably enabling the development of industry-
level applications, and like any other programming lan-
guage, ASP needs tools and development methodologies to
facilitate and improve the coding process. At the time of this
writing, the field of software engineering for ASP has been
already settled by the ASP community (91), and it is cur-
rently evolving. Indeed, both methodologies (see Section 4)
and prototype tools are already available (see Refs. 66, 70,
and 91–94).

BIBLIOGRAPHY

1. J. McCarthy, Programs with common sense, Proc. Teddington
Conference on the Mechanization of Thought Processes, Her
Majesty’s Stationery Office, 1959.

2. S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Reading, MA: Addison-Wesley, 1995.

3. A. Colmerauer and P. Roussel, The Birth of Prolog. New York:
ACM, 1996.

4. M. Gelfond and V. Lifschitz, Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing,
9: 365–385, 1991.

5. C. Baral, Knowledge Representation, Reasoning and Declara-
tive Problem Solving. Cambridge, UK: Cambridge University
Press, 2003.

6. M. Gelfond and N. Leone, Logic programming and knowledge
representation—the A-Prolog perspective. Artif. Intell., 138(1–
2): 3–38, 2002.

7. K. Marriott and P. J. Stuckey, Programming with Constraints:
An Introduction. Cambridge, MA: MIT Press, 1998.

8. A. C. Kakas, R. A. Kowalski, and F. Toni, Abductive logic
programming. J. Logic Computation, 2(6): 719–770, 1992.

9. J. McCarthy and P. J. Hayes, Some philosophical problems
from the standpoint of artificial intelligence, in B. Meltzer and
D. Michie (eds.), Machine Intelligence 4. Edinburgh, Scotland:
Edinburgh University Press, 1969.

10. J. Alan Robinson, A machine-oriented logic based on the reso-
lution principle. J. ACM, 12(1): 23–41, 1965.

11. R. A. Kowalski, Predicate logic as programming language, IFIP
Congress, 1974, pp. 569–574.

ANSWER SET PROGRAMMING 11



12. R. A. Kowalski, Algorithm ¼ logic þ control. Commun. ACM,
22(7): 424–436, 1979.

13. International Organization for Standardization, ISO/IEC
13211-1:1995: Information technology—Programming lan-
guages—Prolog—Part 1: General core. International Organi-
zation for Standardization, Geneva, Switzerland, 1995.

14. M. H. van Emden and R. A. Kowalski, The semantics of pre-
dicate logic as a programming language. J. ACM, 23(4): 733–
742, 1976.

15. K. L. Clark, Negation as Failure, in Herve? Gallaire and Jack
Minker (eds.), Logic and Data Bases. New York: Plenum Press,
1978.

16. R. Reiter, On closed world data bases, in H. Gallaire and J.
Minker (eds.), Logic and Data Bases. New York: Plenum
Press, 1978.

17. K. R. Apt, H. A. Blair, and A. Walker, Towards a theory of
declarative knowledge, in J. Minker (ed.), Foundations of
Deductive Databases and Logic Programming, Washington,
DC: Morgan Kaufmann, 1988.

18. A. Van Gelder, Negation as failure using tight derivations for
general logic programs, in J. Minker (ed.), Foundations of
Deductive Databases and Logic Programming. Washington,
DC: Morgan Kaufmann, 1988.

19. A. Van Gelder, K. A. Ross, and J. S. Schlipf, Unfounded sets
and well-founded semantics for general logic programs, Proc.
Seventh Symposium on Principles of Database Systems
(PODS’88), 1988, pp. 221–230.

20. V. Wiktor Marek and M. Truszczyn?ski, Nonmonotonic
Logics—Context-Dependent Reasoning. New York: Springer-
Verlag, 1993.

21. M. Gelfond, On stratified autoepistemic theories, Proc. Sixth
National Conference on Artificial Intelligence (AAAI-87), 1987,
pp. 207–211.

22. N. Bidoit and C. Froidevaux, Minimalism subsumes default
logic and circumscription in stratified logic programming,
Proc. Symposium on Logic in Computer Science (LICS ’87),
June 1987, pp. 89–97. IEEE.

23. M. Gelfond and V. Lifschitz, The stable model semantics for
logic programming, Logic Programming: Proceedings Fifth Intl
Conference and Symposium, Cambridge, MA, 1988, pp. 1070–
1080.

24. A. Van Gelder, K. A. Ross, and J. S. Schlipf, The well-founded
semantics for general logic programs. J. ACM, 38(3): 620–650,
1991.

25. J. Minker, On indefinite data bases and the closed world
assumption, in D. W. Loveland (ed.), Proceedings 6th Confer-
ence on Automated Deduction (CADE ’82) volume 138 of
Lecture Notes in Computer Science. New York. Springer, 1982.

26. A. H. Yahya and L. J. Henschen, Deduction in non-horn
databases. J. Automated Reasoning, 1(2): 141–160, 1985.

27. T. C. Przymusinski, Stable semantics for disjunctive programs.
New Generation Computing, 9: 401–424, 1991.

28. K. Wang and L. Zhou, Comparisons and computation of well-
founded semantics for disjunctive logic programs. ACM Trans.
Computational Logic, 6(2), April 2005.

29. T. Eiter, W. Faber, N. Leone, and G. Pfeifer, Declarative
problem-solving using the DLV system, in J. Minker (ed.),
Logic-Based Artificial Intelligence. Kluwer Academic Publish-
ers, 2000.

30. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello, The DLV System for knowledge representa-
tion and reasoning. ACM Trans. Computational Logic, 7(3):
499–562, July 2006.

31. I. Niemelð and P. Simons, Smodels—an implementation of the
stable model and well-founded semantics for normal logic
programs, in J. Dix, U. Furbach, and A. Nerode (eds.), Proc.
4th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’97), volume 1265 of Lecture
Notes in AI (LNAI), Dagstuhl, Germany, July 1997, pp. 420–
429.

32. T. Syrjðnen, Lparse 1.0 User’s Manual, 2002. Available: http://
www.tcs.hut.fi/Software/smodels/lparse.ps.gz.

33. P. Simons, I. Niemelð, and T. Soininen, Extending and imple-
menting the stable model semantics. Artif. Intell.138: 181–234,
June 2002.

34. R. Ben-Eliyahu and R. Dechter, Propositional semantics for
disjunctive logic programs. Ann. Math. Artif. Intell., 12: 53–87,
1994.

35. J. Dix, G. Gottlob, and V. Wiktor Marek, Reducing disjunctive
to non-disjunctive semantics by shift-operations. Fundamenta
Informaticae, 28: 87–100, 1996.

36. N. Leone, P. Rullo, and F. Scarcello, Disjunctive stable models:
Unfounded sets, fixpoint semantics and computation. Inform.
Computat., 135(2): 69–112, June 1997.

37. S. P. Radziszowski, Small ramsey numbers. Electronic J.
Combinatorics, 1, 1994.

38. C. H. Papadimitriou, Computational Complexity. Reading,
MA: Addison-Wesley, 1994.

39. M. Cadoli, T. Eiter, and G. Gottlob, Default logic as a query
language. IEEE Trans. Knowledge Data Eng., 9(3): 448–463,
May/June 1997.

40. P. Simons, Smodels Homepage, since 1996. Available: http://
www.tcs.hut.fi/Software/smodels/.

41. Y. Zhao, ASSAT homepage, since 2002. Available: http://
assat.cs.ust.hk/.

42. F. Lin and Y. Zhao, ASSAT: Computing answer sets of a logic
program by SAT solvers, Proc. Eighteenth National Conference
on Artificial Intelligence (AAAI-2002), Edmonton, Alberta,
Canada, 2002.

43. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, Con-
flict-driven answer set solving, Proc. Twentieth International
Joint Conference on Artificial Intelligence (IJCAI-07), Morgan
Kaufmann Publishers, January 2007, pp. 386–392.

44. T. Janhunen, I. Niemelð, D. Seipel, P. Simons, and J.-H. You,
Unfolding partiality and disjunctions in stable model seman-
tics. Technical Report cs.AI/0303009, arXiv.org, March 2003.

45. Y. Lierler, Disjunctive answer set programming via satisfia-
bility, in C. Baral, G. Greco, N. Leone, and G. Terracina (eds.),
Logic Programming and Nonmonotonic Reasoning—8th Inter-
national Conference, LPNMR’05, Diamante, Italy, September
2005, Proceedings, volume 3662 of Lecture Notes in Computer
Science, Springer Verlag, September 2005, pp. 447–451.

46. F. Buccafurri, N. Leone, and P. Rullo, Enhancing disjunctive
datalog by constraints. IEEE Trans. Knowledge Data Eng.,
12(5): 845–860, 2000.

47. F. Calimeri, W. Faber, N. Leone, and S. Perri, Declarative and
computational properties of logic programs with aggregates, in
Nineteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-05), August 2005, pp. 406–411.

48. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer,
Aggregate functions in disjunctive logic programming: Seman-
tics, complexity, and implementation in DLV. Proc. 18th Inter-
national Joint Conference on Artificial Intelligence (IJCAI)
2003, Acapulco, Mexico, August 2003, pp. 847–852.

49. M. Denecker, N. Pelov, and M. Bruynooghe, Ultimate well-
founded and stable model semantics for logic programs with

12 ANSWER SET PROGRAMMING



aggregates, in Philippe Codognet (ed.), Proc. 17th Interna-
tional Conference on Logic Programming, New York: Springer
Verlag, 2001.

50. W. Faber and N. Leone, On the complexity of answer set
programming with aggregates, in C. Baral, G. Brewka, and
J. S. Schlipf (eds.), Logic Programming and Nonmonotonic
Reasoning—9th International Conference, LPNMR 2007,
volume 4483 of Lecture Notes in AI (LNAI), Tempe, AZ, May
2007, pp. 97–109.

51. W. Faber, N. Leone, and G. Pfeifer, Recursive aggregates in
disjunctive logic programs: Semantics and complexity, in J.
Jºlio Alferes and J. Leite (eds.), Proc. 9th European Conference
on Artificial Intelligence (JELIA 2004), volume 3229 of Lecture
Notes in AI (LNAI), Springer Verlag, September 2004, pp. 200–
212.

52. L. Hella, L. Libkin, J. Nurmonen, and L. Wong, Logics with
aggregate operators. J. ACM, 48(4): 880–907, 2001.

53. N. Pelov, M. Denecker, and M. Bruynooghe, Well-founded and
stable semantics of logic programs with aggregates. Theory
Practice of Logic Programming. In Press.

54. G. Brewka, Answer sets: From constraint programming
towards qualitative optimization, in V. Lifschitz and I. Niemelð
(eds.), Proc. 7th International Conference on Logic Program-
ming and Non-Monotonic Reasoning (LPNMR-7), volume 2923
of LNAI, Springer, January 2004, pp. 34–46.

55. J. P. Delgrande, T. Schaub, and H. Tompits, A framework for
compiling preferences in logic programs. Theory Practice Logic
Programming, 3(2): 129–187, March 2003.

56. G. Brewka and T. Eiter, Preferred answer sets for extended
logic programs. Artif. Intell., 109(1–2): 297–356, 1999.

57. K. Wang, L. Zhou, and F. Lin, Alternating fixpoint theory for
logic programs with priority, Computational Logic—CL 2000,
First International Conference, Proceedings, volume 1861 of
Lecture Notes in AI (LNAI), London, UK, July 2000.

58. T. Schaub and K. Wang, A comparative study of logic programs
with preference, in Proc. Seventeenth International Joint Con-
ference on Artificial Intelligence (IJCAI) 2001, Seattle, WA,
August 2001, pp. 597–602.

59. G. Brewka, Logic programming with ordered disjunction, in
Proc. 9th International Workshop on Non-Monotonic Reason-
ing (NMR’2002), April 2002, pp. 67–76.

60. G. Brewka, I. Niemelð, and M. Truszczyn?ski, Answer set
optimization, in G. Gottlob and T. Walsh (eds.), IJCAI-03,
Proc. of the Eighteenth International Joint Conference on Arti-
ficial Intelligence, Acapulco, Mexico, Morgan Kaufmann,
August 2003, pp. 867–872.

61. M. Balduccini and M. Gelfond, Logic programs with consis-
tency-restoring rules, in M. A. Williams P. Doherty, J.
McCarthy (eds.), International Symposium on Logical Forma-
liza-tion of Commonsense Reasoning, AAAI 2003 Spring Sym-
posium Series, 2003.

62. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres, A logic
programming approach to knowledge-state planning: Seman-
tics and complexity. ACM Trans. Computational Logic, 5(2):
206–263, April 2004.

63. Y. Dimopoulos, A. C. Kakas, and L. Michael, Reasoning about
actions and change in answer set programming programs, in V.
Lifschitz and I. Niemelð (eds.), Proceedings of Logic Program-
ming and Nonmonotonic Reasoning, 7th International Con-
ference, LPNMR 2004, volume 2 of LNCS. New York: Springer,
2004.

64. S. Perri, F. Scarcello, and N. Leone, Abductive logic programs
with penalization: Semantics, complexity and implementation.
Theory Practice of Logic Programming, 5(1–2): 123–159, 2005.

65. M. MariŠn, D. Gilis, and M. Denecker, On the relation between
ID-Logic and answer set programming, in J. Jºlio Alferes and J.
Alexandre Leite (eds.), Proceedings of Logics in Artificial
Intelligence, 9th European Conference, JELIA 2004, Lisbon,
Portugal, volume 3229 of Lecture Notes in Computer Science,
Springer, September 2004, pp. 108–120.

66. F. Ricca and N. Leone, Disjunctive logic programming with
types and objects: The DLV+ System. J. Appl. Logics, 5(3): 545–
573, 2007.

67. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir, Semantic
web reasoning with conceptual logic programs, Proc. Rules and
Rule Markup Languages for the Semantic Web: Third Inter-
national Workshop, RuleML 2004, Hiroshima, Japan, Novem-
ber 2004, pp. 113–127.

68. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits, A uniform
integration of higher-order reasoning and external evaluations
in answer set programming, International Joint Conference on
Artificial Intelligence (IJCAI) 2005, Edinburgh, UK, August
2005.

69. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider (eds.), The Description Logic Handbook: The-
ory, Implementation, and Applications. Cambridge, UK: Cam-
bridge University Press, 2003.

70. F. Calimeri, G. Ianni, G. Ielpa, A. Pietramala, and M. Carmela
Santoro, A system with template answer set programs, in
JELIA, 2004, pp. 693–697.

71. D. Pearce, V. Sarsakov, T. Schaub, H. Tompits, and S. Woltran,
A polynomial translation of logic programs with nested expres-
sions into disjunctive logic programs: Preliminary report,
Proc. 9th International Workshop on Non-Monotonic Reason-
ing (NMR’2002), 2002.

72. D. Pearce, H. Tompits, and S. Woltran, Encodings for equili-
brium logic and logic programs with nested expressions, in P.
Brazdil and A. Jorge (eds.), 10th Proc. Portuguese Conference
on Artificial Intelligence (EPIA 2001), December 2001, pp. 306–
320.

73. D. Lembo, M. Lenzerini, and R. Rosati, Integrating inconsis-
tent and incomplete data sources, Proc. of SEBD 2002, Porto-
ferraio, Isola d’Elba, 2002, pp. 299–308.

74. D. Lembo, M. Lenzerini, and R. Rosati, Source inconsistency
and incompleteness in data integration, Proc. Knowledge
Representation meets Databases International Workshop
(KRDB-02), Toulouse, France, 2002. CEUR Electronic Work-
shop Proceedings. Available: http://sunsite. informatik. rwth-
aachen.de/Publications/CEUR-WS/Vol-54/.

75. N. Leone, G. Gottlob, R. Rosati, T. Eiter, W. Faber, M. Fink, G.
Greco, G. Ianni, E. Kalka, D. Lembo, M. Lenzerini, V. Lio, B.
Nowicki, M. Ruzzi, W. Staniszkis, and G. Terracina, The
INFOMIX System for advanced integration of incomplete
and inconsistent data, Proc. 24th ACM SIGMOD International
Conference on Management of Data (SIGMOD 2005), Balti-
more, MD, June 2005, pp. 915–917.

76. T. Soininen and I. Niemelð, Developing a declarative rule
language for applications in product configuration, in G. Gupta
(ed.), Proc. 1st International Workshop on Practical Aspects of
Declarative Languages (PADL’99), volume 1551 of Lecture
Notes in Computer Science, Springer, 1999, pp. 305–319.

77. T. Syrjðnen, A Rule-Based Formal Model for Software Config-
uration. Technical Report A55, Digital Systems Laboratory,
Department of Computer Science, Helsinki University of Tech-
nology, Espoo, Finland, 1999.

78. M. Ruffolo, N. Leone, M. Manna, D. Sacca, and A. Zavatto,
Exploiting ASP for semantic information extraction, in M. de
Vos and A. Provetti (eds.), Proceedings ASP05—Answer Set

ANSWER SET PROGRAMMING 13



Programming: Advances in Theory and Implementation, Bath,
UK, July 2005, pp. 248–262.

79. C. Cumbo, S. Iiritano, and P. Rullo, Reasoning-based know-
ledge extraction for text classification, in Proceedings of
Discovery Science, 7th International Conference, Padova, Italy,
October 2004, pp. 380–387.

80. R. Curia, M. Ettorre, S. Iiritano, and P. Rullo, Textual docu-
ment per-processing and feature extraction in OLEX, in Pro-
ceedings of Data Mining 2005, Skiathos, Greece, 2005.

81. L. Carlucci Aiello and F. Massacci, Verifying security protocols
as planning in logic programming. ACM Trans. Computat.
Logic, 2(4): 542–580, 2001.

82. C. Baral and C. Uyan, Declarative specification and solution of
combinatorial auctions using logic programming, in T. Eiter,
W. Faber, and M. Truszczyn?ski (eds.), Proc. 6th International
Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR-01), volume 2173 of Lecture Notes in AI (LNAI),
Springer Verlag, 2001, pp. 186–199.

83. W. Faber, N. Leone, and G. Pfeifer, Representing school time-
tabling in a disjunctive logic programming language, in U. Egly
and H. Tompits (eds.), Proc. 13th Workshop on Logic Program-
ming (WLP’98), Vienna, Austria, October 1998, pp. 43–52.

84. E. Bertino, A. Mileo, and A. Provetti, User preferences VS
minimality in PPDL, in F. Buccafurri (ed.), Proc. Joint Con-
ference on Declarative Programming APPIA-GULP-PRODE
2003, September 2003, pp. 110–122.

85. G. Greco, A. Guzzo, and D. SaccÁ, A logic programming
approach for planning workflows evolutions, in F. Buccafurri
(ed.), Proc. Joint Conference on Declarative Programming
APPIA-GULP-PRODE 2003, September 2003, pp. 75–85.

86. G. Greco, S. Greco, and E. Zumpano, A logical framework for
querying and repairing inconsistent databases, IEEE Trans.
Knowledge Data Eng., 15(6): 1389–1408, 2003.

87. E. Erdem, V. Lifschitz, L. Nakhleh, and D. Ringe, Reconstruct-
ing the evolutionary history of indo-european languages using
answer set programming, in V. Dahl and P. Wadler (eds.),
Practical Aspects of Declarative Languages, 5th International
Symposium (PADL 2003), volume 2562 of Lecture Notes in
Computer Science, Springer, 2003, pp. 160–176.

88. F. Buccafurri and G. Caminiti, A social semantics for multi-
agent systems, in C. Baral, G. Greco, N. Leone, and G. Terra-
cina (eds.), Logic Programming and Nonmonotonic Reason-
ing—8th International Conference, LPNMR’05, Diamante,
Italy, volume 3662 of Lecture Notes in Computer Science,
Springer Verlag, September 2005, pp. 317–329.

89. S. Costantini and A. Tocchio, The dali logic programming
agent-oriented language, in J. Jºlio Alferes and J. Leite

(eds.), Proc. 9th European Conference on Artificial Intelligence
(JELIA 2004), volume 3229 of Lecture Notes in AI (LNAI),
Springer Verlag, September 2004, pp. 685–688.

90. A. Garro, L. Palopoli, and F. Ricca, Exploiting agents in e-
learning and skills management context. AI Commun. Eur. J.
Artif. Intell., 19(2): 137–154, 2006.

91. M. De Vos and T. Schaub (eds.), SEA ’07: Software Engineering
for Answer Set Programming, volume 281. CEUR, 2007. Avail-
able: http://CEUR-WS.org/Vol-281/.

92. M. Brain and M. De Vos, Debugging logic programs under the
answer set semantics, in M. de Vos and A. Provetti (eds.), Proc.
ASP05—Answer Set Programming: Advances in Theory and
Implementation, Bath, UK, July 2005.

93. O. El-Khatib, E. Pontelli, and T. Cao Son, Justification and
debugging of answer set programs in ASP, in C. Jeffery, J.-D.
Choi, and R. Lencevicius (eds.), Proc. Sixth International Work-
shop on Automated Debugging, California, September 2005.

94. F. Ricca, The DLV Java Wrapper, in M. Vos de and A. Provetti
(eds.), Proceedings ASP03—Answer Set Programming:
Advances in Theory and Implementation, Messina, Italy, Sep-
tember 2003. Available: http://CEUR-WS.org/Vol-78/.

FURTHER READING

Y. Babovich and M. Maratea, Cmodels-2: Sat-based answer sets
solver enhanced to non-tight programs. Available: http://
www.cs.utexas.edu/users/tag/cmodels.html, 2003.

J. Dix, G. Gottlob, and V. Wiktor Marek, Causal models for dis-
junctive logic programs, in Pascal Van Hentenryck (ed.), Proc. 11th
International Conference on Logic Programming (ICLP’94), Santa
Margherita Ligure, Italy, June 1994.

J. McCarthy, Formalization of Common Sense, papers by John
McCarthy edited by V. Lifschitz. Ablex, 1990.

J. Minker (ed.), Foundations of Deductive Databases and Logic
Programming. Washington, DC: Morgan Kaufmann Publishers,
Inc., 1988.

WOLFGANG FABER

NICOLA LEONE

FRANCESCO RICCA

Department of Mathematics
University of Calabria
Rende, Italy

14 ANSWER SET PROGRAMMING


	Wiley Encyclopedia of ComputerScience and Engineering
	ASYNCHRONOUS TRANSFER MODENETWORKS
	AIRCRAFT COMPUTERS
	COMPUTERIZED DICTIONARIES:
	TRANSLATION SOFTWARE, AND WEB
	ELECTRONIC WARFARE
	ENVIRONMENTAL SCIENCE COMPUTING
	EXPERT DECISION SYSTEM FOR ROBOT
	GEOGRAPHIC INFORMATION SYSTEMS
	HOME AUTOMATION
	HOME COMPUTING SERVICES
	REMOTE SENSING INFORMATION
	ROBOT KINEMATICS
	ROBOT MOTION PLANNING
	TRANSACTION PROCESSING
	ACTIVE CONTOURS: SNAKES
	COLOR: COLOR MODELS
	COLOR PERCEPTION
	CONTOUR TRACKING
	EDGE DETECTION IN GRAYSCALE, COLOR,
	AND RANGE IMAGES
	FACE RECOGNITION TECHNIQUES
	FINGERPRINT IDENTIFICATION
	GEOMETRIC CAMERA CALIBRATION
	LEVEL SET METHODS
	MEDICAL IMAGE PROCESSING
	RADIOMETRIC CAMERA CALIBRATION
	RAY TRACING ACCELERATION TECHNIQUES
	SCALE-SPACE
	BEHAVIORAL SCIENCES AND COMPUTING
	BIOLOGY COMPUTING
	COMPUTATIONAL INTELLIGENCE
	COMPUTER ENGINEERING EDUCATION
	COMPUTER-SUPPORTED ASYNCHRONOUS
	COMPUTING ACCREDITATION: EVOLUTION
	CYBERNETICS
	EDUCATION AND TRAINING IN SOFTWARE
	ENGINEERING
	ETHICS AND PROFESSIONAL RESPONSIBILITY
	FIXED-POINT COMPUTER ARITHMETIC
	FLOATING-POINT COMPUTER ARITHMETIC
	FLUENCY WITH INFORMATION TECHNOLOGY
	INFORMATION TECHNOLOGY
	KERNEL
	MONITOR
	OVERHEAD
	QUALITY IN COMPUTER SCIENCE AND
	QUEUEING NETWORKS
	SWAPPING
	THRASHING
	THROUGHPUT
	VIRTUAL MEMORY
	WORKING SET
	ACTIVE DATABASE SYSTEMS
	ALGEBRAIC CODING THEORY
	BIOINFORMATIC DATABASES
	CONTENT-BASED MULTIMEDIA RETRIEVAL
	COOPERATIVE DATABASE SYSTEMS
	CoXML: COOPERATIVE XML QUERY
	DATA ANALYSIS
	DATABASE LANGUAGES
	DATA CLASSIFICATION
	DATA COMMUNICATION
	DATA COMPRESSION CODES, LOSSY
	DATA HANDLING IN INTELLIGENT
	TRANSPORTATION SYSTEMS
	DATA PRIVACY
	DATA SEARCH ENGINE
	DATA SECURITY
	DATA STRUCTURES AND ALGORITHMS
	DATA WAREHOUSE
	DECISION SUPPORT SYSTEMS: FOUNDATIONS
	DEDUCTIVE DATABASES
	DISCRETE EVENT SYSTEMS: UNTIMED MODELS
	DISK STORAGE
	ENTITY-RELATIONSHIP MODEL
	MULTIAGENT SYSTEMS
	OBJECT-ORIENTED DATABASES
	PROCESS-AWARE INFORMATION SYSTEMS:
	DESIGN, ENACTMENT, AND ANALYSIS
	REAL TIME DATABASE SYSTEMS
	RELATIONAL DATABASES
	SPATIAL DATABASES
	STATISTICAL DATABASES
	SYSTEM MONITORING
	TEMPORAL DATABASES
	TRANSACTION PROCESSING IN MOBILE,
	VERY LARGE DATABASES
	VISUAL DATABASE
	ALGEBRAIC GEOMETRY
	CHOICE UNCERTAINTY PRINCIPLE
	COMPUTATIONAL COMPLEXITY THEORY
	COMPUTATIONAL NUMBER THEORY
	CONVEX OPTIMIZATION
	DYNAMIC PROGRAMMING
	FORMAL LOGIC
	FRACTALS
	GEOMETRIC PROGRAMMING
	GRAPH THEORY AND ALGORITHMS
	INFORMATION ALGEBRA
	LINEAR AND NONLINEAR PROGRAMMING
	LOCALITY PRINCIPLE
	MARKOV CHAIN MONTE CARLO
	SIMULATIONS
	MARKOV CHAINS
	MIXED INTEGER PROGRAMMING
	MULTIGRID METHODS
	POSETS AND LATTICES
	PROBABILITY AND STATISTICS
	PROOFS OF CORRECTNESS IN MATHEMATICS
	REGRESSION ANALYSIS
	ROUNDING ERRORS
	ADDRESSING: DIRECT AND INDIRECT
	ANALOG-TO-DIGITAL CONVERSION
	AUTOMATIC TEST GENERATION
	CARRY LOGIC
	CD-ROMs AND COMPUTER SYSTEMS
	COMMUNICATION PROCESSORS
	FOR WIRELESS SYSTEMS
	COMPUTER ARCHITECTURE
	DATAFLOW COMPUTERS: THEIR HISTORY AND
	DATA STORAGE ON MAGNETIC DISKS
	ELECTRONIC CALCULATORS
	FAULT-TOLERANT COMPUTING
	FIBER-OPTIC COMMUNICATION NETWORKS
	HIGH-LEVEL SYNTHESIS
	INSTRUCTION SETS
	INTERCONNECTION NETWORKS
	FOR PARALLEL COMPUTERS
	LCD DESIGN TECHNIQUES
	LOGIC DESIGN
	LOGIC SYNTHESIS
	MICROPROGRAMMING
	PEN-BASED COMPUTING
	PROGRAMMABLE LOGIC ARRAYS
	REDUCED INSTRUCTION SET COMPUTING
	SPECULATION
	STORAGE AREA NETWORKS
	VIRTUAL MEMORY AND BUFFER STORAGE
	VLSI CIRCUIT LAYOUT
	COLLABORATIVE VIRTUAL ENVIRONMENT:
	COLLABORATIVE VIRTUAL ENVIRONMENT:
	COLLABORATIVE VIRTUAL ENVIRONMENT:
	WEB-BASED ISSUES
	COMPUTER GAMES
	CROWD SIMULATION
	HIGH-QUALITY TEXTURE MAPPING
	LIGHTING
	PARAMETRIC SURFACE RENDERING
	RADIOSITY
	RENDERING
	SOLID MODELING
	SURFACE DEFORMATION
	SURFACE MODELING
	VIRTUAL CLOTHING
	VOLUME GRAPHICS AND VOLUME
	WARPING AND MORPHING
	ARTIFICIAL INTELLIGENCE LANGUAGES
	AUTONOMY-ORIENTED COMPUTING (AOC)
	BIOINFORMATICS
	BIOLOGICALLY INSPIRED NEURAL
	COGNITIVE SYSTEMS AND COGNITIVE
	DIMENSIONALITY REDUCTION
	EVOLUTIONARY LEARNING
	EXPERT SYSTEMS
	FUZZY MODELING FUNDAMENTALS
	GENETIC ALGORITHMS
	GRANULAR COMPUTING
	HOPFIELD NEURAL NETWORKS
	INTELLIGENT AGENT
	KNOWLEDGE ACQUISITION
	KNOWLEDGE-BASED COMPUTATION
	KNOWLEDGE MANAGEMENT APPLICATION
	MACHINE LEARNING
	NEURAL CONTROLLERS
	NEURAL NETWORK ARCHITECTURES
	PATTERN RECOGNITION
	REASON MAINTENANCE SYSTEMS: TOOLS FOR
	WEB INTELLIGENCE (WI)
	ROUGH SET THEORY
	AD HOC AND SENSOR NETWORKS
	COMMUNICATION-INDUCED
	CHECKPOINTING PROTOCOLS AND
	COORDINATION AND SYNCHRONIZATION:
	DESIGNING PRACTICAL DETECTORS FOR
	LARGE-SCALE DISTRIBUTED SYSTEMS
	DISTRIBUTED DATABASES
	DISTRIBUTED FILE SYSTEMS
	ELECTRONIC DATA INTERCHANGE
	FAILURE DETECTORS FOR ASYNCHRONOUS
	GRADIENT-BASED OPTIMIZATION
	INFORMATION AGE
	METROPOLITAN AREA NETWORKS
	MOBILE AND UBIQUITOUS COMPUTING
	MULTICAST PROTOCOLS AND ALGORITHMS
	NETWORK FLOW AND CONGESTION
	NETWORK RELIABILITY AND FAULT-
	NETWORK SECURITY FUNDAMENTALS
	OPTICAL COMMUNICATION
	PARALLEL AND VECTOR PROGRAMMING
	PARALLEL ARCHITECTURES
	PARALLEL DATABASE MANAGEMENT SYSTEMS
	PEER-TO-PEER COMMUNICATION
	PROGRAMMING MODELS: CLIENT–SERVER,
	QUEUEING THEORY
	SERVICE-ORIENTED ARCHITECTURE AND
	SHARED MEMORY MULTIPROCESSORS
	SOFTWARE ENGINEERING FOR
	TELECOMMUNICATIONS SYSTEMS
	TIME AND STATE IN ASYNCHRONOUS
	DISTRIBUTED SYSTEMS
	TRANSPORT LAYER
	VIDEO CONFERENCING AND IP TELEPHONY
	WIDE-AREA NETWORKS
	WIMAX NETWORKS
	ABSTRACT DATA TYPES
	AGENT-ORIENTED SOFTWARE ENGINEERING
	AGENT TECHNOLOGY
	AGILE SOFTWARE DEVELOPMENT
	ANALYTICAL CUSTOMER RELATIONSHIP
	ASPECT-ORIENTED SOFTWARE DEVELOPMENT:
	ASSEMBLY LANGUAGE
	AUTONOMOUS DECENTRALIZED SYSTEMS
	INTERCONNECTION NETWORKSFOR PARALLEL COMPUTERS
	CAPABILITY MATURITY MODELS (CMM)
	CLASS AND OBJEC
	COMPONENT-BASED SOFTWAREENGINEERING
	COMPUTER ANIMATION
	CONCURRENT PROGRAMMING
	DISTRIBUTED AND COLLABORATIVEDEVELOPMENT
	EMBEDDED OPERATING SYSTEMS
	EMBEDDED SOFTWARE
	FAULT-TOLERANT SOFTWARE
	FORMAL PROGRAM VERIFICATION
	FORMAL SPECIFICATION
	LAMBDA-CALCULUS
	MIDDLEWARE FOR DISTRIBUTED SYSTEMS
	OPTIMIZING COMPILERS
	PARAMETER PASSING
	PROGRAM TRANSFORMATION: WHAT, HOW,AND WHY
	RAPID PROTOTYPING
	REQUIREMENTS SPECIFICATION
	SOFTWARE AGING AND REJUVENATION
	SOFTWARE ARCHITECTURE
	SOFTWARE COMPONENT REPOSITORIES
	SOFTWARE CYBERNET
	SOFTWARE EFFORT PREDICTION
	SOFTWARE INSTRUMENTATION
	SOFTWARE MODULE RISK ANALYSIS
	SOFTWARE PERFORMANCE EVALUATION
	SOFTWARE PRODUCT CERTIFICAT
	SOFTWARE QUALITY CLASSIFICATION
	SOFTWARE QUALITY MODELING AS ARELIABILITY TOOL
	SOFTWARE SAFETY
	SOFTWARE SECURITY
	SOFTWARE TESTING: TESTING NEW SOFTWARE
	SOFTWARE VERIFICATION AND VALIDATION
	THE FINITE ELEMENT METHOD
	UNIFIED MODELING LANGUAGE (UML)
	VIENNA DEVELOPMENT METHOD
	VISUAL PROGRAMMING LANGUAGES
	VISUAL SOFTWARE ENGINEERING
	ANSWER SET PROGRAMMING


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




